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1 Introduction

1.1 Historical background of the thesis.

Electromagnetic plane waves are algebraically special: their Maxwell tensor has only one,
doubly degenerate eigendirection. This direction corresponds to the propagation vector of
the wave and generates a congruence of null geodesics without shear, twist and expansion
in Minkowski spacetime. Only the shear-free condition of the congruence is a consequence
of the Maxwell equations [49], the others are equivalent to the assumption about planar
wave fronts. Waves with other than planar fronts define shear-free congruences of null
geodesics with vanishing twist and nonvanishing expansion. Electromagnetic fields with
twisting congruences of shear-free and null geodesics are generic in the class of algebraically
special Maxwell fields. They are radiative in the sense of the energy-momentum tensor but
do not admit globally defined wave fronts. A first example of such a field with the so called
Robinson congruence was constructed by I. Robinson.

Congruences of shear-free and null geodesics appear also in the General Relativity theory,
where they are related to the vacuum algebraically special gravitational fields [13]. An as-
sumption about existence of a congruence of shear-free and null geodesics on the spacetime
considerably simplifies the Einstein equations [54], [17]. The well known, physically inter-
esting solutions of Schwarzschild [57], Robinson and Trautman [54], Kerr [17], Newman and
collaborators [30], [32] give examples of spacetimes satisfying this assumption. Among the
quoted solutions only the two first have nontwisting congruence. Congruences of shear-free
and null geodesics appearing in the Kerr-Newman and NUT solutions have twist. Thus
examples of solutions with twisting congruences were known for a long time, however no

systematic geometric approach was used to find them. This work introduces such a geo-
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metrical framework and, by using it, constructs new families of solutions.

From the geometric point of view twisting shear-free congruences of null geodesics are
much more interesting than those without twist. Any spacetime admitting a nontwisting
shear-free congruence of null geodesics is locally diffeomorphic to the Cartesian product of
a real line (corresponding to the direction of the congruence) and a 3-dimensional manifold
Q diffeomorphic to R x C2. In the case of twisting congruence the spacetime again has
local form R x Q but now the 3-space Q is more complicated. It is endowed with the so
called nondegenerate Cauchy-Riemann (CR-)structure and as such becomes a 3-dimensional
nondegenerate CR-manifold. There exists nonequivalent nondegenerate CR-manifolds; to
any of them corresponds a nontwisting congruence of shear-free and null geodesics. In this
sense there are many nonequivalent twisting congruences of null geodesics. On the contrary
all nontwisting congruences of shear-free and null geodesics are locally equivalent - one can
associate with them only @ = R x C? which is the only existing degenerate CR-structure.
The correspondence described above between shear-free congruences oflnull geodesics and
3-dimensional CR-structures is due to I. Robinson and A. Trautman [53], [52]. Partial re-
sults in this context were published earlier by P. Sommers [59], J. Tafel [61] and R. Penrose
[42].

The best understood examples of CR-structures are classes of 3-dimensional real surfaces in
C? equivalent under the biholomorphic mapings of C2. The study of such structures were
initiated by the mathematicians H. Poincare [48], B. Segre [568] and E. Cartan [5], [6]. In
particular, Cartan defined a full set of invariants of nondegenerate structures in full anal-
ogy with the curvature invariants of Riemannian geometry. His construction of invariants
was then successively generalized to the more and more abstractly defined 3-dimensional
CR-structures [8], [4], [16]. Expressions for the Cartan invariants in the most general case
of a 3-dimensional CR-structure are due to J. Lewandowski [22] (see also [23], [26]).

In Chapter 2 (Sections 2.2-2.5) of this thesis we consider the pure radiation Einstein equa-
tions R,, = ®k,k,, with k, being a vector field tangent to the twisting congruence of
shear-free and null geodesics. We formulate them as invariant equations on the underlying
nondegenerate CR-structure (Section 2.4). When we restrict ourselves to the CR-structures

realized as hypersurfaces in C? then the equations reduce to only one real second order equa-
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tion (Section 2.4) which becomes linear if the so called NUT parameter [32] of the solution
vanishes. In this case (Section 2.5) the equation can be solved under certain assumptions.
As an example we present solutions to the system with vanishing NUT parameter for CR-
structures admitting 3-dimensional symmetry groups of Bianchi types VIn. The metrics
corresponding to these solutions admit no symmetries in general. Most of them are new.
Another application of our formulation of the pure radiation Finstein equations is a general
solution which admits at least three infinitesimal conformal symmetries (Section 2.3). A
short Section 2.6 gives CR-invariant formulation of the twisting type N vacuum Einstein
equations. These equations will be studied elsewhere.

The last Section of Chapter 2 provides first explicit solutions describing purely radiative
Einstein-Maxwell fields with twisting shear-free geodesic null congruences; also first exam-
ples of Einstein-Maxwell fields with twisting congruences which possess both radiative and
charged part are presented there. V

Chapter 3 deals with orthogonal almost complex structures over a 4-dimensional Euclidean
manifold. In four dimensions such structures are Euclidean analogs of null congruences as
described in the last section of the Introduction. In this analogy the integrability conditions
for the almost complex structure to be complex correspond to the geodesic and shear-free
property of the null congruence [21]. In Sections 3.1, 3.2 we define an Euclidean analog
of the Newman-Penrose formalism [31]. As an application of the formalism we discuss in-
tegrability conditions for a local existence of orthogonal complex structure on Euclidean
4-manifolds (Section 3.4). In this section it is also showed which orthogonal complex struc-
tures are admitted by conformally flat metrics. This gives a part of an Euclidean analog of
the Kerr theorem. An Euclidean analog of the Goldberg-Sachs theorem [13] is presented in
(Section 3.5). It follows from this theorem and Section 3.4 that an Fuclidean 4-manifold
satisfying the Einstein equations R,, = Ag,, admits orthogonal complex structure if its
metric is algebraically special in the sense of an Euclidean analog of the Cartan-Petrov-
Penrose classification given in Section 3.3. Such a classification was known in the spinorial
language. Our classification refers to the properties of orthogonal almost complex struc-
tures.

The results of the whole Chapter 3 seem to be new.
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1.2 Collaborators.

The thesis is based on research done in collaboration with Jerzy Lewandowski (Warszawa,
Syracuse, Gainesville), Ivor Robinson (Trieste, Dallas), Jacek Tafel (Warszawa) and Andrzej
Trautman (Warszawa, Trieste). The results of this collaboration are quoted in different parts
of the thesis. In particular:

- the last section of the Introduction and the whole Chapter 3 was obtained in collaboration
with A. Trautman,

- the small note on relations between integrability conditions for higher dimensional optical
geometries and shear-free property of the null congruences quoted in Section 1.4 is a result
of a joint work with I. Robinson and A. Trautman,

- the original results of my Master Thesis in SISSA quoted in Section 2.1 were obtained in
collaboration with J. Tafel [37] (part on symmetries of CR-structﬁres) and J. Lewandowski
[26] (part on Cartan invariants),

- Sections 2.2, 2.4 on invariant formulation of the pure radiation Einstein equations were
obtained with J. Lewandowski and J. Tafel [27], [28]; I quote parts of these two papers in
Section 2.5 where particular examples of solutions are presented,

- results of Section 2.3 were obtained in collaboration with J. Lewandowski [25],

- the whole Section 2.7.2 is a part of a joint work with J. Tafel [38].

1.3 Conventions and notations.

All our considerations are local and concern with nonsingular points of our constructions.

We in addition assume, that all real vector fields are real analytic in the considered regions.

Bold face letters.
- K denotes a field of numbers, e.g. R is the field of real numbers, C is the field of complex
numbers,
- K™ denotes a vector space of the n-th Cartesian power of K,
- G(n, K) denotes a Lie subgroup of the general linear group of K", e.g. SL(2, C) is a
special linear group of C2,

- S™ denotes the n-dimensional sphere.
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Vector spaces.

Let V be a vector space and K and L its vector subspaces. Then vector spaces K + L and
K N L are defined by

K+L={veV:v=k+!land k€ K,l € L},

and

KnL={veV:ve K and v € L}.

Tensor product of vector spaces is denoted by ®, the exterior product by A. In this way
C ® V denotes the complexification and A™ V denotes the m-th exterior power of a real
vector space V. Any vector n in a vector subspace N of C ® V can be decomposed onto
n = v+ iv’, where v and v’ are appropriate real vectors from V and > = —1. The complex
conjugate element to n is i = v — iv’. A space consisting of all elements w of C ® V
such that @ is in N is denoted by N. We note that spaces N + N and N N N are both

complexifications of real vector spaces.

Manifolds.

If M denotes a manifold then TM (respectively, T*M) denotes its tangent (respectively,
cotangent) bundle. |

If K, £ denote vector bundles over M then I'(K) denotes the set of all sections of KX and
[T(K), T(L)] denotes a set consisting of all commutators of the form [k, ] where k, [ are
sections of K and L, respectively.

If ¢ : M — M’ is a diffeomorphism between two manifolds M and M’ then ¢, denotes the
transport of contravariant tensor fields from M to M’; transport of covariant tensor fields

from M’ to M is denoted by ¢*. Transports of tensor fields of general type is denoted by

o.
The exterior derivative of forms is denoted by d; the inner derivative associated with a vec-

tor field X on a manifold M is denoted by X |; the Lie derivative along X is denoted by L.

Metric.
We say that a basis of vector fields (f.), g = 1,...,7 on a manifold M is orthonormal with
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respect to the metric g iff g(fu, fu) = €u0u, and €, = £1. If ¢, = 1 for any p then the
metric is called Euclidean. The metric is called Lorentzian iff ¢, = —1 for exactly one p.

If X, Y are vector fields on M then g(X) is a 1-form defined by < 9(X),Y >= g(X,Y).
On the oriented p-dimensional manifold the volume form is denoted by 1. The Hodge dual

*w of an r-form w is defined by

*w(Xr+1,Xr+2, ,Xp)T] = wA g(Xr-l-l) A g(X,_,_z) FARVAN g(Xp),

where X;, 7 =7+ 1, ..., p, are vector fields.
If « and A denote one forms on the manifold then &\ = —%(n RA+A® n); such expressions
are used in the work to simplify expressions for metrics.

If K is a vector bundle over M then K+ denotes the bundle orthogonal to K with respect to g.

1.4 Complex and optical geometries - an analogy.

In this section we summarize known results on complex and optical geometries that we use

in our work.

Let M be an oriented 2m-dimensional real manifold equipped with the metric g which
has either Euclidean or Lorentzian signature.
In the Euclidean case we consider an almost complez structure i.e. a tensor field J : TM —

T M such that
J? = —id.

An almost complex structure is called orthogonal iff
9(JX, JY)=g(X, Y)

for any vector fields X, Y on M.

For any orthogonal J there exists a set of orthonormal vector fields X3, ..., X;, such that
(X1, ooy Xy T X1, ...y T X 1) is an orthonormal basis for vector fields. Any two such bases
differ by a linear transformation with determinant equal to 1. This specifies an orientation

associated to J on M which may be in general different from the previous orientation of



1.4. Complex and optical geometries - an analogy. v 9

M. If both these orientations coincide then we say that J agrees with the orientation.

Given an almost complex structure J we define the Nijenhuis tensor Nz by

N, %) E (9%, Y] - [X,Y] - JWIX, Y] - TIX, T, (11)

where X and Y are any two real vector fields on M. J is integrable to the complez structure
on M iff [33]
' Ny =0. (1.2)

In the following we also comsider almost complez structures in a vector bundle H, with
even-dimensional fibers, that is not necessarily a subbundle of the tangent bundle. Such a
structure is defined by a linear automorphism J : H — H of the bundle 7 which satisfies
J? = —id. Suppose that H is equipped with a Euclidean metric g’. J is called orthogonal

if it is an orthogonal transformation with respect to this metric.

In the Lorentzian case we consider an almost optical geometry [65], [21]. This structure
is defined as follows. Consider a real line subbundle K of the tangent bundle TM which
in the metric g has null (optical) sections. Since K C K+ =: L then the quotient bundle
H /K is well defined. This has even dimensional fibers since dimension of fibers of X
and £ are 1 and 2m — 1, respectively. Moreover, since £ = K then K = L1 and the metric
g descends to a nondegenerate Euclidean metric ¢’ in H. If, in addition, H is equipped with
an almost complex structure J orthogonal with respect to g/, then O = (K, £, [J) is called
an almost optical geometry on M.

The almost optical geometry is called an optical geometry if the following integrability con-
ditions a) — d) are satisfied [36]:

a) - [T, T(K)] C T(K).
b) [T(), T(£)] C T(L).

c) if ¢r is a flow generated by any section k of K then
0T =J
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To formulate point d) we need some comments. Condition a) says that I'(K) defines a
foliation of M by 1-dimensional manifolds - integral curves of any nonvanishing section
k € T(K). Any point z € M belongs to a precisely one such curve. We define an equivalence
réla.tion n~” on M identifying points on the same curve. More precisely, any two points
z,z' € M are in the relation "~” iff ¢’ = ¢x(z).

We assume that in a considered region I/ of M a quotient space Q “u / ~ is a
(2m — 1)-dimensional manifold. This quotient manifold has some additional structure. Let
« denotes the canonical projection m : # — U/ ~. If a) — ¢) holds then this projection
defines 7' % mH and J’ e/ % 7. One checks that H’ is a subbundle of a tangent bundle
TQ with fibers of dimension 2(m — 1) and J' is an almost complex structure in H'. The
last integrability condition for the optical geometry O is expressed in terms of any two real

sections X’,Y" of the bundle #'. This reads

d) I X iT'X, Y i) = —i (X +id' X, Y +iTY).
Note that X', Y" are now vector fields on Q, and that we extended J' to C® H' by linearity.
This condition generalizes (1.2), in the sense that if 7’ defines a foliation of Q by (2m — 2)-

dimensional manifolds then J' restricted to these manifolds and satisfying d) is a complex

structure there.

Definition 1.4.1 A Cauchy-Riemann (CR) structure is a real (2m — 1)-dimensional man-
ifold Q together with

(1) a real subbundle H' C TQ of fibers of dimension 2(m — 1),

(2) an almost complez structure J' in H'.

If in addition CR structure satisfies integrability condition d) then it is called an integrable

CR structure.

The following proposition (see for example [36]) gives another characterization of integra-

bility conditions for a CR-structure.
Proposition 1.4.1 A CR structure is integrable iff
(™), (R c T(H'T), (1.3)

where H'*E def H LT H.
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Definition 1.4.2 Two CR-structures (Q, H, J) and (Q', H', J') are called (locally)
equivalent iff there exists a (local) diffeomorphism ¢ : Q@ — Q' such that

¢H="H

and

3T =7

There exist nonequivalent CR-structures on the same manifold Q.

We have the following theorem.

Theorem 1.4.1

(1) A real 2m-dimensional manifold M equipped with an integrable optical geometry is
locally diffeomorphic to R x Q where Q is a (2m — 1)-dimensional integrable CR structure.
(2) Given a (2m — 1)-dimensional integrable CR-structure Q one can define an integrable

optical geomeiry on R X Q.

Proof. Point (1) is obvious in view of what we have said so far. The local factor Rin R X @
is associated with integral curves of any nonvanishing section k of K.

We prove (2) by giving a construction of an integrable optical geometry. Let 7 denotes
the projection 7 : R X @ — Q. Denote by S the subbundle of the cotangent bundle T*Q
which annihilates the bundle H’. It has one dimensional fibers, hence it is generated by a
nonvanishing section, say X'. We define a nonvanishing 1-form A on R X Q by A = 7*(X').
We define k as a nonvanishing vector field on R x Q which is tangent to the fibers 77*(z),
z € O. We define K as a bundle generated by &, and £ & ker); both K and L are
subbundles of T(R x Q). Due to the construction 7*(£/K) = H'. Therefore we can define
JinH=L/Kby J([I])=T'(x( [1])), where [I] € L/K. Let g’ be any Euclidean metric
in ‘H' such that J’ is orthogonal in it. We define a Lorentzian metric on R X Q by

g=7%(g") — A,

where «a is any 1-form on R X Q such that the metric g is nondegenerate. One checks that

K,L,H,J) is an integrable optical geometry with g as a metricon R x Q. O
3 7 ? y
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This theorem was first formulated for m = 2 in [52].

Note that the metric ¢ in the proof of Theorem 1.4.1 is not uniquely defined. Given an opti-
cal geometry one has not only one Lorentzian metric g but the class of so called adapted met-
rics. A Lorentzian metric g on M is said to be adapted to the optical geometry (K, L, TJ)
if, relative to g

I) K is null,

II) L is orthogonal to X,

IIT) J is orthogonal with respect to metric g’ induced by g in .

We note that the case m = 2 is different from cases m > 2 in the following sense.
If m = 2 and M is oriented then any almost optical geometry can be defined by choosing
a null congruence on M. All vector fields tangent to the congruence form the bundle K,
L equals to K1 by definition and, due to the dimension of M, the bundle H = L/K has
9-dimensional fibers. Then the orientation of M and the metric g’ in H uniquely define a
complex structure J in . The integrability conditions a) - d) for (K, £, J) are equivalent
to the geodesic and shear-free property of the congruence. If they are satisfied in one of the
adapted metrics they are also valid in any other adapted metric [52], [53].
This is not in general true if m > 2. In such cases a null congruence also defines X and £
as before but, since the fiber dimension of H = L/K is greater or equal than 4, there is no
natural way of defining J in H. Therefore if m > 2 the choice of 2 null congruence does not
suffice for a definition of an almost optical geometry. Moreover, the integrability conditions
a) - d) say nothing about the shear-free property of the congruence generated by sections
of the bundle X: it may happen that in some adapted metrics the congruence has shear
and in some others no [36].
Geometrical objects which are in one-to-one correspondence with almost optical geometries
for arbitrary m are bundles of mazimal totally null vector spaces over M. They allow for
an unified description of almost complex geometries (Euclidean .case) and almost optical
geometries (Lorentzian case) as follows [21], [66].
In the complexification of the tangent bundle TM equipped with the complexification of
the real metric g consider a subbundle N of maximal totally null vector spaces. It turns

out that NN AN = C ® K where K is a real bundle of fiber dimension 0 or 1, depending on
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whether g is Euclidean or Lorentzian, respectively. Moreover, since N +N =C®K* then
£ = Kt is a subbundle of TM with fibers of codimension 0 (in the Euclidean case) or 1
(in the Lorentzian case). In both cases we have a natural almost complex structure J in
H “ef L/K. To define this we observe that any section [ of L is of the form | = n+ i where

n is some section of M. If [I] denotes an equivalence class associated with I in 7 we define

J by

def

J(M)=d(n+a]) = [-i(n—-7)]. (1.4)

Omne proves that J is well defined and orthogonal. Therefore N defines either orthogonal
almost complex structure or almost optical geometry over M depending on whether the
signature of g is Fuclidean or Lorentzian, respectively. The converse is also true: any
orthogonal almost complex structure or almost optical geometry over M can be obtained
in this manner.
Thus we have an analogy between almost complex and almost optical geometries. Due to
this the integrability conditions (1.2) and a) — d) have a uniform description. These are
equivalent [66] to
[T(N),T(N)] C T(N). (1.5)

Given a maximal totally null space A/ we define a maximal totally null space N* in

CRT*M by
N*={a e T(CQ®T*M):a= g(n) where n € T(N)}.

The space A := A™ N* is one dimensional and it turns out that its Hodge dualization is
*A = £(2)" A,

where the parameter ¢ is 0 in Euclidean case and 1 in Lorentzian case. The sign of right
hand side of the above equation, called helicity, is an invariant property of N under the
orientation preserviné méppings. It also defines the helicity of the corresponding (almost)

complex structure or {almost) optical geometry.




2 Einstein equations in 4-manifolds
admitting optical geometries

2.1 Results on 3-dimensional CR-structures and Lorentzian
metrics associated with them.

This section is a summary of results on 3-dimensional CR-structures. All of them were

presented and proved in [35].

2.1.1 Nondegenerate CR-structures.

A CR-structure on a 3-dimensional real manifold Q can be defined in terms of equivalence

classes of pairs of 1-forms [(, p)] on Q such that X is real, p is complex,

AARAR#DO, (2.1)

and pairs (), p), (N, ') are equivalent iff there exist nonvanishing functions f (real), h

(complex) and a complex function p such that
N = f)\ p' = h\ + pp. (2.2)

A CR-structure can equivalently be defined in terms of a nowhere vanishing complex vector

field 8 (sometimes called a tangential CR-operator) such that
A|A=0|p=0.
8 is defined by this equations up to a transformation

0 — s0,

14
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where s is a nowhere vanishing complex function on Q.
Any 3-dimensional CR-structure is integrable. In this work we mainly consider nondegen-

erate 3-dimensional CR-structures. They are defined by
ANdAA#0. (2.3)

2.1.2 Reélizability.

A CR-structure can be realized as a real hypersurface in C? (is realizable) iff the following

tangential CR-equation

dEAAAR=0 (2.4)

or, equivalently,

5¢ =0, (2.5)

for a complex function ¢ on Q has two independent solutions ¢; and & 1 Not all CR-
’
structures are realizable [34], [16].
The solution £ = 0 of the tangential CR-equation (2.4) is called trivial. If the CR-

structure is nondegenerate any nontrivial solution satisfies

dé A dE £ 0.

If (z') (i =1, 2, 3) are coordinates on Q then any pair of independent solutions £1(zt),
£5(z?) of the tangential CR-equation (2.4) define a realization of the CR-structure as a real
3—surfa.cev in C? by

Q3 (2!, 2%, 2°) m (6(2), &a(a')) € C%

another pair of independent solutions &, £ of (2.4) define a 3-surface which is related to
the former by a biholomorphic transformation of C2. Conversely, if a real function ¥ of

complex variables £y, ¢, defines a 3-surface Q in C? by equation

U(¢y, &, &, ) =0

!Tndependence here means that

dé Adée £ 0.
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then Q is endowed with a CR-structure in terms of transformations (2.2) of forms

: gy iff Te, # 0
A= 46y + Tedls) = { 8 if lp? i 0"
2

Functions &; and ¢, restricted to Q gives two independent solutions of the tangential CR-

equation (2;4) and any solution of this equation is given by

p = 90(511 52)7 (26)

where ¢ is any holomorphic function of variables &1, £3. Thus for realizable CR-structures

there is no problem in finding general solution of (2.4).

2.1.3 Cartan invariants.

Cartan invariants of a nondegenerate 3-dimensional CR-structures [5], [6] are defined as
follows.

Consider a class [(), p)] of forms defining a CR-structure on 3-manifold Q. Let X', p’ be
forms from this class i.e. they are related to A, p by (2.2). We successively restrict this
freedom obtaining finally a rigid structure.

First condition we impose on A, p' is
AN AN =4 A g AN (2.7)
This condition is not very much restrictive; there is still a big freedom
Q=N Q =t(p +2X) (2.8)

in choosing forms  and 2y which are in the class [(}, p)] and satisfy (2.7). In (2.8) complex

functions ¢ # 0 and z are arbitrary.

Forms Q and (; define 1-forms {3, Q3 (complex), 4 (real) and complex functions R,
S which satisfy
dO =i A0 + (2 + Q) AQ
dQ; =2 A + Q3N Q
dQo = 2iQ A Q3+ Q3 A Q3+ QA Q (2.9)
03 = Q4 AQ + Q3 A Dy + RO AQ '
dQy = i3 A Q3 + Qu A Q2+ Q2) + (S + SQ) A Q



2.1. Results on 3-dimensional CR-structures and Lorentzian metrics ... 17

These forms and functions are related to  and 1 and, as a consequence, depend on ¢ and

z from (2.8). They are defined up to the freedom
Qz - Qg -+ QAI

Q3 — Q3+ o'
Qq — Qg +do+ 0o(Q2+ Qz) + 0%\

where p is any real function on Q. The explicit expressions for these forms in case of a
general ? nondegenerate CR-structure are given in [22], [26].

The following matrix w of 1-forms on Q is called the Cartan-Chern-Moser connection [5],

[6], [8]

%(ZQQ + Qg) ’LQ3 —%94
w = 'LLI %((—22 - QQ) —%03 . (210)
2\ 2 ~1(2Q; + Q,)

" It also depends on z, t of (2.8) and has the property that v’ computed for arbitrary ¢ and

z is related to w computed for t =1, z = 0 by
W' = ATlwA + A71dA. (2.11)

Here A is a matrix belonging to the group SU(2, 1) and is expressed in terms of ¢ and z as

follows . . .
[tle? iz —£o (L4 ilz]?)

eif

A= 0 el —$® , (2.12)
£i0
0 0 10
where 6 is defined by
t= lt‘esm.
The curvature R of w is defined by
R=dw+wAuw; (2.13)

2 e. even such which does not admit any solution to the tangential CR-equation
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R’ computed for arbitrary ¢ and z of (2.8) is related to R computed for t = 1, z = 0 by
R = A™'RA. (2.14)

These transformations show, in particular, that the function R’ of (2.10) computed for

arbitrary t and z is related to R computed for ¢t =1, z = 0 by

1 6
R = Weﬁ oR. (2.15)

Condition R=0 is invariant under transformations (2.8) and there is only one (up to equiv-
alence) CR-structure which this satisfies. This is a CR-structure (locally) equivalent to

S3 € C2. For this CR-structure curvature R vanishes and one can always transform the

forms 2, O, to
0 =du— ZEde+¢df, W= (2.16)

in a properly chosen chart (u, £, £).
If R # 0 then by means of transformations (2.15) we achieve

R =1 : (2.17)
To restrict entirely the freedom in choosing {2 and ; one introduces additional condition
dQ =0y A Q4. (2.18)

Conditions (2.17)-(2.18) determine  and Q up to the freedom
Q- Q, 0 — £04. (2.19)

They uniquely determine z and specify ¢ up to a sign. For these preferred z and ¢ we
compute {5, Q3 and 24 which together with already determined 2 and Q; constitute a
system of all (Cartan) invariant forms of a nondegenerate 3-dimensional CR-structure.
Note that since A, p satisfy (2.1) then (Q, Qy, ;) constitute a basis of 1-forms on Q. In
the case R # 0 we define invariant functions a, B, v, 8, £ by

Qg = an — &Ql + ZIBQ,

Q3 = i7Qy + 90y + nQ, (2.20)
1 -
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This definition implies, in particular, that
dQ), = C_lﬂl/\ﬁl-{-’i(ﬁ—’)’)ﬂ/\ﬂl ——19“/\{21. (221)

Note that if R = 0 then forms (2.16) also satisfy (2.18). We prolong definitions of Cartan
invariants to this case by saying that ( and Q are given by (2.16) and all other invariants

like a, 8, v, 9, £, Qa, Q3, 4 vanish.

2.1.4 Symmetries.

A diffeomorphism ¢ : @ — Q is called a symmeiry of a CR-structure iff the pullbacks
¢*\, ¢*u are related to the forms A, p by the transformations (2.2). We say that a real

vector field X on Q is an infinitestmal symmetry iff
LxA=al, Lxp=bA+ cp, (2.22)

where a is a real function and b, ¢ are complex functions. X can be equivalently defined in
terms of an operator d by

[Xa 3] = t@, (2.23)

where £ is some complex function on Q.

It is worth noting that if a nondegenerate CR-structure admit an infinitesimal symmetry

X then it follows from the construction of Cartan invariant forms that
LxQ=LxQ =0 (=1, 2,3, 4) (2.24)

and

Lx¢= 0, where ¢ = q, ﬂ, v, J or f (2.25)

Given a nondegenerate CR-structure we will not always need forms {2 and €, of defini-
tion (2.8) in the Cartan representation satisfying both conditions (2.17), (2.18). Therefore
from now on we adopt the following convention: Q and §; denote always forms (2.8) which
satisfy condition (2.18). ® Functions a, 8 —+, ¥ are then defined by equation (2.21). Some-

times, (when explicitly stated) some additional conditions are imposed on these forms. This

3Note that this condition can be imposed independently of (2.17).
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can, for example, be a condition that these forms are Cartan invariant forms; if a nonde-
generate CR-structure admits an infinitesimal symmetry X this additional condition can

require that () and §); are invariant when transported along X.

The basic results in the field of symmetries of 3-dimensional CR-structures where ob-

tained by E. Cartan in [5]. In collaboration with Jacek Tafel, [37], we extended his results
to the nontransitive (local) groups of symmetries. We also presented the forms A, p in
terms of canonical coordinates in both transitive and nontransitive cases. -
A CR-structure can have no symmetries; if it has one, it is always realizable [37]. In the
nondegenerate case the symmetry group is at most 8-dimensional [58]. There is only one
(up to the local equivalence) nondegenerate CR-structure with a syfmnetry group of the
highest dimension. This is a CR-structure corresponding to a surface of the 3-dimensional
sphere S € C?. Any symmetric CR-structure with a symmetry group G of dimension
D > 4 is locally equivalent to that corresponding to the sphere; hence G is not maximal in
such cases [5].

If a CR-structure Q possesses an infinitesimal symmetry X then there exist coordinates
u (real) and ¢, £ on Q such that X = 8, and the CR-structure is equivalent to that defined
by forms [37]

p=dé and X=du+ Ldf + Ld¢, (2.26)
where

L = —i0¢o, X(o)=0

and o is a real function such that
T = 26{650 > 0.

If a CR-structure Q possesses two infinitesimal symmetries X; and X, then either they
commute or there exists such their linear combination X1, X} that [X{, X3] = X{. Here we
concentrate on the commutative case in which coordinates u, £ = z + iy can be introduced
on Q such that X; = 8, and X9 = 8, and the the CR-structure can be represented by

(2.26) where now

1 1
L= ———iﬁya, o=a(y), T= —2—8§cr> 0.
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Classification of nondegenerate CR-structures with at least 3 infinitesimal symmetries is as
follows [37].

One proves that any finite dimensional Lie group of dimension D > 3 includes locally
a 3-dimensional subgroup (say G). Given a group with D > 3 chose its 3-dimensional
subgroup to reduce the problem to the case D = 3. The action of this 3-dimensional
subgroup G on Q is locally simply transitive and the forms A, p can be transformed to the
left invariant forms on G. By virtue of the Bianchi classification [3] of 3-dimensional Lie
groups the whole problem reduces to the problem of finding all nonequivalent left invariant
frames on these groups. Reduction of parameters is obtained by (%) transformations (2.2)
with constant coefficients and by (zz) linear transformations of the left invariant frames
preserving the structure constants of G. The final result - the classification of nondegenerate
homogeneous 3-dimensional CR-structures in terms of the Bianchi type of G is given below.
In this classification the CR-structure is parameterized by real coordinates (u, z, y) and
we introduce complex variable ¢ by ¢ = z + iy. Classes of forms [(A, p)] are generated
from left invariant forms A and p listed below by (2.2). We also give forms 2 and Q; which
belongs to the class generated by A and p, respectively. They are such linear combinations
with constant coefficients of A and p that (2.18) is satisfied.

Bianchs type 1T,

/\:Q:du—%gngréng p= 0 = de.

Biancht type 1V . v

A=y ! (du - logyde) p=y ¢

Q=2 Qy=p+A
Bianch: type V1.
A =yldu -y ldz p=y td¢
2 d
=g et

! _ 1—+/—h!
where A/ <0 and d = FRy

Bianchi type VII:.

A = du + exp[(i + A)u]dé + exp[(4 — i)uldé p = exp[(4 + 1)uld
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A—1

21

[N R R

A Q].:ﬂ+ Av

where A/ > 0 and 4 = NI
Bianchi type IX (upper signs) and VIII (lower signs).

ket —if ke~ 4 if - 2¢'t
A=4d = d = d = — d
vt TgrT a4 rT g
2 K
ﬂ:nzzl:l)\ ﬂl_p“ﬁ?il’

where k > 0 and & # 1 for type VIII.

We note that
a) there are no nondegenerate CR-structures with symmetry groups of Bianchi types I and
V;
b) there are unique nondegenerate CR-structures with symmetries of Bianchi types I, IV,
VI and VII;: (for any value of the parameter h');
c) there are one-parameter (with parameter ) families of nondegenerate CR-structures with
symmetry groups of Bianchi types VIII and I.X;
d) all structures from the above list are nonequivalent except those of Bianchi types II,
VI_y, VI_g, VIIT (with & = +/2) and IX (with & = 0); only in these cases the group
G can be extended to the bigger symmetry group; in such cases the maximal symmetry
group is always 8-dimensional group isomorphic to SU(2, 1), hence all these structures are

equivalent to the sphere S3 € C2.

2.1.5 3-dimensional CR-structures and congruences of null geodesics with-
out shear. Lifting: (CR-structure)— (Lorentzian 4-manifold).

Due to Theorem 1.4.1 any (even degenerate) 3-dimensional CR-structure defines an optical

geometry in M = R x Q. The class of metrics adapted to this optical geometry is given by
g = p*(ui — Ap), (2.27)

where [(}, p)] defines a CR structure on Q, ¢ is any real 1-form, and p # 0 is any real

function on M provided that g is nondegenerate. Note that we used the same letters in
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denoting forms on Q and their natural pullbacks to RXQ. A congruence of lines defined
on M = R X Q by a real nonvanishing vector field k such that

EA=Fk|lp=0 (2.28)

is geodesic and shear-free [52] in any adapted metric (2.27). The congruence is twistingiff the
associated CR-structure is nondegenerate. Any 3-surface Q' in M transversal to k becomes
naturally a CR-structure. The shear-free, geodesic and null property of the congruence
imply that CR-structures on all others 3-surfaces transversal to k are equivalent to that of
Q. Therefore in 4 dimensions, due to Theorem 1.4.1, we have a correspondence: shear-
free congruences of null geodesics «— 3-dimensional CR-structures. In this correspondence
S3 € C? is related to the so called Robinson congruence [40]. The procedure of associating a
Lorentzian metric (2.27) with a given CR-structure is called a lifting of the CR-structure to
the Lorentzian {-manifold. It is an interesting question which CR-structures can be lifted to
e.g. Ricci flat Lorentzian manifolds. In the case of lifting to the Minkowski space a partial
answer to this is given by the Kerr theorem. This is not very much satisfactory since it is
not invariant under transformations (2.2).

' Note that the form (2.27) of adapted metrics is invariant under transformations (2.2);

therefore there are many different Newman-Penrose (NP) [31] tetrads

(pu, pB, DA, DY)

on RxQ in which the metric g has the form (2.27). If g is given by (2.27) and the CR-
structure is nondegenerate we define a preferred NP tetrad on R x Q by the requirement
that (A, p)in (2.27) is identical with (€, Q;). Note that if, in addition, (Q, Q) are Cartan

invariant forms then so determined NP tetrad is uniquely defined by g.

2.1.6 Fefferman metrics.

For nondegenerate CR-structures there is a conformal subclass of adé,pted metrics (2.27) of

particular interest. This is the Fefferman conformal class [12] generated by a metric

— 2
gr = 2{ 0y — Q( dr + 3292 ) (2.29)
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where (1s are natural pullbacks from Q to M of forms defined by (2.10) with ¢, z determined
by (2.18), and 7 is a real coordinate along factor R in R x Q. Metric gr transforms
conformally under transformations (2.8) preserving (2.18).

The Fefferman class of metrics can be defined for a CR-structure Q of any dimension
[12], and can be characterized by a properties of the congruence defined on the fibration
M = S! x Q over Q by a direction of a vector field tangent to the fibers [60], [22], [26].
Such metrics are also relevant in the twistor theory [43], [45] since they are the only metrics
admitting twisting congruence of null geodesics which are compatible with existence of

solutions to the twistor equation [24].

2.2 Pure radiation with twist - Einstein equations in the
preferred Newman-Penrose tetrad.

In this section we consider Einstein equations
R,, = ®k,k,, : (2.30)

in which k, generates a twisting shear-free congruence of null geodesics and @ is some real
function. Any manifold admitting such congruence is locally equivalent to M = R X Q with
some nondegenerate CR-structure Q and any Lorentzian metric in which this congruence is

null geodesic and shear-free has the form
g =2P*(0:0; - Qp), (2.31)

where 0, Q; are pullbacks to M of natural forms associated with Q, as defined in Section
2.1.6. In (2.31) P is any nonvanishing real function on M and ¢ is any real 1-form on M
provided that the metric is nondegenerate. Tetrad (61, 62, 6, 6*) = (PQy, POy, PQ, Py)
is the preferred NP tetrad on M as discussed in Section 2.1.6. A coordinate r on M may
be chosen such that

(p:dr—i—Wﬂl—l-WQl«}—HQ and k=20, . (2.32)

Forms (€, {4, Q) initially defined on Q define there dual vector fields (4, 9, &), respec-
tively. We prolong these to M by the requirement that

d(r) = Oo(r) = 0.
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Tetrad (e,) on M dual to (6#) is
(QJ%QJQ:%@—W&é—WﬂW%—H%kL

where now operators (8, 8, 8;) are vector fields on M.

Einstein equations (2.30) written in this tetrad can be partially integrated leading to the
metric g in which all the r-dependence is determined. The metric (2.31) is expressible in
terms of unknown functions p # 0, s, h (all real) and a, b, C, G, F and f (all complex) as
follows [25].

__ P
cos[%ﬁ]’
W = 2aie™ + b, (2.33)
H = Ge? 1+ Ge " L Fe'™ + Fe™" + h.

The unknown functions are subject to the following (Einstein) equations [25]:

k(p) = k(s) = k(h) = k(a) = k(b) = k(C) = k(G) = k(F) = k(f) =0, (2.34)
= [%(35 -b)— %8 logple™, (2.35)

C = 0 logp + ae™™, (2.36)
§a+®C~@+%§=o (2.37)
h + %(Aa + Aa) + —— o 7 + 6ad + i(Ab — Ab) = 0, (2.38)
= (F - f)e¥, (2.39)
= (A - ib)a, (2.40)
(F + f)e™™ + (F + f)e'* — 8CC + 2(8ps — h) = 0, (2.41)
(%8+ib+C)G’: (2.42)

Here a, (8 — ) and ¥ are functions defined by (2.21) and we introduced operator
A=08-a. : (2.43)

Note that due to (2.34) all unknown functions are independent on r. Hence our equations

can be considered as equations on Q with (0, 8, o) as operators on Q.
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Not all unknown functions in equations (2.34)-(2.42) are independent. By algebraic elim-

ination of dependent variables equations (2.34)-(2.42) can be simplified very much. This

is done in Section 2.4. Here, however, we remain with this form of equations, since this is

convenient to find solutions with conformal symmetries.

The Weyl tensor C*,,, of g satisfying Einstein equations (2.30) is expressible in tetrad

(6") in terms of the unknown functions as follows [25].

Ciz214 = Cr1414 = 0,

Cz434 = ——%[Geir(e" + e ) 4 Gemir (e 4 '),
Ci324 = %[Geir(eir + 7)),

Cia34 = -;;[Geir(ei’ 1em®) = Gemi (e + €],
Crass = 51.55[(1 +Ye 4+ XePT — 24aiGe®,

Ci313 = %[lZazGe‘“T 4 Z5€%T 4 Zpe?T 4 Z_ge” T 4

+Z1€" + Z_1e7 + Tl
where we have introduced
X = —8i(d — 2ib + ae™**)G,
Y = —86a + 2i0(f — 3F) + 2b(f — 3F) + 8iha,
U = 4&09 — 289 + 3i(8b — 9b) + O(Ab — Ab — 4ih) +
+83[5(3F — ) - 6(aa)
with |
§ =00 +i(B—7)
all functions Z; from eq. (2.49) satisfy k(Z;) = 0. If
G=0
they are defined by

Zy=12_9=0,

(2.44)
(2.45)

(2.46)
(2.47)

(2.48)

(2.49)

(2.50)
(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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i

7, = Y, (2.56)
7y = i-(a —ib+ Q)Y | (2.57)
Z_y = (04 ib+ a)[(8+ ib)F — 2aid] — 2i f, (2.58)

Zo = (0 + a)(8h — 4aF — 6b 4+ b7) — 2a[(0 + ib) F — 2aid] +
+[6 4+ 4(8 — ) + th + Ab — Ab + Saai]¥. (2.59)

All other components of the Weyl tensor are algebraically expressible in terms of the above.
We note that the metric g satisfying (2.30) is never algebraically general i.e. is at most of

Petrov type II. It is of type I1I iff G = 0, and is of type N iff
G=U=X=Y =0. (2.60)

In the case of type N the Einstein equations (2.30) imply that the metric is necessarily
vacuum ([20] Theorem 32.17, p. 373). Hence in searching for vacuum types N it is enough to
consider only equations (2.34)-(2.42) and (2.60), and forget about the last vacuum Einstein
equation ¢ = 0.

Note also that not all conditions (2.60) are independent. This is because equation (2.42) is

equivalent to

Ue® —Y + Xe ™™ +240iGe 2 =0 (2.61)

if equations (2.34)-(2.42) hold.
It turns out that, without loss of generality, we can put s = 0 in the equations of this
section; the function s has no geometrical meaning. It can be eliminated from the equations

by a change of 7 coordinate through
P—=T+3 (2.62)

and by appropriate redefinitions of the unknown functions and operators (8, 8, 8g). If,
however, we impose some additional conditions on the coordinate r in its very definition
(2.32), then the freedom (2.62) in the choice of 7 can be restricted. In such cases it may be

impossible to eliminate s from the equations and it has to appear.
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2.3 Metrics with at least three conformal symmetries. All
twisting vacuum and pure radiation solutions in this
case.

An infinitesimal conformal symmetry is defined as a real vector field X on (M, g) such that

Lxg = ¢g, (2.63)

where ¢ is some real function on M. The commutator of infinitesimal conformal symmetries
is also an infinitesimal conformal symmetry; hence all such symmetries form a Lie algebra.
In this section we assume that the metric g of (2.31), (2.34), (2.33) admits at least 3
infinitesimal conformal symmetries. Under this assumption we find a general solution to

the Einstein equations (2.34)-(2.42).

Theorem 2.3.1 Suppose that the nonflat Lorentzian manifold (M, g):

1) admits twisting shear-free congruence of null geodesics tangent to the vector field k,

2) possesses at least 3 infinitesimal conformal symmetries that form a Lie algebra A,

3) satisfies the Einstein equations Ry, = ®k,k,.

Then the CR-structure Q associated to M is homogeneous and the algebra of its infinitesimal

symmetries is isomorphic to an appropriate 3-dimensional Lie subalgebra of A.

A sketch of the proof is as follows. One shows that an infinitesimal conformal symmetry
X preserves the congruence. This implies that £ X is parallel to k, hence the projection
X of X onto Q is uniquely defined. It may happen that X = 0. However, this is only
possible if X is parallel to k. We exclude such situations since any metric compatible with
the Einstein equations (2.30) and the existence of the infinitesimal conformal symmetry X
parallel to k is flat [25]. Therefore all projections X of X nowhere vanish. Since any X
preserves the CR-structure it generates the symmetry of Q; furthermore X is related to X
by X = X + fk with some real function f on M. By virtue of the freedom we have in
choosing 3-surface for the CR-structure in M we can assume that all X’s are tangent to
Q; hence, in particular, X = X for all X’s. Since the dimension n of the Lie algebra 4 is
n > 3 then the CR-structure has no less then three infinitesimal symmetries and, as such,
must be homogeneous.

Thus the CR-structure @ in M is one of the homogeneous CR-structures listed in the



2.83. Metrics with at least three conformal symmetries. All twisting ... | 29

classification given in Section 2.1.6; the metric g can be represented by (2.31) with forms
Q, ; as defined in this classification. One can always find a 3-dimensional Lie subalgebra
As of A and its three generators, say Xy, X2, X3, for which

LxQ=LxQ =0 for 1=1, 2, 3. (2.64)
A coordinate 7 can be chosen in such a way that for any of X;s equation
Lxr=0 (2.65)

is satisfied. Equations (2.65), definition (2.32) of ¢ and the condition that all X;s are
infinitesimal conformal symmetries imply that the functions W and H of (2.32) satisfy

LxW=LxH=0, i=1,2, 3. (2.66)

Imposing the Einstein equations (2.30) on g we find that the metric functions P, W and
H are expressible in terms of variables p, s, a, b, G, F and h defined by (2.33)-(2.34) on
Q. Let G5 will be the local group generated by As on Q. Its action is transitive there.
This compared with equations (2.66) imply that a, b, G, F, h are all constant. One checks
that for all homogeneous CR-structures the functions a, 8 —«, ¥ defined by (2.21) are
also comnstant; therefore the only a priori nonconstant functions in the remaining Einstein
equations (2.35)-(2.42) are p, C and s. Note that now (2.65) restricts the freedom (2.62)
in the choice of 7 to (2.62) with constant s. Therefore this function can not be a prior:
removed from the equations. One proves [25], howevér, that if s # const then the equations
imply that the corresponding metric is flat. Thus, to obtain nonflat metrics we are free to
put s = const. Then by means of transformation (2.62) with constant s we eliminate this
variable from the equations. The integrability conditions for the remaining nonconstant

functions p and C follow from the commutators
[8, 8] = i0y + @d — ad, [8, 8) = i(8 —~)8 — 90, (2.67)
which are equivalent to (2.18), (2.21). These conditions read
B logp = -;-[a(b _ 4ia) + afb + 4ia)], (2.68)

i(B —7)(C - a) - B(C —a) =0, (2.69)
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where we have used the fact that all functions but p and C are constants.

The system of equations (2.35)-(2.42), (2.68)-(2.69) with s = 0 and constant functions a,
b, F, G, h can be solved for any homogeneous CR-structure. In Ref. [25] we found which
homogeneous CR-structures are admitted by equations (2.35)-(2.42), (2.68)-(2.69). These
are CR-structures of Bianchi types II, VI, VIIy, VIII (with £ = 0) and IX (with
k = 0). Below we list only solutions which satisfy the positive energy condition & > 0,
where & is the function which appears in (2.30). The spacetime is M = R x Q, the metric
is

p2

9=—5 : [9:0; - Qdr + WQy + WO + HQ) ], (2.70)
with
W = 2iae™ + b, (2.71)
H = Ge¥ + Ge™ %" +[2G — (@ + ib)ale’™ + [2G — (a — ib)ale™™ + h, (2.72)
h = —6aa + aa — ﬂ—;—l + i(ab — ab), (2.73)
2ReG = h + a(@ + ib) + a(a — 3b) + 4CC. (2.74)

ImG can be any real constant; all other variables appearing above are given below according
to the Bianchi type of the corresponding Q. Q is parameterized by coordinates u (real),
¢ = z + iy and £ (complex).
Bianchi type II.
- i, r
0 = d¢, 1 =du-— 5@5 + §€df;
a=pf—-vy=0=a=b=C=0, p=const.
This is a Petrov type D wacuum solution. It has three conformal symmetries generated by
1 - . ~ 1 -
X1 =0+ 0+ 5(5“5)% X2=2(35“35)+§(6+5)3u
X3 = au.

Bianchi types IX (upper signs) and VIII (lower signs).

2etv d F
Q, = —g—é?l-df Q = +2[du + &——i—(edﬁ - £d¢)]

1
a=9=0 ﬂ——'y::tg a=b=C=0 p=const.
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This is a Petrov type D vacuum solution. Symmetry transformations generated by X; are

_wEFg
g +w’

v = u — ilog(gé + @) + ilog(gé + w) ¢

where w, ¢ are complex constants such that ww + gg = 1.

Bianchi types V.

d _ 2 _
ley“1d€+d—ﬁ(yddu—y ldz) Q:—m(yddu—y ldz),
_i(1—d) _d _id
=S foy=—y d=-,

where we introduced
g LoV
N A
There are two possibilities:
(1) G #
and -
(i) G=0.

In case (i) we have again to possibilities of solutions. These are:

a)a:é b= C:—% p:constyi';
inthiscase@ZOiﬁ'—;li§d§00rd_>_%.
b)a:——’é—i b:_%’ C:-—ig p:constyfg;

in this case @ > 0iff d > 0.

In case (ii) we have:

a= 2[~d:&: Jd(3d + }‘)] b= %[de y/d(3d + 1)]‘

C:—Z p = const y 2 ;

- in the upper sign case we have a nonflat vacuum metric for d = '—1:%——\/1—3, and ® > 0 for
_ 1413 613 <d< —% or d > ———£1—613;

- in the lower sign case we have & > 0 iff —% <d< —313-; ® = 0 only for flat metrics.

Bianchi type VI solutions are of Petrov type D only in case (i) b) for d = 0. This solution

is vacuum, and coincide with vacuum solutions for Bianchi type VIII. All other solutions

o
PR
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in (i) case are of Petrov type II. In case (ii) all solutions are of Petrov type III.

Conformal symmetries of the metric are generated by
X1=08, Xo=0, Xs=2z0,+y0y—ud-0,

in all cases of Bianchi type VI, solutions.

The above listed solutions give all metrics which:
1) admit twisting congruence of shear-free and null geodesics;
2) admit at least three infinitesimal conformal symmetries;
3) satisfy pure radiation Einstein equations (2.30) with k generating the congruence.
We summarize the results as follows.
All vacuum solutions of Bianchi type II, VI [case (i) b) d = 0] VIII and IX describe
Taub-NUT metrics [64], [32]. For these solutions infinitesimal conformal symmetries are si-
multaneously Killing vectors and can be extended to form a 4-dimensional algebra of Killing
symmetries. Other vacuum solutions appearing above are known (see [20] §25.2.1-25.2.4).
Among solutions with ® # 0 there are new solutions. These are, for example, all quoted
solutions of Petrov type III. Most of other solutions with ® # 0 are also new.
It is interesting to note that in all cases none of X;s generates a proper conformal transfor-
mation. They are either Killing or homotetic vector fields on M and we have not assumed
this. In cases when not all of X;s are Killing fields [Bianchi types VI, except (i) b) d = 0]
X3 is homotetic, and two other symmetries are Killing.
Finally we note that our results of this section are in accordance and generalize results of

Kerr and Debney [18], who considered vacuum fields.

2.4 Einstein equations for pure radiation with twist as in-
variant equations on a given CR-structure. Partial in-
tegration in terms of solutions to the tangential CR-
equation.

In Section 2.2 we wrote pure radiation Einstein equations for spacetimes admitting twisting
congruence of shear-free and null geodesics aligned with the wave vector of the radiation.

These are egs. (2.34)-(2.42) for the unknown functions p, s, h, b, G, F, f and C. Due
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to egs. (2.34) all the unknown functions from these equations are independent of the r
coordinate. Therefore, equations (2.35)-(2.42) can be understood as defined on a given
nondegenerate CR-structure Q with operators (8, 8, &) understood as operators on Q
which are dual to forms (Q1, (i, Q). These forms are naturally defined on Q by (2.18)
(and sometimes by some additional requirements) and they define functions @, 8 — 1, ¥
by (2.21). In this place one can ask which CR-structures are admitted by equations (2.35)-
(2.42). We postpone discussion of this question until we write equations (2.35)-(2.42) in a
more convenient form.

For simplicity, we put

s=0 (2.75)
in these equations. This does not restrict generality, as discussed in Section 2.2. We note
that among three variables a, p and C only two are independent. Here we eliminate a in
terms of p and C. * It can be easily checked that all other unknown functions appearing in

equations (2.35- 2.42) can be expressed in terms of p, C and G. It is convenient to introduce

a variable

M = Gp* (2.76)

instead of G [62]. Then, one checks that the functions which appear in metric (2.31)-(2.33)

are expressed in terms of variables p, C and M as follows (s = 0):

M

G = o (2.77)
a=C—8log p (2.78)
b = 4iC — 2i0log p (2.79)
f=(A-ib)a (2.80)
F=2G+f (2.81)
h=f+f-4cCC. » (2.82)

1A choice of another pair of variables from those three leads to ancther equations then presented in the
remaining part of this section; it is also interesting to consider such possibilities. They will be discussed
elsewhere.
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All Einstein equations (2.35)-(2.42) reduce to the following equations for the unknown
variables C, M and p:

8C + aC — 2C* + %9 =0 (2.83)

(6—-6C)M =0 (2.84)
_ ~ 1 - 5« . M+ M

[AD+ AQ + E(A&—}—Aa-{—ﬁ—"y) —3(AC+ AC+2CC)]p = — ;’; (2.85)

These are equations on a given nondegenerate CR-structure Q; operators (8, 8, ;) are
operators on Q dual to forms (€, §y, Q) defined by (2.18). Functions a, § — v, ¥ are
defined by (2.21) and operators A and 6§ by (2.43) and (2.53), respectively. The system of
equations (2.83)-(2.85) is supplemented by the commutators of operators (9, 8, ). These

are
[8, 8] = 0o + &b — ad, [0, 80] = i(B — )0 — DO; (2.86)

they are equivalent to (v2.18), (2.21).
If O and ©; are only constrained by (2.18) then they are defined up to a freedom

Q- Q =tQ, 0 — Q) =] Q; +i0log(t) ]. (2.87)

As is to be expected equations (2.83)-(2.85) are invariant under these transformations. This

can be seen by considering transformations induced by (2.87). Introducing
z = i9log(tt)

we find that the other variables transforms under (2.87) as follows:

o = %a (2.88)
1 _

8 = =(80 — 20 - 20) (2.89)
1 .

a = ?(c‘x — flog(t?)) (2.90)

¥ = t%(ﬂ + &z 4 0z + i2%) (2.91)

1t|2(B —~) =[8 —~ — BOlogt — 88logt — ablogt — adlogt +
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+2(8logtd + dlogtd)log|t|] (2.92)
_ P oM ro Lo
p = Tk M = ek C' = t(C dlog |t]). (2.93)

In view of these transformations one can catch some flavour of the variable C .. One checks
that z = 2iC transforms ¢ and C to ¥ = 0, C' = 0. However, this can be done only if
there exists ¢ i.e. if Olog|t| —C = 0. One of the integrability conditions for this is that
the CR-structure admits a symmetry. This is because the transformed operators 8’ and 8
satisfy
65, 8] = —i(B~7)?,

so that 8} is a symmetry due to definition (2.23). This case was thoroughly studied in a
different context by Ernst and Hauser [11] who found integrability conditions of vacuum
type N equations on CR-structures with a symmetry. Interpretation of C in tlfé: general
case is discussed below.

Not all CR-structures are admitted by equation (2.83). Indeed, if C satisfies this equation
then a 1-form

I =0, +2iCQ,

satisfies

IIAdI=0.

This means that there exists a complex function £ on Q such that II = ¢d¢, with some
complex function ¢ on Q. Comparing this with the definition of II one checks that £
satisfles equation

dEAQAQ =0, (2.94)
where we used fact that ¢ # 0, which is true due to the definition of II and to the linear
independenée of N and O at each point of Q; for the same reasons d¢ A d¢ # 0. Equation
(2.94) is the tangential CR-equation for the CR-structure Q (compare (2.4)). Therefore only
CR-structures which admit at least one nontrivial solution of the tangential CR-equation
are admitted by equation (2.83). Conversely, a nontrivial solution ¢ of the tangential CR-
equétion (294) imply that forms { and }; are related by

0 = gdé — 2iCQ (2.95)
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with some (in general) complex functions C and g # 0; equation

qdé A (qd§) =0

implies that function C satisfies (2.83).

Suppose now that C satisfies (2.83). We replace equation (2.84) for M by an equation
for a function 7 related to M by

M = [ (8o + 2iC8 — 2iC8)7 °. (2.96)
Given M such function always exists, since a real operator
Z = 8y + 2iCO — 2iCA

can be represented as

z =4,
with an appropriate real function v on Q. Moreover, 77 is defined by M up to a freedom
n—n=1+w, (2.97)
where function w satisfies
Zw = 0. (2.98)

One easily checks that equation (2.84) for M is equivalent to an equation
[ Z 4+ 4(8 —v) + 4iCC — 2iaC — 2i8C 167 =0 (2.99)

for 1. If 7 satisfies (2.99) and corresponds to a given M then there exists ' which defines

the same M and satisfies
oy =0. - (2.100)
To prove this one has to show that if 7 satisfies (2.99) then there exists w of (2.98) which
obeys

(7 + @) = 0. (2.101)
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This equation can always be solved for w on some real analytic 2-dimensional surface

transversal to Z. Since (2.99) and (2.98) imply that
Z[ 8(7+ @) | = —[ (B — ) + 4iCC — 2iaC — 2i8C 18(7 + @)

then we can propagate this solution to whole Q. Therefore we can replace equation (2.84)

by
M = (87 + 2iCB7)°,  Bn=0. (2.102)

The following theorem summarizes results on C and M.

Theorem 2.4.1 Only CR-structures which admit at least one nontrivial solution to the
tangential CR-equation are admitied by equations (2.83)-(2.85).

Any solution C of (2.83) is generated by some nonirivial solution £ of the tangential CR-
equation as in (2.95). If C satisfies (2.83) then any solution M of (2.84) has the form
(2.102) with some (even equal to 0) solution n of the tangential CR-equation (2.94).

One sees that the Einstein equations (2.30) are closely related to the tangential CR-equation
for an associated CR-structure. They imply that this equation has at least one nontrivial
solution. If, for simplicity, one considers the vacuum Einstein equations (® = 0 in (2.30))
then these imply that there exist two independent solutions of the tangential CR-equation
on Q; hence the CR-structure is realizable. A very technical proof of the following theorem
[29] is omitted.

Theorem 2.4.2 A S-dimensional CR-structure associated with the vacuum Finstein metric

admitting shear-free congruence of null geodesics is realizable.

In Section 2.1.6 we noted that solutions of the tangential CR-equation are easy to find
in case of a realizable CR-structure. Therefore, in view of Theorem 2.4.1, we can easily
construct all solutions to egs. (2.83)-(2.84) on realizable nondegenerate CR-structures.
To find a solution to the Einstein equatibns (2.30) in such cases one only has to solve
equation (2.85). This equation has.interesting geometrical interpretation. The following
considerations are also valid in the nonrealizable case.

Equation (2.85) has linear part which resembles the Laplacian in the complex plane - its
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highest order part is 200p if operators 0 and 8 commute. In general case it is equivalent to

M+ M
3

where Op and Ry denote the Laplacian and the Ricci scalar of the Fefferman metric (2.29)

1
(DF — ERF + V)p = — 5 (2.103)

associated with the CR¥structu1e, respectively; the ”potential” V is given by

V= %RF - 3(AC + AC + 2CC). (2.104)
When acting on p the Laplacian OF is given by

Orp = (A0 + Ad)p,
and the Fefferman Ricci scalar Ry reads
Rp = %(Aa+z&a+ﬂ—7).
The Fefferman metric (2.29) transforms conformally under gauge transformations (2.87)
gr = |t/*gF. (2.105)

‘This together with the invariance of equation (2.85) shows that a ’potential’ V' has a very
simple transformation rule under (2.87), namely

v
= (2.106)

VI
We see that V = 0 is an invariant condition for gauge transformations (2.87). It is interesting
to consider this as an additional condition to the Einstein equations (2.83)-(2.85). This
should be especially useful condition when one considers the vacuum type NN i.e. when one

postulates Ci313 = 0 in addition to the equations (2.83)-(2.85). The work on this possibility

is in progress.

2.5 Vanishing of the NUT parameter - examples of solu-
tions.

In this section we study equations (2.83)-(2.85) in the case of realizable CR-structure. In
view of remarks after Theorem 2.4.1 the only difficult equation in such case is (2.85). To
simplify this we assume that the NUT parameter M 4 M satisfies

M+ M =0. (2.107)
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If M # 0 this is compatible with equation (2.84) only if the CR-structure possesses a
symmetry. Indeed, if '
M = im # 0 (2.108)
with some real function m on Q then equations (2.84) and (2.83) ensure that
1

%= v

[B0 — 2iCO + 2iC)
is a symmetry.
Let Q admit a nontrivial Lie group of symmetries. Then it can be represented by p = d¢’
and A = du’ + L'd¢’ + I'd€, where “
LI = ~i8510, (9u10' =0 (2.109)
and o is a real function such that

T = 265/6&'0 > 0

(compare 2.26). A general solution of the tangential CR-equation (2.4) is given by ¢ =

f(&1,€2), where
& =¢, &y = u' +io.

It follows from (2.95) with O = A and Oy = (/7)p that

__i_ \/F afzf
2 (8¢, f — 2L'0¢, f)

In the rest of this section we consider C that satisfies §,,C = 0. This is the case when

C =

(2.110)

g=2¢ (2.111)

or
¢ =u'+io+ h(¢), (2.112)

where h is a holomorphic function of ¢’. In the first case we can have M = im # 0, in the
latter this is possible only when the symmetry group is at least 2-dimensional.

If a CR-structure admits an Abelian 2-dimensional symmetry group then we can assume
that

1 1
L' = -—anm', o=oa(y'), T = 563:0 >0, (2.113)
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where ¢/ = z' +iy’. There are two cases for which m # 0 and C is independent of v/, namely
E=2¢, Cc=0, m=mg (2.114)

and

. i\/T m
¢=u +ioc+2af, C= Z(?\:Cf'”)’ m = @7_—0@-)—3, (2.115)
where mg and a are real constants.

For ¢ given by (2.114) (¢ = 0) or (2.115) (e = 1) equation (2.85) reads

8§,p + (g — 2L’0u:)2p +
3 (3y:L')2

— Ze—(a—_—Ll)—Z]p =0 (2.116)

1 3

-%—[-ZBZ, log(d, L") + 56531 log(a — L')
and has coefficients independent of v/ and z’. For certain L', i.e. for certain CR-structures,
equation (2.116) can be reduced to some well known equations of mathematical physics.
Here we give examples with the CR-structure corresponding to the Robinson congruence
and with the CR-structures with 3-dimensional group of symmetries of Bianchi types V1.
If a CR-structure corresponds to the Robinson congruence then it can be represented

by

2

A=du + ?d:c', p = dé¢’; (2.117)

i.e.
L' = —1—
yl
Here we focus on solutions to (2.116) in case € = 1, a # 0. ° In this case we can assume

a = 1 without loss of generality due to the transformation {’ — %I preserving A. Then

. i -m yl3
£=u —2log y +2¢, C= w1 ™ (—y'—}f)ﬁ (2.118)

Let as assume that p is independent of z’ and that it admits the Fourier transform with

respect to v/,

p= / dk exp(ik)Y (k, 4'). (2.119)

5Cases € = 0 or a = 0 are less interesting from the point of view of constructing new solutions since
they can be easily transformed to the standard equations J'._nvestigated by relativist for many years [20]. No
obvious transformation to these equations exists if € = 1, a # 0.
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Substituting this into (2.116) with L' = % and a = 1 yields the following equation for ¥’

3 1— 16%? 9
- Y =20
Wy -1 4y? A 1)2)

Y+ (

(2.120)

where a dot denotes the differentiation with respect to y’. Equation (2.120) becomes the

hypergeometric equation

3

v'(1— o) F + [k + 1 — (4k + 1 + 2ko)y'|F — [(4k + L)ko + SIF=0 (2.121)
under the substitution
Y= Ry — 1R E, ko= 1—:’?-:;/—1——0 (2.122)
It follows from (2.119)-(2.122) that
p=/lylly - 1/°Re / dk exp(iku)|y IP*A(R)F(k, o) (2.123)

where A(k) is a free complex function and F(k, y') is any solution of (2.121) such that
y'?*F(k, y') and y'~?*F(~k, y') are linearly independent. For instance, when y’ €]0,1{ one
can take for F(k, y') the hypergeometric function F(a, b, ¢; y') [1] with

a:2k+k0+1/4k2+%, b=2k+ko—1/4k2+%, c=4k+1. (2.124)

Formulae (2.108), (2.118) and (2.123) define all functions needed to obtain the metric tensor.
This satisfies Einstein equations (2.30) with an indefinite sign of ®. For sufficiently large mo
the metric satisfies the Einstein equations with nonnegative energy density (€ > 0). Finally,

we note that there are p expressible in terms of elementary functions among functions defined

by (2.123) e.g.

2k +1
p= yl—3/4ko(yl _ 1)ko sin(klu'), kl — -—-——%—Qi—,, (2125)
Theorem 2.5.1 Forms
1
Q:du'—l—-?;clz', lemdf’
K

and functions C, m and p given by (2.118) and (2.123) (or (2.125)) define a solution to the
Einstein equations (2.30). The metric has the form (2.81)-(2.32) with P, W and H as in
(2.33); M = im and other functions are given in terms of C, M and p by (2.77)-(2.82).
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If the CR-structure admits a 3-dimensional symmetry group of Bianchi type VI then

it can be represented by
p=da¢, A=du —2(n—1)y" ld2’, n#1 (2.126)

where y' > 0 and n is a real constant related to h’. Solutions (2.114) and (2.115) (with

a = 0) now reads

¢E=¢, C=0, m=const (2.127)
and
' —2ilog o/ fn=0 i on _ 13—3n
‘= { u' +2i(1 - £)y"™ otherwise ’ = v mEconsty - (2128)

Then, equation (2.116) for p takes the form

8§:p + [0 + 2(n— 1)y™ 100 )’p + by 2p = 0 (2.129)
where
1 3,5

and € = 0 or € = 1 in the case (2.127) or (2.128), respectively. .
If n # 0 equation (2.129) has an interesting property described by the following lemma.

Lemma 2.5.1 Ifn # 0 then the transformation

p(v, 'y y) o g p(2(1 - R)e/, )u', y’;’) (2.130)

2(h—1
transforms solutions of equation (2.129) into solutions of (2.129) with n, € replaced by
7t = 1/n and 1 — ¢, respectively.

Equation (2.129) for n = 0 is equivalent to the equation .
3
O2p' + (0 + 2e¥8,)%p + yiGe Dy’ =0 (2.131)
under substitution

1
p=+y 9, u=27, z=-zu, y=logy
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Under assumption
8lp=0 (2.132)
equation (2.129) becomes
b
Ap+—p=0 (2.133)
Y
where A’ is the 2-dimensional Laplacian, A’ = 40¢0s. Equation (2.133) is the Helmholtz
equation
xdxdp+bp=0
on a pseudosphere with the metric y'~2(dz'? + dy'2). Since this metric is invariant under

the following action

hi1€ + hia
Ly & DUS T2 o ST(2, R 2.134
of the group SL(2, R) then the transformation
pr— Lip (2.135)

can be used to generate new solutions of (2.133) from a given one.

For b = 0 a general solution of (2.133) is given by
Re f(z' +14y) (2.136)

where f is a holomorphic function of &’. This is the case when e = 0, n = 2; or € = 1,
3n2 —n—1 = 0. For b # 0 equation (2.133) can be separated in various systems of

coordinates. Separation of z’ and y’ leads to complex solutions of the form
Vo e (AT, (ty) + Ao, ('), (dse’ + A4)y'%i" (2.137)

where ¢t and A4; ate cbmplex constants

v = }~—b

4

-
T

and J,(z) and .Yl,("z)' are two independent solutions of the Bessel equation
2202T + 20,J + (22 = v*)J = 0.
To get real solutions of (2.133) one can take e.g.

p= '\/’_l_/—l_Re/dtl/dtzetI,[A(tl, tZ)Jy(ty,)+B(t1, tz)Yu(t'yl)] (2138)
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where t = #; + ity and A, B are functions or distributions such that the RHS of (2.138) is
well defined.
The following solutions of (2.129), for n # 0, are generated from (2.137) and (2.136) by

virtue of Lemma 2.5.1:

VY AT, (By") + AdY i (t™)],  (Asu Ag)y'sE (2.139)
v T f(@+iy™)  (only for n = Z1E/13) (2.140)
where
s T
Yoo

Also for n = € = 0 Lemma 2.5.1 can be applied to obtain u-dependent solutions of (2.129).
For € = 0 and assumption (2.132) satisfied equation (2.131) becomes the Helmholtz equation
in the plane. This suggests the following form of the function p

V' f(d, s) (2.141)
where s = 2logy’. So defined p satisfies (2.129) with n = ¢ = 0 iff
3
O0uf+05f =75 f (2.142)

It is possible to separate variables in equation (2.142) in many different ways. A separation

of v’ and s shows that p can be a linear superposition of the functions

u'y'li;/i, V' (log y')eiA‘L@”I, y'2k+3 et (2.143)

where k% 4+ t2 = 2.
If (A, p) are given by (2.126) we perform a transformation (A, p) (A, p = d¢) with

€ given by (2.128) and A = y*~"). This is a gauge transformation for the CR-structure
since ¢ is a nontrivial solution of dé A AA g = 0. One finds that if n # 0 then (), ) has
the form (2.126) with (u/, 2’, y') replaced by (2(1 — n)z’, Re £, Im §), respectively, and
with n replaced by 7. If n = 0 then A again coincides with A of (2.126) with n = 2 under
the substitution £” = eiii, u” = 2z’ 4+ z"y”. Therefore we could only consider case ¢ = 0
from the very beginning. We considered both cases because by means of Lemma 2.5.1 we
generated some u-dependent solutions in case ¢ = 0 from u-independent solutions of case

e = 1. We summarize the results in the following theorem.
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Theorem 2.5.2 Forms
Q=du -2(n-1)y™ !, Qi=|n- y'2~de!, n#£0, y >0

and functions C = 1, m = const € R and p given by a real linear superposition of the
functions given by (2.187) [(2.136) if n = 2] and (2.139) [(2.143) if n = 0, (2.140) if
n=4(-1% V/13)] with v = 1/3 — n define a solution to the Einstein equations (2.30).
The metric has the form (2.81)-(2.32) with Q and Q, as above; P, W and H is defined by
(2.88); M = im and other functions are given in terms of C, M and p by (2.77)-(2.82). If
Oup # 0 then m can be chosen in such a way that the energy density of madtter is nonnegative

(& >0 in (2.30)).

The space of admissible p can be extended by means of symmetries (2.134) possibly followed
by transformations (2.130). Moreover, a separation of variables in (2.133) can be done in
systems of coordinates different from (z’, y’) and coordinates related to the latter via

(2.134). For instance, equation (2.129) has solutions of the form Q(y)e" and Qo(p)log o,

where
g’ =pcos p, Y =psin g,
Q satisfies
02Q + (4* + bsin?0)Q =0 (2.144)
and Qg satisfies equation (2.144) with p = 0. Equation (2.144) is equivalent to the Legandre
equation ,
(1-2%)02Q - 220.Q — (b+ 7 £ )0 =0

under the substitution z = icot ¢. Hence we obtain the following solutions of (2.129) in

terms of the Legendre functions Pg , Q'E [1):

lgllu(Alpﬁ‘_%(ig—:) + 4,0 (iz—:))

v=3

.z’ .z’
log |¢'|(AsPy_y (i) + AsQ,_1 (i=5))-
3h oyl 7y
Transformations (2.135) and (2.130) can be applied to the above functions to obtain further
solutions of (2.129). In this way one can obtain e.g.

p=y T (A +y2n) 5 (A PE | (iay' ") + AQh_, (say™™) - (2.145)
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a solution which is expressible in terms of elementary functions for some values of n angl L.
For n = 2 (CR-structure of the Robinson congruence) the function p (not elementary) given
by (2.145) with p = 1 corresponds to the Hauser vacuum metric [14]. It is an open and
nontrivial question which of the solutions presented in this section describe also vacuum

metrics.

2.6 Twisting type N vacuum equations.

In Section 2.5 we linearized equation (2.85) by assuming a condition M + M = 0. This
condition is invariant under the gauge transformations (2.87). The stronger condition M = 0
is also invariant under these transformations and reflects the fact that function M is related
to Petrov type of the metric (2.31) (compare (2.77), (2.44)-(2.52)). In particular, vanishing
of M means that the metric is of Petrov type III or its specialization. So far we have
not formulated the vacuum equations for metrics (2.31). These are equations (2.83)-(2.85)
supplemented by an additional equation followed from R33 = 0 (2 = 0 in (2.30)). We failed
in writing this equation in a digestible form. Here we restrict only to the type N vacuum
equations. Even in this case the last equation is very complicated. The full system of type

N vacuum equations reads

ac+a0~x?+%5=o (2.146)
M=0 C (2.147)
[Ad + A5+%(Aa+[ka+ﬂ—7)— 3(AC+AC+2CClp=0 (2.148)
260 +i(8 + b) f — 2iha =0 (2.149)

where functions a, b, f, h and the operator § are given in terms of functions p and C by
(2.78), (2.79), (2.80), (2.82) and (2.53), respectively.

Here we wrote the type N equation (2.149) in a compact form. This follows from
equations (2.60), since they reduce to only one equation if equations (2.146)-(2.148) are

satisfied. The solution corresponds to the Minkowski spacetime iff
(8 +ib + @)[(8 + ib) f — 2a@id] — 2ifF = 0; (2.150)

otherwise it corresponds to nonflat metrics.
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Again all the equations are invariant under the gauge transformations (2.87). It would be
interesting to study integrability conditions of (2.146)-(2.149). This seems to be a difficult
problem, but its solution would give the definite answer to the question which CR-structures
are admitted by the type N vacuum Einstein equations. Adding condition (2.150) to the
systemn is also interesting. Integrability conditions in this case would give an invariant
characterization of the Kerr theorem i.e. would show which CR-structures can be lifted to

the Minkowski spacetime. These questions will be studied elsewhere.

2.7 Einstein-Maxwell equations for algebraically special fields.

In this section we construct examples of solutions of the Einstein-Maxwell fields for which
one of the eigendirections of the Maxwell tensor is aligned with the null congruence of
shear-free geodesics which is not necessarily twisting. We work with the maximally reduced
equations that can be found in textbook [20], hence adopt the notations to that of this book.
Despite the fact that the methods used here do not refer to the Cauchy-RjemaIm geometry
associated with the congruence we decided to include this section to the thesis since the
solutions obtained seem to be new. Among them are first exafnples of Einstein-Maxwell
solutions with purely radiative Maxwell field and a fwisting congruence. Also first examples
of solutions with a twisting congruence and the Maxwell field which have radiative and

charged part are presented here [38].

2.7.1 Summary of known results.

We assume that spacetime admits a shear-free congruence of null geodesics, which is aligned
with one of the eigenvectors of the Maxwell tensor F,,,. It is subject to the coupled system
of the Einstein-Maxwell equations. It follows from the Goldberg-Sachs theorem [13] that
the Weyl tensor is algebraically special. The e(iuations reduce to the equations on a 3-
dimensional CR-structure Q associated with the congruence. Introducing coordinates (u,
Re ¢, Im £) on Q the full system of the equations becomes a system for unknown functions
m, M, P (allreal) and L, ¢9, ¢3 (all complex). It has the following form

(0 —2L,)pY =0 (2.151)
(0 = Lu)(P™93) + 8u(P~%¢7) = 0 (2.152)
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P(8 - 3L,)(m+iM) = ——230(1)(,5(2)
P48 -2Q)8(G? - 8G) — PP[P~3(m +iM)], = ©30)
M = —2P?3Re (8G) + P?Re(80% — 2L,0% — £06,01L)

where

8=0;— L0, 1isa CR-operator on Q
G=1L, ~‘6log P
2i% = P*(6L - 81L).

(2.153)
(2.154)
(2.155)

(2.156)
(2.157)
(2.158)

Let 7 be an affine parameter along the congruence. Given a solution of equations (2.151)-

(2.155) the corresponding metric tensor g and the electromagnetic field 2-form F' = %Fw/ﬂ“/\

¥ are defined by

g = 2(99% — 9°9*%)

(2.159)

F=(@1— )0 A* — (@1 + 1) A9 + @209 AD° + 0p9° AD® (2.160)

where the null tetrad is given by

191=~%%:62 ¥ = du+ Ld¢ + Ld€

9 =dr + Wdé + Wdé + Ho®

-1 L, .
r—!—iE W—-g—+262

g:

H = —r(log P), — (mr+ MS — ¢33%)02 — P*Re (8G)

and

o1 = 0°¢° 02 = 09 + 0*P(2L, — 0)¢] + 2ig°P(SLy — 0%)¢.

The energy momentum tensor of the electromagnetic field is given by

Tyo = Tas = 20101 Ti3=Toz=2Psp; T3z = 2P2(pa;

(2.161)

(2.162)

(2.163)

(2.164)
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all other components vanish. Equations (2.153)-(2.155) with ¢} are equivalent to the (re-
duced) Einstein equations with a pure radiation field. ® If, in addition, 9, they reduce to
the vacuum equations [17]. In the following we say that a solution is vacuum iff p; = @2 = 0,
charged vacuum iff p, = 0, radiative iff @, # 0, purely radiative iff it is radiative and ¢; = 0;
in the generic case when ¢, # 0 and ¢, # 0 we call a solution generic.

Equations (2.151)-(2.155) are invariant under a coordinate transformation

WU Eu) E=hE) 1= (2.165)

which induces the following transformation laws of dependent variables

_ ; h
L = __fU (m+iM) = 1”(—}%?— P = %P (2.166)
¢ u u
0 (0]
0y Py 0y/ he o3
Y = (02) =, /=5 (2.167)
NN CALI GO MOAE
h
Y =U3 kG =G- L hg - (2.168)
2 he

We see that the gauge transformations (2.165) of the system do not allow for changing
variable ¢ into another solution of the tangential CR-equation dpA¥3 Ad¢ = 0; given a CR-
structure a class of solutions h(£) of this equation is distinguished by Einstein equations.
Hence this formulation of the equations is not CR-invariant. However, working within this
framework we partially integrate the system and construct first examples of purely radiative
solutions with twisting congruences and first examples of generic twisting Petrov type I7

solutions [38].

2.7.2 Radiative solutions admitting a special Killing vector.

Introducing variables

0 0 :
® ® x _ .- m+iM
following the methode of Ref. [50] we assume that
Gy =qu=fu=1y=M,=0. (2.170)

®Equations (2.153) and (2.155) correspond to equations (2.83)-(2.85). However they are written in a
specific tetrad (9%) that (in general) does not satisfies (2.18). Equation (2.154) is a definition of ©% and
corresponds to the nonnegativity of the energy of matter.
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This conditions are invariant under transformations (2.165), and we can use these transfor-
mations to obtain

P, =0. (2.171)
Condition (2.171) still admits the following changes of the coordinates u, £, 7
o = Uy(e, Bt Uale, ) € =h(E) = (2.172)
In addition we assume that the Maxwell field is radiative and that
v =14(6G - 8G) = 0. (2.173)
In this case 8, is a Killing vector since transformation (2.172) can be used to obtain
8,L = 0. (2.174)

In such case we reduce the Einstein-Maxwell equations (2.151)-(2.155) to equations for

P and X. Equations (2.151)-(2.153) yield
W=a ¢J=08P m+iM=-2ab-¢ (2.175)
where a, b, ¢ are holomorphic functions of £ and b #constant. Equations (2.154)-(2.155)

reduce to

dO(P*8dlog P) = |8b|? (2.176)
Irn(2a5 +¢)

00%. + 2%001og P = ——;

(2.177)

Given P and 3%, the function L can be found by integrating equation (2.158). Up to a
transformation (2.172) (with Uy = 1) L is given by

DY
L=i / —dE. (2.178)
Double integration of equation (2.176) yields
P298log P =bb+e+e (2.179)

where e = e(£). Equation (2.177) can be replaced by the equation for the variable X related
to % by

Y= 20 + Im(c'“)ao - 2a0(’_910g P) (2180)
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where
a

The function Xg is subject to the equation

= = Im(c
885 + 2%0001og P = 1520) (2.182)
where
co = ¢ + 2agde. (2.183)
The splitting (2.180) of ¥ corresponds to the following decomposition of L:
ag
L=1Lo~ 3 (2.184)
where
2i%y = P*(8Lo — 8Lo). (2.185)

Given P and Y, function Lg can be defined by a formula analogous to (2.178).

Theorem 2.7.1 Let a, b (b #constant), ¢ and e be holomorphic functions of £. If real
functions P, $q of & and & satisfy equations (2.179) and (2.182) then functions
2o x a
L=i] g% Gope

O=a =200 m+iM=—2&b~Eo+22£%E

define an algebraically special Einstein-Mazwell field via relations (2.159)-(2.163), (2.180).

¥

For e = 0 equation (2.179) is equivalent to the Liouville equation, which is exactly
soluble. Due to the freedom (2.172) (restricted by (2.180) and Uy = 1) it is sufficient to

take only one solution of the Liouville equation, say

P = [b|(1 + £8). | (2.186)

Given this P, equation (2.182) takes the form

Ime

(1+ ££)%00%0 + 230 = = (2.187)
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Solutions of (2.187) have the form
So=Y +8 (2.188)

where S is a particular solution of (2.187) and Y satisfies the homogeneous equation
(1+ ££)%08Y = —2v. (2.189)

Equation (2.189) is the eigenfunction equation (with eigenvalue equal to -2) for the Laplace
operator on the 2-dimensional sphere. The variable { can be interpreted as the complex

projective coordinate on the sphere
1 .
£ =tan aﬂe""’ (2.190)

where 19,  are the usual spherical angles. Separation of ¥ and ¢ in (2.189) leads to ¥ being

a linear combination of functions

([ “Py(2) (\/7)“62”(2) (2.191)

where P}’ Q1 are the associated Legendre functions [1] and

_1-¢
2.192
T 1+ (2:192)
Solutions which are regular on the whole sphere are given by
a — atf + pé+ E
Y = = 2.193
1+ €€ (2.183)
where o and 3 are constants, real and complex, respectively.
A particular solution of (2.187) can be found e.g. in a case when
c=cib+ ¢y c€eR (2.194)
where c1, cp are constants. In this case
§ =Im<L, (2.195)

2b
Theorem 2.7.2 Let a and b, b #constant, be arbitrary holomorphic functions of { and let
P, M, m, L, Y, ¢3 be given by

= [b|(1 + €€) (2.196)

m+iM =c1b+ ¢y (2.197)
So.; @

L=if a2 (2.198)

pl=a  @y=0bP (2.199)
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where

So=Y + Im(—;—%) (2.200)
Y satisfies (2.189) (e.g. it is given by (2.198)) and c,, a (both real), ci, B (both comp-
lez) are constants. The above relations, together with (2.159)-(2.163), (2.180), define an
algebraically special solution of the Einstein-Mazwell equations. The Weyl tensor of the

solution is of Petrov type 1T iff m + iM # 0 or a # 0, and it is of Petrov type II1 iff
m+iM =a=0.

Metric functions P, m, M, L, ¢?, ¢ given by (2.196)-(2.200) with a = 0 # ¥¢ describe
purely radiative Einstein-Maxwell fields with twisting rays.
Below we give two examples of solutions covered by Theorem 2.7.2.

IfY = ¢y = 0 then the metric corresponding to (2.196)-(2.200) reads:

- %%5 293 [ dr + i(0ZdE — HRAE) + (bb + %)ﬂs ] (2.201)

where ) B
9 = du — %%%—i———gg_;if ao = % (2.202)
¥ = Im{8ap — aodlog[b(1 + ££)?]}. (2.203)

The electromagnetic field is given by (2.160) with
o1 = o (2.204)
w0y = o|b|(1 + €€){8b — pda — 2ip%adx} (2.205)

where

r=- :2 (2.206)

Solution (2.261)—(2.206) with a # 0 is twisting, charged and radiative. In the limit a — 0 it

yields a non-twisting pure radiation (no charge) Einstein-Maxwell field. The latter solution

belongs to the class of solutions obtained by Bartrum [2]. In the limit b — - it reduces to

the Schwarzschild solution with mass m = cs. v
An example of solution with a purely radiative (¢; = 0) Maxwell field follows from

Theorem 2.7.2 if, e.g. a =¢; = 0 and

1-¢

Y=o

(2.207)
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In this case the metric and the electromagnetic field read

(e g en

3
F = 9% A (Obd¢ + 5bdE) (2.209)
where B
Pk S B Ld¢ + Ld¢ (2.210)
1+ €€
I _ EGlogh .
L= za—————————bz(l ) + Za./_——bi)(l n £§)2d£. (2.211)

This solution is twisting if a # 0. It is of Petrov type II if ¢y # 0 and it is of Petrov type
IIT if ¢ = 0. In the limit b — —\}—E it reduces to the Kerr metric with mass parameter

m = ¢y and angular momentum parameter equal to . In the limit @ — 0 it coincides with

solution (2.201)-(2.206) with a — 0.



3 Orthogonal complex geometry
over 4-dimensional Euclidean man-

ifold.

3.1 Newman - Penrose coefficients for 4-dimensional Euc-
lidean manifolds.

Let M be a 4-dimensional manifold equipped with an Euclidean metric g. Any orthonor-
mal tetrad (f,) = (fi, f2, f3, f1) defines a Newman-Penrose complez null tetrad (e,) =

(m, m,n, ) by

_fitife fa+tfa
mo= T2

n =

V2 V2
The dual to (e,) is (e#) = (M, M, N, N), respectively, and the metric takes the form
=2(MM + NN). (3.1)
We define (modified) Newman - Penrose coefficients [31] by
dM = aMAM +(g-B)MAN +(B-NMAN+GMAN —gM AN - (7+7)NAN, (3.2)
AM = —aM AM — pM AN +cMAN +(B-=NMAN+(0—B)MAN +(r+7)NAN, (3.3)
AN = (o+ NMAM +F+T)MAN + M AN - (y+7)MAN —-M AN +eNAN, (3.4)'
AN = —(3+A)MAM —vM AN —(7+7x)MAN+RM AN +(y+7)MAN —eN AN. (3.5)

It follows from these equations that the commutators of the tetrad vector fields are given
by
[m,m] = —am + am — (0 + A)n + (2 + )7, (3.6)

55
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[m,n] = (B — 8)m + pm — (7 + T)n + v, (3.7)

[m, 7] = (A - B)m — o — kn + (7 + 7)7, (3.8)

[n,m] = dm+ (B — A)m — (y + 7)n + k7, (3.9)

(7, m] = —gm + (¢ ~ B)m — vn + (v + 7)7, (3.10)
[n,A] = (F+T)m — (T + 7)m — en + &n. (3.11)

3.2 (Modified) Newman-Penrose equations.

Levi-Civita connection associated with g is defined in terms of ”connection 1-forms” I, =
JueT? , which satisfy l
de* +T# ANe=0, Tp+T,,.=0. (3.12)

It follows from (3.2)-(3.5) and (3.12) that

Ty = aM — aM + BN — ﬂN,‘ (3.13)
T3 = pM + AM + vN + wN, (3.14)
T4 =—0M — oM — 7N — &N, (3.15)
I'y3 = —gM — M — BN — 7N, (3.16)
Ty = AM + pM + #N + 9N, (3.17)
T3y =JM —yM + EN —eN. (3.18)

Defining curvature 2-forms by
1
Qp, = ER#ugaeg ANe? =dT,, +Tpe AT, (3.19)

one computes the Riemann tensor R, its totally traceless part - the Weyl tensor Crvoo)
and traces R,, = R*,,, and R = R”,, where we lowered and raised indices in terms of

the metric g.

If n = n*e,, etc., one defines (modified) Newman-Penrose curvature coefficients by

1
Boo = ER“,,n“n”, (3.20)
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1
P = —Q—R,wn“m”, (3.21)
1 v
By = 5Ruum"m , (3.22)
1 o B }
1 = ZRW(m“m” — ntn?), (3.23)
1 [Ty
@12 = iRI-Wn m~, (324)
Ty = Cpppentm”’nfm?, (3.25)
Ty = Cpppentn’n?m’, (3.26)
1 o —
U, = gCuUQ,n“n”(ngn" + m?m?), (3.27)
T3 = Cppon*nnfm?, (3.28)
Uy = Cpypon*m?nme. (3.29)

All other coefficients of Ryuprs Cpvge, and R, are algebraically expressible in terms of ®s,

¥s and R; in particular

R ~ — - ~
Qi = (‘P_i_—i—q’_—2@11~E)M/\M-(‘P1+§01)MAN~(\F3+@12)M/\N+

+ (¥3+ $1,)M AN + (T, + ®01)M A N+ (Zy—T_)NA N, (3.30)
934 = (‘I’_l_ - ‘I’_)M/\ M + (@01 - ‘I’l)M/\ N+ (@3 - élz)M/\N +
4+ (R12— UM AN+ (8 — @01)M AN +
R _
+ (T4 + T 4+28 - E)N AN, (3.31)
Q3 = -«(lIrl+@01)M/\M+%M/\N+%2M/\N+
_ R.- - _
+ <I>ODM/\N+(1IJ++E)MAN+(<§01~\I:1)N/\N:
= 924, (3.32)
Qg = _(@3+§12)M/\M+@OQM/\N-}-‘i’I;M/\N—[’

+ (lIr_+%)MAN+&»OOM/\N+(@3—élz)N/\Nz

Qos. (3.33)
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The Weyl 2-forms
1
Cuw = EC’M,,Q,,‘@£J Aev, (3.34)

can be formally obtained from (3.30)-(3.34) by putting R and all ®s equal to zero in the
formulae for 1, e. g.
Ciy = (B 4+ _)MAM -9 MAN-T3MAN+
+ UsMAN+I MAN+(I,-T_)NAN, etc (3.35)

If the orientation is defined by a volume form = M A M A N A N then the Hodge dual of

C.s is given by

xC13 = —0Cis,
Caz = Cbs, (3.36)
Cis = Cia.

Equations (3.37) imply the following Proposition.

Proposition 3.2.1
(1) g is self-dual iff ¥o=9; =¥, =0
(i1) g is antiself-dual iff ¥3 =9, =Y_=0.

If we denote operators m and n by
m=D n=A (3.37)

then we can express ¥s, ®s and R in terms of Newman-Penrose coefficients and their

derivatives obtaining (modified) Newman-Penrose equations. These are

Dy —AX=XE+A)+v(2y + 7+ a) — po — Tk + Boo, (3.38)
Ap—Dr=p2B8-A+e)+m(a@—7)+ oX+ kv — 3o, (3.39)
Ar — Av = p(7 +7) — M7+ 7) — v(2e + ) — B — T + $o1, (3.40)
Dp—DXx=v(p+A)—7(6+A)+ p2a+7)+ 32+ ¥ + $o1, (3.41)

AG— DB = pla—7)+v(A+B)+7(6+F) + &6 — f) — ok + 70 + ¥1 + o1, (3.42)
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Ay —Deé=p(y—-7)+v(A+e)+7(@+E—B)+7(E—0) + ok + ¥y — B0y,  (3.43)

Ae+ AE = 26+ 77 +7F — vD — KR +

R
—F(F+F) = (T T) = Ty = T =280+ 5, (3.44)

Da+ Da =2aa+ A\ + 00 — pji — 05 +

+BA+o)+BA+2) - Ty —T_ +23y + %, (3.45)
AB+AB=nit—vi—1F+kE—a(F+7)—a(t+7)+Pe+Pe— T +T_, (3.46)
Dy+Dy=AX\=pi— 05+ 05 +&(p+A)+e(d+A)+va+ya—T+9_, (3.47)

Aa+Df=-g@+1)+aB— N +B(y+7)+E(B+0)+ A% — v + T3+ 315, (3.48)
+

Ay+De=d(r—3)+Rle—0)+7(B+E—~A)+TE+ AT — iv — T3+ 315,  (3.49)
A7 — AR = p(F +7) — G(T+7) + B(B — 2¢) + 7B + T3 — 31, (3.50)
Do—Dp=r1(o+X) — (@ +2) = oy — 2a) — 07 — T3 — &12, (3.51)

Dy —Ap=p2f+A+&—0)+v(r—1—a—27)+ ¥y, (3.52)
Ao —DE=R(F—-27y—F+a)+5(8—A—&+28)+ ¥y, (3.53)

D7+ Dr— AX— AX =2uji + 2vb +

+r(@—-71)+m(a—F)—Ae+ o) - A+ 2)+ 29,4 + %, (3.54)

Ap+ Aj— D7 — D1 = 207 + 2KK +

- R

+o(e = A)+to(E-A)—1(a+7)-T(a+x)+2¥_ +'é" (3.55)
Ap—Di=p(p— &)+ E(2y+7—a)—ap—Tv+ Poo, (3.56)
DF - A6 =5(028—-0—¢)—T(a+7)+ o+ Pk — 202 (3.57)

In this language the Bianchi identities for the Riemann tensor are given by

~A‘111 - D‘I’o + DéOO - A(:E’()l — 3‘I’+U + @0(2& + 2’)/ -I— 77') — Q1(4A -I- B + E) +
-{—@01(2@ - ﬁ - 5) - @()QR + @00(2’7 + ’T) - 2@12}1, + 2@1111 = 0, (358)
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_ _ _ 1 - _
~ATy + D‘I’+ — A®g — D®gp + EDR + ‘P1(,B + € 2)\) + $or — 2%+
—3‘1’+7l' + @01(29 + ﬂ + 6) + @02(2& — 7_') — 2@12A + @001{, + 2@1171' = 0, (359)

AV — DO, + DPoy — A®gy + To(A - 28 —2¢) + T(dr —a—7) - 3% p+
+@01(27 + 7 + &) + P02(8 — 28) — Booo — 2811 — 23150 = 0, (3.60)

_ _ - 1 -
.D‘I’l + A‘:P_*_ — _D@m - A@oo + —]:EAR - lIll(’)' + a-t 2’7\') - ‘I’oﬁ - 2‘?11/ + 3‘I'+}\ +
+&01(7 = & = 27) + Poo(2¢ + 0) + 2%12m — D025 +28uA =0, (3.61)

—AT3 — DBy + DBog — AB1p + T4(26— 27— 1)+ U3(40+ 0 — &) + 3T_K +
+819(8 — £ — 2)) — Boo(F +27) + 28015 — 28118 + Sov = 0, (3.62)

_ - _ - 1 - -
—AU3 4+ DY_ — APy — DPgs + '1—2DR + ‘113(29—!- £ — ﬂ) — Yk + 2935 + 3V_T +
+§12(E - B - 25\) + @02(2& -+ ﬂ‘) + 2&’01!_)— — P — 28417 =0, (353)

A‘y;; - D‘Pg + D@lz - A‘§02 + q’4(2,3 -0 — 26) + ‘Pg(’)’ - - 47—") +3¥_o+
+&p9(a —q — 27) + $02(28 — A) + Boofi + 28115 + 2&01E = 0, (3.64)

_ ) . )
DU+ AT_ — D&y — Adgg + EAR +U3(y —a+27)+ ¥y — 3¥_p + 2¥3K +
+§12(27r - - C_!) + @00(26 - X) - 2%017F —2%110 + 502# =0, (365)

_ _ _ 1 _
A®o1 + AP12 + D@11+ DPpz — EDR + Poo(T— T —2a) — 201 (20+ e+ - A) +
+§12(2A + B — & — E) + 2@11(’7' —_ ’ll') — P90 — Pk + i‘ggl/ + @01# =0, (366)

_ _ 1 _
D‘i’(n + D@lz - Aéll + A@Qo — —éAR + @00()\ -0 — 28) + @01(27—' —-—a—°9— 7_!') +
43127 — @47 —27) +2811(2 — A) + 027 + 2128 — Poap — Boyv = 0. (3.67)

Equations (3.6)-(3.11), (3.38)-(3.57), (3.58)-(3.67) constitute the all system of Newman-

Penrose equations for the metric (3.1). For the completeness they can be supplemented by
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the identities which are implied by the identities d>M = 0, d*N = 0. However we do not
write them here.
Transformations

D« A (3.68)

leave invariant the form of the metric (3.1). They induces the following transformations of

the Newman-Penrose coeflicients

G+ €, [ —V, T —K, [e—7g, p— —T, A —7;
Pop «— Ro2, Pop +—— P01, P11 — —P11, Pr2 e By

g By, Ty e —Ty, Ty e Ty, Tge— Ty Ty e Ty,

Similarly transformations

D «— D, (3.69)

which also preserves the form of the metric (3.1), induce the following transformations of

the Newman-Penrose coeflicients:

Qe+ Q, o0+ —lU, E+— —V, E<—E, T —T, 77— —7,
ﬂ ¢ ? ”,B) A ¢ ? —é;
oo «— Rog, Por «— P12, Poz ¢ oz, P11 Py

Vo e— Ty, T ¢— U3, Ty e T,

3.3 Orthogonal almost-complex structures on 4-dimensional
Euclidean manifolds in Newman-Penrose formalism.
Cartan-Petrov-Penrose classification.

Given an Euclidean metric ¢ on an oriented 4-manifold M we consider an orthogonal
almost complex structure J. We define a special class of Newman-Penrose tetrads which
are (+)adapted to the pair (g, J). Let f; be a unit vector. Define fa by fo = J(f1). Let
f5 be an unit vector orthogonal to both fi and fo. Define fy by fi = J(f3). By virtue
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of properties of g and J the basis (f.) (u = 1, 2, 3, 4) is orthonormal. The (+)adapted

Newman-Penrose tetrad consists of complex vectors m, m, n and 7 which are defined by

m:f1+if2 fa+ify

= ) 3.70
7 n=" (3.70)

If (9#)=(M, M, N, N) is a dual to (m, 7m, n, i) then g and J read !
g =2MM + NN), (3.71)
J=i(M®@m-M®m+N@na—-NQ®n) (3.72)

The (+)adapted Newman-Penrose tetrad is not unique; it is defined up to the following
freedom

M = __e’:__[M + €N

1+ EE

N' = —L[N — M)

1+¢

where u, v (real) and £ (in general complex) are some functions on M. The integrability

(3.73)

:

conditions for J expressed in terms of the (+)adapted Newman-Penrose tetrad read
dM/\M’/\N:O dNAM AN = 0.
Rewriting this in terms of the Newman-Penrose coeflicients of (+)adapted tetrad we have
J is integrable < p = v = 0. (3.74)

As can be expected these conditions are invariant under transformations (3.73); more ex-

plicitly in tetrad (3.73) we have

oo B vt
Y1+é€ AR33

The Newman-Penrose equation (3.52) shows that if J is integrable then ¥ = 0. This con-

(3.75)

dition is also invariant under transformations (3.73). It can be considered independently of

'Note that according to Proposition 3.2.1 if J agrees (respectively, disagrees) with the orientation of M
then equations ¥o = ¥, = ¥, = 0 mean that the metric is self-dual (respectively, anti-self-dual).
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integrability conditions (3.74). Given g we, therefore, ask for all orthogonal almost complex

structures which in some (therefore any) (+)adapted Newman-Penrose tetrad satisfy
Uy = 0.

Consider now a triple (g, J, ¥*) consisting of: Euclidean metric g, an orthogonal almost
complex structure J and an (+)adapted to them Newman-Penrose tetrad ©*. Any other

orthogonal almost complex structure with the same helicity as J is given by
J(z,n) = eJ + 1K + 7K, (3.76)
where 7 = y + iz, £? + y> + 22 = 1 and K is given in terms of tetrad 9" by
K=N@m-M@n. (3.7.7)
The definition of J(z,7) is independent of the choice of the tetrad since
K'=e ilviu g

under transformations (3.73). This shows that the set of all orthogonal almost complex
structures of the same helicity forms a sphere S2. It is convenient to introduce a stereo-

graphic variable
¢ = Y+ z
T l4e
In this way we write J(¢) instead of J(z,7) in the following. To any point { ~ (z, y, z) of the

sphere there exists an (+)adapted Newman-Penrose tetrad associated with the correspond-
ing J(¢) and g. If (M, M, N, N) is an (+)adapted Newman-Penrose tetrad corresponding
to J(0) then the (+)adapted Newman-Penrose tetrad corresponding to J(() reads

m) =222
14 (¢
(3.78)

N 4 (M

Ji+et

If ¥y, ¥;, ¥, denote the Newman-Penrose Weyl curvature coefficients computed in the

tetrad with ¢ = 0 then the Weyl coefficient ¥¢(() reads

N(() =

(1+ (O Wo(¢) = o — 401 +6¢7 T4 + 43Ty + ¢*To. (3.79)
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From this one finds that if ¥ ¥, # 0 then there are at most four values of (, say (;,
(0 < i < 4), for which ¥,(¢) vanishes. The solutions of equation

¥o(() = 0, (3.80)

are divided into two pairs for if ¢ is a solution then —(-1 also is. The points (¢, —(™1)
describes a pair of antipodal points on the sphere; the corresponding almost complex struc-
tures are conjugated to each other i.e. J(¢) = —J(—("!). The almost complex structures
J(¢) are, therefore, divided into two pairs of mutually conjugated structures. They are
called (*)principal, where in place of the sign ”*” one puts either ”+” or ”-” depending on
whether one of them (therefore any) agrees or disagrees with the orientation of M, respec-
tively. It follows from the construction that the number of such structures is an invariant
property of the metric itself.

If equation (3.80) has multiple roots then the two pairs of almost complex structures
reduce to only one doubly degenerated pair. In such case the metricis called (*)algebraically
spectal, where the ‘sign 7% is as before.

Consider now orthogonal almost complex structures J'({) of an opposite helicity than
J of (3.72). They form another sphere which is formally obtained from definitions (3.76)-
(3.77) by means of transformation (3.69) which replaces M into M, m into m and vice

versa. By virtue of this transformation we find that
J(0)=i(M@m-M@m+N®a-NQ@n) (3.81)

is integrable iff K = ¢ = 0. ? This, in particular, implies that ¥4 = 0. This property is
invariant under the possible transformations of the Newman-Penrose tetrad which preserves
the form of the metric and the form (3.81) of J'(0). If J' has the same helicity as J'(0) then
any Newman-Penrose tetrad in which the metric and J' have the form (3.71) and (3.81),
respectively, is called (-)adapted. One can find (-)adapted Newman-Penrose tetrads for any
of J'({) and ask about such (’s for which ¥4(() = 0. These are defined as the roots of the

following equation

Ty — 4T3+ 6¢C2T_ + 4¢3F5 + ¢4, = 0. (3.82)

?Note that transformation (3.69) implies (1 = v = 0) «— {5 = ¢ = 0).
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The corresponding J/(¢)’s are called (*)principal, where in place of the sign ”*” one puts
the opposite sign to that which was attributed to structures J((;). Again, for general g,
we have two pairs of mutually conjugated such structures. If these pairs degenerate to only
one pair the metric is called (*)algebraically special.

The Euclidean metric over 4-manifold is called properly algebraically special if it is either
(+) or (-)algebraically special. It is called algebraically special if it is either properly alge-
braically special or its Weyl tensor is either self- or anti-self-dual. The similar terminology
is applied also to an Euclidean manifold itself.

Thus, considering orthogonal almost complex structures over Euclidean 4-manifold we ar-
rived at the algebraic classification of Euclidean metrics, similar to the Cartan-Petrov-
Penrose classification in Lorentzian case [7], [46], [41]. Let a denotes a one pair of mutually
conjugated (+)principal orthogonal almost complex structures, b denotes a one pair of mu-
tually conjugated (-)principal orthogonal almost complex structures, a, b denote doubly de-
generated pairs of orthogonal almost complex structures (+) and (-)principal, respectively,
and let signs 74”7 ::_md »." denote that the metric is self- or anti-self-dual, respectively.
With such a notation we have the following Cartan-Petrov-Penrose types of the metric:
aabb, abb, +bb, aab, ab, +b, aa—, a—, +—; in the last case the metric is conformally
flat.

In the following theorem, which is implied by equations (3.80) and (3.82), the sign "<

means ’iff in some Newman-Penrose tetrad”.

Theorem 3.3.1 The metric is of Cartan-Petrov-Penrose type

abb & To=T; =0 (3.83)
4bb & To=T =T, =0 (3.84)
aab & U3=U,=0 (3.85)
ab & To=0; = T3=0,=0 (3.86)
+b & Uo=9 =9, =¥3=U,=0 ‘ (3.87)
aa— & VU3=9,=9_=0 (3.88)

am & Tp=U, =TUs=0,=T_=0 | (3.89)
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+—¢>@0:‘P1=§’+=‘:@3=‘¥4:‘p_:0. (390)

We note, that the matric is (*)algebraically special iff in some Newman-Penrose tetrad

‘:[’0:‘1’1:0, ‘:[}.;_75001“1’4:‘1’3:0, lI’_?éO.

3.4 Towards integrability conditions for an existence of an
orthogonal complex structure on a 4-dimensional Euc-
lidean manifold.

Given an orthogonal almost complex structure J we know that it is complex iff in a
(+)adapted Newman-Penrose tetrad it satisfies 4 = v = 0. These equations can be equiva-

lently written in terms of the tetrad 1-forms as
AdMAMAN=0 dNAMAN=0. (3.91)

Equations (3.91) imply that ¥ = 0 i.e. if both self-dual and anti-self-dual parts of the
Weyl tensor do not vanish only (*)principal orthogonal almost complez structures can be
complez. 3 To answer whether in (anti-)self-dual case one also can have orthogonal complex

structures we do as follows.

Consider a sphere of almost complex structures (3.76)-(3.77) of a given helicity written
ina (—|—)adapted Newman-Penrose tetrad. Without any particular assumption on Euclidean
metric ¢ we ask what are necessary and sufficient conditions for ¢ in order to describe an

integrable J((). It is clear that these conditions reads
dM~(N)ANM—C{N)AN+CM) =0, d(N+CM)A(M~CN)A(N M) =0, (3.92)

i.e. follow from conditions (3.91) after replacing the tetrad (M, M, N, N) by the Newman-
Penrose tetrad (3.78) (+)adapted to J({). Rewriting these equations in terms of the
Newman-Penrose coeflicients of (M, M, N, N) we obtain the following two differential

3Note the similarity to the Lorentzian case in which only principal null directions can be simultaneously
geodesic and shear-free if the Weyl tensor does not vanish [45], [54]. This similarity is due to the analogy
described in the Introduction!
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equations for (:
DAL+ a+Cla-T+7)+CB+A+8)-Cr=0 (3.93)
AL+ D+ o+ (A +B8+e)+P(r—7-a)+Bu=0. (3.94)

Integrability conditions for these two equations follows from the successive use of the com-

mutators (3.10), (3.6), (3.11), (3.1), (3.2), (3.7) and read:
Ty — 400, + 6C°T, + 4039, + 9y = 0. (3.95)

These are exactly conditions (3.80) saying that if the corresponding ¥o¥; ¥ # 0 then J(()
is (*)principal, as we already predicted. We note, however, that our conditions (3.95) say
also something more: since they are the integrability conditions of equations (3.93)-(3.94)
and are identically satisfied if o = ¥; = ¥, = 0 then in such case the equations (3.93)-
(3.94) always can be solved. Thus if ¥5 = ¥y = ¥, = 0 ie. if the metric is (anti-)self-dual

there always exists at least one orthogonal complez structure on the manifold.

Theorem 3.4.1 A (anti-)self-dual Euclidean {-manifold (locally) always admits orthogonal

integrable complex structure.

It is an interesting question how many such structures can exist on a (anti-) self-dual
manifold. We failed in answering this question in the general half conformally flat case. In
the more special case of totally conformally flat Euclidean 4-manifold there are two families
of orthogonal complex structures described as follows.

First we note that any conformally flat Euclidean 4-manifold admits the same orthogonal
complex structures that the flat one. Therefore we can restrict ourselves to the flat case
when the metric has the form

g = 2(dzdz + dwdw). (3.96)

The Newman-Penrose tetrad (dz, dz, dw, do) defines a family of Newman-Penrose tetrads

(m(¢), _";(_Ej’ n((), WC)) with duals (M({), M(¢), N(¢), m) by

M) = L=

14 ¢¢

dw + (d

Vit

Ny

N(() =




68 §3. ORTHOGONAL COMPLEX GEOMETRY OVER 4-DIMENSIONAL ...

Any such tetrad defines an orthogonal almost complex structure J({) by

J(¢) = i(M(¢) ® m({) — M(¢) ® m(¢) + N(¢) ® n(¢) — N(C) ® n(())- (3.97)

Let u(¢) denotes Newman-Penrose coefficient p in the tetrad parameterized by ¢, etc. By
applying (3.74) we find that J(() is integrable iff ¢ satisfies the following equations

v(() =p({) =0
or, equivalently, iff
dM()AM(O AN =0 dN(()AM(C)AN(C) = 0.
The last two conditions written explicitly in terms of z and w read
ACAdBAd(z—{B)Ad(w+C2)=0 d(AdZAd(z— (W) Ad(w+ (z)=0.

Under the assumption that ¢ is analytic they can be easily integrated. The general solution
for ( is implicitly defined by

{ = f(z— (@, w+(Z) (3.98)
where f is any holomorphic function of variables z — ¢, w+ (Z. Any such solution defines

an orthogonal integrable almost complex structure by (3.97).
Another family of orthogonal complex structures J'(¢’) for the metric (3.96) has an opposite

helicity than J(¢). It is given in terms of the Newman-Penrose tetrad (M (¢’), M(("), N({'),

N((')) defined by

() = L%,
1+CICI
N(C’) _ dw + ('dz

/1 + C/C_/ ’

In this tetrad complex structures read

J'(¢") = i(M(¢") @ m(¢') = M({) @ m(¢) + N(¢') @ n(¢") - N({) @n((),  (3.99)
where (' satisfies the equation

{'=f(z - o, w+ {'2) (3.100)
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with some holomorphic function f of variables z — C'o, w+ (2.

One checks that all possible orthogonal complex structures in conformally flat metrics
g' = ¢?g are given by either J(({) or J'({') with { and ¢’ defined in terms of some holomorphic
function f of two variables by (3.98) or (3.100), respectively. This is a part of an Euclidean
analog of the Kerr theorem [61].*

Finally, we note that, on the ground of our considerations, it is in principle possible to
find the necessary and sufficient conditions for the Euclidean metric to admit an orthogonal
complex structure: a possible strategy is to solve algebraic equations (3.95) for { and insert
them to equations (3.93) and (3.94). As a result one obtains (very complicated) first order
in derivative conditions for the Weyl tensor. Only if these conditions are satisfied the metric
can admit an orthogonal complex structure. We have not a geometric interpretation of these

conditions yet. We will publish them elsewhere.

3.5 Einstein 4-manifolds with Euclidean metric admitting
orthogonal complex structures. Goldberg-Sachs theo-
rem.

We say that Euclidean manifold is Finstein if its metric g satisfies Einstein equations
R, = Agpu. (3.101)

In this section we find necessary and sufficient conditions for Einstein 4-manifolds to admit
an orthogonal complex structure. |

Let (M, M, N, N) be a Newman-Penrose tetrad for g with Newman-Penrose coefficients
as defined in Section 3.1 and 3.2

Theorem 3.5.1 Suppose that g satisfies the Einstein equations (3.101).
(i) If$o =9, =0, ¥ . F#0 thenp=v=0. h
(1) If p = v =0 then ¥g = ¥y = 0.

*In Lorentzian case all congruences of shear-free and null geodesics in Minkowski space are given in terms
of holomorphic function f of two variables by a relation analogous to (3.98) (or (3.100)). The Robinson
congruence corresponds to a function f which is linear in both of its arguments. It is therefore interesting
to study J(¢) (or J'(¢)) with ¢ = a(z — {®) + b(w + {z) (or {' = a(z - ¢w) + b(w + {'z)), where a and b

are some complex constants. These are the Euclidean analogs of the Robinson congruence.
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(1ii) If U3 = U, =0, ¥_ #0 then s =0 =0.
() If k= 0 =0 then ¥3 = ¥y =0.

PROOF.

Einstein equations (3.101) when written in terms of the Newman-Penrose coefficients read
@00 = @01 - @02 - @11 = ‘1)12 = 0. (3102)

ad (2). If we insert equations (3.102) and assumptions ¥ = ¥, = 0 to the Bianchi identities
(3.58) and (3.60) we get
30,v=0 and 3% p=0,

respectively. This, compared with the assumption ¥ # 0, yields the required result.
ad (7¢). The assumption

p=v=2>0 : (3.103)
and the Newman-Penrose equation (3.52) gives
¥y =0, (3.104)

as we already noted. Then equations (3.103), (3.104), (3.102) inserted to the Bianchi
identities (3.58) and (3.60) give

AT = —(4A+ B8 +8)T, (3.105)

and

D\Pl B (4:7\" —a - "7)@1, (3106)

respectively. The commutator (3.7) of A and D when applied to ¥; gives

(B-2)ar—a—7)T +(F+7)4A+F +8)T; =
= —(4DX+ DB + D&)¥; — (4A+ B+ &)(4mr —a —7)¥1 +
—(4A7 — Aad — AF)T; + (47 — & — 7)(4A + B + £) ¥y,

where we used equations (3.105)-(3.106). We rewrite this equation to the form

[4(DA+AW)+DB—A&+DE~A5+(B—@)(47r—a—»7)+(—7+T)(4la+ﬁ+é‘) ]9, = 0. (3.107)
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Now we express D) in terms of equation (3.41), Ax in terms of (3.40), (DB — A&) in terms
of (3.42) and (D& — A¥) in terms of (3.43). Inserting this to equation (3.107) we find that
(3.107) is equivalent to

-10%? = 0,

which together with (3.104) finishes the proof.
ad (4i1) and (iv). The results are obtained from (i) and (4i) by means of transformation

(3.69).

Theorem 3.5.1 (when compared with Theorem 3.3.1) means that an existence of an
orthogonal complex structure on the Einstein 4-manifold implies algebraic speciality of
the metric. Moreover if the Einstein 4-manifold is properly algebraically special then the
multiple almost complex structure is always complex. Another implication of the theorem
is that in the. Binstein 4-manifold which is neither self- nor anti-self-dual there are at most
two orthogonal complex structures. The case of two such structures can happen only if the
metric is of tjrpe ab in the Cartan-Petrov-Penrose classification of the preceeding section.
Recalling the analogy between orthogonal almost complex structures and almost optical
geometries defined in the introduction we find that Theorem 3.5.1 is an Euclidean analog
of the Goldberg-Sachs theorem [13].




4 Conclusions

Research on Lorentzian and Euclidean 4-dimensional manifolds has been carried on by
both mathematicians and physicists for a long time. 4-dimensional Lorentzian manifolds
satisfying Einstein equations are of particular interest for physicists since they correspond
to the possible physical spacetimes. One of the efficient methods of constructing such
manifolds (or, more precisely, of finding local forms of the metrics that satisfy Einstein
equations) is based on an assumption that the manifold admits a congruence of shear-
free and null geodesics. The relation between manifolds satisfying this assumption and
3-dimensional CR-structures is established quite recently [52] and Chapter 2 of this thesis
is one of the first application of this fact.

It was known for a long time that Einstein equations
R, = ®k,k, (4.1)

for spacetimes M admitting a congruence of shear-free and null geodesics tangent to the
vector field k, reduce to the equations on some 3-dimensional submanifold Q of M. If the
congruence is nontwisting further simplifications occur and one finally ends with the only
condition

$ = &(P,m)>0 (4.2)

for two real functions P and m. This is the positive energy condition for the pure radiation,
and is either an equation (in the vacuum case) or an inequality (in the general case).

In this work we have only considered equations (4.1) in the case of twisting k,; this
situation is much more complicated than the nontwisting one.

Manifold Q to which Einstein equations (4.1) reduce is naturally endowed with a 3-

dimensional CR-structure. Complexity of equations in the case of twisting k,, corresponds

72
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to the nondegeneracy of this structure. However, this nondegeneracy has also a fortunate
feature. This can be described as follows.
Any metric on M = R X Q admitting congruence of shear-free and null geodesics k,
can be written in the form
g =2p*(pit — A¢), (4.3)
where A (real) and p (complex) are 1-forms defined on Q and annihilated by k. These forms

are determined up to the following freedom
A= XN=7F\ p—p =hp+si (4.4)

Transformations (refeq:4c) preserves the form (refeq:3c) of the metric. To fix a gauge in
this freedom all the authors were using a corollary from Einstein equations (4.1) which

guaranteed that there existed a form p’ among forms generated by (4.4) such that
pAdp =0. (4.5)

Gauge-fixing condition (4.5) allowed for the introduction of a coordinate system (¢,€,0)
on Q such that £ was a complex function satisfying p’ A d¢ = 0 and u was a real function
such that ) = du + Ld¢ 4+ Ld€. The reduced Einstein equations were then written in these
coordinates.
The main objection against this approach is that the gauge-fixing condition (4.5) does not
follow from the CR-geometry of Q, which was given before Einstein equations (4.1) were
imposed; it does not suit to the CR geometry, hence the final equations are not CR-invariant.
A gauge fixing procedure which agrees with the CR geometry and totally fixes A, p, p and
¢ of (4.3) is only possible if

ANAA£D (4.6)

i.e. if the CR-structure is nondegenerate. We described this procedure in Section 2.1.3 and
identified the resulting forms
Q= foA, Q1 = hopt + SoA (4.7)

with a part of Cartan invariant forms (2.18)-(2.21).
The main result of the whole Chapter 2 is a formulation of the reduced Einstein equations

(4.1) as CR-invariant equations on the CR-structure Q associated with the congruence k.

[
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This is done in Sections 2.2 and 2.4 (see also Section 2.6 for type N vacuum equations) by
using Cartan invariant forms 2 and ; instead of A and p in (4.3). The final equations
are (2.83)-(2.85) for one real and two complex functions on Q. (These are supplemented
by an additional equation (2.149) in the case of the vacuum type N). An unsolved and
very interesting problem here is to find integrability conditions of equations (2.83)-(2.85),
(2.149) in terms of the Cartan invariants a, 8, 7, ¥, ,7 and § of the CR-structure (see
(2.21) for definitions). This would answer the following question of A. Trautman: which
nondegenerate CR-structures can be lifted to the type N vacuum spacetimes. Even in the
simpler case of lifting to the Minkowski space the answer is known in special cases only [55].

A comment on what we mean by a CR-invariant formulation of the reduced equations
(4.1) is worthwhile. Suppose that we have a CR-structure Q which is defined in terms of
two different pairs of forms (X, p*) from the class given by (4.4). Our formulation obeys
such a condition that regardless of which forms (X, p‘) we started, after computation of
forms 2 and ;, the reduced Einstein equations (4.1) are given by (2.83)-(2.85). Another
interpretation of these equations is as follows. Suppose that we have forms {2 and (2; being

in the class generated by (4.4) and satisfying
dQ =i A Q. (4.8)

Then equations (2.83)-(2.85) with a, 8 — 7. ¥ given by (2.21) are invariant under transfor-
mations (4.4) preserving (4.8) (see transformations (2.87)-(2.93)).

An interesting feature of equations (2.83)-(2.85) is that they are closely related to the
tangential CR-equation (TCRE) of the CR-structure Q. In particular, solutions of the
TCRE generate all solutions to (2.83- 2.84) (see equations (2.95, (2.96) and (2.100)). If
the CR-structure is realizable all solutions of the TCRE are known. Thus, in such case,
there is no problem in finding solutions of(2.83- 2.84) and finally one ends with only one
real equation (2.85) for one real function p. This, when written in the form (2.103), is

M+ M
pB

(@- %R +V)p = — (4.9)

Its part O — %R is a purely geometrical operator on the CR-structure and consists of the
restricted to @ D’Alambert operator O and Ricci scalar R of the Fefferman conformal class

of metrics (2.29).
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We were not able to find a general solution to equation (4.9). However, our methode
allowed for a construction of many new solutions. In the table below, taken from [20] and
supplemented by new results of [10] and [69], we recall all known classes of solutions of Ein-
stein equations admitting twisting congruence of shear-free and null geodesics k. Symbols
appearing in this table have the following meaning: |
EM - solutions to the Finstein-Maxwell equations with k& being simultaneous eigendirection
of both Weyl and Maxwell tensor; further specification agrees with the terminology of Sec-
tion 2.7.1,

PR - solutions to pure radiation Einstein equations (4.1) with & > 0,
V - solutions to the vacuum Einstein equations,

A - all solutions are known,

S - some solutions are known,

A - the equations do not admit such solutions,

empty space - nothing is known about corresponding solutions.

[ALGEBRAIC TYPE| 1 | D [ m | N |
v S A S S
Kinnersley [19] Hauser [14]
EM generic - A A
EM charged vacuum S S A A
EM purely radiative | A ' A
PR S B i

Our solutions, presented in this thesis, fill all the empty spaces in the above table with
the sign “S”. In particular:
1) pure radiation fields of Cartan-Petrov-Penrose type III are given by solutions of Section

2.3 with 3-dimensional conformal symmetry group of Bianchi types VI,
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2) solutions of Theorems 2.5.1, 2.5.2 are in general pure radiation solutions of type II; if
m = 0 and the positive energy condition is satisfied then they are of type III,

3) Einstein-Maxwell solutions of Theorem 2.7.2 can be generic, charged vacuums or radia-
tive; in the purely radiative case they can be either of type III (if m + iM = 0) or of type
II; in the charged or generic case they are of type II, or, if certain equation is safisﬁed, of
type D,

4) explicit form of generic Einstein-Maxwell solutions of type II (c2 # 0) and type III
(c2 = 0) are given by (2.201)-(2.206),

5) explicit form of purely radiative Einstein-Maxwell solutions of type II (c2 # 0) and type
I (c2 = 0) are given by (2.208)-(2.211).

An interesting application of our methode would be to study the vacuum type N equa-
tions of Section 2.6. We hope that this could lead to a construction of some new solutions
enlarging the only known family of Hauser [14].

As we have showed in Section 1.4 an orthogonal almost complex structure in 4-dimensional
Euclidean manifold is an analog of a null congruence in Lorentzian 4-manifold. Integrability
conditions for the almost complex structure are analogous to the shear-free and geodesic
condition for the congruence. In Chapter 3 of the thesis we further studied this analogy con-
structing Euclidean counterparts of theorems and procedures well known by relativists in
Lorentzian case. A convenient tool in such studies was a Euclidean analog of the Newman-

Penrose formalism defined in Sections 3.1, 3.2. Using this we proved the following theorem.

Theorem Suppose that Euclidean manifold M satisfies Einstein equations
R, = Agp.

Then M locally admits an orthogonal integrable complez structure if and only if its metric

s algebraically special.

This theorem follows from Theorems 3.3.1, 3.5.1 and integrability conditions (3.95).
It constitutes a Euclidean analog of the Goldberg-Sachs theorem valid for Lorentzian 4-
manifolds. According to R. Penrose [44] this result is new.
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The above theorem implies that Einstein manifold may not admit, even locally, an orthogo-
nal complex structure. A similar conclusion may be obtained even in general (not Einstein)
case of Euclidean manifold. Indeed, suppose that the Weyl tensor of an arbitrary Fuclid-
ean manifold has nonvanishing selfdual and antiselfdual part. Then the only candidates
for orthogonal complex structures are principal almost complex structures (see integrabil-
ity condition (3.95)). They are complex if and only if certain, first order in differentials,
conditions for the Weyl tensor are satisfied. These conditions are given, in implicit form,
by equations (3.93) -(3.94), (3.95) (and analogous equations for principal almost complex
structures of opposite helicity as discussed at the end of Section 3.4). If they are not sat-
isfied then the manifold does not admit any orthogonal complex structure. We note that
this is a purely local result.

Another Euclidean counterpart of Lorentzian theorems is our construction of all locally
integrable orthogonal complex structures in flat Euclidean manifold. Any such structure
is given by a holomorphic function of two variables as described by equations (3.98) and
(3.100). This is an analog of the Lorentzian Kerr theorem (see also [15)).

In this thesis we have not exhausted all possibilities of the analogy between complex
and optical structures. Further results will be presented in [39].
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