ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

From Quantum Spins to Correlated Fermions:

a New Strong Coupling Method

Thesis submitted for the degree of

“Doctor Philosophiz”

CANDIDATE ~ SUPERVISORS

Michela Di Stasio Prof. Giuseppe Morandi

Prof. Arturo Tagliacozzo

October 1993

TRIESTE







From Quantum Spins to Correlated Fermions:

a New Strong Coupling Method

Thesis submitted for the degree of

“Doctor Philosophiz”

CANDIDATE SUPERVISORS

Michela Di Stasio Prof. Giuseppe Morandi

Prof. Arturo Tagliacozzo

October 1993






Acknowledgements

It is a ‘pleasure for me to ezpress my gratitude to my supervisors
Arturo and Giuseppe. Not only for they have introduced me in this
research field and for the helps that I have always recetved from them
but also for their very kind hospitality in Napoli and Bologna.

I would like also to thank to all the friends and colleagues I have
met here in SISSA. Especially, for the frequent friendly scientific dis-
cussions: José Lorenzana, Marta Nolasco and Michele Fabrizio. Fi-
nally, I aknowledge the friendly scientific and graphical support by Ser-
gio Ciuchr. .






Table of Contents

Table of Contents

1 Introduction

2 Approaches to Quantum Antiferromagnets
2.1 Singlets versus Néel order

............................

2.2 Large S expansion: Spin Waves . . . . . . v v v s v et e e et e e e e e
2.3 Large N expansion: dimer phases . . . . .. .. ... ... ... .......

2.4 Adiabatic expansions . . . . ¢ v ¢ v it i i i b e e e e e e e e e e e e

2.5 Frustrated Antiferromagnets

...........................

3 Constrained Fermionization in the Heisenberg model
3.1 The projecting technique. . . . . .. . . . . . . o oo e
3.2 Antiferromagneticphase . . . .. ... o oo oo o
3.3 Dimerphases . . . . . . v i i i i it e e e e e e e e e e e e e e

3.4 Effects of frustration

...............................

3.5 Fluxand Chiralphases. . . . . . . . v v v i i v i i it e et st

4 The projected Fermi gas

13

15

19

24

32

40

43

49

52

55



Table of Contents

4.1 The model and the projector . . . . . ... i v i it vt 55
4.2 The generating functional: our method . . . . . . e e e 58
4.3 Two-siteexample . . . . . . . o ¢t i 0 it e e e e e e e e e e e e e 60

Bibliography 69



Chapter 1

Introduction

Theoretical investigations of strongly correlated electron systems are notoriously very dif-
ficult in particular in two and three spatial dimensions. Many fundamental questions are
still open. The reasons to quote the high-T, superconductors[l] (HTCS) enigma without
addressing to any extent the superconductivity itself are essentially two.

1) After their discovery it was realized that some of the most basic problems in con-
densed matter physics were ﬁot yet understood. In particular, the arise of magnetic corre-
lations as a consequence of strong interactions between electrons, the influence of mobile
vacancies on such magnetic states and the effect of disorder on the correlated behavior of

electrons.

2) It came up in clear evidence the need of controlled approximations to investigate
the strong coupling limit of the electronic interactions. As a matter of fact the standard

tools do not seems to be adequate.

These problems have triggered our attention to the search for a new method to treat

strong correlations.

The cuprate compounds that undergo an HTCS transition have a very rich phase
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Figure 1.1: The T, versus doping (z) schematic phase diagram of Lag_Sr:Cu0y.

diagram. The stoichiometric compound are antiferromagnetic (AFM) insulators. The
antiferromagnetic phase is quickly destroyed by a small amount of doping. Increasing
further the doping concentration they show a superconducting region with a remarkable
high critical temperature. Many experiments demonstrate their 2D character[2] and the
presence of strong correlations in the CuQ; planes[3]. Up to now many of the normal
state properties of these material are still not well understood.

Among the various model proposed the 2D Hubbard model [4] is widely believed to
contain the essential correlations of the active electrons in the CuQ, planes[5].

The Hubbard hamiltonian contains the kinetic energy and the on-site correlation U.
In the large U limit this hamiltonian is often handled on the restricted Hilbert space
of no-doubly occupied sites. What this constraint tells us is that one has to evaluate
thermodynamical quantities as traces over a restricted Hilbert space for the fermions. On
this space a t/U expansion can be performed, giving rise to the so called ¢ — J model[6].

At half filling this becomes the Heisenberg hamiltonian and this is believed to describe
correctly the electronic properties of HTCS materials in the absence of doping or at half-

filling[7].



We can summarize or extract the question:
What happens when a 2-dimensional Spin 1/2 antiferromagnet get disordered?

As one can easily see the Néel state has an ’unconserved order parameter ([S*, H] # 0)
with respect to the Heisenberg hamiltonian. This means that the quantum AFM phase
can get disordered also at zero temperature due to quantum fluctuations. This goes in the
opposite direction with respect to the classical case in which the disordering role is played

by the temperature.

Moreover, we are dealing with the physical situation in which quantum fluctuations
are strongly enhanced: low spatial dimensions 2D, small spin S=1/2, and eventually the
presence of frustration. The understanding of quantum critical phenomena in 2D is still
far from complete [8], [9]. On one hand, quantum fluctuations may here, as in 1D, be
sufficiently strong to drive the system across critical points not expected from scenarios
of mean field type. On the other hand, unlike the 1D case, there are few exact results

available which can guide in the searching for the corresponding phases.

Our works originate from the observation that instead of evaluating directly the par-
tition function as a trace over the restricted Hilbert space one can recover it through

functional derivatives of a suitable generating functional.

In the case of the spin 1/2 Heisenberg Hamiltonians the single site occupancy constraint
takes a very simple form and can be implemented exactly at all temperatures. In this
restricted Hilbert space we can adopt the fermionic representation of the spin operators
via the Pauli matrices. This representation is a very natural one in studying non magnetic

phases such as dimerized phases or flux and chiral phases.

Within the saddle point approximation and in connection with the large N expansions

(in the SU(N) symmetry group generalization of the SU(2) Heisenberg model) it was
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applied by many authors [10], [11], [12] to the study of these phases.

We have shown that the inclusion of the projector together with the classical and

quantum corrections gives correct thermodynamical behaviors.

Even if numerical studies[13] show that the antiferromagnetic correlations are the dom-
inant ones in the ground state, our aim was to study, on the same footing, the AFM phase
and the other non-magnetic phases at finite temperatures. We have shown that our con-
strained fermionization scheme reproduces first of all the well known results for the AFM
phases with its spin waves corrections. The inclusion of the constraint turns out to be
an essential ingredient either to reproduce the static mean field solution or to obtain a

tractable Berry phase[14] from the adiabatic expansion (what is the content of paper VIII).

We have also studied the effect of the constraint on the above non magnetic phases.
In absence of the constraint our one loop expansion recovers the 1/N corrections by Read

and Sachdev[15] for the dimerized phases.

Coming back to the HTCS it was argued[16] that the dynamical frustration induced
by the holes could be to some extent replaced by an effective static frustration between
next nearest neighbors. Although it was shown[17] that this effective description can
be inadequate when dealing with dynamical quantities it is either a first step towards the
doped case or an interesting subject per se. In the presence of frustration the nature of the
ground state is quite controversial. Among the non-magnetically ordered states proposed
there are the dimer phases in which spin singlets are formed between nearest neighbor sites
filling all the links in the lattice. Their generalization to Resonant Valence Bond (RVB)
states have been proposed as competitive ground state for the HTCS material in their
normal phase[5]. Another proposal for a possible ground state of the frustrated Heisenberg

Hamiltonian was that of the flux or chiral states. The order parameter of the latter breaks



parity and time reversal and can give rise to an exotic form of superconductivity that is
called anyon superconductivity[18]. Our method cz;n be generalized to the study of any
spin Hamiltonian and it has been applied to the study of the phases described above in
the frustrated Heisenberg Hamiltonian. .

The last Chapter of this thesis is devoted to the extension of our method away from the
half-filled case. In going away from half-filling the inclusion of the projector is much more
complicated. Here the projector is the Gutzwiller projector of no double occupancy of sites.
The difficulties arise because the projector and the Hamiltonian do not commute. Given
the Path Integral description of the partition function the projector must be implemented
at each time slice of the imaginary time interval [0,5]. This very fact implies that the
generating functional contains source terms that do not commute with the kinetic part of
the Hamiltonian so that an explicit evaluation of the time ordering is needed. We have
checked on a two-site molecule example that the limit of an infinite number of time slices
converges.

Chapter 2 is an introduction to the physics of quantum spin models. In this Chapter
I have tried to illustrate few other methods as the large S and large N expansion and the
adiabatic expansion to allow for a comparison with our results.

Chapter 3 introduces to our method and to its application to magnetic (see paper IV,V)
and non magnetic phases (see paper LILIII,VI,VII) in the spin 1/2 Heisenberg models.

In Chapter 4 our method has been developed for the infinite U Hubbard model and
applied to the toy model of a two-site system.

This thesis includes copy of the works which are listed below:

o I : “Saddle-point finite-temperature results for the infinite-U Hubbard model at

half-filling” M. Di Stasio, E. Ercolessi, G. Morandi, A. Tagliacozzo and F. Ventriglia
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Phys.Rev.B 45,1939 (1992)

II : “Possible occurrence of constrained chiral phase in the frustrated Heisenberg

model” M. Di Stasio Phys.Rev.B 46,9825 (1992)

III : “Single site-occupancy constraint for the Hubbard model at finite temperature”
M. Di Stasio, E. Ercolessi, G. Morandi, A. Tagliacozzo and F. Ventriglia Int. J.

Mod. Phys.B 7,3281 (1993)

IV : “Effects of quantum fluctuations in the large U Hubbard model at half-filling”

M. Di Stasio, E. Ercolessi, G. Morandi and A. Tagliacozzo (submitted)

V : ¢ Finite temperature results from constrained fermionization in the 2D spin
1/2 Heisenberg antiferromagnet. I:the Néel phase ” M. Di Stasio, E. Ercolessi, G.

Morandi and A. Tagliacozzo (submitted)

VI : “ Finite temperature results from constrained fermionization in the 2D spin
1/2 Heisenberg antiferromagnet. I: dimer phases ” M. Di Stasio, E. Ercolessi, G.

Morandi and A. Tagliacozzo (submitted)

VII :“Fluctuations around the magnetic and non-magnetic saddle points in the 2D
spin 1/2 frustrated Heisenberg model” M. Di Stasio, E. Ercolessi, G. Morandi and

A. Tagliacozzo (submitted)

VIII :“Effective Action and Adiabatic Expansions for the 1-D and 2-D Hubbard mod-
els at half-filling” M. Di Stasio, E. Ercolessi, G. Morandi, R. Righi, A. Tagliacozzo

and G.P.Zucchelli. (submitted)



Chapter 2

Approaches to Quantum Antifer-
romagnets

In this chapter I introduce some of the basic concepts related to quantum antiferromagnets
that are described by Heisenberg hamiltonians. I present here some methods that have
been used in the study of 2D quantum antiferromagnets and some of their results. The
main aims are to give with simple exercises the ideas that have been developed in this
field and to state the results and the methods to be compared with our results and our
method. For an extensive review on the unfrustrated Heisenberg model in 2D, and its

connection to the undoped HTCS materials, see Manousakis[13].
2.1 Singlets versus Néel order

The Hamiltonian we are dealing with is the antiferromagnetic (J;; > 0) Heisenberg hamil-

tonian:

H = ZJ,‘J'S—';-S‘J' . (2.1)
(4.4)

We refer to non frustrated case when J;; = J only if ¢, j are nearest neighbor sites on a

bipartite lattice. In this case there is only one parameter in the model, the superexchange
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energy J, which controls the temperature range.
In quantum mechanical spin systems, the spin S, are vector operators. The z-,y- and
z-components of the spin operator are the generators of the rotation group SU(2) and

obey the commutation relations:

(5%, §%) = 1P 57, (2.2)

¢ being the totally antisymmetric 3 X 3 tensor. The ground state of quantum antifer-
romagnets is generically not known except in 1D from Bethe ansatz[19]. For bipartite
lattices the classical ground state is the Néel state, where each sublattice is ferromagneti-
cally ordered, but where the vectors on the different sublattices are antiparallel. However,
in the quantum case the Néel state is not even an eigenstate of the hamiltonian.

This can be easily seen in the very simple example of a two-site system. Here we have:

-

|
H=25-5= 5(5#5; +85753)+ 8iS;5 (2.3)

The action of H on the Néel state is given by:

5§l 11>= 2] U1> 210> (2.4)

thus the Néel state is not an eigenstate to H. If one prepares the system to be in the | T[>
state at time ¢ = 0, then the time evolution operator U(t) = exp(iHt) flips the antiparallel
spins up and down thus giving rise to quantum fluctuations also at temperature T' = 0.

For the two-site system the ground state is instead given by:

I(12) >= —\}—5(! > =1 17>) | (2.5)

which is an eigenstate of {S%;, S7,;} with eigenvalues {0, 0}.This state is a singlet.
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From this simple example originate many questions for the more spins case. One
wonder to know whether or not the ground state c;f a quantum antiferromagnet can be
some sort of Néel state, if it is always a singlet and how many singlets are there.

The Marshall theorem[20] tells us that the grou_nd~ state of a quantum antiferromagnet
is a singlet when the lattice is bipartite and when only nearest neighbor interactions are
present.

Consider a bipartite lattice and assign a valence bond like that of eq.(2.5) to each pair

of a given partition[21]. Now we can define a valence bond state as the tensor product of

the valence bond for each pair:

VB >= ] I(5) > (2.6)

pairs

All singlets may be constructed by a linear combination of valence bond states.
|Singlet >= ZA(P H |(ikdk) > (2.7)
pairs

where A(P) is the amplitude corresponding to the partition P = {(ixjx)} of the lattice
sites. In these states all spins are paired up in singlets. However, it is worth to notice
that the valence bond states are not orthogonal and in general they cannot be linearly
independent. If we consider a factorized amplitude A(P) dependent only on the distance

between paired sites we end up with the Resonant Valence Bond (RVB) state.
|[RVB >= " 1T allix — 5&l)|(ikdx) > (2.8)

P pairs

where the optimal function a(|ix — ji|) can be determined by a variational calculation[22].
The "resonance” comes from the fact that all the valence bond states with sites at the

same relative distance enter with the same amplitude. This state has been proposed by
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Figure 2.1: Long range and short range examples of valence bond states.

Anderson[23] as competitive ground state candidate for frustrated antiferromagnets as
well as for the HTCS in their normal phase[5].

When pairs are formed only between nearest neighbor sites and all such configurations
are linearly superposed with equal amplitude one gets the short range RVB state[24]. Here
the configurations of valence bonds can be thought of as configurations of classical dimers
that occupy the bonds.

In a 2D square lattice numerical studies[22] indicate that the RVB with fairly long
range is a good approximation to the ground state while the short range version is not. It
is worth to note that the long range RVB is a sort of Néel state.

A quantum Néel state is a state with a non-vanishing expectation value of the staggered

magnetization. The latter is defined as:

M* =< Z(—I)R"Sf > (2.9)

where (—=1)% = £1 on the different sublattices. The original SU(2)symmetry of the

problem is spontaneously broken in the Néel state down to a U(1) rotational symmetry
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around the z axis. According to Goldstone’s theorem there must be two massless modes.

These are the spin waves.

The staggered magnetization that is the order parameter of the Néel state is not
conserved. Its fluctuations can be strong enough to induce a quantum phase transition to
a disordered state. The parameters that control this fluctuations are the dimensionality,

the smallness of the spin and the presence of frustration.

For the 2D § = 1/2 unfrustrated Heisenberg model on a square lattice there are only
numerical evidences that the ground state has antiferromagnetic long range order[25],[26],[27].
The question is still open for other lattices. Also for the frustrated case the situation is

far from being clear.

Moreover, for all values of §, the LRO in 2D is unstable against thermal fluctuations

as follows from the Mermin-Wagner theorem[28].

2.2 Large S expansion: spin waves

To study whether or not the Néel state can be a qualitatively correct approximation to the
quantum antiferromagnet ground state may be convenient to perturb away from a limit in
which the Néel state becomes exact. This occurs for a spin § Heisenberg AFM in the limit
§ — co. In this limit quantum spins becomes classical because the commutator is much
smaller than the square of the spin variables: [§%, 57| = 120757 = O(§) << O(§?).
For large spin S we expect S% to make relatively small deviations from +5. One can
formalize this idea and study the corrections to the Néel state using the Holstein-Primakov
transformation[29]. We can represent spin operators in terms of bosons, say boson ”a”

and boson ”b” on the sublattices A and B fespectively, as:
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§*=8-d'a ; § =+28a(1- a.J'a,/ZS)l/2 on sublattice A

SZ

Il

—5+b', ; ST =+v2501- bfb/QS)l/zb on sublattice B (2.10)

This produces the exact commutation relations and the constraint §2 = §(S +1).
The constraint on the number of bosons on each site n; < 25 is also satisfied. The state
with |§%*| = § corresp;)nds to the state with no bosons present. We may develop(30] a
systematic expansion in 1/5 by expanding the square root in the definitions of S %, (Note
that in this approximation the constraint n; < 2§ is no more satisfied). Including only
quadratic terms in the hamiltonian and after a Bogoliubov transformation we end up, in

Fourier space, with a diagonal hamiltonian:

H=2JS Z \/1- 72(k)(c1ck + dzdk) (2.11)

k

The excitations created by ¢ and d are the spin waves and for the square lattice
v(k) = (cosks + cosky)/2. Their spectrum is E(k) = 2J5v/1 ~ v2(k). Inverting the
Bogoliubov transformation we can calculate the reduction in the magnetization due to

quantum fluctuations:

M =5-23 5 ((1 —rm) - 1) (2.12)

k
For the 2D square lattice we find M* = § — 0.28 4+ O(1/5).

As one can easily see[31] in the 1D case the correction is divergent at small wave

numbers. This indicates the Néel state is destabilized in 1D, no matter how large S is.



2.3. Large N expansion: dimer phases 15

2.3 Large N expansion: dimer phases

An examination of the quantum disordered phase requires an approach which is designed
explicitly to be valid in a region well separated from the Néel ordered one[32]. To this end
many generalizations of the SU(2) Heisenberg model have been introduced. Here I will
show in some details the bosonic SU(XV) generalization. Fermionic generalizations as well
have been discussed in the literature[10],{11],[15]. One can introduce a Schwinger boson

representation of the spins[33],[34]. Introducing two bosons b,,; (1 = 1,2) one writes:

Sz = 2bll ,o-pubu,z (2.13)

with the local constraint b iOui =25, Where & are the Pauli matrices , and summation
over repeated greek indices is implied. The main advantage of this representation is that
the constraint is an equality, and hence can be implemented via a Lagrange multiplier.

The hamiltonian can be rewritten (neglecting additive constants) in the form:

= _.—Z (e*Bb],b% ) (7 biybjs) (2.14)
(.49)
(7 = —e=+ , €T = ¢~ = 0). This form makes it clear that H counts the number of

singlet bonds.

We have so far described the large 5 expansion what makes the system more classical.
In terms of the representations of the SU(2) group it corresponds to increase the dimensions
of the vector space and of the three matrices (plus the identity) generators of SU(2) that
becomes (25 + 1) x (25 + 1).

In studying the disordered phase it is convenient to introduce another parameter: the

flavor index  of the bosons is allowed to run from 1 to 2N (N integer). Here we look for
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the fundamental representation (dimension 2N) of the SU(2N) group of rotations in this
bosonic vector space.
It is clear that the spin has a precise physical meaning only for SU(2) (from its Casimir

52), however we define here on the spin” S through the relation:

2§ +1=n,>1 (2.15)

where n. is the dimension of the vector space on which the realization of SU(2N) acts.
In addition we want to impose the restriction that the ”spins” on a pair of sites be
able to combine to form a singlet state, thus generalizing the valence bond structure of
SU(2). This valence bond formation is clearly a crucial feature determining the structure
of the quantum disordered phase.
In the case of SU(2), given the fundamental representation of a spin operator acting
on the vector space V5, for the two sites case the vector space becomes the tensor product

of each on site representation. It turns out to be

Va@Vo=V1+ Vs (2.16)

where the lower indices give the dimension of the space. This representation of SU(2) can
be decomposed in a sum of irreducible representations and one of them is a singlet V;.

It is well known[35] that such a state cannot be obtain from SU(2N) with N > 1. In
other words there is no generalization of the antisymmetric invariant tensor € to general
SU(2N). The proper generalization turns out to be the symplectic group Sp(N). The Sp(N)

group is defined by the set of 2N Xx2N unitary modular matrices U such that:

UvTIU =T (2.17)
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i

where

I= 0 1 (2.18)

!
fuy
[l

is the generzﬂization of the € tensor to N> 1. It is clear that Sp(N) C SU(N) and it is
worthwhile to note that Sp(1) = SU(2).
Now the b bosons transform as the fundamental representation of Sp(N). Valence

bonds:

<78 by > (2.19)

can be formed between any two sites and this operator is a singlet under Sp(N) because

of eq.(2.17). We can prove that it is indeed invariant under the action of a matrix U of

the group:

T (Upadl) (Uysbh) = Zo,(UZgbL) (U,sbE) =

= UL3T5., U, sbh b} = 7291 ! . (2.20)
The natural generalization of the Heisenberg hamiltonian to general $p(N) is :

Z(Iaﬁbjab;a T.,5b7b%) (2.21)
(1 )
where a, 8,7, § runs over 1,....,2N.
This is a two parameter generalization (n.,N) and the phase diagram for the mean
field phases is shown in Fig.(2.2).

It has been shown[15] that in the large N limit at fixed n, the ground state is quantum

dimer disordered. The low energy dynamics of H is described by an effective quantum
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dimer model, with each dimer configuration representing a particular pairing of the sites
into valence bonds.
At leading order (N= o) a very large set of degenerate ground states was found for
ne=2. This limit is equivalent to the fermionic large N theory of Affleck and Marston[10].
To split the degeneracy 1/N corrections have been calculated and the lowest energy
state occurs when the dimer are arranged in columns[15].

Another solvable limit is obtained by fixing the ratio of n. and N:

n
| — 2.22
. (2.22)

and subsequently taking the limit of large N. In the phase diagram of Fig.(2.2) it corre-
sponds to changing the slope of the dashed line. It was found that there exists a critical
value k = k. which separates the magnetically ordered and the quantum disordered phase.

In all these mean field theories at finite N the local constraint is only satisfied in the
average. Because the N — oo limit quenches all the fluctuations the constraint is fully
implemented only at N=co. Unfortunately, the physically interesting case is at N=2.
Some 1/N expansions have been performed. It has been shown, for example using the
Schwinger bosons (SB) large N expansion, that if there is long range order in the mean
field theory the spontaneous staggered magnetization does not vanishes to all order of the
1/N expansion[36]. The 1/N corrections are described by diagrams which include lines
for the SB propagators G, interacting via fluctuating fields. A diagram which involves
L loops (traces of products of G,) and P propagators of the fluctuating fields is of order
(1/N)P-L. This allows for a comparison with our calculations because even if we have
worked directly at N=2 the gaussian fluctuations we have calculated are exactly the 1/N

corrections at N=2 when the local constraint of single site occupancy is neglected.
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Figure 2.2: The Read and Sachdev phase diagram for generalized Heisenberg hamiltonians.

Another generalization of the Heisenberg hamiltonian to the § U(N) symmetry group
can be performed starting from the fermionic representation of the spin operators[10],[37].
Its asymptotic result can be located in the above phase diagram at N — oo with n. fix
and finite. We have shown in our papers how our results can be directly compared to

those results when N = 2. See papers IV and VI for more extensive discussions.

2.4 Adiabatic expansions

Up to now we have considered static mean field solutions and eventually the effects of
including one-loop corrections around these solutions. Here we turn to the general, time-

dependent case.

All the decoupling schemes of the interaction term are given in term of auxiliary fields.
For example in the antiferromagnetic phase the magnetization field can be introduced as

an auxiliary field to decouple the interaction term. The result is a system of spins in a
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magnetization field. Now this field can be thought to be adiabatically varying. Adiabatic
exchange provide a very simple way to make quantum parallel transport happen. The
parallel transport of vectors is an intuitive example of anholonomy. It is a geometrical
phenomenon in which non integrability causes some varia;bles to fail to return to their
original values when others, which drive them, are altered around a cycle. The variables
that are cycled are parameters or auxiliary fields in the Hamiltonian of the system. If the
cycling is slow, the adiabatic theorem guarantees that the system returns to its original
state. However it acquires a non trivial phase that is the Berry phase[14].
A very simple example shows the appearance of the Berry phase. Consider the time
dependent Hamiltonian:
H(t) = H (X (t)) (2.23)
where X (t) = xx(t) (k=1,...,N)and 0 <t <T. The adiabatic theorem states that the

solution of the Schrédinger equation:

0, | (1) >= H(t) | $(t) > (2.24)
are given by:
| () >= e Jo WEKENFn | 1 x (1) > (2.25)

where | n; X (t) > are the instantaneous eigenstates of H(t):

H (X (1) | n; X () >= En (X(2)) (2.26)
and
Yn = i/ot dTil%t—) < n; X(t) | %H;X(t) > (2.27)

is the Berry phase. If we have periodic boundary conditions X (0) = X (T') then:

Yo = jé;kaAk(X)

A(X)=1i<n; X(t)] 5%;”; X(t) > (2.28)



2.4. Adiabatic expansions 21

It is worth noticing, following Ref.[14], that this’phase cannot be assimilated in a redef-
inition of the states | n; X(t) >. In fact, if we change the phase of the state | n; X (¢) >

then Ay will be modified according to a local gauge transformation:

| X () >— €00 [ m; X (1) >

Ay — Ay — a%e(X(t)) . (2.29)

Being v, 2 line integral (2.28), it is invariant under the local gauge transformation (2.29)
and therefore cannot be neglected. The Berry phase is an intrinsic property of the param-
eter space X (t) and that is why it is often called a geometric phase.

Coming back to spin systems, it has been shown by many authors [38], [39], [40], [41],
[42] that a Berry phase can be obtained considering the magnetization to be the external
time dependent field. We will call it ¢¥(t) in what follows (¢ labels the sites and a the

space directions). The geometric part of the effective action that generalizes eq.(2.27)

reads:
A do2(t)
IS'geom. = ZS;‘/‘; thz (t)——————-dt =
N
= Sy § dagraz(r) =
=1 ¢

N

0A7

— S / oot OAL (2.30)
; s 8¢°

13

where the Dirac monopole A% is the solution of:

eaﬂng_;’ _
odf | P

This geometric part may have deep consequences in the physics and this is actually the case

(2.31)

of the one dimensional Heisenberg chain. After the work by Haldane[38] the appearance

of non trivial Berry phases in quantum spin systems is often studied in connection to the
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continuum limit of the AFM effective action. Non Linear ¢ model provides the simplest
continuum theory describing the order parameter dynamics an AFM. It has the right
spectrum at long wavelengths and at low frequencies. It can be argued that the Goldstone
bosons of this NLom interact exactly as the spin waves. Tile velocity of light here play
the role of the spin wave velocity there[43].

One can derive the NLom from the microscopic theory assuming short range AFM
correlations as shown by Haldane[38]. As an outcome of this approach a non trivial Berry
phase appears in the action.

Let me briefly show how the geometric contribution to the continuum effective action
brings about deep consequences in the linear chain problem. We consider the Heisenberg

chain and start from the static AFM mean field solution:
g3 =S(-1)ng (A =1) (2.32)
Fluctuations around this solution are described by the fields:
¢F = S(-1)'n? (2.33)

In the continuum limit and imaginary time[44] the geometric part of the effective action

becomes:

Speom. = i85 Y_ 0l [ deAZ(i) T -
=1 0 dt

.S 8 §Ax 547 Br
— 1,"2“‘/‘d17‘/; dt [(6n16 '—%) 8rni 6¢Tli:| =

8
= i—g/dm/ dte*PIn® (¢, t)0,n° (2, 1)0,n (¢, t) = i275Qp  (2.34)
0

a being the lattice space so that 3>, a — [ dz in the limit a — 0 and |7i(z,t)|> = 1. The
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last equality defines the Pontryagin index @ p:

nl n? n3

B
Qp l/d;r:/ dt det | §n' Him? G;nd (2.35)
0

4 d;.n' 8;n? O,nd
that is a functional of the field n* which assumes only integer values[45]. From an adiabatic
expansion a second order time derivative in n*(t) can be obtained. As an example, the

total effective action for the linear chain is given by the Non Linear o model plus the

topological term:
5 o 2 a\2 .
Seff= 7, d*z (0,n*)" + 127 5Qp (2.36)

In evaluating the partition function Z = [ Dn® exp(—Sesy) the relevant configurations of
the field n® are those with a finite action. This means that we have to impose boundary
conditions at infinity or in the lattice language we have to impose periodic boundary
conditions. Therefore the space in which our order parameter is defined becomes a sphere

and we call it Sghys' The order parameter is an application from Sg to the space of

hys
configurations that is again a sphere Sfonf. All the relevant configurations of the order
parameter are maps: Sghys — 52 f [45]. From topological theorems we know that these
maps can be divided in disjoint homotopy classes. The homotopy group is: m2(85%) = Z[46].
It can be shown that the Pontryagin index is a number also called winding number and
that it counts the number of coverings of S2,, induced by the map n®.

The linear chain problem has been solved exactly by Bethe[19]. The ground state is
disordered but the AFM correlation functions show a power low decay. The absence of
long range order is a consequence of the Mermin Wagner theorem [28] and is correctly
accounted for by the Non Linear ¢ model. On the contrary the NLom would give an

exponential decay for the correlation functions. It is the presence of the geometric term the

responsible of this behavior[47]. Moreover, the Haldane conjecture that integer $ chains
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should exhibit exponentially decaying correlation functions while half integer S chains
should exhibit power law decaying has a natural explanation in term of the topological
phase: 275Q p.

In the 2D square lattice case it has been shown that the Berry phase vanish identically
(39], [40], [41].

A further step that Berry proposed[48] is the study of quantal phase corrections from
adiabatic iteration. This is performed in papers VIII in imaginary time starting from our
scheme for the antiferromagnetic phase with attention to some non hermiticity problems

which arise.
2.5 Frustrated Antiferromagnets

The frustrated Heisenberg hamiltonian J; — J, we are dealing with is:

H=0 Y 5-8§i+7. Y 85 (2.37)
(i,J)NN ({.J)NNN

The introduction of the next nearest neighbor interaction J in the 2D square lattice case
frustrates the classical AFM order and enhances the effects of quantum fluctuations. The
2D frustrated Heisenberg model was approached in many different ways. In the classical
limit (§ — co) there exists a phase transition at J,/Jy = 0.5 below which the ground state
exhibits Neél order. Using linear spin wave theory[49] it turns out that for all finite S
values the Neél state and the collinear state (independent Neél order on the two sublattices)
are separated by a region, J,/J; =~ 0.5, in which the ground state is disordered by quantum
fluctuations. An upper bound estimate of the stability for the Neél state was found[50]
to be Jp/Jy ~ .22 connecting the frustrated Heisenberg model to the O(3) non-linear ¢

model. Additional support to this scenario is given by the results of finite size scaling

studies[51] (.4 < J»/J; < .65 ) and by exact diagonalization studies[52], [53]. Between the
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proposed phases in the intermediate range of frustration there are the dimer phases, the
flux and chiral phases and also other magnetically ordered but incommensurate phases.
Our method can be directly extended to all the spin hamiltonians. In particular we
have studied the possible occurrence of dimerized phases (paper VII) and of chiral or flux
phases (paper II) in the 2D frustrated Heisenberg hamiltonian. In this section I review
only the basic concepts regarding these latter phases.
At start we consider the bond version of the model. This can be achieved by giving

the fermion representation of the spin operators:

z 2 zaaaﬁciﬂ (238)

as we will see explicitly in the next Chapter this is a representation of the spin 1/2 operators
in the restricted Hilbert space of singly occupied sites. Neglecting, for the time being, this
constraint and constant terms we end up with the following hamiltonian:
Z chacmcjﬁc,g - = Z Zcmc]acﬂgc,g (2.39)
(NN) aB (NNN) of
In what follows we consider a particular form of mean field theory[10], [37] whose decou-

pling scheme involves an Hubbard Stratonovich factorization in terms of link variables

which are complex Bose fields:
Xij = O €l Cia (2.40)

A valence bond can be represented in terms of fermions in such a way. We restrict
ourselves with the possibility of having bonds only between nearest neighbor and next
nearest neighbor sites. We look for solution of the saddle point equations with maximal
symmetry.

These bond fields are complex and can be rewritten in terms of their modulus and
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phases:
Xij = pije' " (2.41)

A remarkable feature of this formulation is a local U(1) gauge symmetry of the Hamiltonian
in Eq.(2.39):
6 ol o clemi (2.42)

c; — c;ei : i
The auxiliary fields of eq.(2.40) are not gauge invariant and we know from the Elitzur’s
theorem[54] that they cannot acqﬁire a non-zero vacuum expectation value. However we
can define the states from the simplest gauge invariant order parameters that are:
10
Pl=( I x5 =( I pa)e (2.43)
plaquette plaguette

We require that this flux & that is circulation of A;; around an elementary plaquette is

constant:

® = Z Aij (2.44)

plaguette

In general, a non zero flux & violates time reversal invariance since the time reversal
transformation maps ® — —&. There are two values of & = 0,7 compatible with time
reversal and the corresponding phases are non chiral. All the other values (mod 27)
represent a state with broken time reversal symmetry, i.e. a chiral state. For both cases
p:j assumes non zero values on the links covered by dimers.

If we consider a uniform solution for p,; = p and a zero flux everywhere we obtain
the Baskaran Zou and Anderson solution[55]. However this solution is unstable towards a
dimerized state in which p may have a periodic component in space.

The state with p;; = p constant only on the link formed by the nearest neighbor sites
in the square lattice and flux & = 7 on each elementary plaquette is the so called flux

phase[10].
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Figure 2.3: Pictorial representation of the link fields of the flux and chiral phases.
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Now we consider the possibility of non-zero link diagonal fields. The chiral phase of

Wen, Wilczek and Zee[12] can be obtained with the choice:

Xij = pe""_/4 i,j = N.N.

Xij =P i, = N.N.N. (2.45)

The chiral order parameter: Pla is proportional to the mixed product of three spin

operators:

Fio3 = §1 . (5:2 X §3) (2.46)

Under time reversal T we have T-1§7 = —§ thus Ejo3 is odd under time reversal.
Similarly under parity P, that in two space dimension is the same as reflection through a
link, we have:

P1E133P = Ey3 = —E123 (2.47)

This feature has deep consequences[56]. The effective Lagrangian describing their low
energy degrees of freedom have an extra term the so called Chern-Simon term. It fol-
lows that these systems may have low energy excitations with fractional statistic or
anyons. From this point starts a novel suggested form of superconductivity, the anyon
superconductivity[18].

However coming back to energetics, numerical studies[53] seems to indicate the colum-
nar ordered dimer phase as the most favorite one. The dimer phases both in columnar
and staggered order are given by isolated dimers as depicted in Fig.(2.4). These phases
do not break time-reversal symmetry. The large-N expansion (in the SU(N) symmetry
group) gives evidence for the stability of a dimerized phase in columnar order and does

not give any evidence for chiral ordered or spin-nematic states.
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Figure 2.4: Pictorial representation of the link fields for the columnar (a) and staggered (b) dimer
phases.
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Chapter 3

Constrained Fermionization in the
Heisenberg model

In this chapter I present our method and some of the results we have obtained studying the
magnetic and non-magnetic phases of Heisenberg Hamiltonians. The fermionic represen-
tation of the spin operators is exact if the fermionic operators act on the restricted Hilbert
space of singly occupied sites. Many thermodynamical quantities can be deduced from
the partition function. The latter is expressed as a trace over the restricted Hilbert space.
In evaluating the partition function, we have implemented the single site occupancy con-
straint through appropriate derivatives of a suitable generating function. This idea can be
applied, in principle, to implement any projector. Here it has been applied to the study of
2D quantum spin (S=1/2) systems described by AFM Heisenberg Hamiltonians. Because
the single site occupancy projector commutes with the hamiltonian, it can be implemented
exactly at all temperatures. The first Section is meant to review this procedure applying
it to the well known and standard case of the antiferromagnetic phase in the unfrustrated
case. The second Section deals with the results for the AFM phase. At the saddle point
approximation level the constraint is implemented exactly and we recover the mean field

results of other pure spin methods. Includiﬁg the one-loop correction to the static saddle

31
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point we have obtained the well known spin waves corrections. More details can be found
in Paper V. For order parameter configurations that are sl.owly varying in time a system-
atic adiabatic expansion can be developed starting from our scheme as shown in paper
VIII and Berry’s phase contributions arise quite naturally. 4

By means of constrained fermionization of the spin operators one can describe the
magnetic and non magnetic phases on the same footing. In the third and fifth Section
I report our results for the dimer phases both in columnar and staggered orders and
for the flux and chiral phases respectively. Classical and quantum fluctuations allow
us to comstruct an approximate free energy which shows the correct low temperature
thermodynamical behavior.

From numerical calculations the dimer phase in columnar order seems to be a good
candidate for the ground state when disorder is introduced in the pure nearest neighbor
AFM interactions. I will show in the fourth Section how our method can be directly
extended to study the frustrated Heisenberg hamiltonian and report the results on the

effects of quantum fluctuations.
3.1 The projecting technique

Here we are dealing with the Heisenberg hamiltonian:

H = ZJijgi'gj (3.1)
(1.9
where the parenthesis ( ) indicates not repeated pairs of sites. We will consider:

Jy if ¢,j are nearest neighbors
Ji; =< J2 if i, are next nearest neighbors (3.2)
0  otherwise

Fermionization of the spin 1/2 operators, in terms of creation and annihilation operators

(cf, ¢) and Pauli matrices &, according to:
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-

§i=zcl.é

el Fapein (3.3)

N | =

is exact if the Hilbert space is restricted to states with single site occupancy.
This can be shown with a very simple exercise:
If we consider a single site there are two possible realizations of SU(2) in terms of

fermion operators:

a)

. : 1
Sp=cley s So= (S5 5. = S - ) (3.4
b)
. 1,
S = c?ci 3 SL=(SL); SL= -2-(n~ 1) (3.5)

The Fock space has 4 dimensions and is:

H=H, & H,
Hy = span{| 1>,] 1>} Hy = span{|0>,| T|>} (3.6)
The realizations a) and b) commute. The first one acts irreducibly on H; and reducibly
on Hj. The reverse holds for the second realization. Moreover, given: §2=5 (5’ + 1) and
5§ = §'(8"+1), we have: on'Hy :5§=1/2, §’=0andonH, : S=0, S'=1/2.
Therefore, going to the lattice case and choosing the realization a), thermal averages

should include the projector which restricts the Hilbert space:

Py = Hn,-(z - n;) (3.7)

(n: = nit + 04504 = ¢y Ci0,0 =T, 1)

We can write the Heisenberg hamiltonian in terms of fermion operators as:
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1 1
H = Py (-—-2— z J,'jc:faciac;ﬁcm) Py — 1 Z Jij (3.8)
(1.9) (47)

where summation over repeated spin indices is implicitly stated. The partition function
and all the thermodynamical quantities should be calculated as traces over the restricted

Hilbert space as:

Z = Tr{e P Py} (3.9)

To implement this projector we add a source term to the Hamiltonian H:

1
H =H- 5 > zin; (3.10)
here the z;’s are real variables which we can think of as local chemical potentials.

Due to the fact that n; and H commute, we can define the generating function:

Z[z] = Tr{exp(-pBH + szi)} (3.11)

The original partition function is recovered performing the following derivatives:

Z= H aii(z - %)Z[zi] . (3.12)

2zi=0

First of all due to the commuting properties of the Heisenberg hamiltonian with the

occupation number operator (or[H, Prs] = 0) the evolution operator will not bring the
system out of the restricted Hilbert space. Henceforth we will disregard the projectors
in the exponential. This is the major simplification that occurs when dealing with spin
hamiltonians.

Everything is exact up to now and we can take advantage of the fact that the evaluation

of Z[z;] only requires standard techniques because the trace is an unrestricted trace.
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It is a standard procedure to express the generating function Z[z] as a Path Integral

over Grassman variables[57]:

2z = [TIPW()Ddi(r)ex { RN AC RN
[N PR
1
-8 Ji,-/ drSi(r)- §j(T)} (3.13)
() 7°
where: §;(7) = Y5 (7)0apip(T). Here 7 is a scaled imaginary time variable ranging from
0 to 1, the ¢’s are Grassmann variables obeying antiperiodic boundary conditions in = at
the extrema of the interval [0, 1].

In evaluating this generating function we can use Hubbard-Stratonovich decouplings to
integrate out exactly the fermions. The price to be paid is the presence of multidimensional
integrals over the Hubbard Stratonovich auxiliary fields.

Performing the derivatives as in Eq.(3.12) we implement the pro jector exactly. We end
up with an effective action in terms of the auxiliary fields.

Obviously it is not possible to evaluate exactly this multidimensional path integral.
The standard procedure is to evaluate it at the saddle point and then to add corrections. In
all the forthcoming approximations we will treat the constraint term on the same footing
as the other terms. Different phases are studied choosing different saddle points. The
choice of the auxiliary fields will drive towards magnetic or non-magnetic saddle point
solutions.

I will discuss here the well known case of the antiferromagnetic phase for the unfrus-
trated Heisenberg Hamiltonian. This Hamiltonian can be written in Fourier space:

H=17Y% 7(g)5(q) 5(~q) (3.14)
(9)
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where v(g) = cos gz + cos gy.

The Hubbard-Stratonovich decoupling gives:

e—B7 748(a,7)-5(~a,7) _

_ /DQ./\Z(Q,T)e_ [ dr {#1X(q,m)P++/=7BT7g(M(a,7)-S(g) +ec.) } (3.15)

where the auxiliary fields M(q, T) obey periodic boundary conditions in 7. It is useful to
introduce the Fourier transforms of the fields, i.e.:

o0

"/)ia(T) = Z e“iwnT'ﬁia(wn)
M(q,7) = i e M (q, Q) (3.16)

where on account of the boundary conditions: w, = (2n + 1)x and Q,, = 2m~.

Having integrated out exactly the fermions we get:

Z[Zi] = N_/ H DzM(Qaﬂm) exp {"ﬂ-z I M(Qaﬂm) !2 "Seff[;q} (3'17)

The effective action is:

SesflA] = =TrIn[l + G, 4] (3.18)

with:

- o —nBJ /z
Agz ('l,_']) = 5,',1’ {255,,’":5(,15 —2 Z glafi (W—]ﬂvzl> M(q, ﬂm) . 3(16} (3.19)
q

‘We have defined here the free electronic Green function (Go)zgl(z', 7) = (fwn)718; j6nnba,3-

The normalization factor is: N = exp(T'rlnG;‘l) = 4N. The derivatives appearing in
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eq.(3.12) lead to the partition function. The resulting extra factors can be exponentiated

to give:

z:/Hpumm%p@{mZ]M@ﬁ@P—&MM+§ﬁm&m}.(mm

g.m z
The matrix .4 that is Azl.zo depends only on w,r —w, = Q,, Here the contribution of the

constraint is:

0%Sessr _ o08ers  (08esr)’
BilA] = [ Bz? -2 0z; _.( 62,’) im0

= Tr{[xPJ’} + 2Tr {xP} — (Tr {xP:})’ (3.21)

We have defined the projector P;, onto the i — th site of the lattice, whose matrix elements
in the Wannier representation are (F;);; = b;k6;; and the operator x = (G;! + 4)7L.

Note that up to this point everything is exact.

To isolate the static saddle point corresponding to the antiferromagnetic phase we
choose M(q,m) = ZM?*(7,0)6m 0047 and look for the self-consistency equation. Here
the g vector doubling the unitary cell is # = (m,7). In the next Section I report the
results. Now I want to go a step further giving the main ingredients for the one-loop
corrections. The total effective action of eq.(3.20), evaluated at the stationary point gives
a poor approximation to the free energy. By including the so called “one loop corrections
” in the estimation of the path integral, we take into account the field configurations which
allow for fluctuations of the order parameter around its mean field value, at the gaussian

level. We write:

M(g, Um) = M*(m,0)2 + §M(g, Oum) (3.22)
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This changes A into A + §A. The effective action can be written as: F = F+ F (2)
with Sepy = ng T Sg)f, where the superscript (0) denotes the mean field value and the
superscript (2) the second variation.

Understanding x as the one evaluated at the saddle point (x = (G5t + A)71), we get:

1
s, = STr{[xS A} (3.23)

which is depicted in Fig.(3.1(a)). The second variation F2) is:

2) _ - 12 (2) 1 62B, (531)2
ﬂf( )__7('T1'{l 5M! }+Seff—“'2‘;(—g;—_ B? (324)
where:
§B; = 2Tr{xP;xPix6 A} (3.25)
and
§2B; = ATr{xPixPix0 AxS A} + 2Tr{xP;x6 AxP;x6 A} (3.26)

The first term of the constraint contribution, §2.B;, is represented diagrammatically as

in Fig.(3.1(b)) and the second term (6B;)? is depicted in Fig.(3.1(c)).
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Figure 3.1: Diagrammatic representation of: (a)62S,;; (b)§2B; (¢) (6Bi)%. The wiggly lines
represent the fluctuating fields 5/\71(Q), the full lines the ¥ functions while the broken lines represent
the effect of the projector viewed as an external perturbation.
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3.2 Antiferromagnetic phase

We have introduced the rescaled order parameter M = 2—]\%]\/{’,
The saddle point approximation to the free energy which should be derived from the

logarithm of the partition function of eq.(3.20), is:

f%;=F|NJ =2M* —2tIncosh M/t —tln B (3.27)

where the constraint B which turns out to be site independent, reads:

1
B=1— —— 3.28
2 cosh® M/t (3-28)
So that the final result becomes:
fo; =2M" — tlncosh2M/t + ¢1n2 (3.29)
Minimization of this expression yields the mean field magnetization:
1 2M
M = —2- ta.nh—t— (330)

with critical temperature t. = 1 and fo;;(t = 0) = -1 /2. This is exactly what found in
the mean field approach to the Heisenberg and/or Ising model, when traces are performed
over spin states. In fact, the constraint is satisfied at all temperatures at the mean field
level, what comes from the fact that <n; >=1 and < n? >= 1 at all temperatures.

A crucial check of our method to include the single site-occupancy constraint is the
evaluation of the mean occupation number < n; > and of its mean square fluctuation
< n? >. It can be easily proved that <mn; >= 1 at all temperatures (see paper III), but

we cannot in general prove the corresponding relation: < n? >= 1. Here we show that, at
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Figure 3.2: < n? > versus temperature.

the saddle point, when the constraint is taken into account, the mean square occupation

number < nf >, , is exactly equal to one.

According to eq.(3.20) we write symbolically this quantity as:

52
< n? >sp.= <—26_2(z") >
0z
: z;=0 3.p.
where
E(Zi) = Seff(zi) - ZlnllBi(zi).
Note that Qg—:fi , = —1 and that ias%m = Tr{xPixP:}.
Pola= 5 lz=0

In the absence of the constraint we have:

%8 1
20 eff
n; >gp. ( 0z? ) o cosh? M/t

(3.31)

(3.32)

(3.33)

< n? > is one only at zero temperature because the saddle point satisfies the constraint
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and no classical (static) fluctuations survive. At the critical temperature, when M is zero,
it reaches the value 3/2 due to the equiprobability of occupations. When the constraint
is ignored the mean field critical temperature is t0 = 0.5 and the equation for the magne-

tization is: M = %tanh Ati This result is plotted in Fig.(3.2) broken curve. Including the

)

z=0" g.p.

constraint we have shown (see Paper V) that:

68 1 8?B;
2 1 eff _ = J
< n; >s‘p.—— 1 < ( 6212 - _B] 323 )

i

1. (3.34)

See Fig.(3.2).

One loop corrections

By including the so called “one loop corrections ” in the estimation of the path integral,
we take into account the field configurations which allow for fluctuations of the order

parameter around its mean field value, at the gaussian level. We write:

M(g, Q) = M?(x,0)2 + 6M(g, Um) o (3.39)

We have found that, while the longitudinal fluctuation modes (|| to Z) are decoupled, the
quadratic form for F(?) relative to the transverse fluctuations consists of four equal 2 x 2
blocks mixing the real and imaginary components of §M?* and §MVY at ¢ and ¢ + 7 in

pairs. We denote its eigenvalues by A, and A_. They are:

BIvg2M

T T e @

(3.36)

They vanish at Q,, = 0 when is ¢ = 0 and ¢ = (7, 7) = . They are the Goldstone modes
(spin waves) corresponding to the broken symmetry of the AFM state.

The collective excitation spectrum is recovered by the analytical continuation of the
product A‘iF - AAF for i, — Pw +i0 and looking for the zeros. The result is the usual

spin waves dispersion that is:
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wg = 2MJ /(1 - (7q}2)2). (3.37)

which is affected by the constraint only through the temperature dependence of M(¢). It
is remarkable that no other contribution to the longitudinal modes arises from terms of
the constraint with Q,, # 0. This implies that there are no quantum corrections (i.e. at
zero temperature) due to the constraint.

The zero temperature the energy is:

9 RBZ
fe=0)= £+ 2 3 [ Go2m) 1] (5.38)
q

where fO = 2(M?*~ M) = —0.5, (M = 1/2) and the correction due to the fluctuations

is —0.158 . This is the well kn(,;own result of the first (1/.5) correction.
The presence of the constraint affects the finite temperature dependence of the free
energy as one can see in Fig.(3.3) which reports the specific heat divided by the temper-
ature versus temperature. Thermal fluctuations are strongly depressed by the constraint

while the low temperature behavior Cy ~ at? remains exactly the same.
3.3 Dimer phases

Dimer phases are bond centered charge density waves in which each site forms a spin singlet
with one of its nearest neighbor and in fact breaks the original translational symmetry.
The dimer phases we have considered are the the staggered one in which translational
symmetry along the diagonals of the lattice is preserved and the columnar one in which
the elementary cell is doubled in one direction. See Fig.(3.4).

In studying these non magnetic phases the fermionization of spin operators is a very

natural tool.
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Figure 3.3: Specific heat versus temperature. In the presence (full curve) and in the absence
(broken curve) of the constraint.

The Heisenberg Hamiltonian can be rewritten as:

J J

H = Py <-5 3 cjacjac}ﬁciﬂ> Puj = N3 (3.39)
(i.4)

with Ppy = []; ni(2 — n;), the single site-occupancy projector.

In the path integral representation of the generating function Z[z;] we perform a dif-

ferent Hubbard Stratonovich decoupling. Now we choose link auxiliary fields:

Ui (1) = D $ialr)PialT) (3.40)

Assuming that the U;;’s break the translational symmetry as less as possible we have the

two possible bipartite lattices as in Fig.(3.4). The saddle point choice If; = U(V) and
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Figure 3.4: Pictorial representation of the link order parameters. (a) Staggered dimer phase
(periodicity is along the diagonals) (b) Columnar dimer phase (periodicity is doubled along the =
axis).

Uy = Us = Uy = 0 corresponds to the staggered (columnar) dimer phase. At the saddle
point level the two dimer phases we have studied are degenerate. A very important check
of our method is the evaluation of the mean square fluctuations of the on-site occupation
number. It turns out that at the saddle point it deviates from the exact result as a function

of temperature less then 10% (see paper III).

We call this saddle point phases “generalized mean field phases”. In fact, the classical
result in the theory of Path Integrals [58] that says that the saddle point evaluation of the
path integral yields the value of the free energy that one would obtain by performing a
mean field (Hartree) approximation on the original Hamiltonian does not hold true in the
case of constrained path integrals. This is exactly our case. Here the variational principle
does not help us and we are not allowed to refer to the saddle point evaluation of the

exponent in the path integral as to an approximation to the free energy.

As a matter of fact we have found that the saddle point approximation to the free
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Figure 3.5: < n? > vs. temperature for the staggered dimer phase. Curve b) is for the constrained
g i g8

case while the curve a) refers to the unconstrained case.

energy is a very poor approximation. The restriction due to the constraint are even too
strong. It reduces the entropy so much that at low temperature the specific heat becomes

negative (see Fig.(3.6)).

We have shown that to overcome the drawbacks of the constrained fermionization the
inclusion of quantum fluctuations together with a careful analysis of the zero modes are
needed. (See papers IV,VI for a detailed analysis and discussion). They follow from the
spontaneous breaking of the residual U(1) symmetry and are affected by the constraint
also at zero temperature. We have shown that there are two more flat directions in the
second variation of the action around the columnar phase saddle point, which eventually

cause this phase to be lower in energy with respect to the staggered one. Because these
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Cy(T)/kzT

Figure 3.6: Specific heat vs. temperature. The full curve is in presence of the constraint and
including quantum fluctuations, the broken curve in its absence and with quantum corrections,
the dashed-dotted curve is in the presence of the constraint but without including the quantum
corrections

modes are dispersionless at zero energy and the other excitations are at energy 2d the

temperature dependence of the specific heat is governed by the gap 2d.

The results concerning the thermodynamical behavior is summarized in Fig.(3.6) where
the specific heat vs. temperature is plotted. The constraint strongly reduces the thermal
fluctuations and together with the one-loop corrections gives a correct thermodynamical

behavior for the specific heat.
Concerning the zero temperature results they are summarized in Table 3.1.

It is worth noticing that adding back the extra constant term appearing in the Hamil-
tonian, then the constraint is satisfied only in the average the saddle point free energy

becomes: fJ; . = —3/4. Because B — 1 in the zero temperature limit the unconstraint
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T = 0 Energies fMF f

COLUMNAR CONSTRAINED | -0.375 | -0.771
STAGGERED CONSTRAINED | -0.375 | -0.668
COLUMNAR -0.75 | -1.198

STAGGERED -0.75 | -1.095

Table 3.1: Zero temperature results for the energies of the columnar and staggered dimer phases.
fMF is the saddle point free energy, f is the free energy when added the quantum corrections.

result is not changed at the mean field level at ¢ = 0. This is because the saddle point
satisfies the constraint in the average automatically. However this does not correspond
to strictly projecting out empty and doubly occupied sites. At zero temperature this can
be done by hand[10], noticing that the independent dimers of the mean field configura-
tion, when projected become a collection of spin singlet with a total energy per particle:
Fonglers = —S(8 +1)/2 = =3/8.

While numerical calculations [25], [26], [27] give strong evidence that ground state of
the square lattice unfrustrated Hisenberg model has AFM correlations with an estimation
of the energy per particle ~ —0.69, our method would still favor the columnar dimer
phase even if much less then in the unconstrained case. By including the constraint of
single site-occupancy at the one-loop level of approximation, we are unable to completely
overcome the drawbacks of unconstrained fermionization which makes the estimate of the
ground state energies unsatisfactory. The reasons why dimer phases result to be lower
in energy at T = 0 than the antiferromagnetic one within our method is basically in the

strong effects of quantum fluctuations on these non-magnetic phases. Fluctuations give a
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consistent contribution to the ground state energy, what makes this problem intrinsically
difficult. We believe that in order to compare the gr;:tund states energy of magnetic versus
non-magnetic phases one should go beyond the one-loop approximation to the saddle point
result. The depression of fluctuations due to the constraint should be even stronger in

further approximations.
3.4 Effects of frustration

We are dealing with the frustrated Heisenberg hamiltonian:

H = J; Z Si 8+ 7y Z ,5—",».5”]-
(NN GAHNNN

= 1> %(a)8(a)- 5(-9) (3.41)
q
where 7(q) = v(q) + 2% COS ¢ COS gyy.

We can straightforwardly extend our method of including the single site-occupancy
projector needed to represent the spin operators in terms of fermionic operators and Pauli
matrices because Pry and H still commute.

As one can see from paper VII our results are again the spin wave results for the AFM
phase with one loop quantum corrections. The corrections to the free energy show an
instability for J5/J; > 0.5. Including the corrections to the magnetization order parameter
one would find the instability (i.e.M* — 0) for Jo/J; > 0.42.

In presence of frustration it seems that numerical exact diagonalization [53], [51] favors
the dimerized phases in columnar order. In this case while the saddle point free energies
do not depend on the frustration parameter a? = J,/J;, the addition of the fluctuating
diagonal link fields lower the energy substantially. As one can see from Fig.(3.8) in the
extremely frustrated limit of a? = 1 they recover the degeneracy they have within the

saddle point approximation.
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Figure 3.7: Antiferromagnetic phase. Mean field energy (broken curve) and total free energy (full
curve) as a function of the frustration parameter J1/Ta.

In contrast the free energy of the Néel phase increases in the presence of frustration
also at the saddle point level of approximation. Moreover, the spin wave corrections drive

the AFM system towards instability as a? increases.

Actually, a quantitative comparison between the AFM phase and the Dimer phases
which arise from our calculation is believe to be far from reality. In fact while numerical
studies strongly suggest an AFM ground state in the unfrustrated case (J, = 0) we have
found lower energies for the dimer phases. This is because of the approximated way in
which the constraint contributions have been calculated. Even if the In B term in the
effective action strongly depresses the fluctuations, one-loop corrections are not enough to

provide a reliable estimate of the relative ground state energies when different decouplings
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Figure 3.8: Columnar and staggered dimer phases. Mean field energy (dotted curve) and total free
energies (broken curve is for the staggered and full curve for the columnar order) as a function of
the frustration parameter J;/J,.

are adopted. From the mean field Hamiltonians corresponding to the unconstrained saddle
point one can argue the origin of this difference. In fact, in the case of the link auxiliary
fields the mean field hamiltonian would be an hopping hamiltonian which changes easily
the site occupation numbers. In presence of the constraint, at the saddle point level, we
have found that the mean square fluctuations of the occupation number (< n? > —1) are
constrained but only up 10%. On the contrary, taking a magnetic decoupling scheme, the
order parameter is a local one and we have found that also at the saddle point level the

constraint is fully implemented giving zero fluctuations of the occupation number.
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Non-ordered

Figure 3.9: Relative mean field phase diagram between flux and chiral phases as a function of
frustration and temperature.

3.5 Flux and Chiral phases

The interest in flux and chiral spin states is related to the claim that such a background
could lead to an U(1) lattice gauge theory which include a Cern-Simon term when the
original gauge invariance is violated. These theories may give rise to exotic anyon super-
conductivity. The reason is that parity and time reversal must be violated. The chiral
phase of the J; — J, hamiltonian is a spin liquid state whose local order parameter breaks
P and T as we have shown in the second Section of this thesis.

In papers ILIIT we have studied these phases within our constrained fermionization
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scheme at the mean field level.
Here I discuss only the relative mean field phase diagram.

We have found that the chiral phase exists as a saddle point solution also in the
presence of the constraint if Jo/J; > 0.5. Whenever tile chiral phase exists it has a mean
field free energy always lower that that of the flux phase that is independent of J, and has
a mean field critical temperature t, = 5/12. The zero temperature energy of the chiral
phase runs between —0.229 for J, = 0.5 that coincides with the energy of the flux phase
to —0.25 when J;/J; =1 that is the energy of the dimer phase. Going to the extremely

frustrated limit J, > J; the energy of the chiral phase becomes even lower than that of

the dimer phase.

In the absence of frustration we have studied the effects of classical fluctuations around
the flux phase saddle point in comparison with those around a dimer saddle point. Allow-
ing for variations of the the auxiliary fields I/;’s around their stationary values, we have
considered only fluctuations of the same space periodicity as our saddle point solutions.
This provides a qualitative measure of the stability of the saddle point solutions, with

respect to this type of fluctuations.

Because of the chosen symmetry for the random auxiliary fields U/;, the order parameter
has four complex components. Therefore, the dynamical matrix around the stationary

point solutions is an 8X8 matrix. Its diagonalization gives eight normal modes.

The global symmetries of the action are found as zero eigenvalues of the 8X'8 curvature
matrix. These zero modes correspond to the residual gauge symmetries which are not

broken by the mean field solutions (see paper III).

Non zero modes give the collective excitations. We have also evaluated the mean

square fluctuations of the order parameter corresponding to the eigenvalues which give
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the most divergent fluctuations as a function of temperature and compare it in presence
and in absence of the constraint.

These mean square fluctuations give the temperatures, according to the Ginzburg
Landau criterion, at which there is the breakdown for mean field solutions and the onset
of criticality. We have found that the temperature destabilizes the flux phase more than
it does with the dimer phase, especially due to the constraint, which does not suppress
phase fluctuating modes, provided the flux is conserved.

In the absence of the constraint the single particle excitation spectrum, in the Flux
phase, as deduced from the energies E = +,/cos k2 + coskZ. is gauge dependent. This
gauge dependence does not lead to any inconsistencies since the physical excitations consist
of particle-hole pairs confined together on the same site. In presence of the constraint,
it is no more obvious how to isolate quasiparticle energies from the free energy. In this
case one should evaluate the single particle Green functions and identify single particle
energies from their poles. In the absence of the constraint, we can construct a gauge
invariant quantity out of the £FE}’s that is the single particle (particle-hole) excitation

spectrum given by:

wWq = {Ekt+q + Er; k,k+ g€ RBZ} (3.42)

where:

Eiptq+ Er =2 d \/cos?(k; + ¢z) + cos?(k, + qy)\/c052 ky + cos?k, (3.43)

The excitation spectrum has zero energy modes at ¢ = (0,0), (0,7), (x,0)and ¢ = (7, 7)

and has a linear dispersion at low energy.



Chapter 4

The projected Fermi gas

The limit if infinite U in the Hubbard model[4] can be thought of as that of a Fermi gas
of mutually avoiding pafticles. The restriction to states without double site occupancies
is called the projected Fermi gas.

Without attempting to review the various methods by which the strong coupling limit
(U — o) of the Hubbard model has been approached [59],[60] I introduce briefly the prob-
lems connected with it and present our method to deal with the Gutzwiller projector[61]
of no doubly occupied sites. Finally I will show how the method works on a toy model of

a two-site system.

4.1 The model and the projector

The Hubbard hamiltonian is:

H = Hpin + Hyp
Hpin ==ty > (cl cjo + hoc.) = > e(k)nks
o (i,7) ko

55
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Hr= UZniTn,—l (4.1)
1

it consists of two parts. Hy;, is the kinetic part which is of purely quantum mechanical
origin, and H is the interaction part, U = 0 being the non interacting limit. One refers to
the weak-coupling limit when U/t << 1 and to the strong-céupling limit when U/t >> 1.
While the kinetic energy of non interacting particles is simple in momentum space, the
physical origin of the interaction usually implies that this term is simple in position space.
Therefore, the generic case is [Hgin, H1] # 0 and this implies a non trivial competition
between the two terms. While in the weak-coupling limit the ”band” aspect dominates,
in the strong-coupling the main difficulties arises because the interaction term tends to

favor localization.

Figure 4.1: Phase diagram for the 2D Hubbard model on a square lattice in mean-field theory. A=
antiferromagnet; P= paramegnetic; F= ferromagnetic

The first feasible step is to perform an Hartree-Fock decoupling of the interaction term

(see Ref.[62] for the 3D case and Ref.[63] for the 2D case). The original Hamiltonian
becomes:
; 1
H = —tz Z(c}’u_c]-, + h.e.)+ EUZ < Mg > Nig — UZ <mip ><my > . (4.2)

7 (i,3) o

Here the expectation values < m;, > have to be calculated self-consistently. The high

non linearity of the self-consistency equation leads to a rich variety of magnetic and/or
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non-magnetic behaviors of the modéls as the parameter U/¢ is varied. The results are
summarized in the well known fig.(4.1). In particulzar one can see that, from small values
of U/t onwards, the system is an antiferromagnetic insulator at half-filling. This is in
agreement with the prediction of a Mott transition in the strong coupling limit and at
half-filling.

In the weak-coupling limit (U << t) the starting point is the Fermi gas in k-representation
and in principle a perturbation expansion in U/t can be performed using standard tech-

niques.

On the other hand, in the strong coupling limit, where double occupancy of lattice
sites is suppressed, a real space picture is more helpful. Here the Hilbert space for the
Hubbard model may be simply written as a tensor product over the four possible states

at lattice sites 1:

H=@ispan{[0>, [ 1>, | ]>, | 1l>kL (4.3)

The difficulties of the strong-coupling limit U = co are caused by the structure of the
Hubbard interaction. In fact at U = oo the ground state has an infinite degeneracy (27 in
the case of a half filled band N=L). The ground state cannot be obtained by degenerate
perturbation theory in ¢/U because the exact solution of the effective hamiltonian for

U >>ti.e. the t — J model in not simple at all[64], [65], [66], [6].

It is necessary to work with a restricted Hilbert space HeS where doubly occupied
sites are excluded. However difficulties are due to the fact that projected operators usually
do not obey canonical commutation relations and do not commute with the hamiltonian.

We will come back to this point in the next Section.
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4.2 The generating functional: our method

The infinite U limit of the one band Hubbard model away from half-filling is given by the

hopping hamiltonian:

H=P(-t 2 cj,acj-,, + h.c.)P =PHP (4.4)
(i.0) 0

where the fermion operators act on the restricted Hilbert space of no doubly occupied

sites. This constraint is given by the Gutzwiller projector:

P= H(l — nini) (4.5)
Our aim is to evaluate the partition function:
Z = Tr{e PPHF p} (4.6)

using appropriate derivatives of a suitable generating functional. At great difference with
the half-filled case (Heisenberg hamiltonian and the single-site occupancy projector) here

we have:

[Ha ni,a'] # 0 (4.7)

In order to proceed further in this direction we can use the Trotter formula[57] to divide

the imaginary time interval [0,8] into n equal subintervals ( ¢ = 8/n ) and write the

partition function as:

Z

1l

lim Tr{(e‘gPHP)nP} = lim Tr{(e"gPHPP)n} =

n—oc n—oc

nl}_)x{.lo Tr { (e_éHP)n} (4.8)

When n is finite the last equality is to order O(1/n?).
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We can rewrite the previous expression by introducing the variable 7, = 2k ; k =

1,...,n and the Heisenberg representation of the projector P(7;) = e™H Pe~7%H a5

7 = limTr{(e_(T""T“‘l)HP) (e'(r""l'T"‘Z)HP) ..... (e""HP) P}

n—oo

n—00

lim Tr {7 P(7) P(_1).0onn P(0)} = lim Tr{ ~AH H P(r) } (4.9)

We propose to evaluate the auxiliary generating functional:

B . .
Zz (7)) = Tr{e"ﬁHT,.ef0 de",Uz”"(T)""”(T)} (4.10)

where we have added a source term to the hamiltonian. The time ordering T, is required
because n;, and H do not commute. Note that this is an unrestricted trace. The time
ordered exponential must be explicitly evaluated via series expansion. When Z[z; ,(7)] is

known the original partition function can be obtained by derivation: -

Z = lim JJ(1- > VZ[2)

n—oo 0z 1(7:)0zi,(7i)

lT,

(4.11)

z;=0

Under reserve of convergence eq.(4.11) is exact. In the next Section I show that this is
indeed the case for the toy model of a two-site system.

Expliciting the Time ordering operator in Eq.(4.10), for each spin index as:

T, {exp (—— /l d'rz zi('r)n,-(r))] =1+

?

+Z( _1)n / dr... / dﬁ{al, an}[zan(fn)...zal(Tl)][nan(fn)...nal(n)] (4.12)

The sum is over all possible collection of n site indices a;...a,. It is clear that the formal

expression of the generating functional requires the evaluation of the correlation functions:
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<< Ny (Ta)Ma,_ (Ta=1)eeeTlg (T1) >> (4.13)

of the non interacting system. The average in the above equation can be related to the n-
particles Green function and rewritten via the Wick theorem in terms of the single particle
Green functions for the non interacting system. As shown in Refs.[67],[68], in the case
of equal time correlation functions, one can give a diagrammatic representation of these
contractions and a linked cluster theorem allows to neglect the disconnected diagrams.
The main difficulties in the evaluation of the first projector, P(0), are essentially the same
as found in references [68], [69] where the authors dealt with the Gutzwiller correlations
at equal time. They have found an analytical expression in the one dimensional case but

the problem is still unsolved for higher dimensions.
4.3 Two-site example

We have tested the procedure outlined in the previous Section on a simple model of a
two-site molecule. Our aim in solving this toy model is to check the convergence of the
limit in eq.(4.11) and to see how the projectors act at each time slice. From this example
we will also extract useful hints to address the general problem for the infinite system.
Here we are dealing with two sites:“c” and “d”. We call ¢(c') and d(d') the creation
(annihilation) operators on the sites ¢ and d respectively. For future convenience we

introduce also a chemical potentiél 1. The Hamiltonian of the system is:

H=P H)P =P} —t(clds + h.c.) - p(nes + n4s))P . (4.14)

It is obviously very easy to evaluate the true partition function of this model in the

restricted (9 dimensional) Hilbert space.
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First of all let us state the results that come from direct evaluations of the traces.
Call Z, the unrestricted partition function and Z, the restricted one. We introduce the

definitions: z = e®* and ¢ = cosh t. We have:

Zo=[142"+222)? = Z[ Z} (4.15)
and

Z, =14+ 42> + 42z (4.16)

Our method consists in evaluating Z, as:

Z, = lim .H P(1:) 2]z (13)) (4.17)

1=0,n 25 =0

To proceed further we need a formal solution for the generating functional. Instead of the
four sources z,,(7) that were coupled with n;,(7) we will use the sources €-(7) and p,
that are coupled to the combinations n; = n. — ng, and n} = ng + ng, respectively.
The simplification comes from the fact that the last term is a conserved quantity and is
therefore time independent. The price to be payed is a more complicated form of the

projector:

1 _ 1 _ _ _
P=1- §[n}"n1{' +nin] |+ E[(n}*’nl" +nin] )2 - (n?’nl +n; nf)z] (4.18)

The generating functional reads:

Zlp, &(r)]=Tr {e“BH_”NTT [exp (- /01 dr Zfa(r)(nw - nd,)(T))} } (4.19)

which is a separate product for the two spin components.
In computing Z, we can consider only one spin direction omitting the spin index

henceforth. Written in the basis X7 = (cf, d') the hamiltonian is:
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F=-tX'o1 X —pX'X (4.20)

o; being the Pauli matrices. Defining: ¢ = (c+ d)/v/2and n = (d— ¢)/+/2 the hamiltonian
can be rewritten in diagonal form as: H = —t(¢'¢ —n'n) — p(¢'¢ +n'n). Given the Hilbert

space |1, d >, H is diagonal in the basis:

' 1 1

0>=100>, [0/>=11> , |[+>=—=(]10> +|01>) , |- >= —=(|10> —|01 >

| l | l I ﬁ(l 01>) , | ﬂ(l 01 >)
(4.21)

with eigenvalues 0, 0, +t, —t.
Let us introduce a spin algebra:
t i !

Sy =(n, S_=79¢ , S = ‘2‘(nC - 'n-n) (4-22)

so that H = —2t5, and S.(7) = (e — Nde )(7). From the Heisenberg equations of motion

we have:

1
SI(T) = 5(5+€_2tr + 5_62”) (4,23)

Then, for one spin direction, the generating functional can be written as:

2, ()] = Tr {27550, [exg (2 [ are(r)5u() | | =
—Tr {e?ﬁtszww\’ [1 + Zjl /0 L, /0 R /0 ” dri[6(ra) o E(m))-

[S4e 2 4 S_e¥™] [ ] [Spe 2 + S_e*n]] } (4.24)

Because S§+|0 >= 51|0’ >= 0 we have:
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Z, (1, (7)) = Zo[p, 0] + 2Pt i < HAnl+ > +ze Pt f: < —|Apl-> (4.25)

n=1 n=1

with
1 T
A, = / drnt(Ta)[Spe~ 2™ 4 §_e2mm)... / CdmE(n)[See M 4 S_e¥M] L (4.26)
0 0

Note that the only terms that survive in the sum are those with even n and their matrix

elements are:

1 T2 !
< +|dgnl|+ >= / drzn.f(*rzn).../ dri€(m)e 2, o722l
0 0

1 T2
< —|Agn|- >= / g (Tan)on / dryb(ry)et™n  e2me= T | (497)
0 0

Eq.(4.25) and (4.27) are the formal solution for Z, for any choice of ¢(7). Now we can
apply the projectors at time each time slice.

The first step is the evaluation of the effects of the projector at + = 0:

P(0)Z[z()]l,,0 = 1+ 22% + 22%2% + 42z . (4.28)

As one can see, applying the first projector P(0) at the time ¢ = 0, the z® and z* terms
that are present in eq.(4.15) disappear. These are the terms that come from the mixing
of at least one doubly occupied site.

The second step consists in the application of two projectors at two consecutive times.

We get:

P(r1)P(0)Z[zi(n)]l ;=0 = % P(0)Z[z]l,;=0 - + 5(22%) cosh? B(1 - 27)

N | =
_+_
Y
[

]
oN
0|

(4.29)
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This is in the form we want to generalize. It is worth noticing that ”time” correlations
are going to appear in the argument of the hyperbolic cosine function.

Now we go to the third step:

P(12)P(11)P(0)Z[zi(7:)]], ;=0 =

= POl - (G4 )+ G+ S5+
+2—12-(222)(‘§2 cosh? BH(1 — 27;) + cosh? BE(1 — 2(m — 1)) (4.30)

Here a two-time correlation comes in. At this point it is easy to give the recursive form

in which all the time correlations appear:

z;=0

1 LI L R
= P0)2ls] - G+ 5> %5+

2 =1 2 =1 2 4

1 n
—{-—2;(222)(; cosh? Bt(1 — 27;) + ; cosh? Bt(1 ~ 2(7; — 1)) +
+ > cosh?Bt(1 - 2(r; — 1) —27) + ...) (4.31)

i<j<k

Finally in the limit n — oo, knowing that 35, 1/2! = 1, we have:

. 1 &
Z, = Z Zg — 14227 nlir& 2—n(Z cosh? Bt(1 — 21;) + Z cosh? Bt(1 — 2(1; — 7)) +
o =1 1<j
-+ Z cosh? Bt(1 — 2(7; — ;) — 27%) + ...) (4.32)
i<j<k

We can show that the limit converges in the case ¢ = 0 in which all the cosh? are equal

to one. In fact the last term becomes:

n

k=0
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Moreover, for any ¢ # 0 the cosh? in the sums are less then a given constant and the same
argument holds true. This is because the argument ~of cosh? is always less then 20t.

In tﬂe limit n — oo we can rewrite the sums as integrals introducing an opportune
measure that preserves the convergence of the result. In the case t = 0 it is easy to see

that the last in Eq.(4.32) becomes:

1 &af e 1
d drp=—S" 2 & 1 4.
2nZ / ™ / T o g BT on o (4:34)

what converges to the right result if the integral measure « is taken to be nln2. At finite
n a numerical text gives good results.

Now we came back to the general case. Remembering that 2Zg = 2 + 222 + 42z, and
transforming ordered sums into ordered integrals with the opportune measure discussed

above, we have:

=1+ 222 +4zz + 1222 hm — Z / dry - - / -dry cosh? 2;8t(— Z( 1)k '

(4.35)
Finally, we have the right result if the last term in eq.(4.35) converges to 2z2.
Using the relation:
A . k-1 L 1§ k-1 L
cosh” 26¢(5 — ;(—1) n) = 5 cosh4pt(; — l};l(—l) n)+ 5 (4.36)

the second term will give half of the desired result. Now we have to prove that the first

term, inserted in Eq.(4.35), i.e.:

1 13 1 k
L= 5 2—2 /0 drg - - / dmy cosh4ﬂt Z )k ! (4.37)

=1

converges to %

We define the function[70]:
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n ] T ; _
Fuy)=1+) o /0 dry, - - /0 drye=® it (DI (4.38)
k=1

which satisfy the differential equation:
Fl(y) = aFi(y) — a*Fa(y) = 0 (4.39)

Given the boundary conditions: F,(0) =1, F.,(0) = a we have the solution:

a 2 X
F,(y)=-¢€" 2y{cosh—X§—+—-snﬁx—)—(—q+—?— nh——g}

4.4
X X 2 (4.40)

where X = [a? + 4a?]'/2. In the limit a(n) — co : Fu(y) =~ e~ 3¥ey,
Now we can rewrite £ in terms of F,(y) (witha = $46t, y=1, a =nln2) as:

1 -20t

1 lim e2Bt
L=3 lim oo ¢ [Fap(l) — 1]+

[F_4pt(1) — 1]} (4.41)

Using the asymptotic expression for Fu(y) we get:

—20t

1 1 [e?t _, e 1
1 —2Bt | _nIn2 _ 208t | nln2 __ J—
£=Lum LS o)+ S Jl-) e

This complete the proof.

From the lesson of the two-site example one expects that further applications of the
projector at subsequent times allows for an iteration procedure. The main problems in
proceeding are the following.

First, one has to cope with the difficulties connected with the series of many sites
correlations which are all there. However this refers to the evaluation of the generating
functional of Eq.(4.10) which requires averages with respect to the non interacting Hamil-
tonian if the projected Fermi gas is studied. In particular the claim that the application
of the Hamiltonian on a projected state does not add too many extra components out
of the restricted Hilbert space, implies that P and H almost commute, so that the time

dependence of the source z;,(7) could be dealt with within an adiabatic scheme.
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The second difficulty is the limit to infinite time steps of the partition function which

is expected to be non trivial.
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§4. The projected Fermi gas
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We implement the constraint of no-double-site occupancy exactly, in the spin-%

Hubbard-

Heisenberg model at half filling. The staggered Peierls and the flux phase are again found to be sad-
dle points for the effective action, also at finite temperature. The mean-field critical temperatures are

higher when the occupancy restriction is taken into account.

Gaussian fluctuations of"'the auxiliary

field are reasonably small for a large temperature range, but have to be necessarily incluﬁed, when ex-

tending the free energy to finite temperatures.

Increasing efforts have been concentrated in past years
in characterizing the ground state and the low-lying exci-
tations of the Hubbard model close to half filling in the
large-U limit. This model could be relcvant to the copper
oxide high-T, superconducting materials.’

We are concerned here with the case of half filling (one
electron per site) on a square lattice. It is known that, for
any space dimension, the Hubbard model can be mapped,
in the strong-coupling limit and at half filling, into-an an-
tiferromagnetic (AFM) Heisenberg model.

The question is still open, whether long-range Néel?~ 4
order occurs, or other phases are present, as suggested by
mean-field theory, for instance, the dimerized phase
(Peierls phase) or the flux phase.> ™7 The latter is particu-
larly relevant because of gapless particle-hole excitations
at special points of the Brillouin zone (BZ) with linear
dispersion, giving rise to an approximate (2-+1)-di-
mensional (massless) relativistic free-fermion quantum
field theory. This could be the starting point® (by in-
clusion of frustration) for the so-called “‘anyon” supercon-
ductivity.®

Recently, the flux phase has been found to be unsta-
ble,'® but could be stabilized by adding further interac-
tions (Ref. 11, hereafter denoted by MA). The most pop-
ular approach to the ground state of the Heisenberg model
at half filling is to investigate its generalizations to SU(V)
antiferromagnets: '>'> The saddle-point approximation be-
comes exact in the limit of /V going to infinity.

Also the 1/N corrections have been calculated to in-
clude the quantum Gaussian fluctuations. An auxiliary
field is introduced in the N-component Lagrangian to ac-
count for the average site occupancy of N/2. The large-N
limit quenches the fluctuations of this occupation number
regardless of the value of U (U>0) (MA). This also
happens when the constraint is handled within the slave

45

boson method. ' ‘

At finite N, the infinite-U limit should completely
suppress the fluctuations which could possibly arise.
However, this feature is hard to reproducc. Numerical
methods are being developed,'>~!7 while the slave boson
technique is expected not to give rehable results at finite
temperature.

- At zero temperature, the constraint of single-site occu-

- pancy (U— o, N =2) has been implemented in recent

calculations by means of the Gutzwiller projection, and

- the resulting ground state has been found to have good

variational energy. '8

Our work moves from the observation that, when /V =2,
the constraint of half filling takes a very simple form and
can be implemented exactly at any temperature. There-
fore, the compromise choice we have made was to project
properly onto the restricted subspace in evaluating the fer-
mion trace with N =2, and to perform the saddle-point
approximation, with no pretention of it being exact.in
some limit. In this way we are able to study the effect of
the constraint at any temperature on the partition func-
tion, at least within the saddle-point approximation.

According to the usual procedure, we introduce an aux-
iliary link field Uj;, which we keep static together with its
small variations. This amounts to include classical Gauss-
ian fluctuations only around the mean-field configuration.
In this limit we find that the results do not change at
T =0, with respect to the ones already present in the
literature. However, the inclusion of the constraint acts as
an effective reduction of the entropy of the system at finite
temperature. In the spirit of the MA work we consider
here only phases with periodicity along the lattice diago-
nals. Their Peierls and the flux phase are still extrema of
the free energy and, because the correction has the role of
inhibiting classical fluctuations, the mean-field transition

1939 © 1992 The American Physical Society
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temperatures are increased. We report here the tempera-
ture dependence of the free energy for the Peierls phase
and leave the free energy of the flux phase to further
work. Preliminary results show that the former remains
the state lower in energy also at finite temperature, and
the most stable one.

It has been shown in Ref. 13 that special quantum fluc-
tuations which are only present when the spin-Peierls di-
mers are arranged into columns (2X1 unit cell) stabilize
this columnar phase with respect to the staggered one
(V2% /2 unit cell), which we consider here. The fluctua-
tions we include preserve the V2x+/2 periodicity so that
the columnar phase would require additional analysis.

In the limit of infinite U the Hubbard Hamiltonian can
be mapped at half filling onto the Heisenberg model,

J t -
H = iXii s
0 2 (%)X:JXU
provided that no double occupancy of the sites is allowed.

Here z;j -‘=Z,,c,~:r,cja =i and c;.,(c,-T,) are fermion opera-
J

tors for electrons at site i having spin a=1,2. Note that
labels i,j (i#j) should be counted only once, which we
denote by the brackets.

As the particle number is fixed, we evaluate the parti-
tion function within the canonical ensemble:

Z =Trle "Pop},
where the half filling projector P is given by (4 =xii):
P =Hf1,’(2 "'fl,‘) .
falid

Because #; and Ho commute, Z can be obtained from
the generating function, Z[z] =Triexpl— BHo+ X zifii 1},
by derivation with respect to the real parameters z;, as fol-
lows: '

z=H-—‘?~[z-——‘?—]2[Z] ()
i 0z;

(")z,- =0

The representation of Z[z] in terms of Grassman fields
Wia(T) is

. * ! * J ! * * |
ztz]=f1;[:oy,-a:ow,-aexp{— NG IRO TSR N w,—.,(r)w,,,(rmﬂ(r)W,a(r)}. @

The usual Hubbard-Stratonovich (HS) procedure allows for the integration of the fermion fields, yielding

ij) m

z[z]=fH:ZJU,,-exp —z ¥ 2 |U;(Q,)]|*+2TrinAd
G.j) (

}, ®

where U;;(Q,,) is the frequency-transformed auxiliary-boson field chosen as Uij(e)=25u}(c)yip(z). The factor 2

comes from the spin and the matrix A has elements A;”j"'=(ia),,+z,~)5,-j6,,,,'—cU,~j(w,, —wp).

c=(nBJ/2)'2,

Here, w,=2n+1)x and

This'result can be rewritten in terms of the sir’lgle-particle Green’s function Gy, for J =0, whose matrix elements are
(GO = (iw,) ~"8;;8ur, and of the matrix (U)f' =2;8;;6nn — cUjj (0, — 0,); that s,

i) m

Zlz] =Jvf (II)Z)U;jcxp{—n(z Z!U,-j(nm)|2+2Tr1n[1+GOU]}. 4)
LJ

The normalization factor is N =exp[2TrlnGq '] =4N
where NN is the number of sites.
An effective action can be introduced:

Serl01=—2Trlnl1 +GoUl
= —Zzi+28p[lncosh(l7/2)]. (5)

In the last expression the HS field has been assumed to be

static and the notation “Sp” denotes traces over the site

indices alone. _ .
According to Eq. (1), the partition function becomes

= — 12—
Z——fyj)i)Uijexp{ n(%)|U,,| SerlU]

+2.In(4B;[U] )} , (6)

where the last term arises from the constraint of half
filling, with

8%SenlUl _, 8SenlUl
6252 0z;

B,'[U]=

aSlvl )’
Bz,-

z=0

@)

From now on we shall discuss the case of a square lattice
and nearest-neighbor interactions. Then we find 9Sen/
8zi|,=0=—1. For the vanishing interaction (J— 0),
028 /022 :=0=— 1 and S itself vanishes so that only
the configurational entropy .is left to the free energy,
which is equal to N1n2. This should be compared to the
value NIn4, which one gets when double occupancy of
each site is not forbidden.
The full expression for B; is

Bi=1+22.Sp|- L —
n iwg, iw, —cU

Pil,
—cU !
where P; is the projector on the state localized on the ith
site of the lattice [(P;)jx =8;;8].
Thus, the half filling constraint reduces the entropy
term in the effective free energy:

pFenlU] =7r(Z) |Uij |2+ SealU] — 22 In(4B;[UD). ®)
iJ i

Following MA, we restrict now the discussion to random
fields Uj; that are translationally invariant along the diag-
onals of the square lattice of spacing a. The matrix U?is
diagonal in reciprocal space and its elements are L (k)2
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with

l(k)=U1€ikxa+U;e —ikza

TR Use + Ut 9)

defined in terms of the four complex numbers U; and k,
spanning the reduced Brillouin zone (RBZ).

Setting cU; =pA; and ¢]a(k)| =pAs, the B;’s turn out
to be site independent, and the effective free energy reads

2
BFealU;1= Nﬁz ] —4§1ncosh(;—ﬂAk)—N1n(4B),
(10)
with
1 [ 2 2 Aptanh($ BAg) — Agrtanh (3 BAg)
B=1——|= .
BIN| ik — AP
an

Again, when J— 0 and A vanishes, then B— % for any
temperature. On the other hand, at zero temperature,
when As£0, B=1. Therefore, B decrease smoothly from
B =1 at zero temperature to the value B= T at high tem-
perature.

While the path integral in Eq. (6) is unavoidable, the
jeld configurations which minimize the effective free en-
:rgy are easily found. The most studied phases, smcc the
work by MA, are the Peierls phase and the flux phase.’

The dimensionless temperature will be denoted by
t=(BJ) "' and d =A/J is the magnitude of the order pa-
rameter. In the following, the two saddle points are de-
scribed.

a. Staggered Peierls phase. d,
Using Eq. (11), Eq. (10) becomes

foff"‘ eﬁ"

=d, d2=d3=d4=0.

—2¢In(coshd/2t) —t1n(4Bp)(d/2t) .

(12)
1 | tanhx 1
Bp(x)=1—— + i (13)
F 4 { x cosh?x }
The self-consistency equation for the order parameter is
2d—tdnhi+li]n5p , - (14)
2t 2 dx x=d/u

where d(t=0)=.1 and f%(t=0)=— 4. The mean-

8 2F = nNZISU,|2+62Se -1y l5dk|2“+Q(ldk|)]+Re
NJ N %

ﬁeld transition temperature is found to be higher (¢,
) than that found in the absence of the constraint
(lco )
b. Flux phase. d; =de™* and di =2d|cosk, —icosk, [
(a=1). Then,

2 _
[ =4d?—2de— 2zf%i21n(1 e 2y —ynB,
T

where 5= [d’k &;/2x°=0918, & =(cosk? 2+cosk,) 12,
and B is given by Eq. (11). One finds d(r=0) -5/4 and
St =0)=—&2/4=—0.2295.

The magnitude of the order parameter satisfies the
equation

d%k de )
4d=f—57—r—2-3ktanh—~t——+5351 nB. ’ 13
The transition temperature is found to be equal to that of
the Peierls phase, both in the presence and absence of the
constraint.

Proceeding now to the comparison between the saddle-
point free energies of the two phases, we find that their
temperature dependence turns out to be unphysical, when
the limitation of single-site occupancy is introduced.

In fact, due to the limited contribution coming from the
entropy of the saddle-point configuration, appearing in the
free energy, the latter is found to increase with the tem-
perature in a small range, which would yield a negative
entropy at those temperatures.

This implies that the bare saddle-point contribution to
the free energy is not enough and Gaussian fluctuations
should be also included, at least. We report here the re-
sults for the Peierls phase only, leaving the comparison
with the flux phase to a forthcoming publication.

The contribution of the Gaussian fluctuations is ob-
tained from the second variation of the exponent given by
the curly bracket in Eq. (6). Starting from the effective
action of Eq. (5), we obtain

1 i

52Seﬂ=26228p[i SU- sU|. (16)

o, —cU iw, —cU

The trace can be performed in Fourier space as always
and the summation on the Matsubara frequencies gives us
a closed expression for the second variation of the effective
free energy in absence of the constraint:

*

2
6dk{ld l] q(ldkl)ﬁdkH, an

NJ i=1
1 EA 1 ld kl 1
(lde ) =— tanh - , g(d D= tanh . (18)
Q8 4]dy| 2t 81 cosh2(|dx]/2t) 9(ld] . 4|d | 2t 8tcosh2(|dk|/2£)

We analyze now the fluctuations around the Peierls phase. The second variation of the effective free energy becomes

I 1 ! 1 D}
8 F = —_— Sdi|*+ |l —————— — -————-I-— 2(Refsd })?. 19)
NJ i [ 4t cosh?(d/2t) a] i§=:2| | 4t cosh?(d/21) 7 4d 3 clod)) (
The contribution coming from the constraint is in the terms containing the quantities a and Dy given by
I 1= 2sinh?(d/21) | 3
= —(t/d)sinh(d/1)1|, Dp=——InB (20)
4tBpcosh?(d/2t) [ 6 cosh?(d/2t) d2 / P T =d/u
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FIG. 1. The relative mean-square fluctuation of the order pa-
rameter vs reduced temperature (see text). Dashed curve:
Peierls phase without the single occupancy constraint. Solid
curve: Peierls phase including the constraint.

When these terms are neglected, Eq. (19) becomes the
generalization of the MA result to finite temperatures.

As first pointed out in MA, one zero eigenvalue is found
in the diagonalization of the curvature matrix around the
saddle point due to the gauge invariance that leaves the
phase of d; undetermined. This is immediately seen in
absence of constraint because, due to Eq. (14), the first
term in Eqgs. (18) is equal to F 1, respectively. This im-
plies that the imaginary part of d, disappears from Egq.
(17). Note that the curvature vanishes at the critical tem-
perature !, as it should. The curvature itself, for displace-
ments around the mean-field configuration, provides a
qualitative measure of the stability of the mean-field re-
sult, with respect to fluctuations of the same space periodi-
city. .

Variations of the complex variables U; (i=1,...,4)
around their equilibrium values, change the free energy
according to an 8 X8 curvature matrix, which has one zero
eigenvalue corresponding to the Goldstone mode, one non-
degenerate eigenvalue A, and one 6 times degenerate ei-
genvalue A =1,/2.

In Fig. 1, we plot the relative mean-square fluctuations
of the order parameter, corresponding to the eigenvalues
that give the most divergent fluctuations, i.e., {((Ad)?)/
d?=1/4x,d?, as a function of temperature and compare it
to the one in absence of the constraint (dashed line). Of
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FIG. 2. Reduced free energy per particle vs reduced tempera-
ture (including Gaussian fluctuations around the saddle point),
for the Peierls phase without (dashed curve) and with (solid
curve) the constraint.

course, these quantities diverge when the critical tempera-
ture is approached, because the free energy becomes flat
at that temperature around the mean-field configuration.

Performing the functional integral of Eq. (6), within
the Gaussian approximation, is straightforward,' except
that, due to the broken gauge symmetry (d— dexpiy),
the zero mode has to be excluded: '°

@n

g0 IV d?
BFer=pBFer > ]n{kﬂé’ ‘ ,
with Fr given by Eq. (12). The result is plotted in Fig.
2. The squares are located at temperatures at which
((Ad)®/d? becomes of order 1, signaling the breakdown

of mean-field theory and the onset of critical behavior.

In the case of the flux phase, three zero eigenvalues are
found. They are the three Goldstone phase modes corre-
sponding to the residual gauge symmetries discussed in
Ref. 7. When following the same steps as above, we find
that the free energy of the flux phase is definitely higher
than that of the staggered dimerized phase. More com-
plete results will be reported elsewhere.

We are indebted to E. Tosatti and G. P. Zucchelli for
discussions and suggestions. This work was partly sup-
ported by GNSM (CNR), INFM, European Research
Office U.S. Army, and CINECA.
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The partition function of the frustrated Heisenberg Hamiltonian allows for nonmagnetic stationary
points. These are found in the subspace of singly occupied sites in which a fermion representation
of the spin operators can be adopted. Here we discuss the competition between the flux and the

chiral phase. A saddle-point phase diagram is pictured for the relative stability of the flux and chiral
phases as a function of frustration and temperature.

I. INTRODUCTION

The discovery of high-temperature superconductivity
in doped LayCuOy4 and related compounds renewed con-
siderable interest in searching for exotic superconductiv-
ity. Anyon superconductivity, in particular, requires that
the ground state violates the discrete symmetries P and
T, so that its single-particle excitations obey fractional
statistics. Indeed the chiral spin state, as defined in Ref.
1, is a spin liquid and its local order parameter breaks

P and T symmetry. This state is a possible mean-field .

solution of the frustrated Heisenberg model in two-space
dimensions but it has also been studied in the context of
the t-J Hamiltonian.?

To apply similar ideas to the metallic oxide layers
of high-temperature superconductors the first step is to
consider the strong-correlation regime of the Hlubbard
Hamiltonian. It is well known that in presence of strong
on-site Coulomb repulsion and for the half-filled band
case the Hubbard Hamiltonian can be canonically trans-
formed into a Heisenberg Hamiltonian (J; antiferromag-
netic interaction between nearest neighbors) acting on a
restricted Hilbert space of singly occupied sites.

When holes are introduced in the cuprate compounds
some authors® speculate that the dynamical frustration
induced by the holes could be to some extent replaced by
an effective static frustration (J) between next nearest
neighbors (NNN) in the original Heisenberg Hamiltonian,
again in the presence of the single-occupancy constraint.
Although it was shown® that this effective description
can be inadequate when measuring several physical quan-
tities, nonetheless we will adopt here the J;-Jo model
Hamiltonian as a starting point. Here we are mainly in-
terested in the possible existence of a chiral spin state in
the presence of the constraint.

Including the constraint allows us to use the irreducible
representation of the spin operator algebra in terms of
fermion operators and Pauli matrices.®

The two-dimensional (2D) frustrated Heisenberg
model has been approached in many different ways. In
the classical limit (S — o0) there exists a phase tran-
sition at Jy/J; = 0.5 below which the ground state
exhibits Néel order. Using linear spin-wave theory” it
turns out that for all finite S values the Néel state and
the collinear state (independent Néel order on the two
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sublattices) are separated by a region, Jo/J; =~ 0.5, in
which the ground state is disordered by quantum fluctu-
ations. A different range of stability for the Néel state
was found® connecting the frustrated Heisenberg model
to the O(3) nonlinear ¢ model. The authors® found
J2/J1 =~ 0.22 as an upper bound estimate to the sta-
bility region of the Néel state. Additional support to
this scenario is given by the results of finite-size scaling

_studies!® (0.4 < Jo/J; < 0.65 ) and by exact diagonal-

ization studies!! on the chiral phase. On the contrary
large-N expansion [in the SU(N) symmetry group| does
not glve any evidence for chiral-ordered or spin-nematic
states.®

Here the question of the possible existence of a chi-

‘ral state in the frustrated Heisenberg model in presence

of the single-occupancy constraint is addressed from an-
other point of view. Our work® originates from the obser-
vation that when N =2 and S = % the single-occupancy
constraint takes a very simple form and can be imple-
mented exactly at any temperature. In this restricted
Hilbert space we can adopt the fermion representation of
the spin operators via the Pauli matrices. Therefore the
compromising choice we have made was to project prop-

erly onto the restricted subspace when evaluating the
‘fermion trace ‘and to perform the saddle-point approx-

imation on the path-integral expression for the partition
function, with no pretension of it being exact in some
limit (Sec. I). It is worth noticing that the saddle-point
approximation of a constrained path integral does not
give the same free energy as one obtains from a Hartree-
Fock approximation on the original Hamiltonian. Results
for the chiral phase that is still an extrema of the total

_ action in the presence of the constraint are reported in

Sec. II. The last section contains discussions of the re-
sults given by this method, the relative phase diagram
between flux, chiral, and nonordered phases, and some
speculations on p0331b1e future extensions and applica-
tions.

II. CONSTRAINED PATH-INTEGRAL
.~ EXPRESSION FOR THE
. PARTITION FUNCTION

Here we are dealing with a frustrated Heisenberg
Hamiltonian

9825 ©1992 The American Physical Society
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H=J1 Y Si:Sj+J », Si-S; )

(i,7)nN (3,5)NNN

acting on a restricted Hilbert space of singly occupied
sites whose projector is

Pani(Z—n?). ‘ ' (2)

In this restricted Hilbert space we can adopt the irre-
ducible representation of the spin operator in terms of
fermion operators:

Si= Czaaaﬂci& (3)

‘where o are the Pauli matrices. Since P and H commute,
the true partition function

Zl7) = / wa exp{ - /0 dTZ’([);a(BT — 2)%ia

af (15)nm
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Z =Te{e PEP} - BN CY

can be exactly calculated performing the appropriate
derivatives of the generating function

Z)z) = Tr{e PHFZ mmey (5)

Z:H%(LZ-%)ZM (6)

z;=0

The generating function Z[z] can be evaluated with
the usual techniques for an unconstrained path integral
introducing the anticommuting Grassmann fields ¥, ()
and '()bia (T)7

. | \Y
+Y (% > Yiatistiptie + % > ¢?a¢§ﬁ¢iﬂ’/’ia> } E @

(i) NN

Next step is the introduction of Hubbard-Stratonovich link fields!'*? to decouple the four fermion terms: -

Uii(1) =Y Pla(T)Wja(r) if 4,5 are NN,

L?ij (T) = Z 'ltb:a (T) wja (T) if 7:,3 are NNN.

®)

Note that Ug(r) = Us(r) and U;;(0) = U;;(1) to obey periodic boundary conditions. The two terms in the
Hamiltonian commute so that we can use twice the usual Hubbard-Stratonovich identity. After Fourier transforming
" in frequency space we can integrate out exactly the fermions at the cost of introducing multidimensional integrals

over these auxiliary bosonic fields. We end up with

Z[z] = / H DU () XD {—'n

kl,m (ij)nN,m

Z luij (Qm)i2 -7 Z |Z/7ij (Qm)‘2 + 2 TrlnA} R (9)

(i7)NNN,m

where Q,, are bosonic Matsubara frequencies. The matrix A resulting from the fermion integration has matrix

elements

A?f = (iwn + ;)65 j6n,n — c1lij(wn — Wn) — CZZ/?iJ' (Wn — Wnr) = 1wnb; j6n,n + [ﬁ(z)];"'j" ) (10)

The last equality defines the matrix U(z). According to Eq. (6) the partition function reads

kl,m

Z = / 11 Dtter(Qum) exp {—w

- (@)Nem

Y M@)o 3 Wijmm)nz—ses{ff(on+Zm4340<o>1}, )

(#)nNnN,m

where Seg[U(2)] = —2TrIn[1 +G,U(z)] and G, is the single free-particle Green’s function. The effect of the constraint

is entirely contained in the functionals B;[U(0)] given by

B;[U(0)) = {azseﬁ[U(Z)] _,08al0()] _ (asef;[Z(z)

922 0z;

.



What we get at the end is a total effective action that
explicitly contains a term coming from the constraint in-
clusion. We are now in position to generalize the saddle-
point results present in literature!®! in the presence of
the single-occupancy constraint and to discuss its effect
at least at the same approximation level.

III. SADDLE-POINT STATIC PHASES:
RESULTS FOR THE CONSTRAINED
CHIRAL PHASE

The static approximation amounts to restricting the
integral to paths that are constant in “time,” i.e., that

satisfy L{" - U;j6n,n. This brings about a great sim-

phﬁcamon of the formahsm Following Refs. 1 and 12

we restrict the random fields U/;; to be translationally in-
variant along the diagonals of the square lattice. The re-
sulting bipartite lattice will have a corresponding halved
Brillouin zone (RBZ). Working in the reciprocal space we
can introduce a basis |k, a) with a = e, 0 being even or
odd. The complex fields U; (i=1,8) are diagonal in k and
their matrix elements are

'k, 0|U|k, 0) = 2 Re{lye'k=T5s) 1 1, ¢'(k=—k1)}

= Aoo(k),
(k, e[k, e) = 2 Re{lyei*=+ks) | [fzei(k=—F)y
=Aee(k), ‘
- : : (13)
(k,olU[k,e) =Ure™= + Use™ v 4 Use = 4 UfeFy '
— A(K),
(k,eld|k,0) = X*(k).

The diagonalization of the matrix aldy; + CQZ/?ij in the
sublattice indices a = e, 0 yields the eigenvalues

ACJO + AEE
as(k) = D22t g Voo = Xee)?G+APE (19)

The effective action can now be evaluated and reads

Seft | U = -2 E (In cosh a+_(l_c2 +In c‘dsh -C-L—(kl) .
* 2 2
€RBZ .
(15)

That is all one would need in the absence of the con-
straint to find saddle-point solutions. The chiral saddle-

point solution corresponds to the order parameter choice
(see Fig. 1):

U = fei™lt, i=1,4,

_ _ ) ) (16)
Lll =Z/{4:—u2 =—U3 =g
with f and g real.
parameter is

The simplest gauge invariant order

f2ge™/? = f2ge', an

where the fields circle a closed triangle or a plaquette. P
violation is apparent because the expectation values for
plaquettes transversed in opposite directions are differ-
ent. Moreover in Eq. (17) the phase ® can be interpreted

Pla = (UylUslly) =
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FIG. 1.

Definitions of the auxiliary fields in the bipartite
lattice. .

as the flux through the plaquette of a magnetic field such
that @ = [, A -dl.

With these assumptions for the fields, which imply that
ay(k) = —a_(k) = a(k), the constraint term is

L 2\2 a(k) tanh 2 — g(q) tanh 2
il =1-(5) LT apean

(18)

Introducing the dimensionless order parameters d; =
"L%ff anddp = B‘—’j;g, the reduced temperature t = 1/4J;,
and the frustration parameter Jo; = Jp/Ji, the total ef-
fective action per particle and in units of J; is

Stot = 4(d3 +J21d2) 2t ( ) Zln cosh —(—}f—)- —tlndB.
- (19)

The self-consistency equations for d; and d, are two-
coupled integral equations that we have solved numer-
ically. These equations allow different solutions: (a)
d; # 0, d2 # 0 is the chiral phase, (b) d; # 0, do=0
is the flux phase!? whose simplest order parameter is a
plaquette expectation value Plg = (U UslsUs) = diet
(c) dy = 0, d2 # 0, and, finally (d) d; = dg =0is a
nonordered phase.

The resulting relative phase diagram is shown in Fig.
2. It is worth noticing that finite critical temperatures
should be expected because we are dealing with a general-
ized mean-field approximation. We found that the chiral
phase (d;,ds # 0) exists as a saddle-point solution also in
the presence of the constraint if Jp; > 0.5. Whenever the
chiral phase exists it'has a mean-field free energy always
lower than that of the flux phase that is independent of
J> and with a critical temperature ¢, = 13.13 (More ex-
haustive results on the latter phase are reported in Ref.
14.) The t = 0 free energy of the chiral phase runs be-
tween —0.229 for Jp; = 0.5 that coincides with the free
energy for the flux phase to —0.25 when J; = 1 that is
the free energy of the dimer or Peierls phase.?® Going
to the extreme limit Jo > J; the t = 0 free energy of the
chiral phase becomes even lower than that of the Peierls
phase.

This scenario holds also in absence of the con-
straint but with lower critical temperatures [e.g., c(ﬂux
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FIG. 2. Relative phase diagram between flux, chiral, and
nonordered phases.

phase)=%]. At this level of approximation, the constraint
acts as an entropy reductor. The function B(t) goes from
1to % as ¢ runs from 0 to t. lowering the configurational
entropy from Nln4 to Nln2, which gives the correct
counting of allowed states. Another crucial check of our
method of including the single-occupancy constraint is
the evaluation of the mean occupation number and its
fluctuations. We found that (n;) is always exactly 1 and
(n?) evaluated at the saddle point deviates from 1 by less
than 10% (see Ref. 14). However when evaluating the
temperature dependence of the saddle-point free energy
we found that it shows a wrong behavior (¢ increasing)
at low temperatures. At this level of approximation we
think that the entropy reduction given by the constraint
inclusion is even too strong. Adding classical and quan-
tum fluctuations should take care of this low-temperature
behavior.®

IV. DISCUSSION AND CONCLUSIONS

Here we have presented a method of including the
single-occupancy constraint in the path-integral expres-
sion for the partition function of the frustrated Heisen-
berg model. Within the saddle-point approximation we
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studied the possible existence of the chiral phase as a

function of the frustration parameter Jy; and of the re-
duced temperature. The self-consistency equations allow
different solutions: the chiral phase (d;, ds # 0), the flux
phase (d; # 0,ds = 0), the phase with d» # O and d; =0,
and the nonordered phase (d; = d2 = 0). The relative
stability of these-phases is reported in Fig. 2 when adding
the constraint. Here it is shown that the saddle-point
chiral solution still exists and its critical temperature is
higher when including the constraint correction. This
correction is effective also within the saddle-point ap-
proximation of what can be seen by the strong reduction
of (n?)sp — 1 to less than 10%.

From the temperature dependence of the saddle-point
free energy we pointed out the need of including classi-.
cal and quantum fluctuations to get a physically reliable
approximation to the free energy in the presence of the
constraint in the low-temperature region. In fact, large
quantum fluctuations are expected.

Even if the saddle-point approximation is inadequate
to determine which, if any, of the mean-field solutions .
describe the ground state we show that, also in presence
of the constraint, the chiral spin state can be considered
as a good candidate for the ground state of the frustrated
2D Heisenberg Hamiltonian in the strong frustration re-
gion. In fact the t = 0 mean-field free energies of the
Néel state (for 0 < Jo; < 0.5) of the collinear antiferro-
magnetic state (for 0.5 < Ja1 < 1) and of the Dimer state
are all equal to —0.25 and the chiral state (for Jy; > 0.5)
has a free energy very close to this value and even lower
in the extreme case Jp; > 1. ‘

What would be very interesting is a comparison be-
tween the quantum fluctuations of the two antiferromag-
netic phases and of the chiral phase. This will be dis-
cussed at a later date. ’
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We show how it is possible to include the constraint of single site-occupancy in the large
U limit of the Hubbard model at half-filling by means of a local chemical potential. The
formalism which is in principle exact allows for finite temperature mean field results
satisfying the constraint within 10%. The method is here applied to the dimerized phase
and the commensurate flux phase which are still found as local saddle points of the action.
The symmetry properties of these actions have been studied. One loop static corrections
have been added to obtain an effective free energy and an estimate of the specific heat.
In the limit of zero temperature our results reproduce those of the conventional mean
field theory of these phases, because quantum fluctuations have not been included. We
find that the temperature destabilizes the flux phase more than it does with the dimer
phase, especially due to the constraint, which does not suppress phase fluctuating modes,
provided the flux is conserved. ‘

1. Introduction

One of the puzzles about the appearance of high-temperature superconductivity in
copper oxide materials is the role played by the antiferromagnetic (AF) interactions
in the CuO planes which are believed to be dominant, particularly at low doping.
As a matter of fact this is confirmed by neutron scattering and NMR experiments.!

Since Anderson’s suggestion,? the Hubbard model in two dimensions, is widely
studied in this context, assuming the on site repulsion U to be much greater than
the hopping integral .2

Monte Carlo simulations and finite size scaling show that at half-filling the
ground state of the repulsive U Hubbard model has long range antiferromagnetic
order.* "

PACS Nos.: 71.10.4x; 75.10.Jm; 74.20.-z.
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In the infinite U-limit the model maps onto the so-called - J” model, provided
that the space of states is restricted to configurations in which no double occupancy
1s allowed. This is approached by means of a large variety of methods, among which
exact small cluster diagonalization,® mean field within the slave boson technique or
Gutzwiller projection.5%22 For zero doping (half—ﬁlling) the kinetic energy term

widely studied.® Besides numerical methods and simulations, a modified spin wave
theory has been developed, starting from an AF ordered ground state,1? the renor-
malization group based on the nonlinear o model,’! Monte Carlo simulations,12:13
large N expansion.14:15

In a square lattice with n.n. interactions several mean field phases have been
suggested. Simultaneously with the “s+id” phase found by Kotliar,'® Affleck and
Marston'” (AM) showed the local stability of the Peierls or dimeriged phase and
of the commensurate flux phase, in which half a flux quantum per plaquette is
spontaneously generated. While these two phases double the lattice periodicity, the
spin Peierls phase could have different periodicity as is the case of the columnar
phase, which is found to be even lower in energy in a large N expansion.® Spin
Peierls phases seem also to be relevant when frustration is introduced 19

Because there is wide consensus that the square lattice spin 1/2 is Néel ordered
at T' = 0, the dimer phase or the staggered flux phase can only be higher saddle
points of the free energy. Away from half-filling these phases seem to be only stable
for small values of ¢/J.

On the other hand the flux phase was found to be equivalent to the RVB phase.?0
It has been pointed out that this phase is actually unstable with respect to umklapp
fluctuations in the amplitude ! but higher order terms in the free energy could
stabilize it. A staggered magnetization in a flux phase background seems to be a
good starting point for variational Monte Carlo calculations.22:23

Besides, the interest in the flux Phase and in the chiral spin states?4:25 i also
related to the claim that such a background could lead to an U(1) lattice gauge the-
ory which includes a Chern Simons term when gauge invariance is violated because
of the doping.26,27

On the other hand, if one wants to consider the spin-1/2 Heisenberg model
as the limit of the ¢-J model at half—ﬁlling single occupancy of each site
should be enforced. This constraint happens to be satisfied in the extension to
the SU(N) Heisenberg model for N' — 00, when the saddle point approximation to
the partition function becomes exact. In fact, the large N limit quenches the fluc-
tuations of the occupation number of each site, regardless of the value of UU >0).
Nothing can be said, however, about the analytical continuation of the results to the
desired value of N = 2 At zero temperature the Gutzwiller projector has been imple-
mented in numerical calculations.?® Ap interesting approximate scheme to include
the constraint variationally within mean field at zero temperature can be found in
Ref. 29. Slave bosons have been applied to study the phase diagram with tem-
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perature, also away from half-filling, but fluctuations have not been investigated.®"
One expects that the ones related to site-occupancy are difficult to control at finite
temperature. ’

In this work we report on a novel method to include the constraint of single site-
occupancy at finite temperature. To check this method it is applied to the study of
the temperature dependence of the dimer and flux phase of AM at half-filling within
mean field. One loop corrections are also included for static field configurations,
which allow for an estimate of the entropy. Fluctuations in the site occupancy of at
most 10% from the value of one is found, giving some confidence to the mean field
treatment of the constraint. A first report of this work, which was limited to the
dimer phase, was given in Ref. 31. Quantum fluctuations are not included and will
be discussed elsewhere.??

The two phases are still local minima of the action and the dimer phase
is favoured, as expected. In these phaseé the Fermi surface is depleted: a gap
is opened in the case of the dimer phase while the Fermi surface is reduced to
points in the flux phase. Therefore an energy barrier is expected to be present with
respect to fluctuations towards the Néel ordered state. The effect of the constraint
on thermal fluctuations both in amplitude and phase is investigated around these
local minima. We find that thermal fluctuations are reduced on the average by
the constraint, so that the mean field transition temperature is found to be higher
(T. = 5/12J).

An interesting outcome of the analysis is that relative mean square fluctua-
tions of the order parameter for the flux phase are much larger than those for the
dimer phase, so that the stability of the former is more sensitive to the increase
of temperature. In any case we are able to estimate the critical region: mean
field turns out to be a rather poor approximation over a wide range of tempera-
tures (Tr — 7™ ~ 0.09J (dimer phase), T. — T* ~ 0.34J (flux phase)). Examining
one-loop corrections, we find that, when temperature is lowered below T' ~ 0.08J
quantum corrections to the free energy of the dimer and flux phase should not be
neglected any longer.

In Sec. 2 we show the method by which the constraint can be included also at
finite temperature. The interest of our approach is in that it can be extended away
from half-filling. However, the formal set-up is here presented and tested just for
the half-filling case.

In Sec. 3 the saddle-point approximation is used which leads to the usual
mean field solutions. These are described in Sec. 4, together with the correspond-
ing fluctuation modes that are involved in adding one-loop corrections to the free
energy.

In Sec. 5 the mean occupation number is evaluated together with its mean
square fluctuations, to check which extent the requirement of single site-occupancy
is satisfied within our approximations at finite temp eratures. The encouraging result
is plotted 1n Fig. 1.

In Sec. 6 we discuss the results.
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Fig. 1. Mean square fluctuations (n2) - (n:)? as a function of temperature t = (8J)~? for the
dimer phase (broken line) and the flux phase (full line), with the constraint included (b) and
without the constraint (a).

2. Path Integral Expression for the Partition Function

Tt is well known that the large U Hubbard model maps at half-filling onto the
spin-1/2 antiferromagnetic Heisenberg model, provided that the hamiltonian only
acts on states which do not imply double occupancy of sites. In turn the spin-1/2
Heisenberg hamiltonian can be rewritten using the fermion representation for the
spins provided that all sites are singly occupied.

We show in this section how the constraint can be implemented in the evaluation
of thermal averages. :

At half-filling, i.e. when it is projected onto the subspace of the total Hilbert
space containing only states with exactly one electron per lattice site, the Hub-
bard hamiltonian maps?’ into an AFM Heisenberg hamiltonian. Up to additive
constants, the latter can be rewritten as

1 .
Ho=—35 > ZJijCI,aCj,aC},pCi,ﬂ (1)

G.9) éﬁ

where J;; = 41t;;12/U, t;; are the n.n. hopping matrix elements, and E(i,j) stands
for a sum over ordered n.n. sites in the lattice. Altogether there will be 2N such
pairs for a 2D square lattice with N sites. The operators Cia annihilate electrons of
spin a at site i of the lattice. From now on we will set J;; = const = J # 0 only for
n.n. sites. In principle one should consider in the full Hilbert space the projected
hamiltonian

H = PrsH,Pry (2)
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where Pr is the projector onto the subspace of singly-occupied sites, 1.e.
Pus = [ i@ =mi) (3)
i

(ni = nit + nipnic = c:fac,-a, o =1, |). Therefore, the partition function in the
restricted Hilbert space should be written as

Z = Tr{Pny exp(—BH)} . (4)
Ho’v‘vever, it can be easily checked that H and Pj; commute so that Eq. (4)

can be immediately shown that the partition function can be rewritten, in a much
simpler way, as

Z = Tr{Phns exp(—FH,)} | (5)

Below half-filling, i.e. when one wants to allow not exactly one but at most one

_electron per site, the Hubbard hamiltonian maps instead onto the full ¢-J hamil-
tonian, which contains, besides H,, the hopping term of the original hamiltonian

(a three-site hopping term arising in the restriction process?’ is usually neglected),

and the relevant projector becomes the well-known Gutzwiller projector

P = H(1 —n; g ) - (6)

1

The main difficulty now is that Pg doesn’t commute with the ¢-J hamiltonian

anymore. This point will be discussed in more detail in Sec. 6.

Going back to the half-filled case which we want to discuss here, our strategy 1s
to evaluate the auxiliary generating function '

Z[z] = Tr{exp(~BH)} | (7)

.~ where we have added a source term to the Hamiltonian H,

Hlz]=H,— %Zzini (8)

(the z;’s are real variables). Once Z[z] is known, the original partition function can
be easily obtained by derivation

2=l 50)26| - (9)

z2=0"
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The advantage is that the evaluation of Eq. (7) only requires standard techniques
because the trace is unrestricted and the source term commutes with H,. Therefore
we write Z[z] as

1
:/HD",[){O,'D?#;,QCXP{—'/Q d‘rzd)‘:a(’r)(af—zi)d)ﬁa

ZZ/ dr¢ a(7)¢?,ﬁ(r)¢i,ﬁ(T)l/)j,a(T)} . (10)

(5,i) o 8

Here 7 is a scaled imaginary time variable ranging from 0 to 1, and the %’s
and 1¥*’s are Grassmann fields obeying antiperiodic boundary conditions in 7 at the
extremes of the interval [0, 1]. In view of discussing the non-uniform phases first
introduced by AM!7 we single out the operator

Uij(r) = Z ¥}, 6(7)di, p(7) (11)

and use the Hubbard Stratonovich decoupling

J 1
exp {% az_;/o dryf o (V5 g ()i, 5 (7)Y, a(T)}

:/Dwmm{ /erw¢ﬂ1+Jﬁﬁ§3w uAﬂ@ahchﬂ}

(12)
Here the symbol [ DU;; represents the integrals over the real and imaginary
parts of the auxiliary boson fields U;;: [ dRe{l;; }dSm{U;;}.
These obey periodic boundary conditions in 7, and their matrix is hermitian:
(T) Usi(T).

Moving to Fourier space the generatmg function is

/ 11 ptts; [] D Db, o exp {—W o2 (i)

(1,7) i« (i,j) m

+ 303 Powalen) (@ H@FT Wrah) ¢ ()

(ij) (n,n') @

where now 3., stands for a .sum over unordered pairs, and wn, = (2n + 1),
Qo = w, — wys are Ferrm and Bose Matsubara frequenc1es respectively. We have

defined here (G,)i;" = (iwn)™16; j6n,ns, and (U) = 2;6; j6p n— lij (W —wnr)

with ¢ = \/W,BJ/Q.
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Note that L?,'; ™" is hermitian when considered_as a matrix in the site and the
fermion frequency indices (i.e. L?Z" = (L?;:")*) or, when rewritten in terms of

Integrating out the fermion fields, we obtain the well known result

2l =N [ T] Dlhsexp{-n 3 3 sy (@)}

(C%)) Gj) m

x exp{2Tr In[1 + G,U]} . (14)

The normalization factor is N = exp[2Tr In G;!] = 4" and the factor of 2 comes
from the summation over spin indices.

Equation (14) defines the effective action in the absence of the constraint
Sealid] = —2Tr In[1 + G,U] (15)

~ as a function of the Gaussian random fields &/. At this stage we can include the
condition of single occupancy by taking the appropriate derivatives with respect to

the z;’s according to Eq. (9). The partition function Z that we obtain when the
variables z; are set equal to zero is ‘

Z = / 11 Dtij exp =7 Y Y Ui ()| - eﬁ[cL(]—f—ZlnélBi[U] (16)

(i,7) (1,3) m

with Seq given by Eq. (15) and

(17)

~ ~ - 2
[ 02 SealUd] 0Se|U] 0Se|UU]
Bi [U] - (9,2? -2 6Z,' B 82,’

z=0

The derivatives of the effective action in Eq. (17) can be expressed in terms
of the projector P;, onto the ith site of the lattice, whose matrix elements in the
Wannier representation are (Pi)jx = 6;x6;;. We have

6Seﬁ' = —2Tr {(1 - CGou)"lGoPi} (18)
62,’ 2=0

‘ ~ and

| k 825eﬁ' . -1 9

| (G| _ = 2T { [(1- cGol)'G.P]"} . (19)



3288 M. Di Stasio et al.

In the next section we evaluate the function B;[U] of Eq. (17) for static fields I.

‘The crudest way to estimate the integral over configurations of the link field U;;
is the saddle point approximation. :

Static field configurations which minimize the action are discussed in the next
two sections. Then, the exponent in curly brackets in Eq. (16), when evaluated at
these configurations, can be interpreted as an effective free energy BF.q. In this
context the term in the logarithm of B; appearing in Eq. (16) plays the role of a
correction to the entropy of the system which is reduced because single occupancy
of sites has been enforced.

3. Static Approximation and Saddle Point Solutions

The search for static saddle point configurations is the first step to give an estimate
of the partition function of Eq. (16). The static approximation brings about a great
simplification of the formalism since all the frequency sums decouple from those
over site indices (which we shall denote by “Sp” henceforth). In fact, the matrix
elements of the mean field U(£2,,,) are chosen as Ui’}’"l = U;;6n, nr, where the matrix
U is hermitian in the site indices.

The explicit expression for Seg of Eq. (15) becomes:

Sealll] = 2 1)’°T[{(GOL~,);¢}

7 £ Sp(U)] (20)

where v, = Zn(iu}n V¥ and vop41 = 0.
Its first derivative with respect to z; which was formally given by Eq. (18)
becomes

aSeff{Zj] = 72ky7~1
s = L) 2mSplUPUTIR) (21)
k=1
For a square lattice and only nearest neighbour interactions 23si = —1. In fact

dz; -
the trace over site indices of powers of the auxiliary bosonic field & corresponds to

building up loops of appropriate length in the lattice. In this case only loops with
an even number of sites will be allowed and hence only even powers of & would
survive when taking the trace.

The second derivative of the effective action corresponding to Eq. (19), is given
by '
a Seﬂ'

7 _szz(kH)ZSp (U P, *-Dp;] . | (22)

: k=0 g=0
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If the local variables z; are still kept, Eqs. (21) and (22) can be inserted in the
generating functional of Eq. (14), to calculate the average occupancy at site 7, (n;)
and other more general averages of products of n; operators. The technique to
calculate them within the static approximation is reported in Appendix C. In the
case of a square lattice it is easy to prove that the average occupancy is exactly one
at any temperature (see Sec. 5).

The mean square fluctuations of n; should also vanish, of course, but this result
can not be expected to hold, if any approximation is involved in evaluating the
average. In fact, we were only able to evaluate these averages within the mean
field approximation, for the dimer and the flux phases and details can be found
in Sec. 5, where the result is discussed. As shown in Fig. 1, the fluctuations float
with temperature within 10%, what can be taken as a check of the reliability of the
approximation itself.

To proceed further in calculating Egs. (20), (21) and (22), one has to specify
the space dependence of the I/ field. We have used the configurations for the field
U which lead to the non-uniform phases of AM.

These are mean field solutions which are translationally invariant along the
diagonals of the square lattice. The resulting bipartite lattice gives rise to the
doubling of the unit cell and consequently the Brillouin zone is halved (RBZ).

Once this choice is made, the representation of the fields i{;; and of the projectors
P; in Fourier space will considerably simplify the calculations.

Let us denote a suitable basis by |a, k), where k is in the RBZ and o takes the
two values even or odd (a = e, o), labeling the two sublattices respectively. These
single particle states are eigenfunctions of the translation operators Ta(E) along the

-
—

diagonals d =+ ¢, b=2—y
Typlo ) = e Ola, k). (23)

Their projection onto the Wannier states labeled by the site index i is

[2 _iE
(ila, k) = ]—v—e"’k'R‘éi,a. (24)

The matrix elements of & in this basis are

(o, K11, O = 67 7M1 (25)
where
ME) = Use™s +Use™ v + Use™ = + U™ . (26)

Here we follow the notations of Ref. (17). The U; are complex (oriented) link
variables as depicted in Fig. 2. Complex conjugation correspond to reverse the
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Fig. 2. Pictorial representation of the link order parameter in terms of U1, Uz, Us, Us. Periodicity
is along the diagonals. Reversing the arrows implies complex conjugation. Black filled sites are
named “even” in the text.

arrow of the link. The lattice constant is taken to be unlty Note that the matrix
U?is dlagonal with doubly degenerate eigenvalues: E%(k) = I/\(lc)l2

Similarly the matrix elements of the projector F; are

(o, F|P:|B, B) = ’(" PR, plai (27)

that is, they are diagonal in the o indices.
Within this scheme, the effective action of Eq. (15) evaluated at z; = 0, becomes

E(k
Sel] = -4 Incosh (C ( )) . (28)
It is straightforward to show that the constraint of Eq. (17) becomes

1 1
B=1 2 S 1 Pi
+ ‘4; p[iwn—cupiwn~cu }

2
—1— (%) Z z1. tanh(zx/2) — :ckzl tanh(z /2) (29)

2
:Ek - :Ek,

E k!

which is independent of site i. Here the dimensionless variables d; = -ﬁC—JU,-, dp =
FrA(k) and =} = cE(k) have been used. Finally

i . , N/2
- / [1 Pts exp (-~ 5 BFexli1} (30)
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where
j:eff -
feff - NJ
:Z;ldg- —Ejﬁz:lncosh zk/Q)——ln4B (31)
is the effective total action depending on the values of d; (i = 1, ..., 4). Trivial

limiting cases can be explored.

In the case of non interacting gas of N particles the only effect of the constraint
of single site occupancy is to reduce the configurational entropy to NIn2. In fact,
when J — 0, then z;z — 0 and B — 1/2 for any temperature. On the other hand,
at zero temperature, we have B = 1 no matter what d is. This is a limitation due
to including the constraint within the static approximation only. In fact —n_? =1
at zero temperature and no extra contribution due to the constraint arises within
static fluctuations in this limit.

It is readily seen that B decreases smoothly from 1 to 1/2 when the temperature
increases. This means that, for any?conﬁguration, the effect of the constraint is to
reduce the entropy term in the total effective action.

Minimization of the effective total action of Eq. (31) yields the mean field con-
figurations for the order parameters di. In fact the stationarity of the action implies

that (I=1, ..., 4)

o = -2 e o=, (2)
Here
4
. Dy = tanh(:ck/Q) — ﬁ;c(mk’ xk’) (33)

with the function C, which is the derivative of B of Eq. (29) with respect to zy,
given by

B 1 2:(:1:2 - y2)
Clz, y) = (2% = )2 (2cosh2($/2)+

— (2* + y*) tanh(z/2) + 2zy tanh(y/2)> . (34)

The self-consistency equation for the order parameters dg, derived from Eq. (32)

s (t=1/87)

dy = N Z (cos(gz — k<) + cos(gy — k )) d . (35)
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The mean field phases of AM arise from Eq. (35). The breaking of the local
gauge symmetry that follows from the choice of our order parameters is forbidden
by the Elitzur theorem®? and is an artifact of the way in which we construct the
mean field approximation by fixing a particular gauge at the outset, which allows
us to satisfy the consistency equation of Eq. (35). Once this breaking is produced,
the breaking of the global gauge invariance is spontaneous, as will be discussed in
the next section.

4. Generalized Mean Field Phases

We are now in a position to include the constraint at finite temperatures, within the
saddle point approximation. The dimer phase and the flux phase are still found as
stationary points and these are the two phases we concentrate on. They are obtained
by specializing Eq. (35) to a given choice of the order parameter d;(i =1, ..., 4).

(a) Dvmer phase

This phase is a bond-centered charge density wave in which each site forms a dimer
with one of its nearest neighbours and in fact breaks the original translational
symmetry. The dimer phase considered here is alternating on the bonds, so that
the translational symmetry along the diagonals of the lattice is preserved according
to the ansatz of Eq. (26).

Here only one of the d;’s fields is different form zero and it may be made real
by a gauge transformation (d; = d and dy = dz = ds = 0).

Then the resulting zx to be substituted into Eqs. (31) and (35) is =z = d/i.
Equation (35) becomes

d 1
9d = tanh — + =D 36
anh 73 + 2P (36)

where Dp = aa_x In Bp(z)|z=d/2:- Here is

Bp(z) = 1— 1 (tanh:r: N 1 ) (37)

4 T cosh?z

according to Eq. (29) and Dp is the limit of Eq. (34) for z — y.

The effect of the constraint on the temperature dependence of the order param-
eter d is all included in the extra term Dp/2 of Eq. (36). The mean field transition
temperature is found to be higher (¢, = 5/12), than that found in the absence of
the constraint (tc, = 1/4). However the zero temperature value for the order pa-
rameter is found to be equal in both cases: d(0) = do(0) = 1/2. This is probably
not consistent with the increase of the critical temperature and follows from the

fact that Bp — 1 for T — 0 and that Dp vanishes in this limit. We discuss this
point further in Sec. 6.
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(b) Fluz phase

The flux phase carries half a quantum flux per plaquette: [I;di = didadady =
|d1|ds||ds]|da]e™. A special choice of the gauge which makes the phases equal
among the link variables is: d; = de'™/4 (i=1,...,4) so that d; = 2d(cosk, —
icos ky).

Now is z} = 2de; with € = (cos kg + cos kz)l/z. In this case the self-consistency
equation for the amplitude of the order parameter d reads

4d::/ d*k dep,  tOlnB
R

€r tanh — +

By 272 t 2 8d (38)

where Eq. (69) of Appendix A, specialized to the flux phase order parameter, be-

coInes
0B dzk t d2k/ €k de
_ = | = s tanh —_
5a’ RB7Z 271'2 d" RBZ 27F2 6% - €Z, t

1 del 6% €kd 1
e R AL
+ d/RBZ 2% 2 — 2, T 2d> (39)

The transition temperature is found to be equal to that of the dimer phase, both
in the presence and in the absence of the constraint. Again here d(0) = d,(0) = €/4

with € = g%ck = 0.918, because at the mean field level the constraint is ineffective

at T' = 0 within the static approximation.

It follows that at zero temperature the total effective action of Eq. (31), when

evaluated at the stationarity points, gives back the values of AM for the energies of
the two phases

fer(t =0)=-1/4 (dimer phase)
ot =0) = —%/4 = —0.2295 (flux phase)

where fog = Foq/NJ is the dimensionless free energy per particle.

We add one-loop corrections to Eq. (31) in order to get meaningful results for
an approximated temperature dependent free energy.

To this end one has to analyze the second variation of the action around the
dimer and flux phase saddle points.

As a first step we have kept only time independent gaussian fluctuations in
the functional integral of Eq. (30), restricting ourselves to the fluctuations which
- conserve the spatial symmetry. Therefore, the variation of A(k) is assumed to be

SA(k) = SUye™= + sUFe™*v 4 sUUse™ = + sUzety (40)
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Thus, the choice of §U;(i = 1, ..., 4) is the same for each of the N/2 vectors
k. In the case of the dimer phase, being the excitation spectrum dispersionless,
the fluctuations on different sites are independent and this assumption is not a
limitation.

We expand the effective action to second order, Fes = Fl+ F2) where F is
the effective action of Eq. (31) evaluated at the stationarity point, and féf? is the
second variation which is worked out in Appendix A.

Then, Eq. (30) becomes

4 N/2
Z =~ e"ﬁj:sf‘ [/ Hd26uie_%’5;e(f;f)] (41)
i=1

with

BF) 2 t o t (6B (6B)?
N = ‘n'y,;]\/f,'jyj = 13.] Z léd,!z + —]VS‘E;) - § —E— - (_.B—zl- . (42)
i=1

This equation defines the curvature matrix M for the vector y, whose components
are the real and imaginary parts of 6f;. (These, in turn, are related to 6d; by
oU; = (2ﬁ]/7r)1/2 6d;.) The second variation of the action is

s = dorsuc=20 3 (Qqadtoa+ 2 1 ((55) wapa]) @
k

where '
1 |dx| 1
QUlde]) = — g tanh 5 -
4|dg| 2t g coshz(l%l)
1 |di | 1 .
e tant 9l _ )
q(ldx1) 4|dg| Y 8tcosh2(ld§fi)

The full expressions for 6B and §2B can be found in Appendix A (Eq. (69) and
Eq. (71) respectively). Z

The analysis of the results leads to the following conclusions. Our order pa-
rameter has four complex components. Therefore, the dynamical matrix M around
the stationary point solutions is an 8 x 8 matrix. Its diagonalization gives us eight
normal modes. In the case of the flux phase four of them are amplitude modes while
the other four are phase modes. For the dimer phase instead, two of them can be

denoted as pure phase and amplitude modes respectively, while the remaining six
are mixed ones.
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The total effective action is invariant with respect-to any special choice of gauges
in the order parameter as reported at length in Appendix B. This implies that there

are zero modes which appear as zero eigenvalues of the curvature matrix M.
In the case of the dimer phase only one zero mode exists which corresponds to

a global gauge transformation
| | (45)

w dk — dke’e .

This is immediately seen if the constraint is excluded. In fact direct substitution
of Eq. (45) into Eq. (43) and Eq. (42) (with B = 0) yields :

F2 1 1 d a
2 =Zefl (1 ¢ — 2,
=Ny T 5 ( 57 anh Qt) (66) (46)

This vanishes 1dentically, due to the gap equation Eq. (36).

Apart from this mode there is one non-degenerate amplitude mode whose corre-
sponding eigenvalue we denote by A, and six degenerate modes which correspond to
the eigenvalue A;. While the first one is associated with a change in the amplitude
of dy, the remaining six eigenmodes are associated to changes of dy, ds, d4, both in

amplitude and phase.
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Fig. 3. Plot of (((Ar_’)z)/dl’)1 o = t/4d% )1, 2 versus temperature t = (8J)~! for the dimer phase.
Here A1,2 are the eigenvalue’s of the curvature matrix M of the free energy around the saddle
point, with the constraint included (b) and without (a). The broken curve corresponds to the
non-degenerate amplitude mode ();), while the full curve refers to the other six times degenerate

modes.
= t - (i =1, 2) are plotted, as a function of

. .. 2
In Fig. 3 the quantities (((Ad‘i) )); =
the reduced temperature ¢. This ratio is a measure of the mean square fluctuations
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in the Gaussian approximation. While the curves on the Lh.s. (labeled by @) do not
include the effect of the constraint, the ones on the r.h.s. (b) refer to fluctuations with
the constraint taken into account. They diverge at the two critical temperatures
T., and T, respectively. The broken curves in Fig. 3, which are lower, refer to the
fluctuations of 5] which are smaller than those of ds, ds and d4 due to the fact that
they affect the amplitude of the order parameter in a direct way. \

We have also reported T and T™ as indicative temperatures at which fluctua-
tions become of the order of the amplitude of the mean field order parameter itself,
so that one enters the critical region. .

In the case of the flux phase, there are three zero eigenvalues of the curvature
matrix, which correspond to relative changes of the phases of the four U;’s with-
out altering the total flux in the plaquette. One of these is again a global gauge
" transformation as in Eq. (45). The other two affect the energies ¢; according to

.-

ek — ¢ = \fcos?(k; — 02) + cos?(ky — b) (47)
with 63,3 € (0, 27). They are extensively discussed in AppendixC. The energies
_ ¢x are not gauge invariant and are not to be related with the quasiparticle energy
spectrum as it is usually done in the spirit of the usual mean field approximation.
In particular it should already be clear from the form of the free energy of Eq. (31)
that there is no resemblance to a non-interacting gas of quasiparticles of energies
ek, due to the presence of the constraint which depends on the €x’s themselves.

Examining the non-zero eigenvalues the corresponding collective excitations are
listed below:

(i) One amplitude mode which changes the modulus of the order parameter with
6dy = 6dy = 6d3 = 6da( of energy denoted by Az);
(ii) one phase mode which changes the total flux in the plaquette (A2);
(iii) three degenerate modes which change the relative amplitude of dy, d2, ds, d4
for a given §ldx| (A1).

These are plotted in Fig. 4 as a function of temperature. They are such that
A3 > )Xo > )Ai, which implies increasing stiffness of the mean field solution with
respect to these fluctuations. Careful inspection of Fig. 4 shows that while the
constraint strongly stabilizes the flux phase in the same way for the first two modes
it is less effective on the remaining three degenerate ones.

Changes of the order parbe integrated over at the outset in evaluating the par-
tition function, give rise to an overall factor which is the volume of the group that
leaves the action invariant.3¢ Otherwise the integration of the quadratic term of the
expansion would show meaningless divergences. Following a standard procedure,®
we define M, as the projection of the matrix M on the subspace orthogonal to the
zero modes, each of which is parametrized by an angle ;. In the case of v zero
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Fig. 4. Same as Fig. 3, but for the flux phase: the dotted curve refers to the amplitude mode

(A3), the broken curve refers to the phase mode (A2), the full curve refers to the other three times
degenerate modes (1), with the constraint included (b) and without (a).

modes (v = 1 for the dimer phase and v = 3 for the flux phase) we have

Zz = e"ﬁ}-eou

1 = [ dé; 1/2
— — (det L 48
Vet ML 11211/ 5y (detL) (48)
where £ is a v X v matrix with elements given by

4

ad;\* 04,
Lij = Z (.5@:) Rl

(9
=1 693 .

The free energy for the dimer phase, which followé from Eq. (48), is

P _ (0 t d
feﬁ-(feffPf QIH(m) . (50)

The factor d arises from the integral over the angular variable #, parametrizing
the zero mode. An extra term in ¢tln¢ has been omitted which is canceled when

quantum fluctuations are also included.®* The free energy of the constrained system
is obviously higher than the one without the constraint.

Finally, the free energy for the flux phase is

Fo ¢ 3.403d°
= —n | ] . 51
i ( fi/F 9 (m ( )
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The free energies for the two phases, which include the constraint and the one
loop static corrections (classical fluctuations around the mean field solution) are
plotted in Fig. 5. The one for the flux phase is found to be always well above that
for the dimer phase. We discuss its temperature dependence, together with that of
the specific heat in Sec. 6.
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Fig. 5. Dimensionless effective free energy feg = Fe/NJ as a funtion of temperature t = (8J) ™1
for the dimer phase (broken curve) and the flux phase (full curve) with the constraint included.

5. Analysis of the Constraint

Crucial check of our method to include the single occupancy constraint is the eval-
uation of the mean occupation number (n;) and of its mean square fluctuations.

We can easily prove that the average of the occupation number operator on the
site 7 is exactly equal to one in the case of a square lattice also when just including
static auxiliary fields If;;.

Besides, were the constraint enforced exactly, one should find that the mean
square fluctuations of the occupation number at site i, (n?) — 1 vanish. Although
this is not the case within the saddle point approximation, we have found that the
deviations are relatively small. '

Let us first discuss the average site occupancy

(i) = 271 <_aie—2(z)>

Zi

(52)

z==0

.
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Here

T(z) = —Ser+ »_In(4By) (53)
k

is the constrained effective action to be evaluated with the Gaussian weight accord-

ing to Egs. (9), (10)
{(...) z/ 11 ¢t je % U ) (54)
: (G :

and Z, the constrained partition function, is given by Eq. (16). The derivative
implies an extra factor in the average, with respect to the evaluation of Z itself

) 8Se <~ _, 0B, o
- = =]1- +> B (55)
aZi z=0 [ 32,' k=1 ‘ aZi z=0
where 5 . '
aBk _ 5 Seﬁ' a Seff aSef‘f
55 = 5nde 2 52:6 <1 * o ) : (56)

From Eq. (21) we know that 0S.q/0z|,_, = —1. Therefore, to prove that (n;) =1
we have to prove that Eq. (56) is zero, what is evident once we have shown that the
third derivative of the effective action vanishes. This reads (see Appendix B)

%S | | | ]
0220z _4;SP{X”P"X"P*'X"PIC} - (57

where x, = (iw, + Z:{)"l, so that the third derivative is explicitly an odd function
of Y. _We now show that this derivative is always zero when calculated at z = 0
(i.e., U = —cld). The expansion of Eq. (57) gives: v

83 Seqr 1 1\ et
8228z “4'; (EZ) hzq, (ZE,T)

x M Sput PUIPU P ) (58)

The sum over frequencies forces h + g+ to be odd. But -
Sp{U* PUIPU Py} = (UM) 1 (U?): (Ui (59)

. where no summation on i and k is implied. On a square lattice, (2/¢ )i; must contain
- an even number of /’s so that ¢ must be an even number. To go from site 7 to site
* k the number of steps is of course even or odd whatever the path in the lattice is
~ chosen. Therefore, h and I should be both even or odd. But then A 4 g 4+ cannot
~ be odd. This proves that the third derivative of the effective action is equal to zero
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and consequently that
0%

7 =-1 , (60)

z=0

so that the average on-site occupation number is exactly equal to one.
Next, the mean value of the squared occupation number is

2y _ z-1 o -3(z)
ni)=2 e
92?2

i

z=0

oc\? 8°’%
. -1 _ —32(z)
- ([(&) - %)

e—E(O)> : (62)
z=0

Because of the vanishing of Eq. (56) when calculated at z = 0, we have

0°L  0°Seq 1 | 8*Sen 0% Sert |
822~ 022 EJ: B; [az]?az,? —2 (az,-az,-> ' (63)

z=0

(61)

z=0

or using Eq. (60)

() -1= -2 (

2
bz

In the limiting case of zero interaction (c=0)is

Seft = Z[—z; — 21n cosh(z;/2)] (64)

i

which is diagonal in 7 and j, and Eq. (63) vanishes, when evaluated at z; = 0, as
expected.

In the general case, we have not succeeded in proving that the average at the
r.h.s. of Eq. (62) is zero, unfortunately, but we have evaluated it at the saddle point.
The discrepancy of the result with respect to the expected value provides a direct
measure of the reliability of our method at this level of approximation.

The manipulations are lengthy but straightforward and are summarized in Ap-
pendix B. Inspection of the results shows that at zero temperature and at T,
823 /0z? vanishes. In fact (n?) is one at zero temperature, because the saddle point
satisfies the constraint and no classical (static) fluctuations survive at zero temper-
ature. Besides we have again (n?) = 1 at T, in the constrained case for both the
dimer and the flux phase, because we can interpret the U;’s as effective hopping
amplitudes and these tend to zero at the critical temperature. This is at striking
difference with the non constrained case, when we expect (n?) = 3/2 at the critical
temperature for both phases. Infact, let P(1) be the probability that site ¢ is occu-
pied just once and P(2) be the probability that it is doubly occupied. In the absence
of the constraint and above the critical temperature, when the particles no longer

interact, they are both equal to 1/4, so that we expect (n?) = 2P(1)+4P(2) = 3/2.
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The tesults of (n?) — 1 are plotted in Fig. 1 for the dimer and the flux phases,
both in the presence and in the absence of the constraint, for comparison. At
intermediate temperatures we get at most a deviation of 10% from the desired
result.

6. Results and Conclusions

Non-magnetic phases for the spin-1/2 Heisenberg model in 2-D (BZA phase, AM
phases, chiral phases etc.) are estimated to be very close in energy to the AF phase
which is the ground state of the system. Because this model is obtained from the
Hubbard model at half-filling when the U interaction goes to infinity, these phases
could be relevant for the cuprate compounds, particularly at low doping.

However the constraint of single site occupancy is crucial both for transforming
the Hubbard model into the #-J model, and for using a fermion representation of
the spins.

Mean field theory on the resulting effective action automatically satisfies the
constraint at zero temperature, so that the mean field ground state energy can |
be evaluated for these phases. But, zero temperature quantum fluctuations do
not fulfill the constraint anyhow and its implementation via a slave boson method
is unsatisfactory, unless one introduces an arbitrary small expansion parameter
(1/N expansion), which, in the end is put equal to 1/2. Of course, the mean field
approximation does not conserve the constraint also when temperature is finite.

In this paper we introduce a new method to take into account the constraint
of single site occupancy which is exact also at finite temperatures, till the moment
when saddle point approximation or loop expansion has to be undertaken. In esti-
mating fluctuations of the site occupation number around n; = 1, we find that the
mean field result accounts for the constraint fairly well, because these are reduced
to less than 10% of their value.

We have studied the dimer and the flux phase of AM at finite temperatures,
including the constraint and adding static Gaussian fluctuations around these saddle
points. This corresponds to taking into account the contribution to the entropy due
to the classical fluctuations, which are only effective at finite temperature.

After inclusion of the constraint the flux phase remains higher in energy than
the dimer phase and the critical temperature is found to be the same for both
phases (T, = 5/12), but higher than the one without the constraint (T}, = 1/4)
(see Fig. 5).

The critical region around 7, is found to be much enlarged by classical fluctua-
tions. A rough estimate of the temperature at which the mean field approximation
breaks down due to the overwhelming fluctuations is given by the Ginzburg crite-
rion: ﬁ%‘éﬁl ~ 1. This defines an upper temperature which moves, for example, in
the case of the dimer phase, from 7% = 0.22 to T* = 0.33 by adding the constraint,
to be compared with 7., = 0.25 and T. = 0.42 respectively. Therefore the critical
region grows by about 9%, what is also the case of the flux phase.
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Fig. 6. Comparison between the largest fluctuations /\f)' F for the flux phase (curves a) and the

dimer phase (curves b) versus temperature. Full curves include the constraint, while broken curves
do not.

In Fig. 6 we compare the most divergent fluctuations of the dimer (b) and flux (a)
phases including and excluding the constraint (taken from Figs. 3, 4). Fluctuations
diverge at the corresponding critical temperatures, as expected. This forces the ones
with the constraint (full curve) to keep lower than the free ones (broken curves) at
least close to T,. As it appears from the picture, the large fluctuations are much
more affected by the presence of the constraint in the dimer phase than they are
in the flux phase. This allows to think that the effect of the temperature is to
destabilize the flux phase more easily than the dimer one.

These results seem to be consistent as long as the temperature is not too low.

This is clearly seen in the temperature dependence of the specific heat reported
in Fig. 7 for the dimer phase, and Fig. 8 for the flux phase.

The gaussian fluctuations constitute the dominant contribution to the specific
heat. This is reduced heavily by the constraint, and becomes unphysically negative
for T < 0.08 in our approximations. This is because quantum fluctuations have
been ignored. Their inclusion, in the form of frequency dependent fluctuations will
be discussed elsewhere.3? When these are taken into account the free energy tends
to a lower value at zero temperature and its temperature derivatives are corrected.

The evaluation of the fluctuations has led us to the analysis of the zero modes
due to the broken symmetries of the action. It is interesting to note that the volume
of the configurational space which is covered by the symmetry group also contributes
with a term tInt to the free energy, a feature typical of two dimensions. It can be

shown, however, that this term is exactly canceled when integrating also frequency
dependent fluctuations.
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Fig. 7. Specific heat per particle over temperature Cy /kg Nt versus reduced temperature ¢ =
(8J)™? for the dimer phase. The full curve includes the constraint, while the broken one does not.
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Fig. 8. Specific heat per particle over temperature C,/kgNt versus reduced temperature t =
(BJ)™?! for the flux phase. The full curve includes the constraint, while the broken one does not.

In conclusion, we have studied the nature of the fluctuation modes around the
dimer and flux mean field solutions and their contribution to the free energy at finite
temperatures. Fluctuations of the site occupancy number can be controlled with our
method of including the constraint and are consistently reduced. Our calculation
shows that the inclusion of the constraint within the mean field approximation has
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the effect that the temperature destabilizes the flux phase more easily than the
dimer phase.

The method presented here can be extended to the case when the filling 1s no
longer one electron per site, which is presently under investigation. Away from
half-filling the full Gutzwiller projector has to be implemented so that two auxil-
lary variables are needed, which should be coupled to the particle density for each
spin at each site. However these source terms no longer commute with the ¢-J
hamiltonian which would be used in this context. This requires that the interaction
representation is used and that functional derivatives are performed each time.
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Appendix A: Variation of the Total Effective Action

Our starting point is the effective free energy of Eq. (31)

_ Fewr , ot
fer = 375 _Z]d,-[ + 57 Ser — tIn 4B (A1)

where Seq and B are given by Egs. (28) and (29), respectively. The first variation
of the effective action, with respect to the fields 61/ is

6Ser = 8§(—=2Tr In[Gy! — cld]) = —cSp [tanh %{—5&1] . (A2)

The function B due to the constraint takes the form

B=142> Sp[XaPixnF] (A3)

where Sp denotes the trace over site indices only, and x, = (iw, — cl{)—l, so that
one gets

8B = 4cy  Sp[xnPixnPixn6U] . (A4)
n

Due to the static approximation, the frequencyAsummation does not mix with
the sum over site configurations. Also, the trace over site indices can be expressed as
sums over the reduced Brillouin zone. Finally we get, in a fashion that is described
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in Appendix C, the constraint contribution to the first variation of the action

2(23% + x%;) Ik
ATk TR il
<.)Zm(@—¢wwh2

k k!
ILTh Tr! 2 Tk
—————tanh — — 1 —tanh” — Ad
(=} — =)’ M T} — xk'( o )) (43)

where we have defined: A = A; + 14, = {H’i—éd"} /t.

In terms of these quantities, the first variation of the total effective action is

U N
§BFenlU] = wSpUSU] + c Z Spltanh 7 6U] — 8B . (A6)

In the same way we have for the second variation of the effective action

() _ Z L@ t (8B _(8B)
where
(2) _ tg¢2
Seqd = 26 Sep = —c? E Splxn U xn8UY . (A8)

Its expression in the wave vector representation 1is reported in Egs. (43, 44) of
the text. On the other hand while the second variation of B is given by

6B = 4c* Y 25p[Xn Pixn Pixn6Uxn6U]

+ Sp[Xn‘SUXnPan‘SanPi] . (AQ)

Here the trace has to be evaluated explicitly. We obtain three contributions
which we denote as follows

§2B = B;[A1A}] + Ba[A%] + B3[Ad] . (A10)

Here A; » are the real and imaginary part of the complex function A defined
previously and the prime is a short-hand notation for the k' dependence. Their
explicit expression is

B =2 (% )

(3:Ck/ + :Uk)
(=3 —‘Ck') Zy!

Z TrTk! (33:]: + Ikl) 2
(z2

—tanhzr /2
kTR xk’)Z (zf — =) =% /

— tanh zp/ /2 — 2+tanh2:ck/2+tanh xk:/Q]AlA'
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2 2 2, (z2, + 322 ,
Ba[A2] = (_2_) Z[4zk(zk + 3z3)) tanh ZE _ 4y (z3 + 3z3) Ty

tanh —
v) 2 er—ay Pt T TG

2z? + le) Tk Tk ' 2 Tk ~—~—_._1
AL - - B
2 2 1 2(.’52 -+ 172/)
Ba[A?] = <_> [ k k7 tanhzy/2
3[ 2] N ’g; x% — a:}z:, zk(z% — ;z:%,) k/
Az, 2 2
= tanh /2 — 1+ tanh® z, /2| A3 . (A11)
k k!

These complete the evaluation of the second variation of the total effective ac-
tion.

Appendix B: Averages of the occupation number

We outline here the procedure to evaluate the derivatives of the effective action of
Eq. (15) with respect to z;. These are required to evaluate the average number (ni)

and the average fluctuation 1 — (n?), in particular Eq. (63)

'S ( 0°5.
0230z} 2 (Bz,-azj>:l ' (B1)

2=0

0% 02S.q 1
A = S

t

The first derivative of the action BSeﬁ/az; given by Eq. (18) can be written
formally as

0Ser[U]
az,-

= —2Tr {xP:} (B2)

where x = (iw, + )" and U = 2 _; ziPi — cld. The trace symbol refers to the sum
over frequencies and sites. Each further derivative can be performed by noting that
Ox/0zr = —xPrx so that

0% Sealll]
—_— =9 x P; - B3

5207, Tr {xPixF;} ( )
which coincides with Eq. (19) of the text when j is put equal to i. For the third
derivative one gets Eq. (57). Similarly one obtains

9% Sealld]

o) = ATx {xP.xP;xPix P} + 2xPix P:xPixP;} - (B4)
s, Zia Zj
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We exemplify the procedure by evaluating Eq. (A1l). To express the trace ex-

plicitly we choose the basis in which the matrix &/ is diagonal and label these states
generically by the indices p,v

) = |E+) such that U|k+) = £E(k)[k+)
l.e.

2 1 » 1 ‘
82:0z; 0:22;23;;::QEZWUH#h;::EZ%yUHu). (B5)

The sum over frequencies can be performed easily

Z 1 1 1 tanh(cld,/2) — tanh(cl, /2) (B6)
iwn — Uy i, —c,  2c U, — U,

The matrix elements of the projectors depend on whether the site is even or odd

(ka|P|FB) =1, i odd
AEAL

= e

i even (BT7)

where «, [ are plus or minus and so is the product « f depending on whether they
are equal or opposite.

The result for the two site indices belonging to the same sublattice 1S

aZSeﬂ‘ — ( 2 ) Z i(E—F' ) R; R )l‘k tanh(:rk/Q) — T}t tanh(:‘ck,/Q)

— B8
0z;0z; N ) & £ — z2, ’ (B8)

while if 7 belongs to the even sublattice and j to the odd one is

04S. _ (_2_) Z i(k—k")(Ri—R;) Ar AL (:ckrtanh(:z:k/Q) — Tk tanh(a:kr/Q)
8::?62]? N .y |Ax] | Axr] z? — z2,

(B9)
when 7 belongs to the even sublattice and j to the odd one the two indices can be
exchanged (here again zx = cE(k) and A is given by Eq. (26).

The result of §22/8z2 for the dimer case is site independent and can be put
into closed form as follows

0’y 1 [1 -+ sinh a:] 4 cosh®(%)
922 4cosh2(~’-2’-) z 4cosh2( £) — s‘"h‘” -1
1 1+ sinh? :r:)
3 4 5 — B10
x Bp(z) + dg(2) + 5r(z)] 4cosh4(%) ( z2 (B10)
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where is £ = d/t and the functions have been defined

_ 1
plz) = 48 cosh®(z/2)[1 — 2 sinh?(z/2)]
_ 1
(=) = 1623 cosh®(z/2)[z2 tanh(z/2) — sinh z + z]
1

823 coshz(x/Q)[smh z — z] ’ (B11)

It 1s 1mmed1ately seen that at zero temperature and at 7%, that is when z — 0,
the functions p, ¢, r tend to 1/48 and 2 £/0z2 — 0 as well. In fact we expect to

have (n?) = 1 in the constrained case for both the dimer and the flux phase, as

explained in the text.

Appendix C: Zero Modes of the Dimer and the Flux Phase

The global gauge transformation of Eq. (45) is the only zero mode of the dimer
phase. This can be checked immediately if the contraint is omitted, because Eq. (42)
(with B = 0) becomes

@ = Zldk! (1+ QUIde]) — {a(1dx])}) (66)2 (C1)

where the functions @ and g are defined in Eq. (40) of the text. In the dimer phase
is |dx| = d and we have

f(2) - = (1 - % tanh — ) (50)2 (C2)

which vanishes due to the gap equation Eq. (36).

The same mode is found for the flux phase. Again, it can be seen in one line
in the absence of the constraint that this mode leaves the effective action invariant.
In fact, putting |dx| = 2de in Eq. (66) we have

dey
;= ¥ Z <4d25k — deg tanh —> (66)2 =0 (C3)
and the gap equation enforces the identity, because €2 = gwﬁ €, = 1.

In the case of the flux phase there are two more phase modes for which is
féff) = 0. These are the modes in which three phases of the order parameter are
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changed arbitrarily, provided that the total phase in the elementary plaquette is
kept constant to the value of 7.

They are
di —d e 102 , dy — d et
d3 - d 6"02 N d4 - dﬁiea »
d2’4'——) d 3 dl,3 —_ d 7 (C4)

which gives |di| — 2 d&, with & = |cos(ks — 02) — i cos(ky)| and & = |cos(kz) —
icos(ky — 03)| respectively.

Because the free energy is integrated over the full RBZ, it is obviously invariant
with respect to these transformations of €. This is easily seen analytically if the
constraint is neglected. The first mode gives the change of di

§dy = dksmk

(cos k; + icos ky)66, (C5)
€

which implies

D)
€k

f(z) ——led sin? k. (602)* <1+Q+q§Re (1+2zcosk (COSk +2COSky)>>

= 4012(592)2-]2\7 Y sin?k; (1 FQ+q-— qM> . (C8)

k €

Using the identity

coskcosk 2 ;2>
Z q—F;Q(Qcos ke —1) (CT)

k

we find

fe(fzf) = 4d2(592)2 Z ( +(Q — q) cos’k ) . (C8)

This is exactly equal to zero due to the gap equation (38) which can be rewritten

as
2 s, 2~ 1 dg 1
N2 (Q — q) cos® ky =N k 5—2ldk[tanh P (C9)

The proof for the third mode is obtained just by interchanging k. and k.
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When the constraint is included, the analytical expressions for the elements
of the 8 x 8 curvature matrix M can be written down starting from the results
of Appendix A and this can be diagonalized giving rise to analytical expressions
for the eigenvalues A; which we omit for brevity.3® The related quantities ¢ J4X;d?,
defined in Sec. 6 as relative fluctuations of the order parameter for each eigenmode
are plotted in Fig. 4 and discussed in the text. 4
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Abstract

A quantitative estimate of the role of quantum fluctuations is given
at zero and finite temperatures within the one loop approximation
around the antiferromagnetic and the dimer saddle points. Our re-
sults include the constraint of single occupancy of sites also for ther-
modynamical quantities.

SISSA: 55/93/CM/MB



The limit of the large U Hubbard model at half filling is the spin 1/2
AFM (antiferromagnetic) Heisenberg model. In this work we report results
of thermal and quantum fluctuations on an AFM background, and in dimer
ordered phases starting from a fermionic representation of the hamiltonian([1].
Here the constraint of single site occupancy is a crucial ingredient.

While Quantum Monte Carlo approaches are restﬁcted to relatively small

systems [2], analytical methods to include the constraint originate from the
Gutzwiller projection|[3].
The constraint is often implemented within the saddle point approximation
by a Lagrange multiplier (or slave bosons away from half-filling[4]). However
it is hard to control its fluctuations both at zero and at finite temperatures.
We have implemented it, at all temperatures, with a new method[5], by
means of a local chemical potential.

The fluctuations are calculated within the one-loop approximation around
the chosen saddle point for an effective action.

We find that, in the AFM case, because the magnetization acts as a local
mean field, our method guarantees that the constraint is fully satisfied at
the mean field level. In fact the mean square fluctuations of the occupancy
< n? —1 > vanish at all temperatures when the constraint is evaluated by
saddle point approximation. At zero temperature, the results of spin wave

theory for the AFM ground state energy are recovered.



Zero point fluctuations in the staggered and columnar dimer phases were
first discussed by Read and Sachdev[6] within the SU(XN) model. We show
that their results in the N = 2 limit do not differ from a fermionized
theory in the absence of the constraint. In this case the fluctuations are
unrealistically large. This is because unconstrained fermionization of spin
operators enlarges the Hilbert space enormously in the case of the dimer
phases, due to the opportunity given to the bond field of building up couplings
to states which change the site occupancy. This implies that the mean field
free energy of the dimer phases is lowered too much, unless the constraint is
enforced.

We show that addition of the constraint raises up the mean field energy
and reduces the fluctuations. However our approximations in dealing with it
depress the mean average thermal fluctuations of the occupancy number in
the dimer phase only up to 10% of the unconstrained value[7]. Evidently this
is not enough because the energies we obtain are still too low with respect
to what is expected[8].

On the other hand while the saddle point effective action cannot be pro-
moted to a free energy when the constraint is added, we show that by in-
cluding fluctuations a physically meaningful temperature dependence is re-
covered. Fig.(2) reports our results for the specific heat versus temperature.

At half filling the spin 1/2 AFM Heisenberg hamiltonian can be rewritten,



in the restricted Hilbert space with single site occupancy, as:

. . NJ
DD CaCiallstis — - (1)

(i) o8

J
H,= -

where the sum is over ordered n.n. pairs of sites in the lattice and N is the

number of sites.

The partition function within the subspace of singly occupied states is:

Z=Tr {H n1(2 - TLi)e_EHD} (2)
(ni = nip + nynie = cjgc,-,,a' =T,1). To implement the constraint we add a
source term [5] to the Hamiltonian H, and define: H[z] = H,— 31 >izimi |

the z;’s are real variables). We call Z[z;] the generating functional of averages

of the occupation numbers. The partition function of eq.(2) can be recovered

as:

2=1] -6%(2 . %)Z[zi] . (3)

z=0

The advantage is that the evaluation of Z[z;] only requires standard tech-
niques because the trace is unrestricted and the source term commutes with
H,. The last feature is lost when one goes away from half filling.

The Hubbard Stratonovich decoupling of H, requires an auxiliary field

in imaginary time (denoted generically by Z{ in the following), depending on



the saddle point chosen:

Z C;’BCi,ﬁ — U;j(r) Flux and Dimer Phases
B

cj‘,aci,ﬁ — 273/2 eiQRiMq(T) *0ap  AFM Phase ()
q

Here: U%(r) = Uji(7), the components of & are the Pauli matrices and
Vg = Lo €97 = cos g, + cos g,

The m— Flux Phase[9] has been discussed by us elsewhere[7]. We have
found that temperature destabilizes it more easily than the Dimer ones due
to the lower lying excitations. However this phase, together with an AFM
background was found to be a good starting point of Monte Carlo calculations
for low doping[10]. The order parameter ;; of the staggered and columnar

dimer phases are sketched in Fig.(1). Integrating out the fermions one arrives

at the intermediate result:

‘Z[zi] = /(1—[ DZ/{ij €exp {—71‘ Z Z | u,',j(ﬂm) 12 +Tr1n[1 + GDL-{]} (5)

4.7) (1) ™

Where: Q,, = w, — w, is a Bose-like Matsubara frequency,

~ 1\ B aR: | — J 12 ~ -
(@) () = 61, { 2i6m06ag — 23 P (—?,—l) My(Qm) - aaﬁ} . (6)
q

for the AFM phase, while:



. 7\ /2
(Z/{d) ijﬁ (Qm) = 5075 {zﬁmvgai‘j — (l§—> Z/(,'J(Qm)} (7)
for the dimer phases. Also, G, is the Green function in the absence of I/

( (Go)?j"' = (twn) 16 ;60 ). Inserting this result into eq.(3), we obtain

eventually:

. l.jZm|IJ;~(Qm)|2+Trln[1+GoLY]+Ziln4B,~[L7]
Z = H 'DL{,-je{ Z( ) ’ }zi=° (8)
(2,4)
The contribution of the constraint is represented by the last term of eq.(8)

with:

Biltl] = Tr {[xGoP'} + 2T7 {xG,P.} — (Tr {xG,P})’ (9)

Here: x = (1 - God)—l

__and we have introduced the projector P; onto
the 7 — th site of the lattice, whose matrix elements are (P))jk = 6;16;;.

We now expand the action to second order around the mean field saddle

point: F = F° 4 F(). The second variation F(®) is given by:

, 1 1 1 §°B; (6B
ﬁ}—(') = 7r/(; dTTr{(5U)2}“§T7' {X‘SUX‘SU}“:‘Z‘Z( B, - ( BZQ) ) (10)

1

The eigenvalues A(m) of the quadratic form are listed in Table I, for the case

without the .constraint, together with their degeneracy and the component



admixture which is present in the eigenvector. They are functions of ©,, and
are expressed in terms the mean field order parameters M (magnetization)

and d(dimer bond). The functions E(m), F(m) also appear, defined as:

2M |, | 4d?
= ; E(m)= —— 11
Fim) Q282+ (4M)? () Q2 t2 + 442 (11)

where: ¢ = 1/8J. In the case of the AFM phase, the longitudinal mode
decouples with respect to the transverse ones. The collective excitation spec-
trum can be obtained from the latter. In fact one has to continue analytically

the product )\‘iF - A2 for iQ),, — Bw +10 and look for the zeros. The spin
waves dispersion is recovered in this way, that is: Wy = ZMJm,

In the case of the dimer phase, the second variation F( can be expressed
in terms of the complex variations: w(Q) (I = 1,4) for the staggered and
v(Q) for the columnar phase which are the Fourier transforms of U(z,7) and
are taken to depend on site and time (with Q = (@, 0m)). Here ¢ spans just

—

one.of the sublattices , according to Fig.(1). In this case there is no Q
dependence of the eigenmodes.

In Table I the zero modes are also indicated in the absence of the con-
straint. However, the features that we will discuss in the following are pre-
served by the inclusion of the constraint. The AFM phase has a vanishing
eigenvalue for ¢ = 0 and ¢ = (7, 7) = % due to the self-consistent equation

for the magnetization M. For the dimer phases there is one zero mode which



corresponds to an overall change of the phase of the component of the order
parameter d =< Uf; >. In addition to this, the second variation of the action
around the columnar phase saddle point is found to be flat versus two more
amplitude deviations which add a small opposite weight on vertical bonds
(mixing of the real or imaginary parts of v; and vy ), leading to a ladder
pattern for the order parameter. Quartic terms in the deviations, that are
here neglected, would guarantee that the columnar phase minimum is stable.

The free energy per particle of the AFM phase, in units of J, is:

AF AF 2t RBz AF AF t RBz AF
=00+ N o > A (m)adf (m) + I 2o 2 WA (m) (12)
g m>0 g9 m2>0

The zero temperature limit is the well known result of the first (1/5) correc-

tion:
RBZ

FrE=0) = 57+ 23 [ (uf2P) 1] (13)

q

where fi!f = 2(M? — M) = ~0.5, (M =1/2) and the correction due to the
fluctuations is —0.158 . Addition of the constraint does not change the zero
temperature results but the thermodynamical quantities (see Fig.(2)).

In the case of the staggered dimer phase, the closed form for the free
energy is:

] 0 t 3 t ] 3t s t g

F=7fr- 5111(,’ + - > ImA(m)+ = > InAy(m) + - > InAj(m) (14)
4 m>0 2 m>0 4 m>0

where the constant C* = 2d(2n/t)'/? arises from the zero mode integration.



For the columnar phase we get:

S 3t t 3t
fo= = oC + T Y lng(m) + 5 2 mAi(m) + 7 3" InX5(m) (15)

m>0 m>0 m>0
where C° = 2%d(27/t)3/?. The saddle point free energy f° is equal for
the two phases. Its zero temperature value is: f° = 4% — d — 1/2 = -3/4
(d = 0.5) without the constraint. Imposing the constraint this value raises
up to fY = —0.375, that is the energy per particle of a collection of spin
singlets.
The contribution of quantum fluctuations to the free energy at zero tem-

perature, in the absence of the constraint, is :

Afi(t=0)= —4é~6~g-(1-1/\/§) staggered
Af(t=0)=-3- Z -2 g(l —1/4/2)  columnar (16)

The factors 6,3 and 2 come from the degeneracies of the eigenvalues. This
result, derived first by Read and Sachdev[6] within the 1/N expansion, im-
plies that the degeneracy of the staggered and the columnar phases is broken
by quantum fluctuations and that the last one is favoured energetically.
The eigenvalues mostly contributing to lower the energy for both period-
icities are A7°(m # 0) . The presence of two extra amplitude modes of this
kind in the columnar phase implies that the benergyv is Jower in this case.

We report here just the analytical zero temperature result with the con-



straint included:

Afi(t=0)=—2d(1 —1/v/2) staggered

Afi(t=0)= —(—; —d(1—-1/v2) columnar (17)

In the t = 0 limit the constraint affects only the contribution of the zero
mode eigenvalues and lifts partially the degeneracy of A{(m). Summing up,
the constraint rises the zero temperature energies including one-loop cor-
rections from the values of —1.095 (staggered phase) and —1.198 (columnar
phase) up to —0.668 and —0.771 respectively. Although these values become
comparable with the AFM result, within the same approximations, they are
still lower than the AFM one, what is commonly accepted to be wrong|[8].
We believe that fluctuations can be further depressed when the constraint is
dealt with at an higher level of approximation.

At finite temperatures, we have calculated the constraint violation within
mean field, which is found to be about 10% . Its action is evident in the
temperature dependence of the specific heat, as can be seen from Fig.2 (a,b).
Spin waves dominate the specific heat of the AFM phase, which remains
therefore quadratic in temperature close to ¢ = 0, while the gapped spec-
trum of the dimer phase gives an exponential temperature dependence as
seen in the inset of Fig.2(b). The zero modes, being dispersionless in the

dimer phases, do not change the gapped nature of the excitation spectrum.

10



The figures show that our way of including the constraint up to ome loop

corrections gives consistent finite temperature results.
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figure 1 Pictorial representation of the link order parameter U in terms
of a) Uy, Uy, U, U, for the staggered dimer phase (periodicity is along the
diagonals) and b) Vi, Vy, V3, V, for the columnar dimer phase (periodicity

1s doubled on the x axes). Reversing the arrows implies complex conjugation
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figure 2 Temperature dependence of the specific heat ¢(T') for the AFM
phase (a) and the staggered dimer phase (b). Full curves include the con-

straint while the broken ones do not.



[A(m#£0) I Alm = 0) | deg. [ mixture ]

©]
ja 7(g) tanh M t = s =
g ME=1-F(m) |1- _@%_ ‘zero modes ¢=0,7" | 2 | m.(g), m}({+ %)
= 4
<
= 8
o 7(3) :
= < AAF =1 1 —————— 2 z
E 5 1 + 2t cosh? M/t m (@)
=y
2
tanh M/t U
< A:U":l_*_F(m) 1-{—-&—):;}—/— 2 m:(’:'l‘!“"'):my(q—)
1 d 5 5
é /\f =1- E(m) 11— 73 tanh % =0 ‘zero mode’ 1 ul(Q),ul(‘Q)
=
2 E(m) 1/1 d 1
o 5 m T — J)i=
=1 1— = [ -=tanh — 6 (Q)i=12,3,4
gg A7 =1 2 2 (2d Y + 4t cosh? d/2t> w1 .
<3}
O
4 1
& = TP P u@mt9)
. . ‘zero mode’ 1 | 0(@),v(-Q)
cn Af =1- E(m) 1— 73 tanh 5 =0 ‘flat second 2 U?;”f
S variation’ vé ) ‘U.{
=
A E(m) 1/1 d 1 5
€ 1 2\ —={-—tanh — 4+ ——— 2
= A7 =1 2 13 (2d R ot conn? d/zt) »(9)
zZ
=
3 . vl(Q),Ui(—Q)
O 26 — —_— 3 vft o F
@] 3 4tcosh® d/2t 3
EH

Table I Eigenvalues of the second variation of the effective action, as
functions of the Matsubara frequencies Q,,, for the dimer and antiferromag-
netic phases together with their degeneracy and the corresponding admixture
of the fluctuating fields. The constraint is not included. Modes that vanish

for {) = 0 are explicitly indicated. All the quantities are defined in the text.






Paper \






Finite temperature results from
constrained fermionization in the 2-D spin
1/2 Heisenberg antiferromagnet.

I: the Néel phase

M.Di Stasio), E.Ercolessi®, G.Morandi®
and A.Tag]ja,cozzo(l"")

(1) S.I.S.S.A.-1.S.A.S.,v. Beirut2,I-34100 Miramare, Trieste,Italy
(2) Physics Dept.,Syracuse University, Syracuse,N.Y. 13244-1130,USA
(3) Dipartimento di Fisica, Universita’ di Bologna,

INFM and INFN,v.Irnerio 46,1-40126 Bologna, Italy,

(4) Dipartimento di Scienze Fisiche,Universita’ di Napoli
INFM,Mostra d’Oltremare Pad.19, I-80125 Napoli,Italy

Abstract
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1 Introduction

General consensus has been reached on the statement that the ground state
of the spin 1/2 antiferromagnetic (AFM) Heisenberg model on a two dimen-
sional square lattice is the Néel state[1], [2], [3], [4].

Various techniques led to the analytical results which confirm the previous
numerical work, e.g. large spin expansion and Schwinger boson representation|5],
[6].

Fermionization of the spin operators also has been applied mostly within
the saddle point approximation. However emphasis is laid on the non mag-
netic saddle points rather than on the antiferromagnetic one[7]. It is also not
evident how fermionization can give the spin-wave results to the same level
of approximation.

On the other hand fermionization can be a useful tool to discuss frustrated
antiferromagnetic (FAFM) models as well as doped antiferromagnets (AFM).
The latter are often described by means of the ¢ — J hamiltonian [8] which
is the limiting case of the Hubbard hamiltonian in the strongly correlated
regime below half-filling.

The physics of FAFM models is exciting in view of the search for the so
called spin liquid state. However numerical results are not conclusive[9], [10].

On the other hand models including hole doping in the Heisenberg quan-



tum antiferfomagnet are currently extensively studied because of their rel-
evance to the high 7. cuprate superconductors. A small amount of doping
destroys the Néel ordering and phases characterized by singlet pair bonds on
the lattice have been considered as competing with the antiferromagnetically
ordered phase[11].

The representation of spin operators by means of fermion annihilation
and creation operators requires that the Hilbert space of states, on which
the latter act, includes the singly occupied ones only.

The constraint of no double site-occupancy is also needed when the limit
of the Hubbard model for large U is considered, which leads to the ¢ — J
model.

This work is aimed to discuss the thermal properties of the magnetic
and non magnetic phases in the S = 1/2 AFM Heisenberg model on the
same footing at all temperatures, within the fermion representation. The
essential feature of our calculation is the addition of the constraint of single
site-occupancy by means of a new method[12]. Our analysis concerns mostly
the effect of the constraint on the fluctuations around the saddle point. The
fluctuations are considered at the one-loop approximation level. By means
of our fermionization scheme we were also able to discuss some features of
the § = 1/2 FAFM Heisenberg model which we report elsewhere.

The present work consists of two parts.



In part I the AFM saddle point is chosen. The main result of our method
is that,at the mean field level, the constraint is fully implemented. In fact
the average occupancy is one while its mean square fluctuations vanish at
all temperatures. As a consequence the fermionization procedure is exact at
this level of approximation and the mean field results coincide with those of
other fechniques which deal directly with spin Hamiltonians.

We evaluate also the contribution of the fluctuations at zero and finite
temperature and show the role of the constraint in the one-loop correction.
This is governed by the usual spin wave excitation spectrum and we show
that one-loop corrections to the saddle point in a path integral description is
equivalent to the linear spin wave theory. At finite temperature, due to the
presence of the constraint, there is a marked reduction of the specific heat,
because traces are taken on a restricted Hilbert space.

In part II of this work we deal with the (non magnetic) dimer phases
(staggered and columnar dimer phase[15]) using the same method. Quantum
fluctuations around the dimer saddle point contribute substantially to low-
ering their energies. However, it is widely accepted that a fully constrained
calculation would give a final energy for the dimer phases, which is higher
than the AFM one. Unfortunately, our approximations in implementing the
constraint are only partly satisfactory in reducing the weight of quantum

fluctuations. As a consequence we are unable to produce such a result.



In our method the average site occupancy is one for all temperatures,
but unlike the AFM phase, its mean square fluctuations are not completely
suppressed at the mean field level, from T' = 0 to the transition temperature.
Still they are within less than 10% of their unconstrained value [14].

By inclusion of the one loop contribution, it is possible to define a free
energy for the constrained problem, as we will show, which has the correct
thermodynamical behavior, both in the case of the AFM saddle point and of
the dimer phases.

In section 2 of the present paper we briefly review the fermionization pro-
cedure and the AFM mean field results. Appendix 1 includes the evaluation
of the mean square fluctuation of the occupation number, which vanishes at
all temperatures at the mean field level.

In section 3 we show how it is possible to recover the spin wave spectrum
from the one-loop corrections and we obtain an expression for the free energy
which includes gaussian fluctuations. The temperature dependence of the
specific heat is also discussed.

Finally, we briefly comment on our results in the last section.



2 Antiferromagnetic decoupling

In this section we adopt the fermion representation on the spin 1/2 AFM
Heisenberg model, described by the hamiltonian:
H,=JY 55 (1)
(i.9)
Here the sum runs over ordered n.n. pairs of sites on a square lattice. If
one considers this hamiltonian as the limiting case of the large U Hubbard
model at half filling, then J equals 4¢2/U (with t the hopping parameter).
To obtain this limit the constraint of single site occupancy is required, as
well as by the fermionization procedure itself.
Given the wave vector ¢ in reciprocal space, the spin 1/2 operators are

represented as:

where 26 are the Pauli matrices. The partition function is:

Z="Tr {1:_[71,,-(2 — n,-)e-ﬂHﬂ} (3)

(n; = nip + n4pynie = cgvc,-a, o =T,]) and the prefactor restricts the trace to
states with single occupancy of sites.
We adopt the Hubbard-Stratonovich decoupling in terms of an auxiliary

vector field which plays the role of the staggered magnetization:
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e=B7 145(2)-5(~a) _

— /DQ-/J{(Q,T)e- fo dr{wlM(q,T)l +‘\/—W;GJ’YQ(M(Q,T)-S(q,7)+h.6.)} (4)

where v, = cos k; + cos ky.
To implement the constraint we add a source term to the Hamiltonian

H, and define the generating functional:

Z(z] = Tr{exp(—BH, + > zim:)} (5)

( the z’s are real variables). The original partition function is recovered

as:

z=Tl5 (252l (6)

z;=0

The advantage is that the evaluation of Z[z;] requires only standard tech-
niques because the trace is unrestricted and the source term commutes with

H,. Using eq.(4) the fermionic trace can be represented in terms of Grass-

mann fields ¢ and ¥* as:

2z = [ TI D M(q, W) [[ D Dpia €™ Lam 000
q,m 1,0

exp { 3 3 (0 [16n BB+ AL (i) zm,ﬂ(wn')} (7)

i,a,8n,n’



Here % and ¢* have been transformed to Fermi Matsubara frequencies
wn, = (2n + 1)w. The matrix A depends only on wy — w, = Q,, (Bose

frequencies) and its matrix elements are:

, —nBJv,\? -
AZE (%.7) = 5i,j {Zign,n’gaﬁ —2 Z ezqRi (——TV_‘:@') MQ(Qm) . Eaﬁ} (8)
q

The path integral over the Grassmann fields can now be performed, and we

obtain:

Z[zz’] = Zy /HD2M(Q) Qm)eXP {"'WZ I M(q)ﬂm) 12 _Seff[A]} (9)

with

SesslAl = —Trln[l + G, A (10)

and Zy = exp{Trln G,}. We have defined here (GO)Z’Z/(z,J) = (twn)16; j6n 0/ bu a-
Eq.(6) yields then the partition function. The resulting extra factors can be

re-exponentiated to give:

Z =/H732J\7i(q,m)exp{—ﬁf}

BF =m 3 | M(gym) [* +Sess[A] — 3 In 4B A] (11)



The contribution of the constraint is:

BilA] = Tr {xPixP} + 2Tr {x P} — (Tr {xF:})" (12)

Here we have defined the operator x = (G,;! + A)~! and the projector
P;, onto the 1 — th site of the lattice, whose matrix elements in the Wannier
representation are (P;)jr = 8,0 ;.

To isolate the static saddle point corresponding to the AFM phase we
make the choice M(q,m) = ZM?*(7,0)8m 004z Where: @ = (w,w). At the

saddle point we have:

0O (6) = (fwn — a(~1)Y2M/t) " 6pibars (13)

and we have introduced the rescaled order parameter M = 21\fﬂJMz and

the dimensionless temperature ¢t = 1/5J.
The evaluation of the effective action of eq.(10) at the saddle point can
be performed with the usual procedure of inserting a coupling constant g to

multiply the matrix A and integrating over the derivative:

dSers . 2M M
which leads to:
Seff = —2N1ncosh M/t (15)



The saddle point approximation to the free energy is:

= F/NJ =2M* — 2tlncosh M/t —tln B (16)

where the constraint B, which turns out to be site independent, reads:

1
B=1——7p—r 17
2 cosh® M/t (17

This implies that the final result becomes:
f°=2M* —tlncosh2M/t + tIn2 (18)

Minimization of this expression yields the mean field magnetization:

M = %tanh ?—i\—/.[ (19)

with critical temperature ¢, = 1 and f2;;(t = 0) = —1/2. This is exactly
what is found in the mean field approach to the S = 1/2 Heisenberg and/or
Ising model, when traces are performed directly over spin states. In fact, as
will be shown below (see Appendix 1), the constraint is satisfied exactly at all
temperatures at the mean field level, because using eq.(9) wefind < n; >=1
and < n? >=1 at all temperatures. This implies that at the mean field level
the fermionization procedure is exact due to the inclusion of the constraint,

leading to results that are equivalent to those obtained directly from spin
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hamiltonians.

It is worthwhile to mention that when the constraint is ignored the mean
field critical temperature becomes: t2 = 0.5 and the equation for the magne-
tization reads:

1

M
== it 2
2ta,nh 7 (20)

this is not the right result, nor is < n? > equal to one anymore. The tem-
perature dependence of the magnetization according to eq.(19) (full curve)

and to eq.(20) (broken curve) are depicted in fig.1.

3 One loop corrections

The total effective action from eq.(11), evaluated at the stationary point to
give eq.(18), is a poor approximation to the free energy. By including the one
loop corrections in the evaluation of the path integral, we take into account
field configurations that allow for fluctuations of the order parameter around
its mean field value, at the gaussian level.

We write:

M(G, Q) = MA(R,0)5 + SM(F, V) (21)

This changes A into A, + §.A with:

11



2
6 Aus(, Q) = —2 3 €98 (—%ﬁ) §M(Q) - Gus
q y

(22)

Here we have introduced (Q) = (¢, Q) and we will write (Q + ) = (§+

#,Q,) for brevity. The effective action can be approximated as: F = F° +

F@ with Sepp = Soyy + Sgc)f, where the superscript (0) denotes the mean

field value and the superscript (2) the second variation.

Understanding x as the one particle propagator evaluated at the saddle

point (x = (G;' + A,)71), we get:

1
&Gy = 5Tr{x6 A"}

The second variation F(# is therefore:

BF® = wTo{| 6AL 7} + 5%, — =3

§2B; §B;\?
B; B;

i

where §B; is given by:

5B,’ = 2T7‘{XP,'XP,'X5.A}

and

§2B; = 4Tr{xPixPix§ Ax6 A} + 2T {xPix6 Ax Pix§ A}

Writing down the trace for 5 g)f of eq.(23) explicitly we have:

12
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é§}=—ZZ@ (4,m)

1aﬁ m

<ia|§A(m)|if ><iB | §A(-m)|ic > (27)
which is sketched in fig.2(a). Here:
Op(i,m) = Z <ia | x(wn) | i ><if | x(wn = Qm) [16 > (28)

because  is diagonal in the basis chosen. The function O is a particular

case of the following function:

1 1
@lr " = " . - T 29
aaltrm) 2,,: [iwp — o —1):2M/t] [iwn — 1Qm — B(—1)2M /1] (29)
We define also ( with & # a):
0 (m) = Z%a(% ™)
@Z(m) = Z aa(":am)
O (m) = (—1) Za@ 5(3,m) (30)
to be used in what follows. Explicitly, when I = r = 1, we get:
O (i,m) = —bmo——— g (31)
™04 cosh? M/t
i
Ol (i,m) = anh M/t (32)

(—1)afl, — 4M]/t
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In particular, due to eq.(31) the term of eq.(27) with o = 3, describing
fluctuations in the longitudinal direction, contributes only to the thermal

fluctuations (that is £, = 0 only), giving:

FED by
s = rgjelio) Y = [FOM(g0)6 M (=4, 0)+
q

+EM* (G + 7,0) 6 M*(—§ — 7,0)] (33)
The terms with a # (3 in eq.(27), give:

) FED |y, 2 2
$P =8y Y (-1 8MHQ) P + | SMI(Q+m) [ +
— | SMYQ) [P+ | MY (Q+ ) [*) - O +

—2iSm [SMT(Q)SMY(—Q — 7) — EMY(Q)SM?(—Q — 7)] - O (m)} (34)

In the absence of the constraint eqn.s (33,34) represent the full second vari-
ation of the free energy.

Let us ignore for the moment the contribution of the constraint to eq.(24).
The second variation of the total action F(?) relative to the longitudinal
fluctuation modes described by eq.(33) is readily diagonalized giving the

eigenvalue:
Py (1 - @11(0)ﬁ) (35)
2t
The quadratic form for F (?) relative to the transverse fluctuations consists

of four equal 2 x 2 blocks for each ¢ vector, mixing the real and imaginary
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components of §M” and §MY at ¢ and g+ 7 in pairs. We denote them
symbolically by: (Re§M*(g), IméM¥(q + 7)), (IméM=(q), RebM¥(q +
™)),

(ReSMY(q),IméM*(g + 7)), (IméM¥(q), Re6 M*(g + 7)). The matrix

corresponding to each block is given by:

("o ) @

where:
b(m) = = 1261 m)

n(m) = —wil—gz—‘(@l} (m) (37)

We denote the eigenvalues of the matrix (36) by Ay and A_. Using eq.(20),

they are given by:

(38)

2
QL+ (4M)?

It follows that the eigenmodes vanish at 0, = 0 when ¢ = 0 and ¢ =
#. They include the Goldstone modes (spin waves) corresponding to the
spontaneously broken symmetry of the AFM state.

Let us now consider the contribution due to the constraint. Going back to

eq.(24), 62 B;, as given by eq.(26) can be expressed in terms of the functions:
0}(m) = 203 (m) + ©2*(m) v=2z+,— (39)
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according to the definitions of eq.s (29) and (30) and is represented diagram-
matically in fig.2(b). The wiggly line is the fluctuation §M(Q), the full lines
are x functions while the broken line represents the effect of the projector
viewed as an external perturbation. Similarly, eq.(25) for (6B;) is depicted
in fig.2(c). Note that ©}(m) of eq.(39) vanishes identically when is m # 0.
The symmetry of the modes is not affected by the constraint. The longi-
tudinal fluctuating mode described by eq.s (33) and (35) requires the substi-

tution:

O11(0) - ©1(0) ~ %0%(0) + =3 (62(0)’ (40)

where, written explicitly, is :

1
©%(0) = tanh M/t —————
= (0) = tanh M/t
1 1
20) = ————— |1 — = cosh2M/t
0:(0) 8 cosh® M/t [ 9 ©° / (41)

At the one-loop level of approximation, no frequency dependent longitu-
dinal fluctuation is induced by the constraint. In fact terms with o =g
and m # 0 are absent in the second variation of eq.(24).

The transverse part of the second variation of the action given by eq.(34),

requires the substitutions:

O} (m) — OY(m) ~ =04 (m) - (42)
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Here is:

oty temh M/t AM/t
+(m) = - 2 cosh® M/t (iQm)? — (4M/1)?
. _ tanh M/t iy
O (m) = - 2 cosh? M/t (19,)% — (4M/t)? )

Diagonalization of the quadratic form for F (?) can be performed along the
same lines as before with the obvious generalization of the functions § and 7
of eq.(37) that follows from eq.(42).

It is remarkable that, making use of the explicit expressions of egs. (43) |
and of the order parameter equation (19) in presence of the constraint, we
get again eq.(38) for the eigenmodes.

These eigenvalues determine the collective excitation spectrum. Indeed,
by analytically continuing the product Ay -A_ for iQ,, — fw+1i0 , the zeroes
yield the usual spin waves dispersion, that is wy = 2MJ /(1 — (74/2)?)-

It follows that the spin wave spectrum is unchanged with respect to the
unconstrained case, except for a different temperature dependence of the
order parameter M (see fig.1).

The contribution of the fluctuations to the ground state energy can be
derived from the full expression of the free energy per particle ( in units of
J ), including the one loop correction:

ot RBZ ; RBZ

f=f1 5 > 3 ImAs(m)-(m) + }; In A, (44)

g m2>0
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where f° is given by eq.(18). The last term doesn’t contribute to the limiting
expression for zero temperature, which reads :
RBZ

fe=0)= PO+ > [a - 2R -1 (45)

q

(with (M(0) =1/2) and £°(0) = 2(M?(0) — M(0)) = —1/2) The correction
due to the zero point fluctuations is: Af = —0.158 . This is the well known
result of the first (1/.5) correction of the spin wave theory.

On the contrary, the presence of the constraint affects the finite tempera-
ture dependence of the free energy in two ways: by changing the temperature
dependence of M and by changing A..

The temperature dependence of the specific heat is plotted in fig.3, which
is obtained by numerical derivation of eq.(44). There we compare our result
with the one in which the constraint is not accounted for. In the latter
case the curve rises much faster with temperature. Atlow temperatures, the
specific heat goes as Oy = at® with a = 2, as expected, and a = 0.174Kp

both in presence and in absence of the constraint.

4 Concluding remarks

We have studied the AFM phase of the spin 1/2 Heisenberg model at all
temperatures within the saddle point approximation by fermionization of

the spin operators.
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The constraint is already fully saturated at the mean field level, because
we obtain < n; >= 1 and < n? >= 1, where n; is the occupation number
of the i-th site in the lattice. This procedure gives rise to the correct mean
field critical temperature and magnetization.

One-loop corrections to the saddle point approximation lead to the spin
wave spectrum and to zero point fluctuations that are identical to those
obtained within linear spin wave theory. This was also found within a re-
sponse function formalism but no care of the constraint was taken there[17].
We have shown that consistent use of the equation for the magnetization (
€q.(19)) and of the quadratic effective free energy of eq.(24) gives the same
result for these quantities as the corresponding ones when the constraint is
disregarded. However, the thermodyndmics is heavily changed to the same
level of approximation, when the constraint is accounted for. This is because,
when the partition function is evaluated including the quadratic fluctuations
around the static saddle point, the contribution due to the constraint acts as
an entropy term, to account for the restriction of the allowed configurations.

One of the outcomes of our calculation is that, although no variational
principle is valid for the saddle point action in presence of the constraint,
by including one-loop corrections we obtain a free energy which has the
correct temperature behavior. Our free energy accounts for the depression

of the longitudinal thermal fluctuations due to the constraint. The power
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law temperature dependence of the specific heat for ¢ approaching zero is

conserved, as expected from the spin wave spectrum.

5 Appendix 1

Mean square occupation number < n? > .

A crucial check of our method to include the single site-occupancy con-
straint is the evaluation of the mean occupation number < n; > and of its
mean square fluctuation < n? >. It can be easily proved that < n; >=1
at all temperatures[14], but we cannot in general prove the corresponding
relation: < n? >= 1. Here we show that, at the saddle point, when the con-
straint is taken into account, the mean square occupation number < n? >,
is exactly equal to one.

According to eq.(11) we write symbolically this quantity as:

2
<0l >ep= < 9 e >0

0z?

e a

where
E(Z) = Seff(z) - Zln 4B,-(z). (47)

Sess is defined in eq.(10), while the full expression for the constraint is

_ 8%Ses; 0S5 (0Sess 2
Bi(z) = Hz2 -2 Oz; T\ 8z (48)
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which becomes eq.(12) when z; is set equal to zero, due to the fact that

e 825,
%{L 0 = —TT{XP,} f—t ——1 a.nd that -——3—212& o = TT{XPiXPi}-
In the absence of the constraint we have:
02Ses s 1
<n?>% =1-— =14 — 49
n; 3.p. ( 8212 Z:O> + CQsh2 M/t ( )

< n? > is one only at zero temperature because the saddle point satisfies the
constraint and no classical (static) fluctuations survive. At the critical tem-
perature, when M is zero, it reaches the value 3 /2 due to the equiprobability

of occupations.

8%s it

Including the constraint we have: (62252_
1 ]

) = 0 and consequently
z=0
8B
(5

) =0, so that:

2 — 1 Y Veff E :__ J
ST Zep. ! < ( 3z? Bj 5’2,-2 )

J

2=0

=1. (50)

z=0" s.p.

The last identity follows from the saddle point evaluation evaluation of:

0°B; _ 0'Sess (azseffy

(51)

022 022073 0z;0z;
In fact:
0'Sess 0*Sesy s
<0z38z§~ > 0 <”5“‘ ) e 52)
0?Sess B 0%Sess
<azi3zj z=0> - <61J 0zF | _, =B-1 . (53)

and eq.(41) has been used together with the explicit expression of B (eq.(17)).
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Figure 1

Temperature dependence of the magnetization. The full curve is in the
presence of the constraint. The broken one is for the unconstrained case.

The mean field critical temperatures are indicated by the arrows.



(b)

(55)?

Figure 2
One-loop corrections. Diagramatic representation of: (a) Sgc)f; (b)second
variation of the constraint contribution, §?B ; (c) first variation,6 B. The

symbols are explained in the text.



Figure 3
Temperature dependence of the specific heat for the AF phase. The full

curve includes the constraint while the broken ones does not.
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1 Introduction

Non magnetic phases have been proposed as metastable states of the spin
1/2 antiferromagnetic (AFM) Heisenberg hamiltonian on a square lattice
in two dimensions (2 — D). In these phases the spin rotation symmetry is
unbroken, but a discrete lattice symmetry is broken.

Since the work by Fazekas and Anderson[l], [2], [3] dimer phases[4] and
valence bond phases are widely studied, together with the flux [5] and chiral
phases[6] which could be relevant particularly when frustrating interactions
are added to the hamiltonian.

Numerical calculations[7] and series expansions [8] ,[9] of the spin 1/2
frustrated antiferromagnetic (FAFM) Heisenberg model seem to confirm that
dimers can be stabilized. The interest in these phases has been triggered by
the physics of doped antiferromagnets, as is the case of the high T, super-
conducting cuprates.

In fact doping or frustration disfavour the AFM ordering and could lead to
a realization of the so called ”spin liquid” state[6], which is actively searched
for.

In the unfrustrated case, there is various evidence[10] by now that quan-
tum fluctuations are not strong enough to destroy the AFM long range order

in the square lattice system, at zero temperature. However, it has been



claimed that dimer phases can play an important role in the SU (N) exten-
sion of the Heisenberg antiferromagnet with n.n. exchange interactions[11].

Among the various solid superstructure of dimers, the staggered dimer
phase keeps the translational symmetry along the diagonals of the square
lattice, while the columnar dimer phase arranges the dimers into columns
(see Fig.1). The two arrangements are degenerate at the mean field level,
but quantum fluctuations lift the degeneracy in favour of the columnar phase.

In the SU(2) case, link variables like the ones describing dimer phases are
most easily represented if fermionization of the spin variables is performed[12].
However this requires the restriction of the Hilbert space to states in which
each site is singly occupied. This restriction is also crucial when the Hubbard
model is considered in the limit of large correlation U .

In Part I of this. work we have discussed the finite temperature proper-
ties of the Néel phase using fermionization and implementing the constraint
within the saddle point approximation. It is found that, while the spin wave
spectrum that is obtained from one-loop corrections is not affected by the
constraint, the thermal fluctuations are strongly depressed by it. This is
apparent in the temperature dependence of the specific heat.

In this Part II we consider the temperature properties of the dimer phases
within the same approximations. It is shown that thereis a large contribution

due to fluctuations to the saddle point energy value, although their size is



reduced also at T = 0, when the constraint is taken into account. The
last feature is at difference with the AFM case and 1s intimately connected
with the breaking of the U(1) gauge symmetry which follows from the non
vanishing of a dimer order parameter.

The zero mode are accompanied by finite frequency modes for which the
correction due to the constraint is present also at T' = 0.

Because the degeneracy of these modes is different between the the colum-
nar and the staggered phase, the quantum fluctuations lower the energy of
the first one with respect to the other.

Unfortunately we find that the quantitative result is unsatisfactory. This
is because fluctuations shift the zero energies of the dimer phases to values
that are lower than the accepted AFM ground state.

In fact, were the Hilbert space of available states properly restricted, the
zero point fluctuations would be further depressed and final energies would
be higher as expected. This confirms that the constraint is even more crucial
in studying the dimer phases than the AFM phase and shows that the saddle
point approximation gives unreliable quantitative results expecially at zero
temperature.

At finite temperatures the presence of the constraint is quite effective
in reducing the thermal fluctuations. The mean field critical temperature is

increased and the curve of the specific heat versus temperature is much lower



than the corresponding one when the constraint is disregarded (see Fig.3).
Consequently, addition of the one-loop corrections to the saddle point
action provides a physically meaningful approximation to the free energy at
finite temperatures.
In sect.2 the mean field results are summarized[13]. In sect.3 ( and the
Appendices) the one-loop corrections are evaluated for the staggered and the
columnar phase and the free energy is presented. In sect.4 the quantitative

results are analyzed and discussed.

2 Non-magnetic decouplings: dimer phases
We start from the Hamiltonian:
H,=JY 55 . (1)

The sum is over ordered n.n. pairs of sites in the lattice. Altogether there
will be 2N such pairs for a 2D square lattice with N sites.
Fermionization of the spin 1/2 operators (S", = Y ap ¢l Fapcip) directly

leads to:
J J
H, = —— Z Zciaciac},ﬁc;ﬁ — =N . (2)
2 (i) b 2

The last term in the Hamiltonian will be ignored for the time being.
The representation of eq.(2) is exact provided that the fermionic Hilbert

space is restricted to states with single site occupancy.



Following the method of Part I, the projected partition function is:

z-T11 %(2 _ %)Z[z] . (3)
with
Z[2) = Tr{e Mot 2mini} (4)

Our task is now to evaluate Z within the saddle point approximation.
In view of discussing the non uniform phases first introduced by Affleck

and Marston[5] we single out the operators:

Usi(r) = ¢} p(T)cis(r) (5)
¢
and use the Hubbard Stratonovich decoupling to integrate out the fermionic

fields by means of auxiliary fields U;;(1) that obey both periodic boundary

conditions in 7 and the hermiticity condition:

Uy(t) =Uu(r) VY €0,1] (6)

After Fourier transforming with respect to the time variable, the generating

function becomes:

2z = N [ T Dths exp{—r 3 3| Uis(Q) '}
(1.9) (ig) ™

-exp{2T7 In[1 + G.U"} (7)
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where Q,, = wp — wnr, with w, = (2n + 1)r. The trace appearing in eq.(7)
sums over site and frequency indices and the factor of two in front of it comes
from the sum over spins.

The matrix 4% has elements:

, 1/2
(Ud),.n = 2i0pn0i; — (Zr%) U i (D) (8)

ij

U9 is hermitian (i.e. (Z/{d)?j’"l = ((Z/ld)?,-”")*), what restricts the indepen-
dent variables of the functional integration only to those with non negative
frequencies Q,,. Using eq.(3) and re-exponentiating the extra factors appear-
ing in the path integral, we obtain the following expression for the partition

function:

2= [ 1] T Dths(2n) )

(i,5) m20

and the total effective action F.yss is given by:

BFess=m 3 > | Usi(Qum) [ +8eps U] = 3 I 4Bi[ld] (10)

(i,7) m>0

where the effective action in the absence of the constraint is given as a func-

tional of the Gaussian random fields ¢/ as:

SesslU] = —2T71n[1 + G,U) (11)

with (G;* f}”' = 4wnb; j6nn. The contribution of the constraint, B;[l{] is

expressed in terms of x = (G +U?)™! as:
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BiU) = 2Tr {xPix P} + 4Tr{xP} — 4 (Tr{xP:})’ (12)

Here we have introduced the projector P; onto the 7 — th site of the lattice
whose matrix elements are: (F;);x = 6;x0i;-

The static mean field columnar and staggered dimer phases [4],[5],[13]
can be described in terms of four complex (oriented) link variables which
we call U; for the staggered phase and V; for the columnar phase. They are
depicted in Fig.1. Complex conjugation of one link variable implies reversing
the arrow of the corresponding link. They are found as saddle points of
eq.(10)as reported in the rest of this Sectiomn.

For a static U the traces in eq.(11) and eq.(12) can be performed by means
of a suitable basis as shown in Appendix 1. All the relevant quantities turn
out to depend only on the eigenvalues E; of the matrix i that are defined in
Appendix 1. In particular, eq.(12) becomes site independent. From eq.(10)

the total effective action, which takes the same form for both phases, reads:

_ Feps
fess = N

2 2 . . 1
= S |di|? —Nz -ﬁ—jm[e Be/2 4 goB-/2] — ZﬁlnB (13)
k

where: d; = d;/BJ (cVi/BT) (i =1,...,4)( ¢ = y/7BJ/2). The static

configurations that minimize the r.h.s. of eq.(13) correspond to having just

1
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one of the d;’s fields different form zero (d, =d ,d; =d3 =dy =0, e.g.). In
this case the saddle point is degenerate for the two phases.

The degeneracy is lifted however when one loop corrections are included.
That is what we will do in the next section.

The temperature dependence of the order parameter d is given by:

d= %tanhd/%—t— —;— —6—1113(:13)

52 (14)

z=d/t

with cE(k) =d/t (t=1/8J) and

B(z) = 1+42Tr{xPxP}=
- 1 (tanh(m/2) N 1 )

2 z 2 cosh?(z/2)

(15)

The mean field transition temperature to the dimer ordered phase is increased
by the second term on the r.h.s. of eq.(14) from ¢, =1/4 to t.=5/12 [13].
At zero temperature the total effective action of eq.(13), when evaluated at
the stationary points, gives back the values of Ref.([5]) for the energies of the
two phases: fU;;(t = 0) = —1/4. Because B — 1 in the zero temperature
limit, it is apparent from eq.(13) that the unconstrained value for the free
energy is not changed at the mean field level at ¢ = 0. This is because the
saddle point satisfies the constraint in the average automatically. Adding
back the extra constant term appearing in the hamiltonian, the energy, when

the constraint is satisfied only in the average, becomes f3;,,.., = —3/4.
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However this does not correspond to strictly projécting out empty and
doubly occupied states. At zero temperature this can be done by hand as
shown in Ref.([5]), noticing that the independent dimers of the mean field
configuration, when projected, become a collection of spin singlets with a
total energy per particle funglets = —S(5+1)/2=-3/8.

This is half the value of the previqus estimate, at the same level of ap-
proximation. This shows already that, if the constraint is té,ken into account

only in the average, the variational energy lowers too much.

3 One-loop corrections

By including the one-loop corrections in the evaluation of the path integral,
we take into account field configurations that allow for fluctuations of the or-
der parameter around its mean field value, at the gaussian level. We find that
the resulting free energy has the correct temperature dependence. On the
contrary eq.(13) increases with temperature at low temperature and cannot
be considered as an approximation to the thermodynamical potential.
From now on we denote by u the variation §U of U (we tacitly refer also to
Y for the columnar phase whenever no confusion arises). The second variation
F@) can be expressed in terms of the complex deviations: u,(ﬁ;,r) (I =
1,4) of the U’s from the saddle point value and of their Fourier transforms

u,(@,Qm). Here R; spans just one of the sublattices (e.g. the "black” sites

10



of Fig.1) while @ is in the corresponding reduced Brillouin zone.

Instead of varying all the If; ;’s for every pair of sites, we choose to vary
the U only, so that variations with any frequency {0, and transferred mo-
mentum é are allowed but they are only restricted to nearest neighbor cou-
plings. Complex Fourier transformation implies that: (ul(—@,——ﬂm))* =
u;‘(é, ), where u;‘(@, Q) is the Fourier transform of (w(¢,7))". This can
be viewed as a definition of u](Q,x). Moreover, the hermiticity condition
w(Q,0m) = (w(Q,—m))" restricts the independent variables to those with
non negative frequencies. Expanding up to second order in the deviations
the total effective action in eq.(9), we find:

Z=c*" [ 1] T] duf(Qduf(Q)e™ (16)
Gm>0i=14
where uf* and u! are the real and imaginary parts of u;, Q = (Q OQm)

F = FO + F® and

ﬂg:&) =73 3 Z | w(Q,m) |? +Sg‘)f - -Z (523’1? (5§i) ) 0

Q m>0

The first term in F?) becomes:

The one loop correction to the effective action (see Fig.2(a)) is given by:

J
s = Tefpeutpy="27 DN ILMC

kg m pv

<k | u() v >< g | u(-0) [Rp > (18)
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Here we have defined the function ®,,(m) as:

1 1
twy — pdft iw, — iln — vd/t

@p,,(m) = Z

n

(19)

and we have chosen the basis in which x is diagonal. This is the one in which
p(v) = =+ labels the energy eigenvalues, Ey, of the matrix # (V) which are

reported in Appendix 1. They correspond to the eigenstates:
|kt >= [| k,b> e [ kyw > /V2 (20)

The indices b and w label the ”black” and ”white” sites according to Fig.1
(see Appendix 1).
The sums in eq.(19) over the internal Fermi frequencies can be performed

easily. The result is:

1
o = —bmo—5 21
I—lvu(m) 104 COSh2 d/z_t ( )
tanh d/2t
Oy (m) = 2—4(-m) = 5077 - (22)

The matrix elements of u for the staggered and the columnar phase and

the wave vector sums are given in Appendix 2. The latter depend only on
G-F-q

The result is:
Sg)f = WﬂJZQ: {@++(O)G+(é, [u])
L5 (0 (m) + 81 m) 6-(@, 0D} (23)

12



For the staggered phase, G+ is given by:

GL(Q, ) = {}: (1u(Q) P+ L us(~Q) P) +
£ (r(Qua(~Q) +ur(Q)'wi (-Q)) | (24)

while, for the columnar phase we have:

1(Q, [v]) = GL(Q, [v]) £ {v4(Q)vs(Q)" + v4(~Q)™va(— Q)+
+v3(Q)v4(Q)" + v3(— Q) u(-Q)} (25)

As it appears from eq.(25) the columnar phase shows an additional mixing
of the third and fourth component of the order parameter with respect to
the staggered phase.

Because both functions Gy are symmetrical under the interchange of
Q < —Q one can express the prefactor of the second term on the r.h.s. of

eq.(23) by means of the real quantity :

tanh d/2t

B(lml) = — 5 (8- (m) + 34(m)) = 2472 . (26)

thus yielding:
Sy = 27 X0 {BT814(0)G (G, [u]) — 2 Tmz0 B(m)G(Q, [u])} (27)

We postpone the evaluation of the effect of the constraint until the end of

this Section.
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The result of the gaussian integrals of eq.(16) can be immediately ex-
pressed in terms of the eigenvalues of the quadratic form F?). There are 8
eigenvalues of the matrix of the complex components of the fluctuation for
each frequency[15]. They are independent of Q.

Due to its block form, it is very easy to diagonalize the matrix. We
list the eigenvalues in Table I, for both the staggered and the columnar
phases. Their expressions for the two phases coincide but the degeneracies
and the admixtures of components of the fluctuations change. In Table I the
degeneracy is also reported as well as the admixture of components which
characterizes the fluctuations.

There is one zero mode for both the staggered and the columnar phase,
which corresponds to an overall change of the phase of the component of the
order parameter u;(v;). In addition to this, the columnar phase has a flat
second variation of the action for two modes which imply small changes of the
real (imaginary) part of v3, v, in an opposite way. Quartic corrections should
be added to stabilize the effective action with respect to these variations.

The zero mode integration[16] gives raise to the prefactor Cc° = (2d(27rﬁ] W Z)N/Z
to the partition function. In terms of these eigenvalues the result for the par-
tition function of the staggered dimer phase is:

7= e 70 T (4(m=0))  (y(m=0)" [ 3(m)°(i(m)”

g>0 §>0,m>0
(28)
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The free energy per particle in units of J is:

== tme S magm) 4 3 mAim)+ 20 X(m = 0) . (29)

N m>0 m>0

The prefactors are the degeneracies of each eigenvalue, divided by 4. The

frequency sums are easily performed, yielding:

> Il Aj(m) = > In (1_@;{:___@> :m(%>

m>0 m2>0
4d> d/t
3 —_— _— :]_ 0
£ =2 (- gevam) = () @

Note that the term ¢ Int due to #InC® is compensated by an analogous
term in eq.(30). Therefore, the specific heat is well behaved for temperatures
going to zero.

The contribution of quantum fluctuations at zero temperature to the free

energy is :

d

Afi(t=0)= —Z-—G-g(l—l/\@) (31)

Going through similar steps, one gets for the columnar phase :

t 3t t 3t
f=f—=hC+=> InA{(m)+ 2 > InAj(m)+ —InAj(m = 0) (32)
N 4 m>0 2 m>0 4

N,
with C°¢ = (23d(27r/t)3/2) . The flat modes, being indistinguishable
from the zero mode at this level of approximation, have been integrated out

in the same way. This is the origin of the power of three in C°.
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The zero temperature limit of Af = f — {9 for the columnar phase is:
3d d
Afc(t:O):——Ll—-2-zl-(l—1/\/§) (33)

This result, first derived by Read and Sachdev[4] within the 1 /N expan-
sion, implies that the degeneracy of the staggered and the columnar phase is
lifted by quantum fluctuations and that the last one becomes energetically
favoured.

The eigenvalues that contribute most to lower the energy for both peri-
odicities are A?°(m # 0) . These correspond to the zero mode, when m = 0
for both phases. However, in the case of the columnar phase there are two
more flat modes at m = 0 , which have the same eigenvalues at m #0 .
Esséntially, they are responsible of the lifting of the degeneracy and of the
fact that the columnar phase is lower in energy than the staggered one.

Now we come to the discussion of quantum fluctuations of the constraint.
The latter appears in the free energy expression of Eq.(10) in the form of

3 .1n B; so that its second variation is given by:

1, 1 §2B; (6B’
5 ;hlBi:é-Zi:( B (—B—) ) (34)

where:

§B; = ATr{xPrxPixSU"} , (35)
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62B; = 4 (2T {xPox PoxSUXSU"} + Tr{x PixSU'xPoxU'}) . (36)

Because there is a single 64¢ in eq.(35), the trace does not allow for
any change of frequency, so that the second contribution to eq.(34) is static
(2 = 0). In Fig.2(b) the diagrammatic representation of §B; is sketched.
The wavy line represents 6% , each full line is a propagator Xx and the
broken lines represent the projector P; viewed as an external perturbation.
The first and second contributioﬁ to the r.h.s. of eq.(36) are sketched in
Fig.2(c) and Fig.2(d) respectively, while Fig.2(a) is the representation of the
second variation of the effective action Sg)f The corresponding analytical
expressions of eq.(35) and eq.(36) are reported in the Appendix 3.

Following the same lines as in the evaluation of the second variation of
the effective action we end up with a fluctuation matrix to be diagonalized.
The full expressions of the eigenvalues including the constraint are listed in
Appendix 3. The contribution of the constraint to each eigenvalue takes
the same form for the staggered and the columnar phase. In particular, the
second term of the r.h.s. of eq.(34) just contributes to Az for m =10 .

We report here just the zero temperature results. For the staggered phase
we get:

1

Afi(e=0)=~24(1~ =) (37)
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For the columnar phase the result is:
Afe(t =0) = ——g~d(1—1/\/§) (38)
Comparing these results with those of eq.s(31,33), we note that fluctu-
ations are depressed due to the presence of the constraint, which, in the

zero temperature limit affects only the contribution of the singly degenerate

eigenvalue A;.

4 Discussion and conclusion

In this paper we have shown how to implement, at all temperatures, the
single site-occupancy projector needed to 'represent the spin 1/2 operators in
terms of fermion operators and Pauli matrices. This representation is a very
natural one in describing non magnetic phases of Heisenberg hamiltonians
such as the dimer phases studied here or the flux or chiral phases[5], [6].

At the saddle point level of approximation we have shown[14] that our
method guarantees that < n; >=1 and that < n? — 1 > deviates from zero
less then 10% in the whole range of temperature ¢ € [0,%.] when the dimer
phases are considered.

The relevance of the projector can be easily seen from the zero temper-
ature mean field results for the free energy. In fact the isolated spin singlet

free energy value is recovered only when the single site-occupancy projector

is taken into account.
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Quantum and thermal fluctuations around the dimer saddle point have
been evaluated within one-loop approximation. The need of accounting for
quantum fluctuations is a very well known fact in the study of the 2 — D

= 1/2 Heisenberg model. As previously shown in Ref.([4]) they lift the
degeneracy between the columnar and the staggered dimer phase.

By including the one-loop corrections to the free energy in thé presence
of the constraint, we obtain corrections to the mean field energy that are
Af* = 0.293 for the staggered phase and Af® = 0.396 for the columnar
phase, to be compared with the unconstrained results, Af$ = 0.345 and
Af¢ = 0.448 respectively. While there is an improvement of the result, in
that zero point fluctuations are reduced appreciably due to the constraint,
the quantitative result is still unsatisfactory. In fact, the energy of these
phases turns out to be lower than the energy of the AFM phase[10] which is
accepted as the ground state.

This is due to the fact that while in the AFM case, in which the mag-
netization acts as a local order parameter, our method guarantees that the
constraint is fully satisfied at the mean field level (< nf —1 >= 0 at all
temperatures (see Part I of this work)), this is not the case in the dimer
phases. Here the unconstrained mean field hamiltonian would be an hopping
hamiltonian and our method to implement the single site-occupancy con-

straint only guarantees a variation of less than 10%. One-loop corrections,
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even in the presence of the constraint, are not enough to compare ground
state energies when different decoupling schemes are adopted.

On the other hand, in our method the constraint behaves as an entropy
corrector at finite temperatures, giving origin to a well behaved free energy
only if one-loop corrections are added to the saddle point total action. This
corrects the fact that, as one can see from Fig.3, the specific heat obtained
from the saddle point approximated free energy goes negative at low tem-
peratures (broken curve). The specific heat is strongly reduced due to the
constraint inclusion. Lowering the temperature, it exponentially decays to

zero due to the presence of a gap d in the excitation spectrum, as expected.

5 Appendix 1

The non vanishing order parameter changes the periodicity in the lattice.
In Fig.1 the filled circles are denoted as black sites (b), the empty ones as
white sites (w). The single particle states | I,k > are eigenfunctions of the

translation operators Ty
T, gl b >= e 0 |1,k > (39)

Here k is in the RBZ and [ takes the two values ”black” or "white” (I = b,w),

labeling the two sublattices respectively. Their projection onto the Wannier
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states labeled by the site index 1 (z = b,w) is:

12 _ikR:
< ’LIl,k >= vaeﬁsz’ il - (40)

In this basis the matrix elements of the projector P; are:
7 7 2 i(h—E)R;
<lLk|P|rh>= N 01,r01,5 (41)

that is, they are diagonal in the I indices.

The appropriate periodicity has to be chosen according to each phase.
Here we follow the notations of Ref.([13],[5]).

Staggered Phase :

Periodicity in the direct lattice is along the diagonals: @ = £+7, b=i—7.

The matrix elements of & in the | [,k > basis are:

<bk|U|bh>=<w,k|U|wk>=0

<bk|U | w, b >= 6z (k)

where:
AE) = Uye™ + Ufe ™ 4 Use = 4 Yreitv (42)
The lattice constant is taken to be unity. The eigenvalues of the matrix
are Ex = + | A(K) |2
Columnar Phase :

In this case the translation vectors are: @ =27 ,b=7 .
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The matrix elements of V can be deduced from Fig.1b):

< B RV bk>= e phalky) = 85 5(Vae™ + Vie™™)
<w,k|V]| w,h >= 8z pha(ky) = 5];,5(],48*,, +yreih)
< bR |V | w,h >= 8 pho(ks) = Ggg(Vae™s + Vie™™)

<w, k| V| bk >= bz X5(ks) (43)

The eigenvalues of the matrix V are By = (As+As % \/()\3 — A2+ | Ao 12)/2

6 Appendix 2

When performing the traces to evaluate the fluctuations, it is convenient to
choose as working basis the one that diagonalizes the propagator x . This
is here denoted by |ka > of eq.(20), with o ==+ corresponding to the
cigenvalue Ey of the matrix (V) (see Appendix 1) and is given in eq.(20)
of the text:

| bt >= [ k,b> ke ™ | kw >| /v2 (44)
The matrix elements of the fluctuation U in this basis are (a,f = =+ )
1 : .
< ka | 8U(m) | ¢B >= 5(< kb | +ae*s < kw |)6U(m)(] gb > +Be" | qw >)
(45)
The matrix elements of any matrix U in the site indices become:
<ka|U|gB>=
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1 . ) ]
= '85 > e < kb|i> Ui <3| quw > 8iplackbjwhite +
.7
+ae®™ < kw|i> Uy <j|gb> 8iwhited)plack

= L > Be i)k {(Ui,i—l-a + U; i_ge 2=

t black
U ippe 0o ) 4 T i—be—i(qrﬂy)}
1 . ) .
+v 2 e 8 (U0 5+ Uja 56"
7 black

+Uj+b,j€i(k“_k"”) + Uj—b,jei(kr*_ky)}

Now we assume that the only non vanishing matrix elements are those con-
necting nearest neighbors. To proceed, we specialize the matrix elements of
the fluctuations of the link variables U;(z) (I = 1,..,4) for the staggered and
the columnar phase according to Fig.1. Collecting the two sums together we
have:
Staggered Phase:
<holUlgB> = 3 IR {(UF(0) + U ()
i black

+ U4(i)e—i(Qz—9y) + Uz(i)e——i(q2+qy)} +

+a{Ui(3) + Us(i)e™™ + Uj(i)e'*="") U; (i)e'k=+h}

Defining the symbol Q = (@,Qm), where Cj =k — g is the transferred

momentum, we introduce the Fourier transformed fields:

2

u(Q) =1/

> e R (i, m). (46)

1 black
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They are complex and we will use w(Q) =1y R(Q)+iu[(Q) as well as w(Q) =
(w(Q))" = »f{(Q) - iuf(Q). We obtain:

1 : :
< ko | U(m) | g8 >=P = {Uq(—Q)* + +u3(_q)*e—2;k,em@y
+ u4(Q)e—i(k’”ky)ei(Q=_Qy) + UZ(Q)e—i(szCy)ei(Qz-}-Qy)}

o {ui(Q) + us(Q)e™ + uy(—Q) el 4 up(— Qe }

Performing the sum that appears in eq.(18) of the text, over the internal
momentum k of the product matrix elements, only the terms that are diago-
nal in the component indices i survive due to the orthogonality of the plane

waves, yielding for the staggered phase:

> < kal|éU(m)|qB><4qb | 6U(—m) | ka >=
kg

=% { Y (1@ + [u(-Q) 7) +

B [ (Q)u(—Q) +wa (Q) ur(—Q)}
- Z G ﬁ(Qv (47)

where a,8 = & . Hence eq.(24) of the text follows.
Columnar phase:

In the case of the columnar phase, the same steps as before can be fol-

lowed, obtaining finally:

< ka | §V(m) | gB >=
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wlw {0,(Q)e™ +3(Q)e™ + B (v2(Q)e™ +v3(Q)) +

+ o (3(Q)e +v1(Q)) + o (va( Q)™ +v3(Q)e™™) }

which implies that:

S <kal|dV(m)|q8><q¢B|8V(-m)]|ka>=

k,q

- EZ{Z (Io(Q) P + 1 9(-Q) [)) +
J 1=1,4

T - Bl(Q(Q) +vi(~Q) (- Q)

+v3(Q)v4(Q)* + va(— Q) va(— Q)+

+v1(Q)v1(—Q) + v1(Q) v (—Q)*]}

This suggests the definition of eq.(25) where eq.(24) is also used.
7 Appendix 3

The contribution of the constraint to the fluctuations is given by eq.(34) of

the text:

1, 1 [8B;  (8B;\’

58 ;mB,._é-zij(Bi _(B;) (48)
with &B; given by eq.(35) and sketched in Fig.2(b) and with §6°B; =
§2B™M + §2B®  given by eq.(36)and sketched in Fig.2(c) and Fig.2(d). We

give here their analytical expression.
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The following functions are required:

bay(0) = Z; Xa(wn) (; Xc(wn)> X+(wn)
apy(m) = ; Xa(wn)X6(wn )X (wn)xs(wn — Om)
Yig(m) = ;xa(wn)m(wn)xq(wn — Q) xs(wn — Om)
where we have defined xa(wn) = [iwn — ad/t]™" (a = %) .In terms of these

functions we have:

S (B) = T3 D(1+aByb)bayas-

: afyé  Q

Ao u(~Q) + 7w (@B - (@) + 51 (~Q)
(49)
and dividing the two contributions to §2B; = §2B{") + §2B{"):
§2BM) = 8Tr{xPixPixsU*x6U"} =
= 322 2a(m)C
where Gu.s (-8 = +)is given in the text and the superscript s,c refer to

the staggered (eq.(24)) and the columnar phase (eq.(25)) respectively.

Finally:

§2B® = 4Tr{xPx6UxPix6U'} =
= 3 (1+aPr8)3l(m)-

2t L2

afy

%% [’Y "“1("@)* + 8- ul(Q)][a ’ ul(Q)* + 5°u1(_Q)]
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We list here in the following the eigenvalues A including the constraint of
single site occupancy, corresponding to those of Table I. We omit a factor of

7 in each eigenvalue, as we do in Table I . Use will be done in the following

of the definitions (with z = d/t) :

1
a= ﬂgtanhm/Z

b = (4z cosh® z/2)™"

A(m) = (22)" — (iQn)"

_ 1 [tanhz/2 1
B—1~2 T 2 cosh® z /2
E(m) = %—:i(tanh z/2)/A(m) (50)

The last two eq.s coincide with eq.(15) and eq.(26) of the text, respectively.

The gap equation reads:
l—za— ——=——=10 (51)

with 6B/0z = a — b+ 2z3ab.

We get:

1 4z OB 8z i N2
/\1(m) =1 E(m) — ﬁ [m—é; + W(zﬂm) al =
— (igm)2((7'ﬂm§2_ 72)

where 7% = 4z? [2 —za (1 4 2%) + f—;%‘g] and the gap equation has been
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used in the last identity. The eigenvalue Ag(m) is:

/\2(m):1—%E(m)——5m,om—t—m§}2(m) (52)
with:
U B SRR AP .U il
Rom) = Gy~ &m0 T P AwmR
42 a B a(Z:ciQm)z
(A(m))?2 (A(m)P
Finally:

2tanhz/2
dBA(m) (m #0)

2
A3(0)=1-mb—%R(0)+ L 05, 1 (aza)

Az(m) =1+

otB 0z = 2tB% \ Oz
In the limit of zero temperature the last two eigenvalues are unaffected by the
constraint. As(m)becomes unity while Ay(m) — (22 — (iQm)?) / (42” — (192m)?).
Next Ay(m) — (i0m)? ((:2m)* — 827) /A? while it goes to (iQm)?/A when

the constraint is not included.
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figure 1

a) Pictorial representation of the link order parameter in terms of %4 Uy, U, U,.
Periodicity is along the diagonals. Reversing the arrows implies complex con-
jugation. Black filled sites are named "even” in the text.

b) Pictorial representation of the link order parameter in terms of Vi, Vo, Vs, Vs.
Periodicity is doubled on the x axes. Reversing the arrows implies complex

conjugation. Black filled sites are named ”even” in the text.



(a) (b)

Y

figure 2

Diagrammatic picture of the one loop expansion. Wavy lines are for the
fluctuating fields and continuous lines for the propagators x defined in the
text. The on-site projector P; is depicted as an external potential with a
dashed cross line. (a) effective action contribution ; (b) §B contribution ; (c)

and (d) §2B constraint contributions



Cy(T)/ksT

figure 3

Specific heat over temperature vs. temperature. The solid curve is in
presence of the constraint and adding quantum fluctuations. The dotted
dashed curve is without quantum fluctuations and shows the wrong behavior
at low t described in the text. The dashed curve, reported for comparison,

is in absence of the constraint and adding quantum fluctuations.



A(m#0) | A(m = 0) | deg. | mixture
STAGGERED DIMERS
1 - -
A =1— E(m) 1-— é-&tanh 5= 0 ‘zero mode’ 1 | 21(Q),u1(—Q)
E(m) 1/1 d 1 =
f-1- 222 |1—=|=tanh -+ —5—— 6 i = 2,3,
Az =1-—5 2 (2d 200 5 T Tcosh? d/2t> ui(Q)i= 234
Ag =1 J— ———————1——— 1 ul(é):ul(_é)
41 cosh® d/2t
COLUMNAR DIMERS
‘zero mode’ 1 ’01(@): ”1(_@)
d
Af =1-E(m) | 1- 2—1& tanh 5 =0 ‘flat second 2 v?}?, ‘Uf
variation’ ‘vé, vi
E(m) 1/1 d 1 =
AC 1 7 — -] —1 —_ — 2
z=1-—— 1173 (2d 2t o T 1 cost? d/2t> »2(Q)
. 11(Q), v1(—Q)
A =1 -3 3 £of
3 4t cosh? d/2t vt
vg,‘vi
Table 1

Eigenvalues of the second variation of the effective action, as a function

of the Matsubara frequencies {0, for the dimer phases together with their

degeneracy and the corresponding admixture of the fluctuating fields. The

constraint is not included. Modes that vanish at { = 0 are explicitly indi-

cated.All the quantities are defined in the text.
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Abstract

Fermionization of the spin operators is allowed only in the re-
stricted Hilbert space of singly occupied sites. A new method to imple-
ment this single site-occupancy constraint is applied to the frustrated
Heisenberg model. This method allows to study either magnetic or
non-magnetic phases at finite temperatures. A quantitative estimate
of the relative weight of quantum fluctuations around the disordered
dimer phases and the antiferromagnetic phase is given.
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1 Introduction

In the recent past remarkable evidences for antiferromagnetic correlations
have been presented for the unfrustrated two dimensional (2D) spin 1/2 an-
tiferromagnetic Heisenberg model (with interaction J; between nearest neigh-
bor (NN) spins) on a square lattice[1]. As one can easily see, the Néel state
has a non conserved order parameter. This means that the antiferromag-
netic phase could get disordered even at zero temperature due to quantum
fluctuations. Moreover, the presence of a next nearest neighbour (NNN)
antiferromagnetic interaction (J,) that introduces frustration in the antifer-
romagnetic order, enhances the effects of the quantum fluctuations. Many
different methods have been applied to the study of the J; — J, model. Clas-
sically, this model exhibits a Néel ordered phase for Ja/Jy = a? < 0.5 and
independent Néel order in the two sublattices when o > 0.5 . It is gener-
ally agreed that there is a cross-over region, around a? ~ 0.5, in which the
ground state gets disordered by quantum fluctuations[2], [3], [4], [5], [6]. The
nature of the disordered state (or disordered states) is quite controversial.
Among the disordered states proposed there are dimerized phases in which
spin singlets are formed between nearest neighbor sites filling all the links
in the lattice. Their generalization to RVB states have been proposed as

competitive ground state candidates for the HTCS in their normal phase[7].



A method that allows for a study of ordered and non ordered phases in
quantum spin systems has been recently proposed[8],[9] and is applied here to
the Jy — J; model. Starting with a fermionic representation of the spin oper-
ators, the partition function has to be evaluated as a trace over the restricted
Hilbert space of singly occupied sites. This constraint can be implemented via
an appropriate combination of derivatives of a suitable generating function.
Within this framework, we have studied the effects of quantum fluctuations
in dimer phases for both the columnar and staggered orders. In presence of
frustration, the inclusion of the iink diagonal fluctuating fields (see Fig.1)
gives relevant contributions to the free energy. In particular we find that in
the strongly frustrated limit, i.e. when J; = J; the two dimer phases become
degenerate just as they are in the saddle point approximation. Concerning
the antiferromagnetically ordered phase the linear spin wave results[2] are re-

covered at zero temperature and the constraint is found to act only at finite

temperatures.

2 Generalized mean field solutions

The frustrated Heisenberg Hamiltonian we are dealing with is:

H=J Z §i'§j+J2 Z 5—:,5_, (1)

(i) vn (i )nnNN



where (i7)vn((27)vnN) stands for not repeated nearest (next nearest) neigh-
bor pairs of sites. The spin operators can be represented in terms of fermion

operators (ci,,c,-,,) and Pauli matrices (&) as:

—

Si = cl oFapcis (2)
acting on the restricted Hilbert space of singly occupied sites whose projector

is:

P = [ n(2 ) (3)
(n; being the occupation number operator). Due to the fact that P and H

commute, the exact partition function can be written as:

z =Tr{e? P} (4)
and can be calculated performing the appropriate derivatives of a generating

function Z[z;] as:

I

0] 0
Z= ].:.[ _az (2 - 82,’) Z[Zi] z;=0
6 a —BH . zin;
~T0g (2o B

the last equality defining the generating function. We have introduced local

; (3)

z;=0

chemical potentials z; as source terms. The advantage is that Z[z;] can

4



be evaluated with the usual techniques for unconstrained path integrals.
In particular, introducing the anticommuting Grassmann fields ¥7 (7) and
Yio(7) (7 € [0,1]) we can decouple the four fermion terms via an Hubbard-
Stratonovich transformation. Preparing for the magnetic and non-magnetic
mean field solutions we adopt two different decoupling schemes. In the mag-
netic case we introduce auxih'a.ry vector fields which play the role of the

staggered magnetization:

Mlg,7) = = B R () atbilr) (6
These are used to decouple the Fourier transformed four fermion terms of the
Hamiltonian that is: ny(q)g(q) . 5(——11) where 5(q) = 7(q) + 2a* cos g, cos g,
and y(g) = cos g; + cos g,.

In order to study the dimer link phases we single out instead the auxiliary
fields:

Uii(T) = D ¥u(m)dbja(r) 4,5 =NN
Uj(r) =3 bia(m)djalr) i,j=NNN (7)
Now we can integrate out exactly the fermions and end up with a multi-

dimensional integral over the auxiliary fields (called generically X). The

resulting effective action depends on the auxiliary fields X and on the local



chemical potential z;. The following relations holds:
)X(0) = X(1) ,

i)X(T) = T X(Qm)e ™" (Qm = 2m7)
iWi)Tr{] X [*} = Sp{X () X (=)}

and finally

Yl M(‘i’ Qm) > AFM case

Sp{X(Qm)X(—0m)} = { Yiq) | Uii () |>  Dimer case

The generating function reads:

Z[z] = / DX exp {—#Tr{| X [’} - Seps[X, 2]} . (8)

The original partition function is then recovered as:

Z = fDXeXP{—ﬂ'TT{IX iz}—Seff[X]+Zln4B,-[X]} 9)

where:

Sess[X] = =Tr{In[l + G, X]} (10)

and

B: = Tr {[xG.P]’} — 2Tr {xG.P} — (Tr {xG.P})* . (11)

Here we have introduced the free Green function G, whose matrix elements

are: (Go)zgl(z]) = (twn)16; ;6nnbap (wn =(2n+1)r ) and the projector



P;, onto the 7 — th site of the lattice, whose matrix elements in the Wannier
representation are (P;);x = 8;18;;. Finally we have defined x = (G, + X)L,

For the magnetic phase the matrix X is:

(X4FM) (%J) = —26; Z M i M(‘Jaﬂm) * Oap (12)

(Q,, = wp — wy) and because it is diagonal in site indices the traces will be

performed in direct space. For the non magnetic phases we have:

(XDIM) (z,]) Ea,g\/%—z [Z/{ij(ﬂm)5i—j,NN + anj(Qm)E;_j,NNN]
(13)

The staggered dimer phase, breaks translational invariance down to a V2 x
v/2 periodicity with two sites (black and white in Fig.1) per unit cell. For
the columnar dimer phase, the elementary cell is 2 x 1 with two other black
and white sites per cell as in Fig.1. In the two cases we have 8 different link
fields. Xpras can be easily diagonalized in Fourier space where the traces
will be performed.

Saddle point solutions are found as in Ref.([10]), and we discuss them
briefly now.

1) Antiferromagnetic solution:



- 2N
M(g,m) =/ ;t—(l — a?)M(7,0)28 x6m 0 (14)

(t = 1/BJ; being the dimensionless temperature). The saddle point approx-

imation to the free energy is:

1
farar =2M2(1——a2)——2tlncosha:—t1n4<l— —————2———) (15)
2cosh”z

where z = 2(1—a?) and M(¢t = 0) = 1/2. The last term is the contribution
of the constraint. The inclusion of the constraint is exact at this level of
approximation. In fact we find < n; >,,=< n? >,,= 1 as required by the
fermionization procedure.

2) Dimer solutions: ‘
Dimer phases correspond to the choice of U; = d\/g and all the other U’s
equal to zero as depicted in Fig.1. They are degenerate and the saddle point

free energy is:

d
o =d> —2thn qosh o tln4B (16)

WhereB:l_%(S_ar;.ﬂ_;_ 1

coshza:) . and d(t = 0) = 1/2. As one can see

the dimer saddle point free energies are totally unaffected by the frustrating
J, interaction. Constraint fermionization is not exact: < n; >,,= 1 but

< n? >,,# 1 when evaluated at the dimer saddle point. However, fluctu-



ations in the occupation number are always within 10% [11] in the whole

range of temperature. We will come back to this point in the final discussion.

3 Quantum fluctuations

The effects of the frustration can be seen by evaluating the second variation

of the total saddle point action. Here we describe in detail the unconstrained

case and report only the changes that are brought about by the inclusion

of the constraint. We denote by U the complex variations of the auxil-

iary fields. The Fourier transformed fields will be denoted by u,(Q) (u;(Q))

and v(Q) (v}(Q)) for the staggered and columnar dimer phases respectively

and by mm(y'z)(Q) for the antiferromagnetic case. Here Q = (@, Qm) and

(U(—Q))* = U*(Q). The second variation of the free energy is:

2
(2 — 2 5@ _ Ly~ (8B (85
BF o Tr{|U|"} + Sc5; ) 21: ( B; B;

where:

1
Sgc)f = §Tr{xeU}

6B; = 2Tr{xUxP;xP;}

§*B; = 2Tr{xUxPxUxP;} + 4Tr{xUxUxPixP;}

We analyze now in more details F(*)for the various phases.

9

(17)

(18)



1) Antiferromagnetic phase. We find:

s = - 3 {8,(m)3(Q) [[m*(Q)F + Im*(Q)F]

2 Q,m>0

—i8_(m)F(Q(Q + ) Im*(Q)m¥(~Q) — m!(Q)m*(—Q)]}
+2:8.(0) 2 3(@)lm(Q,0)F (19)
Q

Here: ®,(m) = Swmt—a)%‘%’_—f—g)—z—, ®_(m) = 2iQm(i_Q,,t..—€;I2}'}—lz:_‘m)—2 and $,(0) =

—L— with z = M/t(1 — o®).

Adding the free part we can easily diagonalize the fluctuation matrix and
perform the gaussian integration over Dm = [[g m [lizz,y.- dRm(Q)dSm'(Q).
In the absence of the constraint, the fluctuations parallel to 2 do not con-

tribute to the t = 0 free energy while the transverse fluctuations m?® and m?

mix as the usual spin waves thus yielding:

071/2
Afapm(t=10)= 2M‘]1VZ; (1 — a®*(1 — cos g, cos qy))2 — (1&;)) } +

—2M(1 — o) (20)

The constraint affects only the temperature dependence of the free energy.
The presence of the constraint does not affect the spin waves spectrum ex-
cept for the different temperature dependence of the magnetization. The

eigenvalue of the m* mode is given by:

10



7(a) ( 1 ( . ))
Lm=0)=x|1+—22 (1—=(2Mtanhe — ———
(m ) W[ +4tcosh2:z: B T osh? z=M/t(1-0?)
(21)

where the last term comes from the constraint. The total zero temperature
free energy is plotted in Fig.2. Note that the spin wave corrections to the
free energy give an instability for o> > 0.5. When the corrections to the
magnetization are taken into account the instability is found for a® ~ 0.4.

2a) Staggered dimer phase. We have:

<kp|U(m)+U'(m)]|qv><qv|U(-m)+U'(—m)| kv > (22)‘

where p,v = =+ and |qv > is the basis where U is diagonal[10]. The
functions ®,,(m) have the same expression as for the unfrustrated case

because they depend only on the choice of the saddle point (@,.(m) =

2on iwn—iﬂi—uw/t iwn—1u2d/t)'

Here we report explicitly only the §2,, > 0 fluctuating modes. These
quantum fluctuations give all the zero temperature contribution to the free
energy. The second variation of the effective action is:

-5 S T{ T hu@ 1@ ] +

Q m>0 pr (=14

11



B fus(Q)us(—Q) + 5( Q)i (- Q)]
(2 (QuA( Q) + w4 (Q) Q)]
b [(QUA(Q) + 15 @(Q) |} Bun(m) (23)

- Adding the free part for the auxiliary fields we can easily diagonalize the
second variation matrix. The resulting eigenvalues for the u;(Q) fields are
the same as in the absence of frustration[10]. The real and imaginary parts
of v/ and v}, mix in the same way as the real and imaginary parts of uj and
!, yielding finally the eigenvaluesvdivided by m: Ay =1 and X} = 1-a’E(m)
(here: E(m) = i—fﬁ’fﬁ%). They are four times degenerate for each value
of Q in the reduced Brillouin zone. In Table I we report the eigenvalues, their
degeneracies and admixtures.

The inclusion of the constraint does not change the symmetry of the

eigenmodes and moreover does not change the zero temperature contribution

to the free energy due to the diagonal link modes. We get:

Afsra(t=0)=—-2d(1-1/v2)—d(1-vI—0a?) = (24)

where the last term comes from the link diagonal auxiliary fluctuating fields.
The only effect of the constraint on these diagonal fields contribution is at
finite temperature. The free energy changes according to the following mod-

ification of the eigenvalues (divided by =):

12



Ay =1-— azé_(m)

N =1-a’E(m) - a*®*(m) (25)
= _d (2d/0+5(2m)? . .
where @ —5 d:, == FE(m), d+ = BiQ (éjﬁpi?g(:‘)?)a and B is the constraint

evaluated at the dimer saddle point.

2b) Columnar dimer phase.

Analyzing the second variation of the effective action we have found that
the v} and 'u“’l modes do not mix léading to the fourfold degenerate eigenvalue
Ay = 1 —a?E(m)/2. On the contrary, the v} and v}, modes mix with each

other in the following way:

S& vy, vy = Z > Em) {|vi(Q) P + | vy(Q)

m>0 Q

- [vi(Q)vx-Q)e 2 4 2(Q)y(~Q)*e' ]} (26)

The resulting 4 x 4 matrix is (defining W = azﬂgl):

% - W 0 ~WcosQ, —Wsin@,
0 % - W -Wsin@Q, Wcos@Q, (27)
~WecosQ, —WsinQ, % - W 0
—Wsin@Q, Wcos@, 0 4

Its eigenvalues are: A\; = 1 and A] = 1 — a?E(m) and they are both doubly

degenerate. The zero temperature contribution to the free energy is:

13



Afoor(t =0) = —‘—;- —d(1—1/v2) +

_g.(l_m)—d(1~ 1—"‘72 (28)

where the last two terms come from the four link diagonal modes. In Fig.3
we have plotted the zero temperature free energies including the quantum
fluctuations for the staggered and columnar dimer phases (broken and full
lines respectively) as a function of the frustration parameter a?. The dotted

line is the mean field free energy which is degenerate for the two phases.

4 Concluding remarks

We have studied the magnetic and non-magnetic phases of the 2D frustrated
J, — J, Heisenberg hamiltonian starting from a Fermionic representation of
the spin 1/2 operators. This can be done only if the fermion operators act on
the restricted Hilbert space of singly occupied sites. Implementing this pro-
jection with a method recently proposed[8], we have studied the AFM phase
and the columnar and staggered dimer phases in presence of frustration. In
particular we have studied the effects of quantum fluctuations around these
generalized mean field phases. The relevance of the inclusion of quantum
fluctuations in order to obtain the correct thermodynamical behavior has

been pointed out recently in the unfrustrated case[10].

14



By including the constraint of single site-occupancy at this level of approx-
imation (saddle point and one-loop corrections), we are unable to overcome
completely the drawbacks of unconstrained fermionization which makes the
estimate of the ground state energies unsatisfactory. In fact while numerical
studies suggest strongly an AFM ground state in the unfrustrated case[12] we
have found lower energies for the dimer phases. We believe that even if the
entropy correction term (In B) strongly depresses the fluctuations, one-loop
corrections are not enough to provide a reliable quantitative estimate of the
relative ground state energies when different decouplings are adopted[10].

Here we have reported the effects of frustration on the antiferromagnetic
phase and on the non magnetic dimer phases when quantum corrections are
added.

The dimer phases are degenerate and the free energy does not depend on
a at the mean field level. Including the quantum corrections the degeneracy
lifts in favour of the columnar ordered phase. As one can see from Fig.(3),
in the extremely frustrated limit of @ = 1 the two dimer phases are again
degenerate. This is the limiting case above which the curvature matrix of
the fluctuations acquires negative eigenvalues and the saddle points become
simultaneously unstable. Of course at this limit point a cross-over is expected
towards other dimer saddle points defined on the diagonal lattice.

At this level of approximation we have found the spin wave results for

15



the zero temperature corrections to the AFM free energy and consequently
the instability of this saddle point for a?® > 0.5.

f‘ina]ly, as expected from numerical studies[3], [4], the magnetic and the
non-magnetic phases show opposite trends for the free energies as a function
of the frustrating parameters a. While the AFM free energy increases (see
Fig.2) the free energies of the dimer phases decrease substantially, thus giving
a good chance to these phases to be stabilized in the intermediate range of

frustration, i.e. a® ~ 0.5.
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Fig.1 Pictorial representation of the link order parameter (heavy line)

and of the diagonal fluctuating bond fields in the columnar and staggered

dimer phases.



Fig.2 Zero temperature results for the mean field free energy (dotted

curve) and for the one-loop corrected free energy (continuous curve) of the

antiferromagnetic phase vs. a’.
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Fig.3 Zero temperature results for the staggered (dashed curve) and
columnar (continuous curve) dimer free energy vs. a?. The mean field de-

generate free energy of both phases is given by the dotted curve.



STAGGERED COLUMNAR

A(m#0) degeneracy mixture degeneracy mixture

v1(Q),71(~Q)
R R

)\1 =1- E(m) 1 ul(Q)1 ul("‘Q) 3 V3, Uy
J
v3,v4

2

Ap=1-— E(m) 6 ui(Q) 1=2,3,4 2 'UZ(Q)

"-’l(Q):vl("Q)
R R

Az =1 1 ul(Q),ul(—Q) 3 vBI,v?
v3,v4
w0 (Q), N (-Q) VR (Q),v5(Q)
A =1-a?E(m) 4 . e 2
w0 (@), " (-Q) #(Q),9(Q)
v}
N, =1-o?E 0 4
v,
«(Q), w1 (-Q) ()R (a)
A =1 4 2
u (), ui*V(~Q) v1(Q),4 (Q)
Table 1

Eigenvalues of the second variation of the effective action, as a function
of Matsubara frequencies Q,,, for the staggered and columnar dimer phases
together with their degeneracy and the corresponding admixture of the fluc-
tuating fields. The constraint is not included. All the quantities are defined

in the text.
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Abstract

We analyze here the occurrence of antiferromagnetic (AFM) cor-
relations in the half filled Hubbard model in one and two space di-
mensions using a natural fermionic representation of the model and a
newly proposed way of implementing the half-filling constraint. We
find that our way of implementing the constraint is capable of enforc-
ing it exactly already at the lowest levels of approximation. We discuss
how to develop a systematic adiabatic expansion for the model and
how Berry’s phase contributions arise quite naturally from the adi-
abatic expansion. At low temperatures and in the continuum limit
the model gets mapped onto an O(3) nonlinear sigma model (NLc).
A topological, Wess-Zumino term is present in the effective action of
the 1D NLo as expected, while no topological terms are present in
2D. Some specific difficulties that arise in connection with the imple-
mentation of an adiabatic expansion scheme within a thermodynamic
context are also discussed, and we hint at possible solutions.



Since its inception in the early Sixties the Hubbard model [1],[2] has
proved to be one of the most challenging playgrounds for theoretical Solid
State Physics. Devised originally to provide a model for the Mott transition
[3], i.e. for the fact that systems like the time-honoured oxide V,0; (a classi-
cal "Mott insulator”) that ought to be "bona fide” metals having a half filled
band are instead insulators and antiferromagnets, the model, despite its ap-
parent and deceptive simplicity, has become to be considered as some kind of
a paradigm for problems involving strongly correlated electrons in which one
cannot single out any kind of small parameter and hence no straightforward
weak-coupling expansions (perturbation theory, e.g.) can give any reasona.ble‘
answer to the relevant physical problems the model is supposed to embody.

The simplest, one-band, version of the Hubbard model is described by

the Hamiltonian:

H=— Zt;jCLCja + U D firha (1)

ijo i
where Latin indices label lattice sites on an arbitrary lattice, o =T,] is a
spin index (we consider here only spin-1/2 fermions), the c¢;,’s are Fermion
annihilation operators and: n;, =: cf(,c,-c,.

The parameters of the model are the on-site Coulomb repulsion U and
the hopping integral ¢;; [2]. Usually, although not necessarily, the hopping
integral is taken as a constant: ¢;; = const. =t if 7 and j are nearest neighbor

sites and zero otherwise.



That for positive U the Hubbard model can exhibit AFM correlations and
insulating behavior when there is one electron per site and for large values of
the ratio U/|t| has been known for quite some time from approximate treat-
ments of the Hamiltonian (1) [1],[4] as well as of more sophisticated versions
thereof. Actually, if one restricts (projects) the Hubbard Hamiltonian to the
half-filled subspace of the full Hilbert space, which 1s characterized by the
operator condition:

fiy =Y Mg =1 Vi (2)
then it can be shown [2],[5],[6] that to lowest (second) order in |t|/U the
Hubbard Hamiltonian can be mapped onto an AFM Heisenberg Hamiltonian.
The hopping term is completely quenched by the projection and the system
is AFM and an insulator.

The procedure of Refs.[5] and [6] can be extended to higher orders in |t|/U,
and it has been shown [7] that one obtains to all orders in the expansion an
effective AFM spin Hamiltonian.

Below half-filling, i.e. if one changes Eqns.(2) into the set of inequalities:
#; < 1 Vi, then one obtains the so-called ”t-J” model [8]. A discussion
of the latter is however beyond the scopes of the present paper, that will be
concerned only with some features of the Hubbard model at exact half-filling.

In recent years, and after the discovery of high-T¢ superconductivity in

cuprous oxides [9], the Hubbard model has been advocated, mainly by the

4



Princeton group [10],[11],{12],[13] as the most adequate model for the de-
scription of the dynamics of electrons in the Cu — O planes of the cuprates.
In this context one is led to consider the Hubbard model on a 2D lattice and
in the limit of strong coupling. |

Since the early studies of the model in restricted subspaces [14] it has
become evident that one of the major difficulties resides in a consistent im-
plementation of the relevant projections. In the case of exact half-filling, the

projector that implements the constraint of Eq. (2) is:
Pu = [Ja(2—#) (3)

We are thus led to consider a partition function defined by a restricted trace

of the form:
Z = Tr{exp[-fH] - Pas} (4)

In the strong-coupling limit we can take for H the effective Heisenberg-type

Hamiltonian [2]:
1 = —
M= JiSi 55 5 Jis = 4lts*/U (5)
ij

where the S;’s are spin operators given in the following fermionic represen-

tation:
.1 .
Si=i5 D ciadasCip (6)
o,B=T] :

where: & = (01, 02,03) are the Pauli matrices.
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The S’s close on the Lie algebra of SU(2), and they represent [2] a spin 1/2
on the doublet of states with single occupancy (on each site) and, separately,
spin 0 on the states with zero and double occupancy respectively. They
represent therefore "bona fide” spin 1/2 operators when and only when the
half-filling projection is implemented correctly.

Some of us [15], [16], [17] have devised recently a novel way of implement-
ing the half-filling constraint that we will briefly summarize here.

Taking advantage of the fact that the on-site number operators #; com-
mute with the Hamiltonian (5) for both values ( S;=0 or S;=1/2) of the local
spins, we can introduce a generating function Z[z] defined by the unrestricted
trace:

Zlz]=Tr {exp {—ﬂ('H — B! Z Zi’fbi)] } (7)
The z;’s resemble local chemical potentials. However, they are considered
here simply as real numbers with no further physical implications, and the

restricted trace (4) is recovered as:

Z = H 29% {2 - a%} Z[z] (8)

The advantage of working with the generating function (7) is that, as already

z;=0

mentioned, the trace is now unrestricted, and we can (and will in the sequel)
employ the full machinery of finite-temperature many-body and functional

integral techniques [18] for its evaluation.
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Our method of implementing the constraint is in principle exact. How-
ever, its actual effectiveness when one resorts to specific approximations has
to be tested in each case separately.

The constraint will be implemented exactly iff:
<f; >=<Al >=1 Vi (9)

In all the cases that we have studied up to now [17] we have found: < 7; >=
1 already at the level of the saddle-point approximation to the functional
integral expression [18] of the partition function, while, at the same level of
approximation, < i > was found to deviate from its exact value by at most
10% and in a rather narrow temperature range in the study of the staggered
dimer phase [17],[19].

For reasons that will become apparent shortly, we will rewrite the parti-

tion function as:

Z = exp [%w’] Tr {exp [—ﬂ ‘(H + 3NJ'>} . P,,f} (10)

8

for some constant J'.

This is of course a trivial identity. However, in the half-filled, spin 1/2
subspace where: §2 = S;(S; 4+ 1) = 3/4, we can rewrite the constant term
inside the trace as:

NJ' 5
SNJ :3J’Zsi-si (11)




All in all, this amounts to redefining the Hamiltonian as:
H = %E Ji;Si - 8 (12)
tJ
where:
Jij = Jij + J'6i (13)
The additional on-site coupling J’ will be assumed to be such that the matrix
||J;;]| be negative-definite, a property that will turn out to be essential later
on. The constant (exp[3NBJ’/8]) that we have just introduced in front of
the trace will be neglected henceforth.
The generating function of Eq.(7) can be expressed as a functional integral

over Grassmann variables [18], thus being given by:

2z = [[D¥" DY)
exp {— % /01 drpi(T)(8; — zi)YialT) — B /01 dTH(T)} (14)

where the Hamiltonian H is expressed now in terms of the Grassmann vari-
ables.

We want now to decouple the quartic fermionic Hamiltonian by using a
Hubbard-Stratonovich transformation [20],[21], [22]. To this effect, let us re-
call some elementary facts concerning multidimensional Gaussian identities.

Let A be a negative-definite N x N symmetric matrix with real entries.



Then:

exp {——i < h,Ah >} =

= {x¥|det 4]} /:{Hdz,-}exp [<2,(47)e > — < b,z >] (15)

where h and z are N-dimensional real vectors.
If, in addition, A (and hence z) carries an additional index: b — A%, a =
1,...,n for some n, then:

-n/f2

exp [—;11-}: < h%, AR >| = {x"|det Al}

[ Il =53
S {< (4" > — < %2 >}] (16)

exp

Setting now:
n=3,h =5, A=28J, a® = B¢ (17)

we obtain:

exp [—%Zf,-,-s?-s}] . {(?g—)Nldetﬂ}— [y

nfes

S NERIEIE SR, 8)

The r.h.s. of Eq.(18) makes sense only if J (and hence J~!) is negative

definite, which clarifies why previously we had to renormalize J to J.
Functional integrals are usually evaluated by performing a ”time slicing”

of the imaginary time interval [0,1]. The Gaussian identity (18) can then be

applied to each slice.



Lumping all multiplicative constants into a normalization factor NV, the
generating function of Eq.(14) can be rewritten as a functional integral over

auxiliary fields in the following form:

_N /{nd$,-(r)}exp{ > [ dr(F () ¢,(r>}2{ H{F)Y)
(19)

where:

Zlss e = [Py il {~ 3 [ drdr' Sl e, Yl
(20

and the operators A() are given by:

A7, ") = {(6, — 28, + g—gi?}(r) : &’W} §(r—7) ,i=1,.,N (21)

while the auxiliary, and normally distributed, random fields $,-(T) obey the

Bose-type boundary conditions:
$:(0) = ¢i(1) ,i=1,.,N (22)

The prefactor N can be determined by the requirement that the Gaussian

functional average be normalized, i.e. by:
o= /{H ddi(r)} exp {-‘;-Z /01 dr(J)iidi(r) - 51(7)} (23)
ir i
According to the well known rules of Grassmann integration [18]:
Z[z; {¢(r)}] = [] det Al = exp {Z Tr(ln A(‘))} (24)

10



gr, explicitly:

Zatdo = e S50 [ arimaOln} @)

where ”5p” stands for a trace over the spin indices alone.
Everything acquires a more familiar appearance if we introduce the Fourier

transforms, namely if we expand both the 1;,’s and the A(®)’s as:

YialT) = Y exp[—iwnT]thia(n) (26)

and:
AD(r, ) = > exp[;i(wn'r - wn:T')]A(i)(n,n') (27)
where: w, = (2n + 1), —00 < n < 400 are fermionic Matsubara frequen-

cies. Then it is easily seen that:

. A(i)(nfnl) = (_an - zi)auuann’ + g&',uu h gx(ﬂm) ) Qm =W — Wy (28)

and:
Sp /01 dr[ln AD)(r,77) = > expliw,01]Sp[ln AD](n,n) (29)

Before proceeding, let’s pause a moment and examine the simplest ap-
proximation to the functional integral, namely the static approximation, cor-

responding to the restriction of the functional integral to time independent

fields, 1.e.:
$i(7) = const. & () = &: - 6mo (30)
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In such a case, A() becomes diagonal in the Matsubara indices and the fre-
quency sum on the r.h.s. of Eq.(29) is easily evaluated by standard contour-

integration techniques, yielding:

Zalz; {g}] = exp {Eln [1 + %% 4 2¢% cosh(ﬂl&‘ﬂ)}} (31)
Using then Eq.(8) to enforce the constraint, we find eveﬁtually that the

static pa,rtitiori function is given by:

2. = N [{T]ddi} exp {Sessld]} (32)
where:

Suusldl =B (57 6B+ Salzcosh(Bld/2)]  (33)

The mean field approximation is obtained, as usual, by evaluating the
multiple integral on the r.h.s. of Eq.(32) by the saddle point method. The

saddle points are determined by the equations:
0S.
o
- 04
Using Eq.(13), we get the explicit form of Eqns.(34) as:

(34)

$ { 35 (B18:/ )} 22; ¥ (B1gi/2)  (39)

(a=1,2,3).
For the standard case in which J;; = J > 0if ¢ and j are nearest neighbors

and zero otherwise, and defining:

i =: J'¢; and: BJ = % (36)
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we find easily:

4o A U R G SN e 1
b {1+2Jhﬁilt h(%)}_ 2j§1.'l@l7jltanh(2t> (37)

Considering, for the sake of definiteness, a bipartite lattice, we can look

for AFM solutions of the form say:
P = 6*%(=1)llm | m = m(t) > 0 (38)

where: ||7]| =: |iz + 7,| for a 2D lattice.

Then, we obtain the self-consistency equation for m in the form:

OYIREINE. ) ) O Y 1) R

where § is the coordination number of the lattice. This predicts, e.g., a

1 J!

while, near ¢., m(¢) behaves as:

transition at:

m(t) ~ V12t (t. — t)/?, t St (41)

These expressions are regular functions of J’ ( as long as J' < 0) that can
therefore be continued to J’ = 0, yielding the standard results for the mean
field theory of a spin 1/2 AFM Heisenberg Hamiltonian.

The fact that we recover exactly the mean field treatment of a spin Hamil-
tonian implies that our way of enforcing the constraint of half-filling is exact

already at this simple level of approximation.
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We turn now to the general, time-dependent case. In order to evaluate the
fermionic determinants in Eqns.(24) and (25) we need to find the eigenvalues
of the operators A().

Dropping, for the time being, the site index, we consider therefore the

eigenvalue problem:

(8, — Olu(r) > +M(P)fu(r) >= 0 (42)
where: ( = z + A, A being the eigenvalue, and:

M(r) = 2y -3, M(0) = M) (43)

while the eigenvector |u(7) > will be assumed to be a two-component spinor

obeying antiperiodic (Fermi-type) boundary conditions, i.e.:
|u(1) >= —[u(0) > (44)

Denoting by A; the eigenvalues (as will be seen later, k is actually a
multi-index), the fermionic determinant can be evaluated (under reserve of
convergence) as:

det A = exp {Zln()\k)} (45)
k
For example, in the static case it is easy to see that:
Ble|
?

Ak = Anm = —iwn —z+ mT m = *x1 (46)
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and the sum over the fermionic frequencies (with the convergence factor of
Eq.(23) ) as well as over the spin index m yields back the static result of
Eq.(31).

It is well known that, due to the fact that the ”time” derivative 0. is
an anti-hermitian operator, "time” evolution in the imaginary time domain
is not unitary. Therefore, the norm of the spinor |u(r) > need not to be
preserved by the time evolution defined by Eq.(42), although, in view of
the boundary condition of Eq.(44), which determines the eigenvalues of the
problem, the eigenvalues will take care of the fact that the initial and final
norms have to be the same.

A formal solution of the problem can be Writfen down rather easily. In-

deed, the general solution of Eq.(42) is:
lu(r) >= " U(7)|u(0) > (47)

where, denoting by T the ”time” ordering operator in the imaginary time

domain, U (7) is the (non-unitary) evolution operator:

U(r) =: Texp {—— /T dTIM(T,)} (48)
0
The boundary condition of Eq.(44) yields then the equation:

det [|1 +eT(1)|| =0 (49)
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determining the eigenvalues. For example, in the static approximation:

2 g

U(r) =exp{—TM}; M = 55 #; ¢ = const. (50)

and it is a simple exercise to show that Eq.(49) yields the spectrum of Eq.(46).
In the general case, however, the previous approach, although exact in

principle, is of rather limited use, and we will resort here to a somewhat dif-

ferent strategy following an approach that is due essentially to Berry [23],[24].
Let’s begin by making a brief geometrical digression.

A normalized two-component spinor can be represented as:
z
|u>:l z: ‘ , 21,22 €0, | 4 |z =1 (51)

Therefore: |u >€ 5% =~ SU(2). As an element of SU(2), it can be param-

eterized in a standard way [25] as:

21 = cos(6/2) explix] , 22 = sin(6/2) exp[i(x + 6)] ,

0<f<rw , 0<yx,6<2r (52)
Asis well known, thereis a standard fibration, the Hopf fibration [25]-[27]:
U(l) —» §®— S* (53)

associated with SU(2), with typical fiber U(1) and projection map:

7:8% > 85%, lu>—aby : v =<uldlu> (54)
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Explicitly: n; = 34 p=1225(0i)ap2s, and the components of the unit

vector i € S? are given by:

ny; = 2R(27z2) = sinfcos §
ny = 25(2722) = sinfsiné ,

ns = |z1|* — |22|* = cosd (55)

Coming back to our problem, whenever q?(r) # 0, we can write M(7) as:

—

M(r) = T(r)i(r) - & , T(r) = £ “’52(7)' (56)

The unit vector 7(7) € S? specifies then the direction of (5(7') and, as T
varies over the interval [0,1], it will trace a closed path 7 on S?. We will
parametrize 7 with polar angles () and §(7) as in Eq.(55). In view of the

boundary conditions obeyed by 5(7), Wwe may assume:
6(1) = 6(0) and: 6(1) = 6(0) (57)

As the eigenvalues of a matrix of the form 7. , with 7 a unit vector,
are +1, the instantaneous eigenvalues of M(7) will be given by: mI'(7) , m =
+1. The corresponding instantaneous eigenvectors will be denoted by: |m(7) >

, m = +. Explicitly:

cos(6/2)

. ik sin(6/2)
e sin(6/2) |’ |=(r)>=¢ (

— oIX -
[+ (r) >= ™ —e' cos(8/2)

(58)
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where: 6 = (1) and § = §(r) are the polar angles of 7(7), while: x4 = x+(7)
and x_ = x_(7) are as yet unspecified overall phases that are not determined
by the instantaneous eigenvalue equation for M(7).

The instantaneous eigenvectors of M(7) are therefore normalized spinors.
As such, they belong to S® ~ SU(2). From now on we will omit explicit
mention of the time argument of the instantaneous eigenvectors whenever it
is not strictly necessary.

We recall that the Hopf bundle is endowed [25], [27] with a natural con-

nection one-form € defined by:
Q=:—i<u|du> (59)

(Q = —i3, 2%dz,). The proof that Q is indeed a connection one-form on a

U(1) bundle is standard [26],[27] and will not be repeated here. Explicitly:
Q = sin?(0/2)d6 + dx (60)
The associated curvature two-form will be:
- 1 .
F=dQ = 5 sin 6do N dé (61)

F is therefore projectable [26] on the base manifold S?, and represents the
field strength of a magnetic monopole of ”charge” 1/2 located at the origin of
S2. In other words, the connection form () correspond to the Pancharatnam

connection [25],[28] on the Hopf bundle.
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Following Berry [23], we fix now completely the phases of the instanta-
neous eigenstates of M(7) by requiring that |m(r) > be the parallel trans-

ported along the path v on S? of |m(0) >, i.e. that:
< m(7)|8,Im(r) >=0 (62)
Explicitly:
< 40,4+ >=i{B8,x+ +sin’(6/2)0-6}
< —18;|— >= 1{0-x— + cos*(8/2)0-8} (63)
For completeness, we report also the remaining matrix elements of 9, namely:

< 18,1 5= < —18, 1+ >]" = 5 explilx—x:){O8—isin 8(2.5)} (64)

The matrix elements (64) will become useful later.
The parallel transport condition leads therefore to the differential equa-

fions:
Boxs -+ sin(6/2)0:6 = 0
Orx— + cos?(8/2)8.6 =0 (65)
Integrating now from 7 = 0 to 7 = 1 we find at once:
At = x2() = x:(0) = = [ " drsin2(6/2)6,6 = — j{ sin2(6/2)d5

Ax- = —Ax+ (66)
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Finally, using Stoke’s theorem, we find:

Axe = ~Bx- = —59() (67)

Q(7) being the solid angle subtended by the portion of S? that is bounded
by v in the positive sense.

In this way we find that the parallel transport condition leads to:
Im(1) >= exp[—imQ(y)/2]|m(0) > (68)

Q(v) ( or, better, Q(7)/2) is of course the holonomy [26], or the Berry phase
[28]-[31], associated with the connection form (59).

The matrix M(7) is diagonalized by the unitary matrix:

e~ix+ cos(0/2) e i+ sin(6/2)

UT) = | e in(6/2) —e~0-+9) cos(8/2) (69)
(6= 6(r), §=6(r), x& = xa(r)), ie:
U(r) - M(r)-U'(r) =T(r)os (70)
It follows from the parallel transport condition that;
U(1) = explif(y)os/2] - U(0) (71)
Defining now:
() >=: U(r)lu(r) > (72)
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we find that |¢p > obeys the differential equation:

(8 = ¢+ T(r)os) [ (r) >=[(8:U (7)) - U (7)][(7) > (73)

with the boundary condition:

[¥(1) >= — exp[i€(7)s/2][4(0) > (74)
Explicitly, we find:

0 < +|0:|— >

(6:U(7)) - Ui('r) -7 < —18:]+ > 0 (75)

where the matrix elements < 4|0,|F > are given by Eq.(64) and the diagonal
matrix elements vanish by virtue of the parallel transport condition.

The adiabatic approximation amounts to neglecting the off-diagonal terms,
and hence altogether the r.h.s. of Eq.(73). Within this approximation the

general solution of the equation is easily found to be:

| (7) >= exp {CT — /OT dT’F(T’)O‘g,} l¥(0) > (76)

Imposing the boundary condition (74), we find the equation determining

the eigenvalues in the form:
det ||1 + exp[¢ — Tos]|| = 0 (77)
where 1 is the identity 2 X 2 matrix and:

T = /0 1 drT(r) + %iQ(’y) (78)
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The eigenvalues are then easily found to be:
Anm=—iwn—z+m1-‘;——oo<n<+oo,m:i1 (79)

It is apparent from Eqns. (76) and (79) that the norm of |¢/(7) > (and hence
of |u(r) >, which is unitarily related to [¢(7) >) will not be a constant except
in the static approximation, when: (;(T) = const. = (Z; implies that v reduces
to a point, Q(y) = 0 and: I'(7) = const. = Bl4|/2.

We can perform now the summation over the Matsubara frequencies and

the spin indices just as in the case of the static approximation, thus finding:

Z e“n0 Ip A = In{1 + &** + 2¢* cosh(f)} (80)

nm

Implementing then the constraint, the final result for the partition func-

tion, within the adiabatic approximation, is:
2 =N [{T]46:(r)}

exp {gz (j_l)ij /01 dréi(r) - gj(r)} I;[ {2 cosh (f‘,)} (81)

Again, after the implementation of the constraint, this result is the same
that would be obtained, at the same level of approximation, starting directly
from a spin 1/2 Heisenberg Hamiltonian [22].

Now we can try to iterate the scheme that has led to the adiabatic ap-

proximation.
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Eq.(73) can be rewritten as:

B, — ¢ + M(r)][¥(r) >= 0 (82)
where:
M :l _1:7* —17I‘ l n =< +|0:|— > . (83)

Note that in view of Eqns.(55,64):
[n|* = |8,7|"/4 (84)

The nonunitarity of the "time” evolution brings about one major differ-
ence with the previous step as well as with Berry’s iteration scheme. Indeed,
M is manifestly non-hermitian. We will see in a short while what are the
consequences of this fact.

As (cfr. Eqns.(64,67)) n(1) = exp(i2(~))n(0), M obeys now the boundary

conditions:

M(1) = e¥M7s/2 g (g)e~H)os/2 (85)

(while, previously, M(r) was periodic over the interval [0,1]).

The eigenvalues of M are easily found to be given by:

An(T) =mA(r);m =1, A =/T? — |p]? (86)
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Now we argue (see,e.g.,Ref.[22] for a discussion of this point) that paths that
are relevant in the functional integral correspond to non-vanishing Hubbard-
Stratonovich fields. We will also limit our analysis to the low temperature
regime of the model. This leads us to assume that: T' >> |5| for all relevant
paths, and therefore that the eigenvalues of M are real and distinct.

The main reason for restricting ourselves to the low temperature region
is that B is the ”time” the auxiliary field takes to come back to its initial
value. In an adiabatic expansion it is therefore 8 that plays the role of the
adiabatic parameter, and the expansion is expected to possibly make sense
only in the asymptotic region 8 ~ oo.

Up to now we have obtained contributions to the effective action that are
O(B) (the first term in Eq.(78)) and O(1) (the Berry phase). Our aim in
what follows will be to obtain in a consistent way all the contributions up to
terms that are O(871).

The instantaneous e.igenvectors of M will be denoted by |£,(7) >. Omit-
ting again for brevity the explicit mention of the time argument, they are

given by:

.._nam

[ (87)
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where:

T — Am 1/2
o = T = AP b= [ (88)
2T
and the ¥,.’s are again as yet undetermined phases.
It is very easy to check that the eigenvectors are normalized,i.e.:
<‘Sm!€m >= afn|7712+bfn: 1, m==% (89)
while:
p=< &yl >= I—UF—I expli(X- — %+)] = expli(X- — x+)(In]*asa- + b b)

(90)

The nonorthogonality of the eigenvectors follows directly from the non-
hermiticity of M. Indeed, with real eigenvalues, orthonormality of the eigen-
vectors implies hermiticity and viceversa.

It is easy to prove that, with:

Axm = ?zm(l) - Xm(o) (91)

the |¢,, >’s obey the boundary conditions:

6n(1) > expli(Adm + 7)/2)] expli(7)os/Alén(0) > (92)

The boundary conditions depend therefore on the way the phases X are

determined.
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Together with the non-orthogonal basis of the eigenvectors of M, we can

introduce the dual basis {|7,, >} defined, as usual, through:
< TIm!fn >= 5m,n (93)

this fixes the |n,, >’s uniquely, and they turn out to be given by:
n q Yy g

Iy >= l T pEde > —prlé- >)
- >= 1 I T ple > HlE >) (94)
Also:
< N[ >= r_—_}m; N S _”MQ (95)

It is easy to prove that the following properties holds, namely:

i) The |7, >’s are eigenvectors of M, ie.:
MYgm >=Anlgm > , m==+ (96)

ii) Though endowed with a nonorthogonal basis, M has a resolution of

the identity associated with it, 1.e.:

Zlnm ><€m|=1 (97)

1 being the identity matrix.
We try now to diagonalize M via a similarity transformation. We look

therefore for a nonsingular matrix V' such that:
VMV = Aoy (98)
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Denoting by {|zm >} the standard basis (Icc+ >= ( (1) ) , |- >= ( 0 )),
it is again not difficult to check that we can choose:
V=> [tm >< m|
vVl= Z |Zm >< 7| (99)
Note that the solution (99) is not unique. Indeed, if: V' = V() is a solution
of (98), then any other matrix of the form V(r)exp(A(7)os), with A an
arbitrary (real or complex) function of 7 will solve (98) as well.
We are now ready to iterate the previous scheme. Defining a new spinor
lo(T) > via:
[(r) >= V(r)le(r) > (100)
eq.(82) yields the following e(iuation for | >:
(8, — ¢+ Aas)|p >= —(V710.V)|p > (101)
with the boundary conditions:
lp(1) >= — [V (1) V(0)] |(0) > (102)
Explicitly the matrix on the r.h.s. of eq.(101) is given by:

V16V — ( <m4]0:l€s > < malOrlE- > ) (103)

<n|oer > <moldde >
Eq.(103) suggests that we try to generalize the parallel transport condition

by requiring the A,,’s to be determined by the equations:
< Nn|Orlm >=0, m =% (104)
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We can show however that imposing the conditions (104) leads to inconsis-

tencies. Indeed, we have:

< 4llEs >= 5 {< &1l > —p < 10164 >} (105)

i 2
and a similar equation for < 7_|8;|¢- >, that can be obtained form (105) by
changing pluses into minuses (and viceversa), and replacing p with p*.

The conditions (104) lead therefore to the would-be parallel transport

equations:
< €+‘8Tl€+ > —p< €~l6T]£+ >=0
< E|0:16- > —p" < &4]0:]E- >=10 (106)
With some algebra and a careful use of Eqns.(89,90), we obtain:
< Em|Orlém >= 1(0:Xm) + am(n*a,-n n0m") , m ==L (107)
and:
< €4]0:|¢- >= 7:(61'5(—) <&plé- >+
+e' &%) {|p|%a, 8,0 + by B,b- + a_arn*Om}

< €10, 164 >=1(0:k+) < E-[&4 >+

e+ =%-){|p|?a_B.a, + b_0-by +a_arn O} (108)
Putting things together, the explicit form of Eqns.(106) turns out to be:
. ~ 2 1 2 * *
W(0rx+) (1 — |pl*) + -2-a+(77 8rm —no:m") =
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= |pl(In|*a-0ray + b_0:by + a_ayn*6:n)
- Ly, . .
i(8:x-)(1 = ") + Sal(n0mm —n0n") =

= ‘/,L‘(|7]|2a+8,.a_ +b,.0:b +a-an*0:m) (109)
Defining now X = X + X-, we obtain for X the equation:
e 2y, Ly 2 2 * a1 2
(0. X)(1— ) + +(a} + a2 — 2pla_a, ) O —nde’) = 58 luf? (110)

If the phases are real, as they should, then the Lh.s. of eq.(110) is purely
imaginary, and eq.(110) will make sense only for |u| = const., which is not
likely (to say the least) to be true for a generic path.

We conclude therefore that we are not allowed to impose the parallel

transport conditions in the form (104), and that we have to resort to the

more conventional ones, namely:
< En|Oulém >=0 ,m =+ (111)
The explicit form of Eqns.(111) is:
(8:%n) + 20O 0 ') =0, m=  (112)
and they integrate to:
M= 5 [ dra (VO — b)), m=+  (113)

Up to now everything has been exact. We will discuss now the low tempera-

ture expansion that has been alluded to previously. We have argued already
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that, at low temperatures, we expect I' >> 7| for all relevant paths. One can
argue furthermore that, at low temperatures and hence at low energies, the
functional integral over qu—g(’r)} will be dominated by a nonzero saddle point

with fluctuations around it being high in energy and hence unimportant (132],

. [33] for a similar discussion and [2], Ch.6 for a review). This implies that

we can consider: I'(r) = 3 lc;(r)! /2 as approximately constant, and that we
can use an expansion in inverse powers of I' as a power-counting device to
single out the dominant contributions at low temperatures. Proceeding then

as outline above, we obtain:

2 = srig = sl Ok b= (114
9 1

= s = ap Okl = 0687) (115)

a

Neglecting then a”, we obtain: Ax_ =~ 0 and:

*0-n —momt
Im|?

But we see from Eq.(64) that: 7 = exp[i(x- — x+)]% (a periodic function of

- i [t
Axy = 5/; dr f;d(arg n) = —A(argn) (116)

7). Hence: A(argn) = {(7), and we obtain:
ARy = —0(y) , AR =0 (117)

upto correction terms that are at least O(B?%). Using this result in the

boundary condition (102) we find:

V-1(1)e M52y (0) = Y |zm >< n(1)|€2M7 /2|, (0) >< 2| (118)
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and, upon using Eqns.(92) and (117):
V(1) 72y (0) = 0/ (119)

again up to corrections that are O(877%).

If we turn now back to Eqns.(109), we see that the |u|* on the Lh.s. can
be neglected. Also, some simple power counting shows that the r.h.s. of
both equations is of order "2 ~ 872, and hence can be neglected as well.
Incidentally, this is consistent with the r.h.s. of Eq.(110) being (8-|u|*)/2 =
O(r~2).

We conclude then that, to leading order in an expansion in 1/ (i.e. up
to order 87'), Eqns. (104) and (111) are actually equivalent. Therefore, and
to the same order, the parallel transport condition leads to the vanishing of
the diagonal elements of V=18, V.

We can now proceed by iteration. Neglecting off-diagonal elements, the

r.h.s. of Eq.(101)can be ignored altogether and we obtain:

lo(7) >= exp {CT — 03 /OT A(T')dr'} lp(0) > (120)

Imposing then the boundary conditions, we easily find the eigenvalues to be:

Anm = —lwp, —2+m (/: drA(7)+ iQ('y)/Z) (121)

To be consistent, we have to expand A(7) as well in powers of |u|. This
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yields:
1 1 102" n|2
drA(r)= [ drl(r / drior 122
/(; mA() o ¥ I‘(T) (122)
where we have used Eq.(84). Note that the last term in Eq.(122)is O(T7!) =

o)
Defining then:

/ drT(r) +iQ(7)/2 / dr‘?z:‘; (123)

we see that we can write the partition function as in Eq.(81) by simply
replacing T'; there with [;. As, in the low temperature limit: 2cosh I ~

exp I;, we obtain eventually, after implementing the constraint:

Z = N/{H déi()} exp { }:(J 1)11/ dri(r) - %(7‘)} exp {ZI‘ }
’ (124)
To make more contact with the results of the literature [22],[24], let us

remark that, by introducing the (instantaneous) transverse projector:

1
IW( ) 2‘(}5( )‘3( M.U—n#nl’) s BV = 172;3 (125)

we can recast the integrand in the last term of I as:

11022 1 " Y
S M 204 (126)
Rewriting Eq.(124) in the form:

2 =N [{T]d¢:(r)} exp {SersI8(7]} (127)
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we may conclude that the effective action we have obtained, i.e.:
. Banooe (17, 2 .
Sepsldi(r) = 5N [ drdin)-E(0+ T (128)
nJ 1

contains all the contributions up to order B~ ! to the action. Again, after
implementing the constraint, we obtain a result that matches exactly those
that are obtained by starting directly from a spin Hamiltonian ([22]). In view
of this, we can simply borrow from the analysis of the latter that has already
been done by other authors. In particular, a continuum limit followed by a
gradient expansion ([18], [22],[31]) will yield a map of the low-energy, low-
temperature sector of the Hubbard model onto an 0(3) nonlinear o-model.
As long as one considers fluctuations around an ordered AFM background,
the Berry phase term will contribute a topological, Wess-Zumino term to the
action in 1D. It is well known (see [25] and literature quoted therein) that

the topological term is of the form:
1
2miSQ , Q= o / Preh - (O x O,7) (129)
T

where S is the spin and Q, the Pontrjagin index [27] is an integer labeling the
homotopy classes of paths from compactified spacetime, i.e. 52, to the space
of fields values, S? again, and that are classified by m3(S5?) = Z [25],[27]. As,
in the present case,S = 1/2, the topological term (129) will impart opposite
signs to the contributions to the functional integral (127) coming from odd

and even homotopy classes respectively. According to Haldane [34] this im-
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plies that the spectrum of elementary excitations in the low energy sector of
the 1D Hubbard model will be gapless, and that the model will be disordered
at low temperatures with only (or at most) algebraic LRO. According to Eq.
(123) we expect the wave velocity of the elementary excitations (the "speed
of light” of the NLo model) to scale as the square root of I', and hence to go
"soft” at the transition point predicted by the saddle-point approximation,
where I' vanishes.

Affleck [35] has also analyzed the 1D Hubbard model at half filling. He
finds both a gapless spectrum for spin excitations and a gapped spectrum
for charge excitations in the continuum limit. However, Affleck’s definition
of half filling is that there should be as many electrons as lattice sites. As

such, it corresponds to a weak half filling condition, namely to:
<n;>=1 (130)

and not to the stronger operator condition (2). As, in our approach, we
are strictly projecting out all double occupancies, we are projecting out the
charge excitations as well, which belong in a higher energy sector.

Again in the continuum limit, the topological term will vanish in 2D
when considering fluctuations around an ordered AFM background, as can
be inferred from related treatments [22], [36]-[41] of spin models. As our

results match exactly those of the above references, a separate proof of the
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vanishing of the topological (Hopf) term seems to be superfluous. From
Refs.[38]-[41] it can be inferred also that frustration and/or doping are not
likely to help in stabilizing a Hopf term in the effective action of the 2D
model. Parenthetically, this seems to shed a negative light on the hopes
that have been nourished for quite some time (see [2] for a review) that
the elementary excitations of the (doped) 2D Hubbard model might obey
anyon statistics [25],[42] and hence that the model might also exhibit anyonic
superconductivity [43],[44]. That the model at half filling should show no
presence of topological terms in the effective action had also been argued
previously [45] in a rather different context (that of the so-called ”s-wave
flux phases”). However, below half filling the Hubbard Hamiltonian contains,
besides the hopping term and the Heisenberg term (the two together making
up for the t-J model [8]), a three-site hopping term ([2] Ch.2) that is usually
neglected mainly on the grounds that it is proportional to a higher power of
the doping fraction than the hopping term itself. The authors of Refs.[45]
have argued that it is precisely this term that could provide in the continuum
limit the missing Hopf term in the effective action. The rather preliminary
analysis of Ref.[45] has not been pursued any further, though, and therefore
the existence of a Hopf (or Abelian Chern-Simons) term in the effective action
of the 2D Hubbard model is still to some extent an open question.

It is certainly rewarding that the analysis presented here matches rather
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well results that have been obtained on related models and/or by different
techniques. However, we would like to make some concluding remarks con-
cerning some serious problems that seem to emerge from what we have done
up to now and that cannot be overlooked, namely:

i) Immediately after the adiabatic approximation, i.e. already at the stage
of Eq.(81) and presumably even more at further stages, we have been forced
to deal with non—hermitian matrices. That we should be able to diagonalize
a matrix such as M is a crucial step in in an)} adiabatic (or ”superadiabatic”
[23] ) step of approximation but, of course, that a non-hermitian matrix can
be diagonalized is by no means granted ”a priori”. Should at some step the
equivalent of M fail to be diagonalizable, then the entire iteration scheme
would break down and we would be either lost or would have to resort to
some other kind of approach. On the other hand, let’s recall that the fact
that M had distinct eigenvalues (which is in turn a sufficient condition for
diagonalizability) stemmed from the assumption that I' >> |g|, i.e. it was
granted in the low temperature regime. As we expect the adiabatic iteration
procedure to produce a series expansion (actually an asymptotic series [23])
in B~!, we may expect also that this low temperature expansion will avoid
the occurrence of such catastrophes as the one envisaged before.

It seems quite clear to us that this difficulty that may or may not show

up at some stage, is not to be blamed on the specific model we are using nor
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on the fermionization procedure. It rather stems directly from the already
stressed fact that evolution in the imaginary-time domain is non-unitary. As
such the same difficulty should be present (or hidden somewhere) also in
other related models in Statistical Mechanics that start directly from spin
Hamiltonians without going through fermions.

i) The second point which looks a bit puzzling to us concerns the status
of a purely imaginary term like the Berry phase in an effective (Euclidean
type) action which should be eventually inserted into a functional integral
to yield a partition function. After all, in a thermodynamic context every
respectable partition function is supposed to be real and positive, as its log-
arithm should yield a "bona fide” (real) free energy. It is true that in the
continuum limit the Berry phase contribution either disappears altogether
(thus making the problem a nonexistent one) or gives rise (as in 1D) to a
topological action. Thé latter being quantized, there are no complex con-
tributions to the partition function. However, contributions from different
topological sectors may came with different signs. We can only argue that.
the functional integral should be dominated by the positive contributions (in
particular by the trivial topological sector), but this has to be checked at
least on specific models and/or approximations.

Worse than that, if we do not insist on the continuum limit and stick to

a lattice, the Berry phase is there and gives geometrical but not topological
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contributions to the effective action and to the partition function.

Fortunately, as can be easily demonstrated, Berry’s phase is odd (mod 47)
under parity (g;, — —¢; for all i’s), while the gaussian term in the effective
action is manifestly even. It follows then that only the contributions from
the real part of the Berry phase term will survive in the partition function. A
sign problem remains here too, though. Concerning this, we can only argue
as follows: the functional integral is most often evaluated by performing a
saddle point expansion around the saddle point, mean field solutions, i.e. by
adding one-loop, two-loop corrections and so forth.

The saddle point solution, being static, will have of course a vanishing
Berry phase, and we may expect that the solid angle subtended by the path
spanned by 7A(7r) will increase with the order of approximation, so that the
loop expansion of the partition function should be dominated by contribu-
tions coming from small enough solid angles to ensure positivity of the final
result.

Allin all, we have pointed out some interesting results that come out from
our approach to the half-filled Hubbard model as well as some (at least for
us) conceptual difficulties that are connected with the rﬁethod employed here
and that other, related models should share as well. We have been able to
put forward only at best slightly more than hand-waving arguments towards

a solution in the positive of the aforementioned difficulties. To the best of
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our knowledge, neither kind of difficulty has been discussed in the available
literature, and we believe that both of them deserve further attention and
investigation.
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