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INTRODUCTION

Many models of Quantum Field Theory, Many Body Theory and Quantum

Statistical Mechanics are formulated and sometimes solved in terms of variables
or fields which formally satisfy the Canonical Commutation Relations (CCR), but

which actually cannot be represented as operators in a Hilbert space because of

their bad infrared behaviour. Tipical examples are:

1.

the infinite quantum harmonic lattice in thermal equilibrium and the Free
Bose gas, both in space dimensions d < 2; in the first case the singular
variable is the local deplacement from the equilibrium positions and in the

second case is the local particle density [AM,BR];

. the electrons in a periodic potential (Bloch electrons), which are a prototype

model in the anlysis of §-angle superselection structures [AM,J};

the massless quantum electrodynamics in two space—time dimensions (QED,
or Schwinger model) [LS], where the singular field variables are the charged
fields;

the Stiickelberg-Kibble model in 141 and 2+1 space-time dimensions, where
the singular variable is the analogue of the (phase of the) Higgs field;

the massless scalar field in two space—time dimensions, which plays an im-
portant role as a basic or building block field in the solution of several two
dimensional problems [W,SW,DFZ];

the U(1) current algebra on the circle, where the singular variables are the
charged fields [BMT];

quite generally statistical models involving unbounded variables with a flat

distribution (required by symmetry properties).

The strategies usually adopted to discuss the above models fall essentially in two

categories:

a.

relax positivity and represent the singular fields as operators on an indefinite
metric space [W,MPS2];

use a restricted set of field variables (the ones which can be represented as
operators in a Hilbert space) and describe the remaining degrees of freedom by
others methods, like e.g. as morphisms of the regular field algebra [SW,BMT].

Both strategies have their own advantages and disadvantages. The aim of this

thesis is to discuss an alternative approach based on the representation of the

Weyl exponentials of the singular variables in a positive metric Hilbert space.
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This will allow to keep the canonical structure (in Weyl form) also for the singular
variables and to clarify the relation between infrared singularities and the so arising
nonregular representations of the CCR.

The mathematical treatment of these latter can be done in a rather compact
way and it yields a convenient and usable framework for discussing explicit models.
We suppose to be given a CCR algebra A, and a regular representation m of a
subalgebra Ay of A. Our results can be summarized as follows:

1. a nonregular representation extending 7 to A always exist (Sect 1.2);
2. nonregular representations of a CCR algebra A are determined by the repre-
sentations of the subalgebra Ay if the latter is a mazimal domain of regularity

(see Sect. I.8); in the various models mentioned above Ay can be interpreted

as the algebra of observables, the current algebra etc.

3. nonregular representations of a CCR algebra .4 decompose into inequivalent

representations of the maximal regular subalgebra Ay (Sect. 1.4);

4. irreducible nonregular representations are characterized (Section 1.9 and Ap-

pendiz A).

These structure properties prove very useful for a rigorous mathematical treatment
of the infrared singular variables or fields which naturally enter in the Hamiltonian
formulation of the above models (Sect. II). One also gets insight on the represen-
tations of field algebras .4 charged under a gauge-like group when the observable
algebra A, is a CCR algebra. In particular one has (Sect. I.4): |

5. “charged” field algebras A can be obtained as CCR extensions (called eztended
CCR algebras) of the algebra Ay, briefly “core” subalgebra; furthermore an
extended CCR algebra uniquely determines a “gauge group” G leaving its core
subalgebra pointwise invariant;

6. vacuum representations of extended CCR algebras decompose into inequiva-
lent representations labelled by charges which annihilate the vacuum: more
precisely, if the subgroup of G leaving the vacuum invariant is non-trivial,
then the corresponding vacuum representation of the extended CCR algebra

A is nonregular.

Moreover, nonregular representations of extended CCR algebras allow for a full
solution of the bosonization problem in 1+1 dimensions (Appendiz B); in partic-

ular:

7. fermionic degrees of freedom may be obtained in terms of bosonic CCR alge-

bras,



8. local fermion fields can be proved to exist as ultrastrong limits of bosonic

(Weyl) operators of an extended CCR algebra.

Previous treatments of fermionic bosonization were done with reference to spe-
cific models and in terms of correlation functions (i.e. in a given representation);
along this direction the best result seems that in [CR], where local fermion fields
are obtained as strong limits on a dense set of vectors in given representation.
An algebraic formula which constructs a local fermion field (at a given time) in
terms of canonical boson operators seems to be lacking in the literature, apart
from the very suggestive Mandelstam-Skyrme formula [M,Sk], whose mathemat-
ical meaning is however not clear. The result 8. mentioned above provides such
an algebraic fermion bosonization and it is made possible by the use of nonregular

representations of CCR algebras [AMS1].

It is worthwile to remark that the mathematical framework discussed above
for the description of infrared singular fields should prove useful in the constructive
approach to Many Body or QFT problems which involve severe infrared problems
(like Coulomb systems, gauge theories etc.). In fact, by introducing an infrared
cutoff (where necessary), the models may be formulated in terms of canonical
algebras, involving variables associated to the charged fields, which may require
nonregular representations. In this sense, the above approach may be regarded as
a concrete realization of the DHR approach [DHR,DR]. The latter is based on the
analysis of the representations of the observable algebras A5 and describes their
charged state representations in terms of the vacuum representation and of charged
morphisms of A,p,. Here, we exploit the canonical structure of the variables which
enter in the definition of the Hamiltonian, of the equation of motion etc; the
mathematical problems connected with infrared singular variables are resolved by
the use of nonregular representations. The construction of the charged morphisms
is now directly obtained in terms of the fields which enter in the definition of the
model (and/or may be obtained as CCR extensions of the observable algebra), so
that the charged state representations of the observable algebra are provided by

the vacuum representation of the extended CCR algebra.

The general framework discussed in this paper also provides a useful and rela-
tively simple tratment of quantum fields on a circle, a problem which has recently
attracted much interest in connection with string theory and with representations
of Kaé-Moody and Virasoro algebras [FK,F,Se]. The quantization of such sys-
tems leads to nonregular representations of CCR algebras; in this way one has a

systematic treatment where infrared problems do not arise and the field algebra
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is stmple.

The structures discussed in Section 1.4 naturally lead to the occurrence of
superselection rules also for quantum mechanical systems with a finite number of
degrees of freedom (i.e. to the breakdown of Von Neumann uniqueness): the mech-
anism is that the nonregular factorial representation of the simple Weyl algebra
of canonical variables decomposes into inequivalent factorial representations of its
regular observable subalgebra. The resulting structure may be regarded as an al-
ternative route to the solution of the problem considered by Landsman [L] through
a different approach. His starting point is the classification of the representations
of a non simple C*—algebra, which plays the role of the algebra of observables,
whereas our strategy is to construct a simple algebra of canonical variables and to
identify its subalgebra of observables.

The use of nonregular representations of CCR algebras in mathematical phys-
ics is not new.

Plane waves have been recognised to define nonregular representations of the
CCR algebra (finite number of degrees of freedom) in [FVW], where a uniqueness
theorem is proved for this class of representations.

Perhaps the best known example of nonregular state is the tracial state (infi-
nite temperature KMS state). It has a crucial réle in the proof of the existence (and
uniqueness in the nondegenerate case) of the C*-structure for the CCR algebra
over the generic symplectic space [S],BR,P]. Central (and hence nonregular) states
have been introduced in [MSTV] in order to characterize the various C*-structures
which are allowed when the symplectic form of the CCR is degenerate.

Buchholz and Fredenhagen have argued that nonregular representations nat-
urally arise in the construction of charged states and explicitely implement their
idea in the case of the algebra of the electromagnetic field [BF]. They use a very
particular type of nonregular ground state and point out in this special case some
among the main structure properties we’ll show in Section I to hold in full gener-
ality.

Following the ideas in [BF], Nill [N1,N2] has recently introduced nonregular
ground states in the analysis of Chern-Simons theory (in the canonical formula-
tion) and has investigated the resulting superselection structure of the theory. He
presented also a first attempt of analysis of nonregular states into a functional
integral language.

Hurst and Grundling [Gr,GH,H] have studied the theory of quantum con-

strainted systems introducing the concept of Dirac state. This kind of state shares
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a property which is very similar to our major structure assumption (Condition
A in Section 1.3) in the analysis of nonregular representations of CCR algebras.
However, no further attention is paid there to this aspect.

As it is explained in Section 1.4, the appearence of nonregular representations
in gauge theories, and more generally in constrainted quantum systems, is not
fortuitous: a nonregular representation of a CCR algebra always gives rise to a
“gauge group” leaving the regularly represented subalgebra pointwise invariant.

Narnhofer and Thirring have met with nonregular representations of CCR
algebras both in the analysis of Gauge Field Theory models [NT1] and in the
construction of equilibrium (KMS) states for simple quantum hamiltonians on R?
or on the 2-torus [NT2).

This thesis and the works from which it arises [AMS1,AMS2,AMS3] offer the
first treatment of the mathematical structure of nonregular representations of CCR

algebras, togheter with a clear discussion of the relevant models.






NONREGULAR REPRESENTATIONS OF
WEYL ALGEBRAS

1. CCR algebras

Our aim is to study nonregular representations of Canonical Commutation
Relations (CCR) algebras. In order to make clear the environment in which we
move and to fix notations, we recall basic facts about CCR algebras and their
regular representations.

Let be given a symplectic space (V,0), i.e., V be a real linear space and o be
a symplectic form on it (o is not supposed to be nondegenerate). More generally
[Sl], V may be an abelian group and the form o is substituted by a bicharacter
b(-,:) on V.

A CCR algebra A(V, o) is the *-algebra generated by elements §(F), F € V;
the product and the involution in the algebra are defined by

§(F)5(G) = §(F + G)e~i7(F:O)

’ (1.1)
§(F)* = §(—F) F,GeV.

These equations imply §(0) = 1 and §(F)~! = §(F)*.

A(V,0) can be completed to a C*-algebra [Ma], the C* norm being unique
exactly when the form ¢ is nondegenerate [SL,MSTV,BR,P]. In this case A(V, o)
is simple. A state w on A(V,0) is a positive and normalized linear functional on
it. We denote by E 4(v-+) the set of states over the CCR algebra A(V, o). In the
GNS representation (7, H,,%.) of A(V,0) induced by a state w, the elements
§(F), F € V, are represented by unitary operators.

A representation m of A(V, o) is said to be regular if the map A € R s
m(6(AF)) is strongly continuous for every F € V. A state w on A(V,0) is said
to be regular if the associated GNS representation 7, of A(V, o) is regular. The
regularity of w is equivalent to the fact that A € R — w(8(AF)) is a continuous
mapping for every F € V.

If the representation 7 is regular then there are selfadjoint operators ®(F') on
H., such that 7(§(AF)) = e**(F) for every A € R, F € V. The operators ®(F)

satisfy the unbounded form of the Canonical Commutation Relations.
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Most of the models we study are quasi free: they are identified [MV,P,BR] by

a state on A(V, o) (usually the ground state or an equilibrium state) of the form
wy(8(F)) = e 395 ypevV,

where A(V, o) is the CCR algebra describing the kinematics of every single model,
and ¢(-) is a quadratic form on V which arises from an inner product. The form
q(-) satisfies

lo(F,G)? < q(F)q(G) VF,G e V. (1.2)

This condition is equivalent to the positivity of the linear functional w, [MV,P].
2. Flat nonregular states on CCR algebras

We introduce and study in this section a particular class of nonregular rep-
resentations of Weyl algebras. We suppose to this end to have a CCR algebra
A(Vy,00) and a state w on it. A symplectic space (V, ) is given such that V; is a
linear subspace of V, and that o}1; x1, = 0¢. In this case we say that (Vi,00) is a
symplectic subspace of (V,0). A(Vy,00) is then a *-subalgebra of A(V,o). Where
confusions do not arise, we’ll use the same symbol ¢ to indicate a symplectic form
on V or its restriction to subspaces.

We prove in Prop. 2.1 below that w can always be extended to a nonregular
state () on A(V, 7). In the proofs the fact that (Vj,00) is a symplectic subspace
of (V,o) is crucial. Indeed, two different proofs of this proposition are given.
The first proof generalizes an argument by Buchholz and Fredenhagen [BF] and
displays the “charged sectors” structure which will be further analyzed in Section
4. The second proof uses the fact that one can always construct an abelian (and
hence amenable) group of automorphisms of A(V, o), whose action leaves A(V}, o)
pointwise invariant. The existence of this group follows solely from the fact that
(Vo,00) is a symplectic subspace of (V, o). We denote by E,, C E 4(v,0) the set of
states extending w € E 4(1;,0,) to A.

Proposition 2.1

Let A(V,0) be a CCR algebra. Let A(Vy,00) be a CCR subalgebra of A(V,0) and
w be a state on A(Vy,04). Then the linear functional on A(V, o) defined by

AS(F)) = {;’(5“”' ) e (2.1)

is positive and hence is a state on A(V,o).
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First proof. It is enough to show that
N N
QU wib(F)) (S mb(F) 20 FeV, N < +oo
=1 i=1

for the state 2 as in (2.1). One easily calculates that

Q((Z #i5(Fi))*(Z pib(F:))) =

= Y et Rw(S(F; - ). (2:2)
F,‘—Fje"'o

Let’s partition the set {F;};=1..nv into equivalence classes mod V. Let Gk, k =
1.--M < N be a representative from each class. One notices that, for suitable
Gk’s,

w(b(Fj — F1)) = w(§(F; — G* — (F; — G%)))

%U(F,-,Fj) = i{a(zﬂ — G*,G*) — o(2F; — G*,G*)}+

+ %U(F,' - Gk,Fj — Gk)
It follows that, if we call R¥ the equivalence class identified by G¥, I the set of
the indices ¢ = 1--- N such that F; € R* and we set

. i Gk Gk
(e T ;,L,'e40(2F' GhG ), u = F; — Gk :

Al
(2.2) = Z Z aikajke%a(F"_Gk'F"—Gk)w(ﬁ(Fj -Gk - (Fi — Gk))) =

k=1 F; F; €Rk

A
=30 D @aauret U mu(8(us — ui)) =

k=1 uik,ujr€V0

A
=3 Y @aget e mlo(8(u; - u) =

k=11i,j€ 1
= Zw((z ai5(ui))*(z jd(uj))) >0
k=1 i€l jelL

by the positivity of w.
It is obvious that (1) = Q(6(0)) = w(6(0)) = 1. Hence 1 is a normalized, positive

linear functional on A(V, o).

Second proof. This proof is organized as follows.
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a) We construct an amenable group Gy of automorphisms of A(V,o) leaving
A(Vo,00) pointwise invariant.
b) For every w € E (1, 0,), Wwe show that the functional £ as in eq. (2.1) is a

Go-invariant state on A(V, o).

a) Consider the set
vo:={peVg: ¢(F)=0 VFecW}

It is an abelian group since vy ~ (V/Vp)*.
We then define the following abelian group of automorphisms of A(V, ) (symmetry
group)

Go := {ay € AutA(V,0), as(6(F)) = e FI§(F), ¢ € v}

Gy is isomorphic to vy.
The action of Gy on A(V, o) leaves .A(Vy, ) pointwise invariant.
Since Gy is abelian it is amenable (see th. 1.2.1in [G]); let n be an invariant mean

on it.

b) Take now w € E 4(14,0,), and let & € E,,. Since &(a4(6(F))) is continuous and

bounded as a function of ¢ € Gy, one may define
n(@(ag(8(F)))) VFeV

and where ¢ runs over Gy. It is well known (see for instance the Lemma on pag.

172 in [E]) that this mapping defines a state on A(V, ), which we call 7é:
W6(5(F)) = n(alag(8(F)))  VFe V.

We show that Q = na.
Notice first that, since A(V}, 0¢) is left pointwise invariant by the action of G, on
A(V,0), one has 7w = @ = w on A(Vy,0y).

Moreover, nw is Gy-invariant and so, for every ¢ € vy,

n(az(6(F)) = n(@(e,, 3(6(F)) = no(8(F))  VFeV.

But
ni(ay(8(F))) = e Flna(5(F))  VFeV

since e’*(¥) is a c-number and nw is linear.
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Fixed anyhow F € V\V,, there is ¢ € vy such that ¥(F) # 0, and one can always
set Y(F') # 2nmw, n € Z, by rescaling the functional .
It follows that

n&(§(F)) =0 VF € V\V,.

Hence Q = & and Q is a state on A(V,0). g¢.e.d.

One has then (ay)*Q = § for every ¢ € vy and so a4 is implemented in mq by a

unitary operator Us.

Remark. If one singles out any nontrivial additive subgroup G of Gy, the above
proposition shows that a G-invariant state extending w to A(V, o) always exists.
As an example, which will be relevant in the following, fix G € V and consider the

sets

vg:={pcvy: ¢(G)=2km, kcZ}

and

Go:={a®€Gy: ¢€vc}.

G is clearly an additive subgroup of G,. By the above proof, we are able to

determine the form of the Gg-invariant states extending w to A(V, a): it results

w(é6(F FeV
Q('S(F)):{O(( ) FeV\{V, +{nG}} nel

Nothing can be said about the value of 2(6(G)).

Remark. The above proof implies that, given w,  is the unique Gy-invariant

state extending w to A(V, o). Q is then an extremal Gy-invariant state if w is pure

(since Gy = {1} on A(Vy,09)).

The states whose existence is proved in Prop. 2.1 and in the above remark
are a particular class of nonregular states on CCR algebras. In the following, they
will be referred to as flat nonregular states (we will often skip the word “flat” or
“nonregular”).

We now prove a sort of converse of Prop. 2.1: we suppose indeed to be given a
CCR algebra A(V, o) and a (possibly nonregular) representation = of it. We show
that the set RY- of F € V, such that A € R — 7w(§(AF)) is strongly continuous, is
a linear subspace of V. Hence the §(-) indexed by the elements of this set give rise
in a natural way to a CCR subalgebra A, (it depends on 7!) of A(V, ), which

we call the regular subalgebra of A(V, o) in representation .
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In particular, if 7 is the GNS representation induced by a (possibly nonregu-

lar) state Q, m = 7, the set R} coincides with the set
RE:={FecV: XeR+— Q(\F)) € C°}.

Proposition 2.2
Let A(V,0) be a CCR algebra and 7 be a representation of it. Then

Ry :={Fe€V: AeR+— n(§(\F)) is strongly continuous}

is a linear subspace of V and so (RY-,0) is a symplectic subspace of (V,o).
Proof. 1t is obvious that R[. is a cone in V: F' € R implies aF € R7- for every
a e R.

If F € RY, then 7w(§(AF)) is a unitary group which is strongly continuousin A € R.
Let F,G € R{-. One easily calculates that

T(6(MF + G))) = m(6(AF))(6(AG))e 22 (F.G) (2.3)

The phase factor is clearly continuous in A € R.

Moreover, since both 7(6(AF)) and 7(§(AG)) belong to the unit ball in B(Hg),
since they are strongly continuous in A € R and since the strong operator topology
is jointly continuous on the unit ball in B(Hg), it follows that the left-hand side
in (2.3) is strongly continuous in A € R.

- Hence F + G € R{- whenever F,G € RT..

In this way we have proved that, fixed a representation m of A(V,7), (R7-,0) is a
symplectic subspace of (V,0). g.e.d.

In the following, since we always refer to GNS representations of A(V,o), the
algebra A(RS:, o) = Aq will be referred to as the regular subalgebra of A(V,o) in

representation .

Remark. In the quasifree case, (14(6(F)) = 0 is equivalent to ¢(F) = +oo. This

condition on ¢ may be formalized in a precise way as follows.

Definition 2.3

We call generalized quadratic form over a symplectic space (V,0) amap ¢: V —
R* U {400} such that the following properties hold, V) € R\{0},VF,G eV

A.
g(AF) = N2q(F)  q(F)>0  q(0)=0

g(F + G)'/2 < q(F)M? + ¢(G)'/?
a(F + G) + q(F — G) = 2¢(F) + 2¢(G)
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(with the obvious convention when ¢(F) or ¢(G) equals infinity). The following
possibilities are allowed:
{FeV:q(F)=+o0} #0
V) :={FeV:qF)=0}+#{0}.

o(F,G) < g(F)a(G)  VF,G €V : g(F) < +00,4(G) < +co.
As a consequence of Prop. 2.1 above, one has

Lemma 2.4

Let (V, o) be a symplectic space, q(-) a generalized quadratic form on it; A(V, o) the
CCR algebra associated to (V,o). Then the linear functional on A(V,c) defined

by
Qq(5(F)) _ {EXP(_EQ(F)) Z%?g i iz (2.4)

is positive and hence is a state on A(V, o) (generalized quasifree state).

Remark. One easily shows that ’R?," = V,, where

Vyi={F €V : o(F) < +oo} (2.5)
is a linear subspace of V, and the restriction of 0, to A(V;, o) is a quasifree state.
3. Minimally nonregular flat states

By the above propositions, the following definitions do make sense:

Definition 3.1
Let A(Vy,00) be a CCR subalgebra of A(V, o). Then a regular state w on A(V;, 0¢)

has A(Vy, 00) as its mazimal domain of regularity in A(V, o) if there is no regular
extension of w to a larger CCR subalgebra A(V;,01) of A(V,0), Vio € V1 C V.

- This definition makes sense by Prop. 2.1, saying that there are nonregular
extensions of w to A(V, ).

Definition 3.2

A nonregular state 2 on a CCR algebra A(V, o) is minimally nonregular if the

regular subalgebra Aq of A(V, o) is its maximal domain of regularity.

- A nonregular state on the generic CCR algebra always exists: take V5 = {0} in
Prop. 2.1. As it is easily seen, this state induces the type II; representation first
introduced by Slawny [Sl].

13



Our goal is to characterize minimally nonregular flat states. They are relevant
since in some sense they are determined by their restriction to the regular sub-
algebra. We suppose to have a CCR algebra A(V, o) and a subalgebra A(V;, o)
of it. A regular state w on A(Vy,0¢) is given. We want to study the nonregular
extensions of w to A(V,o). To this end we do the following, crucial, assumption

(as usual, we take Q € E,):
Condition A
There is {F"}neN € Vo, with imy, 4o 0(Fp,-) € Vi3, such that

lim w(8(F,)) =1 (3.1)

n—-+4oo

Remark. There are cases in which {Fn}nEN in Condition A is a constant se-
quence: 3F € Vg, F # 0, such that w(§(F)) = 1. It follows from the subsequent
Lemma 3.3 that, if Q € E,

mo(6(F)) € ZQ(A(R?—, a)).

A situation of this type occurs, for instance, in the quantization of systems with
constraints (like gauge theories). First class constraints are identified precisely by
the above condition (see the works by Grundling and Hurst [GH,Gr,H]), the states

complying with it being referred to as “Dirac states”.

Remark. In the quasifree case, Condition A above is replaced by the following,
which involves only the form ¢ associated to the state w,.

Condition A,
There is {F"}nEN € Vo, with im,_, (o o(Fy, ) € V3, such that

lim g¢(F,)=0 (3.2)

n—- o0

The existence of nontrivial (i.e., 3G € V : lim,_ 40 0(F,,G) # 0) sequences
complying with Condition A forces any state ! € E,, to be nonregular: we will
see this later. In the two following lemmas, we show that lim,_ o 7o (8(Fr))
exists in the strong operator topology and that it belongs to the centre of (the von

Neumann algebra associated in 7 to) the regular subalgebra Ag.

Lemma 3.3

14



Let A(V,0) be a CCR algebra. Let A(Vy,00) be a CCR subalgebra of A(V,0) and
w be a regular state on A(Vy,00). Let Q € E,. Then, for every {Fn}, N € Vo
which satisfies Condition A and for every G € RS, one has

lim o(F,,G)=0.

n—-+4 oo

Proof. Let Q be any extension of w to A(V, 7): clearly V, C R§:. One notices then
that (3.1) implies s — limp 400 T (6(Frn))¥a = ¥q. Indeed, one has

[(ma(§(Fr)) — Dall® = 2 — 2Re{w(é(Fn))} — 0

as n — +o00,if (3.1) is true.
Hence

lim Q(86(—Fr)6(G)o6(Fn)) = US(G)) VGeV. (3.3)

n—+o0o
On the other hand, one explicitely calculates that

Lim Q(6(—Fo)8(G)8(F,)) = Q(8(G)) lim S vGeV, (3.4)

n——-4oo n---+o0o

where lim,, 4 o0 0(Fy, G) exists for every G € V.
Now, if G € R$, then there is an interval I C R such that, for every p € Ig,
Q(6(pG)) # 0. Choose anyhow G € R, We show that limp—q oo 0(Frn, G) = 0.
Indeed, lim,, 4o o(Fn,pG) exists for every u € Ig and it is always possible, by
suitably choosing i € Ig, to have lim, 4o 0(Fn, £G) # 2nm, n € Z\{0}.
Comparing (3.3) and (3.4) with G — [iG one has, since Q(6(2G)) # 0,

lim o(Fn,G)= lim o(F,,iG)=0 VG e R}

n——4 oo n-—-+00

Since i # 0 the thesis follows. g.e.d.

As a consequence of this lemma we have the following result.

Lemma 3.4

Let A(V,0) be a CCR algebra. Let A(Vy,00) be a CCR subalgebra of A(V,o) and
w be a reqular state on A(Vy,0¢). Let 8 € E,. Then, for every {F"}neN eV
satisfying Condition A, U = lim, 4 ma(6(Fr)) exists in the strong operator
topology in Hq; U is a unitary operator and

U € Za(A(RE, o).
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Proof. The first statement follows from the fact that the sequence 7o (6(Fyn))
is uniformly bounded, the existence of s — lim,— 400 7 (6(Fr))¥o and from the

standard observation that

m ||(m(6(Fn)) — ma(6(Fm)))ma(8(G))ball =

n—+oo

Lm ||(7q(8(F,))e ) — 1o (§(Fpm))e 9F=pg|| VG € V.

n—+o00

(recall that limp— 40 0(Fn,-) € VR)-

The limit operator U is unitary as a strong limit of unitary operators with strongly
convergent adjoints.

U is in mq(A(Vy,00))" € ma(A(RE, o)) since it is a strong limit of elements in
o (A(Vy,a0)); it is in mo(A(R$, o)) by Lemma 3.3. g.e.d.

It will be subsequently shown that the operators U in this Lemma are strictly

correlated to the operators Uy introduced just after Prop. 2.1.

Lemma 3.3 implies that, if for some G € V and {F.},.N € Vi satisfying
Condition A one has lim; 400 0(Fn,G) = a # 0, then G ¢ 'R?— and so 6(G) is
not regularly represented in 7q, for every 2 € E..

Starting from this observation, a more detailed analysis proceeds as follows.

Let’s consider the set of functionals identified by Condition A and define
Pov:={pEVR: p= lirE o(Fny-)y {Fn},eN € Vo satisfying Condition A}

It is very important to stress that, given A(V, o) and A(Vy,00), ®ow is completely
determined by the regular state w. @, is not empty since it contains at least the

null functional; by Lemma 3.3 it is a subset of v4. Set then
Ve, :={GeV: Vpe d,, ¢G) =0}

VY is a real linear subspace of V. It follows from Lemma 3.3 that V. contains

Vo (and R$:, VQ € E,;) and that

Lemma 3.5

If 3G € V such that G ¢ V., then no Q € E,, is a regular state. Moreover, if
Vo = V2, then w has A(V,,04) as mazimal domain of regularity in A(V, o).

This means that the domain of regularity of w can (possibly) be enlarged up
to the CCR algebra A(V? ,o) and nothing can be said about the form of the
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(possibly regular) extensions of w to this algebra. No state in E, N E 4y, ») can
be extended to a regular state on A(V,o). In order to study these nonregular

extension we introduce
Vow:={G€EV: Vo€ ®,, ImeZ: o(G) =2mm}.

Remark. Clearly V! C V,,. In the quasifree case one always has that V0 = Voo

and so V., is a linear space (see below the proof of Corollary 3.8).

It is easily seen that V. is a closed additive subgroup of V: it can be written as

the sum of a vector space, V2, and of a discrete subgroup. It follows that it is

ow?

well defined [S]] the CCR algebra
Aops i:= A(Vyu,0) = {6(F) € A(V,0): F € V,.,}.
Remark. It results from the definition of A, that

Iim wq(6(Fn)) € Za(Aoss),

n——+oo

where {Fn}nel\l satisfies Condition A and Q € E_.

By the same argument as in the proof of Lemma 3.3 (i.e. comparing equations
(3.3) and (3.4)) it is immediate that

Lemma 3.6

For every Q) € E,,, one has
Q(F) =0 F Vs, :

the states in E, N E4,,, eztend in unique way to states in E,,.

It is now easy to give a condition which provides us with a unique extension

! € E,; Q is then minimally nonregular, with Aq = A(Vy,0¢).

Proposition 3.7
Let A(V,0) be a CCR algebra. Let A(Vy,09) be a CCR subalgebra of A(V,0) and

w be a regular state on A(Vy,04). Consider the two statements

i. VG € VAW E{Fn}nel\l € Vo satisfying Condition A such that

RETOO eirr(F",G) —_ eia 71__ 1.
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u. w admits a unique ectension Q to A(V,o), namely the flat nonregular state
given by eq. (2.1).

It follows that i. = 4i. and in particular Q is minimally nonregular. Moreover,
if w is pure so is Q.

Remark. In condition i., we may substitute V\V, with V/Vs.

In the quasifree case, one proves the equivalence between a strengthened version

of i. and #. above. We see this in the following

Corollary 3.8
Let A(V,0) be a CCR algebra. Let A(Vy,04) be a CCR subalgebra of A(V,o) and

wg be a regular quasifree state on A(Vy,00). Then the following two statements

are equivalent

7. VG € V\Vy 3{F.}, N € Vo satisfying Condition A, such that

nEI-iI—looa-(Fn,G) =a#0

. w admits a unique extension 1 to A(V, o), namely the flat nonregular state
gien by eq. (2.1).
Proof. To prove that i'. = 4i. one shows that i’. here and i. in Prop. 3.7 are
equivalent for quasifree states. Indeed, note that lim,, , o g(F) = 0 is equivalent
to im,, 4 oo wy(6(F,)) = 1.
Moreover, limy, 00 g(AF,) = A2 lim, 1 oo q(F,) VA€ R. Hence, if the sequence
{Fn},eN complies with Condition A,, so does {AF,}, N for every A € R. It
follows that, if a # 0 above, one can always choose the sequence in 7.’ in such a
way that o # 2nm  Vn € Z. One concludes that, for quasifree states, 1. and 7.” are
equivalent and then Prop. 3.7 implies that ¢'. = 71.
We now prove that 5. = 7’.
We notice that the latter is equivalent to the fact that, for any G € V\VW, o(G,)
is a linear functional on V; which is not bounded with respect to the inner product
[,+]4 associated to gq.
Suppose now that ./ is false. Then, for some G € VAW, o(G,") is a bounded
linear functional on V. As a consequence, o(G,F)=01if ¢(F) =0 and

Q(G) = sup M < 4o0.
FeV, q(F)

q(F) #0
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Then g can be extended as a finite Hilbert quadratic form to Vs + Span[G] by
[G,F]g =0 VF €V, q(G) = Q(G).

In this way one gets a quasifree state which extends w, to A(V, + Span|[G], o), and

so 1. is false. g.e.d.

Remark. As Corollary 3.8 shows, for quasifree states condition ¢ is equivalent to

the fact that 2 is minimally nonregular.

As an aside, we characterize pure flat nonregular states.

Lemma 3.9

Let A(V,0) be a CCR algebra and © be a flat nonregular state on it. If 2 is pure
then the restriction w of it to A(RY,0) is pure.

Proof. Suppose that w is not pure and hence decomposable:
w=Aw; + (1 - Nwy A€(0,1); wi € Egg, t=1,2.

By Prop. 2.1, the state w;, : = 1,2 can be extended to a flat nonregular state on
A(V,0o):

QU(S(F)) = {‘5”'<5(F Ly

Then §2 can be decomposed as follows:
Q:Aﬂl—*'(l—"A)Qz QieEA(V,o’), 1::1,2

and hence it is not pure. g.e.d.

It then immediately follows that

Proposition 3.10

Let Q be a flat nonregular state on A(V, o) whose restriction w to Aq satisfies i.
in Prop. 3.7. Then ) is pure iff w 1s.

The fact that  is minimally nonregular is essential for the above proposition to
hold. This is shown in the following

Lemma 3.11

Let Q2 be a flat nonregular state on A(V,o) which is not minimally nonregular.

Then §1 1s not pure.
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Proof. If Q is not minimally nonregular, then 3G, € V, 3 € E, such that
A € R — Q(6(AGy)) is continuous and in particular Q(8(Go)) # 0. By Prop. 2.1
we can always choose ) so that Q(8(F)) = 0 for every F € V\{R$ + Span[Gy]}.

For every F' € V, we decompose
F =Fq+ MF)G, + F',

where Fp € R{L. Since A(F) is a real linear functional on V, it is well defined the
state 2% on A(V, o) given by

Q%(8(F)) = e*MOQ§(F)) VFeV, acR.

One easily verifies that

1 nmw

Q=w*— lm — dal®.

n—+oo 2nm J_,.

We now exhibit a nontrivial decomposition of .
To this end, take I, ¢ = [~a,4q], with 0 < a < 7, and let I, , be its translate
by 2nm, n € Z. Set then I, := |J, {I, »} and define
. 1 =
Q) i=w* - lim — daf)®

n—+oo 2na I.N{—nmnn]

Qo :=w* — lim dafl”.

=1
n—+oo 2TL(71' - CL) {R\Ia}r‘l[—nrr,nn']
They are states on .A(V, o) as w*-limits of sequences of states; furthermore the de-
composition (which is nontrivial since 02:(6(Gy)) = %-“Q(cS(GO)) and ,(6(Gy)) =
—S;i—r_‘—:Q(5(Go)) as it is easily verified)

a=2q,4+ T,
v ™

holds so that § is not pure. g.e.d.

Remark. A characterization of pure and primary generalized quasifree states is

given in Appendix A.

4. Structure of the representations induced by minimally nonregular
flat states

In the following proposition we analyze the GNS representation g of A(V,0)
in terms of representations of A,;, = A(Vyw,0). We denote by f an element in

V\Vs. taken as a representative of the equivalence class in V/V,,,.
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Proposition 4.1

Let A(V,0) be a CCR algebra. Let A(Vy,00) be a CCR subalgebra of A(V,0)
and w be a regular state on A(Vy,00). Let Q € E, and & = Q4,,,- Then mq
decomposes into the direct sum of inequivalent representations of Aobs, labelled by

the equivalence classes f € V/V,.:

T = @ Toys Ha = ED Hz,
feVv/iou feEV/Vou

where &y =@ o pg, py € AutAyps : §(G) — e/ A§(G) VG e V.
Moreover every m;, is irreducible (factorial) iff mz is.
Proof. The last statement follows directly from the fact that py € Aut Aops-
We then notice that, for every F € V,., pr is implemented in 7z by o (8(F)) €
Aops; by definition of GNS construction, one actually has Hy, = Hz. On the
other hand, let G € V\V,.. Then by the definition of Vo, there is {Fn}, € Vo

such that
@G(8(Fr)) =@ o pa(8(Fn)) =

=G FRG(§(Fy)) — €%, e #1

which implies, since }ei"‘l =1, that there exists
s — nll;{rf-loo Toa (5(Fn))¢;c = eia’(,bfuc, eio‘ # 1. (41)

fr, ~ ‘7"&'0 , and we call T the unitary intertwiner between the two representations,
then one should have ¥, = T¢; and

T(s — lim 7z(86(Frn))¥s)=s— lLm Toe (0(Fn))Pos

n—-+4oo n—-+4o00

at the same time, which is not true whenever (4.1) is true.

Hence m; % mo if G € V\Voo.

We then argue from these results that mz, and 7z, are equivalent iff G - F € Vouw
(since both pr and pg are invertible), i.e. iff G ~ F mod V,., and the result

follows from the definition of GNS construction. g.e.d.

We want to give a deeper insight into the structure displayed by Prop. 4.1.
We consider a regular state w on A(V;,0y) and an extension § of it to A(V, o).
If w satisfies condition i. in Prop. 3.7, then § is minimally nonregular and Aq =
AV, 00).

Referring to the construction in the proof of Prop. 2.1, we show that A(V, o)
identifies a gauge group Gy, and that it may be interpreted as a field algebra. In
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the case in which condition i. in Prop. 3.7 holds, we analyze the decomposition
of 7 into inequivalent representations of A(Vj, o) and study the structure of the

space of the “gauge charges”.
The gauge group

As in the proof of Prop. 2.1, we consider the set

It is an abelian group (actually a real vector space) and vy =~ (V/V;)*.

The gauge group Gy is then defined as the abelian group of automorphisms of
AV, o)

Go := {ay € AutA(V,0), as(6(F)) = ei“”(F)5(F), ¢ E v}

Gy is isomorphic to vy.
The action of Gy on A(V, o) leaves A(V;,0¢) pointwise invariant.

Recall that Gy is amenable, since it is abelian.

We now come to the representation mg of A(V, 7). Recall that Vy C R$:. One
then shows that

Proposition 4.2
The subgroup Gq of Gy given by

Go ={ay € Go: ¢(F)=2mn, meZ, VF € V,.}

leaves Q invariant. Every one-parameter subgroup axg of Ga, ¢ fized, is imple-
mented in mq by a strongly continuous one-parameter group of unitary operators.
Their generators define the gauge charges; they annihilate the vacuum q.

Gq is nontrivial iff Q defines a nonregular representation of A(V, o).

Proof. The last statement is obvious.

Next, let’s define the additive subgroup of vy
Vow i ={dEvy: ¢(F)=2mm, meZ, VFEeV,.}
If ¢ € vyu, then ay = 1 on Ay, by the definition of Ay if G € V\V,., one has

Qay(8(G))) = D8(G)) = 0 = Q6(G))
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by Prop. 3.6. It follows
(ap) 2 =

The first statement is proved.

Let then ay, be any one-parameter subgroup of Gq given by
axs(8(G)) = €2 D§(G)  VFeV.

Subgroups of this type are for instance generated by those ¢ € vq, where
v :={p Even: ¢(F)=0VF ¢ Vow}-

Since (axg)* = Q, axg is implemented, for every A € R, by a unitary operator
Ug(A) in mq and

1(Us(X) = Dma(§(G))pall = [ —1] — 0  VGeV

as A — 0, i.e. strong continuity holds. The existence of the gauge charges as

generators of the groups Ug()) follows from Stone’s theorem. If Uy(N) = €29+,
Qs a gauge charge, then Us( Mo = ¥q implies Qo = 0. g.e.d.
Notice that the set of gauge charges Qq is a linear space.

Additional information are obtained if Vj = ’R,?, and w satisfies condition z. in
Prop. 3.7.

Proposition 4.3

If w satisfies condition i. in Prop. 3.7, then
a. Ga = Go
b. mq decomposes into the direct sum of inequivalent representations of AR, 0),

labelled by the gauge charges
= @
FeV/RY

where wy = w o ps as in Prop. 4.1.
c. The “charged fields” mq(6(f)), f € V/RE, act as intertwiners between the

inequivalent representations of A(RE, o).
Proof. a. follows from Vy = RS

b. and c. are easy consequences of Prop. 4.1. g.e.d.

We now look at the structure of the set of the gauge charges: we suppose again
that V,. = RE € V.
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It is clear from the definition of vq that
Us(A) € mo(A(RY,0)) Voewvg, AER.

One may say that the implementers of the gauge symmetries belong to (and so
the gauge charges are affiliated to) the commutant of the algebra Ag. We are now
looking for conditions implying that the gauge charges (or at least some among

them) are actually central charges. This amounts to have
Us(X) € Za(A(RE, 7)) for some ¢ € v, VA € R.

From this point of view, Lemmas 3.3 and 3.4 are useful.

Indeed, let {Fy.}, .,y € Vo comply with Condition A. Then limy,_, 4 oo 0(F,-) € VR
and actually limy 4o 0(Fy,*) € vq, by Lemma 3.3.

On the other hand, there exists limp—_, 4o ma(8(Fy)) in the strong operator topol-
ogy in Hq and it belongs to Zq(A(R, 0)); the limit operator U is unitary (Lemma
3.4).

Since R # V, U is not the identity operator: indeed there is G € V such that
limp 400 0(Fpn,G) # 0 (we then set lim, 400 0(Fn,) = ¢g). Then, for every
A € R, M\pg belongs to vq and is nontrivial. By Prop. 4.2, the one-parameter
subgroup a4, of Gg is implemented by a strongly continuous one-parameter group
of unitaries Uy, (A).

If Uso(A) = %6, then U = Uy (A = 1) = €% with Qu, selfadjoint and
affiliated to the centre of the observable algebra.

In the following Lemma we see that, if condition 4. in Prop. 3.7 is true for w, then

every gauge charge is a linear combination of charges of this type.

Lemma 4.4

Let Q¥ be a nonregular state on A(V,c) whose restriction w to Aq satisfies 1. 1in

Prop. 3.7. Then the set ®,,, actually spans the space vy = vq.

Proof. Every map lim,_. 4o o0(Fy,"), {Fn}neN € RY complying with Condition

A, is a true linear functional on the whole V. By Lemma 3.3, ®,., is contained in

V.

Since v§ = (V/RE)*™ = V/RL as algebraic duals of linear spaces, and since vy is

a closed linear subspace of V*, if Span{¢ € ®,u} € vy, thereis G € V/RE such

that G(¢) = ¢(G) = 0 for every ¢ € ®,.,, that is

3G € V/R$ such that, V{Fn},cN € Vo complying with Condition A, one has
lim o(F,,G)=0

n-—+400
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which contradicts i. in Prop. 3.7. g.e.d.

Remark. The above reasoning is more trasparent if the existence of {Fr}.eN €
'R? such that lim, 4 w(6(F,)) = 1, implies limp, 4o w(6(AF,)) = 1 for every
AER.

This is true for instance in the quasifree case, where limp, 4o wg(8(Fr)) = 1 1is

equivalent to lim, 4o ¢(F,) = 0 and then

im g(AF,) = A2 liI_E q(Fn) =0.

n—4+oo

This fact implies indeed that A¢ € ®,., for every A € R whenever ¢ € &,,,. Since
o(F + G)7 < q(F)* + ¢(G) VF,G € RY, ¢,% € B,., entails ¢+ € . It

follows that in the hypotesis of the above Lemma one actually has ., = vy = vq.

25



26



EXAMPLES

1. The harmonic oscillator in the limit of zero frequency or of infinite

temperature.

The model is defined by the quantum Hamiltonian

1
H = 2m(p + m??2?).

The Weyl algebra describing the kinematics is generated by the operator
W(u) = exp (3(u12 + usp))
with u :=< uq,us >€ R%. The symplectic form is
o(u,v) 1= u1vz — v1U2 (1.1)

which is nondegenerate on R? x R®.

The equilibrium states at inverse temperature 8 = 1 are the quasifree states

T
defined by

wa(W(w)) = exp(———{— +mvu2}coth ”ﬂ) (1.2)

The zero temperature (8 — 0) state in the limit v — 0 (free particle limit) is a

generalized quasifree state defined by
UJU(W(< 0,us >)) =1 Vu, € R
wo(W(< u1,0 >)) =0 Vu; € Ruy #0,

corresponding to ¢(0,u2) = 0, g(u1,0) = 400, if u; # 0. Furthermore
Vq:{yER2:E:<0,u2 >}

is the maximal domain of regularity for wy (if not, there would be a regular and
quasifree extension and this would contradict the nondegeneracy of 7).
For non zero temperature states the v — 0 limit also defines a generalized

quasifree state given by (see also [NT2])

wy(W(< 11,0 >) uy # 0

) =
w%(W(< 0,up >)) = xp( ﬂuZ) (13)
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It is worthwile to remark that, in an equilibrium state at non—zero temperature,
the Maxwell distribution of the velocity of a free quantum particle only arises in the
infinite volume limit and it requires a uniform distribution of the position so that
the use of nonregular representations is necessary. For fixed v and § — 0 the state
wg converges on the Weyl algebra to the (nonregular) central state @(§(F)) = 0,
VE #0.

2. Quantum particle on a circle.

The observable algebra A, is generated by the Weyl operators
W(n,v) = expi(np + vL)

over the additive group V4 = {n,v}, v € R, n € N, with the usual symplectic
form o((ni,v1),(n2,v2)) = nivy — novy;. The extended algebra A = A(V,0),
V = R x R, which includes the singular variables expiay, a € R, defines a gauge
group G which is the group of rotations of 2kw, k € N. In fact, the gauge group is

defined by the group of real functionals ¢ on V, vanishing, modulo 27, on Vj:
®(a,8) = ®(a +n,0) mod 27 ,

and therefore

®(a,B) =2mmra, meN. (2.1)

Hence, the action of the gauge group on A is given by
W(a,B) — expi2rma W(a,f) (2.2)

i.e., it coincides with rotations of angle § = 2mm. The gauge group is unbroken in
the representation of Ay, defined by the generalized quasi-free state (the ground

state of a rotator) given by

QW(n,v)) =0 n#0 (2.3)
=1 n = 0.

The charged fields W (6,0), § € [0,1), are singular variables and intertwine
between inequivalent representations of A,;,. They define a one parameter group
of automorphisms 89, 8 € [0,1), of Aups:

B8 (W (n,v)) = expifo W(n,v)
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which is broken; the states 25 = (3%)*Q correspond to wave functions with bound-
ary conditions 9(0) = ™4 (27) and in the representations defined by them the
spectrum of L is {# + m, m € N}. The automorphisms B% have therefore the
meaning of “boosts” on the angular momentum L.

The occurrence of nonregular representations displayed by the above simple
examples is actually a general fact whenever one deals with states which are ho-
mogeneous with respect to one field variable. In the functional integral language
this occurs when the functional measure is homogeneous along one direction in
field configuration space.

It should not be a surprise that such a phenomenon already occurs at the
level of quantum mechanical systems with a finite number of degrees of freedom.
The point is that Von Neumann theorem [BR] on the unitary equivalence of the
representations of the CCR algebras is evaded by the lack of continuity of the Weyl

group, a feature which is sometimes required by the physics of the problem.

3. Quantum harmonic lattice.

We consider a finite volume Bravais lattice in d dimensions: let R be the
vector identifying the single lattice site, K the vector identifying the sites of the
reciprocal lattice, v the volume of the primitive cell. The kinematics is described
by the canonical coordinates g¢(R) and p(R): we fix here the origin in the centre
of mass of the lattice, hence the variable g(R) represents the deplacement from
the mean value of the position referred to the origin. One has, forgetting about
domain problems, the CCR

[q,‘(R),p,,(R')] = 18,,0RR" p,v=1,---,d.

The dynamics is given, supposing one has only a nearest-neighbor interaction, by

the quantum hamiltonian

H= SR +5 Y a(RDu(R-R)g(R). (1)
R <RR'>,p,v

In order to construct a CCR algebra that describes the infinite lattice, we
denote by V the set of lattice functions with values in R? x R? such that, if
2(R) :=< a1(R),az2(R) >€ V, it holds

23041(11)2 < 400 ZQQ(R)Z < +o0.
R R
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Let then o be the nondegenerate symplectic form on V defined by

7(e,8) = Y _ ai1(R)-B2(R) = > az(R) - 1 (R).
R R

V is a real linear space and hence our infinite lattice is described by the CCR

*-algebra A(V, o).

There are subalgebras of A(V, o) which are better suited to describe every
finite subsystem: we think of the infinite lattice as imbedded in R? andlet Any C Ry
be open, bounded and containing in its interior NV sites of the lattice. We denote
with Vn the real linear space of maps from Ay with values in R¢ x R?. The
restriction of o to Vv X Viv is still nondegenerate: hence A(Vy, o) is a *-subalgebra
of A(V, o). Lasty, {J, , Vv is a subspace of V and the * subalgebra associated to it,
we call it A, contains the whole information relative to finite subsystems. If §(a)
is a generator of A(V, o) contained in A, then it exists a Ax such that a € V.

Such a generator admits an obvious representation as Weyl operator

Wia)=exp(i 3 {a(R)-a1(R) + p(R) - az(R)}).
ReApn
We identify A(Vy,o) with this representation.
The Gibbs canonical equilibrium state at inverse temperature 3 € R in a

finite volume An € R? is the quasifree state given by

_ |a1(k) - €, (k)?
wh (8(2)) = exp( N Z{ mea(k)

Buws(k)
2

(k)| iz (k) - €,(k)[?} coth 2= (3.2)

where &(k) := > gpea, €XP (—ik - R)a(R) and é(a) € A(VN,0).

Polarization vectors ¢,(k) and normal frequencies w,(k) (with wave vectors k
restricted to the first Brillouin zone) are obtained as solutions of the eigenvalue
problem

-D[.LV (E)fxl (&) = mw(k)z " (.&)

where

Z D,,(R)exp (ik - R)

with the sum restricted to nearest neighbors of the origin.

It is absolutely essential to notice that

w(k) ~ |k (3.3)



in the range of small |k| (see for instance chap. 23 in [AM]). Furthermore, since
we are using coordinates which are referred to to centre of mass, there are no zero
modes.

It is then easy to go to the thermodynamical limit. Let indeed é6(a) € A and
let Ay R? in the sense that it eventually contains every bounded A C RY. It is
then immediate that

m wﬁ o = w’@ [
Vl/R A (6()) (8(2))

where w? is the g.q.s. on A defined by

wP(6(a)) = exp (— ”/ dz{ial(k) &,(k)| +

mws(k)
ﬂwa(_]_c_)
2

+mws(k)|az(k) - €,(k)|*} coth )- (3.4)

Remembering equation (3.3) we have the following results, since the sums in (3.2)

approximate the integral in (3.4)

if d<2andif g e1(R) = 1(0) # 0 then w?(§(a)) = 0 for every § € R™.
if d=1 and if @;(0) # 0 then also limg_. oo w?(6(a)) = 0.

Moreover, since a(R) € UAN Vi, it follows that a(k) is analytic in k. Hence the
above conditions are also necessary for the expectation value to be zero.

Thus one has a nonregular representation. The physical meaning is that in
this case all the variables ¢,(R) have a uniform distribution in the infinite volume

limit and hence their mean does not exist (crystals do not ezistin d = 1,2)

4. Bloch electrons and 6 angle structure.

The framework discussed in Section I allows to clarify the occurrence of a
structure of sectors labelled by an angle § in the case of electrons in a periodic
potential V(z) = V(z + a), and its relation with the 8 vacua structure of QCD.

The analogy has been stressed by Jackiw [J] and the purpose of this paragraph
is to offer a mathematically rigorous version which does not rely on the semiclas-
sical approximation: the non-normalizable Bloch wave functions are treated here
as non regular states over the CCR algebra generated by the Weyl operators; the
analog of the large gauge transformations of QCD, the chiral transformations and
their breaking will emerge clearly and fit naturally in the framework discussed

above.
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The CCR algebra A(V, o) is generated by the Weyl operators W(«a, ), with
a,B € R, and the Bloch states 2} are defined by the Bloch wave functions [AM]

(we set @ = 1 in the following)
Pi(2) = €™ 0l(a), vi(e) = vi(e +1), ke [0,2m).
The ground state (n = k = 0) is thus given by [DB]

Qo(W(a,B)) =0 if a#2mm, neN

1
QS(W(27rn,,B) — gi™nh / 178(3:)1;3(:1: +ﬁ)eiz’""” dz.
0

The Weyl operators W(e,0), which generate the boosts on A(V,o), are repre-
sented non regularly by ; all the states Q} defined by the Bloch wave functions
are represented by vectors in the GNS representation space defined by ). The
nonregularity of the representation is forced by the invariance of Q) under the
non compact discrete group of lattice translations. The regular subalgebra A is
generated by the Weyl operators W(0,83) = exp 8p.

The group of discrete (lattice) translations T, = expinp , n € N plays the
role of an unbroken gauge group G; they are the analog of the large gauge transfor-
mations of QCD. The subalgebra of A which is left pointwise invariant under such
(gauge) group may be identified with the observable algebra A,;,; it is generated
by expi8p and expi2rmz with f € R, m € N.

The GNS representation space H given by the state 2 over .4 decomposes
into disjoint irreducible representations of A,p,, labelled by an angle § € [0,27)

H = 6906[0,2#)%0) He = W(Q)O)HU (41)

HO = Aobsq’()’ (42)

where ¥ is the vector in H which corresponds to the state 2.
In fact, the spaces Hy are orthogonal, since V¥ = A¥,, ¥' = B¥; 4,B €
Aobs
(W(6,0)%, W(6',0)¥') = (T,, W(-0+6',0)C¥,) (4.3)

where C is a finite linear combination of Weyl operators W(2nn;, 58;), so that the
right side vanishes when 8 # 6’ (because then —8+ 6’4 27n; cannot be an integer
times 27). Furthermore, D = A(V,0)¥, is dense in H and each vector of D

32



can be written as a linear combination of vectors of the form W(#4;,0)4; %, with
A; € Asps, and therefore
H=D= DoHs.

Finally, A,bs has a non trivial center 2,5, generated by the group G of lattice
translations T}, = expinp, n € N, and QJ is a pure state over A,;,. In fact, G is
unbroken, since Q)(7},) = 1 implies T,, ¥y = ¥y; therefore

Qo(Tr) = Q(W(—6,0)T,, W (8,0)) = ™,

which implies
Tm¥s =™y (U5 = W(6,0)T). (4.4)

Hence, Z,p, is non trivial and the representations of A, given by the states {24 are
inequivalent; they are irreducible since all the states {24 are pure as a consequence
of purity of QY.

The group of charged automorphisms of Ay, is generated by expiaz, a €

[0,27), and the following equations are satisfied:
e Wy = W, , (4.5)

TneiazTn—l — aia(x—}—n). (4.6)

They are the analog of the chiral transformations in QCD and are necessarily
broken in each irreducible representation of A, given by the vectors ¥4. As clar-
ified by the present analysis,the crucial point is that the algebra of observables has
a non trivial center which is not left pointwise invariant under the “chiral” trans-
formations (no use has been made of the semiclassical approximation and of the
tunnelling mechanism). We recover in this way the mechanism of chiral symmetry
breaking obtained previously by different approaches [LS,KS,MPS1,MS1,MS3].

It may be remarked that in the case of Bloch electrons the analog of the chiral
transformations have a simple action on the vectors ¥4 and on the corresponding
sectors (equation (4.5)), but not on the “ground state vectors” U2 € My, defined
by the Bloch wave function ¥y(z) = expifz vg(z) (because vy(z) # vy, (z)).

As far as the analog of the m-vacua is concerned, one may investigate in
general the representations of A, defined by wave functions ¥(z) € L?, i.e., by
states with some localization in z, e.g., wave functions ,(z) localized around the
minima z, of the periodic potential. In this case one necessarily gets reducible

representations of A,p,. In fact, the operators T,, € Z,, cannot be represented
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by c-numbers ¢, (a necessary condition for irreducibility), since, by the unitarity
of T, one must then have |t,| = 1, and, on the other side, Th9¥(z) = ¥(z + n)
implies |(v,T%¥)| < 1. For the Wannier wave functions ¥y one actually gets
(Y1, Tntpyy) = 0.

The above argument applies to any representation of A,4, in which the “chi-
ral” transformations expiaz are implemented by strongly continuous unitary op-
erators, so that the “chiral” charge is well defined; in fact, in this case the wave
functions are in L? and one necessarily gets reducibility.

In conclusion, one is led to use the representations defined by the vectors ¥y
(or by the Bloch states) quite generally in order to have irreducible representations
of A,ps (in QFT this is equivalent to the validity of the cluster property) and
this automatically implies the breaking of the “chiral” transformations. The so
emerging 6 angle structure is merely a consequence of the structure of A, (in

particular its non trivial center).
5. Free Bose gas.
We suppose that the gas is confined in a volume A € RY. It is described by

the CCR C*-algebra A(L?(A),0) = Ay, where

o(f,9) = Im(f,9)r=  Vf.g € L*(A). (5.1)

The dynamics acts at the one particle level and defines on A4 the one-parameter

group of *-automorphisms a’ :
a'(8(f)) = 8(e™rf)  Vfe L*(A)

where H is the selfadjoint extension of the Laplacian —/\ on L?(A) corresponding
to Dirichlet boundary conditions on JA.
The Gibbs grancanonical factor with chemical potential 1 € R and inverse

temperature 4 € R™ is the gauge invariant quasifree state

(£, (1+ zePHa)(1 — ze M) i)

wi’(8(£)) = exp {~ 4

} (5.2)

for every f € L?(A) , with z = e#?. This state is regular.

For d > 3, in the thermodynamical limit there are two distinct regimes. In
the first one there is a single phase, characterized by high temperature and low
density (corresponding to z < 1 for Dirichlet boundary conditions). In the second

one (low temperature and high density, corresponding to z = 1) a finite fraction
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of particles occupy the lowest energy level (Bose-Einstein condensation). There is
a multiplicity of phases, overyone of them characterized by its own value of the
particle density, all values in the interval [p.(3), +oo[ being allowed.

pc(B) is the critical value of the particle density (local particle number per
unit volume: it is independent of the shape of A, for these boundary conditions

BR)):
pe(B) = (2m)~ / dipe (1 — )1, (5.3)

This is the value, at z = 1, of the density as a function of 8 and =
p(B,2) = (2m) ¢ /ddpe_ﬁpz(l — ze—ﬂpz)_l. (5.4)

The integral defining p (/) is divergent in d < 2: it is obtained as the (divergent)
limit of well defined Riemann sums giving the value of the local particle number
per unit volume when the system is confined in A. The critical density goes to

infinity but nonregular representations appear, as shows the following

Proposition (5.2.31 in [BR]) With the above notations,

w?(4) = lim w"?(A)
A R?

ezist for z = 1 and for every B € RT, A € Uy As when A" R? in the sense that
eventually contains every A C R%. The limit state is the gauge invariant quasifree

state defined by

Ity

m e — it __1_ F(oVNI2.—BP2 1 _ —Bp*y-1
() = e exp (=g [dhplf)Pe - )Y (59)

for every f € U, L*(A). In particular, w*P(§(f)) =0 if d=1,2 and [ dizf(z) #
0.
We obtain hence, in d < 2, a g.q.s. with

V, = {f e |JL*(A): f(0) = 0} (5.6)

and f(0) is well defined since f(p) is analytic.

Remark. It is very important to notice that w#? is not locally normal, thanks
to the discontinuity of w”?(§(Af)) in A = 0 for every f € L?(O) with f(O) # 0,
chosen anyhow an open set O € R%. In this model, this property is confirmed by

the nonexistence of the local particle number discussed above.
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6. Massless scalar field in 1 + 1 dimensions.

The Weyl algebra can be thought of as formally generated by the exponentials
of the canonical “time zero” fields ¢(f1), 7(f2), f1, f2 € Sreai(R) = S and the CCR
are described by the standard symplectic form

o(F,G) = /(flgz — fog1)dz

over the (real) vector space V := § x §. Since o is nondegenerate (V, o) identifies
a unique C*-algebra A(V,o). The time evolution which characterizes the model
is described by a one-parameter group of automorphisms of A(V, o).

It is well known [W] that, for infrared reasons, the vacuum state wy for the
massless field time evolution does not define a regular representation of the Weyl

algebra A(V, o). The state wy is in fact well defined on the observable algebra
Ay = AV, 00), o =08 xS, 0S ={f =09, g€ S}, o0 = oy 1,

where it is given by
wo(W(F)) = exp(—q(F)/4) , (6.1)
w(F)= [ SIROF +e@IRERd  w@)=l (62

it has a unique extension (as a positive linear functional) to A(V, o), call it £y,
which is of the form (6.1), with

g(F) =+o0 for F V. (6.3)
This is a consequence of Corollary 1.3.8 and of the following (see also [SW])

Lemma 6.1

Fized anyhow G € V\V,, o(-,G) is an unbounded linear functional on V,, when
this is equipped with the inner product induced by qq.

Proof. We argue by contradiction. Indeed, if, fixed anyhow G € V\V,, o(-,G) is
bounded, we can extend it by continuity to V;*°. This space contains elements of

the form F, = <0, f, >, with

Foy_ flplT R | <6
f"(p)"{op ol > 5.
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It is easy to see, for instance using mollifiers, that the continuous extensions of
o and g to Vo' are still given by the standard integral expressions. It is then

immediate that

5

w(F) = [ dp = [ 1ol #dp = ns?.

-4

If G € V\Vy, then € > 0, b > 0 exist such that

|Regi(p)] > b  if |p| <e.

With € = § we obtain

& 6
o(Fa, @) = | / o]~ G (p)dp| = / 1| | Reg (p)|dp > 26nb+.
~5

It follows that, for every G € V\Vj,

ia'(Fm G)F
q(Fr)

and o(-,G) is not bounded. gq.e.d.

The gauge group G is the one-parameter group of automorphisms B* cor-
responding to ¢ — ¢ + A, A € R. The Weyl operators W(f1,0) = expip(fi1),
fi € 8S define charged fields. The gauge group G is unbroken in the ground state
representation of A(S x §,0) defined by Q.

Call U()) the unitary implementer of 3* and @ the associated generator. We

> 4b%n

can give a precise identification of them. Indeed, let {F,}, . =< 0, fn > with

(6.4)

sy &l pl <
fn(p)——{o P 1§|>

3|3 =

For n fixed, F,, € Vo™ and so Two(6(Fy)) is an unitary operator in WWO(A(T/Z(IO ,00)),
which is included in 7, (A(Vy,00))". Indeed, if F, € Vo™, there is a sequence
{Fn,m} € Vy approximating it in the ¢ norm and hence o-weakly with respect to
Vo. It follows that m,,,(6(Fy)) is unitary as a strong limit of a sequence of unitary
operators with strongly convergent adjoints.

By the same argument, s — lim, 4 oo 7w (6(Fp)) exists and it is an unitary
operator in WwO(A(_VaqO,O'U))” = o (A(Vh,00))".

Moreover, notice that &' —limp 1 o0 fn(p) = 8(p), and that lim, 4 o0 ¢(Fy) =
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Hence

U(A) =s— nﬁ’i‘oo”“o(‘s(’\F"))° (6.5)
It follows from this that
U(A) € muo(A(Vo,00)) Ny, (A(Vo,00))". (6.6)

If we fix n < +o0, there exists the Stone’s generator ®.,,(F,) of 7., (6(AF,)), A€
R.
{®w(Fr)} is a sequence of selfadjoint operators on H,,,. It follows then from
(6.5) that
lm @u,(Fa) — Q

n—-+oo
in the strong resolvent sense [RS].
Since (S x §)/(8S x §) is isomorphic to R, the Hilbert space Hq, decomposes
into disjoint representations of A, labelled by the gauge charges a € R

Ha, = GBQER'HQ (6.7)

where H, = Ay¥,, ¥, = W(f,0)%,, [ f(z)dz = , and ¥, is the vector corre-
sponding to .
Similarly, equilibrium (KMS) states over .4, are given by the regular and

quasifree states

ws(8(F)) = exp(~7as(F))  VF € Vo,

Here ¢g is related to g by the standard factor coth(w—(gﬂ), ﬁ.: %, which yields
the fulfillment of the KMS condition [RST].

Furthermore, ws has an extension to A(S x S, o) given by

Qp(8(F)) = {wﬂ(5(F)) VF eV, (6.8)

otherwise.
The state {05 4. is invariant under space translations 7. is primary and 4. satisfies

the KMS condition. Actually is the unique extension of wg with the properties :.
and i2.. In fact, any extension Qﬁ with such properties must satisfy the cluster
property

lim Qg(efl¢(H)- o(fa)l) = 1Q5(e4())?

a—+oo

where f is real and f,(z) = f(z — a). Since f — f, € 8S the left hand side can be
computed on wg and the limit @ — 400 vanishes. Hence f)g =3

In conclusion, ground state or equilibrium state representations of the CCR

algebra of the massless scalar field in 1 + 1 dimensions exist compatibly with

positivity but they are nonregular.
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7. Current algebra in 1 + 1 dimensions and its extensions.

The (observable) current algebra is generated by the Weyl operators

W(f1, f2) = expi(jo(f1) + 71(Sf2)) fi, €S8

and it is isomorphic to the CCR algebra AU = A(0S x S, 0), through the relations

. 1 : 5 1
jo(z) = —ﬁalso(m) , Ji(z) = —jo(z) = ——\/‘;W(w) ; (7.1)
with ¢(z) a pseudo-scalar field in 1 + 1 dimensions and 7(z) its canonically con-
jugated momentum.
One can then look for a canonical extension of 4y which may be interpreted
as a field algebra charged under vector and axial charges, i.e., under the automor-

phisms generated by the local charges
Qr =jo(fr) » Qk =4s(fr) = —j1(fr) (7.2)

where fa(s) = f(s/R) , f € D), f() = v/ if la| <1, f(z) = 0 if
|z] > 1 + e. The most natural extension is provided by A = A(S x §71S,0)
where

07§ ={f € C*(R), 8f € S(R)} , (7.3)
o1(F,G) = /(flgz — f2gl)dfv ;

The gauge group G is generated by the one parameter groups 8%, B4, A, u € R,

corresponding to the transformations
o —=p , 07lr =0 v+, (7.4)

p—ope+pu , 0 'r -0 'n ; (75)

G is therefore isomorphic to R x R.

The identification of the ground state representation of such CCR algebras
depends on the time evolution automorphism , i.e. on the specific models.

The state wy defined by (6.1) and (6.2) defines a ground state representation
of Ay (for the massless time evolution); as in the previous section, it has a unique
extension to .4, which defines a nonregular representation of A. The gauge group
G is unbroken in this representation and one gets a decomposition into charged
sectors labelled by the vector and axial charges. Again, the charged fields act as

intertwiners between inequivalent representations of Ajy.
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8. The Schwinger model.

The Schwinger model in the bosonized form in the Coulomb gauge may be
defined by the time zero current algebra A4, = A(0S x §,0) and the following

equations of motion

3 jo(@) = ~(1/v7) Bym(a)
%]1(:1:) = —(1/\/;)%71'(1:) = O1jo — (e?/7) al—ljo(:z:) (8.1)

(For a more general discussion see [MS1,MS3,MS5]; here for simplicity we consider
the dynamics with no variables at infinity).

One is then led to consider the algebra A(S x S,¢), which can be regarded
as the observable algebra Ay, (stable under time evolution !), and the dynamics
is then equivalent to that of a massive scalar field, with mass m? = e?/7. It
i1s important to stress that the chiral transformations (7.5) (which act trivially
on the time zero current algebra) define a non-trivial group, isomorphic to R, of
automorphisms of the observable algebra A,,.

We consider the canonical extension of A., identified by the addition of
bosonized fermion field variables at time zero (actually, smeared fermion fields
belong to the strong closure of this extension [AMS]), namely the “field algebra”
A = A(V,o) with

V={F=(fi,f2) €E§x07'S, (fo(0) — fa(~0)) =ny7m,neN} (8.2)

The gauge group is now the U(1) group B defined by
BAW (f1, f2) = eirfz(o0)—fal=00))/v/7 W(f1, f2) (8.3)

The ground state on A,;, is defined by the quadratic form g, given by equa-
tion (6.2), with w(p) = (p? + m?)*/? = w,,(p). It defines a regular quasi free
representation of 4, and also a regular quasi free representation of Agss,.

The ground state w(,,) has a unique extension Q,, from A,;, to A, since all
F e V/Vy, iy, =8 x S, define unbounded linear functionals on Vy. The chiral
automorphisms 3% are broken in 7, whereas the gauge group A* is unbroken.

The GNS representation of the field algebra A defined by ,, decomposes
into a direct sum of irreducible inequivalent representations of Ay, labelled by
the gauge charge ¢ = n € N. Such representations are not stable under time
evolution, so that the time translations are not implementable and the energy is
not defined in the charged sectors. Actually, the charged state (1r defined by

Qr() = Qu(W(-F)-W(F)) , F¢W
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is mapped into a one-parameter family of states % on Ay, of the form Q% = Qp
with
F'=(fl,f}) €678 x07's ,

fl(k) = coswmt fi(k) + wpm sinwnt f(k) (8.4)
fzt(k) = —w lsinwnt fl(k) + coswmt fz(k)

(the symplectic form o extends naturally from V to V¢*! = 871§ x 6718, and the
state (1,, has again a unique extension to A°** = A(V*t, 5°%1)).

The above time evolution of states can be viewed as the result of a time evolu-
tion automorphism o' of the extended field algebra 4°*!, defined by a!(W(F)) =
W(F~') and by equations (8.4). In the representation of .4¢** defined by the
unique extension of {1,,, the time evolution is described by a unitary group which
is not strongly continuous (except on the vacuum sector), so that the energy is
not defined in the charged sectors.

The above treatment of the Schwinger model displays a general characteriza-
tion of confinement, by which charged sectors exist but the corresponding states
are not physically observable since they do not have finite energy (for a similar

mechanism in massless QED, and in QED; see [MS2].

9. Current algebra on the circle.

Representations of the U(1)xU(1) current algebra on the circle have played an
important role in connection with the classification of the representations of Kag-
Moody and Virasoro algebras [FK,F,Se]. The classification of the positive energy
representations of the U(1) x U(1) current algebra on the circle has been given in
[BMT] by implementing the DHR strategy. Here, we offer a canonical approach
which provides the charged morphisms as Weyl operators which intertwine between
the vacuum representation and the charged sectors.

It is worthwhile to remark that the treatment in terms of extended Weyl
algebras can also be done on the real line, without space compactification, and is

therefore also suited for models with breaking of conformal symmetry.

In two dimensional conformal quantum field theory models, the U(1) x U(1)
current algebra is generated by conserved chiral currents which have “left/right

moving” components living on a circle, J1(z), |z| = 1. The Weyl exponentials

W(u) =expiJ(u) , J(u)z/d—‘z,J(z)u(z) , (9.1)

271
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J =Jy or J_, u € §(S'), the space of C* real functions defined on the circle
|z| = 1, generate a CCR algebra Ay = A(S(S'),0), where the symplectic form o
is given by

o) = 7(), Jo)} = [ i ayo(z) (9.2)

271

Such an algebra has a non trivial center generated by J,—¢ = J(1) = Q where

Jn are defined (with equation (9.2) extended to complex functions) by
Jo=J(") , Jr=J_, (9.3)

and satisfy
[Jny Im] =mbntmo - (9.4)

The “conformal Hamiltonian” generates the following automorphism on .4y:
ar(W(u)) =W(u) , w(z)=u(e"z2) (9.5)

The various QFT models with a U(1) x U(1) current algebra can then be
recovered on the basis of the classification of all the positive energy representations
of Ay, and in [BMT] this is obtained according to the philosophy of Doplicher,
Haag and Roberts, by means of localized morphisms of Ay.

These representations can also be obtained by introducing a canonical exten-
sion of Ay; in this way one recovers a (charged) field algebra A, a gauge group
G and the decomposition of the quasi free representations of .4 into inequivalent
positive energy representations of A;. More precisely, one considers the canonical

extension of 4, given by A(V, o), where
V ={S(5")+ XX, AeR} (9.6)

and X is characterized by

(X, u) = /ii u(z) :(1/%)/0 “u(e)d, VueS(SY)  (07)

2wtz

(and, of course, o(X, X) = 0).
This extension of o to V is nondegenerate (remember that o is degenerate on

S(S') x §(S1)). Notice also that
e CTW(AX)e ¢ = e W(AX) (9.8)

and so W(X) has unit “charge”. X is uniquely characterized by the above formulas

up to a constant. Hence W(X) is uniquely determined in A4 up to
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n(X)exp (iA(X)Q), where 7 is a phase factor.
The new element X plays an essential role in the construction of charged fields

which implement the local automorphisms (“charge shifts”) of 4, given by

Yo(W(u)) = exp(i/ —éz—p(z)u(z)) W(u) , zp(z) € S(S) . (9.9)

2m
In fact, if [ p(z)dz = 0, v, is implementable by an element of A; (by equation
(9.2) and the existence of a regular primitive of p). On the other hand, the generic
function p(z) on the circle with zp(z) € S(S?) can be written as

.d a,
—i L %o 1
o) = i)+ (9.10)
with a, € R and p; € §(S?). The corresponding automorphism v,, equation (9.9),
is implemented by W (F,) with

F,=a,X+p1 |, (9.11)

which is an element of the extended space V. Clearly, a, is the “charge” carried

by v,
dz
G =155 p(z)

and the role of X is to implement the singular part of p, namely a,/z. p; is
determined up to an additive constant, and this corresponds to the multiplication
of W(F,) (equation (9.11)) by an element of the center of Aj,.

The canonical extension of the current algebra also allows for a very simple
derivation of the fusion rule for localized automorphisms. To this purpose, we
consider, as in [BMT], the automorphisms v, with p localized in subintervals of
the circle which do not include the “point at infinity”, e.g. § = 7, corresponding
to ¢ = Zoo in the compactification of the line. equation (9.10) can be integrated

in the complement of the support of p and gives locally

p1(z) = ay(ilog 2 +¢p) ;

fixing the cut in the definition of logz at § = =, ¢, takes constant values cf

for § > m and 8 < w, and continuity of p; (which belongs to S(S?')) implies

* —¢> = 27. Since p; is defined up to a constant, we can impose the condition

Cp p

. dz
ayc) = —z/%p(z)logz .
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This uniquely fixes the implementers W(F,), and then the Weyl relations in A(V)
immediately give the “fusion rule” for charge shifts v,, v, localized in disjoint

intervals:

W(E,)W(F,) = W(Fpiq)e™ ™%

where the £ signs correspond to the cases in which p is localized after/before o,
in the sense of increasing 6, in the punctured circle (with § = 7 removed).
We now turn to the gauge group G associated to A as a canonical extension
of Ay. It is clear from the definition that
G = {ap(W(F) = EOW(F), FeV, ¢ V., : ¢(u)=0 Vue S (S}

real *

and that every ay € G is of the form a,j where $ is fixed and A € R. Since
d(u + AX) = Ap(X) for every u € S(S?), one can choose ¢ such that ¢(X) =1
and this amounts to fix ¢(-) = o(-,1). G is a group of inner automorphisms
of A: the automorphism ay3; A € R, is implemented by the central element
W(A) (=exp(zAQ) in every representation in which the center of Ay is regularly
represented).

As a further point, we know from the analysis in [BMT] how to characterize
the sets of (a',8)-KMS and ground states for the dynamics (9.5) above.

The factor (af,3)-KMS states on Ay are defined by

. 1 & nB .
wi(W(u)) := exp{igio — 5 :L;lncoth E1 lin|?} Vu € S(S1),

where g € R and 4, := %u(z)z"_1

The pure ground states on 4y are defined by

(e.9]

wi(W(u)) := exp{igio — % Z n|in|?} Vu € S(S).

n=1

We will call in the following 7, the representation determined by w{, and call g4
and go the g.q.f. associated to the above states, respectively.

We are now faced to the problem of extending the dynamics in (9.5) to the
algebra A: we require to this end that A is stable under the action of the extended
dynamics (which we call &*). Using the fact that A is the smallest *-algebra
containing Ay and elements which are Q-charged, Equation (9.8) above and the
fact that

&'(e*?) = af(e*?) = A9 VA eR,
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one obtains that the most general extension of the dynamics to A is determined

by the following time evolution for W(X) (7 is a phase factor):
&(W(gX)) = n(g,1)e*@VW(gX)  VgeR.

The following results are stated for the choice n(g,t) = 1, A(g,t) = 0, but they
hold for all values of these parameters.

It is easily shown that both wg and wy (we set here g = 0) have A; as a
maximal domain of regularity in \A. Indeed, one has go(1) = gp(1) = 0 and
o(X,1) = 1. Hence o(X,-) is not g-bounded on S(S') and by Corollary 1.3.8 we
have the result. As a consequence, the unique extensions g and {0y of wg and wy
to A are a factor (&!,3)-KMS state and a pure ground state, respectively. Hence,
we can recover the decomposition into sectors given in [BMT] (we use for the sake

of simplicity only the pure states here):
Proposition 9.1

The gauge group G is unbroken in mq,.
The representation mq, decomposes into a direct sum of inequivalent irreducible

representations of Ay, labelled by the value of the gauge charge:

T, = D 7o

gER

The charged fields W(gX), g € R, act as intertwiners between the inequivalent

representations of Ay.

10. The Stiickelberg-Kibble model.

We discuss here an application to a quantum field model which is relevant
(see e.g. [MS4,MS2]) for understanding the Higgs and confinement mechanisms in
different space-time dimensions (see also [NT1]).

The Stﬁckelberg—Kibble.(S—K) model is defined as an approximation of the
abelian Higgs—Kibble model, by freezing the modulus of the Higgs field x =
Ix|expip to |x| = 1 [MS2,MS4]. The observable algebra is generated by the
current j, = 0, + eA, and by the electromagnetic field F},. In the Coulomb
gauge, such a field algebra can be realized in terms of a CCR algebra

Fyo =0;40 , Ag= A r , Fi; = 0;A; — 0;A; (10.1)



with ¢ and 7 canonical fields. In more than 141 dimensions one has a non-trivial
transverse algebra generated by Fjj, but it decouples from the other fields and it
will not be considered for simplicity. Hence, the observable algebra at ¢ = 0 can

be identified with the CCR algebra
Aops = A0S x 8A7*S,0)

where A~1S is the space of C™ functions, f, bounded by polynomials, with Af €
S, A the Laplace operator; 8/A™1S denotes the space of (partial) derivatives of
functions in A71S.

The dynamics is defined by the following infrared cutoff Hamiltonians

i =) [weipr +7)+ 5 [adys@rae - (102
where U (2) = fr(z)V(z) with AV(z) = —6(z), and fr(z) = f(z/L), f € D(R%),
f(z) =1 for |z <1, f(z) =0 for |z| > 1 +e.

The removal of the infrared cutoff can be done by taking strong limits, in a
class of representations, of the (infrared cutoff) time evolution of A,bs; one obtains
a one-parameter group af, t € R, of automorphisms of A, as in [MS4].

The charged field algebra A of the S-K model can be obtained as a canonical
extension of Agp,, with Vo = S x 0A'S CV = 8§ x ONA"1S, e, A= A(S x
ONA71S, o), with the natural extension of o.

The gauge group is isomorphic to R and is defined by ¢ — ¢ + A, ON" I —
dA"1rm; it is a U(1) group on the “compact fields” expip(f), JfdPz =m € Z,
which are the original variables of the S-K model.

The ground state ¢ on Ay, is given by the quadratic form (6.2) with wp,
replaced by p?/wm(p), wm(p) = m. The state 0y has a unique extension
Q from Ay, to A (since all F' € V/Vy define unbounded functionals on Vj).

The representation mq defined by € on A is non regular in 1+ 1 and 2 +1
dimensions, regular in 3 4+ 1. In 1 + 1 and 2 + 1 dimensions the gauge group is
therefore unbroken in 7, and correspondingly the Hilbert space Ho decomposes

into irreducible inequivalent representations of A, labelled by the gauge charge:
HQ = @aeRH(x )

in 3 + 1 dimensions the gauge group is spontaneously broken and there are no

charged sectors.
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The charged sectors in 1 + 1 and 2 4+ 1 dimensions are not stable under the
time evolution, and the energy cannot be defined, except on the vacuum sector,
i.e. confinement takes place as spontaneous breaking of the time translations on
the observable algebra, in the charged sectors. Under the time evolution each
charged sector is mapped into a one-parameter family of inequivalent represen-
tations and this can be viewed as the result of a time evolution of a larger field
algebra A°** = A(S x A~1S) (which gives rise to the larger gauge group R x R),
and the (unique) extension of ) to A°*! defines a Hilbert space in which the time
translations are implementable by unitary operators which are not strongly con-
tinuous, except on the vacuum sector. Charged states are therefore excluded in
different space dimensions by two different mechanisms, one (confinement) involv-
ing infinite energies, the other (Higgs) resulting from the fact that charged fields
applied to the vacuum give rise to states in the vacuum sector (for related results

see [MS2]).
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APPENDIX A

EXTREMAL GENERALIZED QUASIFREE
STATES

1. Primary states

We recall the standard characterization of primary quasifree states (prop. 11

and th. 3 in [MV]).

Let A(V,0) be a CCR *-algebra (o is assumed to be nondegenerate). Let
w, be the quasifree state associated to the finite and nondegenerate generalized
quadratic form ¢ : V — RT. Then w, is primary iff the continuous extension of &
to V' is nondgenerate.

To extend this result to generalized quasifree states we introduce the notion

of ocg—topology.
Definition A.1

Let (V,o) be a symplectic space and ¢ be a generalized quadratic form on it. We
call og-topology the locally convex topology defined by the neighborhood basis at
the origin I, ; g, where, for every finite set {G;} € V and with ¢,¢; € R,

L ={FeV:qF)<e |o(F,Gi)| <e} (A.1)

Remark. Notice that we may take the G;’s to be in V\V,. Indeed, if G; € V; for
some 7, then the second condition in (4.1) is implied by the first, with €; = €q(G}),
by the positivity condition (I.1.2). Hence, if V' = V;, this topology reduces to the
strong topology on V induced by the ¢ norm.

If both o and ¢ are degenerate, there may be elements FF € V such that
¢(F) = 0and o(F,-) = 0on V. Hence the og-topology is not Haussdorff. Therefore

we introduce

Definition A.2 _

We call V7! the space obtained from V adjoining to it all limit points of og-Cauchy
nets and then going to the quotient with respect to the nets that admits the origin

as a limit point.
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Remark. If V =V, V’? coincides with V?, the Hilbert space canonically ob-

tained from (V,[-,-]4) by completion and quotient over the zero sequences.

As a first result we have

Lemma A.3

Given a decomposition V =V, + V', then V= I_/'q—aq—l-V'. Furthermore, q(-) and
o(+,+) are continuous (o is jointly continuous) in the oq-topology and they have

. . . 704
then a unique continuous eztension to V. .

Proof. The first statement is an immediate consequence of the definition of Ve,
It follows that, if the net {F,} € V is og-Cauchy, one can write F, = Go + H,
{G.} € V a ogg-convergent net and H € V', fixed.

The continuity of g(-) follows at once. The joint continuity of o(:,-) follows from
the preceding decomposition, from the o-weak and the g-strong convergence of

{G+} combined with the standard positivity condition, true on pairs of vectors in
Vg g.ed.

As far as the characterization of primary generalized quasifree state is con-

cerned, we state the following

Conjecture A.4

Let (V,o) be a symplectic space, q be a generalized quadratic form on it and w,
the associated generalized quasifree state. Then wq is primary iff the continuous

. =—0oq .
extension of o to V. ~ is nondegenerate.

We have been able to prove the “only if” part of this conjecture. The proof is a
simple generalization of th. 3 proof in [MV]. Notice that we cover also the case,

not treated in [MV], in which g is finite but degenerate and o is degenerate.

Proposition A.5

Let (V, o) be a symplectic space and q be a generalized quadratic form on it. If the

. . <5704 . . .
continuous extension of o to V' is degenerate, then w, is not primary.

Proof. If o is degenerate on V7% let Fy #0in V’? such that o(Fy,-)=0on v
and let {F,} be a net in V og-convergent to Fy. This means that {F,} converges
to Fy g—strongly and o—weakly.

As a consequence, lim 7., (§(Fo)) exists in the strong operator topology and hence
defines an element U in ., (A(V,0))". Since o is degenerate on Fy and {F,} is
oq convergent to Fyy, U is in the centre 7., (A(V,0)) N7, (A(V,7))". Notice then

that U is unitary: it is a strong limit of unitary operators with, by the definition of
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adjoint in Weyl algebras, strongly convergent adjoints. If w, is primary we should

have

U=x |A=1

But Fy # 0 in V°? and since o is degenerate on Fy, necessarily q(Fy) # 0 and so,
by the continuity of g(-),

. 1 1
1= Al = [($u,, Uthw, )| = limexp (= 79(Fa)) = exp (=7 a(Fo)) < 1.
Hence w, is not primary. g.e.d.

We suppose now to be given a primary generalized quasifree state wy on
A(V,a); we want to characterize its primary extension to A(V'?, o). It turns out

that there is a unique, up to phases, primary extension (see also ch. 5.4.3 in [BR]).

Proposition A.6

Let A(V,c) be a CCR *-algebra, wg be a primary generalized quasifree state on it.
Then primary states exist extending wy to A(V"q,a) and they are all of the form

Q(6(F)) i= exp (ig(F)) exp (—5ac(F))  VF e V™ (4.2)

with ge(-) the unique continuous eztension of q(-) to V% and ¢(-) a real additive
functional on V°?. Furthermore, A(V,0) is strongly dense in A(Vaq,a) in any
representation defined by the states (ly.

Proof. We first show that every state as in (A.2) is primary.

Let Qo(6(F)) := exp (—3q.(F)) VF¢€ V°?. Then the generalized quasifree
state {1y on A(—Vaq, o) is primary iff wg is primary on A(V, o). Indeed, the definition
of V7 implies that 7w, (A(V, 7)) is strongly dense in WQO(A(VUQ, o)). In particular
the centers of the associated Von Neumann algebras coincide and this proves our
statement.

Since 8(-) — exp(i$(+))é(-) defines an automorphism of A(V??,0), every state Qg
as in (A.2) is primary.

Let, conversely, ! be a primary state extending w, to A(ng,cr). We want
to show that @ = , for some real additive functional ¢. Let then F € Ve,
If {F,} € V is a net og-convergent to F, it is clear from (A.1) that, for every
GeV’,

lim[§(F, — F),8(G)] =0 (A.3)

04

in the C*-norm sense (the unique C*-norm on A V! o): w, is primary and hence
s g1sP y

. . o4 .
the continuous extension of o to V ~ is nondegenerate!).
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We then have
s — lim g (8(Fa — F)) . lim 7 (8(Fa))ma (6(~ F))-
Since mq is a factor it follows from (4.3) that
s — Lm (8(Fa)) = exp (~i¢(F))ma(6(F))

where ¢(F) € R, since the limit operator is unitary. As a consequence, fixed
—og
anyhow F eV 7,

Q8(F)) = exp (1¢(F))SU(s — li;n o (6(Fy))) =
— exp (ig(F)) im w,(8(F,)) = exp (ig(F) lim exp (~ 7 a( ) =
— exp (i8(F)) exp (~ 3 4.(F):

This shows that ¢(F) is independent of the net used to approximate F. The
additivity of ¢(-) comes from the fact that exp (i¢(-)) is obtained as a strong
limit and that the strong operator topology is jointly continuous on the uniformly
bounded sets. By the above construction it is also clear that A(V, o) is strongly
dense in A(Voq,o') in all representations defined by the states 4. g.e.d.

2. Pure states

Pure (Fock) regular quasifree states are characterized as follows.

Let Q be the set of quasifree states w, on the CCR *-algebra A(V, o), where q is
a finite generalized quadratic form over the nondegenerate symplectic space (V, o)

. . 379 -
and the continuous extension of o to V" is nondegenerate.

Then D, € B(V?) exists such that D! = -Dy, DID; <1and o(-,-) = [-,Dg]q on
V?. The polar decomposition D, = J|D,| gives J? = —1 and Jh=—-J.

One shows that 4, = —Dq"1 exists with a dense domain and that it is a
normal operator. Furthermore, one has that 4, = J|A4,| with |4,| = |Dg|™' > T
AlA, > 1.

A quasifree state wy € Q is pure iff A;Aq =1

Our generalization is based on the following

Definition A.7
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A generalized quadratic form ¢ on a symplectic space (V, o) is said minimal on

(V, o) if there is no generalized quadratic form ¢’ # g on (V, o) such that
J(F)<g(F) VFeV. (4.4)

The existence of minimal generalized quadratic forms on the symplectic space

(V,0) is a direct consequence of Zorn’s lemma.

Remark. It is immediate that if ¢ is minimal then gy, = ¢ is minimal on (Vg,q),
oq = O, xV, and that this is its maximal domain of regularity in (V, o).
It is simple to check that a finite generalized quadratic form is minimal on (V, o)

iff the continuous extension of o to V? is nondegenerate and A;Aq =1

Then we have

Proposition A.8
Let g be a generalized quadratic form over the symplectic space (V,o). Then the

generalized quasifree state wy on A(V, o) is pure iff q is minimal.
Proof. 1. q minimal implies w, pure.

By Proposition 1.3.8 it is enough to show that the restriction of wg to its
maximal domain of regularity A(V;,a,) is pure. To this end we note that kerog =
ker q.

Indeed, finiteness of § and positivity condition (1.1.2) imply that kerg C
kero,. Let then Fy € kero,, that is such that oq(Fo,G) =0 VG € V,. Setting
oq(+,-) = [, Dg-lq we have that Fy € ker Dy = ker | Dy|. We define

gmin(G) = (G, |D4lG)y VG EV, (4.5)

and it is easy to verify that ¢min complies with Definition 1.2.3. Since |Dy| < 1,
one has

imin(G) < 4(G) VG eV,

But Fy, € ker |D,| implies gmin(Fo) = 0 and gis minimal: so ¢(Fo) = gmin(Fo) = 0.
Hence F, € ker g and ker oy C kerg.
We conclude that kero, = kerg.

It follows from this that

7w, (6(Fp)) =1 VF, € kergq. (A.6)

Schwartz’s inequality and ker o, = ker ¢ imply that ¢ and oy are well defined on

the quotient space V/kerg. (V/ker g,0,) is thus a nondegenerate symplectic space
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and § a finite nondegenerate generalized quadratic form on it; so A(V/ ker §, o)
is a well defined CCR *-algebra and ¢ induces a generalized quasifree state w; on
it. But then from (A4.6) it follows that

7w, (A(V,0)) ~ ww;(A(V/ ker §,04)). (A.7)

One can verify that §is minimal on (V/ ker ¢, 04) and that the continuous extension

!
q

and WWQ(A(V/ ker §,o) is irreducible. Using (A.7) one concludes that so is also

of o4 to V—/—k?qﬂ is nondegenerate. By the standard argument [MV], w is pure
7w, (A(V, 7)), i.e. wy is pure.

2. w, pure implies ¢ minimal.

It is convenient to distinguish two cases depending on whether (Vg,0,) is the
maximal domain of regularity of ¢ or not. In the first case ¢ non minimal implies
g, = ¢ non minimal. § is a finite generalized quadratic form and the associated
operator D, is such that |[Dy| < (1 — €)1, for some € > 0. Hence there is a vector

Hp € qu with spectral support relative to |Dg4| below 1 —¢€. Define then on V, x V;
qu(-) = 4(-) — e4(Pr-)

where Py projects on H. It is easily verified that gg(:) satisfies the positivity
condition (I.1.2) on (V, o) and that

gu(F) < §(F) VFeV.
Let w, be the generalized quasifree state on A(V, o) defined by
wa(6(F)) = {exp (ioy/e[H, F);) exp (—qu(F)) VF eV,
0 otherwise

with o € R. A trivial computation shows that

1 [t )
- d —a?)wa
wyq \/7_‘_/_00 aexp (—a’)w

so that w, is not pure.
In the second case, the very same proof as in Lemma [.3.11 applies and so wq

is not pure. g¢.e.d.

Remark. The above Proposition generalizes the standard result [MV] on the
characterization of pure quasifree states in two respects:
i. o is allowed to be degenerate on V.

11. The quasifree states may be not regular.
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APPENDIX B

ALGEBRAIC FERMION BOSONIZATION

It is well known [CR,CRW,DFZ,5t,SW] that the fermion bosonization involves
essentially two steps: i) the construction of anticommuting variables out of bosonic
ones; ii) the construction of local Fermi fields in terms of Bose fields.

The first step amounts to constructing infrared singular fields out of a bosonic
algebra (roughly the reason is that one has to smear bosonic fields with test func-
tions which do not vanish at infinity). For a review of the extensive literature
see [St,CR]. The point that we want to make is that such construction fits very
naturally in the framework of non-regular representations of CCR algebras and ac-
tually appears very simple in such an approach. The crucial ingredient is the use
of canonical extensions of CCR algebras and of their non-regular representations.

The second step is essentially an ultraviolet problem and, as we will see,
the above framework allows for an improvement with respect to the literature on
the subject, namely the construction of local fermi fields as ultrastrong limits of
bosonic variables in all the representations which are locally Fock with respect
to the ground state representation of the massless scalar field, rather than strong
limits on a dense set of states of specific bosonic models [St,CR,CRW]. Our results
will be established at the level of canonical variables, with no reference to the
dynamics; the boson-fermion correspondence will thus emerge at the kinematical
level, starting from the U(1) x U(1) current algebra A, defined as the canonical
Weyl algebra over the symplectic space (0S5 x S, o), where

S={f€Sea(R)}, 05={f=0g forsomegc S}

and for F = (f1, f2) and G = (g1,92) in 85 x S
(T(F,G) _:_/d:v(flgz—fzgl) .

One then introduces a canonical extension A of Ay, A = A(S x 07'S, o)
where

818 = {f € C*(R), 8f € S} ;
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such an algebra can be interpreted as a charged field algebra associated to Ay; it
has a C* norm, which is unique since o is not degenerate, and therefore it can be
represented as a C* algebra of operators in a Hilbert space. The extension of a
state from Ay to A defines a non-regular representation of A if a U(1) subgroup

is unbroken.

1. Anticommuting variables and fermionic algebras

The first point is to show that the field algebra A(S x 07'S,0) contains
anticommuting variables. To make the concept of anticommutativity precise we
introduce the following notion of localization :

Given a bounded interval I of the real line, we say that F = (f1,f2) € S x 07'S

is localized in I if

supp(F) = supp(fi)Usupp(df:) C I . (B.1)

The corresponding elements W(F) of the Weyl algebra will also be said to be
localized in I.

Definition B.1

A subset K of localized elements of S x 71§ is said to describe fermionic degrees
of freedom, or briefly is called a fermionic subset, if the corresponding set Fy of
Weyl operators W(F), F € K

i) is invariant under the space translations a; (i.e. F € K = F; € K, with Fy(y) =
F(y — z), Yz € R),

ii) is invariant under the adjoint operation (i.e. F € K = —F € K),

iii) Weyl operators which are localized in disjoint intervals anticommute.

In order to construct a fermionic subset K we start with a localized F' €
S x 8718 and add to it —F and all the functions obtained from them by space
translations, so that i) and ii) hold. To satisfy iii) we note that:
Lemma B.2

Given a localized element F = (f1, f2) € Sx 871§ , the space translation invariant

set

Wg = {a.(W(F)) , ¢ € R} (B.2)

satisfies i11) iff In € Z such that

(fg(oo)—fz(—oo))/fl(z)d:v = (2n+1)m. (B.3)
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Proof. It suffices to consider the anticommutator
{W(F),a,(W(F))} = W(F + F;) 2cos(o(F, F;)/2) (B.4)

for Fz large enough. In the two cases one has respectively

o(F, Fy) = £(f2(00) — fo( o)) / Aw)dy (B.5)

so that the r.h.s. of eq.(B.4) vanishes iff eq.(B.3) holds for some n € Z. g.e.d.

In conclusion, if eq.(B.3) holds, the set Wr U W_F satisfies i), ii), iii). It
describes one fermion degree of freedom. To find mazimal sets of fermionic oper-
ators one is led by Lemma B.2 to consider the following two “charges”, defined,

VF eS8 x 0718, by
@ (F) = / fie)ds ,  @(F) = fa(00) = fa(—o00) . (B.6)

Let us first fix ¢;(F) = £ # 0 (both signs are required by condition ii)
above). Now, if F and G are elements of a fermionic subset K, with a(F) =
g1, ¢1(G) = €q1, € = £1, then, by Lemma B.2, 3np, ng € Z such that

¢ (F) = (2np +1)m L 2(6) ZGM )

B.7
q1 q1 ( )

Furthermore, the anticommutativity condition iii) between F' and G, for suffi-

ciently large |z| gives
q1(g2(—00) — €f2(00)) = (2k +1)m for somek € Z ,

q1(g2(o0) — €f2(—00)) = (2k' + 1)  for some ez, (B.8)

which imply (by subtracting and summing)

k' —k=¢enp+neg+1), (B.9)

n (2k + 2enp + 1 4 )m
e '

In conclusion, a maximal fermionic subset with charge +¢; is characterized by

g2(—o00) = €f2(—00) (B.10)

a(F)=¢€q , e==%1,
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(2TLF + 1)71'
—-—€—
q1

g2(F) , nr€l (B.11)

2
fa(—o0) =€c+ mT , mel
q1
where c is a (fixed) real number. Such a subset will be denoted by Kc,g,.

Given ¢ and g, the Weyl operators W(F), F € K. 4 generate, through finite

sums and products, a *-algebra F, , which will be called a fermionic algebra. Such
an algebra is finitely generated by the set of i) all Weyl operators W(F) with F
localized, ¢;(F) = eq , e = 1, @q(F) = fer/q, fa(—o0) = e€c, (fermionic
operators with charge eg/+/m and chiral charge +ey/7/q) and ii) the operator
Weo = W(Fs) , Foo = (0,2m/q) € S x 071S.

Proposition B.3
The x-algebra F. , has a non trivial center Z. 4 generated by W.

Proof. Clearly W, commutes with the above set of generators of 7. ; and therefore
it belongs to Z.,. To prove the converse, we first remark that Fc, is finitely
generated by the W(F) with F belonging to the additive group G. ; whose elements

H are localized and characterized by

[ m@)dz =ma,

hy(o0) — ha(—o0) = (2N +m)7/q, (B.12)
2M
hz(—oo):mc+——7—r, m,NMelZ .
q

Now, if A = S\ W(H;), H; € G.,q, does not belong to the algebra generated by
Weo then, for some index j , hj1 # 0 or hj2 # const. In either case, one can find

a G € G.,q such that o(G, H;) # 2nw. On the other hand, 4 € Z.,¢ implies
0=[W(G),A] = > X\W(G + H;) 2isin(o(G, H;)/2)

and therefore A;sin(o(G, H;)/2) = 0 Vi, in contrast with the above condition for
1=73. gq.ed.

It is worthwhile to remark that in the labelling of F, 4 only the charge q is
important, since a change of the constant ¢ (from ¢ to ¢, say) can be obtained
through the following automorphism of the field algebra A, which leaves the cur-

rent algebra A4y pointwise invariant:

F=(fuf) = F'=(fifot = /fl(«:)dw) - (B.13)
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Thus, without loss of generality, we can choose ¢ = 0; then the algebra F; =
Fo.q/Z0,q is generated by the current algebra A, (with test functions of compact
support) and by the Weyl operators W(F),f1 =€q8f, f2= +(er/q) f, where f
is a fixed element of 87'S with [8f(z)dz =1, f(—o0) = 0. They are the CCR
counterpart of the charged morphisms of Streater and Wilde [SW]; here they are
realized as operators belonging to a canonical extension of the current algebra Ag.

The algebras F. , are maximal in the sense that any extension of the fermionic
subset K., to a larger fermionic subset gives rise to the same fermionic algebra
Feq In fact, if G belongs to a fermionic subset which extends K. g4, then in the

same way as in the proof of Proposition B.3 one finds that
a(G)=Q2l+1)g, L€l ,

ga(—o0) = (2l +1)c+2Mn/q, Mel ,
¢2(G) = (2N +21+1)n/qg, Ne€Z,

so that, by eq.(B.12), G belongs to the additive group G., which characterizes
Feyq-

2. Local Fermi fields as ultrastrong limits of Bose fields.

The above construction of fermionic algebras solves the infrared part of the
fermion bosonization, namely the construction of anticommuting fields out of (in-
frared) extended Bose fields. In this section we will discuss the ultraviolet part,
namely the construction of local Fermi fields, with the following features:

i) the local Fermi fields will be obtained as ultrastrong limits of bosonic variables,

a possibility which was regarded as unlikely in the literature [St,CR]; since

the operator product is ultrastrongly continous, an immediate advantage of

this result is that all the algebraic operations commute with such limit.

ii) the construction is done at the canonical level, without reference to specific
dynamical models and, in this sense, it can be regarded as a rigorous version
of heuristic algebraic formulas of fermion bosonization, like Mandelstam’s

formula [M,Sk].

In order to approximate local Fermi fields, we consider the following Weyl

operators: let p(z) € D(R), with support contained in [~1/2,1/2], and
p(z) >0, +27p(0) = /p(a:)d:v =T .
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Put p{)(z) = 1/€ p(z/€), € > 0, and define (with §(z) = 1 for z > 0, 6(z) = 0
for ¢ < 0)
Fl = (£p9,0%p9) e S x 8718 (B.14)

The following discussion makes use of the representation of Ay defined,
through the GNS construction, by the state wy (the vacuum state of the massless
scalar field in 1 + 1 dimensions):

wy(W(@)) = exp(-IG[5/4) IIGHS=/dk[i—llél(k)lz+|kl|§z(k)|2]

As we have seen in Section II1.6, the state wy has a unique extension Qy to A,
which defines a non regular representation of A; the corresponding GNS vectors
will be denoted by ¥,, and ¥g,. The non regularity of ¢ on A is equivalent
to the absence of spontaneous breaking of the charge and the chiral charge in the
representation defined by the massless ground state. In the proof of Theorem B.4

only the fact that €y extends wy enters.

Theorem B.4

Let w be any state on the current algebra Ay, which is locally normal with re-
spect to wy, and let we.: denote an eztension of w to the field algebra A, and
(Twore » Hezt  $u..,) the corresponding GNS representation; then for any g € D(R)

the operators

#90) = 5 [ more @ W Dalw) dy (B.15)

with C a suitable constant, converge in the ultrastrong operator topology on B(Hezt)
as € — 0F. The limits define right/left handed fermions ¥p/1(g) which satisfy the

canonical anticommutation relations.

Remark. Without loss of generality, it suffices to establish the Theorem for

g real; the result for complex g follows by linearity.

Proof. Step 1: szg:)(g)H is bounded uniformly in € > 0, and therefore
existence of the limit in the ultrastrong topology defined by H..: is implied by
strong convergence on a dense subspace of H¢z¢, €.g. the linear space AY,, _,.

We start by remarking that, for every fixed € > 0, az(W(Fg) )) is ultrastrongly
continuous in z in 7, ; in fact, since F_F© cgsxS , by the local normality

of w (as a state on Ay) w.r.t. wp, this follows from the ultrastrong continuity of

a,,(W(FiE))) in 7, , which follows from || F,—F|jp —» 0, asz — 0,VF € §x07'S.
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Then, the integral of eq.(B.15) is well defined as a Bochner integral and
therefore ¢v§f)(g) € B(Hez:) Ve > 0. Furthermore (dropping the + in the following)

1B I < 11H{ ), » ()}

< / dz dy |9(=)| la(w)] {82 (=), O @)}
z—y|<e

2C?
<=

; dz dy |g(z)!lg(v)] — 4C? llgllLa

lz—yl<e

Step 2: For any GNS representation mq of A, strong convergence of the
vector 1(9)(g)¥g implies strong convergence of ¥{)(g)A¥gq, as ¢ — 0F.

In fact, VG € Sx 871§ ,0¢(z) = o(G, F,Ee)) and its limit when € — 0% (which

exists uniformly in z) are C* functions of z, so that the behaviour of

() (9) = 9 (@)W (C)Fall = (B (e 9) — (e 9))Tall

for €,¢/ — 07 is governed by the strong limit of ¢(‘)(eiaog)\?g, which exists by

assumption, and by the limit of
€ io® ic® € ic® io®
(" — e )g)Tall < |[B((e =€)l

which vanishes as ¢ — 01 by the estimate given in step 1.

Step 3: (9(g)¥q, converges strongly as € — 07,

Since, by the properties of wy, for g real

wo (%1 (9) $(9(9)) = wo (¥ (9) ¥ (9)") ,

() (g)¥q, is a Cauchy sequence in the strong topology provided

lim o ({49 (9)',9((9)}) = lim Tim wo({#(0)", 9 (@)} - (B.16)
An explicit calculation gives

02

wo({$ (), (g)}) = (ee)i2

[ 4z dus(@) (6) 2 Re exp Ree(e ) (BT)

where

Rewlz —y) = —1/2 / | B(ek) — (e R)e™ =02 dk |-+
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+i/3mk(m _ y) jlek) (<'k) dk /k (B.18)
Furthermore, at least as a limit in S, |
tim (O%/(e¢)/%) exp oo (&~ 3) = (C?/) exp Reg(a — )
where

Reafe =) =2 [ (GO AREHI/— ) dkfE (B19)

(note that (eo:s’)"l/2 exp R . are continuous functions, polynomially bounded uni-

formly in €'). On the other hand,
o {#9(0)" 9 (a)}) = (C?/¢) / do dy g(2) g(y)2 Re exp Ru(z ) (B.20)

where

2/ (e*%/ — 1) dk/k (B.21)
0

Now, the distributions Re exp R(z) and Re exp Re(z) are positive and have sup-
ports which shrink to the origin in the limit ¢ — 0%. It is therefore enough to
control the integrals 1/¢ [ dz exp R¢(z) and similarly for R . By partial integra-

tion, such integrals can be written as

/dm exp[—2/ dklogké—%(ei“ﬁ(k)z) + C'] (B.22)
0
and - ' p
/dmexp[—Z/ dklogkﬁ(e"k’”ﬁ(o)ﬁ(k)) +C' , (B.23)
0
Cc' = 2/ dk logkiﬁ(k)z . (B.24)
0 dk

By a scale transformation z = A7y, k = Agq, the above integrals, e.g. eq.(B.22),

become (neglecting the common factor exp C’)

37 [ayexpl=2 [ dqloga (e 5(0)") + 27(0)7 og A | =
0

R o0 1 T
= lim dy exp[—Z/ dz [log(—i(z + y) + ¢€) ‘7lx(P*P)(X)]

R—ocoJ_R —o0

with v the Euler constant v = fooo exp(—2)log = dz; we have used p(0)? = 1/2 and
the fact that log(—iz + €) — v is the Fourier transform of —d/dg(8(q)log g). The
integral in y can be evaluated in the complex y plane where the contour can be
closed in the upper half plane, since log(—i(z + y) + €) is analytic there and the z
integral is limited to |z| < A by the support properties of p; since p(0)* = 1/2, the
integrand behaves like 1/y for Imy positive and |y| large. The result depends only
on the value of 5(k)? at the origin and it coincides with the integral of eq.(B.23)
since p(0)5(k) and p(k)? coincide there. The value of both integrals is mwe?.

62



Step 4: As a byproduct of Step 3, one has that (1/€) Re exp R(x) converges
to 6(z), apart from a constant; the expectation on wy of the anticommutators
{z,b(‘)(m)l , (9 (y)+} (with the same index + or —) converges therefore to a 6

function provided the constant C' in eq.(B.15) is chosen as

C = (exp(—y - C')/2m)'/?

Step 5: The conclusions hold for any state w locally normal (as a state on
Ay) with respect to wp; in fact, the strong convergence of ¥(¥)(g) in the GNS
representation space of A defined by any extension of w is equivalent to the strong
convergence of W(—F)¢(€)(g), with F' defined by taking € = 1 in eq.(B.14); the
latter operators belong to A and, as in Step 2, it is enough to study strong
convergence in the GNS space defined by Ay and w (the “vacuum sector”).

Now, for fixed y, since p(z) has compact support, there is a finite interval I
such that, Ve € (0,1}, W (—F)¢ 9 (y) belongs to Aq(I), the algebra generated by
Weyl operators W(G), G € 8S x 8§ with support in I. Hence,

mo(W(=F)$'9(9)) € mu(Ao(I))"

with a suitable I, for g of compact support.

As a consequence, W(—F)’gb(e)(g) is ultrastrongly convergent in all the repre-
sentations of A, which define the same ultrastrong topology as m,, on the local
algebras Ay(I), and therefore in all the representations defined by states w on Ay

which are locally normal with respect to wo.

Step 6: The limit field operators 1¥(g) satisfy the CAR’s.

In fact, thanks to the strong convergence established in Step 3, and to the
result of Step 4, we only have to show that the anticommutators considered in
Step 4 converge to c-numbers, and that those of the form {¥(9(g),% 9 (h)} or
{2 ()T , (I (h)T} converge to zero, in the space Hezt-

The latter point follows by reducing the analysis, as in Step 5, to the strong

convergence to zero of operators of the form, e.g.,

B = W(~F)W(-F){$9(g),%" ()},

with F; and F, so chosen that B(®) belongs to the current algebra localized in a
fixed interval.
As in Steps 2 and 5, this strong limit in M., vanishes iff it vanishes in

the representation of A, defined by wo; this vanishes as a consequence of the
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vanishing of the weak limit, which follows from the support properties of the
anticommutators and the divergence of the quadratic form which defines wo, in
the limit € — 0. The same analysis applies to the anticommutators of 'gbl with
Y.

In order to show that the limits of the anticommutators {¢(‘)(g):rh (O (R) L}
are c-numbers, we show that they belong to the center of the strong closure of
local current algebras A4,(I) and that the representation of these algebras in H,¢
is factorial.

The last point follows from the quasi-equivalence of the representation of
these algebras in Hz: to their GNS representation defined by wq, as shown by
the following argument: any W(F), with F € § x §7'S can be written in the
form exp i W(F')W (Fric) with Fri. localized in a finite interval slightly larger
than I and F' with support disjoint from I; from this it follows immediately that,
for bounded nets in Ay(I), strong convergence in m, implies strong convergence
in M.z:, and strong convergence to 0 in 7, implies strong convergence to 0 in
Hert (the converse statements are obvious); therefore the Von Neumann algebras
generated by the representations of a local current algebra Ao(I) in the GNS space
H,, and in H,,; are isomorphic; the local normality of w with respect to wy, which
defines factorial representations of Ay(I), implies the result.

Therefore, we only have to show that the above operators, in the representa-
tion 7., , commute with all the (suitably localized) Weyl operators in A(8S xS, o).

Using the Weyl relations, it is enough to show that VG € 85 X S

lim wo([{#'9(9)", 9 (R)},W(G)]) =0 ,

e—0t

l.e.

tim wo(W(GHPO (e 9)! 9O (e B}) = Tim wo(W(G) (), 9O (R)}) ,

e—0

which follows from

lim wo({'9(2)",3()}) = (= ~v),

e—0t

the definition given by eq.(B.15), and the properties of the Weyl product. g.e.d.
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