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Introduction

In this Ph.D. thesis we deal with mathematical problems concerning the variational theory for quasi static
crack propagation in elastic bodies proposed by Francfort and Marigo in [48]. The main items are stability
properties for elliptic problems under boundary variations, study of functionals which present an interplay
between volume and surface energies, semicontinuity and relaxation for these kinds of functionals.

The model for quasi static crack propagation proposed in (48] is inspired by the classical Griffith’s cri-
terion, and its main characteristic is that the path of the crack is not preassigned, whereas it is determined
through a competition between the surface energy spent to increase the crack and the corresponding re-
lease of bulk energy. The authors considered an hyperelastic body, which in its reference configuration is
represented by a bounded open subset §2 of R3. The body is subject to a time dependent load %(t) on
a part of its boundary. The quasi static crack evolution during the load process can be described by a
pair (u(t), K (t)) where the crack K (t) growths in time, and the deformation u(t) provides at each time
the static equilibrium of the cracked body subject to the load %(t). The total energy associated to the
pair (u(t), K (¢)) is denoted by E(u, K) and is given by

Ew k)= [ Sl vul)dn s /K oz, v) dHY (), (1)

The first term is referred to as bulk energy of the body and it is the internal energy of the hyperelastic
body, while the second term is referred to as surface emergy of the crack. The surface energy has to
be considered as the energy dissipated during the cracking process, and in the case where g is constant
it is proportional to the cracked surface. The presence of z in f and g takes into account possible
inhomogeneities, while the presence of the normal v in g takes into account a possible anisotropy of
the body. In order to be a quasi static crack growth the pair (u(¢), K(t)) has to satisfy the following
conditions.

(a) irreversibility: K (s) is contained in K (t) for 0 < s <t <Tj

(b) static equilibrium: (u(t), K(t)) at each time minimize the total energy between all configurations
with enlarged crack, i.e.

/ F(z, Vu(t)) do + / o ds< [ e Vo)de+ / o(, v) ds, (2)
QK () H

K(t) O\H

for every crack H containing K (t), and for every admissible function v, i.e. with v satisfying the
boundary conditions and with discontinuities contained in H.

(c) energy balance: the increment in stored energy plus the energy spent in crack increase equals the
work of external forces.

We say that the pair (u(t), K(t)) is an unilateral minimizer, because it is a minimum only among
pairs (v, H) with H larger than K. In view of these three properties, this model of quasi static crack
propagation can be interpreted in the general framework of the theory of rate independent processes
proposed by A. Mielke and coauthors: in this direction, we refer to [68] and references therein.

In [48] Francfort and Marigo suggest that the quasistatic evolution (u(t), K (¢t)) during the loading
process can be obtained as a limit of a discretized in time evolution (un(t), K, (t)) which by construction
satisfies at each time the unilateral minimality property (2). We are thus led to a problem of stability
for unilateral minimizers, i.e. whether the minimality property (2) is conserved in the passage from
(un (t), Kn(t)) to (u(t), K(t)). These kind of stability results represent typically the main difficulty in
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order to prove existence results for quasi static crack growth, and their proof is often the key step. This
analysis is the main topic of this thesis.

The first mathematical existence result has been obtained by Dal Maso and Toader in [36] in a
two dimensional setting, in the case of linearized elasticity for anti-plane shear; more precisely with
f(z,€) := |€]? and g = 1, and then extended by Chambolle in [24] for energies involving the symmetrized
gradients of planar elasticity. In order to prove the stability property for unilateral minimizers the authors
used the technical assumption that the crack has an a priori bounded number of connected components,
and the stability is proved with respect to the Hausdorff convergence of the cracks, while the displacement
u is in the Deny-Lions spaces, usually involved in minimization problems in non smooth domains where
Poincaré inequality does not hold in general. We refer to stability results (and therefore to existence
result for quasi static crack growth) obtained in this setting as the strong formulation of the problem;
this approach will be the subject of the Part I of this thesis.

In [36] the stability of unilateral minimizers for problem (2) is obtained as a consequence of the
stability result for the Laplace operator with Neumann type condition on the crack, under boundary
variations. The authors give a new independent proof of this stability property, in order to treat the
mixed type boundary conditions on 89 involved in their existence result of a quasi static growth of crack.

For an elliptic operator with prescribed boundary conditions, the notion of stability under boundary
variations is defined as the continuity of the mapping € — uq which associates to every Q the corre-
sponding solution uq of the elliptic problem, along a sequence of domains Q. In the strong formulation
the stability of the mapping is studied only along sequences Q, such that the complementaries Kp (which
in the applications to fracture mechanics represent the cracks of a fixed domain) are in K., () for some
positive integer m, where Kum () is the class of all closed subsets of Q having at most m connected
components. The convergence considered on the domains is the Hausdorff complementary topology, i.e.
the Hausdorff convergence of the complementaries Kp.

The problem of stability for the Laplace operator with Neumann conditions was first studied by
Chenais [28] under the assumption that the domains §); satisfy a uniform cone condition, which allows
to use extension operators with uniformly bounded norms. This condition excludes domains with cracks
which we are interested in. The stability property in nonsmooth domains is studied by Bucur-Zolesio
in [19], [20], [21] under various assumptions on Q4. In Chambolle-Doveri [25] the problem is studied
assuming a uniform bound for the lengths of the boundaries H!(8). This result has been improved
by Bucur-Varchon in [16], [17], where the bound on H1(B) is replaced by the weaker assumption of
convergence of the two-dimensional measures of the domains, i.e., |n] — [$2, which is also necessary for
the stability result. The celebrated example of Neumann sieve (see [37), [60], [38], [29], [27]) shows that
also the assumption of the uniform bound on the connected components of K}, is essential.

In Chapter 1 we present a generalization of these stability results to the nonlinear case obtained by
Dal Maso-Ebobisse-Ponsiglione in [34]. The main difference with respect to the linear case studied in
[16] and [17] is that for the nonlinear problems we can not use the method of conformal mappings. We
consider nonlinear elliptic equations with Neumann boundary conditions of the form

—diva(z, Vu) + b(z,u) =0 in @)
3
a(z,Vu)-v=0 on 0Q,

where © is a bounded open subset of R? and a: R? x R? — R? and b: R2 x R — R are two Carathéodory
functions which satisfy suitable monotonicity, coerciveness, and growth conditions. We study the stabil-
ity for the nonlinear problems (3) in the class Km(9) with respect to the Hausdorff convergence of the
cracks K}, assuming as in [16] that || — [$2|. The convergence considered on the solutions uq is the
convergence in LP spaces of the functions and of their gradients, where the exponent p is related in the
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usual way to the growth conditions of the functions o and b. We reduce the problem to the convergence
in the sense of Mosco of the Sobolev spaces W1P(€;,) to the Sobolev space W17(Q), and we establish
that stability holds for every 1 < p < 2, while in the case p > 2 the stability result for (3) is not true
under our hypotheses, as shown in Remarks 1.2.7 and 1.3.6. In the last section we present more explicit
examples given by Ebobisse-Ponsiglione in [42] of non stability and we study the limit problem using the
tool of I'-convergence. The natural ask now is: For p > 2 are unilateral minimizer for problem (2) stable
even if the elliptic problem is not stable?

In Chepter 2, following Ebobisse-Ponsiglione in [41], we give a positive answer to this question. We
consider for simplicity the case g = 1 in (2), and we prove the following stability result. Let (un, Kn) be
a sequence of unilateral minimizers for (2), where K} have a uniformly bounded number of connected
components and are uniformly bounded in length. If Vup, weakly converges to some Vu in LP(Q) and K,
converges to some K in the Hausdorff metric, then the pair (u, K) is a unilateral minimizer for problem
(2). Moreover Vu, — Vu strongly in LP(€2). The obstruction to the stability of elliptic problems when
p > 2 is due to the fact that two connected components of the approximating sequence (K1) can approach
and touch each other in the limit fracture K, leading then to the appearance of a transmission term in
the limit problem. Actually we prove that such phenomena can not appear if (un, Kp) are unilateral
minimizers.

In Chapter 3, following Acanfora-Ponsiglione in 1], we consider the problem of quasi static crack
growth for a homogeneous isotropic flexural plate subject to a time dependent vertical displacement on
a part of its boundary. We formulate the model in the same spirit of [48] and we adopt the strong
formulation where the cracks are supposed to have a finite number of connected components. According
to Griffith’s criterion, our model takes into account the competition between bulk and surface energies
in the process of cracking, while it does not allow the appearing of kinks. We stress that (as far as we
know) it is not completely decided in the literature whether the investigated model adequately portrays
brittle fracture evolution in a plate submitted to bending.

In our model the middle surface of the plate in its reference configuration is given by an open bounded
subset  of R? with Lipschitz continuous boundary 8. Let m > 0 be a fixed integer. The set of
admissible cracks is the set K, ($2) of all closed subsets K of £ whose elements have at most m connected
components, while the admissible displacements are in the Deny-Lions Space L?2(Q). The bulk energy
associated to a displacement v is given by

2F
B.v) = 31— /ﬂ [oal? + [ogy? + (2 = 28) vy ? dady, (4)

(see [40]), where the Poisson’s coefficient 0 < k& < 1/2 and the Young’s modulus E measure the rigidity of

the constituting material. Finally, for every admissible crack K € Km(§) and for every boundary datum
1), the associated toial energy is given by

E@,K) = B(u,u) +H'(K), (5)

where u is the displacement associated to K and 9, and H(K) is the one dimensional Hausdorff measure
of K.

We now describe our model of irreversible quasi static crack growth under the action of a time
dependent boundary datum. Let %(t) € AC([0,1; W*2(Q)) (ie. the function t — 1(t) is absolutely
continuous) and let Ky € K (ﬁ) be a preexisting crack. In our model, the irreversible quasi static ank

growth relative to the boundary datum 1 and to the preexisting crack Ko, is a function I": (0,1) = K (82)
which satisfies the following three properties:
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(1) Irreversibility of the process:
Ko CT(0)CT(t1) CT(t2) VOLt St <1

(2) Static eguilibrium.:

E@(0),T(0)) < B@(0),H) VH € Kn(®): Ko C H and

E@(t), 1) < B@(t), H) Vt € (0,1],VH € Lm(Q) : Us<iI'(5) € H;
(3) Nondissipativity:

the function ¢ — E(g(t), ['(¢)) is absolutely continuous and

LE(y(t),0() = 2B(u(t), (1)),

where u(t) is the displacement relative to I'(t) and to 9(2).

The main result is Theorem 3.5.1, which establishes the existence of a quasi static evolution that
verifies properties (1), (2) and (3) above. The static equilibrium property says that (u(t),(¢)) is a
unilateral minimizer for the following problem

B(u(t),u(t)) + H*(T(®)) £ B(v,v) + H'(H) for every H € K, () : T(¢) C H, (6)

and for every admissible function v. "Therefore, in order to approximate the quasi static growth with
discretized in time evolutions (un(t), [n(t)) as suggested in [48], we need a stability result for unilateral
minimizers for problems involving higher order derivatives. This is done in the following theorem.

Theorem. Let (Yn) be a sequence in W22(Q) which converges to some % strongly in W22(Q). Let
(K1) C Km(Q) with H(Kr) < C, and let up € L22(Q\ K3) be such that the pair (up, K1) s o unilateral
minimum relative to the boundary condition iy, for problem (6). Assume that

D%uj, — D?u  weakly in L?(Q, M**?), K, — K in the Hausdorff metric.

Then the pair (u, K) is a unilateral minimum relative to the boundary condition ¢ for problem (6). More-
over D2uy, converges to D*u strongly in L*(Q, M2*2).

As remarked in the last section of the chapter, this stability result can be easily generalized to more
general energies I : Lk?(Q) — R depending on the k-order derivatives of u and with standard p-growth
hypothesis. It is also possible to treat energies depending on the point z of the reference configuration
0, as in the case of shells. Actually it is a generalization of the stability result for energies depending on
the gradient described in Chapter 2; however its proof is more complex, using some Vitali-Besicovitch
covering argument in the same spirit of [47].

Finally we check that, given a rectilinearly growing crack, the classic Griffith’s propagation criteria
involving the stress intensity factor are recovered. The obtained expression (7) below for the energy release
rate is to our knowledge new. More precisely we consider the particular case where I' is rectilinear. In
this case in [40] is given a formula for the derivative of bulk energy with respect to the growth of the
crack through a 3D — 2D dimension reduction, under very strong regularity assumptions. Moreover in
[64] is proved that this asymptotic quantity coincides with the derivative of the bulk energy B(ux,ux)
with respect to the growth of the crack (here ug is the displacement relative to the crack K). We prove
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that this quantity depends only on the singular part of the displacement u, and its explicit computation
leads to

b2 b2
om(1+ k)’ <(7 Tt +:;3k)2> ’ ()

where by and by are coefficients which appear in the singular part of u around the tip {see [40]), and play
a role analogous of the so called mode IIT stress intensity factor in elasticity. Moreover, we prove that

during the load process
by (t)? ba(t)?
9 2 <1
m(1+k) ((7+k)2 e ) S (8)

and that the tip moves if and only if (8) is satisfied with the equality. This is the Griffith’s criterion for
crack propagation in our model.

The first existence result for quasi static evolutions without any technical connectedness assumption
on the cracks was obtained by Francfort and Larsen in [47] in the framework of generalized antiplanar
shear (ie. © CRY, N > 2). They employed the framework of SBV functions (special functions with
bounded variation), where the crack K is related with the set S(u) of discontinuities of the displacement
u € SBV(R). We will refer to stability results (and to the relative existence results for quasi static crack
growth) as the weak formulation of the problem; this will be the subject of the Part II of this thesis. In
this formulation the cracks are rectifiable sets, and not connectedness assumptions are required; therefore,
the celebrated examples of Neumann. sieve suggest that stability properties for the solutions have to be
approached through unilateral minimality assumptions. The unilateral minimality property involved in
[47] is the following.

/ (Vul? dz < / Vo2 dz + HV-1(S(@)\ S(u))  for all w € SBV(Q), ()
Q Q

(which corresponds to (2) with H = S(un)US(v)). The authors proved the corresponding stability result
through a geometrical construction which they called Transfer of Jump Sets [47, Theorem 2.1). This was
actually the new tool which permitted to solve the problem in the most general situation.

The case in which S(u,) is replaced by a rectifiable set K, has been treated by Dal Maso, Francfort
and Toader in [35], where they considered also a Carathéodory bulk energy f(z,§) quasiconvex and with
p growth assumptions in £, and a Borel surface energy g(z,v) bounded and bounded away from zero.
They employed a variational notion of convergence for rectifiable sets which they called sP-convergence to
recover a crack K in the limit, and they proved a Transfer of Jump Sets theorem for (K, )nen satisfying
HN-YK,) < C [35, Theorem 5.1].

In Chapter 4 we present a different approach to the problem of stability of unilateral minimizer done
by Giacomini-Ponsiglione in [52], based on I'-convergence, and which will permit also to treat the case of
varying bulk and surface energies fn and gn. We restrict our analysis to the scalar case. Our approach
is based on the observation that the problem has a variational character. In fact, considering for a while
the case of fixed energies f and g with f convex in €, we have that if (un, Ky5) is a unilateral minimizer
for the energy (1), then u, is 2 minimum for the functional

t= z, Vulz x T,V N"lx.
£nlv) -—/Qf(  Vu(z))d +/S(vmg( v) " @) (10)

Then the problem of stability of unilateral minimizers can be treated in the framework of I'-convergence
which ensures the convergence of minimizers. In Section 4.3, using an abstract representation result by
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Bouchitté, Fonseca, Leoni and Mascarenhas [11], we prove that the I-limit (up to a subsequence) of the
functional &, can be represented as

1= (T T “(x, v N'lm
S(U)‘—/nf(m,v (z))d +/S(v)g (z,v) dHN (@), (1)

where g~ is a suitable function defined on Q x SV~! determined only by g and (K. )nen, and such that
g~ < g. If we assume that u, — u weakly in SBV(£2), then by I'-convergence we get that u is a minimizer
for £. Suppose now that K is a rectifiable set in £ such that S(u) € K and

9~ (z,vi(z)) = 0 for HV"tae. z € K. (12)

Then we have immediately that the pair (u, K) is a unilateral minimizer for f and g because for all pairs
(v, H) with S(v) C H and K C H we have

/ flz, Vu(z))dz = E(u) < E(v) = / flz,Vu(z)) dz +/ g~ (z,v)dHN 1
Q Q S(v)

=/Qf(z,Vu(x))dz-i-/S(v)\xg“(z,u) S/nf(m,Vv(z))dm—k/H\K g(z, v).

The rectifiable set K satisfying (12) is provided in Section 4.4, where we define a new variational notion
of convergence for rectifiable sets which we call o-convergence, and which departs from the notion of
oP-convergence given in [35]. The o-limit K of a sequence of rectifiable sets (Kn)nen is constructed
looking for the I-limit 7~ in the strong topology of L*(£2) of the functionals

N-1(G(q L) w )
e () = {H (S(w)\ Kn) u€PQ) (13)

+co otherwise,

where P(2) is the space of piecewise constant function in Q (see (4.19)). Roughly, the o-limit K is
the maximal rectifiable set on which the density A~ representing H~ vanishes. By the growth estimate
on g it turns out that K is also the maximal rectifiable set on which the density ¢~ vanishes, so that
K is the natural limit candidate for K, in order to preserve the unilateral minimality property. The
definition of o-convergence involves only the surface energies H;, and as a consequence it does not
depend on the exponent p and it is stable with respect to infinitesimal perturbations in length (see
Remark 4.4.8). Moreover it turns out that the o-limit K contains the oP-limit points of (Kp)nen, so that
our I-convergence approach improves also the minimality property given by the previous approaches.

Our method naturally extends to the case of varying bulk and surface energies f, and gn, and this
is indeed the main motivation for which we developed our I'-convergence approach. The key point to
recover effective energies f and g for the minimality property in the limit is a I-convergence result for
functionals of the form

/ fola, Vun(2)) d + / onlz, 1) dHY (). (14)
0 S(un)

In Section 4.3, we prove that the I'-limit has the form
[ fevu@)ds+ [ glmyant i)
Q S(u)

where f is determined only by (fn)nen, and g is determined only by (gn)nen, that is no interaction occurs
between the bulk and the surface part of the functionals in the I'-convergence process. A result of this
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type has been proved in the case of periodic homogenization (in the vectorial case, and with dependence
on the trace of u in the surface part of the energy) by Braides, Defranceschi and Vitali [13].

We notice that an approach to stability in the line of Dal Maso, Francfort and Toader in the case of
varying energies would have required a Transfer of Jump Sets for fn, gn and -f, g, which seems difficult to
be derived directly. Our I'-convergence approach also provides this result (Proposition 4.5.4).

In section 4.7 we deal with the study of quasistatic crack evolution in composite materials. More
precisely we study the asymptotic behavior of a quasistatic evolution ¢t — (un(t), Kn (t)) relative to the
bulk energy fn and the surface energy gn. Using our stability result we prove (Theorem 4.7.1) that
t — (un(t), Kn(t)) converges to a quasistatic evolution ¢ — (u(t), K (¢)) relative to the effective bulk and
surface energies f and g. Moreover convergence for bulk and surface energies for all times holds. This
analysis applies to the case of composite materials, i.e. materials obtained through a fine mixture of
different phases. The model case is that of periodic homogenization, i.e. materials with total energy

given by
Ee(u, K) = /Qf(%,Vu(z)) dm+Ag(§,u> dHN (),

where £ is a small parameter giving the size of the mixture, and f, g are periodic in z. Our result implies
that a quasisistatic crack evolution ¢ — (ue(t), K(t)) for € small is very near to a quasistatic evolution
for the homogeneous material having bulk and surface energies fhom and ghom, which are obtained from
f and g through periodic homogenization formulas available in the literature (see for example [13]).

In the last two chapters of the thesis we provide a discontinuous finite element approximation for
the quasi static crack growth proposed in Francfort-Larsen [47] and in Dal Maso-Francfort-Toader [35]
respectively. We restrict our analysis to a two dimensional setting considering only a polygonal reference
configuration Q C R?, and the discretization of the domain { is carried out employing adaptive triangu-
lations introduced by M. Negri in [62] (see also [63]). More precisely we fix two parameters € > 0 and
a €0, %[ and we consider a regular triangulation Re of size € of 2, i.e. we assume that there exist two
constants ¢; and ¢y so that every triangle T € R, contains a ball of radius c1e and is contained in a ball
of radius coe. In order to treat the boundary data, we assume also that Op{) is composed of edges of
R.. On each edge [z,y] of Re we consider a point z such that z =tz + (1 — t)y with t € la, 1 — a]; these
points are called adaptive vertices. Connecting together the adaptive vertices, we divide every T € R,
into four triangles. We take the new triangulation T obtained after this division as the discretization of
Q. The family of all such triangulations is denoted by Z¢,q ().

The discretization of the energy functional is obtained restricting the total energy to the family of
functions v which are affine on the triangles of some ftriangulation T(u) € T¢,o(Q2) and are allowed to
jump across the edges of T(u). We indicate this space by A¢o($2). The main goal of our approximation
results is that the weak formulation in the framework of SBV spaces adopted in [47] and [35] can be
obtained as "relaxation” of a fairly simple setting involving piecewise affine deformations and piecewise
linear fractures, providing also an approximation of the relevant physical quantities (total, bulk and sur-
face energies). Our results provides a theoretical justification for numerical implementations with which

however we were not concerned.

In Chapter 5 we present the approximation result obtained in Giacomini-Ponsiglione [50] for the model
proposed in [47]. The boundary datum is assumed to belong to the space AF, () of continuous functions
which are affine on every triangle T' € R..

Given the boundary data 1 € Wh1([0,1], H}(Q)) with 9(t) € AF(Q) for all ¢ € [0,1], we divide
[0,1] into subintervals [tf,t?_'_l] of size § > 0 for i =0,..., Nj, we set ¢ = (1), and for all u € Aeo()

8
we indicate by S}_p)i (u) the edges of the triangulation T'(u) contained in 9p$} on which u # ¥¢. Using a
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variational argument we construct a discrete evolution {ul% : i =0,..., N5} such that udl € A .(Q)
for all = 0,..., N, and such that considering the discrete fracture

i
. &
réi = [Suln) uSh (uln)],

=0

the following unilateral minimality property holds:
. 8 .
/ [Vuli?dz < / |Vol? dz + H* ((S(v) usY (v)) \Fg:;"l) . (15)
0 Q

Moreover we get suitable estimates for the discrete total energy
€le = Vulillame + 1 (T22)-
The main result of the chapter is the following theorem (Theorem 5.1.1).

Theorem 0.0.1. Let ¢ € WH([0,1], H*(2)) be such that [[¢¥(t)]lec < C for allt € [0,1] and let . €
Wh((0,1}, HX(Q)) be such that |[¢e(t)]lco < C, ¥e(t) € AF(Q) for allt € [0,1] and

e — ¥ strongly in Wl'l({O, 1], HI(Q)). (16)

Given the discrete evolution {t — ugla(t)} relative to the boundary data ., let nga and Sg'a be the
associated fracture and total energy.

Then there exist 6, — 0, £, — 0, an — 0, and a guasi-static evolution in the sense of [{7] {t —
(u(t),T(t)), t € [0,1]} relative to the boundary data ¥, such that setting un = ul> , , T'p = Id» |
En 1= E% | the following hold:

Enyln

(a) if N is the set of discontinuities of H*(I(-)), for all t € [0,1]\ NV we have

Vun(t) — Vu(t)  strongly in L*(Q;R?) (17)
and
tim W (Ta(e)) = H(E(E) (18)
(b) for all t € [0,1] we have
1111111 Enlt) = E(2). (19)

We conclude that we have the convergence of the total energy at each time ¢ € [0, 1], and the separate
convergence of bulk and surface energy for all ¢ € [0, 1] except a countable set.

In order to prove Theorem 5.1.1 we proceed in two steps. Firstly we fix o and let 6 — 0 and
£ — 0. We obtain a crack evolution which satisfies static equilibrium and nondissipativity properties in
an approximate sense, i.e. with an error depending on a which takes into account possible anisotropies
that could be generated as ¢ and € — 0: in fact, since a is fixed, we have that the angles of the triangles
in 7; ,(Q) are between fixed values (determined by a), and so fractures with certain directions cannot be
approximated in length. In the second step, we let a — 0 and determine from {t — uq(t) : t € [0,1]} a
quasi-static evolution {t — u(t) : ¢ € [0, 1]} in the sense of Francfort and Larsen. Then, using a diagonal
argument, we find sequences 6, — 0, €, — 0, and a, — 0 satisfying Theorem 0.0.1.
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The main difficulties arise in the first part of our analysis, namely when §,& — 0. The convergence
ul . (t) = ua(t) in SBV(Q) for t € D C [0,1] countable and dense is easily obtained by means of Ambro-
sio’s Compactness Theorem. The minimality property derives from its discrete version using a variant
of the transfer of jump Theorem of [47]. In all the geometric operations involved in the transfer of jump
Theorem, we need to avoid degeneration of the triangles of T(ul ,(t)) which is guaranteed from the fact
that a is constant: this is the principal reason to keep a fixed in the first step. A second difficulty
arises when wuq(-) is extended from D to the entire interval [0,1]: indeed it is no longer clear whether
Vug ,(t) — Vug(t) for ¢ € D. Since the space A o(§2) is not a vector space, we cannot provide an esti-
mate on ||Vui ,(t) — Vul ,(s)|| with s € D and s < t: we thus cannot expect to recover the convergence
at time ¢ from the convergence at time s. We overcome this difficulty observing that Vul ,(t) — Vi,
with 4, satisfying a minimality property similar to (5.6) and then proving Vi, = Vu,(t) by a uniqueness
argument for the gradients of the solutions.

In Chapter 6 we provide a discontinuous finite element approximation for the model proposed in [35)
by Dal Maso, Francfort, and Toader, and which takes into account possible volume and traction forces
applied to the elastic body. The bulk energy considered in [35] is of the form

/ T;V(a:, Vu(z)) dz,
Q

where W (z, £) is quasiconvex in ¢, and satisfies suitable regularity and growth assumptions (see (3.66)
and (3.67)). Moreover the time dependent body and traction forces are supposed to be conservative with
work given by
- | Fltzulz))de~ | Gltzu(@)dH"(z),
Q\r 850
where F and G satisfy suitable regularity and growth conditions. Finally the work made to produce the
crack I" is given by

E(D) = [ k(z,v(z))dHY " (z),
T

where v(z) is the normal to I' at z, and k(z,v) satisfies standard hypotheses which guarantee lower
semicontinuity. Clearly, W, F, G and k depend on the material. Let us set

£5(8) () = / Wiz, Vul@))de — | Fltzul@)de— [ Gt ulz)) dH¥(z),
Q o\r 8592

and
Et)(u,TY) := EP(t)(u) + E5(T). (20)

As in Chapter 5 we consider the finite element space associated to the parameters £ and a, we divide
[0,1] into subintervals [t¢,#{ 1) of size § > 0 for ¢ = 0,...,Ns, and we construct the step functions
ugl o(t) and T¢ (t). The main result of the chapter (Theorem 5.1.1) states that there exist a quasistatic
evolution {t — (u(¢),T'(t)) : t € [0,T]} in the sense of [35] relative to the boundary deformation g and
the preexisting crack I'’ and sequences 6, — 0, &, — 0, a, — 0, such that setting

un(t) = ug:,an (t)i P'ﬂ(t) = Pg:,a.n (ﬂ;

for all ¢t € [0,T] the following facts hold:
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() (un(t))nen is weakly precompact in GSBVP(S; R?), and every accumulation point @(t) is such
that @(t) € AD(g(t),['(t)), and (@(t), T'(t)) satisfy the static equilibrium; moreover there exists a
subsequence (8n, , Eny, Gny )keN Of (8n,En, @n)nen (depending on t) such that

Un, (t) — u(t) weakly in G’SBVJ’(Q;RZ)

(see Section 3.1 for a precise definition of GSBVY (€, R?), and of weak convergence in this space);

(b) convergence of the total energy holds, and more precisely elastic and surface energies converge

separately, that is
E(t)(un(t)) — E°(t)(ult)),  E°(Tn(t)) — E(T ().

By point (a), the approximation of the deformation u(t) is available only up to a subsequence depending
on t: this is due to the possible non uniqueness of the minimum energy deformation associated to ().
In the case £P(t)(u) is strictly convex, it turns out that the deformation u(t) is uniquely determined, and
we prove that (Theorem 6.7.1)

Vaun(t) = Vu(t) strongly in LP(Q; M2%2%),

and
U () — u(t) strongly in L¢(; R?).

In order to find the fracture I'(t) in the limit, in Lemma 6.6.2 and Lemma 6.6.4 we adapt to the context
of finite elements the notion of o?- convergence of sets formulated in [35]. This is the key tool to obtain
the convergence of elastic and surface energies at all times ¢ € [0, 7] (while in [50] this was available only
at the continuity points of H1(I'(t))). In order to infer the static equilibrium of I'(t) from that of Thn(t),
we employ a generalization of the piecewise affine transfer of jumps [50, Proposition 5.1] (see Proposition
6.3.2).
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The strong formulation

17







19

Preliminaries to Part I

In this section we state the notation and recall the preliminary results employed in the Part I of this thesis.

Deny-Lions spaces. Given an open subset U of R?, for every positive integers k and p the Deny-Lions
space LEP(U) is the space of functions in L?, (U) with derivatives of order & in L?(U).

It is well-known that Deny-Lions spaces coincide with the Sobolev spaces whenever U is bounded and
has a Lipschitz boundary. It is also known that the set {D*u : w € L®P(U)} is closed in the strong
topology of LP. For further properties of Deny-Lions spaces the reader is referred to [39] and [57].

In many problems it is useful to consider the following equivalence relation in L¥?(U):
v ~ Vg if and only if Vvy = Vuy a.e. in U. (21)
The corresponding quotient space is denoted by LYP(U)/..

Capacity. Let 1 < 7 < co. For every subset E of R?, the (1,7)-capacity of E in R?, denoted by C,(E),
is defined as the infimum of [p,(|Vu|" + |u|") dz over the set of all functions u € W1 (R2) such that
u > 1 a.e. in a neighborhood of E. If r > 2, then C,(E) > 0 for every nonempty set E. On the contrary,
if 7 = 2 there are nonempty sets E with C.(E) = 0 (for instance, Cr({z}) = 0 for every z € R?).

We say that a property P{z) holds Cr-guasi everywhere (abbreviated as C.-g.e.) in a set E if it holds
for all z € E except a subset N of E with Cr(N) = 0. We recall that the expression almost everywhere
(abbreviated as a.e.) refers, as usual, to the Lebesgue measure.

A function u: B — R is said to be gquasi-continuous if for every e there exists 4, C R2, with
Cr(Ag) < €, such that the restriction of u to E \ A, is continuous. If 7 > 2 every quasi-continuous
function is continuous, while for r = 2 there are quasi-continuous functions that are not continuous.

1t is well known that, for every open bounded set U, any function v € L*7(U) has a quasi-continuous
representative @ : U U LU — R which satisfies

lim ][ lu(y) — @(z)|dy =0 for Cp-q.e. z € UUIPU,
B, (z)nU

p—0+

where Or,U denotes the Lipschitz part of the boundary U of U and B(z, p) is the open ball with centre =
and radius p. We recall that if up converges strongly to w in W7 (U), then a subsequence of %, converges
to @ pointwise Cp-q.e. on U. To simplify the notation, we always identify each function u € W1 (U) with
its quasi-continuous representative T. For these and other properties on quasi-continuous representatives
the reader is referred to [43], [64], [57], [66].

Hausdorff metric. We recall here the notion of convergence in the sense of Kuratowski. We say that
a sequence (Cy) of closed subsets of R? converges to a closed set C in the sense of Kuratowski if the

following two properties hold:
(K1) for every z € C, there exists a sequence z; € Cp such that zp — z;

(K2) if (hi) is a sequence of indices converging to oo, (zx) is a sequence such that zj € Cp, for every k,
and zj converges to some z € R?, then z € C.

Let us recall also that the Hausdorff distance between two nonempty closed subsets C; and Cq of R? is
defined by

dg(Cy, Cy) == max { sup dist(z, Cz) , sup dist(z, Cl)} )
zeCy r&Cq




with the conventions dist (z, ) = diam (Q) and sup® = 0, so that

0 fK=10

dy(0,K) = !

#(0, K) {diam Q) if K0
We say that a sequence (C,) of nonempty closed subsets of R? converges to a nonempty closed subset

C in the Hausdorff metric if dg(Ch,C) converges to 0.
A sequence of subsets of R? is said to be uniformly bounded if there exists a bounded subset of R?

which contains all sets of the sequence.

The convergence in the Hausdorff metric implies the convergence in the sense of Kuratowski, while in
general the converse is false. However, if (Cy) is a uniformly bounded sequence of nonempty closed sets
in R?, then (Cy) converges to a closed set C in the Hausdorff metric if and only if (Cy) converges to C
in the sense of Kuratowski.

T-convergence. Let us recall the definition of De Giorgi’s I'-convergence in metric spaces: we refer the
reader to [33] for an exhaustive treatment of this subject. Let (X, d) be a metric space. We say that a
sequence Fy, : X — [~o00, +0oo] I'-converges to F': X — [—00, +00] (as h — +00) if for all u € X we have

(i) (T-liminf inequality) for every sequence (up)nen converging to u in X,

. S .
Iﬁ-nfigoth(uh) > F(u);

(ii) (D-limsup inequality) there exists a sequence (up)nen converging to u in X, such that

lim sup Fr(up) < F(u).
h—-+co

The function F is called the I-limit of (F}) (with respect to d), and we write F' = I'—limy, Fp.

We say that a family of functionals {F.} T'-converges to F' as € — 0 if for every sequence &, — 0 as
h — 400 we have I'~ limy F,, = F.

The peculiarity of this type of convergence is its variational character explained in the following
proposition.

Proposition 0.0.2. Assume that the sequence (Fi)nen I'-converges to F' and that there exists a compact
set K C X such that for allh € N
2 File) = ot File)
Then F' admits a minimum on X, infx Fy — minx F, and any limit point of any sequence (up)nen Such
that
. — inf F ) _
i (o) = 2 Fie) =0

1is o minimizer of F.



Chapter 1

Stability of nonlinear Neumann
problems

Introduction

In this chapter * we study, in dimension two, the stability of the solutions of some nonlinear elliptic
equations with Neumann boundary conditions, under perturbations of the domains in the Hausdorff
complementary topology. More precisely, for every bounded open subset Q of R?, we consider the problem

—diva(z, Vug) + b(z,ug) =0 in
a(z, Vug) - v=10 on 09,

where a: R? x R2 — R2? and b: R? x R — R are two Carathéodory functions which satisfy the standard
monotonicity and growth conditions of order p, with 1 < p < 2. Let Qy, be a uniformly bounded sequence
of open sets in R?, whose complements Q¢ have a uniformly bounded number of connected components.
We prove that, if Q5 — Q¢ in the Hausdorff metric and [Qn| — |9, then uq, — uq and Vuq, — Vuq
strongly in LP. The proof is obtained by showing the Mosco convergence of the Sobolev spaces W1HP(€ly,)
to the Sobolev space W1P(Q). The proof of stability for 1 < p < 2 is obtained in two steps. First, under
the same assumptions on 5 and ), we prove the continuity of the map Q +— Vug for the solutions uqn
of following nonlinear Neumann problems

—diva(z,Vu)=0 in £,
(1.1)

a(z,Vu) - v=20 on O

This result is obtained by using the fact that the rotation by /2 of the vectorfield a(z, Vu) (extended
t0 0 on the complement °) is the gradient of a function v which is constant on each connected component
of ¢ (Proposition 1.2.6). This function plays the role of the conjugate of ug used in [17] and [36] in the
linear case. Another important ingredient in the proof is a result on the stability of nonlinear Dirichlet
problems proved in [18], which allows to show that, if each function vg, is constant on each connected
component of Qf, then their weak limit is constant on each connected component of ¢ (Lemmas 1.2.3

1The results of this chapter are contained in Dal maso-Ebobisse-Ponsiglione [34]. We presente also some examples
contained in Ebobisse-Ponsiglione [42]
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and 1.2.5). The second step in the proof of the convergence of the Sobolev spaces W1P(Q) is the
approximation of locally constant functions in © by functions belonging to WP (Qp), which relies on a
result obtained in [16]. The hypothesis p < 2 is used both in the first and in the second step. Then
we consider the case of unbounded open sets and the case of mixed boundary value problems, with a
Dirichlet condition on a fixed part of the boundary.

In the case p > 2 the stability result for (3) and (1.1) is not true under our hypotheses, as shown
in Remarks 1.2.7 and 1.3.6. In the last section we present more explicit examples given by Ebobisse-
Ponsiglione in [42] of non stability and we study the limit problem using the tool of I'-convergence.

1.1 Notation and preliminaries

Throughout the chapter p and g are real numbers, with 1 <p<2<gq<-+ocoand p~! + g~! =1 The
scalar product of two vectors €, { € R2 is denoted by & - ¢, and the norm of ¢ by |£|. For any E, FCR?
EAF := (E\ F)U (F \ E) is the symmetric difference of E and F, and |E| is the Lebesgue (outer)
measure of E.

We say that a sequence (Q) of open subsets of R? converges to an open set § in the Hausdorff
complementary topology, if dg (9, , Q°) converges to 0, where ¢ and Q° are the complements of Qp, and
Q in R?, It is well-known (see, e.g., [44, Blaschke’s Selection Theorem)) that every uniformly bounded
sequence of nonempty closed sets is compact with respect to the Hausdorff convergence. This implies that
every uniformly bounded sequence of open sets is compact with respect to the Hausdorff complementary
topology. Moreover, a uniformly bounded sequence of open sets (Qx) converges to an open set  in
the Hausdorff complementary topology, if and only if the sequence (€5) converges to §2° in the sense of
Kuratowski.

1.1.1 The Neumann problems

Let a: R2 x R2 — R2 and b: R2 x R — R be two Carathéodory functions that satisfy the following
assumptions: there exist 0 < c1 < ¢z, @ € LI(R?), and B € L'(R?) such that, for almost every z € R?
and for every &, 1,62 € R? with & # &2

(a(z, &) —a(z,€2)) - (1 —€2) > G (1.2)
la(z,€)| < a(z) + calélP™ (1.3)
a(z,€) - € = —B(z) + cal¢f (1.4)

We assume that b satisfies the same inequalities for every &, £1,62 € R.
For every open set & C R?, we consider the following nonlinear Neumann boundary value problems,
where v denotes the outward unit normal to 9§2:

—diva(z, Vu) + b(z,u) =0 in £,
(1.5)
a(z,Vu) -v=20 on 09,

and
—diva(z,Vv)=0 in Q,
(1.6)
a(z,Vv) v =20 on 0OQ.



1.1. NOTATION AND PRELIMINARIES 23

A function u is a solution of (1.5) if

u e WP(Q),
(1.7)
/ [a(z,Vu)  Vz + b(z,u)z]dz =0 Vz€ WLe(Q).
Q
while v is a solution of (1.6) if
v € LYP(Q),
(1.8)

/ CL(CE,V’U) .Vzdr=0 Vze Ll,p(Q)'
Q

By well-known existence results for nonlinear elliptic equations with strictly monotone operators (see,
e.g., Lions [56]), one can easily see that (1.7) has a unique solution in WhP(). Similarly one can prove
that (1.8) has a solution, and that if v; and vz are solutions of (1.8), then Vu; = Vs a.e. in . Note
that problem (1.8) can be formulated in the quotient space LYP())/.., defined in (21), where a uniqueness
result holds.

1.1.2 Stability of Neumann problems

In order to study the stability of (1.5) and (1.6) with respect to the variations of the open set 2, we
should be able to compare two solutions defined in two different domains. For any subset E of R?, the
characteristic function 1z of E is defined by 1p(z) := 1 for z € E and 1g(z) := 0 for z € E€. For every
u € Ll’p(Q), the functions uln and Vulq are the extensions of the functions u and Vu which vanish
in §2°. By means of these extensions, WP () will be identified with the closed linear subspace Xq of

LP(R?) x LP(R%, R?) defined by
Xﬂ = {(ulg, V’LL].Q) U € Wl’p(ﬂ)}7 (19>

while the quotient space L'?(Q)/~ will be identified with the closed linear subspace Yq of LP(R?,R?)
defined by
Yo = {Vulg:u € L*?(Q)}. (1.10)

Let  be an open subset of R? and let (Q;) be a sequence of open subsets of R2. Given a pair of
Carathéodory functions a: R? x R? — R? and b: R? x R — R satisfying (1.2)—(1.4), let u be the solution
to problem (1.5) in © and, for every h, let un be the solution to problem (1.5) in Q.

Definition 1.1.1. We say that ) is stable for the Neumann problems (1.5) along the sequence Q) if
for every pair of functions a, b satisfying (1.2)(1.4) the sequence (uplq,) converges to ulq strongly in
LP(R?) and the sequence (Vupla,) converges to Vulg strongly in LP(R?,R?).

Similarly, let v be a solution to problem (1.6) in § and, for every h, let v, be a solution to problem
(1.6) in Q.

Definition 1.1.2. We say that  is stable for the Neumann problems (1.6) along the sequence (Qpn) if for
every function a satisfying (1.2)~(1.4) the sequence (Vuplq,) converges to Vulg strongly in LP(R?, R?).
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1.1.3 Mosco convergence

We shall prove that the notion of stability introduced in the previous definitions is equivalent to a notion
of convergence for subspaces of a Banach space introduced by Mosco in [59].

Let ), and Q be open subsets of R?, and let Xg, and Xq be the corresponding subspaces defined by
(1.9). We recall that Xq, convergesto Xq in the sense of Mosco (see [59, Definition 1.1]) if the following
two properties hold:

(M) for every u € WhP(Q), there exists a sequence up € WLP(§y,) such that upln, converges to ulg
strongly in LP(R?) and Vuplg, converges to Vulg strongly in LP(R%, R?);

(Ms) if (hg) is a sequence of indices converging to oo, (ug) is a sequence such that uy € W LP(Qp, ) for
every k, and wglq, converges weakly in L?(R?) to a function ¢, while Vuglq, converges weakly
in LP(R%,R?) to a function %, then there exists u € W1LP(Q) such that ¢ = ulq and ¥ = Vulg
a.e. in R2.

Analogously, the convergence in the sense of Mosco of the spaces Yo, to Yn defined by (1.10) is
obtained by using only the convergence of the extensions of gradients, that is:

(M) for every u € L"P(Q), there exists a sequence up € LY?(Q) such that Vuplq, converges strongly
to Vulg in LP(R%,R?);

(M3) if (hy) is a sequence of indices converging to oo, (ug) is a sequence such that ui & LYP(Qy,, ) for
every k, and Vuglg, converges weakly in LP (R?,R?) to a function ¢, then there exists u € LYP(Q)

such that 9 = Vulg a.e. in R%

Theorem 1.1.3. Let Qn and §) be open subsets of R?, and let Xq, and Xq be the corresponding subspaces
defined by (1.9). Then Q is stable for the Newmann problems (1.5) along the sequence (Q) if and only
if Xq, converges to Xq in the sense of Mosco.

Proof. Assume that Q is stable for the Neumann problems (1.5) along the sequence (Q). We want
to prove that Xq, converges to Xq in the sense of Mosco by using only the stability of the solutions
corresponding to functions e and b of the special form

a(z, &) = ao(x) + a1(§), b(z, t) = bo(z) + b1 (t), (1.11)

with
Cl.l(f) = mp—zé, bl(t) = ‘ﬂp—zt) ap € Lq(R27R2)> bo € Lq(RZ) (112)
Let us prove (Mi). Given u € W), let ap := —|VulP~2Vulq and bo = —|u/P~2ulq. Then u is

the solution of (1.7) in Q with a and b given by (1.11). Let up € WHP(Qy) be the solution of (1.7) in Qp
with the same a and b. By Definition 1.1.1 the sequence (unlq,) converges to ulg strongly in LP(R?)
and (Vuplq,) converges to Vula strongly in LP(R? R?). This proves (My).

Let us prove (My). Let (hy) be a sequence of indices converging to oo and let (ug) be a sequence,
with w, € W1P(Q,) for every k, such that (uklq,, ) converges weakly in LP(R?) to a function ¢,
while (Vugla,, ) converges weakly in LP(R?,R?) to a function 1. Let ag = —a1 () = —|¢|P~% and
bo = —bi(¢) = —|6[P"2¢, let a and b be defined by (1.11), and let u* and u}, be the solutions of
problems (1.7) in © and Qp, respectively. By the stability assumption the sequence (up, 1 ghk) converges
to u*1q strongly in LP(R?) and (Vuj, 1n, ) converges to Vu'la strongly in LP(R?,R?). This implies
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that a(z, Vuj, 1o, ) converges to a(z, Vu*lg) strongly in L9(R?,R?) and b(z,u;, 1q, ) converges to
b(z, u*1q) strongly in L9(R?). Therefore

kli’rxéo ; [a(z, Vuh,) - (Vun, — Vug,) + b(z, up, ) (Uh, — u},)]dz =
e

= / [a(z, Vuln) - (¥ — Vu'la) + bz, u*1a)(¢ — u*la)|dz. (1.13)
R2
By (1.7) the left hand side of (1.13) is zero. Therefore, using (1.11) and (1.12) we obtain
[ los(Varta) = ox() - (6 = 9710) + (u(a) — u(6) — ]t =0

Using the strict monotonicity of a; and by we obtain that ¢ = Vu*lg and ¢ = u*lq ae. in R2.

Conversely, assume now that Xq, converges to Xq in the sense of Mosco and let us prove the stability.
Let a and b be two Carathéodory functions satisfying (1.2)-(1.4) and let uy and u be the solutions to
problems (1.5) in 9 and Q. The weak convergence in LP(R?) x LP(R? R?) of (uplq,,Vurla,) to
(ulq, Vulg) is a particular case of [59, Theorem A). For the reader’s convenience, we give here the simple
proof.

Using z := uy, as test function in (1.7) for Qp, from (1.4) we obtain that llunllwie(q,) is bounded.
Passing to a subsequence, we have that u,1lg, converges weakly in LP(R?) to a function ¢, while Vuslq,
converges weakly in LP(R?, R?) to a function 9. By (M>) there exists u* € WLP(Q) such that ¢ = u*lg
and 9 = Vu*lg a.e. in R?. By monotonicity for every v € WhP(Q) we have

/ [CL(:E, Vula) - (Vvlg — Vurla,) + b(z,vln)(viq — uhlgh)]dl: > (1.14)
R2
> / [a(x,Vuhlgh) < (Vulg — Vuplg,) + bz, upl, ) (vl — uhlgh)]da:.

R2

By (M) there exists a sequence vp € WLP(Q) such that vylg, converges to vlq strongly in LP (R?)
and Vuplg, converges to Vulg strongly in L? (R2,R?). As vy — up € WHP(Qp), by (1.7) we have

[CL(:E,V'Lthnh) (Vwlg — Vurla,) + b(z, upla, ) (vla — uhlgh)} dz = (1.15)

T

R2

= | [alz,Vunrlg,)  (Vola = Vurle,) + b(z, unla,)(vla — vnla,)|dz.
R

©

Since a(z, Vuplq,) is bounded in L? (R%,R2) and b(z,uplq,) is bounded in L9 (R?), passing to the limit
in (1.14) and (1.15) we obtain

/Q[a(z, Vo) - (Vo — Vu*) + b(z,v)(v — u*)]dz > (1.16)

> hlim [a(z, Vuala,) - (Vola = Vurla,) +b(z, upl,)(vla — vrlg,)|dz = 0.

—+00 RQ
Then we take v = u* = ez in (1.16), with z € WHP(Q2) and € > 0. Dividing by ¢, and passing to the
limit as € tends to 0, we obtain that u* satisfies (1.7) in . This proves that u* = uw. Therefore uplq,
converges to ulg weakly in LP(R?) and Vu,lg, converges to Vuln weakly in LP(R?, R?).
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Taking v := u in (1.16) we obtain that
/ (alz, Vunla,) - ale, Valn))  (Vunla, — Vula)ds +
RQ
+ / (b(z, un1n,) — bz, ula)(urln, — wla)da
R

tends to 0 as h — oo. Using the monotonicity of a and b we conclude that each integral tends to 0. The
strong convergence of (unla,, Vunla,) is now a consequence of the following lemma. 0

Lemma 1.1.4. Let (v¥n) be a sequence in LP(R? R?) converging weakly in LP(R2,R?) to a function 1.
Assume that

lim [ (a(z,vn) — alz,®)) - (Yn — p)dz = 0. (1.17)

h—+o0 Jp2
Then oy, converges to v strongly in LP(R?,R?).

Proof. Various forms of this lemma have been used in the study of Leray-Lions operators (see, e.g., (8,
Lemma 5]). For the sake of completeness, we give here the short proof of the present version.

Let gn == (a(z,%n) — a(z,¥)) - (¥ — ). By monotonicity we have gn, > 0 ae. in R?, thus (1.17)
implies that g converges to 0 strongly in LY(R?). Passing to a subsequence, we may assume that gn
converges to 0 a.e. in R2. Using the Cauchy inequality, from (1.3) and (1.4) we obtain for every € >0

crlonlP < B+ alm,wn) - Yn =B+ gn+alz, ¥n) ¥ +a(z,¥) - (br—¢) <
< on et B+ altl + ol W)+ en (S D)l + (1 122
- ’ g P peP get
Choosing € small enough, we obtain that there exist a constant ¢z > 0 and a function v € L!(R?) such

that
calYnl” < gn + - (1.18)

Let us fix a point z € R? where v(z) < -+oc and where gn(z) tends to 0. By (1.18) the sequence U (z)
is bounded in R2, thus a subsequence (depending on T) converges to a vector £ € R2. By the definition of
gr(z) and by the continuity of a(z, ") we get (a(z, €) — alz,¥(x)))- (€ —¥(z)) = 0, which implies { = ()
by (1.2). Therefore the whole sequence ¥n (z) converges to t(z). Since this is true for a.e. z € R?, the
strong convergence in LP(R?, R?) follows from (1.18) by the dominated convergence theorem. O

Remark 1.1.5. Let us observe that, if ($24) is a uniformly bounded sequence of open subsets of R? such
that Xg, converges to Xgq in the sense of Mosco, then |2, AQ]| converges to 0.

Let & c R? be a bounded closed set such that 2, C I for every h. From property (M;) it follows
that © C . Indeed, if @\ T # 0, let B C 2\ T be an open ball and let ¢ € C(B) with ¢ # 0. By
property (M), there exists up € WHP(Qp) such that upla, — ¢ strongly in LP(R?). So,

0</ [p|P dz = lim / lunla, [P dz =0,
B h—oo /B

which is absurd.
Now, let u 1= 1. Since u € WHP(Q), by property (M) there exists up € WHP(Qy) such that

upl, — lo strongly in LP(R?). As |uplg, —1a|P =1 ae on Q\ Qp, we have

lim [0\ Q4] < lim / lunla, — Lol dz = 0. (1.19)
h—+o0 h—co [p2
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On the other hand, up to a subsequence, lg, converges weakly in LP(R?,R?) to some ¢. Hence from
property (M3), there exists v € W1P(Q) such that ¢ = vlg a.e. in R2. So we have that

lim |\ Q| = lim/ 1thg\gdm=/ viply\ndz =0,
h—+co0 h—oo Jp2 R2

which together with (1.19) gives [, AQ] — 0.

Note that, if the open sets 5 are not uniformly bounded, it is possible that X, converges to Xg in
the sense of Mosco while |2, A8| does not converge to 0. Consider, for example, the sequence of open
sets Q= B(0,1)U((B(0,h+h~1)\ B(0, h)) and 2 := B(0, 1). We have that [QpAQ| = 27+ h~%r — 27,

Let us verify that Xq, converges to X in the sense of Mosco. For every u € WLP(Q), property (M)
is satisfied by the sequence up := ulq. For property (My), let (hi) be a sequence of indices converging
to co; let (ug) be a sequence, with uy € WLP(Qp,) for every k, such that uxlq,, converges weakly in
LP(R?) to a function ¢, while Vuglq,, converges weakly in LP(R2,R?) to a function ¥. We set u := ¢|a.
As 1w, — u weakly in LP(Q) and Vauy, — 9|o weakly in LP(Q,R?), we have u € WiP(Q) and Vu = ¢|a
a.e. on Q. Now, for every ball D C Q° we have D C Qf for h large enough, hence

/qbd:c = lim / ugl, dz = 0.
D k—oo Jp *

So, ¢ = 0 a.e. in Q° and similarly also ¢ = 0 a.e. in Q¢. Hence, ¢ = ulg and ¢ = Vulg ae. in R2.
Note that, in this case, Qp, converges to Q in the Hausdorff complementary topology, since dg (025, Q) =
k=1 — 0. By adding a small strip whose width tends to zero one can obtain an example with connected

sets.
The following theorem can be proved as Theorem 1.1.3.

Theorem 1.1.6. Let Q, and Q be open subsets of R?, and let Yo, and Yo be the corresponding subspaces
defined by (1.10). Then  is stable for the Neumann problems (1.6) along the sequence () if and only
if Ya, converges to Yo in the sense of Mosco.

Remark 1.1.7. If (Q) is a uniformly bounded sequence of open subsets of R? such that Yq, converges
to Yq in the sense of Mosco, then |Q,AQ| converges to 0. Let & C R? be a bounded set such that Qp C X
for every h. Arguing as in Remark 1.1.5, we get that O C L.

Now, let u(z) := € -z with £ € R? and [§| = 1. Since u € LYP(Q), by property (M) there exists
up, € LYP(Qp) such that Vuplg, — Vulg strongly in LP(R?,R?). As |Vuplg, — VulglP =1 ae. on
Q\ Qp, we have

lim |2\ Q] £ lim / [Vuplg, — VulalP dz = 0. (1.20)
h—oo h—oo Jp2
On the other hand, we consider the functions v, € LY2(§),) defined by va(z) := £-z. Up to a subsequence,

Vupla, = Elq, converges weakly in LP(R? R?) to some function 1. By property (M}), there exists a
function v € LYP(Q) such that ¢ = Vvlg a.e. in R2. So, it follows that

¢ lim 25\ Q] = lim Vurla,lon dz =/ Vulals\o de = 0,
h—o0 h—oo Jp2 B2

which together with (1.20) gives |QAQs| — 0.

Remark 1.1.8. Theorems 1.1.3 and 1.1.6 can be applied in the following easy case. If (2p) is increasing
and Q is the union of the sequence, then it is easy to see that Xg, converges to Xo and Yq, converges to
Yq in the sense of Mosco. Therefore every open set is stable for the Neumann problems (1.5) and (1.6)
along any increasing sequence converging to it.
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1.2 Mosco convergence of Deny-Lions spaces

In this section we study the Mosco convergence of the subspaces Yq introduced in (1.10) and corresponding
to the Deny-Lions spaces L*?(Q). By Theorem 1.1.6, this is equivalent to the stability for the Neumann

problems (1.6).

Theorem 1.2.1. Let () be a uniformly bounded sequence of open subsets of R? that converges to an
open set Q in the Hausdorff complementary topology. Assume that |Qn| converges to 1Q| and that Qf has
a uniformly bounded number of connected components. Then Q is stable for the Neumann problems (1.6)
along the sequence (Qp).

To prove Theorem 1.2.1 we use the following lemmas.

Lemma 1.2.2. Let (Q) be a uniformly bounded sequence of open subsets of R? which converges to an
open set Q in the Hausdorff complementary topology. Assume that |Qa| — I2]. Then lg, — la in
measure, i.e., |Qp AR — 0. Moreover, if pn — @ weakly in L7(R?) for some 1 <1 < +c0, and pp =0
a.e. in §, then ¢ =0 a.e. in Q°.

Proof. From the convergence of Qp, to € in the Hausdorff complementary topology we have that loya, — 0
pointwise, hence |2\ Q4| — 0 by the dominated convergence theorem. Since || — Q] = |Qr\ Q] -
|2\ Qp|, and the left hand side tends to 0 by hypothesis, we conclude that |4 \ 2| — 0 too.

Now, let ¢ € L®(R?). As lg, — ln strongly in L5(R?) for every 1 < s < -0, we have

/ o dz = lim prypdr = lim/ 1thah1pda:=/ lowydz =0,
c h—c0 Qe h—o0 Qe Qe

which implies ¢ = 0 a.e. in Q°. O

Lemma 1.2.3. Let (Q) be a uniformly bounded sequence of open subsets of R2?, converging to an open
set Q) in the Hausdorff complementary topology. If ¢ = 2, assume also that the sets Qf have a uniformly
bounded number of connected components. Let (vn) be a sequence in WL4(R?) converging weakly in
Whe(R?) to a function v and with vy = 0 Cy-g.e. on Qf. Thenv =0 Cq-g.e. on Q°.

Proof. If ¢ > 2 we have to prove that (the continuous representative of) v vanishes everywhere on Q°.

This follows easily from our hypotheses, since (vp) converges to v uniformly on R2,
The case ¢ = 2 is considered in [36, Lemma 5.2). For the reader’s convenience, we show here that

the conclusion of the lemma follows directly from Sverdk’s result [65, Theorem 4.1} on the convergence
of solutions to Dirichlet problems. Let ws and w be the solutions of the problems

wy, € W1'2(R2), Awp = Av in Qp, wp =0 Ca-qe in 0, (1.21)
we WH(R?), Aw=Av in £, w=0 Csz-qe. in Q°

Then wp, converges to w strongly in W L2(R2) by [65, Theorem 4.1]. Taking vp — wp as test function in
(1.21), we obtain (Awp, vk — wr) = (Av, v — wp), where (-,-) is the duality pairing between W—12(R?)
and W12(R?). Passing to the limit we obtain (Aw,v — w) = (Av,v — w), which implies v = w. Since,
by definition, w = 0 Cz-q.e. in 2%, we conclude that v = 0 Ca-q.e. in O°. 0

Lemma 1.2.4. Letv € Wh4(R?) and let C1 and Cp be two connected closed subsets of R? with C1NCy #
0. If v is constant Cy-g.e. in Gy and in Ca, then v is constant Cy-g.e. in Gy U Ca.

Proof. For ¢ = 2 we the reader is referred to Proposition 2.5 in [36], while for ¢ > 2 the result follows
from the Sobolev embedding theorem, which yields the continuity of v. -
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Lemma 1.2.5. Let (Qr) be a uniformly bounded sequence of open subsets of R? which converges to an
open set 0 in the Hausdorff complementary topology, and let (vn) be a sequence in Wha(R2), which
converges to a function v weakly in WLe(R?). Assume that Qf has a uniformly bounded number of
connected components and that every function vy, 15 constant Cq-g-€. in each connected component of Qf.
Then v is constant Cy-g.€. tn each connected component of Q°.

Proof. Let C%,...,Cp™ be the connected components of §. Passing to a subsequence, we can assume
that n; does not depend on h, and that the sets C}, converge in the Hausdorff metric to some connected
sets C* as h — oo. Let us prove that v is constant g.e. in each C.

This is trivial if ¢ > 2, since in this case (vx) converges to v uniformly. Let us assume now ¢ = 2. If
C' contains only a single point, there is nothing to prove. If C* has more than one point, there exists
7 > 0 such that diam(C}) > 2r for h large enough. Let us prove that the constant values cf, taken by

Vp, OL C’}1 are bounded uniformly with respect to h. To this aim let us consider a point z; € C}. Since
diam(C}) > 2r, we have C} \ B(zp,r) # 0, and by connectedness

Ct NOB(zn,p) # 0 forevery O < p < (1.22)

As vy = ¢}, Ca-g.e. on C}, by using polar coordinates we deduce from (1.22) the Poincaré inequality

/ lop, — ch | dz < Mr2/ | Vg |? de,
B(zp,m) B(zh,r)

where the constant M is independent of A, 4, and . Since vy, is bounded in Wh2(R?), it follows that c},
is bounded, and so it converges (up to a subsequence) to some constant ct.

To prove that v = ¢t Cy-q.e. on Ct, we fix two open balls By and B with B; CC Bs, and a cut-off
function ¢ € C®(By) with ¢ = 1 in By. Then we have that @(vs — ci) = 0 Ca-ge. on (B \ C})".
By Lemma 1.2.3 we get ¢(v — c) = 0 Co-q.e. in (B2 \ C)¢, hence v = ¢* Cp-q.e on By N C*. As By is
arbitrary, we obtain v = ¢ Cp-q.e. on C:. If C' N C7 # 0, by Lemma 1.2.4 we have that v is constant
Co-q.e. on C* U CJ. As §€ is the union of the sets C¥, we conclude that v is constant Ca-q.e. on each
O

connected component of £2°.

Lemma 1.2.6. Let Q) be a bounded open subset of R? and let u be a solution of problem (1.6). Let R be
the rotation on R? defined by R(y1,v2) := (—y2,%1). Then there ezists a unique function v € Wha(R?)
such that Vv = Ra(z, Vu)lq a.e. in R?. Moreover v is constant Cy-g.e. on each connected component of

Qe.

Proof. We consider the vector field & € L9(R?,R?) defined by ® := a(z,Vu)la. By (1.8) we have
div® = 0 in D'(R?), hence rot(R®) = 0 in D’ (R?). Since Q is bounded, there exists a potential
v € WH4(R?) such that Vv = R® ae. in R? and v = 0 a.e. in the interior of the unbounded connected
component of Q°.

Given a connected component C of Q°, it remains to prove that v is constant Cy-g.e. on C. For every
£>0let C. := {z € R?: dist(z,C) < ¢}, and let u, be a solution of problem (1.6) in Q¢ := 2\ Ce. Let
ve be the unique function in W1¢(R?) such that Vv, = Ra(z, Vue)lq, a-e. in R?. By Remark 1.1.8, Vu,
converges to Vu strongly in L? (R?,R?) and so ve converges to v strongly in W14(R?). By construction
Ve =0 in C.. As C: is a connected open set containing C, we have that v, is constant Cj-g.e. on C.
Since a subsequence of v, converges to v Cp-q.e. on R2, we conclude that v is constant Cy-g.e. on C. [

Proof of Theorem 1.2.1. Let a: R? x R? — R2 be a Carathéodory function satisfying (1.2)—(1.4) and let
up, and u be solutions to problems (1.6) in € and Q. Taking uy, as test function in (1.8) in 024, and using
(1.4) we obtain that Vulg, is bounded in LP(R%,R?). By (1.3) we obtain also that a(z, Vun)lga, is
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bounded in LI(R2). Passing to a subsequence, we may assume that Vuplg, — ¥ weakly in LP(R?,R?)
and a(z, Vuy)lq, — © weakly in L9(R?,R?). By (1.8) we have div(a(z, Vur)la,) = 0 in D' (R?), hence
div® = 0 in D'(R?).

If ' cc £, by the Hausdorff complementary convergence we have Q' cc Qp for h large enough.
Since the set of gradients of functions of L* (') is closed in L7 (£ ,R?), the vectorfield ¥ is the gradient
of a function of L1P(Q). As Q' is arbitrary, we can construct u* € L'»(Q) such that ¥ = Vu* a.e. in €.
On the other hand, by Lemma 1.2.2 we have ¥ = 0 a.e. in Q°, hence ¥ = Vu*lg a.e. in R2,

Let us prove that ® = a(z, Vu*)lg a.e. in R2. By Lemma 1.2.2 it is enough to prove the equality in
every open ball B CC 2. Note that by the Hausdorfl complementary convergence we have B CC Q4 for
h large enough. By adding suitable constants, we may assume that the mean values of up and u* on B
are zero. Thus the Poincaré inequality and the Rellich theorem imply that up converges to u* strongly
in LP(B).

Let z € W1P(B) and let ¢ € C®(B) with ¢ > 0. For h large enough we have B CC Qp, thus by
monotonicity we have

/ (a(z, Vz) — a(z, Vur)) - (Vz — Vup)pdz > 0. (1.23)
B
By (1.8) we have also

[, ol V) 9z~ w) gz =0,

which, together with (1.23), gives
/ a(z,Vz) V((z — un)p)dz ~ / (a(z,Vz) — a(z, Vup)) - Ve (2 — up)dz > 0. (1.24)
B B

We can pass to the limit in each term of (1.24) and we get
/B a(z,V2) - V((z - v )p)dz — /B(a(m, V) - 8) - Voo (z — u”)da 2 0. (1.25)
As div® = 0 in D'(B), we have
[ @ Vi-w)epz=0 (1.26)
From (1.25) and (1.26) we obtain
/B(a(:n, Vz) = @) (Vz— Vu*)pdz > 0.

As s arbitrary, we get (a(z, Vz)—®)-(Vz—Vu*) > Oa.e. in B. In particular, taking z(z) = u*(z)*eé ,

with £ € R? and € > 0, we obtain *(a(z, Vu* £ &€) — @) - £ > 0 a.e. in B. As ¢ tends to zero we get

(a(z, Vu*) — @) - £ = 0 a.e. in B, which implies that a(z,Vu*) = ® a.e. in B by the arbitrariness of ¢.
Let us prove now that

/ a(z, Vu*) - Vzdz =0  Vz e L'P(Q). (1.27)
Q

By Lemma 1.2.6 for every h there exists v, € W4(R?) such that Vup = Ra(z, Vup)lg, a.e. in R2,
Moreover v, is constant Cy-g.e. on each connected component of 2F. As a(z, Vur)lq, converges to
a(z, Vu*)1lo weakly in LI(R?,R?), there exists a function v € Whe(R?) such that v, — v weakly in
Wh4(R?) and Vv = Ra(z, Vu*)lg ae. in R2. So, we have to prove that

/ RVv -Vzdzr=0  Vze L'(Q).
Q
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From the Lemma 1.2.5 it follows that v is constant C,-q.e. on the connected components of {2°. By [54,
Theorem 4.5] we can approximate v strongly in Whe(R?) by a sequence of functions v, € C®(R?) that
are constant in suitable neighborhoods U} of each connected component C* of 2°. Let z € LYP(Q) and

2 € wlep Q) such that zp = z in O\ J; U?. Then, we have
0 i~ h
/ RVv, - Vzdz = / RVuyp, - Vzpdz =0, (1.28)
9} Q

where the last equality follows from the fact that the vector field RVuy, is divergence free. Then, passing
to the limit in (1.28) for h — oo, we get

/ a(z, Vu*) - Vzdz = —/ RVv - Vzdz = 0.
Q Q

So u* is a solution of (1.8) in §2, hence Vu* = Vu a.e. in § by uniqueness of the gradients. This implies that
Vuplg, converges to Vulg weakly in LP(R?,R?) and a(z, Vun)lq, converges to a(z, Vu)lq weakly in
LI(R?,R?). Since |2, AQ| tends to 0 by Lemma 1.2.2, from the identity a(z, Vurlg,) = a(z, Vua)la, +
a(z,0)1a; we conclude also that a(z, Vunlq,) converges to a(z, Vulg) weakly in L9(R? R?).

To prove the strong convergence, we consider the integral

Iy = / (a(z, Vupla,) — alz, Vula)) - (Vurlg, — Vulg)dz.
R2

Since by (1.8)
/ a(z,Vup)  Vupdz =0 and / a(z, Vu) - Vudz = 0,
Qn Q

we have
In = »—/ a(z,Vupla,) Vudz —-/ a(z, Vulg) - Vuplg, dz.
Q Qp
Therefore
lim I = -2/ a(z, Vu) - Vude = 0, (1.29)
h—oo Q

where the last equality can be deduced from (1.8). The strong convergence in L” (R?,R?) of Vuylq, to
Vulg follows now from (1.29) and from Lemma 1.1.4. O

Remark 1.2.7. In the case p > 2 the stability result for problem (1.6) is not true under our hypotheses.
Indeed, let us consider

S :=[1,3] x {0}, Sh:=([1,2-1/RJU[2+1/h,3]) x {0},

Q= B(0,3)\ (B(0,1)US) and Qp:=B(0,3)\(B(0,1)U Sk).
Let @ € C(0,00) be such that @(p) = p~P for 1 < p < 3. We set
a($7§) = IEIP_Zé - gD(lIL‘DR:E,

where R is the rotation by m/2 defined by Rz := (~z2,71). Let up and u be solutions of problems (1.6)
in Q and Qp, with [ updz = Jqudz =0. For every z € Q, let 0 < 8(z) < 27 be the angle between z

and the positive z;-axis. As V0(z) = Rz/|z|?, we have that u =6 — 7 in Q.
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If the open set @ were stable for problem (1.6) along the sequence (Q4), then Vup would converge
strongly to Vu in LP(§, R?). By the Poincaré inequality we would have that up converges strongly to u
in Whr(Q).

For every v € WhP(Q), let v and v~ be the upper and lower traces of v on §, defined by

vt (z) = 111’1_{'1:{1C v(y) and v (z):= 1}1_% v(y). (1.30)
y2>0 y2<0

From the convergence of uy to u in WP(Q), we obtain that uf — u¥ and u; — v~ uniformly on §
(recall that p > 2 here). Since ujf (2,0) = u; (2,0) by the continuity of up, we obtain ut(2,0) =u(2,0),
which contradicts the fact that u+(2,0) = —7 and v™(2,0) = 7, being u =0 — .

1.3 Mosco convergence of Sobolev spaces

In this section we study the convergence in the sense of Mosco of the subspaces Xq introduced in (1.9)
and corresponding to the Sobolev spaces W1P(Q2). The convergence of Xq, to Xq will be obtained from
the convergence of Yq, to Yn and from the following approximation theorem for functions which are
locally constant on the limit open set 2.

Theorem 1.3.1. Let (Q4) be o uniformly bounded sequence of open subsets of R? which converges to
an open set 0 in the Hausdorff complementary topology. Assume that [Qn| converges to || and that QF
is connected for every h. Then for every u € WhP(Q) with Vu = 0 a.e. in Q, there exists a sequence
up € WHP(Qp) such that upla, converges to ulgn strongly in LP(R?) and Vuplq, converges to 0 strongly
in LP(R?,R?).

The proof of this theorem is postponed. We are now in a position to state the main result of the
chapter.

Theorem 1.3.2. Let () be a uniformly bounded sequence of open subsets of R? which converges to an
open set Q) in the Hausdorff complementary topology, with |Qr| converging to |Q]. Assume that QF has a
uniformly bounded number of connected components. Then Xq, converges to Xgq 1in the sense of Mosco.

To prove Theorem 1.3.2 we need the following localization lemma.

Lemma 1.3.3. Let () be a uniformly bounded sequence of open subsets of R?, and let 2 be a bounded
open subset of R%. Assume that for every = € R? there exists € > 0 such that the sequence Xp(ze)nq,
converges to Xp, (z)nq in the sense of Mosco. Then Xgq, converges to Xq in the sense of Mosco.

Proof. Condition (Mz) is easy, and condition (M;) can be obtained by using a partition of unity. O

Proof of Theorem 1.8.2. Step 1. Assume that f is connected for every h. Let us prove (Ms). Let (hg)
be a sequence of indices converging to oo, (ux) be a sequence, with u; € WhP(Qp,) for every k, such
that uglg, converges weakly in LP(R?) to a function ¢, while Vuilg, converges weakly in LP(R?, R?)
to a function ¥. From Lemma 1.2.2 it follows that ¢ and % vanish a.e. in Q°.

Let ' CC  be an open set. By the Hausdorfl complementary convergence we have Q' cc Qp for
h large enough. So, ug|os converges weakly to ¢lor in LP(Q') and Vug|q: converges weakly to Yo in
LP(SY,R?). Hence ¢|or € WHP(Q') and ¢or = Vg|ar in Q. From the arbitrariness of Y, it follows that
the function u := @|n belongs to W ?(Q), ¢ = ulq and ¥ = Vulg a.e. in R

Now let us prove (M;). Let u € WhHP(Q). We write Q := U, Q;, where 1 < m < oo and ()
is the family of connected components of Q. Since the set of functions u satisfying (M7) is a closed
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linear subspace of W12(Q), by a density argument it is enough to prove (M;) when u belongs to L ()
and vanishes on all connected components of {2 except one. By renumbering the sequence (Q;), we may
assume that v vanishes on Q; for every 7 > 2.

From Theorem 1.2.1 on the convergence of Yq, to Yo in the sense of Mosco, there exists a sequence
z, € LYP(Q,) such that Vzplg, converges strongly to Vulg in LP(R?, R?). Let us fix a nonempty open
set Ag CC ;. We can assume that f Ao zpdT = f 4o udz. For every smooth connected open set A, with
Ap CC A CC 4y, by the Poincaré inequality we have that zn|a — u|a strongly in Whr(4).

We consider now wp, = (—=|[¢]leo) V 21 A |Jullec. We have that wp|a — ula strongly in WLP(A) for
every open set A CC ;. Moreover, for every open set £ CC  the function ws|g belongs to WLP(E) for
h large enough. As ||wplleo < ||ulleo and [Vwp|g| < [Vza|el, the sequence (ws|g) is bounded in WiP(E).
By the Rellich theorem, there exists w € W1?(§2) such that ws|g converges to w|g strongly in L?(FE) for
every open set E CC  with smooth boundary. As wp|s — ula strongly in W 1P (A4) for every open set
A CC Q1, we have that w = u a.e. in Q5.

For every open set B CC Q\ Q, since [Vws| < |Vzn| and Vzu|g — Vu|p = 0 strongly in LP(E,R?),
we have Vg |5 — 0 strongly in LP(E,R?). Therefore we get Vw = 0 = Vu a.e. in Q\ Q1, which together
with the result obtained in Q1 implies that Vawy|g converges to Vu|g strongly in LP(E,R?) for every
E cc Q. In particular, we obtain that the function u — w is locally constant in .

We claim that Vwp1g, convergesto Vwlg strongly in LP (R?,R?). Indeed for every E CC 2 we have
]lilvwhlﬂh — Vulallpr@mere) < IVwple — Vulp|pr(zre) + Varla,lge | Lr @2 m2) + HvulQ\E”L;J(]RZ’]R2).

ence

hhmsup IVwrla, — Vulallrs@s ey < 2[Vulo\Elle e r2),
—00

and by letting E / Q we prove the claim. In a similar way, we obtain also that wplq, converges to wlg
strongly in LP(R2).

Since u—w is locally constant in Q, from Theorem 1.3.1 there exists v, € WhP(Qy,) such that vplg, —
(u — w)lq strongly in LP(R?) and Vu,lg, — 0 strongly in LP(R?, R?). Therefore wp, + vy, € WHP(Q4),
(wh +vp)1q, — ulq strongly in LP(R?), and V(ws +vi)lg, — Vulg strongly in LP(R?,R?), which give
property (Mi).
Step 2. We now remove the hypothesis that Qf is connected. Let Ct,...,Cp* be the connected compo-
nents of 2. Passing to a subsequence we can assume that np does not depend on h and that the sets
Ci converge in the Hausdorff metric to some connected sets C* as b — co. Let Cu,...,C% be those C*
having at least two points. We set

Q= (Ldj c4) and Q= (Ldj cy)
j=1 j=1

We have that © C Q*, Qp C O}, and, by construction, 2} converges in the Hausdorfl complementary
topology to ©* and || — || (because |C}| — 0if i # 41,...,44). There exists some 1 > 0 such that
diam C% > n for every j, hence diam C} > n for h large enough. Let us observe that, for every z € R?,
the sequence B(z,n/2) N}, converges to B(z,7/2) NQ* in the Hausdorff complementary topology and
also |B(z,n/2) N Q| — |B(z,1n/2) N Q*| (by Lemma 1.2.2). As diam C}/ > n, it is easy to see that
(B(z,7m/2) N Q)¢ is connected for h large enough. So, from Step 1 we obtain the Mosco convergence of
XB(zm/2)n0; 1O XB(z,n/2yn0+- Now, using Lemma 1.3.3 we get the Mosco convergence of Xq: to Xq-.

As Q3 \ Qp is the union of a uniformly bounded number of sets with diameter tending to 0, using the
fact that 1 < p < 2, we deduce that Cp (2}, \ Q) — 0. Let us show that this implies that X, converges
to Xq in the sense of Mosco.

For property (Mi), let u € WHP(Q). Since the set Q* \ 1 is finite, we have that C,p(Q" \ ) = 0.
Hence, u € W1P(Q*). So, there exists uj, € WHP(Q}) such that ujlos converges to ulgs strongly in
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LP(R?) and Vujlg; converges to Vulg. strongly in LP(R?,R?). Setting un = uj|q,, we obtain that
uplq, converges to ulq strongly in LP(R?) and Vuplq, converges to Vulg strongly in LP(R?,R?), and
so property (M) holds.

Let us prove property (Mz). Let (ki) be a sequence of indices converging to oo, (ug) be a sequence,
with ug € WHP(Qp, ) for every k, such that uxlq,, converges weakly in LP(R?) to a function ¢, while
Vuglg,, converges weakly in LP(R? R?) to a function . From Lemma 1.2.2 it follows that ¢ and 7
vanish a.e. in 0°.

As Cp(Q;, \ Or,) — 0, there exists a sequence @ € WP (R2) converging strongly to 0 in Wh?(R?)
such that @ = 1 a.e. in a neighborhood of 2} \ Qn-

We set

’LLZ = uk(l - (pk).

Note that u} € WHP(Q,) and that uZlg;«‘k converges weakly in LP(R?) to ¢, while VUZIQZ,C converges
weakly in L? (]Rz,]RZ) to 1. So, from the Mosco convergence of Xg: to Xq-, it follows that there exists
u* € Wh?(Q*) such that ¢ = u*lg- and ¢ = Vu'lg. ae in RZ. By setting u = u*|q, we get that
¢ = ulg and ¢ = Vulg a.e. in R? and the proof of (Ms) is complete. O

The rest of this section is devoted to the proof of Theorem 1.3.1. To this aim we will need some
preliminary results.

Lemma 1.3.4. Let (Q) be a uniformly bounded sequence of open subsets of R?, which converges to
an open set Q in the Hausdorff complementary topology, with |Qp] converging to |Q. Assume that
Qn = QL U Q32 with Q) open and Qi NQ2 = 0. Assume also that (QL) converges to an open set QF,
i=1,2, in the Hausdorff complementary topology. Then

(i) Q'nQ? =0,
(i) QLUQ? =Q,
(i) |0 = limp %], 7= 1,2.

In particular, if Qg is union of connected components of Qy, and converges to an open set Q0 4n the
Hausdorff complementary topology, then QO is union of connected components of ) and |99| converges
to |Q9].

Proof. (i) and (i) are easy consequences of the convergence in the Hausdorff complementary topology,
while (iii) follows from Lemma 1.2.2. As Q0 is union of connected components of €, then the set
Q= \ Qg is open in the relative topology of {lp. Up to a subsequence, {1}, converges to an open set
Q' in the Hausdorff complementary topology. From (i) and (ii) we have that Q0NQ =, and QPUQ =
hence Q0 is union of connected components of 2. The last assertion follows from (ii). O

The following lemma, proved by Bucur and Varchon in [16], will also be used in the proof of
Theorem 1.3.1.

Lemma 1.3.5. Let Q be a bounded open set in R? and let a and b be two points in two different connected
components Q, and Uy of €1, whose distance from Q¢ is greater than 108 for some § > 0. Let U be an
open subset of R? such that U¢ is connected and dp (U, 0°) < 6. Then there ezists z € Q° such that the
closed square Q(w,99), with centre = and side length 99, intersects any curve contained in U and joining
the points a and b.
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Proof of Theorem 1.8.1. By a density argument, it is sufficient to prove that for every connected compo-
nent Q20 of ) there exists a sequence w, € W1P(Qy) such that uplg, converges strongly to 1go in LP(R?)
and Vuylg, converges strongly to 0 in LP(R?,R?). Let a® € Q0 and let 02} be the connected component
of 2, which contains a® (which is defined for h large enough). Up to a subsequence, Q9 converges in the
Hausdorff complementary topology to some open set E. From Lemma 1.3.4 it follows that

where 0 < m < oo and (QF) is a family of connected components of Q (including Q%), and
%] = |E]. (1.31)
Let 0 < € < |29] be fixed. There exist a finite integer n. > 1 and an open set Q. such that
e )
E=[J2uq, (1.32)
i=0

where [Q| < € and QF NQ, = 0 for every ¢ < n,.

We fix now a point a in each set Q. Let § > 0 be such that dist(a?, Q%) > 106 for every i < ne. From
Lemma 1.3.5, for h big enough there exist some points (wi’i)?él, uniformly bounded in Q°, such that for
every 1 < m. the square Q(mi’i, 94) intersects any curve contained in Q% and joining the points a® and
ai. Up to a subsequence, we have that 5" — 2% as h — oo, for some z%! € Q°. Once again up to a
subsequence, we have that z%¢ — z¢ as § — 0, for some z* € Q°. Let

K% .= | | B(z%,100)

i=1

and, for i = 0,...,n, let Qi’e’i be the connected component of 29 \ K¢ containing a’. As K% >
Q(mi’l, 96) for ¢ small enough and h large enough, we have

Qo0 £ 25 for § £0. (1.33)

Let ©%¢ be the Cp-capacitary potential of K 4.2 je., the solution of the minimum problem
min {/ [IVol? + P dz : ¢ € WHP(R?), p =1 Cp-a.e. on Kf‘vf} :
R2

We set 5e0
1 in Q2&°,
ua)a = h (134)
h 5 : é,e,0
@™ in Qp \ Q7.
As QN 59;51‘5’0 ¢ K% we have that ui‘é € WhP(Qy). We observe that
1
”’ui’slgh - ].QZ,E,U“L;)(]R2) + ”Vufflnh |lLP(R2,R2) < ZCP(K‘S'E)P.

As Cp(K%%) < n.Cy(B(0,106)) and p < 2, we conclude that

lim sup hmsup{“ui’s’olgh - 102,4}”(@2) + HVui’ElthLp(Rz,m)] = 0. (1.35)

6—0 h—o0
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We claim that

lim sup lim sup ||u;‘5’olgh —loo||Trge) £ & (1.36)
60 h—oo0
and 5
limsup limsup ||Vuy, "1, ||r 2 r2) = 0, (1.37)

6—0 h—o0

from which the proof of the theorem is achieved by the arbitrariness of €.
It is easy to see that (1.37) follows from (1.35), while (1.36) is a consequence of (1.35) and of the
following inequality
limsup limsup |2)°AQ0 < e (1.38)

6—0 h—co

So, let us prove (1.38). For every i =0,...7¢, up to a subsequence, Qi’a’l converges in the Hausdorff
complementary topology, when h — 00, to some open set Q8¢ ¢ E. We observe that Q% \K 4 converges
to E\K 6. in the Hausdorff complementary topology when h — 00. Let E%¢€% be the connected component
of E\ K%¢ which contains at. It is easy to see that

Eéei c et (1.39)

Note that, as § \, 0, K 8¢ converges decreasingly to the set {Z1,., Tng by Ef%&t converges increasingly
to Q¢, and Q8% converges increasingly to some open set Q& C E. From (1.39), it follows that Qf C Q%
From (1.31) and from Lemma 1.2.2 it follows that

09\ K°¢| = |E\ K. (1.40)

By Lemma 1.3.4 applied to 2} := QZ’E’O and Q3 := (Q9\ K%€) \Qi’e'o, we have that Q650N Q8 = )
for every i # 0, from which it follows that QE0 A Q5 = § and hence Q50N Q¢ = 0 for every 1 <1 < ne.
Therefore, there exists an open set QL, contained in the set ) introduced in (1.32), such that

Q0 =0 uqr.
From (1.40) and from Lemmas 1.3.4 and 1.2.2, it follows that
|20 Anse0| 0. (1.41)
As 0680 ¢ Q20 = Q0 U QL, it follows that
0650\ Q0] < 50\ QA0 + R0\ %] < Q)50 \ QA0 + [, (1.42)

and

‘QO \Qi,a,Ol < |QO \95,5,01 + IQB,E,O \ Qi,s,()' < IQE,O \ QS,E,O[ + |Q§,5,0 \ Q’f;E‘OL (143)
As Q90 converges increasingly to Q<0 as § — 0+, we have |050\ Q%0 — 0 as § — 0. By (1.41),
passing to the limit in (1.42) and (1.43) first as h — co and then as 6§ — 07 we obtain

limsup limsup [2)% \ Q] < [§2] + limsup Q8e0\ Q8€0] < &
h—o0

6—0 h—o0

and
lim sup lim sup |2\ Q2% = 0,

6—0 h—co

which give inequality (1.38). ]
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Remark 1.3.6. In the case p > 2 the stability result for problem (3) is not true under our hypotheses.
Indeed, let us consider

S :=[-1,1] x {0}, Sn:=([-1,-1/h]U[1/h,1]) x {0},
Q= (=1,12\8, and Qp:=(-1,1)*\ 5

We set
a(z,€):=€P% and b(z,n) = [P~ - 22,

where 7 = (21, z2). Let uj, and u be solutions of problems (3) in 2 and 2 respectively. By the symmetry
of Q, the solution u will depend only on zs. Therefore, for every z = (z1,22) € Q

'U.(QZ) _ { w(ccg) if zo € (0,1),

-—w(——:z;g) if zg € (—1,0)
where w is the solution of the one-dimensional problem

—(Jw' P20 + jwlP 2w = in
(lw'| )+ |wl t (0,1), (1.44)

w'(0) = w'(1) =0,

which turns out to be of class C*([0,1]). For every v € W?(Q), let v+ and v~ be the upper and lower
traces of v on S, defined as in (1.30).

If the open set 2 were stable for problem (3) along the sequence (21,), then u would converge strongly
to u in W1P(Q). Hence we would have that uf — w* and u; — u~ uniformly on § (recall that p > 2
here). Since uj (0,0) = uj (0,0) by the continuity of us, we would obtain ut(0,0) = u(0,0), which
implies that w(0) = 0. Let us prove that this is false. Indeed, by the maximum principle we have that
w(t) > 0 for every t € [0,1]. Since w'(0) = 0 and p > 2, we have that wP™l(t) —t < 0 in a small
neighborhood I of 0 in [0,1]. So, from equation (1.44) the function |w’|P~%w’ is decreasing in I and hence
w'(t) < 0 for every t € I. If w(0) were equal to 0, we would obtain w(t) < 0 for every ¢ € I, which
contradicts the fact that w(t) > 0 for every t € [0,1]. This proves that w(0) > 0, and hence Q is not
stable for problem (3) along the sequence () for p > 2.

1.4 The case of unbounded domains

We now extend the results of the previous sections to the case of unbounded domains.

Theorem 1.4.1. Let () be a sequence of open subsets of R? such that (Q5) converges to ¢ in the
sense of Kuratowski for some open subset Q. Assume that, for every R >0, |2, N B(0, R)| converges to
|QN B(0, R)| and that the number of connected components of (Qn, N B(0, R))® is uniformly bounded with
respect to h. Then the sequence of subspaces Xq, (resp. Ya,) converges to Xq (resp. Ya).

Proof. We prove only the Mosco convergence of Xp, to Xq, since the convergence of Yq, to Yq can
be proved in the same way. First of all note that, from the convergence of Qj to Q¢ in the sense
of Kuratowski, it follows that the sequence Q2 N B(0, R) converges to QN B(0, R) in the Hausdorff
complementary topology. Moreover, by the assumptions of the theorem, we can apply Theorem 1.3.2 to
the sequence Qp N B(0, R). So, we get that Xq,np(o,r) converges to Xana(o,r) in the sense of Mosco.
Now let us prove (Ms) for Xq, and Xq. Let (ki) be a sequence of indices converging to oo, (ux) be a
sequence, with uy, € WP(Qp, ) for every k, such that uglg, converges weakly in L? (R?) to a function ¢,
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while Vuglg,, converges weakly in LP(R?,R?) to a function 1. It follows that uklq,, nB(o,r) CONVErges

to ¢lp(o,r) weakly in LP(R?), while Vugla, ns(o,r) converges to Ylp(,r) weakly in LP(R?,R?%). So,

by property (M3) relative to the Mosco convergence of Xq,ng(o,r) 0 Xans(o,r) there exists a function

UR € Wl’p(Qﬂ B(O,R)) such that ¢lp(o,r) = urlonB(o,R) and Y1lp(o,R) = Vugrlang(o,R) & in R2.

Since R is arbitrary, it is easy to construct u € W1P(€) such that ¢ = ulq and ¢ = Vulg a.e. in R%
Let us prove property (M;). Let u € WLP(Q) and let € > 0. There exists R, > 0 such that

/ ([P + [Vl dz < e
O\B(0,Re)

By property (M) relative to the Mosco convergence of Xq,nB(0,R.+1) 10 XQnB(0,Re+1)) there exists a
sequence w§, € WP(Q,NB(0, R +1)) such that w§ 10, nB(0,R+1) CONVETges strongly to ulgntoyREH) in
LP(R?) and Vw; 1q,nB(0,R.+1) COLVErges strongly to Vulgnp(o,re+1) 12 LP(R?,R?). Let . € C;(B(0, Re+
1)) such that 0 < . <1, e =11in B(0, R.), and ||Velloo < C. Now we set uj, := wewf,. By construc-
tion u§ € WhHP(Q), ujla, — weula strongly in LP(R?), and Vu§ lg, — ¢:Vulg +uVeela strongly in
LP(R?,R?). On the other hand

limsup [ |uSla, — ulal’ +[Vurla, — VulglPdz < 2271(CP + 1),
h—oo JR?

weuln — ulg strongly in LP(R?), and ¢ Vulg + uVepelo — Vulg strongly in LP(R?, R?). Therefore,
we can construct a sequence up € WHP(Q) which satisfies (M;) by a standar argument on double
sequences. [

1.5 Problems with Dirichlet boundary conditions

In this section we study the Mosco convergence of Sobolev and Deny-Lions spaces with prescribed Dirichlet
conditions on part of the boundary.

Let A C R? be a bounded open set with Lipschitz boundary 8A, and let 8p A be a relatively open
subset of A with a finite number of connected components. For every compact set K c A, for every
g € WhP(A), and for every pair of function a and b satisfying the properties (1.2)-(1.4), we consider the
solutions u and v of the mixed problems

—diva(z, Vu) + b(z,u) =0 in A\ K,
u=g on OpA\K, (1.45)
a(z,Vu) - v=20 on B(A\K)\ (OpA\K),

and
—diva(z,Vv) =0 in A\K,

v=g on OpA\K, (1.46)
a(z, Vo) -v=0 on A(A\K)\ (8pA\K).

Let (Kp) be a sequence of compact subsets of 4, let (gn) be a sequence in WLP(A), and let (up) be the
sequence of the solutions of problems (1.45) corresponding to Kp and gh.
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Definition 1.5.1. We say that the pair (K, g) is stable for the mized problems (1.45) along the sequence
(K, gn) if for every pair of functions a, b satisfying (1.2)—(1.4) the sequence (uplig) converges to ulke
strongly in LP(A) and the sequence (Vurlkg) converges to Vulgke strongly in LP(A,R?).

The stability for problems (1.46) is defined in a similar way by using only the convergence of the
gradients (as in Definition 1.1.2).

The stabilty for problems (1.46) has been recently studied in [36] in the case a(z,€) = £. In this
section we will study the stability in the general case by using again the notion of Mosco convergence.
We set
WyP(A\K,0pA\K) = {ue WYP(A\K):u=gondpA\ K},
and
L;’p(A\K,BDA\K) = {ue LY"P(A\K):u=gon 9pA\ K},
where the equality u = g on 8pA \ K is intended in the usual sense of traces.
As in Section 1.1.2 the space WP(A\ K,8pA\ K) will be identified with the closed linear subspace
X% (A) of LP(A) x LP(A,R?) deﬁned by

X§(A) = {(ulke, Vulge) 1 u € WyP(A\ K,0pA\ K)}. (1.47)

For problem (1.46), we consider in L;?(A\ K,0pA \ K) the equivalence relation ~ defined in (21).
Note that in this case v; ~ vy if and only if 1 = vp a.e. in those connected components of A\ K whose
boundary intersects pA \ K and Vu; = Vg a.e. in the other connected components of A\ XK. The
corresponding quotient space, denoted by Ly?(A\ K, 8p A\ K)/~, will be identified with the closed linear
subspace Y (A) of LP(A,R?) defined by

YE(A) = {Vulke :u€ LyP(A\ K,0pA\ K)}. (1.48)

Let Ky, K be compact subsets of A and let gn, g € WHP(A). Let X7 (A) and X% (A4) be the
corresponding subspaces defined by (1.47). We recall that X (A) converges to X% (A) in the sense of
Mosco if the following two properties hold:

(M) for every u € WHP(A\ K,8pA\ K), there exists a sequence up € WLP(A\ Ky, Op A\ Kp) such that
unlie converges strongly to ulge in LP(A) and Vuplxg converges strongly to Vulge in LP (4, R?);

(ML) if (hg) is a sequence of indices converging to oo, (u) is a sequence, with uy € ng}lf (A\ Kn,,0pA\
Kp,,) for every k, such that ugl Kg, converges weakly in LP(A) to a function ¢, while Vul K¢,
converges weakly in LP(A,R?) to a function 1, then there exists u € W, P(A\ K,0pA \ K) such
that ¢ = ulge and 9 = Vulg. a.e in A.

Analogously, the convergence of Y (A) to Y (A) in the sense of Mosco can be characterized by using

only the convergence of the extensions of the gradients.

Remark 1.5.2. As in Section 1.1.3 we can prove that the Mosco convergence of X7 (A) to X7 (A)
(resp. of Y (A) to Y (A)) is equivalent to the stability of (X, g) for the mixed problems (1.45) (resp.
(1.46) along "the sequence (Ky, gn))-

The following theorem is the main result of this section.

Theorem 1.5.3. Let A be a bounded open subset of R? with Lipschitz boundary A and let 8pA be a

relatively open subset of BA with a finite number of connected components. Let (gn) be a sequence in
WLP(A) converging strongly to a function g in WhP(A), and let (Ky) be a sequence of compact subsets
of A converging to a set K in the Hausdorff metric. Assume that |Kp| converges to |K| and that the
sets Ky, have a uniformly bounded number of connected components. Then X3 (A) converges to X5 (A)
(resp. Y2 (A) converges to Y2(A)) in the sense of Mosco.




40 CHAPTER 1. STABILITY OF NONLINEAR NEUMANN PROBLEMS

Proof. The main idea of this proof is due to Chambolle. Let us first prove the Mosco convergence of
X3 (A) to X3 (A). Let T be an open ball in R? such that A C . Let gn, § € WHP(Z) be extensions of
gr and g to T such that gn converges to g strongly in WhP(3). We set

On =5\ (KnU(8A\OpA)) and Q:=3\ (KU (8A\8pA)).

Note that Q5 and € satisfy the assumptions of Theorem 1.3.2. Let us prove property (pM2"). Let (hi) be
a sequence of indices that tends to co, and ux € ng}:f (A\ Kp,,0pA\ Ky, ) such that uyl kg, converges

weakly to ¢ in LP(A) and Vul Kg converges weakly to ¥ in LP(A,R?). Let 1y be the extension of ug

defined by
N uleﬁk in A,
g =
"7 e in T\ 4,

and let 4;75 and 1/; be defined by

- ¢ in A, - P in A,
= d =
¢ {g in T\ A4, . v {vg in T\ A

As uy = gn, on OpA\ Kp,, we have Ux € WhP(Qp, ). Since tgla,, converges to $ly weakly in LP(R?)
and Viglq,, converges to ly weakly in LP(R?,R?), by Theorem 1.3.2 we conclude that there exists
@ € WhP(Q) such that ¢ly = @l and ¥lg = Vilg. Let u be the restriction of 7 to A\ K. Then
u € WIP(A\ K) and we have that ¢ = ulge and ¢ = Vulge ae. in A. Asu € WLP(Q), the traces of &
on both sides of 8pA \ K coincide. Since % = § a.e. in I\ A, we conclude that u=g =g in the sense of
traces on 8pA \ K. Therefore u € W}P(A\ K,0pA\ K).
Now we prove property (M{'). Let u € W}?(A\ K,0pA\ K). Let @ be the extension of u defined by
_ julge  ae in A,
v g a.e in &\ A
As u = g on OpA\ K, we have that u € WiP(Q). By Theorem 1.3.2 there exists a sequence up €

WLP(Qy,) such that @ lq, converges to @lq strongly in LP(R?) and Viplq, converges to Viilg strongly
in LP(R?,R?). We consider the function

¢h = (@n = n)lp\a

By construction, ¢n — 0 strongly in W Lp(% \ A4). Therefore there exists a sequence vp € whr(z),
converging to 0 strongly in W1?(Z), such that vp|p\z = ¢ a.e. in =\ A We set

up = (ﬂh - Uh)lA\KhA

By construction, we have that un € WhP(A\ K}) and up = gn in the sense of traces on OpA \ Kp.
Moreover, we have that unlxe converges to ulge strongly in LP(A) and Vuplg; converges to Vulke

strongly in LP(A, R?).

Now let us prove that Y£" (4) converges to Y£(A) in the sense of Mosco. Property (M3) is obtained
arguing as in [36, Lemma 4.1]. So, let us prove (M7). Let u € LyP(A\ K,8pA\ K). We set for every
kEeN

uf = (g—Ek)VuA(g+k).
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Then u* € WyP(A\ K,0pA\ K) and VuF1ge — Vulge strongly in LP(A4,R?). From property (M7')
proved above for the Mosco convergence of X3 (A) to X7 (A), for every k there exists uf € Whr(A\
Kn,0pA\ K}) such that Vuflxe — VuFlge in LP(A,R?). Hence, by a standard argument on double
sequences, we obtain a sequence of indices kj, converging to oo such that, setting up = u]}j”, we get
Vuplge — Vulge in LP(A,R?). O

1.6 Some examples of non stability
Remarks 1.2.7 and 1.3.6 show that in general the stability results stated in the previous sections does
not hold in the case p > 2. Here we will give more explicit examples using the tool of I'-convergence. We

will refer to problem (1.46) with a(z,€) := €P=2¢, where p > 2, and g = g. In order to use the tool of
T-convergence, let us observe that problem (1.46) with this choice of a can be written in the following

variational form:

(P) min / l|Vv(:c)|” dz.
v=g on GpO\K O\K P

In the first example the stability result for problem (P) holds.

Fig. 1

Example 1.6.1. Let Q = (—1,1) x (=1,1), pQ:= (-1,1) x {=1,1}, K = [~1,1] x {0} and let

e i) (o 4]

(see Fig. 1). We consider the sequence of functionals F defined in L”(Q2) by:

: / |VulPdzdy — if u e WHP(Q\ Kp) and u= g on Op&,
O\Kn

Fpu):={7P
+co otherwise.

(1.49)
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Then, Fj, T-converges to Fy in the strong topology of LP(£2), where
1
= / |Vulf dedy  if u € WHP(Q\ K) and u = g on dpQ,

Foolu) := ¢ P/onK
400 otherwise.

Hence in this case the conclusion of Theorem 1.5.3 follows from the general result on convergence of
minima in the theory of I'-convergence.

Proof. (i) T-liminf: Let up — u strongly in LP(Q), we want to prove that liminfs—co Fr(up) 2 F(u).
We can assume that lim infp— o Fr(up) = limp—eo Fr(un) < co. So, for any Q' CC Q\K with 8p§ C 8%,
we have that up, € WLP(Q) for h big enough, up — u in WHP(§)') and u = g on 9pQl. Now from the
lower semicontinuity of the LP—norm of the gradients and from the arbitrariness of Q' we get that
u € WIP(Q2\ K) and the I-liminf inequality holds.

(ii) D-limsup: Let u € LP(€). We want to construct a sequence (us) C LP(Q) converging strongly to
win LP(Q) such that limp, Fi{up) < F(u). We can assume that u € WhP(Q\ K) and u = g on 9pQ2. We
set up = u in Q\ Rp where Ry := (—1,1) x [—%, 711—} Now let us define the function uy in Rp. To this
aim, we consider the function vy defined in Ry, by

vp(z,y) = u(x, %sgn(z) - y)

where sgn(z) denotes the sign of z. In other words, the function vp is obtained from u by symmetry
with respect to the segment [0,1] x {}} for z positive and by symmetry with respect to the segment
[=1,0] x {—#} for z negative.
Such a function v may jump on the segment {0} x [—%, ,ll] . So, we consider the function ¢ € C9(Ry)

defined by

1 if|z >4,

(p(m)y) =4 -2z if - % <z < 07
2¢ 0Lz <3

Now we set up, := @y, on Ry. For this choice of up, it is easy to see that us € WLP(Q\ Kp) with up = g

on 8p§) and that the I-limsup inequality holds. O
Q Q
| ]
.
K, K

Fig.2
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In the following example, we consider a sequence of compact sets Kp, along which the problem (P) is
not stable. More precisely in the limit problem, that is the problem solved by the limit function u, there
is an additional term involving the jump of u on a point of K.

Example 1.6.2. Let ©, 6pQ and K be as in the previous example and let

- g o) o) <[ 85 [

be as in Fig. 2 with (as) and (bs) being two sequences of positive numbers converging to 0. In this way
(K}) converges to K in the Hausdorff metric. Let Fj be defined as in (1.49).

Assume that the sequence (% ap by P) converges to some ¢ € [0,+00]. Then Fj, I'-converges in the
strong topology of LP(2) to Fuo defined in LP(Q2) in the following way (with the convention that 0-00 = 0).

WiP(Q\ K
l/ |VulPdzdy + ¢ |ut(0,0) — u”(0,0)]p if Y € (@) &) and
Fo(u):={ PJa\K u =g on 8pl, (1.50)
+00 otherwise,

where u+(0,0) and w~ (0, 0) are respectively the values in (0, 0) of the traces of u|g+ and ujg- on K, QF
and Q2 being respectively the upper and the lower connected components of O\ K.

Proof. (i) I-liminf: Let up — u in LP(Q), we want to prove that liminfj oo Fp(up) > F(u). We can
assume that liminfa—eo Fi(un) = limp—eo Fhun) < 00. So, for any Q' CC Q\ K with 6pQ2 C asy,
we have that up € WHP(Q') for h big enough, up — u in WHP(Q') and u = g on pQl. Now from
the lower semicontinuity of the LP—norm of the gradients and from the arbitrariness of ' we get that
uwe WHP(Q\ K).

We set Ry = (—%}, %) X (—-9-2&, %) We have

1 1
Fp(up) = -/ |Vup|? dzdy = —/ |Vup|P dzdy + 1/ [Vup|? dody
P Jo\Kx P Ja\R, P JR,

1 1 o, [
> - |Vup|P dedy + —anby,
P JO\R, D -2n

Now let us fix Q' cc @\ K. We have that Q' CC Q\ Ry, definitively, and

uh(x,—%ﬁ> - uh(m,%>’pdm. (1.51)

lim inf |Vup|P dody > liminf/ |[Vup|P dedy > / |VulP dzdy.
h-—o0 Q\Rh h—+o0 Qf o

By the arbitrariness of ', we get

lim inf/ [Vup|? dedy > / |VulP dzdy. (1.52)
O\Rp, O\K

h—o0

Let us consider the functions 4} defined in (-1,1) x (0,1 - %’l) by

- bn
U%L(I,y) = uhl(—l,l)x(-b-zb“,l) (w7y + _5)
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and @2 defined in (—1,1) x (~1+ %,0) by

-~ h
U%(.’E, y) = uhl(-—l,l)x(—l,——%&) (:Ll,y - _2—)

We extend 4} and 12 respectively in Ot and O~ in such a way those extensions converge weakly to u
respectively in WHP(Q%) and in W Lr(Q~). Recalling that p > 2, We have the uniform convergence of
their traces on K. So,

ap

1 _ 2
—ahb,ll P ][
P -3

bn by |7 1 1 * -1 2 P
Up (:c,—~2—> - uh<m, —é—)l dz = Eahbh ][m |7 (z,0) - a3 (z,0)|” dz
)

ap
1
= —ahb}l"p ][ ’ !u+(:c,0) - u{z,0) +wh(m)|p dz,
D _2n

2

with (wp,) converging uniformly to 0 on K. From this, it follows that

lim Lapbl™? ][Jzi ( —9’l> - (m Eﬁ) " i = ¢|ut(0,0) - u (0,0)|° (1.53)
hl-rr{olopah h _%L Up| T, 2 Up| T, B T = u ) u s . .

Therefore, the I-liminf inequality follows from (1.51), (1.52) and (1.53).
(ii) T-limsup: Let u € LP(Q). We want to construct a sequence (un) € LP{$)) which converges to u
such that limy Fj(un) < F(u). We can assume that u € WhP(Q\ K) and u = g on 8pd.

We set up = u in (9 \ K)\ Ry and we modify suitably u in Ry \ K in order to get a new function
which does not jump on K N Ry. To this aim let R} := Rp N {y > 0} and R? := Ry N {y < 0}. Let us
define up, in R}. We set

Uh = U| ("B'zb’»gzh) x (Ez'hxbh)

and
in(z,y) = va(z,bn —y) for any (z,y) € R},

In other words, 7, is defined by taking the reflection of the restriction of u on the rectangle symmetric
to R}, with respect to the horizontal line y = % Now we consider the linear function ¢;(z,y) = -b% Y.

For any (x,y) € R} we set

. u*(0,0) + 4 (0,0 uF(0,0) +u (0,0
un(z,y) = wl(w,y)<Uh(w,y) Sl )2 )> 4 00 5 0.0
In the similar way, we define uy, in B2 using

2
25 ) x (~bn,—22) and  a(z,y) = v

&

'u,l(_

FR]

It is easy to check that up € W ?(Q\ Kz), un = g on 9p{2 and by construction

1
lim 1 |Vup|P dzdy = lim —/ |Vup|P dzdy = ¢ [ut(0,0) = u™(0,0)[".
h—oo D R}; h—co D R}; 2
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Therefore,
lim Fp(un) 1im1 |Vup|? dedy
hun) = - h

h h PJonK,

1 1 1
= lim- [Vup|P dedy + lim — |[Vup|? dzdy + lim - [Vup|P dody

h P J(O\EK)\Rn h pJR: h P JR2
1

= = ulP dz clut —u” P = Fo(u)
- p/ﬂ\KWiddy—l— u*(0,0) — ™ (0,0)]" = Foolu)

O

Remark 1.6.3. Starting from Example 1.6.2, one can construct examples in which the I-limit involves
traces at the origin from more than two subdomains, as shown in fig. 3.

Fig. 3

In this case, we can obtain a I-limit of the form

L i j PO\ K

s vuPdey+ Y ey 0,00 - 0,0 i { we WHP(Q\ K)
Foo(u) 1= 4 P /0N 1<i<i<3 u =g on Of
oo otherwise ,

where ©*(0,0) is the value at (0,0) of the trace of u|q,,  being the connected components of 2\ K.

Note that in the first example, where stability holds, the intersection of the limits of the two different
connected components of Kp Uy has positive length, and hence positive (1, ¢)-capacity. In Ebobisse-
Ponsiglione [42] authors give a sufficient condition to the stability of some variational problems with
growth assumption p > 2 in simply connected domains: actually they prove that the stability result
holds if the intersection of the limits of two different connected components of Kp UOn§ is either empty
or has positive (1,g)-capacity. More precisely let 2 be a simply connected open set with Lipschitz
continuous boundary. Let moreover f :  x R? — R be a Borel function which satisfies the following
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assumptions: there exist positive constants a, 8, v such that, for almost every z € ) and for every £ € R?

alélP < f(z,8) < BIEP +;
flz,+) is strictly convex.

Given K € K(%0) and a function g € W1P(Q), we consider the following minimization problem

min{ flz, Vw)dz: we LM""(Q\K), w=g on 8DQ\K} (1.54)
w Q\K

whose solution exits from direct methods of the calculus of variations and is unique in the sense of
gradients. The following theorem holds (the proof is omitted).

Theorem 1.6.4. [42, Theorem 4.2] Let (Kn) C Km(Q) be a sequence which converges to a compact set
K in the Hausdorff metric and such that |Kn| converges to |K|. Let g € W'P(Q). Let up and u be
solutions of (1.54) in Q\ Ky, and in Q\ K respectively. Assume that the intersection of the limits of two
different connected components of Kn UOnSQ is either empty or has positive (1, q)-capacity. Then Vup
converges strongly to Vu in LP(Q,R?).



Chapter 2

Stability of unilateral
free-discontinuity problems

Introduction

The purpose of this chapter ! is to study the stability of some unilateral free-discontinuity problems
in two-dimensional domains, with the density of the volume part having p-growth, with 1 < p < o0,
under perturbations of the discontinuity sets in the Hausdorff metric. We adopt the strong formulation
assuming that the discontinuity sets have a uniformly bounded number of connected components.

Let Q ¢ R? be a bounded connected open set with Lipschitz continuous boundary 8§ and let p§2 C
89 be a (non-empty) relatively open subset of 8 composed of a finite number of connected components
and let Ky, (Q) be the class of all closed subset of { whose elements have at most m connected components.
Let g € W1P(Q) and let f : © x R? — R be a Borel function which satisfies the assumptions (2.3)-(2.4)
below. We consider pairs (u, K) with K € Kin(?) and v € LM?(Q\ K) == {v € L} (Q\ K), Vv €
LP(Q\ K,R?)} with u = g on 8pQ2 \ K, which satisfy the following unilateral minimality condition:

F(z, V) dz + HYK) < F(z, Vw)dz + H (H), (2.1)
O\K O\H

among all H € Ky () and all functions w € LYP(Q\ H) with w = g on OpQ \ H.

Our main result is the following. Let (K}3) be a sequence in K, (Q) which converges to a compact set
K in the Hausdorff metric, and let (g5) C WHP(£) be a sequence which converges strongly to a function
g in WHP(Q). Let up be such that the pair (up, Kp) is a unilateral minimizer, i.e. satisfles property (2.1)
relative to the boundary datum gn. Then Vuy converges strongly to Vu in L? (€2, R?) for some function
u such that the pair (u, K) is a unilateral minimizer relative to the boundary datum g.

One of the key points in the existence result of a quasi static crack growth of cracks in Dal Maso-
Toader [36] is the stability of (2.1) for f(z,£) = [¢ |2, which follows from the stability for p < 2 of the

following minimization problem:

v

min{ f(z,Vv)dz: ve LM"(Q\K), v=gon BDQ\K}. (2.2)
Q\K

1The results presented in this chapter are contained in Ebobisse-Ponsiglione [41].

47
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As seen in the previous chapter, the stability of (2.2) holds for every p < 2, while in the case p > 2 it
does not hold. The strategy to get the stability of problem (2.1) for every 1 < p < co is to obtain the
stability of {2.2) using the unilateral minimality condition.

The obstruction to the stability of (2.2) when p > 2 is due to the fact that two connected components
of the approximating sequence (K}) can approach and touch each other in the limit fracture X, leading
then to the appearance of a transmission term in the limit problem. To avoid such phenomena we joint
these two connected components by curves of infinitesimal length, obtaining then a new sequence of cracks
(Hp) having the properties that K C Hy, Hp converges to K, H'(Hp \ Ky) — 0 and any connected
component of Hj converges to a connected component of the limit fracture K. Then the stability of (2.2)
along this new sequence of cracks (H}) will follow from Proposition 2.3.1 (see also Theorem 1.6.4). Now,
using the unilateral constraint, we obtain the stability of (2.2) also along the original sequence of cracks
(K},). We prove our main results (see Theorems 2.3.2 and Theorem 2.3.3) following the duality approach,
i.e., through the conjugates (see Section 3), performed in [17], [36] for linear problems, and extended in
[34] to nonlinear problems.

2.1 Notation and preliminaries

Let Q be a bounded connected open subset of R? with Lipschitz continuous boundary 8Q2. Let 8p2 C 69
be a (non-empty) relatively open subset of 92 composed of a finite number of connected components and
AN = 002\ BpQl.

Let }C(Q) be the class of compact subsets of © and K (€2) be the subset of (Q) whose elements have

at most m connected components. We denote K, (%) the subclass of Km ($2) whose elements have finite

one-dimensional Hausdorff measure H!. For every A > 0, K}, (Q) denotes the class of sets K in K (§2)
such that H(K) < A

For any z € © and p > 0, B(z, p) denotes the open ball of R? centered at z with radius p. For any
subset F of R2, 1 is the characteristic function of E, E° is the complement of E, and | E| is the Lebesgue
measure of E. Throughout the chapter p and g are real numbers, with 1 < p, ¢ < +o0 and plegl =1

2.1.1 The minimization problem

Let f: Q2 x R? — R be a Borel function which satisfies the following assumptions: there exist positive
constants o, 3, v such that, for almost every z € Q and for every £ € R?

alélP < f(z,€) < BIEP +; (2.3)

f(=,-) is strictly convex and is of class cl. (2.4)

Given K € K(Q) and a function g € WhP(RQ), we consider the following minimization problem

min{ flz,Vv)dz: ve LM"P(Q\K), v=g on BDQ\K}, (2.5)
v O\K
whose weak Euler-Lagrange equation is given by

ue LY (Q\ K), u=g on OpQ\K,

/ fe(z,Vu) Vo do=0 VoeL'P(Q\K), »=0 on dpQ\K.
O\K
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By well-known existence results for nonlinear elliptic equations involving strictly monotone operators (see
e.g. Lions [56]), one can easily see that (2.6) has a unique solution in the sense that the gradient is always

unique. _
From now on, given K € Kn(Q) and u € LYP(Q\ K), we set

Eu K) = fla, Vu)dz + H(K). (2.7)
O\K
Definition 2.1.1. Let g € WLP(Q) and let m be a positive integer. We say that o pair (u, K), with
K €Km(Q), ue LY?(Q\ K) andu =g on 8pQ\ K is a unilateral minimum of (2.7) if

E(u,K) < E(v, H) (2.8)
among all H € K (Q), H D K andv € LYP(Q\ H) withv =g on 0pQt\ H.

In the following we will need some Lemma on sequences of closed sets converging in the Hausdorff
metric. The following Lemma is proved in [36].

Lemma 2.1.2. Let U be a bounded connected open subset of R2 with Lipschitz continuous boundary. Let
K be a closed connected subset of U. Let A > 0 and let (Kr) C K2 (U) be a sequence which converges
to K in the Hausdorff metric. Then there exists a sequence (Hy) of closed connected subsets of U which
converges to K in the Hausdorff metric, with K C Hy for every h and HY(Hp \ Kp) — 0.

Lemma 2.1.3. Let U be a bounded connected open subset of R? with Lipschitz continuous boundary
and let (Kp) € KL, (T) be a sequence which converges to a compact set K in the Hausdorff metric.
Let T be a compact subset of U with a finite number of connected components. Then there ezists a
sequence (Hp) C }C%(ﬁ) which converges to K in the Hausdorff metric, with K C Hp for every h,
HY(Hp \ Kp) — 0 and such that any connected component of Hp UT" converges to o connected component
of KUT in the Hausdorff metric.

The proof of this lemma follows the lines of [36, Lemma 3.6]. Precisely, we apply Lemma 2.1.2 to
every connected component C of K UT" and the union of those connected components of K UT whose
limits in the Hausdorff metric are contained in C.

The following Lemma proved in [36] will also be useful in the proof of our main results.

Lemma 2.1.4. Let p and m be two positive integers. Let (Kp) be a sequence in IC}; (Q) which converges
in the Hausdorff metric to K € ng (), and let H € Kf,(Q) with H > K. Then there ezists a sequence
(Hy) C KZ,(Q) such that Hy, — H in the Hausdorff metric, Ky C Hp, and H*(Hp \ Kr) — HY(H\ K).

In order to study the continuity of the solution u of (2.5) with respect to the variations of the
compact set K, we should be able to compare two solutions defined in two different domains. This is
why, throughout this chapter, given a function u € LYP(Q\ K), we extend Vu in Q by setting Vu =0
in 2N K.

The following lemma is proved in [36, Lemma 4.1] for p = 2. The case p # 2 can be proved in the
same way.

Lemma 2.1.5. Let (K3) be a sequence in K(Q) which converges to a compact set K in the Hausdor[f
metric. Let up, € LYP(Q\ Kp) be a sequence such that up = 0 Cp-g.e. on OpQ\ Ky and (Vup) is bounded
in LP(QL,R2). Then, there exists a function u € L'P(Q\ K) with u =0 Cy-g.e. on pQ\ K such that,
up to a subsequence, Vuy converges weakly to Vu in LP(A, R?) for every A CC Q\ K. If, in addition,
| K| converges to | K|, then Vuy converges weakly to Vu in LP(Q,R?).
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The following three lemmas will be crucial in the proof of our main result.

Lemma 2.1.6. Let (K3) C K1(Q) converging to a compact set K in the Hausdorff metric. Let (upn) be
a sequence in WH(Q)) converging weakly in Whe(Q) to a function v, with vy = 0 Cy-g.e.in Kn. Then
v =0 Cy-g.e. in K.

Proof. We consider an open ball B containing Q! and we extend both functions v, and v to functions

still denoted respectively by v, and v such that the two extensions belong two WO1 "“Y(B) and vy, — v in
Wh4(B). Let wy and w be the solutions of the problems

wy, € Wy U(B\ K»), Aqwp = Agu in B\ K, (2.9)
we WyY(B\ K), Aw=Apn in B\K.
Using a result on the stability of Dirichlet problems by Bucur and Trebeschi [18] (see also Sverék [65] for

the case g = 2), we obtain that wy, converges to w strongly in VVOl "9(B). Taking vy, — wy, as test function
in (2.9), which is possible since vy — wp € Wy ¢(B\ Kp) (see, e.g., [54, Theorem 4.5]), we obtain

(Agwh, Uh — Wh) = (Agv, vr — Wh), (2.10)

where (-,-) is the duality pairing between W~1?(B) and W,%(B). Passing to the limit in (2.10) we
obtain

(Aqw,v —w) = (Agu,v — w),
which implies v = w by the strict monotonicity of ~A,. Since, by definition, w = 0 Cy-q.e. in K, we
conclude that v = 0 Cg-q.e. in K. ]

Lemma 2.1.7. Let (K3) C K1(Q) converging to a compact set K in the Hausdorff metric. Let {vn) be
a sequence in Wh4(S), converging weakly in Wh4(Q) to a function v. Assume that every function v, is
constant Cq-g.e. in Kp. Then v is constant Cy-g.e. in K.

Proof. This is trivial if K contains only a single point. If K has more than one point, there exists 7 > 0
such that diam(K}) > 2r for h large enough. Let us prove that the constant values cp taken by v
on K} are bounded uniformly with respect to h. To this aim let us consider a point = € Kx. Since
diam(K},) > 2r, we have K \ B(zn,r) # 0, and by connectedness

KnNOB(zn,p) # 0 forevery 0 < p<r. (2.11)

As v, = ¢, Cy-q.e. on Kj, by using polar coordinates we deduce from (2.11) the Poincaré inequality

/ lop, — cn|? dz < M9 / |Vup|? dz,
B(zh,r) B(zn,r)

where the constant M is independent of A and r. Since the sequence vy, is bounded in wha(Q), it follows
that ¢;, is bounded, and so it converges (up to a subsequence) to some constant c. So, the sequence
vp, — cp, converges weakly to v — ¢ in W19(Q), and by Lemma 2.1.6 we get that v = c Cy-g.e. on K. O

2.2 Conjugates and their properties

Let R be the rotation on R? defined by R(y1,v2) := (—y2,v1). The following proposition on the global
construction of conjugates will be crucial in the proof of Theorem 2.3.2.
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Proposition 2.2.1. Let K € K(2) and let u be a solution of the problem (2.5). Assume that Q is
simply connected. Then there exists a function v € W19(Q) such that Vv = Rfe(z, Vu)lge a.e. in €.
Moreover, v is constant Cy-g.e. on each connected component of K U dnQ.

Proof. Let u be a solution of (2.5). We consider the vector field ® € L?(£2, R?) defined by
D = fe(z, Vu)lge.

We have that div(®) = 0 in D’'(Q); hence rot(R®) = 0 in D'(Q2). As Q is simply connected and has a
Lipschitz boundary, there exists v € W9(€) such that Vv = R® a.e. on Q.

Let us now prove that v is constant Cy-g.e. on each connected component of K U0dn{} we proceed as
follows. Let C be a connected component of K UdnQ with C1 ¢(C) > 0 and let € > 0. We set

C.={ref: dist(z,C)<e} and K.:=(KUNQ)UC..

Let u. be the solution of the problem (2.5) in Q \ K. From Lemma 2.1.5 applied to u. — g and by the
monotonicity of K, we have that Vue converges (up to a subsequence) to Vu* weakly in LP(Q \ K, R?)
for some u* € LYP(Q)\ K) with u* = g on 9pQ2 \ K.

We claim that Vu* = Vu a.e. in Q. Indeed, by reformulating the problem (2.6) as a variational
inequality in 2\ K, and using Minty's lemma, we get

/ fe(z,Vz) (V2= Vue)dz >0  Vze L'P(Q\K.), z=gon dpQ\ K.
Q\K.

Now, let z € L?(Q\ K) with z = g on 8pQ\ K. By the monotonicity of K., we have that z € L?(Q\ K¢)
and z =g on 8pf) \ K,. So,

fe(z,Vz) - (Vz = Vue)dz > 0.
O\ Ke

Using the convention that Vu, = 0 in & N K. we obtain

fe(z,Vz) - (Vz— Vue)dz > — / Je(z,Vz) - Vzdz. (2.12)

O\K KA\K

Now, letting € — 0 in (2.12) we obtain
. fe(z,Vz)- (V2= Vu)dz >0  Vze LYP(Q\K), z=yg on 6pQ\ K.
which, using again Minty’s lemma is equivalent to
ok fe(z,Vu*) - Vodr =10 Yo € LYP(Q\ K), v =0 on pf1 \ K.
By the uniqueness of solution of (2.6) in 0\ K, we get that Vu* = Vu. So, we have proved that all the

sequence (Vue) converges to Vu weakly in LP(£2, R?). On the other hand, one can see that

1ir% [fe(z, Vue) — fe(z, Vu)] - (Vu — Vue)dz = 0. (2.13)
e=bJa

Hence arguing as in [34, Lemma 2.4] (recall that fe(z,-) is strictly monotone), it follows that Vu. con-
verges strongly to Vu in LP(Q,R?).
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Now, from the first part of the proof, we consider a function v € WLe(Q) such that Vo = Rfe(z, Vue )l ke
a.e. in Q. We can assume that [,vedz = Jovdz = 0. So, by Poincaré inequality we obtain that v,
converges strongly to v in Whe(Q). By construction Vu, = 0 in C¢ from which it follows that v, is
constant Cy-q.e. on Ce UJLC.. Hence v, is constant Cy-q.e. on C. Since a subsequence of v converges
to v Cyg-q.e. on 0, we conclude that v is constant Cg-g.e. on C and this completes the proof. 0

Definition 2.2.2. The function v in Proposition 2.2.1 is called a conjugate of the function u.

The following lemma is proved like in [36, Theorem 4.3] for f(z,§) = |€ |2. For the reader’s convenience
we will give here the proof of the present version.

Lemma 2.2.3. Let K € K (Q) and u € LMP(Q\ K) with u =g on 0pQ \ K. Assume that there ezists
v € Wh(Q) such that Vv = Rf¢(z, Vu)lge a.e. in Q and that v is constant Cy-g.e. on every connected
component of K UOn§Q. Then u is solution of (2.6).

Proof. Let C!,...,C" be the connected components of K U OnQ. Since v = ¢! Cy-qe on Ct, by [54,
Theorem 4.5], we can approximate v strongly in WL4(§) by a sequence of functions v, € C$°(R?) that
are constant in a suitable neighborhood V; of C%. Let ¢ € L*P(Q2\ K) with ¢ = 0 on p§2 \ K and let
on € Wol'p(ﬂ \ K) such that ¢n = ¢ in Q\ |; V. Then we have that

/ RVv,Vedz = RV, Vypdz = 0, (2.14)
Q O\K

where the last equality follows from the fact that the vector field RVun is divergence free. Then passing
to the limit in (2.14) for n — oo, we get

fe(z, Vu)Vedz = / RVuVpdz =0 VYo e L'?(Q\ K) with ¢ =0 on dpQ2\ K.
oK Q

So u is a solution of (2.6). O

The following Lemma on the local construction of conjugates will be used in the proof of Theorem
2.3.3.

Lemma 2.2.4. Let K € K(Q) and let w be a solution of (2.5) in Q\ K. Let U be an open rectangle such
that U NS is a non empty simply connected set. Then there exists a function v € Whe(UNQ) such that
Vv = Rfe(z, Vu)lge a.e. in UNS. Moreover, v is constant Cq-g.e. on each connected component of
Un(KUdnQ).

Proof. We note that u is solution of the following problem
min / flz, Vw)dz: we LM"P(UNQ)\K)andw=uon OUNQ)\ K ».
(UN\K

Since U N  is simply connected, we can apply Proposition 2.2.1 with £ replaced by U N Q. So, there
exists a function v € WhH9(U N Q) such that Vv = Rfe(z, Vu)lge a.e. in UNQ, with v constant Cg-q.e.
on each connected component of U N (K UdnQ). O
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2.3 The stability results relative to problem (2.8)

In this section we give the stability results relative to problem (2.8). First of all, we prove in the following
proposition, the stability of problem (2.5) under the condition that any connected component of Kp, UonQ
converges to a connected component of K U Oy in the Hausdorff metric.

Proposition 2.3.1. Let Q be a simply connected and bounded open subset of R? with Lipschitz continuous
boundary. Assume that OyQ has M connected components. Let A > 0 and let (Kp) C K. () be a
sequence which converges to a compact set K in the Hausdorff metric. Let (gn) be a sequence in wLr(Q)
which converges to g strongly in WYP(Q). Let up € LY¥P(Q\ Kp) and u € L*?(Q\ K) be the solutions
of the minimization problem (2.5) with boundary data g and g respectively. Assume that any connected
component of Ky UONS converges to a connected component of K UOnS) in the Hausdorff metric. Then
Vuy, converges strongly to Vu in LP(Q, R?).
Proof. By the growth assumptions (2.3) on the function f, we have that Vu, and fe(z, Vuy,) are bounded
respectively in LP(Q, R?) and in L9(Q,R?). So, applying Lemma 2.1.5 to us — gn, we obtain that Vus
converges (up to a subsequence) to Vu* weakly in LP(£, R?) for some function u* € L'?(Q\ K) and
u* =gondp\ K.

On the other hand, there exists a vector field ¥ € LI(Q, R%) such that f¢(z, Vup) = ¥ weakly in
LY(),R?). Let us prove that ¥ = f¢(z, Vu*) a.e. in Q. Since |[Kx| = |K|= 0 it is sufficient to prove that
for every open ball B cC Q\ K, ¥ = fe(z, Vu*) a.e. in B. Note that by the Hausdorff complementary

convergence we have B CC Q \ K}, for h large enough.

We may assume that the mean values of uy and u* on B are zero. Thus the Poincaré inequality and
the Rellich theorem imply that w, — u* strongly in LP(B). Let z € W?(B) and p € C®(B) with
¢ > 0. For h large enough we have B CC Q \ Kp, thus by the monotonicity of f¢(z,-) we have

/B(fg(:z:, Vz) — fe(z, Vun)) - (Vz — Vup)pdz > 0. (2.15)

We have also
[ fele 7w V(e - w) )z =0,

which, together with (2.15), gives
/B Fola, V) - V(2 — un)p) dz — /B(ff(a;, V2) = fe(z, Vun)) - Vo (z — up) dz > 0. (2.16)
We can pass to the limit in each term of (2.16) and we get
/Bfg(z, Vz) - V{(z - u*)p) do - -/B(fg(m, Vz) = ) - Vo (z — u*) dz > 0. (2.17)

As div¥ = 0 in D'(B), we have
/ U.Y({(z-u*)p)dz=0. (2.18)
B

From (2.17) and (2.18) we obtain
/ (fe(z,Vz) =) (Vz - Vu") pdz > 0.
B

As o is arbitrary, we get (fe(z, Vz) — ¥) - (Vz — Vu*) > 0 ae. in B. In particular, taking z(z) =
uw*(z) +en - z, with n € R? and € > 0, we obtain £(fe(z, Vu* £en) — ¥)-n 2 0 ae. in B. As ¢ tends
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to zero we get (fe(z, Vu*) — ¥)-7n = 0 a.e. in B, which implies that fe(z, Vu*) = ¥ ae. in B by the
arbitrariness of 7.

So we have proved that fe(z, Vun) = fe(z, Vu*) weakly in L4(Q,R?). Now let us prove that uv” is a
solution of (2.5) in O\ K.

Now we use the assumption that K,i converges to K* for every i. By Proposition 2.2.1 there exists
vy € Whi(Q) such that Vup = Rfe(z, Vun) ae. in Q with v, constant Cy-ge. on each connected
component of Kp U OnS. Since fe(z, Vup) converges to fe(z, Vu*) weakly in L9(, R?), there exists a
function v € Wh4(Q) such that vy, — v weakly in W4(Q) and Vv = Rfe(z, Vu*) ae. in 2. Moreover,
by Lemma refmoscostantelbis we get that v is constant Cg-q.e. on K for every 4. So from Lemma 2.2.3
it follows that u* is a solution of (2.5) in Q\ K and hence Thus, Vu* = Vu a.e. in 2. Therefore, all the
sequence Vuy converges to Vu weakly in LP(£, R2).

Now let us prove that Vuy, converges to Vu strongly in L? (€, R?). First of all, by lower semicontinuity
we have that

/f(:c,Vu)deIiminfff(m,Vuh)d:c. : (2.19)
Q h—oo Jo

By the convexity of f(z,-) we have also that
/ flz, Vu)dr > / flz, Vuy)dz +/ fe(z, Vun) - (Vu — Vup) dz. (2.20)
Q Q Q

Since

/ fe(z, Vup) - (Vup — Vgp)dz =0 and / felz, Vu) - (Vu — Vg)dz = 0,
Q Q
it follows that

lim / felz, Vup) - (Vu—Vup)dz = lim / fe(z, Vun) - (Vu — Vgp) dz
Q Q

h—o0 h—o0

fi

/ fe(z, Vu) - (Vu— Vg)dz = 0.
Q
Hence passing to the limit in (2.20) we get

/f(w, Vu)dz > limsup/ flz, Vug) dz,
Q Q

h—o0

which together with (2.19) implies

lim /Qf(:t,Vuh)dz=/Qf(z,Vu)dm. (2.21)

h—oo

Since Vuy — Vu weakly in LP(Q, R?), using the strict convexity of f (z,-), it follows from (2.21) that
Vuy, converges to Vu strongly in LP (Q,R?). O

We are now in a position to prove the main results of the chapter.

2.3.1 The case Q) simply connected

Theorem 2.3.2. Let Q be a simply connected and bounded open subset of R? with Lipschitz continuous
boundary. Assume that On§Q has M connected components. Let A >0 and (Kp) C K2, () be a sequence
which converges to a compact set K in the Hausdorff metric. Let (gn) be a sequence in WLP(Q) which
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converges to g strongly in WP(Q). Let up be such that (up, K| w) 15 a unilateral minimum relative to gn of
the functional E defined in (2.7) and letu € LP(Q\ K) be the solution of the minimization problem (2.5).
Then YV, converges strongly to Vu in LP(Q,R?). Moreover, the pair (u, K) is a unilateral minimum of
the functional E relative to g.

The proof of Theorem 2.3.2. Step 1. Let us prove that Vuy, converges strongly to Vu in LP(Q,R?). Let
K}, ...,KP" be the connected components of K U OnQ. As by assumption np < m + M, passing to a
subsequence we can assume that np = n for every h and that, for every 7 € {1,...,n}, K} converges to

some compact connected set K in the Hausdorff metric.

If Kin K9 = () for every i # j, then K',..., K™ are exactly the connected components of K UOn{.
So, by Proposition 2.3.1 it follows that Vuy, converges strongly to Vu in L? (Q, R?).

Now we remove the assumption that K* N K7 = () for every i # J.

Applying Lemma. 2.1.3 for U = Q and I' = Oy, we obtain a sequence (Hp) C K4, (Q) which converges
to K in the Hausdorff metric, with Kj, C Hp for every h, H*(Hp \ K) — 0 and such that any connected
component of Hy U On§? converges to a connected component of K U OnS) in the Hausdorff metric.

We consider now the following minimization problem

w

min {/ f(z,Vw)dz: we L*"?(Q\ Hy), w=g on BDQ\Hh}. (2.22)
O\Hn

Let wy, € L12(Q\ Hy) be the solution of (2.22). From Proposition 2.3.1, it follows that Vwy converges
to Vu strongly in LP(2, R?). Now using the fact that the pair (up,K3) is a unilateral minimum of the

functional (2.7), we get that

limsup/ flz,Vup)dz < lim Flz, Vwy)dz + lim HY(Hy \ Kn)  (2.23)
h—oo JO\Kp h—o0 O\Hp h—o0
= flz,Vu)dz.
Q\K

Hence, recalling that Vus converges to Vu* weakly in LP(, R?), we obtain

flz,Vu*)dz < liminf flz, Vup)dz <
O\K h—oo Jo\K,
< hmsup/ flz,Vup)dz < Flz, Vu) dz,
hsoo JO\K} Q\K

which implies (by the uniqueness of solution of (2.5) in ©\ K) that Vu* = Vu a.e. in Q. So, all the
sequence Vuy, converges to Vu weakly in LP(£, R?) and

lim / flz, Vuy)de = / flz, Vu)dz.
h—oo Jo Q

Since £ — f(x, €) is strictly convex, it follows that Vu, converges strongly to Vu in LP (©,R?) and this
achieves the proof of Step 1.

Step 2. Let us prove that the pair (u, K) is a unilateral minimum of the functional E relative to g.
Let H € Kmn(Q) with K C H and let w € LM?(Q\ H) with w = g on 6pQ2\ H. By Lemma 2.1.4,
there exists a sequence (Hy) C Kp(Q) such that Hy — H in the Hausdorff metric, Kp C Hp, and
HY(Hp \ Kp) — HL(H \ K). From Lemma 2.1.3, we have a sequence (Hp) C K () which converges to
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H in the Hausdorff metric and such that Hy C Hy, Hl(I;Th\Hh) — 0 and, every connected component of
Hy U converges in the Hausdorff metric to a connected component of HUOn 2. Let 2 € LYP(Q\ Hy)
and z € LV?(Q\ H) be the solutions of (2.5) with boundary data gn and g respectively. From Proposition
2.3.1 it follows that Vzy — Vz strongly in LP(Q, R?).

Now using the fact that the pair (up, K1) is a unilateral minimum of the functional (2.7), we get that

/ (@, Vun) dz < /  fe, Van)dz + H(Hn\ Ka). (2.24)
O\Kp \Hn

So, passing to the limit in (2.24) and using the fact that Vup — Vu strongly in LP(S2, R?) and Vz, — Vz
strongly in LP(Q, R%), we obtain

flz,Vu)dz = lim / f(z, Vup)dz < lim f(z,Vap)de + lim HY(Hp \ Kp) <
Q\K h—oo JO\Ks h—oo Jo\A, h—o0
flz,Vz)dz + HY(H\ K) < / flz, Vw)dz + HY(H \ K),
Q\H O\H
which gives Step 2 and achieves the proof of the theorem. O

2.3.2 The general case

Here we remove the assumption that Q is simply connected and we prove the stability theorem below
using the local conjugates in Lemma 2.2.4.

Theorem 2.3.3. Let € be a bounded connected open subset of R? with Lipschitz continuous boundary.
Assume that OnQ has M connected components. Let A > 0 and (Kp) C K),(Q) be a sequence which
converges to a compact set K in the Hausdorff metric. Let (gn) be a sequence in WP (Q) which converges
to g strongly in WYP(Q). Let uy, be such that (un, Kn) is a unilateral minimum relative to gn of the
functional E defined in (2.7) and let u € LYP(Q\ K) be the solution of the minimization problem (2.5).
Then Vup converges strongly to Vu in LP(Q, R2). Moreover, the pair (u, K) is a unilateral minimum of
the functional E relative to g.

Proof of Theorem 2.5.3.

First of all let us prove that Vuy, converges strongly to Vu in LP(Q,R?). By the growth assumptions
(2.3) on f, we have that Vuy is bounded in LP(R?,R?). By Lemma 2.1.5 applied to up — gn, we have
that Vu, converges (up to a subsequence) to Vu* weakly in LP(R?, R?) for some u* € LY?(Q\ K) with
u* = gon 8pQ \ K. We claim that Vu* = Vu a.e. in .

To this aim, we fix r > 0 such that the minimum of the diameters of the connected components of
Q¢ is equal to 3r. Using the fact that Q has a Lipschitz continuous boundary, we may find two families
of open rectangles (Q;)"; and (U;)%, such that, for every i € {1,...,n}, Qi CC U;, @;NQ # 0 and
U; N Q is a Lipschitz domain and,

n
Qc U @; and max diam(U;) = 2r.

et 1<i<n
We set
n = 121121” d(Q;, U;).
For every i € {1,...,n}, the number of connected components C' of U, N K}, which intersect Q; is less or

equal to m + A/n. Indeed, if C intersects OU;, then H'(C) > 1 and hence, their number is at most A/7.
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If CNOU; = 0, then C is a connected component of K}, and their number is less or equal to m. Similarly
the number of connected components of U; N 8nQ which intersect Q; is less or equal to M +H(8n8) /7.
Let K;L'l, LK ;'L‘k" be all the connected components of U; N K} which intersect Q. Since kp, < m+ /7,
passing to a subsequence, we can assume that ky = &k for every h. We set

k
K= | K.

j=1

Up to a subsequence, we have that K} % converges in the Hausdorff metric to some compact set K* € i
K2(U; N Q). Let I' be the union of those connected components of U;n BNQ which intersect Q;. By
Lemma 2.1.3 applied to U = U; N Q and T = T';, we get a sequence (Hf) C le (U; N Q) which converges
to K in the Hausdorff metric, with K} C H}, for every h, H!(H}: \ K}) — 0 and such that any connected
component of Hf UT* converges to a connected component of K* UT? in the Hausdorff metric. We set

Hy = U Hi.

i=1

Note that .
(Hp) € Km(Q), HnD Kp, H'Y(Hp\Kp)—0

and Hj, converges in the Hausdorff metric to the compact set K= U, K i, Moreover it is easy to see

that K = K.
We consider now the minimization problem

nﬂin{/ f(z,Vw)dz: we LP(Q\ Hy), w=gp on (9DQ\Hh}. (2.25)
Q\Hx
Let @, € LYP(Q2\ Hy) be the solution of problem (2.25). Applying Lemma 2.1.5 to @p — gn, we get that
Viip converges (up to a subsequence) to Vi* weakly in LP(Q,R?), for some function @* in L'?(Q\ K)
with @* = g on 8pQ\ K. As in the proof of Proposition 2.3.1, we have also that f¢(z, Vi) converges to
fe(z, Vir*) weakly in LI(Q,R?).

Let us prove that Vi* = Vu a.e. in Q. By a localization argument, it is sufficient to prove that the
function 4* satisfies:

/ Je(z, V") Vodz =0,
QK (2.26)

Vo € C=(Q;) with v =0 on (Q; NpQ) \ K.

Let H }1 = H,NU; N Q and T = OyQNT;. Since the diameter of U; is strictly less than the minimum of
the diameters of the connected components of (¢, we have that the open set U; N ) is simply connected.
So, by Lemma 2.2.4, there exists a function v}, € Wh¢(U;NQ) such that Voj, = ng(:c Vip) ae. in UyNGQ
and v} is constant Cy-g.e. on the connected components of Hi [RY] I, Since H} LUl C H i YT, we have
that any connected component of H} 3 UT? is contained in a connected component of H H UT". So we have
also that v} is constant Cg-g.e. on the connected components of H} P U T%. From the fact that fe(z, Vuh)
converges fe(z, Vi*) weakly in L(Q,R?), it follows that v} converges weakly to some function v* in
Wha(U; N Q) such that Vo' = Rfe(z, Vi*) a.e. in U; N Q. Since any connected component of HiUT!
converges to a connected component of K*UT" in the Hausdorff metric and v}, is constant Cy-g.e. on the
connected components of Hj, UT?, we get from Lemma refmoscostantelbis that o' is constant Cy-q.e. on
every connected component of K* U T, Now applying Lemuma 2.2.3 with £ replaced by Q; N €2, we get
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that 4* satisfies (2.26). Therefore Vi* = Vu a.e. in Q. So, Vi, converges weakly to Vu in LP(0,R2)
and fe(z, Viip) converges to fg(z, Vu) weakly in LI(L2, R?). Thus, arguing as in the proof of Proposition
2.3.1, we get that Vi, converges to Vu strongly in LP(, R2?).

Now, from the minimality of the pair (up, Kp), we have that

/ f(z, Vup) dz 5/ fla, Vi) dz + HH(Hp \ Kn). (2.27)
Q\Kp O\ Hp

So, passing to the limit in (2.27) and using the fact that Vup — Vu* weakly in LP(Q,R?), we obtain

flz, Vu*)de < liminf/ flz, Vup)dz <
I¥:e8

O\K h—o0
< lim f(z, Viy)dodz + lim H(Hp\ Kn) =/ f(z, Vu)dz,
h—o0 Q\Hn h—co Q\K

which implies (by the uniqueness of solution of (2.5) in @\ K ) that Vu* = Vu a.e. in Q and

lim /Qf(x,Vuh)d:zzz/nf(m,Vu)da;. (2.28)

h—o0
Since Vu, — Vu weakly in LP(, R?), using the strict convexity of f(z, -}, it follows from (2.28) that
Vuy, converges to Vu strongly in LP(©2,R?). This achieves the proof of the first part of the theorem.
Now let us prove that the pair (u, K) is a unilateral minimum of the functional F relative to g. Let
H € K () with K € H and let w € LY?(Q\ H) withw = g on 8p$t\ H. It is not restrictive to assume
that H € K/, (Q). By Lemma 2.1.4, there exists a sequence (Hp) C K () such that Hp — H in the

Hausdorff metric, K, C Hy, and
HY(Hp \ Kp) — HY(H\ K).

Since (K3) C K2, (Q) and H € K£,(Q), we have that (Hy) C ICAFe () for some e > 0. Arguing as in the
first part of the proof, we can construct a sequence (Hy) C K () such that Hy C Hy, HY(Hp\Hz) — 0,
and denoting z, € L*P(Q\ Hy) and z € L*P(Q\ H) the solutions of (2.5) with boundary data gp and g
respectively, we get that Vz, — Vz strongly in LP(Q,R?). Now we can achieve the proof as in Step 2 of
Theorem 2.3.2. O



Chapter 3

Quasi static growth of brittle cracks
in a plate

Introduction

In this chapter ! we propose a variational model for the irreversible quasi static growth in brittle fractures
for a linearly elastic homogeneous isotropic plate, subject to a time dependent vertical displacement on a
part of its lateral surface. The model is based on the Griffith’s criterion for crack growth and is inspired
by the model proposed in [48] by G.A. Francfort and J.-J. Marigo in the case of 3-D elasticity. We give a
precise mathematical formulation of the model (we adopt the setting of the strong formulation, assuming
that the cracks have a uniformly bounded number of connected components) and in this framework we
prove an existence result.

The reference configuration is a bounded open set Q of R?, which represents the middle surface of the
plate, with Lipschitz continuous boundary 02. Let m > 0 be a fixed integer. The set of admissible cracks
is the set K () of all closed subsets K of {3 whose elements have at most m connected components.
Let 0pQ be open and with a finite number of connected components. Given a crack K € K, (ﬁ), the
boundary datum is prescribed in the set 9pQ\ K, and is given by (the trace of) a function g € W22(Q); we
can not prescribe a boundary condition on pQN K because it is not transmitted through the crack. The
remaining part of the boundary dn§) := 0Q\ dpQ and the cracks K are traction free. The displacement
v relative to the crack K and subject to the boundary condition g is a function which may jump across
K (we will introduce rigorously the space of admissible displacements in Section 3), which verifies the
boundary condition and minimize the quadratic form

2F
B(v,v) = ) /Q [Uzz ]2 + Juyy]? + (2 — 2K)|vay|? dady, (3.1)
(see [40]), where the Poisson’s coefficient 0 < k < 1/2 and the Young’s modulus E measure the rigidity
L2
of the constituting material. We will consider for simplicity of notations F = 3(—1—;—1”——), so that the leading

coefficient in (4) is equal to 1. Finally, for every admissible crack K € Kn,(Q) and for every boundary
datum g, let us introduce the bulk energy £ and the total energy E defined by

£%(g, K) == B(u,u), E(g9,K) := B(u,u) + HY(K), (3.2)

1The results presented in this chapter are contained in Acanfora-Ponsiglione [1].
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where v is the displacement relative to K and g, and H(K) is the one dimensional Hausdorff measure
of K.

We now describe our model of irreversible quasi static crack growth under the action of a time
dependent boundary datum. Let g(t) € AC([o,1; W 22(Q)) (i.e. the function t — g(¢) is absolutely
continuous) and let Ko € Km(S2) be a preexisting crack. In our model, the irreversible quasi static crack
growth relative to the boundary datum g and to the preexisting crack Ky, is a function I : (0, 1) — K ()
which verifies the following three properties:

(1) Irreversibility of the process:

KoCT()CT(t1) CT(t2) YOSt <2<
(2) Static equilibrium:

E(g(0),T(0)) < E(g(0), H) VH € Km(Q}): Ko C H and

E(g(t), T(®)) < E(g(t), H) Vi€ (0,1, VH € Km(®) : UsciI'(s) € H;
(3) Nondissipativity:

the function t — E(g(t),T'(¢)) is absolutely continuous and

£B(9(t), T(2)) = 2B(u(t), (1)),

where u(t) is the displacement relative to I'(t) and to g(2).

The main result of this chapter is Theorem 3.5.1, which establishes the existence of a quasi static
evolution that verifies properties (1), (2) and (3) above. This quasi static growth is obtained as limit of
a discrete in time growth I's(t). The construction of the step function I 5(t) is inspired by the Griffith’s
criterion; more precisely, supposing to have constructed I's in the interval [(z — 1)8,16), we define ['s in
[¢6, (i + 1)8) as a solution of the minimum problem

min { B(g(i8), K), K € Km(®): rf,C K} (3.3)

The main tool used is the stability of these kind of unilateral free-discontinuity problems as 6 — 0, that
leads to the static equilibrium property of I'; this is the subject of Section 3.4. The stability result is
obtained through Theorem 3.4.1, that we will prove in Section 3.7. It is a new version in the framework
of Sobolev spaces of the transfer of jumps Theorem given in [47], which enables to treat energies with
derivatives of order greater than one. In fact the proof of the transfer of jumps Theorem given in [47]
is based on a geometrical construction which uses the coarea formula, and therefore it needs an a priori
bound on ||Vu| Ls(q), given by the fact that u minimizes the bulk energy. In our case the bulk energy
involves only second derivatives and the domain (by the presence of cracks) is not regular, and hence
Poincaré type inequalities does not hold in general. Therefore it is not clear how to provide a weak
formulation in SBV spaces which guarantees such a priori bound on the gradient of u in order to perform
the same construction of [47]. These considerations motivated us to choose a strong formulation in the
setting of Deny-Lions space

L22(U) = {ue L2 (U): D*ue L2 (u; M2*2)},

and with the assumptions on the cracks to be in K, (). We can thus perform a geometrical construction
which does not use coarea formula. Actually our stability result is a generalization of the stability result
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for energies depending on the gradient described in Chapter 2. However its proof is more complicate,
using the tool of the transfer of jumps theorem introduced in [47].

In Section 3.6 we consider the particular case where I' is rectilinear. In this case in [40] is given a
formula for the derivative of bulk energy with respect to the growth of the crack through a 3D — 2D
dimension reduction, under very strong regularity assumptions. Moreover in [64] is proved that this
asymptotic quantity coincides with the derivative of the bulk energy B(uk,ux) with respect to the
growth of the crack (here uy is the displacement relative to the crack K).

We prove that this quantity depends only on the singular part of the displacement u, and its explicit
computation leads to

b? b2 )
+ ;

(T+k)?  (5+3k)?

where b; and by are coeficients which appear in the singular part of u around the tip (see [40]), and play
a role analogous of the so called mode III stress intensity factor in elasticity. Moreover, we prove that

during the load process
ba(t)? ba(t)?
k)? <1 4
or(1+k) <(7+k)2+(5+3k)2 <1, (3.4)

and that the tip moves if and only if (3.4) is satisfied with the equality. This is the Griffith’s criterion
for crack propagation in our model.

om(1+k)? <

3.1 Notation and Preliminaries

In this section we introduce the main notations and the preliminary results employed in the rest of the

chapter.
From now on 2 is an open bounded subset of R? with Lipschitz continuous boundary. For every

« € Q, we denote the open ball of radius r an centered at x by Br(z) . Let Kn(2) be the class of all
closed subsets K of  whose elements have at most m connected components.

The following semicontinuity result holds (for the proof see [36]).

Lemma 8.1.1. Let (Ky) C Km(Q) be such that H!(Ky) is uniformly bounded. Then there ezists K C
K (Q) such that K, converges to K in the Hausdorff metric, and

HYK) < lim inf H* (K ).
n
Let S be a subset of R2 and let z € S. For every positive A € RT we set

Dy (z)(5) == {:c-l—)\(f —z), €€ 5}.

Tt is known that if K is connected and H!(K) is finite, then H'-a.e. z € K admits an approximate
normal vector in the sense of measure (see for instance [44]). Moreover the following lemma, proved in

[49], holds.

Lemma 3.1.2. Let K € Kn(Q) with HY(K) < co. Then for H'-a.e. © € K there exists a vector v(z)
with |[v(z)] = 1 such that
Dx(x)(K NByyx(z)) = {z +v(z)"} N Bi(z) (3.5)

in the Hausdorff metric as A — 00, where v(z)t is the space spanned by a vector orthogonal to v(z).
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The vector v(z) is the so called approzimate normal to K at z. We will need the following Lemma which
easily follows by Lemma 3.1.2.

Lemma 3.1.3. Let K, H € K () be such that K C H and H'(H) < co. Then, for Hi-qe. z €K
there ezists a vector v(z) with |v(z)| = 1 such that

D(z)(K N Bija()) = {z +v(2)"} N Bi(z), (3.6)

and
Da(z)(H N By/a@y) — {2+ v(z)*} N Bi(z), (3.7)

in the Housdorff metric as A — co.
We recall that given an open subset U of R? the Deny-Lions space L*?(U) is defined by
L*2(U) = {u € L},o(U) : DPu € L3 MP*)},
where M?2*2 are the 2 x 2 real matrices. The spaces L??(u) are endowed with the seminorm
lullzz2wy = 1Dl z2imexey V€ L¥2(U).

It is well known that L*2(U) coincides with the Sobolev space W22(U) whenever U is bounded and
has a Lipschitz continuous boundary, and that the set {D%s : w € L*?(U)} is a closed subspace of
LZ(U; MZXZ).

It is also known (see [57]) that if A is an open subset of R? with Lipschitz boundary, there exists a
continuous extension operator B : L*?(A) — L*?(R?). For every open set A C R? and every € > 0, let
us now set

'AE = {657 5 € A}
From the existence of a continuous extension operator for a fixed domain, we deduce the following Lemma.

Lemma 3.1.4. Let A be an open bounded subset of R? with Lipschitz boundary. Then for everye >0
there ezists a continuous extension operator Be : L*2(A.) — L>2(R?), such that

I Ee(w)|322may < C llulZaza,) : (3.8)

where C is a constant independent on €.

Proof. Let F be the extension operator relative to the set A. For every function u € L?2(A.), we define
the function @ € L??(A) as follows: @(z) := u(ex). We consider the extension operator E. given by

T
B.(w)(@) = B @) (E)
Then, by change of variable we get
1 N
[P E@Ere= 5 [ IDB@EPy
R2 £ R2
1 9~/ w2 _ L o9 2 2
<3¢ [ IDaay = %0 [ DR,

where C is the constant in (3.8) relative to the extension operator E1, and this concludes the proof. O
For further properties of the spaces L>? we refer the reader to [57].
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3.2 Formulation of the problem

Static equilibrium for a clamped plate with cracks. We recall here the \Eriational formulation
for the static equilibrium of a homogeneous isotropic plate with crack K € Km (), subject to vertical

displacement on a part of its boundary.

Let Q be a bounded open subset of R? with Lipschitz continuous boundary 8Q. We fix a subset dpQ
of 8§ on which we prescribe a boundary condition; we assume that dpQ is non-empty, relatively open in
89 and composed of a finite number of connected components, and we set Oy := 80 \ OpQ. For every
function g € W22(Q) and for every crack K € K, (), we set

L;:?)DQ(Q\K) ={ue L**(Q\K):u—g=0, B%(u—g):() a.e. on OpQ\ K}.

Here the equality u — g = 0 and %(u —g)=0ae. on OpQ\ K are intended in the sense of traces as in
[36].

Let us fix the so called Poisson coefficient 0 < k < 1/2. However for most of materials (see [40]) k is
strictly less than 1/2, the case k = 1/2 corresponding to incompressible materials. Let us consider the
bilinear form B : L*2(Q\ K) x L?2(Q\ K) — R defined by

B(u,v) = / UggUsg + UyyUyy + (2 — 2k)UzyVey dzdy  for every u, v € L“(Q \ K).
O\K

Note that by definition

ID?]* < B(v,v) < 2| D%, (3.9)

where || - || denotes the L? norm. The displacement u corresponding to the boundary condition g is a
solution of the following minimization problem:

min B(v,v). (3.10)

ueLﬁ;gD Q(O\K)

Using that the set {D%u : u € Li:gpﬂ(ﬂ)} is closed (see [61] ) and (3.9), from the direct method of

calculus of variations it follows that the minimum problem (3.10) admits a solution u € LEZ%NQ(Q \ K);
moreover the functional D*u — B(u,u) is strictly convex, so that D24y is uniquely determined. We
remark also that w and Vu are uniquely determined in every connected component A of € such that
HY(OANBpS) > 0, and that problem (3.10) is equivalent to finding u € LE%DQ(Q) such that

Blu,v)=0  Yue Ly} o(Q). (3.11)

For more details on the subject see for instance [40], [45],[64].
Finally let us introduce the bulk energy £ W22(Q) X K (Q) — R and the total energy E : W22(Q) x
Km(£2) — R defined by

£%g,K) == B(u,u), E(g,K) := B(u,u) + H}(K), (3.12)

where u is a solution of problem (3.10).

Irreversible quasi static growth. We consider now the case of time-dependent boundary conditions
and we introduce the notion of irreversible quasi static growth. Let g € AC([0,1]; W22(Q)), where
AC([0,1]; W22(Q)) is the space of all absolutely continuous functions defined in [0,1] with values in
W22(Q) (for details on the spaces of absolutely continuous functions see [14]). It is well-known that for



64 CHAPTER 3. QUASI STATIC GROWTH OF BRITTLE CRACKS IN A PLATE

a.e. = € [0,1] there exists the time derivative of g, denoted by g, and that ¢ is a Bochner integrable
function with values in W22().

Let us fix a positive integer m > 0. Given a pre-existing crack Ko € K (Q) with finite length, an
irreversible quasi static growth relative to the initial crack Ky and to the boundary datum g(t), is a

function

T:[0,1] = Km()
such that the following three properties hold.
(1) Irreversibility of the process:
Ko CT(0)C(t1) € T(te) YOSt <t <]
(2) Static equilibrium.:
E(g(0),T(0)) < E(9(0),H) VH € Kn(Q): Ko C H and
E(g(t),T(t)) < E(g(t), H) Vt€ (0,1],VH € Kn(Q) : Us:T'(s) C H;
(3) Nondissipativity:
the function t — E(g(t), ['(¢)) is absolutely continuous and
£B(9(1),T(2)) = 2B(u(t), (1)),

where u(t) is the solution of the minimum problem in (3.10) with K replaced by I'(¢) and g replaced by
g(t).

3.3 Discrete growth of the cracks

In this section we construct a discrete in time approximation of the quasi static growth described previ-

ously.
Let Q, 8p§t and OnQ be as defined in the previous section. Let m be a fixed positive integer, let

Ko € Km(Q) with H!(Kp) < oo, and let g € AC([0,1]; W22(Q)). For any § > 0, let N; be the largest
integer such that §(Ns — 1) < 1; for 0 < 7 < Ns — 1 we set 0 := 46, and t‘,’vﬁ = 1. We discretize the
boundary data setting g% := g(t¢), and we construct the discrete growth as follows: we set M, =K
and, supposing to have constructed I'_,, we proceed recursively setting I'? € K, () as a solution of

min {B(g!,K), K € Kn(Q): T2, C K}, (3.13)

and setting u¢ as a solution of the minimum problem 3.10 in O\ 'Y with boundary datum g{.

Lemma 3.3.1. Problem (3.13) admits a solution.

Proof. Let (Ky) be a minimizing sequence for problem (3.13) and let un be a solution of problem (3.10)
in Q\ Kn,. By the fact that g is an admissible function in (3.10) and by (3.9), we can assume that there

exists a positive constant C such that

/ [D%un|? < C, HY(K,) < C. (3.14)
O\Kn
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By Lemma 3.1.1 there exists K € K, (Q) such that, up to a subsequence, K, — K in the Hausdorff

metric and
HYK) < liminf H* (Ky). (3.15)

Moreover, by the fact that I'Y_, C K, for every n and K, — K, we have that I'¥_; C K. Now, let
A C 4 c Q\ K be open; by the Hausdorff convergence of Ky, to K and since K N A = {), it follows that
for n big enough K, N A = 0. By (3.14) we have that

/ |D?uy|?dz < C,
A

so that there exists u € L22(A4) such that, up to a subsequence, D?u, converges to D?u weakly in
L22(A, M?*2), Since A is arbitrary, u can actually be defined in L22(Q2\ K'). Moreover it is easy to see
that u € Lj;zaD o(@\ K). By lower semicontinuity

B(u,u) < liminf B(un, un)- (3.16)

From (3.15) and (3.16) it follows that the pair (u, K) minimizes B(v,v) + H!(H) among all H € K (Q)
withT¢_; C H,and allv € szaoﬂ(ﬂ \ H), so that the proof is concluded. O

Note that by construction we have that

KoCT{ T} V0<i<j< Ng
Moreover, the minimality property (3.13) is equivalent to

B(uf,ud) + 1 (IY) < Blv,v) + H! (H), (3:17)
for every H € K, () which contains I'Y and for every v € L;f 8DQ(Q \ H). From (3.17), comparing u{
with g¢ and by (3.9), we have that for every i

/ |ID*uPde < C  VO0<i< N, (3.18)
Q

where C is a constant independent on 4, 8.

Now we define the step functions
¢ i=gf Wi=uf TO.=TY, (3.19)
for ¢ <t <t{ ;. By construction and by (3.18), we have that
Ko CT(t;) CT%(ts) VO0<t1 <ta <1,

and
/ [D2S()Pdz<C  VO<t<1
Q

Next lemma gives an estimate from above for the discrete energy E(g?,I'?).

Lemma 3.3.2. For every 1 < i < N5 we have

E(g,I¥) < B(g3,T5) +2 " B(u’(t), 9(1)) dt + o(6), (3.20)
0

where o(6) — 0 as 6 — 0.
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Proof. By (3.17), comparing u;s-_H with ug - gf + 935“, we have that for every 0 < j < N5 — 1
B(u?+1,u§+1> +H? <F§+1> < B(u? 90— gd,ud + g0y, - g?) + H? (Ff) < (3.21)
5,8 1{pd 5 [+ 2 6 2 8)2
< B(uf,uf) + () JrzB(uj,/t‘s §() dt) + 2 D%l — D7l <
3

t5 42
< B(uf,uf) + (1) +2/m B(, (1)) dt+S(5)/t§ ID%g()]) dt,

i
where

tf+1 5.
s@=2, e, [, 1PN

Considering the sum for 7 = 0 to ¢ — 1 in (3.21), we obtain

t2 t!
B(ul,uf) + HA(T8) < B(uf,uf) + 1 (TF) + 2/ B(ub(t), 4(t)) dt + 5(5)/ ID%gll t,
0 0

that implies (3.20) by choosing o(¢) := S(4) fol 1D%g(2)] dt. O

3.4 Stability of the unilateral free-discontinuity problem

In the minimum problem (3.13), the unknown set T'Y minimizes the energy E(g, H) among all H € K ()
such that I‘f_l C H. In particular I‘f minimizes the energy among all H larger then Ff. This is a so
called wunilateral free-discontinuity problem.

More precisely let g € W22(Q), let K € Kn(Q) with H*(K) < oo and let u be a solution of the
minimum problem (3.10). We say that the pair (u, K) is a unilateral minimum relative to the boundary
condition g if

E(g,K) < E(g,H) for all H € K,n(Q) such that K C H. (3.22)
The aim of this section is to study the stability of the unilateral minimality property (3.22) among a
sequence of closed sets (Kj) (Theorem 3.4.2), and this result will be a key point for the proof of the
equilibrium condition for the crack I'(t). We need the following version of the transfer of jumps Theorem,
proved in the setting of BV functions in [47]. The proof is postponed to Section 8.

Theorem 3.4.1 (transfer of jumps Theorem). Let (Kp,) C K (Q) be a sequence which converges to
a compact set K in the Hausdorff metric and such that H*(Ky) < C for some fized positive constant C.
Let (gr) be a sequence in W22(Q) which converges to g strongly in W»2(Q) and let H in K, () with
K C H and H(H) < C. Then there exists a sequence (Hp) C Km () converging to H in the Hausdorff
metric, with Ky, C Hy, for every h, and such that the following properties hold.

i) W' (Hp \ Kn) = H'(H \ K).
ii) For every v € Lch??DQ(Q \ H) there exists vy € Lifann(ﬂ \ Hp) such that

D3y, — D% strongly in L?(Q, M?**?),

We are now in position to prove the main result of this section.
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Theorem 3.4.2. Let (gn) be a sequence in W2(Q) which converges to some g strongly in W2(Q). Let
(K1) C Km(§)) with HY(Kp) < C, and let up, € L>?(Q\ K3) be such that the pair (un, K1) is a unilateral
minimum relative to the boundary condition gn. Finally let us assume that

D?yj, — D*u  weakly in L?(Q, M?*2), Ky, — K in the Hausdorff metric.

Then the pair (u, K) is a unilateral minimum relative to the boundary condition g. Moreover D?uy
converges to D?u strongly in L2(Q, M?%2).

Proof. Let us prove that the pair (u, K) is a unilateral minimum relative to the boundary condition g.
To this aim, let H € K, () with K C H and let v € L>2(Q\ K). Let us consider the sequences (Hj) and
(vn) given by Theorem 3.4.1. By the fact that Kj, C Hj, we have that HY(Hy \ Kp) = H(Hy) — H Y (Kp).
Hence by the unilateral minimality of the pair (up, Kr), we get

B(up,un) < Blvp,vp) + Hl(Hh \ Kr). (3.23)
Passing to the limit for A — co and using Theorem 3.4.1, we get
B(u,u) < limhinfB(uh,uh) < limsup B(vy, ) + limsup H*(Hy \ K3) = B(v,v) + H}(H \ K), (3.24)
h

which, by the fact that K C H, is equivalent to the unilateral minimality condition. Choosing now
H =K and v = u in (3.24), we obtain

B(u,u) < limhinf B(up,up) < limsup Blug, up) <
lim sup B(vy, vi) + limsup H' (Hp, \ Ki) = B(v,v) + H*(H \ K) = B(u, u).
h
We deduce that B(up,us) — B(u,u), which (together with D?uy — D?u) implies that D?up, converges
to D%u strongly in L?(, M?*?), and this concludes the proof. O

Remark. In Theorem 3.4.2 the assumption that the minima wup are unilateral can not be removed in
order to get the stability. In fact let us consider Q := (—1,1)2, and

Kp:=[-1,-1/h]U[1/h,1] x O,
which converges to K :=[~1,1] x 0 in the Hausdorff metric. Let moreover
Op§ == [-1,1] x {-1}U[-1,1] x {1},
and let gp = g be a fixed function with normal derivative equal to 0 on 8p{) and with
g=-=lon[-1,1]x{-1} and g=1on[-1,1]x{1}.

Let Q= = QnN{zy < 0} and QF := QN {zy > 0}. The solution w of (3.10) in Q\ K is clearly the function
with zero energy defined by

1 ifze@t

u(z) = . -
-1 ifze@ .

If uy, are the solutions of (3.10) in Q\ Kp, it is easy to see that D?u;, does not converge to D?u weakly
in L2(Q, M2%2); otherwise we will have that uj, converges to —1 uniformly in Q™ and to +1 uniformly
in @*. On the other hand by symmetry we have that u,(0,0) = 0, and this gives a contradiction.
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3.5 Irreversible quasi static growth of the cracks

In this Section we prove the main result of the chapter, that is the existence of an irreversible quasi static
growth of brittle cracks as formulated in Section 2.

Theorem 3.5.1. Let m be a fized positive integer, let Ko € Km(Q) with finite length and let g €

AC([0,1; W22(Q)). Then there ezists an irreversible quasi static growth I' : [0,1] — Km () relative to
the initial crack Ko and to the boundary datum g.

Proof. Let T'; be the step function defined in (3.19). As proved in [36, Theorem 6.3.], there exists a
sequence 8, — 0 and an increasing function IT': [0,1] — K, (), such that for every ¢ € [0, 1]

I, (t) — T'(¢) in the Hausdorff metric. (3.25)

We claim that T" is a quasi static growth. For every t € [0, 1], we set u(t) as a solution of (3.10) in Q\I'(¢)
relative to the boundary condition g(t). We have that

E(g(O),P(O)) < E(g(t),H) VH € Km(@) : Ko C H. (3.26)

In fact T's(0) does not depend on 4, that is ['s(0) = I'(0) for every d. Then (3.26) follows directly by
(3.17) with ¢ = 0. Now we prove that

B(g(t),0(t)) < E(g(t),H) Vte (0,1, VH € Kn(Q): Usc:I(s) C H. (3.27)

To this aim, note that for every fixed t € [0, 1] the pair (us, (t), T's, (t)) is a unilateral minimum relative to
the boundary condition gs, (t). For every t we have by construction that [ (t) — T(t) in the Hausdorff
metric. Moreover, up to a subsequence D?u’~(t) — D?@ for some @ € L>2(2\ I'(t)). Recalling that
gs, (t) converges to g(t) strongly in W*2(Q2), we are in position to apply Theorem 3.4.2, so that the pair
(2, T(t)) is a unilateral minimum relative to the boundary condition g(¢). By the fact that both @ and
u are minimizers of (3.10), we deduce that D*% = D?u(t), and hence for every t the pair (u(t),I'(2))
is a unilateral minimum relative to the boundary condition g(t), that is (3.27) holds. Moreover, as a
consequence of Theorem 3.4.2 we also get

D?u% () — D?u(t)  strongly in L(9, M>*?) for every t € [0, 1}. (3.28)

Now we prove that all properties defining the quasi static growth are satisfied.
1) Irreversibility of the process. This property holds by construction.
3) Nondissipativity. Using (3.28) and (3.20), we easily get

Blul(t), u(t)) + HY(T(t)) < liminf (B(u® (t),u® (t)) + H (F° (1)) <
< B(gr,T )+hminf2/O B(ubn (1), 4(r)) dr = E(g(O),I‘(O))+2/ B(u(r), §(7))dr.

To prove the inverse inequality, given ¢ € [0, 1] and given a positive 1nteger k, let us set s¥ = i,'gt for all
i=0,...,k By (3.27), comparing u(s¥) with u(s¥) — g(sk,,) + g(st k), we get
B(u(sf),u(sf)) + HHT((sf)) <
B (( (s 1-}-1) g(sFiy) + 9(s5)), (ulsfin) — g(s B +a(sh)) + H (D)) = (3.29)
B(u(sfy), uls B)) +HAT T(sf1)) + B ((9(sf1) — a(s¥)), (9(sf1) — g(s¥))) -

) 51':-)-1
2/k B(u(sf.,_l),g(T)) dr.
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Summing for i = 0 to & in (3.29), and setting u”(t) = u(sF,) for s¥ <t < sF,;, we get
B(u(0),u(0)) + H(T +2/ B(u 7)) dr < B(u(t), u(t)) + H(T(t)) + o, (3.30)

where oy — 0 as k — co. Let us set now I'%(t) = F(szﬂ) for s¥ <t < sk, . By construction we have that
(u*(t),T*(¢)) is a unilateral minimum for every ¢. If ¢ is a continuity point for the function { — H*(I'(1))
it is easy to check that T'®(t) converges to I'(t) in the Hausdorff metric. Arguing as in the proof of (3.28)
we have that D2uF(t) converges to D?u(t) strongly in L2(Q, M?*2) so that B(u*(r, §(7)) converges to
B(u*(r, §(7)) for a.e. 7. Therefore passing to the limit for £ — oo in (3.30) we obtain

B(g(1),T(t)) = E(9(0),T(0)) +2/0 B(u(7),g(7))dr. (3.31)

2) Static eguilibrium. Let us fix ¢t € (0,1) and let (sp) be an increasing sequence converging to t. By
(3.27) we get

B(u(sn),ulsn)) + " (T(sn)) < Bv ~ g(t) + glsn), v — g(t) + glsn)) + H' (H)

for every H € K (R) : Us<:I'(s) C H and for every v € Li’é)’aDQ(Q \ H). Letting h — oo and using that
the function ¢t — E(g(t),'(¢)) is continuous by the nondissipativity condition, we deduce

B(u(t),u(t) + 7 (D(t) < Blv,v) + M (H),

for every H € Km(Q) : Us<:I'(s) C H and for every v € Lié),apﬂ(ﬂ \ H), so that also static equilibrium
O

property holds.
3.6 Griffith’s criterion for crack growth

In this section we shall see that, in the model case where the crack I'(t) is rectilinear, it satisfies Griffith’s
criterion for crack growth. More precisely let © be open and connected, and let 9pQ2 be a (non empty)
open subset of 2 composed of a finite number of connected components. We consider a quasi static
growth I'(¢), relative to a boundary datum g € AC([0, 1]; W22(Q)), of the following type (see Fig. 1):

() == [0,z1(t)] x {z2}, (3.32)

where z7 : [0, 1] — [l1, (2] is an increasing function and [0, ;] % {z2} is a preexisting crack which touches
the boundary of Q at the point (0,z2). For every x; € [l1, 2] we set

K(:L‘l) = [0,271] X Igy.
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I8 x4(t) Iy

Fig. 1
We want to compute the derivative of the bulk energy £%(g(t), K (z1)) defined in (3.12) with respect to the

growth of the crack (that is with respect to z1) at the point z1(t). For every function v € L22(Q\T(),
we set

M11[v] = Vzy2, + K VUzaz;
Maa[v] == g0y + K Vayzs;
Miglv] = Mai[v] := (1 — k) Vg,
Let now C be a smooth closed path around the point (z1(t),z2) and let u(t) be a solution of (3.10) in

b
Q\ T(t). In [64], [40], is proved that the functional z; — E¥(g(t)), K(z1)) is C1, and that the following
formula holds.

L) K@ mmir = 3 (= [ Mstult)] vecs, (0

dz ije{1,2}

0 0
+ [ M0 e s = [ Mgl uat) (3.33)
(Mgl ule)(0) — (Mialult) st )(0),

where v = (11, v2) is the inner normal to C and 2T and z~ are as in Fig. 2.

Fig. 2
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Tt is well known that the solution u(t) has the following behavior in a neighborhood of the tip (z1(t), z2)
(see [40], [53]).

30

u()(r,8) =2 (0 (0 (sin( ) + E—Fain D) + (5.54)
30, 3(1-k)

bg(t)(cos(7)+ 513k COS(—Z—))>+'LLR(T,9),

where (r,6) are the polar coordinates as in Figure 2, and ufl € W32(Q).
For every by, ba € R we set

sin(%)) + bg(cos(?’g) + 31— k)

. (3.35)

cos(g)

S (b1, 52) (1, ) 1= /2 (b (sin(20) + 201 Fra (3))

2 T+ k

so that u(t) = u®(b1(t), ba(t)) + uft(t). Now let us fix a radius € > 0. For every v, w € L>2(Q\ T(t)), we
consider the bilinear form b° : L22(Q\ T'(t)) x L*2(Q\ I'(t)) — R defined by

1
b (v, w) 1= E (—5/ Mij[v]wz,:mjul—f—/ Mij[vlwez;vi (3.36)
i,7€{1,2 Be((z1(t),32)) Be((z1(t),z2))
Je{1,2}
0 7] o 8
- 2 M= (1)) + (Mazfu(t) ——w(z)(®) — (Mia[u(t)] ——w(z™)(2),
Lo 3 M 9) + (MOl () (0) = (a0l (™))

Finally, for every by, by € R we define the quadratic form ¢ : R?* — R as follows:
qlby, by) 1= —b%(u® (b1, bg), u® (b1, b2)). (3.37)

From (3.35) and (3.36) it easily follows that ¢ does not depend on e. The explicit computation of the
right hand-side of (3.37), leads to the following expression

2 2
q(b1,b2) = Om(1 + k)? ((7 -Ilj—lk)Q G fék?) '

In order to prove that g(b;(t), ba(t)) is the only contribution that does not vanish in (3.33) as € tends to
zero, we will need the following Lemma.

Lemma 3.6.1. Let By(z) be an open ball in R® and let f € LP(Bx(z)). Then there exists a subset
I C [0,A] such that

i
zl-.o {

and such that for every sequence {en} C I with {€n} — 0, we have that f is defined for H'-a.e. T €
8B, (z), and

o

2—-p

lim  &,” |f(z)]dz — 0.

n—oeo 8Bc, (2)

/Bh(z) |ffp=/0h ./¢93T(Z)|f!p=,/oh27rr (.2%;/6&(2) 7P).

By the fact that f € LP(Bn(z)), using Jensen inequality, there exists a positive constant C' such that

Proof. We have

P

-/.Ohrrl—ﬂ (/BBT(Z) ]f[) <c.
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Now suppose by contradiction that there exist d;,dz > 0 such that, setting

U= {r:r@-m/p/ 12 61,
8B-(z)
there exist arbitrary small intervals {0, J] with
|Uﬂu[70,J]] > 6.

We deduce that

P P
Lo n) = (e[ in) = [  2&z5ai0500 286
[0.J] 8B, (2) [0J] T 8B, (2) [0,J)nU T J

and this, by the arbitrariness of J, is in contradiction with the equi-integrability of the L' function
- P
M (foso(a) 1£1)" ' o

Next theorem gives a more explicit formula then (3.33) for the derivative of the bulk energy with
respect to the growth of the crack. We will see that this derivative actually depends only on the coefficients
in (3.34) of the singular part of w.

Theorem 3.6.2. Let I'() be a quasi static growth of the type (3.32), and let by ("), ba(-) be the coefficients
in (3.34). Then for every t € (0,1)

Tisb<g<t>>,K<zl>> lermen(ty = —a(b1(2), B2(2).

Proof. By (3.33), we have that there exists h > 0 such that for every e < A

%Eb(g(ﬂ),f{(xl)) losman ) = b° (w5 (b1 (8), b2(8)) + uf (1), u5 (b1(2), ba(8)) +w(t)) = (3.38)
—q(ba(8), ba(t)) + b% (uS (ba (£), ba(t)), uP(2)) + b° (u(2), w5 (ba (2), b2(2))) + 0° (w (1), w™(2)).
We claim that there exists subsets I, L, M C (0, h) with the property

l l
i 20000 1, i ZO00 1 i MO0 1, (3.39)
=0 l 1—0 { 1—0 l

such that the following hold:
1) limpooo 657 (w8 (b1 (1), b2(t)), uR(t)) =0  V{en} C I, en — 0;
2) limpeoo 057 (uf(8), u® (b1 (2),b2(2))) =0 V{en} C L, en— 0;
3) limp—eo b5 (ufi(t), uR(t)) =0 V{en} C M, en —.0.

Therefore, it is sufficient to consider a sequence (e5) in I N LN M (which exists in view of (3.39)): along
this sequence, the right hand side of (3.38) tends to —q(bs(t), b2(t)), and this concludes the proof. So let
us prove 1), the proof of 2) and 3) being similar.

To this aim, note that we can always assume that Vuf'(t)(z1(¢),z2) = 0. In fact, for every fixed
£ € R™ and for every s € (0, 1), we have that the function

uS(b1(s), ba(s)) + (uB(s) + ¢ - @)
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is a solution of (3.10) relative to the boundary condition g(s) + ¢ - z, and
£%((9(5)), K (21(5))) = E°((g(5) + € - 2(5)), K (21 (5))).
‘We have

5}
b (uS (b (8), ba(),uP (1) < © @+ 3 &2 R (E) +
8B ((z1(),72)) ijeqn2) ) 9B((w1(t).22) 1

8 o _
(Mm[us(bl(t),bz(t))]'a—quR(w“L)(t)) - (Mlzlus(bl(t),bZ(t))]'a_z'l'uR<m )(1)),
where C is a positive constant and f € H(2). By Lemma 3.6.1, noting that by the Sobolev embedding
Theorem f € LP(Bc(z1(t))) for every p > 1, there exists a subset I C (0, h) that verifies (3.39) and such
that

lim C e ?f(z)=0  V{e,}CI, en— 0.

n—eo 8Be,, (z1(t)
Concerning the second term, note that the function —B%uR(t) is in H%(Q), so that it is holder con-
tinuous with coefficient greater than 1/2 (it is for instance in C%2/3(Q)), and hence, recalling that
Vul(t)(z1(t), z2) = 0, we have that for every 4, j and for & small enough

/ 5'3/2]——(9——uR(t)| <C e3/2.2/3 _ o £—5/6
OBc(z1(t)) Oz 8B, (z1(t)) 9Bc(z1(t))
which tends to zero as € — 0. Finally last term is equal to zero for every & because

g—i—luR(f)(t) = gg%uﬂ(w')(t), Mia[u® (ba(£), b2 (t))(2™) = Maz[u® (b1 (2), b2 (1)) (7).

O
By Theorem 3.6.2, we deduce the following formula for the derivative of the total energy with respect

to the growth of the crack.
d
EE(Q(f)), K (21)) loy =z, 1) = 1 — q(b1(t), b2(t)). (3.40)

Moreover, arguing as in [36}, it is possible to prove that for every t € (0, 1)

d
Z B(g(8), T(s)) o= = 0.
‘We are now in position to state the main result of this section.

Theorem 3.6.3. Let I'(t) be a quast static growth of the type (3.32). Then

#1(t) >0 for a.e. t € (0,1), (3.41)
1 - g(bi(t),ba(t)) >0 for every t € (0,1), (3.42)
(1= q(ba(2),b2(t)))z1(¢) = 0 . forae te(0,1). (3.43)

Proof. The first condition comes directly from the irreversibility of the process. The second condition
comes directly from (3.40) and from the static equilibrium condition.
So, let us pass to the prove of the third condition, that actually is the Griffith’s criterion for crack
growth in our model. let ¢ € {0,1] be a point of differentiability for z;(t). We have
d d

0= —B(g(t),I'(s)) ls=t = EE(Q(t),K(il)) los=zn 5y 1() = (1= q(ba(2), b2(2))) 21 (2).

and this concludes the proof.
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3.7 Proof of the transfer of jumps Theorem

In this section we prove the transfer of jumps Theorem (Theorem 3.4.1). In the proof we will need the
following lemma, which is a particular case of [36][Lemma 3.6].

Lemma 3.7.1. Let U be an open bounded subset of R? with Lipschitz continuous boundary, letp > m > 0

and let (Kp) be a sequence m__lC,,(U) converging to some K € Kn(U) and uniformly bounded in length.
Then there exists (Jn) C Km(U) converging to K, with Ky C Jp, and such that

lim HY(Jp \ Kr) — 0.

We are now in position to prove the transfer of jumps Theorem.

Proof of Theorem 8.4.1. For every z € K which satisfies (3.6), for every 0 < ¢ < 1 and for every r > 0
let us set

R.(z) := Br(z) N {z € R*: |(z — z) - v(2)| < (6/2)7};
Bt (z):=B,(z)N{z€R?: (z —x) - v(z) > br};
B (z):= Br(z) N{z €R?: (z — ) - v(z) < =br};

L.(z) := 8B,(z) N OR (z).

The idea of the proof is the following. We would like to recover K with small balls B.(z) such that
(up to small errors in length) K cuts every By(z) into two connected components. Then, in order to
have the same geometrical configuration for the sequence K}, we have to enlarge a bit them, obtaining a
new sequence of closed sets which still cut every Br(z) into two connected components which we denote
now by D (z) and D7 (z), so that B; (z) C D (z) and B (z) C D7 (z). We add to this sequence of

enlarged K}, the set H \ K, obtaining a sequence which looks like the Hp of Theorem 3.4.1. Now we have
to approximate v with functions vn € Lif’ apn(@\ H ). This procedure is called transfer of the jump’s
set . We set v, = v far from K, while around K we consider the restriction of v on every B;f (z) (respec-
tively on By (z)) and we extend it on D;f (z) (respectively on D; (z)), obtaining in this way a function
whose jumps are contained in Hy. With a further modification we also obtain the right boundary datum.
However the rigorous proof presents some additional difficulties; for instance it will need some technical ef-

fort in order to ensure Hy, to be in K, (ﬁ) In order to keep rigorous this rough idea, let us claim as follows.

Claim. For every 0 < 6 < 1 and for every € > 0 there exists a finite family of disjoint balls
{By,(z1),. .. Bry(zn)} (where N depends on €), and there exists a sequence (Hg’s) C Km(82) of closed
sets, such that for every 7 the following properties hold.

a) HN B (z:) C R, (zi);
b) Either B;f(z;) C Q or Bjf(z:) C R\ T
¢) Bither B (z:) C @ or By (z:) C R\

d) For h large enough HY* N (B (z:)UBL (z:)) = 0. Moreover B (z;) and B (z;) are in two different
connected components of By, (z;) \ H,’i'i; .

e) (K \U/L1Br(z:)) S &
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) m < ¢

g) Kn UH\ K C HP*. Moreover

li}rln’)-ll(H,‘i’E \ Kp)=HYH\ K)+0(5), whereo(§)—0asd—0.

Using the claim, we construct a sequence v,‘i‘a e L*2(Q\ H, g's) as follows. For every 1 < i < N,
by property d) we can define (for h large enough) D:‘h as the connected component of By, () \I—Ifi’E
containing B (z;), and similarly D7, as the connected component of Br, (z;) \ Hg‘a containing By (z;).
Let us define the function vi’s on every Df » N Q (the case D, N being similar). If BZ‘ , is contained
in R?\ Q, we define vZ’E =gon DZ 5 N Q. Otherwise, by property b) we have that B;YL n C S Let v} be
the restriction of v on B (z;). By property a) we have that vi" € L*2(B (z;)), so that we can consider
its extension E(vj") on R? given by Lemma 3.1.4. We define v3° = E(v]") on Df,. Finally we define
vfb’z = v on

oy (D uDLL):

Note that by construction ’UZ’E € Lg:gpn(ﬂ \ Hg’E). Moreover by Lemma 3.1.4 there exists a positive
constant Cj (independent on €) such that

/ D% — D% dz < G5 3 / 1D%)? da. (3.44)
[9) T J(DfuD;)NQ

Let us fix two sequences (6x) — 0 and (gx) — 0, and let us repeat the construction of the sets H,f"’s" as
described above. Using property f) and the equi-integrability of || D?v||2, we can assume without loss of
generality that (65) and () are chosen such that right hand side of (3.44) tends to zero as h tends to
infinity. Moreover by a diagonal argument (i.e. by freezing 6, and £5,) we can also assume that property
d) holds for every h with H ,‘i“’g" in place of H, 2’5, so that for every h we can construct the functions v,i“’e"
as described previously. We set

Hy = HM gy = ol — g+ gy (3.45)
By property g) we have Ky, C Hp, Hp — H in the Hausdorff metric, and

lim HY(Hp \ K3) = HYH \ K).

On the other hand vy € LgﬁaDQ(Q\Hh), and by (3.44) and the choice of 6y, £, we have that D?v, — D?%v

strongly in L2(Q; M?%2), so that using the claim the proof of the Theorem is completed.
Let us pass to the proof of the claim. From now on 0 < § < 1 and € > 0 are keep fixed. For almost
every £ € K, if r is small enough (depending on z) the following properties hold.

i) HN By(z) C Re(z);

ii) Either B (z) C Q or B} (z) C R*\ &

iii) Either B7 (z) C Q or By (z) C R2\ O
)

There exists a closed segment S,.(x) C R.(z) with H'(S,(z)) < ér and such that (K N B.(z)) U
L.(z) U S.(z) is connected. - .

1w
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In fact, by Lemma 3.1.2 we can assume that z € K is a point satisfying (3.6) and (3.7). Property i)
follows by (3.7) for r small enough. Properties ii) and iii) are trivial if z € Q and r < d(, 8Q), while if
z € 89, it holds at every z which admits the approximate normal to 8§ with r small enough; the fact
that 89 is Lipschitz ensure that such z have full measure in K N9Q. Let us pass to the proof of iv). Let
m be the minimum of the diameter of the connected components of K which are not single points (so
that m > 0). We can always assume that there are not isolated points in K N By(z) and that 2r < m.
We deduce that every connected component of K N Br(z) intersect dBr(z), otherwise there will be a
connected component of K with diameter smaller than m. On the other hand by (3.6) for r small enough
K N Br(z) C Ry(x), and hence every connected component of X' N By(z) intersects L,(z). Let us denote
by LE(z) and LZ(z) the two connected components of Lr(z) and let KL(z) (respectively KF(z)) be the
union of all connected components of K N By (z) which intersect L (z) (respectively LE(z)). By (3.6) we
have that ’

dg (K} (z) U L} (2), KF(z) U LT (x))
T
We deduce that there are two points a, € KX(z) U LE(z) and b, € Kf*(z) U Lf(z) with

—0 asr—0.

l—a-r—;ir—l —+0 asr—0. (3.46)

We set S, as the closed segment with end points a, and b,. By construction we have that (K N Br.(z)) U
L.(z) US, is connected, and by (3.46) for r small enough H*(S,) < ér, and this concludes the proof of
property iv).

By properties i)-iv) above, applying Vitali-Besicovitch covering Theorem (see for instance [7]), we can
consider a finite family of disjoint balls, { By, (1), ... Bry(zn)} (where N depends on €), such that for
every 1 < 1 < N the following properties hold:

1) HN By, (z;) C Ry (zs);

2) Either B (z;) C Q or B}t(z;) C R? \ G

3) Either By, (z:) C Q or By (zi) C R\ Q;

4) There exists a closed segment S, (z;) C Ry, () with H* (Sy, (z;)) < 6r; and such that (KN B, (z:))U

Ly, (i) U Sp, () is connected; )

5) MK\ Uil Br. (@) S &;

6) r; <e.
Properties 1), 2), 3), 5) and 6) are exactly properties a), b), c) ) and f) of the Claim. In order to prove
properties d) and g) let us fix 1 <4 < N and let us set

K= KUSp(z;)ULp(z:),  Kn=KnUSp(2:) ULy (z:)

Note that K and K} have at most m+3 connected components. By property 4) KN By, (z;) is connected,
and hence there exists a connected component K of K which contains K N By, (z;). Let Cf,. . ., C! be the
connected components of K}, converging to thesets C1, ..., C' composing Kt ie. suchthat U§=1Cj = K.
We have | < m + 3 and we can thus apply Lemma 3.7.1 to the sequence U;_;le;, obtaining that there
exists a sequence of connected sets J}, in @ which still converges to K% in the Hausdorff metric and such
that limp, H*(J} \ Kn) = 0. Therefore we have

limsup H*(JE \ Kr) < H (L, (%) U Sry (22)). (3.47)
h
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Let us enlarge Ly, (z;); more precisely let us set
Lri(@) = {z € 8By, (=) : d(z, Lr,(2:)) < a},

where a is a positive constant chosen such that L, (z;) does not intersect neither B (z;) nor B (zi). The
sequence JiNB., (z;) converges to K*NB,,(z;) = KNB,,(z;) in the Hausdorff metric, which is contained
in Ry, (z;). We deduce that for h large enough every connected component of Ji N By, (z;) can intersect
B, (z;) only on L, (z;). Therefore, recalling that J} is connected, we have that (Ji U Ly, (z:)) N Br, (z:)
has at most three connected components and it converges to the connected set (K U L, (z:)) N By, (z:) in
the Hausdorff metric. Applying again Lemma 3.7.1 to the sequence (Ji U Ly, (z;)) N By, (z:) we deduce
that there exists a sequence of connected sets I in By, (z;) converging to (K U Ly,(z;)) N By, (z;) and
such that
lim (I;;\ (i U Ly (1) ﬂEri(mi))> =0. (3.48)

Note that by the fact that I} is connected, contains Ly, (z;), and for h large enough does not intersect
neither B (z;) nor By (z;), it follows that

B (z;) and B, (x;) are in two different connected components of By, (z;) \ I}. (3.49)
By (3.47) we have
limsup H* ((JE U Ly, (2:)) N Bry () \ Kn) < H (L (1) U Sr, (). (3.50)
h

By (3.48) and (3.50) we obtain
limsup H (I} \ Kp) < H Ly, (z:) U Sy, (). (3.51)
h

Let us repeat the construction above for every 1 <1 < N, and let us set

N
= JLuK,UH\EK. (3.52)
i=1
For every i we have _
HY (L, (z:) U Sy, () < Cory, (3.53)

for a positive constant C' (independent on § and €). Moreover by property 4) it follows that
HY(K N Br(z)) = (1 - 8)ry,

and hence . 5
| Uiy (L () U Sy (0)) | < Cl—_"Hl(K)~ (3.54)

By (3.51), (3.52) and (3.54) we obtain

lim HY (L2 \ Ky) = HMNH \ K) + 0(8), (3.55)

where o(6) — 0 as § — 0. . _ ‘
By the fact that K € H, K € Kn(Q), H € Kn(Q), and that every I} is connected, we deduce

that the number of connected components of I,'i'g is uniformly bounded with respect to h. Moreover
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Ig’s converges to H UN, (L, (z;) U Sy, (z:)), which by construction and by property 4) has at most m
connected components. By Lemma 3.7.1 there exists a sequence fg’s € Km(Q) which contain I 2’5, which
still converge to H U, (Ly, (i) U Sp,(z:)) in the Hausdorff metric and with

lim HM TP\ Kp) = HYH \ K) +0(5). (3.56)

The construction of ], 2,5 does not ensure that I} ,‘3‘5 are contained in ). Therefore we have to project every
I 2’5 N (R?\ Q) on 89 as follows. For every connected component C of I g,s N (R2\ Q) we set 9c as the
connected subset of 8Q with minimal length which contains C N 8Q. By the fact that 00 is Lipschitz,
we deduce that there exists a positive constant L such that

H(8c9) < LHY(C). (3.57)
Therefore, substituting every connected component C of I| Z’E N (R?\ Q) with the corresponding 8¢ we
obtain a sequence H, 2’5 which by construction is in K, (R2), by (3.52) contains K5 U H \ K, so that by

(3.56) and (3.57) satisfies property g) of the Claim. Moreover by construction and by (3.49) we deduce
that also property d) holds. This concludes the proof of the Claim and therefore of the Theorem. O

3.8 Conclusions and remarks

In Theorem 3.5.1 we proved the existence of an irreversible quasi static growth of cracks for a plate
clamped on a part of its boundary. More general boundary conditions can be treated with these methods.
‘We mention for instance the case of the so called hinged plate, where no conditions are imposed on the
normal derivative of the displacement u on dp§2. In this case, it is sufficient to set the minimum problem

(3.10) in the space
{ue L*?(Q\ K):u—g=0on dpf in the sense of traces}.

The main tool used is Theorem 3.4.1, which leads to the stability of unilateral minimality problems
like (3.13). Note that the proof of Theorem 3.4.1 is based on a geometrical construction, and can be
extended in the framework of L*P spaces (i.e. the space of functions in L] , with derivatives of order
k in LP (see [57]). Therefore the stability of unilateral minimum problems like (3.13) holds for more
general energies E : L®?(Q) — R depending on the k-order derivatives of u and with standard p-growth
hypothesis. It is also possible to treat energies depending on the point z of the reference configuration
Q, as in the case of shells.
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In this section we state the notation and recall the preliminary results employed in the Part II of this
thesis. We also give the notion of quasi static crack growth proposed by Francfort-Larsen in [47] and by
Dal Maso-Francfort-Toader in [35]. From now on we suppose that ) is a bounded open subset of RY
with Lipschitz boundary.

SBYV spaces. For the general theory of functions of bounded variation, we refer to [7]; here we recall
some basic definitions and theorems we need in the sequel. We say that u € BV (Q) if u € L1(Q), and its
distributional derivative Du is a bounded vector-valued Radon measure on . In this case it turns out
that the set S{u) of points z € Q which are not Lebesgue points of u is rectifiable, that is there exists
a sequence of C' manifolds (M;);en such that S(u) C U;M; up to a set of HV~l-measure zero. As a
consequence S(u) admits a normal v, (z) at HV"1-a.e. z € S(u). Moreover HVN~! ae. z € S(u) is a
point of approximate jump for u, i.e. there exist u™(z), v (z) € R such that

1

lm uly) — v (z)|dy = 0,

P IBE@ Sz M )
where B (z) := {y € B.(z) : (y— ) vu(z) > 0}, By () is defined similarly and B,(z) is the ball with
center z and radius r. It turns out that Du can be represented as

Du(A) = / V() do + / (wH(z) - u (@) (@) dHN 1 (0) + Dou(d), A€ AWQ)
A ANS ()

where Vu denotes the approximate gradient of u, D°u is the Cantor part of Du, and A(Q) is the family
of open subsets of . We say that v € SBV(Q) if u € BV(Q) and D°u = 0. The space SBV () is called
the space of special functions of bounded variation. Note that if u € SBV(Q), then the singular part
of Du is concentrated on S(u). The space SBV is very useful when dealing with variational problems
involving volume and surface energies because of the following compactness and lower semicontinuity
result due to L.Ambrosio (see [2], [3], [4], [7]).

Theorem 3.8.1. Let A be an open and bounded subset of R, and let (uy) be a sequence in SBV (A;R™).
Assume that there exists ¢ > 1 and ¢ > 0 such that
/ Vet dz + HY 1S (ug)) + [furlloo <
A .

Jor every k € N. Then there ezists a subsequence (uy,) and a functz’on u € SBV(A;R™) such that
ug, — u  strongly in L' (4;R™);
Vaug, — Vu  weakly in LY(A; MV*™),; (3.58)
HN=Y(S(w)) < lim inf HV LS (u, ).

For all 1 < p < 400 we set
SBVP(Q) :={u€ SBV(Q) : Vue LP(AR"Y), HN1(S(u)) < +o0}.
We will consider weak convergence in SBV?(2) defined in the following way: u, — v weakly in SBVP(Q)
if
up — u  strongly in L}(Q),
Vu, = Vu  weakly in LP(Q;RY),
HN (S (uy)) < C.
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GSBV spaces. We indicate with SBVi,.(A, R™) the space of functions which belong to SBV(4’,R™)

for every open set A’ with compact closure in A.
The set GSBV (A, R™) is defined as the set of functions u: A — R™ such that o(u) € SBVjs(A) for
every p € C1(R™) such that the support of V¢ has compact closure in R™. If p €)1, +ool, we set

GSBV?(A,R™) := {u € GSBV(A,R™) : Vu € LP(4, M™™), K" 1(S(u)) < +oo}.

By [35, Proposition 2.2] the space GSBV?(A, R™) coincide with (GSBVP(A,R))™, that is u := (u1,...,um) €
GSBVP(A,R™) if and only if u; € GSBV?(A,R) for every i = 1,...,m.

The following compactness and lower semicontinuity result will be used in the following. For a proof,
we refer to [3].

Theorem 3.8.2. Let A be an open and bounded subset of R™. Let g(z,u): A x R™ — [0, 00| be a Borel
function, lower semicontinuous in u and satisfying the condition

lim g(z,u) = 400 for a.e. z € A

ful—oo

Let (ug)ren be a sequence in GSBVP(A;R™) such that
sup/ |V (z)[P dz + H™ (S (uk)) +/ g(z,uk(z)) dz < +oo0.
k JA A

Then there exists a subsequence (u, Jnen and a function u € GSBVP(A;R™) such that

Uk, — U in measure, (3.59)
Vug, = Vu weakly in LP(A; M™*™).

Moreover we have that
H (S () < lim inf H™ (S (ug, ) -

Let g €)1, +o0[ and let us set
GSBVP(A;R™) := GSBVP(4;R™) N LU (A;R™). (3.60)
We say that uy — u weakly in GSBVP(A;R™) if

U — U in measure
Vup ~ Vu  weakly in LP(A; M™*™) (3.61)
up — u weakly in LI(4; R™).

We will often use the following fact: if up — u weakly in GSBVqP(A; R™) and I C A is such that
HN=HT) < 400 and S(ug) C I up to a set of HY~!-measure zero for all &, then S(u) C T up to a set
of HN-1-measure zero.

Quasi-static evolution of brittle fracture by Francfort-Larsen [47]. Let Q be an open bounded
subset of RY with Lipschitz boundary, and let Op§ be a subset of 90 open in the relative topology. Let
g:1[0,1] — H'(Q) be absolutely continuous; we indicate the gradient of g at time ¢ by Vg(t), and the
time derivative of g at time ¢ by g(¢). The main result of [47] is the following theorem.
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Theorem 3.8.3. There ezists a crack T'(t) € Q and a field u(t) € SBV(Q) such that:

(a) T'(t) increases with t;

(b) u(0) minimizes
/Q | Vo2 dz + HY " S(w) U{z € 8pQ : v(z) # g(0)(z)})

among all v € SBV(Q) (inequalities on 8pS) are intended for the traces of v and g);

(c) fort >0, u(t) minimizes
/Q IVof? dz + HN =2 ([S(0) U {z € 809 : v(z) # 9(2) (@)}] \ T(1))

among all v e SBV(Q);

(d) S(u(®))U{z € 8pQ : u(t)(z) # g(t)(z)} CT(), up té a set of HN~-measure 0.

Furthermore, the total energy
Et) = ./9 |Vu(t))? dz +HN"V1(1’(t))
1s absolutely continuous and satisfies
5(7§)=£(0)+2/0t/QVu(T)Vg(T)dxdT

for every t € [0,1]. Finally, for any countable, dense set I C [0,1], the crack I'(t) and the displacement
u(t) can be chosen so that

r)= |J (Sr)u{zedp: u(r)(z)# g(r)(z)}).

Tel,r<t

The main tool in the proof of Theorem 3.8.3 is the following result [47, Theorem 2.1], which is useful
also in our analysis.

Theorem 3.8.4. Let Q C ', with 8Q Lipschitz, and let forr =1,...,4 (ul,) be a sequence in SBV (Q')
such that -

(1) S(uy) € Q;
(2) |Vul,| weakly converges in L*(SY'); and

(8) ul — u” strongly in L(Q'),
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where u” € BV(Q) with HN=L(S(u")) < co. Then for every ¢ € SBV(Q) with HN=1(5(¢)) < oo and
V¢ € LYQ;RY) for some g € [1, +0o0, there ezists a sequence (¢y,) in SBV(Q) with ¢ = ¢ on '\ Q
such that

(a) ¢n — ¢ strongly in L*(Q);
(b) Ve — V¢ strongly in L(Q'); and

(¢) 1= (18(8n) \ Uiy SR\ 18(9)\ Uiy S@))) — 0

In particular
i

lrn sup 727~ (swn) U 5(u;>> <N <S(¢>\ U sm) - (3.62)

r=1

The quasistatic crack growth of Dal Maso-Francfort-Toader [35].

We now describe the quasistatic evolution of brittle fractures proposed in [35]. They consider the case
of n-dimensional nonlinear elasticity, for an arbitrary n > 1, with a quasiconvex bulk energy and with
prescribed boundary deformations and applied loads, depending on time. Since we will approximate the
case n = 2, we prefer to introduce the model in this particular case. For more details, we refer the reader
to [35].

Let 2 be a bounded open set of R? with Lipschitz boundary and let Qg be an open subset of . Let
On§ C 89 be closed in the relative topology, and let OpQ := Q2 \ On§). Let 850 C v be closed in
the relative topology and such that O N 8sQ = §. In the model proposed in [35], Q5 represents the
brittle part of §2, and Op§ the part of the boundary on which the deformation is prescribed. Moreover
the elastic body 2 is supposed to be subject to surface forces acting on ds€2.

Admissible cracks and deformations. The set of admissible cracks is given by

R(Cp;OnQ) := {T': T is rectifiable , ' C (Qp \ v Q), H}(T') < +o0}.
Here AC B means that A C B up to a set of ﬂl—measure zero, and I rectifiable means that there exists
a sequence (M;) of C*-manifolds such that I'C |J; M;. If T' is rectifiable, we can define normal vector
fields v to I in the following way: if I' = {J, I'; with I'; C M; and I; NT; = @ for i # j, given z € T, we
take v(z) = v, (z), where vy, (z) is a normal vector to the C'-manifold M; at z. It turns out that two
normal vector fields associated to different decompositions | J, I'; of I' coincide up to their sign H! almost

everywhere.
Given a crack I, an admissible deformation is given by any function v € GSBV(Q;R?) such that

S(u)CT.

The surface energy. The surface energy of a crack I' is given by
£3(T) i= / K(z, V(rz)) @), (3.63)

where v is a unit normal vector field on I'. Here % : Q B X Rz — ]R is contlnuous, k(z,-) is a norm in R?
forallz € Op and for all z € Qp and v € R?

Kiv| < k(z,v) < Ka|v), (3.64)
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where K1, K» > 0. Notice that since k is even in the second variable, we have that the integral (3.63) is
independent of the orientation given to I', that is independent of the particular choice of the unit normal
vector field v.

The bulk energy. Let p > 1 be fixed. Given a deformation u € GSBVP(Q; R?) the associated bulk energy
is given by

W(Vu) = / W (z, Vu(z)) dz, (3.65)
Q
where W : Q x M?*? — [0, +00) is a Carathéodory function satisfying
for every z € Q: W(z,-) is quasiconvex and C* on M**2, (3.66)
for every (z,€) €  x M?*2: olV|€]P — b (z) < W(x,€) < alV|€P + b (). (3.67)

Here af’,a}” > 0, and b},bY € L}(Q) are nonnegative functions. Quasiconvexity of W means that for
all € € M?*2 and for all p € C(Q;R?)

w(e) < /Q W(E + Vo) dx.

If we denote by 8 W : Qx M2*2 — M?*2 the partial derivative of W with respect to £, since £ — W (z,§)
is rank one convex on M2*2 under the growth assumption (3.67) it turns out that (see for example [32])
there exists a positive constant al’ > 0 and a nonnegative function by € LP' (), with p’ := p/(p — 1)
such that for all (z,€) € Q x M?2X2 :

H

10W (2, )] < a6 + b (a). (3.68)

By (3.67) and (3.68) the functional W, defined for all & € LP(2; M?%2) by
W(®) := /QW(:C,@(:C))dm,
is of class C? on LP(€%; M2*2), and its differential W : LP (€ M2X2) — LF'(Q; M?%2) is given by
(BW(), 1) = /Q 0 W (2, 8(2))U(z) dz,  ®,T € LP(Q; M2¥2),

where (-,) denotes the duality pairing between the spaces L” (Q; M?*2) and LP(Q; M?*2). By (3.67)
and (3.68), there exist six positive constants o >0, >0,0 >0, 8Y >0 6Y>0 6" >0such
that for every ®, U € LP(Q; M?%2)

a’lle)s - By < W(@) < ol 2)h + 67,
[W(2), T)] < (3"l @lIE™" + 83" 21l (3.69)

The body forces. Let g > 1 be fixed. The density of applied body forces per unit volume in the reference
configuration relative to the deformation w at time ¢ € [0,T] is given by 8,F(¢,z,u(z)). Here F :
[0,T] x Q x R? — R is such that:

for every z € R*: (t,z) — F(t,z,2) is £ x £* measurable on [0,T] x €,

for every (t,z) € [0,T] x Q: z — F(t,, z) belongs to C*(R?),
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and satisfies the following growth conditions

al |zl = bl (t,z) < =F(t,z,2) < af'|2|? + bf (t, ), (3.70)
|8, F(t,z,2)| < af |29 + be (t, )

for every (t,z, 2) € [0, T]x @ xR?, with af > 0,af > 0andaf > 0, and where bf, 67 € C([0, T); L)),
v e C([o, T] L7 () are nonnegative functions, with ¢’ := g/(g — 1).
In order to deal with time variations, we assume also that for every (t,z) € [0,T] x R?

t
F(t,z,z) = F(0,z, 2) -l-/ F(s,z,z)ds for a.e. T € Q,
0
£
8. F(t,z,z) = 0,F(0,z, %) -!—/ 8,F(s,x,z)ds for a.e. T €9,
0

where F': [0,T] x © x R? — R is such that

forall z € R?: (t,z) — F(t,x,2) is L' x £* measurable on [0,7] x €,
for all (t,z) € [0,T] x Q: z — F(t,z,2) is of class C* on R?,

and satisfies the growth conditions

|B(t, 2, 2)| < af (@)=l + b5 (¢, 2),
6. F(t, 2, 2)| < af (@)|=1°7" + b1 (¢, )
for all (t,z,2z) € [0,T] x @ x R%. Here 1 < ¢ < g, and af,af € LX([0,T)), bf € L*([0,T); L* (%)),

bF e LY([o, T); L¥()) are nonnegative functions with ¢ := 5%1_‘
Under the previous assumptions, for every ¢ € [0, T'] the functionals

F () (u /F (t,z,u(z)) da, F(t)(u) = / E(t,z,u(z))dz (3.71)
Q

are well defined on L9(Q;R?) and L4(Q; R?) respectively. Moreover we have that F(¢) is of class C* on
L9(Q; R?), with differential 8F(¢) : LI(Q;R?) — s (Q R?) defined by

(BF (t)(u),v) =/982F t,z,u(z))v(z)ds,  uve IR,

where (-, ) denotes now the duality pairing between L7 (9;R?) and L9(0;R?). .7-"(75) is C! on LY(Q;R?)
with differential defined by

(BF () (u /ath w@)(@)ds,  uove LIQRY),

where (-, ) denotes the duality pairing between LY (Q;R?) and L4(Q;R?). For all u,v € L(;R?) and
for all ¢ € [0, T] we have

Ft)(w) u)+/ F(s)(u) ds,

(BF(t)(u),v) = (OF(0)(w),v) + /0 (OF (5)(u),v) ds. (3.72)
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Moreover we have that for every ¢ € [0,T] and for every u, v € LY(Q; R")

of |lullg - 65 < ~F®)(w) < of lullf + 5],

[OF (£)(w), v)| < (a3 [[ulld™ + B)lIvllq, (3.73)
IF@)(w) < of @)llull§ + 67 (2), (3.74)
[(8F (@) (w),v)| < (of @)Iuli§™" + B (£)lvlg, (3.75)

where o > 0, of >0,af >0, ,Bg: >0, 8 >0, B > 0 are positive constants, and of o, 8,87 €
L*([0, T]) are nonnegative functions.

The surface forces. The density of the surface forces on 850 at time ¢ under the deformation u is given
by 8.G(t, z,u(z)), where G : [0,T] x 850 x R? — R is such that
for every z € R? : (t,z) — Gt, :é, z) is £! x H'-measurable,
for every (t,z) € [0,T] x 8sQ : z — G(t, 7, 2) belongs to C*(R?),
and satisfies the growth conditions .
~af (t,z)|2| = 6§ (t, ) < —G(t, z,2) < af2|" + bC (¢, z),
18:G(t, 2, 2)| < af |2|"* + b5 (¢, 2),

for every (t,z,z) € [0,T] x 85 x R2. Here r is an exponent related to the trace operators on Sobolev
spaces: if p < 2, then we suppose that p <7 < %, while if p > 2, we suppose p < r. Moreover af > 0,
a$§ > 0 are two nonnegative constants, and a§ € L=([0, T; L™ (8sQ)), 6§, b € C°([0, T); L*(8592)), and
b§ € C°([0, T); L™ (852)) are nonnegative functions with 7/ := r/(r — 1)

We assume that for every (¢,2) € [0,T] x R?

t
G(t,z,2) = G(0,z, z) +/ G(s,z, z)ds for H*-ae. z € 85K,
0
t
8,G(t, z,z) = 8,G(0, z, 2) —I—/ 8,G(s,z,z)ds for H'-a.e. z € 859,
0

where G : [0, T] x 858 x R? — R is such that
for all z € R?: (t,z) — G(t,,2) is L' x H'-measurable,
for all (¢,z) € [0,T] x 8sQ : z — G(t,z, z) belongs to C*(R?),
and satisfies the the growth conditions
Gt ,2)| < af (¥)|=] + 5 (¢, ),
10:G(t,z,2)| < af (t)]2"" + 1§ (¢, 2)

for all (t,:u,lz) € [0,T] x 852 x R%. Here af, af € LY([0,T]), 5§ € L([0,T); L' (8s%)) and b§ €
LY([0,T); LT (85Q)) are nonnegative functions.
By the previous assumptions, the following functionals on L"(85; R?)

G(t)(u) = : QG(t, z,u(z))dH (z), G(t)(u):= j QG(t, z, u(z)) dH (z) (3.76)
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are well defined. For every ¢ € [0,T] we have that G(t) is of class C! on L7(85Q;R?) and its differential
is given by

(09 (t)(u),v) = o 0:G(t,z,u(z))v(z) dH' (z),  w,v e L7(8s%R?),

where (-, -) denotes now the duality pairing between L™ (85€2; R?) and L (8g; R?). Moreover, G(t) is of
class C* on L7 (8582 R2), and its differential is given by

(0G(1)(w),v) = | 8:G(t, 2, u(z))v(z) dH' ()

8502

for all u,v € L"(9sQ; R?). Finally we have
Gt)(u) = u)+/ G(s)(u)ds,  (BG(t)(u),v) = (35(0)(u),v>+/ (8G(s)(w), v) ds,
0

for every u,v € L™(9s%; R?).
Let 15 € 2\ 5 be open with Lipschitz boundary, and such that 8sQ C 9fg; the trace operator
from WP (Qg; R?) into L7(0Ss; R?) is then compact, and so there exists a constant g > 0 such that

lullrese < vs(l|Vullpas + llullpas) (3.77)

for every u € WP (Qs }R2) By the previous assumptions, we have that there exist six nonnegative
constants of, of, of, 49, 69, A5 and four nonnegative functions of, o9, 89, 89 € L}(|o, T1), such that

= afllullrasa — 65 < ~G(®)(w) < of Jully 550 + AT,
(8G() (w), )] < (o llull75eq + B)lvllrbs0, (3.78)
16 (W] < of @)llull a50 + 55 (1), (3.79)

(6G(2)(w), v)| < (o () lully 550 + B (D)0l 650

for every t € [0,T) and u,v € L™(850; R?).

Configurations with finite energy. The deformations on the boundary 8p(2 are given by (the traces of)
functions g € Wl’P(Q R?) N L9($; R?), where p, g are the exponents in (3.67) and (3.70) respectively.
Given a crack I' € R(Qp; On§2) and a boundary deformation g, the set of admissible deformations with
finite energy relative to (g,T") is defined by

AD(g,T) :={ue GSBV;T’(Q;RQ) :S(u) CT,u=g on 8pQ\ T},

where we recall that
GSBVP(Q;R?) := GSBVP(Q; R?) N LY( R?),
and the equality u = g on 9pQ \ I is intended in the sense of traces (see [35, Section 2]).

Note that if u € GSBVP(Q;R?), then W(u) < +oo and |F(¢)(u)| < +co for all t € [0, T]. Moreover
since I' € R(Qp; OnN) and S(u) CT, we have that u € Wh?(Q5; R2) N LI(Qs; R?) so that G(t)(u) is well
defined and |G(¢)(u)| < +oo for all t € [0, T]. Notice that there exists always a deformation without crack
which satisfies the boundary condition, namely the function g itself.

The total energy. For every t € [0,T], the total energy relative to the configuration (u,T") with v €

AD(g,T) is given by
E@)(w,T) = £°(t)(u) + £5(T), (3.80)
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where

E2(t)(u) = W(u) = F(£)(u) - G(t)(w), (3.81)

and W, F(t), G(t) and £° are defined in (3.65), (3.71), (3.76) and (3.63) respectively. It turns out that
there exist four constants f > 0, of > 0, g§ > 0, B¢ > 0 such that

E2(t)(w) = f (I Vullf + lufl®) - B¢, (3.82)
E2(t)(u) < af (I Vullp + uflg + lulfos0) + 6F,
for every ¢ € [0,T] and u € GSBVP(; R?).
The time dependent boundary deformations. We will consider boundary deformations g(t) such that
t—g(t) € AC([0, T WHP(Q;R?) N LY(Q;R?)),

so that
t— g(¢) € L*([0, T); WhP(Q; R?) N L(; R?)),

and
t— Vg(t) € (0, T); LP(S M?¥2)).

Convergence of sets and dispacements. Dal Maso, Francfort and Toader defined a variational notion of
convergence for sets in RY which they called ¢?-convergence. With respect to this notion they proved
the associated transfer of jump theorem, involved in the existence result for a quasi static crack growth.

Definition 3.8.5. Let (Kp)nen and K be subsets of . We say that Kp oP-converges in Q) to K if the
following hold "

(1) if un — u weakly in SBV?(Q) with S(up) C Kp,, then S(u) C K;
(2) K = S(u) and there ezists un — u weakly in SBVP(Q) with S(un) C Kn.
In the same paper the authors proved the following compactness property.
Theorem 3.8.6. If HN-1(K,) < C, then up to a subsequence K, — K in the sense of oP -convergence.

The next theorem gives a compactness and lower semicontinuity result with respect to weak conver-
gence in GSBVP(Q,R?) of the displacements.

Theorem 3.8.7. Let ty € [0,T] with tx — t, and let (ug) C GSBVP(4R?), C €]0;+00| such that

S(uk) CQp and
E2(tk) (ur) + E°(S(w)) < C,

where E® and £° are defined as in (3.81) and (3.63). Then there ezists a subsequence (ug, Jnen converging
to some u weakly in GSBVP(Q;R?) such that S(u) CQp,

EM(t)(w) < lminf E%(tk, )(uy,)  and  E°(S(w)) < liminf £°(S (s, )
Proof. By (3.82) and (3.64), we have that there exists C’ €]0, +oo] such that
Vurlly + lluellg +H (Stur)) < C'.

Then we can apply Theorem 3.8.2 with g(z,ur) = |u|?, obtaining a subsequence (ug, )ren and u €
GSBV?(; R?) such that (3.59) holds: in particular we may assume that Uk, — u pointwise a.e.. We
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have ug, — u strongly in L*(€;R?), and by Fatou’s Lemma we have that u € L¢(;R?) so that u €
GSBVP(Q;R?). We conclude ug, — u weakly in GSBV(Q; R?). By [3, Theorem 3.7] we have that

£°(S(u)) < liminf £*(S(ur,)),

and by [55] we have that
/W(m, Vu) d:cSIiminf/ W (z, Vuy, ) dz.
Q b Ja

Since by assumption the functions z — F(0,z,z) and z — F(s,z, z) are continuous for all s € [0,T] and
for a.e. z € §2, and

F(tin, @t (2)) = F(0, 3, u (2)) + / ™ B(s, 2, up (2)) ds,

we have that F(ty, ,, uk, (z)) — F(¢,2,u(z)) for a.e. z € Q. By Fatou’s Lemma (in the limsup version)
we deduce

limsup/F(tkh,z,ukh(m))dm_S/F(t,z,u(z))dax.
h Q Q

Since (uk, )|q is bounded in WP (Qg; R2) N L4(Qs; R?), and the trace operator from WP (Qg; R?) into

L™(Qs;R?) is compact, we get
hzn g(tkh ) (ukh) =G (t) (“)7

and so the proof is thus concluded. . O

The ezistence result. Let Tg € R(5; OnvQ) be a preexisting crack. The next Theorem proved in [35]
establishes the existence of a quasistatic evolution with preexisting crack I'p.

Theorem 3.8.8. Let Tg € R(Qp; InQ) be a preexisting crack. Then there exists a quasistatic evolution
with preezisting crack Iy and boundary deformation g(t), i.e., there ezists a function t — (u(t),T'(t))
from [0,T] to GSBVP(Q; R?) x R(Qp; Oy Q) with the following properties:

(a) (u(0),T(0)) is such that
£(0)(u(0),T(0)) = min{£(0)(v,T") : v € AD(g(0),T), o CT};

(b) u(t) € AD(g(t),T(t)) for all t € [0, T);
(c) irreversibility: To CT'(s)ET(t) whenever 0 < s <t < T
(d) static equilibrium: for all t € [0,T) o
E(£)(u(t), T(t)) = min{€(t)(v, T} : v € AD(g(t),T),T(t) €T}

(e) nondissipativity: the function t — E(t) == E(t)(u(t),l"(t)) is absolutely continuous on (0,T], and
for a.e. t€[0,T] ‘ .

B(t) = (OW(Vu(t)), Va(t)) = (OF (1)(u(t)), 9(2) - F (B)(u(®) - (09 (2)(u(t), §(t)) - Q(t)(ugg)gg)



Chapter 4

A T-convergence approach to
stability

Introduction

In this chapter ! we provide a new approach to the problem of stability of unilateral minimality properties
based on I-convergence, which permits to treat also the case of varying volume and surface energies.
Finally we give an application to the study of crack propagation in composite materials. Our approach
is based on the observation that the problem has a variational character. In fact, considering for a while
the case of fixed energies f and g with f convex in £, we have that if (un, Kyn) is a unilateral minimizer
for the energy (1), then u, is a minimum for the functional

Ealu) i= /ﬂ f(z, Vo(z)) dz + /S oz, v) dH" " (z). (4.1)

S(v\Kn
Then the problem of stability of unilateral minimizers can be treated in the framework of I'-convergence
which ensures the convergence of minimizers. In Section 4.3, using an abstract representation result by
Bouchitté, Fonseca, Leoni and Mascarenhas [11], we prove that the I'-limit (up to a subsequence) of the
functional £, can be represented as

= x, Vu(z T Az, v N_lx 2
sw»-/af( Vo(z))d +[3Mg (z,v) dHV =1 (z), (4.2)

where ¢~ is a suitable function defined on {2 X SV-1 determined only by g and (Ky)nen, and such that
g~ < g. If we assume that u, — u weakly in SBV(Q), then by I'-convergence we get that u is a minimizer
for £. Suppose now that K is a rectifiable set in Q such that S(u) C K and

g~ (z, vk (x)) = 0 for HN " P-ae. z € K. (4.3)

1The results presented in this chapter are contained in Giacomini-Ponsiglione [52].
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Then we have immediately that the pair (u, K) is a unilateral minimizer for f and g because for all pairs
(v,H) with S(v) C H and K C H we have

/f(x,Vu(m))dz-—-E(u)gé’(v)z/f(z,Vv(m))dz+/ g~ (z,v)dHN 1
0 Q S(v)

=/Qf(m,V’u(z))dz+/;(v)\Kg“(m,u) S/Qf(a:,Vv(a:))da:-l'/H\K g(z,v).

The rectifiable set K satisfying (4.3) is provided in Section 4.4, where we define a new variational notion
of convergence for rectifiable sets which we call o-convergence, and which departs from the notion of
oP-convergence given in [35]. The o-limit K of a sequence of rectifiable sets (Kp)nen is constructed
looking for the I-limit ™~ in the strong topology of L1(§2) of the functionals

N-1
e () = {H (S()\ Kn) u € P(Q), 4)
400 otherwise,
where P() is the space of piecewise constant function in Q (see (4.19)). Roughly, the o-limit K is
the maximal rectifiable set on which the density h™ representing H~ vanishes. By the growth estimate
on g it turns out that K is also the maximal rectifiable set on which the density g~ vanishes, so that
K is the natural limit candidate for K, in order to preserve the unilateral minimality property. The
definition of o-convergence involves only the surface energies H,;, and as a consequence it does not
depend on the exponent p and it is stable with respect to infinitesimal perturbations in length (see
Remark 4.4.8). Moreover it turns out that the o-limit K contains the oP-limit points of (K )nen, so that
our I'-convergence approach improves also the minimality property given by the previous approaches.
Our method naturally extends to the case of varying bulk and surface energies f, and g,, and this
is indeed the main motivation for which we developed our I'-convergence approach. The key point to
recover effective energies f and ¢ for the minimality property in the limit is a I'-convergence result for
functionals of the form .

/ Falz, Vg (z)) dz + / © galz,v) dHY (). (4.5)
Q S(un)

In Section 4.3, we prove that the I-limit has the form’
[t vua)da+ [ glaianta),
Q S(u) ’

where f is determined only by (fr)nen, and g is determined only by (gn)nen, that is no interaction occurs
between the bulk and the surface part of the functionals in the I'-convergence process. A result of this
type has been proved in the case of periodic homogenization (in the vectorial case, and with dependence
on the trace of u in the surface part of the energy) by Braides, Defranceschi and Vitali [13].

‘We notice that an approach to stability in the line of Dal Maso, Francfort and Toader in the case of
varying energies would have required a Transfer of Jump Sets for fn, gn and f, g, which seems difficult to
be derived directly. Our I'-convergence approach also provides this result (Proposition 4.5.4).

In section 4.7 we deal with the study of quasistatic crack evolution in composite materials. More
precisely we study the asymptotic behavior of a quasistatic evolution ¢ — (un(¢), Ky (t)) relative to the
bulk energy f. and the surface energy gn. Using our stability result we prove (Theorem 4.7.1) that
t — (un(t), Kn(t)) converges to a quasistatic evolution ¢ — (u(t), K (t)) relative to the effective bulk and
surface energies f and g. Moreover convergence for bulk and surface energies for all times holds. This
analysis applies to the case of composite materials, i.e. materials obtained through a fine mixture of
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different phases. The model case is that of periodic homogenization, i.e. materials with total energy
given by

Ee(u, K) ::/Qf(fg”-,vu(x)) dm+/Kg(-§,u> dHN"Y(z),

where € is a small parameter giving the size of the mixture, and f, g are periodic in 2. Our result implies
that a quasisistatic crack evolution t — (u.(t), K:(¢)) for € small is very near to a quasistatic evolution
for the homogeneous material having bulk and surface energies fhom and ghom, which are obtained from
f and g through periodic homogenization formulas available in the literature (see for example [13]).

The chapter is organized as follows. In Section 4.1 we prove a blow up result for I'-limits which will
be employed in the proof of the main results. In Section 4.2 we prove some representation results which
we use in Section 4.3 where we deal with the I'-convergence of free discontinuity problems like (4.5). The
notion of o-convergence for rectifiable sets is contained in Section 4.4, while the main result on stability
for unilateral minimizer is contained in Section 4.5. In Section 4.6 we prove a stability result for unilateral
minimality properties with boundary conditions which will be employed in Section 4.7 for the study of
quasistatic crack evolution in composite materials.

4.1 Blow-up for I'-limits
Let 1 < p < +co and let f: Q x RV — [0, +oo[ be a Carathéodory function such that

a1(z) + alél? < f(z,€) < ax(z) + BIEP, (4.6)
where a1,a2 € L*(Q) and o, 8 > 0. Let us assume that

& — f(z,€) 1is convex for a.e. z € Q.

Let B; be the unit ball in R” with center 0 and radius 1. The following blow up result in the sense of
T'-convergence holds.

Lemma 4.1.1. Let (pg)ren be a sequence converging to zero. Then for a.e. z € Q the functionals

Jp, @+ oy, Vuly)) dy ue WhP(By), (47)
400 . otherwise in L*(B1) '

Fi(u) := {

T'-converge in the strong topology of Ll(Bl) to the functional

_ )Jm flz, Vuly) dy u E.Wl’p(Bl),
Flu) = {-FBOO - otherwise in L*(Bi). (48)

Proof. By Scorza-Dragoni Theorem there exists a sequence of compact sets (Kp)neny such that
[\ K| — 0 and such that f restricted to Ky, x RY is continuous. Let us define

N =0\ {z eQ: thereexists n € N such that x is of density 1 for K,}. (4.9)
We clearly have M| = 0, and every z € Q\ NV is a Lebesgue point for f(-,€) for every £ € RV,

Let us fix z € @\ N with z € K, for some n € N, and let us begin with the proof of the I-limsup
inequality. We can prove it for a dense set in WP(By), for example for the piecewise affine functions.
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So let u be piecewise affine, and let Vu(y) € {£1,...,&m} for all y € By. Since z is of density 1 for K,
and f is continuous on Ky x RY, we have that for all € > 0

{y € By : |f(z + pry, &) — flz,&)| > €} — 0.

Then considering as recovering sequence ug = u, we get
limsup | f(@+pry, Du)dy< | flz, Du)dy,
k—+o0c0 JB; By

so that the inequality is proved.

Let us come to the I'-liminf inequality. Let (ux)ren be a sequence in L!(B; ) such that uy, — u strongly
in LY(B;). We can assume that supgey Fi(us) < +00, so that Vu, — Vu weakly in LP(By; RY). Let
M > 0 be fixed, and let § be such that |{|Vu| > M}| < é. Let us consider

M (y) = Vug(y) if [Vug(y)l < M,
0 otherwise,

and let us denote by ® its weak limit (up to a further sﬁbsequence) in LP(By; RY). Since by assumption
on z we have that for alle > 0

Jm {y € By : |f(z + pry, 2 () — f2, @) ()| > e} = 0,
we obtain

hmmf/ flz + pry, Vur(y)) dy >hn11nf/ 7 :n—l-p;cy,CPM( )) dy — e(6)

k—r+o00

2tmint [ S0 W) dy-20) 2 [ S 0¥ @) dy - 206),

where &(6) — 0 as § — 0. Letting M — +oo, we get 6 — 0 and ®™ — Vu weakly in LP(B;,R"). The
result follows by lower semicontinuity since f(z,-) is convex. |

Let us consider now f, : O x RY — [0, +oo[ Carathéodory function satisfying the growth estimate
(4.6) uniformly in n. Let us assume that for all A € A(Q) the localized functionals

Wwhe(Q
o) o [Tl V@) e weWio(@), w0
+o0o - - otherwise.
I-converge with respect to the strong topology of L}(Q) to
ue Whr(Q
Flu, A) = {fA 2, Vu(z))dz u € WHP(Q), (4.11)
otherwise

for some Carathéodory function f which satisfies estlmate (4. 6) Using a diagonal argument we may
conclude that the following theorem holds.

Theorem 4.1.2. Let (pi)ken be a sequence converging to zero. Then for a.e. © € Q there exists (ng)ken
such that the functionals

Fk(‘u) — fB; fnk (CL‘ + PLY, vu(y)) dy u € Wl’p(Bl)) (4 12)
' “+oo otherwise in L'(Bj) '
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T-converge in the strong topology of L*(By) to the functional

( fBl Z V‘u, )dy UGWIP(BI) (4 13)
+00 otherwise in L'(By). '

Remark 4.1.3. In the case of periodic homogenization, i.e. in the case in which fn(z,€) := f(nz, €)
with f periodic in z, it is sufficient to choose ny in such a way that nypr — -+oo0. In fact for z = 0 we

have
)i {1, SO Tl we Wio(53)
otherwise in L!(By)
which still I™-converges to (see for instance [33])

Flu) o= { I3 Trom(Vuv)) dy - w € WP(By),
" | +oo otherwise in L!(B;).

In the rest of this section we prove a regularity result for the density f defined in (4.11) under
additional hypothesis on fn which will be employed in Section 4.7. Let us assume that for a.e. © € §

(1) fa(z,-) is convex;
(2) falz,-) is of class C;
(8) for all M > 0 and for all £3, 2 such that |6} < M, ]5%] <M, |€2 — €2] — 0 we have
Ve fula,€2) = Vefalz, )] = 0. (414

Notice that for instance fn(z,€) = an(z)|¢|P with o < an(z) < F satisfies the assumptions above. Notice
moreover that by semicontinuity of I'-limits £ — f(z,£) is convex for a.e. z € Q.
We need the following lemma which is a straightforward variant of [35, Lemma 4.9].

Lemma 4.1.4. Let (X, A, u) be a finite measure space, p > 1, N> 1, and let H, : X x RN — R be a
sequence of Carathéodory functions whzch satysfies the followmg properties: there exist a positive constant
a >0 and a nonnegative function b € L (X)), with p’ = p/(p— 1) such that

(1) |Hn(z, &)] < al€|P~1 +b(z) for everyz € X, £ e RV

(2) for all M > 0 and for a.e. z € Q, for all €},€2 such that |¢5]| < M, |EX] < M, €2 — €2] — 0 we
have o
|Hn(z,63) - Hn(%fi)] —0.

Assume that (®n)nen s bounded in LP(X,R") and that (Un)nen converges to O strongly in LP(X,RN).
Then
J @, 80(2) + Bna)) = Ha(z, 81 ()10(a) du(e) — o, (4.15)
for every & € LP(X,RY). -
The following regularity result on f holds.

Proposition 4.1.5. For a.e. x € Q the function £ — f(z,£) is of class CL.
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Proof. Let z € Q\ N, where N is defined in (4.9). Let p — 0 and let (ng)ren be a sequence such that,
according to Theorem 4.1.2, (F;)zen I-converges with respect to the strong topology of L!(B;) to F.

Let (¢x)ken be a recovering sequence for the affine function y — € -y with € € RY. Up to a further
subsequence, we can always assume that there exists @ € RV such that

E}H [ Vehulo+ o, Vorw) dy — v, (4.16)

Let ¢; \, 0 and let n € RY. By the convexity of f,, in the second variable, we have

/B fo (@ + 08, VBk(Y) + £57) = Fon (& + 13, Vebi(v)) dly

<t i Ve fr (T + pry, Vor(y) + timndy.  (4.17)

By I'-convergence we can find k; such that

1 1
--< —/ Ve fr, (& + iy, Vo, () + t57)0 dy,
J = |Bil /g, 4

iy
so that we have
t:n) — 1
lim sup f(z, €+ t5m) = (2,6) < —=limsup | Ve¢fa, (@ + pr;y, Vor, (y) + tim)n dy. (4.18)
jmtoo t [B1] jtoo Jp, Y

Notice that by Lemma 4.1.4 and by (4.16) we have that .

Jim [ Vet (et ou, Vo ) + timimy

= lim | Veln, (@ + pryy, Vory () dy = | Baf,
and so for every subgradient ¢ of f(z,-) at £ by (4.18) we have
< imenp L6+ 11) = 7,8
j—r+oo 2

< ym.

We deduce that ¢ = 1, so that f(z,-) is Gateaux differentiable at ¢ with V¢ f(z,£) = +: since f(z,-) is
convex, we get that f(z,-) is of class C*. O

Remark 4.1.6. Notice that an hypothesis of equiuniform continuity for (Ve fn(z,€))nen like (4.14) is
needed in order to preserve Cl-regularity in the passage from f, to f: in fact if € — f,(€) are smooth
convex functions uniformly converging to a nondifferentiable convex function £ — f(£), the associated
integral functionals I'-converge, and this provides a counterexample.

4.2 Some representation lemmas

We indicate by P(Q) the family of sets with finite perimeter in 2, that is the class of sets E C Q such
that 1z € BV(). In view of the applications of Sections 4.2, 4.3 and 4.4, it will be useful to look at
P(f2) in term of functions, that is to use the following equivalent description:

P(Q) = {ue BV(Q) | u(z) € {0,1} for ae. s € O}, (4.19)
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In order to take into account a boundary datum, we will use the following notation: if 8pQ C 85,
then for all ©, g € BV (Q) we set

S§9(u) ;= S(u)U{z € 9pQ : u(z) # g(z)}, (4.20)
where the inequality on dpQ is intended in the sense of traces. Moreover, we set for all z € S(u)
[ul(z) = v (z) ~ u™ (z),

and for all z € dpQ) we set [u]{z) := u(z) — g(z), where the traces of u and g on 8 are used.
Let a1,a2 € L}(Q2), 1 < p < 400, and let @, f > 0. Forall n € Nlet f,, : @ x RN — [0,+00[ be a
Carathéodory function such that for a.e. x € Q and for all £ € R

a1(z) + al€f’ < fn(z,€) < az(z) + BIEP, (4.21)

and let gn : @ x SV~ — [0, +co[ be a Borel function such that for H¥N-l-ae. z € Q and for all
veSN-li={neRV:|g =1}
a < gplz,v) < 6. (4.22)

In Section 4.3 we will be interested the functionals on L*(2) x A(Q)

L4 Folz, Vu(z)) dz + fAr‘l(S(u)\Kn) gn(z,v)dHN 1 (z) w € SBVP(4),

i (4.23)
+oo otherwise,

Enlu, A) = {

where A(Q) denotes the family of open subsets of , and (K )nen is a sequence of rectifiable sets in Q

such that
HN-YEK,) < C, (4.24)

In particular we will be interested in the I-limit in the strong topology of L(Q) of (£,(:, A))nen for every
A € A(Q). To this extend we consider the functionals F, * L(2) x A(2) — [0, +o0]

Lp
Falu, A) = {fA Snle Vula) do u € WP (4), (4.25)
+0c0 : otherwise,
and the functionals G : P(Q) x A(Q) — [0, +o0]
G (u, A) :=/ gn(z,v) dHY 1 (z) » (4.26)
AN(S(u)\Kn)

defined on Sobolev and piecewise constant functions with values in {0,1} (see (4.19)) respectively, and
we will reconstruct the I-limit of (&n(-, A))nen through the I-limits of (F, (-, A))nen and (G5 (-, A))nen.
For the results of Section 4.5, we will need also the functionals G : P(Q) x A(Q) — [0, +-00[

Gn(u, A) :=/ gn(z,v) dHN "1(z) (4.27)
ANS(u)
In this section we provide some integral representation results for the I-limits of the functionals
Fn, G ,Gn and &y. In the following, for every functional # defined on L () x A(Q) or on P(Q) x A(Q)
with values to [0, +oc], for every A € A(Q) and 9 € L'(A) we will use the notation

my(A, )= inf {H(u,A):u=1vina neighborhood of A} (4.28)
u€L(Q) .
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Moreover for all z € RY, a,b € R and v € SV~ we consider Ug,qa,bw : B1(z) — R defined by

b if (y—z)v >0,

4.29
a if (y—z)v <0, (4.29)

um,a,b,u(y) = {

where B;(z) is the ball of center z and radius 1.
As for the functionals F,, the following I'-convergence and representation result holds.

Proposition 4.2.1. There exists F : LY(Q) x A(Q) — [0, +o0] such that up to a subsequence the
functionals F,, (-, A) T-converge in the strong topology of L*(Q) to F(-, A) for every A € A(Q). Moreover
for all u € WHP(Q) we have that

Flu, A) = /A F(z, Vii(z)) dz ‘ (4.30)
uhere (By(a), €z — 2)
= limsup 2\ Zhe F 7 T .
S, = limoup HEE B GE L, (4.31)

myz is defined in (4.28), ond wy is the volume of the unit ball in RY. Finally f is o Carathéodory
function satisfying the growth conditions (4.21).

Proof. Let us consider the restriction £, of Fn to LP(Q) x A(Q). Then in view of the growth estimate
(4.21), by [33] we deduce that there exists F : LP(Q2) x A(Q) — [0, +00] such that up to a subsequence
Fn(-, A) T-converges in the strong topology of LP(2) to F (-, A) for every A € A(Q).

For every u € L}(Q) and A € A(R) let us set

F(u, A) := limsup F(Tar(u), A)
M—+o00 .

where Tys(u) := (uV —M) A M. Let us prove that along the same subsequence Fp(-, A) I-converge
in the strong topology of L*(Q) to F(-, A) for every A € A(Q). As for the I-liminf inequality, let us
consider a sequence {Un)nen in L(Q) with u, — u strongly in L*(Q2). Then for every M > 0 we have
that Tas(un) — Tar(u) strongly in LP(Q), so that for every A € A(Q) we have
F(Tar(w), A) < liminf Fr(Tas (un), A) < lim 1nf.7: (tn, A).
n—+-+co . n—+00
Taking the limsup for M — +oo, we get that the I-liminf inequality holds.

Let us come to [-limsup inequality. It is sufficient to consider u € L>®(Q), since L°(Q2) is a subset
of L1(£)) dense in energy with respect to F(-, 4) for every A € A(Q). A recovering sequence for u with
respect to Fp (-, A) and the strong topology of LP(Q) is a good recovering sequence for Fy (-, A) and the
strong topology of L(€).

Let us consider the restriction of F to W1?(Q) x A(Q). We have that

(F1) for all w € WHP(Q), F(u,-) is the restriction to A(Q) of a Radon measure;
(F2) Flu,A) = F(v,A) if u=wvon 4;

(F3) Fu+C, A) = F(u, A) for every constant C;

(

)
)
F4) F(-, A) is lower semicontinuous with respect to L' convergence;
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(F5) we have the growth estimate

/ 01(2) dz + o[ Vull’, < Flu, A) < / az(z) dz + BVl
A A

We can thus apply the representation result by Buttazzo and Dal Maso [23] (see also [11, Theorem 2])
and deduce that the representation results (4.30) and (4.31) hold. O

Let us come to the functionals G, defined in (4.27). The following proposition holds.

Proposition 4.2.2. There exists G : P(Q) x A(Q) — [0, +oo| such that up to a subsequence Gn(-, A)
T'-converge in the strong topology of L*(Q) to G(-, A) for all A € A(Q). Moreover for all u € P(2) and
A € A(QY) we have that

G(u, A) :/ g(z,v)dz (4.32)
ANS(u)
with .

mg(B,(z), uz,01,u) (4.33)

bl

z,v) = limsu
9(@v) p_qo+P wn-1pN 1

where mg is defined in (4.28) and ug0,1,, 45 as in (4.29).

Proof. The existence of G : P(Q) x A(2) — [0, +o0o[ such that up to a subsequence Gy (-, A) I'-converge
in the strong topology of L*(Q2) to G(-, A) for all A € A() has been proved by Ambrosio and Braides [5,
Theorem 3.2]. By the growth estimate on g, we get that G satisfies the following properties:

(G1) for all u € P(§2), G(u, ) is the restriction to A(f2) of a Radon measure;
(G2) G(u, A) =G(v,A) ifu=von 4
(G3) 9l

(G4) we have the growth estimate

oHVL(S(u) N A) < Glu, A) < BHVTL(S (W) N A).

g
g

u
-, A) is lower semicontinuous with respect to the strong topology of L(Q);

Then the representation formulas (4.32) and (4.33) come from ({11, Theorem 3]. O
Let us come to the functionals G, defined in (4.26). The following proposition holds.

Proposition 4.2.3. There ezists G~ : P(Q2) x A(Q}) — [0, +o0[ such that up to a subseguence G, (-, A)
T-converge in the strong topology of L*(Q) to G~ (-, A) for all A € A(Q). Moreover for all u € P(Q) and
A € A(Q2) we have that o .
0w, A)= [ - ¢ (a,)dHY (o) (434
-JANS(u)
with ) ‘
mg- (BP(:Z:)’ umyozlvu) (435)

?

g~ (z,v) :=limsu P
( ? ) p_}o“-p L'-)N-le 1

where mg- is defined in (4.28) and uz o1, s as in (4.29).

Proof. By the growth estimate (4.22) on g, by the result of Ambrosio and Braides [5] there exists

G~ : P(Q) x A(Q) — [0, +00] such that up to a subsequence (G; (-, A))nen [-converges in the strong
topology of L() to G~ (-, A) for every A € A(Q), and such that the following properties hold:
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(671) for allu € P(2), G~ (u, ") is the restriction to A(Q) of a Radon measure;
(G72) G (u,A) =G~ (v,4) if u=1v on A
(G73) G~ (-, A) is lower semicontinuous with respect to the strong convergence in LY(Q);
(G~4) we have the growth estimate
0<G7 (u,A) < BHNH(S(w) N A).

The integral representation formula (4.34) for G~ (-, A) is given by the result of Ambrosio and Braides
in view of properties (G71)-(G™4) (see also Bouchitté, Fonseca, Leoni and Mascarenhas [11]). For the
sequel we need also the explicit formula (4.35) for the density g~ which is not given directly by the results
of [5] and [11] because of a lack of coercivity from below. So in what follows we modify the concrete
approximation G (-, A) for G~ (-, A) in order to get the coerciveness we need, and to obtain in the end
formula (4.35).

Let us consider the functionals

O:u, )= [ gila )i ) (4.36)
ANS(u) .
where .
. € ifze Kn,v=uvg, (z),
= 37
5alev) {Qn(m, v) otherwise. (4.37)

Let us denote by G°(-, A) the I'-limit (up to a subsequence) ofug;(, A) for all A € A(Q). Since G¢ is such
that for e small ,
eHNH(S(u) N A) < G5 (u, A) < BHNTL(S(u) N A),

by the representation result of [12] we have that
o(wA)= [ glep)dn ),
S(u)nA
where g° : @ x SN71 — [0, +-00] is given by

: mg‘(BP(x);uz01u)
#(z,v) :=limsu et 4.38
g ( ) p——»O"‘p wN—lp{V—l ( )

We have for all u € P(Q) and 4 € A(Q) .
63w, 4) < G (1, A) +pnl4), -
where up, := HN 1K, so that for n — +oo by I’ —céhvergence; ‘we have
0°(u A) < G (s ) +epld), | (4.39)

where p is the weak™ limit of (iun)nen (up to a subsequence) in the sense of measures. Notice that (see
for instance {7, Theorem 2.56]) up to a set of HV~-measure zero we have
pBole)) (wa0)

H(z) :=limsup —FF~ < 400
( ) p—0+F wN—le_l
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Let us prove that for HVl-a.e. z € Q we have

g (z,v) = g%ge(w, v), (4.41)

where ¢~ (z,v) is defined in (4.35). In fact, notice that {g°} is monotone decreasing in & and that
9~ < g°foralle >0, so that for all z and v

9™ (z,v) < lim ¢*(z,v).
E

Let us set for every p > 0,z € Q and v € §V-1

(B (x), Uz,0,1 u)
wy_1pV -1

mge (B, (), Uz,0,1,0)
wy-1pN-1

me(z,v) =

and m,(z,v) =

Then by (4.39) we have that
wB (ff))

mi(,v) S my(a,v) +e 220

Taking the limsup for p — 07 we have
9°(z,v) < g7 (z,v) +eH(z),
and so letting € — 0 we obtain for HN"1-a.e. z € Q
gig‘l) 9 (m,v) < g~ (z,v)

which gives (4.41). Since for all u € P(2) and A € A( ) we have G%(u, A) = G~ (u, A) as € — 0, we
conclude that .

6™ (u, 4) = lim G%(u, 4) = Iim o (z,v) dHN-l(x) =/ o (@) dHN N (z),  (4.42)
=0 /su)na S(u)nA
so that the representation formulas (4.34) and (4.35) hold. O

Remark 4.2.4. It is immediate to check that if we replace P(Q) in Proposition 4.2.3 by the space
FPop(Q) = {u € BV(Q) : u(z) € {a,b} for ae. z € Q}, with a,b € R, then the I-limit in the strong
topology of L*(2) of G, (-, A) can still be represented by the density g~ defined in (4.35).

Let us finally come to the functionals £, defined in (4.23). Using the growth estimates (4.21) and
(4.22) on fp, and gy (see [13]), there exists £ : L1(Q) x A(Q) — [0, +oo[ such that up to a subsequence
&En(:, 4) I-converge in the strong topology of L*(Q) to £(:, 4) for all A € A(Q). The restriction of the
functional £ to SBV?(Q) x A(Q) satisfies the following properties:

(€1) for all u € SBVP(Q), £(u,-) is the restriction to .A(Q) of a Radon measure;
(€2) E(u, A) =E(v, A) if u= v on A;

(€3) &(-,A) is lower semicontinuous with respect the strong tepology of L(€);
( .

£4) we have the growth estimate

o / [Vl dz < £(u, A) < / VP dz 4 BHN1(S(w)).
A A S
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For every € > 0 let us set

£.(u, A) = E(u, A) +s/ 1 |[u]] dHV 1,
S(u)nA

We have that & satisfies the following properties:
(E.1) for all u € SBVP(Q), & (u,") is the restriction to A(Q2) of 2 Radon measure;

(E:2) Ec(u, A) = E(v, A) if u=v on A; .
(E.3) E.(-, A) is lower semicontinuous with respect the strong topology of L (Q);
( .

E:4) we have the growth estimate

/al dr +¢ (/ |Vu|pdm+/ 1+Q[u]|dHN-1> < Ee(u, A)
A A S(u)nA

§/a2dx+ﬁ</ |Vu|pdm+/ 1+|[u][dHN’1>.
A A S(u)nA

Then by the result of Bouchitté, Fonseca, Leoni and Mascarenhas we get that
o )= [ foloVula)do+ [ ghmu (@) ut@), v e)
A ANS(u)

with f&, and g&, satisfying the following formulas

€ : mgs: By(z :g(z —Z
foolz,€) = h;iitip '( pf)N)pN )), (4.43)
e i (By(@), s i)
e . me, T), Ug,abyv .
go(@a,b,v) = h;i%g_p u;_l prI : (4.44)

where mg, is defined in (4.28) and ug,ap,v is as in (4.29).

Notice that 5, and g5, are monotone decreasing in ¢, and that (-, A) converges pointwise to £(:, A)
as e — 0 for all A € A(Q). We conclude that the representation result for £, implies a representation
result for the functional £.

Summarizing we have that the following proposition holds.

Proposition 4.2.5. There ezists £ : L'(Q) x A(©) — [0, +00] such that up to a subsequence Enl(-, A)

T-converges in the strong topology of L(Q) to E(-, A) for every A € A(Q). Moreover, for every u €
SBVP(Q) and A € A(Q) we have that

E(u,A) = / foolz, Vu(z)) dz +/ goo(z, 0™ (), ut (z), v) dHV 1 (z)
A ANS(u)
with ‘
fool,€) = lim f5,(2,€6)  goo(®,a,b,v) = lim g5 (z, 0, b, v), (4.45)
where f5, and g5, are defined in (4 43) and (4.44) respectively. -

Remark 4.2.6. In the rest of the chapter we will often make use the following property which is implied
by the fact that £(u, ) is a Radon measure for every u € SBVP(). If (un)nen is a recovering sequence
for u with respect to £n (-, ), then (uy)nen is optimal for u with respect to £r(:, A) for every 4 € A()
such that the measure £(u, ) vanishes on JA. -
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4.3 A T'-convergence result for free discontinuity problems

The main result of this section is the following I'-convergence theorem concerning the functionals &,
defined in (4.23).

Theorem 4.3.1. Let (Kp)nen be a sequence of rectifiable sets in Q such that HN-Y(Ky) < C for all
n € N. Let us assume that for all A € A(Q) the functionals Fpn(-, A) and Gz (-, A) defined in (4.25)
and (4.26) I'-converge in the strong topology of L*(R) to F(-, A) and G~ (-, A) respectively. Then for all
A € A(Q) the functionals E,(-, A) defined in (4.23) T-converge in the strong topology of LYQ) to £(, A)
such that for all u € SBV?(Q) and A € A(Q)

E(u, A) = / f(z, Vu(z)) dz + / g™ (z,v) dHV () (4.46)
A ANS(u) .
where f and g~ are the densities of F and G~ according to PropositionS 4.2.1 and 4.2.8.

Proof. We know that up to a subsequence the functioﬁa.ls En(+, A) T-converge in the strong topology of
L'(Q) to a functional £(-, A) for every A € A(R), and that by Proposition 4.2.5 for all u € SBVP(Q) and
for all A € A(Q) we have

= z,Vu)dx solT, u™ u (), v N”lm
5(u,A)~/Afoo( V) d +/S<umg (2,u™ (2), u* (z), v) dHV =1 (3),

where fo, and goo satisfy formula (4.45). The theorem will be proved if we show that for all u € SB VP(Q)
we have

(a) for a.e. z€Q o ]
Joo(m, Vu(z)) = (=, Vu(z)); (4.47)

(b) for HNV=1-ae. z € S(u)
goo(x; u” (Z‘), u+(m), VS(u) (:IJ)) =g ("E) Vs(u) (.27)), (448)
where vg(y)(z) is the normal to S(u) at z.
The proof will be divided into four steps.
Step 1: foo(x, Vu(x)) < f(x, Vu(x)) for a.e. x€ . ‘
This inequalty can be derived using the explicite formulas for fo and f. Let z € Q, € € RY, and let
us fix € > 0. For every p > 0 let ue,, € WHP(B,(z)) be such that u.,,(z) = £(z — z) in a neighborhood

of 8B,(z) and
F(ue,ps Bp(z)) < mp(By(z), &2 — z)) + ewnp™.

Then we get

ng(Bp(:c),g(z - 33)) S(ue,p,.Bp(a.:))

° = limsu < limsu
J (=, €) 1£%+p wno < /pr NV
. F(ug p;Bp(m)) L mJ-'(Bp(m)af(z - ))
< lim sup ——~—2 < limsu +e= f(z,€) +e.
p——ro+p LUNPN p—-tO.'*‘p UJNPN f( 75)

Letting € — 0, we obtain that foo(z, £) < f(z,£), so that the step is concluded.
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Step 2: foo(x, Vu(x)) > f(x, Vu(x)) for a.e. x € Q.
We can consider those = € Q such that u is approximatively differentiable at , z is a Lebesgue point
for f(, &) for all £ € R and such that

€(u, By(z))

" < +o0. (4.49)

Joo(z, Vu(z)) = lim

p—0t  WNp

Let moreover (un)nen be a recovering sequence for £(u, Q): by (4.22) and since VN1 (K,) < C, we have
that H¥~1(S(uy)) is bounded and so up to a subsequence

ni=HV" L S(u,) = 1 weakly® in the sense of measures

for some Borel measure p. We can assume that (see for instance [7, Theorem 2.56))

B
liisétip H%_(:fl =0 . (4.50)

Let p; \, 0 be such that £(u,8B,,(z)) = 0. In view of Remark b4.2.6, for every ¢ there exists n; such that
for n > ny .

E(u BPi (z)) (umBPi (x)) 1

ol © wn oy i
fB @) fa(z, Vug(z))dz 4 1 ) 1
= - = n Y, VU, dy — = (4
T P= o L Pt e VG- 3 (es)
where (o + piy) (@)
i Uun(z + piy) — ulz
vy (y) = )

Pi
Taking into account the assumptions on z and (4.50‘), we can choose (n;)sen is such a way that

vi, — Vu(z) -y  strongly in LY(By) for'i — +oo, (4.52)
(Vul,)ien is bounded in L?(B;,RY), (4.53)
Jim HN'“I(S(v;i)) =0, (4.54)
- £, By (a)
feole, Vu(@)) = Jim ) 5 lmint - = / o Etou T (45)

Moreover by a truncation argument we can assume.that (v} )1€N is unlformly bounded in L*®(B;), s
that we get

R / Wi ]ldHY " < C  and  lim M- I(S(Un,))zo.

S(v,) i—too

Following Kristensen [55] we get that there exists w; € Wh °°(Bl) such that w; — Vu(z) -y strongly in
L*(B;) as ¢ — +oo and such that .

lim inf/ fai(z + piy, Vi, (v)) dy = lim mf/ Jni(z + psy, Vw;(y)) dy. (4.58)
B By -

j—++4-00 i—+00
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If n; is choosen such that the blow-up for I-limits given by Theorem 4.1.2 holds, we get that

T+ 400

im 1nf/B fm (:E + PiY, vwl(y)) dy > wa('T: Vu(x)),

so that in view of (4.55) we obtain

fool@, Vu(z)) 2 f(, Vu()).

Step 3: goo(x, u™ (x), ut (x), vs(u)(x)) < g7 (%, vswy (%)) for HN"L-ae. x € S(u).
Up to a subsequence, we have that : .

pn=HN LK, S

weakly” in the sense of measures. Since HV~1(K,) < C we have that for H¥N~lae z € O (see for
instance [7, Theorem 2.56]) . -

. ,uf(Bp(m) . '
H(z) :=limsup —£2"_ « 100, 4.57
(z) msup o T . (4.57)

We claim that for all A € A() such that A C O

oHN"H(S(u) N A) < G (u, A) + p(A). (4.58)
In fact we have that for alln € N

oMM TH((S(w) \ Kq) N 4) < 07 (u, 4)

so that .
N (S(w) N A) < G7(u, A)+ pin(A)

and so passing to the I-limit for n — +co we obtain that (4.58) holds.
Let us choose z € S(u) in such a way that (4.57) holds and such that

p—07F pN_l‘ 2

Let us indicate u™(z), u" (z) and vg(y)(z) simply by u~, u* and v. Let us moreover set [u] = ut —u.
Following Remark 4.2.4, let us consider the functionals G- defined in (4.26) acting on the space
Pu-u+ () = {u € BV(Q) : u(y) € {u™,ut} for ae. y e Q}. .
Let us fix € > 0. For every p >0, let u., € Py~ w+(Bp(z)) be such that u,, = Ug -yt 10 2
neighborhood of B,(z) and o

G (te,py Bo(z)) < mg- (Bp(z), Ug = g+ ) +ewno1p” 71
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Then we get in view of (4.58)

meg, (Bp (Z), Ug u— ,u"',u)

95 (z,u”,u™, v) = limsup

p—0+ wN—-le_l .
< tmup £ Ba@) + 1+ IR (S(ve) 1 By (2)
p—0+ WN—-1p
. I8, (z) 02 @2 + G (te,p, By(@)) + (1 + |[ul) (G (ue,p, Bo(2)) + u(B,(z)))
< limsup o
p—0t WN—1p
< timaup (L2 el (Bo(@) ) + <1+ (B @)
p—0+ WN-1p

<e+ (I +e+e|u)))g (z,v) +e(l + |[u])H(z).

Letting € — 0 we obtain geo(z,u™,u*,v) < g7 (z,), so that the step is concluded.

Step 4: goo(x,u™ (x), ut(x), vgu) (X)) > g7 (%, vg(u) (x)) for HN"t-a.e. x € S(u).
Let us choose z € S(u) which is an approximate jump point for u,

€(u, By(z))

-— + — . .
oo™ (0), () vy () = i, SR < oo, (459)
and such that f | ( )| J
. By(z) 192 \W)ICY

where a; is defined in (4.21). .
Since HV~1(K,) < C, up to a subsequence we have

pn = HVNTILK, 2 p weakly” in the sense of measures

for some Borel measure u. We can assume that (see for instance [7, Theorem 2.56])

00D o, (461)

lim sup
pN-1

p—0+

Let (un)nen be a recovering sequence for £(u, ), and let p; \,'0 be such that &£(u,dB,,(z)) = 0. For
every i € N there exists n; € N such that for n > n; we have

g(u’BPi (w)) > En(un7BPi(x)) 1

wv-1pl T wnep) Tt _
. 5, @18\ 0 (2 V) dHN 7 (2) N Ip,, a1 ®dy 1
- wy-1pl Th L et

. : o . fB (x (J.I(y) dy 1
gnle + piyy ) dHN () + 2T 2 (4 69)
o ) WN-10; t

=t
WN-1 JByn[S(vi)\Ki]

where

_ {KnNB,(z)}—=z
Pi '

(4.63)

v (y) = un(z +piy) and K} :
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We claim that we can find wi, piecewise constant in By such that for n — +oo
wh — w' strongly in L'(B),

where w' is piecewise constant and w’ = U0,0,1,v5¢ (z) i & neighborhood of the boundary, and such that
for n large

gn(@ + piy, v) dHN "1 (y) > / gn(z + piy,v) dHN "Hy) — (4.64)

/Bm[S(u:‘,)\K,i] Ban[S(wi)\Ki]

with e; — 0 for 1 — +00.
Using the claim, by (4.62), (4.64) and (4.60) we have that for n large

JB,,nis(zi s, 9 (G V) dHYTHC) 5. _ Gn (7 By, ()

gw(m>u—(x:u+$71/3u l‘) 2 — — €y = — —_ s
)t (@), w5 (@) p—— iy
where €; — 0 and
40 =l (S5) w0 = w (52)  strongiy in (B )

By the I'-convergence assumption on G, using I-liminf inequality we have that

. G- (#, B,, (z . rng—‘(B o Uz 01 wguy(z) .
oo, 4™ (2), u (3), sy (2)) > L2 Ba@) s o e 0sate)
WN-10; . WN-10;

Letting ¢ — 400, and recalling the representation formula (4.35) for g~ (z,v), we have that the result is

proved.
In order to complete the proof of the step, we have to prove the claim. Since

Vi (y) = piVun(z + piy),
we get by the coercivity assumption (4.21)

| Io oo [ Vun (=) dz
/E Vi, ()P dy = oP /B Vun(o + pig)[P dy = 2220 "
1 1

N
P
< B (Ealun Bp(@) _ Jmu @)
« p p
Since uy, is optimal for u we have that
& B,, —too E(u, By, i— _ :
n(un}vnlzl(x)) n__j'_)oo (u, N-,izl(m)) 1___t)oo ,wN~1g,x,(:c,u (;),_u+(x),vS(.u)(m)) < +o0.

P; Pi 4 L

In view also of (4.60), we conclude that we can choose n; so that for n'> m

/B Ve ()P dy < o™ (4.65)
1 ° .
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for some constant C' > 0. By Coarea formula for BV functions (see [7, Theorem 3.40]) we get
ut(z) i i ] L o1-1
L T BN S de s [ [vublay <647
u=(z) B,
for a suitable constant é, where

Ei(t):={z € By : z is a Lebesgue point for v, and vl (z) > t} (4.66)
and 8" denotes the reduced boundary. By the Mean Value Theorem there exists ¢, € [u™ (), ut(z)] such

that o
HN-1 (a*Em (ti ) \ S(’Ui )) < _____9______pA1_%

NS e e

We now employ a construction similar to that employéd by Francfort and Larsen in their Transfer of
Jump Sets Theorem (47, Theorem 2.3]. Since z is a jump point for u we have that for 1 — oo

(4.67)

u(m + sz) - uO,u“(m),u'*’(m),us(u)(m) Strongly in L* (Bl)

Then we have that for n large o .
|BY & EL(t)] < e,

where B := {y € B; : Y- vgw)(z) > 0}, AAB = (A\B)U(B\A), and e; — 0 for 1 — +o00. By
Fubini’s Theorem we have

/EHN”I (B \ Bn(t)) NH*(s)) ds < " e (BT \ En(tR) NH(s)) ds < e,
0

—0o0

where H*(s) := {y € By : y-vgp(z) = s}, and by the Mean Value Theorem we get that there exists
0 < s4T < /€ such that setting HiT := H*(s4™) we have '

HNTH(BF \ BL(t)) N HiT) < e
Similarly we obtain —/g; < s4~ < 0 such that setting H5™ := H*(s%™) we have
MM ((Ba() \ BY) N Hy™) < e,

Let us write ¥ = (¢/,yw), where yy is the coordinate along }/S(H)(m) and gy’ the coordinates in the
hyperplain orthogonal to vg(y(z). Let I; be such that for every y € B;

lyn| > 2v/er = /| < 1—1;.

Y| <1-l,yeDj, -
otherwise. =~

Let us set ' o _ ‘
Dy = (Er(tn)U{y € Byt yv 2 sitH\{y € By : v < 857,
We set A -
. N>1—1
0
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Notice that w? is piecewise constant, with wf, = 10,0,1,u5(ny(z) 10 & neighborhood of the boundary, and
such that

gn(z + piy,v) dHN " (y) > / gn(@ + piy,v) dHV " (y) — & (4.69)

/Bm[S(v,i)\K,iJ Bin[S(wiN\Ki]

with & — 0 for 1 — +o0.

In view of (4.67) and of the assumption (4.61) we have that HN=1(S(w})) < C; uniformly in n for
some finite constant C;. By Ambrosio’s Compactness Theorem we get for n — +oo

w — w! strongly in L(B;),
where w* is piecewise constant and wi = U0,0,1, v (z) IR B neighbo;hood of the boundary, so that the
claim is proved. : O

Remark 4.3.2. Theorem 4.3.1 states that in the I-lmit process there is no interaction between bulk
and surface energies, since they are constructed loaking at I-convergence problems in Sobolev space and
in the space of piecewise constant functions respectively. As a consequence, considering bulk and surface
energies of the form ¢; f,, and cpg, with c1,¢2 > 0, we get in the limit ¢; f and c2g as bulk and surface
energy densities. We remark that a key assumption for non interaction is given by equi-boundness of
HNHK,): dropping this assumption, interaction can occur even in the case of constant densities, for
example f(¢) := |€|” and g(z,v) = 1 (if we consider in 10,1[theset Ky :={L :i=1,..., n—1}, we get as
TI'-limit the zero functional). As mentioned in the Introduction, non interaction between bulk and surface
energies was noticed in the case of periodic homogenization (with Ky, = 0) by Braides, Defranceschi and
Vitali in [13].

In the rest of this section we employ Theorem 4.3.1 to obtain a lower semicontinuity result for SBV
functions in the case of varying bulk and surface energies in the same spirit of Ambrosio’s lower semicon-
tinuity theorem [3]. ‘

From Theorem 4.3.1 we get that the following semicontinuity result holds.

Proposition 4.3.3. Let (Kp)nen be a sequence of rectifiable sets'in Q such that 'HN‘I(KH) < C for all
n € N. Let us assume that for all A € A(Q) the functionals Fn(,A)-and G (-, A) defined in (4.25) and
(4.26) I'-converge in the strong topology of LY(Q2) to F(-, A) and G~ (-, A) respectively. Let (up)nen be a
sequence in SBV?(Q) such that A :

Up = U weakly in SBV’?‘(SLZ).
Then for all A € A(Q) we have ’

/ [z, Vu(z)) dz < limﬁipnf/an(rc, Vun(z)) dz, (4.70)
A ntoo J 4 .
and L .
/ g (z,v)dHY ! < liminf "gn(,v) dHN 1, (4.71)
S(u)n4 =F00 J(S(un )\ Kn)NA

where f and g~ are the densities of F and G~ respectively. _
Moreover let us assume Gn(-, A) defined in (4.27) T-converges in the strong topology of LY(Q) to
G(-,A). Then

/ g(z,v)dHY ! < lim inf/ gn(z,v)dHV L, (4.72)
S(uynA Pt JS(un)nA

where g is the density of G.
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Proof. By Theorem 4.3.1, we have that for all 4,k € N and for all A € A(Q) the functionals

EBE(y, A) = h/ Fulz, Vu(z)) dz + k - gnlz,v)dHNT?
A (S(u)\Kn)NA

I-converge in the strong topology of L'(Q) to

EMk(u, A) = h/ f(z, Vu(z))dz + k g (z,v)dHN L,
A Jswna

In particular by I-liminf inequality we have

EME(y, A) < liminf EM* (uy,, A).

Nt 4-00
Then we get
/ flz, Vu(z)) dz < liminf / falz, Vun(z)) dz + k / gn(z,v) dHN " (z)
A n—+oo J4 h J(S(un)\Kn)NA
g liminf/ Ful@, Vun(z)) dz + 20
n—-+oo A h

for some constant C independent of h and k. Since h, k are arbitrafy we get that (4.70) holds. The proof
of (4.71) is analogous. Finally (4.72) derives from (4.71) in the case K, = 0. O

4.4 A new variational convergence for rectifiable sets

In this section we use the I'-convergence results of Section 4.3 to introduce a variational notion of con-
vergence for rectifiable sets which will be employed in the study of stability of unilateral minimality

properties. .
Let (Kn)nen be a sequence of rectifiable sets in §2, and let us assume following Ambrosio and Braides

[5, Theorem 3.2] that the functionals #;; : P(Q) x A(£2) — [0, +00) defined by
Mo, A) = HN L ((S(w) \ Kn) N A) (4.73)

I-converge with respect to the strong topology of L () for évery A € A(Q) to a functional H™ (-, A),
which by the representation result of Bouchitté, Fonseca, Lieoni and Mascarenhas [11, Theorem 3] is of

the form

H(u, A) = / h=(z, ) MV () (4.74)
S(u)n4 ) ’

for some function A~ : Q x SN-1 — [0, +c0).

Definition 4.4.1 (c-convergence of rectifiable sets). Let, (Ky)nen be o sequence of rectifiable sets
in Q. We say that K, o-converges in Q to K if the functionals (H; Jnen defined in (4.73) T'-converge in
the strong topology of L'(Q) to the functional H~ defined in (4.74), and K is the unique rectifiable set
in § such that o '
b (z, vk (z)) = 0 for HN oace. z € K, (4.75)
and such that for every rectifiable set H C §) we have

R (z,vg(z)) =0 for HVtae. s€e H= HCK. (4.76)
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In order to prove the main properties of o-convergence of rectifiable sets, we need the following
covering argument.

Lemma 4.4.2. Let H C Q be a rectifiable set with HN=YH) < +o0. Then for all € > 0 there ezist an
open set U € A(Q) and u € P(Q) such that HN~Y(H\U) < ¢ and
HNTH(S(w) AH)NU) <,

where A denotes the symmetric difference of sets.

Proof. Since H is rectifiable, we have that H = H, UUieN K, where HN"I(HO) =0, K, is compact, and
K; C M; for a suitable C! hypersurface M; of RN, For all; € N, let us denote by K; the set of point z
such that z has (N — 1)-dimensional density 1 with respect to X;. We have that 7‘61\7'1(H\UiEN K;)=0.

Let us fix € > 0. Then for all z € K, there exists p(z) > 0 such that for all p < p(z) we have
wy-1pV"t < (1 + )MV (K m-B,,(m)). (4.77)
and _ - ! - A
HN-1 ((Mi \E)n Bp(a:)> <ewy_ipV"l (4.78)

Since M; is of class C?, we can assume that p(z) is so small that By(z) \ M; Has exactly two connected
components B;f (z) and B (z) for every p < p(z).

We can apply now the Vitali-Besicovitch Covering Theorem (see |7, Theorem 2.19]), and deduce that
there exists a disjoint family of balls (Bp; (z7))jen such that .

HN-l(H\ U B,, (2 )) =0.
JjEN .
Let us choose n € N such that n )
HN.—l (H\ U BP:’ (Z'b)> <eg
j=0

and let us set U := U;L:O By (zi). Let us consider u € P(R) defined setting u = 1 in B;;, (j),i=1,...,n,
and u = 0 otherwise. We have that
(HASw)NU C M, \ Ki,) 1 By, (),
JjeN ’
where K;, is the compact set relative to zj, and M;; is the associated (N — 1)-dimensional hypersurface.
In view of (4.77) and (4.78) we conclude that- L ‘ '
HYTH(H A S)NU) < (1 + )V (),

so that the theorem is proved. O

Let us now come to the main properties of o-convergence: for rectifiable sets. By compactness of
I'-convergence, we deduce the following compactness result for o-convergence.

Proposition 4.4.3 (compactness). Let (Kp)nen. _Z;e o sequence of rectificble sets in Q with
'HN'I(Kn) < C. Then there ezists a subsequence (nh)ren and a rectifiable set’ K in 0 such that K,
o-converges in §2 to K. Moreover ' .

HYY(K) < liminf HVV(K,). ‘ (4.79)

n—-4+00
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Proof. By Proposition 4.2.3, up to a subsequence we have that for all 4 € A(Q) the functionals H (-, A)
defined in (4.73) I-converge in the strong topology of L'(Q) to a functional H~(-, A) which can be
represented through a density A~ according to (4.74).

Let us consider the class

K:={H C Q: H is rectifiable and h™ (z, v (z)) = 0 for HN_l—a‘e: T € H}.
Notice that X contains at least the empty set. Moreover for all H € K we have

HY-YH) < Li=liminf KV (K,). - (4.80)

n—+o0

In fact let H € K. Since H = U;H; with H; compact and rectifiable with HNY(H;) < +o0, it is not
restrictive to consider HV~1(H) < -+o0. Given € > 0, by Lemma 4.4.2 we can find an open set U and a
piecewise constant function v € P(Q) such that

HN-YH\U)<e and HN1((S)AH)NU)<e,

where A denotes the symmetric difference of sets. Since-h~ < 1 we have

b (2, v) dHY 1 (z) = / C h(zv)dHN N (g) <.
(5(_U)\H)WU

H™ (v, U) :/

S(v)nU
Let (vn)nen be a recovering sequence for v with respect to H~ (-, UU). Then we have that

limsup BV 1 ((S(vn) \ K) N U) < c.

Ti—++400
By Ambrosio’s Theorem we deduce that

HN Y H) < HV Y HAU) + HY-YH\U) < HYY(S(0) N T + 2
< liminf HN"1(S(vp) NU) + 26 < lr%m_’i_anN“l(Kn) +3=1L+3.

n—-4co

Since ¢ is arbitrary we get that (4.80) holds.
Let us now consider :
L:=sup{H""Y(H) : H € K} < +o0,

and let (Hy)ken be a maximizing sequence for L. We set

s

K .= Hy.

k

)
=

Clearly (4.79) and (4.75) hold. Moreover, since 'HN‘l(K),:-f, we have that (4.76) holds, and the proof
is concluded. : o : ‘ O

Remark 4.4.4. Let Q := (=1,1) x (—=1,1) in R?, and let (K,)nen be a sequence of closed sets with
K, — K = {(-1,1)} x {0} in the Hausdorff metric and such that

HILK, 5 aH LK
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weakly® in the sense of measures. If ¢ < 1 by (4.79) we deduce that K, o-converges in {2 to the empty
set. We stress that the condition a > 1 is not enough to guarantee that K is the o-limit of (Kn)nen
because the o-limit is also affected by the behavior of the normal vectors to K. In fact considering

o082

HL K, 5 2H LK
weakly™ in the sense of measures. However also in this case we have that K, o-converges in € to the
empty set. In fact let us consider u € P(Q). such that u =1 in Q+ := (-1,1) x (0,1) and w = 0 in
Q7 == (-1,1) x (~1,0), and let u, be a sequence in P(Q) such that u, — u strongly in L!(Q) and with
HV=(S(un)) < C. Let (e1,e2) be the canonical base of R2. By Ambrosio’s theorem we get that

we have

V[un]H' LS (un) = eaH' L S(u)

weakly” in the sense of measures. Cénsidering the vector field e, with p € C () we get
/ ey - vug | dH = e - V[ug ] dH! — / wdH?.
S(un)\Kn S(un) K

Since ¢ is arbitrary, we deduce that lim inf,_, ;e Hp (un) = iminfn oo HY(S(un) \ Kp) > 1. By I-
liminf we conclude that %~ (u) = 1 that is A~ (z, ez) = 1 for H!-a.e. z € K. Since the o-limit of (Kn)nen
can be only contained in X, we deduce that the o-limit is the empty set.

The following proposition shows that the o-limit is a natural limit candidate for a sequence of recti-
fiable sets in connection with unilateral minimality properties (see the Introduction).

Proposition 4.4.5. Let (Kn)nen be a sequence of rectifiable sets in Q with K, o-converging in ) to
K. Let (gn)nen be a sequence of Borel functions satisfying the growth estimates (4.22), and let g~ be the
energy density of the I'-limit in the strong topology of LY(Q) of the functionals (67 Jnen defined in (4.26).
Then we have o

97 (z, vk (z)) =0 for HN"lne € K, . (4.81)
and for every rectifiable set H C § . A
9~ (z,vm(z)) =0 for HVN .ae. ceH =>H§ K. (4.82)

Proof. By growth estimates on g, we have fér allue P () and A € A
oH™ (u, A) < G (u, A) < BH™ (u, A).
The proof follows if we prove that for all rectifiable set I ca
h™(z,vm (2)) = 0 for HNLae z € (4.83)

is equivalent to )
9 (z,vE(z)) = 0 for HN"l-.a;.e..ac €H (4.84)

Let us show that (4.83) implies (4.84), the reverse.implication'beiﬁ'g similar. It is not restrictive to assume
HN=1H) < +oco. Given e > 0, by Lemma 4.4.2 we can'find’ an open set U and a piecewise constant
function v € P() such that ‘ : _ "

HYWH\U)<e and MY ((S(o) AH)ND) <,
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where A denotes the symmetric difference of sets. Then we get
/ g (z,v) dHN‘l(m) = / g (z,v) dHN_l(SC) + / g9 (z,v) cl’HN"l(m)
H HNU Hnoo .

< / 0 (z,v) dHN () + 28¢ < B h™(z,v) AN (z) + 28e = 2.
S(v)nU J S(v)nU

Since ¢ is arbitrary we get that )
g (z,ve(z)) =0 for 'HN_l-é.e. zeH
so that the proof is concluded. O
The following proposition is essential in the study of stability of unile;térél minimality preperties.

Proposition 4.4.6. Let (K, )nen be a sequence of rectifiable sets in Q such that Kn, o-converges in § to
K. Let1 < p < +oo, and let (un)nen be a sequence in SBVP(Q) with up, — u weakly in SBV?(Q) and
HN=1(S(up) \ Kn) — 0. Then S(u)C K. ‘ :

Proof. By lower semicontinuity given by Proposition 4.3.3 we have
/ b (z,v) dHN " (z) < liminf HY 7Y (S(un) \ Kn) =
S(u) n—+-+00

We deduce that
R (z,vs@y(z)) = 0 for HV"L-ae. z € S(u),

so that by definition of o-limit we deduce S(u) C K. T [

In the next corollary, we prove that our o-limit always contains the oP-limit introduced by Dal Maso,
Francfort and Toader in [35] to study quasistatic crack growth in nonlinear elasticity (see the section of
preliminaries for a definition). :

Corollary 4.4.7. Let (K, )nen be a sequence of rectifiable sets in §) such that Ky, o-converges in Q to K.
Let 1 < p < +oo, and let us assume that K, oP-converges in () -to some rectifiable set K. Then K C K.

Proof. Recall that by definition of o”-convergence we have K = S'(z)- for some z € SBV? (€), and there
exists (2 )nen sequence in SBVP(Q) with z, — z weakly in SBVP(Q) and S(z,) € K,,. The result follows
applying Proposition 4.4.6 to (zn)nen- R : O

Remark 4.4.8. Notice that is general we can have that the oP-limit K of (Kn)nen is strictly contained
in K. In fact we can consider £ := (—1,1) x (=1,1) in Rz, and

Kn = {(=1,1)\ Lo} x {0}

with L, C (-1,1) and [Ln| — 0. In this case we get K = (—1,1) x {0}, while if L, is chosen in such
a way that its cp-capacity is big enough (see the celebrated example of the Neuma.nn sieve, we refer to
[60]) we get K = 0.

This example is based on the fact that the oP-limit is influenced by infinitesimal perturbations of the
K, while the set K is not. To be precise we have that if ’HN’ (KaAKL) — 0 and K, — K in the
sense of o-convergence, then K, still o- converges to K. v
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The following lower semicontinuity result for surface energies along sequences of rectifiable sets con-
verging in the sense of o-convergence will be employed in Section 4.7.

Proposition 4.4.9 (lower semicontinuity). Let (K,)nen be o sequence of rectifiable sets in 0 such
that Ky o-converges in Q to K. Let (gn)nen be a sequence of Borel functions satisfying the growth
estimates (4.22), and let g be the associated function according to Proposition 4.2.2. Then we have

/g(z,y)dHN"l(:c)Sh'minf/ gn(z,v) dHN "1 (z).
K n—~++00 K,

Proof. Let HC K with HN‘l(H) < +oo. Given e > 0, by Lem_ma 4.4.2 we can find an open set U and
a piecewise constant function v € P(Q) such that . :

MY H\U)<e and H¥"1((S(v) A H)AU) <o,
where A denotes the symmetric difference of sets. If (Un)nen is :é recovering sequence for v with respect

to H~(-,U) defined in (4.74) we have

n—-+00

limsup HN =1 ((S(wn) \ Kp) 0 U) <e.
We deduce by the lower semicontinuity result of Proposition 4.3.3 that
Joenat i = [ genaei@ s [ gwa) o)
H HOU H\U

< / g(z,v) dHN "1 (z) + 2B¢ < lim inf/ gn(z,v) dHY Y (z) + 28¢
S(v)nU S(vn)nU

n—-+oo

n—+00

< lim inf/ gn(z, v) dHY () + 3p¢.
Kn
Since € is arbitrary we deduce

/ 9(z,v) dHN " (z) < lim inf .gT;.(z, u) d’HN“iA(a:),
H n

T—+--00 K,
and since H is arbitrary in K the proof is concluded. o ) O
In Section 4.6 and Section 4.7, we will need a definition of a-convergence in the closed set €.

Definition 4.4.10 (a-c_onverg_er_lce in Q). Let (Kn)neNl be a sequence of rectifiable sets in . We say
that Ky, o-converges in ) to K C Q if K, o-converges in' S t0 K Jor every open bounded set Q' such that
aca. SR

Notice that to check the o-convergence in Q of rectiﬁable"sété,‘ it is enough check o-convergence in
for just one Q' with Q C Q.
4.5 Stability of unilateral minimality properties

In this section we apply the results of Section 4.3 and Section 4.4 to obtain the stability result of unilateral
minimality properties under I'-convergence for bulk and surface energies.
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Definition 4.5.1 (unilateral minimizers). Let f: Q x RY — [0, +oo[ be a Carathéodory function and
let g: Q2x SN=1 — (0, +o0| be a Borel function satisfying the growth estimates (4.21) and (4.22). We say
that the pair (u, K) with w € SBVP(Q) and K rectifiable set in Q is a unilateral minimizer with respect
to f and g if S(u) € K, and :

/nf(:z:,Vu(m))de/ﬂf(:c,Vv(z))da:—l—_/H\Kg(x,u),

for all pairs (v, H) with v € SBVP(Q), H rectifiable set in  such that Sw)CH and KCH.

As in the previous sections, let f, : O x RV — [0, 4+00[ be a Carathéodory function and let gn ¢
Q% §V=1 — [0, +-00[ be a Borel function satisfying the growth estimates (4.21) and (4.22).

Let us assume that the functionals (5, (-, 4))nen and (Gn(, A))nen defined in (4.25) and (4.27) T-
converge in the strong topology of L'(Q) to F(, 4) and G(-, A) for every A € A(£2) respectively. Let f
be the density of F according to Proposition 4.2.1 and let g be the density of G according to Proposition

4.2.2.
The main result of the chapter is the following stability result for unilateral minimality properties

under o-convergence of rectifiable sets (see Definition 4.4.1), and I-convergence of bulk and surface
energies.

Theorem 4.5.2. Let (un)nen be a sequence in SBVP(Q)' with u, — u weakly in SBVP(Q), and let
(Kn)nen be a sequence of rectifiable sets in 0 with HN‘l(Kn) < C ond such that K, o-converges in §)
to K. ) . .

Let us assume that the pair (un, Ky )nen s a unilateral minimizer for fn and gn. Then (u,K) is a
unilateral minimizer for f and g. Moreover we have ‘

lim /an(m,Vun(z:))dxé/ﬂf(m,?u(cc))dm. . (4.85)

n—-+o00

Proof. By Theorem 4.3.1 we have that the functionals

£alu) = Jo (@, V(@) dz + [g: . nlz,v)dHV Y (z) we SBVP(Q),
T oo . ’ otherwise

I-converge with respect to the strong topology of L*(Q) to the functional
Eu) = {fﬂ 1@, Vul@)) dz + Jo() 97 (,v) d,H,N_l(I) u € SBVP(Q),

400 C otherwise,

where f and g~ are defined in (4.31) and (4.35) respectively, with 9-<g.
By Proposition 4.4.6 we have S(u) C K, so that u is admissible for K., while by Proposition 4.4.5 we
have that X -
97 (z,vie(z)) = 0 for HN 1 ge. r € K.
Then the unilateral minimality of the pair (u, K) easily follows. In fact, by I-convergence we have that
u is a minimizer for £ and &, (us) — £(u). Then for all pairs (v, H) with S(v) £ H and K C H we have

=E(u v) = z, Vu(z)) dz k :"m-‘u: N-1
Jo e vatenas = e o) = [ o vuta)as s [ g (aivian

S(

- [ 1@ vsas+ [ . 9‘(m,,2>§4f(§,Vv(Z))dw+ e
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so that the unilateral minimality property holds. The convergence of bulk energies (4.85) is given by the
convergence &y, (upn) — E(u). 0

Remark 4.5.3 (stability under oP-convergence). In the case of fixed bulk and surface energies f
and g, Dal Maso, Francfort and Toader [35] proved the stability of the unilateral minimality property
under o?-convergence for the rectifiable sets K, (see the section of preliminaries for the definition). This
result readily follows by Theorem 4.5.2. In fact by Corollary 4.4.7 we have that if K, oP-converges in Q to
K , then K is contained in the o-limit of (Kp,)nen. Since S(w)CK, we get that the unilateral minimality
of the pair (u, K ) is implied by the unilateral minimality of (u, K).

As mentioned in the Introduction, a method for proving stability of unilateral minimality properties
nearer to the approach of [35] would be to prove a generalization of the Transfer of Jump Sets by
Francfort and Larsen [47, Theorem 2.1] to the case of varying energies. The following theorem based on
the arguments of Section 4.3 provides such a generalization.

Theorem 4.5.4 (Transfer of Jump Sets). Let (Kp)nen be a sequence of rectifiable sets in Q with
'HN'l(K'n) < C and Ky, o-converging in Q to K. For every v € SBVP(Q)) there exists (Un)nen sequence
in SBVP(Q) with v, — v weakly in SBVP(Q) and such that

lim /an(:c, an(m))d':v‘=/ﬂ,f(-w,V'u(z))dm

n—-+00

and

limsup/ gn(z,v)dHN "1 (z) < /  9(z,v) dHN " ().
n—=+00 JS(v,)\Kn ) S(w\K

Proof. Let (un)nen be a recovering sequence for v with respeet to (£,,)nen defined in (4.23). By growth
estimates on f, and g,, and since HN’I(Kn)‘,S C, we get v, — v weakly in SBV?(Q). Since no
interaction between bulk and surface energies occurs in view of Theorem 4.3.1, we get that

lim /ﬂfn(x,V'un(a:))dm :'/Q.f,(z, Vv(:c))dx ‘

N0
and
lim gn(z,v)dHN 1 = / 9 (z,v)dHN "t < / g(z,v)dHN !
mTE S (vn)\ K : S5() C S(\K
because g~ = 0 on K, and g~ < g. O

4.6 Stability under boundary conditions

In view of the application of Section 4.7, we need a stability result for unilateral minimality properties
with boundary conditions. :

In order to set the problem, let us consider OpR C 00, let £, : QxRN [0, +co[ be a Carathéodory
function satisfying the growth estimate (4.21), and let g, : @ x SN=1 [0, +c0[ be a Borel function
satisfying the growth estimate (4.22). We consider unilateral minirhality properties of the form

/ Sz, V) dz < / falz, Vv)dz +;/‘ wgnlz, v)dHN "N (z) (4.86)
Q Q o JH\K

for every v € SBV?(Q) and for every rectifiable set H in {1 such that S¥n(v)CH. Here (Kp)nen

is a sequence of rectifiable sets in Q with HV YK, < C, (un)ﬁéw_ is a sequence in SBVP(Q) with

SV (up) € Ky, b € W2 (Q) with 9, — ¢ strongly in Wh2(Q), and §¥(.) is defined in (4.20).
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In order to treat S¥~(-) as an internal jump and_in order to recover the surface energy on 0p$ for
the minimality property in the limit, let us consider an open bounded set Q' such that & C € and let us
consider g/, : ' x SV — [0, +-co| such that

gn(z,v) ifz e,

4.87
B+1 otherwise. (4.87)

n(z,v) 1= {
Let us consider the functionals G}, : P(Q') x A(€) — [0, +00] -defined by

Gulv, 4)i= [ gl fai) aHY 2 (a)
S(v)nA

and let G’ : P(Q') x A(') — [0, +00] be their T-limit in the strong topology of LY(9Q'), which according
to Proposition 4.2.3 is of the form ’

G'(v, 4) = /5 o ? @) dHY ) (z) (4.88)

We clearly have ¢(z, v) = g(z, v) for z € Q, where g is the surface enelrgyA density defined in (4.33), while
it turns out that (see Remark 4.6.2) the surface energy given by the restriction of g’ to 8 x SN-1 g
completely determined by the functions gy,.

Let us set
[z, &) ifz e

4.89
alg? otherwise, (4.89)

fnlz, €)= {
and let f/ be the energy density of the I'-limit of the functionals on VVI*E’(Q’ ) associated to f/ according
to Proposition 4.2.1. We easily have that ’

flz,6) fzeq,

4.90
al¢fP otherwise. (4.90)

f(=, €)= {

Since Q is Lipschitz, we can assume using an extension operator that Pn, ) € WHP(RY) and by, — o

strongly in W1P(RN). ‘ - .
Before stating our stability result, we need the following I-convergence result.

Lemma 4.6.1. Let (K,)nen be a sequence of rectifiable sets in 0 such that HN-YK,) < C. Let us
assume that the functionals . :

ETIL('U) — sz fv/z(m7 Vv(x)) dz + fs(v)\}(n g;t(m, v) dH.N-l(x) ifve SBVP(Q/% (4.91)
+o0 . . otherwise

I'-converge in the strong topology of L*(Q') according to Theorem 4.5.1 to -

51(”> = {fﬂ' f’(.’E, V’U((L‘)) dz + fS'(v) g"(:c, V) dHN’l(_m) . if’” € SBVP(Q/): (492)

~+00 . " otherwise.

Then we have that the functionals

/ Pfny — aly "o
En(v) = {E"(U) v =Yn on I\ Q, (4.93)
+oo  otherwise
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I'-converge in the strong topology of LYY to

£'(v) = {5’(1}) ifv=1 on Q'\Q, (4.94)

+oco  otherwise.

Proof. Let v € SBVP(Q') with v = 1 on \ ©, and let (vy)nen be a recovering sequence for v with
respect to the functionals £/. We have that

Von = Vi strongly in LP(Q \ G RY), (4.95)
and _
HY 1S (v,) N (Y \ D)) — 0. (4.96)
In fact we have that for all U € A(€) such that T C '\ Qand &'(v,8U) =0
Vo, — V9 strongly in LP(U; RY), . (4.97)
and i .
HN=HS(v,)NU) = 0. . (4.98)

Let € > 0 and let us consider an open set V & A(S') such that 6Q C V, £'(v,8V) = 0, Foralaldz < e
(a1 is defined in (4.21)),

/Vf'(z, Vu(z))dz <e and /Vf'(m, Vip(z)) dz < e. (4.99)
Then for n large (no interaction between bulk and surface pa'rt occurs) we have
/V Iz, Vo, (z)) dz < 5 . (4.100)
Notice that |

/ Vo, — VP da :/ Vo, — VP d +/ Vo — Vo[ dz
2\¢} Q\(QuV) : na

2p-1

! i / op-1
< /Q o) [V, — VoIP da + =/ fn(o:,:v.vn(a:)) + [z, V() dz + — /V o 2]ay | dz.

Since Vup, — V4 strongly in LP(Q'\ (QUV);RY), because of (4.99) and (4.100), and since ¢ is arbitrary,
we get that (4.95) holds. .
Let us come to (4.96). Up to a subsequence we have

pn = HYTIL(S(a) N (\T) 2 . weakly® in My(Q).

In view of (4.98), in order to prove (4.96) it is sufficient to show that wOQ) = 0. Let us assume by
contradiction that u(8Q) # 0: then there exists a cube Qp of center z € 6Q and edge 2p such that

£'(v,0Q,) = 0 and
w(@p) > > 0. (4.101)

Up to a translation we may assume that z = 0, and moreover we can assume that

2N Qp = {(z',y) : 2’ € (~p, ),y € (~p, h(z'))},
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where (z’,y) is a suitable orthogonal coordinate system and % is a Lipschitz function. Let n > 0 be such
that setting
Vo ={(a",y): &' € (~p,0), v € (h(z') - 7, h(z') + )}

we have V, C Q, and &'(v,0V;)) = 0. Let us set
V=@ e Ve iy <hl@)) and V= {(y) e Vy y > ).
By (4.101) we have that for n large
HY Y S(up) V) > o (4.102)

Let 9 be the function defined on Vy obtained reflecting Yyt to V,;: more precisely let us set

5= Jv@Y) if (z',y) € VT,
- o(z',2h(z') —y) if (¢',y) € V.

We clearly have v € WP (Vo). Let 9, be obtained in the same way from (i’n)lv,,*‘ Let us consider
Wp 1= Up, + D — Dp,.

We have w,, — v weakly in SBV? (Vy) so that by lower semicontinuity given by Proposition 4.3.3 we get

/ 9" (z,v) dHN Y (z) < liminf gn(z,v) dHN =Y (z). (4.103)
S(v)NV,

noteo /<s<wn>\f<n>nvn

On the other hand, since £’ (v, dVy) = 0, we have that v, is a recovering sequence for v in Vi- In particular
we get that

/ 9 " (z,v)dHVY(z) = lim ' gn(z,v) dHN " (z). (4.104)
S(v)Nv, "0 S (S (un )\ K )Ny

Formulas (4.103) and (4.104) give a contradiction because for n large by (4.102) and since K, CQ and
S(wn) CONQ, (recall that gn(z,v) =B+ 1forz e Q' \ )]

gn(z,v) dHNhl(:c) - / gn(z,v) dHY Y z) > o

/<S<un>\Kn>nvn (S(un)\Kn)AV,

We conclude that (4.96) holds. o o

We are now in a position to prove the I-limsup inequality for &, and € (the T-liminf is immediate
from the I'-convergence of &, to &' and the fact that the constraint is closed under the strong topology
of L()). Let £ > 0, and let U A(§') be such that 8Q C U, £'(v,8U) = 0, and

/ flz,Vo)de <e ) o o (4.105)
U .

In view of (4.95) and (4.96) we can find n € SBVP(Q) such that ¢, = 1), — v, on ' \Q, ¢n =0on
Q\ U and :

¢n — 0  strongly in L}(Q'),
Vin — 0 strongly in IP(Q'; RY),
HN_I(S(‘Pn)) - 0.
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Let us consider
Up 1= vy + O,

We have @, = 1,, on \ ©. Moreover
lim sup/ gn(z,v) dHY "1 = lim sup gn(z,v)dHN-T
S(n)\Kn

T 400 =400 S(wn)\Kn

and using the growth estimate on I
lim sup

S /Q/ iz, Vﬂn(ac))dm-—/n, Folz, Vg (2)) do

2e-1 2r-1
< Iimsup/ as(z)dz + <—-— + 1) / In(@, Vun(z)) do + ———/ la1|dz + 2”“1/ Vo |P dz.
U @ U & Jy U

n—-+4o00

< limsup / Fnl@, V(@) + Fu(z, Vo (2)) da
ung

n—-+o0
By (4.105) we get ) .
lim sup/ Jolz, Vo (z)) dz < e.
U

n—-oco

Then we conclude

limsup’ <e(e)

N—+00

I u(e Via(a)) do - | 71t Ta(a) o
Q! o .

with e(e) — 0 as € — 0. We deduce that
limsup &'(3,) < &' (v) + e(e),
n—r+oq ) .

with e(e) — 0 as e — 0. Since ¢ is arbitrary, using a diagonal argument we have that the I-limsup
inequality is proved. O
Remark 4.6.2. In view of Lemma 4.6.1 we can prove that the surface energy determined by the restric-
tion of ¢’ to O is actually independent of the choice of Q' and of the constant value ¢’ of g/ on Q' \

provided that ¢’ > 8. In fact g’ is the density of the surface energy of the I'-limit in the strong topology
of L(§2) of the functionals on SBV? (8') defined as

Yy o ,.’E vlz - ’.’I:I/ N—lm.
&0 = [ e volana + [ o REe

Following the proof of Lemma 4.6.1 (for the functionals £, with K, =0), ifv = ¢ outside Q, we can find
(vn)nen recovering sequence for v with respect to (£,,9, ¢’) such that v, = 1y, outside €. Then if Q” is
an open set such that £ C Q" we have that (vn)jrnar is a recovering sequence also for (En Q' N, e,
and we have : o
/ g(@v)dHN" = lim: [ g.(g, v)dHV L,

5(v) =00 /g (v,) :
We deduce that the surface energy given by the restriction of g’ to 0 x SV=1 is determined only by the
gn 12 x SN 0, 400). :

The stability result for unilateral minimality properties with bbﬁndary ébnditions under g-convergence

in  for rectifiable sets (see Definition 4.4.10) and T -convergence of bulk and surface energies is the
following.
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Theorem 4.6.3. Let 1, € Wh?(Q) with ¢, — Y strongly in WhP(Q). Let (un)nen be a sequence in
SBVP(Q) with up, — u weakly in SBV?(Q), and let (Ky)nen be o sequence of rectifiable sets in 0 with
HN"l(Kn) < C, such that Ky, o-converges in G} to K, and S¥(u,) € K,,.

Let us assume that the pair (un, Ky) satisfies the unilateral -mim'mality property (4.86) with respect to
Jns gn and . Then (u, K ) satisfies the unilateral minimality property with respect to §, g and v, where
[ is defined in (4.31) and g is the restriction of g’ defined in (4.88) to O x S¥=1. Moreover we have

N—++00

lim /n Ful, Vun (2)) dz = /n f:(:c,Vu‘(a:))da:. (4.106)

Proof. Since the boundary datum ¥y is imposed just on 850, ‘we can consider OnQ =00\ 8pQ as part

of the cracks, that is we can replace in the unilateral minimality properties Ky, with K/ := K, U dyQ.
It is easy to prove that K7, o-converges in © to K U dnQ. Then the proof follows that of Theorem

4.5.2 employing the functionals (€ )nen defined in Lemma 4.6.1 with K in place of K. O

4.7 Quasistatic evolution of cracks in composite materials

The aim of this section is to apply the stability results of Section, 4.6 to the study the asymptotic
behavior of crack evolutions relative to varying bulk and surface energies f, and gn. As mentioned in
the Introduction, this problem is inspired by the problem of crack propagation in composite materials.
We restrict our analysis to the case of antiplanar shear, where the elastic body is an infinite cylinder.

Let us recall the result of Dal Maso, Francfort and Toader [35] about quasistatic crack evolution
in nonlinear elasticity: it is a very general existence and ‘approximation result concerning a variational
theory crack propagation inspired by the variational model introduced by Francfort and Marigo in [48].
As already said, we consider the antiplanar case and for simplicity'lwe neglect body and traction forces,
and so we adapt the mathematical tools employed in [35] to this'scalar setting. '

As in the previous sections, let Q c RV (which, for N = 2 represents a section of the cylindrical
hyperelastic body) be an open bounded set with Lipschitz boundary. The family of admissible cracks is
the class of rectifiable subsets of {1, while the class of admissible displacements is given by the functional
space SBVP(Q), where 1 < p < +o0. Let 8p§ be a subsét of 8. Qiven Y € WHP(Q)), we say that the
displacement u is admissible for the fracture X and the boundary -datum 1 and we write u € AD(¢, K)
if

SW)CK  and  v=v ondpQ\K..

"This can be summarized by the notation $¥(u) € K, where S¥(-) is defined in (4.20).
Let f(2,€) : @ x RY — [0, +00[ be a Carathéodory function which is convex and C? in € for a.e.
z € €, and satisfies the growth estimate :

ar(z) + alel” < f(z,€) < as(z) + BlEP, ‘ (4.107)
where a1,a3 € LY(Q) and o, 8 > 0. Let moreover g : {3.x SV-1 ~+ 10, +00[ be.a Borel function such that
a<glzy)<p (4.108)

The total energy of a configuration (u, K) is given by . -

£ K) = | e, Va@)di+ | e mant=i )

." K
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We will usually refer to the first term as bulk energy of u and we write
E%(u) = /9 @ Vule)dz, (4.109)
while we will refer to the second term as surface energy of K and we write
E(K) = /K 9(z, v)dH" " (z). (4.110)

Let us consider now a time dependent boundary datum ¢ € Wil ([0, T; WLP(Q)) (i.e. the function
t — 9(t) is absolutely continuous from [0, 7] to the Banach space W1» (€2), with summable time derivative,
see for instance [14]), such that for all t € [0,7] '

[¥(@)lzeoy < C. o (4.111)

In [35] Dal Maso, Francfort and Toader proved the esistence of an irreversible quasistatic crack evolution
in Q relative to the boundary displacement %, i.e. the existence of a map t — (u(t), K(t)) where
u(t) € AD(%(t), K (t)), lu(®)]l 2oy < 1%(t)]|loo and such that the following three properties hold:

(1) drreversibility: K (t1) € K (t3) for all 0 < ¢, < o < T
(2) static equilibrium: €(u(0), K(0)) < &(v,K) for all (v, K) such that v € AD((0),K), and
Eut), K(t)) S E(w,K)  for all K(t)C K, v e AD((2), K);

(3) nondissipativity: the function t — & (u(t), K(t)) is absolutely continuous and

2 (), K@) = [ Verte vu@)wite o

where 7 denotes the time derivative of t — 9(t).

For every n € N let us consider admissible bulk and surface energies fr : @ x RY — R and Gn :
2 x 81 — [0, +oo] for the model of [35] satisfying the growth estimates (4.107) and (4.108) uniformly
in n. Let us moreover assume that Jn 18 such that for a.e..z € Q and for all M >0

Ve fn(z, fi) - fon(:v, fi)l =0 . . (4.112)
for all €1, €2 such that [¢[L < M [¢2 < M and €k — €2] — 0. We denote by &n, £} and EF the total,

bulk and surface energies associated to fn and g,.

Let f and g be the effective energies associated to ‘f, and g, in the sense of Theorem 4.6.3, i.e. let
J be given by Proposition 4.2.1 and let g be the restriction to @ x-S¥=1 of the function ¢’ defined in
(4.88). Notice that by Theorem 4.1.5 we have that the function f(z,-) is C1: as it is also convex in € and
satisfies the growth estimate (4.107), we have that f and 9 are admissible bulk and surface energies for
the model of [35]. :

Let t — 9 (t) be a sequence of admissible time dependent boundary displacements such that

Yn — 1 strongly in Wil ([O, al HI(Q))

Let t — (un(t), Kn(t)) be a quasistatic evolution for the boundary datum 1, relative to the energies f,
and g, according to [35]. The main result of this section is the following Theorem which asserts that the
o-limit in Q of K, (t) (see Definition 4.4.10) still determines a’quasistatic crack growth with respect to
the energies f and g. : e
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Theorem 4.7.1. There exists a quasistatic crack growth t — (u(t), K (t)) relative to the energies f and
9 and the boundary datum i such that up to a subsequence (not rabelled) the following hold:

(1) for allt € [0,T) _
Kn(t) o-converges in Q to K (t),

and there exists a further subsequence ny (depending possibly on t ) such that

Un, (B) — u(t) weakly in SBVP(Q);

(2) for every t € [0, 1] we have convergence of total energies

Enlun(t), Kn(t)) — Eu(t), K (t)),
and in particular separate convergence for bulk and surface energies, i.e.
En(un(t) = E%u(t))  and E(Kn(t)) — E°(K(t)),
Proof. Notice that by nondissipativity for ¢ — (un(t), Kn(t)) and by growth estimates on fn and g, we
have that there exists a constant C such that for all ¢ € [6,T] and for all n € N '
[Vun ()P + 2 (R ft)) + ()] oe ey < C. (4.113)
We divide the proof in several steps. '

Step 1: Compactness for the cracks. In view of (4.113), using a variant of Helly’s theorem (see for
instance [36, Theorem 6.3] for the case of Hausdorff converging compact sets), we can find a subsequence
(not rabelled) of (Ky,(:))nen and an increasing map ¢ — K (¢) such that for all ¢ € [0,T]

Kn(t) o-converges in  to K'(t). (4.114)

Step 2: Compactness for the displacements. Notice that the sequence (un(t))nen is relatively
compact in SBVP(Q) by (4.113). We now want to select a particular limit point of this sequence. With
this aim, let us consider ‘

90lt) = | Vefala, Vun ()94 (0 da,

and let us set :
9(t) := lim sup 9, (2)

. (4.115)
n—++00 )
Let us see that there exists u(t) € SBVP(Q) ._such that
() = / Ve (@, Vult)) Vi(t) da (4.116)
a .
and .o
Un, () = u(t)  weakly in SBVP(Q) (4.117)

for a suitable subsequence ny depending on t. In fact let us consider a subsequence n such that

8(t) = lim_ /Q Vef (@, Vin, (1)) Vi, () d,
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and
Un, (t) = v weakly in SBVP(Q).

By static equilibrium for (un(t), Kn(t)) we have that
/ (&, Vin, () do < [ o (3, Vo(a)) d + [ i@
0 Q H\Knk (t)

for all v € AD(¢n, (t), H) with Ko, (t)C H. Then by Theorem 4.6.3 we get that

/ (o, Vu) do < / F(z, Volz)) dz + / o=, v) dHN 1 (z) (4.118)
Q Q H\K(t)
for all v € AD(%(t), H) with K (t) € H and
[ frala, Vun, @) do = [ 505, Ve, (4.119)
Q Q
We claim that
k_ﬂ_m/ Ve fre (@, Vg, (1)) VO dz —/ Vef(z, Vu)Ve dz (4.120)

for all ® € Wh?(Q). This has been done in [35, Lemma 4.11] in 4he case of fixed bulk energy, and our
proof is just a variant based on the I'-convergence results of Section 4.3 and on assuption (4.112) which
permit to deal with varying energies. Let us consider s; \, 0 and k; — +00: up to a further subsequence
for k; we can assume that

/ flz, Vu(z) + 5;V®(z)) — f(z, Vu(z)) de — _1_ < / Ve Fre, (T, Vg, () + 5;V®)VE dx
j = q ks ) Tk J

Sj

where §; € [0, s;]. This comes from lower semicontinuity for bulk energies under I'-convergence given by
Proposition 4.3.3, and by Lagrange’s Theorem. By Lemma 4.1.4 we have

j=—++o00 J—++0o0o

hmmf/ Ve fru, (z, Vin, (1) +5V2)Vedr = hmmf/ Vefn, (:c Vi, (¢ )V dz,

so that we get
Vef(z, Vu)Ve dr < hmlnf/ ngm z, Vunk ()Ve dz.
o}

Jro0

Changing ® with —&, we get that (4.120) is proved: sefting u(¢) := u we deduce that (4.116) and (4.117)
hold. :

Step 3: Conclusion. Let us consider t — (u(t), K(t)), with u(t) and K (t) defined in Step 2 and Step
1 respectively. In order to see that ¢ — (u(t), K(¢)) is a quasistatic crack evolution we have to check
the admissibility condition u(t) € AD(4(t), K(¢)) for all ¢, and the properties ofirreversibility, static
equilibrium and nondissipativity conditions with respect to f and g.

As for admissibility, this is guaranteed by (4.114) and (4.117) which ensures that S¥®)(u(t)) € K(¢).
Irreversibility is given by construction in Step 1, and static equilibrium comes from (4.118) for t € (0, T},
and by Lemma 4.6.1 (where we take K, = @) for t = 0. As for nondissipativity, we have that static
equilibrium implies that (see [35]) for all ¢ € [0, T

t .
E(u(t), K (1) = E(u(0), K(0) + /O /Q Ve f (2, Vu(r)) Vi () da dr.
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On the other hand by lower semicontinuity given by Proposition 4.3.3 and by Proposition 4.4.9 (applied
to g’ from which g is obtained by restriction) we have for all t € [0,7]

E(u(t), K (t)) < liminf & (un(t), Kn(t)),

n—
and by I-convergence given by Lemma 4.6.1 (where we take Kn = 0)
E(u(0),K(0)) = lm &n(un(0), Kn(0)).
n-—++-00
Hence we get for all ¢ € [0, T] (applying also Fatou’s Lemma in the limsup version)

E(u(t), K (t)) < liminf €n(un(t), Kn(t)) < limsup Enlun(t), Kn(t))

n—-+o00 n—+4o00
— lim sup En (un(0), Ka(0)) + / " 9a(s) ds < £(u(0), K(0)) + / " 9(s) ds
n-—+-+00 0 0

- £(u(0), K(0)) + /0 ‘ /Q Ve f (@, Vu(r)Vi(r) dodr < E(u(t), K (),

so that we get ,
E(ult), K(t)) = E(u(0), K(0)) +/O ‘/QVEf(m., Vu(r))Vi(r) dz dr

and - .
JHm En(un (1), Kn(t)) = E(u(t), K(t). ‘ (4.121)
Finally by lower semicontinuity for the bulk and surface energies under weak convergence for the dis-
placements and o-convergence in €} for the cracks, we conclude that

lim_ £8(un()) = E°(u(t),

n—+00

and
lim E5(Ka(t)) = E5(K(1)),

=00

so that the theorem is proved.



Chapter 5

Finite element approximation of the
model by Francfort-Larsen

5.1 Introduction

In this chapter ! We propose a discontinuous finite element appréximation for the model of quasi-static
growth of crack proposed by Francfort and Larsen in [47]. We use a suitable finite element method and
we give a rigorous proof of its convergence to a quasi-static evolution in the sense of Francfort and Larsen.
We restrict our analysis to a two dimensional setting considering only a polygonal reference configuration
QCR2

The discretization of the domain 2 is carried out, following [62] (see also [63]), considering two
parameters £ > 0 and a €]0, %[ . We consider a regular triangulation R, of size € of §2, i.e. we assume
that there exist two constants c; and co so that every triangle 7' € R, contains a ball of radius c;e and
is contained in a ball of radius cae. In order to treat the boundary data, we assume also that dp$ is
composed of edges of R.. On each edge [z,y] of R, we consider a point z such that z = tz + (1 — t)y
with ¢ € [a,1 — a]. These points are called adaptive vertices. Connecting together the adaptive vertices,
we divide every T' € R, into four triangles. We take the new triangulation T obtained after this division
as the discretization of Q. The family of all such triangulations is denoted by 7¢,, (Q2).

The discretization of the energy functional is obtained restricting the total energy to the family of
functions u which are affine on the triangles of some triangulation T(u) € 7;,,(Q) and are allowed to
jump across the edges of T(u). We indicate this space by A¢ (). The boundary data is assumed to
belong to the space AF:(Q2) of continuous functions which are affine on every triangle T € R,.

Given the boundary data g € Wh([0, 1], HY(Q)) with g(t) € AF(Q) for all t € [0, 1], we divide [0, 1]
into subintervals [tJ,0,,] of size § > 0 for ¢ = 0,..., N5, we set g¢ = g(tf), and for all u € A 4(Q)
we indicate by S%s (u) the edges of the triangulation T(u) contained in dp$ on which u # g. Using a
variational argument we construct a discrete evolution {u®% . i=0,..., N5} such that ug',fl € Ao ()
for all i =0, ..., Ns, and such that considering the discrete fracture.

réi = | [S@in) U sE W),
r=0 .

LThe results of this chapter are contained in Giacomini-Ponsiglione [50]

127



198CHAPTER 5. FINITE ELEMENT APPROXIMATION OF THE MODEL BY FRAN CFORT-LARSEN

the following unilateral minimality property holds:

/Q |Vudil|?dz < /n |Vo|? dz + H* ((S(v) u .S’%:'s (v)) \Fg;z‘l) ) (5.1)

Moreover we get suitable estimates for the discrete total energy
B 6,1 Gy
Eg,;; = HVUE,ZH%Z(Q;RZ) + Hl (FE,'IL‘L) .

In order to perform the asymptotic analysis of the discrete evolution {ug;g :1=0,...,Ns}, we make the
piecewise constant interpolation in time u‘;a(t) =ud% and Ié () = Tg’,fl for all t§ <t < t,,. The main
result of the chapter is the following theorem.

Theorem 5.1.1. Let g € Wh([0,1], HX(Q)) be such that ||g(t)]|c < C for all t € [0, 1] and let g. €
Whi([0, 1], HY(Q)) be such that [|ge(t)llo < C, ge(t) € AFe(R) for all t € [0,1] and

ge — g  strongly in WHH([0,1], H'()). (6.2)

Given the discrete evolution {t — ul ,(t)} relative to the boundary data ge, let Ié, and &, be the

associated fracture and total energy.
Then there exist 6, — 0, &n — 0, an — 0, and o quasi-static evolution in the sense of [47] {t —

(u(t),T(t)), t € [0,1]} relative to the boundary data g, such that setting un = ulr , , Tn = e

En = 83:@", the following hold: .
(a) if N is the set of discontinuities of H*(L'(")), for all ¢ €:[0, 1] \ NV we have .
Vun(t) — Vu(t)  strongly-in L*(2;R?) (5.3)
and
lim M} (Ta(t) =H* (T (2)); - (5.4)
(b) for all t € [0,1] we have .
lim Enlt) = E(2). (5.5)

We conclude that we have the convergence of the total energy.at each time ¢ € [0,1], and the separate
convergence of bulk and surface energy for all ¢ € [0, 1] except a countable set.

In order to prove Theorem 5.1.1, we proceed in two steps. Firstly, we fix a and let § — 0 and € — 0.
We obtain an evolution {t — ug(¢) : t € [0,1]} such that Vul ,(t) = Vua(t) strongly in L2(;R?) for
all ¢ up to a countable set and such that the following minimality property holds: for all v € SBV(Q)

/Q |Vua(t)|* dz < /n Vol? dz + peyH* ((S(w) U (8o N {v # g(t)D) \ Tu(t)) , (5:6)

where p :]0, 3[—]0, +oo[ is a function independent of £ and §, such that p > 1, lime—ou(a) = 1 and
La(t) = Us<ssen S(ug(s)) U (8pQ N {uqa(s) # g(s)}). The minimality property (5.6) takes into account
possible anisotropies that could be generated as ¢ and € — 0: in fact, since a is fixed, we have that
the angles of the triangles in 7z q(€2) are between fixed values (determined by a), and so fractures with
certain directions cannot be approximated in length. In the second step, we let @ — 0 and determine
from {t — ua(t) : t € [0,1]} a quasi-static evolution {t — u(t) : t € [0,1]} in the sense of Francfort
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and Larsen. Then, using a diagonal argument, we find sequences §, — 0, e, — 0, and a,, — 0 satisfying
Theorem 5.1.1.

The main difficulties arise in the first part of our analysis, namely when 0, — 0. The convergence
uf ,(t) — ua(t) in SBV(Q) for t € D C [0,1] countable and dense is easily obtained by means of
Ambrosio’s Compactness Theorem. The minimality property (5.6) derives from its discrete version (5.1)
using a variant of Lemma 1.2 of [47]: given v € SBV(Q)), we construct vg’a € A¢ o (Q) such that

V'ug,a — Vo strongly in L*(Q;R?) (6.7)

and

limsup H* [(S(28,0) USE 0 1)) \T2a(8)] < w(@)H [(S) U (8020 {v # 90)}) \Tat)],  (58)

8,e—0

where g3(t) := g.(¢{) for ¢ <t < t,,. The main difference with respect to Lemma 1.2 of [47] is that we
have to find the approximating functions 'ug,a in the finite element space A (). This can be regarded
as an interpolation problem, so we try to construct triangulations T, € T¢ () adapted to v in order
to obtain (5.7) and (5.8). In all the geometric operations involved, we need to avoid degeneration of the
triangles of T(ug'a(t)) which is guaranteed from the fact that o is constant: this is the principal reason
to keep a fixed in the first step. A second difficulty arises when u,(-) is extended from D to the entire
interval [0, 1]: indeed it is no longer clear whether Vug,a(t) — Vue(t) for t ¢ D. Since the space A; ()
is not a vector space, we cannot provide an estimate on'”Vug,a(t) - Vug’a(s)” with s € D and s < t: we
thus cannot expect to recover the convergence at time ¢ from the convergence at time s. We overcome
this difficulty observing that Vug’a(t) — Vi, with @, satisfying a minimality property similar to (5.6)
and then proving Vi, = Vu,(t) by a uniqueness argument for the gradients of the solutions.

The plan of the chapter is the following. In Section 5.2 we give the basic definitions and prove some
auxiliary results. In Section 5.3, we prove the existence of a discrete evolution. In Section 5.4 we prove
the convergence of the discrete evolution to a quasi-static evolution of brittle fractures in the sense of
Francfort and Larsen. The proof of minimality property (5.8) requires a careful analysis to which is
dedicated Section 5.5. In Section 5.6 we show that the arguments of Section 5.4 can be used to improve
the convergence results for the discrete in time approximation considered in [47].

5.2 Preliminaries

Triangulations. Let © C R? be a polygonal set and let us fix two positive constants 0 < ¢; < ¢z. By a
regular triangulation of Q of size £ we intend a finite family of (closed) triangles T; such that Q = U; T,
T; N T is either empty or equal to a common edge or to a common vertex, and each 7; contains a ball of
diameter c;e and is contained in a ball of diameter cge.

We indicate by R (2) the family of all regular triangulations of Q of size . It turns out that there
exist 0 < 9¥; < ¥ < 7 such that for all T belonging to a triangulation T € R, (f2), the inner angles of T
are between ¥; and J5. Moreover, every edge of T has length greater than c;e and lower than cse.

Let us fix a triangulation R, € R¢(Q) for alle > 0 and let a €]0, ;[. Let us consider a new triangulation
T nested in R, obtained dividing each T" € R, into four triangles taking over every edge [z,y] of T a
knot z which satisfies )

z=1tz+ (1 - t)y, t€la,1—al.

We will call these new vertices adaptive, the triangles obtained joining these points adaptive triangles,
and their edges adaptive edges (see Fig.1). .
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We denote by 7z . (Q) the set of all triangulations T constructed in this way. Note that for all T € T¢ o ()
there exists 0 < @ < ¢§ < +oo such that every T; € T contains a ball of diameter cfe and is contained
in a ball of diameter ce. Then there exist 0 < 9} < 9§ < 7 such that for all triangles T belonging to a
triangulation T € T;,4(§2), the inner angles of T' are between 9% and 9¥§. Moreover, every edge of T has
length greater than c¥¢ and lower than cge.

We will often use the following interpolation estimate (see [26, Theorem 3.1.5]). If u € W22(Q) and
T € R, let ur denote the affine interpolation of u on T. We have that there exists K depending only

on c1, ¢y such that
lur — ullwrzr) < Kellulwezr). (5.9)

Estimate (5.9) holds also for T € T; (€): in this case K depends‘on a.

Some elementary constructions. The following lemmas will be used in Section 4.

Lemma 5.2.1. Let T € T; (), and let | C Q be a segment with extremes p, q belonging to edges of T.
There exists a polyhedral curve T* with extremal points p and q (see Fig.2) such that T is contained in the
union of the edges of those T € T with T N1 # 0, and such that the following properties hold:

(1) T = v, Uy U g, where v is union of edges of T and 7, g are segments containing p and g
respectively, and each one is contained in an edge of T;

(8) there ezists a constant c independent of € (but depending on a) such that

HY (D) < cHH (D).
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Proof. Let {14, ... Ty} be the family of triangles in T'such that the intersection with [ is a segment with
positive length. For every integer 1 < ¢ < k, let I; := T3 NI If l; is an edge of T;, we set D; = T;.
Otherwise let D; be a connected component of 7; \ I; such that |D;| < 3|Ti|. We claim that there exists
a constant ¢ > 0 independent of € such that

HY(OD;) < eHM(l:). (5.10)

We have to analyze two possibilities, namely D; is a triangle, or D; is a trapezoid. Suppose that D; is a
triangle and that m; is an edge of D;. Let a be the angle of D; opposite to [;. It is easy to prove that
HY (L) = HY(m;) sin e, and so
1 .
H (1) > gsinaHl(aDi).
Since 9¢ < o < 9%, sin o is uniformly bounded from below, and hence inequality (5.10) follows. If D; is

a trapezoid, since |D;| < |T;|, it follows that T; \ D; is a triangle such that its edges different from [;
have length greater than jcfe. Let o be the inner angle of T; \ D; opposite to I;. We have that

H(1) > Esinozc“fs > -l-sin aille(BD‘)
Y= =2 Tt o

Since 9$ < o < 994, inequality (5.10) follows.

By (5.10), we deduce that )
k .
H? <U 6Di> < cHY();
i=1

moreover, since Uf:l (8D; \ (I; Nint(T}))) is arcwise connected and ‘contains p, g, we conclude that there

exists a curve I' C Ule OD; which satisfies the thesis. O

Lemma 5.2.2. There exists a constant ¢ > 0 such that for every segment [ C 2 there exists eg with the
following property: for every e < &g, setting R(1) :={T € Re: TN # 0}, we have

HYOR()) < cH (1)
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Proof. Let Np(I) := {z € Q: dist(z,1) < coe}. We have that [N, (I)] = H'(I)coe + mc3e?, and hence there
exists a positive constant eg such that, for every € < g9, we have that

V()] < 2H (1)cze.

We have that R(l) C N:(!), and

4 V()]
D)< e
RO < 2o
where §R(l) denotes the number of triangles of R(I). Then, we have
4 |N(D)] 4
1 € 2 1
H (BR(Z)) < 3028 ﬂR(Z) < 36252?;3 22 < 3C2—C—?;§2H (l),
and so the proof is concluded. |

A density result. Let A C R? be open. We say that K C A is polygonal (with respect to A), if it is
the intersection of A with the union of a finite number of closed segments. The following density result
is proved in [30].

Theorem 5.2.3. Assume that OA is locally Lipschitz, and let uw € SBV(A) such that v € L2(A4),
Vu € L2(Q;R?), and HY(S(u)) < +oo. For every e > 0, there exists a function v € SBV (A) such that

(a) S(v) is essentially closed, i.e., H*(S(v)\ S(v)) = 0;

(b) S(v) is a polyhedral set;

(c) ve Who(A\ S(v)) for every k € N;
(d) lJv—ullr2a) < &5

(e) [|Vv~ Vul|lzz2(ar2) <€/

(f) HY(S(v)) — H (S (u))] <.

Let Op§) be a relatively open subset of 952 composed of edges lying in 0Q. Let us consider €lp
polygonal open bounded subset of R2 such that Qp N = 0 and QN OOp = Op up to a finite number
of vertices. We set ' := QU Qp UOpQ. In Section 4, we will use the following result.

Proposition 5.2.4. Given u € SBV () with u = 0 on '\ Q and HN~1(S(u)) < +oo, there ezists
up € SBV(QY) such that

(o) up =0 in Q' \Q;
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(b) S(un) is polyhedral, S(up) C Q and up € WE2(QV\ S(up)) for all k;
(¢) un — u strongly in L*>(Q') and Vup, — Vu strongly in L2(Q'; R2);

(d) for all A open subset of Q' with HY (AN S(u)) = 0, we have
li}IlnHl(A N S(up)) = HYANS(u)).

Proof. Using a partition of unity, we may prove the result in the case Q :=]—1,1[x]0, 1[, ' :=] -1, 1[x]~
1,1, and 8p§ :=] — 1,1[x{0}. We set wp(z,y) := u(z,y — k), and let @ be a cut off function with
pn=Tlon]—1,1[x]-1,2] oy =00n]-1, 1x]4,1[, and |[Vn|le < L. Let us set vp, := (1 — @p )wp.
We have that vy, = 0 in Q' \ Q; moreover we have

V'uh = (1 - goh)th - V(ph’wh.

Since Vppwy — 0 strongly in L2(Q'; R?), we have Vo, — Vu strongly in L2(Q; RN ). Finally, for all 4
open subset of ' with H1(8A N S(w)) = 0, we have

lim HY AN S(vg)) = HHAN S(u)).
In order to conclude the proof, let us apply Theorem 5.2.3 obtaining ¥, with polyhedral jumps in Q

such that 7, € Wk"x’(ﬂ' \ S(f)h)), ||wh - ﬁhHLQ(Q) + ”th - v’ah“L2(Q;R2) < h% and [HN‘I(S(’LU]-L)) -
HN=1(S(5h))] < h. If we set up := @rg + (1 — ¢p)Tx, we obtain the thesis. O

5.3 The discontinuous finite element approximation

In this section we construct a discrete approximation of quasi-static evolution of brittle fractures in
linearly elastic bodies: the discretization is done both in space and time. -

From now on we suppose that (2 is a polygonal open bounded subset of R2, and that 8pQ C 99 is
open in the relative topology. For all € > 0, we fix a triangulation R, € R.(Q), and suppose that 9pQ
is composed of edges of R, for all &; we indicate the family of these edges by S..

We consider the following discontinuous finite element space. We indicate by A, 4 (£2) the set of all
u such that there exists a triangulation T(u) € 7; 4(9) nested in R, with u affine on every T € T(u).
For every u € Ac (), we write [|Vu|| for the L?-norm of Vu and we indicate by S(u) the family of
edges of T(u) inside 2 across which u is discontinuous. Notice that w € SBV(Q) and that the notation
is consistent with the usual one employed in the theory of functions with bounded variation. Let us also
denote by AF.(Q2) the set of affine functions in Q with respect to the triangulation R.. Finally, given
any g € AF.(Q), for all u € A, ,(Q) we set :

S9(u)i={CES. s ustgonc} (5.11)

that is S%(u) denotes the edges at which the bgundary' conditioﬁ; is not satisfied. Moreover we set
§9(u) = S(u) U Sh(u) : (5.12)

Let now consider g € W1([0,1}; H*(Q2)) with g(t) € AF.(Q) for all t € [0,1). Let § > 0 and let Ns be
the largest integer such that §(Ns — 1) < 1; for 0 < 7 < N5 — 1 we set ¢ := 46, t‘;\,d =1 and ¢¢ := g(t9).
The following proposition holds.
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Proposition 5.3.1. Let £ > 0, a €]0, 3] and § > 0 be fized. Then for all i = 0,...,Ns there exists
udl, € Ao (Q) such that, setting

i
5 . Iy
Té = 89 (ud?),
=0

the following hold: :
(a) |ludblloo < 119 oo

(b) for all v € Ac o(Q) we have
[Tus) + 7t (5% (i) < Vol + 7 (89 )) (5.13)

and
Vg |2 < |Vol? + 7 (5% (0) \TE5) (5.14)
Proof. The proof is carried out through a variational argument. Let ug"g be a minimum of the following

problem
s .

min{||vu||2 +HL(S9 (u))}. (5.15)

We set 1‘2;2 = 5% (ugig). Recursively, supposing to have constructed ug:f;l and I‘g:fl”l, let ug;fl be a

minimum for

min{|]Vu||2 + A (592-‘ (w)\ rg;z‘;l)}. (5.16)

We set T8% .= 5% (udi) UTSi~1. We claim that problems (5.15) and (5.16) admit a solution ul% such
that [udlleo < llg¢]lco for all i =0,..., N5. We prove the claim for problem (5.16), the other case being

similar. Let (u,) be a minimizing sequence for problem (5.16): since g} is an admissible test function,
we deduce that for n large

& T
I Vual? + 11 (59 (un) \TEE) < (1947 + 1.

Moreover, we may modify u, in the following way. If 7 denotes the projection in R over the interval
I = [~]|g8llo, |8 ]lco), leb fin € Ae,a(S2) be defined on each T' € T(u,) as the affine interpolation of
the values (m(un(z1)), T(un(z2)), T(un(zs)), where z1, z2 and z3 are the vertices of 7. Note that by
construction we have for all n

- _ R s
lnlloo € 168loos  IVanll S [Vunll, 8% (@) C 5% (un),

so that (fy,) is a minimizing sequence for problem (5.16). We conclude that it is not restrictive to assume
lunlleo < ”9?”00 :

Since T(un) € 7,4(Q), we have that the number of elements of T(uy) is uniformly bounded. Up to
a subsequence, we may suppose that there exists an integer k such.that T(u,) has exactly k elements
T,i, e ,TT’f. Using a diagonal argument we may suppose that, up to a further subsequence, there exists
T = {T%,...,T%} € T..(Q) such that Ti — T* in the Hausdorff metric for all 7 = 1,...,k. Let us

consider T* € T, and let T be contained in the interior of T%. For n large enough, T is contained in
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the interior of T} and (un)lfﬁ is affine with [7; |Vus|* dz < C with C independent of n. We deduce that

there exists a function «* affine on 7% such that up to a subsequence u, — u uniformly on 7. Since T
is arbitrary, it turns out that u* is actually defined on T* and

|Vul|? de < Iiminf/ |Vu,|? dz.,
T n T: .

Let u € A o(Q) such that u = v’ on T" for every i = 1,...,k: we have

[Vul? < liminf |Vun|?.
On the other hand, it is easy to see that $% (u) is contained in'the Hausdorff limit of g9t (un), and that
H* (59 () \T25) < liminfH" (8% (un) \TEE).
. L ,

We conclude that u is a minimum point for the problem (5.16) with [|u/lco < [|9]lco. We have that point
(@) is proved.
Concerning point (b), by construction we get (5.13); for ¢ > 1 we have

Vg |2+ #* (59 (i) \TEE) < |Voll? + 7 (5% (v) \ 257
for all v € A. 4 (£2), so that
IVugs]? < [ Vol2 + 1 (8% () \ 257,

and this proves point (b). i

Remark 5.3.2. For technical reasons due to the asymptotic analysis of the discrete evolution u i when
6 — 0, — 0 and ¢ — 0, we define ugg from u“‘l through problem (5.16) without requiring that the
adaptive vertices determining I“sf‘ remain ﬁxed We jus't'penalize their possible changes if they are
used to create new fracture: in fact in this case, the surface energy increases at each change of a quantity
at least of order ae. As a consequence, during the step by step minimization, it could happen that some
triangles T' € 7; o(f2) contain the fracture I"’ ¢ in their interior. This is in contrast with the interpretation
of the triangles as elementary blocks for the elastmlty problem, but being this situation penalized in the
minimization process, we expect that it occurs rarely.

The following estimate is essential for the study of asymptotic behavior of the discrete evolution.

E i) fori=0,..., Ns satisfies condition (b) of Proposition 5.8.1, setting

Proposition 5.3.3. If ugz
}1) ehcweforOSy <1< N

(
£ = Vgl + M (Tg,

£, —

i1 .
g <554+22/ /Vu ) dz dr + 0°, (5.17)

where

7=0,...,Ns—1

21 1
x ;:[ mae | [}g(r)llHl(g)dT} 16y dr. (5.18)
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Proof. For all 0 < j < Ns — 1, by construction of u‘”“ we have that

[T P + 1 (%0 @A) \TEL) < [ Vudd + V(g - I =
— | Vubd)? +2 /n Vbl V(ghyy — 68) dz + ||V (el s — o).
Notice that s
5 s e
v(gj—!—l - Qj) = /té Vg(r)dr,
7

so that

[Vusi |+ 7 (% i) \TE) <

£
< ||vudd “z+2/ /Vu 14 T)dxdmue(a)/ta 1)z ey dr, (5.19)

where s
tr+1 .
@)= _max [ 1oy
= s—1 tf_

From (5.19), we obtain that for all 0 < j <1< Ns
[Vudil? + HHT2E) < (Vi + HH (T2D)+
i—1 t£+1
+22/ / Vug;ZVQ(T) d:ch—}-&(J)/ Ng (M) e (qy dr,
=y 7 t2 Q &3
and so the proof of point (c¢) is complete choosing

1
o = e(6) /D 16() 2 dr-

5.4 The convergence result l

This section is devoted to the proof of Theorem 5.1.1. As in Section 5.3, let Q be a polygonal open
bounded subset of R?, and let 8pQ C 9 be open in the relative topology. For all € > 0, let R, € Re()
be a regular triangulation of § such that dp$2 is composed of edges of R.. As in the previous section,
let AF.(Q) be the family of continuous piecewise affine functions with respect to Re, and let A: 2(£2) be
the family of functions which are affine on the triangles of some triangulation T € Tz o(2) nested in R,
and can jump across the edges of T.

In the following, it will be useful to treat points at which the boundary condition is violated (see (5.11))
as internal jumps. Thus we consider §2p polygonal open bounded subset of R? such that Qp N = 0 and
80N 89 p = 8pS up to a finite number of points; we set Q' := QU QP UpQ. Given u € A o(Q) and
g € AF.(), we may extend g to a function of H'(€') and u to a function @ € SBV(Q') setting & = g
on Qp. In this way, recalling (5.12), we have
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so that the violation of the boundary condition of u can be read in the set of jumps of @&. Analogously,
given u € SBV(Q) and g € H'(R), we set

§9(u) := S(w) U {z € 0pQ : v(u)(z) # ~7(9)(x)}~ (5.20)

where v denotes the trace operator on 89. We may assume g € H!()/ ) using an extension operator. We
can then consider @ € SBV(€)) such that % =wu on Q, and @ = g on Qp. In this way we have

S89(u) = S(4) up to a set of H'-measure 0.

Let us consider g € W([0, 1], H(Q2)) such that ||g(t)]|eo < Cforallt € [0,1] and let g. € WLL([0, 1], H(€2))
be such that g (t) € AF.(Q) for all £ € [0, 1],

ll9e(®)lloc < C (5.21)

for all ¢ € [0,1], and fore — 0 .
g: — g strongly in Wh([0, 1], HY(Q)). . (5.22)

We indicate by {uﬁ;i, i=0,..., N5} the discrete evolution relative to the boundary data ge given by

Proposition 5.3.1, and we denote by 53'}; its total energy as in Proposition 5.3.3.

We assume that g(-) and ge(-) are defined in H*(€') (we still denote these extensions by g(-) and gy, ),
in such a way that (5.21) and (5.22) hold in ©'. Let us moreover set g2(t) := g(t) for all <t<tl,
with i =0,...,Ns—1 and gd(1) := g.(1). :

Let us make the following piecewise constant interpolation in time:

wlo(t) =udl fortd <t<ily i=0,... Nj—1,

£,a

and uf ,(1) :=uNe. For all t € [0, 1] we define the discrete fracture at time ¢ as

08, = 89wl ,(s)),

s<t
and the discrete total energy at time ¢ as T
Eat) = |Vud J)IP + 1" (T2, (1)) -

We have for all ¢ € [0, 1] ‘
4l o ®)lleo < I192()llco- - (5.23)

Moreover for all v € A () we have

V62 a0 + 72! (SO (u , 0))) < Vol + 22 (850 (w)) (5.24)
and for all ¢ €]0,1] and for all v € A, ,(Q) A
Ve @)1 < [Vol]? + ¢ (%O @)\ T (1)) (5.25)

Finally for all 0 < s < t <1 we have

.
€5 (8) <& (s)+2 / / Vil (1) V. () dzdr + o, (5.26)
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where t! <t <tl,,, sl <s< sty and

é
tr

Og = [ max +1 ”ge(T)”Hl(Q) dT} /(; Hgs(’f'jqu(Q). (5.27)

r=0,....,Ns—1 J45
r

For s = 0 we obtain the following estimate from above for the discrete total energy

t
£ ,(t) <E2,(0)+2 / / Vil o (T)Vge (1) dzdr + of, (5.28)
0 Q

where ¢ <t < tf_,_l.

We study the behavior of the evolution { — ug, o(t), t € [0,1]} varying the parameters in the following
way. We let firstly & — 0 and § — 0 obtaining an evolution {t — ua(t), t € [0, 1]} relative to the boundary
data g with the minimality property (5.36); then we let a — 0 obtaining a quasi-static evolution of brittle
fractures {t — u(t),t € [0, 1]} relative to the boundary data g. Finally, by a diagonal argument we deal
with (6,¢,a) at the same time.

In order to develop this program, we need some compactness, and so we derive a bound for the total
energy £2,. By (5.14), we have that for all ¢ € [0, 1]

[Vu @Il < Vel < C

with C independent of 6, € and t. We deduce for all ¢ € [0, 1]
£8,(t) < £8,(0)+2C% + ol

Notice that £2 ,(0) is uniformly bounded as d,¢ vary. Moreover, by (5.23) and since ||ge(t)|leo < C for all
t € [0,1], we have that ug’a(t) is uniformly bounded in L®°(£2) independently of 4, ¢ and a. Taking into
account (5.22), we conclude that there exists C' independent of §,e,a such that for all ¢ € [0,1]

£ L)+ [l s(Bleo < C. (5.29)

Formula (5.29) gives the desired compactness in order to perform the asymptotic analysis of the discrete
evolution.
Let now consider 6, — 0 and g, — 0: by (5.22) we have

ofr — 0, (5.30)

&

where og: is defined in (5.27). By Helly’s theorem on monotone functions, we may suppose that there
exists an increasing function ), such that (up to a subsequence) for all ¢ € [0,1]

Mnat) = HE | | S @(udn () | = Aalt): (5.31)

s<t
Let us fix D C [0,1] countable and dense with 0 € D.

Lemma 5.4.1. For allt € D there ezists uq(t) € SBV(Q) such that up to a subsequence independent of
t c
udn _(t) = ug(t) in SBV(Q).

En\Q

Moreover for all t € D we have

[Vaa (@ +H* (85 (ua(t)) + llua (oo <c. (5.32)
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Proof. Let us consider ¢t € D. By (5.29), we can apply Ambrosio’s Compactness Theorem 3.8.1 obtaining
u € SBV(Q) such that, up to a subsequence, ulr ,(t) — u in SBV(Q). Let us set uq(t) = w. Using
a diagonal argument, we deduce that there exists a subsequence of (§,,&,) (which we still denote by
(6, €n)) such that ug:,a(t) — ug(t) in SBV(Q) for all ¢ € D. In order to obtain inequality (5.32), we
extend uf" ,(¢) and u,(t) to Q' setting ulr () := gor(t) and w,(t) == g(t) on Qp; since 9o (t) — g(t)
on Qp strongly in H*(Qp), we have that ul" ,(¢) — u,(t) in SBV(Q'), so that we can apply Ambrosio’s
Theorem, and derive (5.32) from (5.29). 0

The following result is essential for the sequel: its proof is postponed to Sectien 5.5.

Proposition 5.4.2. Lett € D. For allv € SBV(Q) we have

IVua @I < [Vol® + w(@)H (7P w)\ | 59 (ua(s))), (5.33)

s<t,s€D
where 3]0, $[—]0, +oo[ 4s such that lim,_ou(a) = 1. Moreover, Vulr (t) — Vue(t) strongly in
L2(9; R?).
We now extend the evolution {¢ — u,(t) : t € D} to the entire interval [0,1]. Let us set for all

te[0,1]
Lo(t) = [ 89 (ug(s)).

s<t,s€D i
Lemma 5.4.3. For every t € [0, 1] there exists uq(t) € SBV(Q) such that the following hold:
(a) for allt € [0,1] .

59® (ugy (t)) C Talt) up to a set of H -measure 0, (5.34)
and . : '
[Vua @I + 1 (570 (ua(2)) + ta()floo < C'5 ' (5.35)
(b) for allv € SBV(Q)
Ve E)? < V0l + @ (579(0)\ Talt)) s (5.36)

(c) Vg is left continuous in [0,1]\ D with respect to the strong topology of L2(S%; R2);

(d) for all t € [0,1] \ N, we have that
Vug:’a(t) — Vg (t) sifon;qu in L2(Q, R?),
where Ny is the set of discontinuities of the function g deﬁﬁéd in (5.31).

Proof. Let ¢t € [0,1] \ D and let t, € D with ¢, /. By (5.32), we can apply Ambrosio’s Theorem to
the sequence (uq(tn)) obtaining u € SBV(Q) such that, up to a subsequence, uq(t,) — u in SBV(Q).
Let us set uq(t) = u. Let us extend uq(tn) and ug(t) to Q' setting uq(tn) = g(tn) and uq(t) = g(t) on
Qp: we have ua(tn) — ua(t) in SBV(QY). Since H*L S(uq(ts)) < H1LT4(t) for all n, as a consequence
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of Ambrosio’s Theorem, we deduce that H'L S(ug(t)) < H'LT,(t). This means H'L S0 (ua(t)) <
HLT,(t), so that (5.34) holds. Moreover, for all v € SBV(Q), by (5.33) we may write

1Vua(t)[12 < V0 = Tg(2) + Vo(tn)|* + (@) (SO (w) \ Laltn) <
< [[Vo — Vg(t) + Vg(ta)|? + ()i (S99 @)\ Ta(t)) + pa)H" (Ca(t) \Taltn)),  (5:37)

so that, since by definition of I',(¢) we have H! (Lo (t) \Ta(tn)) — 0, we obtain that (5.36) holds; choosing
v = ug(t) and taking the limsup in (5.37), we obtain that .’ -

lim sup || Vaa (t) |1 < [[Vua (5117,
n

and so the convergence Vug(tn) — Vua(t) is strong in L2(Q2,R?). Notice that Vug(t) is uniquely
determined by (5.34) and (5.36) since the gradient of the solutions of the minimum problem

min 4 [Vu)? : 89® () C Tu(t) up to a set of H1-measure 0
{I p

is unique by the strict convexity of the functional: we conclude that Vu,(t) is well defined. The same
arguments prove that Vu, is left continuous at all ¢ € [0,1]\ D. Finally (5.35) is a direct consequence of

(5.32) and of Ambrosio’s Theorem, and so points (a), (b), (c) are proved.

Let us come to point (d). Let us consider uggya(t) with t € Ng; we may suppose that ¢ € D, since

otherwise the result has already been established. By Proposition 5.4.2 with D' := D U {t} in place of
D, we have that, up to a subsequence, uﬁ:ya(t) - u in SBV(Q) such that

[Val? < Vo] + u(e)? (85O (@)\ (Fa(t) U ST w)))

for all v € SBV(R) and Vul® (t) — Vu strongly in L2 R?). Let s < ¢ with s € D; by the minimality
of ul" ,(s) and by (5.29) we have '

IVuls () < IVulr o () — Vair () + Volr ()1 + Analf) = Anals) -
< Ve o (017 + 2VC | Vgl () = Vgl ()l +11Vger (8) = VaZr (8)I* + Ana(t) = An.a(s).

Passing to the limit for n — +oo, recalling that gi=(r) — g(7) strongly in H'(£) for all 7 € [0,1], we
deduce

[Vua(s)lI? < | Vul? + 2V/T|[Vg(t) = Va(s)ll + 1Vg(t) = Vg(s)I* + Aa(t) = Aa(s),

so that, since ¢ is a point of continuity for As, Vu, is left continuous at ¢, and g is absolutely continuous,
we get for s — ¢ .
[Vua (@) < [ Vul®.

We conclude that ue(t) is a solution of

min{||Vo|? : §9P(v) C Ta(t) U S (u) up to a set of H'-measure 0},

so that Vu = Vug(t) by uniqueness of the gradient of the solution. We deduce that Vulr (1) = Vug(t)
strongly in L?(; R?), and so the proof is complete. ‘ O

‘We can now let a — 0.
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Lemma 5.4.4. There emists an — 0 such that, for allt € D, u,, (t) — u(t) in SBV(Q) for some
u(t) € SBV(Q) such that for all v € SBV () we have

IVu@I? < IVo))? + H (ST O w)\ | 899 (u(s))). (5.38)
s<t,s€D

Moreover, Vu,, (t) — Vu(t) strongly in L?(Q; R?) and

IVu@I? + H* (S99 (u(t))) + Jut) e < C. (5.39)
Proof. By (5.35), applying Ambrosio’s Theorem to the extensions of g (¢ ) to € by setting u, (t) = g(t)
on {1p, and using a diagonal argument, we find a sequence a,, — 0 such that, for all £ € D, ug,, () — u(t)

in SBV(§) for some u(t) € SBV(Q) such that (5.39) holds.

We now prove that u(t) satisfies property (5.38). Let v € SBV(Q). Let us fix t; < to <... <t =1
with ¢; € D. We extend v and g, (¢;) to Q' setting v := g(t) and uq,, (&) := g(t i) on Qp respectively.
Since uq,, (t:) — u(t:) in SBV(QY') for all i = 1,..., k, by Theorem 3.8.4 there exists v, € SBV () with

= g(t) on Qp such that Vo, — Vv strongly in L?(Q'; R?) and

k k
lim sup H* <S(vn) \ U S(t. (m)) <H! <5(v) U S(u(ti))> : (5.40)
n i=1 i=1
By (5.33) we obtain
k
Vtta, (B)I* < [[Von® + p(an)H! (S(vn) \ U $(t. (ti))) ; (5.41)
=1

so that passing to the limit for n — +oo and recalling that u(a) — 1 as a — 0, we obtain

.k
IVu(t)]? < Vo] + ! (sw) U S(u(tm) -

i=1
Thus we get
k
IVu@®l* < [[Vol® + H* <39(t)(v N 5 (s )))
i=1
Since 1, ..., 1, are arbitrary, we obtain (5.38). Choosing v = u(t), taking the limsup in (5.41) and using
(5.40), we obtain Vu,, (t) — Vu(t) strongly in L2(Q; R?). ‘ O

In order to deal with 6, and a at the same time, we need the fol}bwing lemma.

Lemma 5.4.5. Let {u(t) : t € D} be as in Lemma 5.4.4. There exist 6, — 0, £n, — 0, and a, — 0 such
for allt € D we have
wlr (1) —u)  in SBV(Q) .

En,Qn

Moreover, for all n there ezists B, C [0, 1] with |Byn| < 2™ such that for all t € [0,1]\ By,

—t

196 0, (8) = Vo, ()] < = (542

Finally, we have that for all v € SBV (Q)
IO + 7 (85O w(0))) < Vol + 1 (590 (v)) (5.43)
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and
gr

€n,0n

(0) = VU@ + 7 (S5Ou(0))) (5.44)

Proof. Let (an) be the sequence determined by Lemma 5.4.4. By Lemma 5.4.1, for all n there exists
(87, em) such that for all ¢t € D and m — +oco we have

R o (t) = ta,(t) 10 SBV(Q),

and
vuﬁg,an (t) = Vg, (t) strongly in L*(Q;R?).

Moreover by Lemma 5.4.3 we have that Vug: 4. = Vg, quasi-uniformly on [0,1] as m — +oco. Let

B, C [0,1] with |By| < 27" such that Vusn e, — Vi, uniformly on [0,1]\ B, as m — +o00. We now
perform the following diagonal argument. Tet D = {tn, n = 1}. Choose m; such that

am m B
VLT o (12) = Ty () + T o, (1) = s (0] < 1,
and 5 .
[Vul? , (1) = Vug, ()| <1 forall ¢ €[0,1]\ By -
my?
Let my, be such that

5 1
vy " an(t3) = Vttan (E)I] + Ul 0, () = Uan ()]l € = forallj=1,...,m

and )

IVUE" o (8) = Via, ()] < = forallz€ [0,1] \ Bn
We may suppose that 6% — 0, r,  — 0. Then (01 Em an) is the sequence which satisfies the thesis.
In fact by construction and taking into account (5.29), for all t € D we have ugn " on (t) — uft) in

SBV(£); moreover the set By satisfies (5.42). Notice that ”enm .an_ (0) satisfies (5.24) and so (5.43) and
(5.44) follow by the T-convergence result of [62]. . O

Let (6n,€n, an) be the sequence determined by Lemma 5.4.5. For all £ € [0,1] let us set
An(t) = 1 (Pg:,an( ) -

By Helly’s theorem, we may suppose that there exist two mcreasmg functlons A and 7 such that up to a

subsequence
An — A pointwise in [0, 1];

and
Aa, — 7 pointwise in [0, 1], (5.45)

where ), is defined as in (5.31). We now extend the evolution {t — u(t) : t € D} to the entire interval
[0,1]. Let us set for all t € [0,1]
U )
s<t,s€D

and let V be the set of discontinuities of H*(I'(-)). Notice that for all ¢ € [0, 1]
HYUT()) < A2). (5.46)
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Infact if t € D, let 3 <t < ... <t =1t with ; € D, consider w, € SBV(Q; R*) defined as

wn(z) = (ull 0, (01)(@), . ull o, (1) (@),

where we assume that uf" , (;) = g (t;) on Qp. We have w, — w = (u(t1),...,u(ty)) in SBV(Q; RF),
where u(t;) = g(t;) on Qp. Note that for all n we have S(w,) = Ui;l S(uf~ , (t;)) so that
HU(S(wn)) < An(t).

Passing to the limit for n — +00 and applying Ambrosio’s Theorem we get
k
H <U S(u(tm) =H*(S(w)) < liminf 17*(S(wn)) < A();
i=1

we thus have

k
H (U S““)(u(ti))) — H(S(w)) < AW)
i=1

and taking the sup over all t1,..., 1, we obtain (5.46) in D. The case ¢t ¢ D follows since H*(I'(*)) is left
continuous by definition. :

Lemma 5.4.6. For every ¢ € [0, 1] there ezists u(t) € SBV(Q) such that the following hold:

(a) for all t €[0,1]
89 (u(t)) C T(t) up to a set of H*-measure 0, (5.47)

and for all t € [0,1] and for all v € SBV(Q)

Va2 < Vol + 1 (840 (0)\T(1)) ; (5.48)

(b) Vu is continuous in (0,1} \ (D UN) with respect to the sirong iopology of L?(;R?);

(c) if N is the set of discontinuities of the function 1 defined in (5.45), for all t € [0,1) \ N we have
that
Vg, (t) — Vu(t)  strongly in L?(Q, R?).

Finally
E() > £(0) + 2 /0 /Q Vu(r)Vg(r)dodr, (5.49)

where L
E@t) = [IVu®)|® + HH(T ().

Proof. The definition of u(t) is carried out as in Lemma 5.4.3 considering t € [0,1] \ D, t, € D with
tn /" t, and the limit (up to a subsequence) of u(t,) in SBV(Q): (5.47) and (5.48) hold, so that point
(a) is proved. It turns out that Vu(t) is uniquely determined and that it is left continuous in [0,1]\ D.
Let us consider ¢ € [0,1] \ (D UN), and let ¢, \, t. By Ambrosio’s Theorem, we have that there exists
u € SBV(Q) with such that, up to a subsequence, u(t,) — u in SBV(§2). Since t is a continuity point
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of HY(T'(-)), we deduce that S9®)(u) C T'(¢) up to a set of '-measure 0. Moreover by the minimality
property for u(t,) and the fact I'(t) C I'(t,), we have that for all v € SBV(Q) with

IVu(ta)l? < 1V0 = V() + Vg(ta)l® + H (570 (0) \T(tn)) <
< [V = Vg(t) + Vglta)|2 + 1" (520 (0) \ (1)),

and so we deduce that (5.48) holds with v in place of u(t), and that Vu(t,) — Vu strongly in L2(Q; R?).
We obtain by uniqueness that Vu = Vu(t), and so Vu(-) is continuous in [0, 1]\ (D UN) and this proves
point (b). Point (c) follows in the same way of point (d) of Lemma 5.4 3.

Let us come to the proof of (5. 49) Given t € [0,1] and k > 0, let s¥ := £t for all i = 0,..., k. Let us
set uF(s) = u(sk,;) for s¥ < s < sk, ;. By (5.48), comparing u(s¥) Wlth u( sk ) — 9(51+1) + g(sf), it is
easy to see that

i
E(t) > £(0) + 2/ / Vur(T)V§(r) dr dz + ok,
0 Ja
where o, — 0 as k — +o0. Since Vu is continuous with respect to the strong topology of L%(Q;R?) in
[0,1] up to a countable set, passing to the limit for ¥ — 400 we deduce {5.49). O
‘We are now ready to prove the main result of the chapter. ’ ’

PROOF OF THEOREM 5.1.1. Let D be a countable and dense set in [0,1] such that 0 € D, and let
(0n,€n,an) and {t — u(t) € SBV(Q) : t € [0,1]} be the sequence and the evolution determined in
Lemma 5.4.5 and Lemma 5.4.6. Let us set . N

Up = udn Dy o= Tn Ep = ESn

€n,an’ €n,Gn ) En,ln’

Let NV be the union of the sets of discontinuities of 7 and H*(I'(-)), where n is defined in (5.45). Let
B = ﬂk_l he Br, where By, are as in Lemma 5.4.5; since [Uh « Bl < 27%+1 we have |B| = 0. For all
t€[0,1]\ (BUN) we claim that

Vg (t) — Vu(t) strongly in L?(Q;R?). (5.50)
In fact, since ¢ & UZ":,C By, for some k, by Lemma 5.4.5 we have

lim [Vudr . (t) = Veta, (5] =.0;

for t ¢ N, by Lemma 5.4.6 we have that Vu,, () — Vu(t) strongly in L?(Q; R?) and so (5.50) holds.
Since g., — g strongly in W¥([0, 1]; H1(Q)), we deduce that for a.e. 7 & [0, 1]

Ve, (1) = Vg(r) strongly in L?(Q; R?).

Since £,(0) — £(0) by (5.44) and ol — 0, by semicontinuity of the energy and by (5.28) we have that
forallte D

\ .
E(t) < liminf £,(¢t) < limsup &, (¢) < £(0) + 2/ / Vu(r)V§(r) dz dr. (5.51)
n n 0 9] .
In view of (5.49), we conclude that for all t € D

E(t) = £(0) +2 /0 /Q Vu(r)V(r) de dr,
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and since Vu(-) and H!(I'(-)) are left continuous at t ¢ D and so £(-) is, we conclude that the equality
holds for all ¢t € [0,1]. As a consequence {t — u(t),t € [0,1]} is a quasi-static evolution of brittle
fractures. Let us prove that (5.51) is indeed true for all t € [0, 1]. In fact, if ¢ ¢ D, it is sufficient to prove

lim inf £, () > £(t). (5.52)
n
Considering s > t with s € D, by (5.26) we have

bn

Sin
En(s) < En(t) + /ﬁn /QV'LLH(T)VQEH'(T) dzdr +olr tr<t<tlr,, s <s<sl),
Jn

so that s )
lminf &, (L) > £(s) -—/ / Vu(r)V(r) dz dr.
n i JQ

Letting s ™\, ¢, since £(") is continuous, we have (5.52) holds. By (5.51) we deduce that &, (t) — E(t) for
all t € [0,1], so that point (b) is proved.

We now come to point (a). Since A(¢) > H*(I'(¢)) for all ¢ € [0, 1], by (5.50) and point (b), we deduce
that A = H1(T'(-)) in [0, 1] up to a set of measure 0. Since they are increasing functions, we conclude that
A and H'(T(-)) share the same set of continuity points [0,1] \ A/, and that A = HYI(-)) on [0,1] \ V.
In view of (5.50), point (a) is thus established for all ¢ except ¢ € (BUN) \ V. In order to treat this
case, we use the following argument. Considering the measures p, = H'LT,(t), we have that, up
to a subsequence, un, — u weakly-star in the sense of measures, and as a consequence of Ambrosio’s
Theorem we have 7! L.I'(¢) < p as measures. Since ¢ ¢ N we have u, (R?) — HY(I(t)), and so we deduce
H'LT(¢) = p. Let us consider now uy(t); we have up to a subsequence Un(t) — u in SBV(Q) for some
u € SBV(Q). Setting un(t) := g&»(t) and u = g(t) on Qp, we have un(t) — v in SBV(Q), and as a
consequence of Ambrosio’s Theorem, we get that 7L S9®) (u) < p = H!L (), that is $9®)(u) C T(2).
By Theorem 3.8.4, we deduce that v is a minimum for e

min{||Vo||? : $9®(v) CT(¢) up to a set of. H'-measure 0 }

and by uniqueness of the gradient we get that Vu = Vu(t), so that the proof is concluded. O

5.5 Piecewise Affine Transfer of Jump and Proof of Proposition
5.4.2

"The proof of Proposition 5.4.2 is based on the following proposition, which is a variant of Theorem 3.8.4

in the context of piecewise affine approximation.

Proposition 5.5.1. Given e, — 0, let g}, € H'(Q) be such that g}, € AF. () and 95 — g" strongly
in H'(Q) for allr =0,...,i. Iful, € A, o(Q) is such that uf, — u” in SBV(Q) forr =0,...,1, then

for all v € SBV () with H* (Sgi (v)) < +oo and Vv € L*(;R?), there ezists v, € A, o(Q) such that
vn — v strongly in L*(Q), Vv, — Vv strongly in L*(Q; R?) and

limsup H! (sgi (vn) \ U S9n (u.’;)> < ula)H? (ng(v) \ U 59" (u")) , (5.53)
n r=0

r=0

where 1 :]0; 3[— R with lim, o+ p(a) = 1.
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In view of Proposition 5.5.1, we can now prove Proposition 5.4.2.

Proof of Proposition 5.4.2. Notice that, in order to prove (5.33), it is sufficient to prove the existence of
g :]0; 3[— R with lim,_.o+ p(a) = 1 such that, given ¢ € D forevery 0=ty <... <t < ... St =1,
t, € D, for all v € SBV(Q) we have

IVua ()| < IV9]1* + p(a)H? (Sg(t)(v)\ U Sg“')(Ua(tr))> : (5.54)

r=0

In fact, taking the sup over all possible t, ..., t;, we get (5.33).

We apply Proposition 5.5.1 considering gy, := g (tr), g7 = g(tr), up, = ulr (tr), and u” = ua(tr)
forr =0,...,4. There exists y :]0; %[——) R with limg_,o+ (a) = 1 such that for v € SBV(Q), there exists
vn € Az, o(Q) with Vo, — Vv strongly in L2(;R?) and

lim sup H* (Sgﬁﬁ(t) (vn) \ U Sggﬁ“?’(ui:,a(tr)o < pla)H? (Sg“) (v)\ U Sg‘“(ua(tr))) ,

r=0 r=0

Comparing ul" ,(t) and v, by means of (5.25), we obtain
193 4 ()12 < V0l + 7 (S5O (0n) \TEr,0(9) <

< [ Vun)? + H! (Sg‘s‘%‘ ® )\ | Sgﬁﬁ(f“(ué:,a(tr))) , (5.55)

r=0

so that, passing to the limit for n — 400, we obtain that (5.54) holds. Moreover, we have that choosing
v = ug(t), and taking the limsup in (5.55), we get that Vauln ,(t) = Vug(t) strongly in L*(;R?). O

The rest of the section is devoted to the proof of Proposition'5.5.1. It will be convenient, as in Section
5.4, to consider Qp polygonal open bounded subset of R2 such that QpNQ = 0 and QN Qp = dpQ
up to a finite number of vertices; we set Q= QUQpUIpN. We suppose that R, can be extended to a
regular triangulation of ' which we still indicate by R.. )

We need several preliminary results. Let us set 2z} := u — g, and let us extend 27, to zero on flp.
Similarly, we set 2" := u” — g7, and we extend 2" to zero on {p. .

Let o > 0, and let C be the set of corners of 8pQ. Let us fix G C R countable and dense: we recall
that for all ¥ =0, ..., we have up to a set of ‘H!-measure zero

5= |J 8"Be(r)n 8 Ee,(r),
€1,c2€G

where E(r) == {z € @' : z"(z) > c} and 8" denotes the essential boundary (see [7]). Let us consider

; .

1

Ji={ze|JSEN\C: (&) (@) - (") (z) > 3 for some I =0,...,1},
r=0 : o )

with j so large that Hl(ULO S(z")\J;) <o. Let U be a neighborﬁood of Ui:o S(z") such that U] < £

Following [47, Theorem 2.1] (see Fig.3), we can find a finite disjoint collection of closed cubes {Q }k=1,....k

with center zj € J;, edge of length 2ry and oriented as the normal v(zx) to S(2"*)) at z, such that
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Ui{zl Qkr € U and HY(J; \ Ui{___l Qk) < 0. Moreover for all k = 1,..., K there exists r(k) € {0,...,1}
and c;(r(k)), c2(r(k)) > 0 such that

LS ([U S(=")\ S(Z’"(k))} ﬂQk) < ory,

r=0

and the following hold

Fig. 3

(a) if z € Q then Qi C Q, and if 4 € 8p then Qr N OpQ = Hy,, where H}, denotes the intersection
of @k with the straight line through z) orthogonal to v(zy);

(b) H}(S("®) N 6Qy) = 0;

(¢) T < cHY(S(z"®)) N Q) for some ¢ > 0;

(@) (")~ (@) <er(r(k)) < ca(r(k)) < (="®)*(a) and es(r(k) - ca(r(k)) > 2
(&) HY([S(2"M)\ 8" Ee, (71 (r(k))] N Qi) < omy, for s = 1,2;

(fyifs=1,2, Hl({y € B*Ecs(r(k))('f(k)) NQy : dist(y, Hy) > %Tk}) < OTk;
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(g) if Qf :=={z € Qxlz v(zx) >0} and s=1,2

e, ey (roN@e = Lot lzrey < 0P (5.56)

() H((Sy \ S(z"")) N Q) < org and H'(S(v) N Q) = 0.

Let us indicate by Ry the intersection of Q@ with the strip centered in Hy with width 207, and let us
set VE == {z £ rie(zi) +sv(zi) : s € R}N Ry, where e(z) is such that {e(zk), v(zk)} is an orthonormal
base of R? with the same orientation of the canonical one.

For all B C £, let us set

Ru(B):={T€R., : TNB#0}, TFB):={TeT( TU“))-TmB;éw}

In the following, we will often indicate with the same symbol a famlly of trlangles and thelr support
in R?, being clear from the context in which sense has to be intended. We will consider zn ) defined
pointwise in '\ § 2n) and so the upper levels of #2%) are intended as subsets of '\ Szr(k)

Lemma 5.5.2. For all k=1,..., K there exists c& € [c1(r(k)), ca(r(K))] such that, setting Ek.={ze
Rn(Qk) : z;(k)(a:) > ck}, we have
K
limsup M ((aRn(Qk>E,’§) \ S(z;<k>)> = 05, (5.57)
n k=1
and
limsup (|1 — IQ:“LI(QI) < o2, (5.58)

where Or,,(q,) denotes the boundary operator in Rn(Qk), and og — 0 as o — 0.

Proof. Note that for n large we have Uﬁ;l Ran(Qk) € U, so that [U,{;l Rn(Qk)| < . By Holder
inequality and since ||[Vz5|| < C' for all 7 = 0, ..., 4, it follows that

/ inn|dm<Euwn“— i+ 102,
= H{UrRA(Qu)r(k)=r} =0 J

Following [47, Theorem 2.1}, we can apply coarea-formula for BV-functions (see [7]) taking into account

that z2*) belongs to SBV () so that the singular part of the derivative is carried only by S (zn( )) since
for n large the R, (Qg)’s are disjoint, we obtain .
- Ve
> / H ((aEC,n(r(k)) NRn(Qk)) \S(z;(k))) de < (i+ 1)c' (5.59)
k=1"R '

where B, n(r(k)) = {z € ¥ \?z:(k) : zh k) (z) > c}, and so

K rea(r(k)
[0 (0B V(@i \ S e < (14 DL
=i ci(r{k)) J
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Notice that we can use the topological boundary instead of the reduced boundary of E ,(r(k)) in (5.59)

since 2o is piecewise affine, and 50 0E;»(r(k)) \ 8*Ecn(r(k)) # 0 just for a finite number of c’s. By
the Mean Value Theorem we have that there exist £ € [c1(r(k)), ca(r(k))] such that

ZHI( (O (k) N Rn(@0)) \ SEV)) < 2605,

and taking the limsup for n — 400, we get (5.57). Let us come to (5.58). Since
Ees vk (T(K)) © Bt n(r(k)) € Eoy(r),n (r(K)),
by (4.77) we have that for n large
Lz . trtonnes = gl < o®r,
and so, since |Rn{Q%) \ Qx| — 0, we conclude that (5.58) holds. 0

Fix k € {1,..., K}, and let us consider the farmly T.F(EE). Let us modify this family in the following
way. Let T' € Tk(Ek); we keep it if TN EF| > LT, and we erase it otherwise. Let Ef% be this new
family of triangles, and let E% be its complement in T¥(Rn(Qk)).

Lemma 5.5.3. Forallk=1,...,K we have

hmsupZH <8Rn(Qk)E F\ S(z T(A))) Opy’ (5.60)
k=1 Yo .
and . .
limsup [[1e+ — lgells < 4o, - (5.61)
n

where o, — 0 as o — 0. ‘

Proof. Let T € T,F(EF). Since zn%) is affine on T, it follows that T'N E¥ is either a triangle with at least
two edges contalned in the edges of T or a trapezmd with three edges contained in the edges of T. Let
I(T') be the edge inside T where 25 = ck, where ck is the value determining E¥ (we consider {(T') = 0 if
int(T') C E¥). In the case T € Ef* as in the case T € E*~, since the angles of the triangles of T(z T(k))
are uniformly bounded away from 0 and from =, arguing as in Lemma 5.2.1, we deduce that keeping or
erasing T, we increase O, (g,) ¥ of a quantity which is less than ¢H1(l (T)) with ¢ independent of &,.

Then we have
K
ZH (Orn(@ BN T\ Orn@u BX) < Z Y, HNUT)) e > H (B (gn BE\ S(40)),
k=1TeTk(Ek) < k=1
so that taking the limsup for n — +co and in view of (5.57) we deduce that (5.60) holds.
Let us come to (5.61). Note that |Z¥(8Q7)| — 0 asn — +oo. Then if A’C t={TeTEM) : TC
int(Q;)}, for n large we have
1QF \ ERFI < AR\ B[+ |T20Q7)| < 2!@?: \ Enl + | T20Q1),

where the last inequality follows by construction of E¥*.Taking the limsup for n — +00, in view of

(5.58) we get o
limsup |Q} \ E&F| < 20%.
T

The inequality limsup,, |E®T\ Q; | < 20%r2 follows analogously. ’ ]
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Forallk=1,...,K and s € R, let us set
Hi(s) :=={z + sv(zy), = € He}.

Lemma 5.5.4. There ezist s} €]%7x, §7i[ and s, €] — §7k, —Fri[ such that, setting HET = Hp(s])
and HE- = Hy(s;;) we have for n large enough .

HYHET\ BEBT) < 200my, HYUHET NEEY) < 20074

Proof. By (5.61) we can write for n large
/ HY(H, \E’°+)ds<5a rZ,

so that we get s3 €)%, x| with
HY (Hy(s5) \ EFT) < 2007

Similarly we can reason for s, 0O

Let S5+ be the straight line containing H,? kit up to replacmg HE* by the connected component of
Sk+n Rn(Qk) to which it belongs, we may suppose that H&+ \E" + is a finite union of segments l"’
with extremes A; and B; belonging to the edges of the triangles of TE(Rn(Qr)) such that for n large

m
HYHET E’,ﬁ"*).: HE <U lj') < 2007y,

=1

By Lemma 5.2.1, for all j there exists a curve L"’ 1n51de the edges of the triangles of T (R (Qk)) joining
A; and B; and such that .
HHLT) < cHM (i), (5.62)
with ¢ independent of €,,. Let us set
’}’S"*— = LT UB1Az U Lg U+ UBmp-14An U L:,:L

Slrmlarly, let us construct 75~ relative to H¥~ N E7. Note that for n large enough bt N Hi(o) = @

"~ N Hp(-0) =0, and v5+F N8~ = 0. Let us conmder the connected component Ci of R (Qg) \ v+
contammg Hy(o). Similarly, let us consider the connected component C; = of Rn(Qk \ 7%~ containing
Hy(~0). For n large enough, by (5.62)

m—1 m - .
H? <3Rn(qk)c,j\ U BiAH_l) <cd HUF) < 20cor. (5.63)

izl J=1

A similar estimate holds for O, (q,)Cy -
Let Ek * be the family of triangles obtained adding to E’c + those T € Ef~ such that T C C,C , and

subtracting those T € E&* such that T' C Cj. Let Ek~ be the complement of EF* in T.¥(Rn(Qk)).
We claim that there exists C > 0 independent of n such that for all £ =1,. K and for n large

M (ann(Qk)E’;ﬂf \ O (@uELT) < Com. (5.64)
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In fact, let ¢ be an edge of BRH(Qk)E',’f"‘" \ 8%, EF T, that is ¢ belongs to a triangle T' that has been
changed in the operation above described. Let us assume for instance that 7' € E%~ and T C i i
T’ is such that TNT' = ¢, then 7 € E5~: in fact if by contradiction T" € Ek*, then TV € Eb+
and so we would have ¢ ¢ A% (@) EBT which is absurd. Similarly we get TV ¢ C,'C". This means that
¢ C BRn(Qk)C;", and since the horizontal edges of v+ intersect by construction only elements of Ek,
we deduce that ¢ C 8%, (0)Ci \ (U™, 4;:B;), and by (5.63) we conclude that (5.64) holds.

We can summarize the previous results as follows. :

Lemma 5.5.5. Forallk =1,..., K there exist two families E¥* and E~',§" of triangles with T (R, (Qy)) =
EptUEE=, Qf \ Re C Eb* and Q7 \ Ry C E¥~, and such that
K o~
limsup 3 ! <6Rn(Qk)Eﬁ’+ \ S(z,:(k>)) = 05, (5.65)
" k=1

where~ 0c — 0 as ¢ — 0. Moreover, in the case z; € Op<Q, we can modify E~‘,’§'+ or E‘,’i'” in such a way
that EF* C Q or B C Q.

Proof. We have that (5.65) follows from (5.60) and (5.64), and the fact that Efc(:l Ty < ¢, with ¢
independent of . Let us consider the case z; € 9p§) with QF \ R C Q (the other case being similar).
From (5.65) we have that for n large Yk | H? <8Rn(Qk)Eﬁ'+ n Q,:) < 0, because z4® = e Ghn (T(K))
on @} and so there are no jumps in Q.- We can thus redefine E‘,’j’+ subtracting those triangles that are
in @} obtaining again (5.65). O

We are now in position to prove Proposition 5.5.1.

Proaf of Proposition 5.5.1. We work in the context of €. For all » € SBV(QY) with v = g¢* on Qp,
H'(S(v)) < +oo and Vv € L2(Q; R2), we have to construct, v, € SBV(Q') such that v, = g on Qp,
(vn)ia € Ae,,,a($2), vn — v strongly in L}(Q), Vv, — Vv strongly in L?(Q; R?) and

lim sup H! (S(vn) \ O S(u;)) < ula)H? (S(v)\ U S(uT)) . (5.66)
n r=0 ) r=0

where we suppose that u7 and 4" are extended to setting ug = g7, and u" := g" on Qp respectively.
We set v = g* +w, where w € SBV (& ) with w = 0 on Qp. By density, it is sufficient to consider the
case w € L*°(Q'). Up to reducing U, we may assume that ”VgiHLz(U;R_z) <o and ||Vw||r2 ey < 0. Let
R}, be a rectangle centered in xy, oriented as Ry, and such that R}, C intRy, and H(S (w) N (Rx \ R})) <
ork. We claim that there exists w, € SBV(Q') with wy = w on U,{.{:l R}, and w, = 0 in 0p such that

1) flw = well + [V = Vo || < o
(2) HYSws) N (Q \ Ry)) < 07k, With 05 — 0 as o — 0;

(8) H(Swe) \ UKy Re) < H(Su\ UK., R) + 0
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(4) Sqwe)\ Uf;l Ry, is union of disjoint segments with closure contained in Q \ U,I;l Ry;

(5) w, is of class W2 on Q\ (Uf;l R U S('wg)>.

In fact, by Proposition 5.2.4, there exists wy,, € SBV(QY) with wy, = 0 in Q' \ Q such that w, — w
strongly in L2(Q), Vwy, — Vw strongly in L?(;R?), Sy, is polyhedral with S, C Q, wy, is of class
W2 on O\ (UkK,__l Ry UFJ,:), and lim,, H} (AN Sy,,) = H1(AN Sy) for all A open subset of Q' with
HY(OAN Sy) = 0. Tt is not restrictive to assume that H'(Sy, N ORE) = 0 and H}(Sw,, N ORE) = 0 for
all m. Let 1, be a smooth function such that 0 <+ < 1, 9% = 1 on R}, and 1, = 0 outside Rj.
Setting ¢ := Zf;l g, let us consider W, := Yw + (1 — Y)wm,. Note that W,, — w strongly in L2(Q'),
Vil — Vw strongly in L2(€);R?), @y, = 0 in Qp. Moreover, by capacity arguments, we may assume
that Sg,, \ Ure, Ry is & finite union of disjoint segments with closure contained in Q\ UK, R. Finally,
for m — +o0, we have

K K
H (Sa, \ | Bi) = H'(Sw \ | Rx)),

k=1 k=1

K

H(Sa,. N [ @k \ Bi)) = H (S ﬂU @i\ i)

k=1 k=1

and lim sup,, H*(Sg,. N (Br \ BL)) < 2H(Sw N (Rk \ R)) < 207 Then we can take wy = W, for m
large enough.

Let Sqws) \ U£(=1 Qr = U;';l I;, where, by capacity arguments, we can always assume that [; are
disjoint segments with closure contained in £ \ Ui;l Qx. We define a triangulation T, € Tz, o(€)
specifying its adaptive vertices as follows. Let us consider the families Ry, (Q) and Rn(l;) fork =1,..., K
and j = 1,...,m. Note that for n large enough, Rn(Qg, )R (Q@k,) = 0 for k1 # kg, Rn(lj, )NRA(lj,) =0
for j1 # j2, and Rn(Qk) N Rp(l;) = & for every k,j. We consider inside the triangles of Rp(Qy) the
adaptive vertices of T(z;(k)). Passing to R, (I;), by density arguments it is not restrictive to assume
that [; does not pass through the vertices of R, and that its extremes belong to the edges of R,,,. Let

[m,y] be an edge of Ry ({;) such that i; N{ = {P} Proceeding as in [62], we take as adaptive vertex
of ¢ the projection of P on {tz+(1~1t)y: t € [a,(1—a)]}. Connecting these adaptive vertices, we obtain
an interpolating polyhedral curve l; with : :

HM (D) < pla)H (1), (5.67)

where 4 is an increasing function such that lim, g (a) = 1. Finally, in the remaining edges, we can
consider any admissible adaptive vertex, for example the middlé point.

Let us define w, € SBV(Y') in the following way. For all Qy, let w, be equal to w, on R (Qk) \ Rk,
equal to the reflection of Wa |\ R, with respect to Hy(o) on E" * N Ry and equal to the reflection of

Wo|Qr\Ry with respect to Hy(—0) on EE~ N Ry, where E¥* are defined as in Lemma 5.5.5. On the other

elements of T,, let us set w, = w,. Notice that w, = 0 on Q1p and that inside each R, (Qr), all the
discontinuities of wy, are contained in dg (g k)En"” UV, U Pﬁjn, where Pqﬁﬂ is the union of the polyhedral
jumps of w, in Ry (Qk) and of their reflected version with respect to Hiy(+0). By Lemma 5.5.5 and since
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Z,ﬁil HY (Vi UP} ) < 0, with 0, — 0 as ¢ — 0, and H* (Ui:o S(z")\ Ui{__,l Qk) < 20, we have that

i K %
lim sup H* (Swn \ U Sz;> <H! (S(wa)\ U Qk) + lim sup H* ((Sw" \ U Ser) an(Qk)> <

r=0 k=1 r=0

<! (S(wu)\ U S(zf‘)) +H! (U SE\ Y Qk) +0, < H! (S<wa)\ U S(ﬂ) +0g,

r=0 r=0 k=1 r=0
and since || Vw, ||z2u;r2) < 05 we get for n large

2
“vw’ﬂ-”L’.’(UkK=l Rn(Qk)) S Og. (568)

We now want to define an interpolation @y, of w, on T,. Firstly, we set @, = 0 on all regular triangles
of f2p. Passing to the triangles in R, (Qy) (see fig.4), by Lemma 5.2.2, we know that for n large enough,
we have
H (ORA(Vi)) S cH Vi), H'(ORa(PE)) < cHY(PE ),
with c independent of n. If T € R, (Vi) U Rn(PE ), we set ¥, = 0 on T otherwise, we define %, on T
as the affine interpolation of wy,. ' )
Since Vi, is uniformly bounded on R,(Hy(%0)), |Rn (Hi(£0))| — 0 and since w, is uniformly
bounded in W% on the triangles contained in Ra(Qk) \ Ra(Vi U PE U Hy(£0)) we have by the
interpolation estimate (5.9) and by (5.68) ‘ .

lim sup IVl Za xR iauy < - (5.69)
Moreover we have X .
limsup y ! ( (su-,n U 5,;) ﬂRn(Qk)> < 05. (5.70)
T k=1 r=0 :

Let us come to the triangles not belonging to Ru(Qr)fork=1,... K. Forallj=1,..., m, we denote by
Rn(l;) the family of regular triangles that have edges in common with triangles of R (l;). For n large we
have that Ry, (lj,) N R (lj,) = 0 for 51 # j5. On every regular triangle T' & | J;" Rn(Qx) U Uis, R (),
we define Wy, as the affine interpolation of w,. Since w, is of class W% on T and T is regular, we obtain
by the interpolation estimate (5.9)

[ldn, — wcf”%Vm(T) < Kenllwe |lw2.ee. ' (5.71)

Let us consider now those triangles that are contained in the elements of Uﬁ__l R (l;). Following [62], we
can define Wy, on every T in such a way that 7, admits discontinuities only on I;, and ||V, | Loo(T) <
IVwe ||oo. Since |7€.n(lj)l — 0 as n — oo, we deduce that . :

Moreover by (5.67) and since ! (Ui:o S(z")\ Uf___l Qk) < 20, we haveé

j=1

m k
H? (Smn nJ 7‘zn(z,~)> < pla)H? (S(wa) U S(z’")) + 05, (5.73)

where 0, — 0 as o — 0.
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Fig. 4

We are now ready to conclude. Let us consider iy, € A, () defined as Wy, := gi + b,. We have
W — g' + w, strongly in L2(Q'). By (5.69), (5.71), (5.72) we get

limsup ||V, | < |Vg' + Ve |? + oo,
n

while by (5.70) and (5.73) we have

limnsule <Sﬁ;n \ U SZ;> < pla)H? <S(wc})\ U S(zr)) + 05.

=0 r=()

Letting now o — 0, using a diagonal argument, we conclude that Proposition 5.5.1 holds. O

5.6 Revisiting the approximation by Francfort and Larsen

In this section we show how the arguments of Section 5.4 may be used to deal with the discrete in time
approximation of quasi-static growth of brittle fractures proposed by Francfort and Larsen in [47). More
precisely, we prove that there is strong convergence of the gradient of the displacement (in particular
convergence of the bulk energy) and convergence of the surface energy at all times of continuity of the
length of the crack; moreover there is convergence of the total energy at any time.

We briefly recall the notation employed in [47]. Let I be countable and dense in [0, 1], and let
In = {0=1tf <... <t =1} such that (I,) is an increasing sequence of sets whose union is Jo,. Let
© C RY be a Lipschitz bounded domain, and let 8Q = 905 U 09y, where 082 is open in the relative
topology. Let ' € RN be open and such that  C €/, and let g € WY([0, 1]; HY(Q)). At any time ¢7,
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Francfort and Larsen consider uy minimizer of
/ VoPdz+HY [ S\ | | Ser)uen;
& . 0<jSk~1
in {v € SBV(Q) : v = g(t}) in ¥\ Q). Setting u™(t) .= up for ¢ € [t7,t7,,[, and T"(t) :=
Us<tser, S(™(s)) UOSYy, they prove that

En(t) < £™(0) + 2 / ’ / VU(r)V(r)dadr +0n,  te [0, (5.74)
0 9]

where £7(t) = [, |Vu™(¢)|*dz + HY 1 (I(t)) and on — 0 as n — oo, Using Theorem 3.8.4, they
obtain a subsequence of (u"(-)), still denoted by the same symbol, such that w™(t) — u(t) in SBV(Q')
and Vu™(¢) — Vu(t) strongly in L2(Q;RY) for all ¢ € Ioo, with u(t) a minimizer of

/Q IVol2dz + 1V (S(v) \ T(2)),

where I'(t) := {Use;_ o<y S(u(s)) UBQy. The evolution {t = u(t), t € I} is extended to the whole [0,1]
using the approximation from the left in time.
We can now use the arguments of Section 5.4. Following Lemma 5.4.6, it turns out that for all t € [0,1]

£1) > £(0) + 2 /0 /Q Vau(r)V§(r) da dr. (5.75)

Moreover, by the Transfer of Jump and the uniqueness argument of Lemma 5.4.3, we have that Vu™(t) —
Vu(t) strongly in L*(Q;RN) for all't € A, where A is the (at most countable) set of discontinuities
of the pointwise limit A of H=Y(I'()) (which exists up to'a further subsequence by Helly’s Theorem).
Then we pass to the limit in (5.74) obtaining E

Et) < &E(0) + 2/(:/Q Vu(r)Vi(r) dz dr;
moreover, following the proof of Theorem 5.1.1, we have that for all ¢ € [0,1]
£(0) < liminf £,(t) < limsup£a(9) = £(0) +2 /O i /Q Vu(r)V§(r) dz dr,
and taking into account (5.75) we get the convergence of the total e.nergy at any time. Since Vu™(¢) —
Vu(t) strongly in L2(Q;RV) for every t € I, we deduce that \ = HY=YT(-) on I, so that the

convergence of the surface energy holds in I,. The extension to the continuity times for H» NG)
follows like in the final part of the proof of Theorem 5.1.1. :
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Chapter 6

Approximation of the model by Dal
Maso-Francfort-Toader

6.1 Introduction

"The aim of this chapter is to provide a discontinuous finite element approximation of a model of quasistatic
growth of brittle fractures in nonlinear elasticity recently proposed in [35] by Dal Maso, Francfort and
Toader.

Let us recall their model (a complete description is given in the Preliminaries to part IT). The authors
consider the case of nonlinear elasticity, and take into account possible volume and traction forces applied
to the elastic body. Let us assume that the elastic body has a reference configuration given by Q C RV
open, bounded and with Lipschitz boundary. Let 8pQ2 C 89 be open in the relative topology, and let
OnQl:= 00\ 0pf. Let Q5 C §2, and let 950 C Oy be such that Qg N 850 = 0. Qp is the brittle part
of 2, and Os( is the part of the boundary where traction forces are supposed to act. A crack is given by
any rectifiable set in Qg with finite (N — 1) Hausdorff measure. Given a boundary deformation g on 8p)
and a crack I, the family of all admissible deformation of § is given'by the set AD(g,T') of all function
u € GSBV(Q; RY) such that S(u) C T and u = g on 8pQ \T". Here S(u) denotes the set of jumps of u,
and the equality u = ¢ is intended in the sense of traces. Requiring v = g only on 8pQ \ I means that
the deformation is assumed not to be transmitted through the fracture. The bulk energy considered in

[35] is of the form .
/ W(z, Vu(z)) dz,
. ;

'

where W(z, €) is quasiconvex in ¢, and satisfies suitable regularity and érowtﬁ’ assumptions (see (3.66)
and (3.67)). Moreover the time dependent body and traction forces are supposed to be conservative with
work given by :

- | F(,z,u(z))dz - G(t,z, u(z))dHN " (z),
Q\r 856 ,

where F' and G satisfy suitable regularity and growth conditions (see the Preliminaries of part II). Finally
the work made to produce the crack I is given by :

£ (r) = /F k@, v(2)) dHY ) z),

157
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where v(z) is the normal to I’ at z, and k(z,v) satisfies standard hypotheses which guarantee lower
semicontinuity (see the Preliminaries of part II). Clearly, W, F, G and k depend on the material. Let us
set

£5(8) () 1= / W (z, Vu(z)) dz — / Flt,o,u(@)dz— | Gtz ulz)) dHY (),
Q a\r 850

and
Et)(u,T) := E%(t) (u) + E5(I). (6.1)

Given a boundary deformation g(t) with ¢ € [0, T] and a preexisting crack T, a quasistatic crack growth
relative to g and I'g is @ map {t — (u(t),I'(t)) : ¢ € [0, T]} which satisfies properties (a), (b), (c), (d),
(e) of Theorem 3.8.8.

In this chapter we discretize the model using a suitable finite element method and prove its convergence
to this notion of quasistatic crack growth. We restrict our analysis to a two dimensional setting considering
only a polygonal reference configuration Q2 C R2.

The discretization of the domain Q is carried out as in [50] employing adaptive triangulations intro-
duced by M. Negri in [62] (see also [63]). Let us fix two parameters ¢ >-0 and a €]0, 1[. We consider a
regular triangulation R, of size € of {, i.e. we assume that there exist two constants c; and ¢y so that
every triangle T € R, contains a ball of diameter ¢je and is contained in a ball of diameter cpe. In order
to treat the boundary data, we assume also that Op€) is composed of edges of R.. On each edge [z,y] of
R, we consider a point z such that z = ¢z + (1 — t)y with ¢ € [a,1 = a}. These points are called adaptive
vertices. Connecting together the adaptive vertices, we divide every T € R, into four triangles. We take
the new triangulation T obtained after this division as the discretization of . The family of all such
triangulations will be denoted by T¢ o (). .

"The discretization of the energy functional is obtained restricting the total energy (6.1) to the family
of functions u which are affine on the triangles of some triangulation T'(u) € 7;,.(£2) and are allowed to
jump across the edges of T(u) contained in Q5. We indicate this space by AZ ’. (2 R?). The boundary
data is assumed to belong to the space AF.(Q) of continuous functions which are affine on every triangle
T eR,. 4

Let us consider a boundary datum g. € Wh1([0, T}, W P(Q; R?) N L9(Q; R?)) with g (t) € AF.(Q) for
all t € [0, T] (p, g are related to the growth assumptions on W, F, G) and an initial crack I'? , (see Section
6.5). Forallu € A2, (Q2; R?) we indicate by S(u) the edges of the triangulation T(u) across which u jumps,

while we denote by Sgs(t)(u) the edges of the triangulation T'( u} contained in dp on which u # g.(t).

Let us divide [0, 1] into subintervals [t{,¢J ;] of size § > 0 for i = 0,.. .., Ns. Using a variational argument
(Proposition 6.5.1), we construct a discrete (in time and space) evolutzon {(u gg,F‘“) 1 1=0,..., N5}

such that for all i = 0,..., N5 we have u‘5 i g AB L (R,

'L’ r
. - I} .
e = | [Sén)usE ™ win),

r=0

and the following unilateral minimality property holds:. for all v € AB L (4 R?)
) (uls) < ) (v) + &° ((S(w) U U st 'u) \TEE 1) L (6.2)

In order to perform the asymptotic analysis of the discrete evolutzon {(u$ wdi, T88) © i =0,...,Ns} we
make the piecewise constant interpolation in time ugya(t) = uE : and I‘5 ot ) F % for all t‘5 <t<td,.
Let us suppose that

ge —g  strongly in WHL([0, T), WhP(9; R?) N L9(Q; R2))
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(where on W1P(Q;R?) N L9(Q; R2) we take the norm lull == Jlullwrrpey + lullzoo;pe)), and that T,
approximate an initial crack I'° in the sense of Proposition 6.4.1. .

The main result of the chapter (Theorem 6.6.1) states that there exist a quasistatic evolution {t —
(u(t),T(¢)) : t € [0,T]} in the sense of [35] relative to the boundary deformation g and the preexisting
crack I'® and sequences 8 — 0, e — 0, ap — 0, such that setting

un(t) =uln, (8),  Talt) =T, (1),

for all £ € [0, T the following facts hold:

() (un(t))nen is weakly precompact in GSBVP(Q; R?), and every accumulation point #(¢) is such that
u(t) € AD(g(t),T'(t)), and (%(2),T(t)) satisfy the static equilibrium (2); moreover there exists a

subsequence (8re Ens Ony, ) ien OF (6ny€ny an)nen (depending on t) such that

Un, () = u(t) weakly in GSBVP(Q;R2Y

(b) convergence of the total energy holds, and more precisely*elastic and surface energies converge
separately, that is ‘ :

W) un(t) = E@ue), ) = £4(T)

By point (a), the approximation of the deformation u(t) is available only up to a subsequence depending
on ¢ this is due to the possible non uniqueness of the minimum energy deformation associated to I'(¢).
In the case £°(t)(u) is strictly convex, it turns out that the deformation u(t) is uniquely determined, and
we prove that (Theorem 6.7.1) :

Vun(t) = Vu(t)  strongly in LP(Q;M2>$2‘),

and
Un (t) — u(t) strongly in L4(Q;R?). .

In order to find the fracture I'(t) in the limit, in Lemma 6.6.2 and Lemma 6.6.4 we adapt to the context
of finite elements the notion of - convergence of sets formulated in [35]. This is the key tool to obtain
the convergence of elastic and surface energies af all times ¢ € [0, T (while in [50] this was available only
at the continuity points of H!(I'(#))). In order to infer the static equilibrium of T'(¢) from that of T'n (1),
we employ a generalization of the piecewise affine transfer of jumps [50, Proposition 5.1] (see Proposition
6.3.2). :

The chapter is organized as follows. In Section 3.1 we introduce tlie basic notation, and some tools
employed throughout the chapter. In Section 6.3 we introduce the finité element space, and in Section
6.4 we prove an approximation result for a preexisting crack configuration. In Section 6.5 we prove the
existence of a discrete evolution, and in Section 6.6 we prove the main approximation result (Theorem
6.6.1). In Section 6.7 we treat the case of strictly convex total energy. :

6.2 Notation and Preliminaries

In this section we introduce the main notations and the pre]irriinary r_e:sults employed in the Part II of
this thesis. .
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SBV and GSBYV spaces. Let A be an open subset of R™, and let u : A — R™ be a measurable
function. Given z € A, we say that i(z) is the approzimate limit of v at z, and we write @(z) = ap lim u(y),
; o

if for every € > 0 .
i r™™L™ ({y € Br(2) : u(y) — @(z)| > €}) = 0.

Here B(z) denotes the ball of center z and radius r. We indicate by S (u).the set of points where the
approximate limit of u does not exist. We'say that the matrix m x n Vu(z) is the approximate gradient
of u at z if ’ ‘ '

u(y) - uls) - Vulz)ly-z) _

e y—al

We say that v € BV(4;R™) if u € L'(A;R™), and its distributional.derivative Du is a vector-valued
Radon measure on A. In this case, it turns out that S(u) is rectifiable, that is there exists a sequence
(M;)ien of C'-manifolds such that S(u) C |J; M; up to a set of ™ '-measure zero; as a consequence
S(u) admits a normal v, for H™!-almost every z € S(u). Moreover the approximate gradient Vu(z)
exists for a.e. z € A, and Vu is the density of the absolutely continuous part of Du.

We say that u € SBV(4;R™) if u € BV (A4;R™) and the singular part D%u of its distributional
derivative Du is concentrated on S(u). The space SBV(A;R™) is called the space of R™-valued special
functions of bounded variation. For more details, the reader is referred to [7).

6.3 The finite element space and the transfer of jump

Let Q C R? be a polygonal set and let us fix two positive constants 0 < ¢; < ¢z < +oo0. By a regular
triangulation of 2 of size € we intend a finite family of (closed) triangles T; such that O = | J, T3, T; NTjis
either empty or equal to a common edge or to a common vertex, and each 7T} contains a ball of diameter
ci€ and is contained in a ball of diameter cye.

We indicate by R.(€2) the family of all regular triangulations of ) of size €. It turns out that there
exist 0 < 1 < ¥ < 7 such that for all triangle T' belonging to a regular triangulation T € R.(Q2), the
inner angles of T' are between 11 and ¥2. Moreover, every edge of T has length greater than c¢1e and
lower than cge. .

Let € > 0, Re € R.(Q2), and let a €]0, }[. Let us consider a triangulation T nested in R, obtained
dividing each triangle T' € R, into four triangles taking over every edge [z, y] of T a knot z which satisfies

z=tz+ (1 -1t)y, tela,1-al
We will call these vertices adaptive, the triangles obtained gluing these points adaptive triangles, and
their edges adaptive edges. We denote by 7¢o(Q2) the set of triangulations T constructed in this way.
Note that for all T € 7, ,(Q) there exist 0 < ¢} < ¢§ < +0b such that every T; € T contains a ball of
diameter cfe and is contained in a ball of diameter cfe. Then there exist 0 < 9§ < 9% < = such that for
all T belonging to T € 7¢,4(§), the inner angles of T' are between 9% and 9%. Moreover, every edge of T
has length greater than cfe and lower than cje. .

From now on for all £ > 0 we fix R. € R.(§). We suppose that the brittle part Qp and the region
s introduced before for the model of quasistatic growth of fractures are composed of triangles of R,
for all e. Moreover we suppose that dpS and 952 are composed of edges of R, for all € up to a finite
number of points. ' ’ . ‘

We consider the following discontinuous finite element space, We indicate by A: () the set of all
u: Q — R? such that there exists a triangulation T(u) € 7; () nested in R, with u affine on every
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Figure 6.1:

triangle T € T(u). For every u € A: o(9), we indicate by S(u) the family of edges of T(u) inside
across which u is discontinuous. Notice that u € SBV(£2; R?) and that the notation is consistent with
the usual one employed in the theory of functions of bounded variation. Let us set

AFe(€) :={u: Q2 — R? : u is continuous and affine on each triangle T € R.}. (6.3)
The discretization of the problem will be carried ‘out using the space
AZ (U R?) = {u € A 0(Q) : S(u)EC Op). (6.4)
Given any g € AF(Q), for every u € AZ,(Q; R?) let ‘ A
Shw = (o€ 000 : ule) Fafe)), (6.5)

that is S% (u) denotes the set of edges of Op§) at which the boundary condition is not satisfied. For every
u € AZ,(Q;R?), let us also set E
59 (u) = S(u) U SI’S(u). ' (6.6)
An essential tool in the approximation result of this chapter is Proposition 6.3.2 which generalizes the
piecewise affine transfer of jump [50, Proposition 5.1] to the case of vector valued functions with bulk
energy £° and surface energy £ of the form (3.81) and (3.63) respectively.
In order to deal with the surface energy £° we will need the following geometric construction. Let
5 C Q be a segment and let us suppose that S intersects the edges of R, at most in one point for all
£ > 0. Let a €]0, [, and let P = SN ¢, where ( = [z,y] is an edge of R.: we indicate with 7g(P) the
projection of P on the segment {tz+ (1 ~t)y : t € [a,1 — a]}. The interpolating curve Sc 4 of S in R,
with parameter a is given connecting all the 7, (P)’s belonging to the same triangle of R, (see Figure 2).

Lemma 6.3.1. Under the previous assumptions, there ezists a function n(a) independent of S with
n(a) — 0 as a — 0 such that

limsup |€%(Sz,0) — £5(S)[ < n(a)E4(S),

e—0

where £° is defined in (3.63).
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Proof. By (3.64), we have that there exist w and K3 > 0 such that for all z1,z2 €  and |v1| = || =1
lk(z1, 11) — k(®2, )| € wlzr = 2]) + Kar = val,

where w :]0, +00[—]0, +00[ is a decreasing function such that w(s) — 0 as s — 0. Let T € R, be such
that TN S # 0, and let us choose zr € TN S and z5:% € TN Seo. Let cz > 0 denote the characteristic
constant of R such that every T € R is contained in a ball of diameter coe. Then we have

/ k(z, ve®) dH — / k(z,vp) dH
sE,ﬂnT snT

< Fw(cse)H (Sea NT) + wlcae)H (S NT)

/ F(25, v5®) A — / k(zr, vr) dH
Sz,anT snT

< |k(a5®, v3®)H (Sea NT) — k(zT, vrYHY (S N T)| +wlcze) [H' (Sea NT) + HYSNT)],

where v5®, ur are the (constant) normal t0 Sea N T and § N T respectively. We have

k(23 V3 YH (Se,0 N T) — k(27 vrYHH(S N T)|
< k(a5®, v5%) [HY (Sew NT) = HA(S N T)| + |k(22®, v5°) = ko, vr)l HY(SNT)
< Ka|H (SeaNT) - HY(S NT)| + w(|ez” o )HYS NT) + Kalvs® — vr[H(SNT),
where K is defined in (3.64). We are now ready to conclude: in fact, following [62, Lemma 5.2.2], we
can choose the orientation of v;:* in such a way that

g:® — vp|HH(S NT) < Daae, |H!(Sea NT) = HH(SNT)| < Diae,

with Dy, Dz > 0 independent of T\ ¢, a. Then, summing up the preceding inequalities, recalling that the
number of triangles of R, intersecting S is less than ée~1H1(8) for € small enough, with ¢ independent
of S and € (see for example [50, Lemma 2.5] we obtain '

limsup |E%(Se,a) — £°(S) < playH'(S),

e—0
where p(a) := &(K2D1 + K3D2)a. In view of (3.64), we conclude that
limsup |£5(Se.a) — E5(S)] < K7 p(a)E%(8),

e—0

and so the proof is concluded choosing n(a) == K7 p(a). o O
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For all v € GSBVP(Q;R?) and for all g € WHP(Q; R?) N L(Q; R?), let us set
§9(u) == S(w) U{z € 8pQ : u(z) # g(z)}, (6.7)

where the inequality is intended in the sense of traces. We are now in a position to state the piecewise
affine transfer of jump proposition in our setting. -

Proposition 6.3.2. Leta €]0,3[, and for alli=1,...,m let

ui € AZ,(GR?), o' e GSBVP(R?)
be such that .
ub =t weakly in GSBVP(9;R?).
Let moreover gi, he € AF.(R), g',h € WYP(Q; R2) N LI R2) be such that »

gl =g, he—h strongly in WhP(Q; R?) N LQ(Q;Rz).

Then for every v € GSBVF (Q;R?) with S(v) CQp, there ezists ve € AZ,(Q;R?) such that

Ve — Vv strongly in LP(§; M?%2),

Vg — v strongly in L(; R?),

and such that

lim sup £° (she (ve) \ [ 5% (ui)) < pla)e? (s“(v)'\ U sg’(ui)) :
e—0 i=1 i=1
where p(a) depends only on a, p(a) — 1 as a — 0, and £° is defined in (3.63). In particular for all

t €10,T] and for all t. — t we have
gb(ts)(”s) - Eb(t)('”)»

where E° is defined in (3.81).

The proof of Proposition 6.3.2 can be obtained from that of [50, Proposition 5.1] where the same
result is proved in the scalar valued setting of SBV functions with )
E)(w) = Vol and £°(T) = HA(T),
taking into account the following modifications. We can consider v scalar valued since vector valued maps
can be easily dealt componentwise. Even if the surface energy is of the form .(3.63), by using the density
result of [31] we can still restrict ourselves to the case in which v has piecewise linear jumps outside a
suitable open set U such that ’

Ul <o and  H! (U 59 (u)\ U>~.< o,
=1 .-

where o is an arbitrarily small constant. In order to approximate the piecewise linear jumps, we use
Lemma 6.3.1. Finally, we are not assuming p = 2, and this prevents us from considering the piecewise
Jjumps as union of disjoint segments: we overcome this difficulty choosing v, = 0 in the regular triangles
which contain the intersection points, and then interpolating v outside as in (50, Proposition 5.1].
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6.4 Preexisting cracks and their approximation

In Section 6.6, we will need to approximate the surface energy of a given preexisting crack 0. We take
the initial crack in the class

Qg : HYT) < 400, T = 5™(2)
- for some h € WHP(Q; R%) N Lq(Q Rz) and 'z € GSBVP(%R?)}. (6.8)

r(Q) = {T

[

Notice that it is not restrictive to assume h = 0, We take'as dlscret_lzatlon of T(Q) the following class
I..(Q)={TC05B : HYT) < 400, T' = 5(z) -for some z € Aga(Q;RQ)}. (6.9)
We have the following approximation result.

Proposition 6.4.1. Let I° € T'(Q). Then for everye >0 and a €10, 3| there exists I, €T u(Q) such

that
lm £2(T2,) = £(I°),

£,a—0

where £° is defined in (3.63).
Moreover let ge € AF.(Q), g € WHP(Q; R?) N LI(Q; Rz) be such that as € — 0

ge — g strongly in Wl’p(ﬂ;Rz) N LI R?),
and let us consider

£ | COW +E (S W) if v € AB, (U R?),
ST 40 otherwise in L*(Q; R?),

and
Flo) = EY(0)(v) + €5 (S9(0) \T?)  ifveE GSBVP(Q4R?), 5(v) S,
T | 4oo otherwise in L*(; R?),

where E® is defined in (3.81). Then the family (Fe,a) T'-converges to F in the strong topology of LY(Q;R?)
ase— 0 and a — 0.

Proof. Let us consider T0 € T'(Q2) with I'" = §%(z) for some z € GSBVP(Q;R?). Then by Proposition
6.3.2 for every € > 0 and a € (0, %), there exists Ze,a € Ae,a(€2) such that for e — 0 and for all a

VZeo — Vz strongly in LP(Q;szz.),
Zea— 2 strongly in LG(Q;RZ)’

and Co
liriljgp £9(8%(2,0)) < 1(a)€5(S°(2))

with p(a) — 1 as a — 0, where £° is defined in (3.63). Let a; \, 0, and let &; ™\, 0 be such that for all

e<eg;
£5(8%(Ze,a,)) < m(as)E°(5°(2)) + i,

and
[[VZe,a; — VZHL;D(Q;M2X2) < ai, ]]5‘5,%.—— z”Lq(Q;RQ) < a;.
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Setting
. Zea:  Eip1<e<eg, a<a,
ea T . - . .
Zeajo1 Ei+1 <ELE, a3 <a<ajoy, i<,

we have that , .
lim Vz o= Vz strongly in LP(Q; M?2%2),

Ea—'

Hm 2z =12z strongly in L9(Q; R?),

e,a—0

and
limsup £9(5%(2¢ 4)) < 55(50( ))

g,a—0

Since by Theorem 3.8.7 we have £5(S%(2.,4)) < lim 1nf5,a_.o £ (S9(2,0)), We conclude that
lim 55( (Zs a)) = E5(8°(2)).

€,a—0

Let us set for every ¢, a .
I‘g,a = So(za‘a),

We have that
lim ES(I‘SG) = £5(19).

£,a—0

Let us come to the second part of the proof. Let us consider (€n, an)neN such that &, — 0 and a,, — 0.
If we prove that (F%, a,)nen I-converges to F in the strong topology of L1(Q;R?), the proposition is
proved since the sequence is arbitrary. Since we can reason up to subsequences, it is not restrictive to

assume a, \, 0.
Let us start with the Ilimsup 1nequahty considering v € GSBVP(S;R?), with S(v) C Qp. For any

n fixed, by Proposition 6.3.2 there exists Gc q, € AZ,, (?; R?) such that for e — 0
Ve,a, — Vv strongly in LP(Q;szz)’
Ue,a, — U strongly in LQ(Q; Rz),
and such that
lim sup £°(59% (4, ) \ I a,) < “(an)gs(sgs (v)\I?)

e—0

with y1(a) — 1 as a — 0. For every m € N let €™ be such that for all £ < e™
E°(8% (Be,am) \T2a,,) < 1lam)E*(SY(0) \T°) + aum,

and
[Ve,am = Vol Lo(amexy < am, 9e.0m = vllLa(m?) < Gm.
We can assume ™ \ 0. Setting ' .

N 1 :

v ) Tenam e <en <™, n >,
En,n “— § -

e Vepan €™M <e, <e™ n<m,

we have that B
lim Ve, o, = Vo strongly in. LP(Q; M3%2),
n .
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limwe, o, =v strongly in L9(Q;R?),
m

and
lim sup £°(S% (ve, a,) \ Te,0) < £°(8%(v) \ T°).

Then we get

limsup Fe, 0, (Ven,a.) < limsup £°(0)(ve, a,) + limsup £ (5% (vey a,) \ T2, )

n

< E4(0)(w) + £%(S?(v) \ %) = F(v),

so that the I-limsup inequality holds.
Let us come to the I*-liminf inequality. Let vn, v € L*(2;R?) be such that v, — v strongly in L* (; R?)
and liminf, F;_ 4, (vn) < +00. By Theorem 3.8.7, we have v € GSBVP(Q; R?) with S(v) CQp and

E(0)(v) < 1imninf Eb(0)(vp).

Let us consider Qp polygonal such that Qp NQ = §, and 80p N O = Ip&l up to a finite number of
points, and let us set
Q:=Q UQp Udpfl.

Let us extend ge, and g to WH?(Q; R?)NLY(Q';R?) in such a way that ge, — g strongly in WhP(Q/; R?)n
L9($Y;R?), and let us also extend vn,v to § setting vn = ge, and v = g on Qp. We indicate these
extensions with w, and w respectively. Notice that wn,w € GSBV} (4 R?), and that S%n(v,) =
S{wy,) and S§%(v) = S(w). Let us also set z., 4, = z = 0 on Qp, where z,q, and z are such that
9 = 8%z,.q,.) and IO = S%(z). We indicate these extension by (., o, and { respectively: we have

En,ln

Cenians ¢ € GSBVP(Q;R?) and TT , = S(Cen0n) and T9 = S(¢). Then for every n > 0 we have by
Theorem 3.8.7

E(S(w+nQ)) < limninf E°(S(wn + 1lenan))-
Since for a.e. 7 > 0 we have S(w + 7¢) = S(w) U S(() and S(wn + 1len,an) = S(wn) U S(Cen,an)s WE
deduce that
£5(S9(v) UT?) < liminf £5(S%n (v,) UTY , ).
n “n
Since by assumption £5(I'9_, ) — £5(I'?), we conclude that
£4(59(u) \ T9) < liminf (5% (0) \ T2, ).
We deduce that

EP(0)(v) + E5(S9(v) \ ) < ljmninf [E°(0)(vn) + E°(S9n (un) \ T2, )]

that is
F(v) < liminf F_ . (vn).

The I'-liminf inequality holds, and so the proof is concluded. O
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6.5 The discontinuous finite element approximation

In this section we construct a discrete approximation of the quasistatic evolution of brittle fractures
proposed in [35] and described in the Preliminaries: the discretization is done both in space and time.
Let us consider

ge € WEUH[0, T); WHP(Q R?) N LI R?)),  ge(t) € AF.(Q) for all t € [0, T,

where AF,.(Q) is defined in (6.3). Let § > 0, and let Ns be the largest integer such that (N5 — 1) < T}

we set t§ ;= 46 for 0 < i < N5 — 1, thy, = T and g2% := g.(t{). Let T? € I'. 4 () be a preexisting crack

in , where I'; () is defined in (6.9).

Proposition 6.5.1. Let ¢ > 0, a €]0,3[ and 6 > 0 be fized. Then for all i = 0,..., N; there exists
‘“ € AB o (QR?) such that, setting

i
i =100 8 Wl

r=0
we have for all v € AZ,(Q;R?)
£2(0)whd) +&° (2 (e \I°) < £°(0)(v) + &° (" )\ T°), (6.10)
and for 1 <1< Ns
£ () (ulh) + £° (59" (ulh) \ 25 ) < () () + € (87" () \ TS (6.11)
Proof. Let u$% be a minimum of the following problem
- {5b )(u) + €5(59™ (w) \F°)} (6.12)

We set T80 :=T0U Sgd'o( ‘03, Recursively, supposing to have constructed udi= and TEE1) let ul? be
a minimum for 5 .
; b s(ag®t 8,i—1
s {E D@ e s @i} (6.13)
We set I“5 b= F’5 -1 go" ( %), It is clear by construction that (6.10) and (6.11) hold.

Let us prove that problem (6 13) admits a solutlon problem (6.12) being similar. Let (un)nen be a
minimizing sequence for problem (6.13): since g&* is an admissible test function, we deduce that for n
large

8,i I}
EP(t) () + €% (87" (un) \TEE7Y) < 8(2)(g2%) + 1.

By the lower estimate on the elastic energy (3.82), we deduce that for n large
5, _ .
of (I unll} + llunllg) + 7 (59" (un) \TEE) < £5(40)(6%) + 1+ 5. (6.14)

Up to a subsequence, we have that the adaptive vertices 2%, converge to some adaptive vertices z*, and also
the values of the deformation u, at every vertex are converging. In the end we find mterpolatmg these
values an admissible deformation u € .AB (€% R?). Since the functional in the minimization problem (6. 13)
is lower semicontinuous with respect to the position of the vertices and the values of the deformation, we
conclude that u is a minimum point for the problem. 0
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The following estimate on the total energy is essential in order to study the asymptotic behavior of
the discrete evolution as § — 0, ¢ — 0 and @ — 0. Let us set uf ,(t) := u‘“ for all ¢ <t <t and

1=0,...,N5 -1, UEYE(T)—ug'{ZV'S
Proposition 6.5.2. For all 0 < j <1 < Njs we have

E(eh) s, T88) < EE)0ELTED + [ WV (r), Vol ar

sa,)
)

tf tf
Fr)(wl g (r)) dr — /  (OF () a(r). de() dr

e dr = [ (00 () gelr) 4 b (615)

')
£ 3

where eg’a — 0 as § — 0 uniformly in € and a.
i with udit — g&i=1 4 b we get

Proof. By the minimality property (5.14), comparing u

24) — G(tf)(ull) + £2(5% (ud}) \ TLy)

— Vgl 4 Vgl — F(E)(uli — g2+ g2)

W(Vudi) — F(t2)(u
g(t“)( Si-l_ ghi=l 4 gB%) (6.16)

< W(Vudi?

‘We have
L Vgdi=t 4+ Vgl) = W(Vuli™)
g0t = vgliTh)), vy

+ (OW(VUdiTt + 9271 (Vg!
=W(Vulit) + /

38
tzl

8, 8,i—1
€ L - st ’ >

<3W(vug,a(T) -+ ‘Ug’a(’/')), VgE (T)> dT! (617)

W(Vug”z—

tf

where 99571 €]0, 1 and V8 (1) = 991V gl Vgdi1) for all T € [td_,, 2.

Similarly we obtain
tﬁ
F(t)(uiit — g8 + g2%) = F () (udl 1)+/t5 (OF () (ul o(7) + wlo(7)), ge(T)) d7,  (6.18)
i—1
and
]
() (udint — g0t + g2%) = G (udi ) + /t‘s (0G(t3) (ul o(7) + 224(7)), ge (7)) dr, (6.19)
im1
where wgla( )= A l‘1(9 g2 1y, Ea(T) = ug;}'; (gli-gdi N forall 7 € [td_,,t!], and ,\g); 1,1/31; le
10,1[.
Since by (3. 72) we have for 7 € [tJ_;, 9]

(a}-(tf) us a T) + ws,a(T))’gE (T)> - (BF(T)(Ug a
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we get by (3.75)
[OF ()l (7) + wla(7)), ge(7)) = (BOF (T)(u o (7) + w4 (7)), 6 ()]

< / OF () o (7) + w8 o (7)), 6e(r))] ds
< [ (e @l o) + 0 (I + 67 )] el ds < A5 ae(lr (6.20)
where

+8 8

4, i— i— ) Ji— j ' '
Y2 = max (uui;zluézzl(g;“—gii Dies [, ef(eds [, ﬁf(sms).

1 -1

1<i<Ng ;

(e i

Similarly we obtain
[OG(E2)(wla(7) + 28 4(1)), 8e()) = (OG(T)(ud o (7) + 28 4 (7)), 4e(T))] < A& e Inpsn,  (6.:21)

where

8
i1 i1

4 4
67! yi— |A"‘ ,. v"‘ - : '
1= e (nui,zlwﬁ,z o o liaka [, of(o)ds+ | bf(s)ds).

From (6.16), taking into account (6.17), (6.18), (6.19), (6.20), (6.21), we have

i
E()(uds, ToL) < E(t_,)(wlit, Toi-1y 4 /t ) (OW(VUl 4 (1) +vL,(7)), Ve (7)) dr
i—1

o t2
=, FObatrdr = [ O ual) +wl ), el dr
= [, ) dr = [ 00 o (r) + () ) o
tf t?
+955 [ lgerladr o8 [ oulnsandr. (6.2)

Taking now 0 < j < i < Nj, summing in (6.22) from t? to ¢, we obtain

"
Et))(ulh, T2L) < E(85) (w4, T8) + ; (OW(Vud o(7) + 92 4(7)), Ve (7)) dr
1 ’ 18

= [, FOtalrdr = [ O + k() el o

)

tf tf
- [, 9 Eatrar = [ B66)0Ea(r) + B o) () o

2

td &
+92 [ gl dr + e [, Vaetlhssndr. (622

)
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Setting

1
e, = / (OW(VUL o (7) + 0 o (7)), Vie()) — (OW(Tud o (7)), Ve ()] dr
[ R o () + (1), 6e()) — (BF ()W (7)), g (7)) dr

0
1

+ (0G(r) (o (7) + 28,0 (1)), G (7)) = (OG(T)(ul 4 (7)), Ge (7)) dr

1 1
rafte [ hacollodr +57 [ laetolnosadr, (626

from (6.23) we formally obtain (6.15). Let us prove that eg,a — 0 as ¢ — O uniformly in € and a. By
(6.11), comparing ui:fl with g&%, and taking into account (3.82), we get for alli=1,..., Ns,

5 i
IVuily + 1ugille < €',

where
1 = .
= b 5 8,1 £
C o ag i:Igl,,?‘?’{Né (5 (tl)(gg ) + ﬂo) .

Since g is Lipschitz, there exists Ks > 0 depending only on p, ¢ such that
l[ullnns < Ks(IVullpas + llullens)
for all u € WHP(Qg;R?) N L9(Qg; R?). Taking into account (3.77), we obtain
[udillrasn < C"

for some C" independent of 8. Since g. € WH([0,T}; WLP(Q; R?) N L(;R?)), we obtain that for all
7€[0,T)aséd—0
§ () — 0 strongly in LP(Q; M?*2),

'vs,a
wg,a(ﬁ') —+ 0 strongly in L(; R?),

28 (r) — 0 strongly in L"(8sQ; R?).

&,

Moreover 'ygf’“ — 0 and 'yg’s’“ — 0 as § — 0. Finally, by [35, Lemma 4.9}, as § — 0 we have that for all
7€ [0,T]
(OW(Vd o(7) + 08 a (7)), Ve (7)) = (OW(Vaud (7)), Ve (T))] = 0,

[(OF (r) (e a(r) +wh (1), ge(7)) = (OF (T)(ul 4(7)), ge(7))] = O,

(OG () (Wl o (7) + 28.0(7), Ge(7)) = (BG(T) (ul 0 (7)), g (7)) = O,

uniformly in €, a. By the Dominated Convergence Theorem, we conclude that eg'a — 0 as § — 0 uniformly
in £ and @, and the proof is finished. [
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6.6 The approximation result

In this section we study the asymptotic behavior of the discrete evolution obtained in Section 6.5. Let us
consider a given initial crack I'O € I'(2) where I'(Q) is defined as in (6.8), and a boundary deformation
g € Wh([o, T], Whe(Q; R2) N LI(Q; R?)). Let T? , € T 4(Q) be an approximation of I'¥ in the sense of
Proposition 6.4.1, and let us consider

e Whi([o, 7], whP(Q; R?) N LI(Q;R?)),

such that
9e(t) € AF:(9) for all ¢ € [0,T),

and such that for e — 0

ge — g strongly in Wh([0, 7], WhP(Q;R?) N LY(Q; R?)).

Let
{(udi, T84, ¢=0,..., N5}

aa7

be the discrete evolution relative to the initial crack 1"2 o and boundary data g. given by Proposition
6.5.1. We make the following piecewise constant 1nterp01atlon in time:

ud a(t) = ug:i'u Pg,a( ) = Fg 217 gg(t) = gE(tg) for t;'s St< t?—l—l? (6‘25)

1=0,...,N5—1, and ug,a(T) = ug Ns, 1"‘5 ( ) = Fg:flvﬁ, gg(T) = g:(T).
By Proposition 6.5.2, for all v € AEf (£; R?) we have

£(0)(uda(0)) + £° (8"l o (0) \T2,.) < E0)(0) +€° (5" P )\ 12, ),

and for all ¢ € [¢], £, and for all v € AZ, (; R?)

EX(E)(wea(0)) < EED)(0) + € (ST O\ TE, (1) (6.26)
Here £ and £° are defined in (3.81) and (3.63) respectively. Finally for all 0 < s < ¢ < 1 we have
E(t])(ud o (1), TL o () SE(s7)(1 4 (5), T2 o () +/ (OW(Vi 4 (7)), Vie(r)) dr (6.27)

-, PO - [ 0P o). gl

/g m—£<(x@m»mmm+£m

where 535 <s< 535“ and t{ <t < td, € €e,q 15 defined as in (6.24), and £(¢)(x,T) is as in (3.80). Recall

that e , — 0 as 5 — 0 uniformly in €, a.
Comparing u ,(t) with g¢(t) by (6.26), and in view of (3.69), (3.73), (3.74), (3.78), (3.79), (6.10) and
(3.64), by (6.27) Wlth s = 0 we deduce that there exists C’ €]0, +oo| such that for all ¢, 6, € and a

IVula@llp + 1l o )llg + HMTE 4 (1)) < C. (6.28)
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By the time dependence of £°(-,-), in view of (6.28), by (6.26) and (6.27) we have that there exists
— 0 as 6, — 0 uniformly in a such that for all ¢ € [0,T] and for all v € AZ_ (2 R?)

aa

E ()l o(1)) < E2(2)() + 2 (ST D)\ TE (1)) +0L., (6.29)

andforall 0<s<t<T

E(t)(ulo(£), T2 o (1)) SE(s)(ula(s), T2a(s)) + / (OW(Vul o(7)), Vie (7)) dT (6.30)

S

- [ FOtar) - [ @FE o). der) dr
- [ dmatamn - [ 00w (e el + o

Inequality (6.28) gives a natural precompactness of (uf ,(t)) in GSBVP(Q;R?). The main result of
the chapter is the following.

Theorem 6.6.1. Let 6 > 0, € > 0, a €]0, 3|, and let {t — (ud ,(2), T ,(t)) : t € [0, T} be the discrete
evolution given by (6.25) relative to the initial crack T , and the boundary data g.. Then there exist a
quasistatic evolution {t — (u(t),I'(¢))} in the sense of Theorem 3.8.8 and sequences 6n — 0, £n, — 0,
an — 0, such that setting un(t) == ulr , (t) and Tn(t) := I“gn o, (t), for all t € [0, T] the following facts
hold.

(a) For every t € [0,T), (un(t))nen is weakly precompact in GSBV:IP(Q;Rz), and every accumulation
point (t) s such that S90)(a(t)) CT(¢),

£2(2)(a(t)) < E°(1)(v) +&° (SO (w) \T(1)) (6.31)
for allv € GSBV (%, R?) with S(v) £ Qp, and
E8(t) (un(t)) — E°()(E(1)).
Moreover there exzists o subsequence of (6n,€n, @n)nen (depending on t) such that

un(t) = u(t) weakly in GSBVQP(Q;R%,

(b) For every t € [0,T] we have
E(t)(un(t), Ta(t)) — E@)(u(®), T()); (6.32)
more precisely elastic and surface energies converge separately, that is

E(t)(un(t)) — E°W)(u(t),  E(Ta(t)) — E°(0(2)). (6.33)

For the proof of Theorem 6.6.1 we need two preliminary steps. First of all, we fix a and study the
asymptotic for 6, — 0 (Lemma 6.6.2), and then we let & — 0 using a diagonal argument (Lemma 6.6.4).
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Lemma 6.6.2. Let a be fized, t € [0,T], and let 6, — 0 and &, — 0. There exists Ta(t) € R(Qp; 00 2)
and a subsequence of (6, en)nen (Wwhich we denote with the same symbol), such that the following facts

hold:
(a) if w, € AZ (4 R?) is such that Sgéﬁ(t)(wn) CTIé ,(t) and
Wy, — W weakly in G'SBVZ’(Q;]RZ),

then we have _
590 (w) E T (t);

(b) there ezists p(a) with u(a) — 1 asa — 0 such that Jfor every accumulation point u, (t) o_f (Ul o (t))nen
for the weak convergence in GSBVP(Q4R?) and for allv € GSBVP(;R?) with S(v) CQp, we have

E'(t)(ua (1)) < (1)) + u@)E® (ST () \ Ta(t)) ; (6.34)

lm E2(t) (udr o () = E°(¢) (ua (t)); (6.35)

(¢) we have
£°(Ta(t)) < liminf £5(TYr ,(2)).

Proof. We now perform a variant of [35, Theorem 4.7). Let (or)ken € LY(Q;R?) be dense in LY R?).
For every ¢ and for every m € N, let v};‘gl (t) be a minimum of the problem

min{[[Vollp + [|vllg + milv — pilly : v € V1),

where ,
Vi={ve AE (Q;Rz), S9 () (v) C sz,a(t)}-

En,Q

Since by (6.28) we have ’Hl(I‘g::'a(t)) < ", by Theorem 3.8.2 there exists a subsequence of (6n; En)nen
(which we denote with the same symbol) such that Vg (t) weakly converges to some Vim (t) € GSBVP(Q;R?)
asn — +oo for all k,m € N. We set

Ta(t) = J 5@ (ug . (2)). (6.36)

k,m

Let us see that I',(¢) satisfies all the properties of the lemma. Clearly I'y(t) € R(Qp; OnN) and point (e)
is a consequence of Theorem 3.8.2. In particular by (6.28) we have that

HY (To(t)) < C'. (6.37)
Let us come to point (a). Let wy € AZ (2 R?) be such that 59T ® (wn) C FS:’a(t) and
wn = w  weakly in GSBVP(Q;R?).

We claim that there exists k,, — -~co such that

Vkmm(t) ~w  weakly in GSBVP(Q; R?). (6.38)
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Then since S9*) (v m(t)) C Ta(t) for all m and in view of (6.37), we deduce that §9()(w) CTa(t). Let
us prove (6.38). leed m € N, let us choose kp, in such a way that

mllw = @k, [l1 — 0.
By minimality of vi'* . (t) we have for all n
”v”;::,m(t)”p + ||Uk m @l + m””km m @) = inllt < | Vwnllp + lwnlly + m|wn = Qe l1-
Passing to the limit in n, by lower semicontinuity we get for some C > 0
V08, B)lp + 05 m (Olg + 7l (8) = @k lls £ C +mfjw = @k -

We deduce for m — +00
[0 (8) = P [l = O,
which together with ||k, — w|]1 — 0 implies that
vE n(t)—w  strongly in L'(2;R?).
Since
1V0f m @)l + 108, m(Bllg £ C+mllw—@p, i < C+1

for m large, we have that v§_ () = w weakly in GSBV{ (¢ R?), and this proves (6.38).
Finally, let us come to point (b). Let v € GSBVP(%; Rz) with S(v) C Qp, and let us fix ky,..., ks
and my,...,my in N. By Proposition 6.3.2, there exists v, € AB (9;R?) such that

lim £°(2) (va) = £°(t)(v)

and
limsup £° <596:(t)(vn)\I’gj“a(t)) < hmsup E°(89n 2 () \ U S@is.,)
" i<s, j<r
wa)e (PN | Sk m,)

where p(a) — 1 as a — 0. Since the k;’s and the m;’s are arbitrary, we obtain that
limsup € (830 (un) \TE o(8)) < w(@)€* ($°9(w) \Tult)) (6.39)
n

Let us suppose that ul® ,(t) = ua(t) weakly in GSBVF (€, R?) along a suitable subsequence which we
indicate by the same symbol. By the minimality property (6.29), comparing ug;a(t) with v, we get

EV () o(6)) < E2(2)(vn) + €2 (57RO (0n) \TEL 0 (8)) + on, (6.40)
with 0, — 0 as n — +o00. Then we have
£0(8)(ualt)) < liminf £2(8)(uln o(9)) < limsup (£2(8)(va) + E° (5% O(wn) \TE1,0(1) )

< £(t)(v) +limsup £° (55 O u) \ TSz 4(8)) < E2)(v) + p(@e* (SO w) \ Tu(t))
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that is (6.34) holds. Choosing v = u, (%), passing to the limsup in (6.40), and taking into account (6.39)

we obtain that
limsup £%(¢)(udr . (£)) < E2(t) (ua (2))-

Since by (6.34) £(¢)(us(t)) is independent of the accumulation point u,(t), we conclude that (6.35)
holds. O

Remark 6.6.3. Using Lemma 6.6.2, it is possible to construct an increasing family {t — T'w(¢) : t €
[0,T]} and a subsequence of (6, £n)nen such that points (a), (b) and (c) of Lemma 6.6.2 hold for every
t € [0,T]. This evolution {t — T,(t) : ¢ € [0, T]} can be considered as an approximate quasistatic
evolution, in the sense that it satisfies irreversibility, but it satisfies static equilibrium and nondissipativity
up to a small error due to the fact that a is kept fixed. The presence of #(a) in the minimality property
(6.34) takes into account the anisotropy in the approximation of the surface energy: in fact, since a is
kept fixed, the adaptive edges of the triangulations T:,2(2) cannot recover all the possible directions.
Notice that u(a) = 1 + Ca, where C depends only on the coercivity constants of the surface energy and
on the range of the angles ¥; < ¥ < ¥ defining the regular triangolations R, (2). Using the minimality
property (6.34) and following [35, Lemma 7.1] (estimate from below of the total energy) we can obtain
the nondissipativity condition up to a small error, that is

€(8)(ua(t), Ta(2)) — £(0) (ua(0), Tu (0)) — / Ba(s) ds

< C sup lg@®llw2 s r2)nLeire)a,
t€[0,T

[

where C is an explicit constant depending on the coercivity constants of the bulk and surface energies
and on the range of the angles of the regular triangolations R, (2), and 9, is defined as in (3.83).

Using the arguments of Lemma 6.6.4, it can be proved that (uq(t),La(t)) approaches along a suitable
an — 0 a quasistatic crack growth (u(t),T'(t)) providing in particular an approximation of the bulk and
surface energies at any time, i.e. for all ¢ € [0, 7]

E2(8) (e, (1) = E°(B)(ult)) and E€°(Ta, () — £°(T(2)).

However it seems difficult to obtain by this approach an explicit estimate for |€(t) (ua,, (), Ta, (2) —
E(t)(u(t),I'(2))] in term of a,.

The construction of {t — ['4(t) : ¢t € [0, 7]} is the following. If D C [0, T} is countable and dense,
by Lemma 6.6.2 and using a diagonalization argument, we can find a subsequence of (6, &n)nen and an
increasing family I's () € R(Qp; OnQ), t € D, such that points (a), (b) and (c) hold for every ¢t € D. Let
us set for every ¢ € [0, 7

) = ﬂ Tu(s).

s2>t,s€D

Clearly {t — T'}(t) : t € [0,T]} is increasing, in the sense that Ta(s)CT,(t) for all s < t. As a
consequence, the set J of discontinuity points of H*(I'} (t)) is at most countable. We can extract a further
subsequence of (6n,€n)nen such that T'y(t) is determined also for all £ € J (notice that I'y(¢) T (¢)).
For all ¢t € [0,T]\ (DU J) we set Ty (t) := T’} (). We have that To(t) € R(Qp;0n) and {t — Tal?) :
t € [0,T]} is increasing.

For t € DU J, I'y(t) satisfies by construction points (a), (5) and (¢) of Lemma 6.6.2. Let us consider
the case t € [0, T\ (DU J).

Concerning point (a), we have that S9® (w) CT,(s) for every s € DN [t, T, so that passing to the
intersection we get S9®) (v, (£)) € Ty (t).
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As for point (b), considering s € DN |0, t[, for every v € GSBVQP(Q;Rz) with S(v) € Qp, we have that
there exists v, € AZ, ,(;R?) such that

liTl;Il gb(t) ('Un) = Eb(t)(v)a

and

tm sup £° (5939 (v) \ T4 ,(9)) < limmsup € (8730 (0) \ Tl o(5)) < ()8 ($°0(2) \Ta(s)
k(3 3
Then by minimality property (6.29) and passing to the limit in n we have
£2(1) (1) < E2(1)(0) + u(@)E* (S0 () \Tu(s)

Letting s — ¢ we get that (6.34) holds. Reasoning as in Lemma 6.6.2, we get that also (6.35) holds.
Finally, coming to point (c), we have that for all s € DN[0,¢[

liminf £°(T% (¢)) > liminf £°(0%7 o(5)) 2 €°(Ta(s))

so that letting s " t, and recalling that ¢ is a continuity point for SS(I‘EI: a(+)), we obtain that the lower
semicontinuity holds.

We can now let @ — 0.

Lemma 6.6.4. There ezist a map {t — I'(t) € R(Qp; 0nQ),t € [0,T]} and sequences én — 0, £n — 0,
an — 0 such that the following facts hold:

(a) TOET(s)CI(t) for all0 < s <t < Ty

(b) for all t € [0, T, if wn € AB. ,(R?) with 897 (wy) C Tl , (t) is such that
Wy, — W weakly in GSBV;’(Q;RZ),

then we have
590 (w) CT(2);

(c) for all t € [0,T] and for every accumulation poini u(t) of (ug:‘an (t))nen for the weak convergence
in GSBVP(Q;R?) and for allv € GSBVP (4 R?) with S(v) € 0p, we have

£(0)(u(t) < @)+ (S \T®), (6.41)

and
£2(8)(u(t)) = Im £ () (udn o () (6.42)
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(d) for all t € [0,T] we have
€4(I(t)) < lim inf £5(T8 | (t)). (6.43)

Proof. Let us consider 6, — 0 and €, — 0. Given a €]0, $land t € [0, 77, let T,(t) be the rectifiable set
given by Lemma 6.6.2. Recall that by (6.36) we have

La(t) = [ $°D (o} (2)),
k,m

where vf . (¢) is the weak limit in GSBVP(Q;R?) along a suitable subsequence depending on a of a

minimum ”1’:,'51 (t) of the problem

min{||Volly + fjollg + mlv = @il : v € V2(2)}, (6.44)
where (pg)ren C L*(€;R?) is dense in L'(€; R?) and
V() = {v € AZ, (5 R?), $7EOw) C T (1)),

Let an — 0, and let D := {¢; : j € N} C [0,T] be countable and dense with 0 € D. Using a diagonal
argument, up to a subsequence of (0, £x)hen, We may suppose that for all ¢ € D and for all n

van () — Ui (t)  weakly in GSBVFP(Q;R?).

k,m
Moreover, we may assume that for all ¢ € D and for all n
Ul 4 (t) = ua,(t)  weakly in GSBVP(Q;R?)
with
E8(t)(ull o, () = E°(t)(ua, (2).

By Lemma 6.6.2, we have that u,, (t) satisfies the minimality property (6.34).
Up to a subsequence of (an)nen, We may suppose that for all k,m and t € D we have

Vg (t) = Vkm (1) weakly in GSBVFP(; R?), (6.45)
and
Ug,, (1) — u(t) weakly in GSBVP(Q; R?). (6.46)
For all t € D, let us set
T(t) = |J S99 (vem (). (6.47)
k,m

By Proposition 6.3.2, in view of the minimality property (6.34) and taking into account that u(a,) — 1,
we have that for all v € GSBVP(; R?) with S(v) € Qg

E°(t) (u(t)) < E°(1)(v) + E2(S°M (v) \ T(1)), (6.48)

and as a consequence, we obtain

E2(t)(uan (8)) — E°(t)(u(t)).

We now perform the following diagonal argument. Choose Ong:€ng in such a way that

1565 (o) = vE% (o)1 + 42 a0 (t0) — wao (t0)1 + |E2(E0) (822 ay (t0)) — E2(t0) (tiay (£0))] < 1.
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Supposing to have constructed 8n,,€r,, we choose 6x, 1, Er,,, i such a way that for all & < n +1,
m<n+1andfor all t; with 1 <7< n+ 1 we have

h'ﬂ 1“n k3 n
g™ (8) = v (te) 1 + e i (6) = U ()l
+

+ lfb(ti)(us:nii,am (84)) = €°(t3) (tanya (8))] < :

n+1

Let us set &, := 6y, and &, := &4, and let us prove that I'() defined in (6.47) satisfies the properties of
the Lemma. We have immediately that I'(t) € R(Qp; On Q).
Concerning point (d), notice that

ré (1) = [ SR O (uhmen 1)), U 59O (v, (£))

m,k

and that for all k,m
Rn,0n (t) = vgm(t) weakly in GSBV}(Q; R?);

Vkm
then (6.43) is a consequence of Theorem 3.8.2. In particular, by (6.28), we get that
HHT@) < C. (6.49)
Let us come to point (b). Let wn € AZ ,(Q;R?) with g9'n () (wn) © ng,an (t) be such that
wp —=w  weakly in GSBVP(Q;R?).
For every m € N, let us choose kp, in such a way that
mllw = @k, 1 — 0.

By minimality of vh" %7 (¢) we have for all n

Tt h‘ﬂ-v n h'n. 'n.
IVopmam @y + oo @)llg + mllver o (8) = @kl < [ Venllp + wallg + milwn = @k

K\ o m
By construction of Ay, and in view of (6.45), we have
vf;’,%‘ (t) = Vkpym(t)  weakly in GSBVP(Q;R?).
Then passing to the limit in n, by lower semicontinuity we get for some C > 0

”v”kan(t)HP A+ Ok () g + M Vk m (8) — Pk 1 < C+mlw— @k, I

‘We deduce for m — +co
Vkmm (t) = @kl = 0,

which together with ||k, — w|l1 — 0 implies that
Uk, m(t) = w strongly in L*(Q;R?).

Since
1 V0k m (B)llp + [0k, m()llg < C + mllw = g, [l £ C +1
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for m large, we have that
Vg, () = w weakly in GSBVP(%; R?).

Since S9®) (v, m(t)) € T'(t) for all m, and since H? (T(t)) < C’, we deduce that S9®) (w) ET(t).
Coming to point (c), we have that (6.42) holds by construction. Moreover {6.41) holds in view of
(6.48) and by the fact that ugg‘an(t) weakly converges in GSBVP(Q; R?) to u(t) defined in (6.46).
In order to prove point (a), notice that if s < ¢ with s,t € D, we have for all k,m € N that

én. h"n’ n n n n n
S9n(®) ('Ulc,ma () + ggn ) - ggn (s)) C I‘gman (s) C Fgman (®),

and
Viw " (8) + g2 (8) = 927 (8) = vm(s) + 9(t) — g(s)  weakly in GSBVP(Q;R?),

where v;‘;(s) and vg,m(s) are defined in (6.44) and (6.45). By point (b) we deduce that

599 (ugm(5) + g(2) = 9(s)) = S (vgm (5)) ET(2).

Then by the definition of I'(s) we get I'(s) CT'(¢). Finally, by the same argument, we deduce I'° C I'(s).
In order to deal with all ¢ € [0, T}, we proceed as in Remark 6.6.3. For all ¢ € [0,T]\ D let us set

@)= ) T(s).

s2>t,s€D

Clearly I'*(¢) € R(Qp; OnS2) and satisfies point (a), so that the set J of discontinuity points of H? ()
is at most countable. We can then extract a further subsequence of (6,,&n, an)nen such that I'(t) is
determined also for all t € J\ D (notice that I'(t) CT*(¢)). For all ¢ € [0, T]\ (DUJ) we set T@t) =T%().
We have that I'(¢) € R(Qp;0n2) and that T'(¢) satisfies point (a). Let us see that T'(t) satisfies also
points (b), (¢) and (d) also for t € [0,T]\ (DU J).

Concerning point (b), for every accumulation point u(t) of (uﬁ:,an (t))nen for the weak convergence in
GSBVP(Q;R?), by the first part of the proof, we have that S9(*) (u(t)) CT(s) for all s € D with s > ¢, so
that passing to the intersection, we get that S9) (u(t)) E T(¢).

Let us come to point (c). Let

u;(t) = ug:j,anj (t) = u(t)  weakly in GSBVP(Q;R?)
along a subsequence n; / +00. Let us set I'; := rﬁ:;j,anj and g; = gg:j . Up to a further subsequence
there exists s; € D with s; ¢, and such that setting u;(s;) := ug:;,anj (85), we have
s (55) = (551 + 1€ (53) (a5 5))  E2(s) (o) = . (6.50)
We have that there exists u*(t) € GSBVP(%; R?) such that up to a subsequence
u(s;) — u*(t) weakly in GSBVP(Q;R?).
By the minimality property (6.41) of u(s;), for all v € GSBVP(S;R?) with S(v) £ Qp, we have that

£°(s;)(u(s;)) < E%(s;) (v = g(t) + g(s5)) + £3(59V) () \ T(sy)).
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Passing to the limit in j we have that for all v € GSBVQP(Q;]IV) with S(v) £ 0p
EP () () < E°() (v) + £°(S7W (v) \ T (2)). (6.51)
As a consequence of the stability of this unilateral minimality property, it follows that
£(s;)(u(ss)) — E(8)(u"(2)).

By (6.50) we get
uj(s5) — u*(t) weakly in GSBVJ’(Q;]RZ),

and

£%(s;)(uj(s5)) — E(E)(w"(2)). (6.52)
By (6.29), comparing u;(t) with u;j(s;) — g;(s;) + g;(t), taking into account that
8919 (w;(s5)) € Tj(s;) S Ts(t),

we obtain
EP(t)(u;(2)) < E%(s5)(ui(s1)) +0;

where 0; — 0 as j — -+o00. Passing to the limit in j we have by (6.52)

£°(t)(u(t)) < liminf £°(2)(us (1)) < lim sup 8 (1) (u;(8)) < E°(£)(w* (2))-

By (6.51) we deduce that (6.41) holds. Moreover we have that £°(t)(u(t)) = E(t)(u*(t)) and that
£b(¢)(u(t)) is independent of the accumulation point u(t). Then we deduce that (6.42) holds.
Finally, concerning point (d), we have that for all s € DN [0, ]

liminf £3(T%" , (t)) > liminf £5(TZ , (s)) = £5(T(s)),
n “n n ni4n

so that letting s ¢ we obtain (6.43). The proof is now complete. O

We can now prove Theorem 6.6.1.

PROOF OF THEOREM 6.6.1. Let (8n,€n, an)nen and {t — I'(t) € R(Qp;0n),t € [0, T]} be given by
Lemma 6.6.4. For all ¢ € [0, T, let us set

un(t) =l (£), Tu(t) :=T% . ().

Let us see that it is possible to choose an accumulation point u(t) € GSBVP(Q;R?) of (un(t))nen such
that {t — (u(t),T(t)) : t € [0,T]} is a quasistatic growth of brittle fractures in the sense of Dal Maso-

Francfort-Toader. Let us set

Bn(s) = (OW(Vun(s)), Ve, (5)) = F(s)(un(s)) = (8F(s)(un(5)), den (5))
~ G(5)(un(s)) = (8G(5)(un(5)), Gen (5))-

By growth conditions of W, F,G and by (6.28) we have that there exists ¥ € L*(0,T') such that 9n(s) <

(s) for all n. Let us consider
9(s) := limsup 9, (s).

n
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By [35, Theorem 5.5 and Lemma 4.11], for every s € [0,T] there exists u(s) accumulation point of
(un(8))nen for the weak convergence in GSBVP(;R?) such that

9(s) = (OW(Vuls)), Vg(s)) = F(s)(u(s)) ~ (0F (s)(u(s)), 4(s)) — G(s)(u(s)) — (8G(s)(u(s)), 3(s)).

Applying Fatou’s Lemma (in the limsup version) to (6.30) with s = 0, we have that
t
E0)(w(0), 1)) < Tim sup E(0)(un(0), Ta(0) + [ 9(s)ds.
n 0

By Proposition 6.4.1, we have that limsup,, £(0)(un(0), Ty (0)) = £(0)(u(0),T(0)), so that we get

E@)(u(t), T(2)) < £(0)(u(0),T(0)) + /O ¥(s) ds.

Moreover, again by [35, Theorem 3.13],

E(@)(u(t), T()) > £(0)(u(0), T(0)) + / 9(s) ds,

so that

E()(u(®),T(t)) = £(0)(u(0),T(0)) +/O 9(s) ds. (6.53)

We deduce that {t — (u(t),['(t)) : ¢t € [0,T]} is a quasistatic growth of brittle fractures: in fact by
Lemma 6.6.4 we get that I'(-) is increasing, and for ¢ € [0,7) (u(t),I'(t)) € AD(g(t)) and the static
equilibrium holds; moreover the nondissipativity condition is given by (6.53).

Let us see that points (a) and (b) of Theorem 6.6.1 holds. By (6.28), (un (t))nen is weakly precompact
in GSBV?(Q;R?) for all t € [0, T]. Moreover by Lemma 6.6.4 every accumulation point %(t) of (un(£))nen
for the weak convergence in GSBVP(Q; R?) is such that S9¢)(@(t)) C T'(t) and the minimality property
(6.31) holds. Moreover we have

E2(2)(a(t)) = lim £°(¢) (un(2).

Since £°(t)(@(t)) is independent of the particular accumulation point 4(t), we have that point (a) is

proved.
Let us come to point (b). Taking into account (6.42) and (6.43), for all £ € [0, T] we have

E() < liminf By (£) < lim sup Bn(t) < B(0) + / 9(s)ds = (),
n n 0

so that (6.32) holds. Moreover we deduce that separate convergence of elastic and surface energies holds
at any time, so that (6.33) is proved. The proof is now concluded. O

6.7 The strictly convex case
In this section we assume that the function W(z,€) is strictly convex in ¢ for a.e. z € 2 and that the

function F(¢,z, z) is strictly convex in z for all ¢t € [0, 7] and for a.e. z € O: as a consequence, the elastic
energy E°(t,v) is strictly convex in v for all t € [0,T], and a stronger approximation result is available.
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Theorem 6.7.1. Let g € WH([0,T], WhP(Q;R?) N LI R?)) and let
ge € WHH([0, T), WhP(Q; RE) N LA R?)),  ge(t) € AFe(Q)  for allt €[0,T]
be such that for e — 0
ge — ¢ strongly in Wh1([0, T], WP (Q; R?) N L9(Q; R?)).

Let T9 € T(Q) be an initial crack and let T , be its approzimation in the sense of Proposition 6.4.1. Let
us suppose that

Wz, ) is strictly convez for a.e. £ € §, (6.54)

F(t,z,-) is strictly convez for a.e. (t,z) € [0,T] x Q.

Given 6 >0, e >0, a €0, 3, let {t = (ud,(¢), T, (t)) : t €[0,T]} be the piecewise constant interpola-

£,0
tion of the discrete evolution given by Proposition 6.5.1 relative to the initial crack TO , and the boundary

data g.. Then there ezists a quasistatic evolution {t — (u(t),I'(t)) : t € [0,T]} relative to the initial
crack I'° and the boundary data g in the sense of Theorem 3.8.8, and sequences 6, — 0, g, — 0, ap, — 0,

such that setting
un(t) =ulr, (t),  Talt) =TS, (8),
for allt € [0,T] the following facts hold:

(a) Vu,(t) — Vu(t) strongly in LP(Q; M?*2) and u,(t) — u(t) strongly in LI(Q;R?);

(6) E&)(un(t),Tn(t)) — E()(u(t),T'(t)), and in particular elastic and surface energies converge sepa-

rately, that is
B (ua(t)) = EXM)(u(r)),  E°(Ta(t) — E5(T(E)).

Proof. Let us consider the sequence (0n,&n,an)nen and the quasistatic growth of brittle fractures {t —
(u(t),T(t) : t € [0,T]} given in Theorem 6.6.1. Under assumptions (6.54), we have that u(t) is uniquely
determined, because by (6.31) u(t) minimizes

min{E®(t)(v) : v € GSBVP(HR?), $9%(v) C T'(1)},

and £°(t)(-) is strictly convex. We conclude by point (a) of Theorem 6.6.1 that un(t) — u(t) weakly in
GSBVP(Q;R?). Point (b) is a direct consequence of Theorem 6.6.1. By the convergence of the elastic
energy, we deduce that

lim /9 W (2, Van(t)) do = /ﬂ Wz, Vu(t) dz,

lim/ F(t,z,un(t))dz = / F(t,z,u(t)) dz.

n Ja Q

By the assumption on the strict convexity of W and F we deduce by [15]
Vun (t) = Vu(t) strongly in LP(Q; M?%?),

and
Up (t) — u(t) strongly in L9(€; R?).

Point (a) is now proved, and the proof is concluded. a
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