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An Overview

One major task of modern cosmology is to understand the Large Scale Structures
(LSS) of the Universe. To complete this task, we have to procéed in three steps. The first
step is to accumulate the observational data, such as catalogues of galaxies. The second
step is to analyse the data, usually introducing certain statistical quantities, in order to
give an objective description of the structures existing in the Universe. And the final step
is to propose and test theoretical models of the LSS formation. These three steps are
interactive: the observations and the statistical analyses often are motivated and guided
by the proposed theories; and the theories are often proposed or/and improved to explain
and understand the observations.

A contribution to understanding the LSS of the Universe is given in this thesis. The
first part of the thesis will summarize the recent developments in the theories, the obser-
vations, and the statistics, which will be given in the first three chapters. The following
chapters contain our original contributions to the subject, which are mostly concentrated
on the second step — the statistical measures. More precisely, the thesis is arranged as
follows:

In Chapter 1, T will give an outline of the theories of galaxy formation. I will only
describe the gravitational instability theory and the conventional Gaussian fluctuation
models dominated by certain types of particles. The description is rather qualitative; it
is only intended to supply a frame for understanding the statistical results given in the
following chapters.

In Chapter 2, I will list the main catalogues and samples of extragalactic objects
which are often used in the LSS studies. The information relevant to the LSS studies
will be outlined. I will emphasize the size of each sample (such as the number of objects,
volume covered), so that we can judge the quality and universality of statistical results
based on these samples.

Chapter 3 will describe the commonly used statistical measures of clustering. These
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are: the correlation function analysis, the void probability function, the minimal-spanning
trees, the topological analysis and the percolation method. The results, obtained both
by us and by other people, will be summarized, together with the constraints that they
impose on the theoretical models (if known). An evaluation of our research work can be
made from this chapter.

Afterwards, I will present the details of our research work. Chapter 4 extensively
studies the error estimates in the correlation function analysis: Analytical formulae are
given for the ensemble and the bootstrap resampling errors in the two- and three-point
correlation functions. The relations between the above two types of errors and the Poisso-
nian errors are clarified. The results provide a convenient way of estimating errors in the
correlation analysis; in particular, one does not need a lot of computational time to obtain
the bootstrap resampling errors.

In Chapter 5, I present the angular two- and three-point correlation functions of
galaxies in the ESO-Uppsala catalog, using angular-diameter-limited samples. Based on
the analysis, the questions regarding the scaling-depth relation, the volume effect on the
correlation length, the morphology segregation, etc., are addressed.

Chapter 6 preseﬁts our work on the superposition effect on the cluster-cluster correla-
tion £... By a consistency check of the redshift correlation function between three redshift
samples of Abell clusters and by running numerical simulations, we found that there is no
evidence that the contamination effect has seriously enhanced the &.., thus the result of &..
initially obtained by Bahcall & Soneira (1983) still challenges most of the current models
of LSS formation.

In Chapter 7, I present our original statistical analyses on the three-point correlation
function (e of rich clusters. We found that the (... can be approximated by the hier-
archical form, just like galaxies. The richness dependence of (.. is also studied with the
help of the samples of poorer clusters. At the end, theoretical implications are outlined.

The explosive models of galaxy formation were proposed to explain the two-point
correlation of Abell clusters (Weinberg et al. 1989; Bahcall et al. 1989). Chapter 8
explores the three-point correlation function of rich clusters in this type of models. It is
found that the hierarchical form emerges in this scenario, with weak dependence on model
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It appears impossible to extract the higher-order (N > 4) correlation functions of rich
clusters by the correlation analysis. In Chapter 9, we study the problem using the void
probability function Py(V'), which is known to be connected with all N-point correlation
functions (White 1979). The results show that the spatial distribution of Abell clusters is
scale-invariant and this property is independent of cluster richness. Furthermore, compar-
ing with the CfA sample, we tentatively conclude that there is a universal scaling in the
distributions of galaxies and of clusters.

In Chapter 10, we analyse subsamples of the Abell and ACO cluster catalogues, which
are nearly redshift complete, in order to study the large-scale structure traced by rich
clusters. We use a variety of statistical techniques: minimal spanning trees, percolation,
void probability functions and cluster alignments; then we compare our findings with
those expected from an ensemble of simulated cluster catalogues having the same selection
functions and low-order clustering as the real data. In this way we test the reproducibility
of the real data statistics in our simulations. We find that the minimal spanning tree
distribution reveals features which are not reproduced in our simulations at a > 3o level.
Similarly, not reproduced are the shapes of many superclusters, found by a friends-of-
friends algorithm. We suggest that the real cluster distribution might be described by a
statistic more complicated than a simple Gaussian or/and the formation process of clusters

_might be more complicated than that we have simulated.

In the last chapter [Chapter 11], we attempt to explore the clustering in the linear
regime. First assuming that the structures are amplified by the gravitational instability
and the primordial fluctuation is Gaussian-distributed, we give a self-contained framework
which links a variety of observational quantities (the correlation function, the peculiar
velocities, the flux- and gravity-dipoles, the Sachs-Wolfe effect, etc.) to the density power
spectrum. Then we apply Fourier analysis to measuring the power spectrum in the 2-Jy
IRAS galaxy sample and the Abell cluster samples. The measurement method is examined
in great detail there. Finally we compare the observed power spectrum with the APM
angular correlation function, the two-point correlation function of Abell clusters, the local
peculiar velocity fields, the acceleration dipoles, the IRAS count-in-cell analysis, the recent
COBE experiment, etc. All these observations are consistent, giving clear guidance to the

study of galaxy formation theories.
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An outline of the theories of galaxy formation

In this chapter, I shall give an outline of current galaxy formation theories. To prove
or disprove these theories is one of the major tasks of LSS studies. The statistics of galaxy
clustering are often guided and motivated by these theories. An accurate description of
the models usually needs to solve a set of differential equations in the linear regime and
to run N-body simulations in the nonlinear regime, to follow the evolution of density
perturbations. It is beyond the scope of this thesis to give much detail. Instead here I give
a qualitative description of the main features of the models which are mostly relevant to the
statistics used in the thesis. I hope the material presented here is helpful for understanding
the following chapters. Rigorous treatment of the models can be found in several excellent
textbooks.

In §1.1, I will summarize the parameters upon which current models of galaxy forma-
tion depend, and classify the models according to these parameters. Then a qualitative
description of the gravitational instability theory follows in §1.2. The biasing mechanisms
are illustrated, in §1.4, by choosing ‘peaks’ in the Gaussian fields. The transfer functions
and the main features of the conventional models will be given in §1.3 and §1.5 respectively.
Here we shall not discuss the cosmic string (or texture) scenario and the explosion theory,

though they may also be plausible.

1.1 The model parameters

The current theories of galaxy formation generally are based on the hot big-bang
cosmology. Therefore the parameters of the big-bang model are also the parameters of the
galaxy formation theories. These are:

a). The density parameter £2,: 0.1 <, <15
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b). The Hubble constant H,: H, = 100 hkm sec™? Mpc~?! and 04 < h < 1;
¢). The temperature of the cosmic background radiation Tp: Tp = 2.7 K;

d). The cosmological constant A, which is usually set to zero.

Besides these, there are further parameters which are relevant to galaxy formation

theories. They are:

into

e). The contents of the Universe: Is there dark matter? If it exists, is it baryonic
matter, Cold Dark Matter (CDM), Hot Dark Matter (HDM), unstable dark matter?
And how much of it is there? (£;7)

f). The primordial fluctuations: How did these fluctuations originate? Are they
Gaussian or non-Gaussian? What spectrum P(k) do they have? If P(k) is a power

law, how large is the amplitude and what is the slope?

g). Biasing: does light trace mass in the spatial distribution? If not, how is it biased?

‘Which physical process leads to the biasing?

h). The effects of non-gravitational processes: Are these effects, like explosions,

important in forming LSS?

According to the distinctive features of the resulting structures, I group the models

the following categories:

i). Gaussian fluctuation models dominated by

¢ Baryonic matter
& Cold dark matter (CDM)
& Hot dark matter (HDM)

ii). Non-Gaussian fluctuation models
¢ Cosmic strings

& Cosmic textures

iii). Explosions

In each set of the models, the ‘biasing’ mechanism can be further introduced. In this

chapter, I will concentrate on the first set of models.
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1.2 The basics of the gravitational instability theory

It’s generally thought that the structures we see today, such as galaxies, clusters and
superclusters, originate from the small density inhomogeneities in the early Universe. The
amplification mechanism of the perturbations is thought to be the gravitational instability.

In this section, I shall give the fundamentals of this mechanism.

1.2.1 Three different eras

According to the different behaviours of perturbation growth, we divide the entire
history of the Universe into three eras. This division will help us to describe the evolution

of density inhomogeneities (see §1.3).

a. The first era is the radiation dominated phase at 14 2z > 1+ 2., = 2.5 x 10*(€2,h?).
During this phase, radiation density exceeds that of the non-relativistic matter. The
comoving horizon size at 1+ zqq is: Aeq = 13(Roh?) " Mpc;

" b. The second era is between 1 + 2., and 1 + 2z4,c ~ 1100. During this stage, non-
relativistic matter begins to dominate over the radiation. The radiation is strongly
coupled with the baryons at the initial stage of the era, and begins to decouple from
the baryons at the final stage, therefore the baryon-radiation can be approximated as
an perfect fluid in this era;

c. The last era is after 1 + 24, when ions and free electrons recombine. Eventually the
free electron density becomes so low that radiation and matter become decoupled.
Because of the decoupling, the pressure in matter drops immensely. If there is no

reionization, photons behave like collisionless particles of m = 0 afterwards.

1.2.2 Three important length scales

There are three length scales which are relevant to the size of the resulting structures.

These are:

a. The Jeans length of a fluid: As we know, the time scale of gravitational growth is:
t, ~ (Gp)1/2; and the time scale of diffusion on scale I due to pressure is: ta = l/vs
(where v, is the sound speed). If t; < tq4, the fluctuation on scale [ can gravitationally

grow; otherwise the fluctuation behaves like a sound wave. For the critical case,
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ty ~ tq, we have a length Ay = v,(Gp)~1/? which we call the Jeans length. Clearly,
only fluctuations larger than A; can grow under gravitational instability. Because the
baryonic matter and the radiation are strongly coupled before zgec, the Jeans length

is ~ the horizon size; afterwards Ay drops dramatically.

_ Perturbations in collisionless components suffer Landau damping. Until the perturba-
tion becomes unstable and begins to grow at ¢4, the collisionless particles can stream
out from the overdense regions into the underdense regioﬁs, thus erasing the inho-
mogeneities. The length scale of the damping is obtained by solving the collisionless
Boltzmann equation. Its approximate value can be estimated by calculating the path
traveled by a particle from the beginning to te;. The comoving length traveled by a

particle is
o o(t)

AFSEr(teq)—r(ti)zf o

ti

Assuming the particle becomes non-relativistic at tng, then

iNR 1 teq RNR
A :/ ————dt—i—f ——dt
s 0 R(t) itNR RZ(t)

In the radiation dominated era, R(t) o< t*/2, so

tNR te
Arps = (RNR)[2 +1Il(tNl;)]

For the light neutrinos, Aps = 20(30ev/m,)Mpc.

. The perturbations in the baryon-photon fluid are sub jected to the Silk damping around
the recombination era, because the perfect fluid approximation breaks down. A rigor-
ous treatment of the problem needs to solve the collisional Boltzmann equation. The
length scale of the damping is approximately the diffusion length of a photon. It can
be estimated as follows. The photon mean free path : A, = (xemeor) " (where xe
is the ionization rate; n. is the density of electrons; and o7 is the Thomson cross-
section). In a time interval At, a photon suffers At/ )., collisions and makes a random
walk whose size squared is

. A X AR
SNORQ T RO

T
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So the Silk damping scale is

taec A (t)
As = f dt—2
° \/ 0 R2(t)
If we take suitable values for each parameter, we get As:

As ~ 3.5(0/Q) 2 (R0h2) "% Mpc.

Note that isocurvature perturbations do not suffer from this effect, since the spatial

distribution of photons is homogeneous.

1.2.3 Linear perturbation theories

If the fluctuations are well within the horizon and the characteristic velocity < the
light speed c, the Newtonian approximation suffices. If § is the density contrast on scales

much larger than the Jeans length for the fluid, the linear perturbation equation is:

. d?6 _Rds

For a flat model which is matter dominated, we have
81 = D1 (t)é; Di(t) < R(t) < t*/*  growing mode;

and

62 = D2 (t)6; Dy (t) R(t)_3/2 xt™!  decaying mode.

Since the second mode decays very rapidly, we are mostly interested in the growing
mode. The explicit expressions of D(t) can be obtained separately for the closed and
open Universes, but here we only give some qualitative, approximate properties of such
solutions.

In an open model of Q, < 1, §; = D;(¢)§;. When z > Q71 D;(1) t2/3; however for
z < 271, the growth is suppressed.

In a closed model of Q, > 1, §; = D1(t)é;. Its growth is more rapid than in the flat
model.

Since the physical length lpn o R(t)lco, and the horizon length is ~ # (which is

proportional to R? in the radiation-dominated era and to R3/? in the matter dominated
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era), the fluctuations which give rise to galaxies or other structures, must be larger than
the size of the horizon (i.e., l,5 > t) at sufficiently early times. In order to treat such
super-horizon-sized fluctuations, one needs a full general-relativistic analysis. In this case,
the universe can always be regarded as a flat one. In the synchronous metric, there are
two physical modes: a decaying mode and a growing mode; and two pure gauge modes.
The growing mode evolves as § R? in the radiation dominated era and § « R in the

matter dominated era.

1.3 The transfer functions and the processed power spectrum in

the baryon, CDM and HDM models

Let the density fluctuation spectrum be P;(k) at the initial time. As the pertur-
bation evolves, we would observe at the present the processed density spectrum P(k) =
T2(k,to)D?(to)P;(k). The function T(k,to) is called the transfer function. Its importance
io the LSS studies is obvious and it can be strictly solved in the linear regime. Here I
qualitatively discuss T(k,%y) in the baryon, CDM and HDM dominated models.

At the first stage ¢ < toq, the fluctuations of size greater than the horizon grow as
Dy (i.e., T(k) = 1). The sub-horizon fluctuations in WIMP (Weak Interacting Massive
Particles) components can not grow (or at best logarithmically grow with R) due to the
radiation domination (also called the Meszaros effect). This effect leads to T(k) o R3(k),
ie., T(k) o k=2 [Ry(k) is the scale factor when fluctuations of k enter the horizon).
Furthermore, the perturbations of size less than Ars are erased in this stage due to the
Landau damping. This effect can be modeled as T(k) = 0. Baryon-Radiation (B-R)
fluctuations within the horizon behave like sound waves due to the large Jeans length.
This effect can be written as T'(k) = k2 f(oscillating).

During the next stage (teq <t < tgec), fluctuations in WIMP grow o< Dy(t). B-R per-
turbations inside the horizon behave like sound waves, but the super-horizon perturbations
grow also o« D;(t). How to model these effects is obvious (see above).

At and after the recombination (¢ > t4e.), fluctuations in WIMP grow o Dy(t) [until
z =y 1_1 ifthe universeis open]. At recombination, baryons and radiation are decoupled,

and the Jeans mass of the baryons is reduced to the (sub-)galactic scale. In the meantime,
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Figure 1.1 — The processed spectrums for baryon (€, = 0.2), CDM (flat) and neutrinos
(flat) dominated universes with scale-invariant adiabatic initial conditions (from right to

left). Note k3/2 | §; | in the vertical coordinate corresponds to k3/2P1/2(k) in the text.

Silk damping erases all baryonic perturbations of A < As. Afterwards in the baryon
dominated universe, the fluctuations grow o D;(¢); in the WIMP dominated universes,
baryons will soon catch up to the fluctuations of WIMP after the recombination (taking
several expansion factors). The Silk damping is modelled as T'(k) = 0 for k < ks, and
other processes are apparent.

Finally we can write the T'(k,to) approximately as:

0, if k> ks;
Toaryon(k,t0) = { o k™% f(oscillating), if ks >k > kdec;
1, if k < kgec,

for the baryon universe;

x k™2 i k> keg;

TCD]\I(k)tO) = {1, ifk< keqa

for the CDM universe; and

Troar(lt0) = {17 ik 2 heg ~

for the neutrinos dominated universe. With these transfer functions, we can easily get
the processed spectrum. Figure 1.1 shows the processed spectrums P(k) =| §2(k) | for
baryon (open), CDM (flat) and HDM (flat) universes with the initial Zel’dovich spectrum
P;(k) o k, taken from the numerical calculation of Holtzman (1989). The various effects
emphasized above are obvious in the figure. We can also see the qualitative features of

T(k) given above.
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1.4 A simple ‘biasing’ scheme — An example

1.4.1 Why do we need ‘biasing’?

Up to now, we have only discussed the matter distribution. It is unclear to us whether
galaxies (or clusters) trace the mass distribution in space. It is not a trivial problem. The
strong clustering exhibited by rich clusters at least shows that clusters and galaxies are
not equivalent tracers in the spatial distribution. This is one motivation for the proposal
of biased galaxy formation (Kaiser 1984).

The dynamical studies of galaxy distributions, such as the ‘infall’ argument, the Virial
theorem, etc., always give an {1 about 0.2, while the inflation theories require ! = 1. In
these studies, Q o« 672, and assume 6, = 6, (i.e., galaxies trace mass). However, if
galaxies are a biased tracer, e.g., §; =2 ~ 36m, we can have {2 = 1 in such studies, i.e., a
flat universe.

The huge voids, such as Bdotes, are rather difficult to produce in the Gaussian models,
if light traces mass. However, if galaxies do not trace mass, the void regions could be less
empty in mass distribution than in galaxy distribution, and the problem could be solved.

N-body simulations of both hot and cold dark matter models need anti-biasing and
biasing respectively, otherwise they can’t produce the right amplitude and right slope of
the galaxy-galaxy correlation function &g,.

There are other theoretical arguments, though not as strong or clear as those listed

above, that galaxies could be a biased tracer of the mass (see Dekel & Rees 1987)

1.4.2 One simple biasing scheme as an example

If fluctuations are Gaussian, the rare high peaks are more clustered than the back-
ground. This can be understood from Figure 1.2. In the figure, the small-wavelength
perturbation is modulated on the long-wavelength one. If we choose only rare peaks with
§ > vo = 2, such peaks must be more clustered than the background, as clearly shown in

the figure. A rigorous treatment of peak properties in a Gaussian fluctuation field is given

in Bardeen et al. (1986).

1.5 Main features of the conventional models
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Figure 1.2 — A sketch map of the biasing scheme. Taken from Borgani (1990).

1.5.1 The baryon dominated Universe

The most attractive feature of this model is “what we see is what we get”: we do not
need any exotic particles. The model is always open, since the big-bang nucleosysthesis
theory puts the upper limit on the baryonic density Qp < 0.2. The galaxies and mass are
the equal tracers of the spatial structures.

If the initial fluctuation is adiabatic, the fluctuations in baryonic matter are erased
during the decoupling on scales smaller than the Silk damping length (see §1.2 & §1.3).
The first forming objects are of mass 10*® ~ 10'* Mg, i.e., the mass scale of rich clusters
and superclusters. So the model is of the nature of the ‘top-down’ scenario.

In the adiabatic model, the gravitational growth becomes effective only from the
decoupling z = 1100 to z = ;' ~ 5, giving a growth factor ~ 200 (see §1.2). In order to
produce structures observed, we have to require a large fluctuation amplitude at decoupling
which would lead to anisotropy AT/T ~ 107 in the Cosmic Background Radiation (CBR)
at arcminutes scale, in severe conflict with the available experiments (Uson & Wilkinson
1984; Readhead et al. 1989). Because of this difficulty, the model has lost its initial
popularity. '

If the initial fluctuation is isothermal, there is no Silk damping effect, so the structures

12



form as in the ‘bottom-up’ picture. The attractive feature is that it can produce coherent
clustering on the large scale, such as large scale bulk motion of Dressler et al. (1987).
The anisotropy AT/T on arcminutes is much smaller than in the adiabatic case, however
the observations of Readhead et al. (1989) have already ruled out this model if there are
no reionizations after the decoupling (Efstathiou 1988). But if the universe is reionized,
the model can be consistent with all the observations of AT/T, although the constraint is
quite stringent (Efstathiou 1988).

The studies of the isocurvature model, up to date, have been limited within the
linear perturbation theories. The model is consistent with the observations of AT/T,
the galaxy clustering on tens h~'Mpc, the large scale peculiar velocity fields and the
flux dipoles. However, there is no simulation study in the non-linear regime, and many

properties regarding the clustering statistics given below are not yet clear.

1.5.2 The standard HDM model

‘The standard HDM model is attractive because the neutrinos, as the missing mass, is
a known particle. Especially, it was declared that the mass of neutrinos had been detected
to be several tens eV, which is just large enough to close the Universe.

The distinctive feature of the HDM model is the large streaming length ~ tens Mpc,
so the first objects formed are of the size of superclusters. Galaxies and clusters of galaxies
are the results of fragmentation of the first forming objects (‘top-down’ scenario). So this
model can easily produce filamentary structures.

The most severe problem of the scenario is that galaxies have formed very recently z ~
1, in contrast with the observations of quasars at z > 4. The problem is inevitable, since
galaxies form when superclusters collapse and the observations show that superclusters are
reaching or have reached very recently nonlinearity.

The model has been studied in much detail, both by linear perturbation theories
and by N-body simulations. As a result, the model has been convincingly ruled out by
the recent observation of AT/T at a one degree scale (Bond et al. 1991; Vittorio et al.
1991). If there is no biasing, the detailed N-simulations show that the model is unable to
produce the right amplitude 4,, of £, the hierarchical form of the three-point correlation

function of galaxies, the cluster-cluster correlation function, the scaling behaviour of voids,
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etc. (e.g., Batuski et al. 1987; Fry et al. 1989). Introducing biasing or anti-biasing may
resolve some of the problems, but at the expense of making other problems more severe.

The theory seems out of repair.

1.5.3 The standard CDM model

The standard CDM model has dominated galaxy formation theories for many years.
This is the most successful model, though it is facing challenges from recent observations.
The most attractive feature of the model is that it is just the one that the inflation theories
predicted. There are only three parameters: h, the amplitude of P(k) and the biasing
prescription, to be adjusted. But there are several sets of observations against which the
model can be tested.

One distinctive feature of the model is that smaller objects form earlier than larger
ones, i.e., the ‘bottom-up’ scenario (see §1.3).

Another feature is ‘biasing’. In the standard CDM model, the galaxies must be a
biased tracer of the mass distribution, as discussed in §1.4. White et al. (1987a) proposed
that galaxies preferentially form at halos with large circular velocities v.. Their simulations
show that the objects of large v. are clustered more than those of smaller v.. Because of
the Faber-Jackson and the Tully-Fisher relations, the model predicts that faint galaxies
are distributed more randomly than bright ones. The prescription, however, may still be
too simple. But as hinted by their studies, galaxies of different types (e.g., luminosity,
morphology, rotation velocity) are likely to have different clustering properties.

The model has been studied in great detail. It can reproduce all the clustering features
observed on scales from tens A~ *Kpc to 10 A™'Mpc: e.g., the correlation functions of
galaxies, the Faber-Jackson and the Tully-Fisher relations, the scaling behaviours of voids,
the relative pair-velocities, ... etc. However, because of the lack of clustering power
on large scales, the model is unable to explain the features observed recently on several
tens A~ *Mpc: the cluster-cluster correlation function, the angular two-point correlation
function from the APM survey, the variance of the IRAS survey, the large-scale peculiar
velocity fields, the acceleration dipoles, the power spectra of radio galaxies and rich clusters,
etc. Similarly, the model is consistent with the current observational upper limits of AT /T

on angle scales up to 1 degree, but can hardly account for the recent detection of the AT/T
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quadrupole in the COBE DMR experiment. As shown in Chapter 11, all these observations
are consistent, indicating that the standard model has to be revised. The revisions might
be able to improve the comparisons of the model with the observations, but some attractive

properties of the ‘standard’ model would be lost.

1.5.4 The CDM models revisited

As described in the last subsection, the standard CDM model is facing a series of
severe challenges from the recent observations on large scales greater than ~ 10 A~ *Mpc.
However, the model is quite successful in producing smaller structures. These facts imply
that a model with a similar shape to the standard CDM model of the power spectrum but
with relatively more power on large scales would be in better fit to the observations (e.g.,
Vittorio, Matarrese, & Lucchin 1988). Although the density parameter and the primordial
power spectrum used in the standard CDM model are the very likely ones predicted by
current inflation theories, a lower £ and a flatter P(k) are not impossible to predict even
in these theories (e.g., Lucchin & Matarrese 1985). Raising the baryon content, adding a
small fraction of neutrinos to the cold dark matter, lowering the density parameter and
introducing a cosmological constant, anti-biasing the spatial galaxy clustering on less than
ten h~!Mpc, and/or altering the initial Zel’dovich spectrum P(k) « k to the P(k) o< k"

‘with n < 1, all may improve the confrontations with the observations. Detailed and
quantitative studies are still needed in these directions before we can say yes or no to these

models.
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2

Major observational samples

Our understanding of the matter distribution in the Universe mainly comes from the
distributions of galaxies, of galaxy groups and of galaxy clusters, since telescopes can only
directly detect these objects. Although presently we are still unclear which (if any) of these
objects fairly traces the matter distribution in the universe (see §1.4), it is of no doubt that
these distributions are closely related. Moreover, the ultimate goal of the galaxy formation
theories is to understand the distribution of these objects. Thus it is very important to
study their spatial distributions.

As in any branch of astronomy, meaningful statistics regarding their distribution need
samples (or catalogues) whose selection procedures are well defined and as free as possible of
systematic biases and effects. Here I list the major observational samples and catalogues
in the LSS studies, together with their defining criteria. There certainly exist, in some
(perhaps all) of these samples, systematic biases which must be corrected in the LSS
studies, otherwise spurious clustering could result. However the procedures for correcting
such effects are usually very complicated, and their description is beyond the scope of this

thesis but could be found in the literature.

% The Lick catalogue

This catalogue contains ~ one million galaxies with m; < 18.9 in the sky § > —22.5°
(Shane & Wirtanen 1967; Seldner et al. 1977). Galaxies are counted in each 10 x 10
arcmin? cell. The characteristic sample depth is about 210 A~!Mpc. The reduction and
correction procedures of the catalogue can be found in Seldner et al. (1977) and Plionis
(1988).

& The Zwicky Catalogue

The Zwicky catalog contains 28,000 galaxies in the northern sky § > —3°. Galaxies

are listed down to m,, = 15.7, and the catalog is reasonably complete to m,, = 15.5. This
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catalog is the important database for the LSS study in the northern sky (Zwicky et al.
1961-68).

& The Uppsala Catalogue

This catalogue lists angular positions of ~ 13,000 galaxies in the sky area § > —2.5°.
The sample is complete to major (apparent) axis D; o~ 1'. Morphological types, diameters,
and magnitudes (if observed) are also given. The characteristic sample depth is about 70
h~'Mpc (Nilson 1973).
¢ The ESO /Uppsala catalogue

This catalogue lists angular positions of ~ 15,000 galaxie’s in the southern sky with § <
—17.5°. It’s also claimed to be complete to major (apparent) axis Dy =~ 1. Morphological
types and diameters are presented for all galaxies. The sample depth is slightly deeper
than that of the Uppsala catalogue (Lauberts 1982).

& The APM galaxy survey

This is a uniform sample of ~ 2 million galaxies to a magnitude limit of b; = 20.5,
(:,ovefing the 4300 square degrees area of b < —40° and § < —20°. The survey is based
on 185 UKSTU J survey plates which are scanned and digitized by the APM facility in
Cambridge (Maddox et al. 1990b).

& The COSMOS galaxy survey

This is a uniform sample of ~ 1.5 million galaxies to a magnitude limit of b; = 20.5,
Covering the 1400 square degrees area centered at the South Galactic Pole. The survey is
based on 60 UKSTU J survey plates which are scanned and digitized by the COSMOS
facility (Collins et al. 1989).

& The TRAS galaxy samples

A new type of galaxy samples, IRAS galaxy samples, come from IRAS database (IRAS
Point Source Catalog, Version 2 1988; e.g., Saunders et al. 1990; Strauss et al. 1990). These
samples are usually flux limited (mostly at 60um), and are selected on the flux quality at
60um. and far-infrared colours, in order to discriminate against cirrus, stars and planetary
nebulae. The advantages of the large sky coverage (~ 80%), no Galactic extinction in the
far-infrared, well-calibrated flux densities, and ~ 120h~*Mpc characteristic sample depth,
make such samples very useful in the LSS studies. If the limiting flux is 0.5 Jy at 60pm,
there are roughly 17,000 galaxies.
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& CfA Redshift Survey

The sample presents the radial velocities for the all 2401 galaxies in the merged Zwicky-
Nilson catalogue brighter than 14.5 mz with bIT > 40° and é > 0°, or I < —30° and
§ > 0°. Its typical sample depth is ~40 h™*Mpc (Huchra et al. 1983).

& Southern Sky Redshift Survey

This is a diameter-limited redshift survey in the southern sky with comparable depth
and sky area to the CfA survey. The galaxies are selected from the ESO/Uppsala catalogue.
The survey contains all 1957 galaxies with face-on diameter greater than 1.23', on the sky
with § < —17.5° and b/ < —30°. A total of 1735 galaxies have available redshift. Redshift
incompleteness is a strong function of morphology types; dwarfs are especially incomplete

(da Costa et al. 1991).
& CfA2 Redshift Survey of Galaxies
This survey, intended to extend the original CfA redshift survey (1983) to the mag-

nitude limit m,, = 15.5 over a similar sky area, is still emerging. Eleven strips of 6° in
declination are reported to be complete in redshift. Only the data of the first slice of
8h < @ < 17° and 26.5° < § < 32.5°, which consists of 1057 galaxies, have been published
(Huchra et al. 1990a).

& Northern Redshift Survey of Dwarf and LSB galaxies

As shown by Thuan & Seitzer (1979), the UGC was fairly complete for all dwarf and
low surface brightness (LSB) galaxies larger than 1' (the UGC diameter lower limit), so
the UGC could become a good database for selecting a sample of Dwarf and LSB galaxies.
The sample of Thuan et al. (1991) contains all galaxies classified in the UGC with a
Hubble type of Dwarf, Dwarf Irregular, Dwarf Spiral, Ir, Sc-Irr, or S-Irr; a de Vaucouleurs
type of Sd-dm, Sdm, Sm, or Im; or in the absence of these classifications, a van den Bergh
luminosity class of IV-V or V. These selection criteria result in a sample of 1845 galaxies.
The observation were made at Arecibo and Green Bank telescopes at 21 cm. The detection

rate of 84% gives a total sample of 1557 galaxies with 21 cm redshift.
& A Redshift Survey of IRAS Galaxies with fgo > 1.936 Jy

This is a redshift complete sample of IRAS galaxies with the flux limit feoum > 1.936
Jy. It contains 2649 galaxies, covers 87.6% of the sky, and has sample depth ~ 50h~*Mpc
(Strauss et al. 1992b).
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& The QDOT Redshift Survey of IRAS Galaxies

This is a sparsely-sampled redshift survey of IRAS galaxies, at sampling rate of one
in six, complete to the flux limit feo = 0.6Jy at | b|>10°. It consists of 2163 galaxies, of
which 2093 have available redshift. It is about 2 times deeper than the sample of Strauss
et al. (1992b), at the expense of sparse-sampling.

& ACO Catalogue of Clusters of Galaxies

This is an all-sky catalogue of rich clusters of galaxies, complete nominally to z =
0.2 for clusters with populations (N.4) of 30 or more galaxies within Abell radius 74 =
1.5 'Mpc and in the magnitude range ms to m3 + 2.0, where mj is the magnitude of the
third brightest cluster member. There are a total of 4073 clusters. Their positions in the
sky are listed, together with the distance class D, the richness class R, mg (the magnitude
of the tenth brightest cluster member), Bautz-Morgan types, redshift if available, etc.
(Abell et al. 1989).
& Shectman Catalogue of Clusters of Galaxies

The Shectman catalogue, consisting of 646 clusters, has been constructed from the
Shane-Wirtanen counts in 10’ bins by identifying local density maxima above a threshold
value (about 3.6 times the mean density) relative to eight surrounding cells, after slightly
smoothing the data to reduce the effect of the sampling grid. It covers the sky region of
§ > —22.5° and | b |> 40°. About 70% of D < 4 and 10% of D < 5 Abell clusters have
been identified in the catalogue. It also includes much poorer clusters, which consist of
60% the sample. The characteristic sample depth is similar to the D < 4 sample of Abell
clusters (Shectman 1985).

& The APM Catalogue of Clusters of Galaxies

The catalogue is constructed by applying an ob jective selection algorithm to the APM
galaxy survey (Dalton et al. 1992). The algorithm is complicated and is not described
here. There are 240 clusters, with similar richness to the B > 0 Abell clusters.

& The COSMOS Catalogue of Clusters of Galaxies

The COSMOS catalogue consists of 737 clusters, selected from the COSMOS galaxy
survey. The clusters are selected using an objective peak-finding algorithm, similar to that
of Shectman (1985). The clusters, on average, are poorer in richness than the R > 0 Abell

clusters. One set of ~ 90 richest clusters is almost redshift complete (Lumsden et al. 1992).
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& Plionis et al. Catalogue of Clusters of Galaxies

This catalogue, also based on the Shane-Wirtanen counts in 10’ bins, has been com-
piled by identifying overdensity regions above certain threshold values: a/{c) =3.6, 3.0,
2.5, 1.8. It contains ~ 6000 clusters, covering the sky of § > —22.5° and | b |> 40°. At the
highest overdensity threshold all clusters found are either Abell or Zwicky clusters (Plionis
et al. 1991).

& Redshift samples of Abell clusters

Two subsamples, extracted from the original Abell catalogue (1958), now have com-
plete redshift information. One is the sample of 103 clusters of richness R > 1 and distance
D < 4 at the high galactic latitude | b |> 30° (Hoessel et al. 1980). The other, completed
recently, covers 561 square degrees in the region of 10" < a < 15° and 58° < § < 78°, and
includes 145 clusters with R > 0 and D < 6 (Huchra et al. 1990b).

The nearby sample of D < 4 and R > 0 at | b |> 30°, is also near to redshift completion
(~95%). An update compilation by Struble & Rood (1991a) lists ~ 650 redshifts for Abell

clusters.
& CfA Catalogue of Groups of Galaxies

Catalogues of groups of galaxies are usually produced by the friends-friends finding
algorithm (Huchra & Geller 1982). The CfA catalogue, based on the 14.5 mp CfA redshift
survey, identifies groups as density enhancements in redshift space of a factor greater than
20. It consists of 176 groups with more than two members. It covers the same sky area and

has a similar sample depth as the 14.5 mp CfA redshift survey (Geller & Huchra 1983).
& SSRS Catalogue of Groups of Galaxies

This catalogue, based on the SSRS redshift survey, is produced by the same techniques

used in the CfA catalogue. It contains 87 groups with more than two members (Maia et

al. 1989).
& CfA2 Catalogue of Groups of Galaxies

The groups of the catalogue are identified, in the two CfA redshift slices of 8t <a<
17" and 26.5° < § < 38.5°, as density enhancements in redshift space of a factor greater
than 80. It contains 128 groups with three or more members (Ramella et al. 1989).
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3

Statistical measures of clustering

Even from two-dimensional maps (or catalogs) of galaxies and clusters, we can easily
find that their spatial distribution is quite clumpy. An example, Figure 3.1 shows the
positions of all the galaxies from the Zwicky et al. catalog which satisfy mp < 15.5,
8" < o < 17" and 8.5° < § < 50.5°. The grid is Cartesian in R.A. and decl,, and the
deficiency of galaxies west of 9" and east of 16" is caused by the galactic obscuration. The
Coma cluster and the Virgo cluster are the dense regions at (o = 13", § ~ 429°) and at
(a = 12.5", § ~ +12°). Several other well known clusters, e.g., Abell 1367 (11.7%, +21°),
Abell 2197/2199 complex (16.3", +38°), are also obvious. These dense regions appear to
Be connected by “galaxy chains/surfaces”. Between these structures, prominent “voids”
(i.e., the regions which are devoid of galaxies) can be seen, for example, at (o ~ 15.5%,
§ ~ +35°), (a ~ 12.8%, 6 = +21°), (a = 10%, § = +26°), etc.

50.5°

32.5°

26.5°

Figure 3.1 — The map of the 7031 objects with mp < 15.5, listed by Zwicky et al. in
the region bounded by 8" < o < 17" and 8.5° < § < 50.5°. Taken from de Lapparent et
al. (1986).

Though the 2-D maps have already clearly shown prominent structures, the projection
on 2-D must have smeared a lot of 3-D structures. An example is that a cell-like structure,

which is of course very inhomogeneous, would have a quite smooth 2-D projection. 3-D
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10000 km/s

Figure 3.2 — Map of the observed velocity plotted vs. right ascension in the declination
wedge 26.5° < § < 32.5°. The 1061 objects plotted have mp < 15.5 and V' < 15,000 km
s~1. Taken from de Lapparent et al. (1986).

maps with complete redshift information, therefore, should contain much richer information
on the structures. In the Figure 3.2, we show the famous plot of the observed velocity
versus right ascension for the 1061 galaxies which are brighter than mp = 15.5 and with
velocities less than 15,000 km s~ in the full 6° thick slice (from de Lapparent et al. 1986).
The most striking features of the figure are several large regions almost devoid of galaxies
and the sharpness of the boundaries of the high density regions which surround the voids.
Combining the other two neighboring slices and comparing these surveys with the 2-D plot
(Figure 3.1), Geller & Huchra (1988) strongly argue for a bubble-like structure, i.e., the
galaxies are distributed on the surfaces of shells tightly packed next to each other (see also
Joeveer & Einasto 1978). However, other studies show that galaxies are distributed as a
hiera,fchy of clusters (e.g., Soneira & Peebles 1978; Bhavsar 1978 & 1980), a network of
filaments (Einasto et al. 1984; Haynes & Giovanelli 1986; Bhavsar & Ling 1988a & 1988b),
or a sponge like topology (e.g., Gott et al. 1986 & 1989).

To quantify these clustering features and to test theoretical models, we need objec-
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tive and free-of-bias statistical measures. An ideal statistic of clustering should have the
following features:

1.) On the observational side, the statistic should be able to quantify the clustering

strength and coherence length, as well as the geometry and topology;

2.) On the theoretical side, it should be a good discriminant between different theories

of galaxy formation;
3.) From the practical point of view, the statistic should be well defined and should be
easily applied.
Several statistical measures have been frequently used in the studies of the large scale
structure of the Universe. They are:
1.) N-body correlation functions;
2.) Power spectrum analysis;
. 3.)' Void probability functions;
4.) Minimal-spanning trees;
5.) Percolation analysis;
6.) Topological analysis. -
Each method has its pros and cons, and they are often used complementarily. In the
following sections, I shall present the basic features of these methods, their main results
(observational and theoretical), their main successes and failures, etc. Since the power

spectrum analysis is being used more and more frequently but the method itself has not

been examined very carefully in literature, a rather detailed account of the method is given

in §11.2.

3.1 Correlation function analysis

Correlation function analysis is still the most important statistical tool in the LSS
studies. A full account of N-body correlation functions can be found in the excellent book

by Peebles (1980). Here we shall only summarize up the basic points, which will be referred
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to in the following chapters. Main results regarding galaxy clustering will be presented in

the next section.

3.1.1 Two-point spatial correlation function

The two-point correlation function is defined by writing the joint probability, d? P, of

finding each object in two volume elements dV; at 71 and dV, at 75 as:
d?P = n(7)n(72)[1 + &(71,72)|dV1dVa, (3.1.1)

where £(71,72) is the two-point correlation function, and n(7) is the ezpected number
density at position 7. In the LSS studies, the cosmological principle tells us that E(71,72)
is only a function of the pair separation 71 =| 71 — 72 |, i.e., £(71,72) = €(r12) (however,
cf. Pietronero 1987).

Now let DD(r) be the pairs of objects within the separation range r ~ r + A in the
observed sample, and RR(r) the corresponding pairs in a random sample which has the
same boundaries and selection effects as the real sample. By integrating Eq.(3.1.1), we can

easiljr find )
_ DD(r
ér) = RR(r)

The meaning of £(r), clearly shown by Eq.(3.1.2), is the excess of pairs of objects, relative

~1 (3.1.2)

to the random distribution, therefore its value reflects the degree of clustering at scale 7.
Eq.(3.1.2) also provides us with the base of estimating {(r). We construct a large set of
random samples, or equivalently one random sample of much higher density. T he random
sample should have the same boundaries and the same observational selection effects (e.g.,
magnitude- or diameter-limited; galactic extinction; variations in plate sensitivity, etc.) as
the observed sample. Then we count pairs in a given separation range in both the observed

sample and the random sample, and finally we can obtain {(r) through Eq.(3.1.2).

3.1.2 Three-point spatial correlation function

In the same way as for £(r), we can define the three-point correlation function. The
joint probability, d® P, of finding three objects concentrated in each of the three volume

elements dVi, dV, and dV3, separated by 712, r23 and r3; can be written as:
d3P = n(ﬂ )TL(’FQ)TL(‘FE;)[]. + f(’r‘lz) + 6(7'23) + 6(7‘31) + C(le,f‘23,7‘31 )]dVldngV3, (313)
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where (712, 723,731) is the three-point correlation function, and n(7;) the ezpected number
density at position 7; of dV;
Integrating equation (3.1.3), we can easily find,

DDD(T12,7‘2377"31)
RRR(ri2,723,731)

— 1 —§(r12) — &(ras) — &(7s1), (3.1.4a)

C(T12,7'2377'31) =

or equivalently,

DDD(r12,723,731) — DDR(712,723,731) n
RRR(”‘lz,?‘za,T‘m)

C(T12,7“23,7’31) =

2, (3.1.4b)

where DD D(r12,723,731) is the count of triplets with shapes (r12,723,731) in the observed
sample, RRR(r12,723,731) the ezpected count in a random sample, and DDR(r12,723,731)
the ezpected count of triplets formed by two real objects and one random point.

The direct estimations of ( usually are based on the equations (3.1.4), through count-
ing triplets DDD, DDR and RRR. If the two-point function can be determined quite
accurately, it is wise to use Eq.(3.1.4a), since we can save a lot of computational time
ficeded to obtain DDR. Otherwise Eq.(3.1.4b) should be used.

In analogy with the procedure of defining (, we can also define other higher-order (e.g.,
4-body, 5-body, ...... ) correlation functions. Since the direct determination for extragalactic
objects of the four-point or higher-point functions is rather uncertain at the present (see,
e.g., Groth & Peebles 1977; Sharp et al. 1984), we will not go further. Instead we will

discuss the transformation equation between angular and spatial correlation functions.

3.1.3 Limber’s equation

Since most of the extragalactic-object catalogues give only positions on the sky and
the completion of large redshift surveys (a few thousand for galaxies; a few hundred for
clusters) usually takes several years even today, most of our knowledge about correlation
functions is still based on two-dimensional samples. In this case, angular correlation func-
tions are defined in exactly the same way as the spatial ones, and we shall not repeat them.
One of the most remarkable features of the correlation analysis is that the spatial and an-
gular correlation functions are related by the so-called ‘Limber’s equation’. From Limber’s
equation, we are able to extract information on the spatial functions, which reflect the real

clustering properties, from the angular ones.
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Usually the two-point and three-point angular functions are denoted by w(6) and
2(012,023,031). Assuming that the radial selection function is ¢() and using the small
angle approximation, the relation between w(f) and ¢(r) reads (Pezbles 1980):

fooo @2 (r)rdr ffooo E(Vu? 4+ 7r260%)du

“(0) = U= () dr

(3.1.5)
For a special case where &() is a power law, {(r) = Br™", then Eq.(3.1.5) shows that
w(8) must also be a power law w(f) = A#~F. Furthermore their sloyes and amplitudes are

connected by

y=p+1, (3.1.6a)

and
J” ¢ (r)r®7dr T(1/2)0(8/2)
L[S ¢2(r)r2dr]? T(1+ B/2)

The observational studies have shown that the two-point correlatioa functions of galaxies,

A=B

(3.1.6b)

groups and clusters closely obey the power law with 4 ~ 1.8 (e.g., Davis & Peebles 1983,
Groth & Peebles 1977 for galaxies; Jing & Zhang 1988 for groups; Bahcall & Soneira
1983 for rich clusters; more details in §3.2), therefore the simple re.ations (3.1.6) are very
relevant to the LSS studies.

A general relation between z(012,023,031) and ¢(r12,723,731) can also be easily de-
rived. Instead of presenting this general relation, we now consider a special case where

¢(712,723,731) is of the hierarchical form, i.e.,

¢(r12,7m23,731) = Q[é(r12)é(r23) + €(r23)€(ra1) + &(rs: )é(r12)]- (3.1.7)

In the power law model of ¢, the transformation predicts that z(01:, 023, 031) must also be

a hierarchical form

z(912 ) 023,031) = Q[w(elz)w(ez;}) + w(923)w(931) + w(931)w(012)]. (318)

Furthermore, @ and q are simply related by

a _ U dn (g 2 elr)dr)
Q JZr gty

(3.1.9)
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Interestingly, this model agrees well with the observations of galaxics and clusters in great
detail (e.g., Groth & Peebles 1977, Efstathiou & Jedrzejewski 1964 for galaxies; Jing &
Zhang 1989, Téth et al. 1989 for clusters; more details in §3.2)

Several important points must be pointed out here. 1). The Limber equations are the
projection of the spatial functions to the angular ones. To acquire the spatial functions,
some specific models [e.g., Eq.(3.1.6) & Eq.(3.1.7)] have to be assuned in advance and be
tested later by two- and three-dimensional data. The inversions of the Limber equations,
of course, can overcome this limitation. However, as shown by Fall & Tremaine (1977) and
Parry (1977) for the two-point correlation function, such an inversicn is complicated and is
unstable against statistical fluctuations. For higher order correlatior.s, the inversions would
become even more complicated and unstable, unless some specific forms, such as power
laws, are assumed (Téth et al. 1989). 2). All the above discussioas assume a Euclidean
space, which is valid for samples of redshift much less than 0.1. For deep samples, the

' effects of space curvature must be considered in the Limber equations. A full treatment of
the relativistic effects has been given in Peebles (1980). 3). The valuz B is quite sensitive to
the sample depth, to the shape of the selection function, and to the relativistic corrections,
while the ratio ¢/Q is independent of the sample depth and insensitive to the selection
function and the relativistic corrections. 4). The selection function is usually obtained

from the luminosity or diameter functions of galaxies, or from the space density of objects.

3.1.4 The scaling relation

Another striking property of the correlation functions is the so-called ‘scaling relation’.
If the characteristic sample depth is D, in the small angle approximation, we have the

following scaling (Peebles 1980):
w(8) = DT*W(8D), ‘ (3.1.10a)

The relation (3.1.10a) can be understood as follows. The correlation function w(#) mea-
sures the ratio of the number of neighbors in excess of random tc the number expected
for a uniform distribution. If one counts neighbors in solid angle 6{} o D~? at angular

distance 8 oc D~! from a galaxy at distance D from the observer, one is looking at a fixed
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projected area at the galaxy and a fixed projected distance from the galaxy, so the number
of correlated neighbors seen is independent of D while the number >f accidental neighbors
from the foreground and background is proportional to D. Thus w oc D™ at fixed D.
The function W(6D) depends both on the spatial correlation function and on the shape
of the selection function. For each kind of catalogue (e.g., magniiude-limited catalogue,
diameter-limited catalogue), the shape of the selection function is fized. So for two samples

of depths D; and D3, their angular correlation functions wy(f) anc. w;(8) are related by

D, D
w(8) = Frea(6 7). (3.1.105)

If the two-point function w(f) is a power law w(f) = A§~F, as observed for galaxies and

clusters, we can easily find:

A D~OFA), (3.1.10¢)

Equations (3.1.10) are frequently used to test the reality of detected w signals (see, Peebles
1980; Bahcall 1988a) and to test the volume dependence or the frectal property (Einasto
et al. 1986) of galaxy clustering (e.g., Peebles 1980; Jing et al. 1991).

3.1.5 A brief outline of estimation techniques and error analysis

The techniques, employed for estimating correlation functions, can be divided roughly
into two types: the direct counting method and the moment methoc.

The direct counting methods for estimating two- and three-poinit correlation functions
have already been given in §3.1.1 and §3.1.2. There the description for the two-point
function is almost complete. However, since ( (or z) is a funciion of three variables
712,723,731 (or 012,023, 031), its functional form has a less obvious ir.terpretation than that
for £ (or w). The general method to study the dependence of {(r12,723,731) on side length
is described in Peebles & Groth (1975). However, if we want to test models of ¢ or/and
to find out some parameters, the least-square fitting to the triplets count is more suitable
(e.g., T6th et al. 1989; Jing et al. 1991). More details of thes: two methods will be
presented along with our original work in the following chapters.

Since the (n — 1)-moments of the neighbor counts are related to the integrals of

correlation functions up to n-points (e.g., Peebles 1980; Appendix), we are certainly able to
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get correlation functions from the moments (see, e.g., Peebles 1975; Peebles 1980; Sharp et
al. 1984). The main advantage of this method is that it can save alot of computational time
in estimating high-order correlation functions. The disadvantages are 1.) the functional
forms for correlation functions have to be first assumed and then c ecked; 2.) unless only
a single large shell is taken (but in this case, the assumed mode can not be checked),
it looses a lot of information on configurations, based on which cc relation functions are
extracted. The first point is rather obvious. To illustrate the sec>nd point, we take an
example of the three-point function and of the second moments et simated in thin shells.
The information of the three-point function is, of course, contained in all possible triplets,

however the second moment only explores the triplets with rough:y two equal sides (the

shell radius).

Therefore, in my opinion, the direct counting method is fav red to study samples
of moderate size (without any requirement on a prior: knowledge of correlations), while
the moment method is suitable to study the samples of very larg: size (e.g., numerical
simuiations) with (or to test) a priori knowledge of correlations. I[f the functional form
of the high-order correlation function is already known, the mon ent method would be

effective to estimate the coefficients by taking large shells even for mall samples.

The errors, in the correlation analysis, can be divided roughly i1to two types: system-
atic errors (e.g., systematic variations in plates sensitivity; a sample >iased due to the dom-
inance of a supercluster or a void) and statistical fluctuations. The : ormer type of errors is
rather difficult to estimate if we only have one sample. The error esti: 1ates mentioned in the
literature are usually meant to estimate the later type of error. This was generally thought
(but not proved) to be well estimated by the bootstrap resamplin ; technique (hereafter,
BRT) (Barrow et al. 1984; Ling et al. 1986). In the BRT approach, t 1e error is given by the
standard variation of a large set of pseudo-samples, each of which is sroduced by randomly
choosing N points, with replacement, from the original sample of N puints. In our recent pa-
per (Mo, Jing, & Borner 1992), we have extensively studied the problem of how the BRT er-
rors and the Poissonian errors are related to the ensemble errors in the correlation analysis.
There we give analytical formulae for these errors in the two- and three-point correlation

functions ¢ and ¢. The ensemble errors of pair count D D(r) and triplet count DDD(r,u,v)
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are well approximated by epp(ens) = [(DD(r)) + 4(DD(r))?/N,)*/? and oppp(ens) =
[(DDD(r,u,v)) + 36(DDD(r,u,v))?/Ny]*/? (where Ny is the number of points in the
sample; (- - -) denotes ensemble mean), respectively. The bootstrap-resampling errors of
DD(r) and DDD(r,u,v) can be approximated by opp(bo) = [3DD(r) +4DD? (r)/N,]/?
and oppp(bo) = [TDDD(r,u,v)+ 36D DD? (r,u,v)/Ng]l/z, respectively. These results are
confirmed by our simulation test. We also discuss the fit errors of the parameters (i.e., the
amplitude A4 of £ and the Q-constant of ¢ ) in the regression models. The interdependence
among the counts in different bins reduces the fit errors. If we adopt the ensemble errors
[cpp(ens) and oppp(ens)] for the counts, the fit errors of A and @ in each sample are
about half of the standard errors obtained from the ensemble of simulation samples. The
underestimation of the fit errors due to the bin-bin interdependence is compensated by the
overestimation of epp and oppp given by the BRT method. The fit errors of the param-
eters, given by the bootstrap-resampling errors for the counts, give the correct answers. A

detailed account of the work will be presented in Chapter 4.

3.1.6 A summary of the main features of correlation functions

Correlation functions are still the most major measure of large-scale clustering in
the Universe. In respect to other clustering measures, correlation analysis has its own
advantages and disadvantages.

As has been seen above, the correlation functions can be easily defined, without any
ambiguity. Their meaning, as clustering measures, is obvious, and the clustering strength
and coherence length can be easily quantified. It is rather convenient to apply this measure
to both 3-D samples as well as 2-D samples. The angular correlation functions can be
related to the spatial ones through the Limber equations. And the scaling relations of
angular functions at different depths are a convenient test of the clustering reality and
universality. At least two- and three-point functions of galaxies and clusters obey the
simple power-law and hierarchical forms. These functions, regarding different 2-D and 3-D
samples, have good reproducibility.

The correlation functions are simple to analyze in theoretical studies, and are sensitive

(at least in principle) to the model details. The two-point correlation function is the inverse
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Fourier transformation of the density power spectrum. Different models of galaxy formation
have different power spectra, which are even more distinguishable in the linear regime (i.e.,
¢(r) < 1). Furthermore, the models with Gaussian fluctuations predict a vanishing three-
point function in the linear regime. The particular form of three-point function is predicted
at the high biasing level for the models of Gaussian and non-Gaussian fluctuations.

Though correlation functions only measure the spatial patterns of galaxy distributions,
they can be easily related to the dynamics on the large scale through the BBGKY hierarchy.
Very useful equations have been derived, such as the Cosmic Energy Equation and the
Cosmic Virial Theorem, which are important in understanding the origins and evolution
of LSS. These equations are also the important sources from which the density parameter
Q of the Universe can be estimated.

In comparison with the above advantages, the disadvantages are minimal but not
negligible. Because the mean number densities of galaxies and clusters have not yet been
determined accurately (e.g., de Lapparent et al. 1988), it is diflicult to measure the &(r)
where £(r) < 1. The power spectrum analysis would be more powerful to probe the
clustering in the linear regime (cf. §11.2). In principle, a full statistical description of
a spatial point distribution needs the knowledge of all n-point correlation functions. In
contrast, our present determination of even the 4-point function for galaxies and clusters
is still rather uncertain. Furthermore, the low-order (2- and 3-point) correlation functions
probably are not sensitive to the presence or absence of filamentary, bubble-like, sponge-
like structures etc. Therefore, correlation analysis, in practice, may be unable to tell us
anything about the topology and geometry of the distributions. With respect to high-
order clustering, other measures (§3.3 — 3.4) may be more sensitive than the correlation

functions.

3.2 The results of correlation analysis and confrontations with theories

In this section I shall summarize the results obtained from the correlation analysis,

and outline how to use these results to constrain the current theories.

3.2.1 Two- and three-point correlation functions of galaxies
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The two-point angular correlation function of galaxies at the small angular scale is

well represented by a power law,
w(f) = A8™F, B~ 0.71. (3.2.1)

The first reliable determinations of this relation were from the statistical studies of Pee-
bles and his coworkers on the Lick and Zwicky catalogues (Groth & Peebles 1977; refer-
ences therein). These two samples are magnitude limited and are in the northern hemi-
sphere. Our recent study of the ESO /Uppsala catalogue confirms the result in the southern
diameter-limited galaxy sample (Jing et al. 1991). The conversion of Eq.(3.2.1) to the spa-

tial correlation function, through the Limber equation, yields,
§(r) = (ro/7)7, v=14p~ 177 (3.2.2)

with 7y ~ 5 A~ Mpc for 7 < 10h~*Mpc (Groth & Peebles 1977; Jing et al. 1991). This
estimate is roughly consistent with the results based on redshift surveys (Davis & Peebles
1983; Bean et al. 1983; Davis et al. 1988; cf. de Lapparent et al. 1988).

Now a new generation of large, uniform and machine-scanned catalogues of galaxies
is emerging (Maddox et al. 1990b; Collins et al. 1989; Picard 1991). These catalogues
are better defined and are less subject to artificial biases than the previous ‘eye’ selected
catalogues. Maddox et al. (1990a) measured w(6) for the APM catalogue, confirming the
power-law (3.2.1) at the small scales as well as the break from the power-law at roughly the
same physical separation as found previously. However, their w(f) declines more gently
from the power law on larger scales and they argue that Groth & Peebles (1977) may
have removed some intrinsic clustering when correcting for large-scale gradients in the
Lick counts (see also Plionis 1988; Brown & Groth 1989). Their results are plotted in
Figure 3.3. The analyses of the COSMOS (Collins et al. 1992) and the POSS II (Picard
1991)‘ surveys essentially confirm the large-scale power found in the APM survey, with a
possible indication that there is even more large scale clustering than found by Maddox et
al. (1990a).

To study £(r) in theories at the range of 7 < 10 h~1Mpc, N-body simulations are

needed in order to follow the nonlinear evolution of density perturbations. Though the
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Figure 8.3 — The filled circles show the estimates of w(6) of Maddox et al. (1990a)
scaled to the Lick depth. The open symbols show w(8) for the Lick catalogue from Groth
& Peebles (1977). The dotted and solid lines show computations of w(f) based on the
CDM model with kA = 0.5 and h = 0.4. Taken from Maddox et al. (1990a).

power law form of ¢(r) with the observed slope and amplitude is not a trivial prediction
in the theories of galaxy formation, most current attractive scenarios reproduce this form
without difficulty at a certain epoch of evolution. So the power law is not a good dis-
criminant between theories. Instead it is usually used to identify the present time in the

simulations. The models could be further tested by other statistical measures.

The function £(r) at large scales (i.e., where {(r) < 1) is related, by linear pertur-
bation theory, to the primordial fluctuation power spectrum. The new features revealed
by Maddox et al. (1990a) on large angular scales, are important for testing theories of
the formation of large-scale structures. In particular, comparing with the w(f) predicted
by the N-body simulations of the ‘standard’ biased CDM models (White et al. 1987b),
Maddox et al. (1990a) conclude that the CDM models have insufficient large scale power
(Figure 3.3).

Efstathiou et al. (1990) performed estimates, for the QDQT redshift survey of IRAS
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galaxies, of the variance o which is related to &(r) according to
(1) = 1/V? f‘ . ¢(r12)dVidVe.

Their results are plotted in Figure 3.4. The strong non-zero o? at I = 30,40 A *Mpc
provides us with further evidence for structures on these scales. They also estimated o in
the CDM models of White et al. (1987b), which are given in Figure 3.4 too. Clearly, there
is more large-scale power in the galaxy distribution than in the models. The variances
obtained by the Gaussian window smoothing for the same catalogue give essentially the
same results (Saunders et al. 1991).

Maddox et al. (1990a) and Efstathiou et al. (1990) tested the CDM models by
comparing the observations with the N-body simulations. In fact, such tests can be done
analytically, since linear perturbation theory is valid in these regimes. Using the same
power spectrum as in White et al. (1987b), I calculated w(6) and o2 in the CDM model,
which are given in Figure 3.5 and Figure 3.4. The analytical results repeat the simulation
results with high precision, indicating these observations are good probes to the primordial
power spectrum.

Now we turn to the three-point function of galaxies. Based on the Lick and Zwicky cat-
alogues, Groth & Peebles (1977) found that the galaxy angular three-point correlation func-
tion is well approximated by Eq.(3.1.8) with ¢ ~ 1.7 at the physical scale 7 < 10 A~ Mpc.
Thus the spatial three-point function must be represented by the Eq.(3.1.7), and @ ~ 1.3
from the Limber equation (3.1.9). The later studies based on redshift samples (Peebles
1981; Efstathiou & Jedrzejewski 1984) and on the ESO-Uppsala catalogue (Jing et al.
1991; see Chapter 5) result in a smaller Q@ = 0.8, probably due to the lack of prominent
rich clusters in these samples.

The three-point correlation function is an independent probe to the origin of LSS.
N-body simulations show a strongly scale-dependent Q in hot dark matter models (Fry &
Melott 1985), a much weaker dependence in unbiased CDM models (Davis et al. 1985;
Fry & Melott 1985), and an essentially constant Q ~ 1 in the biased CDM models (Davis
et al. 1985; Melott & Fry 1986). The recent study of Valdarnini & Borgani (1991), using

several typical power spectra, also shows that the Q-test is sensitive to both the power
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Figure 3.4 — The variances ¢2(I) in the cubic volumes of size [. The filled squares are
the results for the IRAS distribution, and the dashed lines represent the 95% confidence
level. The empty squares are for the CDM simulations. All these data are taken from
Efstathiou et al. (1990). The solid line represents the prediction by the author based on

the linear perturbation theory.
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Figure 3.5 — The predicted w(f) for the Lick catalogue in the CDM model with h =
0.5 based on the linear perturbation theory. The different lines correspond to different

extrapolations of £(r) at the small scales. The results are consistent with Maddox et al.

(1990a) which used N-body simulations.
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spectra and the biasing prescription. However, the apparent difference of Q between 3-D

and 2-D observational samples reminds us to be cautious in such tests.

3.2.2 The scaling test and the volume dependence of the correlation length

The scaling (3.1.10) of w(8) with the sample depth is important as a test for possible
systematic errors in the data (which would lead to spurious clustering) and for the limited
sample sizes. Groth & Peebles (1977) discussed the scaling relation for the Zwicky, Lick
and Jagellonian catalogs, and found that the scaling is valid within a precision of 20%
in amplitude. This uncertainty is expected because of the errors due to the luminosity
function and sampling fluctuations. Recent estimates based on deep surveys, such as the
APM and COSMOS surveys (e.g., Maddox et al. 1990a&b; Collins et al. 1992), support
the validity of the scaling. All this indicates the conventional value ry ~ 5h~IMpc of the
correlation length derived by Peebles and coworkers in the 1970s is reliable and samples
with size such as that of the Zwicky and Jagellonian catalogs are fair for the two-point
corrélation analysis. Furthermore, systematic errors in the Zwicky, Lick and Jagellonian
catalogs are not important for two-point correlation analysis at least on small scales (where
£(r) 2 1).

Einasto et al. (1986) claimed that the correlation length in the CfA redshift survey
increases proportionally with the sample size, and that the effect is not a function of the
intrinsic luminosity of galaxies (cf. §3.2.3). They argue rather that the available samples
are far from being a fair sample of the universe. They estimate 7y = 10 h~1Mpc for the true
correlation length and a fair sample is reached if the CfA sample enlarges two times in the
depth. Their results are an indication that galaxies are distributed in a fractal distribution
possibly extending to ~ 100 A~ Mpc (Calzetti et al. 1988; Einasto et al. 1986; Pietronero
1987). However, the scaling tests of Groth & Peebles (1977) clearly oppose this idea.

The later detailed analyses of the nearby redshift sampleé (Davis et al. 1988; Borner
& Mo 1990) point out that the effect found by Einasto et al. (1986) in fact is a combination
of the sample-size dependence and the luminosity segregation (cf. §3.2.3). They estimate
that in the skies surveyed by the CfA and SSRS, the increase of ry with the sample depth
is significant only within the local region of depth less than 30 h~*Mpc. Moreover, Davis et
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al. (1988) found no such effect in the all-sky survey of IRAS galaxies. Thus, these results
argue against the existence of ~ 100 h™*Mpc fractal distributions in the Universe.

The effect on ry of the sample-size can also be studied by the scaling test of w(8) in
2-D shallow catalogues. Since the samples of different depths are apparent diameter- or
magnitude-limited, each sample has the same fraction of intrinsic bright and faint galaxies.
Therefore, the luminosity segregation effect would not enter into such a study and the
sample-size effect is isolated, in contrast with the analyses of 3-D samples. But the broad
distribution of galaxies in the radial direction makes us able only to give a typical size
where the sample-size effect could be effective.

Such a test has been done in our recent paper (Jing et al. 1991). We selected samples
with different limiting diameters from the southern ESO/Uppsala catalog. Our scaling test
gives 7o = 5h~'Mpc as the correlation length of galaxies, consistent with most previous
analyses of the northern samples. Furthermore, we did find a smaller 7y for samples with
depth less than 30 h~*Mpc, giving support to the results of Davis et al. (1988) and Borner
& Mo (1990).

3.2.3 Luminosity and morphology segregation, and biasing

Some theories of biased galaxy formation (e.g., Dekel & Silk 1986; White et al. 1987)
predicted that the more luminous the galaxies, the more clustered they are, and that
dwarf galaxies are even more uniformly distributed than normal ones and that they fill the
regions devoided of bright galaxies. Many authors have studied the problem observationally
but with contradictory conclusions. Bothum et al. (1986), Thuan et al. (1987), Eder
et al. (1989), Binggeli et al. (1990), and Thuan et al. (1991) found that there is no
significant difference between the dwarf-LSB (Low Surface Brightness) and the bright
galaxy distributions, while Davis & Djogovski (1985), Giovanelli et al. (1986), Xia et
al. (1986), Borner, Mo & Zhou (1989), Borner & Mo (1989a), Salzer et al. (1990) and
Santiago & da Costa (1990) found that dwarf-LSB galaxies are less clustered than the
large HSB (High Surface Brightness) galaxies. Another set of studies based on the CfA
and SSRS samples concluded that there is a tendency of increasing correlation length

with luminosity in the subsamples of high brightness (> the characteristic brightness L.)
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(Davis et al. 1988; Borner & Mo 1990), but this tendency is not significant in subsamples
of lower brightness. The results are not conclusive because most of these studies suffer
from various deficiencies. The sample used by Thuan et al. (1991) is the most complete,
best-defined and largest one in these studies. If we make a judgement based on the quality
of the samples, we would like to conclude that galaxies of different luminosities (including
dwarfs) have the same degree of clustering except that very bright galaxies (brighter than

L.) are more clustered.

It has been known for a long time that early-type galaxies preferentially locate in
rich dense regions and late-type ones in fields (i.e., the morphology segregation). The
first statistical study of this effect was made by Davis & Geller (1976) based on the 2-D
magnitude-limited (14.5mp) sample from the UGC. They found that early type galaxies
are more clustered than late types. The two-point correlation function is well approximated
by a power law for each type, but the slopes are steepened from late to early types. These
results are confirmed by Giovanelli et al. (1986) in their study of the 2-D galaxy distribution
in thé Perseus-Pisces region. We made an independent test of this effect in the southern
sky, using diameter-limited samples from the ESO/Uppsala catalogue (Jing et al. 1991).
Our results support that late type gala.xieé are distributed more randomly, but show a
weak dependence of the slope of £(r) on morphology types. The studies of Bérner & Mo
1990 and Santiago & da Costa (1990), using the CfA and SSRS redshift samples, reached
the same conclusion as ours.

We are the first to study the morphology dependence of the three-point function (Jing
et al. 1991). We found that the hierarchical form (3.1.8) is a good approximation for each
morphology type. The constants @ of the early types (E/SO) and of the late types (Shc
and later) are roughly the same as that of the galaxies without morphology classification.
However that of the early spirals (Sa, Sab, Sb) is much smaller. Redshift samples and
larger 2-D samples are needed to clarify this effect.

All these observational results would be important inputs to the biasing mechanisms
of galaxy formation. The results of Thuan et al. (1991) that the dwarfs/LSBs are good
tracers of galaxy distribution, rule out a certain class of biased galaxy formation theories

which predict a uniform spatial distribution of the dwarfs/LSBs. The observed morphology
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Figure 3.6 — The richness dependence of the amplitude. Taken from Bahcall (1988a).

segregation and Iuminosify segregation at high luminosity, both at the large scales 7 ~ 5
to 10 h~Mpc, provide valuable evidence for biased galaxy formation. Since only ‘crude’
theories of biasing mechanisms are available, it is premature to link these results to any

specific theories.

3.2.4 Correlation functions of rich clusters and groups

Among the many others (see references in Bahcall 1988a), Bahcall & Soneira (1983)
analysed both the angular and the spatial two-point correlation functions for the clusters of
the Abell (1958) catalog. The £(r) of the R > 1 clusters turned out to be épxy = (25/7)"®
for » < 100 A"*Mpc. Moreover, the two-point function of clusters of different richness is
of the power-law form &(r) = (r¢/r)” with the same slope v = 1.8 but with increasing
amplitude 7y with richness (Figure 3.6). These results have been confirmed by numerous
other studies based on independent samples (e.g., Huchra et al. 1990b; Batuski & Burns
1985b; Kopylov et al. 1987; Postman et al. 1986; Shectman 1985; Gao & Jing, 1989;
Batuski et al. 1989; Couchman et al. 1989; Plionis & Borgani 1992).

These statistical results have given important implications and constraints to theo-
retical models. The high amplitude of .. (relative to that of galaxies) and the richness

dependence of ry indicate that the luminous systems in the Universe are not equivalent
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tracers of the structures. This feature, together with other observational facts (e.g., huge
voids like Bootes; the density parameter Q always ~ 0.2 found from the dynamical stud-
ies of galaxy distributions), led to the idea of biased galaxy formation (e.g., Kaiser 1984;
Bardeen et al. 1986). The scale explored by ¢.c is so large that £, is expected to reflect the
primordial fluctuation spectrum. Its large amplitude as well as large coherence length are
strong constraints on the flat models with primordial Gaussian fluctuations. In particular,

the ‘standard’ CDM model fails to reproduce the observed &, (e.g., White et al. 1987b).

The crucial importance of the £.. motivated people to check its reality carefully. Since
the cluster catalogs, from which the above results are derived, are all compiled by ‘eye’
from the two-dimensional plates, some fraction of clusters could be the results of superpo-
sition of foreground and/or background galaxies. If the effect happens due to the chance
superposition of ‘field’ galaxies (i.e., those not related with other rich clusters included),
the resultant artificial clusters form a random component in the spatial distribution, which
Eroduces an unchanged or even a reduced ... In contrast, if the effect is correlated with
the positions of other rich clusters (i.e., the ‘halo’ galaxies of foreground or/and back-
ground clusters), an enhanced spurious clustering is produced with its manifestation in
the line-of-sight direction. Since the observed & is high, most of the present concern is on
the later effect. It has been a matter of debate for several years whether the effect seriously
enhances the £, (see §6.1 for a review). In our recent work (Jing, Plionis & Valdarnini
1992), we examined the effect very carefully in Abell cluster samples. We showed no evi-
dence for significant enhancement of .. by the contamination effect, thus supporting that

the &.. detected by Bahcall & Soneira (1983) is due to the real clustering (see Chapter 6).

Cluster samples, identified by objective algorithms, have been recently constructed
from the APM and COSMOS galaxy surveys (Dalton et al. 1992; Lumsden et al. 1992).
The correlation analyses yield .. = (ro/r)* with rp = 12.9 + 1.4 h~1Mpc in the APM
sample (Dalton et al. 1992) and with r¢ = 16 £ 4 h~*Mpc in the COSMOS sample (Nichol
et al. 4.1992). The similar power-law form to that of Abell clusters is very encouraging. The
derived correlation lengths seem a bit small. Since these clusters are much poorer than

Abell clusters, these 7, values in fact agree with the clustering-richness relation (Bahcall

& West 1992).
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Figure 3.7 — The angular a) and spatial b) two-point correlation functions of CfA groups.
The crosses are the statistical results, and the solid lines are the approximate fits to the
data. The dot-dashed lines are the galaxy correlation functions: a) w(f) of the 14.5mp
UGC catalogue; and b) £(r) of the CfA survey (From Jing & Zhang 1988).

Several authors have studied the group-group correlation function €groups for those
available catalogs of groups. Jing & Zhang (1988) first analysed both the angular and the
spatial two-point correlation functions for the CfA groups (Geller & Huchra 1983). We
found that the £;r0ups can be approximated by Egroups = Ar~18 with A ~ 10( A~ Mpc)'-®
about half of the amplitude of galaxies, thus groups are more uniformly distributed in space
than galaxies. These results have been confirmed by Maia & da Costa (1990) based on an
independent group catalog selected from the SSRS survey (Maia et al. 1989). The analysis
by Ramella et al. (1990) of their independent group sample selected from the CfA slice
survey (Ramella et al. 1989), however found a larger amplitude which is as large as that
of galaxies within the errors. The discrepancy between the last and the former two studies
has not been well understood. One possible cause is suspected to be the different density
thresholds p/p used in forming these catalogues: in the first two catalogues, ép/p = 20;
in the last catalog, ép/p = 80.

The €groups could be a powerful test of the theories. In the hierarchical gravitational

theory, Kashlinsky (1987) predicts that poor groups (with turnaround mass less than
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10** M) are less clustered than galaxies. The above results appear to support his model.
However, I noted that the criteria of defining groups are different between the observations
and the theory, so we must be cautious in such a detailed comparison. More important
perhaps are that we have reached the capability of simulating a galaxy sample as large as
the CfA and SSRS surveys using the N-body techniques and that exactly the same group-
finding algorithms can be applied to both simulations and observations. Thus a proper
evaluation of models can be made based on group properties. The recent simulation study
of Gaussian and non-Gaussian CDM models by Matarrese et al. (1991), shows that the
&groups is @ sensitive discriminant of the models. However their selection criteria of groups,
although similar to, are not the same as the previous studies of the observations.

The angular three-point correlation function of Abell clusters was first analysed by
Jing & Zhang (1989) and independently by Téth et al. (1989). Both studies yield a
consistent result that rich clusters of galaxies, just like galaxies, obey the hierarchical form
(3.1.7) with @ ~ 0.8. Furthermore, after analysing clusters of richness R > 2, Jing &
ihaﬁg (1989) pointed out the hierarchical form is independent of cluster richness. These
results have been further confirmed by the later analyses based on redshift complete, albeit
small, samples of Abell clusters (Jing & Valdarnini 1991; Gott et al. 1991). A detailed
presentation of our analyses will be given in Chapter 7.

A definite form has been predicted for (ccc (e.g., Politzer & Wise 1984; Szalay 1988;
Matarrese et al. 1986), if rich clusters form at high density peaks as guided by &.. (Kaiser
1984). In the high peak approximation, Matarrese et al. (1986) showed

Ceee(1,2,3) = F(1,2,3) x {[€ce(1,2)écc(2,3) + ...(3 terms)] + £(1,2)4(2,3)£(3,1)}
+[1-F(1,2,3)] x {1+ [£(1,2) + ...(3terms)] }, (3.2.3)

where F(1,2,3) depends on the fluctuation type. If the fluctuation is Gaussian, F(1,2,3)1s
1. The same factor F(1,2,3) before the quadratic and cubic terms of £ seems contradictory
with fhe observations (Téth et al. 1989). The analytical modeling might be too simple.
The recent N-body simulation of the ‘standard’ CDM model (Gott et al. 1991) showed
a surprising result: the clusters (high peaks) in the simulations do obey the hierarchical

form. The discrepancy has not been well understood, though Gott et al. (1991) tried to
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interpret the hierarchical form as the result of dynamical merges. Since their simulated
sample of clusters is small and only one particular simulation (in fact they have done three)
is analysed, in my opinion, further work both on analytical modeling and on simulations
are needed to clarify this discrepancy.

In my recent papers (Jing 1990a & 1991), I explored the &... in another distinct model
of non-Gaussian fluctuation — the explosion scenario (e.g., Weinberg et al. 1989). In this
model, clusters form at the intersections of the bubbles. I found that the hierarchical form
holds for the simulated clusters with a similar @ to the observations, and the result is quite

robust with respect to the model details (Chapter 8).

3.3 Void probability function

3.3.1 The general relation with N-point correlation functions

It was first shown by White (1979) that the probability that a given size and shaped

volume V placed randomly in space be empty of objects is given by a sum over the

correlation functions to all orders,

oo 1 N B . B B
Py, = exp[z ( N) HN/ d3:c1...d3mNK.N(a;1,...,:DN)], (3.3.1)
N=1 v

where 7 is the average number density; xn(Z1,...,Zn) are the irreducible N-point corre-
lations of the objects. The equation can also be applied to two dimensional samples, if we
replace 7, kN (Z1,...,£n) and V respectively by the surface number density, the N-point
angular correlations and the surface area. Obviously, the measure is related to all N-point

correlation functions.

3.3.2 A scaling property in the hierarchical distribution

In the hierarchical model, the irreducible N-point function ky(%1,...,&N) is given by
a syxﬁmetrized sum of connected products of N — 1 two-point functions £, conveniently

associated with tree graphs of IV points (e.g., Schaeffer 1984, Fry et al. 1989),

EN(ZL, 0 BN) = D QN()E(r1)-E(rv-1), (3.3.2)

(i=all trees)
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where the product runs over the N — 1 limbs connecting the N-points of the tree and the
sum over all NV—2 distinct labeled trees. The current available statistical studies of low
order correlation functions of both galaxies and clusters (§3.2), support that the model
works in the Universe. It was also expected that the model might be valid in some theories
under certain approximations (for details, see, e.g., Fry et al. 1989).

As shown first by White (1979) and later by many others (e.g., Sharp 1981; Fry 1984;
Schaeffer 1984), in the hierarchical distribution, the void probability obeys a scaling,

_ 1IlP0

S = —> =5(q), (3.3.3)

where ¢ = V€ and £ = 1/V? [|. é(r12)dV1dV2. This says that the function Y depends on
the @, ¢ and V only through the combination g (usually called the scaling variable). As in
§3.1.3, it can be easily shown that the 2-D projection of a 3-D hierarchical distribution is
still hierarchical, thus the scaling relation holds also for 2-D samples, though the functional
form of ¥(g) is different for 2-D and 3-D cases (depending on the radial selection function).

3.3.3 The scaling properties in galaxy distributions— a summary of observations

In the LSS studies, there are many ways to test the sﬁaling relation, as indicated by
Eq.(3.3.3) itself. For a 2-D sample, e.g., a magnitude-limited galaxy sample, we can study
whether the scaling is established by using different shaped area (e.g., squares; circles),
subsamples of different dilutions, and subsamples of different limiting magnitudes. The
same method can also be applied to 3-D redshift samples. If the scaling does hold, %
should only depend on the scaling variable g; otherwise ¥ depends on the shape and the
size of the volume (area) as well as on the number density.

The scaling property has now been examined for galaxies in great detail by a number
of authors. Sharp (1981) first studied the scaling relation for the Zwicky catalogue of
galaxies and found that the scaling is obeyed, so the data are consistent with a hierarchical
distribution. The later analyses of the CfA redshift survey (Maurogordato & Lachiéze-Rey
1987; Mo & Borner 1990) and of the Giovanelli-Haynes redshift sample in the Pisces-
Perseus region (Fry et al. 1989), using subsamples of different dilutions, confirmed the
scaling found in 2-D studies. Furthermore, Maurogordato & Lachiéze-Rey (1987) and Fry
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Figure 3.8 — The scaled void probability x plotted against N¢ for the Perseus-Pisces
catalog, showing the success of the scaling. The different symbols represent the subsamples

of different luminosities and different dilutions. Taken from Fry et al. (1989).

et al. (1989) compared ¥(g) for several samples of different luminosities, and found that
¥(q) is independent of luminosity and is consistent with that of galaxies without luminosity
division (see Figure 3.8). It was further found that the scaling relation is independent of
galaxy morphology type (Mo & Borner 1990).

This universal scaling has two implications. First, for galaxies as a whole, their high-
order correlation functions are consistent with the hierarchical model (3.3.2), though the
values of Qn(3) (for N > 4) have not been fixed yet. Second, galaxies of different morphol-
ogy types and luminosities obey the same hierarchical model (3.3.2). This further implies
that Qn(z) (for N > 3) is independent of morphology type and of luminosity. Our direct
analysis of the UGC and ESO/Uppsala catalogues (Jing et al. 1991) did show a weak
dependence of Qn(z) (N = 3) on morphology type.

3.3.4 The scaling properties in cluster distributions— a summary of observations

The scaling properties for rich clusters were first studied by the author (Jing 1990b),

a detailed account of the work will be presented in Chapter 9. As a summary, I examined
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%(q) for several cluster (2-D) samples of different depths and of different richness which
were selected from the ACO catalog of rich clusters of galaxies. I found that the rich
clusters also obey the scaling, and the scaling relation is independent of richness. So the
distributions of rich clusters can be described by a hierarchical model, consistent with the
statistics of the three-point correlation function (§3.2.4). All the scaling features have been
further confirmed by a recent analysis on small 3-D samples (Cappi et al. 1991b), though
the accuracy of their results is limited because of the small sample size.

As shown by Schaeffer (1987), the function X(g) depends on the redshift selection
function weakly, thus making possible a comparison of %(g) with that of galaxies even in
2-D samples. The studies of Jing (1990b) and Cappi et al. (1991b) gave an indication
that galaxies and clusters obey the same scaling, though more detailed studies with larger

redshift samples are still needed.

3.3.5 Theoretical implications

As we saw above, the hierarchical scaling is established both in the galaxy and in the
cluster distributions, and it depends weakly on the intrinsic properties of these objects
(such as luminosity, morphology, richness). However, there is no a priori reason to expect
the scaling necessarily to be followed, thus the observed scaling could become a strong
constraint on the theories of galaxy formation.

Fry et al. (1989) have applied the statistics to numerical simulations of HDM and
CDM inflationary models, initially Poisson models, and cosmic strings seeded models, in
order to probe %(g) of ‘galaxies’ in these models. They found that the simulation results
obey the implied hierarchical scaling in many cases, but not in all. In particular, HDM
models without biasing show the effect of a strong feature in the initial power spectrum.
The cosmic string models exhibit scaling but do not agree well with the galaxy data. The
rest of the models work well, implying that the initial fluctuation spectrum has a behavior
closest to that in CDM models, or perhaps Poisson.

As discussed in §3.2.4, a hierarchical distribution, like Eq.(3.3.2), is not expected for
rich clusters in the simple analytical models in which ‘clusters’ are formed at high density

peaks. But these analytical prescriptions may be too simple, so large N-body simulations
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are needed to clarify this point.

3.4 The Other Measures of High-order Clustering

As stated in the beginning of this chapter, three other measures depending on high-
order clustering are frequently used in the LSS study. Because of the limited space of the
thesis, I shall only briefly discuss these measures. Despite its brevity, I try to keep the
spirit of the previous sections: to summarize the basic features of each method and the

main results obtained.

3.4.1 Minimal spanning trees

Any distribution of points in space is associated with a unique structure, the so-called
‘Minimal Spanning Tree’ (or MST) (Barrow et al. 1985). The MST picks out a dominant
pattern of connectedness in a manner that emphasizes its intrinsic linear associations, so
it is ﬁlostly useful in studying the properties related with ‘filamentary’ structure (Bhavsar
& Ling 1988a&b). Since the MST depends on the high order clustering, some quantitative
properties of the MST can be defined and then calculated for comparative purposes, so
as to discriminate between theories which have similar low-order clustering (Barrow et al.
1985). Now we describe the definition and construction of the MST, following Barrow et
al. (1985).

Our data set is termed a graph which will be composed of nodes (galaxies), edges
(straight lines joining galaxies) and edge-lengths (distances between galaxies). A sequence
of edges joining nodes is a path; a closed path is called a circuit and a graph will be called
connected if there is a path between any pair of nodes. The number of edges emanating
from a node is call its degree. A connected graph containing no circuit is a spanning tree.
The length of a tree is defined to be the linear sum of the lengths of its component edges.
The nﬁnimal spanning tree (MST) is the spanning tree of the minimum length. The MST
will be unique, if no two edges have a equal length. A k-branch is a path of k edges
connecting a node of degree 1 to a node of degree exceeding 2 with all intervening nodes

of degree 2.
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The simplest algorithm to construct explicitly the MST of a graph, I, first picks an
arbitrary node of I' and then adds the connected edge of smallest length. This edge and
the two nodes at its ends form the first partial tree, II;. The kth partial tree, I, is formed
by adding to ﬁk_l the shortest edge connecting IIx_; to any nodes of T' not already in
I,_;. If I contains n nodes then II,,_; is the required MST.

In order to distill the dominant features of the MST, two further reducing operations,

pruning and separating, on the MST can be performed.

1). Pruning: An MST is pruned to level p when all k-branches with k& < p have been

removed.
2). Separating: Remove from the MST any edges whose length exceeds some cut-off ly.

Bhavsar and Ling (1988a&b) showed that the MST, combined with the data permuting
technique, is a successful filament-finding algorithm which can identify the filaments and
determine their statistical significance (physical associations or chance alignments of small
clust'ered objects). Applying the technique to the CfA sample, they found the filaments of
tens Mpc are real. This is the first objective, statistical evidence for the physical existence

of filaments.

In the original paper of Barrow et al. (1985), they proposed two statistical quantities
to quantify the structure of an MST: F(I) and R(l) distributions. The F(l) is the frequency
distribution of edge-lengths of the MST, and R(!) is the ratio of F(l) to the number of
pairs with the separation [ in the data set. In our recent work (Plionis, Valdarnini &
Jing 1992; §10.2), besides the F(I), we construct further statistical quantities in order to
test whether the MST features of Abell clusters can be reproduced in simulation samples
which are built by the Zel’dovich approximation from Gaussian density fluctuations and
have the same low-order clustering and the same selection effects as the real data. They
are: ﬁhe mean edge-length, the ratio Ry of the start-to-end branch-length to the total
length along the branch after ly-separation, the frequency distribution B(L) of the branch
length after ly-separation, the alignments of neighbouring clusters on the MST, etc. These
estimates are sensitive to the existence of high order clustering, and therefore are expected

to be good discriminants of theories (or hypotheses). Plionis et al. (1992) found that some
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features of the Ry and the B(L) statistics cannot be reproduced in the simulated samples
at > 30 levels, suggesting that density fluctuations might be more complicated than a

simple Gaussian fluctuation.

3.4.2 Percolation analysis

Counsider a system of N points in a cubic space of size [?, its characteristic length
is the mean separation d = I/N'/3. The clusters are identified by the friends-of-friends
algorithm: two points are friends if their separation is less than a certain distance, say, d,
and a cluster is the collection of points which are mutual friends (i.e., including the friends
of friends). The percolation analysis is, in fact, used to study the geometrical properties
of the clusters.

One commonly used analysis is to estimate the normalized length I,,(5) = Lma=(b)/1,
where Lppqz(b) is the maximum length of the clusters, and b is the dimensionless separation
parameter b = d/d. When 1,,(b) = l,5(bs) = 1, the system is said to be percolated and b,
is called the percolation parameter. In a uniform distribution, b, is 1; and in a Poissonian
distribution, b, = 0.86. If a sample contains large coherent structures such as filaments
and sheets, the b, is expected to be smaller than 0.86. On the contrary, if a sample contains
a lot of small isolated clusters, the b, is greater than 0.86.

There have been several studies on b,, based on the CfA and SSRS redshift surveys.
The results are between 0.6 to 0.8. As shown by Dekel & West (1985) and by Bhavsar &
Barrow (1983), b, is very sensitive to the sampling parameters (the mean density and the
volume), so an interpretation of the results is not an easy task. They also argue that the
parameter is not a very good discriminant between the current models.

However, this technique could still be useful if suitable quantities and suitable methods
are chosen, because the clusters’ properties depend on the high order clustering. One way,
for example, is to estimate ,(b) for the purpose of comparison, that is, to estimate I, (b)
in the;, observations as well as in the simulations and then to compare them so as to test
the models. Another example is to compare [,,(b) between a real sample and its random
sample so as to exhibit the clustering (e.g., Borner & Mo 1989b; Mo & Bdrner 1990).
Other physical properties of clusters, e.g., the multiplicity function, the fraction of isolated
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objects, shapes of clusters, and alignments within clusters may also be useful in testing
models or hypotheses (e.g., Postman et al. 1989; Postman et al. 1992; Plionis et al. 1992;
§10.3).

3.4.3 A topology measure — the genus-threshold density relation

Gott, Melott, Weinberg and their collaborators (Gott et al. 1989; and references
therein) suggested that the genus of isodensity contours could be used as a quantitative
measure of the topology of the large scale structure. The genus of the contour surface is

defined by
G, = (Number of holes) — (Number of isolated regions)

where “hole” means a hole like that in a doughnut, and an isolated region may be above
or below the threshold density. ‘
Gott et al. (1986) showed that G, is related to the integral of Gaussian curvature K

ever the contour surface

1
G, = _Z;/KdA'

The relation makes it possible to measure the genus of a contour surface in catalogs of ex-
tragalactic objects and in simulations. The computer program has already been published
in Melott (1990) and Weinberg (1988).

In terms of density threshold v (which is in units of the standard deviation from the
mean), Hamilton et al. (1986) showed that for Gaussian random fields, the mean genus

per unit volume is given by
ge = N(1 =) exp(—7/2),

where

3/2
1 2 3 3
¥ = g [ rmrensa [ ps )

So while the amplitude N of the genus curve depends on the shape of the power spec-
trum, the shape of the genus curve depends only on the denmsity threshold v, g,

1 — v?)exp(—v?/2). Any deviation from this genus shape indicates a deviation from
g
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Composite Data: GH, CfA, TS, and Tully
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Figure 3.9 — The composite genus curve created by adding the (bootstrap average)
curves from the Giovanelli and Haynes, CfA, dwarf and Tully samples, all smoothed at
A ~ 600 km s~!. The best-fit random phase curve is shown for comparison. The curve
shows a small shift to the left in the direction of a meatball topology. Taken from Gott et
al. (1989).

the Gaussianity. For example, the meatball structures will shift the peak of g, to negative
v but the bubbly structures will shift it in the opposite direction.

In gravitational instability theories, the primordial Gaussian or non-Gaussian features
remain in the linear regime. So the analysis of galaxy samples or/and cluster samples in
the linear regime (i.e., » > ry), can in principle determine whether primordial fluctuations
are of a Gaussian or a non-Gaussian nature. The shape of the primordial power spectrum,
if Gaussian, can be further constrained by the observed amplitude N.

Gott et al. (1989) analysed most available redshift samples of galaxies and clusters and
found' that the distribution of these objects on linear scales is approximately Gaussian with
slight meatball shifts (see Figure 3.7). Such similar shifts also show up in CDM simulations
due to a combination of biasing and sampling effects. Notice that these shifts are in the

opposite direction to what is expected in a bubble model, thus there is no evidence for the
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existence of bubbles from this quantitative study. The main results of their model tests are
that, while the HDM model is consistent with the observational data, the standard CDM
model seems the most successful one in explaining the observed genus-density relation.

Recently, Moore et al. (1992) have analysed the topology for the QDOT IRAS survey.
While they confirm that the observed topology properties are consistent with an initially
Gaussian fuctuation, they found, from the amplitude of the genus-density relation, that
there is more power on scales > 15 h~'Mpc, in agreement with the count-in-cell analyses
(Saunders et al. 1991; Efstathiou et al. 1990; §3.2).

A 2-D equivalent, the Euler-Poincare characteristic (Adler 1981; Coles 1988) has also
been applied to the study of the LSS (Coles & Plionis 1991), using the largest available
galaxy catalogue, the Shane & Wirtanen catalogue. The results support that in the mildly
non-linear regime the topology approaches that of a meatball, but in the linear regime the
topology is indistinguishable from that of a Gaussian field, consistent with the 3-D study
of Gott et al. (1989).
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On the error estimates of correlation functions

The two- and three-point correlation functions have been widely used to measure
the large-scale structure of the universe (e.g., Peebles 1980; §3.2). But how to estimate
the statistical errors of these functions is unclear. The difficulty arises from the fact
that there is no good ensemble of samples to represent the structure. Usually, the errors
are given by assuming that the count of pairs DD(r) [DD(r) is the number of pairs
of objects in the separation bin r + dr/2] in the two-point correlation function and the
count of triplets DD D(r,u,v) [DDD(r,u,v) is the number of triplets of objects in the bin
(r+dr/2,u+du/2,v+dv/2) which determines the configuration of the triplet, see §3.1] in
the three—point correlation function have Poissonian distributions (Peebles 1980, §48). The
sampling errors are underestimated with this assumption, as will be demonstrated below.
Another method, which was first proposed by Barrow, Bhavsar, & Sonoda (1984) and
has been widely used in correlation analysis since then, is to use a bootstrap resampling
technique to estimate the sampling errors. For example, Ling, Frenk, & Barrow (1986)
made a detailed clustering study of galaxies and Abell clusters, and found a statistically
significant difference in their clustering. But it is not clear whether or not and how the
errors given by this technique are related with the sampling errors derived from an ensemble
of independent samples.

In this chapter, we derive (in §4.1) formulae which relate the errors of correlation
functions to those quantities which are easy to calculate. We test (in §4.2) the usefulness
of these formulae using results of an ensemble given by numerical simulations. It is found
that 1.) the ensemble errors of the pair count DD and the triplet count DDD in given bins
are well approximated by opp(ens) = [(DD(r)) + 4(DD(r))? /N,]*/? and cppp(ens) =
(DDD(r,u,v)) + 36(DDD(r,u,v))?/Ny]*/? (where N, is the number of points in the

studied sample; (- - ) denotes the ensemble mean), respectively; 2) the bootstrap errors of
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DD(r) and DDD(r,u,v) can be approximated by opp(bo) = [3DD(r) + 4DD? QY ARE
and oppp(bo) = [TDDD(r,u,v) +36DDD? (r,u,v)/N4]*/?, respectively. The formulation
in §4.1 provides a very fast and accurate algorithm to calculate the results of the boot-
strap resamplings; 3) because of the inter-dependence of the counts in different bins, the
regressions using the ensemble errors in different bins (to weight the data points) under-
estimate the errors in the parameters characterizing the regressions (e.g., the amplitude
of the two-point correlation functions A and the reduced three-point correlation functions

Q); the regressions using the bootstrap errors give good estimates of the errors in A and

Q.

4.1 Formulae

4.1.1. Two-point correlation function

In one definition, the two-point correlation function is estimated by the following

formula (Peebles 1980):
DD(r) fjj_

&(r) = RR(r) n? 1, (4.1)

where DD(r) is the number of object pairs with separation in the range r & dr/2 (dr: the
bin size); RR(r) is the corresponding pair count in a random sample constructed within
the sample boundary and with the same selection function as the real sample; n and np are
respectively the mean number densities of the data sample and of the random sample. In
our discussion, we neglect the selection effect and the boundary effect and assume that the
data sample is homogeneous and fair. In this case, the pair count RR(r) can be estimated
without error. The sampling error of £(r) is then determined by that of DD(r).
a). The ensemble error

To estimate the ensemble error of DD(r), we write DD(r) in another form (Peebles
1980, §48). We divide the sample volume (V') into a set of infinitesimal cells {AV;} so that
ST AV; = V. The volume of each cell is assumed to be so small that the count N is either
1 or 0. The pair-count DD(r) can then be written as

DD(r) = -;- S NNT5(r) (4.2)
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where U;j(r) = 1 when the separation between cells ¢ and j is within the bin » & dr/2
and U;;(r) = 0 otherwise. The mean and mean square of DD(r) can be written as ((- - -)

denotes ensemble average)

(DD) = 3 Z(/v N\Uij; (4.3a)
(DD?) = % Z S NNGNING) Ui Ui (4.3b)
i,j Lk

Since 7 # 7, | # k, the sum in Eq.(4.3b) can be divided into three parts:

1
(DD?) = 1 Z (NGNGNINGYU U
EICSRE ]

+ > ANNGNQUUie + Z NiN;U (4.4)
1; ]s,-‘,é] 7.7
where we have used that A; = N2 = ..., Using the definitions of the two-, three- and four-

point correlation functions kx (71, ..., 7sy oy ) (N = 2,3,4) and the integral constraints
on KN(T1y ey Tiyeeey TN flarge 1 BN(T1y ey Tiy ooy T )d7; = 0 for 7 = 1,..., N, we can write

2

(DD*(r)) = “2(ndo)?[1+ 26(r) + E2r)] + Ny(ndo)[1 +26(r)

1 1
e
(@) [, Se)dndt T g |

where N, is the number of objects in the sample, dv = 4mr?dr and ( is the three-point

C(T)T7T12)dﬁld7:’2] + (DD> (45)

correlation function (see §3.1). The first term of Eq.(4.5) is (DD)?. So the variance of
DD(r), ¢4 (ens) depends on two- and three-point correlation functions [cf. Peebles 1980
§48]. In weak clustering approximation [i.e., &(r) < 1], 0% can be written as:

4 2

o3 p(ens) ~ (DD(r)) + F(DD(T‘)) . (4.6)

9
The first term is usually referred to as the Poissonian error. The second term, which
was usually neglected, becomes important when (DD(r)) > N,/4. This condition can be
approximately written as dr/r > (d/r)?/87 (d = n~'/). In the real case, this condition
is satisfied when r becomes so large that £(r) < 1. So Eq.(4.6) is a good approximation,

as we will see in §4.2.

55




b). The bootstrap error

Barrow et al. (1984) suggested a bootstrap resampling technique to estimate the
sampling error. In this technique, one constructs a set of bootstrap samples from the
parent sample. Each bootstrap sample is constructed by selecting Ny times in the parent
sample; each time each galaxy in the parent sample has a probability of 1/N, to be selected
into a bootstrap sample. The bootstrap resampling is equivalent to assigning to each object
(object 7) in the parent sample a weight w; which is equal to the number of times that the
galaxy is selected. The possible values of w; are 0, 1, -+, Ng; w; = 0 means that the object
i is not selected in the bootstrap procedure. Since in the Ng-time selections, an object in
the parent sample is selected with a probability 1/N, without depending on whether or not
it has already been selected, the weight for each object has a Poissonian distribution with
mean 1. In the following derivation, we will assume that the assignment of a weight to one
object is independent of that to another. The bootstrap resampling process guarantees
that the assumption is valid when a small fraction of objects is involved in counting pairs
or triplets [in a given bin]. Otherwise, it is only approximately valid, since Yw; = N, in
each realization. More discussion on the assumption will be given in §4.2. Our task is now
to calculate the deviation among realizations of the assignment of weights.

Here we give a general consideration. Suppose {w;} is a random observation from a

distribution function P(w) having mean @ and variance o2,. We define the weighted pair

count:
1
=3 Zwiw]-Uij(r) (4.7)
i,j

where, unlike in Eq.(4.2), the indices 7, j are for objects rather than for infinitesimal cells.
The mean of the weighted pair-counts is (here (- - -) denotes the average over certain

kind of weight assignments)

(DD (r)) ZUU(T / dwqw; P(w;) / dw juw; Pw;) ZU,] (4.8)

The mean square can be calculated as follows:

([D Dy ( ZZ wiwjwrwy) Ui jUp

i,Jj okl
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:—i' Z Z (wiwjwrw)U;; Uk

i#h ] iFlA]

1
-+ Z (w?ijk>U£jUki + -2- Z(w?w?)Ufj (4.9)
ikt j i
Assume the weights of different objects are independent, we have

-
([DDu(r)) = == 32 3 UiUn+ %02 Y UsiUsi

i,j ki Gk

(o5 +20%)0y, 2
+ 5 Z U (4.10)
)

The first term is equal to (DD,,(r))?; the variance of DD, (r) is given by the second and
the third terms. If 02 = 0, the variance of the pair counts is also zero, as expected. One
can then proceed as we did in deriving Eq.(4.6), to obtain the variance of DD, (r)
4
o5 p(w) = o2 (o2 4+ 20%)DD(r) + ]—V——O'?D’lﬂzDD2(T). (4.11)
9

In the case of bootstrap resampling, & = 1, ¢ = 1 and
4DD?*(r)

G%D(bo) ~ 3DD(r) + i
g

(4.12)

If DD(r) <« N, we have 0%,,(bo) = 3¢5 5(ens). In this case, the bootstrap resampling
technique gives an estimate of o¢ which is about v/3 times that given by the ensemble (or
Poissonian) error. However, when DD(r) > 4/3N,, the bootstrap error is comparable to
the ensemble error.

A similar derivation can be done for the variance of sparse sampling. Sparse sampling
is equivalent to assigning a weight 0 to each galaxy that is discarded by the sparse process
and a weight 1 to other galaxies (which are selected into the sparse sample). Suppose the
sparse rate is Py. Then a galaxy in the parent sample has a probability of Py to be selected
into one sparse sample, and has 1 — P, to be discarded. The mean and the mean square of
the weight for each galaxy are respectively @ = Py, w? = Py, which gives 02, = Py(1—Py).
Inserting these values into Eq.(4.11) and using o} = opp/[DD(r)P§]* (where DD(r) is
the count in the parent sample), we have

il 5
(r) 1P Ny Py

(4.13)
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One sees that ¢ — 0 when Py — 1 and 6¢ — co when Py — 0, as expected. Eq.(4.13)

gives the deviation of the correlation function ¢ of a sparse sample from that of its parent.

4.1.2. Three-point correlation function
The three-point correlation function ¢ can be estimated by the formula (Peebles 1980):

DD.D(’T’lg,'T‘ ,y 7 1)7},3
~ RRR(r T.j: 7,:1) —5 = &(r12) = £(r2s) = £(ra1) — 1 (4.14)

C(T‘1277'23,7’31)

where DD D(712,723,731) is the count of triplets with their three edge lengths in the range
(r12,723,731) + 1/2(dr12,dres,drs;) in the data sample; RRR(%127T23,T31) is the corre-
sponding count in a set of points which are randomly distributed in the sample domain
(see last subsection). Under the same assumption as in §4.1.1, we need to calculate the
error in DDD in order to estimate the error in (.

The number of triplets with a given configuration (represented by 71, re3, r31) can

be written as

DDD(r12,723,731) = ZMNijUij(T12)Uik(rzs)Uki(Tsl)- (4.15)
i,k
The mean and mean square of DDD can be calculated in the same way as those of DD.
We divide (DDD?) into terms which involve, respectively, counts of N-tuples (N = 3, 4,
5,6). The N = 3 and N = 6 terms are equal to (DDD) and (DDD)?, respectively. Under
the assumption of weak clustering (¢ < 1) and after tedious calculations, we obtain:

36
cLpp =~ (DDD) + F—(DDD)Z. (4.16)
g

The error in the weighting scheme can be discussed as we did for the two-point corre-

lation function. It turns out that

DDD)?
cbpp = [(w? + 02)® —w®|DDD + (DDD)” |

2 0% (30w° + 602). (4.17)
Nﬂ

For the bootstrap resampling

(DDDY?

c5pp =~ TDDD + 36 ~
g

(4.18)
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For the sparse sampling

1 1
o2~ [—— - 1} ———, when N, > DDD. (4.19)
TP DDD’ g

4.2 Test by numerical simulations

4.2.1 Simulation samples

The simulation used here was originally designed to study the spatial distribution of
Abell clusters by R. Valdarnini (see §10.1 for details). His algorithm is similar to that of
Postman et al. (1989). The simulation was done in a box of 640% h=*Mpc® with 64° grid
cells. The simulated objects are the peaks of a Gaussian random density field with height
above 1.30, (where o, is the rms density fluctuation within the grid cell). The Gaussian
random field was so chosen that the simulated objects have a two-point correlation function
£(r) = (25/7)'8 in the range of 10 to 60 A~ 'Mpc, comparable to that of Abell clusters
(Bahcall & Soneira 1983). The spatial peak distribution of a Gaussian field is non-Gaussian
and the high-order reduced correlation functions are non-zero. As will be seen below, the
constant @ of the three-point correlation function ( is about 0.65, similar to the observed
value 0.8 & 0.3 of Abell clusters (Jing & Zhang 1989; Jing & Valdarnini 1991). The mean
number density of simulated objects is fixed to be 6 x 107¢ R3Mpc™2, again to match that
of Abell clusters. Therefore the simulated samples resemble well the real ones. There are

totally 50 simulated samples each of which contains 1572 objects.

4.2.2 Error definitions

In the following, we will discuss different kinds of errors. In order to avoid confusion,
we give their definitions here. Some of them have already appeared in the previous section.
o The ensemble errors refer to the errors (in bins) given by Eq.(4.6) (for the pair count)
and Eq.(4.16) (for the triplet count); in simulations, they refer to the errors given by

the deviations of (pair and triplet) counts in bins among the 50 samples.
e The bootstrap errors refer to the errors (in bins) given by Eq.(4.12) (for the pair count)
and Eq.(4.18) (for the triplet count); in (each of the) simulations, they refer to the
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errors given by the deviations of (pair and triplet) counts in bins among 500 bootstrap
resampling realizations.

o The Poissonian errors refer to the errors (in bins) given by DD/? (for the pair count)
and DDD?'/? (for the triplet count) for individual samples.

e The fit errors refer to the errors of parameters 4 (in €) or Q (in () given by a least-
squares fit. They depend on the error model used to weight the data in bins.

e The ensemble mean of fitted parameter (AMFP) refers to the mean of the values A
or @) of the 50 simulation samples; it is denoted by a bar over the corresponding
parameter.

e The ensemble error of fitted parameter (AEFP) refers to the deviation among the
values A4 or @) of the 50 simulation samples; it is denoted by a ‘6’ before and a bar

over the corresponding parameter.

4.2.3 Tests

a). Errors in individual bins

The pairs DD(r) are counted in 10 equal logarithmic separation intervals with Alogr
= 0.1, starting from 7,i, = 6.3h !Mpc. In Figure 4.1a, the triangles represent the
ensemble errors of DD calculated from the 50 simulated samples in each bin. The solid
curve is the analytical prediction of Eq.(4.6). The analytical and the simulated results are
in good agreement, indicating that Eq.(4.6) is a good formula for estimating the ensemble
errors. The significant increase of opp/ VDD at large 7 shows the importance of the
second term on the right hand side (rhs) of Eq.(4.6).

In counting the triplets DD D(r12,723,731), We use another set of variables: 7, u, and
v as usually chosen (see Peebles 1980). The same separation intervals are taken for r as
in DD(r). For the variables w and v, we start counting triplets at umin = 1 and vy, = 0
and take 5 intervals for each variable with Alogu = 0.1 and Av = 0.2. The results
of oppp/ vV'DDD calculated from the simulation samples are shown in Figure 4.1b as a
function of the mean triplet count (DDD). The analytical prediction of Eq.(4.16) is also
plotted in the figure. Again the two results coincide very well, demonstrating that it is

important to keep the second term on the rhs of Eq.(4.16), and that the equation gives a
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Figure 4.1 — a). The ensemble error opp of pair count DD(r), normalized to /DD(r),
as a.function of pair separation r. The triangles are the estimates from 50 simulation
samples. The solid curve represents the analytical result Eq.(4.6). The dashed line is the
Poissonian error. b). Similar to a), but for the triplet count DDD. The solid curve is the
prediction of Eq.(4.16).

good estimate of the ensemble errors of DDD in different bins.

In Figures 4.2a and 4.2b, we plot respectively the bootstrap errors of DD é,nd DDD for
the first simulation sample [note: our conclusions here do not depend on our choice of the
sample]. The errors are normalized to the Poissonian errors. The triangles represent the
results calculated from 500 bootstrap resampling realizations. The analytical predictions
[Eq.(4.12) and Eq.(4.18)] are drawn for comparison. For the triplet count, we find a very
good agreement between the simulation results and the analytical formula. For the pair
count, however, although Eq.(4.12) fits well the simulation results for the first 8 bins, it
clearly gives a larger deviation in the last two bins. The c'liscrepancy arises from the fact
that the assumption of weight independence breaks down when a large part of objects
in the sample contribute to the pair count in single bin [since } w; = 1], and that the

correlation between weights reduces deviation in the count. In the first 8 bins, the counts

61



5 flll [ i T [ T 10 I lllll”[ ¥ {IIIITII T ‘IIIHI

Bootstrap | Bootstrap i
2 estimation’ T s estimation ]
— analytical prediction | — enalytical prediction 4
3 b .
<
a
a
3
& 2+

2l -

11|[1| l | 1 l 1 1l|||lu| ll!!lllll ||lllll

20 50 1 3 10 30 100 300 1000
R (h™ Mpe) DDD

a) b)

Figure 4.2 — a). The bootstrap resampling error opp of pair count DD(r), normalized

to 4/DD(r), as a function of pair separation r. The triangles are the estimates from 500

bootstrap resampling realization of the first simulation sample. The solid curve represents
the analytical result Eq.(4.12). The dotted line is +/3 times the Poissonian error. b).
similar to a), but for the triplet count DDD. The solid curve is the prediction of Eq.(4.18)
and the dotted line is /7 times the Poissonian error.

DD are less than 850, a small fraction of the objects contributing to the pair counts in
single bins. In the last 2 bins, DD are 1394 and 2417 respectively, a considerable part of the
objects will be involved for the single bins. In the case of triplets, the largest count is 781.
Furthermore, it is easy to prove that for same value (3> 1) of DD and DDD, the number
of objects involved in the triplet count is much smaller than that in the pair count. This
is why Eq.(4.18) fits the simulation result very nicely. At present, it is difficult to quantify
when the assumption of weight independence breaks down for DD and DDD. From a
check .of our previous results of pair and triplet counts in galaxy and cluster catalogues,

we found that, for a reasonable choice of bin sizes, both Eq.(4.18) and Eq.(4.12) give good

approximations.
It is worthwhile to point out that our formulation for the bootstrap resampling process
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[e.g., Eq.(4.7)] provides a very convenient way to accurately estimate this type of errors.
Before counting pairs and triplets, we assign to each object a weight given by a resampling
process. The counts of pairs and triplets in each resampling realization can be obtained by
assigning the weights of this realization to the pairs and triplets in the parent sample. The
variances of the counts can easily be calculated. This algorithm needs only a small amount
of computational time to get bootstrap errors. And the algorithm accurately simulates the

bootstrap resampling process.

b). Fit errors
As well known, the two-point correlation functions of galaxies and clusters of galaxies

obey the power law:

E= A7, (4.20)

and the three-point functions can expressed well by the hierarchical form:

C(le,Tza,'f‘al) = Q[f(rlz)f(rzs) + f(Tzs)f(Tsl) + f(”'31)5(7"12)]- (4-21)

The Aparameters A, v and @ together with their errors are often obtained by the least-
square fit of the data in different bins. In doing the fit, it generally requires that the
data at different bins are independent. But it may not be the case for the correlation
functions. Here we show how the bin-bin interdependence affects the error estimates of
the parameters and how the correct answers can be obtained.

We fit the two-point correlation function ¢(r;) (¢ = 1,...,10) by the power law (4.20)
with the slope v chosen to be 1.8. To choose a fixed 7 is only to simplify the discus-
sion. The choice is reasonable as already shown by the simulations. Let DD®(r;) =
DD(r;) — (RR(r;)). The expected value (RR(r;)) is estimated from a large random sam-
ple containing 10,000 points and is interpolated at small separations, so its error can be
neglected. According to Eq.(4.20), we can get A by minimizing:

opp(Ti)

The values of A and its fit error §4 depend on the error model for opp(r;). Here we
adopt three error models for opp(ri): the ensemble error; the bootstrap error; and the

Poissonian error.
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Figures 4.3&4 — 3. The amplitude A of the two-point correlation function ¢ and its fit
error A for 50 simulation samples, based on different error models (to weight the data in
each bin) in the least-square fit: (a) the bootstrap error; (b) the ensemble error; (c) the
Poissonian error. The solid line represents the mean value (A4) of the amplitudes 4 (based
on the ensemble-error model) of the 50 simulation samples. The dashed lines represent the

lo deviation among the 50 amplitudes. 4. Similar to Figure 4.3, but for the amplitude Q

of the three-point correlation function (.

The fit results for each sample are presented in Figure 4.3. The value A does not
sensitively depend on the error model of epp, but the fit error § A does. For each error

model, the mean (i.e. AMFP) 4 of the 50 fit values of A (for the 50 samples) is about
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350 (h~'Mpc)!®, with the standard error (i.e. AEFP) §4 =~ 31 (h™'Mpc)'®. Note that
this error is what we want for A. For each individual sample, the fit error of 4, §A4, is
typically 27 (A~ Mpc)'-® for the bootstrap-error model, 16 (A~ Mpc)*® for the ensemble-
error model, and 11 (A™*Mpc)!-® for the Poissonian-error model. Such fit errors are what
we can obtain in studying galaxy distribution, for usually we have only one observed
sample. Clearly the bootstrap-error model gives the best and the correct result. The
ensemble-error model underestimates the error of A by about 50%; the Poissonian-error
model underestimates it by even a larger factor.

It is important to point out that the ensemble-error model gives correctly the error
estimate of £ in individual separation bins. Because of the interdependence of £ among
different bins, the least-squares fit, which requires that ¢ in different bins are independent,
results in an underestimated error of A. The overestimate of opp in individual bins by
the bootstrap method compensates for the underestimate due to the bin-bin dependence.
The bootstrap resampling technique finally gives a correct estimate of the error of 4. In
';he original paper of Barrow et al. (1984), they also found that the bootstrap method
correctly estimates the error of 4, consistent with our result.

Now we discuss the fit of the three-point correlation function. Here we assume that
¢ obeys the form of Eq.(4.21) and use the least-square fit to find thé constant ). As in
fitting £, three error models — the ensemble error, the bootstrap error, and the Poissonian
error — are used to weight the data in each bin. The fitting procedure is similar to that
for ¢, so we omit the details here. The fit results of @ are presented in Figure 4.4. For
each weighting model, the mean (i.e. AMFP) Q of the 50 fit values is about 0.65 with the
standard error (i.e. AEFP) 6Q =~ 0.09. The fit error §Q of each sample is typically 0.05
(Ensemble), 0.11 (Bootstrap) and 0.03 (Poisson). Again the bootstrap method gives the
best and the correct estimate for the error of Q. The other two models underestimate the

error for the same reasons as those in the fit of the two-point correlation function.

4.3 Conclusions

In this chapter, we have derived formulae which relate the widely-used error estimates
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of correlation functions to the quantities which can be easily obtained from real samples.
We have used an ensemble of simulation samples to test these analytical results and found
a good agreement. Because of the interdépendence among the quantities in different bins,
the errors of the parameters in the regressions (such as A in ¢ and Q in () are underes-
timated when we use the ensemble errors to weight the data. The bootstrap resampling
technique overestimates the error in individual bins. This overestimation compensates for
the underestimation due to the bin-bin interdependence. The fit using the bootstrap errors
gives the best and correct results of the errors in the regression parameters. Our results

provide a good and convenient way to estimate errors in the correlation functions.

1The materials presented in this chapter are based on our paper: Mo, H.J., Jing, Y.P., &
Bérner, G. 1992, The Astrophysical Journal, 392, 452.
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5

Correlation functions of

galaxies in the ESO-Uppsala catalogue

5.1 Introduction

Correlation functions have been widely used to measure the clustering in galaxy distri-
bution (§3.1-3.2). During the last 15 years, several important results have been obtained.

The two-point correlation function of galaxies is found to closely obey a power law

¢(r) = (ro/7)" (5.1)

with o ~ 1.8 and 7y ~ 5h~*Mpc (Groth & Peebles 1977, hereafter GP; Davis & Peebles
1983). A scaling relation is found between the spatial two- and three-point correlation

functions (GP, see §3.1-3.2)

((r1,72,73) = Q[€(r1)é(r2) + &(m2)E(rs) + &(r3)é(r1)] (5.2)

with @ ~ 1. It is also found that galaxies with different morphological types have different
correlation functions. In particular, Davis & Geller (1976) and Giovanelli et al. (1986),
using respectively the two-dimensional magnitude-limited UGC samples (complete to m =
14.5) and the two-dimensional samples constructed in the Perseus-Pisces region, found
that elliptical and lenticular galaxies have a two-point correlation function with larger
amplitude and steeper shape. These statistical results are frequently used as important
observational inputs to the theories of galaxy formation (see, e.g., Efstathiou & Silk 1983).

However, there are also questions concerning the universality of these results. First,
the results are mainly derived from galaxy catalogs in the northern hemisphere, it is
important to test whether or not galaxies in the southern hemisphere give the same results.

Second, the previous results are mainly based on magnitude-selected samples. Since the
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diameter-function of galaxies (DF) is now available (Lahav et al. 1988, hereafter LRL),
it is interesting to see whether or not the diameter-selected samples give similar results.
Third, the morphological dependence found by Davis & Geller (1976) and Giovanelli et al.
- (1986) might apply only for galaxies in dense clusters, because their samples are dominated
respectively by local superclusters and by Perseus-Pisces supercluster. It is important to
test whether or not the same dependence holds for a statistically fairer sample.

To answer these questions, we estimate the two- and three-point correlation functions
for galaxies in the ESO/Uppsala (hereafter ESO) catalog (Lauberts 1982), and analyze
their dependence on the morphological type. This catalog is one of the largest catalogs in
the southern hemisphere with a complete list of morphological type. It is also completely
selected by a angular-diameter criterion. Furthermore, the catalog has a very similarly
selected partner, the UGC catalog (Nilson 1973), in the northern hemisphere, which enables
us to compare galaxy distributions in both hemispheres.

§5.2 summarizes data and samples. In §5.3 we present the results of the two- and
t«hree'—point correlation functions for various samples, without dividing galaxies according
to morphological type. The morphology dependence of the correlation functions is analysed

in §5.4. §5.5 contains our conclusions.

5.2 Data and samples

We form samples from the ESO catalog (Lauberts 1982). Since we will also use the
UGC catalog (Nilson 1973), it is also summarized below. The ESO catalog covers the sky
south of § = —17.5° and the UGC catalog covers the sky. north of § = —2.5°. Both catalogs
are claimed to be complete to a major-blue diameter (dy) of 1 arcmin. We form samples in
the region b < —25° (ESO) and 4! > 25° (UGC) with different angular-diameter limits
di 1im [logdi 1im changes from 0.00 to 0.65 with increment 0.05; the samples are named as
follows: E00 (U00) denotes the sample with logd; 1w = 0.00, E05 (U05) denotes that with
logds 1im = 0.05, and so on].

The selection effects due to the galactic obscuration are examined. The distribution

of the galaxy density as a function of declination and galactic latitude is determined and
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compared with that expected from a random distribution over the same sample regions.
The results are presented in Figure 5.1.

For the ESO catalog, the b''-dependence is negligible in the chosen region (Figure
5.1b) and there is a tendency for the galaxy density to decrease at high (negative) values
of declination (Figure 5.1a). The dependence is represented by the smooth curve drawn
in the figure. A similar dependence is found for the distribution of Abell clusters in the
southern hemisphere (Batuski et al. 1989). For the UGC catalog, we found a negligible 4-
dependence (Figure 5.1c) but a strong density excess around the Galactic pole (8 > 60°)
(Figure 5.1d). The latter is obviously not due to the galactic obscuration, but due to the
presence of the Coma and Virgo superclusters. So we will make no correction for the UGC
samples.

A diameter function of galaxies (DF) is needed to transform the angular correlation

function to the spatial correlation function. We use the DF given by LRL:

$(D)dD = .t~ 1+ t/v]™" [,u/t T+ t/u)—l] dt, (5.3)

where D is the metric diameter; ¢ = (D/D,)?. For the ESO catalog p = 0.25; v = 3.05;
D, = 7103kms 'arcmin; ¢, = 0.0101( A~*Mpc)™3. For the UGC catalog p = 0.16;
v = 3.78; D, = 6073 kms™'arcmin; ¢, = 0.0139( A~ Mpc) 3.

5.3 The two- and three-point correlation functions

5.3.1 The two-point correlation function

The two-point angular correlation function w(f) is estimated by the definition (see

§3.1)

o(6) = n3, DD(8)
n? RR(6)

where DD(6) is the number of data pairs with separation in the range 6 + A8/2; RR(6)

~1 (5.4)

is the corresponding count in a set of points randomly distributed within the sample

boundary; n and ng are respectively the mean number densities of the data sample and of
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Figure 5.1 — a) The distribution of ESO galaxies (with d; > 1./0) as a function of

declination (as compared with a distribution of random points within the same boundary).

The smooth curve represents the selection function used in our analysis. b) The same as

a), but as a function of galactic latitude. ¢) and d) plot the corresponding curves for the

UGC galaxies.

the random sample. For the ESO samples, the random sample is generated with the same

declination dependence as is represented by the smooth curve in Figure 5.1a.

The pair counts DD and RR are estimated in 20 bins with the 7th bin covering the
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Table 5.1

Fit of the two-point correlation functions

sample N, 02, 6°.. 3 B P Bos  Pus ro
E00 5477 0.10 4.00 0.79=+0.03 0.29£0.01 0.91 0.290.01 0.91 4.87 %+ 0.07
E05 4523 0.10 4.00 0.79 +0.03 0.35+0.01 0.97 0.35+0.01 0.96 4.84+ 0.08
E10 3574 0.13 5.01 0.8640.05 0.41+0.02 0.98 0.42+0.02 0.73 4.74 +0.11
E15 2371 0.13 5.01 0.84+0.05 0.60+0.03 0.74 0.570.03 0.53 5.01 + 0.12
E20 1889 0.16 6.31 0.8940.05 0.68=0.04 0.70 0.610.03 0.10 4.66 + 0.12
E25 1362 0.16 6.31 0.87+0.06 0.79 = 0.05 0.88 0.71::0.04 0.59 4.52 % 0.13
E30 1051 0.20 7.94 0.92+0.08 1.00 = 0.07 0.99 0.88+0.06 0.75 4.53 % 0.16
E35 699 0.20 7.94 0.98+0.08 1.31+£0.11 1.00 1.05+0.08 0.71 4.47+0.18
E40 487 0.25 10.00 1.03+0.10 1.75+£0.16 0.99 1.39+0.12 0.62 4.65 %+ 0.22

. E45 386 0.25 10.00 0.91+0.10 1.81+0.23 0.99 1.53+0.15 0.99 4.37+0.23
E50 303 0.32 12.59 0.9040.13 1.92+0.37 1.00 1.51+0.18 1.00 3.87 % 0.25
E55 236 0.32 12.59 0.79+0.13 1.99 £ 0.43 1.00 1.73+£0.19 0.98 3.72 4 0.22
E60 199 0.40 15.85 1.00+0.15 2.67+0.62 1.00 1.7340.22 0.99 3.31 +0.23
E65 143 0.40 15.85 0.99 £0.20 3.79 4+ 1.31 1.00 2.4240.33 1.00 3.55+ 0.26

range 0.1-(i—1)—1 < logh < 0.1-7—1 for log dy im < 0.45 and 0.1 (1—1)—0.6 < logh <

0.1-7— 0.6 for other samples. The bootstrap resampling technique (hereafter BRT, Barrow

et al. 1984; Chapter 4) is used to estimate the error at each separation. In Figure 5.2 we

plot w(8) for several typical samples formed from the ESO catalog. The plots illustrate

that the data points are guided well by a power-law

w(f) = B~ (5.5)

at w(#) > 0.1. In Table 5.1, the results of the power-law fitting (which is given by minimiz-

ing %2 of the fit; the corresponding minimum is denoted by x2 ;,) of the estimates of the
g X g min

two-point angular correlation functions are presented for all the samples. The tail proba-
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bility, P = P(x® > x2,;,), that the variable x* of the chi-square-distribution for the given
degrees of freedom exceeds x2 ; 1is listed to represent the goodness-of-fit. P(x* > x2,:,,)
is calculated by assuming that the data points used for the fits (which are indicated by
the range of 8, i.e., 0, and 0,4., in Table 5.1) are independent. As we can see clearly
from the table, for each sample, the power-law assumption [Eq.(5.5)] can be accepted at
w(f) > 0.1, with the index § being about 0.8. We also try to fit the results by a single
index @ = 0.8 (which is approximately the weighted mean of the 8 values listed in Table
5.1). The results of the fit are also listed in Table 5.1 (with the amplitude B denoted
by By and the x? > x? . probability P denoted by Pys). The x>-test shows that the
universal power-law index (# = 0.8) can be accepted for all the samples. This result is
remarkable, since the sample volume (given by the typical depth of the sample) varies
from the shallowest (~ 25 h~*Mpc) to the deepest (~ 120 h~*Mpc) samples by a factor of
~ 100. The error estimated from the Poissonian variance of the pair counts is about half
of that given by BRT. No universal power-law index can be accepted for all of the samples,

if the Poissonian error estimate is used in the fitting.

The diameter function given by Eq.(5.3) is used in Limber’s equation (§3.1.3) to
compute the two-point spatial correlation functions with a power-law form represented by
Eq.(5.1). We choose o = 1+ f = 1.8. The logB-logd; 1in relation is drawn in Figure
5.3. For @ = 1.8 and a given ry, the relation is a straight line with slope 1.8, for B
(D717y)* o (ditimmo)* where D, is the characteristic depth of the sample. It is clear from
Figure 5.3 that the data points can not be fitted (the fit in the following also refers to a
weighted least chi-square) by a single value of ry. We change 7y to find a ‘best fit’ (i.e., to
achieve a reasonable acceptance, e.g. P > 5%, by removing the smallest number of data
points), which gives ry = 4.74 A~ Mpc (the value of the variance among the used samples
is about 0.20 h~!Mpc which is compared to the largest internal error, ~ 0.26 h~*Mpc for
the shallow samples) with P ~ 15%. In this fit, we have to remove the data points for
the fo‘ur shallowest samples (E50, E55, E60, E65) and for the sample E15. Including E15
reduces P(x? > x2.;,) to ~ 7% which gives a marginally acceptable fit. The fit is not
acceptable (with P < 0.5%) if one or more data points of the four shallowest samples are

used. We have also used other values of a. The results remain the same for all a values
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Figure 5.3 — a) The scaling of the angular correlation strength B with sample depth
(represented by the diameter limit) for ESO samples. The straight line represents the
power-law form of the two-point spatial correlation function indicated in the plot. The
error bars represent variations in the power-law fits of the two-point angular correlation

functions for the corresponding samples. b) The same as a), but for UGC samples.

that can be used in a power law fit [Eq.(5.5)] for each of the samples.

The deviations of the data points for the shallowest samples indicate a drop of the
correlation function length of galaxies in the local region. For example, the correlation
lengths for E60 and E65 are about 3.5 h~'Mpc. A change of o in the acceptable range
does not change the value significantly. A very similar behavior exists in the results of the
similarly constructed UGC samples. Such a drop of correlation strength of galaxies in the
local region is found by many other authors (e.g., Davis et al. 1978; Einasto et al. 1986;
Borner & Mo 1990) and is interpreted as being due to a fractal structure in the galaxy
distribution (e.g., Calzetti et al. 1988) or due to a density enhancement in the local region
(Davis et al. 1988; Borner & Mo 1990). Our results show that the depth dependence of the
galaxy correlation length is significant only in a region with depth < 40 h~Mpc, giving

support to the latter interpretation.
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5.3.2 The three-point correlation function

The angular three-point correlation function z(6;,6,,6;) is defined by the joint prob-
ability of finding triplets in three surface elements df};, dQ0; and dQ13 separated by 6;, 6

and 63 on the celestial sphere:
dP = N3[1 + w(@l) + w(92) + UJ(03) + 2(61,92,93)]dQ1dQ2d93 (56)

where n is the mean surface number density. Without loosing generality we can set ; <
6, < 03 and define another set of variables: § = 6;; u = 0,/601; v = (03 — 62)/6:. Here we

use the following bins of 8, u, v:

@i < ) S ®i+1 [].Og(@i_{_l/@i) = 01, 1= 1,' . '77;ma:cy @1 = 010],
U;<u< Ui+1 [10g(U1+1/U1) = 01, 1= 1,' -+, 10, U, = 1],

Vi<v<Vipa Vigpan—-Vi=01,i=1,---,10, V; = 0].

We estimate the three-point correlation function for the sample E05. Since the power-law
form of w(f) holds only at § < 6., = 4.0° for this sample, we limit our analysis to
triangles with their longest sides smaller than 6,,,,. The value of 7,,,, is determined by
this condition. There are totally 922 bins.

Let DDD;;; and RRR;;; be respectively the counts of triplets in the bin ©; < 6 <
Oit1, Uj < u < Ujyy and Vi < v < Viy in the galaxy sample and in the random
sample (the same random sample as in the estimate of the two-point correlation functions

in §5.3.1). Integrating Eq.(5.6), we have:

DDD;ji, .nn

Zijr = ==—1(—)* = 1 - W;; _

S R ) ik> (5.7)
where

- Jort Jo JiE w(0) + w(ub) + w((u + )8)] 16 (u + v)udfdudy (o.10

t]k = ®i+1 L"j_*_l ‘k-{-l 1 3 ; Ada

f@i ij f <0 (u + v)udfdudv
fgiH ff’“ e z(61,62,603)1 6% (u + v)udddudv

Zijg = —5 ; (5.7b)

S fU,.’“ JiH 269 (u + v)udddudo
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A = /4u? — ((u +v)? —1—u?)%

Knowing DDD;jr, RRR;j; and W;jk, we obtain Zijr for each bin, using Eq.(5.7). The
angular three-point correlation function can then be calculated from Eq.(5.7b). We fit the

three-point spatial correlation function by two models (@ and Qs are constants):

C(r1,72,73) = QLE(r1)E(r2) + E(r2)é(ra) + E(ra)&(r1)] + Qa€(r1)é(r2)é(rs)  (5.8a)

with and without the cubic term. The corresponding models in the angular function can,

by assuming the power-law form of ¢{(r) in Eq.(5.1), be written as (Téth et al. 1989):

z(61,62,03) =qlw(81)w(b2) + w(B2)w(03) + w(f3)w(61))

180 Y (61, 62, 65) (5.85)
g3 T H3(a) w(al )w(92 )w(03) )
where
H(a) = / do(1 + 2?)~/2;
- _ 1 = 2 —a/2 = 2 -~ /2 61 02 2 —a/2,
¥ (01392703) = 7 d:E[:D + 1] dy[y + 1] [(-——:1} - —y) + 1] )
93 —00 — 00 93 03

q/Q and ¢3/Q; only depend on the DF and a (For the formulas, see Té6th et al. 1989).
Actually we use the weighted least-chi-square to fit equation (5.7b) by expression (5.8b)
to obtain g and g;. The goodness-of-fit is represented by P(x* > X%,i,)- The error in our
fitting comes from two kinds of independent statistical uncertainties: that from DDD;jy
which is estimated by BRT and that from W;j; which is given by the uncertainty in w(8).
We neglect the error from RRR;ji, since we have constructed a large random sample (6,000
points) and used an interpolation formula for RRR;jy.

For sample E05, there are 894 bins with counts > 1. We only use these bins in our
fitting, because BRT error of DD D;j; in empty bins is zero. Had these small number (28)
of empty bins been used, they would have overwhelming weight in x2- fitting and lead to
incorrect results. In order to check sensitivity to the exclusion of these bins, we also fit the
result by using bins with counts > m(m = 2,---,20). All these bin choices give similar
results, implying that excluding these empty bins does not influence our conclusions. The

x2-test shows that the two models can all be accepted (with P(x?) ~ 1) for all of the bin
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Figure 5.4 — The amplitude (¢) of the three-point angular correlation function as a

function of a) the size 6, b) the shape parameter u and ¢) the shape parameter v, obtained
by using all bins with triplet-count > 1. The error bars are 1o variations among bootstrap

resampling.

choices. This means that the cubic term is not important within the error of the results.
The fitting without the cubic term gives a value of g in the range 0.79 — 0.92 for different
bin choices, with § ~ 0.90, 64 = 0.03 (the internal error is about 0.04) and g3 < 0.16. For

illustration, we plot ¢ with respect to 8, u, v for the fit with 894 bins in Figure 5.4.

Using the DF given in Eq.(5.3), we can find the conversion factors (see Téth et al.
1989) ¢/Q = 1.37, ¢3/Q3 ~ 8.09 . We then obtain @ = 0.66 + 0.03 and |Q3| < 0.02.
The value of @ obtained here is smaller than that given by GP. GP gave @ = 1.29 &+
0.21. This discrepancy could be due to the fact that galaxy distribution in the southern
hemisphere contains less prominent clusters than in the northern hemisphere. The result
is in agreement with those given by Peebles (1981) (Q = 0.68 + 0.05) for the Rood sample
and by Efstathiou & Jedrzejewski (1984) (Q = 0.8 & 0.1; see also Bean et al. 1983) for the
CiA, AAT, KOS and KOSS redshift samples, all of which contain no prominent clusters.

We have carried out a similar analysis for sample U05, without removing the apparent
galaxy concentration around the north pole of the Galaxy. We found ¢ = 1.78+0.02. Using
the DF for UGC catalog (LRL), we obtained ¢/Q ~ 1.32; q3/Q3 ~ 5.84, which leads to
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Q = 1.3540.02, |Q3] < 0.02.
It should be pointed out that, if we use error estimate given by a Poissonian distri-

bution rather than by BRT, the result can not be fitted by the two models represented by

Eq.(5.8) with reasonable degree of acceptance.

5.3.3 Discussion

It is interesting to compare our results with those obtained for other catalogs. The
index of the two-point correlation function (6 = 0.8) found here is in agreement with
that found for many (northern) sky samples (see §3.2). The correlation length 7, =
4.7440.20 h~'Mpc is also in good agreement with the result (ro = 4.7 h~!Mpc) obtained in
GP for the Lick catalog. The agreement is remarkable, considering that the Lick catalog is
differently selected (magnitude selected), much deeper (about two times as deep) and covers
a different sky region (§ > —23°) than the ESO catalog. Our results show that samples
gelected by diameter give practically the same results for the two-point correlation function
of gzﬂaxies. The results also demonstrate that w(#) obeys a scaling relation represented by
a~ 1.8 and ry =~ 4.7 h~*Mpc for all samples deeper than ~ 40 h~Mpc.

Very recently Maddox et al. (1990a) have reported their results of the two-point
correlation functions for samples constructed from the APM galaxy survey. They found a
larger correlation length than that obtained here. A possible explanation could be that our
correction for the declination dependence might erase some real clustering. If we calculate
the two-point correlation function without correcting for the dependence, the correlation
length becomes larger and the correlation index becomes smaller. It is unclear whether
this declination dependence is due to clustering or it is due to a selection effect. For
the UGC catalog, a strong excess of galaxy density was found only at > 60°. It is
reasonable to assume that this dependence is due to galaxy clustering (around the galactic
north pole) rather than galactic obscuration. In this case, we found a larger value of ry
(= 5.8+0.3 h~1Mpc) and a smaller value of o (= 1.6 +0.1).

The correlation length ry drops to ~ 3.5 h~'Mpc for the shallow samples (with depth
< 30 h~'Mpc). This agrees with the result, ry ~ 3.6 h~1Mpc, for the bright galaxies (at
m < 13) in the southern hemisphere (Davis et al. 1978). The analysis for UGC samples
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gives a very similar result. Our results demonstrate clearly that the depth-dependence is
produced by the local region with a depth < 40 h~*Mpc.

The three-point correlation function has been demonstrated to obey the scaling rela-
tion given by Eq.(5.2) for galaxies (e.g., GP, Sharp et al. 1984) and for clusters of galaxies
(Jing & Zhang 1989; Toth et al. 1989). It is found that @ ~ 1. Our results show that
galaxies in the ESO catalog also obey such a scaling relation, but with a smaller value of @
(Q = 0.66 £ 0.03). This value is much smaller than that found by GP for the Lick catalog
(Q = 1.29 + 0.21) and that obtained for the UGC catalog (@ = 1.35) by us. As pointed
out by Peebles (1980), the existence of prominent clusters could enhance the value of Q.
The low Q value we find for the ESO catalog could be due to the fact that the southern
hemisphere contains less prominent clusters than northern hemisphere. It is interesting
to note that redshift samples containing no prominent clusters also gave similar values:
Q ~ 0.7 (Peebles 1981; Efstathiou & Jedrzejewski 1984).

The error estimates used for different quantities could be quite formal. The error at
éa,ch'bin in the two- and three-point correlation functions is estimated by BRT. The error
is used only to weigh each point in the fitting. The errors quoted for the results (AB,
A for the two-point function; Ag, Ags for the three-point function) for each sample are
internal in the sense that they are estimated from the vafia.nce of the fit. The external
errors based on the scatter of results among independent samples are larger. The universal
scaling of w(#) with depth can be accepted with higher confidence than that given by the
x2 test. For the correlation length 7y, the standard deviation derived from the scatter
of the results among the ten samples with logd; yim < 0.5 is about 0.2 'Mpc which is
comparable to the deviation (0.26 h~'Mpc) quoted by Peebles (1979) among galaxies of
different fields. The deviation could be underestimated because the samples with different
diameter limits are not completely independent. The error on @ quoted in our discussion
represents only the internal error. The deviation among independent samples can be much
larger (GP found AQ = 0.21). A similar result might be obtained if we use the scattering

among the results of different realizations of the bootstrap resampling.

5.4 Dependence on morphological type
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The dependence of the two- and three-point correlation functions is analysed by using
samples E05. The diameter limit (log,,d1 > 0.05) is chosen for the sake of completeness.
The sample is further divided into E (elliptical, lenticular and compact), S (Sa, Sab, Sb),
and L (Sbc and later types) samples according to morphological types (see Table 5.2).
The correction for the selection effects is made, and the two- and three-point correlation

functions are estimated in the same way as in the last section.

5.4.1 The two-point correlation function

The two-point angular correlation function w(f) is estimated by using Eq.(5.4). The
pair counts DD and RR are estimated in 20 bins with the ith bin covering the range
0.1-(z—1)—1<1logh <0.1-7—1 for each sample.

In Figure 5.5 we plot w(#) for different morphological samples. The results clearly
show that w(#) of each sample can be fit by the power-law form [Eq.(5.5)] at w(6) > 0.1.
In Table 5.2 we present the results of the power-law fitting for w(f) by using the weighted
least x?-techniques. The power law form [Eq.(5.5)] is acceptable for each sample. The
early type galaxies have a slightly steeper slope than the other two types; the slopes of
the S and L samples are comparable. Since o = § 4 1 without depending on the form of
the diameter function, the dependence of the slope on the morphological type found here
is much weaker than that found by Davis & Geller (1976, they found 8 = 1.10 & 0.09;
0.71 £ 0.05; 0.69 & 0.06 for ellipticals, lenticulars and spirals, respectively) and Giovanelli
et al. (1986, they found f = 0.90+0.06, 0.65+0.07 and 0.3740.04 for the E, S and L types
respectively). For the corresponding UGC samples (constructed from U05), we also found
a weak morphology dependence: the slopes for the E; S and L samples are respectively
0.82 4+ 0.06, 0.87 + 0.12 and 0.54 4 0.05.

Since there is no statistical results of the DFs for different morphological types, we
assume that different morphological types obey the same form of the diameter function
{Eq(53)] We should remember that the correlation length 7y is sensitive to the form of
the diameter function. From the Limber equation (Peebles 1980), we get the two-point
spatial function £(r) = (r¢/r)?+!, where 7y is also listed in Table 5.2 for each sample. We

see that the early type galaxies have a correlation strength about two times that of the
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Table 5.2

Samples and their two-point correlation function

Sample  Morphology N, 0; 6°.. BLEAB B+ AB P(x*) o

min

ESO-E E-E0-SOa-Comp 861 0.1 40 096+0.09 1.03+0.10 1.00 8.35
ESO-5 Sa-Sab-Sb 1348 0.1 40 0.81+0.09 0.494+0.05 0.95 5.84
ESO-L Sbc and Later 1719 0.13 4.0 0.83+£0.14 0.28+0.03 1.00 4.29
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Figure 5.5 — Logarithmic plots of the two-point angular correlation functions for the

morphology samples (with their morphological types indicated on the plots). The error

bars represent lo variations among bootstrap resamplings.
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S types and about four times that of the L types. The result is the same as that found
by Davis & Geller (1976) and Giovanelli et al. (1986) for two-dimensional samples and by
Borner et al. (1989) for redshift samples, indicating that the assumption of a universal
diameter function for different types is reasonable for our purpose. The effective depth of
the ESO catalog is about 70 h~!Mpc. We see that the morphology dependence can exist
on scales at least to Deffbimaz = 5 h~Mpc.

5.4.2 The three-point correlation function

The three-point angular function for each morphology sample is calculated by using

the following bins of §, u, v:

®i < 9 S ®i+1 [10g(®i+1/®i) = 0.2, 1= 1,° . ',’imm;, @1 = 0.10];
U; <u< Ui [10g(Ui+1/Ui) =02,2=1,---,5,U; = 1];
W<'US.VH_1 [V;+1—m:02,121,,5,V1:0]

We also limit our analysis to triangles with their longest sides less than 0.,4, ~ 5.0°. There
are totally 99 bins.

The results of the three-point functions for different morphological samples are pre-
sented in Table 5.3. The fitting is done in the same way as in §5.3.2. The upper limits
of Q3 for all of the bin choices are much smaller than @ (Table 5.3) for all the samples.
Adding the cubic term reduces x2,;, very little. So the cubic term is not important for
galaxies of different morphological types, within the error of the statistics. The results of
fitting without Q3 for different bin choices are presented in Figure 5.6. We can easily see
that, the E- and L- type samples have the same ) values within the statistical uncertainty;
the mean value is about 0.6, which is in good agreement with the result for all galaxies
without morphology division. However for the S sample, the Q) value is much smaller and
no meaningful signals are detected. A similar behaviour is seen in the results for the sample
U05. In this case, the E and L types give a similar value @ ~ 1.3 which is in agreement
with that found for the total sample; the S sample gives a much smaller value @ ~ 0.7.

But the fits for bins with counts > 7 give a similar @) value as the E and L samples.
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Table 5.3

The three-point correlation functions

Sample N Qs(upper limit) Q(hierarchical)

ESO-E 92 0.03 0.55+ 0.12
ESO-S 92 0.02 0.03 £0.12
ESO-L 90 0.05 0.48 +£0.20
UGC-E 92 —0.05 1.08 £ 0.10
UGC-S 77 0.05 0.66 +0.20
UGC-L 93 —-0.20 1.25+0.10
i T x T [ 1 1 L l ]
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Figure 5.6 — The amplitudes (Q) of the three-point spatial correlation function for
different bin choices (The morphological types are indicated on the figure). a) for the
ESO samples; b) for the UGC samples. The error bars are 1o variations among bootstrap

resamplings.

5.4.3 Discussion

Since the slope of the two-point spatial correlation function is related to that of the

angular function without depending on the form of the diameter function, our results
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suggest that the slopes of the two-point correlation functions for different morphological
types are similar for a statistically fairer sample. The morphology dependence of the slope
found before might be mainly due to galaxies in prominent clusters. The samples used
by Davis & Geller (1976) and Giovanelli et al. (1986) are dominated respectively by the
local superclusters and by the Perseus-Pisces supercluster. The fact that the northern sky
contains several prominent clusters (Virgo, Coma and Perseus-Pisces) could account for
some difference we found between the northern and the southern samples. It is interesting
to note that the three dimensional analysis of CfA survey (Borner & Mo 1990) also gave

a weak indication of morphology dependence.

If our assumption of a universal DF for different morphologies is not seriously in error,
our results indicate that the clustering strength increases from late- to early- types. The
trend is in good agreement with that given by previous studies for 2-D samples (Davis
& Geller 1976; Giovanelli, et al. 1986) and for 3-D samples (Bérner & Mo 1990). A
more quantitative comparison between different morphological types needs more accurate
knowledge of the DF. We should keep in mind that the uncertainty in DF can easily lead
to a difference of a factor of 2 in the amplitude of £ (Peebles 1980).

The results are interesting for the theories of galaxy formation. If the morphological
segregation of galaxies is due to the fact that the galaxies of different types are formed
on different peaks in a density field, as is predicted by the ‘natural scheme’ of the biased
galaxy formation, galaxies with different types should have different two-point correlation
strengths but approximately the same slope (Kaiser 1984; Bardeen et al. 1986). En-
vironmental effects after galaxy formation can change such a relation in dense clusters
(Whitmore 1989). The weak morphology dependence of the correlation slope for samples
containing no prominent clusters may be due to biassing.

Previous studies have shown that the three-point correlation functions for galaxies
(e.g., GP; Sharp et al. 1984) and clusters of galaxies (e.g., Jing & Zhang 1989; Toth et al.
1989) all obey the same hierarchical form with @ ~ 1. Using the void-probability function,
Mo & Boérner (1990) showed that the clustering of galaxies of different morphological
types obey a similar hierarchical model. The results obtained here show that the three-

point correlation functions for galaxies of different types also obey the hierarchical form
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[Eq.(5.2)]. But the Q value for the ESO S sample is much smaller than those for the E

and L samples. Such a difference could not be due to the difference in the DF's of different

morphologies, since q/Q is insensitive to DFs. So it would be worthwhile to investigate

such a difference by using a much larger sample.

5.5 Conclusions

In this paper, we analysed the angular two- and three-point correlation functions and

their dependence on morphological types, using the diameter-limited samples constructed

from the ESO-Uppsala catalog. We used the diameter function given by Lahav et al.

(1988) to obtain the spatial functions. It is found that:

1.

The two-point correlation functions for samples deeper than ~ 40 h"*Mpc can all be
fitted by the power law £(r) = (ro/r)* with o = 1.8, 7y = 4.74 £ 0.20 h"*Mpc. The
result is in good agreement with that obtained for the magnitude-limited samples in
the northern hemisphere, demonstrating that the diameter-limited samples can also
be used to determine the two-point correlation, that the scalings for the two-point

correlation function hold for galaxies in the southern sky.

. The correlation length 7y drops to about 3.5h 'Mpc for samples shallower than

40 h~'Mpc. The result shows clearly that the depth-dependence of the two-point cor-

relation function is produced by the local density enhancement with a depth smaller

than 40 A~*Mpc.

. The early-type (elliptical, lenticular and compact) galaxies have a correlation strength

about 2 times that for the early spirals (Sa, Sab, Sb) and about 4 times that for the
late types (Sbc and later types). The result is in agreement with that for magnitude-
limited samples.

The slope of the two-point correlation function does not depend strongly on morpho-
logical type. Our results suggest that the strong morphology dependence found before
is mainly due to galaxies in some dominating clusters and that the morphological seg-

regation outside clusters can be due to biassing.
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5. The three-point correlation function for the ESO samples obey the hierarchical rela-
tion. The @ value is much smaller than that for the northern samples and in agreement
with that for redshift samples containing no dominating clusters. The early spirals
(Sa, Sab, Sb) give significantly smaller ) values than the other types. Whether the
difference is real or it is due to that the early spirals have a different diameter function

is not known.

IThe materials presented in this chapter are based on our paper: Jing, Y.P., Mo, H.J. &
Borner, G. 1991, Astronomy and Astrophysics, 252, 449.
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6

Is the spatial cluster-cluster correlation

function enhanced significantly by contaminations?

6.1 Introduction

In the past few years, both the angular and spatial cluster-cluster correlation functions
have been studied in great detail (Hauser & Peebles 1973; Bahcall & Soneira 1983, hereafter
BS83; Klypin & Kopylov 1983; Postman, Geller & Huchra 1986; Bahcall 1988a; see §3.2).
Their results have consistently shown that Abell clusters (Abell 1958) of richness class
R > 1 have positive correlations out to 70 ~ 100 h~' Mpc. The rich cluster-cluster
correlation function, €., is well represented by a power-law, {.. = (ro/r)”, with v = 1.8
and 7o &~ 25 A~ Mpc. Such a large correlation amplitude and coherence length strongly
challenge the traditional galaxy formation theories which assume a Gaussian spectrum of
the primordial density perturbations in an © = 1 Universe. In particular, the standard
biassed CDM model fails to reproduce the observed £.. although it is consistent with
many other features of galaxy clustering and with the microwave background radiation
anisotropies (Davis et al. 1985, White et al. 1987a,b; Frenk et al. 1988).

Since the Abell clusters were selected by eye as surface galaxy-density peaks, some
fraction of the clusters could result from the superposition of foreground and/or back-
ground galaxies or galaxy groups. If the ‘artificial’ clusters are the products of such chance
superpositions then they would introduce a random component in the cluster catalogue,
leaving £.. mostly unaffected. If, however, the superposition effect is, as expected (Lucey
1983), correlated with the position of rich clusters (i.e., the high galaxy density around
rich Abell clusters tends to increase the mean galaxy density around them and therefore
nearby, in angular space, clusters could be revealed that otherwise would not have fulfilled
the Abell selection criteria) then the ‘artificial’ clusters could spuriously enhance the spa-

tial clustering of clusters, which would be manifested especially along the line-of-sight. In
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this work we are interested in this later type of cluster contamination which presently is
in debate whether it can seriously enhance the amplitude of the cluster-cluster correlation
function. Several tests like the scaling dependence of &, the cross-correlation of different
distance-class cluster samples and the finger-of-God effect (e.g., Bahcall 1988a; Szalay,
Hollési & Té6th 1989; Huchra et al. 1990b) show that contaminations have probably little
effect on the estimation of {... Furthermore, X-ray selected clusters and cD clusters, which
should be less affected by contaminations, show as strong correlation functions as those of
BS83 (Lahav et al. 1989; West & Van den Bergh 1991).

Two approaches have been used in an attempt to model the contamination effects and
to correct the original £.. and both have shown that .. could be seriously enhanced by
such effects.

The first approach has been to correct the original galaxy count of each Abell cluster
due to contaminations from neighbouring clusters, according to a model of the spatial and
luminosity distribution of galaxies in clusters (Dekel et al. 1989; Olivier et al. 1990).
These authors construct the galaxy distribution around each cluster centre using the ob-
served cluster-galaxy cross-correlation function (Seldner & Peebles 1977; Lilje & Efstathiou
1988) while assuming spherical cluster halos and using the field galaxy luminosity function
(Efstathiou, Ellis & Peterson 1988). Finally, after the above procedure has been applied
and ‘double’ counted galaxies are eliminated, the clusters which have a corrected galaxy
count < 50 are excluded from the catalogue. This results in a 10% to 15% decrease of
the number of Abell clusters and a significantly weaker 2-point cluster correlation func-
tion. However, neither clusters are spherical [in fact they are highly flattened (Binggeli
1982; Plionis, Barrow & Frenk 1991)] and therefore the total projected area covered by
each cluster is probably smaller than what expected in the spherical cluster model, nor
do galaxies in clusters seem to follow a universal luminosity function (see discussion in
Binggeli, Sandage & Tammann 1988). Furthermore, the high percentage of contamination
found by the above model is in disagreement with a recent estimate of only a ~ 3% con-
tamination based on redshift surveys of individual cluster regions (Struble & Rood 1991b).
Note that such a small cluster contamination should have negligible effect on the statistics
of £.. (as compared with those of Olivier et al.).

The second approach (Sutherland 1988, hereafter S88 and Sutherland & Efstathiou
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1991, hereafter SE91) has been to calculate the redshift correlation function within some
fixed angle separation, £4(Az), or within some projected separation, &r,(R:). These au-
thors found that there is a significant excess of cluster pairs relative to random samples,
i.e., a large positive {p(Az) and/or &, (R.) at large redshift separations (Az > 0.02), and
they attributed this effect to significant cluster contamination. Their method, can only
indirectly test the superposition/contamination effect but is, however, independent of the
contamination model details and so it could be a useful measure of the effect.

The potential importance of the results of Sutherland and Efstathiou prompted us to
carefully check their reality. As well known, there are abundant large supercluster chains
and voids in the spatial distribution of Abell clusters (e.g., Bahcall & Soneira 1984; Batuski
& Burns 1985a,b; Tully 1987). Since the numbers of clusters involved in these studies are
small, strong clustering of small number of clusters could produce certain specific patterns
of superclustering and the resulting redshift correlation functions could be nonzero even
on large redshift separations. In §6.2 we point out that the manifestation of real clustering
and of the effects of contamination is rather different and we propose a conststency check
between different cluster samples as means of discriminating between these two distinctive
effects. Three observational data sets are used in our analysis, which are the redshift
complete samples of Abell clusters used in S88 and SE91. Our results do not support the
contaminations origin of the Sutherland effect but rather, they support real clustering as
the origin of this effect.

To substantiate this indication we produced a set of simulated clusters, selected as
peaks of a density field, the power spectrum of which is so chosen that the peaks have the
same two-point correlation function as the Abell clusters (details in §6.3). The simulated
catalogues are constructed in the same sky area and with the same selection functions
as those of the real samples and they are analysed in an attempt to investigate at what
frequency can we observe the Sutherland effect in the simulated data which by construction

have no contamination effects.

6.2 Samples, redshift selection functions and analysis

6.2.1 Samples and definitions
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Our first sample (hereafter DR41) includes all 100 clusters in the Abell catalogue with
distance class D < 4, galactic latitudes |67I| > 30°, richness R > 1 and redshift z < 0.12.
This redshift limit is imposed in order to properly compare data and simulations (§6.3)
cince the simulation volume is a 640 R~ Mpc x640 A~' Mpc x640 h~! Mpc box.
Neglecting the 3 clusters with z > 0.121s certainly unimportant to our analysis. Relaxing
the richness constraint to include R = 0 clusters with measured redshifts z < 0.12, we
obtain our second sample (hereafter DR40) which contains 210 clusters. The third sample
(hereafter ‘Deep’) is from the complete deep survey of Huchraet al. (1990b), which contains
132 Abell clusters in the region 58° < é < 78° and 10" < a < 15" with z < 0.24. All
cluster redshifts used are from the updated compilation of Struble & Rood (1991a) and
Huchra et al. (1990b). Comoving distances to clusters are estimated from redshifts using

the standard relation (Mattig 1958):

Cc

R ) (002 + (1 - @)1 - «‘/2qoz 1) (6.1)

with H, = 100 A km sec! Mpc™! and go = 0.5 (as used by BS83). We now define the

redshift correlation function within a fixed angular or projected spatial separation range:

falp) = <]J\\;§i> -1 (6.2)

where (A,p) = (8,Az2) for the angular separation case and (A,p) = (rp,R;) for the

projected spatial separation case. These correlation functions measure the excess, over
random, number of clusters with redshift separation Az (or R;) at a certain angular
or projected spatial separation range, A1 < A < Ay;. N is the number of sample
cluster pairs and (N7') is the expected number of random pairs at the same angular or
projected separation range. The random catalogues are, of course, constructed using the
same boundaries and selection functions as the real data. In all of the following analysis

we adopt the BS83 galactic selection function:

P(| b]) = dex [0.3(1 — cosec | b |)] (6.3)

6.2.2 Dependence of € 4(p) on the redshift selection function
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Figure 6.1 — The spatial density distribution of DR41 clusters as a function of redshift,
plotted respectively for the north and south Galactic hemispheres as well as for the whole
sky (details in the text). a). The three smooth redshift selection functions; b). The two
selection functions based on a Gaussian convolution of the obsérved cluster redshifts with

a dispersion o, (indicated in the plot).

Figure 6.3 — The spatial density distributions of: a). DR40 cluster sample (together
with the RSF'); b). ‘Deep’ cluster sample.
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If one carefully examines the excess number of DR41 cluster pairs, AFp(Az), given
by BS83 (their Figure 8) and £¢(Az) given by S88 (his Figure 2), she/he can easily find
some discrepancies. For the angular separation 10° < 6 < 25° and redshift separation
Az = 0.055 ~ 0.06, AFp(Az) is negative while £4(Az) is positive. Furthermore £g(Az)
remains almost at a constant value of ~ 0.3 in several redshift bins around Az = 0.05,
while there are large fluctuations in AFy(Az). These differences cannot be explained even
by normalizing AFy(Az) by random pairs to obtain £¢(Az). Such discrepancies, however,
could arise from different choices of the redshift selection function (RSF) used to construct
the random samples.

We choose the £3(Az) measure and the DR41 sample to illustrate the sensitivity of
the redshift correlation analysis to the choice of the RSF. Since the spatial distribution of
clusters is rather clumpy and we have no a priori knowledge of the intrinsic RSF, we use
six different RSF models. In Figure 6.1 we plot the DR41 cluster density distribution and
the different RSF models. The first three RSFs are smooth fits to the density distribution,
giving different weight to the peak at z = 0.075. The other three RSFs are given by
random assignments of the observed redshifts perturbed with a Gaussian dispersion in z
of o, = 0.0, 0.005 and 0.01 (if o, = 0 then the RSF is identical to the sample density
distribution). The RSFs with . = 0.005 and 0.01, shown in Figure 6.1b, are estimated
by constructing 1000 random samples. Since the peak around z =~ 0.075 is the result of
strong clustering of several superclusters (Bahcall & Soneira 1984), we think that the solid
line in Figure 6.1a probably represents better the sample redshift selection effects than the
dotted or dashed lines.

The dependance of é4(Az) [for the DR41 sample] on the different RSFs is shown in
Figure 6.2. Different histograms correspond to the different RSFs. It is evident that €9(Az)
is quite sensitive to different RSFs, especially at small and large Az. Some distinctive
peaks at Az > 0.05 in S88 vanish or are compressed significantly by choosing certain RSFs
(e.g., the first RSF and the one based on random redshift assignments with a Gaussian
dispersion). However, some high peaks around Az ~ 0.04 do not disappear under any
reasonable choice of the RSF, confirming the S88 effect. It is valuable to keep in mind that
our inaccurate knowledge of the RSF can quite easily lead to a ~ 25% - 30% uncertainty
in £¢9(Az) although the dependence of the spatial correlation function é(r) on the different
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Figure 6.2 — The DRA41 redshift correlation functions £y(Az) estimated from the six

different selection functions, shown in Figure 6.1.

RSF's is much weaker than that of {4(Az) (less than 5% difference for the different RSFs
models at » < 50 ™! Mpc).

In the following analysis we use the RSF represented by the solid line of Figure 6.1
(RSF No 1) for the DR41 sample but note that our final results are mostly independent of
this choice. The cluster density distribution of the DR40 sample with its smooth fit and
the ‘Deep’ samples are plotted in Figure 6.3. A smooth function does not fit nicely the
density distribution of the ‘Deep’ sample and we therefore use the RSF based on random

assignments of the observed redshifts perturbed with a Gaussian dispersion of o, = 0.01.

6.2.3 Consistent comparison between three samples

588 examined the redshift correlation functions £4(Az) for the DR41 sample at angular
separations 0° < 8 < 10° and 10° < § < 25°, and for the DR40 sample at separations
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0° < 8 < 6° aﬁd 6° < 6 < 12°. SE91 analysed the ‘Deep’ sample using the redshift
correlation function ¢, (R.) at projected separations 0 < 7, < 10 h~'Mpc and 10 <
rp, < 20 h™'Mpc. Both studies have shown the same tendency; é4(Az) and &, (R.) do
not vanish at large line-of-sight separations, which S88 and SE91 ascribed as evidences of
strong cluster contaminations.

We should point out that the projected separations used in these two studies are
quite different; angular separations of 10° correspond for the DR41 and DR40 samples to
projected separations of ~ 30 R~ !Mpc. In order to properly study the contamination effect
using different samples, it is important to use the same physical projected separation. If
the contamination effects are due to a unique physical process, they should show up at
similar projected separations in the different samples. Furthermore, we should expect more
contamination in samples including R = 0 clusters because of the higher cluster density
and the possible incompleteness of the R = 0 clusters in the catalogue (Abell 1958). So
a comparison between samples of different richness can give us an indication whether
contamination is important. We should expect contaminations to be more significant at
smaller angular and projected separations than in larger ones. Therefore, we feel that it is
important to make a consistency check, applying the same technique and using the same
projected separation on samples of different richness.

For the two shallow samples we study two bins in §: 0° < § < 10° and 10° < 8 < 25°,
which are the ones used by S88 for the DR41 sample. Since the ‘Deep’ sample is about 3
times deeper than the DR41 and DR40, we use 0° < 6 < 3.3° and 3.3° < 0 < 8.3°. The
redshift correlation function €9(Az) within these angular separations is shown in Figures

6.4a and 6.4b. The results are very instructive:

1.) On all angular and redshift separations, £9(Az) of the DR40 sample is less than
that of the DR41 sample. In fact, £y(Az) of the DR41 sample is about 2 times
larger than that of the DR40 sample [with only exception at Az > 0.035 in the range
0° < § < 10° where the two samples have comparable £9(Az)]. This is consistent
with the well-known richness dependent cluster clustering and inconsistent with the

expectation the contaminations would have affected more the R > 0 sample.

2.) The only significant (> 20) peaks in £g(Az), at the large angular separation range,
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Figure 6.4 — The redshift correlation functions £y(Az) [panels a) and b)] and &, (R.)
[panels ¢) and d)] of the three Abell cluster samples.

appear in the DR41 sample at Az = 0.0375 and 0.04. These peaks are even larger
than at the same Az of the smaller angular separation range while, in general, we

would expect contaminations to be more significant at the latter angular range.

3.) At the smaller angular range, {g(Az) of the ‘Deep’ sample decreases much faster
than that of the shallow samples and it is consistent with zero, within the typical
Poisson error (¢ ~ 0.23) for Az > 0.015 (error bars have not been plotted on Figure
6.4 for clarity). The noticeable peaks at large Az which show up in the two shallow
samples do not appear in the ‘Deep’ one. Note that also for the ‘Deep’ sample we get
that £s(Az > 0.02) has similar or even higher values at the large angular separation
range than at the smaller one.

Clearly all these points are contrary to the suggestion that contaminations are the

main cause of the Sutherland effect.
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Now we turn to the redshift correlation function ¢, (Az) within a fixed projected
separation range. We choose the same projected separations as in SE91. The results are

presented in Figures 6.4c and 6.4d and can be summarized as following:

1.) For the DR41 sample, &, (R.) is consistent with no correlation at R > 40h~1Mpc
for 7, < 10 h™!'Mpc, while it does have some positive peaks at large R, = 50 ~ 130
h~1Mpc for 10 < 7, < 20 h™*Mpc most of which do not show up at the smaller 7,

range (and at the same R.).

2.) At the small projected separation range and for R. > 40 h~'Mpc, &, (R:) is
generally higher in the two R > 0 samples than in the DR41 sample, which is consistent

with our expectation that some contaminations may exist in the R > 0 samples.

3) At both, the small projected separation range with R, < 40 h~'Mpc and the large
one with the whole R, range, ¢, (R.) is systematically lower in the DR40 and ‘Deep’
samples than in the DR41 sample, consistent with richness-dependence clustering as

proposed by BS83. We, therefore, have no evidence for significant contamination

effects for r, > 10 h~*Mpc even in the R > 0 samples.

Because of strong clustering and the small number of clusters involved, some signifi-
cant peaks in the shallow samples might come from the particular way with which clusters
are spatially distributed (e.g., certain orientation of supercluster chains, supercluster elon-
gations, large voids, etc). The similarity of the shape of the redshift correlation functions
of the DR40 and DR41 samples (which cover the same region of the sky), but with am-
plitudes about a factor 2 lower, is completely consistent with the dependence of cluster
clustering on cluster richness, as found by BS83. However, for the DR40 sample some
peaks in ¢y and ¢, at the small angular and projected separations which are as high or
higher than those of the DR41 sample, could be, at least partially, due to contamination
effects.

In conclusion of this section; we have carefully examined the correlation functions
¢o(Az) and &, (R:) at two separation ranges for three redshift samples of Abell clusters.

Our detailed, consistency check does not support that the distinctive peaks, seen in the
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two correlation measures, are mainly due to the contamination effects, as suggested by
S88 and SE91. More precisely, we found no evidence for any significant contamination
of the richness R > 1 cluster sample but we did find weak evidence, mostly from the
€, (R.) analysis, that the R > 0 samples (especially the DR40 sample) could be affected
by contaminations. However, these effects could influence the clustering analysis of the
R > 0 samples only at small projected separations (r, < 10 A7'Mpc). Although the
contaminations seem not to be the main cause of the distinctive peaks in the £4(p), it is
difficult with the present analysis to quantify the amount of contaminations in the Abell

catalogue.

6.3 Comparison with simulations

In this section we will attempt to assess the probability of observing significant peaks
in the redshift correlation function by analysing simulated cluster catalogues, which have
similar clustering properties as the real samples and which are free, by construction, of the

contamination effects.

6.3.1 Simulated cluster catalogues

The method we use to generate our simulated catalogues is similar to that of Postman
et al. (1989) and it will be described in detail in §10.1. Here we shall only briefly describe
the main points of our simulation method.

The simulations are performed in a cubic box with 64° grid cells corresponding to a
volume 640 A~ Mpc x 640 h~*Mpc x 640 h~!Mpc. Our simulated clusters are identified as
high peaks of a density fluctuation field which is a Gaussian random field with a power-law

power spectrum:

P(k) = {| 6, 2) o« " (5.4)

A large number of points (> 70000) are randomly distributed inside the cube and each
of them is assigned a density contrast 67 = vo (where o is the rms density fluctuation
within the cube and g is the nearest grid point to the particle). Those particles with
v > Umin (here vy, = 1.3) are chosen as clusters. The amplitude and slope of the

power spectrum are so adjusted that the simulated clusters have a two-point correlation
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function, ¢ = (ro/r)7, in the range of 10 ~ 70 A™*Mpc with 7, > 20 h~! Mpc and v = 1.8.
We generate two sets of simulated cluster catalogues (of 50 simulations each); one with
(ro) = 20 h™! Mpc, corresponding to the DR40 and ‘Deep’ sample correlation function
and (r,) = 25 h~! Mpc, corresponding to that of the DR41 sample. |

Our final simulated cluster catalogues have the same geometrical boundaries as the
real data and the individual clusters have been selected according firstly to the galactic
latitude selection function and secondly applying the real-sample RSF. This procedure was
stopped when the number of points was the same as the number of clusters in the real
catalogues. To construct simulated cluster catalogues that resemble the DR41 or DR40
samples we set the observer at the centre of the simulation box while to simulate the ‘Deep’
sample we place the observer at one of the cube vertex. The RSF we use for both the
DR40 and DR41 simulated samples is the smooth solid line shown in Figures 6.1 and 6.3.
For the ‘Deep’ sample we use the RSF obtained by a random assignment of the observed
redshifts perturbed by a Gaussian dispersion o, = 0.01. Note, however, that the redshift
correlation function of the simulated catalogues depend rather weakly on the RSF choice,
since the effects of the RSF are canceled by using the same RSF in the random catalogues

which are used in order to obtain &4(u).

6.3.2 Qualitative comparison of simulations with observations

Using the simulated cluster catalogues, we find that the distinctive peaks in the red-
shift correlation functions are quite common even at large redshift separations. As an
illustration, we choose to present £4(Az) of the simulated DR41 sample (qualitatively
similar results are also obtained from the other samples).

In Figure 6.5, we plot the redshift correlation functions £g(Az) for the first six DR41
simulated cluster catalogues (this choice is equivalent to a random one). Some features in
the figure are very noticeable. Peaks and valleys are quite common even at large Az. The
amplitude of these peaks are comparable with those found in the observed sample. The
peaks (or valleys) often appear coherent over some large range of redshift separations, Az,
probably because of the specific location of cluster associations in space.

In Figure 6.6, we plot {g(Az) for another four simulated samples which have more sim-

ilar £9(Az) to that of the real data. In these simulated catalogues, {y(Az) remain positive
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Figure 6.5 — The redshift correlation functions, £g(Az), of the first six simulated DR41

cluster samples (this choice is equivalent to a random one).

on (almost) all redshift separations in the both small and large angular separations. We
have checked whether this fact arises due to stronger cluster clustering in these samples, by
calculating the two-point spatial correlation function ¢(R) (Figure 6.7). Different symbols
represent the correlation function of different samples, as indicated in the figure. The mean
£(R) over the fifty simulated samples and its standard deviation, o, is also shown (dotted
lines). We find no evidence that ¢(R) of these four samples are systematically higher than
the mean simulation values or than the real data values. This supports our expectations,
stated in the previous section, that the distinctive peaks of the redshift correlation function
in the real data are probably due to certain spatial superclustering patterns rather than
being due to the contamination effects. Thus, the method of S88 to remove these peaks,
which he regarded as being due to projection effects, would artificially remove signal of

real clustering.
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Figure 6.6 — The redshift correlation functions, £4(Az), of four simulated DR41 cluster
samples that resemble the features in £p(Az) of the observed DR41 sample.

Another interesting feature that has been observed in the Abell cluster samples is
the redshift elongation or Finger-of-God effect (Bahcall, Soneira & Burgett 1986). This
manifests itself in the scatter-diagram of cluster pair separations as a systematic excess of
pairs along the redshift axis R, with respect to the orthogonal Rs or R, axis (declination
and right ascension axes respectively), while limiting the separations along the third axis
to < 5 h~! Mpc. Bahcall, Soneira & Burgett (1986) attributed this effect to the existence
of large (~ 2000 km s™*) peculiar motions of clusters that belong in superclusters. To
test this suggestion we checked whether this effect is apparent in any of our simulations
(which we remind the reader are not dynamically evolved). Indeed, we did find that some
of our simulations showed the same elongation effect, along the R. axis (Figure 6.8), while
some showed similar elongation effects along the orthogonal axis and others showed no

such effects at all. However, the real data show a slightly crispier elongation along the R
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Figure 6.7 — The two-point spatial correlation functions, £(R), of the the four simulated
DR41 cluster samples of Figure 6.6 and of the DR41 sample. The mean values and the 1o

error bars from the 50 simulations are also plotted (dotted lines).

axis. Therefore, we conclude that a big part of the observed elongation effect could arise
from low-order (2-p) cluster clustering coupled with the small number of clusters which
often result in supercluster elongations along the line-of-sight (geometrical elongation was
suggested as a possible explanation by Bahcall, Soneira & Burgett 1986). The rest of
the signal could come from cluster peculiar velocities but of significantly lower amplitude
< 1000 km s~!. Such cluster peculiar velocities are suggested by independent estimates

(e.g., Aaronson et al. 1986, Lucey & Carter 1988; Huchra et al. 1990b).

6.3.3 Quantitative comparison of simulations with observations

Now we quantitatively assess the statistical significance of our results. In Figure 6.9
and 6.10, we present the mean simulation redshift correlation functions (dotted lines) as
well as those of the real samples (solid lines). In both angular separations (Figure 6.9),
all Eg(Az) of the all three samples are consistent with the simulations within the 1 ~ 1.5¢0
significance level except for two peaks of the DR40 sample (0° < § < 10° at Az = 0.0275
and 0.0525) and for two peaks of the DR41 sample (10° < 6 < 25° at Az = 0.0375 and 0.04)
which lie at > 20 level. Similar results are obtained analysing &, (R.) (Figure 6.10). The
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Figure 6.8 — Scatter diagrams of Abell cluster pairs (upper panels) and simulated pairs
(lower panels) in the Rs - R, plane (in h~! Mpc), with separations along the perpendicular
plane < 5 h~! Mpc (as in Bahcall et al. 1986). The elongation along the R, direction
is apparent in the real but also in the simulated data (although in the real case it seems
crispier). The simulated catalogues used here where selected exactly because they appeared

to have similar R. - Rs diagrams with those of the real data.

most significant deviations (2 ~ 30) between the observed and simulation average values
of ¢, (R.) appear at the smaller projected separation range between 30 Rt < R. <40
k=1 Mpc only for the DR41 and DR40 samples. No such deviations are apparent in the

‘Deep’ sample.

To quantify these deviations we apply the x2-test. The x? for each sample is estimated
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with the mean value of the 50 simulations. Error bars represent 1o fluctuations.

by:

14 s 2
= ; [ﬁA(le)ag((ga(#z)ﬂ , (6.5)
where £4(p;) is the redshift correlation function of the real sample and (€% (p;)) is its
mean value from the 50 simulations, while the summation is over 14 redshift separation
intervals. The error model for o?(¢) is constructed by taking into account three types of
errors which enter the £ 4(u) estimation; the Poissonian error due to the discreteness of
the cluster distribution, the fluctuations due to strong clustering and uncertainties which
arise from our inaccurate knowledge of both redshift and galactic selection functions. The
first two types of errors could be well represented by the standard deviation o4(¢) of the

simulations. However, the third type of error is not included in s because we use the

same selection functions to select simulated clusters and to calculate correlation functions.
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Figure 6.10 — As in Figure 6.9 but for the redshift correlation functions &, (R.).

Although this kind of error is not known a priort, the discussion in §6.2 showed that the
uncertainty in ¢4, due to such errors, could be as high as 25% - 30%. Assuming that the

different types of errors are independent we take as our error model the following:

ol (&) = o2 +n*4(p) - (6.6)

In the following discussion, 1 is set to 0.25. The results of the x* test are listed in the
second to fourth column of Table 6.1. P(> x?) represents the probability of obtaining
larger £4(p) peaks in the simulations than those observed in the real cluster samples,
which indicates at what level our suggestion, that the high peaks of {4 are due to strong
clustering, is accepted. The results clearly show that the observed redshift correlation
functions are consistent with real clustering. The lowest two probabilities for (A,p) =
(6,Az) and (r,, R.) are 0.17, 0.25 and 0.07, 0.32 respectively, still significantly high. The
lowest probabilities, of 0.17 and 0.07, occur for the DR40 sample at the smaller angular
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and projected separation range respectively. This is consistent with our expectation that
projection effects should affect the R > 0 samples more efficiently than the R > 1 samples.
Note, however, that these effects are marginally (in the sense that even a probability of
0.07 is still large) noticeable in the DR40 sample but not at all in the other R > 0 sample
[‘Deep’].

Table 5.1

x? tests of £9(Az) and &, (R:)

Sample 6 [in °] x: P(>x?) rp [in A7t Mpc] x* P(>x?)
DR41 0<f<10 917 0.82 0<r,<10 159 0.32
10<6<25 171  0.25 10<r, <20 12.0 0.60
’ DR40 0<@<10 188 0.7 0<r, <10 227 0.07
10<6<25 643 0.95 10<r, <20 107 0.71
Deep’ 0<BO<33 725 092 0<r <10 162 0.30
33<0<83 44 0.9 10<r, <20 490 0.99

The test is rather sensitive to the existence of high peaks. For example, if in the
DR41 sample we ignored the two peaks at z ~ 0.04 and 10° < 6 < 25°, the P(> x?)
would be raised from 0.25 to 0.63. These two peaks result mainly from 16 clusters in
two well-known superclusters: the Hercules supercluster at z ~ 0.035 (Chincarini, Rood
& Thompson 1981; Bahcall & Soneira, 1984) and the Corona Borealis supercluster at
z ~ 0.075 (Bahcall & Soneira 1984; Postman, Geller & Huchra 1988). If these 16 clusters
were excluded a posteriori, £4(Az) would be lowered to 0.25, well within 1o level. It seems,
therefore, that these peaks are more probably produced by real superclustering rather than
by contamination effects.

Furthermore, the fluctuations of the two-point (redshift) correlation function depend

strongly on the higher order cluster clustering; the more high-order clustering, the more
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fluctuations in & (see, e.g., Peebles 1980). We have checked the three-point correlation
function for the simulated clusters and found it to be Q4 = 0.65 perhaps slightly weaker
than the value for the Abell cluster catalogue (Jing & Zhang 1989; Té6th, Hollési & Szalay
1989; Jing & Valdarnini 1991; Gott, Gao & Park 1991). Clearly, the probabilities P(>
x?) in Table 6.1 would be even higher if the simulated clusters had stronger high-order
clustering and therefore some significantly high peaks, seen especially in Figure 6.10 at
small R.’s, could be a reflection of the stronger high-order clustering of the Abell clusters.

Therefore, our simulations show that both f,.p(Rz) and €g(Az) of the observed sam-
ples are consistent with being the result of real clustering with weak evidence for some
contamination effects in only one sample (DR40). This means that we do not need to
invoke the contamination effects to explain most of the distinctive features in ¢, (R:) and

z

€9(Az) appearing on large redshift separations.

6.4 Conclusions and implications

1.) Six different redshift selection functions (RSFs) for the DR41 sample are used to
test the sensitivity of redshift correlation function to the RSF choice. We found that
our inaccurate knowledge of the RSF can easily result in a ~ 30% uncertainty in the
redshift correlation estimates. Any reasonable choice of the RSF, however, cannot

remove all the high peaks seen in the redshift correlation functions at large redshift

separations.

2.) Our careful and consistent comparison of £4(x) between three Abell cluster sam-
ples does not support the contamination origin of these peaks, as was proposed by
S88 and SE91. We find no evidence for significant contamination of the DR41 sam-
ple. However, we cannot exclude the possibility of moderate contamination effects in
richness R > 0 samples. The observed properties of redshift correlation functions can
be easily interpreted as the results of strong, richness-dependent clustering of small
numbers of clusters, i.e., the peaks in {4 could be due to some specific superclustering

pattern of clusters (e.g., geometrical elongation).

3.) Our suggestion that these peaks could originate from real clustering, was tested
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by numerical simulations. We constructed sets of simulated cluster catalogues which
have the same sky boundaries, same selection functions, same number of clusters, and
same two-point correlation functions as the real samples. Of course the simulated
catalogues are free of the contamination effects and the coherent peaks (or valleys)
observed in the redshift correlation function, on large Az or R, are very common also
in the simulations. The x2-test shows that we have more than 15% ~ 30% probability
to obtain peaks in ¢4(), as large as the ones observed in the real cluster samples,
due only to the low-order (2-p) clustering of a small number of clusters and the fact
that we have only one realization of the process that forms clusters. Therefore, we

do not need to invoke the contamination effects to interpret the features seen in the

observed ¢, and &p.

4.) It is important to emphasize here that previous confrontations of the observed
£.c with that predicted by theories of galaxy formation are mainly based on the result
. obtained from the DR41 sample (BS83). Our results support the BS83 results and
therefore imply that the biassed CDM modelis in gross disagreement with the observed

cluster clustering, as originally thought.

5.) The elongation of cluster pairs in the redshift direction, found by Bahcall, Soneira
& Burgett (1986) occurs quite often in our simulations. This suggests that the effect
could be explained as being partly due to the statistical fluctuations in {4, without
assuming the large (~ 2000 km s~!) cluster peculiar velocities advocated by Bahcall et
al.. In fact, even Bahcall et al. noted that such an effect may partly come from peculiar

velocity of clusters but partly also from a geometrical elongation of superclusters.

tThe materials presented in this chapter are based on our paper: Jing, Y.P., Plionis, M.
& Valdarnini, R. 1992, The Astrophysical Journal, 389, 499
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7

The Three-point Correlation

Functions of Clusters of Galaxies

The two-point correlation function of rich clusters found by, e.g., Bahcall & Soneira
(1983) is of great value in understanding the large scale structures in the Universe. How-
ever, as is well known, a full description of the distribution of rich clusters needs all N-point
correlation functions. A statistical study of the three point correlation function would be
necessary. Furthermore, because the three-point correlation function ¢ is independent of
the two-point function €, we would expect that ¢ will put another constraint on the galaxy
formation theories and therefore narrow the possible models. In this chapter, I shall present

our original contributions to these related statistics.

7.1 The three-point angular correlation functions of R > 1 Abell clusters

Our study is based on the statistical catalog of R > 1 Abell clusters with high galactic
latitude | 577 |> 30° (Abell 1958). This sample includes 1651 clusters, of which 1055 are
distributed in 2.64 sr of the northern hemisphere and the rest are in 1.62 sr of the southern
hemisphere. Its survey boundaries were given in Table 1 of Abell (1958).

We estimate the angular three-point correlation function z(6:2, f23,6031) following Eq.
(3.1.4b). Instead of using the variables 612, 023, and 631, we use another set of variables 6,
u and v as in §4.3.2. In order to estimate (DDR) and (RRR) of Eq.(3.1.4b), we construct
a random sample of twice as many points than the real sample. As usual, the selection
function Eq.(6.3) is adopted in the construction of the random sample.

In order to improve the accuracy of estimating z, we used the interpolation techniques
of Peebles & Groth (1975). We take the constant logarithmic intervals in 6, A6/6 =
constant, so that at small 8, and for fixed v and v, the expected counts (RRR) « 6* and
((DDR)—3(RRR)) o w(f)6*. We use these interpolation formulae to estimate the (RRR)
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and (DDR) for those intervals in which (RRR) or/and ((DDR) — 3(RRR)) are less than
200. To good accuracy, w(8) o< §7°9 for Abell clusters (see below).

Since computer cost is rapidly increased with the increase of 631 (o 63;), we limit our
estimation to 631 < 10° triplets. Evidently, the cutoff is reasonable for our study because,
as we know, the two-point angular correlation function of R > 1 Abell clusters was also
well determined to a similar separation range. The determination of z starts at 8;, = 0.5°.

Our results for the whole statistical sample of R > 1 Abell clusters are presented in
Figure 7.1. In the figure, the constant intervals Alog,,u = 0.2 and Alog;, 6 = 0.1 are
taken for the variables uw and 6, respectively. For the variable v, two bins 0.5 < v < 1.0
and 0 < v < 0.5 are used. The capital letters for each bin in the figure correspond to
those given in Table 1, and the shape parameters u, v of the corresponding triplets are
also listed in the table. The vertical coordinate log;, z in the figure for every bin is shifted
by a factor given in Table 7.1. The filled triangle represents the averaged value of z over
the two neighboring bins, in one of which z is very small (same in the following).

" Wecan be sure, from Figure 7.1, that the three-body correlation function exists among
Abell clusters. This is expected, since there are many complex large-scale structures com-
posed of Abell clusters (e.g., Bahcall & Soneira 1984; Tully 1987, and references therein).

For "quantitative analysis, a power-law form for z,
log,yz = a + blogy, 0, (7.1)

is assumed. The least-square fit to ﬁ(ﬁ,u,v) (with u and v fixed) gives value b for every
bin. All values of b are listed in Table 7.1, and we can see that from bin to bin, the values
of b do not change much, and remain close to —2.0. Assuming all 6 b-values are statistically

independent for simplicity (some coherence might exist), then we get the mean value b:
b= —210+0.21, (7.2)

where the quoted error is the standard deviation of six b-values from the mean. The above
value of b (about twice the slope of the two-point angular correlation function) reminds us
that the three-point correlation of Abell clusters may also have a hierarchical form,

z = g(wiwy + wows + w3wi), (7.3)
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Figure 7.1 — The three-point angular correlation function z of the whole statistical
sample. Upper case letters correspond to the shape range (u,v) listed in Table 7.1. Esti-
mates have been multiplied by a power of 10, as indicated in Table 7.1. The straight lines

represent the least-square power-law fits.

Table 7.1
THE b-VALUES OF THE STATISTICAL SAMPLE
l,OS u
v ’ 0.0-0.2 0.2-04 0.4-0.6
0.0-05 oooovav. { 5% o Bx10t o Cx 10¢
0510 cvooveerrierenes { Dot B0t F
Mean value ........... -2.10+ 021

just as for galaxies, here g is a constant.

The angular correlation functions w(f) have been estimated by Bahcall & Soneira
(1983) for D = 5 + 6 Abell clusters (including separate determinations for the northern
and for the southern portions). Their samples are almost the same as those used here.
However, there is some difference between two sets of samples; namely, that in the present

study D < 4 clusters are included. Also, random samples can be produced in the same way
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in estimating z and w(d). Moreover, because only triplets with 0.5° < (812, f23,6031) < 10°
are included, our determination fits w(f) to statistical data for the similar angle range.
For all these reasons, a more accurate determination of the constant g is to be obtained
by our own estimation of w(#)

Thus we estimate the two-point angular correlation function for the three samples
discussed here. The results are plotted in Figure 7.2. The least-squares fits w(8) o< 677
to these data (excluding the 0.5°-0.64° bin) show that for these samples, the power slopes
B are 0.87 (for the whole sample; hereafter SW), 0.78 (for the northern sample; SN), 0.90
(for the southern sample; SS), all very close to 0.90. The single-power fits give 0.8967°-°
(SW), 0.7567°-° (SN), and 1.25679% (SS), respectively. These expressions are to be used
through Eq.(7.3) to get q.

The single power-law fits z §—18 to the statistical data of Figure 7.1 give ¢ for each
(u,v) bin, listed in Table 7.2. We can see from the table that ¢ remains almost a constant
from bin to bin, and is nearly independent of triangle shape u and v. This means that the
;;hree—point correlation function of Abell clusters can be well represented by the scaling
form (7.3), just as in the case of galaxies. Also, assuming all ¢ values for each bin are

statistically independent, we get their mean value:
g = 0.68 & 0.14. (7.4)

The three-point correlation functions have also been estimated for the northern and
the southern portions separately. The results are plotted in Figure 7.3. The straight
lines in the figure represent the single power law z 618 fits, and the corresponding g
values are given in Table 7.2. It can be easily found that the scaling form of Eq.(7.3) fits
the statistical data of z of the southern and northern samples well. The mean g-values
are 0.57 + 0.19 for SN and 0.87 & 0.20 for SS, both of which are in agreement with the
estimation of the statistical sample. These results support the conclusion that the z of
Abell clusters has the hierarchical form, although, compared with the statistical sample,
their fluctuations (especially of SN) are a little larger, which could be expected. There is
a difference, although very slight, of w and z between SN and SS. However, the cause is
now unclear. It might be connected with the fact that the distribution of Abell clusters

is a little more clumpy in the southern sky than in the northern sky. But it may also be
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Figure 7.2 — The two-point angular correlation functions of the whole statistical sample

for different zones and different richness classes.

10 + \-\. A 10 - .\.A.\

Logipz
Logioz
NN
T
/

4 \*\0\+ + \ D
2D T
2 b — 2k —
.‘\E .\\E
® . +
0 r \S\*_\#\F 0F \\F
-2 -2 __'
NN W SN WA N R B | ) I N N (N T R A |
-0.3 -0.1 0.1 0.3 0.5 -0.3 -0.1 0.1 0.3 0.5
Logo8° Logio8°

Figure 7.3 — The three-point angular correlation functions of (a) the northern sample
and (b) the southern sample. Others are same as Figure 7.1, except that the lines represent

single power-law 6718 fits.
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caused by observational effects, such as the strip with “bad” Palomar plates at 6 ="T2°+,
which contribute an extra modulation in the cluster distribution. However, in any case,
the coincidence between the two subsamples is reasonable. And the 3-D study of §7.2 and

§7.4 imply the latter might be the main cause.

7.2 The spatial three-point correlation functions of R > 1 Abell clusters
— based on the estimated redshifts

We have also estimated the spatial three-point correlation functions for E > 1 Abell
clusters. The samples are the same as those used in the last section. Since only 25%
clusters have measured redshifts, we use the estimated redshift based on the magnitude-
redshift relation (kindly made available to us by Y.Gao). The accuracy of his redshift
estimates is o log,y Z ~ 0.1. We are fully aware that the accuracy is not good enough
to arrive at a definite conclusion about spatial correlation functions, which has to await
¢ompletion of a large redshift sample. The main purpose of doing so 1s only to test and, if
possible, to confirm the results of the last subsection.

The redshift selection functions are obtained by examining the spatial density dis-
tributions, which are plotted in Figure 7.4 for the three samples. The smooth lines are
reasonably taken as their selection functions. We have tested the sensitivity of ¢ and @ to
redshift selection function and found the effect is weak.

The distances to clusters are calculated and the galactic extinction effect is corrected
in the same way as in §6.2. We used the method of §7.1 to estimate (, so we will not repeat
the details.

As in the last section, we first examine the spatial two-point correlation functions
which are plotted in Figure 7.5 for the samples concerned here. The least-squares fits
¢ o 77 to the data of different samples show 7 of about —1.2, considerably larger than the
standard value —1.8. However, this result is expected because of the errors in estimated
redshift, and is consistent with Postman et al. (1986) who used the redshift estimates of
Leir & van den Bergh (1977).

The three-point correlation function of the statistical sample is presented in Figure

7.6. The meanings of symbols in the figure are clear, and are not discussed further. The
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Table 7.2

THE g-VALUES FOR THREE SAMPLES

log u
SAMPLE v 0.0-0.2 0.2-0.4 0.4-0.6
All 0.0-0.5 0.760 0.674 0.903
""""""""""" 0.5-1.0 0.589 0.504 0.650
Mean value ........... 0.680 + 0.139
South 0.0-0.5 0.956 1.071 1.081
outh ...ovveeeinininn. 0.5-10 0.628 0.764 0.694
Mean value ........... 0.865 + 0.196
0.0-0.5 0.597 0.437 0.495
North ... { 0.5-1.0 0.420 0.542 0.924
Mean value ........... 0.569 + 0.186
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Figure 7.4 — Spatial density distributions vs. redshift of northern sample (thin lines),
southern sample (dashed lines), and the total sample (thick lines). The solid thin, dashed,

and thick lines represent their underlying mean density profiles, respectively.
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least-squares fits of the power law ¢ o< 7¥ to the statistical data of each bin with fixed u

and v give the slopes v, which are listed in Table 7.3. The mean value of v is
v = —2.30 4+ 0.68, (7.5)

if it is assumed that v is statistically independent from bin to bin.

The slope v would be considerably underestimated because the estimated redshifts
are used. But it seems that this will not affect our discussions and conclusions much. Our
main purpose is to determine whether ¢ has a scaling form, and, if it does, how large
the constant @ is. If the effect of the redshift estimates on ¢ is modeled by P(r), i.e.,
€cst = EP(r), then the effect on ¢ should be (st = ¢P(r)? to the first order. Thus the

estimated (¢s¢ 1s

Cost = Q€263 + Ea3ésr + €a1€12)est, (7.6)

if the hierarchical form (3.1.7) applies. Clearly, Eq.(7.5) is consistent with the hierarchical
assumption.
The Q-values obtained through Eq.(7.6) are listed in Table 7.4. The values remain

almost constant and have no systematic change with » and v. Its mean value is
Q =0.67 £0.17. (7.7)

We noted that the obtained Q is not sensitive to the 7 of £ adopted. Even if we take
~ = 1.8, the mean value now is 0.44 & 0.12, not too different from Eq.(7.7) (see also Table
7.4).

Our separate analyses of the northern and southern samples are consistent with the
analysis of the whole sample, and I omit the figures here. The values of @ given by the
power-law fits, however, are also listed in Table 4. The mean values of @ are 0.87 &= 0.29
for northern clusters and 0.68 = 0.15 for the southern clusters, both in agreement with the
estimation of the whole sample.

Now we check the consistency between the angular and spatial three-point correlation
functions. Using the Limber equation (3.1.9) and the selection function of Figure 7.4, we

find ¢/Q = 1.1. Evidently, the angular and spatial analyses are consistent[cf. Eqs.(7.4) &
(7.7)].
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Figure 7.5 — Two-point spatial correlation functions of the statistical sample for differ-

ent zones, for different redshift selection functions, and for different richness classes (as

indicated on the figure).
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Figure 7.6 — The spatial three-point correlation function of the whole statistical sample.

Others are the same as Figure 7.1.

Table 7.3
THE v-VALUES FOR THE STATISTICAL SAMPLE
Log u
v 0.0-02. 0.2-04 0.4-0.6
0.0-05 ..ooiiiiiinns —2.73 -3.19 —2.18
0.5-1.0 coovviiieenns —2.48 -1.39 —1.54
—2.30 + 0.68

Mean value ............

7.3 The three-point correlation functions of R > 2 clusters and Q

independence on their richness

The correlation-richness dependence is very useful in constraining theories of galaxy
formation. Concerning the three-point correlation functions, it is natural to ask how they
depend on the richness of clusters. In order to answer such a question, we estimate the

three-point correlation functions for R > 2 clusters in what follows.

In the whole statistical sample, there are 445 clusters with richness R > 2, of which
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Table 7.4

THE Q-VALUES FOR THREE SAMPLES’

(ogu

SAMPLE v 0.0-02 0.2-04 0.4-0.6
0.691 0.760 0.833
Al 0.0-0.5 { 0376 0477 0626
..................... . 0 ‘(0723 0398 0564
- 10.419 0.253 0473

(0.670 + 0.168

Mean value ........... 1 0.437 i 0.124
1.007 0.845 0.947
North 00-05 {0.488 0.543 0.599
(0] 54 + J 0510 {0.742 0411 1.263
-l 0.440 0.275 1.256

0.869 + 0.285

Mean values .......... 0.599 + 0.337
0.834 0.642 0.659
South 00-05 {0.543 0.505 0.465
outh ... 0510 §0.817 0.715 0.426
-0~ 10.493 0.560 0.349

0.682 + 0.148

Mean value ........... 0.486 + 0.075

2 For each (u, t) bin, two Q-values are given. Upper data are from r™** fits,
and lower data are from r™ - fits.

966 are distributed in the northern hemisphere. Three-point angular, as well as spatial,
correlation functions are estimated for two samples: sample SN2, including all northern
R > 2 clusters; and sample SW2 of all R > 2 clusters. No statistics have been done for
the southern cluster subsample alone because relatively fewer clusters are included. The
same techniques as used in the last two sections are applied in calculating ¢ and 2, except
that 3 times as many random clusters than the observed ones are produced as comparison
catalogs, and the larger interval separations of 7 and 8, Alog,,» = Alog;;, 8 = 0.2 are
adopted, in order to minimize the random fluctuations arising from the smaller number
of clusters included and to improve the accuracy of estimation of 2 and ¢. The ranges of

triplets are set to 0.8° < 6 < f3; < 10° or 15 < r < r3; < 250R"*Mpe.

The redshift selection functions are obtained by examining the density distributions,
but here we omit the plot. As in the case of R > 1 clusters, the two-point correlation
functions, which have already been shown in Figures 7.2 and 7.6, are estimated. The
least-squares analysis techniques show that the slopes for both samples are all very close

to —0.9 and —1.2 (with differences less than 10%), respectively, just as R > 1 clusters.

Figures 7.7 and 7.8 show our estimated ¢ and z for the R > 2 cluster samples. It
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Table 7.5

THE Q-VALUES OF R > 2 CLUSTERS?

Log
SAMPLE v 0.0-0.2 0.2-04 0.4-0.6
A x 108 B x 10¢
0.0-0.5 0.24 0.38
0.18 0.28
All C x 10* D x 102
0.5-1.0 0.42 0.33
0.25 0.25
(0.34 + 0.07
Mean value ........... 10.24 + 0.04
{0.73 092 0.80
0.0-05 10.54 0.90 0.76
North ..ot 05-1.0 {085 0.65 0.57
T 1 0.66 0.66 0.57
0.75 £ 0.13
Mean value ........... 0.86 + 0.13
2 See note to Table 4.
Table 7.6
" THE g-VALUES OF R > 2 CLUSTERS
log «
14
SAMPLE v 0.0-0.2 0.2-04 0.4-0.6
All { 0.0-0.5 0.52 0.40 035
""""""""""" 0.5-1.0 032 0.49 0.44
Mean value ........... 042 + 0.08
0.0-0.5 0.74 0.75 0.78
North .......coooiiinet. {0‘5_1_0 0.51 0.52 0.68
Mean value ........... 0.66 + 0.12

is evident that the three-point correlation function of R > 2 clusters is much larger than
that of R > 1 clusters. To give a quantitative comparison with R > 1 clusters, we use the
hierarchical forms [Eqs.(3.1.7) & (3.1.8)] with £ o 7% and w o< §7%° to fit the estimated
results. The straight lines in the figures represent these fits. We can be sure, from the
figures, that the hierarchical form are consistent with the data. The Q- and g-values thus
obtained are given in Tables 7.5 and 7.6. As in the last section, we also estimate the @
taking ¢ oc 771-8(see Table 7.5).

If we note ¢/Q = 1.1 according to the Limber equation, we would find that our
angular and spatial results are in good agreement. The Q values of the SN2 sample are

very close to those of R > 1 clusters, indicating that @ is richness independent. However,
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the SW2 sample has a smaller Q value (about a half of Qr>1). The discrepancy is not well
understood. According to our check of (DDD), (DDR), and (RRR), we find there are
relatively fewer triplets in the southern sky (so the samples may not be ‘fair’). However, if
we note the existing sampling error and also the fact that ( is ten times stronger than that
of R > 1 clusters, we could think that Q is almost richness independent even considering

the sample SW2.

7.4 An analysis of a small redshift complete sample

All the above results are based on the 2-D samples. Even in the 3-D studies, redshift is
estimated by the magnitude-redshift relation. In this section, I present our recent analysis
of a small sample which is almost redshift complete. The results obviously complement

the previous sections.

7.4.1 The sample and the method

The data we use are from the ACO catalog of rich clusters of galaxies. In what
follows, we shall treat the north and the south sepafately. As for the northern sample, we
select those clusters with § > —27°, |47f| > 30°, richness R > 0 and the tenth brightest
magnitude myo < 16.4. As a result we have 227 clusters. For 212 of them redshift is
measured.

As for the southern hemisphere, the ACO catalog is complete for § < —17°. We select
only those clusters with my, < 16.4 and R > 0. The southern sample is built considering
all clusters with b7 < —30° and § < —17°. These selection criteria leave us with 103
clusters. We shall be using the estimated redshifts for 44 of them.

For those clusters without redshifts Z, we use the magnitude-redshift relation to es-
timate Z. For the northern sample we adopt the mjo-Z of Postman et al. 1986), and for
the southern sample we follow Couchman et al. (1989). Again the galactic obscuration
effect is corrected according to Eq.(6.3) and redshift selection function is fit to the density
distributions.

In this section, we used the moment method to calculate the three-point correlation

function. All necessary formulae are given in Appendix A. The method was thought to
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be effective in analysing small samples, when we did the work. Recently, from analysing
simulations, I found the method may not be as effective as initially thought in treating
small samples (see §3.1.5 for discussion). As argued in §3.1.5, however, a use of a large
shell size can give a good determination of, e.g., the @, at the expense of inability of testing
the assumed function, e.g., the hierarchical form.

Table 7.7 Estimated @Q-values

shell (in A~*Mpc) North South
7—11 0.309 + 0.073  0.718 =+ 0.135
11—16 | 0.750 + 0.041 0.268 £ 0.012
16—21 0.453 £+ 0.051 0.184 £ 0.011
21—26 0.367 £ 0.020 0.945 £ 0.019
—26 0.777 £ 0.003 0.702 £ 0.002
- bootstrap 0.77 £ 0.35 0.70 £ 0.47

7.4.2 Results

We shall report the results obtained on the basis of (3.1.7). North and south sample
results will be shown separately. In Table 7.7, we report the intervals @ — AQ,Q + AQ
obtained, for different radial shells, according to (A.11) and (A.16). The first column
gives the results for the whole northern sample, and the second column for the southern
sample. The limits chosen to define the shells are 7, 11, 16, 21, and 26 h~*Mpc. From the
table, we find that there is no systematic difference of Q between northern and southern
hemispheres, in contrast with the previous 2-D analyses (see §7.1). Especially the mean
values of Q of both samples coincide (~ 0.7) well for the largest bin 7 — 26 h~*Mpc,
which implies that the discrepancy found previously might be largely due to some “bad”
Palorﬁer plates and (or) to different project effects, but not due to the different intrinsic

clustering properties.

The data of Table 7.7 are also plotted in Figure 7.9 versus rj for Q. Error bars are

the uncertainties quoted in Table 7.7. The continuous line is for the northern sample and

122



llllllllllllllllllllllil

8 — —
6 —
S Z 3
4 —
2 —
OPH:111[|11|]|||1‘1!11[11—

5 10 15 20 25

R

Figure 7.9 — Q for the north (continuous line) and the south (dashed line) versus radial
distance. The continuous (thin) line is an average of the two samples. The plotted points

correspond to (rk + 7k—1)/2. Data are taken from Table 7.7.

the dashed line for the southern one. We also plot an average of the two samples with a
weight proportional to their cluster number. The averaged data seem to suggest that Q is
nearly constant (0.5), consistent with the previous 2-D studies.

The errors given by (A.16) are quite formal and the actual error would be much larger.
However, the real error of Q is not easy to obtain. By the bootstrap technique, we found
the typical error is ~ 0.35 even for the single bin 7-26 h~Mpc. Such a large error may
arise mainly from the small size of the samples.

In summary, this 3-D study confirms the hierarchical form (3.1.7) as a good approx-
imation to ¢ of clusters. The @ values are about 0.7, quite consistent with the previous
2-D studies. The discrepancy of Q between the northern and southern samples detected in
the 2-D study (§7.1) is greatly reduced, and the results of the north and south estimates

are consistent within errors.

7.5 Dependence on peak threshold in poorer clusters
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As shown in §7.3, the hierarchical form of Abell clusters depends weakly on cluster

richness. In this section we extend the study to poorer clusters identified by Plionis et

al.(1991).

7.5.1 Cluster samples

The Plionis, Barrow & Frenk (1991) cluster samples were identified, using an over-
density criterion, in the ‘free-of-overlap’ Lick galaxy counts of 10’ x 10’ cells (Shane &
Wirtanen 1967; Seldner et al. 1977; Plionis 1988). The clusters are defined as peaks of the
galaxy surface-density o that lie above a given threshold &, i.e., ¢ > k x (o), where (o) is
the mean galaxy surface-density and the value of  specifies the catalog. All the connected
cells that fulfill the selection criteria belong to the same cluster. Their four cluster samples
with & = 3.6, 3, 2.5 and 1.8 (C36, C3, C25 and C18 samples hereafter) are used in this
study. The C36 sample is the same as the cluster sample selected by Shectman (1985).

In order to minimize the Galactic extinction effect, our samples are limited to high
galactic latitudes |b| > 40°. Furthermore, we checked their density gradients along b. For
the NGC we find that a cosec|b| law does not fit the data well. There is no significant
extinction for b > 50° while there is an abrupt decrease of the cluster number density in
40° < b < 50°. Therefore, for the NGC, we estimate correlation functions only for b > 50°.
For the SGC, we find that a smooth cosec|b| function with the usual amplitude of 0.3 fits
the data nicely for b < —40°. Because of the rather small number of clusters contained in
high k samples, we prefer to merge together the northern and southern parts of the C30
and C36 samples, while separate analyses for north and south are performed for C25 and

C18. A summary of the samples is given in Table 7.8.

7.5.2 Methods and Results

We use the direct counting method to estimate the three point correlation function
as in Chapter 4. The procedure is completely the same as described there, except the bins

of 8, u, v are taken as follow:

@.,j < 0 S ®i+1 [lOg((‘)H_l/@i) = 01, 1= 1,' . -,’L'maz ];
Ui <u < Uits [1Og(Ui+1/Ui) =01,:=1,---10, U, = 1];
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Vi<v < Vigpr [m+1“%:0-23i:17"'75:%ZO]'

©; = 0.63° and 0,4, = 5.0° are used in this section, except for the C36 sample ©; = 0.79°

and 0,,,, = 6.3° are used.

Table 7.8 A summary of results

moments counting

Sample (k) Ne  Noin @ AQ xiin DNoin @ AQ  Xhin
3.6 460 8 0.50 0.53 0.05 104 0.85 0.08 &9

3.0 976 8 0.68 0.43 0.02 109 0.67 0.04 143

2.5N 1159 8 —0.11 0.57 0.01 109 0.05 0.15 17.7

2.55 658 8 0.50 0.46 0.03 109 041 0.12 25.8

i 1.8N 2685 8 —1.10 1.20 0.04 109 -—0.84 0.18 184
1.8S 1619 8 0.01 1.11 0.13 109 -0.43 0.18 304

The fitted values of Q for different samples are listed in Table 7.8 and are shown
in Figure 7.10. For both northern and southern hemispheres, a negative Q is detected
for the samples of the lowest density contrast (x = 1.8), while the trend of decreasing
Q with decreasing & is obvious. Note that for the two lowest overdensity samples the
Q parameter for the northern hemisphere is systematically lower than for the southern
hemisphere. Indeed, since the southern galaxy density in the Lick map is less than the
northern one (cf. Plionis 1988), selecting peaks with a global threshold amounts to picking
up relatively higher peaks in the south. All this is consistent with the fact that the @
value is an increasing function of .

We have also used the moments method to study the problem. A detailed account
of the method is given in Appendix A. Here we consider angular separations in the range
0.6° < 8 < 9°. The 6 values are collected in 8 bins which have the same relative amplitude
A = 0.34. The final results are listed in Table 7.8 for comparison. The central values are

similar as those obtained by the direct counting method, confirming the increasing trend
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Figure 7.10 — The values of the hierarchical coeflicient Q are plotted as a function of the
density threshold x. For C18 and C25, the results for northern (filled circles) and southern

(open circles) are separately plotted.

of the Q with peak height. However the errors in the moments method are much larger

for possible reasons given in §3.1.4.

7.6 Discussions and Conclusions

We have examined the three-point correlation functions for galaxy systems of various
richness. The hierarchical expression (3.1.7) is found to be a good approximation for all
cases considered here. The Q value is about 0.7 for clusters of richness R > 0, with weak
richness dependence. However for ihe poorer clusters, the @ depends strongly on the
richness and is a increasing function of the richness.

It would be interesting to compare ¢ of Abell clusters with that of galaxies. As
summarized in §3.2.1, the Q of galaxies is ~ 1.3 based on the Zwicky and Lick catalogues,
and ~ 0.8 based on the available redshift samples and the ESO/Uppsala catalogue. These
values, especially the later one, are nearly same as that obtained here for rich clusters.

The richness dependence of the Q is qualitatively in agreement with theoretical ‘bias-

ing’ predictions. For example, in the Gaussian model of biased galaxy formation, Jensen &
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Szalay (1986) have calculated the three-point correlation function and predicted that the
equivalent @ increases with the biasing threshold (i.e., richness). Because their model is
simple, a quantitative comparison between the model and the observation is not possible.

The high amplitude of £.. of rich clusters strongly suggests that rich clusters form at
the sites of high peaks (Kaiser 1984). In the high peak approximation, Matarrese et al.
(1986) predict Eq.(3.2.9) for {ccc, apparently contradictory with our results. If there were
the cubic term of Eq.(3.2.9) in the observational data, it would have been manifested in
our above analysis at small separations. The independent analysis of Téth et al. (1989),
which was designed especially to search for the cubic term, confirmed the lack of this term.
However, the analytical prescription may be too simple; nonlinear or merge effects might
be important. The recent N-body simulation of the biased CDM model (Gott et al. 1991)
has reproduced the hierarchical form. And they argue that the lack of the cubic term is
attributed to the merge effect of nearby high peaks.

Since conventional models fail to reproduce the €., an alternative — the explosion
model of galaxy formation, has been explored recently and is found to have a strong cluster-
cluster correlation function (e.g., Weinberg et al. 1989). I found that in this scenario,
the hierarchical form can be reproduced, nearly independent of model details (see next

chapter).

iThe materials presented in this chapter are based on our three papers: Jing, Y.P. &
Zhang, J.L. 1989, The Astrophysical Journal, 342, 639; Jing, Y.P. & Valdarnini, R. 1991,
Astronomy and Astrophysics, 250, 1; Borgani, S., Jing, Y.P. & Plionis, M. 1992, The
Astrophysical Journal, (in press).

127




8

Three-point correlation functions

of clusters in the bubble Universe

The spatial distributions of clusters of galaxies provide us with good opportunities
for testing current theories of galaxy formation. In this chapter, by assuming that the
Universe is filled with bubbles and clusters form at sites where three bubbles intersect
(i.e., toy models of the Ostriker explosion scenario), we demonstrate the types of three-
point correlation function ¢ of clusters, that are predicted, thus testing the bubble models

by comparing them with that of observed cluster catalogs.

8.1 Introduction

While several possible models (such as the biasing model, the cosmic string picture)
have been proposed to explain the two-point function of clusters (and other observational
effects), how to naturally produce ¢ still remains a great puzzle for cosmologists (e.g.,
Kaiser 1984; White et al. 1987b; Turok 1985; Jing & Zhang 1987; see §3.2 & §6.1). Another
interesting approach to the problem has been proposed recently: galaxies are distributed
on shells and clusters form at intersections of shells (Bahcall 1988b; Ostriker 1988; and
Dekel 1988). This was actually predicted by the explosion theory of galaxy formation
(Ostriker & Cowie 1981; Ikeuchi 1981), and is inferred from the recent observations of
large bubbles in the redshift slice surveys (de Lapparent et al. 1986; hereafter LGH; Geller
& Huchra 1989). In the explosion scenario, early explosions at redshift z ~ 10 swept their
surrounding primordial gas into hot, dense shells, and galaxies form when the shells cool
and fragment (Ostriker & Cowie 1981). The detailed dynamical N-body simulations (West
et al. 1990) show further that clusters form preferentially at sites of shell intersections, in

accordance with the observations of redshift slice surveys (LGH). Although it still remains
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uncertain which physical processes are responsible for the initial explosions of such high
energies, there exist several physical candidate mechanisms: explosions of supermassive

stars and of supernovae, electromagnetic radiation from superconducting cosmic strings,

etc. (Carr et al. 1984; Ostriker & Cowie 1981; and Ostriker et al. 1987).
Weinberg, Ostriker and Dekel (1989, hereafter WOD) have made detailed numerical

simulations to study spatial distributions of clusters, by identifying clusters as “knots”
where three shells intersect (see also a similar discussion of Bahcall et al. 1989). In
their simulations, shells have spherical geometry, with constant radius R or power law
distribution of radius P(R) o< R?. They considered various effects, such as the dynamical
and observational mergers of clusters, the shell mergers, etc., and included these effects
in their simulation by some hand-input criteria. Armed with the mass recipe that cluster
mass M, is proportional to the product of the three shell radii, i.e., M. < R;RyR3 (based
on the N-body simulations of West et al. 1990 and on reasonable theoretical arguments),
they obtained the mass function of clusters. Assuming that the mass-to-light ratio is a
constant for clusters, they used the luminosity function (LF) of clusters (Bahcall 1979)
to constrain the possible model parameters. They also studied the two-point function
of clusters and its richness dependence (Bahcall 1988a). Finally they found that if they
took appropriate values for the model parameters, e.g., 8 ~ —4 and the filling factor (its
definition given below) f ~ 0.3, the model can produce the right LF of clusters, the right
trend of correlation-richness dependence, the right slope of £, but also a high correlation
amplitude which could be acceptable only at the 2¢ level, when distance is scaled to the
mean separation of Abell clusters (however, see Bahcall et al. 1989). The overclustering
problem might be relaxed only if a certain fraction of “knots” (not dependent of M)
actually succeed in producing Abell clusters and/or if there is a random component of
clusters which is uniformly distributed in space having a similar mass distribution.

It would be very interesting to use the three-point function of clusters ¢ to further test
the bubble model. In the following sections, I shall present the predictions of ¢ in various
bubble models. §8.2 & §8.3 respectively study the two simplest models: 1) The radii of
shells are assumed to be a constant (hereafter, constant model); and 2) Shells have a power

law radius distribution, n(R) o< R? (hereafter, power law model). The motivation to study
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these two cases is threefold. First, these two models perhaps could be solved analytically,
like Kulsrud & Cowley (1989, hereafter KC) for the two-point correlation function. The
simulation can help to test such an analysis. Secondly, the simulation can give some
features such as the scales on which three clusters correlate, which would remain valid in
more realistic models. Finally, due to the large difference in the shell radius distributions
of the two models, we can find out how three-point correlations depend on the models.
However, the models above might be too simplified. Physically, all shells cannot have
the same radius. Even in the power law models, two shells which overlap greatly and
essentially sweep the same primordial gas, should be regarded as one shell, thus one of
the two shells has actually lost its identity (This is the so-called anticorrelation effect
of shells or shell mergers in WOD). Another important effect is cluster mergers: two
primeval clusters of small separation would evolve dynamically into, or would be later
observationally identified as one cluster. §8.4 studies ¢ in the power law models by including
these effects. In order to distinguish from the pure power law models of §8.3, we call them

the modified power law models.

8.2. Equal-size shells

In this section, we study the three-point correlation functions of clusters intersected
by equal-size shells. As KC and WOD showed, this model is completely fixed by two
parameters: the shell radius R and the filling factor f = (47r/3)n5hR3, where ngp, 1s the
spatial density of shells. KC obtained analytically the mean density n. of clusters

_ 9T s
Nel = 16f R 3 (81)

and the cluster-cluster two-point correlation function &.:

31 1 (1-92)(1+3y° 1 (1—y?)
501(3):E§+W2f2( y)y(2 y)+37r2f3( yy)

(8.2)

where y = r/2R. Note: one can easily find a minor error (a factor 2 in the numerator of
the second term) in the expression &.i(y) of KC; this has been corrected in Eq.(8.2). This

expression has already been verified by the numerical experiment of WOD.
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The method of our simulation is somewhat different from that of WOD. We adopt
f = 0.4, 0.6 and 0.8 for the filling factor. We choose a spherical space of radius Ryim
for the simulation. Rg;m is determined by the condition that for f = 0.4, there are 1000
clusters produced in one realization [see Eq.(8.1)]. Considering the boundary effect of the
simulation space (i.e. clusters could be formed by intersections of the inner shells and the
shells whose centers just lie out of the space), we in fact first randomly place (centers of)
shells in a larger sphere of radius Rim + R, and find all the knots (clusters) where three
shells intersect. Then we include all those clusters within the sphere of R, in our later
calculation, thus correcting for the boundary effect. The same simulation space is used
for f = 0.6 and f = 0.8 models. Certainly there would be (0.6/0.4)° x 1000 ~ 3400 and
(0.8/0.4)° x 1000 = 8000 clusters produced in one realization of f = 0.6 and of f = 0.8.
Because the computational cost is rapidly increased with Ny (o< N3) in calculating (, we
will randomly choose 1000 clusters (hereafter, “child” sample) in each realization of the
f=06and f=038 models for our calculation. It is easy to prove that the “child”sample
has all the same N-point correlation functions as its “parent” sample, that is, all intrinsic
clustering properties are the same. This argument is similar to that of the sparse sampling
of a redshift survey (Kaiser 1986; Metcalfe et al. 1989). Why we do not take a smaller
simulation volume for f = 0.6 and f = 0.8 is for the “fair” sample reason. As we show
below that the three-point correlation functions remain positive out to 4R (the longest
side of a triangle) and as the Rgim which we now take is 12.8R, reducing sample volume
would probably influence the final results. This method has been verified when we checked
the two-point correlation functions of the above three f cases, which reproduced the data
of WOD and was completely consistent with expression (8.2). [see also §8.3]. For each

model, we make ten realizations.

The procedure of estimating the three-point correlation function is the same as in Jing
& Zhang (1989; see §7.1). In Figure 8.1, we illustrate the three-point correlation functions
¢ of several typical (u,v) bins for the f = 0.4 model. Figure 8.1a shows the four cases with
fixed v = 0.05 but different u, which covers triangles from equilateral to highly elongated
atute isosceles shapes. We can find that three clusters are strongly correlated on small

scales and the ( remains positive out to » < 2R and (u + v)r =~ ur = 2R. Figure 8.1b
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Figure 8.1 — The three-point correlation functions of the f = 0.4 constant model in eight

typical (u,v)-bins. a). for fixed v = 0.05; b). for fixed u =~ 1.1.

Figure 8.2 — The configurations of shells which produce two clusters. a). three common

shells; b). two common shells; c). one common shell; d). All shells are different. This

figure is taken from Kulsrud & Cowley (1989).
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represents the other four cases with fixed u ~ 1.1 but different v, which includes triangles
from approximate equilateral to highly oblated obtuse isosceles shapes. Again high three-
point correlations are found on small scales. However, all ( start to vanish at r =~ ur = 2R.
This means that the ¢ could remain positive out to 731 = (v + v)r, which is about 4R for
v = 0.85. We can conclude that there are strong three-point correlations in triangles of
two shorter sides 712, r23 < 2R and of the longest one r3; < 4R. We have also checked
the ¢ for the f = 0.6 and f = 0.8 models. The three-point clustering behaviour of these
two models is very similar to that of the f = 0.4 model, and we omit their figures here.

This phenomenon can be easily explained by a sketch (Figure 8.2, taken from KC). It
illustrates all the four configurations producing two clusters (P,Q). If a third cluster formed
by three other shells (not belonging to the shells of Figure 8.2), and the first two clusters
are produced by Figure 8.2d, such triplets contribute to the first term of Eq.(3.1.3). If
the first two clusters are formed by either Figures 8.2a, 8.2b or 8.2¢, and a third cluster
is formed by the three independent shells, or if a third cluster is formed on either shell of
Figure 8.2d and the first two clusters are P,Q of Figure 8.2d, such triplets contribute to
the three ¢-terms of Eq.(3.1.3). It is only when a third cluster S is formed on a shell of
Figures 8.2a, 8.2b or 8.2¢ (i.e., at least one common shell forming S, and P or/and Q) that
triplets PQS would contribute to the reduced three-point correlation term of Eq.(3.1.3).
It is easy to see that such triplets PQS always have two sides smaller than 2R and the
longest side less than 4R.

In order for comparison with the observations, it is convenient to use the scaled three-
point correlation function Q(r,u,v):

Q(r,u,v) = ¢(r,u,v) .
T ()€ (ur) + E(ur)E((u + v)r) + E((u + 0)r)E(r)

Previous observational studies of Abell clusters show that Q is a constant between 0.5 and

(8.3)

1.1 (see Chapter 7). The amplitude of Q(r,u,v) and its -, u- and v- dependences then
can be used to test the models.

Ianigure 8.3, we show the scaled three-point correlation functions @ of Figure 8.1.
Most Q fall in the range between 0.5 and 1.1. This is very encouraging. () depends on u

very weekly, and the average values of different u-bins remain almost a constant (see Figure
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Figure 8.3 — The scaled three-point correlation functions @ of the
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8.3a), although ( for different u have very different magnitudes (Figure 8.1a). Similarly,
@ also has a very week v-dependence (Figure 8.3b). For r from 0.1R to 2R, the ( changes
by four magnitudes, whereas @ varies very slightly (within a factor 2).

To study the -, u- and v-dependences of @ in more detail, we separately study each
dependence following Groth & Peebles (1977). Figure 8.4a presents the arithmetic averages
of Q(r,u,v) over all (u,v) bins for the three different f models. Here and below we average
Q over all triangles of three sides less than 2R, for the reason that the two-point correlation
function vanishes at » > 2R. From the figure, we find that the @ of all three models depends
on r very weakly, and could be regarded as a constant with high precision (~ 15%). In
Figure 8.4b, we plot the arithmetic averages of @ over (r,v)-bins. For different u, Q
changes very slightly for the three models, and again could be considered as a constant for
each model. Figure 8.4c shows the averages of @ over all (r,u)-bins. Although @ depends
on v again very weakly, we can easily find a minor systematic variation: all models remain
goﬁstant at v < 0.7, however Q rises slightly with v at the larger v.

In conclusion of this section, although the models taken here are the simplest possible
ones of the explosion scenario, the results are encouraging: the observed scaling relation
(3.1.7) can be easily reproduced in these models. The slight dependences of @ on r, u, and
v may exist, but ¢ of the models indeed could be expressed by the hierarchical form (3.1.7)
with a high precision. The mean @ values are about 0.9 (for f = 0.4), and 0.8 (f = 0.8),
favorably comparable to the observed value Qops = 0.8 £0.3; while Q of the f = 0.6 model
is about 1.3, which could be accepted within the 20 level. It is still unclear if the slight
variation of @ with f is the real feature of the model, or a statistical fluctuation in the

simulations.

8.3 Power-law radius distributions

In this section, we study the models, in which the radii of shells are distributed in

power laws. We assume that the mean demnsity of shells with radius Ry ~ R; +dR; is

n(Rl)de = TLO(Rl/R)’Bde, (84)
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where R is the maximum radius of shells. As WOD pointed out that 8 ~ —4 is of the
most interest, and as their simulations have shown that such 3 could reproduce the mass
function of Abell clusters well, we will adopt 8 = —3.5 and —4.5 here. Because the number
of shells in a definite volume will diverge for 8 < —4, we must set a lower radius cutoff.
The radius of shells will be limited to R/4 < Ry < R.

We adopt the notations of KC. Let n; = [ n(R1)dRy, o] = 1/n floo n(R;1)R3dR,,
7 = ny |1=0, 6> = @} |i=0, and the effective filling factor: f = 4mw/3a®n. Then the cluster
density is (KC)

N = ?L—gf‘?a—a. ‘ (8.5)

The method of simulation is similar to that of the constant models. For each f3,
we choose three f values: 0.2, 0.3 and 0.4. The simulation space is still a spherical
volume. However, its radius R, is chosen by the condition that there are 1000 clusters
[cf. Eq.(8.5)] in each realization of the f = 0.2 models. Now Ryim = 9.2R for the = —4.5
model, and Ryim = 10.3R for B = —3.5. As only triplets of sides less 2R are considered
below, this simulation space, we think, is already large enough. Again in order to correct
for the boundary effects, we first randomly place (centers of) shells in the sphere of radius
Ryim + R for each (f, ) model, under the condition that shells have the power law
distribution (8.4). Then we find all “knots” (clusters) where three shells intersect, and
include only those clusters which are in the sphere of Rgim in our later calculation of
correlation functions. Other procedures are the same as in §3.2.

KC have analytically obtained the two-point correlation function and the mass func-
tion for the power law models. In Figure 8.5, we plotted the two-point correlation functions
estimated by our simulations. Due to the domination of small shells in the shell number,
¢ at small scale has behaviour very similar to the constant models, and could be repre-
sented by a power law of index about —2. At the larger scale, ¢ falls more rapidly than
in the constant models. The turning point appears at r ~ 0.5R, which could be expected
because the radius of the smallest shell is 0.25R. The analytical results of KC are plotted
in the figure for comparison. We find that the data of simulations agree very well with the
analytical formulae of KC. In Figure 8.6, we show the mass function of clusters obtained

from our simulations. Here we adopt the mass recipe of WOD that the mass of a cluster
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is proportional to the product of the three shell radii, that is M = KR, Ry Rs where K is
a constant. In the figure, cluster masses are in units of M., = K R3, and the mass func-
tions are in units of M} R™3. The smooth lines are the analytical results of KC, which

fit the simulations very well. The consistency between the analytical and the simulation

results proves that the work of KC as well as our simulation methods are correct.

Now we calculate the three-point correlation functions for the models. We have not
plotted ( for several selected (u,v)-bins as in Figures 8.1 and 8.3, because they can’t reveal
anything new except they confirm a strong three-point correlation of triplets with two
smaller sides shorter than 2R and the longest side shorter than 4R. Instead we present the
mean values of Q. Figure 8.7 shows the averages of  with fixed r over all configurations.
() remains constant ~ 1 at » < 0.5R. However at larger scales, Q of the f = 0.2 and 0.3
models rise by a factor 1 to 2, while @ of the f = 0.4 models fall by a factor 0.5 to 1.
Because the contributions to the small scales are dominated by small shells, a constant Q
could be expected from the last section. The variations of @ at large scales may reflect a

large range of shell radii.
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In Figure 8.8, we present the averages of @ with fixed u over all (7, v)-bins. For all
six (f, B) models, the @ depends on u very weakly. Figure 8.9 shows the dependence of Q)
on v. All models have a constant Q at v < 0.8, while Q falls a little at larger v. We could
conclude that Q is almost independent of the shape parameters u and v. The mean values
of Q are about 0.7 (f = 0.2), 1.0 (f = 0.3) and 1.0 (f = 0.4) for the § = —4.5 models, and
1.1 (f = 0.2), 1.1 (f = 0.3) and 0.8 (f = 0.4) for the § = —3.5 models, so all six models

are acceptable within the 1o level by the observations.

8.4 Modified Power Law Models

In contrast with the last section, here we eliminate all shells which are entirely inside
larger shells. Because a certain fraction of small shells will lose their identity, we define
the filling factor f only with the largest shells 1/2Rpqz < R < Rinaz, as in WOD. [Note:
the meaning of Ryqz is equivalent to that of R in §8.3 and R is to R, there.] The model
is completely fixed by three parameters: f, # and Rmaaz-

The model is essentially equivalent to the general power law model of WOD, except
we take Rpin = Rmaz/4 instead of Rinaz/8. Since most small shells would be eliminated
due to lying inside larger shells, and since we are only interested in Abell-like clusters (not
poorer clusters or groups), this difference has little influence on our discussion (also see
below). So we can directly adopt some results of WOD for our simulation.

From comparison of the theoretical mass function with the observational LF of Abell
clusters, WOD concluded that objects which could be identified as Abell clusters should
have mass M > M,, and

_ [014Mpas, B
M. = {o.stmm, B=-35"

and that the mean separation of these objects is

[ 0.29Rmasft, B=—45
* T 1 0.52Rmasft, B=-35"

The simulation method is similar to that used in §8.3, but the equation (8.6) is used to

aul

(8.6)

fix the simulation volume so as that there are about 1000 clusters of M > M. for f=0.2in
each realization. So for 8 = —3.5, Rsim = 15.8 Rmaz; and for B =—4.5, Rsim = 9.0Rmnqa:.
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“extended” model. These data are fairly consistent with Weinberg et al. (1989).

As a test of our simulation methods, we compare the mass function and the number
density of clusters with those of WOD. In Figure 8.10, we plot the cluster mass functions of
our simulations for M > M,. Compared with Figure 3 of WOD, our results are reasonably

consistent with their results. The resultant mean separation of M > M. clusters deviates
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from equation (8.6) less that 3%. Since in WOD equation (8.6) was obtained from fitting
the simulation data by Schechter-like function, and since there exist fluctuations in the
simulation due to strong clustering, this deviation is not unexpected.

In Figures 8.11 and 8.12, we present the results of Q for the modified power law
models of different indices A and different filling factors f. Figures 8.11a and 8.12a give
the averaged @ as a function of 7. For small filling factor f = 0.2, Q decreases about 50%
with the increase of r about one magnitude. This dependence is weakened as f increases.
For both values of 8, Q of f = 0.3 ~ 0.4 could be well regarded as a constant with
high precision (< 15%). Comparing these results with §8.2 and §8.3, we find that Q of
the modified power law models have much weaker r-dependence than the pure power law
models. The variations of Q) with » are only comparable to those of the constant models,
which is very interesting. These results were expected, because the modifications (i.e., to
remove shells which lie entirely within larger shells and to include only Abell like clusters)
mainly eliminate the effects of small shells, thus narrowing the shell radius distribution.

To see the dependence on u, we plot O as a function of u in Figures 8.11b and 8.12b.
We can easily find that for all six models Q depends on u very weakly. The models
of f = 0.2 have about 10% fluctuations around their mean values. The fluctuations of
f = 0.3 ~ 0.4 models are much smaller. The results are very similar to those of the

constant models. However, the models have a weaker u-dependence than the pure power-

law models (§8.3).

The dependences of Q on v are shown in Figures 8.11c and 8.12¢c. For all the models, @
are approximately constants for v < 0.7 and rise 15 ~ 30% for larger v. Similar behaviour
was seen in the constant models. In contrast, the Q remain almost constant for v < 0.8
but fall about 30% for larger v in the pure power law models.

To summarize, the modifications considered in this section greatly improve the power
law models on producing the hierarchical form (3.1.7). Compared with the constant mod-
els, the modified ones produce similar { but are more realistic in the physical sense and
better at accounting for observational facts , such as the LF of Abell clusters, the observed
bubbles in redshift slice surveys, the two-point cluster-cluster function, etc.. If we take

into account the observational uncertainties (see, Jing & Zhang, 1989) and the theoretical
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Figure 8.13 — Same as Figure 8.11 but for the “extended” model.

uncertainties, the modified models can explain well the observed hierarchical form. The
mean values of Q are all about 0.85 for 8 = —4.5, quite consistent with the observations.
For 8 = —3.5, only the model of f = 0.3 produces the right value of @ (~ 0.9); those
of f = 0.2 and f = 0.4 have rather high @ values (1.3 and 1.2 respectively) though they
are marginally acceptable at 1.50. The variations of @ with f in the 8 = —3.5 models
bother us. At this stage, it is difficult to judge whether they are caused by the simulation
fluctuations or by real features of the models. We are approaching this problem by running
larger simulations.

As described in the introduction, it seems inevitable that cluster mergers and shell
mergers happen in the real world. WOD show that inclusion of these effects greatly
improves the model for fitting the two-point correlation function of Abell clusters. Here
we will consider these effects following the techniques of WOD. We merge each group of

objects which are separated by less than Rpmqz/5 into each cluster, and the merged mass is
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assigned the mass of its largest component. To approximate the shell mergers, we simply
follow the procedures of WOD: eliminate all seeds which lie inside larger shells. We adopt
B = —4.5 and f = 0.3, so the model is just the “extended” model of WOD, which was
regarded by them as the most successful model for fitting both the LF and the two-point
function of Abell clusters. In Figure 8.10c, we plot the mass function for clusters of this
model, which again accords well with that of WOD.

In Figure 8.13, we present its averaged Q as a function of one of the three variables.
It is easily seen that for each variable, the mean fluctuations of @ around its mean value
are less than about 15% (Here we excluded the point at v = 0.95). So the model could be
acceptable in reproducing the observed hierarchical form. The mean value of Q is about

0.5, close to the lower observational limit.

8.5 Conclusions

We have constructed a set of numerical simulations and studied the three-point correla-
tion functions ¢ of clusters in the bubble models. The main conclusions can be summarized

as the following.

1). The ¢ of the constant models can be expressed well by the hierarchical form with
Q about 1, consistent with the observations (except for the f = 0.6 model, which is
at the 20 level).

2). In the power law model, the scaled three-point correlation function Q(r,u,v)
depends on u and v very weakly, while it has some dependence on r. At small scales
r < 0.5R, Q remains a constant about 1, however it changes a factor 1 to 2 at the

larger scale.

3). The removal of small shells which lie entirely inside larger shells greatly improves
the power law models in producing the observed hierarchical form. The modified
models of 8 = —4.5 are completely consistent with the observations of (. While the
modified model of 8 = —3.5 and f = 0.3 fits the observed ¢ very well, those of f = 0.2
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and f = 0.4 have rather high Q values although they could be acceptable at the 1.5¢

level.

4). The “extended” model could pass the observational test of ¢, although its mean

Q value is close to the lower observational limit.

5). This study has already covered a wide class of bubble models. We are aware
that the models presented here are still simplified. Howevef, it is very impressive that
the three-point function of clusters, expressed in the hierarchical form, are not very
sensitive to the model details. This may indicate that the bubble models meet no

obstacle in passing the observational test of (.

iThe materials presented in this chapter are based on my two papers: Jing, Y.P.
1990, Astronomy and Astrophysics, 283, 7; Jing, Y.P. 1991, Monthly Notices of the Royal
Astronomical Society, 248, 559.
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9

Void distributions in ACO cluster catalogue

As discussed in §3.3, the void probability function (VPF) is a very useful tool for
extracting information on high-order clusterings. In this chapter, we shall present the
VPFs of the ACO clusters in two dimensions (2-D). Although the three-dimensional (3-D)
analysis in principle is much richer than the 2-D one, several obvious practical properties
lead us to do the 2-D analysis. 1). The 2-D sample is incomparably larger than the 3-D
samples available, because only a small portion of clusters have the measured redshifts; 2).
The 3-D samples may suffer from the problem of large peculiar velocities (Bahcall et al.
1986; cf. §5.4), redshifts not being the true distance indicators; 3). As shown by Schaeffer
i1987), a universal function %(q) (its definition will be given below) is approximately the
same in the 2-D and 3-D statistics, provided clustering is scale-invariant, which just is the

case for clusters (see below). All this makes the 2-D analysis very attractive.

9.1 Samples and Method

Table 9.1

A Summary of Samples

Sample bt Distance Richness Number
DR61 | ' |> 40° <6 >1 1950
DR6IN  bI1> 40° <6 >1 919
DR61S  bII< -40° <6 >1 1031
DR51  [pMf]> 40° <5 >1 829
DR62  [pTf]|> 40° <6 >2 523
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The samples used here are from the new Abell cluster catalogue (Abell, Corwin &
Olowin 1989). We restrict our analysis to the high latitude samples with | 471 |> 40°.
We first determine void probability and count probabilities for the largest sample (DR61)
with richness R > 1 and distance D < 6. In order to study the scaling properties of holes,
we separately estimate the VPFs for a subsample (DR51) of D < 5 and for a subsample
(DR62) of R > 2. A summary of samples is given in Table 9.1.

The method used to determine the count probability Pn(8), which is defined as the
probability of finding exactly N clusters in a circle of radius 6, is similar to that of Bouchet
& Lachieze-Rey (1986). We randomly place a set of points in the survey area. For each
random point, we draw a set of circles around it with different radii 6, and count the
number of clusters in each circle. If a circle crosses the boundary of the sample, we throw
it away, thus correcting for the boundary effects. Then we can easily get the probability
functions Pn(8), and also obtain the expected counts (N(8)) = ol (where o is the surface
number density of clusters, and {2 is the solid angle of the circle) and its second moment
(N — (N}))?). Thus we can simultaneously get the function X, which is defined as X =
In Py/0Q, and the scaling variable ¢ = oQw(8) = (N —(N))?)/ot — 1 (see Peebles 1980),
where ::(07 = [w(612)d dfy/?, the average two-point angular correlation function. In
the previous studies, ¢ was usually calculated from the two-point correlation function.
Our method now can by-pass this problem, and can self-consistently get ¥ and gq. Here
120,000 random points are taken for the DR51 and DR61 samples and 200,000 for the
DR62 sample, thus minimizing the statistical uncertainty induced by the method. Since
the sample lies at the high latitude, the galactic extinction effect is small and we have
ignored it in our calculation. The radius 6 was taken from 0.1° to the largest one, where

only one void was detected, with the increment of 0.1°.

9.2 Results and Discussions

9.2.1 Count probabilities

In Figure 9.1, we present the count probabilities Pn(6) with N = 0 — 3 for the
DR61 sample (solid lines) as well as for a random sample (dot-dashed lines). Although the
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Figure 9.1 — The count probabilities Py () with N = 0-3 [a)-d)] for the DR61 sample

(the solid lines). The dot-dashed lines represent Py (6) expected for a random catalogue.

general behaviour is the same in the real and random samples, we can find that clustering

exists. As expected, there are always more voids in the actual distribution than in the

random distribution. For N # 0, Pyn(6) flattens more in the cluster catalogue. For small

and large circles (as compared with the circle where the maximum Py shows up), Px () of

the real catalogue is larger, which is consistent with the fact that superclusters and voids

exist in the real sample.

9.2.2 Function ¥ = In Py /o) and scaling
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As pointed out in §3.3, if all n-point correlation functions are scale-invariant, the
> = In Py/cQ is only a function of the scaling variable ¢ (White 1979; Schaeffer 1984).
Sharp (1981) and Bouchet & Lachieze-Rey (1986) analysed the angular void distribution
in the Zwicky and CfA catalogues and reached the conclusion that galaxy distribution has

scaling invariance.

In Figure 9.2, we plot In Py/ocQ — g for the DR61 sample (solid line). Due to the large
number of random circles placed, the statistical uncertainties introduced by the method
itself are negligible. To see this, we can use the formula of Maurogordato & Lachieze-Rey
(1987, hereafter ML) to estimate them. As ML claimed, such errors are significant both
on small and on large sizes. We found that the errors of £(g) are 0.01 at ¢ = 0.1,0.01 at
g = 1.9,0.02 at ¢ = 2.3 and increase much faster at the larger sizes. So for the greater
part of ¢ < 2.0, in which we are mostly interested, this kind of error should be much less
0.01. However, the intrinsic fluctuations of samples cannot be avoided. To check this, we
also analyse the north (DR61N) and the south (DR61S) subsamples separately, and the
results are also plotted in Figure 9.2. The deviations of the north and of the south from
the whole sample can be considered as the intrinsic uncertainties. As the figure shows,
for g less than 1.5 (i.e., § < 3.2° or r < 30 h~1Mpc), T of the north and of the south are
fitted very well (their differences are less than 0.02), so the results in Figure 9.2 for ¢ < 1.5
can be regarded as the true representation of X for clusters. For g > 1.5, fluctuations are
very large because only a few of the voids are detected and the sampling errors become
large. Such large intrinsic errors have already prevented us from extracting any useful

information. Below we will only consider ¥ for ¢ < 1.5.

To check the scaling, we plot the 3(g) of the DR61 sample (solid line) and of the DR51
sample (dot-dashed line) separately in Figure 9.3. We can see that for ¢ < 1.5, two curves
are superposed with a high accuracy (AT < 0.01). This means that the scaling relation
is verified. We note that these two samples are very different in mean surface density and
in mean depth. And ¢ = 1.5 corresponds to 6 = 3.2° or 7 = 30 h~Mpc for the DR61
sample and § = 3.6° or r = 25 h~Mpc for the DR51 sample. So our results support the

assumption that the cluster distribution is scale-invariant.
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9.2.3 A second scaling

As Jing & Zhang (1989) emphasized in their paper, the hierarchical relation (3.1.7)

holds for clusters of different richness, and Q is almost the same from galaxies to R > 2
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(for comparison).

clusters. The work of Maurogordato & Lachieze-Rey (1987), which dealt with the void
distribution in galaxies of different luminosities, also presents a similar conclusion that the
scaling relation of %(q) is universal and independent of luminosity. To further examine
this scaling property, we estimated the & for R > 2 clusters (DR62 sample), and results
are presented in Figure 9.4 (dot-dashed line). We again find that the two curves of R > 2
and R > 1 are superposed with great precision for ¢ < 1.5 (AX < 0.02). The mean
surface density of R > 1 clusters is about 4 times higher than that of R > 2, and ¢ = 1.5
corresponds to § = 4.8° or r = 45 h™'Mpc for the DR62 sample. This indicates that the
scaling distribution of clusters is independent of their richness.

To compare with galaxies, we also estimate %(g) for the CfA survey by the same
method for the self-consistency reason. From Figure 9.4, we see that the curves of galaxies

and of clusters are also very similar.

9.3 Conclusions

In this chapter, we determined the count probabilities Py(6) for the ACO catalogue.
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Examining the ¥(q) of the DR6IN and DR61S samples, we found that the errors in our
measurement are very small for ¢ < 1.5. By comparing the ¥(g) of the DR61, DR51,
and DR62 samples, we can conclude that the cluster distribution is scale-invariant, and
this scaling property is independent of their richness. From the further comparison with
the CfA sample, we tentatively conclude that the scaling relation is similar from the scale
of galaxies to the scale of rich clusters. This universal scaling would be important in
understanding the formation of galaxies. The results obtained here have been confirmed

by the recent analysis of Cappi et al. (1991b) based on small 3-D samples.

iThe materials presented in this chapter are based on my paper: Jing, Y.P. 1990b, As-
tronomy and Astrophysics, 233, 309.
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10

A comparison of the spatial distribution of

Abell clusters with that from Gaussian fluctuations

There is a considerable body of observational evidence (Kirshner et al. 1981, de
Lapparent et al. 1986, Geller & Huchra 1989, Broadhurst et al. 1990) that the large scale
clustering pattern of galaxies is characterized by a filamentary and sheet-like distribution
over scales ranging up to ~ 100 A~ Mpc, with voids of comparable size.

The intrinsic luminosity of rich galaxy clusters (Abell 1958; Abell, Corwin and Olowin
1989, hereafter ACO) allows one to study the 3-D clustering pattern out to z ~ 0.1, on
scales much deeper than those traced by the available galaxy catalogues. Various authors
(Bahcall & Soneira 1983, Klypin & Kopylov 1983, Postman et al. 1986, Batuski et al.
1989; Plionis & Borgani 1992) have reported that the two—point correlation function of
rich clusters has the same slope as that of galaxies (y ~ 1.8) but with a significantly
larger clustering length. It has also been claimed that the spatial distribution of clusters
is characterized by filamentary structures with lengths up to ~ 200 A~! Mpc (cf. Batuski
& Burns 1985a) and by an apparent large-scale flattening over a length-scale of ~ 300
h~' Mpc (Tully 1987; Tully et al. 1992). Furthermore it has been shown recently that
a coherent anisotropy, in the distribution of Abell+ACO clusters, exists over a sphere of
diameter ~ 300 h~! Mpc (Plionis & Valdarnini 1991; Scaramella, Vettolani and Zamorani,
1991). The existence of such structures severely challenge galaxy formation theories, in
which galaxies grew through gravitational instability from a primordial density fluctuation
field §(%), with Fourier components §; Gaussian distributed with random phases. However,
apparent large-scale structures could arise in any point distribution that is characterized
by low-order clustering and it is therefore extremely important to test the significance
of the observed large-scale structures. In fact, Postman et al. (1989) have analysed the

Tully sample of Abell clusters and compared the observed large-scale flattening (Tully
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1987) with that expected in simulated cluster catalogues, characterized by the same low-
order clustering properties as the real data. They conclude that the observed large-scale
flattening of the distribution is not unexpected in the simulated catalogues and that it is
probably due to a chance superposition of smaller superclusters. If, however, clusters are
non-randomly distributed on scales up to ~ 300 A~ Mpc, as has been recently reaffirmed
by Tully et al. (1992), then the observed distribution would put strong constraints on any
theoretical model of cosmic structure formation that assumes Gaussian statistics and/or
the gravitational instability hypothesis. Further evidence for an excess of power on large
scales has been reported recently by Saunders et al. (1991) and Efstathiou et al. (1990) in
the IRAS galaxy distributions and by Maddox et al. (1990a), Picard (1991) and Collins
et al. (1992) in the large digitalized photometric surveys. Clowes and Campusano (1991)
found a large quasar group of size ~ 100 — 200 A~ Mpc at z ~ 1. In light of these results
and of their potential importance we have decided to re—analyse the observed clustering in
the Abell & ACO cluster catalogues by using a variety of statistical techniques (percolation,

statistics of shapes, minimal spanning trees, void probabilities and cluster alignments).

Some of these techniques have been found to be insensitive to different types of point
distributions, while other techniques are able to distinguish. For example percolation
analysis, as a discriminative technique, has been subject to criticism (Dekel & West 1985,
Bhavsar & Barrow 1983), although Klypin et al. (1989) have argued for its use with
specific data samples. A more promising technique is the Minimal Spanning Tree [MST]
(Ore 1962). Barrow, Bhavsar & Sonoda (1985) have used this technique to discriminate
the 2-D and 3-D galaxy distribution from randomly distributed samples as well as from
numerical simulations. Using the Zwicky and CFA galaxy catalogues and the numerical
simulations of Gott, Turner & Aarseth (1979) they found that this technique is able to
discriminate between different galaxy distributions even when their two-point correlation
functions are identical. They also noted that it picks up prominent filamentary structures.
Ling (1987) and Bhavsar & Ling (1988a) have used this technique with success to inves-
tigate whether the apparent structures in the CFA catalogue are statistically significant.
One, however, should be careful in applying this technique to galaxy samples since it will

tend to erroneously identify virialized clusters (‘fingers of God’) as filaments. Another
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approach to the study of the large-scale structure has been the investigation of underdense
regions (voids), which have been shown to exist in the distribution of galaxies (Kirshner
et al. 1981; de Lapparent, Geller & Huchra 1986; Rood 1988) and clusters (cf., Bahcall
& Soneira 1982a; Batuski & Burns 1985b; Tully 1986). A quantitative measure of voids
is given by the void probability function, P,(V'), the probability that a randomly placed
volume V' is empty. White (1979) has shown that P,(V) depends on the high-order cor-
relation functions and Weinberg, Ostriker and Dekel (1989) have found that the VPFs
are significantly different in different cosmogonic scenarios and therefore the VPF could
be used to put strong constraints on cosmic structure formation theories. Recently, Jing
(1990b) has used the VPF to analyse 2-dimensional Abell cluster samples, while Huchra
et al.(1990b), Cappi, Maurogordato, Lachiéze-Rey (1991b) and Postman, Huchra & Geller
(1992) have analysed several 3-D samples. Another extremely significant test of large-scale
structure, which could place stringent constraints on the theories of cosmic structure for-
mation (cf., Dekel, West & Aarseth 1984; West, Dekel & Oemler 1989), is whether clusters
are aligned with their neighbours over scales of tens of Mpcs. This subject is extremely
controversial with different groups presenting conflicting results (Binggeli 1982; Rhee &
Katgert 1987; Flin 1987; West 1989a,b; Plionis 1992; Struble & Peebles 1985; McMillan,
Kowalski & Ulmer 1989; Fong, Stevenson & Shanks 1990).

It has been clear that testing the statistical significance of the detected large-scale
clustering, by comparing it with that found in a distribution of points generated with
the same selection and correlation properties as those observed, can give very useful in-
formation about the primeval spectrum. Therefore, we compare here, using the above
techniques, the 3-D Abell/ACO cluster distribution with an ensemble of simulated cata-
logues where the particle positions satisfy the same selection effects as those of the observed
clusters. The simulated catalogues are generated from a Gaussian power spectrum P(k)
with random phases such that the particle distribution, obtained by using the Zel’dovich
algorithm, has its two—point function £, in the same range and with the same slope as
that observed. Our aim is to test whether or not the simulated catalogues, for a given
§ce, can reproduce the observed large-scale clustering, cluster filamentarity and void prob-

ability. We will also present results of cluster alignments within superclusters although we
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cannot test their reproducibility in the simulated catalogues since our simulations are not

dynamically evolved.

10.1 Data Samples

10.1.1 Real cluster samples
a) Sample definition

We apply our analysis to two cluster samples, the Abell R > 0 sample with measured
2 < 0.1 and |b] > 30° which is almost a volume limited sample and the ACO myy < 16.4,
b < —20° sample. Although, Abell cautioned that the R = 0 cluster sample is not
complete and therefore not suitable for statistical studies, a growing number of researchers
have been using it (e.g., Tully 1986, 1987; Postman et al. 1989; Huchra et al. 1990b).
Recently, Postman, Huchra & Geller (1992) performed a comparative study of the density
distribution and the clustering properties of the R = 0 and R > 1 cluster samples and
found that the two samples‘have similar density distributions out to z & 0.2 and similar
clustering properties. This then indicates that the incompleteness of the R = 0 sample is
not severe enough to render it useless. In view of these results and in order to compare
our results with those of other studies which have used similar cluster samples, we choose
to include the R = 0 clusters in our sample. However, we will test the robustness of
our results, based on the R > 0 sample, by applying the same statistical tests (discussed
further below) to the R > 1 sample.

We estimate comoving distances from redshift using the standard relation (6.1) with
H, = 100 h km sec™® Mpc™! and ¢ = 0.2. In the following analysis we will use a

Cartesian coordinate system with:
¢ = Rsinlcosb vy = Rcoslcosb z= Rsinb. (10.1)

The subsample of the Abell catalogue that we use covers totally 4.8 steradians, 3.1 in the
northern (NGC) and 1.7 in the southern galactic cap (SGC). The total number of clusters
in this subsample with measured redshift < 0.1 (which corresponds to a comoving distance

of 284 b~ Mpc for g, = 0.2), is 206 in the northern hemisphere and 131 in the southern
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hemisphere. The redshifts we have used are mainly from Struble & Rood (1987) and
Postman, Huchra & Geller (1992) with additions taken from Rhee & Katgert (1988) and
Batuski et al. (1991). This sample is similar to that used by Tully (1987) and Postman
et al. (1989) although it is more complete due to the availability of more cluster redshifts.
The volume covered by this sample is ~ 3.6 x 107 h~3 Mpc?.

The subsample of the ACO cluster catalogue that we use is defined by b < —20°,
§ < —17° and mqy < 16.4. It covers 2.2 steradians which corresponds to an approximate
volume of ~ 1.6 x 107 h~2 Mpc®. It contains 118 clusters out of which 25 (~ 21%) have
estimated redshifts from the miy — z relation derived in Plionis & Valdarnini (1991). The
redshifts we have used are mainly from the original ACO paper but complemented with
those listed in Vettolani et al. (1989), Cappi et al. (1991a) and Muriel et al. (1991), for

which there is more than one redshift per cluster.

b) Selection functions
- Inorder to compare the real data with simulations it is necessary to know and quantify
the selection biases present in the cluster samples and use the same selection effects in our
simulations to generate similar samples. The main biases we need to quantify are the
redshift selection function, Galactic latitude and declination incompleteness effect.
We estimate the redshift selection function in the same way as in Postman et al.
(1989), i.e., we define the function P(z) to be the probability that a cluster at 2z would

have been included in the cluster catalogue, which has the form:

P(z) = {1 for z < 2 (10.2)

o« exp(—z/z,) for z > z,

where z. is the maximum redshift at which the sample exhibits a roughly constant ratio
of observed to expected number of clusters (Nops/Nezp) from a uniform distribution, and
z, is a scaling constant. We choose z. so that the correlation coefficient of the linear
regression fit of z(> z.) vs log(Nops/Negp) is maximized. Following this prescription we
find 2z, ~ 0.081 and 0.063 (with correlation coefficients 0.9 and 0.83) for the NGC and SGC
Abell samples while for the ACO we find 2. ~ 0.066 with a correlation coeflicient 0.9.

The Galactic latitude selection function has been estimated many times in the liter-
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ature and it has always been found to be roughly consistent with a cosecant law of the

form:

P(|b]) = dex[a(l — csc|b])], (10.3)

with @ ~ 0.3 for the Abell sample (Bahcall & Soneira 1983; Postman et al. 1989) and
a ~ 0.2 for the ACO sample (Batuski et al. 1989).

Furthermore, no significant declination dependence has been observed in the Abell
cluster sample (Postman, Huchra & Geller 1992) which we have also verified for our ACO

sample.

c) Cluster space-density and 2-point correlations

In Figure 10.1a and 10.1b we present the Abell NGC and SGC cluster space-density as
a function of comoving distance, evaluated in 10 equal-volume shells in the range 50 to 284
h~! Mpc. The Abell cluster density out to the limit of completeness (20)is ~1.2x107°
K3 Mpc~® and ~ 1.7 x 1073 h® Mpc~3, corresponding to a characteristic length scale of
bﬂ(p)_é ~ 44 h~! Mpc and 39 h~! Mpc, for the NGC and SGC respectively. In Figure
10.1c we present the ACO cluster space-density. Out to the limit of completeness, the
ACO cluster space density (b < —30°) is ~ 1.8 X 10~% kA3 Mpc™? corresponding to a
characteristic length-scale of (p)‘% ~ 38 h~! Mpc. The ACO density derived here is less
by ~ 30% than that derived in Plionis & Valdarnini (1991) because we do not consider
here the small region of the ACO with b > 0°, where the dense Shapley concentration lies
(Shapley 1930; Scaramella et al. 1989; Raychaudhury 1989).

We estimate the 2-point correlation function for our samples of clusters in the standard

way, i.e., using the following estimator:

14+¢(r) = (10.4)

(Ner) ’

where N, is the number of cluster pairs in the interval » — é7/2 < r < 7 + ér/2 and
(N.-) is the average, over 200 random simulations with the same boundaries, redshift
and galactic latitude selection functions, of the cluster-random pairs. We have evaluated
£(r) in 16 logarithmic intervals in the range [4, 180] h~' Mpc with constant logarithmic
amplitude A ~ 0.1 and the results are shown in Figure 10.2. We have estimated the
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Figure 10.1 — Space density of Abell and ACO cluster samples (solid lines), estimated in
equal volume shells. The error bars are Poisson fluctuations and the dashed line represents

the best fit from Eq. (10.2). o) NGC Abell sample; b) SGC Abell sample; ¢) ACO sample.
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variance of £ using the bootstrap technique (Ling, Frenk & Barrow 1986) by generating 100
bootstrap resamplings for each cluster sample. The relevance of the bootstrap technique
for estimating clustering errors has been recently stressed by Mo, Jing & Borner (1992)
[see Chapter 4], who also showed that the bootstrap error, for the 2-p correlation function,

can be analytically approximated by:
oh A3 X 0ip : (10.5)

where 0'3 p 1s the quasi-Poisson variance. We have therefore also estimated, for comparison

reasons, the quasi-Poisson errors:

o [liff@} 2 (10.6)

O =
¢ Ne.

In order to obtain an unbiased determination of the amplitude and slope of the 2-point

correlation function we have fitted the derived values of {(r) to the usual power-law

g(r) = BrY = (iy (10.7)

To

by using a x? minimization procedure, leaving both the amplitude B and the slope 7 as

free parameters to be determined by minimizing the following quantity:

Zﬁ [logf (r) — "ylogr—logl%’]2 ’ (10.8)

w;
where the weights w; are defined as the noise to signal ratio, o;/¢;. To test the sensitivity
of the derived v and B values to the error estimate, we have used in the minimization
procedure three different weights: (i) the bootstrap errors; (ii) the quasi Poisson errors
and (iii) equal weights (w; = 1).

The results of the above minimization are shown in Table (10.1). We find that the
slope of the derived 2-p function is robust, it does not depend on the error type and it has

a value ~ 1.84:0.2 for all samples. However the amplitudes, B, can change quite a bit when

using different error estimates. The most relevant estimate, however, of B is that of the
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Table 10.1 — Amplitudes and slopes of the 9-point correlation function using different
The fit in the NGC and SGC Abell sample is in the range
0 - 80 h~! Mpc, while for the ACO sample in 0 - 50 h~! Mpec. In the last two columns we

weighting schemes in Eq.(10.8).

present the amplitude B when w
penultimate column presents results w

larger than the quasi-Poisson error and similarly in th

than the bootstrap error).

e constrain the slope of the 2-p function to be —1.8 (the
hen we fit Eq.(10.8) only to those values which are

e last column when the values are >

w=1 w X Ogp W X Opo >logp = lowe
Yvee —192402 -L77£017 -1754£02  —18 ~1.8
B 227 +1T0 190714 1821116 1631127 20574
dooe —1.91£018 -1.97+£02 -1.96£022 -18 ~1.8
B 168112 2731250 2677333 132+98 1617358
Yoo —175+£05 -1.954£038 -19£04 18 ~1.8
B 114+37 4047554 363773 257F3% 25573

last column where we have constrained the slope 7 to be —1.8 while using the bootstrap
weighting in Eq.(10.8).

In Figure 10.2a and 10.2b we present the results for the 2-p correlation function of the
NGO and SGC Abell samples respectively. Both seem to have a well determined power-law
shape with a similar amplitude (ro ~ 18 =4 h~! Mpc) although the clustering found in
the SGC is of low significance since almost in all bins the bootstrap errors are larger than
the actual signal (see also insert of Figure 10.2b). For the NGC Abell sample we find
significant correlations out o ~ 50 A7 Mpc while for the ACO sample (Figure 10.2¢) we
find significant 2-p correlations only out to ~ 30 h~! Mpc but with a correlation length
ro & 22410 A~! Mpc. In the inserts of Figure 10.2 we present the noise to signal ratio

defined as o /¢ using both the bootstrap errors (solid line) and the quasi-Poisson errors
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Figure 10.2 — The 2-point cluster-cluster correlation function. Error bars are estimated
from 100 bootstrap resamplings. The inserts show the noise to signal ratio, o /¢, for the
bootstrap case (solid lines) and the quasi-Poisson case (dashed lines). a) NGC Abell
sample. The fitted line corresponds to v = —1.8 and ro = 18 h™! Mpc; b) SGC Abell
sample. The fitted line is as in a); ¢) ACO sample. The fitted line corresponds to vy = —1.8
and 7o = 22 h~! Mpc.

(dashed line). The relative ratio of the two curvesis ~ 3 as it should from Eq. (10.5) (Mo
et al. 1992). Based on our analysis in Chapter 6, we believe that the cluster correlations,

determined in this section, are reliable and mostly unaffected by cluster contamination

effects (cf. Sutherland 1988).

d) Cluster 3-point correlations
Despite the relevance of the 2-point function, it is clear that it does not contain all
the information about the statistics of the cluster distribution. For this reason, different
authors extended the correlation analysis of the cluster distribution to the 3-point function
[see Chapter 7). Jing & Zhang (1989) and Téth, Hollési & Szalay (1989) realized their
3-point analysis for the Abell, ACO and Shectman (1985) cluster samples while Borgani,
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Jing & Plionis (1992) for poorer clusters extracted from the Lick map (Plionis, Barrow
& Frenk 1991). In all the considered cases these authors found that a good fit to the
spatial 3-point function is provided by the hierarchical expression (3.1.7) with values of
the hierarchical coeflicient in the range 0.6 < @ < 1.1. Recently, Jing & Valdarnini (1991,
JV91) analysed a redshift sample of Abell and ACO clusters. Using the bootstrap method
to estimate sampling errors they found within the large error bars, the hierarchical model
of Eq. (3.1.7) is in agreement with the data.

Since our present samples are more redshift complete than those of JV91, we have
recalculated the hierarchical coefficient @) of the connected three—point cluster gorrelation
function ¢. The method is the same as JV91 [see §A.1]. Using a shell with its inner and
outer radii 7 and 26 A~ *Mpc, we find

QNGC ~ 0.65 QSGC ~ 0.70 QACO ~ 0.30 (109)

with bootstrap error of ~ 0.2, in quite good agreement with JV91.

10.1.2 Simulated cluster samples

a) Construction of catalogues
We generate our simulated cluster catalogues using a method similar to that of Post-
man et al. (1989). We identify the position Z of points corresponding to clusters of galaxies
according to the following prescription: NN, points are randomly placed in a cube of size
640 A~! Mpc with N; = 64° grid points. The points are then displaced from their original
positions ;. by

Z; = &+ »_ W(& — &)D¢(&,), (10.10)
g

where Z; are the grid points coordinates, W(&; —Z) is a TSC interpolating spline (Hockney
and Eastwood 1981) and ﬁqﬁ(fg) is a seven point difference formula, approximating the
gradient of ¢ at the grid point Ty. We use this high order approximation in order to

suppress Poisson noise. The field ¢(z,) is defined onto the cubic grid as

5 -
o(Z,) = E’ge”“'”ﬁ‘f’s ) (10.11)

k
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where 67 = \/——_Q—EL—EP;/Z, while ¢ = 277y is the random phase. Here r; and 7, are two
random numbers uniformly distributed between 0 and 1 and P(k) is the power spectrum
of the density fluctuation spectrum which we want to represent. In this way the spectrum
6; has a Gaussian distribution with random phases and (5%) = P(k). In Eq. (10.11)
the summation is over the 64% waves of the cube in k-space. Egs. (10.10) and (10.11)
correspond to the Zel’dovich approximation. The power spectrum P(k) must be chosen so
that the perturbed particle positions give a correlation function in the desired range. In

accordance with Postman et al. (1989), we write P(k) as
P(k) = A k" exp(—|E[*/A%) O(IkI) , (10.12)

where A=1 = 0.1 h=1 Mpc, O(|k]) = 0 for |k| > 1/80 A~ Mpc (= k) and O(|k|) =
1 otherwise. The low—wavenumber cut—off k. is such that all the wavelengths of the
simulation cube with A < L/1.3 = 500 h~* Mpc contribute to P(k); thus our simulations
have more power on large scales than in Postman et al. (1989). As will be seen in §10.2 this
is essential in order to draw several conclusions about the reproducibility of the real data
cluster distribution in our simulations. In Eq. (10.12) A is a normalization constant and
n is the spectral index. The parameters A and n must be chosen such that the two—point

correlation function

im in the range ~ 10 ~ 60 h~! Mpc, corresponds to the observed
£.c. Using this approach we have generated two sets of cluster catalogues, with r, = 14
and 18 A~! Mpc and v ~ 1.8. Each set corresponds to a different value of A and n and
is an ensemble of 50 simulations, each one with a different random number sequence in
Eq. (10.11).

For 7o > 18 h~! Mpc the Zel’dovich approximation cannot be applied and in order to
reproduce the observed £, one has to assign points to the peaks of the background field
§(%) according to the following prescription: each particle inside the cube is assigned a
value v such that §; = vo, where o is the rms density fluctuation within the cube and
7 is the nearest grid point to the particle. Here 67 is the density field smoothed with a
Gaussian filter function having a filtering length r; = 10A~! Mpc. Using this approach

we can reproduce a two-point correlation function with 7o > 18 h~! Mpc and v = 1.8,

provided we choose only those particles of v > 1.3. We have, therefore, generated two
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more sets of simulated cluster catalogues with r, = 21 and r, = 25 h~™! Mpc. We shall
refer to the simulations with 7o = 14 and 18 A™! Mpc as the Zel’dovich simulations (Z14
and Z;g respectively) and to those with 7o = 21 A7 Mpc and 25 h~! Mpc as the peak
ones (P,; and Po5 respectively).

We note that the number of points N, must be chosen so that, after having applied
to the simulated samples the survey bdundary limits and all the selection functions of
the real data [Eq. (10.2) and Eq. (10.3)], we have the same number of clusters as in
the real samples. For the Z simulations we choose N, = 13000, while in the P case
N, = 73000. The latter results to about 12000 ~ 13000 points being associated with
peaks with § > 1.30. This number fluctuates because of the Gaussian distribution. For a

Gaussian field with Ng = 64° points there are about (].'_lN!;3 points with 6 > 1.3c.

Table 10.2 — Simulation parameters: A is the normalization constant given in Eq. (10.12),
n is the spectral index and N, the particle number. (r,) (in A~ Mpc) and v are the least

square estimates of the two-point function, averaged over 50 simulations, for the whole

simulation cube.

A4-10° n N,-10* (r,) (v)

3.3 —-1.2 13 14.0 1.8
4.8 -1.0 13 18.0 1.9
1.9 —-1.5 73 21.2 1.8
1.6 -1.6 73 249 1.8

Our final simulated cluster catalogues have the same geometrical boundaries as in
the real data while the individual clusters have been selected according firstly to the
galactic latitude selection function and secondly applying the real-sample redshift selection
function. This procedure was stopped when the number of points was the same as the
number of clusters in real catalogues. We have verified that our identification of the grid
peaks with the particle subset is a faithful tracer of the peak distribution by comparing the
resulting £(r) with that obtained when doubling the particle number, N, (cf. Valdarnini
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Figure 10.3 — The 2-point correlation function for the simulated cluster samples of the

4 different sets of simulations. Error bars are estimated from the ensemble fluctuations.

and Borgani 1991). The parameters 4, n and N,, together with the value of r, and 7,
averaged over 50 simulations, are given for all four sets of simulations in Table (10.2).
Note that before introducing the selection functions the cluster number density in the
simulations is rather high, i.e. (n) ~ 5 x 107% . This was required in order to obtain the
same .number of clusters as in the real catalogues, despite the random fluctuations in the

spectra and in the selection functions.

b) Simulated cluster 2 and 3-point correlations

In Figure 10.3 we present the average £3i™ (over the 50 realizations) for all of our
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simulated samples. As can be seen, both the slope and amplitude of the two-point function
are in good agreement with our requirements. The range of scales over which the 2—point
correlation function is determined, especially for the P simulation sets, is between 7 ~ 60
h~! Mpc. Note also that the two P sets of simulations have by construction non-zero
higher order correlations and we have, therefore, estimated the hierarchical coeflicient @
selecting from the whole cube (before applying any selection function) ~ 1600 simulated
clusters (so that (n) is similar to that of the Abell catalogue) using the direct triplets-
counting method. The method is the same as that in §4.3.3, except the bootstrap error
of DDD is determined by the explicit formula of Mo et al. (1992). We find that the
hierarchical expression of Eq. (3.1.7) is fulfilled with

Q21 ~ 0.58+0.16 Q5 ~ 0.65+0.09, (10.13)

where the uncertainty is the ensemble one.

~ In order to facilitate a comparison with the value of @ obtained from the real cluster
samples (§10.1.1d) and to test the reliability of the moments method to determine the
3-point function from a small sized sample, we have applied this method to our simu-
lated cluster catalogues using the same bin size as in the data. The results are shown in

Table (10.3) and are in good agreement with those of the whole cube.

Table 10.3 — The hierarchical coefficient @) of the 3—p correlation function estimated for

the real and simulated cluster catalogues.

method NGC Abell SGC Abell ACO

real samples moments 0.65 0.3 0.7
Py moments 0.47+0.21 0.714+0.24 0.63+0.21
Py moments  0.6+0.15 0.654+0.22 0.54+0.21

10.1.3 Conclusions

We conclude that the northern and southern Abell samples have similar correlation

functions with correlation length r, ~ 1844 h~! Mpc, while the ACO sample has stronger
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correlations 7o ~ 22 - 10 A~! Mpc, but with a much larger scatter. The northern Abell
samples show significant correlations up to ~ 40 — 50 ™' Mpc, while the southern Abell
and ACO samples only up to ~ 30 h™* Mpc. The hierarchical coefficient @ of the 3-p
function is consistent, within errors, in all three cluster samples with an average value
~ 0.6. Similarly our simulated cluster catalogues all have well defined 2-point correlation
functions with the same slope as that observed while the P sets of simulations have also
non-zero higher order clustering and in particular their 3—point correlation function is in
good agreement with that of the real cluster samples (Qsim = 0.6).

Thus, the simulated cluster catalogues are defined in the same region of the sky and re-
produce not only the selection functions but also the low-order (2- and 3-point) correlation

properties of the real cluster samples.

10.2 Large-Scale Cluster-Clustering Analysis

A question that is posed often in the literature is whether the observed large-scale
structures (superclusters, walls, filaments and voids) are real. This question, however, is
ill-defined. What do we mean by a ‘real’ large-scale structure ? In any distribution of
points with a low-order clustering, characterized by a 2-p function, one should expect to
find some sort of large-scale structure, according to the algorithm used, independently of
whether these structures are the product of dynamical interactions of their constituent
members or whether they were just born correlated.

A more precise question, which we will attempt to answer, is whether there is any sig-
nificant evidence to argue that the observed large-scale structure is unexpected within the
context of a Gaussian background fluctuation spectrum with random phases, determined
by the observed cluster 2-point correlation function (which fully specifies its clustering
characteristics). We will address this question by testing, using a variety of objective anal-
ysis techniques, whether the general morphology/properties of large-scale structures found
in the real cluster distribution can be reproduced in their simulated counterparts, which
would then imply that the simulation construction assumptions are, at least, not in contra-

diction with the real world and vice-versa; if there are significant differences between the
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simulated and the real cluster distributions then this would imply that the construction

assumptions are invalid, as far as the real world is concerned.

10.2.1 Minimal-Spanning Tree Technique

First we construct the Minimal-Spanning Trees (MST) in our observed and simulated
samples. A detailed description of the MST and of its construction method is given §3.4.
In Figure 10.4a and 10.4b we present the three-dimensional distribution of the Abell (NGC
and SGC together) and ACO clusters, respectively, together with their MST construction
(branches with more than two nodes). We are located at the center of the cube with the
North Galactic pole pointing upwards and the South Galactic Pole pointing downwards.
The side of the cube is 500 A~! Mpc long.

In order for our structures to be ‘physical’ associations of clusters we use cut-off lengths
such that the distance between any two clusters along the separated MST is not larger than
the characteristic length scale ((p)_é) of the sample. The range of cut-off lengths we will
use is 0.4(p)”"3 < I, < 0.9(p)™3 and in units of the mean edge-length along the MST
0.6(I) < I. < 1.5(I). The average edge-length along the MST construction, for our real
and simulated cluster samples, can be found in Table (10.4). The simulation set that best

reproduces the observed ()., for all three cluster samples, is the P,; set.

Table 10.4 — Mean MST edge-length, (I), for the real and simulated cluster catalogues
(in A~! Mpc).

Samples Real  Zp,4 Z1g Py Pos

Abell NGC 25.8 27.844 27 44 25+£3.7 24+3.5
Abell SGC 24.7 26.7+4 26 4 24+3.7  23.2+£3.5
ACO 24 26.1+4 26 £3.8 23.44+3.6 22.24+3.4

a) F(l) distribution
The frequency distribution of edges of length ! along the MST, F(I), was used by

Barrow et al. (1985) to discriminate, with success, between cosmogonic models that have
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I

Figure 10.4 — The 3-dimensional distribution of Abell and ACO clusters together with
their MST construction in Cartesian coordinates. The box size is 500° Ah~% Mpc®. We are
located at the center of the cube and the north galactic pole points upwards from cube

centre. a) NGC and SGC Abell samples; b) ACO sample.
173




the same 2-point correlation function. This statistic gives a measure of the pairwise cor-
relations within the MST construction. Plionis & Frenk (unpublished work) have found
that, when a large number of points is available, this statistic is extremely sensitive to
models with different exponent n of the power spectrum.

We have compared the F({) distributions of the real, the simulated and random sam-
ples (generated using the data selection functions). We have normalized the simulated
MST edge-lengths to the mean of the real cluster samples, (I),. In Figure 10.5 we present
a comparison of the mean F(I/(l),), over all simulations (thin lines), with that of the real
data (thick lines). We present the F({/(l),) only for the three sets of simulations with
7o > 18 h™! Mpc [since the Z14 F(I/(l);) is quite similar to that of the Z13]. The NGC
Abell sample shows a clear excess of small [/(l), in comparison with all simulations. We
have also compared the observed F(I/(l)), to that expected from a Poisson distribution of
points having the same selection functions as the real data. To quantify this comparisons
we have performed a x2-test [Table (10.5)] which indicates that the random distribution
cannot reproduce, as expected, the cluster F'(I/(l,)). The Z14 and Zis sets of simulations
perform similarly poorly for the NGC sample while for the ACO only the Z14 is unaccept-
able. The SGC sample F(I/(l),) could be reproduced by any set of simulations which is
in agreement with the fact that its 2—point correlation function is quite noisy and of low
significance.

However, the simulation that performs best in reproducing the observed F(I/(l),) (in

the sense of maximizing the value of P,:), for all three samples, is the Py;.

Table 10.5 — x? probabilities (P,2) that the real sample F(I/(l.)) distribution could

have been drawn from the corresponding simulated parent distribution.

Sample Random Z14 Z13 Pgl Pgs

Abell NGC 0 6.9x107* 2.7x107* 0.68 0.46
Abell SGC 2 x107° 0.89 0.85 0.97 0.86
ACO 0 9.8x1072 0.48 0.96 0.89

b) Filaments: branch linearity statistics
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Figure 10.5 — Comparison of the F(I/(l,)) distribution (frequency distribution of edge-
lengths, normalized to the mean edge length of the real cluster MST) of our three cluster
samples with the average simulation distribution (for the Zis, P21 and Pas simulation
sets). Error bars are estimated from the ensemble fluctuations. The simulation that best

reproduces the real cluster distribution is the Pa1, which is also confirmed from the x? test

[see Table (10.5)].
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Once we have developed the MST for our data and simulations we separate the tree
so that all edge-lengths with { > [, (where the simulation cutoff length, ., is in units of
the mean of the real samples edge-length, (I)) are removed. What remains of each MST
is a set of branches that contain a variable number of clusters (we keep only those with
N > 3). We now define Ry to be the ratio of the start-to-end branch-length to the total
length along the branch and we will use this parameter as a descriptor of the linearity of
each individual branch. If Ry ~ 1, the branch is a linear structure (filament) while if
Ry < 1 the branch is an extremely curved structure (note that Ry > 0 from the definition
of the MST). The significance of each real-cluster branch R measure will be assessed by
comparing with the expected Ry distribution from the simulated catalogues (which, we

repeat, have both the 2- and 3-point correlation functions similar to the real samples).

In Figure 10.6 we present the Ry, values of the observed branches (open circles) to-
gether with the 90% (long-dashed lines) and 99% (short-dashed lines) Ry, confidence level,
evaluated from the Ry distribution of simulated branches, as a function of the total branch
length (in A~! Mpc). Although we have used the Ps; set of simulations, note that using
the Po5 or Zig sets results in qualitatively identical confidence limits. We present results
for four different cutoff edge-lengths (I, = 0.6, 0.8, 1.0 and 1.2 (I),). We find that there
are preferentially more linear (Ry ~ 0.8) real cluster branches (in all three samples), es-
pecially for I, < () and branch-lengths < 40 ™! Mpc, with respect to the simulations.
Furthermore, most of them lie beyond the 90% confidence limits while in some cases they
lie even beyond the 99% level (~ 3c). For cutoff-lengths I, = 1.2(l) we find, in the NGC
Abell sample, significantly linear branches with lengths even up to ~ 150 A~! Mpec. In
the ACO sample and for [, > 0.8(I) we find an extremely curved structure consisting of
A3095, A3094, A3151, A3154 and A419. Such curved structures are also apparent in the
SGC Abell sample (but not as significant).

We conclude that in our cluster samples there is significantly richer large-scale struc-
ture (filamentariness and compactness) with respect to what is found in our simulated
samples which have the same 2 and 3-point correlation functions. This result holds even
when comparing with the P,5 set of simulations, which has significantly stronger clustering

than is found in the real samples. This implies that our results are not due to a lack of
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Figure 10.6 — MST branch linearities, Ry, as a function of total branch length for four
different cutoff lengths, l.. The real data values are plotted as open circles v?‘hile the long-
dashed and short-dashed lines correspond to the 90% and 99% confidence limits, estimated
from the P»; simulations set. In most cases the 99% limit coincides with the outer extremes

(minimum and maximum values) of the simulated branch Ry ’s.




clustering but could indicate that the underlying statistic used to construct the simulated

cluster catalogues is different from that of the real cluster distribution.

c¢) Branch-length frequency distribution

We produce the frequency distribution of the branch-lengths (defined as before) and
we compare them with the simulation distributions. For the case of small cutoff lengths
(Ic £0.8) we use 10 logarithmic bins in the 8240 A~! Mpc range (logarithmic bin-size of
A ~ 0.15) while for I, > 1 we use 12 bins in the range 10—500 2~! Mpc (A ~ 0.12).

In Figure 10.7 we compare the branch-length distributions of the real samples (solid
lines) and of the P,; set of simulations (short dashed lines). It is evident that for /. < 0.8
there is an excess, with respect to the simulations, of relatively long branches. For larger
[.’s the real and simulated sample distributions are quite alike. Qualitatively similar results
are obtained when comparing with the other simulation sets. We quantify this comparison
by using a x?-test [see Table (10.6)] which shows that there is a significant difference
between real and simulated branch-length distributions only for [, < 0.8 and mostly in the

ACO sample.

Table 10.6 — x? probabilities (P,2) that the real sample branch-length frequency distri-

butions could have been drawn from the corresponding simulated parent distributions.

NGC SGC ACO

I./(l} Pys Pn Zg Pys Py Zys Pys Py, Z1s

0.6 0.003 0.18 0.076 0.41 0.42 0.15 2.7x1073 45x107* 6 x 107
0.8 0.017 0.031 5.6 x 10~* 0.07 0.073 0.023 1.2x 1072 1.4x10™% 107°
1.0 0.96 0.89 0.013 0.99 0.99 0.94 0.78 0.64 0.79
1.2 092 0.75 0.047 0.86 0.93 0.67 0.73 0.66 0.75

d) Alignments of clusters along the MST
Further evidence about the reality of the structures picked-up by the MST could
come from studying the alignment of clusters along it. We have used new position angles,

8;, of Abell clusters, determined from the Lick map by using a cluster finding algorithm
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Figure 10.7 — The MST branch length frequency distribution for four different cutoff
lengths, I.. The solid lines correspond to the real cluster data while the dotted ones to the
P,; simulation average (error bars are ensemble 1o fluctuations). There is a clear excess
of relatively long branches for I, < 0.8(I) (especially for the ACO and northern Abell

samples), while no such excess is observed for large values of I, [see Table (10.6)].



based on selecting density peaks above some density threshold (for details see Plionis et
al. 1991). Statistics on the position angles will be presented elsewhere (Plionis 1992)
but we note here that their distribution is highly isotropic with no evidence of preferred
orientation on the sky (their Fourier transform [see Eqs.(4) & (5) of Plionis et al. 1991]
gives C; =0, §; = —0.3, C3 = —0.8 and S3 = 0.8). Out of a total of 337 Abell clusters
(NGC+SGC) we have 185 6’s (~ 55%) from the Lick map. We have complemented this
sample with 32 more from West (1989b), which bring our total number of §’s to 221
(~ 66%). Armed with these position angles we search for an alignment effect (only in
the two Abell samples since for the ACO we do not have available position angles) by
comparing the orientation of a given cluster with the direction to its MST neighbour (note
that this is not necessarily its nearest neighbour). The procedure is based on determining
the acute angle, ¢, between the cluster position angle and the great circle connecting the
cluster centre to its MST neighbour. Note also that for this study we transform all our
coordinates to the equatorial system (in which the position angles are defined). We have

determined the quantity (Struble & Peebles 1985):

=21

N
§=> -45, (10.14)
=1

where N is the total number ¢ values. If these are isotropicaﬂy distributed betweén 0°
and 90° then for large N we should obtain § = 0 while a significantly negative value
will indicate alignment and a positive one a anti-alignment. The significance level can be
estimated from:

90

o= (10.15)

We have found that there is no significant alignment effect along the MST of the NGC

sample (§ ~ —0.7 and ¢ ~ 2.2) while, on the contrary, there is a significant alignment
effect in the SGC sample (§ ~ —8.7 and o = 2.9). Note, however, that we have available
position angles only for a subset of our samples. The alignment signal, found in the SGC
sample, could be a reflection of the well known Binggeli effect (Binggeli 1982), in which
clusters tend to point towards their nearest-neighbour (see also Rhee & Katgert 1987;

Flin 1987). In order to see whether this is the case we have also performed a strictly
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nearest-neighbour alignment analysis and we found significantly less alignment in the SGC
(6 = —5.2 and o ~ 2.9), while for the NGC again no alignment was found. Therefore there
is some indication of some physical relation between the distribution of clusters along their
uniquely determined MST construction.

However, the alignment effect could be artificial, due to the fact that the clusters which
are near in 3-dimensions are, in many cases also near in angular space and therefore their
density envelopes could be overlapping in 2D which could produce a directional bias in the
determination of their position angle and thus a preferred orientation along the direction
of their neighbours. We have tested whether this is the case by searching for an alignment
effect of nearest-neighbours found in angular space. If there is no systematic bias in the
determination of the position angles we expect to find a weaker alignment signal, since
only a subset of clusters which are near in 3-dimensions are also near in angular space. We
find that the alignment signal (§ ~ —3.6 and o ~ 2.9 for the SGC sample) is significantly
weaker than in the 3-dimensional case, which implies that our position angles do not suffer

from the above mentioned bias.

e) Conclusions

We have found that we can best reproduce the cluster F({/(l,)) distribution by the Py,
simulation set, although the Pyj5 is also acceptable. However, ‘shape’-statistics, like the Ry
or the branch-length frequency distribution reveal that the real cluster samples (especially
the ACO one) have a higher ‘filamentariness’ and ‘compactness’ (~ 30 events) as well as a
higher frequency of long-branches (at small cutoff lengths) with respect to simulated cluster
distributions that have the same low order (2- and 3-point) clustering characteristics.
Furthermore, we have found, only for the SGC sample, significant alignments of clusters
along the MIST. Our results remain qualitatively the same when we restrict our sample only
to R > 1 clusters, although at a somewhat less significance level (due to the significantly

smaller number of available clusters).

10.2.2 Percolation analysis

In order to study further the possible significance of the large-scale structure in the

Abell and ACO cluster samples we have used the friends-of-friends algorithm to find candi-
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date superclusters and test their significance. Note that the superclusters, in this analysis,
and the branches, of the MST analysis, are different structures; in most cases the MST
branches are contained within individual superclusters. However, in order to keep a con-
sistent definition of scale we will use the “friendship’ radius, R,, in units of the mean MST
edge-length, (I),.

As discussed in the introduction, in any set of points that is characterized by a 2-p
correlation function, one should expect to find associations of points (superclusters in our
case) even of large dimensions. The existence, however, of such ‘superclusters’ does not
necessarily imply that there is any excess power on large scales, more than what is needed
to produce the observed cluster-cluster correlation function; such associations could be just
a product of small-scale clustering coupled with random positional alignments. In this
framework, in order to test the significance of the observed large-scale structure found by
this technique, we have used three statistics to compare data and simulations, and we have
also performed a cluster alignment analysis.

a) Fraction of clusters in superclusters

This test was performed by Postman et al. (1989) and Postman, Huchra & Geller
(1992) for a similar Abell sample and found that the simulations with quite strong 2-
point correlation functions (r, ~ 20 — 24 A~! Mpc) can reproduce the observed fraction of
clusters in superclusters (which they defined as groups with > 5 members).

We have repeated this analysis for our samples and in Figure 10.8 we plot the % of
clusters in superclusters as a function of the radius of ‘friendship’ association, in units of
the average MST edge-length for each real sample (I), (continuous line). In our case we
define superclusters as groups with > 2 members. The results of the simulations are plotted
as individual points of varying shape for the different simulations (see figure caption). It
is evident that the behaviour of this statistic for the real data does not show any great
departures from the general trend found in the simulations. It is, however, consistent

within ~ 1o only with the P,; set of simulations, which is in agreement with the &(r)

(§10.1.1c) and F(I/(l),) (§10.2.1a) analysis.

b) Multiplicity function

The superclusters have been binned in seven logarithmic multiplicity bins according
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to the number of member clusters that they contain. We have chosen a logarithmic binning
to reduce discreteness effects and thus to accommodate the application of statistical tests
(x2-test). We have analysed the multiplicity function (MF) at various percolation radii
(ie, R, = 0.6, 1 and 1.5 (I);) and for a variety of binning parameters.

We find that for all different R,’s the NGC and SGC Abell samples show no significant
difference between (all) simulation and real data MF (P, > 0.15). Similar results are
obtained for the ACO’s sample for R,/{l), = 0.6 and 1. However, for R,/{l)r = 1.5 there
is a statistically significant difference when comparing the MF with that of any simulation.
For the relevant case of Py; the probability that the ACO MF could have been drawn from a
Py; parent MF is P2 = 6 X 1073, Such a significance level is stable to the different binning
parameters. In Figure 10.9 we compare the MF’s of all our samples, at R,/(l), = 1.5 (solid
lines), with that of the Pp; set of simulations (dashed lines). The ‘peculiarity’ of the ACO
MF is apparent.

We conclude that structures in the Abell samples, containing as many as 64 clusters,
using a percolation radius of 1.5 (I) (Perseus-Cetus supercluster + Perseus-Pegasus chain
+ Pegasus-Pisces chain in Tully [1987]), appear at least once in each simulation. This
result is in agreement with those of Postman et al. (1989) and Postman, Huchra & Geller
(1992). However, for the ACO sample there is evidence for superclustering (as measured
by the MF) in excess of what expected just from the small-scale cluster clustering in the

simulations.

¢) Supercluster flattening

It is usually assumed that the observed flattening of superclusters, found by friends-of-
friends algorithms (using a variety of percolation radii Rp), is an indication of the physical
reality of the superclusters (cf. West 1989b). However, this conclusion is usually based on
comparing the observed flattening with that expected from a distribution of random points,
which in our view can only help to understand the biases that enter in the determination of
the supercluster flattening (due to small number of clusters per supercluster, for example)
but it cannot directly address the question of the reality of a supercluster. The reason is,
as we will see below, that in a clustered distribution, characterized by a 2-point correlation

function similar to that of the real cluster distribution, the shape of ‘superclusters’ (found,

184



T T | — LA L S N S B LA S R E R A A
10 = —
= R
o NGC E
C1 3
L ]
3 61— -]
z F .
4 -
2 [ : N -
EoC e - l L ]
o1 17y [N e '"T'T'_‘x''|‘"""f_""T“‘l‘"l"‘f"‘lJ e bty L3
10 20 30 40 50 60
T T T T T T LI S B A B B B T
SGC i
=z ]
I - 3
T
1 e 3
L) ﬁ [ 1‘7«7_—#—7_7_1__'__{ [ ST N W R
20 30 40 50 80
8 __'i T T LN A R B A B T T L x_
Iy ACO .
Lot B
¥
4! —
Lol
8 ! i
= AN .
ot ] .
2 : | : —
- ‘!"_[____ T -
oo : ] = 'ir_ i
[ ____ L S dhi el sty |
L | a0 T T T T T T e e e A== ‘t I T
O i | L L] I ] L ” I ] 1 ! ' L I ! I L 1 1 1 I ! 1] 1 1 I 1
10 20 30 40 50 60
N./SC

Figure 10.9 — Multiplicity function of superclusters in logarithmic binning. Solid lines
represent the real cluster data while dashed lines the Pp; simulation multiplicity functions.
The error bars are the ensemble 1o fluctuations. A significant disagreement between the

simulation and the real data is apparent only in the ACO sample.

for example, by the f-of-f algorithm) is in any case non-spherical.

Furthermore when large radii R, are used to define ‘superclusters’, the limited volume

and the geometrical boundaries of the sample can bias the shape of the largest ‘superclus-
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ters’. Therefore, in order to assess the significance of the observed superclusters, it is
essential to compare the real data with simulations having the same correlation properties,
survey boundaries as well as selection functions.

To illustrate this we have diagonalised the inertia tensor, I, for all simulation ‘super-
clusters’, found at two ‘friendship’ radii (i.e., B, = (), and 1.5(I),) and having at least
9 cluster-members (in order to have a relatively large number of clusters per supercluster
but also a reasonable number of superclusters). The inertia tensor is defined as:

N

Iy = Z(mkm)iwi (10.16)

i=1

where k,l = 1,2,3, z1,, ©5, and z3, are the Cartesian coordinates of the 1** cluster with
respect to the centre of mass of the ‘supercluster’ and w; is the weight with which each
individual cluster enters the summation. Various weighting schemes can be used:

() w; = 1, an equal weight for each contributing cluster.

(43) w; = 7, the inverse square distance of each cluster from the supercluster centre

of mass (in order to reduce the weight of the outlining clusters; cf. West 1989a,b);

(212) w; = Ny, the number of galaxies in each cluster (listed in the cluster catalogue).

It is therefore clear that a unique shape of a supercluster cannot be defined. The
eigenvalues of the principal axes of the inertia tensor, a? > a2 > a2, define three quantities:
A1 = 1/a3, A\» = 1/a% and A3 = 1/a? and following Bardeen et al. (1986) we define for

each ‘supercluster’ two shape parameters:

A — A3
_ 10.17
T 00 X+ ) (10-17)
_ M2t (10.18)

P )
where e measures the ellipticity in the A; — A; plane and p measures the prolateness or
oblateness of the fitted ellipsoid. If 0 > p > —e then the ellipsoid is more prolate while if
e > p > 0 it is more oblate with limiting cases p = —e (prolate spheroid) and p = e (oblate
spheroid).
In Figure 10.10 we present the simulation supercluster flattening distribution (for

the Py; set), for the joint simulated ACO, NGC and SGC samples, using R, = 1.5(l),
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(the other sets of simulations give roughly similar flattening distributions). Two different
weighting schemes have been used (w = 1 and w = 7 2). It is evident that the simulation
‘superclusters’ are triaxial with a strong preference towards oblateness (~ 80% of the
total number of ‘superclusters’ have p > 0). Note that this is the ezpected flattening of
‘superclusters’ found by a friends-of-friends algorithm, in a clustered distribution similar to
that of the real cluster samples. Note also that there is a slight tendency for ‘superclusters’,
containing a large number of members (filled circles in the figures) to be more spherical
than those with fewer members.

To assess, therefore, whether the superclusters found in the real data are physical
entities we need to compare their flattening with that found in clustered environments
with the same selection functions as the real data (as in our simulations). In Figure 10.11
we present the simulated (P;) supercluster flattening (based on the w = 772 weighting)
together with that found from the real data (superclusters have > 9 members) and for two
values of R,,.

It is evident that the real superclusters are triaxial but in many cases have values of
e and p lying beyond the extremes of the distribution of simulated values. For R,/(l) =
1 all superclusters found are more oblate than prolate (even for the w = 1 weighting
scheme). However, for R,/(l) = 1.5 we find some extremely prolate superclusters, in
all three samples, and in the case of the SGC Abell sample we obtain that the largest
supercluster, with 64 members (Perseus-Cetus supercluster + Perseus-Pegasus chain +
Pegasus-Pisces chain), is an accurately (when w = r?) or a nearly (when w = 1) oblate
spheroid. This is the largest supercluster found in the real samples with length of its major
and intermediate axes ~ 215 A~! Mpc. However, as discussed in the previous subsection,
such large (and even larger) ‘superclusters’ appear at least once in each SGC simulation
and therefore although its size is not significant, its shape appears to be so.

These results hold when comparing with any set of simulations and therefore they
could be taken as evidence that at least some of the observed supercluster shapes cannot be

produced in our simulations with the same low-order (2- and 3-point) correlation functions.

d) Alignments of clusters within superclusters

Further evidence about the significance of the above supercluster shapes could come
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Figure 10.11 — Comparison of the shapes of the observed and simulated superclusters

found at two different radii, Ry, separately for the three cluster samples (using the w = r;?

weight; see text). The real data are represented by filled squares.

from a possible coherence, within each supercluster, of a cluster alignment effect (see West
1989b). In this case we search for an alignment effect by comparing the orientation of a

given cluster (having a determined position angle) with the direction of all other clusters
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residing in the same supercluster. We determine the acute angle, ¢, between the cluster
position angle and the great circle connecting the cluster centre with that of each cluster

residing in the parent supercluster.

Table 10.7 — Alignment statistics of clusters within superclusters at two different radii
of “riendship’. Dz is the maximum allowed separation between cluster members. Nep
is the total number of cluster-cluster separations considered. § and o are defined in the
text and P, is the probability that the distribution of ¢’s could have been drawn from an

isotropic parent one.

Sample R,/(l) Daz Niep §to 6/o P,:

all 754 —2.14+095 2.2 0.5

NGC 1

NGC 1 30 A~ Mpc 350 —4.1+14 2.9 0.038

SGC 1 all 351 —-59+14 4.2 0.001

SGC 1 30 h~! Mpc 199 —-48+18 2.7 0.002

NGC 1.5 all 3109 —-1.3+046 2.8  <107°
NGC 1.5 30 A~ Mpc 383 —=3.7£135 2.7 0.023

SGC 1.5 all 2038 0.3%£0.5 - <1073

SGC 1.5 30 A~ Mpc 218 —-5.5%1.8 3 8x107*

In Figure 10.12 we present the distribution of ¢ for all our the superclusters found
using a “riendship’ radius of (I) (panel a) and 1.5(0) (panel b), for the NGC Abell sample
(solid lines) and for the SGC one (dashed lines). There is evidence for a slight excess
towards low values of ¢, an indication of alignments. To quantify this effect we have
performed two statistical tests. Firstly we applied the x? test to test the hypothesis that .
the observed ¢ distribution is indistinguishable from an isotropic distribution. In the last
column of Table (10.7) we present the results of this test for the two different R, values

and for two different cluster separation ranges. In all cases, except for the NGC, R, = (1)
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Figure 10.12 — Distribution of cluster alignment angle, ¢, defined as the angle between
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sample. The errorbars are Poissonian.
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and whole separation range, we find that the ¢ distributions are different, at a > 0.96
significance level, from an isotropic distribution.

This test, however, does not explicitly quantify the alignment effect and we have,
therefore, used Eq. (10.14) and Eq. (10.15) We have estimated the average value of § over
all superclusters, with the corresponding ¢ which are listed in Table (10.7). It is evident
that a statistically significant, but small, alignment effect is present in all samples for
R, = (I) as well as for all R, values with Dmin < 30 h~! Mpc. Taking into account the
fact that we possess position angles only for a subsample of our clusters, the amplitude of
the alignment effect found here should be considered a lower limit to the real effect.

We have studied the alignment effect in the individual superclusters that contain > 9
cluster members, as defined in the previous section. Out of the three SGC superclusters
found at R,/(l) = 1.5, two show a very significant alignment with § ~ —5.4 and 0 =~ —1.5
and § ~ —8.4 and o ~ —3.2, respectively. It is interesting that both of these structures
(in the Aquarius supercluster complex [Tully 1987] with a size of 80 x 95 x 152 h= Mpc?
and 332 x 72 A% Mpc® respectively) are more prolate than oblate and in fact one of
them, the latter, is an extremely prolate structure with p = —0.165 (see Figure 10.11).
There is also a weak alignment (§ ~ —4.5, o ~ 2.1) in the extremely oblate supercluster
with 64 members (Perseus-Cetus supercluster + Perseus-Pegasus chain + Pegasus-Pisces
chain of Tully [1987] with a size of 175 x 215% A~ Mpc®) but only when separations < 30
k=1 Mpc are considered. In the NGC (R,/(l) = 1.5) again the only significant alignment
with § ~ —2.8 and o ~ 1.1, appears in the extremely prolate supercluster (p = —0.154)
which contains 25 clusters with a size 662 x 155 A~ Mpc® (near the Leo region [Tully
1987]). The only other supercluster that shows an alignment (§ ~ —35.5, 0 ~ 2), but only
for separations < 30 A~! Mpc, is in the largest supercluster found in the NGC with size
100 x 150 x 200 A~° Mpc® (Hercules-Corona Borealis supercluster [Tully 1987]).

Similarly for R,/(l) = 1, we find in the NGC that the two superclusters (the Hercules
supercluster [cf. Tarenghi et al. 1979, 1980; Gregory & Thompson 1984] with a size
31 x 39 x 63 A% Mpc® and part of that near the Leo region [Tully 1987] with 25 x 35 x 87
h~% Mpc® ) which show significant alignments, with § ~ —7.6, o ~ 2.5 and § =~ —5.6,

o ~ 2.7 respectively, are those which have relatively higher prolateness (p = 0.003 and
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0.056 respectively). In the SGC there is only one supercluster (part of the Pisces-Cetus
supercluster [Tully 1987]) with a very significant alignment (§ ~ —13.5 and o ~ 3.5 but in

this case it is significantly more oblate than prolate.

e) Conclusions

We have found that some of the superclusters in the real cluster samples, identified
by a friend of friends algorithm, have shapes which in many cases fall outside what is
expected from a clustered point-distribution having the same 2 and 3—point correlation
function as that of the real cluster samples (more prolate or oblate). Qualitatively similar
results are obtained when we restrict our sample only to R > 1 clusters, although the
resulting number of superclusters is quite small.

Using a set of newly determined position angles (Plionis et al. 1991; Plionis 1992)
we have also found quite a strong indication that clusters within superclusters are aligned
with each other (in agreement with West 1989b). Furthermore there is some evidence
for a correlation between the shape of superclusters and the cluster-cluster alignment effect
within superclusters, with the alignment being more significant in superclusters which are

nearly prolate.

10.2.3 The Void Probability Function

In this section, we use the void probability function (VPF) Py(V) to study spatial
distribution of clusters in the real samples and in the simulation samples. The VPF is
defined as the probability of finding no cluster in a randomly placed volume V and it is
closely related to the high order correlation functions (White 1979).

a) Our method ,

Our method of determining VPF is similar to that of Jing (1990b). For each simulation
sample or real sample, we randomly place a large set of random points (typically 5,000)
in the sample volume. Around each point, we draw a set of spheres. The radii of the
spheres are taken in such a way that the expected number of clusters within the spheres
is N (= nV'), where N = 1,...,14. If a sphere crosses the sample boundary, we exclude it
in our calculation, thus correcting for boundary effects. Because the cluster densities drop

dramatically near the radial boundaries, in this section we use new radial limits for the
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Figure 10.13 — The void probability function (see text). The real data VPF is repre-
sented by the solid lines while the simulation values by the different symbols. The dashed
line represents the Poisson case, exp(nV'). The error bars are the 1o ensemble fluctuations

of the Py; set of simulations.

real and simulated samples; 240 A~ 'Mpc for NGC and 210 A~ Mpc for SGC and ACO.

Finally, we count the number of clusters in each sphere, and obtain the count probabilities.

In Figure 10.13, we plot the VPF as a function of the expected cluster number for
the real data (solid lines) and simulated samples (symbols, see figure caption) as well
as for the Poisson case, exp(—nV') (dashed line). The uncertainties are estimated from
the fluctuations between 50 samples of the Pp; simulation sets (similar uncertainties are
obtained from the other simulation sets). For all three cluster samples the VPF of the
simulation P,; is systematically higher than the observed VPF (at 1.50 level), because
of the large correlation length. The VPFs of the other three set of simulations are all
consistent with the observed VPFs within 1lo.

b) Conclusions

We have found, using the void probability function, that both the sizes and the fre-
quency of voids in the distribution of rich clusters are not exceptional and in agreement

with that expected in any clustered distribution of points with the same 2-point correlation
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function, as that of the real cluster data (r, <21 A1 Mpc).

10.3 Conclusions

We have found, using a variety of clustering techniques, that the size, the frequency
of occurrence and in most cases the multiplicity function of the large-scale structures and
voids, observed in the distribution of rich (Abell, ACO) clusters are not unexpected in a
clustered environment characterized by the same low-order clustering as that of the real
cluster distribution. In particular we found that the peak simulations with a Gaussian
spectrum, random phases and r, ~ 21 h~™! Mpc can reproduce fairly well the three-
point correlation function of rich clusters (@ & 0.7), the MST F(I/(l),) distribution, the
multiplicity function of superclusters, found by a friends-of-friends algorithm, and the
fraction of clusters residing in these superclusters. These results are in agreement with
Postman et al. (1989) and Postman, Huchra & Geller (1992).

However, the filamentariness and the shapes (flattening) of structures are in many
cases unexpected (or at the very extremes of that expected), within the same framework.
Although these results are obtained in all three cluster samples, they are particularly
significant in j;he ACO sample. This could be attributed to the higher sensitivity of the
IITa-J emulsion plates used to construct the ACO survey, which then would imply that
this catalogue samples the large-scale structure in a more detailed way than the older
Abell catalogue. Another possibility is the different selection procedures used to construct
the two catalogues; the original Abell catalogue is based on local density enhancements
while the ACO on a global one. Yet an alternative but rather far-fetched explanation is
that there is no significant selection effects but the differences between Abell and ACO
samples are real properties of the cluster distribution in the regions of the sky probed by
the different surveys. |

Our results cannot be attributed to a deficit of clustering since even the simulation
set with stronger correlations than observed (r, ~ 25 h™! Mpc) cannot reproduce the
above features of the real cluster distribution. In fact, to test this even further we have

generated a posteriori a set of P simulations with r, ~ 30 ™! Mpc and we have per-
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formed all the analysis discussed previously, finding the same results, i.e. significantly
more ‘filamentariness’, ‘compactness’ of MST branches as well as significantly different
shapes of superclusters. Therefore, decreasing the filtering length, r,, of the Gaussian
smoothed simulation field will not change our results. It is also important to stress that
in our simulations, P(k) has contributions from wavelengths up to ~ 500 A~ Mpec. It
appears, therefore, unlikely that our results on the MST branch-length statistics and on
the flattening distribution would change if we would increase the box size or add more
power on large scales.

Thus we suggest that a plausible explanation of these results is that the simulation
construction assumptions (gaussian random-phase model) are not adequate to describe
the observed large-scale structure in the universe. Other models, based on non-gaussian
statistics, have been proposed (c¢f. Coles & Barrow 1987; Messina et al. 1990; Coles &
Jones 1990; Moscardini et al. 1991; Matarrese et al. 1991) which keep the same low-order
clustering as that of the gaussian models but provide richer large-scale structure (large
bulk-motions, filaments etc.). Therefore, our results could, possibly, be explained within
a non-gaussian statistics framework. In fact, a topological analysis of our cluster samples
(Plionis, Valdarnini & Coles 1992) has shown that on scales where one would expect to
recover the gaussian background field, the ACO sample shows a definite, although marginal,
meatball shift.

To summarize, we have found in the distribution of Abell and ACO clusters signifi-
cantly richer large-scale structure (fillamentariness, shapes etc.) than what is expected in
a clustered distribution of points that have the same low-order clustering (2— and 3-point
functions) as that of the real data. Furthermore, we have found significant cluster align-
ments within superclusters, and also an apparent correlation of the cluster-alignment effect

with the prolateness of superclusters.

{The materials presented in this chapter are based on our paper: Plionis, M., Valdarnini,

R. & Jing, Y.P. 1992, The Astrophysical Journal, (in press).
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11

Exploring the primordial density power spectrum

As shown in Chapter 1, the power spectrum P(k) of the cosmic density distribution
is a very important quantity in galaxy formation theories. The P(k) on large scales di-
rectly tells us information about the primordial density fluctuation, and the P(k) on small
scales carries information of later non-linear evolution, therefore observations of the P (k)
can serve to distinguish different theoretical models. In the linear gravitational instability
theory, the P(k) can be.easily related to many important quantities, e.g., the peculiar
velocity of the Local Group, the local peculiar velocity field, the flux and gravitational
dipoles, large-angle anisotropy in the cosmic background radiation, etc. (see §11.1; e.g.,
Juszkiewicz, Vittorio, & Wyse 1990; Lahav, Kaiser, & Hoffman 1990; Vittorio, Matarrese,
& Lucchin 1988). When we have measured the P(k) from galaxy distribution, combining
these observations we expect to be able to put constraints on the two theoretical param-
eters, i.e., the density parameter ) and the ‘biasing’ factor b. These constraints are
independent of whether the Universe is dominated by cold dark matter or by hot dark
matter. Furthermore, unlike the two-point correlation function, the power spectrum inde-
pendehtly measures the clustering on different scales, therefore a measurement of P(k) for
different kinds of objects can better tell us the story of the ‘biasing’.

In mathematics, the power spectrum P(k) and the two-point correlation £(r) are
equivalent, since one is the Fourier transformation of the other (§11.1). However in the
practical measurement of galaxy clustering, they are different. As Baumgart & Fry (1991)
and Peacock & Nicholson (1991) reasoned, since 1 + ¢ « 1/ or 1/m°® (depending on
methods of normalizing random pairs) and P(k) o< 1/%%, the P(k) is much less sensitive
than £(r) in the linear regime to the mean number density @ of objects which is difficult
to measure accurately [cf. de Lapparent, Geller, & Huchra 1988]. Therefore, the P(k) is

expected to be able to more effectively explore the clustering in the linear regime where
E&(r) < 1.
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The power spectrum P(k) has been applied to several redshift surveys quite recently
by several authors to measure large-scale clustering. They analysed the CfA and Perseus-
Pisces redshift surveys (Baumgart & Fry 1991), the radio galaxy survey (Peacock & Nichol-
son 1991), the IRAS QDOT survey (Kaiser 1991), the galaxy distribution in the nearby
superclusters (Gramann & Einasto 1992), the SSRS redshift sample (Park, Gott, & da
Costa 1992) and the CfA slices survey (Vogeley et al. 1992).

In this chapter, we present new results of the P(k) for the 2-Jy IRAS redshift survey
(Strauss et al. 1992b) and for two redshift samples of Abell clusters (Huchra et al. 1990b;
Postman, Huchra, & Geller 1992). The advantages of the IRAS survey for clustering studies
have been stressed by Strauss et al. (1990). Instead of using volume-limited samples as
in the previous studies on the optical galaxies, we use semi-volume-limited samples for
IRAS galaxies, thus having a much larger number (more than 1,000 in each sample) of
objects remaining for the analysis. [Peacock & Nicholson (1991) and Kaiser (1991) used
non-volume-limited samples; many authors (e.g., Davis & Peebles 1983) used semi-volume-
limited samples in correlation analysis.] The large sky coverage of the IRA:;S survey allows
us to explore the power spectrum up to wavelength A ~ 100 h~*Mpec. 6111‘ first use of
Abell cluster samples, by their large spatial volumes surveyed, means that we are able to
determine the P(k) for wavelengths up to several hundreds A~ 'Mpc. The main purpose
of the present work is to obtain the power spectrum on a large range of spatial scales.

The arrangement of the chapter is as follows. In §11.1, we present a theoretical
framework which links a number of cosmological quantities with the power spectrum.
These formulae will be used in the later discussion (§11.4). In §11.2, we (ierive a method
for estimating the power spectrum from a redshift sample. There we carefully examine the
effects arising from the ‘alias’ which however have never been considered in the previous
studies. Then we apply the method to the IRAS sample and the Abell samples in §11.3.
A detailed comparison of the observed power spectrum with other observations is given in

§11.4.

11.1 Expressions of cosmological quantities in terms of the power spectrum
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Many cosmological observational quantities can be expressed in terms of the power
spectrum. In this section, we shall derive some of these expressions. Most of these for-
mulae are not new and can be found in one form or another in literature. However, no
single reference contains all the formulae. The aim of this section is to provide a unified
formulation which is to be used in §11.4.

First let’s recall the definition of the power spectrum P(k). Let p(7) be the cosmic
density field. Its mean density is denoted by p. The density field then can be represented

by a dimensionless field §(7) (which is usually referred as to the density contrast):

§(7) = Pt =P (11.1.1)

p

Based on the cosmological principle, we expect p(7) to be periodic in some large rectangular

volume V). Its Fourier transformation then is defined by

- 1 -
§(k) = 7[ §(7)e™ R dr, (11.1.2)
1

u

and the power spectrum P(k) is simply related to 5(1:) by
P(k) = (| 6(F) [*), (11.1.3)
where (- - -) means the ensemble average.

11.1.1 The two-point correlation function ()

The two-point correlation function £(r) has been widely used to measure the large
scale clustering in the Universe (Peebles 1980; §3.1). Here we shall express {(r) in terms of

the power spectrum P(k). As we see below, £(r) simply is the Fourier transform of P(k).

Since .
(8(k1)8" (k2)) = Ve / (8(71)8(75))e ™ F1miTe b2 g, diy
s o (11.1.4)
— W/ UGT |)e”‘12'k1+11'2'(k1-'k2)d7:‘12d1:’2,
pJVy
where 712 = 7} — 75. Noting
]' ZF(El—Eg) -
Vu ; e dr = 5};1,,;2, (11.1.5)
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we have

R b, & T
(6(F1)6% () = ‘v_“/ £(r)e® 7 i, (11.1.6)
po JV,
Obviously we have the following relations
(6(k1)8" (k2)) = P(k1)8z, 7. (11.1.7)
1 ik oo
P(k)= — £(r)e'™ "dr, (11.1.8)
Vi v,
and
gr) =3 P(k)e . (11.1.9)
P

Egs.(11.1.8) and (11.1.9) show that the power spectrum and the two-point correlation
function form a Fourier transform pair.

In the continuous limit of E, using the relation

v .
(2:)3 /dk -, (11.1.10)
E
we express £(r) [Eq.(11.1.9)] in integral form:
Vi —ik-7 7
&(r) = o)’ P(k)e dk. (11.1.11)
Since
‘/f(k)e““;'FdE: 477/ S“]:fr F(k)k2dk, (11.1.12)
we have
i dk
£(r) = /Az(k)ﬂz i - (11.1.13)
7

where the variance A?(k) is defined as

A*(k) = Vi 4mk*P(k)

(2m)?
2k* [ sinkr 9 (11.1.14)
= . E(r)redr.

Using the A2(k) to represent the power spectrum has the advantage that the A2(k) is

independent of V,, and physically measures clustering strength.
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For a power-law two-point correlation: &(r) = (ry/r)?, the integral in Eq.(11.1.14)

can be worked out. It is:

2k3 sin kr , 1y
A2(k) = ";"/ k'r (—;)W‘Zdr
(11.1.15)
2 (2—7)r
T 2 '

(rok)"T(2 — v)sin

11.1.2 The second moment of correlation function Js3(z)

Although current inflation theories can predict the shape of the P(k), it is generally
thought that they are unable to give its amplitude. In most previous theoretical studies,
the amplitude is normalized to fit one observable quantity which can be predicted from
the linear gravitational instability theory. Omne such quantity is the second moment of

correlation function J(z) at z ~ 10 ~ 20 A" *Mpc. The J(z) is defined as

Js(z) = / E(r)rdr. (11.1.16)
0
Inserting the expression (11.1.13) into the above equation, we get
9 ) dk
Js(z) = [ A“(k)[sin kz — kz cos k:c]—];; (11.1.17)

From their spatial correlation analysis of the CfA redshift survey, Davis & Peebles (1983)
find
J3(10 A~ Mpc) = 270( A~ Mpc)® (11.1.18)

for galaxy distribution in redshift space.

2

11.1.3 The mean square mass fluctuation o

Another commonly used normalization is the mean square mass fluctuation o2 in a

sphere of radius R = 8 *Mpc. The ¢? has also been proven to be a very powerful
measure of large-scale clustering where correlation function ¢ is weak (Efstathiou et al.
1990; Saunders et al. 1990). If we measure the mass with a window function W (), the

expected mass should be:

7 = / (p(F) W (7)dF = BVir, (11.1.19)
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where Vi = [ W(7)dr. The mean square mass is then
(M?) = / (p(71)p(72)) W (71 )W (7 )dF1 d7a (11.1.20)

and the mean square mass fluctuation is

) _~———2
20m = L
1)
v, 1 L )
= ) T / P(k)W (71 )W (7 )e™ % (=) di' diy dk (11.1.21)
W
1 L, -
= [ oA WE) P d,

where W(k) = [ W (7)e'*7d7/ Viy.
Clearly the variance o2 depends on the window function through | W (k) |2. Here we
present VV(E) for three typical cases which are simple to apply to galaxy catalogues.

I. For the top-hat window function:

. 1a r < R;
Wi(r) = {0, otherwise, (11.1.22a)
we have
W(k) = -3—3(siny — ycosy), (11.1.22b)
Yy

where y = kR. From their spatial correlation analysis of the CfA redshift survey,
Davis & Peebles (1983) find
c2(8h Mpc) =1 (11.1.23)

for the galaxy distribution in redshift space.

II. For the cube-hat window function:

N\ 1) —l/2_<_(:13,y,2)§l/2;
w(r) = { 0, otherwise, (11.1.24a)

we have

sin($k;)sin($ky ) sin(£k.)
(3k2)(5hy)(5k:)

Figure 3.4 shows the variance measured by Efstathiou et al. (1990) using this window

for the QDOT IRAS survey.

W (k) =

(11.1.24b)
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III. For the Gaussian window function:

2

W(r) = exp(—ézé;), (11.1.25q)
we have
. k2 2
W (k) = exp(— 2R )- (11.1.250)

Saunders et al. (1990) use this window function to determine the variance in the
QDOT IRAS survey and they find ¢(R) = 0.436+0.091,0.18440.050, and 0.0669 +
0.019 for R = 5,10, and 20 A~ *Mpc.

11.1.4 The rms bulk peculiar velocity

Instead of measuring the mass fluctuation as in Eq.(11.1.21), we now measure the

peculiar velocity. From linear perturbation theory, we have (Peebles 1980):

—

k-
iy = —if (W Ho 5 6(k), (11.1.26)

where f(Q) ~ Q°°. The mean square bulk velocity with a window function W (7) is then:

Jo(FW(r)dr
JW(r)dr

1 7 -7 — 7 .“ — .” — — ~ —
o [ X ) dE)e B R W e
W
ki,k2

p2

|

{( )*)

(A HP [ s 82(8) | W(E) [ dF.

11.1.5 The peculiar velocity of the Local Group

One application of Eq.(11.1.27) is the peculiar velocity of the Local Group (LG). Until
1992, the only undoubted detection of the Cosmic Background Radiation (CBR) anisotropy
is the dipole anisotropy which is generally interpreted as arising from the peculiar motion
of the earth through the CBR. Correcting for the motions of the earth relative to the Sun
and of the Sun relative to the center of mass of the Local Group (LG), one can deduce
a velocity T_/;LC; for the LG relative to the CBR. The COBE DMR. experiment (Smoot et
al. 1991) gives Vig = 622 + 20kms~! with its direction towards 477 = 30° + 2°, and
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T = 277° 4+ 2°. A sphere of radius ~ 7h 'Mpc around the Group participates in the
same peculiar motion (e.g., Faber & Burstein 1988; Peebles 1986), thus we expect that the
linear perturbation theory [ Eq.(11.1.27)] can specify the peculiar velocity of the LG using
the window function Eq.(11.1.22b) of R =~ 5" Mpc (see further discussion at the end of
§11.1.7). However, one must keep cautious when using the observation to test theoretical
models, since the observation only concerns the peculiar velocity of one particular sphere
in the Universe (i.e., our nearby region), but Eq.(11.1.27) gives a rms value V(R). Our LG
may not have a ‘typical’ peculiar velocity, therefore we need the probability distribution
function (PDF) to quantify the problem. For a Gaussian field of density distribution, the
PDF of the peculiar velocity 7'is very simple: it is a 3-variate, zero-mean Gaussian function

with the covariance matrix
Tij = ———3———5ij = 0'51']', (11.1.28)
that is,
dv v?

Wexp——zﬁ. (11.129)

P(%)dv =

11.1.6 The local bulk motions

The discussion in the last subsection can be straightforwardly applied to the Local
bulk motions (Lynden-bell et al. 1988). The most recent reanalysis gives bulk motions
388 + 67kms ™! toward L = 177°, B = —15° and 327+ 82kms™* toward L = 194°, B = 5°
for the spheres of radii 40 A *Mpc and 60 A~'Mpc around the LG (Bertschinger et al.
1990). Because the surveyed regions are centered on the LG, it’s probably more proper to
study the conditional probability distribution functions, that is, the PDF's of bulk velocity
7y for a sphere of radius 7, given its central sphere r1 (< ) having velocity = VLG. Let us
denote the variables for the central sphere by subscript 1 and for the outer one by subscript
2. Defining C;; = (; - 9;)/3 (4,5 = 1,2), in analogy with the derivation for Eq.(11.1.27),

we can easily get

[f(Q)H,]? / 1 9 - -
= f (k)dEk. 11.1.
Ci; 3 47rk5A (R)W;(k)W;(k) ( 30)
For a Gaussian density field, the conditional PDF for v, given v is:
L 1 (Ta — ath)?
P('vg ”01 = (271_0-2 )3/2 €Xp —'—-—2;2——“—, (11131)



where

a = 012/011 (11132&)
and
2 = Ca(1 Cis ) (11.1.32b)
o = — . .
2 C11C%2

From Eq.(11.1.31), we can construct many physical quantities which can be compared

with observations. Here we give some. One quantity is the rms value of ¥, which reads:

()2 = [ P2l d.

11.1.33
=[302 + a’v 2]1/2 ( )
Another quantity is the probability of vy less than Vs:
P(’U2 < %'Ul) :/ P(’l?gl’gl)d??z
v <Vy

1 (Va + av;)? (Vo —av;)?

— = E{ex — g | —exp —]| = ]} (11.1.34)
Vo—av; wz
exp —(—)dz.

+
\/271'02 —Vy—av, 202

This equation can help to set the theoretical upper limits and/or lower limits to v, at a
given confidence level.
- Because 73 is a vector, it is important to study statistics relevant to direction. One

statistic is the PDF of the misalignment angle 6 between ¥ and @) [ p = cos 8 = 7y - ¥ |:

Pm%ﬂwa@ﬁﬁﬁmg

] (g) oo : :1:2) \ (11.1.35)
+[1 4+ y2] exp exp(——)dz ¢,

: V —Y2 2

where y; = avi /o and y» = auv/o.
In the limit of large y;, P(u) peaks at p ~ 1 (6 ~ 0) and the angle 8 distribution is
approximately

202

P(0)df = P(u)dp ~ yi8 exp(—

)d . (11.1.36)

Therefore /7/2/y, measures the expected misalignment angle. On the other hand, in the

limit of y; — 0, then P(u) = 1/2, i.e., the vectors #; and 7, are randomly orientated as
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expected. From the Eq.(11.1.35), we can easily give upper and lower limits on § at some

confidence level. The rms value of § can be obtained by numerical integration.

11.1.7 Acceleration vector

The acceleration of a position 7, contributed by matter distributed on a shell with
inner radius 7, and outer radius r; around 7y is

. R L
gm) = — 8(m0 + )= dr. (11.1.37)

4 [, T

In the linear instability theory, this acceleration produces a peculiar velocity at the position

—

To-

U

%f(Q)HOg’. (11.1.38)

The above equation allows us to relate the peculiar velocity of the LG to the acceleration,
and to express ¢ in velocity units.

There exist many statistical studies which try to derive the acceleration g of the
LG from redshift surveys of galaxies and clusters. Strauss & Davis (1989) and Yahil
(1989) analysed their 2-Jy IRAS redshift survey and found that the acceleration of the
LG starts to converge at distance ~ 50 A~ *Mpec, i.e., the origin of the acceleration is quite
local. Furthermore, they found that the angle between their inferred U and VLG is in the
range 6 to 25 degrees. Rowan-Robinson et al. (1990) studied the QDOT IRAS survey.
While they obtained a similar misalignment angle, they found that the acceleration keeps
rising about 30% at distance from 50 A*Mpc to 100 A~ 'Mpc, then begins to converge.
The pseudoconvergence shown in the 2-Jy IRAS sample probably is due to its limited
size. The recent analyses of redshift samples of ACO clusters (Plionis & Valdarnini 1991;
Scaramella et al. 1991) show an even larger convergence radius (about 150 h~!Mpc), and
they find about 20% rise in § beyond 100 A~ *Mpc. Since the cluster samples have depth
~ 300 h~'Mpc, probably the convergence detected is a real one.

In analogy with the local bulk motions, one needs the conditional PDF of the accel-
eration to test theoretical models or to make theoretical predictions. Since galaxies and

clusters probably are ‘biased’ tracers of the matter distribution, here for simplicity we
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adopt the linear ‘biasing’ assumption and denote the biasing factor by 6. All the deriva-
tions of Eqs.( 11.1.31 — 11.1.35) can be applied to studying U, except ¥, and C;j should be
substituted by U and Ci[j. If we are studying the acceleration attributed by a shell with

radii 7, and r, to its center LG, then we have

CH = [f(Q)H“;W"z /47r1k3 A (R)YWE (kYWY (k)dk, (11.1.39)
where
wl(k) = -S—l—nk(—i@ (11.1.40a)
and
WY (k) = Sink(f:a) - Sin}ff:b). (11.1.405)

Note that CY and C;; are approximately the same, since the bulk motion of a sphere
is essentially from the gravitational pull of matter outside r;.

The misalignment angle test could not be a powerful test. As shown by Villumsen &
Davis (1986) based on their N-body experiment, the nonlinear effect can result in a typical
misalignment angle 25° between the real peculiar velocity of a region like our LG and the
one predicted from the linear instability theory. Since the observed misalignment angle 6
between U and Vig is typically 25°, it is difficult to estimate how much is from the linear
theory [Eq.(11.1.35)]. In contrast, Villumsen and Davis show that the nonlinear evolution
only slightly affects the amplitude of the LG peculiar velocity. Therefore in §11.4 we will

only consider tests relevant to the amplitudes of VLG, vy and U.

11.1.8 Large-angle CBR anisotropy: the Sachs-Wolfe effect

It is well known that the CBR anisotropy AT'/T on angle scales 8§ > 1°, after excluding
the dipole component [the substantial part of which is thought to be induced by the motion
of the earth relative to the CBR. (§11.1.5)], is dominated by the potential fluctuation on the
last-scattering surface, usually called the Sachs-Wolfe effect. [Here we have assumed that
the primordial perturbation is adiabatic. For an isocurvature perturbation, see Efstathiou
& Bond (1986)]. Since length scales corresponding to the angular scales exceed the horizon

size at the recombination era tg, the AT/T is insensitive to the microphysical processes
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operating at tg and can be used to probe the primeval density fluctuation. In a flat

universe and under the synchronous gauge, the Sachs-Wolfe effect can be expressed by:

AT~ 1,
— () = z8(@), (11.1.41)

—

where ® is the Newtonian potential (time-independent) at the position # = (2H;*,(2) on

the last-scattering surface. Using the relation (Peebles, 1980)

47er()
we get
AT - H? 6y iz
—_ = —— —Ze T, 11.1.4
s DT (11.1.43)
k
The temperature correlation function is then:
AT~ AT =
C(6) = (- ()= (92))
_ {fj A?(k) sin(2zk sin &) ik (11.1.44)
4 k> 2zk sin—;2 ’
where cos 8 = 1 - (1. Expanding C(f) in Legendre functions:
C(8) = > CiPi(cos ), (11.1.45)
l
we obtain the coeflicients
4 2
¢l = Ho(%i* ) / Ak(sk)jf(km)dk , (11.1.46)

where 7;(z) is the spherical Bessel function of order [. For a power law spectrum A?(k) =

DNok™ 3, we have

r@B—n)l(i-3+3%)
r2(2=3)N(G+1-3)

Ci = Hy (21 + 1)Agm2" 8zt (11.1.47)

if n < 3 (otherwise the integral diverges at large wavenumber).
Quite recently the COBE DMR successfully detected AT/T on angular scales > 7°
(Smoot et al. 1992). Their data support the hypothesis that the primordial density power
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spectrum is a Harrison-Zel’dovich one (n = 1) for wavelengths A > 500 h~*Mpc, and they

give a quadrupole @ = 021/2 = (6 +1.5) x 107°%. For n = 1 case, the density fluctuation

can be characterized by the variable e:

9

2 _Vu _9
4

B _ 9 H;
© T )y

L

4k | By |2 A% (k) = ~HiAy, (11.1.48)

that is, the potential variance per logarithmic &, which is a constant for n = 1 and 2 = 1.

In this case, from Eq.(11.1.47), we can find:

/5
Q= ﬁée. (11.1.49)

The COBE observation tells us that € = (2.7 & 0.7) x 107° for wavelengths greater than
500h"'Mpc. This provides an ideal quantity to normalize the primordial power spectrum
in any theoretical studies. In contrast, the normalizations like Egs.(11.1.18) and (11.1.23)
have a lot of uncertainties (e.g., uncertainties in the measures themselves; redshift distor-

tion; biasing in the galaxy distribution; etc.).

11.2 How to measure the power spectrum from galaxy distributions

In this section, we shall develop a method of obtaiﬁing the power spectrum from a
sample of extragalactic objects. Since there are only a finite number of objects in each
sample, we need to correct the ‘discreteness’ effect arising from the Poisson shot noise.
To show this, let’s consider an ideal dataset of discrete objects {i}. The number density
distribution can be written as n(7) = ) . (7 — 7;) and we assume that the distribution
is periodic in a large rectangular volume V. In analogy with the continuous case, the

Fourier transform of n(r) is defined as:

- 1 L
5% (k) = n(7)e'” Fdi — §

V,m, Vu

(11.2.1)

k0

where 7 is the global mean number density. Following Peebles (1980), we divide the volume
V, into infinitesimal elements {dV;} with n; objects inside dV;. Then the above equation

can be written as:

7 1 ik
5d(k) = — Znie ik _ 675,6’ (1122)




where N is 7V, the number of objects in V. Since dV; is taken so small that n; is either 0

or 1, we have n; = n? =n? = ... Then we can find the ensemble average of 6‘1(51)5“(1;2)

which reads:

L 7 1 ‘—‘"-. —-iT-""dg
(8% )8™ (k2)) = =5 D _(ming)e™ 5 7 — b odp,

<y

- N2 £
17]
1 T ["ZF 2
= (e
i#J (11.2.3)
]' Z’F -‘1——"2
+ 3z 2 (nie AR 8 680
v, 1
:<5(k1)5 (kz» + —N—5i€‘h;2
Finally we get the desired result:
- 1
P(k) = (] §%(k) |*) — ¥ (11.2.4)

The meaning of the above equation is quite clear: the discreteness (or shot noise) effect is
to give an additional term 1/N to the power spectrum. To correct for the discreteness effect
means to subtract the constant 1/N from the power spectrum calculated from Eq.(11.2.1).

However in observational cosmology, one can not be so fortunate that he has a cat-
alogue uniformly surveyed in a cubic volume. For examples, the galactic obscuration
prevents optical telescopes from observing extragalactic objects along the galactic plane;
even at higher galactic latitudes, some fraction of objects is missing because the galactic
extinction makes the objects look fainter. Magnitude-limit or flux-limit as a main selection
criterion for defining a sample makes the sample include more objects at a smaller distance
than at a larger one. Of course one could, from such an observed sample, select a subsam-
ple with a cubic volume uniformly surveyed, but he would lose a substantial fraction of
objects thus weakening the quality of the statistics. In order to keep the sample as large
as possible, one needs to treat these effects carefully. These effects can be modeled by one
function S(#) which will be called the ‘selection function’ later on. The definition of S(7)
is very simple: due to some selection criteria, only a fraction S(7) of objects at position
has been included in the sample. Therefore if the underlying density distribution is n(7),

the density distribution n*(7) in the surveyed sample is:
n’(7) = S(F)n(F). (11.2.5)
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Now we take the Fourier transform as if there were no selection effects:

T IZ
@ / .

(11.2.6)
Zns ik EQ‘)
where IV is the number of objects in the sample and we calculate:
sr1 sk 1 S\ 1T -k —iT; 1 i (k1 —ka
(8°(k1)8" (k) =575 3 (ngn)eiRiminR L - S (el (ko)
1#] 1
1 ik L —i7; -k
- ¥ Y (mayetfitigy o - i D (naemTRgL s b sbr
i i (11.2.7)
=S(k1)S(—k2) + > S(ks + k1) P(k3)S(—ka — ks)
ka
1 - . . .
+ Sk — ko) = S(k1)og, 5 — S(—k2)bg, 5+ &g, 565, 5
where S(E) is defined as: \
> 1 i E g
S(k) = W S('T')e d'l". (11-2.8)
Taking El = l‘c; = E, we get
e 1
(1 8°(k) I7) =| S(B) P +>_ | S(k — k1) | P(ky) + + N (11.2.9)

k1

Since the function S(7) is broad in space, its Fourier transform peaks at k=~ 0. Except for

small wavenumbers (or large wavelength ~ the sample size), we have

(18°®) 7= | SE P —%
ECE

Therefore the selection effect is easy to correct for.

P(k) = (11.2.10)

We can also form another Fourier quantity Ef(l;) to treat the selection effect. Instead

of subtracting 6 5 in Eq.(11.2.6), we form 55(k) by subtracting S(k), i.e.,

53 (F) = %/nS(F)eiF'EdF—— S(R). (11.2.11)
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It is easy to find:

(65 (k1)65" (F2)) = > S(ks + k1) P(ks)S(—ke — ka) + =S(ki — k), (11.2.12)

therefore

185E ) - %
P(k) = = . 11.2.13
EASHYTE: S

Although it is possible to use the direct summation of Eq.(11.2.6) or Eq.(11.2.11) to

estimate the power spectrum for a sample of ~ one thousand objects (like available redshift
surveys of galaxies), it is generally thought that it is convenient to use the FFT to make
the Fourier transform. In fact, all the previous statistical studies of the power spectrum
are based on the FFT. Moreover, it would be impossible to use the direct summation to
study the power spectrum in a N-body simulation because of the large a number of objects
employed. However using the FFT, we need first to collect density values p(7y) on grids
(which is usually called ‘mass assignment’). The mass assignment in fact is equivalent
to convolving the density field by one chosen function W(r) and sampling the convolved
density on a finite number of grids, therefore the FFT of p(7;) generally is not equal to
the FT of p(#). This point, however, has never been considered seriously in the previous

works. Now let’s show this effect. The FFT can be written as:
-~ 1 N
§7(k) = N an(rg)e ok _ brd> (11.2.14)
g

where n(7,) is the convolved density value on the gth grid 7; = §H (g is an integer vector;
H is the grid spacing):
nf(7,) = /ns(f’)W(F—— 7y )dr . (11.2.15)

Following Hockney and Eastwood (1981), the FFT of Eq.(11.2.14) can be expressed in
a more compact way by using the so-called ‘Sampling Function’. The sampling function
II(7) is defined as a sum of Dirac-§ functions spaced at unit length in all three spatial

directions, i.e., II(7) = } (5, 6(F — 7) where 7 is an integer vector. Defining

ml‘n

2/ (7) = (=) / n® (7)) W (7 — 7)diy (11.2.16)
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and constructing

§'7 (k) = %/n'f(F)eiF'Ed'F'” Si5r (11.2.17)
one can easily show
§'7 (k) = 67 (k). (11.2.18)
Now one can express 5f(l;) as:
7 1 r ST (= ik g
55 (k) = ﬁ/‘ H(—E—)Xi:niW(ri — ) T — 6 5. (11.2.19)

The ensemble average of 6f(ﬁl)5f*(gz) then reads:

T * T ]‘ 7? ,F‘ s .8 2'7-“'—.1—-1’1_“2"2 g g
(67 (k1)867* (k) :———fH(é—)ﬂ(—f—})Z(ninj)W(ril)VV(rjg)e vk—ifeke gm

2
N 1#]
1 2 2 i7y Ky —iFn-Fg 7= 7+
b / () S (n) W (ria W (e ™ B =7 iy
1 3 o ik -
- ¥ n(ﬁ)Z(mW(m)e Y PR
1 T3 5 — ik —
W H(—E)Z(HJW(W)E 28z, gdr
+ 6]:1165]:276’
(11.2.20)
where 7;; = |7; — 7;|. The FT of II(7/H) is
- 1 L
(k) = ——/ I(—=)e™ di =Y 6-o,, 11.2.21
(k) 7 . (&) Zn: [AL ( )

. where L is the number of grids on each side of V},, and [ = ELH/ZW and 7 are integer

vectors. For ki # 0 and ks # 0, one can find:

(67 (k)67 (k2)) = > [S(kYy)S(—Fey )W (ky )W (k)

I
1,72




where k! = k; + 7;2r/H and W (k) has the same definition as in Eq.(11.1.21). For the
NGP (p = 1), CIC (p = 2) and TSC (p = 3) mass-assignment schemes, the W (k) can be
expressed by (Hockney & Eastwood 1981):

2 k) sin(y kz)r. (11.2.23)

L rsin(H k) sin(Zk
WO = [ e E)

Because S(g) peaks at E ~ 0 and the selection effect is only important at small k, we
obtain from Eq.(11.2.22) for k= ko = k:

: Aor. 1 L2
(167 (R)?) = S*(R) + > _ 5%(ks) sz (F+ ——~)P(k ) SR
Ea )
(11.2.24)

The meaning of each term on the rhs of the above equation is clear. The first term and the
factorof 3¢ 52(k) come from the selection effect as in Eq.(11.2.9). The density convolution
in the FFT introduces the WZ(E) factor in both the power spectrum and the shot noise
(1/N). The finite sampling of the convolved density field results in the summation of
the ‘alias’ power spectrums (i.e., the sums over 7). The ‘alias’ effect is well-known in
Fourier theory, but has never been taken seriously in the power spectrum analysis of
large-scale clustering in observational cosmology. The effect is significant near the Nyquist
wavenumber. As long as we have selected the assignment function, the shot-noise effect [the
last term on the rhs of Eq.(11.2.24)] is easy to correct. In contrast, the second term is a little
more trouble to treat, since our aim is to extract P(k). Fortunately in the cosmological
clustering studies, P(k) is a decreasing function beyond the Nyquist wavenumber kx. Since
W (k) always is a decreasing function, therefore for |k;| < kx (i = 1,2,3) the summation

in the second term is between P(k)W?2(k) and P(k) Y., wW2(k + B2x)  As the final result,

we have
p(R) = (L87(E) l%g;(l}i%\z — D*(k) (11.2.25)
where
D¥(k) = Z w2(k "2" (11.2.26)
. f1 7)d7 f‘ dr
Ci=)Y S%k)= , 11.2.27
s on- 200 e



and

2
W2(k) < Cy(k ZW2 il (11.2.28)
If we construct 67 (k) as in Eq.(11.2.11), then we shall have

P(k) = L&/ (k) 1) 1D2(E) : (11.2.254)
C.Cs(k)

The inequality (11.2.28) of course is not a satisfactory formula for practical applica-
tions. The author is looking for an empirical formula for Cz(l;) in case of a power-law
P(k).

The D?(k) can be worked out for the NGP-CIC-TSC schemes which reads:

) . . s for NGP;
D?(k) = 7 Cs(k) = TIim1 51 — 2sin® (£ k)], for CIC;  (11.2.29a)
:%/—‘Hi—_—l,g[l — sinz(%kz) = sm*( glk',)], for TSC.

Omne can easily find out that the D2(lg) of the CIC and TSC schemes is approximately

isotropic when k < ky, i.e.,

- L1 - Zsin?(ZE)] for CIG;
D*(k vl =3 2 /b , ’ 11.2.29
(k) { L1 —sin®(Zk) + £ sin*(£k)], for TSC ( )

We have tested the equation (11.2.29) by calculating D2(k) = (| §7(k) |2) for 10 random
samples. Each random sample consists of 10° points randomly distributed in a unit cube.
The results are shown in F igure 11.1 for different mass assignment schemes by different
symbols. In Figure 11.1a, we show the estimated D?(k)N. The error bars are the fluctu-
ation between the ten samples. The solid, dotted and dashed lines are the prediction of
Eq.(11.2.29b) for the NGP, CIC and TSC schemes. Clearly the equation (11.2.29b) fits
the simulated data very well. In Figure 11.1b, we show D2(k)N/Cs(k) estimated from
the simulation. Its value is expected to be 1 from Eq.(11.2.29a). Clearly the simulation

supports the equation (11.2.29).

11.3 Application to IRAS galaxies and Abell clusters

11.3.1 Observed samples
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Figure 11.1 — The simulation test of the ‘alias’ effect on the discreteness after smoothing.
a). The function D?(k)N plotted as a function of wavenumber k. The mean values
estimated from ten random samples are represented by the symbols as indicated in the
figure. Error bars are the scatters between the ten samples. Our analytical prediction
is the solid line for the NGP, the dotted line for the CIC [Eq.(11.2.29b)] and the dashed
line for the TSC [Eq.(11.2.29b)]; b). Similar to a), but the function D?(k)N/Cs(k). The

analytical prediction is 1 for all mass assignment schemes.
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One set of samples used here is from the 2-Jy IRAS redshift survey (kindly provided
by Michael Strauss). A detailed description of the survey can be found in Strauss et al.
(1990). Here we only describe how we take subsamples for our purpose. We take semi-
volume-limited samples, in order to have a large fraction of galaxies kept while making the
selection function reasonably broad [the later is important when obtaining Eq. (11.2.25)].
Each sample thus is characterized by two parameters V; and Va: the first one limits the
sample to include only those galaxies which would be bright (at 60 pm) enough to be
included in the parent survey if they were put at the distance Vi; the second one simply
sets an outer boundary for the sample. In this study we set Vo = 2V;. A total of three
samples are selected in this way with Vo = 50, 70.7 and 100 A~ *Mpc. They contain 1122,
1283 and 1288 galaxies respectively, and will be called ‘TRAS50’, ‘TRAS70’ and ‘TRAS100’
in the following discussion. The radial selection function of Yahil et al. (1991) is used in
this study.

To explore the power spectrum on wavelengths of ~ hundreds A~'Mpc, we use redshift
samples of Abell clusters. The advantages of using cluster samples to study large-scale
clustering have been emphasized by a number of authors (e.g., Bahcall 1988; Postman et al.
1992). We take two samples for our analysis from the two largest redshift surveys of Abell
clusters (Huchra et al. 1990a; Postman et al. 1992). The first sample (called ‘MR1650’)
includes 257 clusters of richness R > 0 in the region § > —27.5° and |b| > 30° with the
tenth brightest magnitude miy < 16.5 and redshift z < 0.1. The second sample (called
‘Deep’) contains 131 clusters of R > 0 in the region 58° < § < 78° and 10" < a < 15%
with distance class D < 6 and 0.06 < z < 0.24. The galactic latitude selection function
Eq.(6.3) is used in this study (Bahcall & Soneira 1983; Postman et al. 1992).

We determine radial selection functions for the cluster samples by plotting their den-
sity distributions against redshift. In Figure 11.2, we present the comoving number density
as a function of redshift. The density is calculated in shells of width Az, at redshift in-
tervals of Az;. For the MR1650 sample, Az, = 0.01 and Az; = 0.005; for the Deep
sample, Az; = 0.02 and Az; = 0.01. The 50% overlapping in the shell bins is to smooth
out fluctuations arising from small-scale clustering. Because the tenth brightest members

of Abell clusters have a narrow range of absolute magnitude (e.g., Postman et al. 1985)
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Figure 10.2 — The spatial density distribution of Abell clusters as a function of redshift.
Bins are 50% overlapping. The solid lines are the radial selection functions used in the
paper. The dotted and dashed lines are trial functions which are used to test robustness
of final results to the radial selection functions. The left panel is for the MR1650 sample,
and the right one for the Deep sample.

and the samples used here are mio-limited, we expect the mean number density to be
a constant at small redshift and fall rapidly at large redshift. The smooth solid lines in
Figure 11.2 should reasonably represent the redshift selection functions of the two sam-
ples. Some peaks and valleys in the density distributions relative to the selection functions
could come mostly from strong superclustering. For example, the huge void shown in the
pie-diagram of Huchra et al. (1990a, Figure 5b in their paper) results in the low density
of the Deep sample at z ~ 0.16, while the wall around the void produces the high peaks at
z ~ 0.12 and z ~ 0.19. Since the MR1650 sample has a larger sky coverage and a larger
sample size than the Deep sample, its density distribution is much smoother. In order to

test how our results are sensitive to the selection functions, we repeat our analyses using
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two other functions which are shown in the figure by dotted and dashed lines. We found
that the power spectra are quite insensitive to these changes.
In this Chapter, comoving coordinates are used with distances to objects (IRAS galax-

ies and Abell clusters) calculated from redshift using Eq.(6.1).

11.3.2 Simulations

In order to test the estimation procedures given in §11.2, we apply them to simulations.
The simulation samples are the ensembles Z14 and P21 of Plionis, Valdarnini & Jing
(1992) [Chapter 10]. These samples are generated by the Zel’dovich approximation in
640°( A~ *Mpc)® cubes, and the P21 set selects only high density peaks. For the simulation
algorithms, see the last chapter. Here we only summarize those relevant to our following
analysis.

Each ensemble contains 50 samples and each sample has about 13,000 objects. The

simulations have power-law two-point correlation functions £(r) ~ (ry/r)*® in the range

of 7 between 7 and 70 A~ !Mpc. The P21 set has r; ~ 21 A *Mpc and the Z14 has
7o &~ 14h~*Mpc. Since the Zel’dovich approximation gives a non-vanishing three-point
correlation ( (see, e.g., Peebles 1980; Lucchin, Matarrese, & Vittorio 1988; Coles & Frenk
1991), we have examined ( for the simulations. The ¢ of the simulated objects is ap-
proximately hierarchical with the coefficient @ about 0.6, similar to the observations (e.g.,
Peebles 1980; Jing, Mo, & Bérner 1991 for spiral galaxies; Jing & Valdarnini 1991 for
R > 0 clusters). Thus, the P21 set has clustering properties similar to the R > 0 clusters,
as far as low-order clustering is concerned. In order to compare with the IRAS samples,
we scale the Z14 box by a factor 3.2, i.e., the box size is ~ 200 A~ 'Mpc and the clustering
length 7y becomes ~ 4.4 A~ Mpc (similar to the ry of IRAS galaxies). Finally, we select our
simulated IRAS samples from the scaled Z14 ensemble and our simulated cluster samples
from the P21 ensemble, by applying the boundaries and selection effects of §11.3.1 to the
simulations, thus mimicking the observed samples. The simulated samples have the same
number of objects as the observed ones.

Therefore, these simulated samples have the same boundaries, selection effects and

similar low-order clustering properties as the observed ones.
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11.3.3 Results

We present the results in terms of the variance. Ten equal logarithmic intervals of
logy, ki — log,y kis1 = Alogyyk = 0.15 (i = 1,2,---,10) were taken for k starting at
ky = 2w/ ',,,1/3. In this chapter, we used the NGP scheme and 643 grids for the FFT.
We used Eq.(11.2.25a) with Co(k) = W2(k) as our working formula. [Since the results
presented in this section had been obtained before the author carefully checked the ‘alias’
effect (§11.2), like all the previous studies, Cy(k) = W2(k) was used at that time. As
shown in §11.2, the Cz(’;) is still uncertain and taking CZ(E) = VVz(E) in the NGP case
may overestimate the AZ(E) up to a factor 2 at k = ky but much less at the smaller k.
Since the results presented below are mainly at k < ky, we expect that the uncertainty
arising from the C’g(ﬁ) is tiny. To assure this statement, we tried another extreme limit
C’g(l;) — 1, and we found that the final result is still represented by Eq.(11.3.1) only with
the constants 1.3 and 2.7 replaced by 1.2 and 2.8. The correct reproduction of &(r) from
the estimated P(k) (§11.4) further shows that the uncertainty induced by the C(k) must
be small.]

a) Simulation tests and sampling error

We first show our simulation tests in Figure 11.3. As examples, we have chosen the
samples which are selected according to the selection functions of DR1650 and of IRAST0.
(The results of the simulated Deep samples are qualitatively similar to those of DR1650;
and the results of the other two simulated IRAS samples are similar to those of IRAS70.)
The filled symbols represent the mean variances of the simulated samples of each ensemble,
and the error bars are the 1o scatter between the 50 samples. For comparison, we have
also analysed the simulations before subjecting them to any observed selection effects ( i.e.,
uniformly surveyed in cubic volumes), and we show them in the figure by open symbols
(no error bars are given, since they are smaller than those plotted). The good agreement of
the variances between the samples before and after introducing the selection effect means
that the procedures given in §11.2 are very successful.

The derivation of Eq. (11.2.25) is based on the assumption that the sample is fair, or
more precisely the correlation €., between clustering and selection function is weak. Of

course, the simulated samples satisfy this condition. As for the observed samples, since
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Figure 10.3 — The variances of the simulations as a function of wavenumber. The filled
squares and the filled triangles are for the simulated samples of DR1650 and of IRAS70
respectively; the open squares and the open triangles are for the simulations of Abell
clusters and of IRAS galaxies without any selection effect. The error bars are the 1o

scatters between the 50 simulated samples with the selection effects.

the selection function used for the IRAS samples is derived by the clustering-independent
techniques (Yahil et al. 1991), and the volume-limiting at » < V; has minimized the effect
of the local supercluster, the é._; should be reasonably weak. As shown by Plionis &
Valdarnini (1991) and Scaramella, Vettolani & Zamorani (1991), the dipole anisotropy in
the cluster distribution converges at » ~ 150 h~1Mpc, implying that the DR1650 is nearly
fair. Therefore, we expect that Eq. (11.2.25) can be applied to the observed samples.
Some accidental correlation £,_; may remain between clustering and selection func-
tions. To show this, let us consider the IRAS samples. The Local Supercluster gives a

positive {._,, and the Local Void and other distant superclusters would give a negative
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Figure 10.4 — The variances of three IRAS samples as a function of wavenumber. One
symbol represents the results of one sample as indicated in the figure. ‘The solid line is a

power law oc k-3,

contribution to ¢,_, [see the comprehensive discussion of Strauss et al. (1992a) on the
IRAS galaxy distribution]. The overall é&._, may not be strong, but must fluctuate and
would introduce uncertainty in the statistics. Since the available samples at best have |
just approached ‘fairness’, clustering fluctuations must exist between samples. Further-
more, a finite number of objects in each sample would further introduce uncertainty in our
statistics. These stochastic uncertainties are difficult to distinguish in practice, and will
together be called ‘sampling error’ for short. In this work, we estimate the sampling error
by analysing a set of 50 simulated samples.
b) Results from the observed samples
Figure 11.4 shows the variance as a function of wavenumber k for the three IRAS

samples. We have neglected the values of the first bin (i.e., 7 = 1), since their sampling
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Figure 11.5 — The variances of Abell cluster samples as a function of wavenumber. The
closed symbols are for the MR1650 sample, and the open ones for the Deep. The squares
represent the results when the solid lines in Figure 11.2 are used as the radial selection
functions, and the triangles and hexagons represent those when the dotted and dashed

lines are used. The solid line is a power law o k-3,

errors, as shown by our simulation, exceed 50%. Different symbols are used for different
samples as indicated in the figure. The error bars plotted are the sampling errors estimated
from the simulations. For clarity and also because of the slight overlapping (1/3 objects in
common) of IRAS100 and IRAS50 samples, we have only plotted sampling errors for these
two samples. Within the sampling errors, the results of the three samples are in good
agreement. Although we note a systematically higher variance A%(k) in the IRAS100
sample at k > 0.2 A Mpc™?, typically 20% fluctuations between samples in the simulations
render this difference not statistically significant. For all three samples, the A%(k) are well

described by a power law A2(k) o< k3.
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In Figure 11.5, we plot our estimated variance A2(k) of Abell clusters. Again, we
only plot those k bins with sampling errors less than ~ 50%. The closed symbols are
for the DR1650 sample, and the open ones for the Deep sample. The squares represent
the results calculated when the solid lines in Figure 11.2 are used as the radial selection
functions. The error bars have the same meaning as in Figure 11.4, and are plotted only
for the results represented by the squares. Within the error bars, the variances of the
two samples accord reasonably well. We have noted that the A2?(k) values of the Deep
sample at k£ ~ 0.03 R Mpc™* (A ~ 200~ 'Mpc) are higher than those of the DR1650
(though within the sampling errors), which could reflect the fact that the Deep sample is
dominated by the large void of this size [see §11.3.1 and Figure 5b of Huchra et al. (1990)].
At k> 0.06 hMpc™!, the variances A%(k) of both samples are approximately a power law
A?(k) o< k7 with 4 ~ 1.3; at the smaller wavenumbers, the A?*(k) of the DR6150 falls more
rapidly with decreasing k [the ‘break’ is near k ~ 0.05 R Mpc~! or A ~ 130 A~ Mpc], while
that of the Deep retains a power law form. The lack of an obvious break in the Deep is

probably due to the large void in the sample.

The results for Abell clusters only change slightly when one reasonably alters the
radial selection functions. To show this, in Figure 11.5 we also give the variances A% (k)
which are calculated using different functions. The triangles in the figure represent the
results when the dotted lines of Figure 11.2 are used, and the hexagons represent those
when the dashed ones are used. One can see from the figure that the results are quite
robust. We have done similar analyses for R > 0 clusters only. For both samples, we
have found no significant difference in the power spectrum between R>0and R >0
clusters, in accordance with the correlation function analysis of Postman et al.(1992) on
these samples.

In Figure 11.6, we show the variances A%(k) averaged for the three IRAS samples
and for the two Abell samples. The averages and error bars are estimated with weights
proportional to the number of objects in each sample. The A2(k) of clusters has been
scaled down vertically by a factor of 10 in the figure. The error bars are comparable
with the typical sampling errors of simulated samples. It is interesting to note that in the

overlap k region explored by galaxy and cluster samples, their variances A?(k) have the
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Figure 11.6 — The averaged variances of the three IRAS samples and of the two cluster
samples. The values of clusters have been scaled down vertically by a factor of 10. The solid
line represents Eq. (11.3.1) in the text. The dashed line is the power spectrum obtained
by Peacock (1991) from his fitting to the APM angular two-point correlation function.

same shapes but different amplitudes, supporting the ‘linear’ biasing mechanism as the
origin of rich clusters (e.g., Kaiser 1984). Based on this fact, we are able to combine the
two datasets together and study the power spectrum over a wide range of scales. Adopting
a similar formula as in Peacock (1991), we find that the data in Figure 11.6 is well fit by

(k/0.3)1
[14 (k/0.025)~27] (11.3.1)

A (k) =

where k is in A Mpc™!. Note the formula is consistent with the idea of a scale-invariant

power spectrum (A?(k) o« k* for small k).

11.4. Comparison with other observations
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Figure 11.7 — The two-point correlation function of the three IRAS samples and of the
two cluster samples. The values of clusters have been scaled down vertically by a factor of
10. The solid line represents the prediction from the variance of Eq. (11.3.1). The dotted
line is the power law (18/r)? scaled down by a factor of 10.

First we would like to stress that all the analysis in §11.3 for the observed samples
has been done in redshift space, and the power spectrum obtained above therefore only
represents that in redshift space. Peculiar velocities (e.g., Kaiser 1987) distort the spatial
distribution of galaxies in redshift space. The ‘Finger-of-God’ effect smears clustering on
small scales, and coherent peculiar velocities on large scales, on the other hand, amplify

clustering by a constant factor, i.e.,

2 V-6 1 0L-2
A?(Red. Spa.) = [1 + 35 + g—gz—]Az(Real Spa.), (11.4.1)

where b is the biasing factor of galaxies. Both effects make the variance A%*(k) (if « k7)

in redshift space have a much flatter slope (smaller ) than that in real space.
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Given the variance A%(k), we can predict the correlation function £(r) in redshift space
by Eq.(11.1.13). In Figure 11.7, the solid line is the {(r) predicted from the variance of
Eq.(11.3.1). We also directly analysed the two-point correlation function for each sample
by counting pairs, and we averaged the results as we did for the P(k). The final results
are shown in the figure, with the £(7) of clusters scaled down again by a factor of 10. It
is encouraging that the predicted &(r) agrees very well with the estimated one, further
showing that the method given in §11.2 is correct. Using the selection functions (the solid)
given in Figure 11.2, we found no meaningful residual correlation on r > 50 h™*Mpc,
which might mean that the selection functions are the proper ones. Our estimated £(r)
are consistent with Strauss et al. (1992a) on the IRAS survey and with Postman et al.
(1992) on the Abell samples.

In Figure 11.6, we also plot the power spectrum (scaled down by a factor 1.5) obtained
by Peacock (1991) from his fitting to the angular two-point correlation function w(f) of
the APM survey (Maddox et al. 1990a). It is very encouraging that his spectrum overlaps
ours on large scales. The difference shown on small scales could be attributed to the
redshift distortion. Therefore our result is consistent with the w(#) of the APM survey.
In principle, from this comparison we can extract the biasing factor of optical galaxies
relative to IRAS ones, but uncertainties in the clustering evolution and in the conversion
of £(r) to w(8) prohibit us getting a meaningful value.

The DR1650 sample strongly suggests a ‘break’ at k& ~ 0.05 h Mpc™*

in the power
spectrum. The averaged results of the two cluster samples also show this tendency. It might
be wise not to put too much confidence in the ‘break’ from this single study. However,
independent studies of the APM survey and the radio galaxy survey have revealed the
‘break’ on similar scales (Peacock 1991). The cross-correlation analysis of IRAS galaxies,
Abell clusters and radio galaxies (Mo et al. 1992) also suggests a similar bend scale.
Combining all these results, we can be much more assured of the existence of this ‘break’.
Because of the great importance of the ‘break’, large redshift surveys with wide sky coverage
and depth of z ~ 0.2 are needed to set it more conclusively.

The existence of the ‘break’ at k ~ 0.05hMpc™' is also needed to interpret the two-

point correlation function £..(r) of rich clusters. The dotted line showed in Figure 11.7 is a
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power law (18 A~ *Mpc/r)? scaled down by a factor 10. Clearly it is a good approximation
to the numerical integration [Eq.(11.1.13)] as well as to the observational data on the range
of r =10 to 50 A" !Mpc. If there were no such ‘break’, the correlation function would be

13 which can hardly be consistent with the observations. Because of the

a power law oc 7~
‘break’, {c.(r) falls off very rapidly at r ~ 50 A~ 'Mpc. It’s perhaps the reason why &..(r)
has not clearly been detected on r > 50 A" !Mpc. We also note the predicted correlation
function [Eq.(11.1.13)] has a shape similar to the £..(r) of clusters automatically selected
from the APM and COSMOS surveys (Dalton et al. 1992; Nichol et al. 1992).

The above discussions have shown that Eq.(11.3.1) is consistent with all the available
two-point correlation functions of galaxies, clusters, radio galaxies etc., only if appropriate
biasing factors are used for these objects. These comparisons are relatively direct because
they are done in coordinate space. Now we are going to compare the derived power
spectrum with the CBR anisotropy, peculiar velocities and acceleration dipoles, therefore
we make the following assumptions:

1. The universe is flat;

2. All the structures and peculiar velocities are induced by the gravitational instability,
so Eq.(11.1.26) applies;

3. The primeval density fluctuation is adiabatic and of Gaussian type;

4. The ‘linear’ biasing mechanism is adequate on the scales of interest.

First we would like to point out that the scale-invariance of Eq.(11.3.1) at large wave-
lengths is supported by the recent COBE observation of structure in the CBR (Smoot et
al. 1992). The Sachs-Wolfe effect (§11.1.8) predicts a quadrupole Q = 1.1 x 10~° in the
CBR if the matter distribution has the power spectrum of Eq.(11.3.1). However as pointed
out previously, Eq.(11.3.1) only represents the IRAS galaxy distribution in redshift space.
Both the redshift distortion Eq.(11.4.1) and possible biasing of IRAS galaxies have ampli-
fied the spectrum Eq.(11.3.1) relative to the matter distribution. Taking these factors into
account, we find that the variance of Eq.(11.3.1) with a biasing factor by = 1.5 for IRAS
galaxies can correctly produce the COBE quadrupole Q = 6 x 107%. The biasing value is

quite reasonable.

With the variance normalized to fit the COBE result, we can predict peculiar ve-
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locities and dipoles. Using R = 5h~'Mpc for the LG, we find the predicted rms value
of the peculiar velocity [Eq.(11.1.27)] is about 500kms™*!, comparable with the observed
value 600 kms™!. The difference 100 kms ™! is not unexpected, since an individual velocity
generally deviates from its rms value and since the PDF [Eq.(11.1.29)] is rather broad (see
§11.1.5). In Figure 11.8a, we use a solid line to show the predicted rms value for our local
bulk motion velocity [Eq.(11.1.33)]. The dashed lines gives the upper and lower limits at
95% confidence level [Eq.(11.1.34)]. The filled squares are the observational results de-
rived by Bertschinger et al.(1990). In Figure 11.8b, we show the predicted acceleration
dipoles (§11.1.7) with a comparison with the observational data from the QDOT survey
(Rowan-Robinson et al. 1990). The lines in the figure have the same meaning as in Figure
11.8a, and the biasing factor by = 1.5 is used for IRAS galaxies. Clearly the local pe-
culiar velocities and the acceleration dipoles are very consistent with the observed power
spectrum.

Another point we noted is the slope of the A%(k) around the scale of rich clusters
(i-e., around k ~ 0.3 A Mpc™") which is about 1.3. The shape of A%(k) on this scale should
be little altered by peculiar motions. It is interesting to note that this slope is in perfect
agreement with the measurements from the cluster x-ray temperature function (Henry &
Arnaud, 1991) and the cluster x-ray luminosity function (Henry et al. 1992).

Now let’s summarize our main results of this chapter.

1. We have carefully examined the method of the power spectrum analysis, and found
that the ‘alias’ effect is important especially in the high-order assignment schemes.
This effect has never been considered in the previous works on estimating the power
spectrum either in observed samples or in N-body simulations.

2. We have measured the power spectra of IRAS galaxies and of Abell clusters by
analysing the 2-Jy redshift survey and two redshift samples of Abell clusters. In
terms of the variance A?(k), we find that the A%(k) of IRAS galaxies obeys a power
law A%(k) o< k' up to the largest possible wavelength A = 27/k ~ 100 A~ Mpc which
the survey is able to explore. The A%(k) of Abell clusters has the same slope as that
of IRAS galaxies for A < 100 A~*Mpc but has an amplitude about 10 times higher,

which supports the linear biasing mechanism as the origin of rich clusters. At larger
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Figure 11.8 — a). The peculiar velocity of a sphere of radius R. The solid line is the mean

value predicted from the variance Eq.(11.3.1). The dashed lines are theoretical predictions

at the 95% confidence level. The squares are the observed values of Bertschinger et al.

(1990); b). Similar to a), but for the peculiar velocity induced by a sphere of radius K.

The observed values are from Rowan-Robinson et al. (1990) and a biasing factor by = 1.5

is assumed for IRAS galaxies.

wavelengths, the variance of Abell clusters falls more rapidly than the power law.

Under the ‘linear’ biasing assumption, the A?(k) of IRAS galaxies is well expressed

by Eq.(11.3.1). The fitting formula is taken to be scale-invariant at large wavelength,

which is supported by the recent COBE DMR observation as well as inflation theories.

The observed variance is consistent with all the available two-point correlation func-

tions of galaxies, clusters and radio galaxies. In a flat universe with primordial adi-

abatic Gaussian fluctuations, the above variance with a biasing factor 1.5 for IRAS

galaxies can reproduce the temperature quadrupole @ = 6 X 10~% observed in the
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COBE experiment by the Sachs-Wolfe effect and can account for the peculiar velocity
of the LG, the local bulk motions and the acceleration dipoles. These good agree-
ments on one hand support the gravitational instability theory of galaxy formation,
and on the other hand suggest that the functional form A?(k) of Eq.(11.3.1) does
approximately describe the truth.

4. Compared with the standard CDM or HDM models, the above results suggest one
economical modification in these flat models, i.e., the transfer function. Altering the
constitution of the Universe amounts to modifying the transfer function. A hybrid
model with both CDM and HDM might solve problems in the standard CDM or/and
HDM models. The author is working in this direction.

5. We have not considered open cosmological models in this chapter. It appears that a
cosmological constant dominated flat CDM model can also account for all observations

listed above.

fPart of the materials presented in this chapter is based on our paper: Jing, Y.P. &
Valdarnini, R. 1992, The Astrophysical Journal, (accepted).
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An outlook

In the future, many problems considered here will be further clarified with the ad-
vent of a new generation of observational catalogues. Several large deep machine-scanned
surveys, such as the APM, COSMOS and POSS II surveys, are near completion. Several
subsamples of bright galaxies extracted from these surveys are under further observa-
tions, in order to obtain morphology classification and galaxy redshifts. There also are
great international efforts on completion of large redshift surveys of Zwicky, UGC and
ESO/Uppsala galaxies. Fermilab/Chicago/Princeton are going to launch a new project
to construct a digitalized survey of ~ 10? million galaxies brighter than ms; ~ 22 in ~ =
steradians of the northern sky. Morphology classification and redshift will be observed for
a subsample of ~ 1 million galaxies of m s < 19. Cluster catalogues are being constructed
by applying objective finding algorithms to the deep digital sky surveys and the ROSAT
x-ray survey will result in a catalogue of x-ray bright clusters. With these surveys, nearly
. all topics presented here are expected to be addressed much more accurately in the next
~ decade.

According to most popular models of galaxy formation, the anisotropy AT/T on small
angular scales 8 < 1° is near the current detection sensitivities of several telescopes if the
COBE result is right. Detection or much smaller upper limits of AT'/T on § < 1° would
tell us much about the early Universe. There are other observations, such as surveys of the
Ly-o forest, of quasars, etc., which will also help us understand the large scale structures.

With the increase of computational capability, the model research is also prospective.
Large N-body simulations with good resolutions are being run. Several hydrodynamical
codes have been included in the pure gravitational N-body codes. Physical processes of
galaxy formation, such as the ‘biasing mechanism’, are expected to be better understood
with such simulations. Comparisons between theories and observations will thus be made
more properly. Our knowledge of the origin and evolution of the LSS will be greatly
enhanced by the model studies.
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Although the standard CDM, HDM and baryon dominated models do not appear
to work perfectly, the analysis in Chapter 11 shows that all observations are consistent
within the gravitational instability frame and Big-bang cosmology. Several modifications
suggested in §1.5 may improve theoretical confrontations with the observations. Via N-
body simulation, we have recently studied the large scale structures observed in the CDM
(Qcpar =~ 0.7) plus HDM (Qupar ~ 0.3) dominated universe (Jing, Mo & Bérner, in
preparation). All other model parameters are similar to those of the standard CDM model.
From the results obtained up to now, we found that the model is in good agreement with
observations, including the two-point correlation of galaxies, two-point correlation function
of rich clusters, count-in-cell statistics of the QDOT survey, and the COBE quadrupole. I
hope that these results will be presented when I defend the thesis.

Observational and model studies are endless and I have to end the thesis now.
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Appendix

In this Appendix, we shall discuss the moment method to calculate the 3-point cor-
relation function. Three-dimensional and two-dimensional cases are discussed separately.
Some specific parameters, if appear, are used in §7.4 and §7.5, since the appendix is spe-

cially designed to understand the contents there.

A. Three-dimensional case

Let us consider a fair sample made of A objects distributed in a given volume V.
Around each object we center spheres of radii 7. Let ér; be the thickness of the shell
between the (k — 1)-th and the k-th sphere and N;; be the number of neighbours of the
j-th object in the shell. We shall then take the average of N;;, made over the A possible
3’s; N = (Njx)j -

Afterwards, we generate an artificial sample of N/ >> A objects, distributed in the
~ same volume V with the same selection effects as the original sample.

Then let Ny = (N/N){N;);. Here Njj is the number of random neighbours of the
j-th object in the shell k [let us draw attention to the normalization factor (M/N)].

The 2-point function é(ry) = € can then be defined according to
N :Nk[l+K(5k)fk] (Al)

where 6 = 67 /7k.
Here, assuming

§(r) = (ree/7)7, (4.2)

we have
31—(1=6)r

L N e )

(A.3)

where
vi=1—7. (A.4)
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Among the central moments
S = ((Nej = Ni)™); (4.5)
providing information on the (m + 1)-point function, we shall consider, in particular,
S\ = (N - Ni. (A.6)

Let us then consider the joint expected numbers of objects in §V;7 and §V; at distances

rg1 and 7oz from real objects
(§N16No) = §N16N2 (1 + €1 + &2 + €12 + Co12), (A.7)

which depends on the connected 3-point function {. [In (A.7) and hereafter & = &(roq)
while § Ny and §N, are the (normalized) numbers of random objects in §V; and 6V>.]

We shall consider here two alternative expressions for (p12 :
Co12 = Q€162 + &x&aa + E2612) (hm)

Cora = Q(&1&a + E1éia + Eaban + E16abnz) (ks)

" Here hm stands for hierarchical model and ks for Kirkwood superposition. The former
" expression does not actually follow from the requirement of hierarchical clustering (bottom-—
up scenarios), but is fully coherent with it. The latter expression, first introduced by
Kirkwood in the study of gases, expresses a limiting case in the framework of brased
theories of galaxy formation; it should then also be Q=1.

Let us then integrate (A.7) over r; and rz in the k-th shell. The result is to be
corrected to subtract the effect of the overlapped physical objects. This leads to the

relation

S — Ni = N3 {Jye.bx + [(Q — 1K 5, +2QK 5,68} (48)

holding for Am. Here

1 1 {276 —2(2 = 6) + [2(1 — &)
8(1— 6+ 62/3) 137 525

84 2 T4
- (1 -6+ 87)+2(2—-86)"72 .

J'v,r? =
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1
K(v,6) = - / dz(l —zéd)™
’)’2’)’32(1_5_;_%)2 0

X {2‘73 (1 B %5)73 B (1 - 2:_-2¥_-_1_5)'73 . 2m (1 _ -2;26)74 - (1 -z + 125)74 +
6 T4 5

RE]
+273 (1_ 113-1-15) __572 ((1——33)73—{—1373)
e o 1 - T4
4§ <(1_$)73_|_93 ( z) )}
Y4
(A4.10)
Then, according to (A.6) and (A.8),
1 59 _ Ny Ny
- TE (6, 11 Al
¢ 01(5,7){(Nk~Nk)2 S (4.1)
where )
2K, 5,
61(577) =1+ -
K‘%‘Jk
Jy.6
ca(6,7) = =1 (A.12
2(8,7) K, )
* For ks, (A.11) ought to be modified into
(2) N,
- 1 - N N,
= R Sp — =~ ea(6,7) e + 1 (4.13)
01(5a7)+03(5a’)’)~kﬁ;‘—k“ (Nk — Ni) N — Ni
with
calb7) = Hys /K g (A.14)
where
1 R
Hy,6 = — / §1&2612dV1dV, =
V2E Jr_sr
L 1 ' w7 " vz Y2
= -— — dzyz] doozy' (g + 22) " — |21 —z2|™*] . (4.15)
72 242 (1-—5—{—%) 1-6 1—6

(some of the above relations are taken from Pons et al. 1990).
The division of the distance axis r into intervals (bins) 67 is to be performed in a

suitable distance interval Tp,in, Pmaz. In the case of pointlike objects (galaxies, QSO’s,
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etc.) we can take 7, = 0. This is not convenient for more complicated systems, with an
intrinsical characteristic size [, as clusters of galaxies are. It is then wise to take rpin at
least a few times greater than I. A reasonable choice for rmaz, instead, is ~ 7... Above
~ 27, the power law (A.2) can no longer be assumed to hold. Therefore, in our case, we
have taken Tmin = 7h~*Mpc and e, = 26 A" Mpe.

A further point is the division of the interval A7 = rpaz —Tmin into ory’s. If no dividing
is performed and §r = Ar, there is no direct possibility of checking the expressions hm
and/or ks. If one shares Ar in a few 67, different (but non independent) estimates of @
(Q) follow from each bin. Their agreement is an indication of the validity of the expression
used for the 3-point function.

Each bin collects the information concerning triplets set on the vertices of triangles
with 2 sides having length between r; — ér; and v and a third side between 0 and 27.
For small 7y, each bin tends to report information coming from nearly isosceles triangles,
with two sides ~ 7. It is clear that this selection leaves apart the contribution of a number
of possible triplets, whose geometry does not fulfill the above requirements.

Any division scheme is however to be carefully performed in order that at least a few
~ triplets remain in each bin. Too small §; cause empty bins or bins where all objects have
0 or 1 partners. Negative @ estimates then appear. They have no physical meaning, being
caused by the artificial suppression of existing triplets (2 partners for some object). In any
case the minimal variation of @ arising formally adding an extra partner to each object in

a shell is to be checked. Such variation
AQr = [Nier(8,7)(Vi — Ny )17 (A.16)

(Ng: total number of objects in the k-th shell) can be large; AQj then allows us to evaluate
the usefulness of a given ér;. Furthermore, in possible averaging procedures, the estimate
of @ coming from a given shell should be given a weight inversely proportional to the

corresponding AQ.

B. Two-dimensional case
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For a two-dimensional distribution of objects, let N;(8) be the number of objects at
angular separation between § — A§/2 and 6 + A§/2 from the i-th object. We define for

the object distribution the moment of order k, at the angular scale 8, as
(NF)y = ZN ) Pn (6 (A.17)

In this expression, Pn(6) represents the probability of finding IV objects in the ring of radius
f and width Af. Notice that the determination of this quantity is of key importance since
it specifies completely the clustering properties of the system through the moments of all
orders (e.g., Fry 1986).

In fact, it is possible to show that the k** order moment is related to the (k+1)-point
correlation function according to

(N*)o =(discreteness terms of order m < k)

A.18
+nk/ dQ;... ko[1+wf1]::33...k] ( )
Ql Qk

(e.g., Peebles 1980; Sharp, Bonometto & Lucchin 1984). Here, the quantity wfiz,m..,k
represents the disconnected correlation function between k + 1 points, while n is the mean
density of objects in the sample. In Eq.(A.18) all the integration domains are angular rings
- of radius § and constant relative width A.

If the 2-point function, w(#), is modeled as a simple power-law, then Eq.(A.4) simpli-
fies into

(N)s = Ng [L+w(0)] . (A.19)
In the above equation Ny(= nA) is the expected number of clusters in the angular shell of
area A. However, in order to account for boundary effects and systematic density gradients,
which are always present in real data samples, we prefer to normalize Eq.(A.19) so that Ny
is the average first-order moment over 20 random samples that contain the same number
of points and have the same angular selection function as the real sample.
In the case of the 3-point correlation, Eq.(A.18) gives

2 27 (1+A/2)8 (1+A/2)0
(N ) ,9 +n / d(plf d@g/ dg()l sin 001 / d@oz sin 002
J —A/2)6 (1—-A/2)8

X 1+ wo1 + woz + Wiz + 2zo12]
(A.20)
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In this expression zg1 is the connected 3-point correlation function, which in the following

is assumed to have the hierarchical form:
2012 = Q[worwoz + worwiz + worwis] (4.21)

(e.g., Groth & Peebles 1977; Sharp, Bonometto & Lucchin 1984; Jing & Zhang 1989; Téth
et al. 1989). Notice that assuming the simple power-law expression, w(f) = B ™7 causes
some integrals in Eq.(A.20) to diverge for ¥ = 2, the value which is always very near to
the observed one (Plionis & Borgani 1992). Such a divergence is essentially due to the
unphysical divergence of the 2-point function at § — 0. However, due to the finite size
of objects, we expect that a small-scale cutoff should be superimposed in the background
field and, consequently, w(6) should flatten at small separations. For this reason, it is

appropriate to introduce the smoothed correlation function
w(f) = B(§? +47)=7/a, (A.22)

where the parameter g specifies the smoothing model, while we take 8. = 30 arcmin for the
smoothing scale. Let us observe that, as far as the 2-point function analysis is concerned,
we always have 6 >> 8, for the separations we are dealing with, and, consequently, the pure
power-law expression of w(f) holds.

According to Egs.(A.20) and (A.21), we estimate the Q parameter over the considered

range of angular separations by minimizing the quantity

-3 {<N2>e — (N)o = N3 [1+(2+ Ko) w(6) + Q (L + 2Ko) w’(0)]

a

}2, (4.23)

1=1

where the sum extends over the Nj;, angular bins. In the above expression we weight each

bin by means of the error model
o? = olyi_ny + N*2 + Ko)oy, . (A.24)

Since the quantities (N2) and (N) are not independent, we prefer to estimate from the

bootstrap resamplings the quantity O-%NQ__ N) instead of the variances of the second- and
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first-order moments. The errors in the 2-point function, o2, are estimated from the un-

w?
certainties in the amplitude B, once v = 2 is assumed (cf. Plionis & Borgani 1992). Since
the first-order moment for the random distribution is estimated after averaging over 20

realizations, no significant uncertainties are associated with V.

In Eqs.(A.23) and (A.24) we introduced the quantity
27 1+A/2 -y
Ky = (2nA)~ / dcp/ dyy 2y2(1 —cosp)]?/? + (96/9)4) o, (A.25)
—A/2
that turns out to be independent of 4 in the limit §, — 0. We have verified that reasonable

choices of §. and ¢ (i.e., . << scales of interests and ¢ ~ 1) leave the determination of Q

essentially unaffected.
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