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Introduction

The Standard Model (SM) of Electroweak (EW) and strong interactions has proved to be
an extremely successful theory being able to describe almost any process of high energy
Physics with a surprising degree of accuracy. Notwithstanding this success, it is now clear
that the SM has to be considered as an effective model, valid up to a certain cut-off scale
Asn, rather than a truly fundamental theory. An obvious reason for this claim is the fact
that the SM does not include a quantum description of gravity, which forces to consider
the Planck mass as an unavoidable upper limit for its validity (Agy < Mpr, ~ 10'° GeV).

The SM, however, presents some problems and some unsatisfactory aspects at far lower
scales than the Planck mass. A first difficulty comes from cosmological observations. In the
last years the evidence of the existence of a relatively large amount of non-baryonic Dark
Matter (DM) has become very strong. The SM clearly lacks a stable (or almost stable)
particle which could explain the DM abundance of the Universe. Another well known
problem is the origin of neutrino masses. In its original formulation the SM includes
massless neutrinos, but the experimental measurements, which bear evidence of neutrino
oscillations, show that their mass must be non zero, although very tiny. The mechanism
which could generate such small masses is yet unknown.

Though not a theoretical problem, another unsatisfactory aspect of the SM is the
unexplained hierarchy of fermion masses among the three matter generations. The stability
of the Yukawa couplings against radiative corrections guarantees that the fermion masses
are “technically” natural. This means that no special cancellations among the parameters
of the theory are needed in order to obtain the correct masses, or, in other words, no fine-
tuning is associated to this hierarchy. Nevertheless, it would be nice to have a fundamental
mechanism which could “naturally” explain the peculiar spectrum of fermion masses.

The above discussed issues seem to be related to one or more fundamental scales of
the theory. In particular some proposed mechanism, which aim to explain the origin of
neutrino masses, require the introduction of fields with high mass scales. In any case, due
to the lack of a complete understanding of these problematic aspects of the SM, it is very
difficult to guess the order of magnitude of the fundamental scales involved.

There are, however, two other features of the SM which seem to be more directly related
to some scale of new Physics. The first of such features is the rough unification of the




running gauge couplings which become of the same order of magnitude at an energy scale
Mgy ~ 101 GeV. This behaviour could be the sign of the existence of an underlying
Grand-Unified Theory (GUT) in which the EW and Strong interactions are treated on
the same footing. Within this kind of scenario, the cut-off of the SM would be necessarily
much lower than the gravity scale, namely Agy ~ Mgur.

Another argument seems to suggest that the cut-off of the SM can not be as high
as the Planck mass or the GUT scale, but rather several orders of magnitude below, in
the TeV range. A possibility of this kind would imply that some new Physics could be
explored in the forthcoming collider experiments. The argument is simple and is related
to one of the most obscure parts of the SM: the Higgs mechanism. Differently from
fermion Yukawa’s which are stable at the radiative level, the Higgs mass is quadratically
divergent in perturbation theory, so that it is highly sensitive to the cut-off of the theory.
For an almost arbitrary choice of the parameters of the SM, the Higgs mass, and thus
the EW scale, would be unavoidably of the order of a loop factor times the cut-off of
the model Agys, which as discussed before, could be as large as Mgy or Mpr. On the
other hand, the Unitarity bound on the scattering of four gauge bosons requires a Higgs
mass my < TeV, which would be natural for a cut-off Agas ~ TeV. In the absence of
any symmetry protecting the EW scale, a cut-off at the Planck scale would require a
fine-tuning of 15 orders of magnitude in the parameters of the SM in order to have an
acceptable value of the Higgs mass. This striking difference of mass scales is known as the
“Big Hierarchy Problem” of the SM.

In the last few years, an accurate analysis of the EW precision data deriving from
collider experiments has shown that another smaller form of hierarchy, the so called “Little
Hierarchy Problem”, seems to exist in the SM [1, 2]. The experimental measurements put
stringent bounds on the range of acceptable Higgs masses: 115 GeV < my < 250 GeV,
where the lower bound is obtained from direct searches and the upper one is determined
through a fit on the EW observables. At the same time, the experimental results also put
a lower bound on Agjs. Being the SM an effective theory, it is natural to expect that it
could contain non-renormalizable interactions suppressed by a power of the cut-off scale.
Considering some dimension 6 operators, in the absence of suppression mechanisms for
the coefficients of these operators, one can set the bound Agys 2, 10 TeV [1]. We see that,
also in this case, a small clash (of one or two orders of magnitude) exists between the
Higgs mass and the cut-off.

The attempt to better understand the nature of the Higgs mechanism, possibly ad-
dressing the Hierarchy problems, has been one of the guidelines for the study of the Physics
beyond the SM. Of course, solving the Hierarchy problem would require the introduction
of some mechanism or, better, some new symmetry which could stabilize the EW scale.
Many proposals have appeared in the last decades to describe the Physics beyond the SM.
Some of them try to change the nature of the Higgs. For example, the Higgs could be a
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non-fundamental field related to some strongly coupled sector of the theory (such as in
Technicolor models [3] or Composite-Higgs models [4]), so that the EW scale is dynam-
ically generated by the strong sector. Another possibility, that we will treat is detail in
this thesis, is given by Gauge-Higgs Unification (GHU) models in extra dimensions (ED),
in which the Higgs originates from a higher dimensional gauge field and its dynamics is
protected by the gauge symmetry. In the context of ED, one can also have some scenarios
in which the Higgs is not present at all (Higgsless theories [5, 6]) and the breaking of the
EW gauge group is obtained by a suitable choice of the boundary conditions of the fields.
A class of theories inspired by the deconstruction of extra-dimensional theories, are the
Little-Higgs models [7, 8] in which the Higgs is a pseudo-Goldstone boson.

At present one of the best candidate to describe the Physics beyond the SM is Super-
symmetry and in particular the Minimal Supersymmetric Standard Model (MSSM). This
scenario presents many nice features. First of all, it is compatible with the present exper-
imental results. Moreover the existence of superpartners of the SM fields with opposite
statistics naturally cancels the leading divergences in the Higgs mass which is now only
logarithmically sensitive to the cut-off scale. Another interesting feature is the existence
in the MSSM of a DM candidate which could explain the DM abundance in the Universe.

Also the MSSM, however, has some unsatisfactory aspects. Supersymmetry, which
allows to stabilize the EW scale, at the same time strongly constrains the Higgs mass
which at tree level has to be smaller than the Z mass: my < my. Higgs masses in this
range are not compatible with the experimental result m a = 115 GeV, so that one has to
rely on radiative corrections to get an acceptable value of my. As a consequence, allowed
Higgs masses in the MSSM can not be much larger than the current experimental limit
and, moreover, a certain amount of fine-tuning is necessarily reintroduced in the model.
Finally, the hierarchy of fermion Yukawa couplings remains totally unexplained in the
MSSM.

The above considerations clearly point out that it could be worth investigating alter-
native scenarios with respect to the standard supersymmetric one. In particular, among
the previously mentioned possibilities, the class of models with extra dimensions seems
the most promising. A hint of the fact that our World could actually have more than 4
space-time dimensions comes from string theory, which requires extra spatial dimensions
to be consistently defined. Of course, compatibility with the experiments requires these
extra dimensions either to be compactified on small spaces or to be somehow “inacces-
sible” for the ordinary fields of the SM. An example of the latter possibility is given by
the ADD scenario [9] that predicts large sub-millimeter extra dimensions in which only
gravity can propagate. This feature can be used to explain the weakness of the gravita-
tional interactions, which are “diluted” by the extra dimensions, with respect to the EW
interactions, or, in other words, it can justify the large value of M pr with respect to the
EW scale.



Different scenarios in which the SM fields can directly access the extra dimensions
can be realized considering theories compactified on TeV-sized spaces [10]. Models of this
type offer an intersting way to address the problem of the stability of the EW scale. As
mentioned before, in the context of extra dimensions one can consider the GHU set-up
in which the Higgs fields is identified with some of the internal components of a higher-
dimensional gauge field which propagates both in the 4D Minkowski space-time and in
the extra compact-dimensions. This mechanism was proposed several years ago [11], and
received renewed interest in the last few years both in its non-supersymmetric [7, 12, 13,
14, 15] and supersymmetric [16, 17] versions.

In this scenario, the Higgs is an effective scalar from a 4D point of view, but its origin
as a gauge field component severely constrains its dynamics preventing in many cases the
appearance of divergences in the Lagrangian. This is true, in particular, in 5D GHU the-
ories, in which the Higgs is identified with the fifth component of the gauge field. In this
case the gauge invariance forbids the presence of a tree-level (possibly divergent) potential
for the Higgs. The whole dynamics of the Higgs sector is instead determined by radiative
effects, which must necessarily be finite due to the absence of possible divergent countert-
erms. Notice that this mechanism, which is used to generate a spontaneous Electroweak
Symmetry Breaking (EWSB) at loop level, relates the EW scale to the compactification
scale of the model, thus making it insensitive to the UV dynamics of the theory (i.e. to
the cut-off scale). At the same time, the loop-factor suppression of the Higgs potential
can (in part) explain the gap between the Higgs mass and the scale of new Physics, which
in this context is roughly given by the compactification scale.

Noticeably, in this 5D GHU scenario two models have been proposed which seem to be
fully compatible with the current experimental constraints. One of these [18, 19, 20, 21] is
based on the Randall-Sundrum (RS) set-up [22] which considers a theory defined on a slice
of AdSs space. A remarkable feature of this scenario is the possibility of addressing the Big
Hierarchy Problem. The keypoint is that the EW scale, which is essentially determined by
the near—I R-brane dynamics, is hugely red-shifted by the exponential factor of the AdSs
metric with respect to the gravity scale, which is related to the near—UV—-brane Physics.
Another interesting aspect is the possibility of achieving a natural hierarchy of fermion
Yukawa’s by means of the exponential localization of the fermion zero-modes towards the
UV or the IR brane. Finally it is worth mentioning that it has been suggested that a
generalized form [23] of the original AdS/CFT correspondence [24, 25] could be valid in
the RS scenario. This means that GHU models on AdSs can be equivalently described by
a dual 4D model in which an elementary weakly-coupled sector of the theory is coupled
with a strongly-coupled nearly conformal sector. The Higgs field arises from the strong
dynamics as a composite object, and this gives the possibility of interpreting GHU models
of this kind as a calculable version of the Composite-Higgs scenario mentioned before.

Another possibility, which we will thoroughly analyze in this thesis, is to construct
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realistic GHU models in 5D considering compactifications on a flat St /Z orbifold [15, 26,
27]. Differently from the warped space case, in the context of flat extra dimensions the
Big Hierarchy Problem can not be addressed at all. Nevertheless, the mechanism which
stabilizes the EW scale can furnish a complete or, at least, a partial resolution of the Little
Hierarchy Problem.

Analogously to the RS scenario, also in the flat case one can naturally obtain an expo-
nential hierarchy of fermion masses, but, due to the absence of an exponential localization
of the zero-mode wave functions, one has to rely on a different mechanism to realize suit-
able Yukawa couplings. To better understand this point it is useful to present firstly an
alternative description of the EWSB mechanism. In the standard picture, the EWSB is
spontaneously generated when the Higgs field, or, in our case the fifth component of the
higher-dimensional gauge field, gets a non-trivial background. However, as pointed out
in [28], the gauge invariance of the theory allows us to adopt an alternative point of view.
By a (non-periodic) gauge transformation the Higgs Vacuum Expectation Value (VEV)
can be set to zero at the cost of introducing “twisted” boundary conditions for. the fields,
or, in other words, the Higgs VEV can be effectively identified with a Wilson line phase.
In this perspective, the EWSB mechanism is due to non-local effects and consequently
the Higgs dynamics and in particular the Higgs effective potential are protected from
divergences.

This non-locality property can be efficiently used to generate hierarchical Yukawa
couplings. The main set-up [14, 15] is obtained coupling some 4D chiral fermion fields
localized at the orbifold boundaries with pairs of massive bulk fields. The boundary fields
can not couple directly with the Higgs, and they acquire mass after EWSB through the
mediation of the bulk fermions. The Wilson-line nature of the Higgs VEV implies that the
bulk fields can “see” the symmetry breaking only if they propagate from one boundary to
the other, thus generating a suppression of the effective SM-fermions Yukawa’s which are
exponentially sensitive to the bulk field masses.

Although qualitatively the simplest GHU scenario on a flat orbifold is completely sat-
isfactory, the accordance with the experiments results problematic at the quantitative
level. Deriving essentially from gauge interactions, the Yukawa couplings of the fermions
result smaller or at most of the same order of the gauge couplings. This is a disappointing
feature, in fact it prevents the third generation Yukawa’s to be large enough to give an ac-
ceptable top mass. In the minimal set-up of [15] a theoretical bound m; < v/2myy is found,
but, actually, accessible values of the top mass are much below this limit: me S 40 GeV.
Another problem related to the previous one is the too light Higgs mass, typically of order
mu S mw/2. As explained before, the Higgs potential lacks a tree-level contribution,
which is forbidden by the gauge symmetry, so that it is entirely generated at the radiative
level. The magnitude of the various contributions to the Higgs potential is determined by
the Higgs interaction couplings which are necessarily small being given by the usual EW
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gauge couplings. Finally, the compactification scale, which in this case can be defined as
1/R where R is the radius of the S* covering space of the orbifold, is predicted to be too
low to be compatible with the experiments, namely 1/R < 800 GeV.

Solving the problems of the flat GHU scenario is not an easy task, naive extensions of
the basic set-up [15] typically predict too large deviations of the EW observables, hence
failing to be consistent with the experiments, or have a very low cut-off, thus undermin-
ing their predictive power. Nevertheless it has been recently pointed out that all the
above mentioned problems could be solved by means of two modifications of the original
model [26, 27].1

As we discussed before, the too light value of the Higgs and top masses is due to
the smallness of the Higgs couplings and in particular to the smallness of the fermion
Yukawa’s. Of course the allowed interactions of the Higgs are determined by the gauge
invariance, whereas it is the 5D Lorentz symmetry which forces the bulk fields to have
the same couplings with the gauge bosons and with the Higgs, which coincides with the
fifth component of the gauge field. A simple, though slightly “exotic”, way to enhance the
Higgs couplings is to advocate a breaking of the Lorentz invariance in the extra dimension.
More explicitly, we suppose that the SO(4,1)/SO(3,1) symmetry is broken so that the
usual SO(3,1) Lorentz group is preserved. This mechanism allows at the same time to
obtain a realistic top mass and to push the Higgs mass above the current experimental
bounds.

Unfortunately the Lorentz breaking alone is not sufficient to solve the problem of
having a too small compactification scale. To address this issue it has been proposed to
introduce a Zy symmetry into the model [27]. This symmetry, called “mirror symmetry”,
acts on a subset of the bulk fields, namely the fermions and a subgroup of the gauge fields,
effectively doubling their number. Fields related by the Zo symmetry satisfy twisted
boundary conditions, so that in a diagonal base they give rise to couples of bulk fields
with periodic and antiperiodic conditions on the covering 5! space. The net effect of the
presence of periodic and antiperiodic fields on the Higgs potential is a partial cancellation
of the quadratic mass term. This cancellation helps to generate a sizable gap between the
EW and the compactification scale so that the model can be fully compatible with the
EW precision measurements.

An interesting by-product of the Zo mirror symmetry is the presence of stable Kaluza—
Klein (KK) states. In the model all the SM fields are even under the Zo symmetry, so
that the lightest odd particle is absolutely stable. Usually this stable state coincides with
the first KK mode of an antiperiodic gauge boson related to a U(l) gauge subgroup.
Noticeably it has been recently shown that such state can be a realistic DM candidate
whose relic abundance is consistent with the current cosmological observations [30].2

1For an alternative, possibly realistic, extension of the original set-up see also [29].
2Notice that this scenario is very similar to what happens in Universal Extra Dimensions [31], where



An important feature that must be adequately stressed is the fact that gauge theories
in extra dimensions are non-renormalizable. This means that they are effective theories
with a limited range of validity: above a certain energy scale A, which is the cut-off of the
theory, a higher dimensional model becomes strongly coupled and enters an uncontrolled
regime. The predictive power of the theory is determined by the quantity 1/(RA) which
controls the effects of non-renormalizable operators at the compactification scale 1 /R. A
necessary requirement for a sensible model is to have a large enough cut-off, so that it can
be reliably used to compute physical observables. As we will see, in realistic GHU models,
the cut-off is roughly given by A ~ 5/R ~ 20 TeV, so that these models are reasonably
predictive. Moreover, in the GHU scenario, the higher dimensional gauge invariance (or,
equivalently, the non-local nature of the EWSB) protects some relevant quantities (such as
the Higgs potential) so that they are actually insensitive to the cut-off and can be reliably
computed perturbatively.

Thus far we have considered the general features of models which aim to describe
the Physics beyond the SM. In particular we focused our interest on theories with extra
dimensions, showing their strengths and their weaknesses. The study of ED theories, how-
ever, especially in some complex scenarios, as, for instance, compactifications on intervals
with boundary terms or localized fields, can be extremely challenging from a technical
and computational point of view. As we have seen before, the possibility of constructing
realistic models relies almost always on compactifications on spaces with singularities and
on the presence of localized interactions. It is then clearly useful to develop some tools
which could simplify the analysis of such theories and, possibly, shed some light on their
inner properties.

The standard approach to the study of theories with extra dimensions is the KK de-
composition, which is based on a kind of Fourier analysis of the fields along the extra
dimensions. The main idea is to decompose the bulk fields on a basis of 4D mass eigen-
states, thus rewriting an extra-dimensional field as a sum of 4D KK modes with different
wave functions along the extra dimensions. Correspondingly, the whole theory is reinter-
preted as a 4D effective theory containing these infinite KK towers of states. Generically,
for a model with compact extra dimensions, the effective theory will contain some massless
(or nearly massless) states, while the lightest KK excitations will have masses of the order
of the compactification scale. Of course, at low energy, the field content of a model will be
given by the massless states, while the KK modes will give corrections to the low energy
observables. From this point of view, the KK approach results very useful not only to have
a clear and simple understanding of the Physics of an extra dimensional theory, but also
to estimate the effects of the KK modes on the low energy dynamics. In this perspective

there exists a Zp symmetry, the KK-parity, which is a remnant of the group of translations along the
extra dimension. As in our case, this invariance leads to stable KK states which can be potential DM
candidates [32].



the compactification scale (or the KK mass scale) acts just as a cut-off for the effective
low-energy theory.

In spite of its seeming simplicity, the KK approach tends to become rather involved
in realistic set-ups. For example, this happens in 5D models compactified on an orbifold
when boundary terms or localized fields are introduced at the fixed points. The origin of
this difficulty is related to the fact that localized terms in the Lagrangian usually lead to
complex systems of boundary equations.

There is also another, more theoretical, aspect which can not be easily understood
within the KK approach. Let us consider for definiteness a gauge theory compactified on
a 5D interval. In such theory, the boundary conditions which must necessarily be imposed
on the fields at the singular points can break partially or completely the gauge invariance
at the boundaries. In the low energy limit the broken part of the gauge symmetry is no
more linearly realized, so that a corresponding massless gauge boson is not present. Notice
that this mechanism is widely used to obtain a low energy gauge invariance which is only a
subgroup of the original 5D gauge symmetry, and in particular it is an essential ingredient
in constructing GHU models.

An interesting question which can be asked on this symmetry breaking mechanism
is whether it is a soft breaking of the gauge invariance or not, or in other words if it
can introduce divergences into the theory. Fortunately the answer is that the symmetry
breaking is soft. A way to show this property is to realize the symmetry breaking at the
boundaries through a different but equivalent mechanism. To generate a gauge symmetry
breaking, we can introduce localized 4D scalar multiplets coupled with the gauge fields
in a completely gauge-invariant way. When the scalar fields get a VEV a spontaneous
breaking of the gauge symmetry happens at the boundary, moreover considering the limit
in which the VEV is taken to infinity the massive scalars which arise from the localized
fields are effectively decoupled from the theory (see for instance [5, 33, 34]). In this
limit the boundary conditions of the bulk fields reproduce the standard conditions on an
interval needed to generate the corresponding symmetry breaking. At the same time the
localized scalar multiplets give rise to some 4D Goldstone bosons which can be either
present in the low energy effective theory or eaten by the gauge field components which
become massive. These considerations indicate that the symmetry breaking induced by
the boundary conditions is equivalent to a spontaneous breaking and they suggest that
some Goldstone fields must be present in the low energy effective description.3

The KK analysis of a model with gauge symmetry breaking induced by boundary
conditions shows that actually in the theory there exist some 4D massless scalars which
arise from the fifth component of the gauge field. However it is not easy to show that

3 Another evidence of this fact is provided by the (modified) AdS/CFT correspondence in the RS
scenario. In this context the gauge symmetry breaking at the IR brane corresponds in the dual 4D picture
to a spontaneous breaking of a global symmetry, thus predicting the existence of Goldstone bosons.



these scalars are in some way related to a Goldstone field.4

A recently proposed alternative approach with respect to the KK decomposition in
which the above discussed features can be naturally described is the so called “holographic”
procedure [36, 33, 37, 38]. This approach can be used to study theories compactified
on a 5D space with boundaries, such as an orbifold or a generic warped interval. The
holographic procedure consists in separating the “boundary” degrees of freedom, namely
the values of the fields at one boundary (say the UV brane for definiteness), from the
“bulk” ones which are encoded in the values of the fields in the bulk and at the other
boundary (the IR brane). The holographic degrees of freedom can be used to describe the
theory through an effective holographic action once the bulk degrees of freedom have been
integrated out. It turns out that the holographic approach is completely equivalent to the
standard KK decomposition and can be used to describe the whole original 5D theory.

An interesting aspect of the holographic point of view is the fact that it naturally
treats the gauge symmetry breaking at the IR as a, spontaneous breaking. In this way the
(possibly pseudo-)Goldstone bosons associated to the breaking automatically appear in the
holographic effective description [38]. Remarkably the fact that the massless 4D scalar
fields arising from a 5D gauge field are actually Goldstone bosons offers an alternative
suggestive description of a GHU theory. In the latter, as we said before, the Higgs field
is identified with above mentioned scalars so that the Higgs itself is a Goldstone boson.
Of course, this property determines the form of the Higgs Lagrangian forbidding the
appearance of divergences.

From a more technical point of view, the holographic procedure results simpler than
the KK decomposition for many applications. In particular the choice of the UV values
of the fields as effective degrees of freedom allows to treat boundary terms and localized
fields (especially at the U V) in a straightforward way. This feature makes the holographic
approach very useful in the study of realistic GHU models both in the flat space and in
the warped space scenarios. In fact, in both cases, the light fermions (namely the ones
of the first two families) are almost exactly localized near the UV brane, so that their
holographic description is very simple and can be easily used to compute corrections to
the SM observables.

This thesis is organized as follows. In the first chapter we present some general concepts
related to theories with extra dimensions adopting the KK perspective. In particular we
report the general form of the action for scalar, fermion and gauge fields on a 5D interval
with generic warped metric. At the same time we briefly discuss the boundary conditions
which are allowed in these theories. Afterwards we present the general features of orbifold
compactifications including a review of Scherk-Schwarz boundary conditions and Wilson
lines. In chapter 2 we give a comprehensive presentation of the holographic approach.

“For an example of how to handle in a KK approach these Goldstone bosons in the context of Holo-
graphic QCD see for instance [35].



In the first part of the chapter we discuss the general framework, focusing in particular
on the non-trivial case of gauge fields. In the second part we present three interesting
applications of the holographic procedure. We begin with the computation of the tree-
Jevel holographic action for a generic 5D model, showing how it can be used to compute
the one-loop Higgs effective potential in GHU theories. Then we use holography to obtain
the Chiral Perturbation Theory (xPT) Lagrangian in Holographic QCD. As a last, more
theoretical, application, we study the consequences of the introduction of a Chern—Simons
(CS) term into a 5D gauge theory.

The last three chapters are devoted to the study of 5D GHU theories compactified on
the orbifold S'/Zo. We begin with a review of the simplest implementation of the GHU
idea which gives rise to the semi-realistic model of [15]. In particular we will discuss the
general framework of this model pointing out its appealing features and its shortcuts. In
chapter 4 we show how the problems of the previously considered model can be solved by
assuming a breaking of the Lorentz symmetry along the fifth dimension and introducing
the Zo mirror symmetry. Furthermore, we will present a detailed study of this theory from
both a qualitative and a quantitative point of view, determining the constraints on the
parameter space which arise from the EW precision measurements and giving an estimate
of the amount of fine-tuning of the model. As side remarks, we briefly discuss the presence
of a viable DM candidate in the theory and we suggest a possible mechanism which could
give origin to a spontaneous breaking of the Lorentz invariance in a purely 5D context.
Finally, in chapter 5, we study the properties of GHU models at finite temperature. First
of all we discuss the general features of the finite-temperature Higgs effective potential
at one loop, showing that an Electroweak Phase Transition (EWPT) is always present
in such models at a temperature of order 1/ (2wR). Then we specialize our analysis to
the models presented in chapters 3 and 4, and we perform a detailed study of the phase
transition using analytic and numerical techniques. As a last issue, in section 5.3, we give
some evidence of the stability of the finite-temperature one-loop potential in GHU models
showing that the leading higher-loop corrections are not very relevant up to temperatures
well above the EWPT.

We also include at the end some, quite technical, appendices. In the first one we present
a more formal derivation of the gauge-fixing procedure employed in the holographic ap-
proach of chapter 2. In the next appendix, we show how it is possible to handle boundary
terms and localized fields within the holographic description and we exemplify this possi-
bility by treating the toy model of a scalar with boundary mass terms on a warped space-
In appendix C we collect some useful formulae needed to compute the holographic action
for the AdSs and flat space cases. In appendix D we give the decomposition of the most
relevant SU(3) representations in terms of multiplets of the SU(2) x U(1) subgroup. This
decomposition results useful in the study of the GHU models presented in chapters 3, 4
and 5. In appendix E another application of the holographic approach is given, namely
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we show how one can compute the distortion of the %LbL vertex (see section 44.1)in a
simplified toy model. In appendix F we analyze the localization of the fermion zero-modes
in the model of chapter 4. In the last appendix the explicit form of the finite-temperature
one-loop Higgs potential is reported. In particular we collect various equivalent formulae
by which one express the finite-temperature contributions to the potential.
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Chapter 1

5D Theories: the Kaluza—Klein
Approach

The idea of constructing field theories with more than three spatial dimensions was first
considered at the beginning of the twentieth century as an attempt to achieve a unified
description of electromagnetism and gravity [39]. Although those original efforts proved
unsuccessful, in the 1980’s, the realization that string theory requires extra dimensions to
be consistently defined brought new interest in the study of extra dimensional theories. At
the same time the connection with string theory supplied some new tools (as, for instance,
orbifold compactifications) which proved to be a valuable ingredient to construct models
which could be a valid candidate to go beyond the SM.

In this chapter we will review some basic concepts related to extra-dimensional theories.
As a starting point, we will present a description of such theories following the traditional
KK perspective. Within this approach the 5D fields are expanded on a base of 4D mass
eigenstates, and the theory is rewritten in terms of a set of KK towers of 4D states.
Although invaluable as a tool to understand the properties of an extra-dimensional theory,
the KK approach tends to become fairly cumbersome from a computational point of view.
This is particularly true in the presence of localized fields, which are commonly introduced
in orbifold models. A new approach to the study of extra dimensions, the holographic
procedure, which results simpler than the KK perspective for many applications, will be
presented in the next chapter.

In this thesis we will be interested in models with only one extra spatial dimension,
thus we will assume our theory to be defined on a 5D segment with a generic warped
metric

ds? = grndzMdzN = a?(z) (nuvdztdz” — dzz) , (1.0.1)

where the fifth coordinate is defined in the interval [zuv, 2], the warp function a(z) is
assumed to be regular and positive and the 4D coordinates have been rescaled to fix
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a(zyy) = 1. In our notation 4D indices are raised and lowered with the Minkowski metric
n = diag(+,—,—,—). Two special cases of the above metric, which are particularly
interesting for model building, are the flat space limit a(z) = 1, and the RS scenario (i.e.
AdSs) which corresponds to a(z) = L/z with zyy = L.

1.1 Scalars on the Interval

One of the simplest examples of theories in extra dimensions is given by a complex scalar
field ® in 5D. The preliminary discussion of this case will be useful to present the KK
decomposition and to introduce some important concepts related to the compactification
on a segment, as for instance the issue of boundary conditions.

As a first step, it is convenient to neglect possible boundary terms localized at the
extrema of the segment and consider a scalar with a purely bulk action

ZIR 2R

Ss = f dz %5 = / dzy/g [aMchaM @ —mquﬁ@] , (1.1.1)
2Zyv 2yv

where the 4D integral has been omitted. In order to define a consistent quantum field

theory, we must also impose some conditions on the fields at the boundaries of the segment.

The allowed boundary conditions can be extracted by varying the action (1.1.1)

Zuv
6S[®@] = f dz [—aS(z)(Y‘I)T@u@“‘IJ +6870,(a3(2)8,)® — a5(z)m§56¢>1® + h.c.]

IR

— 3 (zw)[00180,0]| + [6976,9)] +hec., (1.1.2)

ZIR Zyv

and imposing the boundary terms to vanish, so that the tree-level bulk Equation Of
Motion (EOM) correctly coincides with the Klein—Gordon equation on a warped space.
The two well known possibilities are the Neumann (9, = 0) and Dirichlet (® = 0)
boundary conditions. Generalized Neumann boundary conditions can be obtained by
adding localized mass terms for the fields which are non-vanishing at the boundaries (i.e.
the ones which do not satisfy Dirichlet boundary conditions):

2w 2uv
SlOC = / dz ,ﬁoc = / dz a/4(2) {6(2 - Z]R)bIR®T® - (5(2 - ZUv)bUV(I)T@} . (1.1.3)
Zyv 2R

In this way one gets the modified boundary conditions

[0:® — a(2)byv®] |z=ZUv =0,
[0:® — a(2)br®) [ =0.

Z=ZIR

(1.1.4)

In order to obtain a 4D effective description of our theory, we expand the 5D field as

®(z,2) = Y ¢n(@)fn(2), (1.1.5)
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where the ¢n(z) fields represent the relevant degrees of freedom from the 4D point of
view. The effective Lagrangian is obtained from the full 5D action (&5 + Loe) by simply
integrating over the fifth coordinate:

2yv
Zi(x) = / 4z [ + Fioe]
Z;

ZR

= {amiaaﬂqsk / &) fL i+ Sl / dz [- 0}(2)0. £10.f1 — S (2)m3 f1 fi
n,k 2R

+CL4(Z) ((S(Z - ZIR)bIRfyt,fk - J(Z b Zuv)vaf,lfk) ji } . (116)
The wave functions f,, are chosen to be the solutions of the 5D Klein-Gordon equation
M a(2) + 500 ()0 a(2) — (I ful) = 0, (11.7)

for all values of m,, which give solutions compatible with the chosen boundary conditions.
As shown before, those boundary conditions can be either Neumann or Dirichlet if no
localized term is inclﬁded, otherwise they assume the generalized Neumann form (see
eq. (1.1.4))

{ [0:Fn = a(2)bov fullomsy, = 0, (118)

[0z fn — a(z)bIan][z;.Zm =0.

Using the bulk EOM’s (eq. (1.1.7)) and the boundary conditions one can prove that the
wave functions f,, are orthogonal

(m2 = m2) / A S = / ™ iz (- 0:(a®(2)0: 1) fis + a5<z>méfifk)
- ["a (— F10:(a%(2)0.£2) + af’(z)méf,ifk)

= - as(z)azf,;fk,z =0, (L.19)

R 2R
+ 0*(2)£10. x|
Zyv Zyy
where we used eq. (1.1.8) to show that the last line vanishes.! Choosing the normalization

of the wave functions to be

Zuv
/ dza®(2) fl fr = bn e, (1.1.10)
we can rewrite the effective Lagrangian (eq. (1.1.6)) in the form
@)= Y [0u610"¢n — mEig] (1.111)

n
The effective 4D description of our theory is thus simply given in terms of an infinite KK
tower of 4D scalar fields with masses m,,. Notice that the 4D modes ¢, satisfy the usual
Klein—-Gordon equation (8,0 + m2)¢, = 0.

'For simplicity we considered only the case with localized terms and generalized boundary conditions.
"The other cases, with the usual Neumann or Dirichlet boundary conditions, can be treated analogously.
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Following the same strategy one can also handle interaction terms in the KK approach.
For example, a quartic interaction of the form

Zyv
Sint — / dz /5 (<Msl2]Y) | (1.1.12)
ZIR
gives a corresponding interaction term for the KK modes in the effective description
. Zuv
Lt =2 Y olblomtn | deVaILH bt (1.1.13)
k,lm,n Zm

1.2 Gauge Fields

In this section we will consider a non-Abelian 5D gauge theory. The bulk gauge group Gis
taken to be a compact Lie group with generators t# normalized such as 2 TrftA tB) = 645.
Moreover, we assume that G is broken to two subgroups H and H' respectively at the
IR and at the UV boundary. This symmetry breaking is obtained by imposing suitable

boundary conditions on the gauge fields, as we will discuss later. The action reads?

- -2-1;2- / dz a(2)Tr [~ Fu F™ + 2F, F¥ (1.2.1)
5

ZIR

where the gauge field strength is Fyn = Fjé_,NtA = Oy AN — OnAn — i[Am, An] with
Ay = Af&,tA. As long as we do not introduce a gauge-fixing term, we can extract the
allowed boundary conditions by varying the action in eq. (1.2.1):

ZIR
55 = 2 [ dsTr [5A¥ (a DY Fyp + Da(aFpa)) — 84z (aD"Fpa))

95 Zuv

2

Z1R Zuv

where we defined Dys = 9y —i[Anr, - |. To cancel the boundary variations and obtain the
non-Abelian Maxwell equations in the bulk two possibilities are given. At each boundary
and for each component A% of the gauge field we can take either Dirichlet (Af} = 0)
or Neumann (F[fz = 0) boundary conditions. The first choice induces a breaking of the
transformations generated by t4 while the symmetry is unbroken in the second case.
Tt is now straightforward to derive the correct boundary conditions for the gauge fields:
the components associated to the unbroken subgroups H and H' must satisfy Neumann
conditions at the corresponding boundary, while the components related to the G/H and
G/H' cosets satisfy Dirichlet conditions.

2Tn this chapter and in the next one we use a non-canonical normalization for gauge fields and fermions
(see also eq. (1.3.3)). This normalization ensures that the dimensions of the fields are the same in 5D and
in the 4D effective action and will be useful within the holographic approach (see footnote 4 in chapter 2}.
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The boundary conditions derived before and the bulk equations of motion get modified
if, as usual, a gauge-fixing term is introduced into the action. Within the KK description,
it is common to use a generalized form of &-gauge:®

- 2
%, = (2 [8,4% ~ £a73(2)02 (a(2)42)] . (1.2.3)
From a 4D point of view, Z,.1. is precisely the gauge-fixing term defining a &-gauge for
the infinite gauge symmetry groups associated to the KK levels of the 5D gauge fields A,,.
Moreover, the gauge-fixing in eq. (1.2. 3) permits to cancel the quadratic mixing between
Ay and A, thus simplifying the bulk EOM’s which, at the quadratic level, take the form

R

80" AL — €0 (a7 (2)0,(a(2)A2)) = 0.

The Neumann and Dirichlet boundary conditions are modified by the gauge-fixing term
and become respectively

8,4, =0 A,=0
d . 1.2.
{ A, =0 o {Bz(a(z)Az) =0 (1.25)

The Fadeev—Popov gauge-fixing procedure requires also the introduction of anticommuting
ghost fields in the 5D theory. The ghost action corresponding to the {-gauge in eq. (1.2.3)
is given by

Zgh = —2a(2) Tr [w*8,DHw — w*ga“l(z)@(a(z)Dzw)} ) (1.2.6)

where the components of the ghost fields w(z, z) = w?t4 and w* (z,2) = w*At4 satisfy the
same boundary conditions as the corresponding Aﬁ components.

Some commonly used gauge choices can be obtained from the gauge-fixing term in
eq. (1.2.3) assigning particular values to £&. For £ = 0 one gets the Landau gauge B“AA =0,
whereas for £ = 1 a 5D generalization of the Feynman gauge is obtained. Another useful
gauge choice is the unitary gauge which is obtained in the limit § — oo and corresponds
to the condition 9,(a(2)4,) = 0.

Before discussing the whole structure of the 4D KK spectrum, it is important to analyze
the massless states of the theory which are closely related to the pattern of gauge symmetry
breaking. Of course, the existence of a zero mode for a given gauge field component is
determined by the boundary conditions which the latter has to satisfy. Massless modes for
a given field component A4 are present in two cases, namely when Neumann or Dirichlet
boundary conditions are imposed on both boundaries.

In the first case (NN boundary conditions) a massless 4D gauge field coming from AA
present whose wave function is flat fo oc 1 (see eq. (1.2.4)). This is related to the fact that

30ther forms of gauge-fixing will be considered in section 2.2 and section 5.1.
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Neumann boundary conditions do not break the gauge symmetry at the boundaries and
lead to an effective theory with an explicit gauge invariance. As required by consistency,
also the ghosts admit a zero mode with flat wave function.t On the other hand, the A%
component of the gauge field does not give any massless 4D state.

In the second case (DD boundary conditions) the reversed situation happens. The
AA components and the ghosts do not admit a zero mode, while a massless 4D scalar
coming from AA is present whose wave function is fo < a ~1(2). These scalar states play
an important role in many 5D models, and in particular they are identified with the
SM Higgs field in the GHU scenario, as we will widely discuss in the next chapters. An
interesting property of the scalar zero mode is the fact that its wave function is in general
not flat. In particular, in the relevant case of AdSs metric, the massless mode has a wave
function localized towards the IR boundary (fo o« z/L), and this feature allows to build
Yukawa, interactions with a natural hierarchical structure in the context of warped GHU
models (see for instance [18, 19, 20]).

To study the spectrum of massive modes it is convenient to work in the unitary gauge.
The condition 8;(a(2)A4;) = 0 implies that no massive scalar modes are present (only a
massless scalar can be allowed depending on the boundary conditions, as discussed before).
The would-be Goldstone bosons, which arise at the massive level in an arbitrary {-gauge
and are associated to the non-linearly realized gauge symmetries, are decoupled in the
unitary gauge. Similarly, no massive 4D ghost mode appears. The physical spectrum of
massive states is thus given by a KK tower of massive 4D gauge fields. Of course, the
detailed structure of the mass levels depends on the warping factor and on the boundary
conditions. The exact mass spectrum for the flat space case will be discussed in chapter 3;
for the RS case see for example [40].

1.3 Fermions

Let us now consider a 5D fermion field ¥(z,z). The 5D Clifford algebra is generated by
the 5D gamma matrices

TH =4, I'? = —ivs, (1.3.1)
where y* are the usual 4D gamma matrices and 5 = i7°~v1y2+3 is the 4D chirality matrix.
Differently from the 4D case, in 5 dimensions a Weyl condition (or a Majorana condition)
can not be imposed on the spinors, thus the smallest representation of the Clifford algebra
is a spinor with 4 independent complex components, which corresponds to a Dirac spinor
in 4D. However, adopting a 4D point of view, a 5D spinor can be decomposed in two

4Notice that the flatness of the wave functions ensures the universality of the gauge couplings which is
required if an unbroken gauge symmetry is present in the effective theory.
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chiral components
L= I+
U= '
2 * 2

where, in our conventions, the L and R components satisfy v5¥ rRL==xVR.

\IfE\IlL+\I'R, (1.3.2)

In order to define spinors on a warped space, we have to introduce the vielbein e]"\l,f which
is related to the 5D metric by gun = efreSnap. Choosing the vielbein as el = 6% Ja(z),
we can compute the spin connection wys4z Whose non-vanishing components are given by
Wyaz = (Mua/a(2))0za(2).

The action for the bulk fermion ¥ takes the form®

S5 = -—/ dz /g { e 4Dy — %(DMW)TP%%PA\I/ - Mmf] : (1.3.3)

where we defined the covariant derivative Dys = Oy + %wM 4|04, TB].
As done in the previous sections, the bulk equations of motion and the boundary
conditions can be obtained from the variation of the action:

2R . _—
6Ss = = [ dz /g [fTDY + DT6Y]

5zuv

. (1.34)

Zyv

+5 /d4x a(z) (UL g + SURTL — UpdWy, — 50, 05) |
g5

where D is the 5D Dirac operator. The choice of boundary conditions for the fermions
is slightly more subtle with respect to the scalar and gauge field cases. In order to set
to zero the boundary terms in eq. (1.3.4) one can impose Dirichlet conditions for either
VUr (Ip = 0) or ¥ (¥r = 0), independently at the two boundaries. The conditions
for the non-Dirichlet fields can not be arbitrarily chosen, but are determined by the bulk
equations of motion. This is a consequence of the linearity of the bulk equations which
mix the R and L components of the fermion field:

0.a(z)
a(z)

An important issue to be addressed is the existence of massless modes in the spectrum
of the 4D effective theory. Using the KK approach we expand the L and R components
of the field ¥ as

[az +2 +a (z)M} U r==+ipUrp. (1.3.5)

Vrr= vk (2)fRL(2), (1.3.6)
where the 4D degrees of freedom Y% 1 () satisfy the usual Dirac equation

i@ Pp (x) = mp} 1 (z). (1.3.7)

®The inclusion of a mass term into the action can present some subtleties when the 5D segment is

realized through an orbifold contruction. This point will be discussed in detail in section 1.4.1.
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Solving the bulk equation (1.3.5) for the zero modes (mg = 0) is now straightforward, in
fact the R and L components decouple and we get

d.a(z) B 0 /N
0, + 2 () + a(,a)M] fLr(z) =0, (1.3.8)
whose solutions are given by
z
12 e(z) = %ﬁ_ exp {$M/ dz’a(z')} ) (1.3.9)
’ a (Z) Zyv

where c; p are normalization constants. It is thus clear that a zero mode is present
for a given component only if it does not vanish (has no Dirichlet conditions) at both
boundaries. In this case the boundary conditions, which trivially coincide with the bulk
EOM’s as explained before, are obviously satisfied. Notice moreover that the wave function
of the zero modes depends on the bulk mass M so that one can obtain states with different
localizations by simply varying M.

It is important to stress that, although the 5D fermion field is a Dirac spinor and con-
tains both R and L components, the compactification on a segment allows to obtain chiral
fermions in the effective theory. This is a noticeable feature of such kind of constructions
and constitutes a fundamental ingredient for the construction of realistic models in 5D.

Finally, the massive part of the 4D spectrum is given by pairs of R and L spinors with
the same mass which form a KK tower of Dirac fermions.

1.4 Orbifold Compactifications

A wide class of models with extra dimensions are built on spaces with a factorizable geom-
etry My x Cq, where My is the ordinary 4D Minkowski space-time and Cy4 is a compact
d-dimensional space. One of the simplest examples of such spaces is the cylinder My x S 1
which is a smooth 5D space. However it is often useful to consider compactifications
on spaces with singularities and boundaries (as we did in the preceding sections), as for
example on the flat segment My x I, where I is a 1-dimensional flat interval.

Among the non-smooth spaces a prominent role, in the context of model building, is
played by orbifolds. Let us consider a smooth d-dimensional manifold C4 and a discrete
group of isometries K which acts non-freely on it. The orbifold C4/K is obtained by
modding out Cq by K or, in other words, by identifying points in y € Cq which are
connected by the K action: y ~ k(y), with k € K. The fact that the X group acts non-
freely on Cy means that some fixed points y; are present for which k(y;) = y; for some k;
these points constitute the singularities of the orbifold.

Some simple examples of orbifolds are the d = 1 orbifold S ! /Zs, which has the structure
of a flat 1-dimensional interval, and the d = 2 flat spaces T?/Z, (with n = 2, 3,4, 6) which
have the shape of a “pillow” with 4 (n = 2 case) or 3 (n = 3,4, 6 cases) conical singularities.
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In order to define a field theory on My x C4 /K, we have to embed the K symmetry
into the field theory built on the smooth space My x Ca. Given a field ® on My x Cy, the
action of k € K on it is

®(z,y) — *(z,y) = K(k)®(z, k1 (y)). (1.4.1)

The K (k) elements are given by some symmetries of the theory and form a representation
of the K group.® The orbifold theory is obtained imposing the theory to be invariant
under the action of the group K. In other words we must restrict the field configurations
to those which are invariant under K:

o(z,k(y)) = K(k)2(z,y), (1.4.2)

for any k € K.

1.4.1 The S'/Z; Orbifold

In this section we will analyze in detail the simplest example of orbifold S*/Zs,, which will
be used later on to construct a realistic 5D model.

First of all, we briefly review how to construct a theory on the smooth manifold
My x 8. The circle S? can be simply obtained from the real line R identifying the points
connected by a translation of 2rR. The fundamental domain of 5! is thus given by the
interval [0,27R). To define a field theory on My x S* we must require that the fields are
left invariant under a translation 7 : y — y + 27R up to a symmetry transformation T

&(z,7(y)) = ®(z,y + 2mR) = Td(z,v). (1.4.3)

This particular kind of construction is known as Scherk-Schwarz compactification [41] and
can be used to break part of the original symmetries of the theory.”

As an example of Scherk-Schwarz compactification, we consider a complex scalar ®
with a U(1) symmetry. We can impose the following condition under translations

®(z,y+27R) = e’zmc"@(m, Y), (1.4.4)

where « is an arbitrary phase. Values of o which differ by 1 are of course equivalent
(o ~ a+ 1), moreover using the fact that ® — &' is a symmetry we can further identify
@ ~ —a, restricting « to the interval [0, 1/2].

5The K (k) elements can in principle be either global or local symmetries. However in the following we
will consider only global transformations.

"In general, Scherk—-Schwarz compactifications can be realized when the compact space Cg is obtained
by the action of a freely-acting group F on a smooth (possibly non-compact) space Dg, so that Cy = Dy /F.
The circle S? is an example of such spaces being given by R/t, with ¢ the group of translations generated
by 7.
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We are now able to construct the S!/Zs orbifold by modding out the circle S* with
the Z group {1,(}, whose non-trivial element acts as ((y) = —- This transformation
has two fixed points on the circle 13 = 0 and y, = 7R. The fundamental domain of the
orbifold is the interval [0, 7R] and the two fixed points constitute the boundaries of the
space. Now we consider a field ¢ on My x S'/Zg which satisfies the twisted periodicity
condition in eq. (1.4.4). We must also introduce a Zy symmetry transformation Z (such
that Z2 = 1) which implements the action of the ¢ element on @ (see eq. (1.4.1)):

®(z,y) — ®(z,y) = 28(z, —y)- (1.4.5)

To ensure consistency, we must require not only our theory to be invariant under the Zg
symmetry but also the boundary conditions on the fields (eq. (1.4.4)) to be unchanged
under a Zo transformation.

The invariance under the orbifold projection (eqs. (1.4.5) and (1.4.2)), can also be
translated into boundary conditions at the extrema of the segment [0,7R]. Aty =10 we
find

(1-2)®(z,0) =0, (1+ 2)0,®(z,0) =0, (1.4.6)
and diagonalizing the matrix Z as Z = diag(+1,...,—1,...), we get Neumann conditions

(0y® = 0) for the components with Z = +1 parity and Dirichlet conditions (& = 0) for
the components with Z = —1.8 Analogously at the y = 7R boundary

(1-T2)®(z,7R) =0, (1+T2)8,®(z,7R) =0, (1.4.7)

and, defining an effective orbifold projection Z ' = T'Z at the y = 7R fixed point, we obtain
Neumann or Dirichlet boundary conditions depending on the 7' = %1 parity.
Using eq. (1.4.2) and eq. (1.4.3), some consistency conditions can be derived for the

representations of the orbifold group K and of the Scherk—Schwarz group t:

K(EK)T®(z,y) = (z, k- 7(y) = Kir®(z,v)
TK(k)®(z,y) = ®(z,7 - k(y)) = Krne®(z,y)
TK(k)T®(z,y) = &(z,7 k- 7(y)) = Krer®(z,9) - (1.4.8)

In particular the last of the above relations together with the identity 7 - (-7 = ¢ implies
the condition

TZT =2Z. (1.4.9)

8To derive the boundary conditions we assumed the regularity of the @ fields. This is valid as long
as no boundary localized terms are introduced into the action. If such terms are present the fields have
given parity under the orbifold action but are not regular at the fixed points and satisfy mixed boundary
conditions (compare the discussion in section 1.1 and in particular eq. (1.1.4)).
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To explore the consequences of this condition, it is useful to consider a complex scalar
field ®(z,y) with Scherk-Schwarz U(1) twist as in eq. (1.4.4). In this case we can impose
two unequivalent orbifold conditions

Oz, —y) = £0(z,y) . (1.4.10)

The consistency condition (1.4.9) implies 72 = 1, and thus only two (unequivalent) values
of the Scherk-Schwarz phase o can be allowed: o = 0 which gives T = l,and a = 1/2
‘which gives T = —1. This means that we can impose only two types of periodicity
conditions on the scalar field

®(z,y+27R) = £3(z,v), (1.4.11)

or in other words ® can be periodic or antiperiodic on S1.

As we saw before, a fermion field compactified on a. segment generate a chiral spec-
trum in the 4D effective description. The keypoint of such feature was the fact that,
although 5D spinors are Dirac spinors, the boundary conditions, which must be imposed
when compactifying on a segment, pro ject half of the massless modes leaving a chiral 4D
spectrum. Of course, the same happens when compactifying a theory containing fermions
on an S'/Z, orbifold. The only difference with respect to the segment case is the fact that
the boundary conditions now arise from the parity operation which defines the orbifold.
This also implies that the set of possible boundary conditions is more constrained than in
the interval case.

Let us see in detail how the orbifold acts on fermions. Invariance under a parity
transformation leads to the condition on a fermion ¥:

where the + sign can be arbitrarily chosen. It is evident that R and I components must
satisfy different (opposite) parity conditions, so that, if the + sign is chosen in eq. (1.4.12),
Vg is even while ¥, is odd, and the reversed situation happens when choosing the — sign.

As a consequence of the different parities of ¥ and ¥, a simple bulk mass term of
the form mU¥W (see eq. (1.3.3)) is not invariant under the orbifold projection and thus is
not allowed into the action. This problem can be overcome allowing the mass parameter
to be odd under parity, so that the whole mass term becomes even and can be included
in the Lagrangian (see for instance [42, 17]).

In the simple case of a fermion field on a flat S? /Zs orbifold, it is easy to recognize that
only one chiral zero mode is present, namely the one which corresponds to the even chiral
component (see eq. (1.3.9)). The orbifold projection is thus an effective way to obtain a
chiral 4D spectrum starting from a 5D theory.
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1.4.2 Gauge Theories on St/ Zs

An important aspect of orbifold compactifications is the possibility of using the orbifold
condition to break some global or local symmetries. In general, a condition similar to the
ones in eq. (1.4.2) or in eq. (1.4.3), of the form

®(z,y'(y)) = T2(z,v), (1.4.13)

can restrict the symmetry related to @ since allowed transformation ® — @' must preserve
eq. (1.4.13):
o' (z,y'(y)) = T (z,y) - (1.4.14)

In the case of global transformations @' = g®, only those g which commute with T are
allowed, and the symmetry group is restricted to the subgroup which commutes with 7.
In the case of local transformations, ® = g(z,y)®, from eq. (1.4.13) we get the condition

9(z,y' W) T = Tg(z,y) . (1.4.15)

Let us now consider the Sl/ Zs orbifold we constructed before. In this case the condition
(1.4.13) comes from the Zs transformation (1.4.5). The local transformations will be given
by a non-Abelian Lie group G with generators t4, so that a generic transformation can be
written as

g(z,y) = eea@’ (1.4.16)

Imposing eq. (1.4.13) we get
aulz, —y)t* = Zaa(z, Nzt (1.4.17)

which means that we are imposing a parity condition on the gauge parameters a4. The
unbroken gauge subgroup will be given by the transformations whose gauge parameter is
even under parity. In the effective 4D theory, only these unbroken transformations will
show up as gauge symmetries, while the transformations associated to the odd generators
will be non-linearly realized.

We can now consider the gauge fields Ay = Af,_,tA associated to the gauge symmetry
group G. The orbifold action imposes the following conditions on Aps

Az, —y) = ZAM(:I:,y)Z_1 , Ay(z,—y) = —ZAy(m,y)Z_l, (1.4.18)

where the relative — sign between the x and y components is due to the parity action. Di-
agonalizing the above conditions, one finds that the gauge field components can be either
even or odd under parity according to the fact that the matrix Z commutes or anticom-
mutes with the corresponding generators. Of course, the condition (1.4.18) matches the
one in eq. (1.4.17), in the sense that even (odd) gauge fields components correspond to
even (odd) gauge parameters, and eq. (1.4.18) is preserved by gauge transformations. It
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is also clear that gauge field zero modes correspond to the even field components and thus
to the unbroken gauge subgroup. On the contrary, scalar zero modes coming from the
internal component of the gauge field are associated to the broken part of the gauge group
which gives an odd A, but an even Ay (compare the analysis in section 1.2).

Finally the ghost fields, whose Lagrangian is given in eq. (1.2.6), satisfy the orbifold
conditions

w(x> —y) = Zw(ma y)Z-l ) w*(xa “y) = ZUJ*(LL‘, y)Z_l ) (1419)

which gives the same conditions as the corresponding A, gauge fields.

1.5 The Wilson Line Interpretation

Let us now consider again the Scherk-Schwarz compactification of a complex scalar field
on S An interesting property of the Scherk-Schwarz twist, is the fact that, when the
U(1) symmetry is local, the phase shift in eq. (1.4.4) can be reabsorbed by a non-periodic
gauge transformation [28]

O(z,y) — ¥'(z,y) = ek d(z,y). (15.1)

This transformation, however, also changes the Ay éomponent of the gauge field which
gets a VEV

e
i
In other words two equivalent descriptions of the model can be used: it can be viewed
as a compactification with a twist associated to the 27 R translation and no background
for Ay, or a compactification with usual periodicity conditions and a non-trivial VEV for
the Ay field. Notice that the A, background, which corresponds to a flat field strength
F =0, is not a gauge-invariant quantity. To construct a gauge invariant operator we must

Ay — A=Ay + (1.5.2)

consider the Wilson loop?
2R

W = exp {z Aydy} . (1.5.3)
0

In the case of the S!/Z, orbifold compactification, we can again perform a non-periodic
gauge transformation (as in egs. (1.5.1) and (1.5.2)) obtaining a theory without a Scherk-
Schwarz twist but with modified orbifold boundary conditions for Ay. In fact, using the
orbifold condition Ay(—y) = —A,(y), we get from eq. (1.5.2)

2c

Az, —y) = -4 (z,y) + = (1.5.4)

®Notice that W is invariant only under periodic gauge transformations. A fully covariant quantity will
be defined in section 1.5.1 (eq. (1.5.15)).
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The action of the orbifold ¢ transformation on A; is then the composition of a parity op-
eration and of a non-periodic gauge transformation with parameter %%y. Correspondingly
the ¢ action on the ® field is modified:

3'(z,y) = ®(z,y) = £ F &' (z,-y). (1.5.5)

This transformation rule is compatible with the periodicity condition only for o = 0 or
o = 1/2, and in this way we recover the conditions on a we already encountered in the
previous section.

As we discussed before, the Scherk-Schwarz twist can be interpreted as a Wilson line
connecting the two fixed points (see eq. (1.5.3)), however in this case the Wilson line can
take only discrete values:

2nR
W = exp {z Ay dy} ==+1. (1.5.6)
0

1.5.1 The non-Abelian Case

As we have shown, in the case of a U(1) gauge theory compactified on 51, a continuous
Wilson loop is present. An important feature is the fact that the Wilson loop value, or
equivalently the phase a, being related to the VEV of Ay, is not a free parameter of the
theory, but rather a dynamical quantity whose value is determined by the dynamics of the
theory itself.

From a phenomenological point of view the existence of such degrees of freedom is very
appealing. Being associated to the A, component of the gauge field, they appear as scalar
fields in the 4D effective description, but at the same time their interactions are severely
constrained by the higher-dimensional gauge invariance. Moreover, deriving essentially
from a Wilson line phase, these scalars have an intrinsic non-local nature which protects
them from divergences. In particular they do not have a tree-level mass term and their
effective potential is finite at all orders. It is thus clear that all these properties make
them a possible candidate to give the Higgs field in extra-dimensional models (this is the
gauge—Higgs unification scenario which we will thoroughly discuss in chapter 3).

On the other hand, when an orbifold condition is imposed in the U(1) case, o can
not take arbitrary values and a discrete Wilson line appears. Different values of a now
define different theories and are no more determined dynamically. Continuous Wilson
lines, however, can be present in orbifold compactifications when a non-Abelian gauge
invariance is included as we will discuss in the following.

Let us consider a complex scalar field ® in the fundamental representation of a non-
Abelian gauge group G. As a first step we will consider a compactification on S. The
orbifold condition in eq. (1.4.3) can straightforwardly be generalized to the non-Abelian
case

®(z,y + 27R) = eX"PTd(z,y), (1.5.7)
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where T is a global transformation and we also included a phase factor e*™@ which is
compatible with the symmetries of the action. The corresponding condition on the gauge
fields is

Ap(z,y+27R) = TAp(z, )T . (1.5.8)

Under a gauge transformation g(z, y) the T matrix changes as
T' = g(z,y + 2nR)Tg' (z,v). (1.5.9)

In order to ensure 7" to be independent of the coordinates, g(z,y) must satisfy the con-
dition
9" (@, y + 27 R)Bug(z,y + 27R)T = Tyl (z, y)ug(z, y) (1.5.10)

As discussed in section 1.4.2, the periodicity condition breaks part of the symmetry of the
theory. In particular the unbroken (global or local) symmetries are those which leave the
boundary conditions unchanged (see eq. (1.4.17)).

As we did in the Abelian case, we can remove the T matrix from the periodicity condi-
tion performing a non-periodic gauge transformation. If we rewrite 7 as T = exp{ia AtA},
we can set T to the identity through the gauge transformation

—iaath L

9(z,y) =e =R, (1.5.11)

which of course satisfies eq. (1.5.10). At the same time the Ay gauge field component gets

a constant shift
Al = g(z,y) Ayl (z,y) — aat” (1.5.12)
Y TS AT 27R
In analogy to the Abelian case (see eq. (1.5.3)), we can also define a gauge covariant
quantity which is the Wilson loop

2R

W(z) = Pexp {'l ; Ay(z, y)dy} . (1.5.13)

Notice that this quantity transforms covariantly only under periodic gauge transformations
(as the Abelian Wilson loop in eq. (1.5.3)):

W(z) = g(z,0)W(z)g'(z,27R) . (1.5.14)
Instead, a fully covariant quantity is given by
W(z) = W(z) T, (1.5.15)

which transforms as
W’(:c) = g(m,O)W(x)gT(x, 0). (1.5.16)

Going in the gauge in which (4,) = 0, it is easy to show that the eigenvalues of the
Wilson loop W are independent of the coordinates. These eigenvalues, commonly called
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non-integrable phase factors, are gauge invariant quantities (see eq. (1.5.16)) and constitute
the non-Abelian analogue of the Abelian o phase.

Let us now discuss what happens in the S'/Zs orbifold case. The orbifold action on
scalars is given by eq. (1.4.5), while the condition on gauge fields is in eq. (1.4.18). The
consistency condition in eq. (1.4.9) in the non-Abelian case becomes

AT 7T = 7. (1.5.17)

This condition imposes some constraints on the allowed boundary conditions or equiva-
lently on the values of the non-integrable phases. Two interesting cases are given by the
choices 8= 0 and @ = 1/2 which correspond to periodic and antiperiodic conditions for
the scalar when T' = 1. As discussed in section 1.4.2, we can diagonalize the Z matrix
defining even t* (Zt*Z = t) and odd {8 (Z1%Z = —1%) gauge generators under parity.
Rewriting the matrix T as T' = exp {iaata + iagtz}, we get

ZTZ = exp {mata - m’,;tg} (1.5.18)

and the condition (1.5.17) (recall that Z? = 1) is clearly satisfied by setting a, = 0.

This means that in an orbifold compactification with a non-Abelian gauge group there
are still continuous non-integrable phases which are associated to the gauge components
which are odd under parity or, in other words, to the part of the gauge invariance which
is broken by the orbifold construction. This feature is not surprising, in fact, as we saw
before (sect. 1.4.2), scalar zero modes (associated to Ay) are present only for the gauge
components which are odd under parity and these zero modes are exactly related to the
continuous non-integrable phases.
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Chapter 2

The Holographic Approach

In the preceding chapter we studied extra-dimensional theories adopting the KK point of
view. As we widely discussed, this standard approach consists in expanding the fields on a
basis of mass eigenstates and rewriting the theory in terms of infinite 4D KK-towers. The
low-energy effective theory is simply obtained by integrating out the massive KK states
and retaining only the zero modes.

A useful alternative to this approach is the so called “holographic” procedure [36, 33,
37, 38]. It is based on a different, and somewhat “peculiar”, choice of degrees of freedom,
namely one separates the value &(z) = ®(z, zyy) of the 5D fields at one boundary from
the “bulk” degrees of freedom contained in ®(z, z) for z # zyy. By integrating out the
latter, one gets an effective holographic Lagrangian for the boundary field 5(:5) which is
not a mass eigenstate but rather a linear combination of all the KK modes. As long as
<I>(as) has a non-vanishing overlap with the zero-mode, however, it can safely be used to
describe the lightest state and the holographic Lagrangian is a perfectly valid effective
description of the original theory. For any physical process, the holographic theory will
give exactly the same results as the standard KK effective theory for the zero-modes.

The peculiar choice of degrees of freedom of the holographic approach clearly owes its
origin to the AdS/CFT correspondence [24, 25], which has been conjectured to be applica-
ble also in RS-like models (see [43] for a review). When a dual AdS/CFT interpretation
is possible, holography is necessary [25] to compute correlators of the dual 4D theory,
because the boundary values of 5D fields are sources for the 4D operators. However, it
is important to stress that the holographic procedure we will describe is just a technical
tool which can be applied to any 5D theory even if no 4D dual exists as it is the case, for
instance, when the space is flat.

Though completely equivalent to the standard KK decomposition, the holographic ap-
proach offers an elegant and compact description of a 5D theory, and moreover it proves
much simpler for certain applications. An example is the calculation of “universal” correc-
tions induced by KK exchange [33, 44] (see also [27, 19] for the application to more realistic
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models). Another interesting application is the determination of three-point functions and
in particular of the Zbb vertex [20] (see also [27] and appendix E).

In this chapter we will describe in detail the holographic procedure beginning with
the simple case of a 5D scalar and arriving to the more complex and interesting cases of
fermion and gauge fields [38]. Particular attention will be devoted to the treatment of the
scalar degrees of freedom which may arise, depending on the boundary conditions, from
the fifth gauge-field component. As a matter of fact, these scalars play an important role
in many interesting models, and a holographic effective theory in which they are included
can then have very useful applications.

In the (fat or warped) models of GHU, for instance, the scalars which come from an
extended EW gauge group in 5D are interpreted as the Higgs field (see section 3.1) and its
dynamics could be described by the holographic effective theory which we discuss. More-
over, when an AdS/CFT interpretation is possible, the scalars correspond to (possibly
pseudo-)Goldstone bosons of a spontaneously broken global symmetry of the dual 4D the-
ory [18]. This is the reason why GHU models in warped space also describe a Composite
Higgs. The simplest version of AdS/QCD (discussed in detail in [35]) is also based on
this observation, the mesons arise from the fifth component of SU(3)r x SU(3)r gauge
fields when the bulk group is broken at the IR to its vector subgroup. In this case, the
holographic effective Lagrangian is interpreted as the one of xPT.

In this chapter we will also present some applications of the holographic procedure [38].
First of all we will derive the tree-level effective action for a generic 5D gauge theory,
and we will use this result to compute the one-loop Higgs effective potential in GHU
models. As a second example, we will apply the holographic approach to a simple model
of AdS/QCD, deriving the xPT Lagrangian at tree-level. From a more theoretical point
of view, we will study the consequences of introducing a CS term into the 5D Lagrangian,
showing that it makes a gauged Wess—Zumino-Witten term to appear in the holographic
Goldstone-bosons action.

2.1 The Example of a Scalar

To introduce the concepts of the holographic approach avoiding any technical complication
we start with the simple case of a scalar field on a flat space.! Our starting point is the
standard 5D action

Zir
sl =3 [ dx (0,000 — (0.9 ~mie?] (2.1.1)

2yv

1By restricting to flat space, we will avoid the complication due to the localized mass-terms which are
commonly introduced in warped compactifications in order to obtain a zero-mode (compare section 1.1).
The general treatment of the scalars can be found in the appendix B.
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where we omitted the d*z integral and 8, is the derivative along the extra coordinate.
The theory is defined by the partition function

Z= /be(m,z)b.c‘ ets1el (2.1.2)

where the “b.c.” subscript means that suitable boundary conditions are imposed on the
field configurations one integrates over. The allowed boundary conditions are extracted
by varying the action as shown in section 1.1. Two possible boundary conditions can be
imposed, namely Neumann (8,® = 0) or Dirichlet (® = 0) conditions on each brane.

To discuss the holographic approach, we must first of all make a distinction between
the two boundaries and treat them in a different way. We will consider a field which is,
for the moment, unconstrained at the UV and satisfies a given boundary condition at the
IR. We introduce a 4D scalar “source” field #(x) and an “holographic” path integral, in
which the allowed 5D field configurations are only those which reduce to ¢(x) at the UV
brane. The holographic partition function and the corresponding holographic action are-
defined as

Z[d(z)] = Shpa) - / DB(z, 25 41 g0y €512 (2.1.3)

where ®(z) = &(z, zyv) and the JR boundary conditions are understood. It is very easy
to make contact with the standard definition (2.1.2) of the partition function which also
includes boundary conditions at the UV. Depending on whether ® is Dirichlet or Neumann
we have, respectively

Z=2[@)=0, o Z= / Dé(z) Z [$(z)] . (2.1.4)

In words, this is just the usual statement that in the Dirichlet case ¢ is a non-dynamical
source to be put to zero at the end of the calculation, while Neumann boundary conditions
are obtained by making the source dynamical. While the first (Dirichlet) case of eq. (2.1.4)
is trivial, one should be careful with the second one. Integrating eq. (2.1.3) in D¢ as done
in eq. (2.1.4) is the same as integrating over the 5D field ® without any boundary condition
at the UV. Its variation §® is then also unconstrained and hence, to cancel the action
variation (see eq. (1.1.2) with a(z) = 1), the Neumann boundary condition [0.2], =0
arises as an equation of motion. Notice that, even though the equivalence (2.1.4) has been
written in a fully quantum form, we have only proved it at tree-level having shown that

the classical equations of motion (including the boundary conditions) are the same.?

*In section 2.4 we will use holography to compute the 1-loop Higgs effective potential and the result
matches the one obtained with the standard KK approach. This success, however, does not rely on the
validity of the equivalence at one-loop order because the effective potential is completely determined by
the tree-level spectrum.
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2.2 Holography for Gauge Fields

Let us now consider a 5D gauge theory with gauge group G broken to H C G at the IR.
As in section 1.2, we take G to be a compact Lie group and call t4 = {t°, ta} its generators
normalized as 2Tr[tA tB] = 54B . The t%’s are the generators of the subgroup H while the
{%’s generate the right coset G/H, in the sense that any element g € G can be uniquely
decomposed as:

g= eloth — gR1® o (%" = yplg] o hplg], (2.2.1)

where hgg] € H. The gauge action (eq. (1.2.1)), its variation (eq. (1.2.2)) and the
determination of the allowed boundary conditions have been discussed in section 1.2.
Recalling that field components related to the unbroken gauge subgroup satisfy Neumann
boundary conditions, whereas the other components satisfy Dirichlet conditions, at the
IR we have3

(F)%, (2 2m) =0,  (A)L (z,2m) =0, (2.2.2)

while the UV boundary conditions need not to be specified, at the moment.
Analogously to eq. (2.1.3), the holographic action is defined as

21B,) = 5 = [ Dau(w 25, _p DA, oS 4], (223

where Eﬂ = Ay (z, zyy) and we introduced 4D vector sources Bf} for each generator of G.4
As for the scalar, any boundary condition at the UV can be implemented once we have
the holographic action (2.2.3). If a given component Aﬁ is Dirichlet we simply have to
put the corresponding source B;} to zero, if it is Neumann we have to make it dynamical.
If [5Aﬁ] - # 0, indeed, the Neumann condition [F;ﬁz] o
motion in order to cancel the action variation (1.2.2). To recover a standard 5D theory
with G broken to H' C G at the UV, then, we just have to make dynamical the sources
associated to H' and put the others to zero.

= ( arises as an equation of

By construction, the action is invariant under local 5D transformations g(z,z) € G
which act on the gauge fields as

Ay — AQ = g[Am + i0ul gt (2.2.4)

The IR boundary conditions (2.2.2), however, are only H-invariant and hence the allowed
transformations must reduce to H at the IR, i.e. g(z,2m) = h € H. The action and
the measure (including the UV constraint A = B) in eq. (2.2.3) are invariant under the

3 At this point we consider a gauge theory without gauge fixing. An appropriate gauge choice will be
used in section 2.2.1, where we will also discuss how the boundary conditions in eq. (2.2.2) get modified.

4Thanks to the non-canonical normalization of the bulk fields (see footnote 2 in chapter 1), we can
obtain sources with the usual dimensions of the 4D fields by simply identifying them with the UV values
of the bulk fields.
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“bulk” local group Gp, which we define as the set of allowed transformations which reduce
to the identity at the UV brane, Gg = {g(z,2) € G : 9(z, zr) € H ,g(z, zyv) = 1}. Due
to the Gp invariance, the integrand in eq. (2.2.3) has flat directions and the path integral
is ill-defined. This requires a gauge-fixing of the local Gg group which we will discuss in
the next subsection.

It is important to remark that the holographic action defined by eq. (2.2.3) is gauge
invariant under the full 4D local group G in the sense that

z [Bfm =Z[B,], (2.2.5)

where g(z) is a generic 4D local G transformation. This is easily shown by performing a
5D gauge transformation g(z, z) which reduces to g(z) at the UV, g(z, 2yy) = §(z), and
of course belongs to H, g(z, z;x) = h(z), at the TR.> When an AdS/CFT interpretation
is possible (as for a(z) = L/z in eq. (1.0.1)), the 5D model would be dual to a 4D strongly
coupled theory with global G invariance and the holographic partition function (2.2.3)
would be interpreted as the partition function of the 4D theory in the presence of sources
B;f for the global currents J;f. Of course, the gauge invariance (2.2.5) is necessary for this
interpretation to be possible.

2.2.1 An “Holographic” Gauge-Fixing

To fix the Gp gauge invariance of eq. (2.2.3) we will go to the axial gauge, in which the fifth
component A, of the gauge field is put to zero. It is clear that any consistent gauge-fixing
would lead to the same physical results and one could even not fix the gauge at all as
done for instance in [35]. Our choice, however, appears particularly convenient because
the scalar degrees of freedom are directly parametrized by a 4D Goldstone boson matrix
¥ (see eq. (2.2.12)) and the G invariance of the holographic theory is explicit. Moreover,
in the axial gauge there are no gho§ts and this is useful in view of a possible AdS/ CFT
interpretation.

Starting from a generic gauge field configuration a unique local transformation g exists
which puts A4, to zero, i.e. Ag) = 0, and reduces to the identity on the UV brane. This
is the Wilson Line

9(z,2) = W(zpy,2; A) = P {exp [—-z’ /z z d? A(z,2') tAJ} , (2.2.6)

on a straight path going from the UV brane to a generic point z. In general, § does not
belong to the symmetry group Gp since it does not reduce to H at the IR and therefore

5If seen as a map to G/H, h(z) is just the identity. After rotating to the Euclidean, the problem of
finding the 5D transformation g which permits to prove eq. (2.2.5) is exactly the same of finding a homotopy
which deforms into the identity the generic S* — G /H map g(z). We will assume that 74(G/H) is trivial,
so that g always exists.
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it cannot be used to reach the axial gauge. This was to be expected, of course, given that
the theory has to contain physical scalars. In order for g to be useful we have to formally
restore the full G invariance of eq. (2.2.3) at the IR. To this end we introduce a 4D field

S(z) = exp [z aa(a:)ta] , (2.2.7)
and change the boundary conditions (2.2.2) by rotating them with rleG:
(F(E—l)>a (:Z:, zm) = 0, (A(2_1)>a (.’L’, ZIR) =0. (228)
Bz b
Under IR gauge transformations we take ¥ to transform as a Goldstone field
S(z) — £9(2) = vrlg(z, 2m) 0 T(2)] , (2.2.9)

where yg[] is the projector from G to the right G/H coset defined by eq. (2.2.1). It is easily
checked that the boundary conditions (2.2.8), given the transformation rule (2.2.9) for the
Goldstone-boson field, are now invariant under generic transformations g9(z,zw) € G.

It should be noted that no extra dynamics has been introduced in the theory when
we added the Goldstone field &. We apparently added dim(G/H) new real 4D (axion-
like) scalars g, but we simultaneously enlarged the IR gauge group by adding dim(G/H)
symmetry transformations. We could put ¥ to 1 fixing in this way the G/H invariance
at the IR and recover the original theory with no ¥ field, boundary conditions as in
eq. (2.2.2) and restricted gauge invariance. It is worth remarking that a 4D Goldstone
field localized at the IR would naturally appear if, as usually assumed (see for instance
[5, 33, 34]), the symmetry-breaking boundary conditions originate from some localized
Higgs multiplet whose massive fluctuations have been decoupled by taking the VEV to
infinity. The present discussion could be more directly applied to that case, in which
the theory one starts with is fully G-invariant. Our gauge-fixing procedure is however
self-consistent even without this interpretation, a more formal derivation can be found in
appendix A.

Tnstead of fixing the gauge group, up to now we have enlarged it. But now that g
in eq. (2.2.6) belongs to the symmetry group we can easily go through a Fadeev-Popov
procedure to fix the gauge. We write

1= / Dy(, 2)g=1 6 [Agg)] Det {Dz [A@H , (2.2.10)

where the Haar measure of G is understood in the group integral. To prove the above
identity one performs the change of variable g — g 0, so that in the new variable the
delta function condition is simply ¢ = 1 and the integral only receives contributions from
the g ~ 1 region. For g ~ 1, dg ~ IIadaa and the identity is immediately demonstrated).

The determinant in eq. (2.2.10) could be associated to a ghost action. However, since A&"
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is the only component of A which enters in D, [A9)] and it is fixed to zero by the delta
function, the determinant is just a constant which we can drop. As customary, in the axial
gauge there are no ghosts.

We now multiply our partition function by “1” written as in eq. (2.2.10) and with very
standard manipulations we arrive to

Z97 [B,] = / / DX(2) DAu(w,2) 5, _p, expliS[Ay, A, = 0] . (2.2.11)

For simplicity, in the above equation we did not write the IR boundary conditions on
the A, integral. Those are given by eq. (2.2.8) and depend on X. Note that the action
S [Ap, Az = 0] is still invariant under G transformations which are constant along the extra
coordinate. If we change variable Ay — ALE) in the second functional integral, then, we
can further simplify eq. (2.2.11) by moving the dependence on X from the IR to the UV

brane. We finally get
295 [B,] = / DE(x) exp [iSh [By, T]
= // Dx(z) DAu(z,2) » w1y exp[iS[A,, A, = 0] , (2.2.12)
Ap=By

where the IR boundary conditions are now given by eq. (2.2.2) in which, since 4, =
0, we can take F), = —8,4,. In eq. (2.2.12) we also defined the holographic action
Sk [By, £]. When a dual AdS/CFT interpretation is possible this is the effective action
for the Goldstone bosons in the presence of sources for the currents.

From our procedure the gauge invariance of eq. (2.2.12) should be automatic. We can
immediately check that S} {Bﬁg), E(g)} = Sy [By, X]. Indeed, due to eq. (2.2.9) £@) =
gooh so that

(ghy— -
(B(g))“E T _ p((=9)teg) _ ghtes) _ (3(2“1))(" v (2.2.13)
Under a generic element of G, the boundary value ;4\,1 = LE_I) of the 5D field only rotates

with an H transformation. The latter can be removed by a change of variable since both
the action and the IR boundary conditions are H invariant. This demonstrates the gauge
invariance of S}, and, as a by-product, the gauge invariance of Z9-J- [Byl.

2.3 The Tree-Level Effective Action

In the previous section we have shown how to separate the bulk degrees of freedom from
the boundary ones, thus rewriting the partition function of a 5D theory in terms of 4D
holographic fields. In this section we will perform a second step: integrating out the bulk
degrees of freedom in order to compute the tree-level effective holographic action for a
generic 5D theory.
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As we did in the previous section, first of all we will discuss the case of a scalar field
on a flat space. This simple example will be useful to present the main properties of the
holographic action, and in particular to show how to extract the 4D spectrum of a theory
from the holographic description. Afterwards, we will consider the interesting cases of
gauge fields and fermions.

2.3.1 Scalar Fields

We consider a 5D scalar field whose holographic action Sy[¢] is defined by eq. (2.1.3).
To obtain the effective action we must integrate out the bulk degrees of freedom, namely
we must perform the D® integration in eq. (2.1.3) with the UV conditions ®(z) = ¢(x).
The integration can be done semi-classically by expanding the ® field around its classical
background @ which is given by the solution of the bulk equations of motion

8,0 - 2B+ mi® =0, (2.3.1)

which satisfies the usual IR boundary conditions and the “holographic” condition 73(2:) =
$(z) at the UV. The semi-classical expression for the holographic action Sy, is thus

isho@] — B [ Dy (3. 2) i[OS
e =e DO(z, 2) 31 ()0 XP 5 o 352

__'I>’ +.. } , (2.3.2)
P=0
where the path integral is performed over the field @' = @ — .

In this chapter we will consider only the tree-level effective action, which is obtained by
substituting the solution ® of the equations of motion into the action S [@] and neglecting
the corrections coming from the path integral in eq. (2.3.2). Inserting @ into eq. (2.1.1)
and integrating by parts the (0,®)? term, the bulk term clearly vanishes due to the
equations of motion and we are left only with a boundary contribution. The whole tree-
level holographic Lagrangian is given by

Zhld] =

0,%| (2.3.3)

Zyv

[NA

The explicit form of the effective Lagrangian depends on the TR boundary conditions
of the field ®. As shown before, two possibilities are there: the Neumann and the Dirichlet
cases. To find the solutions of the equations of motion it is convenient to use a mixed
momentum-space representation, namely we perform a Fourier transform along the 4D
coordinates and express ® and the Lagrangian in terms of the 4D momentum p and of
the usual coordinate along the extra dimension z. In the Neumann case the solution of
the equations of motion P satisfy 0,®|,, = 0 and is given by

cos|w(zr — 2)]
cos|w(zm — zuv)]

B(p,2) = ¢(p), (2.3.4)
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where w? = p? — mé Substituting this solution into eq. (2.3.3) we find the holographic
Lagrangian®
1

gh[(ﬁ] = ‘2‘¢("’p) wtan[w(zr — zuv)] ¢(p) . (2.3.5)

On the other hand, in the Dirichlet case ® satisfy 3| 2z = 0 and is given by

sinfw(zg — z)]
sinfw(zm — 2zuv)]

B(p,z) = o(p). (2.3.6)

Plugging this solution into eq. (2.3.3) we find

L[4 = = 50(-P)w cotl(an ~ 20)] 6(2). 237

An interesting feature of the holographic effective Lagrangian (egs. (2.3.5) and (2.3.7)) is
the fact that it contains an infinite series of higher-order operators (as can be seen by an
expansion in p?) which are induced by the integration of the bulk degrees of freedom.

As we discussed in section 2.1, the dynamical properties of the source ¢ are determined
by the UV boundary conditions of the 5D field ®. If ® has Neumann boundary conditions,
the source ¢ has to be treated as a dynamical 4D field. This is, of course, the most
interesting situation. In fact the source ¢ has a non-trivial overlap with all the KK modes
of the 5D field @, or, in other words, the field ¢ is a linear combination of all the KK states.
This also means that the holographic action completely describes the original 5D theory
at tree level. In particular the spectrum of the theory is simply given by the zeroes of the
quadratic term of the Lagrangian in eq. (2.3.5) or eq. (2.3.7) (i.e. the zeroes of the inverse
propagator of ¢). When Neumann IR conditions are imposed, we obtain a tower of states
with masses m2 = 72n?/ (z;g — zuy)* -l-m;‘;, with n = 0, 1, ...; whereas in the Dirichlet case
we get m2 = 7% (n +1/2)? / (z21n — 20v)? + m:‘; Is is clear that these spectra coincide with
the usual ones for a scalar on a segment. Notice that in the Neumann-Neumann case a
zero mode is correctly present in the spectrum.

The case in which @ has Dirichlet boundary conditions at the UV is in some sense
trivial. In this case the source ¢ has no overlap with the KK modes (which obviously
vanish at the UV) and the original theory is obtained setting to zero the holographic field
thus getting a trivially vanishing effective action. This can be simply understood recalling
that in the holographic procedure we integrate out the bulk degrees of freedom and in this
case everything is in the bulk because the field ® is zero at the UV. Nevertheless also in
this case we can extract the spectrum of the theory using the holographic procedure. For
this purpose, we interpret ¢ as a static source coupled with the bulk degrees of freedom and
the expressions in eqs. (2.3.5) and (2.3.7) as effective Lagrangians for this source. In this

5Notice in eq. (2.3.5) the holographic field ¢ has dimension [¢] = 3/2 and not 1 as a usual 4D scalar.
To obtain the standard normalization one usually introduce a factor 1 /92 in front of the 5D action, where
g is a constant with dimension [g] = —1/2.
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case, the spectrum will be no longer given by the zeroes of the quadratic term, but rather
by its poles. This is a consequence of having integrated out all the dynamical degrees of
freedom (remember that ¢ is now non-dynamical), which means that the KK modes show
up as singularities in the effective action.” With Neumann IR conditions (eq. (2.3.5)),
we obtain a spectrum m2 = 72 (n + 1/2)%/ (2 — Zuv)? + m?ﬁ, with n = 0,1, ...; while in
the Dirichlet case (eq. (2.3.7)) m2 = 72 (n + D2/ (zm — 2v)* + mi. Again this spectrum
coincides with the usual one.

Interactions

An interesting issue is how to treat interactions within the holographic procedure. As
we briefly discussed in section 1.1, in the KK approach an interaction term in 5D simply
translates into a corresponding interaction among the KK modes in the effective theory.
When the heavy states are integrated out to obtain the low energy action for the zero
modes, a series of higher order effective interactions arises for the light states.

A similar situation occurs in the holographic approach. In this case it is the integration
of the bulk degrees of freedom which generates higher order interaction terms for the
holographic fields. It is thus clear that interactions must be treated with a perturbative
approach [36], expanding in a series with respect to the coupling constants.

As an example we will introduce a cubic interaction —%)@.3 into the 5D scalar action
in eq. (2.1.1). To obtain the full tree-level holographic action we should solve the complete
classical bulk equation of motion

0,0"F — 82T + m3T + 28 =0, (2.3.8)

with ®|,,, = ¢ and usual IR boundary conditions. The presence of a quadratic term in [
forces us to use a series expansion in A:

6=60+X§1+..., (2.3.9)

where ®; are of O(\?). At the IR boundary ®; satisfy the same condition as ®, whereas
at the UV we have ®g|,, = ¢ and hence for i > 1 we get D)2 = 0.

"To clarify this point it is useful to consider a theory compactified on AdS; and its dual 4D description
(see [37]). In this case, the bulk degrees of freedom correspond to a strongly-coupled nearly conformal
sector of the 4D theory and the non-dynamical source ¢ corresponds to a classical source coupled to this
sector. When the conformal sector is integrated out, we get an effective description in terms of the source.
In this description the inverse propagator of ¢ gives the two point function of the CFT operators coupled
to the source, and thus its poles correspond to the mass spectrum of the strongly-coupled sector. Notice
that when the source ¢ is dynamical (i.e. ® has Neumann boundary conditions at the UV) the situation
is much different. In this case the spectrum is given by the eigenstates of system given by the strong sector
and the field ¢ (and not of the strong sector alone as in the previous case), and the mass levels correspond
to the zeroes of the quadratic term in the holographic action.
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The O(A?) term of the holographic action is of course obtained from eq. (2.3.3). The
O(X) terms S} are given by

2R _ - . _ - _
Slg] = A / dz {8&18“% — 0:210;%0 + m3®, %, — %@3} : (2.3.10)
Zuv
Integrating by parts we get
S,H¢] = )‘/ dz ,:_51(8;18'“60 - 828250 + mé&)‘o) - —;—53:‘ - /\/d4.’13 618260 o
2yv Zuv
(2.3.11)

In eq. (2.3.11) the first term in the square brackets vanishes because @, satisfies the bulk
equation of motion at O(A\°). At the same time the boundary term gives a zero contribution
as can be easily shown using the UV and IR boundary conditions of ®;. Thus, at o),
we obtain the simple interaction term

Sig] = ——%)\/ " 4T (2.3.12)

Interactions due to the exchange of bulk degrees of freedom appear only at higher order
in A. It is interesting to notice that in order to compute the holographic action at first
order in the coupling constants we only need the solution of the equation of motion ¥ of
the non-interacting theory.

2.3.2 Gauge Fields

Let us now consider the gauge fields. In this case we will concentrate on the quadratic
part of the holographic action. This restriction will simplify the discussion, but at the
same time will allow us to obtain some interesting results, such as the computation of the
I-loop effective potential (see section 2.4).

With a bulk group G broken to H at the IR and to H’ at the UV the 4D dynamical
degrees of freedom are the gauge fields By, associated to H' and the Goldstone bosons
% which parametrize the G/H coset. The action S,[B’, Y] is defined in eq. (2.2.12), one
simply has to put to zero the sources associated to G/H'. To compute the quadratic
part of S, at tree-level one has to solve the linearized classical EOM’s and then put the
solutions back into the quadratic 5D action.® For what concerns the boundary conditions,
one has to impose eq. (2.2.2) at the IR and the holographic condition A = BE™) at the
UV. It is convenient to separate the longitudinal and transverse components of the gauge
fields and to go to the 4D momentum space. We parametrize the solutions as

Al (p, 2) = AP (p) AP, 2), 2.3.13
{A#'Am 2) = A W) A 2), o

8 As discussed in the previous section, to obtain the full effective action one should solve the complete
bulk equations of motion using a suitable perturbative expansion.
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where A indicates as usual the value of the 5D field at the UV, so that ffl (zyv) = 1. The
bulk EOM’s are easily extracted by varying the Yang-Mills action in the axial gauge. This
is done in appendix C.1 and the result is

8:(a(2)8:)f{* =0,
z)fl -

i+

(( (2.3.14)

1

a
According to eq. (2.2.2), the components associated to H (i.e. f;) are Neumann at the
IR while the f s are Dirichlet. Given the UV condition ffj(zuv) = 1 the solutions are
completely determmed even though analytic expressions can only be obtained in very
special cases.® Notice that f{(p?,z) = fA(p* = 0,2) and that the form of each f4 only
depends on whether the corresponding generators belong to H or to G/H. We can then

write
(p%2) = F~(p%,2),
( ) - (072)7

where F+(=) is the solution with Neumann (Dirichlet) IR boundary conditions. The
explicit form of F+(=) in the cases of flat and AdSs space are reported in appendix C.1.

a2 = F+ 2 'Ei
fE(0* 2) (% 2), % (2.3.15)

fza( 272) = F+(07z)’

It is straightforward to substitute the solutions back into the quadratic bulk action, in
this way one gets

1 —~ P
S gy [ AR TR 2L, 2310
5 A

where 12 (p2) = 0.ff A(p?, zyv) and Py are the transverse and long1tud1na,1 projectors.
The holographlc fields B, and X only enter the above equation through A. Remember
that

~ —1

4, =B =st(B,+i8,) %, (2.3.17)

where the only components of B’ are those associated to the UV group H . A particular
but interesting case is when, as it happens for orbifold compactifications, a matrix P exists
which commutes with all generators of H and anticommutes with the others.!0 In this
case eq. (2.3.16) can be rewritten as

1 - _
Sh = =gz [ d'e T [BFT) (@AY + IR BT
5
+PB'E) (P + T P) 7>B',<P‘1)] . (2.3.18)

where I (p?) = 0,F* (p?, zuv) £ 8, F~(p?, zyv) and II?’l =12 (0).

90f course, the EOM for the longitudinal part is easily integrated.
10Ty orbifold compactifications the matrix P is simply given by the matrix Z introduced in section 1.4.
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2.3.3 Fermions

We now add massive bulk fermions U/ in some representation of the group G, their
bulk action is in eq. (1.3.3). The holographic procedure for the fermions presents some
subtleties [37] which we will briefly discuss here. First of all, due to the fact that the bulk
EOM’s are of first order, the left- and right-handed components can not be simultaneously
used as effective degrees of freedom. Instead, for each component ¥/ one must choose
either \Ifi or \Iff% as the holographic field. It is simpler to take the same chlrahty for all
the components, we will use the left-handed part and then the G multiplet xz = T L will
be our holographic degree of freedom.

To obtain the holographic action we have to integrate out the bulk imposing the UV
conditions W7 (z = zyy) = xz. This condition forces the & L fluctuations we integrate
over to vanish at the UV boundary §¥z(z = zyy) = 0. On the other hand the right-
handed components ¥ g must be integrated out completely, thus their UV variation §U g
is unconstrained. Considering the variation of the 5D action given in eq. (1.3.4), it is
clear that an arbitrary variation of ¥ at the UV is not compatible with the condition
Vr(z = zyy) = xr. In other words, in order to cancel the boundary terms in the variation
of the action an arbitrary variation of g would require a Dirichlet condition for vy
(¥1(z = zyv) = 0) which is incompatible with the holographic condition. To solve this
problem, one must add to the action a localized mass-term, whose sign depends on the
chirality of the holographic field. In our case we always have the same sign

1 —I
Sn=37 |, d4m ; (xp s . h.c.) : (2.3.19)

and the boundary term is G invariant.

To recover the original UV boundary conditions, as usual, the Dirichlet sources must
be put to zero while the Neumann ones must be made dynamical. It is correct to proceed in
this way, the only problem is that the holographic theory would not contain any dynamical
field associated to the components ¥ of the multiplet whose left-handed component is
Dirichlet at the UV. The right-handed part of such fields might give rise to zero-modes
whose dynamics could not be described in the holographic theory. As discussed in [37],
the solution consmts in keeping \If’ dynamical and introducing right-handed Lagrange
multipliers 1 R to dynamically impose the Dirichlet boundary condition. One adds to the
action the term

Sim = —— / iz (ﬂug + h.c.) . (2.3.20)
g5 i

The Lagrange multipliers ,LLR will describe the massless or light states associated to 11”
Notice that, if the action contains extra operators localized at the UV, the inclusion of the
Lagrange multipliers is necessary. Such terms are considered in appendix B, where we will
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show how the holographic procedure allows to treat them in a simple and straightforward
way.

Having chosen the same chirality for all the sources, the full Lagrangian for ¥ (including
the boundary term (2.3.19)) is gauge invariant and the manipulations of section 2.2 can
easily be repeated. The fermion contribution to the gauge-fixed partition function (2.2.12)
can be schematically written as

Zch.f‘ [XL; 2] = exp iSh, [XL) 2] = /D\If(m’ Z)E’L=Z;1XL exp [ZSf [\IJ;A!“ A= 0]] ) (2321)

where Iy represents the Goldston-boson matrix in the appropriate G representation and
Sy is the full fermionic action which includes bulk and boundary terms (1.3.3, 2.3.19)
and possibly (2.3.20). As before, we concentrate on the quadratic part of the holographic
action. The solutions of the EOM’s (eq. (1.3.5)) can be parametrized as

Ul (p,2) = TL(0) L (0, 2), Th(p,2) = %‘T’IL(p)ffz(p, z), (2.3.22)

with f{(p,zyv) = 1 and suitable boundary conditions on the IR boundary. As for the
gauge field, the fL r(p, z) functions have only two forms fL r(p,2) = fL r(p, 2) depend-
ing on whether \If satisfies N or D conditions at the IR boundary.!! Substituting into
the action we find that the bulk contribution (eq. (1.3.3)) vanishes, and we get only a
contribution from the boundary terms in eq. (2.3.19) (and possibly from (2.3.20)):

== / diz Z(XLz:f)I I} (=0%)id (z:fo) + Sr.m. (2.3.23)

where TIL (p ) = fL(p,2uv)/p. As for the gauge part, if the IR boundary conditions are
determmed by the projection matrix Py (i.e. ¥rr(zm) = £Ps¥r,r(2m)), the above
equation can be written in the simpler form

1
Sh = 542 d'z X Ty (0§(=0%) + T3 (—0%)Py) id (EfXL) + Stm. s (2.3.24)
5

where H(}’l(Pz) = (f}_;(% zwv) £ fr (P, ZUV)) /p-

2.4 The One-Loop Higgs Effective Potential

The general formalism presented in the previous sections could be applied to several models
of New Physics. For example, in the Higgsless models of EWSB one would consider a SM
bulk gauge group G = SU(2) x U(1)y broken to U(l)gm at the IR and completely
unbroken at the UV. In the holographic effective theory one would find the SM gauge
bosons and the Goldstones which arise from the IR breaking. The latter are eaten by

1The explicit form of such functions for the AdSs and flat space cases can be found in appendix C.2.
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the gauge fields becoming massive and the EWSB is obtained without introducing any
physical scalar in the spectrum. The models of GHU (or of Composite Higgs) are more
interesting from the holographic point of view, since they lead to physical 4D scalars
whose dynamics can be studied with the holographic formalism. As we will discuss in
detail in chapter 3, in this case one has an “extended” EW bulk gauge group (G = SU(3)
in [15, 27], G = SO(5) in [19, 20, 21]) broken at the IR in such a way that a complex
Higgs doublet of scalars arises (respectively, H = SU(2) x U(1l) and H = SO(4)) as a
Goldstone boson. The surviving UV gauge group H' is the SM SU (2) x U(1)y and the
EWSB comes from the Higgs taking a VEV. Since the UV boundary conditions break
part of the bulk group, the Higgs is really a pseudo-Goldstone boson and these models are
similar to the old Composite-Higgs scenario.

Since the EWSB occurs radiatively in this scenario, it is important to compute the
one-loop Higgs potential. This is quite a difficult task with the standard KK approach
(see for instance [45]) and the holographic procedure [19, 38], as we will show below, is
much simpler. In this section we will mostly keep .the discussion general but. we will later
specify to a toy SU(2) — U(1) example in order to show how our final formulae can be
applied to a concrete model.

At one loop, the effective potential is just the vacuum energy in the presence of a
constant background (which we denote by ) for the Goldstone fields. In principle, we
should integrate at one-loop level the bulk degrees of freedom in eqs. (2.2.12, 2.3.21),
and later integrate the holographic fields. The Goldstones, however, only appear in the
UV boundary conditions and thus they are directly coupled only with the holographic
fields and not with the bulk degrees of freedom.!? As a consequence, to compute the
effective potential at one loop, we only need to consider loops with boundary fields, so
that integrating out the bulk will not give any contributions to the potential. Moreover,
at one-loop level the only part of the holographic action which we need is the quadratic
tree-level one we already computed in the previous section.

As shown in section 2.2, the holographic effective action is gauge invariant. Once the
non-dynamical sources are put to zero, the H’ invariance still survives and then a gauge-
fixing is needed in order to compute the gauge field contribution to the effective potential.
The Landau gauge 8,B"* = 0 is a particularly useful choice since no quadratic mixing
can appear between the scalar fluctuations and B’,,. The quadratic action for B’ u With a
VEV for ¥ is (see eq. (2.3.16))

51 =32 3 S'5.5] nep [28,5)" (2.4.)

12Notice that this is true only if we choose holographic degrees of freedom with the same chirality
within each multiplet, as we did here. If this prescription is not used, the Goldstone bosons can not be
disentangled from the bulk and one gets also a bulk contribution to the one-loop effective potential.
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it can schematically be rewritten as

Sy = _5. diz PY B I (% 5) By (2.4.2)
5 a' b

where o and ¥ run over the generators of H'. Remembering that the ghosts do not
contribute in the Landau gauge and that a transverse vector in 4D has 3 real components,
the gauge contribution to the Higgs potential reads

V,(S) = 3 (dzp)E

where we rotated the momenta to the Euclidean. It is easy to check that the Goldstone

log [Det (Tly(—p%, X))} » (2.4.3)

bosons fluctuations do not contribute to the potential, eq. (2.4.3) then contains the full
5D gauge contribution. Notice that the integrals involved in the effective potential are
divergent, but they can always be made finite by subtracting the vacuum energy, i.e. the
potential at ¥ = 0. This is because the two solutions to the quadratic equations (F% in
the case of the gauge field) become the same in the large Euclidean momentum limit. The
inverse propagators IIf* then become all equal so that the dependence on ¥ drops from
eq. (2.4.1). The divergent part of the potential is therefore always independent of .

To compute the contribution of the fermions it is useful, as a first step, to integrate
out the Lagrange multipliers in the holographic action, i.e. to put to zero the sources
associated to Dirichlet fields.!® In this way one obtains the quadratic action in xr from
eq. (2.3.23):

Sp = g— d*z Z*ﬁ 1T ) (2.4.4)
5
where i/ and j' run over the left-handed fermion components with Neumann boundary
conditions at the UV. The effective potential follows trivially:

Vi(S) = / (2PE log [Det (I1;(5))] - (2.4.5)

2.4.1 The SU(2) — U(1) Case

The above formulas permit to derive the effective potential for a generic gauge group
G broken to arbitrary subgroups at the UV and IR boundaries. Applying them to a
concrete model is extremely simple once the group-theoretical aspects have been worked
out. To show this let us discuss explicitly the simple case of an SU(2) bulk gauge theory
broken to U(1) (the same U(1) subgroup) at both branes. This leads to a residual U(1)
invariance and to a charged physical Higgs scalar. We choose 03/2 to be the unbroken

13The same result would be obtained if including all the left-handed fermions and the Lagrange multi-
pliers.
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SU(2) generator, where ¢ are Pauli matrices. This pattern of symmetry breaking can be
obtained by the projection matrix P = 3. The Goldstone boson matrix is
1 o2

Y =exp [isl% + iszEJ = cos (2) 1+ z—— sin (;) ot, (2.4.6)

where s;(z) (i = 1,2) are the Goldstone boson fields and s = /67 + s2. Using the
unbroken U(1) we align the Goldstone boson VEV along the o2 direction, thus we get

TPY = ( o8 s *Sln's) . (2.4.7)

—sins —coss
At the UV, the only unbroken generator is o3 so that B/ = B'353 /2. From eq. (2.3.18),

Sy = LI P* B (I + cos2s TI}) B3, 248
49 t v
5

and the gauge contribution to the effective potential can be easily found to be

3 [d*
Vy(s) = 5/ (2p)E log [TI} + cos 2s IT}] . (2.4.9)

Let us now take a bulk fermion ¥ in the fundamental representation of SU (2), with
boundary conditions generated by the projection matrix Pr="P,ie Vpp==xPUr g at
both boundaries. Once we integrate out the Lagrange multiplier, the holographic action
at the quadratic level becomes (see eq. (2.3.24))

Sy = d'z X7 (T3 + cos s I1})i P x 3, (2.4.10)

1
292
and the fermion contribution to the effective potential is

Vi(s) = — log [Hf + cos s Hf] (2.4.11)

(2 )4
The explicit expressions for Hg ,31  are reported in appendix C for the AdS and flat space
cases, the result matches those obtained by a KK computation in [15, 45].

Notice that the results obtained for the gauge group SU(2) can be used to derive the
effective potential in more interesting and complex models. When a single Higgs doublet
is present, its VEV can be aligned along one of the broken generators and the system
can be split in many SU(2)-like subsystems each with a different charge ¢ with respect
to the Higgs VEV. In this case the effective potential can be computed summing the
corresponding SU(2) contributions with s replaced by gs. Consider for instance SU (3)
broken to SU(2) x U(1) at both boundaries. In this case an SU (2) doublet of Goldstone
bosons arises. The gauge fields in the unbroken subgroup can be split into four SU(2)-like
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subsets with charges ¢; = 1, g2 = g3 = 1/2 and g4 = 0. The gauge contribution to the
effective potential is
VSUG (5) = Vy(s) + 2Vg(s/2) - (2.4.12)

Analogously we can treat fermion fields. For a bulk fermion in the fundamental represen-
tation of SU(3) we find a field with charge ¢ = 1/2 which gives a contribution

Vi a(s) = Vy(s/2), (2.4.13)

while a bulk fermion in the symmetric representation gives a field with charge ¢ = 1 and
a field with charge ¢ = 1/2 and in this case

VEU®) (5) = Vy(s) + Vi(s/2). (2.4.14)

These expressions for the effective potential coincide in the flat space case with the ones
found in [15].

2.5 Holographic QCD

Holographic QCD is a phenomenological attempt, inspired by AdS/CFT, of describing
low energy (large N,) strongly coupled QCD by means of a 5D weakly coupled model on
the warped interval. One considers [46, 47] an SU(3) x SU(3)r bulk gauge group which
accounts for the global chiral symmetry of QCD and breaks it to its vector subgroup
through the background profile of a bulk scalar field. An interesting limit is when the
profile is exactly localized at the IR, in which case the breaking is equivalent to the one
obtained by boundary conditions. Taking the limit does not significantly affect the degree
of accordance of the model with real-world QCD, a detailed analysis of this case has been
performed in [35]. In this section we discuss this simplified limit of AdS/QCD and then
consider a 5D theory with chiral gauge group G = T’ x I'r, with I' any compact Lie
group. More explicitly, each element g of G is the direct product of two elements (g; and
gr) of T, i.e. g = g1 X gr. For applications to QCD one takes I' = SU(2) or SU(3) and
interprets the holographic partition function in eq. (2.2.3) as the QCD partition function
in the presence of sources for the chiral group currents. The IR boundary conditions are
chosen to break G to its vector subgroup I'y ~ I" whose elements are couples g = gv X gy of
equal elements gy € I' acting on the two chiral subspaces. The results of section 2.2 could
be directly applied to this case, but this would lead us to a non-standard parametrization
of the Goldstone degrees of freedom. It is easier to restart from the beginning and adapt
the discussion of section 2.2 to the case of a chiral gauge group [38].

We have two 5D gauge fields Ay and Ag, the first transforming under g, and the
second under gr. The IR boundary conditions are

AL,/.L = AR,ua FL,uz = —FR,[.LZ . (2.5.1)
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By looking at eq. (1.2.2) we see that eq. (2.5.1) ensures the cancellation of the boundary
variations of the gauge action. Moreover, eq. (2.5.1) is covariant under the vector subgroup
only, so that it restricts the allowed 5D local transformations to those which are vector-like
at the TR. Asin sect. 2.2.1, we want to enlarge the 5D group and allow any transformation
at the IR. This is easily done by defining, as customary in QCD, a matrix

U(z) = expliog(z)t?] €T, (2.5.2)
which transforms under G as:
U—UY =ggoUog;t. (2.5.3)
The new boundary conditions
Yy (U) - _
(AL )'u == AR)#” (FL )#z - FR,“27 (2.5.4)

are now covariant under the full chiral group. Note that U plays exactly the same role as
Y in sect. 2.2.1, using one or the other is just a reparametrization of the Goldstone degrees
of freedom.

One can now go through the same manipulations of sect. 2.2.1 and get

z95 1, r)) = /DU(&:) exp [iSypT [y, T, Ul
= / DU (z) DAL u(z, Z)KL,#=ZLU) DARg ,u(z, z)KR’”w“ exp [iS [Ay, A, =0]], (2.5.5)

where the TR conditions are simply given by eq. (2.5.1). One can easily check that the
expression in eq. (2.5.5) is gauge invariant under the full chiral group. The holographic
action Sypr [l 7y, U] depends on the Goldstone matrix U and on the chiral sources I,
ru. In AdS/QCD this is interpreted as the action of chiral perturbation theory.

2.5.1 The xPT Lagrangian at O(p*) from Holographic QCD

At tree level, the xPT effective action is
1 4 “r 1 w1 "y
Sypr = = [ d'z dza(z) Tr| — zFrwFr” — =FruFg
95 Zyv 2 2
+8zAL,l_LazAﬁ + 82AR,/‘L82A% , (2-5-6)

where A L.k satisfy the bulk EOM’s with the IR boundary conditions given in eq. (2.5.1)
and UV boundary conditions

s -
{4@“ U (l, +148,) Ut, 257

Appu=ry.
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It is useful to define the vector and axial combinations of the gauge fields

1
Vu=5(ALu+ Arp) Ay = §(AL,p —ARy), (2.5.8)

[N

which satisfy simple boundary conditions at the IR

{ 0 Vu(z, 2m) =0, (2.5.9)

Au(x, ZIR) = 0 .

Of course, computing Sypr from eq. (2.5.6) would require to solve the full bulk EOM’s
which include all the interactions, and this can only be done order by order in a given
perturbative expansion (see section 2.3.1). As customary in xPT, we expand in powers
of the momentum and treat the external sources [, and r, as terms of O(p). Given that
U is of O(pY), eq. (2.5.7) implies that the boundary value of the fields (A\L r, V and A)
are also of O(p). Our present goal is to determine the holographic effective action up to
O(p*), which was first obtained in [47] (for the simplified model we are considering see
[35]) after a long KK calculation. In the mixed momentum-space representation we can
expand the solutions of the full EOM’s as

~

{ Va(p: 2) = £3(2) Vulp) + V2 (0, z, (2.5.10)

A),
Au(p,2) = 3(2) Au(p) + AL (6, 2,9, A),
where V,(f) and A,(?), whose explicit form we will not need, represent O(p®) contributions
to the solutions. The latter terms are trilinear combinations of the momentum pu and
of the boundary fields 9u(p) and .Zu(p). It is important to remark that the tensorial
structure of the solutions implies that no O(p?) terms appear in eq. (2.5.10) and that the
next correction will be of O(p®). The first term of each expansion is a solution of the
linearized bulk EOM’s (eq. (2.3.14)) at zero momentum. At the UV, f{}’ Alzuy) =1 and
they are, respectively, Neumann or Dirichlet at the IR boundary. The higher-order terms,
on the contrary, vanish at the UV while their IR boundary conditions are the same as
the corresponding zero-order terms.

Substituting the solutions of the EOM’s into the effective action, we see that the terms
in the first line of eq. (2.5.6) only contribute at O(p*), and just the leading order of the
series in eq. (2.5.10) needs to be plugged in. On the other hand, the terms in the second
row of eq. (2.5.6) will give a O(p?) term when substituting the leading (O(p)) terms of
eq. (2.5.10) while an O(p*) term could arise when taking one O(p) and one O(p®) term.
The latter contribution, however, vanishes. This is easily verified by integrating by parts
9, and remembering that the O(p3) terms vanish at the UV boundary while the ones of
O(p) verify the linearized EOM’s at zero momentum. Thus, the effective action at O(p?)
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can be written as

S = -—2— i T 0V + 4,0, A

552 /d4 / dz a(2)Tx [Fp W P + Fr o F2 (2.5.11)
5

where the fields are now simply the solutions of the linearized bulk EOM’s at zero momen-
tum. Notice that in this expression the first line gives O(p?) terms, while O(p*) operators
come from the second one.

The linearized bulk EOM’s (2.3.14) at zero momentum can be analytically solved

) =1, 1
ZIR dz/ ZIR dZ, - (2512)
0 — M —_
mo=([") (@)
and it follows from eq. (2.5.7) that
A, = %U(DMU)T = -—%(D“U)UT =uy,, (2.5.13)

where we defined D,U = 9,U +4Ul, — ir,U. The kinetic term for the Goldstone bosons,
i.e. the O(p?) action, is immediately obtained from the first line of eq. (2.5.11).1% Tt is

s? = / diz Tr (D U)(D*U) ] (2.5.14)
where the Goldstone-boson decay constant f is given by

fr = :qlg (/: a—(%) o : (2.5.15)

Using the boundary conditions in eq. (2.5.7), the definitions of V and A in eq. (2.5.8)
and the solutions of the bulk EOM’s in eq. (2.5.12), one gets

11—
FL,/,w + FR,[JJJ - f—{-uu +1 fA( ) [U’lh u,,] y (2516)
Frpw ~Fruw = [4(2) fop, (2.5.17)
where we defined
fiuu = Ul;w UT + Tuv , (2.5.18)

with [, and 7, the field strengths obtained from [, and r,,. Substituting these expressions
in the second line of eq. (2.5.11), we find the O(p*) terms of the effective action

S@ = _ 495 e / dz a(z { A= 1572

2
+2i(1 — £9(2)%) fepufu + Frw I + 13(2) f_,“,fﬁ”} . (2.5.19)

— Ly, [uf, v

“Notice that 8; 7 (2m) = 0, and thus the term containing V, in the first line of eq. (2.5.11) vanishes.
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In the T' = SU(3) case it is trivial to express the above action in the standard form of
chiral perturbation theory [48]. From eq. (2.5.19) we find the values of the coefficients

4 1 i 02 9
L= [ dza@- )
1695 Zyv L2 — 2L1
1 ZIR
Lio=-5 | dza(1-15) | Ly=—6L; , (2.5.20)
295 Zyv
1 2R 02 L9 = —LlO
Hi=-— [ dza(z)(1+fs)
\ 495 2uy

which are in agreement with those derived in [35].1°

2.6 Holographic Anomaly

It is interesting to study, using the holographic perspective which we described in this
chapter, the consequences of adding a CS term to the 5D gauge action. In this section
we will work out the holographic Goldstone-bosons Lagrangian and find that, as expected
[49], the CS makes a gauged Wess—Zumino-Witten (WZW) term [50, 51, 52] appear. We
will initially consider a quite general case, but we will later specify to AdS/QCD, where a
CS term is needed in order to mimic the Adler—Bardeen chiral anomaly. Notice that, from
a purely 5D point of view, the CS is usually introduced [53] in order to cancel localized
gauge anomalies [54]. Our approach, however, is different. We will simply add the CS
to the action and study its consequences on the holographic theory. For simplicity, we
will not consider bulk fermions at all, so that there is clearly no localized anomaly to be
canceled. In the presence of a bulk fermion content which gives rise to localized anomalies
the analysis of this section should be generalized taking also into account the anomalous
variation of the fermionic measure, and not only the one of the CS term as we will do
here.

Let us consider, as in sect. 2.2, a pure gauge theory with bulk group G broken to H
at the IR and add to the gauge action the term

Ses = —ic / ws(A) = —ic / Tr [A(dA)2+gA3(dA) + %45} , (2.6.1)

where c is a real coefficient and we introduced a matrix-form notation defining A =
—i A% T4 dz™ 16 We want to explore the consequences of including S¢s in the definition
(2.2.3) of the holographic partition function. First of all we observe that, under a generic
infinitesimal gauge transformation

0aScs = -z‘c/dwi(oz, A) = z'c/wi(a(zw),A(zw)) — ic/wi(oz(zm),A(zm)(;,G )

15The factor of 2 difference with the result of [35] is due to the normalization of the SU(3) generators.
'81n this section we use many definitions and results of [52].
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so that the gauge invariance of the action has been spoiled. In eq. (2.2.3), however, the
bulk gauge group Gp is gauged, meaning that it is used to remove unphysical degrees of
freedom and make the theory consistent. For this reason, no anomalous variations of the
action under Gp can be allowed. Remembering that Gg elements reduce to the identity at
the UV and to the H subgroup at the IR, and using the IR boundary conditions (2.2.2)
for the gauge fields, this translates into the condition

Te(T*{T°,T°}) = 0, (2.6.3)

on the H generators which define the CS. The T%’s, therefore, must provide an anomaly-
free representation (whose existence we are going to assume in the following) of the H
subgroup. Eq. (2.6.3) ensures the Gp invariance of the action as it makes the IR term
in eq. (2.6.2) vanish. The UV term in the variation (2.6.2) is, on the contrary, perfectly
allowed for what concerns the definition of the holographic partition function. It simply
changes eq. (2.2.5) into

z [Bf?] = exp [-—-c / wi(@, B)] Z[B,)], (2.6.4)

where g = expl[i@] is an infinitesimal gauge transformation. If some of the sources have
to be made dynamical, of course, one should also worry about the cancellation of the UV
anomaly in eq. (2.6.4). This could be done, for instance, by adding localized fermions in
a suitable representation.

"~ When an AdS/CFT interpretation is possible, Z[B] is the partition function of a G-
invariant 4D theory in the presence of sources for the currents and eq. (2.6.4) corresponds
to a 4D anomaly. The global group G is spontaneously broken to H and eq. (2.6.3)
states that the unbroken group is anomaly free. This is very much the same as in QCD,
where the global symmetry SU(3)r x SU(3)g is spoiled by the chiral anomaly while
the unbroken vector subgroup is anomaly free. Eq. (2.6.4), however, is not enough to
mimic the standard QCD Adler-Bardeen anomaly, since the latter preserves the vector
invariance. More generally, in a 4D theory with anomalous global symmetry group G
which is spontaneously broken to an anomaly free H, one adopts a regulator in which
the H invariance is preserved in all correlators so that the anomaly Gg(B) vanishes, for a
generic gauge field configuration, whenever & € Lie(H). The anomaly [w}(@, B) which
appears in eq. (2.6.4), on the contrary, only vanishes (due to eq. (2.6.3)) when the sources
also are restricted to H, i.e. when B, & € Lie(H). In the language of Ref. [52], eq. (2.6.4)
is the “canonical” anomaly while what would be needed is the “shifted” anomaly. The two
forms of the anomaly correspond to different choices of the regulator and one can convert
one into the other by adding suitable local counterterms to the action. Following [52], we
consider a “shifted” CS term

503 = —icfag(Ah,A) = —z'c/[ws(A) -+ dB4(Ah,A)] = Spg + iCLVB4(Bh7B),
(2.6.5)
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where Ay, By, are the restrictions of A, B to Lie(H) and By is defined by [52]
1 1
By(Ap, A) = 5'1'& {(AhA — AAR)(F + F}) + AAY — ApA® + —Z-AhAAhA , (2.6.6)
with F} = dAp + A? and F = dA + A?. In eq. (2.6.5) we used the fact that, due to

the boundary conditions, A(zr) = A(zm)n and Ba(Ap, Ap) = 0. If 505, and not Sgg, is
added to the gauge action, the anomalous variation of the holographic partition function

becomes
Z [BP| = exp[-cGx(B)] Z[B,] , (2.6.7)
where Gz = — [ 055 is the shifted anomaly as defined in [62]. It vanishes, for any

B € Lie(G), when a € Lie(H).

Having identified the correct term to be added to the 5D action, let us now see how
it affects the holographic effective action. It is well known that the anomalous variation
(2.6.7) of the partition function requires the presence of the gauged WZW term in the
effective action of the Goldstone bosons. The latter term, indeed, is not gauge-invariant
and it is precisely designed to reproduce the anomaly (2.6.7). Showing that it arises, as we
will do in the following, is then just a check of internal consistency. It is worth remarking
that, from the purely 5D point of view, one could also use the canonical CS (2.6.2), the
manipulations which follow would not change significantly. Of course, having failed to
reproduce the anomaly (2.6.7), one would not obtain the correct gauged WZW. From the
point of view of holographic QCD, on the contrary, the shifted CS is the only correct
choice.

In order to fix the Gp gauge invariance of the holographic partition function we cannot
simply follow sect. 2.2. The CS, indeed, spoils the invariance of the gauge action under
generic G transformations, so that G is broken to H not only by the IR boundary condi-
tions (2.2.2). The trick which we used in eq. (2.2.8) to restore the full bulk G invariance,
therefore, is not useful in the present case. We will need a more formal, but completely
equivalent, gauge-fixing procedure, which is discussed in appendix A. The final result is

795 (B,] = / DS / DAL, 2); s xp [iS [AW] ] (2.6.8)

where Ay = {A,,0} and A is any 5D transformation which interpolates from ¥ at the
UV, A(zyy) = L, to the identity at the IR, A(zr) = 1. When rotated to the Euclidean, A
is an extension of ¥ from the 4-sphere S* of space-time to a 5D disk D, with boundary
54, obtained by shrinking the IR brane to a point.

The CS term §cg gives the only non-trivial contribution to S [A(A)]. ‘When the latter
is absent the action is invariant and eq. (2.6.8) reduces to eq. (2.2.12). We define

Susw = ic / [@s(4n, 4) = B((AW),, AM)] (2.6.9)
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and rewrite

§[AW] = Sy — ic / s(An, A) + S, [A] (2.6.10)

where S, is the standard gauge action. We added the term Sog = ic [ @5(Ap, A) to the
definition of Sy, in order to make it vanish when ¥ = 1. It should be noted that, thanks
to eq. (2.2.13), gcg does not contribute to the anomalous variation of the gauge-fixed
partition function (2.6.8) since Ws(Ap, A) is H invariant. One could check that, on the
contrary, Syzy varies and that its variation reproduces the anomaly in eq. (2.6.7).

It is convenient to rewrite Sy, in a more explicit form, this will also allow us to
check that it coincides with the result of [52]. Using manipulations which are similar to
those explained before to eq. (116) of [52], and noticing that A as defined in that paper
(eq. 109) corresponds to AW~ ") in our conventions, we get

D5(An, A) — Ts((AD), AMNY = ws(A71dA) — dB4((AD),, AW)
+dBy((A)n, A) + dBa(—dAATL, AN) . (2.6.11)

To obtain the WZW action of eq. (2.6.9) we must integrate eq. (2.6.11) over the 5D space.
Since A(z, zir) € Lie(H) and A(zr) = 1, no IR contribution comes from integrating the
exact forms in the r.h.s. of eq. (2.6.11). Using the UV holographic condition A=pBE™
and remembering that A(zyy) = Z, we get

Swzw = ic/swg,(A_ldA) + z'c/B4((B)h,B)
—ic / [34 ((BE“I)h,BE‘l) +B4(—d22‘1,B)] , (2.6.12)

where f5 represents the 5D space-time integral. The above formula coincides with the
result of [52] (egs. (115, 116)), given that A(z) is an extension of the Goldstone boson
matrix X to the disk D5 obtained by shrinking the IR boundary to a point. This disk has
however the opposite orientation than the one considered in [52], this explains the seeming
sign difference.

Notice that ws(A~*dA) is proportional to the Maurer-Cartan 5-form (see eq. (2.6.1)),
so that its integral only depends on the boundary value of A, i.e. on the holographic field
£.17 We can then rewrite the gauge-fixed holographic action as

e?onlBu.Z] = exp [1Suwzw [By, )]
x / DAW(,2); _ o P [ng[A“,Az = 0] — iScs[A,, A, = 0]] ., (2.6.13)
e

YIf m5(G) is non-trivial, the integral can also depend on the topology of A, in the sense that two
topologically unequivalent extensions of X give different results. The difference is however quantized, so
that it does not affect the path integral if ¢, as we will show below, is also quantized.
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where we used the fact that the WZW term depends only on the holographic fields and
factorized it out of the functional integral. As discussed above, the §cg [A] term is invariant
under H transformations, so that the functional integral term of eq. (2.6.13) is perfectly G-
invariant. The above equation shows that, in the presence of the CS term, the holographic
action splits in two parts. The first is simply Sy, and its gauge variation reproduces the
anomaly in eq. (2.6.7), while the second one is gauge-invariant.

In the above discussion we assumed (see footnote 17) that, if 75(G) is non trivial,
the coefficient ¢ of the CS term is quantized. We will now prove that this assumption is
necessary to ensure the consistency of our 5D model. As we already discussed, the bulk
local Gg invariance of the 5D action is gauged. Therefore, as we already did to derive
eq. (2.6.3), we must require exp[z'gcg] to be invariant under any Gg transformation. In
particular, let us consider a generic Gp element g which reduces to the identity at the
IR brane also. After rotating to the Euclidean, such transformations are maps from S°
(obtained by shrinking both boundaries to a point) to the group G. Let us now start from
the trivial 5D field configuration A = 0 and vary the CS term in eq. (2.6.5) with g, the
variation is just the integral of the CS form ws on the pure gauge configuration A = 0(9),
As we already mentioned, ws(gdg™') = —ws(g ™ dg) is proportional to the Maurer-Cartan
5-form and thus its integral on S is quantized and depends on the 75(G) homotopy class
to which the map g belongs. Summarizing, the Gp invariance requires, for any g € G

22| ws(g7ldg) € Z. (2.6.14)
2 S5 - .
If 75(@) = 0, the above equation gives no restriction on ¢ since [gs ws(g~'dg) = 0. If, on
the contrary, 75(G) is non-trivial, [¢s ws(g~'dg) = iyn with n integer and eq. (2.6.14)

imposes ¢ to be quantized:
_ 2mm

c = — (2.6.15)
where m is an integer.

In the framework of 4D effective action, the quantization condition of the WZW term
[51, 55] seems weaker than what we find here. It depends indeed on the homotopy of G/H,
and not of G. It might occur, a priori, that a non-trivial map g € G (for which [ ws # 0)
becomes homotopically trivial if it seen as an element of G/H. Due to eq. (2.6.14), the
existence of the map g would imply quantization from the 5D point of view, while no
restriction would appear in the standard 4D framework. As discussed in [55], however,
this can not happen if, as in our case (2.6.3), the generators which define the CS form
provide an anomaly-free embedding of H. In this case, G maps for which [ws # 0 are
topologically non-trivial in G/H also and then the 5D quantization condition coincides
with the standard 4D one. In the next section we will provide an explicit example of this
fact, we will apply the 5D condition (2.6.14) to the case of QCD and show that the result
coincides with the well-known 4D one.
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2.6.1 Anomaly in AdS/QCD

It is useful to apply the results of the previous section to the concrete case of AdS/QCD.
We consider, as in sect. 2.5, a gauge group G = I';, x I'g broken to its diagonal subgroup
H =Ty. To apply the formalism previously outlined, we must choose a representation of
G such that the H embedding is anomaly-free (2.6.3). The generators are

t, O 0 0
TE= " ") TR = , 2.6.16
where t, denote the generators of I' normalized to 2Tt[ts, tp] = dqp. The vector combina-
tions
ta 0 .
T, = , 2.6.17
o ( 0 —( ta)T> ( )

are the generators of the unbroken subgroup I'y. The gauge field is A = A%T,ZL + A%Tf
and to rewrite our results with the common notation we also define A LR= A‘}J, grt%.
The CS form is .
ws(A) = w5(AL) - ws(AR) ) (2.6.18)

where w5 is given in eq. (2.6.1), it is manifest that ws(A) vanishes for A € Lie(T'y), hence
I'v is anomaly free. The 4-form By (eq. (2.6.6)) which enters in the definition of the shifted
CS (eq. (2.6.5)) is now

1
By= -;-Ty [(VA — AV)(F + Fy) + AV® — VA% + §VAVA} , (2.6.19)

where V = 1/2(A} + A%)T* denotes the vectorial part of the gauge field, F' = dA4 + A2
is the field strength of the gauge field and Fyy = dV + V2. The above equation can be
rewritten as

1 1
By=STr [(FRAR + ARFR)AL + AL A% + Z(ARAL)z - (L~ R)} : (2.6.20)

and coincides with the Adler-Bardeen counterterm [56].

The general gauge-fixing procedure of the previous section could be directly applied
to the present case. This would lead, however, to a non-standard parametrization of the
Goldstone degrees of freedom. Analogously to what we did in sect. 2.5, we need to adapt
the previous discussion to the case of AdS/QCD. As discussed in appendix A, the final
result is the same as eq. (2.6.8) in which A is now given by

71
Az, ) = ( UO 1‘?) , (2.6.21)

where U is an extension on the disk of the Goldstone boson matrix U(z), i.e. Uz, zyy) =
U(.T), U(.’I), ZIR) = 1.
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With A given in eq. (2.6.21), all the other formulas of the previous section can be
directly applied. The xPT action (compare with eq. (2.5.5)) is

exp [igxpT[l“, T U]] = exp[z'Swzw (lu,mu, U]l

X /DAL,“(CL', Z)ZL p=lfLU)DAR’“($’ z)ER,;Fm exp[iS[A,, A, = 0],  (2.6.22)

where S = Sg+ Scg. The explicit form of the WZW term can be read from eq. (2.6.12), it
can be checked that it coincides with the 4D result reported in [50, 57]. When the sources
are set to zero, eq. (2.6.12) simplifies and we are left with the usual ungauged WZW term

Swzw[0,0,U] =ic /5 ws[(TdU 1)’ = i—g /5 Tr [((7616—1)5} : (2.6.23)

As discussed before, when 75(G) is non-trivial the coefficient of the Chern-Simons term
is quantized. In particular, in the G = SU(N)r x SU(N)g case with N > 3, m5(G) = Z>.
The quantization condition can be easily obtained from eq. (2.6.14), g represents in this
case the more general map from S° to SU(N) x SU(N)g and ws is given by eq. (2.6.18),
notice that its “L —R” form is due to the requirement of having an anomaly-free SU(N)y .
It is well known that, for a generic SU(N) element such as g, or gz, one has

-1 _ l -1 5] 3 .
./5‘5 ws(g~ dg) = /55 10T¥r [(g dg) ] = 487°n1, (2.6.24)

with n integer. The quantization condition then becomes ¢ = m/(24r?) and substituting
in eq. (2.6.23) one obtain the usual quantized form of the WZW term
im

Swzw[oa 0, U] = W

Tr [(ﬁdﬁ“1)5] . (2.6.25)
5

Notice that we obtained the standard quantization condition from purely 5D consistency
requirements.
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Chapter 3

5D Models with Gauge—Higgs
Unification

In this chapter we will discuss the possibility of constructing models of EWSB in the
context of extra-dimensional theories. One particularly interesting scenario is based on
the gauge-Higgs unification mechanism, which relies on the possibility of identifying the
Higgs multiplet with the internal components of a higher-dimensional gauge field.

As a first issue, we will briefly review the gauge-Higgs unification mechanism in a
U(1) toy model compactified on S!. This simple example will give us the possibility of
presenting the main virtues of the GHU models without entering into the subtleties of
non-Abelian gauge groups and orbifold compactifications.

After this introduction, we will concentrate on a (semi-)realistic model compactified on
S'/Zy with an extended gauge group SU(3) x U(1) [15]. Although this model reproduces
all the qualitative features of the SM, it presents some problems at the quantitative level.
In particular the predicted top and Higgs masses are much below their experimental limits.
A possible way to solve these problems and get a fully realistic model will be the subject
of the next chapter.

3.1 The Gauge—Higgs Unification Mechanism

As we said, in the GHU scenario the Higgs field is identified with the internal components
of a higher-dimensional gauge field. As one could easily guess, this peculiar origin of the
Higgs field has deep and interesting consequences on its properties. First of all the higher-
dimensional gauge invariance heavily constrains the form of the Higgs effective Lagrangian.
In particular a tree-level mass term for the Higgs is forbidden, and this means that the
Higgs can acquire a mass only at loop level and moreover this mass is finite and stable
against radiative corrections. This feature is clearly related to the non-local nature of the
Higgs field. In fact, as discussed in section 1.5, the A, component, which is identified with

57



the Higgs, is closely related to the Wilson loop W (eq. (1.5.3)) which wraps around S*. In
particular the Higgs VEV can be seen as a Wilson loop phase or equivalently as a Scherk—
Schwarz twist in the periodicity conditions of the fields on the circle (see eq. (1.4.4)). The
non-local nature of the Higgs VEV, guarantees not only the stability of the Higgs mass but
also the finiteness of the whole Higgs effective potential at any loop order [58]. Clearly,
this is another remarkable property of the GHU scenario which allows to stabilize the EW
scale relating it to the compactification scale of the model rather than to the cut-off of the
theory.

When we compactify our theory on an orbifold and not on a smooth manifold, some
subtleties arise due to the presence of boundaries. In fact at the fixed points of the S1/Z
orbifold the gauge symmetry is broken and localized mass terms could be generated which
would destabilize the Higgs potential and the EW scale. Fortunately, also in this case a
remnant of the non-Abelian bulk gauge symmetry (the shift symmetry), as we will better
discuss in section 3.5, forbids the appearance of dangerous localized terms, thus preserving
the finiteness properties of the GHU scenario. A useful insight on the orbifold scenario
can also be obtained adopting the holographic prospective of the previous chapter. The
holographic effective description clearly shows that the gauge symmetry breaking at the
boundaries is actually a spontaneous breaking. As a by-product of this breaking some
(pseudo-)Goldstone bosons are present which are identified with the Higgs field in the
GHU scenario. From this point of view, the dynamics of the Higgs is constrained by its
Goldstone nature, and the EW scale still continues to be stabilized.

Let us now concentrate on a simple toy model. We will consider a U(1) gauge theory
compactified on S', coupled with a fermion ¥ with bulk mass mass m [12]. In this case
the Higgs field is identified with the zero mode of A,. Of course, at tree level the Higgs
can not have a mass term, but it acquires mass at the radiative level through diagrams
containing fermion loops. At 1-loop level we can compute the Higgs mass by simply
summing over the diagrams with two external Higgs fields and a loop given by fermion
KK modes. Allowing the Higgs field to get a VEV, or equivalently imposing a Scherk-
Schwarz periodicity condition for the fermions (see eq. (1.4.4)), we find

m? =4

2 4 2 2 2

g d°p P Pyntm

2 a > LA (3.1.1)
n

2rR (27!' (p? -+ pg,n -+ m2)2 ’

where we defined py, = (n + o)/R and the 4D momentum has been rotated into the
Euclidean. Notice that every single piece in the sum is quadratically divergent, so that, if
we truncate the sum up to a certain KK level, we obtain an infinite result. This feature is
however not surprising, in fact a truncation of the KK tower spoils the higher-dimensional
gauge invariance which forbids the presence of a mass term for the Higgs and protects it
from divergences. Instead, the correct way to regularize eq. (3.1.1) is to perform the sum
over the whole KK tower and then integrate over the 4D momentum [58]. Computing the
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sum we get
p? - pin + m? —on?R2 cosh(2pmR) cos(2ma) — 1 ,
m (PP +p2a+ m2)2 [cosh(2pmR) — cos(2ma))?

(3.1.2)

where p? = p? +m?. This expression vanishes as 1/ cosh(2pmR) for large momentum, and
substituting it into eq. (3.1.1), we obtain a finite value of the radiative mass term for any
a. Moreover we obtain that the mass term is related to the 5D gauge coupling and to the
compactification radius and scales as m2 ~ g2/R3.

With an analogous computation one can also show that, not only the mass term, but
the whole Higgs effective potential is finite.!

3.2 A Gauge—Higgs Unification Model on S'/Z,: the Gauge Sector

Undoubtedly, the GHU mechanism we described in the previous section presents some
features which are very appealing from a phenomenological point of view. Nevertheless in
order to implement this idea in a realistic scenario one must add some other ingredients.
First of all the the SM structure requires the presence of chiral fermions and this can not be
obtained on a smooth space like S'. An easy way to address this problem is to compactify
our theory on an orbifold. We already showed in chapter 1 that orbifold compactifications
can generate a chiral spectrum by projecting out fermion zero modes of only one chirality.
In this chapter we will use a different approach and we will obtain a chiral 4D spectrum
by simply introducing chiral fermions localized at the orbifold fixed points.

A second issue is the necessity to reproduce the SM model SU(2) x U(1)y EW gauge
group and to get at the same time a Higgs doublet in the correct representation. This
structure can be obtained choosing a 5D theory with an extended gauge group. The basic
idea is to construct a theory with a bulk gauge group G which has the SM group as a
subgroup and to use the orbifold projection to break G down to SU(2) x U(1)y. At the
same time we can try to identify the Higgs doublet with the massless scalars coming from
A,, which are associated to the broken gauge generators.

In this chapter we will present a possible realization of these ideas which has been
proposed in [15]. The model is based on a 5D gauge theory with bulk gauge group
G = SU(3)s x SU(3)yw x U(1) compactified on S*/Z,. The SU(3); gauge group, which
is identified with the QCD gauge group, is supposed to be left unbroken by the orbifold
action. From the effective action point of view it will give some massless gauge fields (the
gluons) and a KK tower of massive gauge fields whose mass levels are m, = n/R with
n > 1. The presence of the SU(3)s subgroup does not affect the EW properties of the
gauge sector and we will neglect it in the following analysis.

'To be more precise, the Higgs effective potential contains a divergent part which is independent of the
Higgs VEV. This divergent part corresponds to vacuum-to—vacuum l-loop diagrams. Once this divergent
piece has been regularized, a finite Higgs potential is obtained.
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Let us now focus on the SU(3),, x U (1)’ subgroup which gives origin to the SM SU(2) x
U(1)y group and to the Higgs doublet. The choice of this 5D gauge symmetry is in some
sense not the minimal one. In fact the SM gauge group can be embedded simply in an
SU(3) group and at the same time the orbifold breaking gives a scalar doublet which could
be identified with the Higgs. This construction, however, has a great shortcoming, namely
it fixes the weak mixing angle ,, at a value which is incompatible with the experimental
results. The extra U(1)' factor is a possible solution to this problem.

In order to better explain the weak mixing angle problem and its solution, it is con-
venient to start describing a theory with only an SU(3),, gauge group. The Zj orbifold
projection is embedded in the gauge group through the matrix (see section 1.4.2 and in
particular eq. (1.4.18))

-1 00
Z=eV3 | o _10 ], (3.2.1)
0 01

where 4 are the usual SU(3) generators normalized as 2 Tr[t4 5] = §4B. The orbifold
action breaks the SU(3), group to SU(2) x U(1), where the U(1) subgroup is the one
generated by t8. The massless 4D degrees of freedom are given by the gauge fields arising
from A, in the adjoint representation (3¢ @ 1¢) of SU(2) x U(1) , and a complex scalar
doublet arising from A, in the 24 /2 representation. The 4D gauge coupling associated
to the SU(2) subgroup is related to the 5D one by g = g5/v2wR. Of course, given
the fact that both the SU(2) and the U(1) 4D gauge subgroups come from the same
SU(3) group, their coupling constants are not independent but rather they are related
by guay/g9 = tanfy, = v/3. The value of the weak mixing angle predicted by this simple
model is not compatible with the experimental value sin? 6y, ~ 0.23.

In this model an additional spontaneous symmetry breaking SU(2) x U(1) — U(1).
is induced when A, (or in other words the Higgs field) gets a VEV. Using the unbroken
SU(2) symmetry we can align the VEV along the ¢” generator:?

(4,) = ==1". (3.2.2)

Notice that the parameter a is a Wilson line phase (see section 1.5) whose associated
Wilson line is
W = etriet’ (3.2.3)

As a consequence, the EWSB in this model is equivalent to a Wilson-line symmetry break-
ing. Due to the fact that a is a Wilson-line phase, values of « which differ by an integer

2To use a simpler notation, in this chapter and in chapters 4 and 5 we adopt the standard form of
the 5D action in which the bulk fieds are canonically normalized. In this case the field strength and the
covariant derivative are given by Fuy = Om AN —OnAm —igs[Anr, An) and Dy = Om —1gs[Anr, -]. The
normalization used in the previous chapters can be easily obtained by rescaling the bulk fields with the
5D gauge couplings (compare footnote 2 in chapter 1).
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are equivalent (o ~ a + 1).

3.2.1 The U(1) Subgroup and the 6, Angle

As already anticipated, a possible way to solve the problem of having a reasonable value
of the weak mixing angle ,, is the introduction of an extra U(1) subgroup into the
gauge group G.2 This extra factor is not affected by the orbifold projection (i.e. it
is left unbroken). The hypercharge generator Y is taken to be the linear combination
Y = -—\}—g—ts +t" of the U(1) and U(1)’ generators, so that the charge of a field under U(1)y
is given by the sum of the U(1) and U(1)’ charges. The gauge field Ay associated to the
hypercharge and its orthonormal combination Ax are

7 A8 ! 8 __ Al
Ay = M Ay = M (3.2.4)

Vg2 +g? V392 + g7

The U(l)y coupling gy is related to the SU(3), coupling g and to the U (1)' charge
g =g4/V2rR as | ” ”
v3gg'

gy = ==
392 +gl2

By suitably choosing g’ we can adjust the weak mixing angle to the correct value, according

(3.2.5)

to the relation ) ]
-2 gy
sin® Oy = 7+ o = ypn 3g2/g’2 . (3.2.6)

As we will better discuss in section 3.4, the U(1)x subgroup is anomalous and the cor-
responding field acquires a large localized mass term. As a consequence its zero mode
decouples from the effective theory leaving only a tower of massive KK excitations. The
U(1)x subgroup is thus broken and the low-energy 4D gauge group is the usual SM one
SU(Q) xU(1)y.

The presence of the extra U(1)' factor does not change the EWSB mechanism. As in
the previously discussed SU(3), case, when A, gets a VEV, which can be written as in
eq. (3.2.2), a spontaneous breaking occurs: SU(2) x U(1)y — U(1)gum.

3.3 A Gauge—Higgs Unification Model on S'/Z,: the Fermionic Sector

Let us now discuss how to introduce matter fields in the above described scenario. One
possibility is to include massive 5D bulk fermions and massless localized chiral fermions
with a mixing between them, so that the matter fields are identified with the lowest KK

8 Another possible solution to this problem consists in adjusting 8,, by introducing different localized
kinetic terms for SU(2) and U(1) gauge bosons at the orbifold fixed points [15] (see section 3.7.2). This
approach, however, generates a distortion of the field wave functions and, consequently, too large corrections
to the EW observables.
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Boundary Fields (y = 0)
Bulk Fields
Doublets Singlets
oo (3,3 .
( ’_)0 coupled to Qr: (3,2)1/6,0 br: (3,1)-1/30
ot (3,6)0 tg: (3’1)2/3,0
ol (1,8)_ .
, ( ’_) 23 coupled to Lr: (1,2)1/6,-2/3 lr: (1,1)-1/3,-2/3
UY: (1,6)_9/3 vr: (1,1)5/3,-2/3

Table 3.1: Fermion content of the model for a quark and lepton generation. For bulk fields
we reported the SU(3), x SU(3),, representation and the U(1)’ charge. For localized fields the
SU(3)s x SU(2) representation and the U(1) and U(1)' charges are given.

mass eigenstates. As we will show, in this set-up Yukawa couplings are exponentially
sensitive to the bulk mass terms, and the observed hierarchy of fermion masses can be
naturally explained.

In the quark sector, for every generation we introduce a couple of periodic bulk fermions
(U, ) with opposite Zy parities, in the representation (3,6) of SU(3). x SU(3)w, and
(T, TY) in the (3,3). At the orbifold fixed point y = 0, we have a left-handed doublet
Qr = (tz,br)T and two right-handed fermion singlets tg and t; of SU(2) x U(1), all
these fields are in the fundamental representation of SU(3)s.4 The parity assignments for
the bulk fermions allow for a bulk mass term which mixes ¥ and \i, as well as boundary
couplings e; 9, with mass dimension 1/2, which mix the bulk fermions with the localized
fields Qr, tgr and br. The matter Lagrangian can be splitted into a bulk and a boundary
part:

L= Ly +(y)%. (3.3.1)

The bulk piece for each quark family® is given by

=Y {T‘stwa + T4 DT — M, (’\17“(17‘1 + E‘Iﬂ:ﬂ)} , (3.3.2)

a=t,b

“In the original model of [15] and in a subsequent development [26], the (¥, ¥*) doublet was in the
(8, 6) representation and (¥, E!”) (see below) was in the (1,6). The present set-up is however completely
equivalent to the original proposal. Moreover, in [15, 26] localized fermions were introduced at both the
orbifold fixed points. This possibility proves less appealing from a phenomenological point of view, in fact
in this set-up it is more difficult to construct a model compatible with the experimental constraints.

5For simplicity we consider here a Lagrangian without mixing among different fermion families. Given
the fact that the EWSB is nearly entirely due to the third generation of quarks (see sections 3.5 and 3.6),
this simplifying assumption has no relevant effect on the main properties of the model. The problem of
embedding a non-trivial flavour structure in this set-up will be briefly discussed at the end of this section.
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while the boundary part is

% = Qril4Qr +1IriDatr + briDsbr

+ (61{ Qryb® + et Q' + eSbrx® + e Trxt + h.c.) ) (3.3.3)

where 9" and x*? are the doublet and singlet SU(2) components of the bulk fermions
UhP (see appendix D for the decomposition of the bulk fields).

The leptonic sector is built in an analogous manner. For each generation we introduce
a couple of bulk fermions with opposite orbifold parities (\I'l, \il) in the representation
(1,8), and a couple (¥¥, U¥) in the (1,8). At y = 0 we add a left-handed doublet Ly, and
two right-handed singlets [r and vg, which are all singlets of SU(3)s. Asin the quark case,
bulk masses are introduced between ¥ and ¥ and bulk and localized fields are coupled
through boundary terms. Due to the fact that the EWSB is mostly determined by the
third quark generation, in the following we will neglect the leptonic sector. The fermion
content of the model is summarized in table 3.1.

For future use, we introduce the parameters A* = TRM, and ! = \/7R/2e}. We also
define the dimensionless Euclidean momentum variables z = nRp and z% = nR+/p? + M.

3.3.1 The Fermionic Spectrum

Having defined the matter content of the model, we want now to study the 4D fermionic
spectrum and in particular the masses of the light states (the SM fields) after EWSB.
Before deriving the effective action of the theory, it is useful to report the decomposition
of the bulk fields with respect to the unbroken subgroup SU(2) x U(1) of the SU(3)y
gauge group. The fundamental representation decomposes as 3 = 2;/6 ® lfl /30 while for

the antisymmetric one finds 6 = 37, ;30275 ® 1';/3, where we also reported the relative
parities of the various components. The 1*? fields are thus given by the 21“/6 components
of the U*P fields, while x*® correspond to the singlets 15"/3 and 17, /s~ The fact that the
doublets and the singlets have opposite parities is necessary to ensure the existence of
couplings between boundary and bulk fields. Notice, moreover, that the coupling given in
eq. (3.3.3) are the only ones allowed by the parity assignments.

To study the low energy properties of the theory it is useful to adopt the holographic
description presented in the previous chapter. The effective action for the bulk fields
becomes simpler when written in terms of L-handed sources (¥%, \Tf’fL) and (02, ‘i%) To
avoid cumbersome formulae, here we will report the holographic actions for the bulk fields
in the absence of couplings with the localized fermions. The holographic Lagrangian for
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the (01, Eft) system in the Euclidean momentum space is given by®

%, = —z'tanh(z") (”i]‘.% Xt + 85 ZZ‘ X +¢t>

p? V2 P* V2
cos(2ra) — cosh(2z?) (- P ]zf
+:1;t Sinh(Qa:t) (¢3 2 ¢3 -+ ¢t >
cos(4mar) — cosh(2z?) (=, ¥ ~ — b Pt — ot
S (wiﬁ P+ \/5 R 2) (334

where we expressed the result in terms of the SU(2) components of the bulk fields (see
appendix D for the notation and the details of the decomposition). From eq. (3.3.4) one
can easily extract the spectrum of the bulk fields,” which is given by a tower with charge
g = 2 with respect to the Higgs and masses m2 = (”*1'22“)2 + M2, a tower with charge
= 1 and masses m2 = (”+a) + M?, and a tower which is not coupled with the Higgs
m2 = (%)2 + ME.
The holographic description of (¥, ¥?) is

e RE R+ S (21, B85 aas

In this case the 4D spectrum is given by a tower with charge ¢ = 1 with respect to
the Higgs and masses m2 = (”‘*‘O‘) + Mb and a tower not coupled with the Higgs with
m2 = (%)2 + M2

The low energy Lagrangian for the localized fields can be obtained by integrating
out the holographic degrees of freedom which describe the bulk fields, and retaining the
localized fields as effective degrees of freedom. After a straightforward computation one
finds

b2 2
L= t{;zﬁ 1+——PLfo(m 0)+2Lpr0(x 0)+< et pL+;2 )fo(;ct,Qoz)}
: 6\1/5_2 fi(at, 2a)} (3.3.6)

bz 51{2 €b2 __ti
Lo =bip|1+ PL+ PR fo(zL‘ o) + PLfO(:C a)| + =

: slfsgfl(:ct, 2a)} b,
(3:3.7)

8For simplicity we omit the ™ symbol and use the same notation for the bulk fields and their UV values.

"As explained in the previous chapter in this case the spectrum is given by the zeroes of the two point
functions. Notice that to extract the spectrum from egs. (3.3.4) and (3.3.5) we must rotate the momentum
back to the Minkowskian.
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where t = 7, +tr and b = by, + bg, Pr g are the L and R projectors, and the functions
fo,1 are defined as

fo(z, @) = Re[coth(z + ira)] = cosh(;ai:l)ﬂfif))s(Qwa) ) (3.3.8)
fi(z, @) = Im [coth(z + ira)] = — sin(2ma) . (3.3.9)

cosh(2z) — cos(27a)

When the localized fields are taken into account, the spectrum of the theory, which
we obtained before in the absence of boundary couplings, is distorted and some light
modes appear which correspond to the SM matter fields. The exact distorted spectrum
can be extracted from egs. (3.3.6) and (3.3.7) determining the zeroes of the quadratic
Lagrangian. When the physical mass induced for the light states is much smaller than the
masses of the bulk fields, to a very good approximation the SM-quark spectrum can be
computed neglecting the momentum dependence induced by higher derivative operators
in egs. (3.3.6) and (3.3.7). In this way one finds

mg
= |, =tb, 3.3.10
™= \VEE C 410
where
E 6
mh = \/i 2R A (0 20), (3.3.11)
= 5152 L2 (,\b a), (3.3.12)
t2 t2
Z~ =16 1 fo(A 0) + 512 2)\tf0(/\t ) 262)\t fo()\t 2a), (3.3.13)
Zt=1+ ’b Fo(®, oa)&l——— fo\, ). (3.3.14)

An interesting property of the masses of the light states is their exponential suppression
in the bulk masses m, ~ exp(—2mRM,). This behaviour can be easily derived from
egs. (3.3.10)—(3.3.14) taking into account the exponential suppression of fi(z, @) for large
values of z (fi(z, ) ~ exp(—2z), see eq. (3.3.9)). From a physical point of view, this
suppression can be understood recalling that the EWSB in this model is generated by a
Wilson line and thus is due to non-local effects. In this context, Yukawa couplings for
the boundary fields can be generated only through non-local operators involving Wilson
lines that connect the two boundaries and wind around the internal space. The resulting
masses of the light states are thus exponentially sensitive to the bulk masses M,. Another
way to understand this property is to consider the tree-level diagrams which generate a
mass term for the boundary fields in the low-energy Lagrangian (egs. (3.3.6) and (3.3.7)).
Clearly the localized fields do not couple directly with the Higgs, thus they can acquire
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a mass only through their mixing with the bulk fields. Moreover, the bulk fields can
“feel” the symmetry breaking only if they wrap around the orbifold, thus they provide
an exponential suppression in the mass diagrams in which they appear as internal lines.
Notice that, given the fact that the boundary fields are all localized at the same boundary,
the bulk fields in the mass diagrams must propagate from one boundary to the other twice,
so that the suppression factor is not exp(—mRM,) but rather exp(—2mRM,).8

It is useful to study the mass equation for the top quark (eq. (3.3.10)) in the limit of
large bulk-to-boundary couplings (¢! >> 1). For simplicity we also take e? = 0, and we
get

sin(dra)  2Xt
~ 2 . 3.3.15
me = VI p sinh(2)Y) (3:3.15)
The top mass decreases monotonically with A!, and using the mass formula for the W
boson (mw = a/R, see section 3.4), we obtain

my < V2my, . (3.3.16)

This constraint is clearly not compatible with the experimental value of the top mass,
and constitute a major problem of this model. Various ways to solve this problem have
been proposed. One possibility is given by the introduction of bulk fermions in higher-rank
representations of the SU(3),, gauge group which couple to the localized fields.? In this way
one can get a larger group-theoretical factor multiplying eq. (3.3.15). In this approach,
however, a large number of bulk fermions is present in the model and this necessarily
leads to a very low cut-off. Another possibility to solve the problem of getting a larger top
mass is given by the introduction of Lorentz-breaking terms into the Lagrangian [26, 27].
This scenario seems more appealing from a phenomenological point of view and will be
considered in detail in the next chapter.

3.3.2 The Flavour Structure

To conclude the description of the fermionic sector of the theory, we will briefly discuss,
along the lines of [15], how to embed a more general flavour structure into the model. In the
set-up we described before, three fermion generation (which we now denote by I = 1,2, 3)
were already present, but the whole construction was chosen to be flavour blind, so that
no mixing appears among different generations. This was simply obtained by assuming
the bulk mass matrix (Mg);s and the boundary couplings (¢7)7; to be diagonal in the
flavour indices. Of course, a non-trivial flavour structure is obtained when (M,)r; and
(€2) 1. are allowed to be arbitrary matrices. However, due to the possibility of redefining

$When left- and right-handed fields are localized at different fixed points the exponential suppression,
as expected, is exp(—wRM,) [15, 26].
%A possible implementation of this idea can be found in [29].

66



the bulk and the localized fields, we can always diagonalize either the bulk mass matrix
or the boundary couplings (but not both of them at the same time).

The computation of the masses of the SM matter fields is similar to the one described
before. As we said, we can assume the boundary couplings to be flavour-diagonal, at the
price of having a non-diagonal bulk mass matrix. The latter can be written as M, =
E};MaD F,, where E, and F, are unitary matrices and Mf is diagonal. The mass matrix
for the bulk fields can thus be diagonalized by the redefinition ¥/, = E,¥® and ¥/, =
F,0U° With this redefinition, the coupling of the boundary fields with the ¥/ bulk fields
become non-diagonal and involve the E, matrices. The couplings of the right-handed
boundary fields ag, which are mixed only with the corresponding bulk fermion ¥?, can be
diagonalized by the redefinition a’y = Usar. On the other hand, the left-handed boundary
fields couple with two different bulk fields, so that their couplings can not be diagonalized.

The contribution coming from ¥} to the wave function Z¢ of the left-handed field ay, is
now given by Zf(\lfg) = Ug Z8(0,)Us, where Z¢(¥}) is the contribution of a bulk field with
flavour-diagonal mixing. The total wave function Z{‘ =3, Zf(\lff,) is now non-diagonal.
The wave-function corrections for the right-handed fields ar are instead unchanged and
diagonal: Z¢ = Z§. The induced mass matrix m§ for the localized fermions is given by
mg = miU,. We can now diagonalize the wave functions Zf for the left-handed fields
by a unitary transformation aj = Viday which gives Zf = V;Zf’i/j with Z7 diagonal. In
the new basis the mass matrix is m§ = m§U,V,, so that the physical masses are obtained

diagonalizing the matrix
_ (m§)11(VaUa)1s

(ma)1s T

where no sum is meant on the I and J indices.

In principle, the analysis of the EWSB in this model should take into account the
possibility of having a non-trivial flavour structure. Nevertheless, as we will discuss in
detail in sect. 3.5 and sect. 3.6, the part of the Higgs effective potential due to the fermions
is totally dominated by the contributions of bulk fields with small bulk masses. Due to
the exponential suppression of the SM fermion masses with the bulk mass parameters, the
bulk fields with small masses are usually the ones coupled with the third quark generation
and in particular to the top. Moreover, the experimental results indicate that the third
quark generation has small mixing with the light ones, so that it can be safely treated

(3.3.17)

separately. Consequently, as the EWSB mechanism is concerned, it is a reasonably good
approximation to neglect the non-trivial flavour structure as we will do in the following.

3.4 Gauge Bosons and Anomaly Cancellation

Before analyzing the effective action and the 4D spectrum of the gauge sector of the
model, it is necessary to discuss the issue of anomalies. As we anticipated in section 3.2.1,
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anomalies are crucial in the model to obtain a realistic value of the weak mixing angle 6,,.
Since the bulk fermions are strictly vector-like, the only anomalies that can arise come
from the localized fermions. Given the fact that all the boundary fermions are localized at
the same fixed point, all anomalies that do not involve the extra U(1)x gauge subgroup
vanish. This is a direct consequence of the usual cancellation of anomalies arising from
the SM spectrum of fermions (notice that the localized fields reproduce exactly the SM
matter fields).

On the other hand, the U(1)x subgroup is anomalous and its anomalies can be canceled
by means of a 4D version of the Green—Schwarz mechanism [59]. One introduces a neutral
4D axion at y = 0, transforming non-homogeneously under the U(1)x subgroup, with
non-invariant 4D Wess—Zumino couplings compensating for the one-loop anomaly. In this
way the anomalies are canceled and the axion is eaten by the gauge field Ax. In a suitable
gauge, the net effect of the anomaly on the gauge bosons is the appearance of localized
quadratic terms in Ax, with a mass term Mx whose natural size is the cut-off scale of
the model. For Mx > 1/R, the localized mass term simply results in an effective change
(from Neumann to Dirichlet) of the boundary conditions of Ax at the y = 0 fixed point.

Let us now analyze the effective description of the gauge sector and in particular
the spectrum of the light states. As we did for the fermionic sector, we again use the
holographic approach to describe the theory at low energy. In this case the holographic
effective Lagrangian after EWSB is given by
cos(2ma) — cosh(2pmR)

- _Ppw 141 2 42
%o = QPt { sinh(2p7R) (Auy +ALA)
—4¢2 sinh?(prR) — g2, sin?(27a) AV AY 3 — 4 cosh(2pmR) + cos(4ma) 4343
292 sinh(2p7 R) g 4sinh(2pmR) ny
02
gys _sin®(2ra) Y A3 3 .y
gs 2sinh(2pmR) (A# A+ A4 ) (3.4.1)

where we set to zero the non-dynamical sources corresponding to the gauge fields which
are odd at the y = 0 boundary, namely Aﬁ’5’6’7 and Ax, moreover we did not include
the Higgs fluctuations. The mass spectrum can be easily deduced from the holographic
Lagrangian.'® The KK towers are the following:

) n+a n+ mz(a)
mi = 7 mgf)z——-———R—-Z—, n € [—o0, 0],
n n+1 n+1/2
mg’)zﬁa m$‘4):T’ m%S)z_—fLa ’I’LE[0,00].
The SM gauge bosons W, Z and < are associated to the n = 0 modes of m,(ll) , m%z) and
m%s), so that the W mass equals
My = %. (3.4.2)

*ONotice that to get the whole spectrum one has to take into account also the bulk degrees of freedom
which have been integrated out to obtain eq. (3.4.1).
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The Z mass mz(«) is defined by the mass equation

1
sin?(tmzR) = ———— sin?(27a). (3.4.3)
0s“ Uw

By expanding the sines in eq. (3.4.3) one recovers at leading order the SM relation myz =
my / cos By, as expected. Corrections due to the localized mass terms for Ax are however
present, so that pgy # 1.

3.5 One-Loop Effective Potential for the Higgs

As we discussed before the Higgs doublet in this model is identified with the internal
components A§’5’6’7 of the bulk gauge subgroup SU(3),. The EWSB is spontaneously
generated when A, acquires a VEV and this breaking is equivalent to a Wilson-line sym-
metry breaking. As we saw in section 3.1, the bulk gauge invariance forbids the appearance
of any local Higgs potential in the bulk. This property is enough to ensure the finiteness of
the Higgs potential at any loop order for a theory compactified on the circle. On the other
hand, when we consider an orbifold compactification, localized divergent terms could in
principle be present at the boundaries. Actually, this does not happen, in fact a Higgs po-
tential localized at the fixed points is forbidden by a non-linearly realized gauge symmetry
which is left unbroken by the orbifold boundary conditions [60].

To show how this symmetry arises, we take a theory with a compact bulk gauge group
G broken to the subgroup H at the boundaries of the orbifold. In the bulk, a gauge
transformation with parameters €4 has the form

SAfy = OneA +ifABCeB A, . (3.5.1)

Using the property of the structure constants f2¢ = faﬁa = 0, where we denoted by
t% and t@ respectively the generators of H and G/H, a gauge transformation along an
element of G/H can be written as

5G/HAG — 'ifa bEEbAb/_:,?

{7
So/ndly = 0u6" +if0°€0 AT

So/ndy = if*P oA,

So/nAS = 8,6% +ifobecbac . (3.5.2)

At the boundaries, the non-zero fields are A, and Ag, and the gauge parameters £2 vanish
(but not their derivative along the fifth dimension). Computing eq. (3.5.2) at the fixed
points, we obtain a gauge transformation which acts on the even field components as

6G/HAZ = 0,
So/n Al = B,€°. (3.5.3)
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The presence of this unbroken gauge transformation implies that the theory is invariant
under the shift symmetry
Ay — Ay + 0y8%, (3.5.4)

which acts on the fields at the boundaries. In the GHU scenario we are considering, Ag is
identified with the Higgs field (@ = 4, 5,6,7) and this symmetry ensures that its potential
is still finite in a model compactified on S/Z,.

The one-loop Higgs potential can be easily derived from the holographic description
of the model (egs. (3.3.4), (3.3.5), (3.3.6), (3.3.7), and (3.4.1)) as explained in section 2.4.
The gauge contribution is given by

Vo(a) = 2Va(a) + Valmz ()], (3.5.5)

where V4(a) represent the contribution of a gauge field with charge ¢ = 1 with respect to
the Higgs:

3 e}
VA®) = ooz |, 9o =1l o)

9 1
= "m Z ﬁ COS(QIC’JTOZ) . (356)
n=1
The one-loop contribution to the Higgs effective potential coming from the fermionic
sector can be split into a bulk and a boundary term. The bulk term can be obtained from
the holographic Lagrangian in egs. (3.3.5) and (3.3.6) and is given by

VIUE () = Vige (@) + Vige (20) + Vi (@), (3.5.7)

where Vye is given by the contribution of a bulk fermion pair with charge ¢ = 1 with
respect to the Higgs:
| -1 oo 3 a
Ve(a) = W/O dz z° In [fo(z?, a)]
3 X 1+2nA+3n222 _,
= {6 R4 Z €

n=1

" cos(2mna) . (3.5.8)
An interesting property of Viy(«) is the fact that it is exponentially suppressed in the bulk
mass parameter A. This means that the fermionic contribution to the Higgs potential is
dominated by bulk fermions with small mass parameters. As we showed in section 3.3,
also the SM fermion masses are exponentially sensitive to the bulk masses, so that the
light generations are coupled to heavy bulk fermions, and the third generation (and in
particular the top quark) is coupled to bulk fields with small A. Thus, as expected, the
most relevant fermionic contribution to the potential is induced by the bulk fermions which
give mass to the top quark, namely the (¥, ¥'%) couple. For this reason, in the numerical
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analysis we can safely neglect the corrections due to the light quark generations and to
the leptons.

The boundary contribution coming from the ¢ and the b fields can be extracted from
egs. (3.3.7) and (3.4.1). In this case one finds:

-1 o0 2
i=1
gt2 et

+252 ;fo(z",20) } +H [2522 fi(a, 2oz)H (3.5.9)

2

H[l—!——bfo(a: ) + 60 ola, a)}

i=1

_ 1 (% s
%(Oﬁ)— m Od.'II{L‘ In

From the effective potential we can determine the Higgs mass, which reads
2 52
gsR\* 0°V
m%(amzn) = (-—-2-—’) ———-—aaz N y (3511)

where apip, is the position of the minimum of the potential.

3.6 Quantitative Analysis

As we showed in the previous sections, the model presented in this chapter has all the
qualitative features to represent a possible extension of the SM. Moreover it has the advan-
tage of including a mechanism which stabilizes the EW scale and explaining the hierarchy
of fermion masses by the non-local origin of the Yukawa couplings. Unfortunately, at the
quantitative level, this model fails to be compatible with the experimental constraints. In
particular the values of the Higgs and top masses as well as the compactification scale 1/R
are too small.

The crucial parameter that sets the scale of the model is o, whose value is determined
minimizing the full effective potential V' (a). The effective potential is invariant under the
shift & — o + 1 and under the transformation @ — —a. Thus unequivalent vacua of the
theory correspond to the values of « in the interval [0,1/2]. The a = 0 and the oo = 1/2
points are always stationary points of the potential and they correspond to an enhancement
of the unbroken symmetry. In particular for o« = 0 we do not have a spontaneous breaking
of the SU(2) x U(1l)y symmetry (the Higgs has a vanishing VEV). On the other hand,
when o = 1/2 the SU(2) x U(1)y group is broken to a U(1) x U(1) subgroup and not
simply to the usual U(1)gps electromagnetic group. This can be easily seen noticing that
the Z mass in eq. (3.4.3) vanishes for a = 1/2, thus giving rise to an extra U(1) unbroken
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Figure 3.1: Contribution of bulk and boundary fermions to the Higgs effective potential (left) and
total effective potential (right) for A* = 1.92, \b = 2.8, el o =6.1, and 6?72 = 3.3. The minimum
of the potential is at oy, = 0.12, the Higgs mass is my = 9.7 GeV, the top and bottom masses
are m; = 10.3 GeV and my = 1.1 GeV.

subgroup (the W mass in eq. (3.4.2) is however non zero, so that the SU(2) subgroup is
broken). Instead, for a generic value of a the usual EWSB occurs.

Obtaining a potential with a non trivial minimum is not automatic. In a model with
only bulk gauge fields, the minimum of the potential is always at o = 0, thus hindering
any symmetry breaking. A negative contribution to the Higgs mass is instead given by
(periodic) bulk fermions. When the fermion contribution dominates (namely for small
values of the bulk masses A%) a non trivial minimum appears at o ~ 0.3 (see the left
plot of figure 3.1). When the bulk masses increase, the gauge contribution becomes more
relevant and the minimum moves to lower values of a. However, one can not obtain
arbitrarily small values of a. In fact when the fermionic and the gauge contribution are
nearly compensating, the a = 0 stationary point becomes a local minimum and a barrier
appears between the symmetry breaking and the symmetry preserving phase. A further
increase of the bulk masses causes the minimum to jump to the symmetric point « = 0,
and this usually happens for a ~ 0.1 — 0.2 (see figure 3.1).1!

From the lower bound o 2 0.1, using the W mass formula in eq. (3.4.2), we derive
an upper bound on the compactification scale of the model 1/R < 800 GeV. This value
is in conflict with the experimental bounds for models with localized interactions that do
not conserve the KK momentum, which requires roughly 1/R ~ few TeV [61]. The Higgs
mass computed using eq. (3.5.11) is also too small, at most my ~ 30 GeV, which is a value
much below the current experimental bound my > 115 GeV. Finally, as we discussed in
section 3.3, the top mass is necessarily too low in this set-up. We derived the theoretical
bound m; < v2my ~ 110 GeV, however, accessible values in the model are much lower.
In fact as can be seen from eq. (3.3.15), for the typical values of the bulk mass \* ~ 1.5
needed to obtain a ~ 0.1, the actual value of the top mass is m; < 30 GeV.

' The exact position of the minimum at which the jump occurs depends on the boundary couplings. It
is however not possible to obtain values of « smaller than a ~ 0.1.
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3.6.1 Estimate of the Cut-Off

The model described here, as any 5D theory, is non-renormalizable and hence has a definite
energy range of validity, out of which the theory enters in a strong coupling uncontrolled
regime. It is fundamental to have an estimate of the maximum energy A which we can
probe using the effective 5D Lagrangian. Clearly, we have to check that A is significantly
above the compactification scale 1/R, otherwise the model has no perturbative range of
applicability.

A reliable estimate of the cut-off can be obtained defining A as the energy scale at
which the one-loop vacuum polarization corrections for the various gauge-fields propaga-
tors is of order of the tree-level terms. This can be taken as a signal of the beginning of
a strong coupling regime. The relevant gauge fields are those of SU(3); and SU(3),, the
Abelian ones associated to U(1)’ typically receive smaller corrections. The one-loop vac-
uum polarizations can be estimated using a Pauli-Villars regularization in a non-compact
5D space. For simplicity one can neglect the effects of the compactification which should
give small finite corrections. Given our definition of the cut-off, a different A is associated
to every gauge subgroup, and in particular the most relevant ones are A, related to SU(3),
and Ay, corresponding to SU(3),,. Of course, the “true” cut-off of the model will coincide
with the smallest of all possible A’s. A reasonable approximation is to assume that the
gauge contribution is nearly of the same order as that of the fermions associated to the
first two generations, so that the two contributions cancel. In this case one finds:

ol 6

ARBI+1)~1 = A~
1 Y (3.6.1)
Ay

where the multiplicity of the bulk fermions for the symmetric and fundamental represen-
tation has been taken into account.!? The cut-off of the theory can thus be estimated to
be A ~ 6/R, which means that the model has an acceptable range of perturbativity, and
is reasonably predictive.

3.7 DPossible Extensions

As we saw before, the model we described in this chapter, although qualitatively realistic,
suffers some critical problems from a quantitative point of view. In particular the Higgs and
the top masses are incompatible with the experimental values and the compactification

2Notice that the estimates in eq. (3.6.1), which were derived in [27], differ significantly from those
reported in [15, 26]. In fact the fermion multiplicities were not taken into account in [15, 26] where the
cut-off was estimated using the naive dimensional analysis. In addition, the Pauli-Villars regularization
gives rise to a 5D loop factor in the vacuum polarization diagram which is 2472 and not 247x° as naively
expected.
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scale is too small with respect to the current bounds. A fully realistic way to modify
this model in order to make it compatible with the experimental measurements will be
presented in the next chapter. Nevertheless, it is interesting to discuss here two earlier
attempts to solve some of the problems of the model considering an extension of the original
set-up. The first possibility we will consider is the introduction of bulk fermions in a higher
rank representation of the SU(3),, group. A second scenario is obtained including large
localized gauge kinetic terms into the Lagrangian.

By analyzing these two attempts we will see that solving the problems of GHU models
in 5D is not a simple task, so that some naive (and even some more complex) constructions
are not sufficient to obtain a satisfactory scenario. Moreover these extended models show
some interesting features at finite temperature as we will see in chapter 5.

3.7.1 High Rank Bulk Fermions

A possible way to lower the position of the minimum of the Higgs potential is to consider
5D massive bulk fermions in large SU(3),, representations. For example one can take a
completely symmetric representation of large rank r, whose dimension is given by d(r) =
(r -+ 1)(r + 2)/2. This representation contains component whose charge g with respect to
the Higgs takes all the values ranging from 0 to . The multiplicity of charged states with
g # 01is Ny =1+ [(r — ¢)/2], where [...] denotes the integer part. If r > 1 and the bulk
mass is not too large, one can easily find minima with o ~ 1/r, and, more importantly,
the second derivative of the potential V” at the minimum grows very quickly with r (see
for example the zero temperature potential in figure 5.12 (a)). This allows to obtain a
reasonable Higgs mass my ~ 110 GeV for r ~ 8. Moreover these fermions, if included in
the correct SU(3)s representation, can also couple with the third quark generation giving
an enhancement of the top mass.

A major problem of this set-up is the fact that the cut-off of the model rapidly decreases
as we include a larger number fermions in the bulk. In order to limit the number of
bulk fields we can introduce high rank fermions which are singlets of SU(3);s instead of
considering fermions in the fundamental representation. However, with this choice the
high rank fields can not couple with the quarks and the enhancement of the top mass can
not be obtained. By a rough estimate of the cut-off, one gets that these extended models
are on the edge of perturbativity for r ~ 8.

3.7.2 Localized Gauge Kinetic Terms

In the orbifold scenario we considered, no symmetry forbids the occurrence of localized
kinetic terms for the gauge fields [62] (see also [63]). For simplicity we will consider SU(3)y,-
invariant localized kinetic terms for the 4D components of the gauge fields, moreover we
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will not introduce localized terms for the U(1) subgroup.!’® The Lagrangian for the
SU(3)y gauge fields is then given by

1
gg = —'2— TIFMNFMN - (115(31) + l25(y - WR)) TrFyUFMU ’ (371)

where [y 2 are dimension —1 couplings. It is convenient to define the dimensionless param-
eters ¢; = l;/(mR). Of course, the presence of localized terms will distort the KK spectrum
and the wave functions of the A, fields (the spectrum and the form of the wave functions
can be found in [15]). Before the EWSB, the SU(3),, subgroup is unbroken, and this
means that the corresponding gauge components admit zero modes whose wave functions
are flat as required to preserve the universality of gauge couplings. On the other hand,
after EWSB, the wave functions of the massive SM gauge bosons are no longer flat in the
extra dimension, so that the concept of 4D effective gauge coupling constant is no more
universal. To be more precise, the strength of the coupling of the SM gauge bosons with
a given mode will depend on the shape of the wave function of the latter.

The localized kinetic terms modify the gauge contribution to the Higgs potential. The
boundary contribution to the potential is reported in ref. [15], eq. (46). For ¢; > 1, the
boundary contribution tend to exactly cancel the o dependence of the bulk contribution,
resulting in a suppression of the total gauge contribution to the Higgs potential. The
effective potential is thus dominated by the fermion contribution and the position of its
minimum is at o ~ 0.3. Notice, moreover, that the localized kinetic terms do not break
the shift symmetry in eq. (3.5.4), and thus the finiteness of the effective potential is not
spoiled.

The analysis of the model for generic values of ¢; is quite involved, and we therefore
will only consider the special case in which ¢; > 1 and cg < 1, which present a substantial
simplification. In this limit we obtain an effective gauge coupling constant for the fields
localized at y = 0:

gs
= 3.7.2
94 VeV 2rR ( )
The W mass is now equal to
sin(ma)
My = T (3.7.3)

and the expression for the Higgs mass is modified as

My =~ %E\/EI\/V”(a). (3.7.4)

Clearly, the corrections due to a sizable value of ¢; result in an improvement of the model.
The W mass is lowered with respect to the compactification scale 1/R by a factor NG
and thus the experimental constraints on R can be satisfied with a larger value of . At

137 ocalized terms involving Ay are allowed, but their presence considerably complicates the analysis.
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the same time the Higgs mass is enhanced and can be made compatible with the current
bounds. Finally also the top mass becomes larger, but obtaining a realistic value would
however require ¢1 >> 10 in the model described here.

On the other hand, the distortions of the wave functions give large deviations from
the SM predictions resulting hardly compatible with the experiments. Moreover the intro-
duction of large localized kinetic terms also affects the cut-off of the model which scales
roughly as A, — Ay /c. From the results in eq. (3.6.1), one finds that, in order to ensure
perturbativity, the localized couplings can be at most ¢ ~ 3.

76



Chapter 4

A Realistic Model with
Gauge—Higgs Unification

As we saw in the last chapter, GHU models in 5D present some nice features from a
phenomenological point of view at the qualitative level. Although not completely solving
the hierarchy problem in the Higgs sector, the higher dimensional gauge invariance and
the non-local nature of the EWSB, provide an interesting way to stabilize the electroweak
scale by relating it to the compactification scale of the model. Moreover, the exponential
sensitivity of the light-fields masses to the mass parameters of the bulk fermions seems
a reasonable mechanism to explain the huge mass difference among the three fermion
generation of the SM.

Unfortunately the simplest implementations of the GHU idea on a flat St /Zs orbifold
fail at the quantitative level, resulting incompatible with the experimental results. The
origin of this failure is clearly related to the stringent constraints imposed on the theory by
the higher dimensional gauge symmetry together with the 5D Lorentz invariance. Roughly
speaking, the Higgs mass is generally too light because the Higgs effective potential is
radiatively induced, giving rise to a small effective SM-like quartic coupling. At the
same time, the top has a small mass because the Yukawa couplings, which are effective
couplings in these theories, are engineered in such a way that they are always smaller than
the electroweak gauge couplings, essentially due to the 5D Lorentz symmetry. Finally, the
scale of new physics is too low, because in minimal models there is no way to generate a
sizable gap between the EW scale and 1/R.

It has recently been pointed out that it is possible to get rid of all the above problems by
increasing the Yukawa (gauge) couplings of the Higgs field with the fermions, by assuming
a Lorentz symmetry breaking in the fifth direction [26, 27]. More precisely, one advocates a
breaking of the SO(4,1)/S0(3, 1) symmetry (so that the usual SO(3, 1) Lorentz symmetry
is unbroken), which is the one that forces the fields to couple in the same way to the
gauge bosons and to the Higgs. In this way, the Yukawa couplings are not constrained
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anymore to be smaller than the electroweak gauge couplings and we have the possibility
to get Yukawa’s of order one, as needed for the top quark. Stronger Yukawa couplings
lead also to a larger effective Higgs quartic coupling, resulting in Higgs masses above the
current experimental bound my > 115 GeV. Furthermore, again due to the larger Yukawa
couplings, the Higgs effective potential is totally dominated by the fermion contribution.
The latter effect, together with a proper choice of the spectrum of 5D fermion fields, can
lead to a substantial gap between the EW and compactification scales. In non-universal
models of extra dimensions of this sort, where the SM fermions have sizable tree-level
couplings with KK gauge fields, the EW precision tests generically imply quite severe
bounds on the compactification scale. At the price of some fine-tuning on the microscopic
parameters of the theory, however, one can push 1/R in the multi-TeV regime, hoping to
get in this way a potentially realistic model.

Another fundamental ingredient to get a realistic model is an exact discrete Zs sym-
metry, called “mirror symmetry” [27]. It essentially consists in doubling a subset of bulk
fields ¢, namely all the fermions and some of the gauge fields, in pairs ¢1 and ¢ and re-
quiring a symmetry under the interchange ¢1 + ¢2. Periodic and antiperiodic fields arise
as suitable linear combinations of ¢; and ¢9 and the symmetry constrains the couplings of
the Higgs with periodic and antiperiodic fermions with the same quantum numbers to be
equal. When this is not the case, as in [26], the contributions to the Higgs mass-term of the
bulk fields must be finely canceled in order to get a hierarchy between the compactification
and EW scale. This adjustment was shown in [26] to be the main source of fine-tuning.
Thanks to the mirror symmetry, on the contrary, a natural partial cancellation occurs in
the potential. As we will discuss, with this set-up a difference of an order of magnitude
between the compactification and EW scale, with 1/R ~ 1 TeV, is completely natural.
Such a scale is still too low to pass the EW precision tests, but the required amount of
fine-tuning is significantly lowered.

A remarkable feature of this set-up is the fact that all SM states are even under the
mirror symmetry, so that the lightest odd particle is absolutely stable. In a large fraction
of the parameter space of the model, such a state is the first KK mode of an antiperiodic
gauge field. The mirror symmetry represents then an interesting way to get stable non-SM
particles in non-universal extra dimensional theories, where KK parity is not a suitable
symmetry. Interestingly, the DM candidate obtained in these kind of models seems to lead
to realistic relic densities and to be compatible with the cosmological observations [30].

In this chapter we will analyze a realistic scenario based on the ideas discussed before,
namely the breaking of the Lorentz symmetry and the mirror symmetry. In particular we
will present the model proposed in [27] and we will show that it is indeed compatible with
the experimental results. Furthermore, the constraints coming from the EW precision
tests will be discussed together with an estimate of the fine-tuning of the model. Finally,
from a more theoretical point of view, we will show a possible mechanism which could
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generate the breaking of the Lorentz symmetry in a natural way in the context of 5D
orbifold theories.

4.1 The Model

The model is mainly based on the one presented in the last chapter. A new ingredient
is the introduction of the Zy mirror symmetry. The gauge group is taken to be G =
SU(3)y x Gy x Gg, where G; = U(1); x SU(3);s, i = 1,2, with the requirement that the
Lagrangian is invariant under the Zy symmetry 1 « 2. The periodicity and parities of the
fields on the S!/Zs space coincide with the ones discussed in section 3.2 for the electroweak
SU(3)w sector, whereas for the Abelian U(1); and non-Abelian coloured SU(3); fields
we now have (omitting for simplicity vector and gauge group indices):

Ai(y £27R) = As(y),  Ai(—y) = nda(y), (4.1.1)

where 7, = 1, 95 = —1, denoting by Greek indices the 4D directions. The unbroken gauge
group at y = 0is SU(2) x U(1) x G, whereas at y = 7R we have SU(2) x U(1) x Gy x G,
where G is the diagonal subgroup of G; and G3. The Zy mirror symmetry also survives
the compactification and remains as an exact symmetry of our construction. It is clear
from eq. (4.1.1) that the linear combinations Ay = (A1 % A43)/+/2 are respectively periodic
and antiperiodic on S1.! Under the mirror symmetry, A4 — +A, so that we can assign
a multiplicative charge +1 to Ay and —1 to A_. The massless 4D fields are the gauge
bosons in the adjoint of SU(2) x U(1) C SU(3)y, the U(1)+ and gluon gauge fields A,
and a charged scalar doublet Higgs field, arising from the internal components of the
odd SU(3)y 5D gauge fields, namely A5>%7. The SU(3)+,s and SU(2) gauge groups are
identified respectively with the SM SU(3)gcp and SU(2)L ones, while the hypercharge
U(1l)y is the diagonal subgroup of U(1) and U(1)+. The extra U(1)x gauge symmetry
which survives the orbifold projection is anomalous and its corresponding gauge boson
gets a mass of the order of the cut-off scale A of the model.? Of course, as in the original
model, a Higgs VEV, i.e. a VEV for the extra-dimensional components of the SU(3).,
gauge fields, induces the additional breaking to U(1)gxs.

The presence of the mirror symmetry also requires some changes in the fermionic sector
of the model (compare section 3.3). We introduce a certain number of couples of bulk
fermions (7, \fi), with identical quantum numbers and opposite orbifold parities. There
are couples (¥, \51) which are charged under G; and neutral under G and, by mirror
symme’bry, the same number of couples (¥a, {f’g) charged under G5 and neutral under G,.
No bulk field is simultaneously charged under both G; and Gs. In total, we introduce

'Notice that the antiperiodic gauge fields A_ are not connections of a gauge group. In fact G_ is not
a gauge group but rather a symmetric quotient (G1 x G2)/G+.
%See sections 3.2 and 3.4 for a detailed discussion.
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one pair of couples (¥} ,, \’17'{72) in the antifundamental (3) representation of SU(3), and
one pair of couples (\Ifl{,z, \TII{,Z) in the symmetric (6) representation of SU(3)y,.Both pairs
have U(1)12 charge +1/3 and are in the fundamental representation of SU(3)1,2s. The
boundary conditions of these fermions follow from egs. (4.1.1) and the twist matrix in
eq. (3.2.1). In particular, the combinations ¥4 = (¥; £ ¥3)/ V/2 are respectively periodic
and antiperiodic on S?.

Finally, we introduce massless chiral fermions, with charge +1 with respect to the
mirror symmetry, localized at y = 0. As explained in the previous chapter, as far as
electroweak symmetry breaking is concerned, we can focus on the top and bottom quark
only, neglecting all the other SM matter fields. The mirror symmetry and the boundary
conditions (4.1.1) imply that the localized fields can couple only to A;. Hence, we have
an SU(2) doublet Qr and two singlets tg and bg, all in the fundamental representation
of SU(3),,s and with charge +1/3 with respect to the U(1) gauge field A4.

As we anticipated, another ingredient to obtain a realistic model is the assumption of a
breaking of the SO(4,1)/50(3,1) symmetry. In the following we will break this symmetry
explicitly at tree-level, a possible mechanism which could induce the Lorentz symmetry
breaking as a spontaneous breaking will be discussed in section 4.7. The most general 5D
Lorentz-breaking effective Lagrangian density, gauge invariant and mirror symmetric, up
to dimension d < 6 operators, is the following

L =L+ Ly +6(y) S + 8y — TR) s, (4.1.2)
with

1 ; 1
gg = Z [_ ETI‘GWVGWV - pSTI G'LH5GW - Z-Fz VFWU - ‘2—F FWE’:]

i=1,2
—-;—T&' F F* — p2 Ty FysF* (4.1.3)
Ly=> > { [i4(As) + kaDs(Ai)ys] ¥F +T; [i Da(Ai) + kaDs(Ai)ys] B
i=1,2a=tb
~My (T + T} (4.1.4)
Lo = Qrils(AL)QL + IriP4(A4)tr + briDa(AL bR
+ (efQ U + QU8 + ebTp T + e3br¥s +he) + 2. (4.1.5)

In eq. (4.1.3), we have denoted by G; = DA, the gluon field strengths for SU(3);,s
and for simplicity we have not written the ghost Lagrangian and the gauge-fixing terms.
For the same reason, in eqgs. (4.1.4) and (4.1.5) we have only schematically written the
dependencies of the covariant derivatives on the gauge fields and in eq. (4.1.5) we have
not distinguished the doublet and singlet components of the bulk fermions, denoting all of *
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them simply as \IﬂfF and \I!i Notice that ¥, is the only bulk fermion that can have a mass-
term mixing with the localized fields, since mixing with ¥_ and U_ is forbidden by the
mirror symmetry and the relevant components of EL;. vanish at y = 0 due to the boundary
conditions. Extra brane operators, such as for instance localized kinetic terms, are included
in % and 2. Additional Lorentz violating bulk operators like U5, VO, or UilPyy*T
can be forbidden by requiring invariance under the inversion of all spatial (including the
compact one) coordinates, under which any fermion transforms as U — v°®. This Zsy
symmetry is a remnant of the broken SO(4,1)/SO(3,1) Lorentz generators. Notice that
our choice of U(1) charges allows mixing of the top quark with a bulk fermion in the 3
while the bottom couples with a 6 of SU(3),. In the model presented in the previous
chapter, the choice of taking bulk fermions neutral under the U(1) led to the opposite
situation. As we will see, this greatly reduces the deviation from the SM of the Zbrbr
coupling (see [26]), which becomes negligible.

Strictly speaking, the Lagrangian (4.1.2) is not the most general one, since we are
neglecting all bulk terms which are odd under the y — —y parity transformation and can
be introduced if multiplied by odd couplings. If not introduced, such couplings are not
generated and thus can consistently be ignored. ,

A detailed study of the model using the general Lagrangian (4.1.2) is a too complicated
task. For this reason, we take k, = Ea which considerably simplifies the analysis® and set
pw = 1. The latter choice can always be performed without loss of generality by rescaling
the compact coordinate, and hence the radius of compactification as well as the other
parameters of the theory.* Moreover, we neglect all the localized operators which are
encoded in .,S?o and ,5?“. The latter simplification requires a better justification that we
postpone to the section 4.3.

4.2 Mass Spectrum and Higgs Potential

In this section we will describe the mass spectrum of the model. Of course, the introduction
of the Zy symmetry and of the Lorentz-breaking parameters determines deep changes in
the spectrum with respect to the one reported in section 3.3 and section 3.4.

In particular the Lorentz violating factor p? distorts the spectrum of the KK gauge
bosons, so that the analytic formulae for the SU(3), x U(1)+ gauge bosons are slightly
involved.® The only unperturbed tower is the one associated to the W boson, whose

31t should be emphasized that there is no fine-tuning associated to k /E and thus this choice represents
only a technical simplification [27].

“Strictly speaking, in a UV completion where the theory is coupled to gravity and the Lorentz violation
is, for instance, due to a flux background (see section 4.7 and ref. [26]), p, cannot be rescaled away by
redefining the radius of compactification, since the latter becomes dynamical and p., essentially corresponds
to a new coupling in the theory. In our context, however, R is simply a free parameter.

®In the case in which p = 1 the mass spectrum clearly coincides with the one reported in section 3.4.
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masses are mn, = my + n/R, where the W mass is given by the usual formula

My = - (4.2.1)
The mass spectra of the KK towers associated to the U(1)_ gauge field A_ and to the &
gluons are trivial and given by mn = (n+ 1/2)p/R for U(1)—, my = nps/R for SU(3)+,s
and m, = (n + 1/2)ps/R for SU(3)_ s
As we did in the previous chapter, we can adopt the holographic point of view to
describe the gauge sector of the model and to compute the Higgs effective potential. The
only gauge fields which contribute to the Higgs potential are Ay, associated to SU(3)w,
and A, associated to U(1)+. The relevant part of the holographic effective action is given
by (compare eq. (3.4.1))

P [ cos(2ma) — cosh(2pmR)
Z9= 55 { sinh(2pmR)

1 [1—4cosh(2pmR) + 3cos(4mar) o s 9 prR .
4p(3g: — AY
12g2 { sinh(2p7R) gys + 4p(395 — gys) tan ; AY

3 — 4cosh(2p7R) +cos(4ma) 3 ,3 | gvs _SiD 2(2ra) Y 43 3.7
A+ == (A .
+ 4sinh(2pmR) Ay gs 2sinh(2pmR) (4,40 + 4,47)

(AL A, + ALAD) (4.2.2)

From the effective holographic Lagrangian we can simply derive the gauge contribution to
the Higgs effective potential:

Vo(a) = g / ((21 ) log [495 sinh (rqR) cosh (wqR/p) ( cos (4ma) — cosh (2rqR))

+3g52psinh (mqR/p) cosh (7gR) (3 + cos (4mar) — 4 cosh (27qu))]
3 d* dq
(2m)*

Notice that the above integrals are divergent but they can be made finite by adding

log [(cos (2wa) — cosh (27qu))2] + “a-ind. terms” . (4.2.3)

suitable a-independent terms which we have not written for simplicity. As explained
in section 2.3.1, the spectrum of the KK states can be easily extracted from the effective
action in eq. (4.2.2) or from the expression of effective potential in eq. (4.2.3). In particular
the KK masses are given by the zeroes of the functions in the square brackets in eq. (4.2.3)
(when the 4D momentum is rotated back to the Minkowskian). The zeroes of the last
line correspond to the unperturbed aforementioned W tower, while the expression in the
first two lines provides the mass equation for the neutral gauge boson sector. Notice
that for p # 1 the Z boson tower can not be separated from the ones associated to the
photon and to Ax; all of them arise from the zeroes of the first term in eq. (4.2.3). The
solution at ¢ = 0 corresponds to the physical massless photon while the first non-trivial
one determines the Z boson mass.
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4.2.1 The Fermionic Sector

Let us now consider the fermionic sector of the model. In the bulk couples of periodic and
antiperiodic fields related by the mirror symmetry are present. First of all we will discuss
the spectrum of the bulk fields neglecting the boundary couplings which mix the periodic
fermions with the localized fields. Using the holographic description as in the last chapter
(see egs. (3.3.4) and (3.3.5)), one can straightforwardly obtain the 4D spectrum of the KK
modes. For the U* fields the KK towers are given by

72
(mg))2 — k?"(‘%—;)— +M£2’ n e [0,"‘00]’

) (4.2.4)
1
(mp)? =l 22
R2
where n = 0 for periodic fermions and = 1 for antiperiodic fermions. Analogously, for
the U fields one finds:

+ Mt2 3 ne ["'007 +OO] )

(n+ 2 +20a)°
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n+2+a)
(mg))2=k§( ]222 )

+ M, (mif))2=k,‘,2 +M?, né€[-o0,4+x)],
2
+ 1
) = 2 =R o, ne o, +od].
(4.2.5)
The bulk fermion contribution to the Higgs effective potential is now given by

where the expression for the contribution for a pair of (periodic or antiperiodic) modes
with charge ¢ is
4 > 2
Vi (qor) = —8—%%—%—1 g—:l n=s (1 - Qn% + %nz—;—i) e2"% cos [27mq(oz + %)] . (4.2.7)
Comparing eq. (4.2.7) with the fermion contribution to the potential in the Lorentz pre-
serving case (eq. (3.5.8)), it is easily seen that a Lorentz-breaking paremater k > 1 deter-
mines a great enhancement of the potential. The potential gets larger by a factor k% and
moreover the exponential suppression with respect to the bulk mass A gets milder.
Notice that the presence of periodic and antiperiodic fermions is necessary to obtain
small values of amin. Indeed, as one can see from eq. (4.2.7), they permit a cancellation of
the cosine terms with odd n in the sum. This generates a partial cancellation of the leading
induced Higgs mass term, lowering the position of the minimum of the potential. The Z5
mirror symmetry plays an essential role in this mechanism. In fact it ensures that periodic
and antiperiodic fermions have exactly the same mass and Lorentz breaking parameters.
If the antiperiodic bulk fermions are simply introduced into the theory without the mirror
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symmetry, as in [26], a certain degree of tuning among the parameters for periodic and
antiperiodic fields is required to obtain an acceptable cancellation of the Higgs mass term.

Of course, to compute the full fermionic contribution to the Higgs effective potential
and the exact spectrum of the periodic fields we must include also the contribution of the
boundary fermions. The corrections due to the localized fields can be obtained computing
the holographic action as described in section 3.3. We find that the contributions to the
effective potential are given by

_ o0 2 t2 b2 b
o = e [ [T o i (F.o) e ()]

1=

+f[ [;f; (%,a) H : (4.2.8)

2 t b2 b
H[l-f-éﬂ 2i f0<x >+5zzzz bfo(m >

=1

b2 20 eb2
+ Wfo( 201)] + H [Zézzkbxfl( Qa) H . (4.2.9)

The exact spectrum can be extracted form the potential, and is simply given by the

V(o) = —~ [ dza?
b(a)—m Od:rx In

zeroes of the arguments of the logarithms (with the 4D momentum rotated back to the
Minkowskian) in egs. (4.2.8) and (4.2.9).

It is important to study in detail the masses of the SM fermions. A very good ap-
proximation of the top and bottom quark masses is obtained neglecting the momentum
dependence in the mass equation. In this way we get

mg

Ny

, a=tb (4.2.10)

e =1

where

_ eleb A
mO - :lut'fl—R fl( 1]
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b\ 532 )\b 6{)2 )\b
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Now for small o the top mass is given by

o~

ER

=

S.N@

22/ ks

sinh(2);/kt) (4.212)

me = kymayy
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Figure 4.1: Distribution of a, for uniformly distributed input parameters in the ranges 0.5 <
p<2,025<Ap<1.25,2<k; <3,0.75 <k, <15 075 <ep® < 2.5, 01 <er? < 0.45.

With respect to the original model without Lorentz breaking (eq. (3.3.15)), we see that
the top mass is enhanced by a factor k;, so that k¢ ~ 2 — 3 is needed to get the top mass
in the correct range.%

For a large range of the microscopic parameters, the bulk-boundary fermion system
also gives the lightest new particles of our model. Such states are colored fermions with
a mass of order Mj, and, in particular, before EWSB, they are given by an SU(2) triplet
with hypercharge ¥ = 2/3, a doublet with ¥ = —1/6 and a singlet with ¥ = —1/3. For
the typical values of the parameters needed to get a realistic model, the mass of these
states is of order 1.5 — 2 TeV.

4.2.2 Distribution of the Minima and Higgs Mass

As discussed before, the presence of bulk antiperiodic fermions, whose coupling with the
Higgs are the same as for periodic fermions due to the mirror symmetry, allows for a
natural partial cancellation of the leading Higgs mass terms in the potential, lowering the
position of its global minimum ami,. This can be seen from the histogram in fig. 4.1,
which shows the distribution p(amin) for random (uniformly distributed) values of the
input parameters, chosen in the ranges which give the correct order of magnitude for
the top and bottom masses. We are neglecting the points with unbroken EW symmetry
(@min = 0), which are about half of the total. An important feature of the distribution in
fig. 4.1 is the fact that a lower bound on the possible values of i, is not present in this
case, differently from what happens in the model of [15] presented in the last chapter in

®Notice that the top mass in eq. (4.2.12) for k=1 is a factor v/2 smaller than the one in eq. (3.3.15).
This is due to the different choice of the representations of the bulk fields with respect to the model
presented in chapter 3.
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Figure 4.2: Higgs and top masses for points with amin < 0.05. Different colors label different
values of k;. The region among the two vertical black lines corresponds to the physical top mass.

which @min = 0.1. The possibility of getting arbitrary small values of oy is obviously
extremely important. In fact it allows to get a sizable gap between the W mass and
the compactification scale 1/R, moreover small values of oy, is important to lower the
corrections to the SM observables.

Another important quantity is the Higgs mass, which can be computed from the ef-
fective potential by eq. (3.5.11). The full Higgs effective potential is dominated by the
fermion contribution and the enhancement due to the Lorentz breaking parameters also
help in getting a reasonable Higgs mass. In fig. 4.2 the Higgs mass is plotted versus the
top one and different colors label different ranges of the input parameter k;. We see how
realistic values of m; can be obtained already for k; = 2. The two vertical black lines
in fig. 4.2 identify the region of physical top mass. This is taken to be around 150 GeV,
which is the value one gets by running the physical top mass using the SM RGE equations
up to the scale 1/R. From fig. 4.2 we see that the Higgs mass, for acceptable top masses,
lies in the [100, 200] GeV range.

4.3 Estimate of the Cut-Off and Loop Corrections

Let us now discuss the cut-off of the model. As in the last chapter, we define A as the energy
scale at which the one-loop vacuum polarization corrections for propagators is of order
of the tree-level terms. The relevant gauge fields are those of SU(3);s and SU(3)y, the
Abelian ones associated to U(1)1,2 typically giving smaller corrections for any reasonable
choice of p?. Due to the Lorentz violation, however, the transverse (4,) and longitudinal
(Ay) gauge bosons couple differently between themselves and with matter, so that they
should be treated separately. We denote by Ag” ), Agy), Agff ) and Aq(f,j ) the resulting cut-
offs (due to the mirror symmetry, the cut-offs associated to the two SU(3)s gauge groups
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coincide). Again we assume that the gauge contribution is approximately of the same
order as that of the fermions associated to the first two generations. In this case, by
taking k; ~ 2 + 3, ky = 1, which are the typical phenomenological values, we get

1 /12 24 6

(w) Pt il R W ~ 2
(AL R)62(kt+kb) RICIN4
3p2

(A&/U%)%i (12kt + 24kb) ~i s AP~
12 L 60 5

(AW R) 2 (12kt $60k) ~1 = AP ~ %. 4.3.1)

1
6 2
As can be seen from eq. (4.3.1), AW and AW (both for the strong and weak coupling
case) scale respectively as k and 1/k in the Lorentz violating parameters. This is easily
understood by noting that the loop factor scales as 1/k [26]. Thus A¥) ~ 1/a x k ~ k
and AW ~ 1/(ak?®) x k ~ 1/k. Due to the group factor of the SU(3), symmetric
representation, the electroweak and strong interactions give comparable values for the
cut-off. Independently of the strong interactions,” the cut-off in the model is quite low:
A ~ 4/R. The doubling of the fields due to the mirror symmetry has the strongest impact,
since it decreases the electroweak cut-off estimate by a factor of 2. As far as the Lorentz
violation is concerned, we see that eq. (4.3.1) gives, for k; = kp = ps = 1, Agy) ~ 3/R.
In the absence of Lorentz breaking, therefore, the final cut-off would have been as low as
3/R. Even though eq. (4.3.1) only provides an order-of-magnitude estimate, we can use
it to place upper bounds on the allowed values of the Lorentz violating parameters k; and
ky. To ensure A 2 4/R, we impose k; < 3 and kp < 1.2.

Once we have an estimate for the value of the cut-off in the theory, we can also
give an estimate of the natural size of the coefficients of the operators appearing in the
Lagrangian (4.1.2). In particular, since we have neglected them, it is important to see
the effect of the localized operators appearing in ,@0,,{ when their coefficients are set to
their natural value. At one-loop level, several localized kinetic operators are generated at
the fixed points. In the fermion sector, which appears to be the most relevant since it
almost completely determines the Higgs potential, for simplicity we consider operators of
the form8

Gom = ab Fids v, (4.3.2)
g

"Since p? is essentially a free parameter in our considerations, we could anyhow increase A&” by taking
p? significantly larger than unity.

8 Among all possible localized operators, those with derivatives along the internal dimension require
special care and are more complicated to handle [64]. It has been pointed out in [65] that their effect can
however be eliminated by suitable field redefinitions (see also [66]).
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where 1 indicates here the components of the bulk fields which are non-vanishing at the
y = 0 or y = 7R boundaries. Such operators are logarithmically divergent at one-loop
level and thus not very sensitive to the cut-off scale; anyhow, computing their coefficients
af)m using a PV regularization and setting A ~ 4/R, they turn out to be of order 1073R.
By including these terms in the full Lagrangian, it can be verified that the shape of the
effective potential, the Higgs and the fermion masses receive very small (of order per-
mille) corrections [27]. Localized operators can however sizeably affect the position of the
minimum of the effective potential when it is tuned to assume small values. We will came
back on this in section 4.5.

Finally, let us comment on the predictability of the Higgs mass at higher loops. Al-
though finite at one-loop level, the Higgs mass will of course develop divergences at higher
orders, which require the introduction of various counterterms (see [67] for a two-loop
computation of the Higgs mass term). The crucial point of identifying the Higgs with a
Wilson line phase is the impossibility of having a local mass counterterm at any order
in perturbation theory. This is true both in the Lorentz invariant and in the Lorentz
breaking case. For this reason, the Higgs mass is computable. In the Lorentz invariant
case, it weakly depends on the remaining counterterms needed to cancel divergences loop
by loop. In the Lorentz breaking case, the Higgs mass still weakly depends on higher-loop
Couhterterms, with the exception of p2, which is an arbitrary parameter directly entering
in the Higgs mass formula. However, as we have already pointed out, p,, always enters
in any physical observable together with R, so that it can be rescaled by redefining the
radius of compactification. Thanks to this property, the Higgs mass remains computable
also in a Lorentz non-invariant scenario.

4.4 Phenomenological Bounds

A full and systematic analysis of all the new physical effects predicted by the model is a
quite complicated task, mainly because it greatly depends on the the flavour structure of
the model. For simplicity, we will focus in the following on flavour and CP conserving new
physics effects, and we will only give an order-of-magnitude estimate of the bounds arising
from Flavour Changing Neutral Currents (FCNC). Due to the strong constraints on FCNC
and CP violation in the SM, this is a drastic but reasonable simplification, since flavour
does not play an important role in the mechanism of EWSB. The only exception to this
flavour universality is given by the third quark family, that has to be treated separately.
The analysis of flavour and CP conserving new physics effects requires in general the
introduction of 18 dimension 6 operators in the SM to fit the data (see e.g. [68]). It
has recently been pointed out in [69] that, out of these 18 operators, only 10 are sensibly
constrained. In a given basis (see [69] for details), 7 of these operators are parametrized
by the universal parameters S, T, U, V, X, Wand Y introduced in [44] extending the
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Figure 4.3: The tree-level corrections to the Zby by, vertex and to the by propagator. The first
distortion of the %Lb L coupling is generated through the Higgs-mediated mixing of by, with the
component (@) of the SU(2) triplet which has T = —1, and with the singlet x (T3 = 0), both
coming from ;. The second correction is due to mixing of the KK tower of Ax with the Z boson.

usual 5, T, U basis [70]. The remaining 3 operators are parametrized by the distortion & [
(or the e, parameter [71]) of the A brbr, coupling and other two parameters which describe
the deviation of the up and down quark couplings to the A holographic boson.

4.4.1 Direct Corrections: the Z\ELbL Vertex and FCNC

Being all light fermions almost completely localized at y = 0 (see fig. F.2 in appendix F for
a quantitative idea of this effect), their couplings with the SM gauge fields are universal
and not significantly distorted. Thus the two parameters describing the deviations of
the up and down quark couplings to Z are totally negligible. On the contrary, as in
other models based on extra dimensions [72, 19], the bottom quark coupling is typically
distorted by new physics (the top even more, but its coupling to the Z is at the moment
practically unconstrained). Moreover, in many cases the corrections to dgp turn out to
give strong constraints on the models. For example in a previous version [26] of the model
presented in this chapter, in which the top and bottom quark were coupled with bulk
fermions respectively in the symmetric and in the fundamental representation of SU(3)y,
(as in the model described in chapter 3), the %LbL corrections were the source of the
tightest bounds on the parameter space. As we will now see in some detail, the simple
idea of reversing the mixing of the localized bottom and top quark with respect to [26]
strongly reduces dg.

To be more precise, the distortion of the Z by by, coupling is due to two effects. One
of those is the mass-term mixing of the by with the KK tower of the SU(2),, triplet and
singlet fermions coming from the bulk field in the rep. 6 of SU(3),,. The second distortion
is a consequence of the delocalization of bz, which then also couples to gauge bosons
components orthogonal to Z. Both effects are proportional to the mixing parameters e’i’b.
The tree-level diagrams which contribute to the corrections of the Zbzby, coupling are
shown in figure 4.3. Interestingly enough, at leading order in oo = myR , the former
distortion exactly vanishes in the (very good) approximation of neglecting the bottom
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mass. This can be understood by noting that the by mixes with the component of an
SU(2)y, triplet which has T35 = —1 and with a singlet (T3 = 0). The mixing with the triplet
state leads to an increase (in magnitude) of gp, whereas the singlet makes it decrease.
The two effects turn out to exactly compensate each other. The distortion due to the
delocalization of by, is instead non-vanishing. An explicit computation along the lines of
the one reported in appendix E gives, at leading order in a:

SM 2,2 i 2
gy T g} Aq
Sgp=gp— gg = —L—s— > - (——-) , 4.4.1

b AZbeosow S X \Ki (44.1)

where F(z) is defined in eq. (E.0.10) and Z? is the wave-function normalization factor
needed to canonically normalize the by, field, defined in the eq. (4.2.11). From a KK point
of view, the distortion is caused by the KK tower of the Ax gauge field, which mixes
to the lowest mass eigenstate of the Z boson and couples to by, in the bulk. Since F(z)
is a positive function, dg, < 0. In the typical range of parameters of phenomenological
interest, —0gp < 202 and it comfortably lies inside the experimentally allowed region (at
1 o form the central value) if o < 3 x 1072, As we will now discuss, stronger bounds
on « arise from universal corrections and the non-universal corrections to 7b bz, can be
neglected in the global fit.

Now we will briefly consider the issue of the FCNC which are typically generated at
tree-level when integrating out the massive KK modes. For simplicity, consider here the
case in which the bulk-to-boundary couplings &; are diagonal in flavour space and the
non-trivial flavour structure, as described in section 3.3.2, is totally encoded in non-trivial
bulk mass matrices, which can now involve not only the bulk mass terms M; but also the
Lorentz violating factors k;. The FCNC are induced by tree-level couplings which arise
from diagrams such as the one on the left of fig. 4.3, in which the non-standard fermions
switches at some point to the KK mode of a different family.

The strongest bounds on the couplings of FCNC are the ones involving d and s quarks,
< 107°. In particular, one should worry that, in presence of a generic flavour mixing, a
light quark (d or s) can first switch to a state of the heavy KK tower of the corresponding
bulk fermions which then switches to the much lighter states of the KK towers of the
third quark generation. The latter emits a Z boson and then switches to another heavy
KK tower and thus eventually to another light quark (s or d), resulting in a FCNC. By a
rough estimate [26], one has

E?E’i" My 2
grene ™~ Y3 <M> ) (4.4.2)

where M is the mass of the lightest non-SM fermion, which is typically of order M), (see
section 4.2). Considering that for the c and the u quarks one can take A°A* 2 10 and, at
the same time, one can naturally take €]*° ~ 0.1, it is reasonable to expect that grone can
be made smaller than 10 or 107°.
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FCNC are also induced by the exchange of the massive KK modes of the Z gauge boson
and gluons [61], due to the non-universality of their couplings to different families. This
effect, which is present even in the absence of EWSB, comes from the fact that quarks of
different families have different wave functions. The fact that different generations have
the same distribution of localized fields in the model we discussed, can however strongly
suppress this effect. Flavour non-universality in the KK couplings, indeed, arises in this
case only from diagrams in which the brane quark ¢ is changed to a bulk KK fermion,
which emits a KK gauge boson, and then back to the brane. The effective coupling of this
diagram can be estimated as [26]

0gxx £92 ‘

For the light families, if €2 is moderately small (< 1071), we expect the coupling (4.4.3) to
be naturally of order of 1073 — 1074, since A\92 > 10. In this way, the resulting FCNC —
due to their stronger couplings, gluons give the dominant contribution — is of the same
order of magnitude of that estimated for the Z and thus within the current limits.

4.4.2 Phenomenological Constraints

Having shown that the distortions of the Z boson couplings with the quarks do not impose
any relevant constraint on the model, and the FCNC are under control, we are then left
with the 7 universal parameters §, f, U ,V, X, WandY.

Before discussing the constraints which arise from the fit on the EW precision mea-
surements, it is useful to review briefly the definition of the universal parameters [44, 69].
These parameters can be used to describe the corrections due to new Physics in the class
of “universal” theories in which the deviations from the SM reside in the self-energies of
the vector bosons. The category of universal models is quite broad and in particular it
includes the possibility of having new heavy vector states as long as they are coupled to
the light SM fermions through the usual SU(2) x U(1)y currents. The gauge interactions
of the light fermions are thus of the form

Line =0y (91285 + g VAT ) ¥, (4.4.4)

where A\Z and A Z are a combination of the light and the heavy gauge bosons corresponding
to the SU(2) x U(1l)y gauge group. Notice that in the model we are considering in
this chapter the light SM fermions are nearly exactly localized at the UV boundary (see
appendix F) so that the A\Z and A EL/ fields coincide with the holographic electoweak bosons
which we presented in chapter 2.

The universal parameters are defined starting from the inverse propagators II; ; of the
holographic gauge bosons and considering an expansion in the momentum p? up to O(p?).
This expansion contains 12 parameters, however three of them can be reabsorbed in the
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definitions of the SM parameters g, ¢’ and v, and two others are determined requiring the
photon to be massless and to couple with @ = ¢3 + Y. The remaining 7 parameters are

S = g—,Hgy(O) (V= %mw( 33(0) — M4 yy- (0))

7= D0 = Owew-(0) - ( ) (4.4.5)
m3, Y = QmW vy (0)

U= -((0) ~ Wyysyy(0)) | W= §mgvn33(0)

The corrections to the universal parameters are induced by the dimension 6 operators

Osy = (HIr°H)F8,B¥, Oy =|H'D,H|?

(4.4.6)
Oyy = (-DpB,uv)2/27 O3z = (DPFﬁu)2/27

which affect respectively IIgy, II33 — Iyy+y -, IIyy and II5; (in our notation 7% are the
Pauli matrices).

Let us now discuss the constraints on the model presented in this chapter. From the
holographic Lagrangian in eq. (4.2.2), one easily finds, at tree-level and at leading order

in a,
(a2, (. 14
.i.. i X= VT — tan(fy)a*r
T=C¥27T2 2
P sin (Hw)+1+2COS(29w) o2 4.4.7

~ 2 4 4 Y = 2(p . (4.47)
U:-—-?:CYW 9'0 COS(w)

14 _1 2,2
V=Ea6776 \W_gaﬂ-

Since o has to roughly be of order 1072, we see from eq. (4.4.7) that the 3 parameters [7',
V and X are totally negligible. This is actually expected for any universal theory [44].
Notice that the universal parameters essentially depend only on a, the other parameter
entering is p, which affects only Y.

In fig. 4.4, we report the constraints on the Higgs mass and the compactification scale
due to all electroweak flavour and CP conserving observables, obtained by a x? fit using
the values in eq. (4.4.7) [27).° To better visualize the results, the value of the p parameter
has been fixed to the Lorentz-symmetric value (p = 1), hence a x2 fit with 2 d.o.f. has
been used. The fit essentially does not depend on p, as can be checked determining p by
a minimization of the x? function, which gives a plot which is almost indistinguishable
from that reported in fig. 4.4. Due to their controversial interpretation (see e.g. [73]), the
NuTeV data have been excluded from the fit (nevertheless, the inclusion of such experiment
leaves the results essentially unchanged). From fig. 4.4 one can extract a lower bound on

9See table 2 of [44] for a detailed list of the observables included in the fit.
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Figure 4.4: Constraints coming from a x? fit on the EW precision tests. The contours represent
the allowed regions in the (1/R, my) plane at 68 %, 90 % and 99 % confidence level (2 d.o.f.). The
shaded band shows the experimentally excluded values for the Higgs mass (my < 115 GeV). The
blue dots represent the predictions of our model for different values of the microscopic parameters
(only points with the correct top and bottom masses are plotted).

the compactification scale 1/R 2 4 — 5 TeV (which corresponds to a < 0.016 — 0.02) and
an upper bound on the Higgs mass which varies from my < 600 GeV at 1/R ~ 4 TeV to
my < 250 GeV for 1/R > 10 TeV. Notice that the values for §, W and Y (for p = 1)
found in eq. (4.4.7) are exactly those expected in a generic 5D theory with gauge bosons
and Higgs in the bulk, as reported in eq. (20) of [44]. On the contrary, the T parameter in
eq. (4.4.7) is much bigger and is essentially due to the anomalous gauge field Ax. A heavy
Higgs is allowed in the model because of this relatively high value of the T parameter,
which compensates the effects of a high Higgs mass.

Analyzing the models obtained by a random scan of the microscopic parameters, it can
be shown that the bound on the compactification scale can be easily fulfilled if a certain
fine-tuning on the parameters is allowed. On the other hand, the bounds on the Higgs
mass does not require any tuning.

4.5 Sensitivity, Predictivity and Fine-Tuning

As expected, the constraints arising from the electroweak observables require a quite strin-
gent bound, 1/R 2 4.5 TeV, on the size of the compactification scale. Differently from
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Figure 4.5: Inverse sensitivity for those points - Figure 4.6: Bayesian measure of the fine-tuning
which pass the x? test. at fixed (black) and not fixed (red) top mass.

scenarios of GHU in flat space considered in the previous chapter, the present model can
satisfy such a bound (see fig. 4.4) for suitable choices of the microscopic input parameters.
It is clear, however, that a certain cancellation (fine-tuning) must be at work in the Higgs
potential to make its minimum a = my R as low as 0.018.

The fine-tuning is commonly related [74] to the sensitivity of an observable (o, in our
case) with respect to variations of the microscopic input parameters.' Following [27], we

define
Ologa

oe] } , (4.5.1)

as the maximum of the logarithmic derivatives of a with respect to the various input

CEM&X{

parameters /. The fine-tuning, defined as f = 1/C, is plotted in fig. 4.5 for the points
which pass the x? test. For 1/R ~ 4.5 TeV, the fine-tuning of our model is 1 %.
According to a more refined definition [75], the fine-tuning should be intended as an
estimate of how unlike is a given value for an observable. This definition is not directly
related to the sensitivity, even though it reduces to f = 1/C in many common cases. In
this framework, the fine-tuning is computed from the probability distribution p(c) of the
output observable for “reasonable” distributions of the input microscopic parameters. One
defines [27]
ap(a)
{p(e))’

where'! (ap(a)) = [doap(a)]®. The choice of the range of variation of the input pa-

f= (4.5.2)

rameters'? is the strongest ambiguity of the procedure, and must reflect physically well

1%Tn the particular case at hand, the sensitivity of « is related to the cancellation of the Higgs mass term
in the effective potential. As a consequence, one expects the amount of tuning to scale roughly as o?, as
confirmed numerically.

" This definition of (ap) is not precisely the one given in [75]. The difference however disappears when,
as in case at hand, the input variables are uniformly distributed.

12The results are almost independent of the detailed form of the probability distribution of the input.
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motivated assumptions. The distribution shown in fig. 4.1, which we will use, has been
obtained with quite generic ranges, which however reflect our prejudice on the physical
size of the top and bottom quark masses. Even though this does not make an important
difference (see fig. 4.6), we can make our assumption more precise by further restricting
to points in which the top (not the b, due to the lack of statistic) has the correct mass.
The straightforward application of eq. (4.5.2) gives rise to the fine-tuning plot of fig. 4.6.
At 1/R = 4.5 TeV this prescription gives a fine-tuning of 10 %. One could also relax the
assumption of having EWSB. Since the fraction of points without EWSB is about one half
of the total, one could argue, very roughly, that the resulting fine-tuning will increase of a
factor two and be of order 5 %. This result strongly depends on the assumption we did on
the fermion mass spectrum. In practice, what we observe is a certain correlation among
the requirements of having a massive top and a high compactification scale, in the sense
that points with massive top (and light b) also prefer to have small minima.

Independently on how one defines the fine-tuning, however, the high value of C at small
o represents a problem by itself. The high sensitivity, indeed, makes «. unstable against
quantum corrections or deformations of the Lagrangian with the inclusion of new (small)
operators. The effects on the observables of localized kinetic terms for bulk fermions,
as described in section 4.3, which lead to very small corrections to all other observables
considered in this paper, can completely destabilize the compactification scale at small
a. A similar effect is found when including in the effective potential the very small
contributions which come from the light fermion families. For oo ~ 0.02 the corrections
which come in both cases are of order 50 %, so that the compactification radius is effectively
not predicted in terms of the microscopic parameters of the model.

4.6 A Dark Matter Candidate

As we anticipated, the presence of the Z, mirror symmetry has interesting consequences
from a cosmological point of view. Given the fact that all the SM particles are even under
the symmetry, the lightest Zy odd KK particle (LKP) in the model is absolutely stable
and can possibly give a viable dark matter candidate. In section 4.1 we showed that the
Zj odd states are given by the KK towers of the antiperiodic fields. The lightest of such
states, in a large part of the parameter space, is given by the first KK mode (A®) of
the antiperiodic field A_ associated to the U(1);2 gauge subgroups. The mass of this
state, which clearly is the DM candidate of the model, is p/(2R). The electroweak bounds
discussed in section 4.4 require A" to be heavier than about 2 TeV.13

AW has very small couplings with the SM states and is technically a Weakly Interacting

This is because the ranges which are considered are not so wide. Uniform distributions have been used to

derive the results which follow.
Y Following [30], we will assume p =~ 1.
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Massive Particle (WIMP), however it is considerably more massive than usual WIMP DM
candidates. Due to its large mass, A”) has a small pair annihilation rate and this would
lead to a too early departure from thermal equilibrium and to an overproduction of DM
by one order of magnitude or more [30]. On the other hand, the model predicts many
other extra Zs-odd fields of mass comparable with the DM one, and in particular the
next—to-lightest KK particle (NLKP) is often a strongly interacting state. If the mass
splitting between LKP and NLKP is small enough, coannihilation effects can take place
delaying the decoupling and lowering the LKP relic density.

In the following we will present the results obtained in [30], where is shown that
the coannihilation effects can actually lead to realistic relic abundances. Two different
scenarios have been analyzed: the first one is given by the model described in this chapter,
while the second is a variant of the latter in which the Zs mirror symmetry is assumed
to act only on the U(1) gauge subgroup and not on the colour group SU(3)s, so that the
whole gauge group is G = SU(3)s x SU(3)w x U(1)1 x U(1)s.

Let us start with the second case, which is slightly simpler. In this set-up the NLKP is
a Zo odd fermion b arising from the KK tower associated to the bottom quark. Of course
a necessary condition to have coannihilations between the LKP and b is a small mass
difference between the two states: (mb(l) -m A(l))/ m,@ < 0.1. Even if this condition
is fulfilled, in general, coannihilation effects are too small to get a realistic relic density.
However in some regions of the parameter space, the b") pair annihilation rate can be
greatly enhanced by resonance effects. In particular the s-channel annihilation diagram,
with the first KK mode (gﬁ)) of the periodic gluon tower, becomes resonant for splittings

2mb(_1) — mgﬁf)] below the gf:) decay width. In [30] it has been shown that this effects can

actually lead to an acceptable relic density. Of course, the requirement of having a small
mass splitting results in a fine-tuning on the model which has been estimated to be in the
range 3 % — 10 % depending on the region of the parameter space one considers.

In the case in which the SU(3)s gauge subgroup is doubled by the Zs symmetry, there
are two particles which can coannihilate with the DM candidate A® | namely the b
state, as in the previous set-up, and the first KK mode (g") of the antiperiodic gluon
field. Coannihilations lead to an acceptable reduction of the relic density in two different
cases. The first case is analogous to the one described for the previous set-up, namely
when AY and b are nearly degenerate in mass and the s-channel annihilation diagram
for b is in resonance. The second case is when A coannihilates only with ¢, which is
possible for a mass splitting (mg(n —-m A(1))/ m,a < 0.06. In this case the annihilation

rate for g is large enough to generate an acceptable suppression of the LKP relic density.
Also in this set-up the amount of fine-tuning required to obtain a realistic amount of DM
is in the range 3 % — 10 %.

In both models considered before, an upper bound on the LKP particle is found, namely
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™, < 5 TeV. Putting together the results obtained in the DM analysis with the study
of the fine-tuning deriving from the EW precision tests, one finds that the “preferred”
value of the LKP mass is in the range 2.5 — 3 TeV.

Unfortunately, the phenomenology of DM searches within the models considered here
seems less appealing than in other possible scenarios. In particular the interactions of the
LKP with ordinary matter are very suppressed, thus hindering the possibility of a direct
detection. Moreover the zero-temperature annihilation rate is particularly small, making
it hard to see annihilation signals in dark matter halos.

4.7 The Lorentz Breaking as a Spontaneous Breaking

In this chapter we have essentially shown how it is possible to get a realistic model with
gauge-Higgs unification at the price of explicitly breaking the SO(4,1)/50(3,1) Lorentz
generators. In light of this breaking, one could wonder whether it is correct to consider this
model as a “canonical” 5D theory or not. Indeed, contrary to the usual “spontaneous”
breaking of the SO(4,1)/S0(3,1) Lorentz symmetry induced by the compactification,
which implies that at short distances Az <« R the model is effectively a 5D Lorentz-
invariant theory (in the bulk), the explicit breaking we advocate implies that at arbitrarily
short scales the SO(4,1) symmetry is not recovered. This is clearly a theoretical issue,
which is mainly related to the possible existence and form of an underlying UV completion
of the model. Moreover, the concept of gauge-Higgs unification itself relies on the existence
of a 5D interpretation. It is clear that we can always consider the model as an IR effective
description of a 4D moose theory for which the “accidental” SO(4,1) Lorentz symmetry
is not recovered in the fermionic sector [7]. From this point of view, the model would
resemble more a moose-based little Higgs model rather than a gauge-Higgs unification
model. We would like to point out, however, that the SO(4, 1) Lorentz breaking can have
a simple origin in the context of a purely 5D theory.

A particularly elegant and interesting explanation is the following. Consider an axion-
like field ®, which for simplicity we take to be dimensionless, invariant under the shift
® — ® 4+ 27. In light of this shift symmetry, one can take twisted periodicity conditions
for @, which read

®(y+27R) = D(y) + 2. (4.7.1)

Scherk-Schwarz reductions of the form (4.7.1) are not new, appearing in Supergravity as
a way to obtain gauged SUGRA or theories with fluxes (see e.g. [76]). Consistency of
eq. (4.7.1) with the Zy orbifold action y — —y requires that ® should be Zy odd. This is
welcome, implying that all the excitations of ® are massive. Due to the twisted condition
(4.7.1), the VEV of ® is non-trivial. The background configuration ®p which satisfies the
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field equations of motion and eq. (4.7.1) is

Y

(I)O(y) = :'év (472)

which clearly induces a spontaneous breaking of the SO(4,1)/5S0(3, 1) Lorentz symmetry.
The Lorentz violating factors k; introduced in eq. (4.1.2) are then reinterpreted as due to
couplings involving ® and bulk fields. It turns out that if one also imposes a Zs global

symmetry under which & — —®, the lowest dimensional operators which couple ® and
bulk fields read

L oudon®TyMDVy,  Lo,doyd FPMERN (4.7.3)
fé VES

where 71 5 are dimensionless couplings and fg is the “® decay constant”. When (®) = @,
the operator (4.7.3) precisely induces the Lorentz violating terms which appear in the
Lagrangian. Since one must consider values of k; which are not close to 1, the effective
coupling constant of the operators in eq. (4.7.3) is strong (of order 1) and thus insertions
of these operators have to be resummed. This is what have been effectively done in our
previous analyses.!* Notice that eq. (4.7.2) can also be interpreted as a non-vanishing flux
for the 1-form field-strength H; = d® ~ dy or else for a non-vanishing flux for the Hodge
dual 4-form field-strength Hy ~ dz® A dz! A dz? A dzB. ‘

The above picture, which however is not necessary for the model we have presented,
shows that the Lorentz violating factors k; can have a natural origin in a 5D framework.
Finally, notice, that the factors k; effectively imply that different fermions “see” a different
radius of compactification. Their effect is then quite similar to recent ideas in the context
of Higgsless models in 5D warped models, in which it has been advocated that different
fields could propagate in internal spaces with different sizes [77].

1 0Of course, operators similar to the ones in eq. (4.7.3) involving more ®’s should be taken into account.
However, if one assumes that v1,2 are large so that one can take Rfs < 1, these are naturally suppressed.
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Chapter 5

Gauge“‘HiggS Unification at Finite
Temperature

As we have thoroughly shown in the last chapters, models with extra dimensions constitute
a concrete and reasonable proposal to explain the physics beyond the SM. Among many
different scenarios, the GHU idea, implemented either in a flat or in a warped space
context, seems to be one of the most appealing possibilities. We already presented in
detail the advantages of GHU theories showing that, by a careful modification of the basic
GHU set-up, fully realistic models can be actually constructed on a flat S* /Zg orbifold.

Many of the characteristic properties of GHU models are closely related to the identi-
fication of the Higgs VEV with a non-local Wilson line phase. This property protects the
Higgs potential from divergences thus stabilizing the EW scale, and, at the same time,
gives Yukawa coplings which are exponentially sensitive to the parameters of the model,
so that a natural hierarchy of fermion masses can be obtained. Being the Higgs potential
entirely radiatively generated, the mechanism which induces the EWSB in a GHU set-up
deeply differs from the SM one. In particular the existence of an EWSB is related to the
presence of (periodic) bulk fermions which give a negative mass contribution to the Higgs.

In the light of the success of the GHU scenario and of its peculiar properties, it is worth
investigating, along the lines of [78], the finite-temperature behaviour of these kind of
theories. In particular it is interesting to understand whether a phase transition happens
at a temperature of the order of the EW scale and what are the properties of such a
transition. Besides a purely theoretical interest, this type of analysis is also important
from a cosmological point of view. One of the main motivations to study the detailed
nature of the EWPT in the SM has been the realization that, under certain assumptions
(namely a sufficiently strong CP violation and first order phase transition), it could satisfy
the necessary requirements for baryogenesis [79]. Given the actual bounds on the value of
the Higgs mass and amount of CP violation in the SM, it has definitively established that
the SM phase transition is unable to give a successful baryogenesis.
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In simple higher dimensional scenarios in which the Higgs is realized as a 5D scalar
field, things are even worse. In fact in this case the EWPT can not be of first order [80],
thus hindering any possibility to achieve baryogenesis. On the contrary, the properties
of the finite-temperature effective potential in GHU models deeply differ from what one
usually expects either in 4D or in higher-dimensional theories. At high temperatures, it is
known that the leading boson and fermion contributions to the Higgs mass are proportional
in 4D to T? [81], while in extra dimensional theories with n compact toroidal dimensions
they are proportional to (LT)"T? [80], where L is the length of the extra circles, taken
all equal, for simplicity. In GHU models in 5D the order parameter is given by the VEV
of the Wilson line phase and its non-local nature is responsible for a radically different
behaviour at high temperatures: the fermion contribution is exponentially suppressed with
the temperature, whereas the boson contribution has a leading term proportional to T'/L
(in the 5D case L = 2w R), plus terms exponentially suppressed with T. The mass of the
Wilson line phase at zero temperature is radiatively induced and proportional to 1/ L?;
when the latter is negative, a symmetry breaking is generated, but then at temperatures
of order T ~ 1/L a phase transition occurs and the symmetry is restored. This will always
happen, due to the presence of the bosonic contribution of the 5D gauge fields.!

In this chapter we will study analytically the finite-temperature behaviour of the Higgs
potential in a general framework. For simplicity we will not include the Lorentz breaking
parameters in our analysis, nor the possibility of having a Zs mirror symmetry. However
many of the results presented in this chapter can be easily generalized to include such
modifications as we will briefly discuss in section 5.2.2, where we will present the finite-
temperature properties of the model described in chapter 4.

The first part of this chapter will be devoted to the study of the main features of
one-loop effective potential for Wilson line phases at finite temperature, namely their
structure, their gauge independence and their high-temperature behaviour. Then we will
present the results of a numerical analysis of the first order EWPT which appears in the
models described in chapters 3 and 4. Finally, we give support to the idea that the phase
transition can safely be studied in perturbation theory in Wilson line based models, by
computing the leading IR divergent higher-order contributions to the Wilson line effective
potential in a simple 5D model compactified on S*. This analysis will show that the
leading corrections are safely small up to temperature of order T' ~ 1/L and start to be
relevant well above the phase-transition temperature.

!The restoration at high temperatures of a symmetry broken at zero temperature is not a universal
feature. It has recently been observed, for instance, that in little Higgs theories the electroweak gauge
symmetry remains broken even at high temperatures, at least up to the maximum temperature which can
be studied in the effective theory [82]. In non-Abelian theories, it can also happen that the Higgs and
the confining phases are connected without the appearance of any phase transition. This is what lattice
simulations predict for the SM (see section 5.2).
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5.1 The Wilson Line Dynamics at Finite Temperature

The form of the one-loop effective potential at T = 0 for Wilson line phases on St or
S1/Zs orbifold models has already been discussed in chapter 3. The non-local nature of
Wilson lines imply that their potential is completely UV finite, modulo irrelevant constant
vacuum energy terms.

The effective potential at finite temperature, in the imaginary time formalism, is ob-
tained from that at zero temperature by simply compactifying the Euclidean time direction
on a circle of radius 1/(2nT"), where T is the temperature. Fields satisfying Bose/Fermi
statistic must be taken to satisfy periodic/antiperiodic boundary conditions along the Eu-
clidean time direction.2 The bosonic and fermionic contributions to the one-loop Wilson
line effective potential at finite temperature are then easily evaluated. For each bosonic
and fermionic degree of freedom with charge g and bulk mass term M, one has

V(T, qa) = (—?—T- ij_ / (giz)’g log {pz + [27r(m + mTr + Mg(qa)} (5L

where M2(qgor) = M? + (k + ga)?/R? are the masses of the states at KX level k, including
a possible bulk mass term M, m are the Matsubara frequencies and 77 = 0 or 1/2 for
bosons and fermions, respectively. It is important to recall that eq. (5.1.1) is valid not
only for compactifications on S but also on orbifolds, such as S*/Zs. In the latter case,
the effect of the parity projection in the diagonal basis for the fields amounts simply to
reducing the number of physical degrees of freedom with a given charge g with respect to
the Wilson line phase. We collect in appendix G several equivalent ways in which one can
compute the effective potential (5.1.1). Notice that eq. (5.1.1) is valid also for gauge fields
Ajr; in this case one has to take into account a multiplicity factor equal to 3, the number
of transverse polarization of a 5D gauge field. Moreover, the gauge contribution is gauge
independent. We will discuss in more detail this important aspect in next subsection.

5.1.1 Gauge Independence of the Effective Potential

The effective potential V(Hp) in standard spontaneously broken gauge theories, such as
the SM, where Hy is the VEV of the Higgs field, is generally gauge-dependent [81]. This is
easily seen at one-loop level, where the effective potential is obtained by evaluating a trace.
In this case one can see, working for instance in an Re-gauge, that the contributions of the
would-be Goldstone bosons, ghosts and longitudinal gauge bosons, outside the minimum
for the Higgs field, do not cancel anymore and leave a non-trivial é-dependent, and thus
gauge dependent, term.

2For a comprehensive review of finite-temperature field theory and for the reference to the original
literature see e.g. [83].
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In gauge-Higgs unification models, where the Higgs field is identified with the KK zero
mode of the gauge field A5, such problem does not occur, at least at one-loop level. This is
expected since at tree level A5 is a modulus, namely any constant value of this field satisfies
the equations of motion. In order to show more explicitly the gauge independence of the
one-loop effective potential, we define in the following a class of gauge-fixing Lagrangians
“Z¢ that are a sort of generalization of the 4D t'Hooft background gauges®:

L = -%’I& (DuA* + ¢DsA%)? (5.1.2)

where u = 0, 1,2, 3 runs over the 4D directions and D M = Op —igs[Aps, -] is the covariant
derivative in terms of the classical field configuration Ay = by50/ (9sR)t, t being the
direction in group space where the VEV is aligned. For & = 1, the gauge-fixing term
(5.1.2) reduces to the usual 5D background field gauge commonly used in the literature
to derive the one-loop effective potential of Wilson line phases [28]; for ¢ = 0, we instead
get the 4D Landau gauge OuA* = 0, whereas for £ — oo, eq. (5.1.2) gives Ds A% = 0;
the latter condition is precisely the unitary gauge in which all the would-be Goldstone
bosons associated to the non-linearly realized gauge symmetries are decoupled, as we will
see more explicitly in the following. From a 4D point of view, eq. (5.1.2) is precisely the
gauge-fixing term defining an Re-gauge for the infinite gauge symmetry groups associated
to all KK levels of the 5D gauge fields Au(z,y). The full 5D Lagrangian for the gauge
fields is then 1

&= —5Tr (FunF"N) + % + 2, (5.1.3)

where £, is the ghost Lagrangian associated to the gauge-fixing (5.1.2):
Zon = -Tr [w*(D#D” -+ stDS)w] . (5.1.4)

It is not difficult to derive the quadratic Lagrangian, in momentum space, for the gauge,
scalar and ghost fields Ay, As and w. As discussed before, the only non-trivial task is to
derive the linear combination of fields that couples diagonally with As, in which base the
effect of the background is simply to shift the KK level of the mode. For definiteness (and
because this will be the case we analyze mostly), we consider an SU (3) gauge theory on
the orbifold S*/Z,, where SU(3) is broken by the orbifold parity to SU(2) x U(1) and
thus to U(1) by the Wilson line phase a. The quadratic Lagrangian of this model reads,
in momentum space,

3

+o0
; j ' DN i DtAG) (G
s = 30 5 [ARAD A + 4D 008, + 10,0

1=1,2 n=-—00

-+co . ) ) .
+ 3 3 (400 + ALY, A0 4 ed 5 8,00). 61
1=3,4 n=0

3Compare the gauge fixing chosen in section 1.2. The gauge-fixing Lagrangian in eq. (5.1.2) is similar
to the one in eq. (1.2.3), apart from the gauge background which is not included in eq. (1.2.3).
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In eq. (5.1.5), the fields (AS’Z), A§1’2>, w(1:2)) represent the linear combination of fields that
couples diagonally to the Higgs field, with charge g = 1,2. The fields (A%, 454 ,3:4),
instead, do not couple to As. The explicit form of these linear combinations of fields, in
terms of the usual SU(3) Gell-Mann field decompositions, can be found in appendix D.
Notice that due to the different Z, parities of A, and As, we have Ag’% = A;(f()) = w(()4) = (.
The inverse propagators are

n+ qa)? 1-¢

A;(Jg/),n = TN [pz -+ ( R2 ) jl + 5 Pubv , q= 0, 1a27

n + ga)?
AD, = g4 entee)s Rﬁf s, g=0,1,2, (5.1.6)
where p? = pupt. It is clear from eq. (5.1.6) that when & — oo, all scalar fields As,
decouple from the theory, with the only exception of Aéﬂ%, namely the Higgs field. It
is now easy to establish the independence on the parameter £ of the one-loop effective
potential. Indeed, for each KK-mode level n and charge ¢, the gauge, scalar and ghost

contributions give a total factor

A(q)'n n—+ qu 2\~
55, 75 =V <p2 (n+g0)” RZ ) ) : (5.1.7)

wajew

+

where the determinant in eq. (5.1.7) is meant to be taken only on the 4 x 4 polarization
matrix of the gauge fields. Aside from the irrelevant /€ factor, which is reabsorbed in
the functional measure, all the non-trivial {-dependence in egs. (5.1.6) cancels out in
eq. (5.1.7), leaving an effective contribution of three scalar degrees of freedom with twist
q. As stated before, this equals the total contribution of a 5D gauge field Ap; with the
same twist.

The gauge independence of the potential is trivially extended at finite temperature.
Indeed, in the imaginary time formalism, eq. (5.1.7) still holds, the only modification being
given by the Matsubara frequency modes, that are all integer-valued for gauge, scalar and
ghost fields.

5.1.2 High Temperature Behaviour

The one-loop effective potential for Wilson line phases at finite temperature has been
computed in ref. [84] (see also ref. [85]), where it has been shown that at temperatures
of order T' ~ 1/L the symmetry is restored. Its high temperature behaviour is peculiar,
as can be seen by studying the bosonic and fermionic contribution to the Higgs thermal
mass at a = 0:

R\? 8%V
mi(TaFO):(%z—) a2

(5.1.8)

a=0
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For T'>> 1/L, the mass (5.1.8) can easily be extracted from eq. (G.1.3), using the known
asymptotic behaviour of Bessel functions for large values of their argument. For mass-
less bosonic and fermionic bulk fields (M = 0 in eq. (G.1.3)) with twist g, one finds
respectively* ‘

m2(T,0) = ——qﬁz—- g71'2q2'nB z 1+0 (LT)%e_ZWLT (5.1.9)
AT 1672 \ 3 L ’
2 T 1
m2(T,0) = —~% (2\/§W2q2np> Z(LT)%e_”LT [1 +0 (-ET) } ,  (5.1.10)

where np and ny denote the effective number of bosonic and fermionic degrees of freedom
of the field. The exponential terms appearing in egs. (5.1.9), (5.1.10) and the linear
temperature dependence of the boson contribution are a characteristic feature of the non-
local nature of the Higgs potential. They are different from the typical contributions
expected for models in extra dimensions where one gets a thermal mass of order LT [80],
or for the 4D Standard Model, -in which the Higgs thermal mass, at high temperatures,
goes like T2.

The leading high temperature dependence of the one-loop thermal mass can be under-
stood by studying the UV behaviour of the one-loop mass correction at zero temperature.
Since this is in general quadratically divergent, power counting implies that its leading fi-
nite temperature contribution will be of order T'2. This counting can also be used in models
in extra dimensions. Since at a given T', the effective number of KK modes contributing
to the thermal ensemble is roughly given by LT, one would generally get a leading high
temperature contribution to the thermal mass of order (LT)T? = LT3, in agreement with
ref. [80]. For Wilson line potentials, however, the analysis is different, since they are finite
at zero temperature, with a one-loop mass saturated by the compactification scale 1/L?,
times g7/(1672), a 4D loop factor. The non-local nature of the potential is such that all
Matsubara mode contributions, but the zero mode one, are exponentially suppressed at
high temperatures. The only relevant contribution arises then from bosons, which admit
a zero Matsubara mode. Consequently, the thermal mass has a linear dependence on T,
reproducing the leading term in eq. (5.1.9). Since the effective number of KK modes con-
tributing in the thermal ensemble is still LT, eq. (5.1.9) can alternatively be understood
as the sum of the one-loop, zero temperature, mass corrections of the (LT) KK modes:
(LT)/L* = T/L. The naive power counting argument, applied instead to a truncated sum
of KK modes, would predict the wrong LT® dependence. In fact, a naive truncation of
the KK sum would spoil the shift symmetry @ — a4 1 of the Wilson line phase, resulting
also in a fake divergent zero temperature effective potential, as discussed in section 3.1.

“Recall that theories in extra dimensions are non-renormalizable and thus are effective theories valid
up to an UV cut-off scale A >> 1/R. For this reason, one cannot consider temperatures larger than (or of
the same order of) A, because at these scales the theory becomes strongly coupled.
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The high-T contribution to the Higgs thermal mass of massive bulk fields, with mass
M, is further exponentially suppressed. In particular, for M > 1/L, the linear dependence
on T appearing in the first term in eq. (5.1.9) is suppressed by a factor e=™L. The same is
true for the whole effective potential, as is clear from eq. (G.1.3). The effective potential
is thus exponentially insensitive to UV physics and completely determined by the light 5D
degrees of freedom.

Given the high T behaviour of the bosonic and fermionic contributions to the Higgs
mass in egs. (5.1.9) and (5.1.10), we can establish on quite general grounds that if a gauge
symmetry breaking occurs at T' = 0, namely M2(T = 0,a = 0) < 0, it will be restored
at a sufficiently high temperature when M?2(T,a = 0) > 0. Since Wilson line effective
potentials are gauge invariant, V(—a) = V(«), and thus o = 0 is always an extremum
of the potential. Consequently, at sufficiently high 7', @ = 0 turns to a minimum of the
potential, at least locally.

5.1.3 Properties of the Phase Transition

An analytical study of the nature of the phase transition occurring in Wilson line based
models is not totally straightforward, due to the non-local nature of the order parameter.
The essential features of the transition, however, can quantitatively be studied by properly
approximating the exact one-loop formulae for the potential appearing in appendix G.

As we will show, the phase transition is typically of first order and is related to the
presence of a cubic term in the bosonic contribution of the effective potential. This is very
similar to what happens, for instance, in the SM, where a cubic term in the Higgs field
appearing in the effective potential at finite temperature is responsible for the generation
of a first-order phase transition, for sufficiently low values of the Higgs mass. The cubic
term in the Wilson line phase « appears from a high temperature expansion of the bosonic
contribution in, say, eq. (G.1.3). For massless fields with M = 0, charge gz and for LT > 1,
we can safely drop all Matsubara modes but the zero mode in the sum over m appearing
in eq. (G.1.3). For each degree of freedom, the resulting potential is

71"];(13 @)

= (5.1.11)

T < cos(2
V(T a) = TR2L3 Z
k=1

Interestingly enough, the potential (5.1.11) admits a very simple polynomial expression
in o, which can be found by carefully Taylor expanding it in powers of . Since a naive
expansion in « would lead to the appearance of an infinite number of ill-defined sums, a
regularization has to be taken to give a meaning to the resulting expression. We will use
in the following the (-function regularization, according to which ((—2n) = > %, k2" =0
for all positive integers n. As a consequence, in the expansion of the cosine function in
eq. (5.1.11), all terms but the first three, constant, quadratic and quartic in «, vanish. All
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the odd derivatives in the expansion vanish since {(—2n + 1) is finite for n > 0, but care
has to be taken for the third derivative. The latter in fact does not vanish, due to the
relation

. ~=sin(nz) 7«
mlir&?;—n— =5 (5.1.12)
This is at the origin of the o® term in the expansion of the potential (5.1.11). It only
arises for massless 5D bosonic fields, since for massive fields the sum over n is absolutely
convergent, resulting in a trivially vanishing third derivative of the potential.

Putting all terms together and recalling that {(0) = —1/2, one gets

2

Vp(T,a) = —%—I—fg §16 — (gs@)? + 2(gz0)® — (gr)*|. (5.1.13)
The expressions (5.1.11) and (5.1.13) are identical for 0 < @ < 1/gs. Since Vp(T, gz =
0) = Vp(T,gsa = 1), by periodically extending Vp to all values of ¢, one gets a complete
identity between the two expressions. Indeed, it is straightforward to check that the
Fourier series of the polynomial (5.1.13) agrees with eq. (5.1.11). Notice that the o® term
is a non-analytic term, since it corresponds to a (HTH )3/ 2 operator, when written in a
manifestly gauge-invariant form.

Let us now study how the phase transition schematically occurs in a model with one
massless 5D gauge boson and one massless fermion, with charges respectively ¢z and gz
with respect to the Higgs. We take gr > gg, because in this case the analysis is further
simplified, as we will see. There is no need to specify, in this simple set-up, which is the
underlying theory which gives rise to these fields and to the Wilson line. As a consequence,
the analysis is general and it can be applied for any gauge group and compact space (S*
or S 1 / Zg).

At zero temperature, the effective potential is given by the first row in eq. (G.1.5) with
M = 0. By summing the fermionic and bosonic contributions, we get

V(0,0) =

3 i 8 cos(27rkqpoz)~— 3COS(27T’~€QBC“)] . (5.1.14)

424 k5
k=1

The potential is unstable at o = 0 and develops a minimum at o ~ 1/(2¢r), where the

“Higgs mass” is approximately given by

2 9 1, 5
m, = 2 Zougle(), (5.1.15)

where, as rough approximation, we have neglected the bosonic contribution in eq. (5.1.15).
At finite temperature, as we have already discussed, the fermion contribution is less and
less relevant, resulting in a phase transition for T' ~ 1/L. The transition is more efficiently
studied by starting from temperatures slightly above the critical one, when T'L > 1.
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In this regime, it is a good approximation to use the high-temperature expansion for
the potential. The bosonic contribution has been already computed and gives rise to
the polynomial potential (5.1.13) multiplied by a multiplicity factor of 3. The fermionic
contribution, unfortunately, does not admit a simple finite polynomial expansion which
accurately approximates the exact one-loop result, like the bosonic case. As such, a
rough approximation will be used to put it in a simple polynomial form. By expanding
the modified Bessel functions and retaining only the modes m = 0,—1 and k=1in
eq. (G.1.3), we roughly get

Vr(T, o) = 4\/_(LT)W 27T cos(2mgra) (5.1.16)

No o term arises from the fermion contribution. If we expand the cosine in eq. (5.1.16)
and retain only terms up to a* we see that the effective potential for LT > 1, resulting
by summing Vg and Vr, has the schematic form®

L4
—-V(T, go) ~ a(z) o — b(z) &® + c(z) a?, (6.1.17)

where £ = LT and

ole) = o - SIS,
b(x) = 2z¢%, (5.1.18)

c(z) = ¢tz + 3qF\/_7r2:c5/2

eq. (5.1.17) is valid for 0 < @ < 1/(2¢r), which is the relevant range in « for the study of
the phase transition. The analysis of the latter for potentials like eq. (5.1.17) is standard
(see e.g. ref. [86]). For z >> 1, the potential admits only a minimum at o = 0. As the
temperature decreases, an inflection point appears at T' = 71, below which a non-trivial
minimum and maximum appear. The critical temperature T is defined as the temperature
when V(T¢, g@min(Tc)) = 0, namely when the non-trivial minimum is as deep as the
minimum at zero. This is given by the largest root of the equation b%(z¢)—4a(z¢)c(ze) =0
which, for g» > ¢z, is nearly equivalent to the vanishing of the term a(z) in eq. (5.1.17).
The critical temperature has only a logarithmic dependence on the charges gz and gr and
is of order 1/L, as mentioned. At T = T, we get

b(zc) ~ 65

o~ . .1.19
2c(zs) ~ mqk (5 )

amin(fEC) =

Below the critical temperature T¢, amin(T) becomes the new global minimum of the
potential. The value |H (T¢)|/Tc = 2amin(Tc)/(9aRTc) is one of the relevant parameters

5As we said, this is generally a rough approximation but it is enough for our analytical estimates. All
our results in the following section are instead based on numerical analysis which take into account the
exact form of the one-loop boson and fermion contribution to the potential, as reported in appendix G.
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to study, if one wants to get baryogenesis at the electroweak phase transition (see e.g.
ref. [83]). One necessary (but not sufficient) requirement is that |H (T¢)|/Tc > 1, otherwise
sphalerons at T' < T would wash out any previously generated baryon asymmetry [79].6 It
is also a good parameter to measure the strength of the first-order phase transition. Since
the Higgs mass (5.1.15) is proportional to gr, whereas amin(zc) ~ gs/q2 and Tg ~ 1/L,
we conclude that HTS) 40

Rininih b2 RN 5.1.20
Tc qz ( )

The strength of the first-order phase transition is inversely proportional to qf, and hence
to the value of the Higgs mass.

In presence of several massless bosonic and fermionic fields, with charges gs,; and
gr,i, the potential can still be put in the form (5.1.17), provided that one substitutes in
egs. (5.1.18) ¢§ — Y, npi¢k; and ¢k — 3, Npiqk ;, Where ngm ; are the multiplicities of
the bosons and fermions with charges gg(r),i (k = 2,3, 4).

For more generic field configurations, such as massive bulk fermions, localized fields or
localized gauge kinetic terms, the analytical study of the phase transition is more involved
and one has to rely on numerical methods to safely establish its nature. However, since the
coefficient b(x) multiplying the a® term in eq. (5.1.17) will still be non-vanishing (unless
the model has no massless bosons coupled to the Wilson line phase), we expect that the
phase transition will be of first order. We show in next section that this is what generally
happens for the model described in chapter 3, by numerically studying the one-loop Higgs
potential in a more complicated setting. We will also see that the analytical studies
performed in this subsection are still approximately valid.

5.2 The Electroweak Phase Transition in GHU Models

In this section, we want to establish the nature of the electroweak phase transition in the
models with gauge-Higgs unification based on 5D orbifolds, which we presented in the
previous chapters. We will mainly focus on the simple model of chapter 3 and its gener-
alizations, which turn out to have some interesting features as the EWPT is concerned.
Lately we will also analyze the realistic model presented in chapter 4.

Before summarizing the results, it might be useful to review the nature of the EWPT in
the SM [87]. The properties of the transition are known to essentially depend on the value
of the Higgs quartic coupling A, or equivalently on the Higgs mass my. For my < My, the
transition is always of the first order, with a strength that is inversely proportional to the
Higgs mass [88, 89]. In this regime, the SM phase transition can reliably be computed in
perturbation theory, although the resummation of an infinite class of certain IR divergent

®The bound |H(Tc)|/Tc > 1 is derived by an analysis of sphaleron dynamics in the SM. This analysis
has not been repeated for Wilson lines in 5D and thus deviations from the bound H(T¢)/Tc > 1 could be
present.
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‘higher loop diagrams (so called “daisy” or “ring” diagrams) has to be performed. Also
in the SM case, the presence of a first-order phase transition can be traced back to the
presence of a term in the potential which is cubic in the Higgs field. Since the effective
potential is generally a gauge-dependent quantity, care has to be taken in the gauge-
fixing procedure [90] or a gauge-invariant formalism has to be advocated [91]. Around the
critical temperature, perturbation theory is less and less reliable as my approaches my.
For my 2 my, perturbation theory breaks down and one has to consider non-perturbative
methods, such as lattice computations. The latter seem to indicate that in this regime of
Higgs masses, the SM does not actually have a phase transition but rather a crossover, since
the Higgs and the confining phase are continuously connected [92]. As already anticipated,
these features have important consequences form a cosmological point of view. In fact the
absence of a first order phase transition implies that the condition |H(T¢)|/Tc > 1 can
not be fulfilled, thus forbidding the possibility of achieving a successful baryogenesis at
the EWPT.

5.2.1 The EWPT in a Simple Model

We report below the results obtained in [78] by analyzing the properties of the electroweak
phase transition in the simple model presented in chapter 3 and its generalizations. The
results, including all the figures, have been obtained by a numerical computation using the
exact one-loop effective potentials. To avoid technical complications, a slightly simplified
model has been considered. Namely the extra U(1)’ factor needed to get the correct weak
mixing angle has been neglected. This change, however, mildly affects the properties of
the phase transition and all the other results obtained.

As discussed in chapter 3, the simplest implementation of the model predicts a very
low Higgs mass my < 40 GeV. For Higgs masses of this order, the EWPT in the SM can
be reliably studied in perturbation theory. It is thus reasonable to compare the results in
GHU models with those obtained in the SM at one-loop level, for the same values of the
Higgs and top mass. On the other hand, in the extended versions of the model, the Higgs
mass can be considerably larger (my 2 my ). In this case a comparison with the SM can
not be given due to the fact that perturbation theory in the SM breaks down. On the
contrary in GHU models perturbativity seems to be present even at large Higgs masses,
as we will better discuss in section 5.3.

Ounly Bulk Fields

First of all we consider a minimal set-up, in which we consider gauge fields and a couple
of bulk fields, with opposite Z parities, in the representation (3,6) of SU(3)s x SU(3)y.
No boundary fermions are introduced.

In this theory, a first order phase transition appears for A < 2.1, where A = ML/2 is
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Figure 5.1: Compactification radius as function of the Higgs mass (only bulk fields).
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Figure 5.2: (a) Critical temperature and (b) position of the minimum at T =0 and at T = T, as
function of the Higgs mass (only bulk fields).

the properly rescaled bulk fermion mass, while outside this range no symmetry breaking
occurs. The critical temperature of the transition is T¢ ~ 1/L. We report in figures 5.1
and 5.2 how the compactification radius, the critical temperature and the minimum of the
potential (at 7= 0 and at T' = T¢) depend on the Higgs mass, whose value depends on \.
In figure 5.3 (a), we plot |H(Tc)|/T¢c as function of my. The phase transition is strongly
first order, as expected for such low values of my. In figure 5.3 (b), we plot the latent
heat as function of my (normalized in units of the critical temperature), whose expression
is given by

AQ = TiV(T Qmin) — T——a—V(T a=0) . (5.2.1)

or ' "lr g, 0T T=To

For simplicity, we normalize the effective potential so that V (T, a = 0) = 0, in which case
the second term in eq. (5.2.1) vanishes. Finally, in figure 5.4 we show the shape of the
effective potential, for my = 25 GeV, at various temperatures.

For high values of my (which correspond to low values of the bulk fermion mass )), the
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Figure 5.3: (a) Phase transition strength and (b) latent heat as function of the Higgs mass (only
bulk fields).
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Figure 5.4: (a) Effective potential (for my = 25GeV) at various temperatures. (b) Detail near the
phase transition (only bulk fields).

behaviour of amin(Te) and |H(To)|/Tc in figures 5.2 (b) and 5.3 (a) can be understood by
applying the considerations of section 5.1.3. Around the critical temperature the potential
(5.1.17) has only a mild dependence on J, at least for A < 1.5, since as first approximation
it implies only the shift 7LT — m)_f in eq. (5.1.16). Hence, although the
Higgs mass at T = 0 is sensibly dependent on A, cmin and |H(T¢)|/Tc, as computed
in egs. (5.1.19) and (5.1.20), are essentially independent of my for low values of A (high

values of my).

For larger values of A, both T and my starts to exponentially depend on A, resulting
in a linear dependence of T¢ on mg. On the contrary, amin(Tc) remains still constant.
These behaviours are roughly reproduced by the left part of figures 5.2 (b) and 5.3 (a).
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Figure 5.5: (a) Values of the £; coupling and (b) compactification radius as function of the Higgs

mass (inclusion of boundary fermions).

Inclusion of Boundary Fermions

We now add the boundary fermions, namely a doublet Qr localized at the y = 0 fixed
point and the singlet ¢z localized at y = mR.” Notice that the localization of the fields
differs from the one used in the model described in chapter 3 in which the boundary
fields were all introduced at the same boundary. Considering localized fields on both
boundaries introduce some technical complications in the theory (mainly related to the
issue of anomaly cancellation), and moreover seems less appealing from a phenomenological
point of view [26]. Nevertheless, as we will see in the following, when considered in the
semi-realistic set-up of chapter 3, the possibility of introducing left-handed and right-
handed boundary fields at different fixed points, together with the inclusion of localized
gauge kinetic terms for the gauge fields can give reasonable Higgs and top masses for
acceptable values of ¢; (see section 3.7.2 and ref. [15]).

The relevant formulae for the effective potential in presence of boundary fields are
given in appendix G, egs. (G.2.1). Since the potential does not significantly depend on
the bulk-to-boundary couplings ¢;, the crucial dependence being given by the bulk fermion
mass A, we have set 2 = £; and fixed the overall scale by the requirement of having a
top mass m; = 45 GeV. The effective potential is studied for 0.85 < )\ < 1.85. Again, the
electroweak phase transition is of first order, with a critical temperature of order 1/L (see
figs. 5.5-5.8).

For comparison, in figs. 5.6 (a) and 5.7, we plotted the critical temperature, |H(Te)|/Te
and the latent heat as function of the Higgs mass for both the 5D model and the SM, with
my = 45 GeV. For the SM case, we plot both the naive one-1oop (SMipres.) and one-loop
improved (§Mpg;sy) results, the latter obtained by resumming the leading daisy diagrams

"The mixing of the boundary fields with the bulk fermions is given in eq. (G.0.1).
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Figure 5.6: (a) Critical temperature and (b) position of the minimum at 7= 0 and at T =T, as
function of the Higgs mass (inclusion of boundary fermions).
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Figure5.7: (a) Phase transition strength and (b) latent heat as function of the Higgs mass (inclusion
of boundary fermions).

[88, 89].8 For such low values of the Higgs mass, 10 + 20 GeV, the SM effective potential
is well described by its one-loop approximation.

Even when boundary fermions are inserted, the behaviour of amin(T¢) and |H (T¢)|/Tc
reported in figs. 5.6 (b) and 5.7 (a) is very similar to that found in the previous case
with only bulk fermions. This is explained by recalling, as already mentioned, that the
potential has a small dependence on the bulk-to-boundary couplings ;. All the analytical
considerations performed at the end of the previous subsection are then approximately

8To obtain the SM results the Landau gauge has been used, which turns out to be a good gauge choice.
Indeed, results obtained in this gauge are very similar to the ones obtained in gauge-invariant approaches
to the electroweak phase transition, such as the gauge-invariant effective potential [91] and lattice com-
putations [93]. Moreover the cut-off renormalization scheme has been fixed choosing the counterterms so
that the position of the zero temperature minimum of the effective potential and the Higgs mass do not
change with respect to their tree-level values [86].
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Figure 5.8: (a) Effective potential (for m; = 18 GeV) at various temperatures. (b) Detail near the
phase transition (inclusion of boundary fermions).
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Figure 5.9: (a) Value of the £; coupling and (b) compactification radius, as function of the Higgs
mass (high rank bulk fermions).

valid also in this case.

Theory with High-Rank Bulk Fermions

As we saw, one of the main problems of models based on gauge-Higgs unification is the
predicted too low value of the Higgs mass. A possibility to solve this problem is given
by the introduction of additional bulk fermions, which do not couple to the localized
matter fields, in high rank representations of SU(3), (see section 3.7.1). We consider
in the following the electroweak phase transition that one obtains in a 5D model where,
in addition to the fields introduced before, one considers a massive bulk fermion in the
completely symmetric rank 8 representation of SU(3),, and singlet of SU(3),. The mass
of this fermion has been fixed to Agr = 2.15. The bulk—to-boundary couplings £; have
been fixed requiring that m; = 45 GeV, with e = 0.5 1. The effective potential is studied
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Figure 5.10: (a) Critical temperature and (b) position of the minimum at T'= 0 and at T = T,
as function of the Higgs mass (high rank bulk fermions).
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Figure 5.11: (a) Phase transition strength and (b) latent heat as function of the Higgs mass (high
rank bulk fermions).

for 1.6 < X < 2.4. For A > 1.79 (which corresponds to my > 125 GeV), amin is the global
minimum of the potential, which turns to a local minimum for smaller values of A\. The
results are summarized in figures 5.9-5.12. The Higgs mass can now reach realistic values
(although the top mass is still too low). As is clear from figure 5.11 (a), a very weak first
order phase transition is found in this model with Tg ~ 1/L.

This behaviour can be understood by means of our general analysis of section 5.1.3.
The fermionic potential is dominated by the high rank fermion whose mass is fixed. Since
my; varies only with ), the small dependence on my in figures 5.10 (b) and 5.11 is easily
understood. The decreasing of the strength of the phase transition with the rank is clear

nig?
min(TC) ~ % ng , (5.2.2)
P11

by noting that

where i runs over all the fermion components with charge ¢; and multiplicity n;, arising
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Figure 5.12: (a) Effective potential (for m,, = 135GeV) at various temperatures. (b) Detail near
the phase transition. The effective potential is multiplied by 10 with respect to the (a) diagram
(high rank bulk fermions).

from the decomposition of the rank r bulk fermion.

Fermions in too high-rank representations can not be considered, since the value of
the UV cut-off Ay, rapidly decreases as r increases, restricting the range of validity of the
effective theory. No comparison with the SM is given, since for such values of the Higgs
mass, perturbation theory breaks down close to the critical temperature.

Theory with Localized Gauge Kinetic Terms

As discussed in section 3.7.2, an interesting possibility that is allowed by symmetries is
the introduction of localized gauge kinetic terms. These have a significant effect on the
phenomenology of the model. In particular, they represent another option, in alternative
to the introduction of fermions in high rank representations, to get realistic values for the
Higgs mass. Interestingly enough, their presence also allow to get acceptable values for
the top mass. As a drawback, they break the custodial symmetry, leading to too large
deviations for the SM observables and to a small cut-off.

We introduce localized gauge kinetic terms at only one fixed point of S1/Z,, since this
is the most phenomenological convenient option. In the notation of section 3.7.2, we take
c1 = ¢ = 6 and ¢z = 0. The gauge contribution to the Higgs effective potential, in presence
of localized kinetic terms, is reported in eq. (G.2.5). The bulk-to-boundary couplings ¢;
are chosen so that the top quark mass is 110 GeV, with €5 = £1. The effective potential is
studied for 0.8 < A < 1.9. Interestingly enough, despite the high value of the Higgs mass
obtained in this case, 110 + 170 GeV (see figures 5.13 and 5.14), the phase transition is
still of first order and is also moderately strong, with |H(T¢)|/To ~ 0.7 (see figure 5.15
(a)). Since this is of order one, it might be strong enough to avoid that sphalerons in the
broken phase wash out the previously generated baryon asymmetry (see footnote 6). The
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Figure 5.13: (a) Value of the &; coupling and (b) compactification radius as function of the Higgs
mass (localized gauge kinetic terms).
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Figure 5.14: (a) Critical temperature and (b) position of the minimum at T'= 0 and at T = To,
as function of the Higgs mass (localized gauge kinetic terms).

critical temperature in this model is ~ 2/L (see figures 5.13 (b) and 5.14 (a)).

The behaviour of the phase transition for large values of c is analytically harder to
be studied than the previous cases, since the localized gauge field contribution (G.2.5)
plays a crucial role. By expanding the total gauge field contribution, it can be shown
that the first two terms of the potential in an o expansion, namely the quadratic and
cubic term in eq. (5.1.17), scale like a(z) ~ 1/c and b(z) ~ ¢~*2. Due to the technical
complexity, it is not possible to find the exact asymptotic behaviour for large c of the
quartic coupling, which, however, seems to be negative as also suggested by the numerical
analysis. Neglecting the quartic coupling arising from the bosonic potential, one can show
that the critical temperature depends only logarithmically on ¢ and amin(Tc) ~ 1 //c.
Since g5 ~ gav/Le, we get H(T¢)/T¢ ~ 1/c. The numerical analysis confirms the decrease
of the phase transition strength with ¢, but it shows a behaviour of the type |H (Tc)|/Tc ~
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Figure 5.15: (a) Phase transition strength and (b) latent heat as function of the Higgs mass
(localized gauge kinetic terms).
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Figure 5.16: (a) Effective potential (for m, = 135 GeV) at various temperatures. (b) Detail near
the phase transition (localized gauge kinetic terms).

1/c'/2+1, which indicates that the bosonic quartic coupling cannot be totally neglected
and result in a slightly stronger first-order phase transition.

5.2.2 The EWPT in a Realistic Model

Having analyzed in detail the finite-temperature behaviour of generic GHU theories and
in particular the properties of the EWPT, we want now to briefly discuss what happens
in the realistic scenario presented in chapter 4.

The main properties of the finite-temperature effective potential can be straightfor-
wardly generalized to the set-up of chapter 4 in which the SO(4,1)/SO(3,1) Lorentz
symmetry is broken and a Zz mirror symmetry is introduced. The explicit expression of
the bulk contribution to the potential can be derived from eq. (5.1.1), where one has to
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replace the usual Lorentz-preserving mass tower with the modified one

n+n/2 + qa)?
M? =M2+k2( {132 ) (5.2.3)

where n = 0,1/2 respectively for periodic and antiperiodic fields with charge g with re-
spect to the Higgs. As already noticed, the effect of the Lorentz-breaking parameter k is
equivalent to an effective rescaling of the compactification radius R — R/k. On the other
hand, the determination of the boundary contribution is more involved due to the fact
that fields with different Lorentz-breaking parameters are coupled to the same boundary
fields. However, the finite-temperature expressions for the boundary contributions can be
derived by a generalization of eqs. (4.2.8) and (4.2.9) (compare appendix G).

The properties of finiteness and gauge invariance of the finite-temperature potential
are valid also in the scenario we are considering here. Moreover, the high temperature
behaviour of the bosonic and fermionic contributions is unchanged with respect to the
Lorentz-preserving case. This means that the gauge contribution, which scales as T at
high temperature, eventually becomes more relevant than the fermionic one, which is
exponentially suppressed. When this happens the symmetry-preserving phase o = 0
becomes a minimum of the potential and an EWPT takes place.

As discussed in chapter 4, a high degree of cancellation in the quadratic term of
the effective potential is needed to get acceptable values of aym,. This implies that the
simplification and approximations, used in section 5.1.3 to derive the properties of the
phase transition, are no longer valid in the present set-up. Nevertheless one can derive
some properties of the EWPT by a careful analysis of the explicit form of the finite-
temperature potential, as we will do in the following.

First of all, we will approximate the zero-temperature effective potential by the SM-like
polynomial expression

47 a? ot
Vi = ———m2 [ == ) . 5.2.4
o(a) QngH ( > T 4a£m'n> 524

This approximation seems reasonable for small values of umin, however, as we will see,
the knowledge of the exact form of the zero temperature potential is not necessary for the
following analysis.?

The finite-temperature part of the effective potential is finite and can be expressed
as a sum of the contributions of each 4D KK state as shown in appendix G (compare
eq. (G.1.1)). We can obtain the whole finite-temperature potential by considering the
complete spectrum of the model and not only the one related to the bulk fields. From

eq. (G.1.1) it can be easily seen that the finite-temperature contribution of a state with

%In eq. (5.2.4) we did not include possible non-analytic terms as, for instance, |a|®, which, however, are
not very relevant as shown by the numerical results.
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mass M 2 T is suppressed by a factor e~M/T_ A more quantitative analysis shows that
the KK states which effectively contribute are only those with M < 7T

Due to the large gap between the Higgs mass and the compactification scale, or equiv-
alently the small value of amin, needed to obtain a realistic model, it turns out that the
critical temperature in this models is always of order T < 0.5/L. Given that the com-
pactification scale is of order 1/R ~ 4.5 —5 TeV (see fig. 4.4), we can estimate the critical
temperature to be always To < 400 GeV. As discussed in section 4.2, the lightest non-SM
states in the model are charged fermions with a mass M ~ 1.5 — 2 TeV. States with such
a mass can not give a relevant contribution to the finite temperature part of the potential,
so that we can reasonably assume that the finite-temperature corrections are entirely due
to the SM states.

Given the approximation in eq. (5.2.4) the whole effective potential in the model is
analogous to the SM one, thus we expect a SM-like EWPT.! This suggests that a very
weak phase transition takes place in the model for phenomenologically acceptable Higgs
masses.

To get a quantitative estimate of the critical temperature, we can expand the leading
finite-temperature contributions to the quadratic term of the potential as (see e.g. [83])

2m#(a) + 2m3, () + m3(a)

V2 (T7 CV) = 8

T?. (5.2.5)

The phase transition takes place approximately at the temperature at which the Higgs
mass term vanishes, so that by a rough estimate we find Tg ~ myg ~ 0.2/L. Notice that
this estimate of the critical temperature justifies the initial assumption T¢ < 0.5/L. From
a more careful study of the potential one can also show that the strength of the phase
transition (which we defined as |H(T¢)|/Tc) decreases as 1/ m2,.

The results of a complete numerical analysis performed in the model of [26], confirm
the above predictions and give Tc ~ (0.1 — 0.6)/L. The phase transition strength is
obtained in the range 0.01 < |H(T¢)|/Tc < 0.1, which clearly seems too weak to open the
possibility of achieving a successful baryogenesis at the EWPT.

Finally, let us comment on the possibility of studying perturbatively the EWPT when
the Higgs mass has a large value. As we said before, in the SM for reasonable Higgs masses
(my 2 my) perturbativity breaks down. Lattice computations show that, instead of a
weak first order phase transition as predicted perturbatively, a smooth crossover appears
in the theory. Given the great similarity of the EWPT in the GHU model we considered
here and in the SM, one could ask whether a similar breakdown of perturbativity happens
in the 5D case or not. As we will discuss in the next section, models with GHU seem to be

10Tt must be noticed that, in order to obtain a finite-temperature contribution analogous to the SM one,
we have to assume that the masses of the states which correspond to the SM particles have a dependence
on the Higgs VEV as in the SM. This is reasonably true for small values of cmin as can be shown using
eq. (4.2.10).
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Figure 5.17: Examples of higher-loop daisy diagrams contributing to the mass of the Wilson line
phase. Solid and wavy lines represent respectively the charged scalar and the Wilson line phase.
For simplicity, we have omitted the arrows in the charged scalar propagators.

less sensitive to higher order corrections than usual 4D models and this property suggests
that in the model we have considered the perturbative approach can be reliable also for
realistic Higgs masses.

5.3 Estimate of Higher-Loop Corrections

The analysis performed in this chapter about the EWPT is based on the computation of
a one-loop effective potential. Aim of this section is to estimate the leading higher-loop
contributions and determine the range of validity of the one-loop analysis.

It is known that the most important higher-loop contributions to the effective potential
in 4D theories generally arise from certain IR divergent diagrams, known as “daisy” or
“ring” diagrams [81] (see figure 5.17). As shown in [94], the latter are all easily resummed
by adding and subtracting to the Lagrangian the one-loop (thermal) mass correction for
any field present in the Lagrangian. Omne then defines a new propagator by adding the
thermal mass to the tree-level one, and consider the other (opposite) term as a one-loop
mass insertion. Such procedure has been performed both at one [88] and two-loop level
[89] in the SM. Interestingly enough, the two-loop improved SM effective potential turns
out to give results very similar to that computed by numerical results based on lattice
simulations even for values of my close to (but less than) myy, in which case perturbation
theory is expected to be a bad approximation.

In the following, we will give an estimate of the contribution of daisy diagrams for
models where the order parameter is a Wilson line phase, as in theories with gauge-Higgs
unification. For simplicity, we focus on a particularly simple model, scalar QED in 5
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dimensions, compactified on a circle S of length L = 27R.1! The Lagrangian is
A 1
g$=4DM@ﬁDM¢—~fGN¢f—ZFMNFMN, (5.3.1)

where @ is a complex scalar field with periodic boundary conditions: ®(27R) = ®(0).
Our aim is to study the effective potential for the Wilson line phase oo = AsgsR, in the
approximation in which the dimensionless 4D gauge coupling g4 < A, with A = X5/L. At
one-loop order, the effective potential V (T, o) is given by one of the relations reported in
the appendix G, egs. (G.1.3), (G.1.5) or (G.1.6), with d =3, M =0, 7 = 0 and a factor
of 2 taking into account the two scalar degrees of freedom. At higher order, the leading
contributions arise from the daisy diagrams drawn in figure 5.17. Since g4 < A, we can
consistently neglect the daisy diagrams involving one-loop mass corrections induced by the
gauge field and consider only the one arising from the quartic coupling X (see figure 5.18).

Let us denote by I, the (n+1)-loop daisy diagrams obtained by summing all possible n
one-loop mass insertions at zero external 5D momentum and define an effective parameter
v(n) = n/In_l; if there exists some n for which v(n) ~ 1 or higher, perturbation theory
breaks down and all daisy diagrams must be resummed. It is not difficult to compute
v(n) for n > 1. In this limit, one has to compute only the diagrams (b) in figure 5.17,
since they have a combinatorial factor proportional to n, whereas the diagrams (a) have
a constant combinatorial factor. Moreover, the n one-loop mass insertions, namely the
“small” bubbles in red in figure 5.17, decouple from the computation and one has only to
compute the finite “big” bubble, the one in black in figure 5.17 (b). We get

—2n—1
2 9 o
LM —1o0p(T, ) 2 2 mk [(k +a)*+ (LT)*m ]

27

wm:-{ (5.3.2)

—=2n-+1 °

2k [(k + )2+ (LT)2m2]

In eq. (5.3.2), M. f_lmp(T, @) is the one-loop finite thermal mass correction for the field

which, for A > g, is given only by the diagram in figure 5.18 and reads

9 _(LT)T?X 2 - cos(2mak)
M _1oop(Ty ) = TZ ~Z R (5.3.3)
=1 =00 {mz + (LT)? kz}

The mass correction (5.3.3) is defined in a regularization in which only the finite terms
arising from the compactification are left, neglecting the UV divergence taken to be equal
to that obtained in non-compact 5D space. This is technically achieved by dropping the

1We take S' and not S'/Z; as compact space because in the former case we can study an Abelian
gauge field model, whereas in the latter case the Z» orbifold parity forbids the presence of Abelian Wilson
line phases and would thus oblige us to consider non-Abelian gauge fields.
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Figure 5.18: The one-loop mass correction M. 2z, oop 1O the charged scalar @, induced by the A\(®'®)?
coupling.

Poisson resummed k = 0 term in eq. (5.3.3). We immediately recognize from eq. (5.3.2)
that for o =~ 0, the leading contribution to I, is given by the KK and Matsubara zero modes
k = m =0, which give rise to |y(n)| ~ 1/a?. The very low values of the Wilson line phase
o are the most affected by daisy diagrams, as is obvious by the fact that IR divergences
in the diagrams I,, appear precisely in the limit & — 0. A more transparent estimate of
the relevance of resumming daisy diagrams can be performed in the two extreme limits
when LT < 1 and LT > 1. In these two limits, and for sufficiently high n, v(n) ~ v
is independent of n. For LT <« 1, we can approximate the double sum in eq. (5.3.2)
by taking £ = 0 and substituting the sum over the Matsubara modes with an integral.
Viceversa, in eq. (5.3.3), we can take m = 0, retain only the sum over the modes %k and
fix o = 0.1 In this way, we get, for LT < 1,

LA 1 ME,,(0,0) (534)

- 4m?L? (%)2 M2 ’ -

tree

where M2, = (a/R)? is the tree-level mass of the lowest KK mode for the field &. Daisy
diagrams start to be relevant when the thermal mass is of the same order (or higher) than
the tree-level one.

For very high temperatures, LT >> 1, the double sums in eq. (5.3.2) are well approx-
imated by the leading term k = m = 0, whereas in the mass correction (5.3.3) we can
approximate the sum over 7 with an integral (setting again o = 0) and sum over all k.

One gets, for LT > 1,
ALT 1

T 487202
As eq. (5.3.4), eq. (5.3.5) can be written as the ratio of the thermal mass at high tem-

peratures over the tree-level mass M2,,. In fact, as a rough estimate, obtained by taking

(5.3.5)

k = m = 0 in the two double sums in eq. (5.3.2), one sees that at any temperature
v~ "M12—loop/Mt,2ree'

2Notice that for sufficiently high values of o, a > 0.2, Mf_,oop(a, T') becomes negative and a non-
vanishing VEV for the field ® is induced, which complicates the above analysis. For this reason, we
analyze here only the region of low values of ¢, which are anyway the ones most affected by the daisy
diagrams.
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Once established the necessity of considering higher-loop daisy diagrams for sufficiently
low values of the Wilson line phase «, let us resum all these diagrams by following the
procedure outlined in ref. [94]. Since v < 0, one can expect some cancellation between daisy
diagrams of different order, resulting in a decrease of the effect of the daisy resummation
procedure. This is indeed what happens, as we will see. As briefly discussed before,
along the lines of ref. [94], the resulting one-loop improved effective potential Vimp(T, a) is
obtained by one of the relations reported in appendix G, egs. (G.1.3), (G.1.5) or (G.1.6),
but by taking M = Mj_1p0p(T,0) instead of M = 0. From eq.(G.1.6), for instance, one
gets

AL & cos(2rkor) Mi_ioop(T,0) [0 =
Vimp(T, Ck) (271' 5/2 Z Z BS/2 (——%_'2——- me + (LT]{,‘)2>

| =00 m2+ LTA) ]
(5.3.6)

A good estimate of the higher-order daisy contributions at any temperature is per-

formed by comparing the Wilson line thermal mass obtained from Vimp(T, ) with that
derived from V(T,«). We denote them respectively fmp(T o) and M?(T,a) (not to
be confused with M% , oop(T oz) in eq. (5.3.3), which is the thermal mass of the field ®).
We plot in figure 5.19 (a) M2, (T,a) and M*(T,a) as function of o for A ~ 1 and for

LT ~ 1. As can be seen, the two behaviours are very similar, with deviations which are

zmp

at most of about 10 % for & = 0. As expected, the maximal deviation is found for values
of @ ~ 0. We find that at low temperatures (LT ~ 1/10), the maximal deviations (at
o = 0) are of order of a few %, whereas at high temperatures (LT ~ 10) they are of order
30 %. Notice that, although this model does not have a phase transition in the Wilson line
parameter, LT ~ 1 is in the range of the critical temperature where the phase transition
oceurs in such kind of models, as we have explicitly seen in the previous sections. From our
analysis we thus find that the leading higher-loop daisy diagrams give small corrections
to the effective potential. This can be taken as an evidence of the fact that perturbation
theory in our 5D models is still valid at T ~ T¢. On the contrary, for very high temper-
atures (LT >> 10), the one-loop improved potential starts to significantly differ from the
najve one-loop potential. This is particularly evident from the equivalent expression of
the potential given in eq. (G.1.3). At very high temperatures, the naive one-loop potential
is entirely dominated by the Matsubara zero mode m = 0, proportional to T, whereas
the one-loop improved potential, due to the non-vanishing argument in the function Bj
appearing in eq. (G.1.3), is exponentially suppressed in LM = VIT. The discrepancy
that one finds between the two potentials starts however to be very large for temperatures
which are well above the cut-off scale A. As discussed in footnote 4, it is meaningless to
consider such range of temperatures in an effective field theory approach.

Tt is useful to compare the contribution of daisy diagrams for the 5D U(1) model above
with that of the 4D model arising by trivial dimensional reduction, where all the massive
KK modes are neglected. By denoting with a and ¢ the properly normalized zero mode
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Figure 5.19: (a) Thermal masses in 5D, from the one-loop naive potential (red solid line) and the
one-loop improved one (blue dashed line). (b) Thermal masses in the reduced 4D model, from the
one-loop naive potential (red solid line) and the one-loop improved one (blue dashed line). In both
cases LT ~ 1, A ~ 1 and the normalization is such that M%(T, o = 0) = 1.

components of A5 and @, one gets the following 4D Lagrangian:

1 A 1
L= (Dug)' D¢+ 5(840)(9"a) = ¢° 0 6~ 2(819)” = L Fu P (5.3.7)
The trivial dimensional reduction spoils the 5D Wilson line nature of o, breaking the shift
symmetry oo — o + 1. Let us study the effective potential V(o) for the VEV of the field
a ({(a) = a/(gR)). The contribution of ® to V(a) is the standard one for a massive scalar
field at finite temperature [81]. One has, neglecting terms independent of c,

4 00
V(T,a) = V(0,a) + ,;% / dz z%log [1 - e-vx2+<a/RT>2] . (5.3.8)
0

In eq. (5.3.8), V(0, ) is the zero temperature effective potential, which is UV divergent.
In the MS regularization scheme, it reads

atmr? a? 3

where p is the renormalization scale.

The one-loop improved potential is obtained by substituting in eq. (5.3.8) the tree-level
mass with the one-loop improved one, computed in the 4D reduced model. For g < A,
this simply amounts to shifting (a/R)? — (a/R)? + \T?/12. We plot the thermal masses
obtained by the one-loop naive and improved potentials in figure 5.19 (b) for LT ~ 1,
A ~ 1 and setting p = 1/R, which is the scale above which our effective theory breaks
down. The comparison between figures 5.19 (a) and (b) clearly indicates that the 5D
model is less sensitive to higher-loop effects than the 4D reduced theory, although both
models are not much sensitive to the daisy resummation procedure for o 2 0.05.
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Let us now comment on the daisy diagram contributions to the Higgs effective potential
in 5D gauge-Higgs unification models where no fundamental scalars are present. Fermion
loops do not give rise to IR divergences since the Matsubara modes are half integers
and there is always an effective non-vanishing thermal mass. Moreover, chiral symmetry
implies that fermion mass corrections are always proportional to their tree-level mass and
thus they vanish in the TR limit of vanishing mass. There is then no need of resumming
daisy diagrams for fermions. Gauge invariance forbids the appearance of any thermal
mass correction to the transverse polarization of gauge bosons which are also unaffected
by the daisy resummation procedure. The Higgs field itself, H, does not have tree-level
self-interactions and hence does not give any higher-loop contribution to its potential in
the daisy approximation. Finally, we are left with the longitudinal components A of
the gauge fields, that acquire a non-vanishing thermal mass correction (Debye mass); the
corresponding contributions to the Higgs potential have to be daisy-resummed. We expect
that the latter will be of the same order of magnitude as the one we have estimated in our
simple 5D model defined by the Lagrangian (5.3.1).

As it happens in the SM, we might expect that the resummation of daisy diagrams in
our 5D model leads to a change in the cubic term of the approximate Wilson line potential
(5.1.17). However, since transverse gauge bosons are not affected by daisy diagrams, this
shift would only lead to a slight change of the potential, which will still predict a first-order
phase transition.

As final remark, note that the absence of a tree-level potential in Wilson line based
models permits to evade Weinberg’s rough argument for the necessity of the breakdown of
perturbation theory around the phase transition [95]: since the tree-level potential appear-
ing in generic quantum field theories is temperature independent, perturbative corrections
(which are instead temperature-dependent) cannot give rise to a drastic change in the

potential (as needed for a phase transition), unless perturbation theory breaks down.!3

13The possibility that perturbation theory does not necessarily break down in our 5D model is also
suggested by the value of the critical temperature Tc ~ 1/L, which is independent on any coupling
constant. This has to be contrasted, for instance, with the SM case, in which roughly Tc ~ /—p?/A,
where 2 is the Higgs mass term.
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Conclusions

The main subject of this thesis has been a study of extra dimensional theories defined on
a compact 5D space from both a theoretical and a phenomenological point of view. A
first, more technical, aspect of our discussion has been the presentation of two different
approaches by which one can describe and analyze models with extra dimensions, namely
the standard KK decomposition and the recently proposed holographic approach. The
latter is an alternative way of deriving an effective description of a 5D theory compactified
on a generic warped interval and presents many advantages from a computational point
of view. At the same time, it proves also very useful to study some rather theoretical
aspects of extra dimensional theories. In particular we showed how, within the holographic
perspective, one can easily study the effects of the introduction of a CS term into a 5D
gauge action. More precisely, we proved that the CS term determines the appearance of
an anomaly in the 4D low energy effective action.

Leaving aside the several applications of the holographic approach as a mere com-
putational tool, it is worth mentioning a particularly interesting case, namely the GHU
scenario in the RS set-up, in which the holographic description can offer an insight on the
properties of an extra dimensional theory. This kind of 5D models, thanks to a (modi-
fied) form of the AdS/CFT correspondence, can be equivalently described by a 4D dual
theory in which the fields of a weakly coupled sector act as sources coupled to the oper-
ators coming from a strongly coupled (nearly conformal) sector. In particular the Higgs
field, which arises form the gauge field components in the 5D picture, is reinterpreted as
a Goldstone boson related to a spontaneous breaking of a global symmetry in the strong
sector of the 4D dual theory. Applying the holographic approach to the 50 GHU model,
one naturally recovers all these features, and the holographic effective action is actually a
description of the 4D dual model in which the holographic fields exactly correspond to the
4D sources. Moreover, as we discussed in detail in chapter 2, the holographic description
naturally includes a Goldstone field, related to the gauge symmetry breaking at the IR
brane, which corresponds to the Higgs.

In the second part of this thesis, we carried on the study of extra dimensional theories
form a phenomenological point of view. We showed how one can solve the main problems
of GHU models compactified on a flat S*/Zy orbifold by the introduction of two simple
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ingredients. The first one is a breaking of the SO(4,1)/S0(3,1) Lorentz symmetry along
the extra dimension, which allows to obtain larger fermion Yukawa couplings, thus curing
the problem of the smallness of the top and Higgs masses. The second ingredient is a Zg
symmetry, the mirror symmetry, which acts on a subset of the bulk degrees of freedom,
giving rise to couples of periodic and antiperiodic fields. This symmetry proves essential
to generate a sizable gap between the EW and the compactification scale. As a by-product
the mirror symmetry also implies the existence of a stable KK particle which has been
shown to be a viable DM candidate.

By an accurate analysis of the constraints deriving from the EW precision measure-
ments, we showed that the model is compatible with the experimental results if a mod-
erate amount of fine-tuning (of the order of a few %) is allowed. Such fine-tuning is
certainly acceptable, but it is nevertheless still too high to claim that the model repre-
sents a complete solution to the Little Hierarchy Problem. However, it should be em-
phasized that the required fine-tuning is of the same order of that found in the MSSM.
From a combined fit one can also derive a lower bound on the compactification scale
1/R 2 4 TeV with allowed Higgs masses up to 600 GeV. However, such high values of the
Higgs mass are never reached in the set-up studied in chapter 4, where one actually finds
100 GeV < my < 200 GeV.

Finally, we discussed the properties of GHU models at finite temperature. We showed
that the one-loop effective potential is gauge invariant, contrary to ordinary potentials
in non-Abelian gauge theories in 4D, including the SM. We also pointed out that the
non-local nature of the potential, which determines its finiteness at zero temperature, is
responsible for its mild dependence on quantum corrections at finite temperature. From a
more phenomenological point of view, we showed that a phase transition, typically of first
order, occurs in GHU models at a temperature of order 1/(2mrR). Moreover, we studied
in detail the properties of the EWPT in the realistic model of chapter 4. We found that
the transition is predicted to be of first order although very weak, so that baryogenesis at
the EWPT seems not possible in this scenario.

In the view of the success of the GHU model we presented, it would be clearly worth
studying some aspects of this model which have not been explored thus far. An interesting
issue would be the introduction of a realistic flavour structure. We discussed a simple
implementation of flavour in section 3.3.2, however a far more detailed study is necessary
to build a completely realistic scenario. Another non-secondary aspect would be the
study of possible experimental signatures, in particular in collider Physics, which could
discriminate our scenario form the several other possibilities.

128



Acknowledgements

First of all I would like to thank Prof. Marco Serone for his continuous support and his
invaluable guidance during my studies and my research in the last four years. I am also
very grateful to Andrea Wulzer for his help and for the countless interesting discussions
about Physics (and various other subjects) I had with him.

I want also to remember all my friends at SISSA, with whom I spent a large part of
my time in Trieste, and in particular Giuseppe Milanesi, Alessio Provenza, Marco Regis,
Alberto Salvio and Roberto Valandro.

A special thank to my parents and my sister for their support and encouragement
during my university years in Pisa and my PhD studies in Trieste.

129



130



Appendix A
The Holographic Gauge-Fixing

In this appendix we discuss a more formal derivation of the gauge-fixing procedure used
to obtain an holographic description of a gauge theory in chapter 2. In particular, the
procedure described in the following is necessary when one considers a gauge theory with a
CS term which breaks the G invariance of the theory at the IR boundary (see section 2.6).

Let us start from the holographic partition function (2.2.3), we want to gauge-fix its
local Gp invariance. Looking at eq. (2.2.10) we see that it can not be used to fix the gauge
as the g elements one integrates over do not reduce to H at the IR. It is then convenient
to rewrite the integral on the group isolating the integral on the IR variables, and again
split the latter in integrals over H and G/H.! Be F any functional on the local group, we
have

/ Dy(z, z)g=1Fg] = / Dy() / Dy(z, 2)g=1,g;p=5F (9]

= /G /HD%) /H Dh(z) / Dg(z,2)5y, g pemenFlals  (A0.1)

where ¥ is an element the right G/H coset, h € H and the left Haar measure is understood
in all group integrals. We can now remove the G/H component of g;5 by performing a
change of variable in the g integral with a 5D transformation A such that K(zw) =1 and
K(zm) = 7.2 After the change of variable, g, = h belongs to H so that when putting
together the Dﬁ(x) and Dg(z, z) integrals we obtain an integral over the bulk gauge group

'Tf G is a compact Lie group and H a closed subgroup, the group integral can be split as [96]

/Gdgf[g}=/G/Hd7{/Hdhfh°h]}-

where the appropriate left invariant Haar measures are understood in all integrals.
*We are assuming that m4(G/H) is trivial (see footnote 5 in chapter 2) so that the existence of A is
guaranteed.
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Gg, i.e. with the correct restriction at the IR. Then, we have

/ Do(e,2)g=rFlel = [ D) | Polos g Flho. (A.0.2)

Note that J(z) can be identified with the Goldstone boson X we defined in sect. 2.2.1, so
that we will change name to it from now on.?

Let us now multiply the partition function (2.2.3) by “1” written as in eq. (2.2.10)
and use eq. (A.0.2) to rewrite the group integral. Changing variables in the gauge field

integral we get

Z[B, = /g 7 / Dy / DAL(z,2)5 _p, oxp {rzs [(A<K—1))(g_1)”, (A.03)

where we used the delta function to perform the A, integral, so that in the above equation
A indicates a 5D vector with zero fifth component. Moreover, we neglected the determi-
nant of eq. (2.2.10) and did not specify the IR boundary condition of the DA, integral.
After the A transformation those are given by eq. (2.2.8). Our action, including the CS
term, is by definition invariant under the elements of Gp since they reduce to H at the
IR. The Ggp integral then factorizes out in eq. (A.0.3), we drop it and finally obtain the
gauge-fixed partition function. Ordinary IR boundary conditions (2.2.2) are restored by
changing variable in the DA, integral with a 5D gauge transformation of parameter X(z).
The result is reported in eq. (2.6.8).

In the case of AdS/QCD a slight change in the above derivation is needed in order
to match the standard parametrization of the Goldstone boson fields. The analogue of
eq. (A.0.1) reads now

/DgR($7Z)DgL(x7 Z)F[QL,QR]
= /Dgﬂ(m)DEL(x)/DgR(:r? Z)QR(Zm)=§RDgL(:E7 z)gL(Zm)=§LF[gL’gR]

= /DER(x)Dﬁ(x)/DgR(xv Z)gR(zIR)=§RDgL(m7Z)gL(Z[R)='7°§RF[gL’gR]’ (A.04)

where we performed a change of variable gi(z) — 7 o gr(z) with ¥ € I' and omitted for
shortness the UV restriction g,r = 1. Changing variables in the g, integral by a 5D
transformation A such that A(zr) =7 and A(zyy) = 1 we get

/ Dga(, 25,01 D01 (@ 2)go—1 Fld, 0s]

- [ P¥(e) [ D) [ Pon(@ 2nian1=5:P1.@ e FIR 0 31, 9 (409

3To ensure G-invariance, the measure DT for the Goldstone bosons must be the left invariant Haar
measure of G/H, and this is exactly what we will find. The explicit form of DY is in general non-trivial,
and could be relevant for particular applications. A brief discussion of this subject and references to the
original literature can be found in [97].
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Putting the gr and gr . integrals together we obtain an integral over the G bulk gauge
group. The matrix ¥ € T' can be identified with the Goldstone boson matrix U™! of
xPT. We can now follow the procedure used in the general case and we get the same as
eq. (2.6.8) in which A is now given by eq. (2.6.21).
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Appendix B

Holography with Boundary Terms

In this appendix we will briefly discuss how to derive the holographic effective action in
the presence of localized terms at the IR and UV branes. Such terms appear in many
interesting situations. In the presence of bulk scalars in AdSs, for instance, localized
masses are needed in order to have a zero mode. Furthermore, boundary terms for fermions
or gauge fields as well as fields localized on the UV boundary are often present in realistic
models both in flat [15, 27] and in warped space [19, 20, 21].

The inclusion of localized IR terms in the holographic procedure is simply accom-
plished by modifying the IR boundary conditions.! The latter are indeed modified by the
boundary terms and are derived requiring the variation of the action at the IR boundary
to vanish. Once the bulk equations of motion are solved with these new IR conditions,
the tree-level effective action can be computed as in section 2.3 by plugging the solutions
back into the 5D action.

The treatment of UV localized terms is even more straightforward. These terms are
functions of the field values at the UV boundary, thus they are functions of the holographic
fields and can be directly inserted into the effective action. This is clearly true for gauge
and scalar fields, indeed in such cases one always chooses the boundary values of the non-
vanishing fields at the UV boundary as holographic degrees of freedom and a localized
term can be simply translated into a term of the effective action

STV = / d'e / dz (2 — 2uy) LAy, ) — Sp = / d'z (B, 4), (B.0.1)

where By, and ¢ are the sources corresponding respectively to the gauge field A, and to
the scalars ®.

A slightly different approach must be used when localized UV terms for the fermions
are present. In this case left- and right-handed components are related by the bulk equa-

!Notice that the inclusion of IR boundary terms may induce a breaking of G/H at that boundary
directly into the action and not only through the boundary conditions. In such case the correct gauge-
fixing procedure is the one described in appendix A.
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tions of motion and only one of the two can be chosen as holographic degree of freedom.
Usually one chooses holographic fields of only one chirality, say left, independently of the
actual UV boundary conditions of the fields. In this case, as explained in section 2.3.3,
one introduces some Lagrange multipliers in the effective action in order to set to zero the
components with Dirichlet UV boundary conditions.

In the presence of localized terms for a component which is non-vanishing at the UV
boundary two possibilities can arise. As a first case, if that component has been chosen
as a holographic degree of freedom, the localized terms can be directly included in the
effective action as we did for the bosonic fields

Sioe /d4 /dz §(z — 2yv) L (Y1) — Sp = /d z L(xL), (B.0.2)

where y, is the source related to ¢r. Otherwise, if the boundary term is a function of a
component which is not present among the holographic fields, one can include it into the
effective action using the corresponding Lagrange multiplier (see [37] for a more detailed
discussion)

Shoe / d'z / dz 0(z — zyv)Z (Yr) — Sh = / d*z £(\r), (B.0.3)

where \p is the Lagrange multiplier associated to v¥g.

Another situation which can be easily handled within the holographic procedure is
when localized fields at the UV boundary are coupled with bulk fields. The action for
the localized fields can be directly introduced into the effective action once their couplings
with the bulk fields are rewritten in terms of the sources (or, if necessary, in terms of the
Lagrange multipliers).

B.1 Effective Action for Scalars with Localized Mass Terms

To clarify the treatment of boundary terms within the holographic procedure, let us derive
the effective action for a bulk scalar field @, in a certain representation of the bulk group
G, with localized mass terms. The bulk action is given by

= _/d4 / dz \/g [ Dy @' DM — ——m¢<I>T(I>} (B.1.1)
For the components which are non-vanishing at the boundaries we also add localized mass
terms
ZIm ! ! /
Sioc = o / diz / dza* { (2~ 2m) > b5 010% — 6(z — zuy) Y bE, @107 } :
a a’

(B.1.2)
where the sum indices a (a’) run over the components which are non-vanishing at the IR
(UV) boundary.
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The holographic procedure, in analogy with the case of gauge and fermion fields (com-
pare eq. (2.3.21)), determines a relation between the UV value of the bulk fields and the
sources

$4(2) = (4 ) (@), (B.1.3)
where ¢ represents the dynamical sources on the UV boundary, and ¥ is the Goldstone
boson matrix in the appropriate G representation. To compute the quadratic effective
action we must solve the linearized bulk EOM’s (see eq. (C.3.3)) and express the solutions
as functions of the values of the fields at the UV boundary

4(p, z) = B4(p) f2(p% 2), (B.1.4)

with f2(p?, zyv) = 1. The IR boundary conditions induced by the boundary terms are

[0:2%(p, 2) — a(2)b52%(P, 2)]| .=z, = 0,
{ q)a(l’a zw) =0. (B.1.5

Substituting the solutions into the action and using eq. (B.1.3) we find the tree-level
holographic action

/d%Z ¢T2) A (~ 5)2) /d%Zb L6, (B.1.6)

where II¢(p?) = 0,20, 2)|z=z0n-

The computation of the contribution to the one-loop effective potential coming from
scalar fields is similar to the one described for gauge bosons and fermions in section 2.4,
thus we will briefly report the results. The quadratic effective action for a scalar field, in
the presence of a background ¥ for the Goldstone bosons, can be written as

1
Sh = dz Zqﬁ“fnab(z) ¢’ (B.1.7)
5
where the sum is over the dynamical fields. The scalar contribution to the one-loop
effective potential is

4
Vo(T) = / (dzf)ffl log [Det (IL,())] , (B.1.8)

where the momentum has been rotated into the Euclidean space.
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Appendix C

Bulk Wave Functions

In this appendix we report the form of the solutions of the bulk EOM’s, which are needed to
compute the holographic action and the effective potential. We derive the wave functions
for gauge fields, fermions and scalars in the AdSs and flat space cases. For gauge fields
and fermions we consider an action without localized terms. In the case of scalars, as
customary, we include also the boundary mass terms which are needed to obtain 4D zero
modes in the AdSs case.

C.1 Gauge Fields

We consider a gauge theory with gauge group G broken to a subgroup H at the IR
boundary. We will denote by ¢* the unbroken generators, namely those in H, and by %
the broken generators, namely those in G/H. The 5D action in the gauge A, = 0 is given
by

1 4 ZIR 1 y
The bulk EOM’s are

1

1
Oud" i)y — T3 0(alB) 4G, =0, ——ps

a(z)

where AZ ; are, respectively, the transverse and longitudinal components. The IR boundary

8:(a(2)8;)Afs, =0, (C.1.2)

conditions are

0,47, =0,
L) P (C.1.3)
?,ll/ = O

Z=ZIR

In the following we will denote generically by AT and A~ any field corresponding respec-
tively to the unbroken subgroup H or to the broken generators in G/H.
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Using the definitions in eq. (2.3.13) and in eq. (2.3.15) in the AdSs case (a(z) = L/z)
we find

pQFﬂ:(pa Z) + Zaz ('i;az) Fi(p, Z) = 0, (014)

with the IR boundary conditions

8ZF+(p7 z)lz—z =0 ’
e C.1.5
{ F (0, ey = 0. (€19

At the UV boundary we must impose
FE(p, zgy) = 1. (C.1.6)
The general solution of eq. (C.1.4) is
F(p, 2) = bz(J1(pz) + cYi(p2)) . (C.1.7)

Imposing the boundary conditions we get

h(p, 2)
FE(p,z) = —2 20 C.1.8
(»,2) h+(p, zuv) ( )
with
hi(p, 2) = z (Yo(pzw) J1(pz) — Jo(p2m)Y1(p2)) (C.1.9)
h—(p, 2) = z (Y1(pzw) J1(p2) — J1(p2m)Y1(p2)) -
The derivatives of h+ with respect to z are
hfq-(ll%z) =Dpz (YO(szR)JO(pz) - JO(szR)Yb(pz)) 3 (C 1 10)
h_(p, z) = pz (Y1(pzm)Jo(pz) — J1(pzm)Yo(pz)) ,
so that X
iy (p, zuv)
mF = 2 C.1.11
¢ ht(p, 2uv) ( )
A simple relation links IIf! to I1? and IT}:
O =10+ 10} . (C.1.12)

For a theory compactified on a flat space (a(z) = 1, zyy = 0 and 2z = 7wR), the
definitions in egs. (C.1.8), (C.1.11) and (C.1.12) remain valid and h. are given by

(C.1.13)

{ h+(p, Z) = COS(p(?TR - z)) )
h—(p, z) = sin(p(mR — z)) .
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C.2 Fermions

We consider a bulk fermion ¥ whose action is given in eq. (1.3.3). The bulk equations of
motion are (see eq. (1.3.5))

Oea <()) + a(2)M| Y15 = Zhvns. (C.21)

The bulk equation can be solved rewriting ¥g 1, as

hR,L (pv Z)

hR,L(I% zuv) ¢R’L(p) ’ (0.2.2)

Yr,L(p, 2) = dr L(D, 2)DR,L(D) =

where @ZR, . are the values of the fields on the UV boundary and dg 1, satisfy the condition
dr,.(p, zuv) = 1. The equations of motion relate 1r and 1r:

hr(p, zuv) >
hi(p; zuv)

so that only one of the two fields can be chosen as holographic degree of freedom.

PUR(D) = p 211 (p) = PfR(P, 20v) (D), (C.2.3)

In the AdSj5 case, the bulk equations of motion become
[20; — 2F ML) hy r(p,2) = zphr1(p, 2). (C.24)

Denoting by d* the solutions in the cases in which g , has Dirichlet boundary conditions
at the IR one finds

hf(p, 2) = 22 [Yez1/2(p2m) Je41/2(p2) — Jez1/2(p2m) Yern /2 (02)] (C.2.5)
K (p, 2) = 252 [Yem1 j2(P2m) Jom1/2(P2) — Jom1/2(P2m) Yem1/2(p2)]
where ¢ = M L.

In the flat space case one finds

hZ(p, z) = Slin(w(ﬂR - z)) ’ C26
=D, 2) = ; [~wcos(w(mR — 2)) + M sin(w(mR — 2))] , (c28)
and
{ hi(p,2) = % lweos(w(rR — 2)) + M sin(w(rR - 2))] , ©27)
ki (p, z) = sin(w(mR — 2)),

where w? = p? — M2
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C.3 Scalars

We consider a bulk scalar field ® with bulk action given in eq. (B.1.1). For a field which
is non-vanishing at both boundaries we also add localized mass terms of the form

1

Sioe = —=
loc 29%

dix /zm dz a*(2) {——b [6(z — zyy) — 6(z — 2z)] <I’Jf<1>} , (C.3.1)
Zyv
where b= (2+¢a)/L and o= /4 + m?bL2. This particular choice of the coefficients is the
one which allows a 4D scalar zero mode for an AdS metric. Of course when the scalar field
satisfies Dirichlet conditions at a boundary the corresponding mass term in eq. (C.3.1) is
not included. )
In this appendix we are interested in computing the solutions of the bulk EOM’s with
fixed UV values for the fields, thus we only need to consider the IR localized terms. In
order to solve the linearized equations of motion we write the fields as

®(p,z) = 3(p) f() - (C.3.2)

Imposing the variation of the action in eq. (B.1.1) to vanish, we find

P1(E) + 0@ (2)0:5(2) ~ Hm3f(2) = 0, (33

while the IR boundary conditions are
(a_l(z)az =) fH(2)|2=2m =0, C3.4
{f~(z)|z=zm=0a (€34

where f¥ represent the solutions which are respectively non-vanishing at the IR boundary
or satisfy Dirichlet conditions.
In the AdSs case the solutions of the equations of motions are

+ _ hﬂ: (p7 Z)
f=(p,2) = T o) (C.3.5)
where
{ h+(p, z) = 2? [Ya:tl(ple)Ja(pz) - Ja:!:l(szR)Ya(pz)] ) (C 3 6)
h™(p, z) = 2° [Ya(pzm) Jo (p2) — Jo(p2m) Ya(p2)] , o

with the + signs corresponding to the cases b = (2 + a)/L.
In the flat space case with arbitrary b, the solutions of the equations of motion can be
written as in eq. (C.3.5) with

{ h*(p, z) = cos(w(mR — z)) — C—i—sin(w(ﬂR —2)), (C.3.7)
h~(p, z) = sin(w(7R — 2)),

2 2

where w? = p? — ™.
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Appendix D

Mode Decomposition

In this Appendix we report the decomposition of fields in various representations of the
gauge group SU(3) in the presence of the orbifold projection matrix Z given in eq. (3.2.1).
The various components are classified in terms of representations of the unbroken gauge
subgroup SU(2) x U(1).

If we denote by U a field multiplet transforming in the representation R, we have
(compare eq. (1.4.12))

Ur(-y) = nuR(Z2)15 Y= (y) (D.0.1)

where R denotes the embedding of the projection in the R representation, and ny = %1.
Left-handed and right-handed components have opposite orbifold parities, so that only
one chirality has a zero mode. In the decomposition of the multiplets we will also include
a + or — sign for each component which gives the relative parities of the fields, i.e. the
parity of the fields under the operation ¥ — R(Z)T%.

Fundamental

For the fundamental representation we have simply R(Z) = Z. A field U3 in the 3
representation decomposes as

(2

U= | v; |, (D.0.2)

o
where we denoted by v; and 1, the up and down components of the SU(2) x U(1) doublet
216, and by x the singlet 1_; /3. The basis in which the coupling of the triplet to the
VEV of A, is diagonal is given by

TW = g, U@ = qpo + . (D.0.3)

The M field does not couple with the VEV of Ay, so that it gives a KK tower with
masses n/R (with n € Ng). The %2 field couples with the Higgs with charge ¢® =1, so

143




that its KK tower is (n + a)/R (with n € Z).

For a field in the antifundamental representation we have

(23
Ug=| -7 |, (D.0.4)
X+

where we denoted by 1; and 1, the up and down components of the SU(2) x U(1) doublet
2_1/6, and by x the singlet 1;/3. The diagonal basis and the mass spectrum is analogous
to the one for the fundamental representation.

Symmetric

For the symmetric representation we have R(Z) = Z ® ZT. The expansion of the ¥g field
in the symmetric representation is given by

V2¢T ¢ Yr
o5 V295 vy , (D.0.5)
YT Yy V2xT

1
Vg = —
‘T V2
where, as before, 1,2 denote the components of the SU(2) x U(1) doublet 2_; g, x is the
singlet 1_y/3 and the triplet 3;/3 is given by ¢1,23. The diagonal basis is defined by

T = gy — ¢3, ‘I’(2)=¢2+2€:—?—2-,

V2
X + @2
5

The states which couple with the Higgs are ¥ with charge ¢ = 1 and ¥ with charge
¢® = 2; their mass levels are thus given by (n + ¢®a)/R (with n € Z). The ¥® and
¥®) fields do not couple with the VEV of A,, and their mass levels are simply n/R (with
neN 0).

A field in the antisymmetric representation decomposes as

v® =g, vW= (D.0.6)

V26T 6 Wy _
Ug=—=| oF V205 —vi |, (D-0.7)
¥y =Y V2xT

where 11 2 denote the components of the SU(2) x U(1) doublet 246, x is the singlet 15,3
and the triplet 3_; /3 is given by ¢123. The diagonal basis and the KK masses are similar
to the ones previously given for the symmetric representation. ‘
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Adjoint

For the adjoint representation we have R(Z) = Z ® Zt. This representation decomposes
as 8 =30 @ 212D 2.1/2 ® 1o and Vg can be written explicitly as

(Z+%X)+ v+ o7
= () (z+d) v | (D08)
L6 )

where, as before, 91 2 are the components of the SU(2) xU (1) complex doublet 21 /9@2_ 5,
the singlet 1¢ is x, and Z, Y and Y constitute the triplet 3p. The diagonal basis is

v0 =Y -y, w<2)=Rewz+Z”Tﬁ”‘,
y® = V3ZEX g 1y, D.0.9
2

the charges of this fields with respect to the Higgs are ¢ =1, ¢® = 2 and ¢©® = ¢¥ = 0.
In this case we have two KK towers with masses (n+a)/R (with n € Z) which correspond
to the complex () field, one tower with masses (n + 2)/R (with n € Z) given by ¥®),
and, finally, two towers with masses n/R (with n € Ng) corresponding to ¥®) and ¥,
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Appendix E

Computation of the Zb 1.b; Vertex
Corrections

In section (4.4.1) we used the holographic approach to determine the corrections to the
Zb rbr vertex. In this appendix we want to show explicitly how to perform such compu-
tation considering a simplified set-up, which however presents the same features of the
general case. As a by-product, the explicit computation will give us the possibility to
better understand how to use the holographic approach to compute interactions (see sec-
tion 2.3.1). Moreover, by comparing the mass spectra derived here with the ones obtained
by a KK computation in appendix F, one can get another check of the equivalence of the
holographic and the KK approach.

Let Aps be a U(1) bulk gauge field, 1 and x a couple of bulk charged fermions and gr
a chiral 4D fermion localized at y = 0, which mixes with 17. The gauge field components
A, and Aj satisfy respectively Neumann and Dirichlet boundary conditions at y = 7R,
whereas for the fermions we have ¥g(7R) = x1(7R) = 0. The action is given by

o 1 My | (1= — _
S = / dyd w{ = 7N YT 4 | S($iDsy + XiPsx) — Mxy + h-C-}}
0

+ [ G5 Pagn + eTmbu(0) + T 0gn + TOWO) +XOXO)] , (E0.)

where we added the localized mass terms which are required by the choice of using the
left-handed components of the bulk fields as holographic degrees of freedom.
The solutions of the equations of motion for the bulk fermions are given by

cos(w(y — mR)) ~ _ ¥ wr M3 ' B
e s NI Rt <cos(w7rR) " sin(unrR)) sin(w(y - &),
_sinwly - rR)) » FJ ( wXL My

sin(wmR) v, XR = " p? \ sin(wrR)  cos(wrR)

XL = ) cos(w(y —7R)),

(E.0.2)
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where w = y/p? — M?2. For the transverse components of the gauge field one easily finds

cos [p(rR — y)]

cosp 7Tl A (p), (E.0.3)

Aulp,y) =

where p = \/pFp,.
Substituting the solutions into the action in eq (E.0.1) we find at the quadratic level

1 ~ = ~ 1 —~ =
L= —-z-n(p)A;Aw + by Z%wtan(wwR)wL +3 (@Rm gr +eqpirL + equR) , (E.0.4)

where we already set to zero the non-dynamical source X. The quadratic Lagrangian for
the gauge field and the boundary field gr is obtained integrating out the 11, holographic
field. Using the solution of the equations of motion

~ e
P = —-2% cot(wrR)qr (E.0.5)
we get
1 ~ A~ 1
Zholo = —§H(P)A2At“ +5240rP1aR (E.0.6)
where we defined
e? cotwnR
II(p) = ptan(prR), Zg=1- Caa (E.0.7)

The holographic procedure can also be used to study interaction terms. Again, one
has simply to substitute into the action (E.0.1) the solutions (E.0.2) and (E.0.3). Then
one has to put to zero the non-dynamical source X and integrate out the holographic
field QZL using eq. (E.0.5). It is useful to see how this works by computing the distortion
to the U(1) gauge coupling g of gr to fTu due to the massive modes. This interaction is
encoded in the following Lagrangian term:

TR
£ =g /0 dy [E(p +q, 040, y)¥(@,y) +X@+ 0, v) A2, v)x(p, y)}
+27p(p+ ) 4()ar(r) (E03)

In order to simplify our computation, let us consider the kinematic configuration in which
the fermion is on-shell, p* = (p + ¢)? = 0, and ¢®> = p® <« M?2. By direct substitution
and after a bit of algebra, one gets the following cubic interaction, up to terms of order
w2 /M2 -
e“u“mTh _ ~t

S F(xRM)|ar(+ 04 (Dar (). (E.0.9)

where Z, is computed at zero momentum and we have defined

g

Flz)y=1- %cotha: + coth®z. (E.0.10)
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As expected, the form of the interaction vertex at u? = 0 has precisely the same struc-
ture as the quadratic term in (E.0.6), as required by gauge invariance, which forbids any
correction to g. At quadratic order in the gauge boson momentum, however, we get a

correction
_ ge’ TR u?
87, M2

F(xRM). (E.0.11)

Notice that eq. (E.0.11) coincides exactly with eq. (4.4.1), when fixing p? = m% and taking
into account the SM coupling of the by. This is a further proof that no corrections arise
in our model from the mixing of by with fields with different isospin quantum numbers,
the only effect being given by the partial delocalization of the field, resulting in couplings
with the “massive” gauge fields 4, (y), with y # 0.
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Appendix F

Fermion Localization

In this appendix we examine the wave functions of the KK modes of the fermions arising
from the mixing of the bulk fields with the fields localized at y = 0. The purpose of this
analysis is to illustrate how much the SM fermions are localized in the model described in
chapter 4. As we will see, in fact, the top quark is not localized at all, whereas the bottom is
only partially localized (see figs. F.1 and F.2). In order to simplify the discussion, we focus
on the wave functions of right-handed singlets before EWSB. Left-handed localized fields
are more involved since they couple to two different bulk fields, as shown in eq. (4.1.5).
The relevant quadratic Lagrangian describing the coupling of a localized right-handed
fermion with the bulk fields is easily extracted from the full Lagrangian (4.1.2). It reads

L= Py + kOsvs)w + p(ids + kdsys) — M(FP + )
+6(y)[qriPagr + €TrYL + e¥r4rl, (F.0.1)

where 9 and @Z are the singlet components of the periodic bulk fermions \If’f,_ and \I'f’,,,
respectively for gqg = tg and gg = bg. For simplicity of notation, we denote the bulk-
to-boundary mixing parameter simply as e in both cases. Due to the latter and the bulk
mass M, the equations of mo‘mon for 1, '(Z and gg are all coupled with each other. The
4D KK mass eigenstates X (:c) of eq. (F.0.1) will then appear spread between the fields
W, ¢ and qgr. In other Words, we expand the various fields as follows:

=3 n x ")
YLR=2nf y xf;“}z, (F.0.2)
Yrp=S,71 A(n) 2(¥) Xﬁe,

where f} () #(y) and f R(n) #(y) are the wave functions along the fifth dimension and g, are
constants. The x ﬁelds satisfy the 4-dimensional Dirac equation

i&;x("’) = mnx(n) , (F.0.3)
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where x(® = X(Ln)-l-x

conventions ysxr,z = *xr,r). By solving the equations of motion, one finds two distinct

() , and m,, is the mass of the n'! state (it is useful to recall that in our

towers of eigenstates: an “unperturbed” tower with only massive fields and a “perturbed”
one containing a right-handed massless field. We will also see how the mass spectra found
here with the usual KK approach match with the one deduced from eq. (E.0.7) using the
holographic approach.

The unperturbed tower

This tower has no component along the localized fields and is entirely build up with bulk
fields. The wave functions are analytic over the whole covering space and the left-handed
ones vanish at y = 0. The mass levels are given by

k
M = 4| M2 + ( ”) , (F.0.4)
R
~but with n > 1, without the n = 0 mode. The corresponding wave functions are
gn =0, m__M . (n
7= T /R () (F.0.5)
Fn) _

L \/717_R_Sin (%y) ) A}zn) = ﬁ%cos (2 > .

Although e does not explicitly appear in egs. (F.0.4) and (F.0.5), its presence constrains the

Ry

left-handed fields to vanish at y = 0 and thus it indirectly enters in the above expressions.
When e vanishes, indeed, one recovers the usual mode n = 0.

The perturbed tower

This tower is distorted by the coupling with the localized fields. Its massive levels are
given by the solutions of the transcendental equation

g2

tan (WR%-) = (F.0.6)

where w, = \/(m2 — M?) and € = \/wR/2e. Notice that the masses defined by eq. (F.0.6)

exactly coincide, for k£ = 1, with the zeroes of Z; in eq. (E.0.7). The mass equation has a
1

tower of solutions with m,, > M, whose wave functions are

EMngn_ cos ((y — mR)wn/k) f(n) €gn__sin ((y — mR)wn/k)

£ =~ \/——2ka% sin(nRon/k) VarRk  sin(rRwn/k)
) _ J;(n) _ eMgn cos((y — mR)wy/k)
/1 B forRkw, Sin(nRwp/k)

(F.0.7)

'In eq. (F.0.7) and in eq. (F.0.9) we report the wave functions for 0 < y < 7R, the continuation for
generic y can be obtained using the properties of the fields under parity and under translation.
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The constants gn, in eq. (F.0.2) are determined by imposing the canonical normalization
of the 4D fields. One gets

2 2

£ 7 Rm2 M? - wy 12
— LU < t k . F. .
In [1 + 2n Rk2w? (Sin2(7Tan /k) ik wn cot(mhion/ )>} (F08)

Notice that some care has to be used in taking the limit ¢ — 0 in the above expressions,
since one encounters apparently ill-defined expressions in egs. (F.0.7) and (F.0.8).

The zero mode

The zero mode is of particular interest, being identified with a SM field. Its wave function

is

FION FO _ €90 sinh ((y — mR)M/k)
L ’ R V2nRk sinh(nRM/k)
(F.0.9)
0 _ 7O _ ego cosh((y — nR)M/k)
L =Y B 7 \orRk sinh(rRM/k) °’
where again g is determined by the normalization conditions and equals
£2 -1/2
go= |1+ Bk coth(mRM/k) . : (F.0.10)

The constant go indicates how much of the zero mode field is composed of the localized
field. When € < 1 and go ~ 1, as expected, the wave function of the massless state is
mostly given by the localized field, the bulk components (F.0.9) being proportional to e
and thus small. On the contrary, for large mixing £ > 1, one has go < 1 and the localized
field is completely “dissolved” into the bulk degrees of freedom. In the latter case, then,
the localization of the ¥ and JR components of the zero mode is essentially determined
by the adimensional quantity mRM /k. The bulk wave functions at y = 7R are suppressed
by a factor exp(—mRM/k) with respect to their value at y = 0 so that, independently of
e, for large values of TRM /k the chiral field is still localized at y = 0.

Summarizing, the zero mode is localized at y = 0 for small mixing with the bulk fields
and arbitrary bulk masses, or for large bulk masses and arbitrary mixing. The requirement
of having the correct top mass after EWSB implies a large mixing and a small bulk mass,
giving rise to a delocalized top wave function. In fig. F.1 we illustrate the wave function
profiles of the right-handed top and bottom quark components for typical acceptable values
of input parameters, before EWSB.

The computation of the mass spectrum and fermion wave functions for the antiperiodic
fermions ¥_ and U_ is straightforward, since they do not couple with the localized fields.
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Figure F.1: Top (red) and bottom (blue) quark  Figure F.2: Delocalized part of the quark wave
wave function profiles (right handed compo-  functions. The fraction of bulk wave function
nents). The areas below the lines represent the  is shown for the various quarks.

amount of the delocalized part of the fields.

Their wave functions can be written as

my 1 cos n+1/2 (n) _ iM——(n-{—l/Q)k/Rsin (n+1/2y>
L= \/orR R 7)) R MpV2TR R '
n) _ _El sin <n+1/2 ) ) M=E(n+1/2)k/R n+1/2
fL m R Yyl fR = o vy COos R Yy,
(F.0.11)
where n > 0 and =+ stands for the two towers of mass eigenstates, both with masses given
by ‘
2
My = \/]\4’2 + (—-—————k(n ;1/2)> . (F.0.12)

After EWSB, all above relations are clearly modified by O(«) effects. In particular,
a small fraction of the SM fields is now spread also among the bulk fermion components
whose mixing were forbidden by SU(2) x U(1)y symmetry. We do not write the modifica-
tion to the mass formula (F.0.6) for the deformed tower, the form of which can be deduced
from the zeroes of the integrand of egs. (4.2.8) and (4.2.9) (with the 4D momentum rotated
back to the Minkowskian).
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Appendix G

Explicit Form of the
Finite-Temperature Potential

“In this appendix we report the explicit form of the finite temperature potential for a
Wilson line phase. For simplicity, we consider the Lorentz preserving case and we include
only periodic fields. The bulk contributions are computed for a couple of fields ¥, T
with opposite orbifold parities and with a bulk mass M. The boundary contribution is
computed for the set-up considered in section 5.2.1, namely a couple of bulk fields in the
(8,6) representation of the SU(3)s x SU(3), gauge group coupled with the a localized
SU(2) doublet @1 and a singlet tg. The matter Lagrangian, for an arbitrary localization
of the boundary fields, is given by

oy = TilDs¥ + TP — M (T + T
+6(y — o) [QﬂﬁAlQL + (61 Qr+ h.c.)]
+5(y — v1) [ERi.wgltR + (62 trx + h.C.)] , (G.0.1)

where gy, = 0, 7R. We also report the finite-temperature correction to the gauge contri-
bution to the potential in the presence of localized kinetic terms (see section 3.7.2).

The generalization of these results to the Lorentz breaking case and to antiperiodic
bulk is straightforward. The bulk contribution can be obtained from eq. (5.1.1) where one
has to substitute the appropriately modified mass tower. Also the manipulations of the
bulk contribution used in the following can be easily adapted. The boundary contributions
can be obtained by generalizing egs. (4.2.8) and (4.2.9) at finite temperature.

G.1 Bulk Fields Contribution

There are various ways of computing eq. (5.1.1) for bulk fields. For generality, we will
report in the following the result that one obtains in d non-compact dimensions. A possible
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computation is to disentangle the 7' = 0 and T # 0 terms in eq. (5.1.1) and compute the
T-dependent term as usually done in 4D for each KK state. In this case, one simply gets
(see e.g. [81, 89])

+co /p2+M,%
V(T,qa) = V(T =0,q0) + (-1)7 T > /-(g%?—élog [1 — (=) |, (G.1.1)
k=—00

where p? denotes the d dimensional non-compact momentum square, and 7j = 0 for bosons
and 77 = 1/2 for fermions.

Other useful and more explicit forms of the potential are obtained by using the relation
trlog A = — [;°dt/ttre™™ in eq. (5.1.1), valid up to irrelevant constants. Subsequently,
one can use the Poisson resummation formula

“+o0
Z e——-7rt('rr.—+—a)2 Z E_T 2imna (G].Z)
n=-00 n——oo

The above formula can be applied in eq. (5.1.1) to the KK modes k, to the Matsubara
ones m, or to both, resulting in different but equivalent ways of computing the effective
potential. In the three cases, one gets, respectively:

F-1 & cos(2rkqa) = = 5
V(T, qo) = w Z Z e ———"Bau Lk+/M2 + 2x(m + 5)T]
__1 m=—0cQ
(G.1.3)
where
Bug (z) = mi?-Kdzi (z) (G.1.4)
and K, are the modified Bessel functions. By Poisson resumming over m, we get
L X cos(2rkqa) ~
V(T,qa) = (-1)%11 = Baiz (LME) (G.1.5)
7r(27r)% .EZ (Lk)d+2 z

" £ S () e (),

where a Poisson resummation over k has been performed in the first term (7n = 0). Finally,
by Poisson resumming in both indices, one finds

g = S Sl ]

d+2

2
=1 =—00

‘Bass PT/[— 2 + (LTk)?| cos(2rkqa) . (G.1.6)
2

In egs. (G.1.3), (G.1.5) and (G.1.6) an irrelevant o-independent term has always been
omitted. All these relations also hold for vanishing bulk mass term, M = 0, by noticing
that limg_,o Bo() = 2971T'(), where « is any positive integer or half-integer number.
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G.2 Boundary—Bulk Fields Contribution

The contribution to the Higgs effective potential of bulk and boundary fields is substan-
tially more involved than that of purely bulk fields. One has essentially to compute
V (T, qa) directly from eq. (5.1.1), where M ,3 are the mass eigenvalues of the bulk-boundary
system. It turns out that the full contribution can be written as a sum of a purely bulk
contribution and a remaining boundary term. The bulk contribution is that given by the
bulk fermions ¥ and U with e; = ey = 0, whereas the boundary contribution is a simple
generalization of the one found at 7' = 0:

400 2
£ ~
Vu(T,a) = 2L3 E: / drz 111{ [1+5i2§‘%‘;f0(m/\a0)
m=—00

2 2 9
+_“‘—‘2;:5 fo(Zx, QO!)J +E [252,,,]"1 3(2,)\,205)}:'

2

€1 ~

%(T’ o) = 2L3 Z / dzz?In { {1 + 941 ﬁfo(m)\, Oz)}:l , (GZl)
m=—00

where the two cases in which the boundary fields are localized at the same or at different

fixed points correspond respectively to the choice fi or f3 in the last term in the expression

of Viu(T, o). In eq. (G.2.1) we also used the definition

P?=z3+2% and T2 = (¢ + 22+ \?), (G.2.2)

and zo = (m+1/2)7LT is the properly rescaled Matsubara frequency for a fermion. The
functions fo 1 are defined in egs. (3.3.8) and (3.3.9), while fo 3 are given by

2 cos(ma) sinh(T))
cosh(2%)) — cos(2ma) ’

2sin(wa) cosh(Z)y)
cosh(27)) — cos(2mar)

f2(Zx,0) = Re [sinh_l(%\ + ’iTFOz)] = (G.2.3)

(G.2.4)

f3(5,\, Ol) =Im [Sinh—l(:’f,\ -+ iﬂ'a)] = —

In presence of localized gauge kinetic terms, the gauge field contribution is given by
the sum of the purely bulk term and an additional boundary term. The latter, for a field
which couples diagonally with the Higgs field with charge ¢, can be written as

2

[1 + ciZfo(T, qo)] — H [ciT f2(T, qar)]
= (G.2.5)

V(T qa) = 2L3 Z / dz 2% In

m=-—00

with 7 defined as in eq. (G.2.2), but with zo = mnLT.
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