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Introduction

Cosmology is commonly thought to have entered its “precision era”, a threshold of
every science. Some of the first - and essential in order to promote it to the rank of science
- developments happened almost by chance, such as Hubble’s discovery of expansion, or
Penzias and Wilson’s casual observation of the Cosmic Microwave Background, or CMB).
Afterwards, the level of sophistication reached by the auxiliary pure sciences, like physics
or mathematics, allowed room for fast and spectacular improvement. In the Sixties, after
the couple of extraordinary events I mentioned, the new-born Cosmologists not only had
a fantastic playground - the Universe itself - but were also supported by a well-established
mathematical setting like Einstein’s theory of General Relativity and by a good knowledge
of most of the required physics of fluids; also, high-energy physicists were at the same time
developing the standard model of particles. From the Hot Big Bang Cosmology to the
formulation of the theory of inflation to the discovery of the CMB anisotropies, there were
years that revolutioned the way people thought about the Universe. Then, after some tens
of years, Cosmology has become a precision science, in the sense that the guidelines are
written, and now we are cross-stitching on models, more often limited by the sensitivity of
the instruments than by the cosmological community’s capacity of having better ideas. We
have quite a converging view (so converging, in fact, that we call it Concordance model) of
the numbers that form the Universe matter-energy content, and still we profoundly lack a
theoretical interpretation of these numbers. I think that the fact that we are conceiving
more and more sophisticated experiments, while at the same time the nature of a good 96%
of the Universe is obscure to us, renders the present era for Cosmology more thrilling than

ever. This peculiar state-of-the-art sets as a crucial challenge the search for unusual point
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of views, in the sense of new observables, able to resolve the present degeneracies among
different parameters or give us new independent - in space or in time - constraints. We are
in the intriguing era of “tricking the Universe” to force it to tell us something about itself...
rather than the elegant Universe, I would call it the reluctant one.

The work I have been ldoing during my PhD tried to go in the direction that I outlined
above - the choice of an observable which was capable to select one particular epoch in
the history of the Universe, and the exploration of the information that we can infer from
it. Our target is to shed some light on the mechanism giving rise to the observed cosmic
acceleration, a relatively recent cosmological process, started a few billions years ago. The
easiest theoretical interpretation is in terms of a non-zero energy density in the vacuum,
the Cosmological Constant; however, its required value is extremely low with respect to any
conceivable (in the sense of “natural”) fundamental physical scale, and the corresponding
riddle is motivating a huge theoretical and experimental effort for the understanding of this
component. If we generally (although a bit inappropriately) call “dark energy” the compo-
nent responsible for the acceleration, and constituting the 75% of the matter-energy content
of the universe, one of the major present challenges, that motivated the present work, is to
determine whether the dark energy has a constant behavior, or is instead characterized by
some dynamics.

The instrument is the gravitational lensing by large-scale-structure on the CMB light; our
starting point is the fgct that the lensing “cross section”, intended as the distribution in
time of the lensing power, vanishes in proximity of both source and observer, picking up
most of its strength at intermediate distances. Thus, given the peculiar collocation of us
as observers at the present time and the CMB light at a redshift z ~ 1100 as source, the
gravitational lensing effect on the CMB is for its largest part generated in the redshift
window around z = 1. On the other hand, the observational evidence in favour of an ac-
celerated expansion suggests that this significantly overlaps with the epoch of the onset of
acceleration itself. This latter statement means that whatever the mechanism giving rise to
the acceleration, constraints set at this time will be crucial in order to discriminate among
models, highlighting the peculiar dynamics of the expansion at times of the dark energy

entering the cosmic picture. Moreover, since most of the constraints we get from photomet-
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ric observations come from the local universe, we have by now set significant limits on the
dark energy present abundance, and therefore the next challenge in the understanding of
its nature is to trace its redshift behavior. The study of an observable which is independent
of the present time evolution and was born at the same time of the acceleration is therefore
most suitable for dark energy investigations.

The project was organized in different steps. The first theoretical objective to be achieved
was to recast the formal theory of weak lensing for the case of generalized cosmologies. The
latter classification included both dynamical dark energy in the form of a scalar field and
modified gravity scenarios, which historically have been the main attempts of theoretical
interpretation of the cosmic acceleration. We had to identify the relevant variables in the
language of the cosmological perturbations for the different models, and translate them in
that of the lensing observables. The pillars of the corresponding mathematical apparatus
are the lensing equation, which describes the trajectory of photons in the space-time modi-
fied by the matter density field which produces the lensing effect, and the Poisson equation,
+which establishes the connection between the density perturbations power spectrum and
~-that of the gravitational potential, and is crucially influenced by the underlying model-
+-dependent dynamics of the expansion.

The second part of the work was numerical; the procedure for obtaining the lensed spectra
had to be implemented in an integration code. The main difficulty of this part of the work
relied in the necessity of keeping track of the modified cosmic expansion, and of the addi-
tional fluctuating components. Once this task was completed, we were able to study and
fully understand the CMB lensing process in dark energy cosmologies. We demonstrated
that the lensing distortion of the CMB keeps a record of the cosmological expansion rate
at the time of the onset of acceleration, and we isolated the most promising tracer of the
lensing effect in the reshuffling of the primordial polarization anisotropies due to lensing.
We completed this part of the work quantifying the impact that the CMB lensing detection
from forthcoming CMB experiments might have on our capability to determine whether the
dark energy is indeed a Cosmological Constant.

We began a systematic investigation of the CMB lensing properties when the underlying

gravity theory is modified. We considered the Jordan-Brans-Dicke model, building a rou-
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tine for the integration of its equation of motion and conducting a likelihood analysis of
the constraints that can be obtained from large-scale structure data together with CMB
observations, but in absence of lensing. The inclusion of the latter in the game is the natural
prosecution of this study, which moreover served to reveal some interesting open problems

about this model in particular and the modified gravity theories in general.

Outline

The thesis is organized as follows.
In Chapter 1 I briefly sketch a picture of our current understanding of the Universe and
describe the main steps both in the individuation of the cosmological parameters needed
for an accurate description and in their determination. I retrace the path leading to the
need for an explanation of the cosmic acceleration and depict the present concordance cos-
mological model.
Chapter 2 is dedicated to the physics of gravitational lensing which is relevant to cosmo-
logical purposes; here I also introduce the notation and the physics of the lensing-related
observables. I concentrate on the effect of lensing from large-scale structure on the Cosmic
Microwave Background, giving a qualitative overview of how the unlensed spectra are mod-
ified.
The formulation of the weak lensing theory in generalized cosmologies is the subject of
Chapter 3. Although the general structure of cosmological perturbation theory is well-
known, in this context new degrees of freedom arise, yielding to the necessity of recasting
the corresponding sets of equations. I introduce the classes of models which have been ob-
ject of my work, including the Cosmological Constant case, scalar field Quintessence models,
scalar-tensor theories and Non-Minimally-Coupled scenarios, and provide a description of
how the lensing-related variables are related to the cosmological parameters, pointing out
where the effects of generalized cosmologies arise from and which are the most suitable
variables to reveal them. Some examples of the new effects are also given.

Chapter 4 represents the first full application of the lensing theory which has been devel-
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oped, and contains a thorough investigation of the CMB lensing process in models in which
the dark energy is described by a scalar field. We study the various manifestations of the
CMB lensing, and identify a particularly effective one in the way lensing redistributes the
primordial polarization anisotropy power. We perform a Fisher matrix analysis in order to
provide a quantitative estimate of how much these observables may help in constraining the
dark energy dynamics.

In Chapter 5 I focus on a simple modified gravity theory, the Jordan-Brans-Dicke model. I
present the results of an analysis which aimed to compute the constraint on the additional
parameter of this theory, wipp, from the combination of CMB and large-structure data;
this was intended as preliminary study for the inclusion of the lensing signal in this model
as well, and i discuss the outcome for the lensed spectra for this model, whose analysis
however is still in due course.

A brief discussion of the work in progress and future directions is carried out in Chapter
6. Our main current lines of study are the impact of anisotropic stress in modified grav-
ity theories and the inclusion of non-linear evolution in the calculation of the lensed CMB
spectra.

The 7th and last Chapter contains the summary of the results we obtained and our conclu-

sions.




Chapter 1

A puzzling inconsistency

Cosmology is the study of the large-scale structure of the Universe. In order to give
a brief account of the developments leading to the formulation of the present concodance
model, including a dark energy term, we therefore review the properties of the Universe
(which come from a combination of assumptions and observations) on cosmological scales.

The study of these characteristics will lead to the individuation of both

e the most suitable mathematical description of the Universe as a whole (Cosmological

model),

e the “cosmological parameters”, namely the minimal set of quantities which have to
bet fixed in the cosmological model in order to provide an accurate description of the

overall evolution of the Universe.

We will then review the basic steps of the determination of those cosmological parameters

which have been fundamental for the formulation of the dark energy paradigm.

1.1 The mathematical description of the Universe

Our present understanding of the structure of the Universe on large (comparable
to its own dimension) scales relies upon two basic assumptions:
- the Cosmological Principle, stating homogeneity and isotropy on large scales, holds; this

amounts to say that there are no privileged positions nor geometrically preferred directions
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of observations. This statement is indeed surprising if compared with the evidence on astro-
physical scales, where matter is systematically distributed in clumps and voids. However,
observations such as the Cosmic Microwave Background Radiation and the counts of Radio
Galaxies suggest that the Universe as seen by our location on Earth is isotropic on scales
> 100 Mpc, and isotropy from any location is equivalent to homogeneity; if we believe the
Copernican principle, stating that we are no special observers, we can infer the validity of
the Cosmological Principle.

- the only relevant interaction on such scales is the gravitational force, described by Ein-
stein’s theory of General Relativity. This implies that the spacetime’ structure is determined
by its matter-energy content via the stress-energy tensor.

The properties of homogeneity and isotropy enforce some restrictions in the viable met-
ric. The maximally symmetric resulting line element is of the Friedmann-Robertson- Walker

(FRW) form (here in natural units):
dr?
1—kr2

where a(t) is an arbitrary function of time which describes the expansion of the spacetime,

ds? = —dt® + a®(t)dx® = —dt? + a?(t) + r2(df? + sin 0dp?) | , (1.1)

k may assume the values +1,0 according to the curvature of the 3-space, and we have
assumed spatial coordinates comoving with the expansion.
The evolufion of the system can be obtained with the specification of the stress-energy
tensor Ty;. For a variety of non-interacting matter and energy components, the total stress-
energy tensor is simply the sum of the ones relative to single species; under the assumption
of local isotropy, each one is bound to assume the form of a perfect fluid, i.e. to be diagonal
with

(T8)i=—pi;  (T¥)i = 3pi, (1.2)
where k = 1, 2, 3 identifies the spatial components and i labels the different species.

The Einstein equations thus read:

i 4rG
o= ——%— (pi + 3pi); (1.3)

(Rayachaudhuri equation), and

L\ 2
a 871G k
(E) = 3 g pi— 2’ (1.4)
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(Friedmann equation), which is nothing but the previous one’s first integral. The quantity
a/a is crucial in the determination of the expansion rate and is denoted as Hubble parameter
H. If we define, as it is often done, a critical density pr as the one needed for the universe to
be exactly flat: pe = (3 H?/(87Gpiot) and a dimensionless density parameter Q; = p; / Pers

the above equation can be rewritten as

k
lzzgi——a2H2, (15)
i

where sometimes the last term is considered as well as a relative curvature density Qg =
—k/(a?H?). Conservation of energy-momentum T;,‘}b gives the further relation, needed for
consistency:

oi +3(pi +pi)afa=0 Vi (1.6)

In order for the system to be solved, it is still necessary to specify the equation of state, the
relation between the energy density and the pressure, for each cosmological component.

From the above equations we can infer the parameters we need to specify in order to
determine completely the system of Einstein equations, which are nothing but the initial

conditions for the evolution. We will have (with reference to the present time #):

e The Hubble parameter Hpy, often rewritten in terms of h defined by the relation

Hy =100 h km/sec/Mpc for notational convenience;

e The density parameter §2;p for each species of matter (or energy) density present, for
which we also need p; = f(p;, T;), since in general the pressure can depend not only

on the density p, but also on the temperature T
e The spatial curvature K = k/a?;
o The deceleration parameter gy = —(i/a)o Hy 2.

For the two equations (1.3) and (1.4) the set of relevant initial conditions is made up
respectively of the first three data, and the second and the fourth (which however includes
the Hubble constant). In each case one of them is redundant in the sense that it can be
determined if the others are known: this can be used a an internal consistency check or to

obtain one of the cosmological parameters for difference.
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In the following, we will try to describe the processes of independent determination of the
listed quantities, with the purpose to show the underlying inconsistency. It is important
to stress that there are a number of probes which can provide an accurate measurement of
some combinations of cosmological parameters (those above and others), but that only the
determination of the set of three of them at the same time can be regarded as an accurate

representation of the Universe’ global picture.

1.1.1 The measurement of the Hubble parameter

The Hubble parameter acts as a friction term for the expansion of spacetime,
therefore directly influencing comoving trajectories of objects: it can be regarded as the
most important distance indicator in Cosmology. The history of its determination is strictly
related to this property.

It is often convenient to use a different variable in order to describe observables related to

the cosmic expansion, the redshift z, defined as

z = ) (1.7)

so that at the present epoch ag = 1 corresponds a redshift 0.
For photons emitted by comoving sources, such as astrophysical objects in nearby galaxies,
the comoving line-of-sight distance (or any other distance ruler used in cosmology, since

they converge at this level) can be approximated at first order in redshift as

z d c-z

P HE T R

(1.8)

This relation can be reinterpreted in terms of a Doppler shift, reading the change in the
wavelength of light from emission to observation as an effect of peculiar recession velocity
of the object itself. It follows that low-redshift objects are seen as moving away from us at

a rate

v=c-z=Hyd, (1.9)

which is the well-known Hubble’s law, discovered back in 1929 [1]. Therefore, if we can
measure at the same time the distance and the velocity of objects which are far enough for

not having a significant peculiar motion and close enough for the ~ sign in eq. (1.8) to hold
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(from the above equation this corresponds to recession velocities small with respect to ¢),
the Hubble parameter follows straight as the slope of the velocity-distance relation.
Despite the simplicity of the mathematical setting of the problem, from an experimental
point of view the determination of the Hubble parameter has been, and still is at some
level, extremely controversial. Accurate measurements require calibration of distances to
far galaxies (in order to minimize the impact of peculiar velocity fields) [2]; this is in general
achieved by means of the inverse square radiation law, and requires the use of “standard can-
dles”, objects whose luminosity is either constant or related to another distance-independent
property (i.e. the period of oscillation or rotation rate); moreover, in order to be a good
distance indicator the underlying physics should be well understood, the systematic effects
known to be kept under control, and the objects should be abundant enough for the sam-
ple to be statistically significant; these requirements are, as predictably, not easily met. A
turning point in the experimental panel was the development of the Hubble Space Telescope
(HST) Key Project [3]; here we give a brief account of their method and results.

The most widely used astrophysical rulers are the Cepheid variables, pulsating stars whose
period is both independent of the distance and very well correlated with the intrinsic lumi-
nosity, leading to an uncertainty in the distance to the host galaxy of ~ 10% for a single
object. Since Cepheids are abundant in nearby spiral and irregular galaxies, a final precision
a few times better can be achieved through this method.

Another important distance indicator is represented by the supernovae type Ia. These ob-
jects, believed to be the result of the explosion of C-O white dwarfs, have very high intrinsic
luminosity and therefore allow the use of distances well in the cosmological Hubble flow,
possibly uncorrelated with peculiar streaming effects, giving an uncertainty in the distance
as small as 6% for the single event. On the other hand, these objects are much rarer than
Cepheid stars and their physics is less clearly understood. Type II supernovee, altough not
proper standard candles and fainter than the former, can be used as distance ladder as
well by following the time-evolution of their spectra in combination with their photometric
angular size.

Other ways of distance determination are by means of the Tully-Fisher relation, correlating

the luminosity of a spiral galaxies with its maximum rotation velocity; an analogous rela-
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Table 1.1: SUMMARY OF KEY PROJECT RESULTS ON Hj (from [3]).

Method Ho (& random = systematic error)
Local Cepheid galaxies 73+£7+9
SBF 70+5+6
Tully-Fisher clusters 71+£3x7
FP / Dy — o clusters 82+6+9
Type Ia supernovee 71+2+6
SNII T2+9x7
Combined 72+ 347

tion, known as the “fundamental plane” law, holds for elliptical galaxies; another method
relies on the correlation, for different kind of galaxies, between their distance and their
surface brightness fluctuation (SBF).

The combination of all these observations, summarized in Table 1.1 being Cepheids used
as the leading distance indicator and the others as secondary probes has lead, in the
last few years, to a (partial or substantial, according to different groups) solution of the
Hy controversy; the discrepancy among different groups was still of a factor two up to
1980 (the top and bottom values being 100 and 50 km/sec/Mpc), mildly improved to a
dichotomy between 50 and 80 in the early nineties, up to the present value [3] Hy =
72 £ 3[random)] =+ 7[systematic]. However, the level of agreement on this number is still
being questioned, and some groups claim a significant deviation towards a smaller value

arising from Supernovee diagrams [4].

1.1.2 The matter budget

The matter content of the Universe includes contributions from different species,
each of which must be determined in order to get the right total amount in equation (1.4).
However, it has been now known for long that besides the “ordinary” matter which consti-
tutes people, planets and stars there are forms of matter which evade direct detection (do not
emit light, basically) and can only be investigated through their gravitational interaction.

The former kind of matter is usually referred to as baryonic, even if this characterization is
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Figure 1.1: The distance-velocity diagram for different secondary indicators. From [3].

not strictly true: electrons, for examples, do not carry a baryonic number and still are part
of this classification. However, being them so light, their support to the total “baryonic”
budget is extremely limited and therefore we can assess that neutrons and protons - the
proper baryons indeed - bear good resemblance of the significant baryonic matter. The
latter type of matter is, correspondingly, known as dark, and its nature is one of the big
puzzles of modern Cosmology. Moreover, there is some indication of superposition of these
two species: some of the dark matter may be baryonic, or on the other hand some of the
baryonic matter may be dark. We will try to give an essential review of the determination
of the amount of both kinds in the following.

Finally, in equation (1.4) there are other species of energy densities to be taken into account:
at least the radiation component, photons of cosmological origin such as the CMB signal,
and the neutrinos (which are described as massless in the Standard Model of Particles, but
have by now been shown to carry a - small but potentially significant - amount of mass).

However, for these relativistic particles the energy density rapidly decreases with time, so
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that in the late Universe, which is the context we are presently interested in, they can be
safely neglected.

Constraints on the baryonic matter content. Baryonic matter is thought to have
been produced in the primordial Universe at t ~ 1 s and 7' ~ 1 MeV, from nucleosynthesis
of primordial light elements: Deuterium is first produced from protons and neutrons, then
3He, “He, which is the most stable and therefore accounts for most of the baryon produc-
tion, and some "Li. What influences the ratio of the corresponding reactions is the initial
ratio of baryons (nucleons) to photons, often denoted as 7. Metallicity measurements are
carried out in metal-poor regions in white dwarfs (mainly for the He), as well as in high-
redshift quasar absorption system (for Deuterium) and in our own Galaxy (for Lithium and
3He). A substantial agreement among all the observations require Bh? to be in the range
0.017 — 0.024; this seems to be consistent with the cosmological results from the CMB data
of the Wilkison Microwave Anisotropy Probe (WMAP) satellite [16], giving a similar result
and uncertainty window if no strong prior on other parameters is assumed.

A final remark is worth to be spent on the fact that the optical matter density appears to
be significantly lower than the above value [17], Quuy, ~ 0.0024, so that a significant fraction
of baryonic matter, whose precise amount depends on A, is seemingly transparent to optical
observations.

Dark matter: evidence and measurements. Hints for the presence of dark matter in
the Universe come from observations on different scales.

Maybe the first indication was found on the scale of galaxy clusters in 1933 [5], when the
study of velocity dispersion of galaxies in the Coma cluster led to a measurement of a mass-
to-light ratio two orders of magnitude larger than the one observed in the solar System
neighborhood; this value still basically holds from most recent analysis [6]. Another impor-
tant indication on the cluster scale can be obtained applying of the virial theorem in order
the temperature as a function of the total mass, and comparing it with direct temperature
observation; again, there is a relevant inconsistency if the total mass is assumed to be the
baryonic one.

On the galactic scale the most direct and convincing evidence for dark matter relies on

the rotation curves of galaxies, where photometric observations suggest the presence of a
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luminous disk with a characteristic radius. This would give a Newtonian circular velocity:

o(r) = G]‘f (r) (1.10)

falling o 1/4/r, while observations exhibit a flat behavior of the velocity well beyond the
optical disk. This appears to be the consequence of an extended halo of dark matter with
a mass density profile M (r) o< r.

Other probes from cosmological scales, i.e. the ones coming from CMB observations, basi-
cally confirm this picture.

There are of course various methods to measure the dark matter cosmological abundance.
We will try to concentrate on constraints independent of the underlying model of structure
formation; however, some of the estimates we get are in combination with the measurement
of the reduced Hubble parameter h = Hy/(100 Mpc/km/sec) since the latter is crucial to
the growth of structure.

A well-exploited method to estimate Qj; is to compute the mass-luminosity ratio of galaxy
clusters, and assume that they can be representative of the universe as a whole, rescaling its
observed luminosity (e.g. [7]); this leads to estimates of Q37 = 0.2+0.1. In alternative, one
may consider as a known constant the baryon-to-total-mass factor, which may be an estima-
tor less biased by locality. Assuming that the baryon content in clusters is faithfully traced
by the hot intracluster gas, whose amount can be measured via X-ray observations [8], and
under the hypothesis (from BBN constraints) of Qp =~ 0.04, this gives Qp = 0.3+0.1. On
cosmological scales, the power spectrum of density fluctuations provides an estimate of the
shape parameter I' = lh in the range 0.2 — 0.3 (i.e. [9]), indicating an Qs of 0.2 — 0.5

even assuming very conservative errorbars in hA.

1.1.3 The overall geometry of the Universe

The last piece to complete equation (1.4) is the assessment of the global spatial
curvature of the Universe, K. The most direct and reliable proof of its value come from CMB
observations, which show a peak-and-troughs structure having its origin in the acoustic
oscillations of the baryon-photon plasma at the time of recombination. The imprint of the

oscillations at this time has a phase depending on their relative wavelength with respect
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to the sound horizon: those which are caught at a perfect compression give rise to peaks,
while valleys come from rarefactions. Therefore, the angular scale at which we presently
detect the acoustic oscillations is influenced by the ratio of the sound horizon and the
angular-diameter distance to the last scattering surface, with the convenient feature of
being independent of absolute distance measurements. This ratio in turns depends on the
overall spatial geometry: for flat universes, namely those whose mass density coincides with

the critical one, the angular scale 6 of the first peak roughly corresponds to a multipole
T
[~ —; 1.
- (111)

it scales along with the matter content (if we assume Qr = Q,, + Qx = 1) like anl/ 2 to
smaller values (larger angular scales) if the Universe is closed (Qr > 1) and larger values if
it is open (Qr < 1), according to the differently curved geodesics.

It is however to be noticed that CMB data are to be treated with great care because
they usually provide measurements of a large number of cosmological parameters at once,
six or more in most of the currently acknowledged models. Therefore, it is possible in

some extent that some combination of parameters mimics the effect of a spatial curvature;

moreover, the CMB data interpretation relies on the statement, not necessarily exact, that

structure growth happens via gravitational instability from a primordial, usually adiabatic
and Gaussian, spectrum of perturbations [14].

As a result, without any previous assumptions on the cosmological parameters we are not
able to put strong constraints on the curvature even through the most accurate CMB
available data, the three-year WMAP release [16]: closed models only filled by matter
can still be consistent with the data. Nevertheless, these models requires values of the
cosmological parameters which are in open conflict with a host of astronomical data: the
Hubble constant is predicted to be as small as Hy = 30 Kms™*Mpc~! and the matter content
as large as Q7 = 1.3.

This strong relative dependence implies that a very weak prior on the Hubble parameter

h > 50Km/s/Mpc is enough to state a 10% limit

0.98 < Qr < 1.08 (orequivalently — 0.02 < Qg < 0.08 ) (1.12)
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[18].

However, CMB data are able to provide much stronger constraints if combined with other
datasets. In fact, the degeneracies arising in the determination of the total matter density
are mainly related to uncertainties in the evaluation of the distance ratio rs/D(z); if we
can determine a standard ruler (i.e. an absolute distance measurement) through some other
cosmological observations, the space of allowed parameters will be significantly shrunk.
Such rulers can be obtained, for instance, from the measurement of the power spectrum of
matter perturbations, which exhibit a peak at the wavelength of the horizon at the matter-
radiation equivalence, due to the different growth factor of anisotropies in these two epochs
(20, 19]; or from the scale of the baryon acoustic oscillation (BAO) peak, which measures
the distance to a redshift z = 0.35 [21]. The combination of the three-year WMAP data

with these probes improves the above constraint to an impressive [16]:
Qp = —0.01 £ 0.02. (1.13)

Observations are thus seemingly converging towards a flat Universe - one with a density
very close to the critical one.

In addition to it, the curvature density 0k has the very special property of having - unlike
most of the other cosmological parameters - a strong theoretical motivation in support
of a given value, in this case zero or a very small number. This support come from the
inflationary hypothesis - a theory claiming a phase of accelerated expansion in the very early
Universe. The inflationary paradigm has been formulated in the early eighties [22, 23] and
is at present widely accepted by the cosmological community because of its ability to solve
the horizon and the primordial flatness problems, explaining on one hand the homogeneity
and isotropy of the Universe on scales larger than those expected in the standard Big Bang
theory, and on the other hand avoiding the necessity of a tremendous fine-tuning in the
value of the primordial curvature.

However, the relevant property of inflation in this context is the fact that it drives the
curvature to small values also at late times: although the signal of a flat, or quasi-flat
Universe can of course be read as a confirmation of the inflation theory rather than the

result of a reliable prediction, we may safely regard the indication of a small curvature as a
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satisfying indication of consistency between theory and observations.

1.1.4 The deceleration parameter

The determination of the present value of gy is necessarily related to the one of
the Hubble parameter. In fact, its very definition comes from the higher-order expansion
of the luminosity distance relation in powers of the redshift, whose first term is the Hubble
law, as observed before. At second order in z we find:

Dy Hg =z + 22 (%) +0(z%), (1.14)

rendering this parameter convenient to be measured as a deviation from the Hubble law.
As for the linear term case, sensible constraints can be obtained only as long as objects
of precise magnitude-distance relation are used: type-Ia Supernove are therefore the best
candidates. It was estimated [24] that for a single supernova event of magnitude m=+Am at
redshift z the resulting uncertainty in the deceleration parameter would be Agp = 0.9Am/ z,
giving good results even for a few events if the observed supernbva are well determined
spectroscopically and are at sufficiently high distances.

Different groups have been dealing with the evaluation of the gg parameter in the last ten
years [25, 26]. The results are not easy to quantify mainly because of the approximation
due to the Taylor expansion in eq. (1.14), which affects maximally the supernovee at higher
redshift, which would otherwise have the smallest intrinsic error, and because of other
sources of systematics error, such as extinction by intergalactic dust [27]. In fact, in latest
works [28] the deceleration parameter is often rephrased as the function of z encoding the
deviation from the Hubble law, thus assuming a further parametrization. However, for the

simplest description adopted here the data strongly favor a negative value for gg:
go = —0.75 4+ 0.32 (1.15)

at the 95% confidence level [29], a result indicating that the expansion of the universe is

most certainly accelerating at late times.
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1.2 Pulling numbers together

The numerical values of cosmological parameters quoted in the previous sections
concur to give us a picture of the Universe which is far from being satisfactory.

Let’s examine first the consequences of the Friedmann equation, which should read
1= Qi+ (1.16)
i

if divided by the critical density 3H?/87G.

The observed small value of the spatial curvature denotes an average density close to the
critical one, which is determined by the Hubble parameter to be por ~ 1072° g/cm?; the
fluids entering the summation in the above equation, basically non relativistic matter (both
luminous and dark), because of the rapid decrease of the relativistic particles density with
time, cannot account for this density at all, being in fact at least three times smaller than
required. What we have to deal with is an equation whose left hand side amounts to 1 while
the right hand side, even taking into account large errorbars, is certainly smaller than 0.5.
The Rayachaudhuri equation can shed some more light on this inconsistency. In fact, it
relates the second derivative of the expansion rate with respect to the redshift to the Hubble
constant and the equation of state of the matter content of the Universe; with the notation

w; = p;/p; it can be rewritten as a function of the deceleration parameter:

1 3
=3 ;Qz + 5 ;ini- (1.17)

The exact value of the deceleration parameter depends of course on the relative abundances
of different species of matter and on the assumptions we make on the total density (i.e. shall
we believe the left or right hand side of the Friedmann equation)? However, a very general
consideration is in order: since the equation of state of any type of known matter, both
relativistic or Newtonian, is positive or null, and being the relative densities Q; positive as
well, the parameter g cannot in this context assume a negative value... the one which is
nevertheless observed.

What does this mean? This is one of the questions that cosmologists have been most often

called to answer in the recent years, and for which there is still no concordance.
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What we may try to assess without losing generality is that the Einstein equations for a
matter-dominated Universe show a sharp contradiction with the present data, revealing
something wrong in this way of describing the spacetime where we live. But what are the
possible explanations?

Our derivation of egs. (1.3) and (1.4) starts from the action:

1

5= Tnc

/ RV=gdiz + / Lomatter (0, §)v/=9 d'z (1.18)

where R is the Ricci scalar, g is the metric determinant, ¢ and ¢ are the canonical variables
of the Lagrangian of the matter fields, L.

Therefore, we may either be missing some relevant fluid-type component in Latter, OF need
to modify the gravitational part of the above action. The requirement of consistency for
the Einstein equations is predictive only if we choose a priori which of these two roads we

want to follow.

“the Einstein-Hilbert Lagrangian, the form of the Friedmann and Rayachaudhuri equations

is preserved and we have to conclude that there is some unknown source of energy density

* which contributes for some 70% to the matter-energy budget of the Universe (from (1.4))

“and has a strongly negative equation of state, in order to enforce the observed negative sign

in the right hand side of eq. (1.17).

On the other hand, the evidence for cosmic acceleration has a natural interpretation as the
tendency of neighboring geodesics to get further from each other: in other words, it seems
to suggest the presence of a repulsive form of gravity. We cannot exclude this possibil-
ity (gravity modification on large scales, for instance) by means of any of the constraints
mentioned in the previous sections, because all of them are based on the use of standard
General Relativity in order to infer the equations of motions.

For the moment we just want to depict the simplest of these scenarios, that is often regarded
as the Concordance model being the one the requires less additional parameters with re-
spect to the picture drawn above. In this case General Relativity holds, and the Universe
is partially filled by a constant, positive energy (often thought of as the vacuum energy of

some fundamental field theory and denoted as A) whose exact amount is determined by the
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fulfillment of consistency in the Friedmann equation. The introduction of this Cosmological
Constant alters the corresponding energy-tensor (we will regard it as a new fluid compo-
nent in the matter Lagrangian rather than a modification of the gravity coupling to matter,
although of course the latter interpretation is conceptually equally valid) in the following
manner:

Ty (new) = 8nG(Ty (old) + QF);  Qf = —=—=0¢ (1.19)

A
8tG o’
This is nothing else than the stress-energy tensor of a perfect fluid with

A .

0 1

= — = ———; = ; 3 = - I .
pA Q= gz  pa= Qi pA (1.20)
which is the required sign of equation of state for eq. (1.17). In fact, if we assume that
the Cosmological Constant contributes for the 70% to the total matter-energy density, the

ordinary matter for the 30%, and the geometry is flat, we have

1 3 1
¢=30r+3 zijniwi ~ 5O — Oy = ~0.55, (1.21)

thus a value not only negative, but also in agreement with the observations reported before.
The one traced above is the cosmological setting that we will refer to as the ACDM (Cold
Dark Matter) one, and we will consider it as our reference model for the next Chapter.

We postpone to Chap. 3 a more detailed analysis of the problems of this scenario, of some
of the most popular alternative models that have been proposed in the literature and a
more detailed description of the differences in their relative phenomenology which may be

useful for discriminating among them.
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Figure 1.2: A graphical representation of the inconsistencies arising from the Friedmann
and Rayachaudhuri equations if no vacuum energy is assumed.




Chapter 2

The physics of gravitational lensing

In this chapter we review the basic principles of gravitational lensing in astrophys-
ical contexts. Lensing has a plethora of applications in Cosmology and Astronomy and
of course we cannot mention all of them; we will therefore focus on the aspects that are
more relevant for the present work, namely the weak lensing and its effect on the Cosmic
Microwave Background, and we will try to explain why we regard it as a particularly suit-
able tool for dark energy studies. Most of the content of this Chapter is based on refs.
[30, 31, 32, 33].

2.1 Notation

Our framework for this discussion will be the concordance cosmological model dis-
cussed in the previous Chapter; however, for the time being we will drop the hypothesis of
spatial flatness.

The growth of structure in the ACDM scenario is assumed to be seeded by quantum os-
cillations of a inflationary scalar field in the very early Universe, during a transient phase
characterized by a finite vacuum energy driving accelerated expansion; those oscillations
are reinterpreted in a quantum-to-classical transition as small primordial perturbations in
the matter fields (the Cosmological Constant does not experience perturbations by defini-
tion), which evolve under the gravitational interactions. The dark matter is assumed to be

“cold”, i.e. non-relativistic at the epoch of its decoupling, and thus gives rise to hierarchical

22
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structures (first the smallest objects, like stars, are formed, then galaxies and clusters as a
result of progressive mergings).

We will assume the simplest inflation model to hold, with a single scalar field being the
source of matter inhomogeneities, and will assume that the cosmological perturbations the-
ory at the linear level is a good approximation. The corresponding FRW metric element is

modified in the following way:

ds? = —(1 +2W)dt? + a®(t)((1 + 2 ®)yi;)da'da? (2.1)
where 75, 1, § = 1,2, 3 is the metric of the 3-space, so that the line element di? is

di? = ydaide’ = dx® + % (x)(d6° + sin*0dg?), (2.2)
and fr(x) is the radial function

K~Y2sin(KV?y) K >0,
fr(x) = X K=0, (2.3)
|K|~2sinh(|K|Y?x) K <O.

notice that this form of the metric is equivalent to eq. (1.1) of the previous Chapter, being
the result of a redefinition of the radial coordinate x as x(r) = 1/vK arcsin vV Kr.

We are using the conformal Newtonian gauge, and we are only taking into account lensing
by density perturbations rather than from gravitational waves (for a complete treatment
of the cosmological perturbation theory, including justifications of the assumptions listed
here, see the following Chapter).

The equation (2.1) is often rewritten in terms of the conformal time 7, defined as the time
measured by the clock of an observer comoving with the expansion, and related to the

proper time as

dt = a(t) dn. (2.4)

Throughout the discussion we will in general use the conformal time, however labeling
respectively with dots and primes the derivatives with respect to the proper and conformal
time in order to avoid confusion.

Finally, we want to introduce here another distance indicator which we will use often in
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the following, the angular diameter distance D(z), defined as the ratio between the physical
cross section 6.5 of an object at redshift z and the solid angle 652 it subtends for an observer
at the present time: 6Q D?(z) = §S. Computing the latter explicitly it follows easily that
it is related to the radial coordinate fx(x) by

D(z) = a(2) fx (x(2)) - (2:5)

2.2 Lensing systems

The basic idea of gravitational lensing is extremely simple: any mass distribution
modifies the structure of the spacetime, and therefore the trajectories that free falling objects
follow in this spacetime. If the free falling objects are photons along their null geodesics,
this amounts to say that observed light rays which have encountered a density distribution
in their path towards us have suffered a deviation.

Gravitational lensing system are made up by three essential ingredients:

e a physical objects that emits light, identifiable with the source; it can be a star, a

galaxy, or a quasar, for instance;

e a matter concentration acting as the deflector (or lens), which does not need to be
luminous but only to feel gravitational interactions, and thus can be a star, a galaxy,

but also a dark matter halo or a black hole;

e an observer, namely someone collecting the emitted light at known distance from

source and lens by means of a telescope or a detector.

In addition to these elements, in order to be determined we need knowledge of the properties
of the spacetime, which may be regarded as the fourth element of the picture, in which
the gravitational lensing system is embedded.

The relative position of the set source-lens-observer will play its role as well: although in
principle any mass distribution in the Universe bends the spacetime thus acting as lens for
any source, a (rough) alignment among the three elements is needed in order for the effect

to be appreciable.
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Figure 2.1: Sketch of a typical lensing system: A e B denote respectively the source and
lens planes, O is the location of an observer at the origin of coordinates.

In almost all the astrophysical lensing situations the light behavior is well described through
the geometrical optics approrimation, basically requiring that the wavelength of the light
is much smaller both than its typical travel distance and the Universe’ radius of curvature,
which is proportional to Hy L If this is the case:
- light can be treated as particle-like, forgetting about its wave nature, and the laws of
gravitational lensing coincide with those of geometrical optics;
- since the radial extension of the involved astrophysical entities is much smaller than their
relative distances (which are of “cosmological” - comparable with the Universe’s one - size),
source, lens and observer can be thought of as lying on planes. In particular, the spatial
coordinates can be separated into a “radial” coordinate along the line of sight and two an-
gular ones lying on a plane perpendicular to it, and characterizing the angular displacement
from the polar axis. This latter is often referred to as the “flat-sky” approximation. The
geometry of the problem is depicted in Fig. 2.1.

From the Figure we read that a source whose angular position is § will be seen by an

observer at the origin as arriving from an apparent angular position 8, i.e. differing from
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the true one by an amount & called deflection angle. In a few words, solving the lensing
system is equivalent to find the function remapping the observed light path into the emitted,
unlensed ones:

. 88
Af) = 5%.

If we are in presence of weak gravitational fields the above equation can be linearized. The

(2.6)

validity of such approximation can be checked calculating the order of magnitude of fields

generated by the most massive clumpy objects, the clusters of galaxies:

o~ MG; (2.7

r

substituting typical values M =~ 1015M and r ~ few Mpc we get an order of magnitude for

® < 1075, ensuring the reliability of this method at least for this type of lenses. Therefore
A(6) =~ bi5 — Wy5(6) (2.8)

where ¥;; is called distortion tensor.
From now on we will focus on the situation that we want to study, the lensing from large-

scale structures, and we will discuss the properties of convergence and shear in this context.

2.3 Weak lensing by large-scale structures

Gravitational lensing effects are relevant in many different astrophysical situations.
One important classification is related to “how much the lensing change the image of the
source”. In particular, the geometry of the source-lens-observer system allows to define a

quantity called critical surface mass density (again we are assuming units ¢ = 1):

1 Dgs

Yior = AnG D DL 5

(2.9)

where Dg, Dy, and Dy, s are the angular diameter distances to source, lens and from source
to lens as in Fig. 2.1. This quantity can be compared with the surface mass density ¥ of
the lens, which is the integral of its density distribution along the line of sight. It can be
shown (i.e. [34]) that if

2> Yo (2.10)
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Figure 2.2: The double image of the quasar Q0957+561, the first observed multi-lensed
object. ‘

at some point, the mapping given by eq. (2.6) is not unique,and the lens is able to produce
multiple images of a single source.

This type of lensing effects are often referred to as strong, and are indeed fairly spectacular.
Such phenomenon was first observed in 1979 with the discovery of the multiple-imaged
quasar Q09574561 [35] at redshift z = 1.41, together with its galaxy at z = 0.36. However,
if the surface mass density of the lens is small with respect to the critical one, the lensing will
show up as a weak distortion of the background source. If this is case a single observation
cannot provide cosmological information, but the use of statistical approach is needed. In
order to do so, the source has either to be diffuse, so that observations can be made in
different directions in the sky, or to be made up by a very large number of objects. This
requirement confine the choice to basically two candidates: the background galaxies and
the Cosmic Microwave Background. The latter, and the weak lensing effects on it, are the

subject of the present work.

2.4 Lensing theory

In order to reconstruct the lensing effect on the background CMB image it is

necessary to work out the form of the lensing equation for the photons in the perturbed
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FRW spacetime, which is nothing but the geodesic equation in the General Relativity
context with the condition ds® = 0.

We follow the approach by [36], deriving the photon trajectories as solutions with ds? = 0
of the geodesic equation for the metric (2.1); the lensing deflection around a given direction

in the sky is described introducing new angular coordinates 0, and 6, defined as
Oz = 0Ocosyp; 0Oy =0singp, (2.11)

where 6 = /62 + 62 and ¢ are the polar coordinates in the (6z,6,) plane.

We use the convention, already mentioned,

1 .
x(r) = TE arcsin VKT (2.12)

so that the spatial background metric takes the more readable form:

sin? VK X
di? = dx? + ——I—{——(d()ﬁ + db2) (2.13)

notice that the above substitution is valid also for open Universes (K < 0) and leads to an

equivalent expression with arcsin — arcsinh. Therefore, this notation is equivalent to
di? = dx® + f&(x)(d62 + db2) ; (2.14)

which makes use of the radial function fx(x) introduced at the beginning of this Chapter,
and we may indifferently use both of them.
Finally, the chosen notation for the angular part is convenient because the weak lensing

hypothesis immediately reflects in the condition
k1, (2.15)

which allows to write the geodesic equation at first order in the deflection angle, in addition

to the usual linear approximation for metric perturbations. The geodesic equation is indeed

d27"°‘ « 1 dr# dr¥

— -z =
a2 g <gﬂv,u ngu,ﬁ) ar (2.16)
The above equation is valid order by order; at order zero (both in the cosmological pertur-

bations and in @) it is simply a null identity for the angular part, but solving for @ = 0 and

a = 1 gives the relations:

dn = 1/a%d)\, dr =1/a2d); (2.17)
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these expressions can be substituted into the perturbed first order equation for the angular

part in order to get

d?0, K
=2 0p.® —2VK
dn? sin2 VK e

for the angular coordinate 6, and another formally equivalent one for 8, with z — y.

cos VK x dy

o 2.18
sinvVEKy dn (2:18)

In terms of the comoving displacement from the polar axis, being at first order z; = 0; fx (x),

equation (2.18) simply reads
od
8$i

) =—-Kz;+2 (2.19)

where the first term on the right hand side describes the tendency of two nearby rays to
converge, diverge or remain parallel according to the geometry of the universe, while the
second accounts for the lensing effect due to the metric perturbations. The general solution

of this equation is
d X
zi + Ai fr(x) + Bi ——%X—QQ =2 /0 dx’' fre(x — X )Vi(2(x, X)) (2.20)

where A; and B; are integration constants, and the potential has to be generally evaluated
along the real (perturbed) trajectories.

For the situation we have in mind we need to determine the comoving separation between
two lensed rays, starting from the same point, one in the direction of the polar axis and
the other one in a direction i, on a source plane af distance xs; these initial conditions
fix A; = 6; and B; = 0 above. However, the truly meaningful quantity is not the absolute
difference in the trajectories of the two rays, simply because there is no “straight” fiducial
ray (or a uniquely defined polar axis) in a perturbed cosmological background; we will want
to evaluate the difference in the relative deviations of two arbitrary neighboring rays, which

will thus follow the equation
(Az;) = —KAz; + 282V, V;® (2.21)
whose solution, assuming continuity of the gravitational potential, is

XH
A = A fxe(x) + 206, /0 i f GO (= X)ViVi8( ). (2.22)
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For the sake of simplicity we can redefine z;, rather than Az;, to represent the separation

between the two rays, and rewrite the solution in vector form:

x(n,x) = fx(o)m + 2 /O " i Fre ) frelox = X )AV B, X)), (2.23)

where the notation Vp reminds that the gradient is two-dimensional and evaluated along
a plane perpendicular to the line of sight.

The solution of the above equation would be very complicated in lack of the weak lensing
hypothesis, stating that the relative deviation of two nearby rays is small in comparison to
their unperturbed comoving separation:

x(n,x) = fx(xX)n|
T <L (2.24)

As a result, the potential ® in the above integral can be computed at first order along the

unperturbed path x = fi(x/)n; this is the so-called Born approzimation, and the difference
in the gradients amounts to a term only depending on x, which can be safely ignored.
It is quite intuitive to define the deflection angle as the first correction to the trajectories

of the two neighboring rays divided by their comoving angular diameter distance:

__fK(X)n_X(an) _ X o fk(x—=Xx) "n.y'
atn,x) = AR 20 /0 XD x). (225)

Finally, remembering that in terms of the angular separation 6; in the direction i one has
z;(x) = (055 — i5) Fr(X)0s , (2.26)

the relevant distortion tensor %;; is identified to be

X !/ o
¥ij(n, x) = =2 /0 dx’fK(X ;Q{(% X)Vz-Vj@(fK(x')n, X (2.27)

The components of 1);; are usually interpreted in terms of a 2-dimensional tensor called shear

v =1 +%y2 and a scalar quantity named effective convergence k, respectively identified as

"= %(1011 —t22); Yo =112;

K= %(%1 + 22) . (2.28)
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The equation above can be inverted with the purpose of finding the component of the

distortion tensor as
o (2.29)
—Y2 —k+m
which allow to give an intuitive physical meaning to the above quantities.
It is clear that the lensed images are modified both in shape and size. Although gravitational
lensing cannot create or destroy photons, it redistributes them so that some sources in

the sky appear larger and some other shrunk, conserving the surface brightness and thus

changing the observed flux. A useful measure of this effect is the magnification, given by

-

the determinant of the Jacobian matrix A(#) ~ &;; — sz(g) In terms of convergence and

shear it is given by

- 1 1
O = Gara@) ~ =R =hE (230

From Eq. (2.27), 71,72 and & are read to be small because of their proportionality to the

gravitational potential ¥; therefore the magnification primarily depends on &:

1(6) ~ (1__1_2[5 o142k, (2.31)

so that the convergence can be interpreted as the responsible for the isotropic distortion of
the images.
In a similar fashion, the off-diagonal terms of this matrix, i.e. the components of the shear,
accounts for anisotropic effects; in particular, its first (second) component describes the
elongation of an initially circular image along the x,y (x = y, x = -y) axes, as represented
in Fig. 2.3.

Finally, it is worth noticing that with the definitions above a simple relation between

convergence and deflection angle holds:

w= 51 +9m) = - Vaa(n, ) (232

in analogy with the optics’ thin-lens approximation.
The lensing equation can be as well rewritten in terms of the projected potential ¢, defined

through the relation
1
Yij = RO ViV;o, (2.33)
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Figure 2.3: The effect of magnification and shear. LEFT: Convergence does not change the
shape of the object but only its size. RIGHT: A positive (negative) first component of the
shear stretches an initially circular figure along the x (y) direction; the same happens for
the second component, with a 45° rotation.

so that

om0 =-2 [ S0 ) [ dx'%, (2.34)

where X stands for the comoving distance at infinite redshift.
Finally, since we usually deal with lensing phenomena from a multiplicity of sources, the
distortion tensor, and thus the projected potential, are usually meant to be integrated over

the possible source distances:

s (n) = / e 9(xs) i (e (e, Xe) (2.35)

where g(x) is a normalized function describing the distribution of the relevant sources. By

defining the integral involving the source distribution as

900 = 1) [ dex'ﬁ(}%%%&g(x'), (2.36)
X

the lensing potential (2.34) takes the compact form

$(n) = 2 /0 = dxd 0B(FrO0m x) (2.37)

Noticeably, when one considers the effect of lensing on the CMB, the source distribution

may be replaced by a delta function at the last scattering surface.
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2.5 From lensing to Cosmology

We have already emphasized that since we are working in the weak lensing hy-
pothesis, we will need to use the statistical properties of the lensing deviation rather than
observables related to the single trajectories. Therefore, we will be basically interested
in the above quantities correlation functions, or for algebraic convenience in their Fourier
transforms, beginning with the first momentum of the distribution, the power spectrum.
Given the Fourier coefficients §(k)of a homogeneous and isotropic random field, the power

spectrum is defined by the relation
(8(k)8™ (k') = (2m)"6(k — k) Py (k) , (2.38)

where n is the dimension of the space (n = 2 in this case) and the average is meant as the
average over all the possible statistical realizations.

Since power spectra are defined in Fourier space, derivation with respect to the angular
components 6; corresponds to multiplication by the wave vector 1. For the convergence one

will need the ensemble average of

2
o <(Z vivz—qs(n)) ) oc (B +B)°Py = II*P,, (2.39)

while for the shear

Py oc (V3= V3 +4V3V36(n))*) o II*P, (2.40)

so that thanks to the symmetry of the Jacobian matrix (2.29), the power spectra of con-
vergence and shear are equivalent for cosmological purposes; our notation choice will be to
work out the expression for the former.

The link between the gravitational lensing-related variables defined above and the cosmo-
logical ones is provided by the Poisson equation, which in the fiducial ACDM model reads

3H§Qg
2a

AD = s, (2.41)

where ¢ is the density contrast dp/p of the cold dark matter, which, together with the
baryons, is the only fluctuating component in this scenario. The left hand side if this

equation contains the full 3-dimensional Laplacian of the gravitational potential rather
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than the perpendicular one appearing in the definition of the convergence; however, the
derivative with respect to the line of sight direction averages to zero in the integral along
the comoving distance, allowing to replace Ap¢ with A® in our case (the validity of this

approximation has been verified numerically to high accuracy in [37]). Therefore,

o) = 2800 i) 0 UL,

(2.42)

The final step leading to the expression for the power spectrum of the convergence in terms
of that of the density contrast relies on the Limber approzimation, which we won’t report
here, based on the assumption that 6 does not vary significantly over the typical correlation
length scale (i.e. [32]). This last piece of information allows to simplify the product of
integrals in x arising from the definition of the power spectrum of x which is quadratic in
the Fourier coefficients, finally leading to

_9HFQS [*H . g'(x) l
Bll) == A Wﬁw%(MMw) (243)

Our first aim is to generalize the treatment of both the gravitational lensing and perturba-
tions formalism in order to get its equivalent for the generalized gravity and dark energy
models which are our target; only once this has been done we will be in the conditions of
computing the lensing effect for these scenarios making use of a Boltzmann integrator in
order to get the right-hand side, and getting in turn the value of the convergence power
spectrum (or, as often used, that of the lensing potential, which follows straightforwardly
from Eq. (2.34).

Having worked out the instruments we need and defined the notation and the language for
our analysis, we now turn to a brief account of the effect of lensing on the CMB, which is

the specific subject of the present PhD research.

2.6 Lensing of the Cosmic Microwave Background

The Cosmic Microwave Background signal is a prediction of the hot Big Bang
theory (i.e. [50]), thought to have been generated in the early stages of the Universe’ life

by the decoupling of photons from baryons. At that epoch, corresponding to a cosmic age
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of roughly 380000 years, or to a redshift z ~ 1100, the energy of free electrons progressively
decreases below the hydrogen ionization threshold, so that the occurrence of Thomson scat-
tering between electrons and photons diminishes. Eventually, the mean free path of those
photons becomes so large that they can be treated as freely travelling towards the present
epoch: the Universe has become transparent to this radiation, and the Cosmic (not yet
Microwave) Background is born.

While the number density of these non-interacting photons stays constant, they suffer
nonetheless a loss of energy due to the cosmological expansion: their physical wavelength
scales like 1/a, so that their energy density is proportional to 1/ a*. If we assume - as a
rough approximation - that their distribution function is well described by a black-body
radiation (for a more precise treatment see e.g. [41]) with p oc T, we can infer the scaling
of the temperature to be T o a~!. Therefore, we expect to see the echo of that signal in
the form of diffuse radiation roughly one thousand times colder than it was at its birth,
corresponding to a temperature of a few Kelvin degrees. This radiation was indeed first
observed in 1965 [43]. Many afterwards observations confirmed that it is indeed extremely
uniform [42, 16], with relative variations as small as 1075, However, the tiny anisotropies of
the CMB are of invaluable importance for cosmologists, mainly because their presence and
amplitude confirm the theory of cosmological perturbations as the mechanism for structure
formation, and from their specific features a large number of the cosmological parameters
can be computed.

The CMB signal is lensed in its journey towards us because it crosses the gravitational fields
of the forming structures. However, since lensing conserves the surface brightness (which
amounts to say that it cannot generate photons but only redistribute them), if the CMB
was completely uniform we wouldn’t be able to appréciate any lensing effect. It is thanks
to the anisotropies that cold and hot spots, which are magnified in different measure, that

the lensing can give rise to an observable effect.
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2.6.1 The unlensed CMB radiation

We introduce here the notation for the CMB spectra which will be the basis for the
description of the lensing eﬂecty; we use the conventions of CMBfast for the perturbations
equations, [108] in order to make easier the comparison between theory and numerical work.
The anisotropies in the background radiation are usually described by a random Gaussian
field. This assumption is sustained on the theoretical side by the predictions of the simplest
inflationary models in the context of the linear perturbation theory, and is supported up
to a reasonable extent by observations. However, there are numerous possible sources of
non-Gaussianity which may weaken the validity of such approximation. Some primordial
non-Gaussianity (however strongly model-dependent) is always present due to the higher
orders in perturbations theory (i.e. [44, 45, 46] and references therein); a larger amount of
non-Gaussianity is introduced at later times, primarily by the lensing itself.

However, since we are considering here the spectra at last scattering, we will assume that
the signal is Gaussian and therefore the correlation functions (or the power spectra) are the
only relevant statistical quantities.

The anisotropies in the temperature are naturally represented by the direction-dependent
relative temperature anisotropy, ®(i) = 67'(1)/T, where T is the average CMB tempera-
ture. In addition to it, the distribution of temperature anisotropies also shows a quadrupole
moment in its angular pattern. The electromagnetic interactions at T ~ 3000 K (that of
decoupling) are dominated by electron scattering in the Thomson regime, and it is known
(i.e. [47]) that the scattering of an anisotropic radiation with a quadrupole moment scatter-
ing produces some linear polarization, whose amount will be a fraction of the total intensity
of the anisotropies, in the outcoming radiation. Polarization is a rank-two tensor; assuming
that circular polarization is absent (which is indeed true for most of the early Universe
models) it is further constrained to have only two independent degrees of freedom, and its
components are well described by the so called Stokes parameters Q and U, which are the
analogous of the shear components ~; and 5 for the shear tensor.

Formally, the procedure by which the power spectra of the CMB anisotropies are defined is

the following [39]. The relevant components of the anisotropies can be expanded in a com-
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plete set of functions in the sky, the spherical harmonics ;¥;™(n), where n is the propagation
direction and s is the spin index, which is zero for a scalar field such as the temperature

and two for a spin-2 field like the polarization. Therefore,
O(h) = _ Oum Yy (i) (2.44)
Im
for the temperature case, while the polarization on the sky may assume the tensor form
Ph) = (1 XA)(my@my)+ _X(@)(m-®@m_), (2.45)
where
+X(h) = Q(h)=U(h),
1
my = —(égFiéy). 2.46
+ \/i( o F iég) (2.46)

The complex Stokes parameter +X is a spin-2 object which can be decomposed in the

spin-spherical harmonics

X (0) = 34 Xim 22¥"(5). (247)

lm

The parity properties of the spin-spherical harmonics

Y= (DY, (2.48)
allows to introduce the parity eigenstates [48, 49]

+Xim = Eim % 1Bim,, (2.49)

such that Ej,, just like @y, has parity (—1)! (“electric” parity) whereas By, has parity
(=1)"1 (“magnetic” parity). This combination is convenient because it was noticed (i.e.
[48, 49]) that though E-modes of polarization are sourced by all types of perturbations,
the B-modes are generated from vectors and tensors only. Since in linear theory different
types of perturbations evolve independently, and under our condition of absence of the
vector modes, this representation allows an immediate interpretation of the mechanism

responsible for the single components.
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Due to the assumption of Gaussianity, the power spectra and cross correlation of these

quantities can be defined as
<XikalI’m’> = 511115m’mlClXX/ , (2.50)

where X and X’ can take on the values ©,F,B. The cross power spectrum between B and
© or E vanishes because of their opposite parity classification. |

The physics of the CMB anisotropies is well understood and has been reviewed in many
papers (i.e. [151]); here we only want to assess some basic features which are essential for
the description of the lensing effect, and will consider only scalar perturbations in what
follows.

On a very general basis, in the very early Universe the baryons and the photons form a
tightly coupled fluid, glued by the electrons which interact with photons via Thomson scat-
tering, and with protons via Coulomb interactions. With the decrease of the temperature
following the expansion, the rate of photon-electron scattering decreases in favour of that of
the combination of electrons with protons to form neutral hydrogen (recombination). Once
the cross section of the latter process becomes larger than that of Thomson scattering, as a
first approximation photons propagate freely towards us, somehow bringing a snapshot of
the anisotropy distribution at such epoch. The evolution equation for the Fourier modes of
the temperature were following an evolution equation which is that of a harmonic oscillator

with elastic constant given by the sound velocity ¢, [151]:
0+ k0 =0. (2.51)

With the ansatz of negligible initial velocity (which has been confirmed by observations),

the above equation has the oscillatory solution:
O(Trec) = O(0) cos(k srec), (2.52)

where spec i1s the sound horizon, which is thus recognized to be the crucial scale of reference.
Perturbations with a larger wavelength had not time to interact yet, and should be seen as
“frozen” at their initial conditions in the TT spectrum. On smaller scales, the way modes

which were inside the horizon appear now depend on the phase with which they have been
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caught. Modes at the maxima or minima of their oscillation will set the largest temperature
anisotropy, and therefore will correspond to “acoustic peaks” of the distribution; in partic-
ular, the largest-scale peak is set by the mode for which the sound horizon corresponds to
half of its wavelength, so that it reaches its first maximum just at the recombination. On
the other hand, modes for which recombination occurs half the way between a maximum
and minimum are will generate the minima of the distribution; notice that in this simple
representation the latter should be zero, and the maxima should all have the same height.
The real physical situation is complicated by the gravitational force and the presence of
baryons, which appears as non-null right hand side of Eq. (2.51), so that the relative height
of the peaks changes and the equilibrium point is shifted toward a non-null value. Moving
now on even smaller scales, where the peaks are much lower, another phenomenon enters
the picture: the fact that the mean free path of photons overcomes the wavelength of the
perturbations. In other words, residual scattering for these modes can destroy the memory
of the anisotropies distribution: this feature is known as dumping [40] and cause the TT
power spectrum to be rapidly decreasing for [ > 1000.

While the mechanisms described up to now were due to physics at the last scattering, the
CMB spectra can be modified in their journey from z =~ 1100 to z = O by other effects,
known as secondary anisotropies (compared to the primary ones, which are those imprinted
at last scattering). Apart from the lensing itself, which naturally belongs to this category
but will be treated separately in the next Sections, we only want to mention here the Inte-
grated Sachs-Wolfe (ISW) effect, which acts on the otherwise featureless large scales, and
is particularly important for dark energy models. Its physical origin lies in the possible
time variation of the gravitational potential in the time interval by which a photons falls
and climbs out a potential well. While in matter domination the potential @ is constant,
it effectively decays once the dark energy component becomes significant; therefore we can
expect a rise in the large-scale power of the T'T spectrum proportional to ®, which in turn
will be determined by the dark energy abundance.

We don’t want to propose an analogous discussion for the polarization modes here. We just
remark that the acoustic peaks are a clear feature of the EE modes as well; their equation

of motion, however, is sourced by © and therefore the oscillatory behavior is proportional
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to sin(k srec), and shifted of /2 with respect the temperature case. This feature is reflected
in the TT and EE spectra as a switch of the positions of peaks and troughs. Primordial
BB modes, on the contrary, are not sourced by scalar perturbations. The only primary
anisotropies of the latter are the gravitational waves, coming from tensor-type perturba-
tions and appearing at [ o~ 100: modes on larger scales have not entered the horizon yet,
and on smaller scales rapidly decay, since the gravitational waves are massless. A significant
secondary mechanism is the reionization: CMB photons are re-scattered on electrons freed
again by the light of first luminous objects, and this generates some power of the same
order of that of the gravitational waves but on very large scales [ ~ 10, which is the typical
coherence length for such electrons.
We show the (still unlensed) TT, EE, BB and the correlation TE power spectra here for a
ACDM model in Fig. 2.4.

In the following we give a qualitative account of the main effect of lensing on the CMB
signal, while the mathematical treatment of the lensed spectra is postponed to the next

Chapter.

2.6.2 Qualitative overview

The first questions that we want to answer are which is the order of magnitude of
the lensing with respect to the primordial power spectra and where in the multipole space
we may expect to observe the effect.

It is clear that lensing will be a small, second-order correction, because it is generated by the
anisotropies in the matter distribution onto the CMB spectra, whose amplitude is already
proportional to that of the gravitational potentials. How small, though? General Relativity
tells us that the order of magnitude of the deflection angle for a light ray passing through a
potential well of amplitude few x 1075, which is the typical value for large clustered objects
as already discussed, will be do: ~ 4® ~ 10~ (in radians). A reasonable estimate of the
size of the potential well is given by that of the peak in the matter power spectrum, which
is =~ 300 Mpc in comoving units, we may expect a single bundle to encounter =~ 50 of those
wells in its o~ 14000 comoving Mpc of its journey from the last scattering surface to us.

Assuming that the potential wells are uncorrelated, this gives a global effect of v/50 x 1074,
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Figure 2.4: Unlensed power spectra for the ACDM concordance model: from left to right and
top to bottom, temperature, E and B modes of polarization, and T-E correlation spectra.
The plot relative to the B modes is in logarithmic scale.

corresponding to an angle of ~ 7 x 10™* x 180/7 =~ 2 arcminutes [33].

This is the angular size of the lensing corrections, which however has to be compared with
its coherence scale. A rough estimate of the latter can be obtained assuming a potential
well of the above size located midway to the distance to the last scattering, which subtends
an angle ~ 300 Mpc /7000 Mpc =~ 2° (a more rigorous calculation corrects this estimate by
a factor ~ 3, leading to a corresponding decrease of this number [32]). Therefore, lensing
corrections appear already at the acoustic scales where coherent light deflection sets in,
despite the fact that the physical range of the effect is much smaller: on the degree scale
it corresponds to a correction of a few %, while on very small scales (I > 3000) lensing can
be regarded as a order unity contribution to the global CMB signal, since the primordial

amplitude is so small in the damping tail. In summary, lensing redistributes the power




42 Chapter 2: The physics of gravitational lensing

coming from larger and smaller scales, mixing different wavelength contributions; the effect
is visible starting from the degree scale and the amplitude of the mixing is of the order of
a few arcminutes.

The order-of-magnitude discussion above holds both for the temperature and the polariza-
tion power spectra, but the lensing features appear very different in the two cases.

In the temperature case, the main effect of lensing is to smooth the peaks-and-troughs
distribution: the low-power regions in vicinity of a peak are slightly enhanced, while the
amplitude of the peak itself diminishes. On smaller scales, those of the damping tail, there
is a systematic increase of the power due to mixing with larger scales [38]. In the case of
the polarization, lensing warps the polarization vector and alters its symmetries, causing a
reshuffle of the power coming from the different-parity EE and BB modes. The effect on the
former is rather similar to the temperature case, but more pronounced because the features
of the primordial spectrum are sharper, and thus the smoothing process in more evident.
The mathematical explanation for the discussed effects relies in the facts that the lensed
CTT,CTE and CFF are obtained by a convolution of the unlensed spectra with that of the
lensing potential: the latter peaks at [ ~ 60, setting the broadness of the power mixing, as
shown in Fig. 2.5.

However, the situation is significantly different for the BB modes of polarization. In the
concordance model (coming from the simplest but effective inflationary scenarios) the only
primordial magnetic modes are the gravitational waves, which appear at lower multipoles
(with a maximum at [ ~ 100, as already discussed). In this case lensing is the only respon-

sible for the power in the BB modes at smaller scales.

The effect of gravitational lensing is shown in Figs. 2.6,2.7,2.8 for the temperature,
polarization and their cross correlation power spectra in the fiducial ACDM model. In
the temperature case, as well as for the EE modes of polarization, the large scale are
substantially unaffected, while the acoustic peaks structure is broadened and smoothed. In
particular, Fig. 2.6 shows an enlargement of the lensed and unlensed temperature power
spectra in the multipole region [ = 700 — 1200, where the effect is largest. Lensing appear
as a small correction in these cases, where the primary anisotropies are dominant; on the

other hand, it is the only source for the BB modes of polarization at [ > 200, due to the
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Figure 2.5: The lensing potential power spectrum, showing its characteristic peak at 1 ~ 40
which gives a measure of the broadness of mixing between different modes. From [39].

lack of primordial signal on these scales. The amplitude of the lensing contribution in

latter case is one order of magnitude larger than those of the reionization bump and

gravitational waves, as evident from the linear plot in Fig. 2.8.
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Lensed and unlensed temperature power spectrum (left panel) and its enlarge-
ment in the multipole region 1 = 700-1200 (right panel).

We conclude here our qualitative discussion on the physics of CMB lensing: a more

formal derivation will be given in the Chap. 4.
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Figure 2.7: Lensed and unlensed EE polarization modes (left panel) and its cross-correlation
with the temperature (right panel).
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Figure 2.8: Logarithmic (left panel) and linear (right panel) lensed and unlensed BB polar-
ization power spectrum.

2.7 Why CMB lensing for dark energy?

In the light of what discussed up to now we are in the condition to answer this
question, which represents the motivation for this PhD research.
A basic feature which makes lensing particularly suitable for Cosmology as a whole is the
fact that lensing correlates with the total matter distribution, regardless of its interactions
or state. We have already shown, in Chap. 1, some of the difficulties in the determination of
the cosmological parameters arising from the necessity of using model-dependent assump-
tions; a straightforward example is the case of observations of luminous matter, where an

empirical mass-to-light ratio (and consequently a bias) must be introduced in order to re-
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construct the “true” mass profile. On the other hand, lensing allows to detect and study
everything that is subject an object of a gravitational field, which is maybe the most unbi-
ased definition of “matter” one can think about.

However, in the case of dark energy studies there is another major reason that makes lensing
a good cosmological estimator. In fact, it is well known (and it will be shown precisely in
the following Chapters) that the lensing cross section is not uniform between source and
observer, given the position of the lens, but peaks somewhere in the middle, exactly in the
same fashion as in the geometrical optics case: if we observe an object through a magnifying
glass we won’t expect a large magnification if the lens is too close to the observer or too
close to the source, but midway between them. In the special case of the CMB as a source,
this half-distance corresponds to redshift z ~ 1, which is the most relevant in order to dis-
criminating among different models: it is the one at which the vacuum energy contribution
to the global stress-energy tensor starts to be comparable to the matter’s one, and it is
strongly correlated with the process of structure formation, making the lensing sensitive
not only to the expansion’ dynamics, but also to the growth of structures. Furthermore,
while we have quite tight constraints on the equation of state of dark energy (or in the
case of modified gravity, on the deviation from General Relativity’s laws) at present (i.e.
[16]), limits are still rather loose at that epoch, which means that the models are allowed to
larger deviations from each other at those redshifts, and thus detection of different behavior
is favoured.

Not less important is the fact that the lensing cross section, beyond having its maximum
at intermediate redshifts, drops rapidly both in vicinity of observer and source: the effect
will therefore be rather insensitive to early times, as well as to the present ones. This last
features is particularly interesting since many of the constraints obtained spectroscopically
are limited to lower redshift, and thus these two type of probes are independent, which
makes the combination of the methods especially powerful. A cartoon representation of
how lensing picks up its power in the dark energy rise region is shown in Fig. 2.9.

The very last piece of the puzzle is the reason why we chose the CMB as a source. Again,
some of the arguments have general validity: the CMB physics is well understood, there are

many different ongoing and future experiments aiming at measuring its temperature and
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polarization with increasing precision, and in particular in the case of the lensing having a
single source at known redshift is a great simplification of the mathematics one one hand,
and of interpretation of the results on the other.

However, the challenge of isolating the lensing effect on the CMB spectra should not be
underestimated. The TT and EE modes are dominated by the contribution of primary
anisotropies, and one would have to evaluate with the necessary precision the small smooth-
ing effect caused by lensing, and to extract from there an estimate of the dark energy
equation of state. On the other hand, in the prospect of isolating the BB modes of polar-
ization, they have the remarkable feature of being almost entirely generated by lensing at
late (z ~ 1) redshift, so that they are faithful tracers of the dark energy density (or gravity

coupling constant) at that epoch.
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Figure 2.9: A cartoon representation of the CMB lensing cross section and the dark energy
behavior.

2.8 Lensing and dark energy: not only CMB

The final section of this Chapter is devoted to a very brief account of another,
complementary from the observational point of view, aspect of how the lensing can be use-

ful in order to recover dark energy properties, the lensing on the background galaxies, or
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cosmic shear.

The basic idea is that galaxies, considered as a statistical ensemble, have an average elliptic-
ity that the lensing process modifies. Assuming that the shear profile can be reconstructed
via ray tracing from N-body cosmological simulations, this method provides a map of the
dark matter distribution in the Universe (for a review, see [51]). It has been shown that the
weak lensing can directly measure different cosmological parameters, such as og, Q,,and the
shift parameter I, or help in removing degeneracies among them [36, 53, 54, 55]. However,
in analogy with the lensing of the CMB, this technique is sensitive to the expansion history
as well, and it has been proposed as a method for investigating the dark energy dynamics,
also in correlation with other Imeasurements such as Supernovae [52].

The cosmic shear signal was detected for the first time in the year 2000 by several inde-
pendent groups using different surveys, and all the result showed an impressive agreement.
The specific observable is the variance of the shear in randomly placed cells of aperture 6,
which obviously depends on {1, and og, with the important addition of the mean redshift
of the survey. This observable is directly related to the power spectrum of the shear cy
since

2 1 *© 2
07:5/0 dicy | W 2, (2.53)

where W} is the Fourier transform of the cell aperture.
Results are summarized in Fig. (2.10).

Since the redshift of the sources is lower with respect to the CMB case (typically
z < 1 for surveys such as the ones of Fig. (2.10)), weak lensing on the background galaxies
is sensitive to more recent epochs, at least for the presently available catalogs. However,
constraints coming from those observations are independent of other kind of probes, and thus
combination of different measurements of the dark energy parameters brings a significant
increase in the available precision, as shown in Fig. (2.11). Here the dark energy equation
of state is parametrized as Taylor expansion in redshift, and the first two terms, wg and
Wa, are kept (a detailed discussion of this parametrization is given in Chapter 4). The
estimate is for the Supernovae data, the unlensed CMB spectra (without the inclusion of

the BB modes), and the lensing on the background galaxies.




48 Chapter 2: The physics of gravitational lensing

T T T Ty T ™)

ACDM, 0,=1.0 |
2,=1.0,0.9,0.8 |

0.0008

< Brown et al.
[JBacon et al. WHT
» Bacon et al. Keck
A Refregier et al.

- Hoekstra et al.
Jarvis et al.

% van Waerbeke et al. -

0.0006 |-

o 0.0004

*(6)

0.0002

0.0000 |

0 (arcmin)

Figure 2.10: Shear variance U?/ as a function of the radius @ of a circular cell. The data
points correspond to recent results from different groups: van Waerbeke et al. (2002a),
Brown et al. (2003), Bacon et al. (2002, WHT and Keck), Refregier et al. (2002), Hoekstra
et al. (2002b), Jarvis et al. (2002). When relevant, the inner error bars correspond to noise
only, whereas the outer error bars correspond to the total error (noise + cosmic variance).
The measurements by Hammerle et al. (2002) and Hamana et al. (2003) are not displayed.
The solid curves show the predictions for a ACDM model with €, = 0.3, 0g = 1, and
I' = Qoh = 0.21. The galaxy median redshift was taken to be 2, = 1.0,0.9, and 0.8, from
top to bottom, respectively, corresponding approximately to the range of depth of the top
five surveys. The bottom two surveys (Hoekstra et al. 2002b; Jarvis et al. 2002) have a
median redshift in the range 2z, ~ 0.6-0.7 and, as expected, yield lower shear variances.
From [51].
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Figure 2.11: Projected constraints for the dark energy parameters for the weak lensing alone
and in combination with other probes. From [52].




Chapter 3

Lensing in generalized cosmologies

This Chapter is devoted to the formal derivation of the lensing theory in the models
we have chosen to study. We will present the most relevant dark energy as well as modified
gravity scenarios, highlighting the possible relative differences in the history of expansion
and structure growth, and the way they propagate through the lensing observables. This
treatment is introductory to the redefinition and discussion of the lensing variables in these
models that we have performed. Most of the work presented in this Chapter was carried

out in [56].

3.1 Why not a cosmological constant?

The picture of the universe which has been traced in the previous Chapters and
is generally thought of as the “Concordance” is however far from being satisfactory: in
particular, without a better insight into the nature of the dark cosmological component,
we cannot claim to have a satisfactory physical understanding of cosmology. In fact, the
simplest description of the vacuum energy responsible for cosmic acceleration via a Cosmo-
logical Constant providing about the 75% of the critical density today raises two problems.
The first is the fine tuning required to fix the vacuum energy scale about 120 orders of
magnitude less than the Planck energy density which is supposed to be the unification scale
of all forces in the early Universe. The second is a coincidence issue, namely why among

all the small (but non-zero) available values for the vacuum energy, its was chosen to be

50
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comparable to the critical energy density today. These questions, still largely unsolved,
may find a satisfactory answer if the concept of Cosmological Constant is extended to a
more general one, admitting some dynamics of the vacuum energy, known now as the dark
energy (see [58, 59, 11] and references therein).

The simplest generalization, already introduced well before the present experimental evi-
dences for cosmic acceleration [60, 61], is a scalar field, dynamical and fluctuating, with a
background evolution slow enough to mimic a constant vacuum energy given by its potential,
providing cosmic acceleration. As soon as the latter was discovered, a renewed interest in
these models appeared immediately [62, 63]. In particular, it was demonstrated how the dy-
namics of this component, under suitable potential shapes inspired by super-symmetry and
super-gravity theories (see [64] and [65], respectively, and references therein), can possess
attractors in the trajectory space, named tracking solutions, capable to reach the present
dark energy density starting from a wide set of initial conditions in the very early universe,
thus alleviating, at least classically, the problem of fine-tuning [66, 67]. The scalar field
playing the role of the dark energy was named Quintessence. Its coherent insertion among
the other cosmological components allowed to constrain it from the existing data [16],[68]-
[74], as well as to investigate the relation of the dark energy with the other cosmological
components: the explicit coupling with baryons is severely constrained by observations [75],
while the possible coupling of the Quintessence with the Ricci scalar [76]-[84],[85]-[92] and
the dark matter [96]-[99], as well as the phenomenology arising from generalized kinetic
energy terms [100]-[102] have been extensively studied.

The generalization of cosmology that we consider here concerns the Quintessence field as
well as the gravitational sector of the fundamental Lagrangian, admitting a general depen-
dence on the Ricci and Brans-Dicke scalar fields. The latter subject is interesting per se
(see [103, 104] and references therein), and is receiving more attention after the discovery of
cosmic acceleration, with the attempt to interpret the evidence for dark energy as a man-
ifestation of gravity; this scenario has been recently proved to have relevant consequences

for what concerns the dark energy fine-tuning problem mentioned above [92].
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3.2 Dark energy or modified gravity?

We want to stress here that our aim in studying the gravitational lensing by large
scale structure in the generalized scenario described above is not only to have evidence
against or in favour of the Cosmological Constant with respect to a dynamical scenario, but
also to discriminate between a dark energy component and a modification of gravity. In fact,
it has been shown [106] that this distinction is possible only if we consider observables which
are sensitive at the same time to the background expansion and to the growth of structures.
This is indeed intuitive because it is possible to impose, for instance, that Quintessence and
modified gravity scenarios give rise to the same evolution of the Hubble parameter; this
would fix the distance to last scattering, and thus the position of the CMB peaks (assuming
that the sound horizon is not influenced by the late-time behaviour of whatever mechanism
is causing the present observed acceleration). However, the behavior of the cosmological
perturbations would be different due to the change in the matter-to-gravity coupling: an
example of such feature is given in Fig. 3.1. This would result in a different lensing effect,
as already pointed out. The latter is therefore a suitable observable in order to distinguish

between the two cases.
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Figure 3.1: The different growth of structures (D, blue) and peculiar velocities (f, red)
in the Dvali-Gabadadze-Porrati model and in a Quintessence one with the same expansion
history. From [106].
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3.3 Generalized cosmologies

We will consider a class of theories of gravity whose action is written in natural
units as
5= [ atov/=5 | 316 F) = 3066~ V6) + Loua]. (3.1
where g is the determinant of the background metric, R is the Ricci scalar, w generalizes the
kinetic term, and Lg,iq includes contributions from the matter and radiation cosmological
components; k£ = 8mG, plays the role of the “bare” gravitational constant, [83]. Here as
throughout the following Greek indexes run from 0 to 3, Latin indexes from 1 to 3.
The usual gravity term R/167G has been generalized by the general function f/2x [104, 80].
Note that the formalism adopted is suitable for describing non-scalar-tensor gravity theories,

i.e. without ¢, where however the dependence on R is generic.

3.3.1 Einstein equations

By defining F'(¢, R) = (1/x)0f/0R, the Einstein equations G, = kT},, take the
following form [104]:

. __RF_ .
Guw=Tw= % [T;?Sld +w (Suby — 39md,007) + gw.JfZ.’f__z__?K + Fup — QWF;'g} ;

where again one can recognize a part depending on the fluid variables, and a part relative
to the non-minimally coupled scalar field of the theory plus a contribution arising from the
generalized gravity coupling represented by the function 1/F'; for practical purposes we will
render this splitting explicit rewriting T}, as

1 .

Note that in our scheme the generalized cosmology term is active also if gravity is the same
as in general relativity, and a minimally coupled scalar field, like in the Quintessence models,
represents the only new ingredient with respect to the ordinary case. This is true also in the
limiting case where the scalar field reduces to a Cosmological Constant. Moreover, notice
that 73 is not conserved if gravity differs from general relativity; nonetheless, contracted

Bianchi identities still hold and ensure

(Tindy# =0, (3.3)




54 Chapter 3: Lensing in generalized cosmologies

which allows to derive the equations of motion for the matter variables only, leading to a
remarkable simplification [105]. The expression for the stress-energy tensor relative to the
scalar field which is conserved in the generalized scenarios described by the action (3.1)
must include the term accounting for the interaction with the gravitational field [89]. It is
also worth to notice how the equations (3.2) get simplified if the function f is a product of

R times a function of the field only:
f
=~ = RF . .
. (3.4

In the following, we will refer to this class of cosmologies as Non-Minimally Coupled (NMC)

models.

3.4 Formal setting

The first step of the analysis was the development of the formal apparatus needed
to have the lensing variables correctly defined in the context given by the action (3.1); this
included the generalization of the Einstein equations and the lensing ones. This work was
carried out in [56], and we report it here without the need of choosing a specific model
among those above, because we willingly kept the notation as general as possible.

We will consider the case of the Extended Quintessence (EQ [90, 82]) scenario, as a repre-
sentative of NMC models, as an example to illustrate the new aspects of the weak lensing
process with respect to ordinary cosmologies; in that cases, the field ¢, non-minimally cou-
pled to gravity, also represents the dark energy, providing acceleration through its potential

V. Specifically, the original EQ works considered a NMC model defined as

F(g) =% +08 (35)

and an inverse power law potential V(¢) = M*T%/¢> providing cosmic acceleration today.
As we will see later in this thesis, the constraints from solar-system experiments force the
correction to the gravitational constant to be small in these specific models. Therefore it is
suitable to make approximations in the form of a “first order variation” of the weak lensing

observables in generalized gravity theories with respect to the ordinary ACDM model.
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3.4.1 Background

As a reminder of the notation, we rewrite the unperturbed Friedmann Robertson

Walker metric in spherical coordinates as:

2 _ 2 a2
ds -a(7‘)< dr +___1—K7"2

dr? + r2dQ> , (3.6)

where K is the uniform spatial curvature of a spherically symmetric three-space, df) is the
metric of the two-sphere, and 7 stands for the conformal time variable, related to cosmic
time by the usual relation dt = a(7) dr.

The energy-momentum tensor (3.2) can be recast in a perfect-fluid form [105]:

sz/ = (p + P)uuuu +DP9uw; (3'7)

the corresponding background energy density and pressure are easily computed to be:

1 w 4o RE—f/x  SHF'\ _1
P=F (Pﬂuid + -2-:15(15' t——a— tV =5 | = Fhauid + Pge; (3.8)
1 w 2 RF—f/x LT :

p= —F- (Pﬁuid -+ —2-5—2—¢’ _ —————2——— -V + ? + 7 = 'F‘pﬂuid + Dgc; (3-9)

again the prime denotes differentiation with respect to conformal time and H is the confor-
mal Hubble factor a’/a. As above, pg. and pg. do not obey the conservation law in ordinary
cosmologies, py, + 3H(pge + Pge) # 0.

In FRW cosmologies the expansion equation reads
H2=d’p- K, (3.10)

and it cannot be solved directly due to the appearance of H in pgc, which is explicit in the

last term but is also contained in RF — f/k through

R= % <H + Hz) . (3.11)

Note that this is true also in theories where f = f(R) and no scalar field is present.

On the other hand, NMC scenarios admit a formal solution, which is

3F 9 (F\? 1 w
_ _3k FMEN L L (2paa + L2 + a2V — 12
H 2F+\/4(F> +F(apﬂmd+2¢ +av) K, (3.12)
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where we have selected the expansion solution with positive H. Note that the dependence
of the comoving distances r on the redshift z = 1/a — 1 gets also modified, according to
(3.12):

? dz

r= | T (3.13)

We generically indicate the single components in the fluid with z. Since T§ ", is conserved,

energy demnsity, pressure, equation of state and sound velocity, defined as

pe=—T0n , Pe=1/3T}y , Wo =pz/pz , 2 =0,/0, (3.14)

give rise to conservation equations for each non-interacting component having the familiar
form:

o+ 3Hpz (1 +wy) =0 . (3.15)

The last ingredient is the Klein-Gordon equation for the evolution of the field, which is

substantially different from the case of ordiﬁary cosmologies:
1 / 1 12 2f¢ 2 _
¢+ 2H¢ + 5 wed “—a “I:T:_ +2a°Vy | =0. (3.16)

As we will point out in greater detail in the next Section, the relevant changes with respect to
the standard picture are represented by the change in time of the function f. In EQ scenarios
the dynamics of the field possesses two distinct regimes. At low redshift, the behavior of the
energy density coincides with the corresponding one in the tracking trajectories in ordinary
quintessence models. At high redshift, generally much earlier than the epoch of structure
formation, eventually the effective potential coming from the non-minimal interaction with
gravity takes over (R—boost), and imprints a behavior wg = —1/3 for the quadratic coupling

(3.5) [82, 92, 93].

3.4.2 Linear cosmological perturbations

We will describe the linear cosmological perturbations in the real as well as in the
Fourier space. For this reason, we follow a notation close to the one introduced recently by
Liddle and Lyth [94], which allows not to make explicit the Laplace operator eigenfunctions

when working in the Fourier space, minimizing the formal changes needed to go from the
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real to the Fourier space and vice versa. See [95] for the usual formulation cast in the
Fourier space.

The general expression for the linear perturbation to the metric (3.6) can be written as [94]
ds? = a®(1){—(1 + 2 A)dr? — Bidrdz" + [(1 + 2 D)é&;; + 2 E;;)dz'dz’}, (3.17)

where the function E;; is chosen to be traceless in order to uniquely identify the non-diagonal
spatial perturbation.

It is usual to further decompose the above quantities B; and E;; into pure scalars (S),
scalar-type (S) and vector-type (V) components of vectors, scalar-type (S), vector-type
(V) and tensor-type (') components of tensors, according to their behavior with respect to

a spatial coordinate transformation:

B;= BS+BY; (3.19)
Eij= Ej +E} +EL; (3.20)
where
1
Bf =V;B, Ej= <vivj - §5ijv2) E, (3.21)
iV v_ 1 iV
VB =0, Ej=5(ViEj+V;E) , E" =0, (3.22)
ET =0, V'EL =0, (3.23)

and E, B are scalar functions. Our notation slightly differs from the one of Liddle and Lyth
which is given in the Fourier space: the quantities £, E; and B we use here correspond
to the original ones divided by k? = k;k* and k, respectively. In the linear theory the
different types of perturbations evolve independently of each other and can thus be treated

separately.

An analogous decomposition can be performed for the stress-energy tensor, whose expression
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up to the first perturbative order is:

9= —(p+0p) , (3.24)
TO = (p+p)(vi~ B, (3.25)
Ti= —(p+p)', (3.26)
Ti= (p+dp)i+pIl} (3.27)

where the fluid velocity v; and the anisotropic stress Il;; can be split as
vi= v +v; (3.28)

IL; = IO + IO + 17, (3.29)

with the same properties of their metric counterparts:

1
v =V, I = (vivj - géijv2> I, (3.30)
1 .
VszV =0, HZ = 5 (VZHJ + Vj]:[i) , H;V =0, (331)
ViIL= V=0, (3.32)

where again II is a scalar quantity and the same differences of our notation with the one by
Liddle and Lyth hold here for the stress-energy tensor perturbations.

In this thesis we will take into account only density (i.e. scalar-type) perturbations.
The reason is that also in the generalized scenarios we consider here they play the dominant
role. In fact, as we stress in detail in the following, the scalar-tensor coupling does generate
a non-null anisotropic stress already at the linear level, but that is of scalar-type only, and
therefore does not act as a source for gravitational waves.
‘We work in the so called conformal Newtonian gauge, where the non-diagonal perturbations
to the metric are set to zero:

B=E-=0. (3.33)
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Furthermore, we will rename the lapse function A and the spatial diagonal perturbation D

after the widely used gauge-invariant potentials [86]:
A—T; D—-d. (3.34)
We thus recover the line element of Eq. (2.1):
ds? = a®[—(1 +20)dr? + (1 +2®)di?], (3.35)

where di? is the unperturbed spatial length element from (3.6).

We now write down the main equations driving the evolution of the perturbed
quantities defined above. For each fluid component, the evolution of the scalar perturbed
quantities can be followed through the dynamical variables §; = §pz/pz, Vz, 6Dy, I, defined

in terms of the stress energy tensor as
6pg = _JTgm , 0pgy = 1/3 51?93 ) vi'vm = “JTgm/(pm +P:c) ) pacvivj#inz = 5Tij#i . (3'36)

Note that from now on we do drop the subscript S meaning that we always treat scalar
cosmological perturbations, unless otherwise specified. In the Fourier space, the equations

for 6, and v, take the form

8, — 3Hwy 0y = k2(1 + wy)vg — 3(1 + we)®' — 3Hwg Py 6pg; (3.37)
!
/ - W o s g 2 3K w
vy + H (1 — 3wg)vy + 7 +wmvm = ot wl) v+ 3 (1 w7 ) 1 +szIm, (3.38)

while dp, and II; depend on the particular species considered. The perturbed Klein-Gordon
equation can be written in terms of two equations formally equivalent to (3.37,3.38) by
building the conserved expression for the perturbed energy density, pressure and anisotropic
stress perturbations [89]. Their combination leads to the Klein-Gordon equation at first

perturbative order:

" Wo 0\ 5 2, 1 we 2 —azf’¢/n+2a2V,¢ =
6¢+<2H+w¢)5¢+ k+2<w),¢¢ +< 2w @ 69 =
(U — 30")¢' + (2¢” +AH + ﬁqs'?) v P p (3.39)

w 2wk BpOR '
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the perturbation in the Ricci scalar can be expressed in terms of those in the metric variables

as

R = 2

- [—6H'T — 6H>T + 30" — 3HY' + IHE' + kT + 2(k* — 3K)®] . (3.40)

3.5 Generalized Poisson equation

In this Section we work out the equations relating the stress-energy tensor pertur-
bations to the scalar metric gravitational potentials, which, together with the background
cosmic geometry and expansion, determine entirely the lensing process.

We start writing the generalized expression of the density fluctuation [105]:

1 w 1/w
o= p-6=—0Tf = 1 [domua + 5068 + 3 (220” - L2 427, ) 6o

p+3p 1 _, HOF  HIYF  O'F  w_ .
( 5 —?V>6F-—3 56— =3 —;\Ifqb’]- (341)

We can focus on two main aspects of the generalized expression above, playing the major role
into the generalization of the Poisson equation: the contribution from the field fluctuations
d¢ and the 1/F term in front of the expression for dp, which acts as an effective time
varying gravitational constant. As we shall see below, the latter is the relevant effect in
typical Extended Quintessence models.

The Poisson equation relates the fluctuations in the time-time component of the metric to
the usual combination of density and scalar-type velocity perturbations, named A, whose

expression in Newtonian gauge is [95]:
A=6—3Huwy. (3.42)

We follow as much as possible the notation of earlier works [39]. The 6GJ = 679 equation
can be cast in such a way that formally it coincides with the case of ordinary cosmologies.
In the Fourier space it is

3(k2—3K)q>=3A<H2+5), (3.43)

a? a?
so that we can exploit our distinction between fluid and generalized cosmology terms. Note

that the Hubble expansion rate is evaluated with respect to the ordinary time, H = a/a =
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d'/a® = H/a. By using equations (3.8,3.10), we can write H2 = HZ + HZ, where

1 paua _ Bt
Hq = -P—,pﬁgd = = H; [QOm 1+2)°+ Q0 (1+2)* + (1-Q0) (1 + z)2] ,  (3.44)

and Qom, Qor and €y are the contribution to the present expansion rate from the matter,
radiation and the total density respectively, while Fp is the actual value of the gravitational
coupling strength, and can be replaced with 1/87G. It is important to note that ngid is
linked to the energy density of the fluid components, all them but the scalar field, but it
contains a most important generalization, represented by the Fy/F term, which plays the
role of a time dependent gravitational constant into the Friedmann equation. Moreover,
using the relation K/a? = HE(Q—1)(1+2)2, we included the effect of the spatial curvature
into Hgyig. The expressions for Hg‘c and {lg. can be easily obtained by making use of the

equations (3.8,3.10):
HZ,
HZ

ch =pgc , Qg = (3.45)

Starting from (3.43), let us write down the relation between the power spectra of ®, Pp =
k3®2/272, and the one of A:

9 (Hp\* 3(1 — Qo) Ho2\ >
3 (3) (- o)

Fy Fy ) a [ Fo 1 2
"F"Qom(l +z) + "ﬁ-QOr(l +2)%24+(1-Q) + - 1)+ (1—_|_—z—)—2szgc P (3.46)

This is the equation which generalizes the link between time-time metric fluctuations with
density and scalar-type velocity perturbations. The new effects arise from the scalar field
contribution, encoded in ch, the 1/F term behaving as a time dependent gravitational
constant, as well as from the fluctuations of the scalar field, contained in A, both in §p and
v.

Let us check the most relevant corrections to the quantities above in flat EQ models we
take as reference [90, 82]. The scalar field fluctuations §¢ exhibit a behavior which is close
to that of ordinary Quintessence [89], since they are still driven by the potential V in the
limit of small coupling. In these conditions, the most important correction is represented

by the 1/F term, effectively representing the time variation of the gravitational constant.
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The expression for F' in (3.5) can be conveniently rewritten as

_ L 2_ 2
F - 87I'G + C(¢ ¢0) ’ (347)

to make explicit that at the present F' = 1/87G. The observational constraints [87, 88]

usually are expressed as bounds on the quantities

1dG 1dF 2d¢ F F
——— = —— = =-——, 3.48
Gat -~ Fa ¢a  PPTEIT AR (3.48)
calculated at the present time, where the ~ sign above is due to the slight difference with the
gravitational constant measured in Cavendish like experiments [83] and wypp is the usual

Jordan-Brans-Dicke parameter, which usually implies the strongest constraint. Typically

[80, 82] the correction to the 1/87G term is small, so that

%,- ~ 87G[l — 87G((¢* — ¢3)] - (3.49)

Moreover, in tracking trajectories with inverse power law potentials, the field approaches
@o of the order of 1/ v/G from below, being generally much smaller than that in the past,
when 1/F freezes to the value 87G(1 + 87G(#3) [82]. The magnitude of the correction is

1 2nG
8GR = = goy/ ; 3.50
G0 4¢wsBD b0 WJBD (3:50)

note that as wypp approaches infinity, recovering general relativity, the correction may

therefore

still be relevant depending on the values of { or ¢p. The gravitational potential receives a.

contribution which is

0% = —87G((¢” — ¢5)Pfuid4s - (3.51)

The subscript ()guid+¢ represents all the terms coming from the fluid quantities as well as

the scalar field ones from the minimal coupling, i.e. not involving F' explicitly:
kzéﬁuid_i_(p = 47TGAﬁuid+¢Hg [QOm (1 + 2)2 + Qor (1 + 2)4 -+ Q¢] . (3.52)

Note also that if the field trajectory has an almost constant equation of state wg, the

expression above reduces to

K2 ®auiarg = 47GAsuid g HalQom (1 + 2)% + Qor (14 2)* 4+ Qo (1 + 2)30799)] ;. (3.53)
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in order to keep the notation simple, we drop such subscript in the following, always meaning
that it is there when discussing approximate expressions in EQ models. Similarly, the
gravitational potential power spectrum gets an extra contribution which at the first order

in the correction to 1/87G is
6Py = —167G({(¢* — ¢3)Ps , (3.54)

where

9 (Ho\*
P@:ZQ£>[Qmﬂ+@+ﬂwﬂ+zf+ﬂwﬂ+zWH%qR; (3.55)

is the expression in minimally coupled scenarios.

In general, another important effect which arises in cosmology from the generalization of the
underlying gravity physics is represented by the relation between ¥ and ®. The difference
between f and R, which may arise from a scalar-tensor coupling as well as a non-standard
dependence of f from R itself, gives origin to tidal forces exciting the anisotropic stress of

scalar origin [105]; in the Fourier space its simple form is

k26F
Iy = -— )
Poplly @2 F (3 56)
and implies a shift between the two gauge independent scalar metric perturbations, which
in our gauge takes the form
0F

2
a

U4+ 0=—pll=——" _
P : (3.57)

where the last equality holds if the anisotropic stress is due to the generalization of gravity
and is does not come from matter or radiation. This is an important new aspect of gener-
alized cosmologies which implies a change in almost all the equations describing the weak
lensing effect in cosmology, to be discussed next. For this reason, it is convenient to give a

name to the ¥ + & combination, valid both for the real and the Fourier space:

{1

=T+, (3.58)

One has £ = 0 in ordinary cosmology, and Z = —0F/F in the generalized scenarios of

interest here. As we already stressed, = is excited both by a scalar-tensor coupling like in
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EQ models, and a generalized dependence of the gravitational Lagrangian term on R; its

expression in terms of f is

-1
E=_(ﬂ? [yfw+awﬂz. (3.59)

OR 0¢0R OR?

While in the first case the correction is small because of the smallness of the scalar field
fluctuations §¢ [89, 80], the contribution from the second term has not been investigated

yet.

3.6 Lensing equation

We follow the notation introduced in the previous Chapter for the lensing variables,
accounting now for the new degrees of freedom defined above. In terms of Z, defined in
(3.58), the geodesic equation assumes the familiar form [36, 32] plus the perturbation coming
from the anisotropic stress (¢ stands now for z or y):

d26; K cos v Kx db;
= 09,20 ~B) - 2VEK —m==—
dr?  sin® VKy bi( ) sinvVKy dr

This equation generalizes eq. (2.18) of the previous Chapter; the gravitational potentials

(3.60)

differ from each other in absolute value so that the quantity ® — ¥ is not simply 2& any
more; the new relevant combination 2@ — = propagates through all the lensing variables
below.

The effects coming from the modified cosmological expansion are encoded in , through the
modified dependence of the distances r given by (3.12,3.13) with respect to the redshift .
Using again the comoving displacement from the polar axis, z; = 6;sin VK x/ VK, the
equation (3.60) now reads

B(T — B)

x,'i'—l-Ka:,-:-— £
2

=20;® — 5, ; (3.61)

and its general solution is now

sin vVKyx X . . sin VK
zi+ A——==+ B cos VK =—/ dx'8;[¥ (A, x') — @R, X)] —== =
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- /0 ax' B[22 (A, x) - E(tx’)]ﬂlg:?—', (3.62)

where A and B are integration constants, and the position Z on the light cone is completely

specified by the line of sight direction 7 and the generalized radial coordinate .

3.7 Weak lensing observables

In this section we generalize the expressions computed in Sec. 2.4 of the previous
Chapter for the lensing variables: we keep the notation close to that one, so that the new

contributions can be easily identified as the corrections.

3.7.1 Distortion tensor

From eq. (2.27) the above expressions we can rederive the appropriate expression

for the distortion tensor:

iy ) = = / a2 ‘/—XS sff_;(x Do, x) — (7, X)) =
_ ___1___ x /Sln\/—‘X Sln\/——(x X g A (e )
- \/—f? d sin \/_X a 6.7{ 2@(7"’7 X ) + “(na X )] ’ (363)

which will then be evaluated along the integral of the possible source distribution, as already
pointed out.

Let us evaluate the correction to the distortion tensor in EQ models. The contribution from
= is negligible in these scenarios, since it arises from the scalar field fluctuations §¢, yielding
a correction which is small with respect to the one coming from the variation of 1/F, as
we already discussed [89]. Therefore, in flat cosmologies and at a given ¥, the correction to
i (71, x) is due only to the shift in the gravitational potential, represented by (3.51):

S, ) = 167663 [ XX (?3 1) 80,0(,x).  (364)
0 X ¢0 :

Note however that integrating in the y variable, although convenient in order to minimize
the formal corrections to v;;, hides the effect of the varying gravitational constant on  itself;

in flat cosmologies the latter coincides with r given by (3.13), which has to be corrected as

z 2
or = 4w G(p2 /0 -ﬁ% (c%? - 1) , (3.65)
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as it can be easily verified since H (which denotes the unperturbed Hubble parameter) is

x l/ﬁ

3.7.2 Generalized lensing potential

Finally, we can generalize the expression (2.34) for the lensing potential, which

becomes

o) = | " dxfre () [-28(7, X) + E(R. )] / - dx'%‘,)—")gw) . (3.66)

or, in the compact form which makes use of the integral source distribution ¢’(x),

Xoo Xeo
b(1) = /0 A g (o) [T(, X) — B(7, X)] = /0 dx g (0) [=28(,x) + E(R )] - (3.67)

The expression above acquires several new contributions in the generalized scenarios of
interest here. The modified background expansion affects the angular diameter distance as
well as the effective gravitational constant; the perturbations get new contributions from
the field fluctuations affecting ® and exciting the metric fluctuation mode represented by
In EQ models, if the integration is made on the variable x, the main correction is due to

the time variation of the effective gravitational constant:

Xoo 2
s(7) = 16xG¢ [ g0 (% ~1) #(a ). (3.68)
0
In this equation, and in Egs. (3.76),(3.81),(3.84), the quantity ® is meant to be ®gyig+4 as
defined in Eq. (3.51) .
We need now to track these effects into the angular power spectrum of the projected lensing

potential. That is defined as usual as

C'l¢¢ = ('d’lm!z) y Pim = _Z/dﬂﬁ- ¢(fz’) Yzm(ﬁ') (369)

where the —2 is purely conventional in order to keep the notation consistent with earlier
works [39]. One needs now to expand the metric fluctuations in the Fourier space with

respect to the position ¥ = 7 -fi. The expansion functions are just the eigenfunctions Y;(Z)
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of the Laplace operator in curved spacetime, defined in general in curved FRW geometry
[95]. Their radial and angular dependences are further expanded in ultra-spherical Bessel
functions u; and scalar spherical harmonics, by exploiting the relation
V(@) =47 i'uy(kz)Yim(k) Yim(2), (3.70)
I,m
where k and z denote the modulus of the corresponding vectors. By using the completeness
of the spherical harmonics, and the fact that z coincides with the radial distance fx(x),

the final expression for ¢, is

bim = @ /0 a0 / &k [28(F, x) — E(F, )] #al Fxc00)Yim () Yim(3) . (3.71)

The lensing potential angular power spectrum (3.69) is therefore

32 Xoo Xoo
ot =— - axd (o /0 dx'g'(x') - (3.72)

[ [ @kl fic ol O ¥im (B i ()
=(F, )R, ) >]

mh—a

[@E 08X = JEE0BE, XY - S5 X0 ) +

Assuming that the statistical average above eliminates the correlation between different

Fourier modes, as well as the dependence on the direction of the wavenumbers,
(A(E, %) B(R', X)) = (A(k, x)B(k, X ))6(k ~ F'), (3.73)

where A and B represent either ¥ or = and they are meant to be ensemble averaged, one

finally gets
o) 32 Xoo J; Xeo I 2 !
ar o= =/ dx g (x) A dx'g (x") | k*dkwlk fx (x)|wlk fx(x)] -

(@05 08(6,X) - (Bl )20 + FERVSENN] - @70

It is also useful to write down explicitly the equivalent form of the expression above which

contains the gravitational potentials only:

cP = 32/ dxg(X)/ dx'g' /dekul[ka X)uilk fx(x)] -

)W) + 0086 X)) - 5 0BEX)] L (375
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putting in evidence the correlation between ¥ and ®.
From this expression we can easily infer the main correction to the lensing potential angular

power spectrum arising in EQ cosmologies, using (3.54):

o g [X= ’ X s
6C? = —5126¢45 | dx g'(x) , X9

2
(5 -1) [ #aeuls ctobubs 0@ 000, (376
0
Note that the numbers here conspire to yield a quite large factor in front of this expression,
which may render the correction above relevant even for values of the product G(¢3 as
small as 1073.
In the following we further specialize our results computing the generalized expres-

sion of some quantity particularly relevant for observations, as well as their main corrections

in EQ models.

3.7.3 Convergence power spectrum

The convergence, represented by the trace of the distortion tensor, is usually used
as a main magnitude of the weak lensing distortion.

The expression we need to compute is given by

K = %(Tﬂu + 192) (3.77)

which will be averaged over the source distribution as usual. We get

o= g [t [T =000 06,0 - 25,00 =
X

2Jo x(X)
_ L aaony [ KOOI =) gi g 1 opia =05 )] =
-3 [ % g(x)/x I XX 00, 285,20 + 207 )] =
= 3 [ axg 007 290,00 + 260 ). (3.78)
0

The two-dimensional Laplacian appearing in this equation can be safely replaced with its
three-dimensional analogue, as argued before. Once this substitution has been made, we
can expand the generalized gravitational potential in Fourier harmonics transforming with

respect to the spatial point 7 - x, and transform the Laplacian in a multiplication by (—k?):

L /OX“’ dxd (x) / PR 28(F,x) - EF 0| Y(E) . (3.79)

SO PSETE
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Comparing this expression with the ones for the lensing potential power spectrum (3.74,3.75)
we can immediately infer the result:

P.(l) = % /O - dx g'(x) /0 - dx'g'(x') / dk k8 wy(k f ()i (k Fre(x')) -

[@(k,x)@(k, 2O = (k0006 )) + 3 (B 2| =
= 2 [Taxgto [T axa00) [ ank s foyule i)
H U0 0 + BB - 38 0BEN)]| (350

which generalizes eq. (2.43).
In EQ cosmologies, using again (3.54), one finds

Xoo 2
5P.l) = —128G(43 / dx g () / ix'g x)(zo )

/ dk k8wl fie GOk Fre ) (@ () B (k, X)) (3.81)

where the correction to x must be taken into account following (3.65) if the integration is

made on the redshift.

3.8 An example of correlation with other CMB secondary

anisotropies

The lensing potential correlates significantly with secondary anisotropies of the
CMB, because it arises much later than the decoupling; here we generalize the lensing
cross-correlation with the Integrated Sachs-Wolfe effect (ISW, see [39] for a comparison
with the case of ordinary cosmologies).

The latter can be represented in terms of temperature fluctuations as

oW (n) = -/mdx[i’(ﬁ,x)—‘i’(ﬁ,x)] = —/Oodx 28 (7, x) — E(3, x))] - (3.82)
0 0

Note that, in order to avoid confusion with the integration variable x/, in this paragraph
only we will denote with an overdot the derivative with respect to conformal time.
Again using the expressions for the lensing potential power spectra (3.74,3.75), and mak-

ing use of the statistical independence of different Fourier modes, we are able to write
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immediately the cross-correlated spectrum:

0% =2 [Taxg o [ ax [K deuli oyl )
(@0 )80 - 3@l 008X = 5 XN R0) + EGRVEE )] =

=2 [ axd ) /0 " ay / K2 dicun(k SO0k Fre(x))

™ Jo

[, 08 (e, X)) + (@ (30D (8, X)) = (B, )k, X)) — (F (kX )(R, )] - (3.89)

The main correction in EQ cosmologies is obtained again by using (3.54). Interestingly, the

time derivative reintroduces a term proportional to |®|%:

Xoo 2
6C°? = —128GC¢%/0 dx g'(X)/O dx’ (g; - 1) (3.84)

- / K2 dkur(k £ GOYur(k fre () (@ (8, )8k x))
256643 / 70 / dx'¢¢ K2 dk ik fxcGO)ur(k fxGE)) (@ (k, x)(k, %))

These expressions can be further simplified noticing that for lensing on the CMB signal
the source distribution is well represented by a delta function at the last scattering (LS)

surface; thus the averaging function ¢’(x) can be written as

oy — oo IO =X) o0 _ Jr00 fr(xus — x)
gx) = fxx) /X dx e 0] 6(x" — x1s) | T Cers) . (3.85)

3.9 Summary

In this Chapter we have developed the theoretical instruments that we will need in
order to proceed with our analysis of the CMB lensing impact in the task of understanding
the nature of the dark energy. We have fixed the contributions from the modified back-
ground expansion as well as the fluctuations, both in the Ricci scalar and in the scalar field
responsible for the scalar-tensor coupling, and showed that both of them are responsible
for an anisotropic stress of scalar origin, causing the gravitational potentials to be different
already at the linear level.

We have studied in particular the modifications induced by the time variation of the ef-

fective gravitational constant, which are most relevant in non-minimally coupled models in
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which the gravitational Lagrangian sector is a product of a function depending on a scalar
field and on the Ricci scalar, focusing on Extended Quintessence (EQ) scenarios, where
the scalar field, playing the role of the dark energy and responsible for cosmic acceleration
today, possesses a quadratic coupling with the Ricci scalar.

Finally, we have specialized our results with two examples yelding two quantities which are
most relevant for observations, i.e. the lensing convergence power spectrum as well as the
correlation between the lensing potential and the Integrated Sachs-Wolfe (ISW) effect af-
fecting the total intensity and polarization anisotropies in the cosmic microwave background
radiation, and have computed the relative corrections with respect to ordinary cosmology.
We have showed that in this case the order of magnitude of these effects is of the order of
8mG( @2, where ( is the coupling constant and ¢q is the present value of the dark energy
field: such correction may be relevant even if the underlying theory is close to general rel-
ativity, i.e. if the Jordan-Brans-Dicke parameter wypp = 1/327G( 2¢8 is large, depending
on the relative balance between ¢ and ¢g.

Despite of these interesting indications in the particular case of EQ cosmologies, the formu-
las we developed here have great generality, and we will apply the results presented above
starting from the case of scalar-field dark energy cosmologies, which are the target of next

Chapter.




Chapter 4

Lensing in Quintessence models

In this Chapter we present the analysis of the CMB lensing in minimally coupled
Quintessence scenarios. The phenomenology of these models is relatively simple, since there
is no anisotropic stress, the gravitational coupling is the same as in General Relativity, and
acceleration is provided by the dynamics of a scalar field representing the dark energy.
We will describe the numerical achievements that made possible the study of the CMB
lensing in these models, and accurately examine the different mechanisms contributing to
the global effect and their phenomenological interpretation. Finally, we provide a statistical
analysis of these models via a dark energy parametrization and a Fisher matrix treatment,
dealing with the issue of how future surveys devoted to the CMB polarization may help in
constraining the dark energy behavior. Most of the content of this Chapter is the result of

the work [107].

4.1 Dark energy cosmology

Here we will review the tracking Quintessence scenarios, where the dark energy is

described through a scalar field ¢ (see e.g. [59]). The associated action is of the form:
5= / dzy/=G [ER— ¢#6.,L — V(6) + Lawa] - (4.1)

In order to highlight the general phenomenology, we will consider two representative mod-

els where the equation of state has a mild and violent redshift behavior, respectively for

72
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the inverse power law potentials, (IPL [61]) and those inspired by super-gravity theories
(SUGRA [65]):

44 44 2
Ve =T L V)= (Yo ) 4o (42)

the field motion and its tracking trajectories will be reviewed in Sec. 4.3. For what concerns
the background evolution, a variety of models including the ones above are well described
by essentially two parameters: the present value wg of the equation of state and its first
derivative with respect to the scale factor a, —w, [110, 111].

In this framework, the evolution of the equation of state with the scale factor can

be written as

w(a) = wo + we(l — a) = Weo + (W — wWeo)a , (4.3)

where weo is the asymptotic value of w in the past. We will exploit the parameterization
above in Section 4.4, in order to evaluate the precision achievable with the lensing on the

measure of wy and we, from the CMB total intensity and polarization angular power spectra.

4.2 CMB lensing and Boltzmann numerical codes in cosmol-
ogy

The effect of gravitational lensing on the CMB spectra had been first introduced
in the CMBfast code by Zaldarriaga and Seljak [112] for Cold Dark Matter cosmologies
including a Cosmological Constant (ACDM). In their formalism the lensing effect on the
angular power spectra of the anisotropies can be understood as the convolution of the
unlensed spectra with a Gaussian filter determined by the lensing potential [32] (the validity
of the Gaussian filter approximation will be discussed in the last Chapter, in the part
dedicated to the nonlinear evolution). The expression for the lensing potential has to be
generalized in scalar-tensor cosmologies because of the presence of anisotropic stress already
at a linear level [56]. In the present scenario, however, this is not required and the structure
of the quantities relevant for computing the lensing effect is formally unchanged.

We carry out the exact evolution of density perturbations, also including Quintessence

fluctuations, using a modified version of the code DEFAST, based on CMBFAST [108] and
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originally written to study quintessence scenarios where the dark energy scalar field is
minimally [89] or non-minimally [80] coupled to the Ricci scalar. The architecture of DEFAST
is based on the version 4.0 of CMBFAST, although there has been a progressive code fork in
the subsequent versions.

We follow the notation of the original paper [112]; an important simplification with respect
to the spectra defined in Chapter 2 is the use of the flat-sky formalism, since we don’t expect
considerable lensing effects on such large scales to spoil this approximation. Therefore, the
expansion in spherical harmonics can be replaced by a two-dimensional multipole expansion
in which the Fourier-conjugate variables are the multipole vector 1 and the angular position

i [39]:

o) = [-Lhewes (4.4)
n) = )2 e, .
for the temperature, and
X(h)=— _.__dzl X(1) +2i(p1—p) ,il-h 4.5
=+ n (277)2:*: € € bl ( " )

where ¢; is azimuthal angle of 1, for the polarization. Again one separates the Stokes
moments as

+X(0) = Q(n) £ iU(h) (4.6)
in the real space.
Under the assumption of Gaussian statistics, the power spectra and cross correlations will

be now defined as
(X*x'@)) = @m20-1)Ccfr . (4.7)

The observed CMB temperature in the direction # is T'(fi) (we call it T from now on in
order to stick to the most common notation for the spectra) and equals the unobservable
temperature at the last scattering surface T(ﬁ + 411), where 11 is the angular excursion of
the photon as it propagates from the last scattering surface until the present. In terms of

Fourier components we have

i

T(#) T (& + 64)

= (2n)? / 21 & (B+98) (1), (4.8)
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An analogous relation applies to the two Stokes parameters @ and U that describe linear
polarization, and in the real space measure the difference in the light intensity along the x
and y (and their rotations of 45°) axes (in analogy with the shear components, as already
pointed out when they were first introduced). They can be decomposed in their opposite

parity Fourier components E(1) and B(l) [48]

Q(h + 641)
— (2m)2 / @1 M EHR) [B(1) cos(261) — B(1) sin(261)]

U(@) = U(i+ én)
= (2m) 72 / d?] il (a+oh) [E(1) sin(2¢1) + B(1) cos(2¢y)]. (4.9)

Q
B
I

We want to compute the correlation functions of two light rays at directions, say, i and A%
in the sky, with relative deviations éfi# and 6ii®. With an appropriate choice of coordinate
the two rays can be represented to be respectively at the origin and at another point

separated by an angle 6 along the x axis [49]:

2
CTT(Q) - (2dﬂ.;2 eilecosqS;(eil-(JﬁA—&ﬁB)) C’f‘Tl

Pl 9cosgy s it-(s5A—sa5) 2 . 9

Co(6) = 2 © ‘e ) [Cppgcos™(2¢1) + Cpp sin®(2¢1)]
d’1 il cos ¢y 7 _il- (A —6AF) 2 2

Cy(6) = @ e He ) [Cagsin®(241) + Cpgg, cos”(261)]
2 . - ~ -~

Co(d) = /(_2% gilf cos ¢y (ezl-(ﬁnA—énB) ) C‘f’El cos(24y). (4.10)

The expectation value in the above equation can be computed using the equation for the
deflection angle given in Chap. 2, Eq. (2.25), where now a(n, x) — 0, and calculating its

auto-correlation function. The result is

( eil-(6ﬁ~6ﬁ’)> _ exp—é[ag (6)-+cos (2¢1)a3 (6)] (4.11)

7

where the Gaussian function in the multipole space on the right hand side is, in this for-
malism, the equivalent of the lensing potential power spectrum introduced in the previous
Chapter: its variance gives a measure of the mixing between different Fourier modes (i.e.

[32]), as we explain below.
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The resulting power spectra in terms of the unlensed ones can finally then found to be (we

don’t report the lengthy calculation [112])

Crri = Cppyt+ Will Ciry

Cem = CEEZ+ [W:lllz'*‘Wgz] Copr + 3 [W — Wh] Cpu

1

Cem = Cgg+3 [W Wil Copy + = [Wu +Wh] Capy

2
Cre = CTEl'FWsz Crgr

where the sum over !’ is implicit, and the functions W are defined to be
, e
W = / 6d6 Jo(18) {03(6)Ta(I'6) — 02(6) Jo(1'6)}

/3
Wi = 5 [ 68 Ju6) (GO + (18] - )16}

13
Wi = 5 [ ed8 1) (GO + Lt - RO} 0}

The quantities 02(f) and o2(9) are given by

Xrec

o0
30) = 162 [ Wri i [ Kk

Py(k,7 =10 — x)[1 — Jo(kbX)] ,

and

Xrec

oC
30) = 167 [ Wi xudx [ Fd

Py(k,7 =10 — x)J2(kOX) .

(4.12)

(4.13)

(4.14)

(4.15)

Here k is the wavenumber absolute value, J; is the Bessel function of order I, x is the

comoving radial distance, 7 is the conformal time, Pg is the power spectrum of the gravita-

tional potential, and W is a function accounting for the cosmic curvature, which amounts

t0 1= X/Xue. for a flat universe (it is the integrand of the weight function ¢'(x) in eq. (2.37)

of the previous Chapter). The above equations tell us that the lensed power spectra Cxx;,

where X runs over the possible spectra types, are obtained from their unlensed ancestors

Cx ; after a convolution the some window functions W, which account for the contribution

of the lensing potential. The latter appears in the window functions through oy and o,
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where however its power spectrum has been rewritten in terms of that of the gravitational
potential Pp according to the prescription of Eq. (2.37) in Chap. 2: this explains our
previous statement that the functions o and o9 appearing in Eq. (4.11) are the equivalent
of the lensing potential with the present notation. The mixing of the primordial EE and
BB spectra, which is evident from these formulee, depends on the fact that the real-space
quantities around which one Taylor-expands in powers of the deflection angle are not EE
and BB themselves, but their combination forming the Stokes parameters Q and U.

In ACDM cosmologies and most of the numerical codes dealing with them, including CMB-
fast, the quantities appearing in the above equations may be computed independently of the
main routine which performs the integration of the cosmological perturbations equations.
This can be done because the power spectrum of matter density perturbations A,, can be

factorized in two terms, depending respectively only on the wavenumber and the redshift:
Pan(k,x) = AK" - T2(k, 0)g% (x) - (4.16)

AE™ here represents the primordial power, T is the transfer function of density perturbations
taking into account the evolution on sub-horizon scales, and g is the overall linear growth
factor. However, this separation is only convenient if one is provided with a satisfactory
analytical fit of the growth of perturbations, which is not the case unless we ignore the
influence of Quintessence fluctuations, which do make a non-negligible effect on large scales
[113]. To account for these changes, we evaluate numerically the density contrast from all
fluctuating components A. This quantity is computed and saved while the main routine
performs the integration of the equations of motions, and used later for the computation of
the quantities (4.14) and (4.15), which include all fluctuating components.

A separate issue concerns the normalization constant A above when lensing is taken into
account. The lensed perturbation spectra no longer depend linearly on the primordial
normalization, since the lensing is a second order effect; consequently, the normalization
has to be treated as the other parameters, having no trivial impact on the perturbations.
In Section 4.3 the models under examination have been set to have the same amplitude
of the primordial perturbations, in order to highlight the differences arising due to the

later lensing dynamics, while in Section 4.4 the primordial normalization is among the
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cosmological parameters to be constrained.

4.3 Lensed CMB polarization power spectra

In this section we describe the phenomenology of the two dark energy models
discussed in the previous Section, as they well represent the different dynamics that the
dark energy might have. We study the behavior of the relevant lensing quantities, showing
results for the corresponding lensed CMB power spectra. In particular, we focus on the
effect induced by the dark energy behavior at the epoch when the lensing power injection
is effective. We give a qualitative description of how the lensing breaks the degeneracy
between wy and w, affecting the unlensed T'T, TE and EE spectra.

Both the SUGRA and the IPL models are characterized by two parameters, the index
of the power-law ¢, and the mass of the field M. As it is well known [66, 67] they both
admit attractor trajectories for the field dynamics in the early universe, known as tracking
solutions. For field values much smaller than the Planck mass, the two potentials converge
to the shape of a pure inverse power law. In this regime, and as long as the field is not the
dominant cosmological component, the field energy density scales in redshift with an almost
constant equation of state, depending on the power law only: w = —2/(a+2). For suitable
values of o, which in our example is set respectively as —2.21 and —0.34 for the SUGRA and
IPL models this implies a shallower scaling with respect to matter and radiation, so that
the field eventually comes to dominate the expansion. When this happens is determined
by the potential amplitude, governed by the mass parameter, for both cases; it is adjusted
to yield the observed dark energy density today. The difference between IPL and SUGRA
arises in this last part of the evolution, since in the SUGRA case the exponential becomes
effective flattening the shape of the potential.

First of all we want to discuss qualitatively the effects on the corresponding background
evolution, where we expect to see the most relevant differences between the two models; the
key point of the comparison is the behavior of the dark energy component, which will char-
acterize the scaling of the expansion factor. We consider models where the present equation

of state of the dark energy is wo = —0.9, in agreement with the present constraints [20].
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Figure 4.1: UPPER PANEL: Evolution of the equation of state of dark energy for the
SUGRA (dashed line) and IPL (solid line) models. LOWER PANEL: Ratio of the squared
Hubble parameters for the same models: the line H = 1 corresponds to the IPL case.

The redshift evolution of w(z) is shown in Fig. 4.1, showing that while in the IPL model
it is mildly departing from its present value at high redshifts, in the SUGRA one it rapidly
gets to higher values. We also plot the squared ratio of the Hubble parameters, which enters
directly in the distance measurements, for the two models.

The remaining cosmological parameters are chosen accordingly to the concordance cosmo-
logical model, see the first column of Table 4.1.

Since in the SUGRA model the dark energy becomes relevant at higher redshifts with re-
spect to the ACDM and IPL cases, the inhibition of structure formation starts earlier (see

[114] and references therein); thus, for fixed primordial normalization, we expect two effects.
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The first is a smaller lensing signal, since clustering of structures will be lower in this model
(see [32]). The second is that the lensing cross section, namely the redshift region where
the lensing signal picks most of its power, is shifted towards earlier epochs, in consequence
of the structure formation process occurring at higher redshift following the earlier dark
energy dominance.

These features can be verified analyzing the function o((#); we choose a reference value of
the angle, say € ~ 14 arcminutes, corresponding roughly to the middle of the range suitable
for CMB computations. We consider the function o¢(fg, z) for this angle and assume a
unitary power spectrum fixing Pg(k,7) = 1 for the gravitational potential fluctuations. We
call the resulting quantity the lensing kernel, ky(fo, z); its dimensions are the inverse of a
volume, and it gives a measure of the whole lensing effect coming from the background.
The expected plot for oy is similar, because the shape of the lensing kernel is governed by
the quantity W2 = (1 — x/Xrec)?, and thus the relevant feature of the peak at z ~ 1 is
conserved. For reference, we plot o2(6o, 2) (and we call the corresponding kernel ka(fp, 2))
for the same angle as in the og case. The results are shown in Fig. 4.2.

Both our expectations are verified; note how the two cosmological models, although having
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Figure 4.2: Lensing kernel ko (upper panel) and ky (lower panel) for § ~ 14', for the SUGRA
(dashed line) and IPL (solid line) models, having the same equation of state today.

the same values of all cosmological parameters today, differ substantially (30%) at the epoch
of structure formation entirely because of the difference in the cosmological distances.
Let us now turn to analyze the impact of the different perturbation growth rate,

influencing o(f) and o2(f) through the power spectrum of the gravitational potential. It
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is convenient to plot the linear growth factor, ¢(z,k) = T(k,z)/T(k,z = 0), for the two
models at a fixed wavenumber; the behavior is qualitatively the same for any k. The result

is shown in Fig. 4.3. The phenomenology is the following. In the matter dominated era,
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Figure 4.3: Growth factor of the perturbations for a comoving wavenumber k = 0.1 Mpc™!,
for the SUGRA (dashed line) and IPL (solid line) models. In the two models, g has the
same value at infinity.

say at redshifts between 1000 and a few in the figure, g has the well known scaling as
a=1/(1+z). At the onset of acceleration, its growth is inhibited and eventually it starts
to decrease. The effect is of the order of 10%, and goes in the same direction as the one in
Fig. 4.2: the solid line (IPL) lies above the dashed (SUGRA) one, so that the combination
of the two effects of background evolution and perturbations growth contributing to the
expressions of op and o9 is indeed large. As expected, this effect is stronger in the SUGRA
case, as dark energy dominance takes place earlier.

On the basis of the issues outlined above, it is crucial to fix CMB observables
purely sourced by gravitational lensing. The BB modes in the CMB represent an almost
ideal candidate for this, since the lensing is the only known mechanism injecting power on
scales smaller than [ =~ 200, where the imprint from primordial gravitational waves starts
to drop. In the following we give a qualitative illustration of its relevance, leaving a more
quantitative discussion for the next Section.

The TT, TE and EE CMB spectra are dominated by primary anisotropies, imprinted at last

scattering, where in most models the dark energy is not yet effective. The lensing contributes
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smoothing a bit the acoustic peaks, and moving some power to the damping tail [112]. The
location of the acoustic peaks depends on the different cosmological expansion histories, as
a result of the modification in the comoving distance to last scattering dr g, which is written
as

7 1+w(z’)

LS z
drs = Hy* / dz[Qn (1 + 2)3 + +(1 — Q)30 &' T 11/2 (4.17)
0

where Hj is the Hubble parameter, 2, is the matter abundance today relative to the
critical density and the contributions from radiation and curvature are neglected. It does
not come as a surprise that this quantity depends very weakly on different forms of w(z),
since those are washed out by two integrals in redshift; nonetheless, such projection effect is
the main visible difference between unlensed and lensed spectra for TT, TE and EE modes.
The Integrated-Sachs-Wolfe effect acts on large scales only, responding to the change in
the cosmic equation of state; although promising results may be obtained correlating the
ISW with the large scale structure data [115], from a pure CMB point of view the cosmic
variance represents a substantial limiting factor.

The BB phenomenology is utterly different. Here the lensing is the only source of power
on sub-degree angular scales, and the lensing cross section is largest at structure formation,
where the dark energy might differ significantly from a Cosmological Constant, even for
the same expansion rate today. The lensed CMB power spectra are shown in Figs. 4.4 and
4.5. It is immediately evident how the sensitivity of the BB power to the dark energy at
high redshifts is sensibly altered with respect to the small projection affecting all the other
spectra. Indeed, the BB peak traces directly the perturbation growth rate and background
expansion at the epoch of structure formation. For the cosmological parameters at hand, the
effect is of the order of several ten percent, consistently with the results in Figs. 4.2, 4.3. We
remark that the Cs have been obtained with the same value of all cosmological parameters,
including the primordial normalization, and differ only in the value of the dark energy
equation of state at intermediate redshifts. For comparison we also plot, in Fig. 4.6, the
BB modes with a different normalization, fixed by the same og = 0.76. Notice that the
spectra are switched, since the SUGRA model requires a larger primordial power in order
to achieve the same amount of clustering at present, but the difference in the amplitude of

the BB modes spectrum is still large, confirming that the amplitude effect is not an artifact
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due to the normalization procedure.
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Figure 4.4: TT (upper panel) and EE (lower panel) lensed power spectra for the SUGRA
(dashed line) and IPL (solid line) models with fixed primordial normalization.

To make the projection degeneracy breaking more apparent, we also consider dark
energy models featuring the same value of dj; in (4.17), with different values of wy and weo.
The TT and BB spectra are shown in Fig. 4.7 , showing clearly the same pattern in the
TT acoustic peaks, apart from the different ISW effect on very large scales, but markedly

different BB amplitude, reflecting the enhanced dependence of the latter on ws,. We will
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Figure 4.5: BB lensed power spectra for the same SUGRA (dashed line) and IPL (solid
line) models of Fig. 4.4.
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Figure 4.6: BB lensed power spectra for the SUGRA (dashed line) and IPL (solid line)
models, but with normalization fixed by the same o3g.
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Figure 4.7: Lensed TT (left) and BB (right) power spectra for dark energy models with
wg = —0.9, wee = —0.4 (solid line), wg = —0.965, wo, = —0.3 (dashed line), wy = —0.8,
Woo = —0.56 (dotted line).

quantify the relevance of this effect in the next Section.

4.4 Fisher matrix analysis

Here we give a first quantitative evaluation of the benefit that the knowledge of
the lensing effect, and the inclusion of the BB spectrum in particular, has on the CMB
capability of constraining the dark energy dynamics. Our approach is based on a Fisher

matrix analysis, reviewed in Section 4.4.1; in Section 4.4.3 we show the results.

4.4.1 Method

In a CMB analysis involving the polarization power spectra [48], the Fisher matrix

takes the form
ace = acE™
Z Z v xy Ba; (4.18)

¢ XY
where XY and X'Y” are either TT, EE, TE or BB and Exy xv' = Cov(CeXYCf'Y') is the

power spectra covariance matrix:

—TT,TT =TT,EE =TTTE 0
4 = a4
—TT,EE —EEEE —EETE 0
= ¢ £ ¢ . (4.19)
~TT"TE —~—EETE ~TETE
=, Sy =, 0
0 0 0o gbBs
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The terms in the power spectra covariance matrix are given by

—zy,z'y’ 1

S T QU D) fary AL
X [(C3 + N2Y)(CY + NP*)
+(CF + NFF)(CW + NPV, (4.20)

The noise covariance is given by N;¥, which also contains the effect of the instrumental

beam. The inverse of the Fisher matrix gives the uncertainty on the theoretical parameters:
Cij = (AayAoy) =Fi; . (4.21)

Aq; is the marginalized 1-¢ error on the it parameter, and is given by the square root of
the diagonal elements of the inverse of the Fisher matrix.

As a representative of the forthcoming CMB polarization probes capable to detect the BB
spectrum we consider a post-Planck all-sky experiment. We conservatively consider a Gaus-
sian, circular beam with angular resolution of 7 arcminutes, considering multipoles up to
[ = 1800. We assume an instrumental detector noise of 1 u K, and cut the galactic plane
assuming a sky fraction of 0.66 (a more rigorous definition of these quantities will however
be given in Sec. 4.5).

A delicate issue in applying a Fisher matrix analysis to the CMB lensing is represented by
the non-Gaussianity of the lensing effect, due to the correlation of cosmological perturba-
tions on different angular scales; the lensing statistics have been recently receiving increasing
attention in view of the incoming precision polarization experiments [118, 119, 122, 116].
In particular, Smith et al. [119] achieved a first quantification of the increase in the covari-
ance matrix due to the non-Gaussian nature of the lensing signal in the BB modes, giving
a pipeline to estimate the resulting achievable accuracy.

For our study their most relevant result is the behavior of the so called degradation factor,
the ratio between the squared sample covariance in the case of this non Gaussian signal and
the corresponding Gaussian case. This is shown to depend both on the instrumental error
(the degradation increases with the signal-to-noise ratio of the experiment, as expected be-
cause the instrumental error is close to Gaussian) and on the maximum available multipole

(again increasing with lpax, because of the stronger effect of the correlation between neigh-
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boring band powers).

According to their worst case scenario, we make a conservative choice enlarging by a factor
10 the covariance contribution to the BB spectrum in the covariance matrix (4.20).

A step further has been made in [117], who suggested a way of taking into account the
non-Gaussian correlations of the lensed BB spectra, with special regard on the issue of de-
generacies between the dark energy parameters and the neutrino mass. This approach goes

however beyond the scope of the present analysis, and may be considered in further work.

4.4.2 Preliminary considerations

We analyze four flat cosmological models, corresponding to a pure ACDM, and
inverse power law, and two SUGRA cases, specified by eight cosmological parameters, in-

cluding the two specifying the dark energy equation of state:

wo present e.o.s. of dark energy

Weo  asymptotic past e.o.s. of dark energy

h present value of reduced Hubble parameter (0.72)
Qph? fractional baryon density x h? (0.022)
Qch? fractional CDM density x h? (0.12)
ng perturbation spectral index (0.96)
T reionization optical depth (0.11)
Ag density perturbation amplitude (1)

All the cosmological parameters, except the dark energy ones for the last SUGRA case,
are chosen consistently with the current observations of CMB and large scale structure
[20, 16]; we use the CMBFAST normalization for the reference models and consider the
reelative parameter as their ratio) and assume the same values, indicated in parenthesis
in the table above, for the non-dark-energy parameters for all the models, while the dark

energy parameters are the following:

ACDM IPL SUGRAl  SUGRA2
wo 1. 0.9 0.9 -0.82




88 Chapter 4: Lensing in Quintessence models

Weo -1. -0.8 -0.4 -0.24

The choice of the reference models reflected our will to check not only what kind of precision
the lensing and the BB modes may bring in the knowledge of the cosmological parameters,
but also whether the numerical results themselves presented any model-dependent feature.
For this reason, we progressively deviated from the Cosmological Constant model, consid-
ering increasing dark energy dynamics for the IPL and the two SUGRA model, up to the
last one which, as already said, lies on the edge of the allowed range of dark energy pa-
rameters but is useful in order to understand the effect of a violently varying Quintessence
component.
As a first, qualitative estimate of the relative importance of the different spectra for the
final result, we considered the relative change in the three spectra TT, EE and BB due to a
order percent shift in the wo, parameter around the reference model (this can be considered
a sort of weighted derivative, although the expression on the left hand side is not divided
by dweo), specifically:

(CF(wg) = O (wx)) /O (W) (4.22)

for the four cases, where X stands for T, E or B respectively and w,, w3, are the values at
which the double-sided derivative is evaluated. We chose this parameter since it represents
the asymptotic dark energy equation of state in the past, and thus is suitable to track
the dark energy behaviour at redshifts relevant for lensing. The reason why we don’t
include the correlation is that the denominator approaches zero several times, making the
corresponding plot falsely unreadable; however, we verified that the order of magnitude is
the same as the other weighted derivatives. Even if the derivatives with respect to different
spectra are partially mixed in the covariance matrix, this plot gives a reasonable flavour
of how much the four components concur to build the global Fisher matrix. Figure 4.8
shows that the relative change in the spectra are comparable for all the models under
examination; naively, this would correspond to a 25% improvement due to the inclusion of
the the BB modes spectrum. A further important remark in favor of the BB modes may

be that while for the TT and EE components the effect is maximum around the peaks
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Figure 4.8: Weighted derivatives of the TT, EE and BB spectra with respect to the we
parameter for the four models under study.

and valleys of the unlensed distribution as expected, since the main effect of the lensing
is a smoothing of the oscillations in the acoustic regime, for the BB case the derivative is
always positive and presents less marked features. This maybe relevant, for example, in the
evaluation of the constraints from experiments limited to a small fraction of the sky, such as
the polarization-oriented EBex [120] or PolarBEar [121], for which the binning procedure
which has necessary to be applied in order to avoid fake correlations of the data points
could reduce the statistical significance of the TT and EE modes, but not that of the BB
ones.

The plot in Fig. 4.8 also suggests an interesting feature of the covariance matrix. In
fact, it is easily seen that the reaction of the spectra to the change in wy, is larger with
increasing dark energy dynamics (in the lower panels). The difference wl, — w5, has been

fixed to 0.02 for all the four models, implying that the evidence arising from the Figure is
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that the derivative of the lensed spectra with respect to wy is a growing function of the
Quintessence abundance. Such anticipation, i.e. that these more dynamical models can be
better constrained through the lensing of the CMB, will find confirmation in the Fisher

matrix results, as we discuss in the following.

Table 4.1: Results from the Fisher matrix analysis for the four models.

ACDM IPL SUGRA1 - SUGRA2
value O Fisher value O Fisher value O Fisher value O Fisher
wo -1. 0.12 —0.9 97x107%2] —09 6.1x107%] —0.82 3.5x 102
Woo -1. 0.27 —-0.8 0.19 —04 69x1072%2 | -024 1.9x102

Qph? 0.022 5.7x107% |0.022 6.0x107°[0.022 5.7x107°| 0022 59x10~°
Qch? 012 70x1074| 012 73x107%| 012 66x107%| 012 50x10~*
h 072 50x1072| 0.72 45x1072| 0.72 29x107%2| 072 15x 102
ns 096 21x1073| 096 22x107%| 096 21x103| 096 2.0x103
011 31x103| 011 30x10~%| 011 31x1073| 011 3.2x103
1.0 56x1073| 1.0 55x107%| 1.0 55x107%| 1.0 56x103

3

4.4.3 Marginalized errors on cosmological parameters

The results of the analysis are shown in table 4.1, reporting the 1 — ¢ marginal-
ized errors for each parameter, according to the present Fisher matrix approach. For the
ACDM model there is an important indication of an achievable precision smaller than 20%
on the wy parameter, while the limit on we is considerably weaker. The accuracy on the
others is in agreement with previous similar analysis, which was indeed expected because
the BB modes statistics have large error bars and trace the physics at late redshifts so that
their influence on other parameters is smaller. Results are increasingly better for the IPL
and the two SUGRA cases; this can be attributed to the more and more violent redshift
behavior of the equation of state of these models, making them increasingly sensitive to
the redshift region probed by lensing. In particular, the achievable precision on the wg
parameter appears to be growing faster, so that for the SUGRA cases the results for the
two dark energy parameters are comparable.

As we have already mentioned, a relevant issue in the interpretation of the results is rep-
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resented by degeneracies; we have emphasized in the previous discussion that the CMB
spectra without account of the lensing signal are affected by a projection degeneracy con-
cerning the distance to the last scattering surface. Indeed, there is a curve in the plane
(wo, Weo) for which drs in Eq. (4.17) is the same, resulting in almost complete degener-
acy of these two parameters which is only alleviated by the difference in the ISW effect.
Therefore, if they were the only statistical data to be used in the dark energy parameter
forecast, the reliability of the Fisher matrix method itself would be jeopardized, since one
of the conditions for its applicability is for the parameters to be as uncorrelated as possible.
In this respect, the addition of the lensing and in particular that of the BB power spectrum,
which introduces an amplitude effect and thus removes this degeneracy, has to be seen not
only as an improvement in the statistical quality of the data, but first of all as a conceptual
achievement ensuring the goodness of the analysis method.

A more rigorous check that this statement is correct can be obtained comparing the result
of the Fisher matrix with and without the addition of the BB modes power spectrum. For
this purpose we will need not only, or better not as the primary source of information,
the 1-o expected coﬁstraints, but first of all the change in the eigenvalues of the Fisher
matrix. In fact, the degree of degeneracy of the Fisher matrix, which is the most immediate
indicator of problems in the analysis, is given by the size of its eigenvalues; the os alone
are less indicative because they are further filtered by the remixing of parameter axes into
eigenvectors. In other words, although it is true that the smallest and thus more problem-
atic eigenvalue is related to wy in the sense that the latter is the principal component of
the corresponding eigenvector, the alleviation of the degeneracy that it measures may not
be exactly reflected by change in o(wy) if the chosen set of parameters does not bear good
enough resemblance to the principal components.

Therefore, we present and comment here both the change in the smallest eigenvalue, egman

(here below) and that in the 1-o expected precision (in Tabs. 4.2,4.3), for the four cases.

ACDM IPL SUGRAlI  SUGRA2
esmall (00 BB) 9.85 157 108.7 597.7
esmanl (with BB) 1328  26.7 155.9 695.0
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From the numbers above it appears clear that the improvement is often (in three cases
out of four) even larger than the naive 25% expected from the “weighted derivative” test.
Significantly, the models that get the largest benefit from the inclusion of the BB modes
spectrum are those which are worse globally determined, so that the result gains even
more importance. The last SUGRA model is probably so extreme that the ISW effect in
the temperature spectrum, which is the main dark energy indicator for the other three
spectra, suffices to give a good determination of we, by itself, so that the BB modes are
still important, with a variation of the 15%, but less crucial than in other cases.

As for the change in the diagonal terms of the Fisher matrix, only in the case of IPL the
change in egma) is directly translated into a change in o(wy), and we have indeed verified
that the relative eigenvector is very close to wy for that model. In the other cases the
degeneracy improvement is still more evident in o(weo) than in the others, but is in part
spread over the cosmological parameters that present a non-negligible correlation with wee:

wop, and h in particular.

Table 4.2: Results from the Fisher matrix analysis in absence or presence of the BB modes
for the ACDM and IPL models.

ACDM IPL

o (no BB) o (with BB) | o (no BB) o (with BB)
wo 0.13 0.12 0.11 9.7 x 1072
Weo 0.31 0.27 0.24 0.19
Qph? 64x107° 5.7x107° [65%x1075 6.0x105
Qch? 79x107% 70x107* |78x10™% 7.3x107%
h 56 %1072 50x1072 |54x1072 45x 1072
ns 23x107% 21x107% [23x1073 22x1073
T 32x107% 31x1073% |3.0x10"%® 3.0x10°3
A 57x1073 56x1073 | 56x107% 55x 1073
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Table 4.3: Results from the Fisher matrix analysis in absence or presence of the BB modes
for the two SUGRA models.

SUGRA1 SUGRA2

o (no BB) o (with BB) | ¢ (no BB) o (with BB)
wo 0.66x10"1 61x1072 [3.7x107% 35x107°
Weo 79%x1072 69x1072 |21x1072 1.8x107?
Qph? 64x1075 57x107° |6.5x107% 59x107°
Qch? 75x107%  66x107% | 7.0x107* 5.0x10™¢
h 33%x1072 29x1072 [1.6x1072 1.5x1072
ng 22%x107%  21x107% [23x107® 20x1073
T 32x107% 31x107% [32x10"% 32x1073
A 58x 1073 55x107% |6.0x10® 5.6x1073

4.5 How to observe the B-modes

In this section we want to very briefly present the result of a study oriented to
understand what kind of experiment is more suitable to the search for the lensing-born BB
modes of polarization. In the analysis above we have considered as a target experiment
a conservative version of a CMB-polarization satellite. This choice was motivated on one
hand by the direct comparison with similar papers which conducted Fisher matrix analysis
with similar sets of parameters ([122, 123, 124]), and on the other by this study that showed
that experiments aiming at the detection and measurement of B modes around the lensing
peak need to be calibrated over a significant fraction of the sky.

The detailed form of the instrumental noise N,V is (i.e. [125])

f
NIV = wsgyf’ (4.23)

where beyond the sky fraction we find the relevant quantities

2
wl= 47;\? (4.24)

and

B; = exp o HHH1)/2 (4.25)
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Here o is the r.m.s. noise in any of the global N pixels, and B; is the experimental beam

function. The latter depends on the standard deviation of the beam

2
7B = v/8log?2’

where 0p is the full width half maximum beam size.

(4.26)

For a given experiment the integrated sensitivity depends on the instruments and thus
is fixed: it corresponds to the ratio o2/ fsky- Therefore, the experimental setup can be
modified through the quantities o and fy, keeping the integrated sensitivity constant: one
can choose a scan of the sky to be either deeper but smaller, or shallower but larger. The
plots that we show here in Fig. 4.9 have been done for the PolarBearIl experiment [121],
which is presently forecast to bet set at sky fraction of ~ 1 %, and we have explored the 1-o
precisions on wg and we, for 500 'cases with fary varying from approximately 1/1000 to 0.5,
for the ACDM and IPL models. The main feature of the results is that there is an “elbow”
in the curves for both parameters, so that the precision is rapidly improving increasing the
sky fraction up to a certain value, after which the achieved result stays basically constant.
The reliability of these results has been recently confirmed in [123], which make a similar
plot in their Fig. 15 (though for a single dark energy parameter), finding the elbow in

roughly the same position as ours around fg, =~ 0.05.

4.6 Some final considerations

The results obtained in this Chapter can be divided in two parts. One is completely
model-independent, and consists in the detailed study of how the dynamics of the expansion
and those of the perturbations merge in order to give the global lensing effect. This has
been done isolating and analyzing the two effects, but the formal description is valid in any
generalized cosmology scenario.

The second part is more specific to the scalar field dark energy case, for which we have used
the Fisher matrix method in order to quantify the benefit of the inclusion of the lensing
effect for constraining the dark energy parameters. However, the remarkable indication

of increasing precision for increasing dynamics that we obtained is plausibly valid for any
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deviation from the Cosmological Constant case, so that the results encourage the extension
of the analysis to modified gravity models, and we may expect that models which couple a
scalar field to the Ricci scalar, such as the NMC models introduced in the previous Chapter,
benefit the most from the CMB lensing observables, which are sensitive at the same time
to both the expansion history and the density fields evolution.

The first step in this direction is described in the next Chapter, which however deals with

one of the simplest scalar-tensor gravity scenario, the Jordan-Brans-Dicke model.
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Figure 4.9: Expected 1-0 precision for different sky fraction for the wq (upper panel) and
Woo (lower panel) parameters. The red, dashed curve is for the ACDM model, the blue,
solid curve for the IPL model.



Chapter 5

The Jordan-Brans-Dicke
cosmology: constraints and lensing

signal

In the first part of this Chapter we report the results of an analysis of a simple
model of Modified Gravity, the Jordan-Brans-Dicke theory [57]. This work, whose main
result was a consistent improvement of the constraint on the Jordan-Brans-Dicke parameter
on cosmological scales, was carried out in [129] and intended as a preliminary step for the
treatment of the CMB lensing in this scenario. In fact, the DEfast code (introduced in
the previous Chapter) did not feature a routine for the integration of the associated set of
equation, and this numerical work was carried out in the paper above and incorporated into
the main routine. This model was regarded as particularly interesting in the perspective
of the study of the CMB lensing signal because it allows to isolate the effects coming
from the modifications of gravity through only one additional parameter, and it features
the anisotropic stress as a new degree of freedom with respect to the ACDM or ordinary
Quintessence models, as previously commented.

We have used cosmic microwave background data from WMAP 1st year [18], ACBAR [141],
VSA [139] and CBI [140], and galaxy power spectrum data from 2dF [143], to constrain flat

cosmologies based on the Jordan-Brans-Dicke theory, using a Markov Chain Monte Carlo
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approach, and obtained a 95% marginalized probability lower bound on the Brans-Dicke
parameter w > 120.

In the second part of the Chapter we present our preliminary results for the CMB lensing
in these scenarios. Results are preliminary since we have not included the anisotropic
stress yet as a source for the quantities og and o3 of the previous Chapter, which, as we
have discussed, can be regarded as the most representative quantities for the evaluation of
the lensing contribution. However, the estimate of the order of magnitude of the lensed
CMB spectra should be substantially correct for the range of allowed values of the coupling
parameter, since the anisotropic stress in this model is significantly smaller, by three order
of magnitude in any regime, than the gravitational potential ® (which amounts to say that
the relative difference in absolute value between ® and ¥, which we have denoted as Z,
is that small). Nonetheless, the analysis of the anisotropic stress is this and other models
is being presently performed and we will talk more diffusely about it in the next Chapter,

dedicated to the work in progress and the most immediate future directions.

5.1 The model

Jordan—Brans-Dicke (JBD) theory [57, 130] is the simplest extended theory of
gravity, depending on one additional parameter, the Brans-Dicke coupling w, as compared
to General Relativity. As Einstein’s theory is recovered in the limit w — oo, there will
always be viable JBD theories as long as General Relativity remains so too. As such, it acts
as a laboratory for quantifying how accurately the predictions of General Relativity stand
up against observational tests. The most stringent limits are derived from radar timing
experiments within our Solar System, with measurements using the Cassini probe [88] now
giving a two-sigma lower limit w > 40,000 (improving pre-existing limits [87] by an order
of magnitude).

With precision cosmological data now available, particularly on cosmic microwave
background (CMB) anisotropies from WMAP [18, 16], it has become feasible to obtain
complementary constraints from the effect of modified gravity on the structure formation

process, as suggested in Ref. [131]. That paper focused on the way that w alters the



Chapter 5: The Jordan-Brans-Dicke cosmology: constraints and lensing signal 99

Hubble scale at matter-radiation equality, which is a scale imprinted on the matter power
spectrum, in an attempt to identify how large an effect can be expected. Subsequently, the
expected total intensity and polarization microwave anisotropy spectra in the JBD theory
were computed, and a forecast of the sensitivity to w of data from the WMAP and Planck
satellites carried out exploiting a Fisher matrix approach [132].

Here we make a comprehensive comparison of predictions of the JBD theory to
current observational data, using WMAP 1st year data and other CMB data plus the galaxy
power spectrum as measured by the two-degree field (2dF) galaxy redshift survey. We
define JBD models in terms of eight parameters, which are allowed to vary simultaneously.
Our procedure is closest in spirit to work by Nagata et al. [133], who considered a more
general model, the so-called harmonic attractor model, which includes JBD as a special
case. However their dataset compilation was restricted to the WMAP 1st year temperature
power spectrum.

The constraint we will obtain is not competitive with the very stringent solar
system bound given above (though the analysis of Ref. [132] indicates that a limit as high
as 3000 might eventually be reached by the measurements of the Planck satellite), but
it is complementary in that it applies on a completely different length and time scale.
Such constraints can therefore still be of interest in general scalar-tensor theories where
w is allowed to vary; for instance Nagata et al. [133] find that in some parameter regimes
of their harmonic attractor model the cosmological constraint is stronger than the Solar
System one. In that regard, our result is most comparable to cosmological constraints

imposed on w from nucleosynthesis, which give only a weak lower limit of w > 32 [134].

5.1.1 Background cosmology

The Lagrangian for the JBD theory is

2
_ Mmp

L=
167

(‘I)R - %aucba”@) + Lonatter (5.1)

where the Brans-Dicke coupling w is a constant, and ®(¢) is the Brans-Dicke (BD) field
whose present value must give the observed gravitational coupling. With reference to the

general Lagrangian which is the integrand of eq. (3.1), here f(®, R) = ® R and we use the
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Planck mass mp defined as mp = 1/4/G%; we have included factors of mp; to define ® as

dimensionless. The equations for a spatially-flat Friedmann universe are [57, 130, 135]

N s . 2
a ad w [ ® 8
(a) teT T % (5) " 3wz’ (52)
. a4 8
d+320 = ——(p-3p), 5.
o7 (2w + 3)m}, (o= 3p) (5:3)

with the usual notation for the scale factor a(t), and where p and p are the energy density
and pressure summed over all types of material in the Universe.

The Universe is assumed to contain the same ingredients as the WMAP 1st year
concordance model [18], namely dark energy, dark matter, baryons, photons and neutrinos.
We make the simplifying assumptions of spatial flatness, dark energy in the form of a pure
cosmological constant, and effectively massless neutrinos whose density is related to that of
photons by the usual thermal argument. The present value of ® must correctly reproduce

the strength of gravity seen in Cavendish-like experiments, which requires [130]

_ 2w+ 4

Pp= 2=
0= 9, +3"

(5.4)

where here and throughout a subscript ‘0’ indicates present value. We will assume that the
value of @ in our Solar System is representative of the Universe as a whole, though this
may not be absolutely accurate [136]. We also assume that the initial perturbations are
given by a power-law adiabatic perturbation spectrum.

When the Universe is dominated by a single fluid there are a variety of analytic
solutions known [137], where ® is typically constant during a radiation era, slowly increas-
ing during a matter era, and then more swiftly evolving as dark energy domination sets in.
However we need solutions spanning all three eras and so will solve the equations numeri-
cally, for which we use the integration variable N = Ina/ag. An example of the evolution
is shown in Fig. 5.1.

The basic parameter set we use to build our cosmological models contains the

following parameters

w Brans-Dicke coupling

Hy present Hubble parameter [kms™*Mpc™!]



Chapter 5: The Jordan-Brans-Dicke cosmology: constraints and lensing signal 101

o
3 T T T T
Onset of A domination
N
=
©
g - Matter—radiation equality
g. i " ] 1 i 2 1 i i ] . A A "
a-20 -15 -10 -5 0

Figure 5.1: Evolution of the BD field from early in radiation domination to the present. It
is just possible to see the evolution of ® increase as A domination sets in. The cosmological
parameters are w = 200, Hyg = 72, and py o = 0.3 in units of the standard cosmology critical
density:

pp  baryon density

pc  cold dark matter density

Ag curvature perturbation amplitude
ng  perturbation spectral index

T reionization optical depth

b galaxy bias parameter, Pss/Pnm

where b? = Pgg /Ppm is the ratio of the (observed) galaxy power spectrum to the (calculated)
matter power spectrum. Other parameters are fixed by the assumptions above, and the
radiation energy density is taken as fixed by the direct observation of the CMB temperature
Tp = 2.725K [138].

An important subtlety that must be taken into account is that the extra terms
in Eq. (5.2), plus the Cavendish-like correction to the present value of ®, mean that the
usual relation between the Hubble parameter and density, used to define the critical density
and hence density parameters, no longer applies. Generically, the extra terms require an
increase in the present value of p to give the same expansion rate, the correction being of
order 1/w. Because of this subtlety, we define the density parameters {1g ¢ by dividing by

the critical density for the standard cosmology, meaning that the density parameters don’t



102 Chapter 5: The Jordan-Brans-Dicke cosmology: constraints and lensing signal

quite sum to one for a spatially-flat model.

Operationally, we proceed as follows. We seek a background evolution correspond-
ing to a particular value of h = Hy/100 and of the present physical matter density. We can
assume the initial velocity of the BD field & is zero deep in the radiation era, which leaves
us two parameters, the early time value of ® and the value of the cosmological constant, to
adjust in order to achieve the required values. This is a uniquely-defined problem, with the

necessary values readily found via an iterative shooting method.

5.1.2 Perturbation evolution

We carry out the evolution of density perturbations using a modified version of
the code DEFAST.
DEFAST takes as input the parameter set described in the previous subsection, and returns
the microwave anisotropy spectra (for temperature and polarization) and the matter power
spectrum. A dynamical and fluctuating scalar field, playing the role of the dark energy
and/or the BD field, is included into the analysis together with the other cosmological
components, following the existing general scheme [105].

In order to bring the model description into the formalism used by DEFAST, we

redefine the BD field and coupling according to

2
2 _ mp _ 1
¢ "‘"‘)@27r 1) 5_4“)7 (55)

which brings the Lagrangian into the form
L= é'gd) R— Ea,u(ba ¢+ 'C'mattem (5.6)

where ¢ is now a canonical scalar field non-minimally coupled to gravity (Notice however
that this model is different from the more complex NMC model introduced as an example
in Chap. 3, where the wjpp parameter was time-varying). We implement the cosmological
constant in the code by giving ¢ a constant potential energy.

Our calculations include the effect of perturbations, with the initial perturbations
in ¢ fixed by the requirement of adiabaticity. The correction to the background expansion

rate from the dynamics of ¢ is the most relevant effect on the CMB power spectrum,
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appearing as a projection plus a correction to the ISW effect, as discussed in detail in Refs.

[80, 82].

5.1.3 Data analysis

The data we use are taken from WMAP 1st year [142] and the 2dF galaxy redshift
survey expressed as 32 bandpowers in the range 0.02 < k < 0.15h"*Mpc [143]. In order to
incorporate the 2dF data, the galaxy bias parameter b is taken to be a free parameter for
which the analytic marginalization scheme of Ref. [144] can be applied. We also consider
the effect of including the high-£ CMB data from VSA [139], CBI [140], ACBAR [141].

Our present analysis does not include supernovae data. Inclusion of the modifica-
tion to the luminosity distance from w would be straightforward. However the variation of
the gravitational coupling G means that supernovae can no longer be assumed to be stan-
dard candles, and Ref. [145] suggests that the effect from varying G dominates. Further,
inclusion of supernovae data may be particularly susceptible to the possibility that the local
value of @ in the vicinity of the supernova may not match the global cosmological value
[136]. Nevertheless, it would be interesting to investigate robust methods for including such
data, also in connection with alternative observational strategies [146].

We carry out the data analysis using the now-standard Markov Chain Monte
Carlo posterior sampling technique, by modifying the June 2004 version of the CosMoMC
program [147] to call DEFAST to obtain the spectra. CosMOMC computes the likelihood
of the returned model and assembles a set of samples from the posterior distribution. For
the purposes of posterior sampling, we have parametrized the JBD cosmology using In ¢ =
—In4w simply because it is more straightforward to obtain the samples we need, while
simultaneously suppressing the possibility of jumping to regions with w < 1. Specifically,
we use a flat prior on In€ € [—9, —3] where the lower cutoff has been adjusted to the point
where the likelihood function is no longer sensitive to the effect of varying the Brans-Dicke
parameter and the ACDM model is thereby recovered. As usual, this Jeffreys prior, which
is defined here as a flat prior on the logarithm of a parameter of unknown scale, has the
interesting property of invariance under scale reparametrizations [148]. For this reason

it serves as a reasonable substitute for working with a more desirable physical parameter
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Figure 5.2: Marginalized 1D posterior distributions (solid lines) on the base parameters as
listed in the text. Also displayed is the mean likelihood of the binned posterior samples
(dotted lines).

which could be identified to isolate and give a linear response in the ISW effect, mainly

responsible for the upper bound on Iné€.

The optical depth 7 is parametrized using Z = exp [—27], where Z 1/2 is the fraction
of photons that remain unscattered through reionization, since the combination AgZ is well

constrained by the CMB.

The results that we present are based on around 100,000 raw posterior samples,
and while the basic constraints can be derived with significantly fewer samples, this large
number assures more robust constraints on the derived parameter w when we use importance

sampling in order to adjust for the change in prior density [147].
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5.2 Observational constraints

Turning first to the constraints on the basic parameter set, from Figure 5.2 we
note the overall consistency of our results with the current observational picture (see for
example Ref. [16] and a work by two of the current authors Ref. [149]), finding the 99%

marginalized probability regions to be
0.021 < Qph? < 0.027,  0.10 < Qch® < 0.15,
61 < Hyp<80, 0.57<Z2<0.97, (5.7)
0.92 < ng < 1.07, 19 < Ag < 33.

Note that part of our allowed region lies outside the priors assumed by Nagata et al. [133].
As usual for joint analyses of CMB and galaxy power spectrum data, it is unnecessary to
impose a further constraint on Hy.

The primary focus of our study has been to derive constraints on the JBD pa-
rameter for which, from the outset, we have expected only to find a one-sided bound; the
situation can only become more interesting when both the angular diameter distance and
the recombination history become much better probed by the CMB. This expectation is
indeed confirmed by the data, as shown in Figure 5.3 in which we display the region of
highest posterior density. The lower panel detailing the posterior constraint on w has been
obtained by importance sampling to correct for the change in prior density when changing
parameters from In £ to w (we note that the mean likelihood of the binned posterior obtained
from sampling In ¢ performs well for putting a bound on w, demonstrating less sensitivity
to the details of the prior density).

We obtain marginalized probability upper bound, as the main result of this anal-

ysis, to be
Iné < -6.2, 95%,
In¢ < =57, 99%. (5.8)

The corresponding marginalized probability lower bounds on the JBD parameter are found

to be

w > 120, 95%,
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Figure 5.3: Marginalized 1D posterior distributions (solid lines) on the JBD parameter In ¢
(upper panel). Also displayed are the derived importance sampled constraints (correcting
for the change in prior density) on the more familiar w (lower panel, no smoothing). We
obtain a 95% marginalized probability bound of In¢ > —6.2, corresponding to a bound on
the JBD parameter w > 120.

w > 80, 99%. (5.9)

This bound is nicely consistent with the expectation for WMAP given by the Fisher matrix
analysis of Ref. [132].

We report in Figure 5.4 the 2D posterior constraints in the Iné-Hp plane, in
order to demonstrate the degeneracy and covariance between these two parameters. In
a more refined analysis, one could replace Hy with the dimensionless parameter 75/Da
more appropriate to the study of the CMB, where rg is the sound horizon at recombi-
nation and Dy is the angular diameter distance to the last-scattering surface [150]. Fi-
nally, in Figure 5.5 we display two models, our best-fit ACDM model with parameters
0={Qph?,Qch?, Hy, Z,ng, 101°Ag,w}= {0.023,0.12, 66, 0.79,0.96,23.2,00}, and a best-fit
JBD model with parameters §= {0.024,0.13,79,0.80, 1.03, 24, 70}, in order to illustrate how

the observables change at finite w. Here the JBD model lies in the vicinity of the contour
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90

Figure 5.4: Marginalized 2D posterior distribution in the In¢—Hq plane. The solid lines
enclose 95% and 99% of the probability. Under this parametrization there is clearly a
geometrical degeneracy.

enclosing 99% of the posterior probability distribution and was selected by running a short
Monte Carlo exploration at fixed w = 70. Note that although in principle the parameter In ¢
could be extended to —oo, whereby the bulk of the parameter space would be composed
of the ACDM model, in practice it is reasonable to adjust the lower cutoff to the point
where the likelihood function loses sensitivity to the variation of In& so that the Brans—
Dicke model alone is explored by the MCMC. Consequently, the probability contours can
reasonably be interpreted to describe the most credible region of the Brans-Dicke model

parameter space.

Our current analysis leaves the bias parameter free, and so constrains only the
shape of the matter power spectrum. We note however that the JBD model has a signifi-
cantly higher amplitude, indeed requiring a modest antibias b ~ 0.98, which at least in part
is due to the more rapid perturbation growth (§ o a'*+1/% during matter domination [131])
in the JBD theory. For comparison the ACDM model has a best-fit bias b = 1.2. This sug-
gests that precision measures of the present-day matter spectrum amplitude, as for instance
may become available via gravitational lensing, could significantly tighten constraints. We
also note that there is a shift in the location of the baryon oscillations in the matter power

spectrum as compared to the ACDM model; these are mostly erased by the 2dF window
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Figure 5.5: A comparison between a ACDM model (solid line) and a JBD ACDM model
with w = 70 (dashed line). The data are the 2dF galaxy power spectrum and the models
the matter power spectrum convolved with the 2dF window functions, and whose overall
amplitude is left as a free parameter. Detailed parameters are given in the text.

function,! but future high-precision measurements of those may also assist in constraining
w.

We have carried out the same analysis including also the data from VSA, CBI
and ACBAR in the multipole range 600 < ¢ < 2000. This high-¢ data leads to a slightly
tighter bound on the Brans-Dicke parameter, In ¢ < —6.4 corresponding to w > 177 at 95%
marginalized probability. However, at the same time inclusion of this new data leads to an

unexpectedly large shift in the spectral index, to 0.90 < ng < 1.00 at 95% marginalized

1Our analysis used 2dF data from Percival et al. [143], preceding the more recent 2dF data analysis which
shows evidence of baryon oscillations [19]. We would not expect inclusion of these data to significantly change
our results.
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probability, so that the Harrison—Zel’dovich spectrum is only just included (this statement
remains true in the general relativity limit). Whether this points to some emerging tension
in the combined dataset, a harmless statistical fluctuation, or a hint of the breaking of
scale-invariance, can be addressed only in the light of the next round of CMB observations.
While our constraint on In £ marginalizes over ng, in the interests of quoting a robust bound
we have given as our main result the weaker limit obtained without including the high-¢
data.

Our ultimate constraint w > 120 can be compared with that of Nagata et al. [133],
who quote results corresponding to w > 1000 at two-sigma and w > 50 at four-sigma.
The former constraint is much strbnger than projected in Ref. [132], and stronger than
one would expect from a naive assessment that the corrections to observables should be of
order 1/w. If we plotted a model with w = 1000 in our Figure 5.5, it would lie practically
on top of the ACDM model. However their latter constraint is in reasonable agreement
with ours, and they do highlight that it is this constraint which corresponds to a sharp
ridge of deteriorating chi-squared in their analysis, indicating that their constraint should

conservatively be taken as w > 50.

5.3 Lensing signal in JBD models - preliminary

The strategy for obtaining the lensed spectra in the JBD models closely follows
the one described in detail for the Quintessence case. However, in the previously considered
scenario of dark energy with a (wo, weo) parametrization, the observed alleviation of the de-
generacy on the latter parameter was an intuitive consequence of the inclusion of the lensing
effect, since we expect the associated observables to be mostly sensitive to the z ~ 1 region,
where wg, actually plays the most important role in assessing the dark energy behavior.
On the other hand, in the present case it is less obvious to quantify a priori the benefit of
taking into account the lensing contribution (and the BB modes spectrum in particular)
since the additional parameter of this theory, wypp, is constant in time. Nonetheless, the
trajectory of the field is influenced by the coupling parameter at late redshifts, around the

onset of the dark energy domination, indicated in Fig. 5.1, so that we can expect a good
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sensitivity of the lensed spectra to wypp as well.

The inclusion of the lensing effect is per se an important result since it leads to an improve-
ment of the reliability of any CMB-based analysis. Moreover, a simple plot of the temper-
ature and polarization spectra with fixed primordial normalization, in the same fashion of
what has been done in the previous Chapter for the SUGRA and IPL models, shows that
the amplitude of the BB modes spectrum is visibly sensitive to a change in the w;gp param-
eter even well within the range of allowed values established by our work described above.
We present the results here (with the conceptually important, but numerically harmless,
remark that the anisotropic stress source has not been considered yet; a visual justification
of this statement is given in Fig. 5.9, whereas the issue will be treated with greater detail
in the next Chapter) for three models with wypp respectively equal to 100, 200 and 10°:
the first is basically excluded at the 95% confidence level by our analysis, while the second
is inside the allowed parameter space and the last one is meant to recover the ordinary

General Relativity case and thus resembles an ordinary ACDM model.
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Figure 5.6: Temperature power spectra for three JBD models.

A naive estimation of how much the different lensed power spectra are sensitive to
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Figure 5.7: B-type polarization power spectra for the same JBD models as above.

the variation of the wypp parameter can be obtained, as already noticed for the ordinary
Quintessence scenarios, evaluating the “weighted derivative” of the T'T, EE and BB spectra
with respect to it; we want to measure

C*¥X (wipp) = C** (wipp)
cxx (wfr%fn)

(5.10)

where again XX runs over the possible spectra and the variation of wypp are chosen to be
of the order of 5%. The plot that we present here is for wjgp = 200, and shows that in
this case (with respect to the Quintessence one) the EE modes spectrum play a larger role
(with the caveats about the binning procedure which we have already pointed out), while
the BB modes contribution is still significant but slightly smaller, and comparable to that
of the temperature spectrum. However, the effect on the structure of the Fisher matrix
comes from the combination of the four derivatives, and, as indeed verified in the previous
Chapter, a plot like this can be only be regarded as an order of magnitude check.

As a further comment, let us mention that the effect of the coupling parameter

can be read as a time variation of the effective strength of the gravitational constant, G,
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Figure 5.8: The weighted variation of the TT, EE and BB power spectra for the wjgp =
200 model in response to a double-sided 5% variation of the parameter.

which corresponds to the function 1/F with the notation convention
f(®,R) = F(®)R. (5.11)

Therefore, as anticipated in Chap. 3, the main effect of the field is a change in the Hubble

parameter with respect to ordinary cosmology
E
H — H(new) = FO’ (56.12)

influencing the distance measurements since

z !
d)=c | Fdé—,). (5.13)
Such a behaviour of the Hubble parameter may be reproduced by a ad-hoc dark energy
model. As a result, in order to break this degeneracy between dark energy and modified
gravity, any observation revealing the presence of anisotropic stress would be extremely im-

portant, since it is known that the anisotropic stress vanishes for the ordinary Quintessence

case. The CMB lensing may not be suitable to this task, since the anisotropic stress is
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Figure 5.9: A comparison between the gravitational potential ® and the anisotropic stress
E = U + & on large scales, for wypp = 200, showing that for this model the contribution of
the latter can be as a first approximation neglected.

small in such model and it only appears in the lensed spectra as a small correction to the
gravitational potential. Still, the proper account of this degree of freedom in the integration
of the equation of motion is in order in the perspective of finding observables capable to

discriminate between possible explanation of the cosmic acceleration.

5.4 Final remarks

This discussion, and the plots above, show that the inclusion of the lensing signal
in the numerical treatment of this model may help significantly in tightening the constraints
on the Jordan-Brans-Dicke parameter, while on the other hand the contribution of the single
BB modes power spectrum may be expected to be somehow less remarkable in the present
case than it was for the Quintessence case.

The cosmological constraint obtained from the combination of the WMAP 1st year and other

CMB datasets with observations from large-scale-structure, w > 120 at the 95% confidence
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level, is destined to improve significantly with a possible reconsideration of the WMAP
3-year results and of new structure formation data. However, before performing this kind
of analysis, our aim is to perfect our estimate of the lensed spectra in this scenario. This is
part of the work in progress which we describe in the next Chapter, whose main objective
are a comprehensive treatment of the anisotropic stress and the extension of our code to
nonlinear matter power spectra, which is not contemplated in the present formulation of

the lensing routine.



Chapter 6

Work in progress

In this Chapter we want to give a brief account of the principal lines of investigation
that we are following in relation to the work previously described.
There are two main issues that we’ll treat here: the anisotropic stress, which we have already
introduced as a feature of NMC and JBD models, and the impact of nonlinear evolution
on the determination of the lensed power spectra, together with a proposed strategy for

including it in our investigation.

6.1 Anisotropic stress

The anisotropic stress at the linear level of perturbation theory is an index of
whether the modification of the metric with respect to the FRW background change in

different directions. This is intuitive recalling its definition from Chap. 3:
T} = (p+ &p)d; + pII; (6.1)

where it is defined as the scalar part II of H; Therefore, it vanishes unless the pressure of the
considered fluids is direction-dependent. This cannot happen for perfect fluids, such as the
ordinary matter, radiation and Cosmological Constant components with p « p, and cannot
happen for a minimally coupled scalar field as well, since the latter is (non-perturbatively)
equivalent to a perfect fluid [152]. Neutrinos are the only species that can have a (decaying)

anisotropic stress in these cosmological scenarios (i.e. [153]. As a result, the importance of
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this variable basically relies in the fact that an indication of non-null anisotropic stress is
an indication of gravity modifications.

The DEfast code has been modified in order to include this variable in the perturbations
equations; since it is gauge-invariant [95] it can be straightforwardly obtained in the New-

tonian gauge (while the code use the sinchronous one, A = B = 0 in our notation) as
k2(® 4 ¥) = 87Ga’p 1l (6.2)

where p is the average pressure of the unperturbed fluid. In our numerical simulations by
now we have only used adiabatic initial conditions, in which the primordial excitations of
the two gravitational potentials are proportional to each other.

It is now clear why we have often talked interchangeably of anisotropic stress and our
variable = defined in Eq. (3.58):

8rGapIl

E=0+ ¥ =y,

(6.3)

which is the one that we usually plot for immediate comparison with the gravitational
potential ®. The expression of Z in NMC theories

_6F _ [Of\7'[ &f 0% f
=== <@) [8¢8R5¢+6R25R} (6.4)

[1]

gives mathematical support to our theoretical interpretation, since in ordinary cosmology
0¢ and JR, which are the source for the anisotropic stress, both vanish. From the above
expression we can also understand why this variable is small in the JBD model treated in the
previous Chapter; although the investigation of the second term involving dR is difficult, we
have seen that the theory is equivalent to a non-minimally coupled scalar field case with the
ordinary f(R) = R term, and we know that the fluctuations of the field for the equivalent
model are small, due to the quasi-massless nature of the Quintessence field (i.e. [30]).

A more interesting case may be constituted by NMC models more general than the one
introduced in Chap. 3, where the two terms in the above equation are both different from
zero and the second is potentially large according to the model; this would allow to achieve
a prediction for the anisotropic stress the most popular models of modified gravity, such
as the Dvali-Gabadadze-Porrati model [154] and the f(R) «x R™ (i.e. [155] and references

therein), which have been receiving increasing attention in the recent years.
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6.2 Non-linear evolution

The inclusion of nonlinear evolution in our code is one of our primary targets, and

goes together with the issue of testing the validity of approximating the deflection angle
(or, equivalently, the lensing potential) as a Gaussian field, on which we have based our
numerical analysis.
The basic idea is that in the late stage of cosmic evolution, some of the scales which are
relevant for the birth of the lensing effect start to enter the nonlinear regime. This problem
is less marked for the CMB lensing than it is for the cosmic shear ([33]), since, as we
have seen, most of the lensing signal in our case comes from large scales (the peak of the
lensing potential power spectrum is at [ ~ 60), where the impact of nonlinearity is still quite
limited. This can be appreciated from the beautiful plot of Ref. [33], that we report here
in Fig. 6.1, which shows the contribution of different wavenumbers to the lensing potential
power spectrum, revealing that the largest part comes from scales 1072 < k < 0.1 Mpc and
that the importance of scales £ > 0.1 Mpc is very limited.

However, even if for the temperature lensed power spectrum the forecast correction due to
nonlinear evolution is < 0.2% up to scales | >~ 2000 ([33]), which include the entire range
of our Fisher matrix simulations, for example, on smaller scales the effect can reach the
percent level, and thus will be important for those small-sky CMB experiments which can
reach very high angular resolution (i.e. [120, 156]). Moreover, simulations of lensed CMB
have showed that the effect of nonlinearities for the BB modes is indeed more significant
[33], of the order of 6% percent on all scales and possibly significantly larger beyond the
lensing peak at [ ~ 1000; this may be due to the fact that the BB modes are obtained
convolving the lensing potential power spectrum with the one of the primordial EE modes,
which possess little power on large scales, so that the BB spectrum is almost white for
[ smaller than a few hundreds and presents its typical oscillation features only at larger
multipoles. This latter effect is likely to be even more relevant in modified-gravity theories,
where the transition from linear to nonlinear regime may happen earlier with respect to the
ACDM model, and therefore is crucial for our correct estimation of the impact of lensing

measurements in this kind of models.
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Figure 6.1: Different wavenumbers contributions to the power spectrum of the lensing
potential, for a ACDM cosmological model. Note that the plot is logarithmic: the impact

of the small scales (in magenta, dashed) is very limited.

The issue of the Gaussian approximation is intimately linked to the one depicted above.

The non-Gaussian nature of the lensing signal does not depend on nonlinearity exclusively,

since the convolution of two Gaussian fields (the unlensed CMB and the lensing potential

power spectra) is anyway non Gaussian. However, if the Gaussianity of the lensing potential

itself is compromised, we may expect a non-negligible correction to the non-Gaussianity of

the lensed spectra as well. However, it was showed in Ref. [32]) that this approximation

is harmless, if the deflection-angle variance is small, even if the deflection angle is not

Gaussian; therefore we won’t any more discuss possible repercussions of nonlinearities in

non-Gaussianity, contenting ourselves with the conservative treatment of non-Gaussianity

of the BB modes described in Chap. 4.
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6.2.1 Proposed treatment

The present way the DEfast code deals with nonlinearities is using the analytical
formula of Peacock and Dodds [157], providing a correction to the linear growth function
of the perturbations. However, later N-body simulations, especially in connection with the
attempt of constraining cosmological parameters through lensing form large-scale structure,
have showed that this approximation lacks of precision (i.e. [158]). A significant improve-
ment to their fitting formula was given, following the N-body simulations of the Virgo Con-
sortium, in [159] who based their analysis on the halo model [160, 161, 162], whose basic
idea is to represent the density field as a distribution of isolated halos, describing large-scale
correlations as clustering of different halos and small-scale one as clustering within a single
halo. Within this formalism the total nonlinear power spectrum Py, is expressed as the

sum of two terms

Prw.(k) = Po(k) + Pu(k), (6.5)

the first of which accounts for interactions on large scales and the second for those on small
scales.

Their work will be considered as our starting point. They use initial power-law matter power
spectrum, which is suitable for our purposes, and compiled a large library of simulations for
different cosmological models. The most important quantity that distinguishes the models
is, as expected, the scale at which the matter perturbations turn nonlinear, kny,, or the
variance of the linear density field (the latter is indicated as A?2), defined as a function of
the expansion value and a Gaussian filtering of radius R to be
dk

0*(R,a) = / A2 (k, a)e~F F) :

(6.6)

This allows to give an intuitive physical meaning to the non linear wavenumber kyj, through
the relation az(kﬁi,a) = 1. Two further parameters of the halo model are the effective
spectral index neg and the curvature parameter C, which refine the dependence of ¢ on the
filter radius (roughly corresponding to a first and second logarithmic derivative).

Given this parameterization, the authors of Ref. [159] provide in their appendix C an

accurate (up to a few percent level for a ACDM model) fitting function of both the terms of




120 Chapter 6: Work in progress

llIIIII L L] |Illlll T L] T 1 11T T17%7
1.4 |
)
0:1'2—
\ -
= |
3
a.
1_
0.8 | -
1 Illl|l| 1 1 IIIIIII 1 i 1 LA Ll
0.1 1 10
k [h/Mpc]

Figure 6.2: Fractional effect of w on the non-linear mass power spectrum, at fixed lin-
ear theory power. The thick lines of a given color/type show, from top to bottom,
w = —0.5,—0.75,—1.5, all relative to w = —1. The black, solid line is for ,, = 0.281,
with red, dashed (green, dotted) showing (2, = 0.211 (0.351). Thin black lines show rms
statistical error bands. From [163].

the nonlinear power spectrum, together with a publicly available code for generating o, neg
and C, given the cosmological parameters of the model under examination.

The inclusion of this procedure in DEfast should provide us with Pyr,(k) for the concordance
ACDM model. The next step is the generalization of their formula to dark energy cosmology,
which has been provided for the constant equation-of-state case by Ref. [163]. They have
used results of [159] as well, and have built a code that outputs the relative correction of
the nonlinear power spectrum Py, (k)(w) with respect to Pyp(k)(w = —1). Their plot of

this correction, output at z = 0, is reported here in Fig. 6.2.

A similar prescription, but including the two-parameters description of dark energy
(wo, weo) Which is our primary objective, has been subsequently given in Ref. [164], where
however the possible range of cosmological parameters appears more limited; on the other

hand, the claimed precision of nonlinear power spectra is extremely interesting, around 1%
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for models within the allowed range.

The three steps described above should allow us to include the effect of nonlinear evolution
in our code at least for the case of the Quintessence models such as the ones exploited in
Chap. 4. The analogue treatment for modified gravity cases, which may be even more
interesting since they may highlight the presence of a large anisotropic stress component,
is among out objectives but is for the time being limited by the absence of appropriate

cosmological N-body simulations for these models.
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Conclusions and future prospects

The weak lensing in cosmology is one of the most important tools to investigate
the mechanics of the dark cosmological component, which represents almost the 96% of
the cosmic budget according to the most recent measurements [16]. The candidates which
have been proposed for explaining the dark energy are suitably described in a cosmological
context which is generalized with respect to the ordinary one, admitting dark matter-energy
couplings as well as generalized theories of gravity.

For these classes of theories, a systematic treatment of the weak lensing process lacked in
literature and our work aimed at filling this gap. We considered a Lagrangian where the
gravitational sector is made of a function which depends arbitrarily on the Ricci scalar as
well as on a scalar field; beyond ordinary Quintessence models, the most general scalar-
tensor theory of gravity, as well as any dependence on the Ricci scalar without a scalar
field, can be described in full generality in this framework.

Starting from the equation describing the geodesic deviation, we have derived the general-
ized expressions for distortion tensor and projected lensing potential, tracking the effects
due to the background evolution as well as the fluctuating components behavior; contact
with the cosmological observables was established through the study of the generalized Pois-
son equation.

We have exploited the potentiality of the CMB physics, with particular regard to the BB

modes of the polarization, which are sourced by gravitational lensing of cosmic structures,

122
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in order to constrain the dynamics of scalar-field dark energy at the epoch of equivalence
with the non-relativistic matter component. We focus on the amplitude of the BB angular
power spectrum; mapping techniques isolating the lensing power [116] might also be consid-
ered for extracting information about the cosmic expansion rate redshift behavior. We have
shown how the lensing phenomenology, being directly linked to the cosmic dynamics and
linear perturbation growth rate when the dark energy enters the cosmic picture, presents an
enhanced sensitivity to the value of the dark energy equation of state at the corresponding
epoch. Such feature breaks the so called projection degeneracy, affecting the TT, TE and
EE angular power spectra, preventing the possibility of constraining the redshift depen-
dence of the dark enérgy equation of state from CMB. Analogous studies have been focused
on the non-Gaussian power injection into the anisotropy statistics of order larger than the
second [127, 126]. Indeed, the outcome of these studies is consistent with the present one,
i.e. the lensing power in the CMB bispectrum, the harmonic space analogue to the three
point correlation function, presents a remarkable sensitivity to the dark energy equation of
state at the onset of acceleration. Thus the present study is related to those, although on
a completely different domain. Since we still don’t know where the impact of instrumental
systematics and foregrounds will be the strongest in a real experiment attempting to de-
tect the CMB lensing signal, it is important to carry out the analysis on all CMB lensing
observables. Moreover, the BB modes in CMB polarization at the arcminute scale are the
explicit target of forthcoming CMB probes (see i.e. [120], [165] and references therein).
We have then quantified the scientific impact of our result in terms of the achievable precision
on the cosmological parameters, modeling our assumptions on the specifics of forthcoming
probes of CMB polarization, exploring a large part of the allowed dark energy parameters
space. The results are strongly encouraging, predicting an accuracy of order 10% on the
present value of the dark energy equation of state, and a somehow weaker limit on its first
derivative with respect to the scale factor, but with an important indication of better results
with increasing dark energy dynamics. This result is comparable with the one quoted in
[52], where the authors take into account SNIa data and CMB physics but do not include
BB modes into the analysis and with the forecasts in [128] for Quintessence models, where

the authors consider SNIa data and weak lensing of background galaxies. In particular, the
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prediction of a smaller uncertainty for high dark energy dynamics is reproduced also for the
observable considered here.

The predictions of our analysis have also been confirmed by recent works in the same spirit
[123, 124], which evaluated the impact of the lensed CMB in combination with other cos-
mological observables.

We have started an analogous study for scalar-tensor gravity scenarios, aiming at having
a solid description of the CMB lensing in these models by the time observations accurate
enough for discriminating between dark energy and modified gravity will be available; the
study of how to include for nonlinear evolution in our calculations goes in the same direction
of enhancing the degree of accuracy of our predictions. Other open problems, such as a
better account of the non-Gaussianity arising from the lensing recombination of different
wavelengths which avoids the degradation of the quality of the statistical data, and a deeper
understanding of the foregrounds for the CMB polarization spectra, may as well help in
further improving the reliability of the method.

Our main conclusion is that the work presented here indeed confirmed the weak lensing of
the CMB as a potentially powerful probe of the dark energy dynamics, and that our study
fits perfectly within the perspectives for the future of the dark energy investigations, both

on the theoretical and the experimental side.
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