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Introduction

Almost forty years after its introduction [1], the standard model of elementary
particles based on the SU(3)c x SU(2)w x U(1)w gauge symmetry with three families
of leptons and quarks has been verified experimentally both at the level of its tree-level
(classical) Lagrangian with the discovery at CERN [2] of the electrically charged and neutral
gauge bosons and at that of its quantum corrections at LEP [3] and the Tevatron [4] up
to energies of a few hundreds of GeVs. It provides a beautifully elegant picture of all
known elementary particles and their interactions (except gravity) and the framework of

our current understanding of cosmology, nuclear physics, chemistry and even biology.

Inspite of its many successes, the standard model may not be the ultimate theory
and is probably incomplete and best considered as an effective theory only valid up to its
characteristic energy scale. The main experimental evidences for physics beyond it are the
smallness of neutrino masses (which points to heavy Majorana masses to make possible the
see-saw mechanism [5]) and dark matter [6] (which requires the existence of new weakly
interacting particles). In addition, there exist various theoretical reasons for extending the
standard model—preeminent among them the hope of further unify the gauge interactions

among themselves [7] and maybe even with gravity.

In recent years, the search for physics beyond the standard model has focused on
what is arguably its least satisfactory part: the Higgs boson sector. This sector is necessary
in order to trigger the spontaneous breaking of the electroweak symmetry and thus give

mass to the gauge bosons as well as to the leptons and quarks.

Contrary to fermions and gauge bosons, the mass of the Higgs boson receives a
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one-loop quadratically divergent correction given by

3A% 3
o2 = g%+ g% 20 —4rD),

Hl—loop - 327T2 2

where g, ¢’ are respectively the SU(2)w and U(1l)w gauge couplings, A the quartic self
interaction coupling, A\; the top Yukawa coupling and A the cut-off of the effective theory
(the sub-leading contributions arising from all the other standard model fermions have
been neglected). Substituting the gauge and Yukawa couplings with their numerical values
and taking for A\ a value that gives a Higgs boson mass at the central value of current
electroweak data fits [8], that is mg = v Avy, ~ 114 GeV (where v, = 246 GeV is the Higgs
boson vacuum expectation value), we have that the Higgs boson mass is approximately
given by

2

A
my ~my,  + 105 (064 +0.13 +0.4 —4).

This equation can be discussed in terms of the fine-tuning between the tree and one-loop
contributions required in order to reproduce the desired value of mpy for a given cut-off. If
we admit no fine-tuning at all, m%, _and 5777%1_ oop ShOUld be of the same order and A can
be at most 700 GeV. If we want to accommodate the same mass for the Higgs boson with
a cut-off A ~ 1 TeV, we have to tune m%, _ and 5qul_loop at least within ten parts in one
hundred. The fine-tuning becomes one part in one hundred if we push the standard model
cut-off up to 10 TeV.

What amount of fine-tuning can be considered natural? 't Hooft’s criteria for the
naturalness of a dimensionful parameter [9] like the Higgs boson mass would require its
value to be of the same order of the cut-off A. This means that we can adjust the relative
cancellation between the tree level term and the one-loop corrections up to 10% before
seriously running against this criteria.

Therefore, by only admitting a 10% fine-tuning, we reach the conclusion that we
expect weakly coupled physics beyond the standard model around the TeV scale. New
physics has to appear to cancel the quadratically divergent corrections to the Higgs boson
mass and, at the same time, it has to be weakly coupled at the same scale in order not to
affect the electroweak precision measurements (new strong dynamics may arise around 10

TeV [10]). This tension between the expected new physics scale, around the TeV, and the
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TeV
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The figure shows the size of the tree level and one-loop mass renormalization with a cut-off A = 10
TeV and compare them with the Higgs boson mass which is taken my ~ 113. Radiative

corrections are dominated by the top quark contribution.

scale indicated by the electroweak precision measurements, around 10 TeV, constitutes the

so called little hierarchy problem.

The fine-tuning problem associated to the mass of the Higgs boson and therefore
to the stabilization of the electroweak scale is not new. Accordingly to ’t Hooft’s criteria, a
problem of hierarchy arises as soon as a scale larger than the electroweak scale is introduced,
as 1t is the case of grand unified theories (GUTs) and Planck scale physics. In these
examples, the scale is, respectively, 10'® GeV and 10'® GeV and therefore much bigger than
in the case of the little hierarchy. Accordingly, it gives rise to an even more serious problem
of hierarchy and fine-tuning.

Historically, technicolor models were the first attempts to solve this hierarchy
problem [11]. In these models the standard model gauge group is extended to include a new
SU(N) strong interaction, Technicolor (TC), which breaks the electroweak gauge groups
dynamically at a scale Arc ~ 1 TeV. The Higgs boson is not an elementary particle but
a composite one, made of techni-fermions, new strongly interacting fermions introduced by
the model. TC models became extended technicolor models (ETC) to accomodate fermion

masses. In these models there is an additional strong interaction which is spontaneously
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broken down to that of TC at a scale Agpc. However, constraints on flavor changing neutral
current processes impose Agrc to be around 10° TeV, thus introducing a new hierarchy
problem and therefore ruling out at least the simplest versions of these models. Even though
earlier ETC and TC models do not satisfy the constraints arising from electroweak precision
measurements, newly proposed TC models [12] have overcome the problems of the simpler

versions to satisfy the electroweak constraints and predict a light composite Higgs mass.

The hierarchy problem may be considered also instrumental in the definition of the
minimal supersymmetric extension of the standard model, the MSSM [13]. In supersym-
metric theories each standard model field has a superpartner of opposite statistics and the
quadratically divergent corrections to the Higgs boson mass arising from standard model
fields are cancelled by those of their superpartners. If supersymmetry is softly broken around
the TeV, the Higgs boson mass receives radiative corrections only of the order of the soft
breaking terms and therefore fine-tuning is acceptable. The supersymmetric solution to
the hierarchy problem has been enthusiastically accepted because of the other (many) good
features of the MSSM, that is, it is a perturbative model, it is consistent with experimental
data [14] and, last but not least, it indicates gauge coupling unification [15]. Even though
supersymmetric models solve in the most natural way the hierarchy problem, recent elec-
troweak data shows that even for them the light mass of the lightest Higgs boson can only
be explained by admitting an amount of fine-tuning larger than originally expected [16].

Another recent proposal for solving the hierarchy problem between the electroweak
and the Planck scale is low-scale gravity [17], an approach that circumvents the need for
supersymmetry or TC. The hierarchy problem is solved by bringing the fundamental Planck
scale down to the TeV scale, which becomes the only fundamental short-distance scale in
nature. This is made possible by the presence of n large extra dimension. This kind of
models are motivated by considerations inspired by string theory and by the observation
that, even if the every day world looks four-dimensional, it is possible that at distances
shorter than TeV~! the Universe may best be described by more than four dimensions.
In low-scale gravity models the large n extra dimensions are compactified, for example,
on a circle of length L, = 2nr,, and the standard model fields live on a four-dimensional

brane of the (4 + n) space, while gravity and perhaps other fieids can propagate in the
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higher dimensions. The weakness of gravity at long distances is explained by the presence
of the volume of the n large extra dimensions which enters the relationship between the
four dimensional effective Planck scale, M}, and the (4 + n) dimensional one, M,:

2 n n+2
Mpl ~ TTLM* y

where r, may be interpreted as the size of the n** large extra dimension.

In this thesis we concentrate on the little hierarchy problem and on a different
approach to its solution. The basic idea consists in turning the Higgs boson into a pseudo-
Goldstone boson (PGB) originating from a spontaneously broken global symmetry. Gold-
stone bosons (GBs) are massless scalar particles remaining after the spontaneous breaking
of global symmetries. Their number is determined by the number of broken generators
in the group algebra and they have no potential at all orders in perturbation theory and
only couple derivatively to other fields. PGBs are spinless bosons that arise in theories in
“ which scalar field interactions present accidental global symmetries larger than the gauge
~'symmetries of the full Lagrangian. These global symmetries are then both spontaneously
~+and explicitly broken: massless excitations arise after the spontaneous breaking but after
+*the explicit breaking these would-be GBs acquire a potential and a mass proportional to
~#the strength of the explicit breaking. The name of PGBs refers to their nature of would-be
GBs: if the explicit breaking were to be turned off they would be real GBs. Historically they
were first introduced by Weinberg [18]. Georgi and Pais [19] formulated a simple theorem
that gives the conditions a scalar Lagrangian has to satisfy to assure the presence of PGBs.

Early attempts to use the idea of making the Higgs boson into a PGB go back to the
eighties and were T'C inspired composite Higgs models, denoted as ultracolor (hypercolor)
models [20]. These models represent a sort of bridge between the standard model scalar
sector description, with a fundamental Higgs boson, and ETC models. The Higgs boson
becomes a composite state of ultrafermions bound by a strong new interaction, ultracolor or
hypercolor. PGBs, among them the Higgs doublet, arise at a scale Ao when ultrafermions
condensate. Note that, in order to produce PGBs at the scale Ayc, the theory has to
possess an accidental global symmetry larger than the ultracolor gauge group. Even if

potentially interesting, ultracolor models and their extension, eztended wultracolor models,
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were essentially ruled out by electroweak precision measurements.

More recently a new class of models that stabilize the electroweak scale by making
the Higgs boson a PGB has been introduced. They can be relevant in the solution of
the little hierarchy problem. These models are based on deconstruction [21, 22] and the
physics of theory space [21, 23] and present no new strong interactions up to 10 TeV. In
these models accidental global symmetries broken around 10 TeV protect the Higgs boson
mass from receiving quadratically divergent contributions and the standard model quadratic
divergences are canceled not by particle of opposite statistics as in supersymmetric theories
but by particles of the same statistic. The name deconstruction is related to a higher, more
than four, dimensional description that these models have and according to which the four-

dimensional model can be thought as obtained by deconstructing the higher dimensions.

Contrary to extra-dimensional models in which starting from, for example, a five-
dimensional theory the four-dimensional effective theory is obtained, in models based on
deconstruction the fifth dimension may emerge dynamically at low energy. Suppose that
at very high energies there is a four-dimensional theory with a gauge symmetry SU(n)Y x
SU(m)Y with two kind of fermions, v; and Y;, transforming with respect to the gauge
symmetry as bi-fundamental (7i,m) and (m,n) respectively. At an intermediate scale the
SU(m); (or SU(n);) gauge groups become strongly interacting giving rise to a fermion
condensate and non-linear sigma model fields that link the different SU(n); (or SU(m);)
gauge groups. Their fluctuations break the SU(n)" gauge group to the diagonal one and
the gauge boson mass spectrum is identical to the Kaluza-Klein mass spectrum of a five-
dimensional SU(n) gauge symmetry with the fifth dimension compactified [21, 22]. In
this way, the fifth dimension emerges dynamically: we start from a strongly interacting
four-dimensional theory, we obtain an effective weakly interacting four-dimensional theory
and discover that we would obtain the same effective theory if we started with a weakly
interacting five-dimensional theory with a compactified fifth dimension.

Given the low energy four-dimensional description based on deconstruction, the
model has a pictorial representation denominated moose diagram [24]. In general, a moose
is given by N sites, representing N copies of a SU(n) gauge group, by lines connecting

the sites, representing the link fields, which may be bosonic or fermionic, and by faces,
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corresponding to plaquette operators. The space were the moose lives is called the theory
space. Since in models based on deconstruction the extra-dimensions are not essential, the
physics can be understood just in terms of its four-dimensional description. For this reason
it is possible to construct a model directly from its moose in the theory space and completely

forget about the five-dimensional correspondence [25].

The evolution of models based on deconstruction has been a class of models de-
noted as little Higgs models. These models present the same features of those based on
deconstruction, that is, the Higgs boson is a PGB and its mass is protected by accidental
global symmetries, but the correspondence between the description of the theory in four
and in five dimensions that distinguishes deconstruction is lost. Moreover, most little Higgs
models do not even have a description in terms of a moose in theory space. Many little
Higgs models have been built in the past four years [26] but the best known is the littlest
Higgs model [27].

Little Higgs models are appealing because the Higgs boson mass is protected from

~ one-loop divergent contributions, that is quadratically divergent renormalizations to the
- Higgs mass arise only at the two-loop level. The standard model cut-off can thus be raised
- from few TeVs to more or less 10 TeV, thus solving the little hierarchy problem. The mech-

:-anism used to protect the Higgs boson mass is the so called collective symmetry breaking:

the explicit breaking of the approximate global symmetries is arranged in such a way that
more than one interaction term is always needed in order to break all symmetries. This
mechanism can be implemented without doubling the standard model spectrum, such as
in supersymmetric models, by simply adding a small number of new degrees of freedom.
These considerations explain why there has been a lot of interest in the study of the phe-
nomenology of different little Higgs models and in particular in the search of their possible
experimental signatures at LHC [28]. Great attention has been devoted in analyzing the
compatibility between the new processes induced in little Higgs models and the electroweak
precision measurements [29, 30].

The first chapter of this thesis is mainly devoted to the littlest Higgs model. As a
way of introduction, in the first section of the chapter we briefly discuss the main features

of three models: a model based on deconstruction, a model based on a simple moose and
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a very simple little Higgs model. This discussion illustrates the link between models based
on deconstruction and little Higgs models and provides an introduction to the concept of
collective breaking.

In the remaining sections of the first chapter we turn to one specific model: the
littlest Higgs model [27]. After describing the model in detail, we proceed by discussing how
well it succeeds as a solution of the little hierarchy problem. We find that even though the
model stabilizes the electroweak symmetry breaking, it requires a quite large physical mass
for the Higgs boson, and hence partially fails in solving one of the problem it was initially
built to solve, that is, the stabilization of a light Higgs boson mass.

The estimate of the required amount of fine-tuning in little Higgs models to satisfy
the electroweak precision bounds, as done for instance in ref. [29, 30, 31}, and the conclusion
we reach at the end of the first chapter seem to suggest that little Higgs models are not
better than the standard model from the point of view of the fine-tuning required in order
to control the Higgs sector. Nevertheless the idea they are based on can be attractive in
any non-supersymmetric context in which elementary scalar fields are needed together with
scale differences between their masses and the theory cut-off. We thus turn to an example
of the application of the little-Higgs mechanism beyond the Higgs sector proper.

A topical subject in which a scalar sector with hierarchical mass scales appears
and the naturalness issue arises is flavor physics. The matter content of the standard
model is given by three families of fermions. Each family is made of a SU(2)w left-handed
doublet and two SU(2)w right-handed singlets of colored quarks, a SU(2)w left-handed
lepton doublet and just one SU(2)w right-handed lepton singlet. In the standard model,
neutrinos are massless and all the Yukawa couplings of the terms that give mass to the
other fermions are free parameters, that is, the model does not explain neither their origin
or their magnitude. Moreover, experimental data indicate that quark current and quark
mass eigenvectors do not coincide, the three family bases being related by the Cabibbo-
Kobayashi-Masaka (CKM) mixing matrix, which is characterized by three small mixing
angles. Again, the standard model does not provide any explanation for the origin of this
mixing matrix.

A similar structure is mirrored, as we now know, in the lepton sector. For a long
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time theoretical physicists have investigated the possibility that neutrinos were massive [32].
These speculations were supported by the fact that some GUTs naturally predict massive
neutrinos [7]. The experimental discovery of neutrino oscillations [33] and the more and
more accurate experimental data [34] have made the description of flavor physics even more
challenging. Are the neutrino Majorana or Dirac particles? What is the origin of quark and
lepton mixing? Why the quark mixing matrix presents three small angles, while the lepton
one two almost maximal large angles and a small one? What is the origin of the hierarchy
between the quark and charged lepton masses, the third family being always the heavier?
Why neutrino masses do not present such a strong hierarchy?

Even though an adequate comprehension of flavor physics will probably be tightly
linked to the structure of the still unknown fundamental theory of which the standard
model is just the effective low-energy theory, it is worthwhile to study models in which
flavor physics emerges from a framework in which the family structure is not included by
hand and the various mass hierarchies (at least partially) explained and made stable.

The possibility that the hierarchy between the masses of the standard model
fermions arises because of some global horizontal symmetry acting on the three genera-
tions of matter fields has been extensively discussed in literature [35, 36]. In most of these
models, heavy scalars fields (referred to as flavons) carry the quantum number of this flavor
symmetry, and are responsible for its breaking by acquiring non-vanishing vacuum expec-
tation values. The hierarchy between fermion masses is then the result of the hierarchy
between the vacuum expectation values and the cut-off scale of the theory.

In the second part of the thesis we discuss two models, the little flavon model and
the flhiggs model in which a flavor symmetry is embedded in a little-Higgs inspired scenario.

The little flavon model presents a little-Higgs inspired scenario in which an SU(2) g x
U(1)r gauge flavor symmetry is spontaneously (and completely) broken by the vacuum of
the dynamically induced potential for two scalar doublets (the flavons) which are PGBs
remaining after the spontaneous breaking of an approximate SU(6) global symmetry. The
vacuum expectation values of the flavons give rise to the texture in the fermion mass matri-
ces. We show that with a small amount of fine-tuning of the parameters the experimental

ralies of the fermion masses and mixing matrices are reproduced. Finally we discuss its phe-
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nomenology and show how flavor changing neutral current and lepto-quark compositeness
set the most stringent bounds to the lowest possible value for the scale of the model.

The flhiggs model gives a unified picture of flavor and electroweak symmetry break-
ing at the TeV scale. The model is based on an SU(3)w xU(1)w extended electroweak gauge
symmetry and a U(1)r global flavor symmetry incorporated in a SU(10) approximate global
symmetry. Flavor and Higgs bosons arise as pseudo-Goldstone modes of the spontaneous
breaking of SU(10) to SO(10). In the model, explicit collective symmetry breaking terms
yield stable vacuum expectation values of the electrically neutral components of the PGBs
and their masses are protected at one-loop by the little-Higgs mechanism. The coupling to
the fermions through a Yukawa Lagrangian invariant with respect to the U (1) global flavor
symmetry generates well-definite mass textures that, as in the little flavon model, correctly
reproduce the mass hierarchies and mixings of quarks and leptons. We will comment on
how the model is more constrained than usual little-Higgs models because of bounds on
weak and flavor physics and argue that the main experimental signatures testable at the
LHC are a rather large mass for the (lightest) Higgs boson and a characteristic spectrum

of new bosons and fermions with masses around the TeV scale.
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Chapter 1

The littlest Higgs model

As already discussed in the introduction, there have been many, albeit not suc-
cessful, attempts to stabilize the electroweak scale by making the Higgs boson a PGB. The
first indication that the idea could be successful came about only recently when a new
class of models based on deconstruction was proposed. The first of this kind of models
was introduced by Arkani-Hamed, Cohen and Georgi [21]. In this model one-loop divergent
quadratically contributions to the mass of the Higgs boson are canceled and the cancellation
occurs between particles of the same statistics.

The first section of this chapter is devoted to a pedagogical overview of three
simple models that make clear the link between models based on deconstruction and little
Higgs ones. We describe the model of Arkani-Hamed et al., then we introduce a model that
could be thought as inspired by deconstruction and finally a simple version of a little Higgs
model. Since the purpose of this first section is to lead the reader through this family of
models in order to gain an understanding of the mechanisms used to build a little Higgs
model, we will not enter into the details of each model and into the attempts to make them
more realistic.

In the second part of the chapter we turn our attention to a particular example
of little Higgs models: the littlest Higgs model [27]. We give ‘a detailed description of it
and study in detail its exact (one-loop) effective potential to determine the dependence of

- R

physical quantities, such as the electroweak vacuum expectation value vy and the mass my

13



14 Chapter 1: The littlest Higgs model

of the Higgs boson, on the fundamental parameters of the Lagrangian—masses, couplings of
new states, the fundamental scale f of the model and coefficients of the quadratic divergent
terms.

We show that it is possible to have the electroweak ground state and a relatively
large cut-off A = 4nf with f in the 2 TeV range without requiring unnaturally small
coeflicients for quadratically divergent quantities, and with only moderate cancellations
between the contribution of different sectors to the effective potential of the Higgs. On
the other hand, this cannot be achieved while at the same time keeping mpy close to its
current lower bound of 114.4 GeV [8]. The natural expectation for my is O(f), mainly
because of large logarithmically divergent contributions to the effective potential of the
top-quark sector. Even a fine-tuning at the level of O(1072) in the coefficients of the
quadratic divergences is not enough to produce small physical Higgs masses, and the natural
expectation is in the 800 GeV range for f ~ 2 TeV. We thus come to the conclusion that
the littlest Higgs model is a solution of the little hierarchy problem—in the sense that it
stabilizes the electroweak symmetry breaking scale to be a factor of 100 less than the cut-off
of the theory—but only at the price of having a quite large mass for the Higgs boson.

In the last section of the chapter we consider a possible improved version of the
littlest Higgs model [37] in which the top fermionic sector is completed to make its contri-
bution to the Coleman-Weinberg (CW) one-loop potential finite [38]. We study this model
and show that, even though (marginally) better than the littlest Higgs model, again the re-
quirement of a Higgs boson mass around 200 GeV and f around 2 TeV leads to unreasonable

values of the parameters and excessive fine-tuning.

1.1 From deconstruction to little Higgs models

1.1.1 Dimensional deconstruction

Every model based on deconstruction has its pictorial representation in a moose
diagram. A moose'is given by a number N of sites, which represent the gauge groups, by
links between the sites, which can represent fermionic o non-linear sigma model link fields,

and by faces, which represent plaquette operators. In this section we describe the main



Chapter 1: The littlest Higgs model 15

features of the model discussed by Arkani-Hamed et al. in ref. [21].

Figure 1.1: The moose diagram corresponding to the four dimensional high-energy descrip-
tion of the model based on a total gauge symmetry GY x GN, with G, = SU(n) and
Gm = SU(m).

Consider a moose given by 2V sites where IV copies of the two gauge groups SU(n)
and SU (m) alternate and by 2N single directed lines that correspond to link Weyl fermionic
fields, x;; and 9;;41. When the fermions transform as the fundamental representation of
the gauge group, their line is directed away from the corresponding site, when as the anti-
fundamental of the gauge group, their line is directed toward it. For any choice of three

subsequent gauge groups, SU(m); x SU(n); x SU(m);y1, the link fermions transform as

Xii (m,ﬁ,l)
Yiiv1 — (L,n,m), (L)

where ¢ = 1,..., N. We also impose the periodic boundary condition for which ¢ = 0 is
identified with ¢ = NV + 1.

The total gauge symmetry of the model is SU(n)" x SU(m)Y and we assume for
simplicity that all the SU(n) gauge couplings g,, are equal, that is g,;, = g, fori=1,...,N
and that also all the SU(m) gauge couplings gr,; are equal, that is g,,, = g, fori=1,...,N.

ok ok o anala N (i LQTTL NN Vs cn A sy ey
Suppose also that at a scale Ay, the SU(m) (SU(n)) become strongly interacting. At
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a very high-energy scale A > A, ,, the theory is four dimensional and it is described by
weakly interacting massless fermions and gauge bosons. Suppose now that A,, > A,: when
the energy approaches A,, the SU(m) groups become strongly interacting and the fermions

condensate in pairs
(G ~ A faUsze G=1,...,N, (1.2)

with f, ~ Ay, /4m and Ujjy1 an n X n unitary matrix. The condensation produces a
spectrum of mesons of masses close to 47 f,,, and below the scale A,, the theory is described
by an effective theory of N copies of the gauge group SU(n) and N non-linear sigma model

fields transforming as

Upjrr = 905511054 (1.3)

where g; is the SU(n) transformation associated to the gauge group SU(n);. The effective
four-dimensional Lagrangian for the non-linear sigma model fields is given by

1

g2

c Tr F, FY* + f258 Tr [(DuU; 1) (DU j41)], (1.4)

where D,Uj j+1 = 0,Ujj41 — 1ALUj j1 +1Uj 11 AT The Lagrangian of eq. (1.4) may be
interpreted as the effective four-dimensional Lagrangian of a five dimensional gauge theory
with the fifth dimension compactified and latticized. According to this interpretation, the
five dimensional lattice spacing a, the compactification radius R and the five-dimensional

coupling gs are given and related by

1 1 1 fm

o= R = Na, = — =, 1.5
Infm ’ 9§ ag% an ( )

The non-linear sigma model fields U; j+1 can be parametrized as
Uj g1 = e/, (1.6)

where ¢; is given by ¢%(z)T*®, with T the generators associated to the gauge group SU(n);
and ¢?(:c) the corresponding fluctuations. The fluctuations ¢} of the non-linear sigma

model fields break the SU(n)" gauge group to the diagonal SU(n) giving mass to N — 1

’..

saiice hog : 1o TS T g e o I I R, satice hognng Y
gauge boson multlplets (ea.Cu multtiplet composea by n1° — 1 gauge DOSOILS). T
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multiplets eat N —1 GBs, while the N** multiplet ¢ corresponding to the linear combination
(p1 + ¢2 + ...+ ¢n)/VN gets a mass from gauge boson loop effects.

The fluctuations ¢¢(z) can be interpreted as the GBs of a spontaneously broken
global symmetry. In fact the condensed moose given by N copies of the SU(n) gauge
symmetry and N non-linear sigma model fields Uj ;41 has a global symmetry SU(n)2Y

realized by
Ujj+1 — LjUj,j+1R}+1- (1.7)

This symmetry is spontaneously broken to the global symmetry SU(n)" realized by Lj =
Rj. The spontaneous breaking SU(n)?Y — SU(n)" produces N(n? — 1) GBs that are the
fluctuations of eq. (1.6).

Suppose now to turn off all the gauge couplings except that of the gauge group
SU(n);. This gauge symmetry explicitly breaks the SU(n)?" global symmetry, but pre-
serves an accidental approximate global symmetry S U(n)?N =2 that protects all the NV ad-
joints GBs. In fact if we have SU(n);gquge X SU(n)?;l\L ;j, the spontaneous breaking of
SU(n)*Y in SU(n)" completely breaks the gauge symmetry SU (n); and (n? —1) among all
the GBs arising in the spontaneous breaking SU(n)2Y — SU(n)" are eaten by the massive
gauge bosons. At the same time the global symmetry S U(n)?N ~2is spontaneously broken
to SU(n)Y ! leaving exactly (N — 1)(n% — 1) GBs.

Let now turn on the gauge couplings of all the SU(n);: the gauge symmetry
SU(n)Y is broken to the diagonal SU(n), N —1 GBs are eaten by the massive gauge bosons,

but the linear combination ¢ becomes a PGB. Nevertheless, thanks to the accidental global

2N-2

Totobal? ¢ can acquire a mass from loop effects only if all the accidental

symmetries SU(n)
global symmetries are broken, that is through a loop that involves all the N gauge bosons.
The first divergent quadratically correction to its mass would be therefore proportional
to A2,(g?/16m*) where A, = 47 f,;, is the cut-off of the theory and f,, is the same of
egs. (1.2)-(1.4).

We can now rewrite eq. (1.6) just in term of the PGB ¢

C
oy
<
+
—

Q
—

-y

[0 ¢]
~—
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and calculate the CW [38] potential for ¢.

_ 3A2,
T 3272

3T (2(g))2 1og M) (1.9

2
e ME(9) + 6472 A2,

Vi(¢)

where M (¢) is the gauge boson mass matrix in the presence of the background ¢.

Let us for the moment neglect the dependence of the gauge boson masses from ¢.
In this approximation it is straightforward to check that the spectrum of the N SU(n) gauge
boson multiplets coincides with the spectrum of a five dimensional gauge theory SU(n) with
the fifth dimension latticized and compactified as we have already asserted after eq. (1.4).
The symmetric N x N mass matrix M with ¢ = 0 is easily obtained from eq. (1.4) and its

entries are given by

Mj; = 2gifh for j=1,...,N
Mjjsn = —gafy, for j=1,...,N
M;; = 0 for i#j,7£1, (1.10)

where we have imposed the boundary condition j = N + 1 = 1. The eigenvalues of M are
given by [39]

M? = 492 f2 sin® (1.11)

i
N ?
with k an integer satisfying 0 < k < N. For N very large and k¥ < IV the masses become

2rk 27k

My, = gnfm—N— =R (1.12)

where for the last equality we have used eq. (1.5). The expressions obtained in eq. (1.12)
for the gauge boson masses coincide with the masses of the Kaluza-Klein spectrum for a
five-dimensional gauge boson compactified on a circle of radius R. The null eigenvalue of
M obtained with k& = 0 corresponds to the gauge boson multiplet of the four dimensional
diagonal unbroken gauge group SU(n). Since this unbroken gauge group is the diagonal
one, the corresponding eigenvector of M is given by (1,1,......,1,1)/+/N and therefore the
gauge coupling of the unbroken subgroup is g° = g2/N.

Let us come back now to eq. (1.9). It is not possible to give a general expression

tTT

for V(#) therefore we have to specify which is the generic gauge group SU(n). We take
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SU(n) = SU(2) and ¢ pointing in the o3 direction

o—| ¢ 0 (1.13)
0 —yp

For N > 2, M?(y) is an hermitian matrix with complex entries given by

M3, = 2gnf% for j=1,...,N
M2y, = —g2f2e*lIVN for j=1... N
M7, = 0 for i#7j,j+1. (1.14)

From eq. (1.14) we see that Tr M?(p) = 2N g2 f2, not depending on ¢. As we expected the
one-loop quadratically divergent term in eq. (1.9) does not contribute to any term of the

potential of the PGB ¢. If we now compute (M?(p))? from eq. (1.14), we discover that
Mj; = 69315, (1.15)

that is Tr (M?(y))? does also not depend on ¢ and therefore even the logarithmically diver-
gent term of eq. (1.9) does not give any contribution to the scalar potential. From eq. (1.14)

the eigenvalues of eq. (1.11) in the presence of the background ¢ become

. ok ©

M2 =4 2 r2 2 v . ]

k gnfmsnl (N + f\/]v) (1 16)

and by combining eq. (1.9) and eq. (1.16) it is possible to compute the complete one-loop
CW ultraviolet (UV) finite potential for (.

Note that the absence of the logarithmically divergent term is related to the con-

dition N > 2. In fact, for N = 2, M?(yp) is real and it is given by

. 5 9 2 —2cos2p/fvV/ N
My —o = gnfm . (1.17)
—2cos2p/fVN 2

While there are no one-loop quadratically divergent contributions to the scalar potential,

in this case Tr M*(p) = (8 + 8cos?2p/fV/N)g2 f2 and therefore one-loop logarithmically
divergent contributions are present.

The most relevant ingredient given in this section is the introduction of the con-

cept of collective symmetry breaking. The mass of the scalar boson ¢ receives suppressed

divergent contributions thanks to the presence of N accidental global symmetries because

only the collective breaking of all of them produces a mass term.
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1.1.2 A minimal moose

In sec. (1.1.1) we have seen that the five-dimensional interpretation of a model
based on a moose is possible if the number N of the sites is large. However it is possible
to build a model inspired to deconstruction models, that is a model that has a moose
description, even if N is small. It is clear that the minimal moose that can be build has
N = 2. In this section we give a brief description of the model discussed by N. Arkani-
Hamed et al. in ref. [40]. This further clarifies the concept of collective breaking introduced
in sec. (1.1.1).

We consider a moose with only 2 sites: at one sites the gauge symmetry is G =
SU(3) and at the other is G = SU(2) x U(1). There are 4 link fields X; with j =1...4
transforming as bi-fundamental under G; X G2, where a fundamental of G2 is given by
2176 + 1_1/3-

In absence of the gauge interactions the theory has an SU(3)® global symmetry
realized by

X; = L X;Rl, j=1,...,4, (1.18)

that is spontaneously broken to SU(3)* when the X j acquire a vacuum expectation value
(VEV) and they are represented in terms of non-linear sigma model fields X; = expiz;/f.
The SU(3)* global symmetry is realized by the transformation of eq. (1.18) with the iden-
tification L; = R; and we denote it as SU(3)7}  for reasons that will soon be clear.

Let now consider the following Lagrangian
L=Lo+Lx, (1.19)

given only by the kinetic and the plaquette terms. Let neglect for the moment the kinetic
term. In the spontaneous breaking of SU(3)® into SU(3)%;, 32 GBs arise, but in the

presence of Lx given by the operators
Lx = fAETr (X X5XX]) + f4F Tr (X1X] X3X]), (1.20)

the GBs become PGBs since each of the two terms in eq. (1.20) breaks explicitly the global

lllll
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subgroup of SU(3)8. The first term in eq. (1.20) proportional to k preserves a global
symmetry SU(3)} realized by Ry = Ry, Ly = L3, Ry = Ry, Ly = Ly. At the same time the
term proportional to k" preserves another SU(3)3 global symmetry realized by R, = Ry,
Ly = L3, R3 = Ry, Ly = Ly. Notice that all the three global symmetry SU(3)%, | SU(3)‘1112
are realized by different transformations. Both of the two global symmetries SU(3)4 and
SU(3)3 are broken to a SU(3) global symmetry by the spontaneous breaking of SU(3)8 into
SU(3)%y, therefore of the 32 GBs arising when SU(3)% — SU(3)%;, 24 do not acquire a
mass at tree level in the presence of the plaquette operators of eq. (1.20), while 8 become
massive. The 8 PGBs that acquire a mass at tree level are given by the linear combination
T1 — 2 + 23 — z4 and their mass is proportional to the explicit breaking of the global
symmetry SU(3)8, that is to (k + &) f.

16 PGBs among the 24 that do not acquire a mass at tree level, corresponding
to the orthogonal combinations 1 — z3 and x5 — z4, acquire a quartic coupling, while the
other 8 remain exact GBs even in the presence of the explicit breaking terms. The reason
why this happens is that there is a global subgroup SU(3)? of the global groups SU (3)% and
SU(3)4 preserved by both the plaquette operators of eq. (1.20) and realized by R; = R, for
1=1,...,4and L; = L, for i =1,...,4 . This subgroup is spontaneously broken to SU(3)
leaving 8 exact GBs, corresponding to the linear combination 1 + =9 + 23 + z4. If we now
turn on the kinetic term L we see that the spontaneous breaking of SU(3)® into SU(3)%,
breaks the gauge symmetry G x G2 to the electroweak gauge group SU(2)w x U(1)w. The
8 exact GBs are eaten by the massive gauge bosons, their masses being proportional to 9f -

We are interested in the 16 PGB fields that do not receive a mass term but only a

quartic coupling at tree level. It is quite simple to see how this happens if we parametrize

the fields X; as expiz;/f with the z; fields given by

Z+ xr
rn = -+ —
! 42
z z
Ty = — — —
2 4 \/§
.Y
T3 = ——+ ===
3 4 \/§
2 Y
Ty = _Z__\?:Q:7 (1.21)
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where we have not included the components eaten by the massive gauge bosons. Inserting

eq. (1.21) in eq. (1.20) we finally obtain

Ly :fQ-;fT&-(zH[m}—y]+...)2+f2%ﬁ(z—i&f’—]f/—]+...)2 (1.22)

from which we see that the z field acquires a mass given by f?(k +&')/2. The main feature
of eq. (1.22) is that if we put one of the two explicit breaking couplings, k and k', to zero, the
tree level quartic coupling Tr ([z,y]?) is canceled by the effective quartic coupling obtained
by integrating out the massive z field. On the contrary, if we leave both the explicit breaking
couplings and integrate out the z field we obtain an effective quartic operator given by

kK
k+FK

Tr ([z,y]?), (1.23)

which goes to zero if either k or k' is zero, as expected by the previous qualitative analysis.
The mechanism described is an example of collective breaking since both of the explicit
breaking terms are necessary in order to produce a potential for the fields which compose

z and y. We can decompose z and y as

w + h
w o= | PR T (1.24)

h;fu —21
with w = z,y. hg, transforms as a complex doublet 2,/ with respect to the gauge group
SU(2) x U(1), while ¢, , and 7y, are a real triplet 39 and a real singlet 1o respectively.
Substituing eq. (1.24) into eq. (1.23) we obtain the quartic potential for the two doublets

kTx (hohl — hyhl)? + k (Blhy — hihe)?, (1.25)

with & = kk'/(k + k') and where in eq. (1.25) we have neglected terms involving ¢, , and
Ngy- We can finally rewrite eq. (1.25) in terms of the two doublets hy = hy + ihy and
ho = hg — ihy

kTr (hihl — hohd)? + & (Bl — hRo)?, (1.26)
obtaining a quartic potential similar to the MSSM one [41].

The two doublets hy and ho are the two little Higgses, so called because their

masses and their quartic coupling are protected by the peculiar symmetry group structure
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even in the presence of explicit breaking terms of the spontaneously broken global symmetry
from which they arise as GBs.

In the standard model the Higgs boson mass receives large one-loop quadratically
divergent corrections both by the gauge bosons and the top quark. We have learned that
1t is possible to protect the mass of a scalar (doublet) if the couplings that may give rise to
a mass term arise as explicit breaking terms of a global symmetry while preserving some
subgroups of the global symmetry they explicitly violate. It is clear therefore that in order
to protect the Higgs boson mass from the gauge bosons (top quark) one-loop divergent
contributions, it is necessary that the gauge couplings (Yukawa coupling) be the explicit
breaking couplings of a global symmetry opportunely chosen. In the next section we will

see how this idea may be put into practice in a very simple model.

1.1.3  The little Higgs from a simple group

In the previous section we have seen how in a model based on a simple moose the
collective symmetry breaking mechanism, realized as the interplay between the spontaneous
and the explicit breakirig of a global symmetry, may produce little Higgses. We now simplify
even further the context in which little Higgses arise and, following the model of Kaplan et
al. [42], show how it is possible to implement the same features in a simple extension of the
standard model without referring to any moose description. In the following example we
neglect the U(1)w hypercharge gauge symmetry in order to describe a very simple model
and assume the standard model gauge symmetry to be only the SU(2)y . The reader may
find in ref. [42] how the same ideas are applied to the complete standard model gauge group
SUQ2)w xU(1)w.

From sec. (1.1.2) we know that in order to produce little Higgses we need a gauge
symmetry group G larger than the standard model electroweak SU(2)w gauge symmetry
and an approximate global symmetry larger than the gauge group G. For these reasons, in
the model we are going to discuss the SU(2)y standard model gauge group is enlarged to
a SU(3) gauge symmetry and 2 triplets, ®; and ®,, of the gauge group SU(3) are present
transforming under two different global symmetries SU(3); 2. The total global symmetry is

then SU(3); x SU(3)2. We suppose that at a scale f around the TeV each of the 2 triplets
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acquires a VEV that breaks spontaneously the gauge symmetry SU(3). We also suppose
that the 2 VEVs are aligned so the SU(3) gauge group is broken to SU(2)w. If we turn
off the gauge coupling, the VEVs of the scalars break the [SU(3)]? global symmetry into

an [SU(2)]? global symmetry. For each scalar we have then 5 GBs and we parametrize the

scalars as
0 0
B, = e'O1/f 0 &, = 102/1 0 , (1.27)
f+m f+p2

where 012 = O 5(z) T1'5 with ©f 5(z) the Goldstone modes and Tty the broken generators
of the two global group algebras. Let now turn on the gauge coupling: the presence of the
gauge interaction breaks explicitly the [SU(3)]? global symmetry into the SU(3) diagonal,
leaving the SU(3) axial broken. After the spontaneous breaking of [SU(3)]? in [SU(2)}? the
SU(3) gauge symmetry is broken to SU(2)w. The 5 GBs corresponding to the diagonal
SU(3) global symmetry are eaten by the gauge bosons to become massive, while the 5
GBs corresponding to the axial broken SU(3) become PGBs. Therefore eq. (1.27) can be

rewritten in terms of the eaten GBs, Ogqten and of the PGBs, O,

0 0
@1 — 6i@eaten/fei@/f O @2 — ei@eatan/fe'—i@/f O . (1.28)
f+p1 f+p

After having integrated out the two massive radial modes p1 2 they can be parametrized as

two non-linear sigma models

0 0
=€ | o dy=e"1| o |, (1.29)
f f
with © given by
0 0 10 0
o= 2l oo "[+2l01 0 (1.30)
= > i : _
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The PGBs h and 7 are respectively a complex doublet, that we identify with the Higgs
field, and a real singlet of SU(2) . Since the gauge interaction is the explicit breaking of
the global symmetry we expect the PGB masses will be proportional to the gauge coupling.
To analyze this, let turn now to the linear sigma model. The SU(3) gauge invariant kinetic

Lagrangian is given by
Lr = ]Duq)lfQ + lDu‘%lQ = [(0 + igAu)@IIQ + (0 + z'gAﬂ)i)g]Z J (1.31)

where A, = AL T® with Aj, and T° the SU(3) gauge bosons and generators respectively.
Each of the two terms of eq. (1.31) preserves the axial SU(3) global symmetry: the 5 PGBs
parametrized as in eq. (1.30) are the GBs of this global—explicitly broken— symmetry,
therefore their masses can be generated only by an effective operator that violates it. If
we compute the one-loop gauge bosons CW potential for the two scalars we obtain the
following contributions

g2 A2

AL=163

4
({21 + @}y) + 518501 P log(A?/?). (1.32)

The first quadratically divergent operator of eq. (1.32) does not violate the axial global
symmetry SU(3) and therefore can not produce a quadratically divergent contribution to
the mass of the Higgs and of the singlet 7. The second logarithmic divergent operator on
the contrary explicitly violates the axial global symmetry and produces a contribution to
the Higgs mass proportional to g* f2/1672. How should we interpret this result? The global
symmetries structure of the model assures the absence of one-loop quadratically divergent
contributions to the mass of the Higgs bosons. The one-loop logarithmic contributions to
the Higgs mass is comparable to the expected two-loop quadratically divergente radiative
corrections, that is pi ~ g*f2/167% = A2%(g? /1672)? where A is the cut-off of the model.
This implies that in order to have pi =~ 100 GeV , the natural standard model cut-off of
more or less few TeVs can be push up to 10 TeV. This discussion is purely qualitative since
to have a realistic model we should produce dynamically the self quartic coupling for the
Higgs boson and also we should include the fermions in such a way to protect the Higgs
mass from the top one-loop quadratically divergent contribution. The lesson learned in this

section suggests that in order to protect the Higgs mass, the Yukawa Lagrangian structure
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should contain terms that preserve the axial symmetry at tree level while the interplay
between them has to give rise to operators that violates it at one-loop.

We are now ready to turn to the littlest Higgs model.

1.2 The littlest Higgs

In the previous section we gave a pedagogical description of the theoretical path
leading from models based on deconstruction to the little Higgs models. We chose not to
enter into the details of each model because it was not essential to understand the philosophy
on which little Higgs models are based on and in particular the collective symmetry breaking
mechanism that protects the Higgs mass by the one-loop quadratically divergent corrections.

In this section we analyze in detail the littlest Higgs model [27]. We will see that
the model can be considered a serious candidate for an extention of the standard model:
with a realistic Higgs boson potential and new gauge bosons, scalars and fermions which
give rise to a rich phenomenology beyond the standard model.

We neglect all the implications related to the new particles introduced and to
the new processes they are involved into and how they can affect the electroweak precision
observable measurements (see the papers in ref. [29] for an extensive discussion of this point)
and instead ask a very basic question: how natural is the littlest Higgs model? What is the
amount of fine-tuning required by the little Higgs model in order to push the standard model
cut-off from few TeVs to 10 TeV? Is it a real improvement with respect to the standard

model? We will try to answer these questions in the last part of this chapter.

1.2.1 The model

Consider an approximate global symmetry SU(5) at a scale A and a scalar fields
Y} transforming as the adjoint with respect to this global symmetry. Suppose that the UV
completion of the theory is such as the X acquires a VEV (Zo) that spontaneously breaks
the SU(5) global symmetry into SO(5). The ten unbroken generators T'* of SO(5) satisfy

TS0 + SoTT =0, (1.33)
a
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while for the broken generators ©® holds
0%y - %007 =0, (1.34)

with Y given by
)
Yo = 1 , (1.35)
Iozo
where I;o is the two dimensional matrix identity.
The 14 GBs arising in the spontaneous breaking are parametrized as the compo-

nents of a non-linear sigma model

T = 2@/ 5 = @)/ f 50T /f (1.36)

with I(z) = n%(z)O°.
We gauge into SU(5) two subgroups of it, G; and Gg, which are two copies of the
gauge group SU(2) x U(1). The generators of G; and G5 are embedded into SU(5) as

a o%/2 . _
Ql = Yl = dla‘g(—Ba —37 2,2, 2)/10

Q5 = . Yy = diag(—2,-2,-2,3,3)/10. (1.37)
—a% /2

When SU(5) is spontaneously broken into SO(5) only the diagonal combination of the
2 gauge groups (7 and G2 survives, to be identified with the electroweak gauge group
SU@2)w x U(1)w. Four GBs arising in the spontaneous breaking SU(5) — SO(5) are
eaten by the gauge bosons of the broken axial gauge group to become massive. On the
other hand, the gauge interactions represent explicit breakings of the approximate global
symmetry SU(5), and therefore the other 10 degrees of freedom behave not as GBs, but as

PGBs. '
We can classify the remaining PGBs according to their transformation property

with respect to the diagonal gauge group SU(2)w x U(1)w, so we have a complex triplet
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¢ , 31, and a complex doublet ¢, 2, /5. We can now express Il in terms of these two fields

:
o 4t
i ¢
I = = \% (1.38)
b e
V2

Both the triplet ¢ and the doublet ¢ are PGBs arisen in the breaking of SU(5) into SO(5).
Nevertheless there are 2 accidental global symmetry that further protect the doublet. In
fact suppose to turn off one of the gauge couplings, for example g;. Then there is an
SU(3), global symmetry living in the upper 3 x 3 block of SU(5) with respect of which
only the doublet transforms non linearly. If we now turn on g; and turn off go we see that
there is another SU(3)y global symmetry living in the lower 3 x 3 block and again only
the doublet transforms non linearly. Only one gauge coupling is sufficient to break the
global symmetry that protects the triplet ¢ while both are necessary to break all the global
symmetries that protect the doublet ¢. For this reason we efcpect that the leading terms of
the scalar potential of the triplet will be proportional to g7 + g2, while that for the doublet
to g?g3. In order to produce an effective operator with a coefficient 9%,2 it is sufficient to
make a simple gauge boson loop, and therefore the leading terms in the scalar potential
of the triplet arise by one-loop divergent contributions. On the other hand, in order to
obtain a coefficient proportional to g?g3 we need at least one insertion or we are obliged
to go up to two loops. As a consequence, the doublet potential does not have one-loop
quadratically divergent contributions but only logarithmically divergent contributions, the

first quadratically divergent contributions arising at two-loops.

1.2.2 The potential
The tree-level Lagrangian is given by
£=£K+£t+£¢ (1.39)

where L contains the kinetic terms for all the fields, £ is the top and extra top-like quarks
Yukawa Lagrangian, while £, is the Yukawa Lagrangian for all the other standard model

fermions, both quarks and leptons. What are the extra top-like quarks and why they have
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to be introduced it will slowly be clear. Ly is given by
f2
Ly = gTr (DuX) (D), (1.40)
[ is the SU(5) spontaneous breaking scale and

Dy = 0, = 3 {igiWi, (QIT + DQET) + g’ Bi(ViZ + ZY{)}, (1.41)

where g; and ¢'; , i = 1,2, are the gauge couplings of the two copies of [SU(2) x U(1)];
gauge groups. The structure of the gauge interactions is such as to prevent the scalar
potential of the doublet, that we identify with the Higgs boson, from receiving one-loop
quadratically divergent contributions. In order to avoid the large quadratic divergence to
the Higgs potential introduced by the top Yukawa coupling, it is necessary to have £; with
the same structure of the gauge interactions, that is given by the sum of two or more
terms each of them preserves individually a global symmetry that protects the Higgs boson
mass. In order to realize this, we add to the standard model third family, composed by the
SU(2)w doublet g3, = (t,b)r and the two SU(2)w singlet v/5 and d'§, two colored Weyl
fermions # and ¢ of hypercharge 2/3 in such a way that y = (b3, t3,%) is a triplet of the
global symmetry we previously identified with SU(3);. The top quark Yukawa Lagrangian
is given by

L1 = V2 [ €ijiay Xi Dz Skytt's + V2Aa f 1 + hc. | (1.42)

where the term proportional to A; preserves the approximate global symmetry SU(3);
and breaks SU(3)2, while that one proportional to Ay preserves the approximate global
symmetry SU(3)2 and breaks SU(3);. Expanding eq. (1.42) to the first order in the Higgs
field we have

L =v2X (g3 + fOu's + V2o f HE + O(?). (1.43)

One combination of u'§ and #° marries ¢ to become massive, its mass squared given by
F2(2A2 + 2)3) + O(p?); we identify the other combination with the standard model top

quark so that the top Yukawa coupling is given by

A1A2

/N2 . 2 ’
VAL AL
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The Yukawa couplings present in Ly, are small, so it is not necessary to add extra fermions to
avoide one-loop divergent contributions arising from all the other standard model fermions.
Ly is given by gauge invariant terms that break all the global symmetries protecting the
Higgs boson potential and that once they are expanded to the first order in the Higgs field
reproduce the standard fermion Yukawa couplings.

The effective potential of the Higgs boson and of the triplet is found by computing
the CW potential [38] generated by the gauge boson and fermion loops. At the one-loop, it
can be written as

. a1 A? 2 caA?

1
+3 55T M3(Z)log ca M3 (%) /A2

1
—12 55T M#(2) log ca M2 (%) /A2, (1.45)

Tr MZ(X)

where the factors 3 and 12 in front of the operators count the degrees of freedom of, respec-
tively, bosons and colored fermions. The coeflicients ¢; are unknown constants, the values
of which come (presumably) from the UV completion of the theory [37]. They are there
because these terms are divergent and UV physics cannot be safely decoupled. Additional
states may contribute to the relevant operators and their effect cannot be computed. From
the effective theory point of view, these coefficients are arbitrary numbers to be determined.
c3,4 can be taken equal to 1 since they appear in the logarithmic contributions and their
contribution cannot be crucial. The traces in eq. (3.15) over the effective (squared) masses
are the one-loop quadratically divergent contribution of, respectively, bosonic and fermionic

degrees of freedom:

2
Tui) = (D @ID@ID)] + o T (%) (vim) )

TrM2(D) = 22X f2e¥%¢,, e R eppmn Dy D DY D2 (1.46)
Expanding the quadratically divergent contributions up to the quadratic order in ¢ and to
_ the quartic order in ¢ we have
9 )
lei(95 + 9'3) +64c203] £2 s + 57 (witps + wj0i) P

=3 , o 12 29 i 7 12 PPN
+3c1(gy +9'1) F7 195 — 57 (wie; + wjp4)] ) (1.47)
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where ¢;;, 4 = 1,2 are the components of ¢ written as

¢++ ¢+
¢t ¢
and ¢; the SU(2)w components of .
In eq. (1.47) the first term preserves the first global symmetry SU(3); while the
second preserves the global SU(3),. If we neglect the second term and we expand the first

we have, neglecting the constant factor,

7 ; Tp)2
¢+ ‘2705%%% - gf@j(ﬂfﬂo; + ((Z}’g} ). (1.48)

Eq. (1.48) presents the same feature of eq. (1.22): integrating out the triplet we produce an
effective quartic coupling that cancels that one produced by the gauge interactions. This
feature is not related to the truncation we did in the expansion, and it would be present
at any order: in the absence of the explicit breaking of the SU(3); global symmetry the
Higgs is still a GB and no potential can be generated for it. We would come to the same
conclusion if we had considered the second term of eq. (1.47). In the presence of both the

explicit breaking terms a quartic term for the Higgs potential is produced and it is given by

3ei(gf + gD (ca(gd + g'3) + 64c2)})

fp)?. 1.49
2 (g + o+ +gd) +oien P (1-49)

The triplet ¢ it is not protect by the accidental global symmetries SU(3); and SU(3); and

receives a mass given by

2

3
mj = % [01 (G +g+g +d5)+ 64cz>\ﬂ ) (1.50)

The terms in eq. (1.45) proportional to logarithms of the cut-off give rise to the
Higgs boson quadratic term but also contribute to the other terms in the potential. The
latters are usually neglected [29, 31]. As it turns out, they are important and, as we shall
show, crucial in determining the properties of the model. Their main contribution is to the

quadratic terms of the potential which we write as

Liog = 1o+ uid'$, (1.51)

where we have neglected the sub-leading term #th¢ij<ﬂ§<ﬂ; + h.c..
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Taking only the leading order of each term of eq. (1.51), we have

2 2 72 12
B 9 55 g1+92 3 22, g1+tgs
P _ 7 2.2 logZLl 72
72 256729192 108 T ™ — Toggnm9 19 2108 T
3 )\2/\2 A2 4 22
+ 2002 +)2) log 187#2
2 2 2
Lo 3 2, 2 gi+gs 1,2 g2 91+92
Peo 2 |2 -8 1 — (g% - 1
12 75,2 2((91 +93)* — 89193 log e +1O(91 g'3)? log =2 2702
24 )3 AZ 4 A2
+ = (/\2+/\)1 1+ : (1.52)

We have written eq. (1.52) as function of the gauge couplings 91,2, ¢’; » and Yukawa cou-
plings, A1 and Ay, only for convenience and used A = 4nf. Usually [29, 31], the terms in
the potential are reported as functions of the heavy gauge bosons and of the heavy top-like
quark masses, which by eqgs. (1.40)—(1.91) at the leading order are given by

8)%

1
MVQV' = —(Q% +g§)f2 MJZB' = mf

i (1.53)

1 2y 02 a2
20(91+9’ )£Mp =

Notice that in eq. (1.52) all the terms that enter inbthe Higgs boson mass have in front a
coefficient given by the product of the two gauge or Yukawa explicit breaking terms of the
global symmetry SU(5) as we have anticipated at the end of sec. (1.2.1). On the contrary,
the terms entering in 17 do not present the same feature since the triplet ¢ is not protected

by the two accidental global symmetries SU(3); and SU(3),.

1.2.3 How natural is the littlest Higgs model?

Now we would like to address the question of how much more natural is the littlest
Higgs model with respect to the standard model. To do this we study the exact potential,
rather than its truncation to terms quartic in the fields, and include all logarithmic terms—
which are usually neglected in the most analysis [29, 31] or included only for the Higgs
boson and not for the triplet [43]. These logarithmic terms are important and cannot be
" neglected; for the model to be successful they must be numerically small enough to give the
Higgs boson the desired mass without further fine-tuning. '

To proceed with our analysis we fix three combinations of gauge and Yukawa

couplings to reproduce the standard model couplings g, ¢’ and A; (that is, the mass m;
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of the top quark). The g2 and ¢ 1,2 gauge couplings can be rewritten as functions of the
SU(2)w and U(1)w electroweak g, gauge couplings and of two new parameters G,G’

defined by

G? = gl +9;
G* = gi+45. (1.54)
Since
2.2 12 42
2 9192 12 9192
g° = 9" = 5", (1.55)
9t + 93 g1+95
we have
G? @G
9ip =5+ 51/G?—4g?, (1.56)

and similar expressions for the U(1); ¢'; couplings. The standard model gauge couplings
are given by g = v/4wa/sin Gy and ¢' = gtan 6y in terms of the fine structure constant o
and the Weinberg angle Oy .

In a similar way, by imposing that top-quark Yukawa coupling )\; gives the exper-
imental mass my, Ao can be expressed in terms of A\; and )A;. Renaming )\, z; and using
eq. (1.44) we have

Y
Ay = —a LBt (1.57)

\J4z2 — N2 '
Together, egs. (1.56)—(1.57) fix the range of the parameter G,G’' and zy. In fact

by imposing the reality of g;, ¢’; and \; we have

A(mw)

G > 2g9(mw) G > 2¢(mw) =z > 5

(1.58)

The value G' = 2g corresponds to the maximally symmetrical case where ¢; = go
and the heavy bosons are decoupled from their lighter copies. The actual value is usually
chosen so as to minimize the overall electroweak corrections [29, 31].

The littlest Higgs model is thus controlled by six parameters: 2 gauge and 1 Yukawa.
couplings, G, G’ and z, the two coefficients c; and ¢y, of the quadratically divergent terms,
one for the bosonic and one for the fermionic loops and the symmetry breaking scale f. At

the same time, we have six constraints given by the vanishing of the first derivatives in the
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doublet and triplet directions, the value vy of the electroweak vacuum (that is, the value
of the Higgs field in the minimum of the potential) and that of the triplet field, the mass
my of the Higgs boson and of the triplet (the second derivatives of the potential at the
minimum).

We therefore have an effective theory in which all parameters and coefficients are
constrained and the model completely determined. We can study it as a function of the
physically significant parameters vy, my and f; in particular, what are the values of the
coefficients ¢; and co? Are there any choices which allow for vy, at its physical value, the
mass of the Higgs to be, say, around 115 GeV and f around 2 TeV, as suggested by the
electroweak data? We will see in the next sections that the answer seems to be positive
for the value of vy (and in this respect the model is successful), it is negative for mpy, in
the sense that there are no solutions, as we vary the gauge couplings and the coefficients,
leading to my and f in the desired range. The main reason for this failure lays in the
logarithmic contributions to the Higgs boson mass of eq. (1.52) which are O(f) rather than
O(mpy) thus leading to a littlest Higgs with a mass around 800 GeV. Larger masses are also
possible (and natural) but would lead the theory outside its perturbative definition.

At first, this negative result does not seem too troublesome since we know that
the inclusion of the next-order (two-loop) corrections is crucial in the precise determination
of my. They can be of various (and complicated) forms, and we indicate it by a generic

operator of canonical dimension two:

c 2
V2[CS3 E] = (_2‘7%0240011(2) . (1'59)

We are not going to compute these terms and just take c¢5 to be the coefficient of a term of
order f?/1672, which controls the size of the two-loop quadratically divergent contributions.

What is surprising is that the size of the logarithmic corrections will turn out to
be so large that we will be forced to introduce a proportionally large two-loop corrections
thus rising some doubts on the entire perturbative expansion. Even after the two-loop
corrections have been included, the possible choices in which the model gives my and f
in the desired range lead to very unnatural values of the coefficients—at least one of the

coeflicients ¢; must be unreasonably small—which defy the very purpose of introducing the
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model. In fact, as we already pointed out, these coefficients control the symmetry breaking
operators, and if we were allowed to suppress them by fine-tuning we could have done it
directly in the standard model without having to resort to the littlest Higgs model in the
first place.

This problem seems to be more serious for the model than the amount of fine-
tuning in the parameters imposed by electroweak precision measurements. Moreover, we
will see that our analysis shows that the recent fit within the littlest Higgs model of the
electroweak radiative corrections [31] falls in a region of the parameter space that is excluded

by the requirement of having the ground state near zero, or alternatively of having vy < f.

1.2.4 Approximate analysis

Before embarking in the analysis of the complete model, it is useful to examine
qualitatively its main features. This will help in elﬁcidating the numerical analysis in
the next section. For simplicity, we ignore the U(1) groups and therefore take g’ 12 = 0.
We expand eq. (1.45) up to the fourth and second order in the doublet and triplet field
components respectively that acquire a VEV responsible of the spontaneous breaking of the

electroweak gauge group. The potential is then given by
V [k, t] = pih® + Xs hth + Agh* + A42, (1.60)

where h = Re” and ¢t = Im ¢° with ¢° and ¢° the neutral components of the doublet
¢ and the triplet ¢ respectively. If in eq. (1.60) we neglect the logarithmic contributions
(except in p?), the coefficients A3, A4 and Ay coincide with that of eq. (1.47), eq. (1.49) and

eq. (1.50), that we rewrite here as

>\¢/4 = )\4 = —i(ClGQ -+ 6462.17%)

[
D

)\3 = Z(ClGQ(Sg - Cg) + 6462.’1&‘%) , (1.61)

where G and z, have been defined in the previous section and

cg =q1/G sq = g2/G. (1.62)
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By imposing the conditions for the existence of a minimum in the potential,

oVih,t] 0
oh -
ovih,t]
o = 0, (1.63)
we find that the VEVs are given by
(t) _ﬁﬂ
2 f
2
(h)? = -—Eh (1.64)
A
where
- A2
A= 2y —m

3¢y GQCg(chzsg + 64@:1:%)
2 a1 G? + 6402:1:%

(1.65)

Assuming ¢; = ¢ = 1, and hence no fine-tuning between UV and low energy

sources of symmetry breaking, this reduces to:

5 §G2CZ(GZS§ + 6422) (1.66)
2 G? + 6472 ) '

In order to make contact with electroweak physics we have to impose (h) = vy, /v/2,
where vy is 246 GeV. The mass of the physical Higgs boson and of the other physical scalar

are therefore
m = -2, = Mo,
ms = Apf>. (1.67)

Finally, let us give an estimate of ,u,zl, which as we have already pointed out is
determined by the logarithmically divergent part of the CW potential plus finite terms. By
combining eq. (1.52) with eq. (1.56) and eqs. (1.44)—(1.57) we have
G? 3 Mazf 4z%

2
By _ 9 3
6472 +

- 1.
72 256727 (1.68)

2G?log

Y ?
24z — X7 8 8m2(4z2 — A?)
and using the constraints, on m; and the gauge couplings,
L > At/2

G?: > 447, (1.69)
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we find that, for instance by taking z; ~ 1 and G ~ 2g, we have

4
2~ 01¢°G? — IL 2~ 0352, .
iy (OOgG 02?1 f 0.3f (1.70)
With these, one gets for the Higgs mass:
mi ~ 0.6f2. (1.71)

If we want f ~ 2 TeV, then

s_ 2k _ 06

e o == 40, (1.72)
which is at the limit of validity of the perturbative expansion (the expansion parameter
being roughly given by A/1672). The mass of the triplet would be mg =~ few TeV. This
scenario would correspond to a cut-off of the theory A ~ 25 TeV, which is what we wanted,
but requires a mass for the physical Higgs mpy ~ 1 TeV.

On the contrary, if we also demand that the Higgs boson mass be close to 115 GeV
(from LEP lower bound) when f ~ 2 TeV we must have m2/f% ~ 3 x 1073, At the same

time, the triplet must be a heavy state with my ~ f. We therefore need

pi o~ 3x1073f2
A~ 02

Aqs =~ 0(1) . (173)
The condition Ay ~ O(1) yields

3
Z(c1G2 +64coz?) ~ O(1), (1.74)

which implies that at least one of the two coefficients ¢; and ¢z must be of O(1). On the
other hand, the requirement (obtained by using (1.74) in (1.65) and by comparison with
eq. (1.73) )

< 3
A 5 ch’zcg(chng + 64caz?) ~ 0.2, (1.75)

implies that at least one of the c; coeflicients must be fine-tuned to6 small values. Hence, the
requirement of values for the Higgs mass close to the experimental bound would reintroduce

the problem of fine-tuning that the little Higgs wanted to alleviate.
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Finally, the ratio u}% /f? is dominated by the top sector and is far from being of the
desired order O(1073). We see by eq. (1.70) that the problem can be ameliorated only by
allowing the coupling G to assume large values, and hence a very large fine-tuning between
different sectors of the model (gauge and top loops) in order to cancel the top contribution
to p?. Large values of G would also require even smaller values for the ¢; coefficients, in
order to adequately suppress .

These are all features that are confirmed by the more complete numerical analy-
sis, to which we now turn, in which the logarithmically divergent contributions are properly
taken into account. As discussed in the next section, the presence of the logarithmic contri-

butions to the mass of the triplet will further constrain the region of the allowed coefficients.

1.2.5 Numerical analysis

All the electroweak precision data analysis and the fine-tuning estimates in the
littlest Higgs model present in literature [29, 31] have been done expanding the CW potential
up to the fourth and second order in the Higgs and triplet field respectively. In [43] the full
potential is studied, but the logarithmic contributions for the triplet are neglected.

We study the full one-loop CW potential, with no approximations both in the
Higgs and in the triplet field, in order to perform a detailed analysis of the parameter
space. As done for the approximated potential of eq. (1.60), even the full one-loop CW
potential is computed for the Higgs and triplet components that acquire a VEV responsible
of the spontaneous breaking of the electroweak gauge group. Therefore, in the following,
our field variables will be h and ¢ as defined in sec. (1.2.4). As already discussed, the CW
effective potential is controlled by six parameters and coefficients (c1, ¢z, G, G', 1, f) which

are fixed by the six constraints provided by

e the existence (vanishing of first derivatives in the h and ¢ directions),
e the value (to be vy and v’ for, respectively, the h and ¢ fields) and

e the stability (m% and m? both larger than zero)

of the ground states in the Higgs and triplet directions. In addition, we can add a new

coefficients c5 (of the two-loop correction) in order to bring my closer to the desired value.



Chapter 1: The littlest Higgs model 39

Since we study the potential numerically, we reverse the problem and instead of
solving to find the values of these parameters and coefficients we generate possible sets of
their values and check what my and f (as well as the corresponding quantities for the

triplet field) are thus obtained.
We proceed in three steps by imposing the constraints which the potential must

satisfy. As we shall see, these constraints greatly reduce the allowed values of the coefficients

c1, ¢ and cs.

Log,,c2
Log,s¢2

Log,ycy Log,,c1

Figure 1.2: Possible values (on a logarithmic scale) of the coefficients ¢; and ¢;. The two figures
correspond to G' = 0.72,zy, = 0.56 and, respectively, two choices of G = 3 and G = 8. Each point in
the light-gray region is a possible potential with a maximum at h/f = /2, which means a possible
minimum around h = vy /v/2. The darker region, where both ¢; are small, corresponds to potentials
with a minimum in h/f = /2 which are not allowed.

1.2.5.1 First step: making vy (and v') the ground state

A first constraint arises from the requirement of having the correct electroweak
ground state for both the Higgs boson and the triplet fields. Here correct means for small
values of the fields as opposed to larger values around « f /2. This is most easily implemented
by studying the properties of the potential along one of its direction, for instance at large
values of Higgs field h. The complete potential at one-loop Vi[c;, G, G, z,h/f,t/f, f] is a
periodic function in h/f in the plane where the triplet ¢ = 0. In order to have the ground
state at the electroweak vacuum vy around the origin, V; must be positive for h/f = /2.

This condition is sufficient to guarantee the existence of the correct ground state because
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the complete potential for the Higgs field h is given by (defining V1[0] = 0)
Vilh/f] = Asin? h/f + Bsin*h/f + Csin® h/f + Dsin® h/f (1.76)

with A, B,C and D complicated functions of the coefficients and parameters and such as
the first derivative of the potential with respect to h does not change sign between zero
and 7/2 when Vi[h/f = m/2] < 0. Another way to understand the same feature is that if
h/f = m/2 is not positive, the mass squared of either h or ¢ is negative and the electroweak

ground state is unstable.
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Figure 1.3: Dependence (on a logarithmic scale) of the minimum on one of the coefficients after
having fixed the other (¢; = 1) and all parameters (G = 3, G’ = 0.75 and z;, = 0.56). The physical

region, where f ~ 2 TeV, corresponds to the line logwvw / f 2f = —1.1 (lower right hand corner in
the figure).

This requirement makes possible to fix a region
Vilei, G, Gz, h/f =7/2,t=0,f] >0 (1.77)

of allowed values in the six-dimensional parameter space (c1,c2, G,G,z1, f) (no two-loop
contributions are for the moment included and therefore there is no parameter c5). The
potential V; is given by

GZ
64n2

Vile;, G, Gz, h/f =7/2,t =0] = —:—3—01 (G2 +G'2) + 12¢coz% + (a—ﬁGZ) log

f4 16
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327 2 ]
——a— 1+ 4 log ——%—— .
4m? (422 — 1) ( + $L) 8 2n%(4z2 — 1)’ (1.78)

where o = 6.3 x 107%,8 = 1.8 x 1073,y = 2.0 x 1075,§ = 2.3 x 10~%. The numerical
coefficients in eq. (2.9) are obtained by giving their experimental values to the gauge and
Yukawa couplings of the standard model.

Fig. 1.2 shows the values of ¢; and ¢y which satisfy the condition above for two
choices of the gauge coupling G (the dependence on G’ is weaker). A similar plot could be
shown by varying xr,. In general, for given G, G’, 2y, this condition forbids the configura-
tions with both ¢; and ¢y of O(1072) and it is even more restrictive for larger values of the
gauge coupling G' (see plot on the right side of Fig. 1.2).

Therefore, the very requirement of having the electroweak vacuum as the ground
state of the littlest Higgs model is far from obvious for arbitrary coefficients c;. As we shall
see, this is important for fits to the electroweak data.

We can plot this ground state as a function of one of these coefficients after the
other one—and all the other parameters—have been fixed to some values. As shown
in Fig. 1.3, in the physical region, where f ~ 2 TeV—which corresponds to the line
log vy /v2f = —1.1—we obtain the desired ratio vw/f ~ 1/10 for ¢; = 1 and ¢y ~
1.2 and, therefore, with a natural choice of the coefficients. In addition, we would also like
to find v < f for a large range of values of these coefficients, that is, the logarithmic
derivative should not be too large:

dlog(vw /v2f)
dlog c;

<10. (1.79)

The result in Fig. 1.3 is a variation that is close to 1 for most values of cy. In this respect,
the model is therefore working well and it stabilizes the electroweak symmetry breaking

scale to be a factor of one hundred less than the cut-off of the theory.

1.2.5.2 Second step: possible values of mg and f in the one-loop CW po-

tential

In the second step of our study—given the set of parameters (c;,c2,G,G’, z1) for

which the scalar potential has the right behavior at large h and therefore h = vy /V2 is its
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Figure 1.4: mpy vs. f for ¢; 2 between 0.01 and 100 Each point represent a choice of ¢; and ¢3. Four
different values of G, G' and z; (G = 1.3,3,8,10, G' = 0.72,0.75,2,4 and z; = 0.52,0.56,1.2) are
shown in different colors. No two-loop contribution is included. The little red box (rather squeezed
by the axis scales) indicates the preferred values f = 2000 % 200 GeV and mgy = 110 £ 20 GeV.

ground state—we look (see Fig. 1.4) at the possible values of my and f for a large range of
parameters and coefficients. We take ¢; between 0.01 and 100, and consider four different
values of G, G' and z to show the dependence on the gauge and Yukawa parameters.

Values of ¢; not allowed (see Fig. 1.2) are automatically excluded.

No choice of values gives a light mass for the Higgs boson if f is larger than 1 TeV.
Roughly speaking, the mass of the Higgs boson is a linear function of the scale f as we vary
c; and ¢. The bigger the gauge coupling G (or the Yukawa 1), the slower the raising of
myg with f. Notice, however, that by increasing the value of G we increase the difference
in the values of the couplings g1 and go of the original gauge groups, and, for instance, at
G = 10 we find g7 ~ 10 and g ~ 0.65. The same features are also shown in Figs. 1.5
and 1.6, where the ratio my/f is plotted against f for different choices of G and zr. The
natural values all lay on line at values of my of the same order as f and even stretching
the parameters does not bring the ratio mpy/f near the desired values (for instance, 0.1 for

f ~ 2 TeV). The dependence on G’ is instead rather weak.

Even for very small ¢;’s, the logarithmic contributions make mpg of the order of f

so that if we want the mass of the Higgs boson to be small, we find that f is small as well.
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f

Figure 1.5: mg/f vs. f for ¢;,2 between 0.01 and 100 Each point represents a choice of ¢; and ¢
with ¢; increasing from the bottom to the top and ¢, from left to right. Holes in the dots distributions
are an artifact of the numerical simulation mash. Four different values of G = 1.3,3,8,12 (at fixed
zy, = 0.55 and G’ = 0.72) are shown in different colors with smaller values toward the bottom of the
figure. No two-loop contribution is included. No choice of values of these coefficients gives my ~ 120
GeV and f around 2 TeV.

Even though it is not surprising that my does not come out right—after all the (unknown
and uncomputed) two-loop contributions have been usually introduced in the literature [29]
to argue that the ,u,zl term in the potential eq. (1.51) is essentially a free parameter to be
adjusted in order to have the desired mass for the Higgs bosons—what is worrisome is that
we find that the logarithmic terms are rather large and the coefficients of the two-loop
corrections would have to be accordingly large to compensate them and fine-tuned to give

a net mass one order of magnitude smaller.

1.2.5.3 Third step: including the two-loop term

We therefore proceed to the third and final step in our analysis and include a

(quadratically divergent) two-loop contribution to the term quadratic in A in the scalar

4 h 2
v'[cs;h]=%(?) . (1.80)

This is a somewhat ad hoc (and minimal) choice to simulate the actual two-loop computation

potential:

which is vastly more complicated and the result of which would presumably be a series of
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Figure 1.6: Same as Fig. 1.5. Four different values of z;, = 0.55,0.71,0.91,1.05,1.55,2.05 (at fixed
G = 3 and G' = 0.72) are shown in different colors with the largest value of zj on top, smallest
values corresponding to zz = 0.71. No two-loop contribution is included. No choice of values of
these coefficients gives my ~ 120 GeV and f around 2 TeV.

operators similar to those we have included. Other terms proportional to ¢? or hth could be
added (and if added would completely change the analysis) but they would correspond to
two-loop corrections to already quadratically divergent one-loop terms and go against the
very idea behind the little Higgs model.

Having added the two-loop term (1.80), it is possible to study the behavior of the

potential

F*ilei, G, G wr, hyt, f]+ V'es, h). (1.81)

around the origin. For each choice of (G,G’,z), by imposing the four constrains arising
from the two first derivatives (to have a minimum and it to be at the correct value) and
from the value of my and my, the three coefficients, ¢1,co and cs, are fixed.

The study we performed shows that the new constraint of having a Higgs boson
mass close to the current bound [8] drastically reduces the allowed region in the parameter
space of (¢1,¢2,G,G',z1, f) and given G, G’ and zj, the allowed regions are characterized
by having either ¢; of O(1) and ¢; of O(1072) or the opposite, as shown in Fig. 1.7. For
each of these choices of coefficients ¢; and ¢3, a value of ¢; must be chosen so as to obtain

the desired mass my. This is only possible for rather large values of the coefficient c5. If



Chapter 1: The littlest Higgs model 45

2 2

1.5 1.5

S 0.5 T 8; 0.5
or 0 o0 0
S -0.5 3 -0.5
-1 -1
-1.5 Do -1.5

-1.51-0.500.511.52 -1.51-0.500.511.52
Log,,c Log,, ¢

Figure 1.7: The allowed values of the coefficients ¢; and ¢z with the constrain on the Higgs boson
mass (mp between 110 and 200 GeV) enforced and the two-loop quadratic divergent term included.
Only very few regions in the parameter space showed in Fig. 1.2 are still allowed. On the left side:
G = 3 and c5 =~ 50, on the right side: G = 8 and ¢5 ~ 35.

we are willing to allow larger Higgs boson masses (that is, mg > 300 GeV), c¢s5 will turn

proportionally smaller but we will still have similar severe constraints on c¢; and cs.

1800 2000 2200

f (GeV)

Figure 1.8: my vs. f. Each point corresponds to a choice of all coefficients and parameters in the
range discussed in the text (¢; = O(1072), ¢z = O(1), 5 ~ 50) and varied in discrete steps; G = 3,
G' =0.75 and z1, = 0.56 are fixed.

1.2.6 Comments on the results

Fig. 1.8 shows the possible values of my and f close to the desired values for a

range of the coefficients ¢;, ¢z and ¢5 in the allowed regions. These values are now possible
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but we pay a rather high price for it. The two main problems are that

e the natural case in which all the coefficients ¢; are O(1) seems to be ruled out. Values
for f and my in the desired range are only obtained by taking ¢; of O(1072) and
ca O(1) or vice versa. A coefficient of order O(1072) clearly goes against the very
rationale of introducing the littlest Higgs model in the first place because we have to

make small by hand one of the symmetry breaking terms;

e the phenomenological two-loop term must have rather large coefficients (c5 =45-55).
This already anticipated feature reminds us of the importance of these terms in com-
pensating the logarithmic contribution to the Higgs boson mass, which are therefore
rather larger than one would wish and usually assume in the little-Higgs framework.
Roughly speaking, these logarithmic terms are O(f) whereas we expected them to be
of O(myr). This is unfortunate since the naturalness of a scale f around 1-2 TeV is
questionable once such a large two-loop term is included in order to bring myg around
its current bound. Moreover, given the size of our example of two-loop contribution,
there is no way to argue that these two-loop contributions can be neglected in any
other part of the potential and the entire approach at one-loop seems to break down.
A similar conclusion was reached in a recent work were the fine-tuning of the littlest

Higgs is discussed [44].

The analysis above shows that once the scale f is required to be larger than 1
TeV, after all coefficients have been fixed, the value of the Higgs boson mass—which is
linked to that of the neutral component of the triplet—cannot be made as small as desired.
In particular, it is not possible to have it close to the current experimental lower bound
unless some the coefficients of the quadratically divergent terms are made unrealistically
small while at the same time the two-loop correction is made rather large. The necessary
smallness of some of the coefficients defeats the purpose of introducing the collective break-
ing mechanism to make the mass terms small and the littlest Higgs model stable against
one-loop radiative corrections. Moreover, the mass of the Hfggs boson itself comes out in a
very unnatural way from the cancellation of terms one order of magnitude larger than its

value.
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This result seems to be a more serious problem for the model than that of the fine-
tuning required in order to be consistent with electroweak precision measurements. The
problem has been so far ignored in the literature because it has been assumed that it was
always possible to add to the logarithmically divergent part of the potential the two-loop
quadratically divergent contribution so as to obtain the desired Higgs boson mass. This is
however only possible at the price of introducing an unreasonable large coefficient in this
term and even then at the price of having at least one of the other two coefficients very
small.

On the other hand, if we let instead the model to decide what value the mass of
the Higgs boson should be, we find that it comes out close to the scale f and therefore, for

f in the 1-2 TeV range, the Higgs is accordingly heavier than expected.

1.2.7 Comparison with other studies

There are many discussions in the literature about the littlest Higgs model and
electroweak precision constraints [29, 31]. In many of these papers, however, the values
of the coeflicients of the divergent terms are assumed to be of O(1) or, at most O(0.1)
and the logarithmic terms not included. Moreover in [29] only the parameters relevant
to the effective operators in the gauge boson sector are discussed and the coefficients of
the divergent terms are assumed of the desired order and not studied. The only reference
in which the scalar potential is actually constrained is [31]. In order to show that our
conclusions agree with what found in this reference, let us, following their notation, fix the
coupling g and ¢’ in terms of the fine-structure constant o and the Weinberg angle, vy and
v'—the VEV of the isospin triplet £—by means of the Fermi constant and reparametrize

the top Yukawa couplings A; and Ag in terms of

12
. M
A+ 22
™My )\1)\2 [ ’U2
— = =14+ —z; (1 +21) (1.82)
oW 2zl 2

we are thus left with a model that, after assigning a value to m; and my, only depends on

f, zr, s and s’ (as defined in ref. [31]) and the counterterms a and a’ (which correspond
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to 3¢1/2 and 6¢3). These two can be found for each choice of the first four parameters by

solving
.(_l_ iQ_ __'_q_li + 8@’)\2 — m%{ !
2 |s2c2  g%¢? ! UXZ/V 1— (4U/f/v%‘/)2
La [P -sY) g% -5 e _ omuv'f 1
53 75 +4a' Ny = 2—3 5 (1.83)
4 5°C s vy 1 — (4’0'f/1)124/)

We thus find that in order to have, for instance, f = 2 TeV while my = 115 GeV (and
v' = 3.54 GeV, z;, = 0.4, s = 0.22 and s’ = 0.66, as discussed in [31]) we must take the
coefficients a and a’ of order 1/100 (more precisely, a = 0.036 and a’ = 0.063 in this case;
small coefficients are found also for other allowed choices of f and v'), a choice that clearly
defeats the very rationale for introducing the littlest Higgs model in the first place.

This result is consistent with our analysis as presented in the previous section
in the case in which the logarithmic contributions are neglected and the two-loop terms
included. However, as soon as the logarithmic contributions are not neglected (and we have
shown that they cannot be neglected), the solution above does not exist because it would
correspond to a negative value of the triplet mass and an unstable electroweak ground state.
Going back to Fig. 1.2, the solutions studied in [31] is in the region ruled out where both

coefficients ¢; are very small.

1.3 A modified top sector

In the previous sections we have seen that the littlest Higgs model, given a cut-off
A = 4nf around 10 TeV, predicts a large Higgs mass around 500 GeV. Introducing a two-
loop effective quadratic term allows to bring this mass to a value smaller than 200 GeV but
the two-loop term coefficient must then be very large. Because the problem is largely due
to the fermionic sector of the model, in this section we discuss a possible modification of
the fermion content of the model, as proposed in [45], to see if it helps. We neglect in the
following the triplet and focus on the Higgs doublet.

We consider next an improved version of the littlest Higgs model [37] in which the
top fermionic sector is completed to make its contribution to the CW one-loop potential

finite. We study this model and show that, even though (marginally) better than the littlest
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Higgs model, again the requirement of a Higgs boson mass around 200 GeV and f around

2 TeV would lead to unreasonable values of the parameters and excessive fine-tuning.

1.3.1 The model

The Lagrangian of the model we consider differs from that of the littlest Higgs
model only by the fermionic contributions £,. The fermionic content is given by an elec-
troweak doublet Q1 = (to,bo) 1, an electroweak singlet 5 and by two colored SU(5) quin-
tuplets, X and X. The Yukawa Lagrangian is given by an SU(5) invariant term, and by
two explicit breaking terms of the SU(5) global symmetry, both of them preserves enough
symmetry to prevent the Higgs to gain a mass. Only the loops contributions that involves

both of them can produce a mass for the Higgs. The Yukawa Lagrangian is given by

Ly =V2Mf X B X +V2xof (a5, bo, + a5, to,) + V2ZAsf 18, ta, (1.84)
where
pig a‘fL
D2, G’SL
X =1 tg X=| ¢ (1.85)
’r]-L gL
TZL gL

By eq. (1.84) we obtain the fermion mass matrix given by

—/2); sin? % 1 A1 sin % V2Xs V2 cos? %

V2X cos?l  ix sinZ: 0 —v2) sin?l
M, = f oo UL )
0 N 0 0
i\ sin%—fﬁ ivV2X\ cos%r’l 0 1A sin%—,’E

where in eq. (1.86) we have put ¢t = 0. By eq. (1.86) we see that

T M}, My, = 2(L3+L3+)3) f2

Tr (M}

frL

MfRL)2 = 4(Llii + L% + X{) JH ) (1-87)
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where
LI = M+
L2 = X4 )3. (1.88)

Eq. (1.87) indicates that there are no one-loop fermionic divergent contributions to the mass
of the Higgs. The only one-loop fermionic contributions are finite and therefore calculable.
From now on we take L = Lo.

One of the eigenvalues does not depend on A, and is given by:
m3 = 2)2f2. (1.89)

The lightest mass is to be interpreted as that of the standard top quark, with mass approx-

imated by
h ¢ h
2 _y2p2,: 27 a2 M) aad R
m; = A7 f” sin 7 + ( Ap + L%) sin 7 (1.90)
where
o= 2 Athods . (1.91)
NESESVIVCYEDY

It gives a negligible contribution to the effective potential. The two relevant eigenvalues

can be expanded in powers of sinh/f obtaining:

2/ 2 2 _h X LR
ml/f = 2L1 +\/§L1)\tsln?—~2—81n ?—
1

A h h
+ (A2 - ZL)sint = + O(sin® =

h M h LA 2
m3/f* = ZL%—\/§L1/\tsin~-—§t'sin2——+< 1A DA )sing’—;E

V2 8V2I

Li)s  5A )S,ngh
f

f f V2 8V2L,
+ % (Af — 2—2%) sin4? + O(sin® !}). (1.92)

The fermionic contribution to the potential for the Higgs field obtained when

Ly = Ly (which is the most favorable case) is therefore

Vin 3N2LE L h % 1212 A2
o - —4 — 31
74 @z Tt \THY T T e
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1.3.2  Approximate analysis

The bosonic sector of the model has not been modified, hence we can write (see

eq. (1.60)) the (approximate) expressions:

2 2 272
Hp 9 20 G 3ATLY
Eh — _ 1 —
72 256729 ¢ 8 g T gz
31G?  N2L? A 1212 by
- ~3ln 2L ) . .
Ae 6 T ae e T e g (1.94)

Choosing Lj ~ +/2 (that is, a value close to the smallest possible after \; = 1), one obtains

2
2
?g ~ 0.02G%¢°log G* - 0.15,
3¢, G2
A 6116 +0.2. (1.95)

The finite contributions to u? in this variation of the model are comparable in
size to the original logarithmically divergent ones. Further, the quartic coupling is now
dominated by the gauge boson sector, since the top sector gives only a small contribution.
From this, comparing with the original littlest Higgs model, we conclude that there is
no substantial improvement: the cancellation of logarithmic divergences is not enough to
reduce the large top contribution to the sin? h/f term in the potential. For this reason we

leave out a more general numerical analysis of this modified model.

1.4 Conclusions

We started the chapter describing the origin of the little Higgs model, focusing on
the collective symmetry breaking mechanism and underlying how appealing it was using
this mechanism to protect the Higgs mass after having made the Higgs boson a PGB. Then
we concluded pointing out that the most popular little Higgs model, the littlest Higgs, fails
to predict a light Higgs mass, unless we accept a large amount of fine-tuning. In sec. (1.2.4)
we have identified the large logarithmically divergent contributions as the reason of the
difficulty to have a Higgs mass around the central value suggested by the electroweak data.
Furthermore, in sec. (1.3) we have seen that a minimal extension of the fermion sector of

the littlest Higgs model does not improve sufficiently the situation to be considered a real
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solution. At this point we are entitled to wonder if there is any possibility to further extend
the littlest Higgs model has done in sec. (1.3) to reduce the finite term that are too large in
eq. (1.95). Next, we could ask how much model dependent are the results we have obtained
in sec. (1.2) and if it was possible that other little Higgs models could behave better than

the littlest Higgs one.

In sec. (1.1.1) we have seen that in the model based on deconstruction the first
quadratically divergent contributions to the PGB masses are proportional to A2 (g?/1672)"
where N is the number of the copies of the gauge group SU(n). The hint is therefore to
follow what done in sec. (1.3) and modify the top sector, and eventually the gauge one, by
introducing more explicit breaking terms, each of them preserving an approximate global
symietries in order to further suppress the contributions to the Higgs mass. Note that
if we want to modify the gauge sector and, for example, starting with three copies of the
electroweak gauge group SU(2)w x U(1)w we should also enlarge the global symmetry
SU(5). At first sight this possibility seems encouraging, but Wacker [46] has noticed that
there are always finite contributions to the little Higgs mass proportional to the mass of
the heavy particles introduced by the model. It turns out that this finite contributions are
of the same order of the two-loop quadratically divergent corrections, thus making useless
the removing of higher order quadratic divergences, and the largest corrections to the Higgs
boson mass is always of the order of a two-loop quadratic divergences. This means that even
modifying, for example, the top sector in a manner similar to what done in sec. (1.3), we
would eventually find finite contributions to the Higgs potential of the same order of those
computed in sec. (1.3.2). It seems therefore that any hope of improving our conclusions

lays in changing the group structure of the model.

The little Higgs models present in literature are based on a global symmetry H;
spontaneously broken to Hs. Two subgroups of Hy, (1 and (3, are gauged and the gauging
explicitly breaks the global symmetry H;. At the same time the spontaneous breaking of
H; into H, breaks the gauge group G; x G2 in the diagonal combination G, that has to
coincide with the electroweak gauge group SU(2)w x U(1)w. Among the PGBs arising
in the spontaneous breaking an SU(2)w doublet with hypercharge 1/2 has to be present
to be identified with the Higgs boson. The fermion sector is slightly modified and the
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final spectrum is enriched of a heavy Dirac top-like colored quark. Since the couplings
to the standard model particles of the new gauge and scalar bosons and the new fermion
introduced are model dependent, the electroweak precision observables are affected in a
model dependent way and a detailed analysis is required to test the validity of every single
little Higgs model. On the contrary, the low energy effective scalar potential for the Higgs
boson has a general expression, being expressed in terms of the scale f, of the electroweak
gauge and Yukawa coupling g, ¢’ and \; and of the new gauge boson and fermion masses—
the scalar contribution being neglected—which are proportional to the sum of the explicit
breaking terms as in egs. (1.65)—(1.68). The effective scalar potential for the Higgs boson
has the standard form

pah® + MR (1.96)

and the quartic and quadratic couplings, XN and u i respectively, satisfy the same conditions
of eq. (1.73) we have found in sec. (1.2.4) for X and u?. The quartic coupling N obtained
in a generic little Higgs model will not depart from that given in sec. (1.2.4) except for
numerical coeflicients that we expect of the same order of that of eq. (1.65). At the same
time the logarithmic contribution p'; will differ from that of eq. (1.68) in the numerical
coefficients in front and inside each logarithmic term and in the number of the gauge boson
logarithmic contributions, since it is possible that Gy or G is larger than the electroweak
gauge group. The conclusion we reach is therefore the same as in sec. (1.2.4). To reduce
the logarithmic contributions and bring 4/3 to the value indicated by eq. (1.73), we need
large values of the explicit breaking terms, bounded by the constraints to reproduce the
electroweak couplings, while the quartic coupling prefers values of the explicit breaking
terms of O(1), larger values can not give a X of O(10~!) as required by eq. (1.73) even with
unreasonable small values of the UV coefficients.

These considerations support the conclusion that we do not expect we would find
essentially different results if we had analyzed a different little Higgs model and the negative

result we reached holds in general.






Chapter 2

The little flavon model

One of the most tantalizing clue for physics beyond the standard model that
we know of comes from the Higgs sector and the closely related flavor structure. Data,
on particle masses and mixing angles present us with a wealth of information not too
dissimilar to that once offered by Mendeleev’s period table and seem to beg for a dynamical
explanation of their regularities. These data are encoded in the standard model into the
Yukawa lagrangian which gives mass to the fermions and shapes their mixing and mass
hierarchies. This lagrangian is thus controlled by a (large) number of parameters that appear
to be arbitrary insofar as their values are chosen by hand to match the experimental data;
moreover, their values must be chosen in a precise manner and many of them vary across
several orders of magnitude. The stability against radiative corrections of these patterns
and hierarchies seems to require some amount of fine-tuning. While any fine-tuning of the
parameters can always be seen as a mere coincidence (or, perhaps more speculatively, as
anthropic selection at work), we take here the point of view that its explanation—like that
for the little hierarchy—calls for new physics.

A first step in the direction of improving our understanding of the flavor structure
of the standard model can be taken by re-organizing the parameters and considering the
mass matrices of quarks and leptons not as 3 x 3 arbitrary Iﬁatrices but as matrices having
well-defined textures controlled by one or at most few parameters. In this picture, the mass

matrices have entries that are powers of these few parameters modulated by dimensionless

55
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coeflicients of order one—and thus requiring no further explanation. While this is not yet a
dynamical model—it is really just kinematics—it helps in providing a framework in which
to bring the dynamics eventually.

At least part of this dynamics comes from identifying the small parameters, the
powers of which give rise to the textures, with the VEVs of some scalar fields with quantum
numbers running across the horizontal family structure of fermions. In this picture—usually
referred to as the Froggart-Nielsen mechanism [35]—the emerging textures are due to dif-
ferent charge assignments for the fermions, and therefore from the different powers of the
small parameters, associated to the vacua of the scalar fields, making up the mass matrices
arising from the Yukawa lagrangian.

The next, and crucial step consists in providing stability against radiative correc-
tions for the patterns thus generated and therefore explaining away the apparent fine-tuning
of parameters encountered. This problem can be rephrased in terms of the naturalness of
the dimensionful parameters of the model that must be protected against corrections that
tends to bring all of them to the highest mass scale in the problem, usually the cut-off of
the effective field theory (all dimensionless parameters are then assumed of order 1 and
therefore natural). Such a naturalness—in the 't Hooft’s sense—is achieved by identifying
the one or more symmetries that would be recovered in the limit of vanishing interactions
and VEVs.

This problem of fine-tuning and overall stability is present in all models trying to
describe the mass matrices of the fermions, and the textures by which they are character-
ized, in terms of the VEV v of one, or more, scalar fields, the flavons [35, 36]. In these
models, the texture is written in terms of the ratio e = v/f, where f is now the flavor
symmetry breaking scale and ¢ is the small parameter of the texture typically of the order
of the Cabibbo angle. These patterns tend however to be washed out by the quadratically
divergent radiative corrections to the mass term p? that make the VEV, for a generic quartic

potential proportional to a parameter A ~ 1,
v? >~ p2 ~ f? (2.1)

and therefore £ = 1.
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A small € comes in a natural manner if the mass term is protected at the one-loop

level and only logarithmically divergent so that

2742
02 =2~ 10%((;;)/2]” ) 72 (2.2)
and we have 2 < 1 independently of the scale f.

In the first chapter we have seen how the mechanism of collective symmetry break-
ing is used in little Higgs models to stabilize against one-loop quadratic renormalization the
Higgs potential. As a result quadratic renormalization of the Higgs boson masses arises only
at the two-loop level and this make it possible to increase the standard model electroweak
cut-off from few TeVs to few tens of TeVs.

The same idea can be attractive if applied to flavor physics. In this chapter we will
see that it is possible to obtain dynamically a stable (non-supersymmetric) scalar potential
by assuming that the flavons are PGBs originating from the breaking of an approximate
global symmetry, spontaneously broken to a subgroup containing the flavor symmetry that
acts on the standard model fermions. In this way, the field content of the flavon sector is
determined.

The gauging of the flavor symmetry breaks explicitly the global symmetry and
induces a potential for the flavons. The form of the potential as well the size of the scalar
couplings is obtained by means of the CW potential [38] of the non-linear sigma model
describing the PGB dynamics.

The potential induced by gauge interactions preserves the flavor symmetry we
choose to be a SU(2)r x U(1)r flavor gauge symmetry, labeled by the index F' in order to
distinguish it from the electroweak group. The seed for the spontaneous breaking of the
flavor symmetry is given by (gauge invariant) interactions of two doublet flavons with right-
handed neutrinos. These interaction terms destabilize the symmetric vacuum and drive the
complete breaking of the local flavor symmetry. As a consequence all flavor mediating gauge
bosons become massive. At the same time, the one-loop stability of the flavon masses on
the broken vacuum is preserved. ‘

The general framework is similar to that discussed in ref. [47] and it actually uses

the same high-energy global symmetry structure, albeit with a different pattern of gauge
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symmetry breaking. We have recalled this similarity in the naming of the little flavons.

2.1 The model

We choose as our basic flavor symmetry a gauged U(2)p ~ SU(2)rp x U(1)F. This
choice is suggested by the approximate structure of the lepton sector: both neutrinos and
charged-leptons can be classified in first approximation as two heavy flavor doublets—made
by the 7 and p and the corresponding neutrinos—and two lighter singlets—the e and its
neutrino.

To exploit the features of the little Higgs models, at least two copies of the flavor
group should be embedded in a larger (approximate) global symmetry. The request that
the flavon sector exhibits a vacuum structure that allows for the complete breaking of the
final gauge flavor symmetry is satisfied minimally by two flavon doublets. The smallest
group that satisfies these requirements is SU(6), spontaneously broken to Sp(6), which has
been discussed as a little Higgs model in ref. [47].

In our model we assume that the electroweak and flavor symmetries are embedded
in two independent collective-breaking frameworks with different cut-off scales Ay and Ap.
We will not enter the details of the UV completion of the model, and only deal with the
general structure of the effective theory below the non-linear ysigma model scale f = Ap/4m,
where all the physics of flavor takes place.

Consider then the sponfaneous breaking of a global flavor symmetry SU(6) down
to Sp(6). Fourteen of the generators of SU(6) are broken giving 14 (real) GBs that can be

written as a single field

Y=exp(ill/f) . (2.3)
They represent fluctuations around the (anti-symmetric) VEV

0 —I
S = (2) = C o (2.4)

Within SU(6) we can identify four subgroups as

SU(6) D [SU(2) x U(1)]?. (2.5)
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We choose to gauge these subgroups, in such a way as to explicitly break the global symmetry
through the gauge couplings. Only the diagonal combination of these gauge groups survives

the spontaneous breaking of the symmetry so that we have
[SU2) x U(1)]? — SU(2) x U(1). (2.6)

We will use the latter groups to classify our fermion and flavon states.

The generators of the two SU(2) are given by the 6 x 6 matrices

0“00\

Qi’:% 0 0 o) (2.7)
0 010
and
0 0 0
G=3| o0l 0|, 239)
o] o o

where 0 are the Pauli matrices; we choose the U(1)-charge matrices to be given by

1
Vi = ———diag(1,1, -5,1,1,1
! 25 doe /
..
Y2 = —Wl_'g dlag (1, 1, 1, ]., 1, —5) . (29)

Contrary to [47], our U(1) charges belong to the generators of the group SU(6).
Notice that the gauged subgroup [SU(2) x U(1)]? has rank 4: this means that one of the
generators of the Cartan sub-algebra of SU(6) (rank 5) is neither gauged nor explicitly
broken. We identify this generator with

P = diagl1, 1,0, -1, —1,0], (2.10)

in such a way that it commutes with the whole gauge group [SU(2) x U(1)]?, and it is
orthogonal to all its generators. The generator P belongs to the algebra of Sp(6), and
generates a U(1)p exact gloiaal symmetry of the sigma model we are discussing. This
symmetry is then explicitly broken by the couplings of flavons to fermions, as we shall

discuss. We summarize the symmetry structure of the sigma model in Fig 2.1.
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SU(6) > Sp(6)

[SU(2) x UQW)]® x U(1)p [SU(2) x U(1)] x U(1)p

Figure 2.1: Diagrammatic representation of the symmetry structure of the sigma model.
Horizontal arrows indicate the spontaneous SU(6) — Sp(6) global symmetry breaking,
vertical arrows the explicit breaking due to gauge interactions. A global U(1)p is preserved
both by the spontaneous and the explicit breaking (induced by gauge interactions) while it
is explicitly broken by the Yukawa sector of the model.

In the low-energy limit, there are two scalar bosons,

+ 0
¢ = (i%f) and ¢y = (;:;) , (2.11)

that are SU(2) p-doublets with U(1)r charges respectively 1/2 and —1/2, and one SU(2) p-
and U(1)p- singlet s. The remaining four bosons are eaten in the breaking of the (gauge)
[SU(2) x U(1)]? symmetries. Accordingly we find that in the low-energy limit we can write
the PGB matrix as

0 0 ¢f 0 s ¢
0 0 # -s 0 ¢
g W0 ) —g; 0
0 - —¢¢ 0 0 ¢
s 0 —¢5 O 0 '
4 0 4 0

The singlet field becomes massive and has no expectation value in the vacuum configuration

(2.12)

we will use; it is therefore effectively decoupled from the theory. The two doublets are our
little flavons.
Under the action of U(1)p global transformations U = exp (i @P), the doublets

and singlet transform as:

br2— %Py, s—re*%s. (2.13)
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By construction, all GBs start out massless and with only derivative couplings.
However, as anticipated, the gauge and flavon-fermion interactions explicitly break the
symmetry and give rise to an effective potential for the PGBs, the form of which allows for
the existence of a non-symmetric vacuum that completely breaks the residual flavor gauge

symmetry.

2.1.1 The effective potential

The effective lagrangian of the PGBs below the symmetry-breaking scale is given
by the kinetic term

f2
=T (M) (D) (2.14)

where the minus sign follows from the antisymmetric form of 3. As already mentioned, we
take undetermined the cut-off scale Ar = 4nf. The absolute value of this scale is immaterial
to the generation of the lepton mass matrices that, as we shall see, only depend on the ratio
between the VEVs, which are proportional to f, and f itself. In the last section of this
chapter, we will see how it is possible to determine Ar studying the phenomenology and
the flavor changing neutral current (FCNC) processes induced by the new particles present
in the model.

The covariant derivative in (2.14) is given by
DY = 0, +igi A7, (Q% +2QT) +ig|B;, (v + 2y (2.15)

where A} and B;, are the gauge bosons of the SU(2); and U(1); gauge groups respectively
and Qf and Y; their generators as given in (2.7), (2.8) and (2.9). Since the vacuum ¥; in
eq. (2.26) breaks the symmetry (SU(2) x U(1))? into the diagonal SU(2)r x U(1)r, four

combinations of the initial gauge bosons become massive; their masses are given by

1 2.2, 2
Mj =39 +95)f* and Mj =2 (s7+92)f". (2.16)

The effective potential must break the SU(2)p x U(1)r remaining gauge symme-
try and give mass to all surviving PGBs, little flavons included. At one-loop, the gauge

interactions give rise to the CW potential given by the two terms

A? 3 M3 (2
167{21&{1\42(2)“@1‘: MA(Z) <log Aé ) +const.>\] . (2.17)
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In agreement with the general framework of little Higgs models the quadratically divergent
term gives mass only to the singlet field s. No mass is generated for the (doublet) little
flavons. In addition, a trilinear coupling between the doublets ¢ and ¢ and s and a quartic

term for the two doublets are generated:

f}”ﬁ[ﬂﬂ( m) = (3g% s+ 2f¢2 | +343 s Wz b1 ) : (2.18)
where ¢1 o = i02¢7 5. From eq. (2.18) one obtains
m? = (7 +6)7, (219)
and the quartic coupling
AN (2.20)

After integrating out the heavy singlet s, one obtains for \4 the cut-off independent expres-

sion:

9%9% 2
Ay = ~ O(g%), 2.21
g; + 95 (2.21)

which is the only term generated by the quadratic term in (2.17). This happens because

of the mechanism of collective breaking for which the potential of the PGB doublets (little
flavons) is generated by the interplay of both gauge interactions, thus breaking explicitly
the global SU(6) symmetry, while at the same time protecting the doublets from receiving
a (quadratically divergent) mass at the one-loop level.

Mass terms as well as other effective quartic couplings for the little flavons arise
from the logarithmically divergent term in eq. (2.17). One can verify that the one-loop

potential induced by gauge interactions includes the following terms

13611 + 13b5da + M (]61)% + Ma(dha)? + Az (¢l 1) (pheba) - (2.22)

The size of the mass terms and effective couplings are given by

4 2

36" e M < 1 )
e/ f? o X = c{ps, M )64 7 10g 5" s 1072, (2.23)

where ¢ are numerical coefficients, related to the expansion of the X, and My is the mass

of the massive gauge bosons (see, eq. (2.16)). The numerical estimate in eq. (2.23) takes
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into account that we take the (horizontal) gauge symmetry couplings to be of O(1). This
follows from requiring the flavor gauge bosons masses be between 107! f and f while the
flavon masses be around 107! f.

Since A4, induced by the leading divergent term in the CW potential, turns out
to be a sizeable coupling, other relevant contributions to the effective potential may arise
from integration of the doublet self-interaction in eq. (2.20) which contributes to the A o

terms with

Mg~ 41, &SIO‘Q (2.24)
1,2 — 71_2 gM£ ) .

which are in fact of the same order of those induced by the logarithmically divergent term
in the gauge induced one-loop effective potential.

The one-loop flavon potential generated by gauge interactions in egs. (2.20)-(2.22)
has to be compared with the general potential for two SU(2) doublets of opposite hyper-
charges that is given, up to four powers of the fields, by

Va(di,d2) = uddion + pdbdo + (13dlde + Hoe.)
+ M(@ld1)® + Xa(pld2)® + Aa (] 1) (41 2)
+ Bl gal? + As(61182)? + Hec (2.25)

Depending on the sign of the determinant of the mass matrix of the scalar fields
and on relationships among the various couplings, the potential in eq. (2.25) can have
different symmetry breaking minima [48]. In particular we are interested to the vacuum
which completely breaks the SU(2)r x U(1)r gauge flavor symmetry. The residual exact
U(1)p global symmetry, acting with opposite charge on ¢; and ¢; fields, i = 1,2, forbids

the generation of the us and A5 couplings. In the absence of u2 and X5 terms, the vacuum

(¢1) = <:1 ) (¢a) = (32) (2.26)

with real VEVs. The complete breaking of the flavor symmetry allows us to avoid the

can be parametrized as

];;resence in the physical spectrum of massless flavor gauge bosons and is necessary in order
to generate the lepton mass matrices. This vacuum breaks also the U(1)p symmetry,

however a linear combination of P and flavor isospin is still preserved. The corresponding
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global symmetry U(1)p/, with
P' = diag [1,0,0, 1,0, 0], (2.27)

is explicitly broken by the Yukawa sector.
The requirement that the potential is bounded from below gives the three condi-

tions

M+ >0, 4A\A—A2>0, and X\ —|Xs|>0. (2.28)

Assuming /,Li2 < 0 (and making use of u2 = A5 = 0) the symmetry breaking vacuum in

eq. (2.26) leads to the following flavon mass spectrum

m%,Z = mg,s =0
1
m§’4 = 5)\4 (v% + v%)
m%s = Ao+ vl £ \/(Alv% + A2v2)2 — (X1 A2 — A3)viv3. (2.29)

Positivity of the mass eigenvalues then requires Ay > 0 and A% + Agv3 > 0.

The four massless degrees of freedom are eaten by the four gauge fields of the
completely broken SU(2)r x U(1)r flavor symmetry which become massive at a scale de-
termined by the VEVs size

2 2opf—Aspd 5 22apd — Npd

- T Rl 2.
D V5 VY A S VS W v (2:30)

The condition p2, pZ < 0 can be realized if there exist fermions coupled to the doublets
that induce contributions to the scalar masses of opposite sign with respect to that induced
by gauge interactions. This role is played in the model by heavy right-handed Majorana
neutrinos, with mass M ~ f. Radiative contributions to the flavon potential arising from
global SU(6) breaking couplings to Majorana right-handed neutrinos (as given in the next
section) lead to scalar mass terms

Y

TonZ = —c{ ), £, (2.31)

2 1,2
pia = —cP
where c7(11’2) are coefficients of order unity. These quadratically-divergent corrections main-

tain the flavon mass scale below the f scale (and in the TeV regime) as long as 7; < 1072,
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Thus, still avoiding a large fine-tuning of the couplings, no collective breaking mechanism
is required for the lepton-induced renormalization (the only large couplings in the model
are gauge and the Yukawa of the top quark).

Notice that, the contributions to the quartic couplings induced by the massive

right-handed neutrinos are therefore given by

\ 05117;12’3)777177m A% —6
A123 = ——W lOg —]\4—2 <10 (232)

and are subleading, with respect to those induced by gauge interactions.

From eq. (2.30) and egs. (2.23)-(2.31) we obtain v;, vs = O(f), which in turn
implies that besides the four flavor gauge bosons even two of the flavon states have masses
of order f, while the remaining two scalars have masses of O(1071f).

Assuming all of the above conditions satisfied (we will not be concerned with the
detail of the UV completion of the theory) we now discuss the neutrino and charged lepton
mass textures that arise by assigning non-trivial flavor transformation properties to the

lepton families.

2.2 Textures generation

The spontaneous breaking of the global SU(6) — Sp(6) (approximate) symmetries
leads to the breaking of the gauge [SU(2) x U(1)]? to SU(2)r x U(1)r. In this model,
fermions of different families transform according to this SU(2)r x U(1)r gauge flavor
symmetry. In the following, all Greek indices denote the flavor group while Latin indices
refer to the electroweak group.

Textures in the mass matrices of fermions are generated by coupling the flavon
fields to the fermions. The model does not explain the overall scales of the fermion masses,
that have to be put in by hand; it explains the hierarchy among families that exists after
that scale has been fixed.

The effective iagrangians are rather cumbersome because many different couplings
are allowed by the flavor symmetry. The little flavon fields enter as components of the

pseudo-Goldstone field 3 introduced in eq. (2.3) of the effective non-linear sigma model.
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2.2.1 Generalities

After electroweak symmetry breaking, the effective lagrangian contains the follow-

ing mass terms for fermions:

N |
£ = — g0 pr@yo G X" CMWx + He, (2.33)
where @bg?R are chiral fields, M (9 are 3 x 3 matrices, i = u,d,l, M™ isa 6 x 6 symmetric
matrix, x = (vg,Cvg)T and flavor indeces are understood. C' is the charge conjugation
matrix.

The neutrino mass matrix can be written in 3 x 3 block form as:

mr, mg

MM = (2.34)

mp Mg
In the present case, my, = 0 and the scale of mpg (whose generation does not involve neither
electroweak nor flavor symmetry breaking at leading order) is of order f and therefore much
larger than that of mp. In the spirit of effective field theory, one can approximately block-
diagonalize M (") decouple three heavy states which are predominantly standard model

singlets, and write the Majorana mass term for the light states as

£m = —% FoM™ vy + He., (2.35)

where now the (symmetric) Majorana mass matrix for the light fields (with some abuse of no-
tation, we identify the light fields with the left-handed components) is M @ = —m% mgl mp.

All matrices are non-diagonal in flavor space. One can diagonalize them with
appropriate bi-unitary trasformations,

diag M® = RO 6 L&) (2.36)

diag M®») = [T pp) L) (2.37)

where L(®) R() (i = u,d, e) and L(*) are 3x 3 matrices in flavor space. With these definitions

one finds that the mixing matrices appearing in the charge-current interactions according
to the standard notation are given by

Vexkn = LMTL@, (2.38)

Vemns = LOTLW), (2-39)
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for quarks and leptons, respectively. We use the standard definitions of the mixing matrices,
in which one writes the down-type quark (neutrino) flavor eigenstates d’ (¢/) in terms of
the mass eigenstates d (v)—in the basis in which up-type quarks (charged leptons) are

diagonal— as

dl

Il

Vexkm d, (2.40)
v = Vpunsv. (2.41)

The standard parameterization of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix in terms of three mixing angles 812, 613 and #93 and one phase § reads:

—1id

C12€13 $12€13 S13€
proT— '5 6
Verkm = | —siaco3 — c12503513€”  c1ac3 — 5125235136 sasciz | (2.42)
5 .
812823 — €12C23513€" —C12823 — 812023813615 C23C13

where c¢;; = cosf;; and s;; = sinf;;. An analogous expression is valid for the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [50], neglecting the flavor-diagonal Majorana phases.

2.2.2 Quarks

Quarks are characterized by small mixing angles. In this respect it is natural to
consider them as singlets under non-abelian flavor symmetries. We take all standard model
quarks—Ileft-handed electroweak doublet components as well as right-handed electroweak
singlets—to be singlets under SU(2)r while being charged under U(1)p. Textures gener-
ated by abelian symmetries have been widely discussed in the literature (see for instance
[49]). Here we embed this ansatz in the little lavon framework paying attention to the
issue of the stability of the flavon potential, while avoiding the large hierarchies among the
Yukawa couplings which are present in the standard model. A possible charge assignment
is summarized in tab. (2.1).

Given the charges in tab. (2.1), we find for the up quarks the following effective

Yukawa lagrangian

Ly = M1Tr(Za-13%3210) HIQuL + As2tr(Ba-1353240)  H1 Qo

+ TrR(A33 + M3Za—16T324a + N3 Za-13T62+0) HQaz
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Table 2.1: Summary of the charges of quarks and flavon fields (o = 2, 3) under the horizontal
flavor groups SU(2)r and U(1)r. Q1 stands for the electrweak left-handed doublets. g is
an arbitrary charge that is not determined.

U)r SU(2)r

Q1L g+3 1

Qa1 q+2 1

Q31 q 1

UR g—3 1

CR q— 1 1

tr q 1

dr qg—4 1

SR q—2 1

br q—2 1

a 16—( Z/f (bl"_'--)a—l 1/2 2
Ya—13=(+1/f b2+ ... )am1 —1/2 2
T3zra = (—i/f 1+ --)a—1 -1/2 2
Ye2+a = (=t/f ¢34+ --)a 1/2 2

X217 (Bae1383240) HT Q11 + X226 (Sa-135324a) *H1Qar
A23TE(Za-13T32+a) H' Qa1
M1TE(Za-13T32+a) "HT Q1L + M2UR(Za_1383210) HT Qar

)
Y H'Qs + He. (2.43)

+ o+ o+ o+

M3TR(Za—13232+40a
as well as

_Cd

Il

A310R(Zam13832+0) " HTQuz + A32DR (Sam13T3240) H Qor
X330 (Sa-13T324a) HIQsy,
A15R(Ba-13532+0) " H Q1L + Aa23R(Za-13832+0) H Qor
A235R(Za-1383240) " H Q31
AM1dR(Za-13%3210) HIQiz + M2dr(Sa13Z32+0) H Qar
)

AM3dr(Sa-13T3210) ' HIQsr + Hec. (2.44)

+ o+ o+ o+ o+

for the down quarks.
Notice that even though the ¢t quark has a large Yukawa coupling that could

introduce a potentially destabilizing term in the flavon effective potential, the contribution
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to the flavon mass terms of ¢-quark loops induced by the couplings in eq. (2.43)

(ho)® A%
f? 16x2

P‘%Q ~ —Re (/\33()\,337)\”33))

’

(2.45)

remains negligible compared to eq. (2.31).

2.2.3 Leptons

At variance with the quark sector, lepton mixings may differ by the presence of
large angles, as a consequence of the neutrino oscillation data. The oscillation pattern
together with the hierarchy structure in the charged lepton mass spectrum, suggests that
the leptons of the second and third family may belong to flavor doublets. In the following
we take the standard model electron doublet l.;, to be an SU(2)r singlet charged under
U(1)r, while the standard model doublets [,, -1, to be members of a doublet in flavor space.
Right-handed charged leptons are taken to follow a similar structure.

In order to have a see-saw-like mechanism [5], we introduce three right-handed
neutrinos v%, ¢ = 1,2, 3, which are SU(2)p singlets. This choice allows us to take in the
effective lagrangian right-handed neutrino mass entries at the scale M ~ f. Tab. (2.2)
summarizes this possible charge assigment.

Table 2.2: Summary of the charges of all leptons under the horizontal flavor groups SU(2)»
and U(1)p.

U)r SUQ2)Fr
ler, -2 1
er 2 1
Ly =, L) 1/2 2
Erp=(p,7)r 1/2 2
ViR 1 1
VoR -1 1
V3R 0 1

The neutrino lagrangian is obtained after integrating out the three right-handed
neutrinos and, at the leading order in the right-handed neutrino mass and in number of &
fields, is given by (see [51]):

- By HYH Lg) 1. Tree s 1=
-2L, = (i ])é = [ZAw Ao + 7 >\§,,J [2a—-162:62+al

2V

14
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(IS, H*)(H lop) + (IS, H*)(H' 111)
M
[Zs5-1626 21L5]_Y1L+)/"2R (2.46)
(15, H*)(H lg1)
oM,
AL (G Bo-138304y +0 ¢ ) + (A5,)? €€y Ta01e Ds 2+7'] + H.c.,

Aow (A, €apBp—16 + ATy S62+a)

+

(1020 )ap (10307)5, |(N,)? Bs135413

where r = M /M3, M and Mj are the masses of the right-handed neutrinos, o, /2 are the
generators of the SU(2)r gauge group (7 = 1,2, 3).

The lagrangian for the charged leptons is given by

Le = er [Me (Sac1686240) TR (HT 1)
+ i (M3e 6210 + A2e €app_16)(Ts1686245) 127D (HT laL)]
%[é (Mg Ze2+a + ME €apXp—16) (Zs-1 6262+6)_Y1L] (H' l11)
+ m[%ﬁ( —X2E + Xop Dy—165324 + Agp Ly—1326247) (2.47)
+(NsB Ba-16T3248 + Mo €as€py Vo24sTy-13+ (3 6))

+()\4E Ya—1 527_1 3€8y + MIE €q 626,2+(523,2+a -+ (3 &~ 6))] ([:TJf lﬁL) + He..

2.2.4 Leading order textures and masses

On the vacuum that completely breaks the the SU(2)r x U(1)r gauge symmtery,
the little flavons acquire expectation values v 2 = €12f, with €12 < 1. By inspection of the
Yukawa lagrangians introduced in the previous section, we can determine the fermion mass
matrices.

Since all quarks are SU(2)r singlets the all entries of their mass matrices are
proportional to powers of & = £1e63. Due to the large number of possible higher-order terms,

we only take for each entries the first non-vanishing term, and obtain

)\11]66 /\mk‘s )\131{}3
M(U) — (hO) A21k4 )\gzk'?' )\23]‘7 (248)
\ As1k® Azpk® A3z )
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and
Aik® Aok? Azk?
MW = (ho) K> | Jouk® Aook® Dz | - (2.49)
As1k3 Aapk? g
The essential feature of the previous mass matrices is that the fundamental textures
are determined by the vacuum structure alone—that is that obtained by taking all Yukawa
couplings );; and S\ij of O(1). In fact, by computing the corresponding CKM matrix one

finds in first approximation

1 O%k) 0%
Vekm = | O(k) 1 Ok |, (2.50)
O O(?) 1

that is roughly of the correct form and, moreover, suggests a value of k ~ sin 6o ~ 0.2.
At the same time it is possible to extract from (2.48) and (2.49) approximated
mass ratios:
My  Me Mg mg

~O0(k®) —X~0(k? (2.51)

Me Mg Mg mp
which again roughly agree with the experimental values.

These results show that the quark masses and mixing angles can be reproduced by
our textures. While a rough agreement is already obtained by taking alla Yukawa coupling
to be equal, the precise agreement with the experimental data depends on the actual choice
of the Yukawa couplings \;; and 5\” However, their values can be taken all of the same
order, as we shall see in last section.

Notice that the textures used in this work do not satisfactorily address the flavor
problem in a supersymmetric framework: the abelian nature of the flavor symmetry in the
quark sector, and the large mixing angles in the right handed mixing matrices R%) would
in general induce large contributions to FCNC processes via diagram with gluino exchange.
The diagonal entries of the squark mass matrices are not forbidden by the abelian symmetry,
and in general 6ne expects all of them to be determined only by the scale of supersymmetry'
breaking, up to O(1) coefficients. Once fermions are diagonalized, large off-diagonal entries

are generated in the 3 x 3 right-handed down-type squark mass matrix, because of the
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large mixing angles in R(® (this can be easily seen from the fact that second and third
row of eq. (3.88) have entries of the same order). Phenomenologically, for generic choices of
the diagonal elements of the squark mass matrices, this leads to contributions to AF = 2
processes (K°-K° or B%-B° mixings and related CP violating observables) largely in excess
of the experimental data [52]. This can be avoided allowing for a degeneracy of the diagonal
entries themselves, albeit with a tuning at least at the percent level.

In the lepton sector, the VEVs of the little lavons gives us the left-handed neutrino
and charged-lepton mass matrices (again, we only retain the first non-vanishing term for

each entry):

[r A2, + 2200 ] eled Do N edes —Xou N e163

(ho)
M®) YA —Agy A}, E2E2 T M2 e2 T Ap, \p 182 | - (2.52)
—Aop AT E1€3 7 Mg, M\ e162 r Ai2e2

The eigenvalues of this matrix are the masses of the three neutrinos. The scale M is just
below or around f and therefore we are not implementing the usual see-saw mechanism that
requires scales as large as 10'3 TeV. At this level we can not say anything about the effective
neutrinos Yukawa couplings, since we do not have yet fixed f. In order to reproduce the
right neutrinos mass spectrum we should have \2/f ~ 10719/TeV. This implies that the
higher the scale f is the more realistic neutrino masses are obtained by less tuning the
effective Yukawa couplings.

In the same approximation, the Dirac mass matrix for the charged leptons is given

by
Aie£fed Aoe €269 A3 €163
MO = (ho) | Mipeled A2 (Mug + Aoup) €162 | - (2.53)
Npeled —(Aup + dugp) e \oE
In order to exhibit the main features of the underlaying textures, we study the
limit

e1 =1 and e —k, ' (2.54)

which is suggested by the additional constraint €169 ~ sin ¢, obtained from the study of

the quark textures.
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Notice that in ref. [51] a slightly different charged-lepton texture has been con-
sidered that accounts for maximal mixing in the limit €2 < €2 < 1 (or, equivalently
B <el k).

In the limit (2.54), the matrices in egs. (2.52)—(2.53) reduce—at the order O(k?),

and up to overall factors—to

0 Ok) O(K?) 0 O®k) O®k2) )
MW =| ok o)) Ok | and MO=| ¢ 1 Ok |, (259
O(k?)  O(k) 1 O(k?) O(k) 1

where, as before, the 1 stands for O(1) coefficients.
The eigenvalues of M) can be computed by diagonalizing M1 M), This prod-

uct is—again for each entry to leading order in &:

0 0  O(?
MOt 0 = 0 1 Ok |- (2.56)
Ok? Ok) 1

By inspection of the 2 x 2 sub-blocks, the matrix eq. (3.94) is diagonalized by three
rotations with angles, respectively, 03 ~ /4 and 6}, ~ 6}, < 1, leading to one maximal
mixing angle and two mihimal. On the other hand, the neutrino mass matrix in eq. (3.93) is
diagonalized by three rotations with angles, rispectively, tan 26, ~ 2/k and 045 ~ 6% < 1
(the label 3 denotes the heaviest eigenstate). Therefore, the textures in the mass matrices
in egs. (2.52)—(2.53) give rise to a PMNS mixing matrix—that is the combination of the
the two rotations above—in which 3 is maximal, 612 is large (up to maximal), while 6;3
remains small.

The natural prediction when taking all coefficients O(1) is then: a large atmo-
spheric mixing angle 63, possibly maximal, another large solar mixing angle 05, and a
small 013 mixing angle; at the same time, the mass spectrum includes one light (O(k*)) and
two heavy states (O(1)) in the charged lepton sector (m., m, and m, respectively), two
light states (O(k?)) and one heavy (O(1)) in the neutrino sector, thus predicting a neutrino

spectrum with normal hierarchy.
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By flavor symmetry, one expects masses of the same order of magnitude for u and

7. The ratio of the masses of 7 and u is given to O(k) by:

det (m® 1m0
=" ( ) : (2.57)
My Tr (mW1m®)

where m®) is the p-7 sub-matrix of M), The experimental splitting can be explained only
admitting a moderate amount of fine-tuning, of a factor 10, between the coefficients of the
charge lepton mass matrix such as to make R ~ O(107!). One can quantify the stability
of this fine-tuning with the logarithmic derivatives d{}ij of this ratio with respect to the
corresponding Yukawa coefficients Y;; [53]:

Y, OR
R 0Y;;

R:

B = . (2.58)

Using the experimental value R = m,,/m,, and the numerical solution given in sec. (2.3),
we find (i,7 = 2,3) d{%j < 9, where the largest value arises because of the leading order
correlation between the diagonal Yukawas entries (Yay = Y33) in the charge lepton sector
that doubles the sensitivity. In the absence of any fine-tuning one would expect values of
d%j at most around unity. Nevertheless, the tree level value of R is not destabilized by
Yukawa radiative corrections, since they are very suppressed in the model.

The UV completion of the theory, in which all effective couplings should be com-
puted from a restrict number of fundamental parameters, might explain possible correlations
among the Yukawa couplings, together with the suppression of the the overall neutrino scale.

Finally, notice that even though the quark charges leave an undetermined factor
q (see tab. (2.1)), gauge anomalies are present in the theory, as it can be easily seen by
inspection considering the charges of the matter fields. They can be cancelled by adding

appropriate Wess-Zumino terms [54].

2.3 Fitting the data

Let us first briefly review the experimental data and comment on the possible
range of values we consider acceptable in reproducing these data within the model.
The CKM matrix is rather well known as are the masses of the quarks (see, e.g.,

the PDG [8]). We will estimate only ratios of masses which are renormalization group
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invariant, so that we only have to be careful in computing them at a common scale. Taking
into account the uncertainties in the values of the quark masses, the mass ratio we would

like the model to reproduce are given by

T 248470 T —40+£10 2 =430+300 ¢ =325+ 200. (2.59)
Me Mg My My
The CKM phase is determined [55] to be
§=61.5°+7° (sin2B = 0.705+0942) (2.60)

Compelling evidences in favor of neutrino oscillations and, accordingly of non-
vanishing neutrino masses has been collected in recent years from neutrino experiments [34].
Combined analysis of the experimental data show that the neutrino mass matrix is charac-

terized by a hierarchy with two square mass differences (at 99.73% CL):

AmZ = (5.3 —17) x 10 %eV?

|Am2| = (1.4-3.7) x 1073%eV?, (2.61)

the former controlling solar neutrino oscillations [56] and the latter the atmospheric neutrino
experiments [57]. In the context of three active neutrino oscillations, the mixing is described
by the PMNS mixing matrix Vpyys in eq. (2.39). Such a matrix is parameterized by
three mixing angles, two of which (612 and 623) can be identified with the mixing angles

determining solar [56] and atmospheric [57] oscillations, respectively (again, at 99.73% CL):

tan?6y = 0.23 —0.69,
sin260g = 0.8-1.0. (2.62)

For the third angle, controlling the mixing v,-v,, there are at present only upper

limits, deduced by reactor neutrino experiments [58] (at 99.73% CL):
sin® 613 < 0.09. (2.63)

Other observable quantities determined by the neutrino mass matrix have not been
measured yet. These include: 1) the type of neutrino spectrum, with normal or inverted

hierarchy (see for instance [59] for a definition), 2) the common mass scale, i.e. the actual
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value of the lowest mass eigenvalue m1, 3) the (Dirac) phase 6! responsible for CP violation
in leptonic flavor changing processes, 4) the two Majorana flavor-diagonal CP-violating
phases, 5) the sign of cos20g. Several proposal appeared in the literature to measure all
these quantities in the next generation neutrino experiments, together with the mixing angle
0 [60]. Our model predicts a neutrino spectrum with normal hierarchy, with a very small
mass for the lighter neutrinos m; o < M .

Finally, the values of the charged-lepton masses are given by m, ~ 1777 MeV,
m, ~ 106 MeV and m, ~ 0.51 MeV, respectively. We therefore have

Moy 7 3484. (2.64)

my, Me Me

Tab. (2.3) summarizes all the experimental values and their uncertainties.

2.3.1 Masses and mixings

In order to show that the model reproduces in a natural manner all the experimen-
tal data we retain the first non-vanishing contribution to each entry in all mass matrices and
then—having extracted an overall coefficient for each matrix according to egs. (2.48)—(2.49)
and eqs. (2.52)—(2.53)—treat the ratios of Yukawa couplings as a set of arbitrary parameters
to be varied within a O(1) range.

We keep the VEVs v; and vy fixed at the values obtained by taking £ = 0.8 and
g9 = 0.2.

In practice, we generated for the quark matrices many sets of 18 complex Yukawa
parameters whose moduli differ by at most a factor 10 and accepted those that reproduces

the known masses and mixings. As an example, we found that the assignments

M1 A2 Ais 1240073  1.9+0.31i —0.82+ 1.3
A1 Aoz Moz | =M | —0.32-0.41i —0.58+ 0.85i —0.48 — 0.95i (2.65)
As1 Asz Ass 124+084i —15+0.78  1.4+40.72
and
M1 A2 Az ~0.55 — 1.5i —0.76 — 0.42; 0.55+ 1.2i
Dot Aoz Apz | =Ap | —1.3-0.83i 032412  0.58 +0.67 (2.66)

| Xa1 As2 5\33J | 0.75-1.00 —14+0.17 009-16i |
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with Ay and Ap of O(1), give masses and mixing angles in excellent agreement with the
experimental data. We have followed a similar procedure for the leptonic sector, generating
'random sets of 13 real parameters. Lacking experimental signature of CP violation in the
leptonic sector, we have neglected, for the purpose of illustration, leptonic phases in the

numerical exercise. Again, we obtain that for the representative choice

T A3, + 22102 —AnAl, =AY, 0.66 —1.0 2.9
Az AL, rAZ P MM, | =X 1.0 1.9 029 (2.67)
— A A, APV VA VL 2.9 029 -—1.1

with A\, = O(10™%), and

AMe  Aze Aze 1.2 027 14
ME ME Mg | =2 | =12 039 23 (2.68)
Mg —ME \E 0.36 2.0 0.39

with Ag = O(1072), the experimental values are well reproduced.

Tab. (2.3) summarizes the experimental data and compares them to the result
of the above procedure. The agreement is quite impressive, keeping in mind that we have
varied only the leading terms in the mass matrices. While the values of the overall constants
(which are related to the scale of the heaviest state in the mass matrices) are not explained
by the model, the hierarchy among the mass eigenvalues and the mixing angles are given
in first approximation by the flavor symmetry and the flavor vacuum so that, within each

sector, the Yukawa couplings remain in a natural range.

2.4 The phenomenology

In the previous sections we have seen that the model reproduces successfully
fermion masses and mixing angles and that these predictions are independent of the scale f.
On the other hand, the masses of the flavor bosons—both vector and scalar—arising in the
breaking of the gauge symmetries depend on f. Since .these masses enter in the processes
mediated by the new particles, a computation of their effects allows us to constrain possible

values of f.
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Table 2.3: Experimental data vs. the result of our numerical analysis based on a rapresenta-
tive set of Yukawa couplings of order one (see text) and €7 = 0.8 and €5 = 0.2. Uncertainties
in the experimental inputs are explained in the main body.

[ | exp | numerical results |
[Vaus| 0.219 — 0.226 0.22
\ 0.002 — 0.005 0.0035
\ZY 0.037 — 0.043 0.040
[Vial 0.004 — 0.014 0.0079
\A 0.035 — 0.043 0.039

B 61.5° & 7° 61°
sin 23 0.70573:542 0.69
me/me 248 £ 70 219
e/ M 325 + 200 300
my/ms 40 + 10 45
ms/mg 430 =+ 300 231
tan? 0, 0.23 — 0.69 0.32

sin? 20g 0.8 1.0 1.0
sin® 3 < 0.09 0.08
AmZ/AmZ | 0.014 —0.12 0.043
My /My, 17 15
mMy/me 207 231
My Mg 3484 3465

We will now consider several processes and compare the predictions given by the
little flavon model to their experimental bounds. We present the relevant processes that
occur at tree level starting from those that give the less stringent bounds on f to that
that give the most stringent. We will see that the latter bound comes from flavor changing
neutral current in the K% K9 for which we have Ar > 5 x 10* TeV. We also give an example

of a one-loop process that gives a limit on f as stringent as that coming from K°-K°.

2.4.1 Interactions

Before studying the processes induced by the new particles present in the spectrum
of the little flavon model it is useful to repeat which are the new particles and their masses
and which are the new interactions between standard model fermions and new bosons, both

scalars and vectors.
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The full effective lagrangian at the scale A is given by

L=CLT, +L +09 + Ly, (2.69)

kin kin

where £,>§i’7’:’g includes the kinetic terms for the PGBs, the fermions and the gauge bosons

respectively and Ly the Yukawa couplings. Explicitly we have (see eq. (2.14))

2
= Lo (v (0,3
Ll = FLrmu(@ +igi A}, T +igi BY) 1 r (2.70)

In sec. (2.1.1) we have seen that after the spontaneous breaking of global SU(6) we
are left with four massive gauge bosons, A" (a = 1,2, 3) and B’* of masses (see eq. (2.16)

1 2 2 2
my = 5(9% +93)f* and m% = 5(9'1 +9'9)f%, (2.71)

and four massless gauge bosons, A% (a = 1,2,3) and B*.
After the SU(2)r xU (1) r symmetry is broken we are left with one complex massive
gauge boson, Fi', 2 real massive gauge bosons, Fl’f 9, 2 real, 12, and one complex, (s,

massive scalars, which are the flavon scalars. Their masses are given by

1
m%‘3 = "2‘92(5%"'6%)]‘2,
2 oo 2y 2
mg, = 5(9 +97)elof”,
mim = [()\16%+)\26%:|:
VOue +226)? — (A hs — N)e2ed) fY,
1
mh, = @+, 272)

where g2 = ¢293/(7 + 93) , ¢ = ¢'19'5/(¢'? + g'2) are the effective gauge couplings,
Ay~ O(1) and Ay 93 =~ O(1072) are the parameters of the potential as discussed in 2.1.1
and €2 the ratios of the VEVs of ¢; and ¢, and the scale f. Unlike egs. (2.16)—(2.29),
where we have written the masses of the new gauge and scalars bosons in terms of the VEVs
v1,2 of the two flavor doublets, in eq. (2.72) we have given prominence to their dependence
by the scale f and by €; 2. This choice is motivated by the fact that in 2.2.4 we have seen

that the fermion masses and mixing angles predicted by the model depend only by €1,2-
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Besides the numerical analysis in 2.3 indicates that e;ep ~ 0.2 if we want to fit the fermion
masses and mixing angles. This allows us to reduce the number of degrees of freedom to
perform the phenomenological analysis. Notice that the gauge bosons Fl” 5 come from the
mixing between A% and B*, while F§' from the mixing between A and Af.

From the kinetic term in eq. (2.70) we have the following interactions between the

gauge bosons and the fermions

2 + 12 _
! (—————V“’g> Fo v for) (FE+ FLY, (2.73)

yFL,R \/ﬁ

if fr, r is a singlet of SU(2)r with flavor hypercharge y{JL R and

2 12
A Vst 2\ gmin VI 9 10 L \ph o (02 2\
\/5[(7/) LRVVL.R) s +h-c~] + 7 [W LWL RS + (¢ L,R7ﬂ¢L,R)F1] , (2.74)
if 1 g is a doublet of SU(2)r of flavor hypercharge 1/2 with components ¥} , and P2 o
; LR L,R

The interactions in egs. (2.73)—(2.74) have been written in the flavor current basis
i=1,2,3

for the fermions f1, g and 91, g. In the next sections we will indicate as e, g the charged
lepton flavor current eigenstates, e%}l’z’g = er R, LR, TL,R the charged lepton mass eigen-

states, Lg ,, Rf , the unitary matrices that diagonalize the non diagonal mass matrix M RL

through the bi-unitary transformation

Ret MEE L = MR (2.75)

The same conventions will be used for the quarks, where we have uiL’ R di, B uz}m’?’ =

ur R, CLR,tL,R and d%’:Rl’z’s = dr.Rr,brR,SL,R, LZf,RZf and MY and MJE. The non
diagonal mass matrices are those of egs. (2.48)—(2.49) and egs. (2.52)—(2.53).

In the model all the standard model quarks are SU(2)r singlets charged under
U(1)r. Standard model leptons belonging to the first family, l.; and egr, are SU(2)F
singlets as well, while those of the second and third family, I, ;7 and (u, T)r, are members
of a doublet in flavor space (see tabs. (2.1)-(2.2)). A consequénce of this choice is that
all lepton mass eigenstates interact with all the gauge bosons after SU(2)r x U(1)F is

completely broken. For this reason it is useful to write down the interactior
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Figure 2.2: Flavon mediated contribution to the decay = — et et e™. The fields ¢ 5 are
the SU(2)r doublets.

gauge bosons and charged lepton mass eigenstates. The general interaction is given by

2 2
ca B (\/g + g

mL,R NG )(E%,R’ergR)F#z ) (2.76)

where m = 1,2,3 and ymL , are given by

uip” = UPaUfayll +UsuUss,
vy, = UfuUfayl] +UsaUss,
2
eap g e
Yy = A5 —3U2.Us5, 2.77
8y o7 1 g2 2alsp (2.77)

with U¢ = L¢, R® and y§} the first family charged leptons flavor hypercharges (see tabs. (2.1)—
(2.2)).
For completeness we report also the interaction between flavor gauge bosons and

quark mass eigenstates. The interaction is given by

qaﬁ(1/g2+g,2

v\~ )(QL rYudl g) (Y + FS) (2.78)

where y%f'lg are given by

vl = Y U i, (2.79)
1=1,2,3

with U? = L9, R? and y?]i the quarks flavor hypercharges (see again tabs. (2.1)-(2.2)).
2.4.2 Processes mediated by the flavons

All interactions between fermions and flavons come from the Yukawa lagrangian

Ly in eq. (2.33). These are the terms that give origin to the fermion mass matrices. After
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the breaking of SU(2)r x U(1)F it gives also the interactions we are interested here. Notice
that in the following, for simplicity, we will indicate as flavons both the SU(2)r doublets,
¢1,2, and the massive scalars, ¢; 23, arising after the breaking of the SU(2)r x U(1)p
symmetry. Processes mediated by the flavons can occur at tree level and at one or more
loops. Tree level processes concern direct interactions between fermions and only one flavon,
for this reason couplings of this kind will follow the fermion mass matrices and all the flavor
changing processes mediated by the flavons will be very suppressed since they will result be
proportional to power of the ratio between the light fermion masses and the scale f.

In trying to constraint the flavon masses, let us first consider the lepton flavor

violation (LFV) process u — 3e. The limit on the branching ratio '), _, ¢+~ is given as

a function of the total branching ratio I',_, ;11 [65]

r
pde 10712, (2.80)
Pp—)&ll

with
5 2
m”GF

In the model we have tree-level LF'V processes mediated by the flavons which give rise to

effective operators. They can be parametrized as

%{ﬂm(é(l —Ys)né(l = y5)e) +nrr(E(l + vs)ne(l +s)e) +

nLr(E(L = 75)p (L +75)e) +nre(E(1L+35)n a1 — 15)e) } (2.82)

where A is an effective scale given by

1 1
A2 4(4x Ag — A2)(er169)%f2 (2:83)

and

e MEL LS\ [ Rf, MEL L,
ULL:( - ;” J)( i j,”‘ )Fijlk(/\le2,>\3,61,€2), (2.84)

with similar expressions for nrr, 7Lr, NrL- Notice that the effective scale A is obtained
summing on the exchanges of the two lighter massive flavons, ¢; 2, that are the only ones

which give rise to tree level processes. ML in eq. (2.84) is the non diagonal charged lepton
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mass matrix, L* and R* are defined in sec. (2.4.1), Fjj is a function of the potential param-
eters Aj=12 3 discussed in sec. (2.1.1) and of €; » that depends on the processes multiplicities
in the current basis.

From egs. (2.83)—(2.84) we can readily compute T',,_, +.+.- that is given by

5 2
lavoni m 1
U v (G ) (el e+ o). 039

By imposing the experimental bound in eq. (2.80) and using eq. (2.81) we find
F > 200 GeV. (2.86)

Such a rather weak bound is justified by the strong suppression of this process. This is best
understood by going back to the current eigenstates. In this basis we have nine processes
that sum to give u — 3e in the mass eigenstates. For simplicity we consider only one of

them. The interaction terms that give rise to the tree level process are

i 0 1
P e (e (225"

)+ A0(81 1)+ halBhd)*+ Ao (6] 61) (Bhto).
(2.87)

/\Zeé}z ho* e%) (

After the flavor and the electroweak spontaneous breaking the tree level effective coupling

is (see fig. (2.2))

2
5 (h%%)
12
where (161 4+8A2+12)3) is the function indicated as Fig1; in eq. (2.84). Processes mediated

)\2e>\le
4(40 2 — A3)(e1€2)%f2

61(6162) (—6—(1 — ")’5)/,11) (6(1 — 75)8)(16)\1 + 8o + 12)\3) ) (288)

by the flavons are suppressed by powers of € 2 and by the ratio between the electroweak
breaking scale and the flavor one.

Let us consider also a FCNC process mediated by the flavons in the quark sector.
FCNC processes in the quark sector with AF = 2 are responsible of meson-antimeson
oscillations. Since meson mass eigenstates are a combination of mesons in the current
basis, the splitting of the masses of the mass eigenstates is related to the possible FCNC
processes. This statement is general and-can be applied to K°-K° as well as B-B° system.

Nevertheless, the best experimental data are related to the splitting of Kaon masses [61]

Amps = (3.46 £0.01) x 107 MeV, (2.89)
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and therefore we will consider only the processes with AS = 2. Given an effective interaction
V = COas=2, where C is a numerical coefficient and Oas-2 the effective operator involving
the quarks d and s, we have that

Re <KOIOASZQIRO>

Amypg = 2C
2mK

(2.90)

In order to estimate the contribution of the flavons to Amrg we have to consider
all the possible effective operators with AS = 2. We have three main operators that we

parametrize as follows

1 - - - -
—=1p1(d(1 +5)sd(1 —v5)s) + p2(d(l — ¥5)sd(l — 75)s
A2
+p3 (Cz(l +75)s d(1 +’75)5)] ) (2.91)
where
1 2(/\1 + AQ + )\3)
= = . 2 2
A2 4(4)\1)\2 — A%)(€162)2f2 ( J )
The coefficients p; are given by
Sji( B MG NjiLB)\ [ Su(Rs MEEN, LY, )*
pl = f f 7
ji( R MFLN; L)\
P2 = f )
Elk(Rd*MRLleLd )* 2
ps = ( ez f} B, (2.93)

where M éj}L is the non diagonal quark mass matrices and Nj; is a multiplicity factor.
A comparison between eq. (2.89) and eq. (2.90) with eq. (2.91) indicates that we
need f at least

f~10TeV, (2.94)

in order to satisfy the experimental bound.

However, as we shall see in the next sections, processes mediated by flavons are
not fhe dominant ones and the limit obtained here must be increase. For this .reason we
will not further discuss this kind of processes, and concentrate on those mediated by the

flavor gauge bosons.
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fiLr foL.r

FH
firr f2L,R

Figure 2.3: Processes of annihilation and production of ff mediated by gauge flavons.

fiLRr faL,r

faL,r far,r

Figure 2.4: Parity violation processes mediated by gauge flavons.

2.4.2.1 Processes mediated by the gauge flavons

Processes mediated by the gauge bosons of the flavor groups are crucial in fixing
the scale f. Most of the processes we discuss in the following arise from two classes of
operators of the general form

1, - - 1 - _
K;(flrv’A’S’Pfl)(szV,A,s,sz) and F(leV’A’S’Pf2)(fSFV,A,S,Pf4)a (2.95)

where in the second class of operators at least fo # f1 (or fa # f3 ). These operators
arise from integrating out the gauge flavons. Notice that the longitudinal components of
the gauge flavons propagators give contributions sub-leading with respect to that arising
from the transverse components. The first class of operators in eq. (2.95) gives rise to
processes of annihilation and production of fermion-antifermion couples and parity violation
processes .(see fig. (2.3)), while the latter to flavor changing processes (see fig. (2.4)). Tree
level processes can give only the vectorial and the axial structure, while the scalar and

pseudoscalar ones arise when we consider processes at least at one-loop. For this reason
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these structures are suppressed and we neglect them in the following.

2422 ff— ff and parity violation

The number of four fermions operators belonging to the first class of eq. (2.95)
which give rise to ff — f'f’ and parity violation is very large, so we consider only those
that contribute to the experimentally most constrained processes, that is, eTe™ — eTe™

and eqr g — eqg,r- They can be parametrized as
1 _ _ _ _ _ _
s {UEEL (eL'YueL eLV%L) +ngr (BRW@R erY" GR) +2niR (eL'YueL erY" 6R> +
!
nin (Frwer Grytur) +ngnk (Grvuer iry ur) + nfnk(gvuer Grytur) +
nent (éRfyﬂeR ﬂLfy”uL) + (u— d)} } . (2.96)

The first line of eq. (2.96) has to be compared with the usual effective lagrangian of contact

interactions [62]

2 (+s eyt 2 (+¢ ey
A%L(ﬂ:eL'yueL ELY eL) + A%R<i€R’Yu€R€R’Y €R>+

2 _ _ 2 _ _
K% ( +erver eR'y“eR) + A%*:L ( + eérvyuer eLfy”eL) (2.97)

where the limits on Ayy, with U = L, R, are usually given imposing g = 4. From [63] we

have
A}, =83TeV and A7, =10.1TeV. (2.98)

To compare these values with eq. (2.96), we write the n coefficients in terms of the model

parameters as

elly2 elly2 ell\2
ee (ylL ) (yQL ) (yBL )
= + +2
nLL 2 2 2 20
€1 €3 €1 + €3
elly\2 elly2 elly\2
oo = (yin) N (Y5, 2(y3R )
RE € €2 e +¢e5’
ell, ell ell, ell ell, ell
ne, = Yi, Yig Y2, Y2r 2y3L Y3r
LE €2 €2 e +e’

where yfr‘j‘f have been defined in eq. (2.77). A direct comparison imposes

f > 36TeV, (2.99)



Chapter 2: The little flavon model 87

which is two order of magnitude bigger than the value we found in the previous section for
LFV.
Let us turn now to parity violation processes. Parity violation is measured in term

of the weak charge Qw and the most recent experimental values give [62]
AQy =044 4+044. (2.100)
From the contact parameters, AQ,, receives the contributions [62]

AQy = (—11.4TeV?) (=754 + fifs — fi%s + 75s) + (—12.8TeV2) (-84 + 7ed, — 7%, + 75 ),
(2.101)
where

- 47
Tap = 25 - (2.102)
AB

In eq. (2.96) 47/A%% = —1/f? and the 7 coefficients are given by

ell ell
e ylL yQL
o=\t )
€1 €2
ell ell
e __ Yig Y2r
NMr = 2 + 2 )
€1 €
U ull
. = Y
U ull
e = Yr >
d _ dll
n, = YL »
d _ dll
TR = Yr >

where y2%# and yg]aﬁ are given in egs. (2.77)-(2.79). A direct comparison of eq. (2.100) with
eq. (2.101) gives
f > 88TeV. (2.103)

2.4.2.3 Leptonic processes

The most stringent experimental limits for LF'V processes comes from the processes
i1 — 3e and p — ey, but in the little-flavon model only u — 3e is present at tree level. As
already discussed in sec. (2.4.2) the limit on the branching ratio for muon decay LFV is

: 1 kgl /T an—12
given by I'y3e/T', a1 <1077
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As done in eq. (2.82) we parametrize the effective interactions as

1 _ _ _ _ _ _ _ _
e (QLL(GL’Yu#L ery'er)+9rr(€rRYutr ERY eR)F9LR(ELVLiL ERY €R)+9IRL(ERTULR eLV”GL)> ,

(2.104)
where
S Y5y N y5yse N QY5 VS
LL €2 €2 €2 +e3’
o y§iyst! N YSHYSE | L USRUSE
€2 €3 €+ €3’
oin — yiPys N Y5 Ysh N QY5 Y8R
e% e% 6% + e% ’
S yiysrt N YSEysE: N o Yin U5,
g g TTavd
The rate decay for this process is then given by
a mi 2 2 2 2
roeuge _ : 2.105
u—3e 6(167()3f4 (IgLLl =+ lgRRl + ]gLRl + IgRLI ) ( )
and to satisfy the experimental bound we need
f > 580TeV, (2.106)

which give us the stringent bound so far.

2.42.4 K K° mixing

As done in sec. (2.4.2) among all the FCNC processes with AF = 2 in the quark
sector that are responsible of meson-antimeson oscillations, we will consider only the pro-
cesses with AS = 2 since the best experimental data are related to the splitting of Kaon
masses [61] (see eq. (2.89)).

Also this time, in order to estimate the contribution of the gauge flavons to Amyg,
we have to consider all the possible effective operators with AS = 2. To give a more complete
analysis, we will take into account also the operators arising at one-loop level. Accordingly

we have six main operators that we parametrize as follows

1 _ - - _
—A—g[,l(dvu(l —¥s)sdy*(1 - 75)5) + ma (A (1 + 5)s (1 + 75)8) +
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13 (A7 (1 = 95)s Ay (1 + 75)s] — ;\1—%[774 (1 +y5)s d(1 = 75)s) +

5 (62(1 —vs5)sd(1 — 75)3) + 76 (J(l +y5)sd(1 + 75)5)J ) (2.107)
where
1 1 (1 1 1 1 m2(1 1\
Lo (L) g L Lome (1 1) 2.108
v 4f2(e%+e%> R g (*) (2105)
and
m = (y%IZ) )
n = (yE?H?,
— yd12yd12
N = ( RdI?JR y%ing) (EnmRnQUR MRL*y ™ L )7
% d
s = 2( Ry EMPyELs)’,
mj
1 dn s RL%, d 2
e = m—%( Ry ML ygm Lo )a (2.109)

- where y#? are defined in eq. (2.79). eq. (2.109) gives the relationships between the effective
operators of eq. (2.107) and the model parameters and charges. The last three operators
proportional to 7456 respectively arise from one-loop box-diagrams in which gauge flavon
bosons are exchanged. These one-loop effects are not the dominant ones since they only
require f to be > 2 TeV to satisfy the experimental limit, as one can check comparing
eq. (2.89) and eq. (2.90) with eq. (2.109). The first three operators come from tree level

processes and a comparison to the experimental limits indicates that they impose at least
f~4x103TeV, (2.110)

to satisfy the bound in eq. (‘2.89). This result shifts the scale we have found in the lepton
sector of more than an order of magnitude and definitively fixes the lowest scale for the

breaking of the global symmetry that give rise to the little flavons.
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e?lLl'?’r

L e

e)l’L)T

Figure 2.5: Gauge flavons mediated contribution to the decay p — ey

2.4.3 Effects at one-loop

2.4.3.1 Rare processes

There are some rare decays that in the model occur only at one-loop, but give a
bound on f which is comparable to the bound obtained from the analysis of the tree-level
processes.

As an example let us consider the LFV process y — ey. For the yp — ey process
we have the strong limit [64]

r
—H2Y 1.2 x 107 (2.111)
L, all

We can parametrize the interaction which gives rise to the decay as
(2iouu(1 = 95) pMPE + Eigyu(1 +75) pMPE) BV (2.112)

In the model we have two kind of diagrams that contribute to the process p — ey (see
fig. (2.5)). The second decay in fig. (2.5) is present also in the standard model—with the
charged W bosons and massive neutrinos in the loop—and gives a contribution proportional
to m,/m%, where m% is the mass of the flavor gauge boson. On the contrary, the first is
not present in the standard model and is possible because the flavor gauge bosons couple

also to right handed fermions. It gives a contribution proportional to m,/m2 log(m2/m%)
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where m,, is the mass of the fermion circulating in the loop. For this reason the dominant

contribution comes from the 7 exchange. For this process we have

e my

MRL M m? y RL
T e\ )V

2
m
MER = 2_;3721 ( log %) YLE, (2.113)
where e is the electric charge and
vRL _ YERVER  wsPusY L usPuse
B €? + €2 + e +e’
1 2 1T €&
e32,,el3 e32,.el3 e32,,el3
yir — Sl | Yin 3 | o¥sn Y5, (2.114)
€1 €5 €] + €3
The rate decay for this process is then given by
3o mym? m2 ’ RL? | \/LR?
" In order to satisfy the experimental bound of eq. (2.111) we need
f~4x 10°TeV. (2.116)

which is of the same order of the value obtained in sec. (2.4.2.4).
The process corresponding to the LFV process u — ey in the quark sector is the

FCNC process b — s. For the b — sy process we have the limit [66]

r
“b2SY £ (3.340.4) x 1074, (2.117)
Dyall

The standard model effective interaction that is responsible of this process is parametrized

as [67]
—4Gp emg
ViV,
N 1672

where C7(my) is the Wilson coefficient and is a function of m;(mw ) and my as reported

C7(mw)§LO‘#,/F”VbR, (2.118)

in [67]. In the following we will neglect of the renormalization effects and we will compare

the effective interaction which gives rise to the decay b — sy in our model with the one-loop



92 Chapter 2: The little flavon model

electroweak operator of eq. (2.118). Analogously to what done for the process u — ey, we

parametrize the interaction responsible of the decay b — sy as
(Siouu(1 =) AR + Sy (1 + 75) bARE) i (2.119)

All the considerations done for the process ;1 — ey may be applied in this context and for
this reason the dominant contribution to the process b — s comes from the loops in which

a quark b is exchanged. For the process we are considering we have

2
RL _ € T ™My | vRL
2
LR _ & T my LR
where e is the electric charge and
1 1
YRL _ y%33y§l223 <_§ T _2> 7
& €
LR d33, d23 [ 1 1
X" = yryr |zt =) (2.121)
€ €&

A comparison between eq. (2.118) and eq. (2.119) indicates that we need
f ~31TeV, (2.122)

in order to have the two contribution of the same order.

2.4.3.2 Muon anomalous magnetic moment

In sec. (2.4.3.1) we have seen how one-loop processes give a bound on f comparable
to that one obtained by tree level processes. We may ask ourselves what is the limit on f
we obtain if we consider the one-loop contribution to the anomalous magnetic moment of
the muon. The uncertainty between the experimental data and the theoretical computation

for the anomalous magnetic moment of the muon a, = (g, — 2)/2 is [68]

Aay, = a®P — gSM — (97 4 14) x 10710, 2.123
1 m b

In order to obtain a limit for f from eq. (2.123) we have to consider the effective

interaction that is proportional to a,. The interaction coincides to that of eq. (2.112) that
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is responsible of the rare decay p — ey once we substitute the outgoing electron with an

outgoing muon. Therefore it is parametrized as
(Aiouu(1 = 75) pMPR 4 iy (1 +7s) AL o (2.124)

As in sec. (2.4.3.1) the dominant contribution comes from 7 exchanging and for this reason

we have
MRBL  — € My 1 m? yRL
T oo | BT g
~ LR e MMy m72_ LR
M — —27(-2 —**fz log ———f2 Y , (2125)

where e is the electric charge and

e32,.e23 e32,,e23 e32, e23
yRL  _ Y1, Yip + Y21 Y2r + 2y3L Y3z
€2 €2 e +e’
e32,,e23 e32,,e23 e32, e23
b Yig Y1 Ya2: Y2 Ysz Y
YRR = Sl g P 2y 92in 9 (2.126)
€7 €5 €] + €5

" From eq. (2.124) we have 3 3
mu(MRL +MLR)

a, = . (2.127)
A direct comparison between eq. (2.123) and eq. (2.127) gives
f ~28TeV, (2.128)

that does not change the previous results obtained in sec. (2.4.2.4).

2.5 Conclusions

The little flavon model discussed in this chapter provide an application of the
mechanism used in the little Higgs models to stabilize the electroweak scale in the context
of flavor physics. .

We have seen that the masses and mixing matrices are reproduced successfully

and are independent of the scale f at which the model lives, but a detailed analysis of the
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flavor changing processes induced by the new particles introduced by the little-flavon model
shows that the scale Ap = 47 f has to be around ~ 5 x 10* TeV.

This result has two consequences for the little flavon model. On the one hand,
the determination of a bound on the scale f leads to a specific prediction for the scale for
the see-saw mechanism, which in the model is used to give mass to the neutrinos and was
left undetermined in sec. (2.2.4). The value found for f, about 10* TeV, allows to have the
couplings of the Dirac neutrino mass term to be of the same order of the charged lepton
ones, that is more or less 1072 = 1073,

On the other hand, the scale of the model turns out to be quite high with respect
to that of the electroweak symmetry breaking and therefore the Higgs mass is not protect
against divergent contributions coming from loops of flavons and fermions. Since it would
be nice to have both the electroweak and the flavor symmetry breaking scales stabilized,
it is clear that some changes are needed in order to lower the flavor symmetry breaking
scale. What are these changes and how it is possible to build a model a la little Higgs that
unifies the electroweak and flavor symmetry breaking at a low scale is the subjects of the

next chapter.



Chapter 3

The flhiggs model

In the previous chapter we analyzed in detail the little flavon model. We reached
the conclusion that as viable as the model is, it leaves open the question of how the flavons
and the weak Higgs field can be accomodated within an unified picture. Since the mass

“textures are but a modulation of the vacuum expectation value of the Higgs boson, the
interplay between electroweak and flavor symmetries must lead us toward an unified picture
of the two symmetries and their spontaneous breaking at closely related, if not the same,
scales.

The energy scale of any horizontal flavor symmetry breaking is usually thought
as well separated from that of the electroweak symmetry breaking mainly because of the
constraints on FCNCs. The experimental bounds on flavor changing processes set rather
stringent constraints on the value of the scale f at which flavor symmetry must be broken.
In sec. (2.4.2) we have seen that in the case of the little flavon model, this scale turns out
to be between 10% and 10* TeV. This bound comes from processes—like K9-K° mixing—
mediated by the flavor gauge bosons. It puts the flavor scale several order of magnitude
higher than that of electroweak physics and makes it difficult to think of them in a unified
manner. Moreover, radiative corrections from the flavor to the electroweak sector become
dangerously Iérge and bring back into the picture some unwelcome fine-tuning. Howevef,
this result is heavily based on assuming the horizontal symmetry to be local and therefore

having to include the effect of the corresponding gauge bosons. In the absence of these,

95
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the constraint can be relaxed and, depending on the specific model, the energy scale made
closer and even the same as that of electroweak physics.

Interesting enough, contrary to those for the flavor gauge bosons, direct bounds
on the effect of the scalar flavons are not very restrictive, giving, at least for some specific
model, a scale f of the order of the TeV. This observation suggests to make the flavor
symmetry into a global ! (rather than local) symmetry and thus avoid the more stringent
bounds on the gauge flavor bosons (that do not exist any longer) and bring the flavor
symmetry breaking scale closer to that of electroweak physics. The unification of flavor and
electroweak symmetry is thus made possible and an explicit example of it will be given in
this chapter.

Needless to say, the above scenario—that is going to be realized in the model
that follows—is still far from being a complete theory of flavor. In particular, it leaves
open the question of the absolute value of the fermion masses, most notably the large
difference between those of neutrinos and heavy quarks; this problem, and the much larger
hierarchy implied, clearly requires a much deeper understanding of the dynamics in the
UV and beyond the cut-off of the model. Nevertheless, the model we discuss does set the
scene for a more profound dynamical understanding of the physics of flavor by creating a
framework (with a special, and rather restrictive, choice of textures for the mass matrices of
the fermions) and identifying the relevant symmetries and degrees of freedom at or around
the TeV scale that make an unification between flavor and electroweak physics possible
within a natural model. In doing so, it says something specific about physics in the range
to be explored by LHC, giving a (lightest) Higgs boson mass in a well defined range and

particles in addition to those of the standard model to be discovered.

3.1 The model

In order to have a single, unified model a la little Higgs describing the entire flavor
structure as well as the electroweak symmetry breaking, the Higgs boson and the flavons

must be the PGBs of the same spontaneously broken global symmetry. These PGBs—we

1This global symmetry, as well as those of the little Higgs model, must be thought as arising at same
intermediate scale, well below that of string theory where all symmetries are necessarily local.
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shall call them flhiggs—should transform under both flavor and electroweak symmetries.
The symmetry breaking should leave the electroweak (or an extended symmetry, a subgroup
of which is the electroweak) and the flavor symmetry unbroken. In a further step, the flavor
and the electroweak symmetries break leaving, as in the standard model, the electric charge

U(1)g as the only unbroken symmetry.

To construct such a model, it is necessary first to identify the flavor and elec-
troweak symmetry subgroups at the scale f of the spontaneous symmetry breaking of the
global symmetry. The simplest choice would seem to be a product of the flavor symmetry
G and the electroweak symmetry [SU(2) x U(1)]y, where for the flavor group G we can
take, without loss of generality, U(N)p. In this case the flhiggs bosons should transform,
for example if we take U(N)r to be U(2)p ~ SU(2)r x U(1)F, as doublets in the funda-
mental representations of the two SU(2) groups, the electroweak and the SU(2)r in U(2)5.

However we have to reject this choice since with the scalar fields as doublets in both groups
the scale of flavor breaking will necessarily coincide with that of the electroweak breaking

with undesirable consequences for the phenomenology of the model.

This holds true for any choice of Gr. We are therefore necessarily lead to extend
“*the electroweak symmetry and the minimal extention gives us [U(N)]rx[SU(3)xU(1)]w. In
this case if the flhiggs bosons transform in the fundamental representations of both groups,
the breaking of the flavor symmetry can happen at a scale different from the electroweak,
that is, there is a limit in which the flavor symmetry is broken and its breaking induces the
breaking of the [SU(3) x U(1)]w electroweak symmetry to the standard [SU(2) x U(1)]y.
This extention brings into the model an extra neutral gauge boson and exotic fermion
states necessary to complete the weak doublets. These additional states give rise to new
physics with crucial phenomenological consequences for the model. The mass and mixing
of the extra gauge boson affect the neutral currents and impose rather severe bounds on
the parameters of the model. Moreover, the masses and mixing of the exotic with standard
fermions must be controlled by some additional symmetr.y that we take for simplicity to
be an abelian U(1). The exotic fermions, being charged under this abelian symmetry, only

weakly couple to the standard fermions and acquire heavier masses.
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3.1.1 What is the horizontal flavor symmetry?

The flavor symmetry could, in principle be abelian or nonabelian, that is a U(2)
since, for three generation at least, a U(3) would introduce no differentiation. Let then
consider the nonabelian SU(2) case. 2 The flhiggs bosons arising as PGBs in a model of this
kind are in the fundamental representations of both the flavor and the weak SU(2) groups.
Therefore, they transform as (2,3) and (2,3) under the flavor-electroweak symmetry.

In order to construct flavor-electroweak invariant Yukawa term we have to choose
the representations for the standard fermions. The left-handed fermions have to transform
as a 3 of [SU(3) x U(1)]w since we want a doublet when [SU(3) x U(1)]w is broken to
[SU(2) x U(1)]w. As already noticed, we are obliged to introduce at least one exotic left-
handed fields for each quark and lepton family. On the contrary, the right-handed ones
could be singlets of SU(3) or the third component of a triplet (anti-triplet) of weak SU(3).
Notice that in the latter case we would have to introduce other two exotic right-handed
fermions for each quark and lepton family.

We still have to assign the representations with respect to the flavor group. We
could have singlets, doublets or triplets. We reject the last case since it is impossible to
reproduce the right hierarchies by this choice for either left-handed or right-handed fermions
or both. If we use singlets and doublets we have, for instance, that two left-handed fermion
families form a flavor doublet and the third is a singlet. In this case the choice for the
left-handed fermion representations severely restricts that of the right-handeds while there
is no mixing between the doublet and the singlet.

Consider for example the Yukawa term for the charged leptons and suppose that
the second and the third family are in a flavor doublet, while the first family is a singlet
with respect to the flavor symmetry. This assignment is motivated by the results obtained

in [51, 73]. Each left-handed lepton family forms a triplet of SU(3)w, so we have

VE 1/2
do() oo me(f)-man o
er ey

2Which is the symmetry discussed in the little flavon model analyzed in the previous chapter and in
[51, 73]
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with ¢ = 1,2 , ¢! = p and e? = 7 and an exotic lepton for each family. In eq. (3.2) we
have indicated in the brackets the fields representations with respect to flavor SU(2) and
weak SU(3), respectively. There are only two possible choices for the representations of the
right-handed charged leptons in order to have a Yukawa term involving L§ that give mass

to the electron and these are

Er = (173) — (17§)R(273)¢(27§)¢(1a3)L
FR = (2, 1) — (2, 1)R(2,§)¢(1, 3)L , (32)

and analogously for Fr, with other two possibilities

gr=(1,1) — (1,1)r(2,3)s2,3)L

_E_R = (2,3) — (2,5)3(2, 3)¢(2,§)¢(2, 3)[, . (3.3)

In eq. (3.3) we have indicated the fields by the indices: ¢ stands for the PGBs, R and L for
right-handed and left-handed leptons respectively. By comparing eq. (3.2) with eq. (3.3)
we see that there is no choice for the right-handed fermions representations that permits
mixing between the first family charged lepton and the other two. As it happens, we have
the same problem in the neutrino sector, and this means that it is impossible to reproduce
the experimental lepton mixing matrix since we cannot have an angle different from zero
between the first and the second family. In conclusion, we are forced to use only flavor
singlets. Notice that we would arrive at the same conclusion if we had started with a
doublet composed by the first and the second family or if we had considered the quark
sector.

The previous analysis shows that the introduction of a nonabelian flavor symmetry
is not helpful since we are forced to use only flavor singlets as representations of the standard
fermions if we want to reproduce the correct textures in the mixing matrices. Such a
symmetry could in principle be useful if the PGBs content would be enlarged by making
the flhiggs belong to different representations of SU(3) and the flavor group, for instance,
by having weak singlets in addition to doublets. Our aim is to build a model as simple as
possible and therefore we try avoiding such an enlargement. This leads us to taking the

abelian group U(1) as our flavor symmetry.
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3.1.2 Spontaneous symmetry breaking

Our discussion so far has lead us to identify the low-energy symmetry we expect
to see realized in the model as [SU(3) x U(1)]w x U(1)r plus the additional symmetry,
which we take to be U(1)x, that controls the exotic fermions.

Once chosen the symmetry at the lower scale, we have to identify the minimal
global symmetry, the spontaneous breaking of which gives rise to the PGBs to be identified
with flavons and Higgs boson. Since we need at least two copies of SU(3) x U(1), plus two
copies of an extra U(1) to control the masses of the exotic fermions, we end up with a group
of rank 9, that we take to be SU(10).

The SU(10) global symmetry is spontaneously broken to SO(10) at the scale f.
This provides us with an effective theory with a cut-off at the scale A = 4nf. Fifty-four
generators of SU(10) are broken giving 54 real GBs we parametrize in a non-linear sigma

model fashion as

3(z) = exp[ill(z)/f] 2o, (3.4)

with II(z) = t*7r%(z), where t* are the broken generators of SU(10), n%(z) the fluctuations

around the vacuum ¥y given by

0 Ipxs|0 O
Lsxa 0 |00
So=(8) = | =2 (3.5)
0 0 |01
0 0 |10

The vacuum state (3.5) can be rotated into its canonical form Ij9x10 by a change of basis.
In this basis the breaking pattern is more evident but the sigma model dynamics more
involved.

Within SU(10) we identify seven subgroups
SU(10) D U x [SU(3) x U(L))E x [U(1)x]?, (3.6)

where the U (1) is the global flavor symmetry while the [SU(3) x U( 1)]%;, are two copies of
an extended electroweak gauge symmetry, the need of which we discussed in the previous

section. The groups [U(1)x]? are two copies of an extra gauge symmetry we need in order
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SU(10) » 50(10)

[SUB) x UML)y x UL)r x [U1)xP—[SUB3) x ULy x U()r x U(1)x

Figure 3.1: Diagrammatic representation of the symmetry breaking structure of the sigma
model. Horizontal arrows indicate the spontaneous SU(10) — SO(10) global symmetry
breaking, vertical arrows the explicit breaking due to gauge interactions and plaquette
terms (see the discussion in the text main body).

to separate standard fermions from the exotic fermions the model requires because of the
enlarged SU(3)w symmetry that turns the weak doublets into triplets.

As discussed at the beginning of this chapter, we want the flavor symmetry proper
to be global so as not to have in the theory flavor charged gauge bosons that would make
impossible for flavor and weak symmetry breaking to be of the same order. On the other
hand, all the other symmetries in addition to those of the standard model are local so as to
reduce the number of GBs in the physical spectrum.

The generators of the five U(1) are taken to be

Yr, = diag(0,0,0,1,0,0,0,—1,0,0)/2
Yw, = diag(0,0,0,0,1,1,1,0,0,0)/v6
Yw, = diag(1,1,1,0,0,0,0,0,0,0)/v86,
Yy, = diag(0,0,0,0,0,0,0,0,1,0)/v2

Yx, = diag(0,0,0,0,0,0,0,0,0,1)v2, (3.7)

while the generators of the two copies of SU(3)y can be identified with the corresponding
generators Qf and Q3 with a = 1, ...,8 within SU(10). Note that Yz, and Yjy, , are genera-

tors of SU(10), while Y, , are not and their normalization is chosen for simple convenience.

The breaking of SU(10) into SO(10) also breaks the subgroups [SU(3) x U(1)]3, x

[U(1)x]? and only a diagonal combination survives. On the contrary, the flavor symmetry
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U(1)r survives the breaking and we eventually have that

U)r x[SUB) x UG x[U)x]? - UL)r x [SUB) x UW)w xU(L)x.  (3.8)

The breaking in the gauge sector [SU(3) x U(1)]3, x [U(1)x]? = [SUB) xU)lw xU(1)x
leaves 10 gauge bosons massive after eating 10 of the 54 real GBs. The remaining 44
GBs can be labeled according to representations of the U(1)r x [SU(3) x U(1)]w x U(1)x

symmetry:

2 complex fields @1 [3(1,1/2,0)] and @2 [3(1,_1/2,0)], accounting for 12 degrees of freedom.
They transform as triplets of [SU(3)]w and have the same U(1)w and opposite U (1)

charges. They are not charged under the exotic gauge symmetry U(1)x.

2 complex fields ®3[3(1,0,1/2)] and ®4[3(1,0—1/2)], accounting for other 12 degrees of
freedom. They transform as triplets of [SU(3)]w and have the same U(1l)w and
opposite U(1)x charge. They are not charged under the flavor symmetry U(1)p.

a sextet of complex fields z;; [6(2,0,0)], for 12 degrees of freedom,

4 complex fields s [1o—1,0], 51 [1(0,~1/2,1/2)]» 82 [L(0,1/2,1/2))> 53[L(0,0,-1y], for for the

remaining 8 degrees of freedom.

In the above notation, the representations with respect to the SU(3)y are indicated between
square brackets and the indexes are the U(1) charges: the first refers to the weak group,

the second to the flavor group and the third to the exotic.
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In terms of these representations, the field II(z) can then be written as

0 0 0

0 0 0| ®1/v2 2 Do /V2 | B3/V2 B4/v2

0 0 0
®1/v/2 0 y//2 s 51/2 $2/2

I(z) = 0 0 0 . (3.9)
2 |®/VZI0 0 0|eyvE|aynE ayE
0 0 0

5/V2 s* 1 /2 0 s5/2 s3/2
1/V2 s7/2 ®4/v/2 s2/2 0 s3
%/V2 s5/2 B3//2 51/2 5% 0

where we have put zeros for the components that are going to be eaten by the gauge fields
becoming massive. All these fields are still GBs with no potential; their potential arises

after the explicit breaking of the symmetry to which we now turn.

3.1.3 [Explicit collective symmetry breaking

The effective lagrangian of the PGBs must contain terms that explicitly break the
SU(10) global symmetry. These terms provide masses of the order of the scale f for the s, s;
and z;; fields. However, each term separately preserve enough symmetry to keep the flhiggs
fields ®; exact GBs. Only the simultaneous action of two or more of the terms (collective
breaking) turns them into PGBs with a potential, even though there is still no mass term.
Quadratic terms for the flhiggs will come from the coupling to right-handed neutrino, as we
shall discuss presently.

The effective lagrangian is given by the kinetic term

f2

Lo=75

T (D*E)(D,2)", (3.10)
the covariant derivative of which couples the PGBs to the gauge fields:

DHE = 3u+i9iWi‘i (QfE+EQ?’T)+ig§yiBip (YWlE—!—EY‘%;Z)-i—szXm (YXZE+EY)€) 1=1,2,



104 Chapter 3: The flhiggs model

where W, B;, and X;, are the gauge bosons of the SU(3)yi, U(1),,: and U(1),; respec-
tively , Q%, Y, and Yy, their generators and y; the U(1),,; charges.

The lagrangian in eq. (3.11) gives mass to the z;; and s3 fields. On the other hand,
each term of index i preserves a SU(3) symmetry so that only when taken together they
can give a contribution to the potential of the flhiggs fields.

At this point the fields s, s; and sy are still massless. They play no important role
in the model but cannot remain massless. To give them a mass, we introduce plaquette
terms—terms made out of components of the 3I field that preserve enough symmetry not
to induce masses for the flhiggs fields.

As an example, one of these plaquette term can be written by looking at the
Goldstone fields in the matrix eq. (3.9) after having rotate it by the vacuum ¥,. We select
the field s* to which we want to give mass in the components (8, 8) and (4, 4) of the matrix
Y(z). Both these choices leave a different SU(9) symmetry acting on the remaining columns
and rows that then prevents further terms to the potential of the fields that transform in
the coset of SU(10)/SU(9).

The other possible plaquette terms are given by choosing by the same token the
two couples (4,10) and (8,9) and (4, 9) and (8,10) components to give masses to the s; and
s respectively. Together they induce (harmless) terms and corrections into the coefficients
of the flhiggs potential.

After adding the plaquette terms, we therefore have the effective lagrangian

L = Lo+alf’SusSh,+a3f°SssShe + asf Sae5h0

+ a2f?S5105% 10 + a2 f*B4105% 10 + 05/ Se 055 9, (3.12)

where a; are coefficients of O(1). The relative signs of the plaquette terms are in principle
arbitrary and presumably fixed by the UV completion of the theory. At this level we simply
require mgi > 0.

In sec. (3.1.2) we said that in the breaking of [SU(3) x U(1)]3, — [SU(3) xU(1)lw

nine gauge bosons become massive. We now see that their masses are given by

2, 12
_ (g7 +9§)f27 M2, = Mﬂ M2 Mﬂ (3.13)

Y =

2 3 A 2 o 7 AN

1499 2
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wherea =1,...,8.

These heavy gauge bosons—because of their mixing with those with lighter masses
to be identified with the standard model gauge bosons—induce corrections on many observ-
ables that we know to be constrained by high-precision measurements, mainly coming from
low-energy physics (like atomic parity violation and neutrino-hadron scattering). Their
presence is the major constrain on the scale f and, accordingly, the naturalness of the
model, as discussed for the littlest-Higgs model in [69]. We shall come back to them when
we discuss these constrains in the flhiggs model in section 3.1.5.

The effective potential for the flhiggs fields is given by the tree-level contribution
coming from the plaquettes and the one-loop CW effective potential arising from the gauge

interactions:

2 2
l‘QWZTr [M2()] + 6437r2 [M4(E) (log M—A(ZE)— + const.)} ) (3.14)

where the second, logarithmic terms is very much suppressed and is not included in what
follows.
The effective potential O(f~2) is obtained by expanding the sigma-model field &

_and is given by

Vol®s, 25,8, 85) = % |\Z/Z£—2—\;~5J;(@1i¢’zj+@3i@4j)|2
4 g P15+ 5 (s, + 2
+ fz'%"zf (@1, B2, + B3, By,) 2
+ le31_ sz(@l’% + B3, P4,)|?
gk Pl = (S aley)P
+ —k-2less+ Z.f(szslwulf“ln)l?
+ a2 s - 23”(5132 + @] @,)”
+ a2 s +2lf 3152+(1>Tq>2);
+ laq 2|5 — (332-!-.99394-@ D3+ 1@ )2

487
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1
+ 70 2% s+ — (ssg + 5985 + 1B + DBy) |

2f

1
+ Zag f2|52 2f(881+3183+@T‘1>4+‘I)T(I>2)1
1 *
+ i aZ f%|so + —27(331 + 5153 + @{@4 + <I>§<Il2)[2 . (3.15)

From eq. (3.15) we see by inspection that the effective potential gives mass to the

scalar fields s, s1, s2, s3 and z, their masses given by

(292 +29% + '} + 4'3) K +k
mz 1 26 1 2) 42 ng (k1 - 2)f2
2 2 2 2
at+a at +a
m? = (a%—l—a_%)fZ mfl = (o3 5 4)f2 m§2 = —( 5 5 6)f2, (3.16)

respectively. The effect of these states must be included in the study of the low-energy
observables together with that of the heavy gauge bosons.
After integrating out the massive states by means of their equations of motion,

the potential of the four PGBs ®;, the flhiggs, is made of only quartic terms

VB = A(®181)(@18s) + Ao (BL@3)(2]4) + Aa(@121)(2]®3) + Na(@1B2) (3] 24)
+ As(@1)(D1B4) + Ne(@]@2) (D] 03) (3.17)
+ E|0T o2 + £5|@]0uf? + £3(2]3)(@184) + £4(2]04) (2133),

where the coefficients are given by

992 + 0'2)(202 + ' o242 a2a2
)\1:_)\2 (gl g (92 g2) )\3:)‘4: 23 42 A5:>\6= 25 62 (3.18)
29} +9'% + 292 + '3 as + ag ag + ag
and
2 2
g = PoreN@eitgy)  odd . kK afag 319
1 = 2 2 2_k2 L2 2 2 (3.19)
293 +g'2 + 293 +g'5  af+aj 1+ky ag+ag
2 2
PR € +91)(292 +92) L S G + 9 (2g§+g') aZag
22 + 97 +203 +¢'5  aj+aj 292 + g7 +203 + 95  ai+ag

The coeflicients &7, &3 and &4 differ only by the plaquette contributions. Notice that we can
take them equal if we assume the plaquette coefficients to be equal as well.

Quadratic terms

—_—
2
Do
(=)

~—

Vo[®;] = #1( D) + Mz(q’T‘Pﬂ + Ms(‘l’s‘i’s) + #4( 2‘1’ )
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that are necessary to induce vacuum expectation values for the flhiggs fields, and quartic

terms of the type
Va[@] = x1(8]81)? + x2(@182)% + x3(®] B3)? + x4 (D] D)2 (3.21)

are not generated at one-loop in the bosonic sector discussed so far. In order to introduce
them we couple the PGBs to right-handed neutrinos with masses at the scale f. This
means that the flavor and electroweak symmetry breaking of the model is triggered by
the right-handed neutrinos. This is done again along the lines of the little-Higgs collective
symmetry breaking: to prevent quadratically divergent mass term for ®;—and thus render
useless what done up to this point—the Yukawa lagrangian of the right-handed neutrinos
sector is constructed by terms that taken separately leave invariant some subgroups of
the approximate global symmetry SU(10). In this way the flhiggs bosons receive a mass
term only from diagrams in which all the approximate global symmetries of the Yukawa
lagrangian are broken. Because of this collective breaking, the one-loop contributions to

- the flhiggs masses are only logarithmic divergent.

The right handed neutrino sector is given by sixteen 10-components multiplets

Oc [ 0, [ 0, 0
1 .
Vp 0 0 0
0, 0 0 0
1 _ 2 3 4
N} = Np=| | M= Ni =
0 V2 O 0
3
0 0 vy O
4
0 \ 0 ) 0 vh
5 6 7 8
VR VR.a ( YR VRa
0 7 vh 7
15 16 17 18
VR Vg VR VR
5 _ o 6 _ Q@ 7 _ e’ 8 _ o
Np = ~5 Ng = Np = -7 N = -8
V,R O v R 1 % R
o3 8 0 %
~5 ~6 ~7




108 Chapter 3: The flhiggs model

u%,a V}{?a O 0a
0 0 0 0
111 712
wvoo| O o] P wmo| VRe | npo| Ve
0 0 0 0
vy R 0 0
0 0 Un Dy
v }1{3’,0 Vllfa O Oc
S s 0 0
0 0 vV VR
Ng = Nt = NE=| 5| Ne=| 3% |, (322
O O l/lR I/IR
0 0 0 0
0 0 0 0

where a = 1,2,3 and 0, = (0,0,0)%.

Only the N& with a = 1,---,8 couple directly to the fermions. The reason why we
introduce so many fields is that we eventually want different, and independent, mass terms
; to be induced in the effective potential by the right-handed neutrino sector and also we
do not want right-handed neutrinos méssless.

The Yukawa lagrangian for the right-handed neutrinos can be written in a SU(10)-

invariant manner as

LF = mf(NFONR) +mf(NFENR) +naf (NFENE) + naf (NFENE)
+ nsf(NJF NR) +nef (N3 NR) +n0f (NI NR) + ms f (N7** N§)
+ o (NF NE) +mof (NE* NJ) +muf (VE N +maf (N NE) . (3.23)
In eq. (3.23) all the terms leave invariant different subgroups of SU(10): the first four, four
different SU(9) global symmetries—easily identifiable by the zeros in N1_s—the remaining
eight different SU(6)—to be identified by the zeros in Ng_15.
Substituting in eq. (3.23) the expression O(f~?2) for ¥—as given in eq. (3.9)—and

for the right-handed neutrino muitipiets the expression given in eq. (3.22), we obtain the
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leading order lagrangian
t 1 * * *
VR _ “Teb (1 21®1 9%y (2557 + 5157 + s287)
£ = mippva(L 2f2  2f? 2/ )
+ ?DL (cIv V8 + Bl + s + 52195’2)]
@{@1 ¢>£<I>2 (255* + 5157 + s283)
+ 772f[VL VR(I‘ 212 - 2f2 - 2f2 )
+ ?T/L (@ VR+¢)£U,6R+32VR+S].VR)]
(I)gq)g @1@4 (283S§ + Sl,ST -+ 5285)
+ WBf[VLVR(l_ 2f2 2f2 - 2f2 )
+ —vF (ofvh + ol 3.24
7L ivh 3’/R+31’/R+52VR (3.24)
Ly BIDy (25355 + syt + so58)
+ 774f|: VR(]‘ - 2f2 - 2f2 - 2f2 )

+ ?I/L (@ vE + @};VR

18

+ 321/’R -+ Sll/R)]

A 1ic -

+ 775f[ “Vh + Vgc'/%] +776f[”IL Vi + VR ,5] +777f{ 1008 4 V},OCVR}

"~ 10c

- ~ “15¢c. 17
+ 778f [V L I/ R + VlOcV R] + "79f[ 13cyR + VPCVR] + "710f [VIL CU/R + V’},SCVIR]

+ muf [ ek + vitevk

]+7712f[ 10eprt, 4 ey '%].

From eq. (3.24) we see that, after integrating out the neutrinos, the divergent one-loop

contributions to the PGBs masses in the effective potential Vo[®;] of eq. (3.20) are given by

I
3
I

I

~

f2 AZ
(niné +772777)(4 2 8"]\—[5
f2 AZ
(ning +772777)(4 E log — e
2 A2
(m3mio + 7747711)( i)’ log — M2
Jc2 AQ
(n3n§ + 77277%2)@;)—2 log ik (3.25)
7

where in the logarithm of eq. (3.25) we have generically indicated the mass of right handed

neutrinos with M, ~ nf. The one-loop quadratically divergent contributions are cancelled

by the collective symmetry breaking and the masses are always proportional to two of the

COEiCienss 7j.



110 Chapter 3: The flhiggs model

From eq. (3.24), we can also estimate the one-loop divergent contributions to
the quartic terms in the effective potential V3[®;] ofeq. (3.21) coming from the right-handed
neutrino sector. The coeflicients x; turn out to be logarithmically divergent and proportional
to four, not necessarily different, powers of 7:

‘ 2 A2
Xi = Tk (g2 log MZ

(3.26)

They only play a minor role in what follows.

3.1.4 Vacuum expectation value

The effective potential for the pseudo GBs is therefore made of the sum of egs.

(3.18), (3.20) and (3.21)
V[ =V +Va+ V3. (3.27)

We want to find vacuum expectation values for the flhiggs fields @; in this potential that
breaks the symmetry [SU(3) x U(1)]w x U(1)r x U(1)x down to the electric charge group

U(1)g. Such a vacuum is, in general, given by the field configurations

0 0 0 0
(1) = | ww/2 (@2) = | vy /2 (@3) = 0 (®4) = 0
vE /2 vE, /2 vx, /2 vx,/2
(3.28)

The conditions to be satisfied, in order for eq. (3.28) to be a minimum, are the

vanishing of the 24 first derivatives:

(3.29)

Substituting the field configuration of eq. (3.28) in eq. (3.29), we have 16 equations satisfied
and eight conditions that vw, vri, vF2, Ux1, vx2 and the parameters of the potential must

satisfy. Among them we have the following two equations

€4 + & = 0

D
—_~
oo
[N
D
~~

E3vr1 + Eavpy =
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We take the solution in which &4 = €3 and vpe = —vp;. This solution is quite natural if, as
pointed out in sec. 3.1.3, we consider all plaquette terms to come with equal strengths. We
also impose for simplicity that vx; = vxs = vx and vp; = vy = vp. The values of vy and
vr need not be equal but we shall identify them to obtain a model with only two vacuum
values and simpler expressions for them in terms of the parameters. On the other hand,
we do want to keep vp distinct from vy, because otherwise the increase in symmetry would
lead to the presence of extra GBs and other undesirable phenomenological consequences for
the model.

Under these assumptions, the field configuration of eq. (3.28) becomes

0 0 0 0
(1) = | ow/2 (®2) = | ww/2 (@)= 0 (@)=1] 0 ;
v /2 —vp/2 vp/2 vp/2
(3.31)

that is the vacuum expectation value we are going to use in what follows.

At this point we are left with six independent conditions that reduce to four if

&= (1- %)51, (3:32)

The four remaining equations yield the following expressions for the vacua as

function of the coeflicients of the effective potential:

o — (As + A6 — As = Xs) (1] — pf + 13 — 1) +20x2 — x1) (13 — 13) + 20xa — x3) (13 — 2)
v 4(x1 — x2) (3 — x4) — (M1 — A3)2 = (X5 — X)?)
w2 = P36 == Xs)(uf — pd) +20x2 — x1) (43 — pf)

r 400 — x2)(x3 = x4) — (M — A3)2 = (X5 — X6)2

and also yield the following conditions on the u? since we have reduced the number of

(3.33)

degrees of freedom by imposing the previous equalities.

13 (260 — €2 — 2x3 — Ao — As — Ag) + pd (€1 — 2x2 — A1 — Aa — Ag)
(A1 &1+ 2x2) (26 — €2~ 2x3 — A2 — X6 — A3) — (A6 + As) (€1 — 2x2 — A1 — Aa — Ag)
(“‘H% + u%)(-z)(s +2x2+Aa+ A5 — Xg — A3) + (ﬂg — #Z)(—2X1 +2x2 + s — As + Xe — A3)

=0
+ (A + s = X6 — A3)(—2x1 + 2x2 + A — As + A6 — Az) + 2(x1 — x2)(—2X3 + 2x4 + Aa + A5 — Ag — Az)
_ (=3 + p3) (& — 2x2 — A1 — M — Xe) + p3(=2x1 + 2x2 + A1 — As + Ae — A3) (3.34)
(_‘Al - 51 - 2X2)("2X1 + 2X2 + )\4 —As + A — )\3) + 2(X1 — Xz)(§1 — 2)(2 — )\1 - Ag — )\5) :
N (=#% + 13)(=2x3 + 2xa + Aa + Xs — X6 — Aa) + (1§ — p3)(=2x1 + 2x2 + A1 — As + As — Aa))

_n
=Uu,

(A + X5 — X6 — Az)(—=2x1 + 2x2 + Aa — Xs + Ae — As)) +2(x1 — x2)(—2X3 + 2x4 + Az + As — As — \3)
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Also notice that all the relationships discussed can only be approximate since the coupling
of the scalar fields to the fermions introduces small corrections.

The vacuum in eq. (3.31) breaks the global symmetry U(1)r and there seem to
be a GB in the spectrum. It can be removed by a mass term introduced by hand at an
intermediate scale between vp and f. However, as it is possible to see after fermion will
be introduced in the model, this global symmetry is actually anomalous. This means that
the would-be Goldstone is not part of the physical spectrum. 3 Also notice that similar
anomalies in the gauge groups are automatically compensated by the GBs, as it always
happens in spontaneously broken gauge theories [54]; they however reappear above the
scale f and may help in the determination of the UV completion of the theory.

In order to give a back-of-the-envelope estimate of this solution—and to see that
it satisfies the requirements outlined in the introduction—it is useful to make a few approx-

imations. Let us for instance take
gi':XiZ)\l:A?:AS:X }\4:>\5:>\6:)\ (335)

to reduce the number of coefficients. These approximations are rather natural and do not
introduce any fine-tuning. Accordingly, the vacuum of the potential in eqg. (3.27) can be

given as
2 2 2 2 2 2
2 BT — MKy 2 Hi — Py + p3 — py
=== and o = . 3.36
FE N M A—X (3.36)

In this simplified case, and by further taking A—x =~ 1, p3—pd ~ —p?/2 and u3—u2 =~ 3u?/8
(and x ~ 1/2, u2 =~ 2u? to satisfy eq. (3.33)) we obtain that

vl = —p?/4 and vh = —p? (3.37)

so that for the electroweak vacuum given by its experimental value vy = —p/2 = 246 cev,
we find vg ~ 500 GeV. For f ~ 1 TeV, the parameter £ = v% /f? in the mass textures turns
out to be small and of the order of the Cabibbo angle.

In section 3.3 we will come back to the vacuum solution in eq. (3.28) and study it

. for arbitrary parameters to show the range of masses allowed for the scalar, particles as well

3 Alternatively, one can think of the anomaly as an effective mass for the would-be GB that, like the
7’ of the U(1)4 symmetry of chiral perturbation theory, becomes massive with a mass of the order of the
symmetry breaking. In our case, this process would make the mass of the would-be GB heavier than those
of the other fihiggs.
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as for the other states of the model. Before that, we must study the gauge boson sector. As
we are about to see, this sector is severely constrained and its consistency with precision
electroweak data constrains the possible values of vp and ¢’ and therefore of f if we want

to keep the texture parameter small enough.

3.1.5 Gauge bosons and currents

After symmetry breaking, the model is described at low-energy by a set of gauge
and scalar bosons. We discuss first the gauge boson sector. Its structure is complicated by
the mixing of the standard model gauge bosons to the new states we have introduced. Our
general strategy is to impose that the charged currents of the model coincide with those
of the standard model. This done, we are essentially left with the theory of the standard
model with the addition of a massive neutral gauge boson Z’ and we must check that its
presence affects the p parameter, the Weinberg angle 6y, the tree level coefficients of the
neutral current and that the value of the mass of the Z’ are all within the experimental
bounds. In this way two of the free parameters of the model, namely vr and ¢’ are fixed.

At the scale f, the symmetry surviving the spontaneous breaking of SU (10) into
50(10) is SURB)w xU(L)w xU (1) x xU (1) r and we can write the effective kinetic lagrangian

for the four scalar triplets ®; as

Lk = (Du@)N(Du®1) + (Du®2) (D) + (D, 83)1(D},@3) + (D1,84)1 (D), ),

(3.38)
where the covariant derivatives are given by
D, = 0,+igWit® +ig'zeB,
. . 1
D;L = O,+ ngﬁta + zg'a@Bﬂ +tikz X, (3.39)

2

with, as before in eq. (3.11), Wy the gauge bosons of the SU(3) electroweak group, t¢ its
generators, B, the gauge boson of the U(1) electroweak symmetry, X, that of the exotic
U(1) gauge symmetry and g, ¢’ and k their coupling respectively, while ¢ is the U (1)

extended electroweak charge of the triplets ®;. Since the SU(3)w x U(1)w x U(1)w gauge
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symmetry at the low scale is the diagonal combination surviving the spontaneous breaking
of SU(10) into SO(10) their couplings are given, respectively, by

2 12
2 9193 2 _ _919% and k% = kiks (3.40)

- ? g — .
9%+ 93 9%+ gy’ k3 + k3

When the triplets acquire the vacuum expectation values given by eq. (3.28), we
are left with nine massive and one massless gauge boson; this latter being the photon.

The eight massive gauge bosons can be written as 3 complex and 3 real gauge
bosons. The lightest complex fields and the lightest real can be identified with the standard
model weak gauge bosons W and Z. The remaining complex bosons are new massive

charged gauge particles V~V1,2. The masses of these complex gauge bosons are given by

1 1 1 v
myy = 0%, my, = 50"k and my, = Sg’(vh+ 2, (3.41)

respectively. The charged W gauge bosons‘behave exactly like those of the standard model
and can be directly identified with them. Contrary to the heavy gauge bosons in eq. (3.13),
the gauge bosons Wl,g do not mix with W and therefore do not induce additional effective
operators in the low-energy theory. Similarly, the gauge boson of the exotic U(1) gauge

symmetry does not mix and acquires a mass given by
1

419%% : (3.42)

m3 =

The other three real gauge bosons, those associated to the diagonal generators of
the SU(3), Wj and W,f‘, and the gauge boson of U(1)w, B, do mix, and their mass matrix
is given by

g*viy /4 ~g* vy /4V3 —93'v}y /2
My = | —g%%/4v3 >l /12 +20%/3) gF (v}, — w2)/2v3 |, (3.43)
~99"viy /2 97 (vl — wE)/2V/3 G2 (vl + 20f)
where in eq. (3.43) §’ = g'Te. The 3 x 3 mixing arises because of the SU(3) weak group
we started with and leads to the most characteristic (and constrained) new physics in the
model.
One eigenvalue of the matrix MZ 5 in eq. (3.43) is zero and corresponds to the

photon, the other two depend on the values vp and g, the lightest mass to be identified

.....
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The mixing between W3, Wy and B is delicate since it gives rise to electric and
neutral currents for the standard fermions. We fix the value of vr and §' by imposing that
the electric and neutral currents in our model coincide with those of the standard model. In
order to analyze the neutral currents, consider the orthogonal matrix Uy that diagonalize
M?2, g according to

diag(0, M2, M2) = UL, M, 5 U . (3.44)

Once g and vy are fixed by their standard model values, the entries of the matrix Uw—
three of which are independent variables—depend on the parameters §’ and vp that we are
going to determine by requiring consistency with the experimental data.

Consider now the interactions between a fermion triplet (antitriplet) of SU(3),
Qr (QL) , of U(1)w charge z; and two fermion singlets of SU(3)yw, ¢}{’2, of U(1)w charge
y11€2 respectively and a fermion singlet of SU(3)w, ¥g, of U(1)w charge §r and of U(1)x
charge —1/2, with the electroweak gauge bosons, that is we neglect the exotic X-current.
The first two components of the left-handed triplet (antitriplet) Q;, (@3),%1 and ¥2 form
a SU(2)w standard model doublet (antidoublet), and when SU(3)w x U(1)w x U(1)x is
broken into U(1)g, 9/ = 1/)}; + 1#{3 has electric charge Qy,, with j = 1,2. At the same time,
the third component of the triplet (antitriplet) Qz, (Q}), ¥z, and the exotic S U(3)w singlet
VR give rise to an electric charged fermion ) = U1 + g, with charged Qy,, where the index
2 refers tothe second component of the triplet (antitriplet) Q;, (Q7)- Dividing the Standard
model doublet (antidoublet ) componets,

The kinetic lagrangian is given by
Ll =QLy-DQr+¥rY Dyr+vry-Din, (3.45)
for a triplet and
LI = Q%7 D* Qi +Pry-DYr+Pr7- D, (3.46)

for an antitriplet, with

Dy, = 8, +igWit® +ig'z] pB,, (3.47)

where in eq. (3.47) have been used the same notations as in eq. (3.39). Consider only the

terms in eqs. (3.45)—(3.46) that give rise to the electromagnetic and the neutral current for
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all the fermions, that is
Ll = i (8u+igTs s, Wi +ig LW t+ig B,
i 23 M
+ %ﬂ“ <3u +ig a:ZRBu)z/}%{

+ Pt (6‘“ —ig % WS +ig -’ITLB;;)"ZL + PRy (8;,, +ig' SERBu)"/;Ra (3.48)

where we have explicited the standard model doublet (antidoublet) components ¢i’2 and
the exotic fermion 1/; 1, and where p is equal to 1 or —1 for the left handed fermion coming
from a triplet or an antitriplet respectively.

The gauge bosons Wg’, Wﬁ and B, mix through the Uy of eq. (3.44) giving the

photon, A, the gauge boson Z, and an heavy Z-type gauge boson, Z',, in particular we

have
W3 A
we | = Uw| 2z |- (3.49)

B Z'
Substituting the expressions coming from eq. (3.49) in eq. (3.48) we can write the electric,

the neutral and the extra neutral currents using the parametrization given in [8]

U o) T A € TN p i B\
L= —eQupiy" P Ay - 5 (1+ 5 VI (gl — ghP )W 2
e  — ,,7i  1i ;
_ Gl (R R AP J 7!
2SWCW¢ Y (hy — hy ) "
- ~ € = e
— eQupy A, — 5 by (g — 947" )02
SwWwCw
_ vt (RS, — B3 ~5Yu 7! ]
S D (Y ~ B0, (3.50)

where sy and cpy are sine and cosine of the Weinberg angle 6y, T is one of the oblique
parameters,
) oM i
Gva=9a T4 (3.51)

with
j SM j SM
@M =Ty, —2Q;s2 and g7 =Ty, (3.52)
and g}, , and h}, , are related to the neutral currents of the exotic fermions 1 that, as we

shall show in section 3.2 below are only weakly coupled to the standard model states. The
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coefficients gy, 4 contain the deviation from the standard model, f~zv, A the strength of the

coupling of Z’ to the standard model fermions.

First of all, the entries of the orthogonal matrix Uy, have to satisfy the following

conditions in order to have in eq. (3.50) the correct electric charge current for the standard

and exotic fermions:

UW1 1

UWZ 1

UW1 1

Sw
1

V3

M

Qj

@2, (3.53)

where z7, and acf,'2 are the extra U(1)w fermion charges, while z? is the U(1)y standard
model charge of the electroweak doublet 1. The conditions of eq. (3.53) together with
1 g

1
— Uy, ——
UWH( KW

that follows by inserting eq. (3.53) in eq. (3.38) and imposing zero electric charge for the sec-

(3.54)

ond and the third components of the triplets ®; completely determines all the independent
parameters of the matrix Uyy.

Since the mass matrix of eq. (3.43) depends on §’ = g'zs the other three conditions
give us the values of z1 /zs , :z:g{ /zo and Zg/xs, that is the fermion charges in units of the
triplet ®; charges, with the further constrain on Uy,, of giving rational numbers for the
charges.

By equating now the neutral currents, we obtain that

oT UW UW
1_’_____ = ¢ U W32 11
( 2 ) v le( UW31 Ule)
aTl Uw., ,Uw.
(1+—)s2 = —cp 2V
2 Uws,,
. ' UW Uws, Uw.
i j o 1 h— — 22 1— 32 21 ]
1+2 ) —(1+2 )gA zf( ———UW31—-~UW22) (3.55)
W, = Ts;Uw, (1 Uwss UW”\ + 2UW33 Uw,, @
UW31 Uw, s/ UW31
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UW?a UW33 UW21
+ =1 —
P \/ﬁ ( UW31 UWza)
- UW UW UW UW Uw.
B o= U 1— 33 1) 23 (1 _ 33 21
A 3 W13( UW31UW13) b 2\/5( UW31UW23>

A more complete analysis would require that also the corrections arising from the
effective operators induced by the heavy gauge bosons in eq. (3.13) be included. Thy are
important because they violate the SU(2) custodial symmetry of the standard model. They
affect the relationships in eq. (3.56) to O(v%,/f?) and, in the littlest Higgs model of ref. [27],
force the scale f to be above 4 TeV [69]. As already mentioned, these constrains can be
lessen by introducing an additional discrete symmetry [70]. Notice that the overall fit of
these corrections against the experimental electroweak data can in principle be improved
by the presence in the flhiggs model of the additional parameters in eq. (3.56) thus lowering
the scale f with respect to that found in the case of the littlest Higgs model.

We said we are more interested in the consistency of the framework than in its
detailed realization and therefore we neglect, in this context, these O(v%,/f?) corrections
and consider eq. (3.56) as it stands.

The parameters and coefficients in eq. (3.56) are constrained by precision measur-
aments of neutral currents in low-energy observables like atomic parity violation in atoms
and neutrino-hadron scattering. The mass of the Z’' gauge boson is bounded by data on
Drell-Yan production (with subsequent decay into charged leptons) in pp scattering to be
larger than 690 GeV [71] and this constrain must be included as well. We require that

deviation in the p-parameter

p=1+aT (3.56)

and the Weinberg angle be within 10~2 while the § coefficients in eq. (3.56) be less than
1072. This choice put these deviations in the tree-level parameters in the ball park of
standard-model radiative corrections.

The importance of these constrains resides in their fixing the values of the free
parameters vp and §’ = g'ze. The bound on the p parameter essentially fixes the effective
gauge coupling

(3.57)

iR

[
)'...a
(%)
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For simplicity we take z¢ = 1 so we have §' = ¢'.

Once ¢ has been fixed to this value, the bound on the mass of Z' requires
vp 21260 GeV. (3.58)

We would like to have vr as close to vy as possible but the phenomenological constrains
force it to a higher scale.

The rather large value we must take for vy does imply unfortunately that some
amount of fine-tuning in the parameters of the potential in eq. (3.15) is present. If we go
back to our back-of-the-envelope estimate in section 3.1.4, we see that while there we had
vf ~ 2y with no fine-tuning (that is, the coefficient were chosen with a tuning of one out
of four or 25%) on the values of the u; coefficients, we now must have vy = 4uw that can
be obtained by taking, for instance, pf — p3 ~ —p?/2 and p? — p3 ~ 2442 /50 that means 1
out of 25, that is a fine-tuning of 4%. The actual fine-tuning in the model is however less

than this because of the larger number of parameters involved and roughly of 10% or less.

3.1.6 The scalar sector and the lightest flhiggs boson

We now turn to the scalar sector of the model. The number of scalar bosons can
readily be computed: the number of degrees of freedom of 4 complex triplets is 24. Of these
9 are eaten by the gauge fields, while 1—the would-be GB of the spontaneous breaking of
the U(1)r global symmetry—is eliminated, after introducing the fermions in the model, by
the anomaly. Therefore, the scalar sector contains 24 — 10 = 14 massive fields. To describe

them, we parametrize the ®; triplets with respect to these fifteen fields as follows

uf1p1

1 = | (ow +uli +ufp;)/2

(vF + ud;d; + uf;p;5) /2 /
ub: p1

®2 = | (ow +uddi +ufp5)/2

IR R N T T
(UF + uy0; + ugp5)/ 2
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UsnP2

®3 = (ud;0: + U%"Pj)/z

(vF + ud;0; + ul;p;) /2
“22P2

® = (uf;0i + u¥ep;) /2 : (3-59)

(vF + ug;0i + ug;p5) /2

pdp

i are the entries of the unitary matrix which

with¢=1,..,4and j = 1,..,7 and where u
diagonalizes the mass matrix defined as

82V ()]

% = 35,08, _y,

(3.60)

and can be written in terms of the coefficients of the effective potential.
The scalar fields pg, 6; and ¢; are the Higgs-like components of the flhiggs fields
and the most interesting experimental signature of the model.

The fields p; 2 are electrically charged, their masses given respectively by by
mf,l = 4& (v% - ’U%V) - and m%z = (& — §2)v% - §1v12,V . (3.61)

We shall call the lightest of the two A¥.

The masses of the neutral J; fields are given by

mj, = 4&(vE — viy)
2 2 2 U%V
mg, = 26vEp— &y | 1- w2
2 2 ’U%V 2
ms, = (L—&)vr—& o2 W - (3.62)

F
The missing J, field, that in the diagonalization appears as a massless state, is the would-be
GB eliminated by the anomaly.
The masses of the fields ¢; are obtained by diagonalization of the remaining sub-
matrix. This sub-matrix written in terms of the vacua and the coefficients of the potential
has a cumbersome form that is not particularly inspiring and that we do not include. We

do not have an exact diagonalization for it but it must contain the lightest neutral scalar



Chapter 3: The flhiggs model 121

boson that we call h°. This can be understood by thinking at one single flhiggs triplet for
which the ¢; part would correspond to the imaginary component and the ¢; to the real part
and therefore Higgs-like component.

We study the scalar sector spectrum numerically in section 3.3 to obtain an esti-
mate of the allowed values for mpo and mp+ for arbitrary O(1) coefficients in the potential

and vp fixed to the values determined in the previous section.

3.1.7 The flavorless limit

In the limit in which we factorize out the flavor part by taking vy = f, the model
has the littlest Higgs model of ref. [27] embedded inside. We can identify within the global
symmetry SU(10) a reduced symmetry SU(5). The two flhiggs fields ®3 4 decouple from
this subsector that feels no U(1)x symmetry. In the notation of [27], the flhiggs fields ®; 5
go into the Higgs boson h while the fields z;; go into the weak triplet field ¢. Clearly, all
the Yukawa coupling of the next section become trivial and the fermion masses degenerate

if we take the Yukawa coefficients to be all of O(1).

3.2 Introducing the fermions

According to the rules of the little-Higgs mechanism, the coupling of the fermions
to the flhiggs must proceed by preserving enough symmetry not to give rise to 1-loop
quadratic divergent contributions to their masses. This means that for every fermion with
an Yukawa coupling of O(1) we must introduce one (or even more) state to cancel the
divergent diagram. This procedure brings in two more sets of fermions, one for the standard
model fermions with large Yukawa, couplings and one for the exotic states we introduced to
complete the SU(3) triplets.

Even though the introduction of new fermions seems to lead us to a structure of
Baroque richness, notice that these states nicely fall into the fundamental representations
of SU(10) giving a natural structure to the Yukawa interactions in terms of the larger

symmetry group that can be written in general, and by neglecting for the moment the
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flavor group, as

Ly = MXX + MXTX (3.63)

where X is a decuplet of fermions in the fundamental representation of SU(10).

The Yukawa lagrangians at the scale f is obtained by writing the SU(3)w x
U(l)x x U(l)p invariant terms involving the four triplets ®;,®2 ,®3 and ®4, and the
fermions. Standard model left-handed doublets are members of an SU(3)w triplet, the
third component being an exotic fermion.

To help the reader in keeping track of the various terms, Tables 3.1-3.4 contain
the representations and the charge assignments with respect to the exotic, the flavor and
the electroweak groups of all fermions and flhiggs bosons, the latter having been determined

solving eq. (3.53) and eq. (3.54).

Table 3.1: Representations and charges assignments for the flhiggs bosons.

[ [U0x [UO)r | SUBw [UM)w |

| 0 1/2 3 1
D, | 0 | —1/2 3 1
B | 1/2 0 3 1
B, —1/2 | 0 3 1

3.2.1 Quarks

In order to avoid large quadratic corrections to the flhiggs masses induced by
divergent one-loop contributions from the heaviest fermions present in the model, that is
the top and the exotic quarks (and leptons) that complete the electroweak triplets, we
introduce for each family a number of colored Weyl fremions, both triplets of the SU(3)
electroweak gauge group and singlets. Their charges are all summarized in tab. (3.2). The
number of multiplets and singlets introduced is the smallest number that permit us to write
‘a quark Yukawa lagangian composed by terms that singularly preserve enou‘gh symmetry in
order to keep the four triplets ®;, @2, ®3 and P4 massless. In this way quadratic divergent

contributions to the flhiggs masses arise only at two-loops.
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The Yukawa lagrangian for the quarks is given by

e e+l c 11+yS =93 |
[,g, = )\Zblfblf by Qlfl (24,4> ° -l-AZ'be’u”% Ug(2474) .

b __.a
vz —vg |

Sul ¢77a° s Ab g =98l | suz2 ot

+ A JUL O (24,4) + Agy fu'p Up (24,4)
~ ¢ x lv8—vd| cf .. lyg+y5|

+ iy £ QE QY (Baa) Y+ 2 dE (GZJle}JiE4,4+j28,4+i) (Bea) "7 (3.69)

with a = 1,2,3 and dp>* = d§, 5§, b5 . yg are the flavor charges of the Q% and Q¢ triplets,
now members of the Q% multiplets defined in tab. (3.2), yf; that of the 2/* multiplets and y4
the flavor charges of the Weyl fermions d%". In eq. (3.64) the terms with the coefficients vt
preserve an SU(8) subgroup of the approximate global symmetry SU(10) while the terms
with the coefficients A%2 break it but preserve an SU(9) subgroup of SU(10). Analogously,
the terms with coefficients A%! and A%2 preserve different subgroups of SU(10) making
possible the protection of the flhiggs masses through the collective symmetry breaking
mechanism.

The (4, 4) component of the sigma model field & that appears in eq. (3.64) is the
only SU(8) and SU(9) singlet and therefore the only possible field we can include to balance
the flavor charges to make eq. (3.64) invariant.

Expanding the 3 and keeping only the terms involving the ®; in eq. (3.64) yields

: sle; olo . o ST S S Y
— ul arrb 1*1 2992 ac . Py p P 9 b+
£ = WU - SEt - ) e e an] (5)
31Dy 1+ -v2|
)

+ X S UR(

- - = dlo;, oo —oe, BT B ., 1, B By Ive 2]
ul 95T P3¥3 2Py 0% 23 b P4 e 192\~ Y5
+ )‘abf[uLUL(l 22 27 )+, (4 7 QL‘HfQL)K 2 )
w2 o ey BIBo [WE —v2
+ )\abeuHE Uz( }22) o 70
v o~y BT Bo I9l—12 | ol .. Ot D5y BBy vh+ual
+ i FQEQE(—) " + N (eiikQh77) (7). (365)

After the symmetry breaking (3.31) that for convenience we rewrite here

0 0 0 . 0
('51} =1 ww/2 (@2) = | ow/2 (@3) = 0 (@g) = 0
UF/Z —UF/Z ’UF/2 ’UF/2

(3.66)
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the Yukawa lagrangian eq. (3.65) at the leading order becomes

u VW v v v b a

£y = N LU T UL ; 2+% %+TF )] (- kel
a ~ b __,a
+ A fu //a Up(— k)ll+y%_y‘9l + Ay f [“ LU+ (U;'“% + U;n%)}( - k)lyf’ vy

~ ~ € ~ b _.,a ~ b _.a
A2 U (= k)oY o, £ (mE mb 4 nd el + A Al) (- k)eval

AL d9° 4 20 VE( — K)Wetuil (3.67
ab®L YL

where k = v%/f? is the parameter in terms of which we write the mass textures.
From the lagrangian in eq. (3.67), we can read off the mass matrices for the quarks

(see also eq. (3.76) below). These matrices and their textures are discussed in section 3.2.4.

3.2.2 Collective breaking in the up-quark sector and decoupling of the exotic

fermions

Let us now pause for a moment and show how the collective breaking mecha-
nism works in preventing 1-loop quadratically divergent corrections to the flhiggs masses.

Consider only the terms of the type “up” components of the third family

U VE ~ v
['top = >‘13f31 f [t,E’TL * tli(_;?v-tL B TFtL N —fE % * 7 L ]( k) + >\ "L TL( ~ k)
+ ~1§31 f [E’;TL -+ t~l (TtL -} v; 3 )] -+ 5\?32 t7’2TL
+ 1% f(mimd +nind +a3ad). (3.68)

We see that ¢S and t"{ mix into a heavy and light combination, the latter being the

standard top quark t$. Since the mixing is given by

© )\u t”c >\ t’c
¢ =
JORZ+ 0822 7 /082 + (08)?
N g2 it
e = 33 " + 33 s, (3.69)
JORDZ+ w22 T /082 + (08)2
the top Yukawa coupling is
AU1AM2
4 = . (3.70)

V)2 + ()2
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Similarly, the exotic ¢ CL and ¢ 2 mix into a heavy and a light combination, giving

~ s
rise to the exotic quarks t$ and ¢, :

{i - _ 5‘13131 - {uz _ . 5‘?32 . t"/z
VOED2 + Ge22 [0 + ()2

i = Aig 1]+ —— A3 7, (3.71)
\/(5\13%1)2 + (A35)? \/(}‘1531)2 + ()2

and the exotic top Yukawa coupling is given by

Yulyu?2
Yu )‘33 A33

33 — = — -
VO + (3e2)2

We can neglect the mixing between the top, the exotic quark and the components

(3.72)

of the triplets Q‘z since they are much heavier thanks to the explicit mass term in eq. (3.69).

Therefore, eq. (3.69) becomes

Ly = Mzvwititr(~k) — Ny vptiin(— k) + miSTo( — k)

- — " ~C ~
+ Afyupitpts +mi T, (3.73)

where we have neglected the terms involving the exotic triplets Q3. In eq. (3.73) there
is mixing between the standard top ¢ and the exotic one #;, which is however very much

suppressed, as we shall show shortly.

The same argument should in principle be applied to the first and second family.

. - - C C
However in these cases we can neglect altogether the mixing between the v’ }:’2 and u" ?2

because it is strongly suppressed. Considering for example the the second family, we have

CCL — )\12121(__@3 CucL _ )‘322 CIE
VORERDZ+ 08227 /s (—R)3)2 + (22
u2(_1.\3 ul
éi — A22( k) CIIC + )‘22 clz’ (3‘74)

JOBER2 0822 © O R + 0

and from eq. (3.74) follows that

c;, = Ccy,
& ~ d']. (3.75)
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In the exotic sector the situation follows what happens in the case of the top quark,
and we define a light and a heavy exotic quark for both families, ¢§ and éi for the second
and %% and ﬁz for the first one. At the end, the Yukawa lagrangian for the lightest quarks,

both standard and exotic is given by

e b b +ug, ru ¢~b o+,
£y = Xyow uful(— k)R - NG vp uf al (- k)Yatvil

A% e a @l (— k) YE £ g a9 db 2uye( — k)Vatvil (3.76)

To see that the mixing between the standard and the exotic fermions is negligible,
consider the mass matrix at the leading order, that is by taking all the parameter A equal

to 1. We have the following 6 X 6 mass matrix

vwk’ wvwk® vwk? vpk” vpk® upkt
vwk® owk? wvwk? vrk® vpk? vpk?

vwk* wwk® owk vrk* vpk® wpk

MY, = : (3.77)
0 0 0 vF ’Upk ’UFk:3
0 0 0 ’UFk VR ’UF/{:2
0 0 0 wpk® vpk® wp

To give an estimate of the mixing between standard and exotic fermions we have

to consider M4 M ¢ that is

'U%Vlﬂg ’UIQ,Vk7 ’U%Vk‘r’ ’Uw'UFkS ’L)vak'7 'UW'UFkS
'U%Vk7 v%vks 'ulz,vk‘l vwork’ vwopk® vwoupk?
At - v, k° vkt v k?  owurk® wwoupk! vwopk? (3.78)
RL™RL k8 k7 k5 2 2 2k 3 o
VWUR VWUF VWUE VE VE vy
’UWka7 ’UVV’Ust ’Uw’vpk4 2'1)%7 ’U% 2’0sz
Uw'UF]C5 ’Uw’l)Fk4 'UW'UFk2 31]%» 2'()Fk2 ’U%

Nine angles out of the 15 parametrizing the unitary matrix that diagonalize the mass matrix
of eq. (3.78) contribute to the mixing between standard and exotic fermions. Let us call 0;;

with 7 =1,2,3 and j = 4, 5,6 one of these nine angles, we see that

tan '26',5]' ~ =2 Mij/ij , (3.79)
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that is
gij ~ —f™i vw/’UF, (380)

so the largest mixing angle between the standard and exotic fermions is 036 ~ —k% vy Jup =~
1072, while that with the first two standard families, are completely negligible and well

beyond any current bound [72].

3.2.3 Leptons

While standard model quark doublets are put in SU(3) electroweak antitriplets,
standard model left-handed leptons are embedded in SU(3) triplets. Since leptons are
lighter than quarks we should worry only about the divergent quadratic one-loop corrections
to the flhiggs masses coming from the exotic leptons. The lepton content of each family is
given in table 3.3.

The right-handed neutrinos N; with ¢ = 1, - - -, 8 couple to the left-handed triplets.
In order to see their effect on the low-energy lagrangian, it is sufficient to consider a pair
of them, for instance, v}, and 7% since the equal coupling of the remaining three pairs only
renormalizes the overall Yukawa coupling.

The Yukawa lagrangian for the leptons is given at the leading order for each term

by
Ly = W;f( Vv '56 vg) + n—;[(u%c 8 + 08er2)
+ Mo 7R (Eif’“L%iE‘l»jEBv") (24,4)%— | N, F g (EijkL%iEAL,jzs,k) (534,4)111%1|
+ Mo f PR (el Sa7%e) (Saa) il e s (esje s, S50 (24,4) lvg |
+ ApfEETLY (234,4)?}%_1/%%g (3.81)
b3 FEE L ()Y A £ B (2aa) "B s TR (m)

with @ = 1,2,3 , L¢ defined in tab. (3.3), vg™° = v, vk, 1%, ep™ = e, g ¢, 6123 =
€7, %, 7L yi are the flavor charges of the L§ and L% triplets members of the multiplets £
defined in tabs. (3.3)-(3.4), y¢ of the £f multiplets , while the two right handed neutrinos,
vk and I;’;, flavor charges are —1/2 and 1/2 respectively. In eq. (3.81) we have only two

terms that preserve two different subgroups of the approximate global symmetry SU(10),
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that is the terms with coefficients A\¢(12). This permit us to protect the flhiggs ®3 4 masses
from the one-loop quadratic divergent contributions coming from the lepton triplets, since
they couple to them with a large Yukawa coupling. As in eq. (3.64) for the quarks, the
component ¥4 4 is the only group singlet of the approximated global symmetries that can
be introduced to make the lagrangian flavor invariant.

Like for the quarks, the exotic leptons ¢’ aLC and e’ (;j mix giving a light and a heavy
exotic leptons, é‘f and ézc. In terms of the standard leptons, of the light exotic leptons and

of the ®;, eq. (3.81) becomes

Lly = me( + icVzli:) + M(V%C ?H- )+ /\} apl (ezgkLL D, @k)(fb%;h)lyi—ll
* aéﬂﬁi(@ﬂl€@¢f@k)(QQ@l)WL+”‘*2?2”%(ﬁﬂl&%@j¢k)(§%§l)wﬂ
o Nooh (cert oo (2 q’l)'“' v o (B2

@ @2 yL yL

+ 2 of LL( (3.82)

The neutrino sector in eq. (3.86) is given by four Majorana right-handed neutrinos
(two copies of them, actually) and three left-handed neutrinos, these latter being the stan-
dard neutrinos. Right-handed neutrinos are heavy, since their masses is of the same order
of the scale f, and we can integrate out them to obtain a Majorana mass matrix for the
left-handed ones through the see-saw mechanism [5]. If we define the neutrino Dirac mass

matrix, M gLia through

_ Ata - @T v~y |
PriMiL, Vi = T v (e1jels, ®5; ) (=2 & L) (3.83)

and the right-handed Majorana mass matrix, Mgg,; by
— 5
U My ve; = SLGE0+op) + BLOER 1 TR, ()

~5 _ ; . .
where we have defined v} = (vk,v'g,v%,0%) an vk the right-handed neutrinos flavor

charges as reported in tab. (3.4), we have
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After the symmetry breakings in eq. (3.66) and after having integrating out the
right-handed neutrinos , eq. (3.82) becomes
2

. VG ——= 1o, lb c ~ b1y
Ly = N fVE RS e (vwel, +ope) ) (k)0

+ Ne¥ e vp(k)VEvEl ¢ He. (3.86)

where we can easily read the left-handed Majorana mass matrix of eq. (3.85) and where
O(N5p) = OG-

As for the quarks, the mixing between the standard charged leptons and the exotic
one is negligible and in the discussion of the textures we will consider only the three standard
lepton families.

The see-saw in eq. (3.85) is at low energy and therefore provides only a small part
of the suppression of the neutrino Yukawa coefficient with respect to the others fermions.
The problem of the absolute smallness of neutrino masses is left unsolved in the flhiggs

model which only addresses the relative hierarchy in the fermion masses.

3.2.4 Fermion masses and mixing matrices

The fermion mass matrices are obtained from eq. (3.76) and eq. (3.86), respectively
for quarks and leptons.
The quark mass matrices can be read off from eq. (3.76) by inserting the charges

of all fermions according to Table 3.2. They are given by

kS MRS Afh®
M = XNowk? | Ay kS ALK ALk (3.87)
MED Mk N
and
Mk ALK Lk
M = XowVEEE | MK ALE2 N, | (3.88)
Mk ALE? Ay
where, we recall, the texture parameter is given by k = v% /f2. We have written the mass

matrices by extracting an overall coefficient for each matrix according and then treating
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the ratios of Yukawa couplings as a set of arbitrary parameters to be varied within a O(1)
range

The essential feature of these mass matrices is that the fundamental textures are
determined by the vacuum structure alone—that is that obtained by taking all Yukawa
couplings A;Lj’d of O(1). In fact, by computing the corresponding CKM matrix one finds in
first approximation

1 Ok) O(k*)
Vokm=| O(k) 1 O |, (3.89)
O(k%) O(k?) 1

that is roughly of the correct form and, moreover, suggests a value of k ~ sinfc ~ 0.2, as
anticipated.

At the same time it is possible to extract from (3.87) and (3.88) approximated

mass ratios:

yen mg s

o Me | 3 mq - 2
il O(k’°) and e O(k*) (3.90)

which again roughly agree with the experimental values.

These results show that the quark masses and mixing angles can be reproduced by
our textures. While a rough agreement is already obtained by taking alla Yukawa coupling
to be equal, the precise agreement with the experimental data depends on the actual choice
of the Yukawa couplings A;-Lj’d. Their values can be taken all of the same order, as we shall
see in the appendix, and therefore the naturalness of the model is preserved.

Turning now to the leptons, eq. (3.86) yields the mass matrices

MkE My Mgk
v
e e SRR L (3.91)

Msk Ak g
where )\’ is an overall factor of the order of the yukawa coupling of the neutrino’s Dirac
mass matrix , and
M1k Afok® Afak!
MEE=Dvw | Mk Mk A% | (3.92)

e 1.2 e \e 1
\ 731k A3z Agzk )
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where again we have extracted the overall factors and written the matrices in terms of the
ratios of Yukawa couplings divided by the overall coefficients.

The matrices in eqgs. (3.91)-(3.92) reduce—at the order O(k), and up to overall

factors—to
0 1 O(k) 0 0 0

MW — 1 0 OW%) and MY =1 o) ok 1 , o (3.93)
O(k) O(k) 1 0 1 O(k)

where, as before in the case of the quarks, the 1 stands for O(1) coefficients.
The eigenvalues of M) can be computed by diagonalizing M1 MO This prod-

uct is—again for each entry to leading order in k:

0 0 O®k)
MOt 0 — 0 1 o®k) |- (3.94)
o) O%k) 1

By inspection of the 2 x 2 sub-blocks, the matrix eq. (3.94) is diagonalized by three
rotations with angles, respectively, 5, ~ 7/4 and 0l ~ 05 < 1, leading to one maximal
mixing angle and two minimal. On the other hand, the neutrino mass matrix in eq. (3.93) is
diagonalized by three rotations with angles, rispectively, tan 26%, ~ 2/k? and 6}, ~ 013 < 1
(the label 3 denotes the heaviest eigenstate). Therefore, the textures in the mass matrices
in egs. (3.91)—(3.92) give rise to a PMNS mixing matrix [50]—that is the combination of
the the two rotations above—in which 3 is maximal, ;5 is large (up to maximal), while
613 remains small.

The natural prediction when taking all coefficients O(1) is then: a large atmo-
spheric mixing angle 023, possibly maximal, another large solar mixing angle 615, and a
small 613 mixing angle; at the same time, the mass spectrum includes one light (O(k?)) and
two heavy states (O(1)) in the charged lepton sector (me, m, and m, respectively), two
light states (O(k?)) and one heavy (O(1)) in the neutrino sector, thus predicting a neutrino
spectrum with normal hierarchy. .

While the quark textures are the same of those discussed in the previous chapter

and in ref. [51, 73], those for the leptons are slightly different because of the different favor
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symmetry, an abelian U(1) in the flhiggs model as opposed to the SU(2) of the second
chapter and of ref. [51, 73].
We have included in the appendix a numerical analysis in which all the experi-

mental data for both quarks and leptons are reproduced by a random choice of the rescaled

y.,d,e,u
ij
eter to be k = 0.14 and therefore f ~ 3.4 TeV for vy ~ 1.3 TeV.

Yukawa coefficients A of order 1. This analysis shows that we need the texture param-

3.3 Experimental signatures

The model contains many new particles. As explained, they are necessary in order
to implement the collective symmetry breaking that solve the little hierarchy problem. Some
live at the scale f, others at the lower scale vp and all the way to reach the weak scale v
below which the standard model particles live. In the low-energy range, these new states
affect electroweak precision measurements and, as discussed in sec. 3.1.5, this essentially
fixes the scale vp of flavor symmetry breaking which cannot be lowered more than about
the TeV. They also affect the overall fit of these precision data and can be included together
with standard model radiative corrections.

The range of energies from vp and f is going to be explored in the next few years
by LHC. Let us here summarize these new particles predicted by the model and briefly
discuss their main experimental signatures.

The most interesting experimental signature for LHC is in the scalar boson sector.
The flhiggs model contains 12 scalar bosons, ten of which are neutral, two charged. For
arbitrary coefficients of the potential we lack an analytic result for all their masses (see
eqs. (3.61)~(3.62) for the analytically known part). Their values depend on vF and g’ and,
after having fixed them, they are a function of the parameters of the potential. These
parameters &;, x; and ); can assume any value as long as they remain of order 1. To
obtain an estimate of these masses, we vary the numerical value of the coefficients in the
potential by a Gaussian distribution around the natural value 1 with a sp.read of 20% (that
is 0 = 0.2). This procedure gives us average values of these masses with a conservative

error and we can consider the result the natural prediction of the model. The error is large
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enough to cover the uncertainty due to higher loop corrections.

For each solution we verify that all bounds on flavor changing neutral currents are
satisfied. The most stringent of these is the potential contribution of the flhiggs fields to the
K% K% AS = 2 amplitude. The presence of the flavor-charged flhiggs fields at such a low
energy scale is possible because the relevant effective operators induced by their exchange

are suppressed by powers of the fermion masses over f [51, 73, 74].

The lightest neutral scalar boson (what would be called the Higgs boson in the

standard model) turns out to have a mass
mpo = 31780 GeV. (3.95)

This is a rather heavy Higgs mass due to the value of vp ~ 1 TeV we were forced to take
in order to satisfy the bounds on the Z’ mass. It is still inside the stability bound for a
cut-off of around a few TeVs. It is a value that only partially overlaps with the 95% CL
of the overall fit of the electroweak precison data that gives myo < 237 GeV [3] and gives
the most characteristic prediction of the flhiggs model: a heavy Higgs boson (that is, with
a mass larger than 200 GeV).

Notice that for a heavy Higgs boson like that we have found, and a cut-off f that
we take around 3 TeV in order to generate the correct mass textures, we would have a
little hierarchy problem with a fine-tuning of 1% that justifies the little-Higgs mechanism

we have implemented in order to be solved.

Above the lightest, the other scalar boson masses are spread, the heaviest of them

reaching above f. The lightest charged Higgs bosons has a mass my+ = 560 &+ 192 GeV.

Like all little-Higgs models, the presence of the heavy gauge bosons and the addi-
tional top-like quarks can be used as signatures in the experimental searches. In addition,
the flhiggs model has also a number of exotic fermionic states of known masses and coupling.
They couple only weakly with standard fermions, as explained in section 3.2. They can be

used as further experimental signatures for the model.

Table 3.5 lists all the particles present in the flhiggs model ordered by the energy

scale at which they live.
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3.3.1 Estimating the residual fine-tuning

Even though the model was conceived to provide a framework for electroweak and
flavor physics free of fine-tuning of the parameters, the requirement of having vp < 1 TeV
together with that of having the texture parameter k of the order of the Cabibbo angle—and
therefore f ~ 3 TeV—reintroduce some amount of fine-tuning.

The bound on vz implies relationships on the coefficients of the effective potential
that, as already discussed, in turn give a fine-tuning of about 10%. We find the same
amount of fine-tuning by considering the effect of having f ~ 3 TeV and therefore of having
the exotic quarks related to the top with masses of that order. They give a contribution to
the (lightest) Higgs boson mass of the order of

3f2), . A2
1672 f?

(3.96)

which, for mpo ~ 300 GeV is a correction to be cancelled by the bare mass at the 10% level.
We conclude that while the flhiggs model has still a certain amount of fine-tuning
in its parameters, this is substantially less than in the standard model with a light Higgs

boson.

3.4 Numerical analysis of textures

In order to show that the mass textures we found reproduce in a natural manner
all the experimental data we retain the first non-vanishing contribution to each entry in all
mass matrices and then—having extracted an overall coeflicient for each matrix according
to egs. (3.87)—(3.88) and eqgs. (3.91)—(3.92)—treat the ratios of Yukawa couplings as a set of
arbitrary parameters to be varied within a O(1) range. The absolute value of f is immaterial
to the textures that only depend on the ratio & = v% /f2. We keep the value of this texture
parameter fixed and equal to k = 0.14. It corresponds in our fit to the values of vp = 1260
GeV and f =3.4 TeV.

In practice, we generated for the c_iuark and lepton matrices many sets of Yukawa
parameters whose moduli differ by at most a factor 10 and accepted those that reproduces

the known masses and mixings.
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For the leptonic sector, we generate random sets of 14 real parameters. Lacking
experimental signature of CP violation in the leptonic sector, we have neglected, for the
purpose of illustration, leptonic phases in the numerical exercise.

We obtain that for the representative choice

AN, A 1.6 —-29 1.0
My My N3 | =] =29 0.55 —0.40 (3.97)
Als A3 A% 1.0 -0.40 2.9

with A, = O(1075) in eq. (3.91), and

M AL A -0.26 -0.83 1.0
A1 Ay A5y | = | —048 —1.7 —0.13 (3.98)
AL Ay X -1.2 26 -1.1

with ¢ = O(1072) in eq. (3.92), the experimental values are well reproduced.

We can see by inspection that there is a certain amount of tension between the

| request of a maximal mixing angle in the (2,3) sector and the mass splitting between the

p and 7 that forces an unnatural ratio of about 25 between the smallest and the largest of
these ratios of Yukawa coefficients. This was already pointed out in the previous chapter
and is a necessary feature of most textures discussed in the literature.

We proceed in a similar manner in the quark sector by generating this time 18
random complex parameters.

We obtain that for the representative choice

AL AL, Y ~1.1+1.3i 0.3740.37i 0.36 +0.42
Xg My N | =] —022—-1.6i —0.39—1.2 1.0 0.56i (3.99)
AE AL, A —~0.16 +1.2i 0.39—1.15 —1.3-0.22%

with A* = O(k™1) in eq. (3.87), and

MAL, 0, —0.54 +1.4i —0.38+0.98i —0.85— 0.09i
My M, My | =] 1.3-043: —0.65+0.52i 0.51—1.2i (3.100)
M, M, 2\, —0.62 -1.00 0.43+0.37i —0.02 — 0.54¢

with A% = O(k™1) in eq. (3.88), the experimental values are well reproduced.
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Table 3.4 summarizes the experimental data and compares them to the result of
the above procedure. The agreement is quite impressive. While the values of the overall
constants (which are related to the scale of the heaviest state in the mass matrices) are not
explained by the model, the hierarchy among the mass eigenvalues and the mixing angles
are given in first approximation by the flavor symmetry and the flavor vacuum so that,

within each mass matrix, the Yukawa couplings remain in a natural range.

3.5 Conclusions

In this chapter we have presented a unified picture of flavor and electroweak sym-
metry breaking based on a non-linear sigma model spontaneously broken at the TeV scale.
Besides the flavor-electroweak unification, the main features of the model are the stabi-
lization of the electroweak and flavor symmetry breaking scales, obtained by protecting
at one-loop scalar VEVs and masses by the little-Higgs mechanism, and the success in
reproducing the mass hierarchies and mixings of quarks and leptons.

The requirements to have both the simplest possible unification and the stabi-
lization d la little-Higgs have forced both the choice for the global and gauge symmetry,
and then indirectly the characteristic particle spectrum the model predicts. This implies
that the number of new particles introduced by the model, as huge as it appears, must be
considered as the minimal number for a model that aims to unify and stabilize the elec-
trwoeak and flavor scale in a little-higgs inspired scenario. The new particles with masses
at the TeV scale, new scalars, new gauge bosons and exotic fermions, even though only
weakly coupled to the standard fermions, can be used as further experimental signatures
at LHC, in addition to most important one of a rather large mass myo = 317 80 GeV for
the (lightest) Higgs boson. This large value is not ruled out by the electroweak precision
measurements, since all the electroweak fits should be do again with the particle content of
the flhiggs model.

The residual amount of fine-tuning arises in the parameters of the potential in
eqgs. (3.18)—(3.20) required by the split between v and vy and the O(3X¢ f2/(872) log A%/ f?)

corrections to the Higgs mass coming from the top-like extra fermions loops. However the
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overall fine-tuning in the model with the mass myo = 317 £ 80 GeV for the Higgs boson
and f ~ 3 TeV is around 10% , substantially less than in the standard model with a light

Higgs boson.
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Table 3.2: Representations and charges assignments for the quarks. Different families run
over the index i; they differ only for the flavor charges that are written as (q1, g2, ¢3) for,
respectively, the first, second and third family. U(1)w charges are determined by the data
constrains (see text of main body).

| | U(L)x | Ur | SUB)w | UMw |
. dL
QL Qr=1| u 0 (9/2,7/2,3/2) 3 1
0 ur,
Qi = L - my,
L Ui QyL=| n} 0 (9/2,7/2,3/2) 3 3
Ui it
0 7 0 (4,3,1) 1 2
Ut 1/2 (9/2,7/2,3]2) 1 2
O,
u'g
U = Ooa u'e 0 (3,1,0) 1 2
0
0
0a
0
- 0 ~ i€
u =\ 4 | =172 | (-9/2,-7/2,-3/2) 1 -2
0.
u'y
z¢
Q¥ Y 0 | (-9/2,-7/2,-3/2) 3 -3
u"y 0 (—3,-2,0) 1 -2
w'y ~1/2 | (-9/2,-17/2,-3/2) 1 -2
dy 0 (7/2,5/2,5/2) 1 1
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Table 3.3: Representations and charges assignments for the leptons. Different families run
over the index ¢; they differ only for the flavor charges that are written as (q1, g2, ¢3) for,
respectively, the first, second and third family. U(1)y charges are determined by the data
constrains (see text of main body).

l | L UWx | UWr  [SURw [ UMw |
i _ 2y,
oL Ly = | wi 0 (1,-1,0) 3 -2
i wi,
=] g
0 , ]
7 L= e 0 (1,-1,0) 3 —4
L éi
0/ 73 ~1/2 (1,—1,0) 1 0
0
e,
&=\ . & 0| (9/2,1/2,3/2) 1 3
0
0
0
0
& = g & 1/2 (~1,1,0) 1 3
0
e
25
Ly w§ 0 (-1,1,0) 3 4
e 1/2 (-1,1,0) 1 3

Table 3.4: Representations and charges assignments for the two right-handed neutrinos.

l | UWx [UWr [ SUBw  [UDHw |
VL] 0 1 1 0
vyl o ~1 1 0
V?Z 0 0 1 0-
5 0 0 1 0
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Table 3.5: Particles and energy spectrum of the model

| energy scale I states |
f~3TeV Zij, 5, S123, Wi_g, B, X', v %, Qp, Ly
vp =1 TeV Wi, Z' X, dr, by, dr, by, @p, Uy
between vy and v pli, 0134, P1-6, h0(¢7)a hi(ﬂzi)
below vy = 246 GeV v W=, Z, 45, Iy

Table 3.6: Experimental data vs. the result of our numerical analysis based on a represen-
tative set of Yukawa couplings of order one (see text) and & = 0.14. Uncertainties in the
experimental data are explained in the previous chapter.

| ] exp I numerical results I
[Vius| 0.219 — 0.226 0.22
Vsl 0.002 — 0.005 0.003
[Vep| 0.037 — 0.043 0.04
\ 0.004 — 0.014 0.007
|Vis | 0.035 — 0.043 0.04

) 61.5° + 7° 53°
sin 23 0.7051 002 0.71
me/me 248 £ 70 222
Me /My 325 + 200 369
my/m 40 + 10 40
ms/mg 23+ 10 17
tan? 0 0.23 — 0.69 0.67
sin? 20 0.8-1.0 0.9
sin® ;3 < 0.09 0.03
Amé/Am? | 0.014 —0.12 0.06
My [y 17 17
My /e 207 190



Conclusions

In this thesis we have discussed how the little-Higgs mechanism can be applied to
stabilize the electroweak scale (the littlest Higgs model), the flavor scale (the little flavon
model) and the two of them together (the flhiggs model). All the models achieve what they

were designed to achieve but only up to a point.

The results obtained in discussing the little flavon model indicate that this mech-
anism may be used to stabilize the flavor scale and at the same time explains the fermion
mass hierarchies and the quark and lepton mixings. However, the model is not completely
satisfactory because the requirement of gauging the flavor symmetry forces the flavor scale

to be around 10* TeV and re-introduces a problem of hierarchy.

The littlest Higgs and the flhiggs models share in the prediction of a large mass for
the lightest scalar present in the two models—to be identified with the Higgs boson—if we
require the spontaneous global symmetry breaking scale f to be around 2 TeV and accept
at most a 10% fine-tuning. To be more precise, these predictions indicate a Higgs boson
mass myg ~ 800 GeV (see fig. (1.6)) in the littlest Higgs model and mg ~ 300 GeV in the
flhiggs model (see eq. (3.95)). These results are not in contrast with the value indicated by
the electroweak data fits— that is, a Higgs boson mass my = 114752 GeV [8]— because
this result only holds within the standard model and all electroweak data fits should be
computed again after taking into account the new particles and interactions introduced by
the models. Nevertheless, as pointed out in ref. [30] in the littlest Higgs model a heavy
Higgs boson with my around the TeV, may be compatible with the electroweak precision
measurements only if the scale f of the model is rised up at 5 TeV. As a consequence, the

residual amount of fine-tuning which is present in every little Higgs model turns out to be
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of the same order of the fine-tuning required within the standard model to stabilize a light
Higgs boson mass with a cut-off of 10 TeV. This is somewhat disappointing.

The flhiggs model fares better than the littlest Higgs model. Even though the Higgs
boson mass predicted is heavy with respect to the central value indicated by the electroweak
precision measurements [8], it turns out to be of the same order of the electroweak scale and
not around the TeV thus bypassing the electroweak constraints of ref. [30]. The model is
(a lot) more complicated that the littlest Higgs but it achieves much more in providing an
unified picture of flavor and weak physics. As the littlest Higgs model (and the little flavon
as well), it predicts a distinctive spectrum of new particles and processes to be explored at

the LHC.
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