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Notation, conventions

Masses and couplings:

ME. ML My .. singlet and triplet (tvpe-I and type-II) neutrino Majorana masses

my, M, ... light neutrino masses and mass matrices

mi, Mg, M3 light neutrino masses

Am%, Am?4 neutrino oscillation solar and atmospheric mass differences

U, Ud VEVs of the MSSM light Higgs doublets; v, /vq = tan 8

as, ar ,ar, ap-r  SU(3).®@SU(2)L @ SU(2)r ® U(1)p-1 couplings o = g2 /4

Y10, Y196, Y190 SO(10) Yukawa couplings

Y5, Ye SU(5) Yukawa couplings

Yidiv effective MSSM Yukawa couplings

Mg, Mygg, Mysg ... heavy Higgs masses

Mg, Mg, Mp_; ... GUT and intermediate symmetry breaking scales
Parameters:

Uparns Pontecorvo-Maki-Nakagawa-Sakata mixing matrix

Veroar Cabibbo-Cobayashi-Maskawa mixing matrix

019, 23, O13 PMNS mixing angles in the lepton sector

OPMNS, D1, P2 leptonic Dirac and Majorana CP-phases

b12, P23, d13 quark sector mixing angles

dcKM CKM CP-phase

J, Jep Jarlskog invariant

NA pn Wolfenstein CKM parameters

a1, ag, as, B1, B2 additional SO(10) phase parameters.

Fy, F, Fe... quark masses normalized to powers of A

c?ﬁé Wilson coeflicients of d=5 proton decay operators

Eud,l, € perturbative parameters

Unless specified otherwise, summation over repeated greek and latin indices is always
understood. The Standard Model hypercharge is normalized so that Q = T° + %YW.
The normalization of the U(1)p_y, charge follows the “physical” convention B(quark)=
1/3. In canonical units, (B — L) = \/g(B - L).




Introduction

The status of the particle physics during the last thirty years could be regarded as a
golden age of the Standard Model [1, 2, 3, 4]. The experimental evidence accumulated
over this period, be it the the discovery of charm [5, 6] or neutral current interactions(7,
8, 9] in seventies, the direct production of the intermediate vector bosons in the middle
of eighties [10, 11] and a decade of extensive precision tests in nineties [12, 13, 14]
crowned by the full completion of the third matter family[15, 16, 17], confirmed the
relevance of the simple SU(3). @ SU(2)r @ U(1)y spontaneously broken gauge theory
to such an extend that nowadays it is often called the Standard Theory of elementary

particle interactions rather than just a “model”.

It is rather impressive that though having originally arisen from the need to over-
come the issues of the Feynman and Gell-Mann model of weak interactions [18] formu-
lated as a description of physics in the hundred MeV range, the validity of the simple
SU(3). ® SU(2)r ® U(1)y gauge scheme was not compromized even stretching the
probed energy span up to the hundred GeV scale. Despite of its success it is widely
believed that Standard Model can hardly be the final milestone of the road towards the
complete description of all microscopic phenomena, see e.g. [19] and references therein.
The theory suffers from drawbacks that can be tackled only in suitable generalizations

of the minimal framework.

Perhaps the strongest motivation to go beyond the Standard Model stems from the
neutrino physics. In the last decade, a significant amount of experimental information
about neutrino masses and lepton mixing was accumulated. The solar and atmospheric
neutrino anomalies found a successful theoretical description within the framework of
the neutrino oscillations tracing back to the end of the fifties [20]. It is based on the
effects of mixing among the different neutrino flavor states due to the misalignment
of the mass and flavour bases that can occur when the light neutrino masses are not
degenerate. Apart from the results of the LSND experiment that are still a subject of
discussions, the whole plethora of the neutrino oscillation phenomena can be described

in terms of 6 parameters: two mass-squared differences (Am% = Am%2 = mi - m%



and Ami = Amgg = m3 — m3 that give rise to the solar and atmospheric oscillation
patterns respectively) and three mixing angles 019, 623 and #13 plus a Dirac CP phase
Opasns residing in the so called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
matrix Upyrns. the analogue of the Cabibbo-Kobayashi-Maskawa (CKM) mixing ma-
trix parametrizing the charged current interactions of the quarks.

The solar neutrino deficit, as well as the results of various reactor experiments
like KamLAND or SNO [21, 22], are naturally understood in terms of the v, « Vi
oscillations driven by the Am% and 619 parameters while the atmospheric neutrino
phenomena observed in the Super-Kamiokande results [23] fit the v, + vy conversion
picture governed by Am? and 3. The recent extractions from the experimental data
yield at 1-o [24]:

tan® 010 = 0.45 4+ 0.05  sin®2093 = 1.024+0.04  sin®26;5 < 0.05 (1)

AmZ = (8.0+£03) x 107°eV?  |[Am%| = (2.5+0.3) x 1073 eV?

Unfortunately, the Dirac CP phase dpjsvs is so far beyond the reach of the current
experiments and the sign of the atmospheric mass-square difference is unknown. There-
fore. two distinct shapes of the neutrino spectra are compatible with the recent bounds
- the “normal hierarchy” case in which the state with the “minimal amount of the e-
flavor” is the heaviest one, and the “inverted hierarchy” setup where such a state plays
the role of the lightest one. Moreover, also the absolute scale of the neutrino masses (as
well as the two additional Majorana CP phases) can not be determined by the oscilla-
tion experiments and in this respect we have only a limited information coming from

the neutrinoless double beta decay experiments [25] and various cosmological bounds.

From the theoretical point of view, the neutrinos are strictly massless in the Stan-
dard Model (at the renormalizable level) due to the absence of the right-handed com-
ponents that would allow for a neutrino Dirac mass term alike the case of the other
matter fermions. To some extent, this can be viewed as a tautology because nothing
really forbids us to add a full gauge singlet field to the SM spectrum while tunning its
mass above the experimental bounds. On the other hand, such a singlet should be given
a mass that is not protected by the gauge symmetry. This, of course, brings another
(in principle large) scale to the SM and the model calls strongly for a generalization.

It is remarkable that this approach also provides a natural explanation for the
smallness of the “active” (i.e. coupled to the Z-boson in the SM-fashion) neutrino
masses. Note that the spectrum of the SM fermions spans the range from fractions of
electronvolt up to almost two hundred GeV, covering more than 11 orders of magni-

tude. Approaching the problem of neutrino masses along the same line as the masses
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of the other matter SN fermions. the relevant Yukawa couplings must be extremely
hierarchical.
On the other hand. adding a singlet Majorana mass term for the right-handed

neutrinos. the neutrino bilinears occupy a 6x6 matrix of the form!

0 Yluv v

L> (u{, VJQJT> ct
Y,v My I/i

(2)
and the renown “seesaw” formula arising upon its diagonalization yields
I— 2
my ~ =Y I MY, v* (3)

To get the proper range for the light neutrino masses one can infer M ~ 1012715 GeV
provided the neutrino Yukawa couplings are of size similar to the other Yukawas of
the Standard Model. Therefore, to understand the smallness of the neutrino masses
in terms of this attractive mechanism? a large new physical scale close to the 1012715

GeV range appears.

Another hint about a new large fundamental scale comes from the observed phe-
nomenon of the SM gauge coupling convergence. Remarkably enough, the effective
gauge couplings subject to the renormalization scaling® evolve in such a way to ap-

proach each other at roughly 10*® GeV, suspiciously close to the seesaw scale above.

It is interesting that this coincidence becomes almost perfect once another important
theoretical concept, namely the idea of low-energy supersymmetry (SUSY) is taken into
account. This framework, in which the fermionic and bosonic degrees of freedom as
two facets of one fundamental object - superfield - is very attractive not only for the
philosophically appealing “unification” of the concepts of matter and force but also for
the capability to resolve other issues of the Standard Model.

1Here the left chiral components of the charge-conjugated fields instead of the right-handed ones
are used.

2Perhaps a short point is worth making here. Unless there is a symmetry that prevents the zero on
the 11 position of the mass matrix 2 from receiving radiative corrections, there is a small but nonzero
entry generated at the loop level. Denoting this (the so called type-II) term by m the seesaw formula
changes into

my ~m—Y.I MY, o2

In unified frameworks such a term arises naturally even at the tree-level from the Yukawa interactions
with heavy SU(2) triplets and m is therefore often called a “triplet” seesaw term.

®In particular those of SU(3). and SU(2)r; since there is an ambiguity in defining the abelian
charges at the SM level let us for a moment keep aside the gauge coupling associated with the U(1)y
factor. It is intriguing that normalizing the abelian charge in accordance with the the unification
schemes like for instance SU(5), all tree gauge couplings meet almost at a point !



One of them is the so called hierarchy problem stemming from the fact that the
mass of the Higgs scalar is not protected by the gauge symmetry from receiving large
radiative corrections from the physics at very high energies. This calls for a tremen-
dous fine-tunning order-by-order in perturbation theory to prevent destabilization of
the Higgs mass and the electroweak symmetry breaking scale. If supersymmetry is
present (or softly broken [26, 27]), each fermionic (bosonic) field is accompanied by a
bosonic (fermionic) partner with equal mass (or shifted by finite amount if soft terms are
present) that leads to cancellations of divergences between the fermionic and bosonic
loop factors.

Moreover, within a class of supersymmetrized extensions of SM like for instance
the Minimal supersymmetric Standard Model (MSSM) [28, 29] we may understand
the phenomenon of spontaneous breakdown of the SU(3), ® SU(2)r, ® U(1)y gauge
symmetry at the electroweak scale. It can be shown that evolving the MSSM parameters
from a high scale at which the soft-SUSY breaking terms are generated down to the
low energies, one of the mass parameters in the Higgs potential may switch sign driving
the vacuum of the theory out of the gauge symmetric point.

Coming back to the gauge coupling unification in a supersymmetric framework. the
new states living around the TeV scale, in particular the gauginos and higgsinos (the
superpartners of the interemediate gauge bosons and Higgs scalars) affect the relevant
beta-functions in such a way that all the three effective SM gauge couplings meet at
roughly 2 x 1016 GeV.

These hints strongly suggest that many aspects of the “new physics” beyond the
Standard Model could be naturally accommodated within the so-called grand unified
theories, GUTs. In this class of models, the SU(3). ® SU(2)r, ® U(1)y gauge group of
the SM is embedded into a simple or a semisimple Lie group and the transformation
properties of the SM fields are realized by fitting the SM multiplets ¢ into just few
irreducible representations of the larger group. Notice that, as a consequence, in GUTs
there naturaly exist transitions among quarks and leptons leading to baryon and lepton

number violating processes such as proton decay and neutron-antineutron oscillations.

The most popular GUT schemes are based on the simple Lie groups SU(5), SO(10),
Eg while partial unification can be achieved imposing for instance the Pati-Salam sym-
metry SU(4)ps ® SU(2)r, ® SU(2)g that allows for treating the lepton number as a
“fourth color”, or via SU(3). ® SU(2)r ® SU(2)r ® U(1)p—y, or the SU(5) ® U(1)

“This usually concerns the multiplets of each generation separately. However, there are attempts to
construct schemes like for instance SO(16) [30] in which an irreducible representation accommodates
more than one generation of the SM fermions with nontrivial consequences for the flavor structure of

such models.




intermediate symmetries. In general. the choice of the unified gauge group is driven
by the requirements of minimality ° and by the need of complex representations to
account for fermion chirality. As we shall see, the hypercharges of the SM multiplets fit
precisely the low-dimensional multiplets of these groups® (5@ 102 1 in case of SU(5).
16 of SO(10) or 27 (with a slight redundancy of the vector-like fermions) of Eg). In case
of an anomaly-free GUT group, this assignment also sheds light on the “miraculous”

anomaly cancellations in Standard Model.

Another interesting consequence of the embedding of the SM gauge group into a
unified structure is a natural explanation of the fractional quark charges. Indeed, the
electric charge operator is identified with a combination of generators in the Cartan
algebra of the unified group. However, the eigenvalues of such operators are subject to
strong constraints arising from the nonabelian nature of the GUT group. As for the
simplest SU(5) GUT (c.f. section 1.1) the electric charge operator must be traceless
over any of its unitary representations and thus the charges of the quarks and leptons
residing in 5 must sum up to zero. Consequently. the three down-type antiquarks of

different colour equilibrate the electron charge only if Q5/Q.- = 1/3.

Another issue that can be addressed by GUTs is the so called flavor problem of the
Standard Model. In particular, without additional ad-hoc assumptions the minimal
SU(3).®SU(2),®U(1)y framework does not provide any understanding of the peculiar
Yukawa textures giving rise to the observed quark and lepton mixing patterns. This
stems from the fact that the symmetry of the model does not impose any constraints
on the flavor structure of these couplings and thus there is no way to correlate the
13 relevant parameters’ from first principles. Another aspect of this difficulty is the
peculiar pattern of the weak hypercharges of the SM fermions that, while fitting neatly
the SU(3).®SU (2),®U(1)y gauge structure, remains unexplained. The flavor problem
is generally boosted once the idea of softly-broken supersymmetry is invoked and the
supersymmetric versions of the SM with a plethora of flavor-dependent soft-SYSY
breaking terms are considered.

Both these aspects of the flavor problem can be partially traced back to the relatively
complicated structure of the SM gauge group. Indeed, the families of quarks and
leptons reside in 5 distinct multiplets of SU(3). ® SU(2)r ® U(1)y (6 if the right-

$Naturally, there are many Lie groups containing SU(3).® SU(2) ® U(1)y as a subgroup; to avoid
proliferation of new particles only the few of them such as those mentioned above seem a reasonable
choice.

®Tn fact, this very observation points strongly to the concept of a unified gauge group even without
the need for other hints like the experimental convergence of the gauge couplings or the large scale in
the seesaw formula for neutrinos!

"6 quark masses, 3 angles and one phase in the CKM mixing matrix and 3 charged lepton masses
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handed neutrinos are taken into account) and up to 4 independent Yukawa structures

are needed to construct (Dirac) masses for all of the matter fields, namely:
Ly = QY (®)Up+ QrYy(®))Dp + LY, (B,)Ng + LiYi(®HER + h.c.

The way this issue can be (at least partially) addressed in unified theories is clear.
Since the number of independent “building blocks” is reduced considerably once the SM
multiplets are accommodated within irreducible representations of the higher symmetry
group, the number of independent contractions needed to generate the appropriate mass

terms is smaller.

Remarkably enough, though enhancing the communication among the multiplets
in the “vertical” direction (i.e. within generations of the SM matter), the GUTs can
also lead to valuable clues on the flavour textures “across the families” that is usually
the domain of models with the so-called horizontal symmetries, c.f. [31, 32, 33] and
references therein. Such correlations can arise for example consequence of various
permutation symmetries acting on the family indices of fermionic bilinears; a typical
example could be the symmetry property of the up-quark Yukawa matrix Y, in the
SU(5) model. see section 1.1.

Extending this argument to the neutrino fields acompanying quarks and charged
leptons in the GUT multiplets, one may attempt studying the “internal” structure
of the seesaw formula (3) as well, that is smeared out in the low-energy data by the
degeneracy and nonlinearities therein. For instance, the tight correlations among the
effective Yukawa couplings of quarks and leptons arising from the same GUT origin can
give rise to nontrivial constraints on the structure of leptonic Dirac (and Majorana)
mass matrices which can subsequently shed a light on the patterns of the parameters
governing the neutrino physics.

The advent of the “precision measurements” of the neutrino oscillation parameters
inspired a proliferation of this type of studies in the last few years. As a matter of
fact, for the first time we are able to test some of the GUT models using neutrino
experimental data. As we shall see later, of particular interest are the models based
on the SO(10) gauge symmetry. In the minimal version [34], this scheme is very
restrictive in the Yukawa sector and can lead to testable constraints on some of the
neutrino oscillation parameters.

As a matter of fact, the results are quite interesting. Some of the recent year’s
analyses [35, 36, 37, 38] claimed that the large PMNS mixing angles in SO(10) models
with dominant type-I term in the seesaw formula could be hardly accommodated. This
brought some attention to those setups where the triplet (type-II) term is assumed
to screen the type-I contribution. Bajc, Senjanovié and Vissani [39] pointed out that

11



in such class of models there is a nice correlation among the apparent convergence of
the b-quark and 7-lepton Yukawa couplings at the GUT scale and the large 2-3 mixing
angle in the neutrino sector in such class of models. In the same framework, Mohapatra,
Coh and Ng [40] demonstrated that the almost bimaximal leptonic mixing could be
accommodated even in setups with only real Yukawa couplings and mixing parameters.
In a subsequent paper [41], the same authors attempted to generalize the numerical
analysis for the realistic (complex) case and claimed that the stringent minimal SUSY
SO(10) Yukawa sum-rules force the CKM CP-phase to fall in the second or third
quadrant, in contradiction with the experimental values dcxar ~ 5. The option of
generating the Majorana mass entries radiatively making use of the so-called Witten’s
mechanism [42] in the split-SUSY SO(10) model was studied recently by Bajc and
Senjanovié¢ [43]. It was shown that in this scheme the neutrino masses are always

dominated by the type-1 seesaw formula.

In this respect, the present work could be understood as an attempt to clarify some
issues raised in the recent surveys and to add another little piece into the mosaic of
this type of studies of SO(10) grand unified models. In particular, the stringent lower
hound on the 1-3 mixing in the leptonic sector |Ues| > 0.16 [40] emerging in the min-
imal SUSY SO(10) with dominant triplet seesaw contribution is reexamined in detail
paying particular attention to the quality of the numerical fit and the experimental un-
certainities in the input parameters [44]. It is shown that in the simplified scenario with
real Yukawa couplings there is an overall tension among the predicted correlations of
the neutrino oscillation parameters and the latest experimental data [24]. As demon-
strated subsequently, in the physical (complex) setup this problem can be partially
avoided by adjusting the additional phases entering the GUT-scale Yukawa sum-rules
but discrepancies still persist [45].

In order to address the raising tension between the minimal setups and neutrino
data, a slight extension of the minimal framework containing a subleading antisym-
metric Yukawa texture is proposed and a possible role of contributions stemming from
such a class of effective operators is studied®. It is demonstrated that even a per-mille
contribution can affect the 1-3 mixing angle by tens of percent. Though slightly re-
laxed, the stringent |U.s| lower bound does not vanish and can tell the model in future
experiments.

As for the CKM CP violation, the qualitative argument driving the CKM phase
into the second or third quadrant [41] is questioned and subject to a detailed analysis.

8Such a correction can be generated by giving a small VEV to a specific SO(10) Higgs multiplet,
see section 4. The antisymmetry is important for the stability of the perturbative method developed
for this purpose.
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Indeed. it is argued that the CIKN phase is obtained in the first quadrant via a minor
“conspiracy” among the input parameters. The regions of parametric space for which
this can happen are shown to be non-negligible confirming the semianalytic expecta-
tions. It is shown that this issue is naturally resolved in the extension of the minimal
setup with a quasidecoupled 120y in the Higgs sector.

The remarkable preference of small values of the Dirac CP-phase in the leptonic
sector obtained in the numerical studies [40, 45] of the minimal setting is justified by
a detailed inspection of the relevant mass matrices. It is claimed that this prediction,
though in general subject to large effects of running, remains stable for the physically
interesting regions of the parametric space.

The second part of the work is devoted to a class of SO(10) models in which
the Majorana masses for neutrinos do not arise from the Yukawa interaction with
the “standard” 126-dimensional multiplet. It is argued that in order to implement
the Witten’s mechanism[42] in a split-SUSY SO(10) GUT one should (in minimal
versions) employ a 120-dimensional Higgs representation. A class of “inverse” cascade
seesaw models is considered and a potentially realistic SUSY SO(10) implementation
of this setup is constructed. It is argued that the B — L breaking scale can be in general
decoupled from the scale of the neutrino masses. The potential smallness of the B — I,
breaking scale is shown to be fully compatible with both the neutrino physics and the

gauge-coupling unification constraints.

The material is organized as follows: the first chapter is devoted to several remarks
on the two basic supersymmetric GUTSs — first the minimal SUSY SU(5) is considered
and the main shortcomings are pointed-out in brief, and in the second part these issues
are addressed concerning a general class of SO(10) models. This provides a natural
motivation to approach and describe shortly the minimal SUSY .S O(10) scheme in the
second chapter. The third chapter is dedicated to a detailed study of the correlations
among the quark and lepton masses and mixing within the framework with domi-
nant triplet seesaw contribution. An extended framework, a setup with an additional,
quasidecoupled Higgs multiplet transforming as 120 of S0(10), is introduced and stud-
ied in detail in chapter 4. Chapter 5 is devoted to a class of alternative seesaw schemes
emerging in theories with a spinorial 16 in the Higgs sector of SUSY and split-SUSY
SO(10) GUTs. Finally, a set of Appendices is added to coment on technical points in
the main text.
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Chapter 1

Quark and lepton masses and

mixing in Grand unified theories

Let us start by introducing in brief the basic SUSY GUTs and making several remarks
on their salient features in view of the posible predictive power in the Yukawa sector
providing the key for understanding the correlations among the quark and lepton masses

and mixing studied in the subsequent chapters.

1.1 Quarks and leptons in minimal SUSY SU(5)

One of the first realistic attempts to embed the three distinct sectors of the Standard
Model in a unified framework dates back to 1974 when a simple scheme based on SU(5)
gauge symmetry was proposed by Georgi and Glashow [46]. Concerning the main
achievements, the theory was capable to provide for a partial understanding of the
electric charge quantization and predicted the value of the weak mixing angle in rough
agreement with the contemporary experimental data. On top of that, the 5 irreducible
representations accommodating the matter fields of each SM generation (assuming
purely left-handed neutrinos) were embedded into just two irreps — the antifundamental
B and the two-index antisymmetric tensor 10p. Since in such a scheme the quarks
and leptons transform among each other under the gauge symmetry, the baryon and
lepton numbers are violated in the interactions of the matter currents with the gauge
bosons associated to the coset SU(5)/SU(3). ® SU(2)r ® U(1)y. This gives rise to a
variety of new phenomena, as for instance the proton decay or the neutron-antineutron
oscillations.

Remarkably enough, the theory turned out to be so robust and compelling that

it did not require any drastic revision for almost 30 years. Up to few necessary “up-
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grades” motivated by further theoretical and phenomenological development — in par-
ticular. supersymmetry[28] was invoked [47. 48] to solve the gauge hierarchy problem
and cure the mismatch of the running gauge couplings at the GUT scale — the minimal
SUSY SU(5) [47] is still considered a prototype of a potentially realistic grand unified
framework.

To appreciate the power of the unification idea and explain the motivation to con-
cerning even larger GUT groups such as SO(10) in subsequent chapters, let us discuss
briefly some of the salient features of the minimal SUSY SU(5) paying particular at-

tention to the mass and mixing patterns arising in the quark and lepton sectors.

1.1.1  SU(5) matter fields

Under the SU(3). ® SU(2)r @ U(1)y subgroup, the 5 and 10 irreps of SU(5) accom-

modating the SM matter multiplets decompose as
5=(3,1.+1/3)&(1,2,-1/2) and 10=(3,1,-2/3)®(3,2,+1/6)& (1,1, +1) (1.1)

In a self-explanatory notation, the embedding of the SM matter fields in these repre-

sentations can be depicted as!

g 0 u§ —u§ uwl dt
ds .0 u?  d?
5= ds 1004 = 0 u® & (1.2)
e .. . 0 e°
-v /, .. . . 0 I

The positions of various entries are dictated by the way the fundamental triplet of
SU(3). and the doublet of SU(2)y, are placed in the fundamental pentaplet of SU(5).
In our notation the triplet is spanned over the first three indices of 5 while the doublet
resides at the position of the remaining pair?. The structure of 10 is then obtained
by inspecting the “distribution” of the SM quantum numbers in the antisymmetric
subspace of 5 ® 5.

In SUSY context, these multiplets become chiral superfields hosting also the MSSM
squark and slepton fields that are pushed above the experimental thresholds by the
effects of the soft SUSY-breaking terms. This gives rise to several effects with direct

phenomenological consequences:

'We utilize the standard trick of putting the left-handed components of a charge-conjugated field
instead of the right-handed ones.

2The doublet and the “antidoublet” of SU(2) are equivalent representations. From now on the bar
of 2 is going to be omitted.
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o The additional scalars arising at the SUSY breaking scale (in the so called low-
energy SUSY scenarios this scale is usually put in the TeV range) do not affect
the position of the unification scale at the one-loop level because they fall into
full SU(5) multiplets. As a consequence. their contributions to the various b-
coefficients are equal (at one-loop order) and the slopes of the curves correspond-
ing to the three running gauge couplings change by the same amount. However.

2
the value of the GUT-scale (universal) gauge coupling ag = ¥ is affected.

e The presence of the charged scalars close to the SM physics opens a Pandora shell
of d = 5 effective operators overwhelming in most cases the traditional d = 6 ones
of the non-SUSY setups. Moreover, since the chiral superfields obey the Bose-
Einstein statistics, supersymmetry puts further constraints on the flavor structure
of these operators.

The latter observation leads to a class of typical experimental signatures of SUSY, like
for instance the dominance of the kaon decay channels in proton decay experiments.

c.f. section 1.2.4.

1.1.2 Higgs sector and Yukawa couplings

Let us first write down the SU(5) decompositions of the three different matter bilinears
16
E ® H =0 [

H®H = E ¢

As expected, there is no singlet in eq. (1.3) and all the fermion masses in minimal SU(5)
must be generated by the Higgs mechanism as in the Standard Model case. Notice that

that can be constructed from 5 and 10:

5®5 = 10815

[
—~
—
w
~

5®10 = 5@45

:)GBBE]

10®10 = 504550

CLT] O

the first matter bilinear (5p ® 5p) can not provide for quark and lepton Dirac masses
as it contains only one chiral component of each of these fields, see (1.2). However, it
can be used to generate Majorana mass for neutrinos if the SU(2)-triplet of 155 (if
present) acquires a VEV [19]. The second structure (5p ® 10F) contains both chiral
components of down quarks and charged leptons and thus can be used to generate the
Yukawa vertices for these fields, while the last bilinear (10F ® 10 r) can do the same
for the up-type quarks (again, due to the absence of the opposite chirality it can not
do this for the other matter fermions).
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The structure of the minimal SUSY SU(5) Yukawa sector becomes clear: the Dirac
masses of all quarks and charged leptons can be generated by a pair of 5-dimensional
Higgs representations 5y @ 5. the former?® giving rise to the masses of charged lep-
tons and down-type quarks while the latter to the up-quarks!. The relevant Yukawa

superpotential can be written in the form
Wy = Y75p1035y + Yo' 10010554 (1.4)

The mass matrices generated by the VEVs of the SU(2) doublets in 5y @ 55 then
read
My = M; = Ys(5u), M, =Ys5(5m) (1.5)

Note that due to the symmetry properties of the 10}10% bilinear the up-quark Yukawa
couplings are symmetric in the generation indices: M, = ]\/Ig .

However, it is obvious that the Higgs multiplets used so far are not sufficient to
break the SU(5) symmetry down to the SU(3).® SU(2)r @ U(1)y of SM as there is no
SM singlet in 5 nor 5. Equivalently, since both SU(5) and SU(3).®SU(2)r ®U(1)yare
rank 4 groups, the adjoint of SU(5) — a 24 dimensional multiplet — is the smallest Higgs
representation that can be used for this purpose®. Indeed, under SU(3). @ SU(2)r @
Uy

24y = (1,1,0) @ (8,1,0) ® (1, 3,0) & (3,2, —5/6) @ (3,2, +5/6) (1.6)

and the (1,1,0) component can acquire a GUT-scale VEV provided the parameters of
the Higgs superpotential

Wit = msBiBly + moa24%;, 245 + A24%,.24%, 24% + 5 mi24y,5y  (L.7)

are tunned properly. Note that once the necessary fine-tunning is performed at the tree-
level, the SUSY no-renormalization theorem of Grisaru, Rocek and Siegel [50] ensures
that it is not compromised by the radiative effects.

1.1.3 Minimal SUSY SU(5) - parameter counting

For sake of comparison with the other models considered later in this work let us count
the number of free parameters of minimal SUSY SU(5). There are 4 complex couplings
in the Higgs superpotential, that (upon redefinition of two of the Higgs fields) leave 6

Supon the spontaneous breakdown of SU(2)r ® U(1)y — U(1l)g
4The situation is quite similar to the MSSM where two doublets of opposite hypercharges were also

needed to preserve supersymmetry and cancel the anomalies generated by higgsinos.
5 Another option is for instance the 75-dimensional Higgs multiplet that allows for an implementation

of the so-called “missing partner mechanism” addressing the generic doublet-triplet splitting problem
of unified schemes [49].
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real parameters. In the Yukawa sector. there are 6 complex entries of the symmetric Y,
and 9 complex entries in ¥y = ¥;. Obviously. not all of them are physical and one can
diagonalize Y, to end up with just three real numbers in the down quark and charged
lepton sector. Having done that there is no more freedom in the up-quark coupling up
to the phase redefinition of 5°. Together with the gauge coupling g, there are in total
21 independent real parameters in the minimal SUSY SU(5) model. The soft SUSY
terms are universal for all the potentially realistic models and as such are not counted
here.

1.2 Minimal SUSY SU(5) shortcomings

Though the minimal SUSY SU(5) model briefly described in the previous section seems
to be a promissing candidate for the simplets potentially realistic GUT theory, it suffers
from several drawbacks that require additional assumptions and model building. Apart
of the problem with the neutrino masses that can he generated at the level of effective
operators, but only for the price of nonzero R-parity violating couplings like 5p5 524y
(see [34] and references therein), the predicted relation for the Yukawa couplings v = ¥}
(that works well for the third generation giving a hint for the observed convergence of
running and yr around the GUT-scale) fails for the first and the second generation.
Moreover, as we shall see in the subsequent part, the minimal model is plagued by

rather fast proton decay.

1.2.1 Neutrino masses in SUSY SU(5)

Concerning the neutrino mass problem, the most straightforward solution consists in
adding an SU(5) singlet containing the right-handed neutrino component and invoking

the standard Yukawa interaction and the singlet Majorana mass term for z/j‘:;7
W3UE) 5 YiI5 L1955 + MI151, (1.8)
However, also this construction suffers of several unpleasant features :

o The number of parameters one has to add to give masses to the three neutrinos is
enormous - after rotation into the basis in which M is diagonal® we are left with
3 real eigenvalues of M, and in general 9 complex entries of ¥, - 21 additional

parameters in total, i.e. double of the original minimal SU(5) number!

SNote that the phase of 10F is fixed upon diagonalization of M.
"The Lorenz structure of the Majorana mass term is suppressed.
8Such a basis always exists as the Majorana mass matrix is symmetric in generation indices.
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e Since M’ are gauge-singlet mass parameters, without additional assumptions

their overall scale remains undetermined in the SUSY SU(5) framework.

Therefore, the predictive power of a realistic SUSY SU(5) in the leptonic sector (and
in particular for neutrinos) is very constrained.

On the other hand, there is an interesting hint in favor of this scheme. It stems
from the observation that although SU(5) is not anomaly free, the anomalies generated
by the minimal model fermionic content (5 and 10r) exactly cancel [51], pretty much
like in the SM case. This is of course highly welcome for the consistency of the theory,
but calls for deeper understanding. Remarkably enough, this feature can be explained
if SU(5) is considered as a subgroup of SO(10) that is automatically anomaly free. In
such a case the additional matter singlet is a must since the SU(5) matter multiplets

are embedded into the 16-dimensional spinorial representation of SO(10) as
16=5010p1 (1.9)

Therefore, from the SO(10) point of view the extended SU(5) matter spectrum is very

natural.

Alternatively, since the SM neutrino masses are strongly suppressed with respect to
the masses of the other matter fermions, a natural option could be to generate them at

the nonrenormalizable level by means of appropriate effective operators, for instance
1 - :
w3t 5 AijM5F5§,ﬂ5H5H (1.10)
in a complete analogy with the SM effective structure [19]

£5M9/\»1

Gl C T inT gl H 7 H (1.11)

Unfortunatelly, neither this approach is satisfactory, although the number of new real
parameters is reduced to just 12. The reason is that for the natural cut-off scale M
above Mg the neutrino masses are too small to account for the mass-squared ratios

measured in oscillation experiments.

1.2.2 Effective Yukawa sum-rules & quark and lepton masses and mix-
ing

As we saw in section 1.1.2 the SU(5) gauge symmetry and the minimal Higgs content

yields at the renormalizable level

Y,=Y!l and Y;=Y (1.12)
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There are therefore two independent Yukawa matrices in the quark sector, one of them
(Y,) symmetric. This is welcome. because this structure can accomodate the CKM
mixing easily. On the other hand Y, = Y is a nontrivial prediction that the down
quark and the charged lepton spectra are equal at the GUT-scale. In case of the
third generation this relation is nicely satisfied in terms of the mentioned vy, — y-
(or shortly b — 7) unification acquired around the GUT scale®. However, to get the
right prediction for y, and y, one would rather need roughly v, ~ 3ys at Mg while
for the first generation 3y, ~ yg. Therefore, though very successfull for the heavy
flavors, the light fermion masses call for an extension of the minimal SU(5), either by
coupling additional Higgs multiplets to the matter bilinears or emphasizing the role of

the effective operators.

Another serious issue of the minimal SUSY SU(5) model comes from the predictions
for the proton lifetime. Prior discussing this problem in more detail let us shortly

comment on general features of proton decay in SUSY GUTs.

1.2.3 Proton decay in SUSY GUTs

The proton decay scenario in the supersymmetric grand unified models differs from the

nonsypersymmetric case in several aspects.

e The new coloured scalars required by supersymmetry give rise to a new set of
d =5 (and sometimes even d = 4, c.f. section 5.1.1) baryon and lepton number
violating operators. This usually leads to a strong enhancement of the proton
decay amplitudes in comparison to the nonsupersymmetric models where such
operators, generated by the exchanges of the leptoquark gauge bosons, appear at
d = 6 level.

o The dominant nucleon decay modes in supersymmetric models (e.g. p* — K*7,,,
n — KO) differ from the non-SUSY ones (mostly pt — 77, pt — nlet,
n — 7~ eT). The reason for this stems from the bosonic nature of the superfields.
Indeed, writting the relevant “LLLL” and “RRRR” operators in “full glory” (with
1,7, k,[ being the family indices while «, 5,y and r, s, %, u standing for colour and
SU(2)r, indices respectively and omitting all the Lorenz patterns):

ijkl _rs_tu_a i J korl
Op o< cj ee™e ﬁWQLw LﬁSQL'ytLLu

Or o Mg ugldstes! (1.13)

*Due to the different RGE evolution (b is coloured while 7 is not) this leads to roughly 3y, ~ s

around the electroweak scale, in good agreement with the experimental data.
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Kl ijkl .
and c}% stems from the Feynman di-

The structure of the Wilson coefficients c']f
agrams with the heavy coloured Higgs triplet exchanges. Apart from the Yukawa
entries they contain (rotating the quark fields into the mass basis) combinations
of the various CKM entries. Since this product must be symmetric with respect
to the interchange of the superﬁélds Q@ (and also u®), the relevant family indices
must be antisymmetrized as well — one gets 7 # j # k for the “LLLL” type while
1 # 7 for the “RRRR” operators. Therefore, the d = 5 operators must be spaned
over more than one generation. Converting these structures to the four-fermion
operators by the wino and higgsino dressing!® depicted at Fig. 1.1, the dominant
proton decay mode in most supersymmetric models is shown to be p* — K o,
c.f. [52] and references therein. This feature can in principle tell SUSY in the

proton decay experiments.

Figure 1.1: The basic structure of the d = 5 operators driving the proton decay in
SUSY models. The diagrams with gluino, bino and neutral higgsino dressings are often
strongly suppressed by the first and second generation Yukawa couplings arising in the
Wilson coefficients of the Oy and Op effective operators. The dominant decay channel
is usually p* — K*p,.

1.2.4 Proton decay in minimal SUSY SU(5)

Let us now inspect in brief the structure of the effective operators (1.13) in the minimal
SUSY SU(5) model. They are generated upon integrating out the heavy coloured
triplets Ho = (3,1,—2/3) and Heo = (3,1, +2/3) residing in 5z and 5. The structure

°The gluino, bino and neutral higgsino dressed diagrams are strongly suppressed by the Yukawa
couplings of the first and second generation governing the relevant effective d = 5 vertices (note that
this dressing is flavour-diagonal and only relatively light mesons up to kaons are allowed by kine-
matic reasons). Moreover, the charged higgsino dressings of the “RRRR” operators are also usually
suppressed unless there are relatively large Yukawa couplings corresponding to the third generation
squarks propagating in the loops.
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of the Wilson coefficients ¢}/ Moand (:’]él‘ is dictated by the the Yukawa interactions of
He and He with matter fermions encoded in formula (1.4). namely

Wy 3 YPd5 S He + Y QU L He + Y us e He + Y7 QL' Qr He + .. (1.14)

u

From this expression it is easy to infer!!

M M Ml;{—(;}quyd’*l (1.15)
Therefore, in the minimal SUSY SU(5) the structure of the effective operators (1.13)
is very rigid and the model is highly predictive. Concerning the physical implications
of relation (1.15) one can see for instance that in most cases the “LLLL” contribution
dominates over the “RRRR” ones because of the Yukawa suppressions in the higgsino-
squark couplings. On the other hand, the “RRRR” contributions can play a significant
role if cp is accidentally enhanced, like for instance in the very large tan 3 limit (due
to the blow-up of the bottom Yukawa coupling [52, 53]) or in case of p™ — K17, (as a
consequence of the Yukawas associated with the third generation sparticles propagating
in the loop).

As regards to the numerical results, this type of analysis gives a stringent lower
bound on the proton decay width of roughly!? Lo ~ (1032 years)™!, see for instance
[53, 54] and references therein. This should be compared to the SuperKamiokande
experimental bounds [55, 56] of roughly I',+ < (2.2 x 103 years)™!. This observation
often leads to the claims that the minimal SUSY SU(5) is excluded [54, 57|

However, it was pointed out recently that there still can exist areas in the parametric
space that remain compatible with experimental limits if for instance the effective
operators are invoked [58, 59] and/or the effects of GUT-scale “Yukawa mismatch”
are taken into account [53, 60]. Therefore, though minimal SUSY SU(5) is clearly in
troubles with proton decay it still can not be definitely excluded.

The remainder of this chapter is devoted to a similar analysis of the other very popular
class of the unified schemes, the SO(10) GUTs.

UEor sake of simplicity the two additional phases arising upon redefinitions of 57, 10, 55 and %
(making the quark and lepton masses real and positive, c.f. section 1.1.3) are suppressed in relations
(1.15). Note also that these formulae fix the structure of ciijl and cj—{kl at the GUT scale. In precise
quantitative analysis the effects of running of these operators downto the hadronization scale must be

taken into account. For more detail see [52, 53] and references therein.

2This result corresponds to the masses of all sfermions at 1 TeV, maximal negative interference
among the relative phases of the “LLLL” and “RRRR” contributions and an “optimal” value of tan 8 ~
4.
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1.3 Quark and lepton masses and mixing in SO(10) models

As we have seen case of the simplest unified model based on the SU(5) gauge symmetry,
grouping the SM multiplets within few irreducible representations of a GUT group
leads to correlations among the various Yukawa couplings arising at the level of the
low-energy effective theory. This can be viewed as one of the major achievements of
the grand unified scenarios as it, at least in principle, provides for a possible way of
addressing the flavor problem of SM without additional ad-hoc assumptions, like for
instance in models equipped by horizontal symmetries [32, 31, 33]. Since the number
of multiplets accommodating the matter fermion is further reduced in the SO(10) case
one can expect stronger communication among the various flavors giving rise to even

more constrained sum-rules for the effective Yukawa couplings at low energies.

1.3.1 Matter fields in SO(10) GUTs

One of the strongest motivation for the SO(10) gauge symmetry comes from the ob-
servation that all the standard model multiplets of one generation fit neatly a single
16-dimensional chiral spinor of SO(10)D>SU(3). @ SU(2)r @ U(1)y:
QL Ly v _ % vi ef
16p =(3,2,+1/3) & (1,2,-1) & (3,1,—4/3) & (3,1,+2/3) & (1,1,0) & (1,1, +2)
(1.16)
or, equivalently, 16 = 5@ 10 ® 1 at the SU(5) level. This immediately brings several

benefits for general model-building:

e The right-handed neutrinos are automatically present and (since 16 ® 165 does
not contain a gauge singlet) the structure and scale of the Majorana masses are
dictated by the Yukawa couplings, spontaneous symmetry breaking pattern and

the requirements of gauge-coupling unification.

e Since the gauge symmetry does not distinguish among the components of the
decomposition (1.16) there are tight correlations among the effective Yukawa
couplings that originate from a common source. As a consequence, the number of
independent parameters determining the SO(10) textures of the effective quark

and lepton mass and mixing matrices can be reduced considerably.

On the other hand, oversimplifying the Yukawa sector one can easily end up with similar
problems as in the minimal SU(5) case. However, using a “reasonable” number of
“active” Higgs representations, the generalized Yukawa sum-rules remain under control
and need not leed to a complete loss of predictivity. Indeed, in realistic versions of

SO(10) GUTs one usually employs 2 distinct Yukawa couplings with definite generation
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symmetries that give rise to all the 5 Yukawa structures of “standard”™ NMSSM-like
. N . 9 . . . . . - -

effective theories!®. Thus. the structure remains rigid enough to provide for nontrivial

and testable correlations among the quark and lepton masses and mixing subject of the

next chapters. This brings us to the question of the Higgs sectors of SO(10) models.

1.3.2 Higgs bosons in SO(10) models

As in any realistic grand unified framework the Higgs sector of a general SO(10) GUT

must satisfy two basic requirements:

e The flavour structure of the Yukawa interactions of the matter fermions with the
effective MSSM doublets should be compatible with the current data on quark

and lepton masses and mixing

o It must allow for a proper spontaneous symmetry breking of SO(10) gauge sym-
metry downto the SU(3). @ SU(2)r @ U(1)y of the MSSM.

Of particular interest are representations of SO(10) that are capable to act in both

these roles. In such a case the number of free parameters can be reduced considerably.

Concerning the first requirement, the dimensions of the Higgs representations that
can couple to the matter fermions of the MSSM are given by the group-theoretical
properties of the bilinear [61]

1616 = 10 ® 126 ® 120 (1.17)

Thus, at the renormalizable level there are only three types of SO(10) Higgs multi-
plets that can give masses to the matter fermions: the 10-dimensional fundamental
(vector) representation 10y, the 126-dimensional anti-selfdual 5-index antisymmetric
tensor 126 and the 120-dimensional three-index antisymmetric tensor 1207, see Ap-
pendix B.3.1.

However, at the level of effective operators, any combination of Higgs representation
containing at least one of these three structures as a part of its decomposition, can
be used. For example, typical choices are th 10- or 120-dimensional components of
167 ® 167 or any of the three factor arising from 165 ® 16 coupled in an appropriate
way to 16 ®16 in models with low dimensionality of the Higgs sector representations.

As regards to the spontaneous symmetry breaking chains, the important difference
with respect to the minimal SU(5) case stems from the fact that SO(10) is a rank-5
group. Therefore, there are many different symmetry breaking “chains” leading to the

13942 quark and lepton Dirac mass matrices and, optionally, the Majorana mass matrix for neutrinos.
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rank-4 SU(3). @ SU(2)p @ U(1)y of SM. To break SO(10) properly along the desired
chain one must make sure that at each intermediate scale there live Higgs multiplets
capable to break the considered symmetry down to a subsequent one. In order to do
this. the components acquiring VEVs must be completely neutral with respect to the
desired lower intermediate symmetry groups and there must exist a scalar potential
(encoded in the superpotential of the SUSY models) that can develop negative signs of

the appropriate mass terms driving the symmetry breakdown.

Looking at the decomposition of the basic SO(10) representations with respect
to the physically interesting subgroups (c.f. [61] and Appendix B.4), in particular
SU(5), the Pati-Salam left-right symmetric group SU(4)ps ® SU(2)r, @ SU(2)g or
SU3).®SU(2),®@SU((2)p®U(1)p_1, it is easy to see that only some combinations of
the SO(10) irreps are suitable for such purposes. The most common SO(10) breaking
chains'* and the representations that can be used to break the intermediate symmetries

at each step are given at Fig. 1.1 and in Table 1.1.

Figure 1.2: The most common SO(10) breaking chains of SO(10) down to the SU(3).®
U(1)p gauge symmetry at low energies. The Higgs multiplets usually chosen to break

the intermediate symmetries are given in Table 1.1.

SO(10)

rank 5 //

SU(4)ps @ SU(2)r, @ SU(2)r m*SU(o)CQﬁU(l)B L @SU(2)L@SU2)r

/

SUGB)@U1)x —_

G
rane 4 SU(5) —— SU(3)c ® SU(2) @ U(1)y
\V
rans 3 SUB)® Ul

'For simplicity reasons, all subgroups that differ only by an additional discrete symmetry factors
are omitted. For details, c.f. [61] and [30].
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It is worth stressing that also the multiplets that do not couple directly to the
fermionic hilinears can play an important role in the effective quark and lepton Yukawa
relations. After the GUT-scale symmetry breaking, all the SU(2)r-doublet components
with equal SM quantum numbers coming from different SO(10) representations can
mix and enter the formulae for the effective SM light Higgs doublets acquiring the
electroweak VEVs, c.f. section 2.2.4. The same mechanism applies also to the other
multiplets. For instance, the SU(2)p triplets!® in 45y and 2105 mix at the SU(3). ®
SU(2)L®SU((2)r@U(1)p—r stage giving rise to the relatively light triplet responsible
for a SU(2)r — U(1)Rr breaking discussed in chapter 5.

Remarkably enough, inspecting Table 1.1 one can see that at least two (and three
in the SUSY case) Higgs representations acquiring VEVs are needed to break SO(10)
down to the low energy SU(3). ® U(1)g gauge group 6.

Concerning for instance the breaking of the SU(2); ® SU(2)gr subgroup of SO(10)
there are only two multiplets (up to the complex conjugated ones) that contain SM
singlets capable to break this intermediate symmetry - 16y (and/or 16g) or 126
(and/or 164)'". However, the SM singlet components of none of these multiplets can
break the SU(5) subgoup of SO(10)*®. This can be seen easily in the case of 16y /16y
- only the SU(5) singlet is also a singlet under SU(3). @ SU(2)r, @ U(1)y. Concerning
the properties of the SM singlets of 126, one can use the embedding of 5° (and 5;) into
the SO(10) vector 10g. The pair of SU(5) singlets coming from the full antisymmetric
contractions of five 5' (and 5;) reside in the five index antisymmetric tensor of SO(10)
that is nothing but 126 @ 126, see Appendix B.3. Since there is just one SM singlet
direction in each of these multiplets [61] it must be the one we constructed and thus
the SM singlets in 126y and 126y are also SU(5) singlets.

Therefore, to break SO(10) through the left-right subgroups avoiding the SU(5)
intermediate step, additional Higgs representations are needed on top of either 126y

15(1,3,1) with respect to the Pati-Salam group SU(4)ps ® SU(2)L ® SU(2)r .

6 Moreover, there is always at least one representation that can not couple to the fermionic bilinear,
right as 24y in the SU(5) case. This is needed to avoid a GUT-scale VEV entering the matter fermion
masses at tree-level. The only exception is 126y that (if present) typically contains a B — L breaking
VEV giving rise to the Majorana masses of right-handed neutrions. Thus, in SO(10) the seesaw scale
is usually not free like in the simplest SU(5) scenario.

17Since both these are complex representations, acquiring VEVs they generate a nontrivial contri-
bution to the corresponding D-terms in SUSY scenarios. To keep supersymmetry unbroken below the
GUT scale one must add also the complex conjugate representation and tune also the relevant VEVs
to be complex conjugate of each other. On the other hand, one usually needs a complex conjugated
representation anyway to form a superpotential mass term for these multiplets.

18 The requirement of avoiding an intermediate SU(5) symmetry is usually added to preserve the
consistency with the proton decay limits, c.f. section 1.2.4.
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or 16y (and conjugated). The adjoint 45y is not sufficient because alone it does not
develop a SUSY-preserving VEV [62] and so the usual choice is 455 @ 54. Another
option to break the GUT symmetries down to SU(4)ps @ SU(2)p @ SU(2)g of Pati-
Salam or SU(3). @ SU(2)r @ SU(2)p @ U(1)p_y is to use the 4-index antisymmetric
tensor 210519, c.f. Appendix B.3. k

Finally, one should look for a representation that breaks the SU(3), @ SU(2); ®
U(1)y of SM down to SU(3). ® U(1)g. Although there are already submultiplets that
can do this once 16 or 126-dimensional irreps are used, usually (due to the obvious lack
of Yukawa couplings) an additional multiplet is added. In most cases, the 105 vector
representation and/or the three-index antisymmetric tensor 120y is added to account
for this.

One can see that the overlap of the sets of the multiplets equipped by the renormaliz-
able Yukawa couplings - 10y, 126 and 120y - and those capable to break GUT-scale
symmetries (see Table 1.1) is actually very small - apart of 10y that can not play
any role in the high scale symmetry breaking mechanism, only 1267 contains colorless
SU(2) doublets that (upon SU(2),@U(1)y breaking) can give rise to the Dirac masses
of the matter fermions, and an SU(2)p triplet capable to participate at the breaking
of SO(10) and/or the left-right symmetric subgroups at intermediate scales. From this
point of view, 126 can be viewed as a “multi-purpose building block™ that singles out
a class of economical SO(10) models. An important representative of this set - the
minimal renormalizable SUSY SO(10) model - is the subject of the next chapters.

An “orthogonal” option, a class of models in which the intermediate breaking steps
are driven by 16-dimensional representations, are briefly discussed in chapter 5.

1.3.3 Proton decay in SUSY SO(10) models

Let us finally comment on proton decay in SUSY SO(10) models. The situation is
technically quite similar to that of the minimal SUSY SU(5) discussed in brief in
section 1.2.4 . However, the structure of the effective operators (1.13) that was very
constrained in the SU(5) case can be relaxed and the lower bound on I'y+ can be in
some situations pushed well below the experimental limits. This stems from the fact
that the SU(3). ® SU(2); ® U(1)y colored Higgs triplets governing the rise of the
relevant d = 5 effective operators can be found in different SO(10) irreps and mix
once the GUT-scale symmetries are broken. Therefore, the relevant expressions for the

Wilson coefficients ¢7* and ¢22* (dominated by the contribution of the lightest triplet
L R g p

¥ Clearly, as an antisymmetric representation of SO(10) with even number of indices 210y contains
an SU(5) singlet. However, here the relevant components are (1,1, 1)210 and (15,1, 1)210 of SU(4) ps ®
SU(2)1 ® SU(2)r that obviously break SU(5).
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tvpically contain elements of the mixing matrix parametrizing the projections of the
SO(10) basis on the triplet mass eigenstates. As a consequence. adjusting properly the
color-triplet mixing. one can often suppress the proton decay rate below the observable
limit. On the other hand. a proliferation of the Higgs multiplets can affect the gauge
coupling unification pattern. Moreover, in order to accommodate the characteristic
Yukawa textures arising from the quark and lepton masses and mixing data studied
in the subsequent chapters, the Wilson coefficients (1.13) can not be made arbitrarily
small and there are still rather stringent limits on the proton decay in realistic SUSY
SO(10) models, see for example [63, 64, 65, 66].
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Table 1.1: The basic properties of SO(10) irreps up to dimension 210. The quan-

tum numbers of the submultiplets correspond to the Pati-Salam subgroup SU(4)ps @

SU@2)r ® SU(2)r

. The letters denoting the different breaking steps are those used at

Fig.1.2. Notice that various components of some of these representations can participate

at many different symmetry breaking steps. (The Pati-Salam notation is particularly

suitable for the left-right symmetric breaking chains but slightly misleading in case of

the breaking steps C, C', G and G’, c.f. Fig.1.2 with intermediate SU(5) symmetries.

The relevant decompositions in such a case can be found for instance in [61].)

irrep | PS multiplet | bresking steps | typical scales | Yukawa
10y (1,2,2)10 H Mg 4
16y (4,2,1)16 H Mz -
(4,1,.2)16 C'.G"E.F Ma:B— L -
16y (Zl— 2. 1)T— H Mz -
(4,1,2)75 C'.GE,F Mg:;B — L -
45y (1,3,1)45 C, G F’ Meg; SU(2)R -
(15,1, 1)y5 B,C;D Me; PS -
54 (1,1,1) A G Mg -
120y | (1,2,2)120 G H Me; Mg +
(15,2,2)120 G H Mg; Mg +
1265 | (15,2,2)196 H Mz -
(10,1, 3)196 E,F;G’ B—L;Mg -
126y | (15,2,2)15% H Mz +
(10,1, 3)1=5 E, F,& B—-L +
144 | (4,2,1)144 H Mz -
(4,1,2)344 | C',G,G';E,F | Mg;B—1L -
144y 4,2, )1z H Mz -
4,1,2)y5y | C¢',G,G';E,F | Mg;B~1L -
210 | (1,1,1)210 A0 G, & Mg -
(15,1,1)910 | B,D;C", G, G PS, Mg -
(10,2,2)210 H My B}
(10, 2, 2)210 H Mz -

29




Chapter 2

Minimal renormalizable SUSY
SO(10) model

Among the variety of unified Standard Model extensions, a particular attention should
be naturally paid to the simplest schemes with the maximal level of predictive power.
Only in scenarios unbiased by additional assumptions (up to those that are needed
for the very consistency of the model ), the idea of grand unification and the “GUT
desert” can be tested up to “the bitter end” [34]. Only in such a conservative approach,
though often hardly tractable in practise, one can hope for a clear-cut evidence in
favor or against the very concept of unification and/or its embeddings within schemes
based on conventional field theory models, strings or whatever even more general. On
quantitative level, it is always the amount of predictivity that qualifies a particular
scheme (and the assumptions behind it) as experimentaly testable and capable to draw
conclusions about the “beyond Standard Model physics”.

The minimal renormalizable SUSY SO(10) model that is the subject of this chapter
is not only a very interesting example of such a concise framework, but in a certain
sense even the most predictive (potentially realistic) renormalizable GUT model ever
formulated [34].

2.1 The model

The basic structure of the minimal SO(10) was first considered at the beginning of
eighties in papers by Clark, Kuo and Nakagawa [67] and Aulakh and Mohapatra [68].

The main feature that singles it out from the other simple unified theories is the partic-

las for example the structure of the symmetry breaking chain or the high-scale gauge coupling

coincidence.
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ular choice of the Higgs sector that allows? for only a small number of free parameters
and thus makes the model very predictive. Though the requirement of renormalizability
is more a technical prerequisite that could be avoided once the scheme is examined in
detail. it can be viewed as a very convenient guideline that identifies the basic building
blocks of the theory responsible for most of the its key features. Supersymmetry enters
the game to achieve the proper gauge unification pattern and to address the gauge hi-

erarchy problem that often plagues theories highly different symmetry breaking scales.

2.1.1 The matter content

As in most of the GUTs based on the SO(10) gauge group the Standard Model matter
fields reside in three copies of the 16-dimensional spinorial irrep denoted from now on

by 16%, see Appendix B.2. Schematically, it can be written as

L uf dy

165 —(3,2.01/3) & (1.2°-1) @ (3.1, ~4/3) & (3.1. 12/3) @ (1, 1.0) & (1.1 +2)
(2.1)
where the quantum numbers on the right-hand side are those of the SM SU(3). @
SU(2)r @ U(1)y symmetry.

2.1.2 The Higgs sector

The structure of the minimal SUSY SO(10) Higgs sector is strongly constrained by the
requirements of minimality, renormalizability and supersymmetry. As far as minimality
is concerned, the 126-dimensional representation is used (in particular, the anti-selfdual
component 126 of 252) and plays a twofold role - it can participate on the breaking
of a “portion” of the unified gauge symmetry and also couple to the fermionic bilinear
to take part on the mechanism generating the masses of the SM matter fermions. The
point is that under the Pati-Salam subgroup SU (4) ps®SU (2).® SU(2)r, 126 g decays
into

1265 > (15,2,2)155 ® (10,1, 3) 55 @ - - - (2.2)
Since there is an SU(3). singlet in 10 of SU(4)pg with even B — L quantum number
giving rise to a zero weak hypercharge Yy = 273 + (B — L), the first component in
eq. (2.2) can receive a large VEV capable to break the SU(2)r® U(1)p_1 down to the
U(1)y of the Standard Model. Since this VEV is an SU(2)r, singlet, it can also give
rise to the singlet Majorana mass of the neutrino through the Yukawa coupling of 126
to the matter bilinear 165165.

2even without imposing other symmetries than just the S O(10) gauge
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However, given a GUT-scale VEV to the 126y multiplet, a nontrivial D-term driving
the SUSY hreakdown is generated. To maitain supersymmetry unbroken up to the TeV
range. this contribution must be canceled by adding the conjugate representation 126y
with a conjugated VEV (126) = (126y). This term also gives rise to an explicit mass
term M961265126 that (as a consequence of the minimization conditions) drives all
the dangerous coloured Higgs states to live naturaly around the GUT scale.

As we have already seen, there must be other Higgs multiplets to account for the
proper symmetry breaking (recall that the VEVs of 126y @ 126y do not break the
SU(5) subgroup of SO(10)). Moreover, the effective SM Yukawa structure descending
from 126y only can not be sufficient to generate the CKM mixing in the quark sector.
Therefore, another “Yukawa-active” multiplet should be added. Last, but not least, to
ensure enough freedom to make a pair of the SU(2)1, doublets light enough to play the
role of H, and H, of the MSSM, one should mix the 126y @126z bidoublets with othe
components coming from other sectors of the model.

From this respect. the role of a source of additional SM Higgs doublets could be
played for instance by the vectorial 10y or the three-index antisymmetric tensor 120y,
c.f. Appendix B.3. In SO(10) model building the former option is usually used. How-
ever. to mix the doublets of 10y with those of 126y @ 126y and to break properly
the SU(5) subgroup(neither 10z or 120y can do the job, see Appendix B.3), addi-
tional Higgs multiplets are needed. The usual choice is 455 @ 54y (both of them are
needed [62] for the proper SO(10) breaking and the desired doublet mixing appears at
the level of nonrenormalizable operators). The former statement can be inferred from
Table 1.1 while the latter becomes evident from the following decompositions of the

relevant tensor products:

10126 = 2101050
45045 = 104505402100 770 ® 945

Remarkably enough, it is possible to provide a solution of both these problems at once
yet at the renormalizable level! [34] The trick consists in using the 210-dimensional
4-index antisymmetric tensor (the “messenger” multiplet in the decompositions above)
as an elementary field instead. Indeed, under the Pati-Salam SU(4)ps ® SU(2)r ®
SU(2)p symmetry:

210 = (15,1,3) @ (15,3, 1) @ (10,2,2) & (10, 2,2) & (6,2,2) & (15,1,1) & (1,1, 1)

As a matter of fact, there are even 3 different SU(3). ® SU(2)r ® U(1l)y singlets
within 210 that are nonsinglets under SU(5) - (15,1,1)210® (15,1, 3)210® (1,1,1)210
can trigger the breaking of SO(10) to a left-right symmetric intermediate stage (to
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SU3),2SU2)p@SU(2)p@U(1)p_r in case of ((15,1,1)210) # 0 while to SU(4)pg@
SU(2)r @ SU(2)rif ((1,1.1)210) # 0) or to SU3), @ SU2), & UL)p @ U(l)g_p (if
((15,1.3)210) # 0).

The desired doublet mixing is provided by the vertex 10512652105 (plus the con-
jugated term) and it is even enhnced as the doublet mixing matrices become 4x4 due
to additional doublet contributions coming from (10,2,2)210 @ (10,2, 2)210. Indeed,
upon SU(4)pg — SU(3).®@U(1)p_r, breaking, under which 10 — (1,—-2)& (3, -2/3) &
(6,42/3). Thus, in general, for each SM hypercharge there are 4 different multiplets
that mix to give rise to the light Higgs doublets denoted from now on H, 4. These are
identified with the “standard” MSSM doublets triggering the electroweak symmetry

breaking, see section 2.2.4.

2.1.3 The symmetry breaking pattern

With all this information at hand, one can draw a rough picture of the viable symmetry
breaking chains in the minimal SUSY SO(10) model, see Fig. 2.1. In total, there are 5

different types of VEVs triggering the intermediate symmetry breaking steps [34]:
(1,L1)2w)=p  ((15, L, 1)a10)=a  ((15,1,3)210) = w
<(10,1,3)—1§§> =0 ((m,l,f})lgg) =0 (23)

(Hu,d> = Und

To obtain the set of supersymmetric vacua, one must solve the flattness conditions for
the F and D-terms and find solutions that obey the desired intermediate symmetry
properties. This tedium was worked out in great detail in [69].

2.2 Basic features of the minimal SUSY SO(10)

Let us give a brief list of the main acievments of the simple structure discussed in
the previous section paying particular attention on the physical consequences of the
particiular choice of the Higgs sector of the minimal SUSY SO(10) model

2.2.1 Gauge coupling unification and intermediate scales

Remarkably enough, concerning the gauge coupling unification contraints it can be
shown [69] that all the rank-5 subgroups in the symmetry groups depicted at Fig. 2.1
should be broken very close to the GUT scale, ie. p «x a x w «x 0(6) ~ Mg. The

reason is the large number of Higgs fields populating the would-be intermediate scale
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Figure 2.1: The basic breaking chains driving the minimal SUSY SO(10) model down
to the SU(3). @ U(1)gp. The quantum numbers of the Higgs multiplets responsible for
the intermediate breakings are those of the Pati-Salam subgroup SU(4)ps @ SU(2), @
SU(2)g . If the VEVs of the 210y components are spread enough, there could be a
cascade of intermediate steps (the up-left to right-down diagonal). However, the gauge
coupling unification strongly prefers one-step breaking with all the rank-5 subgroups

broken at around p ~ Me, cf. [69].

SO(10)

SU)ps @ SU2)L 2 SU2)R {152 s
@ SUQRreU(l)p-L

ST(3).,

@ SU2)y, 2 U ra2 U1

SU(3)e @ SU(2)L R U(1)y

(L2205
| B0 2w (15,2, 20w (15,2, 0 0m w {
10,2, 210

SU@B). @ U(l)q

driving the U(1)p_z, coupling to blow? so fast that the unification point is achieved
well before 2 x 10 GeV, in contradiction with the proton lifetime bounds.

2.2.2 R-parity conservation

Another remarkable feature of the minimal SUSY SO(10) model is the automatic R-
parity conservation along all the symmetry breaking chains, up to the low energies. It
stems from the fact that the intermediate B — L symmetry breakdown is achieved by
the VEVs of the (10, 1, 3) components of 126 (plus the conjugate ones) and therefore
B — L changes always by 2 units. Thus the R-parity defined as

R = (_1)3(B—L)+25’ (24)

30ne usually expects a new type of strongly coupled dynamics to resolve the problem of the Landau
pole appearing rather close above the unification scale.
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remains a good symmetry and the lightest neutralino is automatically stable providing

for a viable cold dark matter candidate.

2.2.3 SU(2);, @ SU(2)g triplets and Majorana masses of neutrinos

The situation in the Majorana part of the neutrino sector is governed by the VEVs
of the 126y-components. In particular, the nonzero value of ((10,1,3)55) = 7@ = v°
propagates to the effective type-1 (SU(2)r-singlet) Majorana neutrino entry of the
form*
Vio6(4,1,2)16(4,1,2)16((10, 1, 3)1m5) — Yi26(1,1,0)16(1,1,0)16((1,1,0)155)  (2.5)
5 (Yiev*)NTCTINE 4 h.c.
Moreover, one can see that there is also a small VEV induced on the left-right “mirror”

component of this triplet, namely ((10,3, 1)55). Indeed, using the F-term identities
coming from the 1051265210y and Mi96126 5126 terms in the Higgs superpotential
Wi 2 O(1)(10.3.1)126(1, 2,2)10(10. 2, 2)210 + O(1)(10, 1, 3)196(1, 2. 2)10(10, 2. 2) 910+
+0M196(10, 3, 1)126(T0, 3, 1755 + Ma10(10, 2,2)210(T0, 2, 2)210
one infers
F(-i—lo,&l)lge

+
F(10,2,2)210

~ ]\/flg(-;(m, 3, 1)T§§ + (1,2, 2)10(@, 2, 2)210 + ... (2.6)
~ Ma10(10, 2, 2)210 + (1,2,2)10(10, 1, 3)196 + . ..
This yields

<(172)2)10><(T67173)126> _ g
Mo10 Mg

<(T0-a 27 2)210) ~ ((13272)10>

and as a consequence

((1,2,2)10)((10,2,2)210) o

M 26 "~ Mz Maro
is naturally strongly suppressed. Since the SU(2)g-breaking VEVs ¢(7) must be close
to the GUT-scale, (c.f. section 2.2.1), the SU(2)y, triplet VEV o7 giving rise to the
type-1I Majorana entry

Yi26(4,1,2)16(4,1,2)16((10, 3, D)1g5) — Ya26(1,2,—1)16(1,2, =1)16((1, 1, +2)55) (2.7)
5 (YisgvD)LECT Ly + hec.

(10,3, 1)1gg) ~ ((1,2,2)10)% = o7

falls approximately to the right range to provide a significant correction to the tradi-
tional (singlet) seesaw formula for the light neutrinos. Notice that, in agreement with
expectations, both the Majorana mass matrices are symmetric in the generation indices
because of the symmetry properties of the Y796 matrix [30].

“Here the right-hand side quantum numbers are those of the SU(3). ® SU(2)L, ® U(1)y group.
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2.2.4 Electroweak Higgs doublets and Dirac masses of matter fermions

As we have seen in section 2.1.2. after the GUT-scale SSB there are in general 4
multiplets with the quantum numbers of the MSSM Higgs doublets. In the SU(4)pg @
SU((2)p @ SU(2)gr — SU(3). @ SU(2)r, ® U(1)y notation. they are

(1 272)10 — 2 —1)10 & (172,—!—1)10
157 2 196 - 2 -—1)m@ (1,2,-}*1)'1—2‘6“@
(1,2,+1)126 @

Therefore, the spectrum of each of the Yy = &1 components is encoded in a 4x4 mass
matrix A4. By minimal finetunning (enforcing det A/, = 0) one obtains a pair of the

light electroweak Higgs doublets as an admixture of all these components®
Hy = VY6 2.5
where ¢ is a vector with components

(.bi = [(1/ 2 il)lo: (1 2, il)ﬁ—év (1u 27 il)lZGv (17 27 il)?lO] s

y <

and V4 are unitary mixing matrices. When the light Higgs doublets receive electroweak
VEVs, due to the mixing in eq. (2.8) the following effective VEVs are generated on the
relevant SO(10) components:

(1,2,£1)10) = (VHYM(HL) =0l
(L,2,2)m) = (VH?(Hy) =05

Thus, in general, there are 4 distinct (in general complex) VEV parameters entering

the effective mass matrices in the minimal SUSY SO(10) model, see section 3.1.

2.3 Minimal SUSY SO(10) GUT - summary

As was argued in previous sections, there should be at least two distinct Higgs multiplets
in a potentially realistic SO(10) framework to drive the proper spontaneous symmetry
breaking chain down to the SU(3).® U(1)g level (a typical example is 126 and 210y
of the minimal model, plus 126y in the SUSY context to preserve D-flatness at the
GUT scale). On top of that, at least one additional Higgs representation (either 10y,

SWithout loss of generality the lightest state in the mass basis is placed to the 1st position.
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126y (if not already present) or 120y) must be put in to get a potentially realistic
flavour structure (the traditional choice is 10p). The minimal SUSY SO(10) model is
by definition equipped by one 10z. one pair of 126y @& 126y and one copy of 210 in

the Higgs sector. The Higgs part of the superpotential reads
Wy = Myo10% + M126126 51265 + My10210%+ (2.9)

+2210% + 02105126 5126y + 1051265210, + B105 1265210

The effective matter fermion masses and mixings are driven by the doublets (the Dirac
entries) contained in all these three irreps and SU(2), ® SU(2) g triplets (the Majorana
entries for neutrinos) residing in 126 7. After the GUT-scale SSB all the doublets mix to
give rise to the light (MS)SM-like effective Higgs doublets that receive the electroweak
VEVs. The direction of these VEVs in the space of the various doublet components is
“distributed” among all the relevant SO(10) components. Subsequently, two of them
(10 and 126) transmit this information into the effective Yukawa vertices descending

from the Yukawa part of the superpotential

Wy = Y1016p16510y + Y19616 516 126 (2.10)

giving rise to the typical effective Yukawa pattern [67]

Yivy, = Y10011L0 ~+ Yl%%i%

Yava = Yiovl® + Yigev}?®

viu = Sflov,io — 3Y1267)3126 (2.11)
Yivg = Yiovg” — 3Y12605%°

As far as the left-right triplets of 126y @ 126y are concerned, upon the U(1)p_r

breaking they generate Majorana entries for neutrinos

M7 = Yise((1,1,0)1z5) (2.12)
M} = Yiss((1,3,+2)15)

giving rise to the general (type-1I) seesaw pattern, c.f. page 8. Both these contributions
are proportional to a single (symmetric) Yukawa matrix Y12¢. These 6 relations are the

main subject of a detailed analysis given in the next chapter.

2.3.1 Minimal SUSY S0O(10) - parameter counting

It is very instructive to compare the predictive potential of the two basic minimal GUTs

— the minimal SUSY SU(5) and SO(10) models— by means of a simple parameter
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counting. In section 1.1.3 the 21 parameters of minimal SUSY SU(5) were identified
[34]. To make the model potentially realistic, the neutrino Majorana masses should be
added. as discussed in brief in section 1.2.1. This exactly doubles the freedom, i.e. in
the realistic version of SUSY SU(5) we are left with 42 free parameters (plus soft terms)
[34]. In contrast to this, the minimal SUSY SO(10) contains only 26 parameters : there
are 15 independent real quantities in the Yukawa sector (one of the symmetric matrices
Y10 and Y196 can be made diagonal and real while the other one remains symmetric and
complex), 10 others in the Higgs potential (four of the 7 complex parameters can be
made real upon redefining the Higgs fields) and one gauge coupling. That is why the

minimal SUSY SO(10) is often concerned the simplest realistic grand unified framework
[34].

For more details on other interesting features and issues that must have been avoided
in this brief description of the minimal SUSY SO(10) scenario, the interested reader is
deferred to the wealth of comprehensive studies and reviews given in the literature, for
instance [34. 40. 41. 44. 63, 64. 65. 66. 69, 70, 71, 72, 73, 74, 75, 76] and in references
therein.
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Chapter 3

Quark and lepton masses and
mixing in minimal SUSY S0O(10)

As it was argued in the previous chapter, the minimal SUSY SO(10) model is con-
structed i such a way to account for a potentially realistic description of the quark
and lepton spectra and mixing patterns. With two Higgs multiplets 10y and 126
coupled to the fermionic bilinear 165165 there are only two (in general complex) sym-
metric Yukawa matrices [30] parametrizing all the effective (Dirac and Majorana) mass
matrices of the MSSM, the effective low-energy limit of this scheme. Recall that stan-
dard Vapproach to tackle the correlations among the quark and lepton masses and mixing
parameters in general schemes consists in imposing additional assumptions on the fla-
vor structure of the Yukawa couplings descending usually from a class of horizontal

symmetries.

On the other hand, the scope of this chapter is a detailed analysis of the correla-
tions arising in the minimal SUSY SO(10) GUT scheme without any such additional
constraints. Though not as sharp in predictions as the simplified setups, there are still
interesting correlations coming from the Higgs structure of the model, that could lead
to valuable clues for better understanding some of the peculiarities in the quark and

lepton mass and mixing pattern.

3.1 Minimal SUSY SO(10) Yukawa sum-rules

Using the shorthand notation for the VEVs of various Higgs doublets in the game

val = ((1,2,+1D)10), v22® = (1,2, +1)355), v = (1,2, —1)10), v = (1,2, —1)755)
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and similarly for the physical MSSN neutral light Higgs doublets H, 4'
Uy = <Hu.>: Vg = <Hd> (31)

one arrives to the traditional set of equalities for the effective quark and lepton Dirac

Yukawa couplings [68]

Yov. = Ylo'vll,'O + ngllige = M,
YVivg = Yol + Yisevg® =My
Yo, = Yiovll —3Vipeui?® =M (3.2)
Yivg = Ylov}iO — 3Y126U(1126 = M|

On top of that, the SU(2)g breaking VEV of the neutral component of the right-handed
triplet (denoted by its SM quantum numbers (1,1, 0)55) and the induced VEV of the
SU(2)z, triplet (1,3, +2)135) give rise to the following relations for the Majorana entries

in of the neutrino mass matrix ([39]):

ﬂ’f{f = Y126<(1,1,O)—1—Q—6‘>NI\JR (33)

2
3

Mg

ﬂr[ﬁ = Yio6((1,3,+2)1) ~

The important “—3" factor in relations (3.2) is a Clebsch-Gordon coefficient coming
from the fact that the weak-scale VEV in 126y points in the (1,1, 1, —3) direction in
the Pati-Salam subgroup [77]. More details and comments on this key feature of 126y
can be found in Appendix B.5.

3.1.1 Light neutrino masses

The light physical neutrino masses descend from the 6 x 6 Dirac-Majorana mixing

t al
M= < o ) (3.4)

matrix of the form

If [M¢| < | M| the relevant effective neutrino mass matrix is given by the renowned
seesaw formula [78, 79, 80, 81, 82, 83, 84]

M, ~ M — M3 (M) M (3.5)

Recall that, unlike in the Standard Model, all the physical Yukawa and light neutrino

mass matrices are given in terms of just two complex symmetric matrices and few

!The quantum numbers correspond to the decomposition of the considered multiplets under the
SU(3). ® SU(2) ® U(1)y subgroup of SO(10).
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additional parameters. However, not all these parameters are independent? and. as a
matter of fact. the number of physically relevant entries is so small that putting into
eqs. (3.2)—(3.3) all information about the quark and lepton spectra and CKM mixing
the system becomes overconstrained and the other parameters could be. at least in
principle, predicted. To see this more explicitly, recall the beatiful formula for the

neutrino mass matrix in case of the triplet component dominating in eq. (3.5)
M, = M! o< My — M;. (3.6)

It is easy to see that once the charged lepton masses are reconstructed fitting the quark
sector by means of the first two relations in 3.2, the type-II neutrino mass matrix is

fully reconstructed!

3.1.2 Partial diagonalization and phasecounting

In general, all entries in relations (3.2) and (3.3) are complex as Y7p and Y196 are generic
3 x 3 symmetric matrices in the generation space’. However, it is easy to see that not
all 32 parameters giving rise to these structures are independent.

First. one can always consider only the combinations of Y, and v, as the basic
building blocks and shuffle freely their internal phases so that the overall ones remain

untouched. In other words, by redefining properly the global phases of Y19 and Y796 we

126

o and voll%. Second, one

can forget about the phases of one of v° and vclio and one of v
can always perform a rotation into a basis in which one of Yo and Y16 (or a suitable
combination) is real and diagonal. Therefore, in the most general case we are left with
8 phases. However, if one of the type-I or type-II contributions in the seesaw formula
(3.5) becomes irrelevant, an additional phase drops out.

To be more explicit let us look at the effective structure of the quark and lepton

mass matrices arising from the effective Yukawa interactions
Ly = Q1 Y,UrH, + QpYsDrHy+ LyY,NgrH, + LLY,ErHy + h.c. (3.7)

Inverting the sum-rules (3.2) one can rewrite the leptonic Yukawas in terms of the
quark ones as
Y, = oY, + Yy and Y, =dY,+3Y, (3.8)

where o, 8, &’ and 8’ are meromorphic functions of vqllogll%. In the next step one can

use the symmetry property of the matrices under consideration and diagonalize each

2For instance, one can get rid of off-diagonal entries in one of these matrices by choosing a proper

basis etc., for more details see section 3.1.2.
3Recall that also the induced VEVs 'Ui?c’lus arise from the light MSSM Higgs doublets by means of

unitary transformations parametrizing the missalignment of the SO(10) and the mass bases.
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of them by means of a unitary transformation

Y, =U'vPU, (3.9)

fixing the diagonal elements of Y.” to be real and positive. *

fields

Redefining the quark

@—/L =Q, U}, Up=UUr and Dp=UiDgr

one arrives to

Ly = QVTYPURH,+ QLY DRHy+ ToLUT (o'VIYLPV + BYLYUaNRH, +
+ LUl (aVIYPV 4 BYPYUERH, + h.c. (3.10)

where V = UuU; is the “raw” Cabibbo-Kobayashi-Maskawa matrix, that (as any gen-
eral unitary matrix) can be decomposed in terms of the “standard form” Vegas and
five additional phases

V = PLVexku Pr

where
€12€13 519€13 s13€
Vexar = | —cozsia — sazsizciae’® cagcin — Sa3s13s10€” sascis
$93812 — C93513C12€"  —S93C19 — 23513512 Ca3Ci3

and
€i51 ei64
P = ei02 , Pr= ei%s (3.11)
ei53 1

The lepton Yukawa matrices can be then written in the form (redefinig f’L = L UT,
Np = U,Ng and E% = UsER)

Y] = l|ale®e PRV PEY.PVorm Pr + |Ble?eY P (3.12)
Y! = ||« PrVE i PEYPVoku Pr + |87 YP

Finally, one can divide these equalitites by €5 and e'%s respectively and absorb one
of the relative phases of o and 8 parameters, say e(?==%6) in the redefinition of Pr.
However, the remaining ' ®a %) factor persists and acts as an additional phase factor
to be taken into account whenever both Y; and Y, enter one formula, as for instance if

none of the type-I nor type-1I seesaw contributions are neglected.

4This can always be done by “distributing” the would-be phases of the diagonal elements into the
unitary matrices U,.
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To conclude, there are always 6 phases to deal with (the CIKM phase dcpra; and
overall e7'?¢ does not play any role). If, subsequently. this information is passed to
seesaw formula. the “e™'®? ambiguity” reapears and must be taken into account as
the 7th phase. On top of that, the 8th phase (ei(‘-bﬁ’”%’)) starts to play a role if both
the type-I and type-II terms in the neutrino mass formula (3.5) are considered. This

confirms the expectations drawn at beginning of this section.

3.1.3 Number of real parameters

Apart from the 8 phases identified in the previous section there are additional 13 real
parameters on the right hand side of eq. (3.12): 343 diagonal quark Yukawa entries, 3
CKM mixing angles and 4 absolute values of the o, o’ and 3, ' parameters. On top
of that one must add two unknown values of singlet and triplet VEVs parametrizing
the overall scale of the Majorana entries in eq. (3.5) (though, in principle, there could
be constraints on Mp from the gauge running and the triplet VEV is computable once
we fix the superpotential). Altogether, 23 real parameters.

In general, there are 22 independent measurable quantities in the quark and lepton
sector : 6 quark masses, 3 CKM angles and 1 CKM phase, 6 lepton masses, 3 PMNS
mixing angles and 3 phases (1 Dirac and 2 Majorana). In reality, there are only upper
bounds on absolute light neutrino mass scale and from oscillation experiments we are
able to deduce only the neutrino mass-squared differences and the PMNS mixing angles.
Moreover, so far we have practically no information on the 3 phases in the leptonic
sector. Thus, the relatively “reliable” set of input data consists of 18 experimental
results.

At the first glance this looks like a “no-go” for any strong correlations among the
quark and lepton sector of the minimal SUSY SO(10) as there are 5 pending variables.
Despite this, as we shall see, performing a careful and detailed analysis with reasonable
constraints imposed on some of the parameters, one can obtain interesting results that
can be experimentally tested. This is namely because of the particular structure of the
sum-rules (3.2) and (3.3).

As an example consider the possible role of the 5 unconstrained phases in the

charged lepton sum rule (3.12) rewritten in a convenient form [40, 44, 70]
Mll x VgKMEuVCKM -+ TDd. (3.13)

Here the 61,5 phases of eq. (3.11) were reshuffled into the matrices Du,d that are di-
agonal and normalizad so that ||[Dud] 33]] = 1, r is a function of the o and [ parameters

in eq. (3.12) and the ratio of the b— and 7- Yukawa couplings. Since the overall normal-
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ization of the left hand side remains undetermined. only the charged lepton ratios can
be fitted from this relation. But. remarkably enough. this can turn impossible despite
the 5 phases (015, 5) one has at hand if for example r, for whatever reason, becomes
small enough so that the second term is not able to modify substantially the wrong
charged lepton hierarchy descending from the first term, regardles the values of the 5
phases therein. Another example of irrelevance of some big regions of the parametric
space can be observed in the strong suppression of the effects of the d; phase (some-
times called 6, [45]) that is always accompanied by a factor of 1075 order stemming
from the hierarchy of the up-quark diagonal Yukawa entries.

Another important source of possible suppressions of the sensitivity on the input
parameters reffers to the highly nonlinear nature of the relations among the free pa-
rameters and the quantities of our interest °. Alternatively, a serendipity of accidental
cancellations can make some of the relevant relations exceptionally simple. A partic-
ular realization of the first option shall be identified in the peculiar behaviour of the
electron mass formula, see section 3.6.1, while the second plot can be observed in the
simplicity and a robustness of the relation for the |U.3| PMNS mixing parameter, c.f.
section 3.3.2.

In any case. it is very difficult to draw a general conclusion on the predictive power
of the minimal renormalizable SUSY SO(10) in the Yukawa sector and only a careful
numerical (or within more constrained setups even semianalytical) treatment can give

us a definite answer to this profound question.

Prior approaching the general case in full complexity let us try to digest several
limiting cases obtained under few simplifying (though well motivated) assumptions. In
particular, in the first part of this chapter we shall stick to the setup where all the
relevant phases become real. Remarkably enough, even such a constrained scheme (up
to the obvious lack of capability to describe the effects of CP-violation in the quark and
lepton sector in the CKM manner®) still poses very good fits of all 17 relevant physical
measurables © though the number of input parameters does not exceed 15 in case of a
general seesaw formula with both singlet and triplet contributions of comparable sizes,
and even 14 if one of them is neglected. Thus, in such a case the scheme is highly
overconstrained and predicts rather sharp correlations among the quark and lepton

masses and mixings.

SFor instance the diagonalization procedure giving rise to the fermionic spectra and mixing angles,
the presence of the inverse singlet Majorana mass matrix in the type-I seesaw formula etc.

8T,et us assume that in such a case the CP-violation originates entirely from other sectors of the
model.

“6 quark and 3 charged lepton masses, 2 neutrino mass square differences, 3 CKM and 3 PMNS
mixings.
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3.2 Large atmospheric mixing and b— 7 unification in case

of triplet dominated seesaw

Another assumption leading to major simplification and rise of the predictive power
of the scheme is the case of a dominant triplet seesaw contribution in the light neu-
trino mass matrix (3.5). In such a case there is a nice link [39, 72] between the large
atmospheric mixing in the leptonic sector and the convergence of the b-quark and 7-
lepton Yukawa couplings around the GUT-scale (b—7 unification). As a matter of fact,
eq. (3.13) together with (3.6) imply that in the basis fixed by eq. (3.13), the charged
lepton mass matrix becomes almost diagonal and the PMNS mixings are encoded pre-
dominantly in M,. The 2-3 block of the neutrino mass matrix in such a case reads (up

to the phases)

M, o< m, ( O()\Q) OO\?) )
O(\?) — %

where A is the Wolfenstein symbol for sin f¢. Clearly, large atmospheric mixing requires
O()\?) cancellation between m; and m,. On more formal grounds, the interplay among
the quark and lepton 2-3 mixing angles and the 3rd generation down-type Yukawa

couplings fits nicely the semianalytic formula derived in [39]3:

2sin (}523

tan 2923 =

My —mr

2sin? ¢ho3 — —

It is remarkable (though far from obvious) that this neat interplay is only softly affected
if one takes into account the effects of the first generation [72]. Moreover, there are
strong hints that the type-I contribution in eq. (3.5) (at least in the real case) can not
account for the dominant source of the neutrino masses and mixing [72, 37, 38]. This
provides an interesting option to reduce the number of free parameters entering the
subsequent numerical analysis as two of them (the relative phase and magnitude of the
two terms in the seesaw formula) drop out. Moreover, the analytical structure of the
triplet dominated neutrino mass matrix (3.6) is much simpler than in general or in the

singet dominated case.

3.3 Quark and lepton mass and mixing correlations in
minimal SUSY SO(10) with dominant triplet seesaw

However, even adopting these simplifying assumptions, the number of the remaining

free parameters remains such that a general analysis is very involved and any additional

8Here ¢23 stands for the 2-3 mixing angle in the quark sector.
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information originating from an analytic treatment is highly welcome. Unfortunately.
as we shall see, there are only few such clues and the major part of the information can
be obtained only in a detailed numerical survey.

Let us start by specifving the set of input parameters and outputs of our interest.
As usual, the input consists of measurables on which we have a relatively detailed
information — the quark and charged lepton masses (or, equivalently the entries of the
corresponding diagonalized Yukawa mass matrix) and the CKM mixing angles (plus
the CKM CP-violating phase dcas in the complex case). So far 12 parameters (or 13
if CP is violated in the quark sector) . All these input data are known with certain
accuracy that must be taken into account in any quantitative analysis. The outputs
of our major interest is the shape of the neutrino spectrum (in terms of the relevant
mass-square differences) and mixing angles in the leptonic sector, in total 5 quantities®
(and 8 if the Dirac and Majorana CP-phases are concerned).

Finally, notice that all the physical parameters are determined at around the elec-
troweak scale while the efffective sum-rules (3.2) are valid at the scale of the SO(10)
breakdown. Thus, all the input parameters must be evolved from low energies up to
the GUT scale subject to the standard MSSM renromalization group equations!?. Sim-
ilarly, any results obtained at the GUT-scale must be run down prior being compared

with the experimental data.

3.3.1 Partial semianalytic treatmet - real case

It is remarkable, that in the CP conserving case (using the quark sector data as the
input) there are only 2 additional parameters in the sum-rule for the charged lepton
mass matrix, namely (in the “standard” notation of refs. [40, 41, 44] )

kM| = V& DuVorxm +7Da (3.14)
Here r and k are functions of the third generation quark and charged lepton masses
and the o and 3 parameters of eq. (3.8). Each of the tilded matrices is normalized to
its maximal eigenvalue

Dy, = diag <TE E 1) S.,  Dg=diag (%‘Z %1) Sy

9However, there is nothing fundamental about this choice; we might have as well chosen the lepton
data as the input (plus some additional set of parameters either from the quark sector and /Jor the ones
that do not have physical interpretation at the level of the SM — the 6125 phases or o; and f;)
and study the correlations in the quark sector. On the other hand, the information from the quark
sector is particularly suitable as an input as it brings only a relatively small amount of experimental
uncertainity and allows to draw immediate conclusions on the lepton mixing.

°Since the minimal SUSY SO(10) strongly prefers one-step breaking scenarios, MSSM is a valid
effective theory up to the GUT scale.
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Notice that even if CP is conserved there is still a freedom in 6 signs descending
from 612, 5.9ckay = 0.7, This freedom is encoded in the “sign matrices™ S, =
diag (01, 02,03) = (£1. £1.£1) and Sy = diag (04,5, 1) = (£1.£1, £1).

In spite of this freedom the system (3.14) is overconstrained and the fit becomes
nontrivial [37]. The parameters k and r must be tuned to fit the charged lepton masses
in eq. (3.14). The equality of LHS and RHS traces implies k = 147 + O(A?). It turns
out (see e-print of ref. [40]) that a better fit of the atmospheric mixing is obtained for
05 = 7 (i.e. “effectively” my < 0) and §; = 0 (i.e. m, > 0). In this case, the requirement

of reproducing the correct value of m, /m, leads to k ~ 0.25 and 7 ~ —0.75.

3.3.2 Constraints on the lepton mixing with dominant triplet seesaw

In the same basis, the triplet dominated light neutrino mass matrix receives the follow-
ing form:

M = mg <J\Zf,' - ﬁbd) (3.15)

Moy

where mg is an overall neutrino mass scale possibly determined from the analysis of
the Higgs potential. Given 7, k for a given choice of S, and S,;'!. the right-hand side
of eq. (3.15) is completely determined and defines the neutrino mass matrix up to an
overall mass scale.

In order to provide a simple analytical understanding of the predictions in the lepton
sector, let us assume for the time being k& = 0.25 and r = —0.75 exactly'?. Using the
Wolfenstein parametrization of Voxps and neglecting O(A*) terms the charged lepton

mass matrix exhibits a hierarchical structure

0 0 4Vy
Mj=| ... -3Z 4V, (3.16)
1

while the hierarchy in the neutrino mass matrix is broken by the b — 7 unification!3:

0 0 4Vig
M =mo| ... — (;;%b + 3) me 4y, (3.17)
-2

1 As a matter of fact, for general choice of S, and Sy a pair of r and k giving rise to a good fit of
formula (3.14) need not exist at all.

2Detailed variations in k and r shall be taken into account in the numerical fit discussed in section
3.5.

13Here we use the convention in which V;s; and m, are negative while V;4, mpy and m. positive. .
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It is impressive that the structure of these matrices reflects qualitatively all the basic
features of lepton masses and mixings. In this basis, the contributions to the leptonic
mixing angles generated by diagonalization of 1/] are small and

Mg

~ 3

T +16V2

My my

Therefore, both large 1-2 and 2-3 mixing should be contained in M},. Indeed, this is the
case since the elements in the 2-3 block of M}, can be taken of the same order (dominant
i — 7 block) and the 1-3 element is automatically smaller. As a consequence [85], the
spectrum of neutrinos is predicted to be with normal hierarchy.

Another important point can be made on the approximate value of the 1-3 mixing
in the neutrino sector. Due to the particular texture of the neutrino mass matrix (3.17)

one can write approximafcelyl’”‘l [41]

(M})13 4Vig
(M])a3 — (M})1n  1— 2%

me

sin 675 ~ (3.18)
Clearly. there is an anticorrelation between the the b — 7 unification precision and the

smallness of the Ugs entry of the neutrino mixing matrix.

In ref. [72] an exact computation of the leptonic 2-3 mixing is performed for the
present model in the case of two generations. The authors find two classes of solutions
with large atmospheric mixing: one corresponds to the scenario described above: M{
hierarchical and b— 7 unification inducing large 2-3 mixing in M},. The second solution
corresponds to r &~ —1 (and |k| < 1), leading to a cancellation in the 33-entry of Ml’ :
However, it can be easily shown that this possibility is spoiled by a three generation

analysis. In fact, one finds that in this case the charged lepton mass matrix has the

form
0 0 Vid
M|y = ——2 -2V, [ +00Y, (3.19)
msa _‘/tzmb

where a = (1+ ViZmZ/m?2) is of order unity. This structure can be suitable to generate
a small m,/m, in the case of two generations, but since the determinant of M] is of

order A\?, it is clear that the hierarchy m. My My R A2 =221 cannot be reproduced.

Let us analyze in some detail egs. (3.16)—(3.17). The matrices J\;Il’ and M/, depend

(in this approximation) only on four quark parameters (Vig, Vis, ms/myp, mp/m,) that

4 The superscript v denotes quantities derived from M, only. Though they corresponds to large
extend to the physical PMNS mixing angles, the corrections coming from the mixing contained in M;
can be important, c.f. formula (3.22).
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are required to reproduce five parameters in the leptonic sector (m,/m-, Am% / Ami,
015, 613 and Os3). The first generation masses m, and mj are sensitive also to sub-
leading terms neglected in eqs. (3.16)—(3.17). Since the quark parameters are known
with small uncertainties. there is very small freedom to fit lepton data. Notice that, in
good approximation, one can compa.re‘directly the neutrino masses and mixing angles
obtained from eq. (3.17) at the GUT scale with the experimental values at the elec-
troweak scale. As a matter of fact, in the case of normal hierarchy, the RGE running
of the neutrino mass matrix has a negligible effect on mass squared differences and
mixings [86, 87, 88].

Concerning the contributions to the mixing angles arising from ]\~[,’ and M, since
4dlms/mp| ~ 4|Vis] < A, the 2-3 mixing in M), is generically of order unity if b — 7
unification is realized to O(A\?) accuracy. Moreover, the deviation from maximal mixing

tends to increase with AmZ2 /Am?. The 1-3 mixing in M), is given roughly by [85]

[N

. 8%(‘1 A'ITL%\ - . 9
sin 26Y5 ~ = sin 65 205, = O(1 3.20
s 267, ~ Ty <Ami sin 055 cos® Oy, (1) (3.20)

me

It is remarkable that if one neglects the small mixing in j\:[[’ . all oscillation data can be
reproduced. For example, taking my/m, = 0.89, Vi, = —0.035, Viq = 0.011, ms/mp =
—0.028, one obtains sy; ~ 0.12, tan#3; ~ 0.97, tan? 07y =~ ~0.43 and Am%/Am% ~
0.038. However, it turns out that the small mixing angles in M] add up to those in M,

in such a way to spoil the agreement with data. In fact, one can find [44]
by = AV~ —0.14 ~ —)

0l13 = 4Vy~0.04 ~ )\?
16 m
l . T
= ———V Vg =010 ~ A
6., 5 g VisVia % 010
The effect of the two O(\) rotations in U; modifies the physical mixing angles in Uppys

(= UL'U, in the real case) as follows:

O3 = 0%+ 05y
sinfy3 = sin6Y, + sin 6y sin 6%, (3.21)
v
sin201p = sin26%, <1 + %ﬁ—z—g sin 9§2>
As a consequence, to reproduce data one needs 644 larger than /4, sin 6%, significantly
below the experimental upper bound and sin 267, smaller than the solar mixing value.
However, both the deviation from 0%, = 7/4 and the suppression of sin26Y, tend to
increase the ratio Am?D / Am?4 above the allowed range, producing a tension between
predictions and experimental data, as confirmed by the numerical study in the following

sections.
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3.4 Numerical analysis - general prerequisites

Prior entering the machinery of a numerical analysis the GUT-scale input data used
O < B

therein should be specified. Indeed. the running effects could be rather strong, in

particular for the light quark masses. For large values of tan § the down-quark Yukawa

coupling are enhanced and their running hecomes also strongly nonlinear.

3.4.1 GUT scale input parameters

Concerning the GUT-scale input values of the quark and lepton masses (or, equivalently,
the corresponding Yukawa couplings) [89] we shall use the results of the analyses of
Fusaoka and Koide [90, 91] and Das and Parida [92] given in Table 3.2. However, since
the up-to-date experimental data in some cases (in particular for the light quarks) differ
considerably from the inputs used in these studies it is worth pointing out at least the

net effects of these changes on the GUT-scale parameters under consideration.

Light quark masses - m4(1A/g)

The latest experimental results based on better input data and perturbation methods
indicate slightly smaller ms(2GeV) than the older extractions. The same happens also

for the recent improved lattice simulations. The current ranges are [93]:

Experiment : 80 MeV < my(2GeV) < 155 MeV
Lattice:  ms(2GeV) ~ 105 £+ 25MeV

We shall use a combination of these results corresponding to roughly
ms(2GeV) ~ 110 £ 20 MeV.

Evolved to the weak scale this value corresponds to mgs(Mz) ~ 73+£20MeV that should
be used as a boudary condition for an improved analysis & la Das & Parida [92]. Doing

that one predicts the following approximate range for ms(Mg):

ms(Mg) ~ 23+ 6MeV.

Light quark masses - m, 4(M¢g)

There are similar (though not so dramatic) effects arising in the recent w and d quark
mass extractions [94, 95, 96] supported further by lattice studies [97, 98]. However, the
net effect usually does not exceed ten percent level. Moreover, m, and mg, being the

smallest parameters in the game, are often screened in the formulae of our interest!®.

S However, there is an important exception from this rule. As we shall see in section 3.6.1, the
minimal SUSY SO(10) relation for the electron mass is dominated by the down-quark mass.
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Heavy quark masses - m (1)

. . !

Concerning the recent experimental heavy quark masses defined at pu = MF”® the
central values did not depart much from those used in [90]. However. the errors in
me and my, [90] seem slightly underestimated and we take this into account in the

corresponding vaules at the GUT-scale!®,

Evolution of the CKM mixing angles

Concerning the running of the quark masses one has to take into account also the effects
stemming from misalignment of the two bases in which the quark Yukawa matrices are
diagonal that are encoded in the Cabibbo-Kobayashi-Maskawa mixing angles and the
CKM CP-phase. The running of these parameters is usually very mild [90, 92] and
the only CKM entries encountering considerable changes are those corresponding to
the heaviest quarks, i.e. Vi, Vi, Vip and Vis. However, even for these parameters the

corrections due to the running from Az to Mg never exceed roughly 15% level.

Charged lepton masses - m. , - (M¢g)

In comparison with quarks the situation in the leptonic sector is quite simple. The
ambiguities descending from the quark thresholds enter only at higher loop level so that
the evolution within the SM stage as well as in the “desert” from Mg to M is relatively
pure. Moreover, the weak scale initial conditions are defined with a very good accuracy.
Thus the main source of uncertainities affecting the predictions for m, ,, - (M¢) are the
SUSY thresholds and running of the weak scale VEVs. Nevertheless, the errors at the
GUT scale are so small that one can almost always neglect them?!”.

Effective GUT-scale input parameters - summary

Let us sumarize the information given in the previous paragraphs. The updated values
of the effective quark and lepton masses used in the numerical analysis are given in
Tables 3.3 and 3.5. For sake of comparison, the 2000 data by Fusaoka & Koide and Das
& Parida are presented in Table 3.2. The evolved CKM mixing angles are specified in
Table 3.4.

8n case of the heavy quark errors we do not perform the full two-loop analysis; since the central
values are practically untouched in the first approximation we just rescale the relevant error bars and
keep only 2 significant digits for m; in the tang = 55 case that is particularly sensitive to the changes
of the initial conditions.

17"Unless a complete x2-analysis is performed.
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3.4.2 Running neutrino spectrum and PMNS mixing angles

The effects of MSSM running of neutrino masses and the mixing parameters were
analyzed in detail in many studies. see e.g. [86. 88] and references therein. Let us
mention here just the points that are relevant for the discussions of the numerical

results obtained in the subsequent parts of this work.

Running of PMINS mixing and CP phases

As we argued in the discussion following eq. (3.17), the neutrino spectrum in minimal
SUSY SO(10) with triplet dominated seesaw formula is always hierarchical. As a
consequence, the effects of running on the leptonic mixing angles are usually very mild
[88]. In particular, |Ues| is stable, with corrections below 1% for the whole range of
tan 3 considered. The variation of the atmospheric angle is small as well, remaining
below one percent for tan 3 = 10 and at one percent level for tan § = 55. The largest
corrections arise for the solar angle in case of large tan [3; however, even for tan 3 = 55
it does not exceed several percent level. In any case. the solar and atmospheric mixing
angles tend to grow towards the weak scale.

Concerning the fate of the three CP phases in the leptonic sector the situation is
more complicated and in some cases the effects of running can be substantial. In par-
ticular, the Dirac CP-phase can be quite unstable if |U.s| is very small. Moreover, the
correlation among the Majorana phases entering here can affect the results consider-

ably. For more information see for instance [88] and comments at the end of section
3.6.3.

Running of the neutrino spectrum

Unlike the evolution of the PMNS mixing angles, the running effects on the neutrino
spectrum (in particular, the mass-squared differences) can be rather significant. How-
ever, since the overall neutrino mass scale is not specified, the relevant quantity be-
comes the mass-squared ratio Am2/Am?%. Due to the normal hierarchy in the quark
sector, running effects in the numerator and the denominator cancel to large extent

and Am2 /Am? is almost constant [88].

3.4.3 ? versus direct scan

Concerning the numerical methods used to inspect the correlations arising from rela-
tions (3.14) and (3.15), the traditional x2-fit becomes quite nontrivial. It is namely
due to the highly nonlinear nature of the formulae for the physical observables that

lead to a very complicated landscape of the x? minima. To make sure that none of

52



the potentially interesting areas is missed it is hetter to perform (at least in the first
stage) an extensive overall scan that reveals all suspect regions and, if necessary. use

the output of this method as an input for a second stage optimization.

3.5 Numerical analysis - CP conserving Yukawa sector

Let us finally approach the results of the extensive numerical survey performed at the
first stage for real (CP conserving) parameters in eq. (3.2). The existing numerical
analyses [40, 41] find a tension between lepton mixings and quark parameters, in agree-
ment with the simple expectations discussed in section 3.3.2. In particular, |U.s| turns
out to be close to the present upper bound (~ 0.15 at 90% C.L.), the atmospheric
mixing can be hardly close enough to maximal (sin? 2693 < 0.9) and the solar mixing is
too large to fit the LMA MSW solution (sin® 2012 2> 0.9). The last drawback is claimed
to be relaxed tuning CP violating phases, but in disagreement with the known value of
the CKM phase [41. 73].

However, the existing results were usually obtained without taking into account the
uncertainities in the CKM sector of the model, or under simplifying assumptions. We
performed an independent fit of the experimental data paying particular attention to
the uncertainties in the input parameters [44, 45]. As a matter of fact, it is crucial
to determine how far the minimal SO(10) scenario can be pushed in reproducing the
known fermion spectrum and mixings. Due to the complexity of the numerical analysis,
we have taken advantage of the analytical results derived in the previous section to
elaborate an efficient approach to the fit, while obtaining a rationale for the emerging
patterns.

Up to the partial freedom in permuting the signs coming from the relevant phases,
there are only 12 independent continuous parameters sufficient to specify completely
the masses and mixing in the quark and lepton sector, c.f. formulae (3.14) and (3.15).
Since the overall light neutrino mass scale is unknown one can omit mg in eq. (3.15)

and fit only the mass-squared ratio in the neutrino sector.

Using the GUT-scale values of quark masses given in ref. [92] for two typical values
of tan B, namely tan 8 = 10 and tan 8 = 55, and considering both 1- and 2-0 ranges,
our numerical fit [44] confirms the results of ref. [41] for the central values of the
quark mixing angles and Amé /Am?% < 0.05 there considered. In this case we find
sin? 2603 < 0.93, |U.3| ~ 0.16 and sin? 2015 > 0.92, the latter beeing excluded at 90%
C.L. When the 1-0 uncertainties in the Vg entries [99] are included and we allow
for 0.019 < Am2/Am? < 0.069 (the 90% C.L. experimental range [100, 101, 102]
in 2003) we did not find any major deviation due to the Vogs entries, the largest
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effects being related to the extended Amz: /Am? range, c.f. Figures 3.4 and 3.6. For
tan 3 = 10 larger values (albeit not maximal) of the atmospheric neutrino mixing angle
are allowed, the upper bound being sin®26y; < 0.97. together with a reduced solar
mixing. namely sin® 26,5 > 0.85 (the extreme values are obtained for Am% / Ami close
to the 90% C.L. upper bound). The predictions for |U,.s| is not significantly modified:
|[Ues| 2 0.16 . For tan 3 = 55 the results are quite similar: the upper bound for the
atmospheric mixing is reduced to sin® 2653 < 0.95, while the solar angle lower bound is
relaxed to sin? 2619 > 0.82. The |U,3| parameter is bound to be about 0.15. Only when
the scan is performed over the 2-0 ranges of the quark sector parameters, maximal
atmospheric mixing is allowed, while the lower bound for |U.s| can be at most reduced
to about 0.12 and the solar mixing angle can be lowered to 0.75 (such values are reached

for large tan 8 and for Am%/[km?4 close to the 90% C.L. upper bound).

However, using the recent update of the lepton mixing parameters [24], the tension
becomes strong. Due to the lower bound on |U.s| and strongly reduced uncertainity
on Am% / Am?4 there is no longer a good solution within the 1-o ranges for the input
parameters for any value of tan 3, see Figures 3.5 and 3.7. Even at 2-¢ level there are

only small regions in the parametric space that are compatible with all lepton data.

As pointed out in ref. [72], the two neutrino analysis suggests the possible relevance
of the parameter region characterized by r ~ —1 (c.f. section 3.3.2) (corresponding to
the solution o = +1 in the notation of ref. [72]), where the atmospheric mixing may be
naturally large. However, we have checked that in this domain one can not recover a

good fit of the electron mass, in full agreement with the argument following eq. (3.19).

In conclusion, the numerical analysis confirmed the patterns found by previous au-
thors and analytically discussed in the previous section. The minimal renormalizable
SUSY SO(10) model with the CP conserving Yukawa sector, while providing a sugges-
tive and appealing framework for understanding the main features of the quark and
lepton spectra!®, fails in reproducing the recent neutrino [24] data at the present 1-o ex-
perimental accuracy. When considering the 2-0 experimental ranges, partial agreement

with the data is obtained in limited regions of the parameter space!®.

It is natural to expect some of these strict bounds to be relaxed once the additional
freedom in the various phase parameters is taken into account performing an extended

analysis in the CP violating (i.e. realistic) setups.

8in terms of triplet dominated seesaw formula connecting the unification of the b and T Yukawa

couplings with large values of the leptonic 2-3 mixing
9However, there are no solutions obeying all the phenomenological constraints simultaneously, c.f.
Figures 3.5 and 3.7.
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3.6 Additional phases and CP violation

The additional 8 phases make the numerical analysis much more involved. Even if one
sticks to the triplet dominated seesaw case to take the advantage of obtaining large
atmospheric mixing easily from the GUT-scale b-7 unification 2°, the number of free
continuous parameters entering the numerical analysis is still rather large. Counting
them, let us first note that the Yukawa structures Yig and Y)ss entering the sumrules
(3.2) and (3.3) become complex symmetric matrices. This leads to the following form

of the relevant sum-rules:

k]\;fl' = (PLV(;KMPR)T D, (PrVeknPr) + rDy (3.22)
M! o M| — My

v

10,126

The k and 7 parameters become also complez®* O(1) functions of vu(_)d . The primed

matrices in eq. (3.22) are given by
M. = Ui MU}

where Uy is a unitary matrix that brings M, into the diagonal form and all the tilded
matrices are again normalized to their maximal eigenvalue. One can always rescale eq.
(3.22) by a global phase such that r becomes real (r = —|r|e'®") and define k' = ke~%r.
Since all the masses are symmetric they can be diagonalized by means of unitary trans-
formations M, = Ug D,U,. Taking into account that UE U = VCOKM = PrVekm Pr,
where Py = diag(e%ml,e%iaz, e%ia3) and Prp = diabg(e%w1 , e%iﬁﬂ 1) parametrize the
re-phasing of the quark mass matrices necessary to bring the CKM matrix in the stan-
dard form (denoted by Vg with one CP-violating phase, dck ) and lead to positive

eigenvalues, the sum-rules in the My-diagonal basis can be rewritten as follows
- T _
KM = Vixm DuVigu — Ir|Da (3.23)

KM, o Ve DV — Ir|Da — e Dy

AL
m

T

The factor €™ accounts for the phase of k¥’ and the sign of m/m.. The factors —é— in
definitions of phases of Pp g are chosen to maintain compatibility with the notation
used in ref. [41, 45]. Counting the total number of parameters we are left with 7 phases
and 9 real parameters on the right-hand side of equations (3.23), in agreement with the

general estimations in section 3.1.3.

20Recall that in the triplet dominated seesaw case, one also gets rid of the relative phases and

magnitude of the singlet and triplet contribution.
2In general, the effective light doublet mixing, c.f. formula (2.8) is governed by a pair of unitary

matrices.
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As before. one can attempt to exploit the information contained in eq. (3.23)
by plugging into the charged lepton mass formula all the parameters that are known
(by running the data up to the GUT scale). namely the ratios of quark masses in
D, = diag(|m, /my]. [me/my]. 1). D, = diag(|ma/ms|. |ms/mpl, 1), the CKM mixing
angles and the CP-violating phase dcxps and vary them within their experimental
ranges. The remaining 8 real parameters |r|, |k'|, Arg(k’), a;, §;, that appear in the
first mass sum-rule, in principle arbitrary are varied over their allowed domains. In
spite of the many pending parameters, the constraints imposed on charged lepton mass
sum rule (3.23) in order to reproduce the electron and muon masses are so strong that
it is rather nontrivial to achieve a good fit which needs an intricate interplay of many
different parameters.

Having obtained an allowed solution of the charged lepton mass sum rule, the neu-
trino masses and mixings are then sensitive to the sign of my,/m, and the phase w. Since
a negative interference between the 3-3 entries of the M; and My matrices is needed to
obtain a large atmospheric mixing angle?? . the phase w becomes strongly correlated to
quark phases, in particular to g, see section 3.6.3. As a consequence this framework
is still highly constrained and capable to determines characteristic correlations among

the neutrino parameters.

Before proceeding to the discussion of numerical results let us review some issues

related to the fit of the fermion spectrum in the case of complex Yukawa couplings.

3.6.1 Electron mass formula and dcxy - the leading terms

When complex Yukawa couplings are considered, it is claimed that a successful fit of the
electron mass forces the CKM phase to take values in the second or third quadrant [41,
73, 74], thus requiring an extension of the model to recover the measured amount of
CKM CP-violation.

The argument that supports the numerical outcome is based on the approximated
formula for the electron mass eigenvalue that can be obtained from (3.23) using the
hierarchical properties of the quark mass matrices on the right-hand side:

|k et = —|r| ePLFgAt 4 ' 2 F N8 — 427260 /\S@L + 0O\ (3.24)

—Ir|
Here A = (1 — p — in) where p and n are the Wolfenstein CKM parameters, while
F;= %f /M, Fo= %’fi /A* are O(1) factors. Fitting the normalized electron mass (with

a typical magnitude of the order of O()\®)) amounts to compensating the dominant \*
term on the right-hand side of eq. (3.24) by other terms therein, the only possible one

22¢.f. formulae (3.23) and (3.17)
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. . . . 9 .
at the given order of expansion being that proportional to A%, In turn this amounts

Figure 3.1: The magnitude of |[A| = /(1 — p)? + 2 as a function of the CKM CP-phase
0. The proper fit of the electron mass favors large values |A| that calls for p < 0 driving

0 into the second or third quadrant.

to constraining the size of the CKM phase. The CKM phase is encoded in p and
n as e0CKM ginfyg = AX3(p + in). The typical values of p and n for dcxay in the
physical region are centered around p ~ 0.21 and n ~ 0.34 [93]. Since the parameter
|A]* = (1 = p)? + n? is maximized for p < 0, c.f. Fig. 3.1 23, the fit of the electron mass
in formula (3.24) seems to strongly disfavor the CKM phase in the first quadrant [41].

3.6.2 Electron mass formula and dcku - the effects of subleading terms

On the other hand, one should be careful in claiming the relevance of “subleading” terms
in a truncated expansion. A detailed inspection of the O(A") terms in eq. (3.24) shows
that A is not a faithful expansion parameter, in that some cofactors, not necessarily
dependent on A, can become accidentally large (a small denominator in the A\® term
is an example). Therefore a larger number of “subleading” terms in eq. (3.24) may
contribute on top of the O(\8) term, and the scan over the complex phases must be
very detailed not to miss such solutions. As an example let us consider the O()\7) term
Al|r|A2eH(203—P2)
Fi(e = )
= ms

where F, = s /A% Since for typical values of r one obtains (1 — 7)) =~ A%, the

ON) ~ + A, (3.25)

denominator can be small enough to lead to an important correction to the O(A8) term
provided ajz is close enough to 0. Notice that a small m, together with By around
7 favors as well the needed destructive interference in eq. (3.24), as emphasized in
ref. [73].

In the numerical analysis, a particular attention is paid to the quality of the pa-
rameter scan in those regions that may lead to departures from the expectations based

*In refs. [40, 44] the CP conserving case n = 0 was considered.
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on the estimate of size of A in eq. (3.24). Once an approximate solution of the charged
lepton mass sum-rule (3.23) is found. a detailed analysis is performed in the neighbor
parameter space by linearizing the mass relations. Such a procedure improves dra-
matically the convergence of the numerical code, revealing solutions that would escape
the original scan. unless one performs it with extremely high granularity and huge de-
mand of computing power. Indeed, such an improved numerical analysis shows many
solutions of the charged lepton mass formula emerging in parts of the parameter space
where the cancelation among the leading terms in eq. (3.24) is not as effective. Let us

discuss the numerical results in the next section.

The sensitivity of the electron mass fit to subleading terms in eq. (3.24) is going
to be crucial in the case of the extended model with an additional 120-dimensional

chiral super-multiplet [44] discussed in section 4.2. As we shall see 24

, even for typical
magnitudes of the 120y Yukawa contributions to fermion masses as low as per-mille
of those coming from the 10y and 126, the role of the A? term in eq. (3.24) is easily

screened by the 120y induced terms, thus lifting the bias on the CKM phase.

3.6.3 Comments on smallness of the Dirac CP-violating phase in the
lepton sector with triplet-dominated seesaw

Concerning the amount of CP violation in the leptonic sector there is a semianalytical
argument in favor of smallness of the PMNS Dirac CP-violation. It differs considerably
from the one given in [41] that seems to work under the conditions specified therein
but becomes obscure in realistic setups.

Let us start with the observation that the charged lepton mass matrix in the My
diagonal basis is strongly hierarchical while at the same time the triplet dominated
neutrino mass matrix poses a particular phase structure. To see this, consider the

approximate form of M, up to the A3 order

0 0 AX3(1 — p—1in)
M, | . —e#Fzg AN? (3.26)
l—=z
where
T = (ei“’ A }r[) e tos (3.27)

Since a3 ~ 0 is preferred by the charged lepton mass fit and = should be real and
maximal to make the b — 7 unification produce the large atmospheric mixing angle, we

also get a preferrence of w ~ 0.

24¢ f. formula (4.25)
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Let us show now that the amount of CP-violation in the leptonic sector is small

compared to the CICM case. The PMNS mixing matrix can be written in the particular

form
el . .
Uparns = UL UL = Ve A R (3.28)
eif)'B
Here
Vin. Vi Vi3
Voxkn = | Var Vo Vi (3.29)

Var Vo Va3

is the standard form of the unitary matrix diagonalizing the charged lepton masses

(due to the large hierarchy in the charged lepton sector it is close to Vo A7) while

i Unn U U
: = Ugl Ugg U23 (330)
Usi Usy Uss

denotes the unitary matrix diagonalizing the neutrino masses (3.26) 2. Since the mixing
in Ve is small, the U; matrix is the predominant source of the PMNS mixing angles.

Concerning the phases v; 9 3 arising upon bringing these two matrices into the stan-
dard form, they play only a subleading role. Indeed, passing the phase matrix in
eq. (3.28) through VOKM, only the relative phase of the Vo, entries can change.
Due to the strong hierarchy of VCKM, this does not bring substantial changes to the

formulae of our interest.

Let us start by estimating the magnitude of the Dirac CP phase 6, of the Uj matrix.
Plugging in the experimental information on A, A, I}, p and 7 and assuming = ~ 1— A2
as required by the large atmosphering mixing and b — 7 unification correspondence, it
is easy to see that regardless the value of 2 the phase angle §, never exceeds roughly
10 degrees, c.f. Figure 3.2.

To infer the order of magnitude of the PMNS Dirac phase one can look at the
Jarlskog invariant (of particular interest for our purposes is the combination of the 1-3
elements denoted by X;;) of the full PMNS matrix (c.f. Appendix A) [103]

1
Jop = —2- IIm (XT1X13X31X§3)| (331)
and use the identity

1, .
Jop = 5 |c12¢T3c03512513523 8in O ppr v s | (3.32)

Z5again in the standard form with 11,12,23 and 33 entries real
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Figure 3.2: The magnitude of the §, phase angle of the unitary matrix U* diagonalizing
the neutrino mass matrix (3.26). For any value of the quark phase Jo = 7 £ Af
associated with the strange-quark mass it does not exceed roughly 10°. Recall that
32 ~ 7 is preferred by the required “conspiracy” in the electron mass formulae (3.24)
and (3.25).It is assumed that the numerical structure of M, is such that it leads to the

proper almost bimaximal mixing in U}.

10 5,,(0)

A/32

To understand the origin of the partial suppression of dpys g with respect to dcgar let

us recall the relevant numbers obtained in the quark sector:
Joxar o< 107° for (3.33)
sindry = A ~ 0.22, sindyz ~ 0.04, sin o3 = M ~ 0.004 and Scx s ~ -g

Since the amount of CP violation in the ﬁj matrix is under control, one can expect a
moderate change of the value of J once Vg is multiplied by this factor in eq. (3.28)
while a drastic change in the sines of the mixing angles that gave rise to large dcxm even
the small values of Jog ~ 107°. Since there is no such enhancement in eq. (3.31) in
case of the solar and atmospheric mixing, one can expect the magnitude of the dpyns
angle to change to roughly?®

JPuNs 51p513533
Jexm Sl125l13sé.3

JpMNS

% cosine factors ~ 1.4 x 10 36cx
Jek M

SpMNS ~ SCKM (3.34)

Finally, we must quantify the magnitude of Jpyns, i.e. the change of Jok s upon
multiplying Vo by U,f Defining X = V¢ KMU: the approximate value of Jpyrys =
3 [Im (X7, X13X31X%3)| can be estimated by inspecting in detail the relevant matrix
elements of X.

2Here sfj stands for the sines of the CKM mixing angles ¢;; while séj denotes the corresponding
PMNS mixing parameters.

60



Neglecting the higher order terms, the matrix elements of our interest read

Xu= VUp +VigUsy + ... = U + O(N) Uy

Xz = ViU + ViU + ... = Uz + O(N)Usg

Xa1 = ViU + VagUsy + ... = Usy + VagUsy (3.35)
X33 = VaoUszo + VagUsz + ... = Uss + VagUss

To estimate the imaginary part of X7, X;3X 31X35 let us compute the magnitudes and

phases of these four factors separately:

e X{y: Since Uiy is a real number of the order of 1 (being a cosine of the solar
mixing angle) and Uj, = —chysl, — shystacl,e ™ = —3 = $|Uesle™ we get
X} ~ O(1) x €11 where |tan ¢11| ~ O(A)|U.s|sind, < 5 x 1073,

Vo~

o Xj3: Since Ups is practically Uy; and Upy = c['135"23 = 1/V2 we get Xq3 ~
O(1071) x €12 where | tan ¢1a| ~ sind, < 1071

. : Lol Lo b —ib, - 1 1 i ’
e X311 Since Uz = 853579 — Ch38)3cioe % = 5 — 5lUesle’™, Vi = —si.c], —
4 4 9 ibcrar s —2 _ Il Lo 1 id
C93513512€" "KM = —(4 + 0.07i) x 1072 and Uy = —chgsly — shyshycl,e’™

—% — 2U,3|e? we get X3q ~ % X €31 where | tan @31] ~ |Ues|sind, <2 x 1072,

e X33: Since Uss is a real number of the order of 1/v/2, V3 = —sdscly — cdys%557,
xe KM = —(4 —0.07i) x 1072 and Usg is also a real number ~ 1/v/2 we get
X33 ~ 1/v/2 x €932 where |tan ¢a3| < x1073.

Notice that the would-be phases accompanying Vi1 o € and Vi3 o< € indeed cancel
among the X7;X13 and X3; and X3; terms in Jpynys and it was therefore legal to
drop them at the beginning. The other phases in the higher order terms play only
subleading role and do not affect the results substantially.

With this information at hand one can infer
X1 X13X31 X3 ~ %0(10—1)&96 where |tan¢| ~ sind, <1071 (3.36)
From this it is already easy to obtain Jppys < 2 x 1073 that yields
Spyns <3 x 107 6ok ~ 20° (3.37)

Therefore, the GUT-scale value of the Dirac CP-violating phase in the PMNS mixing
matrix of the minimal SUSY SO(10) model is smaller than the CKM CP-phase of the
quark sector. Notice that the numerical value on the right hand side of eq. (3.37)

corresponds to the maximal value of the ¢, parameter. In many cases (in particular for
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35 ~ 7 that is favoured by the charged lepton mass fit). the preferred value of dparns

is even smaller.

The last remark concerns the possible effects of running of §pasvs from the GUT-
scale downto the electroweak range. It is well known [86. 88, 104] that the leptonic Dirac
CP-phase can be enhanced tremendously at Az even for dpyy Ns(GUT) = 0 provided
013 is very small (< 1°) and the Majorana phases are not equal or opposite. However, as
we shall see in section 3.7, the minimal SUSY SO(10) predicts a stringent lower bound
on 613 of roughly |Ues| > 6° and the Majorana phases are strongly anticorrelated.

Therefore, the upper bound (3.37) is radiatively stable.

3.7 Numerical analysis - CP violating Yukawa sector

Similarly to the real case discussed in section 3.5 a detailed scan over an independent
set of parameters in relations (3.23) was performed. We use GUT the scale input data
for quark and leptons as derived in ref. [92] with recent corrections indicated in Tables
3.3, 3.4 and 3.5 . As before, tan 3 = 10, 55 are considered as typical values for the
MSSM gauge coupling unification underlying the one-step SO(10) breaking scenario
here considered [69].

Let us again adopt 90% C.L. ranges for the heavy quark masses but allow for slightly
larger ranges in the masses of the light quarks, see Tables 3.2 and 3.3 and discussion in
section 3.4.1 (the values of m,, and mg given in Table 3.2 used in previous studies [40, 44]
correspond to 4.88 £0.57 MeV and 9.8140.65 MeV respectively at 1 GeV [90]). While
my plays a subleading role in the mass sum rules, a light mg favors the reproduction
of the electron mass eigenvalue, as we discussed in subsection 3.6.1.

The present range for the MS running mass of the down quark at 1 GeV is 5.4 to
10.8 MeV [93]. We will therefore allow for values of mg at the GUT scale as low as 0.7
MeV. As for the strange quark mass an up to date range, which includes the lattice
evaluations, is ms(2 GeV) = 110 & 20 MeV, corresponding at the GUT scale to 23 £ 6
MeV, c.f. Table 3.3.

The complex phases ag 3, (1,2 are sampled in the whole range [0,27). The phase
w shows then a correlation to the quark phases as a consequence of the tight relation
between large atmospheric and b — 7 Yukawa unification, which involves a partial can-
celation among the terms in formula (3.27). Since the reduced up-quark mass m,, is by
far the smallest parameter in the mass relations, a; does not seem to play any relevant
role.

In Fig. 3.3 the density spectrum of the solutions of the charged lepton mass formula
in eq. (3.24) is displayed as a function of ¢k s in the interval [0, 7). As one can see the
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Figure 3.3: The relative density spectrum of allowed solutions for the charged lepton
masses 1s shown as a function of the CKM phase d. Although there appear a preference
for the quadrants with p < 0, there exists a significant number of solution with dcca;
in the physical region. Quantitatively the ratio of the solution density in the preferred

area (the darkest slice) to that in the 1-o range is about 7 to 1.

dcrM

relative density of solutions of the charged lepton sum rule is far from being negligible
even when considering dc gy in the 1-0 range. contrary to the claims in refs. [41, 73]. To
make this statement quantitative the ratio of the solution density in the most preferred
area (the darkest slice in the second quadrant) to that in the 1-o dcx s range is about
7to 1.

As far as.neutrino parameters are concerned, the solar mixing angle shows no longer
the tight lower bound present in the CP-conserving case, namely sin? 2612|cp—o > 0.85
(for tan # = 10) [44]. On the other hand, the experimental improvement on the allowed
values for the solar mixing sharpens a tension with the recent bounds on the strange

quark mass®7.

Figures 3.9 and 3.11 demonstrate the compatibility of the predicted correlations
with the recent neutrino experimental data. To acieve this, the strange quark mass is
driven above 30 MeV at the GUT scale, that corresponds to ms(2 GeV) > 140 MeV
(the solutions in the allowed region span a GUT scale strange quark mass in the 30— 34
MeV range). Should the experimental value for the solar mixing angle settle above the

present central value, it would represent a serious shortcoming of the type-II dominated

2T As a matter of fact, the strange quark mass plays a central role in generating the tension between
the fit and the experimental data. On one hand, smaller values of 7 are preferred by the electron mass
fit, c.f. formula (3.25), while large 7 is favoured by the shape of the type-II neutrino mass spectrum.
With the recent update of the neutrino data [24], the anticorrelation among 012 and Am3/Am? (c.f.
formula (3.20)) the simple scenario discussed here becomes strongly constrained, in particular for large
tan 3 leading to further enhancement in the down-quark mass hierarchy.
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minimal SO(10) framework>®.

The lower bound for the |U,3| parameter is relaxed compared to the CP conserving
case. although not as dramatically as for the solar angle. As Fig. 3.9 shows. for
tan 3 = 10 the constraint |U.| > 0.15 found in the CP conserving setting (see the

discussion in ref. [44]) is lowered to about |Ues| > 0.1.

In the case of tan8 = 55 we do not find any significant qualitatively different
pattern. In particular the predicted range for the |U.s| parameter remains unaffected
|Ues| 2 0.1, c.f. Fig. 3.10. The persistence of such a non-vanishing bound is a clear
signature of the tight correlation between lepton and quark Yukawa couplings in this
framework, that makes |Ues| =~ O(X) [41]. The only difference with respect to the
tan @ = 10 case stems from the fact to fulfill simultaneously all the recent experimental
constraints [24] one must adopt the 95% C.L ranges for the neutrino data. The seed
of this tension can be traced back to the fact that for tan 3 = 55 the hierarchy in the
down-quark as well as the charged lepton sectors is stronger and thus the AmQ@ / Am?4
parameter is naturally smaller. Pushing Am% / Amzl higher the anticorrelation with
the solar mixing (3.20) reduces 1o below the experimental limits, cf. Fig. 3.11 and

vice versa.

Explicit numerical examples:

To appreciate the relevance of the semianalytic results obtained in the previous sections

let us give few explicit examples of the numerical output.

Example 1: Choosing the following set of input parameters

my, ~ 0.57MeV mq ~ 0.73 MeV
me ~ 235.7 MeV mg ~ 31.3MeV
my ~ 90.0 GeV mp ~ 1.19 GeV

sin 19 ~ 0.2253 sin ¢93 ~ 0.0331
sin ¢z ~ 0.0035  Soxm ~ 750 .

oy ~ 144° By ~ 216.8°
g ~ 1420 Ba ~ 224.6°
ag ~ 1.20 wr~ —0.20

|r| ~0.748  |k'| ~0.256

28R emarkably enough, even with the 2003 experimental inputs (Figures 3.8 and 3.10) this tension
is not weakened as it comes namely from the lower bound on Am%/Am% (see the previous footnote)

that was not changed drastically in the recent parameter extractions [24].

64



the charged lepton mass matrix (normalized to the 7 mass) reads:

100K M =~ [K] x
—0.146 + 0.004i —0.134 + 0.016;  0.35 4 2.862i
~0.134 4 0.016i —6.985 — 0.197i 5.321 — 11.5061
0.35+2.862i  5.321 — 11.5067 97.846 + 8.567i

The corresponding (GUT-scale) charged lepton masses are all within their 90% C.L.
ranges: m. = 0.3585 MeV, m, = 75.62 MeV and m, = 1294.0 MeV. The neutrino

mass matrix is then given by

100 M?, o
—0.203 + 0.004¢ —0.134+40.0167 0.339 + 2.863i
—0.134 4+ 0.016¢ —9.404 — 0.224i 5.366 — 11.4854
0.339 +2.8637 5.366 — 11.485;  5.855 + 8.952;

Keeping into account that the absolute mass scale is set by the VEV of the LH triplet
in 126. one finds neutrino mass ratios and mixings (sin® 2619 = 0.82, sin® 2053 = 0.93.
|Ues| = 0.11, AmZ/Am?% = 0.027), all of them within the relevant present 90% C.L.
experimental ranges, c.f. Table 3.1 2.

As far as the leptonic CP phases are concerned, the Dirac phase dpp/ns turns
out to be generally small (< 15?), while the two neutrino Majorana phases ;1 5 show
an approximate 180° correlation. In the example reported one finds dppyg = 4°,
w1 = 10° @9 = 191°. This feature is welcome as it ensures the radiative stability of

the analytical bound for the Dirac-CP phase in the lepton sector, see section 3.6.3.

Example 2: The second example (with slightly higher m, and reduced effective top-

mass) follows from the input parameters

my ~ 0.69 MeV mg ~ 1.0 MeV
me ~ 273.9 MeV ms ~ 32.8 MeV
my ~ 64 GeV my ~ 1.16 GeV

sin §Z512 ~ 0.2265 sin ¢23 ~ 0.0335
sin ¢13 ~ 0.0033 Scrm ~ 700 .

2The comparison with the data in Table 3.1 must take into account the running of the parameters
from the GUT scale to the weak scale. However, for normal hierarchy in the neutrino sector, the effects
of running of the neutrino spectrum and leptonic mixings are very mild. For more details see section
3.4.2
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ay ~ 1449 3y~ 221.7°
Qg ~ 1370 ;32 ~ 208.90
asg ~ 0° w~ 3.7°

|r] ~0.758  |k'| ~ 0.245

The charged lepton mass matrix (normalized to the 7 mass) in this case reads:

100 &' M] =~ |K'| x
—0.194 4+ 0.002i —0.286 4 0.069 0.212 + 2.927i
—0.286 +0.0695 —7.475 —0.624i 3.604 — 12.9813
0.212 4+ 2.927i  3.604 —12.981i 97.968 + 0.001

The corresponding (GUT-scale) charged lepton masses are: m. = 0.3585 MeV, m,, =

75.72 MeV and m, = 1290.8 MeV. For the neutrino mass matrix we obtain

100 M, o
—0.271 — 0.011; —0.290 + 0.050i  0.019 + 2.935i
—0.290 + 0.050; —0.957 — 1.1147 4.449 — 12.761i
0.019 +2.935i  4.449 — 12.761i  7.444 + 6.4414

The neutrino mass ratios and mixings turn out to be (sin2 2075 = 0.80, sin® 203 = 0.93,
[Ues| = 0.13, Am2/Am? = 0.039), all of them again within the relevant present 90%
C.L. experimental ranges, c.f. Table 3.1.

The leptonic Dirac CP-phase dpyns found in this case is dpprys = 0.2° while the
Majorana ones are @1 = 7.3°, @z = 186.4°. Again, one can see the strong antircorrela-

tion in ¢ and @o.

With these data at hand one can easily check the quality of the simple analysis
performed in sections (3.6.1) - (3.6.3). Recall that the proper fit of the electron mass
formula and the physical placing of the CKM CP-phase required az ~ 0 and 8 ~ 7 and
low values of mg. The higher order terms could have brought additional improvement
provided By ~ m. Furthemore, the phase angle w had to be very small to allow for
automatically large atmospheric mixing as a consequence of the b — 7 unification. We
also identified a lower bound of order O()\) on the Ugs entry of the PMNS mixing
matrix. Finally, the Dirac CP-phase in the leptonic sector was expected to be small.
Indeed, looking at the results above one can appreciate a very good agreement among

all these theoretical arguments and the numerical fit.

It is worth commenting more on the dramatic effects brought by the recent im-

provements of the experimental data [24]. Comparing Figs. 3.9 with 3.8 one can see
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Table 3.1: 90% C.L. ranges for neutrino mixing and mass parameters in 2003 [100,
101, 102] and 2005 [24]. The recent significant improvement on the Am?j parameters
is the major source of the tension on the CP-conserving Yukawa setups in the minimal
renormalizable SUSY SO(10) model.

2003 data
90% C.L. ranges
015 071 < sin?26;, <091
003 0.90 < sin®26qs
A3 | sin 013 < 0.20
Am% 5% 107%V? < Am% <17 x 107%eV?
Am? 1.6 x 1073%eV? < |Am? < 3.9 % 107%eV?
Am2/Am? 19x1072 < AmZ/Am?  <6.9x 1072
2005 data
90% C.L. ranges
019 0.79 < sin?20;, <001
023 0.93 < sin®20ys
013 |sinf3]  <0.15
Am2 7.5 x 107%eV? < Amd <85 x 107%eV?
Am2 2.0 x 1073eV? < |Am3| < 3.0 x 1073eV?
Am /Am? 27x1072 < Amd/Am?  <$4.0x 1072
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that the “volume™ of the parametric space that remains compatible with experiments
shrunk considerably with the recent update of experimental inputs [24]. The major
effect comes from the improved experimental bounds on the neutrino mass squared
differences and leptonic mixing angles. c.f. Table 3.1 that forbids 30 a significant part
of the previously (2003) allowed area in the parametre space. As a consequence, for
large tan 3 we obtained a fit compatible with the data only when 95% C.L. ranges for

the neutrino parameters were allowed.

We conclude that the minimal SUSY SO(10) GUT, when complex Yukawa couplings
are taken in their generality, is not ruled out by present data on the quark and leptons
textures On the other hand, a large solar mixing and a maximal atmospheric angle
can hardly be accomodated. Nevertheless, the non-vanishing lower bound for |Ues|
remains a very robust prediction of the model that falls within the reach of the planned

long-haseline neutrino experiments.

30hamely because of the change in the recent Amé /Am? experimental range
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Table 3.2: Sample of values running quark masses (in MS scheme) given in analyses
by Fusaoka and Koide (1998) [90] and Das and Parida (2000) [92]. The input data
correspond to u = 1 GeV for the light quarks and p = My °® for the heavy quarks with
Myoie above Agep. For sake of comparison with the latest experimental results, the
light and heavy quark running masses at © = 2 GeV obtained by simple rescaling of
the 1o = 1 GeV input values are also given. The supersymmetric threshold was taken
at Mg =1 TeV and tan 3 = 10 and 55 is considered.

Effective GUT-scale quark masses
Fusaoka & Koide (1998) & Das & Parida (2000)

All values are given in units of MeV.

q me(1GeV) | mg(2GeV) | my(Mz) | my(Mg), tg = 10 mg(Mg), tg =55
u || 4884057 | 3.61752% | 2.3370:42 0.7270-14 0.7270:12
d| 9814065 7.277572 | 4.69%00 1.501542 1.501042
s | 19544125 | 143.4F132 | 9341118 29.9792 29.8%4:2

All values are given in units of GeV

q || mg(MF™®) | my(My) || mg(Ma), t5 =10 | my(Mg), tg = 55

c|l 1.217502 | 0.6810:06 0.21070:019 0.2117+3915
0.08 0.11 0.14 0.48

bl 425757 | 3.00131 1.0670 59 1.42%518

ti 170412 | 181+13 82130 95759
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Table 3.3: Recent changes in the quark sector input data (93, 97. 98] and the cor-
responding corrections to the relevant GUT-scale effective masses. The effect in the
strange-quark mass plays a significant role in the numerical analysis, for more details

see sections 3.4.1 and 3.7.

Effective GUT-scale quark masses - 2004 update

low scale masses GUT scale values

Miight(2GeV) Mheavy (MPO€) | mg(Mg), tg = 10 mq(Mg), tg = 55

ma(2GeV) ~ 2754125 MeV | 0455072 MeV | 0.457575 MeV
ma(2GeV) ~  6.042.0 MeV 1.373% MeV 1.370% MeV

ms(2GeV) ~ 110 + 20 MeV 23 4+ 6 MeV 2346 MeV

me(ME'®) ~ 1.25+0.10 GeV 916 + 35 MeV | 217 £ 35 MeV
my(MP'®) ~ 4254020 GeV | 1067555 GeV 14708 Gev

my(MPP®) ~ 1743 £7.2 GeV 82112 QeV 97139 GeV

Table 3.4: The evolution of the CKM mixing angles and CP phase from Mz [93] to
the Mg scale for tan 8 = 10 [90, 92]. The effects of running are significant (up to 15%)
only for ¢13 and ¢g3. Varying tan § gives rise only to subleading corrections.

uw=Mgz p=2x 101% GeV

sin @12 0.2243 +0.0016 | 0.2243 +0.0016
sin ¢o3 0.0413 £0.0015 | 0.0351 4 0.0013
sin ¢13 0.0037 4 0.0005 |  0.0032 4 0.0004

OCKM 60° + 14° 60° + 14°
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Table 3.5: The running effective charged lepton masses in the MSSM given in Das and

Parida [92]. The errors come mainly from the uncertainities in the running VEVs and
from the SUSY thresholds.

[ my(Mz) | my(Me), tg =10 | my(Mg), tg =55

e | 0.4868 MeV 0.3585 MeV 0.3565 MeV

p | 102.75 MeV | 75.677008 MeV | 75.297095 MeV

7| 1.746 GeV | 1.292F0:501 GeV | 1.62070:04 Gev
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Minimal SUSY SO(10), CP-conserving Yukawa sector, tan J = 10, 2003 data

Figure 3.4:  Density plots of sin® 20;5. Am%/ﬁkmi and |U,s| are shown as functions
of sin? 2653 in the minimal SUSY SO(10) model with CP conserving Yukawa sector
discussed in section 3.5 and tan/3 = 10. The experimental ranges for the leptonic
mixing parameters are those considered in [40, 44]. The solid contours enclose the
experimentally allowed regions at the 90% C.L. The dark areas correspond to the
solutions that are consistent with all neutrino data. The effects of recent experimental

data are depicted at Fig. 3.5.
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Minimal SUSY SO(10), CP-conserving Yukawa sector, tan 3 = 10, 2005 data

Figure 3.5:  Density plots of sin® 26, L\m% / Am?4 and |U,s| are shown as functions
of sin® 26093 in the minimal SUSY SO(10) model with CP conserving Yukawa sector
discussed in section 3.5 and tan 8 = 10. The experimental ranges for these parameters
are those given in [24]. The solid contours enclose the experimentally allowed regions at

the 90% C.L. There are no solutions simultaneously consistent with all neutrino data.
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Minimal SUSY SO(10), CP-conserving Yukawa sector, tan J = 55, 2003 data

Figure 3.6:  Density plots of sin? 2812, Am2/ Am? and |Ugs| are shown as functions
of sin? 2653 in the minimal SUSY SO(10) model with CP conserving Yukawa sector
discussed in section 3.5 and tan3 = 55. The experimental ranges for the leptonic
mixing parameters are those considered in [40, 44]. The solid contours enclose the
experimentally allowed regions at the 90% C.L. The dark areas correspond to the
solutions that are consistent with all neutrino data. The effects of recent experimental
data are depicted at Fig. 3.7.
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Minimal SUSY SO(10), CP-conserving Yukawa sector, tan 4 = 55, 2005 data

Figure 3.7:  Density plots of sin® 2612, Am% /Am? and |Ues| are shown as functions
of sin® 2053 in the minimal SUSY SO(10) model with CP conserving Yukawa sector
discussed in section 3.5 and tan 3 = 55. The experimental ranges for these parameters
are those given in [24]. The solid contours enclose the experimentally allowed regions at

the 90% C.L. There are no solutions simultaneously consistent with all neutrino data.
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Minimal SUSY SO(10), CP-violating Yukawa sector, tan 3 = 10, 2003 data

Figure 3.8:  Density plots of sin® 26;5. Am% / Am?,_1 and |U.3| are shown as functions of
sin? 2093 in the minimal SUSY SO(10) model with CP violating Yukawa sector discussed
in section 3.7 for tan 8 = 10. The experimental ranges for these parameters are those
considered in [40, 44]. The solid contours enclose the experimentally allowed regions
at the 90% C.L. The dark points correspond to solutions that are consistent with all

neutrino data. The recent situation is depicted at Fig. 3.9
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Minimal SUSY SO(10), CP-violating Yukawa sector, tan 3 = 10, 2005 data

Figure 3.9:  Density plots of sin” 2612, Am2/ Am? and |U.s| are shown as functions of
sin® 20,3 in the minimal SUSY SO(10) model with CP violating Yukawa sector discussed
in section 3.7 for tan 3 = 10. The experimental ranges for these parameters are those
given in [24]. The solid contours enclose the experimentally allowed regions at the 90%

C.L. The dark points correspond to solutions that are consistent with all neutrino data.
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Minimal SUSY SO(10), CP-violating Yukawa sector, tan 3 = 55, 2003 data

Figure 3.10:  Density plots of sin? 2015, Am% / Ami and |Ues| are shown as functions of
sin? 2053 in the minimal SUSY SO(10) model with CP violating Yukawa sector discussed
in section 3.7 for tan 3 = 55. The experimental ranges for these parameters are those
considered in [40, 44]. The solid contours enclose the experimentally allowed regions
at the 90% C.L. The dark points correspond to solutions that are consistent with all

neutrino data. The recent situation is depicted at Fig. 3.11
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Minimal SUSY SO(10), CP-violating Yukawa sector, tan 3 = 55, 2005 data

Figure 3.11:  Density plots of sin® 265, Am% / Ami and |U,s| are shown as functions of
sin? 2653 in the minimal SUSY SO(10) model with CP violating Yukawa sector discussed
in section 3.7 for tan 8 = 55. The experimental ranges for these parameters are those
given in [24]. The solid and dashed contours enclose the experimentally allowed regions
at 90% and 95% C.L. respectively. The dark points correspond to solutions that are
consistent with all neutrino data 95% C.L. ranges. Due to the stronger hierarchy in
the down quark and charged lepton sectors the values of the Am%> / Am?4 parameter
are generally than in the tan § = 10 case and can be lifted only for the price of reduced

solar mixing. c.f. section 3.7.
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Chapter 4

Quark and lepton masses and

mixing in extensions of minimal

renormalizable SUSY SO(10)

In the last chapter we investigated in detail the correlations among Yukawa couplings in
the minimal renormalizable SUSY SO(10) framework. We have seen that the minimal
setup is very constrained, even so much that it fails to describe the observed pattern
of the quark and lepton masses and mixing pattern until the input parameters are
stretched within their 90% C.L. ranges !. The sharp prediction of |U,3| > 0.09 is a true
smoking gun of the minimal scheme and the future long-baseline neutrino experiments?
are capable to measure this PMNS matrix element up to values of almost an order of
magnitude below this strict bound.

However, even within the minimal SO(10) framework, at some level, the effects of
nonrenormalizable effective operators coming from physics above the GUT scale must
be taken into account. One should also keep in mind the fact that a class of alterna-
tive, but still viable scenarios arise once the 120-dimensional three-index antisymmetric

tensor of the decomposition
16®16 =10 126 @ 120, (4.1)

is employed instead of (or even together with) the “standard” 10p.
On the other hand, adding a third contribution to the minimal model Yukawa
sum-tules 3.2(be it a consequence of nonrenormalizable effects or the presence of an

additional elementary Higgs fields at the GUT scale), the theory can easily loose all the

Lwith a typical value of x? in the 15-25 range
®like ICARUS, OPERA or CNGS, [105]
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predictive power in the matter sector and become impossible to test. Therefore, such
a class of extensions of the minimal renormalizable scenario. if supposed to address the
issue of the quark and lepton masses an mixing in a nontrivial way. must be equipped
bv additional constraints coming either from dynamical reasons (as it is the case of
effective operators) or put by hands like for instance additional GUT-scale symmetries.
This singles out a class of “tractable” models of quark and lepton masses and mixing
beyond the original minimal renormalizable framework discussed in the previous parts
of this work.

A representative of this set, a minimally extended minimal SUSY SO(10), is the

subject of the rest of this chapter.

4.1 Minimal extension of minimal Yukawa sector

Clearly, to keep the big achievements of the minimal scheme (be it the interesting
correlation among the b — 7 Yukawa convergence and large atmospheric mixing angle
in the type-II dominated case or the sharp lower bound on |Ue3| obtained in the same
scheme) intact, the effects of the new contributions in the Yukawa sector should not
overwhelm the original structure.

Remarkably enough. the troubles of the renormalizable approach can be all traced
back to “small entries” in the 1-2 sector of the relevant effective sum-rules. As a matter
of fact, the smallness of the solar mixing that prevented us from obtainig better fits
of the neutrino mass and mixing pattern in the minimal scheme, the robustness of
the |Ues| lower bound and also the problems with getting a good electron mass fit
for the physical region of the CKM CP phase come from the mismatch of subleading,
typically per-mille order terms therein. Therefore, one can expect all these issues to be
potentially addressed by even strongly suppressed additional contributions in eq. (3.2)
without spoiling the neat features of scheme.

Naturally, regardless of their true origin, such terms can be viewed as effects of non-
renormalizable operators generated at scales higher than Mgyr, perhaps at Mpjanck-
Since there are only three factors in the decomposition 4.1, there are also only three
classes of contributions entering the effective Yukawa sum-rules eq. (3.2) that can be
uniquely identified by their SO(10) symmetry properties.

4.1.1 Effects of an additional antisymmetric Yukawa contribution
As we shall see, from these three options the case of 120 is of particular interest, because

e The antisymmetric nature of the Yukawa structure coming from an additional

contribution transforming as 120 of SO(10) brings the minimal number of new
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parameters: the three complex entries of a 3®3 antisymmetric matrix and two

independent ratios of these contributions to the effective sum-rules (3.2).

e Agsshown in Appendix C.1. the antisymmetry of Y7o implies that the eigenvalues
of the symmetric mass matrices are unmodified up to O(¢2) corrections where <,
measures the “smallness” of the additional term. This suggests that the 120y
induced mass corrections may affect at the leading order the determination of
the mixing angle in such a way not to destabilize the good fit of the mass eigen-
values obtained in the minimal model. This feature is relevant for qualitative
understanding of the numerical discussion presented in the next section (see also

Appendix B).

Both these properties are highly welcome from the point of view of a numerical analysis
that, as we shall see, remains to large extent tractable even in such case. In what follows

this option is worked out in detail.

Let us therefore consider an extension of the minimal renormalizable framework in
which a pure (strongly suppressed) antisymmetric correction to the quark and lepton
effective Yukawa sum-rules (3.2) arises from effects of an additional quasidecoupled
120y representation in the Higgs sector of the model [44]. Recall that effects of an
additional 120y were already studied in the literature long time ago, but never in this
setup and always biased by additional requirements making the general setting with

three Yukawa couplings tractable, see e.g. [74] and references therein.

4.2 Adding a small Yj9 to the minimal Yukawa sum-rules

An important feature of the 120-dimensional representation of SO(10) is its SU(2),
doublet contents : unlike 10y or 126, 120 contains 2 copies of the SU(2), ® SU(2)r
bidoublets residing in the components with Pati-Salam quantum numbers (1,2, 2)199
and (15, 2,2)190. Therefore, the effective minimal model SU(2)1, doublet mass matrices
are enlarged by 2 rows and columns and in general the MSSM doublet VEVs would
have nonzero projection in the direction of these components as well. In other words,
there shall be four new effective VEVs playing a role in the effective Yukawa sum-rules

in this framework, see section 4.3.

4.2.1 Group-theory properties of 120y

From the group-theory point of view, the 120-dimensional representation of SO(10) is

spanned over the space of three-index antisymmetric tensors. As a consequence, the
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couplings of the 120y Higgs doublets to the fermionic bilinears must be antisymmetric
in the generation indices, see e.g. [106].

Another important feature of 120y stems from the fact that (up to the VEVs of
the MSSM doublet components) it can not participate on the spontaneous breakdown
of the SO(10) symmetry® and thus the need of the 210 - (or a 45 & 54 if one does not
require renormalizability, see section 2.1.2) and 126-dimensional multiplets is justified
even in the presence of 120y. In general, one can think about avoiding 10g if 120 is
present, but usually the fundamental representation is taken as the most natural source
of the Standard model doublets in the Higgs sector and it for sure can not be done if

120y is almost decoupled.

4.2.2 The model

Using a simplified and self-explanatory notation the Yukawa part of the superpotential

of the model under consideration reads
Wy = 16p (Y1010p + V126126 + Y1201205) 165 (4.2)
while the Higgs part is given by

Wy = Myol0% + Mgs12651265 + Ma19210% + M19120%; +

+A210% + 121051265126 + 1052105 (a 126 + B1265) + (4.3)
+1/ 21051205120y + 71052105120 + 12052105 (e 126 + 5/ 1265)

where, as we have seen, the 3 x 3 matrices (in general complex) Yo and Yiog are
symmetric while Y7o is antisymmetric.

For the discussion that follows it is convenient to write down the explicit decompo-
sition of the SO(10) Higgs representations under the SU(4)ps ® SU(2)r ® SU(2)r:

(1,2,2) @ (6,1,1)
(15,2,2) ® (10,3,1) @ (10,1,3) & (6,1, 1)
126 = (15,2,2) & (10,3,1) ® (10,1,3) @ (6,1, 1) (4.4)
(1,2,2) @ (15,2,2) & (10,1,1) & (10,1,1) & (6,3,1) & (6,1,3)
(

210 = (15,1,3)® (15,3,1) ® (10,2,2) @ (10,2,2) & (6,2,2) ® (15,1,1) @ (1,1,1)

It is also helpful to recall the SU(3).®U(1)p—1, decomposition of the relevant SU(4)pg

multiplets (with standard model B — L normalization):

6 = (3,-2/3)@® (3,+2/3)

3c.f. Appendix B.3
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10 = (6,+2/3)2(3,-2/3) & (1.-2)
15 = (8.0) (3.44/3) @ (3. —4/3) & (1.0) (4.5)

Since 120y does not contribute to SO(10) breaking. one may asswume that the
same (direct) breaking pattern like in the minimal SUSY SO(10) is achieved [34, 69].
Recall that in such a case, the non vanishing VEV of the (1,1,1)210 (and optionally
(15,1,1)210) component of 210y triggers the breaking of SO(10) down to SU(4)ps ®
SU2)L2SU(2)r (or SU(3).®SU(2),@SU(2)r®U(1)p-1). The subsequent left-right
symmetry breaking step to SU(3), ® SU(2)r ® U(1)y of Standard Model is achieved
at the scale Mg < Mg by VEVs of (15,1, 3)210, (10,1, 3)125 and (10, 1, 3)7s5. Since the
B — L charge of the color singlets contained in 10 (and 15) of SU(4) ps is even, R-parity
is preserved. The final electroweak breaking step is obtained by the traditional VEVs
induced by weak scale SUSY soft-breaking terms on the light LH doublets obtained
from the colorless components of the bidoublets present in eq. (4.5). Since 210y mixes
126, 126 as well as 120y, with 10y one expects that all the color singlet LH doublets
mix to give (via minimal fine tuning) the two light Higgs doublets of MSSM, leaving
the other states heavy.

In this respect the bidoublet components in the 120y representation may exhibit
a specific feature that is crucial for the consistency of the simple model (leading to
a strongly suppressed purely antisymmetric correction to the relevant Yukawa rules)
we are trying to construct. Since none of the 120y components participates at the
spontaneous breaking of SO(10) down to the MSSM group, the mass parameter Miog
in eq. (4.4) is not constrained by the VEV conditions and one can make it large, perhaps
as large as the Planck scale [107, 108], without requiring any fine tuning among the
mass and the couplings in the potential. By this assumption, one gets a rationale for
the required decoupling effect of 120y of the order of roughly Mg/Mp; ~ 1073, In
such a case, the 120y colorless SU(2)r doublet components acquire an induced VEV
suppressed by the above factor with respect to the doublets contained in the other
representations®.

Relations among the VEVs of the relevant components can be obtained, neglecting
explicit soft SUSY breaking, from the F-term (and D-term) flatness of the supersym-
metric vacuum, i.e. by requiring (Fx) = (OW/0X) = 0 for any superfield X in the
superpotential, replaced by its scalar component.

Considering the SO(10) superpotential in eq. (4.4) and its decomposition in terms
of SU(4)ps @ SU(2)r, ® SU(2)r, of which some relevant terms are

126]{@%}]@210[{ = (10,1,3)125(10,1,3)@5(15,1,1)210@...

4Remarkably enough, the same game can be played also with 10 if alternative schemes are considered.
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10y 2120y 2210 = (15,2, 2)120(1, 2, 2)10(15. 1, 1)210 &

B(1,2,2)190(1,2,2)10(1.1,1)010 &
10 @126y @210 = (15,2,2)196(1.2.2)10(15. 1. 1)210 &

2 (10,3, 1)196(1. 2,2)10(10, 2, 2)910 &
10p @126 ® 210y = (10,1, 3)755(1, 2,2)10(10, 2, 2)210 ®

the vacuum F-flatness in the 120y bidoublet directions yields

(15,2, 2)150) Ma__11,2,2)10)

%y 41120 1-\{[120]\/[210 y &y 10
M,

((1,2,2120) ~ 77((1,2,2)10) (4.6)
1120

where O(1) couplings are assumed and ((10,1,3)126) = ((10,1,3)155) ~ Mg (as re-
quired by D-flatness at Mpg). The induced VEVs of the relevant colorless 126y left-
doublet components are not affected by 120y and as in the minimal scenario

M3
My96Mo10

Mp ((1,2.2)10)?

5,2, 2)mar) ~ ~
((137 \ )126) Moo Mo

(4.7)

The small SU(2)p triplet VEV subsequently leads to the type-II Majorana mass for
neutrinos.

In the single-step breaking scenario®, the assumption Mg ~ Mp; and relations
(4.6)-(4.7) yield the desired O(M¢ /M p;) suppression of the 120y SU(2)r, doublet VEVs
with respect to those in 10y and 126. Since this result is controlled by the decoupling
of the 120y representation, such a suppression is not spoiled by the soft SUSY breaking
potential triggering the weak scale the SU(2);, x U(1)y breaking.

4.3 Effective Yukawa sum-rules

The most general structure of the fermion mass matrices in the renormalizable SO(10)
model with all possible types of Higgs fields coupled to fermions is given by [109, 110]

M, = Yo’ + Y1260 + Yioovl® |

Mg = Yo + Yiaevg™ + Yisovg™ ,

Ml‘,i = Ylo’UllLO — 31/125’1)526 + Ylgo'ljim , (4.8)
M; = Yiov}® — 3Y126v3%® + Vigov}? |

M; = 7Yz

MY = 7Y

5corresponding to a rough coincidence of Mg with Mg
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Here v}?° are linear combinations of the four 120y isodoublet VEVs residing in the

(1.2,2)720 and (15, 2. 2)190 of SU(&)]:S 5 SU((Z)L P SU(Q)R
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1,320 = <(123 2)u>: L‘1120 = <(1/ 2: 2)d> - 3((15, 27 2)d>

The —3 factor in ,U1120 originates from the same mechanism like the —3 term in (4.8),

c.f. Appendix B.5. Notice that since there are no SU(2)g singlets neither triplets
in 120y there is no contribution to the Majorana mass matrices coming from Yjgo.
This could be easily seen also from the antisymmetry of Y729: it can not contribute
to M$ and M] that (as any Majorana mass matrix) must be symmetric in generation
indices. To achieve the desired tractable structure of the sum-rules (4.8) from now on
we take v120/ vi01% Mg /Mp; and the 120 contributions to the mass matrices shall

be treated as perturbations.

4.3.1 Phasecounting

Apart of the 8 minimal model phases (7 in the pure triplet seesaw case) one gets in
general 6 (5) more phases coming from the 7 (6) new complex parameters vy2’, v120, 9120
and v}?9 (the last being obviously absent in the triplet dominated case). This comes
from the fact that as before for the Yig and Y196 one of the phases of the effective VEVs
can be reabsorbed in the redefinition of Y190. In total, we end up with 15 independent
phases in the most general case while there are 13 phase parameters if the seesaw

formula for the light neutrino masses is dominated by the triplet contribution.

4.3.2 Counting all real parameters

On top of these 15 (13)® phases one must add the 13 “magnitudes” of the quark and
lepton mass and mixing parameters considered in the minimal setup (c.f. section 3.1.3)
and 5 more in the extended case. As before, not all the phases in the general neutrino
mass formula are independent and in general, one can get rid of two of them - only
the relative phase among the Dirac neutrino mass matrix and the Majorana piece in
the denominator of the type-I term matters and also the overall phase of the neutrino
mass matrix is irrelevant. In total, the number of parameters to deal with becomes

enormous: 33 in the most general case and 31 in the triplet dominated scheme.

Therefore, iven in the very minimalistic case considered here, it is hard to analyze

the extended model in full generality. Rather than that, let us focus on few illustrations

SNumber in paranthesis corresponds to the type-1I dominated seesaw case.
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of the possible effects that a quasidecoupled 120-dimensional Higgs representation can
bring paying particular attention on the influence of the additional terms in eq. (4.8)
on the correlations among the leptonic mixing angles and the shape of the neutrino

spectrum.

4.4 Quark and lepton mass and mixing correlations

As in the case of the minimal model one can further narrow the area of the parametric
space potentially leading to a realistic output by a detailed inspection of analytic formu-
lae that could bring several hints about the relevance of some of the input parameters.
As before, let us stick on the case of a triplet dominanting the seesaw formula taking
the advantage of an almost automatic large atmospheric mixing angle and a slightly

reduced the number of free parameters, c.f. section 3.2.

4.4.1 Effective sum-rules - real setup

Let us start with inspecting the general form of the effective in the considered setting.

The minimal model formulae (3.14) and (3.15) change to

kM = M, +7My+ Yioo(ke — ey —7eq) ,
M, o [M;— Mg+ Yioo(mpeg — ?TLTEZ)] , (4.9)
As before, the tilded matrices are normalized so that the absolute value of their maximal

generalized eigenvalue” is one. The smallness of the VEVs of doublets descending from
1207 is expressed by the short-hand notation

120 120 120
v v v
Ey = 23—, £ = 94—, g =" (4.10)
™Myt my ma,

so that £, < O(1073). The main difference with respect to the minimal model formulae
(3.14) and (3.15) stems from the fact that the mass matrices of charged fermions are
no longer symmetric and can be diagonalized only by means of a biorthogonal transfor-

mation

M, =VED, VI z=u,d,l
so that
provided

T T T
W=VEVE Voru=VEVE, Yin=VE ViVl .

"By “generalized eigenvalues” we mean the magnitudes of entries of diagonal part of a general
bi-unitary decomposition.
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The neutrino mass matrix reads now

T . 1T, pT -~ my = m
VE MVE = moVE VR VE A VE - ;EDHY{QO <m—bsd-€1>} . (412)
T

7

where g is an overall neutrino mass scale. Note that although there is an explicit
asymmetry ~ Y{5, in the formula (4.12), VdLTj\.ifl,VdL, being a Majorana mass martix,
remains symmetric in any basis due to an interplay among the VdL , VdR and Y{y, fac-
tors above. Once the matrices on the left-hand side of eq. (4.11) and eq. (4.16) are

reconstructed, the lepton mixing matrix Uppsys is given by
Upuns = U"U, , (4.13)
where
v MTMvE = up2uT . vE M VE = U,D,UT

Notice that eq. (4.13) does not depend on V.

4.4.2 Right-handed quark mixing matrix

The missing ingredient needed to perform the fitting procedure of charged lepton

8

masses® is the right-handed quark mixing matrix W. Since for €, = 0 one has

W = Vegw, it is convenient to expand W around Vegas in powers of €. Using
the results of the analysis given in Appendix C.1 one obtains

W = Vorm +2 (—euZuVorm + eaVerxmZh) + O(e2) (4.14)
where the antisymmetric matrices Z;’ 4 are given by

AT
(Da)si + (D2

(Z2)ij = (4.15)

! — / T [ /
and Yy, = VormY120Vexm, Ya = Yigo-

Formuale (4.12) and (4.14) indicate that Y{,; and not Yigo should be used as an
input of the numerical analysis. Notice that though Y}, is not in general antisymmetris,
the departure from the exact antisymmetry is of the order of the small parameters.
Therefore, this provides an O(g?) contribution to the relevant formulae that can be

neglected at the desired level of accuracy.

There is an important observation coming from formula (4.15) that allows one to

understand the mechanism through which as small as one per mille perturbation of

8in analogy to the minimal model case discussed in detail in sections 3.5 and 3.7
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the minimal setup can lead to much larger effects in the correlations predicted by the
model. The denominator of eq. (4.15) is O(1) for 7 or 7 = 3 but much smaller for
i=1. 7 =2 (for i = j the numerator vanishes due to the antisymmetry property of
Y’ matrices). Therefore, the 12-element of the relevant Z’ matrices are of the order of
m3/ms (where mo 3 are the masses of the second and third generation quarks (my,/m
for down-type quarks while m;/m. for up-quarks) that compensates the smallness of
the £, 4 parameters defined in eq. (4.10) and enhances the “effective strength” of the
120y perturbations from the “apparent magnitude” of roughly 4, to approximately
Ed Mt/ M c-

This in general affects the consistency of the approximate prescription for the right-
handed quark mixing matrix W (4.14) and leads to several constraints on the magnitude
of the €, 4 parameters to keep the perturbative approach under control. In particular,
the effects coming from the large hierarchy in the up-quark sector can be so large that
it is better to impose £, < 107¢ and make €4 the dominant sources of the desired
effects.

It is interesting that even having <, = 0 identically, outputs of the numerical analysis
of egs. (4.11)—(4.14) are practically unaffected . This originates from the “democratic
structure” of the =, parameters in eq. (4.11) and eq. (4.14). The effects of £, ~ 107*
in these formule can be easily mimiced by a proper choice of the 4 parameter in (4.14)
and by an interplay among 4 and €; in eq. (4.11). Moreover, the neutrino mass relation
(4.12) is ® gy-independent. Thus, in the numerical analysis we take e, = 0 . Moreover,
let us simplify the situation putting also g, = 0. Though this leads to a slight loss of
generality, it is not a problem here as long as we do not intent to perform a full-featured
numerical fit but give just few examples of the possible effects of adding a 1207 to the
minimal SUSY SO(10) model.

Effects of a quasidecoupled 120y on the neutrino spectrum

Let us now inspect in more detail the formula for the neutrino mass matrix (4.12).
From the approximate expressions (see Appendix C.1)

VETVE ~ 1+ 26,2,

and
T
VEVE = V(1 +26,20)

together with eq. (4.15), one obtains

VE MVE = ML+ AM, (4.16)

Sup to the VdRTMLVdL part discussed before
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where M/ is the “minimal model” form of the neutrino mass formula (3.15) and

. i ; = - my
i.&[\_[l// == {51,“/3}\»“.\[ <QZ:ID“ - 3.4) ‘/C.']&'j\[ +2q (T’ — Fk) <2Z&Dd - 5/(;):‘
&
(4.17)
Using eq. (4.15) and taking into account the hierarchy among quark masses, one

obtains, up to order ¢, corrections (z = u,d),

(22;/1: - Y_;) ~ (Y))i;Sign(j — i) = (Y25 - (4.18)
ij

Neglecting for simplicity O(A) terms one can express the net effects on in the neutrino

sector by means of a symmetric matrix Vg Yo Verm ~ Y] = Y5 which finally leads

to
AN, ~ %)— [Eu +eq <r - %k)} Yi%o - (4.19)

-

The form of AM/ allows for a direct and simple assessment of the effects of the Y{y4-

matrix entries on the minimal model neutrino mass spectrum and lepton mixings .
In Appendix D formula eq. (4.19) is used to give several semianalytic hints for better

understanding of the subsequent numerical analysis.

4.4.3 Effective sum-rules - complex case

The discussion in the CP violating setup with all relevant phase parameters taken
into account is slightly more complicated. As in the minimal model case, one can
first rescale eq. (4.9) by a global phase such that r becomes real (r = —|r|er) and
define k¥’ = ke™*r and diagonalize all the quark mass matrices by means of biunitary
transformations

M, = VED, VLT (4.20)

The general sum-rules (4.9) are then recast as follows:

k'VdR*Mlvf* = VdR*VfDung w — |P1Dg + Yigo(K'e) — e 7y, + |rleq) (4.21)

KVIMVE o RVELVE ~ Yioke — K6 | 22| (D - Yixea)

T

where
K = ke " Y]y = VF TY120VdL*

and
T *
VEVE =V = PiVexmPa

107t is interesting that eq. (4.19) does not depend on €, and the relevant corrections therefore originate
entirely from the quark sector parameters.
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Since the antisymmetric components in eq. (4.8) are small, the right-handed quark

.. . - ST * . . . .
mixing matrix W = Y"’UR VdR can be again estimated perturbatively, see Appendix

C.2. In the complex case. the relevant equation reads (v = u.d):

v — 10 ‘ ~ |71 %170 -, |1/0 /o
W= Viga +2 (12l 20 Verear + leal Vera Z47)
The antihermitean (M7 = —M*) matrices Z., obey
a ~ EY ich. 07
Z;Du + D’leZ:L* = e‘@“ VS%AJY{QOVC}{AI = Au
ZhDa+ DaZ7 = %Yy = Ay (4.22)

where €, g = ei®ud|e, 4. Egs. (4.22) are then solved by (c.f. Appendix C.2)
Re(Az)ij ——Iln(AIﬁj
(D2)ii + (Dz)jj (Dz)ii — (D)5

It is easy to see that putting all relevant phases to 0 or 7 the formulae of section 4.4.1

Re(Z;)ij = Iln(Z;)ij = (4.23)

are reproduced.

4.4.4 Screening effects of CKM CP violating phase in the electron
mass formula

Using the hierarchichy of the right-hand side of eq. (4.21), one can again'! expand the

magnitude of the normalized electron mass in powers of A:
|k ele™® = Tapa + AT120 (4.24)

The symbol Ty stands for the minimal model contribution (the right-hand side of
eq. (3.24)). The correction coming from the additional terms in eq. (4.21) can be

written as

rl .
Moo = 6 2 (Vo) 20 + 0019). (4.25)

8

where Fy = 1=/ A% and F., = g4/ \* are O(1) form factors [44]. Notice that the O(\%)
term of ATjgp is in general larger than the A2 term on the RHS of eq. (3.24) and thus
the partial cancellation of the leading O(\*) in eq. (4.24) can be easily achieved. As
a consequence, one may expect the CKM phase not to be biased toward unphysical

values, as it happens in the minimal setup.

Inspecting in detail of the O()\®) term in ATig and the leading O(\?) term in
(3.24), a possible way to make these two terms interfere destructively is by taking

e f formula (3.24) in section 3.6.1
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purely imaginary entries of the Yukawa matrix Y{5,. while assuming no spontaneous
CP violation. This particular form of the Yukawa coupling is considered in ref. [74] in

a model equipped by an additional global flavor symmetry.

4.4.5 GUT scale input parameters

Since the additional 120-dimensional Higgs representation does not enter the symmetry
breaking pattern (up to the electroweak VEVs induced on the bidoublet components)
there is no need for an additional fine-tunning that could potentially bring some new
Higgs states below the GUT-scale [69]. Therefore, the Yukawa running in the extended
model is identical to the minimal case over the whole “GUT desert” and the effective
mass parameters entering the numerical analysis can be inherited from that case, see
section 3.4.1.

4.5 Numerical analysis - CP conserving Yukawa sector

As in the minimal setting, for simplicity reasons the numerical analysis is performed
for real parameters only at the first stage. As was already announced, even a per mille
perturbation of the minimal framework sum-rules (3.2) can be capable to change the
lower bound on |U.3| and also the solar mixing can be reduced considerably.

Together with the GUT-scale quark mass ranges and mixings given in section 3.4.1
we need to input the additional parameters!? - Y50, €u, €4 and g;. With this infor-
mation in hand an extensive scan within the allowed quark mass and mixing ranges
is performed. For each point within the scanned region, W is given by eq. (4.14).
Notice that as in the minimal model case for each r there remains a freedom to shift
my (and/or my) together with mg, ms,w3?° (my, me,vi?%) within the allowed ranges,
while keeping Du,d and &, 4 constant. For different values of my, one set of parameters
fitting eq. (4.11) is mapped into another fitting set with different solutions of the neu-
trino mass matrices in eq. (4.12). This procedure generates as a numerical artifact the
'chains’ of solutions that are visible at Figures 4.2.

For illustration purposes let us present the results for the following form of the

antisymmetric matrix Y/p:

lelzo = Qa . 0 -1 . (426)

2Fixing overall scales of £5Y{50, only 5 parameters remain independent.
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As shown in Appendix D. thanks to the reduced values of Am% / Am?4 that are obtained.
the texture in eq. (4.26) allows for a substantial suppression of the solar mixing angle
with respect to the corresponding minimal model solutions as well as for reduced values

12
of |Ues|. The parameters 1)1111? are taken as

10 Mc o

Vg ™~ M’J;;Uu;d ~ 107! (sin 3, cos 3) GeV.

Since (Z! )12 = (Y{sg)12mep/me s (see eq. (4.15)), the leading order expansion (4.14)
for W is a good approximation for a < 0.1. The typical sizes of the eudell’;O terms in
eqs. (4.11) and (4.19) evaluated at the GUT scale and for tan 8 = 10 are then given by

10~ 1GeV iy
Eu(yll’z%)z] =~ q— = 0(10 4) N
my
] 1072GeV ‘
calVip)y ~ a————~0(107) . (4.27)
b

To compare in an efficient way the deviations obtained in the extended SO(10) scenario
with respect to the minimal model results!®, let us present the relevant density plots
for tan 8 = 10 and 1-o ranges of the quark masses, while taking the central values of
the quark mixing angles. Considering the 90% C.L. range 0.019 < Amé/Am% < 0.069
(corresponding to the 2003 neutrino oscillation data [21, 23]) the allowed area for the
U3 parameter as a function of sin? 2653 > 0.8 is shown at the third plot of Fig. 4.2. The
minimal model lower bound |Ues| 2 0.16 is relaxed by the 120y corrections to 0.11 <
|Ues] < 0.14 (in this setting). Even within such constrained setup the atmospheric
mixing is allowed to be well within the 90% C.L. experimental region and even close to

maximal.

The first plot of Fig. 4.2 displays the change of the predicted values of sin? 2619 as a
function of sin? 2093. In the extended setup one obtains sin® 2615 > 0.71, thus covering
the whole 90% C.L allowed range, while in the minimal model sin® 26,5 > 0.88. For
Am%D / Am?4 < 0.05 one obtains sin? 2619 > 0.92 and 0.77 for the minimal and extended
models respectively. The presence of the 120y-corrections allows, by reducing the values
of Am% /Ami,l‘1 for lower values of the solar and larger values of the atmospheric

mixing angles.

3¢ f. section 3.5 and Figures 3.4 and 3.6
¢ f. Appendix D
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4.6 Numerical analysis - CP violating Yukawa sector

In case of complex form of the effective Yukawa sum-rules (4.21), the results ohtained

in section 4.4.4 motivate the following choice of the relevant input parameters:

0 1 -1

and
]Edl = 10_37 lgu‘ = 10‘4, ¢u,d =0 5

while as before we put ¢, = 0 for simplicity reasons'®. In Fig. 4.1 the relative density

of the charged lepton mass solutions is displayed as a function of the CKM phase. As

Figure 4.1: The relative densities of the charged lepton mass solutions are shown as
a function of the CKM phase ¢ in the model with a quasidecoupled antisymmetric
Yukawa coupling in the game for the setup described in the text and 90% C.L. input
data from Table 3.2.

expected on analytical grounds in section 4.4.4, the tension driving the CKM phase to
the second or third quadrant is almost completely screened by the small 120 induced
terms, making the physical dox s a natural outcome of the numerical scan. Corre-
spondingly, it turns out that the presently allowed ranges for the solar and atmospheric
mixing can be fully covered by tuning the additional contributions. For an illustration
see Fig. 4.3.

It is however worth emphasizing that in spite of the additional freedom in the
parameter space a non-vanishing lower bound for |U.s| persists, as in the minimal
scheme, c.f. section 3.7. This is shown at Fig. 4.3, obtained for 90% C.L. input data

'5The magnitudes of |e,] and [e4| ensure the relevance of the perturbative approach.
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in the setup discussed ahbove. As expected. the effect on the solar mixing angle is
dramatic and the minimal model correlations are strongly relaxed leading to almost

uniform “distribution” of the solutions in plots 4.3.

To conclude, -we have seen that the effects of subleading corrections to the min-
imal SUSY SO(10) effective Yukawa sum-rules (3.2) can be substantial even if their
overall magnitude does not exceed a per-mille level of the leading contributions. As
we demonstrated on the particular case of a small antisymmetric correction descending
from a quasidecoupled 120y added to the minimal SUSY SO(10) Higgs sector, rela-
tively large effects on the 613 and |U.s| lepton mixing parameters can be generated.
Remarkably enough, the lower bound on |U.s| persists and falls into the range of the

future experimental surveys.
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Extended versus minimal SUSY SO(10) for CP conserving Yukawa sector

Figure 4.2:  Sample of density plots for sin? 2612, |Ues| and |Am2 /Am?]| as functions
of sin® 2653 in the minimal renormalizable SUSY SO(10) (in black) and in the minimal
extension with a quasidecoupled 120y contribution (in gray), in both cases for CP con-
serving Yukawa sector and tan 3 = 10. The solid contours enclose the experimentally
allowed regions at the 90% C.L. as it was in 2003.
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Extended SUSY SO(10) model, CP violating Yukawa sector

Figure 4.3: A sample of typical density plots for sin®260;2. Am2/Am? and |U.s| as
g P Ag! D A

functions of sin? 2653 in the renormalizable SUSY SO(10) model with complex Yukawa

couplings and an additional subleading 120y Yukawa term. The solid contours corre-

spond to the current regions 90% C.L. for the current neutrino oscillation data given

in [24].
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Chapter 5

SO(10) models with 165 @ 16y

So far we were working within a class of SUSY SO(10) unifications in which the GUT-
scale gauge symmetry was broken down to the SU(3). @ SU(2)r @ U(1)y of SM by a
system of Higgs multiplets containing a pair of 126-dimensional components of the 5-
index antisymmetric tensor of SO(10). However, looking at Table 1.1, this is obviously
not the only way to break the intermediate left-right symmetry'. Clearly, the desired
breaking can be achieved by the VEVs of a spinorial 16 616y Higgs multiplet. More-
over, it seems very difficult to get 126y ©126y from the string theory compactifications
[111]. Last, but not least, large dimensionality of the Higgs representations faced in
previous chapters rises the issue of an enormous number of the elementary Higgs states
populating the GUT-scale neighborhoods. These are just few reasons to spend some
time on SUSY SO(10) GUTs in which the high rank spinors are traded for simpler
representations, in particular on models with 16y @ 16 instead of 126y ®1265 in the
Higgs sector.

As we shall see, there are many qualitative differences among these two approaches.
First of all, using 165 @ 16y instead of 126y @ 126y, one looses one of the important
ingredients in the effective Yukawa sum-rules at the renormalizable level, because there
is obviously no SO(10) singlet within the product of 16 16 p with neither 16y nor 16 4.
To correct for this, higher dimensional operators are usually invoked.

Another issue arises once the 16 in the Higgs sector couples to the matter spinors
165 by means of additional matter fermions residing in the SO(10) vector or singlet
irreps (as it is often the case if SO(10) is considered as a subgroup of Eg). As we
shall see, in such cases the “standard” seesaw mechanism for the light neutrino masses

changes considerably.

! As before, to avoid the problems with proton decay we do not consider the breaking chains con-
taining SU(5).
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In what follows let us inspect in brief some of these questions and comment on salient
points that can make this type of the SO(10) GUT schemes particularly interesting
not only from the theoretical point of view but also for its possible phenomenological

consequences.

5.1 Net effects of 165 @ 165

Let us start with general remarks on the possible effects of the spinorial multiplets in the
Higgs sector of an .SO(10) model. First, recall the SU(3).@SU(2),®@SU(2)r®@U(1)5_1,
decompositions of 16y and 16:

165 = (3,2,1,+1/3)®(1,2,1,-1) & (3,1,2,-1/3) & (1, 1,2, +1)
g = (3,21,-1/3)@ (1,2, 1,+1) & (3,1,2,+1/3) & (1, 1,2, —1)

Clearly, without 126y there are no SU(2)1, ® SU(2) g triplets that could give rise to the
Majorana neutrino masses at the renormalizable level. As a consequence, the smallness
of the light neutrino masses usually follows from an appropriate set of effective operators
or arises in more intricate pattern, like for instances the cascade seesaw mechanism in
models with matter singlets, see section 5.3. Recently, the idea of split-supersymmetry
revealed an option to make use of the so-called Witten’s mechanism [42, 43] in the
limiting case msysy — Mg to construct an “effective” 126y radiatively; for a brief

overview see section 5.2.1.

5.1.1 d =4 proton decay

Unless additional symmetries are imposed, this class of GUTs suffers from extremely
rapid proton decay, see e.g. [112] and references therein. To understand this, notice
that at the level of effective operators there is nothing that forbids the following SO(10)
gauge invariant term in the superpotential:
PCLEN

%) T/[—16};163F16§16H + ... (5.1)
Clearly, once B — L symmetry is broken by the VEVs of 165 @16y, a pair of dangerous
effective d = 4 operators is induced

e VE) e e e (NE)
WEQLLLDL M +ULDLDL M + ... (52)

that, put together, gives a proton lifetime of roughly 10~5 yr, roughly 38 orders of
magnitude shorter than the experimental limits.
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Figure 5.1: The basic structure of the dangerous d = 4 operators driving the rapid
=] [}

proton decay in SUSY SO(10) models with spinorial representations in the Higgs sector.
The sparticle propagator suppression is clearly insufficient to account for the measured

proton decay width of roughly I', ~ (10%3yr)~1.

5.1.2 R-parity

Another important issue of the models with a spinorial Higgs representation used to
break the left-right symmetry is the R-parity breakdown that occurs once the SU(3).®
SU(2)p @ U(1)y neutral components of 16y & 16y receive B — L breaking VEVs.
Unlike the case of 1265 @ 126y, where the B — L charges of the relevant VEVs were
even (£2), driving the R-symmetry to be broken by 2 units while leaving the R-parity
(—1)3(B=L)+25 intact, the components of 16y @ 16y receiving the B — L VEVs are
B — L odd and R-parity is in general violated raising the issues of the LSP stability etc.
However, this problem can be avoided for the price of imposing additional symmetries

forbidding explicitly the dangerous terms in the superpotential.

5.1.3 Quark and lepton masses and mixing

Another qualitative difference with respect to the models with the 126z @ 126 pair in
the Higgs sector originates from the fact that the leading contributions to the effective
quark and lepton masses (i.e. those generated by renormalizable terms) come from the
representations that are blind to the choice of the GUT-scale symmetry breaking pat-
tern?, usually 10y or 120y, see e.g. [43]. Therefore, the Majorana masses of neutrinos
do not come directly from the appropriate Yukawa couplings  and in order to obtain
such terms, alternative scenarios must be proposed. For illustration purposes, let us

discuss two basic mechanisms that attracted attention quite recently.

2unless there is a mixing with other doublets coming from “large” representations like for instance
210%. In the “conservative” setups one usually attempts to avoid such large Higgs representations; the
“standard” choice of the GUT-breaking multiplets is 45y and/or 54x.

Sunlike in scenarios with 126y where Y126, playing a key role in the quark and lepton Yukawa
sum-rules, governed also the Majorana masses, c.f. eq. (3.2)
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5.2  Witten’s mechanism in SO(10) GUTs

If the loop-induced effective operators are not killed a-priori like in the standard low-
energy SUSY scenarios®. the desired effective Majorana entries in SO(10) models with-
out 126 can be generated at two-loop level by means of a simple radiative mechanism
found by Witten [42].

The idea is to contract a pair of spinors in the Higgs sector in such a way to provide
for an effective 126y arising from their product and transmit its VEV to the matter
bilinear using a particular two-loop diagram. More details can be found in [42] or in
more recent studies [43, 113] and references therein. The nice feature of this approach
is the calculability of the loop contributions®. Apparently, the “standard” requirement
of low-energy supersymmetry discards this mechanism due to the cancellation of the
fermionic and bhosonic contributions in the loops. However, with the advent of split-
supersymmetry [114, 115] this scheme was revived with nontrivial consequences for the

effective quark and lepton masses and mixing patterns.

5.2.1 Witten’s mechanism in split-SUSY SO(10)

More technically, the problem of implementing the Wittens mechanism in the “stan-
dard” SO(10) scenarios stems from the fact that the kinematic functions parametrizing
the contributions of the relevant two-loop diagrams must vanish in the mg/Mg — 0
regime, where mg is the SUSY breaking scale, typically of the TeV order. Recall that
the low-energy SUSY is needed namely to achieve the proper gauge-coupling unification
and to protect the hierarchies. However, relaxing the latter requirement, the split-SUSY
framework provide a natural option for the Witten mechanism in potentially realistic
GUT models.

The main point [114, 115] consists in splitting the sparticle spectrum in such a way
to keep at the TeV scale only the fermionic superpartners of the MSSM gauge and Higgs
bosons (gauginos and higgsinos) while pushing the scalar ones (squarks and sleptons)
to a higher scale ug, well above the TeV range. Notice that this does not affect the
gauge coupling unification (at one loop) as the squarks and sleptons enter in full SU(5)
multiplets (only the value of ag is slightly reduced) while provides for solutions of many
of the “naturalness” problems of the MSSM, be it the SUSY CP-problem or the issues
of flavour changing neutral currents or electric dipole moments, all tracing back to the

relatively low scale of sfermion masses in the standard approach.

4for instance if there is no SUSY or it is “split” enough, see section 5.2.1
5i.e. they can be expressed in terms of masses and couplings that are already in the model without

a new information that would inevitably enter at the level of effective operators
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Pushing ;g up to the Mg, at which the Witten's mechanism operates, the "no-
renormalization” argument is compromised and only the loop factors make the effective
126 slightly suppressed with respect to the tree-level operators. Indeed, as it was shown
in [43], the typical shape of the radiatively generated Majorana neutrino mass term

reads

; C"IG 2 7 /U.%)% =
M, ~ ( < ) Yoy fs x O() (5.3)

where Y, is the Yukawa coupling of the 10 or 120y (that must be there to break the
2

chiral symmetry), ;TIZ is a typical scale factor originating from the GUT-scale VEVs

of the pair of Higgs spinors®, c.f. [42] and O(1) stands for the loop function that is no

longer SUSY-suppressed. Since at one-loop level the gauge-coupling unification works

Figure 5.2: The topology of the two-loop diagrams that generate the effective Majorana
masses for neutrino and additional contributions to the Dirac masses of the charged
matter fermions in the SUSY version of the so-called Witten’s mechanism in SO(10)
(42, 69].
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the same way like in the minimal SUSY SO(10) model’, the vg scale should be quite
close to Mg, c.f. section 2.2.1 and [69].

Notice that the suppression of such effective Majorana masses with respect to those
generated at tree-level in “standard” SO(10) GUTs® leads to the corresponding en-
hancement of the light neutrino masses coming from the singlet (type-I) seesaw while
the triplet (type-II) contributions are suppressed by the same amount and thus usually
negligible.

Another interesting aspect of such schemes concerns the Dirac masses of the charged
leptons and quarks. Naturally, there must always be at least one Yukawa vertex pro-

viding for the desired chirality flip as a seed of the Witten’s mechanism. On top of

5To be more specific, vr being the scale at which the spinorial Higgses receive the SU(2)r@U(1)p—1-
breaking VEVs.

"up to the shift of the GUT-scale gauge coupling

by effects of the SU(2)r ® SU(2)rtriplets of 126y
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that. the graphs of the tvpe (Fig. 5.2) give rise also to an additional radiatively induced
contribution to the masses of the charged fermions®. It is then natural to ask if such
effects can provide for the departure from the degeneracy of the effective quark and
lepton Yukawa matrices in the simplest models with only a pair of 107 Higgs multiplets

coupled to the matter bhilinear at the renormalizable level.

5.2.2 Problems of the splity-SUSY S0O(10) model with pair of 10y only
- a call for 120y

Clearly, a single Yukawa matrix is not enough for a potentially realistic description
of the quark and lepton mixing phenomena. Indeed, since also the radiative effects
are proportional to this matrix, c.f. eq. (5.3), the radiative mechanism can not bring
anything new but modify the overall scale of the Yukawa couplings only. Thus there
is no way to generate the desired CKM mixing pattern. Therefore, one should add at
least one more 10z or 120y [69] to account for a potentially realistic situation in the

quark sector.

The rest of this section is devoted to a semianalytic argument that even having a
pair of 10-dimensional Higgs multiplets one can not disentangle the unwanted strong
correlation among the down-type quarks and charged leptons in such a way to accom-

modate properly the different mass hierarchies in these two sectors.

With a pair of 10y there are two Pati-Salam bidoublets that can receive (at the
SU(3).®SU(2)®U(1)y level) electroweak VEVs. This leads to the following tree-level

relations for the quark and charged lepton effective masses matrices

Yov, = Yl +Yevy =M,
Yovg = Ylvf + szg = My (5.4)
Yivg = Yiud+Yd =M,
Clearly, the spectra of charged leptons and down-quarks are degenerate. The two-loop
Witten’s correction to these relations can be written in the form!® [43, 113]:

«

2 v M
_ 1 2 VIR
AMx_(—W) (chl—l-chz)—MG x O(1) (5.5)

They are proportional to a linear combination!! of the two Yukawa couplings with
coefficients given by the entries of the appropriate light Higgs doublet mixing matrix, c.f.

%with the only obvious difference in the internal structure of the relevant graphs
1°Here v, are the VEVs of the (1,2,41) components of 165 @ 164 entering the two-loop diagrams

at Fig. 5.2.
I Notice that there is only one Yukawa vertex in the graph 5.2.
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)2 Mp

section 2.2.4. Omitting the O(1) loop factor one can define a parameter = = (2 Y

d

as a measure of the relative size of the radiative correction. Normalizing

~u.d ) 2 u.d
'Z“‘( — (/1)11.(,) —l‘ (v,. . >

to my and my respectively, one can write

M, dv dy 17 56)
My d¢ dg Y,
My -
My = Y1d} + Yad,
my
provided

d} = cosa, + ect d¥ = sina, +ec?

A8 = cos ag + ech clg = sinqg + c?

d"1 = cosag + =c} dé = sinag + ¢}

where o, 4 parametrize the projections of vi’f to 7% All d. are in general O(1)-
parameters unless 4 are close to 0 or 7. Inverting relation (5.6) and plugging Y7 and
Y5 one can bring the lepton mass sum-rule into the familiar form studied in great detail

in section 3

]CM[ = Mu -+ T‘]\;fd (5.7)
and obtain relations for the parameters k and r in the form

o A A —e(dyAcy — dfAcy)
= and 7=
myp e(d$Acy — dfAcs) e(ddAcy — d3Acy)

(5.8)

Here A stands for the determinant of the 2x2 matrix in eq. (5.6) and Ac; = ¢! — ci,.

Using the results of section 3'2 one can claim that for a successfull fit of the charged
lepton masses in this scheme |k| < 1 and |r| ~ 1 is needed. This requirement puts a

strong constraint on the value of A, in particular

di dj
df d

det < O(e) (5.9)

*2Strictly speaking, the GUT-scale effective quark and lepton masses used as an input of the analysis
of section 3.4.1 differ from the data relevant in the split-SUSY case. However, the ratios of the quark
and lepton masses that are the only relevant parameters in formula 5.7 are not changed drastically and
one can expect results very similar to those obtained in part 3.7.
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that leads to a, — ag < O(sg). in obvious clash with the difference in hierarchies in
the up- and down-quark sector unless = is as large as 1072 and an intricate conspiracy
among other parameters occurs.

Therefore, it is almost impossible to save the unwanted down-quark and charged-
lepton degeneracy in the split-SUSY SO(10) model with a pair of 10-dimensional Higgs
representatinos by means of the two-loop radiative corrections originating from the
Witten’s mechanism. The model clearly calls for a more complicated structure of the

flavor-active Higgs multiplets like for instance 10y @ 120g.

5.3 Cascade seesaw in models with matter singlets

Another interesting implementation of the seesaw idea can be achieved by extending the
matter sector of a model with 165 @16y by matter singlets. This can be motivated for
example by the possibility of embedding the SO(10) group into an exceptional group Eg
where the matter fermions are hosted in 277'?. Having at hand an additional matter

singlet (denoted from now on S) one can form a new Yukawa term of the form!*
Wy = FY16p1516 + . .. (5.10)

Since the quantum numbers of Sy are the same like those of v§, these states can
mix below the SO(10) scale and such an effect should be taken into account in the
construction of the neutrino mass matrix. Indeed, adding also the mass term for the

singlet and the Yukawa interaction of the matter 16z with the “standard” 10y
Wy = F916%1516y + YV16%16%.105 + MY1515, 4 ... (5.11)

one obtains a 3x3 (in family blocks) neutrino mass matrix [116, 117] (in the {v, v§,
S1.} basis)

0 Yo 0
M,=1 YTy 0 Fup (5.12)
0 FTvg M

arising upon B — L symmetry breaking driven by nonzero VEVs of (1,1,2,—1)5 ®
(1,1,2,+1)16% and a subsequent SU(2); ® U(1)y breakdown by the VEVs of the
bidoublet (1,2,2,0)10

(1,2,+Dw)=v  ((1,1,0)5) = vr (5.13)

¥Note that 27 decays into 16r @ 17 @ 10 at the SO(10) level
For simplicity only one pair of 16z @ 16y is assumed for the time being.
15 As before, unless specified otherwise, the Pati-Salam SU(4) ps ® SU(2), ® SU(2) r notation is used.
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where SU(3), @ SU(2)p @ U (1)y notation is used for clarity. This leads to the following
“effective” seesaw formula for the light neutrino mass matrix:
2
m, = ——Y(FAM'FT)~1yT (5.14)
v
Assuming three generations of the matter singlets (in such a case F' becomes a 3x3

matrix) this gets simplified into*®

my = —v—j(YFT “HMYEFT-HT (5.15)
YR

Phenomenologically, this scheme is more rich than the standard 2x2 seesaw formula[118]
because of the second scale M that can be used to enhance the neutrino masses, often
oversupressed in scenarios with vp_ too close to the GUT scale. Alternatively, one can
try to bring the B — L breaking scale down to an experimentally accessible range if M
is small enough to keep M /v% untouched. For such a case, it has been shown [119, 120]
that lepton flavour and CP can be violated at appreciable levels even in absence of
supersymmetry, provided the vg scale is sufficietly low. Note that the smallness of M
could be natural in t'Hooft’s sense [121], as the symmetry enhances when M goes to
zero. Indeed, in such a case the global lepton-number symmetry is exactly conserved

and all three light neutrinos are strictly massless.

5.4 The inverse seesaw mechanism

This is the key observation made first by Mohapatra and Valle [116]in 1986 (originally
in the SU(3). ® SU(2)r, ® U(1)y context) that gave rise to the so called “inverse”
seesaw mechanis for theories which lack representations required to implement the
canonical seesaw. However, in general case, the problem of understanding the smallness
of neutrino masses is traded for the problem of understanding the smallness of M. As
we shall see in this section, this can be partially avoided if one concerns the embedding
of the inverse seesaw structure into a SUSY SO(10) framework [122].

In the left-right symmetric schemes (like for example SO(10) broken to SU(4)ps ®
SU((2)L®SU(2)gror SU(3).®@SU(2),®SU(2)r®U(1)p-1), the formula 5.12 receives
naturally an additional contribution. Indeed, the left-right symmetry gives rise to an
induced VEV also for the (1,2,1,+1)1z @ (1,2,1,—1)16 components of 16y ® 16517

8Tnvertibility of F' is assumed.
1"The “mirror” components of 16 is used in SUSY context prevent the D-terms arising from these
components to break supersymmetry at the B — L scale.
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that, consequently, generates a nonzero 13 entry in eq. (5.12) through the term!®
FU(1,2.~1)16, (1, 1.0)1, (1.2, +1)55, ) — FILF CT'STvp + hee (5.16)
where vy, = ((1,2,1, +1)75). Therefore, the neutrino mass matrix changes to

0 Yv Fug
M,=| vTv 0 Fup (5.17)
FTy;, FTop M

which leads to an additional term in the seesaw formula [118]):

2
. v
my = ——

Y FTYMYFTHT + 222y 4+ v7T) (5.18)
vE UR
If, in general, there is more than one copy of 16 receiving a B — L breaking VEV, the

13 component ceases to he proportional to the 23 one and one should write instead!®

0 Yo FvL
M,=1 YTv 0 Fop (5.19)
FTy;, FTop M

provided F¥vy, = >k Fijkvlfl, while Flvp = 5", Fikypk and

2

my = — o (Y FT-1 M (Y FT-1)T 4 222 [Y(FF—l)T + (FF“l)YT] (5.20)

Vg VR
In the most general case, one obtains two very different contributions to the light
neutrino masses. The first term in eq. (5.20) is the standard 3x3 contribution propor-
tional to M/ vl%{ discussed in brief in the previous paragraph. However, putting M to
zero (that could be motivated in the same manner like before?®) the neutrinos remain

massive because of the second term in eq. (5.20) that is completely M-independent.

In such a case the neutrino mass scale is governed by the ratio vpv/vg. In SUSY
S0O(10), the magnitude of this quantity can be estimated inspecting a typical superpo-
tential like

W 3 Miglbyl6y + pl6yl6y10y + H. c.

BFor clarity the SU(3). ® SU(2)r ® U(1)y quantum numbers are used in this formula.
9For this to occur also the left-right parity should be broken at this stage.
2035 long as vy, much smaller than the other nonzero entries in (5.19); notice that this is always the

case.
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The mechanism the VEV of xp = (1.2. +1)sas € (1,2. 1. 4+1)45 is generated at the level
of the B — L breakdown?®! can be seen from the structure of the F-terms. For example.

Jal

(1.2.1.41) is proportional to

Fliorany o Mig(1,2.1, F1)16 + p(1, 1,2, F1)16(1,2,2,0)10 + - -

After giving a nonzero VEV to the (1,1, 2, 1) components (to break B— L) and to the
traditional doublet pair in 10y (to break SU(3). ® SU(2)r, ® U(1)y) the requirement

to stay in a supersymmetric vacuum leads to

VRV
,UL = <XL> = ((1727 17 :F]-)16> =~ Pm (521)

Thus, in this scenario, the overall scale of the light neutrino masses is no longer governed
by the B — L scale (because vg cancels) and one obtains

2 - -
my, = - p{Y(FF_l)T-F(FF_l)YT (5.22)
Mg ’

where M must be close to the GUT scale to prevent fast d = 5 proton decay. Thus,
in this scheme, the B — L scale is decoupled from the seesaw formula!

Note that in order to accommodate the neutrino data [123], there could be a need
to enhance the numerator of eq. (5.22) compensating for (roughly) a GUT scale mass in
the denominator. However, this can happen for example if F' # F that could naturally
be the case if the vg VEV is “distributed” into at least two copies of 165 @16 present
at the SO(10) level.

5.5 Inverse seesaw scheme in SUSY GUTs

The option to decouple the B — L scale from the seesaw mechanism is very attractive.
However, in a consistent supersymmetric GUT, the embedding of the inverse seesaw

mechanism rises several issues:

e The v§Sy, entry vg generated by VEVs of Higgs multiplets xg = (1,1,2, —1)15
and X = (1,1, 2, +1)gg breaks the B— L symmetry, now gauged. The correspond-
ing scale (xr) must be compatible with gauge coupling unification. Together
with the requirement of low-energy supersymmetry (to stabilize the hierarchies),
this puts rather strong constraints on placing of the various multiplets into the
“desert” below M.

e To keep the model testable (at least in principle), the “population of the desert”

should follow the minimal survival hypothesis, c.f. [124] and references therein.

*driven by (1,1,2, 1) @ (1,1,2,+1)16
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e The singlet A{.S7.S7 mass should be small.

Let us now discuss these points and show that there indeed exists a supersymmetric
SO(10) model that can address all these questions in a satisfactory way and provides
for an alternative understanding of the smallness of neutrino masses within the grand
unified framework.

First recall that there are several mechanisms that could be used to get rid of the
SpSp-term in Eq. (5.19). For example, one can invoke a embedding of SO(10) into
the L group where the fermionic singlet is a member of a 27-dimensional irreducible

representation with the familiar SO(10)®U (1)x decomposition
27p = 1% ® 16} © 105° (5.23)

If there is no 351" Higgs representation at the FEg-scale, the enormous U(1)-charge of
the 1p1p matter bilinear is hardly saturated. Thus, as long as the corresponding U(1)
is unbroken one gets A/ = 0. Even if one breaks the U(1) symmetry at some lower
scale. it could be rather complicated to generate an effective SS-entry, which brings
further suppression even at the level of effective operators. Following the inverse seesaw
concept [116], from now the 33 term in (5.19) is neglected.

Prior approaching the details of the gauge-coupling unification pattern, let us give

few more comments on the structure of the seesaw formula in this case.

5.5.1 The seesaw structure

Putting the 33 entry of eq. (5.19) to zero, the generalized “inverse seesaw” neutrino
mass matrix reads
0 Yv  Fup
M,=| YTv 0 Fop (5.24)
FTy, FTyp 0

The diagramatic structure of the seesaw formula (5.22) arising from this structure is
depicted at Fig. 5.3. In contrast to both the canonical seesaw in Eq. (3) and the inverse
seesaw, Eq. (5.15), this new seesaw is linear in the Dirac Yukawa structure Y. Notice
also that the current mechanism, apart from being unified, is also quite distinct from

other left-right symmetric attempts like for instance [125, 126].

Concerning the stability of the texture zeros at v{v§ and S5, positions in formula
(5.24), it can be protected as long as the U(1)g and the U(1l)x (of Es D SO(10)
®U(1)x in Eg inspired setups) are exact. Indeed, U(1)x must be broken at the vg
scale (165 @ 16y are U(1)x-charged). However, the charge of xg’s is such that the

relevant operators arise only at higher orders and may be neglected.
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Figure 5.3: The Feynman graph giving rise to the considered SUSY SO(10) inverse
seesaw mechanism (up to transposition). The neutrino masses do not impose any
constraints on the magnitude of the B — L breaking scale that (if compatible with

gauge running) can be quite low.

5.6 Minimally finetuned SUSY SO(10) inverse seesaw model

Before examining in detail the options to achieve the gauge coupling unification with
low B — L scale, the structure of the model should be specified. As we shall see in what
follows, the constraints coming from this requirement are rather strict and point to a
specific class of models with the SO(10) D-parity broken at the GUT scale.

5.6.1 The symmetry breaking pattern

As it was pointed out by Deshpande et al. [127], the scale at which the SU(2)r ®
U(1)p—r symmetry is broken to U(1l)y can be arbitrarily low if the “desert” from
Mz to Mg is populated properly . In their case this was achieved by putting three
copies of (1,1,2,+1) & (1,1,2,—1) coming from 16 ® 16y right at the vg scale. The
(one-loop) MSSM running of a{,l can be “effectively” extended above the wg scale
(a{,1 = %al_{l + %agl_ 1) by a conspiracy between the runing of agl_L and a}_f while
a3 and aj, are untouched. However, such a scheme is rather ad hoc as one needs to
push three identical copies of a Higgs multiplet below the GUT scale, at odds with the
“minimal fine-tunning” [128, 124].

Instead, let us show that there is a more compelling SUSY SO(10) scheme in which
low B — L can be achieved without such a redundancy. Recalling the well known
fact that within the class of minimally finetuned SUSY GUTs it is very hard (if not
impossible) to push the SU(2) g breaking scale well below Mg [69], one should look for
a scenario where the SU(2) g breaking scale Vg is separated from the U(1)p_, @ U(1)r
breaking taking place at the vy scale , Vg > vg, that implies the SSB chain

SU@)R® U)p-1 — U(Dr® U(L)p_1 — U(L)y. (5.25)

To stay “minimally fine-tuned”, at each step one should assume just those multiplets
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that are needed to break the relevant symmetry. The SO(10) breaking should be
achieved in such a way to break the D-parity. otherwise the g; and gr couplings co-
incide up to SU(2)r breaking scale and also the desert population must be left-right
symmetric. However. such a minimal particle content below Vg can not account for
proper gauge-coupling unification, see section 5.6.3. Subsequently, a light admixture of
(1,1, 3,0) multiplets®® residing for example in 45 or 210 of SO(10) drives the breaking

(5.25)%3. The final step,
SU3).@SU2)@UL)r@U(1)p—1 = SUB). @ SU2)L@U(1)y (5.26)

is achieved by giving VEVs to a light admixture of (1,1, ——21-, +D)E e (1,1, +%, —1)16
scalars (in SU(3). ® SU(2); ® U(1)gr ® U(1)p_1 notation) of 165 @ 16524, With this
information at hand one can fully specify the ingredients of a minimal SUSY SO(10)

setup that can accommodate the mechanism described above.

5.6.2 Structure of the Higgs sector

As usual we use three copies of 16} to accomodate the SM fermions and for each of
them we add a singlet fermion 1% to play the role of Sz. A realistic matter spectrum
requires more than one copy of 10y Higgs multiplet, or for instance 10y @ 120y. As
it was argued before, at least two copies of 16y @ 16y should be used to implement
the inverse seesaw mechanism with potentially realistic neutrino spectrum. To prevent
fast proton decay via dimension 4 operators (c.f. section 5.1.1) let us assign the matter
fermions in 167 and 1p with a discrete matter parity that forbids the mixing of 16
and 16?°. Finally, let us add 45y and 210y to trigger the proper symmetry breaking
pattern with no D-parity below the GUT scale [129, 130, 131]. The SO(10) invariant
Yukawa superpotential then reads

Wy = Yai; 165165,10%4 + Fi516513,16 (5.27)
The Higgs superpotential is

Wy = MEH16%T65 + M2b10%10% + Mysd5 a5y + Ma102105210g + (5.28)

223ince the Pati-Salam symmetry is broken at the large scale from now on we use the quantum
numbers of the SU(3). ® SU(2)L ® SU(2)r @ U(1)p-r and SU(3). @ SU2) ® U1)r ® U(1)B-1L
subgroups.

23Recall that a VEV of an adjoint representation does not reduce the rank of a gauge group.

241f SU(2)r is broken to U(1)r, the minimal survival hypotesis forbids the multiplets with oposite
charge assignment, i.e (1, 1,+%,+1) ® (1,1, —%—, —1) of 16y @ 16y that remain at the SU(2)r scale .

250ther discrete symmetries might be also needed to reduce the number of parameters and help with
the doublet-triplet splitting problem.
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+ M5} + k453210 + 4552103 + €210%

The symmetry breaking pattern briefly described in section 5.6.1 is then achieved as
follows. The components of 210y and 45y that receive GUT-scale VEVs and trigger
the breaking of SO(10) to SU(3). ® SU(2)r & SU(2)gr @ U(1)p—_1 are (in Pati-Salam
language) 210y > (15,1,1) @ (1,1,1) and 455 > (15,1,1). As shown in [129, 130,
131], this pattern can accommodate just the desired D-parity breaking allowing for an
intermediate left-right symmetric group with an asymmetric particle content, leading
to distinct g7, and gr below Mg. The subsequent SU(2)r — U(1)g breaking at Vg
is induced by the VEV of a light superposition of (1,1,3,0)210 and (1,1,3,0)45 that
can mix below the GUT scale. Next, the U(1)g ® U(1)p_y is broken down at vg by
the VEVs of the light component of type (1,1, +%—, -1) & (1,1, —%, +1) coming from
(1,1,2,-1)®(1,1,2,1) of 165 @ 16y. The final SM breaking step is as usual provided
by the VEVs of the (1,2,2,0) bidoublet components. Note that unlike the example
given in [127]. there is no artificial redundancy in the number of light states living at
intermediate scales.

5.6.3 One-loop gauge coupling unification

Let us finally show that the setup specified above obeys the condition of gauge coupling
unification. Using the normalization convention 27t(u) = In(u/Mz) we have (for My <
Mp)
o H(Ma) = o] (M) + bi(tg — ta)

in the ranges [Mz, Ms], [Ms,vr] and [Vr, MguT]. Mg is the SUSY breaking scale taken
at ~ 1 TeV. Between vg and Vg the two U(1) factors mix and the running of a3* and
oeg_l_ 5, Tequires separate treatment [132]. The Cartan operators obey the traditional
formula (with ”physically” normalized B — L and Yw) Y = 275 + (B — L). Recall
that the SO(10) normalization of bp_y, is bz_; = %bB_L.

Once the D-parity is broken below Mg we have g7, # gr. The Higgs sector in the
stage down to Vg is as follows:

1x(1,1,3,0), 1x(1,1,2,+1)&(1,1,2,—1) and 1 x (1,2,2,0).

This gives rise to the b-coefficients

by -3
b 1
O (5.20)
br 4
bp_L 20
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At the subsequent stage from Vi to vp we keep only the weak scale bidoublet
(1,2.2,0) (that below Vg splits into a pair of L-doublets with quantum numbers
(1.2,+3.0) & (1,2.—3,0) under the SU(3), @ SU(2), @ U(1)r @ U(1)p-r group)
and a part of (1,1.2.+1) & (1,1,2, —1) that is needed to break U(1)r ® U(1)p-1 to
U(1)y - a pair of yp and ¥p fields (1,1,+5,—1) @ (1, 1,—3%,+1). Since these com-
ponents are neutral with respect to all SM charges, the position of the vy scale does
not affect the running of the “effective afl” (given by the appropriate matching condi-
tion) and the only effects arise from the absence of the righthanded ¥W-bosons at this
stage. Using the SU(2)g normalization of the U(1)g charge the matching condition at
Vg becomes trivial. The relevant b-coefficients of SU(3). ® SU(2)r, and the matrix of

anomalous dimensions of the mixed U(1)gp ® U(1)p—r, couplings are by = —3, by, = 1
and
15
, 1 _y
Y11 M2 _ 5 _ (5.30)
Y21 Y22 -1 18

Below the vp scale the model is the ordinary MSSM with the b-coefficients

bs -3
b | =] -1 (5.31)
by 2

and finally, the b-coefficients for the SM stage below the Mg scale are

bs ~7
by | =] -3 (5.32)
by 2

The vp-scale matching condition reads
_ 3 _ 2
C\fyl('UR) = gaRl (’UR) + gOA(Bl__L), (’UR).
Recalling that 5
a7 (Mz) = : [1 - sin?0y (Mz)] o' (M) (5.33)

and
oy H(Mz) = sin®Ow (Mz)a™ " (M)

the initial condition (for central values of the input parameters) is a7 (Mz) = 59.38,
oy (Mz) = 29.93 and o3 (Mz) = 8.47 [93].

Inspecting the results of the numerical analysis (Figs.5.4 and 5.5) one confirms that
the vp scale does not affect the predicted value of ai’l(M 7) and remains essentially

113



free at one-loop level. Thus. the unification pattern is fixed entirely by the interplay
of Mg and Vi. The lower bound Vi > 10M GeV is consistent with the “standard’

minimally fine-tuned SUSY SO(10) behaviour, see for instance [69].
70
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Figure 5.4: The one-loop gauge coupling unification in the model described in the text.
The D-parity is broken at M and the intermediate scales Vz and vp correspond to
the SU(2)r — U(1)r and U(1)r ® U(1)p—1, — U(1)y breaking respectively.

5.6.4 Other physical implications

Accommodating the option to push the B — L very close to the weak scale this scheme
incorporates several sources of “new physics”, in principle within the reach of the
future experimental facilities, see e.g. [133] and references therein. For instance, the
additional Z’ boson associated with the U(1) 51, breaking can be light enough to affect
the physics at the TeV scale and the lepton flavor violating processes like 1 — ey can
be enhanced substantially due to the change in running of the off-diagonal entries of
the slepton SUSY-breaking terms [134]. Also the leptogenesis scenario gets changed if
the right-handed neutrinos are light, see e.g. [135] and references therein. Although
partially discussed in the literature [136, 137] (and references therein) these issues call
for further developments.
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Figure 5.5: Same as in Fig. 5.4 for the case of higher vg. As expected, the prediction
for a7 '(Mz) does not depend on the position of the v scale.
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Conclusions and outlook

Looking out from the first true window to the physics beyond the Standard Model
opened by the recent neutrino oscillation experiments, the idea of grand unification is
recovered as a viable framework for studies of the neutrino masses and their mixing.
Although the almost bimaximal mixing pattern in the leptonic sector differs drastically
from what one would naively expect on the basis of quark-lepton symmetries, it emerges

naturally in GUT models based on the SO(10) gauge group.

The major part of this work was devoted to the analysis of quark and lepton masses
and mixing in the particular case of the minimal SUSY SO(10) grand unified theory
in the case the SU(2)-triplet contribution dominates the seesaw formula. At variance
with existing expectations, it was shown that this framework can accommodate the
physical CKM-CP phase and simultaneously account for a 90% C.L. fit of the quark
and lepton mass and mixing parameters albeit showing a tension between light quark
masses and the latest neutrino data. Moreover, it was argued that in such cases the
Dirac CP-phase in the neutrino sector is considerably smaller than the CKM CP-phase
with an upper bound of about 20° and it is not destabilized by radiative corrections.
The lower bound on the 1-3 entry of the PMNS lepton mixing matrix |Ues| > 0.16
was reexamined in detail and shown to relax to roughly |Ues| > 0.10, that makes
it still compatible with the recent data neutrino parameter extractions albeit within
the experimental reach in near future. Several semianalytic relations were derived to
provide for a better understanding of the results of the extensive numerical analysis.
The central role of the strange quark mass was pointed out in view of the potential clash
among the recently improved bounds on the solar mixing angle and the mass-squared

difference ratio in the neutrino sector.

It was argued that some of the neutrino sector parameters, in particular |Ues| and
the solar mixing angle, are also very sensitive to the subleading corrections. The per-
turbative effects of antisymmetric Yukawa terms, introduced by a quasidecoupled 120-
dimensional Higgs representation proposed to address the tension of the minimal frame-

work, were examined in detail. It was demostrated that even a per-mile suppression of
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such operators can not screen their effects, that in some cases can be as large as tens
of percent of the unperturbed values. It was shown that also the CKM CP-phase issue
finds a natural resolution in such an extended framework. On the other hand, the ;3
bound. though relaxed. remains incompatible with zero. This keeps the model testable
in ongoing an future experimental surveys.

In the second part of the manuscript a class of SO(10) models utilizing a spinorial
Higgs representation was considered. It was argued that to implement the Witten’s
‘radiative seesaw” mechanism in the class of minimal split-SUSY SO(10) models while
preserving a potentially realistic Yukawa structure, a 120-dimensional Higgs represen-
tation coupled to matter fermions should be considered. Finally, a SUSY SO(10)
realization of the so called “inverse” seesaw mechanism was studied in detail. In par-
ticular, it was shown that there exists a minimally finetuned setup in which the B — L

scale can be very low while keeping the gauge-coupling unification intact.

In spite of the longevity of GUTSs, still much more has to be done. Concerning
the minimal SUSY SO(10) fits of the quark and lepton data. there is a variety of
reasonably consistent numerical results obtained by different groups using different
numerical methods. Therefore, a global x?-fit (though rather demanding) would be
highly welcome, both in the triplet and singlet dominated seesaw case as well as in
general, if tractable. Meanwhile, it would be nice to understand conditions under
which the triplet contribution dominates the seesaw formula. Though there are some
preliminary studies [138], a decisive analysis is still missing. Last, but not least, since in
some classes of models there remain only small regions in the parameter space that are
still consistent with the recent neutrino mixing data, the proton lifetime can be strongly
constrained in such schemes. It is also of interest to study in detail the lepton-flavor
violation processes within the class of SUSY SO(10) models with low B — L scale as it
can lead to enhancements of the off-diagonal entries in the evolution of the mSUGRA
soft-SUSY breaking terms.
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Appendix A

PMNS lepton mixing matrix

A general 3x3 unitary matrix can be written in the so-called “standard notation” as

U= P, VPs
where
€12€13 $12€13 s13e %
V= —cazsio — sazsizcie’  coscio — sazsizsioe”®  spscis | = Upnws (AlD)
$93512 — C23513C12€"0  —S93C12 — C93513512€0  Co3Cis
and
. 91
6151 et
) ¢
P, = o2 and Pr= 67"’22 (AZ)
93 1

are the CKM-like mixing matrix and a pair of phase matrices respectively. Applied
on the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix [20] parametrizing the mis-
alignment of the charged lepton and light neutrino mass bases, the angles in Upjy/ns
become the three mixing parameters measured in the neutrino oscillation experiments.

The phases in P, can be absorbed in the redefinition of the charged lepton fields.
The 6 parameter is the so-called Dirac PMNS phase parametrizing the amount of CP-
violation in neutrino oscillations, in analogy with the CKM CP-phase of the quark
sector. If neutrinos are Majorana particles, the phases ¢; and ¢ can not be rotated
away and become physical quantities. Unfortunatelly, the neutrino oscillation data are
sensitive only to the absolute values of the neutrino masses and can not be used to
determine these parameters. However, ¢; and ¢, can be measured in the double-3
decay experiments [25].

119



The measurements give usually only the information on the matrix elements of U.
The PNMS parameters - the mixing angles and the Dirac CP-phases - can be then
reconstructed as:
|Uas|
|Uss|”

U .
f19 = Ata,n\—lil, fo3 = Atan
|U11]

013 = Asin|Uys| (A.3)

The amount of the CP violation due to the Dirac CP phase § can be determined from

the so-called Jarlskog invariant [103]

1 * * 1 * *
I (U1 Ur2UnUsz)| = 5 Im (U UrsUs1 Uss)| = 5 [Im(UppUzsUseUss)| - (A4)

J = 5

NS

by means of the formula
iSin 6| = 2](0126%3623512513823)_1 (A5>

If one is interested also in the sign of § the relevant expression reads

UiU5 U U +C12613513>

2
C12C€73C23512513523 512523

5= _Arg ( (A.6)

regardless of the choice of 7 £ j. The Majorana phases can be finally obtained from

¢1 = 2Arg e¥U 13Uy, and ¢y = 2Arg €PU 307, (A7)
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Appendix B
SO(10) group theory

This appendix comments in brief on some of the salient features of SO(10) and its
representations that are discussed in the text. A more detailed information can be

found in reviews [61, 30, 139] or on more formal grounds in any group-theory textbook.

B.1 The SO(10) group

SO(10) is a proper orthogonal group of rotations in a 10-dimensional vector space.

Bach element of SO(10) must obey the following conditions
GTG =1, detG=+1 (B.1)
Concerning the generators denoted by X, these relations lead to
sT=-%, Tro=0 (B.2)
[EHY, 5P7] = gYIEHP — VPTHO 4 GHPYLVT — SHIRVP (B.3)

From here it is easy to see that SO(10) is 45-dimensional. As a compact Lie group it

posses finite-dimensional representations studied in the subsequent section.

B.2 The SO(10) spinors

The construction of the spinorial representations of SO(10) goes along the same line
like for the other orthogonal groups. Recall first that for an SO(2n) group with n > 1
there is a pair of inequivalent spinorial representations, each of dimensionality 2”~1: in
case of SO(10) one thus gets 16 @ 16. The explicit construction utilizes five pairs of

ladder operators a; and a;r obeying
{ai, a;r} = 5ij7 {ai, aj} =0 and {aj,a}} =0 (B4)
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It is easy to verify that A;; = aja,j vields [4ij. Aw] = 0044 — 0545, that is nothing
but the Lie algebra of SU(5) [140]. Let us denote (i, j. k. l.m € {1.2.3.4,5}):

!e(l)> = 0)

)y = aflo)

i) = —;—!aTiaT, |0)
Mmy = ;gw“maT fal]0) (B.5)
By = i! 9kimafalal af |0)

IC(T)> = ;! Ezgklmarafakal C%Tnlo>

Clearly, the operators A;; span irreducible representations of SU(5) over these 6 sub-

spaces. Their dimensionalities are given by the corresponding superscript.

Definig I'y; 1 = -i(aj —a;) and I'y; = (af + a;) one obtains a rank-5 Clifford algebra
with positive-definite diagonal
{FN:FU} — 5[Ll/1 (86)

In analogy with the Lorenz spinors the generators obeying the SO(10) commutation

relations (B.3) are obtained as

1 .
Y = 5 LT (B.7)

These operators act on the Hilbert space H given by the direct sum of all the SU(5)
components (B.5). However, as a representation of SO(10) this set is not irreducible.
For a general SO(2n) group there exists a “parity” transformation defined as I'p =
11Ty ... T'g, that assigns +1 to the states with even number of al in eq. (B.5) and —1
to those with odd number of af. Since Iy commutes with all 2, it defines 2 distinct
invariant subspaces

16) = [eM) @ el @ €®™)  and  [T6) =|el”) @ [y @ D) (B.8)

In a more common notation, these relations are often written as

16=101005 and 16=1010®5 (B.9)

that is nothing but the famous decomposition of the SO(10) spinors into the SU(5)
scalar, vector and antisymmetric tensor hosting the SM matter multiplets.
The last object we shall need is the analogue of the charge conjugation operator of

the Lorenz group. This is necessary since matter resides in an SO(10) spinor with only
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one chirality and thus all the bilinears must be constructed in a “Majorana fashion’.

It is easy to verify that the role of the Lorenz C matrix! is in case of SO(10) played by

B x T1Ts0sT7 T (B.10)

B.3 The SO(10) tensors

The list of basic SO(10) tensors that appear in this work is given Table B.1. However,
only the vector and two antisymmetric tensors can be coupled to the matter bilinears,
because there are only three objects that can be constructed within the tensor product

of 16 ® 16. In notation of the previous section they are
(16|BTI",|16), (16|BF{#I‘UI‘0]|16) and (IGIBI‘[#I‘,,FGF,QFP]\IG) (B.11)

They correspond to the vectorial 10, 3-index antisymmetric tensor of dimension 10!/7!3! =
120 and a co-called self-dual part of a 5-index antisymmetric tensor? of dimension
%10! /51 = 126. Note that the 10-index fully antisymmetric tensor defines a duality
map given by

n

Tiig in — lejg,,jk = ‘:‘_L‘ESjleijili-z,_i”Tiligﬂj,n_, E=10—n, n=1,.,10 (B.12)
This map slices the 252-dimensional 5-index antisymmetric tensor into a pair of irre-
ducible representations with opposite parities with respect to this transformation. The
selfdual part usually denoted by 126 obeys 1265, j, = 126,,4, j, While the antiselfdual
component called 126 is identified by the opposite sign, 35_6}1 jaede = —1265,5, .. The
other tensors can be constructed in a standard way starting from the 10-dimensional

vector.

B.3.1 S0O(10) tensor products

To construct the SO(10) invariants one should look at the SO(10) decompositions of
tensor products of the irreps used as the building blocks of a model. For our purposes,
the most important are [78, 61]:

1616 = 1041209 126
1010 = 1445454
12010 = 450210...

'Recall the standard definition C o 173 in the Dirac realization of the Clifford algebra generated
by SO(3,1).
2The anti-selfdual tensor arises instead in case of 16 ® 16.
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Table B.1: The basic properties of SO(10) irreducible tensors up to dimension 210.

dimension | indices symmetries properties
10 1 - vector
45 2 antisymmetric adjoint
54 2 symmetric
120 3 antisymmetric
126 5 antisymmetric 5-index selfdual
126 5 antisymmetric | 5-index antiselfdual
210 4 antisymmetric

12610 = 2104 ...

210210 = 120912661264 ... (B.13)
1200120 = 1®@45@54@210& ...

1262120 = 4542106 ...

1260126 = 1@54a...

2109210 = 104505402100 ...

One can see that the pattern of contractions is such that the matter can be naturally
light as there is no singlet in 16®16, while the Higgs multiplets, accommodated typically
in 10, 45, 54, 120, 126 and/or 210 live naturally around the GUT-scale.

B.4 The SO(10) subgroups

There are 2 physically interesting maximal subgroups of SO(10). Apart of the SU(5)®
U(1) we encountered in Appendix B.2, there is the so-called Pati-Salam subgroup
SU(4)ps ® SU(2) ® SU(2)gthat can be identified in the decomposition SO(10) D
SO(6)®S0(4) as SO(6) ~ SU(4) and SO(4) ~ SU(2)®@SU(2). Gauging the SU(4)ps
subgroup, the lepton number can be interpreted as a “fourth color” [77, 19]. Apart of
the SU(3), of QCD, it contains an U(1) factor that can be interpreted as B — L where
B and L are the baryon and lepton numbers respectively. The left-right symmetric
nature and the straightforward identification of the Standard Model SU(3).®SU(2)L®
U(1)y group in SU(4) ps®SU(2)1,® SU(2) p makes the Pati-Salam subgroup of SO(10)
particularly suitable as a bookkeeping tool for the decompositions of various SO(10)
multiplets
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B.4.1 Pati-Salam decomposition of basic SO(10) irreps

The Pati-Salam decompositions of the basic SO(10) multiplets are [61]%:

10 = (1,2,2)@(6,1.1)

16 = (4,2,1)®(4,1,2)

45 = (1,3,1) @ (1,1,3) @ (15,1,1) ® (6,2, 2)

54 = (1,L,1)@(1,3,3)@ (20,1,1) & (6,2,2) (B.14)
120 = (1,2,2) (10,1,1) @ (10,1,1) @ (6,3,1) @ (6,1,3) @ (15,2,2)

126 = (6,1,1)® (10,3,1) @ (10 13)@(15 2,2)

210 = (1,1,1)®(15,1,1) & (6,2,2) @ (15,3,1) @ (15,1,3) @ (10,2,2) & (10,2, 2)

From these formulae one can see for instance that the 10 in the Higgs sector can not
break SO(10) without simultaneous breakdown of SU(3). ® SU(2)r ® U(1)y of the
Standard Model. On the other hand, this can be easily done by imposing a VEV
on components of the other multiplets, for instance (1,1,1)s4 or (1,1,1)210 leading to
SU(4)ps @ SU(2)p ® SU(2)p as an intermediate symmetry, or (15,1, 1)910 giving rise
to? SU(3). @ SU(2), @ SU(2)p @ U(1)p_r. The role of the other SU(4) multiplets
becomes clear giving the decompositions under the SU(3). ® SU(2)r ® U(1)y of SM.

B.4.2 SU(3).® U(1)p_ decompositions of basic SU(4) irreps

The relevant decompositions can be easily reconstructed once the embedding of the
SU(3). triplet and singlet is identified. Indeed, since® 4 = (3,+1/3) @ (1, —1) under
SU(3).®U(1)p-r, , one obtains

= (3,-1/3)® (1,+1)

= (3,42/3)@® (3,-2/3) (B.15)
10 = (1,+2) @ (3,+2/3) & (6,-2/3)

15 = (1,0)® (8,0) @ (3,+4/3) @ (3,—4/3)

(= RN

These relations together with (B.14) and the analog of the Gell-Mann-Nishijima relation
in the left-right symmetric models

Y
Q=T +T}+ = (B L) & Q:Tg+—2VK provided Yy = 2T% + (B — L)

3The equivalence of the fundamental and antifundamental of SU (2) is often used.
“Recall that 15 is the adjoint of SU(4) and as such does not reduce the rank. The same holds for

the triplets of the SU(2) subgroups that can provide the breakdown to U(1) factors.
®The normalization of the U(1)5_1 generator is such that B — L of a quark state is +1/3.
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are already sufficient to identify all the SU(3), ® SU(2)p @ U(1)y quantum numbers

of the states residing in the spinorial 16
16=(3.2.41/3) & (1.2.-1) & (3.1. —4/3) & (3.1.42/3) £ (1. 1.0) & (1. 1. +2)

Indeed, these are exactly the quantum numbers of Qr, Lz, U5, D, Ni and Ef. Next,
looking at the adjoint 15 of SU(4)ps, one can identify the SM gluons (8, 1,0)45 resiging
in the adjoind 45 of SO(10). Tt also becomes clear why 120 of SO(10) can not be used to
break the GUT-scale symmetries in a physically viable way: the only components that
could at least in principle do the job are those with the SU(3). ® SU(2); ® SU(2)r ®
U(1)g—r decomposition (1,1,1,42)100 residing in (10,1, 1)120 (10,1, 1)190 in relations
(B.14). However, none of them is Yyy-neutral and thus breaks SU(3).®S5 U2)LeU(l)y
as well.

On the other hand, there are 2 different multiplets in 120 of SO(10) that can receive
an electroweak VEV - they are (1,2,2)120 and (15,2,2)120 of SU(4)ps @ SU(2)r, @
SU(2)gr . This type of multiplets residing also in 10 and 126 & 126 of SO(10) gives
rise to a pair of MSSM Higgs doublets with the SU(3). @ SU(2), @ U(1)y quantum
numbers (1,2, 1) that can be used to give Dirac masses to the matter fermions. It is
perhaps worth pointing out that such components arise also from the (10,2, 2)210 and
(10, 2, 2)210 though not in such a symmetric way as in the case of the SU(2), @ SU(2)r
“hidoublets” before. Indeed, at the SM level, (1,2, +1) is contained in (10, 2, 2)210 While
(1,2,—1) is resides in (10,2, 2)210.

The last remark concerns the Higgs components that can generate the Majorana
masses of neutrinos (at the renormalizable level). Since the lepton number of the
Majorana mass tems is 42, the only options are the multiplets containing 10 of the Pati-
Salam SU(4). As we have seen, (10,1,1)120 ® (10,1,1)120 can not receive large VEVs
and the same holds for (10, 2,2)210 ® (10, 2, 2)210 that breaks SU(3).®SU(2)L ®U(1)y
and does not couple to matter. Thus, the only option is (10,3, 1)155 ® (10, 1, 3)155 that
can couple to the matter bilinear and contains both the SU(2)r, singlet and triplet
representations, (1,1,0)5g and (1,3, 0)g of SU(3). ® SU(2)L ® U(1)y coming from
the (1,3,1,42)mg and (1,1, 3, —2)755 components of 126°.

At the nonrenormalizable level, the situation changes drastically as there are many
tensor products containing 10, 120 and 126 in the SO(10) decompositions (B.13). On
the other hand, if a tree-contribution is present, the higher-scale suppressed effective
operators in most cases provide only for subleading corrections. Nevertheless, such

effects could be important if the tree-level terms are for some reason small, c.f. section
4.

Swith respect to SU(3). ® SU(2)L ® SU(2)r @ U(1)p-1L
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B.5 Origin of the —3 factors of 1265 doublets

There are several ways to see the emergence of the welcome “—3” factor in the effec-
tive Yukawa sum-rules in SUSY SO(10) with the light MSSM doublets spanned over
the appropriate directions in 126y. Let us present two elementary methods, the first
based on the direct inspection of the relevant invariants while the other one using the

transformation properties of the electroweak VEVs of 126.

B.5.1 Direct decomposition of the relevant SO(10) invariants

Using the notation defined in the previous section one can attempt to fully decompose
the relevant SO(10) invariants, in particular the one corresponding to 16712616 5.
This consists in evaluating the matrix elements of all operators of the form BT 350246
['7T'sI'9 10 in the subspaces of the spinorial 16 of SO(10) spanning the 5, 10 and 1 irreps
of SU(5) ¢ SO(10). Recall that in the standard notation 1,..,6 are the indices of a
triplet and an antitriplet of SU(3). while 7,8,9 and 10 are those of the weak isospin
doublets. The Dirac mass bilinears of the SM fermions arise from the following SU(5)

contractions, c.f. section 1.1.

WHICup +he € 10.10
(@)fc dy +he € 105 (B.16)
wHIc vy +he. € 15
(19tC g+ he € 105

The Clebsch-Gordon decomposition of these structures is then inferred using the ladder
operator formalism given in Appendix B.2. The Hilbert space of the matter spinor 16
is spanned by the vectors of the type

) = [0)w(1) + %afia}]|o>¢<1o>ij + ;Ll—!e“‘“ma;‘ ajataf(0)9(5)m (B.17)

To form an SO(10) covariant object using two spinors of the same “SO(10)-chirality”
there is a need employ an analog of the charge-conjugation matrix (C in the Lorenz
group case) and form a Majorana structure of the form 16£C"IBX 16 . where X is the
tensor under consideration. In the spinorial basis the B matrix is given by eq. (B.10)
and the tensors X are built from the corresponding “vector” of the I', matrices. With

this information at hand one obtains

16EC1BX16p = (B.18)
) B c(1.1) C;glLlO) 0(1,3)_71 ’Qb(l)
(¢T(1); @DT(lO)U,@DT(E))m) C——l Ci(le,l) szllz}lo) Ci(le,S)n w(lo)kl
cB1m C}S,lo)m cBE)mn (B,
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The coefficients C'XY) are given by the scalar products (suppressing the indices of the

tensor X)
ctl = (eDBX W)
eyt = (e l>|B\\e<10>>
clin = (WXt (B.19)
cin® = (e 1BX ™)
c" = (e 1BX |
cBSmn = (BIm|B X

Finally, using the explicit formulae for the basis vectors spanning the SU(5) components
of the 16 of SO(10) and B and X and anticommuting the ladder operators one can

infer the structure of these coefficients. Recalling the SM structure of the SU(5) matter

multiplets
d§ 0 u§ —uj ul  d
ds .0 u?  d?
5= ds w=| . . 0 W & 1=(5);  (B.20)
' e~ 0 e°
-v ), . . .0 z

it is easy to see that the weights of the Dirac mass terms of the MSSM matter fermions

are encoded to the following matrix elements:

wy o CUR? for i, gkl € {1,2,3}
wgoc CUPP™ forie {1,2,3}, j =5 and n € {1,2,3}
wy o< 0(105) fori=4,j=5andn=4

w, o 0(1’5)” forn=25
(B.21)

Let us present the results for the Yukawa terms generated by the VEVs of 126. In

such a case X,Estm), oc T sl Ty and the structure of the vacuum that preserves the

SU(3). ® U(1)g symmetry is given by [69, 140]

(X (Poeo) o va for XY =12,34,56
(X)) ocv,  for XY = 12,34,56
The VEVs of all the other (doublet) components are 0. These relations also identify

the index structure of the terms of interest in relations (B.19). Omitting overall nor-

malization, after some tedium one obtains the results given in Table B.2. From this it
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is already easy to infer the relative weights of the relevant terms stemming from the

Y2616 p16 126 piece of the Yukawa superpotential
ﬁ%,.-%]’ x Yiog(wiv, + u!ﬁ.‘vb)('y‘fc)gC’_le +hoco+ ... (no sum. over a.b) (B.22)
that finally leads to

Ly o Yigs [—(va + v)(u)LC  up — (v — wp)(d) Y C 1+
+3(va — ) (19LC ML + 3(va + ) (W) EC 0] + hec. + .. (B.23)

126

w” o< —(va + 1) and vi* o« —(v, — vp) and working out the spinorial

Denoting v
products one recovers the sum-rules for the effective Dirac Yukawa matrices (3.2).

In the same manner one can obtain similar results also for the 10z and 120 g Higgs
representations. It is easy to see that in the case of 10 the 6 different lines in Table
B.2 shrink into just two (there are only two directions in the Hilbert space of 10y
annihilated by all the SU(3). @ U(1)g generators corresponding to the pair of the
MSSM Higgs doublets). Thus the numbers in the last two rows become identical (in
absolut value) and the relevant quark and lepton Clebsches are therefore the same, c.f.

relations (3.2).

B.5.2 Pati-Salam approach

An alternative and very elegant method that can be used to infer the result of the
previous section in a kind of “back of the envelope” calculation stems from the em-
bedding of the quark and lepton states into multiplets of the Pati-Salam SU4)ps ®
SU(2)L®SU(2)R subgroup of SO(10). Each family of the quark and lepton fields forms
a reducible 16-dimensional representation of this group, in the traditional notation

c(l c(1

a @ (3 uLEQ; dL;

uy uL2 ulé, vy, & ui di (B.24)
v 1§
L L

where the first component transforms as (4,2, 1) i.e. as a fundamental representation
of SU(4)ps and a doublet with respect to SU(2)y while the second corresponds to
(4,1,2) and transforms as a doublet under SU(2)g.

Under the same subgroup the component of 126 containing the electroweak doublets
transforms as (15,2,2) i.e. as an adjoint of SU(4)pg and a bidoublet of SU(2); &
SU(2)r. The adjoint representation of an SU(4) can be viewed as a set of 15 traceless
hermitean matrices. Therefore, the vacuum preserving the SU(3).. subgroup must have
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the following SU(4)ps structure (up to a unitary transformation)

1

o1 . . '

(P(15.2.2)) x 1 @ < J = > (B.25)

. . . U9 .
... =3

Indeed, all the SU(3) generators spanning the first three indices commute with this
structure, that is (up to the SU(2);, ® SU(2)r components) nothing but the third
Cartan operator of SU(4), the Yp_r. “Sandwiching” this structure between the vectors
(B.24) brings the desired -3 factor for each lepton but only 1 for each quark.

On the other hand, the structure of the VEVs in the (1,2,2) representation of
SU4)ps®SU(2) @ SU(2)r does not contain the “adjoint” factor proportional to the
diag(1,1,1,-3) matrix. Tris is easily traced back to the singlet SU(4)pg structure of
this component of 10g. Thus, the breaking is “isotropic” in the space of the spinorial
components of 16p. Thus, there is no such additional factor in case of the effective

Yukawa couplings descending from the 10y multiplet.
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Table B.2: The Clebsch-Gordon coefficients (up to an overall normalization) in the
decomposition of the 16p ® 126y ® 16 Yukawa vertex giving rise to different contri-
butions to the effective Yukawa couplings of SM matter fermions (i denotes the quark
color index). There are only 6 directions in the space of 126y that acquire electroweak
VEVs. Since the vacuum preserves SU(3). gauge symmetry, all the color components
of the quark fields receive the same contributions. Notice the overall relative —3 factors

between the contributions of (126) to the quarks and leptons respectively.

16%6’“1B(X:4378c>16p 3 (wivae + 103,1,1b)(-¢)c)fC’“1sz + h.c. (no sum. over a,b)

w! {ny wh wy
ABC |i=1 i=2 i=3 1=1 i=2 ¢=3

129 1 -1 -1 1 1 -1 -1 1

(Xap7sc) < v, 349 -1 1 -1 1 -1 1 -1 1
569 -1 -1 1 1 -1 -1 1 1

120 1 -1 -1 1 -1 1 1 -1

(Xaprsc) o< vp 340 -1 1 -1 1 1 -1 1 -1
560 -1 -1 1 1 1 1 -1 -1

Y -1 -1 -1 3 -1 -1 -1 3

X -1 -1 -1 3 1 1 1 -3
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Appendix C

Antisymmetric perturbations of

symmetric matrices

C.1 Real case

Consider a real symmetric matrix S normalized so that the magnitude of its largest
eigenvalue is 1. There exists an orthogonal matrix U such that .S = USUT where S¢
is diagonal. If one adds a (real) antisymmetric matrix €A with |A;;] <1land e <1, a
pair of orthogonal matrices can be found such that S +eA = Vi(g) X 4()Va(e)T. Up to
O(£?) terms one gets

Vie) = (1 +e2)U , Vale) =(1—eZ)U, X%e)=5%, (C.1)
where the antisymmetric matrix Z satisfies
{54, UTZzU} = UT AU .
Denoting UTZU = Z' and UT AU = A’, one obtains

Zi; = _—d—{y]—tf :
S5 +5%;

Proof: from (S 4 eA)T = S — €4 we get Vi(—¢e) = Vi(e) and Xd(—e) = X%e)
which yields X%(e) = S + O(e2). Expanding now S + €A = Vi (e) X%(e)V1(—¢)T with
the ansatz Vi(e) = (1 +¢Z)U (where Z is antisymmetric by orthogonality of V1) one
obtains, to the leading order in &, A = {Z,S}. The last step is to rewrite this relation
in the diagonal basis for S.

These results allow us to estimate the form of the right-handed quark mixing matrix

W (4.14) in the presence of 120g-perturbation. The quark mass matrices in eq. (4.8)
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can be written as

~ 1 , ~ 1
M, = —A[i 4+ c.Y190 . My = —ﬂ[j +24Y700 .
™My mp

Here AL ; are the minimal model symmetric mass matrices, i.e. the pieces Yigul? +

}’12611111.25 in 3.2. If the antisymmetric pieces ;Y159 are very small compared to the

symmetric part, the eigenvalues of M7 , coincide with those of the full M, 4 up to
O(e?) terms (while such corrections can be relevant for first generation masses they are

negligible for the estimate of mixing angles). This implies, up to O(=?) terms,
]\;[1 = UTDIUIT + 513/120 = VTRD:C‘/;LT )
for x = u,d. The orthogonal matrices VB are given by

Vie(l-e,Z2)U,, Vi0=Q+e.2)U, .

T

and the antisymmetric Z, satisfy
(D2, Ul Z,U,} = Ul'Y150U, .
Using eq. (4.14) and Z, = UL Z,U,, one obtains
W= (1 -, Z ) U U1+ e42) (C.2)

and
Vory = (1+,2) U LUy (1 — €427) (C.3)

This proves eq. (4.14).

C.2 Complex case

If both S and A matrices defined in the previous Appendix and a small parameter
are in general complex, there are only few changes with respect to the real case.

First, without loss of generality one can always absorb the phase of £ into the
definition of A so that € becomes real:

S+eA— S+ |ele?A=S+e|A

Next, keeping the “real parametrization” of the unitary matrices Vo in (C.1), the Z

matrix in the expansion (C.1) must be antihermitean' and satisfy

zUsiUT 4+ UsivTzr = A
! Alternatively, using the complex form of (C.1) with Vi(e) = (1 4+€2)U and Va(e) = (1 — e Z)U

the matrix Z should be hermitean.
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Defining as before UTZU = Z' and UTAU = B and using the antihermiticity of Z'. one
arrives to

z7's'+ 57" =B (C4)

To solve this system of equations notice that without loss of generality one can consider
S real absorbing all the phases in the definition of U. Under this assumption the
solution reads

Re(B);
(5%)ii + (595

~Im(B)ij
(5% = (5935

Finally, let us derive the form of the right-handed quark mixing matrix W in this

Re(Z')i; = Im(Z');; = (C.5)

case. Decomposing the (normalized) quark mass matrices into the symmetric and

antisymmetric parts
M, = ]\~[f, +2,Y120 and My = ﬂ:[j 4 £4Y120 (C.6)
one can write
N, = VR(e)DuVE(eu) and Mg =VE(ea)DaVEed)  (CT)
where Du‘d are by definition real diagonal matrices and
VEVE = Viku

is the CKM quark mixing matrix in the “raw form”, i.e. prior rotating out the 5
unphysical phases bringing it into the “standard” form denoted by Vogp. The W
matrix is then defined as

wT = VRyR (C.8)

After some tedium one concludes
T
(

WT =1 —2ed ZD)VEkn (1+2eu|Z), (C.9)

with Z/, and Z/; given by the solution (C.5) of the formulae of the form (C.4):
ZuDu+DuZ) = eV ViaVixns'
Z4Dg+ DaZl" = e®iYly (C.10)
provided €, 4 = |Eu’d’ei¢uvd and Y{y, = VdRTYlgonL* is an antisymmetric matrix up to
O(e) order.
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Appendix D ,

Illustration of effects of 120y on

the leptonic mixing

In the minimal SUSY SO(10) with type-IT contribution dominating the seesaw formula,
the rise of the atmospheric and decrease of the solar mixings (required to get into the
experimental region) is prevented by the upper bound on Am% / Ami. As shown in
section 4.6. this problem can be avoided in scenario with an additional quasidecoupled
120y contribution in the Yukawa sector. We give a simple analytical argument to prove
that the 120 g-correction to the neutrino mass matrix, eq. (4.19), can be used to reduce
the predicted value of Am?D / Am%1 substantially.

The minimal model neutrino mass matrix M}, in eq. (3.13) can be written schemat-

ically as
XX\ YA* D
M/, = mo) A C , (D.1)
B

where X, Y, A, B,C, D are O(1) parameters. This texture generates the following neu-
trino spectrum hierarchy: mj +mg +m3 ~ A + X + 1, the sign of my being opposite
to that of m3 and m;. Assuming the setup defined by eqs. (4.26) and (4.27), we can
estimate the leading contribution to AM], using eq. (4.19):

0 1 1
mo

AM] ~ ——ca¥iy ~ —moA* | ... 0 -1
0

The three independent quantities TrM, TrM? and detM characterize completely the
spectrum of a generic 3x3 real symmetric matrix M. Using the parametrization (D.1)
one obtains

TrM], = moA[A+ B+ X)\?],
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Tr(AL)? = maN*[42 + B +2C7 + 2D2)% + X2\ 4+ 2Y2)\9)
det)h, = miN)[NABA? — AD?\? — C?X )2 +2DCY M — BY?\] . (D.2)

The addition of AN/ corresponds to

Y — Y -00™h
D — D-0(\ (D.3)
C — C+00
so that
STeM!, = 0,
STr(M!)? ~ m2X2(4C)\?) <0, (D.4)

sdetM! ~ m3\*-2DN(A-C)>0.

Translated into relations for the eigenvalues this yields

d(my+ma+msz) = 0
S(m24+m3+m3) ~ —mixt (D.5)

5(mimaoms) ~ mg)\ﬁ

Writing the neutrino masses m; as the sum of the minimal model value m? plus the

120 g-correction d;, one obtains

53(m§ — mS) + da(m3 —m]) ~ —mg\t,
S3m3(mS —m3) + dymi(md —m3) ~ +mIA° .
which after some algebra yields do/m3 ~ —X and 63/m3 ~ —A2. The ratio of mass

squared differences is then shifted as follows:

Amé Am%
—

2 2

AmA Am%

[1+2-‘§2—+..‘]. (D.6)

0
My

Therefore the predicted value of Am2/Am? is reduced with respect to the minimal
model by a factor ~ (1 — 2X).
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