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Introduction

“Is string theory the theory of everything?”

“What is the true vacuum of string theory?”

“How can we give a nonperturbative definition of string theory?”

At the moment, nobody can truly answer these questions.

Without an off-shell definition, string theory is a theory in fieri, a strange collec-
tion of Feynmann rules endowed with a huge, beautiful symmetry, a mythological,
charming monster with many heads which are capable to talk each other in a myste-
rious language made of dualities, correspondences but whose body remains invisible
to us. Every head is connected through his neck to the central body which should
have his feet on our universe, which is the true vacuum of the true “theory of ev-
erything”. If string theory is the theory of everything, then we already know which
is its vacuum: our universe is the background of the monster. One of the problems
is that we do not have a dynamical mechanism which choose for us our universe
among millions of possible backgrounds. We need a formulation of string theory
endowed with such mechanism. Experimental predictability is mainly a theoretical
problem before to be technological and the fact the string theory would be able to
predict General Relativity, if it would not already exist, is not enough.

In the last seven years our knowledge about nonperturbative aspects was enormously
increased since the discovery of D-branes and the role played by them, powerful du-
alities, M-theory and decoupling limits in which string theory can be described with
a gauge theory (AdS/CFT correspondence, pp-waves, noncommutative field theo-
ries...). In fact, these important developments hide our ignorance about the true
vacuum and nonperturbative structure and suggest, at the same time, an underly-
ing symmetry between open and closed strings, the latter related to some kind of
quantum effect on the open string side.

String Field Theory (SFT) is an attempt to find a second quantized version of
string theory. Witten’s String Field Theory, proposed by Edward Witten in 1986
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Introduction

[27], describes open strings interactions in terms of a Chern-Simons-like action in
which the one-form is replaced by the string field, the external derivative by the
BRST operator and the wedge product by the Witten star, which consist of gluing
open strings in an associative but noncommutative way. In the last three years,
renewed attention has been paid to this theory, because it was powerful enough to
verify Sen’s conjectures and describe tachyon condensation.

Sen suggested in 1999 that open bosonic string theory should be seen as a theory
which describes a D25-brane. Indeed, open strings move across the entire space
and at the same time they have to end on a D-brane. Hence, this D25-brane fills
the entire space. The existence of the open string tachyon, hence, is not a problem
for bosonic string theory but just the signal of an incorrect choice of the vacuum:
it is a consequence of the instability of such D25-brane which is the perturbative
vacuum but also decays. Then, Sen argued that the decay of the D25-brane should
correspond to the condensation of the tachyon. In particular, three conjectures have
been made by Ashoke Sen [20, 21, 22], about how this decay process takes place:

1) the difference in energy between the maximum at the origin, corresponding
to the negative mass? of the tachyon, and the perturbatively stable vacuum should
be equal to the mass of the D25-brane.

2) Starting from the D25-brane, lower dimensional branes are realized as soliton
configurations of the tachyon and other fields.

After tachyon condensation the D25-brane completely disappeared, and then

3) In the perturbatively stable vacuum there are no physical open string excita~
tions: only closed strings are there.

According to third conjecture, closed strings will arise as excitations of the stable
vacuum. This would give, in principle, the hope to have a complete description of
string theory, open strings as well as of closed ones.

Unfortunately, we do not know how to solve the equation of motion of Witten’s
theory. Rastelli, Sen and Zwiebach, in 2000 supposed to know one of such solutions
and proposed a shifted and string field redefined version of Witten’s theory called
Vacuum String Field Theory [36]. Vacuum String Field Theory (VSFT) is the
guessed form of String Field Theory at the closed string vacuum. VSFT is more
simple then Witten’s SFT but it is not a simplified version of that in the sense that
we should be-able to recover in some way the original theory if VSF'T truly represents
the Witten’s one formulated on the stable vacuum, as it seems. Indeed, D-branes
arise as solitonic solutions of this theory and this interpretation is confirmed by the
correct ratio of tensions between different dimensional solutions. Essentially, the
main difference is encoded in the kinetic operator which is purely ghost instead to
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be the BRST charge. This leads to a factorized form of the solutions, a splitting
of the equation of motion in ghost and matter sector and it turns out that the
matter equation is simply a projection condition under the star noncommutative
multiplication. In this sense, D-branes are projectors of this noncommutative algebra
and can be seen as a sort of noncommutative solitons of this theory. In another
framework respect to SF'T, open string with a B field turned on, Harvey et al. [59]
showed that taking the effective action for the tachyon field, which is the action of a
scalar field theory on a noncommutative space, D-branes can be seen as the solitonic
solutions of such theory, called GMS solitons We will see in chapter 5 that there is a
natural way to incorporate these two interpretations of D-branes as noncommutative
solitons, turning on a B field in VSFT.

This thesis is organized as follows.
Chapter 1 is an introduction to String Field Theory and its use to describe tachyon
condensation. Recent reviews of the subject can be found in [24, 25]. Chapter 2 is a
review of the works of Rastelli, Sen and Zwiebach that defined VSFT, [36, 37, 38].
Chapter 4, a review of solitons in noncommutative field theory [61].

The original part of this thesis is contained in chapters 3, 5 and 6 which refer to
the three main results we obtained.

The first one [78], chapter 3, concerns the definition of the multiplication op-
eration in SF'T, which is noncommutative. There are three different type of star
products, one matter type and two ghosts. They differ in the Neumann coefficient
which define the star product. We will show that such coefficients for the three stars
are related to each other in a very simple way: a SL(2, R)-like map connects the
matter ones with the so called reduced ghost ones; the same map but with an extra
minus sign connects the reduceds with the twisted ghosts and, finally, the twisted
ghost ones are equal up tp a minus sign to the matter ones. We enphasize the these
two ghost star products are different although they give rise to the same solution of
equation of motion in VSF'T, source of confusion in the past.

The second one [75, 76, 77], chapter 5, concerns the possibility to find solutions
of VSFT if a B field is switched on, the differences between VSFT with or without
the B field and the definition of a new infinite class of solutions that we called “An-
cestors” because in the low energy limit they give rise to all so called GMS solitons,
which we review in chapter 4.

In particular we find that B field behaves as a natural regulator: in [43] it was shown
that the geometry of the lower-dimensional lump states is singular at the string level
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because the midpoint of the string is confined on the brane and that is singular also
at the low-energy level because in this limit you must introduce an ad hoc regula-
tor by hand. In [76], starting from the lump solution with the B field, we showed
that at high energy the string midpoint is no more confined on the brane and at
low-energy the lump (representing a D-brane) becomes the simplest GMS soliton,
using the Seiberg-Witten limit [6] that gives a noncommutative field theory from a
string theory when a B field is turned on. This gave the inspiration to write down
the Ancestors solutions. In particular, we pointed out a precise isomorphism which
seem to be hidden between such solitonic solutions in VSF'T and in noncommutative
field theory.

The third one [80, 81], chapter 6, concerns relations among the small “zoo” of
projectors of the star algebra, which we review in chapter 2. They play an important
role in the theory because they are solutions of matter equation of motion and/or
define the star algebra of string fields. It turns out that they can be rewritten in
a general form involving a matrix U which, case by case, is nothing but the null
matrix, the identity matrix, the twist matrix or even and odd powers of the funda-
mental matrix S which define the D25-brane, the so called “Sliver”. In particular,
we speculate the possibility to obtain such “general form” using a suitable resum-
mation of the Ancestors.

We can summarize saying that the first is a correspondence between the matter
and the ghosts (note the plural) noncommutative structure, the second is a corre-
spondence at the same time between B and not B regime and between SFT and
noncommutative field theory and, finally, the third is a correspondence among the
relevant actors playng in the game of star algebra.

These are the correspondences we mean in the title of this thesis.
Of course, it is crucial to have noncommutativity.

vili



Chapter 1

An introduction to String Field
Theory

1.1 Witten’s Open Bosonic String Field Theory

The open bosonic SFT action proposed by E. Witten is

111 1
S(P)=—— |=(2,QP) + -
@ =2 [3(0.000+ 3

where ® is the string field, @) the kinetic operator, * an associative but noncom-
mutative product (Witten’s star-product), (-,-) an inner product and g, is the open
string coupling constant. The string field is defined as the most general state living

in the Hilbert space H of the first-quantized open string theory:

<<I>,<I>*<13)} (1.1)

) = <¢(x) + Ay (2)at + B (z)at o + ... )c1|9>
_ / Pk (6(k) + Au(k)ots + Bu(R)at ity + . Jalk)  (12)

where |k) = e®X©]0). |Q) = ¢;]0) is the ghost number 1 vacuum. It is defined by

a1y = 0 (n >0)

ba |y = 0 (n>0) (1.3)
Q) = 0 (n>0)

E41Q) = 0

|0) is the SL(2,R) invariant vacuum, z and k are the center-of-mass coordinate and
momentum and the functions in front of the basis states are spacetime fields. The
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2 Chapter 1. An introduction to String Field Theory

kinetic operator ), the % product and the inner product (-,-) act on H in the
following way

Q - H—H
x @ HOH—-H (1.4)
() @ HOH—C

The kinetic operator @ is defined to satisfy the following identities

QA = 0
QA*B) = (QA)*B+(-1)*A%(QB) , (1.5)
(QA,B) = —(-1)"(A,QB)

In the properties above (—1)* is +1 when A is ghost number even, and —1 when A4
is ghost number odd. The kinetic operator is immediately chosen as the BRST oper-
ator p: it satisfies all the properties (1.5) and the variation of the free (quadratic)
part only of (1.1), with @ = @Qp is nothing but the physical state condition on the
first-quantized string theory states:

Qp|®) =0. (1.6)
Inner product and * product should satisfy

(A,B) = (-1)*"(B,4)
(A,BxC) = (AxB,C) (1.7)
Ax(BxC) = (AxB)xC

Since S(®) should obviously be a real number, we will impose a reality condition
on the string field. The quadratic part of (1.1) is the free part of the action and
represents an evolving on shell string state from 7 = —oco to 7 = +00. The cubic
term is the interaction vertex of three string states.

Using the properties (1.5), (1.7) and the ghost numbers assignments, is easy to
see that the action (1.1) is invariant under the gauge transformation

P=QA+PxA—-Axd (1.8)

where A is a ghost number zero string field. Variation of the action (1.1) gives the
field equation of motion

QP +3+d=0 (1.9)
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From the second of the equations (1.7) we have
(A, B*C) = (=1)AB+ (B, C « A) (1.10)

and, since the string fields are all of ghost number 1, the above equation states that
the cubic term (®,® x ®) in the action (1.1) is cyclic in the permutations of the
fields. In a similar way is possible to show that

(©1,QP;) = (D2,Q%1) (1.11)

We will define the Witten’s x-product in two different but equivalent ways. The
first one, in the original formulation of Witten’s String Field Theory, written in the
“string functionals” formalism, instead of “string state”, allows us to understand in
which sense the interaction between two open strings is given by the gluing of the
right half of the first one with the left half of the second one (or viceversa). The
second one, in the CFT and oscillator formalism, will be more useful for our calcu-
lation later on. Before to do that, let us have a look of the formal correspondence
between Witten’s SFT action and the Cher-Simons action which is

S(A):—;-/MA/\dAJr-lg—/MA/\AAA (1.12)

where M is a 3-manifold and A a 1-form. This action is invariant under the gauge
transformation

JA=de+ANe—eNA (1.13)

where € is a 0—form. We can write the correspondence between Witten’s Cubic SFT
and Chern-Simons theory with the help of the following ‘dictionary’:




4 Chapter 1. An introduction to String Field Theory

Chern-Simons Witten'’s open SFT
differential form state in CFT
wedge product A * product

degree of a differential form | ghost number of a state

gauge state A string field ® with ghost number 1
gauge parameter ¢ state in the CFT with ghost number 0
exterior derivative d BRST operator

integration [ Witten’s integration

1.2  x as gluing of strings

In Witten’s original approach is more manifest the interpretation of the * product
as ‘gluing of strings’. In particular the starting point [27] of SET dealt with string
functionals ®[X (o), ¢(0), b(c)] defined as the Schrédinger representation of the first
quantized string field |®)

®[X (0),c(0),b(0)] = (X(0),c(0),b(c)|®) (1.14)
The * product is defined by
(1 % Dy)(Xo(0)) = /DXl(o)DXz(o—) P (X1(0)) P2(Xo(0)) (1.15)
II () = Xi(r = 0)) 6(X1(0) = Xo(0)) §(Xo(r — o) = Xa(m = 0))
0<o<n/2

and the integration by
/q» _ /DX(O—)@(X(J)) I 6(X()-X(r—0o)) (1.16)
0<o<n/2

The definition (1.15) of the * product should be interpreted in the following way: the
functional (®; * ®5) of the strings coordinates Xy is given by gluing the left half of
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the first string with the right half of the second string (first ¢ function in (1.15)), and
then imposing that the remaining halves of the strings X; and X, constitutes the
whole X string. The integration (1.16) means to take a string and then obtaining
a number from it collapsing the two halves of the string on each other. With the
two definitions (1.15, 1.16) the 3-string interaction vertex can be written as

(q)l,@g*@g) = /@1*@2*q)3
- / DX, (0)DXo(0)DX3(0) 1 (X1 (0)) B(Xn(0)) B (Xs(0) 11

H §(Xo(o) — Xi(m — 0)) 6(X3(0) — Xo(m — 0)) 6(X1(0) — Xs(m — o),
0<o<n/2
Bpz conjugation, that reverses the o orientation on the boundary of the unit
disk, has the Schrodinger representation

(bpz (®)|X (o)) = ®[X (7 — )] (1.18)
and the reality condition on (®| translates into
P[X(0)] = " [X (7 — 0)] (1.19)
Using the representation of the identity
1= [ DX(@)X N () (1.20)
we have for the quadratic term
(21,Q%2) = (bpz(®1)|QP2)
= [ PX(0) (bra (211X () (X ()22

f

| PX (@) 81(X (7 = 0)) Qaa(X(2))
— [ PXU)DXe() (Ha() QX)) T 60Kale) = s = )

0<o<m/2
The cubic term is

(D1, D9 % B3) = (bpz (P1)|Py * Ps)
- [ DX (bpz (1)|X (0))(X (0)|@5 * Bs)

= /DXl(o') DX,(0)DX3(0) P1(X1(0)) P2(Xa(0)) P5(X3(0))

[T 6(Xa(0) = Xl — 0)) 6(Xs(0) — Xa(m — 0)) 6(Xs(0) — Xalm — )

0<o<m/2
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where we used the reality condition on ®[X(0)]. The above equation is obviously
equal to (1.17).

1.3  x-product and SFT in the CFT language

The action (1.1) can also be written by defining two states
(Vol e H* @ H" (1.21)
and
(Val e H* @ H* @ H* (1.22)

such that

S(@®) =~ |5 w0 (A1D0IQ8 + 5 wo B Belely|  (123)
where the pedices are introduced to distinguish explicitly among the different copies
of the string Fock space referred to different strings. Our final task will be the
explicit determination of (V,| and (V3|. This will be done using the two dimensional
conformal field theory (CFT) structure that underlines string theory.

First of all we need a recipe to define H*, the dual of the Hilbert space of
first-quantized string states. This is done by means of the internal product defined
through bpz conjugation [19]:

bpz : H — H*
bpz [4) = (bpz (4)] (1.24)

To define bpz conjugation consider a primary field ¢(z) of dimension d with mode
expansion

2 o, d _
60 = 3 B b= a0 (1.25)

By the state-operator correspondence, ¢(z) creates in the far past (1 — —co, z — 0)
the state

|#) = lim ¢(2)|0) (1.26)

2—0
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We define

(bvz ()] = (0] 1im o - 3) (1.27)

z—0 z

<

The state (0] is the left (out) vacuum defined as the time evoluted |0) at 7 — oo
(z = o0). The transformation

Tzt (1.28)

A

<

is a SL(2,C) transformation which sends the origin to infinity while taking the unit
circle to itself. On the modes ¢, the inversion Z acts as

bpz (¢,) = fdz "HEIT 6 ¢(2)
]{2’/1'2 e )hgb(_%)

— ?{{)m n—d— 1Z¢ 1)m+dzm+d
(—

1) e_, (1.29)

Bpz conjugated of known operators are

bpz (L,) = (=1)"L_,
bpz(t,) = (1)l
Equipped with bpz conjugation we can now discuss the reality condition on | D).

Hermitian conjugation (hc) just transforms a bra into a ket. Bpz and he conjugation
are used together to define complex conjugation:

|A*) = bpz "t ohc|A) =hc ! o bpz |A) (1.30)
Reality condition is
|A*) =|4A) — hcl|A) = bpz|A) (1.31)

This condition ensures the reality of the fields ¢, A, B,,, . .. in the expansion (1.2).

The importance of using bpz conjugation instead of hc one, is in the conformal
field theory character of the former. What we want to do now is indeed to give a
conformal field theory prescription for calculating the vertices (V3| and (V;], and to
be able to do actual computations.
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Comparing the two forms (1.1) and (1.23) of the string field action it also follows
that

(4, B) = (bpa(A)|B) = 2 (Vall ) B oy (132)
and
(A,BC) = (bpz (A)|B + C) = 19Kl A) 0] B ol C) o (1.33)
this means that the vertex |V3) realizes the x product:
(14) * 1B))s = 1(bpz (A)[2(bpz (B)||Vs)123 (1.34)

We now have a CFT definition of (-,-) in terms of bpz conjugation. What we
want is a correspondent cft definition of the * product. It is useful to define the x
product through the interaction term of the action. Consider three generic string
states A, B and C , and their corresponding vertex operators Oa(z), Op(2), Oc(z).
We define three conformal transformations f;(z),¢ = 1,2, 3 such that

(A4,BC) = (f2 0 04(0) F 0 05(0) £ 0 Oc(0)) (1.85)

There is a crucial conceptual difference between the two sides of the above equa-
tion. The left-hand side is an inner product in the product space H1 @ Hy ® H3 of
the 3 Fock spaces H;, while the right-hand side is a correlation function of a single
string conformal field theory in the z upper half plane. The index D indicates that
the conformal transformations and the correlation function are defined on the disk
(that is conformally equivalent to the upper half plane).

Remember the time evolution of a single free string when the worldsheet is
parametrized by the upper half plane: in z = 0 the string starts to evolve, the real
positive axis being the boundary ¢ = 7 and the negative one the boundary o = 0.
The front of the evolving string is represented by half circumferences centered in the
origin, all the points belonging to the same radius being points at the same time.
The intersection of the front line of the string with the imaginary positive axis is
the midpoint @ of the string (o = 7/2).

At this point we could write 3-string vertex of the general form

(T?h[04] Th[OB] R [Oc]) (1.36)
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with T an SL(2, C) transformation such that 7% = 1 but with h(z) a completely
arbitrary map of the unit circle into the complex plane. There are two very simple
choice of h(z). The first is h(z) = z which carries the unit circle into the complex
plane unchanged and which lead to a SFT vertex which generalizes the Caneschi-
Schwimmer-Veneziano dual model vertex [8]. The second is the map which carries
the unit circle into a wedge covering a 120 degrees angle. This choice lead to the
Witten vertex. The basic idea for defining the conformal transformations f; is then
to map three upper-half disks into a single disk representing the interaction vertex
of the three strings. The operation of * product is then interpreted as a gluing of
" two string worldsheets. We start with three upper-half disks parametrized by their
own local coordinates z;. On each half disk we perform the following coordinate
transformation

1+’LZl

This transformation maps the mid-string point ¢ of each string in the center
¢ = 0 of the unit disk, and the open string boundaries to the boundary of the unit
disk. Then we shrink the half disks obtained by a factor 2/3, and rotate the first
one counterclockwise by a 27 /3 angle, and the third one clockwise by a 27 /3 angle.
The three transformations are

_ _amifl4iz\3

fl(zl) = €7 (1—i21)
fo(z2) = (1_%2 (1.38)

ami (1 + 12 3

fa(zz) = et (1_222)3

The global disk is now constructed gluing together the three world sheets: for
instance the right part (7/2 < o < ) of the front line of the first string is glued
with the left part (0 < o < 7/2) of the of the front line of the second string and so
forth. Cyeclicity of the cubic term in the action (1.1) is now manifest by construction.
The open string worldsheet is also represented by the upper half plane; the SL(2,C)
transformation that sends the disk in the upper half plane is

-1
¢+1

Rl z=—i (1.39)
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Figure 1.1: Representation of the cubic vertex as the gluing of 3 half-disks.

Of course, since the correlator in (1.35) is SL(2,C) invariant, computing it on
the disk or on the plane gives the same result.

It is now straightforward to define an arbitrary n-point vertex through the trans-
formations '

2wi (1. 1 ] o %
fulzr) = e FED (2 < pcn (1.40)

Each fi maps an upper half disk to a 27/n wedge, and n such wedges gather to
make a unit disk.

Also the CFT description of the quadratic term can be encoded in this formula-
tion, with the n = 2 case of (1.41). Writing explicitly f; and f,

R lfi(z) = h“l(i:}:zz) =z = I(z) (1.41)
1+ iz 1
Bl fo(z) = h—l(wlfizz) = - = I(2) (1.42)

The quadratic term becomes

(©,QP) = (fa0®(0)f10Q%(0))
= (h o fo0®(0)h 7 o f10Q2(0))
= (Zo®(0)Q®(0)) (1.43)

The complete action, rewritten in terms of CF'T correlators, is

1

5= [3(To20)020) + 3 (1128(0) o2(0) 00(0)] (140

The last step is the explicit expression of (V3] and (V5| in terms of the transfor-
mations f; and Z. First, we will give a simple derivation of them; in the next two
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Figure 1.2: Representation of the cubic vertex as a 3—punctured unit disk.

i

Q¢ z=i

AN DA

@

P P
3 2

z=-"V3 Z;O z-—-—l/;

Figure 1.3: Representation of the cubic vertex as the upper—half plane with 3 punc-
tures on the real axis.
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sections, we will derive them again in such a way that allows us to take into account
an ambiguity in the ghost sector. We start with (13]. The ansatz for this vertex is

(a| = /d%p 1d*P(2)d*p) (0,911 ® (0,pl2 ® (0, pls
¢ ep (- L5 X meal v al)
s n,m>0
X exp (ZZb(T Xrs ol ) (1.45)
o=
where (0,p|; = (p|; ® (0]ic_1co. We want to find explicit expressions for the coef-

ficients Ny7 and X7°  known as Neumann coefficients, in terms of the functions
fi defining the vertex. We begin the derivation considering the matter sector and
setting the momenta to zero (m,n > 0); consider the expression

M = (V3] 10X (2) 10X (w) [2) 1)) 2| 3) (1.46)

We compute it first using the contractions of the conformal fields 10X (z), and
then the oscillator form (1.46) of the vertex. M is rewritten as

M = (V3]i0X D (2)i0X® (w) ¢V(0) ?(0) ¢ (0) 0) (1) 0) 2)|0) s)
- < fo (z’@X(z)c(O)) fio (z’@X(w)c(O)) fio c(0)> (1.47)
where ¢ # r,s. The ghost part gives a constant that we will not have to calculate

explicitly: (f, oc(0) fso c(O) ft 0c(0)) = N. Being 10X a primary field it transforms
as foi0X(z) =i0X(f(z )) , and we have

M = N () f3(w) (X (£(2)) i0X (f,(w)) )

f1(2) 7 ( )
= N —F (1.48
(F.(2) = fw))? )
Using the oscillator form of the vertex
M= 3 Vool e 0)wel? 00y
= —N sz“lw”‘l mnNTS (1.49)

m,n
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Comparing the equations (1.49) and (1.50) we have

(fr‘?’{gz) w) Z "t mn NS (1.50)

that means

s _ 1 fr(2) fo(w)
Nim = = %2727{271 zmu™ (f(2) — fo(w))? (1.51)

Taking into account also the momenta we have to remember the transformation
law for the exponentials f o exp(ip - X(2)) = |f'(2)[P"/?exp(ip - X(f(2))) and the
fact that the operators 10X can also contract with factors ip- X in the exponentials.
For the part of the vertex bilinear in the momenta we choose, as states in (1.35),
A and B as tachyonic states of momenta p,, p; and C as a tachyonic state of zero
momentum. Consider the expression Mgg

Moo = (V| PO P X0 10) 1)|Q) ) |2) 3 (1.52)
Evaluated through the oscillator form of the vertex is
Moy = / % payd*p)d*p) (0, p11(0, pl2(0, pls (1.53)

1 U ATUV U 1 2 3
exp ( - 5 ZP NOO p )Cg )'Oapr>(1)cg )|0,p5>(2)c§ )lo, O>(3)

Calculated as a correlation function it has the form
Mo = (fro (7 %0c(0)) f,0 (#XOc(0)) f; 0 c(0))
= NI O)P*2 | f1(0) P2 exp (py - ps log | £r(0) — £5(0)])  (1.54)

It follows that Ny is

T8 __ loglf’(O)[ r=2=8
o0 ”{ log | £1(0) — £2(0)] + Llog [£1(0)F1(0)]  r#s (1.85)

In a similar way it is possible to show that

NIs = — dw 1 log|fi(0)]*f;(w) (1.56)

0 2mi w™  (f(0) — fo(w))




14 Chapter 1. An introduction to String Field Theory

For the ghost sector the coefficients X% are computed equating two different
ways of calculating the expression

= (V3] 59(2) () ¢710) 1?0} 2170} o (1.57)

Using the mode expansion for ghost and antighost and interpreting G as a correlator
we find

G = <f3 0 b(2) f, o c(w) f1 0 ¢(0) f 0 c(0) fa 0 ¢(0) > (1.58)

U s (2 ) e 00) (0 500

The simpler way to calculate this correlator is to see its singular structure and derive

its normalization from a special configuration. There must be zeroes when any pair
of ¢ fields approach to each other. This will give a factor (f1(0) — f2(0))(f1(0) —
f3(0))(f2(0) = f5(0)) as for N. There are also poles when the antighost approaches
any ghost. These considerations imply that

Using instead the vertex (1.46) we find
G = 3 o o OB e 00y D) el )
_ :}RZ o 2ymmel xS (1.60)
Comparing the two expressions (1.60) and (1.61) we have
xp oo Lo fdw 1 (RE 1 () - A0) )

2miz=t J 2miwn i fi(w) [i(2) = f(w) TR, (Fi(2) — £5(0)
The explicit expression for (V3| is found by calculating the product (10X (z), 10X (w)):

(10X (2), 10X (w)) = —(T 0 8X (2) 6X (w)) = <ax(— —) 0X (w )> (1.62)

Remembering the transformation law (1.30) of the oscillators o, under the inversion
Z, the form of the vertex (V3| is

Vel = / 320 (5, ply ® (3, pla 60 + p)

X  exp (——a(l)C’ Ol C(I)Cnmbg) - ngz)cnmbg)> (163)
n
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where

Cnm = 571771(-1)” (164)

is the twist matrix.

Let us be more precise, specially on the ghost side.

1.4 Three strings vertex and matter Neumann co-
efficients

The three strings vertex [27, 32, 33] of the Open String Field Theory is given by

|Vs) = / d®p1yd**payd*°p) 6% (p1y + P2y + P3)) exp(—E) |0, p)12s (1.65)

where

3
1 1
B = (»5 S M@V QO 4 3 0k Veba® é-nyupé;)%%"pa))
a,b=1 m,n>1 n>1
(1.66)
Summation over the Lorentz indices u, v = 0, ..., 25 is understood and 7 denotes the
flat Lorentz metric. The operators ale , a'D"! denote the non—zero modes matter

oscillators of the a—th string, which satisfy
[al@k O] = puvs 5% m,n > 1 (1.67)

p(r) is the momentum of the a-th string and |0,p)123 = [p)) ® |P(2)) ® |p(3)) is
the tensor product of the Fock vacuum states relative to the three strings. |p(q) is
annihilated by the annihilation operators o' and it is eigenstate of the momentum

operator ﬁ? 2) with eigenvalue pf‘a). The normalization is

(P(a)| Plpy) = 8as0”°(p + 1) (1.68)

The symbols V2
will use them in the notation of Appendix A and B of [37] and refer to them as the
standard ones. The notation V{5, for them will also be used at times (with M (N)

denoting the couple {0, m} ({0,n})) .

Vb V@ will denote the coefficients computed in [32, 33]. We

m
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An important ingredient in the following are the bpz transformation properties
of the oscillators

bpz(al) = (—1)" ol (1.69)

Our purpose here is to discuss the definition and the properties of the three
strings vertex by exploiting as far as possible the definition given in [2] for the
Neumann coefficients. Remembering the description of the star product given in
the previous section, the latter is obtained in the following way. Let us consider
three unit semidisks in the upper half z, (a = 1, 2, 3) plane. Each one represents the
string freely propagating in semicircles from the origin (world-sheet time 7 = —o0)
to the unit circle |z,] = 1 (7 = 0), where the interaction is supposed to take place.
We map each unit semidisk to a 120° wedge of the complex plane via the following
conformal maps:

folzd) =®°f(2,),a=1,2,3 (1.70)
where Lo 2
fz) = (::Z) ’ (1.71)

Here a = e%i is one of the three third roots of unity. In this way the three semidisks
are mapped to nonoverlapping (except at the interaction points z, = 1) regions in
such a way as to fill up a unit disk centered at the origin.

The interaction vertex is defined by a correlation function on the disk in the
following way

/¢ * ¢ x x = (fi01%(0) f206(0) f3 0 x(0)) = (Vias|t)1]#)2lx)s (1.72)

Now we consider the string propagator at two generic points of this disk. The
Neumann coefficients N&,, are nothing but the Fourier modes of the propagator with
respect to the original coordinates z,. We shall see that such Neumann coefficients
are related in a simple way to the standard three strings vertex coefficients.

Due to the qualitative difference between the oy, oscillators and the zero modes
p, the Neumann coefficients involving the latter will be treated separately.

1.4.1 Non zero modes

b

The Neumann coefficients N2 are given by [2]

1 dz dw 1 1 , 1 ,

ab __ (a)  (b) - = - - -
Nmn - <‘/123]a—na—m|0>123 - nm 21 275 27 wmfa(z) (fa,(z) — fb(w))2 b(w)
(1.73)
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where the contour integrals are understood around the origin. It is easy to check
that

N® = (—1)"tmNEe (1.74)
b b
NZ = Ngbbt

In the last equation the upper indices are defined mod 3.
Let us consider the decomposition

(Enm +a U, + a“‘bUnm> (1.75)

1
Nab —
mre 34/ nm

After some algebra one gets

— d ) 7
B - fi of el ) 0
dw 1 1 /(fYw) f(2) 1
Unm = fZﬂ"I, 271:;2”10’“< +2f(w)>< 1—|—zw Zuw)Q)
_ d f2 f
Unm = ,7{2m}£2:zzlﬂwlm 2 (w (w)>< 1+ zw)? Z*lw)Q)

By changlng z — —z and w — —w, it is easy to show that
(=1)" U (=1)™ = Upm, or CU=UC, Cpm = (=1)"6pm  (1.77)

In the second part of this equation we have introduced a matrix notation which we
will use throughout the paper.

The integrals can be directly computed in terms of the Taylor coefficients of f.
The result is

Epm = (-1)“5nm (1.78)

nm — [ n le l+2bn lbm l( 1)m
-(n1)"+an+le._l - 2bn+lbm_,(~1)m+l] (1.79)

Um = (=1)""Upm (1.80)

where we have set

flz) = > bt
k=0

oo k
f2z) = D Bie",  ie.  Bi=) by (1.81)
k=0 p=0
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Eqs.(3.11, 3.12, 3.13) are obtained by expanding the relevant integrands in powers
of z,w and correspond to the pole contributions around the origin. We notice that
the above integrands have poles also outside the origin, but these poles either are
not in the vicinity of the origin of the z and w plane, or, like the poles at z = w,
simply give vanishing contributions.

One can use this representation for (3.12, 3.13) to make computer calculations.
For instance it is easy to show that the equations

k=1 k=1

are satisfied to any desired order of approximation. Each identity follows from the
other by using (1.78). In the same way it is also easy to make the identification

V2 = (—1)"™/nm N, (1.83)

of the Neumann coefficients with the standard three strings vertex coefficients’.
Using (3.15), together with the decomposition (5.29), it is easy to establish the
commutativity relation (written in matrix notation)

[CVe, oVt =0 (1.84)

for any a,b,a’,t’. This relation is fundamental for the next developments.

We do not have a simple analytic proof of eq.(3.15). However, due to the identi-
fication (3.16), we can take advantage of the proofs contained in [32] to claim that
(3.15) are true.

1.4.2 Zero modes

The Neumann coefficients involving one zero mode are given by

1 dw 1 1
/iy Skttt (77) P — 1.85
on= " P amiwn P RO = fw) e
In this case too we make the decomposition
1 _
N =3 (B + 8"V + 0T (1.86)

!The factor of (—1)™*™ in (3.16) arises from the fact that the original definition of the Neumann
coeflicients (3.7) in [2] refers to the bra three strings vertex (Va|, rather than to the ket vertex like
in (3.1); therefore the two definitions differ by a bpz operation.
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where E,U,U can be given, after some algebra, the explicit expression

di [dw 1 1 3 (w) 2™

En - a -
m ) 2miwrl+w?l— f3w) m
—45 [dw 1 1 2 1 -
v, = —Hfdwl 1 [flw = dm (1.87)
n 2miwr 1+ w?l — f3(w) (z —w)>? m

Uy = (<1)"Un= (-1)" "

The numbers «,, are Taylor coefficients

VIz) = Zanz"

They are related to the A, coefficients of Appendix B of [37] (see also [32]) as follows:
oy = A, for n even and o, = 14, for n odd. N are not related in a simple way as
(3.16) to the corresponding three strings vertex coefficients. The reason is that the
latter satisfy the conditions

3
> V=0 (1.88)
a=1

These constraints fix the invariance V@ — V& + BY where B! are arbitrary num-
bers, an invariance which arises in the vertex (3.1) due to momentum conservation.
For the Neumann coefficients N2 we have instead

3
> Vow = En (1.89)
a=1
It is thus natural to define .
Nf?ﬁ = N(C)Lrl: - '3‘En (1.90)
Now one can easily verify that?
Ve = —/2n N& (1.91)

It is somewhat surprising that in this relation we do not meet the factor (—1)", which
we would expect on the basis of the bpz conjugation (see footnote after eq.(3.16)).
However eq.(1.92) is also naturally requested by the integrable structure found in
[7]. The absence of the (—1)" factor corresponds to the exchange Vii? <+ Viit. This

- 2The /2 factor is there because in [37] the o/ = 1 convention is used
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exchange does not seem to affect in any significant way the results obtained so far
in this field.

Before we end this section we would like to recall one of the most surprising and
mysterious aspects of SF'T, that is its underlying integrable structure: the matter
Neumann coefficients obey the Hirota equations of the dispersionless Toda lattice hi-
erarchy. This was explained in [?] following a suggestion of [?]. On the basis of these
equations the matter Neumann coefficients with nonzero labels can be expressed in
terms of the remaining ones. This fact can have far-reaching consequences for SFT
at higher genus [?].

1.5 Ghost three strings vertex and bc Neumann
coefficients

The three strings vertex for the ghost part is more complicated than the matter part
due to the zero modes of the ¢ field. As we will see, the latter generate an ambiguity
in the definition of the Neumann coefficients. Such an ambiguity can however be
exploited to formulate and solve in a compact form the problem of finding solutions
to eq.(3.57).

1.5.1 Neumann coefficients: definitions and properties
To start with we define, in the ghost sector, the vacuum states |0) and |0) as follows
0) = coc1|0), 0) = ¢;|0) (1.92)
where |0) is the usual SL(2,R) invariant vacuum. Using bpz conjugation
en — (=1)" e, by — (=1)"2b_,, |0y — (0] (1.93)

one can define conjugate states.
The three strings interaction vertex is defined, as usual, as a squeezed operator
acting on three copies of the bc Hilbert space

3 o
(Val = (010150l =D > e p®) (1.94)

a,b=1 n,m

Under bpz conjugation

3 o0

V) = € 0)1]0)sl0)s, "= D D (1) o b (1.95)

a,b=1 n,m
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In eqs.(3.21, 3.22) we have not specified the lower bound of the m, n summation.
This point will be clarified below.
The Neumann coefficients 22 are given by the contraction of the be oscillators on
the unit disk (constructed out of three unit semidisks, as explained in section 3).
They represent Fourier components of the SL(2,R) invariant bc propagator (i.e. the
propagator in which the zero mode have been inserted at fixed points ¢;, i = 1, 2, 3):

(b(e)efw)) = —— [ 2= (1.96)

2w 2= G
Taking into account the conformal properties of the b, ¢ fields we get
= (Viaa b0 0)129

d_w 1 1 ()2 -1 Sfa(w)"gi (o -
§ 5w § i D =y L = oz

I

2mi Zzn— L mt2
It is straightforward to check that
Ngb, = Nggb+! (1.98)
and (by letting z = —z, w — —w)
Nt = (=)™, (1.99)

Now we choose ¢; = f;(0) = a®" so that the product factor in (3.24) nicely simplifies
as follows

fa 'w) 0 fB(w) -1 _
H 5@ —£0) - P =1 "eb=L23 (1.100)

Now, as in the matter case, we consider the decomposition

N2 = 2 (B + 0 T + 0T ) (1.101)

Wi

where

2T 27
~ dz dw

| &

= dw
0. = jé d j[ S N2, 0) T2, )
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and
) = F it
Uz w) = f3(23)fi(j”)3(w)
Uew) = f3<j>fz—(1;z’(w>
Nun(0) = S (AP ) D
After some elementary algebra, using f'(z) = %z (2), one finds
B = ]{%z]{;ﬁzjﬂwm“(l:zw_w%iz)
i ﬁm dw 11 f(z))(ljzw_w?ﬁz) (1.103)

27rq zntl ym+l f(w
A j{ dvw 1 1 f(w) ( 1 w )
e 2mi J 2mi zntlwmtl f(2) \14+2w w—2

Using the property f(—z) = (f(z))™, one can easily prove that

Unm = (=) Upn, (1.104)

1.5.2 Computation of the coeflicients

In this section we explicitly compute the above integrals. We shall see that the
presence of the three ¢ zero modes induces an ambiguity in the (0,0), (—1,1), (1,-1)
components of the Neumann coefficients. This in turn arises from the ambiguity in
the radial ordering of the integration variables z, w. While the result does not depend
on what variable we integrate first, it does depend in general on whether |z| > |w|
or |z| < |wl.

If we choose |z| > |w| we get

EY = 0(n)0(m)(—1)"6mm + 0n,00m,0 + On,—10m,1 (1.105)
while, if we choose |z] < |w|, we obtain
E® = 0(n)0(m)(=1)"6pm — 6n.16m 1 (1.106)

where 6(n) =1 forn > 0, (n) = 0 for n < 0. We see that the result is ambiguous
for the components (0,0), (—1,1), (1,-1).
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To compute ,, we expand f(z) for small z, as in section 3,

fz) = > bt
k=0

Since f~(z) = f(—z) we get the relation

T

> (=1)Fbbn—t = bng (1.107)

k=0
which is identically satisfied for n odd, while for n even it can be also rewritten as
bvzz = —2 (_1)kbn—kbn+k (1'108)
k=1
Taking |z| > |w| and integrating in z first, one gets

n

U0 = bnam + (=1)™ Y (bntbmet — (—1)"bptbma) (1.109)
=1

If, instead, we integrate in w first

UL = (=1)™bnbm + (=1)™ Y (btbmet + (=1)bpibmr) (1.110)
I=1
One can check that, due to (1.109),
ule = gih =g (1.111)
Now we take |z| < |w| and get similarly
ﬁgff) = (""Dm Z(bn~lbm—l - ("Ulbn-—lbm—%-l)
I=1
U2 = —bp1m + (=1)™bnbm + (—=1)™ > (bnetbmot + (=1)bpsibmr)
=1
Again, due to (1.109)
Ul = U@ =72 (1.112)

Comparing ) with ¥, we see once more that the ambiguity only concerns the
(0,0), (—1,1), (1,-1) components. Using (3.27) we define

ab,(1,2) _ 1’“(1,2) =~ (a—b)(1,2) a—b;__1\n+m77(1,2)
(Enm + G +a ( 1) Unm)

nm 3
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The above ambiguity propagates also to these coefficients, but only when a = b. For
later reference it is useful to notice that

N0 =0, except perhaps for a=b, m=1

—1,m
N&?;I(l’g) =0, except perhaps for a=0 m=0 (1.113)

j\~7s’bl:(172) =0, except perhaps for a=b n=20

It is important to notice that the above ambiguity does not come out of the blue,
but is consistent with the general identification proposed in [2]

Neb = (V3] [0)110)2]0) (1.114)

It is easy to see that the expression in the RHS is not bpz covariant when (m,n)
take values (0,0), (—1,1), (1,—1) and the lower bound of the m,n summation in
the vertex (see above) is —1. Such bpz noncovariance corresponds exactly to the
ambiguity we have come across in the explicit evaluation of the Neumann coefficients.

1.5.3 Two alternatives

It is clear that we are free to fix the ambiguity the way we wish, provided the
convention we choose is consistent with bpz conjugation. We consider here two
possible choices. The first consists in setting to zero all the components of the
Neumann coefficients which are ambiguous, i.e. the (0,0), (—=1,1), (1,—1) ones.
This leads to a definition of the vertex (3.21) in which the summation over n starts
from 1 while the summation over m starts from 0. In this way any ambiguity is
eliminated and the Neumann coefficients are bpz covariant. This is the preferred
choice in the literature, [?, 41, 14, 44, 45]. In particular, it has led in [?] to a
successful comparison of the operator formulation with a twisted conformal field
theory one.

We would like, now, to make some comments about this first choice, with the
purpose of stressing the difference with the alternative one we will discuss next. In
particular we would like to emphasize some aspects of the BRST cohomology in
VSFT. In VSFT the BRST operator is conjectured [?, 14] to take the form

Q=co+ f: Falen + (—1)"c_p) (1.115)

It is easy to show that the vertex is BRST invariant, i.e.
3

> QR =0 (1.116)

a=1
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Due to
{9, bo} =1 (1.117)

it follows that the cohomology of Q is trivial. As was noted in [44], this implies that
the subset of the string field algebra that solves (3.57) is the direct sum of O—closed
states and bp—closed states (i.e. states in the Siegel gauge).

1) = QIA) + bolx) (1.118)

As a consequence of the BRST invariance of the vertex it follows that the star
product of a BRST-exact state with any other is identically zero. This implies that
the VSFT equation equation of motion can determine only the Siegel-gauge part of
the solution.

For this reason previous calculations were done with the use of the reduced vertex
[14, 7] which consists of Neumann coeficients starting from the (1,1) component.
The unreduced star product can be recovered by the midpoint insertion of Q =
L(cli) — c(~1)) as

|9 * §) = Qi) x4 6) (1.119)

where #p, is the reduced product.

In the alternative treatment given below, thanks to the enlargement of the Fock
space, we compute the star product, and hence solve (3.57) without any gauge choice
and any explicit midpoint insertion.

Motivated by the advantages it offers in the search of solutions to (3.57), we
propose therefore a second option. It consists in fixing the ambiguity by setting

Net,=Nf*, =0, N#&=1. (1.120)
If we do so we get a fundamental identity, valid for ﬁnm = ~7(13% (for n,m > 0),
> UnkUkm = Gnm (1.121)
k=0
Defining
X% = Ve, (1.122)
eq.(3.33) entails o
(X% XY =0 (1.123)

One can prove eq.(3.33) numerically. By using a cutoff in the summation one
can approximate the result to any desired order (although the convergence with
increasing cutoff is less rapid than in the corresponding matter case, see section
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3.1). Alternatively one can notice that, at least for n,m # 0, the same conclusion
can be derived analvtically by using the results in the literature [33].

The next subsection is devoted to working out some remarkable consequences of
eq.(3.33).

1.5.4 Matrix structure

Once the convention (3.30) is chosen, we recognize that all the matrices (E,U,U)
have the (0,0) component equal to 1, all the other entries of the upper row equal to
0, and a generally non vanishing zeroth column. More precisely

Ugo = Eoo =1

Ung = bn En() - 0, [70,1 = E()n - 57,,,0 (1124)
ﬁnm #0, n,m>0

This particular structure makes this kind of matrices simple to handle under a
generic analytic map f. In order to see this, let us inaugurate a new notation, which
we will use in this and the next section. We recall that the labels M, N indicate
the couple (0,m), (0,n). Given a matrix M, let us distinguish between the ‘big’
matrix My denoted by the calligraphic symbol M and the ‘small’ matrix Mpmy
denoted by the plain symbol M. Accordingly, we will denote by Y; a matrix of the
form (1.125), 7 = (v1, Yz, ...) will denote the nonvanishing column vector and Y the
‘small’ matrix

Yonm = 0000 + Yndnro + Yo, (1.125)

or, symbolically, Y; = (1,7,Y).
Then, using a formal Taylor expansion for f, one can show that

fl¥elwn = f[1]énodaro + (wg>n5Mo + ¥ ]omn (1.126)
Now let us define
v, = X1
Yo, = X® (1.127)
v, = X% (1.128)

These three matrices have the above form. Using (3.33) one can prove the following
properties (which are well-known for the ‘small’ matrices)

K+}fs++}/’s—:1
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Ve Yoo =12 -V, (1.129)
Yo, Yel]=0

Using (6.71, 1.127) we immediately obtain (we point out that, in particular for Y,
Yon = % ban, Yon+1 = 0 and Yy, = Xy, for n,m > O)

Y +Y,+Y.=1
Y+ysr+y-=0
YVE4YE4+Y2=1
L+ V) + Vg + V.G =0 (1.130)
V.Y, =Y?-Y
Y, Y. =0
Y., Y.]=0
GU-=Yy=Y_7,
—Vigj=(1-Y)i

These properties were shown in various papers, see [14, 45]. Here they are simply
‘consequences of (1.130), and therefore of (3.33). In particular we note that the
properties of the ‘big’ matrices are isomorphic to those of the ‘small’ ones. This fact
allows us to work directly with the big matrices, handling at the same time both
zero and not zero modes.

1.5.5 Enlarged Fock space

We have seen in the last subsection the great advantages of introducing the conven-
tion (3.30). Here we explain how to incorporate this convention in an enlargement
of the bc system’s Fock space. In fact, in order for eq.(1.115) to be consistent, a
modification in the RHS of this equation is in order. This can be done by, so to
speak, ‘blowing up’ the zero mode sector. We therefore enlarge the original Fock
space, while warning that our procedure may be far from unique. For each string,
we split the modes by and cp. In other words we introduce two additional couple of
conjugate anticommuting creation and annihilation operators 1y, 775 and &, 5{;

{éo,m}r=1, {&g, =1 (1.131)
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with the following rules on the vacuum

&I0)=0, (0]g=0 (1.132)

m0)=0,  (Om =0 (1.133)

while fg,no acting on |0) create new states. The bpz conjugation properties are
defined by

bpz(n) = —nb,  bpz(&) = & (1.134)

The reason for this difference is that 7y (&) is meant to be of the same type as cg
(by). The anticommutation relation of ¢y and by remain the same

{co,bot =1 (1.135)

All the other anticommutators among these operators and with the other bc oscilla-
tors are required to vanish. In the enlarged Fock space all the objects we have defined
so far may get slightly changed. In particular the three strings vertex (3.21,3.22) is
now defined by

Eéen) = Z Cga)TV’égb)bg)T - Wéa)bga) (1136)
n>1,m>0

With this redefinition of the vertex any ambiguity is eliminated, and one can return
to the original Fock space by introducing suitable constraints.

1.6 Sen’s conjectures

Bosonic String Theory is affected by the presence of the tachyon. D-branes in
the open bosonic theory are unstable objects and this unstability is related to the
tachyonic mode of the string ending on the brane. One can reject completely the
bosonic theory as a definitely unrealistic theory or can recall another famous example
in theoretical physics in which unstability and a “tachyon” field take place at the
same time: the Higgs mechanism in Standard Model. There, what is unstable is
the vacuum which is not the correct one, and what is tachyonic is the Higgs field,
which condenses. The analogy with String Theory is the following: we know String
Theory on the perturbative vacuum of the open string, which can be seen as the
D25-brane. So the tachyon should condense. Ashoke Sen made three conjectures
about the tachyon condensation [20, 21, 22].

1. The difference in the potential between the unstable vacuum and the pertur-
batively stable vacuum should be the mass of the D25-brane.
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2. Lower-dimensional D-branes should be realized as soliton configurations of the
tachyon and other string fields.

3. The perturbatively stable vacuum should correspond to the closed string vac-
uum. In particular, there should be no physical open strings excitations around
this vacuum.

Why String Field Theory is good for checking such conjectures? Because we are
talking about off-shell phenomena and we simply need an off-shell formulation of
string theory. Sen showed that the tachyon potential has a universal form which is
independent of the details of the theory describing the D-brane [22], and he also
related, in the formalism of SFT, the open string coupling constant g, to the D—
brane tension [22]. This ‘universality’ of the tachyon potential means that we can
choose the easiest background for the theory that we want describing the tachyon
potential. In particular, using SF'T, one can take the conformal background to be
the Boundary Conformal Field Theory (BCFT) of any bosonic Dp-brane, with the
flat 26 dimensional Minkowski space being just the space filling D25-brane. The
study of Sen’s conjectures becomes then the study of the fields at zero momentum,
living at the bottom of the tachyonic potential. The simplest of these states is
the zero momentum tachyon state. The tachyon state at zero momentum is tc;|0)
where ¢ is a constant. It belongs to the subspace #; of the whole string Fock space
7 defined as the space of states of ghost number one obtained by acting on |0) with
oscillators by, c, and matter Virasoro generators L,. The subspace H; of H is a
background independent subspace having the property that we can consistently set
the component of the string field along H — #; to zero in looking for a solution of
the equation of motion. #; is background independent for the simple reason that
there is no room in this theory for containing information on the boundary CFT
which describes any brane. Since the fields in #; have zero momenta, and hence
are independent of the coordinates on the D-brane world-volume, the integration
in the string field action over z gives the (p+ 1)-dimensional volume factor V1, so
we have

S(T) = Vpri £(T) = =V U(T) (1.137)
where we defined the tachyon potential as the negative of the lagrangian.

The string field |T") = 7'(0)|0) includes an infinite collection of variables corre-
sponding to the coefficients of expansion of a state in H, in some basis. The tension
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795 of the D25—brane in terms of the open string coupling constant gg is

1

- 2mg

(1.138)

Ta5

In [22] was shown by Sen that, for a generic Dp-brane, the tachyon potential on
it has the universal form

UT) = 27°M %(IoT(O)QT(O))-i—%(floT(O) f20 T(0) f3oT(O)>(}1.139)

where M = V,7,. If we consider the zero momentum tachyon tc; |0), then the kinetic
term of the potential is

*(0]c_1Qc1|0)

= t2<0[6_1COLOCIIO>

= —t*(0]c_1c0c1]0)

. (1.140)

(T,QT)

I

while the cubic one, calculated in the upper half plane,
(T,T+T) =t*(f 0 c(0)f5 o c(0)f57 0 c(0)) (1.141)

where f# = h7lo fP. The field ¢(z) is primary of dimension —1, so we have

foc(0) = cgf ((g)) ) (1.142)
From equations (1.39) we find
o c(0) = C(’:;, ((8))) = cé\//f) (1.143)

In the same way, we obtain

(rTemy = (WD OBy

8/3 2/3 8/3
_ ;—7t3<c(\/§) ¢(0) o(~V3))m
_ (io’—\@)ate'

4

= K3 (1.144)
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Putting into eq.(1.140) we get the first approximation to the tachyon potential

U(T = te(2)) 1 1/3v/3)3
(0) :————————wzz”Q 42 i ,3 e
FO) = —— “< 2t+3< ; )T) (1.145)
This has a local minimum at
4 3

t=1t, = <§“§> ~ 0.456 (1.146)

where
f(te) ~ —0.684 (1.147)

Following the first Sen’s conjecture
U(To) + 7 = 1(1+ f(Tp)) = 0 (1.148)

we see that the tachyon state alone satisfies the condition (1.149) as much as 68%
of the conjectured value. The tachyon field is said to be of level zero. The level [ of
a state is related to the Ly eigenvalue as

l=Ly+1 (1.149)

More generally, one truncates the string field |7") at a finite number of terms. Of
course, more space-time components one keeps, better is the approximation. More
precisely, a (m,n) approximation means to keep all fields up to level m and all
interactions up to level n. The level of an interaction is defined to be the sum of
the levels of all fields entering into it. What we just did is the (0,0) approximation.
A simplification is given by choosing the Feynman-Siegel gauge

bo|T) =0 (1.150)
The tachyon field up to level two will be
|T) = tc1|0) + uc_1|0) + vLacq|0) (1.151)

At level (2,4) we have a stationary point at t, ~ —0.541,u, ~ —0.173, vy ~ 0.051
which gives 0.948% of the exact answer. Higher level calculations give a consistency
check with very high accuracy [40].







Chapter 2

Vacuum String Field Theory

2.1 SFT at the “true” vacuum

The main problem in Open Bosonic SFT is that we don’t know how to solve the
equation of motion. Rastelli, Sen and Zwiebach [36, 37] proposed a new formulation
of SE'T, a simplified version, conjectured to be the SF'T written at the “true” vacuum,
the nonperturbative vacuum, the minimum of the tachyon potential, instead of the
usual perturbative one, which should correspond to a maximum of the potential,
the D25 brane, thus unstable. This formulation is know as Vacuum String Field
Theory. The advantage of this theory is that we are able to find exact solutions of it
which describe D25 brane (the “Sliver”), and lower dimensional ones, which correct
tensions expected for such Dbranes. In this chapter we will review the basics of this
theory and the method to find solutions of it.

Let us suppose to know ®, the string field configuration describing the tachyon
vacuum, a solution of the classical field equations following from the action in (1.1):

If we indicate with ® = ® — ®, the shifted open string field, then the cubic string
field theory action expanded around the tachyon vacuum takes the form:

(@0 + B) = (@) — = [%(5, @5)%(5, 53] (2.2)

g2

where S(®;) is a constant, which, following the Sen’s conjectures, equals the mass
M of the D-brane and minus the potential energy V(®;) = —S(®q) associated to

33
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this string field configuration. The kinetic operator @ is given in terms of @) and P,
as:

More generally, on arbitrary string fields one would define
QA= QA+ Dy A— (=1)"Axd. (2.4)

The consistency of the action (2.162) is guaranteed from the consistency of the one in
(1.1). Since neither the inner product nor the star multiplication have changed, the
identities in (1.7) still hold. One can readily check that the identities in (1.5) hold
when @ is replaced by Q Just as (1.1) is invariant under the gauge trasformations
(1.8), the action in (2.162) is invariant under 6& = QA + ® * A — A % ® for any
Grassmann-even ghost-number zero state A.

Since the energy density of the brane represents a positive cosmological constant,
it is natural to add the constant —M = —S(®g) to (1.1). This will cancel the S(®,)
term in (2.162), and will make manifest the expected zero energy density in the
final vacuum without D-brane. For the analysis around this final vacuum it suffices -
therefore to study the action

<?{3,213*5>] (2.5)

If we had a closed form solution ®, available, the problem of formulating SFT
around the tachyon vacuum would be significantly simplified, as we would only have
to understand the properties of the new kinetic operator @ in (2.4). In particular we
would like to confirm that its cohomology vanishes in accordance with the expecta-
tion that all conventional open string excitations disappear in the tachyon vacuum.
Even if we knew ®, explicitly and constructed SO(EI;) using eq.(2.5), this may not
be the most convenient form of the action. Typically a nontrivial field redefinition
is necessary to bring the shifted SF'T action to the canonical form representing the
new background. In fact, in some cases, such as in the formulation of open SFT for
D-branes with various values of magnetic fields, it is simple to formulate the various
SFT’s directly, but the nontrivial classical solution relating theories with different
magnetic fields are not known. This suggests that if a simple form exists for the
SF'T action around the tachyon vacuum it might be easier to guess it than to derive
it.

In proposing a simple form of the tachyon action, we have in mind field redef-
initions of the action in (2.5) that leave the cubic term invariant but simplify the
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operator Q in (2.4) by transforming it into a simpler operator @. To this end we
consider homogeneous field redefinitions of the type

(I) = eB ‘l’) (26)
where K is a ghost number zero Grassmann even operator. In addition, we require

K(A+B)=(KA) *B+ Ax(KB),
(KA,B)=—(A,KB). (2.7)

These properties guarantee that the form of the cubic term is unchanged and that
after the field redefinition the action takes the form

171 1
=-= |z = 2.
S) = - [3(0, ) + (w0, (28
where
Q= e Q" (2.9)
Again, gauge invariance only requires:
Q2 = 0’
Q(AxB) = (QA)* B+ (-1)*Ax (9B), (2.10)

(QA,B) = —(-1)*(4,0B).

These identities hold by virtue of (2.7) and (2.9). We will proceed here postulating a
O that satisfies these identities as well as other conditions, since, lacking knowledge
of ®y, the above field redefinitions cannot be attempted.

The choice of @ will be required to satisfy the following properties:

e The operator @ must be of ghost number one and must satisfy the conditions
(2.10) that guarantee gauge invariance of the string action.

e The operator @ must have vanishing cohomology.

e The operator @ must be universal, namely, it must be possible to write without
reference to the brane boundary conformal field theory.

We can satisfy the three requirements by letting Q be constructed purely from
ghost operators. In particular we claim that the ghost number one operators

Ch=cn+(-1)"cp, n=0,1,2,--- (2.11)
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satisfy the properties

Cncn = O;
Co(Ax B) = (CoA) * B+ (—=1)*A  (C,B), (2.12)
(ChA,B) = —(~1)*(A,C,B).

The first property is manifest. The last property follows because under BPZ conju-
gation ¢, — (—1)"*'c_,. The second property follows from the conservation law

(V5P +¢c® 1 ¢y =0, (2.13)

on the three string vertex [35].

Each of the operators C,, has vanishing cohomology since for each n the operator
B, = 5(bp+(—1)"b_,) satisfies {C,,, B,} = 1. Tt then follows that whenever C,1) = 0,
we have 1) = {Cp, Bn } = C,(Bn1)), showing that 1 is C, trivial. Finally, since they
are built from ghost oscillators, all C,,’s are manifestly universal.

It is clear from the structure of the conditions (2.10) that they are satisfied for
the general choice:

Q=> a,Cy, (2.14)
n=0

where the a,’s are constant coefficients.

There may be other choices of Q satisfying all the requirements stated above.
Fortunately, the future analysis will not require the knowledge of the detailed form
of Q, as long as it does not involve any matter operators. To this end, it will be
useful to note that since Q does not involve matter operators, we can fix the gauge
by choosing a gauge fixing condition that also does not involve any matter operator.
In such a gauge, the propagator will factor into a non-trivial operator in the ghost
sector, and the identity operator in the matter sector.

2.1.1 Factorization of the matter and ghost sector

If (2.8) really describes the string field theory around the tachyon vacuum, then the
equations of motion of this field theory:

QU =TT, (2.15)

must have a space-time independent solution describing the D25-brane, and also
lump solutions of all codimensions describing lower dimensional D-branes. We shall
look for solutions of the form:
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where ¥, denotes a state obtained by acting with the ghost oscillators on the SL(2,R)
invariant vacuum of the ghost CFT, and W, is a state obtained by acting with matter
oscillators on the SL(2,R) invariant vacuum of the matter CFT. Let us denote by
«9 and *™ the star product in the ghost and matter sector respectively. Since Qis
made purely of ghost operators, eq.(2.15) factorizes as

OV, = -V, 9V, (2.17)
and
W, = U, ™ U,y (2.18)

In looking for the solutions describing D-branes of various dimensions we shall
assume that U, remains the same for all solutions, whereas Wp, is different for
different D-branes. Given two static solutions ¥, and ¥y, the ratio of the energy
associated is obtained by taking the ratio of the actions associated with the two
solutions. For a string field configuration satisfying the equation of motion (2.15),
the action (2.8) is given by

1

Sly = —
e 692

(U, Q7). (2.19)

Thus with the ansatz (2.16) the action takes the form:

1

P <\I]g | QY, >g <\Ifm|‘11m>m = K<‘I’ml\I’m>m, (2.20)

v =
where (|), and (|)m denote BPZ inner products in ghost and matter sectors re-
spectively. K = —(6g2)~1(¥,|QU,), is a constant factor calculated from the ghost
sector which remains the same for different solutions. Thus we see that the ratio of
the action associated with the two solutions is

Slyr _ (W] Vi)
Sle ~ WnlTm)m

It is worthwhile to notice that the ghost part drops out of this calculation.

(2.21)

What is more important, is that we already know two solutions to the equation
of motion for the matter sector (2.18): they are the matter part of identity state
|I) and sliver state |Z). It is important to say that the sliver state is interpreted as
the D25-brane, the unstable vacuum of open strings [72]. Roughly speaking what
we do is to ‘build’ on the not yet found closed string vacuum a state that is the old
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perturbative vacuum. Furthermore, from the sliver we can construct lump solutions
of arbitrary co-dimension with the correct ratios of tensions of lower dimensional
Dp-branes. We will give the description of the sliver state through the operator
formalism first proposed by Kostelecky and Potting [34]. In the operator formalism,
computations are algebraically and involves infinite dimensional matrices and their
determinants: we will see that is also possible to have some analytical exact results.
The advantage respect to CFT formalism is a less abstract approach. In the next
section we will writethe solution to ¥,,,*™W,, = W, given by Kostelecky and Potting
in the form of a squezeed state: an exponential of bilinears of the string creation
operators acting on the vacuum. Okuda [54] showed analitically that the squeezed
state [V,) is indeed equal to the sliver |Z).

2.2 Matter solutions: x,, Projectors

2.2.1 The space filling D25—brane
The three string vertex [27, 32, 33] of the Open String Field Theory is given by

|Va) = / d*pa)d®p(oyd*°p(a) 6% by + P2y + p(3) exp(—E) [0, ph1as (2.22)

where
3 1 1
E=) <—2- D el Vi a3 mpt Vi a9 Sl Ve pz;>>
T,8=1 m,n>1 n>1
(2.23)
Summation over the Lorentz indices p,v =0,...,25 is understood and 1 denotes

the flat Lorentz metric and the operators a%)” ,a%)“ " denote the non—zero modes
matter oscillators of the r—th string, which satisfy

[0, 6] = 0 6mé™,  mym > 1 (2.24)

P(r) is the momentum of the r—th string and [0,p)123 = |pp)) ® Ip2) ® |ps)) is
the tensor product of the Fock vacuum states relative to the three strings. [p() is
annihilated by the annihilation operators a,(;)“ and is eigenstate of the momentum

operator pf', with eigenvalue p% .. The normalization is
(r) (r)

<p(7‘) ' p25)> = 67‘5526 (P + p')
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The coefficients V7fy have been computed in [32, 33]: capital indeces mean the
inclusion also of the zero modes (see Appendix B.

Some appreciation of the properties reviewed in Appendix C is useful. Equation
(C.15), in particular, gives

Ve = %(C + WU + w0, (2.25)
where w = €2™/3 U and C are regarded as matrices with indices running over
m,n > 1,

Com = (=1) ™6, myn>1, (2.26)
and U satisfies (C.17)

U=U*=cUucCc, U*=U0%*=1, ut=vu, U'=0. (2.27)

The superscripts 7,5 are defined mod(3), and (2.25) manifestly implements the
cyclicity property V¢ = V+1+1) - Also note the transposition property (V)T =
V. Finally, eqgs.(2.25), (2.27) allow one to show that

[CV™,CVTEl =0 V¥ 1,87, (2.28)
and

(CV12)(CV21) — (CV21)(CV12) — (Cvll)Z _ CVH,
(CV2)E 4 (CVH)® =2(CV™)® = 3(CVH)* + 1. (2.29)

We are looking for a space-time independent solution of eq.(2.18). The strategy
of Kostelecky and Potting [34] is to take a trial solution of the form:

1
— AN/26 _Z pt vt
|T,,) = N*®exp ( 5 Nuwv mEn>1 Smn Qb G, )]0) , (2.30)

where |0) is the SL(2,R) invariant vacuum of the matter CFT, AV is a normalization
constant, and Sy, is an infinite dimensional matrix with indices m, n running from
1 to co. We will assume S, to be twist invariant, that is

cSC=S. (2.31)

This corresponds to hermitianity of the string state |¥p,).
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Now, we will construct the star product of the trial solution 2.30 with itself.
Since we are looking for the space filling D25 brane which 1s, obviously, a space-time
translational invariant solution, the three string vertex (3.1) that we will use will be
reduced to the momenta independent part

5 % Z a7 gt (2.32)
Defining
5=(5 5) v=(ya yu). (2.33)
and
x*T = (a@mtyst - g@utys2y = (K;jggg) , (2.34)

and using the general formula [34]
1 t_ 1o it
(0] exp (/\iaz— — §Pijaiaj) exp (uiai - §Qijaiaj) 0) (2.35)
1 1
= det(K) V2 exp (MT K7X = 20T QK™ = T K“lPu) L K=1-PQ,

in which a; is the list of oscillators (al, a,(g)) with m > 1 and we have identified
P with ¥, @ with V,  with x and set A to 0, we finally obtain

W * Up)s = N2 det{(1 — ZV)~1/2)}26 (2.36)
1 e v
X exp [—5 T T[(1 = SV) LDy + ot . 138 ) f}] 10)s.

Demanding that the exponents in |¥,,) and |¥,, * ¥,,,), match, we obtain

21
S=V14+ (V2 vhH(1 -y (:;12) : (2.37)
Now, we multiply (2.37) by C and rewrite it as
TMZI
T=X+ (M2 M*)(1-xsp)? (TM]Q) , (2.38)
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in terms of

T=CS=5C, M =CV", (2.39)
X=M"=CV". (2.40)

Assuming
[CS,CV™] =0 ¥V 15, (2.41)

and because of (2.28) we can manipulate the equation as if T and M" are numbers
rather than infinite dimensional matrices.
Since

<1 - TX -—TM®? ) -t

J— -1 —_—
1-xv) ~TM% 1-TX

1-TX TM"™
TM? 1 ~TX> - (242)

= (1-TX)?*-T*M2M*)™ (
and using M*2M? = X? — X that comes from (2.29), we can write

det(1 — TV) = det(1 — 2TX + T*X), (2.43)
and then eliminating M'? and M? in favor of X, we finally get:

(T-1)(XT?>-(1+X)T+X)=0. (2.44)

This gives three solutions for S: the first one 7" = 1 gives the identity state | Im),
the second one has diverging eigenvalues, so we are interested in the third one

1
2X

S=CT, T=-=(1+X-+/([1+3X)(1-X)). (2.45)
The result is coherent with the assumption of twist invariance that we made (2.31)
and (2.41). Indeed, since CS is a function of X, and since X (= CV') commutes
with CV7s, C'S also commutes with C'V"*. Furthermore, since V' is twist invariant,
so is X. It then follows that the inverse of X and any polynomial in X are twist
invariant. Therefore T and S are twist invariant.

Demanding that the normalization factors in |¥y,) and |[Vp, * Up,) match gives

N = det(1 — SV)V? = (det(1 — X)det(1 +T))"?, (2.46)
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where we have used eqn.(2.43) and simplified it further using (2.44). Thus the
solution is given by

IIIfm):{det(l—X)l/zdet(l+T)1/2}26exp< 5 M > Spn att "T) 0). (2.47)

m,n>1

This is the matter part of the state found in [34] after suitable correction to the
normalization factor. From eq.(2.20) we see that the value of the action associated
with this solution has the form:

1 ro
S}‘I/ = ]{NSQ <O| exp < - 57711’11' Z Sm’n’a:fn,’a;’) exp ( Uuuz S, na'MJr UT) >

m/,n'>1 m,n>1
By evaluating the matrix element using eq.(2.35), and using the normalization:

1/7(26)

(00) = 6©9(0) = )%

(2.48)

where V(%) is the volume of the 26-dimensional space-time, we get the value of the
action to be

V(26 -
SI\II — K(27‘_)26 (1_32) 1/2}26
1/(26)
= et(l — et(1+ . .
K(Q 79 {det(1 — X)**det(1 + 3X)1/4}% (2.49)

In arriving at the right hand side of eq.(2.49) we have made use of egs.(2.45) and
(2.46). Thus the tension of the D25-brane is given by

1
T = K EREs {det(1 — X)%*det(1 + 3X)4/4126 . (2.50)

2.2.2 Lower dimensional branes

The solution (2.47) representing the D25-brane has a factorized form, 26 factors,
each involving the oscillators associated with a given space-time direction. In order
to construct a solution of codimension % representing a D(25 — k)-brane, we need
to replace k of the factors associated with directions transverse to the D-brane by a
different set of solutions, but the factors associated with directions tangential to the
D-brane remains the same. Suppose we are interested in a D(25 — k)-brane solution.
Let us denote by 2" (0 < fi < (25 — k)) the directions tangential to the brane and
by 2% ((26 — k) < o < 25) the directions transverse to the brane. We now use the
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representation of the vertex in the zero mode oscillator basis for the directions z“,
as given in Appendix C. For this we define, for each string,

ag‘:é\/gﬁ“—%ii““, \/~p +—ﬁm (2.51)
where b is an arbitrary constant (a length, from a dimensional point of view) and 2“
and p® are the zero mode coordinate and momentum operators associated with the
direction z®. We also denote by |Q) the normalized state which is annihilated by
all the annihilation operators ag, and by |Q)123 the direct product of the vacuum
|Q0) for each of the three strings.

The relation between the momentum basis and the new oscillator basis is given

by (for each string)
—K b (s 39N 87 83 (% 1 83 a
p7)) = (2m/b) M exp[— 20" + Vha'p® = Safladl] i) (252)

In the above equation {p®} label momentum eigenvalues. Substituting eq.(2.52) into
eq.(3.2), and integrating over p&), we can express the three string vertex as

Vi) = / 425 p 1y d2 p(ay d*Fp(5y 6 (pay + P2y + Pia)

exp(——- Z Nav a(r)uﬂ/’rs s)l/T 277 p(,)VJ;f (s)ot _ -mep T)V})op >|0 P)123

mn>1

V3 e BT 1 at<rre (s)o
& ((27?1)3)1/4(%0 -+ ‘2‘)> eXp<—§ Z (Naty Nagv) T) 1) 123 - (2.53)

7,8
M,N2>0

In this expression the sums over [, 7 run from 0 to (25 — k), and sum over a runs
from (26 — k) to 25. Note that in the last line the sums over M, N run from 0 to oco.
The coefficients V5% have been given in terms of V7% in Appendix in C eq. (C.7).

In Appendix C it is shown that V'™, regarded as matrlces with indices running
from 0 to oo, satisfy

Vire = %(C’ + WU + W), (2.54)

where we have dropped the explicit b dependence from the notation, Cj,y = (=1)MépN
with indices M, N now running from 0 to oo, and U, U' = U™ viewed as matrices
with M, N > 0 satisfy the relations:

U =cuc, U*=0%=1, Ut=U. (2.55)
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We note now the complete analogy with equations (2.25) and (2.27) [34]. It follows
also that the V' matrices, together with ¢ will satisfy equations exactly analogous
to (2.28), (2.29). Thus we can construct a solution of the equations of motion
(2.18) in an identical manner with the unprimed quantities replaced by the primed
quantities. Taking into account the extra normalization factor appearing in the last
line of eq.(2.53), we get the following form of the solution of eq.(2.18):

1 L
|7 = {det(l — X)Y2det(1 + T)/2}26-* exp(—inﬁ,; Z SmnafTa?1)|0)

m,n>1

®<(§7%§;m(%ﬁr + g)>k{det(1 — X’)I/Qdet(l 1 Tl)l/Z}k
exp(=3 3 Shenailail) ), (2.56)
M,N>0
where
S'=C'T, T = 2;(,(1+X’~\/(1+3X’)(1_Xf))7 (2.57)
X=cvi (2.58)

Using eq.(2.20) we can calculate the value of the action associated with this solution.
It is given by an equation analogous to (2.49):

S = K_‘_/:_(ffi dtl_X3/4dt1 3X1/4 26—k
v (27()26..19{ et( )¥%det(1 +3X)4V4}
3 e Dy2\F
% ((27r63)1/2 (Voo + 5)2) {det(1 — X")*/*det(1 + 3X") /4%, (2.59)

where V5 ig the D(25 — k)-brane world-volume. This gives the tension of the
D(25 — k)-brane to be

1 -
Tos—fp = K W {det(l - X)3/4det(1 -+ 3X)1/4}26 k

3 e Dy2\F
X ((2@3)1/2 (Vag + ‘2‘)2> {det(1 — X")¥/*det(1 + 3X")/*}* . (2.60)

Clearly for k = 0 this agrees with (2.50). From eq.(2.60) we get

To4—k 3 b\2 {det(1 — X' 3/4det 1+ 3X’ 1/4
_ ( rr _) =R. (261
275k V2rb N 2/ {det(1 — X)3/4det(1 + 3X)1/4}
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Okuyama [52] proved in an analitycal way that R = 1. Therefore VSFT describes
the correct ratios of Dp—brane:

T2d—k 1

25—k

We will see in the next chapter that this is also true if a B field is switched on
[76]. The detailed calculations are given in Appendix E.

2.3 Multiple D—branes

In [38] it was shown that it is possible to construct solutions to the projection
equation (2.17) representing multiple D-branes. We briefly review this construction.
In the next section we will show that these kind of solutions are particular cases of
an infinite class of solutions that we call “Ancestors” because they reduce to all
GMS solitons in the low energy limit.

Before to give the ansatz for the projector analog but inequivalent to the sliver,
we need to define the projectors

noo=aT T)l(l 5 [M”(l —-TX)+ T(le)z] : (2.62)
= g M- T T

Using the algebraic properties of the matrices M and X:

X+M2+M* =1,

M2 M2t :XQ—X,

(M12)2 + (le)z —1— X2,

(M12)3 + (M%) = 2X° - 3X? +1 = (1 - X)*(1+2X), (2.63)

and some useful combination of them

(M2 — M?)? = (1-X)(1+3X). (2.64)

1-TX 1 1-7  [1-X x T (2.65)
1-x 1-7’ 1+7 Vi+3x’ 1-X (@1-7)? ‘
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it is easy to see that

P1 = P1, szﬂzy CPICZ P2, (266)

and

P1+ P =1, (2.67)
]\{[12 - _]\/[21

VI-X)1+3X)"

P1 — P2 =

From eq.(2.64) we see that the square of the second right hand side is the unit
matrix. Thus (p; — pp)? =1 and

p1p2 =0. (2.68)

Multiplying the first equation in (2.67) by p; and by p, we find

P1PL = p1, Pa2p2 = p3. (2.69)

This shows that p; and p, are projection operators into orthogonal subspaces,
and the C exchanges these two subspaces.
For future purposes we call the projector [A;). The general ansatz is:

AL) = (— ¢ af¢ at + k) =) (2.70)

where ¢ and £ are infinite dimensional vectors such that

p€E=0, pé=¢, (2.71)

and ¢ = C¢ in order to guarantee the Hermiticity of [A;). Since Cp,C = p, we
have also

Pl =0, p(=¢. (2.72)
|A1) satisfies the following properties

1 A+ |2) =0
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2. A1) = |Ar) = A1)
3. (M) = (EE)

The first property will be used to fix k, the second will normalize &, and the
third will follow from the first two.

The product |A;) * |Z) is nothing but a sliver times a sliver with two oscillators
acting on it. See Appendix for details of such calculations. (It is enough to apply
the differential operator ﬁfn—u on both sides of eq.(A.12) and then setting S
and B, to zero). The result is

AL #E) =2 % A1) = (k+ T (VETHud)IE), (2.73)

Since we want |A;) * |Z) = 0, it must be

k=— (WKt =—TT(1-T%)7, (2.74)

where the last equation in (2.65) was used to simplify the expression for (VK111

We calculate |A;) * |A;) in a similar way getting:

A% A = =(ETVK )€ at ¢ allE) (2.75)
+((E RO E VK20 + (€ VEROCTVE ™)) = o) 2).

Using (A.10), the last equation in (2.65), and (2.74) one finds that
CTWVK pt=—TA-T*)¢=k. (2.76)

Furthermore (V™)1 = (VK1) Using this and eqgs.(2.74), (2.76), we see that
eq.(2.75) can be written as

[Ag) # JAs) = (€ (VK e0) (— €0l C-al + k) E). (2.77)

So the problem to have

|A1) * A1) = |Ag). (2.78)

reduces to normalize the vector £ such that
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VKNl =1, (2.79)

The normalization condition eq.(2.79) can be simplified using the first equation
in (2.65) to obtain:

FA-Te=1. (2.80)

In order to show that the new solution |A;) also represents a single D25-brane
we can calculate the tension associated with this solution and try to verify that it
agrees with the tension of the brane described by the sliver. Since the tension of
the brane associated to a given state is proportional to the BPZ norm of the state
[37], all we need to show is that (A;]A;) is equal to (Z|Z). This is a straightforward
calculation using the formula (2.35), that, rewritten for the present purposes is

<O[eXp<_%QSCL+)\CL) eXP(—%CLSaT—}-ﬁa)IO) (281)
= det(1 - 5%)exp (ﬁT e I -;—ﬁT LS(1- 818
1 p—
~A S -9,

The result is

(A1]Ar) = (E[5). (2.82)

Thus the solution described by |A;) has the same tension as the solution described
by |Z).
In a similar way:

(ZJAL) = 0. (2.83)

The BPZ norm of |Z) + [A;) is 2(Z|=). This shows that |Z) + |A1) represents a
configuration with twice the tension of a single D25-brane.

Consider now another projector [A}) built just as |A;) but using a vector &
)= (=€ af¢al +K) D), (2.84)
with

Plf’ - O) )02‘::, = 5” (285)
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k' given as
F=-TT1-17)7¢, (2.86)
and normalization fixed by
¢T1-T7)7¢ =1. (2.87)

Thus |A}) is a projector orthogonal to [A;). We now want to find the condition under
which |A]) projects into a subspace orthogonal to |A;) as well, i.e. the condition
under which |A;)  |A}) vanishes. We can compute |Aq) * |A}) in a manner identical
to the one used in computing |A;) * |A;) and find that it vanishes if:

r(1-TH¢ =0. (2.88)

Since this equation is symmetric in £ and £, it is clear that |A}) * [A1) also vanishes
when eq.(2.88) is satisfied. Given egs.(2.87) and (2.88) we also have:

(M |A) =1, (AgA7) = (B|Ay) = 0. (2.89)

Thus |2) 4 |Ay) + |A}) describes a solution with three D25-branes. To conclude,
this method allows us to generate solutions with arbitrary number of D25-branes.
One can ask if such configuration of D-branes correspond to separated or coincident
D-branes or if there is a generalization of it. In chapter 4 we will see an answer to
the second question and a suggestion to the first one.

2.4 Surface states and star projectors

We will see that projectos of the star algebra will play a fundamental role in Vacuum
String Field Theory. In order to define and to describe some of them in a conformal
field theory point of view, we introduce the definition of surface states. We mainly
refer to [63]. These surface states are Riemann surfaces whose boundary consists of a
parametrized open string and a piece with open string boundary conditions. Thinkin
of a surface state as a string field, it is possible to define a geometric operation which
corresponds to star product in SFT: one glues the right-half of the open string in
the first surface to the left-half of the open string in the second surface, and the
surface state corresponding to the glued surface is the desired product. Usually,
multiplication of a surface state to itself leads to a surface state that looks different
from the initial state. This is the reason why it is not trivial to find projectors. Let
us define the thing more precisely.
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(a)

Figure 2.1: D is the punctured disk and P the puncture. The coordinate is defined
through a map m from a canonical half disk Hy to the disk. M is the midpoint of
the string and the arcs AM and MB in D are the left and right half part. (figure
taken from [26]).

A surface state (3| is a state related with a Riemann surface . with the topology
of a disk D, with a marked point P, the puncture, lying on the boundary of D, and
a local coordinate around it. Local coordinate at a puncture is obtained from an
analytic map m taking a canonical half-disk Hy; defined as

Hy - {]¢] < 1,Im(¢) > 0} (2.90)

into D, where £ = 0 maps to the puncture P, and the image of the real segment
{I€] < 1,%(¢) = 0} lies on the boundary of D. The coordinate ¢ of the half disk is
called the local coordinate. Using any global coordinate u on the disk D, the map
m can be described by some analytic function s:

u=s(€), u(P)=s0) (2.91)

Given a BCFT with state space H, the state (S| e H* associated to the surface
2 is defined as follows. For any local operator ¢(§), with associated state |p) =
lime_o ¢(£)|0) we set

(Z[g) = (s0$(0))p (2.92)

where ( )p is the correlation function on D and s o #(0) is the transform of the
operator by the map s(£). The gluing of surfaces, confomal analog of star product
of string field states, requires a well defined full map of the half disk Hy into the
disk D.



2.4 Surface states and star projectors 51

2.4.1 Operator representation of surface states

Let us see the representation of surface states in terms of Virasoro operators acting
on the SL(2,R) invariant vacuum. We will see an explicit example later on treating
wedge states. We can write the surface state ¥| as

(x| = (0|Us = (0] exp (i v,(f)Ln> : (2.93)

n=2

where the coefficients oY) are determined by the condition that the vector field

(&) =Y v, C (2.94)
n=2
exponentiates to f,
exp (v(§)e) € = F(£) - (2.95)
We now consider the one-parameter family of maps
0
f5(€) = exp (ﬁv@gg) £ (2.96)
This gives
d
‘d—ﬁ‘fﬁ(f) = v(fs(£)) - (2.97)
Solution, taking into account the boundary condition fg=o(§) = &, gives:
fa(6) = g7 (B+9(8)), (2.98)
where
ey = L
g€ = "Gh (2.99)
Thus

&) =g 1+g(8). (2.100)

Equations (2.99) and (2.100) give f(§) if v(€) is known. They determine v(£) in
terms of f(€), but equ. (2.100) is in general hard to solve for g. When a solution
for v(€) is available, eqn. (2.93) gives the operator expression for |X).
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2.4.2  Oscillator representation of surface states

We consider the matter part of the state and the oscillators will be associated to free
scalar fields of the Boundary CFT we consider. If Gm, af, denote the annihilation
and creation operators we have:

|X) = exp (—% i al V. T,ﬁw%) |0) . (2.101)

m,n=1

and

Vit = o j[ 271 j[ 271 zmlwn (f :;g zf<(r(’fu)))2 ' (2.102)

Both w and z integration contours are circles around the origin, inside the unit
circle and with the w contour outside the z contour.

The crucial point is that when the vector field v(€), generating the conformal
map f(£), is known we can put the integral expression for the matrix V¥ of Neumann
coeflicients in another form. We consider the matrix V(B) associated to the family
of maps (2.96), and rewrite (2.102) as

Vo) = Vi = CUZ [ 20 o e log(Js(2) — £ () 2.109)

27rz 2mwn 9z Ow

Taking a derivative with respect to the parameter [,

d _ (=pymn 1 98 8
EBan(ﬁ) - %27”?5271_2 mené;%égbg(fﬁ(z) — fﬁ(wI)Z.l()él)

( (fa(z ))—U(fﬂ(w))>
f8(2) = fa(w) ’

where we have exchanged the order of derivatives and used (2.97). Integrating by
parts in z and w:

m+n+1
me 2m Zman 82 ow

d
g

an(ﬂ> _ ( )m—i—n—!—l\/“]{ 1 (f,s(Z)) - U(fﬁ(w)) (2.105)

2ms 271'2 2wt fa(z) — fa(w)

Neumann coefficients V;,,,,(8 = 1) can be calculated integrating over f.
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Figure 2.2: As above, D is the punctured disk, M the string midpoint and the arcs
AM and MB the left half and the right half of the open string. (figure taken from
[26]

2.5 Wedge states

An interesting class of surface states are the wedge states. The identity, the SL(2,R)
vacuum and the so called sliver, the state obtained star-multiplying an infinite num-
ber of vacuum, are particular wedge states. In this case, the Riemann surface is
an angular sector of the unit disk, with the left-half and the right-half of the open
string being the two radial segments, and the unit radius arc having the open string
boundary conditions. A wedge state is thus defined by the angle at the open string
midpoint, and this angle simply adds under star multiplication, as intuition suggests
using the gluing prescription with angles. The identity string field is the wedge state
of zero angle, and the sliver is the wedge state of infinite angle.
They are defined by the map

1+z’§)2/“

wa = Fal&) = ()" = (75 (2.106)
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(0 " Po ()

Figure 2.3: wedge mapping
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that sends the upper half-disk Hy into a wedge with the angle at w, = 0 equal to
o2m /n. The transformation (2.106) can be rewritten as

Z

Wy, = exp (Zﬁ tan_l(f)) (2.107)
We define (n| such that

(n|g) = (fa © #(0) (2.108)

The state that we obtain for n = 1 is the identity state, that in the coordinates wy,
is the full unit disk D, with a cut on the negative real axis. The left-half and the
right-half of the string coincides along this cut. The n = 2 is the vacuum state, and,
in the wy, plane, the image of Hy covers the right half of the full unit disk Dy in the
wy,, plane. The n — oo limit is the sliver. It is an infinitely thin sliver of the disk Dy
around the positive real axis. In the next section we will see that n = 2 is indeed
the vacuum state and that the limit n — oo gives rise to a well-defined state.

We describe now |n) taking back the wedge on the upper half plane. We define

— .1_'wn
n = 1 () ~ Tt w,

= tan ( - —;;ln wn> (2.109)

Putting together (2.107) and (2.109) we have

zp = tan (%tan”l(§)> = fu(6) (2.110)
and

(n|¢) = (fn © 6(0)) Dy (2.111)

The two description of the sliver (2.108) and (2.111)seems to be singular, in the
sense that the maps f,(£) and Fn(€) are singular in the n — oo limit. This apparent
singular behaviour is solved by noticing the SL(2,R) invariance of the correlation
functions on the upper half plane. Given any SL(2,R) map R(z) we have the relation

(H Oi(zi))py = (HR 0 Oi(zi)) by (2.112)

for any set of operators O; and with Dy denoting the upper half plane. Since the
sliver |Z) is defined through a correlation function, we can set

Ru(z) = gz C(2113)
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so that

(El@) = (f 0 6(0))py (2.114)

where
f(&) = lim Ryo f,(€)

n 2
= lim —tan (~tan“1(§)> =tan™'¢ (2.115)
n—0Q n

Since this map is non-singular at ¢ = 0, we have a finite expression for (Z[¢) for
any state |¢). We need now a prescription for * multiplicating the surface states. x*
multiplication is better understood in a third representation of the punctured disk
D, where D itself is mapped into a disk D having the special property that the
local coordinate patch, i.e. the image of Hy in 13, is nothing else that the vertical
half-disk. This is done by taking, for £ € Hy

1+
T 1—ig

W = h(§) (2.116)
It is clear that in this representation the remaining part of D may take a complicated
form. Using egs. (2.106) and (2.116) we see that

Wy, = (wp,)™? (2.117)

Under this map the unit disk Dy in the w,-coordinates is mapped to a cone in the
Wy, coordinate, subtending an angle nm at the origin @, = 0. The disk Dy mapped
in this way represents then a wedge |n). We can give now the prescription for the
* product. Les us consider directly wedge states and remove the local coordinate
patch from the disk Dy in the w,, coordinate: the left over region becomes a sector
of angle m(n — 1). If we denote by |R,) a sector state arising from a sector of angle
o, we have the identification of sector states with wedge states

In) = |Ran-1)) (2.118)

We declare that the operation of * multiplication of two wedge states Im) * |n) is
given by gluing together the two sector states |Ra(m-1)) and |Rr(_1)) identifying
the left-hand side of the string front of |m) with the right-hand side of the string
front of |n). With this prescription we obtain the rule

Ra) * [Ry) = [Rass) (2.119)
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that means
|m) * |n) = |m+n—1) (2.120)
The sliver state (n — oo) is a projector under the * product:

[Roo) * |Reo) = [Roo) (2.121)

Let us give the operator representation of wedge states. We consider U = U( In)
depending only on matter Virasoro generators L,, and ghost fields b and c such that

(n| = (0|U. Since a primary field of conformal weight d transforms under finite
conformal transformation f as
fod(z) = (f'(2))8(£(2)) (2.122)

we can write

(f'(2)%0(£(2)) = Usp(2)Us " (2.123)
with

U; = expluoLo] exp [Z ann] (2.124)

n>1

The coefficients v, can be determined recursively from the Taylor expansion of f,
by requiring

e’Uo —_ fI(O)
(2.125)
exp [ Swn0] = (FO)7 () =2+ @ttt
n>1
For instance, for the first coeflicients one finds
2 3, 5

v, =ag, Up=—a;-+az, Us= 5% — §a2a3 +ay (2.126)
One can determine eqs.(2.125) in the following way. Using the commutation relation
[Lin, ¢n) = ((d = 1)m — n)bmin (2.127)

we have

Usp(2)Us " = explv(z)0: + dv'(2)]¢(2) (2.128)



58  Chapter 2. Vacuum String Field Theory

where the function v(z) is such that
"% = f(z) (2.129)

Choosing f,(z) = tan (2tan™'(2)) to define the wedge states |n), we have

™

n? —4 n*—16 (n* — 4)(176 + 128n> + 11n%)
= — o+ ——L_4— L_
= e = L b L 1890n° °
(n® = 4)(n® + 4)(16 + 32n2 + n)
+ 1260778 L_g+ |0) (2.130)
Among them, it is possible to recognise, for particular value of n:
the Identity State (n = 1) (see [58]):
i) = 1)
= exp|L 1L 1L T L -1 10 2.131
= exp —2*5—4“1"2— 4*5—8“""’) (2.131)
the Vacuum State (n = 2):
10) = |2) (2.132)
and the Sliver State (n — 00):
Z) = oo)
1 1 11 1
= ——L o+ —L_y——L g4 ——TL gt 2.133
eXp[ 3t T gpl-1 ~ Taggle T zggl-e T 100 (2133)
2.6 The Butterfly State
The butterfly state is defined by a map from & to the upper half z plane
o= = 0, (2.134)
V142
more precisely the surface state |B) that defines the butterfly is such:
(Blg) = (fp o ¢(0))vmp. (2.135)

In the {-plane we have the half-disk: the circumference is the string, the point
§ = 1 the midpoint (second case of figure 2.4). In the z-coordinate, the open string
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€] = 1,3(€) > 0 is mapped to the hyperbola 22 — y? = £ with z = @ + iy (first
of figure 2.4). The fact that z(§ = i) = oo means that the open string midpoint
coincides with the boundary of the disk.

There is a general analysis in [63] about surface state and projectors of star
product: a generic surface state in which the midpoint of the string touches the
boundary is a projector under *-product. So the butterfly it is. This general analysis
is based on a geometric formulation of star-product as a gluing of surface states in
a precise way. We will not enter in such details. If we use (2.115) to recognize that
(2.134) can be rewritten as

z = sin(tan™'(§)) = sinZ (2.136)
we can invert the previous equation to write
Z=sin"'z. (2.137)

This is the transformation that maps the full upper half z-plane into the region

IR(Z)| < 7/2,3(2) = 0. (See third case of figure 2.4). The vertical lines (z) =

+7/2 are images of the boundary. Even though the surface occupies a portion of

the z-plane the boundary reaches the point at infinity, and so does the midpoint.
We have

dz = dz (2.138)

V(1 =2)(1+2)
The real line in the z-plane is mapped into a polygon in the 7 presentation, where
the turning points are z = &1 and the turning angles are both 7/2.
Finally, we give the @ presentation (fig. 2.4(d)). Using (77) the region [R(Z)| <
7/2,%(2) > 0 of the Z presentation turns into the full disk with a pair of cuts into

the 1 origin from @ = —1. Indeed the boundary of the surface is the arc ¥ with
0 < @ < 7 together with the line going from @ = —1 to @ = 0, plus the backwards
line from @ = 0 to @ = —1 plus the arc e? with —7 < 0 <0.

2.6.1 Operator representation of the butterfly state

We can represent the butterfly |B;) in the operator formalism. We will use the
“reguleted” butterfly |B;) defined by the map '

o % ‘
7= tan (Mm) (2.139)
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(b)

N>

2 WA A

(c)

Figure 2.4: Representation of butterfly state in various coordinate systems.

or

tanz £
z= = :
V1+2tan?z /14282
The regulator parameter ¢ must therefore satisfy ¢ < 1. (See [63] for details).

Clearly when ¢ = 1 in (2.140) we recover the butterfly as defined in (2.134). We
have

(2.140)
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I S (e ‘
Eqgs. (2.100), (2.99) give
w() =~ /2. (2.142)
Eq. (2.93), (2.95) now gives:

Virasoro conservation laws allows us to derive an interesting property of the
butterfly state,

Ks|) =0, (2.144)

where Ky = Lo — L_5. In the global UHP the vector field

Bp(z) = 22 — =, (2.145)

z

is holomorphic everywhere except for the pole at the puncture z = 0. This implies

<j[dz T(2) () f o 4(0)) =0, (2.146)

UHP

for any state |@). In local coordinate &, we have

(ro($aeTO)E - M00)),, =0 (2.147)

UHP
This gives
|Ksl¢) =0 (2.148)

which means (2.144).

2.6.2 Oscillator representation of the butterfly state

Let us represent the matter part of the regulated butterfly state in the oscillator
representation. Take 8 = t?,

£ 3 (2.149)

v(§) = 5 fa(é) = \/—T—-‘:——“ﬁ—g
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Equ. (2.104) gives

d .z " \/mnjg dw 1 fo(2)° — fp(w)’® 91z
a _ m n 2.11
/j‘mn(/j) ( 271 97’2 AL+l fﬁ( ) fﬁ(w> ( 30)
_ ( 7n+n V 77"% dw fﬂ w % dz fﬂ( ) _ (_1)m+n V mnm T
21 wm™tl Jo 2 2l 2 T
where
dw fa(w) m-1 T[F]
o 7€2m‘ writ = P gy formodd, o (251)

= 0 for m even .

Integrating (2.150) with the initial condition V(8 = 0) = 0, we find the Neumann
coefficients of the regulated butterfly (8 — ?):

/B 1) = (1) VN 2TEL dn odd,(2.152
VB (%) (1) m+an[ ]F[ =y , formand n odd,( )
= 0, for m or n even .

2.7 The Nothing State

The nothing state is defined by the relation:

(Nlg) = (fy 0 8(0))vzp (2.153)

with
N = ¢ 2.154
No =z (2.154)

vy
half-disk S as shown in Fig.2.5. Since the boundary along the vertical line passes
through the string midpoint, which is at the origin of the @-plane, this state satisfies
the criterion of being a projector of the x-algebra [63].

Under the map @w(¢) = (iﬂé theupperhal f zsz(g) plane gets mapped to the vertical

e The map fy(£) defining the nothing state and that one defining the identity
f(€) are related by

In(€) = —if(i€) . (2.155)
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So the operator expressions of the identity and of the nothing state are related
by the replacement L_o, <> (—)"L_o,. Changing the sign of L_5 in (3.3) of
[58], we immediately have

%) 9 i
N = (gexp{—aﬁL_gn}>e 10

2 2
= .. .exp(—EL_Qs) eXp(—gz—L_.g'z) exp(—L_9)|0. (2.156)

VI computed using (2.102), (2.154) turns out to be equal to én,. Thus the

mn
oscillator representation of the matter part of the nothing state is given by:

[N} = exp (-% S a;a;> 0. (2.157)

m,n=1

The nothing state is annihilated by all even operators,
Kop|Ny =0 V1, (2.158)

where Ko, = Lon — L_op, is a sort of reparametrization of the cubic vertex of
SFT. In a similar way to the butterfly case, the globally defined vector fields
in eqgs. (2.144)-(2.148)

- 1 - 1 6
Uo(2) =—;+4z, v4(z):~;§+;—82, (2.159)
implies
K3N) =0, K4N)=0. (2.160)
More generally, the commutation relations
[Km, Kn) = (m—n)Kpin — (=1)"(m +n)Kn_p (2.161)

imply (2.158) for all n. On the other hand, the identity string field is annihi-
lated by all, even and odd, vertex reparametrizations.
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Figure 2.5: The geometric view of the nothing state: the full disk S minus the local
coordinate patch, which fill the whole disk. Thus the riemann surface collapses to
nothing.

2.8 General butterflies

The generalized butterfly state | B,) is defined through a generalization of eq. (2.134)
to

z= %sin(atan“l ) = fa(6). (2.162)

It follows that eq. (2.136) is generalized to

1
z = —sin(az).

- (2.163)

Looking at egs. (2.136) and (2.163) it is possible to see that the generalized butterfly
is a sort of rescaling of the Z coordinate by a factor a. In the upper half plane, it
can be seen as the region —7= < ®(2) < £ (third case of figure 2.4 corresponds to
a =2). Let us call this region C,.

From eq. (2.162) we can see that the map f,(£) is singular at the string mid-point
§ = 1. In particular the midpoint is sent to tco and hence touches the boundary
of the upper half z-plane. There is a general analysis in [63] about surface state
and projectors of star product: a generic surface state in which the midpoint of the



2.8 General butterflies 65

string touches the boundary is a projector under *-product. So it is the generalized
butterfly. Note that the case o = 1:

¢
E (2.164)

fa=1 = _\/—i—:?;

50 |Ba=1) is nothing but the butterfly while for a = 0 we have :
fomo =tan"t . (2.165)

80 |Ba=o) is the sliver.
o) is a family of projectors, interpolating between the butterfly and the sliver. For
a = 2 we have the map

£
1+62

which corresponds to the ‘nothing’ state.

(2.166)

foz=2 =

/20
+1 arctanh t/ o

—T/4 /4 /200 m/0—T/4

Figure 2.6: The geometry of C,; in the complex z plane. The shaded region denotes
the local coordinate patch, and the lines R(2) = —n/4, R(Z) = 7/a — 7/4 are
identified.

We can regularize the singularity at the midpoint and define the regularized
butterfly by generalizing defrbut to

1 tan(atan™t§) 1 tan(az)
o, /1+2tan?(atan™t &) @ 4/1+ 2 tan®(aZ) .

z = fau(£) (2.167)
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In the Z plane we get

(Baile) = (f¥ 0 6(0)) ¢ (2.168)

a,t !

where C,, is the image of the upper half z plane in the Z coordinate system and
FO(€) = tan~ £, Note that the local coordinate patch always occupies the same
region |R(Z)] < 7, I(2) > 0, since Z = tan"' £.

Note that for a = 2 the region of C, ; outside the local coordinate patch collapses
to nothing. For this reason we call the associated surface state the ‘nothing’ state.

Figure 2.7: The image of C, in the complex @ = €?? plane. The shaded region
denotes the local coordinate patch.

2.9 Other Projectors and Star Subalgebras

There are other projectors whose Virasoro representation is as simple as that of the
butterfly and there are subalgebras of surface states that generalize the commutative
wedge state subalgebra.

2.9.1 Butterfly-like projectors

Consider the vector fields

Vi) (€) = —g £t (2.169)



2.9 Other Projectors and Star Subalgebras 67

which generate the diffeomorphisms [?]

0 ¢
= f(”)(Q = exp (W”)(Qg%) §= W . (2.170)

The associated surface states are

Ba(8)) = exp (2 (=120 10). (2.171)

For even n one can readily implement the projector condition f(§==+i)=cobya
choice of the parameter 5. Indeed, this condition fixes

B = —(—)”/2 , n even. (2.172)

We therefore obtain candidate projectors

m 1
|Pam) = exp((—1)™5~Loam ) 10} (2.173)
The case m = 1 is the canonical butterfly, and the next projectors are
1 1 1
GXP<ZL_4) |O> , €exp (—-6—_[/_6) \0> ) exp (“B—L_.g) lO> e (2174)

and so on. These projectors obey the conservation law
Kom|Pom) =0, (2.175)

which is the obvious generalization of PK and can be proven in the same way
considering the global vector fields

Bom(2) = 2(=1)" 1z — 272 (2.176)

2.9.2 Subalgebras of surface states

The family of wedge states |, we saw, defined by the maps
T 2
2=3 tan(; arctan(f)) : (2.177)

obeys Ki|, = 0, for all values of the parameter 7, 1 < r < co. The wedge states
interpolate between the identity |; = | and the sliver, oo = |2 There is also a family
of states all annihilated by K, interpolating between the identity and the butterfly,
and also containing the nothing state. They are defined by the maps

o ___L B 1_52 202
Z“gi)(g)m\/‘fﬁ[l <1+§2> } : (2.178)
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For y = —1 we recover the identity, for p = 1/2 the canonical butterfly and for
t =1 the nothing state. The condition gf,,z)(iz') = 00 1s satisfied for u > 0, so all

the states with ¢ > 0 are candidate projectors.

The key ingredient in such subalgebras is to belong to the kernel of K, which is a
derivation of the star algebra and so every such family will be closed under the star
product. More generally, for any given integer n, let us consider the map z = g(”)(f)
that defines a surface state annihilated by K. The general form of ¢(™ (€) is found
requiring that the vector field

dz

ag

is globally defined in the Upper Half Plane, taking into account that fact that g™ (&)
dg™(0)
3

Un(2) = (€™ = (=1)ng™H), (2.179)

must have a regular Taylor expansion in £ = 0 with g™ (0) =0, = 1. Since
Un(z) must have a pole of order (n — 1) at z = 0. the form for such a vector field is

~ Pn-i-l (z)

Un(z) = , (2.180)

zn—1
where F,1,(2) is a polynomial of order (n + 1). The order of P,,; is fixed by the
requirement that the vector field is regular at infinity, lim,_,., z‘217n(z) = const.
The differential equations are different in even and odd cases:

1 1 ~,5n =1
il L N (- 2.1
o dln (1 n 5“) Pl dz  formneven, (2.181)
L darctan(&") o dz  forn odd
_— r = .
n Poii(z)

Demanding that the surface state is twist even requires that z be an odd function
of &, and this restricts the polynomial P,.; to contain only even powers of z. For
n =1, the most general twist even solution is the family of maps defining the wedge
States.



Chapter 3

Star democracy in open SFT

The aim of this chapter is to write down the relations among the three different star
products used in OSFT, the matter one and the two ghost, clarifyng, in particular,
the difference between reduced and twisted ghost star product.

Open Bosonic String Theory has matter and ghost sector: the first one is made
by embedding coordinates in the 26 dimensional target space, the second one is a
bc system with conformal weights (2, —1).
Vacuum String Field Theory is formally identical to Witten's one, except for the
kinetic operator, which is no more the usual BRST charge, but a c-midpoint inser-
tion. In such a theory the ghost sector is completely decoupled from the matter,
hence solutions can be found in a factorized form matter ® ghost. Such solutions
were obtained following two parallel methods: one which is algebraic and is based
on the oscillator expansion of the string field [34, 36, 37], the other is based on the
Boundary Conformal Theory which describes the original unstable D-brane config-
uration [39, 63] .
The two approaches, although very different in the formalism, were shown to lead to
the same results, first numerically by level expansion analysis, and then analytically
in [54, 45] by making use of the continuous basis of the star product.
Moreover, if for the matter the correspondence between algebraic and conformal ap-
proach is quite clear and actually relies on the isomorphism between CFT fields and
their Fourier transformed oscillators, the correspondence in the ghost sector is more
subtle since it compares, on the one hand projectors squeezed states in Siegel gauge
build up with oscillators of the bc system [14] and, on the other hand, projectors
surface states in a bc CFT, twisted by one unit of ghost current [39] in order to have
a star product preserving the ghost number.

69
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Since, when restricted to Siegel gauge, we can define the reduced star product which
is also ghost number preserving, it would be natural to identify the reduced star
product on the algebraic side with the twisted star product on the BCFT side but
this is actually not correct, as we will show. The two product are different: they
have different Neumann coefficients although they define the same sliver-projectors.
The picture which arise at the end of our analysis is that of three star products
matter, ghost and twisted ghost, each of them can be defined independently from
the underlying CFT, and all sliver-like projectors have the same Neumann coeffi-
cients, up to a minus sign. It is interesting to note that such equality of solutions
is implied in a bijective way by the Gross-Jevicki relation [33] which connects the
ghost Neumann coefficients to the matter ones. Morover the relevant structures of
the matter star product (at least at zero momentum) are completely encoded in the
Neumann coefficients of the twisted bc system. This fact puts the bc CFT and its
twisted variant, in an equivalent position with respect to the matter.

The chapter is organized as follows. We briefly recall definitions and properties
of the matter and ghost product from a conformal point of view, as done in [79)],
then we perform the twist as in [39] and define properly the twisted star product.
Then, we determine the relations that connect the three vertices in the game. In
particular we show that the twisted CFT defines, up to a sign, the same coefficients
as the matter.
Finally, we derive the algebraic expression of the twisted sliver and identify it with
the sliver-like state in Siegel gauge, through the Gross—Jevicki relation [33].

3.1 The three stars

In this section we briefly review the construction of the interaction vertex of matter
and ghost sector. Details will be almost skipped and can be found in [79]

3.1.1 Matter star

The matter part of the three strings vertex [27, 32, 33] is given by

[Vs) = /d26p(1)d26p(2)d26p(3)526(.’P(1) + pe2) + p3y) exp(—E) |0, p)12s (3.1)
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where
(1
a rab v rab  (b)v b v
= Z (5 Z Mg Vot Pt o+ 277 vP(ayVon @ aP"t + 77;wp( 3 Voo p[(b) (3.2)
a,b=1 m,n>1 n>1
Summation over the Lorentz indices u, v = 0, .. ., 25 is understood and n denotes the

flat Lorentz metric. The operators a%)“ , a%‘i)” " denote the non—zero modes matter

oscillators of the a—th string, which satisfy
[al®# aO1] = 5,6, m,n > 1 (3.3)

Py is the momentum of the a-th string and [0,p)1az = |p(1)) @ [p(2)) ® ID(3)) is
the tensor product of the Fock vacuum states relative to the three strings. [p)) is
annihilated by the annihilation operators o' and it is eigenstate of the momentum
operator p(a) with eigenvalue p(a). The normalization is

(Pl Plyy) = 0a60”° ( + 1)

The conformal definition of the vertex starts with the gluing functions

folze) =a*°f(2),a=1,2,3 (3.4)
where
1+iz\%
i) = () (3.5)
o = &%

The interaction vertex is defined by a correlation function on the disk in the following
way

/ bxdxx = (fr 0%(0) f20 6(0) F5 0 X(0)) = (Valh|é)slx)s (3.6)

Now we consider the string propagator at two generic points of this disk. The
Neumann coefficients N are nothing but the Fourier modes of the propagator with
respect to the original coordinates z,. We shall see that such Neumann coefficients
are related in a simple way to the standard three strings vertex coefficients. Here
we will deal only with the zero momentum vertex, which is the one which is strictly
connected to the (twisted) ghost vertex.

The Neumann coefficients N2 are given by [2]

Na'b = (Vla(a)a_mlO %2772 j[ ;i:f; ;n wlm L/z )(fa( ) 1f( ))Qfls(wlz))?)
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where the contour integrals are understood around the origin. It is easy to check
that

NE = N
b b

No = (=1)"™ Ny, (3.8)
b . +1,b41

Nﬁm - N;?lmn

In the last equation the upper indices are defined mod 3.
Let us consider the decomposition

-

After some algebra one gets

Com + @ Uy + a“’bUnm> (3.9)

dw 1 1 1 1
Crm = 2/12 21 2" wm (1+ zw)? T (z — w)Q) (3.10)
_ 1 dw 1 1 /f*(w) f(z) 1 1
Unm = 3+v/nm 2’/T’L %z_”ﬁ(ﬂ(z) +2f(w)> ((1 + zw)? * (2 — w)2>
-~ -1 dz [dw 1 1 /f%z2) f(w) 1 1
Unm = 3/nm | 2mi ZF%ZEW(#(U))““ ))((1+zw) +(z—w)2)

The integrals can be directly computed in terms of the Taylor coefficients of f. The
result is

Unm = \/———Z l: n le l+2bn lbm l( )m
—(=1)""Bpy 1B — 2bp by (—1)™H (3.12)
Um = (=1)""™ Uy, (3.13)

where we have set,

f(z) = Zbkzk
k=0

o) k
FPz) = D Bt ie Bi=) bybiy (3.14)
k=0

p=0

Using the integral representation (3.11) one can prove [79]

S Unklin = Gy S Ot = b (3.15)

k=1 k=1
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In order to make contact with the standard notations (for example [36]) we define!

Vir, = (=1)™™/am Ny, (3.16)
and
M = Ccv!
M, = CV*P (3.17)
M_ = CvV*%

Using (3.15), together with the decomposition (5.29), it is easy to establish the
following linear and non linear relations (written in matrix notation).

M+M +M_=1
M?+ M2+ M2=1
M3+ M? =2M° - 3M* +1

M, M_ =M~ M (3.18)
[M, My] =0
{M-l*a ]\4—] =0

3.1.2 Ghost star
To start with we define, in the ghost sector, the vacuum states |0) and |0) as follows
0) = coc1|0), |0) = ¢,]0) (3.19)
where |0) is the usual SL(2, R) invariant vacuum. Using bpz conjugation
en = (=D ey, by — (1) P, 10y — (0| (3.20)

one can define conjugate states.
The three strings interaction vertex is defined, as usual, as a squeezed operator
acting on three copies of the bc Hilbert space

> Sl a By e (@) fab )
(V] = (0] 0] s(0]eB  =Tapm T o Nimbm (3.21)

Under bpz conjugation

3 o0
V5) = €2 [0)1]0)al0)s, B =— Y D (-1)mm@ING Ot (3.22)

a,b=1 n,m

IThe factor (—1)"*™ is there because these coefficients refer to the Ket vertex |V3), so bpz is
needed.
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To make the propagator SL(2,R) we have to insert three c zero modes at points &;

2]

(b(z)e(w)) = - _1 ” H Z)__S (3.23)

So we get

Nav = (Vb5 0)1s (3.24)
— f i e e e [T 2 B0

i zn-1 wm+°

It is straightforward to check that
Nt = Nephbtt (3.25)
and (by letting z — —2, w — —w)
Nap = (=1)™™ N, (3.26)
As in the matter case, we consider the decomposition
Neb = %(5'&771 & T + 0T ) (3.27)

After some algebra one finds

_j{ jgdw 1 ( 1 w )
nme 271 27mz”+1wm+1 142w w—z

nm=7{2m dw 11 ﬂz)( L s (3.28)

2mi 2T wmt flw)\1+ 200 w—2

l

!

il
3
3

I

}[ dw 1 1 f(w) ( 1w )
2ni ) 2mizrtlwmtl f(2) \1 420 w-—2z
It is easy to show that

Unm = (_1)n+mﬁnm (329)

As discussed in detail in [79] the evaluation of these integrals is sensible to radial
ordering in the (n, —n), components. We fix the ambiguity by setting

Nt =N =0, N&=1 (3.30)
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Which corresponds to

5]\]1\/[ = (—1)]\751\71\/{ N, M >0 (331)
M

Uvy = (—1)MbNbM+(—1)MZ@N_le_Z+(—1)le+le-l) (3.32)

=1

where the b,’s have been defined in (3.14). The reason for this is that we get the
fundamental identity

Z Unxxym = Onmu (3.33)
K=0

As for the matter case we will consider from now on the coefficients of the Ket
vertex

Vi = —(=1)""" Niy (3.34)

3.1.3 The twisted star

In [39] another type of star-product is considered. It represents the gluing condi-
tion in a twisted conformal field theory of the ghost system. The twist is done by
subtracting to the stress tensor one unit of derivative of the ghost current

T'(z) = T(2) — 0jgn(z) (3.35)

This redefinition changes the conformal weight of the bc fields from (2,-1) to (1,0). It
follows that the background charge is shifted from -3 to -1.As a consequence, in order
not to have vanishing correlation functions, we have to fix only one c zero-mode. In
particular, the SL(2, R)-invariant propagator of the bc system is

b()e(w)y = ——2=8 (3.36)

z—wz—¢

where £ is one fixed point.

In [39] it was shown that the usual product can be obtained from the twisted one
by inserting a ng, = l-operator at the midpoint which, on singular states like the
sliver, can be identified with a c—midpoint insertion. This implies that, on such
singular projectors, the twisted product can be identified with the reduced one.
The twisted ghost Neumann coefficients are then defined to be
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Arlab dz / . -1 fb(w)
Vnm ‘74 2 jg m+1 ( )fa(2> - fb(w) fa(z)
dw 1 1 4i 1 a’ f(w)
}1{ omi ) 2mizt w™tl 31+ 2%a asf(z) —af(w) 20

As in (3.24) these coefficients refer to the Bra vertex, the corresponding coefficients
for the Ket vertex are

V! ab= —(=1)"tm N (3.38)

We will see in the next section how to compute such coefficients using previous
results. This will lead to interesting connections with the other star-products.

3.2 Relations among the stars

In this section we will show how the stars products defined above are related to
each other. In particular we will show the explicit relations which connect all the
Neumann coefficients in the game, so at the end the three star star products are
homeomorphic and in this sense can be considered equivalent.

3.2.1 Twisted ghosts vs Matter

The commuting matter Neumann coefficients which appear in (3.18) are given by

dw 1 1 1
Ma.b — / |
" i e O ) 69
We can rewrite them as
dw 1 1 1
Ma,b — o
" i ari o T

dwl 1 ful2)
\/‘f omi | 2mi 2wt fo(z) — fo(w) (3.40)

where we have integrated by part to respect the variable w. Now, recalling

falz) = 31j22“f() (3.41)

we obtaln

m dw 1 1 4 1 a°f(z)
Mab — —_ — 42
nm }{ omi | 2mi zn wmt 31+z22a0f(z) — abf(w) (3.42)
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Let us now consider the corrisponding twisted ghost Neumann coefficients

5#7',3 = (C‘ /ab nm
_ 7( 7{ dw 1 faz)  folw)
omi | 2mi zn wm“ (fa(2) = fo(w)) fa(2)

_ dw 1 47 1 abf(w)
= 7{971"1, j{ 2mi 2" wm+1 31+ 22 (@ f(z) — atf(w)) (3.43)

This coefficients are not symmetric if we exchange n with m, however we can easily
symmetrize them by the use of the matrix E,,, = /1.

Yy Erly’etp (3.44)

It is now easy to show the following

dw 1 1 4 1 (&'f(w)—af(z))
E—l }/labE m A{ab — %
( Jam + Mo, \/ 2mi ) 2miznwmtl 3 1 + 22 (aof

(
dw 1 1 41 1
= U = 4
( f‘)W’L 27‘(’2 7”wm+131+22 0 (3 5)

the last equality holding since there are no poles for n,m > 1.

So we obtain
E7YY%E = —M® (3.46)

a remarkable relation between twisted ghost and matter vertices, which is the same
relation that holds in the four-string vertex between the non-twisted ghost and the
matter Neumann coefficients [33]. This relation proves also that the ghost integral
is independent of the background charge, for n,m > 1: the matter integral, indeed,
can be seen as the ghost integral without the background charge®. As a consequence
of the relation with the matter coefficients we can derive all the relevant properties
of the twisted ghost Neumann coefficients, by simply taking the matter results and
change the sign in odd powers.

Y4V +Y! =-
Y24+YP2+Y2 =1
VB4 Y8 =2Y"® 4372 1

VIV =Y?2+Y" (3.47)
Y,Yi]=0
V1, Y] =0

2The independence of the background charge is also crucial to prove /a0 = C'baC'
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3.2.2 Twisted vs Reduced

The relation between the twisted and non-twisted ghost Neumann coefficients can
be now obtained using the previous relation

Y'=-EME™! (3.48)

and the Gross-Jevicky relation [33]?
M

Y:E1+2M (3.51)
between matter and non-twisted ghosts. So, finally, we have
y!
Y = Ty (3.52)
or
Y
Y' = T (3.53)

The Witten’s action represents open string theory about the trivial unstable
vacuum |¥g) = ¢;]|0). Vacuum string field theory (VSFT) is instead a version
of Witten’s open SFT which is conjectured to correspond to the minimum of the
tachyon potential. As explained in the introduction at the minimum of the tachyon
potential a dramatic change occurs in the theory, which, corresponding to the new
vacuum, is expected to represent closed string theory rather that the open string
theory we started with. In particular, this theory should host tachyonic lumps
representing unstable D-branes of any dimension less than 25, beside the original
D25-brane. Unfortunately we have been so far unable to find an exact classical
solution, say |®q), representing the new vacuum. One can nevertheless guess the
form taken by the theory at the new minimum, see [?]. The VSFT action has the
same form as Witten’s one, where the new string field is still denoted by ¥, the
* product is the same as in the previous theory, while the BRST operator @ is

3This relation, as noted in [70] contains the map

-z
1+ 22

P(z) = (3.49)

which is a PSL(2,R) transformation that squares to itself

PoP(z)==z (3.50)
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replaced by a new one, usually denoted Q, which is characterized by universality
and vanishing cohomology. Relying on such general arguments, one can even deduce
a precise form of Q ([?],[41], see also [14, 44, 45, 46, 47, 48] and [38, 50, 7, 51, 42,
49, 64]),

Q = Cp+ (_1)71 2(6271 —+ C——?.n) (354)

n>0

Now, the equation of motion of VSF'T is

QU = —U x ¥ (3.55)
and nonperturbative solutions are looked for in the factorized form

UV=v,®V¥, (3.56)

where ¥, and ¥,, depend purely on ghost and matter degrees of freedom, respec-
tively. Then eq.(3.55) splits into

QU, = -, 7, (3.57)

Uy = UpxT, (3.58)

We will see later on how to compute solutions to both equations. A solution to
eq.(3.57) was calculated in [39, 14]. Various solutions of the matter part have been
found in the literature, [?, 41, 38, 50, 34, 63].

3.3 Solving the ghost equation of motion in VSFT
We are now ready to deal with the problem of finding a solution to (3.57)

Q) + ) * |¢) =0 (3.59)

Since now we are operating in an enlarged the Fock space, @ must be modified,
with respect to the conjectured form of the BRST operator (1.116) in VSFT, in the
following way

Q — Q(en) =Cp— Mo+ 773 + Z f’n(cn + (_1)nc_n) (360)

n=1 -
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we see that the vanishing of f,, for n odd is consistent since 7 has no odd components,
while for n even we have

= Z %(*Uh (5271,% - [7271,2/;> (3.74)
=1

The second sum is evaluated with the use of the integral representation of U
(3.28)

= B }{ (z)( 1 w )
a2k = o 2mz2n+1 w2k+1 fw)\14+zw  w—=z

= 1 1 1 f(@) 1 w

= —= % 27 27rz 2 1 + w? f(w) <1 T wo z) (3.75)
1 11

B mg%%z 72”+1f(7)<1~ f(z)1+z2>

= ——an'i‘ Z 52n2L

The ¢-piece cancels with the one in (3.74), while the remaining one is precisely yap.

The derivation in (3.75) requires some comments. In passing from the first to
the second line we use Y 72, (—1)* -5 = —L 5, which converges for |w| > 1.
Therefore, in order to make sense of the operation, we have to move the w contour
outside the circle of radius one. This we can do provided we introduce a regulator
to avoid the collapsing of the contour with the branch points of f(w), which are
located at w = 4i. With the help of a regulator we move them far enough and
eventually we will move them back to their original position. Now we can fully rely
on the integrand in the second line of (3.75). Next we start moving the w contour
back to its original position around the origin. In so doing we meet two poles (those
referring to the ; + —— factor), but it is easy to see that their contribution neatly
vanishes due to the last factor in the integrand. The remaining contributions come
from the poles at w = z and at w = 0. Their evaluation leads to the third line in
(3.75). The rest is obvious.

As a result of this calculation we find that eq.(3.71) becomes

Q(en)'g(en)> + |‘§(en)> = (co — WO)IS(en)> (3.76)

Finally, as a last step, we return to the original Fock space. This can be done by
imposing the condition ¢y — 1y = 0 on the states, i.e. by considering all the states
that differ by the application of ¢y — 79 as equivalent. Then the RHS of eq.(3.76) is
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in the class of 0. We also notice that this constraint implies that cg, 1, 773 effectively
collapse to a unique mode cy. It also implies that the relative conjugate modes
bo, o, 58 also collapse to bg.

Let us collect the results. In the original Fock space the three string vertex is
defined by

Br= Y oty (8.77)
n>1,M>0

eqs.(3.63,3.64) becomes

|5) = Nexp ( > Sambl, + Zc;5n0b0> 10) (3.78)
n,m>1 n>1

|$) = Nexp ( > cLSnmbI,J 10) (3.79)
n,m>1

It is now easy to prove, as a check, that

9|8y +18) =0 (3.80)
where -
Q = Cp + Z("‘l)n(CZn + C—Q'n) (381)

The above computation proves in a very direct way that the BRST operator is
nothing but the midpoint insertion ( z = ¢ ) of the operator #(c(z) — ¢(2)) [?]. A
different proof of this identification, which makes use the continuous basis of the
x—algebra [63]), was given in [45].

3.4 Slivers

In this section we review the algebraic derivation of the sliver state in matter and
ghost sector. Then we compute algebraically the slivers in the twisted ghost sector
and show how identity of such states is implied by the relations (3.52) between the
Neumann coefficients in the game.

3.4.1 Matter sliver and Ghost solution

The projection equation in the matter sector

[V)m = [$)m *m [¥)m (3.82)
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can be solved as in [34, 37], by the ansatz

)m = Nexp ( > a:zsnma;> 0) (3.83)
s = csc (3.84)

where .
T=0§=— <1+M~— \/(1—M)(1+3M)) (3.85)

The ghost equation of motion is

Ql)g + ) g *g [10)g =0 (3.86)

This equation is easy to solve if we use big matrices in order to handle at the same
time both zero and non zero modes (see [79] ). The relevant results are

W), = Nyexp ( > c;nmbjn> 16) (3.87)

_ o= %(1+Y—\/(1~Y)(1+3Y)) (3.88)

Q = q+/f-E+ceh (3.89)
7 v

f=1% (3.90)

Using the integral representations (3.28) one can actually prove that Q is a midpoint
insertion [79, 45]

Q= o+ 3 (~1)"(ean + eoam) = o (eld) — (1) (3.91)

n=1

3.4.2 The twisted sliver in the algebraic approach

We have seen that the Neumann coefficients of the star product in the twisted CFT
coincides to (minus) the matter ones at zero momentum. This implies that we can
solve the algebraic equation for projectors, as for the usual ghost star product, but
now using the linear and non linear relations (3.47).

So we impose the projector equation

15) = 15)"+"|S)’ (3.92)



3.4 Slivers 85

with the ansatz
|S)" = Nexp < > CESJlmbfn> 0% (3.93)
n,m>1

we can safely follow the way of the non twisted case [14, 79] and arrive at the

equation
3 ) ) 3 i }Z ! TI O Y—I YPI ’
T'=CS=Y +(Y'4,Y )7 2 <L,r> whereX! = ( 0 T’) : V' = <Y_’ Yt) 1

D(=Y'T"?+(1-Y")T"=Y") = 0(3.94)which, apart from the trivial solution 7" = —1,
S
gives

1
[ [ I Ve A i __ v
T =05 = 3 (1-v' - I+ V)T -3 ) (3.95)
It is interesting to compare it with the algebraic projector w.r.t. the reduced product
:—L(y+Y—\A1—Yx1+mq) (3.96)
2Y

The equality of this two solutions holds if and only if the following relation between
twisted and non twisted Neumann coeflicients is obeyed

, Y
1427

(3.97)

which is exactly (3.52). This shows that equality of solution in VSFT is equivalent to
the statement (3.51) which, on the other hand, have its explanation via the 4-string
vertex [33].

5 As usual we choose the square root branch cut which doesn’t have divergence as Y’ — 0.







Chapter 4

Solitons in noncommutative field
theory, string theory with B field
and D-branes

The third of Sen’s conjectures says that lower dimensional D-branes, lower respect
the D25 brane, are solitonic excitations of the tachyon potential. So, in principle,
one could take the effective action of bosonic string theory for the tachyon, obtained
integrating out massive string field and look for solitonic solutions and the check if
such solutions exist and share some aspects of D-brane physics. Unfortunatly, the
tachyon is a scalar field and there are no non trivial solitonic solutions of scalar
field theory. But things are different in the noncommutative case. This is the
crucial point. Gopakumar, Minwalla and Strominger found an infinite class of these
noncommutative solitons, the so called GMS solitons that will play an important
role in the next chapters of thus tesis, and Harvey, Kraus, Larsen and Martinec
proposed a description of D-branes as noncmmutative solitons, achieved turning on
a B field in the string theory action. We will see that the inclusion of the B field in
Vacuum String Field Theory allows to unify, in a natural way, these two description
of D-branes as solitons of noncommutative theories.

4.1 Open Strings in a Constant B Field

Let us review the link between string theory in the presence of a B field and non-
commutative field theories, following [5, 6].

Let us consider an open string ending on a Dp-brane in the presence of a constant
Neveu-Schwarz B field. Since the components of B outside the brane can always be

87
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gauged away the rank  of B will be » < p + 1. The worldsheet action is

1 . - / - 2%
S = / d’c [gwaa,\:“aa.x Y+ 2o 6“bBﬁ,,,,aa_X”8bX
dra’ Jx
1 ‘ 2 e sV 1 . e sV
= — [ P0g,0.X X" + = ¢ B.X"9X", (4.1)
4o n 2 %

where ¥ is the string worldsheet that we take with Lorentz signature, and 8, is the
derivative tangent to the worldsheet boundary 3. Since the term proportional to
B, can be written as total derivative term, it does not affect the equation of motion
but the boundary condition, which reads as

GO X" + 2ma/ B, 0, X* . 0, (4.2)

where J,, is the normal derivative to 8. The new dimensionless parameter a'B,,
determines which type of boundary condition, Neumann or Dirichlet, is dominant
in (4.2). If &/B,,, > g, along the spatial directions of the brane, the boundary con-
ditions become Dirichlet. Indeed, in this limit, the second term in (4.2) dominates,
and, with B being invertible, (4.2) reduces to 8;X7 = 0. For B = 0 we recover
Neumann boundary conditions in (4.2).

It is important to remark that the presence of a B field has a physical effect
only along the brane and not outside it. This is because outside the brane there is
always the possibility of making a ‘gauge transformation’ B — B + dA that sets
the condition B = 0. Along the brane lives also the U(1) gauge field of the string
endpoints. It is described by the action

1
2ma! %

S(A drA,(X)0, X" = e VO X X" . 4.3)
H - 2

drad

Therefore for open strings B and F' always appear together in the combination
F = B—F, and the ‘gauge transformation’ above, when performed, has now physical
effects on the U(1) gauge field. The combination F = B — F is indeed invariant
under both gauge transformations for the one-form gauge field A

A—+A+d\, B—B (4.4)
and for the two-form gauge field B
B—B+d\, A—A+A. (4.5)

From now on we will restrict our analysis to the case of the presence of the B field
only.



4.1 Open Strings in a Constant B Field 89

Boundary condition can be rewritten in the convenient form
E,0_-X"= (ET)W&LX” (4.6)

where E,, = g, + 27a’B,,, and 04 are derivatives with respect to the light cone
variables ¢* = 7 & o. The string coordinates X*(o,7) satisfying the boundary
condition (4.6) have the following expansion:

X* = =p —I—Oz E M G o + (B )Wgupppo--*-]

Ty Z M gy e+ (BT g 0067 (4)

'n,*O

Let us perform a Wick rotation on the worldsheet in order to map it onto the upper
half plane: 7 — —iT, z = €™ 2 = ¢ (0 < 0 < m). The boundary conditions
become

E,,0:X" = (E"),,0,X" (4.8)
that are imposed on the real axis z = Z. The propagator is

(XM(z,2)X"(#, 7)) = —d [g“” In|z—2|—g¢g"In|z — Z|

1 =
FG™ |z — 7P+ —— 0 In 2 4 DW} (4.9)
2o’ z—2z

where

G = (B g (BT

B 1 1 w
B (g + 27a/B g g— 27ra’B>
(4.10)
o = (2md)* (B B(ET)"hH)®
= —(2ra')? ( L _p_ )W .
g+2ra’'B g—2ma/B

On the upper half plane the mode expansion (4.7) becomes

X = zb+d [(E“l)“”g,,pp” Inz -+ (E”lT)“”g,,,,pp In z]

\/ Z Y gupah Z” —i—(E“lT)””g,,paﬁz‘"} . (411)
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The indices of p” and «f were lowered by the metric g,, and not by the metric G,
From the definition of the propagator we can read the commutation rules for a2,

Zo, and p:

(X'(z, 2)XV(2, 2)) = R(X*(z, 2)X¥ (¢, 7)) — N(XF(z, )X (<, 7)) (4.12)

where R and N stand for the radial ordering and the normal ordering respectively.
We assume that the normal ordering prescription for the product of zj with p, is
. TPy 1 = Thp,. The vacuum is then defined as

pul0) =ak|0) =0 (n>0), (Oat=0 (n<0) (4.13)

From standard calculations of two dimensional conformal field theory, one can obtain
the commutators

[of, o] = nbpmnG* [zf, ] = 0¥ (4.14)

where, as usual, we set ag, = V2a/p,,. The constant DH is written as o/ D*¥ =
— (0| X5 X¥|0), that is equivalent to set the normal ordering for zhzY as

s zhxy = zhxy + o' D* (4.15)
If we fix, as in [6], D* as o/ D* = —19* the coordinates z¥ become noncommu-
2 0
tative :
x5, 5] = 0" (4.16)

The center of mass coordinates
1
53‘5 = xf)‘ -+ 50‘“’]),, (4.17)

still commute among each other. In order to understand the physical meaning of the
parameters G* and 6*” let us restrict the analysis to the boundary of the worldsheet.
On the boundary the propagator is

(XH()X () = —a/G* In(r — ') + 20e(r — ) (4.18)
where €(7) is the function that is 1 or —1 for positive or negative (7 — 7/). G* is

the effective open metric seen by the open strings. We will then refer to g, as to
the closed string metric and to GG, as to the open string metric. To understand the
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physical interpretation of 0#” is useful to rewrite the string mode expansion in the
following way:

- ~ v 1 2%
Xt(o,7) = do+2a (G“ T4 500 - 7(/2)) oy (4.19)
1 _, 1
+iv2a/ g EB_MT {G‘“’ cos(no) — i.moz’ Visd sin(na)} oy

n#0
The endpoints of the string become noncommutative ':
i (o =0 =0)
[(X*(r,0),X¥(1,0")] =< —i0" (oc=0 =m)

0 (otherwise)
and, since the the brane is by definition the place where the string endpoints are
forced to belong, the world volume of the brane itself becomes a noncommutative
space.

We want now to perform the low energy limit on the string amplitudes with B
field. Without B field this limit is done by taking o/ — 0. With B field we have to
add to this condition also the request that the natural open strings parameters G
and 6 are kept fixed. By looking at the eqs.(4.10) we see that both the requests can
be satisfied by imposing

o =0 (4.21)
in such a way that

a'By, ~e—0
G ~€ =0 for prv=1,...,r (4.22)

with B fixed. In this way egs.(4.10) become

1 1 1\"
wo— ot [,
" = (2mal)? (B g B) (4.23)

Gnw = —(2md)*(Bg'B)w (4.24)

g _ (%)W (4.25)

1We have used the formula:

£ Susreom= {70 LI E0

n=1
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As one can immediately see, G and 6 are finite in this limit. The conditions (4.22)
guarantee that o/B,, > g¢,,, and the boundary conditions (4.2) become more and
more Dirichlet. There exists in the literature another form of this limit that is
particularly used in the analysis of noncommutative solitons. It is characterized by
o'B,, — oo with g, held fixed. o/ can then be taken finite or can be sent to 0 in
such a way still o/ B,,, — co. In either form of the limit

v (%) . (4.26)

In order to avoid confusion we will always refer to the form (4.22) of the low energy
limit.
In the low energy limit the boundary propagator becomes

(X (7)X7() = 567e(r — 7 (4.27)
and the action (4.1) reduces to
S — -—;- / B, X"3,X" (4.28)
%

This action, regarded as a one-dimensional action, describes the motion of a charged
particle in a large magnetic field. Indeed the action for such (nonrelativistic) point
particle is

S = /dt <-2—m5'czzisz + eBijx”j:J> (4.29)
The conjugate momentum II; to z° is
I; = mi; + eB;;x’ (4.30)

In the limit where the energy w < e|B|/m, the canonical commutation relations
become simply
..m

(2%, 27] = z’(B“l)”—g (4.31)

Thus at energies much less than the cyclotron frequency e|B|/m, when one is in the
lowest Landau level, one effectively has noncommuting coordinates.

We need to determine the expression of G in terms of the closed string variables
g, B and g;. The constant term in the effective lagrangian will do this job. For
slowly varying fields, the effective Lagrangian is the Dirac-Born-Infeld lagrangian

Lppr = 1 LH\/det(g—!-%raf’(B —F)) (432)

9s(2m)2(a)




4.2 Noncommutative field theory 93

The constant part is

L(F=0)= ! —++/det(g + 27/ B) (4.33)

gs(2m)* ()

On the other side we know that when we describe the effective action in terms of
open string quantities the whole  dependence is contained in the % product. In this
description the correspondent of (4.32) is

~ 1 ~
L(F) = _\/det(G + 27/ F 4.34
()= gy Ve ) (4.3)

and the constant term is

L(F=0)= ! —/detG (4.35)
Gy (2m)2 ()"

Equating the two constant parts (4.33) and (4.35)

1
detG 2
Ge=0s (det(g + 27ra’B)> (4.36)
that in the o — 0 limit becomes
G, = g,det(2ra/Bg™h)? (4.37)

where the determinant is calculated only in the dimensions with nonzero B field.

4.2 Noncommutative field theory

In the presence of a constant NSNS B-field, the low energy effective action of the open
strings attached to D-branes can be represented by a Yang-Mills theory defined on a
noncommutative spacetime endowed with a Moyal bracket (see [5, 6] and references
therein).

This holds at a semiclassical level, tree amplitudes computed in the string theory
and on the field theory side, but also several calculations at one loop of this type
have been carried out [?, 7, 7, 7, 9]. ,

A noncommutative space is a space with the following commutation relations:

Epr 2] = 0. (4.38)
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We need to define the multiplication law on this space. which is induced from
(4.38) through the so called Weyl-Moyal correspondence: the product of operators
and the product of the corresponding functions do share the same Fourier transform:

~

®(2) +— @(z) ;

o(z) = / e ¢(a) da
) = / %% &(z) dz, (4.39)
where o and z are real variables. Then,
0@ 80 = [ [ e 4(a) % o(6) dacds

— //ﬂ gilotB)E—gou By Eu, ] ¢1(c) ¢o(B) dadB,  (4.40)
and hence,

b, (2) bo(2) +— (@1 * cpz) (z) (4.41)
with

(@1 " %) (z) = [eéewasuanu By (z +€) Doz + n)] e (4.42)

This means that we have to modify the usual multiplication to the so called star
product. It is easy to check that the Moyal bracket, the commutator in which the
product is modified with a star product, of two coordinates z,, and z, gives the right
commutation relations,

[xm xu]MB = 7;9“,, (443)
Some properties of the star product algebra are:

e Star product between exponentials:

. o . _.,l
ezkm*ezqz — ez(k—i-q):r;e 5 (k0q) ,Where

kOp = k'p“0, (4.44)
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e Momentum space representation:

Let f (k) and g(k) be the Fourier components of f and g. Then using (4.44)
(fxg)(z) = / &k d*g () Glg) T 00 (4.45)
e Associativity:
(Fg)xh] (@) = [Fx(axn)]@), (4.46)
which can be checked in momentum space.
rhs = /d4k d*q d*p f(k) 3(q) h(p) ¢ 5(k00) o=5((k+)0p) gilktatp)z  apg

lhs = /d% diq d*p f(k) G(q) h(p) ¢ 3(08p) =5 (k6(atp)) gilktatr)s (4 47)

e Star products under integral sign:

[ o) dts = [t pia dts = [0 a@ds. @

Using (4.45) we can immediately perform the integration over z which will
give a 6*(k + ¢). Due to the antisymmetry of @ the exponent vanishes and so:

/ (f%0)(@) dz = / a*k F(k)5(—F)
= [0 d (4.49)

e Cyclic property:

/(fl*fg*...fn)(x) T /(fn*fl*...fn_l)(x) Bz, (4.50)

4.2.1 Oscillator vertex for the Moyal star product

We have met two different noncommutative star products until now: the Witten’s
star in SFT and the Moyal’s one in a generic noncommutative field theory. We will
see that, actually, althought these two star’s appear very different, they are inti-
mately related. Indeed, the Witten’s star can be written, on a particular basis, as
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an infinite continous Moyal star. For future purposes and in order to understand
better the difference between Moyal and ordinary pointwise multiplication of func-
tions, we will show an oscillator form three-vertex for the ordinary and the Moyal
product, following [66]. The pointwise, usual multiplicaton between two functions
f(z) and g(z), can be written as

fg(z) = (z|(fl{g

V3) (4.51)

where

(z| = W—llﬁ-(O‘exp (—1/2:1:2 +V2iaz + 1/2aa> (4.53)

) 2 \ /2 1 2
V3) = <ﬁ) exp <6 ( {a{ “+ agag e aéa}[) ~3 (aiag + agag -+ aia{)) |@¢.54)

The Moyal star product is encoded in the three-vertex

2 1 16%—4 .
[V3(0))125 = ENEP exp [—592 mn 12(@{@{ + b6l + eyclic) (4.55)
12
8
NTERD (alal + bIBS + cyclic) (4.56)
40 ettt :
NIERE (a1by — bia) + cyclic)| |0)123. (4.57)
(4.58)
which reduces to the previous one, of course, when # — — > 0, that is when the

space become commutative.

4.3 Noncommutative solitons

As we already anticipated, the crucial point in our discussion is that scalar theory
without noncommutativity does not have any lump solutions. This is actually true
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for any bounded potential in spatial dimension greater than one (Derrick’s theorem),
and follows from a simple scaling argument [17, 18]. We consider the energy of the
field configurations ¢ (z) = ¢¢(Az) with ¢g(z) an extremum of the energy functional

BO) = = [ 0% (30002 + Vieaha)
= L [ama (e ons PPV Ge)) (50

Since ¢g(z) is an extremum, we require 0y E(A)[y=1 = 0. This means

[ & @(D ) (90(2))? + Dv<¢o<x>>) 0 (4.60)

For spatial dimension D > 2, for a potential bounded from below by zero, the only
way this relation can hold is that the kinetic and the potential terms separately
vanish. There are therefore no nontrivial configurations. This argument fails if one
includes higher derivative terms. Instead, for D = 2, only the potential energy
should be zero.

On the other hand, if the space become noncommutative an infinite number of
classical solutions of scalar field theory can be found [56, 7] We consider a theory of
a single scalar field in 2 + 1 dimensions with noncommutativity in the two spatial
directions. We parametrize the spatial R? by complex coordinates z, z. The energy
functional is

_t [ ]
E- / 22(8,6056 + V(8)), (4.61)

where d?z = dxzdy. Fields are multiplied using the Moyal star product that in
complex coordinates is

(f % 9)(27) = €5 @220 (2, z)9(7', 7') (4.62)

z=2z'

The limit of large noncommutativity is useful to simplify the search for finite
energy solution of (4.61) but it is not necessary. For simplicity, let us take § — oo.
This is exactly the low energy limit we introduced before, seen from the point of
view of the field theory. If we now rescale the coordinates z — V0, Z — 28, the
commutation relations will not depend on € and the energy functional becomes

1
B= / 022(0,60:6 + OV (9).) (4.63)
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In the limit § — oo we can neglect the kinetic term and consider just the potential
in (4.63), and the energy

0
E= po d*2V (¢)s (4.64)
is extremized by solving the equation

v

— =0 4.65
5 (4.65)
We will consider a polynomial potential
V)= imig2 1 3 g (4.66)
2 7=3 ] '

where the product among the fields is the Moyal one.
If V(@) were the potential in a commutative scalar field theory, the only solutions
would be the constant configurations

6=\ (4.67)

where A; € {A1, Ao, -+, Ak} are the various real extrema of the function V(). For
V(¢) as in (4.66), A; are the real roots of the equation m*z 4 »_7_5b;2'~! = 0. The
first non-trivial solution to (4.65) can be constructed starting from a function ¢
that satisfies

(60 * ¢0)(z) = do(z) (4.68)

For such a function the two following relation hold

¢ () = o(z), [ (ago(z)) = f(a) go(z) (4.69)

We can solve (4.65) with A;¢o(z) where J; is an extremum of V(). The problem of
solving (4.65) becomes then that one of finding projectors under the star product,
a function f that squares to itself under x product. Such a function is

2

Y(r) =2e" (4.70)

where 7?2 = 22 + y2. Going to momentum space:

(k) = / P3(z) ¢ = oreH e (471)
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and
(350) ) = 4" [ 500 Bl hy bt 0
= e P/t (4.72)
Going back to coordinate space
(Y x)(r) =2e7 =19(r) (4.73)
and \;%p(x) solves (4.65).

General solutions of (4.65) can be found recalling the definition of the Weyl-Moyal
correspondence adapted to the present case. Given a C'* function f(p, g) on R? we
assign to it an operator O (p,q) € H:

04(4,p) = (2;2) / d*k f(k) e7HkadthaP) (4.74)
where
F = [@octmsd fqp) . ad)= (4.75)
The map given by (4.74) can also be inverted. Using
Tryy e~ kadthop) ¢ilkedthoP) = o7 6 (k, — kL) (kp — k) (4.76)

we can project f in (4.74) and then perform the Fourier transform to find

flap) = / dk.e=7% (g + K)/210(d, B)lg — kb/2) (4.77)

Remember that the Moyal product has been transformed into ordinary operator
product:

Oy =05 - O, (4.78)

A useful identity relates the integral of the phase space function to the trace of its
Weyl transform

[dadnstp0) = [ dadoi,eoia + by /21016 B)la — Ky /2)
- / dgdk2m6(K) (g + K1 /2105(d,5) g — k,/2)

= o / dg(q|Oyla)

= 27TryO¢ (4.79)
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In order to solve any algebraic equation involving the star product, it is thus
sufficient to determine all operator solutions to the equation in . The functions
on phase space corresponding to each of these operators may then be read off from
(4.77).

It is easy to see that O = AP is a solution to V'(O) = 0 if P is an arbitrary
projection operator on some subspace of # and if ); is an extremum of ¥V (z). The
energy of this solution is, using (4.79),

2 )
™ v (0,) = %TQ—V(/\i)TrP (4.80)

E = e

Thus the energy is finite if P is projector onto a finite dimensional subspace of .
In fact, the most general solution to (4.65) has the form

O = ZCLJ'PJ‘ (481)
J

where {F;} are mutually orthogonal projectors onto one dimensional subspaces

with a; taking values in the set {);} of real extrema of V(z). We have an infinite
number of solutions of the form AP. To see what they mean, let us choose a
particular basis in 7. Let |n) represent the energy eigenstates of the one dimensional
harmonic oscillator whose creation and annihilation operators are defined by
P PO
g IT® 4 TP
V2 V2
where a|n) = /n|n—1) and af|n) = v/n + 1|n+1). Any operator may be written as
a linear combination of the basis operators |m)(n|, that may be expressed in terms
of a and al as

(4.83)

(@)™ i, am

=: e :
vm! V!

where double dots denote normal ordering. We will first describe operators of the

form (4.81) that correspond to radially symmetric functions in space. As ala ~ r2 /2,

|m)(n| (4.84)

operators corresponding to radially symmetric wave functions are functions of ala.
From (4.84), the only such operators are linear combinations of the diagonal pro-
jection operators |n)(n| = L : atre='eg” .. Hence all radially symmetric solutions
of (4.65) correspond to operators of the form O = " a,|n)(n|, where the numbers
a, can take any values in the set {};}.
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We now translate these operator solutions back to field space. From the Baker-
Campbell-Hausdorff formula

gilkad+hnd) - gmikzatheal) _ =i mi(ksathal) (4.85)

where

_ ky +iky b — ky — iky
\/5 b z \/§ bl

Any operator O expressed as a normal ordered function of a and af, fn(a,al), can

be rewritten in Weyl ordered form as follows. By definition,

1
(2m)?

Using (4.85), (4.86) may be rewritten as

k, k% = 2k, ks.

0= fN(aﬂaT) =

/ L fy (k) : emilkzathsel) (4.86)

1
(2m)?

Thus, the momentum space function f associated with the operator O, is

0=

/ @ oy ()€ ilheateat) (4.87)

o

= k

fk) =e7 fu(k). (4.88)

For the operator O,, = |n)(n| we find, using (4.85) and (4.86), that the corresponding
k2

normal ordered function qgg\’;)(k) = 27reTLn(’—c;). (4.88) then becomes

In)(n| = @1;5 / dzke'Tkan(lf;) e~ {ethect) (4.89)

where Ly, (x) is the nt* Laguerre polynomial. The field ¢,(z,y) that corresponds to
the operator O,, = |n)(n| is, therefore,

&2 2 ; 2
Pn(r? =22 +9°) = (_2175 / ke L, (%—)e—m =2(=1)"e™" L,(2r?%). (4.90)

Note that ¢o(r?) is precisely the gaussian solution found in the previous section.
To conclude, (4.65) has an infinite number of solutions given by

> andn(r?) (4.91)

where ¢, (r?) is given by (4.90) and each a, takes values in {);}. We refer to them
as GMS solitons (Gopakumar, Minwalla, Strominger).
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4.4 D-branes as noncommutative solitons

The GMS solitons are very useful in the description of D-branes first proposed by
Harvey, Kraus, Larsen and Martinec [59]. In the bosonic string theory there are
D-branes of all dimensions that are however unstable because they have a tachyon
on their world volume. In particular, the space filling D25-brane is unstable, and
reflects the instability of the bosonic open string in 26 dimensions. Following Sen’s
conjectures, making in other words some general assumption about the tachyon
potential we will see how the lower dimensional D-branes can be interpreted as
solitonic excitations of the tachyon potential.

The effective action for the tachyon field, obtained by integrating out the massive
string fields, is expected to take the form

C 26 1 pv

K

where the dots stand for omitted higher derivative terms and terms involving
the massless modes. The potential U(T") is a general potential having an unstable
extremum at T = T, (the unstable vacuum), and a minimum that we choose at
T = 0. The constant C' = g;795 is independent of g,. With these conventions Sen’s
conjecture requires U(T" = T,) = 1: in this way S(T = T.) = 795Va. Always
according Sen’s conjecture the whole action should vanish at the local minimum
UT=0)=0.

Let us turn on a B field in two spatial directions of the theory, say z;,. In the
presence of a B field the action becomes

1
S = -g- / d*VG (5 f(TG*8,T8,T — U(T) + - - ) (4.93)
s *

The advantage of taking the limit of large B field, as we know, is that derivative
terms can be neglected. The soliton solutions of (4.93) are then exactly the non-
commutative solitons we described earlier. The simplest noncommutative soliton
solution to (4.93) is

T = Tyo(r?) = T, 2¢7"/* (4.94)

2 2

= 2z} + 23 and the dependence on 6 has been reintroduced. This is a
codimension two object and a candidate for the D23-brane. Let us see the energy
of such an object. In the large B field limit the action is

where 7

5= “'c% / G U(T) (4.95)
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Inserting T = T.¢o(r?) we have

5= -CYT) [y [ vGantr) = -2 [aavE (aon)

Using the relation (4.36) between G, and g,, that for large B field is

9sV/G

= Tr B (4.97)
and keeping in mind that § = 1/B, and U(T.) = 1, we have
S = —(2m)% g’: / d*z/g = —(27)*a/ T25Vou (4.98)
The tension of the soliton is then
Teoliton = (27)°0/Tes = To3 (4.99)

that is exactly the right tension of a D23-brane. The only information we needed to
obtain the energy of the noncommutative soliton is the value of U at the extremum
T, that is a part of the potential that we have some information about from Sen’s
conjecture. Using noncommutativity in additional spatial directions, it is also pos-
sible to obtain branes of all even codimension as noncommutative solitons, all of
them with the right tensions.

It is important to say that the correct tensions of such soliton is not the only
result that matchs with D-brane physics and to remark that the limit of large non-
commutativity is not necessary. Harvey et al., indeed, developed a solution gener-
ating technique that allow them to find solutions for any value of ¢ and adding also
gauge fields into the action they proved that a n-rank solution found in this way
corresponds to a configuration with a tension n times that of a single D-brane and
in which a U(n) group is preserved: in other words, n coincident D-branes. Without
enter into the subject, we can say that this solution generating technique makes use
of partial isometry symmetry of the theory. For future purposes, let us see briefly
what we mean with partial isometry. Given a lagrangian invariant under a group of
unitary transformations on Hilbert space U(#), then

¢ — UgU? (4.100)
with

UUt =UU =1 (4.101)




104  Chapter 4.  Solitons in noncommutative field theory, string theory with B field
and D-branes

leaves the action invariant and takes solutions of the equation of motion to solutions

since
v oV
bl 1 4.102

59 — U ( 5 ¢> U (4.102)

But, in order to show that solutions transform into solutions, it is only necessary to

use UTU = 1, since it is required that fields transform covariantly.Operators U such
that are called isometries because they preserve metric on Hilbert space:

(xl¥) = (XIUTU ) = (x|¥) (4.103)

If it is also true that UUT = 1 then U is unitary. In a finite dimensional Hilbert
space it is always true but not in a infinite dimensional one. Thus if we find a
nonunitary isometry it will still map solutions to solutions, but these solutions will
not be related by the global symmetry (or gauge symmetry if we add gauge fields)
of the action. So, you will obtain new solutions. A typical example of nonunitary
1sometry is the shift operator

S:ln) = n+1) , S=)_ n+1)(x]

n=0
(4.105)
Obviously,
STS=1 (4.106)
but
SS8T=1-P=1-10){0] (4.107)
More generally, U = S™ is a nonunitary iéometry and
UUT=1-P, (4.108)

with

Po= S K
= - (4.109)
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To apply the solution generating technique we can start with the trivial constant
solution ¢ = A;I with [ the identity operator and transforming with U = S™ we
obtain the new solution

¢=S"\IS™ =)\ (1~ PR,) (4.110)

This solution will describe a finite energy excitation above the vacuum (J; is a global
minumum of the potential).







Chapter 5

Vacuum String Field Theory with
B Field

We have seen in the previous chapter that if you turn on a B field in open string the-
ory, D-branes can be interpreted as noncommutative solitons of the scalar effective
field theory. We have also seen that there is another completely different treatment,
Vacuum SF'T, in which D-branes are described as nonperturbative, solitonic solu-
tions. In the latter case, however, we are considering ezact solutions, and we are
dealing with string fields, objects containing all string modes, not only the tachyon.
In a certain sense, we have two ways to describe Dbranes as noncommutative soli-
tons, one involving the inclusion of the B field and thus noncommutativity, the other
related to SFT. One may ask if there is a connection between these noncommutative
descriptions of Dbranes. Sugino [28] and Kawano and Takahashi [29] proved that
when a B field is turned on, the kinetic term of the SF'T action (1.1) is modified
only by changing the closed string metric g,, with the open one G, while the three
string vertex changes being multiplied by the (cyclically invariant) noncommutative
phase factor. Witten [30] and Schnabl [31] proved that a Moyal structure emerges
from Witten’s star product in the low energy limit.

What are the effects of the B field on the nonperturbative structure of SFT?
Beeing the solutions nonperturbative, this problem deserves attention. In this chaper
we will repeat the method to find exact solutions to VSFT equation of motion: they
can be written down. Wedge-like states and orthogonal projectors will be defined
in the presence of a B field. An interesting effect is that a B field can be precious
tool to regularize some of the several singularities that arise in VSFT. In particular,
without the B field the midpoint of the string is confined on the Dbrane while in
presence of the B field is not. We will see that the B field behaves as a regulator

107
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which allows us to make in a very natural way the low energy limit without introduce
one by hand [43]. But what is really important is that this study gave the inspiration
to find a new class of solutions of VSF'T which in the low energy limit reduces to
all GMS solitons and that could be useful to understand better the full structure of
the theory.

First we will write down the SFT vertex in the presence of a constant B field.
This result was first found by Sugino [28] and Kawano and Takahashi [29], using
the overlap conditions as in [32, 33]. We will give here an alternative derivation of
their result, based on the LeClair, Peskin and Preitshopf construction of the vertex
(V3]. Then we will construct squeezed states solutions with B field, as much as done
in the previous chapter. We will show analogies and differences with the B = 0
case by constructing wedge-like states and orthogonal projectors, and investigating
the behaviour of the string midpoint with B # 0. Finally we construct a series of
orthogonal projectors that in the low energy limit give exactly the GMS solitons.

5.1 String Field Theory with B field

It is useful to recall the form of the propagator and of the string field expansion
when the B field is turned on. They are

(XH(2,2)X (2, 7)) = —a [g“” In|z — 2] — g"In|z — 7|
1 z—Zz
nz =12 my ny
+G*1nlz - Z'|° + 27ra’9 lnz_zl +D ] (5.1)
and

X+ = [(E e g,pPInz + (BT g,,p” In z]

\/ L [(B et (B 00 (52
n#O

where E,, = g, + 2ma/By,. The two and three string vertices were defined as
correlation functions of string fields operators computed on the upper half plane.
For instance the three string vertex was

(A,B*C) = (f{004(0) fy 0 Op(0) f5 o Oc(0) )p (5.3)

Inverting eq.(5.2) to obtain o, as function of X#(z) we find

bt 1

o, = ]{ Qd; 2 (E)™ g,,0,X"(z) (5.4)



5.1 String Field Theory with B field 109

The operators O are products of polynomials in the creation operators o, with
exponentials ¢?*. Under conformal transformations the latter change as

fileZs) = }{ = 27" (hy (2))(E™)" 9, 0: X" (fi(2))

271

P?/2 ip-X(£:(0))

file™ ] = |£(0)
The contraction of any two o, is then

dw ,

dz —nr ot -m
= ) § e (W)

(BT 9up (B) " gne (OXP (fi(2))0X7 (f3(w)))

—gh°

(filz) = f3(w))?

dz __ .., dw .., -1 1y
= § 52 § e S E ) (B
— G
(fi(z) = f3(w))?
where the correlation function (OX*0X") is obtained deriving eq.(5.1). We see
that the modification induced by the B field on the part of the vertex with indices
m,n > 0 is completely taken into account by substituting the closed string metric
9w With the open string metric G,. The same modification occurs in the kinetic
term. Things are different when both the mode indices of the Neumann coefficients
Ny are zero: Ngg. This corresponds to the contraction of two exponentials that
are both forced to belong to the real axis. To do this contraction we need then the

propagator for points belonging to the boundary of the worldsheet. It was given in
(4.18) and is

= o) § ) (53)

271 271

(XH()X (7)) = ~a/ G In(r — 7')? + Loe(r — 7' (5.6)

With this propagator the matrix element of exponentials becomes, up to normaliza-
tion factors

< [ e >

= exp [}:pé‘GWp’; log |£:(0) — fj(O)]} exp {% Zpﬁ‘“’ v e(fi(0) — fj((]))}

1<j 1<y
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The B modified |V3) is then
Va) = o(pW +p®? +p<3))49 ) ® [Q3) ® Q)

SV 78 S ?/
X exp < Z Guv@’ NN (—r)n Z an b—T)n - 26’# opMEp” )

]\/[NO m=0,n=1

5.2 The interaction vertex with B field

Our next goal is to find the form of the coefﬁcients Vifn when a constant B field is
switched on. We start from the simplest case, i.e. when B is nonvanishing in the
two space directions, say the 24—th and 25-th ones. Let us denote these directions
with the Lorentz indices o and 5. Then, as we saw in the first chapter, in these two
directions we have a new effective metric G,g, the open string metric, as well as an
effective antisymmetric parameter 0,4, given by

ood 1 1 o
B 77+27Ta"B77’)7— 21a/ B ’
1 1 of
Haﬁ = —(21a’ 2 B
(2mer) (7)-{—27’(@’3 77—27Ta'B>

The three string vertex is modified only in the 24-th and 25-th direction, which,
in view of the subsequent D-brane interpretation, we call the transverse directions.
We split the three string vertex into the tensor product of the perpendicular part
and the parallel part

|%> = |V:'“",J_> ® I‘/B,”> (57)

The parallel part is the same as in the ordinary case and will not be re-discussed
here. On the contrary we will describe in detail the perpendicular part of the vertex.
We rewrite the exponent F as E = Ej + E, according to the above splitting. £,
will be modified as follows

3
E, —» E| = Z ( Z G ot r)m‘vrs CL(S At Z G ﬁp(r)vrs MO

r,s=1 m,n>1 n>1

4+ Ga P Visp + pP6% ) 5.8
BL(r)

r<s
where we set o = 1. Next, as far as the zero modes are concerned, we pass from
the momentum to the oscillator basis, [32, 33]. As before we define

ra . 1 ) 1 ~(r)o N 1 ST )
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where p("* 2o are the zero momentum and position operator of the r—th string,
and we have kept the ‘gauge’ parameter b of ref.[37] (b ~ o). It is understood that
plre = G“ﬁp . We have

a7 {1 = G (5.10)

Denoting by [€2%) the oscillator vacuum (af|%e) = 0), the relation between the
momentum basis and the oscillator basis is defined by

]p24>123 ® lp25>123 = ‘{pa})lQB =

] 3
b 2 b 1 ;
_Z _ 2 gaB () Vb (Maf_(ry _ * (rat (T)ﬂT)
ex o -+ Vbay "' p, ay " Gapa
<2m/detG> b [2< ghe ™ s Por Tt Tredt

r=1

1Q2,6)

Now we insert this equation inside E' and try to eliminate the momenta along
the perpendicular directions by integrating them out. To this end we rewrite £ in
the following way and, for simplicity, drop all the labels o, f and 7, s:

1 1 b
Bl =5 Y 6hGVanal + Y pVonal + 5p [G'l(%o+ 3t Hex} P~ Vbpay + 3 5e0a}

2
m,n>1 n>1

where we have set #%° = €¢*## and introduced the matrices ¢ with entries ¢*# and
with entries

Yi=|-1 0 1 (5.11)

At this point we impose momentum conservation. There are three distinct ways
to do that and eventually one has to (multiplicatively) symmetrize with respect to

them. Let us start by setting ps = —p; — p2 in E'| and obtain an expression of the
form
PAOOP+ZpEONaN+ Z CLMZMNCLN : (512)
N>0 M,N>0

where, in particular, Xy, is given by

)
X(f)loﬁ,rs Gaﬁ (%0_’_ )77T8+24 a/ﬂ s (513)

Here the indices 7, s take only the values 1,2, and

77:(1}2 1{2)’ 62(—01 é) (5.14)
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Now, as usual, we redefine p so as eliminate the linear term in (5.12). At this point
we can easily perform the Gaussian integration over p(, p(z), while the remnant of
(5.12) will be expressed in terms of the inverse of Xgg:

F-1\aBrs 2471 3 aB (,—1 af .rs =
(X5 = 1713 <§G (n™)™° —2iaé (5.15)
where
b
A=Vy+ -, a= 4(54 DetG, €% = V/DetG e (5.16)
Let us use henceforth for the B field the explicit form
0 B
pa= (% ) o
so that
2
DetG = (1+ (27B)%)°,  0vDeiG = —(27)°B, a= —%B (5.18)

Now one has to symmetrize with respect to the three possibilities of imposing
the momentum conservation. Remembering the factors due to integration over the
momenta and collecting the results one gets for the three string vertex in the presence
of a B field

V) = Vs,1) ® [Vay) (5.19)
|V3,)) is the same as in the ordinary case (without B field), while
Vs,1) = Koe 7 |0) (5.20)
with
2mb? 1
_ /4 21
K, (i 53 (Det@)*/*, (5.21)
3
1 'I‘ o T8 S
r,s=1 M,N>0
and |0) = |0) ® |%4). The coeficients V32:° are given by
2A71
af,rs __ ~aBsrs af irs ~aff . s
Ve =GP — 1253 (G g™ — iae* x™) (5.23)
247 1b
af,rs __ afB 1r . ~af.r ]
Vo = 13 Z(G Pom — iae®P x™) Vs (5.24)

Vel =GV + Z b (G¥P ¢t — iaeP XY VE  (5.25)

t,o=1
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where, by definition, V7 = V%], and

1 -1/2 -1/2
o=1|-1/2 1 —-1)2 (5.26)
~1/2 -1/2 1

while the matrix x has been defined above (5.11). These two matrices satisfy the
algebra

3

: 3 _
X'=-20  dx=xd=5x, ¢ =359 (5.27)

To end this section we would like to notice that the above results can be easily
extended to the case in which the transverse directions are more than two (i.e. the
24-th and 25-th ones) and even. The canonical form of the transverse B field is

I
—L1
Bas = 0 B, (5.28)

0 -By 0

It is not hard to see that each couple of conjugate transverse directions under this
decomposition, can be treated in a completely independent way. The result is that
each couple of directions (26 — i, 25 — i), corresponding to the eigenvalue B;, will be
characterized by the same formulas (5.23, 5.24, 5.25) above with B replaced by B;.

The properties of the new coefficients V]‘ff]{,r ¥ are reported in Appendix D

5.3 Lump solutions with B field
A squeezed state in the present context is written as
1S) =151) ® | (5.29)

where |S)) has the ordinary form that we presented in the previous chapter, and is
treated in the usual way, while

- 1 ~
<S.L| = N2 <O|exp <—§ Z aﬁ,[Sag,MNaﬁ,) (530)

M,N>0

1 o _
1S1) = ANZexp <_-2- > aj) Saﬁ,MNaé*J> 10) (5.31)

M,N>0
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where [0) = |Q¢) ® |0). Here we have written down both bra and ket in order to
stress the difference with the B = 0 case, which stems from the fact that, in view
of (D.26), we assume C'S§PC' = (8%F)* = 8. The  product of two such states,
labeled ; and 5, is carried out in the same way as in the ordinary case, see Chapter
2. Therefore we limit ourselves to writing down the result

Ky (NMIN,)? 1 _
wﬁ>:L%*>*L%A)::DETa-fzvyﬂ‘mp -3 S a5t nall | 10X5.32)
M,N>0
where, in matrix notation which includes both the indices N, M and «, S,
'\721
$:4W1+(W{v“x1—zvyﬂz<vm) (5.33)

In RHS of these equations

g 0 Vil 2
z:(& $>, V:<lem) (5.34)

and Ig7y = 0§ dpn 07, r,s = 1,2. DET is the determinant with respect to all
indices. In order to avoid confusion we remind the reader that we work with three
kind of indices: 7,5 = 1,2,3 for the three strings, o, § = 24,25 for the space-time
direction where the B field is switched on, and m,n = 1,... co for the string modes.
We adopt the following notation for different identity operators:

Igf\jTN = 52; Opn 0%
12 = g8

To reach the form (5.33) one has to use cyclicity of V¢ (see Appendix D). The
expression of §' is in fact a series, therefore some kind of condition on the coefficients
S; must be satisfied in order for it to make sense. The squeezed states S satisfying
this condition form a subalgebra of the algebra defined by the * product.

Let us now discuss the squeezed state solution of the equation |¥) x |¥) = |¥)
in the matter sector. In order for this to be satisfied with the above states |S), we
must first impose

812822815

and then suitably normalize the resulting state. Then (5.33) becomes an equation
for §, i.e.

- 21
szvﬂ+(wawwa—zwﬁz<¥m) (5.36)
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where X,V are the same as above with 8§ = Sy = 8. Eq.(5.36) has an obvious
(formal) solution by iteration. However we saw that it is possible to obtain the
solution in compact form by ‘abelianizing’ the problem. Notwithstanding the differ-
ences with that case, it is possible to reproduce the same trick on eq.(5.36), thanks
to (D.23). We set

C'V*=X" and C'§=7T,
and assume that
(X, T1=0

(of course this has to be checked a posteriori). Notice however that we cannot
assume that C' commutes with 8, but we assume that

C'8C' = 8§ .
By multiplying (5.36) from the left by C’ we get:

(5.37)

TYH
T =X+ (X2,X*) (I -2V)™! (ml?)

For instance §V'2 = §C'C'V'2 = TX'2, etc. In the same way,

I—-JXt  —gxi2 \7
— -1 —_—
(I EV) ( _TDCQl T— U'xll)

where I, = 05 0prn. Now all the entries are commuting matrices, so the inverse
can be calculated straight away.

From now on everything is the same as in [34, 37], therefore we limit ourselves
to a quick exposition. Using (D.24) and (D.25), one arrives at an equation only in
terms of T and X = X

(T-D(XT*- T+X)T+X) =0 (5.38)
This gives two solutions:
T=1I (5.39)

%C (1+x- VAT~ %)) (5.40)

The third solution, with a + sign in front of the square root, is not acceptable. In
both cases we see that the solution commutes with X™. Naturally we are talking

T =
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about solutions of the abelianized eq.(5.37). The true solution we are looking for is,
in both cases, § = C'7T.

As for (5.39), it is easy to see that it leads to the identity state. Therefore, from
now on we will consider (5.40) alone.

Now, let us deal with the normalization of |S|). Imposing |S1) * |S.) = |51)
we find

N? = K;'DET (I — V)2
Replacing in it the solution one finds
DET(I— V) = Det ((I-X)(I+ 7)) (5.41)

Det denotes the determinant with respect to the indices «, 5, M, N. Using this
equation and (5.21), and borrowing from Chapter 1 the expression for |S)), one
finally gets for the 23-dimensional tachyonic lump:

24 1 . 5
1S) = {det(1 — X)2det(1 + T)*2} " exp (”577"” Z aum’rsmnan‘r> 0) ® (5.42)

m,n>1
A?(3 + 4a?)
V2mb? (DetG) /4
where § = C'T and T is given by (5.40). The quantities in the first line are defined

in ref.[37] with &, 7 = 0,...23 denoting the parallel directions to the lump.
The value of the action corresponding to (5.42) is easily calculated

1 ~
(Det(I — )2 Det (T + ‘J')l/z) exp (—-2- Z aﬂsaﬁ,MNa?vT) |0),

M,N>0

1/ (24)

= —_— _ 3/4 1 1/4 24
s X (2m)24 {det(l X)**det(1 + 3X) }
A*(3 + 4a?)? 54 L
5t (Dt 2 Dot~ ) Det(I+3X) (5.43)

where V() is the volume along the parallel directions and X is the constant of
eq.(E.44).

Finally, let e denote the energy per unit volume, which coincides with the brane
tension when B = 0. Then one can compute the ratio of the D23-brane energy
density eg3 to the D25-brane energy density egs ;

ey (2m)?
es  (DetG)1/4
A%(3 + 4a%)* Det(I — X)%“Det(I + 3X)V/*

R = 5.45
2mb%(DetG)1/4 det(1 — X)%/2det (1 + 3X)/2 (5.45)

(5.44)
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Since R equals 1 (see Appendix D), this equation is exactly what is expected for
the ratio of a flat static D25-brane action and a D23-brane action per unit volume
in the presence of the B field (5.17). In fact the DBI Lagrangian for a flat static
Dp-brane is,

1
_ 2 it
I:DBI = 95(2“)? \/ﬁet(l+ 7(B) (5 6)

where g, is the closed string coupling. Substituting (5.17) and taking the ratio the
claim follows.

Let us briefly discuss the generalization of the above results to lower dimensional
lumps. As remarked at the end of section 2, every couple of transverse directions
corresponding to an eigenvalue B; of the field B can be treated in the same way as
the 24—th and 25-th directions. One has simply to replace in the above formulas B
with B;. The derivation of the above formulas for the case of 25 — 27 dimensional
lumps is straightforward.

Switching on a constant B field on VSFT does not obstruct the possibility to
find exact results. On the contrary, we have found that (matter) squeezed states
representing tachyonic lumps are still solutions of the equations of motion, and that
we can give compact explicit formulas for these solutions, much like in the B = 0
case. Indeed these are still interpretable as (lower dimensional) D—branes.

5.4 Wedge state with B field and deconfinement
of string midpoint

In this section we present a couple of results which are natural extensions of anal-
ogous results with B = 0, namely the possibility of defining wedge-like states and
orthogonal projectors. But we investigate also a particular phenomenon, the con-
finement or not of the midpoint of the string, where the presence of the B field
determines makes a strong difference with the B = 0 case.

5.4.1 Wedge state with B

We saw that wedge states are geometrical states in that they can be defined simply
by means of a conformal map of the unit disk to a portion of it. They are spanned
by an integer n: the limit for n — oo is the sliver |=Z), which is interpreted as the
D25-brane. Wedge states also admit a representation in terms of oscillators a), with
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n > 0,
W) = e 3T ) (5.47)

which is specified by the matrix Tp,, n > 1. It can be shown that, see [55], T}, satisfy
a recursive relation which can be solved in terms of the matrix 7' characterizing the
sliver state (I' = CS, S being the sliver matrix). The normalization A/ can also
be derived from a recursion relation. Since all these results are essentially based on
equations which are generalized to the case when a B—field is present and are in fact
reported in Appendix D, it is easy to deduce that analogous results hold also when
a B field is turned on.

The generalized wedge states will be the tensor product of a factor like (5.47)
for the the 24 directions in which the components of the B field are zero and

(W,,) = N2 g™ 30/C'Tnal | (5.48)

for the other two directions. From now on we will be concerned with the determi-
nation of T, and N,. We start from the hypothesis that

(X7, T, =0,  C'Tp=TnC (5.49)

whose consistency we will verify a posteriori.
Now we define T, = 0 and the sequence of states

Whi1) = |Wy) * [Wy) (5.50)
. . C'Tn 0 . .
Using eq.(5.32) and (5.36), with ¥ = o o) " find the recursion relation
TpX™ TX2N\\ 7/ T,0
_ ol 12 21 _ [ n n n
1-T,

where use has been made of the second equation in (D.27). Solving this recursion
relation, [55], we can write
T+ (—T)n-1
g T T
1— (=7
Notice that this sequence of states can be extended to |W,) defined by T, = 1. An

analogous recursion relation applies also to the normalization factors. Once solved,
it gives

(5.52)

172 )1“

_ 171
Nn = KZ det (m—)m

(5.53)
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The constant s is defined in eq.(2.19) of [75]. The relations (5.49) are now easy to
verify.

The limit of T, as n — oo is T (i.e. the deformation of the lump), provided
lim T = 0. In turn, the latter holds if the eigenvalues of T are in absolute value
less then 1, as those of 1" are.

5.4.2 Orthogonal projectors

In the presence of a background B field it is also possible to construct other projec-
tors than the one shown in (5.42). To show this we follow Chapter 2. The treatment
is very close to what can be found there, and the main purpose of this subsection
is to stress some differences with it. As usual we will be concerned only with the
transverse part of the projectors, the parallel being exactly the same as in (2.62),
and will denote the transverse part of the solution (5.42) by [S.).

We start by introducing the projection operators parallel to that ones of eq.(2.62)

1
L= T+ I-X)

1
2= T+ MHI-X)

[2C2(I— TX) + T(X*)?] (5.54)

[T — TX) + T(X)?] (5.55)

They satisfy
p=p, p=p, pt+p=1 (5.56)

i.e. they project onto orthogonal subspaces. Moreover, if we use the superscript 7
to denote transposition with respect to the indices N, M and «, 5, we have

pF =5 = C'pC, pr = py = C'pC". (5.57)

Now, in order to find another solution of the equation |¥) x |¥) = [¥), distinct
from |8, ), we make the following ansatz:

1Py = (—¢ral ¢-a + k) |81) (5.58)

where &£ = {£%}, ¢ = C'€ and 7 is the matrix (é _?1) acting on the indices o and

B. k is a constant to be determined and ¢ is required to satisfy the constraints:
mé =0, p2€ =¢, ie. piC=¢, p2( =0 (5.59)
Using (5.56,5.59) it is simple to prove that
CTFOe,T)E=0,  EFATC=0
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for any function f. Now, imposing |P,) *|S.) = 0 we determine &:
17 -1
/\1:"—§<_, T(VIC )115—

where

(5.61)
Next we compute |P) * |P). This gives

[PL)*[Py) = % (v, ¢+ (T (VE™),,6) (=alr€ o’ - ¢ + k) 81) (5.62)

where use has been made of the identities

- _ T
TV, 6 = (Tr(vie D& =—CTm (VET) ¢ = for]I _ 3'25
_ _ _ T
TV ¢ = ET(VKET),, ¢ = - (VKT ¢ = (T5—57¢ (5.63)
1 _ 1
&’ (VIC—I)lz ¢ = CT]I _ (]-27_47 ¢ (V]C 1)21 §= gTT]I _ g‘zf
Similarly one can prove that
T 1 1
T _ (T T _ T
I =0T ms O =8 T (5.64)
So, in order for |P,) to be a projector, we have to impose
1
(gT (V}C“1)12 ¢+ CTr (VIC'1)21 £) = 2§TTI[ - 725 =2 (5.65)
Using this and following [38], it is simple to prove that
1 1
(PL|PL) = (CT]I — TzTC fTT'—‘H — 'J‘2§> (81[81) = (8.I81) (5.66)
thanks to (5.64,5.65).
Therefore, under the condition
1
st =1 (5.67)

the BPZ norm of |P,) 4+ |8,) is twice the norm of |$,). As a consequence the sum
of these two states, once they are tensored by the corresponding 24-dimensional
complements defined in Chapter 2, represent a couple of parallel D23-branes.

Similarly one can construct the more complicated brane configurations as we saw
at the end of the Chapter 2.
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5.4.3 The string midpoint

It was shown in [43] that, in the absence of a B field, the string midpoint in the lower
dimensional lumps is confined to the hyperplane (D-brane) of vanishing transverse
coordinates. Evaluating the exact string midpoint position in the full VSFT is in
fact a nontrivial and interesting problem. ,

The oscillator expansion for the transverse string coordinates is, (4.20), setting

;1
04—5,

N . 0% T g g 1
z%(o) = z§ + ——Pos <a — 5) ++2 ; {xn cos (no) + - Pag sin (nU)J (5.68)

Therefore the string midpoint is specified by

T (—) =zg + \/inz;l(~1) {:EQTL 51 P2n—1,ﬁ] (5.69)

2 2n

It is more convenient to pass to the operator basis a¥, alo‘\f , which satisfies the algebra

[ag\?a, (S)ﬁf] — GaﬁéMNdrs

and are related to z,, p, by

2% = Vgﬁ(az—azf), pn,a=\/§c:aﬂ (af +aty, (5.70)

while the analogous relation for zg, py is given by eq.(5.9) with the specification that
throughout this section, for simplicity, we fix b = 2.
Now, confinement of the string midpoint means

xa(g) 8.) =0 (5.71)

Evaluating the LHS we get
af T = Yt gt GOt igye
*(5) 1820 = —Jsla! +al8)51s.) - ;mmmsms@
> L
1

Confinement requires that this vanish. In order to write this condition in compact
form, we introduce the 2 x 2-matrix—valued vector

O=|)1+|ue (5.73)

eaﬁ
Gpy(a’ = a’8)], 4181) (5.72)
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where

|V> = {7/07 Vzn}; Vg = %, Vop =

- (=1)"
= 1Hon-17, n-1 =11 B ————
’/"L> {/JQ 1} Hon—1 T \/277’—“—1

Now the confinement condition for the string midpoint can be written as

(5.74)

8§C'0 = -0, or, equivalently, TO=-0, ie TO=-06. (5.75)

Due to (5.40) an eigenvalue —1 of T corresponds to an eigenvalue —z of X with the
same eigenvector. Let us rewrite I + 3X as

I+3X=Y1+2Ze (5.76)

Then eq.(5.75) becomes (I + 3X)© = 0, which in turn corresponds to the two
equations

Ylv) + 2 ]m) = 0 (5.77)
21v) - Y|u) =0 (5.78)

It is useful to further split Y as Y = Yo + Y1, where Yo = Y(B = 0). Using (E.7) one

obtains
4(1—-AY —4 Ay,
Yo = ( ) (5.79)

44T 18X — 4 A Jue)uel — [oo) (uo])

1 (ve|
Y, = 12H (5.80)
|ve) |ve) (ve| — |vo) (Vo]

0 (Vo
2 = 8V3iaK (5.81)
|vo) |[ve) (Vo] + [vo) (Ve

_ _f‘-_: azA—z
where H = ;55— el

Now let us express the previous equations in a more explicit form.

V) =10 ®|ve),
) = —imB|A,),
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where
1+ (_1)71 (_1)71/2
e/n — ) n — 5.82
1 — (_l)n (,_1)(n+1)/2

Aoyn = ———— A, Ap = ———r (5.83)

We remark that |v) is the eigenvector corresponding to the eigenvalue —3 of X(B =
0), introduced in [43]; and that |,) is the eigenvector with eigenvalue —% of X,
introduced in [47]. As a consequence one has

Yo lv) =0, (14+3X)|A) =0 (5.84)
The first equation can be rewritten as

(Velve) = Vioro (5.85)
(14 3X)|ve) = 41g]ve) (5.86)

Remarkably enough, all the other equations from (5.77, 5.78), after using (5.85) and
the second equation in (5.84), reduce to a single one

2
(volAo) =4/ 37 (5.87)
Therefore, since egs.(5.84) have been proved independently, confinement of the string
midpoint holds or not according to whether eq.(5.87) is true or not. Now, the LHS

of this equation is

An

1]

(VolAo) = Z (—1)(+D/2

n odd

(5.88)

The latter series can be summed with standard methods and gives

9 — 237
<710’/\0> = “‘—6_‘

Therefore (5.87) is definitely not satisfied. So we can conclude that the string
midpoint in the presence of a B field is not confined on the hyperplane that identifies
the D23-brane.

In this section we have shown that the introduction of a B field in VSFT does
not prevent us from obtaining parallel results to those obtained when B = 0.
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On the other hand a nonvanishing background B field may have advantageous
aspects. The smoothing out effects of B on the UV divergences of noncommutative
field theories are well-known.

We have verified that the singular geometry of the lump solutions, pointed out
in [43], disappears in the presence of a B field, in particular the string midpoint is
not confined any longer to stay on the D-brane.

We remark that this deconfinement might mean also that the left-right factor-
ization characteristic of the sliver solution, [38, 50, 51], is not possible for lump
solutions with B field. However it looks like there are other aspects of VSFT which
may be fruitfully extended to VSFT with B field. For instance, the series of wedge—
like states introduced before seem to suggest that the geometric nature of the wedge
states, [35], persists also in the presence of a B field. This is confirmed by the re-
sults obtained in [62], where the presence of a B field has been dealt with entirely
geometrically.

5.5 VSFT Ancestors of the GMS solitons

In this section, starting from the squeezed state, we construct an infinite sequence of
solutions of eq.(5.56), denoted |A,) for any natural number n. |A,) is generated by
acting on a tachyonic lump solution |Ag) with (—«)"Ly(x/k), where L, is the n-th
Laguerre polynomial, x is a quadratic expression in the string creation operators,
see below egs.(6.71, 6.70), and x is an arbitrary constant. These states satisfy the
remarkable properties

iAn> * lAm> = n,m‘An> (589)
<An'Am> = 5n,m<AO|AO> . (5.90)

Each |A,) represents a D23-brane, parallel to all the others. The field theory limit
of |A,) factors into the sliver state (D25-brane) and the n-th GMS soliton. The
algebra (6.75) and the property (6.76) exactly reflect isomorphic properties of the
GMS solitons (in terms of Moyal product). In other words, the GMS solitons are
nothing but the relics of the |A,) D23-branes in the low energy limit.

To define the states |A,) we start from the lump solution (5.42). Ie. we take
|Ag) = |8). However, in the following, we will limit ourselves only to the transverse
part of it, the parallel one being universal and irrelevant for our construction. We
will denote the transverse part by [8.).

First we introduce two ‘vectors’ £ = {€na} and ¢ = {(ya}, which are chosen to
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satisfy the conditions

plg = Oa p2§ = 6) and Plg - O: PQC = ga (591)

Next we define

X = (aTT@ (a'C'¢) = (‘IN /aﬂfNﬁ)(aN Cyvalia) (5.92)
where 7 is the matrix 7 = {7,°} = < (1) _01 ) , and introduce the Laguerre poly-
nomials L, (x/x). The definition of |A,) is as follows

0 (X
[An) = (—K) Ln(f{) 81) (5.93)
where k is an arbitrary constant. Hermiticity requires that
(a7€")(aC'¢") = (arC'€) (aC) (5.94)
Finally we impose that the two following conditions be satisfied
1 T
T - _ T, Y = _ .

Fri—m(=-1 &r—m(=—x (5.95)

Let us spend a few words to motivate the definition of the states |[A,). The
definition (6.70) is not, as one might suspect, dictated in the first place by the
similarity with the form of the GMS solitons. Rather it has been selected due to its
apparently unique role in the framework of Witten’s star algebra.

In [76], on the wake of [38], starting from the (transverse) lump solution |8, ) we
introduced a new lump solution |P,) = (x—k)|S.). Imposing that [P )x|P,) = |PL)
and |P,)*|8.) = 0 and, moreover, that (P, |P) = (8.|8.), we found the conditions
(5.95). '

The next most complicated state one is lead to try is of the form

|P') = (a+ Bx +7x%)|81) (5.96)

The conditions this state has to satisfy turn out to be more restrictive than for |P),
but, nevertheless, are satisfied if, besides conditions (5.95), the following relations
hold

1

=2(e)? =6, =3 (5.97)

and then, putting o = &

|P") = (n — 2KkX + 1x )]SQ (5.98)
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The polynomial in the RHS is nothing but the second Laguerre polynomial of x/x
multiplied by 2. We deduce from this that the Laguerre polynomials must play
a fundamental role in this problem and, as a consequence, put forward the general
ansatz (6.70).

Proving the necessity of the conditions (5.95) for general n is very cumbersome,
so we will limit ourselves to showing that these conditions are sufficient. However
it is instructive and rather easy to see, at least, that the second condition (5.95) is
necessary in general. In fact, by requiring that the state |A,) be orthogonal to the
‘ground state’ |8), we get:

At = (Y (1) s <)

= \J
- (-—n)"f; (%)

0 0o 0 0
P augj aﬁbf; o

J

(Eren® .. (57‘0')ng£11 . ijj@

_ 1 _
exp ( — O K) - :juT(WC 1)11#) l&L)]u:O

= o (M) e () s

=0

T
I[— 772

l n
= (—k)" (1 + -I;fTT C> 1S1) =0 (5.99)
which is true for the choice k given by the second eq.(5.95).
The complete proof of eqs.(6.75) and (6.76) is presented in appendix D.

5.6 GMS as low energy limit of “Ancestors”

We saw in Chapter 3 that soliton solutions of field theories defined on a noncommu-
tative space, GMS solitons, describe Dp-branes. It is then interesting to see if we can
recover such solutions using the Seiberg-Witten limit, that gives a noncommutative
field theory from a string theory with a B field turned on.

To discuss this limit we first reintroduce the closed string metric g, as g dag-
Now we take o' B > g, in such a way that G, # and B are kept fixed. The limit is
described by means of a parameter € going to 0. (¢/ ~ €). We could also choose to
parametrize the o/ B > g condition by sending B to infinity, keeping g and o' fixed
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and operating a rescaling of the string modes as in [31], of course at the end we get
identical results. By looking at the exponential of the 3-string field theory vertex in
the presence of a B field

3
Z( Z Gaﬂa aTLTs S)ﬁT__I_\/——ZGaﬁp ‘/15 )T

r,s=1 m,n>1 n>1
+aof Gaﬂp(r ‘orosp(s +3 ZPMQ&B ;) ) (5.100)
r<s

we see that the limit is characterized by the rescalings

Vinn = Vi
Vino — v/ €Vimo (5.101)
VE)() — EVI)O

Gop and 0°° are kept fixed. Their explicit dependence on g, @' and B will be
reintroduced at the end of our calculations in the form

! 2
Gra'B)s gL (5.102)

Gap = =

Substituting the leading behaviors of Vjsx in egs.(5.25), and keeping in mind that
A="Vy+3 b5 the coefficients V“ﬂ 7* become

4

af,rs afB crs af irs - saff.rs
VOO — G%Pe™ — m (G ¢ —:ae Y (5103)
vebrs o (5.104)
vgﬁlrs - GG,BVT;-; (5105)

We see that the squeezed state (5.42) factorizes in two parts: the coefficients V251!
reconstruct the full 25 dimensional sliver, while the coefficients Va'B 1 take a very
simple form

af __ 2Ial—1

= G =G 5.106
00 2a] +1 s ( )

The soliton lump with this choice of the coefficients V227 will be called |8)

= {det(1 — X)*det(1 —I—T)1/2}24 exp <——%n Z afﬁmena?> 10) ® (5.107)

m,n>1
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1 N
exp '—'iGaﬂ Z amTSmnagT> 0) ®

m,n>1
A%(3 + 4a?) (
V2mb3 (DetG)1/4

where i, 7 =0,...23 and «a, § = 24, 25. In the low energy limit we have also

1
et(I — X0)*2Det(I + T)*/?) exp (—ssaOTGaﬁao ) 1% 4),

Det(I — X)?Det(I+ T)” = = det(1 — X) & :"_ -det(L+T)  (5.108)

So the complete lump state becomes

1
= {det(1 — X)"2det(1 + T)MQ}26 exp <—§GW a;‘ISmna,’f> 10) ®

m,n>1

4:(1/ b2 ( 1 ot )
exp | —=sag Gaa Q 5.109
%+ 1 Varmagy -0\ T Cert ) o), (5109

where pu,v = 0,...25 and G = Mus ® Gap. The first line of (5.109) is the usual
25-dimensional sliver up to a simple rescaling of a2T. The norm of the lump is now
regularized by the presence of a which is directly proportional to B: a = -z

A
Using

2vdetG 1 2
[2) =\ = e {_Ex Gapz” _%Z%TGaﬂx +3 aoTGaﬂao [€250)

we can calculate the projection onto the basis of position eigenstates of the transverse
part of the lump state

s & 2 V d tG 1 S o
(wle=95Cosat" |0, 0) = b: e ~ 15252727 Gap (5.110)
The transverse part of the lump state in the z representation is then
& 1 oz zf G
(z]S1) = =€ 7 of (5.111)

3

Finally, the lump state projected into the x representation is

A 1 1 1 ot i)
= - g%gf Z) == = =
(z]8) - exp[ T 'bx x Gaﬂ]|_) - exp{ 7 ]| ). (5.112)
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|Z) is the sliver state (RHS of first line in eq.(5.109)) and 8 = +. We recall that
B has been chosen nonnegative. The coefficient in front of the sliver |Z) is nothing
but the simplest GMS soliton solution (4.70):

bir) =2e7" (5.113)

which corresponds to the |0)(0| projector in the harmonic oscillator Hilbert space.
Strictly speaking there is a discrepancy between these coefficients and the corre-
sponding GMS soliton, given by the normalizations which differ by a factor of 2m.
This can be traced back to the traditional normalizations used for the eigenstates
z) and |p) in the SFT theory context and in the Moyal context, respectively. This
discrepancy can be easily dealt with with a simple redefinition.

We notice that the profile and the normalization of (z[S,) do not depend on b.

As compared to [43], the B field provides a natural realization of the regulator
for the tachyonic soliton introduced ad hoc there. This beneficial effect of the B
field is confirmed by the fact that the projector (5.109) is no longer annihilated by
Zo

1 Vb 1 .
To exp (—-Z-SCLOTGaﬂCLO > Qo) = 4 5 (ap — af) exp <——2—5a0TGa5a0ﬂT) 12 0)

— ——z'—\@ [ da } al exp (—%sao Gapagy ) 1%,0)

2 |2a+1

Therefore, also in the low energy limit, the singular structure found in [43] has
disappeared.

In order to analyze the same limit for any |A,), first of all we have to find the
low energy limit of the projectors pi, po. Also these two projectors factorize into the
zero mode and non-zero mode part. The former is given by

(p1)58 — %[G“ﬁﬂ'eaﬂ], (02)28 — [Gaﬁ aﬂ (5.114)

Now, in order to single out the appropriate limit of |A,), we take, in the definition
(6.71), £ = £+ n and C = ( + 0, where 1,9 vanish in the limit o/ — 0. Then we
make the choice fn Cn =0 Vn > 0. We will see that the two zero components &
and Co are enough to define a consistent low energy limit. In the field theory limit
the defining conditions (6.72) become

50,24 + 7550,25 =0, 50,24 + Z'50,25 =0, ] (5.115)
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From now on we set & = €025 = —1fo24 and, similarly, (o = (o5 = —1(p24. The
conditions (5.95) become

T3 =~ 7 s teb = -1 (5.116)
£ _‘TTQC = —352"\/%?@ 0Co = k6 (5.117)
Compatibility requires
\j%% =1-&, K=s5 (5.118)
At the same time
(Eral)(CC'al) — —Eolo(@3):+ (@F)7) = -Gl (5.110)

Hermiticity (6.74) requires that the product éoéo be real. In order to be able to
compute (z[A,) in the field theory limit, we have to evaluate first

ks atn . at d* _sg0tq g8t
m@ﬂm%)am%mmmzzewgﬂmem%mmm) (5.120)

— (__2)];_Cli 2\/ detG 1 e 1+s iIQGaﬁmﬂ
dsk br 1+s

An explicit calculation gives

dk 1 l1—s o
o (1 — e~ T 32°7%Ga ,3) = (5.121)
ol 1) Lar AN 1 g Sy B |
:ZZ a 1+ B3 = < 1 ) (z,z)e” 3 (z,z)
=0 y_—o —s)! s J: J
where we have set,

1 2r2

(z,7) = @xaGaﬁxﬂ == (5.122)

with r? = g2zf dap- In this equation it must be understood that, by definition, the
binomial coefficient (:i) equals 1.
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Now, inserting (5.121) in the definition of |A,), we obtain after suitably reshuf-
fling the indices:

) XY = bsas ! Gapall
(z](=k) L”(E) 0 CeB% |0 g)
1— g2

at B8t
a5 Gapa ) ~5908 Gasta’ |0 )

B ((1 ] zk:( )(éj*ll)}l—'(%%;%

j=0 k=j =]
. 2+/det
(=1)¥(z, z)] "3 @), b;’ ¢ (5.123)

()0

Inserting this into (5.123) one is left with the following summation, which contains
an evident binomial expansion,

EOOE) -0 e

k=j

Replacing this result into (5.123) we obtain

(al(~#)"Ls (2) e ted Cueel )

2lal +1 det L~ 2r2\’ 2
~ T4 Z() (9)

7=0

Recalling now that the definition of |8) includes an additional numerical factor (see
eq.(5.109)), we finally obtain

i = o (5)5 () <
%(-1)” Ln (_2__7f> T E) (5.126)

The coefficient in front of the sliver |Z) is the n — th GMS solution.
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In Chapter 3 it was shown that a generic noncommutative scalar field theory with
polynomial interaction allows for solitonic solutions in any space dimension. The
solutions are very elegantly constructed in terms of harmonic oscillators eigenstates
In). In particular, solitonic solutions correspond to projectors P, = In)(n|. Via
the Weyl transform these projectors can be mapped to classical functions Un(z,y)
of two variables z,y, in such a way that the operator product in the Hilbert space
correspond to the Moyal product in (z,y) space.

This construction is rather universal and does not depend in any essential way
on the form of the potential. Now, as we have noticed in the introduction, the low
energy effective tachyonic field theory derived from SFT in the presence of a back-
ground B field is a noncommutative scalar field theory of the type described above.
Therefore it is endowed with the GMS noncommutative solitons. It is reasonable to
expect that these solitons may emerge from soliton—type solutions of the SF'T, which
has the noncommutative scalar tachyonic field theory as its low energy effective ac-
tion. Therefore the low energy GMS solitons we found in the previous sections are no
surprise. What is surprising however is the isomorphism we find between the lump
solutions |A,) in VSFT and the corresponding GMS solitons. Setting r* = z? + 32

and Y (z,y) = 2(-1)" Ln(%) e~ , we have in fact the following correspondences

|An) B = n(z,y)

where x denotes the Moyal product. Moreover
(AnlAw) > Tr(PoPy) / dzdy (e, v)dw(z,y)  (5.128)

up to normalization (see (6.76)). This correspondence seems to indicate that the
Laguerre polynomials hide a universal structure of these noncommutative algebras.

It is evident from the above that the GMS solitons are the low energy remnants
of corresponding D-branes in SET. This explains many features of the former: why,
for instance, the energy of the soliton given by 3 "p—, |k)(k| is n time the energy of
the soliton |0)(0[; this is nothing but a low energy relic of the same property for the
tensions of the corresponding D-branes.

This parallelism can actually be pushed still further. In fact we can easily con-
struct the correspondents of the operators |n)(m|. Let us first define

X =alr¢ Y =alC'¢ (5.129)
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so that x = A'Y". The definitions we are looking for are as follows

7!
IAn,m> — %(_H)n §,fm—nL;711—n <§> tS_L>, 1 S m (5130)
: K
m! rn—m pn—m [ > -
) = 4 () XL (;) 8.), n>m  (5.131)

where L™ "(2) = > 1 m —2)*/k!. With the same techniques as in the
n k=0 n —k

previous sections one can prove that
[Anm) % [Ars) = OmrlAns) (5.132)

for all natural numbers n,m,r,s. It is clear that the previous states |A,) coin-
cide with |A, ). In view of (5.132), we can extend the correspondence (5.127) to
Iny(m| > |Apm). Therefore, following [56], [61], we can apply to the construction of
projectors in the VSFT star algebra the solution generating technique, in the same
way as in the harmonic oscillator Hilbert space . Recalling from chapter 3 the
solution generating tecnique and the partial isometry structure, we write the analog
of the shift operator in VSF'T as

S=> |Ansin) (5.133)
n=0

S'=>"|Amms1) (5.134)
m=0

Then follows

S * ST = ZZ?m:O IAn+1,n> * |Am,m+1> = ZZO;—O \An> - |AO> (5135)

ST+ S = ch,)m:o [Anna1) * [ Amsm) = 2oy [An) (5.136)

which looks like the partial isometry relations we saw in chapter 4

SSt=1—-P=1-|0)(0 (5.137)

St =1 (5.138)
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related to the solution generating technique [?]

¢=S"NIS™ =\ (1-PR,) (5.139)

At first sight, one is tempted to identify >, |A,) with a sort of identity of string
fields and consider the Ancestors as a “complete basis” beeing also orthogonal. We
will see in the last chapter other motivations to suspect this but we must say that
this problem is more subtle and we will not treat it for the moment [81, 80]. To
conclude, we notice that the parallel between Ancestors and GMS works also at the
solution generating technique level because we have

Apgm = S™A, ST (5.140)



Chapter 6

Playing with star projectors

6.1 The General squeezed state form

In this section we will show that all the string fields and star-algebra projectors we
described in chapter 2, can be written in a general squeezed state form involving a

matrix U:!
Nz ~Lcoagatal
_ = ata 6.1
Go) = GamrT € 10) (6.1)
where
U+T
T1+7TU (6.2)

Depending which matrix we choose to be U among a very simple group of pos-
sibilities, the null matrix or the identity or even and odd powers of the matrix S
(sliver matrix), we recover the projectors. (For details about indices and diagonal
basis, see chapter 2 and [70, 73]). In particular we have:

e U = 0 corresponds to the Sliver state

e U =1 corresponds to the Identity state

1Kawano and Okuyama wrote down the same state with u beeing a number in [J: in particular
they showed that this state interpolates between the Sliver (u = 0) and the Identity (u=1).Ina
certain sense we generalize their idea but it will be more clear when we will show how we derived
such state

135
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e [ = (C corresponds to the Nothing state
e U = —5 corresponds to the Butterfly state
e U= (-T)""" corresponds to the Nth Wedge state

o U= (—8)""" (N even) corresponds to the oo = % Generalized Butterfly state

For our calculation, we will use the diagonal basis used in [73], which is the basis
of eigenvectors of the operator K7 instead of the usual K [66, 70].? This allows us,
for instance, to write the sliver matrix in a simple two times two matrix form

S = —s(k) (g é) (6.3)

where

is the Sliver eigenvalue. In the same basis the twist matrix C is

C= (~O1 ’E)l) (6.5)

and thus T = CS

1 0
T = s(k) (O 1) (6.6)
The “General” state then takes the form
U+ s(k)1
= et 7
C = TSt (6.7)

We will refer to [73] for other equivalent representation of star projectors we will
use in the following steps.

2This diagonal basis in just a change of oscillator basis, defining two type of oscillators, twist
even and twist odd, using the eigenvectors of K; which are k dependent, where % is the continous
eigenvalue of K. It turns out that on this basis the Witten’s star can be rewritten as a continous
Moyal star product in suitable noncommutative k-dependent cordinate
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6.1.1 U = 0 or the Sliver

Choosing U = 0 is immediately to see

G=s(k)1=T (6.8)

Since there is a C' matrix multiplication between the diagonal oscillator basis
and the basis of the a oscillators, we will write

(Gpeg) = Nz e 2594'|0) = |2) (6.9)

which is the sliver with the correct constant in front of the exponential factor.

6.1.2 U =1 or the Identity

Putting U = 1, we have

G=1 (6.10)

then

Nz ~LcCata
Go) = g e 0 =10) (6.11)

which has also the correct constant factor. From now on, we will skip such
constant factor for space reason.

6.1.3 U = C or the Nothing

If we take for the matrix U = C,

cC+T

and recalling the oscillator representation of the Nothing state

IGyec) = e~z 1% |0) = |N) (6.13)
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6.1.4 U= —5 or the Butterfly

Choosing U = —S and using for S the form

S = —s(k) (g’ é) (6.14)

we have

G:sm(‘f o)+ (g 1)
BETIH

(6.15)

Then

é-rrom (1 1) = wmmem o) 619

which is the diagonal K? representation of the butterfly, as showed in [73]. Thus

|Gue—s) = e3"27|0) = |B) (6.17)

It is interesting to notice that from such “diagonal” form of the butterfly, using
the form of matrices S and T, is it possible to rewrite the butterfly matrix in the
form

S—T
Ve = (6.18)
thus
1B) = Ng e~ 2 1257 %7|0) (6.19)

which is immediately understood to be twist odd: the matrix elements V,,,,, with
n 4+ m even are zero while the odd ones are not, as it must be. It will be useful also
the diagonal form of such state

23 T2

1By(n=1)) = Nge 2142 °|0) (6.20)
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6.1.5 U = (-T)""! or the Wedge state

Putting U = (—7T)"~! and recalling that T is simply proportional to identity matrix
in two dimensions

e (4 (j)N"l + s(b) (éN ) .
(o) (2 )
which gives immediately
o~ ST 3 )

which is exactly the definition of the Nth wedge state matrix T, recalling that
in our basis

1 0
T = s(k) (O 1) (6.23)
So, we get
|Guo(c-1) = e 2TV |0) = |Ty) (6.24)

6.1.6 U = (—S)¥~! or the Generalized Butterfly

It is important to notice that in this formalism, apart the constant s(k), the matrix
T behaves as an even power of the matrix S. In this sense, even powers of matrix S
lead to wedge states, odd ones to generalized butterflies as we will see now. Indeed,
taking U = (=S)V~! with N even, we get

st (00 +w(y9)

(o 1)+t (§ é)m

and after a bit of algebra

(6.25)
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T 1_gn

which we rewrite as

G=—"[(1- 21— s"2(1 = $2)C]

1 — 52NV

Let us separate the twist even and twist odd sectors

s - _
Geven = -]—____—_;5]7 [(1 _ 82N 2) _ SN 2(1 _ 52)]
s _ _
Godd = 1—_5_27\/__ [(1 _ 32N 2) + SN 2(1 _ 82):|
thus
_ JN-1
GE’UETL > >
1—sN
54 sVt
Goad 1+ sV
and finally

IG) — e—% (Geven 3T2+Godd 01—2) |0>

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

In order to compare this with the expected state, we need a diagonal oscillator
representation of generalized butterflies. We will derive it from the Moyal coordinate
wave-function representation [73]. Let us make first of all, an example with the sliver
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state. It is very easy to obtain the gaussian form of the Sliver in the z(k), y(k) Moyal
coordinate

W= (k) (k) = (ol y(R)E) = 2o (639

we must take the braket between the sliver state in diagonal form

=) = Nz e~ 140" dkS(k)(e"2+0*2)|o> (6.35)
and the Moyal coordinate squeezed state (the same for y(k))
(z(k)| = (Olexp (e2 +iv2en(k) — 1 /2x2(k)) (6.36)

In order to do this, we use the same formula we saw in chapter 2

<O|eXp<—§1§a'PCL+>\‘a)GXP(“é‘a-@cﬁ—Fu-a)lO) (6.37)
= det(l1 — PQ) " exp (MT- (1-PQ)™ - A— %MT QL -PQ)
1 —
—-2—/\T'P(1-—PQ) 1_)\)’

with

A=1:iv2z(k) ,P=1, p=0Q =s(k) (6.38)

Now, if we would like to do the opposite, starting from the Moyal function
representation and get the oscillator one, we should start from the coeflicient p
of z(k) (or y(k), for the sliver is the same) and, after some algebra, obtain the
coefficient @ from

1

In our case

p=—= (6.40)
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KT
<) = 2 Y
0(x) ta11h< 1 ) : (6.41)
then
g—2
== 42
a=0"2_am (6.42)

which is the well-known coefficient of the diagonal form of the sliver [69].
Starting from the Moyal function form of the butterfly, [73], the same game leads
to

Qz 1

1+0, ) = Dz (6'43)
Qy L
with
1 2
Pz = 5 Py = @ (6.45)
thus
Q. =0 Q—92_4~ 2s (6.46)
T VT4 1462 '
and we obtain
_l_2s_t2
|B) =Nge 21+:2° |0) (6.47)

which coincides with the form we saw before.
Wave functions in X, = (x4, yx) are proportional to the Gaussian

exp (-—%/ X,i]z,;)zndm> ) (6.48)
0

The generalized butterfly |B,) in this representation is [73]
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_— KT tanh(m(fc:a)) 0 ‘
L= coth () ( . coth(£22=2)) (6.49)

da

The sliver is limit o« — 0

- KT 1 0 2/(1 0 ,

We want to derive the diagonal oscillator form for the generalized butterflies.
We put

n=-— (6.51)
2
N=n+1l=2= (6.52)
oY
and we write down
Ql‘ 1 T Tn
0. 2° —Lcoth (&) th (222) (6.53)
Q 1 7T T
y
It is useful to define
t=e% (6.55)
in order to simplify calculations:
km 141
th{ — ) = —— 5
co < 1 ) T (6.56)
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ke 1—¢m
ﬂl( 2“) - (6.58)
Easily we get
~t + ¢
Qo= (6.59)
—t -
Q=T (6.60)
SO
B,) = N, e~ # (i 4575 o) (6.61)

Note that for n = 1 or alternatevely, « = N = 2, we find the simple Butterfly

2s

1By(n=1)) = Nge 2= |0) (6.62)

Now, we compare the form for the Generalized Butterfly we found with the
General state with U = (—S)¥~, N even

") |0) (6.63)

Recalling —t = s, N = n + 1, it is straightforward to see that the even sector of
|Bg)

—t+t" g4 (=g)Vt g — VL

= = .64
I—tntl 1 —(=s)N 1—sV (6.64)
coincides with Geyen and the odd sectors of |B,)
—t — ¢ N-1
_ 2 (6.65)

L+ttt 148N

coincides with G,gq.
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6.2 General state from “Ancestors”

Let us define the function P(u) with u a real constant starting from generic A,, star
projectors:

Plu)=> u"An) (6.66)

Kawano and Okuyama showed [74] that if A, are a complete basis this function
has the form

1 _1 4GS gtot

|P(u)) = PR P 2 Te * 0 ]0) (6.67)

and behaves as

P(u) * P(v) = P(uv) (6.68)

under star product, so interpolates between the Sliver (u = 0) and the Identity
state (u = 1) if such projectors A, are a complete basis. Indeed,

o0

Plu=1)=> |A)=|I) (6.69)

n=0

We have an infinite set of projectors and, making some assumptions about some
arbitrary terms, their Laguerre form leads to the same structure of P(u), with a
generalization respect to the constant u: we will use a matrix U. We already said
that the structure of Ancestors solutions suggests the possibility they are a sort
of complete basis of star-algebra but this problem, the completness problem with
string fields, is very subtle, so we will not jump to definetely conclusions but make
simply an interesting exercise [80, 81].

Let us recall the definition of the “Ancestors” |A,)

|An) = (=K)"Ln, (—E) =) (6.70)

where
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x = (a€) (a'C'¢) (6.71)

and the two ‘vectors’ inside £ = {&*} and ¢ = {(/} are chosen to satisfy the
conditions

,015 = 07 p2£ = E) and plg - 07 pQC = Ca (672)
and

1
1-177

T
1-177

&r ¢=-1, T (=—k (6.73)
and  is an arbitrary real constant. |Z) is the sliver.

Hermiticity requires that

(a€")(aC") = (aC€)(al) (6.74)

We know that
[An) * [Am) = GnmlAn) (6.75)
<An|Am> - 5n,m<AO‘AO> (6.76)

Therefore, if we consider the sum |Ag) = Y neq |An), this is still a projector, but it
has infinity action

(AsolAso) = (Rolo) Y 1 (6.77)
n=0
If we define
Gu) =D U"|Ag) (6.78)
n=0

and if make two assumptions about the value of the constant £ and the two,
related infinite but, up their constraints, arbitrary vectors
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k= =Tr(T)=s(k) (6.79)

(760 Gn =5 (1= ), = =

: (1—s%(k)) (e +0™) (6.80)

[N

where we write the assumptions also in the diagonal formalism skipping some
integral over k in order not to complicate the expression. It is easy to see that these
assumptions are coherent with the constraints about the vectors and k. Using a
well-known resummation formula for Laguerre polynomials

> 1
> "Ln(z) = e (6.81)
n=0
and putting
1
z=-s(k)U , x= —3 (1-s*(k)) (e + o' (6.82)
we obtain
1 ST 1(1 o2 et21012)]— Ls(k) (ef2+0t2
|GU>:det(1+$<k)U)el+5(k)U[ 5 (1-52(k)) (e"2+0"2) | - s(k) (e1*+ )|0) (6.83)
and finally
Ne -3 5 (<1*+1%) ) (6.84)

Go) = e =70y ©






Appendix A

Star products:rules and definitions

A.1 computations of x products

As seen earlier, the matter part of the sliver state is given by

Coherent states are defined by letting exponentials of the creation operator act on
the vacuum. Treating the sliver as the vacuum we introduce coherent like states of
the form

[1]

>:N26exp(—%aT-S-aT)|O). (A1)

oo

Z6) = exp (3 (=)"+ Buncl! ) [2) = exp(—a' - CB)IE) (A.2)

n=1

As built, the states satisfy a simple BPZ conjugation property:
(5] = (Elexp(3 Buuct) = (Elexp(8-a). (4.3)
n=1

We compute the * product of two such states using the procedure discussed in
refs.[34, 37]. We begin by writing out the product using two by two matrices encod-
ing the oscillators of strings one and two:

(lEm) * |552)> = (exp(-—aT - CB)|ZE) * exp(—al - Oﬂg)lE))

3) (3)

= (1)(51 exp(p - a(l)) (2) (Z|exp(Ba - a(z))|Vlz3>
1 1t b T gt
= (Olzlexp(ﬁ-a—ga-z-a) exp(—ia V-a'—-x -a)]Olz)

1
-exp<—§a2'3) Ly -a&)) 10s) , (A.4)
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where a = (a(1), a(2)), and
« (S 0 v — R R
= 0 S ) - ‘/21 ‘/‘22 ?
p
= <5i C = (a2, gl V). (A.5)
Explicit evaluation continues by using the equation
1 i_ Lo atal
<0‘ exp (ﬁzal - §Pijaiaj) exp ( - Xi®; — §Qija,b- aj> IO> (AB)
1 1
= det(K) "2 exp ( —XT KB 58T QKB — X K“lPX) K=1-PQ.

At this time we realize that since |Z) % |E) = |E) the result of the product is a sliver
with exponentials acting on it; the exponentials that contain §. This gives

Z8.) * 126,) = eXP(—XT KB~ %ﬁT VKT 5)|5> , K=(@1-3V). (A7)

The expression for X!, needed above is simple to obtain given that all the relevant
submatrices commute. One finds that

Kl=(1-XV)"=

1 <1——TX TM?*? ) ' (A.8)

Q+T)1-X)\ TM* 1-TX

We now recognize that the projectors p; and po defined in (2.62) make an appearance
in the oscillator term of (A.7)

—xTK18 = —af-C (M, MK 8= —a - C(p1, p2)f (A.9)
= —d'C - (p1 1+ p2 B) -

One can verify that

CBuBs) = (B, Br) VE (’3> (A.10)

2
- %(ﬂl,m)(lw)l(l_x) (V*ng T) Vngli T)) (gl) _

Since the matrix in between is symmetric we have

C(B1, B2) = C(B2, P1) - (A.11)
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Using (A.9) and (A.10) we finally have:

1Z6,) * |Z8,) = 6X13<—C(ﬂ1> ﬁz)) |Zp18140282) - (A.12)

This is a useful relation that allows one to compute *-products of slivers acted by
oscillators by simple differentiation. In particular, using eq.(A.2) we get

(att - afif|2)) = (it altlE) = (—1)EmlmFDEEm ) (A.13)
(o T s T ) B,y
Since p, + pp = 1, for 1 = B eq.(A.12) reduces to
Z6) * 25) = exp(—C (5, ) ) [2a) . (A.14)
Using the definition of C in (A.10) one can show that C(8, 8) simplifies down to
C(6.6) = 56001~ T)76. (A15)
It follows from (A.14) that by adjusting the normalization of the =5 state
Py = exp(C(8,)) Zs) (4.16)
we obtain projectors
Pgx Pg = Pj. (A.17)

Using eq.(A.6) one can also check that

(Ps|Pg) = (E[E) . (A.18)







Appendix B

. rs
The coeflicients V7,

S

In this Appendix we give the coeflicients V7 introduced in Chapter 5. These results
are taken from refs.[32, 33, 37]. First we define the coefficients A4,, and B, forn > 0
through the relations:

()" - 5 X

7 even n odd
1412\ 2/3 .
((2%) = X Bar+iX b B1)
7 even n odd

In terms of A, and B, we define the coefficients N7:=¢ as follows:

1
7,7 _1\n
Ny —_3(nim)( 1)"(A, B, £ B,A,,) for m+neven, m#mn,
= 0 for m+nodd,
1
N'r,:i:(r+1) — — 1)+l B, A,
nm mﬁ(nim)( )" (ApBm £ BhA,) for m+neven, m#n,
1
= ——— \/3(4.By F BuA,) d
6(nim)\/_( F ) for m-+nod
1
NpEr=1 - = m(—l)"“(Aan:FBnAm) for m+n even, m#n,
1
= *mx/g(Aan:}:BnAm) for m+mnodd. (B.2)
The coefficients V% are then given by
Vim = —Vmn(Ngg + Npo*®) for m#n, mn#0,
Vo= 22 (-1 AR (1) - A2 for mAO,
- 3 k=0
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mn

1
VI = Ve = S - V] for n O,

nn

]

TS

Il

—V2n (Ny? + N %) for m=#0,
0 0n

" On n
o = In(27/16). (B.3)
The value of V" quoted above corrects the result for N7 (= —V,7"/n) quoted in

eqn.(1.18) of [33]. In writing down the expressions for V7 and V7 has been taken
into account the fact that we are using o’ = 1 convention, as opposed to the o/ =1/2
convention used in refs.[32, 33].



Appendix C

Conversion from momentum to
oscillator basis

We start with the three string vertex in the matter sector as given in Chapter 2:

l%>:/d26p(1)d26p(o)d ()8 (p(l + D) + D)) exp(—E)[0,p)12s (C.1)
where

Z I R +Zn,ﬂ,p(r)v Mg 2 mep(, Veg oy - (C2)

mn>1 nZl

Note that using the freedom of redefining V7 using momentum conservation, we
have chosen VJ§ to be zero for 7 # s. Due to the same reason, a redefinition
VIs — VI + AS by some r independent constant A7 leaves the vertex unchanged.
We shall use this freedom to choose:

> Vi =0. (C.3)
T
It can be easily verified that V{ given in eq.(B.3) satisfy these conditions.
We now pass to the oscillator basis for a subset of the space-time coordinates z®
((26 — k) < o < 25), by relating the zero mode operators £% and p* to oscillators
a2 and a'. For this one writes:

\/_P - %m \/_ + —\/—sz (C.4)

where b is an arbitrary constant. Then ag, ag‘T satisfy the usual commutation rule

[a2,all] = 6°F (we are assuming that the directions z* are space-like; otherwise we
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shall need n°?), and we can define a new vacuum state |) such that a§|;) = 0.
The relation between the momentum basis and the new oscillator basis is given by
(for each string)

15)) = (/o) exp [~ Do+ Vhaglp® — Zatat]jn). (C5)

In the above equation {p®} label momentum eigenvalues. Substituting eq.(C.5) into
eq.(C.1), and integrating over Py, We can express the three string vertex as

Vi) = / d26_kp(1)d%_kp@)d26_kp(3)5(26_k)(P(l) + D) +13))

(- 5 V0 et V50 - § e V).l

m, n>l nZl
V3 b\ k 1 (ot ) ;
m——— /TT — — ITs S)x
® ((27rb3)1/4 (Vog + 2)> &P ( 2 Z; Vi )|9b>123 (C.6)
M,N>0

In this expression the sums over f, 7 run from 0 to (25 — k), and the sum over o
runs from (26 — k) to 25. Note that in the last line the sums over M, N run over 0,

1,2 .... The new b-dependent V' coefficients are given in terms of the V' coefficients
by

Vo) = Vb= ——— ZV"VJ;, mn>1,

VEJO 2 t=1
Vars(b) = VT;ST:V f Ves,  n>1,
1 b
ITs —
Voo’ (b) = e T#S,
2 b
Vg () = 1—= . C.7
® ST ©.)

In deriving the above relations we have used eq.(C.3). These relations can be readily
inverted to find

2 1 -
TS — Irs b I7‘t b ‘/lts >1
an an( ) 3 V[Tr(b) ; ( ) ( ) m7 n — J
2
Vs = 2 —omm VOVr),  n>1,

31- Vc{c’;’()
b 1+ 3V (b)

/'T'T — .
I S AOR ()
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We shall now describe how our variables V79 and V¢ are related to the variables
introduced in ref.[32]. For this we begin by comparing the variables in the oscillator
representation. Since ref.[32] uses the o' = 1/2 convention rather than the o/ = 1
convention used here, every factor of p (z) in [32] should be multiplied (divided) by
V20, and then o should be set equal to one in or de1 to compare with our equatlons
With this prescription egs.(2.5b) of [32} giving ag = £p—if becomes ay = \/_ p— 5k
which corresponds to (C.4) for b = 2. Thus, we can directly compare our vanab]es
with those of [32] for the case b = 2.

Ref.[32] introduced a matrix U which appears, for example, in their eq.(2.47).
We shall denote this matrix by U9%. This matrix appears in the construction of
the vertex in the oscillator basis ([32], eqn.(2.52) and (2.53)). This implies that the
V' coefficients for b = 2 can be expressed in terms of U% using their results. In
particular, defining V¢ to be the matrices V"¢ with m,n now running from 0 to

oo, we have (see [32], eqn.(2.53)):!
1 , _
VITe(2) = §(C’ +wTTUY 4w UY) (C.9)

where w = exp(27/3), C},,, = (=1)™8mn with m,n > 0, and the matrix U9 satisfies
the relations (eq.(2.51) of [32]):
Uet=ysi 0% = (UY) = C'UYC!, UYUY =1. (C.10)

Eq.(C.9) gives us, Vgg"(2) = 1(1 + 2Ug). With this result, the last equation in
(C.8) can be used with b = 2 to find

w0 = ijg(i‘i : (C.11)
Similarly, the second equation in (C.8) gives:
Vor = Ugg V2VgE(2),  for n>1. (C.12)
Making use of (C.9) and U = (Ug)* we find that we can write, for n > 1:
Vo = —;;(ws“TWn + WY, (C.13)
where
i, = Y20 (C.14)

1- U
'As explained at the end of appendix E.36, U% should really be identified with T of ref.[32].
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The first equation in (C.8) together with (C.9) gives us [34]
1 o
Ve = §(C +w U +w ), (C.15)

where V™, U and C are regarded as matrices with indices running over m,n > 1,
Con = (=1)™0pp, and U is given as
) Ugijgj
00

By virtue of this relation, and the identities in (C.10) we have that the matrix U
satisfies

U=U*=cUuCc, U*=0%=1, U'=U, U'=U. (C.17)
It follows from (C.10) and (C.14) that W, satisfies the relations:

Wy = (=1)"Wh, Z WiUnp = Wy, Z W Wm =2V - (C.18)

n
n>1 m>1



Appendix D

. af,rs
The coeflicients VMN

In this Appendix we derive the properties of the coefficients V2:* which has been

essential for the definition of lump solutions with B field. These properties are
parallel to those enjoyed by the ordinary coefficients, reported in Appendix B, and
first found in [32, 33, 34, 37].

Let us quote first two straightforward properties of Vs

e (i) they are symmetric under the simultaneous exchange of all the three couples
of indices;

e (ii) they are endowed with the property of cyclicity in the r,s indices, i.e.
Vrs = Yrebstl Swhere 1, s = 4 is identified with 7, s = 1 and we have dropped
the other indices.

The first property is immediate. The second can also be proven directly from
eqs.(5.25). However, since it will be an easy consequence of eq.(D.11) below, we
pass immediately to the derivation of the latter.

To this end we need the following representation of the coeficients Vs, derived
from [32]:

s Zn X", n odd
Von = {—~—2—Z Qe n even (D-1)
VEn 9

where

2
n — o n 2
Zn= 1|5 BoA (D.2)

The numbers By and A,, were defined in ref.[32]. Notice that, since we have assumed
Zy? = Z77, we must have, by definition, V{jf = V¢ for n even and V5 = -V for

n odd. Finally, for convenience, we introduce Z; = g
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Substituting (D.1) into egs.(5.25) and using (5.27), we obtain

wBirs VT (00) — A K8 Zn Zas, N+ M even .
Vv = afB,rs V3A~! rraB,rs N r ) (D.3)
’\7]\71\,[ (OO) -+ mHoo ’ (——1) ZNZA/[, N+ M odd
In these equations
Kg‘f’” = GBS — jae*P y"* (D.4)
HoArs = 3GPy" + 4ia*P gre (D.5)

and V2275 (00) is
vgéﬂ’,rs (OO) — Gaﬂars
VEE(00) = 0 (D.6)
VebTs(00) = G¥ Vi,

The coefficients V¢ are the same as in ref.[37] for n,m > 1.
We can also express the Vor7® in the following way

T —1 afB,r
b _ { Ve (0) + fé‘éHKOﬁ *ZnZ, N+ M even 0.7
NM VI (0) + LA HEP T (—1)N Zy Zs, N+M odd
where
4
KgPrs = ga‘?Gaﬂqbrs + iaé* " (D.8)
HP"™ = —4a’G*P X" + diae® ¢7° (D.9)

and '\7?\,’9]\’;5(/0) = G°BVrs, are the values taken by Vory® for B = 0. As expected, the
symbols V%, are the same as the coefficients V,7$(b) with n,m > 0, used in [37].
Next we introduce the third root of unity w = e'% and notice that

1
¢7‘S — _(wT—S + ws—r),

5 — W', (D.10)

1
er — __(w'r—s
V3

Inserting these relations into (D.3,D.7) and rearranging the terms we find the basic
relation

af,rs __
VNM -

CO| k=

(C’fVMGO‘ﬁ +wTTUSH, + w"sﬂ?f]\[) (D.11)

where

uaﬁ { G"‘ﬁuNM(oo) -+ RaﬂZNZ]\/[7 N+ M even

NM =) GoBU s (00) + iR (—1)N Zy Zas, N+ M odd (D-12)
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Moreover
U = (U5 (D.13)

where * denotes complex conjugation. In (D.11) Cl,r = (=1)¥ 6y and

-1
RO — 4§f+ ; (-%Gaﬁ + \/§a€“5) (D.14)

Moreover

Ugy (00) = G, UG =0
U (20) = G’ Upim (D.15)
In the last equation Uy, coincides with the same symbol used in [37] (see eq.(B.15)

in that reference).
Alternatively one can split U into the B = 0 part and the rest. Then

uaﬁ N GO‘BUNM(O) +TQBZNZM, N+ M even (D 16)
NM GaﬁuNM(O) + iT“‘B(—l)NZNZM, N+ M odd ’
where
124-1 V3
of = R e D.17
T 4a2+3<aG’ + 5 0¢ ) ( )

and U3, = G*PUY;,,. The coefficients U!_, U, | Uy, are the same as in ref.[37] (see
eq.(B.19) therein).
Let us discuss the properties of U. Since

(e v — Uy N+M even
v —Uus N+M odd

it is easy to prove the following properties (where we use the matrix notation for
the indices N, M)

(U™)* = C'UP " (D.18)
and

(U = (U T = (C'uBC)T = ues (D.19)
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Finally, if tilde denotes transposition in the indices a, 3, it is possible to prove that
(the proof is rather technical and deferred to the end of this Appendix)

U, = (U, = GPonm + (RG +GR+ %AR]:Z> ZnZy  (D.20)
Now, remembering that ¢*7¢,# = —G? | it is elementary to prove that
RG+GR+ gARR =0 (D.21)
Therefore, finally,
Uy = (MW = G owu (D.22)

Eqs.(D.18,D.19,D.22) are the generalization of the analogous ones in [32, 33, 34,
37]. Using in particular (D.22), it is easy to prove that

[C'Vs, 0"V ] = 0. (D.23)
This follows from
o[C"V™s, 'V | = Wt (CMUUC! — UU) + w7 (UU — C'UUC")

and from eq.(D.22). In the two previous equations matrix multiplication is under-
stood both in the indices M, N and «, 8. In the same sense, on the wake of [34, 37],
we can also write down the following identities

Cllecval — OIleclle — (Olv11)2 _ Olvll (D24)
(O/'V12)3 T (Clv21)3 — 2(0’\7”)3 _ 3(01»\711)2 4 G (D.QS)
which will be needed in the next section.
Notice however that, unlike refs.[32, 33, 34, 37], we have
cvr=VvrC C'XT =X (D.26)
where tilde denotes transposition with respect to the «, § indices. Finally one can
prove that
X4+ X2+ =1
x12x21 — xQ -
(x12)2 + (:x:21)2 =1— x2
(X123 4 (A21)% = 20% — 3% + 1 (D.27)
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In the matrix products of these identities, as well as throughout the paper, the
mdices a, § must be understood in alternating up/down position: X%z. For instance,
in (D.27) I stands for 6% dprn-

Derivation of (UL)%7,,

We derive now eq.(D.20). This can be done starting both from the representation
(D.12) and from (D.16). In the first case we need the following identities taken from
the Appendix B of [37].

D> Wil =W, > WiW, =2V (D.28)

n>1 n>1

The numbers W, are defined via the equation

1
Vs = g(uﬁ“TWn +w W) (D.29)

On the other hand we have

)
VI = — (W —w*Z,, n odd
on \/é-( )
1
Von = ——=(W 7 +w* ™" Z,, n even D.30

‘This allows us to identify W, and Z, as follows:

W, = —iv/3Z,, n odd

Wy, = —V/3Z,, n even (D.31)
In particular, from the second equation in (D.28), we get
| 2
> zi= 3 Vi (D.32)
n>1

Next one has to consider (Uﬁ) ~m case by case according to the various pos-
sibilities for N, M. As a sample, let us consider N = n odd and M = m odd.
Then

(Uﬂ)nm = unOﬂOm + Z unkﬂkm + Z unkﬁkm
kodd k even
Now we replace on the RHS the values extracted from eq.(D.12). After rearranging
the terms we get

b

U)pm = Gbnm + gRRZan +RRZ, 7y 73

k>1
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1 ~ 1
——GR g U5 Zo + —=RG 2, E WiUkm
\/§ E>1 \/§ k>1

) -
= Gbpm <RG +GR+ S(Vio + g)RR> ZnZom (D.33)

where use has been made of (D.28) and (D.32). In the same way all other cases of
the identity (D.20) can be proved.

Alternatively one can prove (D.20) by means of the representation (D.16). The
procedure is the same, but the matrix involved is U’ instead of U. For this reason
we need, instead of the second eq.(D.28), the identity

b
sy
> Wl = 2
+ ‘/

1 2 T Voo

W, (D.34)




Appendix E

Some proofs

In this Appendix we collect some proofs that otherwise would have uselessy made
heavy the treatment of VSFT with B field. First, we explicitly show that the ratio
R defined in (5.45)

_ A*(3+4a?)? Det(I — X)**Det(I + 3X)"/*
2763 (DetG) /4 det(1 — X)3/2det(1 + 3X)1/2°

is indeed equal to 1. Second, we prove the fundamental properties (6.75) and
(6.76) of the states |A,), i.e.

|An) * |Ap) = 5n,m|An>
<An!Am> = 5n,m<A0|A0>

E.1 Proof that R =1

This section is devoted to the proof of
R=1 (E.1)

What we need is compute the ratio of Det(I — X) and Det(I + 3X) with respect to
the squares of Det(1 — X) and Det(1 + 3X), respectively. To this end we follow
the lines of ref.[52]. To start with we rewrite V! = V in a more convenient form.
Following [52], we introduce the vector notation |v.) and |vg) by means of

14 (-1)" 4, _1—(-1)" A,
IIUe>n - 2 \/‘T—i, ['Uo>n - 2 n)
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The constants 4, are as in [32]. Now we can write

24-1p
Voo = [ 1— 1
” ( 4a2+3>

2A~1/2b [2b 4a A~
r\771:“"“"_”‘—_1 eln A — olns vn: -1 nvn E.2
0 4a? + 3 (Veln +1 31.1£c12+3e<vI on = (=1)"Vno (E:2)
4471 8 aA™!
Vam = (Vo = e 1)l + 1) 0l ) 1+ 75255 )]~ ) 2 D

where we have understood the indices «, 8. They can be reinserted using
1% =06%,  e%p=¢%

Now X = C'V can be written in the following block matrix form

(1-2Kb)1 —2KV/EB1 (ve| + 4iaK /2 e (v
X= —2K\/_2‘b—|’ve> 1 X1-4K1 (|'Ue> <Ue| - I'Uo><7-70‘) (EB)
iaK \[Blu)e  +Zpiak e (jue){vol + Jua)(vel)

where all m,n as well as all a, § indices are understood, K = 755—.
The first determinant we have to compute is the one of the matrix I — X. Using
(E.3) we extract from I — X the factor 2bK and represent the rest in the block form

azt-9=(C o)

By a standard formula, the determinant of the RHS is given by the determinant of
D —CA'B. After some algebra and using the obvious identity (vo|ve) = 0, one gets

Ceip (11X £ A w,) (ol 0
D-CATB = ( 0 1= X — A, (v,]

4
= (1 -X - §A"1|vo> <v0|) I
The rest of the computation is straightforward,
4 2
Det(I—X) = (2bK)? (Det(l - X = 2 A7) (vo]>)

= (2bK)? (Det(1 — X))* (Det(l - %A_l 1 —1X [ve) <v°l>>2

_ (%)4 (Z{{flfr_af (Det(1 — X)) (E.4)
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In the last step we have used the identities, see [52],

4
!U0><'U0|> =1- gA_l (UOITIJ\—:—

Vo) (E.5)

4 1
Det [1—-A""!
e( 37 1 x

and
1 3

- X |U0> = ZV‘OQ (EG)

The treatment of Det(I + 3X) is less trivial. We start again by writing (I + 3X)
in block matrix form

(ol

(4 — 6Kb)1 —6K\/2b1 (v,| + diaK~/6be (u,]
PERE= 1 6KV )1 (14 8X)1 — 12K 1 (o) (ue] — [uo)(wel) | BT
+4iaK~/6b |v,) e +8v/3ia K € (|ve) (o] + |vo) (ve|)
and set
11+3x5(4—6w{)<? g) (E.8)
Therefore

Det(I+3X) = (4— 6bK)*det (D —CA™'B)

= (4 —6bK)? (det(1 + 3X))? det ( (D - CA—18)> (E.9)

1
143X
The last expression is formal. In fact X has an eigenvalue —% which renders the
RHS of (E.9) ill-defined. To avoid this we follow [52] and introduce the regularized
inverse

1
Y, =
143X —e2X

where ¢ is a small parameter, and replace it into (E.9). After some algebra we find

(E.10)

Y. (D-CA'B)=A"-B (E.11)

The matrices in the RHS are given by

14+ oY |ve) (ve] + BY:|v,) (v, 0 )
A= E.12
( 0 1 + oY |ve) (ve] + BY:|vo) (v, (812)
where
_A-1

= 241 B = 12K2 A (E.13)

23K’ 2 — 3bK’
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and
( 1 AY2|v2) (Vo] + pY2|vo) (Ve
B = . -

“)\}slvexvol - /'L}EIIUO> (UE} 1
where,

¥ Y 2 4

A= ) = s ? Tob = -5
1+ a{ve| Yz |ve) P=TF B{vo| Yz |vo) ! ’ ’

Now, after some computation,
detA = (14 alve|Yalve))® (1 + B(w,]Yz|vo))?

and

v? (ve| Yz |ve) (Vo] Ye o) )2

detB = (1 + (1 + Of(’l)ellis}'ue» (1 -+ B(Uol}/;tvf)))

As a consequence

setd s = 1+ o) + 8uleto) (1~ il )

Voo

Now we can remove the regulator £ by using the basic result of [52]:

2

4 T
li - e{Ve olfelVo) = 777
i (1= (¥l ) (ol¥el) = 7
and
1 _ Voo
el v =
Inserting this result in (E.18) we find
A? 212\
detA detB = 8a2 +
WL = BaEA T 6Vo )2 ( v A2>
As a consequence of egs.(E.9,E.11,E.18,E.20) we find
Det(I+3X) 4 8?4 21%\
(Det(1+3X))2  (4a2 + 3)? A?

Finally, substituting this and (E.4) into R, we get

A%(3 + 442)? Det(T — X)*/*Det (I + 3%X)'/*

R =
97b3(DetG)1/2 det(1 — X)¥/2Det(1 + 3X)1/2

)

=1

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

(E.21)

(E.22)
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This is what we wanted to show. It implies
€93 i (27(")2
€95 - (DetG) 1/4

which corresponds to the expected result for this ratio, as explained in [75]. We
remark that (E.21) implies that the eigenvalue —3 is also contained in the spectrum
of XX with double multiplicity with respect to X.

(E.23)

E.2 Proofs of eqs.(6.75) and (6.76)

The star product |A,) * |A,) can be evaluated by using the explicit expression of
the Laguerre polynomials

!
n !

et = (03 (1) L)« (o 3 (7) B )

k=0 p=0

(E.24)

Therefore we need to compute (x*|8,)) * (xP[8.)). According to [38], this is given
by

0 g 0 0

k|8 PISL)) = (E7CNe ... (ErCN)XR(Pr (P e
(X I J.)) * (X ' _L>) (€T )ll (57- )lk g]l CJk 8/142‘[1 3,U,lkk alu,fll 8'&?:
5 0 a a G

f’i’cl)gl---(chl)§p<§1---C - 5 =— ...
( Iy lp 271 Jp 8’u'l—1 aﬁ[pp aﬁ% 3/]?:

exp (= XTI M - 11\4:”)2101]\/1) isg)j (E.25)
2 p=p=0
where
11 iz
K=1-7TX, V= (27721 X”) (E.26)
and

7
The explicit computation, at first sight, looks daunting. However, we may avail
ourselves of the following identities

M = (ﬂ) , xT = (a'V'?,atV?), XTKIM = a'C'(p1p + pofi)  (E.27)

T
I-72

T
7= 3‘2C,: —K (E.28)

ET(VE ™) aal = E77C (VK™ )oTC'¢ = £7C (=0

fTTC,(Vlcﬂl)aaC = fT(V’C-l)aaTC’IC = gTT
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170
;T
—5Tc ir°§ 0

I ‘IQC ’
9’2CZ_1

_1)91TC/< =

for a = 1,2, and

VK¢ = 77C" (VK
WK 01 = EErC (VK™ ) 1270 = E7C

T WK 107C" ¢ = ET7C" (VK )¢ = €'
€7 (VKo = FVK arr O =~ =5 (B.29)
Moreover
OFETNE=0, (FKTrCE=alre
N =alC’E, (KT hTC'E=0 (E.30)

X"k~
with analogous equations for (.
In evaluating (E.28, E.29, E.30) we have used the methods of ref.[38] (see also
, 5.95). These results are all we need to explicitly
In fact it is easy to verify that the latter can be mapped to a

[76]), together with egs.(6.72, 5.95)
rather simple combinatorial problem. To show this we introduce generic variables

compute (E.25)

.1, %, 7, and make the following formal replacements
A=xTK'M — z(alfr6) + 5(a’C0),

B = MTVK'M — (—kzy + k3§ — TY — KIT) (E.31)

and
0 5 0 5 O
7C'¢ =08,, (=—5=08, (COf—z=0  (G—5=20, (E32
( ) ,u’la 7 aﬂf Yy ( )l a'ul_ 7 8ﬂ§ ( )
Then (E.25) is equivalent to
orokonol e=AEP| (E.33)
r=F=y=7=0
This in turn can be easily calculated and gives
b ! Iip+k—l—2m (E 34)
m .

o)

[

> x"
m'
l=m

m=0
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where [n,m] stands for the minimum between n and m. Now we insert this back
into the original equation (E.24), we find

[p—m,k—m] ( l)p—i—k-l-l

[An ]An’ Z Z Z Z T (E35)

e (R v

In order to evaluate these summations we split them as follows

n' [p,k] [p—m,k—m] n n! k k—m k p p-m
195 S STES o[ D 9D 3 955 9 9b 3} SN
k=0 p=0 m=0 k=0 \p=k+1m=0 =0 p=0 m=0 [=0

Next we replace [ — ! +m and (E.36) becomes

zﬂii2+zzz)

=0 \m=0!l=m p=k+1 m=0p=ml=m

(093D 9859 9 9l IIES ) 9) ) Sl NEE

m=0 [=m p=k+1 m=0 {=m p=l

Summarizing, we have now to calculate

P+k+l+m

|Ap) * |Ay) = }: Z Z Z (E.38)

k=0 m=0 l=m p=l

= () <’;') () (T200) (7)<
Now
S (1) (2) = () 5w () = (1) - e

p=l p=0

This vanishes unless / = n'. In the case n’ > n, [ < n/. Inserting this into (E.38),
for n' > n we get 0.

In the case n =n’, [ can take the value n’. This corresponds to the case k = p =
l=n=n'in eq.(E.38). The result is easily derived

) o = 32 D (1) ool = (e (2) 82) = 1401 8.0)
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This proves eq.(6.75).

One could as well derive these results numerically. For instance, in order to
obtain (E.40) one could proceed, alternatively, as follows. After setting n = n' in
(E.35), one realizes that |A,) * |A,) has the form

A+ 18a) = 3B (2) " 181) (B.41)
where
o n-m p A (_1)p+k+lmzn~z—m(n!)2
EY =2 ; }ga ; (m)2(n — k —m)l(n—p—m)W{I +m)l(k—1))(p - 1)!
n—m P (ml)l/izn_l'm(n!)‘? ’
B s ; [m!(n —p—m)!(p— 1)1 +m)! (E-42)

This corresponds to the desired result if

poy - CDT ( " ) (E.43)

m m! m

Using Mathematica one can prove (numerically) that this is true for any value of n
and m a computer is able to calculate in a reasonable time.
The value of the SFT action for any solution |A,) is given by

S(An) = K(An|Ar) (E.44)

where X contains the ghost contribution. As shown in [39], X is infinite unless
it is suitably regularized. Nevertheless, as argued there, |A,), together with the
corresponding ghost solution; can be taken as a representative of a corresponding
class of smooth solutions.

Our task now is to calculate (A,|A,). However it may be important to consider
states which are linear combinations of |A,). In order to evaluate their action we
have to be able to compute (A,|A,). Without loss of generality we can assume
n' > n. By defining % = (afrC"¢) (a'¢) we get

(AnlAw) = (=) (O] Ln(%/k)e™ 3% Ly (x/ k)35 |0)
N E I B RN R
- Ln (ﬁ(TC’ f)l Cj a)\? a/\5> Ln’ (H(Tg)l (C ()j a,U/? 3uf>
1
det(I — T72)

eAc’——MjT C'u—32C o A= JusmClu

(E.45)

A=p=0
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For the derivation of this equation, see [37, 34, 38]. Now, let us set
T

! ! . / rLT
A—ACH_U_QCM B—ACH_TQ/\, C= I 73 {J.QCM
and introduce the symbolic notation
0 g O .0 g 0
e =0 (P =0, o=, (C'O- =0, (EA
O =0 Ggp =t (Ol (C'0)] 37 = OplE40)

Then, using (5.95) and (E.28, E.29), we find

0.0,A =0,  0n0pA=—1, 0,0,A=—1, 8,8,A=0
0.0,B=0,  0,0,B=-2x,  0,0,B=0, (E.47)
33—3350 - O, ajagc’ = '—2/6, agagc =0

We can therefore make the replacement
A— %B — —;—C — KTY + KTT — 2§ — Ty (E.48)
In (E.45) we have to evaluate such terms as
a’;ajagag(my + kZY — xy — Ty)*P

- for any two natural numbers k and p. It is easy to obtain

o]
_ 3 k D

k ok TY — — T k+p: 1l o P+Ek—2s
(p+k)vaw3y5‘§5p(my+my zg - Ty) SE:O <S> (8) k! pl kP52 (E.49)

Therefore we have

(An IAn'>
k+p n+n'—p—k
— ZZ r " BEoFOEED A B-1C CHE)
k!p! k P v T=y=8=7=0
k=0 p=0
C () () S (6 (2) e
= ZZ Elplem ' =25(8 (8 ) (E.50)
k=0 p=0 k'p ! P/ = \¢ 5
As in the previous subsection, we can rearrange the summations as follows,
n n [pk] E p n! k
>33 =S (e 23 ma
k=0 p=0 p=0 k=0 \p=0 s=0 p=k+1 s=0

D09 595 VIS w3 o8

k=0 \s=0 p=s 5=0 p=k+1 k=0 s=0 p=s
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In conclusion we have to compute

: nln'! n+n'—2s :
(AnlAn) ZZZ W T P =2 (E.52)

k=0 s=0 p=s
Now,
n' n'—s p+5 ’I’L’ . 8) (__1)5 L
-1y = = ————(1-1)""°(E.53
>V o E (") = - 0 (B

The right end side vanishes if n' # s, which is certainly true if n' > n. Therefore
in such a case, inserting (E.53) into (E.52) we get (An|An) = 0. When s = n/,
eq.(E.53) is ambiguous. But this corresponds to p =k = s =n =n' in (E.52). The
relevant contribution is elementary to compute, and one gets

(An|An) = (Ao|Ao) (E.54)

This completes the proof of (6.76).
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