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Introduction

Lepton flavor violating decays are a unique probe of new physics. They might
be related to the mechanism of neutrino mass generation, to the spontaneous
breaking of supersymmetry, or to new interactions at high energies, above
and below the GUT scale. Their detection would give an unmistakable signal
of physics beyond the Standard Model and its minimal extensions, and could
be the first manifestation of supersymmetric effects. And it would certainly
mark the beginning of a new era in particle physics.

Among them, p — ey and 7 — pvy offer excellent experimental per-
spectives. The limits on these decays are already impressive and significant
improvements are expected in the next few years. Thus, their role in con-
straining and perhaps discovering new physics will be reinforced by future
experiments.

Recently, motivated by these experimental efforts, by the study of neu-
trino mass models, and by the data from v oscillation experiments, p — ey

and 7 — py have received particular attention. Different aspects regarding
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these processes were investigated in papers [1, 2, 3, 4]. This thesis is based
on those works.

In the first chapter, the motivation and the general framework are in-
troduced. A critical review of some assumptions commonly employed in the
computation of lepton flavor violating decays is presented in chapter two.
We investigate, in the third chapter, the implications, within a particular
50(10) model, of 4 — ey and 7 — p for the determination of the viable
parameter space, and we confront the perspectives for their detection against
accelerator experiments in the search for supersymmetry. Finally, in chapter
four we address the relevance of the gaugino spectrum on the computation

of BR(p— ev).

C.EY.



Chapter 1

(General considerations

1.1 Experimental facts

The experimental results obtained so far in the search for lepton flavor vi-
olating processes are contrasting. In the charged lepton sector, where rare
p and 7 decays offer the best possibilities to search for, such processes have
never been observed. Strong bounds exist on those decays (table 1.1) and
planned experiments are expected to improve them. On the contrary, the
existence of flavor transitions among neutrinos have been demonstrated in
oscillation experiments. Thus, they have established that the lepton flavor

is not conserved.

Reactor, atmospheric and solar neutrino oscillation data are explained by

the existence of neutrino mixing in the weak charged current. The neutrino

11



12 1. General considerations
Experimental Limits
Decay
Present Expected
p—ey |1.2x107% 10718-107
7 py |3.1x1077 | 1.0x107°
r—ey |37x1077 |1.0x107°
u—3e |1.0x107%
p— eyy | 7.2 x 1071

Table 1.1: Experimental limits on lepton flavor violating decays

mixing matrix U relates flavor and mass eigenstate neutrinos according to
Vo = Z UaiVi, (1.1)
i

where v, (a = e, u, 7) denote flavor neutrinos and v; (i = 1,2,3) denote mass
eigenstates. Being unitary, U can be parameterized — ignoring phases — in

terms of three mixing angles 612, 023, 013 as

C13C12 C13512 513
U= —C93812 — S23513C12  C23C12 — $23513512 823C13 ) (1-2>
893812 — C23813C12  —S23C12 — C23513512 C23C13

where we used the common notation c;; = cosf;j, Sij = sin @;;. Recent
measurements indicate that se3 ~ 1/ /2 and s;5 ~ 0.6; on the third angle
only an upper bound exists, s13 < 0.2. Hence, contrary to quarks, leptons
feature large mixing angles.

Because they are sensitive to neutrino masses only through mass square

differences, neutrino oscillation experiments cannot be used to determine the

C.EY.



1.1. Experimental facts v 13

absolute values of neutrino masses. In fact, they are not known yet. Though
the solar and the atmospheric neutrino mass square differences have been
measured (Am3,,, ~ 7 x 107%V? and Am2,,, ~ 3 x 107%V?, respectively),

three types of neutrino spectra are compatible with them. They are

1. The hierarchical spectrum (m,, < m,, < m,,):

— A2 _ 2
My, ~ 0, My, =/Am2, . my,, =/ Am2,,. (1.3)

2. The quasi-degenerate spectrum (m,, ~ m,, ~ m,,):

1 1
Am? My, = My +
m, solar> V3 v me

2
ATn’atm

(1.4)

My, =My, My, =My +

3. The inverse-hierarchical spectrum (m,, ~ Myy > My, ):
1
My, = A777‘275m - %Amiolarv My, = v Amgtma My, = 0. (1'5)
) ,

Additionally, an upper bound on the mass of the electron neutrino (my, <
2.2eV) was obtained in tritium beta decay experiments and a cosmological
limit on the sum of the masses of light neutrinos (3 m,, < 0.7eV) was found
by WMAP. Neutrinos, therefore, are much lighter than any other fermion in
the Standard Model.

The good news is that, as a result of neutrino masses and mixing, the
lepton flavor is not conserved. A departure from the Standard Model expec-

tations has finally been found.

C.EY.




14 1. General considerations

1.2 A standard approach

Can the Standard Model be extended to account satisfactorily for neutrino
masses? Is such extension compatible with the experimental limits on LFV
decays? The neutrino is the only known particle that, due to its neutrality,
may have both a Majorana and a Dirac mass term. Yet, in the Standard
Model, it has none. In fact, neutrinos can not have Dirac masses for right-
handed neutrinos are not present, and a gauge invariant Majorana mass
term is not renormalizable. But, if right-handed neutrinos are added to the

Standard Model particle content, neutrinos will certainly acquire a mass.

To obtain Dirac type neutrinos, Majorana mass terms for right-handed
neutrinos must be avoided, and imposing lepton number conservation is the
simplest way of achieving it. Indeed, in contrast with the fermion number
conserving Dirac masses, Majorana masses violate fermion number by two

units. If neutrinos are Dirac particles, their mass matrix is
mp=vY,, (1.6)

being Y, the matrix of neutrino Yukawa couplings and v ~ 246 GeV the
electroweak symmetry breaking scale. The observed smallness of neutrino
masses would then require unnaturally small values of the Yukawa couplings,

Y, < 10712,

The predictions for lepton flavor violating decays within this setup are

not encouraging. For instance, the branching ratio of the decay p — ey

C.E.Y.



1.2. A standard approach 15

Figure 1.1: Feynman diagram for 11 — e in the Standard Model with massive

neutrinos.

(fig 1.1) is extremely suppressed [5]

2
3« m2.
—_ *. Vi < "50_ .
BR(u— ) = 2 ( i U U %V> <10 (1.7)

The factor (mj/mj,)? that renders it unobservable being the result of the
leptonic GIM mechanism is a common feature for all LFV processes. The
presence of neutrino masses therefore does not guarantee the observability of
LFV decays.

If only thé SU(3) x SU(2) x U(1) gauge symmetry is required, then, be-
cause a Majorana mass term for right-handed neutrinos is allowed, neutrinos
become Majorana particles. Moreover, their masses will naturally be smaller
than those of any other particle in the Standard Model. Indeed, the light

neutrino mass matrix turns out to be
Tnr—1
m, = mpMg 'mp, (1.8)

known as the see saw formula. Here, mp is the Dirac mass matrix of neutri-

nos and My, is the Majorana mass matrix of right-handed neutrinos. Light

C.EY.



16 1. General considerations

neutrino masses are thus suppressed by the factor mp/Mp with respect to
their naive Dirac values.

Unfortunately, the rates of lepton flavor violating decays are as despair-
ing as for Dirac neutrinos. p — ey, for example, proceeds through the same
diagram (fig 1.1) but with six Majorana neutrinos running in the loop. Three
of them are light and give the same GIM suppressed amplitude as before,
and the other three, being predominantly right-handed, have suppressed cou-
plings (~ mp/Mg) to the W boson, giving a negligible contribution.

The detection of lepton flavor violating decays, therefore, would be an
unmistakable signal of new physics not only beyond the Standard Model but

also beyond its minimal extensions accounting for neutrino masses.

1.3 Its supersymmetric version

Because it solves the hierarchy problem, explains the breaking of the elec-
troweak symmetry, achieves the unification of the gauge coupling constants,
and provides a suitable candidate for the dark matter component of the Uni-
verse, low energy supersymmetry is the best motivated scenario for physics
beyond the Standard Model.

Supersymmetric models are defined by a superpotential and a soft break-
ing Lagrangian. The superpotential determines the scalar interactions and
Yukawa couplings as well as all particle masses in the supersymmetric limit.
The soft breaking Lagrangian, on the other hand, parameterizes our igno-

rance of the mechanism of spontaneous supersymmetry breaking by introduc-

C.EY.



1.3. lts supersymmetric version 17

ing extra terms which explicitly break supersymmetry. Such terms consist
of gaugino masses, scalar masses and scalar trilinear couplings.

These soft breaking terms are a new possible source of lepton flavor vio-
lation. As aresult of GUT interactions, supersymmetry breaking, or Yukawa
interactions at high energies, lepton flavor violating entries could have been
generated in scalar masses and trilinear couplings. And since the LFV de-
cays they give rise to are not suppressed by neutrino masses, their rates are
expected to be much larger than in the non supersymmetric model.

The supersymmetric see-saw mechanism [6] is a minimal setup in which
the Yukawa interactions induce lepton flavor violation in the soft Lagrangian.
Even if the soft terms are assumed to be flavor blind at the GUT scale (as
in mSUGRA models), renormalization group effects between the GUT and
the right handed neutrino scale transmit the violation of lepton flavor from
the neutrino Yukawa couplings to the left handed slepton mass matrix. At
low energies, those matrix elements manifest themselves in LFV decays.

In the MSSM with right handed neutrinos the leptonic part of the super-

potential is given by
1
W, =eiY . LH; +vYY,LH, — 57/};MRVR, (1.9)

where L, er and vi denote respectively the lepton doublet, the right-handed
charged lepton, and the right-handed neutrino; H, and H; are the two Higgs
doublets needed in the MSSM. We will always work in the basis in which
Mg and Y, are diagonal. Consequently, all the information about the lepton

flavor will be contained in Y.

C.EY.



18 1. General considerations

The relevant part of the soft breaking Lagrangian is
~Lopr = (m})yLIL; + (m2)yEriér; + (m03)5;75 78
+ (AGHap Ly + ALH L, + hee.)
+m% HiHy +my HiH, + (BuHaH, + h.c.)
+%MIBB + %MQWW + %Mggg. (1.10)
However, due to the large number of free parameters it introduces, this
generic soft breaking Lagrangian is not suitable for phenomenological analy-
sis. The usual way of studying supersymmetric effects is to assume that the
soft terms take on simplified forms at a certain high energy scale.
‘Minimal supergravity (mSUGRA) models, for instance, are defined in

terms of only four continuous parameters and one sign
My, mo, Ay, tanf, signpy, (1.11)

which determine the whole set of soft breaking terms at the GUT scale

through the following relations

(m})y; = (md)y = (md)y == dymp, (1.12)
my, = my, =mg, (1.13)
M; = My, (1.14)
AV = Y, 4, A°=Y.A,. (1.15)

To obtain the supersymmetric spectrum at low energies, the MSSM renor-
malization group equations (A) must be run down with these boundary con-

ditions.

C.EY.



1.3. lts supersymmetric version 19

As a consequence of the renormalization group evolution between the

unification scale and the right-handed neutrino scale, the left-handed slepton

mass matrix (mi) acquires lepton flavor violating entries. In the leading-

logarithmic approximation such entries are given by

MXY

Yo (1.16)
k

(6 +2a5)my Y] log

2)
(mp)i ~ = 1672

Thus, in the supersymmetric version of the see-saw mechanism, lepton flavor
violating effects are controlled by the neutrino Yukawa couplings. Unfortu-
nately, they are not known. Because the available experimental data from
oscillation experiments is sensitive to the Yukawas only through the neu-
trino mass matrix (Y7MEg'Y,), there is no a direct relation between LEV
processes and neutrino masses and mixing.

This lack of knowledge of the neutrino Yukawa couplings that prevents
us from computing eq (1.16) is the most pressing problem concerning lepton
flavor violating decays. And it is a matter of principle. No other low en-
ergy measurements will give enough information to reconstruct the neutrino
Yukawa couplings. Thus, contrary to other supersymmetric predictions like
b — sv, (g — 2),, or the neutralino relic abundance, the computation of
lepton flavor violating decays requires additional assumptions.

Within SO(10) theories, for instance, the neutrino Yukawa couplings are
usually related — via the unified symmetry — to the up-type quark Yukawas
(see section 3.1). Or, assuming a given right-handed neutrino spectrum,
the see saw formula could be inverted to obtain the Yukawa, couplings in

terms of low energy data (see section 2.3). Though constrained by the non-

C.EY.



20 1. General considerations

Figure 1.2: Diagrams for [;7 — ;7 in supersymmetry

observation of LFV decays, the off-diagonal elements in eq. (1.16) could also
be considered as free parameters in the study of other supersymmetric effects
(see chapter 4).

Anyhow, as long as the soft breaking Lagrangian violates the lepton fla-
vor, LFV processes mediated by supersymmetric particles are allowed. In
particular, the decay £; — {;y receives contributions from two Feynman
diagrams (fig 1.2): the chargino-sneutrino loop and the neutralino-charged
slepton loop. In the appendix, the complete formulas for the decay rate and
the branching ratio are provided. Throughout this thesis, we will be only
concerned with the decays p — ey and 7 — py and we will always use those

formulas to compute their branching ratios.

C.EY.



Chapter 2

Three Common assumptions reviewed

2.1 The mass insertion

Tt is often stated that in the mass insertion approximation BR({; — 4;7y) is

given by

o |(m);:

@ A (21)

BR(£; — £iy) =

where mg is a typical supersymmetric mass. Unfortunately, nobody knows
what a typical supersymmetric mass is. Is it a neutralino or a chargino mass?
Or it is the mass of the lightest sneutrino? Perhaps it is a properly weighted
average of all them. But it matters. Because the dependence on mg is so
strong, without a prescription for it — in terms of physical parameters — the
above formula is meaningless.

What is then the approximation behind eq. (2.1)? Is it really the mass

insertion approximation? Actually no, as we now show.

21



22 2. Three Common assumptions reviewed

The only source of lepton flavor violation in the minimal seesaw model are
the off diagonal elements in the slepton mass matrix. The amplitudes of LF'V
processes, however, depend on such matrix elements in an entangled manner
—only through the diagonalizing matrix. But, if the full diagonalization of
mass matrices were replaced by a perturbative one around the identity, that
dependence would become transparent. That is precisely what the mass
insertion approximation does.

The prescription to extract from the general formulas the ones in terms of
the off-diagonal elements, in the spirit of the mass insertion approximation,

works as follows. Let us define

M? = diag(m2;) + A (2.2)

= Z'diag(mi)Z (2.3)

where Z is some unitary matrix and A contains only off-diagonal elements.

Then, for an arbitrary loop function f the following expansion holds
Z8, 1 (m?) Zig = 8 f (miy) + g F (migy, ml;) + O(A* /mg) — (2.4)

with
fle) -~ F)

F(z,y) = pra—

(2.5)

The left-hand side in eq. (2.4) is a function of the diagonalizing matrix Z
and the exact eigenvalues of M?, whereas the right-hand side is written in
terms of the diagonal and off-diagonal entries of that matrix. In fact, this

expansion is equivalent to a first order diagonalization of M?.

C.EY.



2.1. The mass insertion 23

v Y
- vsin f It; . wvsinf f‘j

Figure 2.1: Dominant contributions to p — ey in the mass insertion approx-

imation. (a): the chargino contribution. (b): the neutralino contribution.

The mass insertion approximation is useful because it allows to detect
the relevant parameters and to isolate the dominant diagrams. For example,
the dominant contribution to y — ey in the SUSY seesaw are given by the
diagrams shown in fig 2.1. The mixing between the Higgsino and the gaugino
(~ vsinf), and the Yukawa coupling of Higgsinos, leptons and sleptons
(~ m/v cos ) give rise to a tan 8 enhanced amplitude.

Using eq. (2.4) for both the chargino and the sneutrino mass matrices,
the dominant chargino contribution to the decay p — ey turns out to be

AC o 22 Msp (mzz)m
Amy/2 M3 — p* mg

(9(zu5) — 9(25)) tan B. (2.6)

Here, my = mp, = my,, T = p?/m2, x5 = MZ/m2, and g(z) is a func-
tion defined in the appendix (eq C.16). The mass insertion approximation,

therefore, does not introduce undefined parameters.

C.EY.




24 2. Three Common assumptions reviewed
1e-09 T T T T T T
Exact
MIA —oememe
~~~~~~~~~~~~~~~~~~~~ tan B= Exact --------
T T §~50 Y 1) N—
1e-10 | R ]
—  Te-11
&
A
=
i
o0

1e-12

1e-13 |

1

Mg=800 GeV,u>0, §,,=10"

| 1

1e-14 .
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500

600 700
M, o(GeV)

900 1000

Figure 2.2: Comparison between the mass insertion approximation and the

exact result.

An analogous expression can be obtained for the neutralino amplitude.

However, it is usually a good approximation to assume that the chargino

contribution is dominant. In fig 2.2 we show the exact result and the one

obtained from eq. (2.6) for two different values of tan 8. The agreement is

evident.

C.EY.
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2.2. The leading-log

2.2 The leading-log

The renormalization group equation for the left-handed slepton mass matrix

reads
b m2), = e (m2), | (XY, Y Ym?)
dp ~ L dup ¥ VI iussm 1672 Loy vy g
+2 (YZm%YV—I—m%uYZYV—#ALA,,)jJ . (2.7)

The first term is the usual flavor diagonal contribution of the MSSM, whereas
the second one is the source of lepton flavor violation in the SUSY seesaw

model. Usually the leading logarithmic approximation

MGUT
Mr

1
(m%)ji =~ ——8—7}5(37713 + A3 (Y]Y,)

log (2.8)

ji
is used to compute LFV effects in models with mSUGRA boundary condi-
tions. We want to assess the validity of this leading-log approximation. That
is, we want to compare the exact results — eq.( 2.7) — with the approximated
ones — eq. (2.8) — and find the region in the supersymmetric parameter space
where the approximation is not reliable.

For simplicity we will assume that right-handed neutrinos are degenerate
and that light neutrinos are hierarchical, with m; = 0.1ms (see eq (1.3)).
We will also fix 613 to tan?6;3 = 0.01 and set all CP phases to zero. The
experimental input, therefore, consists of three neutrino masses and three
mixing angles.

This data, however, is insufficient for fixing the neutrino Yukawa couplings

needed in the evaluation of egs (2.8) and (2.7). To do that, we rely on a best

C.EY.




26 2. Three Common assumptions reviewed

fit approach. At the GUT scale, neutrino Yukawa couplings are generated
randomly and then run down to the right-handed neutrino scale, where the
effective neutrino mass matrix is formed. This matrix is run down to the
electroweak scale where it is compared against the experimental data. In

order to find the best possible fit, we define a quantity, b.p.f. as

bpf=>" [m (%)T - (2.9)

Here, (f) denotes the predicted masses and mixing angles for a given set of
neutrino Yukawa couplings and fey, denotes the corresponding experimental
values. A matrix of neutrino Yukawa couplings is considered to be appropri-
ate if b.p.f.< 1072,

With the neutrino Yukawa couplings thus determined, we compute the
off-diagonal elements in the slepton mass matrix using eqs (2.8) and (2.7).
Since BR(¢; — £;7y) goes as | (m2) ji|? the meaningful quantity to be com-
pared is the square of the ratio between the exact result and the leading
log approximation. In fig 2.3, we show such ratio as a function of M; /2 for
Mg = 10'*GeV and different values of mg. The trend is clear: for a fixed
value of My/y, the smaller myg, the larger the ratio; whereas for a fixed my,
the larger My, the larger the ratio. And, at large M, /s, the error induced in
the computation of BR(p — ey) by the use of the logarithmic approximation
could amount to more than one order of magnitude.

The dependence of this ratio on Mg is illustrated in fig 2.4. It is apparent
that the larger the value of Mg the larger the ratio. This behavior may seem

puzzling at first for the approximation should be better the closer Mg is to

C.EY.



2.2. The leading-log 27

100

l T 1 4

mg = 100 GeV
To

Mg =300 GEV -+-v-nr-
Mg =400 GaV wwowon

L Ag=0, tang=10, u>0 |
Mg=10"" GeV ‘

iy

o
T
i

[m2(RG)/mZ(LL)J?

300 400 500 600 700 800 900 1000
M, 5 (GeV)

Figure 2.3: The leading log approzimation for different values of my.

the GUT scale. However, owing to the seesaw formula, different values of Mxp
require different sets of neutrino Yukawa couplings. So, each line in fig 2.4
actually represents a different model. It is also clear from the figure that the

ratio only differs significantly from 1 at large Mj ;.

The leading-log approximation, therefore, ceases to be valid in the region

M1/2 > my.

C.EY.



28 2. Three Common assumptions reviewed

100 ; ! : ? ! ?
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Figﬁre 2.4: The leading log approzimation for different values of Mp.

2.3 Real R

The see saw formula can be inverted to obtain the neutrino Yukawa couplings
in terms of the right handed neutrino spectrum and neutrino masses and

mixing angles, but at the price of introducing an orthogonal matrix R as

1
Y, = —Mg*Rm}/2UT . (2.10)

UU
This useful parameterization uses as input the measured values of neutrino

masses and mixing angles (m,,, U) and clearly shows that they are not enough

C.EY.



2.3. Real R 29

for reconstructing the neutrino Yukawa couplings.

Rates for LE'V processes in SUSY will then depend on

Y'Y, = vizUmi/ZRTMRRmi/QUT. (2.11)

U

A particularly simple form is obtained if right-handed neutrinos are degen-

erate and R is real:

Mg
Y'Y, = EUm,,UT. (2.12)
Indeed, the mass of the right-handed neutrinos is practically the only un-

known in this expression. BR(u — ey) will be proportional to

M
(YIY.),, = U,f [UoUsy (Mg — mun) + UsUly (Mg — muy)] . (2.13)

u

In different studies this equation was used to compute BR(u — ev) and to
obtain the viable supersymmetric parameter space. We found, however, that

if R is complex and neutrinos are quasi degenerate, (YZYI,) is generally

21
much larger than expected from eq.(2.13).

The reason for this enhancement is twofold. First, since eq. (2.13) de-
pends on mass differences, the term proportional to m, — the leading one —
cancels out. Second, the dominant mass difference (o Am2, ) is multiplied
by the mixing factor U, which is small and might even be zero. Thus,
instead of the natural estimate Mpm, /v2, (Y,’ﬂY,,)zl will be suppressed to
MgAm2,,,./(v2m,) for small s;5. These suppression effects are avoided if R
is complex, giving rise to enhanced rates.

A complex R matrix is not only natural but also necessary if the baryon

asymmetry of the Universe is to be explained through leptogenesis. In lepto-

genesis, the CP violating decays of right-handed neutrinos produce a lepton

C.EY.




30 2. Three Common assumptions reviewed

asymmetry that is partially reprocessed by sphaleron processes into a baryon
asymmetry. And the sources of CP violation are precisely the phases in R,;
if it is real leptogenesis does not work.

The complex orthogonal matrix R can be written as
R =0, (2.14)

with A and O real matrices. The orthogonality of R implies that O is
orthogonal and A antisymmetric. Since our main concern is the effect of a
complex R, we will assume for simplicity that O = 1.

The off-diagonal elements in the slepton mass matrix will then be pro-

portional to

(YZYV) ~ U%MRm,,(UeiQAUT)ij . (215)

ij

The exponential factor is easily computed. If we write

0 a b
A= 0 ¢ |, (2.16)
b ¢ 0
then, e* can be calculated explicitly to obtain
. -1 inh
éA=1—3ﬂ%——A%mmnrA (2.17)
T

with 7 = va? + b? + 2.
We claim that (Y]Y,)2; for R complex is typically much larger than it
is for R real. By typically we mean when a, b, c are not too small. This

fact is illustrated in fig 2.5, when we show a scatter plot of the quantity

C.EY.



2.3. Real R 31

107 L ]
e ®? qu e ®® (0005,0.0005) + -
TL e (0.050.008) x A
1070 o (050.05) x 7
8 9“ Heal R BR B2 88 AN
10" : . L
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S13

2
Figure 2.5: vﬁ(YJY,,)m/(MRm,,) for R real (black line) and R complez
(points). The parameters a,b,c defining R were generated randomly in the inter-

vals (0.5,0.05) for the * points, (0.05,0.005) for the x points, and (0.005, 0.0005)

for + points.

Ual (YY), )21*/(MEm3) as a function of s;3. The black line is the prediction
for R real. As expected from eq. (2.13), it is an increasing function of sis.
The different type of points, on the other hand, indicate the diverse ranges

in which a, b, ¢ are assumed to vary randomly. The convention is
* for a, b, c in the interval (0.5, 0.05)
x for a, b, c in the interval (0.05,0.005)

+ for a, b, c in the interval (0.005,0.0005).
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32 2. Three Common assumptions reviewed

If a, b, ¢ are of order 107! (*), the difference between the real and the complex
R amounts to five orders of magnitude for s;3 = 0.2 and reaches eight orders
of magnitude for s;3 = 0.0. Such difference get reduced for smaller values of
a,b, c but is significant — up to four orders of magnitude — even when they
are of order 10~% (). Thus, R real is not always a good approximation and

much larger values of BR(u — e7y) are usually obtained for R complex.

10?

1
(0.0005,0.005)  +
(0.005,0.05) %
(0.05,05) %
. Real R wwe

58

Figure 2.6: The same as in fig. 2.5 but for the matriz element (3,2).

For the decay 7 — vy the situation is quite different (fig 2.6). First of
all, for R real (the line) the dependence with s;3 is very weak —unnoticeable.
Second, the enhancement not only is much smaller but disappears and be-
comes a suppression for a, b, c ~ 1073. 7 — py is therefore less sensitive than

1 — e to the effects of a complex R matrix.
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Figure 2.7: BR(u — ev) as a function of M5 for mg = 800GeV, tan 8 = 50 and

R real for different values of the right-handed neutrino mass.

Suppose now that you find out that a, b, c must be of order 10, so that

a strong enhancement in BR(y — ey) takes place. Does this enhancement

rule the model out? Actually not because BR(u — e) depends also on

the mass of the right-handed neutrino. And that dependence (o< M2) is so

strong (fig 2.7) that meaningful constraints can be obtained only if My is

known. Indeed, even an enhancement of eight orders of magnitude can be

compensated with a four orders of magnitude smaller right-handed neutrino

mass. Nonetheless, My > 10" GeV would certainly be rule out.
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Chapter 3

Lepton flavor violation in an SO(10)

model

3.1 The model

Grand Unified Theories (GUTS) have the potential to unify into a single,
comprehensive and predictive framework the diverse set of particle repre-
sentations and parameters of the Standard Model. They might explain the
quantum numbers of fermions, the origin of fermion masses, and the quanti-
zation of the electric charge. And the apparent gauge coupling unification of
the minimal supersymmetric standard model provides evidence in favor of a
SUSY GUT.

Among the different Lie groups that contain SU(3) x SU(2) x U(1) as
a subgroup, SO(10) is the smallest one which can accommodate an entire

family of the Standard Model into a single anomaly-free irreducible repre-
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36 3. Lepton flavor violation in an SO(10) model

sentation. That representation is 16-dimensional and consists of the SM
matter fields plus the right-handed neutrino. In SO(10), therefore, neutrino
masses are naturally generated. Additionally, the lifetime of the proton in
SO(10) models is long enough to be compatible with present experimental
bounds. For all these reasons, SO(10) is an attractive unification group.

Once SO(10) is fixed as the gauge group, many choices are left for the
Higgs representations. The most common include 10, 45, 54, 120, 126, 126
and 210. They play an essential role in the spontaneous breaking of the
SO(10) symmetry (45, 54) and in the generation of fermion masses (10, 126,
120). |

A certain class of SO(10) models predicts a large mixing in the neu-
trino Yukawa couplings. If, for instance, the down-quark sector couples to a
combination of symmetric and antisymmetric Higgs representations (®), the
resulting mass matrix is not symmetric and the small CKM mixing typical
of symmetric representations can be avoided.

Let us consider the following superpotential

1

1 1 .
WSO(lO) = 5 Y;Lj’y 16; 16j10u + 5 YZ’ 16; 16]¢’ + 5

Y[ 16, 16;126  (3.1)

and assume that the 126 generates only the right-handed neutrino mass ma-
trix. Y9, being non-symmetric, is diagonalized by two different matrices. If

they are precisely the CKM and the PMNS mixing matrices, we may write
VCTKM Y* UICEMNS = Ygiag' (3-2)

Thus, in the basis where the down sector is diagonal, a CKM mixing is
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generated in the quark sector and a PMNS mixing is generated in Y, [7]:

Yo = Vorm Yo Vigm (33)

Y, = Upuns Y&, (3.4)

So, the neutrino Yukawa coupling is determined in terms of the up-quark
Yukawas and the neutrino mixing matrix.
The right-handed neutrino mass matrix, on the other hand, is obtained

as an output from the see-saw formula:

2 2 2
Mg = Diag{ M , UL , UL } i (3.5)
My, My, My,

We will assume that the spectrum of light neutrinos is hierarchical, eq(1.3),
and consequently Mz, ~ 101*GeV.

The off-diagonal elements of the left-handed slepton mass matrix can
therefore be computed through egs (3.3) and (3.5) in terms of the PMNS
matrix, neutrino masses, and the up-type Yukawa couplings. In particular,
the (2,1) and (3, 2) elements of such matrix - relevant for y — ey and 7 — py

— are given by

sz + A2 MGUT v
(m})a =~ ————————ng 0 V2U3U,31n My +O(Y2)?, (3.6)
3m? + A2 MGUT
2 ~ ——0 "0 vy 31 Y72, .
(m3 )32 Sr2 ¢ UusUrs In Mz, + O(Yy) (3.7)

Thus, within this framework y — e transitions depend on the unknown

matrix element Uls.
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In the following we will use these formulas to compute BR(u — e7)
and BR(t — uy). We want to investigate the impact of their present and
future experimental limits on the mSUGRA parameter space and to confront

indirect searches through LFV decays against direct searches at the LHC.

3.2 Usual constraints on the mSUGRA pa-
rameter space

A variety of low energy measurements have been used to obtain constraints
on the parameter space of mSUGRA models. Next, we will briefly reviewed

the most relevant of those constraints.

3.2.1 Dark matter

The MSSM provides a unique dark matter candidate: the lightest neutralino.
Dark matter bounds on the susy parameter space derive from the requirement
that the neutralino relic abundance fall within the cosmologically preferred
range. The recent data from WMAP increased to an unprecedented degree
the accuracy in the determination of the dark matter content of the Universe.
They indicate that [8]

0.09 < Qcpah? < 0.13 (3.8)

at the 95% confidence level. Since the lower limit can be evaded if dark matter
is made up not solely of neutralinos, we will only require that Q,h* <0.13.

This bound on SUSY models usually translates into an upper limit on the
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3.2. Usual constraints on the mSUGRA parameter space 39

neutralino mass.

In mSUGRA models the dark matter constraint is particularly strong. In
fact, because the lightest neutralino is normally a pure bino, the yx annihila-
tion cross section is small and the resulting €2, typically exceeds the bound.
Specific suppression mechanisms are then needed to achieve a neutralino relic
density in the correct range.

Indeed, the WMAP upper bound on the relic density is fulfilled only in

the three following regions:

e The Stau Coannihilation Region: In this region the lightest stau and the
lightest neutralino are quasi degenerate (m, =~ m;) and efficient stau-
stau as well as stau-neutralino (co-)annihilations suppress the thermal

neutralino relic abundance below the WMAP bound.

Since the condition m, ~ m; can be easily satisfied, a coannihilation

region exist for every value of tan § and independently of sign u.

e Funnel Region: In this region the bino-bino annihilation cross section
is greatly enhanced through resonant s-channel exchange of the heavy
neutral Higgs A. The condition required for the resonant enhancement

is 2m,, =~ m,4, which may be fulfilled only for large tan 8 and p < 0 .

e Focus point or Hyperbolic Branch Region: In this region my is very
large, yielding a low value of p that translates into a non-negligible
higgsino fraction in the lightest neutralino. Being partially higgsino,

the neutralino has a larger annihilation cross section that suppresses
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its relic density. The focus point lies close to the region where radia-
tive electroweak symmetry breaking is not valid, and so is relatively

unstable numerically.

3.2.2 b— sy

A weighted averaging of the branching fraction BF (b — sv) as measured by
the BELLE, ALEPH, and CLEO collaborations leads to the bound [9]

2x107* < BR(b— s7) < 4.6 x 107* (3.9)

at the 95% confidence level.

In the standard model the decay b — sy proceeds through the t{W loop
and the prediction for its branching (~ 3.2 x 10™*) is in good agreement with
eq (3.9). In mSUGRA models, additional contributions to b — s from the
iW and tH+ loops potentially destroy this agreement with the experimental
results. Therefore, the SUSY spectrum must be heavy enough to suppress

these new contributions within the experimental limits.

The sign of the supersymmetric contribution to b — s is anticorrelated,
in mSUGRA models, with the sign of u. For g > 0, SUSY contributions are
negative and it is the lower limit on BR(b — sv) that gives a constraint;
whereas for p < 0, they are positive and it is the upper bound that matters.

In both cases, light superpartners are disfavored.
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3.2.3 Other constraints

The muon anomalous magnetic moment, a, = (¢—2),/2, has been measured
recently by the E821 experiment: a, = 11659204(7)(5) x 107'°. The most
challenging parts of the SM calculation are the hadronic light-by-light and
vacuum polarization contributions. At present these results are in dispute
and thus different results for the deviation from the SM (da,) have been

published. If data from e*e™ — hadrons is used to determine the hadronic

vacuum polarization then [9]:

da, = (27.1+£9.4)x 107"  [10] (3.10)

ba, = (3L.7£9.5)x107""  [11] (3.11)
If, instead, the 7 decay data is used, the deviation is smaller:
ba, = (12.4£83) x 107°  [10]. (3.12)

Due to these uncertainties da, is not a reliable constraint.

The unsuccessful searches for the Higgs boson and supersymmetric par-
ticles at LEP imply that m, > 100 GeV and m; > 114 GeV. In mSUGRA,
the former condition translates into a lower bound for the neutralino mass

m, > 50 GeV whereas the latter rules out tan § < 5.

3.3 Constraints from p — ey and 7 = py

The constraints considered in the previous section are generic; they do not

refer to the particular SO(10) model introduced in sec 3.1. What is specific
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Figure 3.1: The parameter space of mSUGRA models (at tan 8 = 10, 4y =
0,4 > 0) and different isolevels of BR(T — u7).

about such model is that LFV effects are predicted in terms of low energy
quantities. © — ey and T — pvy therefore constitute real tests of that
particular model.

The parameter space of mSUGRA models is conveniently displayed in a
(mo, My)2) plane for fixed values of the remaining parameters — tan 8, Ag
and signy. In fig 3.1 we show the viable parameter space (the green zone)
and isolevel curves of BR(7 — py) for tan 8 = 10, Ay = 0, and u > 0. We

see that the present experimental limit on 7 — p+y already starts probing
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Figure 3.2: The parameter space of mSUGRA models (at tan § = 50, 4p =
0,u < 0) and different isolevels of BR(T — pu7).

the region of the parameter space at low mg and low M;/,, which is likely
to be tested at the Tevatron. However, what really matters is the prediction
for BR(T — pry) within the coannihilation region, and this value (S 107')
is well beyond the sensitivity of planned experiments. Therefore, for this set
of parameters and in particular for this value of tan 8, T — py does not give

any meaningful constraint on mSUGRA models.
The large tan 3 region, where the decay rate ( o tan® () is much larger

offer better perspectives.. In fig 3.2, isolevel curves of BR(r — py) for
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Figure 3.3: Exclusion plot of 4 — e« for tan § = 50

tanf = 50, Ay = 0, and p < 0 are shown. Since g < 0 and tanpf is
large, the A-pole funnel region (the bigger green patch) is also open. We
see that values of my up to 800 GeV and M/, up to 300 GeV are excluded
by the present experimental bound on BR(7 — 7). The intersection of
the isolevel curves with the coannihilation region and the funnel takes place
for BR(t — py) = 1078, below the present limit but within the reach of

proposed experiments.

Since the amplitude of u — ey is U3 dependent, we prefer to plot isolevels

corresponding to its experimental limit for several values of U, (fig 3.3), so
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that the region at smaller mgy and M), of a given isolevel is excluded. The
results are remarkable. Taking s;3 = 0.2, the present experimental upper
bound, would rule out the whole parameter space. This fact can be inter-
preted either as a negative result for a large si3 or for a large value of tan f.
In both cases, with relevant implications for supersymmetric seesaw models.
In the figure, we show isolevels corresponding to s;3 = 0.05,0.02,0.012. Even
such a small value as s;3 = 0.02 can still exclude My, < 750 GeV for any
value of my.

In conclusion, 7 — py might turn into a relevant constraint on the SUSY
parameter space provided that tan § be large and the experimental sensitiv-
ity reach BR(T — uy)~ 1078, 1 — ey gives a much stronger bound and
already excludes large values of s;5 and significant portions of the parameter
space. And, if s;3 were known, p — ey would emerge as the most important

constraint on the supersymmetric parameter space of this model.

3.4 Discovering supersymmetry: p — ey ver-

sus the LHC

The LHC is being built with the goal of discovering the Higgs boson and
superpartners. Yet, even if superpartners are out there, they could escape
detection at the LHC and, for a long time, leave u — ey as the only evidence
of their existence. The possibilities for that to happen are small in the

coannihilation region, moderate in the funnel region and big in the focus

C.EY.



46 3. Lepton flavor violation in an SO(10) model

TanB=50, y>0}

10°

—
O‘
)

L
=)

—_
o

Branching Ratios

1
—_
=

o
o

~12

10

1077 ——
300 400 500 600 700

Figure 3.4: BR(u — ey) and BR(7 — ) as a function of the neutralino
mass along the coannihilation strip (m, = m;). Constraints from b — sy

and the relic density rule out the extreme
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point.

Indeed, the coannihilation strips will be almost completely within the
reach of the LHC, and so u — e~y can hardly compete against direct searches.
In fig 3.4 we show, as a function of the neutralino mass, typical predictions
for 4 — ey and 7 — py along the m, = My, line at tanf = 50. The
perspectives for 7 — pv are not promising, for future experiments will be
sensitive only to the low neutralino mass region, m, =~ 200GeV. On the
contrary, the current experimental bound on BR(u — e7y) already puts severe
constraints on si3, and future bounds will rule out s;3 > 0.01.

In the funnel region the reach of the LHC will be limited to m, < 500GeV
(fig 3.5) and therefore u — ey can actually challenge the LHC in the discovery
road towards supersymmetry. As usual, the dependence with s;5 is critical
and is better illustrated in fig 3.6. From these two figures we infer that if
m, > 500GeV and s;3 > 1072 supersymmetry will not be observed at the
LHC but will be indirectly detected through p — e in planned experiments.

In the focus point region the reach of the LHC is very limited (m, <
200GeV) due to the large values of mg and M, yielding heavy gluinos and
squarks. BR(u — e7), on the other hand, may be within future experimental
sensitivity even for neutralino masses in the multi-TeV region (fig 3.4). Thus,
in the focus point region, y — ey overwhelmingly defeats the LHC in the

search for supersymmetry.
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Figure 3.5: BR(p — ey) and BR(T — u7) as a function of the neutralino
mass along the central part of the funnel region. Points in the yellow region
are excluded by the b — sv bound whereas those in the green region are

ruled out by the dark matter constraint.
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Figure 3.6: The dependence of BR(u — e) on si3 along the central part of
the funnel (2m, = my) for tan § = 50, u < 0 and Ap = 0. The upper region
(in yellow) is ruled out by the b — sy bound whereas the lower region (in

green) is ruled out by the dark matter constraint.
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Figure 3.7 BR(T — pvy) and BR(u — e7y) as a function of the neutralino

mass along the extreme focus point region. We set tan § = 50, u < 0, Ag =0

and considered several values of sq3.
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Chapter |

Non universal gaugino masses and the

fate of u — ey

4.1 Introduction

Universal gaugino masses are not a consequence of the supergravity frame-
work but an additional assumption. Supergravity theories are determined
by specifying three independent functions of the scalar fields: the superpo-
tential, the Kahler potential, and the gauge kinetic function. In minimal
supergravity models, the assumption that the vacuum expectation value of
the gauge kinetic function does not break the unifying gauge symmetry leads
to universal gaugino masses. Besides, mSUGRA models also postulate sim-
ple forms for the superpotential and the Kahler potential which guarantee
universal boundary conditions. Such simplifying assumptions, however, are

not necessarily valid; after all, in the literature there are plenty of models
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which do not fulfill those requirements [12]. Tt is then worth to consider the
phenomenological implications of non minimal scenarios, and in particular
of gaugino non universality.

We will limit our analysis to minimal models of gaugino non universality.
A minimal model with non universal gaugino masses contains, in addition
to the mSUGRA parameters myg, ag, tan 5, and sign p, three gaugino masses
My, My, M3 corresponding, respectively, to the U(1), SU(2) and SU(3) gauge
groups.

So far, the discussion of these models has focused on the implications for
neutralino dark matter [13] and for SUSY searches in accelerator experiments
[14]. Because instead of the pure bino-like neutralino typical of mSUGRA
models, the LSP may be a higgsino-like or a wino-like neutralino, models with
non universal gaugino masses can handily fulfilled the cosmological bound on
the relic density. In fact, wino- and higgsino-like neutralinos undergo effec-
tive annihilations into W+W~ and Z°Z°, as well as coannihilations with the
lightest chargino and (for the higgsino) with the next-to-lightest neutralino
that easily suppress the relic abundance below the WMAP bound. Addition-
ally, such neutralinos, due to their large couplings to the W and Z bosons,
yield large direct and indirect detection rates, and therefore constitute ap-
pealing candidates for WIMP search experiments. Lepton flavor violating
decays, on the other hand, have never been studied in this context.

We will investigate the implications of non universal gaugino masses on
the decay p — ey. With obvious substitutions, however, our results hold

also for the analogous decays 7 — puy and 7 — ey. Our aim is to show that
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lepton flavor violating processes are sensitive to the gaugino spectrum in a

non-trivial way.

To maintain our discussion as general as possible, we will not restrict
ourselves to any specific model of lepton flavor violation. Instead, we will
use a low energy parameterization. At low energies, the only possible sources
of lepton flavor violation in the MSSM soft breaking Lagrangian are non-
vanishing oﬁ"—diagonal elements in m2, mZ and A,. Motivated by the SUSY
seesaw, we will take mZ and A, to be diagonal and assume that the source
of lepton flavor violation resides only in the left-handed slepton mass matrix
m2. The (2,3) and (1, 3) elements of this matrix play a subdominant role in
1 — e, for they only contribute through double mass insertions and will be
disregarded. The (2, 1) element, the relevant one, will be written in terms of

the diagonal entry as

(m%)m = 501)("’”%)11 = 5OD(m%)227 (4.1)

being dop a free parameter. Using this parameterization, we will first study
the dependence of BR(u — e7) on the dimensionless ratios r, = M,/M; and
ry = Mj/Mj, defined at the GUT scale. Then, we will compute BR(u — e7)
in specific models which constrain soft terms and predict precise relations
between gaugino masses. We will show that, as a result of gaugino non

universality, strong cancellations often take place in BR(u — e).
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Figure 4.1: BR(u — ev) as a function of ry = MQ/MI for My = M3 = 1.5
TeV at tan 8 = 10 and x> 0 for mg = 500, 750, 1000, 1250 GeV.,

4.2 Non universal wino mass term

We will begin our analysis by considering a non-universal wino mass term.
That is, M; = M3 and M, = roM;, with 75 a free parameter. The effect
of non-universality in the high energy value of the wino mass term mainly
translates, at the low energy scale, into a proportional variation of M,, and

thus on the chargino and neutralino mass spectra.

As seen in fig 4.1, BR(u — ey) strongly depends on r,. In this plot
we have chosen M; = M3 = 1.5 TeV, tanf = 10, p > 0, and different

values of my. For r, > 0, the only effect is the suppression of BR(yu —
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ev) due to heavier charginos and neutralinos. On the contrary, for r» <0,
strong cancellations occur and may suppress BR(u — ev) by several orders of
magnitude with respect to the mSUGRA prediction (r; = 1). As signaled by
the sharp dips observed in the figure, in that region neutralino and chargino
contributions have opposite signs and tend to cancel out.

The position of the dips varies with mg (fig 4.1) and also with tan/
(fig 4.2) but is only slightly affected by the value of dpop (fig 4.3). This is
an important result because it tells us that whether these cancellations take
place or not and where they do so depend on SUSY parameters (my, tan 5,
M;) but not on the particular model that generates lepton flavor violating

effects (dop)-

4.3 Non universal gluino mass term

Even though gluinos do not take part in the u — ey loop, the gluino mass
term does affect BR(u — e). It does so indirectly, through the electroweak
symmetry breaking condition. At tan 8 = 10, this condition gives

u? + —;—m?‘z ~ —0.1m2 4+ 2.1M2 — 0.22M7 + 0.19M,M; + 0.03M M5 (4.2)

and the coefficients vary rather mildly over the moderate tan 8 region. Inas-
much as the dominant contribution to the right-hand side comes from Ms,
1 is practically determined by the gluino mass. Thus, through eq. (4.2), the
gluino mass term influence chargino and neutralino masses.

In fig 4.4 we show BR(u — ey) as a function of ry for different values
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Figure 4.2: BR(u — ev) as a function of 75 at M; = M; = 1.5 TeV, u > 0

and mg = 1 TeV for different values of tan 5.
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Figure 4.4: BR(u — ev) as a function of r3 at My = My = 1.5 TeV, p > 0

and tan 8 = 10 for different values of my.
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of mg. Since, in agreement with eq.(4.2), the branching ratio is symmetric
with respect to r3 <& —7T's, We can limit our analysis to r3 > 0. Surprisingly,
the behavior of the branching is not monotonous. For small 73, BR(i — €7)
decreases until it reaches a critical point r, where it begins to increase. And
larger values of meo imply larger values of rc. To understand this peculiar
behavior, we separately show in fig 4.5, the chargino and the neutralino
contributions. The former decreases with 3 whereas the latter increases. At
small r3 the branching ratio is dominated by the chargino contribution so it
is decreasing, whereas at larger values the neutralino contribution dominates
and the branching increases. 7 is the point where these two contributions
become equal. At large 73, therefore, the naive suppression in BR(p — ey)
due to a heavier spectrum does not take place; instead, the branching, driven

by the neutralino amplitude, becomes an increasing function of 3.

4.4 Specific Models

Until now, we have investigated p — ey in generic models with non-universal
gaugino masses. In this section, we consider two well motivated models which
constrain soft breaking parameters and predict explicit relations between the
three gaugino masses: SU(5) GUT inspired gaugino non universality and

minimal gaugino mediation.
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Figure 4.5: Chargino and neutralino contributions to BR(u — ey) as a
1.2 TeV, my = 600 GeV, tanS = 10 and

function of r3 for My = M,

© > 0.
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4.4.1 SU(5)

In supergravity models, the gauge kinetic function depends on a chiral super-
field ¢, whose auxiliary F-component acquires a large vacuum expectation

value. Gaugino masses come from the following five dimensional operator

¥ = 5\123 A, (4.3)

where A; 23 are the bino B, the wino W and the gluino g fields respectively.
In models based on SU(5), gauginos belong to the adjoint representation
of SU(5), and F, can belong to any irreducible representation appearing in

their symmetric product,
(24 x 24)gym = 1+ 24 + 75+ 200. (4.4)

mSUGRA models assume ¢ to be a singlet, which implies equal gaugino
masses at the GUT scale. But, if ¢ belongs to one of the non-singlet repre-
sentations of SU(5), gaugino masses are not universal but are related to one
another via representation invariants. The resulting ratios for the gaugino
masses at the GUT scale are shown in Table 4.1 [15] .

The behavior of BR(y — ev) as a function of M3 for the different rep-
resentations of SU(5) is shown in fig 4.6. We do not find any cancellations.
For the representations 24 and 200 the chargino and neutralino contribu-
tions have the same sign, so that they always interfere constructively. In
the representation 75, where 7o = Ms/M; is negative, the chargino ampli-
tude dominates over the whole parameter space. Models with SU(5) inspired

gaugino non universality are, therefore, free of cancellations in BR(u — €7).
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Figure 4.6: BR(u — e7) as a function of M for the different representations

in the symmetric product of two SU(5) adjoints. We set my = 1.2 TeV,

> 0 and tan 5 = 10.
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rep ]\([1 ]\/jg M3

11 1 1
24 | -1/2 -3/2 1
75 -5 3 1

200 | 10 2 1

Table 4.1: Relative values of the gaugino masses at the GUT scale for the

different representations allowed in SU(5)

4.4.2 Gaugino Mediation

Models with gaugino mediated supersymmetry breaking naturally arise in
higher dimensional GUT theories [16, 17, 18]. In such theories, the MSSM
matter fields are localized on a wisible brane, whereas the gauge fields prop-
agate in the bulk of the extra dimensions. Supersymmetry, on the other
hand, is broken on a distant hidden brane, separated from the visible one in
the extra dimensions. Extradimensional locality forbids direct couplings be-
tween the two branes, and therefore suppresses all soft masses which involve
MSSM matter fields — squark and slepton masses as well as trilinear cou-
plings. Gauginos, on the contrary, can directly couple to the source of SUSY
breaking, acquiring nonzero masses. Consequently, below the compactifica-
tion scale, M, ~ 1/R, the effective 4-dimensional theory is the MSSM, and
gaugino masses are the only non-negligible sources of SUSY breaking.

If, in particular, SUSY is broken on a brane with restricted gauge sym-

metry, specific patterns of gaugino masses emerge. For an SO(10) bulk sym-
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metry, hidden branes with Pati-Salam SU(4) x SU(2); x SU(2)g, Georgi-
Glashow SU(5) x U(1), or flipped SU(5)' x U(1)’ gauge symmetries can be
obtained. And these symmetries link the gaugino masses of the MSSM at
the compactification scale. In flipped SU(5), for instance, one obtains the

relation Mz = M.

From the phenomenological point of view, models with gaugino mediation
are also attractive. The flavor and C' P problems of supersymmetric theories
are alleviated and in a context of grand unification, the doublet-triplet split-
ting of Higgs fields is easily achieved and proton decay through dimension

five operators is naturally suppressed.

In models with gaugino mediation, at the scale M., which we assume to
be the unification scale (M, = Mgyz), the only free p'ara,meters are tan 8 and
the gaugino masses M;. And to avoid a charged LSP - the lightest stau —

gaugino masses must necessarily be non-universal.

In fig 4.7 we show BR(u — ey) as a function of M, for fixed M; and
different values of M;. Once again, cancellations occur when M, and M;
have opposite signs. For the flipped SU(5) model mentioned above, we show
in fig 4.8 the branching as a function of M, = M for several values of M 1- In
this particular example, for any value of M; there exists a value of My = M,
for which the cancellation between chargino and neutralino contributions,
and the resulting suppression of BR(u — ev), occurs. As emerging from the

figure, such value turns out to be an increasing function of M.
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Figure 4.7: BR(p — ey) in a model with gaugino mediation and non-

universal gaugino masses at the GUT scale. We set M; = 2 TeV, tan 8 = 10,

1> 0 and plot the result as a function of Ms for different values of Ms.
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4.5 Conclusion

In the context of minimal models with non universal gaugino masses, we
studied the dependence of BR(p — e7y) on the gaugino spectrum. Our main
finding is that when M, and M, have opposite signs, cancellations between
the neutralino and the chargino contributions may Suppress BR(u — e7) by
several orders of magnitude with respect to the mSUGRA prediction.

We argued that these cancellations are independent of the primary source
of lepton flavor violation, and with several examples we showed that they do
not require fine-tuning of supersymmetric parameters. Thus, they can be
regarded as generic features of models with non universal gaugino masses.

These results may be of particular relevance for neutrino mass models.
Some of them, in fact, have been ruled out because they predict, within the
mSUGRA framework, too large BR(p — ey). Non universal gaugino masses

with the cancellations it brings could provide a way out to such models.
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Appendix A

Renormalization Group Equations

Here we present the complete set of renormalization group equations of the
MSSM with right handed neutrinos. These equations are used throughout
this thesis to compute the supersymmetric spectrum and the off diagonal

elements in the slepton mass matrix.

Gauge couplings:

d 33 g3 (199 27 88

16%2@ g1 = ~5“9i°’ + 1—6;_2 (-2*5—919‘ + —5—93 + -5—Q§> ) (A.1)
d 3 /9

167*3; g = g5+ 1—%; (ggf + 2595 + 249?) : (A.2)
d g (1

1671’23% g3 = —3g5+ . 6;2 (ggf+9g§+14g§> (A.3)
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Yukawa couplings:

d_. 13 16 . i
16#23%—)/% = {wﬁgf — 3g2 — T 9 + 3T (YY) + Te(v, V) )} Vi,
+3 (LY[Y)y + (Y Ya)y (A4)
6r2dy, = [T 2_ g2 10 P+ 3Tr(YY)) + Tr(v.yh L Y,
dt dij - 15gl 92 3 g3 d d ete dij
+3 (YaY{Ya)y + (Ya¥IVl)y (A.5)
d 9
16%2% oy = {—-5-9% — 392 + 3Tr(YdeT) -+ ’I?r(YeYJ)} Yo
+3 (VYY) + (VYiv), (A-6)
16%2%5/;” - {——%g% — 3¢5+ 3Tr (YUYJ) +Tr (Y,,Yj)} Y.
+3 (VYY) + (YY), (A7)
Gaugino masses:
d 66 2g7 (199
2 _ 2 1 2
tor" My = ot i {70 )
27 88
e (0 +06) + TR0 M) L (A9
d 292 (9
1671‘2;1—tMQ = 2g§M2 -+ Té;r% {—5-912 (M1 + Mz)
+25g; (2Mz) + 2493 (Ma + Ms)} (A.9)
d 292 (11
167T2d—tM3 = —6 g??Mg + :—1—6—735 {B—Q% (Ml -+ Mg)
+995 (Ma + M) + 1463 (2Ms)} (A.10)
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Sfermion masses:

167> 29 (m2)ij =

dt

2
167 g (mz) ij

16m Eg( 12/)1.j

+ (mAY Yo + Y Yy + Y]Yumd + YfYem3)
+2 (YVIm2Y, + my VIV, + AlAL)

+2 (Yim2vy+my, YiYa+ Aldg)
ij

32 ,
( g M/fli +—93 | M3

+2 (MEY,Y] + Y, Yim2).

4
) 0ij — ggf S 045

+4 (YumZY] + my VY] + AuAL)

8 2 2
ﬁgiz My + “3‘93 ‘Mslz> 0ij + 59% S b
+2 (m2vay] + Yarfm?)

6 3

- <ggf |M1 | + 643 |M2|2) 8ij — =91
+ (MEY]Y, + m2Y)Y, + VYo + YY,m?)
+2 (YimiY, + m}, VY. + AlA.),,

m2Y, +my VY, + ALA),.

+4 (YemiY:f + deYéY:f -+ AeAl)ij

2 32 1
- (’1'595 | My > + 693 | Mo|? + 393 1M3|2) bij + ggf S 0y

(A.11)

(A.12)

(A.13)

(A.14)

IMli bij + 91 S 045 +2 ( %’YeYeT + YeYeTmé)ij

(A.15)

2 (m2Y, Y} + Y, Y,Jm) i T4 (va%yrj +my, YY) + A”A’T’)ij ’

(A.16)
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Trilinear couplings:
9
167?'2%145” {—"ggf - 39% + BT&'(YJY&) + Tr(YeTYe)} Aeij
+2 {9 TMy + 395 M, + 3Tr (Y] Ag) + Tr(Y] A, )} Y.,
t t t t
4 (VYA +5 (AYIV) 42 (VY AL), + (AY]Y.) A7
3
1672;1 v {_ggf — 395 + 3Te (YY) + Tr(YJYV)} Ay,
{gglMl + 392 M, + 3Tr (Y, A,) +Tr(Y1 4, )}
HY YA )i + 5(A YY)y + 2V Y Aoy + (A YY) (A18)
o d 13 16
lor ey = | ~foE =00~ Y+ TN + TN
13 16 , ; i
+2 15 M1 -+ 3g M2 -+ g3M3 -+ 3TT(Yu Au) + TI'(Y; A,,) Y'U-ij
H(YLY ALy + 5(AY Vo) + 2(YY] Aa)iy + (ALY Ya)is (A19)
9 d 7 16
1672 EEAd”' = { 15 — 3¢5 — 3 —g2 4+ 3Tr (V)Y + ’I&‘(YJY;)} Ay,

C.EY.

7 16
+2 { T glMl + 3g M, + 3 g§M3 -+ 3Tr(YdTAd) + Tr(YjAe)} Ya,

+HA(YaY] Ad)is + 5(AY]Ya)is + 2(Ya¥, Au)y + (AaY]Ye)i; (A.20)



Higgs masses:

tow ) = = (26100 + 003 ") + s
+6Tr (m%YJYu VI mE + mE )Y + A;}Au)
+2Tr (m2Y]Y, + Y, (m2 + my, )Y, + AL A,) (A.21)
tomt S ms,) = — (St 4F + 63 el ) s
+6Tr (m?éyjyd + V) (2 + m,)Ya + A}}Ad)
+2Tr (M2Y]Y, + Y (m2 + my )Y, + AlA.) , (A.22)
where
S = Tr(m% +m% — 2mp — m% + m2) — my, +my, , (A.23)

and we have used the GUT convention for the U(1) gauge coupling constant,

g1, and t = In . where p is denoted as the renormalization point.
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Appendix B

Notations in the MSSM

In this appendix, we present our conventions for the MSSM.

The chargino mass matrix has the following form:

— L = (_ﬁZ: H;, ) Mo ( ?L— ) +he. (B.1)

where

My =

( M, \2m cos B ) (B.2)

v2myy sin B L
This matrix can be diagonalized by two 2 x 2 real orthogonal matrices O,
and Oy according to:

OrM,O] = diagonal . (B.3)

If we define

~ W_ ~ ’W‘;_
( ?ilL ) ) OL ( ~L ) ’ ( flR ) ) OR ( ~R ) , (B.4)
Xor 1L X2r Hp
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then

5(: = SC:L + %;R

forms a Dirac fermion with mass M;z;-

The mass matrix of the neutralino sector is given by

where

MN:

1 /e e e
— =5 (BLWBHfLHSL) My
M, 0
0 M,

—mgzsinby cos 8 myz cos by cos

mzsinby sin S —myz cos by sin B

By
Wy

70
Hyp,

s, |

+ h.c.

(B.5)

(B.6)

—mzsin Oy cos f  myg sin by sin B

™z cos Oy, cos [

0

—p

We can diagonalize M, with a real orthogonal matrix Oy:

OyMyO; = diagonal .

The mass eigenstates are given by

jZOBLz(ON)BC)?gL (B,C=l,--- 74) ; Xg’Lz (EL’WI?)

We have four Majorana spinors

C.EY.

5\(’%:%%1."!—55%3 ) (B

—my cos By sin

Hp,) .

(B.9)

(B.10)




with masses M -

The slepton mass matrix can be cast in the following form:

2 21 ~

m2 m e
~z=Ea | T (B.11)
Mir m?{ €r
with
1
(m%)ij = (m%)ij +m2 65 — my cos 2f (5 + sin? 9W> 6 , (B.12)
(mi)ij = (m%>i_j +m2 §;; — my cos 28 sin® Oy b5 (B.13)

v cos 3

(m%R)ij = /2 Agij — me ptan foi; - (B.14)

We diagonalize the slepton mass matrix, M?, by a 6 x 6 real orthogonal
matrix U! as
U'M?U'T = diag. <ml21, e ,m?-) : (B.15)

lg

A mass eigenstate is then written as
TY - U}lz’iTLi + U]l,-,,i_l_gzvgi 5 (Y == 1, et ,6) . (Bl6)

Since there are no right-handed sneutrinos at low energies, the sneutrino

mass matrix is
1
(M2)i; = (m%)ij + §m2Z cos 2/30;; - (B.17)
The diagonalization is carried out by a 3 x 3 orthogonal matrix U”
U M2U"T = diag. (B.18)

and the mass eigenstates read

Uy = Ui, X =1,2,3. (B.19)
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Appendix C

The process £; — £

The amplitude for the process £; — £;y is written as

T = ee®u;(p — q) [mjioagqﬁ(ALPL + ARPR)] u,(p)

(C.1)

where ¢ is the momentum of the photon, e is the electric charge, €* the

photon polarization vector, u; and u; the wave functions of the initial and

final leptons, and p is the momentum of the particle Z;.

Each coefficient in the above formula receives contributions from the neu-

tralino and the chargino diagrams and therefore can be written as:

AL,R = AS:C,)R"}’AS?J)E )

1 1 1 1% l [)*
AP = s S o | I Ba(aae) + OO
AX VX
1 1 1 I 1 1)*
A = Ly [N;;QN;;Q Ea(yy) + NAN
BY ly

Ag,n) — Agc,n) I

L+R
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(C.2)

%kz(%iqﬁ)

e

(C.5)
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where the dimensionless parameters z,, and UYpy are defined as

M;_ ]\/fgo

— A —_ B

Tax = mg ) yBY - ,rnz ) (C6>
vx Iy

the coefficients in Egs. (C.3) and (C.4) are given by

CH) = g (0,),,U%. C.7
TAX g2 \/imW COSIB( L)A2 X,i ( )
i = ~0(On)mU, | (C8)
my,
Ny = - {—,;L—V;—Cl;—sfﬁ-<oN>Bgv£,i +2(On)m tan ewvé,i+3} . (Y
g my,
M = (00 = O tan w0 + (0,0 4G 0
and the functions k;(z) are defined as
ki(z) = m(2+3x—6x2+x3+6mlnx) (C.11)
bln) = g _1:6)3 (=3 + 4z — 2% — 21ng) (C.12)
ks(z) = gz_l—%m_)‘l(l — 62 + 32° + 27° — 62%In 1) (C.13)
1
ky(z) = e (1+2°+2zlnz) (C.14)

The width of the decay I; — l;7 is easily calculated from the amplitude
o
T(l; — lyy) = Emf;j (JALP? + 4P (C.15)

where a = €2 /4.

Finally, the function g(z) used in eq (2.6) is given by

9(z) = ko(z) + zkiy(z). (C.16)
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