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Introduction

As pointed out with particular emphasis by H. Poincaré (see [92]), one of the main
problem in Dynamical Systems concerns the stability of action variables in nearly—integra-
ble Hamiltonian systems. Actually the study of this problem has nowadays great interest
in many fields of mathematics, such as PDE’s, Ergodic Theory and Differential Geometry,
etc...

Roughly speaking, the problem is whether a very small perturbation of an “inte-
grable” (i.e., completely stable) Hamiltonian system can give rise to an “appreciable”
instability of the action variables (which, in general, measures some physically interesting
quantities).

Originally this question arose in famous problems of Celestial Mechanics such as the
n—body problem or the D’Alembert planetary model.

The n—body problem deals, as it is well known, with the motion of n — 1 planets
around a fixed star which can be regarded as a perturbation of an integrable system of
n — 1 non—interacting point masses running on Keplerian ellipses around a fixed center
of Newtonian attraction. In this setting the action variables represent the lengths of the
semiaxes of the above-mentioned ellipses.

The D’Alembert planetary model is a Hamiltonian model for a rotational oblate
planet, revolving periodically on a given Keplerian ellipse of small eccentricity around
a fixed star occupying one of the foci of the ellipse; the planet is subject only to the
gravitational attraction of the star. This model can be also regarded as a perturbation
of the integrable system obtained considering the case in which the planet is completely
spherical. In this contest, the action variable represents the inclination of the planet polar
axis with respect to the plane containing the Keplerian ellipse.

We observe that, with regard to the two mentioned problems, from a physical point
of view, an “appreciable” variation, for example, of the distance Earth-Sun or of the
inclination of the Earth polar axis would produce sensible (and probably inauspicious)
effects on the Life on the Earth (weather, length of the seasons, glaciations...).

It has to be noted that, notwithstanding the efforts of Poincaré himself (followed by
Birkhoff, Kolmogorov, Siegel, Arnold, Moser, Herman,...), and the great success of pow-
erful, more modern techniques in Perturbation Theory (such as averaging theory, KAM
and Nekhoroshev theory, see [8] for general information), the action—stability problem for
general nearly—integrable Hamiltonian systems remains essentially open.




Let us be more precise. Consider a (real-analytic) nearly—integrable, one-parameter
family of Hamiltonian functions

H(I,p;¢) = h(I) +ef (1, p5€) (0.1)

where (I, @) are standard symplectic variables in a 2d-dimensional symplectic manifold?
M, called “phase space” and &€ > 0 is a small perturbative parameter. We will take M
of the form M := Q x T¢, with  an open set in R and T¢ := R?/27Z; (I, p) are called
action—angle variables.

The action—stability problem is, then, to give upper bounds on the quantity |I(¢)—Iol,
where (I(£), o(2)) denotes the H-flow at time ¢ of the initial datum (lo, o), and “total
stability” means that sup,cg |I(t) — Io| goes to zero when & goes to zero, for any (o, ¥o)
e M.

The KAM Theorem

If £ = 0 the manifold M is foliated by d-dimensional invariant tori 7y, := {I=Io, ¢
€ T¢}. The motion on each torus is quasi-periodic with frequency w(lo) := /(L) € RI. A
torus 7y, is called non-resonant if w(Ip) is rationally independent. Each phase trajectory
on such a torus fills it densely. The set of non—resonant tori form a set of full measure.

The celebrated KAM Theorem (see [8] for general information), in the fix energy
version, may be formulated as it follows: if h is isoenergetically non-degenerate, then
for ¢ sufficiently small, most non—resonant invariant tori do not disappear but are only
slightly deformed, so that in the phase space of the perturbed system there are invariant
tori densely filled with quasi-periodic phase curves winding around them, with a number
of frequencies equal to the number of degrees of freedom d. These invariant tori form a
majority on each manifold of the energy.
We recall that h is called isoenergetically non—degenerate on the energy level h=FE if

det < gfj Zgg BI%(I ) ) #0 (0.2)

for I e {h=E}.
Thus, if condition (0.2) is satisfied, KAM theory yields “metric” stability (i.e., sta-
bility for the majority of initial data) and this implies “total stability” (i.e. for all initial

1 A manifold M is called symplectic if it is endowed with a symplectic structure i.e. a closed alternate
and non-degenerate 2-form w; in suitable local coordinates (I,p) € M, w takes the form w := dI Adyp
= 3., dI; A dip;. Variables for which w = dI Ndyp =Y., dI; A dp; are called standard.In the following
we will use standard variables only. A change of variable which preserves w is called symplectic. Given
(Io, w0) € M, we call (I(2),¢(t)) := ®%(lo, o), the Hamiltonian flow generated by the Hamiltonian H
i.e. the solution of the Hamilton equations:

D)= -0, HIW,00) . 20 =IO e), 10 =T, o0 =¢o.



data and all times) in systems with two degrees of freedom: in such a case, the three—
dimensional energy surfaces are separated by a multitude of two—dimensional invariant
KAM tori and trajectories are trapped in-between these tori allowing only for a small
(with €) variation of the action variables (for any time and for any initial data).

Remark 0.1 If condition (0.2) does not hold, then “linear drift” occurring along so—called
“superconduttivity channels” may appear as a consequence of some “resonance phenom-
ena”. Consider in fact the following example due to N.N.Nekoroshev (see [90] and remark
4.1 (i)): the Hamiltonian system governed by H := I2/2 — I2/2 + esin(pr — @2). Such
a system admits the trajectory I(t) = et = =L (1), w1(t) = pa(t) = —et?/2. Hence in a
time T the actions have a drift of order 1, namely |I,(t) — 1:(0)| = |L(t) — I2(0)| = 1.

Stability and instability for the action variables: some open problems

V.I. Arnold, in 1963, in one of the fundamental paper of KAM theory [9], conjectured
that the general feature of nearly-integrable Hamiltonian dynamics with more than two
degrees—of—freedom (i.e., with phase space of dimension greater than four) is “action—
instability”. Arnold called it “topological instability” and formulated the following
Conjecture (Arnold?): “A typical case in many-dimensional problems of perturbation
theory is topological instability: through an arbitrary small neighborhood of any point
there pass phase trajectories along which the “slow. variables®” drift away from the initial
values by a quantity of order one”.

In any case, KAM Theorem does not completely solve the problem of action—(in)stabi-
lity for the Hamiltonian system (0.1). For example, it leaves open the following questions:

(1) what can we say for two degrees of freedom degenerate systems?

(2) if action—instability takes place, what is the minimal time (depending on €)
needed for it to happen?

(3) given h, for which perturbations f does action-instability take place?

In this thesis we will study some examples from (1),(2),(3). We first briefly discuss
what is known about these problems and later we explain our contributions. In any case
we observe that the problem (3) (and the connected question (2)) is more interesting and
it is still deeply studied.

Problem 1: total stability for two degrees of freedom degenerate systems

We observe that to investigate degenerate systems is interesting not only from a
mathematical point of view but also from the physical one. In fact, a typical feature in
Celestial Mechanics (and this was the field from which Poincaré himself originally took
motivations to look up at the action—stability problem) is that the unperturbed system

2 Compare [8] pg. 189 from which the citation is taken.
3 Namely the “action variables”.



is properly degenerate, ie., the unperturbed Hamiltonian function h in (0.1) does not
depend upon all action variables. In such a case the non—degeneracy condition (0.2) is
obviously strongly violated.

Properly degenerate models coming from Celestial Mechanics, as the spatial restricted
three-body, have been studied, for example, in [72], [14]. Another typical example of a
properly degenerate system studied in Classical Mechanics is the problem of the fast
rotations of a symmetric rigid body (see [12], [13], [11)).

In any case, in [9), Arnold proved the following result (compare also [8], Chapter
5, Section 3). Consider a nearly-integrable (real*analytic) Hamiltonian system with two
degrees of freedom governed by

H(I,p;€) = Ho(I;€) + e2Hq\(I,9) = Hoo(l1) + eHoy (I) + e?Hi(I, ) , (0.3)

where (I,p) = (I, I, 1, 92) € Q x T2, and Q C R?. We say that the “perturbation
removes the degeneracy4” on the energy level H “HE),if

O0Hqo
ol

BQH()l

M40, g

(n#£0, Vi€ H;7Y(E) . (0.4)

Theorem 0.1 ([9)If, in @ (real-analytic ) properly degenerate system with two degrees of
freedom, the perturbation Temoves the degeneracy (i€, condition (0.4) holds), then, for
all € small enough, total stability holds (i.e., for oll initial data on the given energy level,
the values of the action—variables stay forever near their initial values).

Notwithstanding the previous results the problem of the action—stability for the
Hamiltonian (0.3), when (0.4) does not hold, is still open (see [36])-

On the other hand it is interesting (also for physical reasons, see below) to take up
the action—stability problem for properly degenerate Hamiltonian system with two degrees
of freedom allowing the intermediate system Ho to depend also on the angle p1. Hence
we want to consider also real-analytic, properly—degenerate systems with two degrees of
freedom described by nearly-integrable, real-analytic Hamiltonians given by

H(I,(p;E) EHOO(Il) +5H01(I,(,01) + 6aH1(I,QD> y D<ekK 1 , a>1. (05)

We observe also that the dependence of Hpp upon the angle o1 (that is, on the
angle conjugated to the non-degenerate action I,), besides being motivated by classical
examples, 18 the only significant angle-dependence one wants to take into account in
connection with the problems considered here®.

-
4 Qr, more precisely, that “the intermediate term Hoi Temoves the degeneracy” -
5 Tn general, in fact, a Hamiltonian function of the form Hoo (L) + eHor (I, @) + e2H1 (I, ) will be

trivially unstable as the following example shows. Let Hor = %ﬁ — (1 4 cos @y) and Hi = 0. Then,
one has sup; |I2(t) — 2 (0)| = 2, for any € > 0 and for any motion with (12(0), 2(0)) belonging to the
(open) separatrix of the pendulum Hoz- Moreover, these hyperbolic motions would be persistent under

non—vanishing perturbations H;.



As we pointed out before, the interest for such systems stems again from Celestial Me-
chanics: compare, for example, with the above-mentioned “D’Alembert planetary model”,
which we are, now, going to illustrate more in details.

The D’Alembert planetary model

As we said before, the D’Alembert planetary model is a Hamiltonian model for a
rotational planet (or satellite) with polar radius slightly smaller than the equatorial one,
whose center of mass revolves periodically on a given Keplerian ellipse of small eccentricity
around a fixed star (or major body) occupying one of the foci of the ellipse; the planet
is subject only to the gravitational attraction of the star. This is a Hamiltonian system
with two degrees of freedom depending periodically on time (the period being the “year”
of the planet). Many planets and satellites of the Solar System are observed in a nearly
exact spin—orbit resonance, i.e., the ratio between the period of revolution around the
major body and the period of rotation around the spin axis of the planet is (nearly)
rational. Therefore t is of particular interest to investigate the stability in regions of space
surrounding such resonances.

In formulae, the above system is governed by a real-analytic Hamiltonian of the
form®

2

I
H,, = 51 +w(ph — qly + qI3) + eFo(Ih, I, 1, 02) + epFi (11, I, 1, 02, 033 1), (0.6)

where: (I, ) € A x T? are standard symplectic coordinates; the domain A C R® is given
by 7
AE{II1[<T€€, !12*j2|<7",113€R} , (07)

with 0 < £ < 1/2, r > 0; Jy is a fixed “reference datum” (avoiding certain singularities);
e and p are two small parameters (measuring, respectively, the oblateness of the planet
and the eccentricity of the Keplerian ellipse); p and ¢ are two positive co—prime integers,
which identify the spin-orbit resonance (the planet, in the unperturbed regime, revolves
g times around the star and p times around its spin axis); wq is the frequency of the
Keplerian motion; the action J; measures the displacement from the exact resonance: in
these units, I; = 0 corresponds exactly to a p : ¢ spin-orbit resonance. In fact, Ji+ 1
(where J; := pw) and I, are (in suitable physical units), respectively, the absolute value
and the projection onto the unit normal to the ecliptic plane of the angular momentum of
the planet, while I3 is an artificially introduced variable canonically conjugated to time.
We also observe that, since the planet is rotational, the absolute value of the projection L
of the angular momentum of the planet onto its polar axis is constant. If the parameters
J;, L and the constant r are assumed to satisfy

L+3ref <y, |L|+3rEt+1) < Jp, (0.8)

then the functions F; are real-analytic functions in all their arguments, computable via
Legendre expansions in the eccentricity 4 from the Lagrangian expression of the gravita-
tional (Newtonian) potential (see below and [49] for explicit computations).

6 See part I below.




We immediately observe that the Hamiltonian (0.6) is strongly degenerate. This fact is
even more clear after the (natural) symplectic linear change of variables’ (I, ¢) — (I, ¢'),
(I} := LI} .= Iy, I} := ply — qI5 + ql3), by which the unperturbed part, Hp,, becomes
simply I{Q /2 + wli, which is even properly—degenerate.

Moreover the previous change of variables clearly shows the appearance of three (well
separated) time scales for the evolution of the angles ¢"’s, namely (for € small and p < 1)

$=0@E)>0We), ¢h=0(E), wh=w=0(1). (0.9)

We will see in part III below that, after taking u := &° (with ¢ > 0), we can perform
another symplectic change of variables (which is e-near to the identity with ¢’ > 0)
(I',¢') = (I, ), averaging the “fast” angle w3. After the previous change of variables the
motion of the planet is governed, up to an e-exponentially small term, by the two degree
of freedom® Hamiltonian®

72

4

HD(IAlaj%@l) (1527 £, :U’) = '51' + 6HOl(I‘\Qy @1) + EQH§1)(IA17 IA27 @17 (152;E> ) (010)

which is actually of the form (0.5). We point out that the term Ho,(ls,$;) does really
depend on ¢; only in the cases (p,q) = (1,1), (2,1), which are however very interesting
in our solar system (as it is well known the Moon has (p,¢) = (1, 1), revolving one time
around the Earth while it makes one turn on itself. ).

Problem 2: the Nekhoroshev Theorem and exponential stability for the
D’Alembert model

The most important result regarding the time of stability for the Hamiltonian (0.1)
is the Nekhoroshev Theorem. In [90] N.N. Nekhoroshev proved exponential stability for
the action variables, namely that if (0.1) verifies some non—degeneracy conditions (namely
h is “steep”, see [90],[91]) then |I(¢) — I(0)| < € for all |¢| < exp(1/e®) where a,b are
suitable positive constants. Hence, if the actions I undergo a drift of order one in a time'?
Ty (called “instability time” or. “diffusion time” ), then it must be Ty > exp(1/e?).

In particular we deal with the problem of exponential stability for the D’Alembert
model (0.6). From a physical point of view, one is interested in knowing the variation of
the angle between the normal to the ecliptic plane and the polar axis of the planet. For
example, in the case of the Earth, an “appreciable” increasing of this angle would cause
a modification of the weather with warmer summer and colder winter (see also remark
7.2). On the other hand, from a mathematical point of view, the variation of the above—
mentioned angle is related to the variation of the action variables for the Hamiltonian

" See (8.2).

8 In fact the dependence on ¢} appears only at exponentially small terms: so the action I3 is “constant”
up to exponentially large times and can be disregarded.

9 Where Ho1 and Hl(l) are defined in (8.6), (8.12) and a := 1 + min{¢,c} > 1.

10 Namely |I(Ty) — I(0)| > const. for a certain Ty > 0.



(0.6). However, due to the strong degeneracy of the model, the previous Nekhoroshev
Theorem cannot be directly applied.

Problem 3: topological instability (Arnold diffusion)

We first point out that J. Mather has recently announced the solution of the above-
mentioned Arnold’s conjecture for a generic class of perturbations!! (see, for Mather’s
Theory, [81], [82], [83], [84], [85], [64]).

In any case, the level of generality proposed is much higher than the one required on
usual constructive proofs based on concrete examples. However, it could be not completely
obvious to verify, in concrete cases, that the perturbation f belongs to the generic class
proposed by Mather. Moreover it has to be noted that the proof of this statement is not
vet available. Finally we remark that, regarding problem (2), it could be interesting to
find what kind of estimates on the diffusion time can be derived by Mather’s techniques.

The classical approach to prove the existence of topological instability usually follows
the scheme proposed by Arnold in his famous paper [10].
As suggested by normal form theory near simple resonances, the Hamiltonian model

11 For completeness we state the abstract of the talk given by Mather in [86] (see also [87]):
Consider a small perturbation of an integrable Hamiltonian:

H, :=h(I)+eP(0,1,t,¢)

where I = (I1,...,I,) € B", aball of radius 2 in R*; 8 = (61,...,0,) € T"; t € T (i.e., the system
is time-periodic of period 1); and 0 < |e| < €o (L.e. € is a small parameter). We study the solutions of
Hamilton’s equations 8 = 9 H, I = —0sH.

The oscillation oscI along a trajectory is defined by oscl := sup |[I(t1) — I(to)||. A particular pertur-
bation H. is said to exhibit Arnold diffusion if there exists a trajectory for which osc > 1. In this talk,
we announced the existence of a large class of perturbations which exhibit Arnold diffusion, in the case
that A" > 0.

Let E be a topological vector space, We will say that a subset W of E is a “cusp-residual” if the
following holds:

1) There exists an open dense subset U of E such that v € U and A > 0 imply v € U.

2) There exists an open subset V of U such that if v : [0,6] — E is a Ct~curve, v(0) = 0 and
4'(0) € U, then there exists 0 < § < &y such that ((0,9)) C V.

3) W is an open dense subset of V.

In the following we assume 7 is a large integer, oo, or w and A" > 0. We assume h is C".
Theorem There exists a cusp-residual set W in the space of C"—perturbations of h such that any
perturbation in W exhibits Arnold diffusion.




considered by Arnold is'?

2 2

H(L,pp, g b6 p) =5 + %— +e(cosg — 1) +enf(p,a,7) (AH)
where I,p € R, ¢,q,t € T; while € and p are small parameters. Taking f := (cosq —
1)(sin ¢ +cost), Arnold proved topological instability for x exponentially small w.r.t. VE.
The diffusion time turns out to be exponentially long with respect to € (as subsequently
proved by [26]).

The mechanism proposed in [10] to prove the existence of action—instability and
thereafter become classical as “Arnold diffusion!®”, is based on the construction of tran-
sition chains. One first remarks that for p = 0, the Hamiltonian system associated to
I admits a continuous family of 9-dimensional partially hyperbolic invariant tori Tr =
{(p,t) € T*, 1 = I, ¢ = p = 0} possessing 3_dimensional stable and unstable manifolds
We(Ts) = We(To) = {(et) € T2, I =1, (p?/2)+ e(cosq — 1) =0}.

Next one tries to construct, for p # 0, transition chains, namely chains of perturbed
partially hyperbolic tori T} close to Tr, connected one to another by heteroclinic orbits.
Finally one proves, through a “shadowing argument”, the existence of a true diffusion
orbit close to the transition chain.

By the previous scheme one is then faced with the following 3 steps:

(i) splitting problem. Prove the persistence, for pu # 0 small enough, of such hyper-
bolic tori 77 and show that the perturbed stable and unstable manifolds We(TH)
and VV;‘(’]}“ ) “split” and intersect transversally, giving a quantitative measure of
these “splitting angles”.

(ii) construction of a transition chain. This is a difficult task since the surviving
perturbed tori T} are separated by the gaps appearing in KAM constructions: two
perturbed invariant tori 77 and T# could be too distant one from the other one,
forbidding the existence of a heteroclinic intersection between W2 (7/) and W (TH).
This is the well-known gap problem.

(iii) shadowing argument: to prove the existence of a true diffusion orbit, shadowing
the transition chain, for which the action variables I undergo a drift of O(1) in a
certain diffusion time Tg.

In [10] the splitting of stable and unstable manifolds is proved assuming f exponen-
tially small with respect to € in order to justify straightforwardly the Poincaré-Melnikov

12 f[amiltonian H can be written in an autonomous (i.e. independent on time) way as in (0.1), intro-
ducing the angular variable w3 = ¢ and its conjugated action I3 and renaming L =1 ¢ =9 Ia =p,
3 = ¢, in the following way

H(I, 6, 1) = 13/2+ 13 /2 + Is +&(cospz — 1) +epf(p1, 02, 93)-

13 Qyuch a term was introduced, in the physical literature, in [51].

10



approximation. The gap problem is bypassed by the peculiar choice of the perturbation
(cos g — 1)(sin ¢+ cost) whose gradient vanishes on the unperturbed tori 77, leaving them
all invariant also for u = 0. The splitting of stable and unstable manifolds is proved as-
suming p exponentially small with respect to € in order to justify straightforwardly the
Poincaré-Melnikov approximation. Finally we mention that the shadowing argument of
[10] is based on geometrical techniques.

After thirty years from Arnold seminal work [10], attention to Arnold diffusion was
renewed in 1994 by Chierchia and Gallavotti [49] followed by several papers approaching
the problem from different points of view (see e.g. [48], [26], [27], [28], [66], [69], [30]. [23],
[24] and references therein).

In [49] topological instability is proved for a class of perturbations not preserving
the unperturbed tori: extending Arnold’s analysis, they dealt with step (ii) showing that,
if the perturbation f is a trigonometric polynomial in the angles, then, in some regions
of the phase space, the density of perturbed invariant tori is high enough to allow the
construction of a transition chain.

Regarding problem (i) we point out that, up to now, Arnold diffusion has been proved
only for x exponentially small w.r.t. € and no results are available for u = O(e?) for some
positive power p. This is a very difficult problem since the Melnikov function is expo-
nentially small w.r.t. some power of ¢, and then the naive Poincaré Melnikov expansion
provides a valid measure of the splitting only for 1 exponentially small w.r.t. e. For this
reason the case p = O(eP) has only been proved in simpler models, starting from the
pioneering paper [74], which deals with a rapidly forced pendulum. This method has been
further refined in [71] and [70]. Different approaches to the splitting problem have been
developed in [67], [68], by means of trees techniques and in [63], [60] by normal form
theory. We also quote the more recent papers [96]-[79], [23] and [94]-[95].

We finally mention that the shadowing problem has been extensively studied in the
last years by both geometrical (see e.g. [49], [80], [66], [55], [56]) and variational (see e.g.
[40], [26],[27], [28], [42], [30], [23], [24]) techniques.

Main results

We now explain our contributions regarding problems (1),(2),(3).

Problem 1: total stability for two degrees of freedom degenerate systems

We consider Hamiltonians of the form (0.6). We first study the Hamiltonian
Ho(I,¢1;€) = Hoo(I1) + eHo (I, 1) (0.11)

which, regarded as a one-degree—of—freedom system in the (I, 1) variables, is still inte-
grable exhibiting, in general, the typical features of a one—degree—of-freedom dimensional
system (phase space regions foliated by invariant circles of possibly different homotopy,

11




stable/unstable equilibria, separatrices, etc.). A natural approach (which we shall, in fact,
follow) is to introduce action-angle variables for the one-degree-of—freedom Hamiltonian
Hy(I,¢1;€) (regarding I as a dumb parameter) and then to apply KAM techniques try-
ing to confine all motions among KAM tori (as in the non—degenerate case). The problem
with this approach is that the action—angle variable for the (I, ;) system are singular
in any neighborhood of the separatrix (and stable equilibria) and is exactly near separa-
trices where one expects the motion to become “chaotic” and where, in principle, drift of
order one in the I, variable is conceivable!® even in the two—degrees—of—freedom (prop-
erly degenerate) case considered here. Therefore a careful analysis near these “singular
phase space regions” is needed and arguments different from KAM theory have to be used
to control the displacement of the action variable in such singular regions. Clearly (see
Remark 0.1) regions where the non-degeneracy assumption fails need a separate discus-
sion: in fact, in such zones (and in the non convex case), we can not exclude a “possibly
non—chaotic—drift” of the I, action.

To avoid “extra” technical difficulties we consider model problems, namely, we shall let

HOO =

CR vt

- 15
y HOl = H(§1) = O'—éz— — (1 ~+ cos @1) y (012)

with o equal either +1 or —1; the phase space will be taken to be Mg, = B% xT? where
B%_ denotes a ball of radius fo around the origin.

Remark 0.2 These model problems are intended to capture the main features of “general”
properly degenerate systems with two degrees of freedom as, for ezample, the exponential
approzimation (0.10) to the D’Alembert Hamiltonian. This is the reason for considering
both the conver and the non conver*® case in (0.12), corresponding, respectively to o =1
and o = —1.

We can now state our result (see Theorem 4.3) about problem (1) which is a simple
corollary of Theorem 4.4.

Theorem 0.2 Let HO (I, ;) := H(I,p;€) asin (0.5), (0.12), and Mg, be as in (4.5),
(4.6). Assume a > 3/2 and choose

(1 a-11 3
0 < R< Ry and O<b<m1n{‘4“,-—4—,§(a“§)} . (013)

Then, there ezists g9 > 0 such that, for all 0 < e <&, the ¢4 —evolution (I(t), ¢(t)) of an
initial datum (Lo, @o) satisfies

II(t)] < Ro , I(t) - L <&, VteR, (0.14)

14 Better: “compatible with energy conservation”.

15 With respect to the D’Alembert model, regions in which the Hamiltonian (0.10) is non convex
correspond to unperturbed situations in which the spin axis of the planet is nearly orthogonal to ecliptic
plane (ie., to the plane containing the Keplerian ellipse), as it results from (8.7): this is the observed
situation for most planets in the Solar system.
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where, in the case o = 1, (Io, o) is an arbitrary point in the phase space Mg, while,
in the “non—convex” case o = —1, (Iy, po) belongs to Mp\Ni, N, being an open region
whose measure does not exceed €%/,

Problem 2: exponential stability for the D’Alembert planetary model

Now we pass to the problem of action-stability in the D’Alembert planetary model.
Notwithstanding the strong degeneracies of the model, stability results a la Nekhoroshev
(i.e. for times which are exponentially long in the perturbative parameters) hold (see also
Theorem 7.1).

Theorem 0.3 Letc¢ > 0,0 < £ < 1/2 and 0 < v < min{c, £}. Assume that (0.8) holds
and that

Jy # V3L . (0.15)
Then, there ezist €g, Yi,w > 0 such that, if 0 <e < & and 0 < p < €°, then
Vs Y2
() = I(0)] <yar €™,V |t <T(e) == —— exp (%) : (0.16)

where (I(t), ¢(t)) denotes the evolution of an initial datum'® (1(0), ¢(0)) € A X T for the
D’Alembert Hamiltonian (0.6).

The reason for which it is possible to prove stability notwithstanding the properly—
degeneracy of the model, is mainly related to the appearance of the above mentioned three
well separated times scales in (0.9). In particular, the “non-degeneracy” assumption (0.15)
is made in order to really have ¢l = O(g), i.e., in order to have, 20y He ulp—o r—7, # 0.

As we said before, after averaging the “fast” angle s, we have that /. 5, is stable for
exponentially long time!” and the motion of I; and Iy is £ —near to motion of I; and
f2, which is governed, up to an e-exponentially small term, by the two degree of freedom
Hamiltonian (0.10). From (0.10), by energy conservation, it is simple to see that [; (and
hence I7) is stable, being its variation bounded by O(+/€). So the only non-trivial stability
is related to I (namely I5). At this point the further analysis strongly depends on the
dependence (in the case (p,q) = (1,1)(2,1)) or independence (in the other cases) of the
term _ﬁm upon (1. In the second case we can exploit the separation of scales between g?)l
and @,: roughly speaking, ¢, is fast with respect to ¢, and, therefore, the dependence
upon @1 can be removed up to exponentially small terms; finally using energy conservation
we obtain stability also for I, and hence for Is.

To carry out an analogous strategy in the first case, we have to, first, put the two—

dimensional integrable system % +eHp (fz, ¢;) into action—angle variables. Moreover for
our purposes, we need detailed information on the analyticity domains of this symplectic
change of variables, which becomes singular as ¢ — 0. After this (elementary but technical)

16 4 is defined in (0.7).
17 See footnote 8.
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analysis, we prove the Theorem using jointly normal form theory and energy conservation
arguments, fully exploiting the separation of scales described above.

Problem 3: a new variational method

(Preliminary observations) As proved in [18] we provide a new mechanism to produce
diffusion orbits not based on the existence of transition chains of tori: we avoid the KAM
construction of the perturbed hyperbolic tori, proving directly the existence of a drifting
orbit as a local minimum of the action functional. At the same time our variational
approach achieves the optimal diffusion time. Our diffusion time estimate is the optimal
one as a consequence of a general stability result, proved via classical perturbation theory.

As in [49] we deal with a perturbation which is a trigonometric polynomial in the
angles and our diffusion orbits will not connect any two arbitrary frequencies of the action
space, even if we manage t0 connect more frequencies than in [49], proving the drift also
in some regions of the phase space where transition chains might not exist. Clearly if the
perturbation is chosen as in Arnold’s example we can drift in all the phase space with no
restriction.

We will assume, as in Arnold’s paper, the parameter /i to be small enough in order to
validate the so called Poincaré-Melnikov approximation, when the first order expansion
term in p for the splitting, the so called Poincaré-Melnikov function, is the dominant one.
For this reason, we will fix the “Lyapunov exponent” of the pendulum € := 1, considering
the so called “a-priori unstable” case. Actually our variational shadowing technique is not
restricted to the a-priori unstable case, but could allow, in the same spirit of [22], [23] and
[24], once a “splitting condition” is someway proved, to get diffusion orbits with the best
diffusion time, in terms of some measure of the splitting (see remark 0.3 below).

(Our model) We consider nearly integrable non-isochronous Hamiltonian systems

defined by . ,
IL
HH,:5‘+%+(COSQ‘“1)+/if(],(p,p,q,t), (017)

where (p,q,t) € T¢ x T" x T' are the angle variables, (I,p) € R? x R' are the action
variables and g > 0 is a small real parameter. The Hamiltonian system associated with
H,, writes

o= T+ pdrf, I=-pdpf, d=p+npdpf, p=sing—pudef (Su)

The perturbation f is a real trigonometric polynomial of order N in ¢ and t, namely'®

fLopat)= Yo fall,pq)emeH. (0.18)
()<

For simplicity, even if it is not really necessary, we assume f to be a purely spatial

perturbation, namely f(¢,q, 1) = Yo<impi<n i) exp(i(n - ¢ + 1t)). The functions fri
are assumed to be smooth.

18 Where fp,(I,p,9) = f-n-1{L;P; g) for all (n,1) € Z% x Z with |(n,])] < N, and Z denotes the
complex conjugate of z € C.
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Define the “resonant web” Dy formed by the frequencies w “resonant with the per-
turbation”

Dy = {w e R \ A(n,1) € 4 5. 0 < |(n, | < N andw-n+1= 0} (0.19)

and the Poincaré-Melnikov primifive
I'(w, 00, p0) = — /R [f(Wt + o, qo(t), 1 4 0o) — f (Wt + 0, 0, + 90)] dt,

where go(t) := 4 arctan(expt) is the separatrix of the unperturbed pendulum equation
§ = sing satisfying qo(0) = .

(Our diffusion Theorem) The next Theorem (see Theorem 10.1) states that, for any
connected component C C D%, wr,wr € C, there exists a solution of (S,) connecting
a O(p)-neighborhood of wy in the action space to a O(p)-neighborhood of wp, in the
time-interval Ty = O((1/p)|log pl). '

Theorem 0.4 Let C be a connected component of DS, wr,wr € C and let v : 0,L] = C
be o smooth embedding such that v(0) = wr and y(L) = wr- Assume that, for allw = v(s)
(s € [0,L]), T'(w,,-) possesses a non-degenerate local minimum (65, ¢y). Then ¥n > 0
there exists o = po(v,m) > 0 and C = C(y) > 0 such that YO < p < po there ezists
a solution (I,(t), 0u(t), pu(t), 4u(?)) of (8,) and two instants 1 < Ty such that I(m) =
wr + O(), Iu(me) = wp + O(p) and

C
|72 — 1| < —/;i log . | (0.20)

Moreover dist(I,(t),v([0,L])) <n for ally <t < T2 ~
_In addition, the above result still holds for any perturbation p(f+pf) with any smooth
Flp,q,1). |

We can also build diffusion orbits approaching the boundaries of Dy at distances as
small as a certain power of u: see for a precise statement Theorem 15.1.

(Our improvements w.r.t. previously known results) Theorem 0.4 Improves the corre-
sponding result in [49] which enables to connect two frequencies wr and wr belonging to
the same connected component C C Df, for N = 14dN and with dist{{wr,wr}, Pm} =
O(1). Such restrictions of [49] in connecting the action space through diffusion orbits arise
because transition chains could not exist in all C C D (see remark 11.2). Unlikely, given
any two frequencies wr, Wr € C C DS and any path, lying in Dy, joining them, our
method enables to find a trajectory of (0.17) running along this path and joining w; and
Wg.

Theorem 0.4 also improves the known estimates on the diffusion time. The first esti-
mate obtained by geometrical method in [49], is Ty = O(exp (1/p)). In [80]-[55]-[56], still
by geometrical methods, and in [30], by means of Mather’s theory, the diffusion time has
been proved to be just polynomially long in the splitting 1 (the splitting angles between
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the perturbed stable and unstable manifolds W;*(7}') at a homoclinic point are, by clas-
sical Poincaré-Melnikov theory, O()). We note that the variational method proposed by
Bessi in [26] had already given, in the case of perturbations preserving all the unperturbed
tori, the diffusion time estimate Ty = O(1/p?). For isochronous systems the estimate on
the diffusion time was Ty = O(exp(1/p)) in [66] and Ty = O((1/u)|logp[) has been ob-
tained in [22]-[23]. Very recently, in [56], the diffusion time (in the non isochronous case)
has been estimated as Ty = O((1/x)|log u|) by a method which uses “hyperbolic periodic
orbits”; however the result of [56] is of local nature: the previous estimate holds only for
diffusion orbits shadowing a transition chain close to some torus run with diophantine
flow.

In Theorem 0.6 below we will conclude this historical quest for the minimal diffusion
time T, showing the optimality of our estimate Ty = O((1/1)|log p)-

(Our method) We now briefly discuss the method of proof of Theorem 0.4 (and
Theorem 0.5 below). It relies on a finite dimensional reduction of Lyapunov-Schmidt type,
variational in nature, introduced by Ambrosetti and Badiale in [1] and later extended in
[22],[23] and [24] to the problem of Arnold diffusion for isochronous systems. We also
mention that the approach of [1], originated in [4], has been later on also extended with
success for studying a huge variety of bifurcation problems of variational nature concerning
nonlinear elliptic equations (see e.g. [5], [25], [6]).

The diffusion orbit of Theorem 0.4 is found as a local minimum of the action func-
tional. In order to find critical points of the action functional, we evaluate it on suit-
able pseudo-diffusion orbits, whose ( ,q) variables move along the separatrices of the
pendulum. Pseudo-diffusion orbits are true solutions of (S,) except, possibly, at some
instants 8; < ... < 0; < ... < O (for a suitable & € N which represents the num-
ber of “bumps”), where they are glued continuously at the section {g=7 mod 27},
namely (0, (67),q.(65)) = (0u(6;),4u(67) = (s, 7) for suitable @;, but the speeds
($u(05), 4u(05)) = (1u(67), pu(677)) may have a jump. .

The reduced action functional, obtained evaluating the action functional on the
pseudo-diffusion orbits, is defined on the (finite) k(1 + d)-dimensional space parametrized
by A = (61,01, .., 0k, @x). It turns out (see lemma 11.3) that, after this finite-dimensional
reduction, critical points of the reduced action functional correspond to smooth pseudo-
orbits (i.e. pseudo-orbits with no jumps for the speeds at any 6;), namely to true solutions
of (Sy).

The time interval T} = 6,,, — 6; is heuristically the time required to perform a single
transition during which the rotators can exchange O(p)-energy, i.e. the action variables
vary of O(u). During each transition we can exchange only O(u)-energy because the
Melnikov contribution in the perturbed functional is O(y). Hence in order to exchange
O(1) energy the number of transitions required will be k= O(1 /).

We underline that the question of finding the optimal time and the mechanism for
which we can avoid the construction of transition chains of tori are deeply connected. We
are going to explain this essential fact.
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A first arising question is the following one: if there are no KAM tori, how can we
approximate the action functional in order to find a minimum?

Namely, what are the correct objects to use (instead of perturbed hyperbolic KAM tori)
in order to construct pseudo-orbits?

The key idea is to approximate the action functional using a suitable chain of un-
perturbed solutions. Namely, we construct our pseudo-orbits, “bifurcating” them from a
chain of unperturbed solutions, joined together, at every 6;, by continuity.

Actually, the unperturbed solutions of (Sp), which we will use, are defined in the

following way'®: (wi(t—Hi)—l—(p,-, QT (t-9i)), for t € [0;,0:41), where® w; == @i 1—¢i/ (Oir1—
0;) and Qg is the unique Tj-periodic solution of the pendulum —QTZ. + sin Qr, = 0 with
positive energy. We will chose (6;, ¢;) in such a way that they are §-close to the minima of
the Poincaré-Melnikov primitive (let us say (0,0) = mod o Z*e for simplicity), where
§ is a small, but independent on p, constant.
Then we fix @; € R? such that: (a) @;T; = 0 mod 2rZ%, for suitable T, € 2nZ; (b)
@41 — Wi| = O(pp), with p a suitable constant small as we wish; () |wg — wW1| > const.
We will search A = (01, 1,.-.,0k ¢r) in a set verifying, not only the above-mentioned
condition | (6;, ;)| < 6 mod 2xZ**%, but also T} ~T; = 0(8) and @1 — i —wiT; = O(6).
We observe that, with this positions, we have |w; — @;| = O(6/T5).

We will find (see lemma 11.1) our pseudo-orbits from the above-defined chain of
unperturbed solutions, by the Implicit Function Theorem, provided every T; is sufficiently
large, namely T; > const. |log . ‘

With the above choice for T}, we have |w; — ;| = O(1/]log pl)-

We point out that, if we are able to find a \ which minimizes the reduced action
functional, then we have found a diffusion orbit, since 1,(6)) ~ w ~ wy and L (Or) =~
WE =~ W '

Roughly speaking, by the estimates of the Implicit Function Theorem, the following
approximation holds (see lemma 12.5)

reduced action functional = kinetic part+ p x Melnikov contributions + rest (0.21)

where kinetic part is the kinetic part of the rotators, namely? 32 (@iv1—i)?/2(0iy1—6:)
and rest = O(pu + p® max; T;),.

If it is possible, as it is in fact, to take T; = O(|In p|) (actually we only need T; << 1/p),
then, on such “short” time interval, the rest is negligible.

However, the fact that it is possible to perform a single transition in a very short time
interval like T; = O(]In z|) is not obvious at all. In the approach of Bessi [26] the time to
perform a single transition, in the example of Arnold, is O(1 /1). This transition time arises
in order to ensure that the variations of the kinetic part of the action functional associated
with the rotators are small compared with px Melnikov contributions. Unfortunately this
time is too long to use a simple approximation of the functional, because, as we have seen

19 Tn the (¢, q) variables. The solution for the (I,p) can be simply found deriving with respect to time.
20 Namely the straight line connecting ¢; with ¢;i1.
21 We should consider also some border terms (see (12.15) and lemma 12.5).
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before, the error should be O(u), namely of the same order as px Melnikov contributions,
possibly destroying the existence of a minimum.

The key observation that enables us to perform a single transition in a very short
time interval, improving substantially the arguments of [26], concerns the behavior of the
“gradient flow” of the unperturbed action functional of the rotators. Roughly speaking,
we have the following:

(i) in the directions which are orthogonal to the “unperturbed gradient flow”, the ki-
netic part is convex and it becomes as a “potential well”, forcing the solution to
remain close to the unperturbed pseudo—-solution;

(ii) instead, in the direction which is parallel to the “unperturbed gradient flow”, the
kinetic part is almost “flat” (being invariant for the flow) and the minimum of the
Poincaré-Melnikov primitive is preserved.

We point out that (i) implies a sort of a-priori estimate satisfied by the minimal
diffusion orbits (see remark 15.1). In fact it results that, if &; = (Giy1 — &)/ (Bip1 — 0)
are the frequencies of the minimal orbit, then |&; — w;| = O(/1/|log p[), which is much
better then |@; — @;| = O(1/|logp|), which would hold in general. We think that this
estimate (see also (15.18)) is interesting in itself.

In this way we can show that the variations of the action of the rotators (namely the
kinetic part) are small enough, even on time intervals T; << 1/u, and do not “destroy”
the minimum of the Poincaré-Melnikov primitive.

Summarizing the two main differences of our approach with respect to Bessi’s one
are: (1) the new variational argument described above for controlling the oscillations of
the action functional of the rotators; (2) the construction of the pseudo-diffusion orbits
by the LF.T. and not by minimization, obtaining sharp estimates for the reduced action

functional.

(Ergodization) When trying to build a pseudo-diffusion orbit which performs single
transitions in very short time intervals we encounter another difficulty linked with the
ergodization time. The time to perform a single transition 7; must be long enough to settle,
at each instant ;, the projection (6;, @;) of the pseudo-orbit on the torus T**¢ sufficiently
close to the minimum of the Poincaré-Melnikov function, i.e. the homoclinic point (in our
method it is sufficient to arrive just O(1)-close, independently of x4, to the homoclinic
point). This necessary request creates some difficulty since our pseudo-diffusion orbit may
arrive O(u)-close in the action space to resonant hyperplanes of frequencies whose linear
flow does not provide a dense enough net of the torus. The way in which this problem is
overcome is discussed in section 14: we observe a phenomenon of “stabilization close to
resonances” which forces the time for some single transitions to increase. Anyway the total
time required to cross these (finite number of) resonances is still Ty = O((1/u) log(1/p)),
see (14.13) and the proof of Theorem 10.1. This discussion enables us to prove optimal
fast action—instability in large regions of the phase space and allows to improve the local
diffusion results of [56].
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We need therefore some results on the ergodization time of the torus for linear flows
possibly resonant but only at a “sufficiently high order”. We present these results in
section 13. We point out that the main result of this section, Theorem 13.2, implies as
corollaries Theorems B and D of [47], see remark 13.1. It is of independent interest and
could possibly improve the other results of [47].

(The Arnold’s example) As a byproduct of the techniques developed we have the
following result (see Theorem 10.2) concerning “Arnold’s example” [10] where 7, := {I =
w,p € T4 p=q=0} are, for all w € R¢, even for p # 0, invariant tori of (S,).

Theorem 0.5 Let f(p,q,t) := (1—cos q)fw,t). Assume that for some smooth embedding
v :[0,L] = R?, with v(0) = wy and y(L) = wr, Yw := 7(s) (s € [0, L]), I'(w, -, -) possesses
a non-degenerate local minimum (05, ¢%). Then ¥n > 0 there exists uo = po(v,n) > 0,
and C = C(v) > 0 such that VO < p < g there exists a heteroclinic orbit (n-close to )
connecting the invariant tori To, and Toy. Moreover the diffusion time Ty needed to go
from a p-neighborhood of T., to a p-neighborhood of T.,, is bounded by (C/u)|logpu| for
some constant C.

Remark 0.3 Consider the a-priori stable Arnold’s example Hamiltonian (AH)
H(I,3,5,q,t) = I1*/2+p"/2+e(cosq — 1) + ep(cos § — 1)[sin @ + cost] . (0.22)

After rescaling®®, we have that, if (I(t), 3(t),p(t),a(t)) is a solution of (0.22), then I(t) =
VEI(v/et), where (I(t),(t),p(t),q(t)) is a solution of the a-priori unstable Hamiltonian

H(I,¢,p,q,t) :=I1*/2+p"/2+ (cosg — 1) + p(cos ¢ — 1)[sin ¢ + cos 1] . (0.23)

Hence, in order to prove topological instability for (0.22), the fact that I(Ty) — I(0) is
order 1 in € is equivalent to I(v/eTy) — I(0) = O(1/+/€). The oscillations of the Poincaré-
Melnikov function in the Hamiltonian(0.23), for frequencies w = O(1/\/€) (which we must
deal with), turn out to be exponentially small in \/e (namely O(exp(—ci/+/€))). In order
to use Theorem 0.4, we have to find the values of o and C such that we have a diffusion
orbit performing a distance of O(1/+/g). Obviously po and C will depend on the parameter
VE. It is simple to see that the dependence® of C on /e is C = O(1/+/€). The standard
way in order to make negligible the rests in the development of the action functional, so
that the Melnikov part in (0.21) dominates, is to take g ezponentially small w.r.t. \/€
(namely O(exp(—ca/+/€)) with co > c1). Finally we are able to prove diffusion for the
a-priori unstable Hamiltonian (0.22), finding a diffusion time Ty exponentially long w.r.¢.

VE as in [26].

22 Perform former a /€ rescaling in the action variable (I,3,5,d) = (I/v/Z, @, p/+/€,q), which casts
the Hamiltonian (0.22) in

2, 3,5,d,t) = \/g[fz /24 52/2 + (cosG— 1) + p(cos G — 1)[sin & + cost]]

and later a +/¢ rescaling of the time.
23 Practically C depends linearly on the length of the embeddmg 7 in Theorem 0.4.
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We conclude this remark briefly mention two possible developments: (i) try to combine
our method with the one used in [23] in order to deal with the very difficult and interesting
problem of taking p = € for p positive; (i) in order to find non existence results for KAM
tori as in [29], try to use our method (which looks like more sensible).

(Optimality of our diffusion time estimate) We now state our stability result (see
Theorem 10.3).

Theorem 0.6 Let f(I,¢,p,q,t) be as in (0.18), where the fn1 ({(n, )| < N) are analytic
functions. Then Yk, 7,7 >0 there exist p1, ko > 0 such that VO < pn < pin, for any solution
(I(t), @(t),p(t), q(t)) of (Su) with [1(0)| < 7 and |p(0)] < 7, there results

|I(t) = I(0)| <k V¢ such that [t < %Oln—lll. (0.24)

Actually the proof of Theorem 0.6 contains much more information: in particular
the stability time (0.24) is sharp only for orbits lying close to the separatrices. On the
other hand the orbits lying far away from the separatrices are much more stable, namely
exponentially stable in time according to Nekhoroshev type time estimates, see (16.4) and
(16.11). Indeed the diffusion orbit of Theorem 0.4 is found close to some pseudo-diffusion
orbit whose (g, p) variables move along the separatrices of the pendulum.

We now sketch the proof of Theorem 0.6. First we prove stability in the region
“far from the separatrices of the pendulum” & := {(I,p,q,p) | |E(g;p) = p}, where
E(q,p) = p*/2+ (cosq — 1) and c is a suitable positive constant. In & we can write
Hamiltonian #, in action-angle variables (I, ¢, @, P,t) where @ := Q(g,p) and P =
P(g,p) are the action-angle variables of the pendulum E(g,p), i-e E(q(Q, P),p(Q, P))
.= K(P). In these new variables the new Hamiltonian writes H, = I2/2 4+ K(P) + p
f1(, Q,t, P, ), that, by Proposition 9.1, is analytic with an analyticity radius rp ~ p°
(when p goes to zero, the region & approximate closer and closer to the separatrices
and the analyticity estimate deteriorates). It turns out that #; is steep (actually for £
positive it is even quasi-convex, see [93]) and then, for ¢ > 0 small enough, we can apply
the Nekhoroshev Theorem as proved in [90]. In this way we obtain exponential stability
in the whole region &, i.e.

by 1 1ya
|I(t) — 1(0)] < const.p ¥ |t] < T := const. —exp (—)
u [
for two constants a,b > 0. Finally we study the behavior of an orbit close to the separatri-
ces of the pendulum, namely in the region £f. Roughly speaking, such an orbit will spend
alternatively a time Ts = O(|Inp|) into a small O(1)-neighborhood of (p,q) = (0,0)
and a time Tp = O(1) outside. In this second case we directly obtain Al := [t I,
= O(uTr) = O(u). Then we prove, roughly speaking, that Al = O(u) also in the first
case. This result is obtained first writing the pendulum in hyperbolic variables in a small
neighborhood of the origin and then performing one step of classical perturbation theory
(with a resonant normal form) and an analysis of the resonances of Nekhoroshev-type.
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Scheme of the thesis

Part I

We discuss some preliminaries regarding Normal Form Theory. We construct complex
action-angle variables for a pendulum with non-constant gravity as presented in [33],
[35]. We study the Hamiltonian formalism for D’Alembert planetary model finding the
“offective Hamiltonian” recalling the results showed in [34].

Part 11
We prove total stability for the action variables in the Hamiltonian (0.5) as proved in [33].

Part III

We prove stability of the action variables of the planetary D’Alembert model for expo-
nentially long time in the perturbative parameters. This result was announced in [32] and
proved in [35].

Part IV

We prove the existence of action-instability with diffusion time 7y = O((1/p)log(1/ 1))
for the non-isochronous, nearly integrable, a-priori unstable Hamiltonian (0.17). We also
prove that our estimate of the diffusion time T, is optimal as a consequence of a general

stability result derived from classical perturbation theory. This results were announced in
[18] and proved in [19].

Appendix
We prove some technical lemmas used in part IV. In particular we prove a result on the
ergodization time of the torus for linear flows possibly resonant but only at a “sufficiently
high order”.

List of problems
We close this introduction with a list of problems regarding:

(a) Properly-degenerate Hamiltonian systems in two degrees of freedom

a.1 Find general conditions on Hy given in (0.11) under which Theorem 0.2 holds
(see [36]).

a.2 Extend the example in Remark 0.1 to properly—degenerate systems?*. Such
examples may indicate a possible route to O(1)—drift of action variables, in properly
degenerate systems, different from Arnold Diffusion, as we have discussed above
with the presence of some “resonance phenomena” (see also point (b.2) below).

24 Tn particular in remark 4.1 (i) we give such an example with

I? I3 . .
H(I, I, 1, p2;€) := Hoo(l1) + eHo(12) + e*Hy j(p1,2) 1= 'él" - 5—22‘ +e?e 7 sin(p1 — jop2)

when ¢ 1= g; = j=2. It could be interesting to extend it to e—independent perturbations H; or to
Hy := Hgo + €Hpi dependent also on ¢;.
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(b) D’Alembert planetary model

b.1 The major open problem in this context is certainly to prove action—instability
(see remark 7.1 where the problem of Arnold diffusion in this contest is considered)
and, eventually, to compare the diffusion time with the stability times given in
Theorem 0.3.

b.2 Prove (or disprove) the non-—existence of “instability channels” for the two—
degrees—of-freedom system (0.10) obtained by disregarding the exponentially small
terms in (0.6).

b.3 Refine the techniques used in the proof of Theorem 0.3 s0 as to apply the
stability result to some concrete problem arising, for example, in the Solar System
using astronomical data and compare the obtained result with the existing estimates
on the life time for the Solar System.

b.4 Generalize the results of Theorem 0.3 to, e.g., the case of a non-rotational planet
(in which case, the system has one more degree of freedom), the case of a non—fixed
star, etc.

(c) Possible applications of our variational methods for proving action—instability?

¢.1 Suitably refine our variational method in order to prove the existence of drifting
orbits in the whole action space and then to prove such results for generic analytic
perturbations too.

c.2 Try to apply these methods to infinite dimensional Hamiltonian systems (PDE,
wave equations, etc...), where the existence of “transition chains of infinite dimen-
sional hyperbolic tori” is quite far for being proved.

2  This method is a further step of a research line, started in [22]-[23] and [24], for finding new
mechanisms to prove Arnold diffusion.
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1 Notations, norms and Normal Form Lemma

We shall use the following notations: if § # D C R* and p := (p1,p2,...,pa) With
0 < p; <ooforl<j<d, we denote

D, ={I=(,...,I5) €C : |[—L|<p;j=1,....4d, for some I € D} ;

T? denotes the complex set {z € C* : |Imz;| <o, j=1,...,d} (thought of as a complex
neighborhood of T¢).

We shall work in the Banach space Hg(D, x T%) of functions f real-analytic on D, x ¢
having finite norm

[ £llpe =3 sup |fi(D)]e™,
kezd 1EDp

Fi(I) being the Fourier coefficients of the periodic function ¢ — f (I,¢). Notice that if
f € Hr(D, x T¢) and p; = oo for some 1 < j < d, then, by Liouville Theorem, f does
not depend on Ij.

We shall use the following standard result from normal form theory; see [93] for the proof
with p; = - -- = pg; (for the trivial modifications in the case of different analyticity radii,
see [33] or [34]).

Lemma 1.1 (Normal Form Lemma) Let H := H(I, ) := h(I) + f(I,¢) be a real-
analytic Hamiltonian on D x T? belonging to Hg(D, x T%) for certain p == (p1, p2, - - -, pa)
with 0 < p; < 00, 1 <j <d, and o > 0. Let po := minig;<a pj- Let A o sub-lattice of Z.2,
a >0, K € N with Ko > 6. Suppose that

W) -k|>a, VEeEZ\A,0<[k<K, YI€D,, (1.1)
and that the following condition is satisfied:
&po
1Flloe =i 7 < Fr57¢ - (1.2)

Then, there exist a real-analytic symplectic transformation
¢ : (J,0) € Dppa x T = (I,0) = ¢(J,9) € D, x T,

such that '
Hod(J,9)=h())+ > fl)e* +g(J9) + fu(J,9) (1.3)

kEA|k|<K

where f. = f.(J,1), g = g(J, ) = Tpen gr(J)e™¥ belong to Hr (D2 ng/G). Moreover
the following estimates hold: .

211 2 1
llgllor2,06 < ap00n2 < 7N < 37
W fellprz,ore < T]e"K"/6 ,
2° Po 26 o ]
I —J| < &;775 o7 o —yY| < EEEUS % ¥ (J,90) € Dyjo X T 5. (1.4)
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Remark 1.1 If we have h := h(I) == fz(]l,...,fd_l) +wly and f = f(Il,...,Id_l,ap),
then the symplectic transformation ¢ preserves the form of the Hamiltonian and has the
form:

{ Ij :fj(t]la’:"yjd—lnw) ) .on:@j(‘jlv"wjd-—law) ) (1 SJ Sdﬂl) ’
Id: Jd+Id(J17-"7Jd~—1aw> ) ‘Pd:T/)d )

and, also, f« and g do not depend on Jg.

2 Complex action-angle variables

In this Section we will construct complex action-angle variables for the “suspended pen-
dulum” with energy E(p, I, q) = p*/2 —ek(I)(1+cos g), where p is the action coniugated
to the angle ¢ € T and ek(I) is & small gravity varying with the parameter I according
to the values of the strictly positive function k(I).

Of course such action—angle variables will be singular near the separatrices and near
elliptic periodic orbits (corresponding to the equilibria of the pendulum) and therefore a
careful blow—up analysis near the singularities, as € — 0, is needed.

Furthermore we also need to study the complex analytic continuation of the action-angle
variables since we will apply later Normal Form and KAM theory in real-analytic class.
Notwithstanding the enormous literature on elliptic integrals, such information does not
seem to be available. So, in odrder to perform this blow-up in analytic class, a certain
amount of straightforward (although rather lengthy) computations are needed. This will
be done below.

Throughout this section, we shall denote z; and 22, respectively, the real and imaginary
part of a complex number z = 2z + 122.
In the following we will choose the positive branch of the square root i.e. if z = |z|e™
with @ € (—,), then we define the analytic function /2 = \/\;\eia/ 2 We also define
In z := In|2| + % and arccos z := —iln(z +4v1 = 2%).

We shall use the following notation: if A, B are two strictly positive functions we shall
say A ~ B if there exist positive constants ¢t,c”sothat c A< B < ¢t A pointwise. For
example,

B B
VAB-VA= e R~ VAT B )

Obviously, “~” is transitive. Also, if A, B and C are strictly positive, then A ~ B implies
A+C~B+C.
We need the following elementary lemma:
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Lemma 2.1 Let 7,3, > 0. Then \/z; & ixo = wy + iwy and (7 % i19) "% =y F 1ys
where

wy (T, To) = f T+ \/azl + 3, wo(T1, Te) 1= -\15 —x1 + /23 + 1%,
\/mﬁ—w/:c +a:2

L . —z1++/ T+l
yl(xlaxZ) — \/—2—\/;21—;;3 y yQ(ZBl,ZEz) = ﬁ\/;?jl—a:_% .
We observe that, for z1 fized, wy (resp. y1) is increasing (resp. decreasing) for zo > 0;

Yo 18 also increasing but only for zo < \/3x1. Moreover if 1 > o the following estimates
hold

/T <’UJ1<\/£B1+J,‘Q<\/_1/ T, %%S —<——\}——2—_\/—m;1-’
1 < V2 lap, _ 1 3 (2.2)
\/_\/ \/$1+a:2 JT1 43:?/ —yQ—\/— 3/2 "
Finally (z1 £ iz9)~ 3/2 = 2 Fizy where z; = yl(y1 — 3y2) Zy = yg(3y1 —y2) and y1, Y2 are
as above. Furthermore, if y1 > 2ys then y? — 3y3 ~ v, 3y — i ~ yi and
1 T
~ T N33 Ty 2.3
o e M (PN RS 23)

Proposition 2.1 Let k(I) real-analytic on A = [a, B] for a < B with analytic extension
on A forry > 0. Let

- — A~

k= pax k(I), k:= Illrélilokg) k' = }gggc \K'(T)],

and suppose that b > 0. Lete > 0,70 >0, Ry > 2ry > 0,0 < s < 1,5 >0,
DO = [-——Ro,RO],
E(p,I,q) =p"/2 —ek(I)(1 +cosq)

and?®
M+ = {(p,1,q,0) € [0, R] x A x T 1< Elp, 1,0) < Ry/2)
M~ = {(p,],q,ap) eD’x A" xT?: —2ek(I)+n<E(p1,q) < _77} :
Then, there ezist positive constants ¢y, Cz (sufficiently large and depending only on kk k')

and c3,c4,¢5,Ce,€0 (sufficiently small) such that if € < g0, Ro = C1VE, T1 > Con/E, N < c3E
and

} c S1 o S9
g1 .= — . —_—
1 611’1(5/77)7 2 9 )

26 An analogous statement holds for p € [~ Ry, 0]. Of course, we are assuming that the various param-
eters are chosen so that M* # 0.

p1 = c4—77— Py = min{cs——n——— o
VE eln(e/n)’
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then the following holds. There ezist two real-analytic symplectic transformations ¢ and
two real-analytic functions E* : QF . — C? so that

6t (P, J,Q,9) € Oy X Ty X To, = (p,1,4,9) € DY x AL x Ty, x T,
p=p (P, J,Q), [=J, ¢=¢*(P,J,Q), p=¢*(P,],Q:¥) ,
EX(P,J) = E(p*(P,J,Q), J,¢*(P, J,Q)) ,
= (QF x T?) = M* (2.4)
where:
0F = {(P, L) R st P eD¥(L), hie A%,

D*(1) = (PH(n, 1), PH(RY/2, 1)), D™ (L) = (P~ (=2ek(D) +m, 1), P~(=n, 1)),

V2 T 92 [Ho(B.I)
pt+ .= Y2 E,1,0)d0 —::—-——/ E,1,0)d6
= [ V(B 1,6)d6, pri= 22 [T o(B, 1,0)d0,
and
g(E,I1,0) := E +ek(I)(1 4 cosd), Yo(E, I) := arccos(—1 — E/ek(I)).
Moreover, the following estimates hold for (P,I) € 0F

(p1,02)"
o (1+ /) In (144/%)

o E*(P,1)| < /1/GrlFUE (2.6)
In (14 /20)

Finally, since 8, E*(P,I) = —8; P*(E*(P, 1), D[0gP*(E=(P,I),I)]™", we can write, for
real P and I,

O EE(P,I) = —ek(D)[1+Y*(P,I)]  with  |[YF(PI)| <1 (2.7)

where

pE 1 e cosf
VEP,I) = do do
_ [/0 Jo(B=(P,1),1,0) } I Jo(BX(P.1),1,6)
with ¥ =7 and ¥~ = Yo (E~ (P, ), I).

In particular if k(I) =1 we have that p = pE(P,Q), ¢ = ¢=(P,Q), v =1, P* = PE(E)
and BE* = EE(P) and the following estimates on P* and its derivatives hold

PE(E) ~ % pE E)~%1n<1+ |—§—1‘>

) 1 5 . Ey

PE(E) ~ 75111(14— IE—1|> , P;(E)NW,

PEE) ~ e B (E)~ 72z 2.8)
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where with “- 7 we have denoted the derivative with respect to E.

Proof

e (First step: estimates on the action domains)

Let ky := SUDreAg, |k ()], ko = SUPreag, |ko(I)|, @1 := ky(1 + cosh s;) + kysinh s; and
Gy = k(1 4 cosh s;) + ky sinh ;.

For suitable ¢7,cg > 0 small enough, we define Ej(E,) = cmln™(1 + /%), E =

- [E]
csr1(Ro + 1) + R2/2, and, for I} € A% we define the following domains?’

£r = &F(NL) ={Ei+iEy, st.n/2< E1 < E; |E| < Ej(B)},
E™ = E (L) :={BE +iEy, st. —2ek(l}) +n/2 < E, < —n/2; |Esy| < E5(E)}.
Let F(p) := p*/2. We claim that

I-L|<py, 1 €A’ EcEYUE (L), 0eT,, = g(EI10)ecFD)). (2.9)

It is immediate to see that F'(D%) D &, where

£ = {—r?<2F < R2—72 |Ey| <ri/2B, + 73}
U (R} — 17 <2E; < (Ry+11)% |Bs] < EZ(EI)}

and By (Ey) := [=By + (Ro +71)?/2]Ro/(Ro + 1)
Next, we define

EN = {—28?@1 < By < 2, |E2t < ES} U {25 < Ep < E’ lE2| < 20777\/ El/e} ’

where EJ := max{F3(2¢), B3 (2¢k1)}, and £ := ED U EP U EB) with:

5_(1) = {—'25];)1 — £Qy S E1 < 2 — gdy, ‘Egl < Eg -+ 5&2},
g(z) = {25 —ea < E1 S E— 85,2, ‘EQ, S 2677] (El + Eal)/ﬁ + Edl},
E® = [F—ea; < Ey <E+eay, |Ea <2cm/E/e +eas).

We observe that obviously £ C &; moreover (recalling the definitions of a;, ay)

I-L|<p, LeA Ecé 0eT,, = g(F,I10)cé

Now we prove & C &€ which will imply (2.9), since F(D2) 2 EDEDEDETUE (L)
It is simple to see that £ C £ is implied by the following conditions:

We observe.that Ey > 2¢ implies In"}(1++/e/E1) < 21/Ey/e and hence £ D EYUE~(I).

27 In the positive energy case £ does not really depend on I;.
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(1) (—2ek, — eay) + 1(ES +edg) € £, which is implied by rl\/z(—2€E1 —gty) +71i >
EY + edy

(2) (E +¢ay) +i(2¢imy/ E /e +€as), which is implied by Ey(FE +eay) > 2ermy/E Je + €ty

(3) if (R2—r2)/2 > 2c — @y then 711/2F) + rf > 2cmy/E /e +€ay for all 26 —a; < By <
min{(R2 —r2)/2,F — €@ }.

Defining k& := max{1, k,}, one sees that (1) holds provided

Co Z max{\/4c7c3l~€1 -+ \/5&2 , 2\/2];1 -+ &1}.

If cg < 1/2, we have that EQ(E+ €d;) > Ro(Ror1/2 —€a1)/(Ro + 1) and hence (2) holds
provided ¢y > 16+/2c7cs and cicgy > 48, + Sas.

Finally, conditions cy > +/2as and ¢z > 2¢7c3 imply (3).

o (Second step: estimates on the action derivatives in the positive energy case)

In the following we put € := gk (I). We observe that, for 6 € [0, 7], 25/7* < g1 < §, where
G(Ey, I;0) == Ey + ek, (I)(m — 0)%. The following estimates hold®®

\%m<+]§l>§/ /m \/—/\/:_L_-f-—y_
- %arcsmh()<2v_7%1n<1+ _Ee_l_ .
™ b .
M—%_TE = [)(g_(%)s_/i:/g@;%m (2.10)

w T

1 /a Y
= < ;
Evvelo (L+y2)3%  p¥2 1 4 r2¢/E, ~ Evw/BL+e

where a 1= m/€e/E1.

Next, we prove that V [ — 1:1_| < py, H €AY Ec &t g(B,1,0) > 2|g2(E,1,6)|. In fact
we first have that if cs §_1/8k’ then g1(E,1,0) > E1/2 and, hence, we have only to prove
that By /4 > E3(F,) + 2K csnln™" (/7). Taking ¢s < ¢7/4k" we have only to verify that

|E1| > 6E5(E) - (2.11)

It is easy to see that the previous inequality is verified for ¢; < 1/36.
Consider, now, I = I, € A" real and g2 = B, > 0. Using Lemma 2.1, g1 > § and (2.10)

we have \[ /3
>Yeip [ dw > —Q—Eo—}—l 14—
37r / Ey

28Use In(1 +t) < arcsinh (¢) = In(t + v1+12) < 2In(1+1t)

PH(E, L) > (2.12)
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Using Lemma 2.1, 2§/72 < g1 < § and (2.10) we have

2w1\/21n<1+“/E1’<8EP+(E n< \/\/5;1 <1+1/]§1’ : (2.13)

Using Lemma 2.1, 2§/72 < g1, (2.10) and the fact that |gs| < |Ea| + 2¢k, we have

-
1
I P (E, I < (|E + 2¢k 2.14
055 (B, )| < (Bl + 22 ool 214
We observe that?®
‘E2I crn Cr
< <cerln(l+4/e/Ey) < In(1++/¢/E 2.15
Er T EyIn(1+ /e/Ey) ki (1) = (219
Let us proceed by proving that
ek por® = K'esm®n < nln(1 +1/2¢/n) < 2B, In(1 +/¢/E) . (2.16)

In fact, last inequality holds because the function E;In(1 + 4/€/E;) is increasing and
attains minimum for By = 7n/2; the first inequality is proved, if ¢3 < 1/8 and using
k(1) > k/2, if E'esm® < In(1+ 2\/5\/2), which is verified if ¢s < (73v/2k") ' min{1, k}.
Using (2.13), (2.14), (2.15), (2.16) we have

+ 2\/§7T €
|85 PH(E, )| < N <1+ E1>. ALy

It remains to estimate

1+cos€

\/(EIQ

051 = Lelw Il [

We observe that

/ﬂ 1+ cost [_l/ d:z; </ . )id
0 \/g(E,I;0) mq/E—l—Ek

where Fy(z) := v/z(v/2 — z/E1 + ex)™!. In order to estimate last integral we split it as

/(;2 Fi(z)dz = /01 Fi(z)dz + /12 Fy(z)dz

We have

1 N 1 T 1
Fi(z)d </ ], </ —dr = ————
/o iz)de = 0 VEI+ex v 0 VE x4+ ex . VE, Fex’

29 We use the fact that zIn*(1++/e/Ey) > nif > n/2 and ¢z < 1/8.
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: /2
J, At d“ﬁ«:—l?e/ Vo -

which implies

< 2\f <26 K] VE . (2.18)

|81P+(E,I)l m—g (I)

— K" (D]

We, now, prove that B ~ _
PH(ET) D (DY), VI €A (2.19)

Since Pi(By + 1B, [1) = f 2 [T wy(Ey + ek(I;)(1 + cos 0), Ey)df, we have by Lemma 2.1
that P;" is an increasing functlon for E5 > 0. Hence, in order to prove (2.19), we have to
prove the following estimates, ¥V By + 1E, € ¥, I € A”:

(i) P (B, +iE5(Ev), ) > 2p1,
(i) Pf(n/2+iE;(n/2),h) < P (3n/4, 1),
(i) Pi(n, L) — P (3n/4, 1) > 2p1,

(iv) (

v +

1

T

E, L) — PF(R2/2,1,) > 2p:.

If ¢y < fc7 min{1,$} we obtain (i), since, from (2.12),

o _ 111 1+\/ I1 \/E/El 1
P;—(E1+ZE2(E1),_[1) > C 77 }

2 mln{l, =}
37—\/- .[1 hl 1+ E/El) 371'\/5

k

Inequality (i) follows from

Pir(n/2+iE3(n/2), 1) < (\/ﬁ/ﬂ)/oﬂ\/77/2+E§(E1)+€k(f1)(1+c059)d9

< (V2/n) /0 " 3074+ ek(1)(1 + cos 6)d6 = Pit (37/4, ).

Using (2.13) and the fact that < /8, we have®

_ - 1 71 - 1 . 1
+ -+ el A B = -
Pf(n,I.) — P (3n/4,1,) > [\/zln(l +2ﬁ)] > oz min{l, 7},

81 /e

which implies (iii), provided ¢; < &= min{1, }}.
Again, from (2.13), we have

Sl

o ) | 1 7
PH(B,I) — PF(R3/2, 1) > ry(Bo + 1) —= mind 1,2 | =7 o
" (E, L) (/2 1) 2 7],7"1( 0 +71) /Ermn "N\ ek(h)

30 Use In(1 + 2z)/z > min{l,1/z}.
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Distinguishing the two cases for the minimum, we see that (iv) holds, provided cgco >
V2reses and cgeaer > VEmeses.

Now we consider the case in which K(I) =1 in order to prove (2.8). The estimate on P
is trivial, the ones on P; and P are consequence of®' (2.12) and (2.13) respectively; for
the other ones we have, using (2.2) and (2.3),

: o dy
~FrE) ~ (a(¢))3/2”/o (E1+e(vr—w>2>3/2

™ T 1
h El\/—'/ 1+?J)3/2~Ef/2,/1+7r25/E1 E\WE, +¢’

) T dy By
“HHE) ~ B g BBTe
. mdy g d
- ;(E) ~ Eg/(; WNEZ/O (E1+€(7r—¢)2)5/2
B, [/&E  dy Ey

E1+/€ Jo (1+ y2)5/2 ~ E3/E; +¢
e (Third step: estimates on the action derivatives in the negative energy case)

Defining E := E + 2¢k(I) and using the substitution £ := 1 + ek(I)(cosf — 1)/E we
obtain

P~(E,I) =

2\/—f
\/"_\/Eg 5

0 \/_\/17‘\/1?5 o
P (B D) = Ik&) ijfrEzdg’
L
VAT

8zP~(E,I) = \/—

a%EP—(EJI) =

We define B¢ — E = 1 + i3y where 7, 1= 2ef — By (1—¢€) and zq := 2eka(I)€ — By (1 —£).
Using that |E1| > |E;| and that, if csc3 < k:/(2K"), we have ky(I) > |ko(I)|, we obtain that
T1 > |32].

We observe also that in order to perform the previous change of variables § = arccos(—1+
(€ — 1)E/ek(I)) we have to verify that the argument of arccos is well defined3?. For any
I e, wetake [ € A° with |I = I;| < py. We have —E, < 2¢k(l1) — n/2. We have

31 The other direction of the estimate in (2.12) is completely analogous.
32 We define arccos(z; +iz2) in the complementary of the set {z1 € (—oo, —=1]JU[1 + 00)}
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to prove that, defining v := k2(I)/k2(I) with 0 < y < 1, if By = Eiky(I)/k1(I) then
[2e(k() + kz( )) = n/2)x + [—~2eky +n/2] > 0, which is verlﬁed provided ¢s < 1/(4k').
In the following, in order to estimate the derivatives of P~, we set b := 2¢/|Ey| > 1 and

we will use Lemma 2.1.
For I =1, € A% we have

I 22 1~ VE 1 V2eE; VE
BT = 5 (Bt Ban) =g 62 o mn e
b VE Ey 1 €

- | QW\/E/O (2€€ + [E1|)32 d = E%Tﬁl n (1 IE11) (220)
Furthermore,®?

05P-(E,1) = f/ Y 561,x2)d <2

1 1 2 1
V=g A«E\/zeaHEn/zd“?/v_fWEdg
V2 12

= dt + 14+ 2.21
7T\/,‘7/0 Viv1+t \/_ /1 ( (Ell) (2:21)
On the other hand,
1/2 1 1 b/2 1
ogP (E,I) > — dé = dt
=R ) '”/0 VE/2e€ + | Er ﬁw\/ﬁ RVAVAE
1 €
> ——In(l+,/—). 2.22
> g () (222)
Using the fact that |zo| < 2eks + |Es| and the estimate
1 || 6 2
(B, T <
we obtain that, as in the positive energy case,
2'\/§7r €
= < 2.2

Since z1 > |22, one has y/|z1 +1xg| < V/2./%7. From the previous inequality we conclude

that k’ r
21k de <2 \fl ()I\f (2.24)

k(D) 1/ AT SR

Finally differentiating the equality E*(P*(E,I),I) = E with respect to E and I we
obtain respectively p E=(P,I) = [0pP*(E*(P,I),I)]"" and

O;E=(P,I) = —0;P*(E*(P, 1), N[ogP*(EX(P, 1), 1))}

la]P-(E,I)i <

3 Use [y e dt < 41n(1 + V).
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which, by (2.13), (2.17), (2.18), (2.22), (2.23), (2.24), imply (2.5) and (2.6) .
Next, we prove that

P~(E(L) 2 (D™ (L)) VI €Al (2.25)

Since Py (Ey +iEy, 1)) = QWﬁfol(Elyl — Eay2)4/&/1 — EdE, we have by Lemma 2.1 that

(being y1, —y» decreasing) P is a decreasing function (for E, > 0). Hence, in order to
prove (2.25), it is enough to prove the following estimates, VI, € A, By +iE, € £~ (I}):

(i) Py (By+iE5(Ey), L) > 2p,
(i) Py (-n/2+1iE5(n/2), L) — Py (—n, 1) > 2py,
(iii) Py (—2ek(h) +n, L) — Pr(=2¢k(L1) +n/2,1) = 2p1.

If ¢y < f=cymin{1, +} we obtain (i) because of:

_ . - 7 11’11‘}‘\/ I]_ 1/€/E1 . 1
Py (Ey +14E5(Ey), L) > min{1, =}
’ TonyE k(1) In(1 + E/El) 677\/5

Since

P (=n/2+1E5(n/2),I,) — P{ (—n, I1)
> P (-n/2,5i) = P (-0, L) = |Py (—n/2 +iE5(n/2), ) — P{ (—=n/2, )],

using (2.22) and (2.23), if ¢; < 1/(327?), we have

_ - - _ - 1 n €
Pr(—n/2+iE5(n/2), 1) — Pr (-n, 1) > (;‘gr’ - c747r)$1n (1 -+ —E:
1 7 1
— 7 mind1. =
87T \/E mln{ 7 k}?
which (exactly as in the positive energy case) yields (ii).
From (2.22) we have
Pf(—ZEk(fl)—kn,fl)—Pf(—ZEk(fl)—i—n/Z,fl) 2 i ln(l—l—l/ﬁ) Z ! =
Ary/p V2rvk

which yields (iii), provided ¢, < 1/(16v/21VE).

We now consider the case k(I) =1 and prove (2.8) also in the negative case. As before the
estimate on P; is trivial, the ones on P;” and P| are consequence of** (2.20) and (2.21),
(2.22) respectively; for the other ones we have, using again (2.2) and (2.3),

34 As before the other direction of the estimate in (2.20) is completely analogous.
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¢,
B[ 7 Elg Em/z ¢
— )2
dé d¢. (2.26
/ VE( E1§ E1)3/2 ¢ \/— E1€ Ey)5/2 ¢ (2:20)
If —2¢ < F1 < —¢ (since, in such case, E1§ — B, ~¢, —F; ~ ¢) we have
- By . 1 . Es

The case —e < E1 < 0 (i.e. El ~ g) is a bit more complicate and it is convenient to break
up the integrals in (2.26) as [} = A Ih /o- The latter integrals are easier to handle since
if 1/2 < ¢ < 1then /€~ 1and Elf E; ~ ¢ and therefore the estimates in (2.27) follow.
As for the other integrals, since 0 < § < 1/2, one has 1 — { ~ 1. Substituting ¢ = :%I‘f

(so that E\é — E; = —E{(t+1)) and denoting a = —E4/2E,, in view of the estimates in
(2.27) and of the estimates done in the integrals over (1/2,1), we obtain

. B, a1 1 1 B,
2 (B) ~ ST TE R Vit 1) 2 <53/2 + —E1\/5> " e
) 1 | 1 1 1
P‘ E ~ d'[j ~ ~
VB~ SR IEEh s T SR T TR T TEE
. i 2 1 Eo E, By
Po(E / dt ~ N
2 (B) ~ SR TR b Vitr 0T @R T CEE  (FEE

from which (2.8) follows.

o (Fourth step: construction of the symplectic transformation)
We will find our symplectic transformation using the generating function S(E,I,q) =

V2 [3./g9(E,I,0)ds. We note that in order to well define S we have to take into account
the presence of the square root. In particular we are interested in the definition of the

functions
95(B,1,0) g g) = orS(E,1,q)
8pP*(E,1) 4= g PE(ET)
Let 7+ :=C and 7~ := {g € Cs.t. |¢1| < 7} and define®
DB, 1) ={q € T* st. g(E,1,q) ¢ (—o0,0]}.
For any E € £, I € AJ,, the functions
S(E5I7Q)7 aES(E7IaQ)1 aIS(E>I:q)7 FX:E(EJJ}q)‘? gi(E"LQ)J
35 1f a,b € C we denote (a,b) := {z = a +t(b — a), witht € (0,1)} (and, analogously, for [a,b),

(a,b], [a,b]); symbols like (a,xc0), with o € C and |a| = 1, (or [a, aco), (oo, fo0), ete) denote lines:
(a,ac0) := {z = a + at, witht > 0}.

x5(B,1,q) =
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are analytic in ¢ on D*(E, J). So the functions x*(E(p,I,q),1,q) and EX(E(p,I,q),1,q)
are analytic in p, ¢ on the disconnected set®
D* = D*(I):={(p,q) € Cx T* s.t. g(E(p,1,9),1,9) ¢ (o0, 0]}
= {(pq) €Cx TEst.p*/2¢ (—00,0]} = {(p,q) € Cx T s.t. py # 0} .

Our next step will be to define both ¥*(p,I,q) := x*(E(p,I,q),I,q) and £(p,I,q) :=
¢E(B(p,1,q),1,q) for all (p,q) € C x T*. We set

( 1 A d0 it py >0
VZOsP*(B(p. 1,90 % JoBp T0,1,0) T
q
T — , if p1 <0,
\ \/ic’?EPi(E(p,Lq),I)/O Va(E(, 1,9),1,9) 1
and
14 cosf
do if p; >0,
) fﬁzPi( (1 q), 1 ] V9(E(p1,),1,6) 1
&, 1,q) = X 0
€ + cos
dg, if p; <0,
V2 0rP=(B(p, I,9), /\/g E(p,1,q),1,9) 1

\

which are well defined and analytic for ( ,q) e D=, Notlcze that, in the positive energy
case, there are no problems with the definition of ¥ and £*, and we note that

vt(p,I,q+2r)=xt(p,I,9) +2r and &F(p,I,q+2m)=E(p,1,q)+2m. (2.28)

In the negative energy case we proceed differently. We define

_E
Fi(B, Lp) / =B+
0 ¢

/0 e/4(E, I, z) VI(E, I z)

where §(E,I,p) := 1—(—1—E/e+p*/2¢)? is analytic on the complex domain D~(E,I) =
{peCst. §(E,I,p) ¢ (—00,0]}. Then, Fg(E(p,I,q),1,p)and F;y(E(p,,q),,p) are well
defined and analytic on®”

Fe(E,I,p):

~

D™ = D (I)={(p,q) €Cx T st §g(E(p,1,9),1,p) ¢ (~o0,0]}
= {(p,g) €CxT st.1—cos’q¢ (00,01} ={(p,)) €eCXT st. g # 0} .

36 We see that D* does not really depend on I.
37 Also in this case D~ does not really depend on I.
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We now split the integral in the definition of S, OgS and JrS as = o Ji}, and in the
second integral we perform the change of variable 6 = arccos(—1 — E/e + z*/2¢). Then,
defining®®

-1
7/2+ (0sP(B(p,1,0), D)) Fe(B(p,La)Lp), if >0,
X (p,1,q) = B
—TF/Q—(BEP_(E(p,I,q),I)) FE(E(p:I7Q))Iap)7 if Q1<07

and
-1
) W/2+(8IP~(E(Z7,LQ)7])) FI(E@,LQ);I:p): if Q1>0,
& (p, 1) = B
—W/Z—(@IP—(E(]?,I,Q),I)) F_](E(]?,I,Q),I,p), if QI<Oa

we have VI € A% |V (p,q) € D-ND-

p2?

(0, 1,9) =% (p,I,q)mod2r and £ (p,1,q) = £ (p,I,q) mod 27 . (2.29)

Using (2.29), we can finally define® =, & (p,q) e D-UD™ — C/21Z

v (p,1,q), if (p,q) €D,

X_(pr[:(D ::{
% (p,1,q), if (p,q) €D,

and

~ ~

] | E(p,I,q), if (pg) €D,
£ 1,q) =
¢ (p1,q), if (p,g €D,

where, on D7,

(B, 1,0),1,9) =% (0,1,9) and & (Bp1,9),1,0)=E (01,0 .

Moreover we finally extend by periodicity the definition of X~ (p, 7, ¢) and £ (p,I,q) onall
{qeCst.q #n+2km, k€ L} = Ugez(2km 47 ~) in the following way: if ¢ € 2km+ T~
we define ¥~ (p,I,q) :== x"(p,I,q — 2k7) and §(p,I,q) =& (p,I,q— 2km).

Now we are able to construct our symplectic transformation. Since (9PEi # 0, by the
Tmplicit Function Theorem, there exists E* = E*(P, J) such that |

PEEX(P,J),J)=P. (2.30)

38 We note that ¢~ and £~ are analytic on D

39 We observe that D~ UD~ is an open set and that its complementary set (D~ uD) = {(p,q) €
C xT7- ,st.p. =0, ¢ =0} does not interest our analysis. In fact, if (p,q) € (D~ U D=)e, then
p = ipy and ¢ = iga and, hence, we have E(ips, I, igs) = —p?/2 — ek(I)(1 + coshgs) and E1(ip2,,ig2)
= —p2/2 — eky (I)(1 + cosh gz) < —2eki(I) < —2ek(I;) + n/2 where |I — I;| < ps (and we have used the
fact that cs < 1/4K"). We conclude that E(ips, I,iga) ¢ €~ (1)
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Let S*(P,J,q) := S(E*(P,J), J,q); we , then, define the following generating func-
tions (which depend on the new actions and on the old angles): G=(P, J,q,p) := Jo +
SE(P,J,q). Our symplectic transformation ¢= is implicitly defined by

{ p = 8,G* = 9,5%(P, J,q), Q= 0pG*=0pS*(P,Jq),

I=9,G* =, Y = 0;GF = o+ 8;5%(P, J,q),

We want to express (¢*)! as a function of the old variables (p, I, q, ¢). We immediately
have J = I and P = P*(E(p,I,q), I). Differentiating (2.30) with respect to .J and P we
have, respectively, 0 PT0;E* +0;P* = 0 and g P*0pE* = 1. Now, we can express the
new angles as functions of the old variables:

Q=Q*@1,q):=x*(p,1,9) ,

¥ =9%(p,1,4,9) = o — OrPE(E(p,1,q),1)[Q%(p, I,0) — E(p, 1, 0)] -

We observe that @~ and 1~ are 27w-periodic in ¢ by definition of ¥~ and £; by (2.28) we
deduce that ¥t is 27-periodic in ¢ too and Q™ (p, I, ¢+ 27) = Q™ (p, I, q) + 2.
o (Fifth step: estimate on the angle analyticity radius)

We first study the analyticity radiusin Q. Fix I € AO and L E A® with [T — 11| < py. We
must prove that VP, € D% and VQ. € Ty, there excist. pF and q* such that Q* (pE, I, ¢F) =
Q.. So it is sufficient to prove that VE, € E%(I,) we have x=(E,,I,Ts;) 2 T, .

We first consider the positive energy case. -
We observe that we have xT(E,1,0) = 0, x*(E,I,+m)= £m. Let us first consider the
case [= 1, € A, E = E; € £. In such a case a

yHEL I, (=7, 7)) = (=7, 7),  xT(Ey, L, (0, &i00)) = (0, £is* (B, I)) ,

and
xT(EBy, I, (£, 7 £ i (By, ) = (7, 7 LisT(Ey, L)),

where

- do
(B, I == V2(05P*)" / (2.31)
VB +ek(I)(1+coshf)
In fact, it is x (B4, I1, D(E1, 1)) = Ty+ (g, 1,)- We will prove that
X" (B, I, Ty, N DY(E1, 1)) 2 Ty (g5 (2.32)
where, for s > 0,
' o(E,I,s) = te(lnf X $(B,1I, t+zs) : (2.33)
Observe that_@EP+ € R and g = g1 — 1go, where® g; = El + ek(I)(1 + cos ¢1 cosh ¢3)
and g, = k([1) sin ¢y sinh g,. Splitting the integral = + [5* we have [3° 1/\/g=

40 For simmetry reasons we can consider t,q; > 0.
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i [; 1/4/91 and, using the notation of Lemma 2.1, we obtain Im JE1)/7 =[5 y2(91, 92),
which, since y, > 0, attains its minimum at ¢ = 0. Collecting all these informations we
have that

1 /s do
0 /By +ek(I;)(1 + cosh 6)

0'+(E1,f1,8) = X;—(El,jl,i‘s) = \/5(8EP+)_

It is easy to see that

3 do 1 E]{}(I—l)
/ = > g ——In |1+ 8y| =< | -
0 /By +ek(I1)(1 + cosh ) ek(Iy) Ey + 2ek(h)

Thus, by (2.17), we get

- k(L) _ ek(l,)
-+ > 1 € _ 1
o (E1,Il,3) > cpoln ( + s ——————E1+28k(fl)>ln <1+ —————El )

which implies that, V7/2 < By < E and I; € A°,

By, Ty 8) > e
o ( v17 173)_011111(6/77)

In the general case, using the estimates on x* and its derivatives*!, one has that, if
E=F, +iBEy € &t and I € AY, then o (E,I,s) > crot (B, I, s) > Clamrey- Laking
s:= s, and cg < c13, we have the claim concerning the form of 0. ‘

We now pass to the negative energy case. As before fix £ and I and observe that
x(E,I1,0) = 0 and x~(E,I,+(E,I)) = £m/2. Consider first the case [ = I, € A°
and E = B, € £ (I). We find x~ (B, I, (—%o(E1, ), ¥o(By, 1)) = (—=7/2,7/2) and
v~ (B, I, (0, £ic0)) = (0,+is™(E1, 1)), where s™(Ey, 1) was defined in (2.31). It is
simple to see that we have

{X—(p>jl7Q) s.t. (paq) € jj_ Uﬁ—: E(p7j17Q) = El) 'QQ‘ < Sl} 2 {lQQ' < U—(Elajlasl)}

which is analogous to (2.32). The estimate on oy for the general case E € £ (I;) and
I €A% with I; € A |I — L] < ps, follows exactly as in the positive energy case.

We now briefly discuss the analyticity radius in the angle 1. Observing that, as it is simple
to see, |¥F|, |€%| < c14 and remembering (2.18) and (2.24), we see that, [*(P, 1, q,¢) —
©| < ¢154/€. Hence, if € is sufficiently small, we can take o; = 53 /2,. The proof of Propo-
sition 2.1 is now complete. H

41 Gee Appendix B of [33].
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3 The D’Alembert Hamiltonian planetary model

In this section we consider the Hamiltonian version of the D’Alembert model for the
planetary spin/orbit problem. It will be one of the physical motivation of the analysis
developed in Part II and, especially, the time stability of this model will be studied in
Part I1I below. The model may be described as follows.

Let a planet be modelled by a rotational ellipsoid slightly flattened along the symme-
try axis (called “north-south” direction); assume that the center of mass of such planet
revolves on a slightly eccentric Keplerian ellipse around a fized star occupying one of the
foci of the ellipse: the planet is subject to the gravitational attraction of the star and
the problem is to study the relative position of the planet and, most notably, the time
evolution of its angular momentum.

Such model may be described using Hamiltonian formalism (see subsection 3.1 be-
low) using action-angle symplectic variables. The Hamiltonian system describing the
D’Alembert model results to be a two—degrees—of-freedom system depending explicitly
and periodically on time (the period being the year of the planet); furthermore such
Hamiltonian system is nearly—integrable (with two smallness parameters: the flatness of
the planet and the eccentricity of the Keplerian ellipse) and properly degenerate*.

In particular, we are interested in studying the D’Alembert model in the vicinity of
a spin/orbit resonance, i.e., in a phase space region where the period of revolution of the
planet around the star (the “year”) and the period of the rotation of the planet around its
spin axis (the “day”) are in a close-to—exact rational relation. If such rational relation is
p/q (p and g positive, co-prime integers) we shall speak of a p : ¢ (spin/orbit) resonance.

The degeneracy of the system implies that the time variable (better: the angle—
variable corresponding to time, i.e., the so—called “mean anomaly”) may be considered a
fast variable with respect to the two (“symplectic”) angles describing the relative position
of the planet. Thus the explicit dependence of the system upon time may be averaged out,
as we will do in Part III below. In fact we will see that, up to en exponentially small term,
the “effective” Hamiltonian results to be exactly the average of the whole Hamiltonian
over the “mean anomaly”.

In subsection 3.2 below we will show that near a p : ¢ spin/orbit resonance with
(p,q) different from (1,1) and (2,1), the intermediate system (and hence the “effective”
Hamiltonian) is independent of any angle variable: thus the integrable system obtained
dropping (besides the exponential remainder) the higher order term is a completely inte-
grable system with phase space entirely foliated by (maximal) invariant curves. On the
other hand, near a p : q spin/orbit resonance with (p,q) equal to (1,1) or (2,1), the
intermediate system (and hence the “effective” Hamiltonian) does depend on one (and
only one) angle variable: in such “exceptional” case, the system obtained by dropping the
higher order terms is still integrable (being, effectively, a one-degree~of-freedom system)
but its phase space presents a structure similar to that of a standard pendulum (i.e.,

42Roughly speaking, “properly degenerate” means that in the integrable limit (i.e., when the perturba-
tive parameters are set to zero) the Hamiltonian does not depend on the action—variables in a “general”
way.
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elliptic and hyperbolic equilibria, separatrices, invariant curves of different homotopy).
Thus, the effective Hamiltonian associated to the 1 : 1 or 2 : 1 spin—orbit resonance
exhibits instability phase-space zones that are not present in the general case, a phe-
nomenon which may be, perhaps, exploited in the understanding of the exceptional role
played by such resonances in our Solar system and in its evolution.
We also mention that such peculiarity of the 1 : 1 and 2 : 1 spin/orbit resonance is
intrinsic in the model and does not depend upon the particular variables used.

3.1 Hamiltonian formalism for the D’Alembert planetary model

In this subsection we revisit briefly the Hamiltonian version of the planetary D’Alembert
model as presented, e.g., in [49)].

Consider an oblate planet P of mass mp modelled by a rotational ellipsoid slightly flat-
tened along the symmetry axis (“north-south axis”); assume that its center of mass
revolves on a Keplerian orbit (of small eccentricity) around a fized star of mass ms occu-
pying one of the foci of the ellipse*?

We start by writing down the Lagrangian of this system. Let (4, 7, k) be an orthogonal fixed
basis with “origin” on the star so that: ¢ is the unit versor pointing towards the aphelion
(or, equivalently, pointing towards the other focus of the ellipse); j is the versor in the
ecliptic plane (i.e., the plane containing the Keplerian ellipse) orthogonal to ¢ oriented
according to the motion of the center of mass of the planet (i.e., if zp(t) denotes the
position at time ¢ of the center of mass of P and if zp passes at time y at the aphelion,
then*® j - @p(t) > 0); k = 4 x j is the unit normal to ecliptic plane®®. Let (i1,12,173) be
a co-moving frame with “origin” in the center of mass of the planet so that: 7, and 1,
determine the “equatorial plane” and 43 points towards the “north pole®”; clearly ¢; and
iy may be interchanged; for simplicity, we shall assume that i3 is never orthogonal nor
parallel to the ecliptic plane and that the basis (41, 12, 43) is such that

O<is-k<l. (3.1)

Let, now, 0 = (61, 02, 63) denote the Euler angles of the planet, namely, if n denotes a unit
vector identifying the equatorial node on the ecliptic (i.e., the line obtained as intersection
between the ecliptic plane and the equatorial plane), then

6, = angle (i,n), 6= angle (i3,k), 03 = angle (n,41) . (3.2)

431n other words, we assume that the motion of the star is not influenced by the form of the planet.

444 . b denotes the standard inner product in R” (here n = 3); and & denotes the time derivative of a.

45Tere, “x” denotes the standard “vector” (or “external”) skew-symmetric product in IR?. Informally,
an observer “standing” on the ecliptic in the position identified by & would see the center of mass of P
revolve “counter—clockwise”.

46Recall that we are assuming the the planet is a rotational elhpsmd thus the “equatorial plane” is the
plane identified by the maximal circle of the ellipsoid and the “north-south” axis is the line orthogonal
to the equatorial plane.
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Then, if 7y = T, and Z3 denotes the inertia moments of the planet, v denotes the gravita-
tional constant, zp(t) denotes, as above, the position at time ¢ of the center of mass of P
and P(t) denotes the space region occupied at time ¢ by the planet, then the Lagrangian
describing the above model is given by

1_ . : 1 .
L = 513 (01 COSs 92 + 93)2 + 511 (9% -+ 6% Sil’l2 92) (33)
mpms dx
VolP Jpwlzp(t) + x|

Thanks to a well known result by Andoyer and Deprit (see, e.g., [8], [65]), the Legen-
dre transform of L is equivalent, in suitable physical units, to the following Hamiltonian
function®”

Hool,¢) = (—JLJ;—{EK + ol = I) (3.4)

+eFy(Ih, I, o1, 02) + epFi (I, In, 1, 02, 035 1)

where:

a) J) is constant parameter, which may be interpreted as a “reference datum” in a
neighborhood of which the system will be studied;

b) € and p are two small non-negative parameters measuring, respectively, the flatness
of the planet and the eccentricity of the Keplerian orbit described by the center of
mass of the planet;

c) (I, )= (I1, I, I3, 01, 02, 03) € A x T° are standard symplectic coordinates*®; the
domain A C R® is given by

A={nl<d, |L-hl<d, I eR}, (3.5)

where d is a suitable fixed (and small) positive number while Jy is fixed “reference
datum” (verifying, together with Jy, certain assumptions spelled out below);

d) 27/ is the period of the Keplerian motion (“year of the planet”);

e) the function Fp is a trigonometric polynomial given by

Fy= Y cjcos(jpr) + djcos(jor + 2¢a) , ‘ (3.6)
JjEZ
HES

where ¢; and d; are functions of (J; + I1, 1) listed in the following item;

47See [49].
48The symbol T™ denotes the standard n—dimensional flat torus R /(2nZ™).
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f) let

L I
lilflﬁl(Il)Em, lﬁleI{z(Il,Ig)E jl—-i_[l )

Vl:—_“l/l(_[l)E\/l—‘li% s I/QEVQ(Il,Iz)E\/l—K/% ) (37)

where L is a real parameter; the parameters J;, L.and the constant d are assumed
to satisfy '

L+d<Jp, |Jo| +2d < J1 5 ' (3.8)

in this way 0 < k; < 1 (and the v;’s are well defined on the domain A). Then, the
functions ¢; and d; are defined by

1
coll, 1) = 3 (2617 + A+ )
V2o,
ol 1) = = 5 2t =)
K1 Kol
Ci1(11,fz)—zl_22_12 7
14 Ko)K114 1V
doi(l1, o) = :F( 22) vy
v2u2
CiQ(I].)IZ) = — _lél ,
V2(1 4 ky)?
dio(I1, o) = — JSTA ' 59

g) the function F is a convergent series in y of trigonometric polynomials (with in-
creasing degrees); for example Fi|,—o = FY is given by

FY = 3 (=3)cicos(jer + v3)
JEZ
HEE

d; ) .
+-él{ cos(jio1 + 209 + ©3) — 7cos(]<P1 + 29 — 903)} .

Remark 3.1 (i) Since I3 appears only linearly with coefficient &, the angle 3 corresponds
to time ¢ and H, , is actually a two-degrees—of—freedom Hamiltonian depending explicitly
on time in a periodic way (with period 27 /@).

(ii) The physical interpretation of the action—variables I1, I, the parameter L and the
angles ;, which are closely related to (but do not coincide with) the Andoyer canonical
variables, is the following. In suitable physical units, the variable Jy + I, corresponds to
the absolute value of the angular momentum of the planet; the variable I5 corresponds
to the absolute value of the projection of the angular momentum of the planet onto the
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direction k orthogonal to the ecliptic plane and L corresponds to the absolute value of the
projection of the angular momentum of the planet in the direction 43 of the polar axis of
the planet (and, because of the symmetry of the planet, is a constant of the motion). In
formulae, if Kp denotes the angular momentum of the planet, then:

j1+f1=‘Kp\, . IQZKP'k, L= Kp 3—— const . (3.10)

To describe the angles ¢; let us introduce two more relevant “nodes”: let m be a versor
in the direction of the line of intersection (“node”) of the ecliptic plane with the “angular
momentum plane” (i.e., the plane orthogonal to the angular momentum of the planet); let,
also, mg be a versor in the direction of the line of intersection (“node”) of the equatorial
plane with the angular momentum plane. Then: 3 is the so—called “mean anomaly” and
is proportional to time, as seen above; ¢y is the angle between the nodes m and ng; g is
the difference between the angle between m and 4 and 3. In formulae:

@3 =const +@t, ;= angle (m,ng), .= angle (m,i)— 3 . (3.11)

(iii) Under our assumptions (i.e., that 0 < d < 1), the average over the angles of Hep
is given by

J+0)? 1 12
Lé—l)——kw(fg»j—[g)%—sz{(z—z?f)—(2—317%)7%—%0(@}, (3.12)

i
where 71 = 11(0) = +/1 — (L/J1)%. The number 7, is the so—called Euler nutation constant.
By (ii) we see that ; < 1 corresponds to rotations of the planet with spin axis nearly
parallel to the polar axis (a case common, for example, in the Solar System). In such a
case the average over the angles of H.p is not a conver function of the action variables

(I1, I5). This lack of convexity is quite a common feature in Celestial Mechanics and is
exhibited, for example, also in three-body—problems.

We are interested in studying the above system in a neighborhood of a day/year (or

“spin/orbit”) resonance. Since the daily rotation is measured by the angle ¢ and since in
the unperturbed situation (¢ = 0 and I; = 0) ¢; = ¢ + Jit, we see that an approrimate
day/year resonance corresponds to take the “reference datum” Ji (which, in our units,
coincides with the daily frequency) in a rational relation with the year frequency w, i.e.,
Ji = %’GJ with p and q co—prime positive integers; we shall speak in such a case of a “p : ¢
spin /orbit-resonance”.

Setting .
5=t w== (3.13)
g q
we see that the dynamics near a p : g spin/orbit resonance is described by the hamiltonian
If
Heu(lo) =  +wlph =l +aky) (3.14)

+eFo(I1, Iy, 01, 00) + epFi(Ih, I, 01, 02, 033 1)
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(where we have omitted the constant term J7/2).

Finally, to make the analysis perturbative, we shall take as action-variable domain an
e—dependent subset of A:

h) the domain of definition A introduced in item c) above will, from here on, be replaced

by its subset ~
AEE{|11!<’I'€£, |\ — Jo| <1, IgER} , (3.15)

where 0 < £ < 1/2, 7 > 0. The parameters J;, L and the constant r are assumed to
satisfy B ~ B
L+3ref<J, |R|+3rE+1)< ], (3.16)

so that 0 < k; < 1 and the v;’s are well defined on the domain A.
The Hamiltonian Hy , in (3.14) will be called the “resonant D’Alembert Hamiltonian” and,

in the rest of this thesis, we shall consider only the resonant D’Alembert Hamiltonian
defined on the domain A x T°.

3.2 Linear analysis‘and the effective Hamiltonian

The appearance of the linear combination (pI; —g¢l>+¢l3) in the D’Alembert Hamiltonian
H. , suggests to look for a linear symplectic (e-independent) change of variables casting
H, , in a simpler and more informative form. Calling

O (I ¢) = (I,0) = &1 (I, ¢) (3.17)
such a linear change of variables, it is quite natural to set*®
L=pl —qla+ql5 . (3.18)

Besides (3.18) we shall also require the following condition, which needs a little explanation
(given below):

2T d /
Fyodp(I', @) 223

= function depending on I’
0 2m :

and at most on one angle . (3.19)

The idea beyond these conditions is the following. The unperturbed frequencies of the
transformed Hamiltonian (i.e., VpHpgo ®1) are given by®?

L(I") VI (I') + (0,0,w) = (0,0,w) + O(Y) .

49(learly, the choice of the index 3 is arbitrary.
50Recall that in our domain A, (3.15), I; has been taken of order &°. The precise quantitative analysis
will be described in the next section, where we will also assume that p < ¢ for some ¢ > 0.

46




This implies that ¢} and @) are “slow” angles, while @3 is a “fast” angle so that ¢}
“averages out” (see part III for a precise mathematical statement) leaving an “effective
Hamiltonian” given by

d‘Ps

Heg / HEOOCPL(

L(I')? dy:
= 2 + I3+€/ FOO(EL(17¢)2W37
which, in view of (3.19), is a one-degree-of—freedom Hamiltonian (and hence integrable):
H.g depends, possibly, on all the actions I} but, because of (3.19), on at most one angle
(0} or ¢b). In the case Her depends explicitly on one angle, say ¢, then the actions I,

and I} are just parameters for the dynamics generated by Heg.

(3.20)

The rest of this section is devoted to find linear symplectic diffeomorphisms, @, of A x T?
satisfying (3.19) and the upshot will be that if p : ¢ is different from 1:1 or 2 : 1, then
H.g depends only on the action variables while in the other cases Heg depends explicitly on
one angle also: in the first case the phase portrait of the integrable system associated to
H.g is entirely foliated by (homotopically non trivial) invariant curves while in the latter
case there are also hyperbolic equilibria, separatrices and curves with different topology
(exactly as in the phase portrait of the standard pendulum).

The linear symplectic diffeomorphism @ has a generating function given, up to an arbi-
trary (and meaningless) plus or minus sign, by®

S(I,pY=MI-¢', with Me SL(3,Z),
I=M7"T, o=M"y . (3.21)

The relation (3.18) means that M has the form

a b ¢
M=1|d e f (3.22)
p —q q

with integers a, ..., f to be determined. Thus, by (3.21) and (3.22), we have that

g1 = apy +dpy + Py, P2 =boy +epy —aph, ez =cor+ feptaps . (3.23)
By e) above and (3.23), we find

27 d(p’ 2T .
/ Fy(I1, I, () 572 :/ | 3" cjcosj(ag + deh + peh)
g b

y 1 . ! d(]pl
+d; cos ((af + 2b)p} + (df + 2e)ph + (pf — 20)¢3) | 5>
=co+ Y djcos ((aj +2b)p) + (dj + 26)(,05) : (3.24)

171<2
pj=2q

5167,(3,7Z) denotes the group of real (3 x 3) matrices with integer entries and determinant one; the
superscript 1" denotes matrix transposition.
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If (p, q) is different from (1,1) and (2,1) we see that there are no integers j with [j| < 2
such that pj = 2q, so that, in this case, the sum in the last line of (3.24) is absent and we
have that Hee depends only on the action variables and is given by

_[1([,)2

Heﬁ‘(_[([,), (,D((,D,)‘) - T -+ U.)Ié + EC()(Il(II), Iz(]')) . (325)

Next we show that when (p,q) is equal to (1,1) or (2,1), then Heg cannot be as in (3.25)
and it must depend explicitly on one angle (¢} or ¢5).

Let us consider first the case (p, ¢) = (1,1). In this case, pj = 2¢ means j = 2 and (3.24)
implies that :

/

2 / d(p3
I
[ R o) 5

Thus, H.s independent on angles means

= g + dz cos (2(a + bt +2(d + e)h) - (3.26)

a+b=0=d+e,

a relation which makes the first two columns of the matrix M proportional (one is the
opposite of the other) and this implies that the determinant of M would vanish.

The case (p,q) = (2, 1) is similar: pj = 2¢ means j = 1 and (3.24) implies that

2r dot
/o Fo(I, I, go(go’))% = ¢g + dy cos ((a + 2b)y + (d + 26)(,0’2) : (3.27)
Thus, Heg independent on angles means
a+20=0=d+ 2e,

a relation which, as above, makes the first two columns of the matrix M be one the
opposite of the other, implying, again, the vanishing of the determinant of M.

Remark 3.2 In what follows we shall make particular (and “convenient”) choices for the
matrix M (and hence for the symplectic transformation @ 1), but one should bear in mind
that in doing this there is quite a bit of freedom but that the physical relevant quantities
(such as H.g) are essentially intrinsic.

In the case p = 1,2 and ¢ = 1, by the above analysis, we see that (3.19) is satisfied
provided
either a+pb=0 or d+pe=0.

We then take d = 0 = e and®

10 0
M=10 0 1], (p=1,2), (3.28)
p —1 1

52In [49], where it is studied the resonant D’Alembert Hamiltonian when (p,q) = (2,1), it is taken

1 0 0
M={2 -1 0].
p -1 1
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leading to the linear symplectic transformation

I=(Iy,pl; + I, — I§, I5)
: o = { IRt 2 37+2 — . .
@i (09) @ = (¢} + Py, — 05, 05 + ¢5) p=12) (329
In the new coordinates the Hamiltonian becomes
1?2
ooty = Wunen(of + 15— 1ot +pd,—)

+epFy (15, pIi + Iy — I, ) + gy, — 05, 05 + 55 1)
= Hu(I},I3) +eGo(I', ') + epGi(I', ¢'s 1) (3.30)

and the averaged resonant D’Alembert Hamiltonian is (recall (3.26) and (3.27))

ett sir= [ onir
e )y P13 €,0 L\{,9
0 2

Il 2
+efeo(Ii, pI + I — I3) + dj, (I, p1y + I — 1) cos(jpih) |

= Hoo(1, I3) + eHot (I', ©1) (3.31)

where j; =2 and jp =1

Let us turn to the case in which (p, ¢) is different from (1,1) and (2,1). In this case, as
discussed above, (3.19) is always satisfied and Heg does not depend on angles. To make a
particular choice, let a and b be integers such that

ag+bp=1. | (3.32)

In view of an elementary algebraic identity®, such (infinitely many) integers always exist
and we shall fix the ones that minimize the sum |a| + |b]. Then, we define

a b b
M = (0 1 0 ) , (p,g) # (L,1), (2,1), (3.33)
p —q g
leading to the linear symplectic transformation
{ I = (ql} + bl3, I}, —pI; + I3 + al3)
@ = (g} — PP, Py + 05, b -+ aws)
In the new coordinates the resonant D’Alembert Hamiltonian becomes

I/ b]’l 2
H,o@, = LTS L Vo
eFy(ql, + bIL, I, g — P, 0 + %)
+epFy (gl + bI%, Ib, ot — s, 0y + @, by + aps; i)
= Hup(l}, ) +eGo(I', @) + enGi(I', @' 1) (3.35)

o, (I'¢) — (3.34)

53The so—called “Bezout identity”, which is an immediate consequence of the Euclidean algorithm.
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and, in this case, the averaged resonant D’Alembert Hamiltonian is simply

] 2m ! ! dg@g
Hg(le) = A Hepo®p(I', @)=

2
]—/ b]’l 2
_ Lq..__;__sL +wIL + ecolall + bIL, Ib)

= Hoo(_[{,[é) +EH01(I,) . (336)

Remark 3.3 Notice that we are using a unified notation for different objects (such as G; -
or Hyy or Hy), which, in fact, depend explicitly on the resonance (p,q)-
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4 The total stability Theorems

In this part we will consider & (real-analytic) nearly-integrable, one-parameter family
of Hamiltonian functions H (I, @;€) = h(I)+ef(I, ) where (I,p) € Qx T?, with Q C R?,
are standard symplectic “action—angle” variables and € is a small parameter.

- As pointed out in the introduction a typical feature in Celestial Mechanics is that the
unperturbed system is properly degenerate, i.e., the unperturbed Hamiltonian function
h(I) does not depend upon all action variables. In such a case it is obviously strongly
violated the non-degeneracy KAM condition that is the fact that, at fixed energy, the
(unperturbed) map between action variables on fixed energy surface and the frequency
map viewed in projective space is a diffeomorphysm.

However, as we said in the introduction, if one considers a nearly—integrable (real-
analytic) Hamiltonian system with two degrees of freedom governed by

H(I,p;¢) = Ho(I;¢) +e2H\(I,¢) = Hoo() +eHp1 (1) +e2H (1, 9) , (4.1)

in [9] (compare also [8], Chapter 5, Section 3), Arnold proved the following Theorem (see
Theorem 0.1):

Theorem 4.1 Ifthe “perturbation removes the degeneracy®™” on the energy level H(E),

namely ,
OHyo 0°Hp
I)#0

then, for all € small enough, total stability holds; namely for all initial data on the given
energy level, the values of the action—variables stay forever near their initial values.

(I)#0, VIeH;'(E), (4.2)

Remark 4.1 (i) If condition (4.2) is violated “instability channels” may appear as sug-
gested by the following example (which is a trivial modification of an example due to N.N.
Nekhoroshev [90]). Let '
I? I2
HOO(Il) + EHgl(Ig) = ——21— — 8—5— y (43)

and notice that (the first inequality in) condition (4.2) is violated on each energy level
crossing the axis {/; = 0} (in particular is violated at £ = 0). Then, one can construct a
sequence €; J 0 and a sequence of perturbations Hy;(¢) with sup |Hy;(¢)| uniformly

[Tmep;|<1
bounded such that
(1) := o~ YVE 24 G324 o 1R o 12 5/2 2R A4
E(t)"“e (—‘5 ) € )) (Pe(t)'_e (_5 57'—5 5)7 ()

540r, more precisely, that “the intermediate term Ho; removes the degeneracy”.
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is a solution of the Hamilton equation associated to Hoo(I1) + €Ho1(I2) + £2Hi ;(0) when
e = ¢;. In fact, it is enough to take :

g =347, Hyj(p) := e sin(p1 — jia) -
Notice that a displacement of order one of the action variables I (t) with respect to their
initial value I.(0) = (0, 0) occurs in the exponentially long time ~ exp(1/,/€5)/€?.

(ii) Condition (4.2) is violated, at E = 0, also by the “convex” Hamiltonian Hy :=
%-FE%, (¢ > 0). However, in such a case, H; *(0) consists only of one point and exploiting
convexity (and using energy conservation arguments), it is not difficult to show that, also
on the energy level E = 0, total stability holds for € > 0 small enough. It is therefore
clear that “convexity” (or, more in general, “steepness”) should play a fundamental role
in this business.

Properly degenerate systems with two degrees of freedom of the form (4.1), are, in general,
“more integrable” than non-degenerate systems, as A.I. Nejshtadt proved in 1981:

Theorem 4.2- ([89]) Assume that a (real-analytic) properly degenerate system with two
degrees of freedom satisfies condition (4.2) together with %%L # 0. Then the measure
of the set of unperturbed tori that disappear when € > 0 1is exponentially small (i.e.
O(exp(—const/e) rather than O(y/€) as in general nondegenerate systems). Furthermore

the deviation of a perturbed torus from the unperturbed one is of O(e) (rather than O(:/€)).

We take up the action—stability problem for properly degenerate Hamiltonian system with
two degrees of freedom allowing the intermediate system Hy, to depend also on the angle
1. Thus, we shall consider real-analytic, properly—degenerate systems with two degrees
of freedom described by nearly-integrable, real-analytic Hamiltonians given by

H(I,(P,E) = Hoo([l)‘l‘EHQl(I,QDl)+8U'H1(I,§D) y O<5<<1 , a>1. (45)

The interest for such systems stems again from Celestial Mechanics. In fact, as we have
seen before, the planetary D’Alembert model is governed,up to an exponentially small
term, by the Hamiltonian (0.10) which is of the form (4.5).

We want to study model problems able to capture the main features of “general”
properly degenerate systems with two degrees of freedom and, in particular, the features
of the above-mentioned Hamiltonian (0.10). As we explained in the introduction, in order
to avoid “extra” technical difficulties, we shall take

HOO = —21- s H01 = Hél) = 0'52 — (]. -+ cos (pl) s (46)
with o equal either +1 or —1; the phase space will be taken to be Mg, := B, x T? where
B2%_ denotes a ball of radius Ry around the origin.

We can now state our main results. Denote, as above, by (I(t), o(t)) := ¢%(lo, o) the

time ¢ evolution of the initial data (I(0),¢(0)) := (lo, o) governed by the Hamiltonian
H. We shall prove the following
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Theorem 4.3 Let HO (I, p;e) := H(I,p;e) and Mg, be as in (4.5), (4.6). Assume
a > 3/2 and choose

. (1 a—-11 3
0<R< Ry and‘ O<b<mm{;l—, "“—4— ,g(a.—‘—>} . (47)

Then, there ezists £o > 0 such that, for all 0 < € < €, the ¢y—evolution (I(t), (1)) of an
initial datum (I, o) satisfies

I()| <Ry, |I()-Il<e, VieR, (4.8)

where, in the case o = 1, (Io, o) is an arbitrary point in the phase space Mg, while,
in the “non—convezr” case 0 = —1, (Iy, po) belongs to Mp\N., N, being an open region
whose measure does not exceed €2/,

This theorem will be a simple corollary of the following result, which describes the distri-
bution and density of KAM tori. Let Hp denote the pendulum Hamiltonian®®

IZ
Hp = Hp(L, p1;8) i= 5 — (1 + cos ) (4.9)

Theorem 4.4 Let the hypotheses and choices of Theorem 4.8 hold and let M) =
Me\N@) where the sets N = N'{9)(g,b) are defined by

N = {(I, @) |Hp| <& or Hp < ~25—l—51+2b} U {(I, o) |L] < Rsb}

N, = {(I,gp): cedtst < Hp < &2}

C

NED = NO YN, (4.10)

[

0 < ¢ < 1 being a suitable constant. Fiz g such that
3
0<q<a—-2-—3b., (4.11)

Then, there ezists g > 0 such that, for all 0 < & < &g, the following holds. Apart
from a small dense subset of measure O(exp(—1/g9)), the region M) s filled up by
two—dimensional, real-analytic H(%) ~invariant tori; each of these tori is O{exp(—1/e?))-
close to an unperturbed torus {(I, 1) : Hp = E} x {(Iz,2) s.t. I, =const} in M),
Furthermore, for any motion (I(t), o(t)) in M), the displacement of I(t) from its initial
value Iy is bounded, for all times t, by \/.

Remark 4.2 (i) By simple energy—conservation argument one sees immediately that
|I,(t)— 11 (0)| < const /€ for any motion (I(t), ¢(t)) in Mg; thus the “stability” statement
in (7.6) concerns actually only the I5 action variable.

551> is a standard mathematical pendulum having the stable equilibrium in (0,0) with energy —2¢,
the unstable equilibrium in (0, £7) with energy 0 (hence the separatrix as well has energy 0).
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(ii) The discarded region N'@) is a (“elementary”) set small with . If we replace \/ (@)
by a small set of order one (say, {(I1,¢1) : |Hp| < 8} X {(L, ) : |Iz| < 6} for a fixed
0 < § < 1), then the displacement of I(t) from its initial value Io is bounded by €.

(iii) In the two-degrees—of-freedom case considered here, as mentioned above, the
9-dimensional KAM tori constructed in Theorem 4.4 (which fill, up to an exponentially
small set, the region M(?)) separate the three-dimensional energy levels. Thus, the topo-
logical “trapping” argument may be applied leading to stability, for all times, of the action
variables in M(). Then, an elementary energy—conservation argument implies action sta-
bility in Mz or in Mz\N. (according to whether ¢ =1 or o = —1).

1
(iv) In the case a = 2 one can take any 0 < b < 1/6 and ¢ < 5~ 3b.

(v) Theorem 4.3 and Theorem 4.4 may be viewed as extensions, in the model cases
considered here, of, respectively, Theorem 4.1 and 4.2.

The main ideas of the proof are the following. We consider first the Hamiltonian

Ho = H()O +EH01 = Hp -+ UI;/Q R (412)

in which we introduce action—angle variables for the pendulum Hp and try to apply KAM
techniques in order to confine all motions among KAM tori. Obviously the action—angle
variables for the pendulum Hp are singular in any neighbourhood of the separatrix (and
stable equilibria) and it is exactly near separatrices where one expects the motion to be-
come “chaotic” and where, in principle, drift of order one in the I, variable is conceivable®.
Therefore a careful analysis near these “singular phase space regions” is needed and ar-
guments different from KAM theory have to be used to control the displacement of the
action variable in such singular regions. Obviously, as discussed in Remark 4.1, regions
where the non—degeneracy assumption fails need a separate discussion: in fact, in the non
convex case, we are not able to exclude a “possibly non—chaotic—drift” of the 5 action in
the regions N ().

5 Technical lemmas

The construction of KAM tori in M(?) is based on the following three lemmata: the first
lemma provides (real-analytic) action-angle variable for the pendulum slightly away from
the separatrix and the stable equilibrium; the second lemma is a “normal form lemma”;
the third lemma is a “iso—energetic” KAM theorem. For general information about normal
forms, KAM theory, etc, we refer to, e.g., [8] and references therein.

In the following we shall use the following notations: if A C R? and 7 > 0, we denote by
A, the subset of points in C* at distance less than 7 from A; T¢ denotes the complex set
{z € C : [Imz;| < s for all j} (thought of as a complex neighborhood of T4). If f(I,¢) is

56Better: “compatible with energy conservation”.
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a real analityc function on A, x T¢ we let ||f||,s denote the following norm®’
”f”r,s = Z sup ‘fk(I)le!kts ) (5.1)
keZd IEAT

Full ) being the Fourier coefficients of the periodic function ¢ — f(I, ).

Lemma 5.1 (Real-analytic action—angle variables for the pendulum)
Let D° := [~Ry, Ro), let Ey := Hp(Ry,0) = R3/2, let 0 < n < &/32 and define

M; = M;(??,S) = {(Il,(pl) S DY xT: ILi>0,n< H’P(-Tl,(Pl) < FEy —8} R

My =M (n,e) ={(I1,¢1) € D" x T: =2 +n<Hp(li,pn) <—n} . (52)
Then, for all r. < Ro/2 and s. positive, there ezist positive numbers ro and so, closed
intervals D* C R, symplectic transformations ¢* real-analytic on D* x T and functions
h* real-analytic on DF such that

¢F (I, ¢1) € DE x Tyy — ¢5(11,¢1) € DX x Ty, , . (5.3)
¢*(D* x T) = M*(n,e) , (5.4)
Hpo ¢i([17951) = hi(—fl) , v (fla@l) € D?{; X Ty, . (5-5)

The analyticity radii 7y and s may be taken to be

1
So 1= C S« ——~ (5.6)

U
Ve’ -~ n(e/n)

~ where 0 < ¢ < 1'is a suitable (universal) constant. Furthermore, the functions k% satisfy,
for all I, € DZ, the following bounds

To == C Ty

n<Reh™() < Ey—e¢, —2 +n<Reh (I}) < -7, (5.7)
dh* . a*
— () = — , 5.8
i, ( 1) ﬂ,ii: ( )
d*h* . L Ty

——(I) = +* —2— | 5.9

where

- 1 €

+ +
7 = (L) =—=In|l1+, |—F

' 1 VE ( |Rehi(11)[) !
+ . 7Y . 1 1
2 - T + f = )

[Reh®(11)| \/|Reh*(1,)| + ¢

57 The specific choice of norm will play no role in the sequel; obviously if f is a real-analytic function

on T?, || f||s stands for >, 7| felel¥s, . being the Fourier coefficients of f, while, if f is a real-analytic
function on A, then ||f|lr = sup;c4, |F(1)]-

(5.10)
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of = of(h), f* = BE(1L) are real-analytic functions such that
Re(a®)
Ry '’

for suitable (universal) constants 0 < di < dy and 0 < do < d1/10. An identical statement
holds if, in the definition of My, one replaces “Iy > 0” with® “I; < 0.

& < Re(f) < dhi [P fim(5)] < (5.11)

Lemma 5.2 (Normal forms) Let A and A’ be two subsets s of R and consider a Hamil-
tonian function H(I,®) = h(I) + f(I,§) real-analytic on Wi, 4,5 = (As, x AL) x T2
for some 79 > 71 > 0 and § > 0. Assume that there exist K > 6/5 and o > 0 such that

w@) -k >a, VkeZ?, 0<[k|<K, VIielA;xA,, (5.12)
where w(l) := Vh(I). Assume also that®®

af
17 e < e

Then, there exist a real-analytic symplectic transformation

O (J,9) € Weyjapajasss — O(J, 1) € Wiy 4y 6

(5.13)

such that
Ho®(J,%) = h(J) + g(J) + f(J,%) (5.14)
with’® .
Hg fO“m/Q 7‘2/2 ”fl
| fellsy j2,00 2,306 < ||fi|f1,fz,s* exp(—K3§/6) ,
12(J, %) = (J, V)l /27272.806 < € N1 ll71,2,8 (5.15)

where ¢ > 0 1s a suitable constant.

71,72, 3

The next lemma is a typical statements from KAM theory (see [8] for generalities). It is
an iso—energetic KAM theorem (i.e. a KAM theorem on fixed energy levels).

Let, as above, w(J) denote the gradient Vh(J), let h”(.J) denote the Hessian matrix of h.
We recall that a vector w € R? is said to be (v, 7)-Diophantine if

|w - k| > Y k€ ZN\{0}, (5.16)

Vfl”f ’

for some v > 0 and®* 7 > 0.

58By symmetry, the interval Dt in the case I; < 0 is just the opposite of the interval D% in the case
I; > 0.

59 Adapt the norms in (5.1) and in the footnote 57 in the obvious way replacing A, by A, x Al (and
replacing the subscript “r” in the norms by “7y,7s”).

60 f, is the zero—Fourier coefficient of f, i.e., the average of f(I,¢) over T?.

61Necessarily 7 > d — 1 by a theorem of Liouville. Also, (5.16) (with |k| = 1) implies that ¢ < min; |w;|.
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Lemma 5.3 (Iso—energetic KAM theorem) Let D C R? be a bounded domain and
consider a Hamiltonian H(J,%) == h(J) + f(J,9¥) real-analytic on the domain W, =
D, x T¢ for some r > 0 and s > 0. Assume that |[|h"||, > 0 and that the (d+1) x (d+1)

matriz
g [ R'(JI) w(J)
U .= ( w(J) 0 ) (5.17)

is invertible on D,. Given E € R (such that h™*(E) # 0) and given
0<y< Jnin, w; ()] and 7>d-1, (5.18)

denote
D= {J €D: h(J)=FE and w(J)is (y,7) — Diophantine} : (5.19)

Then, if ||f|lrs s small enough, for each J € D, there emists a unique d-dimensional,
real-analytic, invariant torus T C H™*(E) which is a graph over the angle v, which is
close to the torus {J} x T¢ and on which the H-flow is analytically conjugated to the
translation 8 — 0 + w(J)(1 + k)¢, k being a small real number. More precisely, let A, F
and G be positive numbers such that

A> “h"”r ) F>A “f“r,s 7*2 ’ G > max {A HU_lur ) 1} ) (5.20)
let 0 <3< s and let ’
._ v (8 - E)Cl . 1 cs cr
C:=max {1, A IlnFle} . F=Cq 5L GSF|InF|,  (5.21)

where the ¢; > 1 are suitable constants depending only upon 7 and d. If F <1, then, for
each J € D, there ezists a unique invariant torus T C H™'(E) satisfying the following
properties:

(1) T = {(j(d)),@b) RUNS Td} with J real-analytic on T¢ and | T (¥) — J| < rF for
all € T4,
’ (ii) there exist real-analytic functions on T
(real for real J) such that

,u, v and a smooth function k : D, — C

max{r~ v = Js, lulls, |6} < F';

the map 6 € T¢ — (v(@),@ -+ u(9)) is a real-analytic embedding whose real image is the

torus T: T = {(v(@),@ s u(G)), S ']l"d}; on the torus T the H-flow, ¢*, linearizes:
denoting w, = (1 + x(J)) w(J), one has

¢t (v(0),0+ u(®)) = (v(0 + w.t), 6 + wat +u(6 + wet)) ;

ik

(iir) if T >d—1 ahd g = (const.W

) v, then

meas(H—l(E)\{tori satisfying (i) and (zz)}) <.
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Remark 5.1 As mentioned above, in the case of two degrees-of-freedom (d = 2) con-
sidered in this part, the above KAM tori separate the three—dimensional energy levels
forming barriers for the motion; any two KAM tori (with equal energy) bound an invari-
ant region in corresponding energy level. More precisely, let [a1,b1] % [ag,be] C D with
a; < b;. Then, because of (5.18), we can take as coordinates for the three-dimensional
energy level H~'(E) either of the action variables’ plus the angles . Take first as co-
ordinates (Ji,11,%) and fix Ji € [ay + 6, az — 0] where 6 := 2 max{rF,4} (¥ measures
the complement of the surviving KAM tori and rF the maximal oscillation of the graph
of each KAM torus). Then, by (i) and (iii) in Lemma 5.3, it follows that there exist two
tori 77 and 7" so that sup, J{ < Jp < infy J7 and 0 < infy, Ji' —sup, J; < 0O(6). The
same reasoning applies to Jo. Hence, if (J(2),¥(t)) := ¢*(J, %) (for any 7)) one has that
sup, |J(t) = J| < O(9)-

Remark 5.2 (On the proofs of the lemmata)

(i) Lemma 5.1 is a subcase of Proposition 2.1 (whit k(I) :=1). For completeness we
Lave rewrite it in the notation of this Section. In particular we observe that (5.8), (5.9)
and (5.10) are direct consequences of (2.8). :

We mention also that for our main purpose (i.e., total stability of action variables) it
would be enough to apply a iso-energetic KAM theorem in smooth class (since all we need
is a topological “trapping argument”); however a quantitative version of such a theorem
(necessary for our task) is not available in literature and providing the details for its proof
would be certainly much longer (and far less elementary) than the proof of Lemma 5.1.

(ii) Lemma 5.2 derives directly from Lemma 1.1 with d == 2, D :== A x A/, p ==
(F1,72), 0 := 3, po := 1, A := {0}, ¢ := @, and substituing g with g + fo.

(iii) Lemma 5.3 is by now rather standard. In fact it is easy, under an extra “non-
degeneracy condition” satisfied in our application®, to derive the iso—energetic KAM
theorem directly by the standard one by means of a standard Implicit Function Theorem.
Alternatively, one can find a very detailed version, e.g., in [58]. For these reasons we shall
omit the proof of Lemma 5.3. In our application the exact values of the constants ¢; are
not needed; however we can prove Lemma 5.3 with the following constants:

cg=717+1, =261, g=c, ca=d 27,

C5=2(T+1), 06:27 C7ZQ(T+1>.

Also, in our case, it will be ¢ = 1.

62Fyrthermore, the map Ji — ai(1) = wi(J1, JO(1)) Jwz (J1, J(J1)), where J9 is such that
h(Jy,J2(J1)) = E, is a diffeomorphysm:

ClC\{l . detU

dJy w3 (J1,99(J1)) ’

(and a completely symmetric statement holds interchanging the indices 1 and 2).
63N amely, the invertibility of the Hessian A" on D,, which is the usual nondegeneracy condition in the
standard KAM theorem.

60




6 Proofs of the Theorems

We first prove Theorem 4.4 (Theorem 4.3 will be a simple corollary of it). Since most of
the arguments are identical for both models ¢ = 1 and 0 = —1, we shall usually do not
indicate explicitely the dependence upon o. The only point where the two models differ
is in the estimates regarding the iso—energetical non-degeneracy (see Lemma 6.1 below).

Proof of Theorem 4.4

The first step is to use Lemma 5.1 to put Hp in (4.12) into action—angle variables. Let R
be as in (4.7) and assume that Hy in (4.5) is analytic on B,, X Ty, where B denotes here
B%,(0), and 0 < 11 < R/2, 51 > 0. Since, in our case, Hp is an entire function we can

choose, in Lemma 5.1 the parameters
Ty i =T1, Sy 1= S1 .
Let b and ¢ be as in (4.7) and (respectively) (4.11), let
A=1+42b,
and let gy be a number such that
q<q0<a——;———3b.

Notice that with such choices the followig relations hold:

; , 1 1
A>1, 0<b<A——2—, b+ A+t <a.

2

We also set
ni=¢

so that ro and sg in Lemma 5.1 become

A—1/2 c 1

To = CTq1 € Sg = —_—
0 ! 7 N—1 Ine!?

Let D°, D* and ¢* be as in Lemma 5.1 and let

D = ["‘Rl,Rl] C DO y R1 = B

Now, define D*(c) C R as follows:

D (¢) =D, DF(1):=D*, D¥-1)xT:= (D) HMT)

where

M = M (n,e) = MG\R. = M;\{(h;%) D ettt <
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(6.1)

(6.2)

(6.3)

(6.7)

(6.8)




with a suitable small positive constant ¢ to be fixed later. Denoting J = (J1,.2), ¢ =

(Y1,%2), [ = (I, 1), ¢ = ($1,$2), then, by Lemma 5.1, we have

&% : (I,9) € (D*(0)ro X Dpy) x T2 — (I,9) € By, x T2,
where (I1, 1) = ¢™ (11, ¢1) , (I2, 02) = (I, $2) - (6.10)

In the symplectic coordinates (I, @) the Hamiltonian H in (4.5) takes the form

72

. i . i .
H*(I,¢2) = H 0 ¢*(1,¢) = W*(h) +e0 - + e Hi (1, §ie) (6.11)
where h¥ is as in Lemma 5.1 and Hi := H; o ¢*: hence
1T lrora,s0 < 1Hllrs o1 - (6.12)

- The second step is to apply the normal form lemma (Lemma 5.2), in a suitable phase
space region, to the Hamiltonian H*: in such a way we shall be able to to put H*
in a normal form of the type appearing in (5.14)-(5.15), to meet the (stringent) KAM
condition, 7 < 1, in the KAM theorem (Lemma 5.3) and to give a “good” estimates on
the measure of the KAM tori. We therefore set®

c 1 s
N—1 IneL 7Y
A = Di(a) , A, = {fZGR: ngbg lj2|§R1} )

1 =15 = crie’ e , Toi=-——¢g =S =

Wfl)h’g = {j - Di(g)fl X A;Z} X T? . (613)
Notice that the second relation in (6.4) implies that 7, < 75 for & small. Define also
K= — (6.14)
" gwlngl’ ’

where g is as in (6.4). Let us, now, estimate o in (5.12). Denote by w*(f) := ((hi)’(fl),

EO'jg). Then, for any k£ € Z*\{0} with |k| < K, by (5.7)-(5.11) and the choice of 1, we
find

. h‘*“—25RK>mR—£, if by #£0,
wE(I) - k| = lj(% )| T e 7 (6.15)
715“1 , ~ ifk; =0,
for a suitable constant®® x; and provided € > 0 is small enough . We can therefore take
Q= 5;—1- gttt (6.16)

647, = 0 is a singularity (resonance): we therefore have to stay a bit away from it.
85From here on, k; denote suitable constants depending, possibly, on A, a, b, ¢, g;, s1 and 1.
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We can now check (5.13). Since, by (6.12),

£ lles,505 = N HE oo < €1 Hnllrns: (6.17)
because of the choices of @, 71, § and K (see (6.16), (6.6), we find (5.6), (6.5) and (6.14)),
afy ¢ Ryry ePMotl/2lp gl
28K 29
Thus, in view of the choice of the various parameters made in (6.4), (5.13) is satisfied

for € > 0 small enough. Thus, by Lemma 5.2, there exist a real-analytic symplectic
transformation

(6.18)

+. (J, ’l/)) S Wr‘l/Q,fz/Q’g/G — @i(J, ’(p) & Wfl,fz,g (619)
such that , P
H* 0 0(J,9) = (1) + 60 2+ *(J) + HE(J, ) (6.20)

with (recall (5.15), (6.17), (6.14))
”gi - Ea(Hli%”fl/?,fz/? < % e’ HHIH'fl,Sl ’
1HE 5200 2,506 < 1F llesp2s €D(=K3/6) < | Hyllrys, D (s ) »
' Héi(i ’lﬁ) - (J7 w)”ﬁ/?,fz/Zﬁ/G < e “H1HT1,51 ) (621)
for a suitable sy > 0 (and & small enough). Thus, if we pick a ¢; so that
7<q <q, (6.22)

we have that, for all € > 0 small enough,

1
V5, p200/256 < 1o, exp (= =) - (6.23)

(]1

Third step. In order to apply the KAM theorem (Lemma 5.3) we set:

M) = W) + el 4 g5(0) = WD), (08) = HE(W)

’I"'—K,T&”A_% 8= K3 8§ L .§—*f
- 371 b 3 1 l 8—1 3 - 2 )
D=D*o)x D, W,,=D,xT?, (6.24)
where k3 is a suitable constant such that®®
7 3
r< — §< —.
— 4 )

86Recall (6.19) and that 71 < 72. The factor 1/4 is included in order to bound derivatives of g* (and
hence of ") via Cauchy estimates. We recall the statement concerning Cauchy estimates in our context:
if g(J) is a function analytic on D, x D!, then for any integers p;, p2 and for any 0 < c <1 -

llgllr,r !
115! .
e < const. (p1!p2!) rPapiP2 (1 — ¢)patpe

oP: +p2
5727
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Obviously the norm relative to the domain W, ; will again be denoted || - ||,,, but beware
that the sup-norms in the action variables are taken on different domains according to
whether 0 = 1 or o = —1 (recall (6.8) and (6.9): in the case o = —1 the set R, has to be
discarted). The estimates on ||(hE)"|| and on®” ||U™!|| require some computations, which
we collect in the following lemma. Recall that from (6.2) and (4.7) there follows that b
and A satisfy

1 a+1
b< - . .
<7, A<4 (6.25)
Lemma 6.1 There ezists®® Cy > 0 such that, for all € > 0 small enough,
C - C
=\ < 0 -1 < 0 2
H(h*) ”T‘ — €>‘_1(ln6_1)3 ’ “U “T - E’\ 11’16“1 ) (6 6)

where || - ||, denotes the sup-norm on D, defined in (6.24), (6.8), (6.9), (6.13).

Proof First, we need estimates on the derivatives of g*. From (6.21) there follows
g% 17 /2,0/2 < 2€°||H1|lry,5; Wwhence, by Cauchy estimates® |

8gi K “Hlnmsl g0 )\—l-l ” !H1||r1 s1 ca a—b
8.]1 T 5 1 an T ’
a2gﬂ: “Hlnn,sl £ 2>\+1 “H1”T1,51 a—2b
2 |, =5 2 “ 3 H = 2 ¢ )
8:]1 T T 6;] Tl
aggi ”H1H7‘1 51 A—bt1
79 Iullrse ca-d-b+ 6.27
SRSl =2 € o (6.27)

with a suitable constant ks > 0. By (6.4) and (6.25), one has

1
a—/\+—2—>1, a——b>%, a—2A+1>0,
5 1
a—2b>1, a,—A—b+§>1. (6.28)

The symmetric matrix U has the form

Uy Uiz Uiz
U= Uia U9y Uos (629)
Uiz Uz O

67Recall the definition of the matrix U in Lemma 5.3.
88From here on, C; denote suitable constants depending, possibly, on A, n, a, b, gi, Eo, Ri, m1 and

HH1||T‘1 81°
69Tt is exactly in order to get the estimates (6.27) that we kept track of the different complex extension
sizes in the variables Jy and Js.
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where (recall (6.24), (6.20) and (5.5))

PhE L, O othE ot
w = G =W G e = ar g T Shok
S OhE  OhE N dg™* " O*hE . d%g*
BT B 94 ady ] 2= =0t o
~ OhE dg*
us = 5o A (6.30)
Since (recall the estimates in Lemma 5.1)
_ _ )3 Inet C Cs
et mmep <l <0, Gieatca, Tsds k. 63

for suitable costants C; > 0, by (6.27) and (6.28), we see that there exists a g1 > 0 such
that, for all J; € D;, the following asymptotics hold™

Uy = :i:ﬁ (1 + O(gql)) , up=0(e 9+§71) L up =e0 (1 + 0(561)> ,
U3 = E(l -+ O(th)> 5 Uog = EO’JQ(]. + O(5q1)> . (632)

From these relations there follows immediately that

Cs .
A 1(Ine-1)3

()"l < (6.33)

Let us, now, write the matrix U™" as follows

1 U1 Us Uz + Uy
Ul= 3 Us 1 us + Ug (6.34)

Uz -+ Usg Us + Us U7+ Us

where
U1 UyoU23 U231\ 2
5 = 2 ’U:23 -+ U929 — 2 y Uy ‘= (‘—’—‘) y .
Uy U13 U13
L U23 Uz ___ UigUss . UaiUsgs
Uy = ——, Ug 1= — , Uy 1= ——5— Us = 5
U13 U13 Ujs Uy
U12 U121\ 2 U11U22
ug = —22 = (_) Ug 1= — (6.35)
U3 U13 U713

Observe that from the above asymptotics (6.32) it follows

U11 = :
- i(fi)z 7t (14+0()) | (6.36)

70Obviuosly, z = O(e°) means that there exists a positive constant d such that, for all £ small enough,
|z| < de“.
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for some g, > 0; we also recall that

TE = ! ., Ey:=Re(h*(J)), 6.37
lEi|\/s—ﬁE_Il + (h=(J1)) (6.37)

where —2¢ + &* < E_ < —¢*, é* < E, < Ey. Notice that, from (6.31) and (6.32), it
follows also that
iem, = et

Thus, it remains to estimate 1/|6]. From (6.35), (6.32) and (6.36), one sees that there
exist a complex number z := 2z; + 2y With z > 0 and |25| < 21/10 such that

(6.38)

§ = 5( + zns € (ReJy)® + 0 + 0(5’73)) ,

Red = 5( + 2 n5e (ReJs)? + o+ 0(6‘73)) (6.39)

for a suitable g3 > 0. Let us consider the two different signes separately. In the “plus” case,

we have to distinguish whether o = 1 or o = —1. When o = 1, since zmy € (Redy)? > 0,
one has ) c
|6] > |Red| =€ (zﬂr;r e (ReJy)* +1+ O(e‘”)) > 3 (6.40)
for £ > 0 small enough. Let now ¢ = —1 and notice that
7 (By) S/ < 2 VE, >,
244 1 2,4 |
3 (By) 2 mf (33 2 omgp s VEi S cestsl (6.41)
Choose 1 !
Co— 1 2 —
¢i= 15 mln{lel , leﬁ} : (6.42)

Thus, in the region E, > €2/3/c, one has
6] > [Red| > e(1 — 4z10R3 + O(e%)) >
in the region B, < ceiT®, one has

Z1 R%

8¢

18] > |Red| > (52 — 1+ 0(e™)) > £

—— 2 N
Let us turn now to the “minus” sign case and notice that e* < |E_| < 2e and 75 > K5 /€312
with a suitable g > 0. Hence (recalling (6.32) and the assumption b < 1/4)

lél Z 04 7T2— 62(1+b) - 058 Z 041{,65%+2b — 056 Z Cs E%+2b 3 (643)

"1Use also that, for J3 € D!, [ImJy|/|ReJz| < const. e*57b < /g by (6.4).
2B y (6.37) 75 is a decreasing function of E, . Recall also (6.9), that ¢ <1 and that ¢ is small.
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where Oy, Cs and Cj are suitable positive constants. Thus, since —21~ + 2b < 1, we see that
(in all cases)

07
£
with a suitable C; > 0. This bound together with (6.38) leads to the estimates on ||[U™}]
given in (6.26), completing the proof of the lemma.

1671 < — (6.44)

We proceed to estimating the parameters appearing in the statement of Lemma 5.3. From
(6.30), (6.32) and (5.10) there follows that

-
o = lus] > C's“——‘—\/;cE ;
lneg—1!
h:i:
0 * = IUle Z C’g&l+b ; (645)

for a suitable Cg > 0 so that min; s I 7 l > Cgel™. We next choose 7 < Cgel™®. Since

the norm of HZF is exponentially small with €, we can choose also y exponentially small
with e: we let, in fact, for a suitable vy > 0,

1 .
v 1= 7 €xp ( — —E—q—;) , with ¢ <¢ <q . (646}

Therefore, in view of (6.23), (6.26) and (6.46), we can take
Co

ert(lneg-1)8”’

1 Co
25%) . G= (6.47)

A= " eBT (Ine-1)t

F::exp(—

for a suitable Cg > 0. Next, we show that C in (5.21) is one in our case. By (6.24), (6.26),
(6.46) and (6.47), we see that (for a suitable Cig > 0)

,Y(S _ 5)61 _ O ECBQl eXp ( — Et:il.':)_) ‘
QAT |InFles T (lne e

which implies that C = 1 for & small enough. Therefore, recalling the definition (5.21) of
F', we can take, for a suitable Cy; > 0 (see (6.47) and (6 24)) and for € > 0 small enough,

F < Cpexp ( ;]J , (6.48)

which obviously will be smaller than one for any € > 0 small enough. Thus, under con-
ditions (6.4), (6.25) and (6.46), Lemma 5.3 can be applied to the Hamiltonian (6.20)
showing the existence of KAM tori in each energy level of W, , apart from a small set
of measure bounded by™ O(%) < O(exp(—1/g%)). Thus (recall Remark 5.1), the motions

73Recall the definitions of F' and G given in (5.20).
"Provided T is choosen striclty larger than one; the constant 4 is defined in (iii) of Lemma 5.3 and, in
view of Lemma 6.1, is related to v by a power of ¢.
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starting in W, , have action variables O(exp(—1/g))-close to their initial values for all
times. In the original coordinates (I, ), the measure of the complementary of the KAM
tori is again bounded by O(exp(—1/q)); the KAM tori fill up the region M) with the
exception of a set of measure O(exp(—1/q)). In view of (6.21), the displacement of the
KAM tori from the corresponding unperturbed ones is O(e®) while the oscillation of the
graph of the tori may be bounded by O(+/€). Repeating the argument in Remark 5.1 we
find that, denoting (I(t), o(t)) the ¢* evolution of (Iy, po) With™ (o, o) € M,

I(t) — Il < Ciave, Vi, (6.49)

(provided ¢ > 0 is small enough).
This conlcudes the proof of Theorem 4.4. B

Proof of Theorem 4.3

We proceed to show that Theorem 4.4 and energy conservation imply (7.6) in Mg when
o =1 and in Mg\WV, when o = —1 (recall the definition of N, in (4.10)).

In view of the oscillations of the KAM tori in the region M) we shall consider slightly
smaller sets M@ c M9 To define such sets we let NV, := N, and:

2
Ao ) 244y fi
N.o={(I,¢): 2ce3™3 < Hp < 20},

N = {(I, ©): |Hp| < 26" or Hp < —2¢ + 251+2b} :
N .={(,¢): |b|<2Re"},
MDY = Mp\WNOUND) | MY = MO\N, (6.50)

Remark 6.1 Because of Theorem 4.4 (and, hence, because of the confinement due to the
presence of two—dimensional KAM tori in three-dimensional energy levels), the smaller
sets M@ have the property that Useg oL (M©@) € M@ (where ¢ denotes the H(*)-
flow). In particular, in the case ¢ = —1, a trajectory cannot cross the region N, (a fact
that could also be checked directly by energy conservation since % + %b < 1).

Denote by z(t) :=
in Mg (if o =1)
occur. ‘

(i) If 2o € M@ then, as remarked above, z(t) doest not leave M) where (6.49) (and
hence (7.6)) holds.

(I(t), (t)) the motion with initial data zy := (fo, o) governed by H (@)
or Mg\N, (if o = —1). Let us consider the different cases which may

75Recall that R < R; < Rp and that ¢ will be small compared also to (Ro — R).
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(ii) If z(t) € NO for |t| < T for some T > 0, then, by energy conservation, (7.6) holds™
for |t| < T.

(iii) If z(t) € N® for |t| < T then (7.6) (trivially) holds for |t| < T.

(iv) By (ii) and (iii) (7.6) holds until 2(t) € N UN®. But if z(t) leaves NO Uy NG

and enters the region M%), then; by (i), (7.6) holds again. B

Tn fact, calling Ep(t) = Hp(I1 (1), o1 (1)), if 2(t) € NO) for |t| < T, then |Ey(t) — Ep(0)] < O(e*) for
all |t| < T (recall that A = 1+ 2b and that a > ). Thus, by energy conservation, there follows that

L) ~ B(0? | By(t) - By(0)
2 €

for all |t| < T. Therefore, Ir(t)? — I5(0)* = O(¢*~*) and (7.6) follows.

=0(*),
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Part 111

Exponential stability: the resonant
D’Alembert model of Celestial
Mechanics







7 The exponential stability Theorem

In this part we shall consider the resonant “day/year” (or “spin/orbit”) planetary
D’Alembert model, which, together with the three-body problem, may be considered
among the oldest and most intriguing problem in Celestial Mechanics (compare, e.g.,
[73]); in particular we shall address the problem of the (exponentially) long time stability
for such a model and will show how to obtain results a 14 Nekhoroshev for it.

In particular we shall prove that for small oblateness and eccentricity and for any
motion starting near an exact spin/orbit resonance, the Hamiltonian evolution of the
action variables stay close to their initial values for exponentially long times.

Before giving a more precise formulation of this stability result, let us briefly mention
its connection with Arnold diffusion.

Remark 7.1 In [49], it was claimed that the planetary D’Alembert model, near a reso-
nance (2:1), has an instability region where the variable J, undergoes a variation of order
one (i.e., independent of the perturbative parameters) in finite time, provided € and p = €*
(for a suitable ¢ > 1) are positive and small enough. The proof of this claim proposed in
[49] contained an algebraic error (see the Erratum in [{9]) and, even though such error has
been corrected ([67]) and several technical progresses, in such direction, have been obtained
(see, e.g., [68], [69], [94]), a complete proof of the above claim is still missing. As well
known, proving Arnold diffusion for analytic problems is an extremely difficult problem;
for the D’Alembert model an extra (technical) problem (related to the degeneracies present
in the model) might come from the particular slowness of the expected instability: compare
comment 7.1 below.

Let us proceed to formulate, in a more precise way, our main result. We briefly recall Sec-
tion 3. In that section we stated that the planetary D’Alembert model near an exact (p:q)
resonance may be described (in suitable physical units) by the real-analytic Hamiltonian
(3.14) namely

1'2
He = 51 +w(ply — qlo + qI3) + €Fo(I1, I, 1, @2) + epF1 (I, Lo, 1, @2, 035 1), (7.1)
where: (I,¢) € A x T® are standard symplectic coordinates and the domain A C R® is
given by”’ )
A={L]<re', |[L=JD|<r, LR}, (7.2)

with 0 < £ < 1/2,7 >0, Jy is a fixed “reference datum” (avoiding certain singularities); &
and u are two small parameters (measuring, respectively, the oblateness of the planet and
the eccentricity of the Keplerian ellipse); p and ¢ are two positive co—prime integers, which
identify the spin—orbit resonance (the planet, in the unperturbed regime, revolves ¢ times

T See (3.15).
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around the star and p times around its spin axis); wq is the frequency of the Keplerian
motion; the action I; measures the displacement from the exact resonance: in these units,
I, = 0 corresponds exactly to a p : ¢ spin—orbit resonance. In fact, J+ I, with J1 := pw,
and I, are (in suitable physical units), respectively, the absolute value and the projection
onto the polar axis of the planet of the angular momentum of the planet, while /3 is an
artificially introduced variable canonically conjugated to time. The functions F; are real—
analytic funtions in all their arguments. While the explicit form of F} is not important in
the sequel, and, in fact, our result holds for any function F; real-analytic and bounded
on A, the explicit form of F plays a major réle in the following analysis. We recall the
form of Fy given in (3.6)

Fo(l, Lo, 01, 02) = D cicos(jer) + dj cos(jor + 2¢2) , (7.3)
HE
where ¢; and d; are suitable functions listed in (3.9). As in Section 3 we introduce the
real parameter I which corresponds to the projection of the angular momentum of the
planet onto the polar axis of the planet and, since the planet is rotational, it turns out to
be a constant of the motion. As assumed in (3.16) the parameters J;, L and the constant
r are assumed to satisfy (3.16) i.e.

L+3ret < T,  |hl+3rEt+1) < Ty, (7.4)

so that ¢;, d; are well defined on the domain A.
With the above positions, for the motions governed by the (p:g)-resonant D’Alembert
Hamiltonian H, ,, there holds the following

Theorem 7.1 Let ¢ > 0,0 < £ < 1/2 and 0 < vy < min{c, £}. Assume that (7.4) holds
and that ~
Ji # V3L (7.5)

(which is equivalent to™ 11(0) # 2 ). Then, there exist 9, v; > 0 such that, if 0 < e < &g
and 0 < p < €%, then

() - 1O <wre™, V¥ [ <T(e):= w”;ﬂ exp (-3%) , (7.6)

where (I(t), o(t)) denotes the H, ,—evolution of an initial datum (1(0),(0)) € A x T°.

Remark 7.2 From a physical point of view, one is interested in knowing the variation of
- the angle oy between the normal to the ecliptic plane and the polar azis of the planet. It
results that oy € [a — a3, Qg + i3] where o is the angle between the normal to the ecliptic
plane and the angular momentum of the planet and as is the angle between the angular
momentum of the planet and its polar azis. Hence it is clear that if we prove stability (for
a certain amount of time) for the action variables I, and Iy (I3 has no physical meaning)

8 See the definition of v given in (3.7).
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we have proved that the anlges v and as are nearly constant (in the above amount of
time). Now in the Solar System it is a common fact that planets have angular momentum
nearly parallel to their polar azis (so it is, for example, for the Earth ), namely o is very
small. Hence as a corollary of the action—stability we should prove the stability (for a
certain amount of time) of the inclination of the planets with respect to the normal to the
ecliptic plane.

Let us make a few comments on the above Theorem.

7.1 Standard Nekhoroshev estimates for a system with d degrees of freedom yield a
Nekhoroshev exponent (i.e., the exponent of ¢ in the exponential part of T'(¢), which, in
our case is vo) 1/(2d); compare, e.g., [93]. In our case, taking £ close to 1/2 and ¢ > /,
we see that vy ~ 1/2, getting a better Nekhoroshev exponent with respect to the general
non-degenerate case (“better” means that the stability time is longer, for small €). This
fact (as mentioned above) makes, a priori, Arnold diffusion particularly slow in the present
example. This phenomenon is due to the appearance of three well separated time scales,
as discussed in the next item.

7.2 After a natural, symplectic linear change of variables (I,¢) — (I',¢), (I} := I,
I »= ply — qI3 + qI3), the unperturbed part, Hy ,, becomes simply I'? /2 + wlj, showing,
in a more clear way, the proper—degeneracy of the system (Hp,, in these variables, does
not depend upon I} = I, which is the physically interesting variable). The appearance of
three (well separated) time scales for the evolution of the angles ¢"s is also more evident
in these variables: in fact (for € small and p < 1)

¢ = O(e") >0(e),  $=0(), @=w=00). (7.7)

The “non—degeneracy” assumption (7.5) is made in order to really have ¢, = O(e), i.e.,
in order to have, 28y He ulp—o,11=7, # 0-

7.3 An immediate consequence of the above different time scales is the following. Having
only one frequency (namely w) of order one suggests to perform averaging over (j; this
can be done at any order of £ and, in fact, using “normal form” theory, we shall do
it at an exponential order. This implies immediately that the quantity |[I3(t) — I3(0)] is
exponentially small with (a suitable power of) 1/e for times which are exponentially long
with (a suitable power of) 1/¢ (at least, as long as the other action variables remain in
their domain of definition). This shows that, up to such exponentially long times, the
resonant D’Alembert Hamiltonian behaves effectively as a two—degree—of freedom system
(see, also, [34]). Furthermore, besides the just mentioned “super stability” of I3 (which,
after all, has a limited physical interest), we see immediately, by (approximate) energy
conservation™, that also I is stable (again: provided I} stays in its domain of definition);
in this case, in fact, one checks immediately that |/;(£)—I; (0)| < const. 1/¢. This comment
shows that — as mentioned above — the only non-trivial stability is related to I, = Js,
which (not by chance) is the most relevant physical quantity.

79“A pproximate” because, for the obtained two-degree—of freedom system, energy conservation holds
only up to exponentially long times.
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7.4 It is remarkable (particularly in view of the special occurrence, in our Solar System, of
the resonances (1:1) and (2:1)) that the analysis of the resonant D’Alembert Hamiltonian
is different according to whether the resonance (p:q) is considered with (p, q) = (1,1),(2,1)
or with (p,q) # (1,1),(2,1). In fact, the case (p,q) = (1,1),(2,1) will turn out to be
significantly more difficult, at a technical level, than the other cases, as briefly explained
in the next item 7.5.

We have formerly discussed the apparency af this difference between the case (p,q) =
(1,1),(2,1) and the cases (p,q) # (1,1),(2,1) in subsection 3.2. In particular we observe
that, after the above exponential averaging in ¢ (calling I and ¢ the new averaged sym-
plectic variables, which are close to the variables I' and ¢'), the D’Alembert Hamiltonian
takes the form

B o
—‘)L +wls +eHoi (I, 1) + 5“H§1) (Iy, I3, §1, Po;€) + O(exp(l/ec"““)) ) (7.8)

with a := 1 + min{c, £}, H fl) real-analytic and bounded by a constant and the “effective
Hamiltonian” Hg, given by

_— 1 r2n A A . A
H01(I2,901) = %/o FO(O,I2>901 + pYs3, P2 — q(ﬂs)d% . (7-9)

As we have discussed in section 3, a straightforward computation of this average using
the explicit expression for Fy given in (7.3), yields

. . 60(07j2> o if (p7 Q) 7é (171)7 (291) .
Ho(la, 1) =4 ) ‘ (7.10)
co(0, L) +d;, (0, I2) cos(jpr) , i (p,q) = (1,1) or (2,1)

with j; := 2 and j, := 1: thus, in the case (p,q) # (1,1), (2,1) the effective Hamiltonian
M, is independent of ¢, while in the cases (p,q) = (1,1) or (2,1), it depends explicitly
upon ¢j.
7.5 In the case H o1 In (7.8) is independent of ¢, one can e\:pl(nt the separation of scales
between ¢; and ¢, (which remain of the same order of ¢} and ¢): in a suitable e-
dependent /-domain (i.e., excluding an e-dependent small neighborhood of {h, =0}
the variable ¢, is fast Wlth respect to the variable ¢, and, therefore, the dependence
upon ¢, (again, by means of “averaging” or “normal form” theory) can be removed up to
exponentially small terms. Optimizing the various choices and using energy conservation
arguments will allow us to obtain the stability claim in all action variables for the case
(p,q) # (1,1) or (2,1).

To carry out an analogous strategy in the case Ho, in (7 8) does depend upon @,

one has to, first, put the two—dimensional integrable system - e +eHy (Io 1) into action—
angle variables. Moreover for our purposes, we need detailed 1nformat1on on the analyticity
domains of this symplectic change of variables, which becomes singular as ¢ — 0. This
analysis was carried out in Proposition 2.1.
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7.6 Apart from the complex analysis technicalities mentioned in the previous item, our
approach consists in a careful joint use of normal form theory and energy conservation
arguments fully exploiting the separation of scales described in item 7.2. We remark

that the integrable part of the resonant D’Alembert Hamiltonian, i.e., the term L +w13 -+

eH o1 (L5, $1) in (7.8), is a non convex function of I; compare [33] and [34] where 1t is shown
that the coefficient of I in co(0, Ig) in typical regions of phase space, is negative. This
explains the reason why the arguments that we use, in order to obtain action-confinement,
are somewhat more related to the original approach of Nekhoroshev [90] rather than to
simpler arguments based on convexity, as introduced in [15] (and used, also, in [93]).

7.7 For the D’Alembert model, a different approach to exponential stability is, in prin-
ciple, possible. Namely, one may use KAM theory to establish the existence of maximal
tori for the two—dimensional system in (7.8) obtained disregarding the exponentially small
terms (and the term wl3) concluding the entrapment of the I, variable up to exponen-
tially long times (for which the dynamics of the two-dimensional approximation coincides,
essentially, with the full dynamics). Furthermore, using smooth, iso-energetic KAM the-
ory, this approach might avoid the delicate complex analysis mentioned in item 7.5. We
decided not to follow this approach since in order to apply smooth KAM one needs to
control (in the two—dimensional case) the C"-norm of the Hamiltonian with 7 > 4, a
fact which would involve to have a precise control as € — 0, of the first five derivatives

of the symplectic diffeomorphism casting - L +eH 01(]2,901) into action—angle variables:
these computations might not be simpler than the computations performed in Proposi-
tion 2.1. A second reason is that the two-dimensional Hamiltonian obtained from (7.8)
is in general not a convex function of I and iso—energetic KAM does not hold in the
whole four—dimensional phase space. Indeed, instability channels (along which the action
variables may drift away by a quantity of order one in exponentially long times — compare
[33]) may, in general, appear. We believe that, in the D’Alembert case, such channels
do not appear: it would be interesting to prove this fact, since the presence of channels
might lead to a topological instability for the D’Alembert problem based on a mechanism
entirely different from Arnold diffusion.

7.8 Finally, we mention that the estimates provided in the proof of Theorem 7.1 allow
to compute explicitly all the constants involved. For example, let us indicate, here, for
the case (p,q) # (1,1),(2,1), the exact expression of the constants v; and &g involved in
the Theorem. Let a := 1 4+ min{c, £} and choose 1/2 < b < (a — 7p)/2. Then the time of
stability can be taken to be®

esSr 1
T(e) = exp(Cae™™). 7.11
5760 €% e (7
Where S, Co, M, M are defined, respectively, in (8.4),(8.18),(8.24) below. Furthermore for
any time |t] < T( ), we obtain

5 5
|I.(t) — I,(0)] < yid gb and |Il(t)|§17"5£; (7.12)

80 Here e is the Neper constant e := ., (k!)™!

7




defining 1 := (2b — 1)/2, 76 := v/C5 + 275, with Cs is defined in (8.31) below, we also
obtain

LO<wren = RO -BOI<Q+VDwret <5 (T13)
IL(0)] > yere™ = lIz(t)*Iz(O)lﬁlzﬁ(z)l <§. (7.14)

An explicit expression for £, may be immediately obtained by looking at the conditions
(8.10), (8.11), (8.18), (8.22), (8.32), (8.36) below.

8 Proof of Theorem in the case (p,q) # (1,1), (2,1)

In this section we present the proof of Theorem 7.1 in the case (p,q) # (1,1) or (2,1).
In such a case the function H 01(.72, (1) is simply ¢o(0, Ig) Bare in mind, however, that
subsection 8.1, 8.2, and 8.3 hold for the general case and, therefore, in these subsections
we maintain the general notation Hoy (_[2, B1).
In what follows, we shall assume that, for any 0 < £ < £, the Hamiltonian®' H , belongs
to Hr(Agr x T%), where

R := (ret,r,00) , (8.1)

s> 0 (and 0 < £ < 1). We shall also denote My and M, (e~independent) upper bounds
on, respectively, || Follrs and ||Fil|r,s-

8.1 Step 1 (linear change of variables)
Let ¢q be the following linear symplectic map:
II A ]I ]l _BII II 1_[, ! ! I ! ! 2
oo’ ) = (1L, Iy, 1Tt 1), () + Db, b — ah, a0h)) - (8.2)
Then, ¢, casts the Hamiltonian H, , into the form

HOT ¢lse,p) = Hepodo(l'¢) (83)
9
= % +wlf +eGo(I}, I, @1, 5, @) + enGi(ly, Io, 01, 0, P53 1)
which belongs to Hr(Ar x Tg) with
S:=cs, d :=min{1/(1+p),1/(1+9q)}, (8.4)

and
1Gollr,s £ My , |G1llr,s < My .

81Recall the definitions of H. , and A given above.
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Moreover:

Go(]{, Ié, ‘,0,1, @é, (,0;,) = HOl(I{: Iéa (10,1) + éo( 11 Iéi <,0'1, 90{2’ SD;’))
with o
| Coll 1, 6k 6, )iy = 0.
and

CO(ILIé) ’ if (pa Q) # (171)7 (27 1) )

Ho (11, I3, @) = { ' _
co(1, I4) + dj, (11, I) cos(gpt) . if (p,q) = (1,1),(2,1),

with 71 := 2 and 73 := L.

Obviously, since ¢ depends upon p and ¢, also the functions G; and Hy; depend upon p
and g, but we shall not indicate such dependence in the notation.

We remark that, in general, ¢y is not a diffeomorphism of R? x T2 (since the induced
map on T® has determinant equal to g); this fact, however, does not affect the following
analysis.

If @ := 14 min{c, £}, using the fact that |Ij| < 2re® and u < €°, one see that H® has the
following form:

1?2 _ . |
"'2'1" + wIé + EHOI(Iéa (1011) + 6G0(*’é7 go’la QOIQa Wg) -+ Ea 2(0)('[{7 Iéa Qolln (70/27 (10/37 E)

where _G_O(Ié’ (20) = éO(O: I.‘,27 90/)7
o 27
|Gl ot b, )i = 0, (8.5)
and (recall (3.9))

_C_O(Ié) ) if (p7 Q) 7é (171)7 (27 1) ’

Ho (I, ¢)) = Ho (0, I, 1) == { -
EO(Ié) + djp(Ié) COS(jP(Pll) , if (pa Q) = (17 1)7 (27 1) )
(3.6)
where 2
’ 1 _ 1,3
Eo(Ié) 1= Cyg + C02'§2“7 Cop = Z<2 — V%), Coo ‘= -j—?(éV% - 1) (87)
and

5 = 1 5, I
di(l3) =i (0, [3) = —SFa 714 |1 — 72(1 + —:%) ;

32(15) .
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where

L
R = k1(0) == A 7y :=v1(0) := /1 —R?. (8.9)
The function H{" (11, I}, @, 04, 04; €) belongs to Hr(Ag x T%) and

€ o1 +eGo + e*HS || p,s = |[eGo + €"+°Ch || ps < e(My + €M) .

8.2 Step 2 (time averaging)

Here, we shall remove, up to exponentially small terms, the (fast) dependence upon ¢f. To
do this, we shall apply the Normal Form Lemma with d := 3, (I, ) := (I',¢), H := HO,
hi=T1%/2+wl}, f:=cHpn +eGy+ eoHY = eGy + &Gy, D := A, p:= R, py :=ret,
o =8, A= {(k1,ky,0) s.t. ki, ks € Z}, @ :=w/2, K := w/(4re*). The condition Ko > 6
is implied by

£ < (wS/24r)V/* . (8.10)
Condition (1.2) becomes

‘ e(My + °M;) < 27922
which is verified, for example, if
r? )1/(1—2e)

< —
£= (29(MD+M1)

(8.11)

Hence, for € small enough, we can apply the Normal Form Lemma, finding a real-analytic
symplectic transformation

~

¢1: (I, @) € Apja X Ty = (I',¢) € Ap x Tg
such that

(I, e, 1) := HO 0 61 (1, p;e) (8.12)

I z ~ s b ~
= *5 + wly + eHo (12, ¢1) +5aH1 (11,12;951;@2;5) + HO(L, I, ¢;€)

and such that the following bounds hold. For any (I, $) € App x T /69
/ j < 2 M, SM. r 20 - 1 £ 3
|I' = l-a‘gd 0ote 1)3(85 )7“5 < 5rres (8.13)
and

IHO | rj2sss < MY, [ HO||rja,ss < MY = e(My + e°M;) exp(—Cie ™), (8.14)

where g s
. or w0
MY = (M + S(M0+Ml)) Oy =g - (8.15)
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8.3 Step 3 (averaging over ¢1)

Here, we shall exploit the fact that, for (p,q) different from (1,1) and from (2,1), the
Hamiltonian H 01(I2, $1) is 1ndependent of the angles, allowing to treat the angle ¢; as a
“fast” angle in a suitable domain A. Consider, therefore, the Hamiltonian

o 2 A L
H(l)(Il,IQ,(pl,SD‘_)';E) = —21' +€50(_[2) +Ea 51)(I17]27§019902;5) ) (816)
and let 5 1 1 5 5
A= {I, e (—=ret, —zreb) U (creb, Sreh), 112 le < “7"} : (8.17)

4 2 2 4
In order to apply the Normal Form Lemma, we let b 70 be as in 7.8 and let: d = 2,
(I,0) = (I, I, 1, %0), b := 12/2 +eto(hy), f = e*HY, D == A, p (Teb/4 r/4),
po =71 /4, 0= 5/6, A= {(0, ko) s.t. ko € Z}, v :=1€"/8, K = (215M1(1)670) . With
such positions, we see that we can apply Lemma 1.1, provided

A VIS 1/(1—b— 2
£ < min ICozlzr(le-F 27‘)] ft 70), C’l/%} : Cy = -9——2[17—3]\2—1(1—) : (8.18)
Under such condition, we can find a real-analytic symplectic transformation
by (I, I, @1, 7o) € Apresjsnss) * T%/36 — (I, o, @1, 92) € Agredjayjay % T25/6
such that v
HO(L, I, @1, ;€)= HY 0 gy (11, I, $1, $os ) (8.19)
= 521% +eto(l2) + 5aH1(2) (I, Iz, @2y e) + HP (jl, L, ¢r, @23 €)
with
H gerssarsyspe < MY = 0y,
AP N etjsrispspse < MP ="M exp(—Che ™),
and

3. 200" Lot reb

I —0l | L—1 < < =
ll IllJlIQ 21 S’r = 297

Y (I, I, ¢1,$2) € A(st/S,T/S)XT%/%' (8.20)
Extend such symplectic transformation on A(st /8,78) X € X Tf’g/% by setting

do(l1, o, I3, §r, @2, B3;€) = (Bo(L1, I, Br, P2s€), I, B3) -
In this way, denoting (I, ) = (I, I, Is, @1, $a, $s), we see that
HO(I, g;e) := HD 0 6o(1, gy ¢) | (8.21)

I2 ~ = - =
= "2" +wly +eeo(ly) + " HP Iy, I, @o; €) + HP (I, I, §;€)
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with
[Pzasulre

In order to simplify the calculus of the constants we assume that

b/8r/800)5/36<M() ]V[(2)+M(1)

e < min{(%)l/ ), (ecy)™*}. (8.22)

Using (8.22) it is simple to prove that
el exp(Cre™%) > e % exp(Cae™™). (8.23)

In fact, using (8.22) and the fact that a < 3/2, it is sufficient to prove that exp(Cie™%) >
£~ which is guaranteed®? again by (8.22).
By (8.23) we, also, obtain

. — 8
M£2) S M(22)5a exp<___clzs—'¥0), MgQ) = (Ml —+ (1 -+ w—;—;) (]\/.[0 + Ml)) (824)

8.4 Step 4 (energy conservation)

We are, now, in the position of concluding the proof of Theorem 7.1 for the case (p,q) #
(1,1), (2,1). The arguments we shall use, here, are based on energy conservation. However,
such arguments, are not completely straightforward because we have to keep track of
domains (recall that the variables (I1, I) are not defined in a neighborhood of the origin)
and also because we shall freely use different sets of variables.

o (Energy conservation for the Hamiltonians HY and H®))

Denote by 2(¢) = (I(t),¢(t)) and Z(t) = (I(t), (t)) the solutions of the Hamilton
equations associated, respectively, to the Hamiltonians H® in (8.12) and H () in (8.21),
with respective initial data 2(0) := (1(0),$(0)) and 2(0) := (1(0),&(0)). Fulthermore if
F = F(I,$), denote A,F == F(2(t)) — F(2(0)) and AF == F(Z(t)) — F(2(0)). Then,
conservation of energy for the Hamiltonians in (8.12) and (8.21) yields®:

cen[BOAL + HAEF] + LA + ALY

+wAt13 +e*AHY + AL HD =0, (8.25)
and
T R
ECp2 [IQ(O)AtIQ -+ -2-(At_[2)2] [ ( )Atfl + 2(A Il) ]
FtwA Ty + A HP + AH® = 0. (8.26)

82 Setting z := e~ ¢ and y = 1/£C; we have to prove that e® > z¥. This is obvious if y < 1;if y > 11t
is true if, for example, T > v

83Recall (8.6) and observe that for any numbers z,y, one has &- — z = Hz—y)? +ylz—y).
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e (A-priori exponential estimates for the drift of I, I and I)
For® 0 < t < T'(¢) we have directly by Hamilton equations, (8.23) and Cauchy estimates®

ALl = Al < sup |85, HP (3(1); )t < —= MMt < . (8.27
IANTEY | A 3!_091;! o 3 (2(7);€)] =gt t= 96_]\—4‘&2) T (8.27)
. 36 1
A < sup |05 HY G(r)e)lt < =MDt < —re®. (8.28)
_ 0<r<t eS 16
e Consider, now, (real) initial positions
(11(0), 5(0)) € {Ja] € A +27)ref} x {|I; — 2| < (1 +27")r},
and let us consider, separately, two cases:
- 1
() |L)] < 57"5", V0 <t<T(e);
. - 1 £ 1
(i) 30 <t < T(e) st [L(t)] < 5’)“{:“() VO<t<t and [L(1)] = -ireb.
o (Case (i) and stability of I,)
Consider case (i): by (8.27) and (8.25), we see that, until
\I5(t) — Jo| < 3r/2, (8.29)
we have A . o
|21(0) Ay + (Aely)?| < Car?e™™! (8.30)
where we can take®®
1 (1 My+Mw 16MY Y
Cy = - —"}5&9 WM M) (8.31)
lcool \ 4 4gRf v 3 r? r?

We need, at this point, an elementary estimate (whose trivial proof is left to the reader):

Lemma 8.1 Let y,y; € R and C > 0 and suppose that
2y0y + 7| < C? .
Then:

84 We shall consider only positive times since negative times are treated in a completely analogous
way.

85«Cauchy estimates” allow to bound derivatives of analytic functions in terms of their sup—
norm on larger domains; with our choice of norms, Cauchy estimates take the following form. Con-
sider a 2r—periodic function f(p) := Y ez fre'®?, analytic on T, with [|f]ls = X4 |fele!®s, then
max,ct |0, f(¢)] < Zlflls In fact for all 0 < o < s we have max, 110 f(9)] < 10pflls—s =
Sk (ke 1819 | felelkls < 57, |fxle!®ls and taking the sup over ¢ < s of the right hand side, we have
the thesis.

86Recall (7.5), which implies coz # 0.
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(1) if lyo] < C then ly| < lvol + /53 + C? < (1 +2)C,
(2) if lyo| > C then” |y| < C?yo|™t < C.

Let us now assume that

1 )2/(2b—1)
204/C}s
and let us apply the estimates of Lemma 8.1 to (8.30) with C' := /Csre™, yo := 1,(0)
and y := Als. Then:

e<( (8.32)

. Ao s I 1 1
IIQ(O)i S \1037"571 i IIQ(t) - IQ(O)t S (1 -+ \/2—) CgTErYl S ('8- - ¥>r (833)
~ P 2 037‘2 1 1
L(0)] > 4/Csre™ = L) — L0)] < =—=—? 1 < (= - =)r, 8.34
(0)] > y/Cs B0 - BO| < Foe < (g g)s 639
which in particular imply (8:29).
e (Case (ii) and and stability of L)
If (ii) occurs, then, by (8.34), we have that
L +277) > L) >reb/2,  |LE) = | <5r/4.

Then, by (8.20), we can find

(jf: j;: ‘25;7 (:5;) € A(TQ_e;’_)%) X T2 s.t. qz(ff,f;,@i, ‘:5;) = (fl(t*)7j2(t*)7 ¢l(t*)7¢2(t*)) .
Now, as in (8.28), we have 3 ) '
\I(t) — L(t%)| < re®/16 (8.35)

hence, using (8.20),

() - )] < L) = L)+ L) - L)+ |1LE) = L0)] + 1L(0) - L(0)]
< (1+Ilg+§1‘g)7°5b

L] < 04—+ =)t

IA

Finally, using (8.13), we have (7.12), provided the following condition is, also, satisfied

T 1/1-b
< .
e < (21%5(M0 +M1)) . (8.36)
e (Stability of I)
In order to prove stability for the Ir-variable, we can apply (8.26) until
~ = 1 1 b - -, 1 1
|L(t) — I7] < (§ — 55)7‘5 and |L(t) — L] < (g - 59-)7“ (8.37)

87 We set z := C%yy > and we have used that ViFz-1<z/2andl-vI-z<zfor0<z <L
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obtaining again (as for (8.30))
RHACE )+ (B@) - 1) 2| < Car?et, (8.38)

We prove the first inequality in (8.37) using (8.20) and (8.35). As in case (i) we use
Lemma 8.1 with C := /Csre™, yo := I} and y := L, (t) — I}. Using again (8.32) we have
that

Bl Cre® = |L) - BI< 0+ vVEyOure™ < (3~ o5)r, (839

039 1 1

1> JCrem = L) - < I 2-1 S('g”é‘E) (8.40)
2

which, in particular, imply the second condition in (8.37).

e (Conclusion)

Finally (8.33),(8.34),(8.39),(8.40),(8.13),(8.20) imply (7.13) and (7.14), concluding the
proof of Theorem 7.1 in the case (p,q) # (1,1),(2,1). B

9 Proof of Theorem in the case (p,q) = (1,1), (2,1)

We now turn to the special cases (p,q) = (1,1) or (2,1), in which case the Hamiltonian
Hoi (I, 1) depends explicitly on ¢1; see (8.6). In order to carry out the analogous of
step 3 above, we have first, to introduce action—angle variables for the two—dimensional

integrable system L +eH 01(.72,(,01) which may be viewed as a “suspended pendulum”
(with potential cos gol or cos2¢;) having a small gravity varying with a second action—
variable. Of course such action—angle variables will be singular near the separatrices and
near elliptic periodic orbits (corresponding to the equilibria of the pendulum) and there-
fore a careful blow—up analysis near the singularities, as € — 0, is needed. The results
were collected in Proposition 2.1.

We recall that the Hamiltonian (8.12) has, in the case (p,q) = (1,1) or (2,1), the form

7o . .
H® = 2t wh — eky(L) (1 + cos jppr) + ehy(f2) + e*HY + HY, (9.1)

where A o A ) )
ky(lo) == —d;,(I2), hp(l2) :==7%(l2) + kp(2), 71 =2, Jo=1. (9.2)
In this subsection & will denote positive (e-independent) constants and we will take € as

small as we need.
Choose 1 < X < a — v, (here A corresponds to 2b). From (8.14) we deduce that

1I3(t) — L(to)| < &8*, VO <t <t <Ti(e) = &g exp(—Ea/eh). (9.3)

In order to prove stability in the other actions we state the following elementary Lemma
concerning the conservation of energy.
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Lemma 9.1 Let H := H(I,t;p) = h(I) + pf(t) € R, I,t,u € R and assume that h is
analytic and not identically constant and that |f(t)] <1 for allt € R. Fiz ro > 0. Then,
there ezist 0 < po,v < 1 and ¢ > 0 such that, if for some continous function I(t) == 1I(t;p)
with |Io| := |I1(0)] < ro H(I(t),t; p) =0, then for all 0 < p < po we have |1(t) — Io| < cp®.

Proof Being h analytic we have that, if N := {|I| < 2rg s.t. A'(I) = 0}, then #N < oco.
Hence, there exists p, € N such that VI, € N there exist 1 < py < p. for which®®
R®) (1) # 0 and AP (L)) =0 V1 < p < po.

There exist by > 0 and 0 < 7 < 7o such that V Iy € N, |Iy| < ro we have that | (o) (f)[ >
by, V|I — Ip| < rly. We claim that the Lemma holds with v < 1/p., ¢ < (2p0!/bo) /70 and
po < (rh/c)P+. In fact, by Taylor’s formula, V|I — Iy| < rg, 3|1 — Io| < rj such that
h(I) — h(Iy) = R@) (L) (I — Io)P° /po! and hence |I(t) — I[P < 2po!p/bo.

On the other hand, if |Ip| < ro with Iy € {|I| < 2rq, s.t. |I — 1| > 74/2,V] € N} = M,
then, defining m := miny, |B’| > 0, the Lemma holds with v < 1, ¢ < 2/m, po < Tym/4,
since 2u > |h(I) — k(L) > m|I — L,|. &

We consider first the case (p,q) = (2,1); the case (p,q) = (1,1), being analogous, will-be
considered later. For brevity we will omit the dependence on p = 2 in the formulas. In the
Hamiltonian (9.1) we analyze first the following part, which represents a pendulum with
a small gravity depending on a parameter:

o L P )
E = E(I1,I5,¢1) == E(l1, I, ¢1;¢) = 'il‘ —ek(Iy)(1 +cos @) , (9.4)

where k() = ky(I;). We denote E(t) := E(L(t), L(t), 91 (t)).
We claim that if 0 < ¢y <t < Ti(e) then

E(t) — E(t)] < 46* = |L(t) - L)l <&ve, |L(t) —hit) <&® .  (9.5)

In fact, if |E(t) — E(to)| < 4¢* then the variable I, may vary, at most, by order /¢ and
using (9.3), we can apply the energy conservation to the Hamiltonian (9.1) obtaining that

|R(12(t)) = h(La (k)] < &e™7.

Hence, by the fact that A(-) is a non constant analytic function (as it is immediate to
verify), using Lemma 9.1 we get (9.5).

Now we want to apply Proposition 2.1 to the pendulum (9.4). We set (p,1,q,¢) =
(I, I, ¢1, @2), (P, J,Q,%) = (I, Iy $1, P2), b 1= ko, A" = [I, — %T,jQ + 27, rp == 1/4,
n = ¢&*, Ry = 3re’, 1y i=ret/4, s1 1= 53 1= S/6. If ¢ is sufficiently small we can apply
Proposition 2.1 transforming the Hamiltonian

. P I2 . .

O = O, I, ¢1, $o; ) = 51 — ek(Ly)(1 + cos 1) + eh(ly) + *HY

88 We denote with h(?) the p-th derivative of h with respect to I.
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into the new Hamiltonians
AO= = B0 o ¢* (1, I, @1, ¢ri€) = B (L, ) + eh(h) + e*HY (1, I, 1, 2)

which belongs to Hr(Qf;, ,,) % Toy % Toy ), where®

(p1,02

py = &gt po = & InT (1 /e), o1 = &S InTH(1/e), oy = &nS.

We now perform the analogous of the Step 3 in § 2.4. In order to apply the Normal
Form Lemma, we take ¢ sufficiently small and we set™ d := 2, (1, ¢) = (I, Iy, ¢1, B2),
h = Ei(jl j2) +5h(—f2) = ’3aH(1)i D = QF p = (p1,p2), po = p1, 0 1= 07,

= {(0,ks) s.t. by € Z}, o := = £19/EInT 7! K = £13¢770. So we find two real-analytic
symplectlc transformations gbl such that

H®*(I, I, 1, Gaye) = HUOF 0 §5: (I, I, @1, Bos €) =
Ei(]l,]2)+5h([2)+g“[—[§) (I, I, py; )+H2) (I, I2, B1, Po2; €)

belongs to ’HR(Q 2 X Toyse X Ty, /6) and

(p1.p2
L= L~ Ll <p/27,  HPE|| < s exp(—61s5/e3) - (9.6)
Now we complete our two symplectic transformations defining
o= (L, Io, I, G1, §o, B3s€) = (9F 0 ¢* (11, I, 1, Ba; €), I3, Bs)
so that |

| H®*(] ¢ye) .= HY o (I, p;€) = (9.7)
Ei<f1, jg) -+ Eh(jg) -+ (A)jg + EaHfz)i(fh jg, @2; 8) - Héz)i(jl,jg, (,5;6).

belongs to %R(Q (102)/2 % C % To, /6 x Tgy6 X Tgs) with

|]H§2)iH < &6 exp(—£175/€]) -

We now perform the analogous of Step 4 in § 2.5. Let
At . O 2
O = O a-n) o) R
From the form of the Hamiltonian (9.7) we deduce that ¥ (I3 (to), [2(to)) € OF

|j1(t) - jl(to)! S 5188519 , V0 S t() S t S TQ(&) = fgo exp(—fgl/a"m) < T1 (E) . (98)

89 We have & = cq, £ = c5/(A = 1), f10 = ¢ /6(A — 1), &1 = 1/12.
90 We can make such a choice of «, using (2.5) and (2.6).
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Since Is(t) — Is(ty) = I5(t) = Is(to), from (9.3) and (9.8) we deduce, using the energy
conservation, that

(B0 (t), Ta(0)) + eh(B(0)] - [E*(to), Talto)) + eh(D()))| < & - (99)

We now prove that GE(-) := E*(I1(t),-) + €h(:) are non constant analytic functions.
From (8.7) and (9.2), it follows that

dG*
dy
Now we observe that by (9.2), (8.8), (8.9), k(y) is effectively defined and analytic for all
ly| < I, and the same is true for Y. Thus, from the fact that lim,_,_p)+ E'(y) =0 (as it
follows differentiating (8.8)) and that |Y*| < 1, by (9.10) we deduce that
dG*

li — (y) = —¢I
y_>(1—¥%)+ dy (y) €11Co2,

(v) = 5[c02y - kl(y)Yi(fl(to),y)] ~ (9.10)

which is different from 0'by (8.7) and the non-degeneracy assumption (7.5). This proves
that G* are non constant analytic functions. Finally, using (9.9), we can apply Lemma
9.1 and find a4, &5 > 0 such that

1L (t) = I(0)] < &ose™. (9.11)

We remark that, in principle, a4, £25 found with Lemma 9.1, depend on I (ty) but, since
we work in compact sets 0¥, we can take them independent on /1 (to)-

We have proved stability for 0 < to <t < Tp(e) and (I(to), 3(t0)) € QFf x R x T%. By
(9.6) this implies stability for (I (to), @(to)) € OF x R x T®. By (2.4) this is equivalent to
prove stability for (I(to), §(t0)) € M* x R x T where

Mt = {({,¢) st & < B(l, b, ¢1) < R3/2, I e A%
M~ = {(,9) st —2ek(l) +&* < By, I, ¢1) < =€, I € A%}

Using (9.5) and (9.3) it is immediate to prove stability for (1(0), ®(0)) € M x Rx T and
0 <t < Ts(g), where

M = {(f,¢) st.E(L, I, ¢1) < RE/2, I e A%}

Observing that M D (Asg N R*) x T°, by (8.13) and the fact that ¢y is linear, we finally
obtain (7.6). This finishes the proof in the case (p, q) = (2,1). |

Tt remains to consider the case (p,q) = (1,1). The Hamiltonian (9.1) becomes
2

HWY = -2i — ek(l)(1 4+ cos2¢,) + F (9.12)
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where F':= F(I, ¢;¢) := wf3+ehp(f2)+s“ F) (I1, I, 1, @2;5)+H,£1)(f1,f2, @;€). Next, we
perform the following linear change of variables [} := I;/2, I3 1= I, I3 := I3, ¢7 = 2¢,
@5 := (g, P% := (3, casting the Hamiltonian (9.12) into the form

Tk ok Th Th ok 1 -
Y = O, %e) = 4B IS o) + 2P Cn 61/2)] (013)

with .
o a Iy k(I3
E(I, I3, ¢7;€) = SV (2)(
2 4

For ease of notation, we have omitted in F the (f;,f;,%, ¢%; €)-dependence, which,
here, plays no role. We now apglygl Proposition 2.1 to F defined in (9.14), finding two
symplectic change of variables I} := p*(P,Q), #% := ¢=(P,Q), putting the Hamiltonian
(9.13) in the form

1+ cos ¢y) . (9.14)

HY .= 4[E*(P) + F(P,Q)] , ‘ (9.15)

where F¥(P,Q) = 1F(2p*(P,Q), ¢*(P,Q)/2). We note that the functions p* are both
2m-periodic in Q. The function ¢—, and hence F'~, is 27-periodic in @ too; so we can define
(I, 1) == (P,Q) and proceed exactly as for (p,q) = (2,1), applying the Normal Form
Lemma and the subsequent arguments.

The positive energy case is different: in fact ¢*(P,Q + 27) = ¢t (P, Q) + 27 so that F;"
is only 4m-periodic in @, but in order to apply the Normal Form Lemma we need a

2m-periodic function. We, therefore, define another linear change of variables P := 2P,
Qo := Q/2, so that (9.15) becomes

HG) = 4[E*(Py/2) + F(Po, Qo)] - (9.16)
where Ff (P, Qo) := F(FPy/2,2Qo) which is 2m-periodic in (. Therefore, we may de-

fine (I, 1) := (P, Qo) and proceed again as in the case (p,¢q) = (2,1). The proof of
Theorem 7.1 is, now, complete . B

91 Again we will omit the dependence on the variables (I3, I, 9%, 9%; €).
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Part IV

Topological instability: a new
variational mechanism with optimal
diffusion time







10 Statement of the main results

In this part we perform a mechanism to produce topological instability which is
alternative to the one used first by Arnold [10] and become classical to prove action—
instability in nearly-integrable Hamiltonian systems®®. Indeed this method is not based
on the ezistence of a transition chain of tori. In particular we avoid the KAM construction
of the perturbed hyperbolic tori, proving directly the existence of a drifting orbit as a local
minimum of an action functional. At the same time our variational approach achieves the
optimal diffusion time, as a consequence of a general stability result, proved via classical
perturbation theory.

We will consider nearly integrable non-isochronous Hamiltonian systems defined by

2 .2
Hy= 5+ 5+ (cosg— 1) + pf (0, 0,), - (o)

where (i, ¢,t) € T¢ x T* x T* are the angle variables, (I,p) € R? x R' are the action
variables and g > 0 is a small real parameter. The Hamiltonian system associated with
H,, writes .

QO—‘:I, I:—,u&pf, q:pa p:SI]flq—/_Laqf <‘S/-L)
As in [49], the perturbation f is assumed to be a real trigonometric polynomial of order
N in ¢ and t, namely®

fLepat)= > faill,p,q)e™e™, (10.2)
DIV |

The unperturbed Hamiltonian system (Sp) is completely integrable and in particular
the energy I2/2 of each rotator is a constant of the motion. Now, for x4 # 0, we want
to exchange O(1)-energy among the rotators and find the minimal time for which this
exchange appens.

Let us define the “resonant web” Dy, formed by the frequencies w “resonant with
the perturbation”

Dy :={w e R | 3(n, 1) € 2" 5.6 0 < |(n, )] < N and w - n+1 = 0} = Uocitmiyjsn B
(10.3)
where E,,; := {w € R? |w-n+! = 0}. Let us also consider the Poincaré-Melnikov primitive

I'(w, 6o, o) = “/R [f(wt + 0, qo(t), t + 0p) — f(wt + o, 0,1 + 90)] dt,

where qo(t) = 4 arctan(expt) is the separatrlx of the unperturbed pendulum equation
¢ = sing satisfying ¢o(0) = 7. :

92 See also the Introduction
8f (L) = fn (], p,q) for all (n,1) € Z4 x 7, with |(n,1)] < N where z denotes the complex
conjugate of z € C.
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The next Theorem (see Theorem 0.4) states that, for any connected component CcC
D, wy,wr € C, there exists a solution of (S,) connecting a O(u)-neighborhood of wr in
the action space to a O(u)-neighborhood of w, in the time-interval Ty = O((1/ w)|log ).

Theorem 10.1 Let C be a connected component of DS, wr,wr € C and let 7 [0,L] = C
be a smooth embedding such that v(0) = wr and y(L) = wp. Assume that, for allw := v(s)
(s € [0,L]), T'(w,",-) possesses a mon-degenerate local minimum (0%, ¢%). Then ¥n > 0
there ezists po = po(7y,m) > 0 and C = C(y) > 0 such that VO < p < Ko there ezists
o solution (I,(1), pu(t), pu(t), qu(t)) of (S,.) and two instants 7 < T such that I,(m) =
wr +0(u), I,(r) = wp + O(n) and

C
| — 7| < —#—{ log 1. (10.4)

Moreover dist(I,(t),v([0, L])) <n for all 7y <t < 7. B

_ In addition, the above result still holds for any perturbation u(f+uf) with any smooth
Fle,a,t).

We can also build diffusion orbits approaching the boundaries of Dy at distances as
small as a certain power of u: see for a precise statement Theorem 15.1.

As a byproduct of the techniques developed we have the following result (see Theorem
0.5), which is proved in section 15, concerning “Arnold’s example” [10] where 7, := {I =
w,p € T p=q=0} are, for all w € R, even for u +# 0, invariant tori of (S,).

Theorem 10.2 Let f(p,q,t) = (1 — cosq)f(p,t). Assume that for some smooth em-
bedding v : [0,L] — R%, with v(0) = wr and y(L) = wp, Yw := v(s) (s € [0,L]),
['(w,-,*) possesses a mon-degenerate local minimum (0%, ¢%). Then ¥n > 0 there ezists
o = po(y,m) > 0, and C = C(y) > 0 such that VO < pu < po there exists a heteroclinic
orbit (n-close to ) connecting the invariant tori T, and Tor- Moreover the diffusion time
Ty, needed to go from a p-neighbourhood of T, to a p-neighbourhood of To 1s bounded by
(C/u)|log | for some constant C'.

Our next stability result (see Theorem 0.6) proves the optimality of our estimate
(10.4) on the diffusion time.

Theorem 10.3 Let f(I,¢,p,q,t) be asin (10.2), where the fny (1(n,1)] < N) are analytic
functions. ThenVk,T, T > 0 there ezist fi1, ko > 0 such that Y0 < p < p1, for any solution
(I(t), o(t), p(t),q(t)) of (S,) with |I(0)] <T and |p(0)| < 7, there results

I()—I0)<x Vi such that [f g%‘lmi. (10.5)

Actually the proof of Theorem 10.3 contains much more information: in particular
the stability time (10.5) is sharp only for orbits lying close to the separatrices. On the
other hand the orbits lying far away from the separatrices are much more stable, namely
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exponentially stable in time according to Nekhoroshev type time estimates, see (16.4) and
(16.11). Indeed the diffusion orbit of Theorem 10.1 is found close to some pseudo-diffusion
orbit whose (q,p) variables move along the separatrices of the pendulum.

This part is organized as follows: in section 11 we perform the finite dimensional
reduction and we define the variational setting. In section 12 we provide a suitable devel-
opment of the reduced action functional. In section 13 we prove the new results on the
ergodization time. In section 14 we define the unperturbed pseudo-orbit. In section 15 we
prove the existence of the diffusion orbit. In section 16 we prove the stability result, that
is to say the optimality of our diffusion time.

Notations: In the following we shall use the notation a(z1,...,2;) = O(b(u)) will
mean that, for a suitable positive constant C(v, f) > 0, |a(zy, . zp)] < Cly, H)lb(w)].

11 The variational setting and the finite dimensional
reduction

Since the perturbation f(i,q,t) is purely spatial, * system (S,) reduces to the second
order system

¢ =—p0,f(p,q,t),  —G+sing=p0f(p,q1) (11.1)
with associated Lagrangian '

2 2
Luler$,0,0,1) = 5+ 5+ (1 - cosq) = uf(p,0,1). (11.2)
Using the Contraction Mapping Theorem we will prove in lemma 11.1 that, near the
unperturbed solutions (w(t—0)+po, go(t—0)) living on the stable and unstable manifolds of
the unperturbed tori T, there exist, for y small enough, solutions of the perturbed system
(11.1) which connect the sections {¢ = ¢*,¢ = —m,t = 0%} and {p=yp ,qg=m,t=0"}
(under some assumptions). The diffusion orbit will be a chain of such connecting orbits.
We first introduce a few definitions and notations. For X := (8%,07, ¢, ¢7) € R* x
R%* with 6+ < 0~ we define Ty := 0~ — 6 and the “mean frequency” wy € R? as

wy = %_——_—g: The “small denominator” of a frequency w € R? is defined by

B(w) = Pn(w) := O<|(n m v In-w+1. (11.3)
B(w) measures how close the frequency w lies to the resonant web Dy defined in (10.3).
We use the abbreviation 8y for B(wy). We shall always assume through this paper that w
stays in a fixed bounded set containing the curve .

94We will develop all the computations for f. All the next arguments remain unchanged if the pertur-
bation is f + pf, see the proof of Theorem 10.1.
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For T large enough, there exists a unique T-periodic solution Q7 of the pendulum
equation, of small positive energy with Qr(0) = —x, Qr(T) = m. Moreover Qr satisfies
Vi e [0,T/2)U(T/2,T],

0rQr(t)] < K™= 10p(Qr(T — ))()] < Kie FT
and A
|Qr ()= g0 (8)|+]Qr(8) —doo(8)] < FKre™ 7, |Qr(®)] < Kymax{e™ ", ™79}, (11.4)
for some positive constants K; and K5, where g is defined by
0o (t) = qo(t) — 27 if t € [0,T/2), Io(t) = qo(t = T) if t € (T'/2,T].

Lemma 11.1 There exists pp > 0 and constants Cy, C1,€,c1 > 0 such that V0 < p < g,
YA = (6%,07,07,07) such that CoBy > p and Ci|lnp| < Ty < Cofr/u there ezists a
unique solution (¢, (1), u(t)) = (@ (t), qur(t)) of (11.1), defined fort € (0% —1,07+1),
satisfying ¢, (0%) = ¢*, ¢.(0%) = Fr and
(1) lou(®) —=2@)| <Tp(l+apT)/BF  |pult) —wl < Tu/bh
(i) lgu(t) = Qr(t—0) <2, 1) — Qn(t—07)| <ou,

where B(t) := wy(t—0%)+pt. Moreover 0, (1), ©u(t), qua(t) and ¢, A(t) are C* functions
of (¢, A).

The proof of lemma 11.1 is given in the Appendix.

(11.5)

Remark 11.1 Roughly, the meaning of the above estimates is the following.

1) We have imposed Ci|lnp| < Ty = 67 — 0% so that by (11.4), on such intervals
of time, the periodic solution Qr, is O(p) close to “separatrices” qe of the unperturbed
pendulum. ‘

2) Estimate (i1) implies that for t = (0% + 607)/2 the perturbed solution g, may hav
O(p) oscillations around the unstable equilibrium of the pendulum g = 0, mod 27, which
is ezactly what one expects perturbing with a general f. On the contrary for the class of
perturbations considered in [10] as f(y,q,t) = (1—cosq) f(p,t) preserving all the invariant
tori, estimate (i) can be improved, getting max{|q,(t)— Qr, (t — %), |du(t) — Qr, (t —
07|} = O(pmax{exp(—Clt — 67|),exp(=C|t — 67|)}).

8) For By = /I estimate (i) becomes meaningless: for a mean frequency wy such that
n-wy+1~ /i for some 0 < |(n,1)] < N the perturbed transition orbits ¢, are no more
well-approzimated by the straight lines P(t) == ¢t + wy(t — 07).

Remark 11.2 Let us define D5 = {w e R | lw-n+1] > 8, V0<|(n0)] <N} In
[49] it is proved that hyperbolic invariant tori T of system (S,) exist for Diophantine
frequencies w € Dfi}l, for some f; = O(1) and some Ny = O(dN) > N, namely avoiding
more “resonances with the trigonometric polynomial f” than just N. The presence of such
“resonant hyperplanes E,,;” for N < |(n,l)] < Ny may be reflected in estimate (i) by the
term pT2. However such term, for our purposes, can be ignored. From this point of view
lemma 11.1 could perhaps be interpreted as the first iterative step for looking at invariant
hyperbolic tori in the perturbed system bifurcating from the unperturbed one’s .
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By lemma 11.1, for 0 < o < pp, we can define on the set

Ap, = {A = (9+7‘9~>(P+790_) ‘ COﬁi > My Cllln/“/’l < T/\ <

Coba
7 3

the Lagrangian action functional G, : A, — R as
o-
Gu(N) = Gu(6%,07, 9" 97) = |

g+

ﬁu(‘Pu(t)aSbu(t)an(t)aq.#(t)at) dt. (11-6)
We have |
Lemma 11.2 G, is differentiable and (with the abbreviations ¢, q for Ouru)

VerGu(N) = =p(07), 9t Gu(N) = -;-leb(9+>|2+%q2(9+)+cosq(9+)——1+uf(cp+,vr,6*)

Vo Gu) = 907, 8- Gul() = — (516(0) P+ 506 +e0sg(0)~1+uf (67, m,67).

PROOF. By lemma 11.1 the map (A, %) = (0, r(2), @ua(t), qua(?), dua(t)) is C* on the
set {(\,t) € A, xR | 67 <t <6} Hence G, is differentiable and

89+GM()\) = ‘ﬁu(¢+, ¢(6+)7 -, Q(9+), 9+)

o
+ /9+ ¢(s) - Og+p(s) + 4(s)Pp+4(s) dS+/9+ sin q(s)0p+q(s)
— 10, f(0(s),a(s), s) - Op+p(s) — pyf ((s), a(5), 5)0e+q(s) ds .
Integrating by parts and using that (gu», ¢u,») satisfies (11.1) in (0%, 67), we obtain

. . . - - 9
Op-CulN) = —Lolgh, 9(07), =, 4(67),6%) + [(5)0+a(5) + &(5) - By o(5)] -
Now gu»(6%) = —m for all A hence ¢(0%) 4 Op+¢(6T) = 0. Similarly we get ¢(0%) +
Op+p(07) = 0, Bg+q(07) = 0, Og+(#~) = 0. As a consequence

Bpr G u(N) = -;—lsbf(@*) + -;—cj?(@*) + (cos (%) — 1) + uf (@™, m,07).

The other partial derivatives are computed in the same way. &
For B > 0 fixed, denoting A\; = (6;, ;41 i, pit1), we define on the set
A,u,k = Aﬁ,k = {/\ = (91, .. .,9/€,g01, L ,gok) -~ Rk X de
st. V1<i<k—1, NeA,, B =8},

the reduced action functional F,, : A, — R as

w 2 : . k—1
Fu(A) = wrpr — | ;l 01 + pl™(wr, 01, 1) + pF(wr, 01, 01) + D Gu(h)
=1
'WFP s
— wppk + —2--919 4wl (W, Ok, 0x) — wF (wr, O, k) (11.7)
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where

Fu(w,go,@o) — /-OOO [f(wt + Sﬁo,qo(t)7t + 90) - f(wt+ 0o, 0,7+ 90))] dt, (118)

+co
Ps(wye();(PO) = _[) [f(wt—l— 9007q0(t)7t+90) - f(Wt+ (100307t+60))} dt7 (119)
are called resp. the unstable and the stable Poincaré-Melnikov primitive, and ’

e (TL lpo+l90)

F(w, b0, @0) := —fo0bo — Z fnll(n w+1)’

0<|(n,)|<N

(11.10)

1 := fn;(0) being the Fourier coefficients of f(i,0, t).
Critical points of the “reduced action functional” F, give rise to diffusion orbits whose
action variables I go from a small neighbourhood of w; to a small neighbourhood of wg,
as stated in lemma 11.3 below. The “boundary terms” wyp; — j——Hl + pl(wr, 01, 1) +

pF (wr, 01, ¢1) and —wpgok+| wrl? 0+l (wr, Ok, o) — pF (wr, Ok, i) have been added also
to enable us to find critical pomts of F, w.r.t. all the variables (including 6y, 1, Ok, ©x).-
More precisely, for A = (8, ) € A,y we define the pseudo diffusion solutions (©uxs Tur)
on the interval [01, 0;] by ‘

(Qop.)\(t); q#,A(t)) = (‘P/,L,Ai (t)a Qu; (t) + 277—@ - 1)) for t € {91‘; 6i+1]>

where (9,1, (t), gux (t)) are given by lemma 11.1. The pseudo diffusion solutions (Wurs Qu)
are then continuous functions which are true solutions of the equations of motion (11.1)
on each interval (6;,6;41), but the time derivatives (¢, du,x) may undergo a jump at
time ;. We have

Lemma 11.3 If A = (0,3) € A,y is a critical point of F,, then (goﬂ;(t),qﬂ;(t)) is a
solution of (11.1) in the time interval (61,8,). Moreover ¢,(61) = wr + O(w), 0. (0r) =
wr + O(p), ie (cpu/\,qﬂ %) s a diffusion orbit between wy and wr with diffusion time

=10 — 4.

PROOF. By lemma 11.2if V, Fu(3) =0, then for2 < i < k—1, ¢, 5(6;7) = $,5(07) and
~(§1) =wr+0(u), ¢ (gk) = wp—l-O( ). Moreover, if Vw}—u()‘) =0 and 0y, Fu,(A) =0
then (for2<i< k- 2) (9+) = q (9_) Now, by lemma 11.1 and (11.4), q,5 ~(0F) =

Go(0) + O(p). Hence ¢, (9+) =4, ( ) and the proof is complete. m

12 The approximation of the reduced functional

Tn order to prove the existence of critical points of the reduced action functional F, thanks
to the properties of the Poincaré-Melnikov primitives T'(w, -, ) we need an appropriate
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expression of F,, see lemma 12.5. We shall express F, as the sum of a function whose
definition contains the I'(w,-,-) (for which we can prove the existence of critical points)
and of a remainder whose derivatives are so small that it cannot destroy the critical points
of the first function.

The first lemma gives an approximation of G, (defined in (11.6)).

Lemma 12.1 For 0 < p < s, for A € A, we have

1 |(P~ - (P—‘_P s + o+ u - - = _ .
GH(A) = é‘m—‘_ﬂ’r (w)u 0 » P )+MF (LU)\, 0 y @ )‘—:u’ /6+ f((p(t)’ O)t) dt'{—RO(,U’: A)
(12.1)

where (1 )
L+
VRo(y, \) = o(f——ﬁ—f—tﬂ). (12.2)
by
PrOOF. By lemma 11.1, we can write @, 5 (t) = B(t) + vua(t), gualt) = Qr (t—07) +
wya(t), where v, A (0%) = vua(07) = 0, [[iuallee@rey = OW/Br)s l[vpallree+o-) =
O((1/B2) (1 + uT?)) and wyuA(0F) = wun(07) = 0, |[unllze(or,o-) + llwpallzeoro-) =
O(p).
In the following, in order to avoid cumbersome notation, we shall use the abbreviations
v, w,Q for v, Wy, @n, (- — ), the dependency w.r.t. A and p being implicit. We have

G = [ 0P +50) -5 + h{F + 300 + QB0 + 55
b [ 11— cos(@(e) + wlt)]) - 41 (PL2) + v(2), QO + w(t). 1) di.
Now since v(6%) = v(0~) = 0 and w(6*) = w(0™) = O, /9_ B(t) - 0(t) dt = /9_ Wy -

o+ o+

5(t) dt = 0 and /:Q(t)w(t) gt = /@i _O(w(t) dt = /gi _(sin Q())w(t) dt. As a
result, G,(\) = G5(\) + Ri(}), where

0 9—1—32 1 2 .
Gu()\):/9‘+ ilgpl +'2—Q +(1“COSQ)"Mf(QO,Q,t),

Ri(N\) = /ei_ %1’0]2+%w2+(cosQ—cos(@+w)-—wsin@)“pdf(‘@w,Q+w,t)+,uf(¢“,Q,t).

We shall first prove that |VE;| = O(ﬂ%_iﬂ_Tﬁ_)T/\)_ We have Op+ R1 =151+ 12 + 73+ 74 +
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T5 + T Where

= d
rim [0 S @0) — pB, (7 v, Q+ 1) (Do),
T 1= w~C—l—(89+w) [sin(Q +w) —sin@ — pdy f(@+v,Q + w,t)] (Og+w),

9+

ry _/ (= sin Q + sin(Q +w) — w cos Q) A+ @,
z ':u/ [0,/(2.Q.1) = 0,/ (7 +v,Q +w,1)] - 00+,

= [ [0@0,0) - 0f@+v,Q+u. )]0

S

[

Now v and w satisfy

{ ~i(t) 0, f (B(t) + v(t), Q1) + w(t), )
—%(t) + sin(Q(£) + w(?)) 10y f(@(t) + u(t), QF) + w(t), t) + sin Q(t).

)
Moreover, deriving w.r.t. 67 the equality v(0*) = 0 we obtain that (8s+v) (%) = —(0%).
Similarly (8g+w)(0F) = —w(07), (Gp+v)(67) = 0 and (Jp+w)(0) = 0. Therefore an
integration by parts gives 71 = |0(67)|?, r2 = w(f7)* hence |ri| + |ro| = O(p?/B%).

By the properties of Qr, 9+Q is bounded .in the interval [0F,07] by a constant
independent of A. Moreover —sin Q(t) + sin(Q(¢) + w(t)) — w(t) cos Q(t) = O(w(t)?).
Therefore rs = O(p*T).

We have also, for some positive constant c,

il +lrsl < cuT[ _sup_ 100 @(0)1+ 100sw(0][_sup_ ()] + (D]

te[6+,0-]

I

Since 05+ is bounded independently of A, we have by lemma 11.1

2 2
4] + |rs| = O(E%’@TA> :
5

Still by lemma 11.1, rg = O(1?/5?). The estimate of the other derivatives of R, is obtained
in the same way.

indent We now develop G()) as

@) = LT re(y, 07, ) n 0 67) — e [ F(B(),0,0) di
1 9 (9__ _ 9_'_) ) ) As ) o+ Yy
+ Ry(A) + Rs(N),

where

Ro()) = Q?() + (1 - cosQ(t)) dt = / SQh () + (L= cosQn, (1) di, (123

o+
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Ro) = [ —u[(F(P0), Q) 1) ~ F7(0),0,8)] dt — uT*(wx, 0%, %) = uT*(12, 07, 7).

There remains to prove estimate (12.2) for VR, and VR;. By (12.3) 9,:R; = 0 and
Op+ Rz (A\) = —08- Ry()) is the energy of the T)-periodic solution Qr, of the pendulum
equation. Now this energy is O(e~¢™). Hence (provided C is large enough) |VRy ()| =
O(u?).

In order to estimate the derivatives of Rs, let us define g(y,q,t) = f(p,q,t) —
f(¢,0,t). We have

RN = [ —o(B(), Q0),0) dt = uT*(n, 0%, 0%) = i (wn, 07, 07) = plas(X) + bo()

+

/2 + + ° + +
as(A) :=—/0 g(wit + ™, Qr, (£), £ +07) dt+/0 glwrt + %, q(t), t +07) dt,

0 0
bg(A) = ———/T /2g(w,\t+@-,QTA(t+TA),t+9_) dt+/ g(w,\t—!—go“,qg(t),tJrH“) dt.
Ty —00

‘We have

Ty /2 :
a(h) = = [ [olent + 0%, Qr (1), 8+ 6%) ~ glunt + 0", ao(0), £+ 67)

/ glwnt + ot qolt), t+67) .
Ty /2

Recalling that supyez2) [0rQr(t)] = O(e™T), subie(o /) [Qr(t) — qo(t)] = O(e™7),
it is easy to see that the derivatives of the first integral are O(The™2™») = O(u) (still
provided C; is large enough). Moreover, using that (Jg(wat + o™, qo(t),t)| + [0,9(wat +
ot qo(t), )|+ |0:g(wrt + 0T, q0(t), t)]) = O(qo(t) — 27) = O(e~**) for t € (1/2, +00), we
find that the derivatives of the second integral are O(u) as well. Hence [Vas(\)| = O(u).
The same estimate holds for b3. We then conclude that VRz(\) = O(n?), which completes
the proof of lemma 12.1. ®

In section 15 we will look for a critical point of 7, in the set
E = {)\: (91,...,6'k,901,...,g0k) € RF x R¥
s.t. gzzgl'i"bl y @1:§57’+(1,1 y Ibll _<_27T, |CL,’ S 271'} ; (124)

where k,;, 0; will be defined in section 14. It will result that E C A, (for some § > 0
depending on the curve 7). In particular, for all A € E

Cof5;
01“11,[1! < 91‘—{-1 _91' < *-E?-, Vi = l,...,k~1, (125)
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where §; := By, := B(w;) and w; = wy,; = (Yiy1 —¥i)/(0iy1 —0;). Moreover we will assume
(see (14.8))

@1 —@i| < pp where ; := %ﬂﬂ-—:‘—gﬁ 1<i<k-1), wyp:=ws, wp =wr (12.6)
i+1 — U4

and p > 0 is a small constant to be chosen later (see (15.3)). For the time being, assuming
(12.5) and (12.6), we want to give a suitable expression of F, in E. By lemma 12.1, for
A € B, we have

k-1 2 2 2
1|11 — ©s w w
Fu(A) = E 5———————'(%“ _(Z! + w1 — WEpE — | 21| 91-&-——l ;t O
i=1 i+1 7

k
-+ ZM(F“(wi-l, b5, i) + Ps(wz‘, 0;, %)) + MF(WI; 01, 01)
=1

k-1 0ig1 k-1
- > M/g Flwi(t = 6;) + ¢4, 0,t) dt — pF(wp, Ok, i) + Y Ro(, M),
=1 i =1

(12.7)
where |V Ro(u, )| satisfies (12.2). We shall write F, in an appropriate form thanks to
the following lemmas. The first one says how close the “mean frequencies” w; are to the
unperturbed @;.

Lemma 12.2 Let A = (01,...,0k,¢1,...,9x) belong to E. Then
1 1
’w v | (91'4.1—01') O(|lnu}) ( 8)

Moreover

F“(wi_l, Qi, goi)+F5(w;, 93-, (Pi) = F(Uz, 91', QDi)+R4(Ai)‘, Where VR4 = O(l/| In p,]) (129)

PrOOF. Set Af; := 0,41 — 0;, Aa; := a1 — a; and Ab; := b;41 — b;. By an elementary
computation we get w; — w; = —w;Ab;/Ab; + Aa;/AY;. By the definition of E and (12.5),
estimate (12.8) follows.

From the definition of I'*,I'* and the exponential decay of gq it results that 9,1
is bounded by a uniform constant, as well as its partial derivatives. Hence (12.9) is a
straightforward consequence of (12.8) and of (12.6). m

Lemma 12.3 For 0 < pu < s

k Bit1 k )
/“LF(('UIJ 191, ()01) - Z MA f(wl(t - 91) + @i, 07 t) dt — /‘LF(wFa Hk: ka) = Z RZS(:U’) )‘i—la /\Z)J
i=1 i =1
(12.10)
where, for all i %
) : 7! j2; 1| B; — le'——ll
VRZ ;gi— y Pi— 797:7 i79i s i = O -+ + .
(Bt i O 000,000 = Ol g =gy + gy + g )
' (1‘2.11)

951n the cases i = 1,7 = k we only have R} = RE(u,01,¢1,02,02) and RE = RE(u, 0x—1, 0k—1,0k, Pr)-
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Proor. We have

Bit1
- /9 Fps + wi(t — 6;),0,1) dt = F(w;, 011, 0iv1) — Fws, 0, 1)
= (F(wiyei-l»l, ©is1) — F(wi1, 0, %)) + (F(wi—la 0, ;) — F(wi, 0;, %‘));
where F(w, -, ") is defined in (11.10). We obtain

011

k-1 k
pF (wr, 01, 1) — ZM/G Floi+ wit — 6,),0,t) dt — pF(wr, O, 1) = > RS
=1 =1

i
where

RL = Ri(p, 0i1,0i-1,05, 0, Oiv1, 0ig1) = U(F(wi—l;eia ©;) — F(ws, 6;, %))

_ . i(n-p;+16;) 1 1
- —MZO<}(R71)|_<N f"7le i ((n-wi_1+l) - (n-w-;—i—l))

Now we prove (12.11). Let us consider for example 9y, R;. We have
05, Ry = s, (F(wi——la 0i, i) — F(wi, 05, %))

~ T i = ST NP ..
— ‘/J,(awF(wz——l? 0“ (pz) (H,L — Qi_l) a_uF(wza 91) 901) (9i+1 . 91))

- M( S0 fagleitmerttio ! .

0<|(mDI<N (n-wici+1)  (n-w+1

))),, (12.12)

where .
nex(n~wo+l90)

awF(w;HOaQDO) = Z fn,li

ocimpen i w + D

Estimate (12.11) follows immediately from (12.12) and (12.13). The other partial deriva-
tives of R can be estimated similarly. m

(12.13)

Finally, to get a suitable expression of F,, we find convenient to introduce coordinates
(b, ¢) € RO+DE defined by (12.4) and

C; = Q; ——@bi, Vi = 1,...,]{2, (1214)

(we are just performing a linear change of coordinates adapted to the direction of the
unperturbed flow at each i-transition (b;, a;) = b;(1,w;) + (0, ¢;)).

Lemma 12.4 We have

k—1 5 , ;
1pir1 — @il lwr] |lwr|
219 7 ol B B ; .
=2 (i1 — 6:) Wrter = WPk 5 U1 + 5
1520 e —af? ko
N -+ R (1,6, 04,0511, 0iv1), 12.15
2 ; A + (biy1 — b)) = 6 (14, 03, 01, Oit1, i) ( )
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where A; == §i+1 —8; and®®
VR%(M, bi—1, Pi-1,0;, <Pi,9i+1, (PH—l) = O(Awi) = O(PM)- (12'16)

PRrROOF. Let {v;}i=1,. k-1 be defined by @ip1 — ;i = w; (011 — 0;) + vi- We can write
wrpr —Wrpk as

wrpr — Wrpk = 259:—11 ((@-—1 — W) i — Ti(Pig1 — QOi)) + o (We—1 — Wr)
=Y ((Uz‘—l — )i — [@i]*(0ir1 — 0;) — wm) + @ (@p_1 — wr). (12.17)

We can also write

Aoyl B (B - B Bl )+ (55 B <|> .
18
ié %%—%}%l; = 2 155\2 (i1 — 6:) + —;—@% + Wi (12.19)
Summing (12.17), (12.18) and (12.19) we get
e R R S EDW [yrer ok
2 (I%E - |—°_"—;—‘2)9 + (@1 — )i + wk(ék_l - wp) + ('”512 - 'w’“;‘Q)ek. (12.20)

Substituting @; +a; for ¢; and 0.+, for 0;, we get v; = (@ip1 — a;) — s (bip1 — b;). Moreover
the non constant terms in the right handside of (12.20) (i.e. those depending on a;, b;) are
the first one and

o BN i~ .
Z(Wi—l_wi)a'i+( 5 T g )bz‘ZIZR(M@i,%)

1=1 =1

with VR (u,0;, ;) = O(AT;). Finally, expressing 7; in terms of (bi,ci) we get v =
(a1 — a;) — Di(bigp1 — bi) = (ciy1 — ¢;i) + bip1Aw; and then from (12.20), developing the
square, we get (12.16). m

From (12.7) lemmas 12.2, 12.3 and 12.4 we obtain the expression of F, in the new
coordinates (b, c) required to apply the variational argument of section 195.

Lemma 12.5 There ezists ps, C2 > 0 such that V 0 < p < ps, if

B > Cymax { p>(Big1 — 0)%, (B — 0)¥%, (Bipa — 6:) 77 } (12.21)

9 For § = k we have RE = RE(u, O, @k)-
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then

1 ‘Cz-!-l - Cil2 k — = — I
k .
R7(b,C) = ZR;(/«%bi—l;Ci—l:biaciybi+1aci+1), (1223)
i=1
where®” _
IVR;| < Copp. (12.24)

PROOF. It is easy to see that (12.6), (12.8) and (12.21) imply (provided p is small
enough) that

Bi—1 _ 1 1 '
= <A<, B fial= O(Qi b ey s mE (12.25)

Noting that 8, = 0,, and 9y, = ;0 + g, estimate (12.24) follows from (12.2), (12.9),
(12.11), (12.25) and (12.16). m

13 Ergodization times

In order to define 3, 0; (1 <1 < k) we need some results, stated in this section, on the
ergodization time of the torus T .= R /7! for linear flows possibly resonant but only at
a “sufficiently high level”, :

Let © € R; it is well known that, if Q-p 2 0, ¥p € Zl\{O} then the tragectorles of the
linear flow {Qt + Alyer are dense on T* for any initial point A € T!. It is also intuitively
clear that the trajectories of the linear flow {Q¢ + A}ier will make an arbitrarly fine d-net
(6 > 0) if  is resonant only at a sufficiently high level, namely if 2-p # 0, Vp € Z' with
0 < |p| € M(8) for some large enough M (d). Let us make more precise and quantitative
these considerations.

For any §2 € R define the ergodization time T(f,§) required to fill T" within § > 0
as

T(Q,8) =inf {t R, |Vz € R, d(z, A+ [0,]2+2Z") < 5},

where d is the Euclidean distance and A some point of R'. T'(£2,6) is clearly independent
of the choice of A. Above and in what follows, inf F' is equal to 400 if E is empty. For
R >0 let

a(,R)=inf{lp-Q| |peZ, p#£0, |p| <R}

Theorem 13.1 VI € N there ezists a positive constant a; such that, vQ e R, V6 > 0,
T(Q,6) < (o, a;/8))~. Moreover T(,6) > (1/4)a(,1/46)7

971n the cases i = 1,i = k we have R} = R (1,01, ¢1,02,¢2) and RE = RE(p, Op—1, 0k—1, 0k, ¥k)-
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In the above Theorem o~ ! is equal to 0 if @ = +oco and to +o0 if & = 0.

Remark 13.1 Assume that Q is a C-t Diophantine vector, i.e. there exist C' > 0 and
7> 1—1 such that Vk € Z' |k - Q| > C/|k|". Then a(Q, R) > C/R" and so T(Q,6) <
a7 /C87. This estimate was proved in Theorem D of [47]. Also Theorem B of [47] is an
easy consequence of Theorem 13.1.

Theorem 13.1 is a direct consequence of more general statements, see Theorem 13.2
and remark 13.2. Let us introduce first some notations. Let A be a lattice of R, i.e. a
discrete subgroup of Rt such that R /A has finite volume. For all Q € R’ we define

T(A,Q,0) =inf {t € R, | Vz € R d(z,[0,4Q2+ A) < 6}

(T'(A, £, 6) is the time required to have a §-net of the torus R /A endowed with the metric
inherited from R'). For R > 0, let

A*z{peRl]V/\EA,p-/\EZ} and A} :{pEA*

0 < |p| < R}
(A* is a lattice of R which is conjugated to A). We define

| o(8, 0 F) = inf {Jp- 0| | p € A3}
The following result holds:

Theorem 13.2 VI € N there exists a positive constant a; such that, for all lattice A of
R, VQeR, V6 >0, T(AQ,0) < (a(A,Q,a/d) .

Remark 13.2 [t is fairly obvious that T(A,Q,8) > (1/4)a(A,Q,1/46)7 . Indeed, assume
that A},u; # 0 and let p € A] 45 be such thatp-Q = o= oA, Q,1/45). Let € R satisfy
p-x=1/2. ThenVt € [0,1/4a), YA € A,

Ip- (z—1Q =)

= (0 +N)] 2 -

>4blp-x—tp-Q—p- A,

andp-z—p- X € (1/2) +7Z, whereas |tp - Q| = ta < 1/4. Hence |z — (t2+ )| > 4.

In the next section we will apply Theorem 13.1 when Q = (w, 1) € R*!. The proof
of Theorem 13.2 is given in the Appendix. We could give an explicit expression of g;.
However it is not useful for our purpose and the constants q; which can be derived from
our proof are certainly far from being optimal.
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14 The unperturbed pseudo-diffusion orbit
Consider the set @y of “non-ergodizing frequencies”

Qu = {w e R [3(n,1) € 2 with 0 < |(n, )] < M, andw -n+1=0}= |J B,
. hESnr

where Sy = {h = (n,l) € (Z°\{0}) x N |0 < || < M, h # jW,Vj € Z,W ¢
(Z%\ {0}) x N} and Ej = E,; := {w € R* | (w,1) - h=w-n+1=0}. By Theorem 13.1
(or Theorem 13.2, with A = 27Z4*1), for § > 0, if w belongs to

Qi ={weR |w n+1#£0, Y0 < |(nD)] < M}, (14.1)

with M = 8rag.1/6, then the flow of (w,1) provides a §/4-net of the torus T¢+1.
Moreover if w ¢ Qy then for all (n,1) € Z%\{0} x Z,

In-w+ 1| = |n|dist(w, Eny) > dist(w, E, ;) > dist(w, Qar) > 0. (14.2)
By Theorem 13.1 (or Theorem 13.2), we deduce from (14.2) the estimate

21

T((w>1)75/4) < m

(14.3)

which measures the divergence of the ergodization time T'((w, 1),6) as w approaches the
set Q.

Definition 14.1 Given M > 0, a connected component C of DS, and wr,wr € C, we say
that an embedding v € C*([0, L},C) is a Q-admissible connecting curve between w; and
wr if the following properties are satisfied:

(a) 7(0) = wr, v(L) = wr, |7(s)| =1 Vs € (0,L),
(b) Yh = (n,1) € Su, Vs € [0, L] such that y(s) € Ey, n-+(s) # 0.

Condition (b) means that for all h € Sy, ([0, L]) may intersect Ej transversally
only. It is easy to see that condition (b) implies that Z(y) = {s € [0, L] | v(s) € Qu} is
finite and that there exists v > 0 such that for all s € Z(v), for all h = (n,l) € Sy such
that y(s) € En, [3(5) - nl/In| > v.

If a curve « is not admissible we can always find “close to it” an admissible one +.
Indeed the following lemma holds. ~

Lemma 14.1 Let M > 0, C be a connected component of Df, wr,wr € C and let o €
C?([0, Lo}, C) be an embedding with a(0) = w; and a(Ly) = wg. Then, V1 > 0, there
exists a curve v, Qp-admissible between wy and wp, satisfying dist(vy(s), «([0, Lg])) < 7,
Vs € [0, L].
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PROOF. First it is easy to see that there exists an embedding o : [0, L] — C such that
01(0) = wr, 01 (Ly) = wr, dist(e(s),a([0, L)) < n/4 and ¥V h = (n,1) € Su, wr ¢ By
(resp. wr & Ey) or ¢1(0) - n # 0 (resp. cu(L1) -n # 0).

Let 7 > 0,14 > 0 be such that Vs € [0,7] U [Ly — 7, L1], VA = (n,l) € Sy,
dist(c (s), By) > vy or |éu(s) - n| > v Let ¢ : [0,L;] — [0,1] be a smooth function
such that ¢(0) = ¢(L;) =0 and Vs € [r, Ly — 7] ¢(s) = 1.

We shall prove that for all € > 0 there exists w, € R?, |w,| < &, such that VA = (n,[) €
Sy, for all s € [r, Ly — 7] such that ay(s) € By + we, da(s) -n # 0. For h = (n,l) € S,
let Jp = {s € [r,Ly—7] | n-di(s) =0} and Vs = {oa(s) —u | s € Jh, u € Ep}.
Let oy, : [r, Ly — r] x Ey, — R? be defined by 1n(s,u) = a1(s) — v. Dy (s,u) is singular
iff s € J,. Therefore V, is the set of the critical values of 1, and by Sard’s lemma,
meas(V;,) = 0. Hence for all € > 0 there exists w, € R? such that |we| < €, we ¢ V4 for all
h € Spr. Our claim follows.

Now we can define ap : [0,L1] — C by aa(s) = au(s) — ¢(s)we. It is easy to check
that, provided e is small enough, v is an embedding which satisfies condition (b). v is
obtained from ay by a simple time reparametrization. m

If T'(a(s), -, -) possesses, for each s, a non-degenerate local minimum (03(5),@8‘(5)), then,
by the Implicit Function Theorem, along any curve v sufficiently close to a, I'(v(s), ", )
possesses local minima (67, ¢¢™)) such that

DY, T((s), 009, 00) > 21, Vselo,I), (14.4)

for some constant A > 0 depending on a. Therefore, by the above lemma, it is enough to
prove the existence of drifting orbits along admissible curves . Property (14.4) will be
used in lemma 15.1. -

Given a Qjr-admissible curve v, let us call s}, ..., st the elements of Z(y), and wi =
y(s%),...,ws = y(st) the corresponding frequencies. Since, Ym =1,...,r, (6™, g™ is a
nondegenerate local minimum of T'(w?,, -, -), there is a neighborhood Wy, of wy, such that,
Yw € Wy, T(w, ) admits a nondegenerate local minimum (65, ¢f), the map w — (65, ¢5)
being Lipschitz-continuous on W,,. Therefore we shall assume without loss of generality
that forallm=1,...,r,

V(w,w) € Wmny([0, L)) 1(65,¢8) — (65", 08)| < Klw —w'l. (14.5)
It is easy to prove that, if v is an admissible curve, there exists do > 0 such that

(*) {s € [0, L} | dist(y(s), Qum) < do} is the union of a finite number of disjoint intervals
[S1, 8], -+, [Sr, Si]; for all m = 1,..., 7 each interval S, S7,] intersects I(7) at a
unique point s*, and Y([Sm, Sh]) C Wyn. Moreover (s — dist(y(s), Qar)) is decreas-
ing on [Sy, s%), increasing on (sk,, Sp], and dist(y(s), @u) > (v/2)|s — sy, for all
S € [Sm, Sl

Now we are able to define the “unperturbed transition chain”: for some small constant
p > 0 which will be specified later we choose k € N and k 4 1 “intermediate frequencies”

wr =: Wo, W1, ..., Wg—1, Wk = WF
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with @; = 7y(s;) for certain 0 =: 59 < 51 < ... < 81 < 8 1= L verifying

%Hgsi_‘_l-sigpu, Vi=0,... k-1 (14.6)
By (14.6) there results that
L 2L
— <k<— (14.7)
pp pp’

moreover it follows from (a) that
| @i — @) < pp, Vi=0,...,k—1. (14.8)

This condition has been used before in lemma 12.4. Given k time instants 0, =05 <
Oy < ...<0;<...< 08, we define the {B,}i=1,.x by the iteration formula
=95, Biy1 = @ T @i (01 — 0:). (14.9)

The choice of the instants {0;}i=1,..x is specified in the next lemma: the main request
is that (#;,%;) must arrive d-close mod omZ4+L | to the local minimum point (65*, ¢f') of
the Poincaré-Melnikov primitive ['(@;, -, -), see (14 11)-(14.12). From (14.3) we derive that
if @; is 1/|Inp| far from the set Qp of “non-ergodizing frequencies” we can reach this
goal for “short” time intervals ;41 — #; ~ |Iny|. In order to cross the set @ of “non-
ergodizing frequencies” we need to use longer time intervals ;1 — 0; ~ 1/dist(Qur,w;)
if /i/|Inpl < dist(Qu,@;) < 1/|1Inu|. When the @; are “close” (less than \/"/Hnu!
distant) to the set of non-ergodizing hyperplanes ) we choose again Oir —0; =~ |Inp.
We also estimate in (14.13) the total time Oy — 01 = S5, 0,41 — 0;.

Lemma 14.2 V6 > 0 there exists uﬁ > 0 such that YO < p < pg there exist {0;}i=1 &
with 6, = 65" satisfying,

o (1) if dist(w;, Qum) > ll\ﬁl then

2m

’ diSt(wi, QM)

where M = 8mags1/6;

~ _ 2m
} < Ojp—0; < 2max{C'1| In pl, m}’
(14.10)

maX{Cll In pf

o (if) if dist(wi, Qur) < 1y then Ci|lnp| < Givy — 05 < 2C1|Inp,
and such that
dist((9:, %), (65", ¥b 5 +2orztt) <6, Vi=1,...,k, (14.11)

where By, ..., P, are defined by (14.9). Equivalently, Vi = 1,...,k, there exist h; € Z4+1
and x; € R¥L such that

@5,%;,) = (657, 05°) + 2mhi + x;  with  |xi| <. (14.12)
Moreover there ezists a constant K (v) such that
5, -7, < k() 2H 1;’“". (14.13)
L
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PROOF. Let g > 0 be so small that \/%s/|In pg| < do and /| 1n pig| > 32/C1/(v/3p).

Let us define (6,,%;) = (65", ¢5"). Assume that (81,...,0;) has been defined. If
dist(@;, Q) > Vi/|1np| then by (14.3) there certainly exists (0i11,7;41) satisfying
(14.9),(14.10), such that

diSt<(-0_i+17¢i+1)a (65", @0 ) + QWZdH) < 6/4.

We now consider the case in which @; is close to some “non-ergodizing” hyperplanes of

Qur. If dist(@i_1, Qur) > /B/|In p| and dist(@;, @ur) < /I/|1n p| we proceed as follows.
We have @; = y(s;), with s; € [Sg, 5] for some ¢, 1 < ¢ < 7. Moreover, by property
(%) there exists p* € N such that {j € {1,...,k} | s; € [Sg,S;) and dist(@y, Qur) <
VB[ lnpl} ={i,...,i+p*—1}, and s; < 57 < Sigpro1. We shall use the abbreviations s*

for 57, and w* for wy. We claim that

_@___],
44/Crpp|In pl

1<p' <p:=| (14.14)

In fact, by (14.6) and (x)

\/ﬁ
|In |

l/p "
"4—M(p -1) <

[(Si+p*._1 — S*) + (8* - Sz)] S diSt(wi+p*_1, QM) + diSt(wi, QM) S 2

N | R

Hence p* < 8(vpy/fi| In p|) 7%, which implies (14.14), by the choice of p.

Now we can define the Bip1,...,0i4p-. The flow of (w*,1), as any linear flow on a
torus, has the following property : there exists T* (w*,8) > 0 (abbreviated as T *) such
that any time interval of length 7™ contains ¢ satisfying dist((tw”, ?), 2mZ4t) < /4.

Therefore (provided Ci|In ug| > T*) we can define Bis1, .-, 0i1p such that

CulInp| < Bipjpr — Oiny < 2C1|Inpl, diSt((§i+j7 Bits), (0:, %) + 27de+1) <4/4,
S (14.15)
where @iy; = @; + w (i — 0:). For 1 < j < p*, let

J
Bivj = Pi + 2 Ding1(Birg = ing—1). (14.16)
g=1

We now check that for all j = 1,...,p%, (Bir;,®i;), as defined in (14.15) and (14.16),
satisfy estimate (14.11), namely

diStT((§i+j; ¢i+j)7 (eowiﬂ' QOgH—j)) = dist ((§i+j7 'g'éiﬂ.), (@owi-!—j’ (pgiﬂ') + 271’Zd+1> < 5.
(14.17)
We have by (14.16) that

disty ((§i+j: N (73 '@)) < disty ((§i+j7 Birs)s (G, @))
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+ ' il(wi—i-q—l ~ W) (Oitq — §i+q—1)]

®

< §/A+2C Inp| Y [8itq-1 — s*|  (by (14.15) and (a))
g=1

< 5/4+901|1n,ulp (Si4pr—1 — i)

< 6/4+2C|In plp®pp < 35/8,

by (14.6) and (14.14). Therefore, by (14.5),

. - — Tivj Wi 30 . = — —
dlStT((9i+j,(,0i+j) (65, o H)) < 5 + dlS'BT((Qz';SDi) (657, o6 )) + K|wit; — @
30

)
< = K )
< 8+4+ pup <

by (14.14), provided p6 has been chosen small enough.
There remains to prove (14.13). By (%) we can write

1
m = m;l <dt > oA~ m;fmU I7 /:
Ap = {s €[S, § !11 ist(7(), Qua) < g} = U Vel U [V, U
with S, < Up < Vi < 55, < V;L < Ul, < S (in the case when w* = w;r, Ap is just
an interval). Moreover, by (a), sy, — Vi, Vi — s, > /1/|In p|. Define A := Up, ;A We
have Oy — 0; = 0g + Sreq Om, Where

og 1= > (Oi41 — 05), O 1= Z (Oi1.— 65).
1<i<k—1,5;¢A 1<i<k—1,5:€Am
For s; ¢ A4, Biv1 — 0; < 2C1|In |, hence oy < 2C1k|Inp| < 4C,Llnp/(pp). For i € Apy,
0,01 — 0; < 4n(dist(@;, Qur)) ™t < 8w/ (v|s; — sk,|) by (*), and hence, using that by (14.6)
Si41 > 8i -+ p/2,
’ 8 Z 1 167r Si41 — Si

Om < —
14

Rt _ a%
I<i<h TsieAn 151~ 8 ' VPR 1 <ick T isieAn 158 S

Estimating the above sum with an integral we easily get

8 167 [VYm ds 8T 167 Un ds
Om < / - + + /

_|_
(st — V) vpulun st —s v(Vi—sn)  vopJv, s—sh

(14.13) can be easily deduced by the bound on s} — Vi, V) — s . ®

my Vom !

In the next section we will prove the existence of a d1ffus1on orbit (y¢,,q,) close
to the “unperturbed pseudo-diffusion orbit” ((t),7(t)) : (f1,0r) — R*' defined, for
t € [0:,0i41), as B(t) = @; +wi(t — 0;) and Gy, 0,1 = Q,,, 5,(- — 0s) (mod. 27).
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15 The diffusion orbit

We need the following property of the Melnikov function T(w,-,-) defined w.r.t. to the
variables (b, c) by ~
[(w,b,¢) :=T(w, 05 +b,¢5 + bw + c).

Lemma 15.1 Assume that T'(w,-,-) possesses a non-degenerate local minimum wn the
point (09, 0%). Then there ezistr >0, 5> 0, v; >0 (§ = 1,2) depending only on v such
that Yw = y(s), s € [0, L]

o (i) 8.l (w,b,c)-c> vy >0 or 18, (w, b, ¢)| > 11 > 0 for || =, |b] <D,
o (ii) 8T (w,b,c) x sign(b) > v1 > 0 for |c| <7 and b= +5.

PRrROOF. We can assume that (14.4) is satisfied. Since I'(w, -, -) possesses a non-degenera-
te minimum in (8%, ¢%), T(w,b,c) possesses in (0,0) a non degenerate minimum. Hence
we write I'(w, b, ¢), up to a constant, as T'(w,b,c) = Qy(b, c) + Q3(b, c) where Qg(b c) =
Bub?/2 + (ay, - c)b+ (vwc-c)/2 is a positive definite quadratic form (8, € R, o € R?, q,. €
Mat(d x d)) and Qs = O(|bJ* +|c[*). More precisely, by (14.4), there exists € > 0 such that
B > €, and dy(c) := Bu(yuc- €) — (o - ¢)* > elc|? for all w € ¥([0, L]). In addition, by the
smoothness of T' and the fact that w = y(s) lives in a compact subset of R?, there exists a
constant M such that, Yw € ([0, L)), |aw| + 1Bu] + 7] < M, |VQ3(b, c)| < M(®* + |c?).
We have 8,Q2(b, ¢) = Bub + - ¢ and 9.Qx(b, ¢) - ¢ = bay, - ¢+ (e - ).
Let us define 71 := infueyo,z) €/ (4law]) > 0 and 7y = infuey(o,z)) e/(46,) > 0. Then
consider vy = 7T, vy = 1/27"2 and b := 7sup, o) (371 + law|) /B, T € (0,1]. We now
prove that, provided r > 0 has been chosen sufficiently small, conditions (3) and (4 i) are
satisfied with the above choice of the constants. Indeed if (Jow -¢|+2717) /B < |b] < b and
lc| < 7 then 8,1 (w, b, ¢) - sign(b) > Bulb] — |ow - | = |8:Q5(b, ¢)] > 2017 — O(r?) > v for 7
sufficiently small. In particular this proves (ii). On the other hand if [b| < (Jew, - c[+2717)/
B, and |c| = r then

BT (w,b,0) ¢ = bl €) + (- )+ Au@s(b¢) - ¢ = (e - ¢) — [blaw - ¢)| + O(r?)
L el o = '0‘5“’ ellow e +2mr) o0

> ‘E‘;%M 2+ 0(r%) > 2; r? — 0(r®) = 20yr” + O(r%).

Hence (i) is satisfied for r small enough. m

The partial derivatives of T' are Lipschitz-continuous w.r.t. (b, ¢) uniformly in w
~v([0, L]). Therefore, by lemma 15.1, there exists 6 > 0 such that, Vi € R with |n| <
VE € RY with €] < 6, Yw € ([0, L]),

€
d

0T (w,b+mc+E)-c>3m/d>0 or |8(w,b+n,c+&)|>3m/4>0 (15.1)
for |c|=r,[b]<b
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L (w,b+mn,c+ ) xsign(b) > 31, /4>0 for |c|<r and b= =+b. (15.2)
Moreover let us fix p > 0 such that

p < min{vy/2,v5/r}/(6Cs), . (15.3)

where C appears in (12.24). These are the positive constants (§, p) that we use in order
to define, for 0 < p < pg, @i, 05, @; by lemma 14.2.

Since ([0, L]) is a compact subset of D%, inf,ep,z) 8(7(s)) > 0 and, by the choice of
0;, for p small enough (12.21) is satisfied. Therefore, by lemma 12.5 and (14.12), there
exists uy > 0 such that, V0 < p < ur,

1520 e —af? ko
b Wi, i + bi, & + ¢;) + Ry, 15.
Fu(byc) = EM«;—(@H—@-)*“;W mi +bi, & + ¢i) + Ry (15.4)

where |n;| <6, |&] < 6, Ry is given by (12.23) and satisfies (12.24).
We minimize the functional F, on the closure of

W= {(b,¢) == (b, 1, -, by, ) € RETDE || <3, o <r, Vi=1,...,k}.

Since W is compact, F, attains its minimum in W, say at (5,&). By lemma 11.3 the

existence of the diffusion orbit will be proved once we show that (b,&) € W, see lemma
15.3. Let us define fori=1,...,k -1

(b, ¢) = G176 _ GG
Oir1— 0; A+ (b — b;)’

and wo = wy, = 0. From (14.9) and (12.14), w; can be written as

Vit1 — P _ AW;ibyy :
PSS e S SR P S + 0 15.5
v (0is1 — 6;) (Oi41 — ) (w ) (‘ lnul) (15:5)

By the expression of F, in (15.4) we have, foralli=1,...,k

’

Be; Fu(b, €) = wim1 — w; + pd.L @i, m; + by, & + ;) + B (15.6)
1 -
8bifﬂ(b, C) = -9-([’(1}112 - ]wi_1|2) -+ MabF(i—Ji, n; + bz‘, fz + Ci) + Sz (157)
where R; := 0., Ry, S; == 0y, R7 satisfy, by (12 24) and (15.3)
vV Uy
< = .
[Ril, 81| < 5 min{ =, 2 (15.8)

By (15.6)-(15.7), a way to see critical pomts of F, is to show that the terms w;_; —w; and
lw;|? — |w;_1|* are small w.r.t the O(p)-contribution provided by the Melnikov function.
By (12.8) |w; — w;] = O(1/(6i41 — 6;)) and hence, using (15.5), an estimate for each w;
separately is given by w; = O(1/]0;41 —0;|) + O (/| In p|). Hence each |w;| is O(u)-small if
the time to make a transition |6;1, — ;] = O(1/p), as in [26]. These time intervals are too
large to obtain the approximation for the reduced action functional F, given in lemma
12.5 and (15.4). Therefore we need more refined estimates: the proof of Theorem 10.1
(and Theorem 10.2) relies on the following crucial property for @; := w;(b, ¢), satisfied by
the minimum point (b, ¢).
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Lemma 15.2 We have (fori=1,...,k,)

) [@ - Bial =0, i) @] =O( I\ful)' (15.9)

Proor. Estimate (15.9) — i) 1~s a straightforward consequence of (15.6) and (15.8) if
|&;| < r, since in this case O, F,(b,¢) = 0. We now prove that (15.9)4) holds also if || = r
for some 4. Indeed if |&| = r then

O¢, Fu(b,€) = au; for some «, <0 (15.10)
(since (b, &) is a minimum point) and then by (15.6),(15.10) and (15.8) we deduce

Let us decompose @;_; and @; in the “radial” and “tangent” directions to the ball S; =
{1bs <8, Jes <7

’ ’wi_l = CLigi + Uu; with Ug - Ei =0 (15.12)

—; = ay¢; + uj, with u - ¢; = 0. (15.13)

Since |&_1| < |G| =7, [Giy1] < |G| =7, there results that
ar? =W, -G >0 and ajr®=—w; ¢ >0, (15.14)

5o that a;, a; > 0. Summing (15.12) and (15.13) and using (15.11) we obtain

(a; + a;)C + (us + ;) = O(u) + @G,

with a;,al, —a, > 0. This implies that o, = O(u/r) and from equation (15.11) we get
(15.9)7).

We can now prove (15.9) —44). Let i € {1,...,k — 1} be such that V1 <i < k-1,
|Wiy| > |Wi]. For j € {1,....k — 1}, j # 1o we can write @ = Wi, + §j with s; =
S04 (W41 — @;) and hence, by (15.9)1)

j—1
551 < Y [Bigr — @i < Culj — ol (15.15)

=10
for some constant C' > 0. Hence

j-1 j—1

& =ty =3 Wilfis — ) = Tio (05 — bip) + 3 53(0is1 — 05) (15.16)

1=19 i=ig
and then by (15.15)

> |G ||8; — G| — Cualg — ioll8; — 8| = (|| = Cals — o] ) 16 = B . (15.17)

’Cj — Cig
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Since |Gi41—0;] > C1|1n p|+0(1) (by (12.4)), Vi =1,...,k=1,16;—0;| > Ci|j—io|-|In p[.

Take 7 € {1,...,k — 1} such that [j — io| = [(\/Fy/|Inp))™] + 1 (such a j certainly
exists since, by (14.7), k ~ 1/p for p small). Then we obtain, using that [&] < r for all
i=1,...,k,

(o o NP | I p
Z(I Zol C |lnu] C'/JJ>01 \/ﬁ )

2r > ‘cj — Cig

(27‘ + OCl)\/—/,_L
Cry/|Inp

i.e. [Wi) < +C'p: We have thus proved the important property (15.9) —ii).

]
Remark 15.1 By (15.5), (@; —w;) = @; + O(u/|In p|), so that, by (14.8), (15.9) implies

@] = 0(—L), (B — @il = O(w). (15.18)
| In 4]

Note that, from (12.8), we would just obtain |@; — w;| = O(1/|1Inpl). (15.18) can be seen
as an a-priori estimate satisfied by the minimum point (8, ().

The following lemma proves the existence of a local minimum of the reduced action
functional in the interior of W and hence of a true diffusion orbit.

Lemma 15.3 Let (g, ¢) be a minimum point of F, over W. Then (5, ¢) € W, namely
| Gl <r  forall  ie{l,... Kk} (15.19)

and o
bl <b  forall de{l,...,k}. (15.20)

PROOF. By (15.9) we have ||@;1]* — [@i[?| < @1 — @] - (|Baa| + |@i]) = O(p*?), and
hence, from (15.7) we derive

By, Fou(b, ) = udsL (@i, mi + i, & + &) + O(1*?) + Si. (15.21)

Let us first assume by contradiction that 3¢ such that |¢;| = r and |B;| < B. In this case
we claim that

8.L (@i, ms +5,6+G) G <1/2 and |0,L (@3, s + 0,6+ 6)| < n/2 (15.22)

contradicting (15.1), since |mi], |&) < 6. Let us prove (15.22). Since (b,©) is a minimum
point

8ci]:”(5, E) Ez = (’Lﬂi_l ——’lﬂz) E, +u8,3f‘(wi, i +Ei, fz—F-EZ) Ez +Rl '@' = OZ,JEi . 52 = CL'MT2 S 0.
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By (15.14) and (15.8) it follows that oL (@, m+b1,£1+cz) & < v»/2. Moreover since b;] < B
we have Oy, F, (b, &) = 0, and by (15.21), (15.8) it follows that |8,L (s, i+ b5, &+ )| < 11/
2 (provided g is small enough). Estimate (15.22) is then proved. As a result, if (15.20)
holds, so does (15.19). ~

Let us finally prove (15.20). If by contradiction 3 with [b;| = b, by (15.21), (15.8)
and since (b ¢) is a minimum point, arguing as before, we deduce that 0T (i, mi + bi, &+
&;)sign(b;) < 11/2. This contradicts (15.2) since |n], )§1| < 4. The lemma is proved.

Proor OF THEOREM 10.1. Lemmas 15.3 and 11.3 imply the existence of a diffusion
orbit 2, () = (0u(t), gu(t), Lu(t), pu(t)) with ¢, (61) = wr + O(k) and @, (0k) = wr + O(u)
(2u(-) connects a O(u)-neighborhood of 7., to a O(u)-neighborhood of 7., in the time-
interval (1, 72) where 7 := (0, +05)/2, 75 := (Bx—1+0%)/2). The estimate on the diffusion
time is a straightforward consequence of (14.13) and the fact that 0, = 01z +O(1). That
dist(1,(t),7v([0, L])) < n for all ¢, provided p is small enough, results from (15 18) and the
estimates of lemma 11.1. _

Finally we observe that, if the perturbation is p(f+ ,uf), then lemma 11.1 still applies
with the same estimates. Moreover in the development of the reduced functional the term
containing p2f gives, in time intervals 0;11 —0; < const.|In p|//J, negligible contributions
o(p). Therefore the same variational proof applies. m

PROOF OF THEOREM 10.2. If the perturbation is of the form f(p,q,t) = (1 — cosq)
f(@,1), by remark 11.1-2, we can prove that the development (12.22) holds along any
path v of the action space (without any condition as (12.21)). Therefore the previous
variational argument applies. m

For ﬁ > 0 small let Dﬁ be the set of frequencies “f-non-resonant with the perturba-
tion” D5 = {w e R? | |+ n—i—l! > B, V0<|(n,1)] <N} If 8 becomes small Wlth p our
estimate on the diffusion time required to approach to the boundaries of C N CD slightly
deteriorates. In the same hypotheses as in Theorem 10.1 we have the following result.

Theorem 15.1 VR > 0, V 0 < a < 1/4, there ezists ug > 0 such that V0 < p < s,
Vwr,wp € C N DY N Br(0) there ezist a diffusion orbit (v, (t), qu(t), 1.(t), pu(t)) of (Su)
and two instants T < o with I,(11) = wy + O(y), I,(12) = wp + O(p) cmd

|7y — | = O(1/u'™®). (15.23)

Proor. For simplicity we consider the case in which B(wr) = O(1?) and B(wr) = O(1).
With respect to Theorem 10.1 we only need to prove the existence of a diffusion orbit
connecting w; to some fixed w* lying in the same connected component of D§ N Bg(0)
containing w;. In order to construct an orbit connecting wy to w* we can define w; =
wr +i(w* —wy)/k, for 0 < i < k and k = [lw* —wr|/pp] +1. We obtam that §; = B(w;) >
C(u® + jpp) for some C > 0 and we choose 041 — 0; > const. ,8 verifying in this way
the hypotheses of lemma 12.5. If w; belongs to some QM the trans1t10n times |1n p|/ /&
needed to cross QM (see lemma 14.2) still satisfy (12.21). We finally obtain a diffusion

time 0y, — 0, = X521 (0541 — 0;) = O(1/p'*). m
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16 The stability result and the optimal time

In this section we will prove, via classical perturbation theory, stability results for the
action variables, implying, in particular, Theorem 10.3. We shall use the following no-
tations: for [ € N, A ¢ € and r > 0, we define 4, := {z € C' | dist(z,A4) < r} and
T :={z € C | |Im 2] < s, V1< j <} (thought of as a complex neighborhood of T').
Given two bounded open sets B C C?, D ¢ C' and (I, ,p, q), real analytic function
with holomorphic extension on D, X T, x B, for some ¢ > 0, we define the following

norm || flle.ps = Xrent SUP e Ifk(f,p, ¢)|e®s where fi(I,p,q) denotes the k-Fourier
€
coefficient of the periodic function ¢ — f(I, ¢, p, q).

Let us consider Hamiltonian #,, defined in (10.1) and assume that f(I,p,p,q,t),
defined in (10.2), is a real analytic function, possessing, for some 7,7,7,s > 0, complex
analytic extention on {I € R? | |I| <7}, x T¢ x {pe R | |p| <7}, x Ty x T.

It is convenient to write Hamiltonian #, in autonomous form. For this purpose
let us introduce the new action-angle variables (Iy, o) with ¢ = (g, that will still be
denoted by I := (o, I1,. .., I,) and o := (g, @1, . - ., @n). Defining h(I) := Iy+|I]?/2 and
E := FE(p,q) := p?/2 + (cosq — 1), H, is then equivalent to the autonomous Hamiltonian

H:=H(I,¢,p,q) = h(I) + E(p,q) + pf(L,,p,q) (16.1)
Clearly, Hamiltonian H is a real analytic function, with complex analytic extention on
{TerR* | |1 <7} x T x {peR | |p| <7} xTs.

In the sequel we will denote by z(t) := (I(t), ©(t),p(t), q(¢)) the solution of the Hamilton
equations associated to Hamiltonian (16.1) with initial condition 2(0) = (1(0), ¢(0),p(0),

g(0)).

The proof of the stability of the action variables is divided in two steps:

e (i) (Stability far from the separatrices of the pendulum:) prove stability in
the region

& :51+U5f = {(Iv(p7p;Q)|E(p,Q)Z/J,Cd}
U {(I,e,p,q) | —2+ p < Ep,q) < —p}

in which we can apply the Nekhoroshev Theorem obtaining actually stability for
exponentially long times,

e (ii) (Stability close to the separatrices of the pendulum and to the elliptic
equilibrium point:) prove stability in the region

& =& UE = {(I,p,p,q) | —2u% < E(p,q) < 2u}
U {'(I,so,p,Q) | —2< E(p,q) < —2+2/ﬂ}

in which we use some ad hoc arguments,
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where 0 < ¢q < 1 is a positive constant that will be chosen later on, see (16.12).

We first prove (i). In the regions® & := I, we first write the pendulum Hamil-
tonian E(p,q) in action-angle variables. In the region®™ & U {p > 0} the new action
variable P is defined by the formula

P:=PHE) = l/w——i/; VE + (1 + cos ) dip.

while in the region £ the new action variable is

P:=P (E)= g_\yr/—_z/owo(E) \/E—%- (14 cosy) dy

where 1o(F) is the first positive number such that E + (1 + cos1o(E)) = 0. We will use
the following lemma, proved in [33], regarding the analyticity radii of these action-angle
variables close to the separatrices of the pendulum.

Lemma 16.1 -There ezist intervals D= C R, symplectic transformations ¢& = ¢=(P, Q)
real analytic on D* x T with holomorphic eztension on DE x Ty, and functions E* real

analytic on D* with holomorphic extension on DE such that ¢*(D* x T) = £F and
E(§*(P,Q)) = E(P),

with 7o = constu® and sy = const/|1n p|. Moreover, for E bounded, the following esti-

mates on the derivatives hold *°°
dE* 1
—(P%(E)) =~ In"'(1+ —) (16.2)
dP |E|
d*E* 1 1
+ (PEE)) ~ —In7?(1+—=). 16.3

After this change of variables Hamiltonian H becomes
H* := H(I,¢,P,Q) := h*(I, P) + pf*(I, ¢, P, Q) := h(I) + E*(P) + uf*(I, ¢, P, Q)

where (1,0, P,Q) == f(I,¢,¢*(P,Q)).

Stability in the region &;. In the region &, the proof of the stability of the
actions variables follows by a straightforward application of the Nekhoroshev Theorem as
proved in Theorem 1 of [93]. In order to apply such Theorem we need some definitions.

9811, , denotes the projection onto the (p,g) variables.

99The case with p < 0 is completely analogous.

101f f(z),g(z) are positive function, with the symbol f ~ g we mean that Jeci,c2 > 0 such that
ag(z) < f(z) < cglz), Va.
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For I,m > 0, a function h := h(J) is said to be I,m-quasi-convex on A C R+ if at every
point J € A at least one of the inequalities

[(H(D), )1 > 1el, (B"(J)€,€) = mlgf?

holds for each ¢ € R¥!. Using the previous lemma it is possible to prove that, for every
7 > 0, the Hamiltonian h' is ],m-quasi-convex in the set S := D} x {I € R** | |I| < T},
with [, m = O(1). In the previous set also holds

[(R)" || = M = O(u~In™*(1/w)) ,  [[(WF)'[| = Qo = O(1).
Putting

e = pllfHllsso = On) ,  ai= (1 2eq(d+3))/2(d+2)
g0 1= 27 0rm(m/11LM)2+2) = O (2ot m* @2 (1/ )

we obtain that, if the initial data (Z(0), ¢(0),p(0),¢(0)) € &, that is P(0) € D*, then
I(t) = 1(0)] < const.u®In™®(1/p), for |¢| < const.exp(const.u™*In?(1/p)). (16.4)

If cg < 1/2(d + 3) then o > 0 and we obtain stability for exponentially long times.

Stability in the region £;. In the region £ we cannot use the Nekhoroshev
Theorem as proved in [93], because E~ is concave and so h™ is not quasi-convex. However
we can still apply the Nekhoroshev Theorem in its original and more general form as
proved in [90] (see also [91]); in fact the function A~ proves to be steep (see Definition
1.7.C. pag. 6 of [90]). ¥
For simplicity we prove the steepness of the function h~ in the case d = 1 only. In this
‘case h~ = h™(Iy, I1, P) = Iy + I#/2+ E~ (P). We need more informations on the function
E~. In the following, in order to simplify the notation, we will forget the apex ~ writing,
for example, E = E~ and P = P~.

By (1.11) of [90], since VA~ # 0, a sufficient condition for A~ to be steep is that the
system

m 4+ In+E'(P)ns == 0
>+ E"(P)n; =
E"(P)p} = 0 (16.5)

has no real solution apart from the trivial one 7y =ny =73 = 0.
Making the change of variable 1 = arccos(1 — E + ¢E), where E = E + 2, we get'®!

P(E)= [ Ri&E) & PE)=3"" [ RgE)d PE)= [ Fi&E)d (166

101We will denote with “ 7 the derivative with respect to E, and with “’ ” the derivative with respect
to P.
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where

V2

R(§E) = =
1 WEI—EJEE - E
. VBT
BEE) = e B - B
. 3V2(1 - &)
RGE) = pe (167
From the equation E(P(E)) = E, deriving with respect to £, we obtain that
E"(P(E)) = —(P(E))°[P(E)P(B) - 3(P(E))’]
We want to prove that '
E"(P(E)) < 0. (16.8)

for every E with —2 < E < 0. This is equivalent to prove that P(E)P(E) > 3(P(E))>
Using (16.7) we see that FyF3 = F7 and hence, noting that F3(¢; E) is not proportional
to Fy(¢; E) for every E fixed, we conclude that [ Fy [ F3 > (] F»)? by a straightforward
application of Cauchy-Schwarz inequality and (16.8) follows from (16.6).

By (16.8) the unique solution of the system (16.5) is the trivial one i =72 =73 = 0,
hence the function k™ is steep. It is simple to prove that the so called steepness coefficients
and steepness indices (see again Definition 1.7.C. pag. 6 of [90]) can be taken umformly
for =2 + p% < E < —pf : that is they do not depend on p.

Now we are ready to apply the Nekhoroshev Theorem in the formulation given in Theorem
4.4 of [90]. In order to use the notations of [90] we need the following substitutions'**:

(I,P) = I, (0,Q) =y, H — H, h~ = Hy, pf~ — Hi, 10— p,
(TeR™ | [|<7}x D™ =G, {IeR"™ ||| <7}, x T& x Dy x Ty, — F.
Defining m := supp H%QH and remembering (16.3) and the definition of ry, we have
m < const.u™In"3(1/p), p = const.u‘d. (16.9)
In order to apply the Theorem we have only to verify the following condition

M = sup |H;| < My (16.10)
F

where M, depends only on the steepness coefficients and steepness indices (which are
independent of x) and on m and p (which depend on p). Moreover we use the fact that
the dependence of My on m and p is, “polynomial” (although it is quite cumbersome):

102\We observe that we do not need to introduce the (p,q) variables so in our case C' = +co.
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that is there exist constant ¢g,¢q > 0 such that My(m,p) > const.m ¢ p° (see §6.8 of
[91]). So condition (16.10) becomes, using (16.9),

< const.pcaCata) ln3zd(1 /1),

which is verified choosing ¢ < (5;1 +¢4)7 L
Now we can apply the Nekhoroshev Theorem as formulated in Theorem 4.4 of [90], ob-
taining that if (7(0), ©(0), p(0),¢(0)) € & then

16 - 101 <42= M2 =00 VST = 5-em(5) =0(Lew (1))
(16.11)

where a,b > 0 are some constants depending only on the steepness properties of Hj.

Finally, choosing
cg < min{(2d + 6)71, (¢4 +72c4) '}, (16.12)

we have proved the exponential stability in the region &;.

Stability in the region &F. In the following we will denote I* := ([3,...,Iq) the
projection on the last d coordinates. We shall prove the following lemma

Lemma 16.2 Yk > 0, Jrg, ps > 0 such that ¥V 0 < pu < ps, if (1(t), p(t),p(t),q(t)) € &F
for 0 <t <T, then

[I°(t) = I7(0)] <

B &

Vi< min{-@lnl,T_}.
poop

It is quite obvious that for initial conditions (I(0),(0),p(0),¢(0)) € &, Theorem 10.3
follows from lemma 16.2 and the exponential stability in the region &;.

In order to prove lemma 16.2 let us define, for some fixed 0 < 6 < 7/4, the following
two regions in the phase space : U := {(I, ¢, D, q)| |¢| < & mod 27, |E(p,q)| < 2u%} and
V =1{(I,¢,p,q)| lg| > 6 mod 27, |E(p,q)| < 2p°a}. We first note that'®

2(t) eV Vi <t<ty, |q(t1)],lg(t2)| =6 mod 27
4 (16.13)
ta—t1<c, [I(ta) = I(t1)] <calta—t1)p.

Indeed in this case Vi <t < ty, c3 < |¢(t)] < c4. This implies that t; —#; < ¢1 and then,
integrating the equation of motion I = —ud, f in (¢1,12), we immediately get (16.13). We
also claim that

Vi, <t <ty, 2z(t) € U and |g(t1)], |g(t2)| = 6 mod 2 =3 —t1 > cs|Ilnp|.  (16.14)

We denote with ti; (resp. t3,) the 4-th time for which the orbits enters in (resp. goes out
from) U, so that t; < #, < ¢ < 4/ for 0 < i < 4. From (16.14) it follows that

1031 the following we will use ¢; to denote some positive constant independent on .
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io < ceko/p and, from (16.13), that the time Ty spent by the orbit in the region V' is
bounded by ¢rkq/ .

In order to prove (16.14) we use the following normal form result for the pendulum
Hamiltonian E(p, q) in a neighborhood of its hyperbolic equilibrium point (see e.g. [49])

Lemma 16.3 There ezist R,6 > 0, an analytic function g, with ¢g'(0) = —1 and an
analytic canonical transformation ® : B —» {|p| < 6} x {|¢| < 6 mod 27} where B :=
{IP|,1Q| < R}, such that E(®(P,Q)) = g(PQ)-

In the coordinates (@, P) the local stable and unstable manifolds are resp. Wg, =
{P =0} and W, = {Q = 0} and Hamiltonian (16.1) writes as

H:=H(,¢,P,Q) = h(I) +g(PQ) + uf(I,¢,P,Q)

where F(I, ¢, P,Q) = £(I, 0, 8(P, Q).

“We are now able to prove (16.14). Certainly there exists an instant ¢} € [t1,?2)
for which (p(t1),q(t})) € @(B) but, Vi1 < t < t5, (p(t),q(t)) ¢ ®(B). It follows that,
if we take the representant g(t,) € [—,d], then p(t})q(¢}) < 0. We will denote with
Z([t) == (I(1), 0(t), P(t), Q) = (I(t), (t), 2~ (p(t), ¢(t))) the corresponding solution of
the Hamiltonian system associated to H. From the fact that |g(t{)| = & or (p(t7), q(t7)) €
9®(B) and that |g(PQ)| < u, p(ti)q(t;) < 0, it follows that |P(t7)] < csp and [Q(¢])] =
Cg.

In the same way there exists an instant tj with ¢; < t§ < t3 < tz for which
(P(t3),Q(t3)) € B but, V¢ > t5 (P(t),Q(t)) ¢ B; in particular it results |P(5)| > cio-
We claim that t5 —; > c11In(1/p). Indeed P(¢) satisfies the Hamilton’s equation P(t) =
—g' (P(MQ)P(t) — pdof(I(t),w(t), P(t),Q(t)) with initial condition |P(t3)] < cgu®.
Since |P(t5)| > c10, we can derive from Gronwall’s lemma that 73 —1] 2> ¢ In(1/p), which -
implies (16.14).

By the following normal-form lemma there exists a close to the identity symplectic
change of coordinates removing the non-resonant angles ¢ in the perturbation up to O(u?). -
It can be proved by standard perturbation theory (see for similar lemmas section §5 of

[49]).

Lemma 16.4 Let 8 > 0. There exist R, p >0 so small that, defining A := minjg<zz [9'(€)],
S := maxjg<re |9"(€)], then X > 2SR? and p < min{\/4N, R%/8s, B/2N, r}. Let A be
a sublattice of Z4tt. Let D C R be bounded and B-non-resonant mod A, i.e. VI € D,
h e ZH\ A, |h| < N it results |(1,1%) - h| > B. Suppose that

e = p||flls,ps <27 Bups, (16.15)

where!®™ D := D, . := min{B, A/2}. Then there exists an analytic canonical transfor-

mation _ —
U: DxTi xB — DxTi' xB

(77¢7F’_Q—) — (I7(707P7Q)

1048 and D are thought as complex domains, as in the sequel B and D.

(16.16)
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with B := {|P|,|Q| < R/8}, D := D,a, such that

H:=H(I,%P,Q)=HoV=h{I)+31,2PQ) +fI7PQ)
withg(1,%,€) = g(&)+f*(1,%,€), I*(1,,6) = Then, v [ET, )" and || F*l5 5,54 <

€. Moreover the following estimates hold

- 4 992
T-n<55 [P-PLE- QI<R6* Plopes < 5 (1617

*

Let £ be the (finite) set of the maximal sublattices A = (hy, ..., hs) C Z** for some
independent h; € R*! with |hy) < N fori =1,...,8 < d. For A € £ we define the
A-resonant frequencies R* := {I* € R¢ | (1,I*)-h = 0, Vh € A} and the set of the
s-order resonant frequencies Z° := Ugima—s R

Setting h; = (I;,n;) with ; € R, n; € R?, we remark that if RA &£ () then ny, ..., n, are
independent. We also define the (d — s)-dimensional linear subspace (associated with the
affine subspace R*) L* := N{_;n;- C R? and we denote by IT* the orthogonal projection
from R? onto L*.

Since L is a finite set, o 1= minyes MiNyezd jnj< N T4n£0 |TI"n| is strictly positive.

We now perform a suitable version of the standard “covering lemma” in which
the whole frequency space is covered by non-resonant zones. The fundamental blocks
used to construct this covering will be r-neighborhoods of any R* i.e. R* := {I* €
R? | dist(I*, R*) < r} for suitable 7 > 0 depending on dimA. Let 74 > 0 be such that
(d+1)ry < cizk, for some cy5 sufficiently small to be determined. For 1 < s < d—1 we can

define recursively numbers r, sufficiently small such that 0 < r, < ary11/2N, verifying'%®

dimA = dimA' =5, R*# RY = Rj,y, NRi, CULZ,.  (16.18)
We also define, for 1 < s <d—1, 5% := R*\ (UL, Z} ) and 5% := 1= Zfs1yr, \(U S o1 Zssaym);
i.e. the s-order resonances minus the higher-order ones. We clalm that R =SU... .U
SYUZE, )y, is the covering that we need. We also define S° C 5} := RE\ (UL, ZE ) and

Ss - S.s : Z(s+1)7's \ (Uz—s—i—lZ(s-l—l)r,)

If the orbit lies near a certain R* (but far away from higher order resonances) then
the following lemma says that the drift of the actions I* in the direction which is parallel
to R is small.

Lemma 16.5 Suppose that I*(0) € S5, I*(t) € S% and |I[*(t)] < T+ 1r/2, V0 <t < T*
for some T* < ko|lnp|/pw and 0 < s < d—1. Then, if s > 1, there exists a sublattice
A C Z%, dimA = s such that I*(t) € Ré\sﬂ)“ \ (Ugl:S“Z(isH)n), V0 <t <T* Moreover
if Ko is sufficiently small*®®

A - TF0)| < 7m/2 VO<tL< T (16.19)

105 Assumption (16.18) means that, in order to go from a neighborhood of a (d — s)-order resonance to
a different one, we have to pass through an higher order dimensional one.
1061y the case s = 0 II* is simply the identity on R¢.
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and hence, for s > 1, |I*(t) — I*(0)| < 2(s + 1)rs + r1/2. In particular for I*(0) € S° we
have that |I*(t) — I*(0)] < r1/2, V0 <t <T™.

PROOF. In the case s = 0 we take A = {0}. The existence of A is trivial because

I*(0) € S° and hence I*(0) € Rf;,y,, forsome A € £ with dimA = s. The fact that I*(t) €
R 41y, \ (U121 0,,), VO <2< T, follows from I*(¢) € S5, V0 < ¢ < T and (16.18).
Now we want to apply lemma 16.4 with § := ar1/2 and D := R{, .y, \ (o1 Zs 1))
We have to verify that D is S-non-resonant mod A. Fix |he| < N, hg = (lg,nq) ¢ A (resp.
# 0 for s = 0). We first estimate |lo + ng - 3| for all I € Dy := R*\ (U Z_erlZ(sﬂ),,)
If A := A® (hy) and n} := II*ng we have two cases: n§ # 0 or n§ = 0. In nj # 0
we can perform the following decomposition: I = I* + v with I} € RY, v € L* and
moreover'?” v = fv|nf/|nj|. Since I§ ¢ (UL ,12(,1),) then I ¢ Z(s—l—l)r ., and, hence
|| > (s + 1)rs4;. Using the previous estimate, the fact that I7 € A" and |nf| > «, we
conclude that

llo+ng- I3 = |(lo+n0 - I3) + 710 - v| = |ng - v| = |nf - v| = |v]|ng| > s+ 1)res1. (16.20)

Now we consider the case in which n§ = 0. In this case it is simple to see that hy = (I',0)+h
where h € A and I’ € Z\ {0}. So |lp + no - I§| = |I'| > 1. Now we can prove that
llo+mno - I*| > B for all I* € D. In fact I* = Ij +u with I§ € Dy and [|u] < (s + 1)r,.
Using (16.20) and 75 < arsy1/2N, we have

llo 4+ 1m0 - I*| > |lo +n0 - I3] — |no - u| > a(s+ 1)rep — N(s+ 1)rg > a(s + 1)re1/2 > B,

proving that D is B-non-resonant mod A. Finally we can verify (16.15) if pg is sufficiently
small. Now we are ready to apply lemma 16.4 in order to prove (16.19). Using (16.13),
" the fact that f* contains only the A-resonant Fourier coefficients, (16.17) and Hamilton’s
equation for H we have

AT (2) = I°(0))| < ey + casps® (ol In pu] /1) + cratops
' < cacrkg + 613/J,/€0| ln,u] + craCeip < 7’1/2

if ko and ug are sufficiently small. m

PROOF OF LEMMA 16.2. Suppose first that [I*(¢)] < 74+ r/2 V0 < t < kollnp|/p. If
1*(0) € Z{,,4y,, and I*(t) € Ziyiye, YO <t < kol ln puf/p then |I*(t) — I(0)] < 2(d + 1)rg
and the Iemma is proved if ¢15 < 1 / 4. Otherwise we can suppose that I*(0) € S° for some
0<s<d-11IfI*¢) € S V0 <t < Ko|lnpl/p then we can apply the lemma 16.5
proving the lemma for c¢;; small enough. Suppose that 30 < T* < ko|In p|/p such that
I*(t) € S2 V0 <t < T* but I*(T*) ¢ S;. We will prove that

"1 eSu...ust (16.21)

that means that the orbit can only enter in zones that are “less” resonant. In fact by
lemma 16.5 we see that I*(T*) ¢ U§=5+1Z(’s+1)n, moreover, since [*(T*) ¢ Si, we have

10TWe observe that dist(Ig,RA') = |v|.

124



that [*(T*) ¢ Z{,,,,, and hence I*(T™) ¢ UL s Z{s 11y, IE I*(T*) € S° we have finished.
If I*(T*) ¢ S° then I*(T*) € UjZ; Z4, C Uz 1Z(Z+1 CIf I*(T*) € S* we have finished. If
I*(T*) ¢ S* then I*(T*) ¢ Zg,, \ UL,Z%. and hence I“(T*) e Uf_%ZhLl)ri Iterating this
procedure we prove (16. 21).

The conclusion is that if the order of resonance changes along the orbit, it can decrease
only so that the orbit may eventually arrive in the completely non resonant zone S° where
there is stability. Considering the “worst” case i.e. when I*(0) € ng +1)r, and the orbit
arrives in S%, summing all the contributions from lemma 16.5, we have that, if ¢;5 is
sufficiently small,

|7*(t) — I*(0)| < 2(d+ 1)rd+§(2(3+1)rs+r1/2) +7/2= i2(8+1)rs+dr1/2 < k/2.

| (16.22)
In order to conclude the proof of the lemma we have only to prove that if |[1*(0)| < 7 then
|T*(t)] < F+7/2 V0 <t < ko|lnp|/p. This is an immediate consequence of (16.22) and
of the fact that s < r. m

Stability in the region &£ . If, for all t > 0 (p(t),¢(t)) € &5, then it follows easily
that |p(t)], lg(¢) — 7| = O(u*/?). Then, defining fi(I, ) := f(I,,0,7) and fo(Z, ¢,t) :=
¥;

<
P00, 9(0) — (L], 1t xesults . 10,57, 1), 10,fa(1, 01 9] < comst
Clearly if (I(t), p(t), ¢(t),p(t)) is a solution of (16.1) then (I(%), p(t)) is Solution of Hamil-
tonian

Hy = Hy(I,0;1) = B(I) + pfi(L, ) + p ) o1, 0;1).
Now!% one can construct, in the standard way, an analytic symplectic map @ : (_I;Fp) —
(I,p) with |{T—1| = O(u/B), and two analytic functions h, f such that [h+pfi]lo®(I, ) =

R(I) + F(1,9) ‘with I7ll = O(1?). Defining f3 := fa(I,7;t) = f2(@(1,9);t) we also
get that |07f3(1,%;t)], |05f3(1,@;t)| < const./B. The solutions of Hamiltonian H; are
symplectically conjugated, via @', to the solutions of the Hamiltonian

Hy = Hy(I,%;t) := h(I) + F(1,%) + p" '/ f3(1,%; 1)
for which we obtain, directly from Hamilton’s equations, the estimates
IT(t) = T(0)| < const - pe/*, Y [t| < const - o4
It follows that, if (1(0), ©(0),p(0),¢(0)) € &, then V |t| < const.u~'~c/4,
1(8) = 1(0)] < |1(t) = T(&)] + [T(£) = T(0)] + |T(0) — I(0)] < comst.pe/*

(if at some instant ¢ the solution z(t) escapes outside &5 it is exponentially stable in
time).

Finally, from the previous steps, we can conclude that there exists p; > 0 such that
0 < u < py Theorem 10.3 holds.

108 or brevity we prove only the case in which I(0) is in a non-resonant zone. The resonant case can be
treated as in & .
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Part V
Appendix






A  Proof of lemma 11.1.

We shall use the following lemma:

Lemma A.1 There exists Ty > 0 such that, VI' > Ty, for all continuous f : [-1,T+1] —
R, there exists a unique solution h of

—h+cosQr(t)h=f,  h(0)=h(T)=0. (A1)
The Green operator G : C°([—1,T +1]) = C?([~1,T + 1]) defined by G(f) := h, satisfies

L O]+ RO < C_max 1) (4.2

for some positive constant C' independent of T'.

PRrOOF. We first note that the homogeneous problem (A.1) (i.e. f = 0) admits only the
trivial solution A = 0. This immediately implies the uniqueness of the solution of (A.1).
The existence result follows by the standard theory of linear second order differential
equations. We now prove that any solution h of (A.1) satisfies (A.2). It is enough to
show that maxsei1,711)|h(t)| < C'maxye_1 7417 |f(t)]. Indeed we obtain by (A.1) that
maxe-1,741] [ (t)] + lh(t)l < (20" + 1) maxye—1,741) | f(t)] and, by elementary analysis,
this implies (A.2) for an appropriate constant C.

Arguing by contradiction, we assume that there exist sequences (1;,) — 0, (fn), (hn)
such that

—hyp,+cos QTn(t)Zzn = fo, ha(0) =h,(Th) =0, |hy)n = te[irll%’i(-l-l] lhn(t)] =1, |faln — 0.
By the Ascoli-Arzela Theorem there exists h € C?([—1,00),R) such that, up to a sub-

sequence, h, — h in the topology of C* uniform convergence in [—1, M] for all M > 0.
Since Qr, —+ go — 27 uniformly in all bounded intervals of [~1, 00), we obtain that

—h 4 cosgo(t)h =0, h(0) =0, [sup ) |h(t)] < 1. (A.3)
t€|—1,00
Now the solutions of the linear dlﬁerentlal equation in (A 3) have the form h = K&+ Ky,
where (K3, Ky) € R?, £(t) = do(t) = 227 and 9(t) = L(sinht+ L) satisfies )& — &) = 1.
The bound on A 1mphes that K, = 0 and h(0) =0 1mphes that K7 = 0. Hence h = 0. In
the same way we can prove that h,(- — 7,,) — 0 uniformly in every bounded subinterval
of (—o0, 1].
Now let us fix 7 such that for all n large enough, for all t € [¢, T, — ], cos Qr, (¢t) > 1/2
(t does exist because of (11. 4)) By the previous step, for n large enough, there exists a
maximum point ¢, € (,7, — %) of h}(t), i.e. h2(tn) = |hy|2 = 1. Then (A2)(t,) =
2P (tn) Pin () = 0 and (A2)(tn) = 2hp (tn)Pn(tn) + 2h2(t) < 0. By the differential equa-
tion satisfied by hy, we can derive from the latter inequality that cos Qr, (t,)h2(t,) <
Jn(tn)ha(tyn), i-e. cos Qr, (tn) < fa(tn), which, for n large enough, contradicts the property
of ¢ and the fact that |f,|, — 0. =
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Now we can deal with the existence result of lemma 11.1. Let T := (§~ — 0%),

= (¢~ —")/T, B(t) = w(t—0%)+¢*. In the following we call ¢; constants depending

only on f. We are searching for solutions (¢, g) of (11.1) with @(6F) = = . q(6%) = Fm,
in the following form

{ o(t) =w(t—07) + T +o(t—60T)
q(t) = Qr(t—07) +w(t —6%).

Hence we need to find a solution, in the time interval I := [—1,T + 1], of the following
two equations

{ U(t) ==l F(P(v,w)](t), U(O) = U(T) =0, (A 4)
[L(w)](t) = [G(v, w)](t) := =[SW)](t) + p[Fy(v,w)](t), w(0)=w(T)=0, *~

[Fy(v,w; X, w](t) = Opf(wt+ " +u(t),Qr(t) + w(t), t+67),
[Fy(v,w; 2, w)](t) = Bgf(wt+ ¥ +o(t),Qr(t) +w(t),t+67),
[S(w))(2) = sin(Qr(2) + w(t) — sin(Qz()) — cos(@r(t)w(®),
[L(w)](t) = —1(t) + cos Qr(t)w(t).

We want to solve (A.4) as a fixed point problem. By lemma A.1, the second equation of
(A.4) can be written w = K := G(—S + pF,). Moreover the first equation (A.4) can be
written

JONT — )+ J(T)t

v(t) = J(t) = [T (v, w; A, w](t) = J(2) - T ) (A.5)
where, setting F,(s) = F,(v(s),w(s)), |
[T (v, w; A, w)](t) = — /T/Q/T/z ) ds dz.
Let us consider the Banach space Z'=V x W := C*(I;R*) x C*(I; R), endowed with |
the norm ||z|| = ||(v, w)|] := max{[|v]lv, ||w|lw}, defined by
Iollv := sup [lo(®I(1+ epT) 782+ 018}, il i= sup @)+ K@) (A6)

A fixed point of the operator & : Z — Z defined Vz € Z as ®(2) 1= ®(z; A\, ) =
(J(2), K (2)) is a solution of (A.4). We shall prove in the sequel that & is a contraction in
the ball’®® D := Bg,(z) for an appropriate choice of , ¢1, Cg, provided y is small enough.
We have |[S(w )](t)l < w?(t), so that Vt, |[G(v, w)](t)] < & p? + cqp. Now, choosing
first  sufficiently large and then p sufficiently small, we can conclude using (A.2) that, if
z € D, ||K(2)|lw < tu/4. Now we study the behaviour of J. Let us first consider J. We

define
Fu®) = Fu@Qr) +w(t), gu(t) = fu(Qr(t) +w(?),

109Tf X is a Banach space and 7 > 0 we define B,(X) := {z € X;||z]| < r}.
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am =n-@" +107, Bui=n-w-+l
Fort € [-1,T +1], z € D, we want to estimate

3 . i . .
J(t)=—u Fo=—p > ine® // fnz(S)e‘”'”(s)elﬁ"”ds.
‘ T/2

T/ l(nD)<N

Integrating by parts, we obtain

4 . . . , . .
—1fn / / fnl(s)em-v(s)elﬂnzsds = fu (T/2)6m-v(T/2)€1ﬂnzT/2 _ fnl(t)em-u(t) ibnit (A?)
T/2

/Tt/2 gni(8)Qr(s)em et ds (A.8)
/ t/ (gnu(8)i(s) + fur(s)in - 0(s))e™ Ve ds(A.9)

By (11.4), the term (A.8) is bounded by cs max{e~*2*, e=¥>(T=9}. Hence, for 2 € D,

s F, = u(t)—u(T/2)+R(t), with [R(t)] < 3
where u(t) = X (n/ )€ fru(t)em v elbntt,
So we can write J(t) = 7(¢) + p(t — T/2)u(T/2), where

[max {e“Kzt, e“KZ(T“t)} +e(u+ Z)T} ,
(A.10)

i) = /;/2 —pu(s) ds+ /Tt/2 —pR(s) ds.

By the bound of R(t) given in (A.10), the second integral can be bounded by c7(x/8)[1+
eI/ B]. Integrating once again by parts as above, we find that the first integral is bounded
by cs(u/B?)[1 +¢(uT/B)], hence, by the condition imposed on pT', it can be bounded by
1e/852, provided that Cy has been chosen small enough and € is large enough. Hence

Ol

3] < S [Z +emt? + ],

%!’;

In addition . 7

pe 7
G )
As a result |[7]lv < ,u’c'/4, provided ¢ and ¢; have been chosen large enough, Cy small
enough.

Now J(¢) = j(t) + at + b, where a,b € R, so that we may replace J with j in
(A.5). Since |J(t)] < |j(®)] + max{|j(0)], |5(T)|HT + 2)/T and |J($)] < [dj(t)/dt| +
(1/T) JF+1|dj(s)/dt| ds, we obtain ||J]|lv < 3||jlly < p3¢/4. We have finally proved
that ® maps D into itself (in fact into Bsg,/4).

§(O)] = plut) + RE)| < e

131




Now we must prove that ® is a contraction. @ is differentiable and for z = (v,w) € D,
(D®(2)[h, g])(t) = (r(t),s(t)), r and s: [~1,T + 1] — R being defined by

7(t) = ar(t).h(t) + i ()g(@) , r(0)=r(T) =0,
L(s)(t) = a2(t)-h(t) + b2(t)g(t) ,  5(0) = s(T) =0, (A.11)

01(£) = ~pdgpf (Wt + ¢+ v(2), Qr(t) +w(t), 1+ 0%),
bi(t) = —pByq f(wt + @7 + (1), Qr(t) +w(t), t +6%),  az(t) = —bi(t),
ba(£) = cos(Qr(t) + () — cos Qr(t) + pdgq (Wt + " + v(t), Qr(t) + w(t), t + ).

By the same arguments as above (4, B) € V4 x V (where V; := C'(J ,R?)) defined by
A®) = ai(t), A0)=A(T)=0, B(t)=b(), B(0)=B(T)=0

satisfy ||Allv; + ||B|lv < enep (|] |lvi being defined in the same way as || ||v).
Using an integration by parts, we can derive from (A.11) and the bound on |[A[}y; +
||Blly that

#(8)] < ot g[(l—j—gﬁllhl]v—I—HQHVV)nLT(H ¥ 4 liw)]. (A12)

Therefore, for Cy small enough, |87(¢)] < 1/8max{]||h||v,||g|lw}. We derive also {rom
(A.12) that

T 3 uT?
o + ; + ] max{1bllv, lgllw),

which yields

B (1 + ey r(t)] < crat(uT /B + (1/er)) max{||Allv, llgllw} < max{{|hllv, [lgllw}/8,

provided Cy is small enough and ¢; /¢ is large enough. Finally we obtain that ||r|ly <

max{|[hllv, [lg|lw}/4.
Using the properties of L and the fact that

|as(£).h(t) + ba(D)g (8)| < ersp(1 + c1pT?) /B2 by + cas(fw ()] + w)llgllw

we easily derive ||s|lw < max{||h||v,||g||lw}/4 (again provided that Cj, more precisely
Cyey is small enough). We have proved that for a good choice of €, c1, Co, || D®(2)[h, g]|| <
||(h, 9)]|/2 for z € D. Hence ® is a contraction. As a result, it has a unique fixed point zy
in D (which in fact belongs to Bz 4). This proves existence.

Now there remains to prove that ¢, (2), gu(t) are C* functions of (A, t). Let (05, 65)
be fixed with Ty = 65 — 67 and let A = {\ | |#+ —6f| < 1/4, |07 — 90‘] < 1/4} For
ANeAIy:=[-1/2,Ty + 1/2] [—1,6~ — 6T + 1], hence the restrictions v} and w} of vy
and w) to Iy are well defined.
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Let Vo x Wy := C*(lp, R") x C*(Ip, R) be endowed with the norm || ||o as defined in
(A.6). Define U : A — Vox Wy by ¥()\) = 2%. We shall justify briefly that ¥ is differentiable
and that || DU|| < cygpu. 23 is the unique solution in Bg, of (A.4) (with 7' = 6~ —6%), which
is equivalent to (vy, wy) = ®(2; 07,07, ¢, 0™, 1), where @ : Bz, X Ax (0, p2) = Vox Wy is
smooth. Now, by the previous step, ||D,®|| < 1/2 everywhere, so that I—D,® is invertible.
Therefore, by the Implicit Function Theorem, ¥ is C'. This proves that (A, 1) — ¢, (t)
(resp. (A, 1) = qua(t)) and (A, t) = @ua(t) (resp. (A, t) = ¢u(t)) have continuous partial
derivatives w.r.t. A in the set {(\,¢)] —1/2+ 0T <t < 1/2+ 67}, and by the standard
theory of differential equations, these partial derivatives have continuous extensions on
{8 —1460T <t<1+6"}. Finally, by (11.1), ¢, and G, depend continuously on
(A1),

B Proof of Theorem 13.2.

In order to prove Theorem 13.2 we need a preliminary lemma. Observe that A% is a finite
set which is symmetric with respect to the origin. Hence, if it is not empty there exists
p € A% such that p- Q = a(A,Q, R).

Lemma B.1 Assume that A% # 0 and let p € A% be such that p- Q = o = a(A,Q, R).
Assume moreover that o > 0 and define E = [p]*. Then Ay := AN E is a lattice of E.
In addition :

, where 8 =1inf{|g-Q;q € (Ao)*zp o}, (Mo)* ={g € E|Vz €N g0 €

@) 5~ < V3R/2

«
Blp
z}y.

In particular o < 2.

(i1) a(A,Q,VTR/2) < B.

=V

PROOF. Since A is a lattice, it is not contained in E. Hence p- A is a non trivial subgroup
of Z, p- A = mZ for some integer m > 1, which implies that p/m € A*. But p/m-Q = a/m
and |p/m| < R, hence by the definition and the positivity of o, m = 1. As a result there
exists T € A such that p-Z = 1. Obviously Ag+ZZ C A. On the other hand all x € A can
be written as z = (z-p)T +vy, where y € A, y-p =0, i.e. y € Ag. So the reverse inclusion
holds and we may write A = Ag + ZZ. As a consequence Ay is a lattice of £ and

ANM={reR|r-ANCZandr-z€Z}={qg+ap : g€ A}, a€Z~q T},

r={g+ap: g€A;, a€L—q T, 0<gf +a’p]" < R7}.

If 8 = 400 there is nothing more to prove. If § < +c0, let ¢ € (1\.0)“\‘/5]{ /2 be such that
qg- = 0. Let

S={aecR : q+apeAp}={a€R : a€Z—~q-7, |a| < (B~ |g)"*/Ipl}.
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Since |2 < 3R%/4, S 2 ' == (Z — ¢ - T) N [-R/2|p|, R/2|p|]. Hence by the definition of
a,forallae &, |(g+ap) - Q =|8+aa| > o, ie f/a¢ (~1~a,1—a)

As |p| < R, the interval [-R/2|p|, R/2|p|] has length > 1 and must intersect (Z—q-7).
Therefore S’ # @, more precisely S’ = {u,u + 1,...,u + K}, for some integer K >0,
where v = inf S’. As a result,

K
Blo ¢ L_J(—l»u—k,l—u—k)-——(—1~u—K,1—-u).

Now §'N[-1/2,1/2] # 0, hence u+ K > —1/2 and —1 —u — K < 0. As a consequence
Bla > 1 — u. Since [~R/2|p|,—R/2|p| + 1] € [~R/2|p|, R/2|p|] intersects Z — q - 7,
u < —R/2|p| + 1. Therefore /o > R/2|p|, which is (z). In particular, since Ip| < R,
a < 20.

Finally there exists a € [~1,0)N(Z—g¢-T); ¢-+ap € A*, and |g+ap|* = |g[*+a?[p|> <
3R%/4 + R? = TR?/4. Hence ¢+ ap € AfR/z We have |(q+ ap) - Q| = |8+ ac| < B,
because —1 < a < 0 and a < 28. This proves (ii). m

Now we turn to the proof of Theorem 13.2 We first prove that the statement is true
for | = 1, with a; = 1/2. Here A = \Z for some A; > 0, and A* = (o) ™'Z. We can
assume without loss of generality that @ > 0. If Xy < 26, then for all z € R, d(z,A) <d.©
Hence T'(A,Q,6) =0

If Ao > 20, then it is easy t0 see that T(A,Q,8) = (A —26)/Q < Ag/S2. On the other
hand, 1/ € A o5 and a(A,Q,1/(26)) = 2/ X. The result follows.

Now we assume that the statement holds true up to dimension [ —1 (I > 2). We shall
prove it in dimension /.

Fix R > 0 and define 6 = (4af_,/3 + 4)1/2 /R. We claim that:
(a) If A = 0 then T'(A,Q,6r) = 0.

(6) If A% # 0, let p € A% be such that p- Q = o= (A, Q, R), and define § as in lemma
B.1. Then
T(A,Q,6r) < max{a™, 7'}

Postponing the proof of (a) and (b), we show how to define a;. In the case (b), by
lemma B.1 (ii), T(A,Q,0r) < (A, Q, VTR/2)~!. This estimate obviously holds in the
case (a) too. Hence for all R > 0,

T(A,Q, (4a?_,/3 + 4)Y?/R) < a(A, Q,VTR/2)™"

As a consequence, the statement of Theorem 13.2 holds with a; = (V7(4a}_,/3+4)12/2).

There remains to prove (a)‘and (b). First assume that A% = 0. Let p € A*\ {0} be
such that for all p’ € A*\ {0}, |p| < |P/|. Then |p| > R. Let E, Ao be defined from p as in
lemma B.1.
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Arguing by contradiction, we assume that (AO)f/gR /2 # (). By the same arguments
as previously there exist q € (Ao)f/gR/2 and a € [—1/2,1/2] such that ¢ +ap € A*. But

lg + ap|® = |g? + a?|p|* < (3/4)R* + |p|*/4 < |p|*® and this contradicts the definition of
p. Hence (Ao)*\/gR 2 = () and by the iterative hypothesis, all point of E lies at a distance

from Ag less than 2a;_,/v/3R.

From the proof of lemma B.1, there exists T € A such that p-Z = 1 and A = Ay +Z7.
Therefore for all 2 € R, there is 2’ € = + A such that |z’ - p| < 1/2. This implies that
d(z',E) < 1/(2|p]) < 1/(2R) and hence that d(z', A¢) < (4af /3 + 1/4)'*/R < dx.

Hence the distance from any point of R to A is not greater than dg. This completes the
proof of (a).

Next assume that A% # () and let p be as in lemma B.1. Define a and § in the same
way as in lemma B.1. Let € R'. Again A = Aq+ Z7 for some T € A such that p-7 =1,
hence there exists z’ € z + A such that p-z’ € [0,1). We have

, w a

o' =y+—=p, Q=U+
pl? Ipl?

with y,U € E = [p|*, w = p -z’ € [0,1). We shall assume that o > 0 (if & = 0, there is
nothing to prove). Let ¢ = w/c, and consider the time interval defined by

J=00,1/8] fT<1/8, J=[F-1/8,1 ti=1/p.

J C [0,max{1/B,1/a}], and it is enough to prove that there exists ¢ € J such that
d(z',tQ+Ag) < 6. The length of .J is not less than 1//. Hence by the iterative hypothesis,
there exists ¢ € J such that d(y,tU + Ag) < 2a;_1/(v/3R) (notice that for all ¢ € A,
g-U = q- €, so that the linear flow (tU) creates a 2a;_;/(v/3R)-net of E/Ag in time 871).
We have

(t -t

|p|

Hence, by lemma B.1 (i) , d(z',tQ + Ag) < (4a?_,/3 + 4)}/?/R. This completes the proof
of (b).

4a? 4
3R?

d(a', 19+ Ao)? = ( )2 +d(y, tU + Ag)? < <ﬁTpl)2 +
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