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Chapter 1
Introduction

More than one kind of device of plasma confinement has been con-
structed in order to study the plasma dynamics and to achieve a con-
trolled fusion reactor. Some important problems remain unsolved. One
of them is to understand the transport processes which lead to the loss
of the plasma confinement. Another is to know how the magnetic fields
that confine the plasma evolve in time. These fields have modes that
appear and interact with each other. The dynamics of these interac-
tions is nor yet clear.

In this thesis we describe the magnetic fields using two different
mathematical tools. One of them describes the magnetic fields by a set
of Generalized Standard Maps. Another is a three-dimensional magne-
tohydrodynamics (MHD) code that gives their time evolution. In both
cases we considered a “Reversed Field Pinch” (RFP) configuration of
plasma confinement.

In chapter 2 we present the first approach. In a RFP machine, the
equilibrium magnetic field lines are reasonably well described by the
Taylor theory of the relaxed states [1]. But in the experiences, the ob-
served profiles differ from the equilibrium one and to account for this,
some perturbation have to be added to the equilibrium state. The per-
turbed magnetic field lines can be treated by hamiltonian methods that
lead to a description of them by a set of Generalized Standard Maps
[2]. These maps differ from the Standard Map for having a perturba-
tive spectrum with more than one mode. Some known features of the
Standard Maps are also validy for the Generalized Standard Map and
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4 CHAPTER 1. INTRODUCTION

will be used to study the magnetic field lines.

The diffusion of the magnetic field lines corresponds to the diffu-
sion of the orbits of the Generalized Standard Map. We calculated the
diffusion coefficient in the quasi-linear approximation for these maps
with different perturbative spectra and we found that the value of this
coeflicient strongly depends on the number of modes of the spectrum
but depends very little on the kind of function appearing as the coef-
ficient of the modes. The KAM curves that exist in these maps act as
barriers to the diffusion and it is relevant to study if the break-up of the
last of these curves also depends on the perturbative spectra. We used
the Newton and Greene methods to find the last KAM curve and then
calculated the Lyapunov exponent, the correlation dimension and the
residue of this curve for several values of the perturbative parameter
e. We found that the necessary value of € to break-up the last KAM
curve of these maps (called critical perturbation parameter) depends
on the spectrum. The dependence on the number of modes is more ac-
centuated than on the kind of functions that are the coefficients of the
modes. We found also a scaling law between the critical perturbation
parameter and the number of modes.

In chapter 3 we present the three-dimensional, viscous, resistive
MHD code. With this code we describe the time evolution of the mag-
netic field lines in a cylindrical geometry. We checked this code with
an Alfvén wave, which analytical solution we know. Then we evolve in
time a magnetic profile without supplying the system with energy. We
observed that the field lines are damped and that the reversal of the
component B, is lost.

Finally, in chapter 4 we propose a mechanism that takes into account
the effect of the perturbative magnetic spectrum on the time evolution
of the magnetic field lines. This mechanism is based on a paper of
Gurevich et al [3], in which the transport coefficients are written in
terms of the correlation function of the magnetic perturbations.

We tried to be in each chapter the most self-consistent as possible.
Therefore, at the beginning of each chapter there is an introduction
concerning that chapter, where we also present how it is organized. So,
for more detailed introductions, we refer the reader to these sections.
In order to make the reading fluent, some topics were discussed in the
appendices.



Chapter 2

Description of the Magnetic

Field Lines by a Generalized
Standard Map

2.1 Introduction

The Taylor theory of relaxed states can be used to describe the mag-
netic field lines of a “Reversed Field Pinch” (RFP) plasma confinement
configuration. This theory is presented in section (2.2.1). In this theory
the plasma achieves a state of minimum energy in a process that keeps
the helicity constant. This state of minimum energy is an equilibrium
configuration of the magnetic field lines.

In real experiments we do not have exactly this equilibrium config-
uration and to account for this fact some perturbation has to be added
to the field lines equations. The field lines are distorced by the pertur-
bation. Indeed, while in the ideal case their intersections with a surface
(Poincaré section) are distributed on invariant circles, in presence of the
perturbation they belong to invariant sets which can be diffeomorphic
to a circle (KAM curve), or to a sequence of circles (islands) or be very
scattered in stochastic regions.

The perturbed field lines can be treated by hamiltonian methods
and this treatment leads to the description of these lines by a set of
Generalized Standard Maps, that differ from the Standard Maps for
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6 CHAPTER 1. DESCRIPTION OF THE MAGNETIC...

having a perturbative spectrum with more than one mode. This per-
turbative spectrum is determined by experimental observations. The
hamiltonian treatment is presented in section (2.2.2) and its application
to the RFP configuration in the section (2.2.3).

The existence of KAM curves despite a small perturbation is cru-
cial for the stability analysis. They are real topological barriers to the
diffusion, and it is relevant to determine the critical value €. of the
perturbative parameter for which the last KAM curve disappears and
diffusion throughout the phase space can occur. When the perturbation
is much larger than the critical value, the diffusion can be described by
the quasi-linear approximation. We computed the quasi-linear diffusion
coefficient of the Generalized Standard Map for different kinds of per-
turbative spectra. We found that the value of this coefficient depends
on the number of modes of the spectrum considered, much more than
on the kind of the function appearing as coeflicients of the modes. This
is presented in the section (2.3).

The critical value gives a lower bound to the validity of the quasi-
linear coefficient. In order to analyse if the range of validity of this ap-
proximation also depended on the kind of the spectrum, we calculated
the critical value of a Generalized Standard Map for different spectra.
At a first approach, the orbit with winding number very close to the
golden mean was found using the Newton method. The Lyapunov ex-
ponent and the correlation dimension of this curve were calculated and
we found that the critical value depends on the spectrum. Then we used
the Greene method to find the orbits of the convergents of the golden
mean. We calculated the Lyapunov exponent and the residue of these
orbits. Using the Greene method we could find orbits of a Generalized
Standard Map with a broader spectrum than with the Newton method
and it was possible to discover a scaling law between the critical value
and the number of modes of the spectrum. All this analysis of the
break-up of the last KAM curve, also called transition to stochasticity,
is presented in section (2.4).
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2.2 The Physical Model

2.2.1 Equilibrium State: the Taylor Theory

The toroidal machine, also called toroidal pinch, in principle involves
only a toroidal vacuum vessel in which a toroidal magnetic field By is
first created by external coils. Then, after creating an initial plasma
by a suitable ionizing process, one induces a toroidal current I, which
creates a poloidal magnetic field.

There are several remarkable features common to all toroidal pinch
experiments:

1) after an initial highly turbulent phase, the plasma sets into a
more quiescent state in which the fluctuations are reduced;

2) in this quiescent state the mean magnetic field profiles are essen-
tially independent of the particular experiment or the previous history
of the discharge and depend only on a single parameter, the pinch ratio
© = By(r = a)/ < B, >, where < B, > is an average value of the
z-component of the magnetic field, and a is the minor radius of the
toroid.

3) if © exceeds a certain critical value the quiescent state is one in
which the toroidal field is spontaneously reversed in the outer region of
the plasma near the vessel wall.

The plasma achieves a quiescent state, that is a minimum-energy
state, from a highly turbulent phase through a process known as relax-
ation.

This process has been theoretically explained by Taylor [1], [4] in
his theory of relaxed states, in an amplification of the results of Woltjer
[5]. This theory says that in a perfectly conducting plasma, in which
the internal energy can be considered negligible compared with the
magnetic one, the motion to the relaxed state is constrained by the
invariance of the helicity, defined by:

K@@:LABﬁx (2.1)

where the integration is done in an infinitesimal flux tube surrounding
a closed line of force and where «, 8 denote the surfaces delimiting the
tube.
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These invariants are essentially topological: if one closed line ini-
tially links another n times then in a perfectly conducting plasma the
two loops must remain linked n times during any subsequent plasma
motion.

The state that minimizes the magnetic energy,

1
W= / (V x A)2dV (2.2)
satisfying the infinity of constrains described above is described by:
V xB = Ae, 5)B (2.3)
B-VA=0 (2.4)

But real plasmas are never perfectly conducting. In the presence
of resistivity, however small, topological properties of lines of force are
no longer preserved. So, flux tubes have no continuous independent
existence.

Consequently all topological invariants K (a, ) cease to be relevant,
not because the magnetic flux changes significantly, but because it is
no longer possible to identify the field line to which the flux belongs.
However, the sum of all the invariants, that, is the integral of (A - B)
over the total plasma volume V4, is independent of any topological
considerations and of the need of identifying field lines.

To obtain the relaxed state of a slightly resistive turbulent plasma,
therefore, it is necessary to minimize the energy subject to the single
constraint that the total magnetic helicity

Ko= | A-Bdv (2.5)

be invariant. Here V; is the total volume occupied by the plasma. For
a plasma enclosed in a perfectly conducting toroidal shell, the corre-
sponding equilibrium satisfies

V x B = uB (2.6)

where p is a constant. This parameter u is directly related to the pinch
ratio § = pa/2.
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The general solution to the equation (2.6) is

B =3 B™(r) (2.7)
where
Bmm = \/——I/z;i———___?[n,];(y) + %Jm(y)]sin(mﬁ +nz) (2.8)
1
By = —e [ (y) + T T (y)]cos(mf + nz)  (2.9)
ve—n y
BT = J,.(y)cos(mb + nz) (2.10)

y =71/ pu?—n (2.11)

The term m = n = 0 satisfies the boundary condition that the wall
is perfectly conducting for any value of p. The others terms (m #
0,n # 0) satisfy this boundary condition only for discrete values of p
given by

Al(5? = )T (1 = n2) ) mpd (=) = 0. (212)

The minimum value of x that satisfies the equation (2.12) is y =
3.11, that 15, © = 1.6. So, for ©® < 1.6, we have only the m =n = 0
components, that is, a symmetric state. For © > 1.6, for fixed values
of © there are other components (m # 0,n # 0), together with the
component m =n = 0.

We used as the equilibrium state of the RFP magnetic field lines
the symmetric state, that is called the “Bessel Function Model”:

B, =0 (2.13)

B, = BoJo(pr/a) (2.14)
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By = BoJy(ur/a) (2.13)

According to this model a reversal in the B, component is predicted
to © > 1.2. The profiles obtained with these equations fit well with the
experimental data, except for the outer region of the torus. A reason
for this discrepancy is that u, which would be uniform in a fully relaxed
state, falls off near the wall. This effect has been discussed in detail by
Ortolani [6].

2.2.2 Hamiltonian Treatment of the Perturbed
States

The equilibrium equations for the magnetic field lines, parametrized by
6, are:

d B
a Ty

do By
dp _rBy _ rdo(pr/a) _ Q(r) (2.16)
dd ~— RBy; RJi(pr/a)
where ¢ and R are the minor and major radii of the toroid respectively.
To describe a realistic situation, it is necessary to introduce an ap-

propriate perturbation in (2.16). This has been done by Turchetti et
al [2]. The equations of motion become:

ar rBr(l)(r,l/J; )

0~ Bylr) a
1 (2.17)

& rBY) (r,1;0)

@ =T TRy

The deformations of the perturbed magnetic field lines can be stud-
ied with the methods borrowed from hamiltonian mechanics [7]. The
equations of motion leave invariant the measure

W, = RBy(r)dr A dip. (2.18)

The differential form
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dH = (RByQ + erB)dr — er RBM dyp (2.19)
is exact and
H = H(p,,0) (2.20)
where
p=R / By(r)dr. (2.21)
The equations of motion can be written as
dp 0H
£ 2= .22
do o (2:22)
dy OH
_— = 2.23
dg  Op (2.23)

and preserve the ordinary Lebesgue measure

w=dp A d (2.24)

In the RFP model considered by Turchetti et al [2] only the first
order terms were taken in the Bessel function power series expansion
in the measure and in the equations of motion. So, the measure takes
the form:

B
Wy = R“—f—ordr A dip = Rﬁrodp A dip (2.25)

where

p=r? (2.26)

The presence of a constant factor in the measure is only a matter
of notational convenience.
The hamiltonian (2.20) can be written as

H(p,%,0) = HO(p) + eHY(p, 9, 0). (2.27)

The equations of motion are:
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d OH®
5 = =—cf(o,,0)
e (2.28)
dp  9HO®  oHO 0 s
(1) B
where Q(p) = Q(r) = Q(/p), [ = % and g = %;‘17—).
The Taylor’s expansions in € of p and 3 are given by
p(6) = p108) + >_ P (0) (2:29)
k>1
$(0) = p(0) + 3 P (9) (2.30)
k>1
where p(0) = p(@(0) and %(0) = %®(0).
At zero order the equations (2.28) read
dp©®
Ze =0

and their solutions are

pO(8) = p(0) .
$O(0) = (0) + 69(p(0)). (2.32)

At first order the equations take the form

&
b = —ef(p,50(0),0)
A (2.33)
7 = V()N (0) + (0, 49(6),0)

and the solutions to these equations are

p(8) =pO +efy dtf(p®,4O(t),1)
$(8) =% 4+ 09(p) + e (p®) [ dt 5 dsf(p®,O(s), s)
+ e fy dtg(p®, %O (1), t)
(2.34)
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where we have written p(0) = p(@ and 1% (0) = %©). So, the Poincaré
section at @ = 27 of the flow (2.34) reads

) operr = e eF(pr, k) .
M { Prer = e+ (o) + €Glor ) (2.35)

where w(p) = 270(p) = 27Q(r).
This map is area-preserving at first order

I(pr+1; rt1) _ 2
m@(pk,wk) =14 O(€*). (2.36)

One can observe that F and G satisfy

OF oG  ,0F
FPRE iRl il (2.37)

= dw 27 df)

where w do = Irdr Equation (2.37) allows one to introduce a

generating function

9(pr+1, k) = go(prs1, V) + €q1(prt1, ¥) (2.38)

which produces an exactly area preserving map, M,,,,, which agrees
with (2.35) up to order €*, that is M,y =M+O(e?). This new map
reads [2],

M { Pr+1 = pr + €F(pry1, )
e =Yk A w(pke) + €[Glprr1, ¥r) — W (prs1) F(pre1,91)]
(2.39)

This map is defined in an implicit way, but it is easily inverted,
whenever the inverse exists, using an iterative procedure.

A further approximation can be done which consists in neglecting in
the sympletic map the perturbation in the angular component and ap-
proximating the perturbation in the radial component with a piecewise
constant function namely

Fper1,te) = Z%’;_l F(17“Z+1,j,¢k)@j(/)k+1)

g — 2.40
Tk41,5 :a( IN ) ( )
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where @;(pry1) = 1 for pryr € I; = [(a(5 — 1)/N)?,(aj/N)?] and
O;(pr+1) = 0 anywhere else for j=1,...,N. If we replace pry1 with pg
the error in the radial part with respect to the exact map is still of
order €2, but the advantage is obvious: one has an explicit locally (in
any interval I;) sympletic map. In this way, the exact map has been
replaced by a set of N Sectorial Generalized Standard Maps M; defined
in the intervals I; where

, Pry1 = pr + €F (T} 1bk) /
M. : J 2.41
! { Yr1 = U +w(prs1) (2:41)

2.2.3 The RFP Magnetic Field Lines

The perturbation of the magnetic field lines is considered stationary
and its poloidal component null. The stationary condition is physically
well justified since the discharge time is much longer than the relax-
ation time. The second assumption is made mainly for simplicity. The
perturbation considered satisfies V - B = 0, so that the choice of B
determines Bz(/}) and vice-versa.

The radial component is described by

BY = f(r) 5 (4,9) (2.42)

where f(r) is a continuous function in r which vanishes on the major
axis and on the toroidal shell,

(2.43)

and P(v,0) is a trigonometric polynomial which takes into account the
experimental observed spectra and is given by

P(h,0) = (bo + bysind)[> a—:cos(m[))]. (2.44)

The divergence free condition for the perturbed part of the magnetic
field BM(r,1, ) in cylindrical coordinates reads:

~—rBY 4 = —BM =0 (2.45)
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and using (2.42), the toroidal component is given by

BO - R (f o) f’(r>) P(b,0) (2.46)

So, the field components B! can be written
BW = Bor(aa;_ r) (bo + bysind) ; ar, sin(na) (2.47)
BY = _BOR____-.(ZG ; 3r) (bo + bysind) Y % cos(ny) (2.48)

A further simplification is made using the power series expansion,
truncated at the first order, of the Bessel functions Jo(ur/a), Ji(ur/a),
so that

By(r) = Bogr (2.49)
_rado(pr/a)  2a r?
)= gt~ (1) )

where 7, is the zero of the Bessel function Jo(ur/a), r. = (2.4/u)a.

Using the expressions of the the magnetic field components, B
and B (1), in the perturbed equations of the field lines (2.17), changing
from the variable r to p and using equations (2.49) and (2.50), we have
to the magnetic field lines:

dp_ 2¢p"*(a—p'?)

do U a? (bo + by sin 0) Z ay, sin(ny)
2

n

dp P 2¢(30"% = 2q) : (2.51)
7 )t (bt busind)x
S 22 cos(nzp)
n

With the method described in the previous section we can obtain
an exact sympletic map, written in an implicity way:



16 CHAPTER 1. DESCRIPTION OF THE MAGNETIC...

{ Petr = pr + € F(prir, ¥x)
Y1 = Vi + w(prt1) + €(G(prs1, Yx) — w'(pk+1)F(pk+1,¢k()) |
2.52

This map can be substituted by a set of Sectorial Standard Maps
as is shown in the former section, given by the equations (2.51). The
expressions of F(p,®) and G(p,®) and the values of the parameters
used can be found in appendix A.

In the figures (2.1) and (2.2) we show the phase portraits for € =
107 and € = 7 x 1073, respectively, from the section of flow (2.51),
obtained with a fourth order Runge-Kutta integration, the exact sym-
pletic implicit map (2.52) and the Sectorial Standard Map approxima-
tion. The inversion of (2.52) is obtained recursively with few steps for
the considered values of e.

The results show that the lines of force can be studied with the
sympletic map or with the Sectorial Standard Map even at values of €
for which the stochastic region is one half of the phase space.

One advantage of this kind of approach is the computer time con-
sumption. In CPU time, 3650s are necessary to integrate the flow and
do the Poincaré section, while 14.03s and 1.12s are necessary to the ex-
act sympletic map and to the Sectorial Standard Map respectively. So,
this last one can provide a good approximation to the exact Poincaré
section (obtained from the equation (2.51)) in a very short time.

So, the Generalized Standard Map is a good tool to study the mag-
netic field lines of a confined plasma in a RFP configuration. Some of
its properties are presented in the appendix B. In the next sections we
will present studies of the effect of different perturbative spectra on the
quasi-linear diffusion coefficients and on the transition to stochasticity
of this kind of map. The importance of this analysis for the General-
ized Standard Map is to understand how different perturbations will
affect the equilibrium magnetic lines. In order to analyse just the de-
pendence of the diffusion coeflicient and the transition to stochasticity
on the number of modes and on the kind of the coefficients of these
modes, we normalized the perturbative spectra, such that we were al-
ways comparing systems with the same magnetic energy.
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a)

Figure 2.1: Poincaré section of the flow (A), sympletic map (B) and
Sectorial Standard Map (C) for e = 1073, (Figure taken from the
reference [2]).
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a)

b) c)

e T L NTE RSP | R

Figure 2.2: Poincaré section of the flow (A), sympletic map (B) and
Sectorial Standard Map (C) for € = 7 x 1073, (Figure taken from the
reference [2]).
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2.3 Diffusion Coefficient

In the previuos section we reduced the problem of integrating the equa-
tions of the magnetic field lines to the study of a sectorial Generalized

Standard Map:

= Fpx,;,x)
M - PE+1 Pk + € _ N3 253
: { e = i+ (o) (253)

where the function F'(px;, ¢x) is defined in the interval p; € [(a(j —
1)/N)?,(aj/N)?*] and is given in the appendix A. Then the diffusion
of the magnetic field lines in the radial coordinate corresponds to the
diffusion in the Generalized Standard Map. The diffusion coefficient is
defined by:

- 2

where <. >, ,, is an average over an ensemble of initial values (pg, o)
When the orbits are stochastic, the phases 1) are uncorrelated over a
single map step, and we obtain the quasi-linear approximation for the
diffusion coefficient

1 o -
Dgr. = é;/o (Ap1)*dipo. (2.55)

We computed the quasi-linear diffusion coefficient of the map (2.53)
for different forms of the function F(p;,), that is given by:

2m 2
Flog) = [ dt=—BO (o5, 0(2), 1), (2.56)
0 o/
where B is:

B (p,1,0) = Bof(p)(bo + 3 bn(mO))[3 ansin(n $)].  (2.57)

We compared the quasi-linear diffusion coeflicient varying the toroidal
spectra, keeping fixed the poloidal apectra in agreement with the ex-
perimental observation [26]:

bo = 0.5,b; = 1.0, b, = 0.25. (2.58)
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For the toroidal spectra we have taken:

_n
~ 10
whereas for the higher components a,, we considered a linear decay of
the spectrum until a n,,

n=8,9,10 (2.59)

an

4= —m2 T ] < <, (2.60)
Nmaz — 10
or an exponential decay,
Uy = e~("10) n > 11. (2.61)

In order to compare the diffusion of the magnetic field lines with
different poloidal spectra but with the same magnetic energy, we nor-
malized the map:

1= petn Flpje,¥r)
Mo OF || F'(pies ) I (2.62)
Yrtr = Y+ w(prt1)
where ||.|| is the usual L%*-norm in the angle variables 0, and
n = €|l[F(ps Pl (2.63)

The quasi-linear diffusion coeflicient in each region [p;_1, p;] has the
form

SmyOms + Ciny Oy
(mi — kfQ?)(m] — k3Q?)

D(p) = 5p) 3 brabms 3

mi,m2 ki1 =ko

(2.64)

where S, and C, are constants only depending on the poloidal and
toroidal components of the perturbative spectrum (b,, and ag, respec-
tively).

In the figure (2.3) we can see the diffusion coefficient versus 7,44
for an exponential and linear decay. Given a certain n,,,;, the constant
a of the exponential decay was calculated such that the spectra have
the same magnetic energy. The value of n considered was 1072, because
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with this value the orbits were stochastic. We can observe that the dif-
fusion coefficient is almost independent of the kind of decay, depending
essencially on the number of modes [26].

Figure 2.3: diffusion coefficient versus n,,,, for an exponential and a
linear decay

2.4 Transition to Stochasticity

The quasi-linear approximation is valid when the orbits are completely
stochastic and in this sense the critical parameter gives us a lower
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bound to the validity of this approximation. We analized if this range
of validity is the same for different spectra, that means to analyse if the
transition to stochasticity depends on the perturbative spectra or not.

We are considering critical value the value of the perturbative pa-
rameter for which the KAM curve with winding number given by the
golden mean is broken. For the Standard Map, this is the last KAM
curve that is broken. We assume that this is valid also for the Gener-
alized Standard Map given by:

_ V()
M:{ Pe1= Pk +77“|W(¢k)” . (2.63)

Yre1 = e+ w(prs1)
where the perturbative spectrum is normalized. Details about the Gen-

eralized Standard Map can be found in appendix B.
In a first analysis [27], we considered two kinds of decay:

N sin(2rniby)

V(r) = ,N =5,10 (2.66)
n=1
M
V(r) = > sin(2mnipy)e® 0™ M = 5,10 (2.67)
n=1

When a KAM curve is broken, it becomes a cantor set [10]. We
have analysed this transition calculating the Lyapunov exponent and
the correlation dimension of the KAM curve, for various values of per-
turbation.

In order to calculate the Lyapunov exponent and the correlation
dimension of a curve with a certain winding number it is necessary to
know the initial conditions of this curve. We have calculated the initial
conditions of the KAM curve with winding number given by the golden
mean for various values of perturbation parameter numerically, with
a Newton method. This could be done because the generalized stan-
dard map is a twist map, that is, the winding number is a monotonic
increasing function of r. This method, if it will converge, converges
within few steps. The value of the winding number is given by a limit
that converges as the inverse of the number of iterations of the map.
So, in order to have a reasonable precision we must iterate the map
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many times. When the value of the perturbation parameter is slightly
higher than the critical one, the convergence of the Newton method is
really very slow. When it is even higher, the method does not converge,
as should be expected, because the curve is already stochastic.

.05 [ ] |
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i
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3 B _
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Figure 2.4: value of the Lyapunov exponent for some values of the

perturbation, when we consider 10 modes of a spectrum with an expo-
nential decay.

The Lyapunov exponent is defined by [29]:

A= lim %zoggDTn(x)i (2.68)

where by T™ we mean T composed with itself n times and D denotes
differentiation with respect to the two-vector x. When this exponent
is null, we have a regular orbit. When it is positive, we observe an
exponential separation of nearby orbits and we have a stochastic orbit.
So, the Lyapunov exponent of a orbit show us the mean exponential
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rate of the divergence of the orbits surrounding it, in other words, if it
is regular or not.

In the calculation of this Lyapunov exponent the norm of equation
(2.68) increases exponentially with n, and this leads to overflow. In or-
der to avoid this, we used the method of Benettin et al [30] that consists
of applying the tangent map on a random vector which is normalized
step by step. For values of the perturbative parameter less than the
critical one, a good convergence is reached with 100000 iterations, as
can be seen in the figure (2.4), where the Lyapunov exponent of the
spectrum (2.67) with N = 10 is shown for some values of e.

1 1 J | I
o ~ #* —
.9 b %0 - 4
v B ® ]
:g 5
*
B T * ¥* # .
= #
3 - s _
L]
0 ! ] l ' ] l
.0031 .0082 .0083
perturbation

Figure 2.5: value of the correlation function for some values of the
perturbation, when we consider 10 modes of a spectrum with an expo-
nential decay.

The correlation dimension is defined as [31]:
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. logCll )
v(k) = i =

)= [ 80— lle = yl)du(e)dn(y)

where |.| denotes the usual norm in R™. E is the invariant limit set and
©(z) is the measure, that is given by u(z) = lim,_, 5%"5), where v,(z)
is the number of points of the orbit {zg, T'zo, ..., 7" z0}, zo € F, which
belong to the set z € E. So the integral is done considering just the
values of z and y covered by the iterations T"z¢ and T™yg respectively.

The integral C(l;u) gives the number of couples (z,y) such that
the distance between them is less than {. When the curve is dense, the
limit v(p) converges to 1. When the perturbation grows and this curve
becomes a cantor set, the limit converges to a smaller value. Increasing
the perturbation the gaps in the cantor set become larger and the value
of the correlation dimension decreases even more.

We have calculated the correlation dimension of the last KAM curve
iterating the initial value obtained with the Newton method 2048 times
and dividing the curve in 500 intervals. This division determines the
minimum value of [ that the program can detect. In the figure (2.5) the
values of the correlation dimension for the spectrum (2.67) with N=10
are shown for various values of e.

Elyapunov €dim.corr.
standard map
0.690 0.682

linear decay

N=5 5.72 d-2 5.80 d-2

N =10 1.9 d-2 1.85 d-2
exponential decay

N=5 2.70 d-2 2.60 d-2

N =10 0.9 d-2 0.84 d-2

Table 1: critical perturbative parameter for various kinds of spectrum,
calculated with the Lyapunov exponent and correlation dimension.
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We have verified these methods, applying them to the standard
map, normalized. It is a well known result [13] that the critical pertur-
bation parameter is n=0.687.. (n=0.9716.., if non-normalized). In this
case, the Lyapunov exponent has became positive at n=0.690 and the
correlation dimension has began to decrease at 7=0.682.

The results for the Generalized Standard Maps (2.67) and (2.66)
are in the table 1, where in the column ‘€lyapuncy’ We write the value
of the perturbation parameter at which the lyapunov exponent became
positive and in the column ‘€gipm corr.’, the value at which the correlation
dimension begins to decrease.

1.6
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norm. coeff.

0 10 20 30
number of modes

Figure 2.6: plot of the normalized spectrum (2.69) versus the number
of modes, with N= 10, 20, 30

Using these two methods we were able to determine a range of
the perturbative parameter, where the critical value can be. In order
to have a more precise results, it is necessary to calculate the initial
conditions to other values of perturbation, and calculate them with
more accuracy. Also the correlation dimension should be calculated
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with more points in the orbit and considering a smaller l. This means
long CPU time. But the range we have obtained are narrow enough to

let us say that the transition to stochasticity depends on the spectrum
considered [27].

1.6 I

1.2 = (b) —

norm. coeff.

! ; }
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number of modes

Figure 2.7: plot of the normalized spectrum (2.70) versus the number
of modes, with N= 10, 20, 30. '

In order to analyse the transition to stochasticity of spectra with a
larger number of modes, we have used the Greene method. This method
permits us to calculate an initial point of a convergent of the golden
mean much more quicker than with the Newton method. In this method
the break-up of a KAM curve with an irrational winding number w
is associated with the destabilization of the orbits of the the elliptic
fixed points with a rational winding number w’ that approximates w.
Details of this method are presented in the appendix C. Using the
Greene method we analyzed [28] Generalized Standard Maps with the
following perturbative spectra:
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N —
V(e) = z; NN n sin(mniy) (2.69)
and B
M1
V(T/)L) = Z 7—2' sin(wn¢k), (270)

where IV is always a finite number.

In the figures (2.6) and (2.7) these two spectra are plotted as a
function of the number of modes N. The black point at n = 1 in both
graphs represents the coefficient of the Standard Map. In the spectrum
(2.69), the last coefficient is always null, so we must consider N = 2 to
obtain the Standard Map.
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Figure 2.8: the residue for various values of perturbation. The case
considered was the spectrum (2.69) with N=10.

We calculated the break-up of the curve associated with the golden
mean in two independent ways: calculating its Lyapunov exponent and
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residue. The residue is less than 1 when the periodic orbit is elliptic
and greater than 1 when the periodic orbit is hyperbolic.

The results obtained using these two methods are consistent. In
the figure (2.8) we can see the residue and in the figure (2.9) the Lya-
punov exponent of the golden mean curve for the decay (2.69), with
N=10, for various values of the perturbation. The value of the pertur-
bation parameter, for which the residue becomes greater than 1 and
the Lyapunov exponent positive, is the same.
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! l ! l
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Figure 2.9: the Lyapunov exponent for various values of perturbation.
The case considered was the spectrum (2.69) with N=10.

The critical parameter depends on the form of the coefficients of the
spectrum and on the number of modes. The dependence on the number
of modes seems to be the most relevant. In fact e, varies, on the both
spectra, In a monotonic way by almost two orders of magnitude when
we pass from NV =5 to N = 30.

A scaling law between the critical perturbation parameter and the
number of modes is obtained in both spectra. In the figures (2.10) and
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(2.11) we have plotted —loge, as a function of N for the spectrum
(2.69) and (2.70) respectively. It is clear that the critical value is a
function of the number of modes, given by:
N-4
Q(DJ)”'_77—7
where A and C are two constants that depend on the perturbative
spectra.

(2.71)

| #N=do ‘
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Figure 2.10: —Ine x InN for the spectrum (2.69). Using the mean
square method in both cases, we obtain a straight line and reproduce
the known result of the Standard Map.

Using the mean square method we have calculated the values of A

A, =237 A, = 1.61. (2.72)
The values of C' depend on the critical parameter of the Standard
Map, €57, and are
1 1
Ca Cy= . (2.73)

T eST24e
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By comparing the critical value of the two spectra when both have
the same number of modes we can observe that the difference of the
coefficients affects the value of ¢,. But if we compare the value of ¢,
of any one of the two spectra for different values of modes, we can see
that the increase of the number of modes affects, more strongly, the
critical value rather than the difference between the coefficients of the
two spectra [28]. ‘

The dependence on the number of modes can be heuristically ex-
plained considering the Chirikov criterion of the threshold of stochastic-
ity. When the number of modes of the perturbative spectrum increases,
more resonances are possible, the width of the islands are larger and
the overlap of them occurs at a smaller value of e.

/N:SO ]
S |— Ang. coeff. = 1.8144 N=20 —
w 4 —
£
I 3i— —
2 — / ]
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- N=2 .
Standard "
L S i R B B
-1 0 1 5

2
In N
Figure 2.11: —Ine x InN for the spectrum (2.70). Using the mean
square method in both cases, we obtain a straight line and reproduce
the known result of the Standard Map.
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Chapter 3

Description of the Magnetic
Field Lines by a
Magnetohydrodynamic Code

3.1 Introduction

The “Reversed Field Pinch” (RFP) machine is a toroidal device of
confinement of plasma by magnetic fields. In this device the axial
magnetic field, B, and the poloidal magnetic field, By, are of the same
order of magnitude, and yield two useful parameters in the description
of the RFP, that is, the pinch parameter, © = By|yau/B.ave and the
field reversal parameter, F' = B,|yaii/ B:ave-

This machine derives its name from the fact that the plasmas ex-
hibit robustly long lifetime when the axial magnetic field, B,, at the
outer border reverses direction relatively to the field on the axis (r=0)
[32]. This state is achieved due to the application of an axial electric
field that supplies the system with energy. It is a remarkable fact that
after the reversal is achieved, all the RFP experiments are observed
to seek approximately the same operating values of F, and ©. Tay-
lor [1] explained this behaviour in a global sense by assuming that the
plasma naturally seeks its lowest energy state subject to the constraint
that the axial magnetic flux and the magnetic helicity remain constant.
This process is called relaxation. This simple variational calculation

33
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yields force-free magnetic fields that exhibit axial field reversal when-
ever © > 1.2. This is a simple and elegant theory that describes the
global properties of the RFP. However, being of a variational nature,
it does not adress the dynamical mechanisms responsible for the re-
laxation process and does not explain the anomalously long lifetime of
RFP plasmas in the presence of finite plasma resistivity. The plasma
can be maintained almost indefinitely at fixed values of F' and © in
the presence of an applied axial voltage, that supplies the system with
poloidal flux. Poloidal flux is apparently dynamically converted into
axial flux in sufficient amounts to maintain ' and © at their proper
values. This is called the RFP dynamo [32].

In order to understand the dynamics of the RFP dynamo and the
behaviour of the magnetic profiles, numerical algorithms for the simula-
tion of three-dimensional magnetohydrodynamic (MHD) systems have
been done [32] - [37]. We developed one of these codes in cylindrical
geometry. The mathematical model and numerical procedure used are
presented in sections (3.2) and (3.3), respectively.

Our goal at this stage of development was to analyse the behaviour
of the magnetic profiles at times of the order of the Alfvén times. We
checked the code comparing the numerical and analytical time develop-
ment of an Alfvén wave, then we evolve the system from a phenomeno-
logical magnetic profile without a supply of energy. We observed that
the profiles decay and the initial reversal of the axial magnetic field was
lost. This is the expected behaviour [6], since the axial magnetic flux
is constant. These results are presented in section (3.4).

3.2 The Mathematical Model

The magnetohydrodynamic (MHD) equation we solved are given by:

P 2
%t- = —V.[pvv+(p+ %)I — BB — vV.v] (3.1)
0B

E=—vxB+yJ (3.3)
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J=V xB (34)

where P is the momentum, B is the magnetic field in units of a char-
acteristic value By, p is the density in units of a characteristic value po,
p is the pressure in units of a characteristic value pg. v is the velocity
measured in units of the Alfvén velocity, v4 = Bo/,/po. All the lengths
are measured in units of a, that is the minor radius of the physical
system. The time is measured in units of the Alfvén time, t4 = a/v4.
v and 7 are the viscosity and resistivity and constant and uniform. In
* this code we considered the density uniform and constant. To evolve
these equations in time we need to know their initial and boundary
conditions. These are presented in the next sections.

3.2.1 Spectral Method and Finite Difference Aprox-
imation

The equations (3.1), (3.2), (3.3) and (3.4) were solved [38], [39] in
cylindrical coordinates (z,r,0) in a mesh of N, x N, x N, grid points
(0 <2 <27R,0 <r; <1.0 <6 < 2r). The spacing in the poloidal
(#) and axial (2 ) directions is uniform such that A8 = ]2\,’“ and Az = 2;\;1%7
where R is the major axis of the toroid. The coordinate r has its values
between 0 and 1 because it is normalized by a, that is the radius of the
cylinder we are considering. The periodic nature of the equations (3.1),
(3.2), (3.3) and (3.4) with respect to the coordinates allows a spectral
representation to be employed.

Any generic function u(z,r,6) periodic in the interval (0 < z <
2rR,0 < 6 < 27) can be represented by the complex Fourier series
[38], [39]:

+oo .
u(z,7,0) = Z um""(r)e'(mg"'”z) (3.5)

m,n=-—oco
where the complex Fourier coefficients, u™™(r), are given by:

27 df r27R .
— —i(mb+nz)
/ / —u(zm,0)e . (3.6)

The reality of u(z,r,0) requires that
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u™"t = (TR (3.7)

When the function is described by N, x Ny x N, grid points, as in
our case, it can be represented by the finite Fourier series:

N Np
2

U(Zi, ri, Gk) _ Z um,n(rj)ei(mt’?k-i-nzi) (38)

g

n:_————lgi—{-]m:_ivz_ﬁ_*_l
with
Nz+1N9+1
u™"(r;) So3 ulz, s, Op)e o) (3.9)
NN9 i=1 k=1

where z; = (i — )2“R and 0, = (k— 1)3E.
The radial coordinate is treated by the method of finite differences.

The spacing in this coordinate is uniform and given by Ar = —J;}:

3.2.2 Boundary Conditions

The walls were considered perfectly conducting [40]. This means that
the tangencial components of the eletric field at r = 1 and the radial
component of the magnetic field are null [41], that is:

E(r=1)=FE¢(r=1)=0 (3.10)

B,(r=1)=0 (3.11)

for all modes. For the velocity we considered that v(r = 1) = 0 for all
modes. The condition v,.(r = 1) = 0 is obtained from Ohm’s equation.

The system we are considering has viscosity and resistivity that
damp it. If we evolve the system in time just with the boundary con-
ditions given above, we will observe that the magnitude of the com-
ponents of the magnetic field and velocity diminish with the time [6].
Consequently, the components of the current also diminish. In the ex-
periments, the system is supplied with energy that maintains it, despite



3.2. THE MATHEMATICAL MODEL 37

the damping. One way of doing this in our code is to apply appropri-
ate boundary conditions such that the total mean axial current, I, is
keeped constant.

The total mean axial current is given by:

1

<I,>= 271'/ r < Jp >dr, (3.12)
0

where J, is the axial component of the density current, and < J, >
means the averaged value with respect with z and 8, that is, the com-
ponent n =0 and m =0 of J,. < J, > is given by
1.0 0oy OB%°
< J,>=—-[=—(rBy") — —=].
> T [ar(r ") 00 ]

Substituing equation (3.13) in (3.12) we obtain for the total mean
axial current:

(3.13)

<L >=2B°(r=1). (3.14)

The equation (3.14) shows us that if we keep constant By at r = 1,
the total mean axial current will also be keeped constant. This is the
boundary condition we use, when we want to supply the system with
energy.

3.2.3 Initial Configuration

One possibility of initial configuration could be the magnetic profiles
given by the Taylor theory of relaxed state [1], that was presented in
section (2.2.1) of this thesis. According to this theory, the equilibrium
state of a slightly resistive turbulent plasma is given by the state that
minimizes the magnetic energy and keeps the total helicity constant.
For a plasma in a perfectly conducting wall, this equilibrium state is
given by the force-free equation

V x B =B (3.15)

where p is a constant.
The physical system we are considering is a plasma contained in a
toroidal machine. Considering that the major radius is much greater
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than the minor one, we can approximate this toroid by a cylinder and in
this case the solution of equation (3.15) is given by the Bessel Fuction
Model:

B, =0 (3.16)
B, = ByJo(pr/a) (3.17)
By = ByJy(ur/a) (3.18)

Knowing these components of the magnetic field, and expanding the
Bessel function, we can write the security factor, ¢(r), as a polynomial
in r:

rB,
QBessel(T) = RBQ((:)) = qo(l + (117"2 + a2r4) (319)

The profiles of the Bessel Function Model describe very well the
ones observed in the experiences, except in the region of r very close
to 1. Due to this fact we did not use these profiles for the initial
configuration of the magnetic fields, but magnetic profiles B,(r) and
By(r) that are numerically obtained from a phenomenological security
factor ¢(r) that differs from gpesser(r) in the region of r close to 1.
In this case the parameters qg, a; and a, are not obtained from the
expansion of the Bessel functions, but are phenomenological ones.

Another difference with the Bessel Function Model is that p is not
a constant, but a function of the radius u(r).

From the phenomenological security factor g(r) and the equation
(3.15), we obtain:

o) — 2120(1 — azr?)]
M S e

a

(3.20)

Substituing ¢(r) and p(r) in equation (3.15), we obtain a differential
equation to B,(r):

8B2(r) _ _(E_)rﬂ(r)

or ‘R’ q(r)

B,(r), (3.21)
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that is solved numerically. The component By(r) is obtained from the
equation of the phenomenological security factor. As the initial mag-
netic profile is considered as an equilibrium one, the profiles obtained
numerically are averaged with respect to z and 6 and have just the
component m = n = 0 different from zero. All other modes are null.
The component B,(r) is null for all values of m and n.

For the same reasons, all the components of the velocity should
be null. But it is convenient to use an initial velocity profile small in
comparison with the initial magnetic profile, with valus of m and n
different from zero, because this permits us to avoid initial transients
and observe quicker the magnetic modes that grow.

The components of the initial profile of the velocities were given in
the Fourier space of the coordinate z, for all values of n, with a random
phase and an amplitude that diminuishes with the increasing of n:

2 1 T
V;,n('f'j, Hk) = T?(l - T;)COS(Qek)m exp RD (322)
1 .
Vi (rs, 0k) = r}(1 — rf)cos(Qk)m exp' P (3.23)
1 .
Vit (rs, 0k) = r7(1 — 7‘?)605(9k)m exp (3.24)

where RD is a random number.

After transforming to the configuration space, they were divided by
their mean value with respect with # and z, calculated at the value of
the radius where the function r?(1—r?) is a maximum. These functions
are zero for r = 0 and r = 1. The velocities are given by:

Vi(zi,ri, 0k)

Vi(zi, 75, 0k) = 3.2
l(Z TJ k) €< %(Zi7TTa$76k) > ( 5)
where,
i ma.:lr 9
<o, ) > |l IE g

€ is an input parameter of the order of 1072, [ is representing the com-
ponents z, r, §, and r7"** = 0.5v2.
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3.3 Numerical Procedure

The calculation of the equations (3.1), (3.2), (3.3) and (3.4) using the
spectral method and finite difference approximation requires some tech-
nical procedures to calculate the derivatives, to regularize the functions
at 7 = 0 and to advance them in time.

As the equations are solved in cylindrical coordinates, the periodic-
ity in the coordinates z and # allows the spectral method to be applied
and the derivatives with respect with these coordinates are easily com-
puted in Fourier space. Due to the fact that the equations are not peri-
odic in r, some approximations must be done to calculate the derivative
with respect to r. The methods used to calculate all the derivatives are
discussed in section 1.3.1.

The geometry of the system implies some regularity conditions to
be imposed on the functions. As we are dealing with a cylindrical
system, the functions must be invariant with respect to rotations in 4,
at 7 = 0. This is one kind of regularization. Another one is when we
must calculate the ratio u(r)/r at r = 0. The fluxes are calculated in
the Fourier space of the coordinates z and 6 and these regularizations
are done imposing some conditions on the Fourier coefficients. This is
discussed in the section 1.3.2.

In our code we implemented two methods of time advancement:
Adams-Bashfort and Runge-Kutta of third order. They are discussed
in section 1.3.3.

3.3.1 Derivatives

Given a generic function u(z;,r;,0;), the derivatives % and % at the

point (z;,7;,8x) are given by [39]:

—a‘zl(zi,rj,ek) = > > inum’”(r)e’(me”"z) (3.27)
- m::—g—e-l-l 71=_TNZ+1
No Nz
QE _ : : . m,n 1(mbg+nz) 9
69 |(ziv7'j79k) - Z Z mu (7')8 . (3“8)

m:%{i-{wl 7L=_TN’-+1
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The derivative in the r coordinate is calculated in the finite differ-
ence approximation [42] and is expressed as a linear combination of the
given function values. The finite difference approximation to the first
derivative @g(;ﬁ at the node j depends on the function values at the
nodes near j. For second and fourth order central differences, the ap-
proximation for the derivative u; depends on the sets (uj—1,uj4+1) and
(Uj—g,Uj—1, Ujy1, Ujr2) respectively. Here we used the notation that
u(r;) = u;. We used a scheme for the derivative that is a generaliza-
tion of the Padé scheme, and is a one-parameter family of fourth-order

accurate schemes given by:

1+ 2« 4—
wi_y o+, = TA;“(UM —uj_1)+ E—&;(um —uj—3) (3.29)

We used o = 4 that is the classical fourth-order Padé formula. This
is a tridiagonal scheme, and the truncation error is given by

= (30— 1)(Ar)ul®. (3.30)

The derivatives at the boundary nodes j = 1(r = 0) and j = N,(r =
1) must be calculated using appropriate additional relations because the
system does not present periodicity in r.

At r = 0 we can use the fact that all the functions involved in this
code have a well-defined parity. The fluxes are calculated in the Fourier
space, so we are always doing differentiations of the Fourier coeflicients
and we need to know the parity of these coefficients.

Any function represented by a finite Fourier series:

y e
2 2 )
u(z, 5, 00) = ) SO umn(r)elmistne), (3.31)

=22 41 =B 41

can have its coeflicients written as a serie in 7:

N
u™ () =Y e (3.32)
=0

If the function u(z;,7;,0;) is even, the function r'e™% is a polyno-
mial if and only if [43]
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I—m €27 (3.33)

and

1> |ml. (3.34)

Applying these conditions on (3.32), the Fourier coefficient can be
rewritten as

N
u™ (rg) = D e (3.35)
=0

We see that if m is even or odd, the coefficient is even or odd
respectively.

On the other hand, if u(z;,r;,0x) is odd, the conditions on the ex-
ponents [ and m are different. In this case r'e™% is a polynomial if

and only if [43]

l—me2zZ+1 (3.36)

and [ > |m)|.
Applying these conditions on (3.32), we can rewrite the Fourier
coefficient as

N
u™"(ry) = Y e e (3.37)
=0

From equation (3.37) it is possible to see that if m is even or odd,
the coefficient is odd or even respectively.

When we are calculating the r derivative of an odd Fourier coeffi-
cient, we can use the fact that for an odd function

du(r) _ du(—r)
dr dr

(3.38)

u(r) = —u(—r) (3.39)

and write
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3
Ar
For an even Fourier coefficient, we know that u/(r = 0) = 0.
At the other border, r = N,, we used a third-order scheme

2ul + uy = —uy (3.40)

duly _q +2uy = Suy, — dun,—1 — Uy, 2. (3.41)

3.3.2 Regularization at r =0

We used two kinds of regularization at » = 0 in this code. One of
them is the conditions we must impose on the Fourier coefficients of
the function in order that the function be invariant with respect with

6 at r = 0, that is [39]

Ju
—8—5 ['r:O
The functions involved in this code are vectorial and have the com-
ponents e,, e,, ep:

= 0. (3.42)

u(z,r,0) = u,(z,r,0)e, + u.(z,r,0)e, + ug(z,r,0)e, (3.43)

The component u,(z,r,8) acts as a scalar because e, does not de-
pend on 8. Given this function

U (2,75, Ok) Zu (zi,75)e™%, (3.44)

applying the condition (3.42) we have:
Ou,
005

In order the equation (3.45) be satisfied, the following condition
must be imposed:

—(2zi,7,6k) Z imu (2, Tj)eimek lr=0 = 0. (3.45)

m

u;n(zi,rj)]mo =0 (346)

for m # 0. For m = 0 we have the condition:
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du™
—2 (24,73 ) lp=0 = 0, 3.47
o (iors ) (3.47)
that is coeherent with the fact that the scalar function is an even func-
tion.
When the condltlon 28 is applied on the components r and 4, they
act as a vector because eT and ey depend on 6. The results we obtain
are

Ul ;=0 = ug'|r=0 =0 (3.48)

r

for |m| # 1, and

(" + ilmlg o = 0 (3.49)

for |m| = 1.

Another regularity condition at r = 0 is imposed when there is an
expression of the kind ﬁrﬁ All the fluxes are calculated in the Fourier
space and also these regularity conditions are imposed on the Fourier
coefficients.

The Fourier coefficients of an even function are given by [43]:

u™(r) =r" Z arrt. (3.50)

[=0,leven
The even functions in this code are the B,,v,,p and p. p and p are
considered uniform and constant. In our case, the component m = 0
of v, is zero at r = 0, so the summation of [ begins in [ = 2 for m = 0.
For other values of m the summation begins at [ = 0. On the other
hand, the component m = 0 of B, is not zero at 7 = 0. But we do not

have in any of the equations an expression of the kind Eflr—o We have

138392 |-=0 that is zero for m = 0. So, when we have an expression ( )

where u(r) is even, we have that:

u™(r)

lr=0 =0 (3.51)

for |m| # 1, and
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u™(r) _ ou™(r)

- oo (3.52)

for |m| = 1.
The Fourier coeflicient of an odd function is given by

N
ut(r) ="t N gt (3.53)
I=0,lcuen

and when we have an expression of the kind 'U(Trl where u(r) is odd, we

have that

—— (3.54)
r
for m # 0, and
u™(r) _ du™(r)
= lr=0 (3.55)
for m = 0.

3.3.3 Time Integration

In this code it is possible to choose between two methods of time ad-
vancement [44]. One of them is the second-order method, called Adams-
Bashforth and that is given by

t
(2,7, 0) = uF(z,7,0) — %[SFIC(Z,T,G) — F*Yz,r,0)]  (3.56)
where the flux is £ = —F(u) and u*(2,7,6) is the function u(z,r,6)

calculated at the time step k.
Another method is one member of a family of explicity third-order
Runge-Kutta schemes. Given a flux 2% = — F(u), the advancement in

. . - at
time is given by

(2,7, 0) = u*(z,7,0) — At[cp F¥(z,r,0) + dp F*(z,7,0)] (3.57)
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where k is the substep number, & = 1 + mod(k, K) is the substep
number within a time step At and K is the number of substeps in a
time step.

In our case we used

K =3, (3.58)

1 = 8/15,dy = 0, (3.59)

¢y = 5/12,dy = —17/60, (3.60)
s =3/4,ds = —5/12. (3.61)

One advantage of the Runge-Kuttta scheme in comparison with
Adams-Bahsforth is that it is self-starting (d; = 0), while the other
requires a separate method for the first time step. This property allows
one to change At at the begining of every time step.

The time step was calculated using a stability algorithm [38] which
compared the time steps associated with the viscosity velocity on one
hand and Alfven and sound velocity on the other. Associated with the
viscosity velocity we have:

] (3.62)

2 2
Ty = S K Kmin (27400 pldr)
8 v(ry) " v(r;)
if there is viscosity (v(r) # 0). If v = 0, this time step is given by
T, = KK. (3.63)

The time step associated with the Alfven and sound velocities is

KK
T, = :

= 3.64
mam[ﬁ + 2+ %‘5] ( )

where

a; = |vi| + /% + v2, (3.63)

1 = z,7,0, ¢s is the local sound velocity
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- 1E
.= M =DE (3.66)
p
where v is the ratio of specific heats and v, is the Alfven velocity,

,_ B 1B 1B}

Yy 3.67
; (3.67)
The time step used was the smallest of 7} and T5:

The constant KK is associated with the time integration scheme
that we are using.

3.4 Results

3.4.1 Alfvén wave

We used as a test of this code a comparison between the numerical
time evolution of a Alfvén wave and the analytic one. The analytic
behaviour was obtained linearizing the ideal MHD equations:

B

v B?
5 = —V.[pvv+ (p+ —2—)1 — BB] (3.70)
We linearize these equations substituing in them the expressions:
v=v 4 ev® 4+ 0(?) (3.71)
B = BO + B 4+ 0(&) (3.72)

where ¢ is a perturbative parameter. We keep terms of O(e).
Considering that we used as initial configuration

v = r(1 = r?)cos(z) (3.73)
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BO = 1.0, (3.74)
all other terms are null. We obtain for the linearized equations:
al;f) ~0 (3.75)
9?51) _ o a(’;’g) (3.76)
agf) — 0 (3.77)

v B oM

ot T o0 (8.78)
vt -
o = 0 (3.79)
avél) (0) aBgl)

The time evolution of the component v(gl) is given by the equation:

i) e O
Y pe0 Y (D) 381
o = P gat (3:81)
which solution is
. . B
) = oy, a2

We can see that the frequency is given by w = n.
We can observe in the figure (3.1) the value of Inl versus the time
(normalized by the Alfvén time), where I is given by:

I= / VO 2dr (3.83)

As the frequency is given by w = n and in this case n = 1, the periody
is T' = 27. In the figure we can see that the periody obtained with
the numerical calculation is 7' = 6.25, in close agreement with the
analytical results.
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Figure 3.1: value of In(f |vg™ |*dr) versus the time. The periody of this
Alfvén wave is T=6.25, in good agreement with the analytical results.

3.4.2 Time Evolution of the Magnetic Profiles

We evolved the MHD equations in time imposing just the boundary
condition that the wall was perfectly conducting. We considered as ini-
tial conditions for the magnetic profiles the ones obtained numerically
from the following security factor:

q(r) = 0.1255(1 — 1.8748r% + 0.8323r*). (3.84)

The aspect ratio, R/a, was equal to 5 and we used 48 radial, 32
poloidal and 8 axial mesh points. The normalized viscosity and resis-
tivity were uniform, constant and equal to 0.2 and 0.1 respectively. The
value of the parameter e that multiplies the initial profiles of the ve-
locities was 0.01. The time integration was performed with the Runge-
Kutta method and the parameter KK = 1.

In the ﬁgures (3.2) - (3.7) we can see the time evolution of the modes
B2, B0 Bg® v} w10 and v2°. The modes m=n =0 of B, and v
are null in this case.
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The system is not supplied with energy and the magnetic profiles
decay due to resistivity. The walls are considered perfectly conducting
and this implies that the axial magnetic flux is constant. The axial
magnetic component losses its reversal in time because it decays keeping
the flux constant. This is measured by the F' parameter, that is negative
at the begining and then becomes positive, always growing. In the
present case the © parameter is a decreasing function, reflecting the
decay of Bg ©. The time evolution of the axial magnetic flux, F' and ©
parameters can be seen in figures (3.8), (3.9) and (3.10) respectively.

Figure 3.2: time evolution of the component BY0
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Figure 3.8: time evolution of the axial magnetic flux
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Chapter 4

Self-Consistent Approach

4.1 Introduction

The magnetic field lines of a “Reversed Field Pinch” configuration can
be described by a set of Generalized Standard Maps, as it was shown
in the chapter 2. Due to this fact, it was possible to study the effect of
different perturbative spectra of the magnetic field on the stability and
diffusion of the magnetic profiles.

The time evolution of the magnetic profiles is given by the three-
dimemsional MHD code, that was presented in the chapter 3. In order
to take into account the effect of the perturbative spectra of the mag-
netic field on the time evolution of the magnetic profile, we propose in
this chapter a mechanism, based on a paper of Gurevich et al [3]. In
this paper the transport coefficients are given in terms of the correlation
function of the pertirbations of the magnetic field.

Gurevich et al [3] first described the motion of the electrons and ions
in a magnetic field, writing their kinetic equations in the drift approx-
imation. This is presented in the section (4.2). As the analysis of the
kinetic equation for real systems is very complicated, they calculated
the moments of this equation, obtaining the hydrodynamic equations
for the plasma number density, the average velocity, the current and the
electron and ions temperatures. In these hydrodynamic equations, the
transport coefficients appear in terms of the correlation function F(b,)
of the perturbations of the magnetic field. This is presented in the

95
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section (4.3). It is possible to check the accuracy of the description of
the RFP configuration with these hydrodynamic equations, comparing
their results with the data obtained in the experiments. In the experi-
ences, after an initial transient process, a quasisteady state is achieved.
The data obtained in this state can be compared with the ones of the
hydrodynamic equations, if we apply on these the condition that the
system is stationary. This is done in section (4.4), and it is possible to
see that the agreement between the data is very good.

The mechanism we propose to account for the effect of the pertur-
bative magnetic field on the time evolution of the magnetuc profile is
the following: given a certain initial magnetic profile B(®, we evolve the
system until a time t( = ¢t(® 4+ A¢. At this time, we see the perturbative
spectrum that appears, bV, add to the initial profile B® = B®) 4+ p(1)
and calculate the correlation function F(b(")). We evolve again the sys-
tem until a time ¢ = ¢ 4 At, considering as starting values B and
F(BM). At t® we again analyse the perturbative spectrum 52 and
calculate B = B® +5(2) and F(b®). The processs is repeated until
the saturation of the modes. This is presented in section (4.5).

4.2 The Kinetic equation

We consider that the plasma is in a magnetic field B, consisting of
regular and fluctuating components, By and b[3]:

|b] << |Bo] (4.2)

The basic quantities characterizing these fluctuations are the cor-
relations length L. and correlation time 7.. These quantities are con-
sidered large in comparison with the gyroradii and the inverse gyrofre-
quencies of the ions and electrons. So it is possible to describe the
motion of the electrons and ions in the drift approximation:

Af=5(f) (4.3)

where A is an operator:
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8 8 ud Ouod
ATVt wa T o

f = f(u,p,r,t) is the particle distribution function, V is the particle
velocity, given by the sum of u, the velocity along the magnetic field,
and Vg, the drift velocity. S(f) is the collision integral and y is the
adiabatic invariant. The drift approximation and the drift velocity are
presented in the appendix D.

Considering that the magnetic field consists of two parts, one regular
and another fluctuating, it is also possible to write the distribution
function in these terms. One regular part, fo, that is an average over
the fluctuating parts, and 6f, a fluctuating part:

(4.4)

f=fo+6f (4.5)

where |6 f] << |fol-
The kinetic equation becomes:

(Ao + A1) (fo+6f) = S(fo+6f) (4.6)
where 9 0, Bu 9 Om D
U
and
8 8u

In these equation it is consuiered that all quantltles can be written
as regular and fluctuating part. The quantities 6v, 6(%) and§(%) are
linear in the b/ By corrections and the operator A; is given explictly by:

b, O ek, wloB,, 0
Boor T B 2B 0 o
Averaging the equation (4.6) over an ensemble of random values b,
we obtain:

(4.9)

Aofot < Aibf >=<S(fo+6f) > . (4.10)

This equation describes the time evolution of the averaged dis-
tribuition function. But this equation contains the fluctuating term
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§f. So, it is necessary to solve the kinetic equation to the fluctuating
part in order to have a complete description of the motion of the av-
eraged term. The kinetic equation is obtained subtracting the average
kinetic equation (4.10) from the toroidal kinetic equation (4.6):

Agdf = =Aifo+ [S(fo+ 6f)— < S(fo+6f) >]
—[ALSf— < A6f >] (4.11)

In order to solve this equation two aproximations are done. One is
to neglect the collisions terms. It is possible to do this approximation
because in the cases of interest the ion and electron mean free path
are considerably longer than the longitudinal (parallel to the magnetic
field) correlation length. Another approximation is to consider just the
leading term of the expression [A;6f— < A;6f >] that is given by

[A1df— < Aiéf >] = u—%%—éa; (4.12)
With these approximations, we have:
AoSf + u—%gé—éf = —Arfo. (4.13)
Solving this equation we obtain for 6 f:
§f = / dT/ G(r [7)AL fidr! (4.14)

where G(7/7') is the Green’s function for equation (4.13) and 7 is the
phase-space volume. In cylindrical geometry, and considering that the
particles follow the magnetic lines, the Green’s function is given by:

G(r/7") =0(r)6(0 — 0 — ilr—&ur)(S(z — 2" — hyur)
b (r
8(r—r'— —~——(B—T~7—1—2Am,nu7)5(u —u)§(p — u') (4.15)

where ™™ are the Fourier components of the magnetic fluctuations b,,
Tr n 18 the radius of the resonant surface, defined by the condition
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T Ba(r% ) + 5 Be(r ) =0 (4.16)

and A, , is a number that is equal to unity if r = Th.n and vanishes
otherwise.

Assuming that the function f (from here we will call f; just f) is
independent of z and # and that the magnetic field fluctuations b are
homogeneous and isotropic in 8, z, and ¢, we finally get the following
equation:

of of du 5f
FTRI Virige > 5t <> 50 = I(f)+ St(f) (4.17)
where

_uld, 0.,eb. pldb
I(f)= g5kl + —8—[(‘579— ~ 555,k (4.18)

_uFOof 0fieE,  p 0B f
K= 5o * oulmp ~ 259 ] (419)
F= /°° dL < b,b. >, dL = |uldr (4.20)

0

b= b0 — heTL Y i G YN A SR

B
The kinetic equation (4.17) shows that in cylindrical geometry the

plasma dynamics is described by a single correlation function F(r),

which is determined by the fluctuations b, of the magnetic field.

4.3 Hydrodynamic Equations

Analysis of the kinetic equation (4.17) for real systems is extremely
complicated. It is therefore natural to go over to a hydrodynamic de-
scription of the plasma. This is valid if the plasma variables do not
change significantly over an electron collision time:

dT,
dt

< vT, (4.22)
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du
_- 28
7 < ViU (4.H3)

where v,; is the electron collision frequency and T, and u are the electron
temperature and hydrodynamic velocity.

Substituing the Maxwell distribution function in (4.17) and intro-
ducing the hydrodynamic velocity
Mele + MU,

Vo= ( ) (4.24)

Me + My
and the electric current J = ne(u; — u.) parallel to the magnetic field,
after taking moments we arrive at the following system of hydrodynam-
ics equations for the plasma number density n, the average velocity V5,
the current J,, and the electron and ion temperatures T, and 7

0 10 10 on oT. oT; .
‘3_7; + ‘"a"‘(rnvdm'ft) = o [Dl -t Dy— En + D3~a———] + @n (4.25)
aJ, 10 10 e’n
W + _'_(rv::lrzft‘] ) E(TRI) + Rz - Ve,i']p + - Ep (426)
0 10 10 -
5 (Vo) + o (rVarigdVy) = — - (rT) + 11, (4.27)
30 31 d 20
2 ot (TLT) a (T‘I/d'rzftnT ) = “'b_r[T Jd+
2T, 12, oT. 10 T,
g ) 5 ]+‘>eE Ji+ J,E, 41 ~ 5 (XL + Qe (4.28)
30 31 0 20
ia(nT) + 3 9 a (TVdrzftnT) TE[TZJ(H-
F 2T 12, oT; 5 10 . 0T
——— 3 R D)
71-1/’232( ) a ] ‘-‘eEr']d +  Or (T'XL or ) + Q, (4._‘9)

where
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Jg = Dlg + D, aaT + D, %T (4.30)
and the coefficients Dy, Dy and Ds are defined by the relations:
2= DET?i%i T, (4:32)
Da= DCT?i%,vT T (4.33)
Dj. = WlfBz (%)1/2 + D5, (4.34)
L= e ) (4.35)

D¢, and DF¢ are the classical particle and thermal diffusivities re-
spectively and Xf—f are the classical transverse ion and electron thermal
conductivities.

The expressions R, and II; result from electron and ion scattering by
fluctuations. This scattering gives rise to current and velocity diffusion:

F 2Te 1900, = 2e Me
Ry = 7Tl/sz{ ( )1/2 I + — Er (2T )1/2+
Jp 3B 27, 1/2
B (me) Jp} (4.36)
F 0 2T;
Hl - 7r1/2B2 {257_—[ (mi )I/ZV] m; E V(QT )1/2
10 _2T;
o BCR Py (a0)

A frictional force also arises as a result of the interaction between
the charged particles and the fluctuations. It is described by the terms
R, for the electrons and II, for the ions:
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F 2e g . m.

Ro= (B D Ty

+71§%§§;K VI A’ (ZT )yt

= — TliBz{Z B [(;’;fﬁ“nm—
%f;(;;)wnv;, 2(2%?)( o a

The equations describing heat and particle transport include exter-
nal heat sources ()., ¢J; and an ionization rate ¢J,. These equations
must be suplemented by the Maxwell equations. We can see that in
these equations the effect of the perturbation of the magnetic field on
the transport coeflicients is considered. These coefficients are functions
of the correlation function F'(b,) of the magnetic perturbations.

4.4 Stationary State

One characteristic of the dynamics of a toroidal pinch experiment is
that after an initial highly turbulent phase, the plasma settles into a
more quiescent state, where the current and the magnetic field change
smoothly during the lifetime of the discharge. This process can be
considered stationary.

Considering the case that 8 << 1 (J//B), we obtain for the mag-
netic field B and the current J, in the stationary state the following
equations:
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LJ, =0 (4.40)

47
VxB= —C——Jph (4.41)
V.B =0 (4.42)

where the differential operator L is defined by the following expression:

10

In this 6perator the term which describes the classical collisional
resistivity has been neglected because at sufficiently high temperatures
it 1s small compared with the resistivity due to fluctuations. The equa-
tions (4.42) are solved numerically by iteration for a given correlation
function F(r).

15
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Figure 4.1: By(r), B.(r) and p(r) obtained for the stationary state,
when the density and temperature are considered constants. The bro-
ken trace is the result of the Taylor theory. (Figure taken from the
reference [3].)
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Considering that n=constant and T=constant, the magnetic profiles
obtained from the equations (4.42) are very similar to the ones given
by the Taylor theory of the relaxed states. On the other hand, the
quantity g4 = J,/B is not uniform as the Taylor theory assumes. It is
almost uniform until a certain value of  and then it diminishes close
to r = a. This result agrees with the experimental observations. The
profiles B.(r), By(r) and p(r) can be seen in the figure (4.1).

The magnetic profiles can be characterized by two parameters, the
F' and © parameters, that are given by:

B,(r =a)
= 4.44
F < B,> ( )
BQ(T' = a)
=7 4.45
< B, > ( )

with these parameters we can compose the F'—© diagram. Considering
n=constant and T=constant, the F'—© diagram that is obtained is very

similar to the one associated with Taylor theory, as can be seen in the
figure (4.2).

Figure 4.2: F' — © diagram describing the stationary states, when the
density and temperature are considered constants. The broken trace is
the result of the Taylor theory. (Figure taken from the reference [3].)

If, instead of considering the density and temperature constants,
one uses the following profiles:
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DTy A

e =1 (a) (4.46)
and

T, T4

e 1 (_ 4

r=1-C) (4.47)

the magnetic profiles obtained are almost the same as before. But,
the quantity p undergoes a substantial modification, as can be seen in
the figure (4.3). The diagram F — © also changed very much, with
values that agree satisfactory with experimental data, as shows the
figure (4.4).

Thus the solution of equations (4.40)-(4.42) provides a good de-
scription of the existence and properties of the relaxed state in an RFP
configuration.

e
- S~
—_—
10 5
~
~_ b
<
=~ —
L \
03 5, - X
= N
L =
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Figure 4.3: By(r), B,(r) and u(r) obtained for the stationary state,
when the density and temperature have the profile given by the equa-
tions (3.46) and (3.47) respectively. The broken trace is the result for
the stationary state, when the density and temperature are contants.
(Figure taken from the reference [3].)
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Figure 4.4: F' — O diagram for the stationary state, when the density
and temperature profile are given by the equations (3.46) and (3.47) re-
spectively. The broken trace is the result for n=constant, T=constant
and the dot-dash trace is the Taylor’s solution. The points are experi-
mental results. (Figure taken from the reference [3].)

4.5 Self-Consistent Approach

We can account for the effect of the perturbations of the magnetic
field on the time evolution of the equations of the magnetic field lines
througth the transport coefficients. These coefficients are written in
terms of the correlation function of these perturbations:

F(r) = /0 “dr <bbl >, (4.48)

as it was shown in the preceding sections.

To have a closed system we have to be able to calculate F(r).

In order to calculate F(r), we must know the fluctuations modes
that exist in the system. This can be done writing the time evolution
equations to the fluctuations u and b, that are obtained subtracting
the equations of the stationary state from the hydrodynamic equations.
They are given by:

Ju 1
ot +(uVju = 4drm;n

{(Bx(VxDb)]+[bx(VxB)+
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b x (V xb)]}+ %{%%(rﬂl) + I} (4.49)

%:Vx [ux (B+b)+
b m. B
V x {§4man(E.V X b)} + nmAb (4.50)
V.b =0 (4.51)

Taking a certain magnetic profile B(®), we can use the equations
(4.49), (4.50) and (4.51) to calculate the perturbative modes that will
appear in this system. After a certain time interval At, we take the
modes that growed, (), add to the initial profile B©® + (1) = B and
calculate the correlation function of this perturbation, F(6(1)). Taking
the values of B(*) and F(bM") as initial configuration at time step t(!) =
O+ At, evolving again the system until time £ = ¢4+ A¢, we take the
values of the modes (), add to the preceding profile, B® = B + p(?
and compute F(b?). The process continues until the saturation of the
modes. In the proposed process the effect of the perturbations of the
magnetic field is up-dated at each time interval, when the correlation
function F'(b) is calculated.
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Appendix A

Expressions and Parameters

The spectra of the perturbative cxomponent of the magnetic field B
are given by experimental observations. The main modes of the poloidal
serie are m = 0,1. The toroidal spectrum is essencially concentrated
in the range 7 < n < 18 peaked around n = 8.

The Poincaré map in § = 2 for the equation of motion (2.34) is
given by:

{ Pr+1 = pk + €F(pry1, Yk) (A1)
Vky1 = Y +w(pre1) + €Gpr, ¥r) '
where
_ 22p(a— pH?) . cos(nip) — cos(2rnw(p) + k)
R (%) % im0
p, cos(n) — cos(2mnw(p) + n
B T )

(A.2)
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and
12 _ 24 n(27nw ny) — sin(n
Gw) = T anls 2 2y Hnlnrele) L) — sl
cos(ni) — cos(2rnw n a— p'/?
Ly, 05() ¢ (ii)(p))gp) +79) w,(p)p( azp )
0 ornw(p)cos(np) — sin(ny) — sin(2rnw(p) + ny)
O () — ool o) n(n)
2b;nw(p) ot = :L:j(p;r;w Pl 27rb11 jz(nwép)?
(A.3)
The spectra taken was:
bo = 0.5,b; = 1.0. (A.4)

and

n/10  8<n <10 (A.5)
20 —n/10 10<n <18

The values choosen for the remaining parameters are taken from

the ETA-BETA experiment and are:

0 n<8mn>18
ar =

2.4
p=26 a=1bem R=Tdcm 71,= 262~ 923a  (A.6)



Appéndix B

The Generalized Standard
Map

The Generalized Standard Map is defined in a torus M : TxT — TxT:

) o= pr 4 eV (W)
M: { Vi1 = Yk + praa (B-1)

and is periodic in both ¥ and p with unit period. This map can also
be defined in a cylinder M : R x T — R x T, if one doesn’t consider
the periodicity in p. M is an area-preserving map, since its Jacobian
is unity. In particular, when V(¢) = sin(%), this is the Standard or
Chirikov-Taylor Map [8].

When the perturbation is null, we have a map T such that:

. ) Prk+1 = Pk

T { Vkt1 = Y +w(prs1) (B:2)
The iterates of this map are on a curve I', and after each iteration
each point on it is rotated through an angle w(p) that is constant along
each curve I'). Hence, some curves I', are rotated through an angle
that is commensurate with a whole rotation, and others through an
angle incommensurate with a whole rotation. If z = (p,v) belongs to
a curve [' such that w = 272, then T™z = z. Thus, each point of T
is a fixed point of 7™, and the orbit of z consists of n points. We say
that this orbit has length n and is called resonant. If the angle w(p)
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that corresponds to I', is incommensurate with a whole rotation (27
in this case, since we have considered a map mod 2r), then the points
T"z are everywhere dense on I', and the orbit is called nonresonant.

So, an unperturbed map generates two kinds of orbits in the Poincaré
section. Given a certain initial condition, the orbit generated can be a
dense curve or a finite number of points. But if one takes various initial
conditions the Poincaré section will be filled with dense curves. When
the perturbation is different from zero, the behaviour of the orbits is
more complex. There are two theorems that give us some information
about these orbits. These are the Poincaré-Birkhoff and KAM theo-
rems.

The Poincaré-Birkhoff theorem [9] is related with the fixed points
of a smooth perturbed area-preserving map T.:

)Pk = pr At ef(pr, n) ,
Le: { Vi1 = Ur +w(pry1) + €g(pr, ¥x) (B3)

Let I' be the curve of the map T formed with the fixed points of
T™. Let’us consider:

w(p) = 2%% %Lpi # 0 (B.4)

As we have already said in the above paragraph, after k iterations of
T, each point of I' returns to its initial position. This property of T is
not retained for a small perturbation (7' — 7). The Poincaré-Birkhoff
theorem states that, for ¢ small, T* has 2kn fixed points close to the
curve [,

In fact, let us consider two curves that are invariant under 7" and
close to I': namely, the curves I't and I'", with angles of rotation
wt > w > w”, where w is the rotation angle of I'. Thus, the mapping
T* rotates I't positively and T'~ negatively, as can be seen in the figure
(B.1). This property still holds for T* if ¢ is small enough.

Thus, on each radius 1) =constant, there exists a point p(, €) which
moves under T along the radius:

Y(IEp(h,€) = ¢ (B.3)
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Figure B.1: The mapping T™ rotates I'* positively and I'~ negatively

Moreover, if € is small enough, the points r(s,¢) (0 < ¢ < 1) form
a closed analytical curve R, close to I'. Now, considering that T is
an area-preserving map, the image T R, cannot be surrounded by R,
and, conversely, R, cannot be surrounded by T*R,. Thus, R, and T*R,
intersect. The points of intersections are fixed points of T* and the map
TF has an even number of fixed points.

The orbits around these fixed points are characterized by their tan-
gent map . One can see that half of the fixed points of T are elliptic
and half hyperbolic and that they alternate themselves.

The iterates of T; of the points around an elliptic fixed point form
ellipses that are called islands, while the iterates T% of the points around
the hyperbolic fixed points move on one or both branches of a hyper-
bola. So, in this second case, the map T, takes the points further from
the neighborhood of the fixed point.

Given a chain of alternating elliptic and hyperbolic fixed points
produced by iterations of T, two adjacent hyperbolic fixed point z’
and z” are connected by a trajectory called separatrix. This separatrix
encloses the islands that exist around the elliptic fixed point that there
is between z’ and z”.

It is also interesting to say that inside each island we have the whole
system reproduced in a finer scale.
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The KAM theorem [9] analyses the behaviour of the orbits associ-
ated with an irrational winding number under small perturbation.

Let’us consider a map of the 2n-dimensional "annulus” to itself,
which is close to a n-dimensional rotation:

{ Pr+1 = Tk + €f(pr, Yr, €) reBCR"

Yrr1 = PYr +w(prs1) + €9(pr, ¥x, €) Y mod2m € T™
(B.6)

It is assumed that the map is exact-sympletic, i.e., it preserves the

integral of the 1-form rdy on closed contours. The unperturbed map

(€ # 0) is said to be nondegenerate if det (Gw/dp) # 0.

The KAM theorem formulated to a map states the following: sup-
pose the unperturbed map is analytical and nondegenerate. Then for
any small and smooth perturbations, in the 2n-annulus B x 7" there
exist invariant tori close to the tori p=constant, and the measure of
the complement of their union is small when the perturbation is small.
The images of any point of an invariant torus under the iterations of
the map densely fill the torus.

Considering a system with only 1 degree of freedom, we obtain an
area- preserving map of the ordinary annulus into itself. The restriction
of the unperturbed map to each curve p=constant is a rotation. The
nondegeneracy condition means that the angle of rotation changes from
one curve to another. The nonresonant curves that remain distorted
under perturbation are those that satisfy the diophantine condition. A
winding number w is called diophantine when 3 v > 0 and 3y > 2
such that:

w -1

. .
- <7g (B.7)

YV (p,q) € Z and q # 0.
In a perturbed map, like the Generalized Standard Map, the wind-
ing number is given by:

N
w= Jim ~ (s = ) (B.3)
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For these maps, one can observe mainly three kinds of interesting
behaviour, as we have already discussed . Two of these exist also for the
unperturbed map: the fixed points and the KAM curves, also called
zero-dimensional and one-dimensional orbits respectively. The other
kind of behaviour are the stochastic regions that appear around the
hyperbolic fixed points. These regions are also called two-dimensional
orbits.

In the Generalized Standard Map given by equation (B.1), the KAM
curves that extend over all the interval ¢ € [0,2x] divide the phase
space in disconnected regions. The orbits cannot pass through this
KAM curve. So, the KAM curves completely obstruct the diffusion. As
the perturbation grows these KAM curves cease to exist, and diffusion
is possible.

When all KAM curves that encircle the torus in % direction are
broken, the map has a behaviour called connected stochasticity. The
value of the perturbation parameter at which the last KAM curve is
destroyed is called critical.

For values of the perturbation parameter a little higher then the
critical one, the destroyed KAM curves are reduced to a cantorian set
of points, that affect the diffusion. MacKay, Meiss and Percival [10]
have developed a theory of transport that considers this structure of
the phase space and have deduced a scale law for the diffusion coefficient
near the critical point:

D~ (e—g) (B.9)

This law has been numerically verified [11].

There are some analytical tools to determine the value of the per-
turbation parameter necessary to destroy a certain KAM curve. The
earliest procedure to determine the transition to connected stochastic-
ity was proposed by Chirikov [12] in 1960 and then refined by himself
in 1979 [8]. It has been commonly called the Chirikov criterion. In its
simplest form, it says that a certain KAM curve is broken when the sep-
aratrixes around the elliptic fixed points in opposite sides of the KAM
curve touch each other. In this method, the width of the islands around
the elliptic fixed points considered are calculated independently. This
is one of the reasons why this criterion is neither necessary nor suffi-



76 APPENDIX B. THE GENERALIZED STANDARD MAP

cient. If the complete system is solved simultaneously, it may happen
that the overlap occurs at another value of the perturbation parameter.
And, also, the KAM curve may break before the overlap, due to others
factors.

Greene in 1979 [13] has proposed another method, essentially nu-
merical, in which the break of a certain KAM curve is associated with
the destabilization of the elliptic fixed points with a rational winding
number that approximates the winding number of this KAM curve.
This method will be described in more detail in the appendix C.

Following Greene, an invariant curve is approximated by periodic
orbits and seems to become non differentiable and self-similar at the
critical point, according to Shenker and Kadanoff [14]. A theoretical un-
derstanding was then achieved with a renormalization group approach
developed by Escande and Doveil in 1981 [15]. This method is based
on the analysis of the amplitude of the higher order islands and has
been introduced to study the break-up of the invariant curve of the
hamiltonian:

2

H(r,o,t) = % — M costp — Pcosk(yp —t) (B.10)

L

whose Poincaré section, for M=P and k=1 is very similar to the Stan-
dard Map.

MacKay in 1983 [16] has extended this procedure to the break-up
of an invariant curve with whatever rotation number, introducing an
approximate renormalization.

Another method is the use of classical perturbation theory, which
proved to be asymptotic in the case of the Birkhoff series [17] and al-
lowed one to determine the boundary of analytically continued invariant
curves [18, 19]. Considering the Zehnder [20] formulation of the KAM
theorem, this theory can also be applied to describe the behaviour of
an invariant curve near the critical point and its break-up mechanism.



Appendix C
The Greene Method

The Greene method [13] is based on an examination of the stability of
periodic orbits. It postulates that the disappearance of a KAM curve
with an irrational winding number w is associated with the destabiliza-
tion of the orbits of the elliptic fixed points with a rational winding
number w’ that approximates w.

An irrational number w can be expressed as a continued fraction
expansion:

w = (C.1)

ay 4 ————
! a2+...

where, since w < 1, the a,’s are positive integers. This is denoted

w = [ag, ay,az,...,ay] (C.2)

which is called the convergent of order N of the irrational w, or w’. The
convergents are unique and as N grows, the approximation is better [21].
The w!V’s are rational numbers and the continued fraction expansion is
the best way to approximate an irrational with a rational.

Greene has applied his method to find the critical perturbation pa-
rameter of the Standard Map. The last KAM curve of this map is
expected to be associated with the winding number that most easily
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satisfy the diophantine condition. This is given by the winding number
associated with the golden mean:

%szhqzwil (C.3)

So, it is necessary to analyse the stability of the periodic orbits

with winding number given by the convergents of the golden mean.
This analysis has been reproduced in my Magister Thesis [22].

Greene found the periodic orbits of the Standard Map using the

property that this map can be written as a product of two involutions.

When the perturbative spectrum of the Generalized Standard Map M

is given by a serie in sines, this property is also valid and we have:

M= LI (C.4)

where
7. = 1+ el ansin(nfeq) C5
' { Yk = —tr1 ( O)
I, Pk+1 = Pk C.6
2 {¢k+1= — Pk + px (C.6)

and
L=I=1 (C.7)
Each of these involutions has lines of fixed points. Namely,

Li(p, %) = (p,¥) . (C8)

is satisfied by ¥ = 0 or ¢ = « for any p. And

is satisfied by ¥ = mp or ¢ = 1(p+ 2), for any p. Some of these fixed
points are also fixed points of M. The fixed points of M of order 2N
are those that satisfy the following conditions:

Ii(po,%0) = (po,%0) and LT (po,10) = T (po, o) (C.10)



or

]2(907¢0) = (PO,'@bO) and IlTN(po,lpg) = TN(povll:bO) (Cll)

while the fixed points of order 2N-+1 satisfy:

Ii(po, o) = (po, o) and LT (po,v0) = TV (po,1h0)  (C.12)

or

I(po, o) = (po, %) and LT (po, o) = T (po, o) (C.13)

Greene says that in this way one finds the fixed points of interest
to his method, that are the fixed points that exist until € is very close
to zero. In the same way, the KAM curves considered are those that
encircle the map, that is, those that exist until € is very close to zero.

The stability of a fixed point can be determined by its tangent space
orbit that is obtained linearizing the map. For a set of fixed points of
length Q, that is, 79(p, 1) = (p, %), the tangent map is given by

(e2)=4(5%) (c14)

where

6§kil 5§ki1

Q

A=1]1 ( S, 0L ) (C.15)
S\ T o

If [TrA| > 2 the fixed points are hyperbolic (unstable) and if

|T'rA| < 2 they are elliptic (stable).
Greene defines a quantity called residue [23]:

R= ;;(z_TrA) (C.16)

According to the results above, when 0 < R < 1 the fixed points
are elliptic and when R < 0 or R > 1, they are hyperbolic.
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According to Bountis and Helleman [24, 25] this residue can also be
written as the determinant of a ¢ x () matrix:

R= ——-}iDetH. (C.17)

For the Standard Map the matrix H is given by:

2 + ecos iy -1 -1
-1 2+ ecos by
H= 0 -1 (C.18)
—1 2 4 ecos g

H is tridiagonal with additional -1’s in the corners.

It is apparent that when the perturbative parameter ¢ is large, the
residue is proportional to €?. Greene has shown [13] that this is also
true in the limit of small €.

Considering this dependence of the residue on the length of the
orbit, Greene has introduced a new quantity, called the mean residue f

[13],

f= (@)1/9 (C.19)
g
In this way one has a quantity to characterize the break-up of a
KAM curve the value of which is independent of the periodic orbit
considered. The quantity 8 can be adjusted for convenience and the
mean residue can be evaluated for orbits with negative and positive
residues.



Appendix D

The Drift Approximation

The basic quantities characterizing the magnetic fluctuations are the
correlations length L. and correlation time 7,. These quantities are
considered large in comparison with the gyroradii and the inverse gy-
rofrequencies of the ions and electrons.

The gyroradius and gyrofrequency of a charged particle is deter-
mined by its motion in a constant and uniform magnetic field. The
trajectory is a helix with its axis parallel (or anti-parallel) to B, or
we can say that it is the motion of a particle along the magnetic field,
called guiding-center motion, and a rotation around this motion. This
motion defines a fundamental frequency, the gyrofrequency w., and a
fundamental length, the gyroradius rz.

As we are considering that

Le >>rp, 7o >> w]* (D.1)

We can describe the motion of the electrons and ions in the drift
approximation [45], that considers just the motion of the guiding-center.
In this case, the velocity of particle V is described by the velocity u
along the magnetic field and the drift velocity, that is the velocity of
a charged particle in an electric and magnetic field. In particular, the
drift velocity of a charged particle in a constant and uniform eletric and
magnetic field is given by [46]:

(1) ZE xB

Vd'rift = B2 (D2)
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The drift velocity of a charged particle in a non uniform magnetic

field is[46]:

mcu B VB B B
where u, is the Veloc1ty of rotation around the guiding center. The
first term is due to the gradient of B and the resultant velocity is
perpendicular to B. The second term is due to the shear of the magnetic
and causes a twisting of the magnetic flux about each other.

Finally, the drift velocity of a charged particle in a magnetic field
that has curvature is [46]:

(D.3)

mc u B B B
— V)= gl
g * (3] (D.4)
So, the kinetic equations that describe the motions of the electrons
and the ions are given in the drift approximation by:

af Oudf Oudf ;
aﬁvﬁ+mm+mm SH/) (D-3)

where f = f(u,u,r,t) is the particle distribution function, V is the
particle velocity, V = u% + Varigi, where Vg = Vc(l}')ift + ijf.{.ﬁ +
dm 7o+ St(f) is the collision integral, and y is the adiabatic invariant

3
V((ir)zft

given by:

po= (D.6)

o

and the time evolution of the velocity u along the magnetic field is given

by:

du q 0B
— = —E.
dt  mu V- QBu “or’

(D.7)
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