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‘Introduction

Quark mixing and CP-violation are two important subjects of the Standard Model
physics and might suggest the presence of new physics beyond it. Among the reasons
which might justify the interest in the physics of CP-violation and flavour mixing, the
possibility to probe the perturbative and non-perturbative theoretical consistence of the
model and to investigate the physics of heavy flavours are maybe the most important
ones.

At higher order in perturbation theory strong and electro-weak interactions are
present both at short and at long distances. Many physical quantities can be theoreti-
cally computed and experimentally measured with great accuracy, testing the reliability
of the whole theory to a great extent. On the other hand, more precise theoretical pre-
dictions will permit the determination of a larger number of the unknown parameters
of the Standard Model. The physics of CP-violation and quark-mixing, in particular,
is related the top quark physics. In absence of a direct determination of its mass and
couplings, we have here a real possibility for their indirect determination. Indeed, even
though absent at the typical scale of weak decays, heavy flavours can be present in loops
as virtual corrections, i.e. when higher orders in the perturbative calculation of given
physical quantities are considered. Radiative corrections are generally suppressed by
powers of the strong or electro-magnetic coupling constant. Nevertheless, heavy quarks
as the top quark, can give relevant contributions, because large logarithms of their mass
are present in the renormalization procedure.

K-meson and B-meson systems are the natural framework where the physics
of quark mixing and CP-violation is studied. Flavour-mixing and CP-violating weak
decays are described by Effective Hamiltonians of the form:

Hepr = Z Ci(1)0:(p)

where the product of currents present in the true hamiltonian is expanded through the
OPE (Operator Product Expansion), at a scale p, as a sum over a given set of oper-
ators {O,;(p)} with suitable Wilson coefficients {C()}. The short and long distance
parté of the problem factorize into the Wilson coeflicients and the operators respec-
tively. In the evaluation of physical amplitudes, the Wilson coeflicients are treated
perturbatively, while the matrix elements of the effective operators {O;} are derived
with non-perturbative techniques. In this thesis we will focus on the perturbative part
of the problem only. On the non-perturbative side, we will only use, when necessary,
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4 Introduction

the main results coming from lattice calculations . In the final numerical analysis, in
particular, we will use lattice results, which have already reached a level of reliability
such as to be useful for physical applications.

The previous Effective Hamiltonian can be computed at scale g ~ m, (for B-
meson physics) or g =~ m, (for K-meson physics) using the standard RG (Renormal-
ization Group) techniques. The Wilson coeflicient evolution obeys a particular RGE
(Renormalization Group Equation), derived from the scale-independence of the global
Effective Hamiltonian. The solution of the RGE for the Wilson coeflicients can be
given in different approximations in perturbation theory: LLA (Leading Logarithms
Approximation), NLO (Next-to-Leading Logarithms Approximation), etc. There are
several reasons which require the calculation of the NLO solution for a given Effective
Hamiltonian. Besides the more general ones (consistent utilization of Ag¢p in different
contexts; justification of the “running” values of the quark masses used at different
scales, etc.), the real point is that heavy flavour-dependence is strictly speaking a NLO
effect as we will explain in great detail in Chapt.2. In the case of Effective Hamiltonians
for K- and B-physics the implementation of the RG formalism gives rise to a strong
m,-dependence, which would not be present in the LLA form of the hamiltonian.

In the framework of K- and B-physics, two main classes of weak processes are
studied with respect to flavour-mixing and CP-violation:

e AF =2 mixing — indirect CP-violation,

e AF =1 decays — direct CP-violation,

where F' denotes either b- or s-flavour. The Effective Hamiltonian for AF =2 mixing
processes involves four-quark vertex operators only (see fig.(2.1). It has been studied
first in the LLA for small and large values of the top mass and finally determined up to
NLO for large values of the top mass [15]. The two loop anomalous dimension matrix
was originally computed in [5] in the DRED (Dimensional Reduction) regularization
scheme and subsequently reproduced in ref. [13] in the NDR (Naive Dimensional
Reduction) and HV (t’Hooft-Veltman) schemes. It belongs as to say to the “past”
of perturbative calculation in the field of CP-violation and flavour mixing. The NLO
knowledge of 'ij;:'“’ allows a good theoretical determination of the ¢ and of the z,
mixing parameters for neutral K- and neutral B-system respectively.

On the other hand, direct CP-violation in weak non-leptonic decays of K- and
B-meson is governed by the AF =1 Effective Hamiltonian. The LLA evolution of the
AF =1 Effective Hamiltonian have been studied both in presence of QCD corrections
only and in presence of QCD+QED corrections [30, 24, 41]. The renormalization
procedure involves here a much larger number of operators, listed in (1.45). Below the
m,-threshold for AB = 1-decays or below the m -thresholds for AS = 1-decays, due to
the failure of GIM mechanism new operators arises besides the usual four-quark ones.
They are the so called “Penguin”-operators corresponding to diagrams as the one in
fig.(1.7) or (2.2), with a gluon (QCD-penguins) or a photon (QED-penguins) running
in the wavy line. Penguin operators present some striking features:
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e they are one-loop effective operators which are in principle suppressed by a power
of the coupling constant. Nevertheless their matrix elements might be large and
their contribution to some physical quantities is determinant;

e they have a strong m,-dependence;

¢ they are greatly influenced by QED corrections [10, 24, 41], because the ma-
trix elements of QED-penguin operator are greatly enhanced with respect to the
QCD-penguin ones.

e their evolution is strongly modified by NLO corrections.

In the present thesis the evolution of the AF =1 Effective Hamiltonian is computed
at the NLO in QCD corrections and at LO in the QED ones. We have studied the
vertex-+penguin two-loop renormalization mixing and computed the two-loop anoma-
lous dimension matrix. This can be called the “present” of perturbative calculations in
the physics of CP-violation and flavour-mixing. A complete calculation is still missing
in literature, while in ref. [16] the pure QCD case was treated. The present calcula-
tion add a very important piece of knowledge to the theoretical description of K- and
B-meson physics and we believe that many interesting phenomenological implemen-
tation will be possible. At the same time, it would be extremely important to have
a clear theoretical picture of the problem, whenever the non-perturbative techniques
were improved.

The thesis consists of four chapters. Chapt.l summarizes the physics of flavour
mixing and CP-violation in the three generation Standard Model. General comments
are made about the indirect determination of the unknown top parameters. The dis-
cussion is finally restricted to K- and B-systems. Next, the detailed calculation of
the NLO evolution of the Effective Hamiltonian for AF = 1 weak decays is given in
Chapt.2 and Chapt.3. First the general formalism for the NLO evolution of the Wilson -
coeflicients in presence of QCD and QED corrections is derived. Then we discuss initial
conditions for the evolution of the coefficient functions, the origin and the dynamics of
operator mixing and the final results for the anomalous dimension matrix. The ana-
lytic aspects of the calculation are given in Chapt.3, where we will describe the most
important techniques and the results. Chapt.4 is devoted to numerical applications
of the analytic results, with an outlook to the possible future implementation in the
physics of CP-violation and flavour mixing.
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Chapter 1

Quark-mixing, CP-violation and
the unknown parameters of the

Standard Model

1.1 Introduction

In this chapter the main aspects of quark-mixing and CP-violation in the three gen-
eration Standard Model (SM) will be summarized. This sector of the SM physics is
extremely important for the determination of some unknown parameters of the SM
itself.

Quark-mixing is an extremely wide subject and I will not be exhaustive about.
I will introduce and discuss only those aspects which are the background for the work
that will be developed and detailed in the following chapters.

A part from the Higgs sector, some important and still unknown parameters
of the SM are related to the physics of the top quark, mainly its mass (m,) and
couplings. For the obvious reason that the top quark has not been discovered yet,
a direct determination of both its mass and couplings is not available. However, the
Effective Hamiltonian (EH) formalism gives us the opportunity to derive "indirect”
estimates and bounds of the still missing parameters. It is the physics of K- and
B-mesons (mainly their CP-violating weak decays) which plays a fundamental role in
this respect. On the other hand, when the top will be discovered in present or future
experiments, the same physics would become an important test of the SM itself.

In Section 1.2 quark-mixing and CP-violation in the three generation SM are
briefly summarized and related to specific K- and B-processes. Sections 1.3 and 1.4
will give some more details about K- and of B-physics.

7



8 Chapter 1: QUARK MIXING and CP-VIOLATION

Some general comments are in order at this point.

e m,

In K- or B-meson weak decays, physical amplitudes have no explicit
m-dependence at the tree level. At high energy scales (above the top threshold),
the top quark appears in loops and its contribution is very important in CP-
violating decays.

Let us briefly explain why the top contribution becomes so relevant. The top is
active only at very large scales, while a generic weak decay usually involves much
lower scales. At low scales the physics of a given weak process is described by
Effective Hamiltonians (EH) of the form:

Her = Z Ci(1)0i(n) (1.1)

where {O;(1)} is a given set of local operators and {C;(u)} the corresponding set
of Wilson coefficients in the Operator Product Expansion (OPE) evaluated at
scale u. Below the M, threshold!, the top quark is integrated out and we would
not expect any dependence on its mass anymore. On the contrary, a strong m,-
dependence appears in the initial conditions for the evolution of the coefficient
functions.

The coefficients C;(1) can be computed perturbatively and their evolution from a
scale of order O( M) (where perturbation theory applies) to the low energy scale
p is given by the solution of the Renormalization Group (RG) equations. The
m,-dependence arises as a loop effect (when the top quark is present in loops) in
the evaluation of the initial conditions for the evolution of the coefficients from
M, to p. We may write that:

C(u) = C( My, my, My YU (My, 1) (1.2)

where M., m, and M are the heaviest masses in the theory? (X being a generic
heavy particle, fi. a physical Higgs in some extension of the SM, etc.), and
U(]U“ , ) the evolution matrix from M. to u scales.

The m,-dependence of ¢ (M) should be computed referring to a particular weak
process. A large number of virtual processes have been computed and the m,-
dependence of their Effective Hamiltonians is known. They allow to fix the
correct m,-dependence of the initial conditions for different weak processes in
terms of some basic analytic functions. We list in table (1.1) some weak decays
and mixings (for K- and B-mesons) together with the basic functions which
have been introduced to describe them. The main processes have been originally
computed by Inami and Lim [34] and successively updated by Flynn and Randall
[24]. Very recently a complete analysis appeared in a paper by Buras et al.

!To simplify we assume M,. ~ m,. We will comment on that later on.
2 Again we will assume M, ~ M., as for the top mass.
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[14, 16], where the small-m, and large-m, behaviour, the gauge-dependence and
the scaling properties of the functions given in Table (1.1) are studied. The
initial conditions for the Coeflicient Function in (1.2) are computed in terms of
the updated set of these so called “Inami-Lim functions”. Here following we give
their explicit m, dependence:

S(z,) = 1+9 1 3 1 +3[ z, rl
z) = |7 4(1—z,) 2(1—=w)? 9z — 1 nz,
1 L, :El].nil:t
B(z,) = = : ’ |
Ty | Ty —6 3z, + 2
Cla) = g[%_ﬁ(mﬂ)z}
4 ~19z3 + 2527 z?(522 — 2z, — 6)
D ¢ = ——] , t : : : ) |
(z.) 9 ne, + 36(z, — 1) + 18(z, — 1) nze
(8:1}3—{— 5p? — 733:) 1132(2 ~ 3z,)
D, ¢ _ — £ t 1 t ‘—_.___ln t
(m) 12(1_%)4 ne, + 2(1—_%)4 T
P(o) = ino, 4 HUS T bisd)) 2018 1le —z)
6(1 —mt)4 12(1 “‘:EL)B
z(z? — 5z, —2) 3 &z’
El : — _ t 2 ¢ 1 t
(23) 4(1—$t)3 2(1_;{%)4 nx

8|z, —1 " (z,—1)?
1 18zt — 16323 + 25922 — 108z,
Z(@) = —lne + 8z, z; + 259z 08z
9 144(z, — 1)3
32z — 3823 — 152 + 18z,
Inz,
72(z, — 1)*
where ¢, = m?/M?,. For future discussions, it is important to give the large-z,

behaviour of the basic functions in (1.3):

S(z,),C(z,) «x z, , D(z,) x Inz, , (1.4)
B(z,) ,E(z.) ,D'(z.) ,E'(z.) x const

A power-like or logarithmic dependence on a large m, may have important con-
sequences in the SM predictions for many weak processes. Appearing as a loop-
effect in the initial conditions for the evolution of the coefficient function, it could
in principle justify by itself a NLO calculation.

o Top quark couplings
In the SM with three generations, the Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix is responsible for quark-mixing and its matrix elements fix the couplings
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Weak Process Related Functions
B°— B° mixing S(z,)
K —mvv, B— Kvi, B— wvp X(=,)
K—pi, B—1l Y(z,)
K, — nlete” Y(z.),Z(z.), E(z)
K—7r: ¢ S(z,), X(z.), Y(z.), Z(z,), E(z,)
B — Ky D'(z,), E'(z,)
B — Kete™ Y(z.), Z(z.), E(z.), E'(z:)

Table 1.1: Basic functions governing the m,-dependence of various weak amplitudes

between quarks and charged vector bosons. The mixing matrix depends also on
complex phases (one for three generations) responsible for CP-violation. Thus,
on one hand CP-violation can be extremely helpful in "hunting” those couplings
of the top quark which are still poorly known. On the other hand non-leptonic
and semi-leptonic weak decays are of fundamental importance in this respect.
Virtual processes could also give informations about hidden sectors of the theory,
provided we control with sufficient precision the theoretical predictions. This
could become relevant in the present and future determination of new physics
beyond the SM. From the analysis of weak decays and the comparison with the
experimental informations at hand, we can get an indirect determination of the
t-couplings. We will see in section 1.2 how many different physical processes,
whose amplitudes:

A(m,CKM,...) (1.5)
Ay(m, CKM,...)

depend on m, and on the CKM matrix parameters can cooperate to a combined
determination of both m, and ¢-couplings.

We conclude this brief introduction with a classification of different K- and B-

pProcesses:;

o AF =2 processes — box diagrams

o AF =1 processes — vertex and penguins diagrams

where F' is a generic flavour (see fig.(1.4) and (1.6)).
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AF =2 processes belong, as to say, to the “past” of perturbative calculations: they
have been computed to NLO (Next-to-Leading Order) and their Effective Hamiltonians
have been proved to be quite stable under perturbative corrections up to this order
[15]. On the other hand, the interest of the present study is in AF =1 processes and,
in this contest, we have computed the NLO Effective Hamiltonian. Contrary to the
AF =2 case, a big enhancement for some coefficients of the EH is found at NLO. This
fact, together with the large number of physical processes described by the AF =1
EH, makes the subject extremely interesting.

1.2 Quark mixing and the Unitary Triangle

In this section the main features of quark-mixing in the SM framework are recalled,
together with the description of CP-violation in terms of the Unitary Triangle (UT).

It is well known that in the SM only neutral currents are both flavour and helicity-
conserving, while charged currents are only helicity-conserving and mix up- to down-
type quarks. This mixing is defined through the CKM matrix, a unitary matrix which
relates quark weak current eigenstates to mass eigenstates. In the three generation
SM this matrix is parametrized by three angles and one complex phase. It’s just this
complex phase the only responsible for CP-violation in the SM: again we see the deep
connection existing between CP-violation and quark couplings.

Many different parametrization of the CKM matrix have been proposed and used
during years. Here are the most important ones:

e the Kobayashi and Maskawa parametrization [39]

C, —8,G —818y
V = | 8,6 CiCCy — 825,€% €,Ca8y + 8.C5€™° (1.6)
5,Cs € 89Cs - C28,€7 €88, — CaCyE™®
e The Particle Data Group or “standard” parametrization [44]

—id

Ci2Cis S12Cis S13€
— i6 is
V = —5813Co3 — C12823813€" C13Co3 — 812823512€" S23Cay (17)
] i6
812895 — C€12Cay8y3€" —89Cay — 8)2Ca3813€ Ca3Ciy

Considering the smallness of the mixing angles, one can also introduce for practical
purposes a “reduced” form of the mixing matrix, obtained by expanding all the matrix
elements in the small parameter

A= |V,.| = 0.221 + 0.002 (1.8)

up to O(A'):



12 Chapter 1: QUARK MIXING and CP-VIOLATION

o The original Wolfenstein parametrization [59, 60]

-4 A AX(p —in) |
V = —A -4 AN (1.9)
AN (1 —p—1m) —AN 1

o The modified Wolfenstein parametrization [59, 60]

1- & A ANge®
V = ~A 1-2 AN (1.10)
AX3(1 — ge'®)  —AN? 1

The relation between the two Wolfenstein parametrizations is simply given by:
p=0ocos§ , n=osiné (1.11)

It’s interesting to note that [35] CP-violation effects result always proportional to:
Jep = Im(V,,V,, Vi,V ) (1.12)

ca

Jep i1s a universal quantity: it does not depend on the parametrization and on the

phase convention. Due to the smallness of the mixing angles involved, J.p results to
be of O(A®) ~ 107> and this fixes the order of magnitude of CP-violation in the SM.
In other words, CP-violation in the SM framework turns out to be “naturally” small.

We should stress that the two Wolfenstein parametrizations in (1.9) and (1.10)
are expansions in the small A parameter. The order given in (1.9) and (1.10) could
also not be adequate for accurate calculations. For instance, in the evaluation of CP-
violation from (1.12) a higher order of the expansion is required in order to have a non
zero Jcp. On the other hand, J;p may also be defined in terms of different elements
of the CKM matrix:

Jep = Im(V,,V,V.,V;) (1.13)

and in this case the O(A*) expansion would be enough. Any consistent check of CP-
violation would require in any case the evaluation of both (1.12) and (1.13).

The unitarity of the CKM mixing matrix provides a very powerful and intuitive
way to describe the pattern of CP-violation, for given parameters and physical inputs.
Indeed, from the CKM matrix, being a (3 x 3) matrix, nine unitarity relations of the
form:

Z\/,J\/:k - 6jk (1.14:)
Zvji\/l:i = b

can be derived, for 7, j and k running over quark flavours. It is easy to convince oneself
that six of the previous relations defines a triangle in the complex plane. Among them,
the most interesting case to our purpose is the following one:

\/ud\/;b + \/Cd\/:b + \/,d\/:b — 0 (1-15)
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Figure 1.1: Unitarity Triangle

because it involves some not well-known couplings like V,, and V,,. It defines the
triangle shown in figure (1.1), specialized to the case :

Vaurxl, V,~1, V.V, real (1.16)
and its area is related to the measure of CP-violation by:
"]CP] :2."4A (1.17)

Obviously the shape of the UT does not depend on the parametrization chosen. The
choice of the parametrization can only affect the position of the UT in the complex
plane. The lengths of its sides are given by moduli of elements of the CKM matrix,
therefore by physical quantities. In order to see the importance of the angles of the
UT, which in fact fix the shape of the triangle itself, we chose a given parametrization,
fi. the Wolfenstein ones (original or modified). It is common in literature to rescale

the sides of the UT by |V.,V.,| = AX3. In this case the vertices of the UT become:

ReV, —ImV,
A = ( ) = (p,7)

l\/Cd\/cb ’ [vcd\/cb
B = (1,0) (1.18)
¢ = (0,0)
as shown in figure (1.1), and the angles have the fcllowing expressions:
2n(n* + p* = p) _ 2sin (o ~ cos )

2= (T pR M) L+ o?—2ocosh
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2n(1—p) _ 20siné(1l — ocosd)

n 2 = =
sin 26 (1—p)2+7n? 1+ 0% —20cosé
. 2pm .
sin 2y = = sin 24 1.19
v P (1.19)

Most important:

\/ub = [\/ub[e—h
Vie = Ivcd[e—iﬂ (120)
v =4

that is: 7 is just the CP-violating complex phase in the CKM matrix and v and 8 are
directly related to the phases of V,, and V,,, the less known elements of the matrix.

Many decays or mixing amplitudes in K- or B-physics can be expressed as func-
tions of sin ¢ or cos ¢, for ¢ = a, B or v, or as functions of the ratios:

V]
R = 2 2 = 1.21
b l\/us\/cbl p +T’ 7 ( )
V,
R, = !—Vl—u:é-‘;—!_—_ (1—p)2+7]2-—\/1+02—20'cos5

They coincide exactly with the lengths of sides AC and AB of the UT and in the (p,7)

plane they describe two circles centered in C' and B respectively.

In figure (1.2) all the informations we have from K-physics and B-physics are
summarized in an “ideal” way, where any process contributes with a single curve. This
is clearly not the case: we should have a band instead of a curve for each contribution,
but the aim of the picture is just to remind the interest of the phenomenology involved
in the problem.

Figure (1.2) can be read as follows: from the experimental knowledge of A and A
(IV.u/V..|) parameters in the Wolfenstein parametrization, we can estimate the radius
R,:

(1.22)

1|V,
R, =—
’ Al\/cb

with:

-2 I\/cbl
A = |V, =0.
AT |V,| =0.085 [0.041

= 0.22 =V,
R, ~ 0.59+0.18

and |V,,| from semi-leptonic B-meson decays.

Then the e parameter of CP-violation in the K° — K° mixing gives an hyperbola
in the (p,n) plane (whose position can vary greatly depending also on non-perturbative
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Figure 1.2: UT in the (p,7) plane

inputs), which could intersect the circle of radius R, into two points. B°— B° mixing,
through the z, parameter, fixes A to lie on a circle of radius R,, centered in B. Hence the
position of Ain the (p,7n) plane is determined and further ambiguities in the dependence
from m, can be constrained or even removed by using other physical inputs, like the ¢
parameter or rare semileptonic K- and B-decays.

1.3 K-physics

We will focus mainly on CP-violation in the K-system. At the end we will only give
some details about rare K-decays, an open field where many studies are going on.

About the first subject, we can investigate CP-violation in the K-system on two
fronts:

e “indirect” CP-violation — “e parameter”:CP-violation in the K° — K° mass
matrix;

e “direct” CP-violation — “¢-parameter”: CP-violation in the direct K — 27
transitions.

as illustrated in fig.(1.3).
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T
K, K,
B
Im M12
T
"indirect"
T
K,
Im a,
T
"direct"

Figure 1.3: “Indirect” and “direct” CP-violation.

We will introduce now the main formalism and characteristics for the two previous
parameters: € and €.

(1) € parameter

With three quark generations, the indirect CP-violation in the K° — K° mass
matrix is given by the following expression:

€ = ;EPAZ]E[ (ImMi, + 26ReMy,)
~ T (e ) (123
where fd, | |
= Red, » ith (wr(I=0)[Hw[K) = Ape'® (1.24)

is only a very small correction. AM is the mass difference between K, and K,
the two physical kaon mass-eigenstates, (experimentally: AM = 3.5-107'° GeV)
and M, is the dispersive part of the off-diagonal elements of the K° — K° mixing
mass-matrix:

My = (Ko Hl77™ | Ko) (1.25)

At lowest order in weak interactions, there are two box-diagrams (see fig.(1.4))
which contribute to the |[AS|=2 amplitude and similarly for any other [AF|=2
process (F' =flavour) (e.g., the By—By mixing).
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- u,c.t -~
S 8 d d
K’ W W K’
d 8
u,c,t
_ " -
S aVaVaUaW d
K’ 1,c,t u,c,t K’
s T\ {2 /20 \ S U—
W

Figure 1.4: Two possible box-diagrams for the K° — K° mixing.

At low energy scales and in the absence of QCD corrections, they reduce to the
following effective hamiltonian, originally computed by Inami and Lim [34]:

AS|= G2
HETE = = 5 M (dyts) (A28 (a0) + AZS(e0) + 2AcheS (w21
(1.26)

where:

e G is the Fermi coupling constant,

o 7L =7"(1-),
e \,’s are related to the CKM matrix element by
Ay = ViVos (1.27)
where 4’ and ‘f’ are the labels of the initial and final states respectively (for
example, i = s and f = d in the Ky—K mixing case),
® m - mz/M\‘ b

e the functions S(z;) and S(z;,z;) are the so-called Inami-Lim functions [34],
obtained from the calculation of the basic box-diagram. We already gave
their expressions and large m, behaviour in section 1.1, eq.(1.3) and (1.5).

The evaluation of the AF =2 EH at higher order in perturbation theory requires
two main observations:
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Figure 1.5: One loop QCD corrections to the box diagrams: the dashed line is a gluon.

i) the only operator appearing, under QCD corrections and renormalization mix-
ing, in the z,-dependent part of the EH is a four-fermion operator of O*-type
[4, 27, 5, 15]. Thus one needs only to compute, to a given order (fi. LO or
NLO) the anomalous dimension of a four-fermion vertex operator without
mixing. The other terms in the EH require some more elaboration, but they
are also not so relevant as the z,-dependent one.

it) the initial conditions for the coeflicient functions at scale M, are given at the
tree level by the Inami-Lim functions S(z;) and S(z;,z;); while at the one
loop level they are given by the computation of one-loop QCD corrections to
the box diagrams in fig.(1.4). The hard calculation of diagrams in fig.(1.5)
is found in ref.[21, 15].

The first calculations of the effective AF =2 amplitude considered only the case
of a small m, in the LO approximation [30, 57, 56, 46]. The most definite paper
among the LO approximation ones has been the classical paper by Gilman and
Wise [30], where all the theoretical details of the problem were clarified.

By then, the experimental bounds on m, made the possibility of a large m, more
and more reliable. Many different analysis of the effective AF =2 hamiltonian
appeared in literature [14, 25, 36, 37, 26]. A more refined calculation, for large m,
and at the NLO has been completed by Buras et al. in ref.[15] for the only case
of the purely z,-dependent part. In ref.[15] it is shown that the NLO effective
hamiltonian for K,~K, mixing, as well as for any other AF =2 process, is of the
form:

AS|= G? -
HL‘?}S, : = 167:2 ‘A/Ilz"(dvfs)Q {/\57715(:85) + AtZT]'ZS(:Et) ‘TI' 2ACA67735(:EC) Z‘t)}
(1.28)

The EH in (1.28) has the same form as in the small m, case, because QCD
corrections factorize to a large extent also in the large m, case .



§1.3 K-physics 19

By Method Reference

0.33 Chiral Perturbation Theory [23]
0.39 £ 0.10 Hadronic Sum Rules [48, 49, 52]

0.58 +0.16 QCD Sum Rules [22]
0.70 + 0.10 1/N 8, 29]
0.77 + 0.07 Lattice [38]
0.88 +0.20 Lattice [28]
0.92 + 0.03 Lattice [12]
1.03 + 0.07 Lattice (9]

Table 1.2: B, values obtained with different approach

From the EH in (1.28), we can derive the amplitude M;,:

G2 Y 2l 9
Mo = — 5 M2 By frmue { A2 S () + Ao S (20) + 20 s S(ze,m) - (1.29)

1272
and finally:
|€ele=o = C.BxA*X°n {7735(%, z:) + 125 (2o ) [A*X (1 - p)] - 7715(%)} (1.30)
where G ]VIQ
rd kMM —4
=K 2TV 410 1.31
6v2r2AM (1.31)

Here, B, is a factor which is inserted to take into account all the possible
deviations from the vacuum insertion approximation in the evaluation of the
(K°|(dy#s)?| K°) matrix element (B, = 1 corresponding to an exact vacuum in-
sertion approximation). The value of By is the main theoretical uncertainty and
a very large spread in the theoretical estimates is reported in literature, as one
can see from table (1.2). By is the renormalization group invariant B-factor,

defined as :
Bic = Bre(p) [otgen ()] (1.32)

The QCD corrections 7; depends both on the definition of By and on the defi-

nition of quark masses. Choosing for m; the running masses m(m;) and for By

the definition in (1.32), the values of 7, and 7, can be taken to be fairly stable

with respect to the variation of m., m,, m, and Aycp. The same is not strictly

true for 7,, but since the charm contribution is small, this does not significantly
~ affect the final predictions. The typical values for the n; parameters are:

m =085, 7, =057 , 7, =0.36 (1.33)
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corresponding to: m, = 1.4 GeV, m, = 4.6 GeV, m, = 140 GeV and Ayep =
200 MeV. For very large m, the second term in eq. (1.28) dominates. The most
important result of the analysis of ref.[15] has been to state that the perturbative
approach in the effective hamiltonian formalism is completely justified, because
the EH results to be quite stable under higher order perturbative corrections.

Finally, using the experimental value of e
l€.sp| = (2.258 £ 0.018) - 1073 (1.34)

we can cast eq.(1.30) in the form
lele=o = C.BxAXoq {725 () A*X*(1 — p) — K} (1.35)

where

K =n35(zc, ze) — mS(zc) (1.36)

For € fixed at its experimental value, Eq.(1.35) defines a hyperbola in the (p,7)
plane, as it is shown in fig.(1.2).

(2) € parameter

The direct CP-violation parameter of the K-system appears in AS = 1 non-
leptonic decays and can be written as:

¢ = _\%5(1 — Qe (1.37)
where Red TmA 1 TmA
€ 2 m ) m 2
_ - . 1.
v Red, ’ ¢ Red, ’ wlmA, (1.38)
with ¢ = 7/2 + 8, — &, and A; and §; defined by:
e A, = (rn(I = 9)|H5] ™ | K) (1.39)

It is convenient to introduce the ratio €¢'/e which has the advantage to be practi-
cally independent of phases. The experimental results for this quantity are:

€\ [ (2.3£0.7)-107% NA31
He (?) B { (0.6 £0.7)-107* ET31 (1.40)
Theoretically the ratio € /e has the form:
€ w 15(1 Q) ' (La1)
€ - \/5 [5[ .

For some of the quantities appearing in eq.(1.41) we can use their experimental
value:

w=~0.045 , Red, ~3,3-107" GeV (1.42)
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the remaining amplitudes are computed in the EH formalism. The generic hamil-
tonian is given by:

HG= = ZC (2)Qi(p) (1.43)

The complete basis of operators entering the EH when QCD corrections are taken
into account is now much more complicated than in the e-case and is given by:

Qr = (Sads)r—n)(Taths) vy * ap ® 6.5
Qz = (§ d )(x ) (U u&)(x —ay 5a6 ® 5»,5
Qa,s = (5 d ) (v—.) Z (qqus)(rqu) . 5as @ 5~,6
q=u,d,s
Q4,6 = (Eadﬁ)(‘»'——A) Z (qwqﬁ)(‘v-;m\) '5a6®5.,5 (1.44)
g=u,d,s
3
QT,Q = §(§adﬁ)("'—-ﬂ\) Z eq(q_"rqé)(“iA) '505@5"/6
g=u,d,s
3
QB,lO - §(§adﬁ)(x.'—.4) Z Eq(c?wq(s)(x.-i-.” '5a6®5-yﬁ
g=u,d,s

where (174 4y index indicates the chiral structure, i.e.:

(@"L’)(viA) = (Z-’r“(l = %)qj (1.45)

while §,,®8,; and §,;®4., distinguish two different colour-structures, correspond-
ing to the two possible contractions on the colour indices. Different operators are
obtained by different combination of Dirac- and colour-structures.

The technical construction of the NLO Effective Hamiltonian for AS =1 transi-
tions will be considered in detail in Chapt.2 and Chapt.3. Here we will only justify
the presence of so many operators, generated by weak and strong interactions.

At the tree level we have only one four-fermion vertex operator: ;. At the
one-loop level this operator mixes under renormalization (QCD corrections) not
only with its Fierz conjugate operator @,, but also with QCD ”"penguin” op-
erators, @;,...,Qs, due to the diagram in fig.(1.6). First only strong penguin
diagrams were considered. Then, it was realized that, even though suppressed
by the smaller coupling, EW penguins, i.e. +-penguins and Z°-penguins (see
fig.(1.6) and (2.4), could have been important in the expression of ¢'/¢. In partic-
ular, electro-magnetic corrections survive also below the A w-threshold and new
penguin operators O;,...,0,, are generated. The matrix elements of O; and O,
(8, x 85 of SU(3), x SU(3),) do not vanish in the chiral limit and give impor-
tant contributions. These new EW penguin operators mix with QCD-vertex and
penguin operators, giving a final (10 x 10) anomalous dimension matrix.

It was found [10, 24] that for small m, EW-penguins corrections to €'/¢ have the
same sign as the QCD-penguin ones, increasing €'/e. On the contrary, for large m,
their contribution reverses sign and tends to cancel the effect of QCD-penguins,
thus decreasing €'/e. For very high values of m, it can even become negative.
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Figure 1.6: All the contributions to the AS=1 Hamiltonian in the Full Theory.
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For large m, also Z°-penguins and W-box diagrams shown in fig.(1.6), which
enter only the coefficient function at the initial scale M, contribute, decreasing
the value of €/e.

A non negligible contribution comes also from isospin breaking terms (in the
quark masses), while only minor corrections are due to other combination of
operators.

The expression of € /€ is usually given factorizing the contribution of the leading
QCD penguin operator, Q¢, and including in {2 all the other terms:

!

€ -
— o< ys(Qe) [1-4] (1.46)

and
Q == Q'H'Tll + QEH’P + QB + Q'_’T + QP (1.4:7)
Q,., being the isospin-breaking term in the quark masses, represented by 7’77’

mixing and the other terms being defined as :

Qpuwp = 1— V2w [%(Qv)z(“g)yf@a)z}
o - i)
T H(}“}%QL] (1.48)
Q, = _{%@ﬂo(gz;s(%%}
Ye\les)o

Y. ...Ys are coeflicient functions of the related operators.

We observe that the m, influence is clearly a NLO effect, because it enters the
initial conditions for the penguin operators at one-loop. Previous analyses have
been performed by including one-loop initial condition for the coeflicient func-
tions (in order to have the m,-dependence), but using the one-loop anomalous
dimension matrix in the evolution equation. Even though this may be numeri-
cally the main effect, there is a perturbative inconsistency in this procedure. The
authors of ref.[14] motivated this choice because of the presence of a renormal-
ization scheme-independent part in the coefficient functions at the M.-scale, but
this does not remove the previous inconsistence. Their analysis had a great im-
pact, because they pointed out the relevance of EW penguins, etc. Nevertheless,
for consistency the calculation of the two-loop anomalous dimension is manda-
tory. This is precisely what we compute in this thesis. Analogous results have
been obtained by the group of Buras et al. in Munich.

(3) Rare K-meson decays

We mention here for completeness some important semi-leptonic and leptonic
rare K-meson decays, where a calculation of the EH beyond the leading order
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may have an important phenomenological impact. We will not treat them in
detail, because it is beyond the argument of this thesis. Nevertheless, since they
are related to the determination of m, or ¢t-couplings, we will give the expression
of some branching ratios.

o Kt — wtuw
This decays receives contributions both from box- and penguin-diagrams.
Its branching ratio can be written as:

. 2 . 1 9
B(K — wv7) = 467 - 107 A'[X(w.)]* [1° + 2(5% — )" + 3(75 — o))
(1.49)
where i
. Piy—>
pr=1— 2 —— 1.
po AQX(.’Bt) ( 50)

and P} represents the charm contribution, for ¢ = e, p, 7. X(z,) is given in

(1.3). This expression clearly determines a circle in the complex (p,7) plane
as we can see in fig.(1.2). As all the other inputs we have from K-physics,
this branching ratio alone is not enough to fix neither m, nor |V,,|.

e K°b — 7%p
The main contribution, as before, comes from box and penguins diagrams.

The branching ratio is found in literature to be of the form:
B(K, — m°v) = 1.94-107"° [7? 4"] X*(z.) (1.51)

where X (z,) is given in (1.3) and, due to the absence of charm contribution,
a better analysis is possible.
o K, — pfi

It has been measured experimentally:

(84+1.1)-10"°  (E137)

B(Ky = pt)sp = { (7.64 4+ 0.5 +0.4)-107° (E791) (1.52)

where the index “SD” stays for “short distance”, because this is only a part
of the whole branching ratio. From theoretical computations one has:

B(K, — pji)sp = 1.71 - 107° A*[Y (z.)*[p, - P (1.53)

where Y(z,) is given in (1.3) and again mainly box and penguins diagrams
contribute.

e K, — mlete”
This decays consists of a direct as well as of an indirect CP-violation part,
plus a CP-conserving part. Very recently some indications appeared that the
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direct CP-violating part dominates. In spite of the very complex analysis,
it is possible to cast the final result in a quite simple form:

B(K, — m°e*e )epur = 0.32- 10777 A I(z,) (1.54)
where

I(z,) = [PO(KL — nlete”) + (Y(z,) — 4sin® 0, Z(z,))+
PyE(z,)]’ + Y*(z.) (1.55)

Y(z,), Z(z.) and E(z,) are given in (1.3) and the charm contribution turns
out to be irrelevant.

The above branching ratios may put constraints on the allowed regions of the
(p,m) plane, because of their sensitivity to the short distance structure of the
theory, in particular to the top quark mass.

1.4 B-physics

Due to the fact that B-physics involves all the generations of quarks, CP-violation
appears not only as loop-effect, but also at the tree-level. For this reason the CP-
violation scenario in the B-system is much richer. We can have CP-violation whenever
in a given weak amplitude the complex phase of the CKM matrix appears. This
happens in:

e AB=2 transitions : B°— B’-mixing;

¢ AB=1 transitions : B-decays;

e AB =0 transitions : final state strong interactions.

AB =2 transitions only take place in the neutral B-system. B°— B°-mixing is the
most rich source of CP-violation for the B-system. In the B°-decay to a final state f
indeed, due to the mixing two different paths are possible:

BB —»f or BP—»B —f (1.56)

where CP-violation can be originated both by the phase in the B°— B° mixing and by
the different phases in B® — f and B° — f. Thus, CP-violation can be present even
if the two decays B° — f and B° — f are CP-conserving.

On the other hand, AB =1 decays can give origin to CP-violation observables
only if combined with either B°— B° mixing or final state strong interactions. We will
see an example of that in discussing the main features of the measurable asymmetries
of the B-system.
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Finally, AB = 0 cannot be a source of CP-violation by themselves, but only
coupled to AB=1 or AB =2 processes.

In the same spirit of the previous section, we will recall some important features
about:

e z,, parameters of B°— B° mixing

e AB=1 decays and asymmetries.

Finally, not concerned with CP-violation physics, we will recall some of the most
interesting rare B-decays, to explain the last curves appearing in fig.(1.2).

(1) B°— B°-mixing

The description of B°— B° mixing is strictly analogous to the one of K° — K°
mixing: both are AF = 2 processes that can be described by a four-fermion
operator EH at low scales. The formalism we have seen in section 1.3 is still valid
and we have only to account for the differences arising in the CKM sector. B*—B°-
mixing is computed at the lowest order in weak interaction referring to the box
diagrams in fig.(1.4), with external states (bs)(5b) or (bd)(db) respectively. The
presence of the b-quark greatly enhances the coupling with the t-quark running
in the internal propagators. All the couplings in the box diagram are now of the
same order and the contribution from the top-quark dominates. As we will see
in a while, it is possible to give approximate expression for the B°-system mixing
parameter just because the top contribution is indeed largely predominant.

First of all, let us introduce the mixing parameter z,,° defined as:

(AM)5,, . \
T = Cr,,MacnS(2:)|Vias)| - (1.57)

Ly, =

where (AM)p,  is the mass difference between the mass eigenstates of the (B°—
BO)BM system respectively and T' = 1/75, , with 7, being the B-meson life-
time. The previous formula (1.57) derives from the general expression for the
AF =2 EH in (1.26) or (1.28) as it was the case for the e-parameter expression.
S(z,) is here the usual Inami-Lim function for the AF =2 EH, explicitly given in
(1.3). ngcp summarize all the short distance QCD corrections to the box-diagram,
both at LO and NLO. The NLO full computation is given in ref. [15] where it
has been shown that the NLO result is almost scale-independent, if m,(m,) is
taken. 7ocp is to a good approximation given by:

Neco = 0.55 (1.58)

3Up to now only the mixing in the B,-system has been isolated. On the other hand, the global
mixing in the B-system, to which both B, and B, contribute, has been observed.
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Iz, Method Reference
184 + 7 FESR [50]
190 £ 50 QCD Sum Rules [45]
220 +25 QCD Sum Rules 7]
205 + 40 Lattice [1]
205 £+ 20 Lattice (53]
155 + 15 Relativistic Quark Model [17]
233 +35  QCD Inspired Models [19]

Table 1.3: Values of f5, obtained in different non perturbative approaches.

The constant Cp,, factorizes all the dependences on masses, non-perturbative
parameters and the B,, life-time, namely:

G

By, — TBd,a 62

c m, M’ (Bs, f3, ) (1.59)

where By, and f; are the analogous of the By and fx factors for the K-
system. Both Bp, and f} originate in the approximate evaluation of the

matrix elements of the operator (bd)(db) or (bs)(3b) between B° and B° states.
The major source of uncertainty is the hadronic matrix element of four-fermion
operator and various non-perturbative approaches to their evaluation have been
proposed and developed. The general belief is that By, ~ 1, while many different
values for fz, can be found in literature. We report the present status of fr,
in Table(1.3), where for each method only the most updated results are given.

Present analyses generally consider ,/Bp, f5, in the range:

160 MeV < /By, fs, < 240 MeV (1.60)

In particular, the first indication of a quite large value for fy, came from the
lattice approach and recently QCD sum rules seem to confirm it. Assuming
lattice results, some interesting previsions on the pattern of CP-violation in the
three family SM have been presented in ref. [43]. In ref. [43] a large value of
f5, is related through the the expression of z, itself, to a positive cosine of the
~-angle in the UT, i.e. to a large value of (sin 283), being B the homonymous
angle in the UT. That is seen as a positive indication for a large CP-violation in
B-system asymmetries, quite interesting from the experimental point of view.
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We finally remember that the accounted experimental value for z,, measured by

ARGUS, CLEO and LEP and is:
z, = 0.67£0.10 (1.61)

and this last one, compared to the theoretical determinations at hand can be
inserted in many different CP-violation analysis and can add a further piece to the
comprehension of fig.(1.2). Indeed, the experimental knowledge of z, constrains
the vertex A of the UT to lie on a circle of radius R, centered in the vertex
B = (0,1). The expression of the radius R, derived from z, is approximately
given by:

R ‘—185\/5 }‘ 128PS 12 M 2038 (1 62)
T ‘A Toy ,/Badffad t -

where A is the one of the Wolfenstein parametrization: 4 = A‘:’]\A/5b|, T, =
m?/M}, and the experimental value of 75, = 1.28 ps has been taken.

The intersection between the circle of radius R, from B°—B°-mixing, the circle of
radius R, from the experimental measurement of |V,,|/V.,| and the hyperbola of
the K-system e-parameter, for fixed values of the top mass m, fixes the position
of the A-vertex univocally, giving a given unique set of the three UT angles
(a,8,7). Obviously this refers only to the ideal situation in which both the
theoretical errors on By, and fz, and the experimental errors on R,, i.e. V.,, on
z, and 7, had been reduced to be very small. Otherwise we should let all our
uncertain quantities varying in a suitable theoretical+experimental range. Each
curve would thus be a band in the (p,7)-plane and we could only select regions
in the plane itself. Nevertheless, any improvement both on the theoretical and
the experimental side, moving towards a restriction of the allowed regions in the
(p,m) plane, could also fix some limits on m, or Wml-

Finally one should remember that the knowledge of z,, not yet experimentally
available, would represent a great improvement in this direction, because the
ratio: )

Ty [\/tdlz

Ty a Ivtslz

(1 + flavour symmetry breaking effects) (1.63)

does not depend on m, and on any non-perturbative parameter and |\:/,,,| ~ I‘g/cb].
The determination of |V,,| would be much better and the result much better
employed in the combined analysis of picture (1.2). Up to now this last feature
is still in the ballpark of future promises.

(2) AB=1 decays and asymmetries.

Let us consider first the case of the neutral B-system, where both AB =2 and
AB=1 CP-violation is present. The description of the charge B-system will be
simply obtained by turning off the mixing.
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In the B°— B°-system, due to the mixing, the time evolution of initially pure B°
and B° states [31] is given by:
|B°(t)) = g.(¢)|B°) + e g (¢ )|B°> (1.64)
|B(t)) = e Mg (t)|B") + g.(t)|B)
where the time-dependent coeflicient are:
Co Amit
g+(t) = exp <—~2— — zmt) Cos ;n (1.65)
. r,. . . Amt
g_(t) = iexp (—3 - zmt) sin —

where the mixing is described by the mass difference Am and by the phase ¢,,.

In order to account for the decay of B® and B° into final CP-conjugate states f
and f one has to introduce four amplitudes:

A(f) = A(B°— f) = A exp(i¢,) + A, exp(i¢,)

A(f) = A(B°— f) = A, exp(i¢,) + A, exp(i.) (1.66)
A(f) = AB°— f)=4, exp(—ig,) + 4, exp(—ig,)

A(f) = A(B°— f) = A, exp(—id,) + 4, exp(—i¢,)

where CP-violation is expressed by the phases ¢, and ¢,, while A, and A, depend
on non CP-violating parameters of the CKM matrix, final state strong interac-
tions and hadronic matrix elements.

From these amplitudes, one can derive [31] the time-dependent decay rates in the
following form:

M(f8) = T(B() = ) = AP expl-il |
_cos (Amt) + |€]* sin (-—A—znit) — Imé sin(Amt)_

I(f,t) = F_(B‘J(t) — f) = |A(f)I? exp[—It] _
|£[2 cosz(—A—T—E) + sin2(éﬁt) + Im¢ sin(Amt)_

I(F,t) = D(B() — ) = [A(7)F expl -0 (1.67)
IE_]2 cos:’(Amt) + sin (A2 t) + Imé sm(Amt)

[(F0) = T(B() — 7) = AP expl-iT4
cos” (Amt) + |€]? sin” (A2 t) —Imé sm(Amt)

where ¢ and € are defined as:
A s A

STEMA TG (%8
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In the case of charged B-mesons no decay to a common state is possible and we
are left with only two possible decay rates:

T(B~ — f) = |A(B~ = f)f , T(B* - f)=|A(B*— ) (1.69)

From the previous expressions some very interesting asymmetries can be con-
structed, measuring the amount of CP-violation in the B-system. They are di-
rect measurements of the differences: T'(f,t) # T'(f,t), I'(f,t) # T'(f,t) and
I'(B- — f)#T(B* — f). In particular, three of these physical asymmetries are
of particular experimental relevance:

e The time-dependent asymmetry:

Ri(,1) = e (1.70)

e The time-integrated asymmetry:

_ I(B(t) =
- IB(E) -

R.(f,t)

e the charged meson asymmetry:

(B~ f)-I(B" — )
B =5 SHrm =0

(1.72)

Using the previous expressions for the decay rates, R,, R,, and R; can be given
as function of &, £ and the physical amplitudes.

Therefore, the real task will be to provide a formalism in which these amplitudes
can be computed. This is exactly the formalism of EH, which will be the argument
of the next chapter. We will provide here only the final result in order to get the
physics of the problem. It turns out that AB=1-decays can be described by an
EH containing both vertex and penguin operators (see section (1.3). The vertex
operators involved result to be:

Sl (1.73)

and the penguin omnes:

O, =

(88) (v -y (T + Ec + dd + 5s + bb)_4 (1.74)
07 = (

d)v_ay(Tu + Ec + dd + 35 + bb)1-_ 4,
(1.75)
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s,d c,u cu,d,s

Figure 1.7: Vertex and Penguin diagrams corresponding to CP-violating AB =1 decays.

They appear in the EH with suitable wilson coeflicients and they evolve and
mix under the RG as we will detail in the section 2.1. Their two-loop anomalous
dimension calculation on the other side is explained in section 2.2 and in chapter3.

The previous operators correspond to different described by the two cases re-
ported in fig.(1.7). The decay classification has been very carefully studied in
ref. [16] and we avoid to report it here, because of its technicality. Our aim
here is only to stress how in the framework of Effective Field Theory a complete
description of the physics of AB =1 is available and we can apply it directly
to the study of the asymmetry problem, a very wide and promising field for the
understanding of CP-violation.

(3) Rare B-decays.

As in the case of K-physics, we will summarize here the branching ratios of some
of the most interesting rare B-decays. Our aim will be only to point out how
they can be relevant in the (p,7) plot of fig.(1.2). Again, as in B°~B°-mixing, the
t-dependent contribution dominates and sometimes this simplify the analytical
calculations. Moreover, non-perturbative effects are expected to be less important
then in K-physics.

o B— X, v

This decay is analogous to the K — wv¥ decay seen in the summary of the
‘rare K-decays. It corresponds indeed to the elementary transition b — svv,
as well as the other one was related to the s — dvv one. Moreover, here the
charm contribution is completely irrelevant and the only contribution comes
from W-box diagrams and Z°-penguin diagrams. It receives some contribu-
tions from Z° magnetic penguin too, but they can be safely neglected. The
branching ratio is proportional to the only X(z,) Inami-Lim function and
given in its explicit dependence on m, as:

m, 2.36
{140 GeV} (1.76)
where X(z,) is given in (1.3). Our real interest is in the B(B — X, v7)

branching ratio, expected to be of O(107% — 107%), because it would give
V..l

B(B — X, vp) =2.19-107%[X(z,)]* = 3.5 107
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e B— X,ete”

This time we have to compare with the K, — w°e*e~ decay and observe
again that the decay is now completely top-dominated. Also in this case
4° magnetic penguin contributions can be neglected. NLO corrections have
been calculated [18] and the final expression for the amplitude reads is a com-
plicate expression of Y(z.), Z(z.), E(z,), E'(z,) and D'(z,). The branching

ratio is expected to be of the order:

B(B® — X,ete”) = (1-2)-107° (1.77)
B(B® - X.u*p) = (6—8)-107°

and similarly for the X,-case in which again we are interested.

B = l(l=e,p,T)

This decays has its analogous in the K, — puj one, but where charm con-
tribution and long-distance contribution be neglected. A direct calculation
is possible in this case and it gives:

B(B—=1)=K - |V,V.|'Y(z.) (1.78)
where
Gr (o 1 ., , my
=75, & — 1— 7
K =5, 27 <47r> sin“ﬂ“,f‘?m’mB mi, (1.79)

The same expression holds for the B, case with ]\%,] substituted by ]V,d[,
but unfortunately its magnitude is expected to be about ten times smaller.



Chapter 2

Effective Hamiltonian formalism
for weak amplitudes: NLO
formulation

2.1 General Discussion

Weak interactions are characterized by the presence of a wide range of physical mass
scales, from m, (the mass of the top quark, 200 < m, < 100 GeV) to M, (the mass of
the charged vector boson, My, ~ 80 GeV) till m, (the mass of the b-quark, ~ 4.5 GeV),
m, (the mass of the c-quark, ~ 1.5 GeV) or m,, m,, m, (the masses of the light quarks,
~ 100 — 0 MeV). This offers the opportunity to describe weak processes occurring at
low energy in terms of Effective Hamiltonians (EH).

In the EW4QCD theory, besides the fundamental couplings, we find new, effec-
tive local interactions which originate as one-loop effects from the elementary couplings
of the theory. These low energy effective vertices, appearing as one-loop effects, are
suppressed by O(a) or O(e,) coeflicients (where a and «, are the EW and the QCD
coupling constant respectively). Nevertheless, they can be enhanced by other effects,
such as QCD-radiative corrections, etc. (see below).

In order to see how these vertices are originated, one has only to consider a given
weak process at low-energy, where all the heavier degrees of freedom have been inte-
grated out. Thus, besides the well-known four-fermion Fermi interaction (see fig.(2.1)),
we can find also FCNC (Flavour Changing Neutral Current) effective vertices, cf.
fig.(2.2), or box vertices, cf. fig.(2.3).

These vertices do not introduce new parameters: they depend only on the CKM
matrix elements and on quark masses. This last feature emphasizes their importance:
they are an indirect but powerful way to investigate the effects of heavy quarks or
new physics. These effective vertices are the basis of the physics of FCNC (Flavour
Changing Neutral Currents).

33
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Figure 2.1: Effective four-fermion interaction.
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Figure 2.2: Effective penguin vertices.
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Figure 2.3: Effective box vertices.
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Generally speaking, the EH (H.ss) which describes a given weak process at a
scale u consists of the product of two weak currents. Through OPE, H.;; can be
expanded over an operator basis {O;} for given coeflicients C; in a standard way:

Ff,_ ZCO (2.1)

The physical amplitude relative to the weak decays of a given meson (X, B,...) will
be of the form:

(F|Hes\I) = \/ZC (FlO:|I) (2.2)

where F' and I represent the final and the initial state respectively. The simple form
of Hess has an enormous importance from many points of view.

e First of all, the OPE in terms of local operators and Wilson coefficient func-
tions give us the possibility of separating the perturbative contributions to the
amplitude from the non-perturbative ones.

The non-perturbative part consists of the matrix elements of the operators {O;}.
This part is presently more difficult to evaluate and it still demands for improve-
ments on the theoretical side. '

On the other hand, the Wilson coefficients C; can be computed perturbatively in a
systematic way. We will discuss in great detail the perturbative evaluation of the
coeflicient functions besides the Leading Order and the interplay between strong
and EW interactions effects. QCD-corrections are known to modify the Wilson
coeflicients by a sensible amount. This is in particular true for non-leptonic weak
decays, where gluons can be exchanged between both the quark weak currents.

e From H.;; one can obtain scale independent physical results: the p-scale depen-
dence cancels between operators and coefficients. Thus, one has the freedom of
choosing the scale at which coefficients and operators match, depending on the
physical problem of interest (O(1 GeV), O(m.), O(m,) for K-, D- or B-decays
respectively). Different scales will correspond to different operator sets, which
will reproduce the correct physics when matched by suitable coefficients.

o Finally, the presence in the theory of very different mass scales implies not only
the possibility of an effective field theory formulation but also the appearance

-+, etc. The usual

perturbative expansion needs to be 1mproved ie. logarlthms as log -+~ need to
be resummed to all orders in «, (in a given approximation for «,: LO, NLO,
etc.). This is achieved by RG (Renormalization Group) techniques, keeping in
mind the y-independence of H.ss mentioned above.

We will see in detail how this works up to NLO and give the general expression
of the RG-improved coefficients at whatever ”perturbative” (> 1 GeV) scale.
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In the following we will explain the details of the basic formalism for the scale
evolution of the Wilson coefficients. The problem will be developed in three main steps,
where we will consider:

Step 1 : the case of an EH given by a single local operator, with only QCD radiative
corrections;

Step 2 : the case of an EH expressed in terms of a complete basis of local operators
{0;}, with only QCD radiative corrections;

Step 3 : the case of the EH at Step 2, with also QED radiative corrections switched
on.
Step 1

Let us consider the case of an EH defined by a single operator with coefficient function:
2
C (Q—z,a,) (2.3)
@

where we have given the explicit dependence on the following quantities:

- a,, the strong coupling constant;
- p?, the renormalization subtraction mass scale (fixed scale);
- @?, the generic scale.

The coefficients are taken to be dimensionless.

The scale independence of the EH provides the following RG equation for the
coefficient function?:

0 o)
{5+ 8z 30} cla) =0 (2.4
where G(a) is the QCD S-function, defined by:
_ Oa  Oa _ gﬁ

and, ¥(a) is determined in terms of the anomalous dimensions of the operator related
to the coefficient and of the weak current as:

¥(a) = y(a) — 27, (2.6)

!we drop the index , in the first two steps, since there we are concerned only with QCD corrections:
a will mean a, everywhere and the same convention will old for all the other "strong” quantities
involved.
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Beyond the leading order the anomalous dimension of the weak current is in general
not zero, depending on the renormalization scheme.

Both f(a) and 7(a) have a perturbative expansion of the form:

B(e) = —ba2(1+b'a—{— o) (2.7)
and
(@) =792 +3Ya" + .- (2.8)
where 11N — 2N 1 34 13 N
p= % ' = {—NQ--—VN -i] 2.
127 b (47)2 L 3 g VTR (2.9)

The solution of the (2.4) has the familiar form:

C(t,a) = C(0, a(t)) exp {/:(” ;Egda} (2.10)

where a(t) is the running coupling constant at the scale Q* and « is the running
coupling constant at scale p?. C(0,a(t)) is the initial condition for the evolution of the
coefficient function and it has the following series expansion:

C0,a)=1+CYa+--- (2.11)
It is clear that, starting from (2.7), (2.8) and (2.11), we can expand at a given order
the solution of the Renormalization Group equation (2.4).

We now give some more details on this point. From the perturbative expansion
of B(a), one can derive different expressions of the running QCD coupling constant, in
different approximations, at one- or two-loop order.

e In the LLA (Leading Logarithm Approximation) the term &' is neglected and one

has: )
o
t) ~ = 2.12
o(t) 1+bat  b5Iln(Q?/A?) (2:12)
where the momentum scale A, the QCD scale parameter, is defined by:
1
A=pexp|——— 2.13
vese (332 (212)
or , .
7
In— = — 2.14
"A T ba (2.14)

QCD asymptotic freedom is evident in the behaviour of a(t).

LLA means in fact that only terms of the form (at)" are kept at each order n
in perturbation theory. In presence of large logarithms in the theory these terms
are not negligible, because we work in the limit:

a < 1
at =~ (at)"~1 (2.15)
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o The NLO (Next to Leading Order logarithms) expression of the running coupling
constant is obtained by including & too. In this case:

at) = a(t) [1 + b, (t)In aOOEt) + O(ag(t))} (2.16)
where a,(t) is the LLA expression for «,, or:
a(t) = at) [1 —b'oy(t)Inln T% + O(ag(t))} = (2.17)

_ 1 [1 _b_’lnln(Qz/Az)

bIn(Q/AY) || T b Tn(Q?/AY) *O(ag“”J

and \ ;
w_1 .Y
In A7 = b + 2 In(ba) (2.18)

In the NLO approximation, not only terms of the form (at)” but also terms of
the form a(at)” are retained. They are usually smaller than the LLA contribu-
tions, but not negligible. The NLO contributions play an important role in the
definition of several physical quantities, as explained in the introduction.

The evolution equation for the coeflicient, eq.(2.4) combined with the expansions
(2.7) and (2.8) results in the following NLO expression:

a 17 a — aft)
Cla,t) = (1+CMa) [———} {1 +————R+-- } (2.19)
a(t) T
where o
o 17070
— 2.20
Eal (2:20)
represents the resummation of the leading logarithm corrections, while
R = % (79 — OO — biyt] (2.21)

and the NLO expi‘ession for o in (2.16) is used.

We still have to determine the initial conditions for the coefficient function in
(2.11). In the LLA the initial condition for the coefficient function is given by the
tree level result, C“. At NLO we need to evaluate the one-loop term CV) of the
coefficient expansion. C!) is obtained by matching (at a given order) the full theory
(with W, t-quark, etc.) with the effective one, where heavy degrees of freedom have
been integrated out. The matching is improved at one-loop on finite parts of different
amplitudes. In order to obtain consistent results the same renormalization scheme used
in the whole NLO calculation has to be used.
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The contribution of the full theory will be of the form T (M2./ — p?, @) and the one
of the effective theory of the form A (—p?/p?, @). The coeflicient function C (M?2./p?, o)
will match the two scales. By definition:

M, M2, —p°
T(j,a) :C( IJ,;‘ ,a)A(F,a) (222)

In particular:

T My ,al = |1+ = —E”y(o) In My +T)|0
—p? | Am 2 —p?
M2 [ o 1 o, M .
C ( ‘LL“Z ,Od) = 1 -+ "i;r" (—-—2"7( )].ILF + C( )):l (223)
.._.pQ [ a 1 —p2 P
Al — = |14+ —[—=~ln——+ A4
(#2’a> .+4W(27 nle—l—)}O

where O is the operator in the EH and the explicit dependence on the different mass
scales is shown. The logarithmic terms match each other and the analogous matching
should be satisfied by the finite parts, i.e.:

CH=T—-4 (2.24)
This ends up with case of a single operator Effective Theory.

Step 2

The case of a single operator is quite useful to fix the main ideas. More often however
one has to deal with much more complicated operator bases. We will see now how
Step 1 can be generalized to the case of a multi-operator basis. We will have a vector
of coefficient functions 6(1&,&) and a matrix of anomalous dimensions ¥(a). Using a
vectorial formalism, we can give the Effective Hamiltonian in the form:

Hor = O7(£)C(2) (2.25)

where C_”(t) and (3(1&) are the vectors of the coefficient functions and of the operators
respectively and C(t) includes also the dependence on a(t). The RG eq.(2.4) in the
matrix case reads:

—

{__5_ + ﬁ(a)é% - fy(a)} C(t,a) =0 (2.26)

where 4(a) has a perturbative expansion in « analogous to the one in (28) and, as
before, 4(a) means (§(a) — 29,). If the anomalous dimension matrix is not diagonal,
each non-diagonal elements 'iyij(a) expresses the mixing under renormalization between
operator O; and operator O;. The generic solution of (2.26) is now given by:

5(15, a) = T.exp {—— /:LU) da’?‘;((j’))} Cla(t)] (2.27)

— Ela,a(t))Cla(t)]
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where

Cla(t)] = 6(0, () (2.28)
T, denotes an ordered expansion over the coupling constants with an increasing cou-
pling when going from the right to the left. This turns out to be the case, because
¥(a) is now a matrix and:

[’iy(al),fy(a?)} #£0 for o, # o, (2.29)
Explicitly, T,-product means:
a(t) %T(al)}

T, exp {/ do/——= ) = 2.30
: ) (2.30)

0, ) e )8 (@)

- 1+/ dat +/ / doda" o=
o o« Ja Bla) B(a”)

o

Ala)

B AT L /a(t) , AT o %,‘”T Ao o
= exp[ ; hxa(t)]—}— ; do' exp 3 lna(t) K lna,

to the required accuracy.

In order to find a solution for the evolution matrix:

Ela(t), o] = T, exp { [ " da’ZT((jl))} (2.31)

let us introduce a matrix \7(04) s.t.

Elo(t), o] = V[a()[EP[a(t), o]V [] (2.32)
where: -
E[alt), o] = exp{vb In —&%} (2.33)

is the LLA evolution matrix. By comparison, differenziating the right hand side of
(2.31) and (2.32) with respect to a(t), we get:

OV[a(t)] | 1 [§°7 . 5(alt) 407 1),
Folt) +a(t)[ 3 ,\/[a(t)}] = (ﬂ(a(t)) + a(t)) Via(t)] (2.34)

Using the perturbative expansion of 4" (a) and 8(a) and writing V[a(t)] as:

Via(t)] ~ 1+ %ﬁlw (2.35)

we finally get:

. 2,(0)T . ()T bl
v 4 [L,W] = 4n (~7 +f”r‘°’T3> (2.36)
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The solution of eq. (2.36) will define the matrix V), which summarizes the NLO
corrections to the evolution matrix for the coefficient function. In fact:

Ela(t), o] = (ﬁ + %@\{/“)) E@[a(t), o (u _ i‘iw) (2.37)

T 47

In order to find a solution we have still the freedom of choosing a suitable operator
basis. It is common in literature and useful in calculation to chose the basis which
diagonalize 497, If U is the matrix which diagonalize 47:

4O == U7145070 (2.38)

we will denote the other transformed matrices as:

G = U150 (2.39)
and ) o
W = U-tvouy (2.40)
The LLA evolution matrix results automatically diagonalized:
EVa(t),al, = U [CXP (A(O)T In 3—)} U= (2.41)
b at)

-(0)

7t

- [zl

A

where 7 is the vector whose components are the eigenvalues of 7.
In this basis the previous equation reads:
2(0) G b
W + [%,W“’} = 47 (_ 7 +:),g>)€> (2.42)

from which it is possible to find the W matrix elements explicitly:

bl G(l)
—55;1"750) —4 8 (2.43)

W = 4r T
v b‘l")’(;;)f “’)’g)}j

In order to derive the final form for the evolution of C , let us fix the initial and
final mass scales to be M? and p. As we have seen at Step 1, in order to have
the complete evolution from C(M2) to C(u), we need an extra input, i.e. the initial
conditions C(M2). The calculation of O—"(]VI‘?‘) is strictly analogous to the simpler
case explained before. at Step 1 for a single operator ET. The vector C—”(]\/[f‘) is still
given by the matching conditions between the full theory at the larger scale and the
ET at the lower scale, when both the theories have been renormalized in the same

renormalization scheme. The matching, generalized to the vector case, works as in
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[\

(2.22) and (2.24): the logarithms combine to give a final In “4t dependence from the

i
initial and final state mass scale, while the finite parts match as in (2.24).

The direct calculation of the matching on the finite parts has now to account for
the operator mixing. The one-loop contribution of the full theory will be of the form?:

T = {T‘m + i:ﬁﬂ)} (G (2.44)
iy
where (@(O)) are the tree level matrix elements of the operator of the basis. The
analogous one-loop contribution in the ET will read:

—

A= QLo = [i+ 2] (@) (2.45)
where (Q[Q(ZVI“»)]) are the set of the one-loop matrix elements, renormalized at a given
scale. The matrix 7 is the matrix of the finite parts of the one-loop diagrams in the
Effective Theory, for a given choice of the external momenta and a given subtraction
scheme. The matrix 7 accounts for the mixing between the operators of the basis as well
as the anomalous dimension matrix does (with respect to the pole part contributions).

Using (2.44) and (2.45), from the definition of the coefficient function:

T = Cla(My)]"(Qla( M) (2.46)
we get:
Gy = 1 1 220) [ _ g o] (2.47)

We have finally all the ingredients to obtain the complete expression for the
evolution of the coefficient function vector. From (2.47), (2.37) and (2.28) we get:

— . a(,u,) - N . a(]l/_[“,) . - a(M“,) -
= [ 4 Xy Oy M. — AT Ay or (nr
Cn) ( + )E (1) fu](" ym M+ ——C
_ 1 a(p,) YOOR Wt} / 7(0) a(ﬁ/f”’) LONR a(ﬂff“-) T 0y o)
- <n+—47r V) B, My ] | T 4+ =T - = [Fr+ V| T
(2.48)

An important observation is necessary at this point. Many terms appearing in eq.
(2.48) depend on the number of flavours active at a given scale between M, and u.
The one-loop and the two-loop anomalous dimension matrices as well as the # matrix
are flavour-dependent. In order to compute 5(/1.) from (2.48) one has to take into
account that some heavy flavours are integrated out and different Effective Theories
are considered. Every time one crosses the threshold between two different Effective
Theories, matching conditions have to be imposed and this plays a fundamental role
in the numerical implementation of (2.48) of the final result.

*We drop here the explicit dependence on the reference mass scales, because it is already given for
the simpler case of only one operator(/coefficient) in (2.22) and (2.24)
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Finally, let us remember that in a NLO calculation both the one-loop coefficient
function and the two-loop anomalous dimension are renormalization scheme dependent.
Nevertheless the RS-dependence cancels out between them. Thus, if we change f.i. the
renormalization prescription for the operators {O;}, defining a new operator set ° as:

07(a] = G[al#la] = O7[a] [i + a#® + -] (2.49)

then the evolution matrix and the initial conditions for the coefficient functions will
change according to:

(o, a(8)]Cla(t)] (2.50)

where we see that the initial condition vector and the evolution matrix transform as:

C'la] = Clajt~'[e] (2.51)

E'eya(t)] = #[a]Ele, ot)]7[a] (2.52)

We will have the possibility to verify calculations defined by different renormalization

prescriptions in the two-loop computation of the vertex+penguin anomalous dimension
matrix.

Step 3

We will consider here the same ET as in Step 2 but with both QCD and EW-
corrections®. In spite of the smallness of the EW coupling constant’, EW-corrections
can be relevant either because of the particular physical quantity of interest or because
of non-perturbative enhancement. Due to their different chiral structure, EW-operators
can be enhanced or suppressed in a complete independent way with respect to the QCD
ones.

If this is the case, the EH for a given weak process should be modified in order
to take care of O(c,,,) corrections. O(a? ) corrections are obviously neglected to a
very good approximation. The analysis at Step 2 is still valid and needs only to be
generalized to the case of a theory with two coupling constants. Let us denote the two
couplings as «, and a,. The RG equation (2.26) has an obvious generalization to:

0 0

0
(-2 +Ba)se +Bia)

— % (a) - f,e(ac)} Clt, o, a,) =0 (2.53)

where we can imagine for 3.(c,) and 7,(c.) analogous definitions and analogous ex-
pansions as the ones given for 3,(c,) and ¥,(«,) in (2.5)-(2.8). The calculation of the

3where we have supposed that the definitions for the two operator sets coincide at the tree level
1Electro-Weak corrections, i. e. both photon and Z° boson corrections
Swe will chose it to be the QED coupling constant, c..,.
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one-loop and two-loop coeflicients of the expansion of ¥,(a,) and ¥,(c,) will be given
in detail in section (2.2) and in the next chapter. In a theory with two coupling con-
stants, more diagrams contribute to a given physical process and the operator basis
is enlarged. The solution of equations (2.53) will be analogous to (2.28), modified in
order to account for O(a.) effects:

G*(t, @) = E'l&, a(t))C"a(t)] (2.54)
where: t
Ea(t), ] = Texp | dt' (3,(a) +7.()) (2.55)
and
C*la(t)] = C™[0, (1) (2.56)

with a straightforward modification of (2.31) and (2.28), and & is a shorthand notation
to indicate the set of the two coupling constants:

a= (o, 0) (2.57)

The new evolution matrix E'[&, &(t)] is very complicated. It greatly simplifies if we
consider only O(a. In(M},/u*)) corrections, while keeping all orders in a, In(M?2./p?)),

1

as explained in ref. [41, 42] and [14] (where only the LLA case was considered).

In the LLA case, with both O(a,) and O(«,) corrections taken into account, the
evolution matrix results to be of the form:

Ero — (ﬁ+ . P) E© 2.58
() (2:58)

where the running of «, is completely neglected,because it turns out to have very slight

a

relevance (about 1%). In (2.58) E!® is the strong LO evolution matrix in eq.(2.33) and

3

P can be determined as follows. Using eq.(2.54) and (2.55), in the LLA we get that:

G7(t,8) = EO[a, a(6) 0" [al(1) (2.59)
and -
iCT(4,&) [0 + 490 A
— 3 € t s
da(t) { e ¢ (B3 (2:60)

Keeping only the leading terms in the perturbative expansion, we get for P the following

equation:
. . A0 5(9)
P+ [P, ”’%} = 7%— (2.61)

In the basis where 4! is diagonal, the explicit solution for (2.61) is given by:

5(0)
[]fD__ . 76"1'
3 T ~(0 ~ (0
AT

(2.62)
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On the other hand, at NLO in the strong interactions, but always at O <a,,_ In %ﬁ—“—)

in the EW interactions, the expression of the evolution matrix is a little more involved.
It turns out to be of the form:

la(t),a] = (2.63)

where K is a matrix to be determined applying the same methods explained for the
one-loop case, i.e. using again eq.(2.54) and (2.55), but keeping this time NLO terms
in the perturbative expansion.

2.2 Effective Hamiltonian for AS =1 and AB =1
non-leptonic-decays in the NLO approxima-
tion

The aim of this section is to specialize the general discussion outlined in section
2.1 to AS =1 and AB = 1 non-leptonic-decays. We have studied the Effective
Hamiltonian (EH) for these decays in the NLO approximation including QCD and
to O(a, In(M?,/u?)) corrections. This is precisely the case considered in Step 3 of
section 2.1: multi-operator basis + QCD-corrections at NLO approximation + EW-
corrections at O(a,). To be more specific we will articulate the discussion into many
different points:

o the operator basis which defines the EH: which are the operators involved and
how they appear;

e the initial conditions for the coeflicient functions;

¢ the mixing between different operators under renormalization: how it works at
one-loop and at two-loops, in presence of both QCD and QED corrections;

o structure and results for the one-loop and two-loop anomalous dimension matri-
ces.
2.2.1 Operator basis

AS=1and AB=1 non-leptonic decays can be described in the EH formalism on a basis
of vertez+penguin operators. Vertez-operators are the usual four-fermion operators of
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the Fermi-interaction (see fig.(2.1)) and they already appear at the tree level. On the
other side, Penguin-operators are a one-loop effect (see fig.(2.2)) and can be expressed
as a sum over flavours of vertex operators, as it is clear from their formal expression in

(2.66).

The complete basis of operators in the EH depends on the kind of corrections
considered for a given weak process. QCD-penguins arise from gluon-corrections, while
QED-penguins or Z°-penguins from photon or Z°-corrections.

The operator basis has already been given in the discussion of €'/e. Here we will
give it in a more explicit form and in a more general context. Greek indices a, 3, ...
denote the colour charge, latin indices denote the flavour, while ('z4) indicates the
chiral structure of each fermion line, where we adopt the usual convention:

(@) veay = @Y (1 F %)g; (2.64)

Here following the standard basis necessary for AS =1 decays is reported, following
for instance ref. [14]:

0, = (Eauﬂ)(‘v'-—n\)(ﬁﬁda)(V_“l)
Vertex-type — _ 2
P { 0, = (u)v—a)(Bd)(v_n)
(O, = (Ed)(\ —4) Zq(QQ)(‘ —4)
) 0, = (5 dﬁ)(\ ) 2. (QﬂQa)(‘ ")
CD-P 4 _ : 2.65
Q enguins -+ 0, = (s )(‘ > (qq)(u{) ( )
L OG (gadﬁ)(\ T—d) Z (Qﬁqa)(‘ +4)
(O, = %Egd)(x-)— A) Zq q(qf(])("'+-;)
. Os = 5(5.d x—.-xze‘jqa VA
ED-Penguins — ¢ 3 o0\ 2T S Pal s (V)
Q & Og - 93(3 ) V—.4) Zq eq(qq)(‘-'—A)
Ow = 5( a ﬁ)(!’-—.—\) Zq eq(éﬁqa)(“'-f‘)

For AB=1 decays one needs only to modify the external fields. from (5d) to (bd) or
(bs).

There are two main features that should be stressed at this point.

e There is an evident dependence on active flavours in the basis and this is the
reason why it can be used to describe many different physical situations. The
real point is that different physical processes correspond to different mass scales,
i.e. to different Effective Theories, with different number of flavours. For instance,
all the penguin operators have the same structure at every mass scale, but not
the same explicit expression: they are summed over different number of flavours
in different Effective Theories. Thus, the previous set of operators (provided
the modification on the initial states) describes a AB =1 non-leptonic decay at
g ~ m,, where the range of the summation index g goes from u-quark till b-quark
included, and also a AS =1 non-leptonic decay at p ~ m,, where the sums in
the penguin-type operators extend only over u-,d- and s-quarks.
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e The physical meaning of the previous set of operators is also understood in terms
of related Feynman diagrams (see fig.(2.1) and (2.2) for vertex- and penguin-
diagrams respectively). However, the basis {O;} presents more structures than
those coming from the basic diagrams. This is essentially due to the action of
radiative corrections on the Dirac- and colour-structure of the original operators
and we consider in detail both the one-loop and the two-loop cases.

We will put particular emphasis on the evolution of the effective hamiltonian at
different mass scales, starting from g ~ m,, M, i.e. in the full theory comprehensive
of all the physical particles, till low energies scales, where, depending on the number
of active flavours, some particular ET holds.

At the tree level, the EH for a generic AF =1 process can be written as®:

o « GF
H(ej)j = )\u72—

where the unitarity of the CKM matrix (V) has already been used and the notation
for the CKM parameters is the standard one:

(1 =7) (03 = O + 7 (03 = OV)] = HY + H” (2.66)

Vv
V

Vi
\/ud

*
ta

Af = \/:Svid ) T = —

(2.67)

Only one operator is present in the theory, the physical four-fermion vertex operator

0% given by:

oL (5¢:)(v-u)(@d)(v—yy for AS=1 decays (2.68)
04 = (bg:)v-u)(@:d)(v—ny for AB=1 decays - (2.69)

where the given O in the AB =1 case corresponds to the B, case. The analogous
operator for the B, case is obtained by replacing the d-quark with an s-quark in the
expression for O3,

In absence of QCD or EW corrections there is no way of generating new operators
from the original one. Only the four-quark effective vertex is present and both the
chiral and colour structure of O’ are conserved. Rescaling the theory from higher
to lower scales, corresponds to the elimination of the heavy degrees of freedom (i.e.
heavy quarks). Starting at the M.-scale’, we first remove O, because of the explicit
dependence on the top quark, and second we match the full theory with the N, =5
Effective Theory under the W-thresholds. Then we evolve to m,-scale: for AB =1
processes we already get the physical scale, while for AS =1 nothing changes at this
threshold, because there is no explicit b-dependence. Proceeding in the evolution, at

8The index zero above the EH and the O!* operators denotes that we are considering the tree level
approximation: no QCD- or QED-corrections taken into account

"We always assume to integrate out the W, the top and whatever other very heavy particle at
the M,--scale. This is allowed in view of the of the smallness of the strong-coupling constant in that
region, such that there are only very small running-effects.
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the m.-scale, also O} is dropped and we are finally left with the usual N, =3 Effective
Theory for K-physics.

With the introduction of QCD and/or EW corrections new diagrams like those
in fig.(1.6) and (2.4) appear and contribute to AS =1 and AB =1 amplitudes. The
presence of new colour structures (due to gluon-exchange) and the isospin-breaking,
due to photon exchanges, allow the mixing between O, and O, and generate penguin-
operators and their mixing with vertex operators. QCD-corrections are responsible
for O,...0; operators while EW-corrections for O, ...0,, operators. This mixing is
already present at the one-loop level and is enhanced by two-loop corrections.

We now consider the one loop evolution in presence of QCD and EW corrections.
At p > M, all the diagrams in fig.(1.6) contribute: all the operators in (2.66) are
present plus those originating from box diagrams, namely:

OLL = (Ed)(‘_4)(zb)(|_4) and OL2 = (Eb)(‘_”(gd)(\_‘) (2.70)

O,, and O,, contribute only in the range between M,  and m,. Due to the smallness
of the strong coupling constant and of its running in this region, their contribution is
negligible and they are not included in the operator basis from the beginning.

In principle, we should also account for diagrams with physical Higgs particles (f.i.
penguin diagrams with H° exchanged in place of Z°). Their presence would correspond
to the introduction of a new operator of the form:

Ou = (5(1—,)d)(Bb) (2.71)

plus similar ones where the b-quark is replaced by ¢, s, d or u quarks. The last ones
can be immediately neglected because the Higgs coupling to fermions is proportional to
their mass. Oy on the contrary could even give a relevant contribution, if not for two
main features: first it does not mix at all with QCD-penguins; second its mixing with
EW-penguins is already O(a?) and we neglect it. Moreover, every other heavy particle
in the theory should be considered at this level, as it is the case for extended version of
the Standard Model (Two-doublets Higgs models, etc.) This means the introduction of
new operators and it has been extensively studied in literature, for different extensions
of the Standard Model. Nevertheless it goes beyond the spirit of the present calculation
and we will not consider these cases at all.

From the above considerations, we see that it is enough to consider the diagrams
in fig.(1.6) and the operators in (2.66).

The vertex-diagram contribution is finite. The the colour structure of the di-
agrams where a gluon in exchanged between the two quark lines is responsible for
O,-0, mixing. On the other hand QCD-penguins introduce in the theory a new Dirac-
structure. Indeed, they have a y#(1—y;) ®+, chiral structure, which can be decomposed
in a Left-Left plus a Left-Right piece, that is:

1 1
TE=%)®n = 371 =7%) @7l = %)+ 57 (L= %) @ (1 + %)

1 1
= 3N ®%u 57 @ Vun (2.72)
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This explains the presence of pairs of operators with the same contractions on the
colour indices, but with different chiral structure, precisely a Left-Right one for each
Left-Left one (fi. (O,, O,), (0,,0s), etc.) The penguin-diagram contribution is not
finite by itself, but as long as quarks are not distinguished by any mass isospin-breaking
(fi., at very high energy scale, where all quarks can be considered massless), the total
contribution of penguin-diagrams cancels by GIM mechanism. The same observation
holds also for the box-diagrams in (1.6).

Let us see how the previous ingredients combine in the evolution of the one-
loop Hamiltonian for AF = 1 weak non-leptonic decays. Remember the tree level
approximation for the EH given in (2.66). H(?, is there expressed in terms of:

HY = (0 = 0}) and HP = (0 - O)) (2.73)

It is very useful and natural to consider the evolution of the EH in terms of these two
combinations of O)?-type operators. Indeed, they rescale in a quite independent way
and we will suppose that, in presence of one-loop QUD+EW corrections, the mixing
of the O}(?-type operators with all the other operators in (2.66) can be given as:

(02— 0) = 3 a(mOi) (274
(020~ 00) = Y (WO (275

where the p-dependence of the OPE is what we would like to clarify in the present
discussion.

At scales p > My or p > m,, the only contribution comes from the mixing
of the vertex operators, while penguin-diagram and box-diagram contributions cancel
via GIM mechanism, as explained before. But at u ~ M., m, the isospin symmetry
between quark is broken, because the top quark becomes much heavier than all the
other quarks in the theory. The two parts of the EH, H(® and H!”, start evolving in a
quite different way. Indeed, the light sector H\” is not affected at all by the rescaling,
because both u- and c-quark can still be considered as massless and their contribute is
still given only in terms of vertex operator renormalization mixing. On the other hand,
in the heavy sector H!” the GIM cancellation fails and all the diagrams in fig.(1.6)
start contributing.

The W, the top quark as well as all other heavy particles present in the theory
(i.e. the Z° or the heavy charged Higgses in extended models) are integrated out below
the M, threshold and a new N, =5 ET develops. Below M., only a subset of the
original Feynman diagrams (see fig.(2.4)) will contribute to the EH. In particular we
see that the Z°-penguin contribution and the box-diagram contribution are present
only in the full theory.

At g ~ m, also the explicit dependence on the b-quark is dropped (f.i. in the sum
over flavours which define penguin-type operators), but no particular new features arise.
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Figure 2.4: Diagrams contributing to the Effective Theory Hamiltonian at one loop

The operators related to the two box-diagrams in fig.((1.6), i.e. O,, and O,,, disappear
below the b-threshold. Thus they would mix with other operators and contribute to
the evolution of the EH in the m, < g < M, region only. Due to the smallness
of the strong coupling constant at these scales, we can safely neglect them®. On the
contrary, at 4 ~ m,, GIM mechanism is broken also in the light sector: the charm
quark mass cannot be neglected anymore and the c-penguins need to be included in

the EH. Moreover, the Effective Theory has now N, =3.

We note that the discussion of the one-loop mixing and of the one-loop evolution
of the EH is important in the calculation of the one-loop initial condition for the
coeflicient functions, which will be treated in detail in paragraph (2.2.2).

The two-loop generalization of the previous arguments is straightforward. The
mixing “dynamics” is much more complicated both in the full and in the effective
theory. Nevertheless one does not need a complete evaluation of the two-loop EH in
the full theory.

The two-loop form of the the EH requires the knowledge of some well- determined
coefficients, as B, B") and 'y( ) plus the two-loop anomalous dimension 'y a.nd the
one-loop coefﬁment function C), see sec.2.1. A good choice is to evaluate ’y in a
five-quark ET just below M, (so that all quarks are still massless) and to match it at
fr ~ My with the full theory. The contributions of the full theory dlagra,ms will only
enter the evaluation of the coefficient functions Gt (M;y) at one-loop.

On the other hand, the evaluation of '7 ' is the real two-loop step. The Feynman
diagrams present in the Effective Theory are given in fig.(2.5) for the vertex-diagram
corrections and in fig.(2.6) for the penguin-diagram corrections. The colour and the

81t would correspond to a ~ 0.5% more uncertainty.
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Figure 2.5: Vertex diagrams contributing to the Effective Theory Hamiltonian at two
loops
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Figure 2.6: P-type Penguins diagrams contributing to the Effective Theory Hamilto-
nian at two loops
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Figure 2.7: F-type Penguins diagrams contributing to the Effective Theory Hamilto-
nian at two loops
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Dirac structure of each diagram is more complicated, but no new structure appears
and the operator basis is still given by (2.66).

2.2.2 Initial conditions for the coefficient function

In the previous section we have explained the construction of the Effective Theory from
L> My, m, to g ~ M. This is the region (g ~ M) where we start the evolution of
the coefficient functions (CF). Here we consider the problem of the determination of
the initial conditions for the evolution of the CF.

We integrate out the W-boson and the top quark simultaneously 9. Due to the
smallness of the strong coupling constant and its poor running in this region, the effect
of distinct thresholds is negligible. Below the thresholds, weak decays are described by
a N, =5 Effective Theory. The full and the effective theory need to be renormalized
in the same regularization scheme and the CF are finally obtained by matching the
finite parts, as computed by (2.47). The determination of T® does not present any
problem: the only operator present at the tree level is O,. On the other hand we need
the expression of :

T _ pro (2.76)

where we have used the notation of section 2.2. The most “intuitive” way to understand
the results of the one-loop coefficient functions is to show the matching at work diagram
by diagram. Let us consider the tree level Hamiltonian in (2.66), expressed as the sum
of two independent pieces:

HE), = HO 4+ H (2.77)
As we have already seen in the previous subsection, the two terms H!” and H!” have
a completely independent evolution, just because they concern two different physical
sectors: the Light and the heavy one respectively. Thus, when we consider QCD+EW
one loop corrections, we can still write the Hamiltonian as:

Hejf :HC+Ht (2.78)

Let us consider first Hy. At p ~ M, or m,, the top mass is the UV cut-off
of the theory and the flavour symmetry is broken by its mass term. Thus ¢- and
u-contributions do not cancel anymore in penguin and box diagrams, fig.(1.6). We
will have different contributions besides the vertex-diagrams. The one-loop corrected
Hamiltonian will be constructed starting from:

e vertex diagrams;
e QCD-penguin diagrams;

e QED-penguin diagram (photon ones);

9For this reason, instead of “M,, threshold” we could also have said “m, threshold”.
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Vertez-Type Coefficient

Box(T, =—1/2) Atcfmge—[,—“—B( z)(7E © V)
Box(Ta=1/2) ATk sy [—4B(2)](7: ® 7.

52d /\,—q\/‘;mc( e
3vd )\t\/—&_zD(a: )ode
5Gd N L E(w,) Ty,

Table 2.1: Basic coupling coefficients for diagrams in fig.(1.6)

e Z°-penguin diagrams;

e AS=1 or AB=1 box diagrams.

Below the threshold all the EW-penguins but the photon one are shrunk to a point,
because W- and Z-bosons are integrated out. The same is also true for the box dia-
gram, which reduces to a single vertex operator. We are left with vertex and penguin
diagrams shown in fig.(2.4), and the relative gluon and photon corrections. Thus, the
computation of Z°-penguin and of the two box diagrams in fig.(2.4) at p~ M, will
simply give their contribution to the initial condition for the coefficient functions. On
the other hand, for vertex, QCD- and QED-penguins we have to match with the analo-
gous ET contribution, below the threshold. Moreover, being the top quark completely
absent below the threshold, we will drop any operator with an explicit t-dependence
from the beginning.

All the heaviest particles present in the theory contribute only at the very high
energy scale, i.e. in the evaluation of the one-loop initial condition for the CF only.
This is typical of a NLO calculation, because in the LLA only the tree-level initial
conditions for the CF are required and they do not depend on the “heavy sector” of
the theory. This is the only indirect way we have to “probe” the hadronic sector of the
theory.

The contribution of each diagram in fig.(2.4) will be given in terms of the Inami-
Lim functions reported in (1.3). A summary of the coefficients which appear in the
calculation of the relevant diagrams is given in table (2.1) for the AS =1 case!”.

Let us consider now the matching dynamics diagram by diagram, in order to
determine all the single contributions to the CF.

19The generalization to the AB=1 case is straightforward.
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1. Vertex Diagrams

The one-loop CF for vertex-diagrams in presence of only QUD-corrections has
been known for a long time in literature [5, 13]. It is obtained as a simple matching
between the full theory result and the Effective Theory one. The same procedure
has a straightforward generalization to the QED case. We only have to account
for the electric charge, which will assign different “weights” to QCD-equivalent
diagrams. The final result can be easily derived using the corresponding tables
for coefficients and finite parts. The final result will be of the form:

Cg})(ﬂ/[“,-) = TBS +TB£L) (279)
)My ) a. (M)
oy = G ) gy @dMi) g
CV (‘Z‘/‘[“) 4-7_(_ 3 + 47r e
where: . . . .
Bl =5 BY = ee, BY=- BY=—e.e, (2.80)

where e, and e, are the charges of type-u and type-d quarks. The i-index indi-
cates that this is the vertex-diagram contribution to the initial conditions for the
coefficients of O, and O,. Moreover we have explicitly pointed out that the value
for o, has now to be taken from the N, =5 effective theory and evaluated at the
M,--scale.

2. QCD-Penguins Diagrams

In the full theory, the QCD-penguin diagram contribution to 7, is computed
as the difference between the t-penguin and the u-penguin. Being the u-quark
approximately massless at this scale, this difference coincide exactly with the
original Inami-Lim function [34]. In the ET, only the u-penguin survives. Con-
sidering the z; < 1 limit of the correspondent Inami-Lim function, we see that
the u-contribution exactly cancels across the threshold. Thus, the QCD-penguin
contributes to the CF with a slightly modified Inami-Lim function, what we have
called here E(z,) (see (1.3)). More explicitly it gives:

Gy ol (M, . .
Paco = L E ) pa ety S o) - (251)

27 p

Gr a® (M) 1 _
3 ; =a_ 1 - a —Ta —

Mgy DT i) Z ((@T°7..9) + (§T"*7.n9))
GF a(s)(ﬂ/[“.-) < 1
Er &) gy (04 + 0p) — (05 + O, )
O 2 ) p(s,) (01 + 01 = 3(0:+ 01
where v* and 4% denoted respectively the v*(1 F ;) chiral structure. Summa-
rizing, the single operator coefficients get the following contribution from QCD-

A

penguins:
()
CO(My) = CO(My) = —2—E(z)) (2.82)

CO(My) = CO(My) = 5 E(,)
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3. QED-Penguin Diagrams

QED- or photon-penguin diagrams consist of two different terms as can be real-
ized looking at fig.(2.4): the first one completely equivalent to the QCD-penguin
plus a second non-abelian penguin. This last one, being O(a,) is indeed of the
same order of the other photon-corrections. This would not be the case for a
non-abelian QCD-penguin, which is already an O(o?) effect. Also in this case,
the H, part of full theory hamiltonian, contains the difference between the t- and
the u-penguins and this coincides with the original Inami-Lim function [34]. On
the other hand, the u-contribution is cancelled by the matching with the ET at
g < M, and the left function, namely D(z,) is given in (1.3). Looking at table
(2.1), we find the following global contribution for QED-penguin diagrams:

Gr a. . _
Popp = Atv—%%D(mt)(de)Zeq(q%q) = (2.83)

q «
Gr a. ~ 3 3
- ¢ rd S q o q =
D)) {5 Do) + 3 5 eularnd)
Cra.
*V/26m
Only the O; and the O, CF are modified by these diagrams as follows:

A D(z,){0; + O,}

CO(My) = :;D(azt) (2.84)
O (My) = 2=D(a.)

. Z-penguin Diagrams

These penguin diagrams are O(a,) effects as the photon-penguins and consists of
both an abelian and a non-abelian part too. The Z°-boson id removed from the
theory below the M, -threshold and we have no contributions from the Effective
Theory. The CF will be given by the full theory diagrams only and also in
this case 7, consists of the difference between the t- and the u-penguins. The
corresponding Inami-Lim function [34] behaves as (z;lnz;) for z; < 1 and we
can reasonably assume that the u-contribution can be neglected. Remembering
that the Z°-coupling to fermions is of the form:

1
29— 5 > {d'2(qq). + 9\2(dq)r} (2.85)
q

where:

9\? = Ty(q,) — e, sin* 9,

L

65 = Ti(gx) — e, sin’ 9,
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we can rewrite it in the following form:

1 . L
p, -3 {0: + O, }sin® dp + 5(57£d) )

{5 @) )= 5 (Frad)+-) } = (2.86)

1 .o 1
= -3 {0; + O, }sin* ¥, — B {0; —40,}

" Using as (5Zd)-vertex the one in Table (2.1) we finally get:

_,\ﬁae
- /26

or for the single coefficients:

P,

C(z) {4(07 +0,)+ (0, — 409)} (2.87)

sin® ¥y

Q.

(M) = 20()

CO(My) = 6?‘540(@) (2.88)
™

(M) = £ {40(93,)— Sin}ﬂ ’40(1:,)}

where C(z,) is given in (1.3).

5. Boz Diagrams

In the case of the two box diagrams of fig.(1.6) we have to make some important
remarks. First of all one has to fix the initial and final external states, depending
on the process of interest. This means that for a AS=1 decay one will have (5d)
as initial state and only AF =0 final states. On the other hand for a AB=1
decay the initial state could be (bs) or (bd) and again only AF =0 final states are
allowed. In this case, while on the left-hand side of the boxes GIM mechanism is
effective, the right-hand sides, having identical external flavours, are not subject
to the GIM mechanism. But a great simplification could be introduced if one set
to zero quark masses on the right-hand side propagator. This is not obvious in
principle, but we can argue that it is indeed the case. If we did not make this
approximation, the final effect would be the presence of some more operators of
the type of O, and O,, in (2.70), with Light quarks too. Most of them would
be suppressed by CKM factors. The only surviving ones would be O,, and O,
themselves, but, as we have already explained, their effect is negligible, because
confined to a region where the running of ¢, is really small.

In the approximation of zero-mass propagator on the right-hand side, summing
all the analogous boxes with different AF =0 final states, dropping the explicit
t-dependence and applying the unitarity of the CKM matrix, one can reduce
the whole problem in terms of the AT, = 1/2 and AT; = —1/2 boxes in the
original Inami-Lim classification [34] (i.e. B(z,) function in (1.3)). Thus, the
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final contribution will be:

Gp Q.

B = A\ —=———DB(z,)(5v%d) -
0x NPITEE D (z.)(371d)
A [(dred) + -]+ (=4) [(@rp) + -]} (2.89)
Gra, 1 _ < 3 > _
= A —=— Bz, *d)2 . a) =
o or gy DEIERA2 2 (145 5e,) (@ri0)
Gr a, 1
—=————B(z.) |20, 4 100,
V/2 67 sin® 4y, () (205 + 100,]
or in terms of single coefficients:
1
(M) = == 2 9.
oO(My) = 2L 3B(z) (2.90)
1
CO(My) = = 10B(z,
s (M) PR (z.)

We can now summarize all the found contributions to obtain the components of
the complete CF vector:

M My)7T a7

C’l(ﬂ/f‘y) - 47r 2 +47r-2—€u€d (2.91)
. Oé(f)(ﬂ/fw) “7 Ote _7
Co(My) = yym : +47r g €.€4 (2.92)
(M) a1
C(My) = —=5 = B(m) + ¢* = [2B(=.) + O(a.)] (2.93)
(M. :
C(My) = &———8(—;M~1—)E(mt) (2.94)
B al® (M)
(Moo
Co(My) = ﬁ—é-]—v&—)E(mt) (2.96)
s
Ci(My) = g‘; [4C(z,) + D(z.)] (2.97)
Oa(]‘/.[” ) = O (2-98)
Co(My) = 22 [4C(w) + D(2)) + —— (10B(z.) — 4C(=.)]  (2.99)
: 6 sin® ¥y
Coo(My) = 0 (2.100)

Let us now consider the other part of the EH, H, which we have neglected up
to now. Indeed, involving only u- and c-quarks, it does not influence the physics of
processes related to much higher scales and its evolution can be considered starting
from the charm thresholds. Thus at 4 ~ m_ we have to compute new initial conditions
for the CF vector of H.. Nevertheless, the case here is much simpler, because only
the Effective Theory penguin diagrams in fig.(2.4) contribute, that is the gluon and



§2.2 EH for AS=1 and AB=1-decays at NLO 59

the photon-penguin. Their contribution can be found by simply computing the generic
penguin-diagram of the ET in the massive and in the massless case, matching the two
results at the m. threshold. Both the QCD- and the QED-case will be proportional to

a common function, call it F(z.), given by:
1
F(z.) = —4Cz(mc)"“'/ dea(l —z)lnl + (1 — z)] (2.101)
0

where C,(m.)">is the leading order expression for the coeflicient of 0,, evaluated at
g =m,. Thus, the CF of the H. part of the original hamiltonian, at p ~ m, is given
by:

a®(m)7 a7

O(m.) = == + e (2.102)
Cy(m.) = 9‘—(—}?—)%7 —g;:ézeued (2.103)
Cy(m.) = _O‘(’;)i;“c)p(mc) (2.104)
cm) = F pia) (2103)
Cy(m.) = —agzi;””)ﬁ‘(mc) (2.106)
Cy(m.) = “53;(;”°)F( ) (2.107)
Ci(m.) = g;F(:z:c) (2.108)
Cs(m.) = 0 2.109
Ggimci = g;F(mc) E2.110;
Cio(m.) = 0 (2.111)

where p = m, and the index (3) indicate the new framework of an N, =3 Effective

Theory.

2.2.3 Operator mixing

One of the most important ingredients in the evaluation of the Anomalous Dimension
Matrix is the operator mixing among the operator in the EH basis (2.66).

At a given order in perturbation theory (one-loop, two-loop. etc.) different sets
of Feynman diagrams contribute to the EH (see fig.(2.4)-(2.7)). Each diagram consists
of a Dirac+colour structure and a numerical coeflicient obtained from the analytical
calculation of the integral on the momentum space and from the reduction of the Dirac
algebra. The operator mixing depends only on the Dirac and colour structures of the
Feynman diagrams present in the theory. On the other hand the amount of mixing is
given by the direct computation of the divergent part of the diagrams. We will explain
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the analytic calculation of the two-loop contribution of each diagram to the anomalous
dimension matrix 4" in the next chapter. Here we will concentrate on the mixing
mechanism.

Our method in determining the mixing of each operator can be summarized in
few simple points:

e identification of the Dirac-+colour!! structure of each operator in the basis (2.66);

o identification, for a chosen operator, of the diagrams (at a given order) where the
operator can be inserted;

e determination of the Dirac+colour structure of each of the previous diagrams
(tables of the results will be given);

e recognition in the final Dirac+colour decomposition of the operator of the differ-
ent structures corresponding to the operators in the original (2.66) basis.

In what follow we will apply the above “recipe” first at one-loop in presence of both
QCD and QED corrections, then to the two-loop case. The same method applies to
the one-loop and to the two-loop cases with very slight differences. For this reason, we
will treat in great detail the one-loop case here following.

One-loop mixing: vertex-operators O, and O, only

The explicit Dirac+colour structure of the vertex operators!?0, and O, can be explicitly
given as follows:

0, = (
0, = (&

Cﬂl

od )(Y—+ ( )(‘-4) 0ap ® 65 (2.112)
ala )(v ey (B s )y -ty bas B 85

A more schematic notation can be introduced if we fix the ordering of the external
fermions as for O,, drop the external spinors and denote the operators only as a product
of Dirac and colour matrices. Introducing the following short-hand notations:

Yoo =7 (1=75) ® 7u(1-7) (2.113)
for the Dirac structure, and:

logys = Bup ® 6y | (2.114)

"aﬂ,—/ﬁ = 6&6 ® 5‘y5

'UWith colour structure we denote both the proper colour coefficient and the charge-dependent
coefficient when QED corrections are present.
!2Here O; denotes a generic O/ operator. We drop the distinction between different g¢’s, because

it is not relevant for vertex operator in the present context.
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for the two possible colour combinations (2.113). We write:
O =ly , O0.=ly, (2.115)

QCD corrections, introducing new colour structures (as we can read in Table (2.2)),
mix O, and O,. Let us develop the case of O, and O, as a detailed example. Consider
diagrams V, V; and V; in fig.(2.4) plus the one-loop self-energy in fig.(2.8). They are
the only diagrams which contribute to the one-loop renormalization of O, and O, in the
present case. We can read the colour structure of V|, V; and V; in Table (2.2) and their
numerical contribution in Table (2.14). The analogous quantities for the self-energy are
given in Table (2.15). In presence of vertex-type interactions only, the Dirac structure
of given operator can not be changed by one-loop interactions. On the other hand, the
exchange of a gluon might modify the original colour structure. For instance, V, and
V, have a T-colour structure, where:

—[raﬁ,‘yé = ZT:BT“; (2-116)

being T the SU(N) colour matrices in the quark (fundamental) representation with
the normalization:

Tr(T*T") = %5” (2.117)
The following equality:
1/7- 1
T=={l-—I 2.118
2 ( N ) ( )

is the origin of mixing. Indeed, if we insert O, in diagrams V, and V, we will get:

1+ 1

1 1
6+ (50, - 53,0.) 2.119

277 2N (2.119)
Thus, when QCD-corrections generate a T-structure starting from an O,-type operator,
they reproduce the original operator plus a new O, term. In particular, in the O, case,

eq.(2.119) gives the whole mixing of the operator, because diagram V, cancels with the
self-energy contribution.

The mixing of O, is quite similar, but some more remarks are in order. With
respect to the colour structure, we might describe the operators O, and O, projecting
on the {I,1} basis or on the {I, T} basis, where the following equality holds:

~ 1
l=—-14+2-T 2.120
<1+ (2:120)

or, expliciting the colour indices:

1
s ® 6.5 = v s ® 65 +2- > T2 T2 (2.121)
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We adopt the {I, T} basis because more convenient for colour factor evaluation. In
the {I, T} basis all the operators with a [ colour structure (O,) are not modified,
while those with a I structure (0,) are modified. They practically undergo a Fierz
transformation on the colour indices and, for consistency, also the Dirac indices has to
be Fierz-transformed. In the O, case, the Dirac structure v,, is not modified by the
Fierz transformation, thus O, can be written as:

1
0, = (N“ + mr) o (2.122)

The insertion of O, in diagrams V,, V,, V, and in the external leg self-energy diagrams
consists now of two parts. We have to account both for the insertion of the l-structure
and of the T one. The numerical coeflicient for each diagram is clearly the same in
both cases and can be read in Table (2.14). On the other hand the colour factors for
the [ and T-vertex insertion are given in Table (2.2). The final result for the insertion
of 0, is:

0, — {-}f (=6T) +2 (-%%}}ln + %T)} Ao (2.123)

In order to recover the structure of the original operators O, and O,, one has to move
back in (2.123) to the {I,1} basis. This corresponds to another Fierz transformation
on the colour structure, which must be followed by a Fierz rearrangement of the Dirac
structure. 7} ® v, is not modified by the Fierz-symmetry and we finally obtain:

1 1- 1 1
2 - by _"""'I] - - ‘ - i V7 .
0, — —6 2<ﬂ N) 6 <20 5 0‘) (2.124)

From (2.119) and (2.124) the one-loop anomalous dimension results to be a sym-
metric matrix of the form:

1 = ( _66/N _66/N ) | (2.125)

where some normalization factor has been taken into account. It is also well-known
that the mixing problem can be “diagonalized” considering the basis:

1
O: = §<ﬂ + Dy (2.126)
The O, operators undergo a multiplicative renormalization'® and their anomalous di-
mension reads'?:

(VF1)

0 —
W) = 122 (2.127)

Let us now consider the same mixing problem when QED corrections are intro-
duced. The possible diagrams are always the one-loop vertex-diagrams in fig.(2.4) plus

13Look: at one-loop only!
11t would be in fact a diagonal matrix.
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diagram QCD QED

1 T ! T

14 M —T I T
2 _

Va T ;ﬂ 4 ’\4\ A_llﬂ I T
VZ} T 2N =T _t 4N2 l I /\';ﬂ-_l
3! T TN “ ToN
F 0 iT NI 0

Table 2.2: Colour factors for diagrams in fig.(2.4) with either QCD or QED corrections

the self-energy ones, but with a photon in the wavy line. Due to the isospin breaking
on the charge, different flavours are “weighted” with different electromagnetic charges.
The colour structure is also different, because no gluons are present. We will account

here for the charges, while the colour factors and the numerical coefficients are given
in Tables (2.2) and (2.14).

The insertion of O, proceeds as in the QCD case: V, cancels with the external
leg self-energy diagrams and the final result is given by V, and V; only:

4
OL — ‘—6eued * ﬂ . ’YLL - gOL (2.128)
where e, and e, denotes the charges of a u- and a d-type quark respectively (e, = 2/3,
e, = —1/3). Eq.(2.128) tells us that O, renormalizes multiplicatively in presence of
QED corrections only.

In the O, case, we project on the {I, T} basis using (2.120) and we insert the
| and the T-structure separately into the one-loop diagrams. The contribution of V|
always cancels with the self-energy one and the sum of V, and V; now gives:

1 4 - 4
0, — {N (—beueld) +2- (~6euedT)} YL = 3" I= 502 (2.129)

Also O, is multiplicatively renormalized by QED interactions. The QED Anomalous
Dimension Matrix, analogous to the QCD one in (2.125), will be a diagonal matrix of

the form: /
4/3 0
0y
4 = ( 0 43 ) (2.130)
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One-loop mixing: the complete basis {O0;},., ., case

Let us consider first the pure QCD case. O, and O, mixing is modified by the presence
of new diagrams: the penguin diagrams P, and F,. We can read the necessary colour
factors and numerical coefficients from Tables (2.2) and (2.14). As before, we start
projecting on the {I, T} basis, while the final result will be written in the {I,1} basis,
in order to recover the structure of the original operators in (2.66).

With respect to the Dirac structure, the following “rules” can be summarized:

e whatever chiral structure is conserved by vertex-type diagrams;

e the insertion of a v} ® 7., or a v ® 7, structure in penguin-type diagrams gives
always the sum of a v} ® v, plus a 7 ® .. structure, as explained in eq.(2.72)'?;

o if the colour structure has been Fierz transformed, going from the {I,1} to the
{1, T} basis or viceversa, also the Dirac structure of each diagram must be Fierz-
rearranged. We have to remember that :

Fierz

YL ® Y — Y ®Vur
TE®Yur o (147) ® (1—7) (2.131)

O,, due to its colour structure, can be inserted in the Fierz-rearranged penguin
diagram F\'® (call it F-penguin-diagram). Nevertheless the insertion of a [ structure
in diagram F| gives a zero colour coefficient. This is the reason why O, does not mix
with penguin-operators.

On the other hand, O, can be inserted only in the normal penguin P, (call it
P-penguin diagram). Using the (2.122) Fierzed colour structure for O,, we have to
Fierz the Dirac structure of the F, penguin too. Thus the insertion of a I-vertex in P,
turns out to be equivalent to the insertion of given combination of a | and a T-verteces
in F\. Being zero the I-part contribution, the final result is given only by the T-vertex
insertion in F}:

4 1
0, — ~§T-—2—(75®7ub+7§®7#ﬁ) =
4 r1- 1 1
-3 (5" - 5_,70 5 (V@Y + 7L ® ) = (2.132)
1
(On + Os) - “3‘ (04 + OG)

O b=

In order to extend our discussion to the whole set of operators, it will be useful
to introduce a more general formalism. In this new formalism the global mixing of the

!5This is the origin of mixing between vertex and penguin operators.
'We do not distinguish now the case of a gluon or a photon penguin: our present aim is only to
give the very general description of the problem.
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two vertex operators O, and O, can be summarized as follows:

0. = (FV+00)

: : 1
0, = (P400)=

S (PO +00) +2(F7 +07) (2.133)

with the following understanding of the notation:

o F' and F'T are the contributions of the F-penguin diagrams, when a l-type or
a T-type colour structure is inserted in the upper vertex;

e PO isthe contribution of the P-penguin diagrams, when a I-type colour structure
is inserted in the upper vertex;

e OV and O™ are the contributions of the vertex-diagrams, when a [-type or a
I-type colour structure are inserted in the vertex. We specified the presence of
the only u-quark as external state, in order to distinguish this case from the case
in which a penguin operator itself is inserted in a vertex diagram, generating a
sum over flavour of vertex operators with that flavour as external state.

The expressions in (2.133) consist of the sum over all diagrams of a given type
(vertex, F-penguins, P-penguins). Each terms in the sum as the sum itself is the
product of a numerical coefficient and a Dirac+colour structure. For instance, the
0,-0, mixing due to vertex diagrams only is now summarized by O and O". The
structure of O and O might be directly deduced from eq.(2.119) and (2.124). The
analogous penguin quantities have been obtained before, when considering the insertion

of O, and O, in diagrams P, and F).

In the same spirit, let us consider the mixing of QCD-penguin operators. Penguin
operators, being a sum over flavours of vertex-type operators, can be described for
their Dirac and colour structure using the same notation introduced for O, and O,.
Nevertheless, their flavour structure has to be carefully considered. Let us illustrate
the case of O, and O, in the AS=1 basis:

0, = (gadﬂ) Z(q—wqa) Mapivs * T

q

O = (8ads) D (395) Vs * Vet (2.134)

q

The mixing of these operators is computed from those diagrams of fig.(2.4) which can
contribute. O, can be inserted in a F-penguin diagram, in a vertex-type diagram
and even in a P-penguin diagram. This last insertion is due, to the (dd) and the (3s)
terms in the sum, which reproduces the right structures to be inserted in a P-penguin-
diagram, namely:

(57¢d)(dv,d) and (5v;d)(57.cs) (2.135)
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The same holds for O,, provided the | is treated as in (2.120. Thus, all together the
structures of O, and O, can be decomposed as follows:

0, — (N,FO 4 2P0 4 0W) (2.136)
1
O = = (N, PO £2PW 4 0W) 4 2(N,FD +2PD 4 OT)

where N, is the number of active flavours and the general formalism introduced for O,
and O, mixing is used. The insertion of a penguin-type operator in a F-penguin dia-
gram generate IV, equal contributions, because QCD-interactions are isospin-conserving
and do not distinguish different flavours. Moreover, the insertion in a vertex diagram
O; has no flavour index now. Indeed, the insertion of a penguin-type operator in a
vertex diagram reproduce a sum over flavours of vertex operators with the summed
flavour as external state, i.e. a penguin operator. Thus, the insertion of a penguin op-
erator can never reproduce a vertex operator, because the sum over flavours is always
present.

The case of operators O, and O, is strictly analogous: the colour decomposition
is the same, but we have to account for the different Dirac structure v* ® «,, with its
own Fierz-symmetry properties. The final mixing of O, and O, differs from the one
of the analogous 7% ® v,, operators because of the different analytic contribution of
72 ® v.r diagrams with respect to the correspondent Y @ v, ones.

The QED-penguins have the same structure of QCD-penguins, except for the
isospin breaking in the charge. When a QED-penguin operator is inserted both in
F-penguin and in P-penguin diagrams different flavours enter the sum of flavours at
the upper vertex with different coeflicients, i.e. “weighted” by the electric charge. In
the case of vertex-diagrams a sum over the external flavour charge will be generated.
For instance, O, and O,, turn out to have the following decomposition:

Os — ((euNV, + e;N,)FW +2e,PY) + ¢, OM)) (2.137)
1

O = (Vi + eulVa) F + 26,PY) + €,0%) +
2((euV, + eN)FD 4 2, P + e O

where IV, and NV, are respectively the number of flavours of type u (charge e,) and of
type d (charge e,), while e, denotes the charge of the generic summed flavour. The
same can be said for O; and O,, which only differs for the Dirac structure. This ends
up the discussion of the one-loop mixing in presence of only QCD corrections.

We should now introduce QED interactions (one-loop diagrams in fig.(2.4) with a
photon in the wavy line) and analyze if new mixing features arise. The basic structures,
le. FO, PO OW, ... will be substituted now by F(V, P, OW, ..., which differ
from the previous one by the colour factors only!”. The new colour factors for each
diagram are given in the third and fourth column of Table (2.2). Moreover, the new
structures F'", P, O, ... will appear in the decomposition of each operator with

'"Here the index -y has been chosen to indicate QED contributions
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new coeflicients, proportional to the charge of the external or internal loop quarks.
The important features of the one-loop case is that it is always possible to factorize a
one charge coeflicient and one colour coeflicient for each diagram. This allows us to
account here for the charge dependence and to report the colour coefficient in Table
(2.2). The same features will not survive in the two loop calculation. After the previous
detailed discussion for the pure QCD case, it will be easy to recognize the origin of
each coeflicient in the the following global operator decomposition:

0, — (eueqF§1)+edeuO£,fl)
1

0, — i (euequ) + edeuOf’l’I{) +2 (eueqF_sT) + edeuOg'T3> Ty.L
0, — ((euNu + eaVy)e F1Y 4+ 2e,e, P + ederL‘)>
0, — —]1\7 ((euNu + e, N,)e FY 4 2e,e, P + ederS)) 4

+2 ((euNu + eaNy)e FI7 + 2e,e, P17 + eder(_yT))

(2.138)
;= ((eiNu + eiN,y)e, F'Y 4 2ele, PV + edg <1 + geq> Og”)

Os — —]1\7 ((EiNu + &N,)e, FV + 2ele, P + edg- (1 + geq> 05;)) +

+2 ((eiNu + eiN,)e F7 + 2e%e P 4 ed-g (l + geq> OE,T)>

where the dots indicates operators whose decompositions can be easily argued from
the ones given, f.i. with a slight modification in the colour or Dirac structure.

Two-loop mixing

The two-loop mixing is substantially analogous to the one-loop case, provided some
important remarks. Again, it is better to distinguish the pure QCD case from the
QCD+QED case, because the operator mixing presents some different features in the
two cases. In both cases all the diagrams in fig.(2.5), (2.6) and (2.7) contribute, with
two gluons or one gluon+one photon in the two wavy lines respectively. This difference
will be manifest in the different colour+charge coefficients. The method used in finding
the operator decomposition will be the usual one. Knowing the colour+Dirac structure
of each operator, we have only to update the penguin and vertex contributions and
to compute the new charge+colour coefficients very carefully. The final mixing of
each operator will be now a sum over a much greater number of terms, one for each
contributing diagram. As before, the single diagram contribution will be the product
of a numerical coefficient, a Dirac structure and a colour/charge factor.

In the pure QCD case (O(a?)-corrections), the {O;},=1..10 have exactly the same
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diagram l T
(N?2-1)2
Vi S T
v el el o
Ve (JY" “Up+ (N;—?)T (N2~ 2)({:‘\” —1)|] + (- 31\22+3)1]—
v IV j\ﬁv_?l-ﬁv 8N 1\42\?1 . IN
N2_1 N2_2 N2_2)(N221), N?-3
— 1 - Ne—
Vo 4N? Nﬂg”l NT T 4N® ﬂl_ 4N? T
T/'10 - 411\72 “ N2 —i_IVQ_T )
Via "mﬂ —L—_JEBN;; I+ j?z\’f—n-
Vi — 37! ~awl - ST
Vis N2} 2“ N2t T
'{/11 i’—l T (]Vz—l)z “4—1_2(."\’—2—1)-[
) ‘QJV Ar2 2 2 21 : 2
N?—1 N2-1) N2-2)(N?—1)
Vis 2N1 T ( 8N3N2ﬂ_'1{"2( 4?}1 T
Vie ~ 5 Embl+ =T
Viz (G Sy LT
N 8N3 N2
Vie L (veity _ ofoa g
3 N
V‘lg N;j\—{l’-u- _(1\7'2—‘;1)“ . ({V?——Q)—H"
V20 L]Xi_‘?llﬂ _ _l_-ﬂ- (NZ—-?)(N2—1)H + (!V —3)-H-
N2-1 N2-2 N'-’—l 1\2—3
Vay (41\/2 )]l\]/j_l(qu T ( )ﬂl" (41\2 T
Vaa L= el il
st N2—214)|] . _I_T (Nz—l)ﬂ + 1\2\.{-3)—‘}”
e oo, ey om0y
Vas — (=) 1T
Vas il g
Var —NT ety ooy
Vas —5T ol
Vas @%,{,ﬁﬂ —35 ﬂ
N2-1
Vao T e X7
Vay T (I\;;N‘Zl)ﬂ + (\ 2)‘]]‘

Table 2.3: Colour factors for diagrams in fig.(2.5) with O(a?) QCD-corrections.
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diagram ! T
P, ST i |
7 T @y
P, ry ~IT
P; —LT LT
b b _U\K!
Ps —fﬁvr —iT
N N
P; NT, 2T 1T, 1T
Py _ElﬁT ﬁﬁ'ﬂ"
Pg N?T-1 'l]' N"’——Zl -H-
§N2—12)N 1 NZ-1 A 1
PlO 2_11\/2 ﬂ 4\/—‘]- ) 3 ﬂ+ 4\;2_“-
NZ-1 N?2-2 N2_-1)? N2-2
in (4N2)HN (2 )T (SN“) j— § . )T
12 2 i
P13 —2%\/-—[]” 1'7—U_
NI-1 N2-1
el 4 e . o
Py 4AN? I+ 21\1—T R - AN2 T

Table 2.4: Colour factors for diagrams in fig.(2.6) with O(a?) QCD-corrections.
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decomposition seen in the one-loop case in terms of FV, F(T PO etc., but each
of these terms now include the contribution of a much larger set of diagrams. The
new two-loop colour coefficients are responsible for some new mixing, like the mixing
of O, with penguin operators, not present at the one-loop level. We summarize all
the charge+colour coefficients, diagram by diagram in Tables (2.3)-(2.5) for vertex,
F-penguin and P-penguin diagrams respectively.

For the QCD+QED case (O(a,c.)-corrections) the previous decomposition is not
valid anymore, because much more different charge+colour structures are present. We
have to introduce different notations for the insertion of vertex operators like O, or
0,, QCD-penguin operators like 0,-0, or QED-penguin operators like O,-O,, in the
different classes of diagrams of the theory. The global mixing can be summarized as
follows:

O —~ (Fl+0%)
0 —  (Fi+0w) +2(FD+00)
0, — (F+2P0 +0W)
0. = % (F42P0 +00) +2(F® 4 2P 4 0)
(2.139)
O = (B2, +2P2,+0%,)
o= 2 (R 12RO 4 00) 2 (R0 +2PT 4 0m)

where it has not been possible to factorize any colour or charge dependence. Moreover,
for each class of diagrams, the introduction of three different symbols for each colour
structure, as O{'), O'" and O , etc., is needed in view of the previous observation. In
Tables (2.6)-(2.13) we report for each diagram the charge factor plus the colour factors
for the case of a [-structure and of a T-structure in the weak vertex respectively.

Concerning the Dirac-structure, on the other side, no relevant differences are
present and what we observed in the one-loop case is still valid.

Having the one-loop and the two-loop operator decomposition at hand, we would
be ready to find the final one-loop and two-loop mixing. The last step of our procedure
was indeed the identification of pairs of colour(charge)+Dirac structure with given op-
erators. This is a quite easy task and we will see a direct implementation of that in the
next subsection, where the final expressions for the one-loop and two-loop anomalous
dimension matrices will be given, both in the pure QCD and in the QCD+QED case.
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diagram [ T
F 1T (V2-2)
2
7, 0 &y
1
Fy 0 vy
F, 0 Ny, et
F 0 — LT
F, 0 !——Mffl T
N?-1 4_1__
Fig K—J%N I 3
Fiy =) %—QT
Flg 0 TT
F13 0 -—ﬁ;_ﬂ-
Fiy 0 Nl — LT
2 NZ_9
Fls 0 (NSN“UH + ( 4N )T

Table 2.5: Colour factors for diagrams in fig.(2.7) with O(a?) QCD-corrections.
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diagram [
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Table 2.6: Colour-charge factors for diagrams in fig.(2.5) with O(a,a.) QCD+QED

corrections, when O, and O, are inserted.
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diagram I T
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Vie e oty ey ledhd g (oI g MRUT
Vo el AT (e 0 T gy
[ s vl ) ie‘”( FT 4 G + e T
Vi eyt ST s R
Vis eqed(N;\:l)ﬂ + (ejzef)_ﬂ— - +€d (( _Z)T + (4]\’2 )ﬂ) + etagm T
Vio €q€q (N;A—/l)u + (ea:Ed)T < +e (( 2 O)T -+ (Zijzl)ﬂ) + e edgNT
Vao 2e.e 1 Lj/_v—fl‘lﬂ‘i‘ﬁqed( 1\/22—4)—[]—)
Va1 2e.e,T %1—21] | eqed(f—]\—gil'ﬂ')
Vo (et (e + )5t
Vas 2e.e, T 2e,e(—=T + ﬁ’_\;j{?&)ﬂ)
Vay 2ee T 2e,e4( (A:Aj-)'u’ + Ujj\f—'zl)ﬂ)

Table 2.7: Colour+charge factors for diagrams in fig.(2.5) with O(a,a.) QCD+QED

corrections, when QCD-penguin operators O;-O, are inserted.
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diagram ! T
Vi ei(€; + ) Cgi ei(; + €)(=5)T
Vs 2e’e, T 2e? ed( '[]’ 4 ﬁTr—zllﬂ)
Ve 2ete, T 2¢? ed(U‘ AT + UjN‘j )
v; (] + ) Te e} + )~ )T
Vs 2ele, T 2e’e,(— 1T+ L_—_ll 1)
Vo 2e’e, T 2e? ed((N °)T+ @4’1\/—11)“)
Vio e,(e2 + e2) 1) e,(e2 + e2) AT
Vi, (N: 0y 4 eq(e;ed)T eq(e§2+e§)( £ g g%x—z_llﬂ) te edMT
Vo e lplig sty s way Beony |, (ony
Vis e,(e? + € )Mu e (e + €2 )LN_-ET
Ve ey | elliey e ) oy
Vis (N;’-—l)ﬂ + eq(ejz-i-e?i)—ﬂ— GQ(52+ed)((N2—2)‘H' + £1\4\¢_21)H) +e edﬁ__—_ll-ﬂ-
Vie eje o i B s (s LT + 2220 4 ge, =L T
ARENC R ) et G PR TRt
Via e’e d(N;Nl)ﬂ i eq(eg;ei)T eqle ;.2+ed ((N 2 4 (41‘\[——1’1)[!) Le edzNT
Vio ele d(N;}\—Il)ﬂ n eq(eg;uei)T eqle qz+ed)(( ‘2)T+ (IXN?)“)+E eush LT
Vao 2ete, T —@N—lﬂ + e ed(L———zT)
Var 2ete, T §4_N‘2_11[} + € (ﬂ;_‘hr)
Vao eq(ez + efi)—u%—llﬂ (e 4+ e? )ZNH
Vaa 2ele, T 2¢2e,(—% T + KLZ“_Q 1)
Vay 2ele, T 26§€d(( _Z)T + LINZ,I)H)

Table 2.8: Colour+charge factors for diagrams in fig.(2.5) with O(a,c.) QCD+QED

corrections, when QED-penguin operators O,-0O,, are inserted.
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diagram

PlO

Pi3
Py
P15

(N2-1)
€4€, N,,QNl I +eT
Np4eT
ediq aN +ed
N*“-1 2
L—'lzN N:edeqﬂ +eT
2_q
edeqﬁ—Nlﬂ +eiT
fN —1 2
€aCy 5N l+eT
€.,
ese,
!NQ—I! 2
es€ 51+ ey T
eqe, |
eqse, I

caeo(— L) + e3(— 55 T)
eaeo(—Etl) + €= 5 T)
eaey( D l) + €i(— 5 T)
cseo C3rt) + i~ 55 T)
eaes( Lol + e~ T)
edeq(—%v"[f)
edeq(—ﬁT)
edeq(—%gﬂq—l» e ]\;2]\_,1 T)
edqu%}\——,ll-[r)
edeq(-§%\{ﬂ')

75

Table 2.9: Colour factors for diagrams in fig.(2.6) with O(a,c.) QCD+QED correc-

tions, when QCD-penguin operators O;-O; are inserted.
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diagram l T
P, eieq%—l—lﬂ +eT eieq(——yg—zv_g—llﬂ) + 6Z(~2—1]VT)
Py ele Sl e T e (— 51 4 g(— 4 T)
Poo e, Tl el T ele, (-0l 4 ey(— 4 T)
Py e, ST eieq(-—%ﬁzltﬂ)-l-e:;(—%\f"ﬂ_)
Py e, T+ T e, (o1l 4 oy LT)
Py eie, T eieq(—wz%T)
Py eie, T EZeq( ﬁ_”’)
Py e, UG+ T e, (U1 4 3 (20T
Py ete, T ete, Lo i)
Py ere, T eie(—5T)

Table 2.10: Colour factors for diagrams in fig.(2.6) with O(a,a.) QCD+QED correc-
tions, when QED-penguin operators O,-O,, are inserted.
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diagram l T
F, 0 Lol + JeselT
F 0 le,e S+ Lese, T
2
F; e.e, 11 lexT
Fg eueqiﬁfz——lzﬂ %ef‘T
Fy e, 12T
Fl() 0 eueq_u—
Fiy 0 €.€,1
Fi; e.eaNT %edeq%lﬂ
Fiy e.e,NT %edeﬂf
F15 EUEQNT %edeq—u-

Table 2.11: Colour factors for diagrams in fig.(2.7) with O(a,a.) QCD+QED correc-

tions, when vertex operators O, and O, are inserted.

diagram l T
P 0 3Vt eal)e S + e N, + eaVa)e
Fs 0 L(euN. + euN)e gl 4 Leu N, + euN)e T

Fs  (euN, + e,N,)e, L=l

2

Fs  (euN.+ e.N,)e, L1

2

N
Fy (e, +eN)e, L2t
Py 0
Fyy 0
Fi (e N, + e.Ny)e,NT
Fiy (e.N, +e.N,)e,NT
Fis (e.N, +esN)e, NT

1
2
LN, + &N,
2 wt'u ed d

1 (V2-1)
‘Z‘EdequT
1
§8d€quT

Table 2.12: Colour factors for diagrams in fig.(2.7) with O(a,a.) QCD+QED correc-
tions, when QCD-penguin operators O;-O; are inserted.
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diagram ! T
F, 0 %(eiNu + eZNd)ed (eiNu + XN, )e, T
Fy 0 %(eiNu + €} d)ed 2N ( 2N+ eiNy)e, T
Fs (!N, + e2N,)e, =1 L(e N, + ede)e T
Fs  (&2N, + €N, )eqﬁN—;—llu (&N, + &&N)T
Fy  (euN.+ ede)eqﬁN—Z—lln (&N, + &N)T
Fy 0 (euN +e2N,)e, T
Fiy 0 (eLV. + e2Nu)e, T
Fis (&N, +&N,)e.NT eV, + eulV,)ese, L0=1y
Fy (e2N, + eN,)e,NT 2(e.N, + e.Ny)ese, T
Fis (2N, + e2N,)e,NT T(euN, + e.N)ese, T

Table 2.13: Colour factors for diagrams in fig.(2.7) with O(a,a.) QCD+QED correc-
tions, when QED-penguin operators O,-0,, are inserted.

2.2.4 Anomalous dimension matrix

Operator mixing in the renormalization of the EH gives the Anomalous Dimension
Matrix. All the necessary ingredients, see 2.2.1 and 2.2.3, have been already intro-
duced. The one-loop Anomalous Dimension Matrix [14, 41] gives already a complete
implementation of the formalism explained in the previous section, where all the main
characteristics of the mixing phenomenon can be are present.Here we will report the
final expression for the O(aqcp) and for the O(aqrp) matrices, denoting them as 4(
and 4 respectively. The singular terms for each one-loop diagram are reported in
table (2.14).

For convenience, we will split the (10 x 10) each Anomalous Dimension Matrices
in four sub-matrices, defined as:

2(0)(ss)  5(0)(se)
kg 7.! 75
'750) = < ,’)‘,EO)(es) ;YEO)(cc) ) (2'140)
for 4 and as:
5(0)(ss)  2(0)(se)
~(0) — 75 75 2 141
Ye ( 7«: ,YSO)(ee) ) ( )

for 4{°. Moreover, with respect to the notation used in Section 2.2.3, we will replace:

o N, — f,
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e N, — u,

0NJ——)d,
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Among the eight sum-matrices in (2.140) and (2.141), 49 = 0 and the other seven

are given by [30, 41]:

2 6 0 0 0 0
O 0 0 -5 ER 3
| 0 0 6-5f —2+35f —5f 2
0 0 0 0 2 —6
0 0 -Zif If =if —164%f
00 0 0 0
soxen | 00 (—%“+%d) (%”_%d) (*%”Jréd) (§'
i IS -3 %
00 (—5u+éd) (%u——%d) (~%u+%d) (%
2 -6 0 0
o 0 —16 0 0
=10 0 -2 s
0 0 6 -2
~£ 0 0000
0 —£ 0000
joen _ | 00 0000
e 0 0 00 00
0 0 0 0 0 0
0 0 0000
16 0 16 0
A T
16 16, 8 88, 16, 8
< (0)(se) T ou—d) 0 »tyu—gd) 0
Te - (—%—{—%gu—%d) 0 (—%@—l—;—gu-—%d) 0
(—§-+1—§u—8d) 0 (Fu-84) 0
(Lu-2d) 0 (LBu-£d) 0
00 0 0 %0
A(O)(ea)_ 0 06 0 0 0 %
0 0 ~§ 0 0 0
0 0 O —% 0 0

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)
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diagram TRV Vi ® Vur

(1/€) 0(1) (1/€) o)

Vi 2 5 2 5
Va -8 -19 8 -3
Vs 2 5 -2 20
Py -4/3 -20/9 0 0
F, -4/3 -20/9 -4/3 -20/9

Table 2.14: Singular and finite terms for diagrams in fig.(2.4), with v* ® v, or 7* ®,»
Dirac structure.

(5 +Fu+id) o

(%u-{-%d) 0 5

%—{-lgﬁu—i——g-d; 0 (—28+ 18u+id)
. A

2(0)(ee} __
giteet =

(2.148)
s Tarut5d

On the other hand, we have not given yet all the elements to evaluate the two-
loop Anomalous Dimension Matrix because the details of the analytical calculation will
be the argument of the next chapter. Nevertheless we can anticipate our final result
for completeness. Also in this case we will give two matrices: the pure QCD one '?il)
(two gluon insertions) and the mixed QCD+QED one 4'" (one gluon and one photon
insertion), splitting each of them in four sub-matrices as we have done in the one-loop
case, i.e.:

2(L)(sa)  aA(L)(se)

2(1) 7, s

Y, = ( 2(L)(es) :(1)(“)) (2.149)
7. T

2(1)
7& - (

for 4”. Among the eight sum-matrices in (2.149) and (2.150), again 57" = 0 and
the other seven are given by:

for :7(:) and as:

}Y( }y(l)(“)
(1)(es) ’?(ﬂl)(ee) ) (2.150)
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553 _ 38 95 _ 23 _2
6 of T —2f 3 1 3 1
95 553 58 400 832 1192 472
T2 -5l i o —%53 B
43193 | 11p 11-23 2384 25 944
0 0 w T ol e f 23— 3l cTf
377 11 565 | 310 50 1192 472
0 0 S tsf S Awmf —v-ousf 2%
73 f 39 -1
0 0 —Lf 3 121+ f 39 — 2
1228 364 95 _ 562 85 | 418
0 0 —%id B 2 " asl TR TR
(2.151)
a(l)(es . .
The first two columns of 7(5 X¢*) are always zero and we will report here following
only the last four columns:
2(1)(es)
7, =
73 73 1 1 71 7 1, 1
—5 v+ 15 3¢~ 54 —gu Tt d 5U ~ 54
1228 614 364 182 238 119 814, 407
— a3 U T 5 U~ 5 d —5t T 339 st~ 5 d
a0 | 23, 26 832 1 1192 _ 25, 4 254 472 4. 1
o T e — 3d 5p T U gd 5~ aetgd st U 5d
23 _ 400, _ 2007 _q 832, _ 4167 25 _ 1192 | 5967 _q 4 472, _ 236
~8 - dpu— it 1+ 5iu—Fd Fogg5utogd 14 Gru—grd
(2.152)
121 -%2f -39-2 0 0
95 4 85 44
gl _ 3 —s3f -5 s 0 s os 0 (2.153)
s 553 _ 58 95 _
0 0 ] s 5 2
9

0 0 % _of /%y
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e =
2 _ 88 88 _ 88 83
3 243 81 243 81
a9 340 430 340 130
9 729 243 729 243
1258 88 44 1258 | 88, 44 200 88, 44 200 4 4
0 729 2t T 234 53 o~ 5% —Tasttasd  in 81 s
641 340, 100 655 | 340.. , 100 88 340, _ 100 340., , 100
0 213~ Tas % T T30 st T ot T o0 55— Tast— 750 5t ou it tand
88 g 88, -;4
0 %t 7:34 81 d 2 243 + 3434 6+5u—5¢
412 64 412 64 412, 412 64
0 720% 7250 3%t 729 ¥ ~29d T+538+ 054
(2.154)
2(1)(se) __
Ye =
328 _s 344 8
27 9 77 3
6644 148 4124 44
729 27 729 9
4640 | 328 164 1 0 _ s 4 11920 | 344 _ 172 168 | 4
a9 T — 55 d ot t+35d 720 T 27 e 3 +3d
328 |, 6664 _ 23207 8 _ 148 _ 38 4124 11687 38 , 44 16
27 T 729 7293 5 ol + d+ 27f 27 T 729 2l T+ou—gd
232 328 164 0 8 4 34 72 8. 4
5t — o d 5 — gt +35d 2—?4” =d u+3d
2900 448 182 | 140 64 556- 1888 32
24+ F50u — 750 o T e —p7d 729 20 @ +5d
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es)

The first two columns of "iy(:)(
only the last four columns:

are always zero and we will report here following

A(1)es)
Ye =
88, _ 22 88, | 22 _ 116 88 227 20 , 88, | 22
243 5230 st st 9 243 530 3 tautsid
412, 32 42, 32 412, 824 91 412, 32
et + 755d 75t~ 3439 bt sd T+ oY — 559
7298 _ 88 227 348 | 88, 227 100 _ 88, 225 100 , 88 2
o 2l 2?3 T et T s? T 2t 5354 755 T s+ 574
1333 _ 340, 50 7 107 | 340, _ 50 7 _ 44 _ 340, L 50 5 44 4 340, 50
513 — 50U T 75 B t oot 5130 55— et t i F T ¥ T am
(2.156)
2(Lt)(ee)
E =
_ 134, 38 827 38 _ 8, _ 2 344, | 86 8 _2
5 t 5 ut+ 5d 3~ ot~ 54 57 Ut 52 5~ 3d
2000, 2247 151, L0, | 32 5564, | 844 52, 16
2+ Sgu+ 5554 5+ 5ru+ 57d o Ut 550 su— 5d
2320 |, 328 82 80 _ 8, 2 9754 | 344 86 148 2
e T 55U+ 55d 77 st —5d Gt mputd 5 — 35— 34

164 | 6644 11607 _ 4 _ 148, 407 244 4 4124 | 5844 _ 68 4 44 | 8
27+729u+729d 9 27u 27d 27+729u+729d 9+9+9d

(2.157)

The numerical contribution of each diagram can be found in Tables (2.16)-(2.19),
for vertex and penguin diagrams respectively.

Moreover, at two loops we have to consider also the non-zero anomalous dimension
of the weak current. In the HV scheme, v, = 12b, with b the O(a?) coefficient of the
QCD B-function.

Finally, we should remark that both the one-loop and the two-loop Anomalous
Dimension Matrix are comprehensive of the self-energy contributions. The correspond-
ing diagrams are shown in fig.(2.8) and their colour+charge factors, pole coeflicients
and finite parts are given in Table (2.15). We report finite parts in the one-loop case
only because it is the only case in which we need to know them, dealing with the
Coeflicient Function one-loop computation.
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TR b W3 N S S e

1 5,,8 S, Ss

Figure 2.8: One-loop and two-loop self-energy diagrams.

Diagram QCD QED (1/€) O(1)
So . le2 -2 -2
Sy (N1 Nl e? -1 i
53 N22—1 I . 5 -
r2_ 2_ 2
S Mg 2 :
Ss No=1) - 11 -

Table 2.15: Colour-+charge coeficients and singular-+finite parts for the one-loop and
two-loop self energy diagrams in fig.(2.8). For the two loop case the finite part is
neglected, because of no relevance in the calculation. We denote the generic quark
charge by e,.
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diagram M GO Ger G GH
ooz (Eedy) (@) - (el
o2 (B+Y) 0 (#4Z) -1 (<24
o2 (el (i) - (ireny
T G S =
o2 (- - = (=
Moo 4 (fEed) (i) - (G-
Va4 é%—%a <ﬁa€% - %%+%9
Voo 4 (A+f) B - (CiE-i)
Vo4 (o3r-f) (CE-3) - (Ei
T R R € R R - S 5
Moo 4 (-t (H-d) - GEY
Ve 4 (“E-¥Y (-2-f 0t (Fed
oo ﬁ%—%g g%1e§ - (F+1
Ve 4 (sheiy) (33 ?ﬁé+%
Ve 4 (3R () - (iael
Voo o4 (mE-%Y (kx-D b (F-m
G @é—%g (~4-2) - E%+%;
Ve 1 (G (B+f - -k
Ve 1 ($4%)  (B+B) 1 -
Va1 (E+d) 0 (BeY - -k

Table 2.16: Two loop pole contributions for the v ® 7, four-quark type diagrams in
fig.(2.5), in the HV scheme.(Continue)
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diagram M G Ger GEY G
Vs 4 e T —a TR - 3%+t
Vo A ((e% + -5%%)) | (%+%) | - ((—?v + %%))
Vo4 (a9 (2-%9) - GE+i)
Vis 4 - - - -
Vo2 (BN-IN)L (BN -4N)L - (SEN 4N
Vao 2 (_;N+§N,) L (-5N +2N,) % —~ (3N - AR

H(ENESN)L 4 (SN EN) L + (AN + i) 8

Va2 (BN-EN)T 0 (BV-3N)E 0 - (SN +IN)L

Table 2.16: (Continued) Two loop pole contributions for the v# ® ~,, four-quark type
diagrams in fig.(2.5), in the HV scheme. For each diagram is given: the multiplicity
(M), the value of the bare diagram (G'®), the value of the v* ® 5,,-type counter-
diagram (Gcr), the value of the evanescent operators counter-diagram (G'5))) and the
value of the renormalized diagram (G'™). All the results are not comprehensive of the
multiplicity.
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diagram M G Ger GED G
o2 (EeRy) (Fe) - (SRR
o2 () (G- b (aded
o2 (ae®) (#+Y) - (1Y)
vooe (- S
oo (- - - (=
o2 (= S
Moo 4 (sEesl)  (Fed) - (R
Vo4 (3-8 (a3 - (e
e 4 (38 0 (@Fey) - (E-7
Moo 4 (3E-3) (F-i) - (i)
Va4 (Eein) (Fed) - (GiE-i)
e 4 (Sh-3) 0 ((a-%) - (E+Y)
Vo 4 (3x-i) (F-i) b (Eoi
v (H3E-R) (CE-n) - (GE-E
Ve 4 (Aem) (FeE) (-3
Ve 4 (%) (Fr¥) - (-
Vo 4 (E-D) (F-D) b (B
oo (3o (E-¥) - G
Ve 1 (F+3) 0 (e - &
[ S C ) B R
e ot (#xw) (B4Y) - d

Table 2.17: Two loop pole contributions for the v/ ® v,z four-quark type diagrams in
fig.(2.5), in the HV scheme.(Continue)
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diagram M G Ger GEY G'H
Ve o4 (3o a-3) - (E+i)
e 4 (1 Ers) - (a3
v 4 Caof) (ol o (5
Ve 4 - - - -
Ve 2 (8BN-1IN)1 (ev-4n)t —  (-EN+1IN)E
Vw2 (CENHEN)D (SSN4EN)E - (SEN AN
Va2 SN-N,) & (5N —2N,) L - (-iN+N) %

+ (BN - 2N L (2NNt +N¢

Table 2.17: (Continued) Two loop pole contributions for the v* ® v, four-quark type
diagrams in fig.(2.5), in the HV scheme. For each diagram is given: the multiplicity
(M), the value of the bare diagram (G'®), the value of the v* ® 7,,-type counter-
diagram (Gcr), the value of the evanescent operators counter-diagram (G{Z'") and the
value of the renormalized diagram (G‘®). All the results are not comprehensive of the
multiplicity.
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diagram G Ger GV GR
n (;g:r%fl_zé_sl) (_%-_gi_u_u) _ (-4 H %1_61)
P, Jma sl s 081 _ w1, 51
P, §9_1; 4 1) (_gl_g% _2_1_’99.61) — (_?5;; _227261)
Py 13 E;g (cp-m) - (Caiow)
R S I S C )
B (Ees)  (E-®) 0 - (Hak
Po (== -ve (%D - (FE-31) v+
OGRS = - (2)-1A
Puo (Fxy)omve o (cE-RYow - (SEE i) Dvs
(2) LA - - (2)-1a
Pa (A (CRE-gY) 0 - (SE+d
Py (F+E) e (a3 Wk - (SAE+5) v+
~F-3)na (d+Y)rA - (F-5i) A
P (-3-%1) v+ (F+9).w+ - (323 -Ive
(-3-31)-1a  (F+2)1a - (B-3i)1a

Table 2.18: Two loop pole contributions for the P-type penguin diagrams in fig.(2.6),
when a 7*®7,,, structure is inserted in the upper vertex. For each diagram is given: the
value of the bare diagram (G'®), the value of the counter-diagrams (G¢y), the value of
the evanescent operators counter-diagrams (G'Z})) and the value of the renormalized
diagram (G‘™). All the results are comprehensive of the multiplicity. All penguin
diagrams have a 7* ® v, structure, except Piy, P11, P14 and Pys, for which we explicitly
give the 7* ® v, (LV) and the v* ® v,v, (LA) part. For P, and Fs both the normal
Feynman gauge and the background gauge results are reported. Diagrams Fs, F7 and
Fy, are not included, because their simple pole coeflicient is zero and they do not
contribute to the two-loop anomalous dimension.
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diagram G© Ger GLE) ety
B (mEos) Ee) o G0
201 41 21 221
F gisuf—e ~§ Eﬂ;——a— +—g D (=¥ —3
Fle —221 3051 441 g% _ gze% %%
1;6 §9_1; n 61Y (_91,_5;_ 'uu) _ (fg%i 21)
O S R R o
B (-3 -2 Ba+oy 3 (13-
Fy (35 +3%) (-2 -2y - (-2 +22)
€2 € 9e € el €
Foo (-3-0) v @ag)-v - (GFE-4) v
~3).LA - - ~3).1A
Fyy (e%<+7§-)) W+ (-E-BYw - <~—(— fr)—;s) IV+
—3). LA _ _ —3}.LA
Py ((—4)— ) (¥i-3) - by
P (3450w (-2-21 v -~ (-25+38).Lvy
(-2-2Y) .18 (3+2)1a - (3-11).14
Fio (-3 -%1) W+ (F+2)-vr - (3341 .Tv+
(-2-31) .14 (3+2).1a - (2-11).14

Table 2.19: Two loop pole contributions for the F-type penguin diagrams in fig.(2.6),
when a v} ®7,r structure is inserted in the upper vertex. For each diagram is given: the
value of the bare diagram (G'*’), the value of the counter-diagrams (G, ), the value of
the evanescent operators counter-diagrams (G{£)) and the value of the renormalized
diagram (G'®). All the results are comprehensive of the multiplicity. All penguin
diagrams have a 72 ® vy, structure, except Fig, Fi;, F14 and Fy;, for which we explicitly
give the v ® v, (LV) and the v* ® 4,7; (LA) part. For Fy and Fy both the normal
Feynman gauge and the background gauge results are reported. Diagrams Fs, F; and
Fiy are not included, because their simple pole coefficient is zero and they do not
contribute to the two-loop anomalous dimension.



Chapter 3

Two loop analytic calculation:
methods and results

The determination of the initial conditions for the Coeflicient Function and the operator
mixing via QCD and QED radiative corrections have been discussed in detail in the
previous chapter. As a final application, the two loop anomalous dimension matrices

%/(:) and fiyil) for vertex+penguin operators have been given.

Each two-loop diagram can be thought as composed by the integration over loop-
momenta plus the Dirac structure. In order to get rid of the singularities in the
momentum-integration we need to regularize the theory and the choice of the reg-
ularization scheme influences the Dirac algebra. The regularization procedure may
introduce new unphysical operators. These unphysical operators are an artifact of the
regularization procedure and disappear in the final physical matrix which governs the
evolution of the coefficient of the OPE. However, in the intermediate steps of the cal-
culation their mixing with the operators of the {O;}, ., basis has to be taken into
account. To fix the ideas we will work with different schemes of Dimensional Regular-
ization. In this case several operators which arise in N > 4 dimensions are present.
We will denote them as “evanescent” operators.

The aim of the present chapter is to explain in detail the analytic aspects of the
calculation. We will emphasize the following aspects:

e choice of the regularization scheme;

presence of evanescent operators and mixing with the 4-dimensional ones;

choice of the subtraction scheme and counterterms in presence of
(N —4)-dimensional operators;

IR regularization, external momenta, masses, etc.;

e gauge choice and independence of the final result from this choice;

91
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o on-shell or off-shell basis;

e results and comments.

The context of the present chapter is not essential to the understanding of the
structure of the final matrices and for this reason 3" and " have been given in the
previous chapter. Nevertheless the points mentioned before are very important from
a technical point of view, and we report them in order to make the calculation more
explicit and available for future comparisons or implementations.

3.1 Regularization schemes and N-dimensional
extension of the operator basis

We have to regularize the UV (and eventually IR) divergencies of the theory. With
the choice of Dimensional Regularization, i.e. by working in N = (4—2¢) dimensions
and one immediately finds inconsistencies in the algebra of the v-matrices. In a theory
with fermion field and spinor structures, odd parity fermion loops, as for instance
Tr(¥sYu7.7,Y-), ate not well-defined in N-dim. Three schemes to handle the algebra
of y-matrices are very often quoted in literature : Naive Dimensional Regularization
(NDR), Dimensional Reduction (DRED) and t’Hooft-Veltman (HV) regularization. We
have decided to perform the calculation in the HV scheme, because of it is theoretically
well-founded (the calculation in NDR, as a check of the results, will be done in a
separate study). In any case we will list the peculiar features of both the NDR and
HV schemes.

1. Nawe Dimensional Regularization (NDR)

In NDR v-matrices are N-dimensional and only the N-dimensional metric tensor
is introduced, following the convention:

G =Guu > 909, =g., g'=N, Tr(l)=4 (3.1)

The N-dimensional Dirac matrices obey the usual algebra:

{701} = 29, (3.2)

and 7, is taken to be anticommuting with the whole algebra, as if the v’s were
4-dimensional:

{77} =0 (3.3)

It si precisely here that the previous +;-ambiguity arises and the scheme fails
to reproduce, fi., the axial anomaly. Nevertheless it is maybe the most used
scheme in literature and non rigorous proofs exist of its compatibility with more
consistent and well-defined prescriptions.
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2. t’Hooft-Veltman Regularization (HV)

With respect to NDR and DRED, the HV regularization scheme has a more
solid theoretical background and has been proved not to reproduce ambiguities
or inconsistencies in the y-algebra [3, 11, 54]. The fundamental assumption is
that the N-dimensional y-matrices v* are considered as the sum of two terms, a
4-dimensional one 4* and a (N —4)-dimensional one 4*, i.e.:

7=+ A (3.4)

and different algebraic properties with respect to <, are assumed for the 4-dim.
and for the (—2¢)-dim. algebras. In both sector the usual Dirac algebra holds
and two metric tensor are introduced, the 4-dim. one §,, and the (—2¢)-dim. one
o

{i/n’:)/U} = 20 {’?u”‘yu} =20 {’A)'u:’?v} =0 (35)

with the following “mixed” contraction properties:
g;’f =4 ) gﬁ = —2¢ 3 gzgpv =0 (36)

and
9090 =9, + 9.9, =4, (3.7)
With respect to «;, the 4-dim. algebra anticommutes, while the (—2¢)-dim. one
commutes, i.e.:
{fw1:1 =0, Hu¥s] =0 (3.8)
The rigorousness of the method is precisely due to the splitting of the algebra and
the price to be paid for that is a less straightforward analytic implementation of
the algebra, due to the breaking of N-dim Lorentz invariance. Omne has to pay

much more attention when dealing with some algebraic manipulation program,
in order to clearly specify the right range for each index saturated on a y-matrix.

A convenient assumption is to take, on one hand, 4-dim. external momenta but
N-dim. loop momenta. On the other hand we will consider the renormalization
of operators made by 4-dim. v’s, i.e.:

:/#(1"75)@'7;:(1“75) or 7(1=7)®7.(1+7s) (3.9)

In order to fulfill this property, we have adopted the notation originally proposed
in ref. [13] and write the weak vertex as:

R (=) © (Lt w1 —3) (3.10)

and analogously for the v# ® v, case.

Both NDR and HV schemes provides some rules to handle, with or without
inconsistencies, the problem of Dirac algebra in N-dimension. When we extend the
usual 4-dim. basis of operators to the N-dimensional case many more independent
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operators appear. They are operators which leave in (/N —4)-dimensions and make
sense only in the N-dimensional extension of the theory. The problem however seems
to be much more complicated than in the case of the usual 4-dim. algebra. Indeed,
in the 4-dim. case we can easily construct a basis for the v-algebra, by identifying
the sixteen independent antisymmetrized products out of the elements of the algebra.
On the other hand in the N-dimensional case there exists an infinite number of such
antisymmetrized products and an infinite number of independent operator seems to be
required. Nevertheless the operator product expansion is still possible and we can get
rid of such (—2¢)-dimensional operators as we will explain in the following.

The (—2¢)-dimensional operators are not present in the 4-dim. theory, i.e. we
can image that they are somehow projected away at the end of the renormalization
procedure. We can even take this as a definition of the “evanescent” operators, requir-
ing their projection to the 4-dim. space to be exactly zero [13]. Either they are Y- type
structures or they are O(¢) contributions. In the former case they do not exist at all in
the 4-dim. theory, in the latter case either they go to zero in the € = 0 limit or they can
be reabsorbed in some finite parts of the 4-dim. operators. With this definition, we see
that the calculation of the one-loop anomalous dimension will not be affected by the
presence of evanescent operators, but they will be present in the two-loop calculation.
Indeed, also if they do not appear by definition in the final result, their contribution
appears at one-loop and, by insertion in a two-loop counter-diagram, this can modify
the pole coefficient of the final two-loop result. More details will be given in section
(3.2), when dealing with the construction of the counterterms.

3.2 Renormalization and counterterms in
N-dimensions

In the HV or NDR regularization schemes we can succeed in computing the singular
terms of each two-loop diagram. The next step will be to chose a renormalization
prescription. We have chosen the modified minimal subtraction (MS) prescription, i.e.
each counterterm will subtract only the pole part (i.e. the O(1/€) part) of the corre-
sponding one-loop sub-diagram. Nevertheless the presence of evanescent “unphysical”
operator adds some new features to the subtraction procedure.

To fix the ideas, let us denote the basis of the bare operators as {0}, 10 and
the basis of the renormalized ones as {O:}i=.....0. The relation between renormalized
and bare operators is given through the operator renormalization constant (a matrix
in the case of a multi-operator basis):

O: = (13"),,0 3.11
9] 7

The computation consists in evaluating all the renormalized one-loop and two-loop
diagrams in fig.(2.4)-(2.7) for the subtracted four-quark Green functions with the in-
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sertion of the operators {O;}.-, . 1. In the same_‘formaﬁsm, we will denote! by Fflo)(d)

the bare four-quark Green function and by I',(O) the renormalized one. The relation
between bare and renormalized Green function is given by:

I,(0) =23 12T"(0) (3.12)
where 7, denotes the wave function renormalization function, obtained up to the two-
loop level by computing the diagrams in fig.(2.8) and defined as the relation between
bare and renormalized quark wave function:

W = 1,11 (3.13)
Defining the Anomalous Dimension Matrix for the four-quark Green function to be:
. 5 - 0=
Y=p—InZ =2"—1 3.14
¥ =pp,n 5 (3.14)

the Anomalous Dimension Matrix for the operators in O will be obtained by adding
the wave function contribution:

Fo =4+ 27 (3.15)

The self-energy contribution can be read off Table (2.15) and will be added at the end
as: 27, - | where | denotes the unit matrix in the operator vector space. By the way,
we note here that in computing ¥ = 4 — 27; we will have to account for v; in the
same way, i.e. including the wave-function anomalous dimension there too. We will
give v;, the two-loop anomalous dimension, in section 3.3. Indeed, while the one-loop
current anomalous dimension is zero, the two-loop one depends on the regularization
prescription: it vanishes in NDR but not in HV scheme.

For the time being, let us concentrate on 4. We can also rewrite (3.14) as:

B s s o,
7—/-65—#1111—2 (~—€g+ﬂ(9))59Z (3.16)

being g the generic renormalized coupling constant of the theory. It means that the
same general discussion could be applied both to pure QCD and to QCD+QED inter-
actions. Remembering the 3(g) and 4 perturbative expansions in (2.7) and (2.8) and
giving an analogous expansion for the renormalization matrix:

2 4

: g - g .
=1+ 2—7" + ——7® ... 3.17
+ 167 + (16m2)? i (3.17)
from (3.16) we can derive the following relations:
30 = —2¢7M (3.18)

'We introduce the more compact notation O in order to indicate the insertion of a generic operator
of the basis.
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and

S0 = 4dD _ 2570 1 2T (3.19)

Each term in the previous expansion of the renormalization coupling constant is indeed
an expansion in powers of ¢, i.e.:

7AR) L1y AR

10 =3 (E) 74 (3.20)
=0

while the anomalous dimension should be finite. This means that pole contribution

mutually cancel. In particular:

42; + 2b2(1l) _ 22(11)2(11) =0 (3.21)
and we finally explicitly obtain for the two-loop Anomalous Dimension Matrix:
0 =~k 28+ 2B 4 ) (322

Many comments are in order at this point. First of all we see that (") is determined by
only the O(1/€) contributions. This means that we have to consider all the diagrams
contributing to a given order, to renormalize them in the MS scheme as we fixed in the
beginning and to pick out the single pole term.

Nevertheless we would have expected only the two-loop term to appear in (3.22).
This is indeed the case if we suppose that no evanescent operator is present in the
theory. But this would not be correct just in view of the fact that it is precisely the
simple pole contribution the one which gives the anomalous dimension. The presence
of an evanescent operator at one loop certainly gives a zero contribution to the one-
loop anomalous dimension, but, if inserted in a two-loop diagram, it could in principle
contribute to the single pole of the two-loop result. From (3.18), we see that Z(!) is zero
for the physical operators, but not for the evanescent ones. They could be present with
"dressed” finite contribution, that is with O(1) contributions hidden in some simple
pole of a 4-operator structure. Such a structure is indeed something like an O(¢)
contribution, because it vanishes in 4-dim., even though it cannot be eliminated in the
intermediate steps.

All the previous observations are extremely important when we start computing
the one-loop counterterms to be subtracted from the two-loop diagrams. Let us recall
that the general two-loop diagram subtracted of its counterterms will be of the form:

. AW A A(Cf) A(C‘?_)r
G_GCT — (qh)—Ze ( + +> _(qﬁ)—e ( T + : +> (323)

€? € €?

where q is the scale of a given external momentum. Applying the In order to cancel
the dependence on external momentum, the pole coefficients in (3.23) have to satisfy
certain given relations. These relations are obtainable from the Renormalization Group
equation for the renormalized Green function and are summarized by:

AL = 240 (3.24)

CcT

AL = BWB® 4 pB® — b, B
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where B and B correspond to the pole and to the finite part of the unrenormalized
one-loop sub-diagrams; b is the O(a*) coefficient of the 8-function and B{" is defined
give the dependence of B®) from the gauge parameter A:

BO = A%B(O’ (3.25)

The conditions in (3.25) correspond to the cancellation of linear and constant terms in
In(—g¢*/u?) respectively. They have to be verified by each diagram or set of diagrams.

The counterterm diagrams are computed by inserting the pole part of a given
divergent sub-diagram at one-loop in the corresponding two-loop diagram. Evanescent
operators arise at the one-loop level and their pole terms should be accounted for in the
one-loop counterterms. They are identified from the definition of evanescent operator,
as an operator which should disappear by projection on 4-dim. space-time. With this
definition one can select it out of the one-loop result for a given diagram. We will show
by explicit examples that this often has the effect to add a further O(e) contribution to
the single pole contribution of the physical operator (i.e. a globally finite contribution).

Our strategy will be as follows: first we will pick out the one-loop counterterms
needed in the renormalization of the theory at NLO. Then we will consider case by case
the possible presence of evanescent operators. Finally, we will give the prescription we
have used to account for the counterterms.

In order to identify the one-loop counterterms to be inserted in the theory, let
us think to the structure of the composite operators of dimension not greater than six
which could be present [4, 27, 55]. In particular operators with dimension five or less are
not relevant, because either they are magnetic type operators (dim. five) and vanishes
for massless quark, or they are mass-term and elementary vertex operators of which
mass and coupling constant renormalization already take care. The six dimensional
operators of the theory are only of the form:

Yy and $D*D'D" | (3.26)

where the covariant indices can be contracted in many ways giving origin to a complete
off-shell operator basis. This basis is completely equivalent to the on-shell basis we
adopted. Applying the equations of motion and some algebraic manipulation, indeed,
the various terms with covariant derivatives transform in four-fermion or magnetic
type operators. Neglecting the latter for massless quarks, we get the on-shell basis
[32, 33, 20]. Nevertheless, in order to identify the counterterms, it is better to think in

terms of the operators given in (3.26). Up to O(a?) or O(a,a.) (3.26) operators give
origin to three possible effective vertices:

e four-fermion vertex,
e two-fermion and one-gluon(/photon) vertex,

e two-fermion and two-gluon(/one-gluon and one-photon) vertex.
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Figure 3.1: One loop counterterms.

These are the basic one-loop vertices for which we have to compute a counterterm,
looking at the presence of evanescent operator contributions.

1. Four-fermion vertex.

Let us consider the first three diagram in fig.(2.4), in which the wavy line could
be a gluon or a photon. The Dirac structure could be v* ® ,, or v* ® 7,5 and
we have to account for the two different cases.

For both v ® 7., and v% ® v, vertices, after the loop integration but with-
out having performed the Dirac algebra, the three diagrams have the following
analytical structure:

1
G(LL()L.R) - C(I)E (’7#’)’/)]-_‘?)’,:’7# by I‘uL,R + I‘Z ® 7“7pr“l"n7”’y“)
., 1
Gilim = _O(Q)ZE (V7T ® VYo Lurr + Tiv" " @ Tunayy”) - (3.27)
1
G = COr (V7 Th ® Lura¥t + D471 @ 17Tt

(3.28)

where C, C® and C™ are coefficient which summarize the colour/charge de-
pendence of each diagram and can be read in Table(2.2). On the other hand, I'
and I'* denote the weak vertex structure, given in NDR and in HV respectively
by:

v*(1-7,), NDR v*(14+7;), NDR
e =4 't =4 ° .
{ ¥(1-7), HV " Y(1+7), HV (3:29)
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Reducing the v-algebra in (3.28) we can factorize the 4-dim. vertex operator
contribution from the evanescent one. By definition, we assume something to
be evanescent if its projection on the 4-dim. operator is zero. Thus we have to
define a projection too. There is no particular reason for choosing one projector
with respect to the other. Being the physical 4-dim. operators v# ® «,, or
¥ ® v.r, 1t is important only to chose a projector which reproduces v* ® v,
or 7* ® v,r. Then, the final definition of the evanescent operators and the e-
dependent coeflicient of the physical operator will depend on the choice of the
projector itself. Moreover, they will depend on this choice in such a way that the
evanescent part is always projected to zero, rescaling finite terms in the coefficient
of the physical operator. Therefore, depending on the choice of the projection
also the definition of the evanescent counterterms will be modified. The final
result is invariant under any choice of projection, as we explicitly verified. In
particular we will use the following projectors:

o for ! @7, — P =794 ®7Yur
o for v ®Yun — Prrn=(1—7%)® (1+7)

The projection methods is standard: in order to project v# ® v,, with v% ® vy.n
one has to take the following trace:

Pre (’75 ® 7/,;1,) = (3.30)
;6(7#(1—"75))aﬁ(7u(1+75))67(7u(1—75))76(7U(1+75))6a

while in order to project v* ® v,r with (1—7;) ® (1+7s):
Por(7: ® vur) = (3.31)
Z (7”(1_75))043(1_'75)/31(7u(1+75))"/6(1+75)6a

o,f,v,8
When projecting a string of y-matrices or a linear combination of given operators
on 74 ® v, (with 72 ® v,r) or on v* ® v,r (With (1—7,) ® (1+7;)), the values of
the traces in (3.31) and (3.32) are taken as normalization factors.
With this method [13] we obtain the following decomposition for the one-loop
vertex diagrams in (3.28):

1

Gy = Oz (Fithm (€75 @ o + Bl )
1

Gy = O (FRhao(eNtE ® vunn + Bl (8:52)
1

G(La()L,R) - C(a)zl—s— (F&‘L’R)(e)'yf ® Yurr + EYZ)L'R))

where the e-dependent coeflicient are given by:

re=r9 = {078 o (3.33)

{ —4(4—€~¢) NDR

FI(JZL)(E) = ___4(4 — — 62) HV (334)
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and:
Fi)e) = { 4(14&2_?_;)%62) pe (3.35)
Fi)(e) { f(f(f © jfi_)) NHDVR (3.36)
O s (3.37)

On the other hand, EQ?L,R) are the evanescent operator contribution. They are
different diagram by diagram and depend on the v ® 7,,, or ¥* ® v, structure
and on the regularization prescription, i.e. if HV or NDR. In the HV scheme,
the evanescent operators derived from a v* ® v, structure are respectively:

B = R (3.38)
BGIT = R 4 RO 4 R
Eiag(H‘) — R(LaI)I(HV) + R(LCL)I(H()
where:
R(LaIz(H“-) _— —46 (I‘Z ® I‘]JR. + F; ® ]'-‘[.LL) (3-39)
RO = —2(° 797 ® 1747 + 45" ® Y — 49" ® 4u7s)
. 1. .. .
RE™ = 2 @ T — 57T @ D, +

+ (7T ® V4N — VT Y ® VoTuT Vs )

while in the NDR scheme, with respect to the same decomposition we have:

RNDR) g (3.40)
R(Lbl)‘(NDR) = 0

1
REXNPR - = _2eT* QT — 5’?”?"1’2 ® Lt +

+ (VT @ Vv — VYN Y @ Fo1uVeYs)
For the 7 ® 7,r structure on the other hand we have in the HV scheme:

BT = R (3.41)
BT = RO 4 R
B = BG4 RO 4 R
where now:
R = —4e(T; @ T + T4 @ Tup) (3.42)
REX™Y = <2979 © %777 — 44" ® 4w — 451 ® 4u7s)
RS = —2e @ Tun = 334°T% @ Loy +

— (Y ® 11w — VAV Vs ® 145
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and in NDR scheme:
Rvom = g (3.43)

(b} NDR)
RLR

(c}(NDR)
RLR

1, .. ..
= =2l Q@Lur— 57"7‘TZ ® L'urr¥Y, +
— (77" @ A1V — AV T Vs @ AoV Vs )

On one hand, using the projectors defined in (3.31) and (3.32) one can explicitly
verify that the all the evanescent operators in (3.40) and (3.43) for the HV case
or in (3.41) and (3.44) for the NDR case are projected away in 4-dim. On the
other hand, looking at the e-dependent coeflicient in (3.34) and (3.37) one can
realize that the pole coefficient of the physical 4-dim. operator has now acquired
some finite contributions, of the form % - O(e) ~ O(1). This corresponds exactly
to the reshuffling mechanism explained before: the projection of the evanescent
operators is maintained to be zero, whatever the projector, but the coeflicient of

the physical operator get some finite contributions.

We are now ready to define our renormalization procedure for the vertex opera-
tors. We will have two counterterms:

e the counterterm for the insertion of the v# ® 7., or v ® v.r operator;

e the counterterm for the insertion of the evanescent operators.

as shown in fig.(3.1). In both cases, MS tell us to subtract only the pole coefficient.
Thus we use the following algorithm for a generic subtracted two-loop diagram
containing a vertex-type subdiagram:

(D(Ij()L,R)) Sub = ‘D(Li()L,R) - Gg()L,R) : FI(,Z)II;?.)(E)’YZ ® YuL,R + (3'44)

L (au : 1.
+§ (G(L()LYR) . FI(,Z)L—;{)(E)’Yg ® YuL,r — %FIS()L,R)(E:O)')/Z‘ ® 7;1L,R>

which can be better understood from eq.(3.21).

Let us make some comments. The generic diagram D', » appears on the right
hand side in its subtracted form, while on the left hand side in the bare one.
About counterterms, the second and third term on the right hand side should
be interpreted has the insertion of the given expression in a two-loop diagram,
i.e. as the corresponding two-loop counter-diagram. The first subtraction cor-
responds to the pole coefficient of the 7* ® 7,.» operator, without O(e) terms
(this is the reason of the multiplication for Fi; r,(€)). This is true only because
when F ,(J'(),ffq)(e)) multiplies the evanescent operator contribution, no other finite
contribution arises. This first term correspond to the 2(12) contribution in (3.21).
The second subtraction is the evanescent operator counterterm. Its structure is
simply the difference between the counterterm computed in N-dim. and in 4-dim.
It corresponds to the third term in (3.21). Moreover, it is easy to verify that this
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second subtraction term is exactly projected to zero in 4-dim. Finally, the second
term in (3.21), proportional to the B-function coefficient is absent, because Z("
vanishes with our subtraction prescription.

This ends our discussion of the four-fermion vertex counterterms. In Tables
(2.16) and (2.17) we give the value of each two loop counterterm for vertex dia-
grams, specifying also the value of the effervescent operator counterterm whenever
present.

. One-gluon/photon vertex.

The computation of this counterterms will be much easier, due to the absence of
evanescent operator contributions at the one-loop level. We have to isolate the
singular part of penguin diagrams in fig.(2.4). By direct computation one gets

both in the HV and in the NDR scheme:
) 41, u
(Penguln)pole = —5—; (qTf —4q q/L) (345)

where g¢* is the incoming momentum of the gluon/photon (see fig.(3.1)) and I'*
is to be thought in 4-dim. or in N-dim. respectively in the HV or in the NDR
case. It is clear that there is no way to get an evanescent operator out of (3.45).
In the HV scheme, indeed, the algebra is automatically projected in 4-dim by the
structure of the penguin diagram itself, because (3.45) is derived by:

11, _
(Penguin)J e = =77 (¢"7% — ¢°¢) Fuu (3.46)

where the inner structure of the penguin is forced to be in 4-dim.

On the other side also in NDR, one would have:

, 11
(Penguin)i 0 = =97 (475 — ¢"¢) Yau (3.47)

where the N-dim. +} vertex is reproduced multiplied by the pole part in (3.45)
plus some finite part not relevant at all in the MS scheme. Thus, the only penguin
counterterm is the one in (3.45).

. Two-gluon or one-gluon+4one-photon vertex.

The presence of this counterterm is a typical feature of the two-loop calculation.
It is in fact a “penguin-like” contribution and it retains the previous property
not to have evanescent terms at the one-loop level. Referring to fig.(3.1), for k”
and k; incoming momenta, its pole part results to be [58]:

:i( (o= W — (2, + B2 + (ke + 2k)7) (3.48)

Also in this case the y-structure of the vertex is 4-dim. in HV while N-dim.
in NDR and no room is left for evanescent operators. The previous expression
already give the counterterm to be inserted into two-loop counter-diagrams. It
is interesting to note [58] that by applying the equation of motion the previous
structure of the two-gluon penguin-like vertex reduces to a sum over four- quarks
operators.
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3.3 Diagram calculation, methods and results

With definite regularization and renormalization prescriptions, we are now in the con-
dition to give the result for each single diagram. In order to perform the two-loop
diagram calculation some observations are still needed. Let analyze the case of vertex-
type diagrams and penguin-diagrams separately.

1. Vertex-type diagrams.

As we have already stressed in discussing the CF initial conditions, we calculate
the ADM just below the M, -scale, i.e. with all massless quarks. This clearly
greatly simplifies the loop integrations, but in order to avoid IR divergencies
we should chose non zero external momenta whenever necessary. In the case of
vertex-type diagrams we take the same p-momentum for all the external legs.
This is enough to preserve from IR divergencies and p-dependence in the final
result is cancelled by counterterms. The two-loop anomalous dimension for four-
quark operators is known in literature [6, 13]. In reference [6] it is computed in
DRED scheme only while in reference [13] the whole calculation has been checked
in all the three prescriptions: NDR, DRED and HV, proving the equivalence of
the three schemes and thus confirming the previous DRED result. For our aims,
we have checked the HV and NDR results for the v# ® 7,, case and extended the
calculation to the v ® 7,5 case.

The results for vertex diagrams, with both v*®+,, and v# ® v, chiral structures,

are given in Tables (2.16) and (2.17).

2. Penguin diagrams.

In the case of penguin-type diagrams on the other hand it is often necessary to
consider both the incoming gluon/photon and the incoming fermion momenta
different from zero. One can still use the equations of motion [51] in order to
simplify the external-momenta dependence in the calculation. This is connected
to the choice of the operator basis we have already discussed. We have used
the equations of motion because we are interested in physical quantities like the
S-matrix elements, for which the equations of motions can be applied.

To fix the point, consider a diagram like the one reported in detail in fig.(3.2),
where the closed diagram corresponds to P, in our classification. It represents
a typical two-loop correction to a penguin-type vertex. We work both in the
Feynman and in the back-ground gauge [2], in order to verify the transversality
of the penguin vertex, as we will point out later on.

About P,, one might perform the integration retaining all the momenta and the
final result would be of the form:

Gr d k d"l Np,
Gy = — - 2 3.4
P2 V2 Creey / (2m)" / (2m)" Ap, (3.49)
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Figure 3.2: Momentum-structure of the P, penguin diagram.

where k and [ are the loop momenta and .., is a coefficient which accounts for
all the charges and/or colour dependences. Np, and P, gives the numerator and
the denominator of the integrand and are explicitly given by:

Ne, = iR + VK7W =D (=7 = ). (3.50)
Pr, = K (k+q)'(k-1)T(p+1)

Introducing Feynman parameters and performing the first integration over [, the

integral in (3.49) becomes of the form:

1 1 1 1
Gp, = F.o -T(3+ e)/ dez™(1 — m)““‘/ dy/ dtt‘“/ dvv© -
0 0 0 0

dnK’ G(E,y,t,vypy%K)
/ o e (3.51)

where F|. ., is now a coeflicient which summarizes the original Ci...) and all other
terms deriving from the integration procedure. Big-K is the shifted loop momen-
tum corresponding to small-k, i.e.:

K" = k" + ytvp* + (1 — t)¢* (3.52)

and {) is given by:

1— \
Q=— [tvy ( . oy _ ytv> P —t(1—t)g® —2ytv(l—t)p-q (3.53)
Finally, G(z,y,t,v,p,q, K) gives the numerator expression after the introduction
of the Feynman parameters and the shifts on the integration variables. This G-
function and the Q-part in the denominator give the dependence on the external
momenta in the final result.

In the case of diagrams P,, we have to subtract two counter-diagrams: one for the
four-quark vertex subdiagram and an other for the two-gluons (or one gluon+one
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photon) subdiagram. They are easily obtainable from section 3.2 and the relative
tables of results. The main feature of this subtraction is that all the dependence
on logarithms of the external momenta cancels and the relation between the
double pole of the bare diagram and of the counter-diagrams (sum of) is fulfilled.

The final result for the subtracted diagram is of the form:
aVgtyy + aPgde + olVpt s + oV gl + P (3.54)

where the al?)’s are the coefficients of each tensorial structure j in the result for
the diagram i. When saturating with the lower leg some dot-product appears.
Using the equations of motion one could put:

(8]

p’ =0 and p-qz%- (3.55)
greatly simplifying the previous expression and obtaining a results expressed only
in terms of ¢° and ¢*¢,. The same result could also have been obtained using
on-shell external momenta from the beginning, provided no IR divergencies arise.
This would have meant to use (3.55) in (3.53),factorizing the ¢’-dependence in
the integration. Clearly in this way it would not have been possible anymore to
verify the correct cancellation between the bare diagram and the counter-diagram
with respect to logarithms of the external momenta. In non-ambiguous cases this

cancellation have been really helpful as a check of the calculation.

Finally we should note that in all this game, the only stable coeflicient is a!') i.e.
the coefficient of the ¢y tensorial structure. Thus, in the final bookkeeping of
the results, we will give for each diagram the ") coefficient.

Applying the equations of motion and reducing the result in terms of ¢° and
g*q, only, the transversality of the penguin diagram vertex is verified by single
diagrams or set of gauge invariant diagrams. To accomplish this task we have
performed our calculation in the back-ground gauge too and we have finally
verified the gauge invariance of the results. In practice, the only gauge-dependent
diagrams are P,, P, and P,. Being P; not 1PI (One-Particle Irreducible) it will
not be considered and the only gauge dependence is left in P, and F;. For these
two diagrams we will give both the results (F and BG).

More in detail the subset of diagrams which explicitly verify the transversality
condition are:
e (P,+ P,) and (P, + P,) separately, because the colour coefficient of P, makes
it combining both with P, and with P;
e P, by itself;
o (P, + P,) and (P, + P,) separately, always due to colour coeflicients;
e P, by itself.
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where the notation is the same used in the Table compilation.

All the results for two-loop penguin diagrams® are given in Tables (2.18)-(2.19).

There we specify for each diagram: the bare result (pole contributions only), the
counterterms (both the 4-dim. and the evanescent one) and the subtracted result
(always pole contributions). Moreover we note that:

® v/ ® v.r P-penguin diagrams are always zero, because the chiral structure
of the weak vertex is incompatible with the - structure of the upper quark-
line;

® v/ ®~,, F-penguin and P-penguins give the same result, due to Fierz sym-
metry.

Thus, for penguin diagrams we will report two Tables only: one common table for
the v} ® 7,. penguins and one Table for the v ® v, F-penguins.All the results
are given in Tables (2.18) and (2.19).

2We neglect diagrams which are not 1PI or diagrams whose single pole is zero, i.e. P;, P, and P,,.



Chapter 4

Numerical results for AB=1 and
AS=1 Effective Hamiltonians
beyond the Leading Order.

In this chapter the explicit expression for AB =1 and AS =1 Effective Hamiltonian
will be given, considering the two different cases:

e only NLO pure QCD corrections are taken into account;

o both NLO QCD and LO QED corrections are considered.

The general expression for the tree level AF =1 Hamiltonian has been give in section

2.2.1:
HOA= =3, 4 H, = A;j—;; (1= 7) (0D — O©) £ 7 (O — O] (4.1)

where in the AS=1 case:

* \/:s\/fd
Ai - \/is\/fd ) T = —\/us\/Ud (4-2)
while in the AB =1 case, for a B, meson:
ViV,
VIRV — bt 4.3
AI \/,b\/ld b T V:b\/ud ( )

and the generalization to the B, meson case is obvious. The tree level four-quark
operator is respectively given by:

O% = (5¢;)v-1)(Gid)(r-ay for AS=1 decays
O = (bgi)or—u(§id)-—y for AB,=1 decays (4:4)
O:(!O)Qi — (B

107
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From Chapt.2 and Chapt.3 we know how to derive from (4.1) the expression of the
AB =1 and AS =1 Effective Hamiltonian taking into account QCD corrections at
NLO and electro-weak corrections at LO. This means that at any scale p (in particular:
p=m, and p=m.) we know:

(i) the set of operators present in the Effective Hamiltonian at that scale {O;(x)};
(ii) the initial conditions for the evolution of the correspondent Wilson coefficients;

(iii) the evolution matrix to be used in order to derive the expression of the Wilson
coefficients at the given scale p.

AB=1 and AS =1 decays will be studied in sections 4.1 and 4.2 respectively. Both
in the AB =1 and in the AS =1 case, we will give two series of Tables, for barred
and unbarred Wilson coefficients respectively. Indeed, the authors of ref. [15] observed
that the expression:

AT 4 VO (4.5)

in the evolution equation (2.48) is renormalization scheme independent. In order to
write (2.48) in terms of this particular combination of the # and V) matrices, they
shifted both the Wilson coefficients and the operators in the Effective Hamiltonian by
7, defining the barred quantities:

Op) = [n - %r] O(n) and C(p) = [H “’(”)ﬂ} G(u) (4.6)

in such a way that:

Hos = £0)C() = S0 ()Gl (4.7)

They obtained in this way a renormalization scheme independent evolution equation,
which however depends on the choice of the external states. Indeed, V() does not
depend on the choice of the external momenta, while 7 does. This dependence cancels
in the combination?:

) _ AT ) (4.8)

and the final evolution equation is independent of the choice of the external states. In
this way the matching with the non-perturbative calculation of the matrix elements
will be easier, because it will be not necessary to specify the details of the analytic
calculation. The perturbative and the non-perturbative calculation will be completely
independent and we only require their matching at a give scale.

Thus we will report, for each set of Wilson coefficients C (1), in different Tables:

!This is indeed the one-loop term in the coefficient function expression (2.47), where the dependence
on the external states cancels in the matching between the full and the effective theory.
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e the barred C_"(/,L) values, in presence of NLO QCD corrections only, in order to
compare our results with those of ref. [15]. In particular, we will use the same 7
matrix, in the HV scheme:

7T =5 0 0 0 0
<S— 27 9 27 .9 1,
i 0 0 —-5+2%N, T—2N, N, ~3N, (4.9)
0 0 0 0 3 7
0 0 2N, -IN, 1+ZN, 21-3N,

Had we computed our own 7., matrix, with our external state convention, a
different result would be obtained and no meaningful comparison with ref. [15]
would be possible. possible meaningful comparison.

e the unbarred ¢ Wilson coefficients, with no #7-shift, both in the case of NLO
pure QCD corrections and in the case of QED+QCD corrections.

The numerical implementation of the NLO results for the AF' =1 Effective Hamil-
tonian involves many other technical points. For instance, the correct implementation
of mass thresholds present in the evolution is necessary. Indeed, the evolution of the
Wilson coefficients of the Effective Hamiltonian from the initial scale p = M, to a
general lower scale p = p, might cross one or more thresholds. In crossing a mass
threshold, we switch between two different Effective Theories, corresponding to NN,
and (N,—1) flavours. Many quantities in our evolution prescription are N,-dependent
and one has to require that they correctly match at the threshold. We remember that
a NLO calculation requires a NLO matching at each threshold. Some more comments
will be present in the following sectiomns.

Finally, the last section will contain an updated analysis of CP-violation (and
quark-mixing) on the basis of the new AS =1 Hamiltonian. The analysis will repro-
duce a set of figures given originally in ref. [43] where the LO QCD+QED Effective
Hamiltonian was used. Now we are in the condition to improve it including the NLO
of strong interactions.

4.1 AB=1 Effective Hamiltonian beyond the
Leading Order

When we consider AB =1 weak non-leptonic decays, (4.1) has to be evolved to a scale
p=m,. We have seen that at p=m, the H): part of the Effective Hamiltonian in
(4.1) follows the usual four-fermion operator renormalization, while in the {7} part the
explicit dependence on the t-quark is dropped and penguins operators are generated,

due to the failure of the GIM mechanism (breaking of the isospin in the mass spectrum).
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A + C"l 62 @—3 —a-& —65 C"G

lo. 0.15 -0.237 1.102 0.011 -0.024 0.007 -0.030
(nl)s 0.15 -0.254 1.112 0.013 -0.030 0.009 -0.036

Lo. 0.20 -0.255 1.111 0.011 -0.026 0.008 -0.032
(nl.)s 0.20 -0.274 1.123 0.014 -0.032 0.009 -0.039

Lo. 0.26 -0.271 1.119 0.012 -0.028 0.008 -0.034
(nl.)s 0.25 -0.292 1.133 0.015 -0.034 0.010 -0.042

Lo. 0.30 -0.285 1.127 0.013 -0.029 0.008 -0.037
(nl)s 0.30 -0.309 1.143 0.016 -0.036 0.010 -0.045

Lo. 0.35 -0.299 1.134 0.014 -0.030 0.009 -0.039
(nl)s 0.35 -0.325 1.152 0.017 -0.038 0.011 -0.047

Lo. 0.40 -0.312 1.141 0.014 -0.031 0.009 -0.041
(nl.)s 040 -0.340 1.161 0.018 -0.040 0.011 -0.050

Table 4.1: C,(p),...,Cs(p) Wilson coeficients for the AB =1 Effective Hamiltonian
at p=m,=4.8 GeV: LO and NLO results with QCD corrections only.

Thus the Effective Hamiltonian evolved to g =m, will be of the form:

e = S o+ owon + (4.10)

A (0.00: + C:(1)05) + 160, |

where the first two terms represent the evolution of the four-quark vertex operators
and the last one the new contribution due to penguin operators. The sum over penguin
operators will run from 3 to 6 in presence of only QCD penguin operators or from 3 to
10 when also QED penguin opertors are taken into account.

The Wilson coeflicients at scale y=m, are obtained as:
C—;(mb) = E;,(m;n ]1/[“-')6_;(11/_[“:) (4:.11)

where C_"(]lflw-) are the initial conditions given in (2.100) and E,(mb, M,y ) is the evolution
matrix derived in section 2.1, defined in a N, =5 Effective Theory. The case of the
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A. 4 C 1 Cg C’;} 04 C& OG

Lo. 0.15 -0.237 1.102 0.011 -0.024 0.007 -0.030
(n.l)s 0.15 -0.159 1.994 0.008 -0.021 0.007 -0.022
(nl)sys 0.15 -0.160 1.002 0.008 -0.021 0007 -0.022

lL.o. 0.20 -0.255 1.111 0.011 -0.026 0.008 -0.032
(n.l)s 0.20 -0.170 0.994 0.009 -0.022 0.007 -0.024
(nl)sp 0.20 -0.171 1119 0.012 -0.028 0.008 -0.035

lLo. 0.25 -0.271 1.119 0.012 -0.028 0.008 -0.035
(n.1.)s 0.25 -0.179 0.993 0.009 -0.023 0.007 -0.026
(nl)ers 0.25 -0.180 1.002 0.010 -0.023 0.007 -0.026

Lo. 0.30 -0.285 1.127 0.013 -0.029 0.008 -0.037
(nl)s 0.30 -0.188 0.993 0.010 -0.024 0.008 -0.027
(nl)syz 0.30 -0.189 1.002 0.010 -0.025 0.008 -0.027

lo. 0.35 -0.299 1.134 0.014 -0.030 0.009 -0.039
(nl)s 0.35 -0.196 0.993 0.011 -0.025 0.008 -0.028
(nl)syp 0.35 -0.197 1.002 0.011 -0.026 0.008 -0.029

lLo. 0.40 -0.312 1.141 0.014 -0.031 0.009 -0.041
(n.l)s 0.40 -0.204 0.993 0.011 -0.026 0.008 -0.029
(nl)syz 0.4 -0.201 1.002 0.011 -0.027 0.008 -0.030

Table 4.2: C,(pt),.-.,Cs(p) Wilson coeficients for the AB =1 Effective Hamiltonian
at p=m,=4.8 GeV: LO and NLO results with QCD and QCD+QED corrections.
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A»& CT Oa Cg Cm

0.15 —5.48.107° 1.40-10"* —-9.45.107% 1.69-1073
0.20 —4.47.107% 1.53-10"* -9.59.1073 1.81.1073
0.25 —3.97-10"° 1.64-10"* —9.64-10"% 1.90-1073
0.30 —-3.34.10"% 1.74.-107* —-9.68-10% 2.00-107°
035 —2.74.107° 1.84.10"* -9.72-10"% 2.10-1073
0.40 -2.19-10"5 1.94-107* -9.75.1073 2.18-1073

Table 4.3: C:(p),...,C,(p) Wilson coefficients for the AB =1 Effective Hamiltonian
at p=m,=4.8 GeV: NLO results with QCD+QED corrections.

AB =1 Hamiltonian is quite simple, because the evolution goes only from p= M, to
p=m, without crossing any mass threshold. No product of different evolution matrices
is present and the perturbative theory is consistent as it is.

We give our numerical results in Tables (4.1),(4.2) and (4.3) for the “barred” and
“unbarred” cases respectively. In order to have a direct comparison with the result
given in ref. [15], we have used: M, = 81 GeV, m, = 150 GeV and m, = 4.8 GeV.
Indeed, there is no reason to vary m,, because the result is very weakly dependent on
it. The impact of NLO corrections either in the presence of QED corrections or not
is more relevant for the penguin sector than for the vertex-operator sector. This has
important consequences in the study of the asymmetries of the B-system, as explained
in section 1.1. Among the AB=1 weak non-leptonic decays, the penguin-type decays
are enhanced and this will be a very interesting field to be investigated.

4.2 AS=1 Effective Hamiltonian beyond the
Leading Order

The H{; part of the Effective Hamiltonian generates penguin operators below the M,
threshold and evolve as in the AB =1 case till x=m,. Then the evolution of the present
operators is performed as in the first region (from M, to m,), but in different Effective
Theories: with N, =4 from p=m, to g=m, and with N, =3 for 4 < m.. On the other
hand, the H!* part of the Effective Hamiltonian does not generate new operators till
the charm threshold. Below m,. again the GIM mechanism of the N, = 4 Effective
Theory fails and penguin operators are generated. The detailed initial conditions and
operator mixing are discussed in sections 2.2.2 and 2.2.3. It is better to distinguish the

evolution of H{?! and H{?¢, introducing two different sets of Wilson coeflicients, z; and
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v;, defined as follows:
(00 — 0Py — F(p)O"(p) = 3 2(p)0:(p) (4.12)

(00 — 09) — #(u)0" () = 3 vi(p)O:(1)

with z(u) and v(p) given by:

Z(p) = ﬁ:?a(#,mc)?(mc) ﬂ ) (4.13)
77(#) - E3(/‘L7mc)[E4(mc7mb)[E5(mb7A/‘[“')C(]VI“") (414)
(4.15)

C(.M“) and C—"( .) are given in (2.100) and (2.111) respectively. E (g, me), E,(m.,m,)
and E, s(m.s, Myy) are the flavour-dependent evolution matrices. In the product of dif-
ferent evolution matrices many terms of higher order in «a, and ¢, are generated. In
principle we could also consider them as negligible higher order contributions, always
present in a truncated perturbative expansion. On the other hand, the optimization
of the numerical program require their elimination and our program account for that.

We maintain here the same notation of ref. [15] in order to make the numerical
comparison as easier as possible. Thus we will rewrite the Effective Hamiltonian in the
following form:

HAS=

= Z MEXEAD) (4.16)

where the {y.(¢)} are only a linear comblnatlon of the previous coeflicient, i.e.:

yi(ll') = Ui(/-L) — Zi(#) (4.17)

We observe that, since the evolution for #(p) and 9(p) is governed by the same matrix,
Eo(g,m.), for p < m, the first two components of the g(x) will be always zero.

The value of the AS = 1 Wilson coefficients, a part from the Al.,, strongly
depends on g and m,. In this section we will analyze the py-dependence of the NLO
Wilson coefficients, both in the case of QCD and of QCD+QED corrections. In the
next section, on the other hand, for fixed p we will study the m,-dependence of the
NLO coefficients. This dependence will be evident in the analysis of CP-violation at
different values of m, and it is summarized in Table (4.22) for p = 2. GeV

In the present numerical analysis we have used: M, =81 GeV, m, =150 GeV
and m, = 1.35 GeV. The numerical results are reported in Tables (4.4)-(4.21), where
the same logic of section 4.1 is followed. There are two principal sets of Tables: for
#(p) and y(p)coefficient respectively. Then, for each set of coefficients we give, at scales

p=1 GeV,p =08 GeVand p = 0.6 GeV:

e a Table of barred coefficients, with only LO and NLO QCD results, for comparison
with ref. [15];
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A, Z Z, Z, z, Z, Zs

Lo. 0.15 -0.521 1.268 0.003 -0.007 0.002 -0.008
(nl)s 0.15 -0.581 1.313 0.010 -0.026 0.008 -0.027

Lo. 0.20 -0.584 1.311 0.003 -0.009 0.003 -0.009
(nl)s 0.20 -0.675 1.378 0.012 -0.031 0.009 -0.033

lLo. 0.25 -0.647 1.354 0.004 -0.010 0.003 -0.011
(nl)s 025 -0.778 1.453 0.016 -0.038 0.011 -0.041

Lo. 0.30 -0.711 1.399 0.005 -0.012 0.004 -0.013
(nl)s 0.30 -0.897 1.543 0.020 -0.047 0.013 -0.051

lL.o. 0.35 -0.777 1.448 0.005 -0.014 0.005 -0.015
(nl.)s 0.35 -1.042 1.655 0.026 -0.058 0.015 -0.064

lo.  0.40 -0.849 1.501 0.006 -0.017 0.005 -0.018
(nl)s 0.40 -1.224 1.800 0.034 -0.073 0.017 -0.082

Table 4.4: z,(p),...,2(p) Wilson coeflicients for the AS=1 Effective Hamiltonian at
p=1.0 GeV, for m, =150 GeV: LO and NLO results with QCD corrections only.
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A4 Zy Zy Z3 2y Zy Zg
l.o. 0.15 -0.521 1.268 0.003 -0.007 0.002 -0.008
(n.l.)s 0.15 -0.360 1.055 0.003 -0.008 0.002 -0.008
(n.l.)5+E 0.15 -0.365 1.071 0.003 -0.009 0.002 -0.008
l.o. 0.20 -0.584 1.311 0.003 -0.009 0.003 -0.009
(n.l.)s 0.20 -0.399 1.060 0.004 -0.010 0.003 -0.010
(n.l.)s+E 0.20 -0.405 1.076 0.004 -0.011 0.003 -0.010
l.o. 025 -0.647 1.354 0.004 -0.010 0.003 -0.011
(n.l.)s 0.95 -0.436 1.064 0.005 -0.013 0.003 -0.012
(n.l.)5+3 0.25 -0.443 1.080 0.005 -0.013 0.003 -0.018
l.o. 0.30 -0.711 1.399 0.005 -0.012 0.004 -0.013
(n.l)s 0.30 -0.473 1.064 0.007 -0.016 0.004 -0.014
(Il.l.)5+E 0.30 -0.480 1.082 0.007 -0.016 0.004 -0.014
l.o. 0.35 -0.777 1.448 0.005 -0.014 0.005 -0.015
(n.l.)s 0.35 -0.509 1.060 0.009 -0.019 0.004 -0.017
(Il.l.)SH; 0.35 -0.517 1.079 0.009 -0.019 0.004 -0.017
L.o. 0.40 -0.849 1.501 0.006 -0.017 0.005 -0.018
(n.l.)s 0.40 -0.542 1.048 0.012 -0.024 0.004 -0.021
(n.l.)5+E 0.40 -0.552 1.068 0.012 -0.024 0.004 -0.021

Table 4.5: z,(p),...,
at p=1.0 GeV, for m, =150 GeV:

corrections.

zs(p) Wilson

115

coefficients for the AS = 1 Effective Hamiltonian
LO and NLO results with QCD and QCD+QED
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A, 27 Zg Zg 210

0.15 0.35-10"° 0.21-107% 0.49-10~° —0.20-107°
020 1.91-1075 0.33-107° 2.13-107° —0.31-103
0.25 3.64-107° 0.49-10"° 3.96-107° —0.46-10"°
0.30 5.61-107% 0.73.107° 6.08-10"% —0.67-103
0.35 7.90-10"% 1.07-10"% 8.57-10"° —0.97-107°
0.40 1.05-10"* 1.57-10"° 1.15-10"* —1.41-10"°

Table 4.6: z.(u),..., 2,(t) Wilson coefficients for the AB =1 Effective Hamiltonian at

u=m,=1.0 GeV: NLO results with QCD+QED corrections.

Table 4.7: g,(p),- .-

A, Ys Ya Ys Ys
Lo. 0.15 0.025 -0.045 0.011 -0.071
(n.l.)s 0.15 0.026 -0.042 0.008 -0.073
l.o. 0.20 0.028 -0.050 0.012 -0.083
(1’1.1.)5 0.20 0.030 -0.047 0.009 -0.089
Lo. 0.25 0.032 -0.054 0.012 -0.094
(n-l.)s 0.25 0.036 -0.052 0.008 -0.107
Lo. 0.30 0.035 -0.058 0.013 -0.107
(n.l.)g 0.30 0.042 -0.057 0.008 -0.130
l.o. 0.35 0.039 -0.062 0.013 -0.121
(11.1.)5 0.35 0.049 -0.062 0.007 -0.161
Lo. 0.40 0.043 -0.066 0.013 -0.137
(n.l.)5 0.40 0.058 -0.068 0.006 -0.202

»Jo(p) Wilson coefficients for the AS =1 Effective Hamiltonian at
p=1.0 GeV, for m, =150 GeV: LO and NLO results with QCD corrections only.
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A, Y Y Us Ys

Lo. 0.15 0.025 -0.045 0.011 -0.071
(nl)s  0.15 0.019 -0.036 0.010 -0.049
(nl)s,s 0.15 0.020 -0.037 0.010 -0.050

Lo. 0.20 0.028 -0.050 0.012 -0.083
(nl)s  0.20 0.021 -0.039 0.011 -0.055
L)sss 0.20 0.022 -0.041 0.011 -0.057

Lo. 0.25 0.032 -0.054 0.012 -0.094
(nl)s  0.25 0.024 -0.042 0.012 -0.062
L)sss 0.25 0.025 -0.044 0.012 -0.064

Lo. 0.30 0.035 -0.058 0.013 -0.107
(nl)s  0.30 0.027 -0.045 0.013 -0.069
(nl)sys 0.30 0.028 -0.047 0.013 -0.071

Lo. 0.35 0.039 -0.062 0.013 -0.121
(nl)s  0.35 0.030 -0.048 0.014 -0.077
(nl)sis 0.35 0.031 -0.040 0.014 -0.079

Lo. 0.40 0.043 -0.066 0.013 -0.137
(nl)s  0.40 0.032 -0.050 0.015 -0.086
(nl)g,z 0.40 0.034 -0.051 0.015 -0.088

Table 4.8: y,(p),...,ys(p) Wilson coeflicients for the AS = 1 Effective Hamiltonian
at p=1.0 GeV, for m, =150 GeV: LO and NLO results with QCD and QCD+QED

corrections.
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A, Y Ys Ys Yio

0.15 —2.52-10"* 3.40-10~* -0.011 3.76-1073
0.20 —2.23-10"* 4.08-10"* -0.011 4.25-107°
0.25 —1.96-10"* 4.85-10"* -0.011 4.75-107°
0.30 -1.70-10"* 5.77-10"* -0.012 5.31-1073
0.35 —1.44.10"* 6.90-10"* -0.012 5.93-1073
0.40 -1.17-10"* 8.33.-10"* -0.013 6.67-1073

Table 4.9: y:(p),...,¥.0(z) Wilson coeflicients for the AB =1 Effective Hamiltonian
at p=m,=1.0 GeV: NLO results with QCD+QED corrections.

A, 3 Z 3, z, z, Z

lLo. 0.15 -0.588 1.314 0.005 -0.014 0.004 -0.015
(nl)s 0.15 -0.678 1.381 0.015 -0.036 0.010 -0.040

l.o. 0.20 -0.669 1.370 0.007 -0.017 0.005 -0.019
(nl.)s 0.20 -0.814 1.480 0.020 -0.047 0.012 -0.053

lLo. 0.25 -0.752 1.429 0.008 -0.021 0.006 -0.023
(n.l.)s 0.25 -0.980 1.606 0.028 -0.061 0.015 -0.070

Lo. 0.30 -0.840 1.495 0.010 -0.025 0.008 -0.028
(nl)s 0.30 -1.198 1.780 0.040 -0.081 0.018 -0.097

lLo. 0.35 -0.937 1.569 0.012 -0.029 0.009 -0.034
(nl)s 0.35 -1.504 2.033 0.059 -0.111 0.021 -0.140

lLo. 0.40 -1.047 1.655 0.015 -0.035 0.011 -0.042
(nl.)s 0.40 -1.966 2.430 0.092 -0.158 0.025 -0.216

Table 4.10: 2, (p),ldots, z,(x) Wilson coeflicients for the AS=1 Effective Hamiltonian
at u=0.8 GeV, for m, =150 GeV: LO and NLO results with QCD corrections only.
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Table 4.11:

119

A4 Zl ZQ Z;, 24 zs ZG
l.o. 0.15 -0.588 1.314 0.005 -0.014 0.004 -0.015
(n.l.)s 0.15 -0.406 1.068 0.006 -0.015 0.004 -0.014
(nl)sys 0.15 -0.413 1.085 0.006 -0.015 0.004 -0.014
l.o. 0.20 -0.669 1.370 0.007 -0.017 0.005 -0.019
(n.l.)s 0.20 -0.455 1.073 0.009 -0.019 0.005 -0.018
(n.l.)5+E 0.20 -0.462 1.080 0.009 -0.019 0.006 -0.018
Lo. 0.25 -0.752 1.429 0.008 -0.021 0.006 -0.023
(n.l.)s 0.25 -0.503 1.072 0.012 -0.025 0.006 -0.023
(n .)5+E 0.25 -0.511 1.091 0.012 -0.025 0.006 -0.023
Lo. 0.30 -0.840 1.495 0.010 -0.025 0.008 -0.028
(Il.l.)s 0.30 -0.547 1.061 0.017 -0.032 0.006 -0.029
(n.l-)5+E 0.30 -0.557 1.081 0.017 -0.032 0.006 -0.030
l.o. 0.35 -0.937 1.569 0.012' -0.029 0.009 -0.034
( .1.)5 0.35 -0.580 1.027 0.024 -0.041 0.006 -0.037
n.l-)5+E 0.35 -0.592 1.049 0.024 -0.041 0.006 -0.036
l.o. 0.40 -1.047 1.655 0.015 -0.035 0.011 -0.042
(n.l.)s 0.40 -0.580 0.941 0.036 -0.053 0.005 -0.045
(nl)s,z 0.40 -0.595 0.966 0.036 -0.053 0.005 -0.045
z(p),...,2(p) Wilson coefficients for the AS =1 Effective Hamiltonian

at p=0.8 GeV, for m, =150 GeV: LO and NLO results with QCD and QCD+QED

corrections.
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A, Z7 2y Zy 219

0.15 1.96-107° 0.80-10"5 2.46-107° —0.72-10°°
0.20 5.24-107° 1.32-107° 6.07-10"° —1.18-1073
0.25 9.03-107° 2.13-107% 1.03-107% —1.85.1073
0.30 1.35-10"* 3.41.107% 1.56-10"* —2.89.107°
0.35 1.87-10"% 5.47-107% 2.20-107* —4.47-10"

0.40 2.49-10"* 8.86-107° 2.30-10"* —6.49.10"

3
-
5

Table 4.12: z;(u),...,2,0(p) Wilson coefficients for the AB =1 Effective Hamiltonian
at p=m,=0.8 GeV: NLO results with QCD+QED corrections.

A, Ys Y Ys Ye

lo.  0.15 0.027 -0.045 0.010 -0.078
(nl)s 0.15 0.028 -0.042 0.008 -0.084

lLo. 0.20 0.031 -0.050 0.011 -0.093
(nl.)s 0.20 0.034 -0.047 0.007 -0.106

Lo. 0.25 0.035 -0.054 0.011 -0.109
(n.l.)s 0.25 0.041 -0.052 0.007 -0.137

Lo.  0.30 0.039 -0.058 0.011 -0.126
(nl)s 0.30 0.050 -0.058 0.005 -0.181

Lo. 0.35 0.044 -0.063 0.011 -0.147
(nl)s 0.35 0.060 -0.063 0.003 -0.251

Lo.  0.40 0.049 -0.067 0.011 -0.172
(n.l)s 0.40 0.074 -0.068 0.001 -0.372

Table 4.13: §,(u),..-,¥s() Wilson coefficients for the AS =1 Effective Hamiltonian
at p=0.8 GeV, for m, =150 GeV: LO and NLO results with QCD corrections only.
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A4 Ys Y. Us Ys

lLo. 0.15 0.027 -0.045 0.011 -0.078
nl)s 0.15 0.020 -0.036 0.010 -0.053
(nl)sys 0.15 0.021 -0.037 0.009 -0.045

Lo. 0.20 0.031 -0.050 0.011 -0.093
(nl)s  0.20 0.023 -0.039 0.011 -0.061
(nl)s;s 0.20 0.024 -0.040 0.011 -0.062

Lo. 0.25 0.035 -0.054 0.011 -0.109
(nl)s  0.25 0.026 -0.041 0.012 -0.070
(nl)s;s 0.25 0.027 -0.042 0.012 -0.071

Lo. 0.30 0.039 -0.058 0.011 -0.126
(nl)s  0.30 0.028 -0.043 0.013 -0.079
(nl)sss 0.30 0.030 -0.044 0.013 -0.081

Lo. 0.35 0.044 -0.063 0.011 -0.147
(nl)s  0.35 0.030 -0.043 0.016 -0.089
(nl)syz 0.35 0.032 -0.045 0.016 -0.092

Lo. 0.40 0.049 -0.067 0.011 -0.172
(nl)s  0.40 0.030 -0.041 0.022 -0.097
(nl)s,s 0.40 0.032 -0.043 0.022 -0.100

Table 4.14: y,(u),...,ys Wilson coefficients for the AS =1 Effective Hamiltonian at
p = 0.8 GeV, for m, = 150 GeV: LO and NLO results with QCD and QCD+QED

corrections.
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A, Yz Ys Ys Yio

0.15 —2.62-107* 4.02-107% -0.011 4.31-107°
0.20 -2.35-10"* 5.02-107* -0.012 4.98.1073
0.25 —2.10-10"* 6.26-10"* -0.012 5.75-107°
0.30 —1.86-10"* 7.91-10"* -0.013 6.66.10°3
0.35 —1.61-10"* 1.02-10"% -0.014 7.79.1073
040 —-1.36-10"%' 1.36-107* -0.015 9.25.107°

Table 4.15: y.(u),...,y0(p) Wilson coefficients for the AB =1 Effective Hamiltonian
at p=m,=0.8 GeV: NLO results with QCD+QED corrections.

e a Table of unbarred coefficient for vertex and QCD-penguin operators (i.e. the
first six entries of each ten dimensional Z(x) and 7(g) vector), with LO and NLO
QCD results plus NLO QCD+QED results;

o a Table of unbarred coefficients for EW-penguin operators (i.e. the last four
entries of each ten dimensional 2{x) and y(u) vector), with NLO QCD+QED

corrections only.
Our main conclusions are:

e considerable corrections with respect to the LO values are found for z,, z,;

e among the QCD-penguin coeflicients ys receives the greatest enhancement from
NLO corrections;

e all the QED-penguins are greatly enhanced;

e at very low scales we find very large corrections which indicate the failure of
perturbation theory for p < 0.8 GeV. Bad news for all the non-perturbative
methods (like 1/N-expansions, etc) which should match the perturbative theory
at scales of order p=0.6 GeV.

e there is a strong m,-dependence for the QED penguin coefficients and this will
have a great relevance in the CP-violation analysis, as it will be shown in Section

4.3.
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A, zZ Z, Za z, Zs Zg
lo. 0.5 -0.699 1.391 0.010 -0.025 0.008 -0.029
(nl)s; 0.5 -0.861 1.515 0.027 -0.057 0.014 -0.067
Lo. 020 -0.815 1.476 0.013 -0.031 0.009 -0.037
(nl)s 0.20 -1.121 1.718 0.042 -0.082 0.018 -0.103
Lo. 025 -0.945 1.575 0.017 -0.039 0.011 -0.048
(nl)s 0.25 -1.524 2.050 0.070 -0.123 0.022 -0.169
Lo. 030 -1.097 1.695 0.022 -0.049 0.014 -0.063
(nl)s 0.30 -2.243 2.675 0.129 -0.202 0.026 -0.317
lo.  0.35 -1.285 1.850 0.030 -0.062 0.017 -0.085
(nl)s 0.35 -3.796 4.089 0.278 -0.381 0.026 -0.723
lo.  0.40 -1.539 2.066 0.041 -0.081 0.021 -0.119
(nl)s 0.40 -8.180 8.234 0.749 -0.894 0.006 -2.270

Table 4.16: z,(p),...,

123

Z;(p) Wilson coeflicients for the AS =1 Effective Hamiltonian

at £n=0.6 GeV, for m,=150 GeV: LO and NLO results with QCD corrections only.
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A, z, P 2 z, 25 2

Lo. 0.15 -0.699 1.391 0.010 -0.025  0.008 -0.029
n.l)s 0.15 -0.480 1.085 0.012 -0.027  0.007 -0.026
nl)s,z 0.15 -0.488 1.104 0.012 -0.02719 0.007 -0.026

Lo. 0.20 -0.815 1.476 0.013 -0.031  0.009 -0.037
(nl)s 0.20 -0.545 1.080 0.019 -0.036  0.008 -0.035
l)syz 020 -0.556 1.101 0.019 -0.036  0.008 -0.035

lL.o. 0.25 -0.945 1.575 0.017 -0.039  0.011 - -0.048
(nl)s 0.25 -0.595 1.041 0.030 -0.050  0.008 -0.048
(nl)g,z 0.25 -0.609 1.065 0.030 -0.050 0.008 -0.048

lLo. 0.30 -1.097 1.695 0.022 -0.049 0.014 -0.063
(nl)s 0.30 -0.575 1.896 0.050 -0.069  0.007 -0.063
Jsee 0.30 -0.593  0.923 0.050 -0.069  0.007 -0.062

lL.o. 0.35 -1.285 1.850 0.030 -0.062  0.017 -0.085
(nl)s 0.35 -0.256 2.066 0.092 -0.095 0.002 -0.062
(nl)syz 035 -0.281 0.415 0.091 -0.094 -0.002 -0.061

lo. 0.40 -1.539 2.066 0.041 -0.081  0.021 -0.119
(n.l)s 0.40 1.442 -1.675 0.183 -0.112 -0.023 0.093
(nl)sys 0.40 1.403 -1.603 0.181 -0.108 -0.024 -0.097

Table 4.17: 2, (u),...,2(p) Wilson coefficients for the AS =1 Effective Hamiltonian
at p=0.6 GeV, for m, =150 GeV: LO and NLO results with QCD and QCD-+QED

corrections.
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A,

2y

Zg

0.15
0.20
0.25
0.30
0.35
0.40

6.53 -
1.35-
2.20 -
3.22

1073
1074
1074
<1074

4.36 - 1071

0.054

2.78
5.18 -
9.67 -
1.85
3.71 -
8.06 -

107°
1073
1073
.10~
1074
10~

4.21

8.21 -
1.65 -
2.75-

6.19 -
8.96 -

107°
10~
10~
107
1074
1071

—0.20 -
—0.31-
—0.46 -
—0.67 -
—-0.97 .
—1.41-

10-5
1073
1073
1073
10—°
1073

Table 4.18: z;(p),..

at p=m,=0.6 GeV: NLO results with QCD+QED corrections.

A 4 ’!—Ji! g-& gS g&
Lo. 0.5 0.030 -0.046 0.009 -0.091
(nl)s 0.15 0.032 -0.043 0.006 -0.106
lo.  0.20 0.035 -0.051 0.009 -0.112
(nl)s 0.20 0.041 -0.048 0.005 -0.151
lo.  0.25 0.040 -0.055 0.009 -0.137
(nl)s 025 0.052 -0.053 0.002 -0.234
lo.  0.30 0.046 -0.059 0.008 -0.170
(nl)s 0.30 0.067 -0.056 -0.002 -0.412
lo.  0.35 0.053 -0.063 0.007 -0.214
(nl)s 0.35 0.082 -0.042 -0.012 -0.898
lo.  0.40 0.062 -0.065 0.004 -0.280
(nl)s 0.40 0.048 -0.076 -0.035 -2.739

125

, z10(1r) Wilson coefficients for the AB =1 Effective Hamiltonian

Table 4.19: §,(p), ldots, §s(p) Wilson coeflicients for the AS =1 Effective Hamiltonian
at p=0.6 GeV, for m,=150 GeV: LO and NLO results with QCD corrections only.
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A, s Ys Ys Ys

Lo. 0.15 0.030 -0.046 0.009 -0.091
(nl)s 015 0.021 -0.035 0.010 -0.059
(nl)syz 0.15 0.023 -0.036 0.010 -0.061

Lo. 0.20 0.035 -0.051 0.009 -0.112
(n.l)s 020 0.024 -0.037 0.011 -0.071
(nl)eys 0.20 0.026 -0.038 0.011 -0.073

Lo. 0.25 0.040 -0.055 0.009 -0.137
(nl)s  0.25 0.026 -0.036 0.014 -0.083
(nl)siz 0.25 0.028 -0.038 0.015 -0.086

Lo. 0.30 0.046 -0.059 0.008 -0.170
(nl)s  0.30 0.023 -0.031 0.024 -0.091
(nl)s;z 0.30 0.025 -0.033 0.024 -0.095

Lo. 0.35 0.053 -0.063 0.007 -0.214
(n.l)s 0.35 0.003 -0.014 0.057 -0.060
(nl.)syz 0.35 0.006 -0.018 0.057 -0.067

Lo. 0.40 0.062 -0.065 0.004 -0.280
(nl)s  0.40 -0.090 0.032 0.210 0.239
(nl)s,s 040 -0.084 0.025 0.210 0.223

Table 4.20: y,(p),...,ys(p) Wilson coefficients for the AS =1 Effective Hamiltonian
at u=0.6 GeV, for m, =150 GeV: LO and NLO results with QCD and QCD+QED

corrections.
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A, Yz Us B Yo

0.15 —2.75-10* 5.19.10"' -0.012 5.28-107°
0.20 —2.49-10"* 7.06-10"* -0.013 6.45-107°
0.25 —2.24-10"* 9.94.10"* -0.014 7.99-107°
0.30 —1.99.10~* 1.49-107° -0.015 0.010
0.35 —1.70-10"* 2.46-10"° -0.018 0.014
0.40 -0.014 4.70-107* -0.023 0.019

Table 4.21: y,(1), - - .,¥.0(p) Wilson coeficients for the AB =1 Effective Hamiltonian
at p=m,=0.6 GeV: NLO results with QCD+QED corrections.

4.3 NLO analysis of CP-violation in the three
generation Standard Model

In ref. [43] we presented a global analysis of CP-violation in the three generation
Standard Model, derived from the available theoretical and experimental informations
coming from K- and B-physics. We showed that, in spite of the large non-perturbative
uncertainties, the space of parameters relevant for the description of CP-violation could
be greatly constrained if we used simultaneously the informations coming from:

e K°— K° mixing — ¢ parameter;
e B°— B° mixing — =, parameter;
e ¢'/e ratio.

On one hand we had very precise perturbative determination of the coefficients for the
AF =2 sector of the problem, because the NLO Effective Hamiltonian was already
known [21, 15]. On the other hand, we used the LLA values for the Wilson coefficients
of the AF =1 Effective hamiltonian [41]. We are now in the condition to improve our
previous analysis, applying the present NLO results to the determination of ¢'/e. In
this respect, the inclusion of QED corrections is fundamental. The results in [15] could
not be used in this case, because comprehensive of the QCD sector only.

In ref. [43], we work in the three generation Standard Model. The theoretical

expression of |e|¢—o is given by*:

lele=o = C.Bi24°X8psin § [F(z.,,) + A*A'(1 — peos §)F(a,) — F(z.))]  (418)

2The Inami-Lim function F(z;,z,) and F(z;) are here the NLO evolved expressions. We refer to
section 1.3 for a more detailed discussion.
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A, m, = 100 m, = 140 m, = 180 m, = 200

0.10 -0.232 -0.232 -0.232 -0.232
C, 0.20 -0.276 -0.276 -0.276 -0.276
0.30 -0.315 -0.315 -0.315 -0.315
0.10 1.032 1.032 1.032 1.032
C, 0.20 1.037 1.037 1.037 1.037
0.30 1.041 1.041 1.041 1.041

0.10 1.21-10°° 1.29 - 1072 1.34.1072 1.41-1072
C, 0.20 1.53-10"? 1.62 .10 1.70 - 107 1.75-1072
0.30 1.82-1077 1.92-1072 2.01-107? 2.05-1072
0.10 —2.83-107% -2.90-107% -—2.96-10"* —2.98-107
C, 020 -3.40-10"% -3.49-10"% -3.55-107% -3.58-1077
0.30 —3.89-10"2 —3.99-1072 —4.06-10"* —4.09-1072
0.10 8.70-107° 8.80-107° 8.89 - 107° 9.01-107°
C; 020 1.02-1072 1.04 . 1072 1.05-107% 1.06 - 1072
0.30 1.15-107? 1.16 - 1072 1.17 -1072 1.18 .10
0.10 -—-3.22-107% -3.32-107% -—3.38-107%? —3.41-107*
C; 020 -3.99-107% —4.11-107% —4.19-107% —4.21.107?
0.30 —4.67-1072 —4.82-107% —-4.91-107% —4.93.107?
0.10 2.64-107* —2.88-10"* 5.15-107° 2.82.107*
C. 020 3.01-100* -242.100% 9.20-107° 3.18 .10~
0.30 3.31-107* -—2.05-10"* 1.25-107" 3.49 1071
0.10 3.80-107* 1.68 .10~ 2.99 - 1071 3.87-1071
Cs 020 4.89-107* 2.19-107 3.85-10° 4.98 .10
0.30 5.92-107* 2.68-107* 4.67-1071 6.03 - 107"
0.10 -5.39-107° -9.26-107% —1.24-10"* —1.41-107*
C, 020 —547-107°* -9.47.107° -1.27-107* ~1.45.107?
0.30 —5.56-10"° —9.66-10"° —1.30-10"% —1.48.107
0.10 1.18-107° 2.16-1073 2.95.107° 3.37-107°
C, 020 1.43-1073 2.62.1073 3.58 - 1073 4.09 -1073
0.30 1.65-1073 3.01-1073 4.13-107° 4.72-1073

Table 4.22: ¢, (1), ..., co(p) Wilson coeflicients for the AS =1 Effective Hamiltonian at
p=m,=2.0 GeV: NLO results with QCD+QED corrections, for Ay, = 0.1, 0.2, 0.3
and m, = 100, 140, 180, 200 GeV.
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where:
B [GQFM 2 My f,{.}

4.19
12/2m2A M (4.19)

is given in Table (4.24). When fitted to the experimental value |e|;Z, = (2.258 &
0.018)-107*, (4.18) fixes the CP-violating angle § (i.e. the complex phases in the CKM
matrix). Depending on the value of the top mass, we can have for large values of m,
(m,>140GeV) two distinct solutions for cos §, which merge for lower values of m, (see
fig.(4.1)-(4.3)). The present experimental results would suggest a large value of m,, so
that we are left with a definite ambiguity in cos §. For both the solutions (cosé < 0
and cos§ > 0) we can derive a value of f; from the z, mixing parameter

-1

fi=z,C;" [TBAZ(l + p* — 2pcos 5)F(mt)] (4.20)

where:

(4.21)

o {G'*;M?‘,MB/\G}
p = |SETwet

G2

and a value of ¢'/¢ from (1.37) and (1.38). We rewrite eq.(1.37) in the following form:

, eir.'/4 w

© T /2 Red,

[w™(ImAd,) — (1 — Q,5)ImA,] (4.22)

The meaning of the different quantities appearing in eq.(4.22) has been explained in
section 1.3. The numerical values of all the experimental inputs are given in Table
(4.24). We only introduce the new convention:

ImA, = (ImA,) + Qp(w ImA,) (4.23)

(ImA,)" and ImA, are quantities construct in terms of the coefficient and the operator
matrix elements of the AF = 1 Effective Hamiltonian. In particular, in the vacuum
insertion approximation, the matrix elements of all the operators O,,...,0,, are given
in terms of the three quantities:

X = f (M~ M) (4.24)
M2 2 (0.15GeV?
Y= 1 (ms(#)+md(#)> m( o (s) ) (4.25)

(e
7 = 4(fﬂ 1)}/ (4.26)

and a set {B;} of B-parameters. We give the values of the B-parameters in Table
(4.23). They are part of the non-perturbative inputs in the evaluation of ¢'/¢ and are
subject to a large uncertainty. We refer to ref. [43] for the discussion of the chosen
values for the B-parameters.
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By By B, B, B B2 B B3

L 7T—8—9

0.8+0.2 1 0+0.15 1+61.0+0.2 1) 1.0£0.2 0840.2

Table 4.23: Used values of the B-parameters. Entries with a (*) are educated guesses;
the others are taken from lattice QCD calculations.

In terms of X, Y, Z, the operator B-parameters and Wilson coefficients, (ImA4,)’
and ImA, are given by:

Tmd, = —%v;vm {- (CGBG + %C;,Bs> 7z + (0434 + %0330 X+
C, B\ (12-; 4 g - ;) +C,B" (2Y + -g— + %) -
CQB;/% + (%31 + CEB;> V} (4.27)
and
(Imd,) = —GrIm), {C,B;‘“ (% - %) (4.28)
C, B (Y - —g) 4 C’QB;’“%}

Good estimates of f; and €' /¢ are crucial in selecting one of the possible solutions for
cos 8.

The latest indications from lattice calculations, now confirmed by QCD-sum rules,
suggest a large value of fj; (see Table (1.3)). This would select the solution correspond-
ing to cos § > 0. A definite proof that CP-violation arises from the CKM matrix with
six flavours relies on €'/e. The experimental determination of €'/¢ is still rather poor
(see the values in (1.40)) and we also need improvement on the theoretical side.

We have inserted our new NLO AF =1 Wilson coefficients in (4.22), i.e. in the
evaluation of (ImA,) and (ImA4,)" in (4.27) and (4.29). The value of the coefficients for
different A/, and different m, are given in Table (4.22). We observe that in eq.(4.22)
only nine coeflicients are appear, because we have used the relation:

OLO = _03 _I_ O.{ + Og (4-29)

which slightly modifies C;, C, and C;. The results are shown in fig.(4.4)-(4.7) for
different values of the top mass (m, =100, 140, 180 GeV). It is quite interesting to note
that our theoretical predictions now coincide with the new experimental determination
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Figure 4.2: m, = 140 GeV: theoretical prediction of € and f; vs. cos §. Points indicate

values compatible with both € and z,, with input parameters within 1-o from the
central value. The allowed regions of €'/e are reported in the lowest section.

of E731. This was not the case of ref. [43], where the LO approximation for the
coefficients and the old experimental values for NA31 and E731 (NA31:(2.7 4 0.9)-1073,
E731:(—0.4 + 1.4)-107?), were used. The NLO values of the coefficients seem to lower

the value of ¢'/€ and to make it more stable.
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parameter value
°E 1.16634 - 1075 GeV~?
Ageo 200 £ 100 GeV
m, (170 & 30) MeV
m.(2 GeV) 1.5 GeV
m,(2 GeV) 4.5 GeV
M, (2 GeV) 80.6 GeV
M., 139.56 MeV
My 0.49 GeV
Mg 5.287 GeV
AM 3.521-107*°
Ix 0.132 GeV
fx 0.160 GeV
A =siné, 0.221 £ 0.002
Ts (1.18 £ 0.11) - 1072 sec
p = 0.50 4 0.14
g 0.67 £0.10
€exp 2.28 -1073
GLAIZ, ML 3 -
C.= (—————————Kg\/éf;m’:n ) 4.00-10~
Cp = (—L—‘—ﬁc”ﬁff;“z) 4.15 107
ReA, 2.7-1077
w = b 0.45
Q5 0.25+£0.1

Table 4.24: Used values of the fixed parameters.
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Conclusions

The main result of the present work is the calculation of the Effective Hamiltonian
for AS = 1 and AB = 1 processes at NLO in the strong interactions and at LO
in the electro-weak ones. This represents a substantial improvement in the theoretical
description of K- and B-meson physics. With this calculation, we have now an accurate
perturbative evaluation of the coefficient functions of the Effective Hamiltonian. This
will be essential when future improvements in the non-perturbative calculation of the
hadronic matrix elements of the relevant operators will be available. Moreover, the
results presented here have an important phenomenological impact, because we are
now in the condition of studying AS =1 and AB =1 physics in terms of a complete
NLO Effective Hamiltonian.

Owur aims for the near future are ::

e to generalize the present results by including electro-weak corrections to NLO.
he essential ingredients for this generalization are already given in this thesis.
We believe that the NLO electro-weak terms still to be included will give only a
small contribution, but they are necessary for consistency with the perturbative
expansion.

e to reproduce the whole calculation in a different regularization scheme, for in-
stance the NDR one.

This concludes the analytical work. Obviously, many extensions “beyond the Standard
Model” are easy to be studied beyond the leading logarithmic approximation, using the
results of the present work. The big effort made in the understanding of the theoretical
aspects of a complete NLO calculation and the techniques developed in the particular
case of AF =1 processes in the three generation Standard Model could be applied, with
some slight modifications, to many different physical kaon and heavy meson decays.

Nevertheless, we think that a complete and updated phenomenological analysis
of the present status of CP-violation and flavour-mixing physics is more urgent. This
was the initial aim we started with and we hope that the phenomenological study of
the problem can provide new interesting indications for the Standard Model physics.
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