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INTRODUCTION

The main goal of this thesis is to discuss the long-time behaviour of a class of time-
inhomogeneous evolutions on von Neumann algebras (commutative or not). To explain
the origin of what has been done, we briefly discuss what is now known as the “simulated
annealing” algorithm [1-9].

Let X be a finite set with |X| points, whose elements describe the states of some
(fictitious) physical system, and 8, — oo be a monotonically nondecreasing sequence of
nonnegative numbers. Let there be given a function U : X — [0, c0), to be interpreted as
the energy of the above mentioned system, and consider a Markov chain X, on X with
Xo = z € X and with transition probabilities given, for = # y, by

P[Xn =y|Xn-1=1z] = qo(z,y)exp [-Bn(U(y) — U(z))+], (1)

go being a symmetric matrix.

Intuitively, starting from a point z at “time” ¢ = 0, one chooses a new point y with
probability go(z,y). Then the jump from z to y is actually performed, with probability
exp [—Bn(U(y) — U(z))+] (conditional upon the choice of y), when the energy difference
U(y) — U(z) is positive, and with probability one otherwise.

The system is thus allowed to make energy increasing transition, therefore it can climb
out of local minima of U; infact, what has been proved is that, under suitable assumptions
on the sequence f,, the distribution of X, tends to be concentrated, as n — oo, on the
set of absolute minima of U.

To give an idea of one possible strategy for proving that, note that, if 8, were constant
and equal to 3, one can show that iteration of the above procedure drives the system to the
Gibbs distribution pg = Z ﬂ— 1 exp[—BU], Zg being the normalization constant. Besides, it
is known (cf. [10] for the more general case of Gibbs measures on IR™) that the weak limit
of ug as B — oo exists, and that it is a measure concentrated on the set of absolute minima
of U. Therefore one can try to compare the distribution of X7 at step 7 with what would
be the asymptotic equilibrium distribution pg_ if B, was constant and equal to S5 for all
n.

In turn, if B, tends to oo sufficiently slowly (typically, B = ¢ llogn, ¢ not smaller
than a critical constant ¢y > 0), it can be proved that, at “time” ¢ = n, the distribution
of X, is close (in the weak topology) to the Gibbs measure pg_, and asymptotically the
same objects become indistinguishable; this can be used to prove the above assertion.

A very similar idea underlines the introduction of the following class of diffusion
processes in IR.? (cf. [11-15]), which are the continuous space, continuous time version of
simulated annealing, and which are often called Langevin algorithms. Consider a function
U:R? - o, o0) of class C?, and a piecewise continuous function § : [0,00) — (0, 00).
Then we can study the following ordinary stochastic differential equation in R4:

= — z w Tog==c d
dzy = —VU( t)dt+‘/ﬁ(t)d &, zo ==z € R (2)
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w¢ being a standard d-dimensional Brownian motion. One can think of /2/8(t)dw; as
a “thermal noise” which allows z; to climb out of the local minima of U. Once more, if
B(t) = cllog(ty + 1), ¢ > cg > 0, tg > 1 one can prove that, at least under suitable
assumptions on U, the distribution of (2) tends weakly to a measure concentrated on the
set of absolute minima of U.

The critical constant ¢g is in many cases determined, informally speaking, as follows:
let vz4 : [0,1] — IR? be a C! path joining z to vy, and let its elevation be defined as
Elev(vz,y) = {max[U(vyey(t)]|t € [0,1]}. Define the energy gain between z and y as
H(z,y) = min{Elev(y),v joining = and y}. Consider a global minimum zy and, for each
z € IR?, consider a path 7 , between z and y which requires the least energy gain.
Finally, make this least energy gain as large as possible taking the supremum as (z,zg)
vary over R24, provided that it is finite, as is usually assumed. The resulting quantity
turns out to be the critical constant ¢y mentioned before; if ¢ < ¢y and in general in the
case in which 3(t) diverges faster than logarithmically, there are explicit examples in which
the distribution of z; satisfying (2) does not converge weakly. Similar consideration also
hold for the Markov chain (1).

The constant ¢y has another interesting characterization (cf. [6, 12, 15-17]); let Lg =
BA —VU -V be the generator of (2). Under suitable assumptions on U, Lg is, for all fixed
B, a nonpositive essentially self-operator on C§° as an operator acting in the Hilbert space
L2(d/1,ﬂ), with A = 0 as (simple) highest eigenvalue and a gap —v(8) < 0 between A =0
and the rest of its L2—spectrum. It can be proved that

Jim 5 10g(1(6)) = co. 3)

Therefore, the problem of finding the critical constant can be rephrased in term of the
spectral analysis for the operator Lg in what is usually called the semiclassical limit (cf.
[18-27]). In more general situations than the commutative examples that we have just
sketched and in which the intuitive description of cg in term of paths does not make sense,
it is this latter concept which plays a fundamental role.

In the first part of this thesis, we concentrate on stochastic differential equation of the
form (2). We prove some detailed convergence result of the previous type in the form of
bounds on the Radon-Nikodym derivative v of the distribution p; of z; with respect to the
“instantaneous” equilibrium distribution dug = 2 ﬂ_ 1 exp[—QU]dz. Specifically, we bound
from above the Lq(t)(d,uﬁ(t) )-norm of p¢, ¢(t) being a suitable function with ¢(t) — oo
as ¢ — oo. This choice of ¢ is motivated by the fact that the larger ¢ is, the faster the
convergence of p: takes place. This bounds give also information about the probability
of being away from global minima at time ¢, information potentially more important for
applications than the statement of weak convergence in itself.

While L?~bounds turn out to be technically easy to establish, LI-bounds are more
tricky. Indeed, it is necessary to make use of a family of logarithmic Sobolev inequalities for
the Dirichlet forms of Lg, as was originally pointed out in [6] at least for the Markov chain
(1). These inequalities are proven here for the case in which U grows at infinity sufficiently
fast, the quadratic potential being the borderline case. These inequality are closely related
to what is called the intrinsic hypercontractivity (or ultracontractivity) of the semigroup
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generated by the operators Lg, which amounts to its boundedness between certain weighted
LP-spaces; see the original paper by Gross [28] and [29] and reference quoted therein for
a recent discussion and a thorough bibliography. We just refer the interested reader to
[30-32] for applications of the theory of logarithmic Sobolev inequalities to the spectral
theory of Schrodinger operators and to lattice statistical mechanics.

Moreover, the non-compactness of state space yields some further complications,
which are solved by modifying some well-known large deviation result contained for ex-
ample in [6, 33, 34].

The discussion of chapter 1 raises one more technical problem. Indeed, all the es-
timates contained there rely on the existence of L2-solutions to a time-dependent heat
equation with unbounded and time-dependent potentials. This problem is tackled in
chapter 2, which is somewhat detached from the rest of the paper, in which we show that
at least three different approaches can be used to solve it, each of them requiring some
further assumption on U. In particular, we first give a probabilistic proof which makes use
of a (suitably established) time-dependent Feynman-Kac formula for the potential con-
sidered [35] and of ultracontractive estimates [36], and then show how general theorems
due respectively to Lions [37] and to Acquistapace and Terreni [38, 39] can be used in the
case at hand.

Chapter 3 is devoted to a generalization of the above results, at least of those in-
volving estimates in L2-norm. In fact, we study eq. (2) supposing in addition that the
energy function U itself depend on time, and which we hope could be of some interest
in connection with adaptive algorithms (cf. [40]). We have included a section in which
the problem is discussed in the (computationally simpler) setting of compact riemannian
manifolds, since the discussion seems to be new even in that case. We give conditions
on U(t) and on its time derivative under which the distribution of the process and the
instantaneous equilibrium distribution become indistinguishable in the course of time, and
L2-estimates on the corresponding Radon-Nikodym derivative. The conditions on U(t)
do not necessarily imply that it converge pointwise as ¢ — co.

The following chapter concerns non-commutative generalizations of the above results.
To understand what has been done, note that both processes defined by (1) and (2) give
rise to a time-inhomogeneous evolution on an appropriate commutative von Neumann
algebra. Indeed, in case (1), we can define a family of maps from L*°(X) = ¢! into
itself by

T = Y PlXn=y|Yao1 =2lf(y), fe Xl (4)
yeX

From now on, we restrict to the discrete time setting. In case (2), this amounts to taking
Br piecewise constant, so that B(¢) = By for t € [tn—1,tn). Let E denote expectation with
respect to Wiener measure and define a family of maps from L°°(1Rd) into itself as follows:

T2 (F))(z) = E (Fla(ta)] | 2ty = 2)- (5)

Under very general conditions on U, Bn, the stochastic differential equation (2) does not

blow up to infinity in finite time. Therefore it is easily seen that both maps T,ﬂl), T,(Lz) are
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positivity and identity preserving weakly*—continuous normal linear maps on the corre-
sponding commutative von Neumann algebras ¢! and L°°(]Rd), dynamical maps in the
sequel (for terminology, we refer to [41]). As concerns the theory of dynamical maps and
more generally of dynamical semigroups, which is outside the aim of this thesis, we refer
to [42, 43] and references quoted therein.

Each T, ,(11), T,(,z) has a unique faithful normal invariant state (positive linear functional
p on M with (1) = 1), given by the associated Gibbs measure. It may also be noted that
in both cases Ty, is pp—symmetric, in the sense that

pn(fTn(9)) = pa(Tn(f)g); (6)

here f,g belongs to the appropriate von Neumann algebra: this condition is often called
of detailed balance. It can be seen that proofs of the kind we have sketched previously
depend essentially only on:

i) estimates on the spectral gap of T, extended to a contraction on the GNS space of
(Ma‘*’n);

i) estimates on the difference (in the norm topology) between p, and p,_1.

In order to have a non—commutative generalization of the previous time-inhomogeneous
evolutions, we replace the commutative algebra L with a general von Neumann algebra
M with a representation acting on a separable Hilbert space H, and having a cyclic and
separating vector {}. Then we consider a family of dynamical maps T, each of them having
a unique faithful normal invariant state p,; for example, one could take

,Pn:(ﬂn’AQn>7 Ae M, (7)

where

Qn = 25 *Tq expl-BaH/2)0, (8)

H is a non-negative self-adjoint element of M, Jq denotes the modular involution asso-
ciated with the pair (M, (2) and Zg is the normalization constant. If A = 0 is in the point
spectrum of H, then the weak limit of g exists and equals

Poo(a) = (Po2, A PyQ), (9)

Py being the orthogonal projection onto the eigenspace corresponding to the eigenvalue
A=0.

For any initial normal state ¢, consider its time evolved defined by

Pn =@Yp0T7T10...0Tp. (10)

In the commutative case, this definition gives nothing else than the probability distribution
at time n starting from an initial probability distribution ¢g.

These definitions allow to state the problem in the following more general form: under
which conditions ¢, and g, become indistinguishable in the course of time? An affirma-
tive answer to this question depends exactly on estimates of the type 7)-ii) above. We do
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not address ourself to question i), omlly reminding the reader that some results have been
obtained for finite quantum system (cf. the discussion of [44, sec. 5], which we briefly
review in section A.1), and for a class of infinite quantum systems in [45]. Concerning the
problem ii) we give conditions in termms of the cyclic and separating vectors which represent
fin, bn—1. These conditions are them rephrased in terms of the relative hamiltonians be-
tween the above couple of states. We want to remark that no detailed balance condition is
necessary in our discussion, provided that one can prove a spectral gap condition without
it. :

The previous setting can be used successfully mainly for finite quantum systems.
This can be seen from the fact that, when specializing the calculations to commutative
algebras, the conditions involved are mot satisfied if the corresponding energy function U is
unbounded. We have tried to overcome this difficulty in section 4.4, but our results there
are only partial. Indeed, it is not possible to describe the case in which p,, and pm, m #n
are KMS (i.e. thermal) states at different temperatures on the C*-algebra A of observables
for an infinite quantum system, since in this case one expects in general that the two states
are disjoint, in the sense that no subrepresentation of the GNS representation for the first
state is unitarily equivalent to a subrepresentation of the GNS representation for the second
state, and this can not be described in our setting due to technical complications which
we were not able to overcome. We think that in such connection one should work in
continuous time and have at one’s disposal some sort of logarithmic Sobolev inequality in
order to be able to proceed as in chapter 1; however a general theory of non-commutative
hypercontractivity is far from being 2t hand.

Nevertheless, we give a generalization of the previous arguments which allows to deal,
when working on a fized von Neumann algebra, with some cases which correspond in the
commutative situation to an unbounded energy function.

Chapter 5 is devoted to some applications of the above results, obtained by particular
choices of the von Neumann algebra M. The commutative examples are the usual ones, but
with the additional bonus of being able to deal, without further technical difficulties, with
a class of time—dependent potentials. In particular we study simulated annealing on finite
sets and Langevin algorithms on compact manifolds with piecewise constant (as a function
of time) energy function and temperature. Similar results also hold for a class of jump
processes on compact manifolds which resemble simulated annealing (see Remark 5.9),
provided that the spectral gap for their generators have the usual asymptotic behaviour.
Section 5.3 describe a class of time-inhomogeneous evolution on the von Neumann algebra
of all bounded operators on a separable Hilbert space.

Finally, the Appendix has a review nature, and concerns the main lines of the proofs
of theorems concerning the spectral gap behaviour for the generators of the annealing
algorithm on finite sets and of Langevin diffusions on R,

Part of the arguments of this thesis have been discussed in [46-50].




Chapter 1:
LANGEVIN DIFFUSIONS

Let U:IR™ — IR be a function of class C? which is bounded below, and T': [0, 00) — [0, c0)
be a function of class C1; in this section we study ordinary stochastic differential equations
in IR™ of the form

dz¢ = -—VU(mt)dt + \/2T(t)d'wt, (1.0.1)

w; being a standard n—dimensional Brownian motion. We shall prove in sections 1.1, 1.2,
under suitable assumptions on U and T', the weak convergence of the distribution of the
process to a measure concentrated on the set of global minima of U. First, we rephrase
the problem in terms of a heat equation with time dependent sources, and then prove
L2-estimates on the rate of convergence of the distribution of (1.0.1). Then, we prove in
section 1.3 a family of (weighted) logarithmic Sobolev inequalities for the generators L
of the diffusions corresponding to fixing T'(t) = T =const. in (1.0.1), and we use such
inequalities to prove, by means of large deviation techniques, some quantitative bounds on
the above mentioned rate of convergence in the form of LI(t)-estimates (with g(t) — 400
as t — +00) on the Radon-Nikodym derivative of the distribution of (1.0.1) with respect
to the “instantaneous” equilibrium distribution.
In particular, this gives quantitative estimates about the efficiency of the Langevin algo-
rithm as a tool for global minimization in IR™. Our general references for the theory of
stochastic differential equations will be [51-52].

In the sequel, U will be assumed to be a function of class C? defined on IR™ with
values in IR, which is bounded below. For the sake of notational simplicity, we shall assume
in this chapter that min U = 0 unless otherwise stated.

1.1 Statement of the problem

Let there be given a nonincreasing function of class C! ¢ — T(t) of [0,00) to [0,00). It
will be technically convenient in the sequel to re-express ¢ as a function ¢t = #(s) of a new
parameter s such that £(0) = 0 and

=p(s) = (1.1.1)

T(t( )’
then s +— B(s) is a nondecreasing function of [0, c0) into [0, c0), with

B(6) = £5(s) = 75 53 7z et (112)

B(s) will have to increase to oo as s — oo, but slowly enough. For the time being, we
assume that (§'(s) is bounded by a constant b for all s, so that 8(s) < B(0) + bs and
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#(s) < B(0)s + bs?/2. Possibly by changing again the scale of time and the energy units,
we assume that 3(s) > 2, 8'(s) < 2 for all s > 0.

We define a family {Ts : 0 < s < oo} of positivity- preserving linear maps of L™ =
L*°(IR™,dz) into itself by

Tog) (=) = B [g(eysy)] + 9 €1, (1.1.3)

where EgW) stands for expectation with respect to Wiener measure starting at z € IR™, x4
is the solution to the stochastic differential equation (1.0.1), which is in principle defined
up to an explosion time 7, and #(s) is defined in (1.1.1). An application of Has’'minskii’s
stochastic Liapunov theorem [53] shows that, under very general conditions on U, z; does
not blow up to co in finite time with probability one, so that T5(1) = 1 for all s. In fact,
the simplest choices of the Liapunov function V are either Vi(z) = [z]* + b, a > 0,6 > 0
or Va(z) = U(z) + ¢, ¢ > 0. The corresponding Liapunov inequalities amount respectively
to:

i) there exists a constant k£ > 0 and a compact set K C IR™ such that
(z-VU(z))- <klz|?, =¢€K° (1.1.4)

i1) Let By be the (strictly positive) lower bound of 1/T'(%); there exist constants I,m > 0
such that

AU(z) < 1U(z) + Bo|VU(2)* + m. (1.1.5)
Here a subscript “_” (resp. “4” denotes the negative (resp. positive) part. We shall see
in section 1.3 (see in particular Lemma 1.7) and in chapter 2 that (1.1.5) is implied by the
hypercontractivity assumptions which will be crucial there, and we shall therefore assume
in the sequel that the stochastic differential equation (1.0.1) is non—explosive.
In this section we also assume without further comments that

Zg = / e PUds (1.1.6)

and

(U)g = /Ue"ﬂUd:c (1.1.7)

are finite. In fact, in the following sections we shall be forced to impose stricter conditions
on U; hereafter, all integrals will be performed on IR™ unless otherwise stated. In par-
ticular, we shall often deal with the family of probability measures {[Lﬂ}ﬂe(o’oo), defined
by

dpg(z) = Zﬂ_le_ﬂU(w)dz. (1.1.8)

For g in a suitable domain (containing at least the space C§° of C*° functions of compact
support), we have by Ito’s formula

d
= Ts9 = ~Ts(Lp(5)9), (1.1.9)
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where

Lgg = —Dg+B(VU)-(Vg). (1.1.10)

Lg extends to a positive self-adjoint operator in LZ(]R”,@% dz) which we still denote by
Lg, where &g is the function z — ®4(z) defined by

B4(z) = Z(B) Y2 AUE/2, (1.1.11)

Note that Lg can be also defined as the self-adjoint operator associated with the closure
of the positive quadratic form

Qﬂ(g)=/lVg|2<I>§dm : g€ . (1.1.12)

The Hilbert space L2(IR™, @%d:c) is mapped unitarily onto L? = L2(IR",dz) by g — ¢®g;
under this mapping Lg is unitarily equivalent to the operator Hg given on C§° by

Hgf =®gLp(25" f) = (=0 + Vp)f, (1.1.13)

where Vj is the operator of multiplication by the function

2
Va(e) = £ VU ()P - 2 AU(z). (1.1.14)

Indeed, Hpg is the self-adjoint operator associated with the closure of the positive quadratic
form

Hﬂ(g):/(|vg12+vﬁ|g|2) do i geC. (1.1.15)

Schrodinger operators of the form (1.1.13) are well understood. It is known that 0 is a
nondegenerate eigenvalue of Hg, with the unique positive eigenvector @4, and that the
spectrum of Hg lies in [0, 00). Moreover, if Va(z) — oo as |z| — oo, as will be true in our
assumptions (see in particular section 1.3 and chapter 2), then Hg has compact resolvent,
with eigenvalues

0 =7(8) <7(B) <72(B) < ...

The asymptotic behaviour of the spectral gap 7(8) has been studied in several contexts (cf.
for example [6, 7, 12, 15-18, 25, 26). It is related with the problem of the semiclassical limit
(as Planck’s constant & — 0) in quantum mechanics where, however, one usually considers
operators of the form H = —A + A2V and not of the form H = —A + A2V, + A~V

In several circumstances, there exists a number m such that

1
B

(see section A.2), and the number m can be described as follows (see section A.2). Let
U have, for the sake of simplicity, finitely many, isolated, nondegenerate critical points

lim -
B—ro0

log [7(8)] = m (1.1.16)

8



z1,...,z (for more general conditions, see section A2). For each continuous path v :

[0,1] — IR™, let
m(y) = max [U(v(s)) — U(x(0)) — U(v(1))} .
e[o 1]

For any two points z,y € IR™, let m(z,y) = min{m(y) | v(0) = =, v(1) = y}. Finally, let
m = max{m(z,y) | z,y € R"}. It can be proved that if m is attained by m(z,y), then
either z or y (or both) is an absolute minimum for U, in which U = 0; so that if U has a
unique global minimum m is the maximum height a point must gain in order to reach the
global minimum on a path which takes the lowest passes. The natural setting for these
results is that of differentiable manifolds.

Suppose that we are given an initial probability density function pg, so that pg eLl =
L!(IR™,dz) and, for any Borel set B in IR™,

Prob[zg € B] = /Bpo(a:)da: = /po(a:)IB(m)dz, (1.1.17)

where Ig denotes the indicator function of the set B. Let {p3}3>0 be the probability
distribution of (1.0.1), so that

Prob [z, € B| = f po(z) (T I5) (z)dz = / ps(v)I5(v)dy. (1.1.18)
Suppose that, for all s > 0, there exists fs € L2 such that

ps(z) = fa(2)@p(5)(2) : fs €17, (1.1.19)

Note that if (1.1.19) holds one has Prob [z;,) € B] = (fs,Ip®g(s)). Then we have the

following

Lemma 1.1. If there ezists a family {fs}s>0 C L2 satisfying (1.1.19), then fs must satisfy
the following time-dependent heat equation

d 1,

'(Efs = —Hgg)fs + —2—ﬁ (s) (U - (U)ﬂ(s)) fs=—(=A+V(s)) fs, (1.1.20)
" where V(s) is the operator of multiplication by V(s,z) given by

V(s,z) = Vg()(e) - —ﬂ () (V=) = @p(s)) » (1.1.21)

and B'(s) = (d/ds)B(s).
Proof. Let g € C§°; then we have on the one hand

(fs,g ﬂ(s)) d /pongd:c = —/poTs (Lﬂ(s)g) dr =

— (0. [Eo0)9] a(0) = = (0 (o) [9%000)]) » (1.1.22)




and on the other hand we have, whenever the derivative exists,

d d d
'('i'; (fs:géﬂ(s)) = (E;f-s’g@ﬂ(s)) + (fssg'é:s"@ﬂ(s)> =

d !
= (g;fs,g%(s)) - (fs,%gﬂ () [U - (U>ﬂ(a)] %(s)) ) (1.1.23)

a

Note that Eq. (1.1.20) involves a family of time-dependent Schrédinger operators. In
chapter 2 we shall prove that, under suitable conditions on U, it has a unique solution for
almost all s > 0 which is in L2, and that this remain true also when the initial condition
fo is a multiple of the Dirac § delta measure concentrated at z € IR™, at least when
B(s) is constant in a neighbourhood of zero. In the remainder of this chapter, we shall
assume that (1.1.20) has a solution with the above properties. In particular, we assume
throughout, possibly by running the process at constant temperature for time ¢ € (—¢,0),
that the Radon-Nikodym derivative vy of the distribution of the process w.r.t. Pﬁ(o) exists
and belongs to L™°.

10



1.2. The L2—estimates

In this section we shall prove, under suitable hypotheses, that simulated annealing works
as a tool for global minimization. We shall restrict here to the computationally simplest
even if quantitatively worse estimates, that is to those in L2-norm, for the sake of clarity
of exposition.

To explain what will be done in the sequel, note that

Prob[z;(,) € B] — pp(s)[B] = (fs - @p(s),IB‘I’ﬂ(s)) : (1.2.1)
By the Schwarz inequality, the absolute value of (1.2.1) is majorized by

1/2
NIHs)M2 (In®p(s) I8®p()) = NN (o[BI, (1.2.2)

where
N(t(s)) = ||fs — @p(o)lI5- (1.2.3)

Moreover, it is well-known that, under suitable assumptions on U, one has

lim pg[U > minU + 6] =0 (1.2.4)

B—roo

for all § > 0. In particular, the weak limit p of ug as B8 — oo exists and is a measure
concentrated on the set K of absolute minima of U under very general conditions: in fact,
it is known that if py.p(K) > 0 then the limiting measure exists and it is the uniform
measure on K. If pupp(K) = 0 the family {3}g>¢ is tight, and in the case (cf. [10]) that
K is the union of finitely many disjoint smooth manifolds (possibly of different dimension),
and that U is of class C% with Hess (U) := det (8?U/0t%) # 0 on K (the determinant
being taken with respect to those coordinates in a tubular neighbourhood of K which are
orthogonal to K), it follows that the limiting measure exists and is concentrated on the
highest dimensional among these manifolds. Moreover, its density with respect to the sum
m of the intrinsic measures on such manifolds exists and reads:

1

dp Hess(U)(p)] ™ 2
E(p) = et )L . (1.2.5)

Jy(Hess(U)) 2dm
Therefore it follows that, under the above assumptions on U, one has
Prob [U(= > minl + §] < 1/2 US> minl + 6 1/2
t(s))—mm + 8] < N(i(s)) P'ﬂ(s)[ > minU + §] —0asf — o0

(1.2.6)

for all § > 0, whenever N(t) stays bounded. We shall prove in the remainder of this section
that this is the case. In fact, we have the following
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Proposition 1.2. Assume that U is relatively form bounded with respect to Hg with
relative bound strictly smaller than one, uniformly in B3, so that

U<aHg+b (1.2.7)

in the sense of quadratic forms, for some a € (0,1), b € R. Assume also that (1.1.16)
holds for some m > 0, and let T(t) = ¢/log(t + to) for some to > 1, with ¢ > m. Then
N(t) — 0 ast — oo. More precisely, let p € (1 —m/c,1); then there ezist constants ky, k3,
depending on p but independent of N(0), such that

ko

—(t+to)t P
N(t) < kg N(0)e~(+to) ™7 4 T

(1.2.8)

Proof. Note that
N(s) = (fs = ®p(s)s fs = @p(s)) = Ifsl13 = (Fo, @p(5)) = (p(s) Fs) + 12 p(5) |3 =

= 15113 -1, (1.2.9)

since |[®g(4)ll2 =1 and (fs, Pg(s)) = [ ps(z)dz = 1. Next we compute the time derivative
of (1.2.9), and we derive a differential inequality which will give us the required uniform

bound. p p
2 _ “ 2
(—1;”](3 - ‘I)ﬂ(s)llz = ds”fs||2 =

- _2(f37Hﬂ(s)fs.) + ﬂ,(f.w (U - (U)ﬂ)fS)' (1'2'10)

We recall that Hg is positive and self-adjoint, and that ®4 is an eigenvector of H g with
eigenvalue zero. Therefore one can rewrite (1.2.10) as

d
s = B4)13 =

= =2(fs — Pp(s), Hp(s) (fs — 2p(s))) + B'(fo: (U — (U) ) fs)- (1.2.11)

By assumption, 2 — 8'(s)a > 0 for all s; therefore, one can work out equation (1.2.10) as
follows;

d
Zfs - Bg)ll5 <

< —(2-B'a)(fs — Bp(s), Hp(s) (fs — Bp(s))) + B'lIfs — Bg()|1° + 8D, (1.2.12)

by the relative boundedness assumption. At this point, the spectral gap condition implies
that

d
s = B4,)13 <
< - ((2 - ﬁ'a)’y(ﬁ(s)) - bﬂ’) fs — ‘I’g(s)Hg + b4’ (1.2.13)

12



Restoring the original time variable ¢ and integrating the differential inequality (1.2.13),
we obtain an ordinary inequality for N(#(s)) = ||fs — @ﬂ(s)“%- Set

c(i(s)) = ((2 = B'(s)ayr(B(s)) — b8'(s)) » (1.2.14)

ﬂ()

and observe that (1.2.11) can be rewritten as

1

d d

(—ﬁN(t) = —c(t)N(¢) + bdt 0} (1.2.15)
It follows that

— [* c(u)du LA v & d 1
N(t)<e Jig @) N(to)+b | e J e)d ( )du (1.2.16)
to T(u)
As is usual in the literature, we take a cooling schedule of the form
c

From the assumption (1.1.16) on the limiting behaviour of the spectral gap, we have that
for any positive number m* > m, one has

v(8) > Te P™" | for some T > 0. (1.2.18)

Then we have

CRICORES th)) (77) ~ iy 2

2¢ a —m*/c b
Z (log(t Td) i+ d)) Le+d™ " = vy (1.2.19)

For ¢ > m we may take m < m* < ¢ so that ¢(t) > k(t 4+ d)™? for some positive constant
k, for some p € (m/c,1), and for ¢ large enough. Hence, the first term in the r.h.s. of
(1.2.16) vanishes in the limit as ¢ — oo. With suitable changes of variables, the second
term is reduced to an expression of the form

e”? —dac, (1.2.20)

where b = const. (t + t9)! ™ — oo; in this limit, (1.2.20) is of the order of 1/b (cf. [54]).
This shows that also the second 1ntegral Vanlshes for large t, and that (1.2.8) holds, thus
completing our proof.

a

Remark 1.3. Our estimates show the convergence of the annealing algorithm for ¢ > m,
while they do not give any information concerning the case ¢ < m; however, in analogy with
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the results obtained by various authors in different contests such as compact manifolds (see
[12]) or Markov chains on finite state space (see [8]), one would suspect that the process
does not converge in probability when ¢ < m and converges for ¢ = m.

Corollary 1.4. Under the above assumptions,
Prob {z,(,) > min U +8} < N(t(s))"/? (pp(s)[U > minU +6]*% - 0 as s — co (1.2.21)

for any § > 0, since N satisfies the bound (1.2.8).

Remark 1.5. The quadratic form inequality of the previous Proposition can be seen as

a consequence of stricter hypercontractivity properties of the family Hg which we shall
study in the following section and in chapter 2.

14



1.3. Logarithmic Sobolev inequalities

This section is devoted to proving a family of logarithmic Sobolev inequalities for the
operators Lg of the previous section. This is done under assumptions which amount to
a sufficiently fast growth of U at infinity. In fact, for potentials which are sufficiently
regular in a neighbourhood of infinity our assumptions amount to U(z) > c|z|? — d for
some c,d > 0.

Assumptions of the form we shall use below will also be sufficient to prove that the
time—dependent heat equation (1.1.20) has a solution in L2 for almost all s > 0 (see
chapter 2) and, as a simple corollary of the stochastic Liapunov theorem, to prove that
the stochastic differential equation (1.0.1) is non—explosive (see Lemma 1.6 below).

The inequalities we prove here will be used in section 1.4 to prove quantitative bounds
on the rate of convergence of the distribution of (1.0.1) towards a measure concentrated
on the set of absolute minima of U.

Let ®43 be defined by (1.1.11), and let || - |[2 g denote the norm in the Hilbert space

Lz(]R",d,uﬂ). The aim of this section is to prove, under Assumption 1.6 below, a family
of logarithmic Sobolev inequalities of the following form:

210 i d k 2 .3.
/f By e < <080 + Rlf I (1.3.1)

for some € € (0,1), kg > 0. Here Qg stands for the quadratic form associated with the
operator Lg acting in LZ(Bn,d/J,ﬂ) and defined in (1.1.10). Our treatment follows [36],
and aims at controlling the dependence on J of the Sobolev constants kg (see also [55] for
a discussion of the ground state representation). In order to do this, the main technical
tool is the so—called Rosen’s lemma, and in the sequel we estimate the dependence on 3 of
the constants involved. As mentioned, our analysis will rely on the following

Assumption 1.6. U and |VU]| diverge to infinity as |z| — oo and, moreover, there exists

constants « > 0, ¢ € (0,1) such that the following inequality between quadratic forms
holds:
0< U(z) < e(|VU(2)]? — AU(z)) + @ Vz € R™. (1.3.2)

Lemma 1.7. The stochastic differential equation (1.0.1) is non-ezplosive.
Proof. (1.3.2) implies that

1
AU < |VU1—EU+§ g»ﬂ01v0|2+qU+%, (1.3.3)

for any g,¢ > 0, and hence there exist [, > 0 such that (1.1.5) holds.
0

Lemma 1.8. There exists a constant a > 0 such that the following inequality between
quadratic forms holds:
—log @3 < eHg + Ba, (1.3.4)
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g being as in (1.3.2).
Proof. 1t is clear from the definitions and from (1.3.2) that the following inequalities hold;

1.0 1 2, 1 B
_(1p2_12 28ve > E 3.
Vo= (38~ 36) IVUP+ 3% 2 G, (1:3.5
B B B
> e— > U - = 3.
6Vﬂ_€2V2_2U 5 % | (1.3.6)
where « is as in (1.3.2). Hence
B B
2 < 2. 3.
this implies that, for a = «/2 > 0,
—log 5 < Vg + fBa, (1.3.8)

since Z(f) is monotonically decreasing in 3, and a fortiori (1.3.4) holds.
O

The second inequality which is necessary in order to prove Rosen’s lemma is provided, at
least when n > 2, by the following

Lemma 1.9. Let n > 2. Then there ezist constants ¢ = c(n),d > 0 (independent of 3)
such that the following quadratic form inequality holds:

g< c||g|{_;z [Hg+pBd], Vge L%(dm). (1.3.9)

Proof. Note that Hg is a positive operator, so that the Trotter product formula and (1.3.2)
imply that, for some positive constant r

Kg=Hg+1pB (1.3.10)

satisfies the Beurling-Deny conditions; hence Kpg is the generator of a symmetric Markov
semigroup. At this point, one can proceed as follows; first, the use of the Trotter product
formula shows that the integral kernel of exp[—tKjp] is pointwise dominated by the free
heat kernel, and hence one finds that

| exp[—tKp)||1,00 < (47t) "%, (1.3.11)

where ||-||p, denotes the operator norm between LP(dz) and L(dz). Interpolating between
this bound and || exp[—tKg]||oo,c0 < 1 yields

|| exp[—tKp]|[2,00 < (47t) "% (1.3.12)

At this point, we can make use of [36, Theorem 2.4.5], which asserts that a bound of the
form || exp[—tH]||2,00 < c1t~#/* for a p > 2 is equivalent to the quadratic form inequality

16



g < c2||g||_gH for all g € L#/2, The proof of this theorem shows also that the constant ¢3

depends only on c¢i and on p, thus proving the Lemma.
W]

Lemma 1.10. Let € be as in Assumption 1.6. There ezist a positive constant c1 (indepen-
dent of B) such that the following logarithmic Sobolev inequalities hold:

[ £1o8 s < Qp(H) + aBlfIBg (1:3.13)

for any 0 < f € L°°(d,u/3) N Dom[Qg], € being as in (1.3.2).

Proof. If N > 2, this is a simple application of [36, Lemma 4.4.1, Corollary 4.4.2], and of
the previous Lemmas It is well known that inequalities of the form (1.3.13) with a Sobolev
constant gg which does not diverge too fast as € — 0 are equivalent to ultracontractive
bounds for the corresponding symmetric Markov semigroups.

Even more directly, they can be used in order to estimate the corresponding integral
kernels. This allows to prove the claim also in the case N < 3. In fact, the cases N = 1,2
are described by first estimating the integral kernels of the corresponding semigroups by
means of tensor product operators on LZ(IR3V) like Mz = Hy®1®1+1®@ Hg®1+1Q010Hg
as in [36, Lemma 4.5.4]; in fact, the integral kernel of exp[—tLg]| satisfies

Kg, (t,z,y) < a3 exp[Bag(l +t+tq)], t>0, z,y e R", (1.3.14)

for suitable positive constants a2 §since the heat kernel of My factorizes. The application
of [36, Corollary 2.2.8, Example 2.3.4] shows that the corresponding logarithmic Sobolev
inequalities still hold.

O
Next, the following Lemma due to J.D.Deuschel will be useful.
Lemma 1.11. Let p be a probability measure, and let f be in L?(dp). Then
Hfllz,u 1(f = (N2,
+2[1f = (N3, (1.3.15)
where (f) = [ fdp.
Proof. See [6].
O
Lemma 1.12. There ezists m > 0 such that
lim = log(y(8)) = —m. (1.3.16)
p—oo fB
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Proof. The thesis follows from [16] by observing that both U and |VU]| tend to infinity as
|| — oo by assumption, and that Vg is bounded below.
O

More precisely, it has been proved in [16] that, at least for § large enough,

¥(8) > b8 F exp[—Bm], (1.3.17)

for suitable constants b > 0, k € IR, depending on d. Once more we assume, possibly by
changing the constants involved, that (1.3.17) holds for any § > 2. The number m will
turn out to be the critical value for cooling schedules of the form T'(t) = ¢/log(to + t).
Indeed, we shall prove that if ¢ > m, the Langevin algorithm works.

The spectral gap estimate (1.3.17) can be rewritten in terms of an ordinary Sobolev
inequality as follows:

If = (£)a13 5 < 88" exp[Bm]Qa(f), (1.3.18)

for each f in the form domain of Lg. This fact, together with the previous Lemmas, allows
us to prove the following '

Theorem 1.13. There exists A > 0 such that

2 Y\ k+1
[ #2106 | (70 ) | o < 48+ explamiap(r), (1.3.19)

for any 0 < f € L*(dpg) N Dom [Qg], B > 2.
Proof. The previous Lemmas imply that

2
2 f
] #7108 [(nfnz,,,ﬁ) ] A =

gy | (= 08) Y 2
< [~ 1997108 {(H(f‘(f)ﬂ)”%#ﬁ) ] o+ 27 = Sl <

< 26Qal(f — (N +2(c1B + DII(f — (Hp)llf 5 <
< 26Qg(f) + 2(c1B + 1)b8* exp[Bm]Qp(f). (1.3.20)
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1.4. The Li—estimates

The conclusion of Theorem 1.13 is precisely of the form required in [6, Theorem 3.9]. Let
pt denote the probability distribution of (1.0.1); the aim of this section is to use the large
deviation methods originally introduced in [28] and developed for example in [6, 33] to
estimate the LI(%) (dy, /7(t))-norm of the Radon-Nikodym derivative vy = dpt/du, /7(¢) for
a suitable function ¢(¢) with ¢(t) — oo as t — oo, and where T'(¢) has the usual form
T'(t) = c/log(to + 1), ¢ > m, m as in Lemma 1.12. However, in [6], inequalities of the form
(1.3.19) have been used to prove estimates which depend crucially on the existence of an
upper bound for U. The aim of this section is to show how to replace such estimates with
bounds which do not depend on the L°°~norm of U but only on its Lz(d,uﬂ )-norm; see in
particular the proof of Lemma 1.16 below. These considerations will allow us to prove L?
estimates similar to those proved in [6] also in the non—compact case, despite of the fact
that U is not bounded.

We find more convenient to write the differential inequalities in the original time variable
t. So, we denote by || -||4,¢ the LY—norm with respect to B1/7(t), and define Qﬂ = Qg/B;
in this section, a dash will denote derivative with respect to ¢. We postpone to section 2.1
(see in particular Corollary 2.7) the proof the all the norms in the remainder of this section
are finite, and assume in the sequel that this is the case. We also suppose, for the sake
of simplicity, that 14 exists even for ¢ = 0, possibly (see section 2.1) by running (1.0.1) at
constant “temperature” for times (—¢,0) for some ¢ > 0.

We start recalling the following

Lemma 1.14. Let t — g(t), t — T(t) be C! positive functions such that q(t) > 2 for all
t > 0. Then the following estimate holds, with ¢'(t) = dg/dt(t):

d ) —1 a(t) 2
= Mllg,e < —4q(q) ]2 a(0/2)

2(t) q(t),t Qu/7() (v
q'(1)

_ L1
+q2(t”)||’/t||;(ti(tt)/th(t)log — 2w | Tt

t
55,

d 1 1 10 ,

+— 1-———) vy /—————-——-— U-(U du . 14.1

T ( @ lvtllg(e),e a7 (U = (U)yr@)dr1/r (1.4.1)
q(t),t

Proof. Let Pg(t,0,T') be the transition probability function of the diffusion associated with

fJﬂ = Lg/B. We recall that pg is Py(t,0,T')-reversing (see [33, pg. 251]). This fact implies

that, considering a process corresponding to a fixed T = 1/, one would have

d t)—1 —olf)
as!llato s < —4%%(2)—”””;@)9,(5)62/3(1/3“” ®)+

(t)
g(t) 1-a(t) [ a(®) v
T Mlaw,s [ v los |~ o | ks
T Il
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(see also [36, pg. 67]). Taking into account the time—dependence of 8 and the form (1.1.20),
(1.1.21) of the generator yields the claim, since

% - [f’l/T(t) - g{ (E’i—t)) (U= (U)yr) )] vi. (1.4.2)

a

In order to estimate the last integral on the right hand side of (1.4.1) we shall recall the
following well-known lemma (cf. for example [33]).

Lemma 1.15. Let p,v be probability measures defined on the same measurable space,
with p << v and du/dv = ¢; let H(p,v) denote the relative entropy of p with respect to
v. Then, for any positive function ¢ € LY(dv) the following estimate holds:

H(p,v) > /logz,b du —log/deV. (1.4.3)
Proof. Recall that in the above hypothesis the relative entropy is given by

H(p,v) = /log¢ dp = /¢log¢ dv, (1.4.4)

Hence, defining the probability measure «, absolutely continuous with respect to v, by

da/dv =P(f ¥dv)71, it follows that

H(p,v) = H(p,a) + /log'gb dp — log/d’ dv. (1.4.5)

Since, by Jensen’s inequality, the relative entro 4 is always non—ne ative, 1.4.3 holds.
P g
O

It is also well known and very simple to prove that the relative entropy is given by the
supremum over the positive L1-functions of the right-hand side of (1.4.3). The supremum
might be taken only on L®—functions, but this is not convenient for our purposes, since
we shall have to apply Lemma 1.15 to the case p = pg, ¥ = exp(U — (U)g), U being
unbounded in our situation. In fact, Lemma 1.16 below is a generalization of Lemma 3.3
of [6] in the case p and 1 are as above: however it could be stated in somewhat more
general situations provided for example that 3 = exp ) is such that there exist A > 0 such
that exp(a)) € L!(dy) for any a € [~ 4, 4], and that [ Adp = 0.

Lemma 1.16. Let f € Ll(d,u.ﬂ) be positive, normalized and such that

| [@ - @) fdugl < oo (1.46)

Then there ezists k > 0 such that the following estimate holds:

l/(U —(U)p)fdugl <k (/flog fduﬂ)% : (1.4.7)
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Proof. Let X be such that exp(A) € L! (dpg). Lemma 1.15 considered in the case v = pug,
dp/dpg = f, ¢ = exp(}) shows that

/flog fdpg > /fAdpﬁ ——log/exp()\)d,uﬂ. (1.4.8)

Following [6], set now A = a(U — (U)g), for example for a belonging to [ 1,1]. Let

e=|[(U~(U)g)fdpg|. Let F(a) = log [ exp[a(U—(U)g)ldpg. Since J(U—( ﬂ)d,uﬂ =0,
Jensen’s inequality implies that F((a) > 0. Note that by Lemma 1.16

/flog fdpg > aré}gﬁ] (ae — F(a)) := K(¢). (1.4.9)

Since F(0) = (dF/da)(0) = 0, it follows that K(e) > 0 for all £ > 0, the equality holding
if and only if ¢ = 0. Finally, for any a € [0,1],

2
(flf(a) X / [exp[a(U - (U)ﬂ)]d,u,ﬁ]z =

= [[@ - W) explatv - <U>ﬂ>1dpﬂ] [ [ exptatw — @hating| +

2
[ / (U = (U)3) expla(U — (U)ﬂ)]d[.l,‘@} . (1.4.10)
Jensen’s inequality implies that
/ expla(U — (U))ldps > 1, Va e [0,1], (1.4.11)
and hence
d’F
da? R ACOR

< [ [@ - ) exslaw - ol | [ expla(U ~ (U)g)ldis|

2
[ / (U = (U)g) expla(U — (U )@]@4 . (1.4.12)
We have to estimate quantities of the form
/(U - (U)ﬂ)k exp[a(U - <U>ﬁ)]dnu',3) k=0,1,2, a€ [071]) B € [2700)' (1'4'13)

In order to do this, the fact that U is unbounded can be circumvented as follows; first of
all, since

j%(U)ﬂ = - ((Uz)ﬂ - (U)%) = —VargU <0, (1.4.14)
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(U)g > 0 is a bounded function of 8. Furthermore, from the equation d/dB[log Z(8)] =
—(U)p it follows that

B2
gggz; = ©XP [_/ﬂ <U)ﬂdﬁ] < exp[(B1 — B2)(U)2]. (1.4.15)

Next we note that since (U)g is bounded, it is sufficient to consider the case @ = 1 in
(1.4.12). In particular

75 | eel-e - 1las = 202 (1.4.16)
is bounded as a function of 3, and so is
—Z—(IB—S/Uexp[—-(,B —1)U)de = <U)ﬂ_1-Z§75([})i). (1.4.17)

Finally, consider the quantity [1/Z(8)] f U? exp[—(8 — 1)U]dz. It is clear that we have to
estimate the quantity B(8) = (U?) g- Since by Jensen’s inequality we have

%g(ﬂ) = — ((Us)ﬂ - (Uz)ﬂ (U)ﬂ) < —(U)ﬂVarﬂU <0, (1.4.18)

B(B) is bounded.

It follows that the right-hand side of (1.4.12) is uniformly bounded in @ by a constant
cg for all B > 2, with cg uniformly bounded in 8. Hence there exists k; such that
(d®F/da?)(a) < 2k; for all a € [0,1], for all 8 € [2,00]; therefore F(a) < kqa?. Possibly
by substituting k1 by a sufficiently large ks > ki, it follows that there exists £ > 0 such
that K(¢) > ¢/k2. This concludes the proof.

a

Remark 1.17. The proof of the previous Lemma shows that the constant k in (1.4.7)
depends only on the Lz(dp,ﬂ )-norm of U, which in turn is a monotonically nonincreasing

function of # as shown by (1.4.18).
The following argument will be used repeatedly in the sequel
Lemma 1.18. Consider the ordinary differential equation
d
Ez(t) = —a(t)z(t) + b(t), t>0, =z(0)==g (1.4.19)
where for suitable positive constants tg,a,b,e,8 (§ <¢),
a(t) > a(ty + 1)1 (1.4.20)
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0 < b(¢) < b(to + )51, (1.4.21)
Then the solution z(t) satisfies both a bound of the form

z(t) < cyexp [——-Z(to + t)e] + co(to +1)°7F, (1.4.22)
and a bound of the form
z(t) < czexp [——:—(to + t)s} + ca(to + t)(5_1)5 (1.4.23)

In particular, z(t) — 0 as t — oo for all initial conditions zg.
Proof. The solution to (1.4.19) is given by

i t 1]
z(t) = exp {—-/ a(u)du} zg —{—/ exp [—-/ a(u)du} b(s)ds. (1.4.22)
0 0 s
Inserting (1.4.20) and (1.4.21) into (1.4.22) we obtain the bound

2(1) < exp [-Z(to + )]

X {exp (%tﬁ) Ty + b/ot exp [%(to + 3)5] (to + 3)6“1ds} . (1.4.25)

In order to estimate the integral in the right-hand side of (1.4.25), we must study a quantity
of the form

I(t) = /Ot exp [-Z(to + s)s] (to + s)a“lds.

Setting
a
= —(t €
z=—(to +3)
we find: (tob )/
& alilg [
1=2(5" [ Y
€ \a at§ /e
1/eN\é/e _(a, a 5
== (= 248, Z(to + 1)°, ~ 4.
s(a) J(sto’s(0+ )’e:)’ (1.4.26)
where v
J(z,y,a) = / e 2271, (0<z<y 0<a<l). - (1.4.27)
T
Integrating by parts one finds
1 1 Y 2
J(z,y,0) =¥ y*7  —e® 2% 4 (1 - a)/ e* 2% %dz. (1.4.28)
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If £ > 1 we have 2272 < 2271 for 2z > z, and hence

1 1
J(z,y,0) < = (ey y@ 1 e, z“—l) <=e¥ @l (2>1) (1.4.29)
(84

In the general case we have instead

J(w,y,a)<-1—e” * 14 Ipq)(2)(z,1,0) (1.4.30)

Inserting the above result into (1.4.24), we obtain
a a e a )
0 <o 2007 o (28) 0 b7 (2650.5))

be §5—
: € 4.
+_a5(0+t) R (1.4.31)

which is indeed of the form (1.4.22). An inequality of the form (1.4.23) is proved similarly
by noting that
e 2972 < ¥ y* 2, Vze€[z,y], (1.4.32)

at least for sufficiently large y.
O

The use of the previous Lemmas allows us to give the required uniform bound on ||v4||g,:
for a suitable function ¢(%) : [0,00) — [2,00). In fact one finds:

Theorem 1.19. Let T(t) = c¢/log(to +1t), 2o > 1, ¢ >m, § > 0 and ¢ € (0,1 — m/c).
Assume that pyg << 11/T(0)- Then there exists a constant h, depending on ¢,m, A, k,e and
6 such that

k2
lotllae < Ibollapoexp |57 vz 0 (1.4.33)

and

q(t) > h(tg + )19, (1.4.34)
Proof. The following inequality holds:

St < s Il G/ 197) [ 06 (1/T(0) - 20(0)] +

=

thu ; (T(t)) i Hl(t)q,(tt)/2 [54 (1/T(t)) Q1/7(t) (V5 Al )] (1.4.35)
since ¢ > 2, where
a(1/T(t)) = Tt )a(l/T(t)) (W) exp [%] ) (1.4.36)
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In addition, noting with [6] that, for all ¢ € (0, 00),

f(t)-.:;[ & (L/T(®) Quyrey Ol 802+ S22 >

> [a@/T)) Oy 1) (1.4.37)

one finds that for any function g : (0,00) — (0, 0) the following inequality holds:

e < g Il Qa/m ()

& (/1) (dO)+ 2 (57 ) cW/TO) P ) —20(0)| +
®

2 (2 e ||l
7 \T(0) ) seCjr) "l
Let M(t) = |[vt]lq(),s: it follows that

(1.4.38)

d
— <
ZM(t) <

1-q(%) .
< MO (g + Pwe/re) 5 (755 ) #7700~ 200)| Qyyro (9

k2 d (1
T8 (/T) & () Ve (1:4:39)

For any fixed function p and for the usual cooling schedule, one can equate to zero the
term in square brackets in the right-hand side of (1.4.39), thus finding ¢ = ¢,(t). The
corresponding inequality for N(¢) is easily integrable and implies that

2 [es) »
M(£) < M(0)exp [% /1 o g(zz)} . (1.4.40)

The bound (1.4.33) for M(t) follows immediately from (1.4.40) choosing o(z) = z?. In
addition ¢(t) satisfies the following ordinary differential equation:

d < 1 ) 2cht? 1 [log(to + )2
a(t)) = Allog(to +t)]2+*(to + )™/ q(t)  (to +1)

The thesis now follows as in Lemma 1.17, since for all § > 0, ¢ > 0 a bound of the form
log(to +t) < ¢(8)(tg + t)° holds. For example, we can take c(6) = 1/(eé).

=0. (1.4.41)

O
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We remark that the constant h in (1.4.34) may be very small. Indeed, the constants a,b
in the Appendix may be chosen in the situation at hand as:

“:%[(l“%"s)kejz

k42
} : (1.4.42)

and

(1.4.43)

at least when k > —2. In fact, one could replace the previous bound by another one of the
form

q(t) > hi(to +1)°7°%, > 6, (1.4.44)

as indicated in Lemma 1.17, where the constant A1 may in some situation be larger than
the constant h in (1.4.34), or by the argument of [6], who find a bound of the form
g(t) > [1+B(t)]/4. These latter bounds may be better than the previous one for large but
finite times, even if they are weaker in the limit as ¢ — oo.

As a consequence of the previous Theorem and of the Schwarz inequality, we state the final
result of this section.

Corollary 1.20. Under the assumptions and with the notation of Theorem 1.18, one has
Prob {mt(s) >minU + 6} <

2 —
< |[v0llgo,0 exp [% T(o)] paoy{z | U(z) > minU + 817120 50 ass — oo (1.4.45)

for any § > 0, where
4(t) = h(tg +)°(1-9), (1.4.46)
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Chapter 2:

A TIME-DEPENDENT HEAT EQUATION

The estimates in chapter 1 were obtained by exploiting the time evolution of the Radon-
Nikodym derivative of the distribution of (1.0.1) with respect to the instantaneous equi-
librium distribution pgy) at time ¢. In particular, we have considered the time-dependent
heat equation (1.1.20), and all our conclusions depend on the existence of L2-solutions to
such equation.

In this chapter we outline some arguments which allow to prove existence and unique-
ness results for (1.1.20). The arguments are of three different kinds: namely, we first give
in section 2.1 a probabilistic proof in term of ultracontractive bounds by proving a time-
dependent Feynman-Kac formula for the heat equation at hand; in section 2.2 we show
that, at least as concerns the existence of a weak solution, a straightforward application of
Lions’s theorem for parabolic equations works, and finally we use in section 2.3 the general
theory of Acquistapace and Terreni for time-dependent evolution equations. This latter
result is probably the better one, since it involves rather weak conditions on U; for example
most functions U which increase monotonically in a neighbourhood of infinity would work.

Assumption 1.6 is assumed throughout, and some additional assumptions will be nec-
essary in sections 2.1, 2.3.

2.1. Solution via a time—dependent Feynman—Kac formula

As in the previous chapter, we assume that s — B(s) is a function of class C' in [0, o),
and moreover that 3(0) > 2, 0 < 8'(s) < 2 for all s. We use the notation that a subscript
“9” denotes that the corresponding quantity is evaluated at 8 = 2.

Concerning U, we make the following

Assumption 2.1. are positive constants k, h,l,7, a1, az,, with v < k, such that
U(z) 2 klel* — 1, |VUPP +|AU| < a1e™ — o (2.1.1)

for all z in IR™. Moreover, there exist positive constants ¢,d,é such that the following
strengthened form of Assumption 1.6 holds for all e > 0 and for all z € IR™:

0<U(z) <e(JVU(z)|> — AU(z)) +c+ sii. | (2.1.2)

Lemma 2.1. The potential

V(s) = Vit~ 58'6) (U~ (0)sc0) (2.1.3)
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satisfies the bounds
V()2 1 [8(s) ~ BN Va — 58 e+ d), (21.4)
V(s) > —5B(s)(c +d). (2.1.5)
Proof. For all s > 0, we have

Vi =[50 — 38(6)| IVUF + 56(6)V5 2 560V

In particular, it follows from Assumption 1.6 that U < V; +(c+d). Since (U)g is positive for
all B, the estimate (2.1.4) follows. From Assumption 1.6 it follows also that V5 > —(c+d);
recalling that B(s) > B'(s), we obtain (2.1.5).

0

Using the theory of ultracontractive semigroups, as in [36], we can prove the following

Lemma 2.2. The semigroup exp|—tHa] has an integral kernel K»(t,z,y), and there exist
positive constants a,b,a such that, for all z,y in R"™ and t in [0,00), one has

0 < K»(t,z,y) < aexp [b(t""‘ \Y; 1)] Dy (z)P2(y)- (2.1.6)

Proof. Let L, be the positive self-adjoint operator in L2(IR™, ®3dz) which is unitarily
equivalent to H, according to (1.1.13). Under the above assumptions we can apply [36,
Theorem 4.7.1], whence it follows that exp[—tA4,] has a heat kernel K3 »(t,z,y) satisfying

0< Ks2(t,z,y) < aexp [b(t™V 1)] (2.1.7)

for some positive a,b,a. Then (2.1.6) follows as in [36, Lemma (4.2.2)], since Ky(t,z,y) =
Kg 5(t,2,y)®2(z)22(y)-

a
Lemma 2.3. . For all f in L? and t in (0,00), exp[—tH,]f is in Dom V(s) for all s.
Proof. Tt suffices to prove the lemma for f > 0in L2. Then (2.1.6) implies that
0 < (exp[—tHa]f) (z) < aexp [b(t™% V 1)] 22(2) (22, f), (2.1.8)
and the claim follows upon taking into account (2.1.1).
O

Next we recall some basic facts about the Feynman-Kac formula, having Reed-Simon
[56] and Simon [35] as general references. Let { be the set of Brownian paths w : [0,00) —
R", with w(s) =z + v2w,, and let du be the product measure on {2 of Lebesgue measure
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dz on the starting point z € IR™ with the probability measure dP which makes {ws : s€
[0,00)} an n—dimensional standard Brownian motion starting at z.

Let V be a real-valued function defined on IR™ (continuous and bounded, for simplic-
ity), and let H be the self-adjoint closure in L? of the operator H = —A + V. Then, for
all f,gin L? and for all £ in (0,00), we have

(exp[—tH]f,g) = (fanP[_tH]g):

o t V (wla))du] otw()duto) | (2.1.9)

which may be also written in terms of a heat kernel K(¢,z,y) > 0 as

(exp[—tH1f, ) = (f,exp|—tH]g) = / dedyT(2) K (t,2,9)9(y).

Note that the factor of v/2 in front of w, in the definition of w(s) serves to obtain H =
— A + V instead of H = —A/2 + V. In particular, if V = 0, so that H = Hy = —A, we

have

(exp[—tHolf,9) = (f,exp[—tHolg) = / dzdyf(z) Ko(t,z,v)9(v),

—n 1
Ko(t,2,y) = (4t)™™? exp[-7: | — ). (2.1.10)

In fact, (2.1.9) holds for a very general class of potentials (see [35]), and for example it
suffices that V. € LL _(IR™\ G) for a measure—zero closed set G and that V_ is relatively

loc
—A—~form bounded with relative bound smaller than one.

Lemma 2.4. There ezists a (not necessarily symmetric) heat kernel K(t,m,y) such that,
for all f,g in L?,

[T e [ [ Vewtuyi] sw@)duw) = [FEE s o)z, @10)
Q 0
and such that, for all z,y in R™ and s in (0,00), one has

0 < K(s,2,y) < exp[r1(s)|Ko(s,z,y), (2.1.12)

0< K(s)zay) < CXP[TZ(S)]KZ(T:‘I(S):may)? (2113)
where K is given by (2.1.10), K, is as in Lemma 2.2, and where

n(s) = e+ ) [ Bdu = 3e+a)ts) (21.14)

ro(s) = 5(e+ d) /D B (w)du = £ (e + d)B(s), (2.1.15)
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n(e) =3 [ 180 - ')t = 51t(s) - B(o). (2:1.16)

Proof. For positive real r, let
Ve(s,z) = V(s,z) A (2.1.17)

Then z +— V;(s,z) is a continuous bounded function, and the same is true for s — V,.(s,w,);
so there is no problem in generalizing (2.1.9) to define

[y |- [ Vil ()] o) du(w). (2.1.19)

Since also V,(s) satisfies the bound (2.1.5), it follows from consideration of positive f, g in
L? converging in the sense of distributions to the Dirac delta at = and at y respectively
that there exists a (not necessarily symmetric) heat kernel K,(¢,z,y) such that

(2.1.19) = /dzdymkr(t,m,y)g(y), (2.1.20)

0 < K.(s,2,y) < exp[r1(s)| Ko(s,z,y). (2.1.21)

Now let 7 — oco. Then exp [— fot V,.(u,w(u))du] is a nonincreasing function of r for each

w. For positive f,g in L?, (1.2.18) is a monotonic nonincreasing function of r, and the
same is true for K.(t,z,y), pointwise in ¢,z,y. Then (2.1.11) and (2.1.12) follow, with
K(t,z,y) = lim, . K.(t,2,7). In order to obtain (2.1.13), we use the bound (2.1.4) on

V(s).
O

In the following, for the sake of simplicity, we shall assume that the initial condition
f at time t = 0 is obtained by starting from an arbitrary fo € L? at time t = —¢3(0),
and letting the process z, evolve from ¢t = —¢f(0) to ¢ = 0 with constant “temperature”
T(0) =1/3(0). Then f = exp [—eHﬁ(o)] fo. Since §(0) > 2, we have Vg(g) > V3. It follows

that for positive f, we have

0< f(y) = / fo(2)Kp(oy(er 2, 9)de <

< /fo(:c)Kz(e,w,y)dfc < aexp [b(e™* V1)] (fo, 82)@2(y), (2.1.22)
which is in Dom V (s) for all s, where by Dom V (s) we mean the L2~domain of the associated

multiplication operator in L. Since ®; is a continuous function, a similar bound holds
also when f is replaced by a multiple of the Dirac delta.

Theorem 2.5. For f = exp [-—eHﬁ(o)] fo, fo in L? and t in [0,00), let
PON® = [ 1@k 2z, (2.1.23)
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Then P()f is in Dom V(s) C L* for all s,t in [0, 00), and the following du Hamel formula
holds:

t
P(t)f = exp [—tHo) f — / exp [—(t — s)Ho| V(s)P(s)fds. (2.1.24)

0
The conclusion remains true if fo € L? is replaced by a multiple of the Dirac delta measure

at some point z.

Proof. We adapt the proof in [35]. First we work with V.(s). We have

2 exp |- [ Vetwwioaa] = e [ [ Vil w(a))du Vi, (o),

and integrating between 0 and ¢ we obtain

exp [— /0 t Vr(u,w(u))du] _1= /0 Cexp [— /U | Vr(u,w(u))du] [~ V,(s, w(s))]ds.

Take f,g € L2, multiply both sides of the above equality by f(w(0))g(w(t)), and integrate
on §) with respect to du(w). By independence of the increments of Brownian motion in
disjoint time intervals we obtain, using the definition (2.1.20) of K,

/dzdymfi',.(t,m,y)g(y) — (f,exp[—tHolg) =

- / ds [ / dody (=) Kot 2,9)Va(s,9) (exp[—tHolg) (v) | - (2.1.25)

Let
Pa()f] (v) = / F(2)Bo(t,2,9)des (2.1.26)

(2.1.26) tells us that

P.(t)f = exp|—tHof — /0 [t — $)Ho] V(s)Py(s) fds (2.1.27)

(the passage from weak to strong form being allowed as all operators involved are bounded).
There remains to prove that one may let r — oo in (2.1.27) and obtain (2.1.24). Note that
for f of the form exp [—-6Hﬁ(0)] fo, we have

[P()f) (v) = / f(@)K (t,2,y)de = J fol@)K (t + &, ,9)dz, (2.1.28)

where K(t,z,y) is obtained by replacing V(s,w(s)) in (2.1.11) by V(s — &, w(s)), with
V(t,z) = V(0,z) for t < 0. An application of Lemmas 2.2 and 2.4 shows that

[P(#)f] (v) < aexp [b(e™* V1)] (fo,®2)P2(y), y €R", t€[0,00), (2.1.29)
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implying that P(t)f and V(s)P(t)f arein L2 with L2 —norm bounded uniformly in s,?. By
dominated convergence, we can take the limit as r — co in (2.1.25), thus obtaining (2.1.24)
in weak form. Upon noting that V(s)P(s) is bounded by the closed graph theorem, the
passage from weak to strong form is allowed.

0O

Finally, in order to show that the propagator (2.1.23) is a solution to the original
differential equation (1.1.20) it suffices to recall the following classical result (cf. Lion and
Magenes [37]); suppose that A is the generator of an analytic semigroup of some angle 8
(which is of course the case for Hy); then the convolution

g(t) = /;t =D 4f(s)ds, te(0,T), (2.1.30)

with f € L2((0,T), H), where H is a Hilbert space, defines an element g of L%((0,T), D(4)),
where D(A) is the domain of A endowed with the graph norm. This implies in particular
that the right-hand side of (2.1.30) is in D(A) for almost all ¢, and this is exactly what
we need to be allowed to take derivatives in du Hamel’s formula corresponding to the
potential V(s) at least for almost all t. Since this derivative is used to derive a differential
inequality which is afterwards integrated, this is all that we need to complete the prove of
the existence of a solution to the evolution equation (1.1.20) for a class of time-dependent
potentials arising from Langevin diffusions.

Corollary 2.6. The solution f; = P(t)f belongs to L? for all t € [0,00) and for all
p€ (1,00

The corollary follows from the choice of the initial condition, which corresponds to starting
the process at time —e3(0) and running the process with constant temperature until £ = 0,

and from the fact that, in analogy with (2.1.13), (2.1.6), there exists a positive continuous
function ¢(s) such that

K(s,z,y) < c(5)2p(s)(2)2p(s) () (2.1.31)

A remark is in order: we used in section 1.4 the Radon-Nikodym derivatives v; =
dpt/dpy ey, e being the distribution of the process at time ¢. It is clear that vy,) =
fs ;3’(13). An immediate consequence of Theorem 2.4 is the following

Corollary 2.7. The Radon-Nikodym derivatives vy belong to L>°(dpy/(z)) for allt > 0.

This proves that the calculations of section 1.4 make sense, since all the quantities involved
are finite.
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2.2. Solution via Lions’s theorem

In this section we prove that, under Assumption 1.6, Lions’s theorem for parabolic equa-
tions [37] can be used in order to prove existence and unicity of a weak solution to the
equation at hand. Without loss of generality we also assume that 3(0) > 2 strictly. We
start with some pointwise estimates on the potential Vj.

Lemma 2.8. There ezists A(B,B0) € R such that

Vﬁ - V,Bo S K(IBMBO)Vﬁo + A(ﬂ)lgo)) (221)

where B € [Bo,1 4+ [1 4+ 264(Bo ——2)]1/2) and K(B,8,) € (B%/B2 —1,1) is given by

K(8,50) = ﬁ(ﬁz B2 2B+ 2B). (2.2.2)

Proof. Note that Assumption 1.6 implies that
AU < [VU|? +b, (2.2.3)

holds for a suitable constant b. Let 8 € [Bo, v/260). Proving (2.2.1) is equivalent to proving
an inequality of the form

AU<_];ﬁ§K(ﬂ7ﬂ0)—:82+ﬂg 2A(:3,/80)
T 2 BoK(B,60) — B+ Bo (B,B0) =B+ B’

But we know that (2.2.4) holds with the coefficient of |[VU|? equal to one; this implies that
(2.2.1) holds with K(8,5) given by (2.2.2). In order that the relative bound be strictly
smaller then one, it is necessary that 8 < 14 [1 4 28,(8o — 2)]*/2.

VU2 + 2.2.4
VU] N ( )

il
Fix now T > 0; and choose a constant ¢ = ¢(T') such that H(s)+c > k > 0forany s € [0, T].
For the sake of notational simplicity, we shall still denote H(s) + ¢ by H(s); this simple
trick makes H(s) boundedly invertible for all s € [0,T]. Observe that a pointwise bound
for functions is equivalent to a quadratic form bound for the corresponding multiplication

operators, and let Dom [H(t)]'/? denote the form domain of H(t), that is the L2~domain
of the positive square root of H(t).

Lemma 2.9. The form domain of H(s) does not depend on s € [0,T].

Proof. Let Bny1 = 1+ [1 4 26.(8n — 2)]/2, Bo = B(0) > 2. It follows that B, is strictly
increasing, with lim, o fr = c0. By using a finite number of times a standard relative
boundedness argument and recalling that —A is positive, it follows that Q(Hg) = Q(Hpg,)
for all 8 > fB,. Noting that U < eV> + b, Vg > V,/2, § > (', we find that

%ﬂ’U < §Vs +k, (2.2.5)
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for a suitable constant k, where § = B’/ is strictly smaller than one. -

We define V as the Hilbert space Dom[H(t)]}/? endowed with the graph norm

A= 1A + QAR fev. (226)

The immersion of V in H =L? is continuous since ||f|| < |f| by definition for any

f € V, and is dense since C§°> C V. Let a(t), t € [0,T] be the family of sesquilinear forms
defined on V by

a(t,u,v) = (H(t)*u, H#)?*v), u,weV (2.2.7)

Lemma 2.10. The following assertions hold:
i) the function t — a(t,u,v) defined for t € [0,T] is measurable for allu,v € V.
i) There exists M > 0 such that

la(t, u,v)| < Mlul[v] (2:2.8)

for any u,v € V,t € [0.7].
i1i) There exists K > 0 such that

a(t,u,u) > Klu| —||u]] (2.2.9)

for any u € V,t € [0,T).

Proof. The dependence on ¢ of the function under consideration is continuous for any u,v
in a suitable form core such as C§°. Since the pointwise limit of continuous functions is
measurable, i) follows. Observe now that

dy,e := |[H(t)" H(s) 73] (22.10)

is finite for any ¢,s € [0,T] by the closed graph theorem.
Since df y = sups|=1 a(t, H(0)~'/2 f, H(0)~!/2 f), applying the relative boundedness ar-
gument of the previous Lemma a finite number of times, and using the fact that H (0)~1/2

is bounded, one sees that there exists d > 0 such that d;o < d for any ¢ € [0,T]. Hence
there exists M > 0 such that for any ¢ € [0, T

lat, u,v)| < [[H(t)3ul] ||H ()] <

< dyo||H(0) || [|H(0)30]] < (42, V 1)|ullv] < Mlullv], (2.2.11)

thus proving ).
In addition, reversing the roles of 0 and ¢ shows that there exists K > 0 such that
do+ < K for any t € [0,T], and that

a(tyu,u) = (1@l + 1)) =l 2 (G2IE©ul? + ul?) - Il >
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> (LA dgh)faf = [[ull? > (1A Kl — [Jul®. (2:212)
O
Theorem 2.11. Denote by (-,-) the pairing between V' and V. Then, for every up € H

there ezists one and only one u € L*([0,T); V) N C([0,T); H) with du/dt € L*([0,T]; V")

and such that p
(o) = ~(H@O w H@), w(0)=u (2.1.13)

for almost allt € [0,T] and for allv e V.
Proof. A straightforward application of Lions’s theorem [37] and of Lemma 2.10.
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2.3 Solution via Acquistapace—Terreni theory.

Here we use the general theory of abstract linear evolution equation developed by Ac-
quistapace and Terreni (cf. [38, 39] and references quoted therein) to prove, under suitable
assumptions, existence and uniqueness results of the above kind. Here, however, the results
obtained hold for general initial condition and, moreover, the solution u(t) solves (1.1.20)
for all ¢ and not only for almost all t. Moreover, the class of functions U for which this
approach is efficient is rather large, since it includes for example all functions which grow
like a power of |z| in a neighbourhood of infinity. As in the previous chapter, we fix T' > 0
and assume that H(t) > ¢ > 0 for all ¢t € [0, T].

With the notation of [38] we give the following

Definition 2.12. A function u € C([0,T],L?) is said to be a strict (respectively classical)
solution of (1.1.10) if w € C([0,T],L2)NC([0, T], D[H(t)]) (respectively u € C*((0,T],L?)
NC((0,T], D[H(2)]))-

The additional assumption of this section is as follows:

Assumption 2.13 (continuity). For each ¢ > s > 0 the operator (V(t) — V(s))H(t)™" is
bounded, and moreover there exists C > 0, v € (0,2) such that

IV () = V() H(s) I < et = s)". (2.3.1)

Using some of the results of [38], in particular the theorems contained in section 6 of that
paper (see also [39] and references quoted therein), we have the following.

Proposition 2.14. Let fo € D(H(0)) (respectively fo € L?). Then there ezist a unique
strict (respectively classical) solution to (1.1.20) with initial condition fo.
Proof. We shall prove that, for A in a sector of any angle § € (0,7), the quantity

IH@EE) -2 HE) ™ - H(s)]]] (2:3.2)

can be estimated in terms of the left~hand side of (2.3.1), provided that it makes sense.
Let g € L? be given; we have

H(t)(H(t) - N HEH™ - H(s) g =
= (H(t)—A)rg—H(s) g~ MH() - \) T H(s) "9 =
= [(H(®) =X (H(s) = X) —1]H(s) g =
= (H(t) = X)"'(H(s) = N H(s) "9 — H(s) " g- (2.3.3)
Define the following quantities:
w=(H(t) = \)"}H(s) = N H(s) g, (2.3.4)
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v=H(s)'g. (2.3.5)
Then u € D(H(t)), v € D(H(s)) and
(H@) —Nu=(H(s) = A)v =g — v, (2.3.6)

H(s)jv=g (2.3.7).
Writing H(t) as H(t) = A + V(t), and subtracting (2.3.7) from (2.3.6), we have (the

Laplacian being meant in distributional sense),
Au —v) = My —v)+ V(@) (u —v) = [(V(s) = V(¢))v]; (2.3.8)

note that each single summand in the left-hand side of (2.3.8) need not be in L?. Eq.
(2.3.8) can be rewritten as

u—v=(H(t)~ X (V(s) = V() (2.3.9)
where the right-hand side makes sense by Assumption 2.13. Since for all ¢ € [0,T], for all

) in a sector of any angle 6 € (0,7), and for a suitable constant ¢ = ¢(T') an estimate of
the form

) =27 < 5 (2.3.10)
holds, we have by (2.3.1), (2.3.3), (2.3.9) and (2.3.10) that
I H@)H () = )THHE@™ - H(s)7HI| < -l"i‘—'lt — 8|7 (2.3.11)

The inequality (2.3.11) is precisely of the form ([38], Hypothesis 2), whence the thesis
follows as in ([38], Section 6).

-
Corollary 2.15. Suppose that
Dom (H(t)) = H*(IR™) N D(V(t)), (2.3.12)

where Dom (V(t)) denotes the domain of V(t) as a multiplication operator in L?. Then
Assumption 2.13 is satisfied with v = 1, so that Theorem 2.14 holds.
Proof. We have shown in the previous section that

Vi — Vi, < K(t,8)V, + A(t, s), (2.3.13)

where 1
K(t,s) = m(ﬁ(ﬂ — B(s)* — 2B(t) + 28(s)), (2.3.14)
A(t,s) = const. X (B(s)K(t,s) — B(t) + B(s)). (2.3.15)
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If A(t) = const. x log(te + t), it follows that, for ¢ > s |K(t,s)| < const. x (t — s),
|A(,5)] < const. X (¢ — s). Moreover, it is simple to check that

|8'(t) — B'(s)|U < const. x B'(s)(t — s)U

and that
18'(s)(U)s — B'(t){U)¢| < const.(t — s).
This implies that
V() = V(s)] < et —s)(V(s)+1). (2.3.16)

Since H(s)"'g belongs to the domain of H(s), and hence, by assumption, to the domain
of V(s), the claim follows from the closed graph theorem.

g

Remark 2.16. Assumption (2.3.12) holds for example if the so-called condition V of
Kato (see [57, 58]) is the satisfied, that is if (V(t) 4+ ¢)~%/2 (for sufficiently large c) is
Lipschitz in a neighbourhood of infinity with Lipschitz constant strictly smaller than one.
If U(z) = p(z), U(z) = explp(z)], U(z) = explexp[p(z)]],... in B(0,7)° for some r > 0
and for some polynomial p(z) with lim|z|_. p(2) = +00, the latter condition holds.
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Chapter 3:

TIME-DEPENDENT ENERGY FUNCTIONS

In this section we discuss the case in which the “energy function” U is allowed to depend
on time. Specifically, we consider the following stochastic differential equation in IR™:

d(l!t = —VU((Bt,t)dt + A/ 2T(t)dwt, (301)

where T' : [0,00) — [0,00) is a monotonically non-increasing function of class C?, and
U:[0,00) x R™ — [0,00) is a function of class C12([0,00) x IR™).

‘The techniques used here are essentially similar to those of the sections 1.1, 1.2. In
fact for the sake of simplicity we have not pursued the goal of proving LP-estimates via
logarithmic Sobolev inequalities as in section 1.3, 1.4. However, since the problem seems
to be new also in the (computationally simpler) case of diffusions on compact manifolds,
we include a proof of our result also in this setting. This is done is section 3.1, whereas
sections 3.2 and 3.3 are devoted to the case of IR™, and specifically to the reformulation
of the problem in L? and to the L2-estimates.

3.1 Compact manifolds

Let IM be a compact connected finite dimensional Riemannian manifold, with Riemannian
metric g. Denote by V the covariant gradient, and by v the Riemannian measure associated
with g. :
To introduce the diffusion process which we shall be concerned with, we need some
more notation. Let @ = C([0,00),IM) be the path space, that is space of continuous
functions from [0, 00) with values in IM. Then 2 is a Polish space when endowed with the
topology of uniform convergence on finite intervals.

Define the coordinate process z; on Q by z:(w) = w(t), w € Q. Let also F; be the
filtration generated by X;. Then F = U;>(F; generates the Borel field of Q.

Let 8 : [0,00) — [0,00) be of class C™ and monotonically non—decreasing, with
B(0) =0, and U:IM x R™ — [0,00) be a function of class C°°(IM).

Finally, define a family of operators L; : C°°(IM) — C'°°(IM) by

L.f = fOUOY . (e—ﬁ(t)U(t)vf) : (3.1.1)

here we have denoted by U(t) the function U(%, -) on IR™. It is known that, for each fixed
t, L; is essentially self-adjoint in £2(IM, p;) where

pi(dz) = Z7 e POV, (4g), (3.1.2)

Zy = /e"'B(t)U(t’”)v(dz). (3.1.3)
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Furthermore, L; is a non-positive operator, which has A = 0 as simple, non-degenerate,
highest eigenvector, and there is a gap —: < 0 between A = 0 and the rest of its spectrum.
By general theorems about the so—called martingale approach to diffusions [59, 60], we have
the following

Proposition 3.1.For each (s,z) € [0,00) x IM, there ezists a unique probabilily measure
P, . on (2, F) such that

(rx0 - 1) - [ Luf(Xu)du, 7oy Pu ) | (3.1.4)

is a mean zero martingale for all f € C*°(IM). Moreover, the family P, , is Feller contin-
uous and strongly Markov.

Similar properties hold also if the process starts from a measurable initial probability
distribution.

Without entering into details, we only remark that, with the terminology of the pre-
vious chapters, the process described in the above Proposition corresponds to a Langevin
algorithm of the kind considered in chapter 1 with starting point z at time s, to a time-
dependent “energy function” U(t) and to a “cooling schedule” §(t). It should be noted
the the time scaling of section 1.1 has already been performed.

Let P(z,t,dy) be the distribution of X; under P,,. Then P(z,t,-) is absolutely
continuous with respect to u: for all £ > 0.

In the sequel, following the lines of chapter 1, our aim is to control the “size” of the
Radon—Nikodym derivative v4(:) (€ (0,00)), in the form of estimates on its L?(p;)—norm.
In fact, let

T:f(z) = Ez[f(Xt)]a fe Cm(M)a (3'1'5)

where E, denotes expectation with respect to Py .. It follows that

d \ ,
= (Tef) = T(Lef). (3.1.6)

Consider now the unitary operator between L%(u;) and L?(v) defined by the correspondence
f = f®, for all f € L%(u¢), ®; being defined as

B, = e"P[’éZ(B? (/2 (3.1.7)

Under this mapping L. is unitarily equivalent to H;, where

2
H=A-V,=A- (%—IVU(t)}Z — gAU(t)) , (3.1.8)
|-| denotes the Riemannian norm of a vector field, and A is the Laplace—Beltrami operator

on IM. Here, and often in the sequel, we avoid to write explicitly the time dependence of
B (and sometimes of U) for the sake of notational simplicity.
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Fix ¢ € IM, and let ps(y) = p(z,t,y), where P(z,t,dy) = p(z,t,y)dy for £ > 0, so that

Proble. € B = [ pu(u)In(o)v(d) (3.1.9)

for any Borel set B, Ip being the indicator function of B. Finally, define also a family
{ft}+>0 of continuous (and hence square-integrable) functions by

pi(z) = fi(z) () | (3.1.10)

Define, for all g € L* (), (g); as

(@)= [ s(@hi(do) (3.1.11)

Assume that f; is defined and continuous also for ¢ = 0. Then we have the following

Lemma 3.2. f; satisfies the following time—dependent heat equation:

L fo= —HWOf = ~[-A+ VO, (3.112)

V(t) being defined as the operator of multiplication by the function

V(t,2) = Vi(e) ~ FW0(2) — (Ut ) - 560U (42) - U@ ))es (3:1.13)

here a prime stands for the derivative with respect to t.
Proof. The thesis follows as in Lemma 1.1, by noting that

Slog®, = 200 [U(t,2) — (U6, )]~ £ [07(5,2) — "1,

O

In the sequel we suppose for the sake of simplicity that the initial condition f; is
obtained by letting an arbitrary g € L?(v) (or the Dirac measure concentrated at zy €
IM) evolve for times ¢ € (—¢,0), ¢ > 0, under the equation (d/dt)g; = —H;—qg;. This
corresponds to consider the time-evolved of g with temperature and energy function which
do not depend on time in ¢ € (—¢,0). In the sequel f; will denote the unique solution to
(3.1.13) with initial condition of the above mentioned form; see the next section for a more
general discussion.

The Radon-Nikodym derivative v, is given by v, = f,®; ", so that

%’“ =L+ B'(U = (U)e) + BU" = (U") )]s (3.1.14)

Set now

N(t) = |Ifs — 8155 (3.1.15)
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then we have

|Prob[X; € A] — pi(A)| = |(fe — B¢, 1a®:)| <
< (A2 N ()3 (3.1.16)

here || - ||z and (- , -) denote the norm and the scalar product in L%(v). Eq. (3.1.16)
shows that asymptotic indistinguishability of the distribution of the process and of the

instantaneous equilibrium distribution is implied by the existence of a uniform bound on
N(t). We want to find sufficient conditions for this to hold.

Lemma 3.3. Let
Q:(f) = —(f, Hef) (3.1.17)

denote the Dirichlet form associated with the non-negative operator —H;. Then

%N(t) = —2Q:(f:) + B'(f,[U — (U)el 1) + B(fe, [U' — (U] fe) (3.1.18)

Proof. Tt suffices to observe that
I fe = @4l = lI£I1* = 1,
and to recall (3.1.13).
Let now f, (resp. f-) denote the positive (resp. negative) part of a real function f. Set
NT@)loo = a(t)y UL (E)lleo = b(8),  (UL)e = (). (3.1.19)

Observe that the non-negative self-adjoint operator —H; has, for all ¢ € IR, a gap 7
between A = 0 and the rest of its spectrum. It is also known (cf. [12]) that there exists a
positive m = m(t) such that

v > v exp[=B(t)m(t)], (3.1.20)

for a suitable positive constant 4 which depends only on IM. With these notations at
hand, we have the following

Lemma 3.4. N(t) satisfies the following differential inequality:
%N(t) < [~27¢ + B'alt) + Bb(E) + (N () + B'a(t) + B(B(E) + (1)) (3.1.21)

Proof. We note that
—Q(fe) = (fe, Hef) = (fo — B4, Hy(fo — @1)) = —Qu(fe — D).
Since (f; — ®;,®:) = 0, the spectral gap condition implies that
Qi(fr — ®¢) > 1 N(t),
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and hence we have the claim, upon recalling that ||f;||> = 1 + N(¢), and writing
U=Uy-U_, U =U,-UL.
O

Lemmas 3.4 and 1.18 show that in order to prove that N(t) tends to zero for ¢ — oo,
it suffices to give bounds on the coeflicients of (3.1.21) in the form (1.4.20), (1.4.21). To
this end, let us make the following '

Assumption 3.5.
i) There exist m > 0 such that m(t) < m, m(t) being as in (3.1.20).
i1) The “cooling schedule” B(t) is given by
1
B(t) = < log(to +1), (3.1.22)
with ¢ > m, for some t, > 1.
ii7) Set € =1 — m/c, and note that € € (0,1). We assume that

a(t) < a(to +1)°, (3.1.23)
b(t) + c(t) < ’ (3.1.24)
= Tog(te + )18 -
for some positive constant a,b,6 with § < €.
Theorem 3.6.Under the previous assumptions, we have
N(t) < (to +1)De/02, (3.1.25)
for a suitable C > 0, so that
A)1/2
[Prob[X, € A] — uy(4)] < —F1A) (3.1.26)

(tU + t)(&——l)e:/Z :

Proof. By the assumptions collected above, eq. (3.1.20) and Lemma 3.4, we have that N(¢)
satisfies a differential inequality of the form (1.4.19), with coefficients satisfying (1.4.20),
(1.4.21). The thesis therefore follows from Lemma 1.18 and from (3.1.16).

o

Remark 3.7. The hypotheses of Theorem 3.6 do not necessarily imply that U converge
pointwise. In particular, it may happen that ||U(t)||e diverges as t — co. However, if
U(t) = U independent of ¢ sufficient conditions are known in order that the weak limit oo
of p; as t — oo exist. In such a case po, is concentrated on the set K of absolute minima
of U. The same conclusions hold if U(t) tends to U pointwise sufficiently fast so that

B|U@) = Ul|leo — 0 as t — oo. (3.1.27)
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Remark 3.8. We have restricted ourselves to the simplest estimates (i.e. in L?-norm) on
the Radon—Nikodym derivative v;. Better bounds could be obtained generalizing the use
of families of ordinary Sobolev inequalities for the instantaneous generators of the diffusion
considered, which was explained in [6, section 2] for the case of a time—independent energy
function. However such estimates are not easily generalizable to the case of a non-compact
state space such as IR™. In fact, the aim of the next section is to prove results of the form
of Theorem 3.6, with methods modelled on the analysis of this section.

Remark 3.9. The conclusion of Theorem 3.7 imply in particular that the distribution of
the process and p; become indistinguishable also in the total variation norm in the limit
as t — oo.
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3.2 The L?-approach in R"

The analysis of the previous section has provided estimates which depend on the existence
of an upper bound for U(t) for each ¢ > 0. Once more, this is not convenient if one wants
to analyse the case in which the state space is non—compact.

We show in this section how certain relative boundedness assumptions on U and on its
time derivative U' can be used to prove bounds of the previous form. The additional
problem of proving the existence of L2—solutions to (the analogous of) the time-dependent
heat equation (3.1.10) will be solved under certain assumptions on the time dependence
of U(%).

The notation here will be the same of section 3.1, unless explicitly indicated, with
IR™ replacing IM and Lebesgue measure replacing v. L? will denote the Hilbert space of
(equivalence classes of) square integrable functions w.r.t. Lebesgue measure. We suppose
that U : [0,00) x IR™ — [0, c0) is a non-negative function of class C**?, that is continuously
differentiable in ¢ € [0, c0) and twice continuously differentiablein z € IR"™; we also assume
that lim|;| e U(z) = co.

In addition, let L; : CP(IR™) — C§°(IR™) be defined as in (3.1.1), and let H; be the
Schrédinger operator (densely defined in L?) which is unitarily equivalent to L; under the
mapping f + f®;, f € L?(yu;). Here B is a monotonically non—decreasing bijection of
[0,00) onto its range, this latter one being contained in [0, c0).

We now list the assumptions which will be used in the sequel.

Assumption 3.10 (relative boundedness);
U'(t) belongs to L* () for all £ > 0, and in addition there exist constants a,b > 0, d € (0,1)
such that

0<U((t) <aVi+ ¥ (3.2.1)

%ﬂ(t)[v;(t) + (UL )] < Vi + h(8), (3.2.2)

pointwise, and hence in the sense of quadratic forms for the corresponding multiplication
operators in L2, for a suitable function function h(t) which tends to zero as ¢ — oo at a
rate to be determined below (see Theorem 3.20).

Remark 3.11. Assumption 3.10 implies that
V(t) > (1 —d—pB'a/2)V; + (), (3.2.3)

for a suitable continuous function ¢(t). Possibly by changing the scale of time we may
suppose that 1 —d — 8'a/2 > 0 for all t. Hence V(%) is bounded below. This in addition
implies that —H (%) is essentially self-adjoint, with closure bounded below.

Moreover, (3.2.1) implies in particular that lim|z| oo Vi(z) = oo for all t. Hence —H;
has compact resolvent and hence a purely discrete spectrum. Finally, A = 0 is its lowest
eigenvalue, whose unique eigenvector is ®;. Let «; be the lowest strictly positive eigenvalue

of —H;. It is known (cf. [16, 17]) that
7e 2 7 exp[=B(t)m()] (3.2.4)
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for a suitable v > 0 independent of V;, where m(t) has an informal description as the
maximum height which must be crossed in order to reach a global mimimum of U(t) from
a local one.

Remark 3.12. As explained in section 1.3, (3.2.1) is related, for each ¢ > 0, to hy-
percontractivity properties of (the closure of) —H; and, at least for sufficiently regular
potentials, implies that each U(t) must diverge as |z] — co at least as const.x|z|2. More-
over, if U(t) = U independent of time, (3.2.2) is a consequence of (3.2.1), and the same
holds if U'(%,z) tends to zero as t — oo uniformly in z sufficiently fast.

Lemma 3.13. Under Assumption 3.10, the martingale problem for L; is well-posed in
the sense of [60].
Proof. Since the coeflicients of the generator L; are locally bounded, we have only to check

that explosion does not occur. We shall prove that U(¢) is a Liapunov function. In fact,
for all T > 0,
im min U(t,z) = o0
|z|—o0 t€[0,T)

by assumption, whereby (3.2.2) implies that

U' <UL <d (§|VU|2 - AU) + %h —(U).. (3.2.5)

In turn, the Liapunov inequality for U(%) + ¢, ¢ > 0, amounts to
U' <BIVU|* - AU + (U +¢), 1>0, (3.2.6)

which is implied by (3.2.5).
0

We now turn to the second assumption of this section, which is necessary in order
to prove existence and uniqueness for the LZ-evolution equation given by the analogous
in IR™ of (3.1.12). To this end, fix as usual T' > 0, and let ¢ = ¢(T') be such that
—H(t)+c>e>0forall t €[0,T]. With a slight abuse of notation we shall denote with
—H(t) also the closure of —H(t) + ¢, so that —H(t) is boundedly invertible for such ¢ and
generates an analytic semigroup of any angle § € (0,7). We can now state the following

Assumption 3.14 (continuity);

for each t > s > 0 the operator (V(t) — V(s))H(¢)™! is bounded, and there exists C' > 0,
v € (0,2) such that

H(V(E) = V(s)H(s) 7| < eft — ). (3.2.7)

Consider the time dependent heat equation

L o= —HWf = -0+ V(O)fe (3:2.8)
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where

B

LU - (@@ (329)

V(t2) = Vile) — 58 (O (5%) — (U (2, )]

With the notation of Section 2.3 we say that v € C([0,T],L?) is a strict (respectively
classical) solution of (3.2.8) if v € C*([0,T],L%) n C([0,T), D[H(¢)]) (respectively u €
C*((0,T],L?) n C((0,T],D[H(%)])). Proceeding exactly as in Proposition 2.14, we can
show the following

Proposition 3.15. Let fo € D(H(0)) (respectively fo € L?). Then there ezist a unigue
strict (respectively classical) solution to (3.2.8) with initial condition fo.

Remark 3.16. By ([61], [62, Theorem B.7.1), the operators exp[—sH;],t > 0, s > 0 have
integral kernels K(y)(s,z,y), jointly continuous in (s,z,y). In the sequel, for the sake of
simplicity, we shall take as initial condition for (3.2.8) functions of the form

f = exp|—eH=q] fo, (3.2.10)

where ¢ is a positive constant and f; is either an arbitrary function in L2, or the Dirac
delta measure §, for some z € IR"™.

Remark 3.17. Suppose that U(t) = U independent of ¢. Set V3 = V=» and assume that
B(t) > 2 (possibly by changing the “energy units”) and that

0<U<LaV;+¢ (3.2.11)

for suitable positive constants a,c. It is easy to realize that V3 > BV,/2, and so (3.2.11)
implies that (3.2.1) holds. Moreover, the continuity assumption (3.2.7) is satisfied with
4 = 1 whenever one has

D(H(t)) = H*(IR"™) N D(V (t)), (3.2.12) -
as has been shown in section 2.3.
The following Lemma is proved exactly as in section 1.1

Lemma 3.18. Let Q¢(f) denote the Dirichlet form associated with —H;, and let N(t) =
”ft — 'bt”jg Then

%N (t) = =2Qu(fe) + B'(f0, [U — (U)el fo) + B(fe, [U' — (U"):] f2) (3.2.13)

Moreover, one has
Lemma 3.19. The following differential inequality holds:

%N(t) < —N@)[(2-2d— B'(O)a)y — B' ()b — 2h(t)] + B' ()b + 2h().  (3.2.14)
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Here 7, 1s the spectral gap of —Hy, whereas h(t) and the constants involved in (3.2.14) are
as in Assumption 3.10.

Proof. The relative boundedness inequalities (3.2.1),(3.2.2) are form bounds for the corre-
sponding multiplication operators. Hence (3.2.13) implies that

LN() < ~QuF(2 ~ A'(t)a — 24) + £I(8'()b + 24(1),

because (U(t))¢, (UL (t))+, UL(t) are non-negative. Since Q¢(f;) = Q:(f: —®:) and || f:]|5 =
N(t) +1, this can be rewritten, by the spectral gap condition, as

LN() < ~(2— d— ' (B)ayrN () + (V) +1)(8' (b + 2A(1),

which is (3.2.14).
0

Finally, the latter Lemma can be used to compare (in the total variation norm or weakly)
the difference between the distribution of the process and the equilibrium distributions p.
See remark 3.7 as concerns the existence of a weak limit of p; as ¢ — co. In fact, we have
the following

Theorem 3.20. Assume that there ezists m > 0 such that m(t) < m, m(t) being as in
(3.2.4). Let c>m, e =1 —m/c and B(t) = c ' log(te + 1) (to > 0). Finally suppose that,
for some § € (0,¢), we have h(t) < const. (to +1)°~1. Then, for each § € (0,1), there exists
C > 0 such that

#t(A)1/2
(to +1)6—De/2”
In particular, if py has a limit p in the weak topology as t — oo, then the distribution of

the process X; converges to p weakly.
Proof. It suffices to prove that

|Prob[X; € A] — pi(4)| < C (3.2.15)

N(t) < (to + 1)~V /02, (3.2.16)
In fact, (3.2.16) follows from Lemmas 3.18 and 1.18 by noting that, by assumption, the

coefficients of the differential inequality (3.2.14) satisfy (1.4.20), (1.4.21) with ¢, § as above.
O
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Chapter 4:

THE ALGEBRAIC APPROACH

In the previous chapters, we have discussed the Langevin algorithm on IR™. This procedure
is the continuous—time, continuous—space version of what is usually called simulated an-
nealing. What we shall show here and in the following chapter is that simulated annealing
corresponds to a particular case of a more general class of time-inhomogeneous evolutions
on von Neumann algebras, and specifically to the case in which the algebra is commutative
(and hence isomorphic to some L™ space). This can also be seen as a generalization of
the theory of the asymptotic behaviour of dynamical semigroups with a faithful normal
invariant state, cf. [63—69].

Here we introduce this class of evolutions, and study some of their main properties. We
restrict to the case of discrete time evolutions and, after having recalled some general facts
on von Neumann algebras and their modular theory in section 4.1, we discuss the class of
evolution considered in section 4.2 which contains the main result of the chapter, whereas
section 4.3 is devoted to rephrasing it in terms of conditions on the relative Hamiltonians
between the invariant states at “time” n and n + 1. Finally, in section 4.4 we discuss
possible extension to C*—algebras and non-normal states. Our general references for the
theory of von Neumann algebras will be [41, 70].

4.1 Preliminaries

Let M be a von Neumann algebra of operators on a separable Hilbert space H, which
admits a cyclic and separating vector ¥ in H.

Denote by 9 and by %' the faithful normal states on M and on the commutant M' -
respectively defined by

P(a) =(¥,aV¥) : a€eM; (4.1.1)
() = (T,a0) ;o e M. (41.2)

Let Ay and J be the modular operator and the modular involution canonically associated
with the pair (M, ¥) by the Tomita-Takesaki theory, and let V = A/4M_ ¥ be the
natural positive cone. For each normal state ¢ on M there exists a unique vector ® in V
such that

o(a) =(®,a®) : ac M. (4.1.3)

The relative modular operator Az ¢ is defined by
Asy =S4 3589, (4.1.4)

where

Ssea¥U=a"®: a€c M. (4.1.5)
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Denote by S(M) the set of all normal states on M and by Sy;(M) the set of those normal
states on M which are majorized by a scalar multiple of ¢. The following Lemma is
well-known (cf. [41]).

Lemma 4.1. For any ¢ € S(M) the following conditions are equivalent:
1) ¢ € Sy(M); |

i1) there ezist a (unique) element z = z, of M!, such that
o(a) = (z,¥,a¥) : a€M; (4.1.8)

i11) the Connes cocycle {(Dy : D) = A‘;,‘I,A;it:t € R} C M eztends to an analytic
function on the strip z € €C:—1/2 < Im z < 0, continuous on the boundaries, with values
in M.

Moreover, one has

® = (Dy : Dp)_;/2 ¥, (4.1.7)
z, =J [(Dy: D?,b)_,-/z]* (D : DY) _i/2J. : (4.1.8)

An immediate consequence of the equivalence i)<=>ii) is the following

Corollary 4.2. S,(M) is norm-dense in S(M).
Proof. A state ¢ in S(M) can be written in the form

oo

o(a) = (¢ al;) : aeM,

j=1

with {; € H, such that }:;‘;1 l1¢;||>. Given € > 0, there exist a positive integer n and
elements z1,...,z, of M' such that, letting

n

on(a) =) (zj¥,az;T) : aeM

j=1

one has
llen(1) " on — || <e.

Moreover, ¢n(1) ¢, is a state in Sy (M), since

pn(1)pn(a) = (e ¥,a¥),

where

1
T = ((‘I’,Zz?zﬁl’)) Zw;x:,
j=1 j=1
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Let h = h* € M. Then the expression

tg
0

o 1/2 11 1
\If(h)_—_Z(—l)k/ dt1/ dtz.../ Aty ASRAT T* R AYTERT (4.1.9)
k=0 0 0

is norm—convergent, and h is said to be the relative Hamiltonian between the state 1”
given by
¢h(a) — <‘Il(h)’a‘1’(h)) .
(W(R), ¥(h))

and 1. Note the different conventions concerning sign and normalization as compared to
Araki [71].

Given 9 and h, the perturbed state )" is the unique faithful state in S(M) maximizing
the functional

aeM | (4.1.10)

o — (®,log Ag 3®) — p(h), (4.1.11)

where (®,log Ay 3®) < 0 is known as the relative entropy of ¢ with respect to 3 (the
opposite sign convention is also used in the literature). This variational characterization
of 9" makes sense also for self-adjoint operators k affiliated with M which are bounded
from below but unbounded from above and may possibly have +co as an eigenvalue (see
Donald [72, 73]). With this extended notion of %", for each ¢ in Sy(M) there exists a
unique h such that ¢ = ¥*. However, given 1 and h, the state 9" need not be in Sp(M);
a sufficient condition for ¢* € Sy(M) is that ALAAG* € M forall t € [0,1/2] (cf. Lemma
4.4 below).

We recall that a positive map 7 on M is said to be completely positive is 7 ® 1,, is
positive on M ® C™ for each n =1,2,....

Definition 4.3. A dynamical map 7 on M is a completely positive identity preserving
weakly*—continuous linear map of M into itself.

Lemma 4.4. Let T be a dynamical map on M, leaving 1 invariant. Then there ezists a -
dynamical map 7' on M', leaving 9" invariant, such that

(r'(a')¥,a¥) = (a'T,7(a)T) : a€eM, decM. (4.1.12)

Proof. If ¢ is in Sy(M) and T leaves 9 invariant, then ¢ o 7 is in Sy(M). Define 7' by
linear extension of

T(2y) = Tpor @ € Sy(M). (4.1.13)

Then 7' is a positive weakly*—continuous linear map of M' into itself, satisfying (4.1.13),
and 7'(1) = 1 since

(7'(1)%,a %) = (¥,7(a)¥) = (¥,a¥) : a€ M,
and ¥’ o 7' = 7' since
(T,7'(a)T) = (r(1)T,a'T) = (¥,a'¥) : o' € M.
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Complete positivity is shown as follows: let a1,...,an € M, z1,...,25 € M'. Since T is
completely positive, one has

0< Z (z;9,7(a}a;)z;¥) = Z (zj2:¥,7(a}a;)¥)
i,j=1 ,5=1
= Y (T'(z}2:)¥,a]a;¥) = D (a9, 7'(zfz;)a;T).
1,7=1 i,7=1

Since MY is dense in H, also 7' is completely positive.
0O

Lemma 4.5. Let 7 be a dynamical map on M, leaving v invariant. Then there ezists a
contraction T' on H such that

T(a¥)=1(a)¥ : a€M, (4.1.14)

T*(d'¥)=1'(a")¥ : o e M, (4.1.15)

Proof. By the Kadison-Schwarz inequality, 7(a*a) — 7(a*)7(a) > 0 for all a € M, so that

we have
I7(a)®|* = 9(7(a*)7(a)) < P(7(a"a))
=(a*a) = [a¥|® : aeM.

Then the linear operator T defined on MY by (2.14) extends to a contraction on H. For
ae M,d € M', we have

('¥,T(a¥)) = (a'¥,7(a)¥) = (7'(a')¥,a¥)

so that (4.1.15) holds.
O

Lemma 4.6. In the situation of Lemma 4.5, the following are equivalent (for real v > 0):

i)

Ir(@)¥|| < e ||a®|| for all ain M with (a) = 0; (4.1.16)
! ITA|| < e~ 7||Al|  for all A in H with (¥,A) = 0; (4.1.17)
K II7'(a)2]| < e ||a' ¥||  for all @' in M' with '(a’) = 0; (4.1.18)
& IT*®|| < e~7||®|| for all & in H with (¥,®) = 0. (4.1.19)
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Proof. Let K be the orthogonal complement of ¥ in H. Since T¥ = T*¥ = ¥, T and
T* map K into itself, and (T|x)* = T™|x. Then i) and iv) are equivalent. Clearly ¢) is a
special case of it) and 4i7) is a special case of 1v). Conversely, T'|x is the closure of the map
a¥ — 7(a)¥ with ¥(a) = (¥,a¥) = 0, so that 7) implies it), and T*|x is the closure of
the map a' ¥ — 7'(a')¥ with ¥'(a') = (¥,a' ¥) = 0, so that i) implies iv).

a
Remark 4.7. The equivalent conditions of Lemma 4.6 imply that
klim por*(a) =4¢(a) Yae M, e S(M). (4.1.20)

The converse implication is not true in general.
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4.2 Time—inhomogeneous evolutions on von Neumann algebras
and non—commutative annealing

By “time-inhomogeneous evolution” on a von Neumann algebra M we mean a sequence
{Tn:n = 1,2,...} of dynamical maps, in the sense of Definition 4.3. To help intuition, 7,
may be regarded as the map describing evolution of the observables of a physical system
from time ?,_; to time %,, where 0 = ¢, < #; < ... < t, — oco. We assume that each
7, has a unique (faithful normal) invariant state ¥, with cyclic and separating vector
¥, and we investigate under which conditions, for any initial normal state ¢ on M, the
time-evolved state ¢, = (g 0 7y ...0 T, becomes indistinguishable from %, in the limit as
n — oco.

Several results exist in the literature for the case when all 7, are the same map with
a faithful normal invariant state, or 7, = exp[(t, — tn—1)L], £ being the generator of
a dynamical semigroup (asymptotic behaviour of dynamical semigroups with a faithful
normal invariant state) [63-69].

In the usual simulated annealing procedure, a time-inhomogeneous evolution of a
(fictitious classical) physical system is used to minimize a nonnegative function U on
a space X (interpreted as the energy function of the system); then the instantaneous
invariant states 1, are Gibbs states with energy function U and inverse temperatures 3,
diverging to +oo.

In the usual commutative situation, the maps 7, are in many cases symmetric with
respect to their invariant states 9, so that ¥n(an(b)) = ¥n(Ta(a)b) (detailed balance).
If this happens, then the contraction T}, on H associated to T, as in Lemma 4.5 is self-
adjoint. However, we shall by no means use this condition, but only assumptions of the
following two kinds:

i) an estimate on the spectral gap of 7, extended to a contraction operator on the GNS
space of (M,,);

ii) an estimate on the difference (in a suitable sense to be defined below) between ¢, and
'¢'n—1-

In particular, we need an assumption of absolute continuity in the form Pn—1 < Apy for
suitable constants A, > 0 for all n.

We do not address ourselves to the question ), and we just remind the reader that
some partial result have been obtained in [44] for finite quantum systems (see section 5.3
and the Appendix), and in [45] for some infinite quantum systems. Concerning i), we
shall give sufficient conditions on the sequence of relative Hamiltonians h, between ¥n
and 9,,_; ensuring that the above mentioned difference is small enough (in norm) to allow
application of our general argument.

Note that by Lemma 4.4, there exists a sequence {7},:n = 1,2,...} of dynamical maps
on M' such that

(11(a")¥p,a¥,) = (a' ¥y, Ta(a)¥s) : a €M, a e M'. (4.2.1)

Assume that each 7, has a spectral gap, in the sense that there exist strictly positive
constants y,:n = 1,2... such that, for alln =1,2,.. .,

[[Tn(a)¥n|| < e™™||a¥y,|| for all @ in M with ¢,(a) = 0. (4.2.2)
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By Lemma 4.6, a similar spectral gap holds also for 7}

.
Assume also that there exists a sequence R,:n = 1,2,... of elements of M’ such that

R, V,=V¥, ;1 :n=23,.... (4.2.3)

Equivalently (see Lemma 4.1), for n = 2,3,..., ¥,_; is majorized by a scalar multiple
Anty of ¥, and R, € M' is such that

RLR, =y, | n (4.2.4)
where zy,_, » is the unique positive element of M' such that
Pn-1(a) = (zy,_; n¥n,a¥,): a€ M. (4.2.5)

Our problem is to find conditions on {7,} and on {R,} ensuring that, for any initial state
o € S(M), letting o, = pp—10Tin =1,2,..., one has

Lim Jlon —9nf|=0 . (4.2.6)
By Corollary 4.2, it suffices to prove (4.2.6) for ¢¢ in the dense set Sy, (M). Then
po(a) = (e, 1¥1,a¥1): a€ M (4.2.7)

for a suitable positive element z.,,; of M', and

p1(a) = po(T1(a)) = (zpo,1¥1,71(a)¥y)

= (1(Tpo1)¥1,a ;) = (21 U1,a¥;) = (A1,a ;) a €M, (4.2.8)

where

21 =7(Tpo1) EML; A =29 =Tz, 17;. (4.2.9)

Lemma 4.8. Let p; be given by (4.2.8), (4.2.9). Under the above conditions, for each

n=2,3,..., pn 18 a normal state on M (actually, o, € Sy (M)), which can be represented
in the form

onla) =(xn ¥,,a¥,) = (An,a¥,): a€ M, (4.2.10)

where

Tn =Tp(Rhzn_1Rn) € M An=2,¥, =TI RiA,_;. (4.2.11)

Proof. We proceed by induction. Indeed, (4.2.10) holds for n = 1 and we have, for all
a €M,

on(a) = Pn-1(7n(a)) = (An-1,Tn(a)¥n-1)
= (An-1,7Tn(a)R,¥,) = (R;An—l’Tn(a’)‘I’n>
= (RpAn_1,Tha¥,) = (T RiAn—1,aT,) = (A,,aT,),
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with A, given by (4.2.11). However, Ap—1 = -1V p—1 = z,—1R, ¥y, so that also

pn(a) = (Rr2n—1Rn¥n,7n(a)¥n)

= (TL(R;$n~—1Rn)‘I’n,G\IJn> = (23.,,_ ‘I’n)a“Pn>7
with z,, given by (4.2.11), since R,, and z,_; are in M'.

Lemma 4.9. Under the above assumptions, let
an = v, — log HRnH,

Br = e T ||(BrBn — 1)¥n]|.
Then, for alln = 2,3,...,

HAn - ‘I'nH S e HAn-l - \I’n—lu +ﬂn-

Proof. We have

An - ‘I,n = T:R:An_l - ‘I’n = T;(R:'An..l — ‘I’n)

In addition, since
(R:,An——l - \Ilny\pn) = <An—-1)‘I’n—1) - (‘I,nylpn)

= ‘Pn——l(l) - 1/’n(1) =0,
the spectral gap assumption and Lemma 4.6 imply that

”An - \I’nll < e—%”R:An—l - ‘I’n”

Finally, note that

RiAn_1— Wy =R:(An-1 — Up1)+ (RLR, — 1)T,.

The estimates in the following Theorem are very similar to those in Lemma 1.18.

(4.2.12)

(4.2.13)

(4.2.14)

Theorem 4.10. Under the above assumptions, suppose also that there ezist real constants

a>0,82>20,1>6>¢>0 such that

oy > ans"l, B <Pntl: n=12,...
Then there is a constant C (depending on g ), such that

[#a(a) — $n(a)] < Cllalln*™* — 0 as n — co.
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Proof. By Lemma 4.8, we have

lon(a) — Pala)] < [|An — Tallllall,

and hence, by Lemma 4.9, we compute

14— Tol| < exp [—Zak} 1A; — T
k=2

S| 55 oo
m=2 k=m-+41

(with > ¢_ .. 1 ap = 0). Eq.(4.2.15) implies that

|An — Wn|| < exp [—azka_l] ||A1 — 4|

k=2

+ﬂ zn: exp [_a i ké—ljl mc-—l.
m=2

k=m-41
Therefore, since § < 1,

n

Z k51> /n(w + 1)6~1cl:c = % {(n + 1)5 —(m+ 1)5}

© k=m+1 m
and finally
a
1A = Tall < exp { =5 ((n+1)" = 26) } l1As = ¥4
« = a _
+f exp (———g(n + 1)5) n; exp (E-(m -+ 1)6) mL, (4.2.16)

The first term in the r.h.s. of (4.2.16) tends to 0 as n — oo exponentially fast. Concerning
the second term, we have

i [%(m + 1)5] m < /ln exp [%—(:c + 2)’5J z° ldz.

m==2

Moreover, z(z +2)~?! is an increasing function of z in [1,00), so that the r.h.s of the latter
inequality is smaller than

() [algeramyerars
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31~z § (e/8)—-1 v o
= ((_1_) Aeyy( ‘5)/5dy,

where we have performed the change of variable y = a(z + 2)%/6 and where u = 3%/,
v = a(n +2)%/6,

For large v, the integral is of the order of e?v(¢=9/¢  Indeed, for 0 < v < 1, letting
p= (6 —¢)/6, we have

v v
/ eVy Fdy = v F — e227H —!—u/ eVy "y
2 2
“ v
<evTHh4 = / eYy Hdy,
2 /2

v IJ: -1
/ Yy Hdy < <1 — -) e’vH.
5 2

In conclusion, the second term on the r.h.s. of (4.2.16) is bounded by (constant)xn®~°.
O

so that

Remark 4.11. Suppose that the additional assumption that, for each n = 1,2,..., one
has

Yn(anTn(bn)) = Pn(mn(a)bn) :  a,b € M (detailed balance), (4.2.17)

is satisfied. Then one simply has
11(a') = JpTn(Jna' Jn)Jn,

where J,, is the modular involution associated with the pair (M, ¥,) in H (it may be the
case that J, is independent of n, as happens when the ¥, are in the same natural positive
cone). However, detailed balance is not really needed (cf [8] for the case of the algebra of
functions on a finite space), provided one can prove a spectral gap condition without it.



4.3 Relative entropy and relative Hamiltonians

Here we assume that the sequence of states {¢,:n =1,2,...} is constructed starting from
1 and from a sequence {h,:n = 2,3,...} of relative Hamiltonians in such a way that

Yo = (Yn1) 1 n=2,2,..., (4.3.1)

in the sense of eq. (4.1.10), and we estimate the quantities ||R,|| and ||(RLR, — 1)¥,]| in
terms of h,:n =2,3,....

We restrict to bounded A, = h¥ € M, although %" can be defined also for A = h* bounded
from below, since we need ¥,_; € Sy (M) in order to have the operators R, € M' on
which our analysis is based, and this in turn implies that —h,, is bounded from below, so
that A, is bounded.

We are able to prove that ¢,_; € Sy, (M) under the assumption that the function t s
ag""l)(hn) =AY _ hn A;it_l extends to an analytic function on the strip {z € C :
—1/2 < Imz < 0}, continuous on the boundaries, with values in M; we believe that this
is only a sufficient condition. The following Lemma will be used repeatedly in the sequel.

Lemma 4.12. Let ¢ be a faithful normal state in M, with ¢(a) = (¥,a¥):a € M, and
with associated modular automorphism group oy = A¥ - A;it:t €eR. Leth=h" e M
be such that the function t — oy(h) eztends to an analytic function on the strip {z € C :
—1/2 < Imz < 0}, continuous on the boundaries, with values in M, and let 1" be defined
by eq. (4.1.10). Denote by ® the normalized vector W(h)/||¥(h)||. Then there ezists a
unique R in M' such that

¥ = R®; (4.3.2)

R is invertible, and

IR, [IR7H] < expl[][]]]], (4.3.3)

where

IAl]] = sup{[lo—:,(R)]|:0 < s < 1/2}.

Proof. Consider the differential equations

d 1
E;V(S) ==V(s)o_is(h): 0<s< 2 (4.3.4)

V()=1
and

i ) 1
V() =0u(B)V(s): 0<s<3 (4.3.5)

V() =1

Both equations have unique solutions in M satisfying the bounds

V(I V()] < exp{s|[[All]}: 0<s <

D |
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Moreover, V(s) = V(s)™* for all s € [0,1/2]. Indeed,

d

E;[V(S)V(S)] = V(8)[=0—is(h) + o—sa(R)]V(s) = 0

so that V(s)?(s) = 1 for all s; and in addition the constant 1 solves the differential
equation for V(s)V (s), which reads

dis [V ()] = is®) [PV ()] = [PV ()] o-a(h): 055

V)V (0) =1

1
2

By the uniform boundedness of o_;,(k) on [0,1/2], the solution to the latter equation is
unique, so that V(s)V(s) = 1 for all s.
By considering the iterated series

V(s) =§;(—1)’° /0 "dss /0 Y dss . /0 N sk oinn (B 0t (W)o—is,(B),  (4.3.6)

it 1s clear that
T(h) = V(1/2)¥ = JAY*V(1/2)*

= JAY?V(1/2)* AP TY = JV(1/2)T %,
where the last equality follows from the explicit expression of V(s). Hence
d=||V(1/2)2||" IV (1/2)J ¥
or )
T =||V(1/2)¥||JV(1/2)J® = R®.

Since @ is cyclic and separating for M and for M' as ¥ is, it follows that R € M' is
uniquely determined to be

R=||V(1/2)%||JV(1/2)J. (4.3.7)
An obvious estimate gives

IR < IV a/IITa/)
< exp {3 bl exp { SH1AII} = explI-

Moreover,

R™1 = ||V(1/2)%|| 71TV (1/2)J.

We have
1= 12| = |[V(/2)V(1/2)%|| < [[V(1/2)1IV(1/2)¥]],
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so that )
V(@/2)e|~t <[[V(1/2)ll.

Hence

IRHI < IV /2)HIV /2N < exp (IR
O

Proposition 4.13. Suppose that the sequence {hy:n = 2,3,...} of relative Hamiltonians

is such that the functions ¢t — agn_l)(hn) eztend to analytic functions on the strip {z €
C:-1/2 < Imz < 0}, continuous on the boundaries, with values in M; let |||hy|||n-1 =

sup{Ha'SZ:l)(hn)H:O <s<1/2}. Then
|| Bnll < exp{||[~nlln-1}, (4.3.8)

I(Re R = 1)Zal| < (exp {ll[Aalllnma} — 12 (4.3.9)

Proof. (4.3.8) is proved in Lemma 4.1. Next,
(B7Rn = 1)¥al]* = || Ry ¥nog — Talf?

= ”qu’n—lnz + qunllz —2Re (R:,‘I‘n—lv‘ljn)
= [|Ry W n1|]? + [|¥n]? — 2| ¥ns|? = ||RE T - 1
SR 1]l = 1 < exp{|||hallln-1} — 1,

which is (4.3.9).
: O

Remark 4.14. In applications where the spectral gap 7, tends to 0 as n — oo, one needs -
ll|Fn|lln=1 — O faster than <, (at least). This implies that ||, — ¢¥n—1]|] = 0 as n — oo,
but by no means does it necessarily follow that 1, converges to a limit as n — oo.

61




4.4 c*—algebras and generalizations

In the main application of the above results, simulated annealing, the states ¥ represent
thermal states at different temperatures of a fictitious finite (but large) physical system.
For infinite physical systems thermal states at different temperatures are typically disjoint
states on a C*—algebra A, meaning that for each n there is a GNS triple (Hnymn, ¥,) asso-
ciated with the pair (A,%,), the cyclic vector ¥, is also separating for the von Neumann
algebra m,(A)", but no subrepresentation of m, is unitarily equivalent to a subrepresen-
tation of mn for n # m. Unfortunately, there is no simple generalization of the above
techniques to this new situation, in view of the following

Lemma 4.15. Let 11, ¥, be states on a C*-algebra A, with GNS triples (Hy,m1,¥1),
(Hz,ma,¥2) such that ¥; is also separating for the bicommutant m;(A)" of mi(A) in B(H;):
i = 1,2. If the operator R :my(A)¥, C Hy — Hy defined by

Rmy(a)¥y; =m(a)¥: a€ A (4.4.1)

is closable, then m, is unitarily equivalent to a subrepresentation of my.
Proof. Let g be the densely defined quadratic form on m(A)¥; C H; given by

q(m2(a)¥3) = ||m1(a) T |)* = ||Rma(a)¥s|>: a€ M. (4.4.2)

Since R is closable, g is closable. Let z be the positive self-adjoint operator in H associated
with the closure g of ¢: then 73 (A)¥; C D(z'/?) and

||2/275(a)¥5 |2 = ||ma(a) a | (44.3)
For unitary u € A, one has
|2t/ (w)mz(a)¥s|[* = ||y (u)ms (a) Ta ]

= ||m1(a) 1] = ||z*/?m2(a) T2 |?

so that my(u)*zme(u) = = in the sense of quadratic forms, and the spectral projections
of z commute with m;(u). Since a Banach *-algebra is generated as a linear space by its
unitary elements, z is affiliated with the commutant m; (A)', and

||m2(a)ct/2 | = |2t/ 272 (a)¥s||? = ||71(a)T1]?: a€ A (4.4.4)

Let K be the closed subspace of H, given by m3(A)z1/2¥,; K is stable under 7, (.A).
Let U be the linear operator mapping 71 (A)¥; C H; into K defined by

Umi(a)¥; = 7r2(a):c1/2\112 : ac A (4.4.5)

By (4.4.4), U extends to an isometry of H,; into K. Moreover, U is actually unitary from
‘H; onto K. Indeed, for all a,b in 4, one has

(Ui (a) 1, m(b)a /> ¥5) = (my(a)t/2 Wy, ma(b)z /2 Wy)
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= (m2(a)¥2, 272 (b)¥2) = (m1(a)¥1,m:(b)T1)
where the last two equalities follow from the fact that z € M’ and by polarization
from (4.4.3), respectively. Hence U*my(b)z'/?¥, = 71(0)¥; and UU*my(b)z!/2¥, =
75 (b)z1/2¥,. By density, UU* = 1 on K.

Now it is an easy exercise to prove that
Uni(a)U* =my(a)|lx Vae M 4 (4.4.6)

which proves that 7; is unitarily equivalent to a subrepresentation of 5.
O

For this reason, the only generalization running on the same lines as the arguments of the
previous sections can be obtained by assuming the following: we have dynamical maps
Tnin = 1,2,..., all defined on the same von Neumann algebra M, each map with an
invariant faithful normal state v, = (¥r, -¥,), and there exist closed operators R,:n =
2,3,..., affiliated with M', such that

U, €D(R,), Ra¥p=T, ,: n=23.... (4.4.7)

Conditions equivalent to (4.4.7) with closed unbounded R,, are discussed in Kosaki [70].
In particular, it is not true that, if 4, is a faithful normal state on M, each normal state
on M can be represented in this form.

In order to make sense of the formulas in the previous sections in this more general situa-
tion, it suffices to assume that

T,_, maps H into D(R}) Vn=2,3,.... (4.4.8)

However, something more is needed to imitate the estimates in Lemma 4.7 and Theorem
4.8. To be specific, we assume the following.

Assumption 4.16. Each 7, can be written as the product of two dynamical maps 7, and
Tn
Tn = TnTn (4.4.9)

with similar properties: i.e. T, and 7, leave v,, invariant, so that they are associated with
contractions T, and T, on H such that

To(a¥,) = 70(a)Tn;  Tu(a¥,) = #4(a)¥; (4.4.10)
moreover T, salisfies a spectral gap condition with a constant e~ 7=, so that
IT;All < e™™||A]l VA € H with (T,,A) =0, (4.4.11)

and finally

~

T, 1 maps H into D(R.): n=2,3,.... (4.4.12)
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The above conditions are rather natural if
Tn = exp [(tn — tn=1)Ln] (4.4.13)
with ¢, > 0, £, being the generator of a semigroup of dynamical maps: one can take
Fro = €xp [(tn — trno1)(1 = (n)Ln], Tn =exp[(tn — tn-1)¢nln] (4.4.14)

with 0 < (n < 1. In the case of classical Langevin diffusion on R™ (cf. [18]), in which
L., is a differential operator of the form —A + 3, VU - V, a condition of the form (4.4.12)
follows from suitable intrinsic hypercontractivity properties of the semigroup generated by
L., provided that U grows at infinity sufficiently fast (tipically, faster than (const.)|z|?, cf.
chapter 1).

As a consequence of (4.4.9), we have

T =T*Tr: n=1,2,.... (4.4.15)

As a consequence of (4.4.12) and of the closed graph theorem, the operators R* defined by

RE=R:T: ,: n=2,3,... (4.4.16)

n-n-1

are everywhere defined and bounded.
Now define a sequence A, of vectors in H by

A Tk
A1 = Tl {B(po,]_‘l’l

o (4.4.17)
A,=TiR;A,_;: n=2,3....
Then the vectors A, such that ¢,(a) = (An,a¥,): a € M are given by
An=T*R,: n=1,2,.... (4.4.18)
Lemma 4.17. Under the above assumptions, let
G = Fn — log || Rnll, (4.4.19))
By = e ™||(RLR, — 1)T,]|. (4.4.20)
Then , for alln=2,3,...
An — ol < €75 ||Apy — Uneal| + B (4.4.21)

Proof. We have
A=, =T R An_y — U = T (R An—1 — Tn).
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Moreover, R;]\n_l — ¥, is orthogonal to ¥,, since
(R;An—l - ‘Ixn’ an) = <R;T*_

= (An-1,Pn1) — (¥, ¥p) = 0n_1(1) — 9n(1) = 0.

Then _ L
”An - ‘I’n” < e_%HR:An‘-l - ‘I'n”
Note that o L :
R:,An—l - ‘I’n = R:;,(A-n—l - ‘Ijn——l) + R;\I’n-—l - II’n
and

R;‘I’nwl = R;Tn_l‘l’n..l - R:Tn_an‘I’n = R;an’n
a

Theorem 4.18. Under the above assumptions, suppose also that there ezist real constants
a>0,>0,1>6>¢e>0 such that

Gn>an® 7t B, <pnfl: n=1,2,.... (4.4.22)
Then there is a constant C (depending on ), such that

lon(a) = Pn(a)] < Clla||n®™% — 0 as n — co. (4.4.23)

Proof. We have
‘ [on(a) = ¥n(a)]l = [(An — Tn,a T,)|

< [An = Talllla¥a|| = [|Tn(An = Ta)ll la Tal| < [|An — o] []a].

It suffices to prove that :
A [[An — o] < Cne—ﬁ,

and this is accomplished exactly as in Theorem 4.8, taking advantage of Lemma 4.17.
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Chapter 5:

APPLICATIONS

We have discussed in chapter 4 a general algebraic framework which, we claimed, is a nat-
ural generalization of the well-known stochastic algorithm known as simulated annealing.
In this chapter we prove that this is the case indeed and that, as a bonus, we are able
to discuss without further technical complications also the case of time dependent energy
function, which we hope could be of some interest in connection with such problem as
adaptive algorithms and “estimation and annealing” algorithms (see [40]).

We discuss in section 5.1, in terms of the theory of section 4, a time-inhomogeneous
Markov chain on a finite set which corresponds to a simulated annealing procedure with
time—dependent energy function. Then we consider once more in section 4.2 the Langevin
algorithm on compact manifolds, but for the case of a piecewise time—independent gener-
ator, and show that it is falls within the general framework of chapter 4. Finally, section
5.3 shows some applications to finite quantum systems.

5.1 Time—inhomogeneous Markov chains:
simulated annealing with time—dependent energy function

We consider the following variant of the well-known simulated annealing algorithm. Let
X be a finite set with |X| points, let po be a probability measure on X charging any
point, and consider a Markov chain {Y, : n € IN} with arbitrary starting point and with
transition probabilities given by

P[Y,, = y|Yn_1 = z] = qo(2,y) exp[—Bn[Un(y) — Un(z)]+] (5.1.1)

for y # z, where
i) go(,y) is an irreducible transition matrix which is pg reversible in the sense that

a(z,y) = po(z)go(z,v) = oy, z); (5.1.2)

#) {Bn : n € IN} is a sequence of positive real numbers (inverse temperatures) with
limn—»oo ,Bn = +00;
#3) {U, : n € IN} is a sequence of real functions on X (energy functions).
The usual simulated annealing algorithm is obtained for U, = U independent of n. It is
well-known that, if 8, < ¢~ log(1+n), ¢ being a sufficiently large constant, the distribution
of Y,, becomes concentrated, as n — 0o, on the set of global minima of U. Here we want
to investigate which kind of conditions on the time dependence of U, have to be assumed
if one wants to prove similar results for the more general Markov chain (5.1.1).

As usual, our estimates are based on a comparison of the distribution @, of ¥, with
the probability distribution

Pu(z) = Z," exp[—BnUn(2)lio (), (5.1.3)
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where

Zp = Z exp[—fnUn(z)]po(z)- (5.1.4)

zeX

Under suitable assumptions, we shall prove that the two distributions become indistin-
guishable in the course of time, so that we obtain a limiting distribution as n — oo for
Y, if P, has a weak limit P,; we may suppose that U,, tends to a limit function U, so
that P., is concentrated on the absolute minima of Uy. The techniques of the present
work shed no light on the problem of the limiting behaviour of Y;, when P, does not have
a limit as n — oo.

In the space cXl of complex—valued functions on X we shall consider the scalar

product
(£:9) = Y F(@)g(z)po (),
zeX
the corresponding norm ||f||> = (f, f)*/? and the supremum norm ||f||eo = max,cx |F(z)|.

Of course, here the von Neumann algebra M=L%(X) is identified with C'*! endowed with

|| * |lcos and the Hilbert space H =L?(X) on which it acts is identified with €'*! endowed
with || - ||2.

For n € IN, let P, be the probability distribution defined by (5.1.2) and let @, be
given by

Qo[y] = 53},2:07 Ty € X7
Qnly] = Z PlY, =y|Yn-1 =2]Qn-1[z]: n=12,..., (5.1.5)

zeX

where the transition probabilities are given by (5.1.1). Define the following maps:

Xl glX,
[Tn(f) (&)= > PlYa=ylYa1=2]f(v); n=1,2,...; (5.1.6)

yeX

Py : cXl C;

Pu(f) = D Pulz]f(z); n=1,2,...; (5.1.7)
zeX

©On : cXl C;

on(f) =D Qulzlf(z); neNN. (5.1.8)

z€X

Then each 7, is a dynamical map on c* !, in the sense of Definition 4.3. Moreover 3,
and ¢, are states on M; here 1 is the function which is identically equal to one on X. As
regards the notation we remark that the Gibbs states are denoted by 1 instead of u for
the sake of greater homogeneity of notation with the previous chapter.
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It is clear from the above definitions that, for n = 1,2,... we have
On = Pn—10 Tn} (5.1.9)

$n(Fa(9)) = $a(ma(f)g) :  frg € €L, (5.1.10)

So (5.1.9) shows that ¢, is the time—evolved of ¢ in the sense of section 4.2, and (5.1.10)
shows that the detailed balance condition holds.

Our aim is to control the differences ¥,,(f) —¢n(f) : f € cXl in the limit as n — oo.
To this end, it is convenient to define ¥, A, in Clx‘ n=1,2,..., by

¥, (z) = P,[z]'/?, (5.1.11)

An(z) = Qnlz]Palz] /2, (5.1.12)
so that, foralln =1,2,...,f € C|X|,

Pn(f) = (¥n, f¥s), (5.1.13)
on(f) = (An, F¥n). (5.1.14)

Lemma 5.1. For each n = 1,2,..., there ezists a self-adjoint contraction T, on cxl
such that

To(f¥n) = ma(f)¥n: fe L (5.1.15)

Moreover, the eigenvalue A = 1 of Ty, is simple, with eigenvector ¥, and for each w € c!Xl
with (w,¥), =0 one has
HanH2 S exp[—7n][|w[|2, (5116)

where v, > 0.

Proof. The operator T}, defined by (5.1.15) is a contraction by Lemma 4.5. Self-adjointness
follows from (5.1.10). It is clear that S¥, = ¥,. (5.1.16) follows for example from the
work of Holley and Stroock [6], keeping into account the form (5.1.1) of the transition
probabilities and assumption i) following (5.1.1). More precisely, it follows from [6] that

T 2 77 €xp[—Prmnl, (5.1.17)

where v > 0 depends only on the matrix go(z,y) and where m, may be informally described
as the maximum depth of a local minimum of U,, which is not a global minimum (see the
Appendix).

O

Lemma 5.2. For n =1,2,..., define the (self-adjoint) linear operator R, on clX! by
Ru(f¥,) = f¥n_,: fecCl (5.1.18)
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Then
An=T,R,An1: n=23,.... (5.1.19)

Proof. An application of Lemma 4.8. However we write down once more the computation
for the sake of clearness. In fact, for all f € clX l,

(An, f82) = @n(f) = @n-1(ma(f))

= (Rncty () ¥t} = (A, Bulra(£) 0]
= (RnAn-—laTn(f‘I,n)) = <TanAn-—1’ f‘I’n>

O
Lemma 5.3. Forn =2,3,..., let
an, = vn — log || Rxl|, (5.1.20)
bn = exp[—7all|(R7 — 1) Tn|l2. (5.1.21)
Then
|An — nll2 < exp[—an]||tn—1 — vn-1]|2 + bn. (5.1.22)

Proof. This is nothing else than Lemma 4.9, since each R, is self-adjoint by construction.
O

Proposition 5.4. Suppose that there exist constants a > 0, 5> 0,1 > 6§ > ¢ > 0 such
that
an >anf™l, b, <bn®': n=23,.... (5.1.23)

Then, for all f € C|X|,

lon(f) = ¥n(F)] < (constant) ||f]leon™® — 0 as n — oco. (5.1.24)

Proof. See Theorem 4.10
O

It is now necessary to make further assumptions on f,, U, in order to be allowed to use
Proposition 5.4 In addition to 7)-iiz), we shall make the following

Assumption 5.5. There exist positive constants ¢, h,vy,m,k,n such that ¢ > m and
m/e < n <1, and such that

0< Bn—Pro1 <—, Yn=1,2...; (5.1.25)

0<Uy(z)<h, VYn=12,..., Vz € X; (5.1.26)
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Yn > vexp[—Bnm], Vn=1,2,...; (5.1.27)

k
|Un(z) — Un-1(z)| < — VYn=1,2,..., Vz € X. (5.1.28)

Then (5.1.25) implies that
Brn < (1/c)logn+d, Yn=1,2,..., : (5.1.29)

with d = B + (1/c). Note that (5.1.28) does not necessarily imply that Un(z) has a limit
for n — oo.

Theorem 5.6. Under assumptions (5.1.25)—(5.1.28), one has

len(f) = ¥a(F)] < const.||fllon™ — 0 as n — oo, (5.1.30)
where §' is any positive number strictly smaller than 7 —m/c.

Proof. It suffices to compute an, b, given in (5.1.20), (5.1.21), and prove that they satisfy
(5.1.23) with § = 1 —m/c, € € (1 — 7,1 — m/c) arbitrary. Then (5.1.30) follows from
Proposition 2.4 for any &' of the form §' = 6§ —¢. In fact, we have from (5.1.28), (5.1.29)
that

77& 2 7e_mdn“m/c7 (5°1'31)

whereas R, given in (5.1.18) is the operator of multiplication by the function

Ru(z) = [%;Em—(?] 7 | (5.1.32)

The r.h.s. of (5.1.32) can be evaluated as follows: note that

1/2
Rue) = expl{-BraUna(e) + a2 (72

n—1
and that

sup exp[{~Bn-1Un-1(2) + BrUn(2)}/2]
z€X

< expl{(Bn ~ f-1) sup[Un(@)] + Brr 518 [Un(z) ~ Unms(2)1}/2)

< exp[h/(2¢n) + [(log n)/c + dk/(2n")]
< exp[k'(logn)/n"], Vn=1,2,...,
where k' = const. > 0; in addition
exp[—Bn-1Un—1(z)] = exp[—BrUn(2) + n-1[Un(2) = Un-1(2)] + (Bn — Bn-1)Un(z)]
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> exp[—BnUn(z) — [(logn)/c + d]k/n"]
> exp[—fFnUn(z)]exp[—k"(logn)/n")], Vz e X, Vn=1,2,...,

for a suitable k" > 0. This implies that [Zn/Zn_l]l/2 is bounded from above as a function
of n by exp[k"(logn)/(2n")]. Therefore

= — g |[Rall 2 7 — (K 4 K7 2) R 2 e

nm -

3

with ' = const. > 0.
On the other hand, we have

[I(RE —1)¥,]|; < sup |Ri(z) —1].
z€X

By the same kind of estimates as above we can see that there exist positive constants <!,
a' such that

exple’(logn) /1] < R:() < expla(log n) /"],
for all z € X and for all n = 1,2,.... Hence, for a suitable positive constant A’,

logn

b = expl=nl[(BS, = D¥allz < B2 < bn°?

for all € in (1 — 7,1 —m/c) and for a suitable positive constant b = b(¢).
O

Corollary 5.7. If ¥, has a weak limit 1o as n — oo, then @, converges weakly to o
as n — co.

Remark 5.8. If U,, = U independent of n, then 3,, has a weak limit as n — oo, which is
the uniform measure on the set of the absolute minima of U. The same conclusion holds
if U, converges pointwise to U sufficiently fast so that 8,|Un(z) — U(z)] — 0 as n — oo
for all z. This is compatible with (5.1.28), (5.1.29).

Remark 5.9. The above calculation are easily generalizable to a class of jump processes
over compact connected finite dimensional Riemannian manifolds IM. In fact, let v be the
Riemannian measure of IM, U,, be a sequence of C* nonnegative functions on IM, and g
be a symmetric bistochastic kernel on IM. Let

Z, = / exp[—BuUn(2)(dz), n € IN; (5.1.33)

P.(dz) = Z;' exp[—BnUn(z)]v(dz), n € IN; (5.1.34)

Consider the jump process over IM with transition probabilities

gn(2,y,dy) = K. (2)q0(2,y) exp[Bn[Un(y) A Un(2)]+]Pr(dy) (5.1.35)
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and jump intensities K,(z), Kn(z) being the appropriate normalization factor. Intuitively,
if the process starts from = € IM, it stays at z with probability 1 — K(z)(€ [0,1)) and
jumps in a neighbourhood dy of y with probabilities given by (5.1.35), conditional upon
jumping at all. The generator of the jump process is then

Lf(=) = /(f(y) — f(2))q0 (2, y) exp[Bn[Un(y) A Un(2)]+1Pr(dy), (5.1.36)

whose bilinear form @ is given by

Q(f,9) = -12- / (f() = f(2))(g(¥) — 9(2))q0(z,y)ePT»DAUD P, (dz) P, (dy). (5.1.37)

Define a family of states on M = L*°(IM) by

Pn(f) = /f(z)Pn(d:c), feL> nelN; (5.1.38)
finally, define a family of dynamical maps by
[ra(H)] (=) = /f(y)qn(z,y,dy)v(dy), feLe, n=12.-. (5.1.39)
The time evolution is given in terms of the family of states given by
oo(f) = / K(@)f(@)w(dz), f€L®, ,cM; (5.1.40)
on(f) = @n_107a(f), fEL®, n=12,---, (5.1.41)

K(z) being an initial probability distribution on IM. Then everything goes through under -
exactly the same assumptions, provided in addition that the behaviour of the spectral gap
of the self-adjoint contraction R, defined as in Lemma 5.2 is of the usual form. Some
partial results in this direction have been obtained in [75, sect. 5].
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5.2 Langevin diffusions revisited:
the case of a piecewise time—independent generator on compact
manifolds.

Here we apply the general scheme of section 3 to a class of diffusions on compact connected
finite dimensional Riemannian manifolds IM which are described as follows: with the no-
tation of section 3.1, we consider the Polish space 2 = C([0,+00),IM), and the coordinate
process X; on () given by X;(w) = w(t),w € Q. Let F; be the filtration generated by X,
so that F = U;>oF; generates the Borel field of  endowed with the topology of uniform
convergence on finite intervals. Finally, let L, : C*°(IM) — C°°(IM) be defined by

Lof = SOUDY . (e—mt)vmv f) : (5.2.1)

here we have denoted by U(#) the function U(2, - )(> 0) on IR™. Assume moreover that
both U and B are piecewise constant as functions of ¢, and that U(%, -) is a function of class
C* for all ¢, so that there is a sequence {t,}nemw With 0 = %) <3 <12 < ... <1p = o0
as n — oo and a sequence of nonnegative functions U, of class C* on IM with

U(t,z) = Up(z) fort € [tn1,tn), (5.2.2),

B(t) = Bn(t) fort € [tn_1,tn), (5.2.3).

Denote also by g and v the Riemannian metric and the normalized Riemannian measure
on IM, respectively.
Then, for each fixed ¢, L, is essentially self~adjoint in L?(IM, y; g(1)) where

pt,5(0)(dz) = Zt—,;(t)e—ﬁ(t)u(t’z)’/(dm), (5.2.4)

Zupeo = [ POV (de); (5.25)

hereafter, all integrals will be performed on IM.
Furthermore, L; is a non-positive operator, which has A = 0 as simple, non—degenerate,
highest eigenvector, and there is a gap ¢ between A = 0 and the rest of its spectrum.

Proposition 5.9. For each (s,z) € [0,+00) x IM, there exists a unique probability
measure P, , on ({2, F) such that

(f(Xt) — f(z) — /: L,f(Xu)du, Fi , Pspz ) (5.2.6)

is a mean zero martingale for all f € C°°(IM). Moreover, the family P, . is Feller contin-
uous and strongly Markov.

We remark that similar properties hold also if the process does not start from a fixed
z € IM, but has a (measurable) arbitrary initial probability distribution.
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Let H = L2(IM, dv) with the usual scalar product, and let M = L°°(IM, du) with the
usual norm. We define faithful normal states 1, on IM by

bl f) = / £(2)dpn(z) =

= [ 16 )e""n(ﬁn PLBolnl g — (9, £0,), (5.2.7)

e [~BaUn(2)/2]
_exp[—B.Un(z
¥,.(z) = ATALE (5.2.8)
For each n = 1,2,..., define the positivity and identity preserving weakly*—continuous

linear map 7, of M into itself by

[ (H)](=) = E[f(z(tn))l2s,_, = =], (5.2.9)

where E| - |z:,_, = z] denotes expectation over the paths of the Wiener process, conditional
upon z;,_, = z. Let |-| denote the Riemannian norm of a vector field, V the Riemannian
gradient and A the Laplace—Beltrami operator on IM. Then,

Tn = €xp[(tn — tn—1)Ln], (5.2.10)

where

an—[_—l——A VU, -V (5.2.11)

Using the unitary equivalence of L?(IM, di,,) with H given by f — fU,,, we can write
| To(u) = Ta(u¥ ) T,, Vu € H, (5.2.12)

where the self-adjoint contraction T;, on H is given by

T, = exp [—B; (tn — tac1)Ha] , (5.2.13)

and

H, = A+ [Ba|VUL /4 = BuAUL/2) = —A + T, (5.2.14)

are nonnegative self adjoint operators.

Note that H,, differs from Hy = —/ by a bounded multiplication operator, and hence
that H,, is self~adjoint on the domain of Hy.

Finally, define a normal state ¢q on M by

oolf) = [ f@n(a)ds, 1 e M, (5.2.15)

$o being a positive continuous function with [ $o(z)dz = 1, and define faithful normal
states o, n =1,2,... by ¢, = pp_1 0T, as in chapter 4. We now turn to verifying that
the general theory of section 4.2 is applicable in such a case.
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To this end, note that the operator H,, defined in (5.2.14) has a gap v, between A = 0
and the rest of its spectrum. This follows for example from [12]. In particular it is known
that

Tn Z ’Yexp[—'ﬂnmn]’ (5216)

where the constant 4 > 0 is independent of U, and m,, has an informal description as the
maximum depth of a local minimum of U,, which is not a global minimum.
In addition, note that

o1() = polTi (] = [T W)y

= [ [ & mns@owisay (5.2.17)

for a suitable (positive, jointly continuous) integral kernel K (see for example [61]). Then

¢1(a) = (u1, fva) (5.2.18)

where

ui(z) = [/ K(tl,a:,y)cﬁg(y)dy] 'vl(.'z:)_1 (in Lz(M)). (5.2.19)

Note that each map 7, leaves invariant the norm-—closed subspace C' (T?) of continuous
functions. If we restrict to such a subspace, we may take as initial state g also po(f) =
f(zo) for arbitrary zo € IM, whereby ui(z) = K(t1,2,2o)v1(z)™" (in L?(IM)).

Finally, note that R, is the (self-adjoint) operator of multiplication on # by the
function v,—1 ¥, !, which is bounded by construction. Therefore, we have only to evaluate
the quantities

a, = v, — log||R.]l, (5.2.20)

bn = exp[~7u]ll(R7, — 1)¥nll2; \ (5.2.21)

we shall show that they satisfy (4.2.15). The calculation is similar to the case of a finite
state space; in analogy with section 5.1, we shall make the following

Assumption 5.10. There exists a constant ¢ such that
1
0 Sﬂn_ﬁn_l < '_T'L Vn:1,2,--o- (5.2.22)
c

Moreover, there exist positive constants h,~,m,k,n, with m < ¢, m/c <7 <1, such that:

0<Uu(z)<h, VYn=12,...,Vz € X; (5.2.23)
Yn > vexp[—LFnm], Yn=1,2,...; (5.2.24)
k
|Un(z) — Un-1(z)| < — Vn=1,2,..., Ve € X. (5.2.25)
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Note that (5.2.22) implies that
1
Brn<-logn+dy, Vrn=12,..., (5.2.26)
c

with dg = B +1/c.
Under these hypotheses, we have the following

Theorem 5.11. Under Assumption 5.10,
() = $alF)] < const)l|flloon™ =0 as n— oo (5.2.27)
for any §' of the form §' =6 —e withd§ =1—m/cand e € (1 —n,1 —m/c).
Proof. Proceeding as in section 5.1, Theorem 5.5 it is easy to show that
1Bl < o explK'(log n) /7], (5.2.28)
for suitable positive constants «, k, and that

1
(R = 1)W,||, < =22

£, (5.2.29)
for a suitable positive constant h'. Noting that (5.2.24) and (5.2.26) imply that v, >

(const.) x n~™/¢, it follows that there exist positive constants 4',b such that, for all
n=1,2,...and forall ¢ in (1 — ,1 — m/c),

ap > 7'n_m/°, b, < bn®71,

The thesis follows from Theorem 4.10. .
g
Corollary 5.12. If ¢, has a weak limit ¥ as n — oo, then @, converges weakly to P

as n — oo, and hence the distribution of the coordinate process with respect to the measure
associated to L; and to the initial condition considered converges weakly to 9.

Remark 5.13.. As often remarked in the previous chapters, if U,, = U independent of n,
sufficient conditions are known in order that the weak limit ¥, of ¥,, as n — oo exists.
In such a case the weak limit is a measure concentrated on the set K of absolute minima
of U; however, it need not be the uniform one on K, unless 9re5(K) > 0. Under suitable
assumptions on U a limiting measure can be shown to exist and can be described in terms
of the Hessian of U on K (see Hwang [10]).

More generally, if U, converges pointwise to U sufficiently fast so that 8,|Un(z) —
U(z)] — 0 as n — oo uniformly in z, the same considerations hold. This is compatible
with Assumption 4.9.
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5.3 Time—inhomogeneous quantum evolutions.

Let K be a complex separable Hilbert space with scalar product (f,¢) and norm ||f||x =
(f,f)/*. Let M = B(K) be the von Neumann algebra of all bounded linear operators
on K endowed with the operator norm ||4||. Let H = J2(K) be the Hilbert space of all
Hilbert—Schmidt operators on X with scalar product

(u,v) = Tr(u*v) ' (5.3.1)

and norm ||u||; = (u,u)*/2. We shall identify M with its left regular representation 7z, on
H, rr(A)u = Au, Ae M,ueK.

There is a bijection between the space of faithful normal states ¢ on M and positive
trace—class operators p? on K with unit trace and densely defined inverse so that, denoting
by o the positive square root of p?, one has

¢(a) = Tr[o*4] = (0,a0).

Moreover, the modular operator A, associated with ¢ is given by A, = p?, and the mod-
ular involution is the involution on K so that, on the dense set Mp one has (JAJ)(Bp) =
BpA*.
Let also ¢, : m = 1,2,... be the sequence of faithful normal states on M defined by
Tr (exp[—H,]A)

¢n(A) = Tr (CXP[”H-,L]) - (\I"n)A‘I’n> (532)

where the cyclic and separating vectors ¥, in H are given by

exp[—Hn/2]

¥, = =)
(Tt (exp[—Ha)))"/

n=1,2,... (5.3.3)

and where H,, are self-adjoint operators in K such that
Tr(exp[—Hp]) < o0, n=1,2,.... (5.3.4)

In particular each H,, is bounded from below and has a discrete spectrum. Then for each
n = 1,2,... there exists a complete orthonormal set f,(.n): r =0,1,...in K and positive
numbers 95.”): r=0,1,... such that

\I:,if,ﬁn) =MW r=0,1,..., with ggn) < ggn) <.... (5.3.5)

Let 7, : n = 1,2,... be completely positive, identi‘ty preserving, ultraweakly continuous
linear maps of M into itself such that

$n(ATn(B)) = ¥n(7n(4)B). (5.3.6)
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Define linear operators es,:,) on K by es,:,) f,sn) = b, f,(-n). It follows from [42] that the 7,
may be written as

Tw(A) = Y e e AT, (5-3.7)

rr!ss!

where the series converges ultraweakly and where:

i) (positivity) '
| 3 Ty ar 20 W{zow}swen C C (5.3.8)

rr'ss’
whenever the series converges;
#) (normalization)
(n) (n) (n) [ _ n) () _
crr'as’ errl essl = CTT"ST" era = 1 (5-3-9)
rr'ss’ rr's
in the sense of ultraweak convergence;

i11) (detailed balance)

CS‘:')ss'ggn) = Cg?s)r'rggtl) (¢:> c(n) S-n) = c(n) (n))' (5'3'10)

rrisg @ s’ artpCQpt

Example 5.14. Let us consider a classical Markov process Y, with discrete state space
X and with transition probabilities

P[Yn = 'yIYn—l = :z:] = ‘IO(may) eXP[—ﬁn[Un(y) - Un(z)]-’r]’ (5'3'11)

with U,, such that Zyex exp[—fnUn] < oo for all n € IN. Let H, be the (self-adjoint)
closure of the densely defined operator determined by

HoelD = BuUn(2)elD : n€X, (5.3.12)
and let
Cozlyy’ = 6::y6z'y’P[Yn = :l:"Yn__l = w] (5313)

Then all conditions 2)-ii7) are satisfied, with

eXP[—ﬂnUn(m)]

g(n) — .
* EyEX exp[—LFnUn(y)]

(5.3.14)

Note that eg':,) may depend on n, so that the H,, may not commute with one another.

Now we apply the general scheme outlined in chapter 4 to the above situation. We know
that there exist self-adjoint contractions T3, on H such that

T (AT,) = (A)¥,, VAe M,n=1,2,.... (5.3.15)
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Moreover, in the situation of the above Example, with X finite, it has been shown in [44]
that, under the same assumptions leading to (5.2.16), a spectral gap for T, exists and
satisfies the bound

I'; exp[—fnm}] < yn < Ty exp[—B,m})], (5.3.16)

where the positive constants I';,I's depend only on ¢y, whereas the positive constant m;,
depends only on gy and on U, (see the Appendix). We also refer to [46] and references
quoted therein for estimates on the spectral gap for generators satisfying detailed balance
in some models of infinite quantum systems. '

We note also that in the case that dim K < oo then there exists u; € H such that
v1(a) = (u1,av;):a € M without further assumptions. Otherwise, a sufficient condition
for this to hold is that ¢;(A4) = Tr[p; A] with g; trace class and given by g1 = > oy i Py,
(P4 denoting the orthogonal projection onto the subspace generated by the unit vector
¢ € K) with ¢; € D(v7?) and 3, ¢; Py,v; ! convergent in J2(K); then uy = 3372, ¢;Py,v; .
However, if this is not the case in general it suffices to restrict to g in the dense set Sy, (M)
(see (4.2.8, 4.2.9).

Furthermore, we have the following

Lemma 5.15. Let R, be the (densely defined) linear opergtor in H defined as in section
4.2 with ¥, as in (5.3.3). Suppose that, for allt € (0,1/2), the operator

Vn(t) = exp[—tHn—l](Hn - Hn—l) exp[iHn..l], (5317)

is densely defined and bounded with ||V ,(t)|| < an, with a, > 0 independent of t € (0,1/2).
Then R, s continuous.

Proof. Note that, if v € D(R,,), we have
Ryuu=1u (¥, 0% . (5.3.18)

Therefore, it suffices to prove that ¥,,_;¥-! € B(K) for all n = 1,2,.... This happens if -
and only if exp[—H,—1/2] exp[Hn/2] € B(K) for all n = 1,2,.... Set now

U,(t) = exp[—tH,—1] exp[tHy,] (5.3.19)

(densely defined on D(exp[tH,])), for all n =1,2,.... Since one has
¢
Un.(t) =1+ / exp|—sHp—1|(Hn — Hp—1) exp[sH,|ds,
0
it follows that

t
Un(t) =1+ /0 expl—sHo_1](Hn — Ho_1) expls Hn—1] exp|—s Hn_1] expls Ha]ds

—1+ /0 V()0 (s)ds. (5.3.20)
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Iterating (5.3.20) one finds that
Un(t) =1+ z / Va(sk) ... Va(s1)dsy ... dsg, (5.3.21)
b1 J0<s1 < <ok <t

where the series in the r.h.s. converges uniformly by (5.3.17) for all ¢ € [0,1/2]. In
particular,

1T (8)]] < exp(tan) | (5.3.22)

forallt €[0,1/2],forall n =1,2,....
O

We now turn our attention to the inequalities (4.2.15), under which our conclusions follow.
We need estimates on the spectral gap of T}, in the following form:

An > n ™, (5.3.23)

where v,m,c are positive constants with ¢ > m. Indeed, in the situation of the above
Example we have

Tn 2 'yexp[—ﬂnm:;], (5324)

where v depends only on the matrix go. If, as in the usual formulation of simulated
annealing, B, < [logn]/c + d, and if m}, < m independent of n, we have (5.3.23).

Theorem 5.16. Define, as in section 4.2, a, and b, through
a, = vn — log||Rnll, | (5.3.25)
b, = e ™ ||(RrRn — 1)¥,]||2 (5.3.26)
for n=1,2,..., where v, and R, are as above. Suppose also that (5.3.23) holds, and that

Vo ()] < nin Vi € (0,1/2) (5.3.27)

for some positive constant k and for some n with m/c < n < 1, where V, is defined in
(5.3.17) and m,c are as in (5.3.23). Then there ezist constants a,b > 0 such that

an >an’® ) b, <bn®! Vn=1,2,..., (5.3.28)

with § =1 —m/c and for alle € (1 — 1,1 —m/c). In particular one has, for all A € M
and for alln =1,2,...,

lon(A) — ¥n(A)| < (constant)||4|[n*™% — 0 as n — co. (5.3.29)

Proof. We start estimating a,. To this end, set
Un(t) = exp[—tHy,] exp[tHn—1] (= Un(t)™1), (5.3.30)
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densely defined on D(exp[tHn-1]), foralln =1,2,...,t € [0,1]. Proceeding as in the proof
of Lemma 5.15 we find:

¢
Un(t)=1-— / Un(8)Vi(s)ds. (5.3.31)
0
Iterating (5.3.31) one finds
Un(t) =1+ Z(—l)k / Va(s1) ... Va(sk) idsy ... dsg. (5.3.32)
E=1 0<81<... <8 <2

Egs. (5.3.21) and (5.3.32) can also be written in terms of time—ordered exponentials as
follows:

Un(t) =T exp ( /0 t Vn(s)ds) , (5.3.33)

Fa(t) =T exp (_ /0 t Vn(s)ds> . (5.3.34)

It follows from (5.3.17) and (5.3.34) that, proceeding exactly as in Lemma 5.15, ||U.(¢)|| <
exp(tk/n"] for all t € [0,1/2]. Finally, Lemma 4.1 shows that

Ry, = [|Un(1/2) %2 ||TT(1/2), (5.3.35)

so that i
IRl < 1TR(1/2)]] 1Tn(1/2)]172, (5.3.36)

and the previous estimates on the norms in the r.h.s. of (5.3.36) imply that there exists
A > 0 such that log ||R,|| < A/n". Since the assumptions on the behaviour of the spectral
gap v» and (5.25) imply in turn that, for some constant B > 0,

A > BnT™e, (5.3.37)

it follows that the first part of (5.3.28) holds with § =1 —m/e.
In order to prove the second part of (5.3.28), it suffices to show that there exists a constant

C > 0 such that c
I(BnBn —1)¥allz < —. (5.3.38)

Hence, one computes
(B Bn = 1)¥nll; = ||R; ¥n_y — Tull3

|1 R5 ¥z +1 = 2Re(Ry ¥, Un) = || Ry ¥na|l; ~ 1
<||Rnll =1 < const. (exp[1/n"] — 1)

by the previous step, and this implies that (5.3.38) holds.
Thus, the thesis follows from Lemma 3.16.
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Corollary 5.17. If ¥, has a weak limit 9o, as n — oo, then @, converges weakly to Yoo
as m — 0o.

Remark 5.18. If H, = 8, H with 8, — 0o asn — 0o, then 9, exists and is the projection
onto the subspace corresponding to the smallest eigenvalue of H. More generally, if H,
has the form (5.3.12), with B, — oo and Un(z) — U(z) for all z € X sufficiently fast so
that 8,(Un(z) — U(z)) — 0 as n — oo uniformly in z, the same conclusion holds.
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Aﬁpendix:
THE SPECTRAL GAP

This appendix is a (partial) review concerning some of the estimates which have been
repeatedly used in the course of this thesis concerning the asymptotic behaviour of the
spectral gap of the generators of the processes considered, and therefore concerning the
identification of the critical constant in the optimal schedule for simulated annealing. This
review is far from complete, and in particular we have chosen to discuss only the case of the
generator of simulated annealing on finite sets [6] and its non—commutative generalization
[44], to be dealt with in section A.1, and of Langevin diffusions on IR™ [16, 17], which we
consider in section A.2.

A.l1. Simulated annealing on compact sets
and non—commutative generalizations

Let X be a finite set with | X| points, and po be a probability measure on X charging any
point. Let go be an irreducible transition matrix on X, which in addition is pgo—reversible
in the sense that

a(z,y) := po(z)g(z,y) = a(y, z). (A.1.1)

The simplest example is that in which g is the normalized counting measure and ¢ is a
symmetric matrix.
Let U be a nonnegative function on X; define the Gibbs measures p15 at inverse temperature

B by

Hp = Z’;le‘ﬁuﬂo, (A1.2)

Zg being the normalization constant. The transition probabilities at inverse temperature

B are defined by
g5(z,y) = exp[-B[U(y) — U(z)]+]ao(2,y) if y # =, (A.1.3)

and by normalization if y = z. Define also linear operator Lg on clXl by

Lef(z) = Y (f(v) — f(=))gs(=,y), z€X. . (A.1.4)

yeX

Consider Lg as acting on the real Hilbert space £2(ug). Then its bilinear form Qg is
defined by

Qs(f,9) = —/fLﬁgdms, , (A.1.5)
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and is easily seen to be given by

Qp(f9) = (22)" Y, e PUEVIO(f(z) - f())(g(z) — 9(v))a(z,y).  (A.1.6)

z,y€X

Note that —Lg is a nonnegative self-adjoint operator, with A = 0 as lowest eigenvalue with
unique normalized eigenvector f(z) = 1 for all z. Let ||-||» denote the norm in £?(pg), and
(f)g = [ fdpp; we are interested in determining the behaviour for large 3 of the second
eigenvalue v(8) of —Lg, which is characterized as

7(8) = inf{Qp(f, f) | lIfll2 =1,(f)p = 0} (4.1.7)
Equivalently, let
Vara(f) = psl(f = (£)s)?] (4.18)
Then
7(8) = inf{~Varg" Y f(=)Ls f(z)ps(z) : f € C*I}. (A.1.9)

We define a nonnegative number m, depending only on U, as follows. A path from z € X
to y € X is a finite sequence z¢ = z,%1,...,2, = y such that go(zi,ziy1) > 0 for all ¢ =
0,...,n—1. Let P, , denote the set of paths from z to y, and let a path p = {p;}i=0,...,n—1
be given. Define the elevation of p by Elev(p) = max{U(p;),p; € p}, and the lowest
possible elevation when travelling from z to y as H(z,y) = min{Elev(p) : p € P4}
Finally, let

m = max{H(z,y) —U(z) — U(y) : z,y € X}. (A4.1.10)

It is easy to realize that, if zo,yo are a couple of points at which the above maximum is
attained, then at least one of them is an absolute minimum of U. The number m can thus
be described as the maximum “energy height” which must be reached in order to reach a
global minimum along a way which takes the lowest passes.

We shall prove in the sequel, following [6] that v(8) ~ exp[—fm] as 8 — co.

Theorem A.1. There ezist constants c,C with 0 < ¢ < C < oo, independent of 3, such
that, for all B > 0,

ce™P™ < 4(B) < CePm, (A.1.11)

Proof. i) (upper bound).

First assume m > 0. Choose zq,7, so that H(zg,y0) — U(zo) — U(yo) = m. Letd = {y €
X | H(yo,y) < H(yo,%0)}. Then zg € A, zo ¢ A, since m > 0. Moreover, if z € 4, y ¢ 4,
and go(z,y) > 0, then U(y) > H(yo, o), since it suffice to consider the path p € Py, for
which H(yg,z) = Elev(p), and extend it by one further step to y. This implies that for all
such z,y and for all 8 > 0, one has gg(z,y)ps(z) < oz(:c,y)Zg1 exp|—BH (yo,zo)| so that,
letting F(z) = I4(z), one has

Y @)L F(e)s(z) = 5 3 as(e,0)(Fly) — F(2) a(e) <
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<Z5' Y ) afz,y)ePHGoR0), (A.1.12)
zEAYEA
Finally,
| Varg(F) > Z57 po(o)po(yo )e A=)+ 0 o)), (4.1.13)

so that, for some C > 0 independent of 3,
—Varg(F) )  F(z)LgF(z)up(z) < Ce™P™. (A.1.14)

If m = 0, the above argument holds upon substituting F' with the indicator function of
the set of the absolute maxima of U.

i1) (lower bound).

We shall prove that

—Varz () ) f(z)Laf(2)us(z) > ce™™, (A.1.15)

forall f € C|X|, for all # > 0 and for a suitable constant ¢ > 0.

Fix z,y € X, and choose a path p € P, , such that Elev(p) = H(z,y). Let n(z,y) be the
length of p and define a positive number N as N = max, y n(z,y)(< 00). Take z,w € X
and define x,,w(z,y) = 1 whenever for some index i one has p"Y = z, pf_f'l = w, and
Xz,w = 0 otherwise. If a(z,w) = 0, then X, . is identically zero, and in the sequel we

intend x;.,(z,y)/a(z,w) = 0 whenever both terms vanish. Then we compute, for all
fecH,
2Varg(f) = Y (f(v) — £(2))* pp(z)ps(y) =
z,y
n(z,y) 2
= | D feP) - £e5%) | mele)us(y) <
z,y =1
n(z,y)

< D onley) Yo (FPFY) = f(pi)) mp(2)ms(y) <

SN Y xelm9)(F(2) — F(w)alz,w)e POV L)

TY,z,w

<o (%xzxz,w(z,y)e_‘jﬁ(u“’(lﬁ‘fé?l))) Q55 1) (4.1.16)

z,y

Besides,

pa()pp(y)  _ 1 ()10 (Y) - p(u(x)vu(w)-U(=)-U())
Xz'w(m’y)e—ﬂ(U(z)VU(w)) - Zﬁ Xz,w(z,y) a(z,w € S
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o(z)po(y)

o(zw) 3 polv)

v:U(v)=0

S eﬁsz,w(T’a y)

which yields the claim.
O

We now give a short sketch, following [44], of a non-commutative generalization of the
above results, which we have already mentioned in section 5.3. Let X, U, pug, g3 and Lg
be as above. Let e; : ¢ € X denote the canonical orthonormal basis of c!Xl. Consider
the von Neumann algebra M = M(|X|, C) which is generated, as a linear space, by the
matrices e,, defined by e, ye, = 6,.e.. Consider the state on M given by w(f) = (2, f@),
where the scalar product is given by (f, g) = Tr(f*g), and @ = N—1/2]. The corresponding
GNS representation acts on the Hilbert space K = M(|X|, C) with the above trace scalar
product.

We define a bijection D between €'*! and the set of diagonal matrices by D(f) =
3. f(z)ezz, and a Hamiltonian H in M as H = D(U). The family of thermal states on
IM at inverse temperature 8 and corresponding to H is thus defined to be

p4(a) = Tr[exp(—BH)A]/Trlexp(-BH)], a€ M. (A.1.17)

Now we construct a generator L% satisfying detailed balance w.r.t. ,u%, and study
some of its spectral properties. To this end, let B be the set of those z,y € X such that
U(z) < U(y) and go(z,y) > 0. For j = (z,y) € B let

v; = qﬁ(y,:zz)l/2 €zy- (A.1.18)

Last, define

L%(a) = Z <(vj avj — §[vjvj,a]+) + exp[—Bw;](vjav] — -é[vjvj,a].*_)) , a €M,
jeB
(A.1.19)
where [a,b]; = ab + ba, and w; = U(y) — U(z). Then it is possible to prove that L}
satisfies detailed balance with respect to pqﬁ for all 8. Using the detailed balance condition
for pg, one proves (cf. [15]) the following:

Lemma A.2. For all f € Clxl, one has

LY(D(f)) = D(Ls(£)). (4.1.20)

To each L% is associated a self-adjoint contraction Sg on K; it is easy to prove that
it is given by S/g = 52,0 - Sg,l, where

S,g,‘)f = % Z qﬁ(z’y)[ezza.ﬂ+; (A.1.21)
zF#y
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Sii= > (exp[-Bw;/2lgs(z,y)(ey=Feny + exyfeys))- (A.1.22)
j=(=,y)EB

Then Sp has a gap 74(8) between A = 0 and the rest of its spectrum. In order to estimate
its behaviour for large 3, recall that we have proved in Theorem A.l that there exists
constants ¢, C,m such that (A.1.11) holds. Let [ be the maximum energy gap which can
be attained in one step:

| = max{U(y) — U(z) : 2,y € X, q0(z,y) > 0}. (4.1.23)

Define positive constants mg, ¢g by my = max{m,l}, ¢, = min{c, o}, where  is such that
go(z,y) > a for any couple (z,y) with go(z,y) > 0. Then we have the following

Theorem A.3.The spectral gap for Sg satisfies the bounds

cee Pme < 49(B) < Ce™Pma, (4.1.24)

Proof. Let K; C K be the subspace of diagonal matrices, and P the orthogonal projection
onto it. Then .

S%,P=PS5, S§%,P=S8%, =P8, (4.1.25)

This implies that K; and its orthogonal complement K, are invariant under SE,O,SE,I.
Moreover, S§|x, = Sp, the self-adjoint contraction associated with Lz, and Sil, = S5 o-
In turn, Sg,o satisfies the bound

q o
Sgo = min ;Qﬁ(w,y) >
yFz

> ixg}rfl e P! Z max{qs(z,9),¢5(y,2)} | > e Pla, (A.1.26)
yF#e

where the latter inequality follows from irreducibility, since for each z there must exist at
least one y with go(z,y) # 0, and from the fact that gg(z,y) is monotonically nonincreasing
as a function of B for any fixed couple (z,y).

0.
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A.2. Langevin diffusions in IR¢

We now turn to proving some results similar to those proved in the previous section for
the operator Lg = S5, Sg = 7'\ — VU- being the generator of a Langevin diffusion
with drift b = —VU and diffusion matrix a = /2/8 I. We follow the discussion in [16,
17], and note that in comparison to that paper our operator Lg is 8 times the operator L,
considered there, upon defining 3 = 2/¢%. The assumption in which the calculation below
hold are even more general then those which were used in section 1. The notation will be
the same of that section.

Assumption A.4. U : R™ — [0,00) is a function of class C? with U,|VU| — o
as |z| — oo, and moreover such that |VU| — AU is bounded below. Without loss of
generality, we assume that the set of critical points of U is contained in a ball B(0, Ry) on
which |VU| < 1.

It is well known that, under the above assumption, Lg is essentially self-adjoint on
C§° as an operator acting in L?(ug). Moreover, —Lg is nonnegative and there is a gap
v(B) between A = 0 and the rest of its L?~spectrum.

We define a positive number m exactly in the same way in which the corresponding
number was defined in section A.1, with curves of class C! taking the place of paths. We
shall prove the following

Theorem A.5. The following equality holds:

lig 10800(8)) _

Jim <8 (A.2.1)

The proof of this theorem is rather involved, and we shall divide it into several step;
some of the statements will not be proved in full detail, and in such cases we refer to [16,
17] for a complete discussion.

First, an upper bound on the quantity 7 log(y(8)) can be given as in [12], whose
arguments have been already sketched in Theorem A.1. In fact, the following Lemma
holds:

Proposition A.6.0ne has

limsupMD < —m. (A.2.2)
poco P
Proof (sketch). Choose z9,yo (yo being an absolute minimum of U) such that m =
H(yo,z0) — U(zo), the infimum being attained due to the fact that the absolute min-
ima of U are contained in B(0,R,) by Assumption A.4. Let ¢ be sufficiently small
(see below), and let A, = {z € R | H(yo,z) < H(yo,z0) — 3¢}. Then, for large £,
B(yoe,2¢) C A., B(zo,2¢) ¢ A.. It is possible to construct a function 1. such that
Y.(z) = 1if B(z,1/8) C Ap, and which vanishes if B(z,1/8) C A5. The function g
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can be chosen so that |V,|? < Kf72¢72, and it can be shown by computation that the
quadratic form Qg of Lg evaluated on 1), satisfies

Qﬁ(d’u"ps) S K Zgls'zdnz €xXp [_:B(H(yOa 30) - 55] 3
whence
varg(ve) > 252 PV o (B(2o, €))piLen (B(uo s €))-
The thesis follows by choosing € = 1/8. '
O

What follows will aim at proving a lower bound for 87 log(y(8)); Assumption A.4
is assumed throughout. We say that U is strictly convex in a neighbourhood of infinity if
there exists R; > 0,C > 0 such that DU > C~'I on B(0, R, )°.

Proposition A.7.0ne has
liﬁminf-1-(—)—g-£%—(§-)-2 > —m. (A.2.3)

The above Proposition will be proved by showing that that there exists a polinomial
P such that, at least for § large enough,

varg(f) < P(8) exp[Bm]Qa(f, ), (A.2.4)

for all f € Hl(]Rd,uﬁ). In fact, it suffice to prove (A.2.4) for f € 'D(]Rd). Note that

zvaxa(f) = [(£() = 1) dusp(2)dnalv) (A.2.5)

We shall estimate the integral on the r.h.s. of (A.2.5) extended over D; = [B(0, R; +71)¢]?,
Dz = [B(O, Rl +7'2)]2, D3 = B(O, Rl +’I'1) X B(O, R]_ +7‘2)c UB(O, R1 +7‘2)c X B(O, R1 +‘I‘1), )
where 715 > 0 will be determined below. If(f) will denote the integral on the r.h.s. of
(A.2.5) extended to D, 7 = 1,2,3. We shall give sketchy proofs of the estimates concerning
I 5, referring to [16, 17] for the (lengthy) estimation of I3, whose result we shall quote
below.

Lemma A.8. There exists ry > 0 such that

I2(f) < CB7Qp(f, f) + B varg (). (A.2.6)

Proof. Choose r; > 0 large enough to be allowed to take a function & of class C'! with
0<k<1,|Vkl<C'and k=1 o0n B(0,R; +71)% k=0 on B(0,R;). Then f is of
class C! with support in B(0, R;)¢, and we can suppose without loss of generality that its
mean w.r.t. pg is zero. It is easy to realize that

(f) < / ((2) - 5 ()2 dug(=)dpp(y) = IP(xf).
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By an inequality due to Brascamp and Lieb, and by the convexity of U in a neighbourhood
of infinity, one has

15(sf) < @8)2C [ I9(s)Pds. (A.2.7)
Therefore the following inequality holds:

IP(ef) < Cp? (/ Ve dug +/lVf|2'€2d#ﬁ> < B Mvarp(f) + CB7 Qp(f, f)-
0

In the previous Lemma, the value of m does not appear. It will indeed appear only
in the estimation of Iz‘B which we sketch below, and which of course follows the same lines
of the proof of [12] for the case of compact manifolds.

Lemma A.9. There ezist positive constants K1, Ko such that

I (f) < K11 + Kof*)eP™ Qp(f, f)- (A.2.8)

Proof. Since we have taken R; > Ry, we can suppose that m is calculated restricting to
B(0, Ry +7;). We assume without loss of generality that |[VU| <1 on B(0, R, +71). There
is a covering of D, by Ng = k182 product of balls of radius 1/, k; independent of 3. Set

A(B, f) = sup{exp[-B(U(z) + U(y)]x

< | (f(2) - F(w))? dvdw 5 (2,3) € Ds}. (.2.9)
B(z,1/B8)xB(y,1/8)

Then Iz‘a(f) < ZgNﬁA(,B, f). Take, for each couple (z,y) and for all 3, a curve of class C*,
$ay 7p,z,y, Which joins z and y and whose elevation is smaller than or equal to m + U(z)+
U(y) + 1/B. We say that such a curve is “almost optimal” (a.o. in the sequel). Such a

curve can be chosen so that, letting '

1 1/2
L(B,z,y) = inf { (/ l"y(t)[zdt) : v € C! joining z and y,v a.o.} , (A.2.10)
0

and
L(IB) = sup {L(ﬂamay),(zay) € D2} ’ (A.2.11)
one has
| sup {175.,-4(8), £ € 10,1} < L(8) + . (A.2.12)

Let (¢,7) € [B(0,1/B)]?, and consider the curve joining z +¢ to y+7 defined by I'(¢,5,7) =
vg =z ,4(t)+(1—t)s+tn. Then the elevation of I is smaller than or equal to m~+U(z)+U (y)+2e¢
and, moreover, |I'| < L(e) + 1. Therefore

/ (f(v) = f(w))?dvdw =
B(=,1/B)xB(y,1/B)
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- / d“l’?/ IVF(T(t,6,m)PIT (R, s,n)[Pdt <
[B(0,1/8))? 0
< (L(B) + 1) exp [B(m + U(z) + U(y) + 1/8)] x

1
< [t [ IV F(0, 6,m) P exp [—BU(T(t, 5, m)] dedn.
0 (svm)<1/8
Finally a change of variables in the integral in the r.h.s. of the last inequality shows that
A, f) < 274257 (L(e) + 1) Qp(f, f)- (A.2.13)

The claim follows from the estimate L(8) < KB%*!, which follows as in [12] by construct-
ing a piecewise C'' curve « joining z and y and almost optimal, with the property that
(fy B2 < Kp.

O
The proof of the following Lemma can be found in [17, pg 11-15].
Lemma A.10. The following inequality holds:
Bley < .
Corollary A.11. If U is strictly convez in a neighbourhood of infinity, then
|
im 280D _ (A.2.15)

B—o0 ﬂ

We want to sketch the proof that Corollary A.11 still holds even in the case in which U is
not convex in a neighbourhood of infinity. The main technical argument is the following
one:

Lemma A.12. Under Assumption A.4, There ezists Ry > Ry and U € C*(R%, R) such
that U > U and U coincides with U in B(0, Ry), and such that DU > C~'I on B(0, R, )°.
Moreover, U can be chosen so that its corresponding mazimal elevation 1 equals m.
Proof (sketch). Let Vi(z) = Vi(|z|) = sup{U(z) : |z| < r}. Then V; is strictly convex and
satisfies Vi > U. Moreover, take V = V; + ¢ |z|?.

To construct the function U we shall need some more definitions; let K(s) = {z :
U(z) < s}, and choose s so that B(0,Ry) C K(s). Take also ¢ > 0 sufficiently small, so
that |V(z) — V(y)| < m/2 whenever |z — y| < € and z,y € K(s + ¢) (this will be used in
the part of the proof which we do not report).

Consider a function p € CZ(]Rd) given by o(z) = g(U(z)), where 5 : R — IR is
monotonically increasing, and choose § so that p = 0 on K(s), and p = 1 on K(s + €)°.
We are now ready to set U = (1 — )U + pV. It is then possible to see that, zo being an
absolute minimum and setting

my = sup {H(m,zo) ~U(z) : 2 € K(s) N K(s +2)}, (A.2.16)
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one has m = mVm;. Itisthena techmcal matter (cf. [16, pg. 17] to verify that m; < m/2,
so that m = m.

a

The following step is an application of the Feynman—Kac formula, which yields a pointwise
bound on the (normalized) eigenfunction u2(3) corresponding to the second eigenvalue of

—Lg (cf. [76, 35]).

Lemma A.13. With the above notation,

[12(8)(2)| < 125 exp [B(U(2) — ealzl)] (A2.17)

for suitable positive constants c;,c,.

This fact can be used very easily to prove that, denoting by varg the variance corresponding
to U, one has

varg(us(B)) > 431. (A.2.18)

Moreover it is also easy to prove that Zﬁ/Zﬁ > 1/2, and that H'(pug) C H'(fig), the

~ "

quantities with the overline « referring to U.

Theorem A.14.Under Assumption A4,

L 1087(8)) _

A.2.19
Jim 2E7 (A2.19)
Proof. We have to prove a lower bound of the form

limint 2876)) 5 (A.2.20)

B— oo B
If (A.2.20) fails, there exist v > 0 and a sequence 8, — oo such that 8. 'logv(B.) <

—(m + v). By the above computations for strictly convex potentials and the remarks
preceding the statement of this Theorem, we compute

Y(Bx)Qp(u5" ") > ﬂ" 7, Qon(5758%) 2 P(Bn) 7P, (ua(Ba),
for some polinomial P. Hence, since v(8,) < e #»(m+?) we have:

1— m —_ bl m-t+v
e PP (B) T < e,

which yields a contradiction in the limit as n — oo, since a careful look at the above proofs
shows that P can be chosen so that limg_,o, P(8) # 0.
O

92



References

[1] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Sci-

[2]
(3]

[4]

[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]

[19]

ence 220 : 621-680 (1983).

S. Geman, D. Geman, Stochastic relaxation, Gibbs distribution, and the Bayesian
restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. 6 : 721-741 (1984).
G. E. Hinton, T. J. Sejnowski, D. H. Ackley, Boltzmann machines: constraint sat-
isfaction machines that learn, Department of Computer Science Technical Report
CMU-CS-84-119, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

H. J. Kushner, Asymptotic global behaviour for stochastic approximations and dif-
fusions with slowly decreasing noise effects: global minimization via Monte Carlo,
Lefschetz Center for Dynamical Systems report 85-7, Div. Applied Mathematics,
Brown University, Providence, RI, 1985.

G. Parisi, Prolegomena to any further computer evaluation of the QCD mass spectrum,
in: Progress in Gauge Field Theory, Cargese, 1983.

R. A. Holley, D. W. Stroock, Simulated annealing via Sobolev inequalities, Commun.
Math. Phys. 115 : 553-569 (1988).

B. Gidas, Non-stationary Markov chains and convergence of the annealing algorithm,
J. Stat. Phys. 39 : 73-131 (1985).

B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 : 311-329
(1988).

B. Gidas, Global optimization via the Langevin equation, in: Proceedings of the 24th
conference on decision and control, 774-778 (1985).

C. R. Hwang, Laplace’s method revisited: weak convergence of probability measures,
Annals Prob. 8 : 1177-1182 (1980).

G. Royer, A remark on simulated annealing of diffusion process, SIAM J. Conirol
Optimization 27 : 737-753 (1987).

R. A. Holley, S. Kusuoka, D. W. Stroock, Asymptotics of the spectral gap with ap-
plication to the theory of simulated annealing, J. Funct. Anal. 83 : 333-347 (1989). -
T. S. Chiang, C. R. Hwang, S. J. Sheu, Diffusions for global optimization in IR™,
SIAM J. Control Optimization 25 : 737-753 (1987).

S. Geman, C. R. Hwang, Diffusions for global optimization, SIAM J. Control Opti-
mization 24 : 1031-1043 (1986).

C. R. Hwang, S. J. Sheu, Large time behaviours of perturbed diffusion Markov pro-
cesses with applications (II): the asymptotic behaviour of the second eigenvalue of
perturbed Fokker—Planck operators, preprint (1991).

S. Jacquot, Comportement asymptotique de le seconde valeur propre des processus
de Kolmogorov, J. Multiv. Anal. 40 : 335-347 (1991).

S. Jacquot, Résultats d’ergodicité sur ’espace de Wiener et application au recuit
simulé, Ph. D. Thesis, Université d’Orleans (1992).

B. Helffer, “Semi-Classical Analysis for the Schrédinger operator and Applications”,
Lectures Notes in Mathematics 1336 (Springer Verlag, Berlin, 1988).

B. Helffer, J. Sjostrand, Multiple wells in the semi-classical limit, I, Comm. in P.D.E.
9 : 337-408 (1984).

93



[20] B. Helffer, J. Sjostrand, Puits multiples en limit semi—classique, II, Ann. ILH.P.
(Physique Théorique) 42 : 127-212 (1985).

[21] B. Helffer, J. Sjostrand, Multiple wells in the semi—classical limit, III, Math. Nachir.
124 : 263-313 (1985).

[22] B. Helffer, J. Sjostrand, Puits multiples en limit semi-classique, IV, Commun. in
P.D.E. 10 : 245-340 (1985).

[23] B. Helffer, J. Sjostrand, Puits multiples en limit semi—classique, V, in: Current Topics
in Partial Differential Equations (Kinokuniya Company Lmt., Tokyo, 1985).

[24] B. Helffer, J. Sjostrand, Puits multiples en limit semi—classique, VI, Ann. ILH.P
(Physique Théorique) 46 : 353-372 (1987).

[25] B. Simon, Semi-classical analysis of low-lying eigenvalues, I; non—degenerate minima,
Ann. LH.P. 38 : 295-307 (1983).

[26] B. Simon, Semi—classical analysis of low-lying eigenvalues, II; tunneling, Ann. of
Math. 120 : 89-118 (1984).

[27] B. Simon, Instantons, double wells and large deviations, Bull. A.M.S. 7 : 323-326
(1982).

[28] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 : 1061-1083 (1976).

[29] L. Gross, C.LM.E. session on “Dirichlet forms”, Varenna, 1992.

[30] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrédinger
operators, J. Funct. Anal. 42 : 102-120 (1981).

[31] B. Zegarlinski, Log-Sobolev inequalities for infinite one—dimensional lattice system,
Commun. Math. Phys. 133 : 147-162 (1990).

[32] R. A. Holley, D. W. Stroock, Logarithmic Sobolev inequalities and stochastic Ising
models, J. Stat. Phys. 46 : 1159-1194 (1987).

[33] J. D. Deuschel, D. W. Stroock, “Large Deviations” (Academic Press, New York,
1989).

[34] S. R. S. Varadhan, “Large Deviations and Applications” CBMS-NSF, 1984).

[35] B. Simon, “Functional Integration and Quantum Physics” (Academic Press, New
York, 1979). ‘

[36] E. B. Davies, “Heat Kernels and Spectral Theory”, (Cambridge University Press,
Cambridge, 1989).

[37] J. L. Lions, E. Magenes, “Problémes aux Limites non Homogénes et Applications”,
vol. I-II (Dunod, Paris, 1968).

[38] P. Acquistapace, B. Terreni, A unified approach to abstract linear nonautonomous
parabolic equations Rend. Sem. Mat. Univ. Padova 78 : 47-107 (1987).

[39] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic
equations, Diff. Integral Eq. 1 : 433-457 (1988).

[40] L. Younes, Estimation and Annealing for Gibbsian Fields. Ann. Inst. H. Poincaré B
24 : 269-294 (1988).

[41] O. Bratteli, D. W. Robinson, “Operator algebras and quantum statistical mechanics,
vol. I-II (Springer—Verlag, Berlin, 1979).

[42] A. Kossakowski, A. Frigerio, V. Gorini, M. Verri, Quantum Detailed Balance and
KMS Condition. Commun. Math. Phys. 57 : 97-110 (1977); erratum, Commun.
Math. Phys. 60, 96 (1978).

94



[43] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, Properties of
quantum markovian master equations. Rep. Math. Phys. 13 : 149-173 (1978).

[44] A. Frigerio, Simulated Annealing and Quantum Detailed Balance. J. Stat. Phys. 58:
325-354 (1990).

[45] A. Verbeure, Detailed Balance and Critical Slowing Down. In: L. Accardi, W. von
Waldenfels (eds.) Quantum Probability and Applications III. Proceedings, Oberwol-
fach 1987 (Lect. Notes Math., vol. 1303, pp. 354-362, Springer, 1988).

[46] A. Frigerio, G, Grillo, Time—dependent Schrddinger operators and simulated anneal-
ing, in: “Semigroup Theory and Evolution Equations, P. Clément, E. Mitidieri, B. de
Pagter, Lecture Notes in Pure and Applied Mathematics Marcel Dekker, New York,
pp. 165-179 (1991).

[47] G. Grillo, Logarithmic Sobolev inequalities and Langevin algorithms in IR™, preprint
(Sissa, Trieste, 1991).

[48] G. Grillo, Long—time behaviour of Langevin algorithms with time-dependent energy
function, preprint (Universita di Udine, 1992).

[49] A. Frigerio, G. Grillo, Simulated annealing with time—dependent energy function, to
appear in Mathematische Zeitschrift.

[50] A. Frigerio, G. Grillo, Asymptotic behaviour of time-inhomogeneous evolutions on
von Neumann algebras, preprint (Universita di Milano, 1992).

[61] P. Baldi, “Equazioni differenziali stocastiche”, Quad. Un. Mat. It. 28 (Pitagora
1984).

[52] A. Friedman, “Stochastic Differential Equations and Applications”, vol.I (Academic
Press 1975).

[53] R. Has’minskii, “Stochastic Stability of Differential Equations” (Sijthoff and Noord-
hoff, Alphen aan den Rijn, the Netherlands, 1980).

[54] H. Bateman, “Higher Transcendental Functions”, vol. II (McGraw-Hill, 1953).

[65] S. Albeverio, J. Brasche, M. Réckner, Dirichlet forms and generalized Schrédinger op-
erators, SFB 237-preprint n.49, Institut fiir Mathematik, Ruhr-Universitat~-Bochum,
1989.

[66] M. Reed, B. Simon, “Methods of Modern Mathematical Physics, II. Fourier Analysis,
Self-Adjointness (Academic Press, New York, 1975).

[67] T. Kato, Remarks on holomorphic families of Schrédinger and Dirac operators, in
“Differential Equations”, I. Knowles, R. Lewis (eds.), North Holland, Amsterdam:
341-352 (1984).

[58] Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrodinger equations
with potential of class (V)y, Comm. in P.D.E. 13 : 1499-1519 (1988); erratum,
Comm. in P.D.E. 14 833-834 (1989).

[69] S. R. S. Varadhan, “Lectures on Diffusion Problems and Partial Differential Equa-
tions” (Springer-Verlag, Berlin, 1980).

[60] D. W. Stroock, S. R. S. Varadhan, “Multidimensional Diffusion Processes” (Springer-
Verlag, Berlin, 1979).

[61] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, “Schrodinger Operators” (Springer
Verlag, Berlin, 1987).

[62] B. Simon, Schrodinger semigroups, Bull. Am. Math. Soc. 7 : 447-526 (1982).

95




[63] S. Albeverio, R. Hgegh—-Krohn, Frobenius theory for positive maps on von Neumann
algebras, Commun. Math. Phys. 64 : 83-94 (1978).

[64] S. Watanabe, Ergodic theorems for W*~dynamical semigroups, Hokkaido Math. J. 8:
176-190 (1979).

[65] Y. Watanani, M. Enomoto, A Perron-Frobenius type theorem for positive linear maps
on C*-algebras, Math. Japan 24 : 53-63 (1979).

[66] A. Frigerio, Stationary states of quantum dynamical semigroups, Commun. Math.
Phys. 63 : 269-276 (1987). ‘

[67] A. Frigerio, M. Verri, Long-time asymptotic properties of dynamical semigroups on
W*-algebras, Math. Z. 180 : 275-286 (1982).

[68] D. W. Robinson, Strongly positive semigroups and faithful invariant states, Commun.
Math. Phys. 85 : 129-142 (1982).

[69] H. Spohn, An algebraic condition for the approach to equilibrium of an open N-level
system, Lett. Math. Phys. 2 : 33-38 (1977).

[70] S. Stratila, L. Zsido, “Lectures on von Neumann algebras” (Academie Bucuresti,
1979).

[71] H. Araki, Relative hamiltonian for faithful normal states of a von Neumann algebra,
Publ. Res. Inst. Math. Sci. 9 : 165-209 (1973).

[72] M. J. Donald, Relative hamiltonians which are not bounded from above, J. Funct.
Anal. 91 : 143-173 (1990).

[73] M. J.Donald, Continuity and relative hamiltonians, Commun. Math. Phys. 136 :
625-632 (1991).

[74] H. Kosaki, Lebesgue decomposition of states on a von Neumann algebra, Amer. J.
Math. 107 : 697-735 (1985).

[75] Y. Amit, M. Piccioni, A nonhomogeneous Markov process for the estimation of Gaus-
sian random fields with nonlinear observation, Annals Prob. 19 : 1664-1678 (1991).

[76] M. Reed, B. Simon, “Methods of Modern Mathematical Physics, IV. Analysis of
Operators” (Academic Press, 1978).

96



