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Introduction

In the study of minimization problems within the framework of the Calculus of Vari-
ations, the lower semicontinuity property, or a weak version, plays a prominent role. The
so-called Direct Method is the most classical way to obtain the existence of minima for
functionals that are lower semicontinuous and coercive with respect to a suitable topology.
In many problems deriving from applications, the coerciveness property is already guar-
anteed. However, the lower semicontinuity is not an acceptable hypothesis as it is showed
in [Er, Gur-T]. Precisely, the main point to be discussed throughout this thesis is the lack
of lower semicontinuity or convexity in the so-called scalar problems. Recently, these kind
of functionals are being active areas of investigations.

In Chapter 1 we give some notations and recall some preliminary facts in Convex
Analysis and we describe the well known Direct Method in the Calculus of Variations.
The Relaxation Method is also introduced as well as the classical Liapunov theorem used
in Chapter 2. In this chapter, we deal with non-convex integrals on a symmetric domain
of R™ involving the Laplacian. We present several classes of integrals for which the mini-
mization problem admits at least one radially symmetric solution in W:? or W32 N WP,
In contrast with previous papers in this direction [A-T1, A-T2, A-T3, R3, R4, T1], these
integrands give rise to functionals that are l.s.c. only along some special minimizing se-
quences converging to a mimimun and non-differentiable ([C-F, F1, F2, F3]). Problems
with obstacle are also discussed. Chapter 3 is devoted to the study of the asymptotic
behaviour of the minimizing sequences for general integrals depending of an elliptic differ-
ential operator of order 2k defined in a closed affine subspace of W2*? N Wok P containing
T/VU2 kP The asymptotic behaviour of the minimizing sequences is studied with respect to
weak convergence. The relevance of this kind of convergence ([Tar]) relies on the fact that
in many physical applications, only averages of physical quantities are actually measured.
The results ([F5]) established here improve and generalize those by Ekeland-teman [E-T,
Thm.3.1 and Thm.4.1 in Chapter IX]. Some consequences of the lack of lower semiconti-
nuity in the abstract setting and the lack of convexity for integrals of the gradient or of
the Laplacian are discussed in Chapter 4 ([F4]). For a given non-lower l.s.c. function we
show the existence of non-negative continuous functions (perturbed of the first), in such a

way that the perturbed function does not attain its minimum. Afterwards, we deal with

1




the simplest integrals involving either the gradient or the Laplacian. For both cases, we
are able to construct continuous perturbations of integral-type whose integrand involves
the state function and possibly the space variable (compare with Theorem 5.1 of [B-Mul).
Finally, in Chapter 5 we present some applications of Liapunov’s theorem revisited re-
cently established in [Br]. Given a multifunction F': R" — 2R™ we consider the so-called
marginal distributions, obtained by integrating F' along a family of parallel lines. We prove
analogous results as in the case of Aumann’s integral [Au]: the closure and convexity of
these marginal distributions as elements of L*(R"™!,R™). A Bang-Bang theorem for the
controlled wave equation and a non-convex optimization problem for the wave equation
are presented. In contrast with papers concerning the latter point [Pul, Sur2, Sur3|, we

allow constrains to be placed on the entire boundary of the domain ([Br-F]).

Trieste, Summer 1992 Fabian Flores-Bazan.



CHAPTER 1

Some Preliminary Facts

Throughout this thesis, m,n € N, n > 2, p € R p > 1. For any bounded and open
set  C R"™; W™P(§1) denotes the usual Sobolev space. If p = 2 we set H™(2) = W™2Q,
In addition, we consider W;"*(Q) the closure of CJ*(Q) in W™?(Q). For their properties
as for the definition of fractional order Sobolev spaces W*?(Q) s > 0, we refer to [Ad]. In
particular, we recall just a proposition that will be used implicitly in the formulation of

the minimization problems dealt in next chapter.

Proposition 1.1. ([Ad, Thm. 7.53]) If Q has a bounded smooth boundary, the operator
T': W2P(Q) — W25 2(80Q) x W'~ #?(89) defined as follows

D) = {u |00 oo [0 )

. . . .. 2 .
is linear, continuous and surjective. Moreover, W;*(Q) = Kerl, i.e.

W(?,P(Q) — {u = WZ:P(Q) U= —g—z— =0 on aﬂ}

1.1. Some Facts in Convex Analysis.

We now collect some basic definitions and preliminary results in Convex Analysis.
Definitions. Let f be a function from R" into | — oo, 400] such that f(zy) < +oo at
some .

(1) The function f* : R™ —] — 00, +00] defined by

f"(z*) = sup { (z,z") — f(x) }

z€R™
({-,*) denotes the usual scalar product in R"), is called the conjugate, or polar function of
f. It is a lower semicontinuous (l.s.c.) convex function.

(ii) The function f**:R™ —] — 00, +oco] defined by
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@) = sup { (@,2%) — F(=") |

z* cR™
is called the biconjugate, or bipolar function of f. Notice that **(z) < f(z).
A relationship between f and f** is given by

Proposition 1.2. ([Bré, Prop.1.8], [E-T, Prop.1.4.1; Coroll. 1.2.3])
(a) A function f is Ls.c. and convez if and only if f = f*".
(b) f** is the largest convez l.s.c. function not larger than f.

(c) Assume f be convez, then f is continuous in the interior of domf(the set where f is

finite).

We say that the function f has as an ezact minorant at z € R"” the affine function !
if I(y) < f(y) Vyand I(z) = f(z). Thus f(z) < +oo and l(y) = (z*,y — =) + f(z)-
The function f is said to be subdifferentiable at the point = € R™ provided there exists an
affine function which is an exact minorant of f at z. The slope z* of such affine function
is said to be a subgradient of f at z, and the set of all subgradients at z is denoted by
0f(z). The set valued map 0f : R" — 9R” is called the subdifferential of f and f is
subdifferentiable at z provided 8f(z) # 0. Clearly, z* € 9f(z) if and only if f(z) is finite
and the subgradient inequality

fy) = f(z) 2 (z",y — =) Vye R,

holds.

Proposition 1.3. ([E-T, Prop.1.5.2])
Let f be a convez function of R™ into | — o0, +o00]. Then 0f(y) # 0 Vy € Int(domf).

Let © be an open subset of R™ provided with the Lebesgue measure and denote by £
the o-algebra of (Lebesgue) measurable subsets of {2 and, by B (R™) the Borel o-algebra
of R™. We denote by £ ® B(R™) the product o-algebra on {2 x R™ generated by all the
sets of the form A x B with A € £ and B € B(R™).

We recall that a function f : @ x R™ —] — 0o, +00] is called £ ® B(R™)-measurable or
simply measurable if the inverse image under f of every closed subset of | — oo, +0o0] is

measurable, in other words, f~*(C) € L ® B(R™) for every closed subset of | — oo, +0o0].
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Let & — h**(z,&) be the bipolar of the function & — h(z,{). We have the following

Proposition 1.4. ([E-T, Lemma IX.3.3; Prop. IX.3.1])
(a) Let h : @ x R™ —] — 00, +00] be such that:
(h1) h is L @ B(R™)-measurable;
(h2) & h(z,€) is lower semicontinuous for almost all z in Q;

(hs) there ezists a positive constant o such that
h(z,&) > alé|? — B(z), where the function B is in L'(Q).

Then
m-+1 m-1 m-+1

h**(:l:,f) = min{ Z }‘ih(m’éi) : f: Z }‘iéi; A >0 Z A = 1}.

(b) Let z be measurable. Then there exist m + 1 measurable p; : @ — [0,1] and m + 1

measurable v; : ! — R, such that:

m-1 m-+1 m-+1

Y pie) =1 #(2) = Y ml@loile); h7(e,2(2) = 3 pile)h(z, (o).

1.2. The Direct Method

In the sequel X denotes a topological space. For any function F' from X into | —

00, +00],

epiF:{(m,t)EXxR: F(a:)gt}

is the epigraph of F' and

domF::{wEX: F(:v)<+oo}

is the effective domain of F.

Definitions. A function F : X —| — 0o, +00] is said to be:

(i) lower semicontinuous (l.s.c.) on X if

F(z) <liminf F(y) for every z € X.
y—z
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(ii) sequential l.s.c. (s.l.s.c.) on X if

F(z) < ]i}m inf F(z) for every z and for every sequence (z3) converging to z.
—+ oo

(iif) coercive (resp. sequentially coercive) on X if Vi € R the set {z: F(z) <1t}is compact

(resp. seq. compact).
We now state the so-called Direct Method in the Calculus of Variations.

Theorem 1.5. (for instance [DM, Thm.1.15]) Let X be a topological space, F' : X —
] — 00,+00] be a function such that

(i) F is Ls.c. (resp. s.l.s.c.) on X and

(i1) coercive (resp. seq. coercive).

Then F attains its infimum.

To prove the sequential version of this theorem one may proceed as follows: we start by
taking any minimizing sequence. The seq. coercivity implies that such sequence admits a
convergent subsequence, thus F' being s.l.s.c. we have that the limit is actually a minimum
for F'.

In concrete problems, X is usually a Banach space and the topology to be considered
is the weak one. In this context, the classical approach to the problem of minimizing F
over X consists in assuming X to be reflexive and (i1') below instead of (ii). Then, the
sequential version of Theorem 1.5 is used.
(#') There are constants c;,cz with ¢; > 0 such that F(z) > c1H:c||X +ec Vz e X.
In this situation (#') implies that every minimizing sequence is bounded in X, the reflex-
ivity of X asserts that any bounded sequence has a weakly convergent subsequence, and
from the (weakly) s.l.s.c. of F, one concludes that the weak limit is, in fact, a minimum

for F. This is summarized in the following Theorem:

Theorem 1.6. ([E-T, Prop. 11.1.2]) Let X be a reflezive Banach space, F': X —]—00, 40|

be a sequentially weakly Ls.c. function satisfying (ii'). Then F attains its imfimum.

For weak ls.c. functionals F' of integral type depending of the gradient, the following

characterization has been given.



Theorem 1.7. ([M-Sb, Thm.2.4; Da3, Thm. II.3.1 & Thm. 3.4]) Let Q be a bounded
open set in R"™, p € [1,+00], up € WHP(Q). Let f : @ x R x R™ — R be a function
satisfying:
(2) 0 < f(=z,u,€&) < g(z, |u|, |€|) with g increasing with respect to |u| and |€|, and locally
integrable in z;
(12) f(-,u,§) s L-measurable for every u € R, £ € R";
(z32) for almost every z € Q, f(z,-,-) is continuous.

Then the functional

F(u):/gf(m,u(m),Vu(m))dm

is WhP-weakly (weakly*, if p = +oo) lower semicontinuous if and only if f(z,u,-) is

convez.

1.3. Relaxation

We return now to the general case where F' no longer is l.s.c.. Thus we no longer
have Theorem 1.5 at our disposal. It is natural to introduce the function sc™ F: the
Ls.c. envelope (or relaxed function) of F', which is the greatest l.s.c. function majorized
by F (see [Bu2, DM]). The relationships between the minimum problem min,ex F(z)
and the relaxed problem mingcx sc™F(z) is given by Theorem 1.8 below. In particular
this theorem describes the behaviour of the minimizing sequences for F' in terms of the

minimum points for sc™ F.

Theorem 1.8. ([DM, Thms. 3.5 & 3.8; Bu2, Prop. 1.3.1]) Let F : X —] — 00, +00] be a
giwen function. Then the following properties hold:
(a) for everyz € X,

sc” F(z) = Hgfﬁﬂf F(y) = min { ]irjneiJnf F(z;): (z;) is a net converging to z };

(b) if F is coercive then sc™ F is coercive and l.s.c.. Thus attains its infimum by Theorem
1.5.;

(c) the epigraph of sc™ F is the closure in X x R of the epigraph of F';

(d) mingey sc™ F(z) = inf ex F(z); '




(e) every cluster point of a minimizing sequence for F' is a minimum point for sc” F;
(f) if X satisfies the first aziom of countability, then every minimum point for sc™ F' is

the limit of a minimizing sequence for F in X.

Remark 1.9. If z is a minimum point for sc™ F such that sc™ F(z) = F(z), then (c) of

the previous theorem implies that z is also a minimum point for F. -

Definition. By the sequential version of a topology T on a space X, we mean the topology
on X whose closed sets are the sequentially closed sets of X for the topology 7. This seq.

version of a topology T will be denoted by Tseq.

The following proposition shows that the seq. lower semicontinuity is a topological concept.

Proposition 1.10. ([Bu2, Prop. 1.15])
(@) Tacq i the strongest topology on X for which the converging sequences so does (in T);
(b) F is seq.ls.c. if and only if F' is Ls.c. in Tyeq;

(¢) Tseq = T for every space X satisfying the first aziom of countability.

We denote by sc,,F' the relaxed function of F' when the original topology is substituted

by its sequential version.

Proposition 1.11. ([Bu2, Prop. 1.3.5})

Let F : X —] — co,+00] be a function. Assume that
(i) every compact subset of X is metrizable;

(i) F is coercive.

Then
sc”F(z) = sc,,, F(z) =inf {]i}fninf F(zp): (zh) converges to = }

Remark 1.12. (See [Du-Sch, page 434]) Hypothesis (i) of the previous proposition verifies
either if X is a separable Banach and the topology to be considered is the weak one on X,

or X = V' with V a separable Banach space and X is equipped with the weak™ topology.

As we mentioned before, concrete variational problems regards functions of integral

type defined on Sobolev spaces. Thus, in order to apply the previous results we need to
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know the explicit form of the relaxed function, in particular, whether it is of integral type
too. The latter gives rise to the problem of integral representation that can be studied in

a more general setting (see for instance [DM, Bu2]).

In Chapter 3 we shall present some relaxation theorems for integrals depending of an elliptic
differential operator of order 2k (for instance the Laplacian) defined on WZ25P(Q). The
proof involves a technique widely used in the Theory of I'-convergence. Indeed, relaxation

may be considered as a particular case of I'-convergence.

1.4. The Classical Liapunov Theorem

We start by recalling the classical version of the famous Liapunov’s theorem exten-

sively used in non-convex optimization problems.

Proposition 1.15.
Let Q be a measurable subset of R™ (not necessarily with finite Lebesgue measure), let
f1, ..., fr be measurable functions from Q to R™ and let p1,...,pr be measurable functions

from Q to [0,1] such that:

k k
Zpi(m) =1 ae. on Q and for 7=1,....,m Zpl[ffl is in LYQ), fi=(fl - ).

i=1 =1

Then, there ezists a measurable partition of €1, (Qi)i’ 1=1,...,k such that

Lgpi(m)fi(m)dm = gfn fi(e)dz.

Moreover, for alli =1,...,k, the function f; is in L*(Q;, R™).

Remark 1.16. Actually the classical version assumes the integrability of the functions
f; and meas(f)) < +co. In this case we refer to [Ce, Thm.16.1.V]. The author in [R2,
Prop.4.1] (see also [Mal]), observed that it suffices to require the function Zle p,lfl]|
be in L!(f) instead of each f; be in L'. This weaker assumption is suggested in [C-
C], and is verified in all the situations presented in optimization as a consequence of the

growth condition usually imposed on the cost function. In fact, we actually know that
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Ef___l pifi € [L}()]™ and from the growth condition one gets > §7 for some & in
L'(£)). Both assertions imply that Zle pilfl] is in L*(Q). In case meas(Q) = oo,
the result follows from the fact that R® = U, K; for some measurable partition (Kj),,
with K; having finite Lebesgue measure. So that, @ = U, (K; N ), where K; N has
finite Lebesgue measure, and one can repeat the argument used in [R2, Prop. 4.1]. The
latter allows us to formulate the Liapunov theorem (in the form as above) in a measure
space with a o-finite measure, or possible in a measure space, where the measure (Borel)

is regular and the space is o-compact. Of course, such a space must fulfill the another

standard requirements.

The relevance of previous proposition in non-convex minimization problems was pointed
out for the first time by L.W.Neustadt [Ne]. He dealt with the so-called Bang-Bang prin-
ciple in Optimal Control. This method then, was adapted for solving several problems in
Optimal Control, mainly by Cesari [Ce]. Recently, Cellina-Colombo [C-C] applied such
a theorem to the classical problem in the Calculus of Variations, giving, as a suflicient
condition to get existence of minima, the concavity of the functional with respect to the
state function, condition already formulated in [R1] in a very different setting. Further

developments of this method can be found in [Mal, Ma2, R2, R3, R4].
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CHAPTER 2

Integral Functionals of the Laplacian

This Chapter is devoted to the problem of the existence of solutions to

min/ g(]m[,u(m)dw—l—/ h(|z|, Au(z) — Au(z))dz
Q Q
u€ X,

(P)

where X is either VVU2 P or W2P N T/Vol P and Q is the unit ball or an annulus in R™. The
function h(|z|,-) being non convex, it is natural to consider the problem (P**),i.e. problem
(P) with h** instead of h. The classical approach ([A-T2, A-T3, Ra, R3, R4, T1]) to get
the existence of solutions is by imposing conditions such that every solution to problem
(P**)is, in fact, a solution to problem (P). In this situation one deals with functionals that
are weakly lower semicontinuous (w.l.s.c.) along every minimizing sequence. Thus, one
excludes problems (P), where the corresponding functional is w.ls.c. only along special
minimizing sequences. In particular, the method proposed in any of the papers mentioned
above, cannnot be applied, for instance, if n = 2, A = 0, h(r,s) = (1 — s?)? and g = 0. Of
course, the corresponding problem (P) admits solution in X, p = 4. Indeed, the function

u1 defined by

1 2 1
uy(z) =
< le| <1,

in case {) is the unit ball, or that defined by

2
EL rogleh -3, i 1<l <a,
2 2
ui(z) = %(..1?’21_+(za2_1)10g|m|+2“2 Ly alog(a), if a<le|<b,
1 |z|? 9 9 .
il 0 bl B, - = — < <
| 55~ —9leg el = 5) +51og(3), if b<lz[ <3,
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for some suitable constants a, b such that b —a? = 4 in case ( is the annulus {z : 1 < [z| <
3 }, satisfies the boundary conditions: u; = 0 and %y;‘ = 0 on O, and has a Laplacian
taking values either +1 or —1, i.e. u; is a solution to the original problem. However,
the convexified problem, where h**(r,s) = (1 — s?)4 has, among others, the solution u,
identically zero, i.e., in this simple case, there are solutions to the convexified problem
that are not solutions to the original problem. Another drawback présented in the papers
mentioned above is that some regularity conditions on g and & had to be imposed, since
the Euler-Lagrange equation associated to (P) is extensively used. So that, the simple
case: h(r,s) = (1—|s|)? cannot be dealt with. Our results, to be stated presently, apply to

functionals that are w.l.s.c. only along special minimizing sequences and not differentiable.

2.1. Notations and Auxiliary Results

Throughout this Chapter, n is an integer 2 < n, p is a real number such that 1 < p.
For any open bounded set £ C R" with smooth boundary and for fixed A > 0 we equip
the space W22(Q2) N W, ?(Q) with the norm ||Au — Au”LP(Q) (or shortly ||Au — Aullp)

which is equivalent to the usual one: ||ul| or shortly ||u||2 p). On the other hand,

W2 (Q) (
W2P(R") is equipped with the norm ||Au — Aul|

(see Proposition 2.1 below), here A > 0 is fixed.

Lo (RAY’ again equivalent to the usual one

As we shall see, in case ) = R"™, we need to solve equations of the form:

Aw —dw = f

2 n (*)
w € W5P(R"),

with f € LP(R™), 0 < X < +oo, 1 <p < +oo. Obviously, if p = 2 it suffices to apply the

Lax-Milgram theorem in H?(R") to the corresponding bilinear form to get the existence

and uniqueness. The regularity can also be easily obtained (see the proof of Thm. IX.25

of [Bré]).

What follows will be devoted to solve problem (%), in particular for A = 1.

The Bessel kernel (see [S], [Z]); ga, @ > 0 is defined as the function whose Fourier transform

o is

Galy) = (2m) T (1 + yl*) 5.
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where fmeans the Fourier transform of the function f defined by

fw) =@n3 [ et

This definition can be extended to the space of Tempered distributions: S’'(R™), being
a continuous, linear, one-to-one mapping of S'(R™) onto §'(R"). For an analysis of the
Fourier transform we refer to the books of Rudin [Ru], Stein-Weiss [S-W].

L¥P(R"), @ > 0,1 < p < oo denotes the space of those functions u such that u = g, * f,
(the convolution of g, and f) for some f in LP(R"). We have the following

Proposition 2.1. ([Z, Thm. 2.6.1], [S, Thm. V.3])
If k is a positive integer and 1 < p < oo, then

LEP(RM) = WHP(R™).

Moreover, if u € LEP(R™) with u = gj, = f, then

CHIFllp < Mullkp < ClIfll
where C = C(k,p,n).

As a consequence we have

Proposition 2.2. Given f in LP(R™), 1 < p < oo, the problem

Au—u=f, uecW»(R")

has a solution uniquely determined.

Proof. Define u = —f). Then u € W??(R™), basic properties of the Fourier transform

2% (=
yields (g2 *(— f)) g2(—f)in §'(R™), so that the following equality makes sense in S’'(R")

1
u S'(R"
‘s 1+|y|2f i SED,

the right-hand side makes sense, because 1+l iz is in C>(R™) and it goes to zero as |y|
goes to +oo. Therefore, the multiplication of this function by an element in &’ (R™) is
still in S’(R™). On the other hand, the multiplication of a Tempered distribution by a

polynomial is still a Tempered distribution. Consequently,
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(1+yP)a=-F in S'(R").
But, &L(y) = —|y|?u(y) in S'(R™). Therefore, (Au — uj\z Au—u=F in S'(R").
Hence
Au—u=f in S'(R"),

but, since v € W2P(R"), f € LP(R"), we conclude

Au—u=f ae R".
A similar reasoning proves the uniqueness. B
SO(n) denotes the Rotation Group in R™ which has as elements the orthogonal matrices

A € M(n) such that det(A) = 1: it is a compact and connected topological group [DNF].
Therefore, given u € W??(Q), the integral

f  u(Aa)du(A)

SO(n)

is well defined, where p is a left (or right) Haar measure on SO(n) with u(SO(n)) =1

[Co]. By the definition of SO(n), we have that its elements preserve the inner product, i.e.
(Az, Ay) = (z,y) VA€ SO(n).

Hence |Az| = |z|. Furthermore, for fixed z € R", it is not difficult to show that:
{4z e R AESO(n)}z{yER": lyl = la| }.

Henceforth B = {z € R": |z| <1} and for fixed 4 >a >0, Q) ={z e R": a<|z|<
b } with boundary B and 89% = I'; U T, respectively, where I', = {z € R" : |z[ =0}
and Ty is defined similarly.

We have the following

Proposition 2.3. Here ) denotes either B or Q°. Let u € W>P(Q) N Wy P(Q) such that
%%zO on 0Q. Define @ :Q — R by
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Then

(a) 4 is a radially symmetric function;
(b) @ € W22(Q) N W, 2(R);

(c) 5 @ = 0 on 0%Q;

(d) Au fso( ) Au(Az)du(A4).

Proof. Clearly 4 is radially symmetric. We only prove when 2 = B, the other case being
entirely similar. Assume first w € C3({)), then % does so. Since |Az| = |z| we have that

vanishes on 0f) since u does so. We use Tonelli-Fubini’s theorem (see [Co]) to prove that

2eWrP(Q). Let Ae M(n), 4 =(a;),|z|=1

ou 6u
)= (vala) 2 = > Z o 2 - (Az)ass T du( )

i= 1

_ S, &
/sc,(n>zag, (4) = /; O(n)(V (8), !m[)dp,(A)

where { = Az and & = 07, ajjz;. Since [¢] = [z]: claim (c) is proved, and (d) is a

consequence of the definition of SO(n). For general u, proceed by approximation.

Remark 2.4. In case {) = R" we obtain exactly the same conclusion without the usual

boundary conditions.

Next we establish a Liapunov’s type theorem (see also [A-C]). We recall that A** is the
bipolar of the function A, i.e. h** is the largest convex function not larger than h (see

[E-TY).

Lemma 2.5. Set I = [0,1] and let p be a non-atomic positive Radon measure on I. Let
z be a measurable function and let h be a function such that t — h**(z(t)) is in L'(]0,1]).
Assume {€£ € R : h**(£) < h(£)} = Uslai, b;[, where such intervals are supposed to be
disjoint, —oco < a; < b; < +oo, where i runs over an at most numerable set. Let ]a,b|
be such an interval and put E = {t € I : a < z(t) < b}. Then there ezists a rieasurable

function w taking values in {a,b} such that
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@ [ w(vdu= [ #0xgOin ©) [ Hwtedn = [ e e,
and for allt €1

1
0

© [ wlapey(s)in < JEGern

Proof. By the definition of E and h**, there exist measurable functions p; : I —[0,1],
i = 1,2 satisfying: p1(t) + p2(t) = 1, and such that

2(t) = p1(t)a + p2(t)b, B (2(1)) = pr(t)h(a) + p2(t)h(b), t € E.

Define ¥(7) = for aXE(t)d/,L + frl bXE(t)d,u - fol z(t)XE(t)dy,. Clearly 1 is continuous
from [0,1] into R, and %(0) > 0, %(1) < 0. Therefore, there exists § € I such that
¥(8) = 0. We now consider the function w(t) = a'XEm[o,é[(t) + bXEn[&,l] (1), it is measurable
and from the definition of 8, (a) follows. On the other hand, one can write for t € E;
h**(2(t)) = c(z(i)—a)+h(a) for some constant ¢, and since w(t) € {a,b} and h(a) = h**(a),

h(b) = h**(b), we have

J e e = [ etetty = ayin+ [ wada = [ cw(®) ~ayin+ [ mayn
= [ hwtedn = [ Bl g0
and so (b) holds. Fix tin I;if ¢ <&

[ ) = e (o) = [ (@ = epgerin <0,

if t > 6 then

1

[ o) = tomp(erin = [ woxgorin - [ engterin + [ oo
= [ el =gl <0

where we have used (a) and thus the proof is complete. H
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Lemma 2.6. In addition to the hypotheses of Lemma 2.5, assume that the function h
satisfies the following growth condition: h(§) > v|€|? — B, for some constants v,8, v > 0
and 1 < p < 4+oo. Then if the function z is in LP(]0,1[), there ezists a function w in
L?(]0,1]) taking values in {a,b} such that

@ [wide= [ =0 ) [ rw)d= [ a0,

and for allt € I
t t
dp < z(s)dp.
© [ wn < [ (o)

Proof. Setting E; = {t € I : a; < z(t) < b;}, we apply Lemma 2.5 to obtain w; a
measurable function taking values either a; or b;, such that for every 2
0) [ witidu= [ =pe, Odes @) [ hwd)de = [ B G0, Od,
E; I ! E; I !
and forall t € I

) [ wilohng, (< [ slohx,, ()

Put Ey = I\ U;E; and define w : I — R by

wlt) = =(2)x, () + 2 it

We claim that w satisfies the requirements of the lemma. First of all, we show that w is

in L7(]0,1[);

w(®)[P = |2(2)Px t>+§;|w, (6)Px 5, (1)-

On one hand, since the integral J; B**(2(t))dp is finite, by standard arguments, one can
prove by using (ii) and the growth condition on h, that, the integral f; 3, XE_h(wi(t))dH

is finite. On the other, again, by taking into account the growth condition, we obtain

> b0, (1) < = [Zhwz g, () + D Bx, (1)

17



and thus the first part of our lemma is proved. In particular w is in L*(]0,1[).

[t [ ()t / 3wt () = [ ROUEDY [wiene, e
= [ A0d 3 fI (b, (e = [ =)

so that (i) is verified. We have also

[ etonan = [ et e+ ) [ e, e
= [ et (@ + ) /; (), (Ddn = [ Bw()dn,

which proves (ii). Now, for any fixed ¢ in I we have

‘/Ut w(s)dp = ‘/Ot z(S)XEO(S)dM + 21: /Ot wi(S)in(s)dp
< /: Z(S)XEO(S)dM + Z /Ot z(s)XE,»(S)d“ = /Ot 2(s)dp.

This completes the proof of Lemma 2.6. H

Remark 2.7. If we change “a” by “b” in the definiton of functions ¢ and w in Lemma

2.5, we obtain the same conclusion up to changing the sense of the inequality in (c).

We now recall the definition of the so-called spherical symmetric rearrangement, which
will be used in the proof of the next Theorem. For any f € L” (), the spherical symmetric
rearrangement of f, denoted by f*, is the positive, radial, decreasing function, having the

same distribution function than |f|, i.e.

measure{w e |f(z) >t } = measure{:c € Q: ff(z)>t }, Vt>0

where w,, denotes the volume of the unit ball in R". For an exhaustive statement of the
properties of rearrangements we refer to [K] and to the appendix of [Ta]. We just recall

the well-known Cavalieri principle.
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Proposition 2.8. For every continuous function f : Ry — R and every functionv: B —

R, we have

[ f@Nie = [ o7 (@)as.

2.2. Functionals with Linear Dependence on the State Variable

In this Section, our main concerns is the existence of solutions to problems of the

form:

min/ c(|z])u(z)dz —I-/ h(|z|, Au(z) — Au(z))dz
Q Q

uw e W2P(Q) N WP (Q) (P)
@f =0 on 01,
n

when {) is either a ball or an annulus in R™ and A is a non negative number or () is the
whole space R™ and ) is positive, and we seek radially symmetric solutions.

There are many papers (e.g. [A-T2, A-T3, Ra, R3, R4, T1]) devoted to the existence of
solutions to problem (P) that avoid the convexity assumption on the function h, but most
of them seek the minimum in the space W2? N Wg'p. In this case, for instance if ¢ = 0,

the problem reduces to solving the following Dirichlet problem

Au — du = o(z)

(DF)
u=0 on 01,

where o is any LP-selection from the map =z — argmin{h(z,-)}. Then the function u
solution to (DP) will be a solution to the given minimization problem. Hence, in general,
this problem admits several solutions, obtained simply as solutions to Dirichlet problems.
However, this procedure cannot be used for the same minimization problem under the
additional condition g—;‘—L =0 on 0N, since the corresponding Dirichlet-Neumann problem,
in general, does not admit any solution, so that even for this case a more complex approach
is needed. On the other hand, existence results for our problem have been given in [A-

T2, Ra, R4], but they actually proved the existence of solutions by imposing conditions
such that every solution to problem (P**), i.e. problem (P) where h is replaced by h**
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is, in fact a solution to problem (P). The method of the proof goes by showing that,
along any solution to (P**), the functions k and h** have to coincide almost everywhere,
otherwise the Euler-Lagrange equation would be violated. Aubert-Tahraoui in [A-T2]
used a method based on the Duality theory as presented in [E-T], by generalizing their
carlier idea in dimension one [A-T1], whereas Raymond [R4] and Rabier [Ra] gave a direct
proof derived from the Euler-Lagrange equation. Moreover, in all of these papers some
regularity conditions on h had to be imposed. The method proposed in the papers quoted
above cannot possibly be applied to cases, where there are solutions to problem (P**) that

are not solutions to (P).

We first present an existence result when Q) is a ball. The procedure employed in this case
does not seem to be applicable in case {1 is an annulus. As a matter of fact, the boundary
is a disconnected set, thus we do not consider Dirichlet-type auxiliary problems anymore
but Mixed boundary value problems. In case {1 is the whole space R", Proposition 2.2
above plays a crucial role. Our main tools are the notion of Rotation Group in R" in
order to obtain a radially symmetric solution to the convexified problem (P**) from one
which is not so, and a modified version of Liapunov’s theorem presented in [Ce], [R2,
Prop.4.1], that allows to construct a radially symmetric solution to problem (P) from a
radially symmetric solution to (P**). Liapunov’s theorem has been used as a tool to prove
existence of solution for a different minimum problem in [C-C]. In this chapter we had,
in particular, to extend the applicability of this theorem to a more complex operator and

boundary conditions.

HypoTHEsIS (H). Set I to be]0,1[ or Ja,b[. The map c: I — R is such that 7 — " le(r)
is in L (I) with p’ the exponent conjugate to p. The map h : I x R — R is such that

(h1) h is £ ® B(R)-measurable;
(h2) ¢ — h(r, &) is lower semicontinuous for almost all r in I;
(hs) there exists a positive constant -y, such that

h(r,€) > 7|¢|P — B(r) where the function 7 r*=18(r) is in L*(I).

Theorem 2.9. ([C-F, F1]) Let h and c satisfy hypothesis (H) and A be non-negative.
Assume that the functional [, h(|e|, Au(z) — Mu(z))dz has a finite value for some u in
w2r(Q)N VVJ’p(Q) such that —g—"n‘ = 0 on 0. Then the problem
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min/ﬂc(|wl)u(m)dz +Ah(|w!,Au(m) — Au(z))dz

u € W2P(Q) N WP (Q) (P)
B
s 0 on 01,

admits at least one radially symmetric solution.

Proof. The proofis divided into three steps: in (a) below we show that the relaxed problem
admits at least one radially symmetric solution; in (b) we write several functions as convex
combinations and apply Liapunov’s theorem to start defining a candidate for a solution to
the original problem and in (c) we complete the construction of the solution.

(a) We consider the relaxed problem

min/ c(l:c])u(m)d:n—l—f r**(|z|, Au(z) — Au(z))dz
Q Q

u € W2P(Q) N WiP(Q) (P*)
Ou
= 0 on 090,

Clearly, h** satisfies the growth condition (h3), therefore a well-known result (see [E-T] or
Thm. 1.6 of this thesis) assures that problem (P;*) has a solution %. We claim that we
can assume the function @ to be radially symmetric. If it is not so, we can consider the

function @ : § — R defined by

a(e) = /S , Eawin ) (2.1)

instead of 4, which by Proposition 2.3 belongs to W2?(Q) N WP (), is such that %

=0
on 8Q and is radially symmetric. Let us show that @ is another solution to problem (P**).

On one hand, Jensen inequality and (d) of Proposition 2.3 imply

h**(|2], Aa(z) — Mi(z)) < /SO( )h**(|:c|,Aﬁ(Aa:) — Ni(Az))dp(A) < +oo.  (2.2)

On the other hand, using Tonelli-Fubini’s theorem and the fact that

[ B (sl da(as) ~ a(da))ds = [ B*(ul, o) ~ Na(w))dy VA € SO(r),
Q Q
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we have

/ / B (|2, Ad(Az) — Ni(Az))dp(A)de =
o Jso(n)

:/so(n)/gh**(|x|,Aa(Am)—,\ﬁ,(Am))dmd,L(A) :/

A R (lyl, Au(y) — Au(y))dy.

Hence, from (2.2) it follows that

[ 1 lel, dafe) = Xa(e))ds < [ (], Adly) ~ M)y,
Q Q

Similarly one can show that

[ ehate)is = [ cliwpay,
i.e. 4 is a radially symmetric solution to problem (P**).

(b) Using spherical coordinates we obtain

n—1

/ R**(|z|, Au(z) —Aﬁ(m))dm = nw, /r"'lh**(r,ﬁf'(r) + a'(r) — Aa(r))dr (2.3)
Q

I

where w, denotes the volume of the unit ball in R” and we have used the same letter
for a radial function to consider it as a function of z or |z| = r, so that, “’ ” means
differentiation with respect to |z| = r. By (b) of Proposition 1.4 there exist measurable

functions p; and v;, 7 = 1,2; such that

Zpi(r) =1 p,;(T‘) >0, 1:=1,2 (2'4)

=1

Zpi@')vi(r) = a@"(r) + 2 1

T

a'(r) — Au(r); (2.5)

n—1

Z pi(r)h(r,vi(r)) = R™*(r, 3" (r) + @'(r) — Mi(r)). (2.6)

At this point of the proof we must distinguish the two cases: (i) @ = B and (ii) 2 = Q2.
()o=3

Consider the (radially symmetric, see for instance [G-T]) functions ¢ and ¢, belonging to
W27 (B), solutions to the Dirichlet problem

Aw = dw = f(Je])

2.7
w=0 on 0B, (27)
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with right-hand side 1 and ¢(|z|) respectively. We now apply Liapunov’s theorem to
construct from % a new function u, which will be a solution to the original problem.
By Proposition 1.15 (the verification of the hypothesis is a simple exercise) there exists a

measurable partition of |0,1[, (E:),,2 = 1,2, such that:
/ sz P B, () dr :g fo " (P B, v (2.8)
/0 1 gpi(r)rn—lvi(r)dr - }i:l /U 1 XEi‘(r)r"‘lvi(r)dr; (2.9)
/ Zpl Lo; dr_z / X, (i) (r)drs (2.10)
/ Zpl vi(r)g( r)dr-—z / X, ()" () () dr (2.11)

In particular, the map

T Z Xg, (r)r""l h(r,vi(r))

i=1

belongs to L!(]0,1[), that together with (hs) of Hyphotesis (H) imply that the map

2
n-—1
o > g (1T ui(r)
=1

belongs to L?(]0,1[) or, equivalently, the map

T ZXE lz])vi(|z]) (2.12)

belongs to LP(B). On the other hand, (2.8) and (2.6) yield

T

A Zin(r)r"“lh(r,vi(r))dr = /0 PR (i (1) 4 La r) — Mi(r))dr. (2.13)

Since E;, 1 = 1,2, is a partition of ]0,1[, we have

'P,Zx (r)vi(r)) = ZXE (r)h(r,vi(r)) for r €]0,1[.
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Therefore from (2.3) and (2.13), it follows that

[ 1 el (o) = Do) = [ el g (ellle)de (2:14)

(c) Now, let u be the (radially symmetric) solution to the Dirichlet problem

Au —du = Zin(lwl)vi(lml) (2.15)

v=0 on OB. (2.16)

We actually know that w € W2?(B), i.e. u € W2?(B) N W, ?(B). Notice that, from
(2.12), the right-hand side of (2.15) is in L?(B). In addition, u,% are in C*(]0,1]) since
they are in W2?(]e,1[) for every € > 0 (we recall that p > 1).

We claim that the function u is a solution to problem (P). To infer it, we shall prove that:

%Z =0 on OB or, equivalently, in spherical coordinates, that »'(1) = 0; (2.17)
/ R (|z|, Au(z) — Ai(z))dz = / h(|z|, Au(z) — Au(z))dz; (2.18)
B B
/ c(|z])i(z)dz = / c(|z])u(z)dz. (2.19)
B B

Ad (2.17). Taking into account (2.15) in spherical coordinates, (2.5) and (2.9) we obtain

/ (Au(z) — Au(z))de = / (At(z) — Ai(z))de,
B B

or, equivalently

A / (u(z) — i(z))de = / (Au(z) — Aii(z))ds. (2.20)
B B
Now, by applying Green’s formula, the last integral equals
Ou Ou m—1y \ _ Ou Ou nely; \ ,
/83 o o )H"(z) = /BB o~ SD)H N (e) = nen(1),  (221)

where H™™! denotes the (n — 1)-dimensional Hausdorff measure. On the other hand, from

(2.7) corresponding to ¢, it follows that



/B(u(m) —i(z))dz = /1.3 (Ago(:c) — )\cp(:n)) (u(z) — u(z))dz.

Bv means of Green’s formula again, the last integral can be written as
y gain, g

Lga(w)(Au(m) = dule) = Aa(e) + Xie) ) do + /63 g-%(u(m) _(e)dE (o)

The first integral equals zero because of (2.10) by noticing (2.5) and (2.15), and the last two
integrals reduce zero too, because of (2.16) and (2.7) corresponding to ¢. Consequently

/ (u(z) — @(z))dz = 0. (2.22)
B

Therefore, (2.20), (2.21) and the last assertion imply that »/(1) = 0, i.e. %Z— =0 on 0B,
if A is either positive or zero.

Ad (2.18). This is a straightforward consequence from (2.14) and (2.15).

Ad (2.19). By the definition of ¢, (2.7):

Lc([ml)u(w)dm:/B(Aqﬁ(:c)—)\qS(m))u(a:)da:.

Since the function v is in VVD2 ?(B), by Green’s Formula the right-hand side can be written

as

/B (Au(a:) - )\u(m)) #(z)dz.

Taking into account (2.15) in spherical coordinates, the last integral equals

/ n— IZXE r)dr_nwn/ n- Isz i(r)g(r)
= /B (Aﬂ(z)—/\ﬂ(m))qﬁ(m)dm: /B (Aqs(w)—w(w))ﬁ(w)dw

_ /B o(le|)i(e)dz,

where we have used (2.11), (2.5) and (2.7) again. This proves that u is a radially symmetric
solution to problem (P) in case §) is the unit ball B.
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(i) Q=0
Instead of the Dirichlet problem (2.7), we consider the following Mixed boundary value
problem:

Aw — dw = f(|z]) : (2.23)
w=0 on I, (2.24.a)

Ow
5> =0 on .. (2.24.)

Let ,¢ in Wzvp'(ﬂ), the radially symmetric solutions for f(|z|) = 1,¢(|z|), respectively.
Moreover, let ¢ in Wz’P'(Q), the radially symmetric solution to problem

A — X =1 (2.25)
=0 on [, (2.26.a)
gﬁ =0 on I%. (2.26.b)

We now proceed as before. Apply Proposition 1.15 (the verification of the hypothesis is still
a simple exercise) to obtain the existence of a measurable partition of |a, b, (E;) ,i = 1,2

such that besides (2.8)-(2.11) hold over |a, b, also the following equality is satisfied

2 b
/ Zpl vi(r)¢(r)dr :Z./a in(r)r"—lvi(r)z/)(r)dr. (2.27)

Here we also get (2.14) but over (2.
(c) Consider the radially symmetric function v € W??() solution to the problem

Ay — du = ZX Yoi(|z|) (2.28)
u=0 on I, (2.29.a)

ou
P 0 on IY,. (2.29.b)

Certainly, as in the previous case, one can show that; the right-hand side of (2.28) is in
LP(Q) and u,% € C!([a,b]) since @ > 0. We claim that the function u is a solution to
problem (P). For this purpose, we shall prove that:
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Ou

Fa 0 on T or, equivalently, in spherical coordinates, that u'(b) = 0; (2.30)
n
uw =0 on I'y or, equivalently, in spherical coordinates, that u(a) = 0; (2.31)
/ (||, Au(z) — Ad(z))dz = / h(|z], Au(z) — Au(z))dz; (2.32)
Q Q

Lc(lml)ﬁ(z)dm:ch(la:Du(:c)d:B (2.33)

Ad (2.30). First, remark that by taking into account (2.28) in spherical coordinates and
(2.9), (2.5) we obtain

/(Au(m) ~ u(a))de = f (Ad(z) — Ni(z))de,
Q Q

or, equivalently

A / (u(z) — t(z))dz = / (Au(z) — Au(z))de. (2.34)
Q Q
Now, by applying Green’s formula and then (2.29), the last integral equals
ou 0u

— 671: 7-14 n— n— 1
[ (G- o) = [ (G = g T ) = nenb ), (239)

where H™™ ! denotes the (n — 1)-dimensional Hausdorff measure. On the other hand, from

(2.23) corresponding to ¢, it follows that

[ o) ez = [ (a(e) = dpte) (ute) — e

By means of Green’s formula again, the last integral can be written as

/(; go(:c)(Au(a:) —du(z) — Au(z) + /\ﬁ(m)) dz + /;9 gg(u(m) —a(z))dH™  (z)+

0i Ou
— - = dH" ! (z).
[ (- P heaa ()
The first integral equals zero because of (2.10) by noticing (2.5) and (2.28), and the last two

integrals reduce to zero too, because of (2.29) and (2.24) corresponding to ¢. Consequently
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/Q (u(z) — i(z))de = 0. (2.36)

On combining (2.34)-(2.36), we conclude that u'(b) = 0, i.e. 8v =0 on Ty, if Ais either

positive or zero.

Ad (2.31). Using (2.23), we obtain as before

/(;(u(:c) —a(z))dz = L@b(ﬂ:)(AU(:ﬂ) — Au(z) — At(z) + )‘ﬁ(g;)) dz+
0i Ou

+ o g—%(u(m) — ﬁ(m))dﬂn“l(m) + /{;Q(—a; — b—ﬁ)¢(m)dH’L_l (z). (2.37)

The first integral is equal to zero because of (2.27) and by noticing (2.5) and (2.28), and
by taking into account u/(b) = 0, (2.29) and (2.26) the last two integrals reduce

r o (@)(u(a) — a=)AH™ (&) = —mwna” " (a)u(a). (2.38)

At this point, we claim actually that ¢'(a) # 0. In fact, this is a consequence of the
uniqueness of the solutions to Neumann problems in case A > 0, and if A = 0 such a
(Neumann) problem does not admit any solutions. Hence, (2.36)-(2.38) yield u(a) = 0 i.e.
vw=0onl,.

Ad (2.32). This is a straightforward consequence from (2.14) and (2.28).

Ad (2.33). By the definition of ¢, (see (2.23))

/s; e(|e])u(e)de = /Q (Ag(x) — A(2) ) u(z)de-

Since the function u is in W'u2 P(§2), by Green’s Formula the right-hand side can be written

as

/{; <Au(:1;) - /\u(a:)) ¢(z)de.

Taking into account (2.28) in spherical coordinates, the last integral equals

b b
nwn/; pnt Z XEl_(T)vi('l‘)Qi’("')dT = NWnp L P Zpi(r)vi(r)qﬁ('r)dr

= [ (si0) - xitw)) dlorde = [ (80(z) = 20(e) (o)
:Ac(im[)ﬂ(m)dm,
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where we have used (2.11), (2.5) and (2.23) again. This concludes the proof when {1 is the
annulus Q°, thus the proof of the Theorem is complete. H

Theorem 2.10. ([F1]) Let h and c satisfy hypothesis (H) with I being ]0,+oo] and A
be positive. Assume that the functional [, h(|z|, Au(z) — du(z))dz has a finite value for
some u in W%P(R"™). Then the problem .

min/ c(|z))u(z)de +/ h(lz|, Au(z) — Au(z))dz
R" R"
u e W»P(R"),

admits at least one radially symmetric solution.

Proof. We argue as in the proof of Theorem 2.9, that is, we start by considering the

problem

mm/Rn (Jo|)u(z)ds + /1; (2], Au(e) — Mu(z))de (Pr*)

in the space W2?(R"™), which has at least one radially symmetric solution 4. Without loss

of generality, we only deal with the case A = 1. Using spherical coordinates one gets

n-—1

/ ) r**(|z|, At(z) — @(z))dz = nw, /:o PR (a2 () + a'(r) —a(r))dr. (2.39)

Moreover, we also obtain (2.4)-(2.6) for some measurable functions p; and v;, 1 = 1,2.
Consider the function ¢ in W2? (R") (given by Proposition 2.2), the radially symmetric

solution to the problem

Ap — o = c(|z]). (2.40)

Since I =)0, c0[ is a o-compact set, we can apply Proposition 1.15 to obtain a partition of

I, (Ei)i’ 1 = 1,2 such that:

/ ZP; )" h(r,vi(r )dr__Z/ XE(T P e, oy (1)) drs (2.41)
\/(;oc Zpi(r)rn—lvi('r)(p(’r)dr = Z /(;oo XEi(r)Tn_l'Ui(T')QD(T)dT‘. (242)
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As a consequence, we have that the map

z HZin(le)vi(lwl) (2.43)

belongs to LP(R™). On the other hand, by taking into account that (Ei)i is a partition,
(2.6) and (2.4) imply

[ w el i) = e = [ w3 (ebeio)de (249

Now, let u be the (radially symmetric) solution of the following problem

Au—u =3 (12hus(l=), (2.45)

which, by Proposition 2.2, belongs to WP?(R"™). Notice that the right-hand side of (2.45)
is in L?(R™) because of (2.43). We claim that the function u is a solution to problem (Py)-

To infer it, we shall prove that:

/ ) R**(|z|, At(z) — u(z))dz = Ln h(|z|, Au(z) — u(z))dz; (2.46)

/Rn c(|z))a(z)dz = /R" c(|z])u(z)dz. (2.47)

(2.46) follows directly from (2.44) and (2.45). Let us remark that, by definition of the
distributional derivative and from the fact C§°(R™) is dense in W'?(R"), it follows that

/ Ap(e)i(e)ds = /R p(e)Ais)ds.

Therefore, from (2.40) it follows that

/ e(jal)i(z)ds = /R ) (Acp(:v) —ga(a:))fb(:c)da: - /R ncp(a:)(Aﬂ(m) —ﬁ(z)) dz
= / ) o(z) (A'u,(a:) — u(m)) dz,

where the last equality has been obtained by using (2.5), (2.45) and (2.42). Again, by the

above remark, the last integral equals

[ (80(e) - e(@))u(e)iz = [ ellahu(e)es,

an
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and thus (2.47) is proved, and thus the proof of theorem is complete. B

Remark 2.11. Part (a) of the proof of Theorem 2.9 or Theorem 2.10 can also be applied

if we have a convex dependence in u, because of Jense’s inequality.

Remark 2.12. In the scalar case: n = 1, the proof remains as before (setting n = 1),

except only that we take

a(z) = -;—11(:1:) + %ﬁ(—-m)

instead of that defined in (2.1).

2.3. Functionals with Non-linear Dependence on the State vari-

able

We deal here with functionals that are not linear in u and, more precisely, we consider

the two following non convex problems

min/ §(|u(m)])d$+/ h(|Au(z)|)dz
B B

(F1)
uw e WHP(B)NW,?(B)
min/ g(lz|,u(z))dz +/ h(Au(z))dz
B B
uwe W2(B)N Wy ?(B) (P2)
Ou
Bn =0 on 0B,

where B, as before, is the unit ball in R™ centered at the origin and we prove, for either
case, the existence of radially symmetric solutions. In case the domain is not necessarily
radial we refer to [A-T3, Ra, R3, R4, T1] for problems of the type (P1) and to [A-T2, Ra,
R4| for those of the form (P,). In the same spirit as in the previous sections, the results
presented here can be applied to cases where problem (P;*) admits solutions that are not
solutions to problem (P;) in constrast to that exposed in the papers quoted above.

In case of problem (P;), under the assumption of monotonicity (actually decreasing, oth-
erwise the result is not true) on the function g defined in R, we prove the existence of

at least one non-negative radially symmetric solution. Moreover, assuming that problem
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(P;*) has a non-null solution or h**(0) < h(0), we show that problem (P1) admits one

positive radial solution. This result applies, for instance, to the functional

I(u) :Le”‘”(”)]2dm+ /;3(1 — |Au(z)|)*dz.

Compare it with what Ekeland-Teman assert in [E-T, example 1 and Remark 5.1 of Chapter
IX]. A second existence theorem, concerning problem (P2), is given: in this case, we assume
the convexity and (not necessarily strict) monotonicity on g(|z|,-).

In order to obtain a radially symmetric solution to (P;}*), ¢ = 1,2, from one which is not so,
we use the so-called spherical symmetric rearrangement in case of problem (Pi) and, the
notion of Rotation Group in R™, already used previously, in case of problem (P2). Then,
we use Lemma 2.6 which allows to construct a radially symmetric solution to problem (P;)

from a radial solution to (P/*).

We shall assume the following hypothesis.
HypoTHEsIs (H1).-
The map § : R+ — R is such that

(91) g is continuous;
(92) g is decreasing on R.
Moreover:

(g3) there exist two constants; 71,831, with 41 > 0 such that
3(u) > —mful? — By for every u > 0.

The map h: Ry — R is such that

(h1) h is continuous;

(h2) there exists two constants; 72, B2 with 2 > 0 such that

R(&) > 72|¢|P — Bo for every £ > 0.
In addition, setting

K = K(p,m ) = sup { i+ w e WHH@)NWII(@), w0 b

so that, K € R from ||A - ||, being equivalent to || - ||z, on W*? N Wy P, we shall assume
1—-2K?>0.

We are now in the position to state the first theorem of this section.
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Theorem 2.13. ([F3]) Let § and h satisfy hypothesis (H1). Assume that the functional
J5 3(|u(=z)])dz + fB h(|Au(z)|)dz has a finite value for some u in W22(0) N Wol’p(ﬂ).
Then problem (Py) admits at least one non-negative radially symmetric solution, and thus
also one non-positive. Furthermore, if either the relazed problem (P;*) below has a non-
null solution or h**(0) < h(0), then problem (P1) admits one positive radially symmetric

solution.

Remark 2.14. If § is increasing on R, there is no hope that the result holds as the

following example shows

1) = [ [u(@)de+ [ (1= |bu(e))ds
B B
and we seek for the minima of I on the space W22(B) N W, *(B).

Proof of Theorem 2.13. Setting h(€) := h(|¢]), clearly A**(§) = ¢(|¢|) for some even and
convex function ¢.

(a) We consider the relaxed problem

min/ g(!u(w)|)dm+/ R (Au(z))dz
B B
u e W2P(B)NW,?(B).

(P)

which admits at least one solution, namely %. From this solution, we shall construct another
solution that will be non-negative and radially symmetric. To this end, we consider the

radially symmetric function %, solution to the Dirichlet problem

—A@ = (~ Ay (=) = [Adf(z)

(2.48)
2 =0 on 0B,

where f* is the spherical symmetric rearrangement of f. For its properties we refer to [K]
and to the appendix of [Ta]. Since Ad is in L?, its rearrangement is also in L?. Hence,

@ € W2P(B) N W, ?(B). Moreover, from Theorem 1 of [Ta], it follows that

0 <u*(z) <i(z) ae. zin B. (2.49)
We claim that % is the function searched. In fact,
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[ m (i) = [ ol-nite)ds = [ g((-d0)(@)de
- / o(] — Ad(z)])do = / B (Ad(e))de, (2.50)
B B .

where we have applied Cavalieri’s principle (see Prop. 2.8 of this thesis or [K]). On the
other hand, § being a decreasing function, (2.49) implies g(@*(z)) > g(i(z)), a.e. z in B.

Consequently, by using again, Cavalieri’s principle

/B 3(li(2) )de = /B 3(i(2))de < /B 30 (2))de = /B 3(li(=))dz.  (2.51)

On combining (2.50) and (2.51), we conclude that @ is a solution to problem (P;*) and it
is non-negative and radially symmetric, so that the claim is proved.

(b) Using spherical coordinates, we obtain

n

/h**(Aﬁ(m))dm :nwn/ PR (A () + ;1ﬁ'(r))dr, (2.52)
B 0

where w,, denotes the volume of the unit ball in R™ and %' means the derivative of the
function @ with respect to |z| = 7. It is known that under the assumptions (hy) and (h2)
of Hyphotesis (H1), we can apply Lemma 2.6. Thus by putting du = 7"~ 'dr, there exists

a function w such that r — rn"r?lw(r) is in LP(]0,1[) satisfying

/01 P () = /01 P @ (r) + — i (r))dr; (2.53)

n—1

T

/0 o () = /O R @ () +

and for all  in ]0,1]

a'(r))dr; (2.54)

n—1

S

/;r 5" lw(s)ds < /Or s"THaE"(s) + ' (s))ds. (2.55)

(c) At this point, we consider the function » in W*2(2)N W, ?(Q), solution to the problem

Au = w(Jo])

2.9
v =0 on OB. (29)
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Certainly, u is a radially symmetric function and u and @ are in C'(]0,1]) since they are
in W??(Je,1]) for all € > 0. We claim that the function u is a solution to problem ().
To infer it, we shall prove that

/h**(A'&(m))dm:/ h(Au(z))dz (2.57)
B B .

and

/ 7(i(z) ) dz = f #(ju(z)])d. (2.58)
B B

Ad (2.57). This is automatically verified because of (2.54).
Ad (2.58). By taking into account (2.56) in spherical coordinates, (2.55) becomes

[y ey s = 0 (2.59)

Since Vi is in LP(§)), we have f01 7?14 (r)|Pdr < +co. This implies that, limr"1a (r) =
0 as » — 0F. Therefore, on integrating by parts (2.59) and by using the above remarks,

we obtain

1y a'(r) —r"~ 1 uw'(r) >0 7 in ]0,1]. (2.60)

Consequently, by integrating again, and by noticing that imu(r) = 0 as r — 17, we have
u(r) > 4a(r) >0 r in ]0,1],ie. u(z) > 4(z) > 0 a.e. = in . So that, if g is a decreasing
function, the latter gives g(u(z)) < g(@(z)) a.e. z in B. This implies that

fg(u(m))dmg/ g(u(z))de. (2.61)
B B

On the other hand, since 4 is a solution to (P;*), by definition of A™*,

L §(u(z))de + /B h(Au(e))dz > fB §(i(2))de + /B h*(Ai())de.

From (2.57) and (2.61), it follows that (2.58) holds. This proves that u is a non-negative
radially symmetric solution to problem (P;).

Let us prove the second part of our theorem. First assume @ # 0. By (2.48) in spherical
coordinates and by one of the remarks above, we have —r"~1@/(r) = [ s"71|Adl*(s)ds >

0 for » €]0,1], i.e. @ is a decreasing function in |z| = r and so u is too (see (2.60)). Since
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uw > 4@ > 0, it is enough to prove that & > 0 in ]0,1[. Suppose the contrary. We have
a(r) = 0 for r €]rg,1], 1 > 7o > 0. So that, @'(1) = 0. Hence

‘/1‘3 |Adl(z)dz = /;3 |AL|*(z)dz = nwy /: AWK (r)dr = —u'(1) = 0.

Then, % = 0. This yields a contradiction proving the claim if 4 # 0. It only remains to
consider the case h**(0) < h(0) with @ = 0. We also get @ = 0. We shall prove that u
defined at point (c) is positive. Otherwise, by proceeding as before we obtain u(r) =0
for r € [ry,1], 1 > 79 > 0. Then by a Stampacchia’s theorem (for instance [G-T, Lemma
7.7]), Au =0 a.e. = € B\ o, Qo = {z € N :|z| <r}. Since u is a solution to problem
(Py), it has not to be identically zero because of h**(0) < h(0) and min P;"" = min P (see
[E-T, Thm.41 of Chapter IX]). Therefore, Au # 0 in a subset of positive measure of Q.
Comnsequently,

/B h(Aw)de = /Q h(Bu)de /B o, )iz > /Q B (B)da /B B
- /B h* (Au)da.

On the other hand, u is also a solution to problem (P;™*);

/B B (Au)de + fB G(u)de = /; B (0)de + fB 3(0)da.

On combining the last two equalities and by taking into account (2.58), we have

/B h(Au)dz > /B h**(0)dz,

a contradiction with (2.57). H

Corollary 2.14. If, in addition to the hypothesis of the previous theorem, g is strictly
decreasing in R... Then every solution to problem (P{*) is a solution to the original (non

convez) problern (Py).

Proof. Let i be any solution to problem (P;*). Then, in virtue of (2.50), (2.51), (2.57)
and (2.58), the assertion will be proved if we show that & = u. In fact, if it is so, because
of (2.48) we have



/Bh(Aﬂ)da:z/Bl_z(lAﬂl)cl:c:LE((A&)*)dm:/Bl_z(lAﬁi)da::/Bh(Aﬁ)dm,

which combined with (2.50) and (2.57) yield

/B B (Ad)da = / h(AD)da.

B
This shows that 4 is a solution to problem (P;). Let us prove that & = u in B. Going back

to part (c) of the proof of Theorem 2.13, we have g(u(z)) = g(%(z)) a.e. = in B because

of (2.58). So that if g is strictly monotone we obtain v = i a.e. z in B. H

Remark 2.15. Part (a) of the Proof of Theorem 2.13 can be applied directly to any
solution to problem (P ) to get one radially symmetric. Therefore, if the function g defined
by g(u) = g(|u|) is concave, by Theorem 6.2 of [R3] (see also Annexe 1 of [R4]), Theorem
2.13 follows, i.e. in this case it is not necessary to show, a priori, that problem (P;*)

admits a radially symmetric solution.

Remark 2.16. Sufficient conditions for g to be decreasing on R, is that either g be
concave or g be convex and g(u) < §(0) for every u > 0. The first assertion follows directly
from the assumptions. To prove the second one, we proceed by contradiction.” Suppose
there are 5 > t; > 0 such that §(0) > §(¢2) > g(¢1), then the convexity of § implies g(t) >
g(t2) Vi > t,. Hence g is a strictly increasing function in [¢2,+oo[, being bounded from
above by §(0); lim:— o0 g(¢) = L < g(0) does exist. Let us take ¢y > ¢, large enough and
write for any n € N, t; = (n—1)to, + 1t""tinto. Then g(ty) < L"—"—l—h’l'(tz) + to=t2z G(ng,).

nto—1tz2 "2 1 mtg—t nio—tz J nto—ta

Letting n — +oco we obtain g(ty) < g(t2), which is a contradiction since g is strictly
increasing in [tz,+o00[.
Examples of such functions are: g(|u|) = —|u|?, §(|u|) = e~!*l. The last example shows

that, in general, the function g defined by g(u) = g(|u|) is not convex even if g is so.

Remark 2.17. The use of rearrangements to obtain a radial solution from one which is
not so, cannot be applied in the case when we look for the minima in W02 ’(B) because of
the lack of any possible relationship between the normal derivative of % and that of 4 on
OB. However, we are able to construct a new radial function u such that -g—% = g—z <0on
OB (see (2.53) and (2.56)). Therefore, we have also solved the problem of minimizing in

the convex subset
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{u e WP(B) N W, ?(B) : g% <0 on BB}.

Example. Let us consider the same functional mentioned in the introduction

I(u):/ée""‘(”)lzdm—}-/B(l——IAu(a:)I)zdw,

and we look for the minima of I on the space W2?(B) N W, '?(B). Since the function
g defined by g(u) = e~1ul" is neither concave nor convex, Theorem 6.2 of [R3] (see also
Annexe 1 of [R4]) and Theorem 2.1 of [A-T3] cannot be applied, either Theorem 2.1 of [Ra]
being A**(0) < h(0). However, according to the previous theorem, the associate problem

(P1) has solutions (compare with the assertion given in [E-T, Remark 5.1 of Chapter IX]).

HypoTHESIs (H2).-
The map g :[0,1] x R — R is such that

(91) g is L ® B(R)-measurable;

(92) u — g(r,u) is lower semicontinuous for almost all r in [0, 1];
(g3) 2 +— g(r,u) is monotone and convex for almost all r in [0, 1];
Moreover:

(94) there exists a constant 7; such that

g(r,u) > —y1|u|? — B1(r) where the function 7 — ™18, (r) is in L(]0, 1]).
The map h : R — R is such that
(h1) h is lower semicontinuous.
(h2) there exist two constants; vy, 82 with v5 > 0 such that

h(&) > y2[¢lP — Ba-

In addition, we assume 1 — %Kg > 0, where K| is given by

u
KU:KO(p,n,Q):sup{Hlllxilﬁ : uEWf’p(Q), u#O}
P

‘We now establish the second Theorem

Theorem 2.18. ([F3]) Let g and h satisfy hypothesis (H2). Assume that the functional
Jg 9(lz],u(z))dz+ [ h(Au(z))dz has a finite value for some u in W2P(B)NW, " (B) such

that 2% =0 on 8B. Then problem (P,) admits at least one radially symmetric solution.



Remark 2.19. The condition of monotonicity on the function g(|z|,-) cannot be dropped

in general. To see it, consider the same functional as in Remark 2.14 in the space W7'*(B).

Proof of Theorem 2.18. As usual, we first consider the relaxed problem

minLg(|m|,u(m))dm+Lh**(Au(w))dw

uw e W2P(B) N WP(B) (P5)
du

Let 4@ be a solution to problem (P;*), which, as in Theorem 2.9 and Remark 2.11, can be
assumed radially symmetric.

From now on, we shall use the same argument applied in the Proof of Theorem 2.13. We

can write
! n—1
/ r**(Ad(z))de :nwn/ P R (@ () + a'(r))dr, (2.62)
B 0 r
where, as before, w, denotes the volume of the unit ball in R™ and “ ' ” means the
derivative with respect to |z|] = r. By Lemma 2.6, there exists a function w such that

n-—1

r— 1 7 w(r)isin LP(]0,1[) satisfying

Al T (r)dr = /: @ (r) + - 1ﬂ’(r))dr; (2.63)

T

n—1

r

Arn"lh(w(r))dr:A P R (A () + a'(r))dr; (2.64)

and for all r in ]0,1]

f " luw(s)ds < / (@ (s) + Ll (s))ds. (2.65)
0 0 S
Now, we consider the function u in W2?(B) N W,?(B), solution to the problem

Au = w(jz])

(2.66)
u=~0 on 0B.

Certainly u is a radially symmetric function. We claim that the function u is a solution to

problem (P;). To infer it, we shall prove that
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ou

ot 0 on OB or equivalently u'(1) = 0; (2.67)
n

/ B (Adi(e))ds = / h(Au(e))dz (2.68)
B B

and

/g(]ml,ﬁ(m))dm:/ o(|z], u(2))de. (2.69)
B B

Ad (2.67). Taking into account im r"~*v/(r) = 0 as r — 0%, (2.66) in spherical coordinates

implies

1
-1

u'(r) = -

/T s"tw(s)ds for r €]0,1]. (2.70)

Then, from (2.63) it follows that

u'(1) = /01 s"lw(s)ds = [ smH(@ () + — ; 111'(5))ds
= /Ol(s"*la’(s))’ds =a'(1) = 0.

Ad (2.68). This a direct consequence of (2.64) and (2.66).
Ad (2.69). By (2.66) in spherical coordinates, (2.65) becomes

/UT{(S"”IfL'(s))' — (s" "'/ (s)) }ds > 0. (2.71)

We now integrate by parts to obtain 7" ~*@/(r) — r*~1u/(r) > 0 7 in ]0,1], because of the
continuity of %', u' as functions of |¢| = r. Consequently, by integrating again, and by
noticing that limu(r) =0 as » — 17, we have u(r) — 4(r) > 0 7 in ]0,1}, i.e. u(z) >
i(z) a.e. z in B. So that, if g(|z|,-) is a decreasing function for almost all z in B, the

latter implies

g(lz],u(z)) < g(lz|,%(z)) a.e. z in B. (2.72)

Hence

[ stshutends < [ afial e (2.73)
On the other hand, since 4 is a solution to (P;*), by definition of h**, we have
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/I;g(l:c},u(m))d:n+/Bh(Au(m))d:z:2/Bg(l:cl,ﬁ(a;))dm+Lh**(Aﬁ(m))dw.

From (2.68) and (2.73), it follows that (2.69) holds. This proves that u is a radially
symmetric solution to problem (P2). If g(|z|,-) is an increasing function for almost all =
in B, we apply Remark 2.7 to obtain u(z) < u(z) a.e. z in B. Then, (2.72) holds. We

now repeat the argument previously applied. H

Remark 2.20. From the proof of Theorem 2.18, it follows that we have also minimized
such functional under the additional condition u > 7 in B (problem with obstacle), if

g(|z|,) is decreasing and 4 is any fix radially symmetric function in L.

Remark 2.21. The convexity assumption has only been required to obtain a radially
symmetric solution to problem (P;*). Consequently, if we deal with problems involving
the first derivative instead of the Laplacian and, where the space variable z is in R, as
that in [M1], Lemma 2.6, combined with Remark 2.7, yields a new proof of theorem 2 of
[M1].

Remark 2.22. In case g(r,-) is strictly convex, % and % defined in (2.1), have to coincide,
and thus 4 is already a radially symmetric solution to problem (P;*), i.e. every solution

to problem (P**) is radially symmetric.

2.4. A further Existence Result

The previous sections were devoted to integrals defined on symmetric domains of R",
n > 2. Nevertheless, all of these results hold when n = 1, with obvious changes, the case
n = 1 allows us to deal with a different class of functions g. In particular, the symmetry of
the interval is not needed. More specifically, we shall consider the following minimization

problem
T T
min [ ot e+ [ b () = M) (P)
:I:EHé(]U,TD 0 0

where )\ is a non-negative real function, g and h are Caratheodory type functions with

h satisfying no convexity assumption. Therefore, the classical Direct Method cannot be
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applied because of the lack of the lower semicontinuity of the functional. In spite of this

fact we show that the problem (P;) admits solutions, such a solution z will satisfy, letting

L=47— )

LDyh(t, 2" () — AM(t)z(t)) = —gz(t,z(t)) in D’(]O,T[)

under some regularity assumptions on h and g, other than the usual growth ones. So that,
we have solved, formally, a broader class of equations than those considered in [G2], [U]

namely

) + a(t)z = b(t) p
2(0) = z(T) =0, 2'(0) =2'(T) = 0. (F)
Problems like (P') describe the deformation of a elastic beam with end-points cantilevered
or fixed. For another type of boundary conditions which arise, according to the controls
at the ends of the beam, we refer to [G1], [G2], [U].
We prove an existence theorem under the concavity assumption on the function g(t,-).
It is done in a different setting from those presented in [A-T1}, [A-T2] and [R1], but follows
that of [C-F], [F1] in the vector case, i.e. where ]0, T is replaced for a subset of R".

Henceforth T > 0, I =]0,T[. Let HZ(I) be the closure of C5°(I) in H?*(I). In this
situation the immersion HZ(I) C C*(I) is compact (See [Ad] for instance). For fixed
X € L=(I),X > 0 we equip the space H{(I) with the norm ||z" — Az||p2(n).

We here assume the following hypothesis:

HypoTHESIS (H3).- The map A:I — R is in L°°(I) such that A > 0.
The map g : I x R — R is such that
(91) g is £ ® B(R)-measurable;

(92) z — g(t,z) is lower semicontinuous and concave for almost all ¢ in I.
Moreover:
(93) there exists a positive constant 7;, such that

g(t,z) > —71|z|?> — B1(t) where the function Sy is in L*(I).
The map kh: I x R — R is such that
(h1) h is L @ B(R)-measurable;

(h2) & — h(t,£) is lower semicontinuous for almost all ¢ in I.
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Moreover:

(hs) there exists a positive constant 7., such that
h(t,€) > 72|€|* — B2(t) where the function §; is in Li(I).
Here, we also assume that 1 — %Kg > 0, where Ky as in Hypothesis (H2).

Theorem 2.23. ([F2]) Under Hypothesis (H) and by assuming the functional be finite

for some x in HZ(]0,T]), problem (Ps) admits at least one solution.

Proof. As usual, we start by considering the problem
T T
min t,x(t di-i—/ h**(t, 2" (t) — M(#)=z(t))dt. p;*
amin [t anant [0 - M@0 (P5°)
Obviously A** satifies the growth condition (h3), then the well known Direct Method in the
Calculus of Variations (see [E-T] for instance) assures that problem (P**) has a solution.

We denote it by z.
By (b) of Proposition 1.4 there exist measurable functions p; and v;, @ = 1, 2, such that:

Sopit)=1; pit)>04i=1,2 (2.74)

=1

D opiltei(t) = 2" (t) - A(Da(1); (2.75)

3 pilt)h(t (1) = B (LE (1) ~ M2E(D). (2.76)

On the other hand, the subdifferential of g(¢,Z(¢)) with respect to the second argument,
i.e. the map t — —8;(—g(,%(t))), admits a selection o(-) in L?(I), for the existence of
such a selection see [R3, Lemma 5.2].

Now, consider the function ¢ in H?(]0,T[), solution to the Cauchy problem

¢ = A(t)p = o(1) (2.77)
#(T) = ¢/(T) =0, (2.78)

as we shall see, for our purpose it is enough to take any ¢ satisfying (2.77) without the
boundary conditions (2.78).
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Let X be the solution of the matrix differential equation

X'=A@)X
X(0) =1,
here, I denotes the Identity matrix. Then the solution to

— A(t)s + £(2)
2(0)=0

can be written as

2(t) = X(t)[)'x—l(s)f(s)ds. (2.79)

Setting

40 =50 o)

we apply Proposition 1.15 to obtain a measurable partition (E;);; ¢ = 1, 2 of I, such that:
/ pr Jh(t,vi(t))dt = / Z X, (DRt i(1))dt (2.80)
0
()X t dt = X t 2.81
[ Sroro () /ZXE ’(u) 81

/U Zp,(t)qs(t)v (£)dt = / (t)vi(t)dt. (2.82)

In particular, the integral fo =1 Xg (t)h(t v;(t))dt is finite. Therefore, by using the

growth condition (h3), one can prove that the map

t — i:XE;(t)vi(t) (2.83)
i=1
belongs to L?(]0,T[). From (2.80) and (2.76) it follows that
T
/ t)h (t,vi())dt = /o‘ R** (¢, 2" (t) — A(t)Z(t))dt. (2.84)
Since F;,1=1,2,1is a partition of I, we have /
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h(t,ZXEi(t)v,-(t)) = ZXEi(t)h(t,vi(t)) a. e t€l0,T[.

Therefore (2.84) can be written as

T | T )
fo h**(t’a—sn(t)—)\(t)i(t))dt::/(; h(t,ZXE (t)v;(t))dt. (2.85)

Now, let z be the solution to the Cauchy problem

2" — At)e = ZXEi(t)vi(t) (2.86)
z(0) = z'(0) = 0—.— (2.87)

Certainly =z € H?(]0,T[) since the right-hand side of (2.86) is in L?(]0,T[). We shall
prove that the function z is actually a solution to problem (P;). First of all we show that
¢(T) = 2'(T) = 0. To this end, we use the first order differential equation associated
to (2.86)-(2.87) and the representation formula (2.79) for its solution z = (z,z') and we
denote by Z the corresponding to # (see (2.75)). Therefore, it suffices to prove 2(T") = 0;

AT) = X(T) /O ' 22: X (DX 7(8) (vfg t)) dt

—x(0) [ S nwx7 0, ) @ =1 =0,

0 =1
where we have used (2.81) and the representation formula for &, i.e. Z, besides its initial
conditions. This proves our claim, i.e. z € H2(]0,T[). In order to show that z is a solution

to problem (Ps), it only remains to prove

T T
/0 B (1, 5" (8) — A(8)3(2))dt = /; B(t, 2" (1) — A(t)a(t))dt (2.88)

and

T T
A g(t, &(1))dt = /; g(t,z(t))dt. (2.89)

Ad (2.88). This is a direct consequence of (2.85) and (2.86).
Ad (2.89). Notice that for any selection of z — —8,(—g(¢,%(t))), we have
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g(t,z(t)) < g(t,2(t)) + o(t)(2(t) — £(t)), a. e t€IL. (2.90)

Assume we have showed

/{; o(t)(a(t) — 3())dt = 0. | (2.91)

Then (2.90) implies

/U ot (1))t < fu ot 5(1))dt. (2.92)

Therefore, since % is a solution to problem (P;*), by (b) of Proposition 1.2
T T
[ sttatwyie s [ hee )~ M) >
0 0

T T
2/0 g(t,:i(t))dt—}—/o R**(t,&" (t) — A(t)Z(t))dt.

Finally from (2.88) and (2.92), (2.89) follows. We now prove assertion (2.91);
T T
/0 o(t)(x(t) — a(t))dt = /U ("(t) — A))$(1))(=(t) — 2(2))dt =

T
- /O $(0)(@" (1) — A(t)e(t) — 2" (1) + A()E(2))dt,

where the last integral has been obtained by applying Green formula and taking into
account only the boundary conditions of z and Z, not that of ¢. Then by using (2.75),
(2.86) and (2.82), assertion (2.91) is proved, and thus the proof of theorem is complete. B

Remark 2.24. The result holds even in the case when h and g are defined on I xR, n > 1.

The proof is essentially the same up to adding components before applying Proposition
1.15.



CHAPTER 3

Relaxation Problems in the Calculus of Varia-
tions

In this chapter our main concern is the study of problems of the form

inf /;zf(fz:,u(:v),Lu(:c))dm, (P)

u€uo+V’
where uy is any fixed function in W2P(Q), V is a closed subspace of W?2(Q) containing
w2?P(Q),p>1and Lisan elliptic operator of second order.
The well-known Direct Method in the Calculus of Variations yields the existence of solu-
tions to problem (P) under the following conditions on the functional to be minimized
(i) the functional is lower semicontinuous (Ls.c.);
(i1) the functional is coercive with respect to the same topology in which is Ls.c..
In this context, usually, the topology to be considered is the weak one, and condition (i)
is guaranteed by some growth assumptions on f-

Our aim is to study the existence of solutions for (P) precisely when the functional is
not Ls.c.,i.e. when f(z,u,-) is not convex, but maintaining condition (ii); then, in general,
problem (P) will not have any solution. However, from the point of view of applications,
the study of the asymptotic behaviour of the minimizing sequences for (P) is extremely

important. More precisely, we will show that if f**(z,u,§) is the bipolar function of
f(z,u,-), then

inf ‘_/S;f(:n,u(m),Lu(a:))da: = inf Lf**(m,u(m),Lu(m))dm, (*)

uEuo+ u€uo+V’

and for every i, solution to the right-hand side of (%), there exists a minimizing sequence

(un) for (P), un € uo + V such that up — @ in W22, and

lim f(a:,uh(m),Luh(:c))d:c::/f**(m,ﬁ(a:),Lﬁ(:c))dm.
Q Q

h—+oo
Thus, the asymptotic behaviour of the minimizing sequences is with respect to the weak

convergence. The importance of this Kkind of convergence ([Tar]) relies on the fact that, in
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many physical applications, only averages of physical quantities are actually measured. In
this direction, the Relaxation theory provides a useful approach.

Some relaxation problems in the Calculus of Variations have been studied, among
others, in [Ac-Fu, M-Sb] for functionals of the gradient, and in [E-T] for the present
case. The results we shall present improve and generalize those of [E-T] (Thm 3.1.IX and
Thm.4.1.IX). A rather similar problem, but in the framework of Optimal Control, was
considered in [Bul]. It is to be noted, however, that the analysis done there cannot be

applied here. Other related results can be found in [E].

3.1. Notations and Preliminaries

We start by proving an elementary result on functionals defined on reflexive Banach

spaces.

Proposition 3.1. Let X be a reflexzive Banach space, Y be a closed subspace of X, uy € X
and H : X —] — 0o, +0o0] be a functional such that:

(1) for everyt € R {UEX: Hu)<t } Cup+Y;

(11) H restricted to uy +Y (endowed with the topology of X ) is sequentially weakly l.s.c..
Then H is Ls.c. (for the strong topology of X ).

Proojf. Let (up) be a sequence converging to a function u in X. We shall prove

If the right-hand side equals +o00, there is nothing to prove. Thus we may, up to extracting a
subsequence, assume that limp_, y oo H(up) exists and is less than +c0. By (7), up € up+Y,
since (up —ug) is bounded in Y, it being reflexive too, a subsequence of (uy —up) converges
weakly to a function v in Y. But up — v in X, therefore u — uy = v, hence u € uy +Y

and up — u in uy + Y. The conclusion now follows from assumption (z7). B
We shall make the following assumptions:

Here we are given a bounded open set  C R™ with boundary 89 of class C'!, and
f: QxR xR — R afunction such that
(f1) for every u,& € R f(-,u,§) is L-measurable;
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(f2) for almost every z € Q) f(z,-,-) is continuous;
(f3) there are positive constants a; < a3 such that a;[¢|? < flz,u,€) < az(lul? + €P) +
B(z) for some function B in L'(Q) with p > 1.

Let L be the differential operator of second order:

Lu = Z a;j(z)Diju + }: bi(z)D;u + c(z)u
ij i

where a;; € C°(Q), bi,c € L°(Q), %,j = 1,..n and ¢ < 0. Further, for a given closed

subspace V of W27, let us consider the function F': W*?(f) — [0, +oo] defined by

F(u) = {/Qf(rc,u(:z:),Lu(m))da; f ueu +V

+o00 otherwise,

here uy is any fixed function in W2?(Q). We also consider the function H defined as

follows

H(u) = Lf**(m,u(m),Lu(z))dw if weuy+V

+o0 otherwise,
where f**(z,u,&) is the bipolar of the function f(z,u,-). By Proposition 3.1 H is Ls.c.

for the strong topology of W??(Q). From Proposition 1.3.5 and Remark 1.3.6 of [Bu2], it
follows that

s¢”(w— W?P)F(u) = scgp(w — W2P)F(u)
= inf { liminf F(us) us — uin wery,

where sc™(w — W?P)F, sc;, (v — W?P)F denote the lower semicontinuous envelope of
F for the weak topology of W2? and for its sequential version respectively (see [Bu2]),
ie. sc”(w— W?*P)F is the greatest ls.c. function in the weak topology of W?2P not

greater than F' and scseq(w — W?P)F is the greatest sequentially l.s.c. function, in the

weak topology of W%? not greater than F'.

Remark 3.2. The fact that, the infimum in the last equality is a minimum, can be
deduced from a standard diagonalization argument since the weak topology of W27((Q),

p > 1 is metrizable on bounded sets in W2>?(Q).
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3.2. Main Results

We are now in position to state the first main result that will be used later, although

is of importance by itself.

Theorem 3.3. ([F'5]) Assume V = W2PNW? and L, defined above, be a strictly elliptic
operator in ). Then .scs'eq(w —W?P)F = sc™(w— W*P)F = H. More precisely, for every
u € uy +W2P(Q)N Wol’p(ﬂ), there exists a sequence (up) in ug + WP(Q2)N WyP(Q) such

that up — uw in W2? and

h_++oo/ f(z,un(z), Lup(z))dz —/f** z,u(z), Lu(z))dz.

In particular,
s (w — W?P)F(u) = / f(z,u(z), Lu(z))de Vu € ug + W2P(Q) N W, (Q).
Q

Proof. It is easy to see that H is sequentially weakly ls.c. in W?%P majorized by F.
Therefore

H(u) < scppp(w —W2P)F(u) = min{]irninf F(up):up —uin Wz’p} Yu € W2P(Q).

h—+oco

in order to prove the equality in the preceding inequality, it suffices to show it for u in
uy + WP(Q) N W, P(Q), otherwise the equality holds trivially. For u € uy + W=P(Q)N
W, '?() we shall prove the existence of a sequence (us) in uy + W22(Q) N W, ?(Q) such

that v — u in W2 and

/ 7 (z,u(z), Lu(z))dz = / f(z,up(z), Lup(z))dz.
Q

We apply Prop.1.2.IX and Prop.2.3.IX of [E-T] (or Theorem 2.6.4. of [Bu2]) to the function
f(z,v) = f(z,u(z),v), F being coercive, we obtain a sequence (v3), v» — Lu in LP ()
such that

h+oo

£ (2, u(2), Lu())dz h_%o/ (e, u(z), vn(2))da. (3.1)

Q
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Setting (for instance [G-T, Thm.9.15)) Lup = vp, up € ug + W2P(Q) N W, 2(Q), we get
Lup — Luin LP(Q), and because of Lemma 9.17 of [G-T], up to extracting a subsequence,
we have up — u in W22(Q).

We claim that for a subsequence (still indexed by h) the conclusion holds. To prove the

claim, we first notice, by the Convergence lemma of [Ei], that

Qh(z) = f(il?,’ulh(iﬂ),L’LLh(:E)) - f(a:,u(:c),Luh(m))

converges to zero in measure. Extracting a subsequence we may suppose that gp(z) — 0

a.e. in {). Using the growth condition on f we deduce

|gn(2)] < aa([u(@)” + |un(2)l? + 2[Lun(2)?) + 26(z). (3-2)

Since the family of |up|?, [Luy|?, b € N, is equi-integrable, the right-hand side of (3.2) is
equi-integrable too. By Corollary 1.3.VIII of [E-T] we conclude that g5, — 0 in L*(Q). In

particular:

lim {/S;f(:c,uh(a:),Luh(m))dm——‘/Qf(:z:,u(a:),Luh(:c))dm] =0,

h—+oco

which together with (3.1) we finally obtain

Lm / f(z,up(z), Lup(z))de = / *(z,u(z), Lu(z))dz. H
h—+oo Jq : Q

Remark 3.4. The previous theorem improves the results established in Theorems 3.1.IX
and 4.1.IX of [E-T]; in Theorem 3.1, the authors consider integrands of the form A(z,¢) +
g(z,u) with g(z,-) convex, whereas in Theorem 4.1 they do not prove that sc™(w —
W?P)F = H (see Remark 4.1. IX of [E-T]).

We next present a refinement of the preceding theorem that admits the functional be
defined in an affine closed subspace of W2P N WU1 'P. Thus, we obtain a generalization
to that established in [E-T]. The proof involves a technique widely used in the theory of
I'-convergence ([DM, Bu2, [Bu-T]] and references therein).

Theorem 3.5. ([F5]) Assume V to be a closed subspace of WP N W, P containing W2**
and L, defined as before, be a strictly elliptic operator in Q. Then sc;, (w — W?P?)F = H.

seq
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More precisely, for every u € ug + V, there ezists a sequence (uh) in wo +V such that
up — uin W2? and

h—-+4o00

lim /;zf(:v,uh(a:),Luh(:c))dm=‘/Qf**(a;,u(a:),Lu(a:))da:.

In particular,
sem(w — W2P)F(u) = / £ (2, u(2), Lu(e))dz  Vu € g + V.
Q

Proof. Clearly, as before H is sequentially weakly l.s.c. in W?2P, So that,

H(u) < scppq(w — W2P)F(u) = min{]ll;minf F(up) :up — v in Wz’p} Yu € W2P(Q).

In order to prove that the last inequality is, in fact, an equality, we shall prove the following:
given any v € W?? and ¢ > 0 there exists a sequence (up) in W2P such that up — u in
W2P(£) and

%minf F(up) < H(u) +e. (3.3)

If w & uy + V the inequality trivially holds, so that we may assume u € uo + V C
uy + W22 N Wol’p, applying the previous theorem, we obtain the existence of a sequence

(up) in uwy + WP(Q) N Wy P(Q) such that up, — u in W2?(Q) and

ff**(m,u(w),Lu(m))dm: lim /f(m,uh(:n),Luh(m))dm (3.4)
Q Q

h—+o00
Let us fix a compact subset K of Q, setting § = dist(K,80) > 0, we consider the sets
A;, 1 =1,...,v defined as follows: Ay = IntK, A; = {:13 € R" : dist(z,K) < -ll—f-} and
functions ¢; € C(A4;) such that 0 < ¢ < 1in R", ¢, = 11n A1 and |D%p| <
M(%)!al |a| < 2 where M is a fix positive constant. Define wir = piun + (1—¢)u,
clearly w; p € ug + V for every I =1,...,v and Vh € N and wi, — u in W2? for every .
On the other hand, since Lw;, = Lu + ¢i(Lup — Lu) 4 (un — u)Lo; — c(z)pi(up —u) +

> (@) [(DjSOI)Di(uh —u)+ (Dip1)Dj(up — u)} , we have

Lﬂwm@HMme=/_fWMMJMMW%/ f(e,u(e), Lu(z))da-+

A Q\A;

+/  fewin(e), Twia(e))de <
A4
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< [ foun(e) Lune)de + [ f(ou(e), Lu(=))dot
Q

Q\K

""/ ) f(z,wi (), Lw p(z))de. (3.5)
A\di-1

We set S; = A;\ A;—; and let us estimate the last integral, by the properties of ¢; and

assumption (f3):

Ip= | flz,win,Lwyp)de <
S

<27lay [ Julfdz+ e f |Lu|Pdz + c2 / |Lup — LulPdz + c3 / lur — ulPdz+
s s, S S

+ c4/ Z |D;up — DiulPdz + [ B(z)dz,
Sty Sy
where ¢;; 2 = 1,...,4 are positive constants with ¢1, c2 independently of §,v. Then,

1 v
minIth—E Iy <
i<i<v ' v =1 '

<pi / fulPde + & / |LulPde + = / |Lun — LulPdu+

+ 2 lup —ulpdm+—-— ZID uh—Dulpd:z:—l— ! B(z)dz
vV Jo\x O\K Q\K
Since Lup — Lu in LP, ||Luy — Lul| is bounded in L?, say by cy. Returning to (3.5), we
obtain for some I, € {1,...,v}:

/‘f(:c,wlh,h,szh,h)d:l:—— min /‘f(m,wlyh,Lwl,h)de
Q

1<I<y

= / f(z,up, Lup)de + f(z,u, Lu)dz + 2P~ 12 H [P+
Q\K

CpC2

+ 2Ll + 22+ 2 [ s —upder
et Dt — D*ulPd - .
+V/Q\K§i:| w — Diuftds + ]l

By a standard diagonalization procedure, we have the existence of a sequence (wp) con-

verging weakly to w in W2?(Q). By (3.4) and recalling that u;, — u in W*?, we get

53



liminf/f(a:,wh,l}wh)dwﬁ/f**(:c,u,Lu)d:c+
Q Q

Tu)d op=182 1 11
i (o, Lu)ds + 27 22 fulfr+

Q\K
cpC2

+ S|l + 22+ 28]l

Choosing K and v such that

1
fla,u, Lu)de < 5 and — (2 ealull’ +ellLull” +eoes +[1811) < =
Q\K v 2

we conclude that

lgminf F(wp) < H(u) + ¢,

which proves scy (w — W2P)F(u) = H(u). B

As a consequence of the very definition of lower semicontinuous envelope, we have

inf - (w—W?*P)F(u) = _inf :
werml o 8Ce(w F(u) = jnf F(u)
Therefore,
ueilﬁg_‘__‘/g;f(m,u(a:),l)u(:v))da: = ueiﬁa‘_/s;f**(a:,u(a:),Lu(:c))dm. (3.6)
So that, if ||L(+)||, is @ norm on V equivalent to the usual one | - ||l2,p in W*?, then the

right-hand side of (3.6), because of ( fa), admits at least one solution. Consequently, for

every solution @ of (P):

min Lf**(w,u(m),Lu(m))dm, (P)

uEug+V

there exists a minimizing sequence (uy) of (P) un € uo + V such that up — @ in W?2? and

h—-+o0

lim /Qf(:c,uh(az),Luh(a:))dm:Lf**(m,ﬁ(m),Lﬂ(m))dm.

The above theorem is still valid if f is supposed to satisfy, instead of (f3), condition (f3):
(fi) there is a positive constant o such that 0 < f(z,u,£) < a(|u|P + |€[P) + B(z) for some
Bin L.
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Thus, in particular, (3.6) still holds. The proof of the next theorem is similar to that given
in [A-DC].

Theorem 3.6. Assume f satisfies (f1),(f2) and (f3), L,V,Q as in the preceding theorem.
Then, sc;,,(w — W*P)F = H. In particular (3.6) holds.

Proof. Let us apply Theorem 3.5 to the function F. corresponding to f.(z,u,€) =
f(z,u,€&) + €|€|P, € > 0. Thus we obtain

SC.:eq(w — V[/’Z,p)FE =sc (w— I/VZ’I’)FE = H,,

where H, : W?? — [0, +oo] is defined by

/ X (z,u(z), Lu(z))dz if vEu+V
H. (u) = Q
+o0 otherwise.

Since fX*(z,u,€) = f**(z,u,&) + €|¢|?, we have

lim sc;, (w—W*P)F,(u) = lim H.(u)= H(u).

e—0t e—0t

On the other hand, F(u) < F.(u) Ve > 0, so that, scj, (w — W*P)F(u) < scj,

seq seq
W?P)F (u) = Hc(u). Therefore, sc;,,(w — W2P)F(u) < H(u). H being sequentially
weakly ls.c. not greater than F' we deduce H(u) < sc;,,(w — W??)F(u). Consequently
H(u) = sc,,(w — W2P)F(u). B

seq

(w -

Remark 3.7. Since f is not coercive in Thm. 3.6, we cannot conclude that sc™(w —
W2P)F(u) = sc;,q (w — WP)F(u).

Remark 3.8. We point out that Theorems 3.3, 3.5 and 3.6 as well, can be extended to
the case of differential operator of order 2k with the usual assumptions on the coefficients.
Here, the relaxation takes place in the weak topology of W2¥:?, and the closed subspace V
is such that WOZk’p CV Ccwern W(f’p and the functions uj arised in the proof of Thm.
3.3 will be the solutions to the equations (see [Ag-D-N]):

Luh = VUp
6nuuh

on™

=0 on N m=0,1,...,k—1,
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which belongs to W2k» 0 WP,

We finally present a result concerning the existence of minima for non-convex func-
tionals depending only on the Laplacian. The proof outlines the different scope of the
Relaxation method in the study of non-convex minimization problems in the Calculus of

Variations. In particular, we do not require a boundedness from above for the integrand.

Theorem 3.9. Assume p > 1, h be a Borel lLs.c. (not necessarily convez) function

satisfying o|é|P < h(€), a > 0. Then

min / h(Au(z))dz = min / r**(Au(z))dz = meas(£2)R"*(0). (3.7)
weWP(Q) Ja w€WFP(Q) Ja

Moreover, the minimum on the left-hand side of (3.7) is achieved in a non-negative Woz’q(ﬂ)-

function for all ¢ €]1,+oo[. In particular, such a minimum belongs to CLr(Q) for all

r €]0,1[ by a Theorem of Morrey (see [Bré]).

Proof. Indeed, clearly for every u € W02 "P(Q)), one has

L B (Au(z))ds > meas(Q)R™(0).

This gives the equality on the right-hand side of (3.7) and both equalities if A**(0) = h(0).
In case h**(0) < h(0), by the growth assumption on k, we have that 0 = A& + (1 — A)és,
R**(0) = AR(&1) + (1 — M)R(&2), for some X € [0,1], &1 < 0 < € such that h™(&;) =
h(£;) i = 1,2. On the other hand, setting By = B(0,1): the unit open ball in R",
consider the family of closed sets of the form a -+ eB; contained in Q, where e € R", £ > 0.
This family covers § in the sense of Vitali, and hence by the Vitali covering Theorem,
there exists a finite or countable disjoint seqvuence a; + €; B, of subsets of Q such that
meas(ﬂ \ Ui(a; + aiBl)) = 0, so that meas() = > .elwy. Let uy € Wuz’p(Bl) be the

radial function as that considered in [C-F, F3] with obvious modifications, that is

Nun(e) ¢ if =€ B
Ut ) =
’ ¢ if @€ B\ B,

where By = B(0,)) and meas(B)) = Ameas(B;). Obviously uy € Woz’q(Bl) for all
g €]1,+oo[ and up > 0 in B;. Let us define
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u(z) =

z—a;, . -
e2uo( ) if z€a;+¢e;B;
0 otherwise.

Then 4 € W2'(Q) for all ¢ €]1, +oo| and

/Q h(Ai(e))de = Z / . A(Auo(E=% ) de = Z /B Re

- Z (/B h(é) dz+/1\B fz)dz) Zs"h**

= meas(N)h**(0) = min R (Au(z))dz,
weWi?(Q) Jo

which completes the proof of the theorem since A** < h, the function @ is a minimum for

the left-hand side of (3.7) and satisfies our requirements. H

Problems like (3.7), in a more general context, have been dealt in [A-T, Ra, R4] and
recently in [C-F, F1, F3] for functionals with radial symmetry.
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CHAPTER 4

The Lack of Lower Semicontinuity in the Calculus
of Variations

As we have mentioned in the introduction of this thesis, in the study of minimization
problems in the Calculus of Variations, the lower semicontinuity (l.s.c.) property, or a
weak version of it, plays a prominent role in the Direct Method. Recently, non-lower
semicontinuous functions or non-convex integrals (for the so-called scalar problems) are
being active areas of investigation (see [C1, C2, M2, Ra, R3, T2] and references therein).
We are not aware of any general theory in this direction. However, some existence results
of minima for non convex integfals have been given in particular cases, namely, when the
integral can be split into the sum of two integrals; one that depends on the derivative of
higher order (e.g. gradient, Laplacian), and the other depending on the state function.
Thus, people actually, consider sequentially weakly continuous (s.w.c.) perturbations of
integrals that are not sequentially weakly lower semicontinuous (s.w.ls.c.), i.e. the non
convex part. Then, under ad hoc assumptions on the continuous term, one gets the desired.
Purpose of this chapter is to contribute for a better understanding on the phenomenon
that arises when the Ls.c. or the convexity property fails. In the next section (Thm. 4.2),
given a non-ls.c. function, we show the existence of non-negative continuous functions
(perturbations of the first), such that the perturbed function does not attain its minimum.
Moreover, such a perturbation can be chosen as small as one wants under some additional
assumptions (Thm. 4.4 and Remark 4.6). The argument used here, is similar to that in
[M2], where the author establishes a relationship between the non existence of minima for
non-convex integrals and the uniqueness for the convexified (relaxed) integral, which is not
strictly convex. .

In Section 2, we deal with the simplest integrals depending either of the gradient or of the
Laplacian. For either case, we are able to construct continuous perturbations in an integral
form (Thms. 4.11 and 4.13). However, we have to point out the difficulty presented here

since we do not allow the boundary datum to vary as the one which occurs in [B-Mu,
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Theorem 5.1].

4.1. The Abstract Setting

In this section X is a metric space. For r > 0, B(u,r) denotes the open ball in X
centered at v with radius », B(u,r) the closed ball.

Proposition 4.1. Let ® : X _ [0,400] be a lower semicontinuous function, let ug be in

X such that ®(ug) < +oo. Then there ezists a non-negative continuous function ¥ defined
in X such that ¥(u) < &(u) for v € X and ¥(ug) = (uy) > ¥(u).

Proof. Set for every n € N a, = inf {@(u) tu € B(uo,%)}. Clearly a,, > 0 and (a,) is
a non decreasing sequence bounded from above by ®(ug). The lower semicontinuity of ®
implies that a = ®(uy) = sup,, a, = lim, a,. Let us consider for every n € N a continuous
function ¢, defined in X satisfying 0 < wn(u) <1lforuin X, ¢, =1in B(uy, n_-l|—'1') and
¢n =0in X \ B(uo, ). Define the function ¥ as follows

“+oo

> (@nt1 = an)pnt1(u) + a1, if u € B(uo,1/2)
\Il(u) = n=1
arpi(u) - otherwise.

This function will satisfy our requirements. First of all, notice that ¥ is well defined: it
becomes a finite sum for every  in B(ug, 3), ¥(u) = 0in X \ B(ugp,1), ¥(uo) =a = D(uy)
since pn11(ug) =1 for all n, and 0 < ¥(u) <a = U(uy) Vue X.

(a) We shall prove ¥(u) < ®(u) Vu € X. If & & B(uo, 1) then either ¥(a) = 0 or ¥(2) <
a1, therefore ¥(#) < ®() whenever @ ¢ B(uo,1). If @ € B(uo, LY\ B(ug, 71;1;—5) for some

TLo

no € N ng > 2, then w,11(%) = 0 Vn > ng. Sothat, ¥(d) = Z:(’:—il (ant1 — @n)Pns1(@)+
a1 < an, < ®(u) for all w € B(uy, ;ll—a), in particular we obtain ¥(4) < an, < ®().

(b) Let us now prove the continuity of ¥. The continuity is obviously verified at @ if
0 < d(it,up) < & or d(@,ug) > 3. On the other hand, it is not difficult to proveit at @ with
d(@,uo) = 1. We only check it at uo. Let € > 0, then by the convergence of (a,) there
is i € N such that 0 < @ — a, < ¢ Vn > 7i. The definition of continuity at u, is verified
by taking § = =+5. Indeed, if u is such that d(u,up) < &, then pu(u) =1forn =1,...,7.

Hence,
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U(u) — ¥(uy)

= l Z (a'n+1 - a‘n)Son-i-l(u) +a; — [Z ((Ln+1 - a'n) + a’l]

n

=Y (ant1 = an)(1 — pnta(u)) = D (an+1 = an)(1 = onia(u))

n n>mn
< E(an+1—an)?a_aﬂ <Eg,

n>n

which proves the continuity at up, and the proof of the Theorem is complete. B

We denote by sc™F the lower semicontinuous envelope (or relaxed function) of F,

which is the greatest lower semicontinuous function majorized by F° (see Chapter 1 of this

thesis or [Bu2], [DM]).

Proposition 4.2. Assume the function F : X — [0,+o0] is not lower semicontinuous at
some point uy such that F(ug) < +oo. Then, there exists a continuous function G : X —

R, such that the minimization problem:

min(F(u) + G(u)) (P)

has no solution.

Proof. Since F is not lower semicontinuous at wug, we have F(ug) > sc™F(up) > 0.
Applying Proposition 4.1 to sc™ F, we obtain a continuous function ¥ such that 0 < ¥(u) <
scF(u) in X and ¥(up) = sc”F(uo) > ¥(u) for all w € X. Let us define the function
G by G(u) = =¥ (u) + sc” F(uo) + d(u,up). Clearly G is continuous, G(u) > d(u,up) >0
and G(ug) = 0. On the other hand, for any v in X one has

sc” F(u)+G(u) = sc™ F(u)—¥(u)+sc™ Fug) +d(u,up) > s¢” F(ug) = sc” F(ug)+ G(ug)-
This implies that u is a solution to the problem

ixéi‘l\l_(sc'"F(u) + G(u)). (P)

Actually, one can show that ug is the unique solution. Let us prove that for the function G

as above, the conclusion of the proposition holds. Suppose the contrary: let u be a solution
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to problem (P), then a well-known result (for instance [DM, Theorem 3.8]), asserts that
min(F(u) + G(u)) = minsc™ (F 4+ G)(u) = min(sc™ F(u) + G(u)). Therefore, u is also a
solution to problem (P). Hence u = ug, thus F(uy) = sc™ F(uy) reaching a contradiction.
|

Remark 4.3. The previous proposition has an equivalent formulation:
Let F : X — [0,+00] be a function such that problem (P) has solution for every continuous

function G : X — R. Then F is lower semicontinuous.

Theorem 4.4. Let F': X — [0, +o0] be non lower semicontinuous at some point uy such
that F(uy) < +oo. Then , given any n > sc” F(up) —inf F' > 0, there ezists a continuous
function G, such that 0 < G,, <7 in X and problem (P,), i.e. problem (P) where G is

replaced by G, admits no solution.

Proof. The function G, defined by G, = G A n with G given by Proposition 4.2, satisfy
the requirements of the theorem. In fact, if on the contrary there is a function % solution
to problem (P,), then @ also is a solution to problem (P,), i.e. problem (P) with G = G,.
Therefore since 0 < G, < G and G(up) = 0 we obtain sc™ F(%) + Gp(7) < sc™ F(ug) +
G(uwy) = sc " F(up) < n+inf F = np+infsc™F < 5+ sc”F(i). Then G,(a) < 7, i.e.
G,(@) = G(@), by recalling that u, is the unique solution to problem (P), we conclude
that % = uy. Consequently sc™ F(uy) = F(up), which is a contradiction because u is a

point where F' is not lower semicontinuous. &

Remark 4.5. That problem (P) admits the unique solution uy: the point just where F
is not l.s.c., was the main fact used in the proof of Proposition 4.2 (a similar argument
has been used in [M2] in a very particular situation, namely for functions of integral
type). It turns out that problem (P,) has at most one solution: uy. This property fails
if 0 <7 < sc”F(ug) —inf F, by assuming u¢ is not a minimum for sc™ F', otherwise see
Remark 4.6 below. In fact, suppose there is a function G, such that 0 < G, < nin X.
Then, inf(sc™F + Gy) <infsc™F 4+ n =inf F + 71 < sc” F(ug). Thus, there exists % in X
such that sc™ F(z) + G, (%) < sc” F(uy) < s¢™ F(uy) + Gy(uy), i.e. uy is not a solution to
problem (P,).

Remark 4.6.- Assume in the previous theorem, that uy is a minimum for sc™F in X.
Then, the set
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G = {G € CY(X,[0,+00]) : G(uy) =0 problem (P) admits no solution}

is dense in the set of those functions in C%(X, [0, +oo[) vanishing at uy. Indeed, let G > 0,
G(uo) = 0 be in C'(X,[0,400]) and let n > 0. Then F' + G is not a lower semicontinuous
function at ug. Applying Theorem 4.4 to the function F' 4+ G, we get a continuous function

Gy, Go(uy) = 0 satisfying 0 < Gy <7 in X such that the minimization problem

min(F(u) + G(u) + Go(u))

admits no solution, thus G+ Gy € G and 0 < (G(u) + Go(u)) — G(u) < 5. This proves our

assertion.

4.2. Some Concrete Cases

In this Section we are concerned with the existence of functions g such that, for a

given non convex function h, the following problem

g [ h(Au(e))ds + [ aleu(@)ds, (P)
Q

ue‘\ Q

admits no solution, where X is, depending if A is either the gradient or the Laplacian
operator, W, *() or W2?(Q).

We start by studying the case h(Au) = (1 — |Aul|)?, g(z,u) = |u|*>. It is well-known
that the corresponding problem (P) has no solution. One may prove it in the following
way: suppose there is a function g, solution to (P), being min P** = min P (by (3.6)
of previous chapter), uy also is a solution to (P**). But, v = 0 is the only solution to
(P**), thus [, h(0) = f, h**(0), which gives a contradiction. The main fact used here is
the uniqueness of solutions for the problem (P**). A similar argument has already been
employed in [M2], although in a different context. The previous example offers no difficulty
because 0 besides being in HZ, [ h**(0) < [ h(0) and 0 € 0h**(0). If we consider a general
non-convex function h (eventually h**(0) = h(0)): are we able to construct a function
uy € W7 such that [, h**(Auy) < f, h(Auy) and the set valued map @ — 8h**(Auy(z))
admits a W?2P-selection?. Suppose the answer be affirmative, then, for some p € W?2?

with p(z) € 0h**(Auy(z)), by definition of subgradient and integrating, we have
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Ah**(Au(ﬁ))dm—LAp(w)(u(m)—uU(m))dm _>_‘/;2h**(AuU(:c))d:z:, (4.1)

i.e. uy is the only solution for the problem (P**) with

9(z,u) = —Ap(z)(u — uo(2)) + lu — uwo(2)[P. (4.2)

Notice that, if A is, as in the example, g reduces |u|? for uy = 0, p = 2. Of course, in

order to get [h**(Aug) < [ h(Auy), Auy must belong, in a subset of ) having positive

measure, to the region where h** < h.
We cannot expect that g be simpler than (4.2) for any given uy € VVU2 P satisfying only
[ h**(Auy) < [h(Auy) for which uy continues to be a solution to the corresponding

problem (P**), as the following proposition and the discussion presently show.

Proposition 4.7. Let v € Woz’p be given, setting g(z,uv) = |u — v(z)|?. Then v is not a
solution to (P**) iff

sup fh (Av) — fh (Au) _
uEW"oz’P\{v} f Iu - »UIP

+ o0

The proof is direct.

Without loss of generality we may assume 0 € Q. Thus, B, = B(0,¢) CC {2 for some e > 0,
let £, > 0 such that A**(¢) < h(ty) and let us consider uy € W(,z’p(BE) with Auy € {—%o,%0}
(as in the introduction of Chapter 2 with obvious changes), we extend uy by zero outside
B.. In the same way, we consider u, € Woz’p(Be) with Au, € {—ty — %,to + %}, and
extend it by zero outside B.. Then,

fQ h**(Auy) — fQ h**(Aun)

|lwn — uol?

kK *ok 1 sk x )
> cwr-1[1 (cto) =Wt = 3) A0 (t) = 7 )

1

3=

n

(4.3)
where we have used ||u||y2» < C||Au||rs for some constant C > 0 if u € WP N W,? (for
instance [G-T]). Letting n — +oco in (4.3), the expression in brackets goes to h*'(—ty) —
h**'(ty) € R. As a consequence, the right-hand side tends to +oco. By the previous
proposition, with g(z,u) = |u —uy(z)|?, uo is not a solution to problem (P**), proving our

assertion.
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In this paragraph, as in those which follow, |- |, {-,-) stand for the Euclidean norm
and the inner product in R", respectively. For a given function f, we recall that 9f(¢) is
the subdifferential at £: it is the set of subgradients of f at & (see [E-T, Chapter I]). To

prove our main theorems, we shall need the following auxiliary lemmas.

Lemma 4.8. Let ¢ : R — R be a convez function such that ¢(—t) = ¢(t) for t € R. Then
(a) #(t) > $(0) Vt € R, and ¢(t1) < ¢(t2) whenever 0 <t < ty.

(b) ¢_(0) < 0 < ¢, (0), i.e. 0 € BH(0).

(c) ¢! (1) < ¢ (t2) < ¢! (t2) whenever t; < ty. Therefore, if ¢'(to) = 0 for some ty > 0,
then ¢(t) = ¢(0) for t € [—to,t0]. |

Proof. Since ¢ is an even and convex function, we have ¢(0) < 4(¢) + 36(—1) = ¢(t).
The second part of (a) follows from the assertion above, since one has ¢(t1) < a¢(0) +
(1 — a)¢(t2), where we have written ¢; = a0 + (1 — a)t2. It is well-known that the right
and left-hand derivatives of any convex function exist everywhere. For ¢ > 0 (¢ < 0), using

(a) we obtain

0< q5(t);q§(0) (2)7

letting ¢ — 40 (¢ — —0), part (b) is proved. Part (c) is left to the reader (or see Chapter
I of [P-S]). &

Lemma 4.9. Let ¢ as in Lemma 4.8 and let f : R®™ — R be the function defined by
£() = $(jal). Then (o) 87(¢) < {€* € R™: 1% € 0(Ig)}. () IF (¢7,€) = I¢ll¢"| and
7] € 9¢(I€]) we have £ € DF(£).

Proof. (s) Let & be in 8£(¢). Then f(n) > F(¢) + (€0 — €) ¥n € R". Thus, g(jt]) >
BIE1) + (€, 1) — (€7,€) ¥n € R"\ {0}, V¢ € R. Recalling that [¢*] = sup { (€7, %) : @ €
R™\ {O}}, the last inequality implies ¢(t) > @(|€]) + |€*|(]t] — |€]) Vt € R. Therefore,
¢ (l¢) < 1¢] < ¢, (I¢]), which proves

8f(€) C {¢" e R™:[¢"] € 8g(l¢]) },

since 8¢(r) = [¢_(r), ¢ (r)].
(b) Let £,¢* be in R™ such that (£*,£) = |€]|€*| and |€*] € 0¢(]|€]). We have
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¢(s) > (I€]) + 1€71(s — [€]) Vs € R. (4.4)

But |¢*] = sup {(E*,Ti—l) 2z € R™\ {0}}, then the last inequality, because of (£*,§) =
|€]|€%|, can be written as ¢(s) = o(|€]) + (5*,|—z~l)s — (¢*,€) Vs > 0 Vo € R" \ {0}. Thus,
by setting s = |z| > 0, we obtain

Slal) > SIED+ (12— ) Va e RP\ [0} (4.5)

In virtue of (4.4), (4.5) holds for all z € R", so that, £* € 9f(¢). &

Lemma 4.10. Let o : R — R be a measurable, locally bounded and odd function. Then,
given € > 0 and C > 0, there ezists a function ¢ in C([0,¢€]) such that
_C<ot)<C i te ol
e(t)=0 if 0<t< 6,8 <t<e
p(t)=C if 6 <t <8 and p(t)=—C if 6. <t <0

forsomeO<51 <52<63<54<55<56<€, and
/ o(p(r))r"tdr = 0. (4.6)
0

Proof. Let 7, be an odd and C*°-function in [-—E—;—, E—;] satisfying the following properties
(see figure 1)

_C <) <C ifte {—%—,52—]

n

pi(t) = 0 if —%Sts—&,&sts%

for fixed 0 < 81 < 82 < 63 < % Then, by putting ¥2(t) = ¥1(t — %) we have

/Os" o(2(t))dt = /05" o(¢1(t — f;-))dt = /jl o (1 (£))dt = 0

2
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since o 0, is an odd function. Similarly, for the function ¢(r) = 92(r™), an easy compu-

tation shows, that
/ o(e(r))r™tdr =0,
0

which proves our lemma with §; = {/ %i — by gy bipg = 7/ % + §; for i= 1,2,3. H
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In the remainder of this Chapter, 1 < p < 4+c0, h : R® — R is a continuous function such
that
(k1) R(€) = h(|€]) for some even continuous function A defined in R;
(h2) there are positive constants a; < ay such that oy |€|P < A(€) < ap(|€]P + 1).
In what follows, we denote by A* and A*™* the polar (or conjugate) and bipolar function
of h, respectively. For theirs properties we refer to [E-T]|. We just recall one: A** is the
largest convex function not larger than h. As a consequence of (hy) h** is also continuous.
The set 2 will be bounded and open set of R™ with smooth boundary 9.

We notice that (h;) implies the existence of an even and convex function ¢ such that

h**(§) = #(I¢]) and h*(&) = ¢7(|¢]) for all £ € R™.

The theorems in the preceding sections have been established in terms of the lower semi-
continuity of a function, here by dealing with functions of integrals type, our theorems will
be established by means of the convexity of the integrands.

We have the first main result of this section:
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Theorem 4.11. [F4] Assume the function h be as above. If h is not convez, in the sense
that h**(&y) # h(&y) for some &y, then, there ezists a function g: ! x R — R, continuous

in its second argument, such that the following problem

min fh(Vu(:c))d:z:+/g(z,u(m))dm, (P1)
Q Q .

wEWP(Q)

has no solution.

Proof. Set ty = |€o] and let us fix zo €  and € > 0 such that B. = B(zg,e) CC . Let
0 <6 <68 <68 < 6 < e and let us consider a function ¢ in C*([0,¢]) as in figure 2
satisfying
0 < o(t) < ¢'(to) if t €[0,¢]
gﬂ(t) = ¢’(t0),lf 52 S 1 S 63
o) =0, £0<t<8,6<t<e

figure 2

Pt

B o R

{ 2 3 4

Since ¢'(ty) € 0¢(to), that is, 1y € (86)1(¢'(to)), by recalling that (9¢)™" = 09", 1y €
8¢*(4'(t0)), so that it is possible to choose a function o € L2 (R) selection from the map
s — 8¢*(s) such that o(¢'(tv)) = to, for the existence of such a measurable selection we
refer to [Ku-RN], and by assumption (k) it is in L7, after a modification (if necessary) we
obtain the selection desired. Thus o(p(t)) € 8¢*(¢(t)) or, equivalently, ¢(t) € 0d(o(v(t)))

for t € [0,¢]. We now consider the function

uy(e) = ui(|z — zy|) for = € B(z,¢)
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where u; is the solution to the equation

uy(r) = o(p(r)) 7€ [0,¢]
Ul(E) = 0.

From the definition of uy and o, it follows that uy € W,'?(B.) and |Vuy(z)| = |o(¢(|z -
zy]))| = o(e(]z — z¢])) for © € B.. We still denote by uy the function extended by zero
outside B.. Clearly ug € Wé ?(Q), and by the choice of {y we have

fQ h** (Vo (2))de < /Q h(Vuo())dz. (4.7)

On the other hand, we know that ¢(|z—z¢|) € 0¢(c(p(|z—=z¢|)) forall z € BE. Then using
Part (b) of Lemma 4.9 we conclude that ¢(|z — mul)lz:zgl € Oh™(Vuo(z)) ae. z € B..
Calling py the C-function such that pj(r) = ¢(r) po(e) = 0, and if py(z) = po(lz — z¢])
then gy € C°(B.). We extend this function by zero outside B(zy,¢), to obtain a function,
still denoted by py defined in §. Taking into account that 0 € Jh**(0) (see Lemma 4.8)

and the properties of ¢, we obtain V(z) € 0h**(Vuy(z)) a.e. z € (1. Therefore,

R**(Vu(z)) > h**(Vue(z)) + (Vpo(z), Vu(z) — Vuy(z)) for a.e. z € (4.8)

for any function u € W, (Q). On integrating (4.8) over {2, and by using Green’s Formula,

we obtain

‘/(;h**(Vu(a:))_>_‘/g;h**(VuO(:v))dm—LAﬁg(m)(u(m)—uo(m))dm

for every function u € Wy ?(Q). Setting p1(z) = Ajo(z), the last inequality implies that

up is a solution to the relaxed problem

min / K (Vu(z))dz + / 9(z,u(z))dz, (Pr)
Q Q

uw€N,P(Q)

where g is defined by

g(z,u) = pr(2)( — uo(2)) + [u — uo()]?, | (4.9)

which is continuous and strictly convex in u, so that uy is the unique solution to problem

Pr*). Let us prove that problem (P;), with g as above, does not admit any solution.
1 g
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Suppose the contrary, i.e. let u be a solution to problem (P;), since min Py = inf P; (see
[E-T, Th. 3.7 of Chapter X]), u is also a solution to problem (P;*). Therefore, u = uy be-
cause of the uniqueness of solutions to problem (P;*). It follows that Jo P (Vuo(z))dz =
Jq B(Vuy(z))dz reaching a contradiction with (4.7). H

Remark 4.12. In Thm. 5.1 of [B-Mu] a similar result was established, but here we had
some difficulties to construct continuous perturbations of integral type since we do not
allow the boundary datum to vary as the one which occurs in [B-Mul, in other words, the

space where we seek the minimum is fixed from the beginning.

Theorem 4.13. [F4] Let h : R — R satisfies hypothesis (hy) and (h2). If B**(to) # h(tv)
for some 1y, then there ezists a function g :  x R — R, continuous in its second argument

such that the minimization problem

min fh(Au(:z:))dm—l—/g(m,u(m))dm, (P2)
Q

wEWIP(Q) Q

has no solution.

Proof. We assume t; > 0, otherwise we consider —t,. We proceed as in the proof of
Theorem 4.11. First, fix zp € Q and € > 0 such that B. = B(zg,e) CC Q.

(a) Let us assume h**'(t;) > 0. Since &y € (BR**)"1 (A (ty)) = OR*(h**'(t)), and 0 €
(8h**)~1(0), we can take any measurable, locally bounded selection ¢ from the map s
Oh*(s) = (6h**)~(s) verifying o(h**'(ty)) = to and o(0) = 0. After a modification (af
necessary) we can assume, because of the properties of A**, that o is an odd function.
Consider the function ¢ given by Lemma 4.10, with € = R**'(ty), and let uo be the
solution to the Dirichlet problem

Aug = o(p(lz = 2ol))

(4.10)
uy =0 on 0B..

Then uy € Wz’p(BE)ﬂWOl’p(BE) and in virtue of (4.6), we obtain 38"7:’ = 0 on 8B., thusug €
WZP(B.). By the defintion of o, we have o(r) € Oh**(a(p(r))) 7 € [0,¢], or equivalently
o(|z—zo]) € OL**(o(p(lz—20))) = € Be, iee. o(|lz—=zo|) € OR**(Auo(z)) = € Be. Setting
¢(z) = p(|z — zo]) for = € B, and ¢(z) = 0 for z € { \ B., we have ¢ € C§°(£2). We also

extend uy by zero outside B., then uy € Woz’p(ﬂ) and by the choice of ¢y we have
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f B+ (Ao (2))d < / h(Auo(=))da. (4.11)
Q Q

Recalling the properties of h** and ¢ we conclude that ¢(z) € 0h**(Aug(z)) a.e. z € Q.
Hence, for every u € W.'P(Q):

R (Au(z)) > h**(Aug(z)) + ¢(z)(Au(z) — Aug(z)) for ae. z €

On integrating the last inequality over (! and using Green’s Formula twice, we obtain

Ah**(Au(m))ZAh**(Auo(w))dm+f Ad(z)(u(z) — ug(z))dz

Q

for every function v € W>?(Q). This shows that ug is a solution to the problem

min /;Zh**(Au(m))dw+Lg(m,u(m))dm, (Ps™)

weWFP(Q)

where g is defined by

g(z,u) = p1(z)(v — wo(2)) + [u — wo(2)/? (4.12)

and pi(z) = —Ag@(z). Obviously g is a continuous and strictly convex function in u.
Therefore ug is the unique solution to problem (P;*). It remains to prove that problem
(P;) has no solution. If it is not so, any function u, solution to problem (P,), is also
a solution to problem (P;*) (see (3.6) of Chapter 3). Then u = wuy, thus we obtain
Jo B (Auy(z))de = [, h(Aug(z))dz, which is a contradiction with (4.11).

(b) If A**'(ty) = 0 we take any (for instance, radial) function u; € WZ2P(B(0,¢)) whose
Laplacian takes values in {—tg,%o}. Then, we define the function u, as follows: u¢(z) =
uy(z — zp) for ¢ € B. = B(zo,¢) and zero otherwise. Because of (a) and (c) of Lemma
4.8, we have for every function uw € Wo7(Q), h**(Au(z)) > h**(Aug(z)) = h**(0) for a.e.
z € Q. This implies that problem (Py*) with p; = 0 in (4.12), has the unique solution uy.
A similar reasoning as before allows us to conclude that the corresponding problem (P2)

has no solution. &

Remark 4.14. The function g in the two previous theorems can be chosen non-negative.
Indeed, it suffices to consider g(z,u) = g(z,u) V 0 with g as above. On the other hand,

Theorem 4.11 admits the following equivalent formulation:
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If the minimization problem

min /Q h(Vu(e))de + L g(;,u(m))dm

w€ P (Q)

has solution for every function g: Q x R — R, then h is convez.
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CHAPTER 5

Some Applications of the Liapunov theorem

Revisited

Let F : [a,b] — 2%" be a measurable multifunction with nonempty values. Its multi-

valued integral is then defined as

b b
/ F(z)dz = {f f(z)dz ; fe L', f(z)e€ F(z) a.e.} . (5.1)

The convexity of this integral, together with other properties, was proved in Aumann’s
classical paper [Aul].

When F is defined on a multidimensional space R"”, in addition to the Aumann integral
fR"‘ F(z)dz over the entire space, one can consider the marginal distributions, obtained by
integrating F' along a family of paralle]l lines. More precisely, fix any unit vector v € R”

and call v* its perpendicular hyperplane through the origin. For every f € L*, the line

integrals
+o0
g(z') = / f(@' + dv)dA, z' et
—xD
define an integrable map from v! into R™. Given any finite family of unit vectors vy, ..., v},

in R", we define the joint marginal integrals of f as

+o0
[ rd i), sG)= [ fiegn vedest  52)
(v1yeyvk) o
When F : R® — 2R" is a multifunction, the set of joint marginal integrals of F' in the
directions of vy,...,v is defined as
/ FdA:{/ Fd\; fell, flo)eF(z) ae } (5.3)
(viyeery Uk ) (viyeensvk)
Since in (5.2) each function g; is defined on the n — 1 dimensional hyperplane vi", making
the obvious identifications one has
f Fdx C [L'@®R"Y Rr™) (5.4)
('U]_,-..,‘Uk)
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The aim of this chapter is to investigate the basic properties of the “multivariable Aumann
integrals” (5.3), pointing out some possible applications, in connection with the control of
the wave equation.

Our first theorems establish the closure and convexity of the set of joint marginal
integrals, and some properties of their extreme points. In turn, they imply a new version
of the classical theorem of Liapunov on the range of a vector measure, valid on a product
space. A key technical tool used in most of our proofs is the multidimensional Liapunov-

type theorem, recently established in [Br]:

Proposition 5.1. Assume fi,...,f, € L*(R"; R™), let p1,...,p, * R® — [0,1] be
measurable weights with 3" p;(z) =1, and let vy,..., v} be unit vectors in R"™. Then there
exzists a measurable partition {Al,...,A,,} of R™ such that, for every j = 1,...,k, one

has
+o00 V +oo
/ sz(:z: + 2vj) fi(2' + Avj) dA—Z/ 3 (& 25) fil@! + dvg) dX - (5.5)

for almost every ¢’ in the perpendzcular hyperplane v to vj, here, a.e. refers to the (n-1)

dimensional Lebesque measure on vi. As a consequence, we have

J

k k
L" ;Pi(w)fi(m)d:c = /Rn ;X-Ai(m)f,(a:)dm

For control systems governed by linear ordinary differential equations, without con-
vexity assumptions, the closure of the reachable sets and the existence of optimal controls
can be usually deduced as consequences of the closure and convexity of a classical Aumann
integral. On the other hand, for certain control systems governed by partial differential
equations of hyperbolic type, the validity of analogous results follows from [Br] and the
multidimensional extension of Aumann’s theorem proved in the present paper.

We shall not try to establish here the most general results in this direction. Instead, in
order to illustrate the basic method, in the last sections we consider the simplest linear
wave equation, with distributed control. In contrast with previous results in this direction
[Pul, Sur2, Sur3], we allow constraints to be placed on the entire boundary of the domain.

Exploiting the special structure of the Riemann-Green kernel for this particular system,
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we obtain a bang-bang theorem and an existence theorem for optimal controls without

convexity assumptions.

5.1. Multivariable Aumann Integrals

Theorem 5.2. Let F : R" — 28" be an arbitrary multifunction. Then, for any family of
unit vectors vy,...,vr € R", the joint marginal integral f(vx o) F d) defined at (5.3) is
a convez subset of [Ll(Rn_l; Rm)]k.

Proof. Assume that f; and fo are two integrable selections of F. Given any « € [0,1],
we have to construct an integrable function f, with f(z) € F(z) almost everywhere, such
that, for every 7 =1, ..., k,
+oo +oo +o0

/ afi(e! + dv;)d) + / (1= &)fal@' + Avj)dr = / f@ +w)dh  (5.6)
for almost every z' € v;L.
Applying Proposition 5.1 to the functions fi, f> and the weights p; = &, p2» =1 — o, we
obtain a measurable partition {Al, Az} of R™ such that, for every 7 = 1,...,k,

+co +oo
/ afi(z’ + Av;)dX + / (1 —a)fz(z’ + dv;)dA

—0 —00

+oo
- f X, (2 + o) fa(e! + Xos)dd + x , (&' + o)) fa(a’ + hvj)dA,

— 00

for almost every z’' € v;". The requirements (5.6) are thus satisfied by defining f as

f@) =x, @A) +x, (@)f(2). B

In the following, B0, p] denotes the closed ball centered at the origin with radius p,
while ¢6F(z) and eztF(z) denote the closed convex hull and the set of extreme points of

F(z), respectively. We say that the multifunction F is integrally bounded if there exists
p € L*(R™) such that

F(z) C B0, p(z)] fora.e. z € R™ (5.7)

Theorem 5.3. Let F : R® — 2B be an integrably bounded, measurable multifunc-

tion with nonempty closed values. Then, for any family vy,...,v; of unit vectors in R",
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the joint marginal integral of F defined at (5.3) is a closed, bounded, conves subset of
[LI(R"_I; Rm)]k. Moreover,

/ F d\ = / Fd\= / eatF d. (5.8)
(V1yery Vi) (V1yeeerVk) (V1ye-erVk)

Proof. The convexity of f(vl. F dX\ was proved in Theorem 5.2. Its boundedness

v Uk)
follows from (5.7) and Fubini’s theorem, which implies ngHLl(ij_) < \lellzy(rn), for every
j=1,...,k

In the next step, we establish the closure of f(m vk)wF d). Let (g®)a>1 be a sequence

contained in f(m @oF d)\, converging to ¢ = (g1,...,9x) in the norm topology of

ey Uk)

[L}(R™"!; R™)]*. For some integrable selections f* of F' we thus have
o= (ofa= [ A ve
(viy.0yvk)

By assumption, there exists p € L! such that |f*(z)| < p(z). Hence, by possibly taking a
subsequence, we can assume that f* — f* weakly in L'(R™; R™), for some function f*.

By Mazur’s theorem, there exists a sequence of convex combinations of f¢, say

N(a) ) N(e)
=Y baif',  with  ba;€[0,1], > bai=1 Va,
= =

which converges to f* strongly in L'. By taking again a subsequence, we can assume
that (¢*) converges to f* pointwise almost everywhere. Therefore, f*(z) € coF(z) for

a.e. ¢ € R". Observing that the map f -f(m ‘ f dX is linear and continuous on

vy Uk )
L'(R"; R™), we have
N(a) . .
/ f*dr = lim % A= lim S Bailgh,ergh) = (g1, 08).
(’UL,...,'Uk-) a=ee (vly--ﬂvk) amee i=x

Therefore, g € f(vl vk)ﬁF d), proving that this set is closed.
To complete the proof of the theorem, it remains to establish the equalities (5.8). Since
extF(z) C F(z) C coF(z), we only need to prove

/ coF dA g/ extF dA. (5.9)
(v1yeeyVk)

(vl,...,vk)
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Assume f € L', with f(z) € ¢6F(z) for a.e. z. Since F is integrally bounded and has
closed values, for almost every z the set €6F(z) is the convex hull of eztF(z). Using a

measurable selection theorem [Ku-RN], we find measurable functions p; : R* — [0,1],

fi € £, such that
flz) = Zpi(:c)fi(a:), Zpi(m) =1, fi(z) € eztF(z) for a.e. z € R". (5.10)
=0 i=0

By Proposition 5.1, there exists a measurable partition {AU, ey Am} of R™ such that, for
every j =1,...,k,

0o ™ too ™
f Zp, g’ + dvj) fi(z' + Avj) d)\_/ Zx (:13 + i) fi(z2' + Av;) dX (5.11)

for almost every z’ € 'v;L. Defining the function

£1(@) = Yo, (@),

from (5.10), (5.11) it follows

/ fd)\::/ ' rr d)\E/ extF dA,
(V1yeeeyVi) (v1ye-yVk) (v1,e-yVk)

proving (5.9). H

The last result of this section is concerned with selections of F' whose corresponding

F dA.

marginal integrals are extreme points of f(m o)

Theorem 5.4. Let F : R™ — 28" be an arbitrary multifunction and let v1,...,v; € R®

be unit vectors. If g = (g1,...,9%) s an ectreme point of the sel f(vx k) F d), then there
ezists a unique f € L' such that
g= / fdA, f(z) € F(z) for a.e. z.
(Uh yvlc)

If F is measurable with closed values, then f(z) € extF(z) almost everywhere.

Proof. Assume that the functions fi, fo satisfy fi(z), fo(z) € F(z) almost everywhere,

and
/ fld/\:/ fgd/\Ee:I:t(/ Fd/\).
(CTITS (V14 eyVk) (V140eey Vi)
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If fi # fa, there exists a measurable set A such that

[ (o) - e do = [ (7o)~ ufo) = £, (5.12)

where A° = R™ \ A. Define

fl'=x,h+x,.F P=x g it x fa

g = / £ d, g" = / £ dA.
(vl»'-ka) ('I)L,...,vk)
Since 1(f1 + f2) = 3(f' + f"), we have

1
5(9’ +4") =g, q,9" E/( )F . (5.13)
Vyyery Uk

The extremality of g is contradicted by (5.13), provided g’ # g"". This is indeed the case

because, for every i = 1,...,k, Fubini’s theorem and (5.12) imply

\[)3" 9i(z) dz = o fi(z) dz = /AUAC fi(z) dz + / c (f2(z) — fi(z)) de
[ @it [ () - pe) d= [ @ = [ o)

This establishes the uniqueness of f. Next, assume that F is measurable with closed values.

For every m > 1, the multifunction

Hm(a:)i{(yl,yz,f)); 96[%71"%]7 y17y2EF($)ﬂB[07m]7

ly1 — 2| 2> 7—1-, f(z) =6y + (1 ——9)yz}

is measurable with closed, possibly empty values. Assuming that
meas{z; f(z) ¢ extF(z) } >0, (5.14)
there exists some integer m and a set S C R™ such that
0 < meas(S) < oo, H,(z)#0 Vzelb.

Let z — (yl(w),yg(m),e(m)) be a measurable selection of H,, defined on S. Extend this
function to the entire space JR™ by setting y1(z) = ya2(z) = f(z), 0(z) =0if = ¢ S. By

Proposition 5.1, there exists a measurable set A such that
[ so=[ (o a= X Ui+ X 2 M.
(ViyeenyVk) (V1,eyVk) (ViyeonyUk)
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The two distinct functions f and x X, Y2 therefore yield the same marginal integral.

The assumption (5.14) is thus in contradiction with the uniqueness property obtained in
the first part of the proof. B

5.2. Product Measure Spaces

A classical theorem of Liapunov [H1, O] states the convexity of the range of a nonatomic

vector measure. We now prove a similar result, valid for measures on product spaces.

Theorem 5.5. For i =1,2, let X; be a separable measure space with a finite, nonatomic
vector measure p;. For each measurable subset A in the product space X; x X3, consider

the functions

¥i'(21) = o ({2 € Xos (21,20) € 4}),

$3'(22) = ma ({ml € X1; (z1,22) € A})

Then the set S = {(¢i4,¢§1); ACX, XXz} is bounded, closed and convez in L*(X;; R™! ) x
LI(XQ;RmZ).

By the next lemma, the proof of Theorem 5.5 will be reduced to the case where each

X; is an interval on the real line. A similar isomorphism theorem can be found in [H2,

p-173.]

Lemma 5.6. Let (X,p) be a separable measure space with a positive, finite nonatomic
measure p. Then there exists T > 0 and a measurable map ® : X — [0,7] such that the

composition

Frodof (5.15)

determines an isometric isomorphism between L'([0,7],m) and L*(X, 1), m being the usual

Lebesgue measure on [0,7].

Proof of the Lemma 5.6. Set 7 = p(X). Because of the separability assumption, there
exists a sequence of partitions P, = {A,,,l, e ,Au,N.,} of X such that the linear span of
all characteristic functions X, is dense in L'(X,p). It is not restrictive to assume that,

Sy

for v > 1, each set 4, ; is entirely contained in some A, _1,i(j)- By possibly relabelling, we
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can also assume that the map j — i(j) is nondecreasing. For each v 2 1, ¢ € X, define
i(z)
BT
j=1

where 4, ;(;) is the set in the partition P, which contains z. Our previous assumption on

the map j — 4(j) implies that the sequence ®,(z) is nonincreasing, hence the function
d(z) = Jim ®,(z)

is well-defined. For each v, 7, set

tyj = ZP’(AV;J') e [0,7].
1=1
Call p' the measure on [0,7] defined by p'(S5) = p,(@’l(S )). The above definitions now
yield

p ([tvi-1s tng]) = B(Av) =tvj —tvj-1. (5.16)

Since p is nonatomic, the points t,,j are dense on [0, 7] and from (5.16) we conclude that '
coincides with the Lebesgue measure on [0,7]. The assignment (5.15) is thus an isometric

isomorphism from span{x v, J > 1} onto span{x " v,j > 1} Because of

[t,j—1s toj ]’
the separability assumptlon this isomorphism can be contmuously extended to a map, still

defined by (5.15), from L* ([0, 7],m) onto L* (X,p). ®

Proof of Theoremn 5.5. Fori = 1,2, set

dpi
dlps|’

where |p;| denotes the total variation of the measure p;. By the isomorphism between

Tl:l/*"il(X), fi:

(Xi, |pi]) and ([O,Ti],m) constructed in Lemma 5.6, it suffices to prove the theorem in the

case where

XiZ[O,Ti], du; = f; dm,

for some functions f; : [0,7;] — R™ with |fi(t)| = 1 almost everywhere. On the product

space Q = [0,71] X [0,72], consider the bounded, measurable multifunction

F(t1,t3) = {fl(tl) ® fa(t2), 0}7
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with values in the tensor space R™' @ R™2. Applying Theorem 5.3 with »; = (0,1),

vy = (1,0), we obtain the closure and convexity of the set of joint marginal integrals
S® = {(gﬁf,(ﬁ;), A C [077-1] X [0,72]}3
with .
¢7 (1) = / fi(ts) @ faltz) diz = f(t2) ® ¥i' (ta),
{t2; (t1,22)€4}
si) = [ £(1)® ) dis = pi (1) @ falta).
{t; (t1,t2)€4]}
Recalling that |f;(¢)| = 1, one checks that the map
(1,%2) = (fr ® Y1, P2 ® f2)

is a linear bicontinuous isomorphism between L([0,71]; B™!) x L(][0,72]; R™?) and its
image. Hence, from the closure and convexity of S®, it follows that the the set S is closed

and convex as well. B

5.3. A Bang-Bang Theorem for the Controlled Wave Equation

Consider the rectangle @ = [0, a] x [0,}], and let 8Q = 8T QU™ Q be a decomposition
of its boundary, with

07Q =1[0,a] x {b} U{a} x [0,], 8@ = [0,a] x {0} U {0} x[0,8].  (5.17)

Given a continuous boundary condition % : 67 Q — R™, we write z(z,y,u) for the value

at the point (z,y) of the solution to the linear wave equation

zgy = u(z,y) on Q, z=1 on 07Q. (5.18)

Assuming that u is integrable, we have the representation
T py
z(z,y,u) = ¥(z,0) + ¥(0,y) — (0,0) + / / u(r, s) dsdr. (5.19)
: o Jo

If F:Q — 2R" is a multifunction, we wish to compare solutions of z,, € F(z,y) with
solutions of z,, € extF(z,y). In the following, we say that a curve vy is monotone if it
can be parametrized by absolutely continuous functions ¢ — (z(t),y(¢)), such that either

z >0,y >0forae. torz >0,y <0 for a.e. .
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Theorem 5.7. Let F : Q — R™ be an integrably bounded, measurable multifunction with
closed values. Then, for every u satisfying u(z,y) € F(z,y) a.e. and every monotone
curve v in Q, there exists u™ with u*(z,y) € extF(z,y) a.e. such that the corresponding
solutions of (5.18) satisfy

z(z,y,u*) = 2(z,y,u) for all (z,y) € vU 0Q. (5.20)

Proof. To fix the ideas, assume that v = {((t),y(t)); t€ [to,t1]}, with &(2) > 0, y(t) <0

for almost every t, the other case being entirely similar. On @, consider the order relation
(z,y) < (=',y") iff z<z and y<y
and define the two regions

Q™ = {(m,y); (z,y) < (z(t),y(t)) for some t}, QT =Q\Q .

Construct measurable functions i, 6;,1 = 0,...,m, such that

9; € [0,1], 6, =1 for a.e. (z,y) € @,

n
1=0

ui(z,y) € extF(z,y), Zai(z,y)ui(a:,y) = u(z,y) for a.e. (z,y) € Q.
i=0

Applying Proposition 5.1 separately to the functions HiuiXQ+ and GiuiXQ_, we obtain
measurable partitions {Aj, ceey A',t} of QT and {AJ, cers A;;} of @~ such that

[, XQi(m,y) ;Oi(m,y)ui(m,y) dr = Zofu XA? (z,y)ui(z,y) dz for a.e. v,

b m m b
/U in(-'c,y);@i(w,y)uz'(w,y) dy = ZOA X 2 (@ y)ui(zy) &y for ae.z.

Defining v* : @ — R™ as

u*(a:,y) = ui(m,y) iff (:D,y) € Aj— UA7,
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we claim that (5.20) holds. Indeed, fix any (Z,7) € v. We then have

/ / z,y) dydz

b
z,y)u(z,y) dyda:——/ / XQ— Yu(z,y) dedy
]

3

- [
/ [/ Zﬂuzdy]dm—/b{/ Ze’uzdm:‘
:/0 ;M xA_wdy]d“’"L > UUU XA;u,-dm}dy

- / /"’XQ_(m,y)u*(m,y) dydz — / /‘ Xy (o2 o) doiy
// r,y) dydz.

By (5.19), this implies w(Z,§,u) = w(Z,7,u*). Next, consider a point P on the boundary
of Q. If P € 8~ Q there is nothing to prove. If, say, P = (a, ), then

// z,y) dzdy =
m g a m
/0 /UXQ_ZGiuida: dy+/(; AXQ+ZBiuidm dy
2=0 =0
y_n a g n a
:/ Z[f XA_uida:}dy%-/ Z[/ xbﬁuidw}dy
: : ' 0 G tJo T
// z,y) dzdy.

By (5.19), this again implies 2z(a,¥,u) = z(a,7,u*). The computations in the case P =

(Z,b) are entirely similar. This completes the proof of the theorem. B

5.4. A Non-convex Optimization Problem for the Wave Equation

On @ = [0,a] x [0,b], consider the controlled wave equation
Zgy = f(m,y,u) ’u,(:c,y) el, : (5'21)
with boundary conditions

z(z,y) = ¥(z,y) (z,y) € 0Q. (5.22)
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We assume that U C R™ is compact and contained in the ball B(0,r), % is continuous
on the boundary 8Q and the restriction of ¢ to each one of the four sides of the rectangle
Q is absolutely continuous, with derivative in L?, for some p € [1,00[. The function

f:Q x U — R™ is continuous in u, measurable w.r.t. z,y, and satisfies

|f(z,y,u)| < ai(z,y) V(z,y) €Q, uweU, (5.23)

for some function a; € LP. We consider the space W*? of all functions z : @ — R" whose
distributional derivatives z.,z,,2,y are in L?. This space becomes a Banach space with

the norm | 2|+ = ||z]l, + |2z |l + |2y |ls + || 22y ||p- For its basic properties we refer to [Surl].

Every solution of (5.21) has the representation

2(e,9) = =(2,0) + 5(0,9) ~ (0,0) + [ ) / D i syu(r)dsdr. (5.24)

Therefore, recalling (5.23), one concludes that any solution of (5.21), (5.22) satisfies an a
priori bound in W*?(Q) say ||z« < K for some positive constant K independent of .

In connection with the system (5.21), (5.22), consider the optimal control problem:

(z,u)€A

b pa b pa
min  J(z,u) i/() /u h(z,y,u(z,y))dzdy +/0 /0. g(z,y,2(z,y))dzdy, (P)
where
A= {(z,u) e W*P(Q) x L(Q) u(z,y) € U, z satisfies (5.21),(5.22)}.

In the following, £ ® B denotes the product of the Lebesgue o-algebra on @ with the Borel

o-algebra on U. On the cost functional J we assume:

(h1) h:Q x U — R is £ @ B-measurable.

(hs) h(z,y,-) is lower semicontinuous on U for almost all (z,y) € Q-

(hs) There exists a function a; € L* such that h(z,y,u) > az(z,y), for all z,y,u.
(g1) 9: @ xR" — R is £ ® B(R") measurable.

(92) g(z,y,-) is concave in R™ for almost all (z,y) € Q.

(g93) There exists a positive constant v and a function a3 € LPI(Q) such that g(z,y,z) >

as(z,y) — v|z|P. Here p' is the conjugate exponent of p.
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Theorem 5.8. Under the assumptions given above, if J(z,u) has a finite value for some

(z,u) € A, then the problem (P) admits an optimal solution.

Proof. We first prove the existence of an optimal solution (Z,%) to the convexified problem

b a b a
min J(zu) = [ [ 5@ m(e oty + [ [ ooy 2(eu)dod,
(z,u)€A 0 Jo 0 Jo
(P*)

where

A= {(z,u) € WHP(Q) x L*°(Q); =z satifies (5.22)},

and the function (u,w) — h**(z,y,u,w) is the bipolar function of h(z,y,-,-), with

B h(z,y,u) if w= f(z,y,u) and v e U,
h(z,y,u,w) =

400 otherwise.

The assumptions on kh and g imply that there exists a constant C such that J(z,u) >
C > —oo for all (z,u) € A. Since A in nonempty, the infimum of J is finite. Let
(2*,u*) be a minimizing sequence in A, so that lim; J(zF,u*) = inf J € R. It follows
that u*(z,y) € coU C B(0,7) and zf,(z,y) € co{f(z,y,u); u € U}. Thus, ll2%||« < K.
In particular, ||z ||z < K for all k. Therefore, there exists a subsequence, still indexed
by k, and a limit function £, such that z;’;y — ¢ weakly in LP. This follows from the
weak compactness of balls in L? if 1 < p < 400, while for p = 1 we use the equi-
fy: since for all k¥ we have u*(z,y) € coU C B(0,7) and
zi“y(:v,y) € co{f(z,y,u); v € U}. This, together with (5.23), implies

integrability of the sequence z

[ et dody < [ as(e,9) dady vEC 0

k

Similar arguments can be used for the sequences (z;

)s (zI;) Moreover, one can easily check
that the functions z* are equicontinuous. Therefore, there exist a continuous function z
and a subsequence, still indexed by &, such that z’;y — Zpy, 2E — 7, z‘,’; — %, weakly in L?,
while z*¥ — Z uniformly on Q. Since |u*(z,y)| < 7 we can assume (up to a subsequence)
u® — 4 in the weak* topology of L. Applying Theorem 2.1 in Chapter VIII of [E-T], we
obtain J(2,4) < limg J(2*,u*) = inf J. Clearly (%,4) € A. Therefore, (2,1) is a solution
to problem P.

In the second part of the proof, we construct (z,u) € A such that J(z,u) = J(z,4).

Observe that h**(z,y, u(z,y), Zzy(z,y)) < +oo for almost all (z,y) € Q. From Proposition
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3.1 in Chapter IX of [E-T] it follows that there exist measurable functions p;,u;, w; defined
in Q,i=0,...,n + m, such that

n+m

h**(wayaﬂ(mvy)agly(m7y)) = Z pi(m,y)h(w,y,ui(m,y),wi(m,y)) (525)

i=0

n-+m

(@(z,y), Z2y (2, ) = Z pi(z,y)(ui(z,y), wi(z,y)) (5.26)

n+m

Z pi(m’y) - 15 pi(w,y) € [071]' (527)

1=0
Observe that wi(z,y) can be different from f(z,y,ui(z,y)) or vi(z,y) ¢ U on a set E; of
positive measure only if p;(z,y) = 0 on E;. We can then modify w; on E; so that (5.25)
still holds, together with wi(z,y) = f(z,y,ui(z,y)) and ui(z,y) € U. Thus (5.25) becomes

n-+m
R (z,y, 4(2,Y)) 22y (2,9)) = Z pi(z,y)h(z,y,ui(z,y)) (5.28)
with
n-+m n+m
> iz y)ui(z,y) = Uz,y), > i@ y)f(z,y,uile,y)) = Zay(2, 7). (5.29)

=0 1=0

By Lemma 5.2 in [R3], there exists a selection § € L? (Q) from the map (z,y) — 9. (-
g(z,y, 2(z, 'y))) . The right-hand side denotes here the subdifferential of the convex function
—g(z,y,-) at the point Z(z,y). Let ¢ € W*P (Q) be a function such that ¢y = §(z,y).
We now remark that Proposition 5.1 remains valid if the assumption fi,...,fr € L' is
replaced with > pi|fi| € L'. Indeed, in this latter case, one can construct a sequence
of disjoint compact sets K; C R"™ such that meas (R" \ UK]) = 0, and the restriction
of each p;, fi to K; is continuous. Applying Proposition 5.1 to the integrable functions
X, fi, X, |fi|, we obtain a partition {Aj1,--+5 A;,} of each K; such that

/( . wif dA—/( )Zx fid,

caUk) =1

f( S xye pilfil 3 = ﬁ Zx4 1£i] .

CASEY 1'”’6)1 1 Ut,-- - Vk) i=1
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Setting A; = Uj>1 Aj ;, the previous equalities imply » X_l.fi € L', together with (5.5).

Using this generalized version of Proposition 5.1, we now obtain a partition {Al, ceny An+m+1}

of @ such that

| /Oa Zpi(w,y)h(w, y,ui(z,y)) dz = Z /0“ X‘_li(:z:,y)h(m,y,ui(m,y))dw (5.0),

Aa Zpi(:c)y)f(m’y,ui(m’y)) dz = Z ‘/Oaa XA‘,(way)f(w7yaui(may))dm (5'31)11

/Oa Zpi(m,y)(cﬁ(:c,y),f(:c,y,ui(w,y)» dz = Z /;a X_4i($,y)(¢(:c,y),f(w,y,uz'(m,y)))dw,
, , (5.32),

for almost every y € [0,b]. Here (-,-) denotes the inner product in R". Moreover, we
can assume that similar equalities, say (5.30); - (5.32); hold for a.e. z, when the above

expressions are integrated on [0,b] w.r.t. y. In view of (5.28), (5.30),, one has

/Ub /U“ R (z,y,4(2,Y), Zzy(z,y))dedy = /;b /: Ei:pi(a:,y)h(a:,y,ui(w,y))d:cdy
N /ob fo Z x . (@ y)h(z,y,ui(z,y))dzdy

- [/Oah(w,y,;x‘%(w,y)uz'(w,y))dwd%

(5.33)
We now define the measurable function u : @ — U by setting
w(z,y) =D x, (2,9)ui(,9),
and consider the solution z to the boundary value problem
zzy = f(z,y,u(z, 7)), z=1on 97Q, (5.34)

where the lower part 8~ Q of the boundary is defined as in (5.17). Using Fubini’s theorem
and (5.31), we obtain

z(a,y) = ¥(a,0) +4(0,y) — ¥(0,0) + /U“ /:j ZxAi(a:,y)f(r,s,ui(r,s))dsdr
= 50,0+ $(0) = 50,0+ [ [ S (e )5, s)dsdr = 3a,9) = b(a)
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Similarly, by using (5.31)y, we obtain z(z,b) = Z(z,b) = ¥(z,b) for every = € [0,5]. This
proves that (z,u) € A.

It remains to show that the pair (z,u) defined above is a solution to the original problem.
Indeed, (5.33) and the definition of u imply

/Ub /Oah**(m,y,ﬂ(z,y),zz,y(:c,y))dmdy=/Obfoah(m,y,u(m,y))dmdy. (5.13)

Since §(z,y) € 8,( — 9(z,y,%(z,y))), we have

g(m,y,z(z,y)) < g(z,y,2(z,y)) + (§(z,y), z(z,y) — 2(z,v))- (5.36)

/ob /oa(5($’y)’z(“”’y) — (=,y))dzdy = 0.

Indeed, recalling the definition of ¢, taking into account that z = z = 9 on 0@, and

We claim that

denoting by v; the j — th component of a vector v, we compute

/ / (2,y)—2(2,y)) dmdy*Z/ / bjzy(z,y)(2(z,y) — 2(z,y))dzdy
";/O /0 ¢j.=(2,y) (25, (2,9) — Zj,4(z,v))dzdy.

Using Fubini’s Theorem and the equality of the boundary values of z and z, the last integral

can be written as

/ / $3(2,9) (25,4 (2,9) — 5,2y(2,9) )dyda

j=1
/ / ’y zry(937y) - Emy(:n)y»dmdy = 0.

The last equality holds because of (5.32), . Therefore, (5.36) implies

f/ z,Y, 2 ,y))dwdy</ / 9(z,y,2(z,y))dzdy. (5.37)

Since (Z,2) is a solution of the problem (P) and because of the definition of A**, we have

b a b a
/ / h**(w,y,ﬂ(m,y),Zzy(a:,y))da:dy + / / g(a:,y,i(a:,y))d:ndy S
0 0 0 0
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/ / z,Y,u(2,Y), 22y (2 ,y))dwdy+f / g(z,y,2(z,y))dedy =

=/ / (z,9,u(z,y)) dwdy+/ / z,y,2(z,y))dzdy,
0 0

where the equality was obtained simply by the definition of h. The latter and (5.15)

/ f 2,1, 5(o,))dudy < / / 9(2,9, 2(2,y))dady. (5.18)

Together, (5.35), (5.37) and (5.38) prove that (z,u) is in fact a solution to the original
problem (P). B
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Final Remarks

As a consequence of the existence results proved in Chapter 2, we have min P =
min P**. This fact is analogous to that provided by the Relaxation theory (part (d) of
Theorem 1.8). However, from this point of view, as we have seen in Chapter 3, an estimate
from above for the integrand is needed, besides the coercivity one. This drawback does not
allow us to deal with integrands taking the value 4+oc0. In the present setting, the problem
(P**) is defined by means of an auxiliary functional which we have called “convexified

functional” defined in a proper way. More precisely, the functional F** associated to
problem (P**) is such that

F*™*(u) < F(u) VYu € X with Héll\l F*(u)eR

and we prove the existence of a function @ € X satisfying

showing that 4 is also a solution to the original problem (P).
The method proposed by the relaxation Theory (Remark 1.9) to find solutions for non-
convex problems relies on the fact inf P = min P** (see chapter 3). So that, if @ is a

solution to problem (P), it has to satisfy

f(e,u(z), Li(z)) = £**(z,u(z), Li(z)). (1)

Consequently, if u is a solution to the (proper) relaxed problem (P**) such that (1) holds
then wu is also a solution to problem (P). Such a reasoning has been used in most of
the works concerning non-convex variational problems [A-T2, Ra, R4, T1], proving in
particular that every solution to problem (P**) is a solution to problem (P). Unfortunately,
the approach used in Chapter 2, as far as I know, has not been applied for integrals that are
not of the form f(z,u,&) = g(z,u) + h(z,§). Of course, a direct approach for solving non-
convex minimization problems without passing through of convexification is necessary.
A first attempt in this direction would be to investigate under what conditions on the
integrand, weak convergence of the minimizing sequences implies strong convergence.

For the study of integrals depending of Du with u being a vector-value function we

refer to [Mo, Me, Fu] and for some relaxation results concernig this kind of functionals we
refer to [Dal, Da2, B-C-0O] and references therein.
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Existence Theorems with no convexity assumption, for problems governed by hyper-
bolic partial differential equations have also been given by Suryanarayana in [Sur2]. T am

not aware of other works in this direction.
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