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Introduction

A central problem in the theory of strongly correlated fermion systems, concerns the
nature of their low-lying excitations. It is generally accepted that, except for special
cases with symmetry breaking, three dimensional (3D) interacting Fermi systems, are well
described in terms of weakly correlated quasi-particles with quantum numbers in one-to-
one correspondence with those identifying the excitations of a non-interacting Fermi gas.
This is the basic assumption underlying the Landau theory of Fermi liquids (FL), which
was originally proposed as a phenomenological description of strongly interacting fermions
by Landau in early 1956[1], an then established microscopically by Noziéres and Luttinger

in 1962[2).

Quite a different scenario occurs in 1D interacting Fermi systems. Apart from spe-
cific models developing gaps in the excitation spectrum, most fermion systems in one
dimension with repulsive interactions, do have low-lying gapless excitations, like ordinary
Fermi liquids, but totally different from the quasi-particles predicted by Landau theory.
The low-energy behavior of most of these 1D interacting fermion systems with gapless
linear excitations, can be understood in terms of few model dependent constants, which

parametrize all the long-wavelength properties. Such a feature was first recognized in
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a simple exactly solvable 1D model, the “Luttinger model”, introduced by Luttinger in
1963(3], and exactly solved by Mattis and Lieb two years later[4]. Afterwards, Haldane[5]
realized that such a behavior was common to most 1D models with gapless excitations,
which he collected in the class of Luttinger liquids, as opposed to the class of Ferms liquids,

whose low—energy behavior is similar to that of the ideal Fermi gas.

A Luttinger liquid is characterized by asymptotically power-law decaying correlation
functions, with coupling dependent exponents. In particular, for the single-particle Green
function, an anomalous (coupling dependent) exponent, modifies the discontinuity of the
momentum distribution at the Fermi surface, which becomes a power law singularity.
The vanishing of this jump, is often considered as the key signature of non-Fermi liquid
behavior in 1D, even though this is a ground state property rather than ‘a characteristic

of the low—energy excitations.

This is however not the only way in which non FL is realized in 1D electronic models.
In fact, an equally effective mechanism leading to the breakdown of FL, without generating
anomalous exponents, is the well known spin—charge decoupling[6]. When it occurs, no
quasi-particle exists as a stable excitation, simply because spin and charge fluctuations are
dynamically independent. For instance, if a spin and charge density fluctuation is induced
by adding an extra particle to a 1D electron system, initially they both are centered
on the position where the electron is created. However, the dynamical evolution splits
the two excitations which, after a sufficiently long time, become spatially well separated.
Therefore, due to many-body effects, the original electron “decays” into two distinct

elementary excitations: the “holon” and the “spinon”(6].

So far, we have contrasted 3D with 1D Fermi systems. The discovery of cuprate su-
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perconductoré, has recently stimulated a big debate on the nature of low-lying excitations
of 2D interacting electron systems. Firstly Anderson[7], proposed that, both the anoma-
lous normal state properties and the mechanism leading to superconductivity, could be
explained by assuming a breakdown of FL theory in 2D, as a consequence of spin—charge
decoupling with possibly anomalous exponents modifying the asymptotic power—law de-
caying of correlation functions. Afterwards, other realizations of 2D non-FL, besides the
simple 2D generalization of 1D Luttinger liquid, have been proposed, e.g. the marginal
Fermi liquid[8] or the anyon gas[9]. Most of them, however, are expected to occur only
under certain conditions, such as proximity to a magnetic or a charge-transfer instability,
or such as the presence of an infinite on-site repulsion in an almost half-filled 2D square
lattice, which can give rise to exotic phenomena by projecting out part of the Hilbert
space.

On the other hand, a recent proposal of Anderson[10], based on quite general di-
mensionality arguments, suggests that in 2D, Fermi liquid theory is never valid, rather
independently from the specific features of a model, similarly to the 1D Vcase.

It has therefore become of great interest, to establish whether the mechanisms leading
to the breakdown of Fermi liquid theory in 1D, can be generalized to higher dimensions,
in particular to 2D. This problem is the background theme of this thesis. Two different

aspects of this question are separately investigated.

Non perturbative results for few electrons in the Hubbard
model

The first aspect, regards the ground state properties of a 2D interacting Fermi gas. As

was said previously, it has been proposed by Anderson, that this system should show
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anomalous asymptotic long—wavelength behavior, similarly to 1D.

We have succeeded in calculating exactly some of these properties by obtaining the
ground state wavefunction for any finite number of electrons n in the low density limit
(n/N — 0) of the N-site Hubbard model in dimension greater than one. In this limit,
however, we do not find any anomalous ground state behavior. This calculation, which is
presented in Chapter 1, through Sections 1.1-1.4, and in Appendix A, is performed using a
method we have developed[11], which allows to obtain the exact and consistent expansion
of any ground state property, in powers of (n/N)'/3 in 3D, and of 1/log(n/N) in 2D,
at any order in this small parameter. The method is based on an interesting connection
which we have found at low (actually zero) density, between the interaction correction to

the total energy Ay, defined as:
Ay = Eyzo — Ey=o0 (1)
with U the on-site Hubbard repulsion, and the free-particle level spacing A&y

AE@XC = (EUZD)excited—state - (EU:U)ground—state' (2)

We in fact show that, if

A&y
Ninoo Aé'exc - 0’ (3)

then it is possible to solve self-consistently the Schreedinger equation for n electrons in the
N — o limit, and obtain the total energy and the ground-state wavefunction. Notice that
the assumption (3) is compatible only with zero density (n/N) — 0 for N — oco!. The self-
consistency is verified only in dimension d > 2, which means that in d < 2 the interaction

correction (1) is of the same order than the free-particle level spacing (2). The consequence

LIf the density were finite in the thermodynamic limit, the interaction correction to the total energy
(1), would instead be finite and proportional to the number of electrons, whereas (2) would still vanish
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of this difference is that, while in d > 2, the ground-state is not fundamentally modified
by the interaction, e.g. it still has a step singularity in the momentum distribution, in
d < 2 anomalous ground state properties are predicted, in agreement with the exact results
known for 1D Fermi systems. These results extrapolate quite naturally to finite density,
because the number of sites N appears always in the combination n/N with the number of
particles n. In fact, this extrapolation exactly reproduces all the known results obtained
by ordinary perturbation theory in the dilute limit, both in 3D[12] and 2D[13, 14, 15, 16]

(see Section 1.4).

All these calculations agree upon a point: no signature of anomalous exponents, char-
acterizing the power-law decay of ground state correlation funciions, is present in 2D, at
least at very low density. In particular the jump of the momentum distribution at the

Fermi surface, is finite.

This conclusion, however, does not exclude an alternative scenario, where spin—charge
decoupling occurs in 2D, without anomalous exponents (see Section 1.5). In fact, while
anomalous correlation exponents affect also the ground state properties, spin—charge de-
coupling characterizes only the excitations, and can, in principle, occur even if the ground

state is not modified by interaction (see Section 2.4).

In particular, we show (Section 1.5.2) that the mechanism which, according to An-
derson, would lead to the breakdown of FL theory in 2D, i.e. the presence of an infi-
nite repulsion in reciprocal space which prevents two opposite spin electrons to share the
same momentum, produces quite naturally spin—charge decoupling, but does not generate
anomalous exponents as well. The exact results we have obtained in the dilute limit,

are perfectly compatible with this scenario, as they give information only about ground-
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state properties. The analysis of the perturbation expansion of the single-particle Green
function[13, 14, 15], is, in principle, capable of detecting spin—charge separation. However,
this requires a more detailed study of the perturbation series, than that needed to search
just for anomalous exponents. This analysis is, till now, not available.

Therefore, we conclude that while the interaction does not modify in 2D the asymptotic
behavior of the ground-state properties, it is still an open question whether spin-charge
decoupling as opposed to ordinary Fermi liquid behavior occurs.

The results of Sections 1.1-1.4, as well as those obtained in Refs. [13], [14], and [15],
are strictly valid only at very low density. This point is never emphasized enough in the
literature. In fact, it is not difficult to show (see Section 1.5.3) that in 2D there is a strong
tendency of the highest occupied energy states (i.e. those near to the Fermi surface) to
spin-polarize. The lowest order expansion in the density, predicts this instability towards
ferrimagnetic states to occur at extremely low density (p ~ 1075). Higher order terms
in the virial expansion, are therefore essential to make definitive statements on the Fermi

liquid properties in 2D at reasonable densities.

Stability of 1D Luttinger liquid behavior in models of cou-
pled chains

Another interesting aspect of the problem regarding the ground state and excitation prop-
erties of 2D interacting Fermi systems, concerns the way in which the crossover from a
quasi-one—dimensional to an isotropic 2D or 3D behavior, occurs in arrays of coupled
chains, upon increasing the interchain coupling. This is quite important, due to the
well-known anomalous properties of 1D Fermi systems. In fact, the absence of coher-

ent quasi-particle motion induced in 1D both by the spin-charge decoupling and by the
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anomalous e:cpone.;nts, is expected to strongly reduce the effects of a single-particle tun-
nelling coupling such 1D systems, but it is believed to be less effective for pair-hopping
processes. This circumstance raises some important questions. First of all, it is not clear
if a transverse correlation can be generated at all, or if intra—chain confinement occurs
with the chains behaving asymptotically as they were completely un—coupled. Further-
more, even if the former situation occurs, it is quite important to determine whether
the transverse correlation is supported by single—particle or by pair-tunnelling processes.
The latter event would be quite important, as it represents a possible mechanism for su-
perconductivity. When applied to hypothetical 2D Luttinger planes coupled together, in
fact, dominant pair tunnelling suggests a potential explanation of the high temperature

superconductivity[17].

A very simple model, where the stability of the Luttinger liquid behavior and the
competition between single-particle and pair-hopping can be studied, is given by two

chains of interacting fermions, coupled by a transverse hopping ¢, , which is the subject

of Chapter 2.

The relevance of the anomalous exponents to this problem, can be studied by means
of the renormalization group (RG), which has been already successfully applied to the
single chain[18] and to quasi-1D systems[19, 20]. In Sections 2.2, we show how to apply
this technique to the two chain model, with a supplementary ingredient: we allow for
the renormalization of the transverse hopping. This is important in order to examine the
possible occurrence of intra—chain confinement, which has been invoked by Anderson[21]

to justify the stability of Luttinger behavior.

The method is first of all applied (Section 2.1) to two chains of spinless fermions, which
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is actually the prototype model to estimate the importance of the anomalous exponents,
independently from spin—charge separation. This is also an interesting model because
it can be easily mapped onto a single chain of fermions with spin 1/2, in presence of a
magnetic field, for which exact results are known. In this representation, the role of the
spin index is played by the chain index, and that of the magnetic field by the transverse
hopping. The spin sector corresponds to the antisymmetric combination of the densities
of the two chains, while the charge one refers to the symmetric combination. While
the latter is obviously not affected by ¢, so that it remains a “Luttinger liquid”, the
former is not. In particular, the transverse hopping introduces the analogous of a spin—
anisotropy in the model, which, as it is shown in Section 2.1, does strongly modify the
low-lying excitations in the antisymmetric (pseudo—spin) sector, eventually generating
a gap. Depending on the strength of the intra—chain repulsion, four different low ¢,
regimes are found. In particular, for intermediate values of the intra—chain interaction,
we find a strong coupling regime with a gap in the antisymmetric sector. This gap,
in terms of the pseudo—spin representation, is in the same direction of the transverse
hopping, that is of the pseudo—magnetic field. Consequently, the pseudo-magnetization,
which is simply the average value of the transverse hopping operator, is zero, and this
phase is therefore confined. However, even though single-particle transverse hopping is
asymptotically irrelevant, the two chains get strongly coupled, and in fact they show
dominant in—phase charge density wave fluctuations. Although this phase is found as the
outcome of RG calculations, we tend to believe that strict confinement is an artifact of
weak coupling RG. Rather, we expect, on the basis of a combined RG plus bosonization

technique calculation (see Section 2.1.3), that the system has gapless low-lying excitations
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both in the symmetric and in the antisymmetric sector, with a finite average value of the

transverse hopping operator.

The method is further generalized in Section 2.2, to the case of spinful fermions. In-
stead of having just a “flavour” index labelling the two chains, here a real spin is present.
However, as it is shown in Section 2.2, the mechanism leading to the instability of the
Luttinger liquid behavior, remains the same, namely, just the “flavour” anisotropy intro-
duced by the transverse hopping. In fact, also in this case, four different small ¢; regimes
are found, depending on the intra—chain repulsion, which are quite analogous to those
encountered in the spinless model. Like in the previous case, the symmetric charge sector
is totally unaffected by ¢, (see Section 2.3.1), and therefore it still describes a Luttinger
liquid, while the antisymmetric charge sector is driven by t, towards strong coupling.
Furthermore, this sector gets coupled to the spin modes, and it drives also these latter
towards strong coupling regimes, where they all acquire gaps in the excitation spectrum.
Dominant pair fluctuations exist in these phases, which confirms a strong enhancement
of pair hopping processes[17, 19]. Analogously to the spinless case, at strong intra—chain
repulsion, a confined phase is found (see Section 2.3), where the average value of the trans-
verse hopping operator is asymptotically zero, even though strong inter—chain interactions

are generated, leading to divergent pair susceptibilities.

The conclusion of these RG calculations, is that transverse hopping is always a rel-
evant perturbation, which completely changes the form of the excitation spectrum, by
generating gaps. This confirms the conclusions of previous studies, e.g. of Refs. [6], [?],
[19], [22]. These gaps may lead, even for repulsive intra—chain interaction, to dominant

pairing fluctuations (see Section 2.3).
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The RG approach is well suited to analyse the effects of the anomalous exponents, but
it does not help when the problem in hand is the role of spin charge separation. Actually,
in spite of the fact that the RG correctly reproduces spin—charge separation at the level
of the scaling equations (see Section 2.1), the detailed consequences of this decoupling
are not directly accessible. On the other hand, it is very important to establish if spin—
charge decoupling survives when two or more chains are coupled together. A very simple
model where this problem can be studied, is given by two chains coupled by a transverse
hopping, where the intra—chain repulsion is such that, in absence of t;, only spin—charge
decoupling occurs, without anomalous exponents. This is the case, in the so called g—
ology modelling in 1D, when only gy interaction is non-zero. In Section 2.4, we show
that two such 1D chains can be exactly solved by means of bosonization technique. The
results are quite interesting. First of all, they prove that spin—charge separation alone
does not produce confinement[21]. Secondly, they show that the inter—chain hopping
generates further singularities in the electron Green function, besides those due to spin—
charge decoupling, which, nevertheless partly survives. These singularities modify the
properties of the system only at large distances, ¢ > { = (u, — ug )[4ty , where u,(uy) is
the sound velocity of the gapless excitations in the charge(spin) sector, while at smaller

distances the independent chain behavior is recovered.



Chapter 1

Non perturbative results for few
electrons in the Hubbard model

In this Chapter, we present a simple new method[11] which provides the ground state
properties of the Lé—site Hubbard model, at arbitrary on-site repulsion U and for any

finite number of electrons n, in the low—density limit (n/L? — 0).

In Section 1.1, we first review the solution of the two-body problem. This case is
quite interesting because, even though it is an elementary exercise, it already shows the
basic procedure leading to the solution of the n-body problem, and gives some physical
insight about the behavior of the more general case. In fact, the way we calculate the
ground-state energy and wave-function for any finite number of electrons in the limit of

large system size, is just a generalization of the solution of the two~body problem.

In Section 1.2, we then solve the three-body problem, by applying the same asymptotic
technique developed for two electrons. The method is checked against exact numerical
diagonalization, and the total energy is shown, by finite-size scaling, to agree well with

that of the asymptotic solution.

In Section 1.3, we generalize the method to any number of electrons. In particular, we

13
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calculate the total energy and momentum distribution for a system of n electrons, whose
unperturbed Fermi sea is not degenerate. The results are simple, analytical, and formally
exact. However, they are again asymptotic in the sense that only the lowest—order terms
of an ordered expansion in powers of 1/ log L (for 2D) and 1/L (for 3D), L being the linear
size of the d-dimensional square lattice, is obtained. Nevertheless, the method allows in

principle to obtain all the terms of the expansion.

In Section 1.4, we show how our results can be extrapolated to low but finite density
p = n/L%. This extrapolation coincides with well known perturbative results, which have
been obtained in dilute systems of electrons, interacting via a short range repulsion[12, 30,
13, 14, 16, 15]. Provided the extension to finite density works, we find that the momentum

distribution has a finite Fermi jump Z = 1 — 4log2/log?(n/L¢).

Finally, in Section 1.5, the consequences of our results in connection with the important
problem of the validity of Landau Fermi liquid theory in 2D, are discussed. In particular,
we examine a recent argument proposed by Anderson[10}, which suggests that the Landau
quasi-particles are not stable excitations in 2D, due to the existence of a singularity in
the two—body scattering when the opposite spin electrons have the same momentum. We
show that our results are compatible with the presence of such a singular interaction, even
though we are not able to prove Anderson’s conclusion that this singularity causes non
Fermi liquid behavior. We also review some recent calculations of different authors(34, 33,

14, 16, 15], on this issue.

The contents of Appendix A, which presents the exact asymptotic solution for four
electrons and larger open shells, is also related to the arguments treated in this Chapter.

In fact, the case of degenerate unperturbed Fermi sea, was not explicitly solved in Section
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1.3. We find the solution to this problem too, and we show how the interaction partially

removes the original degeneracy.
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1.1 Two electrons in the Hubbard model: asymptotic ver-
sus exact solution

Let us consider two electrons in a d-dimensional hypercubic lattice of linear dimension L
and containing L? sites. The Hubbard Hamiltonian in momentum space is

. t U t
H=) o0, + 4 2. Cptatp-qipilpr (1.1)
ko PP'q

where

d
€ = —21 Z cosk;a,

=1

and a is the lattice spacing. Since this hamiltonian conserves the total momentum P, we

limit ourselves in a subspace in which P is fixed. A generic wave function is

|®) = Eq:L(q)cLTc},_qllO). (1.2)

This function is the eigenvector of eigenvalue E if the coefficients L(q) satisfy the

Schreedinger equation

U
(E - eq — ep_q)L(a) = 77 2 L(P)-
We call J the right hand side of this equation, so that

J

(E—eq—¢€p_gq)

L(q)

(1.3)

By substituting this expression in that for J it is easy to obtain a self consistent equation

of the usual type for the energy, i.e.[23, 24]

U 1
1= 7d ; @ . (1.4)

—€q — eP_q)

The solution to this equation can be found analytically in 1D and asymptotically (large

L) or numerically in d > 2. A possible approach to this problem was presented earlier in
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Ref.[24]. Our strategy in the following will be to reconsider the asymptotic solution in a
form which emphasizes (a) applicability to all space dimensions, (b) the crucial importance
of the scattering amplitude, and (c) transferability to more than two electrons.

Let us write the difference AE between a generic eigenvalue E of Eq. (1.4) and the

U = 0 ground state energy 2¢; as

AE =FE — 2, = agj). (1.5)

We may distinguish two classes of eigenvalues. In the first class we include all the eigen-
values whose a(L) goes to zero when L — oo, while the second class contains all the
other eigenvalues. If the first class is not empty, than it obviously includes the ground
state, since a(L) > 0 for the repulsive Hubbard model. We note that, by construction,
the interaction corrections to the eigenvalues AE in the first class go to zero faster than
the U = 0 excitation energies (which go like 1/L?). Let us assume that the first class is
indeed not empty, and let us solve Eq. (1.4) for a generic eigenvalue belonging to it. This
assumption will be justified a posteriori. We also assume P = 0, as we want to find the
ground state. In order to solve the self consistent equation let us extract from the sum the

term with q = 0, which is the most divergent for L — oo. In this way Eq. (1.4) becomes

U

1= 1.6
(L)Ld 2 Ld go (AE + 260 - zeq) , (1.6)

In the second term of the right hand side, we can neglect the interaction correction AE
(we will show later that this is asymptotically correct for d > 2) with respect to eq —

when taking the limit L — oo, thus obtaining

ko ddq 1 | 1
~ —Uat ~ _Uad?— (1.7)
I q% (AE + 260 — 2¢q) 2z (27)4 (2¢q — 2¢4) 2tfy’
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where kg ~ 7/a is an upper cutoff and fy is the usual low—energy scattering amplitude,

that is
( 4d7a in 3D
27 2T .
- ~ in 2D
fo=4 logka logL (1.8)
2
QiiL in 1D.
| a

Equation (1.4) at last reduces to

_ U Uq®-2
T (D)L T Tatg,

1 (1.9)

whose solution is unique (i.e. the first class for P = 0 contains just the ground state) and

yields simply

-1 U . D
L i Tuie
L) = 73 - T -1%(-55% in 2D (1.10)
2tfo 82t in 1D.

This general expression of a(L) shows that, when f, — 0 in the large size limit, i.e.
in d < 2, the asymptotic limit L — oo drives the system towards strong coupling (i.e.
U — o0) and a(L) tends to a limiting value independent of U, as long as U is not zero[24].

These results are consistent with the initial assumption lim;, o, a(L)=0onlyind > 2.
In 1D (more generally in d < 2 ) a(L) is instead finite for L — co. Therefore in this case,
the result (1.7) does not apply and the first class of eigenvalues is empty. The exact
solution of Eq. (1.4) in 1D is[24] (for large size and for the ground state) AE ~ 2t(x/L)?
and indeed does not belong to the first class, as the previous simple calculation predicts.
We can now address the error made in neglecting AE in Eq. (1.7). For d = 2, for example,

inserting AE = 4nt/(L*log L) yields a further correction of order 1/(L?log? L) to AE.
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Therefore, neglect of AE in (1.7) is asymptotically exact to order 1/(L* log? L) (in general
f§1L%).

Besides the ground state energy given by (1.5)—(1.10), we also obtain an explicit form
for the ground state wave function. By using Eq. (1.5), it follows that, for any dimension
d, the “envelope function” L is

JL ifgq=0
L(q) = (L) 7 (1.11)

5 -2 otherwise.
o + (L) - 2¢q

Finally, the momentum distribution n(p) is given by

B L*(p)
") = T30y T T 12(0)"

(1.12)

In the limit L — oo the second term in the denominator behaves as L*, so that if a(L) — 0
(which is the case in d > 2), the behavior of the denominator is dominated by L?(0) ~
L*/a(L). This implies that, inside the U = 0 Fermi surface (i.e., for two electrons, just

for the wave—vector 0 ), the momentum distribution is
n(0) ~ 1 — ua®(L) | (1.13)
while, just outside the Fermi surface, it is
n(27/La,0,0,--+) = va®(L), (1.14)

giving a Fermi jump

Z =1~ (u+v)a?(L), (1.15)

where u and v are positive coefficients. Inserting (1.10) we get

I in3D
1-2Z~ { log> N in 2D. (1.16)
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This result shows that the U # 0 momentum distribution for L — oo reaches the U = 0
value in d > 2. In 1D this is not the case. Exact solution of the Schreedinger equation

yields a(L) = 2tx?2, which inserted into (1.11) and (1.18) gives the known result[24]

27l 8 1

which is characterized by a jump across the Fermi surface strictly smaller than 1. The

main results of this section can be summarized as follows.

(i) The two—electron problem is particularly simplified by working in the asymptotic
limit I — oo, and by focusing on the asymptotic behaviour of the ground state en-
ergy shift AE. The asymptotic shift is a simple function of the scattering amplitude,

and so are all other ground state properties.

(ii) There is a similarity between d = 1 and d = 2, in that (for L — oo0) all properties
of two electrons are modified by the presence of the interaction U by U-independent

terms. In other words, both cases are in the strong-coupling limit[24].

(11i) By contrast, there is a similarity between d = 3 and d = 2 in that the energy
correction AE = L~?a(L) vanishes for large L faster than the non-interacting energy
level spacing. A remarkable consequence of this fact is that the Fermi jump Z — 1

in the asymptotic limit, for d > 2, but not for d < 2.
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1.2 Three electrons

Having solved the two-electron problem, the next question which arises is to what extent
the behavior just described is stable or instead radica]ly’ modified by the presence of a
third electron. Mattis considered this problem long ago, in his study of the pair stability
for attractive Hubbard U[23].

Let us consider three electrons in the subspace of total momentum P = (%—E, 0,0,..) (in d
dimension). A generic wave function is

1T) = ST L(q, P — q - k, k)chch_y_g cki10)- (1.18)
gk

The coefficients L must be antisymmetric in the first and third variable. The Schreedinger

equation for the L’s is

U
(E - €q — E}?_q._k - ek)L(ch —q- k’k) = FZ[L(P’P -p- kak)+
D

- L(p,P-p-q,q), (L.19)

whose solution is

J(k) — J(q)
(E—€q— €p_q k ek)

L(CLP_ Q"kak) = 3 (1'20)

where
U
J(k) = 73> L(a,P-a-kk). (1.21)
q

Substituting the expression of L in that of J we obtain a homogeneous set of equations[23]

(instead of a simple self consistent equation as for two electrons)

T = J(k)%z:(E”6 “fl k—ek)+
q q -q—
_ %Z J(q) (1.22)

9
7 (E—€q—€p_qx &%)
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which can be formally written in matrix form
J=UT(E)-J (1.23)

Together with (1.22), this equation defines the operator T(E). The rows and columns of
this matrix are labelled by the k vector of the third particle only. The third particle is
a “spectator”, while the other two are getting virtually excited. The final ground state
is, if (L) — 0, a linear superposition of the unperturbed Fermi Sea (FS) plus all these
doubly excited states (which would not be the case if a(L) # 0 for L — o0). The crucial
point which will make the asymptotic solution very easy, is, as it will turn out, that the
spectator particle belongs to the unperturbed Fermi Sea with probability one, as L — oo.
This makes the (otherwise infinite) matrix T(E) finite and very smali, as we now show.
The self-consistent set of equations (1.23) will only find solution when E corresponds to
an eigenvalue of Schreedinger equation (1.19). We now show how the asymptotic procedure
of the previous Section can be applied to the ground state problem. Let us define as usual
a(L) = (E — Eo)L?, where Eg = 26y + ep ~ t(—6d 4 (27)?/L?) is the U = 0 ground state
energy of three electrons. If we assume that the ground state satisfies the asymptotic
condition limy,_,., (L) = 0, then it is possible to show, using Eq. (1.22), that the matrix
T(E) has a part T(*) which dominates for L — oco. Let us consider first the off-diagonal

elements of the full T(E), which are of the form

1 N {L(2‘d)/a(L) if (k,q) = (0,0) or (0,P) or (P,0)
LYE — eq — €p_q-k ~ €) L-d) otherwise.

(1.24)
Hence, if a(L) — 0, the upper case, when all momenta belong to the unperturbed Fermi
Sea (FS) (which consists only of the two wavevectors 0 and P), dominates the second. If

we extract from the diagonal elements the dominant terms in the sense of Eq. (1.24), the
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remaining terms may be used to define a function x(k)

1 ad—-?

= b
qgFs (E — Gq — 6P—q—-k — €k) 2th

x(k)=-L™

the last equality holding only for small k. For small wavevectors this function is of the
same order in I as the leading terms of Eq. (1.24). Asymptotically we obtain the dominant

part of T(E), which is

1 1
W - X(O) —W__—z‘ 0 0 cee \
- 1 1 -
) = a(L)L*? a(L)L*? x(P) 0 0 0 (1.25)
0 0 —x(ks3) 0 0 .- |
0 0 0 —x(ks) 0

where some ordering of the k’s is implicit in order to change a matrix of dimension (L x L x
LxL)in one (L2 x L?). In Eq. (1.25), the first 2 x 2 block represents the two states where
k = 0, P, that is precisely those where the spectator particle belongs to the unperturbed
Fermi Sea. As one can see, all couplings to other spectator states is exactly zero in the
asymptotic limit. Eq. (1.22) now becomes J=UT®.Jind>2and T).J=0ind < 2.
The solution of these equations (in d = 3 we take U — oo for simplicity) is

J(0) _ 1+ Ux(P)
J(P) 1+ Ux(0)’

(1.26)
J(k)=0 ik £0,P,
, U U _4th
a(L) = 1?74 <1 R UX(P)) = Loy (1.27)

In d > 2 Eq. (1.27) is compatible with the initial assumption lim/ .o, @(L) = 0. On the
contrary, in d < 2, the result does not satisfy that assumption, exactly as we found for

two electrons.
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The d = 2 three electron ground state energy is thus predicted to be, according to Eq.

(1.27)
t(2m)? 167t

~ —12¢
B 12t =05+ Toiog 12

(1.28)

The persistence of the logarithmic term already found for two electrons (however a factor
two larger), suggests that the essential physics of that case is stable against addition of
a third electron. From Eq. (1.18) it is easy to derive the expression of the momentum
distribution in terms of the function J(k), i.e.

g =4 (E 7q) = K ) , (1.29)
q

€k €% " fp_g-k

nkl=2Z(J(q)"J(P"q“k)) . (1.30)
q

E—¢ —€—€p_qg

We calculate the momentum distribution simply substituting Egs. (1.26), (1.27), and
(1.28) into Egs. (1.29), and (1.30). Again the result does not differ substantially from
the the two electron problem. In fact it is easy to convince ourselves (although we do not
show it in detail here) that the momentum distribution again differs by terms of order
a?(L) from the unperturbed n(q) = 1 only when q = 0, P, while n(q) — 0 otherwise.
We have also solved numerically the three electron Schreedinger equation (1.22), in
order to provide an independent check of the asymptotic solution given above. The nu-
merical solution is obtained by exact diagonalization of (1.22) for squares lattices of size
8x8,9x%9,- -, 23x23,24 x 24. In Fig. 1.1, we have plotted the asymptotic ground state
energy of Eq. (1.28) versus linear size L, together with the numerical solution of (1.22)
for U = 10t (black squares), U = 100t (open squares) and U = 1000t (starred points).
The agreement at larger sizes appears to be quite good. In order to get quantitative accu-

racy, we have also performed a finite-size scaling of the numerical results. We note that,
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10 15 20 25
Linear size L

Figure 1.1: Ground state energy of three electrons on a 2D L x L square lattice versus L. The
points are the exact numerical results for U = 10¢ (black squares), U = 100¢ (open squares), and
U = 1000t (starred points). The solid curve is the asymptotic solution Eq. (refunoundici), while
the dashed curve is the U = 0 ground-state energy

according to our asymptotic solution, the quantity
a(L)log L = (E — Ey)L*log L (1.31)

is predicted to be equal to 87t + O(1/logL). In Fig. 1.2, we have plotted the right hand
side of Eq. (1.31) versus 1/logL for the exact numerical results. The solid lines are a

fitting of Eq. (1.31) with a three parameter function
(E — Eg)L*logL = A+ B/logL + C/log’ L (1.32)

suggested by the asymptotic expansion. Even if the exact results are not in the asymptotic

regime (1/log L — 0), the fitted parameter A, as shown by the zero intercept of Fig. 1.2,
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is not far from the predicted asymptotic value 87 (the isolated black point). In conclusion,
we believe the remaining error to be due to slow convergence of the expansion (1.32), and

87 to be asymptotically exact.

26&- T T[T T T T[T TT]
A 87T
24

2R

Ill!lllll

20

18

(E—E,)L’LOG(L)

16

|I|l|l|lll‘ll!llllll

—il>

B/LOG(L) + C/LOG iL)
L1 | ‘ |-

0 1 2 3 4 5
1/L0G(L)

Figure 1.2: Finite-size scaling of the asymptotic solution Eq. (1. 28). We have plotted the quantity
(E—Eo)L?log L vs 1/log L. The points are the numerical results. The curves are fittings by using
a three-parameter function (E — Eo)L?logL = A+ B/log L + C/ log? L. The isolated point at

1/log L = 0 is the asymptotic result Ae = 8, to be compared with the zero intercepts of the
three curves.

14
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1.3 Generalization to any finite number of electrons

We have shown that also the three electron problem can be solved using as an asymptotic
assumption that a(L) = (Eyxo— Ey=0)L? — 0, at least in d > 2. The result is compatible
with the initial hypothesis if the size of the system is very large, and it agrees quite well
with the exact solution. In this section we generalize the method to any number of electrons
n and solve approximately the problem when the U = 0 Fermi surface is not degenerate
(closed k—shells).

Let us suppose to have n electrons in a subspace of P total momentum (for simplicity n

is taken even). A generic wave function can be written as

19,) = kgk: L(ky, kg, oy kp)ek ek |k 10). (1.33)
1 K2...

The coefficients L are odd functions with respect to the interchange of two odd (even)
momenta. Notice that L depends only on n — 1 momenta because of the conservation of

the total momentum. The eigenvalue equation is

U
(B - e, = =)ok, k) = 77D [Llks + @ ka = @ kay e k) +
q
+ L(ki + 9 ko, kg, ka — gy k) + 005 (1.34)

where the dots correspond to all the possible pairings of momenta of one spin up and one
spin down electron. Analogously to the three electron problem we define a function of

n — 2 momenta

U mn
J(ka, .o k) = Td > L(q,P—q- Y ki ks, ..., kn), (1.35)
q

=3
which allows rewriting the coefficients L as
J(kg, k4, veny kn) - J(k3, kz..., kn) + e

Lk, ko, k3, .0 k) =
( ! 2’ ¥ ) (E—-Ekl —...—Gkn)

(1.36)
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The self consistent set of equations that the J’s have to satisfy, turns out again to be of

the general form

J=UT(E)-J. (1.37)

The main advantage in working with the J rather than the L, is that the asymptotic
expansion for large system size L — oo is far more straightforward. To solve the set of

equations we assume again that

a(L)

E=Eo+ 3

where L]_irn a(L) = 0. (1.38)

This condition is fully compatible with zero density (n/L%) for L — oo (if the the density
were finite in the thermodynamic limit, the interaction correction to the total energy would
instead be finite and proportional to the number of electrons). As in the case of three

electrons, the matrix T'(E) has a singular part T(E )(*) which includes terms like

1 L?
(E - €, — ekn) a(L)
and
1 i 1 ad—2
7 §(d' +q+ Y ki —P) -
25> |
L q,q'¢FSs i=3 (E —€q — € T €, T T ekn) 2t fu

where all the k’s belong to the U = 0 FS. As a first approximation we just solve the
equation T'(E)() . J = 0 (as before, that implies U — oo in 3d, but not in 2d). This
again requires that the only J different from zero are those whose arguments k are part
of the Fermi sphere of the unperturbed n electrons [their number N; is (n/2)* for non-
degenerate closed shells, counting the possible pairings of different spin states in the Fermi
sphere. In the case of open shells this number is bigger, because the pairings involve all

the degenerate possibilities which can be realized at the outer shell of the Fermi seal. In
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general the equations these J must satisfy look like an eigenvalue problem of the type seen
earlier,

= -

M-JT =M, (1.39)

where A determines the unknown a(L) through

\ = (Q(L)ad_2Ld_2) (1.40)

2t fo
and the ground-state energy expressed as a function of A is

A2t fy
E = Ey+ prEcyrL (1.41)

In (1.39) the matrix M is independent of E and has dimension N;. The method for
constructing M is very simple and can be deduced by inspection of (1.34) and by using
the symmetry properties of the L’s.

For the sake of physical clarity, we recall again the significance of the rows and columns.
In this matrix M, each vector represents a given configuration of the n — 2 spectator
electrons, while the remaining two are getting into a doubly excited state. Similar to what
happened for three electrons, it turns out that, if a(L) — 0 for L — oo (i.e., first class
not empty), then in the limit no spectators are allowed to lie outside of the unperturbed
FS. Since the number of ways N; in which the spectator electrons can be assigned inside
the FS is finite and small, the matrix M is always very simple, and can be diagonalized
exactly.

First, suppose that the U = 0 Fermi surface to be non-degenerate (closed shell). Then
M is the matrix

1 -1 1 -1 1 -1

-1 1 -1 1 -1 1

M=1| 1 1 1 -1 1 -1 -.. (1.42)
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Table 1.1: Values of A and of the total spin for the degenerate ground state of 4, 6 and 8 electrons.

# of electrons | A | Total spin
1 3 0,1,1
6 7 0,2
8 15 0,1,1

of dimension (n/2)? x (n/2)?. The case in which the Fermi surface is degenerate (open
shell) is a little more complicated. Let us suppose that it is m-fold degenerate. First
we construct a block matrix made up of m boxes like (1.42) each of which is defined in
a particular degenerate Fermi Surface. However some rows (columng) of different boxes
correspond to the same J component. For this reason we move these rows (columns) in
order to let them coincide with just one. The final matrix will look much more complicated
than (1.42), and it will generally be more difficult to diagonalize. In this case we expect
that the interaction partially removes the degeneracy. In table 1.1 we show the value of
)\ and the possible (degenerate) values of the total spin of the ground states of 4, 6 and
8 electrons. More details about the case of open k—shells, are given in Appendix A. For
the non degenerate case however the solution is very simple. In fact the matrix (1.42) has
only one physical solution, i.e. A # 0, which is A = (n/ 2)%. For this solution the ground

state energy is

nztf()

B=Fot qaiapi

(1.43)
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and

Ji=1 .|, (1.44)

where, as was said before, the components different from zero correspond to the spectator
electrons belonging to the unperturbed FS.

The expression of the momentum distribution can be easily derived from (1.33) and (1.36).
Apart from a normalization factor, it is

ng =y, I (k,P—k—Zk,-, kg,---,kn) (1.45)
3

(ka ,...,kn) i=

for spin up electrons, and analogously for spin down ones. The asymptotic solution of Eq.

(1.43) and Eq. (1.44), implies that the only L’s different from zero are

L*({FS}) > V?/f§ = A, (1.46)

1
L*({FS—k; -kl + k, + k'}) ~ = A(k;, ki ko, k), (1.47
({ } (AE - o — o + o5, 1 o)? ( ko), (1.47)

where {FS} means the set of k vectors defining the Fermi sea, the k; are wavevectors
inside the FS while k, are outside, and the prime refers to down spin electrons. Notice
that k; + ki = k, + k/. As was said before, the asymptotic ground state is a linear
combination of the unperturbed Fermi sea with the entire set of two—particle excitations.
Let us consider first the case k € FS. Then

ng = L*({FS})+
k; X eFS k;#k

+ Z L*({FS—k; -kl +k, + K })o(ki + ki -k, - k) =
ko.k! gFS
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k;,k(-EFS
=A+ S Ak K ko, ki)8(ki + ki — ko —ko)+
ko.k! ¢FS
kieFs
— 3 AQk K ko, k)i(k+ ki~ ko — k) = A+ Q- 2(k)7, (1.48)
ko k. ¢FS

which also serves as a definition for Q and Z(k)”. When k ¢ FS then

k; k! €FS

= Y LA{FS +k+k, — ki — KNSk + ki~ k- ko) =E(k)T,  (149)
k! gFS

where the + or — refers to k ¢ FS or k € FS respectively. It is easy to see that -

3 g = ;l(A +0Q)-Q (1.50)
keFS
and
> ngp =9, (1.51)
k¢Fs

If we properly normalize the momentum distribution, i.e. we divide by

2
_2-:—%1’—‘51 — A+, (1.52)
then we find
A+ Q- E(k)” E(k)”

ny = ATD ~1- A (1.53)

for k € FS. Outside the Fermi surface, instead

_E)t _E)F

ng = AraS A (1.54)

To obtain (1.53)-(1.54) we have assumed A > Q. This is actually true in our approxi-
mation (i.e. L — oo while n is finite), because  ~ n - =7 (k), where, as we are going to
show, 2= (k) ~ L*, so that Q ~ I* €« A (~ L*log’ L in d = 2 and ~ Lfind =3). It

is possible to evaluate the asymptotic behaviour of ny close to the Fermi surface. In this
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case, orders of magnitude are

mn

1 .
5 > ——————— ~ Lk (1.55)

E(k)” ~ E(k)* ~
qgFs (2¢q — 2ff)2

(the factor n/2 counts the down spin electrons, i.e ki, inside the FS). This means that

=(k)" _2) 1
(A) ~ R g2 (1.56)

and that the jump Z in the momentum distribution scales to one when ky ~ nt/d|L — 0

as

- E:a)?  in 3D
1-272= 1~(nki—0T‘"nkf+OT) Nki(d 2)f3~ {( 7a) in 3

log™2 L in 2D. (1.57)
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1.4 Extension to finite density

In the previous sections, we have presented a solution for the ground-state of electrons
in the d = 2 and d = 3 Hubbard model. The results are simple, analytical and formally
exact. However, they are asymptotic in the sense that only the lowest order terms of
an ordered expansion in powers of 1/log L (for d = 2) and 1/L (for d = 3) is obtained.
In particular, we have not yet shown that the coefficients of the higher orders in this
expansion are all finite, for any finite number of particles n. With this only provision, the
results presented are exact.

We have obtained the ground-state energy, total momentum, symmetry, wavefunction
and momentum distribution. For a general closed shell in k-space (i.e. n = 2,10,18,...
in d = 2) the ground-state is a P = 0 singlet, with energy given by Eq. (1.43). The
situation is considerably richer for open shells, which display degeneracy (see Appendix
A). However, the basic physics should converge to that of closed shells for large n.

The momentum distribution n(k) for the closed shell case yields a Fermi jump [Eq.
(1.57)] which, modulo U-independent logarithmic corrections, scales asymptotically to 1
for d = 2 and zero density.

If we assume, reasonably but without proof, that our results can be extrapolated
to small but finite densities p = n/(aL)?, we obtain formally the same ground-state
energy and momentum distribution obtainable by T-matrix technique in the low-density
limit[12, 13, 14, 15]. The analogy between finite n, p — 0 and finite p is direct in d = 3,
where the low energy limit of the scattering amplitude is a constant. In this case, by

substituting fy = 4wa in Eq. (1.43), we obtain

E = Ey + n2npta’, (1.58)



1.4. Extension to finite density 35

which is exactly the first order correction obtained by Galitskii[12]. In the same way, it is
not difficult to realize that the momentum distribution as given by Eq. (1.53) and (1.54),
coincides with the general expression obtained for example by Belyakov[25).

In d = 2 the generalization is not so straightforward because the low energy limit
of the scattering amplitude does depend on the energy. The consequence is that the
simple result (1.43) cannot be extrapolated at finite density simply because we have no
a prior: prescription to extend fy = 2x/logL to finite density. This problem can be
solved by a little refinement of our calculations, which amounts to evaluate corrections
up to second order in 1/log L. The second order correction to the ground-state energy,
which is proportional to 1/log? L, can, as usual, be obtained simply through the first
order correction to the eigenvector J given by Eq. (1.44). Unfortunately, the next order
correction to the momentum distribution (proportional to 1/ log” L) is more complicated,
because it involves the second order correction to the eigenvector J, which is harder to
evaluate. For simplicity, let us consider for the moment only the next order correction to
the ground-state energy. It is not difficult to show that Eq. (1.39) is the large size limit

of another equation, namely
M-J=1%%(L)%- 7, (1.59)

where M and J are the same of Eq. (1.39), while x is a diagonal matrix in the “spectator

electron” configurations of the unperturbed FS, whose diagonal elements are

1 1
x(ki, ko) = 7 > flat+d —ki—ky) . (1.60)

Q,q'¢Fs €k, T €k, —€q g

In Eq. (1.60) k; and k; are the two states (one for a spin up electron, the other for a spin

down) which belong to the unperturbed FS and are going to be excited to higher states
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q, q'- In other words, all electrons inside the FS are spectators except ki, 7 and ko, |. In
the large-size, zero density limit L — oo, n/L? — 0, the matrix L 2a(L)x — M where
I is the identity operator and A has the same meaning of Eq.(1.39) and Eq. (1.40), so
that we recover all the results already quoted. It is important however to retain the full
momentum dependence of X. It is then easy to show that the solution of Eq. (1.59) (we
restrict to closed shells, because the differences with the open shell case is expected not

to survive in the thermodynamic limit) is now

apy=14 Y (1.61)

X, ko €FS x(ki,ka)

From Eq. (1.59) it is also possible to calculate the second order correction to the compo-
nents of the eigenvector J corresponding to the spectator electron conﬁgurations inside the
FS. This is however not enough, because other spectator configurations are also allowed
to that order (in particular those which refer to three- and four-particle correlations), and
Eq. (1.59) is not sufficient to calculate these corrections, unlike it was the case for the

energy. From Eq. (1.61) the ground-state energy turns out to be

1 1
E=Eo+1; 2. (1.62)

k; ko€FS X(kl’ kz)

which, in the limit L — oo, is just Eq. (143) In order to obtain self-consistent results,
the sum in Eq. (1.62) must be expanded in powers of 1/log L up to second order. Hence
Eq. (1.62) provides the formally correct generalization of the energy shift to small but finite
density, in a way which is unique.

Omne can immediately see that Eq.(1.62) coincides with the ground state energy ob-
tainable by the T—matrix technique [see for example Ref. [14]]. However, the method we
have presented here, allows to go systematically beyond the simple T-matrix approxima-

tion. By means of our technique, it is possible to generate a well ordered expansion of the
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ground-state properties in terms of the scattering amplitude fy, and, from this point of
view, it is analogous to the approach described in Ref. [29].
The analytical expression of the function x(ki, k) at leading order in the low—density

limit, is simply

x(P/2+k,P/2-k) = —ﬁ (log(kfa) + %—log Ly + Pk/;)Q — kz]) (1.63)

Equation (1.63) diverges both for kfa — 0 and for P = 0 and k = k;. Hence there is
strictly no contribution to E— Ey of Eq. (1.62) from scattering at zero total momentum[26).
However, the error made by ignoring this cancellation, i.e. by ignoring the second term in
Eq. (1.63), is small, of order 1/log?(ksa) [27]. Therefore, if we are only interested in the

first order in 1/log(ksa) corrections, then we can consistently take
1
X(kl,kg) jand —mlog(kfa) (1.64)

in Eq. (1.62) which yields finally

2rtpa?

E———Eo*—ni()*g‘(‘;l‘z—).

(1.65)

This is the same expression we would have obtained by simply substituting f = 27/ log L
in Eq. (1.43) with —2x/log(ksa).
The same consideration holds for the momentum distribution, whose jump at the Fermi

level turns out to be[28]
4log2

Z=1-—28°
log?(pa?)

(1.66)

The next-order correction to the momentum distribution is harder to evaluate. How-
ever one can show that Egs. (1.53) and (1.54) give the right result with the same definition

of the functions E*(k) and =~ (k), and with the only provision that the correct function
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A(k;, ki ko, ki) to be used is

1 1
Ak, K ko, k) = +
N P, (e
t 1
2(2 fu) S Y b(ko+q -k -k +
KeFs a'gFs “, T a7 %k T %K,
2(2t 1) 1
+ (L2° SY 6k, +a-k - ki) )
k' €FS qgFs € T €q — €, ~

(1.67)

The first term inside curly brackets corresponds to the spectator configurations of the
Fermi sea [it is simply the solution of Eq. (1.59)], while the second term derives from the
three-particle correlations, which must also be included at this order. These corrections
remain of higher order in 1/ log(ksa), even when we generalize the results to finite density.
This is not trivial, and was not a priori evident nor guaranteed. In particular, there might
have been terms, e.g. like n/log L, which are well ordered in 1/log L, but diverges when
n — co. However, these types of terms turn out to be strictly absent, at least up to third
order. Let us see qualitatively, how this happens. The function A(ki, ks ko, k) which
gives the Fermi jump through Egs. (1.48)~(1.54), is just the square of a function L, that
is from Eq. (1.36)

J(ks, Ky, oo kn) — J(ks, koeoiy kn) + - - -
(E— ¢ =™ €.)

L(ky, ko, k3, .oy kn) =

We see that, in order to obtain consistent results to third order in 1/ log L, it is necessary
to expand up to first order the energy denominator in AE = E — Ey. This expansion,
however, yields terms proportional to AE ~ np/ log p, which is not well ordered at finite
density, as discussed earlier. However, a consistent calculation shows that, at least up to

third order in fy, each time one of these dangerous terms appears, it is cancelled by an
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identical one coming from the numerator. Thus, in the end, the net result is well ordered
in 1/log(ksa) as well as in 1/logL. We have not evaluated explicitly the next order
correction to the momentum distribution by means of Eq. (1.67), but it is not difficult to

convince ourselves that this correction is finite.

Therefore, unless some yet undetected change of regime, or phase transition, takes
place precisely for n — o0, there is every reason to believe that our results extended to
very low-density, remain correct also in d = 2. We stress in particular that the formal
coincidence with our extrapolated results for finite electron numbers of Eq. (1.43) was by
no means expected from the start. It is interesting to note, as a side remark, that also in
d = 1 the p = 0 point is non-singular, so that even there, the finite n, n/L? — 0 results

extrapolate smoothly into the finite density, small p regime[24].

To conclude this section, we would like to point out the important role played in our
calculation by the interaction correction AE/V to the energy density. We have shown
how this quantity can be used as an effective expansion parameter, to be determined
self-consistently. This allows a calculation of all the ground state properties of dilute
short-range—interacting Fermi systems in more than one dimension. We have found that
in d > 2 this expansion is well defined and the ground state does not show anomalous
properties, with respect to the non-interacting case. For d < 2, AE’/V is not a small
parameter, and the same expansion does not hold. Even though the method does not
work in this case, it allows to draw some important conclusions which are known to be

valid in 1D, e.g. the absence of a finite jump in the momentum distribution.

The connection, suggested by our calculations, between AE/V and possible anomalies

induced on the ground state by the interaction, might have its explanation in a simple
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argument[24]. Let us consider a non interacting Fermi gas on a d-dimensional lattice. At

low density, the energy is:

(1"3) ~ —2dtp + catpltD/ (1.68)
V U=0

where ¢4 is a constant depending just on dimensionality. The first term in (1.68) is just
the energy density of a system of non interacting bosons. The second term is a pure effect
of Pauli principle, and can be in a sense interpreted as a statistical interaction correction.
If U is switched on, it can be shown, on very general grounds, that the energy density has

to change by an amount:

(D (0

where fy ~ ks ~ p in 1D, fo ~ 1/logp in 2D, while it is a constant in d > 3. Now, from
Egs. (1.68) and (1.69), it turns out that while in d > 2 the interaction correction 1s, at
low density, always negligible with respect to what we called the statistical correction, in
1D they are of the same order, i.e. p3, in the density. We conclude that the interaction
not only is relevant in the latter case, but also its effects are comparable to those of Pauli
principle, thus suggesting anomalous ground state behavior in 1D but not in d > 2. We
have shown in more detail in the previous sections, that this type of qualitative argument
is indeed correct. We have in fact demonstrated that, assuming the interaction correction
negligible with respect to the statistical one, the ground state properties do not show
anomalies with respect to the non interacting case. If that assumption is not true, the
opposite scenario is realized. We have also shown that the former case does occurin d > 2,

but does not in 1D, in agreement with available exact solutions.
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1.5 Anderson’s singular forward scattering and other open
questions

Besides the ground state properties, which, as we have shown in the previous Sections,
can be accurately calculated, at least in the very low—density regime, an equally important
problem regards the nature of the low lying excitations of a 2D Fermi gas. Two different
scenarios can be realized: either the Landau Fermi-liquid theory is valid and the elemen-
tary excitations are quasi-particles in a one-to—one correspondence with the excitations
of a non interacting Fermi gas; or they have completely different properties, as it is the
case in 1D.

In this Section, we will discuss some available results concerning this controversial
problem, which are closely related to the kind of calculations presented in the previous
Sections. Most of them support the point of view that Landau theory applies in 2D as well
as in 3D. They are essentially based on very old studies of the dilute Fermi gases[12, 30, 13].
We present these results at the end of this Section, while we start by discussing the opposite
point of view, according to which Landau quasiparticles are not stable excitations in 2D.

This scenario was originally proposed by Anderson[7], who pointed out that a non-
Fermi liquid RVB-type state could explain some of the anomalous properties of the Cu-O
planes in the High Tc superconductors. More recently, he has formulated[10] quite general
arguments against the applicability of Landau theory in 2D. These arguments are based

purely on dimensionality effects, independently from the specific details of each model.
1.5.1 Derivation of the singular forward scattering

The mechanism which is, according to Anderson, responsible for the breakdown of Landau

theory, is based on the existence of a singular forward scattering between two opposite
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spin electrons with almost equal momentum, and on the ability of this vertex to destroy
Fermi-liquid behavior. Even though it is possible to identify such a singular interaction,
the successive step of proving that it generates non Fermi liquid (FL) behavior, is still not
completely clear. First of all we sketch our derivation of the singular forward scattering
vertex.

Let us consider the correction to the total energy (1.62) at low density. From that
expression, we can define the energy shift due to the interaction between a spin up electron
of momentum k; and a spin down electron of momentum k;, both belonging to the Fermi

sea. It turns out to be simply:

1

AE(ky, ky) =~
(1, kez) Lix(ki, ks)

(1.70)

By analogy with the problem of the scattering from an impurity, we can interpret (1.70)
as due to a shift in the allowed momenta. This point of view has proved quite fruitful in
1D[31]. Let us assume that the interaction energy is indeed generated by a shift Ak/2
to k; and a corresponding shift —Ak/2 to ky, due to momentum conservation. From the
symmetry between the two momenta, the shift Ak is assumed to be parallel to Q = k; —k,,

and we can write the momentum shift in terms of a “phase shift” § as:

6 Q
Ak= o (1.71)
We immediately obtain the equation for §:
AE(kl,kg) _ ] Q 2 6 Q 2 2 2

whose solution is:

§ = \/(LQ)2+m—LQ. (1.73)
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Notice that when @ ~ 1/L, this phase shift is finite in 2D, while is of order O(1/L) in
3D. By means of Eq. (1.73), we can calculate the energy shift induced on the particle at
momentum k;, by the electron at ko, which can be interpreted as an effective interaction

potential veg(ky; ko) felt by kg

ve(kiiko) = ta’L [(ky + Ak/2)? - k}] =

1 L1 k2 — k2
— 42 1 2
- {2ta2x(k1,kz) T } (14

The second term on the right hand side of Eq. (1.74) diverges as the linear size L both in
2D and 3D. However, this divergence does not affect the equal time properties, because
it cancels with the analogous contribution coming from veg(k2; k). From the expression
of the phase shift Eq. (1.73), it comes out that the singular part of the effective potential
Eq. (1.74) is strongly peaked at @ = |k; — ko| = 0, and vanishes as 1/Q for large relative
momenta. Equation (1.74) coincides with the singular forward scattering introduced by

Anderson, even though we derived it in a different, but equivalent, way.
1.5.2 Physical consequences of the singular interaction

According to Anderson[10], who has originally derived Eq. (1.74), this interaction is the
signature of the breakdown of Fermi liquid (FL) theory in 2D. This breakdown should
manifest itself as in 1D, implying both power law decay of the correlation functions with
exponents different from the non-interacting ones, and spin—charge decoupling. The ar-
guments Anderson gives, are partly based on the analogy between the results of this
calculation and the orthogonality catastrophe induced by a single impurity in a metal[32].
However, the infinite mass of the impurity is crucial in the original argument; in the

present case, the finite electron mass allows for recoil. The “recoil effect”, which naively
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should prevent an analogous catastrophe in this problem, is claimed to be inhibited by the
presence of the Fermi sea of occupied states. However, even though it is not difficult to
derive the singular vertex (1.74), which, as we have shown, is perfectly compatible with all
our results, we can not prove that it really gives rise in the end to genuine non Fermi-liquid
behavior.

First of all, it is not obvious that the phase shifts (1.73) should play the same role of
those which appear in the single impurity problem and are responsible for the orthogonality
catastrophe. Secondly, even assuming that, we do not get the orthogonality catastrophe
with the phase shifts defined as in Eq. (1.73)[33]. Let us suppose, in fact, that the
consequence of adding one particle of spin up at the Fermi momentum, can indeed be
absorbed in a phase-shift for the down-spin electrons. This means that, if a down-spin
electron at momentumk = 27rm /L (mis an integer vector in d-dimension), was previously

represented by a wave—function
Yk(r) = —=e'lT, (1.75)
after an up—spin electron is added to the Fermi sea at momentum:
k; = 2rM/L, (1.76)
its wave—function will be modified into:

1 kenk).
(]Sk(r) = Wez(k+Ak) l‘. (1-77)

According to Egs. (1.73) and (1.71), the momentum shift is approximately given by:

2r m-—-M 2w
} Y =T )



1.5. Anderson’s singular forward scattering and other open questions 45

with e proportional to the scattering amplitude fy. The residue Z, is proportional to the
overlap between two Slater determinants, one with orbitals given by Eq. (1.75), the other
with the modified plane-waves (1.77). It can be shown that this overlap is simply the

determinant of the matrix
Tiq = ) ¥k(r)¢q(x), (1.79)
I
where the matrix indices are the momenta k and q, which lie inside the Fermi surface of

N electrons. By summing the geometric series, one gets:

1— ei27:6°,

rk 1— ei21r(ma—-na+6a)/L’

q = 1la

(1.80)

with a labelling the components of the vectors (a = 1,...,d), and with the vectors n and
m defined by k = 27n/L, and q = 2rm/L. By definition, § depends only on m — M (M
is the location of the added electron). At low density (when the number of electrons N is

much smaller than the number of sites L), the matrix can be approximated to:

1 sin(méy )
Tra= II .
ka (1) " my — ng + b

(1.81)

The determinant of this matrix can be exactly calculated in 1D, and, assuming constant
phase—shifts, it is:

Z = detl « N7, (1.82)

which is the well-known expression of the orthogonality catastrophe[32]. Unfortunately,
in d > 1, the determinant can not be evaluated exactly. However, a numerical calculation
can be easily performed up to a number of particles large enough to obtain a reliable size
scaling. We have done this calculation in 2D[33], with the definition of § given by Eq.
(1.78), and we have found that the overlap saturates, for large number of particles, to a

finite value, smaller than one but definitely nonzero. Therefore the phase—shifts, defined
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as in (1.78), do not appear to produce an orthogonality catastrophe in 2D because, unlike
those in the single impurity problem, they are strongly momentum dependent, and in

particular, we suspect, because they vanish like 1/|m — M| for large |m — M]|.

Therefore, even though the presence of a singular forward scattering is confirmed by
our results, we still do not know if it causes a breakdown of ordinary FL theory. For
example, in a perturbative treatment, e.g. the T-matrix technique, this singularity is
completely invisible. This is because the pseudo—potential which enters in any perturbative
expansion is, rather than each single veg of Eq. (1.74), the symmetrical combination
ve(k1j k2) + ver(k2; k1), which is not singular, unless the first term on the left hand side

of Eq. (1.74), i.e. 1/x(k1,k2), diverges.

In a recent paper, Stamp[34], assuming the residual quasi-particle amplitude fy, i, to
have the singularity predicted by Anderson, has claimed that the quasi-particle residue
Z vanishes at the Fermi energy, thus destroying the FL picture in 2D. In particular, he
has shown that Z vanishes at the Fermi energy as a power law of |k — kp|, with an
exponent proportional to the square of the phase shift of Eq. (1.73), in agreement with
what Anderson conjectured by analogy with the orthogonality catastrophe. The exponent
he finds, is, however, not exactly that appearing in the single impurity problem, due to
an additional factor €f/wy, wy being an energy scale introduced as a cut—off of diverging
integrals. He does not make any assumption on the origin of this scale, but, should wg not
depend on density, his results might also be reconciled with the low density perturbative

calculations we have presented in the previous Sections.

On the other hand, we perfectly agree that non—Fermi liquid behavior in the form of

spin—charge separation, may be easily derived if a strongly momentum dependent pseudo—
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potential is used in place of the Hubbard interaction. In particular, should the pseudo-
potential diverge as the linear size L, for small relative momentum |Q| (Q is the difference
of the momenta of the two scattering electrons), and vanish for Q| — o0, as Anderson
proposes, then it becomes possible for spin—charge decoupling to occur in 2D (but not in
3D). In this case, in fact, the interaction at small relative momentum is not any longer
irrelevant in the renormalization group sense[35], and has to be considered at the same
footing of the kinetic energy. This can be done by applying, for example, a bosonization
technique in d > 1, derived long time ago by Luther[36] and recently re-formulated by
Haldane[35]. It is then easy to see that such a singular forward scattering plays exactly the
role of the g, interaction in the 1D g-ology models[18]. This interaction is well known to
give rise to spin—charge decoupling, without generating anomalous exponents (see Section
2.4). The effective g4, which should appear in the 1D-equivalent model, is approximately
given by weg X L'~9. In 2D, this turns out to be of order O(1), if the effective pseudo—
potential diverges as the linear size L; on the contrary, in 3D, it is only of order O(1/L),
and therefore irrelevant.

We conclude that a forward scattering singularity, if it exists, does generate spin—charge
decoupling in 2D, while it does not in 3D. Furthermore, the same line of argument would
suggest its inability to give rise to anomalous exponents in any dimension greater than
one. On the other hand, no convincing derivation of such interaction in realistic electronic

models is available yet, and this problem remains open.

1.5.3 Low—density perturbation theory

Contrary to the strong coupling picture previously discussed, other approaches[13, 14, 16,

15] suggest that in 2D, at least in the low density regime, Landau Fermi-liquid theory is
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valid. The claim is based on standard calculations of the single-particle Green function, ob-
tained in the low—density regime after a T-matrix resummation[12]. This technique allows
a perturbative expansion, even for strong short range repulsion, so it can be safely applied
to the strong—coupling, but low-density, limit of the Hubbard model. All these studies
find a quasi—particle decay rate which vanishes at the Fermi surface as w? log (1/|w|). This
implies that the quasi-particles are well defined stable excitations, and, in turns, as a result
of the Kramers—Kronig relations, that the jump in the momentum distribution is finite.
Both these properties are usually considered as clear signatures that Landau Fermi-liquid
theory holds. Once one assumes that the quasi-particles are well defined objects, then it
is easy to derive, from the expansion of the total energy in Eq. (1.62) up to second order
in fy, all the Landau f-functions[16], following a method first applied in 3D by Abrikosov
and Khalatnikov[30]. The resulting scattering amplitudes between the quasi—particles on
the Fermi surface, turns out to be finite[16], and apart from some subtleties related to the
presence of hole anti-bound states in the two—particle spectrum, nothing really special
occurs. All these results, agree with our calculations, as we said in the preceeding Section,
but contrast with Anderson’s conjecture. However, we want to point out two aspects of
these calculations, which, in our opinion, lead to the conclusion that some caution is still

necessary to state definitively that Landau theory works in 2D.

The first is that, a ground state which does not show any anomalous property, does
not necessarily imply that Landau Fermi-liquid theory is valid. In particular, a perfectly
innocuous ground state, e.g. with a finite jump in the momentum distribution at the Fermi
surface, is compatible with non FL excitations showing spin—charge decoupling, which is

exactly what Anderson’s singular forward scattering suggests, as we have just discussed.
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This further implies that our calculations do not exclude such a possibility.

Specifically, should spin-charge separation take place, the breakdown of FL theory would
not be signaled by any logarithmic singularity in perturbation theory, which is usually
related to anomalous exponents, but it would rather appear as an analytical property of
the re-summed perturbation series. In analogy to what happens in 1D (see Section 2.4),
spin—charge separation is, in general, expected to manifest itself through the appearance of
branch cut singularities in the single—particle Green function, replacing the usual quasi-
particle pole. The change in the analytical properties of the Green function, can be
recognized only away from the Fermi surface, both in frequency and in momentum, while
no indication is found if either frequency or momentum are exactly at the Fermi surface.
This can be easily realized by considering a simple 1D model where only spin—charge
separation occurs (see Section 2.4). In absence of interaction, the 1D single-particle Green

function is simply:
1
w — vpg + insigng

G(kp—l— q,w) = (1.83)

while, once the interaction is switched on in this particular model, the Green function

becomes:

G(kp-}—q,u)) = L (1.84)

\/(w — u,q + insigng)(w — u,q + insigng)

where the holon and spinon velocities u, and u, are simple linear functions of the inter-
action. Were one to expand (1.84) at w = 0, in powers of the interaction, i.e. in pOWers
of (v, — vr) and (u, — vF), then one could perfectly conclude that the interaction simply
renormalizes the Fermi velocity. This conclusion is enforced by noting that, at ¢ = 0, the
Green function is not corrected at all by interaction. Only if the expansion is carried out

both at ¢ and w different from zero, it is possible to realize that the interaction instead
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really changes the analytical properties of the Green function, thus destroying Fermi liquid

behavior.

To our knowledge, none of the available perturbative calculations of the 2D Green
function[13, 14, 15], and of the Landau f—functions[16], has really looked into this aspect.
We therefore believe that the problem of a possible occurrence of spin—charge separation
in 2D interacting fermion systems, deserves more investigation, especially from the point
of view of establishing the general features of such a behavior in more than one dimension,
before concluding that Fermi liquid theory really works in 2D. What we can safely assert,
is that, at low density, anomalous exponents are absent, which means that the asymptotic
behavior of the correlation functions is not modified by the interaction and, consequently,

that the jump of the momentum distribution at the Fermi surface, is finite.

There is also another reason why some caution on the low—density expansion results,
has to be taken. It is not difficult to see that the value of the total energy which we obtained
in the previous Sections, up to second order in the scattering amplitude fo = —27/ log(kya)
[see Eq. (1.62)], (which coincides with that obtained in the low density limit by Ref. [14]),
is not so accurate when compared to the energies of states with different symmetries,
which are not expected to occur, at least at low density. In particular, if we compare
the energy (1.62) with that of a fully ferromagnetically polarized system, we find that
the two values cross at very low density, too low to believe that a real ferromagnetic
transition takes place. According to our calculation, this should occur already at fy = 2,
which according to our estimates of fo ~ —2m/ log (k;/ky) gives ky = 0.043ko, where ko is
the inverse of the 2D scattering length, of order m/a. In terms of density, it means that

already at p. =~ 0.003, the second order T-matrix results are not good enough, and higher
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orders are needed. Moreover, one might compare the total energy of the paramagnetic
state resulting from our calculation, with only partial polarized states. In this way the
critical value p. =~ 0.003 can be much lowered. For example, let us consider, as a trial
wave—function, the state where only the outer shell of electrons is spin—polarized. It is not
difficult to apply the method we have discussed in the previous Sections to this state, and
find that the difference AE betwéen its total energy and that of the paramagnetic state
(1.62) is simply:

2

27\ ? m
kp+ 22) SRR - L.
(b + 22) F} Tox(krs k) (1.85)

where m =~ 27kpLa is the total number of points on the Fermi surface. The polarized

AE = ta’m

state acquires a lower energy than the paramagnetic one, if Eq. (1.85) vanishes, which
happens at fy = 1. This value would correspond to a density p = e 27p, ~ 2 x 107 3p,,
which is extremely low. Therefore, due to the peculiar 2D logarithmic dependence of f;
upon the density, we find a strong tendency of the Fermi surface towards spin—polarizing
the outer shells. It is still a controversial problem if Nagaoka’s ferromagnetic state, which
occurs when one hole is created in an otherwise half-filled 2D Hubbard model, might
extend to finite density of holes, but is seem not plausible that it might extend up to
such a high hole-density. We think therefore that this calculation does not imply that
a phase transition towards ferrimagnetic states indeed occurs, but, more likely, it simply
suggests that in 2D, the convergence of low—density expansion is not as good as in 3D,
and therefore higher order terms need to be evaluated, before one can safely state that

something or nothing anomalous really happens.
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Chapter 2

Stability of 1D Luttinger liquid be-
havior in models of coupled chains

In this Chapter, we will discuss various aspects of the problem of 1D chains of interacting

fermions, coupled by a transverse hopping.

In Section 2.1, we study the simple case of two coupled chains of spinless fermions.
This problem is quite interesting, because it can be mapped onto a model describing a
single chain of spin 1/2 fermions. In this representation, the transverse hopping plays the
role of a magnetic fleld. Due to this mapping, the model can be analyzed in detail by
making use of the known results on 1D chains in presence of a magnetic field. By means
of renormalization group (RG) calculations and of the bosonization results, we derive a
zero—temperature “phase diagram” of two coupled spinless chains, as a function of the
intra—chain repulsion at infinitesimal transverse hopping.

In Section 2.2, we generalize the method to treat the case of spin 1/2 fermions. For
this system, we have not found an analogous mapping onto known models. However, by
making again use of RG, considerably more complicated than in the previous case, we

show that the transverse hopping is actually a relevant perturbation, which modifies the

53
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long—wavelength behavior of the two chains. We also show that this spinful case shares
many aspects with the previous spinless model.

In Section 2.3, the RG is applied to calculate the phase diagram of two spinful chains
with Hubbard on-site repulsion, for arbitrary transverse hopping. The phase diagram
is further discussed by applying the bosonization technique directly to the fixed point
hamiltonians identifying each different phase.

In Section 2.4, we study another simplified model of two coupled chains. The hamilto-
nian of each chain, in absence of transverse hopping, is defined in such a way as to exhibit
spin—charge separation, but no anomalous exponent. We show how to solve exactly this
model when an interchain hopping is applied.

The full model of Sections 2.2 and 2.3 in absence of transverse hopping, shows simul-
taneously anomalous exponents (as for the spinless chains of Section 2.1, but not for the
model of Section 2.4) together with spin—charge separation (obviously absent in the spin-
less case, but present in the case of Section 2.4). Comparison between them is of greater
help in elucidating what features in the phase diagram are due to what.

In Appendix B, it is shown the detailed derivation of the RG set of equations for

arbitrary transverse hopping, in the spinless fermion case.
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2.1 Relevance of the transverse hopping in a two spinless
chain model

In this section we analyze the role of a single-electron interchain hopping in a simplified
model of two spinless chains. We start with the hamiltonian of two coupled free spinless
fermion chains.
Hy=— Y (cliejq+elpejp+He) =105 (el ey + He), (2.1)
<%,7> i
where cf-,l(c:f’z) creates a spinless fermion at site ¢ on chain 1(2). For t; < 1 — cos(2mp)
(p is the density) there are two branches, labelled 0 and =, of the non interacting Fermi

surface (Fig. 2.1). Near e, bands are linearized in the form €} = +vl(kF k%) (1 = 0,7),

—TT 0 T

Figure 2.1: Band structure of two uncoupled chains: the two bands are labeled by the value of the
transverse momentum (0, 7). Linearization around the Fermi points is also shown.

valid within some cutoff range of width Ky around k.. The kinetic term therefore reduces
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to two linear bands with different Fermi momenta and velocities. Let us further simplify
it, by assuming equal Fermi velocities. This approximation is not so arbitrary, at least
for small t, because, as we will show later, different Fermi velocities do not affect the

asymptotic long wavelength behavior. The hamiltonian H, is therefore rewritten as:

-

By = Y ur(k— kr)(ahoay + af,ap) — vr(k + ke)(bobo + Bhabix) +
k

T t t t _
— (a0 — BrCr + bkobro = Dkrbix) =

= Z vp(k — kOF)aZoako +vp(k - k?)alrakﬁ +
k

vp(k + k2)bL by — vr(k + KE)BL ber, (2.2)

where the operator a;(bg;) refers to the right(left) moving electrons, and the suffix 0
indicates the bonding band, while 7 the anti-bonding band. kp is the Fermi momentum
in the absence of transverse hopping, while k% = kr +t) /vr and k. = kp — ty /v are
the Fermi points for the two bands in presence of ¢, .

The next step is to introduce the fermion—fermion interaction. We neglect all the
scattering processes between two right-moving fermions or between two—left moving ones,
because they do not generate logarithmic singularities. They are expected just to renormal-
ize the sound velocities of the excitations. Moreover, we also ignore Umklapp scattering,
which is important only for isolated commensurate fillings. Keeping into account the con-
servation of total transverse momentum, we can generate five different couplings[37, 38, 39]
(see Fig. 2.2): gy (intra-bonding band scattering), gr (intra-anti-bonding band scatter-
ing), g (inter-band forward scattering), g (inter-band tunnelling) and gj (inter-band
backward scattering). Physically, if we allow only intra—chain fermion—fermion repulsive
interactions, then all these couplings are equal and positive. By confinementin this model,

we will mean that, due to the interaction, the transverse hopping is not able to shift the
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Figure 2.2: Coupling constants which can be generated for two chains of spinless fermions, com-
patibly with the conservation of total momentum. Solid lines represent right—moving fermions,
whereas dashed lines denote left—-moving particles.

bonding band with respect to the antibonding one, thus leaving the two distinct Fermi points
kY. and kT degenerate, i.e. k% = kT means confinement.

This model is clearly equivalent to a single chain of fermions with spin 1/2 in a magnetic
field. It is enough to consider the band indices (0 or ) as pseudo—spin indices (T or |) to
build the mapping. In this representation, the transverse hopping plays the same role of
a magnetic field in the z—direction, while the difference between the occupation numbers
of the bonding band and the anti-bonding one, corresponds to the magnetization. The
hamiltonian, in this representation, turns out to have spin—anisotropic interactions. Such
a model has been studied in detail by Giamarchi and Schulz[37] (GS), by means of the
renormalization group applied to the bosonized version of that harm'ltonié.n. In the absence
of a magnetic field, they find a critical plane, away from which there is always one variable
scaling towards strong coupling. In particular, the hamiltonian we are considering, where

all the couplings §; (¢ = 0,7, f,t,b) are equal and positive, lies just on that critical plane,
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simply reflecting the Luttinger liquid nature of two uncoupled spinless chains. What we
want to show here, is that a transverse hopping induces a further pseudo-spin-anisotropy
in the model, capable by itself to move the system away from criticality and towards strong
coupling regimes. This result demonstrates that the two uncoupled Luttinger chain fixed
point is unstable against switching on a transverse hopping [this was already implicit in the
RG equations (3.15) of GS]. In particular, GS predict that, starting from the critical plane
with all the couplings equal and positive, only one regime is reached, characterized by
strong-coupling and by a finite magnetization. It corresponds to phase 2) of section 3.2 in
Ref. [37]. In the chain representation, this result implies that two spinless chains coupled
by a transverse hopping are always driven towards a unique strong coupling regime, which
does not show confinement. Instead our RG calculations suggest a richer phase diagram,
and, while we agree with the results of GS for small values of the bare couplings, other

different phases are found for larger values.

2.1.1 The Method and the RG Equations

The method we have adopted to study the model described by the kinetic term Eq. (2.2)
and by the couplings in Fig. 2.2, is the Wilson renormalization group. This amounts to
integrate out fermionic degrees of freedom in a momentum shell of width § K around the
edges of the bands. The momenta are then rescaled by (1+ 8K/ Ko) and, at the same time,
also the wave functions ¥, and ¥, the couplings g;, the Fermi velocity and the Fermi
momenta k% and k}. are scaled, in order to reproduce the original model with renormalized
parameters. More precisely, we require that the Green function keeps, after rescaling, the
same form, apart from an overall multiplicative factor. At first order in the coupling

constants, neither wave—function nor Fermi velocity and momentum renormalization are
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.......

Figure 2.3: Low—order diagrams for the vertex.

found. In order to study the Fermi-liquid properties, we need therefore to evaluate the RG
equations at least up to second order in the coupling constants. For the vertex corrections,
this amounts to calculate the diagrams of Fig. 2.3, where the vertices may be anyone of
the five scattering processes described earlier. Let us consider for example the particle-
particle bubble of Fig. 2.4a. It is straightforward to calculate its value at first order in

§ Ky, which is
o1 6Ky
27T’UF KU )

(2.3)

All the particle-particle bubbles (the particle-hole ones simply give an opposite contri-
bution) which can be generated without the coupling g, give the same result. The other

elementary bubble (Fig. 2.4b), where the coupling on the left vertex is gy, gives a different

contribution, which is

1 6Ky Ky
27("1][3‘ Ko Ko - Ak!F’

(2.4)

when Ky > 2Akp = 2(k% — k’ki),vwhile it is strictly zero when Ky < 2Akr. The reason
for the difference between (2.3) and (2.4) is that the coupling g, with all the incoming
and outgoing electron lines precisely at the Fermi energy, does not conserve momentum
as soon as Akp # 0. For this reason, the logarithmic singularities generated by these
processes, are shifted up in energy by an amount 2vpAkp. Then, at the beginning of the

RG flow, i.e. in the high energy region, these scattering processes dominate the vertex




60 § 2. Stability of 1D Luttinger liquid behavior in models of coupled chains
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Figure 2.4: Elementary bubbles which are needed to evaluate leading and next-to-leading order
corrections.

corrections, i.e. the term (2.4) is greater than (2.3). This occurs until the bandwidth
cutoff K is larger than 2Akp. Below this value, these processes stop contributing to the
scaling at all. This sharp change is the consequence of the bandwidth cut—off scheme, and
it generates automatically a two—cut—off scaling theory. A similar beha.viour occurs for

the next—to-leading corrections. For example the diagram in Fig. 2.4c gives

1/ 1 \?6K
-3 () (2.5)
2 \2nvp Ky
while the diagram in Fig. 2.4d, to leading order in Akr/Ky, is
1 1 26K, Akp
- 1 Ak} ) 2.
s (5m) o (1+ F=+ 08, (26)

and remains finite [and different from Eq. (2.5)] until Ky = Akp, while it vanishes for
smaller K. The same happens for the diagram in Fig. 2.4e, even though it remains equal
to (2.5) up to O(Ak%). The calculation of the bubbles in Figs. 2.4a-2.4e, is enough to
calculate the vertex corrections. As we said before, we have to generate all the possible
diagrams like in Fig. 2.3 with the five different vertices, taking into account they can
give different contributions according to Egs. (2.3)-(2.6). The explicit expression of the
diagrams in Fig. 2.4d-2.4e, at any order in Akp, is given in Appendix B. The next
ingredient necessary to write down the RG equations, is the self-energy correction. In

Fig. 2.5 we show the leading contribution to the self energy of the right moving electrons.
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Figure 2.5: Low-order diagrams for the Green function.

The bare Green function is

1
—vp(k — kg(w)) + insign(k — kgp(ﬁ))’

Gy (s ) = (2.7)

while the correction at first order in Akp (the expression valid at any order is given in

Appendix B) is

i 1 2 5K,
Ro(,-)(k w) = Gg,)o(,,)(k,w) {‘“2'< F> (90(m)” + G¢° + d7° +9b) :

N
(0) gb 6Ky
+ GR,O(n-)(kaw)Z l:i (27"'UF> 'UFAkFK—O—l-
N
gb L o(m) 28kF 8K 5
(27er) vr(k —kp )Ko Ko |’ (2:8)

where the +(—) refers to 0(x). This correction can be interpreted in the framework of
RG if we introduce a wave—function renormalization, given by the first term in the right
hand side, a Fermi momentum renormalization, given by the second term, and a Fermi
velocity renormalization, given by the last term. Notice that the Fermi momenta of the two
bands renormalize oppositely, so that their sum is conserved, in agreement with Luttinger
theorem. Due to the coupling g, the interaction tends to deplete the bonding band in
favor of the anti-bonding one, thus decreasing the bare value of Akp. Similar corrections

are obtained for the left moving electrons. The final result is:

0K,

— 1 1 2
bz = 5 (27”) ) (gu + G2 +9f +gb) (2.9)
1/ 1 \? s 51{0
bz = -3 (27er> (G2 + G2 + 972 + db )Tg (2.10)
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~ 2
gb 20kr 6Ky
= 2.
bup v (27r'uF> Ky Ky ( 11)
- 2 '
gb 0Ky
- _9 ) 2.12
SAkR Akp (27rvp> X, ( )

where 23 and z, are the wave—function renormalization factors, or equivalently the quasi-
particle residues, of the bonding and anti-bonding electrons. By means of Egs. (2.9)-
(2.12), we can write down the renormalization group equations for all the invariant cou-
plings, in a manner similar to that outlined in Ref. [18]. Notice that the equality
do = g= = g, satisfied by the initial condition, is conserved by the RG flow. There-
fore, from now on, we consider just one § as representative of both gy and g;. Then, in
order to simplify the notations, it is better to define the energy scale wy = 2v§,9)K0 and

the following dimensionless couplings:

g+as

g, = 1191 2.13
= (2.13)
g— 4y

o= 979 2.14

g ror (2.14)
&

gt — 27rUF (2.15)
G

9 = - (2.16)

h = Akp/Ko, (2.17)

where vgj) is the bare Fermi velocity, while vr is the renormalized one. The RG equations
calculated to first order in h and to second order in the coupling constants, are (a detailed

derivation, valid at any order in Akr/Kjy, is in the Appendix B):

dg, B

Togan = ° (2.18)
dg, 2 2

27T = - 9

dlog oy 2(g: — g6)(g¢ + 95) + 29-(g; + ;) +

— 2hg; + 2hg,g; (2.19)
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dligt‘% = 209 + 995 + 9:(97 — 97) (2.20)
ﬁ%@ = 2095 + go9; — 9v(97 — 97) +

~ hgsgs — 2hgs(g/ — g1 (2.21)
dljgwu = h[2(1+h)g 1] (2.22)
dljgwu = %(93 + 95 + 297 + 2g7) (2.23)
dli?;FwO = —2vrhg;. (2.24)

We have introduced the two couplings 9p and g, in order to show explicitly the pseudo—spin
pseudo—charge separation, which occurs once the model is mapped onto a single chain of
fermions with spin. In that representation 9p is indeed the coupling related to the charge
degrees of freedom[37], which must be unaffected by the magnetic field. The RG correctly
reproduces this important feature, and in fact, from Eq. (2.18) it turns out that g, is not
renormalized. The pseudo-spin sector is represented by all the other couplings, and it is
obviously affected by the pseudo-magnetic field. Notice that the velocity renormalization
affects only the pseudo-spinon velocity, as it is obvious from Eq. (2.13) compared with
Egs. (2.14)—(2.16).

2.1.2 Instability of the Luttinger Liquid: spinless case

The RG equations (2.18)-(2.24) allow to study the stability of the two uncoupled (spinless)
Luttinger chain fixed point [characterized by g, = 0 = A and 9= g5 = g > 0], upon
turning on a small transverse hopping (hy = 4t /wy # 0). In order to do it, first of all we
linearize the RG equations near this fixed point to find the scaling variables. They turn

out to be:

y+1 0
7_‘ah(wu)—

Xi(wo) = 9o (wo) + (9¢(wo) - go(wo)) +
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- ;/ i ihgwg, (2.25)
Xafur) = av(o0) ~ (o) — (o) + L5 (o)
_ 'Z ir;howg, (2.26)
Xs(wo) = ge(wo) + gu(wo) = 24, (2.27)
together with
h(wo) = how, (2.28)

where the scaling exponents are given by a = 49001 + ¢, g = 4g(9(g(® — 1) and
v = 2¢(92 — 1. The two uncoupled Luttinger chain fixed point is stable if, in the wy — 0
limit, no scaling variable grows. This requires all the exponents a, 8 and - to be positive.
The exponent a is always positive for repulsive interactions, while, for the exponents v
and 8 to be both greater than zero, we must have g(®) > 1. Let us notice that h scales
with the exponent of the wave—function renormalization factor of the two uncoupled chains
minus one[40], and the condition 7 > 0 [which implies g > 1/4/2], simply means that
the quasi—particle residue vanishes faster than wy. However this requirement is not enough
for the two uncoupled Luttinger chain fixed point being stable, as we need also 8 > 0,
which gives the more restrictive condition g > 1.

Let us study the RG flow equations when ¢(® < 1, that is when the transverse hopping
is relevant and it drives the system away from the two uncoupled Luttinger chain fixed
point. This analysis is instructive because it clearly shows how different regimes appear,
depending on the strength of the interaction. At the beginning of the RG flow, the

couplings g,, g» and h increase with respect to their initial values, while g, decreases. In
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fact, from the expression of X, X, and X3 in terms of the g;’s, it is possible to show that
forwg <1

(1) when v < 8 < 0, that is g(°) < 1 — 1/+/2, then

9o = h0(72+ D) (a 1 3 L 7) wg (2.29)
9 =9+ };O((Jj,:))((g f)) (2-30)
(i1) instead, when f < 0 and 7 > f,1.e. 1 -1/v/2< g0 <1
9 = 20(67 +;>) g (2:31)
g =g + % WGy (2.32)

while g; = 2¢(®) — g,. Eventually g, grows up to the value g; ~ 1/4/2, beyond which the
pseudo-magnetic field h begins decreasing, as implied by Eq. (2.22), and the system flows
towards the fixed point g; =1, g; = 0, g; = 1 and 2" = 0. Therefore, once the cut—off is
reduced up to the value wy = w, at which gy(w.) = g, the model flows towards a confined
phase with A* = 0. On the other hand, the inter-band backward scattering g, contributes
to the scaling equations only until & = hpwy < hy ~ 1/2, that is until wy > (hy/hy)~ /7.
This implies that confinement can occur only if the condition w, > (ho/hl)"1/7 is verified.

When hy < 1 this requires

hi(y +1)(a—B)
4(g1 = gO)(a =71)(B -7)

> 1, (2.33)

which means ¢g(*) > 0.2775.... Thus we have shown that RG can indeed flow towards a
confined phase for infinitesimal transverse hopping, if the bare coupling constant is larger

than some critical value g,g )~ 0.2775... (to leading order gf —1/v/2 =0.2929...).
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Notice that this critical value is smaller than that required to have the exponent of the
wave-function renormalization larger than one, i.e. 7 > 0, which means g > 1/ V2 =
0.7071.... However, even though this confined regime is shown to exist for the RG set of
Eqgs. (2.18)-(2.24), we must be very cautious about the possibility that a realistic model
could exhibit this kind of behavior. First of all, we have shown that the model behaves in
two different ways, depending on the energy region we are exploring, and processes which
dominate in the high energy regime (wg > t. ), may be negligible at low energies. Such
a situation is delicate to treat by means of RG. In addition, the high energy region turns
out to be important only for sufficiently large values of the bare coupling, where higher
order contributions might be important. In fact, we will show that, a more accurate
analysis, obtained by means of the bosonization technique, suggests a partially different
interpretation of this strong—coupling phase.

If the bare value of the coupling is not large enough to drive the system towards a
confined phase, then the contribution to the RG flow coming from g disappears, and the

RG equations reduce to:

dg,
S 2.
dlogwy 0 (2:34)
dg, 2 2
—27 =9 29 2.
dlogwo gt + g gl ( 35)
dgt 2 3
= 2¢:0o - . .
dlogwy 9i9s + 9:95 + g; (2.36)

These equations are identical to those of a 1D Fermi gas, once we identify g; = gy, and
Jo = grlH[18]. The scaling trajectories of this equations are well known and depend on
the values of the couplings g; and g, at the point where the contribution of gy, disappears
from the equations. If g, > |g;| the system scales towards weak coupling with g; =0 and

g: > 0. This fixed point represents a simple Luttinger liquid, even though the transverse
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hopping remains finite. On the other hand, if g, < |g¢| the RG flows to strong coupling
with fixed point interactions g7 = —1 and g; = 1. Both these phases are characterized by
a finite residual Akp, that is they are not confined. The separatrix between the weak and
the strong coupling regimes can be approximately calculated. As we said, g, disappears
from the equation when A = howy = 1/2. At this value of the cut—off, the equation

go = §i, identifying the transition from one phase to the other, is

(r+1)/ 1 LY o (r+1)(a-8)
4 (a~7+ﬁ—7) B 8(a=7)(B-7) (2:37)

whose solution gives ¢g(®) = ggz) ~ 0.2321....
2.1.3 Phase diagram of two coupled spinless chains

We are now able to discuss the phase diagram of two chains of spinless fermions, at least

for very small transverse hopping (see Fig. 2.6). First of all, let us recall the mapping of

L

I |1 111 IV (0)
I 8

Figure 2.6: Phase diagram of two coupled chains of spinless fermions, as a function of the in-

@)

g

tra—chain interaction, calculated at infinitesimal transverse hopping.
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this model onto a single chain of fermions with spin 1 /2. This mapping makes it possible

to apply to this case, all the exact results known for the 1D electron gas. The mapping is:

agp W Qg
bko > ka
Agx > ag|

biw > bkl (2.38)
According to the usual g-ology jargon[18], the couplings map into:

g = =g = 921 — 91
gf —  ga21

g — —giL, (2.39)

with a new coupling ¢,[37, 38, 39], induced by spin-anisotropy and describing scattering
processes where two parallel spins are flipped at the same time. In this representation, as
we noticed, the transverse hopping plays the role of a magnetic field in the z—direction,
and confinement means zero magnetization in presence of an applied magnetic field. The
physical behavior of a 1D spin-anisotropic Fermi gas, can be characterized through the

asymptotic behavior of the correlation functions, whose general expression is
R(k,w) = —i / dte™t < T{O(k, )0} (k,0)} > . (2.40)

In practice, the operators O(k,t) can describe charge-density wave (CDW), spin-
density wave (SDWy, SDWy and SDWyz), singlet (SS) or triplet (TS) superconductive

fluctuations[18], or others. In terms of the original two—chain model
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(1) the CDW and SDWz correspond to the operators

1 : .
O(k’t) = Fﬁ Z [b;()(t)aq-i-kﬂ(t) + b;ﬁ(t)aq+kw(t)] 3 (2'41)
q
which describe respectively in-phase CDW and charge density fluctuations between the
bonding and anti-bonding bands;

(2) SDWy and SDWy- operators correspond to

Ok t) = = 32 [a(0)a0140) = e 0008 (2.42)
and represent respectively the out—of phase CDW and some orbital antiferromagnetic
correlations[39, 41];

(3) SS and TS susceptibilities correspond to pair fluctuations.

According to the mapping (2.39), the original two chain model translates into a single
chain of interacting electrons with bare couplings gyy=0and gy = —g;1 =g, = g > g,
in presence of a magnetic field. It is well known that this hamiltonian can be written
in terms of bosonic operators representing the charge and spin density fluctuations[42],
pla) = 1/v2(p1(a) + p1(0)] and o(q) = 1/v/2p1(g) - pi())- In the original two chain
model, p(q) = 1/v2[po(q) + p=(q)] is the symmetric while o(g) = 1/v2[po(q) — px(q)] is
the antisymmetric combination of the densities of the two bands. The charge degree of
freedom p(g) is obviously unaffected by the magnetic field and simply describes a Luttinger

liquid with sound velocity

/2
o (g - 2920)%\"
u, = (vj: - ——1”——4—;2———— (2.43)

and with the coefficient K, determining the long-distance decay of the charge part of the

correlation functions[50], given by

1/2
2mvpE + g1y — 2921
K, = , 2.44

? (27er — g1 + 2921 (2:44)
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always smaller than one. This means that, from the point of view of the charge degrees
of freedom, the most divergent correlation functions are CDW or SDW/[50].

Let us study now what happens to the spin degrees of freedom.

We have shown that, for small initial couplings, 0 < g <« ggz) ~ 0.2321 the RG
equations flow towards a strong coupling regime [indicated as phase I in Fig. 2.6] with
gi =1, g7, = 0 and g;‘H = 1, characterized by the presence of a spin-gap in the y-
direction and by a residual Akp (no confinement). It corresponds to the spin—flopped
phase introduced by GS[37], where the dominant fluctuation is of SDWx type. In the
original two—chain model this means that the most divergent susceptibility is an out-of
phase CDW.

Above the critical value géz) and below ggl) ~ 0.2775, we find a weak coupling fixed
point [IT in Fig. 2.6] with g; = 0, g7, = 0and g7, <0, which describes a regular Luttinger
liquid. As in the previous phase, we find no confinement. The parameter K governing

the spin part of the correlation function asymptotic decay is

2rvp + g7\
K= |—) (2.45)
2rvp — 91|

» also smaller than one. This implies that in phase II the most divergent correlation functions
are of the CDW and SDWy type (being g11 < 0 a CDW should be favoured), which
translated in the true chain language, means dominant in-phase CDW fluctuations as
well as strong charge fluctuations between the bonding and anti-bonding bands.

Above gél), a strong coupling regime (III in Fig. 2.6) is found. It is characterized by the
fixed point couplings g; =0, g7, = —1 and g;” = —1, and by the presence of a spin—gap

in the z-direction, which sets to zero the value of the magnetization, i.e. this fixed point

describes a confined phase. The dominant fluctuations in this regime are of CDW type,
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which for the two chains means an in-phase regular CDW. Therefore, even though single-
particle hopping is asymptotically irrelevant, nevertheless the two chains get strongly
correlated, and in particular, they show divergentl in—-phase CDW susceptibilities. The
transition between the phases II and III is equivalent to a commensurate-incommensurate
transition, for which exact results are known[43]. We can therefore make use of these
results to better analyze phase III. Let us suppose we follow the RG flow until it crosses
the Luther-Emery line, i.e. until g = —go = —3/5. Actually, when this occurs, weak
coupling RG has already lost its justification, but anyway this procedure should be more
reliable than the RG alone. On this line, we make use of the Luther—Emery solution, and
map the hamiltonian of the spin degrees of freedom into a spinless fermion model[44]. If
the coupling g¢; is small enough, the resul’cingkhamﬂtonian will correspond exactly to the
Luther—Emery model, with a gap A, proportional to thg cut—off wy g at which the crossing
occurs[45]. From Egs. (2.29) and (2.31), it follows that this cut—off, and consequently the
gap, vanishes when hgo — 0 as

wrg ~ Ay ~ hg, (2.46)

where the crossover exponent v is (see also Ref. [43])

I Y ifg® <«1-1/v2
T -1/8 f1-1/v/2<90 <1,

always greater than one. In order to find the ground state, one has to compare the
value of the gap with the starting magnetic field ho[43], which now plays the role of a
chemical potential. For hy <« 1, we find hg > A, '~ h{, therefore the chemical potential
lies above the gap. The low energy excitations are obtained by simply linearizing the
conduction band around the chemical potential, and thus we recover an usual Luttinger

liquid behavior. The magnetization is given by the occupation of the conduction band,
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and therefore it is simply proportional to ho. According to this simple argument and
contrary to the prediction of RG, phase III should not be really confined. Rather it should
exhibit properties analogous to phase IL. In fact, both describe a Luttinger liquid with
dominant CDW fluctuations, which in terms of the chains means a proper in phase CDW.
The difference between k% and kF remains finite, and therefore both these phases are
“not confined”. This scenario seems to us more realistic that the one predicted by the RG
alone. First of all, second order RG loses its validity when it flows towards strong coupling.
Therefore, being the confinement only a feature of the system strictly at the fixed point
III, we are not sure it really occurs. Secondly, the way confinement is generated, is very
interesting, but hard to justify. In fact, it would imply that a chain of. spin 1/2 fermions,
massless in absence of magnetic field, préfers, at strong coupling and in a magnetic field,
to open a spin gap rather than acquiring a finite magnetization. Since this seems quite
unlikely to us, we tend to believe more in the combined RG plus bosonization result than

in the RG alone, even though we have no rigorous proof for that.

Lastly, above g{® = 1, the transverse hopping becomes irrelevant, and the two uncou-
pled Luttinger chain fixed point is stable (IV in Fig. 2.6). This phase is therefore the only
confined region we find, in the sense that Aky = kY. — kT remains zero upon application

of a transverse hopping.

This result is also compatible with the observation, valid for any number of chains,
that no confined phase, having k% = kT in presence of a transverse hopping, exists but

that describing completely uncoupled Luttinger chains!.

1The statement for any number of chains is: if the Fermi surface in presence of t, is equal to that in
absence, i.e. if the Fermi surface is simply two parallel straight lines in the transverse direction, then the
asymptotic behaviour of the system is equivalent to that of completely uncoupled chains. In fact if the
Fermi surface does not change by switching on a transverse hopping, this implies that on this state the
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To conclude this section, we compare our results with those obtained by Giamarchi and
Schulz[37] (GS). We recall that, using the method of GS, the phase diagram of our model,
would have shown only phase I. The origin of this discrepancy in the predictions of two
different implementations of RG, is not clear to us. GS first bosonize the model and then
they apply a real space version of the RG, to treat the effect of the interactions which can
not be trivially diagonalized. We already said that the existence of phase II, and maybe
III, crucially depends on the fact that ¢, shifts up some logarithmic singularities, which,
in absence of ¢;, occur at zero frequency. The consequence is that two energy regimes
appear: for high frequencies the poles which are shifted up by ¢, , play the most relevant
role and they tend to suppress the effect of the transverse hopping, whereas for small
energies they are irrelevant and only the other poles, those which are unaffected by ¢, ,
contribute to the RG equations. It is just the high energy behavior which causes phases
Il and III to occur. However, the equivalent low distance regime, as comes out from the
real space calculations of GS, does not play the same crucial role, probably because the
real space representation washes out partly this peculiar behavior.

In summary, both formulations of RG show that the model considered in this section
scales towards strong coupling, where the flow equations lose their validity. The fact that
real vs. momentum space RG, predict different phase diagrams, further suggests that the

results must be taken with caution because, at this stage, it is not clear which formulation

average value of the transverse hopping operator O, i.e.

< Oy >= -2t Z coskia < npy >
k E€BZ

is zero, because < figy >, i.e. the total number of electrons with transverse momentum k, , is a constant
independent from k. Therefore only the term of the hamiltonian which describes the set of uncoupled
1D chains, contributes to the total energy. This contribution is clearly minimized if the ground state is
exactly equal to the product of the ground states of each isolated chain, which in our case simply describes
a Luttinger liquid. Thus we have demonstrated the initial statement.
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of weak coupling RG is more accurate in reproducing the physics of this model.
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2.2 Two spinful chains with inter—chain hopping

The same technique we have just used to study the effect of single particle tunnelling
between two Luttinger chains, can be applied also to the more general spinful case. This
model is described by a non interacting hamiltonian equal, for each spin species, to that
we defined for spinless fermions in Eqs. (2.1) and (2.2). Without interaction, the band
structure is therefore the same as in Fig. 2.1, where each branch is now doubly degenerate
due to the spin. We still assume equal Fermi velocities of the bonding (k1 = 0) and
antibonding bands (k; = 7). Later, we will discuss the consequences of different Fermi

velocities, and we will present some results obtained in this general case.

Similarly to the spinless case, we can think of this model as describing 1D Fermions
with spin 1/2 and with an additional flavour index (0 or ). The transverse hopping acts
for the different flavor as a magnetic field for different spins, i.e. it splits the energy of the

two flavor by an amount 2¢; .

The coupling constants, in this model, must conserﬁ'e both total transverse momentum
and spin. Thus, for each scattering process we introduced in the spinless case, represented
by the couplings §o, §x, §f, ¢ and g, (see Fig. 2.2), three possible spin orientations are
allowed. Therefore, out of a single §; (: = 0,w, f,t,b), we can now define three differ-
ent coupling constants[18]: gfl) and g,@), describing respectively backward and forward
scattering processes between opposite spin electrons, and §l|-|, which couples parallel spin
electrons (see Fig. 2.7). The elementary bubbles, which appear in the diagrammatic
expansion, are obviously the same encountered in the spinless case. In particular, the

remarks on the role played by ¢, in shifting up in energy some singularities, occurring

at zero frequency when ¢; = 0, still hold. This allows to write the RG set of equations,
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1 T S
‘g(z) gl
l_... -.>l T_... T

Figure 2.7: Interaction vertices for spinful fermions. As in Fig. 2.2, solid(dashed) lines denote
right(left)-moving particles.
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which for spin-isotropic interactions, implying g;' = g; g;”’, are:
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where for small h, the functions I(h) = 1 + k, Da(h) = 1, D1(h) = 1+ h, C2(h) ~ 1 + 2h,
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and C3(h) ~ 1 (see Appendix B). The dimensionless invariant couplings appearing in Eq.
(2.47), are now defined, as g; = §,~/(27rv§,9)), instead of Eqs. (2.13)—(2.16). Analogously to

the spinless case, we can identify a particular combination of couplings:
1 2
g0+ g —2 (¢ + o) (2.48)

which remains invariant under RG. This combination corresponds to the total charge
sector, which is again unaffected by the transverse hopping, and remains gapless as it was
in absence of £ .

The model describing only intra—chain interactions is obtained by assuming:

(1 _ L) _ )
g9 " =9; =% Vi, 7
j A (2.49)
OO R
In the absence of ¢, and for g(()l) > 0, the RG flow of this model (two uncoupled chains)

is well known to scale to a Tomonaga-Luttinger liquid, characterized by the fixed point

coupling constants:
g =0

9(2)*‘ _ 9(2)0 _ 9(1)0 Vi (250)
! 2

In order to analyse the role played by t, we start by studying the stability of this fixed
point, upon switching on a small transverse hopping. This analysis is still meaningful, even
though the model we are considering is not exactly at the fixed point (2.50). This can
be realized by considering, for example, the popular case of a Hubbard interaction, which
in the g—ology language, corresponds to g(()l) = g(()z). A typical RG flow of Hubbard-like
interactions in presence of ¢, , is shown in Fig. 2.8. We notice that, at high energy, the
system behaves as if {; were absent. In fact, the trajectory of the different 91(2),5 are almost
indistinguishable, and the same occurs for the gl(l)’s. Furthermore, the former couplings

correctly saturates to a finite value, whereas the latter ones scale down to zero. Only at
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Figure 2.8: Typical RG flow for Hubbard-like interactions. The upper curves correspond to the
(2)s (1),
s

g; "’s, the lower ones to the g;
energies of order ¢, , the system notices the presence of inter—chain hopping, and the RG
trajectories begin deviating from their {; = 0 limit. The smaller is ), the closer is the
system to the fixed point (2.50). As a consequence, instead of the original two Hubbard
chains, we can equivalently consider two Tomonaga-Luttinger chains, defined by the fixed
point coupling constants (2.50), and study their stability upon switching small gl(l)’s and
ti. A non zero, but small, value of the couplings g§1), contributes to the RG flow only
via non-linear terms, as it can be realized from (2.47). Then, to linear order, the g
disappear from the RG equations, and the analysis of the stability of RG trajectories
towards the Luttinger liquid fixed point, reduces-to studying a set of linear first order
differential equations, very similar to that encountered in the spinless case. This result,

(

however, does not imply that non zero g,-l)’s do not affect at all the asymptotic physical

behavior of the model, as we shall see. It simply suggests that the physical origin of the
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instability of Luttinger liquid behavior of two spinful chains once ¢, is switched on, is,
similarly to the spinless case, the flavor anisotropy induced on the model by the transverse

hopping, independently from the presence of the spin.

2.2.1 Instability of the Luttinger liquid: spinful case

Therefore, let us begin by considering a two-spinful-chain model characterized by the
(1)

coupling constants g; ' = 0 and gfz) = —gy = go, for all ¢ = 0,n, f,t,b. In the absence
of t, this model is a fixed point, invariant under RG. Let us switch on a small ¢, and
linearize the RG set of equations around the starting fixed point hamiltonian. The same
analysis carried out for the spinless chains, can be also applied to this case. For example,

the scaling variables are now:

(@) = (1@ - gP@) + (0P(@) - 8P(w)) + 51 h(w) =

. 2(y—a)

_ ot W

= e (2.51)

() = (09() - 60) - (67) - (@) + 5T gyh(w) =

AT

= ———-————-—-—2(7_ﬂ)h0 | (2.52)

X3(w) = g7(w)+ g (w) = 290 (2-53)

h(w) = how? (2.54)

with the exponents:

a = 490‘(2904-1) (2.55)

B = 4go(290—1) (2.56)

7 = 443 (2.57)
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Analogously to spinless fermions, roughly two different regimes of the RG flow can be
identified:

(1) for 0 < go < 0.21...:

(2) for 0.21... < go < 0.5:

For gy > 0.5, the transverse hopping is irrelevant and the two uncoupled Tomonaga—
Luttinger chain fixed point is stable. This simplified model does not show, contrary to
the spinless case, any tendency towards confinement and the phase IIT of Fig. 2.6 is

absent. However non-zero gz(l)’s can stabilize a confined phase, even though its physical

interpretation is still ambiguous, as we discussed in the previous Section. If we start from

(1

:

(2) _ g2

i

)= oY and
(1)

a more general spin-isotropic model, characterized by non zero g

for all 4, the analysis of the RG flow, predicts a behavior analogous to the g}/ = 0 case,

with a renormalized gy approximately given by the fixed point value of g(z) at t;, = 0,

:
that is go = 982) — g(()l) /2. For example, in the specific case of an Hubbard model, with

(2) _ (1)

gy =gy ,atsmallt,, different regimes are expected for small and intermediate couplings,

the transition occurring at

(2)

90 1 U
3= = = ~ 0.21... 2.58
9= 79" T S 4xup (2.58)
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This result is not far from what we have obtained by direct numerical integration of the

RG equations for two Hubbard chains, as we are going to show.
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2.3 Phé.se diagram of two Hubbard chains with interchain
hopping

We have shown that RG predicts an instability of the Luttinger liquid asymptotic behavior,

which occurs for isolated Hubbard chains, as soon as an infinitesimal ¢, is switched on

(see also Ref. [6]). In particular, the two chains flow towards strong coupling, and at least

two or possibly three different regimes occur.

This scenario, which was obtained through a simple stability analysis of of the Lut-
tinger liquid fixed point upon switching ¢, , can be further confirmed by direct numerical
integration of the RG set of differential equations[46]. By means of a numerical approach,
moreover, arbitrary values of £, and also the additional complications induced by tak-
ing different Fermi velocities of the two bands, can be handled without much effort, thus
allowing a more detailed analysis of the model.

The non interacting hamiltonian we consider is the same of Eq. (2.1), generalized to
spinful fermions. For t; < 1—cos(wp) the Fermi energy crosses the two bands, and the low
energy physics can be again described by two linear bands with different Fermi velocities
and momenta.

The Hubbard interaction is:

Hiy = UZ(ni,l,Tni,l,l 100105, )
1

where, let us recall, the labels 1 and 2 refer to the two chains, 0 1(2)0 = cj1(2) #Ci1(2).00

and U > 0. As before, we neglect both scattering processes between two right or two left
moving electrons, and Umklapp scatterings. This leaves just the 10 coupling constants we
@ o 0 0

introduced in the previous sections, i.e. g;’, gr ', 95’5 9; and glgl), with [ =1, 2, [see Figs.

(2.2) and (2.7)]. The relation between these coupling constants and the on-site repulsion
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is simply 51(1) = g§2) =U/2 > 0 for all 4,j = 0,7, f,t,b. As discussed, we then adopt a
standard Wilson Renormalization Group (RG) procedure. The only difference with the
models we discussed previously, is that we now allow different Fermi velocities (v} and
vE) between the two bands. This generates another scaling parameter, related to v%./vF,
which is left free to renormalize in the RG process[47]. The RG equations depend on
this parameter, and therefore they look more cumbersome than Eq. (2.47). However, as
we are going to show, at small ¢, this difference does not play any relevant role in the
asymptotic regime. It is however important at large transverse hopping, because it tends
to decouple the two bands, and eventually it produces a two uncoupled band model, each
single band behaving as a Luttinger liquid. We have solved the second order RG equations
numerically, starting from initial Hubbard values, i.e. with the positive invariant couplings
defined as[47) g[()i) = U/(47v}), g = U/(4wvE), and gE;i) = gt(j) = glgk) = U/[27 (v% + vF)].
Useful checks are provided by (a) the t; = 0 limit[18] (independent chains); (b) zero

inter-band backward scattering[47] gl(,l) = géz) = 0.

The resulting phase diagram is presented in Fig. 2.9, and the main fixed points further
described by Table 2.1. In this Table, the parameter z characterizing each phase, is related
to the total charge mode, whose asymptotic behavior is not affected by the transverse
hopping and therefore remains gapless. We now discuss in detail each phase. When ¢ is
very large, t; > 1— cos(wp), only one band is occupied (k% = 0) and a standard one band
Luttinger Liquid, denoted as LL1[48], should be recovered. By decreasing ¢, , we enter a
two-band region (both k% and k}. # 0). Here we find a weak-coupling two—component

Luttinger Liquid[18] fixed point (LL2). In this state, the “effective interchain hopping”,
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Figure 2.9: Phase diagram at density p = 0.5. LLI1, LL2, and the line ¢; = 0 are Luttinger
liguids. I, II, and III are strong—coupling phases. Similar phase diagrams are found for different
(noncommensurate) densities.

which we define as

t507 = (vf + oF) (k% — k) /2,

remains finite (no confinement in LL2). Things become very different for small ¢; where
the RG flow scales to different strong coupling regimes, depending on the strength of U.
These regimes correspond to those we predicted by simply linearizing the RG equations
around the Luttinger liquid, and they have their exact counterpart in the two spinless
chain model. For this reason, we will denote them using the same labels, i.e. I, II and III.
Needless to say, since our approach is based on weak coupling assumptions, any strong-

coupling outcome must be taken with great caution. On the other hand, instability of the
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weak coupling state, which is suggested by the RG flow, should give reliable informations
on the physical behaviour at long wavelength, as is common experience with other 1D
problems[18].

The first strong—coupling phase we find (III), appears at large U. It is characterized
by tif ! /Ko — 0, i.e., confinement. The fixed point III can be described as two Luttinger
chains with zero interchain hopping and strong interchain particle-hole pair hopping. The
generation of pair hopping in the RG process has been discussed earlier[19]. Turning to
correlations, we consider the charge and spin susceptibilities IV (gzy gy, w) and x(qz, gy, @),

as well as the most singular pair susceptibilities,

1%(gy 43y 0) = =i [ e (T{A (02, 05,18 22,01, O},

where a =I, II, III refers to phases I, IT and III, and

AI(Oa 0,2) = Z ”Ck+k%,0,a(t)c—k—k%,o,—a - Uck+k}’,~,ﬂ,cr(t)c—k—kﬁm—m
U,lkl(Ko
ATRY — kF,m,t) = > 0k 0o(t)e—kokgm—o ~ TCkikpmo(t)Cokokg 0-0r (2:59)
G',lk|<K0

while A11(0,0,t) is the ordinary s—wave Cooper pair. All correlations show a power—
law behavior as a function of frequency at the fixed point (again we stress that only
trends are to be taken seriously). As shown in Table 2.1, the most divergent correlation
in I is a pairing of the IT'!l type. In AML(0,,t) (at the IIT fixed point, kY, — kT =
0) the [(kF,0),(—kp,)] pair combines with opposite sign with the “90° rotated pair”
[(kg,7), (—kF,0)]. Among the spin-spin correlation functions, only x(2kr, 0,w) is singular
(less than Al though) while x(2kr, 7, w) is non-singular, suggesting a tendency of the two
renormalized chains to couple ferromagnetically. By contrast, for ¢; = 0 (truly decoupled

Luttinger chains) both X’s simultaneously diverge. III is further characterized by an



2.3. Phase diagram of two Hubbard chains with interchain hopping 87

Table 2.1: The fixed point values of the invariant couplings at the Fermi points and the exponents
of various susceptibilities. The divergent susceptibilities have negative exponents and are indicated
by “div.”. Here 0 < z < 1 is a dimensionless non—universal constant increasing with U.

T I LL2 II
WV /v™ 1 1 const. 1
tif ! 0 const. const. const.

g 0 -1 0 0

gg(z) X -14x x° -X

gat) 0 -1 0 0

g:(z) x -14x x® -X

g 0 1 0 1

9 0 1 0 0

g3 -1 0 0 -1

g;(g) -14+x bd b'd -X

g 1 0 0 0

g 1 0 0 0

N(2kf,0,w) 2(1-x) -2(1+x) (div.) -2x* (div.) 2x
N(EY + kT, myw)  -2(1+x) (div.) 2(1-x) -2x (div.)  -2(4-x) (div.)

x(2k%, 0,w) -2(14x) (div.) 2(1-x) -2x# (div.) 2x

x(E% + kFym,w) 2(1-x) -2(1+x) (div.)  -2x (div.) 2x

(kY — kT, m,w)  -2(4-x) (div.) — — -

1'(0,0,w) 2x -2(4-x) (div.) xV4x™ 2(1-x)

(0, 0,w) 2x 2x xV4x7 -2(1+4x)(div.)
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interaction—induced depletion of the lowest band (0) in favour of the higher one (). This
leads to an effective Luttinger Fermi surface formally coincident with that at ¢, = 0,
which implies confinement. In this case, it is perhaps more instructive to envisage pairing
in real space. We rewrite Eq. (2.59) as

AHI(O,W,t) = Z OCktkp1,0(t)Cokabp 2~ — OCktkp,2,0(t)Cak—kp,1,~0 (2.60)

o,|k|<Ko

Hence, the two electrons live on different chains [labeled 1 and 2 in Eq. (2.60)]. Pairing
occurs via crossed hopping of each electron to the other chain.

The other strong coupling phase I is very different. It still describes two strongly inter-
acting chains, but this time with a residual tif ! # 0 (no confinement). Correlations show
that the strongest singularity occurs for HI(O, 0,w), again a pair susceptibility. However
Al now combines the [(k},0),(—k%,0)] pair with that at [(kF, =), (—kF, )] with oppo-
site relative sign[49]. In I, x(k% + k™, 7, w) diverges while x(2k%,0,w) does not, signaling
antiferromagnetic coupling between the two chains.

Finally, the narrow region between III and I denoted by II, is again a strong coupling
phase, with non zero tj_f f and dominant out-of-phase CDW fluctuations and s—wave pair
fluctuations.

The phase diagram of Fig. 2.9 has been obtained within weak coupling RG which
cannot be justified a priori in the strong coupling phases. A rough check of the level of
accuracy of second order RG follows from the analysis of the single Hubbard chain, where
exact results are now available[50]. The problem is that the approximate critical exponents
obtained to O(g?) grow indefinitely with g while the exact ones quickly saturate at ﬁlﬁte
(and small) values. This might in principle induce unphysical features in the resulting

behavior of the RG flow. However, we argue that in the whole region of the phase diagram
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shown in Fig. 2.9, second order RG is still qualitatively correct, at least for¢; = 0, although
the accuracy depends on the physical property in consideration. For instance, RG predicts
a smoothing of the momentum distribution characterized by an exponent a = (U/4rvr)?,
which, at U = 8t and v = v/2ta (corresponding to p = 0.5)%, gives a ~ 0.2, to be
compared to the correct value a ~ 0.1. This guarantees that, even within weak coupling
RG, single particle hopping is definitely more relevant than pair hopping, to lowest order
in ¢, [6], and no spurious result should follow from our approximate treatment. However,
we stress once more that only the tendencies towards different strong coupling regimes
and their general features, have to be taken seriously, while neither the values of the fixed
point couplings, nor those of the correlation function exponents, are reliable. However,
the information we extracted from the RG, combined with the bosonization technique,

provides an efficient tool to better analyze the different phases.

2.3.1 Bosonization of the strong coupling fixed points

Let us start, once more, with the two chain model (2.2), keeping for the moment only

the couplings g(%), gf;z), gl and gy, which can be easily treated by means of bosonization
technique. The kinetic part of the hamiltonian is rewritten in terms of the charge and

spin density operators of each chain, as[18]:

Hy = 27;]F Z (PlO(Q)Plo(—q) + p20(9)p20(—q) + 10(g)o10(—4) + o20(g)T20(—9) +
g>0

+ p1x(@)p1=(—a) + p2(0)P2(—a) + o1=(@)o1x(—q) + GQF(Q)UZK(-Q))

(2.61)

?Notice that the value U = 8t at which approximately phase II occurs, is in a quite good agreement with
that we predicted, by means of very simple arguments, in the previous Section, i.e. U =~ 0.21 x 87vp =~ 7.5¢.
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where the indices 1 and 2 refer to right and left moving particles, while 0 or 7 refer to
the two different bands. We keep once again equal Fermi velocities v° and v™. The RG
flow at small ¢,, as can be seen by Table 2.1, suggests that their difference is irrelevant
in the asymptotic long wave—length regime. In terms of these operators, the interaction
terms we are considering, can be written as the sum of two pieces H » and H,, involving

separately the charge and the spin degree of freedom. In short notation,

H, = th Z[Q (Vlo(Q)Vzo(*Q) + ”lﬁ(Q)Vzw(“Q)) +
+ 95 (vm(q)m(—q) + Vlw(Q)VZD(—q))], (2.62)

where v(q) = p(q), o(g) and the couplings are defined as:

charge spin

g= 29(2) —_ g(l) _g(l)

29 _ g | g0

95 = 9;°’ | —95

In each sector we apply a Bogoliubov rotation of the density operators, defined in

general as:
vio(q) N . v1c(q)
Vlw(Q) — qu 'S:u Vls(q)
VZO(Q) B S, Cy

V?c(Q)
)

V?ﬁ(Q) V23(q
where the 2 x 2 matrices €, and 5, must satisfy the conditions:

Ty

¢,
C,

tbs]tp\}

8T =1,
. (2.63)

AR AN
Il

s

ST _

v

The indices ¢ and s labelling the eigenvectors, clearly refer to the symmetric (pseudo—
charge) and anti-symmetric (pseudo—spin) combinations of the densities of the two bands.

By means of this rotation, the Hamiltonian can be easily diagonalized, the two eigenvalues
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being:

ve = \Jok—(g+9s)% (2.64)
vs = g —(9-95)% (2.65)

and the rotation matrices:

A 1 coshy, coshi,
C= V2 ( coship, — coshf, ) ! (2.66)
a1 [ e sinh, €,sinh,
8 = V2 ( €. sinh i, —e,sinh 1, ) ’ (2.67)
where €, = sign(g + gy) and €, = sign(g — gs) while
cosh 9, = UF + vc,
2ue (2.68)
cosh, = v+ Vs,
2v,

We have dropped everywhere the index v = p, o, indicating in which sector, spin or charge,
we are making the rotation. We will re-introduce it later.

Let us now specialize to the cases under consideration. The fixed points I, II and III,

are characterized by a conserved quantity:
2 (¢ + %) — g - iV = 245, (2.69)

and by a unique strong coupling parameter g1 = vr. It is not difficult to show that for

each of the three fixed points:

Vpe = 4/ ’U? - 493 (270)

and

Vps = Ve = VUgs = ,/v? - g%, (2.71)

while
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It is interesting to notice that the three fixed points share the same symmetry property,
i.e. the degrees of freedom related to the densities p,, 0. and o, are completely equivalent.
If we now introduce the couplings, which we left aside, i.e.

e PhaseI : g(l) = —gi, gt(l) = g1, gt(2) = g1;

e Phase I : g&l) = —4y, gt(l) = —g1, gll = =41 (2-72)

e Phase II: g} = —g1, o) = g1, o) = o,
we find that they give origin to non quadratic terms in the hamiltonian, which can not be
analytically diagonalized any more. Even in this case, the symmetry among ps, 0. and o,
remains unchanged. No interaction couples these modes with p., which remains gapless.
As we have repeatedly said, this symmetric charge mode is not affected by the transverse
hopping, being related to the total charge of the two chains. Instead, the anti-symmetric
charge mode get strongly coupled to the spin modes, implying that complete decoupling
of charge and spin, does not occur anymore. The parameter g; characterizing the three
strong coupling fixed points, coincides with vr in second order of RG. However, its precise
value is not important in the following, the only relevant thing being that it is shown to
flow towards strong coupling under RG. In order to write these interactions in a bosonized

form, we have to introduce the phase fields which allow the fermions to be written in terms

of density operators. These fields are defined as[42]:

ule), 0u(e) = 7= 30 T (4(a) £ (), (273)

the upper(lower) sign referring to ¢,(6,). According to this definition, IT,(z) = 8.0.(z)

is the conjugate momentum of ¢,. Using these new variables, we can show that the
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interactions (2.72) generate coupling between the modes p;, 0. and o,. The fixed point

hamiltonians for these three equivalent modes, have the same functional form:

3

i = [ae{ D5 mE) s @]
+ (2:91)2 Zcosﬁd),(m)cosﬁqﬁ]( )} (2.74)

in all the three phases I, IT and III. Here v is given by Eq. (2.71) and 8 = v/4we¥, where 1
is the angle defining the Bogoliubov rotation of the three equivalent fields [see Eq. (2.68)].
These fields turn out to be, for the three different fixed points:

I II III
gsp’ ¢ca', qs.w espa ¢ccr7 630’ ¢3p7 ¢c0'7 030 i

(2.75)

The RG predicts that the couph'pg constant g, flows towards strong coupling. The conse-
quence is that, for each fixed point, one has long-range order in the correspondent phase
fields (2.75), while the correlations of the dual fields decay exponentially at large distance.
The remaining fields, associated to p., have no gap, and their correlation functions decay
as power law.

It is then possible to determine more precisely the asymptotic behavior of the cor-
relation functions we defined in the previous section. Most of them are shown to decay
exponentially, even though weak coupling RG predicts a power law decay. For example,
the 2kp—spin susceptibility at transverse momentum k; = m, can be written in terms of
the combinations of densities (p10 + p2~) and (019 + 02x), thereby involving the corre-
lation functions of the phase fields (—¢¢, + 0,,) and (—¢cr + 055 ). The latter term has
a field whose correlation decay exponentially, which implies that the spin susceptibility
x(k% + kT, 7, w) is not singular, contrary to the RG prediction. In fact, one can show that

the dominant fluctuations in phase I are indeed the pair fluctuations represented by the
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correlation function 1!, which at large distance decays as:
I 1
I (z) ~ g (2.76)

with

§ = e 2Wee /4, (2.77)

Analogously, phase II has dominant out of phase CDW fluctuations, which for ¢ > 1,

decay as:
N(z) ~ w, (2.78)
with
v = eZ¥ee /4, | (2.79)

Finally, in phase III, as predicted by RG, the dominant singularity occurs for the pair
susceptibility TI', which decays asymptotically as a power law with the exponent § of
Eq. (2.77).

Therefore, the bosonization of the fixed points allows to determine the character of the
dominant fluctuations and all correlation exponents. The comparison with weak coupling
RG analysis shows that, while the RG correctly establishes which is the most singular
susceptibility, it fails in predicting both the other singular susceptibilities and all the
exponents. This discrepancy is likely to be due to the strong coupling nature of the fixed
point hamiltonians, which can not be properly handled by weak coupling RG. However,
other problems may arise, due to the complicated scaling properties of this two band model.
The usual way of defining scaling susceptibilities in the single band 1D problems([18], is
not fully consistent in our model, because these functions do not have the correct scaling

properties, as we checked by calculating the leading second order corrections for some
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of these correlation functions. Instead, the invariant couplings do scale, as Penc and

Solyom[47] have shown, and the RG for these parameters is hopefully well defined.
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2.4 Spin—charge separation in a two chain model

A central problem in the theory of strongly correlated systems is whether the mechanism
leading to the breakdown of Fermi liquid (FL) theory in one dimensional models can be
generalized to higher dimensions[10]. In most 1D systems, it is known that non FL behav-
ior manifests itkself in two distinct ways: the correlation functions show power law behavior
with coupling dependent anomalous exponents[5] leading, in particular, to the smoothing
of the Fermi surface which is often considered as the key signature of non FL behavior. An
independent, but equally effective mechanism which induces the breakdown of FL with-
out generating anomalous exponents, is the well known spin—charge decoupling[6] which
originates from the dynamical independence of charge and spin excitétions. Schulz[6] has
given a very nice and transparent picture of spin—charge decoupling. Let us imagine to
induce a spin— and charge-density fluctuation by adding an extra particle, e.g. a right
moving one, at time ¢ = 0 and at spatial coordinate z¢. Initially these fluctuations will be

obviously centered at zg, that is:

(0]31(z0)p(z )9} (20)|0)
(0% (z0) o (2) %] (20)|0) = &(z — o).

5(1: - 220),

Due to spin—charge separation, the two density fluctuations will asymptotically propagate

independently, with different velocities u, and u,. Therefore for ¢ > 1 it is expected that:
(O1%1(zo)p(z, )](20)I0) = (2 — 2o — upt),
(0l (z0)o (=, t)Pi (20)|0) = 6(z — zy — ust).

This kind of behavior should be common to a large variety of 1D models of spinful fermions,

and it has been clearly shown to occur in the Hubbard model[52]. In an ordinary Fermi
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liquid, the same hypothetical experiment would have shown the two fluctuations mostly
centered at the single space coordinate z = zg + vpt.

Many unsuccessful attempts have been made in the past years to search for a break-
down of FL theory in 2D through the study of the discontinuity in the momentum dis-
tribution, i.e. by looking for anomalous exponents. Some of them have been discussed in
Chapter 1. On the contrary, very little effort[21, 51] has been focused on the alternative
possible realization of non-Fermi liquid behavior in 2D through spin—charge decoupling
but without anomalous exponents. The RG approach to weakly coupled chains, which
we have applied to the simple two—chain model in the previous sections, is not suited
to tackle this problem. Even though we have shown (see Section 2.1) that RG correctly
reproduces the spin-charge decoupling at the level of the scaling equations, the detailed
physical consequences of this decoupling, like e.g. those we have shown before, do not
come up naturally from RG. On the contrary, bosonization technique is a very powerful
method to deal with this problem, as we are going to show.

A simple 1D model which shows spin—charge decoupling without anomalous power-law
decay in the correlation functions, can be obtained by including only forward scattering
processes between electrons on the same branch of the Fermi surface (usually referred to

as g4 interactions). The hamiltonian of this model is[18]:

HO = Z 'UF(k - kF)aZa,aka, + Z 'l)F(_k - kF)bjCa'bktT +
ko ko
1 Pt fopt
t E_Z kzk: Zﬁ(g4||5a[; + 94-1-6!1—5)(aklaa’kzﬁakri‘ﬁﬁak["pa + b;‘labhﬂbk?-}'i?ﬁbkl*Pa)
LsR2,P &,
(2.80)

where the operator az U(bz ) creates an electron of momentum k and spin ¢ belonging to

the branch with positive(negative) slope vp(—vp). Due to the linear dispersion relation
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of the hamiltonian[3] (2.80), this model can be solved by use of standard bosonization
technique being a special case of the well known Tomonaga-Luttinger model. While this
interaction does not affect the ground state properties, the excitations are profoundly
different. Two low-lying gapless excitations with linear dispersion, are found, describing
charge and spin collective modes with different sound velocities u, = vr + (g +941)/2m
and v, = vp+(gyy|—9g4L)/2m. No quasi-particle excitation exists and, as a consequence, the
Green function does not have simple poles but branch cut singularities. The bosonization

method allows to calculate the exact form of the Green function in real space and time:

G( ) 1 eikFa:
z,t) = — +
2w \/(:c — u,t + insignt)(z — u,t + insignt)

e-—ikp:t
- - 1. (2.81)
\/(:E + u,t — insignt)(z + u,t — insignt)

After Fourier transforming, the spectral weight, e.g. for the right moving electrons, can

be easily obtained (for more general 1D models see Ref. [53]):

f(w — usq)f - 0(—q)0(w — 0(urq —
T y/lw = urgllw — upg]
In the particular case gy = g41 = 0 the spin and charge velocities u, and u, coincide

and the branch cut merges in a simple pole reproducing the standard free particle Green
function. In this simple model, although the low lying excitations can not be described
in terms of the Landau Fermi liquid theory, all the equal time correlation functions at
zero temperature, including the momentum distribution, coincide with the non-interacting
ones. The form of the spectral function (2.82) explicitly shows that non FL behavior can
occur even without anomalous exponents. In this case, the breakdown of FL is related
to a change in the analytic structure of A(k,w) which does not generate the logarithmic

singularities in perturbation theory present in many 1D models.
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This model is an ideal prototype to study the relevance of spin—charge decoupling in a
system of chains coupled by transverse hopping. As a first step let us consider the simple
case of two chains[54]. The total hamiltonian will be the sum of two terms like Eq. (2.80),

one for each chain, plus an hopping term between the two chains:

H—L = _t—L Z (a’jca,la'kaﬂ + blt:a,lbka-ﬂ + HC) H (283)
ko

where the suffixes 1 or 2 refer to the two chains. We will now show how it is possible to solve
exactly this problem by bosonization technique. As there is no term in the Hamiltonian
which couples right to left moving electrons, we treat only the case of the right moving
electrons. The hamiltonian Eq. (2.80) can be easily rewritten in terms of the density

operators of the electrons on the positive branch[18]:

By = u, X los(@)ei(-a) + pa(@)oa(~ )] +
T, Y lon(@)ei(-0) + oa(@)a(-0)], (2.84)

g>0

where p1(q)(o1(g)) is the charge(spin) density operator of the right moving electrons on
chain 1. In order to write the transverse hopping Eq. (2.83) in terms of the density
operators, it is necessary to introduce the boson representation of fermion operators[42].

Then one obtains:

1y = 9ty 5 [ do[5in (90u(a) + os(2)) + 50 (6 (2) — bre(2))], (2.85)

where the operator ¢;’s are the phase fields related to the densities:

1 1
c = + ] == b
O, = —ﬁ(m + 02) oy = —ﬁ(al - 03)

and they are defined as[42, 18]:

8() =1 Y e (74 (g) - e pi(—a))
g>0
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The suffix i labels any of the four densities in Eq. (2.86), and the factor exp(—ag/2) plays
the role of an ultraviolet cutoff for divergent integrals. In terms of the densities (2.86), the
hamiltonian (2.84) remains diagonal. Let us introduce the fermionic fields corresponding

to the densities (2.86). Then, the hopping term (2.85) acquires a very simple form:
=t / de (Q;s(‘”)‘l'as(‘c) + H-C-) + (ezik”‘llj,s(m)‘llis(m) + H.c.) . (2.87)

Equation (2.87) shows that the transverse hopping ¢, affects only the p, and o, sector,
which is equivalent to the pseudo-spin sector in the representation of the bonding and
anti-bonding combination of the two chains. In this representation, as we said in Section
2.1, the transverse hopping plays the role of a magnetic field, in splitting the energies of
the bonding combination from the anti-bonding one. By defining the Fourier transform

cp(k) (co(k)) of the field operator ¥,, (¥,,),

7,,(z) = Jzzeikfc,,(k)
k

Vou(s) = = 2 e (k)
k

the total hamiltonian, i.e. Egs. (2.84) plus (2.87), can be rewritten as:

i = Z(u,,(k kp)eh(k)e,(k) + uo (k — kr)ch (k)e, () +
tlZ( (K)o (k) + Hoc.) +

— 1Y (ch(k + kr)eh(k = kp) + Hee. + ch(k — kr)ch(k + kr) + H.c.).(2.88)
k>0

This hamiltonian is the sum of bilinear terms of fermion operators, therefore it can be

easily diagonalized. First of all, we perform the particle-hole transformation:

f(k +kp) — cf(k) ct(kp —k)—d (k)

f(’c +kp) — cg(k) c*(kp —k)— ~_d (k) (2.89)
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where k > 0, then Eq. (2.88) becomes:

B o= 3 g (SR, (8) + G3(003,(8)) + e (ch(R)eo () + (k) (8)) +

k>0
~ty (ch(k)e, (k) + Hee. + dh(k)d, (k) + Hee.) + (2.90)

+tl("d +He +cld, —!-Hc)}

which can be further simplified to:

H = Z{up( L (k)a, (k) + B (R)b,(k)) + uo (af (k)ao(k) + ] (k)b, (k) +

k>0

~ 2ty (6}(k)b, (k) + H.c.) } (2.91)

by using the operators:

Gy ~ T( (o) T ))

b (Cp(a) dyo) -

p(a)

Sl

The hamiltonian (2.91) is already diagonal in the modes )3 and can be easily diago-

nalized in the other modes bp(o), by means of the unitary transformation:

b,(k) = cosbiby(k)+ sinbib,(k)

b,(k) = —sinbby(k)+ cosbrb,(k)
with:
4
tan 20, = (0, = u )k (2.92)

The hamiltonian, written in terms of these eigenmodes, is:

i =Y [ (@al(a)a, o) + exla)ed (0)an(a) + al@@ble) + exlatl(abla)]  (29)

g>0
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with the four eigenvalues:
e1(q) = upg

€2(q) = usq

53(‘1) = %(U‘P + ua’)q + \/(%(Up — ’ua.)q)2 + 4t§_ (2‘94)

es(q) = 5(up + us)g - \/(%(up - uc,)q)2 +4t?
Having set the chemical potential equal to zero, the ground state is obtained by filling the
branch e;(q) up to a momentum @ = 2t) /,/u,U, corresponding to (@) = 0.

We have checked that, although this spinless fermion excitation spectrum seems quite
complicated, it correctly reproduces all known results, in particular the charge- and spin—
density normal modes in the trivial limits a) g4 = 0 = g4 for ¢, #0;0) gy # 0,941 #0
fort; =0.

From the ground state and the excitation spectrum several physical properties of the
system can be calculated. The ground state energy is given by twice the integral of €4(q)

from ¢ = 0 up to ¢ = Q. This accounts for both right and left moving electrons, giving:

AE 1 4} up
T ey )

(2.95)
Notice that Eq. (2.95) reproduces the correct result in the non-interacting case, i.e. when
u, = u, = vp. The energy correction (2.95) being proportional to t? implies a non
gero value of the transverse hopping operator averaged on the ground state, which in
turns means that spin—charge decoupling is not sufficient to generate confinement of the
electrons within each chain[21]. In order to analyse this issue more deeply, we calculate the

difference of the occupation numbers between the bonding and the anti-bonding band. By

labelling the two bands according to the correspondent transverse momenta, i.e. k3 =0
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for the bonding combination, and k4, = w for the anti~bonding one, we get:

(No — N=) = 4 1 log (Eﬁ) (2.96)
L 2% U, — Ug Uy

which, again, does not show confinement in the two chain problem. As a further probe
for confinement, we have evaluated the number fluctuations between the two chains. This
quantity is easily related to the long wavelength limit of the density structure factor, which

can be calculated by the bosonization method, and it turns out to be

S12(q) = Ze"q" nlng ‘“—20(? - Q)t—L)
T(up — Uy
<o) -1 (o)
S11(g) = —S12(q) + %

where the function I(z) = 1+ z — v/1 + z%. By means of the structure factor, the number

fluctuation is shown to be:

L= NP) i 510(0) — Sualal] = s (1 - 1“—5) -

(U, — Uy ) U,
This expression, apart from the trivial dependence upon ¢, is a function of the interaction
through u, and u,. In the simple case of spin-isotropic interaction, i.e. g4 = g41, the
number fluctuation is a monotonic decreasing function of the interaction, which goes to
zero only when the coupling tends to infinity. Another quantity easy to calculate, is the
spin—spin correlation between the two chains, which measures the strength of the magnetic

coupling between the chains. In particular, we have shown that

(o1(2)02(2)) = ~ gz | 2 ~ g (2 (2.97)

27r~('u,p - Uy

where 1(2) is the chain label. From Equation (2.97) it appears that the two chains couple
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antiferromagnetically. When the interaction is strong [u, — g4/7 for g4 > vp, while
u, = vF, in the spin-isotropic model], (2.97) correctly scales as J, ~ t2 /gs.

It is now interesting to investigate the effects of transverse hopping on the spin—charge
decoupling of the elementary excitations. From a simple inspection of the excitation
spectrum in Eq. (2.94), one can argue that for large momentum the standard 1D picture is
recovered, together with spin—charge decoupling. In fact, for large ¢, €3(q) — €1(q) = u,q,
€4(q) — €2(q) = usq, and the spectrum tends to the t; = 0 case. On the other hand, new
excitations appear at low energy, centered around g = 2t / \/Uplo, With an almost linear
spectrum and velocity 2u,u, /(u, + U, ). The length scale which separates the two regimes
is given by

£ =(up —uo)/4tL. (2.98)

This form of the excitation spectrum leads to important consequences in the spin and

charge density—density correlation functions. On chain 1 the latter is defined as

—i0(0)(1(2, 0 21~ = — 22 (el ) el -)) + ([oulas8)s ol ~a))}

The first term on the right hand side is not affected by ¢; and contributes to the spectral
weight A(w, g) with a delta—function centered at w = —u,q. For ¢¢ > 1, the {; ~ 0 regime
is recovered and most of the spectral weight of the second term lies in the sharp peak at
w =~ —u,q as in the case of two independent chains (Fig. 2.10). In the opposite limit ¢§ < 1
the effect of transverse hopping dominates over interaction and the system behaves like
in the non interacting case where the p, term contributes to the spectral weight with two
delta—peaks centered respectively at w = —vpg + 2t and at w = —vpq — 2t; (see Fig.
2.11). In both limits, the interplay between the transverse hopping and the interaction,

has the effect of broadening the peaks in A(k,w), which now acquire a finite width. A
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AN 7 up—-uU:O.l
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Figure 2.10: Charge density-density spectral function in the channel p, = 1/v/2(p1 — p2). The
calculation has been performed setting u, — v, = 0.1,¢, = 0.01 and ¢ = 0.7 in units of vp = 1.

direct probe of spin—charge decoupling can be obtained through the single-particle Green
function. This correlation function is difficult to extract from ourv solution, because the
fermionic operators have a very complicated expression in terms of the normal modes which
diagonalize the hamiltonian. However, it is possible to obtain its asymptotic behavior at
large distance which contains the relevant information regarding FL behavior. In this
regime, we approximate the excitation branch e4(q) in Eq. (2.94) near ¢ = 2t,/\/Upls
with a linear spectrum having velocity u, = 2u,u,/(u, + u,). This simplification allows

to calculate the real space Green function at fixed transverse momentum (kL =0, m):

(Bo(z, 8250, 0)) ~ elbr+3En)e (g —u 1)~ ¥(z — u,t) ™3 (z — upt) 75 (2.99)
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u,—u,=0.1
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W

PFigure 2.11: The same as the Fig. 2.10, but at momentum g = 0.05.

where

2
Akp = lu log (u,/us)- (2.100)

p — Ug
An analogous expression can be derived for the anti-bonding combination of the two
chains (k. = m) by reversing the sign of Akr. Equation (2.100) shows that the transverse
hopping does move the Fermi points of the bonding with respect to the anti-bonding
band. The asymptotic expression Eq. (2.99) is valid in the region z,vpt > £, while for
smaller separation we expect to recover the single chain limit Eq. (2.81). Therefore, we
find a crossover between two regimes. On a scale z < { fluctuations between the two
chains are suppressed and the model essentially behaves like two independent chains. At

long distance (z > £), the coupling between the chains is reintroduced but interaction
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still plays a crucial role. An electron excitation now decays into a triplet of elementary
excitations, and not just a holon and a spinon.

Encouraged by the absence of singularities in the transverse hopping as it comes out
from the exact solution, we have checked the bosonization results against perturbation
theory in ¢, . The first order correction to the single particle Green function can be easily

obtained up to first order in ¢, :
Gomy(k,w) = GO(k,w) F £, [G(O)(k,w)]2 (2.101)

where the —(+) corresponds to k; = 0(r), and the unperturbed Green function G(9)(k,w)
is just the Fourier transform of Eq. (2.81). From Eq. (2.101) we can calculate the correction
to the bare momentum distribution n(()o)(k) = ns\-o)(k) = 0(kr — k):
Sno(k) = —bn(k) = ity / %’ieiwﬂ‘“ [G(“)(k,w)]2 :
| Ly
This integral gives apparently zero due to a well known anomaly of the T' = 0 perturbation
theory[55]. This problem can be avoided by working at finite temperature. In this way

the momentum distribution becomes:

1t
(up — us)g

where the function f(z) is the Fermi distribution. By taking the T — 0 limit, we get:

bno(kp +q) =tL [F(Bucq) - F(Bu,g)]

ro(k) = — 2 log (u,/u,)5(k ~ br)

p — Us
which can be interpreted as a shift of Fermi momenta given by Eq. (2.100). Analogously,
we can easily check that the total energy correction induced by this shift coincides with
Eq. (2.95). Therefore, at least up to lowest order in ¢, , perturbation theory agrees with

the exact solution.
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It is straightforward to generalize these perturbative results to the case of an array
of N chains. The relevant equations remain unchanged, the only difference being that
the inter—chain hopping operator acting at transverse momentum k, is formally replaced
by —t, cos(ky). For example the correction to the longitudinal Fermi momentum with

transverse momentum k, is:

ty cos(k
Akp(ky) = iu——%fllog (up/uo)-

” —
to first order in ¢;. This equation gives the shape of the Fermi surface for a strongly
anisotropic 2D system as a function of the spin and charge velocities. However, we have
not been able to find an exact solution of the N-chain problem to all orders in ¢, and the

crucial issue of the breakdown of FL behavior in two dimensions is still open.



Conclusions

The properties of a two dimensional (2D) interacting electron gas, have become a central
problem in condensed matter since the suggestion that the normal state of ‘HTc supercon-
ductors might require new concepts which go beyond ordinary Landau Fermi liquid (FL)
theory, and that such a behavior might be intrinsic to interacting 2D models, much as it
does in 1D. In the work leading to, and summerized in this thesis, we have analyzed two

distinct aspects of this problem

In the first part, we have shown how it is possible to calculate the ground-state wave—
function of the N-site Hubbard model in dimensions greater than one, for any finite
number of electrons 7, in the extremely dilute limit n/N — 0. The method is simple
and allows to obtain the exact and consistent expansion of any ground-state property
in powers of (n/N)'/3 in 3D, and 1/log(n/N) in 2D. Through this calculation, we have
established an interesting connection between the functional dependence upon the density
n/N, of the correction to the total energy induced by the interaction, and the ground-
state properties. The method makes use of this relation, to solve self-consistently the
Schreedinger equation and to calculate the ground-state energy and wave-function. All

the results agree in lowest order, with the perturbative calculations in the low-density
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limit both in 3D[12] and in 2D[13, 14, 15]. In particular, we have shown that in d > 2, the
interacting ground state shows no anomalous behavior compared to the non-interacting
one. The method does not allow to determine the ground-state wave function in d < 2,
nevertheless, or rather as a consequence, it predicts anomalous ground-state properties,

in agreement with the known results in 1D.

However this result does not necessarily prove that FL theory is valid in these systems.
In fact, even if the ground state is adiabatically connected to the free Fermi gas, the low—
lying excitations might be quite different from those of an ordinary Fermi liquid, and in
particular might show the phenomenon of spin—charge separation. This possibility has
not been much investigated in the literature and we believe that further analysis of the

perturbative expansion of the single—particle Green function is needed.

In the second part of the thesis, we have studied another aspect of the same problem:
the effects of the anomalous ground state properties and of spin—charge decoupling, on the
dynamics of fermions in an array of weakly coupled 1D chains. Several scenarios are in
principle possible. For instance, it might happen that all the chains asymptotically behave
as they were stilluncoupled. This case in usually referred to as intra—chain confinement[21].
Furthermore, even if confinement does not occur, two more routes are still possible. The
transverse correlation might be sustained either by single-particle hopping, or, even, by
pair-hopping processes. By applying the renormalization group (RG) technique, we have
shown that confinement, in a strict sense, can never occur, at least for realistic models, e.g.
the Hubbard model. Instead, transverse hopping is always a relevant perturbation, which
modifies completely the long wave-length behavior of the coupled chains. This occurs

both for spinless and spinful fermions, and, in fact, we have shown that the mechanism
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responsible for the instability of un—coupled Luttinger chains, is the same in both cases,
independently from the presence of the spin. Furthermore, for spinful fermions, whether
single-particle hopping is asymptotically irrelevant or relevant, dominant pair fluctuations
may arise, in spite of the interaction being repulsive.

Finally, we have defined and exactly solved a two—chain model, where the role and
the stability of spin—charge separation, can be investigated, without the complications
introduced by the anomalous exponents. We have shown that spin—charge separation
alone is not able to give rise to confinement. However, we have demonstrated that Fermi
liquid behavior never occurs, because spin—charge decoupling does partly survive, even

though further excitations carrying both spin and charge are generated.
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Appendix A

Four electrons, and other open

shells

In this appendix we solve the asymptotic set of equations (1.39) for an open shell, in
particular two extra electrons added to an otherwise closed shell. As an exemplification
we consider first the case of n = 4 electrons. A generic 5, = 0 wave function of four

electrons is
@) = 3" L(ka, ko, kg, ka)e ref ek .k (10), (A.1)
where L(k;, ko, ki, ks) = —L(ks, ko, ki, ky) = —L(ky, ky, k3, ko). The Schreedinger equa-

tion for the coefficients is

(E - o, — K, ~ kK, VL(ki, ko, ks, ky) =

2
= }% YqlL(ki + a, ko — q, ks, ky) + Lk + q, ko, ka, ky — q)+

+L(ky, k2 — q, ks + ¢, ky) + L(ky, ko, ks + q, kg — q)]. (A.2)

If we define the function

U
J(k1>k2) = FZL(q’P" qaklakZ)s (AS)
q
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then the coefficients L are

J(ks, kq) — J(ks, ko) — J(ki, ky) + J(ky, k
L(ky, ko, ks, ky) = (kg bey) = J ey, ) = J (e, ) + I e, ) (A1)

E — €, ~ €k, ~ €Ky Tk,

The self consistent set of equations the J’s have to satisfy is

U 1
J(ki, ko) = J(kl,kz)fgz +
q E—¢, — €, — €€k k-q
_ y_z J(k1,9) + J(q, ko)
d
LET E~ €k, ~ €k, ~ €4 T €P_k, -ky-q

U J(qg,P—-qg—-k; -k
+ FZ (qa q 1 2) . (AB)
qa E—e, — €, € €fp_k _k,-q

+

Let us define the functions

U 1
A(kl,kz,k3,k4) = Z‘&‘ ) (Aﬁ)
E - €k, ~ ky ~ Gk T Sk,
U 1 Uad—?
I(kl,kg) = -7 Z >~ (A.T)
LT E—€, — 6, — €~ €p_x,—k—q 2tfo
and the wave vectors (for simplicity we work in 2d)
2w 27 2m 27
0= 1= —) 2= ——) 3 =( 4=(——,0). A.
(0’0) (0’ LG,) (0’ La) (La’O) ( La’O) ( 8)

Let us look for the P = 0 ground state (for P # 0 the problem becomes effectively closed
shell, and is solved as in Section 1.3). The unperturbed Fermi sea for total momentum
zero is fourfold degenerate. If we assume the asymptotic condition a(L) = (E—Ep)L? — 0
where, as usual, Ey = 2¢y + 2¢; is the U = 0 ground state energy, then the value of 4 is

more singular when the arguments belong to one of the possible Fermi surfaces i.e.

A(0,0,1,2) = A(0,0,2,1) = A(0,0,3,4) = A(0,0,4,3)=---= &‘(L_)’ (A.9)

while in the other cases A does not diverge when L — co. As it happened for closed shells,

just the J whose arguments (the two spectator electron momenta for this n = 4 problem)
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belong to the degenerate Fermi surfaces are non-zero, to leading order. The number of
spectator configurations is 13. The peculiarity of the general case n = ng (closed shell)+2
(of which n = 4 is an example), is that the spectator configuration of the electrons which
belong to the np-Fermi Surface mixes with all the others. Let us show how this happens

for n = 4. We can write explicitly the set of Eq. (A.5) as

J(0,0) =
= J(0,0)(~I + A(0,0,1,2) + A(0,0,2,1) + A(0,0,3,4) + A4(0,0,4,3))+
~ A(0,0,1,2)(J(0,2) + J(1,0)) — A(0,0,2,1)(J(0,1) + J(2,0))+

+ 4(0,0,1,2)J(1,2) + 4(0,0,2,1)J(2,1) + A(0,0,3,4)J(3,4)+

+ A(0,0,4,3)J(4,3),

J(0,1) =
= J(0,1)(—T + A(0,1,0,2) + 4(0,1,2,0)) — 4(0,1,0,2)(J(0,2) + J(0,1))

— A(0,1,2,0)(J(0,0) + J(2,1)) + A(0,1,2,0)J(2,0) + A(0,1,0,2)J(0,2),

J(1,2) =
= J(1,2)(~1 + A(1,2,0,0)) - A(1,2,0,0)(J(1,0) + J(0,2))+

+ A(1,2,0,0)J(0,0). (A.10)

All the other ten equations can be easily obtained by these ones. Again, since both 4 and
I are logarithmically divergent we can set the left hand side terms equal to zero. Then
we can divide the equations by the term U/a(L) of Eq. (A.9), so that the resulting set of

equations look like an eigenvalue problem, where the eigenvalue is

(A.11)
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and the 13 x 13 matrix M is

4 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1
4 1 -1 1 0 0 0 o0 O0 0 0 0 0
1 -1 1 -1 0 0 0 0 o0 0 0 0 0
1 1 -1 1 0 o 0 o0 ©0 o0 0 0 0
1 o © 0 1 -1 1 0 o0 0 0 0 0
1 0 0 0 -1 1 -1 0 0 0 0 0 0

M=|-1 o o0 o 1 -1 1 o0 0 0 0 0 0 (A.12)
1 o ©0 0 0 O0 O 1 -1 1 0 0 0
1 0 o o0 0 O 0 -1 1 -1 0 0 O
1 o ©o 0 0 o0 o0 1 -1 1 0 0 0
1 o o 0 0 0 o0 o0 ©0 o0 1 -1 1
1 0 o o0 0 0 o0 0o 0 0 -1 1 -1
1 o o 0 o o0 o0 o0 0 o0 1 -1 1

The first row (column) corresponds to J(0,0), while the others in order to J(0,1),

7(2,1), J(2,0), J(0,2), J(1,2), J(1,0), J(0,3), J(4,3), J(4,0), 7(0,4), J(3,4) and
J(3,0). We see that the matrix has the form we anticipated in Section IV. However, in
the present open shell case, the (0,0) spectator configuration mixes with all others. The
matrix can be easily diagonalized to find two physical (i.e. non-zero) eigenvalues, A = 3
(threefold degenerate), and A =7 (nondegenerate), and nine unphysical A = 0 eigenvalues
[unphysical eigenvalues of M are generally caused by the transformation from Eq. (A.2)
to Eq. (A.4), which is singular for A = 0]. The A = 3 eigenvectors are

0
1
-1
1
1
-1
1. (A.13)
-1
1
-1
-1
1
-1

4
!
I
|
cooo
o
Il

[ = I = I =

COOOOOI——‘}-—‘?—‘P—‘D—‘!—'O

|
[Erp—
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Ji and Jo correspond to triplet states, while Jyisa singlet, as is seen by direct inspection
of the relative sign of e.g. J(0,1) [second from top in (A.13)], and J(1,0) [seventh from
top in (A.13)]. The eigenvector corresponding to A = 7 is

4
~1

Ji=1| -1 (A.14)

and is a singlet.

We note that the lowest singlet J3 has a rotational d symmetry, while the highest J,
s syminetry.

We further note that for the lowest eigenvalues, Jy, Jy, J3, the component J(0,0) is
zero. This result, inserted in the Eq. (A.4) for the coeflicients L, implies that in the lowest
energy states, it is not possible to excite a pair of electrons keeping the “core” of the Fermi
sea frozen. In other words, the coeflicient of the states with two spectator electrons at
k = 0 and the other two excited out of the FS are rigorously zero in the four electron
ground state.

The results just found for n = 4 can be immediately generalized to the case n = ny
(closed shell) +2-electrons. Let us suppose that there are 2m degenerate states in the outer
k-space shell. The matrix M will be similar to the matrix (A.12), the only differences being

that now there are 2m boxes of dimension ((n/2)? — 1) x ((n/2)? — 1) instead of 2-2 = 4
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boxes of dimension 3 X 3, and that the first diagonal element is 2m instead of 4. The first
(top left) M matrix element corresponds to the J whose arguments belong to the “core”,
that is to the case where n, spectator electrons rigidly occupy the (n — 2) closed-shell FS.

It is easy to show that the lowest eigenvalue is

and it is 2m — 1 times degenerate. Of the lowest eigenvectors, m are triplets and m — 1
d-like singlets. As before, for all these eigenvectors the component corresponding to the J
of the “core”, is zero. This again implies that the ground state has exactly no components

in which the spectator electrons are in the “core”. The other non-degenerate eigenvalue is
n2
A= T +(2m - 1) (A.16)

and corresponds to an s-like singlet (in this case the component corresponding to the J
of the core is 2m times bigger than the others).
For the sake of completeness, we report here also the ground state energy for P =

2kf + 47 /La. In that case, we have a singlet with
A= — (A.17)

which is higher than the true 2m — 1 degenerate ground state (A.15).
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RG equations at arbitrary ¢,

In this Appendix we derive the RG equations at any order in Aky and at next to leading

logarithmic approximation. First of all let us recall the expression of the diagram in Fig.

2.4b,
1 6&)0
Fig.2.4b = — —
'8 2TUE wy
where
& if wy > dupAk
0y
I= wy — 2vpAKFE 0 FERE
0 if wy < dvplAkp

and wy = 2vp K. Secondly, we write down the expression of the diagrams in Fig. 2.4d-
2.4e, at any order in Akp. Let us denote as D; the ratio between the diagrams Fig. 2.4d
and 2.4c, and D, that between Fig. 2.4e and Fig. 2.4c, where

(2) for wy > dvpAkp:

Wy
Di = wy — 2upAkp’ (B-1)
1 wu(wg —4dvpAkpr)  wo(wy — dvpAkr)
2| (wo— 20pAkp)? T (wy + 20FAkR)?
8vrAkrwy

T oo — 20p Akp)(wo + 20rAkp) |

D2:

(B.2)
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(32) for dvpAkp > wo > 2vpAkp:

Yo
Dy = -0 B.3
1 2'UFAkF, ( )
UJO(2LIJQ - 4'UFAkF)
_ : B.4
D2 vaAkF(QwQ - 2’UFAkp)’ ( )

while for smaller wy they are both zero. The correct expression of the self energy correction

of Eq. (2.8) is instead

1 2 §K,
5G$$?0(k,w) = Ggg,)o(k,w) {*5( ) (go + g +gf + g Cl) 0

2TuE
N
(0) gb & 6Ky
+ (R, w)? [Cz (27er) vpA F R, +
gb 2AkF 6K0
2 k— k% B.5
+ Cs3 (Z‘R'UF) 'UF( ) K, ) ( )
where
(2) for wy > dvpAkp:
o - 1 wo(wo — dvpAkp)  wo(wy — dvpAkF) SvFAkpwU (B.6)
VT 2 | (wo — 20pAkr)? | (wo + 2vpAkp)? — 4L ARL|’ '
1 |4wo(wy — dvpAkF) 2wy wy + 2vakF
_ 1 _ B.
G 4 [ “TIARE | opbkr By — 2uphkr (B.7)
2
wj 3w0
_ B.
Cs 4(wo — 2vpAkp)? T 40 T 2opBkp) (B-8)
(32) for dvpAkpr > wy > 2vpAkp:
Wy Wy
= — B.9
@ 2upAkp 2wy — 20pAkp’ (B-9)
wp wy — vpAkp
_ B.
C: sopikr 8 T vpiky (B.10)
Gy = -0, (B.11)
3= 8'UFAIC2 ! ’

and, similarly to D; and Dy, they vanish for smaller wy. Notice that Cy is equal to Ds.

This is an important result, whose consequence is that the pseudo-charge sector of the
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model is correctly un—affected by the transverse hopping. The expressions of the wave

function, fermi velocity and momentum renormalization factors are therefore:

1 1 6(1)0
bz = D) (27:31 ) (3°+ 9 + " + Crde’ )-;J
2
_ db 2Akfp dwy
bvp = wvpCs (27er> Ky oo (B.12)

-~ 25
§Akp ==~2AkFCQ< <L ) 2%

On the other hand, the vertex corrections, which can be calculated using the diagrams in

Fig. 3, and the expressions of D; and D,, are:

1 6&)0

~(SI‘k = — I =2 —_— I"2
g 2TUE wy (g‘ gb)+
1 1 2 6(:)0
D) —25° — 2357 — 2§53; — 2D
2 (2771)1:) wo o (- g ggf gfgt 2gfgb)
- 1 5{,:]0 ) .9
6T = — I
gsoly Py— q( - g )+
1 1 ° dwy -3 . o s L
) — (297 — 275" — 2§3; — 2D
2 (27rvp> wo ( 9y 919 99: 2335)
(B.13)
1 bwy
g 5]:‘ = -——-—__.2
giote Iror oy 9:(3 - g5)+
1 1 5UJU
) —47 — 4D
2 (2%1)‘:) o (—40:935 1995
1 bwy
g1 = -——-——————-2 .
958T's Zrvr g go(37 — 9)+
1 ]- 6(.!.)0
-5 4D —4
2 <27rvp) wy —(=4D15b3, — 459v3)

We are now able to write down the RG equations at any order in Akp. First of all, let us
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recall th’at, for a generic vertex, the correction to the invariant coupling is given by[18]
b6g: = g:6T + 2gi6z,

where g; = g, g5, gt, o gp. This formula, together with the expressions of the vertex
corrections, of the wave-function and fermi velocity renormalization factors and with the
definition of the a—dimensional invariant couplings Eqs. (2.13-2.17) allows to write the

RG equations:

dg, —0
dlogwy

__d;ﬂg____ — 2 _ 2 2 9 9
Tlogwg 20t 2Igy + 290 [gt + Dagi + Cghgb]

dg
Tlogwg — 2997 9 [42 + g - 2D1g} + C1 g +2Cshgf)

dg
dlogbwo = —29v9- + b [93 ~2Dyg? + g7 + Cigp + 203hgg]

dlggwo = h[2Cog} ~ 1]

dz Lo, 2 2 2
Ue - 2 20
d].Og(JJQ 4(gp+ga'+ 9¢ + lgb)

_dvp = ——21)Fh03gg (B.14)

dlogwy

For small b = 2upAkp/wy, it is easy to show that I ~ 1+ h, Dy >~ 1+ h, Dy = Cy; ~ 1,
Co ~ 1+ 2h and C3 ~ 1, and the Egs. (B.14-B.14) reduce to Egs. (2.18-2.24). The

equivalence between D, and Cj is crucial in giving Eq. (B.14).
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