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Abstract.

In this thesis we present classes of state sum models involving triangulations of d-dimensional
compact manifolds based on recouplings of angular momenta of SU(2) (and of its g-counterpart
U,(sl(2)), g a oot of unity). Such classes are arranged in hierarchies depending on the dimension-
ality of the skeleton of the dual lattice associated with each triangulation, and include all known
closed models, namely the Ponzano-Regge state sum and the Turaev-Viro invariant in dimension
d = 3, the Crane-Yetter invariant in d = 4. In general, the recoupling coefficient associated with
a d-simplex turns out to be a {3(d— 2)(d+1)/2};j symbol, or its g-analog. Each of the state sums
can be further extended to compact triangulations (T',87%) of a PL-pair (M¢,8M?), where the
triangulations of the boundary manifolds are not keeped fixed. In both cases we find out the
algebraic identities which translate complete sets of topological moves, thus showing that all state
sums are actually independent of the particular triangulations chosen. Then, owing to Pachner’s
theorems, it turns out that classes of PL-invariant models can be defined in any dimension d.
The continuum theories corresponding to such PL-invariant models are also analyzed. In particu-
lar, the classical SU(2) {3(d—2)(d+1)/2}j-hierarchy for closed manifolds turns out to correspond
to a pure BF theory in each dimension d.

Finally, focusing the attention on the Turaev-Viro invariant, we introduce suitable techniques in
order to deal with link observables in such a context. As a byproduct of this analysis we find out

a quite efficient way for computing explicitly the quantum invariant itself in a number of cases.
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Chapter 1

Introduction.

The search for combinatorial invariants of compact d-dimensional manifolds (especially in d = 3, 4)
plays a key role both in topological lattice field theories and in quantum gravity discretized
according to Regge’s prescription [1]. From a historical point of view, the typical examples of
this class of models in dimension three are provided in [2] and in [3] (further developments can be
found in [4], [5], [6], [7] and in [8] for what concerns in particular a categorical approach to the
subject).

As a matter of fact, all the papers quoted above deal essentially with state sum invariants for a
closed 3 or 4-dimensional manifold. The interest in dealing with a d-dimensional compact pair
(M4,0M%) (where 8M? is the (d — 1)-dimensional boundary manifold of M%) relies on the fact
that in typical physical situations we have to consider probability amplitudes between different
(d — 1)-dimensional Riemannian geometries which represent the boundary of an d-dimensional
(pseudo)Riemannian manifold. (We notice in particular that invariants for PL-pairs appear also
in the loop quantum gravity approach, see e.g. [9], [10] and references therein).

Borrowing the language from the Euclidean functional integral approach to the quantization of
gravity, we l;ave to evaluate quantities such as < (N1, h1) | O | (Na, he) > /< (N1, k1) | (Na, ho) >,
where (Nl,}ll) and (Ng, hs) are (d — 1)-dimensional manifolds equipped with fixed Riemannian
metrics émd hs respectively, and O is some observable. The symbol < | > denotes a functional
integration over (a suitable class of) d-dimensional Riemannian metrics, up to diffeomorphisms,

interpolating between (N1, h1) and (Na, hg). If we are interested in studying either the topological



sector of quantum gravity or just a topological model, the requirement of taking fixed geometries
on the boundaries appears to be much too restrictive. Indeed, a topological d-dimensional field
theory, when restricted to a (d— 1)-dimensional boundary, keeps on taking its topological character
(namely, it is independent from the metric on the boundary as »Well), and thus topological (or PL)
invariants of pairs (M¢,dM¢) induce necessarily invariants on the boundary components. On the '
other hand, we shall see how it is possible to extend classes of PL invariants for closed manifolds
in order to get associated invariants for pairs. Namely, we shall find out a sort of holography
principle regulating the relations between PL invariants in contiguous dimensions.

The general setting of this plan can be summarized as follows:

o step 1) Given a (suitable defined) PL-invariant state sum Z[M?~"] for a closed (d ~ 1)-
dimensional PL-manifold M%~1, we extend it to a state sum for a pair (T¢,07¢ = T4-1).
This is achieved by assembling in a suitable way the squared roots of the symbols associated
with the fundamental blocks in Z[M?~1] in order to pick up the recoupling symbol to be
associated with the d-dimensional simplex; the dimension of the SU(2)-labelled (or the g-

colored) (d — 2)-simplices is keeped fixed when passing from T4~ to T¢ D T4

o step £) The state sum for (T'¢, 8T'%) gives rise to a PL-invariant Z[(M¢,0M%)] owing to the
fact that we can exploit a set of topological moves, the elementary shellings of Pachner [11]

(the algebraic identities associated with such moves in d = 3 were established in [12] and
13)).

o step 5) From the expression of Z[(M¢,8M%)] we can now extract a state sum for a closed
triangulation T%. The proof of its PL-invariance relies now on the algebrization in any di-
mension d of the bistellar moves introduced in [14]. The procedure turns out to be consistent
with known results in dimension 3 (see [2], [3] and [7]) and in dimension 4 (see [6] and [15]),
and provides us with a PL-invariant Z[M%] where each d-simplex in T? is represented by a

{3(d — 2)(d + 1)/2}J recoupling coefficient of SU(2) (or by the corresponding g-analog).

The scheme we have outlined above gives us an algorithmic procedure for generating (different

kinds of) invariants for closed manifolds in contiguous dimensions, namely Z[M*™'] — Z[M 4.



Furthermore, the (multi)-hierarchic structure underlying these classes of invariants is sketched

below as an array:

dimension: 2 3 4 v.ood d+1
2 Zi
Zi Zty
4
Zy
Z}é Zd+l
d
ZX+1

The quantities Z;cl = Z,[M? on the first diagonal of the array, which we referred to in step 1), are
invariants depending upon the Euler characteristic of the closed manifold M ¢; they can be defined
both in the classical case of SU(2) and in the case g # 1,(in this last case the notation Zfé(q)
should be more suitable). They are obtained in any dimension d by labelling the (d — 1)-simplices
of the triangulations with the ranks of SU(2) representations, j = 0,1/2,1,3/2,... (see Appendiz
8.1 for the general definition in the g-case). Notice that these invariants are in fact trivial in
dimension d = 2n + 1 since heré we are dealing exclusively with manifolds.

The hierarchy on the second diagonal of the array includes classical PL-invariants Z¢ = Z[M*]
involving products of {3(d — 2)(d + 1)/2}j symbols of SU(2) as we said in step 3). In this case
the labelling j have to be assigned to the (d — 2)-simplices of each triangulation (namely edges
in d = 3, triangles in d = 4, and so on). Thus we recover the Ponzano—Regge model Z}p and
the Qoguri-Crane-Yetter invariant Z%y (g = 1); the other invariants are new. A similar remark
holds true also in the g-deformed context, where the hierarchy would be rewritten in terms of the
counterpairts Z%(q) = Z[M%(q) (and in particular we found the Turaev-Viro invariant in d = 3,
see [3]).

Coming Back to the relations between invariants lying in the same row of the array, they can be
further analyzed in view of the extension of each Z[M9] to Z[(M¢9,8M?)]. Thus the first row can
be read a:s a PR-model with Z)Qc on its boundary, the second row as a C'Y-model with Zf; on its

boundary, while the other rows display new invariants for PL-pairs in each dimension.



As a consequence of the above remarks, the whole table (together with a similar g-table) can
be reconstructed row by row just from the explicit form of the invariant Zg. Then, in a sense,
it is not surprising that the invariant ZZy, having on its boundary Zi = const. for any choice
of OM*, turns out to be simply the discretized version of a combination of signature and Euler
characteristic of M* (see [16]). On the other hand, the invariants Z3, which are generated by
non-trivial Z2, are related to Reidmeister torsion (see e.g. [17]).

The proper way to investigate the nature of the invariants in d = 2n and d = 2n + 1 is by no
doubts the search for explicit correspondences with some TQFT's. For what concerns again the
three dimensional case, the relation between either Z% or Z%(g) and the generating functional of
a suitable a suitable TQFT has been extensively discussed by Turaev in [18], [17], by Roberts
n [16], [19], [20], by Beliakova and Durhuus (by means of the spin network formalism) in [21],
by Mizoguchi and Tada (by considering the perturbative development of the quantum 6j-symbols
around the value ¢ = 1) in [4], and by Kauffman and Lins (by using the Temperly-Lieb recoupling
theory) in [22]. The four dimensional case corresponding to the invariant Z *(qg) has been addressed
by Roberts in [19] and by Broda in [23] [24] [25]. It turns out that, in both these dimensions and
for the quantum case, the associated TQFT is a BF theory with a cosmological constant term, the
parameter A of which is equal to 1/k in d = 3, and to 1/k? in d = 4, where k is the deformation
parameter of the quantum group. Then in the limit £ — co we obtain in a quite straightforward
way that the classical invariants in d = 3,4 actually correspond to pure BF theory. A short list
of references about the general setting of BF theories and about their connections with related
fields should include at least [26], [27], [28], [29] [30], [31], [32], [33], [34], [35], [36] -

In order to address the problem of the correspondence between our classical PL invariant models
and (pure) BF theories in higher dimensional cases, we realize that two different approaches can
indeed be used. Firstly, we may start from the discretized procedure of BF theories proposed
by Freidel and Krasnov in [37], and then, by using the machinery of angular momentum theory,
recover the symbol associated with a d-simplex in the spin model. The second possibility relies
on the generalization in any dimension d of the Ooguri procedure established in [5] to address the

three dimensional case.
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Similar remarks and (possibly) similar methods apply also to our quantum invariants, which
should be discretized versions of BF' theories with suitable constraint terms in each dimension.
We are currently investigating such issues, see [38].

The strong evidence about the existence of a direct correspéndence between combinatorial and
continuum models in any dimension opens new perspectives in both classes of theories. As a
further example of fruitful interplay among different approaches in geometric topology, in the

final part of the thesis we will analyze in detail the structure of the Turaev-Viro invariant.

The thesis is organized as follows.
In the following two chapters we collect all we need about PL topology (Chapter 2) and the
(re)coupling theory of angular momenta of SU(2) (Chapter 3).
The content of Chapters 4, 5 and Section 6.1 is based on the papers quoted in [12], [13] and [39].
In particular, in Chapter 4 we define the PL invariants chl which appear in the first diagonal
of the array displayed above, and we evaluate their expressions in the g-deformed case. The
corresponding TQFT is also considered. In Chapter 5 we discuss the classical invariants for pairs
(M?,8M?), having Z3~! on their boundary manifolds (the quantum counterparts can be easily
found as indicated in Appendix 8.1). In Section 6.1 we show that the state sums for closed
manifolds generated by the previous ones are actually PL invariants (collected in the second
diagonal of our array).
The content of Section 6.2 will appear in [38] and concerns the correspondence between our classical
PL invariants and pure BF theories following the arguments outlined before.
In Chapter 7 (based on [40]) we introduce observables and links in the Turaev-Viro model. After
a brief review on surgery operations on 3-manifolds, we are able to rewrite the state sum in terms
of Heegard splittings. In this way we obtain a new diagrammatical representation of the state
sums associated to lens spaces and we give their explicit expressions in terms of 3nj symbols.

Finally, in Chapter 8 we collect some appendices containing technical details.
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Chapter 2

Discretization methods and
PL-manifolds.

In this chapter we collect some basic definitions and theorems on Piecewise-Linear (PL) topology
(we refer the reader to e.g. [41], [42] for more details on the general part concerning simplicial
complexes, polyhedra, dual complexes and so on). In particular, we focus our attention on the
issue of combinatorial (or PL) equivalence of d dimensional compact simplicial PL manifolds
which will be extensively addressed in connection with the search for new PL-invariants from
the (re)coupling of angular momenta. Recent result due to Pachner (see [43]) provide us with a
general framework to deal with such kind of questions. This is achieved by exploiting suitable sets
of topological operations on simplices, namely the bistellar moves in the case of closed manifolds
and the elementary shellings in the case of manifolds with a non-empty boundary.

By a p-simplex o? = (20,21, .. ., Zp) With vertices g, z1, ..., z, we mean the subspace of Rd(d > p)
defined by o? = 3°F_| A\;z;, where (2o, %1,...,,) are (p+1) points in general position in R? with

> Ai=1and )\ >0,Vi.

Definition 1 Let o? and 79 be simplices in R? with distinct vertices and such that the totality of
these vertices is at most (d+ 1) and they are in general position in R®. Then such vertices span
a simplez, of x 79, the join of oP and 79, defined as the (p+ q + 1)-simplex obtained by taking the

convez hull in R?, viz.:

of x 11 = conv(o? UTT?). (2.1)
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A face of a p-simplex oF is any simplex the vertices of which are a subset of those of oP.

Definition 2 A finite simplicial complex T' (or, more precisely, the geometrical realization of an
abstract simplicial complez) is a finite collection of simplices in R* such that: i) if o? € T, then
so are all of its faces; ii) if P, 7 € T then oP N 77 is either a (common) face or is empty.

T has dimension d if d is the mazimum dimension of its faces. The faces of mazimal dimension,

%, are called facets of T.

Definition 3 IfT: and T5 are simplicial complexes, then the join of Th with Ty is defined according

to:

Ty *xTo = {01 *x03 8.t.01 € 11,00 € To} (2.2
where o1 * o9 is given in Definition 1. In particular, the join of a compler T with the empty
simpler gives T x {0} = T, while the join of T with the empty complex gives T O = @. (Notice
that in the following also the join of a complex T with a simplex T will be denoted by T x 7 for

short).

A simplicial complex is pure provided that all its facets have the same dimension.

The boundary complex of a pure simplicial d-complex T is denoted by 87" and it is the subcomplex
of T the facets of which are the (d — 1)-faces of T" which are contained in only one facet of T'. The
set of the interior faces of T' is denoted by int(T) =T\ 0T

If o is a simplex, then by B(s) we mean the complex made up by all the faces of o, except o itself.

Moreover

F(o) = B(o)U{o} (2.3)
is the complex made up by ¢ and all its proper faces.
Given a (finite) simplicial complex T, consider the set theoretic union |T| C R? of all simplices
from T, namely

14



ITI = UgeT 0. (24)

Introduce on the set |T| a topology that is the strongest of all topologies in which the embedding
of each simplex into |T'| is continuous (the set A C |T'| is closed iff A N o? is closed in oP for
any o? € T). The topological space |T| is the underlying polyhedron, geometric carrier of the
simplicial complex T'; the polyhedron |T'| is said to be triangulated by the simplicial complex T'.
More generally, a triangulation of a topological space M is a simplicial complex T' together with

a homeomorphism |T'| = M.

Definition 4 A simplicial map f : Ty — T3 between two simplicial complexes Ty, Ta is a contin-
wous map f : |Ti| — |Tz| between the corresponding underlying polyhedra which takes p-simplices
to p-simplices for all p.

The map § is a simplicial isomorphism if f~* : Ty — T is also a simplicial map.

A subdivision T' of T is a simplicial complex such that: i) |T"| = |T'|, where = denotes a home-
omorphism between topological spaces; i) each p-simplex of 7' is contained in a p-simplex of
T, for every p. A property of a simplicial complex T which is invariant under subdivisions is a

combinatorial (or Piecewise Linear) property of T'. More precisely:

Definition 5 A PL-homeomorphism

f : T1 — T2 (25)

between two simplicial complezes (of the same dimension) is a map which is a simplicial isomor-

phism for some subdivisions T{ and T, of Ty and T, respectively.

Definition 6 A PL-manifold of dimension d is a polyhedron M = |T|, each point of which has a

_neighborhood, in M, PL-homeomorphic to an open set in R™.

PL-manifolds are realized by simplicial manifolds under the equivalence relation generated by

PL-homeomorphisms according to the following:

15



Definition 7 Two PL-manifolds My =2 |Ty| and My = |Ts| are PL-homeomorphic, or
M, =py M, (2.6)

if there ezists a map g : M1 — My which is both a homeomorphism and a simplicial isomorphism,

in the sense of Definition 5.

In what follows we shall use the notation

T — M = |T| | 2.7)

to denote a particular triangulation of the closed PL-manifold M and, when dealing with a P L-pair

(M,0M), we shall write:

(T,0T) — (M,0M) = (|T},|0T]) (2.8)

where the triangulation on dM is the unique triangulation induced on it by the chosen triangu-
lation T in M. The extension of Definitions 5, 6 and 7 to PL-pairs is quite straightforward and
can be found e.g. in [42]. Recall also (see e.g. [44]) that a sufficient condition for characterizing

a triangulated space as a PL-manifold follows from the:

Theorem 1 A simplicial d-complex K is a (simplicial) PL-manifold of dimension d if, for all
p-simplices oP € K, the link of o®, link(c?; K), has the topology of the boundary of the standard

(d — p)-simplez, namely if: link(c?; K) = S P~ (the (d — p — 1)-dimensional sphere).

In the above statement, link(c?; K) is the union of all faces 7 of all simplices in the star of o

satisfying.c N7 = 0 (the star of o in K is simply the union of all simplices of which o is a face).

The pbint that we are going to examine now concerns P L-equivalence of polyhedra. Notice
that Definition 7 turns out to be quite difficult to be handled with in practice, since one should
go over and over through subdivisions in order to find out isomorphic triangulations. The issue

of combinatorial equivalence was first addressed by Alexander in [45].
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Definition 8 Let T — M be a triangulation of a PL d-manifold and let § # A € T such that

link(A; T) = B(B) x £, where B # 0 is a simplex not contained in T. Then the transformation
ka,pT := (T\A*xB(B)* L) UB(A) * Bx L
is a stellar exchange where * is the join .

In the case of dimB = 0, i.e. B = {b} is a new vertex, the operations k4 B) =: 0(4,B) =: 04
are called stellar subdivisions. Here A € 8T or A € int(T) respectively, depending on whether
L is a ball or a sphere. Conversely, k(”Al) B) = op' is an inverse stellar subdivision in the case of
dimA = 0. The definition of stellar subdivision and their inverses are still applicable to arbitrary
simplicial complexes.

Alexander proved the following theorem (which indeed holds true for more general complexes t00):

Theorem 2 For any polyhedron M which is dimensionally homogeneous (viz., its underlying
simplicial complex is pure) any two triangulations of M can be transformed one into the other by

a finite sequence of stellar subdivisions and their inverse transformations.

The stellar subdivisions, typically known also as Alezander’s transformations (or moves), are
not elementary, in the sense that each one of them involves a variable number of d-simplices
of the triangulation T we are considering. Thus, being interested in transformations between
different triangulations of a PL-manifold M, one should implement Alexander’s moves over a lot
of local arrangements of simplices which cannot be factorized into simpler blocks. On the other
hand, Qwing to Theorem 2, PL-manifolds are mapped homeomorphically into PL-manifolds, and
moreover all admissible triangulations of a given M are related to each other by a suitable sequence
of Alexander’s moves. The way out from this situation is to look for a different set of moves,
which are l;oth elementary (i.e. they involve just a fixed number of simplices in any dimension
d) and equgivalent to Alexander’s transformations, namely topology-preserving and ergodic (i.e.
they must span all the possible triangulations of a given M ). A set of moves that shares these
requirements for the case of closed d-dimensional P L-manifolds has been found by Pachner: the
bistellar elementary operations (see [14] and also Appendix A of [46] for an account on this subject

in connection with simplicial quantum gravity models in d = 3,4).
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Definition 9 Let T — M be a triangulation of a PL d-manifold, such that, for @ # A € T and
B # () a simplez not contained in T, we have dimA+dimB = d (i.e. L= {0} in Def. (8)). Then

E(a,B) =: X(A,B) =: XA 15 a bistellar k-operation if dimA = k.

Obviously we have X(‘Al, B) = X(B,A)- The corresponding equivalence relation between the triangu-
lations is denoted by 'mipss’. If dimB > 1, B = p* B’ then X(A,B) is uniquely determined by p
and by the facet F =: Ax B’ of M.

The statement of the main theorem in [43] can be rewritten in our notation as:

Theorem 3 Let Ty — My, To — My be triangulations of compact d-dimensional manifolds re-
spectively. Then My and My are PL-homeomorphic if and only if Ty and 15 are equivalent under

bistellar moves

|T1| =pr T2 <= (T1) ~pst (T2)

Pachner has introduced also a set of moves which are suitable in the case of compact d-
dimensional PL-manifolds with a non—empty boundary, the elementary shellings (see [11] and
[43]). As the term ”elementary shelling” suggests, this kind of operation involves the cancellation
of one d-simplex (facet) at a time in a given triangulation (T,0T) — (M,0M) of a PL-pair of
dimension d. In order to be deleted, the facet must have some bf its faces lying in the boundary
OT. Moreover, using Definition 1, we may decompose a facet of this kind (considered now as a
complex) into the join of two suitable faces belonging to it. This decomposition is obviously not
unique, although in each dimension d there are only a finite number of possibilities of carrying it

out (up to a relabelling of the faces of a given dimension).

Definition 10 Let (T,8T) — (M,0M) be a triangulation of a PL-pair of dimension d and let

o? be a facet decomposed according to:

o =1%o (2.9)

where T is a face of 0% of dimension p > 0 such that T € int(T), and the second factor represents

a face of 0% of dimension r > 0 with the following property:

18



B(r)xo” C 0T, (2.10)

where B(7) is the complex made up by all the faces of T except T itself.

Then an elementary r-shelling of (T',0T") is defined according to:

0_pa (T,8T) = (T,0T) \ {F(r)*0"} = (T,0T) (2.11)
where F(7) is given in (2.8).

Notice that the dimension p of 7 is given, in terms of d and r, by p = d — r — 1; moreover, if 7 is
a 0-simplex then B(7) = §) and the remark at the end of Definition 3 has to be kept in mind.
The inverse operation amounts to add a new facet to (T, 8T along some faces in 87, and can be

simply defined as:

04454 (T’ BT) = (Q-ad)—l (T$6T) (212)

If we set o7 = p,,¢ and ¢~ = o_,e for some facet (or missing facet) o?, we can establish an

equivalence relation between triangulations according to:

Definition 11 Two triangulations (T,0T) and (T,8T) are said to be equivalent under elementary
shellings if, and only if, they are connected by a finite number of elementary boundary operations,

namely:

(T,0T) mo (T,0T) <= (T,0T) = of - oF (T,07) (2.13)

where o0& are defined in (2.12) and (2.11) respectively and k is an integer.

Remark 1

It may hapI;en that there exists one face T € int(T) and different faces, say o] and o}, with
both B(7) *o] and B(7)* o} in 8T and such that ¢ = Tx07], 0¢ = 7%07 for afixed o%. However,
for each o” belonging to 87, there exists at most one 7 € int(T) such that: i) 7xo” is a facet; i)

B(1) * ¢" C 8T. Hence the elementary operation g_,« defined in (2.11) in uniquely determined
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by o, and the set of the possible elementary shellings (performed on a single facet) is equal to

the dimension d of the facet itself, since r = 0,1,...,d — 1.0

The statement of the main theorem in [43] can be rewritten in our notation as:

Theorem 4 Let (T}, 8T1) — (M1,0M1) and (Ts, 8T2) — (M2, 8M,) respectively be triangulations
of compact d-dimensional manifolds with boundary. Then (My,0M;) and (M, 0M2) are PL-
homeomorphic if, and only if, (T1,0T1) and (T3,0T3) are equivalent under elementary shellings,

namely:

|(T1,(9T1)‘ =pr, |(T2,5T2)| <= (Tl,BTl) Rsh (Tg,aTz) (214)

where |(Ty,0T1)| = (M, 8My), |(T2,0Ts)| = (M2,0M3) and the equivalence ~p, is ezplained in

Definition 11.

Notice that in one direction (<) the result is quite straightforward and moreover, as a partic-
ular application, we may consider different triangulations (T',9T), (T,8T) of the same P L-pair
(M,8M).

Pachner has also proved a weaker version of the above result in [11], namely

Theorem 5 Let (T1,0T1) — (M1,0M1) and (T2,0T3) — (M2,0Ms) be triangulations of PL,

compact d-dimensional pairs. Then:

[(T1,8T1)| =pr |(T2,8T2)| < (T1,6T1) Rsh,bst (Tg,aTz) (215)

where the equivalence =gp pst is both under elementary shellings and under bistellar operations on

d-simplices in int(T1) or int(13).

Remark 2
The advantage of having to deal with elementary shellings is quite evident (although we shall
use also Theorem 5 when handling our combinatorial invariants). Moreover, there exists a corre-

spondence between bistellar moves in dimension d and elementary shellings in dimension (d ~ 1);
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more precisely, each shelling realizes a particular type of bistellar on the boundary, and remem-
bering that in the d dimensional case we have d shellings (and d inverse shellings) and exactly d
bistellar on the d — 1 dimensional boundary (including their inverse), it can be shown that the
above correspondence is in fact one to one. We shall return on this point when dealing with our
PL invariants in Chapters 5 and 6. In this respect, notice that Theorem 4 represents exactly the
counterpart of Theorem 3 for closed (d — 1)-PL-manifolds.O

In order to deal with the different sets of moves introduced above, we are going now to simplify
our previous notations. If we denote by ng the number of d-simplices € 7% involved in a given

bistellar operation, then such a move will be represented with the notation

g = (d+1) = (ng — 1)]5, (2.16)

Here the action of the move is made manifest since ny d-simplices (glued together to form a PL
ball) are transformed into new PL ball made up by (d+ 1 — (ng — 1)) 0. The two configurations
have the same boundary PL sphere, and the entire set of allowed moves in dimension d is found
forng =1,2,...,d+1.

Both for the elementary shellings (2.11), and for their inverse operations suitable notations

read:

a1 = d=(na—1 = D%, [na-1 = d— (na—r — D], , (2.17)

where ng_; represents the number of (d — 1)-simplices (belonging to a single d-simplex) involved
in an elementary shelling and in an inverse shelling, respectively. Then the full set of operations

is found when ng4-1 runs over (1,2,...,d) in both cases.

Ezxample: Bistellar moves ind = 3
Let T" — M represent a triangulation of a closed 3-dimensional PL manifold. Let A € T be a
subsimplex of the triangulation with dimA = r (from Definition 2 we can restrict our attention to

subsimplices), and let B be a simplex not belonging to 7' with dimB = k. Then we can classify
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the bistellar moves according to the dimensionality of A, namely

1. TYPE I (r = 3). The subsimplex A is a tetrahedron a?j) while, from the relation k+3 = 3,
B is a point ET?I) ¢ T. The joint Ax OB is equivalent to cr?[); the join B % 0A is represented
by four tetrahedra, glued among them, sharing the vertex &?I); its free faces coincide with

30(31). The bistellar of type I is represented explicitly by the map
[1— 43, =K' : T —= (T\6{y) % o(p)) U (ary x 95{p) (2.18)

2. TYPE II (r = 2). The subsimplex A is the triangle of;;), hence B is an edge 6ty €T
The joint A x 8B is equivalent to two tetrahedra sharing the face 0(21 n and whose opposite
vertices are the boundary of &(1[ i the join B x OA represents three tetrahedra, sharing the
edge &(11 p); each one of them has two free faces, one for each initial tetrahedra, sharing an

edge of 60%’1 n- The bistellar of type II is represented by the map:
[2 = 83 == K" i T — (T\ofy % 806 {;1y) U (6(11) x (1)) (2.19)

3. TYPE III (r = 1). The subsimplex A is an edge U%IH) while B is a triangle &(2111) ¢T.
The joint A x OB is equivalent to three tetrahedra glued along the line cr(lI r1y» and with the
free faces of each one glued along an element of 6&%1 i B* OA are two tetrahedra, glued
along the triangle 67;;;, and with opposite vertices on the boundary of {1rry- The bistellar

of type III is represented by the map:
8 = 23 = KT T — (T\o{117)* 067111)) U (6Frrry * 09(111))- (2.20)
Notice that it is the inverse map of [2 — 3]3,;.

4. TYPE IV (r = 0). The subsimplex A is a point o{;;,) and B is a tetrahedron &y T
The joint A % OB is equivalent to four tetrahedra sharing the vertex a?ﬂ,) and whose free
faces realize 56(31\/)3 the join B x A is the tetrahedron 0(31‘,). The bistellar of type IV is

represented explicitly by the map:
[4— 18, = KTV . T — (T\o{ry) * 8601v)) U (6F1v) * 90 (rv))- (2.21)
Which is is the inverse map of [1 — 4]3 ;.
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The pictures showing the actions of these moves are given in Fig. 2.1.0

KI

KIV

KII
KIII

Fig. 2.1: Bistellar moves in d = 3.

Ezample: elementary shellings ind =3

Let (T,0T) — (M,5M) represent a triangulation of a 3-dimensional PL-pair and let o® be a

facet with some component in 87". According to Definition 10 we can write:

o =7%x0" (r=0,1,2) (2.22)

where T e int(T) and ¢" € OT. As we noticed in Remark 1, for every o” € OT there exists
at most c:me 7 € int(T) which satisfies (2.22). Then we can classify the possible facets and the
Correspoéding elementary shellings according to the dimensionality of ¢” and using (2.11) (these

different configurations are depicted in the Figures (5.2), (5.3), (5.1) of chapter 5).

1. TYPE I (r = 0). The facet o3 admits the decomposition ¢3!) = 70 x ¢, where 7 is

a 2-simplex and belongs to int(T). The vertex o° and the three 2-dimensional faces of o3()
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which have ¢® as a common subsimplex are in 8T'. The shelling of o3U) is represented by

the map:

[ o33, = o=@ : (T,8T) — (T,0T)\ {F(rD) %0} (2.23)

2. TYPE II (r = 1). The facet o3/0) admits the decomposition o3 = 7UD x 5!, where
7D is a 1-simplex and belongs to int(T). The 1-simplex ¢! and the two 2-dimensional
faces of g3 which have ol as a common subsimplex are in 7. The shelling of oD is

represented by the map:

2 = 23, = 0D . (T,8T) — (T,8T) \ {F(r'D) x o'} (2.24)

3. TYPE III (r = 2). The facet o3/'1) admits the decomposition o®D) = 7(I11) 5 52, where
+UID) ig 5 vertex and belongs to int(T). The 2-simplex o2 is in OT. The shelling of ¢*(F1D

is represented by the map:

3= 13, == o~ (T,8T) — (T,07) \ {F (D) % 5%} (2.25)

The inverse elementary shellings T, gt and oD are nothing but maps which are the
inverse operations with respect to the former ones, and represent attachments of 3-simplices of

types I,II,III respectively.r]

Associated with simplicial d-dimensional PL space we can consider also the so called dual
complex, which is the natural generalization of the Voronoi construction of the dual lattice for a
random lattice in Euclidean space. An intuitive ( but not fully rigorous) definition is as follows:
to any given p-dimensional subsimplex o we associate the flat (d — p)-dimensional dual polytope
o* that consists of all the points which are at equal distances from all the vertices of o, but closer
to this vertices than to the others of the complex. The dual polytopes of a simplicial complex C
form a polytopal (but non simplicial) complex, C*. Simple example in two and three dimensional

cases are given in Fig. 2.2. We may consider the n-skeleton of such dual d-dimensional complex
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d=2
I@

A polygon, dual of a vertex A Line, dual of an edge A point, dual of a triangle

A point, dual of a tetrahedron A line, dual of a triangle A plaquet, dual of an edge

Dual block associated to a tetrahedron

Fig. 2.2: Elements of the dual lattices in d = 2, 3.

(namely the collection of its subsets of dimension < n). For n=1 we found a graph with (d + 1)
valent vertices and for n=2 a particular type of surface; for example, in d = 3, denoting by X
this 2-polyhedron (with boundary), it is characterized by the condition: each point of X has a
neighborhood homeomorphic either to

1) the plane R?, or

2) the union of 3 half-planes meeting each other in their common boundary line, or

3) the cone over the 1-skeleton of a tetrahedron, or

4) the half-plane R%, or
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5) the union of 3 copies of the quadrant {(z,y) € R? :z > 0,y > 0} meeting each other in the
copies of the half-line z = 0.

Such 2-polyhedron is called simple. The set of points of the polyhedron X which have no neigh-
borhoods of type 1, 2, 3 is called the boundary of X and denoted by 8X. It is a graph.

The 2-dimensional polyhedron X is naturally stratified. In this stratification each stratum of di-
mension 2 is a connected component of the set of points having neighborhoods homeomorphic to
R2?. This class of 2-polyhedra is interesting from many viewpoints. Just to mention one, they are
generic in the following sense: a) they are obtained by glueing surfaces in their boundary to other
surfaces or simple 2-polyhedra by generic mappings of boundary components; b) they constitute
a dense subset in the space of all metric 2-polyhedra; c) by local operations, preserving simple

homotopy type, one can transform any compact 2-polyhedron into a simple one.
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Chapter 3

An outlook of Racah-Wigner
algebra.

In this chapter we give a brief review on some basic definitions and relations from the stan-
dard theory of quantum angular momenta. From now on, we agree that the spin variable
j =0,1/2,1,3/2,... labels the irreducible representations of the group SU(2), while the Dirac
notation is employed when matrix elements are considered. In particular the set {|jm)}, for a fixed
4, spans the (2j + 1)-dimensional complex eigenspace associated with the two Casimir operators of
SU(2), while we shall use suitable shorthand notations to deal with tensor product involving the
couplings of two or more eigenvectors. We refer the reader mainly to [47] for more details on the
content of all Sections except 3.4, about which more information can be found in [48]. From what
concerns the extension of the definition of (re)coupling coefficients to the quantum deformation

of SU(2), we collect the basic notations in Appendix 8.1.
3.1 Wigner D-functions.

The first quantity that we consider is the Wigner D-function Dfn’m, (a, B,7), representing the
matrix elenqients of the rotation operator f?(a, B,7) in the jm-representation. The arguments a,

B, v are the Euler angles which specify the rotation, and we have:
(jmiD(e, B, )1'm') = 855 D3, (e, 8,7).

The D-functions realize transformations of covariant components of any irreducible tensor of rank

j under coordinate rotations.The inverse transformation is performed by the inverse matrix, whose
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elements are Df;m, (a, B,7). The unitary condition of the Wigner D-functions may be written as:
j .
S DI (e B m)DY (@ 8,7) = b Z D2 (0, 8,7) DL i (0, 8,7) = S
m=—j m'=—j

The matrix D’

g w(a,B,7) is unimodular. The Wigner D-functions are complex and depend on

three real arguments (o, 3,7) defined in the domain
0<a<2r,0<f<T,0<y <27,

As is well known, Dﬁnm, (o, B,v) may be expressed as a product of three functions, each one of

which depends only on one arguments, namely:

. !
—im’ 7y

D (a,B,7) =exp~™dl, . (B)exp

where &__,(f) is a real function. The symmetries of the d’ ., (8) are
& (B) = (B)
& (—B) =y (B)
dor=B) = (=1l (8) = (-1 L(8)

We list now some expressions involving sums of product of D-functions. The product of two

D-functions with the same arguments may be expanded according to

Jitia
Dgrlumz (a B 7)szm2(a’ﬁ’7) = Z C;:v’:nuzmo #n(a’ﬂ’ )Cg:?nﬁzmz
J=[j1—Ja|
where CI™ S mijams 18 @ Clebsch-Gordan coefficient (cfr. the next section). The Clebsch-Gordon

series enables one to calculate sums of products of D-function with identical arguments:

Y mimanin le",‘nung}m (0B, 7) Diz s (@ B V) Cih g = S {121} D (@, B,7)
Zﬁfﬁm 2 mama Chimajzma DZny (@, B,7) Dipn (@, 5, 7)01311" 2z 6"1n’1D’];€2“2(a’ﬁ77)
> img Diins (@ By 1) DI, (0 By 1) Cote s = Coima jarma Do (2 8,7)

> nnima Di* (a,8,7) D3 p, (o, B,7) D2, (O‘HBJ’Y)CJJ?nuznz = CJJ:TTanmz

memzm'nlna C;:Z%ljzmngn(a’ ﬂ’ )D#le (01, 677) mzng (a B, 7) J]mJgnz 6jj'6nn’ {]132]}
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From now on we shall denote by {a, b,c},a,b,c = 0,1 /2,1,...atriangular delta, namely a quantity
which is equal to 1 if a,b, c satisfy the triangular inequalities, and zero otherwise. The Clebsch-
Gordan series can be generalized to the case of an arbitrary number of D-functions of identical

arguments, thus obtaining

Jimm Jimi —
> My, Mg H o) im1 My jems mm(a B, )Cz ;nhuznz -

n]‘"..nk

k L
D]mkknk (aa )65 7) Hi:l 5‘71]: {.71.72——1.71}
with J; = ji +jo+ -+ ji, Mi =mq +ma +---+m; and N; =n; +ng + - -n,. Finally, integral

expressions involving D-functions which will be used in the following are:
f% da [ dB smﬂfo d'mem, (@, 8,7) = 6;00m00m0872;

02” da [ dﬁsinﬁfo d'YDﬁlm (e, B, fy)DTfLQm (e, B,7) =

= (=1)m=~ s 25;_1 571j25—m1m25—m'1m'2 (J1 + j2 integer);

0" da Jy dBsing [;" dyDIY (a, B.NDE, . (,8,7) =
=(-1)m=~ mzzjs;-l6]1]'257711m25m'1m’2 (J1 + j2 integer);

o dafy dBsing [I7 dyD] . (0, 8,7)DE, ., (a,,7)DE, . (a,B,7) =

= (—1)memma BT Ofoms | 0BT (jy 4 ja + js integer);

2J3+1 Y iimajeme 7 jim) jamb
2 . j2
fowdafoﬂ d,@ Slnﬂf d7D]n}le « ﬂ:’y)Dkzmé(a=B77)Dﬁ:m (aalg,’)/) =

SSn_cdams sty (1 + J2 + js integer).

2.73+1 Jimajama ™ jim)jaml >

3.2 Clebsh-Gordan coefficients and 3jm-symbols.

Let 71 and’% J2 be two angular momenta of SU(2) with projections m; and ms on the quantization
axis respecjtively. A Clebsh-Gordan coefficient represents the probability amplitude that j; and
Jo2 are coubled into a resultant angular momentum j with projection m. The Clebsh-Gordan
coefficient vanishes unless the triangular inequalities are fulfilled for the triad (41, 72,73) and the
request my +mo = m is satisfied. The arguments of Clebsh-Gordan coefficients satisfy the following

conditions:
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a) j1, j2 and j are integer or half-integer non negative numbers;

b) my, mo and m are integer or half-integer (positive or negative) numbers;
¢) [ma] < ju, |me| < ja, Im| < J;

d)y +my, ja + ma,j + m,j1 + J2 + j are integer non negative numbers.
The absolute value of the Clebsch-Gordan coeflicient is given by

| s jarmal =

Jimajame
2EL (27 o [T dBsin [y dyDE m, (@ By V) DiEymy (0 B,7) Dt (at, B,7)
The Clebsch-Gordan coefficients are elements of the unitary matrix which transforms the state
vectors |jymy jame) = |jim1) ® |jamz) and |j1j2m) one into the other, namely
C;T:nmm (F1majamaljijaim)
= (j1j2im|j1mijamsa)
The unitary relations reads:

zmlmg C]m OJ m = 5jj’6mm'

Jimajamz < jimijame
ij C]:?nuzmz J]':?n’ljzm’z = 6"“17”'1 67"2’”'2
Notice also that all recoupling coefficients which will be introduced in the following sections
can be expressed as sums of products of Clebsch-Gordan coefficients as well as in terms of the
next symbols which we are going to define.
The Wigner 3jm-symbols are strictly related to the Clebsch-Gordan coeflicients, and possess
simpler symmetry properties. A 3jm symbols and the associated Clebsch-Gordan coefficients may

be obtained one from the other through the relations:
jl j2 j3 — ( 1)33+m3+2]1 stma
myp M2 M3 \/233+ j1—majz—ma’

O syma = (=1)7¥mo™s2 2j3+1< noono B )

mp Mg —Mg3

Notice that the factor is chosen in such a way that any cyclic permutation of columns leaves the
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3jm symbols unchanged. The symmetry properties of 3jm symbols can be written explicitly as
jvoJ2 Js \_f Jd2 J3 g1\ _
mi M2 M3 mgz M3 T

_( 3 o de ) _-
msg My M2
—_ (_1)j1+jz+j3 J1 Js Ja —
mp 3z M3

(_1)j1+jz+ja( J2 1 s ):(_l)jl'f‘jz'f'js( ja J2 I )

mg MmMp Mg m3z M2 M

and the change of sign of all the momentum projection gives:

o Ji Js ) L Lqytis (J2 B
me M™TMi M3 —me —My —M3 ’
Finally we write down some other relations involving products of Clebsch-Gordan coefficients,

namely
JaMy Jo Mo jama — (—1)d2+is+iatis jams J1 J2 Ja
Zmlmzms CJIM1JzMzCJsMstMzcjumjsms_( 1) Hj4js Cj1m1j2m2 Je Js U3

N2 JsMs JeMs 1 J2 Ja | _ ~JaMs JsMs
Y ieme (¥ I 7,5, Coanty asnas Crntg 7o, Ve s s = Oyt 1o, O g5 Ms

Here []

P (251 +1)---(2jn +1) and { g; J2 U4 } is a 6j symbols the definition of which

Js J3

will be given in the next section.

The definition of the Clebesch-Gordan coefficients can be generalized to consider the addition
of an arbitrary number of angular momenta to give a total J with projection M. The generalized
Clebsch-Gordan coefficient (GCG) represents the elements of the matrix that reduces the direct
product of an arbitrary number of irreducible representations of SU(2) and is formally expressed
as

(1 -+ Gn) aT M|jyma -+ juimin)
where (j1---jn)? is a scheme of reduction of the set (ji---jn) and a is the set {ay, - an-s} of
intermediate angular momenta.
The GCGs are non zero when the following requirements are fullfilled
S ji+ J =integer, > mi=M,

S G2 T 2 2k = Yy i with k=1,2,---n
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They satisfy the orthogonality relations

Smgeeam, (U1 - n) @I Mjima -« - jnmn) (Gima -+ jnmn| (1 - gn)Aa/ M) =
= 5aa’6JJ’6MM’;

Y arne{r - dn) @I MIjimy - fami)(Gima - Jamn|(f1 -+~ jn) @ M) =

= 6m11n'1 T 5mnm;,
where 0opr = Jam/l “++0q,_sa' _,- The above expressions admit expansions in terms of usual

Clebsch-Gordan coefficients, (see [48]).

3.3 6j symbols.

The Wigner 6j symbols are related to the coefficients (or better, they are matrix elements) of
unitary transformations between different coupling schemes of three angular momenta to give a
total momentum j. Denote by |j1j2(j12)j3jm) the state vector corresponding to the coupling
scheme j; + j2 = ji12,j12 + Js = j. Then we have

.. jm j1zmiz . :
172(12)Jsim) = D Climiajams O ams li1majamagsms),
m1MmM2mMms3

Let now |j273(ja3)jijm) be the state vector corresponding to the coupling scheme j» + js

jos, j23 + j1 = j; in this case we get

L jm jeamas . .
laga(Gaa)irdm) = D Ol iy Coionn sl e | J1ma j2mna jams).
mimams3s

Finally, if |j173(j13)j2jm) is the state vector corresponding to the coupling scheme j; + j3
J13,j13 + Jo = j, we obtain

2 : Jjm jiamis . :
7173 (j13) Ja2jm) leamla]2m2011m133m3Ijlm1.72m2]3m3>-
mimams

States belonging to each of the above coupling schemes form a complete set of states by their own.
A transitionf from one coupling scheme to another is achieved by some unitary transformation
which relates couples of different set of the states (with the same total angular momentum j and

projection m). If we denote by U this transformation, the Wigner 6j symbols { ;1 ‘7] 2 ;.12 } is
3 23

32



defined by means of one of the following relations:

(1d2(J12)g3im|j2ds (Jez)jri'm') = 0;5: 8mm U (j17273; J12j23) =

§iin b i (—=1)1Hi2is i /(2510 + 1)(2723 + 1 {-71 j? 9:12 :
37 mm( ) \/( J12 )( J23 ) j3  j  Jo3

(j142(f12)d35m|irds (G13)d1d' m") = 8jj0 Sy (—1)IHI1=T12=03T () o js; jaag13) =

5jj'5mm'("1)j12+j2+j3+j13\/(2j12+1)(2j13+1){ ;2 .7]1 ;12 };
3 13

(j27a(j23)daim|i1ds (d13)d1d'm') = 6} 6mm (—=1)72 37328 U (1 o J3; jasjas) =

§in b (1) i+ /(B T 1) (2 7 1) 4 1L 93 I8
Jd mm( ) \/( J23 )( J13 ) jo  j jos

According to its definition, the 6j symbol may be also written in terms of Clebsch-Gordan coeffi-

cients, namely

Z ij Cj1zm12 Cj'm' szamza —

Jizmazjama T Jimijama T jimijazmes T jamajams

5jj'5mm'(—*1)j1+j2+j3+j\/(2j12+1)(2j23+1){ ;1 .7j2 ;12 }
3 23

Here the sum is over my,ms, M3, M12,Ma3 while m and m' are keeped fixed. According to the
convention on the Clebsh-Gordan coefficients the 6j symbols turns out to be real. All momenta
are integer or half integer nonnegative numbers and each triad (jiJj2j12), (J12437), (j243J23), and
(j23j17) must satisfy the triangular conditions. The unitarity of the recoupling transformations

implies the orthogonality and normalization conditions of the 6j symbols, which read

) . 1 J2 Jiz J1 J2 Ji2
. (2919 + 1)(2423 + 1 . A . A =0, i
2jia (212 + 1) (225 1) { js 7 Jes }{ ja § ks } 72373

. . B oJ2 g2 J1 J2 Jis
. (2712 + 1)(2j23 + 1 A AR = 0,54
D iag (2712 + 1)(223 ){ Gs 7 das } { i 7 o } 124
The 6j symbols is invariant under any permutation of its columns or under interchange of the

upper and lower arguments in each of any two columns. We collect now in an uniform notation

some of the most important identities and conditions involving products of 6j symbols. Notice

first that we have trivially:

Z(2z+1){ Z Z ‘Z }——:(-—1)2°{abc} (3.1)

33



where {a,b,c} is the triangular delta. Orthogonality condition:

;(2:5-1-1){(; 3 z}{i Z Z}zépq%bf’i}-; (3.2)

Racah identity:

_\ptate a b z a bz _[ac qgl}.
Ew:( 1) (2m+1){cdp}{dc q}—{b dp}, (3.3)
Biedenhar-Elliot identity:
_1\at+bretdtet fHptatrte a bz a b =z e [z | _
(-1 pqr(2z+1){cdp}{efq}{bar =
(3.4)

{vealts

o
o 3
—

3.4 3nj-symbols.

When dealing with coupling schemes of (n + 1) angular momenta of SU(2) to give a fixed total
angular momentum, we should consider several possibilities which can be worked out by general-
izing the procedure outlined in the previous section. For a fixed n, the unitary transformations
between two of the coupling schemes can be uniquely associated with recoupling coeflicients, the
so called 3nj-symbols. As n grows, more and more different 3nj symbol can be defined, owing to
the plenty of parings among the couplings. For instance, while we have just one 9 symbol (type
IT), we find two types of 12j symbols (I and II), five types of 15j symbols, and so on. As a matter
of fact, we can write down in a simple closed form the expressions defining the 3nj symbols of
type II in terms of a single sum over a j variable of the product of n 6j symbols. On adopting the
convention of [47] (although a more complete account on the subject can be found in [48]), the
3nj symbols of type II turns out to be defined trough the relation:

ai az Tt an

by by br :}:z(—1)5+n»'<(2z+1){2 212 bzl}x

@ €2 o Cn (3.5)

v as C2 z . anp Cp z
cz3 a3 by e a1 b [’
where S denotes the sum of all the 3n arguments.

Notice that such kind of notation put all j variables, namely the (n + 1) original ones and the
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intermediate ones, on the same foot. On the other hand, as will be clear when we shall deal with
state sums from the recoupling of angular momenta, we need an expression of the 3nj in terms of

a sum over all magnetic quantum numbers of 2n Wigner symbols. Such an expression reads:

. — _ z m; bl ai bZ b2 asg b3 L
[ah o a2n] ZA” m( 1) My, Mgy Mp, —Mpy Mgy  Mpy

ban—1  G2n-1  ban ban a2n b
Mbop_y  Magn_1  Mhy, —Mby, May, —Mp

with the identification a,, sz =0 . /575 and the constraint n = (b — 1)(b + 2)/2
== —m m—5———(m+2)

(3.6)

for generic b. We are non able to specify in general which type of symbol the above relation

corresponds to, at least for n > 5 (indeed, in the case n = 5 it is the 15j symbol of type II).

3.5 The graphical method.

The analitycal relations that will appear in this thesis involve several summations of products of
many elements (basically, recoupling coeflicients and/or more complicated combinations of sym-
bols), so that the representation of such expressions in a diagrammatic form greatly facilitates
their general analysis. Generally speaking, a graphical representation is more compact and clear
and reduces drastically the calculations. The starting point of any graphical method consists in
establishing a one to one correspondence between the elements of a diagram and the constituents
of the analytic expression, namely any expression inherent in the theory must be represented by
a definite diagram, and viceversa. Moreover, a transformation of the expression under some ana-
lytical operations must correspond to a definite sequence of operations on the associated diagram.
As a first illustration of the graphical method we adopt (which is borrowed from [47]), we show a
list of diagrams corresponding to some of the quantities introduced above in Figures (3.1),(3.2),
(3.3).

As general remark, note that expressions which occur in calculations based on the quantum
theory of angular momentum may essentially contain spin variables of two kinds, namely external
and internal ones. In particular:
i)External variables are actual arguments of the expression under consideration. The evaluation

of the given expression does not involve any integration or summation over these variables: they
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Fig. 3.1: Graphical representation of vector states and rotation operators.

are fixed parameters.

ii)Internal variables are those with respect to which either integration or summation has to be
performed (in a given expression). Thus each internal variable which enters an expression corre-
sponds in fact to some scalar product ) (3| between suitable 1. This is why one does not need to
take into account any transformation of internal variable under rotation of the coordinate system.
The product (direct product) of factors M and NV is represented graphically by two unlinked
subdiagrams (blocks) which correspond to the factors. The mutual disposition and orientation of
these subdiagrams are inessential.

The scalar product of two irreducible tensor of rank j, Mjm and Njn, ie. the following sum of

bilinear combinations over all possible values of the projection m
J
> (1Mgm)(Gm|N|) 3.7)
m=—j
is represented by the conjunction (closure) of the lines |jm) and (jm| or of other subdiagrams

corresponding to (-|M|jm) and (jm|M|-) as shown in Fig. 3.4.

A thick j-line linking two subdiagrams as shown in Fig. 3.5 represents the sum both over j and
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Fig. 3.2: Graphical representations of Clebsh-Gordan and 3jm symbols.
m of scalar products of irreducible tensor of rank 7, namely:

oo J
D25 +1) > (IM|jm)(Gm|N]). (38)
j=0

m==j
If we are not interested in the structure of the inner part of a given diagram, it may be replaced by a
block with the same external lines, simply because the external lines determine the transformation
properties of the diagram (or subdiagram) under rotations of the coordinate system. For instance,
any closed diagram without external lines is invariant under such rotations, and turns out be
reduced to some of the 3nj symbols or their combinations.
The length of the lines, their curvature and orientation are not important. Consequently, any
diagram may be afbitrarily rotated and deformed. Two diagrams will be called topologically
similar 1f it is possible to make them coincident by means of rotations, deformations and reflections.
Topologically similar diagrams have the same number of nodes and lines (solid and dashed), but
they ma;r differ by directions of lines and by node signs. The expressions corresponding to two
topological similar diagrams are equal in absolute value, but may differ by a phase factor. So if
we are interested only of the absolute value or if we have sum over all variable, we may discard

orientations and node signs.
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Fig. 3.3: Graphical representations of some invariant functions.

SoiMmER N | = | ML N

m

Fig. 3.4: Graphical representation of the relation (3.7).

Now we give the graphical rules for the multiplication of subdiagrams, namely for linking the
subdiagrams (blocks) into a connected diagram.

a) Two subdiagrams representing factors M and N, both with at least one identical j-line, may
be linked together into the combined diagram which displays the product of this factors as shown
in Fig. 3.6. The necessary condition for such a linking is that at least one of this subdiagrams
must have no external line. The above graphical rule is equivalent to the relation

<Z(jmiMljm)> X (Z(jm’|N|jm'>> = (25 +1) Y (jm|M|jm)(Gm'|N|jm).  (3.9)

m m’' mm’

M —1—N

Fig. 3.5: Graphical representation of the relation (3.8)
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Fig. 3.6: Graphical representation of relation (3.9).

b) Two subdiagrams representing the factors M and N, both with at least one identical node,
three coupled j-line, say (j1,Jj2,73), may be linked into the combined diagram which corresponds

to the product of these factors as shown in Fig. 3.7. The corresponding analytical relation is:

j1 - ‘jl —

j - . -

M — = M - JZ N N
j3 'j3

Fig. 3.7: Graphical representation of the relation (3.10).

L i J2 Js
{Emlmzmg(00|M|Jlm1jzm2]3m3) < my ms ma )] X

i J2 s o
(S (2 25 ) ot

(3.10)

= {j17278} X mymams (001 M |j1m1 jamajzms) (jimi jamajzms | M]-)
A summation over an angular momentum variable j and its projection m may be easily performed
by the diagrammatic technique, if this thick j-line connects two identical nodes.
Any thick j-line which connects identical pair of j line, may be removed provided the ends of the

thin lines with equal momenta are linked together. An example is displayed in Fig. 3.8. Such a

Fig. 3.8: Graphical representation of the relation (3.11).
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graphical operation does not change the content of the diagram and corresponds to the identity
3 (@) + Diraim|MLjrjagm) = Y (imajama| M|jimajamo), (3.11)
jm mimz

where ) . T
(imaijama| M|jimy jsms) =

=@+ (2T G gmingagmy (B
gm mi my m . 172 my my m )’
When a common thick j-line is included into two or more unlinked subdiagrams, one should
preliminary link together these subdiagrams with the aid of the rules of subdiagrams multiplication
in order to get just one thick j-line. Only after this operation one can go on with graphical

summation over j and m according to the rule said before. An example of this combined graphical

operation is displayed in Fig. 3.9, which represents the relation

4

N N

Fig. 3.9: Graphical representation of the relation (3.12).

Sy arag a2 + D) {rda; IM|M|jaja; TM)(jaja; JM'|N |jsje; JM')-

'<j5j6; JMI’|£|j1j2; JM”) =

=3 mymgms 1Mj2mel M|jsmajama)- (3.12)

M4 M5M6

(jamajama|N|jsmsjems) (jsmsjeme|L]j1majama).
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Chapter 4

Invariants of closed M¢ from
colorings of (d — 1)-simplices.

In this Chapter we deal with state sums built up from SU(2) colorings of the (d-1) dimensional
skeleton of a triangulation T¢ — M? of a closed PL-manifold M¢. A direct inspection of the
properties of such class of state sums under bistellar moves (recall their definitions given in Chapter
2) provide us with both a classical SU(2) invariant Z,[M9] and a quantum Z,[M%(q). These
invariant are related to the Euler character of M9, and moreover they correspond in the continuum
approach to a well known class of topological quantum field theories (TQFTs), as discussed in
Section 4.3. Although the meaning of these invariants is obvious, the procedure given here turns
out to give the basis starting point in view of the definition of the new invariants presented in the

next two chapters.

4.1 Definition of the invariant Z,[M4].

According to the remarks at the end of the Chapter 2, associated with each (d — 1)-simplex ¢¢~?

of a closed triangulation 7¢ we have an edge of the dual lattice; in other words, there exists a
one to one correspondence between the structure of the (d — 1)-skeleton of the triangulation and
the structure of the 1-skeleton of the dual complex. Thus we get a graph I', the vertices of which
are 3-valent in d = 2, 4-valent in d = 3 and d + 1 valent in d dimension. We can define a map
$ : 0% 1 — SU(2), called a coloring, in such a way that each c9~! € T'%, or each edge of the

1-skeleton, turns out to be associated with a representation labelled by j. As we shall see in a
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moment, we can assign in a consistent way a D{nu (R), R € SU(2), to each edge incident on the
vertices of such a graph. In this framework the role of the magnetic quantum numbers m, p is
made manifest by introducing the fat graph associated with each one of the former graphs: any
edge actually acquires two sets of SU(2)-colorings, namely { 4,m} and {7, u}.

Thus consistent SU (2)-colorings on I' generated by the fat graph are achieved if we consider

the assignments

{i}mp) — T T4, (4.1)

where T is the dual complex associated with 7.
The next step consists in performing an integral over the R-variables of the product of the
D-functions associated with the legs of the graph incident on each vertex. According to this

prescription, we can now define the following limit of admissible sums of configurations

a1 1 (1) y
Zy[M?] = limpeo Z{ Tfi({j};m,ﬂ) }wL

{i},mup<L [
Hallad‘l (_l)gj”d—l (2jga-1 + 1) (f Had—-lcad D-Z?glivl (R)dR) ’

o9

(4.2)

where U = 2(Nog — Ny + ... + (=1)4"2Ny_5), (No, N1, Na,...) are the numbers of (0,1,2,...)-
simplices in T'?¢ respectively, the range of variation of each m, u with respect to its {7} is the
usual one and the identifications over the magnetic numbers acts as glueing operations among
d-simplices.

The factor wy = =25 . (272 + 1)(2j3 + 1) is included to regularize the
2j1+1 g

J2J3
with {j1, 2,3}
expression of the state sum. The presence of a pair of magnetic numbers for each j variable which
appears tell us that we will get a double 3jm symbol after integration, namely a product of two
3jm’s Wiﬂ‘i the same {j} but different m and p, for each elementary configuration of the dual
graph (cfr: the integral expression given at the end of Section 2.1 in [47]). The formal calculations
can be easily translated in the diagrammatic language as shown in Fig. 4.1 for the cases d = 2, 3.

By collecting the terms generated by all vertices, we would get a products of double 3jm

symbols. This is achieved by exploiting the relationships between integrals of products of several
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d=2

A Xk

Fig. 4.1: The graph representing the l-skeleton of the dual lattice of each 2 and 3 dimensional
simplex, with a D function associated with each edge, and the derived elementary diagrams
occurring in Zi and Zi in terms of 3jm symbols.

D-functions and suitable combinations of Wigner symbols: this amounts to recognize that the

product under integration in (4.2) can be transformed into

d-3 . WMt [ T2 & J1 Jjs o Ja
Z{J} Hk:l(”l)z] (2Jk +1) EM,V( 1) + ( Ml ) * ( _Ml M2 ) )

my Mo ms

i J2 4 ) ( Ji s Ja )( Jica  Ja—2  Ju-z )|
p1 p2 U1 -V p3 Vo —Mg_a mg_a My_3

Ja—3 Ja-1  Ja ) ( Ji—s  Ja—2 Ja-3 ) ( Ja—3  jJa—1  Jd

-Mg_z mg_1 Mg —Vg-4 fd-2 Vi—3 —Vi-3 Hd-1 Hd

Here, besides the colorings {j}, there appears the set {J}, where a J variables is assumed to

(4.3)

be associated with an internal glueing between the two portions of a double symbol; moreover,
we denoted by M, v the pair of magnetic numbers associated with each J and by m, p those
associated with each j, respectively.

The diagrammatic counterpart of the procedure described above is shown in Fig. 4.2, where for
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d-3
d-2

I
I

(a) (b)
Fig. 4.2: The graph representing the 1-skeleton of the dual lattice of each d dimensional simplex,
with a D function associated to each edge, and the derived elementary diagrams occurring in Z)‘f
in terms of 3jm symbols.
simplicity just one of the possible coupling schemes is considered (the other ones giving equivalent
analytical expressions). The invariant can be rewritten as

. _1y(d—1)
ZM¥ =m0 iy, (Thymo) \ Y
{ alljm<L }

my; Mo Ml ms

v J2 & ( Ji gz ) ( Jica  ja—2  Ja-3z .
P H2 N1 -1 3 V2 -Mg_y mg_2 Mg-s
Ja—z  Ji-1  Ja ( Ja—s  Ja—2  Ja-3 Ji—3  ji-1  Ja
-Mg_3 mg_1 M4 —Vdg—4 fd—2 Vdi-3 —Vg—3 Pd-1 MPd )

Let us focus our attention on the topological content of (4.4). If we agree that each double

2qn T3 (-1 (20, +1)(—1)ZM+Z”< i g2 ) ( _‘./]\1/11 js J\{tzz >

(4.4)

3jm symbol must be associated with an Euclidean triangle, than the collection of symbols given
above for a given triangulation 7¢ — M ¢ turns out to be associated (through the sum over those

magnetic number which represent the glueings along edges of contiguous triangles) with a closed
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surface S. This triangulated 2-manifold is generated by the integration of the quantities arising
from the colorings of the graph T' (cfr. (4.2)); namely S is spanned by the 1-skeleton of the dual
complex of the original triangulation T¢ by adding discs along the loops of the graph. Thus,
by reminding that the 1-skeleton of the dual complex give ué information on the combinatorial
structure of the (d — 1)-skéleton of T?, we easily see that the surface S must share the same
combinatorial properties of the collection of d simplices in 7% with respect the glueings along
their common (d — 1)-simplices. From this remark it should be clear that the case d = 2 is quite
peculiar, since the surface S associated with a given T2 — M? is nothing but 72 itself (and indeed
in the next section we shall recover the same expression given in (4.4) in a more straightforward
way). Then if we are able to prove the invariance of (4.4) under the set of bistellar moves in the
2-dimensional case, all we have to do is just to generalize the result to any surface S generated by

a T through the procedure explained above.
4.2 Z,[M? and its invariance.

Following [13] the state sum for a 2-dimensional triangulation of a closed PL-manifold M?

T2(j;m,m') — M? (4.5)
can be consistently defined if we require that

e each 2-simplex o? € T2 is associated with the following product of two Wigner symbols (a

double 3jm symbol for short)

i i !
mi Mg —M3 my Mgy —Mg

o2 s (_1)25___1(ms+m3)/2 ( Ji o J2 J3 ) ( i J2 J3 ) ) (4.6)
where {ms} and {m}} are two different sets of momentum projections associated with the same

angular momentum variables {js}, —7 < ms,m} < j Vs =1,2,3. The expression of the state sum

proposed in [13] reads

Z[T?(j;m,m') - M* L] =
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N
= wp™ [ (24 + D(=D)PA(-1) ™4™

A=1
No . . . . .
(22 =) (B n ), (47)
Bl 1 2 3 /B ml‘ My m3 /g

where Ny, Ni, N, are the numbers of vertices, edges and triangles in 7', respectively. Summing

over all of the admissible assignments of {j;m,m'} we get

27— 1 205, 1 2.

Z[M?) = lim > Z[T?(j;m.m') — M?; L], (4.8)
{T2(Gim,m’),j <L}

where the regularization is carried out according to the usual prescription.

The invariance of (4.8) is ensured as far as the bistellar moves in d = 2 can be implemented. One

of these move is expressed according to

22(2q+1><~1>2w—1>—“*“’(f; o __q,ﬁ)(,‘i 5 ’,;)-

'
q N’K

( 5’ ‘j' ’q’“' ) ( fg’ /?’ ;’ ) =Y Y e+ (-D* (-1~

¢ v
a b c r p ¢ a b c T p c
'<a57)<p¢—'y)<a’ g 7’)(;0’ Y —7’) (4.9)

and represents the so called flip, namely the bistellar move [2 — 2]Z,,, having taken into account
the notation introduced in (2.16) (refer to the bottom of Fig. 5.1 for the corresponding picture).

The identity corresponding to the remaining moves, namely [1 + 3]2,,, reads

ST (2g+1Er+1)2p+1) (—1)2et2r+2 3NN ()RR (-1

q,7.p K& p,p" Yy’

(=1)~Y ( p a g ) ( g b T > ( r c p ) ‘
Y a —kK k B —p p v —¥
,"DI o =k K ‘BI __pl p/ ,_yl '—’lp, -
a9 fa b ¢ a b c
= wy, ( a B v ) ( o B A ) (4.10)

and these moves are depicted on the bottoms of Fig. 5.2 and Fig 5.3.

46



As a matter of fact, the state sum given in (4.7) and (4.8) is formally invariant under (a finite
number of) topological operations represented by (4.9) and (4.10). Thus, from Pachner’s theorem
proved in [14], we conclude that it is a (PL) topological invariant. Its expression the can be
easily evaluated also in the g-case (see Appendix 8.1 for the nbtation), providing us with a finite

quantum invariant given by

Z2(q) = Zy[M?)(q) = w? wy M) (4.11)

By

where x(M?) is the Euler characteristic of the manifold M? and w? = —2k/(q — ¢7%)2.

The detail of the above calculation are explained in Appendix 8.2.

Coming now to the invariance of Z,[M?] in (4.4), we could implement explicitly the bistellar
moves in dimension d by means of suitable identities containing sums of products of 3jm double
symbols, and such identities could be written down simply generalizing the fundamental relations
given above in the 2-dimensional case. For what concerns the explicit calculation of Z,[M9] we
notice first that the auxiliary surface S assodated with each 7% is built up by assembling (d — 2)
triangles for each o € T¢, joined together through (d — 2) edges. Denoting by N7 and N5 the
numbers of edges and triangles in S, respectively, the contribution from the factors in in (4.3)

(after summation over j variables) amounts to w%wi(le ~N2) Since NZ = (Ng—1+(d—2)Ng)(T9)

and N = (d — 1)N4(T%), for each finite value of L we obtain Z4MY wi[H(‘l)(d—l)X(Md)
(the quantum version given by substituting wy, with w,). x[M?] is the Euler characteristic of the

PL-manifold M¢ and in the odd dimensional case we have x = 0, so that the invariant is trivially

equal to w?.
4.3 The TQFT associated with Z,[M4].

A particulair type of Topological Quantum Field Theory, connected to the Euler character (see
[28]), turns!'out to be associated with the PL invariant model introduced in the previous sections.
In this section we give a brief review on this subject.

We recall tilat the Euler character for a d dimensional compact manifold M without boundary

can be defined also as (M) = Zfzo(—l)ibi(M ), where b; is the 7th Betti number of the manifold,
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namely the dimension of the ith cohomology group. By Poincare-Hodge duality b; = bg—;, and
the Hodge theorem equates the dimension of H {(M, R) to the number of independent forms of
degree i on the Riemannian manifold (M, g). Witten noticed that one may profitably generalize
the construction of the de Rham cohomology. Let ds be defined as d, = exp~*V d(exp®"), where
d is the usual exterior derivative and where V : M — R is a Morse function on the manifold,
namely V has only isolated critical points and these must be non-degenerate (det(V") # 0 at these
points). The adjoint is defined similarly as d = exp®” d*(exp™*"). Both ds and dj are nilpotent.
The cohomology groups defined by d, are isomorphic to the de Rham groups and we denote them
by H(s). The Laplacian in this case is A, = (d; +d})?. To express it in a compact explicit form,
we introduce creation and annihilation operators a*!, a® at each point p of M. These operators
satisfy the algebra {a?,a*} = g% where g*/ is the metric, and they have the following geometric
interpretation. The a’(p) may be thought of as forming an orthonormal basis of tangent vectors
at the point p. Being operators, they act on the exterior algebra at p by interior multiplication.
The a*i(p) are the adjoint counterparts, acting by exterior multiplication by the one-form dual to

a’(p). In this basis we have
do = a8 /04!, d*a = —a'da/d¢" + Tijra‘aa*a

where I';;;, are the connection coefficients associated with g* and ¢° the local chart about p. With

this notation we obtain

ov ov , D
8¢ 043 ' DFDH

Ay = A+ 5294

[a**, d],

were D represents the covariant derivative with respect the metric g and A is the standard
Laplacian. The Euler character may now be expressed as
d
X(M) = (-1)'bi(s)
=0
where b;(s) are the Betti numbers of the chomology groups H;(s). Thus, it makes sense to rewrite

the above quantity once more as

X(M) = Tra[(~1)F]
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where the trace is restricted over the harmonic modes of Ag; (—1)F gives +1 on even forms and
—1 on odd forms, and commutes with the Laplacian.

To put the trace in a more useful form, one would like to relax the restriction that it is taken
only over harmonic modes; on the other hand, we would liké to extend the trace to be over all
eigenvalues of the Laplacian. This is possible as far as the non zero modes are paired with opposite
eigenvalues of (—1)¥. But this is exactly what happens. The trace may now be extended over
the complete spectrum of the Laplacian as the eigenvectors of positive and negative eigenvalue of
(=1)¥ cancel between each other. A term that allows the cutting out of large modes is offered by
the exponential damping factor exp~P2s, for B > 0. The final form for the Euler character as a

trace over differential forms is
x(M) = Tr[(—1)F exp=P4<]. (4.12)

Now, thinking of A as a Hamiltonian, say H,, we may give a path integral representation for this

trace by setting
x(M) = Tr[(—l)F exp"ﬁA*] = /exp_s. (4.13)
@

where, owing to the presence of (—1)F in the trace, the boundary condition are periodic for all

fields and the action is the action of supersymmetric quantum mechanics which reads
S = [ drli(% + s (¢) 2% B; + 399 (¢) BB,
(4.14)
L Rygrapiph it — it (03 £ + g% (9) 25 )0

Here ¢* are coordinates on the Riemannian manifold (M, g), Rijx is the curvature tensor, %' and
W are the Grassmann odd coordinates of the particle, V is a function on M and s a parameter.
We choose the spinor to be real. § is incorporated on the right hand side as a circumference of
the time?circle. The trace does not depend on the parameter 8: this can be seen from the path
integral point of view using the argument that the variation with respect to 8 gives, on the right

hand side of (4.14), the expectation value of Q-exact term, with @ the supersymmetry generator,

and hence vanishes.
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Chapter 5

Invariants of (M% 0M%) induced by
A
X.

In this chapter we construct new combinatorial invariants of the pairs (M?,0M¢9) starting from
the information carried by the boundary manifold, where we assume that the invariant Zg“l is
given. We begin by analyzing the d = 3,4 cases that represent generalizations in the presence of
boundaries of the models by Ponzano and Regge and by Turaev and Viro [2] [3] in d = 3 and by
Crane-Yetter-Ooguri [15] [6] in d = 4, respectively. These two cases are interesting by themselves
since all the calculation can be done analytically, although in d = 4 we employ also the graphical
method (which in turns is extensively used in dimension d). The key point in our discussion is
that, starting from the expression of Z)‘f‘l and considering the state sum for a simplicial sphere
§4-1 = 9o we get in fact a sort of square of the symbol to be associated with o4 € T, where
(T?,8T?) is a triangulation of for the pair (M?,8M%). In other words the contribution to the
invariant due to o?, Z[o?, %71, is equal to Z,[S%!]. This means, equivalently, that a “square
root” of the symbol associate with 04~ € T¢~! = 9T'¢ in the definition of Z,, is the fundamental

block to built up the symbol associated with ¢ in the definition of Z[(M¢, oM 4)].

5.1 The invariant Z[(M3,0M3)].

The Ponzano-Regge partition function [2] for a closed manifold M3 can be written simply as

ZprIM®] = lim > Z[T(j) = M3 L], (5.1)
{T3(4),5<L}
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where the sum is extended to all assignments of SU(2) spin variables such that each of them is

not greater than the cut—off L, and each term under the sum is given by

M Ns .
. 7T — ~No _1\254 (95 1\ ogende | J1 J2 I3
Z[T3(j) = M? L} = A(L) AI=I1( ™4 (274 +1)’BIJ1( 1) ! { i s e }B- (5.2)

Ny is the number on vertices in the triangulation. Notice that there appears a factor A(L)™! for
each vertex in 87°(j', m), with A(L) = 4L3/3C, C an arbitrary constant.

As is well known, the above state sum gives the semiclassical partition function of Euclidean
3-gravity with an action discretized according to Regge’s prescription [1]. Moreover, it is formally
invariant under any finite set of bistellar moves performed on 3-simplices in T3(j) (cfr. [14]
and Chapter 2). It is a classical result (see e.g. [2] and [7]) that such moves can be expressed
algebraically in terms of the Biedenharn-Elliott identity given in (3.4) (representing the moves (2
tetrahedra) > (3 tetrahedra)) and of both the B-E identity and the orthogonality conditions for
65 symbols given in (3.2), which represent the barycentic move together with its inverse, namely
(1 tetrahedron) <+ (4 tetrahedra).

Thus, owing to the theérem by Pacner given in [14], the state sum (5.1) is formally an invariant
of the PL-structure of M? (the regularized counterpart being the Turaev-Viro invariant found in
13).

Following [12] and [13], the connection between a recoupling scheme of SU(2) angular mo-
menta and the combinatorial structure of a compact, 3-dimensional simplicial pair (M?3,0M?)
can be established by considering colored triangulations which allow us to specialize the map (2.8)

according to

(T3(5),0T°(5',m)) — (M, 8M°). (5.3)

This map represents a triangulation associated with an admissible assignment of both spin vari-
ables to the collection of the edges ((d — 2)-simplices) in (7%, 87?)) and of momentum projections
to the subset of edges lying in 7. The collective variable j = {ja}, 4 = 1,2,..., N1, denotes

all the spin variables, n} of which are associated with the edges in the boundary (for each A:
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ja = 0,1/2,1,3/2,... in h units). Notice that the last subset is labelled both by j' = {jz},
C =1,2,...,n,, and by m = {m¢}, where mc is the projection of j; along the fixed reference
axis (of course, for each m, —j < m < j in integer steps). The consistency in the assignment of

the j, j', m variables is ensured if we require that

e cach 3-simplex 0%, (B =1,2,...,N3), in (T, 8T*) must be associated, apart from a phase

factor, with a 6§ symbol of SU(2), namely

. L
oh o (~1)Zrmt { g 9.3} - .
B (-1) Ja Js Js J g’ (5.4)
e cach 2-simplex 03, D = 1,2,...,n5 in 8T° must be associated with a Wigner 3jm symbol
of SU(2) according to
o2 sy (_1)(23:_1 my/2( J1 Js Js (5.5)
D mi1 My —M3 D ’ )

Then the following state sum can be defined

Zpp = Zprl(M?,0M°)] =

= lim > ZI(T3(5), 8T (', m)) — (M®,0M®); L], (5.6)

L—oo
(T®,07%)
43 m <L
where

ZUTR (), 0T (', m)) — (M3, 0M%); I] =
: Ny N3

8 . . . .
= A(L)™ Mo —1)%74 (254 +1 -1 Zp=1]”{]-l J2 s } .
( ) El( ) ( o ) _;_:[1( ) J4 Js J6 B
n’2 3 i ! ]
) _1) Qe me) /2 ( o J2 I3 _
|JEGR)) my ma <ms ) (5.7)

D=1
N, Ny, Nj denote respectively the total number of vertices, edges and tetrahedra in (T3(j),0T3(5',m)),

while n), is the number of 2-simplices lying in aT3(5',m).

52



We may notice that if we consider a PL ball represented the pair (0%, 80°) we would obtain exactly
the square of one 6j symbol in the previous state sum. This would be the same value associated
with a simplicial 2-sphere in the invariant Zi.

Having to do with simplicial pair, we must now implement algébraically the elementary boundary
operations in d = 3 (see [11] and the example in chapter 2). In [12] identities representing the
three types of elementary shellings (and their inverse moves) for the 3-dimensional triangulations
given in (5.3) were established.

The first identity represents, according to (2.17), the move [2 — 2]3,. The topological content of

this identity is drawn on the top of Fig. 5.1, while its formal expression reads

=3
Shelling
B
=2 _
Bistellar
P

Fig. 5.1: Shelling [2 — 2]%, and the corresponding bistellar [2 — 2]2,,.
g sh bst
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\;(2(:+1)(—1)2°—7<Z Z fy)(fy ;, Z)(—m{?‘f 2 ;}=
= (-1)” "”Z( 1)““(¢ . _‘i)(z /I; _’”p,), (5.8)

where Latin letters a, b, ¢, 7, p, ¢ denote angular momentum variables, Greek letters «, 8,7, p, ¥, &
are the corresponding momentum projections and @ =a+b+c+r+p-+g.

Notice that here we agree that all j variables appearing in 3jm symbols are associated with edges
lying in 8T in a given configuration, while j arguments of the 6; may belong either to 8T (if
they have a counterpart in the nearby 3jm) or to int(T?).

The other identities can be actually derived (up to suitable regularization factors) from (5.8) and
from both the orthogonality conditions for the 6; symbols and the completeness conditions for
the 3jm symbols (cfr. Chapter 3). In particular, the shelling [1 — 3]3, is sketched on the top of

Fig. 5.2 and the corresponding identity is given by

d=3 Shelling
/

Bistellar

Fig. 5.2: Shelling [1 — 3]3, and the corresponding bistellar [1 — 3]Z_,.
g sh bst
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Finally, the shelling [3 — 1], is depicted on the top of Fig. 5.3 and the associated identity reads

d=3
Shelling

e
d=2
Bistellar
—

Fig. 5.3: Shelling [3 — 1]2, and the corresponding bistellar [3 — 1]2.,.
sh bst

’
(5 % 0) (s o n)e{sscln=(22)

where A(L) is defined as in (5.7).

AL) ™YY ot g (1) 7F P (= 1)20H 00 (9 4 1) (21 + 1)(2q+1)( N _fp, 7 ) :

(5.10)

Notice that in each of the above identities we can read also the corresponding inverse shelling,
namely the operation consisting in the attachment of a 3-simplex to suitable component(s) in 87°2,

simply by exchanging the role of internal and external labellings.
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Comparing the above identities representing the elementary shellings and their inverse moves
with the expression given in (5.7), we see that the state sum Zpg [(M?3,0M?)] in (5.6) is formally
invariant both under (a finite number of) bistellar moves in the interior of M?, and under (a finite
number of) elementary boundary operations. Following now [11] we are able to conclude that
(5.6) is indeed an invariant of the PL-structure (as well as a topological invariant, since we are

dealing with 3-dimensional P L-manifolds).
5.2 The invariant Z[(M*, 0M*)].

In this section we revise first the results found in [15] (see also [6] and [49]) concerning the g-
invariant Zoy[M*](q) for a closed PL-manifold M*. However, for the sake of simplicity, we limit
ourselves to a detailed analysis of the (¢ = 1) case, and moreover we write down the expression of
the resulting Zoy [M*] = Zoy[M*](q)|q=1 in terms of the 3jm symbols appearing in the definition
of the SU(2) 155 symbol of the second type (cfr Section 3.4). This last step turns out to be crucial
in order to define the new invariant Zoy[(M*,0M*)] for a PL-pair (M*,0M*).

Thus, consider a multi—colored triangulation of a given closed PL-manifold M 4 denoting it by

the map

T*(jo2, Jos) — M, (5.11)

where j,2 is an SU(2)-coloring on the 2-dimensional simplices o2 in T* and J,s is an SU(2)-
coloring on tetrahedra ¢® C o* € T* (recall that an ordering on the vertices of each 4-simplex ot
has to be chosen; however, the final expression of the state sum turns out to be independent of
this choice)‘. The consistency in the assignment of the {j, J} spin variables is ensured for a fixed

ordering if we require that

e each 3-simplex 0%, C 0* (a=1,2,...,N3, N3 being the number of 3-simplices in T*) must

be associated, apart from a phase factor, with a product of two 3jm symbols, namely

my Mz Mg m3 Mg —Mg

JERN ( i G2 Ja )( ja g Ja >; (5.12)
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e each 4-simplex o* € T* must be associated, apart from a phase factor, with a summation of
the product of ten suitable 3jm symbols (cfr. (3.6) and also below for its explicit expression),

giving rise to a 15j symbol of the second type which we represent for short as

04 > [Janb7J07JdaJe]047 (513)
where Jg,. .., J. are labellings assigned to the five tetrahedra o,,...,0. C ot.

Then we can define the following state sum

Z[T4(j027 0'3) = M41L] =

—A@M M ] (0% @ +1) [[ (~D¥ @70 +1)

o2eT4 ol3eT4

. ]:[ [Ja:JMJc,Jd)Je]a"*: (514)

gteT?

where Ny, N; are the number of vertices and edges in T*, respectively. The 15§ symbol associated

with each 4-simplex is given explicitly by

[Jay Jb, Je, Ja, Je]v‘* = {15j}d4(']) =
:Z(__l)zm < i J2 Ja > ( Jjs  Js Ja ) ( Js Je Jb )
— myp M2 My m3 Mg —Mg ms Mg Ty
N Js Js Je i Jo e )
—-m3 MMy —My —Ms Mg M, —my Mg =M,
| Je o Ja ) ( J2 I8 Ja jr Jw Je )
—meg Mig —MM4d —m2 —Mmg —M4g —mr —Mip —Me

( jaoode e ) (5.15)

—My4 —Mg —Me
where the sufrlmation is extended to all admissible values of the m variables, and the planar
diagram corresponding to the symbol is sketched in Fig. 5.4.

It can be shown (see [15], [19]) that the expression
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Fig. 5.4: Diagrammatic representation of the 15j symbol.

Zoy[M*] = Jim > Z[T (g2, Jps) = M*; L] (5.16)

—00
T*(j,J)
5J <L
is formally a PL-invariant, and that its value is given by A(L)X(M4)/ 2K "(‘7\’[4), where x(M*),
o(M*) are the Euler characteristic and the signature of M* respectively, and K is a constant.
Following [39] the former state sum can be generalized to the case of a compact 4-dimensional

P L-pair by considering the map

(T4(j02 ) Jgs), 8T4(j;2; Jé—ii 1 Mg2, maa)) — (M4’ 8M4)7 (517)

where {j,2,J,3} denotes the entire set of spin variables, ranging from 1 to N, and from 1 to N,
respectively. The subset {j/,J!s} C {jo2,Js} contains the colorings of the subsimplices in 6T*,
the corresponding magnetic numbers of which can be collectively denoted by m = {mg2,mgs}
since no confusion can arise. The assignment of the above variables turns out to be consistent if
we agree with the statements in (5.13)(for all o* € (T, 87%), taking into account the fact that
some of the J labels may become J' for those 4-simplices which have component(s) in 87*)and

with (5.12)(for 3-simplices in the interior of the triangulation). Moreover, we require that

e each 3-simplex 0, C ¢* lying in the boundary 87 must be associated, apart from a phase

factor, with the following product of 3jm symbols
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miy Mg Mg mg My —Mg

s -1 ! . ! !
0%y ( g e )( s g Je > (5.18)

With these premises, we consider now the following expression.

Z[(M*,0M*)] = lim > Z(T*(, J), 0T, J';m) — (M*,8M*);L),  (5.19)

L—o0
T4,0T*
JJym< L

where we have used a shorthand notation instead of (5.17), and where

ZU(T(5, J), 0T*(§", J',;m)] = (M*,0M*); L] =

= AN T (-1 (25,2 + 1) ] (-1 (250 +1) -

all o2 all a3
: /2 o g g
T e (1) T (X ( 2 o).
GH4 a3gT4 o Ma M
! ! Jl
( 7333 73;14 e ) (5.20)

We note that, if we consider the pair (o*,8c* = S%), the state sum given above amounts to the
square of one 15j symbol and the invariants Zy[S*] and Z4[(c%, 5%)] coincide.

As discussed in Chapter 2, for a PL-pair in dimension d there exist d different types of elementary
shellings (and d inverse shellings), parametrized by the number ng_; of faces in a boundary d-
simplex according to (2.17). Thus in the present case we are dealing with four different shellings,
ns = 1,2, 3,4 being the number of tetrahedra in OT* which are going to disappear (together with
the underlying 4-simplex), respectively. The diagrammatic representations of the moves 1—4]%,
2 — 3]‘3",1; [3 — 2]%,, [4 — 1]%, are displayed in Fig. 5.5, Fig. 5.6, Fig. 5.7, Fig. 5.8, respectively,
where we jha,ve made use of diagrammatical relations to handle products of 3jm symbols (see Fig.
5.9 and Fig. 5.10). For the sake of completeness, the identities corresponding to the four types of
elementary shellings in d = 4 are given explicitly in Appendix 8.3.

According to these remarks, Z[(M*,0M*)] in (5.19) turns out to be formally equivalent under

the action of a finite set of the above operations and their inverse moves and thus, owing to the
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Fig. 5.5: Diagrammatic representation of the move [1 — 4]3,.

\
~ ] |

Fig. 5.6: Diagrammatic representation of the move [2 — 3]%;.

I

theorem proved in [11], it defines an invariant of the PL-structure. Its g-deformed counterpart,
Z[(M*,8M*))(g), can be worked out according to the prescription given in Appendix 8.1 and
represents a well-defined quantum invariant.

We may notice also that, since (5.19) reduces to (5.16) when OM* = 0, Z[(M*,60M*)] must be
invariant under bistellar moves performed in int(T*) too. However, we will show in Chapter 6 that
the equivalence of our d-dimensional Z[(M¢9,8M%)] under elementary shellings implies (in a non

trivial way) the invariance under bistellar moves of the state sum induced by setting OM d=0.
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)
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Fig. 5.7: Diagrammatic representation of the move [3 — 2]%,.

)

Fig. 5.8: Diagrammatic representation of the move [4 — 1%,

5.3 Z%(M¢% 0M%)] and its equivalence under elementary bound-
ary operations.

According to the program outlined in steps 1),2) of the Introduction of the Thesis, we build up in
the following a state sum for a pair (T4, 9T%) induced by examining the expression of Z,[0M? =
M2, with Z,[M?'] given in (4.3) of Chapter 4. The second part of the present section will be
devoted to the proof that such a state sum is actually independent of the triangulation chosen,
and thus the invariant Z[(M9,60M?)] is well defined in any dimension d.

We learnt from the procedure followed in the previous Sections that once we give the double symbol

associated with the (d — 1)-simplex in a given closed T%1, we can recover the contribution from
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Fig. 5.10: Diagrammatical representation of the general relation involving the product of two
quantity containing products of many 3jm symbols, where M and M’ represent the rest of the
diagram leaved unchanged by the relation.

a single d-simplex in (T'¢,07¢ = T¢!) by taking first the squared root of the symbol itself. Then
the recoupling symbol to be associated with the d-dimensional fundamental block is obtained by
summing over the free m entries the product of (d + 1)-contributions from its faces, with suitable
7 labels. In Zf( and Zf; the double symbol, used like fundamental blocks to define the invariants,
looks like a square of some sub—symbol. Taking the squared root means that we pick up just one
of the sub-symbols (e.g. either the Wigner symbol with m entries in (4.6) or the product of two
Wigner symbols with m entries in the d = 3 case). By summing over all m entries the product of
four sub-symbols with suitable j labellings and phase factors in d = 3 we get the expression of the
67 symbol which ien‘ners Zpg[M?]. In turn, a summation over m variables of the product of five
sub-symbols with suitable j labellings and phase factors in d = 4 reproduces the 155 symbol which
represents the fundamental block in Zoy[M*] (see (5.15)). Notice also that the procedure works
with PL-pairs as well: we simply associate one of the former sub-symbol (with an m' coloring,

say) with each (d — 1)-simplex in 87
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The above remarks suggest how an algorithmic procedure for generating Z[(M?, OM?)] from
Zy[M3~1] could be actually established. To this end, we consider first the structure of the double
symbol associated with the fundamental block in (4.3), written for a closed triangulation 791,

The corresponding planar graph is shown in Fig. 5.11 (corﬁpare also Fig. 4.2): the diagram

3 s Jas  Jao .
J> Ja-1

: Iy 1 Jaa Jas Ja
J
Fig. 5.11: Diagram corresponding to the fundamental block occurring in the recoupling symbol
associated with the d-dimensional simplex.

includes d external legs, representing the faces of the (d — 1)-simplex, and (d — 3) internal edges,
the colorings of which are associated with the (d — 1)-simplex itself, as explained below. The
fundamental d-dimensional block which will enter the state sum is obtained by assembling (d+ 1)
simplices of dimension (d — 1) along their (d — 2)-dimensional faces. Such a procedure can be
described in some detail as follows. We first assign an overall ordering to the set of (d—1)-simplices
of o4, namely we introduce a = 1,2,...,d+ 1. Then we denote by j¢,j2,...,j¢ the j labels of
the external legs of the graph associated with the a-th (d — 1)-simplex ¢¢~! (the dimensionality

of such colored faces is (d — 2)). From a topological point of view, we are going to join a suitable

number of other colored (d — 1)-simplices along the faces of the chosen 9! according to the rule:
oined =42 0dinedt=4¢, .., 0l ot = J§-(i—1y> Where i =1,2,...,d~3. Thus

the above prescription implies the identifications j¢ = j5*, j¢ = 5571, 38 1) = 78%% among j

variables,';while the glueing has to be accomplished by summing over all free m entries. The cyclic
property éf the joining implies that the procedure is actually independent of the label a chosen
at the beginning. Moreover, by requiring that the unique ¢, which shares o2~ with ¢?, has
indeed the same graph associated with its own ¢4, but different magnetic numbers with respect

to the other one, we obtain the diagram shown in Fig. 5.12 (which, by the above remarks, turns
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Fig. 5.12: Diagram representing the 3nj symbols with its internal structure.

out to be generic). A closer inspection of its combinatorial structure shows that we get in fact a
{3(d — 2)(d + 1)/2}J symbol written in terms of (sums of) 3jm symbols as in (3.6).
Collecting all the previous remarks we are now able to build up a state sum for (T¢,074) on the

basis of the requirements listed below.

e For each ¢ € (T¢,0T91) we introduce:

i) an admissible set of colorings on each of its (d — 2)-faces, namely ji, j2, ..., jr, where the

value of the binomial coefficient
(d'z'“1> =F (5.21)
gives the number of (d — 2) subsimplices of a d-simplex;

ii) other sets of SU(2)-colorings associated with each of its (d — 1)-faces and denoted collec-
tively by {Ji, }, {Jia }s - - -» {Jius1 } (these sets are the counterparts of the five labels Jq, ..., Je

used in (5.13)). Then we set

PLAPEEN {g(d- 2)(d + 1)j} = [{Jn b {uh - {Jiasa } e (5.22)

gl
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e For each ¢9=! C 9T¢, denoting as usual by {j',J'} C {j,J} the subsets of spin variables
belonging to boundary components, and labelling as Ji, J3, ..., J; (C = d—3) the variables

associated with the internal legs of Fig. 5.11, we have the explicit correspondence

my my My
N A TR ]
-M; mz My Mgz mg_2 Mg_s
s g )
<"‘Md-3 Mg—1 Mg (5.23)

Here we agree that each m variable is associated with the corresponding j' on the upper

i1 (-——)Z(—l)zdc—:"\/tc ( jiod2 )
’ M

row, while an M entry is the magnetic number of the upper J', with the usual ranges of

variations in both cases.

Then we can define the following state sum

Z[(Td(ja'd"27 Jad“1)7 8Td(j(lyd—-2: J;-d-1 1M, M))] - (Md7 a]\/-[d)1L} =

d—-3
S wi—l)da H (_1)2j,,d_2 (2‘7'6‘1‘2 + 1) H (H(__l)ch (2JC +1)) B

all g@—2 all gd-1 \C=1
I {§(d—2)(d+1)j} @) ] Z(_l)meZM.
2 a
all o4 o cd=1gaTd M
i B a (s dia da
(ml my M —My_z mg1 mg )’ (5.24)

where 2 = 2(Ng— N1 +...+(=1)4"3Nga_3), (No, N1, Na, .. .) being the total number of (0, 1,2,...)-
dimensional simplices. Notice also that some of the recoupling coefficients associated with d-
simplices may depend also on J' variables, if they have components in aTe.

The limiting procedure for handling all state sums (5.24) for the given (M%,8M %) can be defined

as

Z[(M?,0M%)] =

= lim > ZI(T%(, J), 8T, J';m, M)) = (M%,0M%); L],  (5.25)

L—oco
T 8T
5, J <L
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where the ranges of the magnetic quantum numbers are |m| < j',|M| < J’' in integer steps, and
where suitable shorthand notations have been employed.

As anticipated before, we turn now to the basic question of the equivalence of Z[(M¢,0M%)]
in (5.25) under a suitable class of topological operations. In the present case we are going to
implement the set of elementary inverse shellings [ng—1 — d — (ng—1)], in (2.17), involving the
attachment of one d-simplex to 8T¢ along ng_; = 1,2,...,d simplices of dimension (d—1) glued
together in suitable configurations. The complementary set of the elementary shellings could be
singled out simply by exchanging internal and external labellings in a consistent way. It should be
clear from similar discussions on equivalence in Section 5.1, Section 5.2 and Appendix 8.3 that the
explicit expressions of the identities associated with the moves become more and more complicated
' as dimension grows. Thus, we limit ourselves to the implementation of the moves through the
diagrammatical method, which has been already used in Section 5.2. As a further remark, we
note that glueing operations performed on triangulations underlying PL-pairs of manifolds (as
happens in our context) involve joining of couples of p-dimensional simplices (p = d,d — 1) along
their unigue common (p — 1)-dimensional face. More precisely, also the joining of two (d — 1)-
dimensional simplices in 87'¢ has to fulfill this rule, since 87¢ is a manifold (indeed, this would
be true for pseudomanifols as well).

Before dealing with the full d-dimensional case, let us illustrate the case of elementary inverse
shellings in d = 5 and d = 6.

Recall that a 5-simplex has six 4-dimensional simplices in its boundary and that in the present
case ng_; in (2.17) may run over 1,2,3,4,5. Consider first the inverse shelling [5 — 1]2,,, the
action of which is displayed in the diagram of Fig. 5.13 (where we have made use of the diagrams
shown in :Fig. 5.10. This operation amounts to glue a 5-simplex to 1 along five 4-simplices
(joined anlong them along 3-dimensional faces). The resulting configuration in the modified 975
gives rise to an unique new (open) 4-simplex, so that no new (5 — r)-simplices (r > 3) appear.
Thus the state sum (5.24) does not acquire any wz2 factor and is manifestly invariant under such
a move.

The inverse shelling [4 — 2]%,, consists in the attachment of a 5-simplex along four 4-simplices in
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Fig. 5.13: Shelling of [5 — 115, type.

HT5. In the new JT'® there appear two 4-simplices joined along a common 3-simplex (for what we
said before), and thus also in this case we do not introduce new (5 — r)-dimensional subsimplices

(r > 3) in the state sum and no additional wzz factor arises. The diagrammatic proof is given in

Fig. 5.14, where we have taken into account Fig. 5.10 again.

ey

~

/_7

/

>
4

Fig. 5.14: Shelling of [4 — 2], type.

The [3 — B]fsh move amounts to the glueing of a 5-simplex along three 4-simplices lying in
8T5. Owing to the general remark that in a p-simplex C o¢, exactly three (p — 2)-dimensional
subsimplices incide over a (d — 3)-dimensional subsimplice, we see that such an inverse shelling
generates just one new triangle in 8775 (and no additional (5—r)-simplices with r > 4), associated

with a wzg factor in the state sum. The action of this move is reproduced in Fig. 5.15, where
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Fig. 5.15: Shelling of [3 — 3]2,, type.

we can see the loop bringing a w? factor which cancels the contribution coming from the new
triangle.

The move [2 — 4]2, represents the attachment of a 5-simplex to 87 along four 4-dimensional
simplices. Recalling the expressions giving the number of subsimplices of a p-simplex (see below),
we may see that the configuration of two 4-simplices, glued along their common 3-dimensional
face, identifies six vertices, fourteen edges, sixteen triangles and nine tetrahedra; thus this type
of inverse shelling generates in 87" one new edge ((d — 4)-simplex) and four triangles ((d — 3)-
simplices), giving rise to w;ﬁ factor in the state sum. The above action in depicted in the diagram

of Fig. 5.16, where we see three loops, the contributions of which cancel the above extra factor.

N

Fig. 5.16: Shelling of [2 — 4]3,, type.
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The last type of inverse shelling that we deal with is [1 — 5]2,,, representing the glueing of a
5-simplex along one 4-simplex. By counting in an appropriate way the subsimplices of the new
configuration in 8T"%, we see that there appear ten triangles ((d — 3)-simplices), five edges ((d—4)-
simplices) and one vertex ((d—5)-simplex), which generate an overall wy '? factor. Looking now at

Fig. 5.5, such extra factor turns out to be exactly cancelled by the contributions arising from the

12

Fig. 5.17: Shelling of [1 — 5]3,, type.

loops. This completes the proof of the invariance of (5.25) under elementary boundary operations
in the 5-dimensional case.

A 6-simplex has seven 5-dimensional simplices in its boundary and, in the present case, ng—; in
(2.17) may runs over 1,2,3,4,5,6. Consider first the inverse shelling [6 — 1]¢,: this operation
represents the glueing of a 6-simplex to 87°¢ along six 5-simplices of boundary. The resulting con-
figuration in the modified 876 gives rise a unique new 5-simplex, so that no new (6 — r) simplices
(r > 3) appear. We have no additional w} factors in the state sum (5.24). The relation that
prove the iilvariance of the state sum is given in the Fig. 5.18. where we have taken in account
the graphiéal relation showed in Fig. 5.10.

The inverse shelling [5 — 2]%,,, identifies the glueing of a 6-simplex along five 5-simplices of 9T°°.
The two 5-simplices in (87")® are joined along a 4-simplex and the other subsimplices are iden-
tified, with those on the boundary of the composition of the initial five 5-simplices respectively;

thus, also in this case, we do not introduce new (6 — r)-dimensional simplices with r > 3 an so no
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Fig. 5.18: Sheling of [6 — 1]%, type.

additional wg2 factors in the state sum. The relation that proves the invariance is represented by

Fig. 5.19, using again the relations given in Fig. 5.10.

..%

Fig. 5.19: Shelling of [5 — 2], type.

The [4 — 3]¢,, inverse shelling consists in the attachment of a 6-simplex along four 5-simplices
of 8T%. Recalling what we said before about the structure of the d dimensional simplex, and
by exploiting the same argument used for the move [3 — 3], , we have the generation of a new
tetrahedra ( (d — 2)-simplex) in the triangulation of 87" and no additional (6 — r)-dimensional
simplices with 7 > 4; thus, a new factor wzz appears in the state sum. The graph that reproduces

this move in the definition of the invariant is given in Fig. 5.20 where we see the loop that brings
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Fig. 5.20: Shelling of [4 — 3]¢, type.

a w? factor which cancels the contribution coming from the new tetrahedron.

The move [3 —+ 4]%,, represents the glueing of a 6-simplex along three 5-simplices. Examining the

number of subsimplices of the 6-simplex, we obtain that the move introduces one new triangle ( a
6

(d — 4)-simplex ) and four tetrahedra ( (d — 3)-simplices ), giving rise to an additional factor wy"°.

The graph that reproduces this shelling in the state sum is given in Fig. 5.21 where we see three

Fig. 5.21: Shelling of [3 — 4]¢, type.

loops, the contribution of which cancels the above extra factor.
The [2 — 5]8,, consists of the attachment of a 6-simplex along two 5-simplices of OT*®. The initial
two 5-simplices identify seven vertices, twenty edges, thirty triangles and fifteen tetrahedra of the

triangulation, so that the operation introduce ten new tetrahedra ( (d — 3)-simplices ), five new
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triangles ( (d — 4)-simplices ) and a new edge (a (d — 5)-simplex ); all that gives rise to a term

w;m coming from the prefactor in the state sum. The graph associated to this move is given in

Fig. 5.22 The loop contributions reproduce the inverse of the new w factors and thus we obtain

T
— : ’//\/\ \%Y%
=

Fig. 5.22: Shelling of [2 — 5%, type.

in this way the invariance of the state sum.
The last type of inverse shelling is the move [1 — 6]S,,, that represents the glueing of a 6-simplex
along a 5-simplex. By counting the subsimplices of the configuration in (8T")%, and by subtracting
the number of subsimplices of a 6-simplex from those of a 5-simplex, there appear twenty new
tetrahedra ( (d — 3)-simplices ), fifteen new triangles ( (d — 4)-simplices ), six new edges ( (d —5)-
simplices ) and a new vertex ( a (d — 6)-simplex ), summing to w7?°. The graph associated to
this move is given in Fig. 5.23: the loop contributions cancel exactly the extra wy, factors.
This completes the proof of the invariance of Z[(M®,dM°®)].

Coming ’go the general d-dimensional case, we slightly change our previous notation, namely
[ng—1 — d — (ng-1)13, (na—1 =1,2,..., d), by parametrizing the moves in terms of d according

to
(d—k)—= (k+ D%, ,k=0,1,2,...,(d—1), (5.26)
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— W2

Fig. 5.23: Shelling of [1 — 6]¢, type.

which of course turns out to be consistent with the previous one. Notice also that in what follows
we shall make use of the diagrammatic relations shown in Fig. 5.9 and Fig. 5.10 whenever it is
necessary.

Consider first [d — 1]&,, representing the glueing of a d-simplex to 7' along d (d—1)-dimensional

simplices (the corresponding diagram is given in Fig. 5.24). Since we do not generate any (d—r)-

Fig. 5.24: Shelling of [d — 1]3, type.
simplex (r > 3) in the new configuration 87", no additional wzz factors enter the state sum
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(5.24) .
The [(d—1) = 2]$., move consists in the attachment of a d-simplex to 87 along (d — 1) simplices
of dimension (d — 1). Also the action of this inverse shellings does not give any (d — r)-simplex

(r > 3) in the new 8T"¢, and its graphical counterpart is shown in Fig. 5.25.

32

P \I — —",’ \l
_—— ! - !
\ \ ..‘ —— - ,I d+]. ‘.~ - ,I
d+1 ' . ) T K
\é /// 2d-3 /— e /’/
\—.—"/z 2d—2 z\d_l——’///
2‘(‘1 3 2d-1
242

Fig. 5.25: Shelling of [d — 1 — 2]&, type.

Coming to [(d — 2) — 3]3,, we see that it represents the glueing of a d-simplex along (d — 2)

simplices of dimension (d — 1) lying in 87 and its diagram is given in Fig. 5.26. In the new

/—— D244l — 77 ; W
- / —_— /
_:\ / / __: K
o d_%d?»/;dz o
3ad 3d-2
T 3d-3

Fig. 5.26: Shelling of [d — 2 — 3]%, type.
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boundary triangulation one (d—3)-simplex (and no other simplices) appears. Thus the w}?* factor
which comes out is exactly canceled by the contribution of the loop.

An algorithmic setting can now be easily established. For, the k-th inverse shelling, namely
[(d — k) = (k + 1)]¢,, represents the attachment of a new d-.simplex along (d — k) simplices of
dimension (d—1) in 8T'¢ which generates in §7"¢ several kinds of new boundary components. The
number of such new components is evaluated by using suitable binomial coefficients, according to

the list given below

kE+1 i-3. [ k+1 i-a, [ k+1 d—(k+1)
< 3 )O’ ,< 4 AT N I , (5.27)

while for each k the following number of additional w;? factors are generated

. 1
(T e
wy, = wp" . (5.28)

The action of the k-th inverse shelling is depicted in the diagram of Fig. 5.27, where the loops

{ \ . = ! ke Dk
kd-k J % L kd-k / (k+1)d-(k+1)
kd_(k 2) --- (k+1)d (k+1) (k+1)d-(k+2)

(k+1)d—(k+2)

Fig. 5.27: Shelling of [d — k — k + 1]&, type.

which cancel the weights given in (5.28) appear. More precisely, when we glue together (k + 1)

(d — 1)-simplices in the more symmetric way, we have to perform (Zle 1) identifications among
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their faces (and that is exactly the number of summations over j variables in the state sum).
However, k of the above identifications do not bring loops (as can be inferred from the structure
of the {3(d — 2)(d + 1)/2}j symbol) and thus the remaining (3=, I) glueing operations induce
exactly the factors given in (5.28). This remark completes the proof of the equivalence of (5.24)
under the entire set of boundary elementary operations. Thus, by Pachner’s result found in [43],
the expression given in (5.25) is formally an invariant of the PL-structure of (M¢,0M?). Its
regularized counterpart, Z[(M¢,0M%)](g) can be written explicitly according to the prescription

given in Appendiz 8.1.
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Chapter 6

Invariants of closed M¢ from
colorings of
(d — 2)-simplices.

In order to complete the program on PL invariants outlined in the Introduction to the thesis, in
the present chapter we show how it is possible to generate from the extended invariant defined
in Chapter 5 a state sum model for a closed PL-manifold M¢. Obviously the form of the new
state sum will be inferred from the extended one (see:(5.24)) simply by ignoring the contribution
from boundary (cfr. the 3 and 4-dimensional cases). Thus our first task here will consist in giving
the proof that (5.25), and consequently Z M9 = Z[(M?,0M®)]|sps4—p, are invariant under d-
dimensional bistellar moves performed in the interior (bulk) of a triangulation (T¢,8T9) or in a
closed T'%, respectively.

In the second part of this Chapter we shall discuss the connection between our closed spin

models and the class of TQFT’s defined by BF-type actions.
6.1 Z[M9 and its equivalence under bistellar moves.

1

The expreésion of the state sum for a closed triangulation T, colored according to the prescription

of the previous section and with the same notations, reads

Z[T%( amz, Jpyam1) = M4 L] =
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while the limit taken on all admissible colored triangulations of a PL-manifold M? is formally

written as follows

Z[M9 = lim > Z[T4(5,J) - M% L). (6.2)

L—c0 pr
{5/<r )

The issue of the equivalence of (6.2) under the suitable set of topological operations can be
addressed by exploiting some results from P L-topology (recall also the definitions given in Chapter
2) and on applying them to the extended state sum Z9[(T'¢,8T¢) — ...] given in (5.24).

Thus, let us start by considering the simplicial complex made up by a d-simplex o? together with
all its subsimplices. From the topological point of view we get in fact what is called a (standard)
simplicial PL-ball, and we denote it by B%(c) (we omit the dimensionality of simplices whenever
it is clear from the context). The boundary of such a ball, B%(s), is obviously homeomorphic
to the (d — 1)-dimensional sphere and in particular it is a simplicial PL-sphere containing the
(d + 1) faces of dimension (d — 1) of the original B%(s). Notice however that a simplicial (d — 1)-
sphere can be defined by its own by joining in a suitable way some (d — 1)-dimensional simplices
Cc R%. The minimum number of (d — 1)-simplices necessary to get a PL-sphere is just (d + 1):
the resulting simplicial sphere will be denoted by S (o1 Uoa U...Uogy1). If we consider again
the PL-ball B%(o), we would get 8B%(c) =pr S™1(01 Uoa U...0441), where Zpy, stands for a
P L-homeomorphism.

Turning now to the structure of the extended state sum for a (I'¢,8T?), we can reconsider its
topological content as follows. Indeed, we see that the contribution of the configuration S§41(ay U
o3 U...U0ogs1) to Z¢ amounts exactly to one {3(d — 2)(d + 1)/2}j symbol, namely it is the
same that we would obtain by glueing a B%(0) to S* (51 U0z U...U0da41) along 8B4 (o) with a
PL-homeomorphism. The reason why we stress this point relies on the fact that on this basis we

are able to set up the following step-by-step procedure: i) we extract first some B%(c) from the
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bulk of (T'¢,8T%), leaving an internal hole bounded by the PL-sphere S 1(o1 Uoa U...0441);
ii) then we carry out elementary boundary operations on the PL-pair (B%(0) ,0B%(c)) bringing
0B%(c) into S d-1(rUrU...UT441) (notice that in doing that we do not alter the extended state
sum, owing to its invariance under elementary shellings); 4 )‘ﬁnally, we glue the ball back into
the original triangulation through a PL-homeomorphism 841 (6; Uy U...Uogy1) =pr S¢1
(mMUnU...UTg).

Such kinds of cut and paste represent nothing that the implementation of the set of d-dimensional
bistellar moves in the bulk of each triangulation of (M¢,8M¢%) (and in the whole closed M?). To
be precise, some of the moves will be obtained by cutting away not just a standard PL-ball as
before, but rather simplicial balls made up of a suitable collection of more than one d-simplex.
As an explicit example of how the above procedure works, consider the 3-dimensional case with
the corresponding extended state sum given in (5.7). Recall from (2.16) that in this case we are
dealing with four bistellar moves, [1 ++ 4], and [2 ¢ 3]3,,, where the arguments refer to the

number of 3-simplices involved in the corresponding transformation. The explicit implementation

of some of these moves is given below.

e [l — 4]3,. Since the initial configuration contains just one 3-simplex, we are just in the
situation described above. Then we extract the ball B%(c®) (the boundary of which is &>
(62Uc2Uo2Uo})) and perform on it the inverse shelling [1 — 3]3,,, where the first triangle is
chosen in an arbitrary way. Thus we get a configuration with two 3-simplices, the original o®
and a new 77, glued along the original triangle. The second operation is an inverse shelling
[2 — 2]2,,,, where the two initial contiguous triangles belong to o® and to 7§, respectively.
This generate a third tetrahedron, 73 joined to the previous ones through a 2-dimensional
face. On this configuration we act now with [3 — 1]2,, where two of the three triangles
of the i;litial arrangement were generated in the two previous steps, respectively, while the
third one belongs kto the original ¢3. Thus we get a fourth tetrahedron 75 which, together
with the other ones, gives rise to the simplicial ball B3(0® UrfU 7§ U 73), the boundary of

3

which is §%(0% U () U 7(23) U 7'(24)), where the first entry is the initial triangle chosen in o2,

and the other entries are the new faces generated in the three previous steps. Now we glue
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back the resulting ball into the triangulation through a PL-homeomorphism between the

original §? (02 Uo3 U o3 Uo}) and §?(0? Ut Uty U 77y~ The pictorial representation of

the reconstruction of this particular move is shown in Fig. 6.1.

Fig. 6.1: The move [1 — 4]3,, in terms of inverse shellings performed on the removed PL-ball.

o [2— 3]2,,. The configuration we start with is a ball B(¢} U 03) having S* (¢f Uo3 Uz U
02 U o2 Uo?) as its boundary. After the extraction, we perform first the inverse shelling
[2 — 2]3,, where the two initial triangles are contiguous and belong to of and to o3,
respectively. Finally, we apply [3 — 1]2,, where the three initial triangles belong to a3, o3
and to the component generated by ‘the previous step, respectively. It is not difficult to realize
that the resulting PL-ball has again six faces in its boundary PL-sphere, and thus we glue

it back along the boundary of the original hole by means of a suitable PL-homeomorphism.
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The sequence of operations we have performed is drawn in Fig. 6.2.

Fig. 6.2: The move [2 — 3]3,, in terms of inverse shellings performed on the removed PL-ball.

The remaining 3-dimensional bistellar moves can be explicitly worked out following a similar
procedure and by employing a definite set of shellings.

Also for what concerns the 4-dimensional case we could describe step—by-step the implementation
of all transformation. However, since in that case a pictorial counterpart is not so easy displayed,
we turn to the general rule in dimension d. On the basis of the characterization of d-dimensional

inverse shellings given in (5.26) we can reparametrize also the set of all d-bistellar moves according

to

k= (d—k+D]%, ;& =1,2,...,(d-1), (6.3)

paying attention to the fact that here k enumerates d-simplices, while in (5.26) it was referred
to (d — 1)-simplices in a given o®. With this reformulation, we see that the generic move [k —

(d—k +1)]2, can be obtained with the cut and paste procedure following the steps:
e extract from the bulk of (7%, 8T?) a PL-ball B4(o1U 02U...Uoy), where k = 1,2,..., (d—1);

e implement on the ball the sequence of inverse shellings [k — d—k + 0d,, k+1—d-k3,,

oo [d+1 = 14, by choosing in the initial configuration one (d — 1)-simplex in each of
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the components of the original ball and by involving in the subsequent moves one (d — 1)

for each of the components generated before (including also the initial one);

o glue back the resulting modified simplicial ball along the hole left in (T¢,87¢) using a

PL-homeomorphism.

Having shown that the extended state sum is equivalent under (a finite set of) bistellar moves
performed in the bulk for any dimension d, we can conclude that the expression of Z[M9] in (6.2)
share the same property. Thus, owing to [14], it is formally an invariant of the PL-structure.
For what concern the g-deformed regularized Z[M%](q), we refer as usual to the notations and

definitions collected in Appendix 8.1.
6.2 Derivation of associated TQFTs.

Here we are going to establish a connection between the non trivial lattice spin models defined
before and the continuum approach to field theory given in particular by BF-type actions [28]
[50]. We limit ourselves to present some of the results which will be collected in [38]. Such
issue can be addressed essentially in two different ways. Thus we show the equivalence using
both the discretization procedure of BF theory proposed by Freidel and Krasnov [37], and a
generalization in d dimension of the Ooguri approach [5] which stresses the role of the associated
surface and the deep geometrical meaning of the invariant. Notice also that, although the spin
models proposed in this thesis can be defined irrespectively of the orientability properties of the
underlying PL-manifolds, when dealing with continuum theories we are forced to consider only
orientable manifolds. A further remark is about possible ambiguities arising from the topological
characteré of the class of models in question. Notwithstanding the fact that in dimension greater
than thréze it does not exists a one to one correspondence between the topological and the PL
types of élosed manifolds, we can always associate with each differentiable structure a unique PL
structuré in any dimension d.

Recall that a BF theory is a topological quantum field theory in dimension d characterized by a
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classical action

/ [TrB A F + 3(B)] (6.4)
M

where M is a d-dimensional closed manifold, B is a Lie algebra valued (d — 2)-form field, F' is
the curvature 2-form of a connection A and @ is certain polynomial function of the B field which
can also depend on some Lagrangian multipliers (as happens when qﬁantum gravity models are
considered). We are interested here in pure BF theories, namely those for which & in (6.4)

vanishes. We refer e.g. to [26] for a detail account on this subject.

6.2.1 A proof by means of the Freidel-Krasnov discretization method.

Let us fix a triangulation A of a d-dimensional compact oriented spacetime manifold M. According
to the final remarks of Chapter 2, this triangulation defines another decomposition of M into cells
called dual complex. There is one-to-one correspondence between k-simplices of the triangulation
and (d—k)-cells in the dual complex. We orient each cell of the dual complex in an arbitrary
fashion, which also defines an orientation for all simplices of the triangulation. The (d-2)-form B
can now be integrated over the {d-2)-simplices of the triangulation, the result being a collection
of the Lie algebra elements X, namely one vector X € su(2) for each 2-cell dual to a (d—2)-simplex
of the triangulation. In view of our task, we would like to discretize this model by replacing in
a straightforward way the continuous B-field by the collection of the Lie algebra elements X. It
turns out, however, that a more convenient set of variables introduced by Reisenberger [51] exists,
and we shall use this one.

Then instead of a single X for each dual face which is a 2-cells of the dual triangulation, we
introduce a set of variables, denoted by X,,. To do this, we divide each dual face into what
Reisenbergér calls “wedges” (see Fig. 6.3). To construct wedges of the dual face one first has
to find the%“center” of the dual face. This is just the point on the dual face where it intersects
the correspgonding (d-2)-simplex of the triangulation. One then has to draw lines connecting this
center with the centers of the all neighboring dual faces. The portion of the dual face that lies
between two such lines is exactly the wedge. Thus, each dual face splits into wedges and we assign

a Lie algebra element X,, to each wedge w. All variables X,, that correspond to a single dual
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Fig. 6.3: A face o of the dual triangulation. The portion of o indicated by bold lines is a wedge.
The point labelled by C is the center of one of the d-simplices intersected by o.

face are required to have the same length (recall that vectors of the same length only differ by
a gauge transformation). Wedges of a given dual face are in one-to-one correspondence with the
d-simplices of the triangulation neighboring this dual face. Thus, we may say that each variable
X, arises from the integral of B over the (d-2) simplex of the triangulation “from the point of
view” of a particular d-simplex containing this (d-2)-simplex. Note that the number of variables
X, that arises in this way for a given triangulation A is equal to the number of d-simplices in A
times the number of (d-2)-simplices in each d-simplex.

Once the geometrical meaning of the wedge variables X, is made clear, we introduce the
distributional B fields. Heuristically, our procedure of replacement of a smooth B field by a distri-
bution concentrated along the wedges amounts to a “squeezing” of the smooth B field (originally
is “spread” over a (d-2) simplex of the triangulation) to a single point on this (d-2) simplex; this
is just the point where the simplex intersects with the 2-cell of the dual complex. Accordingly,
we define a distributional field By, concentrated along a wedge w to be a 2-form satisfying the

following relation:

/M Te(By A J) = Tr(Xo / J). (6.5)

w

Here J is any 2-form which takes values in the adjoint representation, and w stands for a wedge.
The integral on the right-hand side is extended over the wedge w. This fact implies in particular

that the Lie algebra element X, is equal to the integral of B,, over the (d—2)-simplex of the
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triangulation which is dual to the 2-cell 0. The distributional field B is defined as

B = Z B,,. (6.6)

Although the introduction of the wedge variables increases the number of independent variables
in the theory, one can still argue that the physical content of the theory should be the same since
the norms of all the X, belonging to one and the same dual face are required to be equal. In the
case of BF theory one can prove in a straightforward way that the introduction of the independent
wedge variables does not change the theory, at least as far as the topology of dual faces o is that
of a disc (this will be taken for granted from now on).

In order to calculate the generating functional Z for a fixed triangulation A, we have to
integrate the exponentiated action over the “discretized” dynamical fields A, B. Using (6.5),(6.6),

it can be shown that the discretized action is given by

Z/ [Tr(F Xy) + Tr(J Xu)], (6.7)

where the sum is taken over the wedges of the dual faces introduced before, and the integral is
performed over each wedge. The integrand contains the curvature of the connection A contracted
with the Lie algebra element X, living on that wedge and the current J contracted with X,,.
Each integral is evaluated by using the orientation of the dual face to which the wedge belongs.
We should now substitute this discretized action into the path integral and integrate over X
and A. However, we first have to discuss the meaning of the integration over A, by replacing
the continuous field A by a collection of group elements. We get the following approximated
expression:
/w Te(F Xo) & Tr(ZwXa), 6.8)
where Z,, is the Lie algebra element corresponding to the holonomy of A around the wedge (see
Fig. 6.4) (the base point of the holonomy is not fixed at this stage, see below). In other words, in

the generating functional there must appear terms of the form:
exp Zy = grhihage, (6.9)
where g1, h1, ha, g2 are the holonomies of A along the four edges that form the boundary of the
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Fig. 6.4: A wedge w of the dual face and the associated group elements: the holonomies are taken
along the edges of w.

wedge w (here we have tacitly assumed a local trivialization of the bundle over w so that the
holonomies are group elements). The order according to which the product of group elements is
taken is determined by the orientation of the dual face. Of course, exp Z,, is defined only up to its
conjugacy class (anyone of the four edges can bé taken to be the “first”). As a consequence, there
is an ambiguity in the choice of the base point for the holonomy, and it is necessary to introduce
the notion of “discretized” gauge transformation; fixing the ambiguity amounts then to require
that the discrete action is gauge invariant.

Before addressing this point, let us replace the continuous current field J by a collection of Lie

algebra elements Jy,:

Jy 1= / J. (6.10)

w
Here a trivialization of the bundle over the wedge w is chosen. The discretized action now becomes
> (Tr(Zw Xuw) + Tr(Jw Xu)).- (6.11)

Coming back to the definition of discrete gauge transformations, we require that they act in the
center of each d-simplex. More precisely, a gauge transformation is parameterized by a collection
of group elements in such a way that a group element g turns out to be assigned to each d-simplex.
Than a gauge ’itransformation is defined for the holonomy U of the connection A along any loop
that starts and ends at the center C of the d-simplex according to:

U—gUg™h (6.12)
In turn, the wedge variables X,, and the discrete current variables J,, transform as

1

X = 9Xuwg™ " Juw— ngg‘1~ (613)
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Given this definition, Tr(X,,Z,) is gauge invariant only when exp Z,, is actually the holonomy
around the wedge w whose starting and final point is the center C of the d-simplex, as in (6.9).
This fixes the ambiguity in the original choice of Z,, and makes the discretized action gauge
invariant. |

The approximation (6.8) is good as far as Z, is close to the identity in the Lie algebra.
This is certainly the case of BF theories, where we expect only connections close to flat ones to
matter. To find out a further justification of the approximation for what concerns the problem
of the integration over X,, variables, we shall address later some standard field theory arguments
applied to BF theory in two dimensions.

Given for granted the approximation (6.8) we turn to the expression for the generating func-
tional Z, obtained by integrating the exponentiated discrete action (6.11) over the Lie algebra

elements X,, and group elements g, h. This path integral is given by

o911, #1L

Here the integrals are taken over all group elements g, h, entering the integrand through Zy, (see

dh / [T dx ¢ 2w TXw ) Te(u L), (6.14)
0 w

(6.8)). The first two sets of integrals are the discrete analog of J DA, and dg is the normalized
Haar measure [dg =1 on SU(2). The integrals over X,, variables — one for each edge — are the
analog of the integral over DB. The measure dX,, represents some measure on the Lie algebra
to be specified. Recall now that the integrals over X, are not independent: all X,, that belong
to one and the same dual face should have the same norm. However, as we shall see, there is no
need to impose these constraints: one can integrate over all X, independently, and later, when
one integrates over the group elements, only the contributions coming from X, with the same
norm will sélrvive. This is the reason why we do not impose these constraints in (6.14).

Let us n%ow investigate the structure of the path integral (6.14). To calculate Z we have to find

the functioﬁal of exp Zy,, exp Jy given by
/deeiTr(Xu,Zw-I—Xwa). (615)

In fact, it is not hard to see that this function is proportional to the §-function of exp Zy, peaked at

exp Jy. The proportionality coefficient must be a gauge invariant function of J,,. The expression
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in (6.15) must be set to be equal to P(Jy), where P is the function that relates the Lebesgue
measure on the Lie algebra and the Haar measure on the group (see Appendix 8.4). Thus the

result of the calculation for (6.15) is given by the expression
P(Jy) é(exp Zy exp Ju), (6.16)

where § is the standard J-function on the group. Moreover, the function of Z,,, J,, given by (6.15)
can be written equivalently as

P(Jw) Y dim;x;(exp Zy exp Ju), (6.17)
J

where we used the well known decomposition of the d-function on the group into the sum over
the characters x;(exp Zy exp Jy,) of the irreducible representations of the group. Here the sum is
taken over all irreducible representations of SU(2) (labelled by spins j), and dim; = (25 + 1).
Thus, we find that
z(,8) =] / ds [T / an [P S dimy, X, (exp Zu exp ). (6.18)
SU(2) sU@) o i
The integration over the group elements can now be easily performed using the well known formulas
for handling integrals of products of matrix elements. However, for the sake of completeness, let
us first give a systematic derivation of the result (6.16).

The expression (6.15) is related to a more complicated integral, which can be exactly calculated
in the framework of 2D BF theories.. Moreover, this procedure will allow us to specify the measure
in (6.15). Let us focus our attention to a particular wedge w. We can restrict the bundle P to w
and get an SU(2) bundle P,, over w. Let A be a connection on P,,, and B be an Ad(P)-valued

O-form. Consider the following path integral:

/ DADB exp (z /w [Te(F B) + Tr(J B)]) , (6.19)

where the integration over A is performed under the condition that the connection on the boundary

of w is keeped fixed, and J is given by

J = 5(p)Ju, (6.20)
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where p is an arbitrary fixed point on w, and J,, is defined as in (6.15),(6.16). The path integral
(6.19) is just the partition function of BF theory on the disk with the distributional source given
by (6.20). This partition function can be evaluated following the procedure of [52] and the result
is given by (6.16), where Z,, is the Lie algebra element that éorresponds to the holonomy of A
along the boundary of w. The result (6.16) can then be checked by taking the partition function
on the disk (which is equal to 6(g), where g is the holonomy along the boundary of the disk), and
integrating it over dg. This calculation must give the partition function on a punctured sphere,
and indeed we see that it reproduces the result given in [52]. The only cautionary remark is that
the calculation performed in [52] gives a gauge invariant partition function, namely an expression
in which one takes J = &(p)hJ,h ™! and integrates over dh. Thus strictly speaking, the techniques
developed in [52] can be used only to calculate gauge invariant quantities, and are not directly
applicable to the integral (6.19). Therefore, on the basis of [52], one can only argue that (6.19) is
equal to
P(Jy)6(eZ* hel»h™1), (6.21)
where h is some group element. To get rid of A in this expression recall how “discretized” gauge
transformations act on the Lie algebra elements Z,, J,, (see (6.12),(6.13)). Since the result of
(6.15) must be invariant under this gauge transformations, it is not hard to see that this require-
ment fixes h above to be the identity, thus giving (6.16).
After this technical point concerning the evaluation of the path integral (6.19), let us show
that this path integral is actually equivalent to (6.15). Indeed, the integration over B in (6.19)
can be performed in two steps. First, one integrates over those B(z) with = # p, and then one

integrates over B(p), namely

/ X /B DB / Dusexp (z /w [Tr(FB)+’I&“(JB)]). (6.22)

Since the current is distributional and concentrated at point p, in the last integrand it does not
matter when one integrates over DB, Dw. On the other hand, using the same approximation as

in (6.8), it is not hard to show that

»/B(p)zxw DB/’DAexp (i/wTr(FB)), (6.23)
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where the integral over A (keeping A on the boundary of w fixed) is approximated by
e Tr(Zu Xu), (6.24)

where exp Z,, is the holonomy of A along the boundary of w. Putting this last result back into
(6.22) one gets exactly (6.15). This completes our discussion on the derivation of (6.16).

Coming back to the expression (6.18) for the generating functional, we can now perform the
integrals over the group elements. Integration over the group elements h that correspond to edges
dividing dual faces into wedges is the same in any dimension, and we can perform it directly. The
rest of the group elements corresponds to edges that form the boundary of the dual faces. The
integration over these group elements g depends on the dimensions.

Each group element h is “shared” by two wedges; thus, we have to take the integral of the product
of two matrix elements. By integrating over all these edges, and making a simple change of
variables to eliminate trivial integrations, we find

z(,0) = ] /S U(z)dgeﬂz:(dimj,)”«P(Jl)--- (6.25)

7 e
oo P(Jn) X% (exp Ji ge, expJa - --exp Jy ge,.)-
As we said before, the remaining integrals are over the group elements g, that correspond to the
edges ¢ of the dual complex (edges that connect centers of d-simplices). The second product is
taken over the dual faces o; j, is the spin labelling the dual face o, x’v is the character of the
irrep labelled by j, and k, is the Euler characteristics of o. Each of these last terms is equal
when the dual face has the topology of a disc. In what follows we will always assume that this is
the case. The order of the group elements in the argument of x’= is clear from Fig. 6.5.

The only terms which survive in (6.25) are those for which the spins j, of all wedges corre-
sponding to one and the same dual face are equal. As one can see from the formula (8.13) for
the inverse Fourier transform, the spin labelling a wedge in (6.18) has the meaning of the length
of the corresponding Lie algebra element X. Thus there is no need to impose the constraint that
the length of all wedge variables X, belonging to one and the same dual face are equal: this

constraint is automatically fullfilled when the integration over the group elements is performed.
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Fig. 6.5: The product of the group elements is the holonomy around the dual face o with the
insertions of the group elements exp J at each center of the corresponding d-simplex.

The generating functional is generally not invariant under a refinement of the triangulation A
unless the theory is a topological field theory (namely unless J = 0). By setting now J = 0 in the

definition of the generating functional, the integrand in (6.25) becomes

TTTI 2 (dimg,)x (ge, -+ ge.)- (6.26)

using the obvious relations x7(g) = Y, DJ,,.(g) and D, (gh) = 3", D? . (9)D? , (k) we may

rewrite the characters in (6.26) according to

Xj(gél e gfn) = Z D‘anl (gGI)Dgnlmz (961) U Dg;mn_lm(gen)' (627)

m,my,,Mnp—1
As we said before in the d dimensional case we have d dual faces intersecting on a dual edges;

then in the partition function there appears, as a contribution from each ¢%~! of the original

triangulation, the integral
/ 9e; D s (9e3) Do, (95) -+ Dyt s (9;)

where j1,- -, jq are the colors of the faces of a (d — 1)-simplices bordering a d-simplex. But, as we
can see comparing the result of section (5.2) and (6.1) this is exactly the basic expression which

enters our spin models. More precisely, if we expand the integral above in terms of 3jm symbols
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we obtain

d=3,_1y2Jy WM [ de Jvooods J2 )
Z{J} [Tz (FU* (270 1) E'M’V( 2 ( m1 ma My ) ( -M; mz M,
i J2 S Jioogs S\ Jia  Ja-2  Ji-s
m’l mf? %1 -1 m’3 129] ——Md._4 mg—2 Md_g
Jiz  Ja-1 Jd | ( Jica  Jim2  Ja-3 ) Ji-3  Ja-1  Jd
—Mg_z mg—1 ma —Vi_4 My_g Via-3 —Vg_g my_y my )’

Collecting together all the a;-l"l occurring in a fundamental block 5%, the result amounts exactly to

(6.28)

a {2(d+1)(d—2)}j symbols times a product of sets of 3jm symbols. Each one of these subfactors
is used to generate the contribution of another o sharing a;-l_l with the previous 5¢. Iterating
this procedure on all the d-simplices of the triangulation A we obtain exactly the state sum model

given in Section 6.1.

6.2.2 A proof by means of a generalization of the Ooguri approach.

A Correspondence between the Hilbert spaces.

Our first aim is to show that the space of physical states in the discretized model, H(A), is
isomorphic to Hpr, the space of gauge-invariant functions over the moduli space of flat S U(2)
connections.

We start by discussing the definition of H(A) which is a generalization of the corresponding
definition stated in the original approach of [5]. Consider a closed d-dimensional manifold M¢ and
decompose it into three parts, M{, Mg and N ¢ (the picture in Fig. 6.6 refers to a simple example
in d = 3), where N has the topology of & x [0,1] with ¥ a closed orientable (d — 1)-dimensional
submanifold, and each M¢ (i = 1,2) has a boundary which is homeomorphic to ¥. The manifold
M?is reconsjtructed by glueing the boundaries of N¢ with OM{ and 0M¢. (From now on we omit
the overscripi; d on My, Ms, N for short). Corresponding to this decomposition of M ¢ the partition
function Z [M 9] of the manifold M @ can be expressed as a sum of products of three components,
associated with My, M, and N, respectively. To explicitate such an expression, we note that,
since the partition function Z[M?] is independent of the choice of the simplicial decomposition of

M4 we can place d-simplices in M ¢ in such a way that My, M, and N do not share any d-simplex,
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M, N M,

Fig. 6.6: Decomposition of a 3-manifold M into three parts.

namely their boundaries are triangulated by faces of d-simplices. Corresponding to this simplicial
decomposition, we can re-express our Z[M?] in (6.2) as

zZMY= 3 ZIMy, Aq)(er)wi =B Pa, a, (er, co)wp =4 Z[Ma, As)(ca), (6.29)

c1 EC(A7)
ca €EC(A2)

Here A; (i = 1,2) denotes fixed triangulations of the boundaries 9M;, C'(4A;) is the set of all
possible colorings on A;, and E(A;) agree with the definition given in Section (5.3) for A;. Each
factor Zaz, A, (ci) is given by the sum over all the possible colorings on the (d — 2)-simplices in the

interior of M;, namely
- dEint . .
Z[M;, Adl(e) == w§ = Tlayge-sen, (~1)o4-2 (V2Tzaz + 1)

; . d—
Zcoloring Hall :7"”‘261\/15(_‘1)276‘1_2 (2‘70"1"2 + 1) Hall od=le M; ( C=31(~1)2JC (2JC + 1)) 1

od
Tlan oz {3d = 2(d+ 1)}, (),
where now we have keeped fixed the coloring ¢; on 042 lying in M; and Ei = Nj™ — Nit +
Nim 4 ... + (=1)% — 2N, . Similarly, Pa,,a,(c1,¢2) is given by a sum over all the possible
colorings 0n§ the internal 0%~ 2 of N with fixed colorings ¢; and ¢; on N = X + 2.
Since als:o the operator Pa, a, is obviously independent of the simplicial decomposition of the
interior of N , it satisfies the following property with respect to compositions

Z PAerZ (clv c2)wZE(A2)PA2,A3 (02’ 03) = PAl,Az.(cla 03)7 (6~3O)
c2€C(A2)

where A, is a triangulation of a copy of ¥ which lies between A; and Aj. Therefore we can define
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an operator P

Ploal) = > Paale,)w=¥ga(c),

cEC(A)

which acts as a projection operator (P-P = P) on the space of complex (piecewise-linear) functions
da on C(A). By using (6.30), we can rewrite (6:29) as

2[4 = 3" PL2My, A )wp =AY Pay,as (e, e2)wp = S PIZ 1M, Agll(ch)-

C1,C2

Then we see that “states” propagating from M; to M, through N are projected out by P. Thus
it is natural to define a physical Hilbert space H(A) for the triangulated surface ¥ as a subspace

projected out by P, i.e.
oalc) € H(A) <= ¢a =P[¢al (6.31)

We define an inner product in H(A) by setting
(6,08 = D, éal@uwp™ Paale,uwr= g, (6.32)
c,c'€C(A)
It can be proved that Z[Mi, A](c) and Z[Ma,Al(c) are real solutions of the Wheeler-DeWitt

equation (6.31) and the partition function Z[M 9] is given by their inner product according to
Z[M%) = (Z[My, A], Z[Ma, A)). (6.33)

On the other hand, in order to investigate the structure of the physical Hilbert space Hgr of a
pure BF theory in dimension d we consider the topology N = X x [0,1] again, and we note that,
performing the integration over the B field, we obtain that a wave-function of the theory can be
represented by a function ®(A), where A is a SU(2) connection on ¥. The constraint Fj; = 0
implies that ®(A) must vanish unless A is flat. The natural inner product in HpF is given by the
integral

(81, 82)mr = [ 1AAJS(F) B3 ()2 (). (6.34)

Thus a physical wave-function is a half-density on the moduli space of flat SU(2) connections.
Before analyzing the structure of Hpr, we focus our attention on the state space H containing

the gauge-invariant functions on the space of all SU(2) connections. An element of H is built up
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by means of Wilson-line operators U;(z,y) (z,y are point in %, j =0, %,1,...), defined as
) y
Uslo,y) = Pesp( | 4°8),

where Pexp denotes the path ordered exponential and ¢} (a¢ = 1,2,3) is the spin-j generator
of SU(2). Under a gauge transformation, A — Q71 AQ + Q~1dQ, and the Wilson-line operator
behaves as U(z,y) — Q(z)"'U(z,y)Q(y). Consider now a finite number of Wilson operators
and take their tensor product ®,Uj, (z:,y:). To make this quantity gauge-invariant, we need to
contract the group indices of U;’s in such a way that the gauge factors ¥ cancel out. Invariant
tensors we can use to play this role are:

1) the Generalized Clebsch-Gordan (GCG) coefficient ((ji - - jn—1)"ajnmpliimi -+ jn—1mn_1),
(defined in Section 3.2);

2) the metric ggzn, = /27 F 1(jmm/|00) = (=1)7"™6 s 0-

It can be shown that a gauge-invariant function which arises in this way corresponds to a colored
multivalent graph Y on X. Such a graph can be decomposed into three-valent graphs by expanding
the GCG in terms of Clebsch-Gordan: a path from z to y in ¥ corresponds to a Wilson-line U (z, y)
or an identity (if associated to intermediate angular momenta of GCG) and a three-valent vertice
in Y represents the CG-coefficients.

The case of Wilson-lines intersections must be handled with care. We cut the Wilson-lines at the
intersecting point and we use the identity

94,0920, = > gD (i jamams|im) (j1jananalin)

jym,n

to replace the intersection with a pair of vertices and one infinitesimal Wilson-line connecting
them. Actually, it is more convenient to use the cyclic-symmetric 3jm-symbols rather than the
Clebsch-Gordan coefficients. By regarding the m;’s in the 3jm-symbol as lower indices which can
be raised by the metric g;:“mi, when three Wilson-lines meet together at the same point on
we can use the 3jm-symbols and the metric gfnm, to contract their group indices. We can also
connect two Wilson-lines by the metric if they carry the same spin.

Summing up, we have shown so far that with each colored trivalent graph Y we can associate

a function Uy € H. In general, a gauge-invariant function of A is a linear combination of such
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Uy’s. Thus the space state H is isomorphic to a vector space C’(E) which is freely generated by
colored trivalent graphs on £. The isomorphism is defined by ), a;Y; € CE) & 3, a:%y, € H,
where Y;’s are colored trivalent graphs.

Each function ¥y (A4) can be regarded as an element of H 5; r simply by restricting its domain
to the space of flat connections. However, the map ¥ — Uy € Hgp is not injective (i.e. two
different graphs ¥ and Y’ may give the same function ¥y = W¥y/). In general, if two graphs
Y and Y’ are homotopic, the corresponding functions ¥y and ¥y have the same value on flat
connections. On the other hand, with each colored trivalent graph Y one can always associate
a colored triangulation and if two graphs Y and Y’ are homotopically inequivalent, they corre-
spond to distinct colored triangulations. The isomorphism between C(Z) and H then induces a
homomorphism ¢ : C(X) — Hpr, where C(X) = @aC(Z,A) is a vector space freely generated
by colored triangulations.

As a consequence of these remarks, with each colored triangulation A we can associate a
physical wave-function Ua . of the BF theory. The arbitrary wave-function ®(A) is expanded in

terms of such functions:

8(4) =Y > oalQwrT A (4). (6.35)

A ceA

Notice that the ¥ .(A) are not linearly independent; rather, they obey just the following set

of relations:

Tao(d)= Y Paarle,d)wp®® T 0(4). (6.36)
cEC(A)

Owing to the flatness of A, we can now make the Wilson-line length to be arbitrarily small without
changing the value of U .(A). Namely, the Wilson-line can be replace by an identity and the
functiQn U, should contain only a sum of products of the 3jm-symbols used to obtain a gauge
invariajnt function. In this way we get an expression which is formally identical to the correspond-
ing exf)ression in the spin model.

One can show that the relations among the ¥ . on a flat connection A due to the change of the
boundary triangulation are generated from the identity proving the invariance under elementary

shellings of the discretized spin model [38]. Therefore (6.36) is proved and the uniquely comes out
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by the fundamental character of the relations.

By substituting (6.36) into (6.35), we obtain

(A) = Y dalQuwiTV s (4), (6.37)
ceC(A)

where ¢a(c) is defined by

620 =" 3 Paale,)w;= pal(d)
)

Al cec(ar
for an arbitrary fized triangulation A of ¥. Then it follows from (6.30) that ¢a(c) solves the

Wheeler-DeWitt equation (6.31) of the spin model, namely it satisfies: .
¢a = Pldal.

Summing up, for each solution @a(c) of the Wheeler-DeWitt equation, there exists a physical
state ®(A) of the BF theory given by (6.37). Since (6.36) are the only relations among ¥a,.’s,
this correspondence between ¢ and @ is one-to-one.

We will show in the following point C that the inner product of Wilson-line networks

(\IIAl,cu ‘I]Az,cz)BF

in the BF theory is equal to Pa,,a,(c1,c2) for the discretized spin model, up to a constant factor.
Therefore the map from H(A) to Hpp defined by (6.37) preserves the inner products in the two
spaces and provides the isomorphism between the physical Hilbert spaces of our spin network

model and the pure BF theory in any dimension d.

B Correspondence between wave-functions.

In the foliowing we are going to show that the isomorphism between the Hilbert spaces discussed
before idéntifies in both models wave-functions associated with the same underlying d-dimensional

geometry.

Recall that in a pure BF' theory, the physical wave-function ® ;¢ for M9 may be defined as

Bpra (A)6(Fypp) = / [dB,dAlexp(i | BA(dA+AA A)), (6.38)
A|g:fimed M
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where we perform the functional integral over B and flat A in the interior of M with a fixed
boundary condition for A on M ¢ = X. The integration over Bx gives rise to the delta function
d(Fijj=). This ensures that the functional integrals in the right-hand side gives a physical state of
the BF theory.
In order to analyze the structure of ®,.4(A4), we start by considering the exact sequence of
homotoi)y groups for the pair (M¢%,0M?), namely:
s = M (OM) = mo(MY) = ma (M, 0M®) = 1 (OM®) =

o (M) = my (M2, 0M%) = 70(OM) — 7o (M), (639

If G is a compact Lie group we may also apply the controvariant functor Hom(-,G) to obtain

another long exact sequence which reads:
<o = Hom(m1 (M%), @) = Hom(m (0M?),G) — Hom(my(M?,8M%),G) — - -- (6.40)

From the exactness of this last sequence we get that u : Hom(m (0M?),G) — Hom(my(M®,0M%),
@), ¢ : Hom(m1(M),G) = Hom(m (0M?),G), than Kery = Imyp. On the other hand, there
exists an isomorphism between Hom(w1(IV),G) and the set of flat connections on some N.

We fix now the condition that the Holonomy around any element of my (3%, M%) for a connec-
tion A € Hom(m (0M?),G) on 8M is equal to zero (namely, 4 is an element of the Kernel of
1). Thus we obtain that A is the image under ¢ of a flat connection 7 over M¢, namely 7 is the
preimage of A. In other words, the condition Hol(A) = 0 over the group ms(M¢%, M%) turns out
to be sufficient to extend A to a flat connection on M¢. But it is also a necessary condition, since
the holonomy of a flat connection around a contractible loop is zero.

Thus the group 72 (M9, 0M?), representing the cycles on M ¢ that are contractible on M¢, en-
codes the information on the flat connections on M ¢, giving rise to flat connections on the whole

manifold.

In the previous point we have found that for each physical state ¢a(c) of the spin model, there
is a corresponding state in the BF' theory defined by (6.37). Therefore it is natural to expect that

the wave-functions @ (4|x) and Z[M, A](c) associated with the same d-dimensional manifold M
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are related through

Su(As) =Dy > ZIM, AN Qw; =M Ua (A)5), (6.41)
ceC(A)

when Ay, is a flat connection and Dy is a constant depending on rank(ms(M,0M)) = b. This is

indeed the case, as we shall show below.

Since the necessary and sufficient condition for A5 to have a flat extension in M is that its

holonomies U,y (a = 1,...,b) around the contractible cycles are trivial, we get

b
@y (Axp) =Dy [] 60w - 1), (6.42)
a=1
where Dj is a constant independent of Ajs, and 6(U — 1) is a é-function with respect to the Haar
measure of G = SU(2).
In order to check (6.41), we need to show first that the sum over colorings in the right hand side
of equation (6.42) imposes the constraint Uy = 1 on Ajz. Namely, we should prove that, by
recombining the Wilson-lines, the expression reduces to sums over the colorings of the contractible
cycles according to

b oo
3 ZIM, Al E s (As) =[] {Zm +1) H(U@j)} : (6.43)

ceC(A) a=1 | j=0

The orthonormality and the completeness properties of the irreducible SU(2) characters imply
that the right hand side of this equation gives the product of §-functions as in (6.42).

To prove the equality in (6.43), suppose we have used a collection of n d-simplices in computing
the wave-function Z[M, A](c) for the discretized manifold M. The d-simplices have been placed
in such a way that the boundary % of M is triangulated by(4, ¢). Choose one of the d-simplices
which has; some of its boundary in (A,c). Since Ay is flat, we can use (6.36) to remove this
particular d-simplex, namely

S ZIM Al Qu N s (Ap) = Y. ZIM, Ay WA e (Aps),
ceC(A) c'eC(A)

where A is the original triangulation of ¥, and A’ is obtained by removing that d-simplex. Obvi-

ously, in computing Z[M, A'l(c), the number of d-simplices we use is (n — 1). By implementing
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this procedure we obtain a triangulation with a tree structure, in which each d-simplex is glued to
the complementary triangulation through at most one (d — 1)-subsimplices and/or some (d — 7)-
subsimplices, with r > 2. The state sum reduces to contain only a boundary contribution, if we
recall that the graphical relation given in Fig. 5.10 eliminatés the contributions of the internal
(d — 1)-subsimplices of this new triangulation.

In order to show how this procedure works, we have to restrict our analysis to the d-torus topol-
ogy, while other cases will be addressed elsewhere [38]. The study of the contribution to (6.43)
associated with such kind of configurations in d = 4,5 (vefer to Appendix 8.5) can be exploited in
order to show that in any dimension there exists an auxiliary 2-torus encoding the combinatorial
structure of the state sum. Thus such a 2-torus 72 is the fundamental object associated with the
discretized theory. In particular, by cutting it into an upper and a lower part (topologically we

get an annulus) we can decompose them into two triangles as shown in Fig. 6.7. Corresponding

Fig. 6.7: Triangulation of the surface S.

to the above triangulations there are six Wilson-lines on ¥ which are connected by four vertices

(Fig. 6.7). We can choose now one of the Wilson-lines, say j» in Fig. 6.8, and remove a pair of

Fig. 6.8: Graph of Wilson-lines.

vertices at its end-points by using the orthogonality condition of the 3jm symbols. The resulting

diagram is shown in Fig. 6.9. Owing to the flatness of Az, we can move around the Wilson-line j;
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Fig. 6.9: Removing of a couple of vertices.

homotopically, and the network in Fig. 6.9 can be brought into the configuration depicted in Fig.

6.10. Since the Wilson-loop consisting of j; and j3 is contractible on ¥, we end up with the final

Fig. 6.10: Removing of a Wilson-line.

configuration shown in Fig. 6.11. Summing up, the Wilson-line network on the auxiliary torus

Fig. 6.11: Final configuration of the triangulation on S.

is deformed into a single Wilson-loop around its homology cycle contractible in M 4. Moreover,
taking into account the weight in Z[M, A](c), we have checked that the resulting summation over
j4 reproduces the right hand side of (6.43) for the d-torus case.

This proves the identity (6.41), and the equivalence between D, and Dj.
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C Correspondence between the partition functions.

We show here that the partition functions of the two theories considered above coincide, as long

as the d dimensional manifolds involved are obtained by glueing together d-tori and spheres S¢.

As we have shown in item B, the wave-functions of the BF theory and of the spin model
are related by (6.41). Zl(de) = (®ur,,®ar,) BF and Z[M Y, given in (6.33), are the same since the
isomorphism (6.35) preserves the inner products in the two Hilbert spaces, Hgr and H(A). Thus,

in order to establish the equivalence ngdF) = Z[M4%), we have just to show that
(\I!Al;cl"I,A%CZ)BF = Dg . PAI,Az (61762) (6-44)
or equivalently that

S Tage (AW Pa, a(e1,e)wp S0 Ua, o (As) = Dy K (41, 45),  (6.45)

€1 €C(A7)
cg€C(A2)

where K (A1, As) is a kernel for the inner product, namely
(@,)5r = [10A16(F15) [184218(Fs ) B(A)K (, 42)B(do),
and it is given in terms of the functional integral

K(Al, A2)5(F1,ij)5(F2,ij) = Ali=)=4y [dB, dA] exp(iSBF(B, A)) (646)

A(t=1)=A4g

for the topology N = X x [0,1].
Firstly, we show that the left-hand side of (6.45) is proportional to the right-hand side. The
factor Db“2 will be fixed later. Since ¥4, ., is evaluated on a flat connection A;, we may use (6.36)

to rewrite the ;1eft hand side of (6.45) as
" TEA WA (A1) (A
S wpF WA (A1) T4 (Ad). (6.47)
ceC(A)
On the other hand, it follows from the functional integral expression (6.46) that the kernel
K (A1, A;) vanishes unless A; and A, have both flat extensions in N. For N = X x [0, 1], the flat

extension exists if and only if A; and A, are gauge-equivalent. Thus we need to show that the

sum over colorings in (6.47) imposes the constraint A; ~ A,
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Let us examine the case when M; are tori. As we have seen in item B, the auxiliary surface
S associated to 8M; is a 2-torus. It can be decomposed into two triangles and the corresponding

network of Wilson-lines is shown in Fig. 6.12. A flat connection A on the torus can be specified

A

Fig. 6.12: Wilson-line on torus.

by the holonomies U and V around the two homology cycles on X. The wave-function ¥a . for
the network can then be regarded as a function of U and V. In the network in Fig. 6.12, the
Wilson-line j3 can be made arbitrarily short (using the flatness of A) and replaced by an identity.

In this case, the wave-function ¥ . is expressed as a function of U and V according to

! 1" ! " "
—_ miy me MMy MoMg TN3M3
‘IJA;c(U:V) - Zm;,m’i,mg’ Ujlm’lvyém’zgjl 95 93

( vod2 G ivje ds ) (6.48)
my; ms Mg m{ m§ m§ )’

Here we marked the homology cycles on S in such a way that the Wilson-lines j; and j» wind
around cycles corresponding to the holonomies U and V. The holonomies U and V' commute with
each other, so they can be diagonalized simultaneously. Since the wave-function ¥4 . is invariant
under the simultaneous conjugation, U — Q7UQ, V - Q71VQ, we can substitute diagonal
matrices U,T = ¢™8gm, and Vi, = ™67, into U and V in (6.48).

Consider now the following summation

Z AT T (01, 01) A c(02,02), (6.49)
J1,d2,J3

where (61, 1) and (fz,p2) are phases of the holonomies (U1, V1) and (Us, V2) for A; and As, re-

spectively. Although it is possible to do the summation for generic values of the phases, it is more
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instructive to study the cases when two, among the four phases, vanish. (Actually it is enough,

as we shall see below)

Let us consider the case when Vi = Vo = 1. In this case, the wave-function ¥ .(U;, V;) is

simpliﬁed as

251 +1)(2j2 +1)(2j3 + 1
\IuA,c(Uz-,v;:l)z\/( 12 DR+ JCA LD py(w),

The result of the summation (6.49) gives
D iniings ¥a,e(U, V1 = 1)UA (U2, V2 = 1)
=3, Tr(Uig) Tr(Uszs) - W+ 55T 20 o sl <ia <ot (292 + 1)(253 + 1)
=20 Tr(Urj,) Tr(Usj,) = 6(Uy — Us).

Here we have used the definition of wy and the orthonormality of the irreducible characters
Tr(Uj,). Thus the sum over colorings in the left-hand side of (6.45) indeed imposes the constraint
U; = Us when Vi = V5. It is straightforward to do the computations in other cases, namely when
Uy=Vo=1or Vi = Us = 1. The sum in (6.49) imposes U; = Us and V; = V5 in both of these
cases.

We have seen that the left hand side of (6.45) is proportional to K (A4;, A5) as far as two among
the four phases are equal to zero. Let us relax now this condition and suppose that they are not
necessarily zero, but their ratios 8;/¢; (i = 1,2) are rational numbers. Since (6.49) is invariant
under the modular transformations of S, we can change the basis of the homology cycles in such
a way that two among the four phases around the cycles become equal to zero. The summation
in (6.49) then reduces to the computation made above, and we see that the constraints A; ~ A,
arises owing to the presence of the summation. In general, when the ratios are not rational, we
can find a series of rational numbers which converges to ;/y;. At each step in the series, the sum
over the colorings in (6.49) gives the constraints A; ~ A,. Thus it will also be the case in the

limit of the series.

So far we have found that the left hand side of (6.45) is equal to K (A, A2) up to a constant
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factor Ep, namely

S Tage (A)wp =) Pay ay(n, )i T A0 Wa, 0, (42) = By - K (A1, 4s).

c1€C(Aq)
ca€C(A2)

Equivalently we can write:
(‘I'Ahcl7 lIIAz,Cz)C'S = Eb_l : PAl,Ag (Cl,Cz).

By combining this last relation with (6.41) and by using the expressions of Z](\ff) and Z[M49] in
terms of pairings, we obtain

ZBF) = p2 Bt 79 M) (6.50)
for b=1 (the d-torus has only one contractible homology). If we consider now the topology M = S

and normalize the invariants to be equal on it, by noticing that S¢ can be constructed by glueing

two tori, we obtain DZE, 1 = 1, which completes the proof.
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Chapter 7

Observables in Turaev-Viro model
and explicit computation of
Zy [M7).

In this chapter we introduce observables associated to link invariant in the context of the Turaev-
Viro model and we show how this extension, which is based on a presentation of the manifolds
in terms of Dehn surgery operations, allows the explictly computation of the invariant Zpy [M?3]
(equivalent, in its explicit realization, to Z[M?3](g)) for lens space. The content of this chapter is

based on [40].
7.1 Observable and link invariants.

In the original formulation given by Turaev and Viro in [3] links were absent, a gap filled only
later on by Turaev himself in [53]. Our starting point is the notion of fat graph in a compact
3-manifold N. By this we mean a finite graph whose vertices and edges are extended to small
2—disks and narrow bands respectively. We will consider here only 3—valent fat graphs equipped
with colorfs given by the assignment to edges of non negative integer or half-integer lying between
0 and (k -—i2) /2, where k is related to the deformation parameter of the quantum group associated
to the theory. In our case we consider SL,(2,C) with ¢ = exp z—l’cﬂ [63]. Note that the model
without links will turn out to repréduce the usual form of the Turaev—-Viro invariant (cfr. Section
6.1 and Appendix 8.1).

The set of the initial data of Turaev-Viro model are defined as follows. Fix a commutative ring
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K, let K* be the subgroup of invertible element of K. If I is a given finite set, let us consider the
functions i —+ w;, I — K* and a given element w of K*. A G-tuple will be admissible if his triples
are admissible, adm, and a triple is admissible if, in the explicitly realization of this context using
a quantum group, its elements satisfy the triangular inequality. To every 6-tuple we associate the
J1 J2 Js
Ja Js e
The initial data satisfy the conditions:

symbol €K

a) Yj1,92,-.-,J6 € I such that (j1jsja), (J2jajs), (J1jsje) and (jajsje) are admissible triples, we
have

Js Ja Js
J2 Js J

21 J

js s Ja = 8jaje; (7.1)

2
ij

J
b) Ya,b,c,e, f, i1, j2, j3, j23 € I, such that (jazaeji fb) e (jzj25230fc) are admissible, we have

3w Jooa Jf|Js J e||Js J2 Jes |_|J23 @ e||J3 J2 Ju3 | (7.2)
jjjlcbjlfcaej s f bbb o |’ '
¢) Vj € I we have
2 -2 2 -
w? = w; Z wiw?; (7.3)
k,l:(jkl)€Eamm.
To this set we add another function ¢; € K*, which satisfies the relation
o | J3 g1 Jis || J2 Js Jes | _ . _ -1 -1|Js J2 Jo3
Z Wi 595138 jo § iz 1§ jis = 495951952953 95,5 9505 17 i3 (7.4)
j1s€l
From this latter, the following basic relations are obtained
Jj3 g el _ |7 ¢ g|_ 2 o1 1 1| J1 J3 Jis c j1 g
Ijl d c _’Jé e dl—.z Vi Qeedninh o Gs | ¢ e d || js e iz |’
jis€l
(7.5)
2 —2\¢& i b .7 _ 2
P CR T o ol IR (7.6)
, Jjer
where € = :I:;l, and
E Wi = wiw;. (7.7)
k
(i,7,k) € adm
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If we consider the quantum initial data [53], namely if we explicitly realize the model using a

quantum group, we obtain:

w? = __2,,./(q1/2 _ q—1/2)2 = ,wg
wj = (~1)%[25 + 1% = wiy,

:(\/_—1)—2(Zji){ i1 g2 Js }

Jja Js Js

. . . 7.8
Jr J2 7_3 ( )
Ja J5 Js

¢; = exp(mv/=1( —i(i + )r™1)).

where [k] = g;g—:—g:f—;j- and { ;.1 ;.2 ;3 } is the quantum Racah-Wigner symbols.
4 Js Je
q

The Turaev-Viro invariants can be generalized to get invariant of the form |M3, F|,, with F a
certain union of components of fixed GM?3,

M3, Fly = w2 TTwu(e) [Twie [T 171w (7.9)
e T

o
where a is the number of vertices of M3, 8’ the number of vertices of OM3\F, e runs over the
edges of M3, which do not lie in OM3, € runs over the edges of dM3\F and T runs over all
3-simplices of M3.

A coloring of a 3—valent graph ¢ is a function which associates an element of the set I with each
edge of . This assignement is such that, for any vertex of ¢ incident to 3 (resp. 2) edges of ¢,
the colors of these edges form an admissible triple (resp. are equal to each other). Each fat graph
T has a core ¢(I') which is an ordinary graph consisting of edges and vertices.

If F is any compact surface, a fat graph in the cylinder F x [-1,1] may be represented by graph
diagrams on F' containing only double transversal crossings of edges (provided with an additional
structure showing the undercrossings and overcrossings). Let now F be an oriented compact
surface and let ¢ and 9 two colored 3—valent graphs embedded in F. Let I" be an oriented colored
fat graph in F' x [-1,1] and D its graph diagram on F. We may assume that ¢, 1 and D lie in
general position so that all crossings of ¢ U1 U D are double transversal crossings of edges. We
derive a graph diagram from ¢ U U D assuming that ¢ lies everywhere over ¥ U D, and v lies
everywhere under ¢ U D. Denote the resulting graph diagram on F' by o and denote by ¥ the

graph in F obtained from ¢ ignoring the over/under crossing information. The set of vertices of
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¥ may be split into five subsets (Fig. 7.1):
1) the 2-valent vertices of ¢, ¥, D;
2) the 3—valent vertices of ¢, ¥, D;
3) crossings of ¢ with 1;
4) crossings of D with ¢ or 1;
5) self-crossings of D.
A region of D with respect to ¢ and v is a connected component of F\X and an area—coloring of
D is an arbitrary mapping from the set of the regions of D into the set I. An area—coloring n of
D is called admissible if for each edge e of ¥, the color of e together with the n—colors of the two
regions of D adjacent to e form an admissible triple. Denote the set of admissible area—colorings
by adm (D). With each n € adm(D) we will associate an element |D|, of the ring K. For a region
y of D we set

lyly = w2 (7.10)
where n(y) and x(y) are respectively the n—color and the Euler characteristic of y.

With respect to the previous classification we have five possible ways of characterizing a vertex

a € X, namely:

1) laly =1;
i j i 1
n
m 1
k
Fig. 7.1: Vertices configurations in X.
2)
i j k
o= 2~ (7.11)

where 7, j, k denote the colors of the three edges of X incident in a and I, m,n are the n—colors of

the opposite regions;
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3) the same expression used as in 2) where [ is the color of the upper branch and ¢ that of lower

branch; moreover j, k,m,n are the n—colors of the four regions of D incident in a;

4)
_ /2 172 =1/2 _1/2| 4§k
laly = @' ¢ ¢; """ dm o (7.12)
5)
1 Jj k
laly = @rang; g’ | 0 L (7.13)
Finally, let us define the following quantity:
(D) = [ lvln [ lals (7.14)
y a
where y runs over all regions of D and a runs over all vertices of ¥. The state sum
(@l[@) = > (pDI¥), €K (7.15)

neam(D)
turns out to be an invariant both under ambient isotopies of ¢ and % in F, and under isotopies
of T'in F' x [—1,1] [53]. If F is a disjoint union of n surfaces Fi,..., F, then we can extend (7.14)
and (7.15) according to:

n

(0| ®) = [ (orTsl @) (7.16)
k=1

where @, are the components of ¢, lying on Fj, and I'y is the part of T lying in Fj x
[-1,1], (V& =1,2,...n) [53].

We can define now the invariants of links on a generic manifold. Let A/® be a compact 3—manifold
with a triangulated boundary M3 and let T' be a 3—valent colored fat graph lying in intM 3. We set
F = 8U, where U is an oriented closed regular neighborhood of I" in M*. Consider a non—singular
normal vector field on the surface of I' which, together with the fixed orientation of this surface,
determines uniquely the orientation of U. Shifting I" along this vector field we get a parallel copy
I of T lying on F. U is an handle-body consisting of 3-balls and solid cylinders. Choose in each
of these cylinders a meridian disk which lies transversal with respect to the corresponding band
of I". Let w1,...,%m be the boundaries of discs obtained in this way, where m is the number of
edges of I'. The former loops can be considered as graphs with one vertex and one edge. We

color them with a sequence J = (j1,...,Jm) € I"™ and set wy = [y, w? . Let N be the compact
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3-manifold M3\U bounded by N = F UdM?3. We provide M? with an arbitrary triangulation,
which extends the given triangulation of M?; also F' is equipped with the induced triangulation
and let s be the number of vertices of I'. Then for each A € col(9M?) we define a relative invariant
of the pair M3, T',with respect to A: |

Zpy[M?,T, ) = 0?2 > wi | N, (7 [T 05) (7.17)

pEcol(K),plgpa=A,J€I™
where v is the dual graph of the 1-skeleton of the triangulation of F and pr = p|r. We introduce
invariants on Heegaard diagrams of a closed 3—manifolds [53]. Recall that an Heegaard surface
in a closed 3—manifold M3 is a closed connected oriented surface F C N which splits M3 into
the union of two handle-bodies U and V, bounded by F. We distinguish these handle-bodies
assuming that the orientation of F, together with the normal vector field on F' directed outwards
U, defines uniquely the orientation of M 3. Let ¢1,...,p, (resp. v¥1,...1,) be the boundaries of
a system of meridian disks of V' (resp. of U), where g is the genus of F'. The surface F, together
with these sets of loops, is a Heegaard diagram of N. We will treat the loops ¢1,...,1, as graphs
on F, each one of them having just one ‘vertex and one edge. Denote by s the colored graph
on F obtained from ¢, U ... U, by assigning the coloring ji,...,j, to the edges of ¢1,...,1,
respectively; a similar definition holds true for ¢g. Therefore if I is a colored 3-valent fat graph
lying in F x [-1,1] C N we obtain the invariant
r 9
Zry[M3,T) = w2 > TLws TT whs er 1) (7.18)
J=01...5.) €19 =1 k=1
H=(hi...hg) €I

where IV is defined as before.

7.2 Dehn surgery.

A manifold M? can be understood as the union of several components glued together by some
given identification of the points on their boundaries. If these components are glued in a different
way, one may find a new manifold M%. In this case, we say that M?® can be obtained from M 3

by means of surgery. As is well known, any closed, orientable and connected 3-manifold can be
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obtained by surgery from the 3-sphere S® [54]. In this section we give a brief review of the surgery
operations in S%. In particular, we concentrate on Dehn surgery performed along knots or links
in S2. In order to describe Dehn surgery operations, we need to consider solid tori. A solid torus
is a 3-dimensional space V homeomorphic to S* x D?. A giveﬁ homeomorphism h : S* x D*> =V
is called a framing of V. Given a tubular neighborhood N of a knot C and a framing h of NV, the
longitude h(S* x 1) of N defines a framing Cy of C, which is a preferred framing if the linking
number of C' and Cj is equal to zero. The longitude A = h(S* x 1), defined by a preferred framing
h of N, is oriented in the same way as C, and the meridian u = h(1 x 8D?) is oriented in such a
way that its linking number with C' is equal to +1. We say that the longitude A and the meridian
i of N are the homotopy generators of a Rolfsen basis in N and any class [f] € m1(ON) is
expressed in this basis as

[l=a-A+b-[u]=(ab).

A Dehn surgery performed along a knot Z in S* can be described in the following way

1) first remove the interior N , of a tubular neighborhood N of the knot Z, from S3;

2) consider S3\ N and N as distinct spaces whose boundary a(S3— N ) and AN are tori;

3) glue back N and S%— N by identifying the points on their boundaries with a given homeomor-
phism A : N — 8(S3— N)

The knot Z and the glueing homeomorphism h completely specify the surgery operation and the

resulting manifold is denoted by

M? = (S°~ N)|JN. (7.19)
h

Actually, the manifold (7.19) depends (up to homeomorphism) only upon the homotopy class of
h(p) in 8(S3— N ), where p is a meridian of V. The surgery is characterized then by the knot Z
and by a closed curve Y € ON representing h(u). The convention introduced by Rolfsen in order

to codify the surgery instruction consist in choosing:
Y=a-[N+0b-[y]:=(a,b),

where the generators A and p are the longitude and the meridian of a Rolfsen basis in dV.

The ratio r = b/a is called the surgery coefficient. In conclusion, the surgery instructions are
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specified simply by the knot Z in S® and by the rational surgery coefficient r. Clearly, the surgery
operation of removing and gluing back a solid torus can be iterated. Therefore, a general surgery
instruction consists in the assignment of an unoriented link L in S? with given surgery coefficients
{ri} associated with its components {L;}. For example, when L is a circle with surgery coefficient
r = b/a, the resulting space is homeomorphic with the lens space L(a, b).

Two manifolds associated with different surgery instructions are homeomorphic if and only if the
two surgery instruction are related by a finite sequence of Rolfsen moves [54] [55]. A Rolfsen move
of the first type state amounts to add or delete a component of the surgery link L with surgery
coefficient 7 = co. A Rolfsen move of the second type describes the effects of an appropriate twist
homeomorphism 7. on the surgery instruction.

Let L be a surgery link such that one of its components, say L1, is a circle with surgery coefficient
r1. This means that all the remaining components L;, with j # 1, belong to the complement solid
torus V; of Ly in S3. Under a twist homeomorphism 74+ of Vi, the component L; is not modified,
whereas L; are changed according to 74 : Lj — L;. Moreover the surgery coefficients become:

1
o
ry = T/ =1 (7.20)

ri = 1y (0L, L)) forj #1, (7.21)

where 6(L;, L) is the linking number of L; and L.
When the surgery coefficient r is an integer, one can take a = 1 and b = r; in this case, the curve

Y is a longitude of N and can be interpreted as a framing of the surgery knot Z.
7.3 Reformulation of the Turaev—Viro invariant.

The maiﬁ" purpose of this section is to rewrite the surgery construction in terms of the Turaev
formalisni. We start from the T-V invariant expression in the Heegaard splitting framework
' 9 9
-2
2 (@) = v 2. [Tt T wlon GeelOb), (7.2

J=(jljg) cJ9 i=1 k=1
H=(hy...hy) €I

where @ and v; are the meridians of the two handlebodies generating the manifolds. Let us

consider the case in which the surgery link consists of many distinct loops with generic framings.
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This is a sufficiently general situation which can be used to represents a great number of manifolds
by explaiting the Kirby relations. In this situation (px]0j1;) becomes [],(ox,|0]1);;) where each
term lives on a single torus, the regular neighborhood of each link component. It is necessary now
to consider what happens to the torus in the Heegaard—splitting configuration as a consequence

of the surgery operation. In the following we shall consider several distinct cases.
7.3.1 S%x S

We start with the case r = 0, where the surgery operation sends a meridian into a longitude on the
surface; the curves that realize the quantity (px|0]1;) are a meridian of the torus (transformed)

and a meridian of the complement respectively. The starting graph is showed in Fig. 7.2 where

Fig. 7.2: Graph associated to the surgery operation with r = 0, in which we consider the
transformed torus as a handle-body.

we consider the transformed torus. If we had considered the initial torus instead, the meridian of
the complement would have been the curve that sticks to the meridian of the torus under surgery
operation. Since the stick operation forces us to associate longitude to meridian, the graph that
we must consider is shown in Fig. 7.3: it represents the torus meridian and the meridian of the
complement after the action of the surgery operation. The value of the invariant associated with

this graph is simply

- 2
quzw&“q)iw(q)j Z L, (7.23)
ab

(Zab)
(jab)
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Fig. 7.3: Graph associated to the surgery operation with r = 0, in which we consider the torus
before the transformation, namely the object associated to the S® splitting.

since the surfaces that the two links bound on the torus surface have Euler numbers equal to zero.

We rewrite the two sums in (7.23) according to:

>oulply; D 1= Zb: > whyly; =
ij a ZJ

ab
(tab) € adm (iab) € adm
(jab) € adm (jba) € adm

(7.24)

j ab i
(iad) € adm (jab) € adm (iab) € adm

=Zb: Z w(Qq)i Z w%tz)i = Z( Z w%q)i)2~
a i

Using the relation (7.7) we obtain:

2 4 4 _ .2
g Zw(q)aw(q)b =Wy
ab

w

which is exactly the T-V invariant for S? x S* [3].
7.3.2 S5

As is well known S® can be obtained with a surgery operation along a link with framing equal
to one: the meridian of the torus is sent into a longitude that becomes knotted once along the
surface. The graph associated to this situation is depicted in Fig. 7.4, where we can see the curve

that goes trough one meridian and one longitude before closing. The corresponding expression for
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Fig. 7.4: Graph associated to the surgery operation with r = 1.

the invariants reads:

-2 2 .2 2 i a a
wy? Y wiiWig; D Wipa i a a (7.25)
a
Now we consider Z[S®](g) in its expression coming from (7.17):
Sl 1M, Flu(v4l0l) = Z[5% (), (7.26)
1)
where the term (v4|0}%;) of Z[S%](g) corresponds exactly to:
2 j a a
Z Y(g)a (7.27)
- g L oa a
Thus, by using the expression of |M, F|, in (7.9), we get:
Fig. 7.5: Graph associated to S® in definition of the invariant.
3 -2 2 2 2 j a a
ZI8°N0) =7 2 wlpilou 2 %e| 4 o 4 (7.28)
pi a

which représents the desired result.

7.3.3 The lens space L(2,1)

In the L(2,1) case the associated graph is depicted in Fig. 7.6, where we can see the curve

that goes trough one meridian and two longitudes before closing. To this graph we associate the
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\m

Fig. 7.6: Graph associated to L(2,1)

quantity
i b a

iboa (7.29)

i a b
j a b

-2 2 02
wi' Y Wig)a¥la)p
Carrying out the sum on 7 and using the first axiom on the structure of the initial data, we obtain

that the invariant, expressed in the Heegaard—splitting framework, is equal to:

wq_g Z w?a)aw(zq)b Z = w;z Z Z w?q)a Z w(zq)b' (7.30)
7 1 a b
(iab) (iab)

According to relation (7.7), we eventually obtain the formula

Wy Zw?q)i DIRTAR (7.31)
which gives exactly the T-V invariant for L(2,1) [3].
7.3.4 The lens space L(3,1)

Let us consider now L(3,1). In this case, the surgery link has a framing r = 3, so that the meridian
of the complement is sent into a curve which goes trough one meridian and tree longitudes before
closing. We obtain the graph of Fig. 7.7, and the associated invariant is expressed by the quantity:

i ¢ blli ¢ a

-2 2 2 2 i a b
Wq Zw(q)aw(Q)bw(q)c i ocblljcalljba (7.32)
Carrying out the sum on 7 and by using the second axiom we obtain
-2 2 2 2 09 g3 ii
wy? Y iy wipa i wlpe ca blla b e (7.33)
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\m

=
e 0

Fig. 7.7: Graph associated with L(3,1).

Finally, upon summation over b and using the relation (7.1), we get as in [3]

. 2 2 _

wy Z Z Wig)aW(g)e = Z Wi (7.34)
J ac j
(433) (Jac) (4979)

7.3.5 The lens space L(n,1)

L(n,1) is obtained by a surgery along a link with framing r = n; the meridian of the complement
solid torus is sent into a curve that goes trough one meridian and n longitudes of the torus surface

before closing, the associated graph is given by Fig. 7.8. The expression of the invariant becomes

-
T —

.

Fig. 7.8: Graph associated to the surgery operation with r = n.

\

=2 2 2 2 T 1 J2 i Jjn Jn-1
Using the relation defining the 3nj symbols (see (3.5) and [56]) we get
@ az o an a ¢z
by by by | =30,(-1)5"* 22+ 1), { Lo } X
Cy Qa9 b1
=oos e BCED



where S denotes the sum over all the 3n arguments and

a; C b4

a ¢ 2 =(_1)(d1+a2+b1+c1+cz+z)
q Co Q2 bl

ca as by

We can rewrite the expression of the invariant in terms of 3nj-symbols

2L, Dl0) =w? (2 + U [ [+ | 7 5 il . @3

i U

7.3.6 Explicit computation of the invariant for the lens space L(p, h)

We generalize now the procedure, introduced in the previous section, to the generic 3-dimensional
lens space L(p, h) where p, h are relatively prime, (p,h) = 1. We can denote them collectively
L(nh + f,h), with n integer and (f,h) = 1 with h > f. We have seen in section (7.2) that, in the
surgery representation, the meridian of the tubular neighborhood of a surgery link is sent into a
curve which goes trough p meridians and h longitudes before clcsing. The graphs associated to
these configurations are quite more complicated than the ones considered before. Let us consider

first the graphs and the invariants in some particular cases.
A. The lens space L(2n+1,2)

Put A = 2 and consider as an example of this class L(5,2), with the associated graph shown in

Fig. 7.9. In order to construct this graph we put three points on each horizontal line and five

Fig. 7.9: Graph associated with L(5,2).

points on each vertical one at the same distance from each other, connect among themselves the
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first point of the horizontal lines, the second point of bottom horizontal line with the first point
of vertical left line and the other in pairs with lines “parallel” to this one. It is easy to see that
the graph represents the intersection of two links, one of them going trough two meridians and

five longitudes before closing. Using the rules described above, the expression of the invariant is

2165, 2)(0) = v Sofpoly, evlos | 5 50 70 |5 5 5 |
(7.38)
t o1 Je || J2 3 ||t J3 Ja
JoJa Js || J 5 Jal|J S s

which, using (7.36), can be rewritten in term of a 15j symbol
. a3 n J2 J3
ZILG D) =w? Y i+ U [[R2a+ 1. | 4 4 J il . (7.39)
i J1 J2 J3 Ja Js .
Starting from expression (7.38) and using some basic relations involving 6j symbols [47], it is
possible to recover easily the value given in [57]. We will give, in Appendix 8.6, the explicitly

computation for this example and for a similar one. From this analysis we can recover the following

expression of the invariant for the class L(2n + 1,2), (see Fig. 7.10),

=

2n+1 /

Fig. 7.10: Graph associated with L(2n + 1, 2).

ZIL(2 + 1n, 1))(g) = wy® 30[2] + o [1i[27: + 1 x
Jan el aooe Jan-1 (7.40)

J1 J2 Ja E Jan+t1 .
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B. The lens spaces L(3n+1,3) and L(3n + 2, 3)

For h = 3, we have two classes L(3n + 1, 3) and L(3n + 2,3). As an example of the first case we

consider L(7,3), and for the second case L(8,3). The graph associated to L(7, 3) is shown in Fig.

7.11. The link goes trough tree meridians and seven longitudes before closing. The associated
i j

y

> |

Fig. 7.11: Graph associated with L(7.3).

expression for the invariant is

— ay—2 2 2 2 Js Je
Z[L(7a 3)] (Q) - wq Z w(q)iw(q)j Hi w(q)ji ] j2 jl X
(7.41)
ioJe Jr ||t Jr h i Ja Js
JoJs J2 || 7 J& J2 J oot
Note that, by using the relation (7.36), it can be rewritten in terms of a 21j symbol
ZIL(7,3))(q) = w2 (25 + 1]g [T;[24: + 1]g %
| s jo o g1 h Ja (7.42)
X i3 0 J o J| -
J1 J2 J3 Ja ne Jr .

It is also possible to obtain the value given in [57], using a sequence of relation described in [47].
We are now in condition of constructing, for L(3n + 1,3), the associated graph, (see Fig. 7.12).

The corresponding invariant is given explicitly by the formula

ZILGn + 1,3)](q) = wy? 5(2 + 1, TL(2j: + 1y
Jan—1 Jan Jan+1 J1 e Jan—2 (7.43)
% ; ; i . il
7 J2 Js Ja R Jan+1 .
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3n+1

Fig. 7.12: Graph associated with L(3n + 1, 3).

Let us now consider L(8,3): the associated graph is shown in Fig. 7.13 and it is generated by

Fig. 7.13: Graph associated with L(8, 3).

using the usual procedure.
The corresponding expression of the T-V invariant, can be written, by exploiting (7.36), in term
of a 24j symbols, namely
Z1L(8,3)](a) = w™? S(2 + 11, TTi[24: + 1y
Je ' Js . Js ‘ b S Js ‘ (7.44)
J1 J2 J3 Ja e Js .
Also in this case it is possible to obtain the value given in [57].

Finally we can associate with the lens space L(3n + 2,3) the graph shown in Fig. 7.14. The



3n+2

Fig. 7.14: Graph associated with L(3n + 2, 3).

invariant expression is given by
Z[L(3n + 2,3)](q) = wy? 30[25 + 1y [1;[25: + 1] %
Jan Jan+1 Jantz T e Jan—1 (7.45)
x A A
1 J2 J3 Ja e Jan+2 .

C. The lens space L(nh+ f,h)

On the basis of the above examples we are now able to construct the graph associated to a generic
3 dimensional lens space and its related invariant. The strategy is to put hn + f point on each
vertical line (at the same distance from each other) h + 1 points on each horizon line and then
connect among themselves the first point of the horizontal lines, the first point of the vertical left
line with the second one of the bottom horizontal line and the other in pairs with “parallel” lines.
Such kind of graph is shown in Fig. 7.15 where f is the value of f for which (h,f) = 1, and the
expression of the invariant can be written, in terms of a 3(nh + f)j symbols with entries positions
depending from h, in the form

ZIL(nh+ F,W)](q) = w;? 3[25 + 1], [1;[24: + 1], %

It F=h+1 Inbt Fhot2 e Inhtf 51 o Jnhtfh
% ‘ j j ... j j ... j
J1 Jo e Jh Jhy1 - Inh+F .
(7.46)
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nh+f

Fig. 7.15: Graph associated with L(nh + f,h).
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Chapter 8

Appendices.

8.1 Quantum extension.

Let us consider the quantum group Uy(G). This is the quantum universal covering space of the
Lie algebra G and is an associative algebra over the ring of formal power series generated by the
elements H;, Xj‘ , Xy withi=1,...,7r = rankG, satisfying the relations:

[H;, Hj] =0, [Hi, XF] + (ai05) X5,
(8.1)

sinh(%

_ inh( & H; n n n n—k . .
6 X7 = dy B2, 5 (i | | G =0, i
{a;}i_; are the simple roots of G, (c;a; is the value of the canonical bilinear form in the root

space and

[ n ] _ sinh() .. sinh(AER)
k sinh(ZHhY . sinp (k)

The spin variables {;j} take their valuesin a finite set I = (0,1/2,1, ..., k) where exp(wi/k) = q.
For each j € I a function w?q)j = (=1)?%[2z; + 1], € K* is defined, where K* = K \ {0} (K a
commutative ring with unity). Recall that the notation [.], stands for a g-integer, namely [n], =
(@"—q™™)/(g—q~') and that, for each admissible triple (j, k,1), we have: w(_q?j ki w%’q)sz"qﬂ =
w?, with w? = —2k/(g—¢7")*.

We just notice that the basic receipt to transform the classical state sums into the quantum ones

can be summarized as follows

e the classical weights (—1)27(2j + 1) are replaced by w?q) ;» while each of the factors A(L)™*

becomes w; ?;
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e each Wigner symbol of SU(2) is replaced by its g-analog ¢ — 3jm, normalized as explained

below;

e each classical recoupling coefficient (or 3nj symbol) of a given type has its g-deformed

counterpart, obtained by summing over magnetic numbers products of ¢ — 3jm symbols,

apart from suitable phase factors

Recall from [58] and [59] that the relation between the quantum Clebsh~Gordan coefficient

(jimijama|iams), and the ¢ — 3jm symbol is given by

i i) = (1)1 (94, 4 1] )1/2 ( i J2 J3 ’ 8.9
Grmamalisma)y = ((DFE @02 (20 R D) 8)
where, as usual, an m variable runs in integer steps between —j and 47, and the classical expression

is recovered when ¢ = 1. The symmetry properties of the g — 3jm symbol read

jl J2 Js — (_1)j1+j2+j3 J2 J J3
my Mz M3/, Mz My =3 1/q’

i g2 I3 ) (__1)]'1+.7'2+j3q—'m1/2 (-71 E J2
mi mp —m3 /, l/q’

my mz —Mmy
i J2 3 _ (—1)d1+dz+is i 2 U3 ) (8.3)
mi my —ms ) ‘ -mi —m2 mz ), '

Thus we define the normalized g—3jm symbols, for deformation parameters g and 1/g respectively,

according to

Ji J2 I3 iq(ml—mz)/(:‘o( J1 J2 73
mi M2z —Mg q my; Mo —M3 q

JioJ2 o s ] iq(m2"’m1)/6(j]‘ J2 Js (8.4)
. my my —ms |, miy Mg —Mg3 1/q ’

‘The orthogonality relation involving the normalized symbols (which are used for instance in order

to handle identities representing elementary shellings and inverse shellings) reads

A A
jm q
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where ©® = my + ms + ms. As an example, we just give here the g-counterpart of the state sum

(5.24)

ZI(T(jpam2y Jpa1), 0T, 4oz, Jhacr;m, M)] — (M2, 0M%))(g) =

d—3
_ wg—l)da H (=1)Hed=2[2j a2 + 1], H <H (-—-1)2Jc [2Jc + 1]q> .

all g¢—2 all g4—1 \C=1

O’d

31 RECELIS NI SRERNE ) (D DR e

all od q gd-1gpTd M

o J Ji—s  Ja-1 Jg (8.6)
mi mp M . Mgz mg_1 my q' )

where & = 2(Ng — Ny + ... + (=1)473N4_3), (No, N1, N, . ..) is the total number of (0,1,2,...)-
dimensional simplices, the {2(d — 2(d + 1)j}, symbols are defined substituting in the classical

expression the g-3jm symbols (for each m the factor ¢™/? must be added).

8.2 Explicit calculus of Z,[M?].

To obtain the exact value of the invariant ch we may act in this way: we start by considering
triangulations of the 2-sphere S? and of the torus 7%, and then we look what happens adding
other holes. In Fig. 8.1 part (1) we can see the triangulation of S? with, in evidence, the structure
of the invariant namely of the graph I". Using fundamental relations from the angular momentum
theory, the invariant can be rewrite as wy ™0 3,50 Wiy, Wiy Wipe With Wiy, wiy,wl,, coming
out by the loop obtained after graphical operations. The final result give us wq‘Z, that can be also
written as w}™?X.

Let us consi%ier the case of the torus, the triangulation of which is given in Fig. 8.2 (with the bound-
ary of the hiole and the rest depicted separately) where the loops represent the w%q) , contributions

obtained afﬁer graphical operations. The result is w3(6+4)

which by introducing the normalization
factor wy2No (where Np is equal to 9 for this particular triangulation) gives Z3 = wj = wy .
To increase the genus of the surface we analyze which is the contribution generated by the tri-

angulation of an additional hole: the corresponding picture is given in Fig. 8.3 where it is also

put in evidence the loop contribution. We notice how the triangulation of this “new” hole adds
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Fig. 8.1: (1) Triangulation of S? whit the structure of the invariant, (2) after the application of
the relation given in Fig. 5.9, (3) after the twice application of the orthogonal condition of 3jm
symbols.

to the triangulations of the previous surface (and to the invariant), 5 new vertices and a diagram
contribution consisting of 5-+2 loops. Thus the final result is, denoting by h the number of the
hole

—2(4+5h)+2(Th+3) _ . —2+4h _
q

2—2x
wq .

Wy

8.3 Relations proving the invariance of
Z[(M*,0M*)] under shellings.

Recall from (5.18) and (5.20) that there we made use of primed spin variables {j', J'} in order
to label those components which lie in 7% in some configuration, while plain {j, J} denoted
components in int(T*). Since here almost all variables are indeed in 8T, we agree to change our

previous notation according to

jiajé?"':jio — j17j2)"':j107
JH(C OTY) —> Ja,

To(C int(T4)) — JTa.
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Fig. 8.2: Triangulation of T? with the structure of the invariant after several application of the

relation given in Fig. 5.9.

For the corresponding m variables we keep on denoting them by plain mi,ma, .. ., mio; Ma, ..., Me,

since no ambiguity can arise. We set also w;‘? = (27 +1), and the summation labels and arguments

are shortened as far as possible.

[1 — 4]%, (see Fig. 5.5)

2 me [ J1 T2 Ja 3 Ja o _
Z wJa(“l) ( my Mma Mg > ( ms M4 —Mg > [Ja7JbJJC:Jd)Je] -

Ja,ma

- Y, S ma [ s de b s dr I ,
;( 1)2 ;( R ms e T —m3 M7 —My

o i is e o Je Je Je Jio Ja .
—ms Mg M —mi Mgy —M —Mmg Mg My

N Js Ja < Jr jio Je Ja Jo Je
—mg —Mmg —M4 —m7 —Mio Me —Mmg —Mg —Me

{m’b} = (m5: e, M7,118, m97m10)
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Q)

edges guled to the previous
~___ triangulation

Fig. 8.3: Triangulation of an additional hole with its contribution to the invariant after several
application of the relation given in Fig. 5.9.

{mA} = (mba Me,Mq, me)'

[2 — 3]4, (see Fig. 5.6)

m Z mA jl j2 Ja. j3 j4 Ja N
Z 1) ? Z HU)JA m1 Mg Mg m3 Mg —My

Jja,m3 Ja,ma A

) ( Js  Js b > ( 3 Jgr I )[Ja,Jb,Jc,Jd,Je] _
ms Mg MMy —m3 M7 —Myp
_ _ Eimi _ Z ma j5 j8 Jc jl j9 ']c .
_Z( 1 Z( 1) —ms Mg M, —m1 Mg —Me
mi mA
o Js  Jwo Ja j2 Js Ja ) juo dw Je )
—MMg Mip M4 . —Mmz —Mg —Myg —mr7  —Mio Me
A j4 j9 Je
—mMy —Mg ~—Me
{JA} = (Jm Jb)
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{ma} = (mq,ms)
{m} = (ms, mg, mo)

{mp} = (m¢,mq,m.).

[3 = 2]4, (see Fig. 5.7)

= qui)-n=m ¥ [[uiaenSam (BB 5,

Jirmi % Ja,ma A

o Jz Ja e Js  J& b J3 Jr I\
m3 M4 Mg ms Mg My —ms —m7 =My

. . Jc ] ] Jc
( js s >( o g >{Ja,Jb,Jc,Jd,Je]:

—mys Mg Mg —my Mg —Mg

2 _1ymio 1\, mB Je  Jio Ja J2 Js Ja .
wi Y (=)™ (=1)2e (~m6 mio 4 ) ( —my —mg ““md>

mio mpg
) Jt Jio e Ja Jo Je
—my —Mig Me —M4 —Mg —Me

{4s} = (1, 73, J5)

{m;} = (my,ma, ms)

{JA} = (JLH ']b) JC)

{mA} = (mﬂ,mbamc)

{mg} = (mq,m.)

w? = A(L).

[4 — 1]4, (see Fig. 5.8)

S ([Tu)-n2=m S <Hw3A><*1>Z"m”<£l - nﬁ)'

Jismi i Ja,ma A

o Jz Ja Ya Js  Je b s g I\
m3 My —Mg ms Me My —m3 Mt —Mp

A s ds e i g Je Je  Jio Ja \
—ms Mg M —mi1 Mg —Mc —Mme Mio M4

( J2 Ie s )[']ay']b;Jc’Jd’Je]:

—Mg —MmMg —Mgqg
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— 8 _1\Me j7 le ']e j4 j9 Je
=YL Z( 2 (—m'r —Mio M ) < —my4 —My -—m5>

Me
{7} = (1, J2, 3, J5, J6, Js)
{m;} = (m1,ma, ms, ms, me, ms)
{Ja} = (Ja, Jb, Jes Ja)
{ma} = (mq, mp, mc,ma)

wh = A(L)3.

The full set of identities can be obtained, up to regularization, from anyone of them, on applying

both orthogonality /completeness conditions for 3jm symbols

8.4 Some remarks on SU(2).

Here we give a short summary of some standard facts about the group SU(2). One can param-
eterize an element g of SU(2) which are used in section (6.2) by vectors Z from its Lie algebra.

The corresponding relation is given by the exponential map:
g=e? =¥ /2 (8.7)

where n! is a unit vector, nin; = 1, v is a real positive parameter, the ¢! are the usual Pauli

matrices:

(o o7) = ik gk 4 6% (8.8)
and 1n’ is an element of R® = su(2) the Lie algebra of SU(2). Since
g = cos (1/2) +in‘c’ sin (v/2), (8.9)

to cover the whole SU(2) the parameter ¢ should takes values in the range [0, 47].
The Haar measure on the group can be related to the usual Lebesgue measure in R® by

introducing a function P(Z) on the Lie algebra:

P(Z) = (%) . (8.10)
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Then P2(Z)dZ/327% gives the normalized Haar measure on SU(2) in terms of the Lebesgue
measure dZ.

The characters of irreducible representations of su(2) are given by:

oy WG +12)
(e”) = 0 @2 (8.11)

where j are half-integers (spins).
The Fourier transform on SU(2) maps any function on the group into a function on the space

dual to the Lie algebra. Let f be a coordinate on the space su(2)*. Then the Fourier transform

is given by:

é(f) = %P(Z)e~if<z)¢(exp Z). (8.12)

The inverse Fourier transform is given by:
. 1 i <
¢lexp Z) = Zdlmjm [dﬂfe f(Z)¢(f)J (8.13)
7 j

where the integrals are taken over the co-adjoint orbits — spheres of radius j+1/2 and the measure

d€); on each orbit is normalized so that

/de = dim; = 2j + 1. (8.14)

J

A particular case of (8.13) is the following simple formula for the characters due to Kirillov [60]

. 1 .

v (%) = ——-—/dQ et 12, 8.15

(e”) 72 J,"Y (8.15)

8.5 Construction of the auxiliary 2-torus surface.

To compute the right-hand side of (6.43) for d-dimensional tori, it is necessary to consider explicitly
the trianglélations involved, as well as the auxiliary surfaces.

‘We start W’iith the d = 4 case.

Consider the solid torus S x D2 x S, the boundary of which is 7 = S x S* x S*. From what we
said in Section 6.2.2 item B, we can focus our attention on the boundary T that can be obtained
identifying in pairs the faces of a cube. We can triangulate a cube by starting from a triangulation

of a solid cylinder made up by three tetrahedra, as shown in Fig. 8.4, Recalling which kind of
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Fig. 8.4: Triangulation of a solid cylinder.

symbol turns out to be associated in d=4 with a tetrahedron (cfr. (5.12)), the auxiliary surface

of the cylinder triangulation is depicted in Fig. 8.5. The cube is realized by glueing together two

Fig. 8.5: Associated surface of a solid cylinder.

cylinders along one face (as indicated in Fig. 8.6) and the resulting auxiliary surface § = D?
is depicted in Fig. 8.6. The identification procedure needed to obtain T acts on the auxiliary
surface giving a T2

Let us consider now the case d = 5.

The “solid” 5-torus boundary T can be obtained identifying in pairs the faces of an ipercube
D*. The construction of D* is as follows. Collect together six 4-simplices, in such a way that
each of them provide one of its tetrahedra to construct a cube (a face of D*). There are 24
“free” tetrahedra. Now we glue the 4-simplices among themselves, leaving 12 tetrahedra “free”.
One of the two “free” tetrahedra of each 4-simplices is used to realize one of the other face of
the ipercube and the remaining 6 “free” tetrahedra are used to glue together the 7 block of six

4-simplices necessary to construct the ipercube D*. In total we have used 42 4-simplices. Also in
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Cube Associated Surface

Fig. 8.6: Triangulation of a cube an its associated surface.

this case the auxiliary surface is topologically equivalent to a disc and the identification procedure
to obtain 7% give us an auxiliary 7. This fact can be generalized in any dimension and it is
a consequence of the topological equivalence between a (d — 1) dimensional ipercube and the

standard simplex 0?71, the auxiliary surface of which is a disc.
8.6 Z°[L(4,1)] and Z3[L(5,2)] reduction.

In this appendix we want to show how it is possible to recover from our approach the lonicioiu—
Williams results [57]. We discuss only the simplest examples: L(4,1) and L(5,2). Recall that
the T-V invariant is given by a sum, over a coloring, of a particular configuration of 3nj symbols
of type II; to perform the calculus we use the diagrammatic method (see Section 3.5 and [47).

The diagrammatic representation of this symbol is given in Fig. 8.7 and for the examples we are

Fig. 8.7: Diagrammatic representation of 3nj symbol of type IIL

considering, the diagrams as in Fig. 8.8. For L(4,1) we can start using relation (10), p. 455 in

[47], which gives the sum in terms of three diagrams, refer to Fig. 8.9. On the first of them we can
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i j
1
1 4 2 3
3
i j
4
L4,1) L(5,2)

Fig. 8.8: Diagrammatic representation of L(4,1) and L(5, 2).

. ) 1 1

i j ) /
1 k 3 4 k k
/ ) j j
j j ; 3

Fig. 8.9: First step in L(4,1) calculation.

use relation (6), p. 454 in [47], obtaining the expression of the invariant in term of four 6j symbols.

We then perform the sum over js, involving only three 6j-symbols, using the B-E identity. We

get, in this way, three 6j symbols, one involving only jk, J ; ]Iz and the other a square of
jj j] il Summing over j; and using the orthogonal relation between 6j symbols and the
2 Ja N

definition of w?, we obtain the value given in [57].
For L(5,2) we can use the relation (15), p. 457 in [47] to obtain the invariant expressed in terms

of four diagram (Fig. 8.10). We use, for the first diagram, the relation (6), p. 454 in [47]; we get

Fig. 8.10: First step in L(5,2) calculation.
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in this way a decomposition of the invariant in terms of six 6j symbols. Now we can perform the
j T z

. and
J Yy

sum over js, involving three 6j symbols, and, using the B-E identity, we obtain

j oz
J1 Js Ja
z =) and then summing over j;, we obtain the value provided by Ionicioiu-Williams in [57].

. Carrying out the sum over ja, (which implies, using the orthogonality condition,

References

[1] Regge, T., Nuovo Cimento 19 (1961) 558.

[2] Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F. et al (eds.)
Spectroscopic and Group Theoretical Methods in Physics, Amsterdam: North-Holland (1968)

1.
[3] Turaev, V.,Viro, O.Ya., Topology 31 (1992) 865.
[4] Mizoguchi S., Tada, T., Phys. Rev. Lett. 68 (1992) 1795.
[5] Ooguri, H., Nucl. Phys. B 382 (1992) 276.
[6] Ooguri, H., Mod. Phys. Lett. A 7 (1992) 2799.

[7] Carter, J.S., Flath, D.E., Saito, M.: The Classical and Quantum 6j-symbols. Math. Notes 43.

Princeton, NJ, Princeton University Press 1995.

[8] Carter J.S., Kauffman L.H., Saito M. (1998): Structure and diagrammatics of four dimen-

sional topological lattice field theories, preprint math.GT /9806023
[9] Rovelli, C., Smolin, L., Phys. Rev. D 52 (1995) 5743.
[10] DejPietri, R., Rovelli, C., Phys. Rev. D 54 (1996) 2664.
[11] Pa;hner, U., Discr. Math. 81 (1990) 37.

[12] Carbone, G., Carfora, M., Marzuoli, A., Comm. Math. Phys. 212 (2000) 571.

137



[13] Carbone, G., Carfora, M., Marzuoli, A., Invariants of spin networks with boundary in Quan-
tum Gravity and TQFTs, in Recent developments in general relativity, Casciaro B. at al.

(Eds), Springer-Verlag, Milano (2000) 419.
[14] Pachner, U., Result. Math. 12, (1987) 386.

[15] Crane, L., Kauffman, L.H., Yetter, D.N., State sum invariants of four manifolds, preprint

hep—th/9409167.
[16] Roberts, J., Topology 34 (1995) 771.

[17] Turaev, V., Quantum invariants of knots and 3-manifold, Expodsitions in Math. 186, W. de

Gruyter, Berlino 1994.
(18] Turaev, V., Topology of shadows, preprint (1992).

[19] Roberts, J., Refined state sum invariants of 8- and J-manifolds, in Geometric topology,

Athens, GA (1993) 217.
[20] Benedetti, R., Petronio, C., J. Knoth Theory Ramif. 5 (1996) 427.
[21] Beliakova, A., Durhuus, B., Commu. Math. Phys. 167 (1995) 395.

[22] Kauffman, L., Lins, S.: Temperley Lieb Recoupling Theory and Invariants of Three-Manifolds.

Princenton University Press 1994.

[23] Broda, B., A gauge-field approach to 3- and 4-manifold invariants, in Symplectic singularities

and geometry of gauge field, Warsaw (1995) 201.
[24] Broda, B., A note on the four-dimensional Kirby calculus, preprint hep-th /9305101

[25] Broda, B., A surgical invariants of 4-manifolds, in Proceedings of the conference on quantum

topology, Manhattan, KS (1993) 45.

[26] Cattaneo, A.S., Cotta-Ramusino, P., Frohlich, J., Martellini, M., Jour. Math. Phys. 36 (1995)

6137.

138



[27] Broda, B., Phys. Lett. B 280 (1992) 47.

[28] Birmingham, D., Blau, M., Rakowski, M:, Thomson, G., Phys. Rep. 209 (1991) 129.
[29] Baez, J.C., Lett. Math. Phys. 38 (1996) 129,

[30] Freidel, L.; Krasnov, K., Class. Quant. Grav. 16 (1999) 351.

[31] Freidel, L., Krasnov, K., Puzio, R., BF' description of higher-dimensional gravity theories,

preprint hep-th/9901069.
[32] Cattaneo, A.S., Cotta-Ramusino, P., Martellini, M., Nucl. Phys. B 436 (1995) 355.

[33] Cotta-Ramusino, P., Martellini, M., BF' theory and 2-knots, in Knots and Quantum Gravity,

Riverside, CA (1993) 169.
[34] Cattaneo, A.S., Comm. Math. Phys. 189 (1997) 795.

[35] Cattaneo, A.S., Cotta-Ramusino, P., Fucito, F., Martellini, M., Rinaldi, M., Tanzini, A.,

Zeni, M., Comm. Math. Phys. 197 (1998) 571.
[36] Fucito, F., Martellini, M., Zeni, M., Nucl. Phys. B 496 (1997) 259.
[37] Freidel, L., Krasnov, K., Adv. Theor. Math. Phys. 2 (1999) 1183.
[38] Carbone, G., Carfora, M., Marzuoli, A., in preparation.
[39] Carbone, G., Carfora, M., Marzuoli, A., Hierarchies of spin models, preprint gr—qc/0008011.
[40] Carbone, G., Jour. Math. Phys. 41 (2000) 3068.

[41] Glaser, L.C.: Geometric Combinatorial Topology, Vol. 1. New York: van Nostrand Reinhold

1970.

[42] Rourke, C., Sanderson, B.: Introduction to Piecewise Linear Topology. New York: Springer-

Verlag 1982.

[43] Pachner, U., Europ. J. Combinatorics 12 (1991) 129.

139



[44] Thurston, W.P.: Three-dimensional Geometry and Topology. Vol. 1, Levy, S. (Ed.), Princeton,

NJ, Princeton University Press 1997.
[45] Alexander, J.W., Ann. of Math. 31 (1930) 292.

[46] Ambjgrn, J., Carfora, M., Marzuoli, A.: The Geometry of Dynamical Triangulations. Lect.

Notes in Physics m50. Berlin, Springer 1997

[47] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Mo-

mentum, Singapore, World Scientific 1988.

[48] Yutsis, A.P., Levinson, I.B., Vanagas, V.V.: The Mathematical Apparatus of the Theory of

Angular Momentum, Jerusalem, Israel Program for Sci. Transl. Ltd. 1962.
[49] R.M. Williams, J.Math.Phys. 36 (1995) 6276.
[50] Maggiore, M., Sorella, S.P., Nucl. Phys. B377 (1992) 236.
[51] Reisenberger, M., Class. Quant. Grav. 14 (1997) 1753.

[52] Blau, M., Thompson, G., Lectures on 2d Gauge Theories, Topological aspects and Path Inte-

gral Techniques, preprint hep-th/9310144.
[53] Turaev, V., Inst. Hautes Etudes Sci. Publ. Math. 77 (1992) 121.
[54] Rolfsen, D.: Knots and links, Publisch or Perish 1976.
[55] Kirby, R., Invent. Math. 45 (1978) 35.
[56] Nomura, N., J. Phy. Soc. Jap. 59 (1990) 3851.

[57] Ionicioiu, R., Williams, R.M., Lens space and handlebodies in 3d quantum gravity, preprint

gr-qc/9806027.

[58] Kirillov, A.N., Reshetikhin, N.Y., Representations of the algebra U,y (sl(2))-othogonal polyno-
mials and invariants of links, in V.G.Kac (ed.) Infinite dimensional Lie algebras and groups,

Adv. Ser. in Math. Phys. 7, World Scientific, Singapore (1988) 285.

140



[59] Nomura, N., J.Math. Phys. 30 (1989) 2397.

[60] Kirillov, A.A.: Elements of the theory of representations, New-York, Springer-Verlag 1976.

141






