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Introduction 1

Introduction

The Mott transition, i.e. the metal insulator transition (MIT) driven by the correlation
between the electrons, represents the most important physical phenomenon in which the
ordinary theory of solids fails[1, 2, 3]. In the band theory of solids the electronic state
is described as a set of rigid bands, that are filled with the correct number of electrons.
The theory relies on the approximation that the electrons in a many-particle state can
be described as independent particles. In other words, the effects of electron-electron
correlations are neglected. Early in the first decades of quantum mechanics, this theory
has provided the first successful characterization of metals and insulators. At zero tem-
perature, the last occupied band of a metal is only partially filled, while it is completely
filled in an insulator. As a matter of fact, various compounds seem to invalidate this clas-
sification scheme. In 1937 de Boer and Verwey [4] reported that many transition-metal
oxides with partially filled bands, presented in fact poor conductivity or even insulating
behaviour. Moreover, transitions between a metal and an insulator driven by pressure
(or chemical substitution), hardly understandable within a band picture, have been ob-
served.

Peierls [5] was probably the first to put the blame on correlation for such an unpre-
dicted behaviour. Peierls realized that :“it is quite possible that the electrostatic inter-
action between the electrons prevents them from moving at all. At low temperature the
majority of electrons are in their proper places in the ions. The minority which have
happened to cross the potential barrier find therefore all the other atoms occupied, and
in order to get through the lattice have to spend a long time in ions already occupied
by other electrons. This needs a considerable addition of energy and so is extremely

improbable at low temperatures.”.

These words may be seen as the opening of a new branch of condensed matter
physics: the strongly correlated electrons field. Mott [6, 1] has gone forward along
this direction identifying the reason why correlation should transform a metal in an in-
sulator. Without loss of generality he considered the idealized case of a lattice with a

single orbital on each site. In absence of electron-electron correlation, a single band is



2 Introduction

formed by the overlap of the atomic wave functions. The band can host one electron per
site with spin up and one with spin down. If the number of electrons equals the number
of lattice sites, half of the band is filled, and the chemical potential falls in the centre of
the symmetric band (half-filling). If correlation is considered, then two electrons sitting
on the same site experience a strong repulsion. Mott argued that such an effect would
split the band in two: a lower band filled by electrons occupying a previously empty site,
and an upper band occupied by electrons sitting in a site already hosting another elec-
tron. For one electron per site (half-filled system) the lower band would be filled, and the
upper empty, leading to an insulator. After the path-breaking work by Mott, the metal-
to-insulator transition driven by the electron-electron interaction is usually referred to
as the Mott transition. We underline that the possible occurrence of antiferromagnetic
(AFM) ordering is not crucial in this argument. On the other hand, Slater [7], starting
from the observation that most “Mott insulators” have AFM long-range order at low
temperature, attributed the MIT to the opening of a gap associated to the formation of

magnetic superlattices.

In recent years, a renewed interest has been growing around strongly correlated sys-
tems and related models. The driving force for this revival has been the discovery of
the High T, superconductors. These compounds are in fact doped Mott insulators, the
stoichiometric compounds being AFM insulators [8]. Many other interesting systems
present strong correlation effects and are Mott insulators, or at least close to the Mott
transition. Among these we mention the alkali-doped fullerides [9], the colossal mag-
netoresistance manganites [10], the longstanding V,Oj3 [11], the adlayer structures on
semiconductor surfaces, such as SiC(0001) [12] or K/Si(111) : B [13], and layered
organic conductors like x — (BEDT — TTF),X [14].

The renewed interest in strongly correlated systems has evidenced the weaknesses of
the “early” approaches to the strongly correlated systems, and in particular to the Mott
transition, and has generated the development of powerful new techniques.

The unavoidable problem in dealing with strongly correlated systems is that a highly
non-trivial competition rules their physical properties. The effect of kinetic energy, that
tends to form delocalized metallic states, contrasts with the correlation effects that re-
sult in constraints on the electronic motion. In the metallic, weakly-correlated, side of
the transition, the electron is properly described as a propagating wave. Even if the
Coulomb interaction is clearly present, the low-energy physics of metals can be de-
scribed as a renormalized non-interacting system according to Landau’s Fermi-liquid
theory. The system of interacting particles can be mapped onto a gas of non-interacting

quasiparticles, characterized by a long lifetime, and the transport properties are ruled
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by the Boltzmann theory. As a result, the Density Functional Theory, even in the Local
Density Approximation turns out to be a quantitatively reliable tool for the investiga-
tion of metallic systems. On the other hand, in the insulating state, the electron is better
described in real space. The electrons are tightly bound to the ions (each ion binds an in-
| teger number of electrons), and the transport occurs by carrying an electron from a site to
a neighbouring one, giving rise to a charge unbalance. In this limit one can start from the
atomic physics, and reintroduce the electronic motion as a perturbation. This approach
gives rise to spin Hamiltonians which correctly reproduce the low-energy physics. As
a result the spectrum is basically given by the atomic excitation that get broadened by
the electron hopping to neighbouring sites, giving rise to incoherent bands, usually re-
ferred to as “Hubbard bands”. It should be clear from the discussion above that the basic
problem of strongly correlated systems, that is definitely relevant to the Mott transition,
is the search for a unique framework to describe both limits or to properly handle the
intermediate region of parameters, in which both of the limiting schemes outlined do not

work well.

As mentioned above, a rich variety of compounds presents strong correlations, and
Mott insulating states. In the various compounds the electron-electron correlation is
usually accompanied by other physical effects, like lattice effects leading to polaron for-
mation or to the Jahn-Teller effect, orbital and charge ordering, and many others. Nev-
ertheless, the physical mechanism leading to the MIT is expected to be generic and ide-
alized models are expected to give a qualitatively good description of this phenomenon.
The Hubbard model, in which tight-binding electrons interact via a local repulsion, is
the archetyp model for the Mott transition. When the Mott phenomenon is studied in
this model it is usually referred to as the Mott-Hubbard transition. Much effort has been
devoted to the understanding of the Mott transition, but only recently many points have
been clarified, at least for the single-band Hubbard model. In recent years, the Dynam-
ical Mean Field Theory (DMFT) has been widely used to enlarge our comprehension
of the Mott phenomenon. This theory, exact in the limit of infinite dimensions, has
provided a unique framework, in which both the metallic and the insulating properties
can be handled on the same footing. The development of DMFT has allowed to gain
a deep insight on the Mott-Hubbard transition. The transition between a paramagnetic
metal and a paramagnetic insulator by increasing the correlation strength has been fully
characterized by means of a mapping onto an Anderson impurity model subject to a

self-consistency equation [2].

In this thesis, we select some open points regarding the Mott-Hubbard transition.

One of the main open questions in our understanding of the Mott transition is the pos-
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sibility of a “real” Mott transition, not associated to any symmetry-breakings. Despite
the argument by Mott does not rely on the possibility of magnetic ordering, in most the-
oretical and experimental realization of correlation-induced insulators, one has to deal
with AFM ordering or other symmetry-breaking. The AFM long-range order may be
viewed as a doubling of the unit-cell in real space, that implies a folding of the Brillouin
zone, leading to an effective band insulator. In the single-band Hubbard model on bi-
partite lattices with nearest-neighbours hopping only, AFM long-range order takes place
as soon as a non-zero U is considered, due to the perfect nesting of the Fermi surface,
making the scenario of the paramagnetic metal- paramagnetic insulator not appropriate
to the groundstate of the model. A possible route to a Mott transition without associated
broken magnetic symmetry is frustration of magnetic ordering. In one of the chapters of
this thesis we will study the Mott-Hubbard transition in the single-band Hubbard model
on the triangular lattice, looking for a possible Mott transition within the paramagnetic

sector.

Another, alternative, route to a Mott transition without broken symmetries, is the
introduction of orbital degeneracy. This effect leads to a richer physics in the atomic
limit with respect to the single-band model. In orbitally degenerate systems, besides
the local repulsion U, we must also consider exchange terms between the electrons in
different orbitals on the same lattice site, that result in a splitting of the degenerate atomic
multiplets according to the Hund’s rules. Furthermore, the orbital degeneracy may be
partially lifted by the Jahn-Teller effect, i.e. by a coupling of electrons with lattice
distortions. As a general result, we expect that, even when the correlation is so strong
to completely forbid the motion of electrons from site to site, a non-trivial physics is
present, due to the on-site interaction terms. This non-trivial physics must be somehow
recovered in the infinite-correlation limit, and may influence both the nature of the Mott
insulator, and the mechanism leading to the MIT. We will discuss at length the unusual
properties of the tetravalent alkali-metal doped fullerides A;Cgo, where A is an alkali-
metal atom (K,Rb, Na,Cs). Even if less popular than their superconducting brothers
of the family A3Cgo, these compounds present interesting properties. The K and Rb
doped compounds are in fact narrow-gap insulators at room pressure, and turn metallic
by increasing pressure. Moreover, the insulating state is nonmagnetic, with a sizeable
spin-gap. The transition occurs between a nonmagnetic insulator and a nonmagnetic
metal. These systems are insulators, even if the four extra-electrons donated by the
alkali-metal atomns partially fill a threefold degenerate p-like ¢;,, band. Band-structure
calculations completely fail, providing a metallic groundstate. It is natural to blame

correlation for this unpredicted behaviour, but at least two points are non-standard. As
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a first point, we have a nonmagnetic groundstate, whereas usually Mott-insulators have
magnetic properties. As a second point, the half-filled A3Cgy compounds are instead
metallic, even if the bandwidth and the correlation strength are almost the same in the
two families. A single-band Hubbard model can not account for these properties. The
- model we propose and carefully study is a threefold degenerate Hubbard model enriched
by the multiplet-exchange and the Jahn-Teller interactions. The Jahn-Teller effect has
the crucial role to render the atomic limit a singlet both in spin and in orbital space
(S = 0, L = 0). If we vary the correlation strength we expect the MIT to occur without
magnetic ordering. The nonmagnetic insulating state of A4Cgg can be understood as a
Mott-Jahn-Teller state[15, 16], in which the correlation frustrates the electronic motion,
and the Jahn-Teller effect leads to a singlet state. The DMFT of the Mott transition in
the threefold degenerate model described above allows to completely characterize the
properties of these Mott-Jahn-Teller insulators. The understanding of the mechanism
in which the non-trivial molecular physics is recovered in the Mott insulating limit is
important both from the theoretical and the experimental side. On one hand, it sheds
- light on some features of the Mott transition that can be hidden in the single-band model.
On the other hand, it allows to fully understand many spectroscopic features of the

fullerides.

The model introduced for A4Cgo acquires a more general theoretical significance
since it represents a simple model in which the Mott transition really occurs within the
paramagnetic sector. Even more interestingly, we have a transition from a metal to an
insulator with zero entropy (non-degenerate), without any explicit change of symmetry
(like e.g. in the first-order MIT between a paramagnetic metal and an AFM insula-
tor). This transition represents a really interesting theoretical problem, in which peculiar
features are expected to enlarge our understanding of the Mott transition beyond the

single-band model.

In the first chapter we review the most popular methods to deal with the Mott tran-
sition and emphasize the successes of the Dynamical Mean Field Theory (DMFT) in
characterizing the properties of the Mott insulating state and the evolution of physical

quantities across the transition.

In the second chapter we present the DMFT of the Mott transition in the alkali-
metal doped fullerides A4Cgg, studying the threefold degenerate Hubbard model with
multiplet-exchange and Jahn-Teller effect for realistic values of the parameters. We
completely characterize the properties of these insulators, showing that only the DMFT
can give such a complete description. Spectral quantities for this compound are com-
puted, showing that the molecular spectroscopic features are recovered in the Mott state.
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In Chapter 3 we consider the threefold degenerate model introduced in Chapter 2 in
more generai terms. As a first point we study the dependence of the transition upon fill-
ing, a point that can partially help in understanding the different behaviour between the
trivalent-superconducting and the tetravalent-insulating fullerides. We also consider the
effect of a negative multiplet-exchange interaction, arising from the Jahn-Teller effect,
and leading to a non-degenerate atomic limit, like in A4Cg. The MIT for this model
is compared with the single-band model, and the qualitative differences are evidenced.
In particular, it will be shown that a second order transition between a paramagnetic
metal and a non-degenerate insulator is not compatible with a Fermi-liquid regime for
the metal.

In Chapter 4 we turn to the Mott-Hubbard transition in the two-dimensional single-
band Hubbard model on the triangular lattice. In this case, we cannot resort to DMFET,
since we are interested in the effect of the actual topological structure of the lattice
which is lost in DMFT. We use therefore the slave boson approach [17] and the exact-
diagonalization of small clusters. The study is focused on the presence of incommensu-

rate magnetic ordering and/or nonmagnetic insulating phases.



Chapter 1

The Hubbard model and the Mott

transition

The electron-electron (e-e) correlation has been identified as the cause of the insulating
behaviour of otherwise metallic systems already in the 50’s, but only recently, a compre-
hensive understanding of the correlation-induced metal-insulator transition (MIT) has
been achieved. After Mott’s ideas, it turned out that the mechanism leading to this kind
of MIT was the competition between the delocalizing effect of the kinetic energy, and
the correlation that constraints the electronic motion. This is a really basic mechanism,
that can be understood in terms of idealized models. Simplified models of solids are
in fact usually introduced to gain insight on general physical effects neglecting many of
the complications of real materials. The “Hubbard model”, introduced independently by
Hubbard[18], Gutzwiller[19] and Kanamori[20] is the simplest lattice model in which
the competition between the electronic kinetic energy and the correlation effects can
give rise to the MIT. In this model tight-binding electrons, moving on a lattice, interact
via a short-range repulsion acting when two electrons of opposite spin sit on the same
lattice site. The local repulsion, despite the extreme short-range character, results in a
significant frustration of the electronic motion.

The Hamiltonian is

H=—1 Z <62:0ng }- h.c.) — L z czacz-g +U Znﬁnu, (1.1

<ij>
where c}a (i) are creation (destruction) operators for an electron with spin o on the site
1 and n;, = c;fdcw is the number operator; ¢ is the hopping amplitude, U is the Hubbard
on-site repulsion, 1 is the chemical potential. The indices 4, j label the sites of a given

lattice, and the sum in the first term extends over pairs of sites. In the following we will
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only consider the sum restricted to nearest-neighbour sites only.

The first term is the kinetic energy for tight-binding electrons, describing the mo-
tion (hopping) of the electrons from site to site. The hopping term can be diagonal-
ized in momentum space, where is becomes #H; = Z,w 5kczgc;w, with a dispersion
€x = —2t y ., cos(kq), and eigenfunctions given by delocalized plane waves with mo-
menta k. The interaction term is instead diagonal in real space. The two terms do not
commute, and this leads unavoidably to a non-trivial competition between them. This
competition is the ultimate reason for the non-trivial properties of the model. Varying
the parameters, the Hubbard model presents both the insulating and the metallic phases.
It is easy to show that, for a number of electrons equal to the number of lattice sites
(half-filling), this model undergoes a MIT by increasing the interaction strength U. At
U = 0, the model describes in fact a free metal with a half-filled band, while for U > ¢
the charges get localized due to the large energy cost in creating double occupancies.
In the U = oo limit (atomic limit), double occupancies are strictly forbidden, and all
the configurations with one electron per site are degenerate. In this limit the mobility of
the electrons is completely suppressed, leading to an insulating system. If the hopping
is introduced as a small perturbation (¢ < U), we can resort to perturbation theory in
t/U. A simple argument helps to understand how magnetic correlations arise in this
limit. The leading-order corrections to the atomic limit derive from virtual transitions
to states with a single double-occupied site, whose energy is U above the groundstate.
Let’s consider two neighbouring sites, occupied each by one electron: if their spins are
parallel, no virtual transition involving hopping between the two sites is possible, due to
Pauli principle. On the other hand, if the spins are opposite, a negative contribution of
order t?/U is obtained. Therefore antiparallel alignment of spins on neighbouring sites
is favoured. This simple argument shows that in the strong-coupling limit, the Hub-
bard model displays antiferromagnetic (AFM) correlations. The AFM correlations in
the strong coupling limit arise also in more rigorous treatments. The half-filled Hubbard
model maps in fact onto an AFM Heisenberg model with J = 4¢*/U inthe U > ¢
limit. This can be seen using strong-coupling perturbation theory, projecting out doubly
occupied sites [21], or a Schrieffer-Wolff transformation[22]. Both the naive argument
and the mapping onto the Heisenberg model do not depend on the lattice and the di-
mensionality. If the lattice and dimensionality allow for long-range AFM ordering in
the Heisenberg model, then the Hubbard model has an AFM strong-coupling ground-
state. One can ask himself what is the relationship between the MIT and the onset of
antiferromagnetic long-range order. In principle, the transition between a metal and an

insulator (Mott transition) and the Néel transition may occur for different coupling val-



ues, and one can define a critical U = U, for the MIT and a magnetic-ordering coupling
U = Uy The values of U, and Uy, are dependent on the dimensionality and the lattice
under consideration.

In the Hubbard model on a d-dimensional (hyper)cubic lattice with nearest neigh-
~ bours hopping only, the groundstate is insulating for arbitrarily small U, and it is always
AFM ordered. In the following we will limit to the two-dimensional case. The absence
of a finite U, can be easily understood within Hartree-Fock theory, which gives reliable
results for small U values. The stability of the paramagnetic metallic phase with respect

to magnetic ordering with wave-vector q is signaled by a divergent spin susceptibility
2u31(q)

=2 2 1.2
where pp is the Bohr magneton, and I‘( ) is the Lindhardt bubble
Ex—q) — f(ck)
= . 1.3
N [ €k—q ~ €k ] (43

The instability occurs when the denominator in (1.2) vanishes, that is for UI'(q) = 1
(Stoner criterion). If q is the classical AFM ordering vector Qapm = (7, ), the sum
in Eq.(1.3) is divergent, and the Stoner criterion is satisfied for any non-vanishing U.
As it will be discussed in Chapter 4, the divergence is associated with the perfect nest-
ing of the Fermi surface, which is peculiar to the square lattice with nearest-neighbours
hopping. A vanishing U makes the system unstable towards antiferromagnetism. More-
over, the model has a long-range ordered state [23] in the U > ¢ (Heisenberg) limit. The
two-dimensional Hubbard model has therefore AFM long-range order both in weak- and
strong-coupling. There is no physical reason why intermediate couplings should present
a metallic behaviour. The MIT then occurs at arbitrarily small U, as a transition between
the uncorrelated metal for U = 0, and an AFM insulator for every non-zero coupling.
The absence of a metallic phase for small U is a pathology of the square lattice with
nearest-neighbours hopping, and every effect breaking the perfect nesting property is
expected to push the transition to finite U. The possibility to have instead a Mott transi-
tion with no concurrent symmetry breaking is a much more intriguing and debated issue,
that we will address in the following chapters. As we shall see extensively, a possible
route towards a transition at finite U/¢, and eventually to a Mott transition in which the
insulator has no broken symmetry, is frustration. In Chapter 4 we will study the Mott-
Hubbard transition on the two-dimensional triangular lattice, in which the AFM order is
frustrated and the perfect nesting is no longer present.

These hand-waving arguments are the milestones of the description of the MIT in the

Hubbard model, but more detailed calculations are needed to properly characterize this
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transition. Despite the apparent simplicity, this model has proved really hard to solve.
Exact solutions are available only in one dimension, thanks to the Bethe ansaiz [24],
whereas for higher dimensions approximate techniques or numerical tools are required.
In this chapter we briefly review the most common approaches to the Mott transition in
the Hubbard model, and finally describe the Dynamical Mean Field Theory[2], which is

probably the most reliable instrument for the inspection of the Mott transition.

1.1 Early approaches

As soon as the idea of the correlation-driven MIT was established, and experimental
realizations have been discovered, many alternative approaches have been proposed to
attack the problem. All the early approaches concentrate on one of the opposite limits
we have described in the previous section, and move towards the transition point intro-
ducing perturbatively the missing physics. Due to the non-trivial competition between
the kinetic and the interaction terms, which gives rise to the transition, all these tools
are bound to fail when used too far away from their starting point. The insight provided
by these methods is anyway valuable, and it has contributed to characterize the limit-
ing phases, opening the way to more sophisticated methods able to treat the different
physical regimes on the same footing.

The early work by Hubbard [18] is pretty close to Mott’s original point of view. The
main idea is to provide an effective band picture for the Mott transition. Hubbard charac-
terizes the insulator with a density of states (DOS) made by two bands centred at U /2
of width W = 2d¢, associated respectively to holes (lower band) and doubly occupied
sites (upper band). The gap between the bands is of the order U — W. Decreasing U the
gap shrinks, up to a critical value U ~ W for which the gap closes. The MIT is asso-
ciated with the closure of the Hubbard gap, when the two bands merge giving rise to a
metal. This description starts from the insulating side of the transition, with a the atomic
DOS, made by two §-functions at £=U/2, broadened by the hopping. The opening of the
Hubbard gap is not associated with antiferromagnetic ordering and the corresponding
folding of the bands.

On the opposite side, Brinkman and Rice [25], following the Gutzwiller technique[19],
start from the metallic phase, which is characterized as a renormalized Fermi liquid. In
their approach the MIT is associated with a diverging effective mass for the carriers
m*/m o (U — Ugg)~*. The MIT occurs as a disappearance of the metallic phase, but
no description of the insulating state is given.

Finally, in the Slater picture [7], the driving force to the MIT is long-range antiferro-
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magnetic ordering, that gives rise to an effective doubling of the unit cell. The Brillouin
zone becomes half of the original one, and the folding of the band gives rise to a band
insulator.

In the following sections we briefly give more detailed account for the Hubbard and
'~ the Brinkman-Rice approaches and to the more refined techniques that originate from

these pioneering works.

1.1.1 The Hubbard approach

The Hubbard approach relies on an approximation scheme on the equations of motion
for the Green’s functions. For generic interacting systems, the equations of motion form
an infinite hierarchy of coupled equations. The system is unsolvable unless one resorts
to some approximation scheme. Hubbard’s starting point is the (insulating) atomic limit
t = (. Close to this limit, it is likely that vertices involving a high number of sites can
be neglected. This leads to a closed set of equation. In his first work on the subject[18],
Hubbard obtains an insulating paramagnetic solution for every value of U, while in
a successive refinement[26], a closed form for the single-particle Green’s function is
obtained, for a half-filled semicircular band under the hypothesis of a paramagnetic
solution. Within this approximate scheme, Hubbard analytically describes the evolution
of the density of states by decreasing U. The two separated bands of width W centred at
distances +U/2 form the Fermi level (Hubbard bands) get closer and closer and finally
merge in a unique metallic band. Despite being the first successful attempt to describe
the correlation-driven MIT, the Hubbard’s solution still presents a relevant drawback,
since it is not able to describe the metallic phase as a Fermi liquid. The low-energy
excitation in the Hubbard’s solution have indeed finite lifetime. This approach does not
forget the starting point in the atomic limit and it is not able to properly reconstruct
the metallic behaviour. In summary, the Hubbard approach describes the MIT as the
opening of a gap in the single-particle spectrum. The opening of the gap signals the

MIT between a “non-Fermi-liquid” metal and an insulator.

1.1.2 The Brinkman-Rice approach

The Gutzwiller approximation[19], applied to the problem of the MIT by Brinkman and
Rice[25], is a variational approach, based on a metallic wavefunction in which corre-

lation is taken into account by means of a projector. The variational wave function is
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chosen as

Wer) = [ [(1 - gnana)|FS), (1.4)

1

where |F'S) is the Fermi sea, and g is a variational parameter that controls the number
of doubly occupied sites; g = 0 describes the uncorrelated metal (U = 0), and g = 1
describes a state in which doubly occupied sites are completely forbidden, as it happens
for U — oo. The groundstate energy can be obtained by minimizing the quantity

(er|H|YBR)
(YBr|YBR)

as a function of g. If we use the number of doubly occupied sites D = 1/N (3. niyniy)

Epr = (1.5)

as a parameter, then the expectation value of the interaction term is obviously given by
DU. To obtain analytical estimates of the kinetic energy, Gutzwiller has introduced a
non-perturbative approximation scheme, in which spatial correlation between spin on
different sites are neglected[19]. Using this approximation and restricting to the para-
magnetic phase ({(n4) = (n;)), Brinkman and Rice[25] obtain that the number of dou-
bly occupied sites vanishes for a critical value U = Upgg, giving rise to an insulating
phase with exactly one electron per site. In the Brinkman-Rice approach, the metal
is a Fermi-liquid up to the transition, and the effective mass diverges at the transition
m*/m oc (U — Ugr) ™. The transition is therefore associated with the disappearance
of the metallic phase associated with a diverging effective mass and a vanishing spectral
weight for the quasiparticles at the Fermi-level. This result suffers from the intrinsic
limitations of a variational approach; the choice of the wavefunction is a strong con-
straint to the solutions. A metallic wavefunction can not access the insulating state, and
improvement can only be achieved changing the variational wavefunction to allow for
different physics. The Brinkman-Rice approach is clearly complementary to the Hub-
bard’s picture. While the Hubbard approach properly describes the high-energy Hubbard
bands and the insulating phase, the Brinkman-Rice results correctly describe the coher-
ent low-energy physics in the metallic phase. A coherent framework able to capture both
the features is therefore needed to properly analyze the Mott transition in the Hubbard

model.

1.1.3 The Slave Boson approach

The slave bosons technique [17] may be used to implement an accurate mean-field ap-
proach for quantum systems. In this section we only briefly sketch the basic ideas of
the slave boson technique, that we will describe in detail in section 4.2. In the Kotliar-

Ruckenstein slave boson approach four auxiliary bosonic operators are introduced on
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each site labeling empty, doubly occupied and singly occupied sites[27]. Renormalized
fermionic operators substitute the original ones. The Hamiltonian is quadratic in the
new fermions, that can be integrated out. We are left with a bosonic Hamiltonian. The

saddle-point mean-field approximation on this Hamiltonian gives the same results of the
| Gutzwiller approximation. The SB technique represents therefore a systematic way to
improve the Gutzwiller approximation results leading to the Brinkman-Rice scenario, al-
lowing fluctuations of the bosonic fields around their mean-field values. Unfortunately,
to take into account fluctuations in the SB approach proves really hard from a technical
point of view, and no further insight on the Mott transition has been achieved along this
path. It has been shown, anyway, that fluctuations around the saddle-point reconstruct
the lower and the upper Hubbard bands, and that the disappearance of the resonance

coincides with the closure of the gap [28, 29].

1.2 The Dynamical Mean Field Theory

In recent years, the Dynamical Mean Field Theory (DMFT) of strongly correlated elec-
tron systems has acquired a key role as a tool able to attack the problem of strong cor-
relation without the need to move perturbatively from a well-defined physical regime.
This property is of particular value for the study of the Mott transition, because it allows
to treat on the same footing both the Fermi-liquid properties and the incoherent Hubbard
bands. The DMFT becomes exact in the limit of infinite correlation on various lattices.
Historically, it has been mainly developed as a d — oo limit of a finite-dimensional the-
ory [30], even though nowadays it is better viewed as a quantum dynamical counterpart
of the mean-field approaches[2].

The basic idea is to map the lattice Hamiltonian onto a single-site effective theory in
order to significantly reduce the number of relevant degrees of freedom. In the classical
mean-field theory a lattice Hamiltonian is mapped onto a single-site Hamiltonian. For

sake of concreteness, we consider the Ising model
H=-> JSiS;—h)_ S (1.6)
(i.5) i
The mean-field approach assumes that the physics is the same on each site; we arbitrarily
take “site 0” as of all the others. The site Hamiltonian is
Her = —hersSo, (1.7)

where h.yy is an effective magnetic field, that keeps into account the effect of neigh-

bouring sites on the “chosen” one. It is given by hesf = h + zJm, where z is the
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lattice coordination number, and m = (S;) is the magnetization (site-independent). fsy
is therefore expressed in terms of a quantity (m) that can be in tumn calculated from
the effective Hamiltonian (1.7). Since m = tanh(Bh.ss), we arrive to the well-known

Curie-Weiss self-consistency equation.
m = tanh B(h + zJm). (1.8)

The Dynamical Mean-Field Theory can be seen as the extension to a quantum inter-
acting system of this approach. In this case we will consider the single-band Hubbard
model (1.1). We associate to the lattice model an effective single-site dynamics, de-
scribed by an imaginary-time action for the fermionic degrees of freedom on the “site
0

B s 8
Sefy = _/ dT/ dr’ E ng(T)Go(T—T')"lcOa(T')+U/ drngy(T)no (7). (1.9)
0 0 ~ 0

Go(r — 7)1 plays exactly the same role of the effective magnetic field in Eq.(1.7),
and may be called a “Dynamical Weiss field”. It is the probability amplitude for a
fermion to be created on site 0 at time 7 and destroyed at time 7'. The time dependence
of the “Weiss field” is the main difference with respect to the classical case, and it the
origin of the adjective “dynamical”. The full local quantum dynamics is retained, while
the spatial fluctuations are frozen. The analogy with the classical case should help to
avoid misinterpretation of Gy. This quantity must not be viewed as a bare Green’s func-
tion for the original lattice model, but as an effective field that rules the local quantum
fluctuations in our local theory. In close analogy with the classical case, the mean-field
theory must be supplemented with a self-consistency equation, that relates (7y to quan-
tities computable from the effective action Scsr. A few alternative derivations of the

self-consistency equation can be find in Ref. [2]. Here we only report the result
Goliwn) ™! = iwy + p+ Gliw,) ™" — R[G(iwn)]. (1.10)

The local Green’s function G (iw,) plays the role of the magnetization in the Ising

model. It can be computed from the effective action as
G(1) = —(Te(r)c(0))s.y,- 1.11)

R(QG) is defined as the inverse function of the Hilbert transform of the density of states
for non-interacting electrons on the lattice under consideration. For specific lattices,
Eq. (1.10) takes more friendly forms. For the infinite-coordination Bethe lattice with

nearest-neighbours hopping the DOS is semicircular [31]

2
D(e) = —=Vit2 —¢€? 1.12
€)= —VF—e (112)
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and the self-consistency equation reads

2

Goliwy) ™! = twn + p — ZG(iwn). (1.13)

Note that the original lattice enters the DMFT equations only through the bare DOS
in Eq. (1.10). Since the single-site theory can not be critical, criticality can be introduced
in the context of DMFT only through the self-consistency. The Eq. (1.9) and (1.10) form
a closed set of mean-field equations. Once they are solved, we can also access to non-

local quantities. The lattice Green’s function in momentum space is given by

. 1
Gl ien) = 7 g (1.14)

The self-energy can be computed from the solution of the effective single-site problem
and it is given by
S(iwn) = Go(iwn) ™" — G(iwn) Y, (1.15)

It is easy to see that the locality of the self-energy Y(iw,), i.e. the independence on
k, is a direct consequence of the DMFT approximation. It is also easy to check that the
local component of the Green’s function G (iw,) = »_, G(k,iwy) coincides with the

local Green’s function computed from the effective action.

1.2.1 The Local Impurity Self-Consistent Approximation (LISA)

Despite the strong simplification of the original lattice problem introduced by the DMFT
approximation, the solution of the effective action S.y; is still a non-trivial many-body
problem. As a matter of fact, due to the dynamical nature of our mean-field approach,
no local Hamiltonian formulation can be cast. The quantum fluctuations of the effective
Weiss field G (iw,) ! substantially describe the transitions between “site 0” and the rest
of the system which is interpreted as an external bath. If we want to describe within the
Hamiltonian formalism the transitions among the various quantum states on “site 07, we
have to re-introduce the bath degrees of freedom as a conduction band hybridized with
the site.

A possible Hamiltonian corresponding to the action (1.9) is
Ham = Z ékazgakg + Z Vk(azgcog + cgc,a,w) — U Z cggcog + Ungngy.  (1.16)
ko ko o

The subscript AM stays for Anderson Model. We have in fact constructed an ef-

fective Anderson impurity model, in which the cq, is the destruction operator for the
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IMPURITY
MODEL SOLVER

G G

SELF-CONSISTENCY

Figure 1.1: Schematic flow-chart of every method of solution of the DMFT equations.
The impurity problem solver may be an exact numerical method, like ED or QMC,
or some approximate analytical tool, like IPT. The self-consistency generates a new

impurity model via a new value of Gj .

impurity site, and ay,, are destruction operators for the conduction bath. Since the Hamil-
tonian is quadratic in the bath operators, the latter can be integrated out, giving rise to
the action (1.9) if G (1w, ) ™! is related to the Anderson model parameters by the relation

V2
Goliwn) ™ = it + p— Y —=

PR (1.17)
k

The choice of (1.16) as the Hamiltonian translation of (1.9) is not unique, but it is
the most popular one. In really general terms, the DMFT approach can be viewed as
the solution of an impurity model subject to a self-consistency equation, hence the name
Local Impurity Self-consistent Approximation (LISA). The basic step of the DMFT al-
gorithm is therefore an “impurity solver”, i.e. a technique that allows to compute the
local Green’s function for the Anderson impurity model (1.16). Many tools have been
used to this aim, ranging from approximate analytical methods like the Iterated Per-
turbation Theory (IPT)[32], to numerical techniques, like the Quantum Monte Carlo
(QMO)[33] and the Exact Diagonalization (ED)[34] methods. We will describe advan-
tages and disadvantages of the various approaches in the next section.

In really general terms, we can draw a flow chart for a DMFT calculation made by

two simple steps:

1. Start from a given Gg(iwy,) ™. Solve the associated Hamiltonian (1.16) with the

chosen solver, computing G (iwy,).
2. Compute new G’ge“’(z’wn)“l from Eq. (1.10). Repeat step 1 until convergence.

A sketch of the procedure is shown in Fig. 1.1.
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1.3 Solutions of DMFT equations

Despite the enormous simplification introduced by the LISA approach, the solution of
the impurity model (1.16) is still a difficult task. No analytical solution is known, and
- approximate or numerical solutions are needed. Among the analytical techniques, the
iterated perturbation theory (IPT) deserves a special place[32]. This method is exact
both at weak- and strong-coupling, and represents a useful interpolation scheme. Com-
parison with numerical techniques has confirmed the reliability of this technique over
a wide range of couplings, with the exception of the proximity of the critical coupling
U., (see section 1.4). The two most powerful numerical strategies applied to the DMFT
method are the Quantum Monte Carlo (QMC) and the Exact Diagonalization (ED). Both
the techniques have no bias or systematic error, and may be considered exact within nu-
merical accuracy. The only approximation is the discretization of the equations. Extrap-
olation to vanishing discretization limit gives the exact result in both cases.

More specifically, the QMC approach, based on the Hirsch-Fye algorithm [33],
solves the impurity model in discretized imaginary time. The conduction bath described
by Go(iw,)™! is instead not discretized. The ED method, introduced by Caffarel and
Krauth [34], involves instead a discretization of the conduction bath, which is approxi-
mated by only a small number of orbitals. The number of orbitals is severely limited by
the exponential growth of the Hilbert space size with the number of orbitals. The impact
of the limitation is strongly reduced by the freedom of choice of the parameters of the
impurity Hamiltonian at every iteration, and we believe that the advantages of ED are

more relevant than the disadvantages.

1.3.1 The Hirsch-Fye QMC algorithm

The Hirsch-Fye algorithm [33] is the most successful QMC method for a general impu-
rity model. It is suited for the calculation of the local Green’s function at finite temper-
ature, exactly the quantity needed by the DMFT equations. The effective action (1.9) is

discretized in imaginary time:

Sep 22 Y by (T)Go(r, 7) Heas () + U > noy(T)noy (7). (1.18)
With 7 = 1,2, ...L, and the imaginary time interval § is cut in L slices of width A,
with 8 = LA7. The interaction term is decoupled by means of a discrete Hubbard-
Stratonovich transformation that allows to replace a quartic interaction term with a

quadratic term for auxiliary Ising variables.
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It can be shown that the algorithm does not suffer from the well-known nemesis of
QMC calculation for fermionic systems, the so-called “sign problem”. Therefore, the
method is numerically stable at arbitrarily low temperatures, regardless of the interaction

strength. Nevertheless, there are still at least two remaining limitations:

1. The algorithm involves multiplication of large matrices (Ln; X Ln,), whose di-
mension increases linearly with the number of time slices. As a result, one can
handle only a limited number of slices. On the other hand, if the system is strongly
correlated, a small value of A7 is needed to obtained reliable results (see Ref.
[35]). Being 8 = LAT, large (3 values are hard to study, since it is not possible to
arbitrarily increase L to compensate the small value of A7. As a matter of fact, the
highest accessible values of 3 can not exceed 100 (in units of the half-bandwidth).

2. Only imaginary-time (and Matsubara frequency) quantities are computable, and
real-time and frequency calculation involve analytic continuations, that are not

usually completely reliable.

1.3.2 The Exact Diagonalization

In the ED approach to the DMFT equations, the Anderson impurity Hamiltonian is first
of all discretized, and then exactly diagonalized and the local Green’s function is com-
puted by means of the Lanczos algorithm (at zero temperature) or by full diagonalization
(at finite temperature). Since ED algorithms strongly suffer from the exponential growth
of the Hilbert space, the sum over & in Eq. (1.16) is truncated to a finite small number
of orbitals (n; ~ 5-12). Let us stress that the truncation does not mean that we are
considering a finite small number of sites, since the DMFT equations are defined in the

thermodynamic limit. The real approximation is to take

g V2
s/ -1 __ - E : k
Gg (zwn) =y + U — r m (119)

We can think about this truncation as a projection over a reduced subspace of functions.

The algorithm can be divided in three steps:

1. The Weiss field is discretized according to Eq. (1.19). This step can be seen as the

projection of Gy onto G§~.

2. H a is exactly solved for parameters corresponding to Gj°, and the local Green’s

function ¢ is computed.
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3. Using the self-consistency equation (1.10), G is used to compute a new Gy. Step

1 is repeated until convergence is achieved.

The ED algorithm can be used at finite temperature, when the full spectrum must
- be used to compute the Green’s function, and at zero temperature, when, by means
of the standard Lanczos algorithm, the Green’s function is computable as a continued
fraction if the groundstate vector is known[36]. Since the finite temperature calculation
requires the full diagonalization of the Hamiltonian, it is severely limited (n, < 6 for the
single-band Hubbard model). The T = 0 algorithm instead, being based on the much
more powerful Lanczos technique, allows to go to larger n; values, up to 12 — 13 or
even more. The great advantage of this technique is the possibility to use an adaptive
grid. At each iteration the parameters describing the Anderson model are modified in
order to better approximate with a finite number of orbitals the hybridization function
coming from the self-consistency equation. Another advantage is that real-time and
real-frequency quantities can be directly evaluated without the need of tricky analytical
continuations like in QMC. Furthermore, these method turns to be rather insensitive to
the different regimes. The accuracy is almost the same in the insulating and the metallic
phase at fixed number of orbitals. Therefore even a really small number of orbitals gives
a good estimate of U,. On the other hand, it has been shown that the QMC technique
needs a really small A7 to obtain converged solutions close to the transition and in the
insulating phase[35]. This difficulty in convergence has sometimes lead different authors

to opposite conclusions even about the nature of the transition [35].

1.4 The Mott-Hubbard transition

In the recent years, a coherent picture of the Mott-Hubbard transition for the half-filled
single-band Hubbard model has emerged from the DMFT. Within this framework we can
describe both the insulating and the metallic phases with no bias in favour of one or the
other. In some sense, this approach retains many feature of the scenarios introduced by
Hubbard and by Brinkman and Rice, merging them in a unified picture. In the following
sections we briefly present the characterization of the metallic and the insulating phases
in the standard analysis of the DMFT results, and then the scenario for the MIT.

1.4.1 The metallic phase

If we assume that the metallic phase is a Fermi liquid, the zero-frequency limit of the
self-energy 3(i0™) must be real. Then, particle-hole symmetry implies that £(i0%) =
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U/2. Plugging this constraint into Eq. (1.10), we obtain G(i0") = 2i/D regardless of
U. The local Green’s function determines then the zero frequency value of the Weiss
field Go(i07)™ = —D?/4G(:0"). This quantity is the hybridization function for the
effective Anderson model. The LISA brings us to a mapping onto an Anderson model
with a non-vanishing hybridazation at zero frequency. This model is known to display
different metallic regimes[37]. It is usually believed that the metallic state in the Hub-
bard model at half-filling is associated with a Kondo resonance at the Fermi level leading
to the formation of the quasiparticles. The low-frequency behaviour of the self-energy

computed with IPT is that of a Fermi liquid:

1
ReZ(w +1i07) = % + <1 - E)w + O(w?)
ImS(w +1i07) = —Bw?+ 0(w?)

(1.20)

The quasiparticle residue Z is the only control parameter for the Fermi liquid phase,
setting the effective width of the coherent peak at the Fermi level (D* = DZ), and the
effective mass (m/m* = Z). Z decreases if U increases, leading to a shrinking of the
width of quasiparticle peak and to a divergence of the effective mass. The disappearance
of the metallic phase is associated, as in the Brinkman-Rice picture, to the vanishing
of the quasiparticle weight at the Fermi level. Note that the Luttinger theorem for a k-
independent self-energy leads to a pinning of the density of states to its non-interacting
value[38]. Hence, increasing U does not change the peak height, but only decreases the
width. A solution of the DMFT equations moving from the metallic phase is expected
to present a critical value for U = U, ! in which the metallic solutions is destroyed as a

consequence of an infinite effective mass.

1.4.2 The insulating phase

For large U the correct starting point is the atomic limit, in which the Green’s function

. 1 1 1
Glown) =3 (iwn ST/ o = U/2>' (1.21)

is given by

Since G(i0%) = —4/D?G,(40%) ™, in this limit the effective Anderson model as a zero

hybridization at zero energy, so we have an impurity embedded in an insulator. If we

The following discussions will clarify the reason for the subscript 2
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move form the atomic limit we can use the ansatz [39]

1 1 1

Gliwn) = 3 (Go () T+ 072 Goliton) 1 = U/2>’

(1.22)

- that can be understood as a superposition of magnetic Hartree-Fock or as a resummation
of a t/U expansion. This kind of solution is very close to the spirit of the Hubbard
approach [26]. With this choice we have G (iw,) ~ iwy,, which leads to G (iwn) ™t ~
iw,,. The effective bath is therefore gapped at the Fermi level. It is known that no special
effect (Kondo effect or mixed-valence phase) occurs for an impurity in an insulator. The
intrinsic weakness of this limiting solution is the inability to catch the appearance of
the resonance at the Fermi level that generates the metallic phase. It is evident that the
atomic solution (1.21) has a gap A = U. For finite ¢ and decreasing U the gap tends
to close. The solution disappears as A vanishes. We label Uy, the critical value for the
existence of the insulating (gapped) solution.

We have shown that DMFT can describe a metallic (Fermi-liquid) and an insulating
solution. The zero-frequency density of states plays the role of an order parameter for

the transition between one phase and the other.

1.4.3 The Metal-Insulator transition

The metal-insulator transition is well defined only at T = 0, where a qualitative dis-
tinction between a metal and an insulator is possible. At finite temperature there is
no clear-cut transition, but the existence of two families of solutions that can be con-
tinuously connected to the 7' = 0 solutions allows us to draw an unambiguous phase
diagram.

The characterization of the Mott-Hubbard transition both at zero and at finite temper-
ature has been carried out in the recent years by means of the joint use of the analytical
IPT approach, and the numerical techniques. The IPT approach has proven quantita-
tively accurate for almost any value of the coupling except really close to Ues.

We previously stated that there are two critical values of the interaction Ue; and Uco,
associated respectively with the vanishing of the insulating and the metallic phases. It
turns out both from IPT and from numerical results that U,; < U,. Moreover, we can
show that the actual MIT occurs at U, = Uyx[40]. The derivative of the energy with

respect to U is given by the expectation value of the double occupation

dE
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Figure 1.2: The evolution of the spectral density = Dp(w) for the half-filled single-band
Hubbard model as obtained with IPT (from Ref. [2]). From top to bottom are shown
U/D =1,2,2.5,3 (metallic) and iU/ D = 4 (insulator).
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Figure 1.3: Phase diagram of the half-filled single-band Hubbard model within IPT
in the paramagnetic sector. The dashed lines are the critical temperatures Ue; (T) and
U (T) (see text), and delimit the coexistence region, the solid line is the actual first-
order MIT line U, (T'). Both the ends of the line are second-order points.

Numerical studies confirm the expectation that (n4n) is larger in the metallic phase
than in the insulating one. Hence, integrating (1.23) from an arbitrary U up to U
where the two solutions merge, one obtains that the energy of the insulating solution is
always higher than the energy of the metal for every value of U in which they coexist.
Msoller at al.[40] have also shown that the transition is of second order. In Fig. 1.2 we
report the evolution of the spectral density p(w) = —1/7ZmG (w) obtained by IPT. The
disappearance of the metallic solution at U, coincides with the MIT. The resonance at
the Fermi level appears in the middle of a preformed insulating gap, since Uz > Uy .-
Note also that the peak gets thinner and thinner increasing U but its height is pinned to
the non-interacting value[38]. For intermediate metallic couplings the spectral density
contains both the quasiparticle features (coherent peak at the Fermi level), and the atomic
features (Hubbard bands). The transition is associated to a dramatic transfer of spectral
weight from the low-energy sector to the high-energy bands, leading to the divergence

of the effective mass.

Continuously increasing the temperature, we can follow the 7' = 0 solutions, defin-
ing Uy (T) and Ue(T). Ua(T) < Uep(T) for every T' value. The phase diagram in
the T' — U space can be drawn comparing the free energies for the two solutions. The



24 The Hubbard model and the Mott transition

result of IPT is shown in Fig. 1.3. The dotted lines are U (T") and U, (T') and delimit
the coexistence region. The solid line is a line of first-order metal-insulator transitions.
It departs from the 7' = 0 second order transition on one side, and on the other side it
ends in a second-order critical point. For higher temperature no transition occurs and
a smooth crossover connects the phases. In this regime the tunnelling between the in-
coherent bands is allowed by thermal excitations. Even if U (T = 0) = U»(T = 0),
for finite temperatures U, is close to U.1(T"), and the curvature is such that increasing
temperature the metal turns into the insulator. This apparently surprising result is eas-
ily understood recognizing that the paramagnetic insulator has a larger entropy than the
metal (N log?2). This is a general feature of strongly correlated materials that can be
found, for example, in the phase diagram of V;Os.
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Chapter 2

The Alkali-metal doped Fullerides
A4Cqp

2.1 The fullerides

After the discovery of the fullerenes (Cgp, Cro, ...) [41] much interest has been de-
voted to these large and highly symmetrical molecules. It is hard to believe that at least
a part of the interest attracted by the Cgo molecule is not due to its appealing shape.
Besides being the most symmetric existing molecule (The icosahedral point group of
the Cgo molecule is in fact the largest symmetry group of the known molecules), the
Ceo molecule has a special place among the fullerenes, since it can be produced in large
quantities [42], giving rise to solid structures that can be object of many experiments.
The 60 carbon atoms are all equivalent and lie on the corners of a soccer ball, forming
12 pentagons and 20 hexagons. Obviously, the interest in this system is not only due to
aesthtetical reasons, but mainly to its interesting physical properties. Some of the alkali
metal-doped fullerides are indeed superconducting with relatively high critical temper-
atures (7) that are lower only to the ones of the cuprates. As well as the cuprates or
the manganites, these compounds represent a new class of conductors, and present inter-
esting and peculiar properties that forced the scientific community to reconsider many
milestones of solid state physics, like the Migdal-Eliashberg theory of electron-phonon
(e-ph) interaction or the Hubbard picture of the metal-insulator transition (MIT) driven
by correlation.

The fullerene molecules form solids of relatively weakly bound molecules. The
shortest separation between two carbon atoms on different molecules is about 3.1A,

while the shortest separation between atoms within the same molecule is 1.4A. The dif-
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Figure 2.1: The Cgy molecule

ferent molecules preserve therefore their identity in forming the solid, and the fullerites
represent therefore molecular solids. Some fingerprints of the molecular properties are

expected to be recognizable in the solids as well.

The discrete levels of the Cgp molecule are only weakly broadened by the hopping
between adjacent balls, leading to a set of non-overlapping bands strongly reminiscent
of the molecular levels. The relevant levels (close to the Fermi level for the undoped
molecule) have bandwidth of the order ~ 0.5 eV. For the undoped Cgy solid, the A,
level (highest occupied molecular orbital, HOMO) is completely filled, and the threefold
degenerate ¢, band (lowest unoccupied molecular orbital, LUMO) is empty. The system
is therefore a band insulator. When the system is doped by alkali-metal atoms, basically
no hybridization occurs between the alkali bands and the ones of the Cgp, so that each

alkali atom basically donates one electron to the %;,, band.

In Fig.2.2 the band-structure for solid Cgg is shown (from Ref. [43]). The chemical
potential (zero energy) is chosen for the undoped system, so the h,, band lies just below

it and the t¢,,, band is the first one above it, separated by a gap of more than 1 eV.

The ty, levels are the counterparts of the p levels within the icosahedral point group,
so the manifold is triply degenerate, and it can host up to six electrons. In principle all
A, Cgo compounds with 0 < n < 6 should then be metals with a partially filled band.
The half-filled compounds (n = 3) are indeed metallic[44], and turn superconducting
with a relatively high 7 that can reach 40 K (in Cs3Cgp under pressure[45]), but A4Cgg
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are insulators, with the exception of NayCgq [46, 47, 48]. This chapter is entirely devoted

to the understanding of the anomalous properties of these insulators.

Not only the rough argument given above, but also accurate band-structure calcu-
lations predict that all these systems should be metallic[43]. As we will discuss in the
foHowing, the failure of band-structure calculations is a clear signature of the role of
electron-electron (e-e) correlations. ‘The effective Coulomb interaction between two
electrons on a Cgy molecule is about 1-1.5 eV [49, 50], significantly larger than the
bandwidths, which are of the order of 0.5 eV. These systems are therefore highly corre-
lated compounds. We emphasize that the effects of strong correlation effects in orbitally
degenerate systems give rise to interesting physics that can not be described using single
band models. The presence of orbital degeneracy has a quantitative effect on the critical
coupling for an insulating state in the Hubbard model [51, 52, 53], and prompts for the
inclusion of multiplet exchange correlations giving rise to the Hund’s rules.

The Cgg molecule has also molecular vibrations (phonons) with characteristic vi-
bration energies up to 0.2 eV, therefore comparable to the electronic energy scales.. In
particular, the eight fivefold degenerate H, modes are Jahn-Teller (JT) active, i.e., they
are coupled to the electronic degrees of freedom, partially lifting the degeneracy of the
1, levels. The interaction strength is quite large, the typical electron-phonon (e-ph)
interaction energy F;r being several tenths of an eV, and the coupling A of order 1.
This e-ph interaction has quite non-standard features, since the ratio between the typical
phononic scales wy;, =~ 0.2 eV, and the bandwidth W =~ 0.5 eV is not negligible, making
the ordinary Migdal-Eliashberg theory not justified[54], and the electron-phonon cou-
plings are of intermediate strength, not allowing weak- and strong-coupling treatments.
Therefore, even the e-ph problem in the absence of e-e correlations for the Cgp molecule
1S non-trivial.

In all these compounds many energy scales are rather similar, being wp, ~ Ejpr <
W < U and also the electron-phonon couplings are of intermediate strength. The alkali-
doped fullerides are therefore quite complicated systems in which the interplay between
strong electron-electron correlations, the Jahn-Teller effect, and the orbital degeneracy
gives rise to interesting physical properties [55]. The competition between all these
different terms gives rise to many stable phases (magnetic and nonmagnetic insulator,
metal, superconductor) as a function of external parameters. The problem of the alkali-
doped fullerides is therefore inherently a many-body problem, and powerful tools must
be used to properly treat the competition between different physics. The reader may no-
tice that basically the same ingredients we have outlined are relevant to the understand-

ing of the Colossal MagnetoResistance (CMR) manganites, in which the phase diagram
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is complicated by the crucial role of magnetism and its relationship with the other prop-
erties. The alkali-doped fullerides, besides their intrinsic interest, can be thought as an
almost ideal playground to study the interplay between e-ph and e-¢ interactions beyond

the weak- and strong-coupling limits.

2.2 The alkali doped fullerides A,Cgg

In this section we consider more specifically the properties of the tetravalent fullerides
A,Cqgp, where A is an atom of an alkali-metal (Na,K,Rb,Cs).

The threefold degenerate t1,, level of the isolated molecule leads to three bands host-
ing the valence electrons provided by the alkali metals. Hence all compounds A,Cgg
with 0 < n < 6 should in principle be metallic if, as one expects, the bandwidth (of
order 0.5 eV both in the n = 3 and the n = 4 compounds), is larger than the relatively
small crystal field splittings.

The n = 3 fullerides are in fact generally metals, and become superconducting with
T, as high as 40 K [56] for Cs3Cgo under pressure. All the n = 3 compounds present
a face-centred cubic (FCC) non-bipartite crystal structure. Among the n = 4 com-
pounds, however, only NayCgp is 2 nonmagnetic metal and it shows an FCC structure at
low temperatures[57], and a body-centred tetragonal structure (BCT) structure at high
temperature[58]. K4Cgo and RbsCgp are instead stable BCT structures down to low
temperatures, and nonmagnetic narrow-gap insulators. The first difference between the
n = 3 and n = 4 insulating compounds is the lattice structure. The BCT crystal of the
quadrivalent fullerides is a body-centered cubic lattice in which the c-axis lattice con-
stant is smaller than the distances on the plane. The distortion leaves the lattice bipartite,
while the FCC lattice of the trivalent fullerides is frustrated.

The experimental evidences for a narrow-gap insulating state in K4Cgp and RbyCgp
are well settled and come from various independent techniques. Resonant Raman stud-
ies [59] on K4 Cgq indicate an activation energy of 0.055 eV, associated with an indirect
energy gap, in close agreement with the estimates coming from NMR [60]. Kiefl et
al.[47] report a significantly larger gap of ~ 0.3 eV by inspection of the uSR spectrum,
but it has been shown [59] that the data reported are inconclusive and a fit to them may
give results ranging from 0.04 to 0.3 eV. NMR provides an estimate for the spin-gap
of E; ~ 0.13 eV [60], in close agreement to bulk magnetic measurements for RbyCeg
that indicate a value of 0.10 eV[61]. 1*C-NMR measurements on Rb;Cgo confirm the
nonmagnetic insulating behaviour for this compound at ambient pressure, but increas-

ing pressure up to 12 kbar, 77" displays a Korringa-like behaviour, characteristic of a
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metal[62]. An optical conductivity study based on Electron Energy Loss Spectroscopy
shows a sizeable optical gap for different A;Cg compounds. A study of the optical gap
A as a function of the different alkali ions shows that A increases with increasing size
of the ions[57]. The values range from 0.5 eV (K4Cgo) to 0.6 eV (RbyCgg and Cs4Ceop).
Reminding that Na,Cgp is metallic, the behaviour as a function of the dimension of the
alkali atoms can be understood as a sort of chemically induced variation of pressure. The
Na ion is the smallest alkali-metal atom, so going from K to Na may be viewed as an
increasing chemical pressure due to the shortening of the bondlenght. Further increas-
ing the alkali-atom size results in a decreased chemical pressure leading to a larger gap.
Notice that both the metallic Na,Cgg, and the insulating K4Cgg are nonmagnetic, so this
transition occurs without any magnetic effect even at low temperatures. The picture of
the Mott transition between a paramagnetic metal and a paramagnetic insulator seems to
fit the experimental scenario, but we still have to walk a rather long path to confirm or
disprove this explanation. We also mention that no static JT distortion has been observed
in K4Cgp [63]. Unfortunately, the energy resolution of the X-ray scattering that provide
this negative result is 0.04 A, almost exactly the estimated value of the JT distortion for
an isolated ion, that represents an upper bound for the solid, where the electron motion
can only quench the distortions. As a matter of fact, these results are inconclusive. In
any case, the absence of a static JT effect would not rule out a possible dynamical JT
effect with the molecules resonating between different distorted configurations.

Various physical ingredients may be advocated to explain the properties of these
compounds in the light of the experimental evidences we have reported. It is anyway
rather safe to divide the possible explanations of the insulating behaviour of these com-
pounds in two alternative scenarios:

1. A large splitting of the ¢;,, bands may give rise to a band insulator, in which the
two lower bands are filled and the upper one is empty. The splitting can be either
due to the BCT crystal field or, more likely, to a collective JT distortion of the Cg
molecules. The JT may in turn be dynamical or static.

2. The strong Coulomb repulsion strongly suppresses the electron hopping between
adjacent molecules. The systems can be regarded as Mott insulators. In this case
the Jahn-Teller effect takes place as a molecular JT effect, without collective dis-
tortions.

In the case of the band insulator, the nonmagnetic groundstate can be easily under-

stood, since the four electrons per site can fill completely the two lower bands. In the
case of a Mott insulator, the explanation of the nonmagnetic behaviour is not so simple.

The eventual Mott state of these compounds can not be described by means of a single-
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band Hubbard model for two main reasons. The groundstate of the single-band model
in the insulating state is always antiferromagnetic, while we need to describe a non-
magnetic insulator. Moreover, a single-band model can not account for the difference

between the metallic n = 3 compounds and the insulating n = 4, since the bandwidths
are quite similar. In this chapter we report results of many different calculations that
allow to discuss the actual realization of one or the other scenario[16]. In section 2.3 we
study first of all the isolated molecular ion, including both electron-electron interactions,
and the molecular JT coupling. In section 2.4 we investigate the possible band origin
of the insulating state of K4Cgo by Tight-Binding Hartree-Fock (TBHF) and, more ac-
curately, by density functional theory '. The failure of these band structure approaches
to provide a reasonable description of the insulating state leads us to consider the al-
ternative viewpoint, in which the Mott phenomenon takes place, and strong correlation
must be taken into account. This is done in section 2.5 by means of the Dynamical
Mean Field Theory (DMFT) of the Mott transition in these compounds. Our final con-
clusion will be that the A,Cgo insulators should indeed be regarded as Mott-Jahn-Teller
insulators[15, 16]. Moreover, many observable quantities will be shown to recover the
molecular values in the Mott insulating state . In particular, the molecular Jahn-Teller

effect brings the system towards a nonmagnetic (singlet) groundstate.

2.3 The single Cg; ion

There are at least two reasons to begin our analysis of the properties of A4Cgo from
the isolated Ci; ion. On one hand, since the fullerides are molecular solids, and the
molecular structures clearly survive in the solid phase, some reminder of the molecular
physics is anyway expected to be present in the solid state; moreover, if the system were
a Mott insulator, the frustration of the electronic motion would lead to a state in which
four electrons would reside on each molecule, without hopping frequently from site to
site. Then the molecular physics would be recovered in order to minimize the energy
on each ion. Within the triply degenerate ¢y, orbital, assuming rotational (icosahedral)

symmetry, a general interaction among electrons can be written as
U T = <o
Hint = Ho + Hm—e = Sn(n+1) + == T; W, 2.1

where n, = > ¢l ¢ is the electron number on each orbital (o = 1,2,3), n =

oo Taa

ny + ng + ng is the total density on the molecule. U and Jy are Coulomb interaction

IThe DFT calculations have been performed by P. Giannozzi [16]



32 The Alkali-metal doped Fullerides A;Cgg

energies; while U has the familiar meaning of an on-site repulsion controlling the total
charge, the second term is responsible for the multiplet splitting according to the Hund’s

rule. W, are the multiplet-exchange operators

I/V(l) = \/g(nl —_ TLg)
I/V(Q) = ni+ng— 2’)’L3

Wa = \/§Z(Clac2cr + h.c.) = V3AL, (2.2)
Wiy = V3D (Cpts0+hc.) = V3An
W(5) = \/—52(630616 + hC) = \/§A31.

Using Eqgs. (2.2) we can rewrite (2.1) as

U 2JH 9 2JH ']H 2
%z’nt = _Z_n(n + 1) + '—'—3—— ;na - "3_ a<ﬁ nanﬂ + “é“ az<ﬂ Aaﬂy (2.3)

which is manifestly symmetric in the orbital indices.

The first term, proportional to U is the usual Hubbard term, which gives rise to the
Mott transition. This term alone does not split the degeneracy of the n = 4 manifold.
For a fixed number of electrons, the molecular spectrum is determined by the second
term. The exchange coupling Jy is not expected to be significantly screened by the
t;,, electrons, so that a reasonable estimate can be obtained by optical measurements on
solid Cgp, which give Jg ~ 0.05 eV[49].

In Appendix A we compute the spectrum for the interaction Hamiltonian (2.3) for
n = 1, 2,3 (the other fillings can be obtained by symmetry around half-filling). For
n = 4 and positive Jy the spectrum follows the Hund’s rules: the lowest energy state is
the 3T19 triplet (S = 1, L = 1), followed at energy 2J by a ng singlet (S =0, L = 2),
and at 5J by a A4, singlet (S = 0, L = 0). The multiplet exchange terms alone would
give a molecular spin as well as orbital triplet groundstate. If this terms were dominant,
it would be indeed hard to understand the nonmagnetic groundstate of the solid A4Co.

Next, we consider the JT coupling to the eight H, vibrational modes. The electron-

vibron Hamiltonian is

8 5
Hor = w3 (b +3)
v=1 m

=1

8 5
9o
+> l D Wy (bum + bL,m), (2.4)
v=1 m=1
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where b,,m(bf,m) are annihilation (creation) operators for the vibronic modes, and g, and
w,, are, respectively, electron-vibron coupling and vibron frequencies for each of the H,
modes. Their values can be extracted from gas phase C’éa) photoemission[64]. Wy,
are the fermionic quadratic operators (2.2) that couple to the vibronic modes[64]. For
' symmetry reasons, the same operators appear in the e-e interaction term and in the e-ph
coupling. }

Instead of an exact solution of Hin: -+ Hyr, we consider two opposite limits, an-
tiadiabatic and adiabatic for the e-ph interaction term. The adiabatic limit assumes the
phonon dynamics to be much slower than the electronic one. On the opposite, the an-
tiadiabatic limit amounts to average out the phonon degrees of freedom, assumed to be
rapidly varying. The role of the degree of adiabaticity in the e-ph coupling, measured
by the ratio between a typical phonon scale wg and the hopping amplitude, has been
studied in the recent years[65, 54] in the context of the Holstein model. One of the main
outcomes is that the extreme adiabatic limit is not representative of the physics at finite
frequencies.

Although neither of the opposite limits strictly applies, since the vibronic frequencies
involved are comparable to all splittings[64] and the coupling is of intermediate strength,
the simplicity of the opposite extreme limits will help us to better understand the relevant
physics. We will discuss in more details the relevance of both limits in section 2.5. We
anticipate here that the antiadiabatic limit is a more faithful image of the symmetries
of the actual solution if a dynamical JT effect takes place, whereas the adiabatic limit
proves quantitatively more accurate if compared to exact numerical solutions.

In the antiadiabatic limit, the phononic degrees of freedom can be integrated out,
since their dynamics is assumed to be fast with respect to the other time scales. The
antiadiabatic treatment of the JT term (2.4) gives rise to a non-retarded electron-electron
interaction, which has exactly the same form of the Hund’s rule splitting term (2.1), but
the opposite sign 2. The antiadiabatic effective Hamiltonian has then the form (2.3) once
Jg is suitably changed, Jg — Jg — (3/4)Eyr, being Ejr = 3, 97/w, = 0.169
eV. Jy changes therefore sign from 0.05 eV to —0.076 eV. The result of the Jahn-Teller
interaction is therefore an inversion of the molecular multiplets. The lowest energy state
is now the ' 4, singlet, followed at 0.23 eV by the 'H, singlet, and at 0.38 eV by the
3Ty, triplet. The overall JT energy gain in this limit is very large, 0.84 eV, about a factor
three larger than the bare adiabatic JT energy (see below). This signals a true enhance-

ment, due to the gain in zero point energy corresponding to the frequency collapse of

2This is exactly the equivalent of the Holstein molecular crystal model, in which a phonic mode is
coupled to the electron density, that is mapped onto an attractive Hubbard model in the antiadiabatic limit.
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the tangential vibron modes, first pointed out in Ref.[66], as a possible mechanism for
explaining the high critical temperature of A3Cgo compounds. The inclusion of the JT
coupling has an important effect. The groundstate of the ion at least in this limit becomes
non-degenerate with L = 0 and S = 0.

In the adiabatic limit, the electronic model is solved at fixed phonon coordinates. In
the fully-adiabatic limit, where the phonon frequencies are assumed to be negligible, but
the ratios g2 /w, are kept constant, the phonon dynamic is neglected and the molecular
vibrations can be treated as classical variables. As a consequence, the eight fivefold
degenerate vibrations can be treated within a single mode approximation[67] for (2.4),
which, once we consider one of the equivalent JT distortions, leads to

%JT = g—f{(22+7’2)+
2w,

z(ny + ng — 2ng) + 7"\/5(711 — nz)} . (2.5)

In this limit the Jahn-Teller term explicitly breaks the orbital symmetry, and the
electrons are coupled to classical variables r and z. Using the values from [64] we have
w, = 0.117 eV, and an effective e-ph coupling g. = 1.409 eV, so that the characteristic
Jahn-Teller energy is Ejr = g2 Jw. = 0.169 eV. We diagonalize (2.3) plus (2.5) for
n = 4, minimizing with respect to z and r treated as classical variables. The groundstate
1s found to be a singlet with classical distortions z = —1.987 and r = 0, and a JT energy
gain of 0.293 eV, as shown in panel (a) of Fig. 2.3. The large Jahn-Teller splitting makes
orbitals 1 and 2 significantly favourable with respect to orbital 3, while there is no energy
gain in lifting the degeneracy between levels 1 and 2, since they are completely filled
by four electrons. Adding the zero point energy gain w,[66], we obtain a total gain
of 0.41 eV. A similar total gain of 0.42 eV was obtained by uncorrelated eight-mode
calculations[64, 67]. The adiabatic limit accurately describes the energetics of the Jahn-
Teller effect, even if it implies a symmetry breaking.

The lowest triplet state has instead z = 1.0 and 7 = 0 and lies above the groundstate
by E; = 0.108 eV (spin gap). In this state the Jahn-Teller favours orbital 3, which
is filled with two electrons, and each of the other two electrons occupies one of the
remaining orbitals, as shown in Fig.2.3 (b). The next lowest singlet, denoted by (c) in
Fig. 2.3 (with z = 1.0 and r = 0), is at E; = 0.208 eV above the groundstate. Finally,
the optical gap, identified with the JT orbital splitting, is A = (3/2)zE;r ~ 0.504 eV
and it is associated to transitions from the groundstate (a) to the state (d), in which the

orbital splitting is frozen.
Also in the adiabatic limit the Cgy ion is in a singlet groundstate with a sizeable

energy gap to the closest triplet state. The JT energy gain is therefore large enough to
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Figure 2.3: The lowest energy states for an isolated Céy ion when the JT effect is treated
in the extreme adiabatic limit. (a) is the singlet groundstate; (b) is the lowest triplet; (c)
is the next-singlet; (d) is the lowest state accessible by optical transitions. The difference
between (a) and (b) gives the spin-gap, while the difference between (a) and (d) is the

optical gap. Both quantities are extremely close to the experimental values for K4Cegp.

overcome the Hund’s rule and to give rise to a singlet groundstate. This property is
then expected to hold also for an exact treatment of the molecular Hamiltonian. In both
scenarios for A4Cgg, this is a crucial step to explain the nonmagnetic behaviour.
Moreover, the observable spin gap and optical gap computed for the isolated ion in
the adiabatic limit (that are quantitatively almost identical to the values coming from
the exact numerical solution) are really close to the experimental values for K4Cgg and
Rb,Cep[62, 57, 60]. This finding strongly suggests that the low-lying excitations in the
solid are essentially intermolecular, as it would be in the case of a Mott insulator. It is
hard to believe that this could be a coincidence, but the results of the following sections
are meant to rule out this chance, discussing the possibility of the formation of a band

insulator starting from the lattice of Cg; ions.

2.4 Band structure calculations: Hartree-Fock and Den-

sity Functional Theory

The first, and simplest, explanation of the insulating properties of A4Cep fullerides
would be a small value of the hybridization between the different Cgp molecules. If
the electron hopping matrix elements between adjacent molecules were much smaller
than all the intra-molecular energy gaps involved, then a lattice of Cgy molecules would
indeed be a nonmagnetic insulator, with a spin gap F; and an optical gap A close to their
molecular values of about 0.1 and 0.5 V.

In that case of nearly uncoupled ions, we would expect a band insulator in which
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the molecular levels were split by the Jahn-Teller effect and the Hund’s rule, and weakly
broadened by the (assumed small) hopping between balls. An electronic structure cal-
culation for the A Cgq lattice should yield a %4, triplet of bands, split by the atomic
insulating gap. The gap would in turn be supported by a collective JT distortion that
could be either dynamical and static. In the latter case, the collective distortion pattern

could be uniform or staggered[43].

2.4.1 Tight-Binding Hartree-Fock

The simplest calculation of the band-structure is a Tight-Binding Hartree-Fock (TBHF)
approach, in which the electronic hopping matrix element are obtained with realistic
models of atomic hopping amplitudes [68], and the Hubbard interaction is linearized
by means of a Hartree-Fock decoupling. We performed this kind of calculations using

parameters appropriate for K4;Cgp. The Hamiltonian may be written

H= Z t%ﬁcgaacjﬂﬁ + Hint + HT, (2.6)

ilj7a$ﬂia-

where c}w (Ciao) s the creation (destruction) operator for an electron with spin ¢ on or-
bital a (o = 1, 2, 3). Hn: and H y are the lattice version of (2.3) and (2.4) respectively,
i.e. the same local Hamiltonian repeated on every lattice site. The hopping amplitudes
tfjﬂ are evaluated along the lines outlined in Ref.[69] taking explicitly into account the
hybridization between all the Cqy atoms within a single molecule and between adjacent
molecules, and projecting onto the ¢, levels. The alkali-atoms levels only negligibly
hybridize with the ¢, levels, and can be safely neglected.®> The BCT structure is used
with lattice parameters appropriate for K,Cgo of @ = b = 11.886Aand ¢ = 10.774A[43].
Given the actual lattice distances, and the spatial dependence of the hopping matrix ele-
ments between carbon atoms[68], the band-structure is essentially given by an effective
hopping between nearest-neighbours and next-nearest-neighbours Cgp molecules, with
the longer range hoppings negligible. The bands obtained neglecting the interaction term
and the JT coupling are rather similar to the LDA bands[43].

The Jahn-Teller interaction is treated in the adiabatic approximation, as in Eq.(2.5)
with the realistic values for the effective coupling and frequency, giving E ;7 = 0.169
eV. We look for a HF state with broken orbital symmetry, in which the average density in
a given orbital, n, = (cgca), is assumed non-zero and uniform, and with ny = ngy # ng,

in order to represent the electronic state associated with a collective static JT distortion.

3Calculations explicitly taking into account potassium atoms have been carried out, but the effect on

the band-structure does not effect our conclusions.
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Figure 2.4: The t;, bands for K4Cgq according to HF. The HF state sustains a collective
JT distortion and is wide gapped, while experiments indicate a narrow gap semiconduc-
tor.

‘We choose .
A= é-(nl ~+ T — 2713), (27)

as the order parameter, the potential energy with this choice of Hartree-Fock decoupling

can be written

int

HHE [ga: + %(BU —11Jg) | (ny +ng — 2n3) = V*(ng +ng — 2n3)  (2.8)

The outcome for realistic values of all the interaction terms (U = 1.1 eV, Jg = 0.05
eV[49]) gives a stable band insulator with direct gap and spin gap of ~ 1.48 eV and
an indirect gap of ~ 1.03 eV, much larger than the experimental values. Our calculated
TBHF band-structure is shown in Fig. 2.4. The gross discrepancy with the much smaller
experimental gaps indicates that the HF approximation, well known to overestimate in-
sulating tendencies, may not be reliable for this problem. No improvement is achieved
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by considering staggered distortion patterns. We note however that by a different choice
of effective hamiltonian parameters, gaps slightly closer to experiment may actually be
obtained[70], and that further improvements may be obtained by including corrections
such as GW [71]. The feeling we get from our calculations is that rather unrealistic and
fine-tuned parameters must be used to decently reproduce the actual physical measurable
quantities within this framework. The question whether a band picture would predict an
insulator or a metal, requires a more realistic first principles approach than TBHF. To
this end we compare TBHF to ab initio density functional calculations, whose applica-
bility to fullerene and fullerides is well documented[72], and whose predictive power,

including total energy minimization as a function of ionic coordinates, is greater.

2.4.2 Density Functional Theory: Local Density Approximation

In this section we report results of electronic structure calculations within the density
functional theory in the Local Density Approximation (LDA) for K,Cgg, performed by
P. Giannozzi[16]. A BCT configurations compatible with X-ray data[63] has been taken
as a starting point, allowing ions to relax towards the total energy minimum. As a first
approximation, only the molecules and alkali ions were left able to move in order to
minimize the total energy, without allowing for a Jahn-Teller deformation within each
Ceo unit. In agreement with previous results[43], a stable metallic groundstate with %1,
bands of width W =~ 0.6 eV has been found. Such a result is evidently contrary to
the experimental findings, but this is not a surprise since the calculations neglected the
Jahn-Teller coupling, as a consequence of the assumption of undistorted molecules. This
finding simply proves that the BCT crystal field is not strong enough to give rise to an
insulator starting from the degenerate t;,, levels.

Since the LLDA has proven successful in the description of electron-ion coupling
and therefore static Jahn-Teller too[72], the next step has been to search for a sponta-
neous collective JT distortion allowing the relaxation of the atomic positions according
to Hellmann-Feynman forces. As a check of the capability of the calculation to properly
reproduce a delicate feature like the JT distortion, test calculation have been performed
for a single ion, by artificially increasing the intermolecular spacing to 13.3A. At this
(unphysical for the solid) distance, the electrons are essentially unable to hop between
molecules, so that we are actually simulating an isolated molecule. As expected for that
case, the calculation successfully reproduced the Jahn-Teller deformation of the ion.
The computed distances of the atoms from the centre range between 3.511 and 3.553A.
This distortion amplitude AR = 0.042A, although apparently small, is very close to that
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I

Figure 2.5: The ¢, bands for K4Cgg according to LDA. The LDA state is undistorted

and metallic, in strong disagreement with experiments.
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reported for [PPN(+)]5Cgo(2-) salts[73], namely 0.043A. This finding is very gratifying,
since JT distortions of C2; and Cg; should be the same due to electron-hole symmetry
of the Hamiltonian (2.3) + (2.4). The LDA calculations are therefore able to provide an
almost perfect description of the actual deformations due to the Jahn-Teller coupling.
As an intrinsic drawback of LDA calculation, the single-particle JT gap is only about
0.1 eV, instead of the expected 0.5 eV. Since we are interested in the actual existence of
sizeable distortions, this shortcoming does not affect our conclusions.

The true BCT structure was then considered, and an extensive search for a possible
JT distortion was carried out, looking for uniform distortion patterns. The search yielded
however negative results, and the final conclusion was that the groundstate of K;Cg
within LDA and one molecule per cell is undistorted, and metallic , with bands as shown
in Fig. 2.5.

The undistorted metallic state is actually very robust, and rather independent of small
details. In other words, it is really hard to imagine that some small physical effect could
open a gap at the chemical potential starting from the bands of Fig. 2.5 thus giving rise
to an insulator. The last reasonable possibility for the opening of a gap in the spectrum
within a band approach is to consider staggered distortions. Selected calculations with
two molecules per unit cell also failed in finding a stable distorted groundstate. This
failure rules out (within a band-structure calculation) charge-density-waves [43] or a
staggered collective JT state. The molecular JT energy gain is quenched in the solid
in favour of intermolecular band electron kinetic energy. The LDA being a much more
reliable calculation that TBHF, where quenching of molecular JT may not be very well
described, we conclude that the undistorted metallic state genuinely represents the most
faithful representation of the system within a single-particle picture.

As already mentioned, neither the presence or the absence of a JT distortion are well
established in K4Cgo. X-rays fail to find a static JT distortion[63], but the experimental
resolution is indeed not sufficent to rule out the possibility of a distortion. The metallicity
1s nonetheless clearly at odds with experiment. We temporarily surmise that, since accu-
rate density functional calculations cannot account for its insulating behaviour, K4Cgg

might not be a band insulator, with electron-electron correlations a possible culprit.

2.5 Dynamical Mean Field Approach

Electron-electron correlations are rather strong in many fulleride compounds. A realistic
estimate[9, 49] of the intra-molecular Hubbard U of Eq.(2.3) is ~ 1.0-1.6 eV, which is
about twice the full electron bandwidth. The failure of density functional calculations
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does not appear surprising in this light. The relatively strong value of the correlation
strength implies that we are dealing with a fully many-body problem, beyond the field of
validity of band-structure calculations. It is thus desirable to implement a reliable, even
 if by necessity more schematic, description of the insulating state, and of the possible
MIT induced by electronic correlation. In this spirit we resort to dynamical mean-field
theory (DMFT)[2], which has proved to be the most reliable tool for the description of
the Mott transition in the Hubbard model, as discussed in Chapter 1. Within DMFT,
the spatial fluctuations are frozen, but local quantum fluctuations are fully taken into
account. As a result, the original lattice model is mapped onto a single-site effective
action subject to a self-consistency condition. At least in its standard version, DMFT
does not keep track of the details of the band-structure, and we will use the semicircular
density of states (DOS) of an infinite coordination Bethe lattice, that only qualitatively
resembles the one of a three-dimensional system. Although we do not explicitly consider
possible merohedral disorder effects, discussed by other authors[71, 74], the assumption
of a smooth, singularity-free, semicircular electron DOS may to some extent make that
inclusion superfluous within the DMFT.

On the positive side, we expect a DMFT treatment of this problem to be extremely
instructive, because of its ability to handle simultaneously the orbital degeneracy, the
molecular JT coupling, and the strong inter-orbital and intra-orbital correlations without
further approximations. Gunnarsson’s group has recently implemented quantum Monte
Carlo calculations within the DMFT which indicate that one source of the insulating
state of tetravalent fullerides may be the lack of frustration implied by the BCT lattice.
By contrast, the presence of frustration typical of non-bipartite FCC lattices, favours
metallicity in the trivalent fullerides. [74].

The effective action corresponding to the Hamiltonian (2.6) can be written as

Sefr=— Z/ dT/ chOa (7)Goa(T — 7') Leoalr’) + So, (2.9)

where S, is the local action associated with the interaction terms (2.3)in

p 2
= —g/ 1o (7) dT—!——L—]—}iZ/ noe(T)2dr
2
JHZ/ Noa (7)Mo, (T)dT

aly

Z/ ZCOM T)Coryo (T ) + h.c)?dr. : (2.10)

o<y
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In the presence of the Jahn-Teller interaction of the form (2.4), a local electron-phonon

Interaction term appears of the form

8 5 8 .
Sb]T - Zw” Z/O‘ (bgum(T)bOUm(T) -+ §)d’}'
v=1 m=1
8 5 8
guv
+ Z_; 9 2_:1/0 Wimyo(T) (B (T) + boum (7))dT (2.11)

The Weiss field Gg,(iw,) and the local Green’s function are now dependent on the

orbital index o = 1, 2, 3. The self-consistency equations for a Bethe lattice read

2
Goaliwn) ™ = dw, + p+ €4 — fGa(iwn), (2.12)

where W, = 2t, is the bandwidth for the a-th band, €, is a shift for the energy of the
. band, y is the chemical potential chosen to provide the desired density, and G, (iwy,)
is the local Green’s function for the orbital c. Since both the interaction (2.3) and the
Jahn-Teller coupling (2.4) are invariant under rotation in the orbital indices, we work in
the basis in which the bands are diagonal. Therefore, without loss of generality, the self-
consistency equations can be taken diagonal in the orbital indices, even if different shifts
€, and/or hopping amplitudes can be chosen for the different bands. In this section, we
take three bands with the same bandwidth (¢, = t), taken equal to the full bandwidth
coming from LDA calculation (W ~ (.61 eV), and do not consider shifts for the various
bands (¢, = 0). The values of the Coulomb integrals and the JT couplings come from
realistic estimates.

Then we turn to the LISA approach described in section 1.2.1. Obviously, in our
case, we have to deal with a triply degenerate Anderson model. The hamiltonian can be

written as

Ham = Z gkaaazaga’kaa + Z Viao (azagcoaa -+ +Cgagakaa) +

kao koo
= B ChagCons + HI (2.13)
ao

To avoid too lengthy notations, we denote by H:" the local interaction Hamiltonian tak-
ing into account both the e-e correlation (2.3) and the e-ph interaction (2.4). The Hamil-
tonian (2.13) is solved by means of exact diagonalization (ED) with a finite number (n;)
of conduction electron degrees of freedom[34], checking convergence as a function of
s, as described in section 1.3.2. Following Krauth [35], one can easily convince that
the ED method is by far more reliable and useful than QMC for the single-band model,
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since really small values of n; assure converged results in both the metallic and the insu-
lating phase, while the QMC method requires really small values of AT to give reliable
results in the insulating phase and mostly in the transition region. One could argue that
the ED may loose its appeal for orbitally degenerate systems, since the presence of de-
~ generate levels amounts to an effective increase of the number of sites (the number of
degrees of freedom needed to describe n; sites with Ng., degenerate levels is exactly
the same as for n; Ny, sites). We still believe that ED is the best technique even in
the Ny, = 3 case, for some different reasons. First of all, it safely allows to study di-
rectly the T = 0 limit in which the MIT is well-defined, whereas the QMC approach is
limited to finite temperature by computer memory requirements even in the absence of
fermionic sign problem. As a second point, we have verified for the single-band model
that even a surprisingly small number of conduction bath levels (ns; = 4 — 5) gives an
almost converged solution, and that QMC must be pushed to really small A7 to obtain
equally accurate results. Last, but not least, for the specific problem we discuss, the ED
method allows to straightforwardly implement the multiplet exchange terms, while they
can not be included in the Hirsch-Fye QMC algorithm, since no reasonable Hubbard-
Stratonovich decoupling is known for them. In previous QMC calculation for analogous
problems, the non-diagonal part of the multiplet-exchange interaction (last term in Eq.
(2.3)) has in fact been neglected[53, 74]. The results we show are for n, = 5. They have
been checked against n, = 6 for special cases, in which the latter case was feasible,
and the quantitative variation of the physical quantities was found to be negligible. In
particular, the location of the MIT is basically unchanged. Since the A4Cgp compounds
are always nonmagnetic, we confine ourselves to the paramagnetic sector, as it usually
done in DMFT. In the problem at hand, we have a further choice, concerning the orbital
degrees of freedom. DMFT allows us to look for either broken or unbroken orbital sym-
metry phases. In this respect, it must be stressed that the capability to describe a true
Mott insulator without any symmetry breaking is a unique feature of DMFT, which is
not shared by HF or density functional-based calculations, always implying symmetry

breaking at metal-insulator transitions.

For simplicity, we restricted our search to insulating solutions either without orbital
symmetry breaking, i.e. with Viao = Vi and &4, = &y, or with uniform JT ordering,
i.e. without considering super-cells made by two or more sites. The expectation value

of the density is fixed to n = 4 by tuning the chemical potential u.

As we have seen in the general introduction to the DMFT, the MIT can be located
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by computing a single quantity, the quasiparticle residue Z given by
1

0 .
7= 1-— —B—JReZ?(w +107)|=0- (2.14)

Since the self-energy is momentum independent within the DMFT approach, Z =
m/m*, and a vanishing Z is equivalent to a diverging effective mass. Also in the or-
bitally degenerate case, it can be easily shown that, if there is a coexistence region be-
tween metallic and insulating solutions, in the whole region the metallic solution has
lower energy, o it is stable at 7' = 0. The vanishing of the metallic solution (indicated
with U.g) coincides with the actual transition [40].

Again, we restrict our analysis to instructive limiting cases:

1. No JT effect
2. Antiadiabatic JT effect

3. Adiabatic JT effect

2.5.1 No Jahn-Teller effect

We start from the interaction hamiltonian (2.3), in absence of JT coupling. As we will
discuss in detail in Chapter 3, mostly in Section 3.1, the orbitally degenerate Hubbard
model with Nz, = 3 has been already studied within DMFT, only at half-filling and
mostly for Jy = 0[53]. We will come back later to these results in the following
chapter, considering the dependence of the critical U upon filling, and discussing the
qualitative features of the transition. Here we focus our attention to the n = 4 case using
suitable parameters for A4Cgp. In the presence of a finite positive Ji /W = 0.08, which
corresponds to the realistic situation for Cgo, we find a critical value of U,/W ~ 1.414
for orbitally-symmetric solutions, sizeably reduced with respect to the critical value in
the absence of multiplet exchange terms (Jz = 0) which is found to be U,/W =~ 1.92.
This qualitative behaviour is in agreement with Ref. [53, 74], where a reduction of U, in
presence of a positive Jy was reported. It must be noted however that these works did
not consider, for technical reasons, non-diagonal contributions to the multiplet exchange
terms (last term in the interaction Hamiltonian (2.3)). This neglect leads to an underes-
timate of the effect of these terms on U,. In presence of the full interaction Hamiltonian
(2.3), but in absence of the Jahn-Teller coupling, the Hund’s rules are restored, and in
the Mott limit, when the molecular groundstate is recovered, the system is expected to
be a spin and orbital triplet (S = 1, and L = 1). Nevertheless, even within the paramag-
netic subspace, the presence of finite Hund’s rule coupling results in an effective partial

quenching of orbital degeneracy.
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2.5.2 Antiadiabatic limit for the Jahn-Teller interaction

In the antiadiabatic limit, the vibronic degrees of freedom are assumed to be fast and can
be integrated away leading to a negative contribution to the dipolar integral Jy, exactly
as in the case of a single molecule. As a result, a purely electronic model of the form
(2.3) is obtained, with an effective negative Jz /W = —0.127. The molecular multiplets
are therefore inverted with respect to the positive-Jy case, and the S = 0, L = 0 state
becomes the groundstate. The insulating state is expected to be a non-degenerate singlet
both in spin and orbital space. The critical value for the MIT is shifted in this limit to
U./W = 0.707, much lower than for positive Jy.

The antiadiabatic limit may seem unphysical, since it assumes that the vibrational
dynamics is faster than the electronic one. In the fullerides the vibrational frequencies
are indeed roughly of the same order of the electronic energy scales. It is then likely
that a dynamical JT effect takes place. By dynamical JT effect, we mean a state in
which the symmetry is not broken even in presence of large deformations, due to quan-
tum fluctuations. Every molecule is in a coherent superposition of distorted states with
different directions for the distortions #. The physical picture of the dynamical JT effect
is well described by an antiadiabatic limit, in which no symmetry is broken, even if a
quantitative agreement with the exact solution for realistic parameters is not expected.
Therefore U,/W = 0.707 is probably an underestimate of the true critical value, but
the features of the transitions are expected to be well described in this approximation.
According to the arguments above, we expect that the qualitative picture of the Mott-
Hubbard transition emerging from this limit is the more appropriate description of the
actual transition, despite the quantitative disagreement with more involved and less in-

structive intermediate-coupling solutions.

2.5.3 Adiabatic limit for the Jahn-Teller interaction

The adiabatic limit assumes the vibrational dynamics to be much slower than the elec-
tronic one. In the extreme adiabatic limit w, — 0, with g2 /w, constant, the vibronic
degrees of freedom are treated as classical variables. As in the single molecule, the adi-
abatic calculation implies a broken orbital symmetry solution, but the numerical values

of energies and distortions it generates are accurate enough[64].

4This is basically the same thing it happens in the simplest model of e-ph interaction, the Holstein
molecular crystal model, in which for non-zero phonon frequency, the translational symmetry is never
broken, even in strong-cbupling, and no localization transition occurs The formation of a small polaron
state is only a crossover, without symmetry-breaking[65].
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Solution of DMFT equations is now more involved, since self-consistency must
be implemented only after averaging the local Green’s function over the classical vi-
brational variable Q [75, 76]. In the broken-symmetry case the average simplifies, at
T = 0, as the probability distribution of Q becomes a single ¢-function. We obtain a
critical U/W =~ 0.9 — 1.0 (the uncertainty due to convergence difficulty). The orbitally-
symmetric insulating solution, instead, becomes stable at U/W ~ 1.237, and is higher
in energy. Nonetheless, it is of particular interest since it describes a molecular insulator
where each molecule is distorted with equal probability in all possible directions and
independently from any other molecule. This state has therefore a very large entropy
which could be reduced by including quantum fluctuations, for instance in the form of
tunnelling between the equivalent local distortions. This would in fact represent an al-
ternative way to describe the dynamical JT effect, not included at the adiabatic level. It
should particularly be noted in that respect that our adiabatic treatment does not include
the vibron zero-point energy gain upon JT distortion, whose magnitude may be non-
negligible[66, 64]. Being it present in the symmetric case only, zero-point energy gain
could lower the true critical U/W value of this phase, possibly even below that of the
broken symmetry case. Moreover, finite temperature would also favour the symmetric

state, which has an higher entropy.

2.5.4 Comparison between the various limits

A summary of all the results presented in the previous paragraphs is reported in Fig.
2.6. The quasiparticle weight Z given by Eq. (2.14) is shown as a function of U/W
for the different cases discussed above. In the adiabatic case, we show both the solution
with broken orbital symmetry (dot-dashed line + heavy dots), which is the most stable
at 7' = 0, and the orbitally-symmetric one (dotted line), expected to be a more faithful
picture of the real physics beyond the fully adiabatic limit. The solid line refers to the
solution in the absence of the JT effect, and the dashed line to the antiadiabatic limit.
We can now compare the critical U,/W’s with the realistic estimates of the Coulomb
interaction for K4Cgo. The calculated critical values are in all cases substantially smaller
than the actual U/W values, i.e. 1.5-2.5.

Notice that for the pure Hubbard model, in the absence of both the Hund’s term and
the Jahn-Teller interaction, the critical value lies in the middle of the physical range. The
overall conclusion of this study is that the strong e-e correlation in A;Cgq compound is
able to drive the system to a Mott insulating state as soon as the multiplet-exchange

coupling is considered. The Jahn-Teller effect further increases the region of stability of
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Figure 2.6: Quasiparticle weight Z as a function of U/W: the solid line is the solution in
the absence of JT effect; the dotted line is the symmetric solution in the adiabatic limit;
the dot-dashed line with heavy dots is the symmetry-broken solution in the adiabatic
limit, and the dashed line is in the antiadiabatic limit. All results are for n, = 5. Realistic
values of U/W lie in the insulating side.
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the insulating phase, both in the adiabatic and in the antiadiabatic limit. All the solutions
have critical U’s smaller that the range of realistic parameters. It is likely that the critical
value for the real parameters is close to the orbitally-symmetric adiabatic solution. The
Jahn-Teller interaction is not expected to only have a quantitative effect on the transition,
shifting the critical U to smaller values, but also to qualitatively affect the nature of both
the insulating and the metallic states. We expect in fact that the Mott insulating state, due
to a strong suppression of the hopping, should be strongly reminiscent of the molecular
physics. In the next section, inspection of the dynamical properties (spectral density,
spin susceptibility, and optical conductivity) will help us to better understand the way

the molecular limit is approached, and also to compute observable quantities.

2.6 Dynamical properties

We have shown that the e-e correlation in A4Cgg is strong enough to drive the system
towards a Mott insulating state. One of the most striking successes of DMFT is the char-
acterization of the mechanism of the transition, and of the intermediate coupling region.
This technique is therefore the most appropriate to understand the details of the Mott
transition in these compounds. It is reasonable to expect that, in the strong-coupling
limit, the molecular physics should be recovered, but the actual physical parameters for
K4Cg0 and Rb4Cg0 are not so large to put us deep in the molecular limit. The aim of
this section is to provide insights on the way the atomic limit is recovered by increasing
the coupling strength. As we have discussed previously, the inclusion of the Jahn-Teller
effect is crucial for the proper description of the transition in the fullerides. Besides a
quantitative effect on the critical U, described in the previous section, the Jahn-Teller
effect has the much more relevant qualitative effect to render the groundstate of the
isolated ion a non-degenerate singlet. This property can explain why the actual com-
pounds are nonmagnetic Mott insulators, and it has relevant consequences on the Mott
transition, as we will discuss in the next chapter. Throughout this section we will only
consider the antiadiabatic limit for the Jahn-Teller effect, that represents the simplest
regime from a computational point of view, and yields solution with the correct symme-
try. The only drawback is that the optical and spin gap one obtains in the antiadiabatic
limit are not close to the exact values for the single ion, in turn almost coincident with
the experimental values. We believe that the mechanism leading to the recovery of the
molecular physics in the Mott limit is basically independent on the details of the molec-
ular spectrum, and that our antiadiabatic study can be generalized in a straightforward,
though computationally heavy, way to a realistic case in which quantitative agreement



Dynamical properties 49

is expected.

To characterize the transition, we consider various dynamical properties that describe
various experimental spectra: namely we computed the spectral function (photoemis-
sion), and the optical and spin response for different values of the interaction strength. It
- should be noted that there are some small problems with the evaluation of real-frequency
dynamical properties within the DMFT. The whole formalism is in fact defined in imag-
inary (Matsubara) frequencies, and must be extended to the real axis. In QMC one needs
to resort to analytical continuation schemes, like maximum entropy, that are usually not
reliable when we are interested in delicate features of the spectra. In ED, no analytical
continuation is necessary, and real-frequency properties can be computed without fur-
ther approximation besides the truncation to a given number of orbitals n,. The result
of the truncation is that every spectral function is constituted by a series of é-functions.
This limits the amount of information we can extract, but still allows to draw relevant
conclusions.

In the following calculations, We will consider different bandwidths for the three
different levels to introduce the effect of the BCT lattice and mimic the realistic band-
structure: LDA calculations present in fact one band with large width W ~ 0.61 eV and

two narrower bands of width W ~ 0.35 eV, as one expects in a BCT symmetry.

2.6.1 Spectral density

The first quantity we compute is the spectral density, proportional to the imaginary part
of the Green’s function, p(w) = —1/7G(w). This function can be thought as a pho-
toemission spectrum, taking into account transitions involving the creation or the de-
struction of a single electron. As a consequence, the allowed transition connect the
n = 4 manifold with the n = 3 and n = 5 sectors, according to the selection rules
AS =1/2and AL = 1. in Fig. 2.8 we show p(w) as a function of U for fixed value of
Jg /W = —0.128. We stress that this is not the correct way to describe the MIT under
pressure in A4Cg, since pressure has the effect to increase the overlap between the elec-
tronic wavefunctions, and consequently the hopping integral ¢. Therefore the transition
occurs because U/t increases, but Jy JU stays constant, since all the interaction terms
are local, and hence not affected by pressure. On the other hand, the choice of keeping
Jr/t fixed assures that the position of the molecular multiplets is unchanged, and al-
lows us to better follow their evolution as a function of U. Anyway, in the small range
of parameters in which the system changes from metal to insulator, Jg should be only

weakly rescaled. Therefore, the qualitative features of the transition are not expected to
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Figure 2.7: The Spectrum of an isolated Cg; ion for n = 3,4,5. The groundstate for
n = 4 is non-degenerate (S = 0, L = 0), and only the transition to S = 1/2,L = 1 are

allowed by the selection rules.

depend on the scaling of Jp.

To better understand the results, we report the spectrum of the single ion, for n =
3,4,5in Fig. 2.7.

In the molecular limit, only two transitions are permitted, going from the S = 0,
L = 0 groundstate forn = 4 tothe S = 1/2,L = 1 statesinthen = 3 and then = 5
sectors. The transitions are denoted by dashed lines in the picture. As a result, the
molecular Green’s function is formed by two isolated peaks at energies —U/2 — 5|Jg|
and U/2 + 5/3|Jx|. These peaks are the equivalent of the peaks at +-U/2 observed for
the single band Hubbard model, but they are shifted by the other interaction terms.

As it can be seen in Fig. 2.8, for really large values of U (last two panels) the spectral
density almost exactly coincides with the molecular one, with just a small broadening
due to hopping processes. For these coupling values, the electrons are basically local-
ized, four on each molecule, and the allowed transitions are the molecular ones. Since
the spectral function is made by d-functions, it is hard to measure the width of these
peaks, but we can learn how to interpret these data comparing them with the single-
band case. In that case, the spectral function in the extreme strong-coupling limit is
composed by two bands of width I centered at £U/2. In ED this limit presented two
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Figure 2.8: The spectral function p(w) for various values of the interaction strength U
(arbitrary units). Frequencies are expressed in eV. Jg = —0.076 eV except for the
topmost left panel, where Jy = —0.016 eV. The two upmost panels display metallic
solutions, all the others insulating solutions. The bandwidth is W = 0.61 eV.
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large peaks at =U/2 surrounded both by two lateral peaks of smaller but visible weight,
at distance W/2 from the large ones. In our case, the atomic peaks are undoubtedly
much sharper, and the width is substantially smaller than the bandwidth. A strong mo-
tional line-narrowing occurs, due to the drastically reduced mobility of the molecular
excitations[77]. By decreasing U, a broadening of the molecular excitations associated

with a larger effective bandwidth occurs.

This situation, with the atomic peaks clearly present and only weakly broadened,
persists down to relatively small values of U, just above the transition. As the correlation
is strong enough to give an insulating groundstate, the spectral function displays evident
molecular features. In the two upmost panels two metallic solutions for small U are
shown. In the right one we show a metallic solution for U = 0.2 eV, but with unscaled
Jg = —0.076 eV, in which the ratio Jz /U is unphysically large. Though unphysical,
this case allows to observe a persistence of the molecular peaks in the metallic phase.
This property is not so evident here in the spectral function, but it is much more evident
in the spin and optical response functions we present in the subsequent sections. In
the left upmost panel, the metallic solution is instead computed for suitably rescaled
Jg = —0.016 eV, such that Jg/U = —0.08. The molecular features are now much
less evident, but they can still be identified (see, also in this case, the other response
functions). Note that, while the positions of the molecular excitations with respect to
+U/2 is the same for all the calculation with fixed Jy, here they are shifted to much

lower energies.

2.6.2 Spin susceptibility

The analysis of the spectrum in our DMFT solution has suggested that the molecular
physics is almost immediately recovered in the insulating state and that traces of the
ionic features can be seen already in the metallic state. In this section and the following,
we compute observable quantities, to understand whether the recovery of the molecular
limit is limited to the features of the spectrum, or it extends to experimentally accessi-
ble quantities like the spin- and optical-gaps. We start from the magnetic response. We
notice that, if we want to compare our results with a spin-gap measured by NMR, we
cannot simply consider an orbital-diagonal spin susceptibility, that takes into account
the spin transitions within the orbitals, and is not able to measure the inter-orbital mag-
netic transitions, but a more complicated quantity, taking into explicit account the spin

response on each C atom.



I

U=0.2 eV

O)L\/J\/u\—i l

=0.016 eV

T

Dynamical properties

T

0 0.5 1

MOB )
L
0.5 1

x(w)

T

)

T
WiJOES eV
LM
0.5

1

o A v

J

[ T
\\ U==2
0.5

W

eV
|
1

53

Figure 2.9: The spin susceptibility x(w) given by Eq. (2.15) (arbitrary units). The

parameters are the same as in Fig. 2.8. The two upmost panels are metallic solutions,

and the others are insulating.
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We computed

—  [(8]SF|¢0)|”
ZI Zw~ Fn— Eo) +16 2.15)

Where |¢,) and E,, are the eigenfunctions and eigenvalues, and S is the z component
of the spin operator on site R = 1,...,60 on a given Cgy molecule. The operator is

related to the creation and annihilation operators for the orbitals by the relations

Sf = CJ}f-'cTCRT - C;LLCRL
CRo — ZU’RaCaaa (216)
!

where u g, are the coefficients of the a-th orbital wavefunction in the coordinate repre-
sentation. x(w) is shown in Fig. 2.9 for the same values of U and Jy as in Fig. 2.8. Also
for this quantity, the recovery of the molecular physics in the insulating state is sudden,
all the four insulating solution (lower panels) basically present a single structure at the
same energy, associated to the transition from the molecular singlet groundstate (S = 0,
L = 0) to the first triplet state (S = 1, L = 1) within the n = 4 sector. The presence
of two close, almost coincident, peaks within this structure is probably due to the use
of different bandwidths. The spin-gap calculated within DMFT in the insulating state is
basically given by the molecular value. Analogously to the spectral density, the metallic
solutions also display some reminder of the molecular spectrum. This is more clearly
seen in the metallic solution with unscaled Jy (topmost right panel), but it is also present

in the solution with rescaled Jg (topmost left panel).

2.6.3 Optical conductivity

As a last point, we also computed the real part of the optical conductivity o(w), which
is given, within the DMFT, by[78, 79]
1 2et%a?

W)=

co
e [ dtile, o oles 4+ () = £+ )
- - @2.17)
Where e is the electron charge, V' the volume of the unit cell, a the lattice constant,
p(e,v) = —=1/7ImG(e,v + i0%), D(e) is the non-interacting DOS and f(w) is the
Fermi function. The results are organized on the usual way in Fig.2.10. Also in this
case, the insulating state has always the molecular character, i.e. a large gap to the first
charge transition, and high-energy features at energies of order U, while the metallic
solutions, besides a clear weight at zero-frequency (Drude weight), present some trace

of the molecular spectrum. As usual, we show a metallic solution with non-scaled Jy
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Figure 2.10: The optical conductivity o(w) given by Eq. (2.17) (arbitrary units). The
parameters are the same as in Fig. 2.8. The two upmost panels are metallic solutions,

and the zero-frequency Drude weight is visible, and the others are insulating.
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Figure 2.11: Comparison between the spin susceptibilities x(w) (arbitrary units) for the
Mott insulator (solid line), and the band insulator (dashed line) for U = 0.4 eV and
bandwidth W = 0.61 eV. The width of the insulating susceptibility is roughly given by
the bandwidth.

in which the molecular features are clearly visible, and a solution with rescaled Jg. The

charge-gap is then also almost coincident with its molecular value.

2.7 Comparison with a band insulator

The orbitally symmetric solution, representative of a genuine Mott insulator with no
broken-symmetry, does always show a sudden recovery of the molecular physics for all
couplings large enough to give an insulating state. We can ask ourselves if the recovery
of the molecular features is peculiar to the Mott state, or if this property is shared by
some band insulator. The best way to mimic a sort of band insulator within the DMFT
is to let the different orbitals free to have different Green’s functions and Weiss fields.
In other words, £, and Vi, are no longer « independent. We considered solutions
in which two of the three orbitals are equivalent and favoured. This solutions represent
a band insulator within DMFT. In Fig. 2.11 we compare the spin susceptibility x(w)
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for this solution and for U = 0.4 eV with the corresponding symmetric solution. The
spectrum for the band insulator is much broader than for the Mott insulator, and the
molecular peak is basically washed out in a wide feature. Notice also that the width of
~ the feature is of the order of the bandwidth for the band insulator, in which the motional

line-narrowing can not take place.

2.8 Discussion and conclusions

The insulating state of K;Cgp, not reproduced by LDA calculations even when allow-
ing a collective JT distortion, may instead be explained as a Mott-Jahn-Teller state,
where both inter-orbital and intra-orbital electron-electron correlations on one side, and
electron-phonon coupling on the other side, play an essential role. The electron-electron
correlation drives the originally metallic system close to a Mott insulating phase. The
critical value for this paramagnetic MIT is first of all lowered by Hund’s rule coupling,
a mechanism absent in the band calculations, where Hund’s rule can only stabilize a
magnetic insulator. Introduction of JT coupling further stabilizes the paramagnetic in-
sulating state, through a distortion, which splits the orbital degeneracy as in molecular
Cs77[66]. The stabilization of the insulating phase due to the JT coupling is completely
general, and occurs either if the JT effect is dynamical, or if it static and cooperative.
The inclusion of the proper molecular physics (multiplet-exchange and JT effect) allows
us to conclude that K4Cgg and Rb,Cg are safely on the insulating side of the transition.
Furthermore, the JT effect makes the molecular groundstate a singlet.

The close, apparently accidental, agreement between the spin and optical gaps of
Csy, 0.1 and 0.5 eV, with experimental optical and spin gaps in K4Cgp and RbyCgp
acquires a strong physical significance in this light. It represents possibly the strongest
spectroscopic evidence in qualitative favour of a Mott-Jahn-Teller state for these com-
pounds. Suppose in fact we considered them band insulators, for example by trusting
the TBHF results, or devising some other method of band structure calculation, such
as GW[SO]', which yields an insulating state associated with a stable static collective JT
state. In any such band state, the equilibrium collective JT distortion magnitude would
have to be substantially smaller than that of the isolated molecular ion, due to band struc-
ture quenching: electrons leaving the molecule too frequently in order to hop on other
molecules, must weaken the average on-site JT effect. In that case, the predicted optical
and spin gaps would be much smaller, corresponding to the delocalization, or spill-out,
of the band Wannier function. In a band state, it should not be possible for optical and

spin gaps to be of molecular magnitude, as one instead observes. In the Mott state, on
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the other hand, the electron spill-out to neighbouring molecules is reduced to order ¢/U,
which is very small. The state on each lattice site is much closer to an isolated ion, since
the probability to find a molecular site with three or with five electrons is only of order
t/U, instead of order 1/4 as in a delocalized band state. This suggests that molecular
multiplets will be much more preserved in the Mott-Jahn-Teller state than in the band
state.

This expectation is strongly substantiated by a DMFT analysis of the dynamical
response functions of the system. As a general trend, all the response functions basically
acquire a molecular behaviour as soon as we enter the Mott insulating state.

The results of a complete DMFT study of the problem allow to safely conclude that
the BCT A,Cgp are not conventional band insulators, and that both strong correlations
and JT effects are crucial for their understanding. The realistic parameters are such
that the system is deeply in the insulating region of the phase diagram. The observed
spin and optical gaps find a simple explanation in a Mott insulator, and are strikingly
recovered in a DMFT calculation. A traditional Mott insulator (i.e. without the help
of the JT effect), would be magnetic, since the total spin would be S = 1 for each
molecular ion, in virtue of Hund’s rule. That is in contrast with the clear nonmagnetic,
spin-gapped state of these insulators. In our proposed Mott-Jahn-Teller state, inter- and
intra-orbital electron correlations drive the Mott insulating state, while a conspiring JT
distortion makes the groundstate a singlet. That, incidentally, suggests that also the n=3
superconducting fullerides, whose bandwidth is quite similar, are most likely close to
a strongly correlated state [51, 49]. In the next chapter we show that the critical U
for a Mott-insulating state is larger for n = 3 than for n = 4, so that an insulating
A4Cqp is compatible with a metallic A3Cgo. Moreover, the eventual Mott-insulating
state of A3Cgg would be an antiferromagnet arising from an S = 1/2 molecular state.
Such a state would be frustrated by the FCC crystal structure of the trivalent fullerides,
thus favouring the metallic state. Despite they are not able to drive the system towards
an insulating state, the electron-electron correlations are expected to be relevant in the
physics of the A3Cgo.
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| Chapter 3

The Mott-Hubbard transition in
orbitally degenerate systems

The Single-Band Hubbard Model (SBHM), in its archetyp simplicity, represents an ide-
alized framework for the study of the competition between the electron motion and the
electron-electron correlations. This model has provided many insights about the mech-
anism ruling the Mott transition, but it may appear hazardous to use the results of the
SBHM to make quantitative comparisons or predictions regarding real Mott insulators.
In fact the orbitals involved in the transition are usually narrow bands arising from de-
generate electronic levels.

Nevertheless, once the DMFT has provided a reliable tool to compute static and
dynamical properties for the SBHM, it was hard to resist the temptation to quantita-
tively compare these quantities with the experimental findings for various transition-
metal oxides. The success of this comparison was remarkable and, to some extent,
surprising. Among the experimental features that are well described by the SBHM, we
mention the doping dependence of the electron effective mass and of the specific heat
in LagSr;_,TiOs, that is quantitatively reproduced by using the values of U and W
extracted from photoemission data [81], the temperature dependence of optical conduc-
tivity of V503[82] and the spectral properties of St;_Caz VO3 [83]. The quantitative
agreement between model calculations and experimental data is surprising, if one con-
siders that the electrons of La,Sr;_;TiOs reside in a quasi-threefold degenerate level,
and that the most simplified description of the two electrons in the threefold degenerate
tq4 levels of VO3 involves a twofold degenerate model[84].

The ability of the SBHM to capture the non-trivial features of real material is even
more astonishing if one reminds that the inclusion of orbital degeneracy does not simply

introduce additional degrees of freedom, but it also prompts for the inclusion of other
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physical effects (multiplet exchange and Jahn-Teller interaction) that are not accounted
by the single-band model.

On the opposite side, we have described at length a class of systems for which the
SBHM is not able to reproduce even the qualitative features, namely the alkali-doped
fullerides. A complete description of the insulating state and of the MIT in A,Cgq re-
quires a substantially more involved model. On one hand, the threefold orbital degener-
acy has a relevant quantitative effect on the location of the MIT; more significantly, the
inclusion of the multiplet-exchange splitting and of the Jahn-Teller interaction is cru-
cial to describe a nonmagnetic insulating state in agreement with experiments. Also the
different behaviour between the superconducting half-filled fullerides and the insulating
tetravalent parent compounds is not predictable on the basis of the SBHM.

In summary, while some compounds require the inclusion of orbital degeneracy and
of the related physical interactions, other systems can be well described by a SBHM,
despite all the materials share similar electronic structures. This chapter considers the
orbitally degenerate model in more general terms, and represents an attempt to under-
stand the reasons for the different behaviour of different classes of compounds. The
scenario for the Mott-Hubbard transition put forward within the DMFT is critically dis-
cussed in the light of the results for the degenerate model.

As a first relevant topic, we consider the simple threefold degenerate Hubbard model
in the absence of further inter-orbital local interactions. This study represents a neces-
sary starting point for a systematic analysis, and allows us to extract the effect of the
orbital degeneracy alone on the Mott-Hubbard transition. This effect is expected to be
mainly quantitative. In this simpler limit we also study the dependence upon filling of
the critical U for the Mott transition !. This effect is shown to be at least a partial rea-
son for the different behaviour between the superconducting trivalent and the insulating
tetravalent fullerides.

Then we reconsider the inter-orbital interaction terms we introduced in the previ-
ous chapter, namely a threefold degenerate Hubbard model, with a negative multiplet-
splitting term (2.3). The latter may be thought as arising from an antiadiabatic Jahn-
Teller effect, leading to the inversion of the Hund’s rule multiplets. From a theoretical
point of view, such an inversion has a relevant qualitative effect. As we have seen in Par.
2.3, in the atomic limit the groundstate for n = 4 (or n = 2) is a non-degenerate orbital
and spin singlet. This means that computing only paramagnetic solutions we are able to
follow the groundstate across the transition. The MIT occurs within the paramagnetic

'In presence of a number of degenerate levels, the Mott transition does not occur only for an half-filled
band, but for every integer filling, i.e. when the number of electrons per site is integer.
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sector, and we do not need to describe the competition between paramagnetic and an-
tiferromagnetic phases. Moreover, the non-degeneracy of the atomic limit implies that
the Mott insulator is a zero-entropy state. Therefore, the insulator-to-metal transition
can not be described as a Kondo screening of spin (or orbital) degeneracy. The conse-
~ quences of this property on the scenario of the Mott-Hubbard transition put forward by
Kotliar and coworkers will be discussed.

We emphasize that the possibility of a zero-entropy insulator is limited to the n = 4
(or n = 2) case if some effect inverts the atomic multiplets. For negligible inter-orbital
interactions, or if the positive Hund’s coupling is not overcompensated by a large Jahn-
Teller effect, of finally if the number of electrons does not allow for a non-degenerate
singlet (for n = 3 or n = 1 the odd number of electrons does not allow for a singlet
state; see Appendix A), the Mott insulating state is expected to have a finite entropy per

site, as in the single-band case.

3.1 Previous Results

In this section we try to present in a compact way various results appeared in literature
regarding the orbitally degenerate Hubbard model. In the presence of degenerate orbitals

one can define the Hubbard Hamiltonian as

H=— t(chips +he)+U Y w (3.1)
T

where n; = Y. c;fwciw is the total density operator on site ¢, and c}aa (Ciae) 18 the
creation (destruction) operator for an electron of spin ¢ on site ¢ and orbital ¢, with
o =1,..., Ngg, being Ny, the number of degenerate levels. The hopping amplitudes
t%ﬂ from site ¢ to ;7 are usually taken diagonal in the orbital indices and independent on
the particular nearest-neighbours pair t;-ljﬂ = td4p. The filling ranges from 0 to 2/Vye,.
n = 0 and n = 2Ny, clearly describe (trivial) band insulators, while for intermediate

integer fillings, the Mott phenomenon can occur, exactly as for an half-filled SBHM.
The discovery of superconductivity in the trivalent fullerides has been one of the
driving forces for the investigation of the degenerate Hubbard model. Soon after the
discovery of these materials, it turned out that the electron-electron correlation (~ 1-1.5
eV)[49] was significantly larger than the bandwidth (~ 0.5 eV) (see Sec. 2.2). On the
basis of a SBHM, the ratio between correlation and the bandwidth would imply a Mott

insulator, in strong contradiction with the metallic properties.
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In really general terms, one can expect that the increased number of degrees of free-
dom leads to an enhanced effective hopping amplitude with respect to the SBHM, lead-
ing to a stabilization of the metallic phase with respect to the insulator. The results we
report in the following substantiate this naive expectation. One of the first calculations
aiming to characterize the dependence of the critical U upon the number of degenerate
levels N4, has been performed in Ref. [85], where the Gutzwiller approximation pre-
dicted that at half-filling U.(Ngeg) = (Ngeg + 1)U.. The enhancement of the effective
hopping is really strong within this approach, and such an effect was invoked to explain
why the half-filled A3Cgg solids are metallic. The factor Ny, +1 = 4 would in fact
safely put the half-filled fullerides on the metallic side of the transition.

Later, Gunnarsson, Koch, and Martin[52, 51] suggested that the dependence of U,
upon Ny, should be much weaker. Using a strong coupling argument that we describe
in details in Sec. 3.2, suggested that U, should behave like U.(Nge,) =~ MW’,
where W is the full bandwidth. These authors have also compared their predictions with
Fixed-Nodes Quantum Monte Carlo results for three-dimensional systems on a FCC
lattice suitable for A3Cg, finding a good agreement[51]. Han, Jarrell and Cox have
systematically studied the transition at half-filling for different Ny, using the QMC
solution of the DMFT equations [53]. They also introduced the exchange term, which
in the case of a threefold degenerate model can be written as (see Chapter 2, and more

specifically Sec. 2.3, for more details)

m e — 2JH Z 2JH Namg + _ZAaﬁ> (32)

a<f a<p

where Ay = > _(cl,cas+h.c.). For technical reasons the authors were not able to treat
the non-diagonal contributions to Eq. (3.2). They arrive to the following approximate

expression for the critical U at half-filling?:

_ NaegJ
Ue(Naeg, J) = +/NaggUe(1,0) — =2 g Zldeg B (3.3)

The effect of the exchange coupling is simply to decrease the critical interaction strength
for the MIT. This effect can be understood as a partial quenching of the orbital degen-
eracy due to the multiplet exchange. Quite naturally, Jy is assumed positive, as it turns
out from molecular physics in order to give rise to the correct Hund’s rules. A negative
Jp arises from an antiadiabatic treatment of the strong J ahn-Teller interaction of the Ceo

molecule.

“There is a factor 6 between their definition The effect of the exchange coupling is simply to f J, and
our Jg.
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The effect of band-filling at fixed number of degenerate levels has been investigated
by means of the DMFT by Rozenberg [86] and Kajueter and Kotliar [87] for the Ngey =
2 case, and by Koch er al. [88] for Ny, = 3. The DMFT investigation carried out in

Ref. [86], together with Ref.[87]

The analysis of Ref. [86] accounts for the successive MITs at integer fillings, and
finds that the metallic phase is more stable for the half-filled case, being U,(n = 2) >
U,(n =1) = Us(n = 3). The qualitative features of each transition are analogous to the
single-band case, with two critical couplings for the disappearance of the insulating Ua)
and the metallic (U,) solutions. Exactly as for the SBHM, U,; < Up, and the metallic
solution is always energetically favoured at T' = 0[87]. Moreover, besides a qualititative
independence on the number of levels, it has been found that certain low-energy quanti-
ties like the effective mass, for one electron per site, depend in a weak way on the band
degeneracy. The effect of the degeneracy is strong only for the high-energy features.
The absence of qualitative differences between the single-band model and the degener-
ate model for Jy = 0 rationalizes why the properties of systems like La,;Sr;_.TiO3,
V5,05 and Sry_;Ca,; VO3 can be well described by the single-band model[82, 83]. We
report a schematic phase diagram from Ref.[86] in Fig. 3.1. In Ref.[87] the qualitative
effect of the multiplet-exchange coupling is described. In agreement with [53] Jg is

found to lower the critical coupling.

It is a little more difficult to extract general informations on the doping dependence
from Ref. [88]. In this work Fixed-Nodes QMC simulations are performed on a FCC
lattice, which frustrates the magnetic ordering, but are not restricted to the paramagnetic
sector as the DMFT results described above. Moreover, the hopping parameters are
chosen in order to realistically represent the electronic bands of A3Cgg. the result is that
n = 3 has the largest critical U, and that n = 2 and n = 4 are no longer equivalent since
the FCC lattice breaks particle-hole symmetry. As a result U, for n = 4 is higher than
n = 2 and much closer to the one for n = 3. Real A;Cgy compounds have indeed a BCT
structure, where the critical correlation is lower. We finally mention the exact diagonal-
ization of the threefold degenerate Hubbard model] on four-site clusters by Mahadevan
and Sarma also aiming to describe A3Cgo[89], that find the same qualitative behaviour
of [88], with the exception that n = 2 has a large critical coupling than n = 4. The
discrepancy with Ref. [88] is probably due to the absence of frustration. The general
trend indicated by all the results we reported is anyway still evident, being U, largest for
the half-filled system, and decreasing moving away from it. These tendency can be ra-
tionalized with a simple strong-coupling argument we report in the subsequent section.

In the next sections we give a comprehensive picture of the Mott transition for Ngeg = 3
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Figure 3.1: Phase diagram in the U — n plane for the paramagnetic solutions of the
doubly degenerate Hubbard model. The MITs at n = 1,2, 3 end with critical points.
Diamonds indicate the T = 0 critical points, and the squares the finite temperature
critical point ending the transition line. Solid line are for the Mott insulating state.
(From Ref. [36])
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within the DMFT, that completes the picture drawn in this paragraph.

3.2 The threefold degenerate Hubbard model: Depen-

dence on filling

In this section we consider the simplest Hubbard model with degenerate levels, i.e. we
neglect every further inter-orbital interaction and electron-phonon term. Namely, we
study Hamiltonian (3.1) with orbital-diagonal nearest-neighbours only hopping t?‘jﬂ =
Sapt. In particular we concentrate on the dependence of the critical U upon the (integer)
filling for the Ny, = 3 case, which is relevant for the doped fullerides, but also for
V50s;.

3.2.1 A Strong-coupling argument

Koch, Gunnarsson and Martin [52, 51, 88] have proposed a general intuitive strong-
coupling argument to estimate the dependence of the critical U upon the number of
degenerate levels and the filling. The MIT can be associated with the opening of a

conduction gap given by
E,=EN+1)-2E(N)+E(N —-1),

where N = nlV, is the number of electrons, and N, the number of sites. An estimate of
E, can be given in strong-coupling. In this limit, n electrons occupy each molecule, and

the energy is
E(N) _n(n— t~)
N, 2 U

In the states with N = nNN, £ 1, the extra-electron or hole can hop without creating

)U+O(

3.4)

further double occupancies. In presence of orbital degeneracy, the groundstate for a
single electron or hole is not given by the Nagaoka state, but AFM alignment is favoured,
since it allows for more hopping channels. Fig. 3.2 clearly shows for n = 3 that in the
ferromagnetic case a), only one channel is possible, whereas for the antiferromagnetic
case b), three channels are available.

An estimate of the effective hopping matrix element in this regime gives H;; = Vkt,
where & is the number of hopping channels connecting sites 7 and j. Being Vk > 1,the
hopping is always enhanced with respect to the single-band model. The gap is given by

\/]CN+1 + ]fN 1 (35)
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Figure 3.2: Sketch of the possible hoppings of an extra electron against an integer-filled
background with Ng,, = 3 and filling n = 3. (from Ref.[88]) a) ferromagnetically
aligned neighbour: Only one electron can hop. b) antiferromagnetically aligned neigh-

bour: There are three hopping channels (5 = 3).

where k. is the number of available hopping channels for the state with /V =+ 1 elec-
trons. Computing the number of available hopping channels for every filling and number
of degenerate levels, we can estimate a critical value for the MIT, obviously given by the

value for which £, vanishes

w
Ue = (VEni1 + vVEv-1) 5 (3.6)

At half-filling, the increased number of channels pushes the transition to stronger-coupling
if Nyeq is increased. Since at half-filling we have k1 = ky_1 = Ngey (see Fig.3.2),

Ndeg V Ndeg U

Keeping Ny, fixed and varying n, we obtain that the largest U, is for the half-filled

we obtain

band and that the value decreases by increasing the distance from half-filling. Koch,
Gunnarsson and Martin also performed Fixed-Nodes Quantum Monte Carlo calculations
for Nge; = 3 on a FCC lattice, confirming the qualitative behaviour as a function of
filling given by Eq. (3.6)[88]. The values obtained in QMC are actually larger than the
strong-coupling estimates. This is not surprising, because the strong-coupling argument
is naturally biased in favour of the insulating state, leading to an underestimate of U,.

3.2.2 DMFT results

In this section we perform a DMFT investigation of the Ny, = 3 extended Hubbard
model of Eq. (3.1). As in Chapter 2, we choose the ED method to perform a quantitative
study of the DMFT equations. As usual, we characterize the Mott transition following
the evolution of the spectral density by increasing the correlation strength at fixed elec-
tron filling. We consider all the independent fillings n = 3,4,5. Our result perfectly
confirm the expectations that arise from the previous data for the half-filled model with
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filling ky k- UJ/W[Eq.(3.6))] U./W [DMFT]

n=3 3 3 V3 ~1.73 2.13
n=2 3 2 2,157 1.92
n=1 2 1 Yool 1.44

Table 3.1: Effective hopping enhancement factors for the different filling for Ng., = 3.
In the last column we report our DMFT results for U/W

Ngeg = 3 and for different densities for Ngeg = 2. All the various transitions present the
same qualitative features of the SBHM. The transition is associated with the divergence
of the effective mass, which is in turn equivalent to the vanishing of the quasiparticle
weight Z, given by Eq. (2.14). As usual, we label by U, the correlation for which Z
vanishes. To compute Uy, in which the insulating solution disappears we have followed
the insulating solution beyond its region of stability, until the insulating gap closes. The
zero-temperature metal-insulator transition coincides with Uy, because the metallic so-
lution is always energetically favoured in the coexistence region . The critical values
found are reported in Fig. 3.3.

The qualitative behaviour agrees with Eq. (3.6), being U, largest for the half-filled
case, and decreasing by moving away from half-filling. We also notice that the coex-
istence region (dotted line) is much larger in the half-filled case. We can make a more
quantitative comparison with Eq. (3.6). The k coefficients for N4, = 3 are reported
in Tab. 3.2.2, together with the overall hopping enhancement factors, and the results
from DMFT. If we rescale the critical U obtained for n = 3 with the suitable factors,
we obtain the values shown in Fig. 3.3 as open dots. The comparison with the actual
results from DMFT shows that the trend as a function of n is well described by the
strong-coupling result.

The evolution of the spectral density across the transition for our typical reference
case n = 4 is shown in Fig. 3.4 and displays the usual features. The metallic behaviour
appears as a Kondo-like resonance at the Fermi-level in the middle of the preformed
charge gap. The behaviour for n = 3 and n = 5 is completely analogous. In the
absence of Jy, there is no substantial difference between the different integer fillings.
In all cases the atomic limit has a finite entropy per site. In particular, alson = 4 has a
degenerate Mott-insulating limit. As a consequence, the birth of a metallic state can be
interpreted as a Kondo effect. We note that the strong-coupling argument by Koch er al.
[52, 88] can be reinterpreted in this light. The number of available hopping channels in

3The argument given in Ref. [40] holds also in the presence of orbital degeneracy.
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Figure 3.3: Phase diagram in the U — n plane for the paramagnetic solutions of the
threefold degenerate Hubbard model. The MITs at n = 1,2, 3,4, 5 end with critical
points. Diamonds indicate the T' = 0 critical points, in which the metallic solution
disappears (U.), and the squares denote U, in which the insulating solution becomes
unstable. The solid lines are the regions in which the Mott insulator is stable, whereas the
dotted lines indicate the coexistence region between the Mott insulator and a correlated
metal. The open dots compare the DMFT results with the prediction of Eq. (3.6). The
rest of the diagram has a metallic solution. The n = 0 and n = 6 lines are band-

insulators.
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the presence of orbital degeneracy is clearly related to the entropy per site in the atomic
limit ¢ = 0. Therefore, if a given filling has a large number of hopping channels, it has
also a large entropy in the atomic limit. Both points of view lead to the same conclusion,
i.e. that the higher the number of hopping channels (or equivalently the entropy), the
higher the critical coupling needed for the MIT. Also in the presence of a positive Jg,
as used in Ref.[53], the entropy is only partially quenched because the Hund’s rules
always favour highly degenerate states, and the transition can in principle occur as a
Kondo effect. Only the inversion of the Hund’s rule can give rise, in peculiar cases, to a

non-degenerate atomic limit.

3.3 The transition for negative Jy

The analysis of the previous section, together with other results, clearly indicates that, in
the presence of the Hubbard local repulsion alone, the inclusion of orbitally degenerate
levels does not modify qualitatively the scenario for the Mott-Hubbard transition. The
main effect is a quantitative reduction of the critical U, that can be understood in terms of
an effectively increased hopping for the degenerate case. The metallic behaviour appears
as a Kondo-like resonance at the Fermi level in the middle of a preformed gap, regardless
the number of levels. As already discussed, the appearance of the resonance is usually
interpreted as a Kondo effect, associated with the quenching of the large entropy of the
paramagnetic insulating state[2, 37]. Both the absence of qualitative modifications, and
the quantitative behaviour as a function of filling and degeneracy are at least compatible
with a Kondo effect leading to a Fermi-liquid phase.

When the inter-orbital correlations are turned on, the Mott-Hubbard transition may
acquire new features, related to the different atomic limits that positive or negative val-
ues of Jy can determine. The multiplet-exchange term partially lifts the degeneracy,
splitting the atomic multiplets. For positive Jg, the Hund’s rules are satisfied, and the
molecular groundstate has a relatively large degeneracy. On the other hand, for a nega-
tive Jyr, and for n = 4 electrons per site, as we stated many times, the atomic limit is non
degenerate. Therefore, this is a zero entropy state. It should be clear that the insurgence
of the metallic state for this model can not take place as a Kondo effect *. In Chapter 2
we only exploited the positive side of this situation, namely the fact that the insulating
phase was nonmagnetic, so we could limit ourselves to the paramagnetic sector without

considering magnetic solutions. In this chapter we ask ourselves the question of how a

4The zero-entropy property holds only for n = 4 (or equivalently forn = 2). Forn =3 andn =35 it

is not possible to form a non-degenerate state with both L = 0 and S = 0.
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Mott transition may occur between a Fermi-liquid and a non-degenerate insulator.

3.3.1 Thelimit U — Uy

- In this section we examine the possibility of a direct transition between a Fermi-liquid
and a zero-entropy Mott insulator. Let us consider for comparison the SBHM. If we limit
to paramagnetic solutions, the atomic limit for the SBHM is dramatically degenerate. On
each site, the down and the up spin configurations are in fact degenerate, leading to a
finite entropy per site S/N = log 2.

This property has quite important consequences on the transition. In the SBHM,
when U < U, the system is in a metallic Fermi-liquid state. In a Fermi liquid, the
leading term in the low-temperature specific heat is given by Cy = «T', where v =

1% 2
3m"krk%. As a consequence,

ST [T LCn(T)
- _/(; dr T =T

The entropy is a linear function of T as well. The slope of the entropy curve in-
creases with the effective mass. Within DMFT, as we approach the transition point
U.o, the effective mass increases, and finally diverges at the transition. Simultane-
ously, the energy scale associated with the Fermi-liquid properties (renormalized Fermi-
energy) decreases. Since the density of states at the Fermi-level is pinned to the non-
interacting value py, a single quantity Z rules both the divergence of the effective mass
(m/m* ~ Z), and the vanishing of the renormalized Fermi-energy (£ ~ Z)[38]. The
effective Fermi-energy sets the temperature scale below which the system can be de-
scribed as a Fermi-liquid kgT5 = E%. As a result, the entropy at 17 is always finite,
being

S(T#)

1 1m 1
= ’}’T;» = gm*kpk?gpoT* - g'Z—ka?BpQTFZ = gmk'pk%poTF (37)

This behaviour can be continuously connected with the finite entropy of the para-
magnetic insulator for every coupling up to U — U,s, when the slope v — co as it
is shown in Fig. 3.5(a). The point in which yT% ~ log2 sets the scale for the Kondo
temperature under which the entropy of the paramagnetic state is quenched giving rise
to the Kondo effect.

In the three-fold degenerate model with negative Jy this picture is no longer valid.
The crucial difference is that, since the insulator has zero entropy at 7' = 0, and has

a finite spin-gap at the transition, the entropy in the insulating phase has an activated
behaviour of the form S(T)/N = (1 + BA)e~P2, where the gap A is of order Jg. The
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Figure 3.5: The Entropy as a function of temperature in proximity of the Mott transition
between a Fermi-liquid and an insulator with finite entropy per site (a), and between a
Fermi-liquid and an insulator with zero entropy (b). In case (a) the system can approach
the transition as a Fermi-liquid, while in case (b), it is not possible to connect a Fermi-

liquid with diverging effective mass with the insulator.

entropy of this phase goes exponentially to zero as 7' — 0, as shown in Fig. 3.5(b). For
T > Jpg the activated behaviour disappears because thermal fluctuations prevent the
formation of local singlets.

The problem is to connect the non-degenerate insulating phase with a Fermi-liquid.
The properties of the Fermi-liquid close to the transition must be the same we have
outlined above, so if we suppose the existence of a renormalized Fermi energy, the
entropy at the transition S(77) must be finite and related to the free-electron properties
by Eq. (3.7). Fig. 3.5(b) shows that we can connect continuously the linear Fermi-liquid
behaviour of the entropy with the insulating entropy only for finite slopes, i.e. for finite
effective masses, due to the rapid vanishing of the entropy of the spin-gapped insulator
for T — 0. The occurrence of a Mott transition is incompatible with a continuous
connection between the Fermi-liquid behaviour for T' < T, and the activated behaviour
forTp < T < Jy.

The argument above implies that the system can not be a Fermi liquid up to the
transition, if the transition occurs with a diverging effective mass®. We are basically left

3We have described the impossibility of a direct transition between a Fermi liquid with a diverging

effective mass to a zero-entropy insulator by means of a finite-temperature argument. We underline that
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with three scenarios for the transition to a non-degenerate insulator:
e The inclusion of a negative Jy implies a qualitative modification of the appear-
ance of the metallic solution. For example, the transition may acquire a band-like
nature in which one of the two Hubbard bands acquires more weight, and the

chemical potential lies in this band.

e The effective mass does not diverge at the transition, but it is finite at U = U.,.
This is a sort of first-order transition, even if Z = m/m* is not a derivative of the
free-energy with respect to some parameter. This phenomenon could be associated
with a quenching of the spin degrees of freedom below Jy.

e The system is not a Fermi-liquid in the proximity of the transition. A possible non
Fermi-liquid state is a superconducting state, in which the local pairs present in
the Mott insulating state form a coherent superconducting state. This scenario has

several theoretical and experimental implications.

3.3.2 Spectral properties close to the transition

In this section we present various DMFT results for the intriguing case described in the
previous section, i.e. n = 4 with a negative Jy in Hamiltonian (3.2). This investigation
is aimed to discriminate between the various options outlined above. As a first step, we
follow the usual strategy to describe the MIT within the DMFT, namely we consider the
evolution of the spectral density by increasing the correlation strength U.  Figs. 3.6
and 3.7 present this quantity for two different values of Jg. The goal of this section
is to discuss the effect of a non-degenerate atomic limit on the mechanism of the Mott
transition. We have therefore chosen relatively small values of Jg to avoid too drastic
modifications to the usual scenario that could occur for large Jg. The chosen values
Jg = —0.01W and Jg = —0.02W are instead likely to have the only effect to make the
groundstate non-degenerate.

As a matter of fact, as it appears from Figs. 3.6 and 3.7, the qualitative features of
the transition are basically unaffected by the inclusion of a negative Jy. The metallic
phase still appears as a Fermi-level resonance in the middle of the insulating gap, and the
Hubbard bands are well separated when the MIT occurs. Also the presence of a lower

critical U,; for the disappearance of the insulating solution is recovered.

the argument above shows that it is not possible to define an energy scale above which the system is a
Fermi liquid. The argument could be recast in terms of frequencies, and rules out the possibility of a

zero-temperature second-order transition.
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Figure 3.6: The evolution of the spectral density p(w) = —1/7ImG(w) for n = 4 and
for Jg/W = —0.01. Clearly, the three top solutions are metallic and the bottom ones

are insulating. p(w) is expressed in arbitrary units.
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Figure 3.7: The evolution of the spectral density p(w) = —1/7ZmG(w) for n = 4 and
for Jy /W = —0.02. Clearly, the three top solutions are metallic and the bottom ones

are insulating. p(w) is expressed in arbitrary units.
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The possibility of a band-like transition in which the gap closes due to the multiplet-
exchange, leading to a band insulator, is ruled out by the above results. Nevertheless,
the argument in the previous section rules out the possibility of a direct second-order
transition from a Fermi-liquid and a zero-entropy Mott insulator.

The second possibility is that the transition ceases to be second-order. In fact, if the
effective mass was not divergent at the transition, it would be in principle possible to
connect the non-critical Fermi-liquid to the insulator. For numerical reasons, it is hard
to clearly discriminate between a continuous vanishing of Z, and a small sudden drop.
We prefer to use the total energy to prove if the transition is first or second order. Even
if the effective mass (or, equivalently, the quasiparticle weight) is not a derivative of the
free energy, if this quantity has a jump at the transition (i.e., if it is finite just below Uca,
becoming negative for U > Ul,), the energy is expected to present a discontinuity in its
first derivative. The explicit computation of the groundstate energy

E 2

5 = T D Gliwn)® + T D [(wn + p)Gliwn) = 1er*"

rules out also this possibility, since the energy vs U curve is smooth, at least within the
numerical accuracy.

A closer look to the numerical results helps us to reconcile the theoretical expec-
tations with the numerical findings. As discussed in Chapter 1, every solution of the
DMEFT equations involves a recursive procedure. After each step, new parameters are

computed according to the self-consistency Eq. (1.10). The quantity

Ns

_________1____ “_"'Old2 . old\2
= g 2~ )

is computed at every iteration to measure the degree of convergence. For Jg = 0, or
deeply in the metallic and the insulating region, just a few steps (~ 10) are needed to
obtain x ~ 10712, signaling a good convergence. In the present case, we find that in a
small region of U values in the immediate neighbourhood of the transition, convergence
is not so easily achieved, and even after more than 20 iterations, the value of x? does not
go below 1073-107¢, and further iterations only lead to fluctuations.

This finding suggest an alternative interpretation of the results obtained for the spec-
tral function. The Fermi-liquid phase that seems to survive up to the critical point may
be a metastable state, while another phase, unaccessible to our calculation, may be the
groundstate in this region. Remarkably, the interval of couplings in which we are not
able to obtain truly converged results scales with the value of the multiplet-exchange
coupling, supporting the idea that this numerical problem is the signature of a real phys-

ical mechanism taking place.
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The analysis of the spectral function and of the total energy across the MIT rule out
two of the three options we had for the MIT in the presence of a non-degenerate Mott
insulating state. Moreover, even if the paramagnetic solution of the DMFT in absence
of broken-symmetries provides a metallic solution up to the MIT, it turns out that in the
' vicinity of the transition, the Fermi-liquid phase seems to be a metastable phase.

A natural candidate for the groundstate in this region of parameters is a supercon-
ducting state, in which the tendency to local pairing given by the multiplet-exchange
leads to a coherent superposition of pairs. A possible scenario is the following: for
small values of U the system is a regular Fermi-liquid, in which the e-e correlation
renormalizes the electronic properties. Once the correlation has strongly renormalized
the electronic properties, the multiplet-exchange leads to the formation of pairs, break-
ing the Fermi-liquid in favour of a superconducting state. A further increase of the
coupling finally leads to the Mott-insulating state. In the remainder of this chapter we

discuss the possible instability of this system with respect to pairing.

3.4 Superconducting instability of a Fermi liquid

Let us consider how one can detect a pairing instability in a Fermi liquid. The relevant

quantity is the particle-particle (Cooper) bubble

x°(7) = —(Tr (e (T)epy (1)l 1, (0)cy(0)))- (3.8)

The Matsubara transform of this quantity for free fermions is given by

1 1—27’Lk

X*%(iwn) = 37 (3.9)

— iy — 2¢r’
where ny, is the occupation number in momentum space. It is also important to stress
that the true physical response function is obtained by the analytical continuation iw,, —
w -+ 17 and, for stability reasons, has to be analytic in the upper half-plane [90].

Let us roughly estimate x*¢(iw, ) for complex frequency iw, — z. For energies close

to the Fermi energy, and assuming a constant density of states, we get for the free Fermi

e 1 1
sc ~ d — =
X0 (%) ,00/0 v (z——2a: z+2$)

1 dw? — 22 1 42
= —§poln7:—§poln:;5, (310)

gas
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where w, is a high energy cut-off. Within the Landau-Fermi liquid theory, we can assume
that this function is given by the RPA result
s Xi°(2)
X z)= PPYIRY, (3.11)
S
where ) is some coupling in the Cooper channel, and the density of states appearing in
X3¢ contains the effective quasiparticle mass. For positive A, x*¢(z) has no poles at low

frequency |z| < w,. On the contrary, for negative A, it has a pole at

22 = —4w?e™/(Aleo), (3.12)

*

Upon analytic continuation in the upper half-plane, the pole is for
2, = 2iwee™ M) = 4, (3.13)

In other words, the true response function becomes non analytic in the upper half-plane,
signaling the Cooper instability. By expanding Eq. (3.11) around the pole, one finds

1 Wy 1 1
T X2 w — ws - A2py w? + w?

x*¢(w) =~ (w? — fww,) . (3.14)

On the other hand, for positive A, upon analytic continuation in the upper half-plane,

.
— ng-Q—. (3.15)

2w
X' (w) = —poln | —

w
The imaginary part of x*¢(w) is now
T 1

Imx*(w) =~ ——po , (3.16)
27 (1 Apo | 2]) + (poF)”
while the real part reads
sc 2w, 2w, 2 T 2
Rex**(w) ~ — [poln —C—U—I-iw\ (,0()111 —;}——') +/\(p0—2—> } X
1
3.17)

Y+ (3)”

We see that the instability manifests itself in the imaginary part only as a different

(1+/\,001n|2%

frequency behavior, while the main difference between the two cases is the sign of the
real part at small frequency, which is positive for attractive A and negative otherwise.
Let us better understand this point on the basis of the analytical properties of the
response functions. For a given an operator A, we define the function
1 " 2
—Xselw) = > ldalAtlgo)|" 6 (w — Bn + Eo) +

— {¢nlAlgo)|? 6 (w + B — Ey), (3.18)
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where |¢) is the ground state at a given chemical potential, |¢,) are the states of energy
E,, connected to |¢g) by A.
(3.18) is the dissipative part of the response function

2 1
N i o ] i L0 .19
- w—E,+Ey+in w+E,— Ey+in’ '
ie., Xo.(w) = —ITmy**(w). If the system is stable, the response function is analytic in
the upper half-plane, and the Kramers-Kronig relations hold. In particular,
se 117 ,u,, 1
Rex*(w) = = dw'x (W) P - ). (3.20)
T J w—w
We notice that, at w = 0,
sc 17,0, 1
Rex*(0) = —— dw' X (W)P | — | - (3.21)
T J_ w

Since, by the definition (3.18), x,, > 0 for positive frequency and X,. < 0 otherwise,
then Rexs.(0) < 0. Notice that the above property of x,, does imply that we are
exploring the phase space within a region in which |¢) is a stable lowest energy state.
In DMFT this is possible since the states are solution of some self-consistency equation.

In such a case, the instability of the system outside that specified region in the phase
space would be signaled for instance by the presence a pole at iw, on the positive imag-

inary axis, which modifies the Kramers-Kronig relations according to

1o 1 5 (iw,
Rex**(w) = —;/ dw'Imy*¢(w')P <w—-w’> +2Rew,(3.22)
o 1 SCf, *
Imec(w) — l/ dwlREXsc(w,)P <w w,) +2Im_Rej)[X______%l (323)
TJ o - — W,

Indeed, the presence of the additional pole may change the sign of the real part.

We are therefore in the position to establish a clear-cut criterion for the pairing in-
stability of a Landau Fermi-liquid. The instability occurs when the small-frequency real
part of the paring susceptibility Eq. (3.11), or equivalently, of the dissipative part of the

response function (3.18) changes sign from positive to negative.

3.4.1 DMFT calculation of the pairing susceptibility

Since the calculations we perform in this thesis do not support superconducting long-

range-order, we can only detect the eventual instability of the metal with respect to
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pairing, as described in the previous section. We compute the imaginary part of the

dynamical susceptibility for pair creation ¢

1
A Ny

= Y K Alg) 0 (w — (B — En)), (3.24)

“Xoolw) = Tmig)|al

where |¢Y') is the groundstate for V particles, of energy Ej, and |¢5*2) are the eigen-
states with IV + 2 particles, of energies E,. The pair creation operator AT is given by

L i
Al = —( J{TCL, + C;Tcu -+ chc;L).

V3

A quantity of the form (3.24) is easily obtained with the Lanczos algorithm with-
out the knowledge of the full spectrum, exactly like the spectral quantities we have
considered in Sec. 2.6 [36]. We show the evolution of this quantity in Fig. 3.8 for
Jr = —0.02W (the same value of Fig. 3.7). Even if the imaginary part is not expected
to have a qualitatively strong modification in presence of pairing instability, the qualita-
tive trend leaves little doubt on the Fermi-liquid instability, despite the usual problem of
Lanczos susceptibilities, that are made by a collection of §-functions.

For U < 0.85W (the three low panels on Fig. 3.8) the system is a stable Fermi liquid,
and the low-frequency imaginary part of the susceptibility has some small features at
low energy that smoothly decrease by increasing U, in agreement with Eq. (3.14). For
U = 0.85W, i.e. for a coupling really close to U, = 0.86W (roughly Jy /2 before the
transition), the low energy features clearly change. The low-energy weight is enhanced
and it tends to move to really low frequency. As U is further increased the system enters
the Mott phase, and no low-energy feature is present.

The data shown in Fig. 3.8 strongly suggest that in a small slice of width Jy at
the boundary of the transition, the Fermi-liquid solution we get in DMFT is unstable
towards pairing. Then the numerical instability that limited the convergence of these
solutions has a relevant physical counterpart.

If we perform a Kramers-Kronig transform of the imaginary part of x;.(w), we ob-
tain the real part x,,. As expected, this quantity is positive for U = 0.85W (the value
for which the imaginary part is enhanced at low frequencies), as opposed to the negative

value in the stable Fermi liquid. In Fig. 3.9 we show the Kramers-Kronig transform of

%The properties of the response functions imply that we just need to compute the first term in Eq.
(3.18), that contributes to the sum only for positive frequencies, since the second term, which contributes
only to negative frequencies, is given by the same guantity changed of sign.
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Figure 3.8: The evolution of the imaginary part of the susceptibility for pair creation
(3.24) for n = 4 and for Jy/W = —0.02. U increases from bottom to top. The three
low panels are stable Fermi-liquid solutions. For U = 0.85W, just Jy /2 before the

MIT, the low-energy part of this quantity rapidly increases. For U = 0.9W and U = 1.0
no low-energy features are present.
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Reyx, (w)

Figure 3.9: The real part of the pair susceptibility for the unstable Fermi-liquid (U =
0.85W), and for a stable solution (U = 0.6W). The unstable solution is clearly positive

for low frequencies , while the stable one is negative.

(3.24) for U = 0.85W and for U = 0.6W, a value clearly in the Fermi-liquid regime.

The different sign for w — 0 for the unstable regime is evident.

3.5 Conclusions

In this chapter we have discussed the role of orbital degeneracy on the Mott transition.
First of all, we have considered the pure Hubbard model, in which no interaction be-
tween the various orbitals in considered. In this case we have described the successive
Mott transitions occurring at integer filling discussing the dependence upon doping of
the critical U. The most important issue of this chapter has been the analysis of the effect
of a negative multiplet-exchange term. This term, that can be thought as arising from a
Jahn-Teller effect, leads, for n = 4 electrons per site, to a non-degenerate atomic limit.
It is shown that in this case, due to the zero entropy of the atomic limit, it is not possible
to characterize the Mott transition within the DMFT as a Kondo effect, and, even more
significantly, that it is not possible to have a second-order transition between a Fermi
liquid and a zero-entropy insulator. Nevertheless, if the DMFT of this problem is car-
ried out, a Fermi-liquid phase is found up to the transition point in which the system
becomes a Mott insulator. We show that this Fermi-liquid is likely to be a metastable

solution unstable towards pairing. Therefore, we propose that this model presents a di-
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rect superconductor-insulator transition driven by the correlation strength. Starting from
a weakly interacting Fermi-liquid, and increasing U, the effective mass of the carriers
increases, up to a point in which the effective mass can not increase any more within a
Fermi-liquid phase. In this strongly correlates metal, the local correlations that are re-
sponsible of the zero-entropy property of the insulator are able to break the Fermi liquid,
giving rise to a superconducting state. Increasing the coupling, the system becomes a
gapped insulator.

Further investigation is needed to confirm this fascinating scenario. Namely, the
DMFT equations must be extended to allow for superconductivity. This work is cur-

rently underway.
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Chapter 4

The Mott Metal-Insulator transition on
the triangular lattice

In this chapter we turn back to the single-band Hubbard model, but we introduce frus-
tration by letting the sites reside on a two-dimensional triangular lattice [91]. This study
is relevant both on the theoretical and the experimental side. Recent experimental evi-
dences call for an intensive analysis of strongly correlated electronic models on the trian-
gular lattice. The adlayer structures on semiconductor surfaces, such as SiC(0001) [12]
or K/Si(111) : B [13], are Mott insulators, characterized by a v/3 x /3 arrangement of
the dangling-bond surface orbitals, and are likely to be well described by bidimensional
strongly correlated Hamiltonians [92] on the triangular lattice. In a completely differ-
ent context, McKenzie has recently proposed that a similar Hamiltonian in the metallic
regime is relevant for organic superconductors like kK — (BEDT — TTF),X[14]. From
the theoretical point of view, the triangular lattice represents a simple frustrated lattice,
in which frustration of the antiferromagnetic (AFM) ordering may lead to remarkable
physical properties.

As discussed in Chapter 1, the presence of a MIT at half-filling is a completely
general feature of the single-band Hubbard model. In fact the model describes a metal
with a half-filled band at least at U = 0 and it has to become insulating for U — oo,
due to the localization of the carriers caused by infinite repulsion. The features of the
transition may depend on the dimensionaliiy and on the lattice considered. In particular,
since at strong-coupling U > ¢ the model maps onto an AFM Heisenberg model, the

insulator is usually characterized by long-range AFM order.

Some interesting questions naturally arise, even for this simplified model. In this

chapter we will try to give an answer to two of the most relevant:
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1. Is the system metallic only for U = 0 or is there a critical value of U/t separating

a (finite) metallic region from an insulating one?

2. Is it possible to describe an insulating state without long-range order within this

model?

On the square lattice (and on higher-dimensional cubic lattices) with nearest-neighbours

hopping, both questions have a negative answer. As we have discussed in Chapter 1, it
turns out that the paramagnetic metal is unstable towards antiferromagnetism for arbi-
trarily small U. The instability is determined by the divergence of the integral in Eq.
(1.3). This is ultimately due to the perfect-nesting property of the non-interacting Fermi
surface. In the strong coupling (U > t) limit the Hubbard model maps onto the AFM
Heisenberg model, which is known to present an antiferromagnetically ordered ground-
state on the square lattice and on higher dimensionality cubic lattices. There is no rea-
son why intermediate couplings should present metallic behaviour between the limiting
AFM insulating solutions found in weak-coupling and strong-coupling.

The MIT then occurs at arbitrarily small U, as a transition between the uncorrelated
metal for U = 0, and an AFM insulator for every non-zero coupling.

A possible route at least towards a transition taking place at finite U/t, and eventu-
ally to a possible insulating state with no broken-symmetry is the introduction of physi-
cal effects frustrating the magnetic ordering. The triangular lattice is one of the simplest
frustrated lattices. For this model the perfect nesting property is absent for the uncorre-
Jated metal [93]. As consequence, the Stoner criterion does not give a vanishingly small
critical coupling for the MIT, and a finite range of couplings presents metallic behaviour.

Nevertheless, there are many evidences for a Néel ordered (insulating) groundstate
in the U/t — oo (Heisenberg) limit [94, 95]. Notice however that even the classical
ordering vector Qt = (47/3,0) (shown in Fig. 4.1) does not give rise to perfect nesting.

Since a metal is expected to be stable at least for small U/t, and an insulator is re-
covered as U/t — oo, A MIT is then expected to occur at some finite U. For the same
reasons, this transition is not, in principle, necessarily accompanied by antiferromag-
netic ordering, as it occurs on the square lattice. This model can be a possible candidate
for a “real” Mott transition without magnetic ordering soon after the transition from a
metal to an insulator.

Since we are explicitly interested in the peculiar features of the two-dimensional

triangular Hubbard model, we will not use the DMFT for this problem, despite the con-

siderable success of this approach in the characterization of the Mott-Hubbard transition.

We will rely on the less accurate slave-boson (SB) mean-field theory, which gives any-
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Figure 4.1: The classical Néel state consists of coplanar spins forming +27/3 angles
between nearest neighbours. This leads to a /3 x +/3 periodicity with the spins on the
three sublattices A,B,C ferromagnetically aligned.

way substantial insight on the transition coming from the metallic side (Brinkman-Rice
approach). The comparison with Hartree-Fock (HF) results and with exact diagonaliza-
tion (ED) of small clusters will help up to correctly interpret the SB results.

4.1 Hartree-Fock calculations

The frustration of the magnetic ordering introduced by the lattice topology reflects itself
in a wide variety of competing magnetic phases. Hartree-Fock calculations can help us in
understanding which are the most stable magnetic phases and represent a useful starting
point for more refined investigations. Note however that the HF scheme is unable to
describe an insulating phase without broken symmetry, so that more accurate theories
need to be used to answer the questions we asked. The Hartree-Fock phase diagram has
been already established by Krishnamurthy and co-workers [96, 97].

- Various transitions occur in the intermediate-coupling regime: for small U the sys-
tem is a paramagnetic metal (PM), which turns to a metal with incommensurate spiral
spin-density-wave (Spiral Metal, SM) at U = U,; = 3.97¢. This phase is characterized
by an incommensurate magnetic ordering vector of the form Q = (Q,0). In other
words, as we move along the x-axis, the spin direction rotates of a pitch angle @) every
site, as it is shown in Fig. 4.2. The classical Néel phase as shown in Fig. 4.1 can be
recovered for Qg = 47 /3. The transition between the PM and the SM is continuous
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Figure 4.2: A possible spiral phase, with an arbitrary incommensurate ordering vector.

(second order), i.e. the magnetization is m = 0 at the transition and then continuously
rises. If we follow this solution up to the point in which it crosses the antiferromagnetic
insulator, we observe that the magnetization is really close to the saturation value m = 1,
and the pitch angle to @y = 47 /3 when the first-order transition occurs.

Indeed, the SM phase is not the most stable up to this crossover: at U = Uy, =
4.45t a semi-metallic linear spin-density wave (LSDW) as the one shown if Fig. 4.3 is
stabilized. In this phase zig-zag ferromagnetic chains alternate along the x-axis (dashed
in Fig. 4.3). The energetic convenience of this phase (at least at the HF level) comes then
from its hybrid nature; a significant kinetic energy is still present along the ferromagnetic
chains, while the number of broken AFM bonds is not so large.

This latter phase becomes energetically unfavoured at U = U,z = 5.27¢, where the
last first-order transition towards the antiferromagnetic insulator occurs.

In the same work it has also been argued that, at finite temperature, the model should
present a Mott transition between a paramagnetic metal and a paramagnetic insulator as

that observed, e.g., in V50s.

4.2 The Kotliar-Ruckenstein Slave Boson approach

4.2.1 Formalism

As shown in the previous section, the Hartree-Fock phase diagram presents a rich va-

riety of phases. Four different phases become stable varying the value of U, and three
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Figure 4.3: The linear spin density wave found in HF. The dashed line denotes the

ferromagnetic zig-zag chains

transitions take place, in a relatively small interval of coupling values, namely the con-
tinuous transition from the paramagnetic metal to the metal with incommensurate spiral
ordering, a first order transition from the spiral phase to the linear spin-density-wave,
and finally the first order transition to the antiferromagnetic insulator. However, all
the above transitions only occur at relatively large U/¢, while the HF approximation is
known to be unreliable in the intermediate-coupling regime. Therefore we adopt the
more appropriate slave-boson approach [17, 27] which, already at the mean-field level,
is exact both in the non-interacting U = 0 limit, and in the opposite U/t — oo limit,
as we shall show in the following. This approximation represents therefore a valuable
interpolating scheme between this two limits.

Within the SB approach, we introduce on each site a set of four bosonic operators
e;, Sit, Siy and d; to label empty (e), singly (s), and doubly (d) occupied sites, respec-
tively. One, and only one of these bosons is present on each site, besides the fermionic
operators. ‘We work therefore in an enlarged Hilbert space, in which auxiliary (slave)
bosonic degrees of freedom are introduced. The extended Hilbert space contains un-

physical states which can be eliminated by imposing the following constraints:

> slysie +eles +dldi =1 (4.1)

chytin = sl,si0 + djdi o = £. 4.2)

Eq. (4.1) simply means that no more and no less than one boson must be present on each
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{

site; Eqs.(4.2) state that the fermion number operator c;,c;, must be equal to the sum of

io
the proper bosonic number operators (if a down spin 1s on a given site, than the boson
“singly occupied-down” or the boson “doubly occupied” must be present).

Since we are interested in incommensurate magnetic ordering, we use the spin-
rotational invariant formulation [98] of the SB approach. The spin projection ¢ =T, ] is
measured with respect to a local quantization axis, which can vary from site to site. To

allow for this freedom we introduce the unitary transformation on each site

E;ra - Z = [RT (Qi)}aa’cia"a (43)

a—l

where RT(Q;) = e~i#i/2)o=g=il0i/2)0y = R is the rotation operator that rotates the z-
axis to the direction specified by the spherical angle Q; = (6;, ¢;), and o, and o, are the
Pauli matrices. The resulting SB Hamiltonian is

H= - tz [w 2] RR)W:zNICJU:-%-Hc}

<’LJ>

— py e +UY  dd;
-+ Z /\1 (egei -+ dzdz -+ Z sg‘,sw - 1)

+ ZAM (c Gio — 55815 — dd) 4.4)

where ¢;, 6}; are the pseudo-fermion operators, the Lagrange multipliers ); and A;, en-
force on each site the completeness constraint and the correct fermion counting respec-
tively, the operator R; rotates the local reference frame back to the laboratory frame.

The operator

TSw -+ S}-_Udi

\/1 - de 5 »Sic \/1 — e;-fei — S}L_Usi_,,

is introduced in order to reconstruct the hopping amplitude in the enlarged Fock space,

and to yield the correct U — 0 limiting behaviour in the mean-field approximation
[27, 98].

We will treat the SB Hamiltonian at a mean-field level, substituting the bosonic oper-
ators with average values. In principle, we could let the bosonic fields assume different
average values on every site (as in an unrestricted HF calculation). However, the num-

ber of self-consistency equations (see below) we can treat is not so large, so we limited
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ourselves to fully translationally-invariant solutions, in which the average values of the
bosons are site-independent, and to solutions which are still periodic with enlarged unit
cells containing three or four sites (see below).

When the angle between two local quantization axes depends only on their relative
- position, up to a global phase factor one can assume RI’Rj = exp[iQ - (R; — R;)0y/2],
where o, is the Pauli matrix and Q is the (incommensurate) modulating wave-vector
[98]. In such a case, where the translational invariance is fully preserved, a mean-field

description with real site-independent expectation values for the SB operators
() = eo; (1) = 5003 (") = db, (4.5)
and for the Lagrange multipliers
(M) = Aos (M) = Moo, (4.6)

is possible.

In the case of spiral spin ordering, the Hamiltonian (4.4) can be analytically diago-
nalized by adopting the Bloch representation, and performing a unitary transformation
with respect to spin indices, yielding

1
Ek,:l: = 5 [t(ng -+ ZSL)TE -+ AOT -+ AOJJ — M

1 2
+ 5\/[1&(ng — zgi)Te + Aot — AOL] -+ 4tzz§Tz§¢T02

where T, = — Y, cos(Q-1/2) cos(k-1), T, = — ), sin(Q-1/2) sin(k-1) are the even and
odd contribution to the kinetic energy in presence of Q, and 1 = (1,0), (1/2, £/3/2)
are the nearest-neighbour displacements. The saddle-point condition is enforced by min-
imizing with respect to the mean-field values of the bosons, and to the other parameters

(the components of the pitch vectors in our case), the free energy

F=F,—T Z log (1 -+ e—E""’/T) , BCN))
k,a=:1

where
Fo = N[UdZ+No(e+d2 + 53+ 55, — 1) — Mor(dg + s54) — Aoy (dg + 55,) + pn], (4.8)

N is the number of sites, and n is the electron density per site. Minimization leads to

the set of self-consistency equations

Fy G} B
5971%2 22 f(Bia) = 0, “.9)
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where f(E) = [¢F/T 4 1]7! is the Fermi function and X’ represents generically one of

the parameters (4.5), (4.6) and the two components of the pitch vector Q. The chemical
potential 1 is fixed by the condition

> f(Bia) =nN.
k,a=+
We assume henceforth n = 1 (half-filling).

The formalism just outlined allows for a description of the paramagnetic metal, the
metallic phase with spiral magnetic ordering, and the antiferromagnetic insulator (which
is a special case of spiral ordering).

We have also studied configurations with broken translational symmetry, taking unit-
cells containing NN, sites. In these cases, it is not possible to obtain explicit expressions
for the eigenvalues of the mean-field SB Hamiltonian, equivalent to Eq. (4.7), and the
solution involves a numerical diagonalization of matrices 2N, x 2N,!.

In particular we considered solutions in which in the bosons have different values on
each of the three sublattices, which amounts to have 21 self-consistency equations for
the bosons, plus the ones for the chemical potential and for the pitch vector. This kind
of solutions involve diagonalization of a 6 x 6 matrix.

We have also studied solutions analogous to LSDW found in Hartree-Fock[97]. The
latter solutions can be found considering a four-sites unit cell (see Fig. 4.3). In this case,
since we were just looking for phases with the same symmetry of the LSDW found
in HF, we did not introduce rotations of the local quantization axis to avoid further
complications. The Hamiltonian is therefore diagonal in the spin index and numerical
diagonalization only involves 4 x 4 matrices.

The self-consistency equations (4.9) can easily be generalized to the broken-symmetry

case, once different bosons are introduced on different sites in the unit-cell.

4.2.2 Phase diagram

A similar SB mean-field theory for this problem has been carried out in Ref. [99]. The
result reported was quite similar to the HF phase diagram, but no region of stability was
found for the spiral metal. We now describe our results, that present some differences
with respect to [99], and later discuss what makes our calculation more careful and
complete. The self-consistency equations (4.9) yield the same solutions found in HF,

namely a paramagnetic metal, a metal with incommensurate spiral ordering, and an

I'The factor 2 comes from the spin degree of freedom, since the Hamiltonian is not diagonal in the spin

as soon as a pitch vector is considered.
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Figure 4.4: U dependence of the groundstate energy per site. SB results: PM (solid
line), SM (dotted line), LSDW (dot-dashed line), and AFMI (dashed line). Open dots

are the exact diagonalization results for the 12—site cluster.

antiferromagnetic insulator. As in HF, the PM-SM transition is continuous, and the
other two transitions are of first order, but all of them occur at larger coupling values,
U,y = 6.68t, Uy = 6.84t, and U3 = 7.68t. The energy curves corresponding to the
above phases are reported in Fig. 4.4. Our results agree with Ref. [99] as far as the PM,
AFMI, and LSDW phases are concerned, but we also find a region of stability for the SM
phase, which was not detected in Ref. [99]. These authors were indeed looking for spiral
phases starting from the strong-coupling side, and following them to weaker coupling
at fixed vector Q. On the other hand, our analysis shows that a spiral phase develops
continuously from the PM at intermediate coupling and it ends in a critical point soon
after the level-crossing with the AFMI (see the inset in Fig. 4.4), and does not exist at
strong-coupling. The pitch vector, as well as the magnetization smoothly evolve from
the metallic solution, and continuously change increasing the coupling. Therefore, our
SM phase is the correct generalization of the corresponding phase found within HF [97],
and it is unrelated to the high-energy SM phases of Ref. [99].

However, the region of existence of the SM is narrower within SB as compared to
HF, and the magnetization m = %(”T — ny) is always less than 0.1, a really small value
with respect to the HF value (< 0.4). Therefore the jump of the magnetization at the
SM-AFMI transition is substantially larger than in the HF approximation. We point



94  The Mott Metal-Insulator transition on the triangular lattice

out that, contrary to nesting models, where the presence of free particles (doping) is a
necessary condition for spiral ordering [98, 100, 101], here the spiral phase exists at
half-filling, as previously shown in Ref. [96], within the HF approximation. Despite
the overall qualitative agreement between the HF and the SB phase diagrams, the main
outcome of the comparison between them is that the stability of the SM phase is strongly
reduced. Furthermore, the SM is hardly distinguishable from the PM in its whole region
of stability. It is reasonable to expect that the inclusion of quantum fluctuations washes
out these phases leaving the way open for a transition between a PM and the AFMI.

Despite the strong frustration of the antiferromagnetic (AFM) order on the triangular
lattice [94, 95], both the HF and SB approaches indicate no paramagnetic Mott insulating
phase in the zero-temperature phase diagram of the half-filled Hubbard model.

4.2.3 The Brinkman-Rice transition

The phase diagram emerging from the mean-field approximation of the Kotliar-Ruckenstein
SB Hamiltonian does not present, among the different transitions, a Mott transition from
a paramagnetic metal and a paramagnetic insulator (PI), being the insulating phase char-
acterized by magnetic ordering. The second question we asked ourselves at the begin-
ning of this chapter has therefore a negative answer.

Within the SB approach it is possible to restrict to paramagnetic solutions. In a such
a restricted space, a MIT occurs between a paramagnetic metal and a paramagnetic in-
sulator. It should be clear from the above discussion that in the case of the triangular lat-
tice, and, even more obviously, for nested lattices, this procedure amounts to follow the
paramagnetic solution beyond its region of stability, and that the paramagnetic insulator
represents a high-energy excited state. Nevertheless, the investigation of this transition
proves useful for at least two reasons: it can be viewed as clue on what it would happen
if some other physical effect inhibited magnetism, and it gives an estimate on how far
from the Mott transition the system really is. We mean that, if the critical value for the
Mott transition is really close to a point in which the metallic solution is still stable, then
we expect that the inclusion of small terms which oppose to magnetism can stabilize the
paramagnetic insulator.

Since the SB mean-field theory is equivalent to the Gutzwiller variational approach
(see Par. 1.1.2,1.1.3), the search of a PM-PI transition is completely equivalent to the
Brinkman-Rice [25] approach.

If the possibility for magnetic ordering is neglected, the paramagnetic metallic phase

undergoes a transition associated with a vanishing value of the double-occupancy boson
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Figure 4.5: Average double occupation as a function of U for the paramagnetic SB

solution. The vanishing of d, is associated with the paramagnetic insulating solution.

dy (reported in Fig. 4.5), and consequently a vanishing z;,, which determines in turn
a zero effective hopping (z;, is an effective renormalization of the hopping amplitude).

As usual the BR transition is associated with the disappearance of the quasiparticles.

The critical value (at T' = 0) of the Hubbard interaction is given by

32t
Usr = & ; ex0(2tex + 1), (4.10)

where e, = T.(Q = 0) are the single particle eigenvalues for the paramagnetic solution
(i.e. in absence of a pitch vector Q), and p is the chemical potential chosen to fix the
density to n = 1 [25, 27]. Using the suitable values for the triangular lattice we obtain
Ugg/t ~ 15.8 (1 = 0.82¢).

As we see this value is much larger than U, /t, U/t and U3/t found above. The
system is therefore not even close to the Brinkman-Rice transition when the MIT occurs.

At least from SB mean-field calculations, the degree of frustration of the triangular
lattice is not strong enough to let the system become insulating without taking advantage
of the magnetic degrees of freedom. The inclusion of quantum fluctuations beyond the
mean-field can in principle wash out the intermediate magnetic phases, but is hard to

imagine that the effect would be strong enough to stabilize the paramagnetic insulator.
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4.3 Exact Diagonalization

In order to understand to which extent the picture we found within the mean-field SB
theory survives in an exact treatment of the model, we performed exact diagonaliza-
tion of small clusters by means of the standard Lanczos algorithm. The largest lattice
compatible with all the symmetries of the model that can be handled with exact diago-
nalization is a NV = 12 site cluster [94]. Unfortunately, we can not perform a finite-size
scaling analysis of this problem, since the next lattice with the proper symmetries is a
N = 27 site one, which is far beyond the presently computable sizes. This ED study
will anyway help us in further understanding the MIT in the half-filled triangular lattice,
providing us with a complementary point of view with respect to the SB mean-field, in
which the thermodynamic limit was reached, but the correlation was treated approxi-
mately. Especially for really small clusters, attention must be payed to the choice of
boundary conditions. In particular, it is crucial to ensure to always work in closed-shell
configurations. If a Lanczos calculation is performed with open-shell configurations,
the algorithm filters an arbitrary superposition of the degenerate levels, that can break
the symmetries of the Hamiltonian, and in a last instance, may not be representative of
the actual physics of the system. This may be particularly dangerous when conduction
properties of the system are under inspection. 12 electrons in the 12—site lattice are not
in a closed-shell configuration if periodic or anti-periodic boundary conditions are used.
It is therefore necessary to resort to twisted boundary conditions, i.e. a phase x; (1 = 1,2
labels the independent directions on the lattice) must be imposed when hopping around
the boundaries. Various values of x; and x, give closed-shell configurations. We always

choose (for every value of U) the ones that minimize the energy.

It turns out that the boundary conditions that minimize the energy in a closed-shell
configuration for U = 0 leave the system in a closed-shell configuration at all U. The
energy is shown as a function of U in Fig. 4.4 (open dots). The overall agreement with
the mean-field SB results is good, the largest deviations (~ 20%) being, as expected, at
intermediate coupling (U/t ~ 7).

The energy curve alone does not allow us to gain enough information on the nature
of the MIT in the finite cluster. It is really hard to understand from the energy curve if a
single transition occurs, and eventually the order of the transition(s). Fortunately, in ED
calculations, we can access almost every groundstate and dynamical property.

To check the occurrence of a discontinuous phase transition we evaluated the overlap
between the GS wave function and the two limiting cases of U = 0, and for large U

(namely, U = 100t) representative of the AFM state. As shown in Fig. 4.6 on the large-
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Figure 4.6: Overlap of the finite-U GS with the U = 0 (empty dots) and the U = 100¢
(full dots) GS’s, for N = 12. In the inset the GS energy per site in the k = (0, 0) (solid
line) and k = (27/3, 0) (dashed line) subspaces is plotted versus U.

U side of the diagram the GS has a large overlap with the AFM strong-coupling state
and a vanishing overlap with the non-interacting metallic one. On the metallic side the
overlap with the non-interacting state is always finite, but it is a decreasing function of
U; in this regime the GS has anyway a vanishing overlap to the AFM state. We have
therefore a clear evidence for a strongly correlated metal with a decreasing coherent
part. In particular the sharp change of the GS wave function at Uy ~ 12.07¢ is due
to a level-crossing occurring between a metallic and an antiferromagnetic solutions, that
correspond to different quantum numbers, as shown in the inset in Fig. (4.6). At least
for the 12—site lattice, the transition is therefore a level-crossing between a solution that
maintains a metallic contribution up to the critical coupling and an insulator that soon
after the transition strongly resembles the U/t — oo limit. These results, however, do
not rule out the possibility of a continuous transition within the metallic phase without
changing the symmetry of the state, i.e. the PM-SM transition found with SB. The
overlap between the GS wavefunction and the U = 0 non-interacting metal can be
interpreted as a sort of quasiparticle weight renormalizing the non-interacting Green’s
function. This quantity changes rather abruptly its behaviour at U ~ 7%, where the
curvature changes sign. This change could be also interpreted as a finite-size counterpart
of a second-order transition, but the impossibility of a finite-size scaling does not allow
for a reliable confirmation of this hypothesis. In principle this shadow of a second-order
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Figure 4.7: Spin structure factor S(q): U=2t (dotted line), U=8t (dashed line), U=1 1.5t
(dot-short-dashed line), U=12.5t (dot-long-dashed), U=40t (solid line).

transition could be considered as the counterpart of the PM-SM transition found in HF
and SB. Some magnetic effect would occur if this was the case.

To discuss the possibility of peculiar magnetic phases developing before the tran-
sition to an almost perfect AFM at Up;;r we have computed the static spin structure

factor,

Z S5 explq - (ri — 13)], (4.11)

for different values of U. The results, reported in Fig. 4.7, do not suggest any interme-
diate state between a metallic state without magnetic order and the AFM insulator, as
S(q) abruptly changes from a structureless behaviour for metallic couplings to an AFM
pattern peaked at the classical ordering wave-vector, i.e. Qo = (47/3,0). The sudden
change is coincident with the level crossing shown in Fig.4.6 at Uprrr. Although we
suspect that the intermediate spiral phases are an artifact of the mean-field approach,
the weakness and the strong size-dependence of the spiral phases suggested by the SB
results, may make them unaccessible on our 12-—site lattice.

As a last quantity, we also computed the finite-frequency optical conductivity o(w)
and the Drude weight, measuring the electronic mobility. The real part of the zz com-
ponent of the conductivity tensor for a tight-binding model at zero temperature may be
expressed in terms of the Kubo formula [102]

1
2
TRy e TS (4.12)

Ozz(W) = Dyzb(w) +Im(O|le
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Figure 4.8: Exact calculation of the Drude weight as a function of U for the N = 12

cluster.

where J; = Zw,l zz(c;‘gcz-Hc, — h.c.) is the z—component of the current operator ({,
are the z—components of the primitive displacements 1). vector[36]. The coefficient of
the zero-frequency delta function contribution D,,, the Drude weight, is given by the
f-sumrule[102]

D,, Ht ;liﬂl“’zl%;, (4.13)

where Ht = 3. 1%(c!_ciy104h.c.), and |éy) is the eigenfunction of H with eigenvalue

io,1
E,,. The second term on the right-hand side of Eq. (4.12) can be easily computed with
the Lanczos method, without knowing the whole spectrum | @, ), F,, but simply knowing
the groundstate (H!) is straightforwardly computed, so D, is obtained as a difference.

The latter quantity, which is reported in Fig. 4.8 is a direct measure of the metallic
character of the state, and the MIT is signaled by the vanishing of D,, [103]. For a
finite system, D, is never vanishing for any value of U, but an abrupt change takes
place at the level-crossing point. For U < Uprr, Dy is a decreasing function of the
interaction, which resembles the overlap in Fig. 4.6. An abrupt change takes place at the
level-crossing point.and for U > Upr it becomes negative, a common phenomenon in
the insulating phase of a small-size system [36].

All the results of exact diagonalization point towards the same direction: the metal-
AFMI level-crossing found within the SB mean-field approach is shifted to sizeably

larger values of U. The metallic solution exhibits a continuous loss of metallicity with
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increasing U. The Drude weight is finite up to the MIT on the 12—site lattice although
it is quite small (4% of the non-interacting value). We remark that, due to finite-size
effects, we cannot exclude the possibility that, for larger systems, the change in slope
of D, (and analogously of the overlap between the groundstate vector and the non-
interacting solution) may transform in a real transition in which the quantity vanishes
before the transition to the AFMI is reached. In such a case, there would be a region
of stability for the paramagnetic insulator, though the SB results point in the opposite

direction.

4.4 Conclusions

Using the slave boson technique and the exact diagonalization, we have investigated the
zero-temperature phase diagram of the half-filled Hubbard model on a two dimensional
triangular lattice. The mean-field SB approach displays a rich phase diagram which
qualitatively resembles the one from HF calculations, but, on the other hand, drasti-
cally reduces the stability of the spiral metal and of the linear spin-density-wave states.
Namely, the weak-coupling paramagnetic metal continuously evolves into a spiral metal
atU = U,y = 6.68¢, which crosses the linearly polarized spin-density-wave groundstate
at U = U, = 6.84t. The latter phase undergoes a further first-order transition towards
an antiferromagnetic insulator at U = U, = 7.68t. All these transitions occur for
coupling constants substantially smaller than the critical value for the Brinkman-Rice
transition to a paramagnetic insulator (Upg = 15.8t).

The exact-diagonalization results present instead just a first order transition between
the paramagnetic metal and the antiferromagnetic insulator at Up;rr = 12.072, without
intermediate “exotic” phases.

The absence of perfect-nesting is only sufficient to shift the MIT to finite (and quite
large) values of U, but the frustration of AFM is unlikely to be strong enough to give rise
to a Mott-Hubbard transition within the paramagnetic sector. More frustrated models,
like, e.g. the Kagomé lattice, must be invoked to look for a PM-IM transition for the
single-band Hubbard model.



Conclusions

In this thesis we have studied some relevant examples of correlation-driven metal-insulator
transitions (Mott transitions) with a variety of techniques, ranging from exact diagonal-
ization of small clusters to the slave-boson mean-field theory, from Hartree-Fock to the
Dynamical Mean-Field Theory. The latter is the most reliable tool for the study of the
Mott transition. The Mott phenomenon is based on the competition between the delo-
calization effect of the kinetic energy, and the effect of the correlations, that constraint
the electronic motion. This basic competition can be studied within the framework of
the single-band Hubbard model. The étudy of this model has enormously contributed to
the understanding of the mechanism leading to the Mott transition, but many interesting
features of real compounds and many theoretical aspects can only be understood if other
physical mechanisms are considered.

One of the most interesting open points regarding the Mott transition is the possi-
bility of a “real” Mott transition, without broken-symmetry in the insulating state. For
the single-band Hubbard model, in the absence of frustration , the transition is always
accompanied by AFM ordering. We investigated the Mott transition on the most rele-
vant frustrated lattice, the triangular lattice. We have given a substantial contribution to
solve this open issue. Our results rule out the possibility of a real Mott transition, since
both a slave-boson and an exact diagonalization study find only a transition to an antifer-
romagnetic insulator. The Brinkman-Rice transition to a paramagnetic insulator occurs
for a coupling much larger than the the critical coupling for the transition to the AFM
insulator. In the slave-boson approach many exotic magnetic phases are found in the
proximity of the MIT. All these findings have an experimental counterpart in Mott insu-
lators on triangular lattices like SiC(0001) or K/Si(111) : B, or organic superconductors
like k — (BEDT — TTF),X. a MIT to an AFM state.

An alternative route to a Mott transition without symmetry-breaking is the inclusion
of orbital degrees of freedom. This is a point of crucial interest because in most Mott
insulators, starting from the prototypical V.03, the orbitals primarily involved in the

transition are degenerate.
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Among the many experimental realization of Mott insulator, we have concentrated
on the alkali-metal doped fullerides A4Cgp. These compounds are nonmagnetic insula-
tors, even if they have a partially filled band. Band-structure calculation completely fail
in their description, giving a metallic state. Even if the strong correlation is the natural
reason for the insulating behaviour, the single-band Hubbard model is definitely not able
to account for the properties of these compounds. We have reported strong evidences
that the properties of the alkali-metal doped fullerides can only be understood by con-
sidering the combined effect of orbital degeneracy, multiplet-exchange, strong electronic
correlation and Jahn-Teller effect. The Dynamical Mean Field Theory provides a unique
framework in which all these effects can be treated on the same footing.

We have concludes that these compounds can be labeled as Mott-Jahn-Teller insula-
tors. We have shown that the on-site Coulomb repulsion is strong enough to lead to a
Mott insulating state, as soon as the multiplet-exchange is considered. The Jahn-Teller

coupling further enhances the tendency towards an insulator.

Once the electronic motion is strongly suppressed by the correlation, the solid can be
thought as a collection of isolated molecules. Each molecule is free to choose the config-
uration that minimizes the energy. We have seen that on each molecule, the Jahn-Teller
effect is strong enough to overcome Hund’s rule, and stabilize a singlet groundstate. As
a result, the solid is nonmagnetic. Moreover, we have found that, as soon as the system
becomes insulating, the spectral properties become essentially molecular. Our DMFT
results are able to completely reproduce all the experimental features of these com-
pounds, ranging from the nonmagnetic properties, to the precise values of the relevant
excitations (spin and optical gaps).

The model successfully introduced in the explanation of the fullerides has an impor-
tant role also from a theoretical point of view. If we consider the antiadiabatic limit for
the Jahn-Teller effect on each molecule, then we obtain a purely electronic model with
a negative multiplet-exchange coupling Jg. As a result, the atomic limit has an inverted
multiplet structure, in which the less degenerate levels are favoured. In particular, for
n = 4 (or n = 2), the molecular groundstate becomes the non-degenerate spin and or-
bital singlet with S = 0 and L = 0. The Mott limit is expected to be a zero-entropy
insulator. This property has dramatic effects on the Mott transition. First of all, the
usual interpretation of the Mott transition in the single band Hubbard model as a Kondo
screening of the spin degrees of freedom is not possible for this case, since the insulator
has zero entropy.

Moreover, we have shown that a direct second-order transition between a Fermi liq-

uid and a zero-entropy insulator is not possible if the electron effective mass diverges
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at the metal-insulator transition. Nevertheless, the DMFT results display a transition
between a Fermi-liquid and a Mott insulator. After having ruled out the possibilities
that this transition acquires a band-like character, or that it becomes first-order, we have
considered a more exciting possibility. A careful analysis of the Fermi liquid solution in
~ the proximity of the Mott transition suggests that this phase is unstable towards pairing
in the Cooper channel. We have computed the pairing susceptibility and found that the
criteria for the pairing instabilities are satisfled. This finding suggests that, if we allow
for superconducting long-range-order, the system would become superconducting be-
fore the Mott transition, leading to a direct superconductor-insulator transition. A new
fascinating scenario emerges from our results. Upon increasing interaction, the metallic
state becomes more and more correlated, and the quasiparticle effective mass strongly
increases. When the correlation exceeds a given value (~ Ug — Jg), the local exchange
interaction gives rise to a pairing leading to local singlets, that form a superconducting
state. At U = U,, the insulator disappears in the Mott insulator. This is the first realiza-
tion of a direct superconductor-insulator transition to our knowledge. Besides the great
theoretical relevance, this result has lots of interesting experimental implications, like
the the possible superconducting state in .44Cgo that could be realized by suitably tuning
the pressure, putting the system really close to the Mott transition. This finding has to
be taken into account also in the description of the superconducting A3Cgp.

This scenario still needs a more solid foundation. In particular, the DMFT equa-
tions must be extended allowing for pairing. The study of this broken-symmetry case is

underway.
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Spectrum of an isolated 0 ion

The t;,, orbitals are the counterparts of the p orbitals within the icosahedral point group,
and the multiplet exchange splitting is governed by the Hamiltonian (2.3), that we

rewrite here

Hmt=?—'§5—2ni QJHZ ﬁ—ZAaﬁ, (A1)

a<p a<p
with Ay = > _(cl, cgs + h.c.). In this Appendix we show the solutions of this
Hamiltonian for different number of particles. Due to symmetry with respect to the
n = 3 (half-filling) case, the only independent values are n = 3, 2, 1.
e For n = 3, the possible multiplets, labeled by the total spin S and total angular

momentum L, are:

1. L =0and S = 3/2 with energy E(n, S, L) given by

3
E =,0] =0.
(3727) O

CJ{TC;TC;HO);

CLCQJ,C& 0);

The four eigenstates are

| f
<C1 J,CzTcaT + cch2 J’C3T + cl,cmTc3 ¢) 10);

%\

Tt 1
( 1TCZJ,C3.L + Cl,LCZTCBJ, + 01¢C'T)¢03T) |0).

Sl

2. L=2and S =1/

L\')

with energy
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The ten eigenstates can be written in the following way: Six are written as

1 ,
P ;
7 (CaTcaJ,CTya - Cmclucia) 10),

with {a, 8,7} given by a permutation of {1, 2, 3}, and the other four are

T oAbt .
75 \CularCar — C1T‘32¢‘33T) 10);

V2

1(T1"r

1
/2 (CITC;LCQL - ChchCgJ,) |0);

1 t
76 ( Lchely + clpchyely — QCLCzTCgL) 10);

L for ot ot t ot i
76: (C;TCZLC&L + CLLCZTC&L i 261.|,CZ.LCST> lO).

3. L =1and S = 1/2 with energy
1

The six states are given by

1
7 (CLTCLﬂm + CET%“%) 0),

with {a, 8, v} given by a permutation of {1, 2, 3}. The overall energy within

the n = 3 manifold can be written as
15 1
e Forn = 2 (and n = 4) we have
1. S =1and L =1 with energy
5
E(2,1,1) = -?;JH.

The nine eigenstates are obtained applying the spin lowering operator to the

state
CLTC;;T |0},

with o % 8.



Spectrum of an isolated Cf;, ion

2. S=0and L = 2 with energy

The eigenstates are
L p ot
V) (cJ{TCJ{J, - CQT02¢> 10);

1
G (CiTCL, + C:QTCEi — c}p&) |0},
and, for o # 3, .
Foa t 1
—= | cCpy T CpiC )0.
5 (chochy + chiely ) 10

3. S =0and L = 0 with energy

20
E(2, 0, O) = E‘JH,

and eigenstate
1
J tot tot

The energy for two electrons can be written as

2

1
E(2,5,L) = %JH ~Jg (252 + —L2> :

e Forn = 1 (and n = 5) the energy is

1 5)
— ]_ = — .
E<1,2, ) 3JH

109

The Hund’s rules are satisfied in every manifold. The states are in fact ordered by

decreasing spin, and, among the states with the same S, the maximum L has lower

energy.
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