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INTRODUCTION

The present work deals with the problems of protein folding and protein
adsorption, some of the most exciting topics in the present scientific scene in
biophysics. The large interest raised by these subjects in the scientific community
relies upon three main reasons. First of all, substantial progress can only
be obtained through the fruitful collaboration of experts from disciplines as
different as mathematics, physics, chemistry and biology. Secondly, the protein
folding problem constitutes not only a domain of application for well established
techniques in each of the mentioned disciplines, but it also instigates, and often
requires, fundamental developments in separate fields. Last but not least comes
the fact that the protein folding problem perfectly fits in with the present trend in
the evolution of science for which, in agreement with the needs of human society,

the social and biological sciences acquire a new, more prominent, position.

Owing to its intrinsic multidisciplinary nature, the protein folding problem
presents different possible approaches. In our opinion they can be roughly
classified in two groups : the biological and the physical approaches. Each is
mainly concerned with one of the two fundamental questions arising when dealing
with protein folding. Namely: the structure-function relation is the essential
matter of concern for biologists, while the study of folding mechanisms and the
characterisation of the folded and unfolded states mostly attract the physicists.
Biophysics should therefore be concerned with the underlying, unifying question

of the prediction of functional structures. Unfortunately, a complete resolution of
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the latter still seems to pertain to the domain of fiction or at least involve some
unpredictable fundamental discovery in the treatment of complex systems. Thus
the question arises of what point of view should be adopted in a thesis submitted for
the PhD degree in biophysics. The answer can be rather personal and controversial,
but one should be guided by the observation that many protein functions have not
yet received a satisfactory explanation of how they are, or can be, performed. This
question not only requires a good comprehension of the structure-function relation
but also a deep insight in the physico-chemical mechanisms underlying biopolymer
functions. Equilibrium thermodynamics and statistical physics can provide part
of such basic information, to be further included in more specific calculations
and/or computer simulations.We have therefore adopted, in the present work, a
theoretical physics approach to the protein folding problem, based, precisely, on

classical statistical mechanics.

An underlying aim of the present thesis is not only to support the idea that
biological systems are suitable subjects for producing nice theoretical physics, but
also that theoretical physics studies can bring useful, quite general, information
on these biological systems despite their intrinsic specificity. We have tried to
keep in mind the scope mentioned above and therefore concentrate our efforts on
those particular physical aspects both susceptible of being successfully treated by
statistical mechanics methods and of playing an important réle in understanding
mechanisms involved in protein functions. As a corollary, some interesting
theoretical questions have not received the accurate treatment they would have
deserved in a different context. In particular precise numerical evaluations, based
on the models in use, have been considered as being of secondary importance in

contrast to overall, general features.

Proteins are the building blocks of the living world, to which they confer an
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incredibly high degree of variety and richness. Most of the genetic information is
expressed by proteins and, as a consequence, they are the most abundant organic
molecules in cells, constituting 50 percent or more of their dry weight. They are
found in every part of every cell, since they are fundamental in all aspects of cell
structure and function. There are many different kinds of proteins, each specialized
for a given biological function. Depending on their conformation, proteins can be
placed in two major classes, fibrous and globular. The fibrous proteins consist of
polypeptide chains arranged in parallel along a single axis, to yield long fibers or
sheets. They are insoluble in water and represent the basic structural elements in
the connective tissue of higher animals. Examples are collagen of tendons and bone
matrix, a-keratin of hair, horn, skin, and nails, and elastin of elastic connective

tissue.[1]

More relevant for our purposes are the globular proteins , in which the
polypeptide chains are tightly folded into compact spherical or globular shapes.
They are often soluble in water and they usually have mobile or dynamic functions
in the cell, such as enzymatic, hormonal or transport functions. Two or more
polypeptide chains often associate by means of weak (non-covalent) interactions
to form oligomeric proteins as for instance hemoglobin which consists of four
polypeptide chains fitting together to form a compact globular assembly of
considerable stability. [1]

Proteins can be classified according to their function. The enzymes, which
are virtually all globular proteins, represent the largest class. They have an
extraordinary catalytic power and are highly specific in their functions. FEach
type of enzyme molecule contains an active site to which its specific substrate
is bound during the catalytic cycle. The storage proteins have the function of

storing amino acids as nutrients. The transport proteins are capable of binding
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and transporting specific types of molecules, via the blood or through tissues or
cellular membranes. The contractile proteins are the major elements of muscles.
Antibodies, which play a fundamental réle in the immune system, are classified
among protective proteins while tozins play a somewhat opposite role. Proteins
with hormonal functions regulate a large variety of processes in the organisms

and structural proteins form the major extracellular components|2].

Three-dimensional protein configurations profoundly influence and determine
their physiological activity. Therefore, the folding process by which proteins
acquire their spatial conformation is worthy of a thorough investigation. The
determination of the protein conformation involves physical methods and can
hardly be performed “in vivo”. Nevertheless, conformational changes are believed
to play a fundamental réle in a large number of poorly understood physiological
mechanisms. A quite general example could be the proteolytic degradation which
ensures the turnover of almost all the proteins in the organisms. Degradation
not only allows the organism to dispose at any time of “fresh” and fully
functional proteins but also provides an efficient way of controlling the protein
concentration. Responsible for degradation are often proteases, enzymes capable
of “cutting” proteins at specific location by catalysing the hydrolysis of particular
peptide bonds. Significant correlations seem to exist between degradation rates
and susceptibility to thermal unfolding, showing that folded conformations are
important, for at least minimizing the rate of degradation. Abnormal proteins,
such as those resulting from chemical modifications, are almost invariably found

to be rapidly degradated proteolytically in cells [3].

Despite its rather generic biological importance, protein folding enters in the
physiological mechanisms with a high degree of specificity. A statistical mechanics

approach to the phenomenon alone seems therefore of little practical interest, or,
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at least, too restrictive. However, the prospects radically change if we consider it in
relation with protein adsorption. The mutual influence of folding and adsorption
can generate elementary and fundamental processes underlying a multitude of
highly specific protein functions. Actually, there is a question that immediately
arises when considering a protein adsorbing at, let us say, a cell membrane.
What happens to the protein conformation when attaching to the membrane?
It depends ..., would answer any biologist working in the field, and a list of cases
probably would follow, long enough to scare the more courageous amongst the
physicists. So, let us formulate the question in a slightly different, and more
appropriate way. Is there any tendency in conformational changes induced by the
adsorption process? This is precisely the question we address in the present work
and, thus formulated, it certainly pertains to the domain of statistical physics. Our
protein models allow us to give an affirmative answer : the folded phase is stabilized
upon adsorption. Alternatively, we will say that adsorption tends to enhance the
folding temperature. Can this important result be used as a pattern in trying to
understand a variety of molecular mechanisms involving proteins and membranes?
We really hope that it will be the case and we even believe the result to be general
enough for being successfully applied to similar problems which do not directly
imply adsorption on membranes. Actually, we ascribe the origin of this effect to
the reduction in protein’s entropy induced by the adsorbing substrate. A similar
entropy reduction could occur when ligands are bound to enzymes, thus playing an
important role in the allosteric regulation of enzyme activity. As pointed out by
Dill and Alonso [4], the folding process itself could be related to such a mechanism,
even when occuring far from any membrane. Disulfide bonds and other cross-links
should stabilize the globular states by reducing the conformal entropy of unfolded
states [5].

The thesis is organised as follows : In Chapter One we give an overview




of the mechanisms involved in protein folding and adsorption, both from the
biochemical and the statistical mechanics points of view. In Chapter Two we
present a model for folding and adsorption especially designed to be treated with
real-space renormalisation group methods, while in Chapter Three we describe
a less elegant but more powerful model relying on the exact enumeration of
configurations and finite series analysis. Chapter Four is concerned with a more
realistic model in which a random distribution of hydrophylic and hydrophobic
residues is considered. In Chapter Five a global critical review of the main
results is presented in which a physical as well as a biochemical point of view
is taken. In the appendices, the interested reader will find a short description of
the main computer algorithm developed for the purposes of this work. Tables of
configuration classification are also given in order to facilitate further developments

by other workers.

The most innovating features presented in this thesis have already been the

subject of previous publications and concern :

e the complete phase diagram in the renormalisation group parameter space
for a ©-point polymer chain adsorbing to a wall, bothin D=2 and D =3

dimensions. [6]

e the evidence for a surface-induced enhancement of the folding transition
temperature or, in other words, a stabilisation of the folded phase at

adsorption. [7]

o the analysis of changes in the phase diagram induced by a variable random
distribution of hydrophylic and of hydrophobic residues along the protein
chain. [8]



CHAPTER ONE

QUALITATIVE ASPECTS OF
PROTEIN FOLDING AND ADSOR-
PTION

This first Chapter is devoted to a general overview of the protein folding and
protein adsorption phenomena, with no references to their biological importance
(see Chapter 5) but centered on chemical and physical aspects. It articulates in two
main Sections. First we will adopt a biochemical, and then a statistical mechanics
point of view, with the intention of emphasizing the complementarity of the two
approaches. Both have some advantages, but also limitations. Biochemistry
allows for a very accurate description of a variety of known proteins (and of their
behaviour) but offers poor prediction capability. As an example, we will consider
the difficulties encountered with sequence analysis in predicting folded structures.
On the other hand, statistical mechanics offers more prediction power, but less
quantitative accuracy, which is a limitation in the study of biological systems.
Therefore, the combined use of both methods should represent the most fruitful

approach.

1.1 THE BIOCHEMICAL APPROACH

The enormous amount and the diversity, as well as the high degree of
specificity, of the functions performed by proteins is deeply connected with their

composition. Actually proteins consist of one or more polypeptide chains generally
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linked together by weak bonds and sometimes by a few disulfide bridges. To
synthesize the unbranched polypeptide chains, the living cells recognize and use
20 different amino acids. With the exception of proline, all these “natural” amino

acids have the same structure:

H;N — CH(R) — CO,H (1.1)

and they only differ in the chemical composition of the side chain R. During the
synthetization process, many such amino acids (generally from 50 to 1000) are
linked together in a determined sequence, according to the information stored in

the nucleic acids. The resulting chain

H—(NH - CH(R;)— CO), — OH (1.2)

presents a backbone consisting of the repeated unit of three atoms: the amide N,
the alpha C , and the carbonyl C . In principle rotation may occur about any of
the three bonds of the polypeptide backbone. However, the peptide bond (which
links the carbonyl C with the amide N of the following backbone unit) appears
to have partial double-bonded character. Rotation of this bond is then markedly
restricted (see figure 1.1).

By itself, the periodic structure of the polypeptide chain backbone would not
allow proteins to exhibit their amazing variety of forms and functions. It is
clear that a fundamental contribution in that direction comes from the twenty
amino acid side chains which differ in many important aspects. First of all they

have different chemical affinities and reactivities. An important example is the
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Figure 1.1 The repeating unit of the polypeptide backbone.

The arrows indicate the allowed rotations responsible for protein

flexibility

strongly reactive thiol group which can form disufide (covalent) bonds between
cysteine residues, though playing an important réle in the stabilisation of some
protein’s spatial conformation. Side chains also have different protonation and
deprotonation tendencies so that, at a given pH, some of them carry a positive
charge while others are neutral or negative. The steric constraints imposed to
the molecule vary from amino acid to amino acid and finally, but perhaps most
important, the hydrophobic or hydrophilic properties of amino acid side chains

induce a diametrically opposite behaviour in relation to the solvent.

The specific sequence of the amino acids in the polypeptide chains forming
a protein, as well as the location of all the disulfide and other covalent bonds, is
called the primary structure of the protein. This primary structure is generally

determined when the protein is synthesized, nevertheless some modifications can
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occur when the protein has already acquired a three-dimensional structure, as for

instance in the case of hydrolysis of one or more peptide bonds.

The regular and periodic structure of the chain backbone gives rise to the
secondary structure of proteins, consisting of a local arrangement of the backbone
units. Such an arrangement largely depends on the rotational freedom allowed by
the covalent bond in the chain’s backbone. Therefore the double-bonded character
of the peptide bond plays a crucial role in the formation of the secondary structure.
The most common conformations found in proteins are a-helices and [(-sheets.
Both are stabilized by hydrogen bonds formed between the carbonyl ( C = O )
and NH groups of the backbone and both strongly limit the flexibility of the
chain. The side chains can hinder or influence secondary structure formation either
by their steric constraints, by their intrinsic charge or because of their ability of
forming other particular bonds. Of particular importance is the effect of proline,

the special backbone unit of which breaks the a-helix structures.

Along a polypeptide chain, ordered and rather rigid segments alternate with
flexible, unordered parts usually referred to as random coils. This allows the chain
to undergo a further folding to acquire a compact three-dimensional non-periodic
conformation: the tertiary structure. The aperiodicity of this three-dimensional
molecular organisation certainly represents the most important feature of the
folded, globular, proteins. Actually, the ability of binding selectively to specific
ligands, which is the fundamental function of most globular proteins, is directly
related to their non-periodic spatial organisation. Only a non-periodic structure
can give rise to the formation of the highly specific binding sites which are
present on the globule’s surface and which allow for the amazingly rich enzymatic

capabilities of globular proteins.

The overall shape of small folded proteins is roughly spherical, but with a very
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irregular surface. However, where a protein consists of more than 200 residues,
the structure usually appears to consist of two or three rather spherical units,
generally referred to as domains, often linked together through a single segment
of polypeptide chain. Within a domain, the course of the polypeptide backbone
gives the impression of somewhat stiff chain segments interspersed with relatively

tight turns which are almost always on the surface of the protein.

The protein gquaternary structure appears when two or more polypeptide
chains link together through weak bonds. Each subunit is generally folded into
an apparently independent globular conformation, which then interacts with other

subunits.

1.1.1 ProTEIN FOLDING

There are no precise general rules for the formation of the globular stucture

in proteins. Nevertheless some generalisations are possible:

Most of the non-polar residues are found inside the globule, far from the

acqueous sovent.

The charged groups are essentially distributed on the surface of the molecule,

in contact with the solvent.

]

Polar groups are frequently found in the proximity of the binding site for

ligands.

The most usual secondary structure in globular proteins is represented by
the a-helix, the presence of which varies from 5 to 75 percent of the entire

chain.
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These features are connected with the different nature of the forces stabilizing the

globule: ionic forces, hydrogen bonds or hydrophobic interactions.

Ionic forces appear between residues that carry a net positive charge such
as lysine, arginine and histidine, and those that carry a negative charge such as
glutamic and aspartic acid. The hydrogen bonds form between proton donors (N H,
NH,, NHY, OH) and acceptors (COO~, CO, OH, NH,). Water has a strong
tendency to break ionic as well as hydrogen bonds. The ability of a group to
make a hydrogen bond depends on its ionisation state and thus on the pH of the

solution.

The hydrophobic interactions arise from the fact that when non-polar groups
are inserted into water, a new interface is created, which requires the adjacent
water molecules to assume a more ordered arrangement producing an unfavourable
entropy reduction. As a result, a polypeptide chain will tend to assume a
conformation in which the non-polar residues are shielded from expésure to water.
Furthermore, the hydrophilic groups that could have been dragged inside the
molecule can then form ionic and hydrogen bonds which could not exist in an
acqueous environment. It is generally admitted that hydrophobic interactions are

the principal stabizing forces for the globular state [5].

Among the experimentally accessible physical characteristics [9] which can
serve to differentiate folded and unfolded proteins one can mention hydrodynamic
and spectral properties. The former, obviously, resume to a much lower
viscosity for the more compact globular conformation [10]. The latter involve
light absorption [11], fluorescence [12], circular dichroism [13], optical rotatory

dispersion [14], and nuclear magnetic resonance [15].

Chemical properties are also widely modified upon folding but they generally
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depend upon the nature of the reagent. This suggests that it is the local
concentration of the reagent, determined by its interactions with the neighbouring

parts of the protein, that is often the crucial factor.

Many difficult questions arise when one considers the folding of proteins. Some
of them are connected with the relation between the primary and the tertiary or

quaternary structure.

To which extent the amino acid sequence determines the three-dimensional

conformation of proteins?

How stable is the tertiary structure with regard to chemical transformations

such as the proteolysis of some peptide bonds?
- Can different sequences give rise to similar globular conformations?

- Why does a given protein choose a determined configuration instead of

another?

What is the relationship between structural and functional similarity?

It is quite obvious that the answers to the above questions involve preliminary and

more physical aspects:

- How do denaturant factors effectively act to induce drastic conformational

changes?

Is folding really a two-state process or does it involve intermediate states?

How flexible are globular proteins?

How well are atoms packed inside a protein?
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Most of these questions have received partial empirical answers; few, if any, are
well supported by a convincing theoretical framework. Since it is not our purpose
to discuss all these fascinating topics in full details we simply and briefly discuss

those which are the most pertinent to our work.

Denaturation, the unfolding of native globular proteins, has been shown to
be a reversible process. This important fact proves that all the information
necessary to determine the globular conformation of a protein is contained in the
sequence of the amino acid residues in the polypeptide chain [16]. All conditions
which can alter hydrophobic interactions, ionic forces, and hydrogen bonds, are
susceptible of inducing denaturation. The most important denaturant factors are
extremes of pH, non-polar solvents, temperature enhancement, and a number
of chemical compounds such as urea and guanidine hydrochloride. In order
to obtain insight into the physical basis of globular conformation stabilization,
denaturation experiments have been performed using all of the above denaturants.
The predominance of the hydrophobic interactions, and therefore that of the
entropic effects, in the stabilization of the globular conformations represents the
overall conclusions of these experiments. Actually, even chemical denaturants seem
to act indirectly by interacting with water molecules, with a consequent decrease of
hydrophobic interactions [2]. The réle of hydrophobic interaction in temperature-
driven denaturation has long represented a controversial point since the strength
of the hydrophobic interaction increases with increasing temperature. However,
recent quantitative arguments support the conjecture that temperature-induced
conformational changes could be principally driven by the gain of conformational

entropy of the polypeptide chain [17].

The question of the nature of the folding transition has received considerable

attention. The sharpness of the denaturation clearly reveals a cooperative process
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involving the majority of the chain residues and, therefore, can be seen as a phase
transition. Moreover the virtual independence of the measured transition curves
from the experimental methods, suggests that the folding-unfolding transition is
a two-state process with only the fully folded and unfolded states present. The
idea is supported by calorimetric studies [18,19] at least for small proteins. In
contrast, complex proteins present independently folding-domains, and therefore

a multistate folding process.

Theoretical studies of protein conformation can be classified in three groups:

Molecular dynamics, sequence comparison, and simplified protein model analysis.

In molecular dynamics calculations, the classical equations of motion for
protein atoms are solved using an ad hoc expression for the energy as a function
of the conformation. The disavantage of the method is that its application is
limited to systems where the nature of the chemical bonding is well defined, can
be specified at the beginning of a given simulation and does not change during the
simulation itself. The principal limitation of the method consists in the virtual
impossibility to follow the evolution of the molecule during a long enough period
of time to allow large conformational changes. This prevents the method to be
used to describe protein folding to a native state from an arbitrary unfolded
structure. Moreover it requires that one knows, to a reasonable accuracy, the
starting conformation. Therefore, the method can essentially exhibit its usefulness
in predicting changes induced by substituting one or a few amino acids in a

structurally well known protein [20].

Sequence comparison methods have essentially been applied to secondary
structure prediction [21]. The success rates in predicting whether or not a given
amino acid belongs to an «-helix reach 80 percent but, drops to approximately 50

percent in predicting whether residues belong to an a-helix, (-strand, reverse
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turn, or random coil [22]. These are poor results, especially if we consider
the relative “simplicity” of the secondary structure with respect to the tertiary
structure in which the interactions between distant residues along the chain play
a much more determinant role. Nevertheless the method has been improved
and structural profile comparison, which is essentially a parametric approach to
sequence comparison, has made it possible to reveal three-dimensional similarities
between proteins that are not demonstrably homologous in their primary structure
[23]. Once again the method is more useful for the comparison of slightly mutated
sequences to their natural-type counterpart than for tertiary structure prediction,

starting from the primary structure.

Unlike the above methods, simplified protein models allow for the
investigation of the folding process, but the “picture” of the folded protein they
supply is by far not precise enough so as to make structure-function relations
possible. As a rule, thermodynamics and statistical mechanics are used to
investigate such protein models. The extracted information covers a wide range
of interesting effects, from the prediction that short chains do not fold [24] to
the suggestion that a significant proportion of all possible protein sequences could
have a thermodynamically dominant fold [25], from the affirmation that there
exists only a small set of possible folding patterns [26] to the claim that the
basis for secondary structure formation in globular proteins may be packing and

conformational freedom [27].

As a conclusion to this Section we would say that an understanding of
the physico-chemical mechanisms underlying biopolymer folding appears as a
necessary step towards the prediction of the secondary and tertiary structure of
proteins. Equilibrium thermodynamics and statistical mechanics can provide part

of such basic information, to be further included in more specific calculations and
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computer simulations.

1.1.2 PROTEIN ADSORPTION

Strictly speaking adsorption refers to the accumulation of a substance on an
impenetrable wall. For a single protein it can be understood as the attachment of
a substantial fraction of its residues on the surface of a larger structure. With this
proviso, adsorption could seem to play a limited physiological réle, since proteins
most often interact with molecules similar in size or smaller. Nevertheless, the
case of cell membranes as the adsorbing substrate is worth being more thoroughly
investigated. Membranes contain between 20 and 80 percent protein which are the
biochemically active components. The remaining portion is made up by a wide
variety of lipids which general structure presents a polar, hydrophilic head and a
long non-polar, hydrophobic, tail. '

Certainly the major réle of membrane lipids is to form the bilayer matrix in which
the proteins sit. The membrane proteins act as enzymes, transporters, receptors,
pores, etc. They are generally viewed as being folded so as to present a non-polar
hydrophobic surface compatible with the non-polar portion of the lipid molecules.
Polar or charged regions of the protein can adjust to the lipid headgroups at
the surface of the bilayer. Many proteins extend through the membrane, others
are probably bound exclusively through interactions with membrane-embedded
proteins. Figure 1.2 shows the different mechanisms by which proteins are believed
to interact with the lipid bilayer membrane [28]. The cases B and D can be readily
considered as adsorption phenomena. In the following, these two types of surface
interactions will be referred to as protein adsorption. It may be used primarily
to supplement the membrane-binding properties of proteins which are attached to

the membrane by other means, such as through transmembrane “anchors”.
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Figure 1.2  A: Polypeptide chain with multiple transmembrane

segments (e.g. glycophorin and lactose permease). B: Hydrophobic
binding but without penetration ( e.g. E. pyruvate oxydase). C:
Protein bound to other proteins (e.g. succinate dehydrogenase). D:
Electrostatic binding (e.g. myelin basic protein). E: Binding by a

terminal segment (e.g. cytochrome b3).
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Protein adsorption is certainly involved in a large number of poorly
understood physiological processes and we-think that the results anticipated in
the Introduction, namely the coupling between the folding and the adsorption
transitions, should contribute to clarify such mechanisms. Protein translocation
and insertion, the processes by which a protein can traverse or can be inserted
into a membrane, appear to be possible examples. The post-translational
translocation is now accepted to occur not only in chloroplast and mitochondrial
membranes but also across the bacterial membrane and the endoplasmic reticulum
of eukaryotes [29-32]. This ribosome-independent transport phenomenon appears
to involve a preliminary adsorption of the protein to the membrane. Moreover
important conformational changes are expected to concern the adsorbed protein
[28] before translocation. Spontaneous post-translational insertion of proteins into
the membrane have also been observed. As for translocation, adsorption and

conformational changes again appear to be important steps [33].

Structural information about membrane protein is difficult to obtain. Once
removed from their native lipid environment the proteins tend to promote non-
ordered aggregations unsuitable for X-ray diffraction studies. Moreover the
detergents, which are required for the purification step, usually interact with
membrane proteins and alter their conformation, as well as their functions, in
a way which is hard to control. The determination of conformational changes
during a given physiological process is still more difficult. Often the more or less
globular conformation of a protein is roughly estimated from the rate of proteolitic

degradation during the different steps of the process investigated.

As a conclusion we can say that adsorption is certainly worthy of being
carefully considered, especially when related to conformational change since both

phenomena seem to occur in a somewhat related way in important physiological
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processes. Moreover, as it will be discussed in Chapter 5, protein-protein
interactions and protein adsorption present some common features so that our

main results on adsorption can be applied to both interactions.

1.2 THE STATISTICAL MECHANICS APPROACH

In this Section we will ignore most of the protein properties that have
been described in Section 1.1. Only some physically relevant features will be
retained. First of all we must note the relative large size of a single protein
(typically 200 peptide units), which can therefore be regarded as a macroscopic
system. Its description in terms of classical statistical mechanics seems thus
appropriate. Secondly we will consider proteins as flezible chains made up
of several hundred linked monomers. This appears as a natural modelisation
for unbranched linear macromolecules. A crucial point in modeling proteins is
represented by the diversity of the 20 amino acids which, as already discussed,
is responsible for their nonperiodic spatial structure and for their highly specific
interactions. The procedure adopted to tackle this delicate problem consists of
two steps. We will first ignore the differences between amino acids, thus working
with polymeric homogenous chains. Then we will improve on the model in order
to include a random distribution of hydrophobic and hydrophilic monomers to
form what will be referred to as the random chain. This means that instead of
considering a set of 20 amino acids differing on many aspects we will limit ourselves
to a “black and white” description of proteins. Future elaborations should
consider the introduction of a specific sequence of hydrophobic and hydrophilic
monomers (instead of a random one) as well as the use of more parameters for
the characterization of monomers. The random chain will be treated in Chapter

4, whilst in the following we will focus on homogeneous chains (homopolymers).
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A long chain, made up of several thousand linked monomers, can be
characterized by its microscopic states, defined through the mutual positions of
the monomer-monomer bonds within the molecule, and by a number of accessible
parameters such as its size, usually represented by the end-to-end distance or by the
radius of gyration, its shape, defined by the spatial distribution of the monomers,
and many other physical, optical, and chemical properties. Under a progressive
change of environmental conditions these parameters can either vary smoothly or
undergo a sharp modification which reveals a cooperative process referred to as a

phase transition.

Clearly, the drastic simplifications introduced in our models will prevent us
from obtaining any useful information on the specific local behaviour of proteins.
We therefore focus our attention on global phase transitions since it seems very
likely that such highly cooperative processes will overcome local modification and
deeply influence the general and specific behaviour of proteins. The location of
phase transitions, that is the determination of the phase diagram, represents the
heart of the present thesis. The biological relevance of the results thus obtained
will be discussed in Chapter 5, whereas in the rest of this Chapter we will introduce

the concepts which form the basis of our treatment in Chapters 2, 3, and 4.

1.2.1 Basic CONCEPTS IN POLYMER PHYSICS

The polymeric chains present a particular feature that increases the difficulties
encountered in their theoretical analysis. Owing to chain flexibility, each monomer
can interact with any other, even if they are located very far along the monomer
sequence. Depending on whether these interactions are neglected or not, the
physical models are said to deal with ideal or real chains, respectively. Polymer

models also divide into continuous and lattice models. The former allow for the
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polymeric chain to have access at any point in a continuous space, whereas the

latter constrain the chain monomers on a regular lattice of points.

A. The Ideal Chain.

Most of the calculations on the ideal chain can be performed exactly. This
is directly connected with the fact that the monomer distribution is analytically
accessible, as an ideal chain is well represented by a random walk. The probability
for a random walk to be at a distance R from its origin after n stepsis known

to have, for n — 0o, a gaussian distribution [34] which can be written as:

P,(R) = R%? (—d—> : exp (—éff—) (1.3)

2 na?

where d is the dimensionality of space and @ is the mean length of the
random steps. Using the above distribution we can easily determine the asymptotic
dependence of the radius of gyration on the number n  of monomers. By

definition, the radius of gyration Rg is given by:

i
2

Re = ((R—(R))?)7? = {/Om RZPn(R)dR} ~n (1.4)

where spatial isotropy has been assumed so that (R) = 0. Direct integration of
equation (1.4) shows that the size exponent is v = % for any value of the space

dimensionality d > 1.

B. The Real Chain.

A particular case of monomer-monomer interaction is represented by

the ezcluded volume effect which accounts for the repulsive potential between
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monomers on close approach (steric repulsion). When attractive forces between
monomers are present, excluded volume interactions must be taken into account
to avoid an unphysical collapse of the chain at a single point. Moreover excluded
volume interactions have important effects on the size exponent v  of the
macromolecule even when no other interaction between monomers is present. The
excluded volume implies that less space is available to the molecule so that it
spreads over a larger volume and the radius of gyration is increased. Self-avoiding
walks (SAWs) are natural representations of polymeric chains when excluded
volume effects are considered. Depending on whether other monomer-monomer
interactions are present or not, we will talk about interacting or noninteracting
SAW models. In order to tackle the conceptual and technical problems raised by
the theoretical study of real chains, two techniques have been mostly used, namely

the mean field and the scaling approaches.

C. The Mean Field Approach.
The mean field theory represents a basic tool of statistical mechanics.
Essentially, it consists in the application of a variational principle. The hamiltonian

H of the system to be described is written in the form

H()\) = Hy + \H; (1.5)

where Hy is the hamiltonian of a solvable model which can be used as an
approximation for the system at hand. The term H; represents the difference
between the effective and approximate models. By permitting A to vary from 0
to 1 we can smoothly interpolate between the solvable model system H(0) = Hj
and the system of interest H = H(1) . Then the Bogoliubov inequality holds for
the Helmoltz potential F
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where (Hp), 1is the average value of the perturbation as calculated in the
unperturbed system. The above inequality establishes an upper bound for F' .
Therefore, to find the optimum unperturbed model one has to minimize Fy+(Hi)
over a parametrized family of solvable models [35]. This type of procedure has been
widely used to study systems of interacting particles exploiting the known solution
of the related non-interacting particle models. The particle-particle interactions
are then replaced by a fictitious external field the intensity of which has to be
chosen in such a way as to minimize the right hand side of the Bogoliubov
inequality. In polymer physics, the ideal chain constitutes a solvable model to
be used as an approximation for the real chain, whereas excluded volume and
other monomer-monomer interactions are considered as perturbations. The mean
field approach has been very fruitfully exploited by Flory as we will see in Sections
1.2.2A and 1.2.3A.

D. The Scaling Approach.

The theory of phase transitions is very much concerned with the properties
of macroscopic systems near their critical point. Many unexpected properties have
been observed in that region so that criticality is now considered as a particular
state of matter. What essentially characterises critical systems is the emergence of
divergent thermal fluctuations [36]. Correlation lengths also diverge and, therefore,
the critical behaviour does not reflect any more the full atomic complexity of the
system. As it happens, a critical system is fully described by a set of critical
ezponents which govern the divergent behaviour of the susceptibilities and the
growth of the order parameter. The values of the critical exponents depend

only on the dimensionality of the system and on that of the order parameter,
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as well as on the symmetries of the hamiltonian. Consequently, the values of
the critical exponents are not completely independent. This inter-relation is most
economically stated through some postulated scaling relations from which it is
possible to derive the complete critical behaviour of the properties of the system.
The critical exponents are said to be universal; since all the systems with the
same dimensionalities of order parameter and of space and same hamiltonian
symmetry must have identical critical exponents, such systems are considered as
belonging to the same universality class. The effective use of scaling relations can
be summarized as follows. Let a system be characterized by a physical quantity
A depending on, say, two variables a and b : A= F(a,b). Suppose that
we can rescale the system by a factor A and that we know the transformation

laws for the above variables:

a— X%a and b— )b (1.7)

In general, under transformation (1.7), the quantity A will change as

4 — N4 (1.8)

The parameter z depends on the nature of A and can be inferred via physical

arguments. It follows from equations (1.7) and (1.8) that

F(X*a,\’b) = A" F(a,b) : (1.9)
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Equation (1.9) must hold for any A. It represents a generic scaling relation
from which, in particular cases, the form of F(a,b) can be deduced. Scaling
relations are not easily determined. The only available physical theory allowing
to deduce or prove scaling relations is the renormalisation group theory. In the
field of polymer physics, considerable progress has been achieved in the scaling
approach to the real chain problem when the SAW model has been recognised
to be equivalent to the zero-component O(n) model of magnetic systems, as

discussed below.

E. Polymer Statistics and Magnetic Critical Points.

From a microscopic point of view, ferromagnets can be seen as a collection
of particles the dipolar moments of which, also called “classical spins”, can have
different orientations. In the absence of an external magnetic field and at high
temperatures the spin orientations are uncorrelated and no magnetisation would
be measured. At the Curie temperature 7T, the spin-correlation length will
diverge giving rise to a non-zero magnetisation. For temperatures slightly above
T., that is for small positive values of ¢ =T —T,, the correlation length ¢

obeys a power-law of the form

¢ =ale|™”  (e—0) (1.10)

where a represents the distance between neighbouring atoms. Owing to the fact
that ¢ > a all lattice details become irrelevant and the exponent v presents
a universal character. The only relevant quantities are the dimensionality d of
space and that of the order parameter n (i.e. the number of components of the
‘magnetization vector). Therefore, the Curie temperature 7T, corresponds to a

magnetic critical point.
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A first striking analogy between polymer statistics and magnetic systems
appears when comparing the relation (1.10)-with the scaling form for the growth of

the polymer’s characteristic size (represented for instance by the radius of gyration

Rg )

Rg = an” (n — o0) (1.11)

where a is the monomer length. The correspondence

e — 0= n—x (1.12)

denotes the critical behaviour of a polymeric chain in the limit n — oo.
The precise form of this correspondence can be expressed through the following

theorem :

(§288)| _, = ; C(ij) (-IT-{-> " (1.13)

where the left hand side represents the correlation between the components «
of the spins located at sites ¢ and j, and where the formal limit to zero
spin-components ( n =0 ) has been taken. On the right hand side, C,(ij) is
the number of SAWs of n steps linking sites 7 and j whereas K is the

coupling constant for neighbouring spins.

The demonstration of theorem (1.13) was first given by de Gennes [37] and

reproposed several times after in different forms [38—41]. Other correspondences
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between the critical behaviour of magnets and polymers are easily derived from

equation (1.13) (see ref.[42]).

The direct consequences of theorem (1.13) for polymer physics are of two
types. On the one hand, many results obtained for magnetic systems can be
“translated” and applied to polymers. On the other hand, the study of the
limit 7n — oo is considerably simplified since this limit can be replaced by
the requirement that the system exhibits critical behaviour. Such a requirement
receives a precise formulation in the renormalisation group theory as explained

below.

F. Real Space Renormalisation.

As already discussed, the comparison of the effect of scaling on different
physical quantities can give important information on the relative dependence
of these quantities. Nevertheless, the above effect of a rescaling transformation
is hard to control. The main idea of renormalisation group theory consists
of repeating a scaling transformation an infinite number of times until all the
parameters characterizing the system will become scale-invariant. In other words,
the scaling transformation must be repeated until a fized point in the parameter
space is reached. All the parameters with zero invariant value are said to be
irrelevant. If all the parameters are irrelevant the fixed point is called “trivial”.
Non-trivial fixed points must correspond to systems where the characteristic length
diverges. Therefore, they can be associated with the critical points of the system.
Let g be a vector representing all the parameters we need in order to describe the
physical system and R, the transformation under which the system is rescaled

by a factor b. We then express the renormalisation group transformation by

w = Ry(p) (1.14)
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and the fixed point condition by

bt = Ry(p”) (1.15)

Assuming the existence of the fixed point p* we can linearize the transformation

(1.14) near this point by:

p=pt + IR (w7) (e — 07) (1.16)

where Jg,(p*) is the jacobian matrix of R; evaluated at p*.  If we first
scale our system by a factor b, and then by a factor b', the two following

properties must hold:

Rb 0 Rbl = Rb.bl Semi—group
(1.17)
[Ry,Rp] =0 Commutativity

Using the properties (1.17) we can easily show that the eigenvalues of the
jacobian matrix Jg, must have the form Ai(b) = b¥, where the y;’s
characterize the critical behaviour of the corresponding relevant parameters, and
are usually referred to as the critical ezponents. Summarizing, we would say that
the renormalisation group theory allows one to calculate the critical exponents

through the fundamental formula:

yi = —= (1.18)



1.2.2 THE PoLYMER CHAIN IN A GOOD SOLVENT

The concept of good solvent for polymers is used to describe a situation
in which the effective monomer-monomer interactions are null or repulsive.
Actually, solvent-solvent, monomer-solvent, and monomer-monomer interactions
can be reduced to an overall effective interaction between monomers. We must
nevertheless emphasize that passing from a good to a bad solvent does not
necessarily imply changing the solvent: temperature changes can alter the relative
strength of the interaction components so as to produce a change of sign in the

effective interaction strength.

A. The Flory Approzimation.

A single polymer chain in a good solvent is well modelled by a noninteracting
SAW . In such a way the excluded volume effect is considered and, owing to their
universality, critical exponents can be carefully estimated in the limit n — oo.
The size exponent v is certainly the most interesting and most accessible to
experiments. A surprisingly accurate estimate of » has been obtained by Flory
[43] using a mean field-inspired approach. First of all, Flory assumes that the

growth of a single polymer chain obeys an asymptotic law of the form

R xn” (1.19)

where R is a characteristic length of the molecule such as, for instance, the

end-to-end distance or the radius of gyration defined in equation (1.4), and n is

the number of monomers. The Helmoltz free energy F(R) =U(R) —TS(R) is
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then calculated and minimized with respect to R. The repulsive energy, U (R),
due to the excluded volume interactions, is supposed to arise exclusively from
two-body contacts between monomers. Neglecting the spatial correlation between
monomers, we have U(R) cx R%p? with poc g7 the monomer concentration
and d the dimensionality of space. The entropy S(R) is estimated from the
distribution of R for an ideal chain (1.3) and, neglecting the logarithmic term,
is proportional to %—2 Minimizing F(R) yields the well-known Flory estimate

for the size exponent v

3
Rocnz—-aﬁ T I/Zm (120)

which gives the exact values for d = 1,2,4, and a very accurate result for
d =3 TFor d>4 the above result cannot be considered since it leads
to wv(real chain) < v(ideal chain), which is inconceivable without attractive
interactions. The space dimensionality d =4 thus appears as the upper critical
dimension at, and above which, the excluded volume interaction does not influence
the asymptotic behaviour of a polymer chain. For a discussion of the amazing
accuracy of the method despite the drastic approximations used, see refs. [42] and
[44]. Tt is worth noting that Flory’s simple approach, briefly sketched above, is
not a real mean field theory in that no mean field is calculated. Actually it is a
“local” theory which neglects, like the mean field approach, the local fluctuations
and correlations. It should also be noted that, unlike the size exponent v,

other quantities, such as for example the iree energy, turn out to be inadequately

predicted [45].

B. The RSRG and the Non-Interacting SAWs.
In order to apply the real space renormalisation group (RSRG) technique,
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the underlying principles of which have been presented in Section 1.2.1, we need a
more detailed chain model. Since in the critical region the microscopic details of
the chain are irrelevant, the use of lattice models appears to be very convenient.
Therefore we first consider, for simplicity, a square two-dimensional lattice on
which we “draw” a SAW with a fixed origin. Our purpose is to study the statistics
of such a system in the limit of an infinite number of walk steps. The Grand

Canonical partition function can be written in the form

Zsaw(k) =) Cn-k" (1.21)
n=1

where C, isthe number of SAW configurations with n steps,and k =e* is
the weight associated with each step, also called the step fugacity. The generating
function (1.21) can be shown to become singular when the fugacity reaches a

critical value k., = ;1— The quantity p. is the effective connectivity of

the lattice and corresponds to the mean number of different possible orientations
one can choose for the nth step (in the limit n — oo ) without violating the
self-avoiding requirement. The scale invariance of Zgs4w (k) can therefore be

used to study criticality. Now let Z& ,;-(k') be the generating function for the

rescaled system. By requiring

Zsaw(k) = Zs.av (k') | (1.22)

we will define implicitly a renormalisation transformation

k' = Ry(k) (1.23)
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from which we can proceed as already explained to calculate the critical exponent

v (defined through Rg ~ |k — k™" for n — o0).

The equation (1.22) involves infinite sums which must be truncated for
practical calculations. Such a truncation can be performed in many different
ways and always requires some arbitrary rule to be adopted. The cell-to-cell
renormalisation scheme is certainly the most widely used. To implement this
scheme we have to define (e.g. in d = 2 ) a finite n x m-lattice cell. Then
we exactly enumerate all the SAWs which span the cell in order to determine the
coefficients C, in equation (1.21). The cell is then renormalized by a factor b
to obtain a % x %-cell which spanning SAWs are generated as well. The invariance

condition (1.22) provides the approximate renormalisation transformation.

Studies of SAW critical properties by means of real space renormalisation have
often been reported [46-49]. Particularly accurate results have been obtained
in ref. [50] where the d =2 value v = 0.7503 has been obtained through
the powerful transfer matrix method, often used to calculate correlation lengths

in two-dimensional spin systems.

The cell-spanning requirement for SAWs represents an ad hoc “connectivity
rule” introduced to obtain a sufficiently good correspondence between bare and
renormalized walks. On square lattices the corner rule (see ref.[51]) gives to
the spanning condition a more precise form. In Chapter 2 we will define a
suitable rule for the SAWs on a trianglar lattice. The use of the renormalisation
method with a continuous model for polymer chains in a good solvent has the
advantage of permitting an analytic treatment based on field-theoretic arguments
(see for instance the paper by des Cloiseaux [52]). Nervertheless, it is difficult
to tackle analytically, using continuous models, the problem of the simultaneous

polymer collapse adsorption on an impenetrable wall. Therefore, the mathematical
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treatment being much simpler for lattice models, we will limit ourselves in this

thesis to the use and description of the latter.

1.2.3 POLYMER COLLAPSE

When switching from a “good” to a “poor” solvent, either by changing
the solvent’s nature or temperature, the effective monomer-monomer interactions
become attractive. The monomers will tend to aggregate and a single chain will
adopt a dense, roughly spherical conformation, usually referred to as a globule .
The process will be counteracted by the conformational entropy of the chain, which
favours the unfolded (coil) configurations. Thus infinite chains present two distinct
regimes. If conformational entropic effects dominate the energetic preference for
globules, then the chain will be in a coil state, otherwise it will be found in a
folded, globular, state. The transition point is usually referred to as the ®-point
with the corresponding ©-temperature: To. This represents an oversimplified

description of protein folding.

A. The de Gennes-Flory Theory.

In Section 1.2.2A we have presented the Flory approximation for the size
exponent of a real chain in a good solvent, which turns out to give surprisingly
accurate results. Furthermore this simple method is capable of showing the special
role of the space dimensionality d = 4. This interesting aspect justifies the
attempt to generalize it to the case of a single polymer chain in a poor solvent.
The entropy is calculated from the distribution (1.3) of the size for a gaussian
chain, but, unlike in Section 1.2.2, the logarithmic term must not be neglected.

We obtain for a n -monomer chain
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dR?

Sp(R)=(1-dlmR+ 93 (1.24)
The chain energy is calculated using a virial expansion
U(R,T) = n(pUs(T) + p*U2(T) + p°Us(T) + ...) (1.25)

where p = #; is the monomer density. Minimizing the free energy with respect
to R one can show that for d = 3 all the virial coefficients, except Uj,
become irrelevant in the limit n — co. Conversely, in two dimensions all the
virial coefficients are relevant. For good solvents the theory predicts the Flory
exponents. For bad solvents it correctly predicts v = %. The case of a ©-point
solvent is obtained for U; — 0, which corresponds to a compensation of the
excluded volume repulsive interactions by the attractive effective forces between
monomers. In three dimensions this appears to be a good choice since the theory
then predicts vg = % and only logarithmic corrections ( o< Inn ) are expected to
hold. The situation is less favourable in two dimensions, where the value rg = %
is not well supported by experimental ( ve = 0.56 [53] ) and numerical methods
(vo = 0.55 [54], wveo = 0.535 [84], wve = 0.567 [55]). Recently-developed
conformal invariance methods [56], and a conjectured correspondence between the
statistics of polymer rings at the ©-point and that of the hull of a percolation
4

cluster at threshold [57], yields the value v = =. This value is also well supported

by the particularly accurate Monte Carlo studies of reference [58].

The failure, in two dimensions, of the above mean-field approach by de Gennes
and Flory, must be ascribed to the mentioned relevance of all the virial coeflicients,

which precludes the use of variational principles. The almost ideal-chain behaviour
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of ©-point polymers in three dimensions shows that the upper critical dimension,
which was d =4 for SAWs, becomes d =3 atthe ©-point . The logarithmic

corrections are due to three-body interactions [59].

B. Scaling Approach to the ©-point .

The polymer ©-point has been recognized to be a tricritical point [60]. The
term “tricritical” has been introduced by Griffiths [61] to describe the end point
of a line of three-phase coexistence. When dealing with magnetic systems this
definition has a straightforward physical meaning [62]. In the ©-point polymer
problem it can be difficult to identify a three-phase coexistence line. Nevertheless,
tricritical points can be regarded in a slightly different, but equivalent way [63]. Let
us consider a system exhibiting a simple phase transition at a given temperature
T.. Introducing one new parameter influencing the system, we can enlarge the
dimensionality of the phase diagram and turn the critical point into a transition
line. As we move along this transition line, we may reach special points at
which the properties of the transition change abruptly. Such pbints represent
tricritical points. This directly applies to polymer statistics if we consider the
limit n — co as a second-order phase transition through which a chain acquires
a more symmetric state. Formally, this corresponds to &k — k. in equation
(1.21). The monomer-monomer interaction parameter w = —3=7 is the variable
giving rise to a transition line k.(w) in the phase diagram. To each point on

the transition line one can associate a size exponent which abruptly changes for

w(Te) = — kBETG) . Indeed we have, on the transition line (or, equivalently, in the
limit n — oo ), the following asymptotic behaviour for the characteristic size

R of a polymer:

(R?) ~ n®¥ (1.26)
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where

‘ vsayww, if —oo<w< w(T@)
v=/{ ve, if w=w(To) (1.27)
2 if w>w(Te)

de Gennes’ argument [60] for the tricritical nature of the ©-point is somewhat
indirect. The evidence is based on the observation that at the ©-point the third
virial coefficient of the monomer interaction cannot be ignored. This has the

theoretical implication that in a Landau free energy expansion near the ©-point,

1 1 , 1
F=F+ §F2M2 + ZF*M* + ngMG +... (1.28)
where M is the order parameter, the terms of sixth order have to be retained
because the coefficient of the sixth-order term is proportional to the third virial
coefficient [60]. It is this form of the free energy that is capable of yielding a
tricritical point [63].

Belonging to the large family of tricritical points, the polymer ©-point must
obey some typical scaling relations. Let us focus on the Gibbs free energy which,

near criticality, must scale as [64]:

G 7, b2 H) = b2G(r, H) (1.29)

where b is the rescaling factor, = = T,;TC is the reduced temperature, and

H is an ordering field. Assuming for the polymer size R a similar scaling law

and making use of the correspondence (1.12), we can write :
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R(%,Aw) - bR(%‘b*l,Awb“) (1.30)

where n is the polymerisation index and Aw =w —w(Te). Equation (1.30)
must be satisfied for all values of b. Thus let us choose it in such a way that

b*t =n. Equation (1.30) becomes

R(n™!, Aw) = n”® f(n® Aw) (1.31)

with ve = A7 and ¢ = %‘\% Exactly at the tricritical point Aw — 0 and
we obtain R ~ n”®, which corroborates our affirmations (1.26) and (1.27). The
crossover ezponent ¢ characterizes the smooth transition between two different

universality classes.

C. Real Space Renormalisation Approach to the ©-point

In order to apply the real space renormalisation technique to the problem of
polymer collapse, it is necessary to introduce suitable lattice models allowing to
include monomer-monomer interactions. The good models are not very numerous
and we are going to present two of them which will be developed in the next
Chapters. The most widely used is certainly the standard model where interacting
self avoiding walks (ISAW) are considered. As shown in figure 1.3 for the particular
case of a two-dimensional square lattice, a monomer interacts only with its nearest

neighbours.

An attractive energy € is associated with each interaction and the partition

function is given by:
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Figure 1.3 An interacting self avoiding walk on a two-dimensional

square lattice. Wiggly lines show the nearest neighbour interactions.
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where w = —7=55 and {W(n,i)} represents the ensemble of the SAWs with

n steps and ¢ nearest-neighbour interactions. A cell-to-cell renormalisation
scheme has been proposed in ref. [65]. The size exponent has been found to take
the following values: vgiy = 0.69 and 0.69, and ve =0.62 and 0.60, in
two and in three dimensions, respectively. Considering that the expected values
are vsyyy = 0.75 and 0.59, and ve = 0.57 and 0.50 we immediately
see that the method is not very precise. However the qualitative agreement with

the accepted values can be considered a success considering the simplicity of the
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method and the complexity of the problem.

The second model we present has been introduced in ref. [66] and requires
a lattice with a connectivity of six or more. A two-dimensional triangular lattice
may therefore be used. Two typical configurations are shown in figure 1.4. It
can be seen that the walk is allowed to return once but only once on an occupied
site. This requirement prevents the chain to collapse to unphysically high densities,
since it constitutes a geometrical way of taking into account three- and higher-body

repulsions which are believed to be always present when collapse takes place.
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Figure 1.4 Two typical chain configurations: A coil or self avoiding

walk (a), and a globule (b).

Let us call this type of walks self-avoiding-self-atiracting walks(SASAW). To solve
the model we can introduce a cell-to-cell renormalistion scheme as in figure 1.5.
The essential feature is the introduction of a probability factor f as a weight

for each monomer-monomer contact.

The f-factor can represent temperature changes in the solvent via the plausible
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Figure 1.5 Bare and renormalized cells for implementing a real

space renormalisation scheme with the SASAW model

functional dependence f =1 — exp(,—cﬁT) =1—-w™' , €< 0 representing
the effective solvent-mediated attraction energy. Since non-interacting walks must
be weighted by a factor (1 — f) for each contact avoided, the cell generating

function is given by

Nmax

Zo(k, f) = (L— F)"==Zo(k) + D ™ Zu(k) (1.33)

where Z, and Zm, enumerate the walks with no (m=0 or SAW) or m

contacts in the cell, respectively. They are given by

T = > cm(n)E™, (1.34)

SpanningWWalks

n  being the number of random walk steps and ¢n(n) the number of walks
with n steps and having m contacts which can be constructed in a lattice
cell. The spanning condition requires that a walk starting at the origin simply

touches one of the two opposite cell corners in a chosen direction. No conditions
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are imposed on the position of the ending monomer. 7., in equation (1.33)

is the maximum number of conctact sites awailable in the chosen lattice cell.

For the renormalized-cell partition function a modified construction has been

used

!

nmaz:

Z6= Y fmz, (1.35)
m=0

since we must allow for the possibility of globule-like walks ( m > 0 ) to be
renormalized into coil-like ( m = 0 ) walks when f = f' = 1. As explained
in Section 1.2.1 a recursion relation can be obtained by equating the bare and

renormalized-cell partition functions

Zo(K',f') = Zo(k, f) (1.36)

However, the model has two parameters which must be be renormalized. A second
recursion relation is therefore required. For this purpose, the renormalized contact
probability is defined in terms of the fraction of weighted walks containing at least

one contact in the bare cell, giving rise to the following second recursion relation

Nmazx

Z fm(]. . f)nmu—mZm
fl — m=] (137)

Mmaz

L= Zo+ > Fm(1= )" 2,
m=1

The recursion relations implicitly defined by equations (1.36) and (1.37) present
three fixed points for f* =0, f*=1 and f* = fo =0.66. Itis natural
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to associate these fixed points and the relative exponents with the coil, globule,
and © phases, respectively. The corresponding size exponents (from ref. [7])
are vs4y = 0.78, VGiobule = 0.56, and wve = 0.54. As for the standard
model, the numerical accuracy of the method is not very good but all the physical
features are qualitatively reproduced. Results for d =3 will be discussed in

Chapter 2.

1.2.4 POLYMER ADSORPTION

Long molecules in solution can be adsorbed to a solid surface or to a limiting
surface of the solution (e.g. water-air or water-oil interfaces) exhibiting a short
range attractive potential for the macromolecule’s monomers. In the following we
will only consider the case of a single chain weakly adsorbed. When the binding
is weak, the adsorption layer is thick and a macroscopic description, independent

of the detailed structure of the polymer chain and of the interface, is possible.

The most interesting aspect of the phenomenon is the existence of a
discontinuity in the adsorption behaviour at some critical temperature 7,. For
T < T, the macromolecule is “condensed” on the surface. For T > T,
no such condensation occurs, although the molecule is still constrained near the
surface. The process is somewhat similar to the collapse transition treated in
Section 1.2.3 in the sense that when a chain portion sticks to the surface it has
much less orientational freedom than when it is free. At high temperature the
above entropic effect dominates and the overall interaction of the chain with the
surface is repulsive. At low temperature the sign reverses. At T, the two
effects balance exactly. To show the phase transition character of the adsorption,

we will use a Schrodinger-like equation for the end-to-end distribution of a real
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chain following an approach due to de Gennes [67].

A. A Differential Equation for the Free Chain End-to-End Distribution
Let us consider a chain configuration where all the n monomers have a

prescribed position:

!
r,ry,T3,...,0p_1,0: (1.38)

Introducing a slowly-varying external potential V(r), the statistical weight

associated with the configuration (1.38) is given by

P({ri}) = f(r12)f(ras) ... f(rn_1n)e PV (r1)g=BV(ra) | =BV (rn) (1.39)

where f(r;;) is a normalized factor ensuring that r;; = |r; —r;| is equal to

the step length a :

1

4mra?

flrij) = ( ) 6(rij —a) (1.40)

Then, the end-to-end distribution function G(n,r,r’,V(r)) is given by

Gln,r,r, V() = / dri...dra8(r: —1)6(rn — T)P({rs})  (1.41)

An integral equation for G can be derived by adding one monomer:
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G(n+1,r,c',V(r)) = /dsf(r —s)e PV G(n,s, v, V(1)) (1.42)

For n>1 , G will be a smooth function of n ; hence n can be treated
as a continuous variable. Expanding G and assuming slow variations on the

atomic scale, we arrive at (for details see ref. [68]):

0G(n,r,r',V(r))
on

= _%Z-VZG(n,r,r’,V(r)) + l/g.lG’(n,r,r",V(r)). (1.43)

In order to apply equation (1.43) to polymer adsorption we suppress the external
potential V(r) and we introduce the following boundary condition in order to

take into account the surface potential:

= 2 = k(D). (1.44)

where k(T) is a phenomenological constant which is considered to be linear near
T,, with a negative slope, and to represent the temperature-dependent surface
effect which becomes zero at T,. Equation (1.43) establishes a direct analogy
between the distribution function G  and the propagator of the Schrodinger
equation. Pursuing the analogy, the eigenfunction wu,(r) of the problem defined

by equations (1.43) (with V=0) and (1.44) are the solutions of

—%—Vzup(r) = €pup(r)
1.45
1 dup —k(T) (1:45)
u’P dz z=0



Their structure depends on the sign of k(T). If k<0 ( T >T, ), al
the eigenvalues are positive and the eigenfunctions have a finite amplitude on the
whole volume of the solution. If k>0 ( T <7, ), thereis a class of bound
states, with negative eigenvalues, localized near the surface. Moreover, for large

n, the development of G in terms of the eigenfunctions

G(n,r,v') = up(rup(r)e ™ (1.46)

is dominated by the lowest bound state corresponding to the eigenvalue ¢y =

——k”e—z. We have

G(n,r,r') ~ ke k(z+2") gnleol (1.47)

and we see that, for T < T,, if a monomer is on the surface any other monomer
has a finite probability of being on the surface, even when their distance along

it becomes infinite. This defines a certain type of long range order present only

below T,.

B. Random Walks Near a Wall

Qualitatively interesting information on the behaviour of linear macromo-
lecules can be obtained through the statistical study of random walks in the
presence of an impenetrable wall (i.e. a walk that attempts to penetrate the
wall is eliminated from the statistical sum). The main problem is to calculate the
probability distribution for a walker starting near the wall and ending at a distance
R from its origin after n steps. The solution can be found using the fact that

we know the corresponding distribution for the isotropic case (without wall). For

49



simplicity, let us consider a random walk in one dimension which corresponds, in
two dimensions, to directed SAW configurations where the walk is never allowed

to turn back on itself along the direction of the wall (see figure 1.6).

Figure 1.8 A typical random walk in one dimension ( = ). If the
time coordinate t is considered as a spatial dimension we obtain

a directed-SAW configuration.

The problem is solved by the method of images [69] which states that the wall

probability distribution P}V is given in terms of the isotropic distribution by

PV (z,2) = Pu(z,20) — Pu(z,—z¢) (1.48)
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where 2z, and =z represent the positions at step zero and n, respectively.
The surface is assumed to be at z = 0 -and the allowed space corresponds to
z > 0. Using the gaussian distribution (1.3) where the space dimensionality is

d =1 and the step length a =1 as well, we obtain for n — o

1
7r>—§ o _ 22

PV (z) = (-2— e~ (1.49)

(S

n

The total partition function for n -step walks near a wall is thus given by:

zW = /de,:V(:n) ~nTE (1.50)
The free energy per step at the nth step is given by:
Bfn=—In (—é%’—-) = Const. + 5111(1 + 71 (1.51)
Since the most probable distance from the wall is given by 2z = ni, the free
energy f, varies with z as
1
Bf(z) = Const. + —2~z“2 +0(27%) (1.52)

The constant term simply represents the reduced free energy per step in the limit
z — oo. The following terms tell us that, due to the presence of the surface, a

(directed) two-dimensional SAW feels a repulsive potential per step
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1
W(z) = —ékBTz'z (1.53) -

The physical origin of this effective potential Lies in the loss of entropy a walk
experiences when approching the wall (steric repulsion). This important fact
provides a basis for a possible interpretation of our finding of a surface-induced
©-temperature enhancement, as discussed in Chapter 3. We expect a long-ranged
potential of the form (1.53) to be also induced by the wall in the case of real

isotropic interacting polymers.

C. Scaling and Polymer Adsorption.

The formal correspondence between the statistics of magnetic and polymer
systems can be extended to the case of adsorption [70].  From such a
correspondence many scaling relations for polymers at interfaces can be inferred
on the basis of the well-known behaviour of magnetic systems [71]. Thus, the
scaling analysis of numerical simulations allows one to assign numerical values to
the universal critical exponents [72]. It is worth noting that computer simulations
are much easier with polymers than with magnets so that exponents are better
determined in the context of polymer systems. Nevertheless, as far as we know, the
rigorous mapping of the polymer problem onto a corresponding magnetic one has
not been performed in the case where an impenetrable attractive wall is present.
The theoretical situation is thus quite different from that concerning the pure bulk

problem, where theorem (1.13) establishes such a mapping rigorously.

The above-mentioned analogy is with a semi-infinite spin system with modified
couplings ( J — J, ) at the surface. The critical behaviour of such a system is
summarized in figure 1.7. It is essentially determined by the parameter ¢ which
is connected to the relative values of Js; and J. For ¢ >0 the transition

from a paramagnetic (disordered) phase (P) to a ferromagnetic (ordered) phase (F)
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Figure 1.7 Phase diagram of a spin system with a free surface (see

text)

occurs at the same critical temperature 7, for the bulk and for surface systems.
For ¢ < 0, when lowering the temperature ¢ =T —T,, the surface orders
before the bulk which transition still occurs at ¢ = 0. In the renormalisation
group language the line O in figure 1.7 is mapped onto the ordinary fixed point
O (t=0 and ¢ = oo ) and theline S is mapped onto the surface
fixed point S* ( t=¢? and c¢=-oco ). For ¢=1t=0 the two above
fixed points coincide giving rise to a multicritical point S§B which corresponds
to a simultaneous surface and bulk ordering transition. A crossover exponent ¢

must therefore govern the transition from a bulk to a surface behaviour.

For a polymer chain, the line O corresponds to the limit n — oo while
the line S represents the adsorption transition already discussed in this Section.

Thus we have the following correspondences
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2

t—c¢c° — 0 &< n—c0

= (1.54)
c—0 = T — 1T,

Therefore, if the chain’s monomers experience an attractive short-ranged surface
potential, we will have effectively a repulsive, neutral or attractive surface-chain
interaction for ¢>0, c¢=0 and ¢ <0, respectively. More precisely, we

T _
have c¢x 7 .

A similar correspondence is expected to hold for an ideal as well as for a real
chain [72]. Let us consider first the case of a real chain in a good solvent. The
analysis by Eisenriegler et al. [72] shows that, in the imit n — oo , the partition
function at adsorption (point SB* in figure 1.7) must obey the following scaling

relation

Zn =n""Tg(en?) (1.55)

with ¢(z) linear for small values of z. The following scaling laws are found
to hold for the characteristic sizes of the molecule. In the direction perpendicular

to the surface

(R%)Y/? = n¥¢ . (cn?) (1.56)

with the limiting behaviour, as n — oo,

e %, for ¢<0 ;
<R2>1/2 ~ 4y nY for ¢=0 ; (1.57)
nY for ¢>0
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In the direction parallel to the surface

<R2)|1|/2 = n"¢j(cn®) (1.58)
with the limit for n — oo
s [l o o<
B~ n for ¢=0 ; (1.59)
nY for ¢>0

In the above relations, v and wv4_; refer to the usual bulk size exponent and
to the bulk size exponent in d—1 dimensions, respectively. In the next Chapters
we will refer to the above exponent v as v, and we will use the definition
v = %. It is also important to note that the perpendicular size of the adsorbed
molecule is independent of the polymerization index n (see equation (1.57)).

Similar scaling relations are expected to hold for a real chain ina ® or poor

solvent, but with other values for the exponents.

While the exponent v has been dicusses previously, the crossover exponent
¢ is worthy of being briefly considered. The mean field estimate of ¢ has been
shown to fail by de Gennes [70], who proposed ¢ ~~ 0.41. Actually, the latter
value is not well supported by numerical studies, which predict ¢ =~ 0.6 for
chains in a good solvent. In two dimensions and for ¢ > 0, the ~; exponentin
equation (1.55) is known exactly from conformal-invariance arguments extended

6

to the half plane geometry. Its value is 7, = & (in the bulk we have vy = 32).

These values are confirmed by transfer-matrix calculations [73] which have also
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provided, in two dimensions and for ¢=0, ¢ =0.501 and 7 =1.454.
D. Adsorption in a ©-point Solvent

We have seen that a polymer chain at the collapse transition ( ©-point )
exhibits a multicritical behaviour. The same has been found to hold for a polymer
at adsorption. Thus two multicritical points may coincide when the adsorption of
a ©-polymer occurs. This problem of the simultaneous collapse and adsorption of
a polymer chain has only recently received the deserved attention. Considering the
fact that @-polymers are nearly gaussian in three dimensions but deviate strongly
from ideality in two dimensions, a model has been proposed in which the adsorbed
(essentially two-dimensional) chain is modelled by SAWs whereas the free (three-
dimensional) chain is represented by random walks. Both numerical (74] and
field-theoretic studies [75] of this model have been carried out. Both approaches
arrive at the same important conclusions. If it is true that at adsorption the bulk
governs the exponents, as suggested by equations (1.57) and (1.59), then important
logarithmic corrections to the ideal behaviour of three-dimensional ®-polymers
must be expected at (and near ?) adsorption. In other words, at adsorption, the

bulk behaviour is strongly perturbed by the surface.

Two other studies concerning adsorption in ©-point solvents must be
mentioned. Both treat two-dimensional chains adsorbing on a line. In one case
the model considers SAWs on a fractal structure [76] where exact renormalisation
recursions can be written, whereas in ref. [77] a powerful transfer-matrix method
has been used to analyse both directed and isotropic SAWs. The essential result
was in both cases the demonstration of the existence of a multicritical point
for simultaneous collapse and adsorption. The structure of the phase diagram

was found for the fractal-SAW, and for the directed-SAW models, while for the

isotropic model numerical difficulties have hindered the complete determination of
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the phase diagram. The structure of the obtained phase diagrams is very similar
and, somewhat in contradiction with our resuts, the ®-line (that is the line formed
by the ©-points at different surface interactions) appears to be independent of
the surface interaction parameter. For the directed-SAW model this feature has

received a final confirmation by the exact calculations of ref. [78].

E. Real-Space Renormalisation Approach to Polymer Adsorption.

Figure 1.8 Bare and renormalized smallest cells on the square
two-dimensional lattice. The “surface” is represented by the hashed
area. A typical SAW is represented in the 2 x 2-cell and the bond

fugacities are indicated.

To conclude this Chapter we now present the real-space renormalisation scheme
introduced in ref. [79] to describe the adsorption of a polymer chain in a good
solvent. The model is the classical SAW on a square lattice, but the chain is
confined to a semi-infinite plane. The starting point or origin of the walks is on
the limiting edge. As usual, a fugacity ks is associated with each monomer-
monomer bond in the bulk, whereas, in order to take into account the attractive
nature of the wall, the bonds on the limiting edge will be attributed a different
fugacity k,. Figure 1.8 shows the bare and renormalized lattice cells for the

simplest case in two dimensions. Two cell partition functions are then generated:
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Zy(ks) = ) e(ma)ky”_

(1.60)
Za(z)(kb;ks) = Z c(z)(nb,ns)kg”’k?’

Ty, Tty

The bulk cell generating function Z; is constructed without considering the
presence of the surface and ¢(n,) represents the number of SAW spanning the
considered cell and having n; steps. In the surface partition function z°(®),
the coefficients ¢(*)(ny,n,) represent the number of SAWs with n; steps in
the bulk and n, steps on the surface (edge). The upper index = representsthe
minimum allowed fraction of surface bonds in the partition sum (that is, we sum
only over walks spanning in the direction of the surface and having 2= > z).
The recursion relations are obtained by equating the generating functions (1.60)
evaluated for the bare cell, with those evaluated for the renormalized cell. The
phase diagram given by the renormalisation flux [79] is sketched in figure 1.9. Its
structure supports the correspondence previously discussed between the “special”
critical point (in magnetic language) and the adsorption of a coil polymer chain.

The best values of the critical exponents are obtained for renormalisation factors

approaching 1 and for =z — 0.
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Figure 1.9 The renormalisation flux with the three non-trivial

fixed points at  k,=0, k;, 1  which must be associated with a
free (nonadsorbed) chain, with a chain at adsorption, and with an

adsorbed chain, respectively.
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CHAPTER TWO

A REAL-SPACE RENORMALI-
SATION-GROUP APPROACH TO
POLYMER COLLAPSE AND AD-
SORPTION

2.1 THE SELF-AVOIDING-SELF-ATTRACTING-WALK MODEL

In the previous Chapter we have presented two separate real-space
renormalisation approaches to the problem of polymer collapse [66] and polymer
adsorption [79] (see Sections 1.2.3C and 1.2.4E). Both calculations have been
performed in two dimensions. Elaborating on these original treatments, we have
been able to propose a model capable of describing the collapse and adsorption
transitions simultaneously. As it will be shown, the results of refs. [66] and [79]
can be recovered as particular cases of our model (see also ref. [6]). Moreover,
three-dimensional polymer chains adsorbing on a two-dimensional impenetrable

wall have also been successfully studied.

In order to extend the SASAW-model to the adsorption problemin d=2 , we
construct a semi-infinite two-dimensional triangular lattice as shown in figure 2.1.
A bond fugacity k; is associated with each monomer-monomer bond in the bulk,
whereas in order to take into account the attractive nature of the wall the bonds on

the limiting edge will be attributed a different fugacity k,. A third parameter f,
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Figure 2.1 Schematic representation of the SASAW-model of

adsorption of a collapsing macromolecule. In the window, a more

realistic, continuum-space representation of a section of the polymer

chain is given.
as defined in Section 1.2.3C, is then introduced to weight the monomer-monomer
contacts. To deal with three-dimensional molecule configurations, we consider

a “stack” of the above two-dimensional semi-infinite lattices. Thus, adsorption

occurs on an infinite surface.
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2.2 THE RENORMALIZATION PROCEDURE

As explained in Section 1.2.2B, real-space renormalisation-group calculations
are implemented through the enumeration of the walks compatible with the model
on small bare and renormalized lattice cells. All the different renormalisations that

have been performed are shown in figure 2.2. In d = 2, three renormalisation

3

factors have been considered: b=2, 3, and3. In d=3 wehave performed two

renormalisations, both with b =2 but with different non-equivalent locations

of the wall.

Unlike in refs.[66] and [79], our SASAW model requires three separate
recursion relations to determine the three parameters kj, ks, and f. They

are given by:

Z2(ky, f') = Z&(ks, ) (2.1)

75 (k) kL, 1) = 287 (ky, ks, f) (2.2)
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a)

C)
/
N\ b2
Figure 2.2 (a): Bare and renormalized cells for the three

renormalizations performed in the two-dimensional space. (b) and
(c): As in (a), but for the three-dimensional case. The shaded areas

show the two possible positions for the surface.
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NMmazx

S (L - fyrme g Emin)
m=1

f = S (2.3)
(1 . f)nmuzg(xmin) + Z fm(l N f)nmax—ngz(mmin)
) m=1

The cell partion functions are given by:

Nmaxzx

Z8(ky, f) = (1= fY"= 2 (k) + Y, ™ Zp (ko)
m==1

Z(-;(a:)(kb’ ks;f) — (1 i f)'nrnaz Zg(m)(kb,ks) + Z fmz;;(z)(kb’ks) (24)
m=1
Zo= ) f"7n
m=0
where the functions Z,, and Z!, enumeratethe walks with m =0,1,...,nmnas
contacts. They can be written as
T = > Cm(np,mg )l kT (2.5)

Spanning¥Walks

and similarly for Z! . Each of the above equations has a corresponding one
in Section 1.2.3C where all the necessary explanations have been given. The
meaning of the superscript z can be found in Section 1.2.4E. In order to find
the fixed points we follow the standard procedure presented in Section 1.2.1F.
The only practical difficulty is represented by the fact that the renormalization

transformation is not known explicitly. Defining g = (ks, ks, f) we can represent
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the three equations (2.1),(2.2), and (2.3) in the form Z'(@') = Z(Z) . For iy “

sufficiently near to a fixed point we can write

= VR(fio) - 6t (26)

Solving for 64 we obtain a new guess f[i; = fiy + 6. Repeating the procedure,
we can find a fixed point defined as §g* = fi;41 if |fie1 — @] <e, € being
the precision required. To determine the critical exponents for a given fixed point

we derive the implicit recursions with respect to &

8Z' o 8Z
o7 ok _ 92 (2.7)
o' Op |z OE|.
o*
Solving for the unknowns %’%’ _, we obtain the jacobian matrix which
“*

eigenvalues give the critical exponents via equation (1.18).

2.3 RESULTS OBTAINED AND COMMENTS

2.3.1 F1XED PoINTS AND CRITICAL EXPONENTS

A sketch of the location of all the fixed points in the three-dimensional

parameters space is presented in figure 2.3.

For a more detailed description of the parameter space see ref. [6] where

two-dimensional sections are presented and the renormalisation flux is given by
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Figure 2.3 A schematic representation (for the d=3 problem) of
the fixed points location in the three-dimensional parameter space.
The exact coordinates of the adsorption-desorption fixed points 6, 7,

and 8, are given in table 2.1 (for d=2 ) and table 2.2 (for d=3 ).

projected and normalized arrows. Tables 2.1 and 2.2 give the values and the
relative exponents for the relevant fixed points corresponding to the different
renormalizations presented in figure 2.2. In each table a study as a function of the

minimum adsorbed fraction z is reported in one case.

2.3.2 DISCUSSION OF THE RESULTS

Looking at tables 2.1 and 2.2 we can see that the size exponents obtained
with our SASAW model are close to the expected values, reported in brackets
when known. As for the new exponents, we point out that they take reasonable

values. In particular, the v; exponent decreases when going from SAW- to ©-
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in d=2. Reported are the SA4I7" | © and G fixed point
values both with and without surface interactions. Results refer to
2 x 2 = 1 x 1,3 x 3 = 1 %X land 3 x 3
= 2 X 2 cell renormalizations. A study as a function of the
minimum adsorbed fraction =z is reported in one case. Stars

denote complex eigenvalues; in brackets are the expected exponent

values, when known.

SAW ® Globule
kg=.316 v .782 (314) |k=.498 v 542 (47) Kg=.451 v.560  (1/2)
- Bulk f o= f=.663 Vv=1.945 f =1
x
- ky=.316 Vi .782 (3/4) |ky=.518 V=580 Ky=.451 V560  (1/2)
X = 1/4 |k = 432 vy -1.465 (3/2) & 1.005v = 1.060 k862 vg= 1000 (1)
f o0 f=.480 V= 2:468 f=t
[e}]
&) Ky=.316 Vg .782 (3/4) |ky=.516 V.572 ki.451 vy .560 (1/2)
Tl x =1/5|Kks.384 vg= 1613 (32) |kg 795 vg= 1.241 ke887 ve=1.155 (1)
=~ =0 f=.510 Vv=2.521 =1
3
[aV]
< » Ky=.316 Vg .782 (3/4) |ky=.514 Vyp=.564 k=.451 vy=.560 (1/2)
o X = 1/6 | -377 v=1630 (32) |kg815 v=1.507 ke 553 ve=1.365 (1)
f =0 f =534 Vi= 2.563 f =1
. Bulk Kg=.298 v =772 @3/4) |Kp=.376 V615 (47)  |ky=.338 v .632 (172)
- -0 f =.535 v¢=3.056 f =1
T Surface |ky=.298 v.772 (314) |k=.392 v.618 ky=.338 Vg .632 (172)
o X = 1/6 |Ke413 ve= 1547 (32) |k g 817 vg= 1.271 k=592 y= 1.241 (1)
& f =0 f =.404 Vvy= 6.083 t =1
o Bulk ky=.284 V757 (3/14) | Ky=.449 v 552 (47) | ky=.356 v 487 (172)
N f =0 f =.256 v¢= 1.622 f =1
T Surface |ky=.284 Vy.757 (314) | k=435 Vi **+ Ky=.356 V= .487 (172)
? X = 1/8 | ¢ 453 vg=1.490  (3/2) | kg 847 y = 1.109 k&675 vg=.999 (1)
™ f =0 f=180 vyg=>"" f =1
Table 2.1. Fixed point characterization for the recursion relation

and globular-phases, as expected for increasingly more compact structures. Taking

into account the relative small size of the cells considered, we can conclude that

the model gives satisfactory quantitative results even if it does not allow us to
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2x2X2 ——p 1 x1x1

SAW ] Globule
Bulk kp=.222 V= .635  (.588) |kp=.31T Vp= 410 (1/2) | kp=.281 Vp= 425 (113)
f =0 f =.524 vi= 2.383 f =1
kp=.222 Vp= 633 (588) [kp=.341 Vp= .454 Kp=.281 Vp=.425 (1/3)
| x = 1/4 |k=.256 v =.911 kg= -379 v = .688 ke= .306 v, =.643
- f =0 f- 268 Vi= 3.616 f o1
1)
[$) kp=.222 Vp= 635  (.588) |ky=.335 Vu=.418 Kp=.281 Vp=.426 (1/3) -
JIx = 1/8 | ks=-245 vg=.972 kg=.348 vg=.741 kg=.291 v =.711
— f =0 f=.372 Vy=6.173 f =1
3
n kp=.222 Vp=.635 (588) |kp=.333 Vp=.415 kp=.281 Vp=.425 (113)
X =1/12|ks=.245 v = .972 ke=.342 vy =.753 kg=-288 v =,733
f =0 f =.394 V¢=5.894 f =1
Surface  (2) | kp=.255 Vp=.537  (.588) |Kp=:370 Vp=.344 kp=.327 Vp=.352 (1/3)
- =.390 v_= = -
X = 1/12 kg=:292 v =.953 kg Vg=.735 kg=.344 v =717
f =0 f=.408 Vi= 2.226 f =1

(1)
(2)

Surface as in fig. 2.2 b)
Surface as in fig. 2.2 ¢)

Table 2.2. As in table 2.1, but for d=3 anda2 X 2 X 2 =

1 X 1 x 1 cell renormalization.

make a particular claim for any new precise exponent.

A. Internal Consistency of the SASAW Model.

An important check for the internal consistency of the model can be obtained
by a careful analysis of the phase diagram in figure 2.3. This can be done by
considering some particular cases. Let us look at the plane defined by f =0,
which must correspond to the SAW-phase. We note that the structure of this
two-dimensional phase diagram exactly corresponds to that of figure 1.9 obtained
by Kremer in ref. [79], with the three non-trivial fixed points (3), (8) and (11)
that can be identified with the ordinary (O*), special (SB*) and surface (5*) fixed
points, respectively. Note that in d =2 the k, coordinate of (3)is k; =1 ,
whilein d =3 we have k) = 0.316. This can be easily understood since for

ky, = 0 the chain is constrained to the ( d—1 )-dimensional surface. If d=2 the
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chain occupies entirely the available space and the critical fugacity must be equa.l“
toone. If d =3 the chain is constrained to the two-dimensional surface and we -
recover the bulk two-dimensional case, k, replacing k; . Hence, relaxing the
condition f =0 but keeping k; =0 , we recover for the d =3 problem the
two-dimensional collapse phase diagram obtained in ref. [66], with the variables
(ks,f) replacing (ks,f) . Let us point out that the phase diagram sketched
in figure 2.3 concerns the three-dimensional chain. Since, for the two-dimensional
problem, the bound (or adsorbed) chain becomes one-dimensional, the collapse
can no longer take place and the fixed points (9) and (10) must disappear, as we

indeed observe.

B. Enhancement of the Coil-Globule Transition Temperature

An important new feature in the behaviour of a collapsing polymeric chain
when a wall is present is suggested by the analysis of our results in tables 2.1
and 2.2. We have found that the value of f§ is always significantly depressed
by the presence of the attractive surface [6], corresponding (for example) to
an enhancement of the O-point transition temperature (collapse temperature).
Alternatively, we could say that a collapse transition can be induced by adsorption,
or that desorption is induced by a globule to coil transition in a bound

macromolecule.

Since a finite-size-scaling analysis is beyond the capabilities of our small-cell
renormalization method, one could always argue that the observed shift is due
to a finite size effect. This would be the case in a magnetic problem, where the
modified surface exchange cannot modify the bulk transition temperature in the
thermodynamic limit. To assess this argument for the polymer problem at hand we
have performed the following calculation. In the bulk 3 x 3 to 2 x 2 renormalization

scheme, we have not allowed the chain to have any bond on one of the edges of
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both the bare and renormalized cell. We obtain in this way a ©-fixed-point with 'A
FouE = 0.240, instead of f&*'¥ = 0.256 (see-table 2.1). Since in the case of a semi- -
infinite lattice the fraction of sites on the edge vanishes in the thermodynamic
limit, we expect this shift to disappear in that limit. It is therefore plausible
to consider this shift as an approximate measure of the finite-size effect. But we
observe from table 2.1, for the related renormalization scheme, that this manifestly A
finite-size shift in the value of fg is considerably smaller than the surface-induced
decrease of the same parameter (fgwface = 0.180), which, therefore we feel, cannot
be easily attributed to a finite-size effect alone. Nevertheless, real-space cell-
renormalization is and remains a poorly controlled method of characterizing the
asymptotic behaviour of a lattice model. This fact and the great importance that
the above result may have for surface macromolecular science in general, and for
protein biochemistry in particular, motivated us in using a more powerful technique
to investigate the simultaneous adsorption and collapse of polymer chains, as

presented in the next Chapter.
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CHAPTER THREE

A FINITE-SERIES APPROACH
TO POLYMER COLLAPSE AND
ADSORPTION

In this Chapter we consider the standard model, which we have presented in
Section 1.2.3C (see figure 1.3) and which has been used by Kremer in ref. [79] to
study the adsorption of polymer chains in a good solvent. Here, unlike in ref. [79]
and instead of a small-cell real-space renormalisation technique, we use an exact
enumeration of lattice walk configurations to tackle the problem of simultaneous
collapse and adsorption. The following study has been essentially motivated by the
interesting, but not sufficiently reliable, results obtained with the SASAW model

and presented in Chapter 2.

3.1 THE STANDARD MODEL FOR POLYMER ©-POINT COLLAPSE
AND ADSORPTION

The method of finite series analysis [80-84| has provided a reliable
technique for the determination of the ©-point and related bulk critical exponents
characterizing chains at collapse [83,84]. The adsorption of coil-like chains has
also been examined with success by this method [80-82]. The enumeration of
configurations by Monte Carlo [58] allows one to generate much longer chains and
to give more accurate results than exact enumerations, but is much less versatile

and, as pointed out below, is less suitable for simultaneous investigation of collapse,
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adsorption and (see Chapter 4) disorder effects. For simplicity’s sake, use has”
been made of exact enumerations of SAW-—configurations on simple square and

cubic lattices for two- and three-dimensional macromolecules, respectively. In

two dimensions, three situations have been considered. We have first introduced

a surface (or impenetrable wall) by disallowing the SAWSs to visit one half of the

space. The origin of each walk was fixed on the surface. Except for the self-avoiding '
and surface constraints, the walk is free to expand in all the lattice directions. In
this case, chains of up to 22 steps in length have been considered. The second type
of enumerations we have performed concern directed-SAW configurations, that is
where the walk is never allowed to turn back on itself along the direction of the
surface. The reduced lattice connectivity has allowed us to consider chains of up
to 24 steps in length. For both isotropic and directed SAWs, energies ¢, and &,

have been attributed to nearest-neighbour monomer-monomer interactions and to
bond-surface interactions, respectively. As a third possibility, we have considered a
system with an interfacial, instead of surface, potential consisting of an attractive
line crossing the two dimensional space. The walk is allowed to visit both the
semi-infinite planes defined in this way, but each monomer-monomer bond on the
delimiting line contributes a term e, to the energy of the system. Before
analysing the results, let us describe the method we have used to extract useful

information from the computer enumeration of the configurations.

3.2 FINITE-SERIES TREATMENT FOR THE STANDARD MODEL

We define the squared radius of gyration of a given lattice configuration with
n steps, 4 non-adjacent nearest neighbour interactions and j bonds on
the surface, R2?(W(n,i,7)) , as the variance of the chain monomers’ positions.
The statistical average over the configuration set {W(n,%,j)} gives the mean

squared radius of gyration for an n-step chain:
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> > ;_Rz(W(n,i,j))ei“’"eJ""S
29 {(W(n,ih)}

(R (wp,wa)) = e (3.1)
Jmaz eiwb ejws
2 ((nia)
where wj = ——kf;’T and w, = — k?T. We also define wy(To) = — kBEbT@ and
ws(Ts) = —4 as the bulk and surface interactions at collapse and adsorption,

respectively. Following Privinan [84] we form the effective exponent estimates:

<R3z(wbyws)>
In (“f—“—‘“‘mn_k(w,wn))

2wpp(wp,ws) = 1n( - ) (3.2)

n—k

Inserting in equation (3.2) the scaling relation (1.31), keeping w, constant and
noting that Aw in equation (1.31) correspondsto wy(T)~ws(Te) , we can easily
see that for T — To , and for n large enough for equation (1.31) to hold, the
curves Vpg(wp,ws = const.) should intersect at (wy(To),ve), independently
of n and k. Similarly, keeping w;, constant and using the scaling relations
(1.56) or (1.58) we can conclude that the curves wvpi(wp = const.,w,) should
intersect at (ws(7,),vT,), independently of = and k. Searching for the
intersection of curves wvni(wy) and of that for curves wvpp(ws) thus constitutes

a practical way of finding the collapse and adsorption points, respectively. This,

obviously, works perfectly only for infinite chains.

However, for relatively short chains a natural procedure is to consider the
center of intersection region as an approximation for the ®- and adsorption points.

Also, when dealing with a square lattice the curves vpi(wy) and vap(ws) must
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Figure 3.1 The curves v,2(wp,w;=0) with the intersection region
clearly visible. It is also possible to distinguish the slightly separate

intersection regions for even and odd values of n.

be separated in two groups, corresponding to even and odd values of n, having

slightly different intersection regions (see figure 3.1).

To minimize the effects of these odd-even oscillations inherent to the square
lattice, and as proposed in ref. [58], we choose k = 2 in equation (3.2) and
determine, separately, the centre of each intersection region defined as the point
corresponding to a minimal dispersion of the curves vp2(wy) with n  varying
from a certain nmae 10, Say, Tmaez — 5. The final estimate of the multicritical
points is then simply the arithmetic mean of the two values obtained in the way

above (for even and odd values of n ).

In principle, by varying n,,.., one could obtain a set of intersection point

locations and then extrapolate to m,,,, = co. Unfortunately, the values of
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Nmaz accessible through exact enumerations give rise to results for the cha,inﬁ
behaviour not systematic enough to allow for a meaningful extrapolation of trends. -
Nevertheless the precise location of transition points and relative exponents is
beyond the scope of this work. Yet, the method described appears flexible enough
to tackle complex problems arising when dealing with biological systems, such as
the mutual relation between folding and adsorption subjected to a preliminary '

investigation in Chapter 2.

Let us now return to equation (3.1) and perform the sums over the

configuration set {W(n,1,7)}. We are led to define the following coefficients:

Dn(i,5) = Z Rz(VV(n,i,j))

{W(n,i,j)}

Calij)= D, 1

{W(n,i,5)}

(3.3)

which are calculated once and for all during the computer generation of the
set of configurations. Here we see the advantage of using exact enumerations with
respect to the (more asymptotic) Monte Carlo sampling method, for which a small
but consistent fraction of the configurations must be randomly generated for each

values of k; and k.

3.3 RESULTS AND COMMENTS

The complete phase diagram will be discussed in the next Chapter, where a
chain consisting of a random sequence of hydrophilic and hydrophobic monomers
will be considered. Here we focus our attention on the part of the :pa,ra,meter space

characterized by positive values of w; and w,, that is for negative ¢, and
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Figure 3.2  Part of the phase diagram for the following two-
dimensional systems: (a) An isotropic chain near a surface. (b) An
isotropic chain near an interface. (c) A directed chain near a surface.

Transition lines are given for various chain lengths as indicated.

g, corresponding to a poor solvent and an attractive surface. The main results

for the three different cases we have considered are summarized in figure 3.2.

The collapse lines are shown entirely for different values of npmaz as indicated.
For clarity’s sake, only the right hand side branches of the adsorption lines
are shown. In two cases, (b) and (c), we have a smooth connection between
collapse (vertical) lines and adsorption (oblique) lines. The multicritical point
corresponding to the coexistence of adsorption and collapse transitions can be
roughly located at the above connection point. The situation is radically different
for the case (a) where, as w, increases, the collapse line bends to the left hand
side before reaching the adsorption line at the coexistence point. This corresponds

to a progressive enhancement of the collapse temperature on increasing monomer-
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surface attraction.

Before discussing more thoroughly the iéxtter (unexpected?) effect, let us note
that for the case (c) our results are in perfect qualitative agreement with the exact
solution proposed by Foster in ref. [78]. More surprisingly, even quantitatively
the results are rather good since, without any extrapolation to infinite chains, the .
transition coexistence point can be located on figure 3.2 (using = = 24 ) at
(w,w?) = (1.25,0.8) while the exact values are (wj,w;) = (1.218,0.784).
For the case (b) and at wy; = 0 , that is for the purely bulk case, we have
wp(Te) = 0.65 if we consider the transition line for 7= = 20 . This should be
compared with wy(Te) = 0.64 proposed in ref. [58] and obtained with much
more asymptotic Monte Carlo configurations. We can conclude that the method
seems to give qualitatively good results. Therefore, the surprising feature of case

(a) is worthy of being carefully considered.

3.3.1 THE SURFACE-INDUCED ENHANCEMENT OF THE COLLAPSE TEMPERA-

TURE

The fact that the collapse transition of a chain with an end fixed on an
impenetrable wall should occur at a higher temperature than if the chain were free
is not by itself very much surprising. Such a behaviour was already conjectured
by Dill and Alonso for protein folding [4] on the basis of the entropic arguments
we are going to develop in the following. However, it is generally admitted that
in the thermodynamic limit of infinite systems surface details cannot, for obvious
reasons, affect bulk properties. This is true, for instance, for semi-infinite magnetic
systems where a modified surface exchange cannot induce any change in the
bulk phase transition. Accepting the above considerations we should ascribe the

enhancement of the collapse temperature to a very strong finite-size effect which
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certainly must hold for real, finite molecules such as polymers, poly-peptides, and

proteins. However, there are some intriguing points which should be clarified:

1.- Our real-space renormalisation treatment also exhibits the same shift in the
O -temperatufe and a test was performed to show that its amplitude is greater

than that expected for a finite-size-induced shift.

2.- The case of a chain near an interface (b) and that of a directed chain attached
to a surface (c) undergo the same finite-size limitations, but no shift has been

observed for these situations.

A convincing physical interpretation of our results should clearly explain the
observed differences between the three systems studied. A possible solution of
the problem can be found by considering the reduction of entropy entailed by a
chain attached to a wall. Dill and Alonso [4] argue that such a reduction is by
far more drastic for coil-like than for globule-like chains. Thus, by constraining
near a wall a chain which is just above its collapse temperature we can induce it
to favour a globular conformation. In order to test the above affirmation we have
performed the following calculation. We first define the free energy per step at the
nth. step by

o = 5 (Fus = Faca) (34)

where F, represents the total free energy for an n-step chain. Similarly we
define s, and wu,, theentropy and the energy per step at the nth. step. Our
purpose is to calculate s, = B(un — fn). Therefore we must first obtain the
energy U, and the free energy F,, by making use of our exact enumerations

of the system’s configurations. This is readily done since we have
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We then need an evaluation of the changes in s, produced by adsorption, for
both the coil and the globule. Choosing for w, and w, typical values of
the coil and collapsed phases, and of the free and adsorbed phases, respectively,
we determine §°%*s,(coil) and §°%°s,(globule). The results, as a function of
the number of‘steps n , are shown in figure 3.3a for both the systems with an
interface and with a surface. It can be seen that, as naively expected, adsbrption
is always accompanied by an entropy reduction (negative values of 63435, ).
The conjecture of Dill an Alonso appears substantially correct since it is clear that
this reduction is much greater for coil-like chains than for globules. In figure 3.3b
we have reported As, = §°%s,(globule) — §°%°s,(coil), again for both of the
surface and interface cases. As, is invoked in ref. [4] as the globule-stabilizing
entropic-term. Here we see that As, # 0 even for a chain constrained near
an interface, but we know (see figure 3.2 b) that no globule stabilization occurs in

that case; hence, for the interface, this As, is due to adsorption.

On the basis of the above calculation (which certainly needs to be further
refined, especially for what concerns the dependence of the results on the chosen
values of w, and w, ), we must improve on the conjecture of Dill and
Alonso, at least as presented by the authors. Actually, an important feature of
figure 3.3b must be pointed out. The difference A(As,) between the two

(surface and interface) curves is a growing function of the number of steps n.
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Figure 3.3 (a) The change (reduction) of entropy per step at the
nth. step due to adsorption for the indicated cases and as a function
of n . (b) The difference in entropy reduction between coil-like

and globule-like chains (see also text).
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This difference refers to one monomer only, and probably does not diverge in
the thermodynamic limit. However the corresponding difference referred to the -
whole chain  (A(AS,)) does certainly diverge. We therefore believe that the
observed shift in the ©-temperature should be in some way connected with the

above considerations.

In order to give a physical interpretation for the observed differences between
the surface and interface cases, we can return to our discussion of Section 1.2.4B,
where a one-dimensional random walk or an equivalent two-dimensional directed-
SAW were shown to experience a long-range potential W{(z) arising from the
steric repulsion induced by an impenetrable wall (see equation (1.53)). Such a
repulsion is generally attributed to the entropy reduction produced by the wall. If
the potential W(z) is effectively long-ranged, particularly for an isotropic SAW
we must expect its effect to be w;-dependent. Furthermore, coil- and globule-like
chains are likely to experience this effective potential differently. The features of
figure 3.2a thus follow. The absence of the temperature shift for the case where
an interface is present is obvious since no entropy reduction occurs. For a directed
chain, we note that the collapse occurs only in the direction parallel to the surface
so that collapsed and coil chains will feel the same potential and no shift must be

observed.

To examine the effect of the above repulsive potential we have calculated the
ratio of the perpendicular to the parallel component of the radius of gyration as
a function of w; and for different values of w,; . The results are presented
in figure 3.4 and concern a chain near a wall. Values of the ratio greater than 1,
which occur for w,; < 0.3, indicate a chain slightly elongated in the direction
perpendicular to the surface and reveal the presence of a repulsive potential. When

the surface attraction increases the chain tends to flatten. It is interesting to note
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component of the radius of gyratio

various values of w,

that globular chains (high values of wy )

coils do.

3.3.2 THE THREE-DIMENSIONAL PHASE

To conclude this Chapter we present

n as a function of and for

wh

resist much better to deformations than

DiAGrRAM

in figure 3.5 the results of a calculation

for three-dimensional chains adsorbing to a two-dimensional impenetrable wall.

Once adsorbed and essentially two-dimensional, macromolecules can collapse and

all of the four phases (coil-free, coil-adsor

bed, globule-free, globule-adsorbed) are

now present. We note that three-dimensional collapse occurs at higher temperature

than two-dimensional collapse, the location at wj, = 0.7 of which is in qualitative

agreement with the two-dimensional bulk
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wy = 0.64

constrained to limit our enumerations to n = 13. Very surprising, indeed, appears -

the presence of a collapse and adsorption coexistence line where, according to our

real space renormalisation, a single coexistence point should be expected. In our
opinion, the results obtained with the exact enumeration analysis are more reliable
than those obtained with the real-space renormalisation techniques presented in

Chapter 2. To conclude, let us point out that the shift in the ©-temperture is

always present.

. Note that, due to the high connectivity of the lattice, we have been ”
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Figure 3.5 The phase diagram for a three-dimensional chain

adsorbing on a two-dimensional surface.
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CHAPTER FOUR

THE DISORDERED CHAIN

As already discussed in Chapter 1, a principal driving force for the folding of
globular proteins is the solvophobic interaction, defined as the transfer process of
non-polar residues between polar and non-polar environments. Disregarding their
specific origin, these interactions are usually supposed to arise from the contact of
non-polar amino-acid side chains and to be dominated by short-ranged attractive
forces [17]. It is therefore of fundamental importance, when modelling folding
processes, to account for the random distribution of non-polar (hydropl_lobic) and
polar (hydrophilic) residues along a generic polypeptide chain. In this Chapter
we present the first attempt to deal with the inherent disorder of proteins and
with its implications for the folding transition, the latter having been modelled
hitherto only through the oversimplified ©-point collapse of a homopolymer in bad
solvent. In a preliminary work by Obukhov [85], the problem of polymers with
a fixed number of monomers of each kind, but with different possible ordering of
these monomers, is considered. It is shown that for a finite chain near the ©-
point a substantial dispersion of the the polymer size must occur. The problem we
intend to tackle here is different, since it concerns the dependence of the collapse
and the adsorption temperatures on the average concentration of hydrophilic and

hydrophobic monomers.

Randomness and disorder have been the subject of long-standing interest in
the statistical mechanics of magnetic spin systems, such as for instance dilute

magnets [86] and spin glasses [87]. Owing to the existence of a well-known
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formal connection between the statistical mechanics of magnetic and polymeric
systems (see Section 1.2.1E), one could think of a straightforward extension .
of the methods of theoretical analysis from one field to the other. In the
case of proteins some attempt towards this direction has indeed appeared in
the literature [88,59]. However, spin-glass type properties appear to dominate
protein behaviour only well below biologically relevant temperatures, so that
the frustration aspect of the problem loses part of its attraction. On the
other hand, the renormalisation methods extensively and most fruitfully used
to study standard disordered magnetic systems near criticality typically involve
the determination of scale-invariant distributions [90], a procedure which we have
found extremely delicate to implement when applied to inhomogeneous polymer

chain models.

We have tried, indeed, to modify the SASAW model presented in Chapters
1 and 2 by replacing the contact probability f by a random variable F;
associated with each site where a monomer-monomer contact is possible. We

choose the following form for the distribution of Fj

Dri(p, fo) = p°6(F;) + 2p(1 = p)8(Fi — fo) + (1 — p)*6(F; = 1) (4.1)

with p the fraction of hydrophilic monomers in the chain. This distribution
corresponds to a weight f =0, fy, 1 for the contact between two hydrophilic, one
hydrophilic and one hydrophobic, and two hydrophobic monomers, respectively.
The recursion relations (1.36) and (1.37) then define, for the renormalized contact
probability F' , a distribution Dg:(p,f}) containing 3* delta functions,
where k representsthe number of possible contacts in the considered bare cell. In

order to determine a fixed distribution it is necessary to approximate Dg:(p, f)))
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by a simpler distribution with only three delta functions. The latter, unavoidable
approximation has turned out to be fatal for.the internal consistency of the model,
which had to be abandoned. Fortunately, the finite-series analysis of the standard
model presented in Chapter 3 has revealed to be more suitable for an extention to

non-homogeneous polymer chains.

4.1 THE EXTENDED STANDARD MODEL

We consider a chain consisting of a random sequence of hydrophilic and
hydrophobic residues, and we construct the following interacting SAW model,

which should apply to a protein molecule in water (see also figure 4.1):

o a bond between two neighbouring hydrophobic residues will be attractive,

thus weighted with a Boltzmann factor e**

e abond between two hydrophilic residues is taken as repulsive, thus weighted

with a factor e~

o abond between an hydrophilic and an hydrophobic residues will be considered

as neutral, thus corresponding to a unit weighting factor

An impenetrable wall is then introduced which interacts with the monomer-
monomer bonds. In the case of a non-polar surface we have the following

interactions:

o Two successive hydrophobic residues lying on the surface will be attracted

and thus weighted with a Boltzmann factor e“

e a bond between two hydrophilic residues is repelled by the surface and thus

Wy

weighted with a factor e™
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e a bond between an hydrophilic and an hydrophobic residues will not interact

with the surface, thus corresponding to a unit weighting factor

O—O—0

/////f///,/// //4//% . . // ,/,/,,4:
. %///4/,/ _ .

Figure 4.1 Example of a SAW configuration used in the present
model. Pluses represent hydrophilic residues, minuses hydrophobic
ones, while the interactions are represented by different symbols
according to whether these are repulsive (plus-plus) or attractive
(minus-minus). All configurations begin with one end on the surface,
while the sign of the bond-surface interaction depends on the type

of residues attached to the bond (see text).

In order to implement the finite series analysis presented in Chapter 3 we need
to calculate the mean squared radius of gyration. Using the same notation as in

equation (3.1)we have:
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(4.2)

(Rok(ws,ws)) =

where o = op( W(n,%,7);Q(n,k) ) and o5 = o,( W(n,s,7);Q(n,k) ) take
the values 1, 0 or —1 depending on the nature of the nearest-neighbour

or bond-surface interaction as defined above.

Sums are now performed over the set {Q(n,k)} of all possible combinations
of k hydrophilic residues and (n—k) hydrophobic residues along a n-step chain.
Such an approach has the severe disadvantage that o, and o, depend on the
spatial configuration W(n,7,7) as well as on the sequence @Q(n,k) , so that the

calculation of the coeflicients (3.3) cannot be performed separately.

A slightly different, statistical, approach nevertheless makes the problem
numerically tractable. We first define the average fraction f = % of hydrophilic
residues and then assign to each contact a value of o with a probability p(o3)

depending on f in the following way:

(2, if o, = —1, hydrophilic-hydrophilic residue
contact.
p(oy) = 2f(1 = f), if op =0, hydrophobic-hydrophilic residue (4.3)
contact.
(1—f)?, if op =1, hydrophobic-hydrophobic residue
contact.

Similarly, to each bond-surface contact we assign a value of o, with a probability

p(os) depending on f through:
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f2, if o5 = —1, hydrophilic-hydrophilic
bond-surface contact.
2f(1 = f), if o0, =0, hydrophobic-hydrophilic
- bond-surface contact.
(1-f)?, if o5 =1, hydrophobic-hydrophobic
bond-surface contact.

plos) = (4.4)

The mean squared radius of gyration, (R2(ws,ws,f)), will now be given by :

;:z: 2 beb+Z): oWy
> T RA(W) Y Pla(i)es(s), fle=t o=
HI=0 {1} {co ()} {es ()}

: . - - (4.5)
jzzz z wab+z Tgts
Z Z Z P(ey(1),es(7), fee=t =t
4,7=0 {W} {es ()}, {cs(i)}
where ¢;(2) = (01, 02,..., oi)p and c¢4(j) = (o1, 02,..., 0j)s are the
combinations of 4 nearest-neighbour and j bond-surface interactions,
respectively. P(cy(i),cs(7),f) is the probability of the corresponding
combinations and is given by:
P(es(i),¢5(3), f) = Ples(d), f) - P(es(7), f)
i ' (4.6)
= [ (o) - [T p(ov)
b=1 s=1

The sum over the sets {c;(¢)} and {cs(7)} can now be factorized out, and, using

the following definitions:
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Tpwh

(Z,wp, f) = Z P(cb f)er=t
{es (i)}

,. (4.7)
TpWs
H.(i,ws, f) = D Ples(s), flee=t
{Cs(j)} -

we can write

T_ijz Hb(iawb:f)HS(ijsaf)Dn(iaj)

(Ra(wbywe, f)) = 2 - (48)
Z Hb('l:y‘-‘-’bvf)Hs(j7w87f)Cn(i7j) - -

The coefficients C,(i,7) and D,(i,7) are those defined in equation (3.3). A
further simplification occurs if equation (4.7) is rewritten in the following way. Let
a, b and ¢ be the number of repulsive, neutral and attractive bonds, respectively.

The sums over the set of combinations {cs(z)} and {cs(7)} become:

2!

Hb(ivwb,f)’—: Z mp“(—1)pb(0)pc(1)e*awb+cwb

a, b, ¢ -

rres i (4.9)
H,(j,ws, f) = Z ~ 5 C!p 4~ 1)pb(0)pc(1)e-aw,+cwa

a, b, ¢

adbtc=j

which can be more conveniently calculated than equation (4.7).

The determination of the wy(Te) and w,(T,) for the collapse and

adsorption transitions, respectively, follows the scheme presented in Chapter 3.
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The results thus obtained are presented in the following Section.

4.2 RESULTS AND COMMENTS

In figure 4.2 we present the central result of this Chapter, namely the
dependence on the fraction f of hydrophilic residues of the collapse and adsorption |
parameters. The curve wy(To) represents the collapse transition when the

monomer-surface interaction is absent, (w,; = 0, bulk problem).

10

Wy,

T T T +
0.2 0.4 0.6 0.8 1

Figure 4.2 Dependence of the collapse temperature wy(To)=

€ . £
- ka}@ and of the adsorption temperature ws(Ta)=—-kH—’Ta as
a function of the hydrophilic concentration f for w,=0 and

wp=0, respectively.

When f — 0, wy(To) approaches the standard value = 0.65 which holds

for an homogeneous chain (hydrophobic residues only). As f 1is increased,
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wp(Te) increases too, corresponding to a fall in collapse temperature: for f — 1 V
collapse takes place only at zero temperature. A similar pattern emerges from the -
curve wy(T,) , where adsorption in presence of a good solvent is considered
(wp = 0) . The reported curve corresponds to a wall exibiting attractive,
neutral and repulsive interactions with hydrophobic-hydrophobic, hydrophobic-
hydrophilic and hydrophilic-hydrophilic bonds, respectively. Very similar results »
are obtained for w;#0 also. We note that the above results, which constitute the
first quantitative estimates of the effects of randomness on polymer adsorption

and collapse, are those one would qualitatively expect.
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W
\ 2 =3 B
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| { 1 b
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Figure 4.3 Generalised phase diagram for the folding and
adsorption transitions of our disordered chain model. (a) is for

f=0.5 , when complete symmetry holds, (b) is for f=0.1 .

In figure 4.3 the complete phase diagram is presented for the model introduced

and for some values of f . Complete symmetry with respect to the origin is
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noticed for the particular choice of f = 0.5 owing to the fact that for negative;
values of w, or w, there is a precise exchange of the role of hydrophilic and-
hydrophobic residues. Hence the reported diagram covers all of the four possible
combinations of a polar or non-polar surface and a polar or non-polar solvent. For
values of f other than 0.5 we observe a distortion of the adsorption and collapse
boundary lines. The full boundaries for f = 0.1 are also reported in figure 4.3

for comparison. Data refer always to n = 22 chain steps.

Ws

_2 s -~
n=22

-4

-6 -+

Figure 4.4 ‘hen F—0 only the first quadrant remains
and coincides with the homogeneous system’s diagram, while the

multicritical point in the three other quadrants disappears to infinity.

In figure 4.4 we present the special case f = 0, which corresponds to a
homogeneous chain. We note that the collapse and the adsorption lines are not
present for negative values of wj, and w, since they correspond to a self-

repulsive chain and to a repulsive bond-surface interaction. In Chapter 3 we
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have compared, for the homogeneous case, the phase diagram of a chain near an
impenetrable wall and that of a chain near.an attractive interface. In figure 4.5
we repeat the comparison but for an inhomogeneous chain and for different values
of f . The same conclusion holds: the shift in the ©-temperature for a chain
near adsorption concerns only the surface case, while in presence of an interface

the ©-line is absolutely vertical.

However, two new features must be pointed out. First, the maximum
amplitude of the shift, as also shown in table 4.1, is maximum for f = 0.5. This
corroborates our hypothesis on the origin of the shift, since this value corresponds
to a maximum in the entropy of the chain and, therefore, must also correspond
to a maximum in the entropy reduction induced by the presence of the -surface.
Furthermore, we observe in table 4.1 that within the numerical accura—cy allowed
by the method Awy, — 0 as f — 1, a demonstration that the shift is due

to surface adsorption as in the limit f —— 1 the chain becomes unbound.

The second feature we would like to point out concerns the collapse line for
f =.9 in figure 4.5. It can be seen that for w, =~ 0.2 — 0.3, the curves
for the surface and the interface cases coincide. This can be understood in the
following way. Since 90% of the monomers are repelled by the surface, the chain
conformations approaching the surface are energetically unfavourable. Therefore
the surface-induced entropy reduction plays a much less important réle. Note that
for w, =0 and ws; ~ w,(T,) the above argument does not hold and the
effect of the surface is again important. A similar explanation can be given to the

behaviour of the ®-line in figure 4.4 for negative values of wj,.
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Figure 4.5 Comparison between (part of) the phase diagram for
the isotropic disordered polymer chain adsorbing at a surface or at
an interface, respectively. Phase boundaries are shown for values of
f=0.1,0.3,0.5,0.7,0.9 . The shift is present only for the surface case,

and is maximum at f=0.5.
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f Awb(T@)
0 0.20
0.1 0.24
0.3 0.32
0.5 0.37

0.7 0.31
] 0.9 0.24
0.95 0.22
0.97 0.13
0.98 0.12
Table 4.1. Variation of the (maximum) shift in inverse e
temperature as a function of f . Observe that the change is
roughly symmetric and is maximum for  f=0.5, swhen entropy

reduction for the SAW phase is greatest. Values near f=1 carry

the highest uncertainty, but are consistent with Aw,(Te)—0 as

fo1
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CHAPTER FIVE

CONCLUSIONS AND OUTLOOK

At this point it remains for us to summarize the results obtained and
to comment on their possible biological implications. This is better done by

considering the physical aspects separately from the biological ones.

5.1 PHYSICAL ASPECTS

Even though the primary motivation for this work was the attempi; to model
the folding transition of proteins occuring near an adsorbing substrate, a number

of other physically interesting features have emerged from the models studied.

We have first shown how the analysis of a the simple SASAW-model by
means of a real space renormalisation method allows for the determination of the
complete phase diagram for a complex system such as the isotropic flexible chain
near an impenetrable wall exhibiting a short-range attractive potential towards
the chain monomers. A similar phase diagram has been obtained already only
for the simplified (and not too realistic) cases of a directed chain and of a chain
embedded in a fractal lattice space. Our model allows us to find all the non-trivial
fized points and to give approximate, but consistent, values for the relative critical
exponents. It is important to note that calculations have been performed for
both two-dimensional and three-dimensional chains. The phase diagram structure
reveals the existence of an enhancement of the collapse temperature due to partial

chain adsorption.
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We have then considered the nearest-neighbour interacting SAW model,“
also referred to as the standard model. =A finite series analysis of computer- -
generated configurations allows us to obtain a more precise determination of the
phase diagram with a complete location of the collapse and adsorption transition
curves as a function of the monomer-monomer and monomer-surface interaction
parameters. For two-dimensional chains, a perfect correspondence between the
phase diagrams obtained with real space renormalisation and finite-series analysis,
respectively, can be established. In particular, the shift in the collapse temperature
near adsorption is seen to be always present. For three-dimensional chains the
same shift is present, but finite series analysis strongly suggests the presence
of a coexistence line where collapse and adsorption take place simultaneously.
This improves on the real-space renormalisation result, which allows for a ﬁnique

coexistence point. .

By extending the standard model in order to include a random distributon of
hydrophilic and hydrophobic monomers along the chain we have then obtained
the first quantitative estimate of the effects of disorder on the collapse and
adsorption transitions. Previous studies of disorder effects on adsorption alone
have considered either random ideal chains or homogenous chains in a random
environment. Beside its intrinsic relevance, the disorder effect analysis has

provided useful information on the nature of the shift in the collapse temperature.

As we will see in the next Section, the shift in the collapse temperature
occuring near the adsorption transition represents our most important result for
biology. Nevertheless, the difficult conceptual problem of its persistence in the limit
of infinite chains is not yet fully resolved. The comparison of different systems
(isotropic and directed chains adsorbing on an impenetrable wall, isotropic chain

localising at an interface) as well as the analysis of the shift as a function of the
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fraction of hydrophilic monomers allows us to ascribe the physical nature of the
shift to the reduction of the chain conformational entropy induced by the confining -

surface.

5.2 BIOLOGICAL ASPECTS

The phase diagrams we have calculated are drawn in the space of the
parameters wy = —Be, and w, = —@Be, which measure the strength
of the monomer-monomer and monomer-surface interactions, respectively. It
must be clear that a temperature change affects both factors B = El—f_f and
ep,s = €p,s(T, solvent) whereas solvent changes affect only the effective interaction
energies € 5. Therefore, our results can be tested experimentally only if we know
the temperature and/or solvent dependence of ¢;,,. Moreover, the experimental
determination of a similar phase diagram requires the ability to vary w, and ws
independently. This suggests that experiments should be more easily performed

at constant temperature.

As already mentioned, the most biologically-relevant feature in our phase
diagrams is certainly the stabilization of the globular conformations induced by the
presence of an adsorbing surface. We must emphasize that the doubts concerning
the thermodynamic limit of infinite chains do not affect the biological imp]jcatrions
of our findings, since all real molecules have a finite length. Moreover the effect is
rather strong and should therefore concern even large proteins. In order to roughly
evaluate the shift in the case of a temperature-driven folding transition, we can
consider the ratio —Z:—% ~ % (see figure 3.2) where To, and Te, referto
the collapse temperatures far and near adsorption, respectively. Then assuming

gy x T* we obtain
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We see that if (as implicitly supposed until now in this thesis) e, is temperature
independent, thatis a =0 , we have Tp, = %T@l, a rather strong temperature
enhancement indeed. For decreasing values of « < 0 the shift decreases as
well. More suprisingly, if « > 1 our shift corresponds to a drop in the folding
transition temperature and thus to a coil stabilisation. It is not our purpose to
consider other, more realistic, relations for &,(T"). We simply note that, on
the basis of this discussion, we consider of fundamental importance, when looking
at the protein folding transition, to take into account the effect of surrounding

structures such as cell membranes or larger macromolecules.

Membrane proteins with an hydrophobic “anchor” embedded in the lipid
bilayer and a long segment moving freely in the vicinity of the membrane are
the biological systems which are more closely represented by our models. If
the free part weakly interacts with the membrane surface, for eic'ample through
screened electrostatic or hydrophobic binding without penetration (see also figure
1.2) and if such interactions are modulated by environmental factors such as ionic
concentration, then, according to the phase diagram we have calculated, the folding
of the free part of the chain can occur as a result of an increased interaction with the
surface. A similar behaviour can also be expected for bulk proteins bound to other
membrane proteins. Since conformational changes of proteins upon adsorption
seems to play a fundamental role in some cell processes such as for instance
post-translational translocation (see Section 1.1.2) we strongly believe that the
importance of the structure of the collapse-adsorption phase diagram cannot be

overestimated.

To conclude, the point we would like to raise in these final considerations
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concerns the possible extensions of our results to the protein folding itself. The "
steric constraint due to side chain residues-has been recognised to destabilize the -
folded conformation. Our claim of a surface-induced stabilisation of the folded
conformation corresponds to a somewhat opposite phenemenon where the steric
constraint is not related to the chain itself but to its environment. Let us now
consider the folding process. An inhomogeneousv chain is very likely to present
some nucleation process with one part of the chain folding before the other. The
steric contraints imposed on the rest of the chain by the rather compact and large
nucleus can then induce its folding. Such a working hypothesis could then explain
the formation of protein domains and our result would be susceptible to form the
basis of further theoretical investigations directed, for instance, to the prediction of
the protein domain sizes. Folding processes controlled by enzymes could ob\-riously

find similar theoretical bases. -
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APPENDIX A

COMPUTER ALGORITHM

We have generated walks on a triangular lattice for the SASAW-model and
on a square lattice for the standard model. The algorithm structure is similar in
both cases. The problem consists in generating, and classifying, suitable walks
for the considered model. The classification parameters are the total number of
bonds, the number of monomer-surface interactions and the number of monomer-

monomer contacts. -

The enumeration algorithm is based on a labelling of sites that allows for each
site to “know” its connected neighbours and to “visit” one of them in a step of
the walk, remembering which sites have already been visited. In such way, from
visit to visit a walk is generated through the lattice. A visit is only valid if it does
not violate the conditions imposed by the model. The walk stops when an “end
site” is encountered, that is when a site cannot visit any of its neighbours either
because they have all been visited, because the maximum allowed number of steps
has been reached or because they are not valid sites. At this point, the currently
generated walk, recorded as a sequence of sites from the origin to the ending >site,
is analysed. This means that the classification parameters characterising the walk
are determined, and that the corresponding element of the configuration array
(see appendix B for the standard model) is updated. In order to continue the
generating process, the ending site is removed and, provided that the new final
site is not itself an ending site, the walk is allowed to visit another region of the

cell. This procedure is repeated until the origin itself becomes an ending site.
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Besides the lattice structure, the main differences between the two models “
concern the valid sites and the analysis process to which a walk is submitted -
before being recorded. For the SASAW-model a site is valid, and therefore can be
visited, only if it has not been already visited more than once and if it belongs to
the considered small lattice cell. A walk is only recorded if it spans the cell, from a
given origin (a corner of the cell lying on the giveﬁ surface), in a direction parallel
to the surface. Moreover overlapping walks are considered unphysical and must
be eliminated. For the standard model a site is valid if it has never been visited
before and if it belongs to the allowed half space. When a walk is recorded, its

radius of gyration is calculated and stored as well.

It should be noticed that, for the SASAW-model, our renormalization scheme
requires a fixed value for the minimum adsorbed fraction of bonds z-for each
configuration. However this check can be performed directly on the final

configuration tables which are given in ref. [6]. The configuration tables for the

standard model are presented in Appendix B for the case of isotropic walks.
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APPENDIX

In the following table we give the coefficients CHi,j) for two-dimemsional isotropi

walks with their origin on an impenetrable wall. A square lattice is considered. Th
indices n, i and j refer to the total number of steps, the number of monomer-monome
interactions and the number of monomer-surface interactions, respectively.

i=0 . .
=0 1 2 3 4 5 § T 8 10 1" 12 12 14
n=17 18369 1328860 1311994 935358 572 301160 10712 23810 21104 a2
n=1f (88233 U2B9254 40210 2566RB0 1662736 009496 455796 187662 73908 siee
=19 4062273 aon B2 avEe 8985936 4700V 21716 MOTTI) G428 258506 . 20206 1528
ne20  IO0BDGD 10500106 O260RIDS  IBTSAESB 121555 TOBIBAR 4170 208992 002000 34402 4832 27485 1919
n=2 23268551 47838034 RY4020964 50060558 96708548 m 1962 13062568 #na6248 3045182 1205754 151148 22298 172
MR OSIAINT UIGMI2 145846830 100618062 (01140202 GR02BVC  COOIMB0  D0RTS6  OOICESD  490ENRD  16mea64 595040 175726 18914
j=1
i= 9 | 2 3 4 5 B i 8 e 10 1 12 1 14
n=17 5320 03B 1658 B8 3R 314052 155244 4042 24454 820 702
n=13 1200840 m:L., 2BOBT4 2369335 1603268 934314 F74544 217780 34300 20602 8004 178
=19 2631868 H108361 49948 8347796 4496468 2704502 1476756 710020 302678 113532 41396 R

a=if 6543768 143[)64'38 18730460 16808822 12409558 BTAR10 4446528 2216378 1012208 408322 140804 1556

=2l 150ADDMD 56416 4TS0297B 4456796 G41BMIG2 20567706 13247206 6982708 033122 MDM94 554016 192214 1056

n=22 4852104 86308072 118040818 115476558 90031680 63735716 ORITB400 212028 10540840 4TBITIR 1OTITDB TOO4TS 229142 16420 1236
j=2

= 0 1 2 3 4 5 7 8 9 10 i Nl 13 S

n=17 260252 451200 504418 402514 27903 156472 16952 14214 8574 1428

n=18 602818 1106498 1290864 1083006 775184 465616 122018 30812 18064 7402 490 -

n=19 1380704 270237 201986 2892180 2149224 1957152 388064 179028 67958 27942 9398 143

n=20 JUIBISE 6506308 BISIB0 TE50 5009000 B0s0Rse 1182260 580908 22055 90876 249% 5760

n=2l RANIE  1A00R 201IB4BE  20167H56 1R1DGD4R 10961022 WA IB6ATB B4MRD 14 4124828 12386 7308

WREOITIOEI  ABO20ZE  S3I7HTH0 S27I09B4  ADGGAI0H  OTIASTS 10492400 LGB STIZSM U4 11BTMB 44004 16482 47978 062

i= 9 ! 2 3 5 § 7 i 9 19 1 12 1 14

n=17 12082 215774 225380 176802 71843 38955 1024 072 3526 820

n=18 207863 532052 532548 476218 : 208078 17126 24544 9758 1454

n=19 8RR WROOR IS0IT00 1286208 95740 314362 B3R 7712 39428 14218 43

D20 IG0BSE BI04 0018 3424018 260080 17028 1039118 : 280180 19182 470 20362 e

ne2l  JG0I625 9S4 D7BhAN 000672 02602 4032 00B3964  170ABSd ABBISR 12009 195702 Aed32 2743 B062

n=R2  B5OBB40 10992114 24801478 20024632 19618674 13008288 BO0B0I6 512404 271870 347092 590554 25684 19% 207284 2696
j=4

i= 0 i 2 3 1 5 5 b 8 9 i 1 12 13 4

n=17 A4 9784 100710 76224 50636 0520 16344 7190 3262 1632 188

n=18 143852 248202 26064 2078 144964 38676 48300 23870 10440 4124 1802 50

n=19  3M124 613004 684502 112506 258064 151824 7380 36972 5478 708 2428 b

n=20 780342 1510792 1964434 1522008 1143324 74ETHY 145184 278584 113982 53088 20202 8818 T2

n=21 IRIOR24 3702058 4528802 40B4156  DIGTAOR 2155964 1024900 4T3 369660 130858 31708 30544 14032 2124

=22 421300 9064252 11531400 10BI20B6  B6TIR46 6070804 ASuB4Z 201372 1184464 587654 263884 103616 11432 14474 B9z
i=5

i= 0 | 2 3 4 5 B 7 8 9 10 I 12 13 14

n=17 26682 15168 43830 3147 20954 11422 5900 2 1418 100 2

n=i8 63004 113184 115182 38340 53858 36006 18230 1756 1716 30

n=19 158980 282000 303798 244116 170880 105482 396 , 13486 5804 2706 414

n=20 370 899726 783196 660963 484874 204876 18227 92648 465684 20522 7912 3160 328

n=21 8703 1726182 2GR 1796361 1350856 80711 543268 300008 153528 70763 3072 12502 1330 192

n=22 03744 4249022 5254452 4BOO0DB  STSMM4B BVI08 1500318 911324 479292 235214 107162 41308 16280 1822 84
i=6

i= 0 1 2 3 1 5 6 7 8 9 19 " 12 13 14

n=l7 13308 20140 18460 12544 B84 4078 2156 #26 512 2

n=18 31630 5077 49650 3582 23844 13036 5550 3181 1238 408 ped

n=19 742 127518 131538 101670 58258 41846 21708 1123 4462 2978 634 14

n=20 175506 318570 46164 280818 197016 121812 5928 33396 17080 5408 273 562 1

n=21 411832 1550 205864 TRUTA 565242 360112 214852 113186 57196 25178 10756 4604 B4

p=l2 96832 1960342 247156 20VTBRZ 15B3698 1048118 633146 353888 177404 865250 26646 13508 3220 83
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In the the followiﬂg table we give the coefficients D i, j) which refer

to the normal component of the radius of gyration for two-dimemsional
isotropic walks with their origin on an impenetrable wall. A square
lattice is considered. The indices n, i and j refer to the total number of

steps, the number of monomer-monomer interactions and the humber of

monomer-surface interactions, respectively.
i=0

i= 0 1 2 3 _ 4 5 6 7 8 9 10 1 12 13 14

n=17 5239973 7262182 8254517 3844184 2051087 913233 368031 122804 41879 7490 55

n=18 13195274 19630650 17973493 11765036 6625915 3127068 1364623 485104 169178 50921 3697

n=19 33093848 52684962 50964406 35367058 20952796 10494942 4740708 1881045 868215 217908 ST042 2807

n=20  B2629125 139769966 142993175 104923978 65158323 34401706 16316392 6892464 2621546 889722 286607 55443 1873

n=21 206830614 36BBI934R 207010850  306B3B436 100441251 110446410 5RO18I148 24291017 9940008 3571439 1184285 348987 48494 358

n=22 509648737 967068415 1002812018 BBV0B2663 602097416 348881052  1B1ATTO37  B4126342 36135176 13876608 4885744 1550601 408142 38230
i=1

i= ] ! 2 3 4 5 [} 7 8 9 10 11 12 13 4

n=17 34580986 5713053 5455411 3680374 2061514 977774 415515 147919 49970 16021 1238

n=18 8709873 15299301 15466276 11067252 6541223 3298498 1450605 579691 195867 53589 15152 332

n=19 21804327 40611819 43382280 32827482 20445912 10844240 5104819 2136291 798431 266034 86510 15687 i

n=20 54441613 107102600 120357940 95915784 62694864 34889235 17272054 H33TT 3032652 1074484 328626 95877 9370

n=21 135265444 280456232 331004268 277173646 189649527 110671050 5312792 28509298 11188431 4257700 1472786 458445 122134 6399

n=22 330351067 730510139 902464252  TOI476442 565494800 344510765 188028856 90051773 395BI2I6 15947114  5B46373 1850766 550700 105213 2679
j=2

i= 0 i 2 3 4 5 6 7 8 9 10 11 12 13 14

n=17 1549888 2270288 2214331 1514909 908171 434208 205158 74687 28010 10881 2198

=18 3951319 6156028 6314342 4583915 2859408 1476910 694418 290659 105676 1R 12879 766

n=19 9897348 16533478 17818903 13654706 8910545 4877622 2393475 1061092 424378 143080 53492 18858 797

n=2 24854185 44044915 49702017 40054536 27316260 15613735 8110124 3661439 1580719 580141 197112 69531 12629

n=21 82033436 118437479 137421236 116144747  B2584137 49419671 26778108 12738342 5697785 2283008 824909 275549 121993 14175 -

n=22 154515704 305839125 376532987 332847575 245086720 153738395 86266405 43180671 19807449 8365124 3248123 1096285 375032 102142 6184
i=3

i= 9 { 2 3 4 5 [ 7 8 9 10 11 2 13 14

n=17 671126 348002 855295 568509 335893 166340 76547 20839 1098% 4848 1009

n=18 1720834 2606053 2486733 1743806 1081763 558943 27183 112987 42538 15644 6239 406

n=19 4371432 7082243 7142088 5205102 3422314 1884795 33258 421610 173584 63855 24052 8164 833

n=20 11071258 19072387 20224702 15753026 10589887 6111263 3154524 1476436 645802 241384 Bhg25 34801 6740

n=21 27834744 50890002 56710621 46361547 32482239 19527600 10597247 5126841 2347454 968742 368044 129362 48434 3900

n=22 69819685 134830397 157289089 34407068 97764109 61137688 34449939 17378247 BIHTITY 3557867 138737 502972 133183 5327 1610
j=4

i= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n=17 279154 376135 322011 202148 1372 7172 26210 9521 4173 1711 166

n=18 725324 1052014 958534 630962 378286 193898 90541 37121 14742 5518 1973 60

n=18 1883306 2901569 2801328 19711702 1235014 655708 332202 144899 59482 23240 9651 2878 35

n=20 4769419 7917360 8063456 5990551 3895294 2181313 1123032 515297 225086 88058 3104 12232 2169

n=21 12097856 21374122 22043784 17959420 12155308 7154290 3815174 1851272 849859 344312 141809 50785 19834 - 2811

n=22 30607665 57233387 64467798 52915922  37R35247 22716981 12618522 6307187 2970743 1290660 516357 191643 63635 21489 1298
i=5

i= 0 1 2 3 4 5 [ 7 8 9 10 3] 12 13 4

n=17 111993 143623 115496 67749 37474 16024 7640 2650 1334 323 8

n=18 295213 407996 350854 222134 124557 63341 27393 11545 4557 1770 313

n=19 769148 1148135 1052247 707928 420299 218182 104387 45280 17818 7158 2930 364

n=20 1992045 317487 3066266 2191942 1372263 73170 375459 164217 70737 28334 10505 3368 303

n=21 5109490 8693802 8944116 6718531 4378672 247074 1291316 610467 272508 110343 4272 16541 5410 228

n=22 13052756 23565182 25499721 20142172 13653540  B071476 4332704 2148408 989780 419159 173693 63456 22617 5511 101
i=8

i= 0 i 2 3 4 5 8 7 ] 9 10 it 12 13 4

n=17 43472 52255 39298 21430 11589 4698 2085 Big 330 15

=18 116498 152578 123791 72630 40329 18080 911 3123 1222 330 14

n=19 308275 437353 379193 241689 136102 69316 30648 13104 5117 2206 483 9

n=20  BOBYGD 1233646 1139459 71748 458159 238360 113794 48078 20748 7492 2624 476 9

=21 2100939 3431292 3367061 2411490 15613321 813951 417899 187657 81778 32780 13008 4875 877

=22 5426730 3432096 9776360 7393184 4833129 2728454 1424933 679130 300140 126572 49720 17216 5643 585
i=7

= i i 2 3 4 5 6 7 [ 9 10 11 2 13 4

=17 16336 18400 12659 6694 3062 1316 507 167 R

=18 44633 55060 4151 22845 12238 5019 2166 889 282 18

=19 120262 161522 131927 78042 43224 19382 8579 3408 1244 448 24

=20 320100 464842 405678 269729 146352 74352 32985 13596 5762 2036 486 15

1=21 843319 1316913 1226501 836133 496277 260226 124057 53156 23034 8229 N 669 20

1=22 2203000 3675547 3633089 2618127 1643553 836648 452750 204125 86429 36933 13350 4428 768 9
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