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Introduction

The study of boundary value problems for second order ordinary differential equations like:
(1) i+ f(t,z,2) =0

when f grows at infinity faster than any linear function with respect to the x variable, is a
topic which has been widely investigated in the literature, using various different approaches.
Just to cite some works, the case, in which f in (1) does not depend on z and the limit:

(2) fim {52

z—+oo T

= 00

holds uniformly with respect to ¢, was studied since the fifties by Morris [88], [89], Ehrmann
[40], [41] and Nehari [93] for some particular forms of f (see also the references in [28]); on
the other hand a controlled dependence on & is allowed in the works by Hartman [54] and by
Struwe [116]. The main feature of such kind of problems is the absence of a priori bounds
due to the strong oscillatory behaviour of the large solutions [80].

Two are the main classes of equations which we will deal with in this thesis: the forced
Liénard equation:

(3) &+ f(z)d + g(z) = e(t)
and the Duffing equation with time—dependent weight:
(4) &+ q(t)g(z) =0,
assuming in both cases that g : R — R satisfies:

zgrfmg(l) sign(z) = +o0.

The first equation is considered in Chapter 1 mainly from the point of view of the existence
of T-periodic solutions, when e is a T-perodic forcing term, while various boundary value
problems associated to the second one are considered in the other five chapters, paying much
attention to the effects that the changes of sign of ¢ have on the dynamic of the solutions.

The periodic problem for (3) has been widely treated in literature; classical results are
obtained either with dissipativity hypotheses, which are translated into some kind of sign-
definiteness of f (for instance f(z) > ¢ > 0 for large values of |z|, or F(z)sign(z) = +oo as
|z| tends to infinity, where F(z) = [J f(s)ds; see for instance [22], [51] and the references
contained therein) or assuming some sublinear growth condition on g ([79], [35]).

Only in more recent years the case, in which f and g have polynomial growth and
f(z)sign(z) — +oo as |z| goes to infinity (and so it does not enter into the dissipativity
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4 INTRODUCTION

setting), has been attacked. In the unforced situation, i.e. when e = 0 in (3), an analysis of
the plane system associated to equation (3):

=y - F(z)
) {y=:-g@0

shows that the structure of the orbits drastically changes according to a relationship between
the rates of growth at infinity of F' and g ([53], [117] and the references contained therein).
In [122] G. Villari and F. Zanolin considered the case in which g is odd and the function
f is the sum of two terms, f = f, + fe, where f, is such that the plane system associated to
the equation:
E+ folz)d +g(z) =0

describes a global center in a neighbourhood of infinity (the subscript “o” is used here since
we typically have this situation if f, is odd), while f, introduces some dissipativity effect
(for instance it is even and sign-defined for large |z|). They proved the existence of at least
one T-periodic solution by exploiting such dissipativity, if the even part f. is not too small.
That result can be applied to an equation like:

i+ (|z|° 7tz + p(z)d + |21 e = e(t)
where p(z) > po > 0 and the condition on the odd part reads:
B>2a+1

as it follows from the works by Filippov [45], Opial [95] and Hara and Yoneyama [53], but
the problem of what happens when p = 0 is left open in [122]and [123]. In this case system
(5) defines a center in a neighbourhood of infinity and hence the problem concerns the study
of a center subjected to periodic perturbations which are not necessarily small.
Some previous results have been obtained by interpreting equation (3) as a perturbation
of the Duffing equation:
Z + g(z) = e(t)

when g has a superlinear growth at infinity in the sense that:

lim Q_(_@ = +00.

z-+00 I
In this situation, thanks to the hamiltonian structure of the problem, different methods (crit-
ical point theory in [11], Poincaré-Birkhoff theorem in [37] and [38], Moser’s twist theorem
in [90] and [36]) allow to obtain the existence of infinitely many periodic (harmonic and
subharmonic) solutions and even boundedness of all the solutions, if g is a polynomial-like
function. Partial extensions of these results have been obtained by Liu in [71] and [72] and
by Liu and You in [74]), when f and g are odd polynomial and e is odd, too, by the use of
KAM theory for reversible systems (for recent works see [75] and [128]). However the case
in which f and g are odd, but e is not, remains still open (see [124]). A typical example is
given by the equation:

(6) i+ Alz|*zi + Blz|P Tz = e(t),

where 8 > 2a + 1 and e : R — R is a continuous T-periodic function such that e(t + 1) #
—e(—t+ 1), for all t,7 € R (this last condition just ensures that e is not odd, still after a
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time shift). This model can be considered as a generalization of the example considered by
M. Struwe in [116].

In Chapter 1 we prove the existence of at least .one T-periodic solution for a class of
equations which includes (6) and for an arbitrary forcing term e. Actually we study the
plane system:
(7) &=y - F(z)+E z,y)

y=—g(z) +p(t,z,y)

which includes equation (3) as a particular case. Our result shows that, if F and p are
bounded, F(z) ~ |z[**! and g(z) ~ |&°~1z, with § > 2o + 1, then (7) has at least one 7-
periodic solution. To obtain our main result we will apply a continuation theorem proved in
[28, Theorem 2]: we embed system (7) into a one-parameter family of differential equations:

(8) £=TF(t,&N),

where A € [0,1] is the parameter and F : R x R? x [0,1] — R? is T-periodic with respect
to t, gives the original system (7) for A = 1 and is chosen in such a way that for A = 0
(8) has a “good” set of T-periodic solutions (namely, F (t,x;0) is indipendent of ¢ and its
Brower degree is not zero in a suitable ball); then one hopes that the solution set for A = 0
is “continuable” for all A > 0 and, in particular, up to A = 1. This hope can be usually
fulfilled by continuations theorems only if a fundamental ingredient is supplied: some a
priori estimate on the periodic solutions of (8). We have already remarked that in general
this is not possible in superlinear problems: what is possible to do (and what is actually
needed in order to apply Theorem 2 in [28]) is to find a priori bounds for periodic solutions
with fized number of zeros (see also [27] and [82]). Therefore the main efforts in Chapter 1
are spent in the study of (7).

Such a study is done in Section 1.1: by a recursive procedure, which consists in using the
smoothness of f and g to successively reduce the rate of growth of undesirable terms, it is
proved that the solutions with sufficiently large initial values are defined in a fixed interval
and satisfy the “elastic property” (see Corollaries 1.1.3 and 1.1.4 and Lemma, 2.2.2). This
technique, which need enough regularity as in the papers where KAM theory is used, may
recall similar procedures exploited, for instance, in [36], but it concerns only one step and
thus is much more elementary than it is in those works. Moreover, we show that larger
solutions oscillates more in a fixed interval [a,b], in the sense that a solution (z(t),y(t)) of
(7) makes as many rotations as we want around the origin, while ¢ spans [a, b], if the length
of the vector (z(to),y(to)) is large enough for some ¢, € [a,b]. Therefore, the solutions with
a fixed number of zeros are necessarily bounded and we obtain the required a priori bound
in order to apply Theorem 2 in [28].

However, the results obtained, combined with the ideas of the proof of Theorem 1 in [116],
allow to deduce also the existence of infinitely many solutions of Sturm-Liouville boundary
value problems associated to equations like (7).

"The other five chapters of the thesis deal with equation (4). In this case, the condition
of superlinearity (2) reads: :

9) lim 9(z) = +o0
z—Foo I
and the uniformity with respect to t of the limit in (2) corresponds to the condition of definite
sign:
irtlf q(t) > 0.
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In this situation, according to Coffman and Ullrich [31], some weak regularity assumptions
on the weight g (like ¢ continuous and locally of bounded variation) are enough to guarantee
the global continuability of the solutions for the associated Cauchy problems and this allows
to apply shooting type techniques. A particular type of equation (4) is given by:

(10) i+ q(t)z®™ 1t =0,

which has deserved much attention for the rich dynamics exhibited by its solutions. After
the work of Laederich and Levi [63] (see also [68], [69], for further progress in that direction)
it is known that for ¢(-) positive, periodic and sufficiently smooth (e.g., at least of class C®,
according to [68]), all the solutions of (10) are bounded, there are infinitely many periodic
solutions (harmonics and subharmonics of each order) and most of the solutions with large
amplitude are quasiperiodic. The same kind of result holds for suitable perturbations of
(10), as well as for:

(11) i+ ft,z) =0,

with f smooth enough in both variables and having a polynomial growth in z (see, e.g., [68],
[69]). On the other hand, it was proved in [31], that the sole continuity of ¢ is not sufficient
even for the global continuability of all the solutions.

It seems that Waltman [126] was the first who considered a changing sign weight for
the study of the oscillatory solutions for a superlinear equation of the form (10). Observe
that here the global continuability of the solutions is no more guaranteed (independently of
the degree of regularity of ¢). In fact, one can see, according to Burton and Grimmer [21],
that some solutions will blow up in the intervals of negativity for ¢(¢). Actually Burton and
Grimmer showed that a necessary and sufficient condition for the global continuability to
fail (when ¢ < 0) is that:

+c0 -1
either / [G(z)]7*?dr < 400 or / [G(z)] Y %dz < +oo0,
1

—0Q

where G(z) := [ g(s)ds. Hence, in this situation, the problem of absence of a priori bounds
is accompanied by the technical difficulty due to the noncontinuability of some solutions.
This makes the phase-plane analysis somehow more delicate.

A study of the topological properties of the set of initial points from which depart globally
defined solutions of (4) was initiated by Butler in [23], [24]. In [23] G. J. Butler assumed
that both the integrals above were finite, that is:

oo
(12) / [1+ G(z)]"Y?dz < +oo,

—0oa

and this condition allowed him to determine some topological property of the sets of good
initial conditions, although he remarked that in general one cannot expect that they may
have any particular structure. Moreover he proved the existence of infinitely many periodic
solutions for equation (2.1) assuming (12) and (9), in a situation for which the weight function
q(t) may change sign a finite number of times in a fixed compact interval and has some weak
smoothness in order to avoid problems of continuability where ¢ > 0, according to Coffman
and Ullrich [31]. Butler’s argument, which is an ingenious blend of the rapid oscillatory
properties of the large solutions when ¢ > 0 with the properties of the set of initial points
of the continuable solutions when g < 0, seems to be flexible enough to be adapted to other
boundary value problerns.
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Indeed in [99] the result by Butler has been extended to cover a more general class of
boundary condition: namely, under Butler’s same hypotheses, infinitely many solutions of
(4) are found which satisfy the Floquet-type boundary condition:

(13) (z(w), 3(w)) = A(z(0), £(0)),

where A : B2 — R? is a continuous, nondegenerate and positively o-homogeneous map, that
is:

(i) Ap)=(0,0) <= p=(0,0),
(ii) A(rp) = r?A(p) Vr>0VpeR.

Such kind of boundary value problems have been studied for instance in [42, 43, 54, 56, 61].
Recently Mawhin in [81, 83] considered again the Floquet boundary value problem for a first
order differential equation in the complex plane, since by a suitable change of variable he
was able to transform a periodic problem into a Floquet problem which turned out to be
easier to solve via a continuation approach. The same kind of problems have been considered
in [120], again through a continuation approach, and in [114], using the fixed point index.
Henrard [57] also uses a continuation theorem for a superlinear second order real ordinary
differential equation of the form

&+ f(z) = p(t,7,2),

with p bounded, and a Floquet boundary condition, where A is the rotation of an angle
8 # 0,7, that is his result does not cover the periodic and the antiperiodic case. However
he is able to find at least four different solutions with a prescribed number of zeros. In this
case, that is when A is the rotation map, also in [99] the multiplicity of solutions is obtained
by finding at least a solution having an arbitrary and sufficiently large number of zeros in
the interval [0, w]. Moreover, the periodic problem for the damped equation:

(14) Z+ct+qg(t)glz) =0

is transformed into a Floquet—type problem for (4) by employing a change of variables used
in [21]; therefore, also periodic solutions, with an arbitrary and sufficiently large number of
zero, as well as infinitely many subharmonic solutions of every order are found in [99] for
equation (14).

In 1991, Lassoued [64] using a variational approach, obtained the existence of one non-
constant T-periodic solution for the system of differential equations:

(15) £+ q()G'(z) =0,

assuming G : RY — R a superquadratic convex homogeneous function of class C? and
q € L*([0,T),R) a T-periodic function which changes sign. In the case of G even, also the
existence of infinitely many solutions was proved. Also Le and Schmitt apply a variational
method in [70] to find a periodic solution of an equation of the form:

&+ q(t)e” = p(t),

where p and ¢ are w-periodic, ¢ changes sign and satisfies a suitable integral condition.
Various investigations along this or related directions were then performed, in particular,
with respect to the existence and multiplicity of solutions for Dirichlet, Neumann or mixed
boundary value problems associated to elliptic equations [2], [3], [4], [5], [9], [10], [16], [17],
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[18], [60], [67], [77], [107] or to the existence and multiplicity of periodic solutions for Hamil-
tonian systems [6], [7], [16], [25], [39], [44], [47], [48]; recently, a condition for the stability of
the origin for a perturbed form of (10) with ¢ continuous, periodic and changing sign, has
been obtained by Liu in [73].

Most of the above quoted results apply to situations (like PDEs or systems) which are
widely more general than (4); on the other hand, the assumptions involved therein on the
nonlinearity require either symmetry conditions or a growth at infinity which is quite close
to a power. For instance it is usually assumed that G is superquadratic in the sense that:

g(z) -z >BG(x) Vz|>R

for some 8 > 2 (an assumption which is more restrictive than (12), since it does not allow
potentials G that behave at infinity like |z|? log” |z| for v > 2) and moreover homogeneous
or satisfying a condition like:

lg(z) -z — BG(z)| < clz* Y,z € R,

for some ¢ > 0 and 8 > 2. Under these hypotheses at least one nontrivial periodic solution is
usually found in the works where the periodic problem for a systems like (15) is considered;
if G is assumed to be also even, it is shown that there are infinitely many periodic solutions
and a sequence of subharmonic solutions with orders tending to +oco. Moreover, except for
the case of the existence of positive solutions, the results obtained up to now, seem to be
not very complete with respect to the nodal properties of the solutions.

In a recent article [121], S. Terracini and G. Verzini, dealing with the scalar equation:

&+ q(t)z® + mz + h(t) =0,

obtain a very sharp result for the two-point boundary value problem, proving the existence of
solutions with precise nodal properties in the intervals of positivity of ¢(t) and with at least
one zero in the intervals of negativity of ¢. Similar conclusions are derived for the periodic
problem and for the existence of bounded non-periodic oscillatory solutions defined on the
whole real line and also when a more general superlinear function ¢ is considered in place
of the cubic £® : however it seems that in [121] some homogeneity condition on g has to be
assumed in order to apply the Nehari method.

In this thesis we adopt the following plan for the last five chapters: in Chapters 2 and
3 we mainly study the cases of, respectively, ¢ > 0 and ¢ < 0 in equation (4); in Chapters
4 and 5 we use the results obtained in the preceding ones in order to prove the existence
and multiplicity of solutions of various boundary value problems associated to (4) when g is
superlinear (in some sense to be specified) and ¢ changes sign; in Chapter 6 the existence of
globally defined solutions with prescribed nodal properties is considered for (4) and applied
to the case in which ¢ is periodic and, in this case, some chaotic features of the dynamic are
outlined.

About the conditions of superlinear growth that we consider throughout Chapters 2-6,
they are related to the dynamical properties of the two autonomous equations:

(16) (+) &+g9(z)=0 and (=) £-—g(z)=0.
When g : R — R satisfies the sign condition:

g(z)z >0 Yz #0,
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(or at least for all |z| > zp) the primitive G(z) = [; g(s)ds has a right inverse G
[0, +-00[ — [0, +oo[ and a left one GZ' : [0, +00[ — ] — o0, 0]; we take the two energy functions:

Et(z,2) = %:1':2 + G(x) and E~(z,2) = %a’s?‘ - G(z)

respectively associated to the equations in (16). The first equation (4) describes a global
center around the origin in the phase plane because all the level lines of E* are closed cicles
around (0, 0); therefore, for each value e > 0 of the energy E* we have a unique (up to a
time shift) solution of the equation (+) which is periodic and whose period is given by:

cg=va [T L,

7 (e) =Vv2 / — ds.

! 6Zi(e) Ve—G(s)

On the other hand the set of trajectories of equation (—) has the structure of a saddle around
the origin. For every value e # 0 of the energy £~ there are two unbounded trajectories and
the sum of the length of the two maximal intervals of continuability of the corresponding
solutions can be written as:

+o0 1
\/5/ ___ds ife>0
_ _ —0 \/6"‘G(8>
Tq (e) = \/_ Gl (—e) 1 . /3 +o0 1 J .
2/ ——ds + V2 —ds ife<0.
—co VG(s)+e Gil(—e) VG(s) +e

When g(z)/z — +oo for  — oo, then it can be proved that 7,7 (e) = 0 as e = 400, 50
that the solutions of (+) with greater C'-norm oscillate more and have more zeros in a fixed
interval; when g is a power, like z|z|*~, v > 1, also T, (e) = 0, as e — =00, all the solutions
of (—) have a blow-up in finite time and the length of their maximal interval of existence
decreases to zero as their energy tends to infinity. Hence, our assumptions of superlinearity
will be the following ones:

i 7T (e) =
(92+) e-lgfoo 7, (e)=0
and
(g2+) e_ljlj':noo T, (e) =0

and will be needed repectively in the intervals where ¢ > 0 and ¢ < 0. Actually (g2+) and
(g2—) are satisfied by any function g : R — R such that:

k> 0,a>2: |g(s)| > k|s|log®(1 + |s]) Ys| > 0,

therefore we can treat non-monotone functions, so that the potential G does not need to be
convex. More general assumptions which ensure the validity of both (g2+) and (g2—), when
g(z)x > 0 for large |z|, are: :

(17 lim 9(@) = +00,

z—too I

+oo

< 400 and liminf Gloz)

ds z—r oo G(:C)

> 1,

1
VG(s)
for some ¢ > 1. The third condition in (17) is always satisfied when ¢ is monotone nonde-

creasing in a neighbourhood of infinity. Indeed, if g has such & monotonicity property, then
just the first two assumptions are enough for (92+4) and (g2—).
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The results contained in Chapters 2 and 3 are mostly instrumental for the successive
chapters. In Chapter 2 we study the continuability and the oscillatoric behaviour of the
solutions of superlinear equations of the form (11), and we give an existence and multiplicity
theorem with respect to general boundary conditions, which can be written as:

(z(a),z(a)) € Ty
(18) {(m(b),i(b)) €Ty,

where I', and T are two suitable unbounded continua, in the spirit of the class B of boundary
conditions introduced in [116].

We formulate and prove a version of the main Theorem of [31] which gives sufficient
conditions for the continuability of the solutions of:

i+ q(t)G'(z) = p(t, z, ),

when the weight function ¢ is nonnegative and the growth of p with respect to = and £ is
no more than linear. In particular it turns out that for the continuability of the solutions
of (4) it is sufficient that ¢ has locally bounded variation and that is monotone in each left
neighbourhood and in each right neighbourhood of its zeros. In the Theorem in [31] just the
case of (10) was considered, but its approach is easily generalized to obtain Theorem 2.1.1,
which is a result known in literature (see for instance [23] and [24]) even if we did not find
an exact reference for its proof. In particular the global continuability of the solutions of (4)
holds in an interval where g > 0, if g is locally of bounded variation and it is monotone in a
left neighbourhood and in a right neighbourhood of each of its zeros.

Then we deal with the oscillatoric properties of the solutions of (11), when f : [a,b] xR —
R is a Carathéodory function such that:

(f1) every solution of & + f(¢,z) = 0 is defined on [a, b]
and:

(f2) there are a nontrivial subinterval I C [a,b], a number z* > 0 and a continuous function
g : R — R, satisfying (g1) and (g2+), such that:

f(t,z)sign(z) > |g(z)| for a.e. t € I and V|z| > z™;

in particular we do not require the uniqueness for the Cauchy problems associated to (11).
We show that under this assumptions, the number of turns, that the phase vector (z(t), £(t))
makes around the origin as ¢ varies in [a, b], tends to infinity as the length of (z(to), Z(t0))
goes to infinity for some to € [a,b] : this is a typical feature of superlinear problems (see [29],
[54], [79]). As a consequence, we obtain by a shooting technique the existence of solutions of
(11) satisfying boundary conditions like (18) and having an arbitrary, but sufficiently large,
number of zeros. ,

In Chapter 3 the situation in which ¢ is nonpositive and g is superlinear in the equation
(4) is considered. When (92—) holds and ¢ < 0, ¢ # 0 in an interval [a, b], there are solutions
of (4) which are not continuable over the whole [a,b] and blow up. Therefore we consider
the same kind of sets Q¥ introduced in [23] and made by all the points p € R? such that the
solution starting at ¢ = a from p is defined on [a, b], and we show that, under the assumption
(g2—), the intersection of Q2 with every straight line from the origin is bounded.

Moreover we consider also the existence of continua of initial points that give raise to
solutions which are defined on ]a, b[ but present the blow up at a or at b or both. This kind
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of singular boundary value problems, arising from questions of differential geometry and
mathematical physics, dates back to Bieberback [20] and Rademacher [106], who initiated

the study of the solutions of: .
Au = f(u), in(Q,

such that u(x) — +oco as dist(x, 8Q) — 0. Further results were then obtained by Keller [59],
Osserman [97], Walter [125], Loewner and Nirenberg [76], Rhee [110] and others (see [15]).
More recent contributions and extensions can be found in [12], [13], {30], [35], [65], [66], [87],
[130] and the references therein. The study of radially symmetric solutions of:

Au=w(lxg(u), inQ,
which present the blow-up phenomenon at the boundary of {2 leads to the problem:

{ i+qt)g(e) =0 inla,b]

(19) z(a) = z(b) = +c0

in the case of an annular domain, with sign conditions on ¢ corresponding to appropriate
sign conditions on w(r) with » = |x|. In [12], [13], [65], [130], the authors considered the
situation in which w(r) > 0 for all r and this turns out to be equivalent to the sign condition
q(t) < 0 for all ¢t €]0,1[. Recently, under the assumption of monotonicity for g, the case of
a weight function of constant sign but possibly vanishing on some subset of its domain, was
considered too (see [30] and the references therein).

In Section 3.3, we take a superlinear and continuous g, which satifies the sign condition
(g1) only in aneighbourhood of infinity and of 0 and an integral condition in 0 in order to have
the uniqueness of the constant zero solution (we do not assume any Lipschitz continuity),
and a continuous and nonpositive ¢ such that every neighbourhood of b (respectively, of a)
contains points in which ¢ is strictly negative: the we find unbounded continua of points p of
the plane such that there is a solution of (4) starting at ¢t = a (respectively, at ¢ = b) from p,
which is defined in ]a, b[, has either constant sign or exactly one zero in ]a, b[, and presents the
blow-up as ¢ — b (respectively, as t — a). The technique is based on a limit procedure over
sequences of continua which are provided by the Leray-Schauder Continuation Theorem.
We remark that, if we assume that g(¢) < 0 for all ¢ in a neighbourhood of @ and b, then it
turns out that our condition on the sign of ¢ is also necessary for the existence of blow-up
solutions. As a first consequence we have that it can be found a positive solution of (19),
since we can show that two continua like those mentioned above intersects somewhere, so
that we can “glue” a solutions blowing up as ¢ — a to a solution blowing up as ¢ — b. Since,
by standard rescaling procedures, equation (4) can be obtained from ODEs of the form:

w'(r) + c(r)u'(r) + A(r) f(u(r)) = 0,

our result, in principle, could be applied to the search of radially symmetric solutions of
different classes of PDEs (like, e.g., the self-similar solutions for semilinear heat equations
[102)).

In a similar manner, in Section 3.2 we suppose that ¢ < 0in | — 0o, a] and in [b, +oo[ and
we study the existence of unbounded continua of points p in the plane such that the solution
starting from p at ¢ = a or at ¢ = b tends to the origin as t —+ —co or t — 400, respectively.
Such continua are found using a Wazewski type argument considered by Conley in [32] and
assuming that g is a locally Lipschitz continuous function satysfying the sign condition (g1)
and ¢ has a primitive Q(t) which is strictly decreasing and such that Q(£o0) = Foo.

At this point, in the remaining chapters we consider a changing sign weight function
and we prove, following some lines inspired by Butler’s approach [23] and like in [121], that
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various boundary value problems for equation (4) have solutions with precise number of zeros
in each interval of positivity of ¢ and, moreover, for each interval of negativity, we can fix a
priori if the solution will have exactly one zero, being also strictly. monotone, or will have no
zeros and exactly one zero of the derivative. As in [23], we combine the oscillatory properties
of the solutions, where ¢ > 0, with the noncontinuability, where ¢ < 0. In the proof, the
main problem that we have to face is to “connect” a solution of (4) having a certain number
n1 of zeros in an interval ]a, b[, where ¢ > 0, to a solution with a possibly different number n-
of zeros in another interval of positivity |e, d[, by passing through the intermediate interval
1b,¢[ where ¢ < 0. This program is achieved by finding a continuum T' in the phase-plane
such that all the solutions departing from I' at the time ¢t = a will be continuable till to
t = d and have nq zeros in ]a, b and ny zeros in Je, d[. We can also prescribe that either the
solution or its derivative, will vanish exactly once in )b, ¢[.

More precisely, in Chapter 4 we consider “separated” boundary value problems, in the
sense that the boundary conditions can be written as two conditions such that each one is
to be fulfilled at one of the two endpoints of the interval under consideration. We state and
prove a general theorem for a problem of the form (4)-(18): solutions are found with an
arbitrarily assigned (but sufficiently large) number of zeros in each interval of positivity of ¢
and with none or one zero (we can choose it) in each interval of negativity. We remark that
the minimum number of zeros in each interval of positivity depends only on the behaviour of
g in that interval and in the two adjacent intervals of negativity: in this way the number of
zeros in every interval of positivity can be chosen indipendently of the others. Considering
in place of T'y and Iy in (18) the continua found in Chapter 3 for the solutions which blow up
or go to zero, as well as the straight line z = 0 in the phase plane, we deduce the existence
of solutions of (4) which have nodal behaviour precisely described as above and, moreover,
are homoclinic to zero, or blow up at the endpoints of the interval, or satisfy the two-point
boundary condition z(a) = z(b) = 0 or any mixture of these conditions.

On the other hand, in Chapter 5 the Floquet—type boundary condition (13) is considered
and, again, solutions with precise distribution of zeros are found improving the result in [99].
In particular this applies to the existence of periodic solutions for (4) and for (14).

Finally, in Chapter 6 the case is considered in which the weight function ¢ :]a,b[ =+ R
possesses a doubly infinite sequence of intervals [tax,tox+1], & € Z, where it is negative,
while it is positive in the remaining intervals [t2g+1,t2k+2], k£ € Z. Clearly the set of initial
conditions, that produce solutions which are continuable in a certain interval I, becomes
smaller and smaller as [ is increased up to contain a greater number of consecutive intervals
of negativity of g. Thus we are interested in the existence of solutions which are defined in
the whole ]a, 5[, have a chosen number of zeros in the intervals of positivity and have either
one or none zeros in the intervals of negativity. Therefore we choose a suitable sequence
{nk}rez of positive integers to represent the number of zeros in the intervals of positivity
[tak+1,tar+2] and another sequence {6y }rez, with 8 € {0, 1}, to specify the number of zeros
in the intervals of negativity [¢ak, tag+1]. Under the usual assumptions of superlinearity (g2+)
and (g2—) on g and the sign condition (g1), we prove that there are at least two solutions of
(4) which are defined in ]a, b[ and have nodal behaviour described by the two fixed sequences.
This goal is reached considering for every j € N the set (2; of initial conditions that give raise
to solutions continuable on, say, [t_s;,t2;] and, there, have the desired distribution of zeros:
we show that the intersection of all these sets is nonempty and this provides the existence
of solutions globally defined and with prescribed nodal properties.

Moreover, this result, when applied to the case of a w-periodic weight function g, helps in
showing the chaotic feature of equation (4), since it allows to define a topological semiconju-
gation between the Poincaré map II : (2(0),£(0)) = (z(w), 2(w)) and the Bernoulli shift on
sequences of a suitable set of symbols. The literature in the this field is very reach. For the
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classical theory we referred to the books [34], [58], [91] and [105] and to the paper by Séré
[111], and we just mention some recent works in this field, like [14], [113] and [115]: in [14]
the existence of a transversal homoclinic orbit for the Poincaré map associated to a Duffing
equation is studied and in [115] some geometric conditions for detection of chaos are given.
There are also many works dealing with chaotic dynamics in the framework of variational
methods: for more comments and a comprehensive bibliography, we refer to the thesis of
Berti [19].

About our equation, we show the existence of an uncountable set of bounded and non-
periodic solutions of (4) and, as a consequence of the topological semiconjugation with the
Bernoulli shift, we obtain the positivity of the topological entropy of the Poincaré map, a
fact whose importance in the detection of chaos has been pointed out in [50] and [113] and
which is not deducible from the other calssical axioms of chaos in [34]. In particular, in the
introduction of [113] a w-periodic equation is called chaotic if the Poicaré map II, restricted
to a compact and invariant set, is semiconjugated to a suitable shift map and, moreover,
“the counterimage (by the semiconjugacy) of any periodic point of the shift contains a pe-
riodic point of the Poincaré map”. Actually this is what happens, when g is w-periodic in
(4), as a consequence of the theorem on the existence of periodic solutions with prescribed
nodal properties which we obtain in Chapter 5. We underline also that, while various papers
treat problems of perturbative type and the chaos is detected for particular values of some
parameter, our result is of global nature and involves a very simple equation as (4).

We discuss here briefly some possible extensions of our results. At first we observe that
every theorem we obtain for equation (4) in Chapters 4, 5 and 6, could be given for an
equation of the form (11) under suitable assumptions on f like those in [23]. As an example,
we could deal with:

f(t2) = g () filz) — ¢~ (t) fo(z),

with fi(s)s > 0 for s # 0 and f; and f> satisfying (92+) and (g2-), respectively. Similar
kind of nonlinearities, with f1(s) = s* and fa(s) = s°, have been recently considered in [4]
for the study of positive solutions of an elliptic problem.

Concerning g(z), we note that, by the use of mollifiers and proving the fact that the
solutions of (4) with fixed nodal properties will be subjected to a priori bounds which are
uniform with respect to perturbations of g which are small in the compact-open topology, it
is possible to check that the condition of local lipschitzianity for g can be dropped and the
continuity of g (paired by an upper bound for g(z)/z in a neighbourhood of zero) is enough
to prove all our results.

Moreover, all the results we proved in Chapters 2-6 for (4) can be obtained for the
p-Laplacian scalar ODE:

(¢p(u))" + q(t)g(u) =0,

with ¢,(s) = |s|P~?s, for p > 1 or even for a more general ¢-Laplacian scalar ODE of the
form:

(B(u)) +q(t)g(u) = 0,

with ¢ : R = R an odd increasing homeomorphism satisfying suitable upper and lower o-
conditions (see [78]), provided we modify accordingly the growth assumptions on g and its
primitive G. For instance, in the case of the p-Laplace operator, the condition (90) used in
Section 3.3, in order to have the uniqueness of the zero solution, has to be replaced by:

ap
(g5) ‘ G(s)™Pds = +co.

—ag
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In the same manner, the time-maps used in conditions (g2+) and (g2—) have to be replaced
by:

4 Gll(e) 1 d ’
‘ =k I
Toa(e) = o / “1e) [e—G(s)]H/P ’

G-
and:
Feo 1
k, /_ o ® ife>0
Top(€) = G- (—e) 1 +eo 1
| g /G;w-e) ORI

for a suitable constant &y, so that now the conditions of superlinear growth at infinity become:

(9p+) Jim 77, (e) =0
and:
(9p-) Jim 7g(e) =0.

Note that in this case, sufficient conditions ensuring the fact that the time-maps are infinites-
imal at infinity are:

20)  tm 28 o

z—+oo ]:l:|p_211: -

+o0
G(s)"Y/Pds| < 400, and lim inf GGSZS) >1

b

for some o > 1 (cf. [87] and also Remark 2.0.5 and Section 3.4). Like for the case p = 2, also
here, the condition (20) may be reduced just to the convergence of the integral of G(s)~1/?
at infinity when g is monotone in a neighbourhood of infinity. As a consequence we can
obtain existence and multiplicity of radial solutions of boundary value problems associated

to the equation:
Apu+ g([x)g(u) =0

in an annular domain.

Chapter 1 appears in [98], while Chapter 5 will be contained in [100]. The paper [101] in
collaboration with F. Zanolin is divided into Chapter 4 and Sections 3.1, 3.2 and 3.4. The
remaining Section 3.3 of Chapter 3 is part of the paper [84] in collaboration with J. Mawhin
and F. Zanolin and the work [26] with A. Capietto and W. Dambrosio forms Chapter 6.



Chapter 1

A class of Liénard equations

Here, we are mainly concerned with the existence of periodic solutions for a second order
nonlinear equation of the form:

(1.1) z+ f(z)z + g(z) = e(t),
where e is T-periodic and:

f~zjz|et and g~ zlz|®h
A typical example is given by the equation:
(1.2) i+ Alz|* Yz + Blz)P "tz = e(t).

This model can be considered as a generalization of the example considered by M. Struwe
in [116].

We prove the existence of at least one T-periodic solution for a class of equations which
includes (1.2) and for an arbitrary forcing term e. Actually we study the plane system:

1.3) {m =y — F(z) + E(t,z,y)

which includes equation (1.1) as a particular case. Our result shows that, if £ and p are

bounded, F(z) ~ |z|*t! and g(z) ~ |z|®~1z, with 8 > 2a + 1, then (1.3) has at least one
T-periodic solution. The condition:

B>2a+1
implies that the autonomous system:
o F
(1.4) 2=y~ Flz)
y=—g(z)

defines a center in a neighbourhood of infinity, as it follows from the works by Filippov [45],
Opial [95] and Hara and Yoneyama [53]; therefore the problem concerns with the study of a
center subjected to periodic perturbations which are not necessarily small.

We cannot expect a multiplicity result, like in [72] and [74], since we are dealing with a
general term E. To show this, let us consider again the autonomous system (1.4), where we
now assume that F' and g are C* functions, g(z)z > 0 for all z # 0 and F'(0) = 0; moreover

15
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we suppose that the origin is a global center for system (1.4) (sufficient conditions to ensure
that such a situation happens are given, for instance, in [53]).

By theorem 1.1 in [86] there exists a continuous first integral I : R* — [0, +oo) for (1.4)
which has an isolated minimum at (0,0), is of class C* out of the origin and |VI(z,y)| # 0 if
(z,y) # (0,0). Hence every orbit of (1.4) is a level set of I and vice versa. This in particular
means that:

(15) Im($7 y)(y - F(g")) + Iy('v>y)("‘g(z)) =0 ‘v’(m,y) 7é (070)
By this identity it is easy to show that:
I(z,y) =0 <= z =0andy #0;

then I (z,y)z > 0 for every z # 0. Let us consider a smooth and bounded function E :
R x R — R such that:

e E(t,0)=0,Vte R
o B(t+T,z)=E(tz), V(t,z) e Rx K
e E(t,x)z >0,V #0,Vtc |

for instance E(t,z) = (2 + sint) arctanz. We claim that the perturbed system:

(1.6) {z =y— F(z) — E(t,z)

¥ = —g(z)

‘has the only trivial T-periodic solution (z,y) = (0,0) (this has been already proved in [118]
with more general assumptions, if E does not depend on t). In fact, let us suppose that
(z,y) is another T-periodic solution of (1.6); then (z(t),y(t)) # O for every ¢ € [0,7] and
I(z(-),y(")) is differentiable on [0, T]; thus we are allowed to write:

0 = I(&(T),y(T) - I(x(0),y(0))
T
S CORTO

T

T
{L(z(t), y )y (t) — Fz(t)) - B(¢, z(t)]} di +/O Iy (z(2), y () [-g(x(t))]dt

0

T
- / L (2(t), y () B (t, (1)) dt;

Il

on the other hand we have:
I (z(t),y(t)E(t,z(t)) >0  Vt€[0,T].

Hence:
L(x(t),y(t)E(t,x(t)) =0  Vte[0,T]

This is possible only if = 0; from the first equation in (1.6) we get that also y = 0, but we
have already excluded this situation. Hence the origin is the unique T-periodic solution of
(1.6). Using Liapunov’s stability theory (see for instance [52, section X.3, theorem 3.2}) it is
possible to prove that actually the origin is uniformly asymptotically stable for the system
(1.6). '
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The main tool to obtain the existence of a periodic solution of (1.1) is a continuation
theorem by Capietto, Mawhin and Zanolin [28, Theorem 2] which we state in Section 1.2
for imediate reference. In order to apply this theorem, in the first section we develop some
estimates which need enough regularity and give some useful a priori bounds for periodic
solutions of (1.1) which have a fixed number of zeros. All the proofs are developed for the
model nonlinearities used in (1.2); however a wider class of functions, to which the results of
Section 1.1 can be easily extended, is discussed in Remark 1.1.8: roughly speaking, it consists
of regular functions such that they and their derivatives grows at infinity like powers.

We finally remark that the analysis carried on in the first section allows us to find also
infinitely many solutions for Sturm-Liouville type boundary value problems for equation
(1.1) (see Remark 1.2.3).

1.1 Study of the system

We want to determine some properties of the solutions of the system:

i =y — 27|t + B(t 3,y 0)
(1.7)
y = —B|z|’~'z + p(t,z,y; \)

where A € [0,1], A >0, B>0and p,E: R x R xR x[0,1] =+ R are bounded functions. It
will be useful in the sequel to perform the following change of variable due to R. Conti [33]
(see also [8] for another application):

(1.8) . 2=0(z) = /2G(z) sign(z) = || = sign(z),

where:

and in our case g(z) = B|z|#~'z. We note that ¥ is strictly monotone increasing as = # 0,
while ¥'(0) = 0, so we will have to be careful in handling this case; let & be the inverse
function of ¥, that is:

®(2) = c1|2| 747 sign(2),

i
where we set ¢; = (%*;) “*'  Then the new system is :
. 5=1 ol =
5= col2|5E [y — ol PFH 4 Bt 2,050)|

(1.9) .

[~Anai- ~,

y = "COIZM;% z+ p(tv Z,Y; /\)
where we have defined:

Et,z,y;0) = E(t,8(2),y;)\)

otz ;) = p(t, 2(2),y; )
B8
B B+1\FF

% = BCﬂT

@

(ﬁ+1>?5 V!

2B a1
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We will carry on the analysis of the solutions of the system (1.9) and then we will state the
corresponding results for the original system (1.7). If (2(-),y(:)) is a solution of (1.9), we
introduce the polar coordinates: .

(1) = (t) cosb(2)
(1.10) {1 2o e

for all the t in which (2(¢),y(¢)) # (0,0); then the following formulas hold:

(1.11) 6=V g p=¥TZE
P 14

Lemma 1.1.1 Assume that:

(1.12) a>0 and B8 >2a+1;

then for every a,b € R with a < b there exist positive real numbers p,u and v such that
every solution of (1.9) with p(ty) > p and to € [a,b] is defined in the whole interval [a,b]
and satisfies:

(1.13) pp(to) < p(t) <wvp(to) Vi€ [a,b].

Proof. Let us consider a solution (z,y) of the system (1.9) with (z(¢0), y(t0)) = (20, y0) for
some ty € [a, b]; let Tps be its maximal interval of prolungability and p(-) and 6(-) its radial
and angular functions with respect to the polar coordinates (1.10); if ¢ is such that p(¢) # 0
then 6(t) is well defined and the first formula in (1.11) leads to:

L14) 0 = colee) - |1 - 2EOPTYE  v@OE =P
’ PO aop(t)]a(t)|t
where E and 7 are evaluated at (¢, 2(2), y(2); \).

Since E and 7 are uniformly bounded and we are assuming (1.12), there exists a p*, which
depends only on «, 8, A, B and the bounds of E and D, such that the term in the square
brackets is greater than a small fixed positive number—say 1/2—if p(t) > p*; hence for all
those ¢ ranging in the set It = {t € Iy : p(t) > p*} we have that 6(¢) > 0 and 4(¢) = 0
only if also z(¢) = 0. This means that the orbits of (1.9), which lie sufficiently far from the
origin, turn around it in clockwise sense of rotation in the (z,y)-plane until they remain
at a greater distance from (0,0) than p*. Moreover, if we define D = {t € I : §(¢) = 0},
we claim that we can choose p* in such a way that D is made of isolated points in IT.
In fact let us pick a #; € D; this means that z(t;) = z(t1) = 0, 8(t1) = kn, for some
k € Z,and |y(t1)| = p(t1) > p*; thus, if p* is taken sufficiently large, £(t;) # O by the first
equation of the system (1.7) and, by continuity, z—and then z, too— will be different from
0 in a neighbourhood of ¢;; so 6 is different from zero in a neighbourhood of ¢;.By these
considerations we infer that p can be seen as a well defined function of 4 at least along the
arcs of the trajectory which correspond to the set I, and the formula:

dp
dp : 3 a‘t‘(t)
8P|, A

0=06(¢) —(t
- ()
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holds for every ¢t € I™\ D. With an abuse of notation we will write:

dp

¥ 9( ) instead of @(9)

dp §=0(t) »

We now perform an analy31s of these derivatives the aim of which is to show that p* can be
chosen in such a way that is actually bounded on I\ D.
From (1.11) we can easﬂy get:

dp —03|z[1+ﬁ2—$fz+colz{1‘ﬁ%zﬁ+yﬁ
dt p
_ ——c3p2+%|sin 9|1+ﬁ—2+a—1 siné + co,o?“'ﬂ_il@[sin GII"F?TT sin @ . ppcosf
p p p
with ¢c3 = cgeg = (-B;%)Hﬁ+1 ’\AB and then:
—czp1+2%$%]sin0|2%% sin @ + Beind+ pecosf
dp p copl_ﬁ%lsinéll'ﬂT
dg ) Cap' 25 | sin 025 cos @ N E cos® psin
P p copz_ﬁ_llsinell"ﬂ_l

on the set I\ D. From now on the fact that those formulas hold on It \ D means that
both p and # are evaluated at ¢ € I'T \ D, while E and 7 at (¢, p(t) sin 8(t), p(t) cos B(t); A).
A direct computation, using the expression above and assumption (1.12), shows that, after
a possible rearrangement of the constant p*, we can write:

—czpl+2%$“|31n9| 51 sin 0
dp p
1.15 — = = = + Ko(p, 0,t
(115) dé 1 c;;pl+2ﬁ—i—i|sin912ﬁcos€ el
2
= SD(p>9)+K0(p:‘9at))

with Ky(p(t),8(t),t) uniformly bounded for ¢t € I'* \ D and:

Cop1+ %| sin 9|25+ s1n0

So(p, ) =
p—Cap F"]sm@l T cosf

Now let R;(p,8) be any primitive of Sy with respect to 8, say:

[
(1.16) Ri(p,0) :/O So(p, 9)dd

so that Rl is even and 2m-periodic with respect to 6. By (1.15) and (1.16) we obtain:

d _ d_p 8R1 dp 6R1
gl Bl = S5 T e
g i i ke on It\D.

9" oy
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Since Sp is a rational function of real powers of p for fixed 8, we can say that the degree
of Sy is 22‘1%, in the sense that Sy behaves like pQE_H as p tends to oco; for short we will
write deg Sp = 2’l . Then deg Ry = deg Sy by (1.16) and the degree will decrease by 1 after
differentiating once with respect to p, while it remains unchanged if an integration with

respect to 8 is performed; so deg 01? = deg Sy — 1 < 0 by assumption (1.12) and, therefore,
6R1 is bounded for p > p* (after a suitable modification of p*); this suggests to let:

0R
Ki(p,0,) = =50, 0)Ko(p,0,1) + Knlp. ),

so that K (p(t),8(t),t) is also bounded as ¢ ranges in I\ D. Moreover we have deg( 5;}; Sp) =
2 deg(Sp) — 1, hence:

deg[dde( —Rl)] deg(jg) T,

where we set 7 = 7(a, 8) = ﬁ—ﬁ’lfl—l > 0.

If we define:

OR o
51 0) =~ G200 md  Ry(p0) = / 51 (p, 9)d0,
0

we obtain: p
Elg(p»Rl):SI-!—Kl on]“'\D
and: R 8R
(o — 1 — F2) = "3{25" % 2Ky+ K, onIT\D.

Arguing as above we find that:

OR,
Ks(p,0,1) = a—p“(p, 0)Ko(p,0,t) + Ki(p,0,1)

is bounded when p and 8 are evaluated on I™ \ D and deg(— 6;3}’ So) = 3deg Sp — 2; thus:

deg [679( —Rl'—Rg)jl =1-27.

We repeat this procedure n times, until we have:

(1.17) deg{ ( ZR”:l—md}

and deg R; < 1 for all = 1,...,n; thus, if we define:

T(p.6) = Ri(p,0)

=1

we obtain that:

< L VtelI*\D,

(1.18) 1o~ T(0, ooty
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where L depends on p*. Let I be the open connected component of [ * such that ¢y € I;
inequality (1.18) holds almost everywhere on I, since D is a discrete subset of I +, then we
can integrate it between (t), with ¢ € I, and 6(to) with the following result:

p(t) = pto)] < [T (p(1),0())] + |T (p(to), 0(t0))| + L6 () — 6(t0)]

for every ¢ € I. Since deg(R;) < 1 for every 4 = 1,... ,n, we have that [T (p,8)] < 3p for
every p > p* and uniformly with respect to 8, up to a modification of p*; then we obtain:

1 2L
(1.19) 3pto) = 5-16(t) = 6(to)| < p(t) < 3p(to) + 2L10(t) — 6(to)|  Vte I
From (1.14) we can easily deduce that ] < cp when p is sufficiently large, say p > p*; then
we can integrate also this last equation between ¢ and Zp and get that:

£
10(2) — B(to)| < ¢ / p(s)ds|  Viel
to
This and (1.19) lead to:
1 2Ll t t
(120)  gel) = 2 | [ ple)ds| < plt) < 3olto) + 2L [ oeas|  veer,
to . to

with L' = Lc. Now by Gronwall’s lemma we deduce that:

1 1 2 !
(1.21) golto)e™*F 1m0l < p(t) < Bp(te)etF I,
for every t € I.
If we define:
b= %E—ZL’(b——a) and v = 3e3L-a)
the inequalities in (1.21) imply that:
(1.22) pp(to) < p(t) < vplto)

for every t € I NJa,b].
We have only to prove that actually [a,b] C I if p(to) is chosen large enough. In particular
let us take a p > p*/u and let t; < t2 be the endpoints of I N[a,b]. By (1.22) we have that:

p(t1) > pp(to) > pp > p* and  p(ta) > pp(te) > pup > p°;

then ¢; and ¢, are contained in I; thus the only possibility is that ¢; = a and t2 = b. B

Remark 1.1.2 As it happens with the KAM theory, also here the regularity of the functions
involved in the differential equations helps in proving the prolungability of the solutions of
the initial value problems. In fact in the previous proof each function S; is obtained by
differentiating with respect to p the function R;, which is built starting from S;_1; hence
we performed n successive differentiation to arrive to our goal, where n is estimated by the
inequality (1.17) and depends on « and f3.

Thanks to the continuability of sufficiently large solution we can prove that the solutions
of our system satisfy the so—called “elastic property” (see also Lemma 2.2.2).
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Corollary 1.1.3 Let us suppose that 8 > 2a+ 1 and a < b; then the following two facts
hold:

(i) for every p1 > O there exists ps > p1 such that, if to € fa,b] and p(te) > pa, then
p(t) > p1 for allt € [a, b];

(i3) for every p1 > O there exists ps > p1 such that, if to € [a,b] and p(to) < p1, then
p(t) < p2 for all t € [a,b].

Proof. If we choose

> max {5, 21,
n

assertion (i) follows from the first inequality in (1.13), while assertion (44) is easily deduced
from (i) by a contradiction argument. |

The next corollary is simply a rephrasing for the system (1.7) of what we have just proved
and is a straightforward consequence of the properties of the change of variable we performed
at the beginning of this section; then it is convenient to introduce here the polar coordinates:

z(t) = r(¢) sinw(?)
y(t) = r(t) cos w(t)

for each solution (z,y) of (1.7).

Corollary 1.1.4 Let us suppose that § > 2o+ 1 and a < b; then there exist positive real
numbers 7, M and N such that every solution of (1.7) with r(to) > 7 and to € [a,b] is defined
in the whole interval [a,b] and satisfies:

Mr(to) < r(t) < Nr(t) vt € [a, b].
Moreover the following two facts hold:

(i) for every r1 > O there ezists ro > 71 such that, if to € [a,b] and r(tg) > 72, then
r(t) > 71 for all t € [a,b];

(i3) for every Ty > O there ezists ro > 71 such that, if to € [a,b] and r(to) < 1, then
r(t) <7y for all t € [a,b].

The next results are about the number of rotations made by the orbits around the origin.
Tt is shown that the orbits turn faster and faster as their distance from the origin increases;
then they must be bounded if we fix their number of rotations.

Lemma 1.1.5 Let us assume that (1.12) holds and a < b. If {(zx,yx)} is a sequence of
solutions of (1.9) such that:
m pr(tr) = +oo,
with ty € [a,b], then:
' Lm [6g(b) — Or(a)] = +o0.

k—4o0
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Proof. By corollary (1.1.3) for every N > 0 there exists Ry > N such that, if we have a
solution with p(ty) > Ry for some tg € [a,b], then p(t) > N for all ¢ € [a,b]. In particular
there exists ky such that py(tx) > Ry for all & > ky; then pi(t) > N for all ¢ € [a,b] and
for all k > k. This implies that actually:

. | lim | inf pe(t)| = +oo.
(1.23) v Hm Lelﬁ,b]m(t)} +00

Let us now give a look at the behaviour of the angular function 8 along the orbits which
lie far from the origin. By formula (1.14) and our assumptions we can write:

8(t) = co[1 +n(p(t),6(2), D][p(H)]* | sin 6(2)[*~°,
where § = Zf—zﬁ € (0,1) andn(p, b, t) is a function which tends to zero uniformly with respect
to 6 and t as p tends to infinity. Hence there is a positive number p* such that:
1
n(p>07t> _>_ _5 VPZP*; Vi e [azb]7 ve.
By (1.23) and the previous two relations we have that:

Oi(t) Co

Tt 6 (1) 15 = Sl vtefab),

for all k which are large enough. Now we integrate on the interval [a, b] and, after a change
of variables, we obtain:

8 (b) de co [°
1.24 - / > 2 / [ox (0]~ dt,
( ) O {a) t51n911“5 2 a }
if k is sufficiently large. Letting k go to infinity, we have:

x(b) 4o

lim —— = +00.
k=400 Jg, (q) |sin =9

Since 1 — 4 € (0,1), the integrand is integrable on bounded intervals; then the thesis must
follow. B

An easy consequence of this last lemma is the following corollary.

Corollary 1.1.6 If (1.12) holds, then for all a < b, for all ¢ € [0,27) and for alln € N
there exists a constant K such that every solution of (1.9) with 68(b) —6(a) = o+ 2n7 satisfies
p(t) < K for allt € [a,b].

Now we translate this last property for the system (1.7).
Corollary 1.1.7 If (1.12) holds, then for all a < b, for all o € [0,27) and for alln € N

there exists a constant K such that every solution of (1.7) with w(b) —w(a) = o + 2nw
satisfies v(t) < K for all t € [a,b].

Proof. Let us argue by contradiction: then we can find a sequence {(zx,yx)} of solutions
of (1.7) such that:
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(1) lim sup rx(t) = +oo;
k—r+-00 tela,b]
(i1) wi(b) —wi(a) =0 +2nm for all k € N.

Fact (i) implies that; if we consider the corresponding solutions (z,yx) of (1.9), they also
satisfy:
lim sup pg(t) = +oo.
k—r+o0 tela,b]

On the other hand, a theorem in [108, theorem 4] proves that the angular coordinates in the
zy-system and in the zy-system may differ at most by 7 /4; then from (ii) we deduce that:

a+(2n~%)w§9k(b)—-9k(a)§0+<2n+zll—>7r.

But this contradicts lemma 1.1.5. ]

Remark 1.1.8 We proved the preceding results in detail starting with a system of the form:
=y —AF(z)+ E(t,z,y; \)
y = —g(:E) + p(ta T, Y; A)

where:

fl@) = Alz|*lz,  Fla) = /0’” f(s)ds,  g(z) =Bla|’x

and 8 > 2o + 1; but actually our proofs can work also with more general f and g. To be
more explicit and following a similar notation in [36], given a € R, let us consider the set
P(a) of all the functions f such that:

(M) € C%R) and f € C®°(R\ [-r,7]) for some positive 7;

(II) for every m € N there is a number 7, > 0 such that:

FARICI]

sup ————— < +co.
ol>ra 2|77

Of course power functions, like |z|® and |z|*~'z, are the most characteristic elements of
that set and the number o plays here the role played by the degree with polynomials. P(a)
shares with spaces of polynomials some simple properties:

(i) if a < B, then P(a) C P(B);
(@) if f € P(a), then f™ € P(a —n); _
(ii1) if f € P(a) and g € P(B), then fg € P(a+ B) and f + g € P(max{a, 8});

(v) if f € P(a) and there is R,c¢ > 0 such that [f(z)| > c|z|* for all |z] > R, then
1/f € P(-a);

(v) if f € P(a) and g € P(B), with
B >0 and |g(z)| > c|z|? for all |z] > r, then fog € P(af).
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Now let us consider @ > 0 and 8 > 2 + 1, as in our results, and let us take f € P(a) and
g € P(B), with g(z)z > 0 for all z # 0 and |g(z)| > c|z|® for |z| > R. First we observe that
we can split f and g in the following way:

f=fo+h and g = go + g1,

where f; and g; are continuous with compact support in R, while fy and go maintain the
same properties of f and g, respectively, but are also C'°°-functions in R. Then we make the
following positions:

F(z) = /Om Jo(s)ds, G(z) = /Ow go(s)ds,

Eolt, 2,03 3) = E(t, 2,55 ) — A / f1(s)ds,
0

pO(tamay; A) = p(t7$:y7)‘) - g1($)7

in such a way that F belongs to P(a+1)NC®(R), G to P(S+1)NC=(R), G is nonnegative,
Ey and pg are still bounded. So we apply Conti’s change of variables (1.8) to the system:

g = —g(z) + po(t,z,y; A)

obtaining the new system:

2 =9(2)[y — AF(2) + Eo(t, 2,33 V)]
g =—v(z)z+bo(t, z,y; \)

with:
) = JCENL By~ pa()),

V2G(8(2))

Eo(t,z,y; ) = Eo(t,®(2),y;A)  and  DPo(t,z,4;A) = polt, B(2),y; A).

As we can expect, it is easy to show that F belongs to 73(2%{—%) and 7y to P(g—;—l) and that

v(z) > lzi'g-;"%. Consequently, after an outlook of the proofs of the previous lemmas, one can
be persuaded that they still work if we assume also that F' is an even function. Such an
hypothesis implies that the orbits of the unperturbed autonomous system:
T=y—Fx
(1.25) b=y - Flo)
y=—g(z)

have “deformed mirror symmetry” with respect to the y-axis (in the sense that the symmetry
comes out only after Conti’s change of variable on the z-axis), is strictly related to the fact
that the origin is a center for (1.25) (see [117], [118], [53] and [119]) and is satisfied when f
and ¢ are odd functions.
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1.2  Existence of a periodic solution

To obtain our main result we will apply a continuation theorem proved in (28, theorem 2].
We consider a one-parameter family of differential equations:

' = F(t,z; ),

where A € [0,1] is the parameter and F : R x R? x [0,1] — R? is T-periodic with respect to
t. The aim is to prove the existence of at least one T-periodic solution when X = 1, knowing
that the problem is solvable if A = 0. Then one defines the functional:

1 T
ol ) = 5= | [ (P2 VITa)s(e(ean]
where:
5 1 ifa}+di<1
(@1,02) = o fal+ad>1
and:

-(070)

If it is evaluated along a T-periodic solution z of &’ = F(¢,z;A) which lays far enough from
the origin, ¢ is a positive integer and gives the number of rotations that such solution makes
around the origin. Finally dg(h, B(0,7),0) denotes the usual Brouwer degree for the function
h in 0 with respect the ball B(0,7). Now we can write the statement of the continuation
theorem we will apply.

Theorem 1.2.1 [28, theorem 2] Let F : R x R? x [0,1] — R? be a Carathéodory function
such that F(t,z;0) = h(z) and F(t + T,z; X) = F(t,z; A), for all (t,z,)) € R x R? x [0,1].
Let us assume:

(1) 3ro > 0 such that ||z]jee < 1o for every T-periodic solution of =’ = h(z);
(ii) dp(h, B(0,7),0) # 0, for any r > ro;
(i9d) Vry > 0,3ry > vy such that:

min (e (1) + 22(0)*)'? <11 = flafloo <7,

for each T-periodic solution x of x' = F(t,z; A) (with A € [0,1]);
(1v) Vn € N,3K,, > 0 such that:

p(z,2) =n = min@: (1) +25())"* < Ka,

for each solution = of z’ = F(t,z; \) (with A € [0,1]).
Then the system z' = F(t,x;1) has at least one T-periodic solution.

In [28] itself theorem (1.2.1) has been applied to obtain the existence of at least one
T-periodic solution for a Liénard equation like (1.1), but the assumptions on f, that have
been made in that paper, exclude the case we are going to study.
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Theorem 1.2.2 Let us suppose that « > 0, 8 > 20+ 1, A >0, B>0ande:R—= R is a
T'-periodic continuous function; then the forced Liénard equation:

(1.26) i+ Alz|* 'z + Blo/f 'z = e(t)

has at least one T-periodic solution.

Proof. We start remarking that finding a T-periodic solution of (1.26) is equivalent to
doing it for the following system:

&=y - |z|**! + By (t)
(1.27) a+1

y=-Blz|f~lz+C

with:

where F is T-periodic by construction.
In order to apply theorem 1.2.1 let us define the one parameter family of vector fields

F:RxRxRx[0,1] = R in the following way:

AA
y - ]:r:[O‘H + BE(t,z; A)
Fltz,y;\) = a+l :
—Blz|Plz + \C

where E(t,z; A) = AE1(¢) — (1 — A) arctan(z). Hence we obtain our original system as A = 1,
while we have the autonomous system:

{:t =y — arctan(z)

1.28
(1.28) Y = —Blz|f~z

for A = 0. Let us check that the hypotheses of theorem 1.2.1 are fulfilled. Of course F is a
Carathéodory function and is T-periodic with respect to t.

(i) We have to show that all T-periodic solutions of (1.28) are uniformly bounded. Ac-
tually the origin is its unique T-periodic solution. In fact let (z,y) be a T-periodic
solution of(1.28); let us multiply the first equation of (1.28) by Blz|®~'2 and the sec-
ond by y and sum; integrating the resulting equation between 0 and T and using the
T-periodicity we obtain:

T
/ y(t) arctan z(t)d¢ = 0.
0

Integrating by parts this equality we get:
T
y(@) .
0 = g (t)dt
/O EPTERID
T () + arctan z(t)

- /0 1+ z(t)?

_ [T s
= ) e

Then ¢ = 0 and z is a constant function; thus also y is constant and z = 0 from the
second equation of (1.28).

&(8)dt
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(ii) By construction, 7 does not depend on t for A = 0; hence we can set h(z,y) =
F(t,z,y;0) and standard calculations show that:

IdB(h: B(Oa T): (07 0))* = ldB(g; (—T: T)>O)I =1
(see for instance at the beginning of the proof of the first lemma in [94]).

(44i) This is the elastic property and it is a direct consequence of assertion (i) in Corollary
li4dwitha=0and b=1T.

(iv) Since we have already remarked that, if we evaluate the functional ¢ on a T-periodic
solution (z,y), it gives the number of rotations made by (z,y) in the Liénard phase
plane, we can conclude that this assumption is fulfilled by corollary 1.1.7, when we
choose a =0, b=17 and ¢ =0. B

Remark 1.2.3 By the results we proved in the previous section it is easy to deduce the the
existence of infinitely many solutions of Sturm-Liouville type boundary value problem for
our equation. As a matter of notation, given o € [0,27), we denote by £(c) the half line
which starts from the origin and forms an angle of o radiants with the positive z-axis, where
the angle is measured in clockwise sense from the positive z-axis. If we fix 04,04 € [0,27),
the boundary conditions read:
129 (a(a),#(a) € (o)
(z(b),2(b)) € £(ow),
where {(o,) and E(db) are interpreted as straight half lines in the usual phase plane for our
equation (see for instance [56]). But the analysis we performed in the previous section was
carried on in the Liénard plane, where the two straight half lines in (1.29) become more
general curves. Hence we are led to consider a wider class of boundary conditions, namely
the ones studied by M. Struwe in [116].
Explicitly we call B the class of all continua -y of R? for which there exist a radius r > 0
and a straight line £ = {(z,y) € B : c1z + coy = c3} (with ¢} + ¢} # 0, of course) such that:

(1) yNL=10;

(ii) every continuum, which has a complement with a bounded component containing the
ball B(O,r), intersects .

The first condition essentially prevents the possibility that v goes to infinity spinning around
the origin and avoiding the orbits of our system, while the second one says that v tends to
infinity crossing every sufficiently far continuum surrounding the origin. Since £(ca) =
{(scoso,,ssing,) : s > 0}, we have that the half straight line £(c,) in the usual phase plane
becomes in the Liénard plane the curve:

A
v(og) = {(scosaa,ssinaa o 1|scosaa|“+1 —l—E(a)) ts > O}

and similarly £(os) is transformed into (). It is not difficult to show that v(0,),v(os) € B.
Now the same proof made by M. Struwe in [116, theorem 1] works and the existence of
infinitely many solutions of Sturm-Liouville boundary value problem follows for our equation.
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Remark 1.2.4 In view of remark 1.1.8 we can prove the existence of at least one T-periodic
solution and of infinite solutions of Sturm-Liouville type boundary value problems for Liénard
equations in which the nonlinearities f and g have non symmetric behaviour at infinity, but
satisfies the requirement of F to be an even function. For instance this is the case of equations

like the following one:
&+ [2(24) ~ (€-)°J& + [16(z4)* ~ (2-)°] = e(),

where .. and 7 respectively stand for the positive and the negative part of .
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Chapter 2

Superlinear equations with
positive weight

Let us consider the equation
(2.1) &+q(t)g(z) =0

where ¢ : [a,b] — [0,+o0[ is a continuous nonnegative function and g : R — R is locally
Lipschitz continuous and satisfies the sign condition g(z)z > 0 for every z # 0. We are
interested in the qualitative behaviour of the solutions of (2.1) when some condition of
superlinear growth at infinity is assumed on g. To this aim let us consider at first the case
in which ¢ = 1, so that we have to handle the autonomous equation & + g(z) = 0 or,
equivalently, the planar first order system:

=y
(22) {y - ~4(z)

of which each trajectory (z(t),y(t)) lies in a level line {(z,y) € R? : E(z,y) = const} of
the energy function E(z,y) = 1y* + G(z), with G(z) = /s g(s)ds, as a straightforward
computation shows. The sign condition on g leads to the fact that G(z) is positive for all
z # 0, is strictly monotone increasing on [0, +co[ and is strictly monotone decreasing on
] — 00, 0]; moreover, since we want to deal with an in-some-sense-superlinear function g,
it is reasonable to assume that actually G is coercive, in the sense that G(£oo) = +co.
Thus a right inverse function G5! : [0,+00[ — [0,+oco[ and a left inverse function G-t
[0, +c0[ =] — 00, 0] are defined for G and all the trajectories of (2.2) are closed cycles around
the trivial one z = y = 0, which are run by the solution in clockwise sense of rotation as
time ¢ increases. To be more explicit, a solution with energy e > 0 starts from (0, \/%) in
the phase plane (z,y), when, say, t = 0 (the system is autonomous, so the initial time does
not matter); then it enters the first quadrant and reaches the point (G;l(e),O) at t = t1;
it continues through the fourth quadrant, touching (0, —v/2e) at ¢ = 2¢;, through the third
quadrant, touching (GZ*(e),0) at 2t; + ta, and through the second quadrant, coming back
to the initial point (0,v/2e) at t = 2t; + 2t>. As a consequence, all the solutions of (2.2) are
periodic (in other words, the origin is a global center) and, therefore, there are no problems of
continuability (they are defined over the whole real line) even if g(z) grows at infinity much
faster than any affine function. In particular, there is a unique solution (z(t),y(t)) of (2.2)
for each value e > 0 of the energy function E : therefore we can associate to each positive

31
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real number e the period 7,7 (e) of the corresponding solution (z(t),y(t)) of (2.2) satisfying
E(z(t),y(t)) = e for all ¢t. The function 7, :]0, +co[ —]0, +co[, which is usually called the
time-map associated to the autonomous equation Z + g(z) = 0 and to the system (2.2), can
be explicitly evaluated in terms of G starting from the relation $#%(t) + G(z(¢)) = e and
- straightforward computations show that:

GTe)
(2.3) He) =3 / R
GI'(e) Ve—G(s)

The superscript “+” will be useful in the sequel, since in the next chapter we introduce an
analogous of the time-map for the autonomous equation £ — g(z) = 0 and we will call it T, -
When the usual assumption of superlinear growth is imposed on g, that is:
(2.4) lim 9(=) = +00,
z—+co I
it can be proved that T; (e) tends to 0 as we let e go to infinity, that is, solutions with larger
Ci-norm have smaller periods and, hence, in a fixed interval [a, b] they oscillate more and
have more zeros. At this stage it can be interesting to observe how unbounded curves of
initial points are transformed by the flow of the system (2.2), when g satisfies (2.4) or, more
generally, when we assume that:
(g2+) eEI-II-loo 77 (e) =0,
which will be our weaker condition of superlinear growth at infinity for g (see also hypothesis
(f2), pag 38). Let us consider a fixed time interval [, b] and the positive y-axis Y+ = {(0, 5) :
s > 0} in the phase plane: we follow the solutions of (2.2) starting at ¢ = a from Y+ and
we determine their value at t = b, that is we evaluate on Y+ the Poincaré map II : R? — R2
which associates to every point (zg,yo) the value (z(b),y(b)) that the solution of (2.2) will
have at time ¢ = b, if (z(a),y(a)) = (zo,y0). We can imagine taking a point (0, s), moving
it along the positive y-axis ¥+ towards the infinity and looking at which curve the final
point I1(0, s) will describe in the phase plane: as s increases, the correspondent solution runs
along an orbit of (2.2) which is larger and farther from the origin, with a greater speed.
Therefore it is not surprising that the curve II(0,s), s > 0, is an unbounded spiral starting
from the origin and turning infinitely many times around the origin itself in clockwise sense
of rotation. In particular each time the curve II(0,s), s > 0, crosses the y-axis, the first
component z of the solution (z,y) of (2.2), with (z(a),y(a)) = (0, s), solves the two-point
boundary value problem
Z+g(z)=0
z(a) = z(b) =0

In other words, this problem has infinitely many solutions which can be found by look-
ing for the intersections between the spiral-like curve TI(0,s), s > 0, and the y-axis. Of
course, we can consider also Sturm-Liouville boundary conditions, that is we could ask that
(z(a),y(a)) € r, and (z(b),y(b)) € rp, where r, and 7, are straight lines: in this case r, is a-
gain transformed by the map II in an unbounded spiral around the origin and we should look
for its intersections with 7. More generally, any boundary condition which can be written as
(z(a),y(a)) € Ty and (z(b),y(b)) € I'y is suitable for the superlinear equation Z + g(z) = 0
or for the equivalent system (2.2), when it is possible to show that II(T';) is an unbounded
spiral-like set around the origin and T'y, is unbounded, too, but does not spin too much
around the origin, in such a way that it is possible to prove that II(I';) N Ty # 0. In this
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sense, a suitable class of boundary condition, which generalizes the Sturm-Liouville ones, is
the class B defined in [116] by Struwe and considered in Remark 1.2.3.

Remark 2.0.5 If g : R — R is a continuous function such that:

SEI:?OO g(s)sgn(s) = +o0,
then, clearly, the primitive G of g is strictly monotone in a neighbourhood of &co and thus
the inverses G are defined. If we look for some sufficient conditions ensuring the validity
of (g2+), we can use various results in the literature, starting with the classical work of
Opial [96] (see also [112]). As already noted, a typical assumption which implies (g2+) is
the condition of superlinear growth at infinity:

lim g(z)

z—too T

= 400.

Other possibilities for (g2+) when the usual superlinear condition does not hold, are discussed
in [37]. For instance, we have that (g2+) follows from:

J4>0: lim
T—

2.1 Continuability of solutions
The first problem that one has to face, when in equation:
(2.5) & +q(t)g(z) =0

a general weight function g is considered, is the possible lack of continuability of the solutions,
if g is not dominated by an affine function: Coffman and Ullrich in [31] gave an example of
a continuous ¢ : [0, +oo[ = ]0, +00] such that the equation:

E+qt)z® =0

has a solution z with [0, 72/6[ as maximal interval of continuability. In particular the function
g satisfies \ 111121/6 g(t)=c>0and q(t) = cforall t > 72 /6, but the total variation of g on
-

[0, ¢] tends to infinity as t approaches 72 /6 from the left. Therefore the fact that ¢ is close
to a positive constant ¢ around 726 does not matter for what concerns the continuability
of solutions and also the fact that ¢ can be chosen arbitrarily small is of no influence: what
really makes the difference is the lack of regularity of ¢ nearby 72 /6. In fact Coffman and
Ullrich proved in [31] that, if g : [0, +00[ —]0, +ool is continuous and locally of bounded
variation and if n € N, then the initial value problem:

{'ls +q(t)z? T =0
(z(to), £(to)) = (20, o)

has, for every to > 0 and (Zo,%0) € R, a unique solution which exists on [0, +oco[. Their result
can be easily modified to cover more general nonlinearities g and also the case in which ¢
vanishes somewhere and this is the subject of the following theorem.
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Theorem 2.1.1 Let q : [a,b] —+ [0,+00] be a continuous function with bounded variation
such that, for each ty € [a,d] with q(ty) = 0, there are a left neighbourhood of to, where g is
monotone decreasing, and a right neighbourhood of to, where q s monotone increasing; let
G € CY(R) be such that infg G > —oo, and let p:fa,b] x Rx R — R be continuous and such
that p(t, z,y)| < 1)1+ |z| + [y]), for all (t,z,y) € [a,b] x R x R and for some nonnegative
function I € L'([a,b]). Moreover we assume that the local uniqueness holds for the initial
value problem:

(2.6) {«"H +q(t)G' (z) = p(t, z, %)

(z(to), 2(t0)) = (z0,y0)

for all tg € [a,b] and for all (zo,y0) € R2. Then the solution of (2.6) is continuable on [a,b]
for all to € [a,b] and for all (zo,y0) € R2.

We did not find an exact reference for this theorem, even if it is clear that is known from
the works by Butler [23, 24]. Therefore we provide here a proof of it.

Let us state and prove, at first, a preliminary result which is a simple generalization of
Lemma 2 in [31], following the ideas in the proofs of Proposition 1 in [129] and Theorem
6 in [108]. We remark that in the next lemma we do not need the local uniqueness for
the initial value problems associated to our equation: we will need it later in the proof
of the theorem, when we use an approximation procedure, in order to be sure that the
approximating solutions are converging to the solution we are considering.

Lemma 2.1.2 Let G € CY(R) be a function such that infg G > —00, and let p : [a,b] x
R xR — R be continuous and such that |p(t, z,y)| < WO + |z] + [y]), for all (t,z,y) €
[a, 5] x RX R and for some nonnegative function | € L([a,b]). Assume also that g € C*([a, b])
is @ nonnegative function satisfying:

2.7) ld'OI<h@®)(t) Vi€ [a,b],
for some nonnegative function h € L'([a,b]). Then every solution z of the initial value

problem

(2.8)

& +q(t)G'(z) = p(t, z, 1)
(z(to), (o)) = (20, y0)

is continuable on [a,b] for all ty € [a,b] and for all (zo,%0) € R%. Moreover, if we set:
1 1 1
B(t) = 5 + 327 (8) + 54°(t) + ¢(D[C(a() + L],

where L > —infg G, then ® satisfies:

/t[4l(s) + h(s) + 1] ds

to

(2.9) (1) < B(ty) exp ( ) Vi€ [a,b].

Proof. Let z be a solution of the problem (2.8) and suppose that it is defined on Jt1, 6] C
[a,b], with ¢ < tg < t5. Clearly ® is a C* function on Jt1,t2[ and satisfies:

z(t)2(t) + 22 () + ¢()G () (t) + ¢ (1)[G (= (t)) + L)
#(0)[z(?) + p(t,2(t), 2(1)] + ' ())[G(=z (1)) + L].

o'(t)

Il
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Moreover, by (2.7) and the assumptions on p and G we obtain:

@' < @]+ @) + D]s@)z(@)] + 1132 (1) + ~(te(®)[G(2(1)) + L]

22(t)

0[5+ 380 + 00 + 1 3220+ 3°0)| 2100 22
+ h(BAOIGa) + 1
< [4l(t) + h(t) + 1]@(2),

IN

for every t € |t1,¢2]. By Gronwall’s inequality we deduce:

/ [(s) + hs) + 1] ds

) Vit €ltr, ta].
to

B(t) < B(to) exp (

Hence z is continuable on [a, b] (it is bounded) and inequality (2.9) holds. B
‘We can now prove the main theorem of the section.

Proof of Theorem 2.1.1. By the local existence theorem the solution z of (2.6) exists in
an interval [t1,%2], with 1 < tg < te, such that ¢(¢;) > 0 for 4 = 1,2 : this is obvious if also
q(to) > 0, while if g(tg) = 0 the solution surely reaches a zone in which ¢ > 0, since there
are no problems of continuability wherever ¢ = 0. Therefore we can suppose that g(ty) > 0,
up to redefine tg = #1 or tg = 3. As a first step we will show that z is continuable in every
interval [c,d] where g is strictly positive. We use an approximation procedure: let {n;} be
the classical C°° mollifiers given by nx (t) = kn(kt), where:

1 .
. < 1
n(s)z{cex"<sz~1> TEY g o= (2f e (S
i -

0 if [s] > 1

~1

1) ds) ’

so that fj_;o ne(t) dt = ff;o net)dt = 1, for all & € N. For convenience we extend ¢(t) = ¢(c)
for t < ¢ and ¢(t) = ¢(d) for t > d and we set:

+oo +oo
a(t) = / a(P)m(t — 7) dr = / 4(t — )i () dr.

—oo —co

It is well known that ¢z — ¢ uniformly in [c, d] and that fcd lgr. ()] dt — T(c,d), as k — +o0,
if T'(¢,d) is the total variation of ¢ on [c,d] (see [49, Proposition 1.15, Remark 1.16]). Let
m = infl. 4y ¢ > 0: it is easy to see that infg gx(t) > m. Therefore g, satisfies

AQ)
m

la,(8)] < ax (t) Vi€ [c,d]

and Lemma 2.1.2 implies that a fixed solution zj of the problem

@+ qr(H)G' (u) = p(t, u, 1)
(u(to), u(to)) = (0, Yo)

is continuable on [c, d] and satisfies

(2.10)

(2.11) , Oy (t) < Dp(to) exp ( / lg) (¢ )dt) Vit € e d], Yk,
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where we have set:
1 1

Bi(1) = 5+ (D) + 5840) + ) [Glan()+ I

If 7 is the maximal interval of continuability of z with respect to the interval [c,d], then
(zx(t), 5 (t)) — (z(t),£(t)) for every t € I by the theorem on the continuous dependence;
in particular, we can let k go to infinity in (2.11) for each ¢ € I, obtaining that:

B(t) < B(te)eT®V™  Viel,

that is z and & are bounded in I; therefore I = [c, d] and the solution is defined on [c, d].

Now, let us show that the solution z is continuable on an interval [c,d] such that ¢ > 0
in Je,d[ and g(c) = g(d) = 0. By our hypotheses on g, there is a sufficiently small € > 0 such
that to € [c+¢,d — €] and g is monotone increasing on [c,c +¢] and monotone decreasing on
[d— &, d]; moreover g is strictly positive in [c+¢€,d —¢], so that z is defined on [c+e,d—e] by
what we have just proved. Therefore we have to prove that the solution can be continuated
from ¢ + € to ¢ and from d — ¢ to d. Let us show only that z is continuable up to d : in an
analogous way it can be proved that it is continuable up to c. We have that ¢ is monotone
decreasing in [d — €, d] and positive in [d — ¢, d[ and let us extend g to R in such a way that
q(t) = g(d —¢) for all t < d — € and ¢(t) = 0 for all ¢ > d. It is easy to see that, now,
the mollified weights {gx} are also monotone decreasing, so that Lemma 2.1.2 applies to the
initial value problem:

i+ i (t)G'(v) = p(t, u, %)

u(d —¢g) =z(d—¢)

u(d—¢) =a(d—¢)
with the choice k() = 0 in (2.7). Hence its solution = is defined in [d — ¢, d] and satisfies
By (t) < By (d —€) for every t € [d — €,d]. As above, this ensures that z, too, is continuable
on [d—¢,d].

Finally we remark that the hypotheses about g imply that the set {¢ € [a,8] : ¢(t) > 0}
can be decomposed into the union of a finite number of open intervals (relatively to [a,b]),
while the set {¢ € [a,b] : ¢(t) = 0} is made by a finite number of isolated points and disjoint
closed intervals. Therefore it can be shown that z is continuable on [a, b] by applying a finite
number of times the steps proved above. [ |

A direct consequence of Theorem 2.1.1 that we will use in the next chapters is stated
here:

Corollary 2.1.3 Letg: R — R be a locally Lipschitz continuous function such that g{z)z >
0 for every z # 0. Let g : [a,b] — [0, +0o[ be a nonnegative continuous function with bounded
variation such that:

1. the set {t € [a,b] : q(t) = 0} has a finite number of connected components;

2. ifg >0 on]b,c[C [a,b] and g(c) = O (or, respectively, q(d) = 0), then q is monotone
nondecreasing in a right neighbourhood of ¢ (or, respectively, monotone nonincreasing
in o left neighbourhood of d).

Then the solution of the initial value problem:

& +q(t)g(z) =0
(z(to), Z(t0)) = (0, o)

is defined in [a,b] for every to € [a,b] and for every (zo,y0) € R2.
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Proof. It’s enough to apply Theorem 2.1.1 with:
T
G(z) = / g(s)ds and  p(t,z,¥) =0
0

and the corollary is proved. B

2.2 Rapidly oscillating solutions

Now, we are going to generalize some of the consequences due to the superlinear growth of
¢ in the autonomous equation Z + g(z) = 0, to a wider class of equations. Namely we will
consider an equation of the form:

(2.12) G+ f(t,z) =0

and we will give conditions on f in order to have that the solutions passing through points
in the phase plane which are farther from the origin, oscillate more in a fixed time interval
I, i.e. have more zeros and their orbits (z(t),%(t)), t € I, turn around the origin of the
phase plane more times. The result we prove, will apply to the case of f(t,z) = q(t)g(z)
and g(t) > 0, but it is stated in the general framework of Carathéodory hypotheses.

Definition 2.2.1 A function F : [a,b] x RN — RY is called a Carathéodory function if it
satisfies the following conditions:

o for almost every t € [a, b] the function z — F(t,z) is continuous;
o for every z € RY the function ¢ = F(¢,z) is Lebesgue measurable;

o for every compact K C RV there is a function hx € L*([a,b]) such that |F(t,z)| <
hx(t) for almost all ¢ € [a,b] and for all z € K.

In this case a function z : [a,b] D T — RY is a solution of:
&= F(t,x)

if 2 is an absolutely continuous function (i.e. z € AC(I,RY)) and satisfles z(t) = F(t, (z(t))
for almost every t € I.

In our case, if f : [a,0] x R — R is a Carathéodory function and z : [a,b] D I — R
is a solution of (2.12), then z actually belongs to the space AC*(I) = {z: I =+ R:z €
CUW(I), # € AC(I)}, as can be seen writing the equation as the equivalent first order plane

system:
T=1y
g = —f(t,z).

Besides the fact of f being a Carathéodory function, we will use the following hypotheses:

(f1) the global continuability holds for every initial value problem associated to the equation
(2.12);
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(f2) there are a nontrivial subinterval I C [a, b], a number z* > 0 and a continuous function
g : R — R such that g(z)z > 0 for all z # 0, 7,7 (e) — 0 as t — +o00, where 77 (e) is
defined by (2.3), and :

(2.13) f(t,z) sign(z) > |g(z)| for a.e. t € I and V|z| > z*.

In fact, we will exploit a well known consequence of (f1), that is the so—called elastic property,
which is stated and proved in the next lemma.

Lemma 2.2.2 Let F : [a,b] x RY — RY | be a Carathéodory function such that all the
solutions of the differential equation:

(2.14) z = F(t,x)
are continuable on the whole [a,b]. Then the following properties hold:

1. for all Ry > O there exists Ry > Ry such that, if z : [a,b] — RY is a solution of (2.14)
satisfying |z(to)] > Ra for some to € [a,b], then |z(t)| > R for every t € [a, b];

2. for all Ry > 0 there exists Ry > Ry such that, if © : [a,b] = RY is a solution of (2.14)
satisfying |z(to)] < Ry for some tg € [a,b], then [z(t)| < Ry for every t € [a,b].

Proof. Suppose by contradiction that statement 1 does not hold: then there is Ry > 0 such
that for all R > R, there exist some tg, sg € [a, b] and some solution zx of equation (2.14)
which satisfy |zg(tgr)| > R and |z,(sgr)| < R1. By a compactness argument it is possible to
find two sequences {t;} and {sz} of points of [a, b] and a sequence {z} of solutions of (2.14)
such that:

(z) sk — so € [a,b] and zx(sg) = zo € B[Ry);

(i1) ty — to € [a,b] and |zg(tg)| — +o0;
(we denote by B[R] the closed ball in RY with center in the origin). The continuous depen-
dence theorem and point (7) imply that z; uniformly converge to a solution zg of the initial
value problem:

I(to) =Ty

{a’: = F(t,z)

which is defined on [a, b] by our hypothesis on F. However this is clearly in contradiction
with (7).

The proof of the second statement can be done again by contradiction in a completely
similar way. k H

We start the work of estimating how much time a trajectory (z(t), £(¢)) of (2.12) takes
to make a complete turn around the origin: fixed M > 0, we divide the phase plane into
the strip {(z,y) € R? : |z| < M} and the two remaining half planes {(z,y) € R*> : z <
—M}U{(z,y) € R? : z > M} and we compute separately the time needed for the trajectory
to cross each of these portions of the phase plane. The following lemma regards the vertical
strip: for every M > 0 the time spent in it by the curve (z(¢), £(¢)) can be made arbitrarily
small by considering solutions z with sufficiently large first derivative. Here the superlinearity
of f does not matter: the result is true just assuming that f is a Carathéodory function.
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Lemma 2.2.3 Assume that f : [a,b] x R — R is a Carathéodory function and let M > 0
and 6 > 0 be two arbitrary constants. Then there ewists N = N(M,8) > 0 such that, for
every interval [t1,t2] C [a,b], for every to € [t1,12] and for every solution z of (2.12), with
z(to) = 0, |£(to)| > N and |z(t)] < M for every t € [t1,t2], then it turns out that to —t; < 6.

Proof. Let us fix M > 0 and 6 > 0 and hpy € L'([a, b]) be the function given by the
Carathéodory conditions on f relatively to the compact interval K = [—~M, M], so that
|f(¢,z)] < hpr(t) for almost every ¢ € [a,b] and every = € [~ M, M]. Then we define:

b
N = max {4%{, ‘2/ hM(s)ds}.

Let z, to, ¢t1 and ¢3 be as in the statement of the lemma, that is, ¢y € [t1,%2] C [a,b] and z is
a solution of (2.12) with z(to) = 0, |#(to)| > 0 and |z(t)| > M for every t € [t1,t2]; we have:

|2(t)] = |f(t,z()] < har(2) for a.e. t € [t1,t2],
since |z(t)] < M for every t € [t1,ts]. Thus, for every ¢ € [t1, %3] we can estimate:

b
50 = lto)| < [ harlo)ds < 3,

by the choice of N, and we can conclude that:

min |z(¢)] > N
tE(ty,ta] ’ - 2 !

by the fact that |(o)| > N. In particular we have that & has a fixed sign in [t1,;] and z is
monotone, so that:

ig N
2M > |z(ts) — z(t1)| = / |z(t)|dt > min |Z(£)] (ts — t1) > —=(t2 — t1).
1 tE[t:l,tz] 2
In conclusion, this last inequality and the choice of N imply:
M
-t Sd < )
and the lemma is proved. B

The next result says that the lenght of a time interval in which a solution z of (2.12)
satisfies |z(t)| > M, tends to zero as M tends to infinity. Here the assumption of f being
superlinear (that is condition (f2)) plays the main role.

Lemma 2.2.4 Assume that f : [a,b] x R — R is a Carathéodory function satisfying (£2)
and let I C [a,b] be the interval where (2.13) is satisfied. Then for every & > 0 there exists
M = M(6) > 0 such that for every [t1,t2] C I and for every solution z of (2.12) with
|z(t)] > M for all t € [t1,12], it turns out that to — t; < 4.

Proof. Letusfixd > 0andlet g : R — R be the function provided in (£2); since mH(e) = 0
as e — +oo, there exists E5 > 0 such that:

77(e) <8  Ve> E;.
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We prove that the choice:
M = max{z", Es}

works, with z* given in (f2) : suppose that z is a solution of (2.12) such that z(t) > M for
all t € [t1,t2] C I. We will show that t; —¢; < 6. The other case, ie. z(t) < —M for all
t € [t1,t2] C I, is completely symmetric and its proof is omitted.

By the choice of M and assumption (f2) we have that

#(t) = —f(t,z(t)) < —g(z(t)) <0 for a.e. t € [t1,ta],

thus # is a decreasing function in [t1,t2]. Then we set t* = t;,if 2(¢) <Oforevery ? € [t1,t2],
and t* = sup{t € [t1,t2] : #(t) > 0}, otherwise. However the interval [t1, 2] can be splitted
into two disjoint intervals [t;,*[ and [¢*,¢2] in such a way that ¢(¢t) > 0 for all ¢ € [t1,¢"]
and 2(t) < 0 for all ¢t € [t*,t]. The lemma will be proved if we show that both t* —#; and
ty — t* are bounded by ¢/2.

We consider the first interval and, calling as usual G(s) = fos g(&) d¢, we evaluate the
following derivative on [t1,t*[:

2 [t + 320 = lota) - 6 2@ <0 forac el
since f(t,z(t)) > g(z(t)), by hypothesis (f2), and #(t) > 0. Therefore the function:
(2.15) t s Glx() + %a‘;?(t)

is monotone decreasing in [t1,¢*[ and:
v 1
Gla®) + () 2 Glalt) + 5#() 2 Galt))  Veelnt',

that is:

1< £() Vi e ftr, [
V2UG((t)) - Gl=(®))]
We note that the square root on the right hand side is well defined, since (t) is nonnegative
and z(t) in monotone increasing in [t1,t*[. If we integrate the last inequality between #; and
t*, after the change of variables s = z(t), we get:

b

[N =)

i z(t") ds 1+ . .
vons [ THEwETo <2 e s

because z(t*) > M.

In the second interval the situation is very similar, but reversed, in some sense; indeed
we have:

d

dt

since now #(¢) < 0. Therefore the function (2.15) is now monotone increasing in [t*,?,] and:

[G’(x(t)) + %mz(t)} >0  forae. tEt%ta),

Gla(®) + 3#°(0) > Ga(e) + 33(¢) 2 G(t)  VEe [t b]

Thus we obtain that:

1< —&(t)

< Vte [t*,tg]
2[G(z(t*)) — G(z()]
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and the square root is well defined because z is monotone decreasing in [t*,t2]. As above,
we integrate the last inequality between t* and ts and we perform the change of variables
s = z(t) to get:

fy— 1" < /z(t*) ds < Lreae)) <2
2= = =5 =5
sta) V2[G(E) -G~ 27 2
concluding the proof of the lemma. 2 |

We introduce, now, the polar coordinates to evaluate the number of turns that a trajec-
tory (z(t), 2(t)) makes around the origin of the plane as ¢ ranges in an interval [t1,s]. Let
z be a solution of (2.12) such that (z(t),#(¢)) # (0,0) for all ¢ € [¢1,¢2]. Then there are two
absolutely continuous functions 8, pz : [t1,%2] — R such that:

{a:(t) = pa(t) cos 0, (1)

(2.16) E(t) = pe(t) sinf,(2)

and p,(t) = +/2%(t) + 22(¢), while 6, is uniquely determined up to multiples of 27. From
(2.16) and equation (2.12) it is easy to deduce that p, and 8, satisfy:

_z(t)2®) +2(OE@) _ z@)2() - £, 2(1)2()

P (t) = PRO) = () for a.e. t,
o E@e() —2P() _ fa()st) + 32 (@)
8.(t) = 20 = - 200) for a.e. t.

In particular, the angle ,(¢1) — 0,(2), which is spanned by the vector (z(t),£(t)) in the
phase plane as ¢ varies in the interval [t1,%2] and is independent of the choice of §,, can be
evaluated by the following integral:

(g () z(t) + 22 (t
et + 20

(2.17) 02 (t1) — O2(t2) = A 22 (1) + 22 (%)

Note that in this formula the angle is measured in clockwise sense: this is just a matter of
conventions and we choose this one since, when |z(%)] is large and f satisfles (f2), it turns
out that

Fltz(t)z(t) 2 g(z(t))z(t) 2 0,

so that 6, (t) < 0 and the vector (z(t),%(t)) rotates around the origin in clockwise sense.
We wish to prove that, when f : [a,b] x R — R is superlinear in the sense that it satisfies
(£2), the solutions with large C* norm rotate many times around the origin. This goal is
achieved for a particular solution z once it is shown that 8,(a) — 8;(b) is “large”. However
in (#2) the superlinear growth condition on f holds only on a subinterval I = [¢,d] C [a, 0],
so that, in fact, we will show that 6,(c) — 6,(d) is large. Thus a result is needed to bound
the rotation of the trajectories in [a,c] and in [d,b]. This is the aim of the following lemma.

Lemma 2.2.5 Let f : [a,b] X R — R be a Carathéodory function and let z be a solution of
£ 4 f(t,z) = 0 such that (z(t),z(t)) # (0,0) for every t € [a,b]. Then:

(2.18) : 8.(a) — 0,(b) > —m.
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\\I/

Figure 2.1: The vector field of (2.19) on the y-axis

This result can be heuristically justified by considering the plane system which is equivalent
to the equation (2.12):

=y
219 R

and by studying the associated vector field (z,y) — (y, —f(¢,z)) on the y-axis for any time
t. Indeed, such a vector field restricted on Y+ = {(0,y) : y > 0} always points inward the
first quadrant, while, if restricted on ¥~ = {(0,y) : ¥ < 0}, it always points inward the
third quadrant, no matter what ¢ is, as shown in figure 2.1. Therefore, as time increases,
a trajectory (z(t),z(t)) of (2.19) can cross Yt only from the left to the right and Y~ only
from the right to the left. With this in mind, it is clear that, if z is such that (z(a),z(a))
belongs to the right half plane and if 6,(b) >,68;(a) + 7, then the trajectory of z crosses
Y™ at some time t* coming from the first quadrant and going to the second one, which is
forbidden by the vector field. The same is when (z{a),Z(a)) lies in the left half plane.
However, we show how the inequality (2.18) can be proved analytically.

Proof. Let us argue by contradiction and suppose that (2.18) does not hold: then we can
find [t1,%s] C [a,b] such that ,(t2) = 05(¢1) + 7 and 0, (t1) < 65(t) < 85(t1) + 7 for all
t €t1,ta[. We have that 6,(t2) € [k7 + /2, (k + 1) + 7 /2[, for a unique k € Z, therefore
the set {t € [t1,%2] : 6,(¢) = kn + w/2} is nonempty and we can consider its supremum £*.
The equations (2.16) imply that z(¢*) = 0 and that £(t*) is strictly positive, if k is even, or
strictly negative if k is odd. The following alternative holds true:

1. either t* =t and 8,(t) < 8,(¢*) for all ¢ in a left neighbourhood of ¢*;
2. or t* <ty and 0,(¢) > 6, (t*) in a right neighbourhood of ¢*.

For the sake of definiteness let us assume that k& is even (that is £(¢*) > 0) and that alternative
2 holds (that is t* < t¢3): the other cases can be treated similarly. The cosine function is
decreasing around km + 7 /2 if k is even, therefore cosé,(t) < 0 and z(¢) < 0 for every ¢ in a
right neighbourhood of t*. This implies that #(t*) < 0, which is a contradiction. |

After these auxiliary lemmas, we can state the following theorem, which deals with the
oscillatoric behaviour of large solutions.
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Theorem 2.2.6 Let f : [a,b] x R — R be a Carathéodory function satisfying (f1) and (f2).
Then for every H > 0 there is R = R(H) > 0 such that, for every to € [a,b] and for every
solution x of (2.12) satisfying z*(to) + 2 (to) > R, the following properties hold:

(1) (z(),2(t)) # (0’,0) for all t € [a,b];
(%) 0z(a) — 0,(b) > 27 H.

Proof. By (f1) and Lemma 2.2.2, there is Ry > 0 such that every solution z of (2.12),
with z(to) + £°(to) > Rj for some to € [a,b], will satisfies (z(t),5(t)) # (0,0) for every
t € [a,b], so that the polar coordinates p, and 6, in (2.16) are defined. Suppose that the
interval I in hypothesis (f2) can be written as [c, d]. As anticipated before Lemma 2.2.5, we
divide the total angle, which is spanned by the phase vector (z(t),%(t)) as ¢ ranges in [a, b],
into three parts:

0z(a) = 0 (b) = (0 (a) = 0z(c)) + (0(c) — 62(d)) + (62(d) — 64(b)).
By Lemma 2.2.5 we know that:
(2.20) (6z(a) — 0z(c)) + (02(d) — 8(b)) > —2m.

In order to estimate 05 (c) — 8, (d), we will consider the first time ¢* after ¢, when z(¢*) = 0,
so that we will be sure that the solution is on the y-axis, and then we will count the number
of turns of the trajectory as ¢ varies in [t*,d] by considering how many times the solution
comes back on the y-axis. Moreover Lemmas 2.2.3 and 2.2.4 will help in evaluating the time
needed to make a complete turn around the origin. Indeed, suppose that we have fixed a
small 6 > 0: then, by lemma 2.2.4 there is M = M () such that every solution of (2.12)
will remain in {(z,y) € R? : |2| > M} for a time interval smaller than §; on the other
hand, by Lemma 2.2.3 there is N = N(M(5),6) such that every solution hitting the y-axis
in a point farther from the origin than N will cross the strip {(z,y) € R? : |z| < M }in
a time interval smaller again than . Now, in order to make a complete turn around the
origin, starting from a point on the y-axis, a “large” solution has to cross the vertical strip
{(z,y) € R? : |z| < M} three times and the region {(z,y) € R? : |z| > M} twice: therefore
the time to make a complete turn around the origin can be bounded by 56. On the other
hand, the time t* — ¢, which is needed to reach the y-axis the first time, can be bounded by
34, since the solution will have to cross the vertical strip twice and the other region once, in
the worst case. The inequality in (i7) is satisfied if the trajectory makes at least H + 1 turns
around the origin as ¢ spans [c, d], since in [a, b] \ [¢, d] it can loose no more than one turn by
(2.20). Therefore, the solution has enough time to make H + 1 rotation around the origin
in [c,d] if we choose ¢ in such a way that 36 + 56(H + 1) < d — ¢, that is:

d—c
§ < .
~— 5H +38
So we rigorously prove the theorem with this choice for § and the corresponding constants
M and N, which are given by Lemmas 2.2.3 and 2.2.4.

Let K = +M?+ N? and let R; > 0 be such that every solution z of (2.12), with
z?(to) + *(to) > Ry for some ty € [a, b], also satisfies

2 (t) +3%(t) > K2 Ytela,b

(this is possible by Lemma 2.2.2) and let us consider such a solution z. As in figure 2.2
we divide R* \ B(K) into four closed regions which can overlap only in correspondence of
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Ay

t=t,

Figure 2.2: Following a complete turn of a solution

their boundaries: 4; = {(z,y) € B :y > N,|z| < M,z*> +y* > K}, 4y = {(z,9) €
R x> M,z?+1y? > K2}, Ay = {(z,y) € R 1y < =N, |z| < M,z* +y* > K} and
Ay ={(z,y) e R 1z < —M,z> + 9> > K?}.

If (z(c),(c)) € A1, let 1 = inf{t > ¢ : (2(t),£(¢)) & A1} : then @(t) > N for all
t € [c,t1] and z is monotone increasing in [c,¢1]. In particular &1 — ¢ < 6, by Lemma 2.2.3
and z(t;) = M, that is (z(t1),(t1)) € As. Now let to = inf{t > t1 : (z(t),2(t)) ¢ A}
z(t) > M > z* for all ¢ € [t1, 2], so that

i=—f(t,z) < —g(z(t)) <0  forae t€t,ts)

and % is monotone decreasing in [t1, t2]. By Lemma 2.2.4, t5 —¢; < § and ¢ belongs to le, d[:
therefore, as ¢ varies from ¢; to to, z(t) increases up to a maximum value greater than K and
then decreases to z(ty) = M. Thus we have that ((t2),£(t2)) € As. The behaviour of the
trajectory in As is similar to that in A; : in particular, if t3 = inf{t > ¢5 : (z(2), 2(t)) € 4s},
then t3 — t3 < 0, z(t3) = —M and (z(t3),(ts)) € A4. Finally, letting t4 = inf{t > #5 :
(z(t),4(t)) € Ay} and arguing similarly as in Ay, we obtain that ¢4 —t3 < 6, z(ts) = —M
and (z(t4),2(ta)) € Az, again.

It is clear, now, that t* — ¢ < 36, if t* = inf{¢ > ¢ : z(t) = 0}, and that the time needed to
(z(t), £(t)) to make a complete turn around the origin starting from the y-axis, is bounded
by 56. By the choice of 6, there is tg €]t*, d[ such that 8, (t*) —6x(tg) = 27 (H +1). Moreover
we have that 0, (c) — 8,(t*) > 0 and 0, (ty) — 02(d) > 0 (see (2.17)), hence we can conclude
that:

and this inequality, together with (2.20), ends the proof of the theorem. [ |

Remark 2.2.7 Another way of stating Theorem 2.2.6 is the following: if f satisfies (f1)
and (f2) then, for every sequence {z,} of solutions of (2.12) such that:

. 2 =2 —
nkr—ll}oo[mn(tn) + mn(t'fb)] - +OO:
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for some {t,} C [a,b], we have that the angular functions 6, are defined in [a,b] for every

large n and satisfy:

i [0, () — 0a, (b)) = oo
Moreover we note that, if 85 (t1) — 05(t2) > 7 for some t; < t3 and some solution z of (2.12),
then there exists t* € [t1, t2] such that 8,(t*) = km, for some k € Z, and, therefore, z(t*) = 0.
Similarly, if z(t1) = z(t2) = 0 and z(t) # 0 for every ¢ €]t1,t2[ then 6,(t1) — 0,(¢2) = =.
Hence Theorem 2.2.6 states that, if f satisfies (f1) and (f2), then larger solution of (2.12)
will have more zeros in [a, b] and will oscillate more.

We consider here an application of the previous result to the particular case which we
will deal with in the next chapters: suppose that we have two functions ¢ : R —+ R and
g : [a,b] = [0, +00[ as in the hypotheses of Corollary 2.1.3, in such a way that the uniqueness
and the global continuability hold for all the initial value problems associated to the equation:

(2.21) Z+q(t)g(z) = 0.
Given p € R? with p # (0,0), there is a unique solution z of the equation (2.21) such that

(z(a),z(a)) = p : we surely have (z(t),%(t)) # (0,0) for every t € [a,d], since z = 0 is
solution of (2.21); therefore we can use the formula (2.17) to define:

_ [* d0ee®)at) +5(0
(222 w0 =) e

that is, [ro;:] (p) measure the angle spanned in clockwise sense by the vector (z(¢),z(t)) as t
a,

goes from a to b, p being the position of the vector at ¢ = a. With this notation we have the
following result.

Corollary 2.2.8 Let g: R — R be a locally Lipschitz continuous function such that:

(g1) g(z)z >0 VYz#0
and:
(92+) e-—l-ég}w T9+ (e) = 0.

Let q : [a,b] = [0,+o0] be a nonnegative continuous function with bounded variation such
that:

1. the set {t € [a,b] : q(t) = 0} has a finite number of connected components;

2. if g >0 onlb,cC [a,b] and g(c) = 0 (or, respectively, q(d) = 0), then q is monotone
nondecreasing in a right neighbourhood of ¢ (or, respectively, monotone nonincreasing
in a left neighbourhood of d).

Then:

lim  rot(p) = +oo.
[pf—-+o0 [a,b]

Proof. Simply apply Theorem 2.2.6 to the function f(¢,2) = ¢(t)g(z), which clearly
satisfies (f1) (by Corollary 2.1.3) and (f2). B
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2.3 An existence and multiplicity theorem for general-
ized Sturm-Liouville boundary value problems

Definition 2.3.1 We say that a set C C RY is a continuum if it is nonempty, closed and
connected. »

Let us define Ht = (]0, 4+o00[ xR) U ({0}x]0, +oo[) and H~ = —H* = (] — co,0[ xR) U
({0} x ] —00,0[); thus H+ is the closed right half plane and H~ is the closed left half plane.
Moreover we respectively denote by B(R) and B[R] the open and the closed ball in RY
which are centered at the origin and have radius R.

Our aim is to prove a result on boundary value problems for the equation:

(2.23) i+ f(t,z) =0,

in which the boundary condition is expressed by imposing that (z(t),Z(t)) belongs to two
fixed unbounded continua I'; and I’y at two fixed instants ¢t = a and t = b, respectively.
We use a shooting technique: roughly speaking, we let (z(a),%(a)) move along the first
continuum I, and we consider the set II(T',) of all the corresponding final points (z(b), Z(b)),
which turns out to be a continuum, too. A solution of the boundary value problem is found
whenever we detect an intersection between II(I';) and I'y. Then the following very simple
topological lemma will be useful in the sequel. '

Lemma 2.3.2 Let us assume that P,Q C R? are two continua which are both contained
either in the closed right half plane H+ or in the closed left half plane H—. Moreover we
suppose that there are Re > Ry > 0 such that:

(1) P C B[Rs]\ B(Ry) and PN ({0} x [Ry, Ra]) # 0 # PN ({0} x [= R, —Fa]);

(i5) QN B(Ry) # 0 # Q\ B[Ro].
Then PN Q # 0.

Proof. Without loss of generality we suppose that P and @ are both contained in H+.
There exist y1 € [Ri,Ra] and y2 € [—Ra, —Ra] such that (0,y1),(0,92) € P, by (i). For
every € > 0let P. = {(z,y) € H* : |(z — 0,y — %0)| < € for some (zo,y0) € P} be the
e-neighbourhood of P in H+ : clearly P. C B(Ry +¢) \ B[Ry —¢] and P, is still a connected
set. However, since it is also open relatively to H*, it is connected by arcs; therefore there
exists a continuous curve 7, : [0,1] - P. which links (0,y1) to (0,y2), that is 7. (0) = (0,11)
and 7.(1) = (0,y2). It is not restrictive to assume also that actually v.(s) €]0,+co[ xR for
every s €]0,1]. Hence the union of the image of v, and of the vertical segment {0} X [y2,¥1]
is the image of a Jordan curve in R?, which is the boundary (relatively to R?) of a bounded
open region that we denote by U.. Let V; = U, U({0} x Jy2,y1[) : with respect to the topology
in H+, V. is open and its boundary is exactly the image of ~..

If ¢ is sufficently small, @ intersects both B(R; — ¢) and the complement of B[Rs + €] :
this implies that ) has some points in V; and in H+ \ VZ. Since @ is connected, then Q must
intersect the boundary of V. relatively to H+, that is there exists p. € @ N :([0,1]). Up to
choose a suitable sequence, we have that p. — po ase = 0and pp € PN Q. |

When a function F : [a,b] x RY — RY is regular enough in order to ensure that all the
solutions of the differential equation & = F(t,z) enjoy the local uniqueness and the global
continuability, the Poincaré map I : RN — RN, which sends each p € RY to the value
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z(b) of the unique solution of the equation starting with z(a) = p, is well defined and is a
homeomorphism of RY onto itself. In particular, if I C RY is a continuum, then II(I") is a
continuum, too. When the local uniqueness holds no more, then, given a point p € RY, one
has to consider the set:

E(p) = {z € AC([a,b;RY) : z solves & = F(t,z) and z(a) = p},

where AC([a,b],RY) denotes the set of absolutely continuous functions z : [a,b] — RV, and
IT has no meaning as an ordinary map, but can be considered as a set—valued map setting:

I(p) = {z(d) : z € E(p)}.

If the global continuability holds, the Theorem on the Peano Phenomenon (see [103, III, §2.3,
p. 165]) and Kneser’s Theorem (see [55, Theorem 4.1, II, §4, pp. 15-18] ensure that, for
every p € RV, both Z(p) and II(p) are compact continua as subsets of C([a, b}, RY) (endowed
of the norm || - ||eo) and RV, respectively. Moreover the following can be proved:

Lemma 2.3.3 Let F : [a,b] xRY — RN be a Carathéodory function such that every solution
of & = F(t,z) is continuable on [a,b]. If T C RY is a continuum, then the set:

X(T) = {J Up} x E@)] = {(p,2) € BY x C([a,b],RY) : p€ T and z € E(p)},
pel

is a continuum with respect to the product topology of RN x C([a,b], RY); moreover, if T is
compact, X(I') is compact, too. In particular the set:

) = J 0(p)

pel

is a continuum in RY .

Proof. The closedness of both X'(I") and II(T') is a consequence of the continuous depen-
dence on initial data as well as the compactness of X (I'), when I is compact: so we confine
ourselves to their connectedness.

Let C1,Cy C RY x C([a,b],RY) be two closed and disjoint subsets such that Cy U Cy =
X(T') : we want to show that one of them must be empty. Let m; : RY x C([a,],RY) — RV
and m : RY x C([a,8],RY) = C([a,d],RY) be the two continuous projections. First, we
observe that, if (p,zo) € C; for some zy € Z(p) and some ¢ € {1,2}, then {p} x E(p) C C; :
indeed, if (p,z1) € C1 and (p,z2) € C; for two different solutions z1,zs € Z(p), then we

should have:
{P}xE@NCL#0#{p} xE(p)NCa

and, therefore, {p} x Z(p) should not be connected in contradiction with the Theorem on
Peano Phenomenon. Hence the following alternative holds for every p € I :

1. either {p} x E(p) C C}
2. or {p} x E(p) C Cs.

This implies that the two sets 71 (Cy) and 71 (C5) are disjoint subsets of I'. It is also clear that
I' = 7 (C1) Uy (Cs). Moreover it is easy to see that 1 (C;) is closed for ¢ = 1,2. Indeed, if
{pn} C m(C}) is a sequence such that p, — po, then it is possible to select some z,, € Z(py,)
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and o € E(pg) by the continuous dependence on initial data in such a way that z, — zo,
up to a subsequence; since (pn,zn) € C; and C; is closed, we have that (po,xo) € C; and,
therefore, po € m1 (C;). We can conclude that either m(Cy1) = 0 or m1(C») = 0, because I' is
connected. Thus either C; = 0 or Cs = 0.
We finally note that:
II(T) = Ep(me(X(T))),
where & : C([a, ], RY) — RY is the evaluation functional at b, which is defined by &(z) =
z(b). Both &, and 7 are continuous and X(T') is connected: therefore II(T") is connected,
too. H

With the previous auxiliary results we can now try to solve boundary value problems of
the following kind:

Z+ f(t,z) =0
(2.24) (z(a),z(a)) € Ty
(z(b), (b)) € T

which have the same form of those studied in [116].

Theorem 2.3.4 Let f : [a,b] x R — R be a Carathéodory function satisfying (f1) and (f2).
Let T, and Iy be two unbounded continua in R2 such that one of the following alternatives
holds:

(i) To CHT and Ty C H™ or, vice versa, I's C H™ and I'y C o+,
(ii) T, and Ty are both contained either in Ht orin H™.

Finally we suppose that T, N B[R,] # 0 # [y N B[Ry], for some Ry, Ry > 0. Then there ezists
a positive integer n* = n*(Rq, Ry) such that:

1. if (i) holds, problem (2.24) has at least a solution & with ezactly n zeros in la, b, for
every odd integer n > n*;

2. if (i1) holds, problem (2.24) has at least a solution z with ezactly n zeros in |a,b], for
every even integer n > n*.

Proof. By (f1) and Lemma 2.2.2 there is Ry = Ro(Rs, Ra) > R, such that each solution z
of (2.23) satisfies z?(¢) + 3%(¢) > Ry + 1 for all ¢ € [a,b], if 22(a) + 32(a) > Ro. We select an
unbounded connected component of I', \ B(Rp) such that 'y NdB(Ro) # @ and we continue
to call it [, with a little abuse of notation.

Let us consider only the case T'y C H¥; the other one, that is 'y C H~, can be handled
in a symmetric way. We take the angular coordmate function 9 : H+\ B (Rb) — [-7/2,7/2]
which is continuous and satisfies:

p=(Ip|cos?(p), |plsind(p)) Vpe HT.

Moreover, we define the functions p,8 : [a,b] x & (H+ \ B(Rp)) (see Lemma 2.3.3 for the
meaning of X) in the following way:

p(t;p,z) = V22 (5) +22()  Vtela,b], V(p,z) € X(HT\ B(R))
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and:

6(t;p,z) = 9(p) —/ f(s’x(;)(lf;‘s;;“ ) gs,

which turn out to be well defined and continuous in the topology inherited from [a, b} x R? x
C*([a, b)) and satisfy:

z(t) = p(t;p, ) cos O(t; p, z) —
(2.25) {:b(t) o(t:p. z) sin B(t5p, @) Vtela,b], V(p,z) € X(HT\ B(Rs))

(see (2.16) and (2.17) for details). In particular, for every (p,z) € X(H*+ \ B(Rp)) the
quantity:

ﬁ(p) - 9(t,p,$) = a(a:pa ‘,L‘) - e(tup’ :E)

measures the angle spanned in clockwise sense by the vector (z(s), Z(s)) as s increases from a
to t. We observe that the solution z will have a zero in o if and only if 8(to; p,2) = km +7/2
for some integer k, that is if and only if the point (z(t),%(to)) lies on the y-axis in the phase
plane; therefore, the solution z will have exactly n zeros in la,b] if and only if:

(2.26) —g —nm < 0(b;p,z) < ~g - (n—1)m,

as can be seen by arguments similar to those employed to justify and prove Lemma 2.2.5.
Let us come to the definition of n*. Since 6 is continuous and H+ NJB(Rp) is nonempty
and compact, we can define:

6" = min{0(b;p, z) : (p,z) € X(HF NOB(Ro))}

which turns out to be finite by Lemma 2.3.3. As a consequence of this definition and of the
fact that T, is connected and intersects B(Rp), we have that the image of the function:

X(Ta)(p,z) — 0(b;p, 7)

contains the unbounded interval ] — co, §*]. Hence a good choice is to take n* to be the least
positive integer such that:
™
3~ (n* — 1w < 6%,

as can be seen by considering the condition (2.26).

It is now clear from (2.26) and (2.25) that, if a solution z starts from p € HTatt=a
and has n zeros in ]a, b], then the final point (z(b), (b)) belongs to HT,if nis even, and to
H~,if n is odd. Without loss of generality we suppose that 'y lies in HT, we consider an
even number n > n* and we look for a couple (po, zo) € A(T's) such that:

1 =% —nm < 8(b;po,70) < -5~ (=1

2. (.’Eo(b),ﬂfo(b)) eTly.

The function zo will be the desired solution of (2.24).
Thanks to the choice of n* there is a closed and connected subset Xy, of X'(I'y) such that:

e _g —nr < 8(b;p,z) < —g— — (n = 1)7 for every (p,z) € Xy;

e 9(b;p.1,x1) = —g —(n—1)m and 6(b;ps,z2) = ——723 —nw for some couples (p1,z1),

(szﬁUz) € E’r‘L
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The set P = {(z(b),£(b)) : (p,z) € Ln} is closed and connected (see the proof of Lemma 2.3.3
for similar arguments), is contained in H+ \ B(R, + 1) and is surely bounded by Theorem
2.2.6, thus it is contained in a closed annulus B[R»]\ B(Rs+1), for some Ry > Ry+1. On the
other hand we know that the set Q@ = I'y is a continuum contained in H+ which intersects
B[R] and, therefore, B(R, + 1); moreover intersects also the complement of B[Rz] since it
is unbounded. Hence PN Q # O by Lemma 2.3.2: this implies that there exists a couple
(po,zo) € X(T,) such that statements 1 and 2 above hold and the theorem is proved. H

In the following chapters we will need to apply this result to the equation (2.1), that is
we will consider boundary value problems like:

i+q(t)g(z) =0
(2.27) (z(a)z(a)) € T,
(z(0)2(b)) € T

What will be enough is the following corollary.

Corollary 2.3.5 Letg: R — R be a locally Lipschitz continuous function such that g(z)z >
0 for every xz # 0 and:
lim 7, (e) =0.
e—-00

Let q : [a,b] — [0,+co[ be a nonnegative continuous function with bounded variation such
that:

1. the set {t € [a,b] : q(t) = 0} has a finite number of connected components;

2. if ¢ >0 onlb,c[C [a,b] and g(c) = 0 (or, respectively, q(d) = 0), then q is monotone
nondecreasing in a Tight neighbourhood of ¢ (or, respectively, monotone nonincreasing
in a left neighbourhood of d).

Let Ty and Ty be two unbounded continua in R% such that one of the following alternatives
holds:

(i) To C HY and Ty C H™ or, vice versa, 'y C H™ and Ty C H;
(#3) Ty and Ty are both contained either in H* orin H™.

Finally we suppose that T, NB[R,] # 0 # Ty N B[Ry, for some Ry, Ry > 0. Then there exists
a positive integer n* = n*(R,, Ry) such that:

1. if (i) holds, problem (2.27) has at least a solution z with ezactly n zeros in |a,b], for
every odd integer n > n*;

2. if (i1) holds, problem (2.27) has at least a solution T with exactly n zeros in ]a,b], for
every even integer n > n*.

Proof. Consider f(¢,z) = q(t)g(z) and apply Theorem 2.3.4: (f1) holds by Corollary 2.1.3
and (f2) holds by the assumptions we made on ¢ and g. B



Chapter 3

Superlinear equations with
negative weight

Our purpose here is to describe the qualitative behaviour of the solutions of the equation:

Z+q(t)g(z) =0,
when g is again superlinear in some sense, but the weight function ¢ is nonpositive. Like in
the preceding chapter, at first let us give a look to what happens in the case ¢ = —1, that is
we initially deal with the autonomous equation Z — g{z) = 0 or with the equivalent planar
system:

(3.1) {x -

¥ = g(z).

We suppose that the continuous function g satisfies the usual sign condition g(z)z > 0 for
all z # 0 and we call G(z) = foz 9(s)ds : G is a nonnegative function, is strictly monotone
increasing on [0, +oo[ and strictly monotone decreasing on | — oo, 0] and we assume also that
G(%o0) = +00, so that a continuous right inverse G;' : [0, +oo[ — [0, +0c0[ and a continuous
left inverse GZ' : [0,4o00[ =] — 00,0] are defined. A direct computation shows that each
trajectory (z(t),2(t)) lies in a level line of the energy function E(z,y) = $y* — G(z), that is
E(z(t),y(t)) = constant, so that the phase plane picture is the one represented in figure 3.1.
Each positive value e of the energy E gives rise to the two unbounded orbits which cross the
y-axis at (0,+/e) and at (0, —/e) and which correspond respectively to a strictly monotone
increasing solution and to a strictly monotone decreasing one, both with exactly one zero in
which z changes its concavity. However each of the two branches of the level set E =¢ > 0
is run by the corresponding solution in a time that is given by the following integral:

1 [t 1
— ———ds.
V2 /oo e+ G(s)

On the other hand the level set £ = —e, with e > 0, is filled by the two unbounded orbits
which cross the z-axis at (GZ'(e),0) and at (G'(e),0) and which correspond respectively
to a negative and concave solution z and to a positive and convex one, both with exactly
one zero of the derivative . Moreover the time that the point (z(t),z(t)) takes to run the
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Figure 3.1: The phase portrait for (3.1)

left orbit (that is the one passing by (GZ'(e),0)) is given by:
Gl e) 1
—ds,
—o  JG(s)—e

while the time needed to run the right orbit (the one passing by (G5*(e),0)) is given by:

2 —— 5.
cile) VG(s) —e

Finally the zero level E = 0 is formed by five different orbits: the constant one (z(t),z(t)) =0
and four unbounded branches which represents solutions that are asymptotic to (0,0) as the
time tends to 400 or to —oo. In other words, the set E = 0 is the union of the origin and of
the stable and unstable manifolds relatively to (0,0).

If we define: ‘
\f +co 1
2/ e ife>0
o —s0 e+ G(s)
(3.2) Ty (e) = /s Gt (—e) ) s +oo 1
2/ - ds+ 2/ ——_ds ife<0,
—o0 VG(s) +e Gi(-e) VG(s) +e

then 7, (e) represents the whole time of moving along the level line £ = e.

When superlinear functions g, like the powers |z|* 'z with a > 1, are considered, all
the integrals above are finite and tend to zero as the value of the energy e tends to infinity,
that is all the solutions of (3.1) with nonzero energy have a bounded maximal interval of
continuability, whose length tends to zero as the absolute value of their energy goes to infinity.
In particular every solution z presents a blow-up in finite time, in the sense that |z(t)| and
|Z(%)| tend to infinity as ¢t approaches some finite value ¢*. However, since there is the trivial
solution z = 0, there are also solutions of (3.1) with nonzero energy and arbitrarily large
maximal interval of continuability by the continuous dependence on initial data. If we fix
a closed interval, say [0, 1], and we consider the set Q) of the points p € R? such that the
solution of (3.1) with (z(0), %(0)) = p is defined on [0, 1], then we have that Qf is open by the
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continuous dependence on initial data, it contains the origin and its stable manifold (that is
the two unbounded branches of the set F = 0 which are contained in the second and in the
fourth quadrants) and, therefore, it is unbounded. Its boundary 8§ contains those points
p such that the solution with (z(0),2(0)) = p has exactly [0, 1] as right maximal interval of
continuability and presents the blow-up at time 1. Since the orbits which are farther from
the stable manifold correspond to solutions with smaller maximal interval of continuability,
it turns out that the set 2} develops around the stable manifold.

Finally we can consider the Poincaré map relatively to the system (3.1) on the interval
[0,1], that is the map IT which associates to a point p € R* the point (z(1), (1)) reached at
t = 1 by the solution of (3.1) satisfying (2(0),%(0)) = p : the domain of II is no more the
whole R?, like it happens for the system (2.2), but it has to be reduced to Q5. Let us consider
a straight line r through the origin in the phase plane and suppose that its equation can
be written as y = mz with positive angular coefficient m > 0. The points of r which lie far
from the origin, belongs to level sets of the energy function that correspond to large values
e : therefore II is defined only on a bounded portion of r. If we take the points ps = (s,ms)
of r letting s assume increasing positive values from s = 0, then the solutions starting from
ps at t = 0 are positive and monotone increasing in [0, 1], so that II(ps) belongs to the first
quadrant until s reaches a value s* such that ps~ € 80} and the solutions starting from pg»
has blow-up as ¢ tends to 1 from the left. Hence, the segment {p, : s € [0, s*[ } is transormed
by II into an unbounded curve in the first quadrant. Similarly there is s. < 0 such that
II(p,) describes an unbounded curve in the third quadrant as s varies in ]s., 0].

In the same way, one can consider the “backward version” of Qf, that is the set Qf of
points p € R? such that the solution z with (z(1),£(1)) = p is defined on [0, 1], and find that
09 possesses the same properties of Q) except for the fact that now 09 develops around the
unstable manifold (that is the two unbounded branches of the set £ = 0 which are contained
in the first and in the third quadrants) and the blow-up of solutions happens at t = 0 when
they start from p € 809 at ¢ = 1.

3.1 The sets of continuability

Let us come back to consider a general function ¢ € C%([a,d]), with ¢(t) < 0 and ¢ # 0.
About g : R — R we assume the usual sign condition:

(g1) g(z)z >0 Yz # 0,

and that g is locally Lipschitz continuous in order to have the local uniqueness for every
initial value problem associated to the equation

(3.3) Z +q(t)glz) = 0.

For each ty € [a,b] and for each p € R? let z(-;to,p) be the unique solution of:

(5.4 {x +q(t)g(z) =0

(z(to), (ko)) = p

defined in its maximal interval of existence, which is a neighbourhood of g, and let:

2(;;t0,p) = (z(;t0,p), ¥ (%0, ) = (@ (20, 0), (50, D))
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be the solution of the equivalent first order plane system:

T=y
(3.5) ¥ = —q(t)g(z)
(z(to),y(to)) =p.

Following the notation introduced in [23], for every t;,t2 € [a,b] we define:
(3.6) Q2 = {p e R® : z(t;¢1,p) is defined for all ¢ € [min{t1,t,}, max{t:, t2}]},

that is ng is the set of all the points p of the phase plane such that the solution which starts
at t = £ from p, is defined up to #s.

Burton and Grimmer proved in [21] that the integrability of 1/4/G(z) in a neighbourhood
of either —co or +oo is a necessary and sufficient condition in order to have at least one
solution of (3.3) which is not defined on the whole [a, b] and, therefore, explodes somewhere
in [a,b]. In [23] and [24] Butler assumed that 1/+/1 + G(z) is integrable on the real line,
which is equivalent to require that:

(see (3.2)), and proved that, if ¢ < 0 in Ja, b[, then the intersection of Q2 with every vertical
strip of the form K x R is bounded, K being a compact subset of R. In the next lemma we
are going to prove that, actually, the intersection of Qf with every straight line passing by
the origin is bounded, assuming that:

(92-) Jlim 75(e) =0,

Lemma 3.1.1 Let g : R — R be a locally Lipschitz continuous function satisfying (g1) and
(92—), let g : [a,b] =] — 00,0] be a continuous function with ¢ Z 0 and let r = {(r1u,rsu) €
R? : u > 0}, with 72 + 72 = 1, be an arbitrary half line starting from the origin. Then there
ezists L = L(r,q) > 0 such that (riu,rou) € Q2 U QL for all [u| > L.

Proof. We can assume without loss of generality that actually ¢(¢t) #Z 0 in every right
neighborhood of a and in every left neighborhood of b. In fact, if ¢(¢) = 0 on [a,a'] and on
[0/, 0], the Poincaré maps p — z(a'; a,p) and p — 2z(b'; b, p) homeomorphically transforms our
half line 7 in another half line, leaving the origin fixed. This reduction implies that both a
and b are now accumulation points of the set {t € [a,b] : ¢(t) < 0}.

Moreover it is sufficient to show that r N Q2 is bounded, since a simple inversion of the
direction of time in the equation transforms the other case r N Q} in the previous one.

We will show the proof of the fact that 7N Q2 is bounded when r is given by {(u, —hu) :
u >0} for some A > 0, since this turns out to be the most difficult case and the other ones can
be proved with analogous (or even simpler) calculations. We set z(t;u) = z(¢; a, (u, —hu))
to simplify the notation. Since z(-;u) starts positive in a, then it is convex and its graph lies
over the line which is tangent in ¢ = a, until it remains positive; hence we have that:

z(t;u) > (—hu)(t — a) + u, Yt € [a,a + %]

(3.7) z(tu) > =, Vit € [a,a+ —1—} ,

2h

NN
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whenever z(t,u) is defined. By our initial remark there exist an interval [a',b] Cla,a + =1
and a constant m > 0 such that:

—qt)>m,  Vield,V].

We will actually show that the right maximal interval of continuability of z(-;u) is contained
in [a,a’] for every u large enough: this will obviously implies the existence of L.

As a first step, we are going to find that, for all u sufficiently large, z(-;u) has an internal
minimum whose abscissa lies in ]a,a’]. Let us argue by contradiction and suppose that there
are a sufficiently small number n > 0 (for instance n < b’ — a’) and two sequences 0 < up —
+oo and t, €a’ + 7, such that &,(t) < 0 for every t € [a',t,], where z,(2) := B(t; un).

Therefore we have:

in(t)in(t) = —Q(t)g(mn(t))in(t) < mg(:l:n(t))ji‘n(t), Vie [a,>t?’i]'
Integrating this inequality between ¢ € [a',1,] and ¢, we obtain:

#2(t) > 2m[G(za(t)) — G(en(tn))] + T3 (tn)
> 2m[G(zn(t)) — G(zn(tn))] Vi€ [a',tn]-

Recalling that () < 0 on [a', t,], we have:

—&n(t) 2 V2m/[G(zn (1) — G(zn(tn))] Vi€ [a',tn]
and then: ]
L Zn (1) Vted,tn

LS o e ) = Gl

A second integration between o’ and ¢, leads to:

n < tp—a
< 1 @n(a’) dz
= Vom Janieny VG(@) - G@nltn))
< 1 +e0 dz
B f_ 2nltn) VG (@) = G(zn(tn))
< 7 (=G (zn(tn )))-

v

Thanks to our choices we know that z,(t,) > % by (3.7), so that z, (tn) = +oo asn — -+oo.
Hence we obtain a contradiction with hypotheses (g2—).

Now, let to = to(u) € ]a,b[, be the minimum point of z(-;u) for u sufficiently large. Then,
for such large values of u, we have:

1. @(to;u) = 0 and z(-;u) is a convex function, wherever it is defined in [a, b];
2. to(u) < a’;
3. z(t;u) > z(to;u) — 400 as u — 400, by (3.7).

Now we can show that the right interval of continuability of z(-;u) is contained in [a,a’]
for every sufficiently large u. Let us argue again by contradiction: let us suppose that
there are a number 0 < n < b — a’ and two sequences u, — +oo and t, €la’ + 7,V'[
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such that z,(-) := z(;u,) is continuable up to t, and to(u,) €la,a’] for every n (this
last condition can be fulfilled thanks to point 2 above). Then we have that %,(¢) > 0 and
T (t) > zp(a’) > 3, (to(un)), as t € [a’,t,]. Estimates, which are completely analogous to
those carried on above, lead to:

!

n < th—a

PR —
= Vom Juniw) VC@) - Gn@)
< g (<O@)

and this again leads to a contradiction with the assumption (g2-), since we have that
zp(a’) = +o0 as n — +00. B

3.2 Solutions asymptotic to zero

When g = —1 we have that the solutions with zero energy of & — g(z) = 0 are asymptotic to
the constant solution z = 0. In the following lemmas we consider continuous and nonpositive
weights ¢ which are defined on unbounded intervals like | — oo, a] and [b, +oo] and we give
conditions on ¢ and g in order to have a similar situation fir the equation:

z +g(t)g(z) = 0.
We will look for unbounded continua of points p € R? such that:

either t_l}gl z(t;a,p) = (0,0) or (t;b,p) = (0,0)

lim z
t—++4-00
(see (3.4) and (3.5) for the definitions of the Poincaré map z(¢;¢,p)). An essential tool
we need is a topological lemma which is proved in [109] and we state it here for imediate
reference.

Lemma 3.2.1 Let D ={(z,y) e R : 22 +y> < 1,-1<z < 1}, B, = (0,~1), P, = (0,1),
Qo = (=1,0) and Q1 = (1,0) and assume that there is a set C C D° = {(z,y) € R® :
22 +y? < 1} such that CND = C and every continuous curve in D from Py to P, meets C.
Then there is a connected set I' C C such thatTND =T and Qu, Q1 € T.

Here are the two lemmas about solutions which are asymptotic to the origin in the phase
plane. Let 4; = [0, +o0[ x[0, +00[, A2 =] — 00,0] x [0, +o0[, A3 =] — 00,0]%x ] — o0, 0], and
Ayq = [0, +oo] x ] — 00, 0] denote respectively the four closed quadrants in the plane.

Lemma 3.2.2 Let g : R — R be a locally Lipschitz continuous function satisfying (g1) and
let g :] — 00,a] =] — 00,0] be a continuous function such that Q(t) = f: q(s)ds is strictly
decreasing on ]| — 00, a] and Q(—o0) = +oo. Then there are two unbounded continua I'" C Ay
and I'™ C Az such that: '

(i) (0,0) €T+ NI,
(i) for allp e TT UL, z(-;a,p) is continuable on | — 00, a] and:

m z(tia,p) = lim it a,p) =0;
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(1ii) z(t;a,p) > 0 for every t €] — 00,a], and p € T'", while z(t;a,p) < 0 for every t €
]—co,al, andpe .

Lemma 3.2.3 Let g : R = R be a locally Lipschiiz continuous function satisfying (g1)

and let g : [b, +o00[ =] —00,0] be a continuous function such that Q(t) = fbt q(s) ds 1is strictly
decreasing on [b, +oo[ , with Q(+c0) = —oo. Then there are two unbounded continua Tt C A4
and I'™ C As such thai:

(i) (0,0) eI NI~

(i) for allp e TTUT™, z(-;b,p) is continuable on [b, +o0 [ and:

Jim o(bp) = lim (t5,p) = 0;

(i41) z(t;b,p) > 0 for everyt € [b,4co[ andp € I'", while z(¢;b,p) < 0 for everyt € [b,+o0 |
andpe ™.

It is sufficient to prove the second Lemma 3.2.3, since Lemma 3.2.2 can be deduced from
the first by an inversion of the direction of time in the equation.

Proof of Lemma 3.2.3. We will show only the existence of I'"", since I'™ can be found
in a completely symmetric way.

We claim at first that if v : [0,1] — A4 is any continuous curve with v(0) € R x {0}
and v(1) € {0} x Ry then there is § €]0, 1] such that:

(a) z(-;b,7v(3)) is continuable on [b, +co;
(b) z(t;b,~(5)) > 0 for all ¢ € [b, +o00[;
(c) [Mim 2(t;b,7(5) = lm_2(t;d,~(5)) = 0.

To this aim let W := {(z,y,t) : z > 0,y < 0 and ¢t > b} as subset of the extended phase
space and let us remark that every solution z, whose trajectory ¢ + (z(t), #(¢),t) remains in
W for t > b (as long as it is defined), must satisfy (a), (b) and (c). In fact, such an z must
be nonnegative and decreasing and, therefore, it satisfies (a) and (b) and:

lim z(¢t)=£>0  and lim #(¢) = 0.

t—+00 t—+o0

If £> 0, there is a constant m > 0 such that g(z(¢)) > m for all ¢ € [b, +co[. Then we can
evaluate:

+o00
—z(b) = /b Z(t)dt

+oco

/b [—a(®)g(z(t))dt
—+co

> m / [~ g(t))dt,

that is ¢ is integrable on [b, +-00[, which is a contradiction. Hence z satisfies condition (c),
too, and the problem is now finding 5 € ]0, 1] such that the trajectory of z(-; b, v(5)) remains
in W.
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Consider the semiflow 7 : (w, s) — w-s induced on the phase space X := {(z,y,t) : t > b}
by the system:

T=1y
v = —q(t)g(z)
t=1

and define the sets U := {(2,0,t) : 2 > 0and ¢t > b} and V := {(0,y,t) : y < O and ¢t > b}
which are contained in the boundary W of W relatively to X.

If wo = (20,0,t0) € U, we have that wg -s ¢ W for 0 < s < e. In fact, if £ > 0 is small
enough, we have that:

glz(to+s) >n>0 forall0<s<e

and a suitable 7. Hence:

Yo +5) —ylte) = — / qlto + O)g(alto + &) de

= (@) — Qto + 3))
> 0,

as Q(-) is strictly decreasing. Similarly, one can check that wp -s ¢ W for 0 < s < ¢,
when wy € V. On the other hand, if wg € W \ (U U V), then wy-s € W for all s, since
z(typ + 5) = y(to +s) = 0 for all s > b — ¢ and therefore, for each point wy of W, either
wg - s € W, for all s > 0, or there is a first s, such that wg - s € U UV. In this manner, we
have proved that U UV is the set of exit points for W.

The Wazewski lemma (see [32] for a similar argument) now implies that the map ¢, which
sends a point (7o, %0,%) € W to the first exit point from W of the positive semitrajectory
starting from (zg, o0, %), is continuous whenever defined.

We come back now to our curve v, recalling that +(0) = (zq,0), with zgp > 0 and v(1) =
(0,y0), with yo < 0, and we evaluate ¢ along (v(s), b). Clearly, ¢(v(0),b) = (v(0),b) € U and
d(v(1),b) = (v(1),b) € V. Assume, by contradiction, that we cannot find our 5 €]0,1[: then
(7(s),b) belongs to the domain of ¢ for every s € [0, 1] and therefore ¢(v(s),b) € U UV, for
all s € [0,1]. Observe also that {¢(y(s),b) : s € [0,1]} is a connected set, since ¢ and v are
continuous. But this is not possible since such connected set should be contained in U UV
and intersect both U and V, which are disjoint and open relatively to 8W. Thus, our claim
is proved.

Let now:

Ot = {pe Ay : z(;b,p) satisfies (a), (b) and (c)}.

We wish to find a connected and unbounded component of Q% which contains the origin,
by Lemma 3.2.1. To this aim let us define:

. Tty _ 2
P(z,y) = <21+(x—y)"”1 1+(z—y)2>'

It is possible to check that, using the notation of Lemma 3.2.1, ¥ is a homeomorphism of
Ay onto D\ {@1}, such that:

1. 4((0,0)) = Qo;

2. (R x {0}) ={(z,y) : z® +y? =land z > 0} and ({0} x Ry ) = {(z,y) : 22 +y% =
land z <0};
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3. if Z is any neighbourhood of Q1 then ¥ ~*(Z N D) is unbounded.

What we have proved above ensures that the set C' := % (Q") satisfies the hypotheses of
Lemma 3.2.1 and, hence, there is a connected T' C 'C such that Qu, @, € I'. Our search
is concluded letting Tt := ¢~ 1(T'); in fact, with our choices, I'* is connected, contains the
origin by the connectedness and the fact that (0,0) € TN C and it is unbounded by property
3 of 1. B

3.3 Blow-up of solutions

In the autonomous case Z — g(z) = 0, with g superlinear and such that g(z)z > 0 for every
z # 0, we have seen at the beginning of this chapter that the solutions which start from
points p € 900 at time ¢t = a, have [a, [ as right maximal interval of continuability and
blow up as ¢ tends to b; on the other hand the blow-up is at ¢ = a, if a solution starts from
p € 00F at t = b. Hence we are going to give sufficient conditions in order to obtain similar
situations when a continuous weight ¢ : [a,b] —] — o0, 0] is considered in the equation:

(3.8) i+ q(t)g(z) = 0.

At first we observe that, when g < 0, a necessary assumption for the blow-up at a certain
t = tp is that ¢y is an accumulation point of the set of ¢’s where ¢ is strictly negative. Indeed,
if g(t) = 0 for all t € [ty — &,y + €], then every solution of (3.8) satisfies

Z(t)=0 Vi€ [to—e,to+e],

so that = is an affine function in [to — &, + ¢] and the blow-up clearly cannot happen
around #g. Actually we will see that such a condition is also sufficient for suitable superlinear

functions g.

However in this section we consider more general conditions about g then in the previous
ones. Namely we are not going to consider locally Lipschitz continuous functions and we
will not require the sign condition g(z)z > 0 for every = # 0. In fact the sign conditions we
will employ are localized around 0 and co in the following way:

(g1+) there are two positive constants ag < Bp such that:

g(z) >0 \/ﬁ: €10, ao] U [Ba, +o0[;

(g1—) there are two positive constants ag < By such that:
g(z) <0 Vz €] — 0o, —fo] U[—a0,0].

Since our g is just continuous, we will have no local uniqueness for the intial value problems
associated to the equation (3.8). Anyhow we will need at least the uniqueness of the zero
solution (our functions will satisfy g(0) = 0) and this is supplied by the two conditions:

(90+) / \/@(T ds = +00
and

(go_) . 8 \/,—

ds = +o0,
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with G(z) = [ g(s)ds, as shown by Propositions 3.3.1 and 3.3.2 below. The conditions
(90-) and (g0+) are weaker than assuming that the ratio g(z)/z is bounded in a neighbour-
hood of the origin, since they clearly hold if |g(z)| < Ljz| for all |z| < a, for some positive
a.

Proposition 3.3.1 Assume that g : [0, +oco[ — R s a continuvous function satisfying g(0) =

0, (g0+) and (g1+) and let q : [a,b] — ]—oc0,0] be continuous. Let x be a nonnegative solution

of (3.8) defined in an interval [t1,t2] C [a,b]. If to € [t1,t2] is such that z(to) = [gnin]z and
1,02

Z(to) = 0, then z(to) > 0, unless z = 0.

Proof. I zpin := z(to) > ap the proposition is already proved, therefore we consider
the case Zmin < ag. Without loss of generality we can also suppose that either z(t) > 0
in Jto, so[ with z(s2) < ag or () < 0 in Js1,to[ with z(s1) < ap (for some 51 < tp < s2)
since, if  Z 0, there are s; and sz such that t1 < s1 < tg < 53 < t2 and o 1= Ty <
max{z(s1),z(s2)} < ap and we could substitute ty either by max{t € [t1,t2] : z(¢) = ZTmin}
or by min{¢ € [t1,ts] : Z(t) = Zmin}. We develop the proof when the first situation occurs
(namely, £(¢) > 0 in ]tg, s2[ with z(s2) < ag), the other one being analogous.
We have that:
#(t) < llallcog (),

for all ¢ € [to, 52]. Multiplying by #(¢) and integrating on [to, ] C [to, S2] yields that:
2(t)* < 2[lalleo(G((2)) ~ G(Zmin))

for all ¢ € [to, s2]. Hence,

< 1 * 1
/ < eyt S VMo~ 10) < VAl

From (g0+) we have immediately that zmi, > 0. |

In a completely symmetric way it can be proved the following analogous result.

Proposition 3.3.2 Assume that g :]—c0,0] = R is a continuous function satisfying g(0) =
0, (g0—) and (91—) and let q : [a,b] = ]— o0, 0] be continuous. Let z be a nonpositive solution
of (3.8) defined in an interval [t1,12] C [a,b]. If to € [t1,%2] is such that z(tp) = max z and

t1,t2]

z(to) = 0, then z(ty) < 0, unless z = 0.

Now we are in position to state and prove the main results about blow-up solutions:
we have divided them into three lemmas about solutions which explode at ¢ = b and into
the relative three lemmas about those exploding at ¢ = a, in order to exhibit which set of
hypotheses is sufficient in each situation. As a matter of notation, in this section 75, m, :
R?> — R will denote the projections of R? onto the z-axis and the y-axis, respectively.

Lemma 3.3.3 Let g : [0, +oo[—= R be a continuous function satisfying g(0) = 0, (g1+),
(g0+) and:

(3.9) lim

+0o0 1
Hmﬁfc o=
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and let q : [a,b] —] — c0,0] be a continuous and bounded function such that:

be {tela,b[:q(t) <0}

Then, there is an unbounded continuum T'Y C [0, +oo] xR, with 7 (T'}) = [0, +oo[, such
that for each (zo0,y0) € I'F there is a nonnegative solution z(-) of (3.8) with z(a) = o,
@(a) = yo, z(t) > 0 for all t €la,b] and z(t) — +oco as t — b™. Moreover, the localization of
the branch T in the phase plane can be described as follows: there is 6 >0 and:

(i) there is € > 0 such that m,(T'F N ([0,e[ xR)) C 4, +oof,
(i) there is K > 0 such that my(T'F N (1K, +oo[ xR)) C] - o0, —4[.

We note that the substitution e = G(c) shows that the integral in (3.9) represents the time
needed to run the trajectory of the planar autonomous system:

L
y=—g(z)

which passes through (G7'(e),0) and is contained in the right half plane (see figure 3.1).
Therefore (3.9) is implied by the stronger condition:

Ao (€ =0

(cf. the definition of 7, in (3.2)).

We remark also that, even if g is not defined in ¢t = b, it has sense to consider solutions
of (3.8) in the entire closed interval [a,b] : such solutions might not be twice differentiable
at t = b, but will surely have bounded C?-norm in ]a, b[ .

The proof of this lemma will be carried out via the following plan. First of all, we fix
a number 8 > fo and take n € N with n > . Then, we consider the two-point boundary

value problem:

z(a)=r
z(b) =n

{ i +g(t)g(z) =0
(3.10)

with r € [0, 8] considered as a parameter. Using the Leray—Schauder Continuation Theorem
[70] and a connectivity argument ([80]), we can find a compact connected set Sn C [0, 8] x
C*([a,b]) of positive solution pairs (r,z) of (3.10) such that for each r € [0, 5] there is
(r,z) € Sp, with z(a) = r. From the assumptions, it is also possible to see that there is N =
N(B) > 0, with N independent of n, such that |2(a)| < N, for all z € S, . Thus, if we denote
by I, the image of S, under the continuous map [0, 8] x C* ([a, b])(r,z) = (r,2(a)) € R xR,
we have that ¥, C [0,8] x [=N,N] is a compact connected set, with m;(3,) = [0, 8] and
for each (zo,yo) € En, there is a solution of (3.8) with z(a) = o, #(a) = yo and z(b) = n.
As a next step, we let n — +oo, and after some computations, we prove that there is a
compact connected set ¥ = £(8), & C [0,8] x [-N, N], with 7, (X) = [0, 8] and, for each
(zo,y0) € T there is a solution z(-) of (3.8) on the interval [a, b[, with z(a) = 2o, Z(a) = yo
and z(b~) = 4oo. Finally, we make this construction for § = k, letting k — +oo. Having
denoted by T'j, the corresponding continua X(k), we prove that the I'y “converge” to an
unbounded continuum [} with the desired properties. The convergence of the continua in
the first and the second steps of the proof is based on a topological lemma [62, p.171] and
on some locally uniform estimates for the solutions (see [46] for a similar argument). In the
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course of the proof of these intermediate steps, we obtain some additional properties of the
solutions that will be used to make more precise the localization of the continuum I'}.

For the reader’s convenience we recall here the definitions of liminf and limsup of a
sequence of sets and the topological lemma on the connectedness of the lim sup of sequence
of continua in comact metric spaces.

Definition 3.3.4 Let {C,} be a sequence of subsets of a topological space X. We say that
a point p € X belongs to lir_E }_nf C,, if for every neighbourhood V' of p there exists ng such
ke3 o

that:
VvNne,#0 Yn > ng.
On the other hand, we say that p belongs to lim sup C), if for every neighbourhood V of p

n—-+4oco
we have that:

Vne,#0 for infinitely many n € N.

Roughly speaking, lir_r>1 1iLnf Cyp, is made of all the points which are limit of converging
i) o

sequences {pn} such that p, € C,, for every n, while limsup C), contains the limit points of
n—+-+00

converging subsequences of the sequences of the form {p,} with p, € C, for every n.

Lemma 3.3.5 [62, Theorem 6, §47, II, p.171]. If {Cn} is a sequence of continua of a
compact metric space X then:

liminf C, # 0 B limsup C,, 1s a continuum.
n—+-+0co n—-+00

Clearly, if X is a compact metric space and {C,} is a sequence of continua of X, then

we can select a sequence {p,} with p, € C,, for every n; since X is compact, we can find a

subsequence {py, } such that pg, — po € X. Therefore we have that ligl _Ii_nf Cy, # 0 and, by
n o.¢]

Lemma 3.3.5, limsup Cf,, is a continuum. Hence every sequence of continua of a compact
n—r-400
metric space admits a subsequence whose limsup is a continuum, too.

The following proposition provides some estimates which will be needed in the proof.

Proposition 3.3.6 Assume that g : [0, +co[ = R is a continuous function satisfying g(0) =
0 and (g0+) and (91+) and let g : [a,b{—] — 00,0} be continuous and bounded. For any
v > B and any nonnegative solution x of:

{ Z + Aq(t)g(z) =0

z(a) =,

for some A € [0,1] andr € [0, 8], and z defined in in a right mazimal interval of continuability
contained in [a,b] there is t* = t7, |, €la,b] such that:

[a>t=(kz,’y)] ={t€a,0] : z(t) <7}

Moreover, for each € > 0 there is M. = M.(v), with M, independent of x and of X such that
if tz‘m 5y 2ate, then:
Zz(t)] < Mg, VYté€la,t*]
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Proof. Consider v > 8. If z(t) < v for all t € [a,b], we have t(; o) = b. Otherwise, if there
is some £ € Ja, b] such that () > v, by the fact that () > 0 for all ¢ where z(t) > o, and
z(a) < B < 1, it is easy to prove that there is a unique ¢ = ¢* € ]a, [ such that z(t) < v for
all t € [a,t*[ and z(t) >~ for all t > ¢t* where z(t) is defined and this ends the proof of the
first part of the statement.

We have that |#(2)] < ||g|lec K, for all ¢ € [a,t*], where K = K () > max{[g(s)] : 0 < s <
v}. Since z(t*) > z(a), we have at least one point where £ > 0. Hence, if # < 0 somewhere,
then also # = 0 at some point. If we assume that ¢ > 0 on [a,%*] and also t* > a + ¢, we
immediately see that minj, & < /€. Thus, in any case, there is some t € [a,t*] where
|£(£)| < «/e. Finally, using the bound on Z, we have that:

j6(8)] < Mo(y) = 1 + (b~ a)llgllco s, V1€ [0,¢7]

and also the second part of the statement is proved. |

Proof of Lemma 3.3.3. For convenience we extend g on the whole real line just by
requiring that g(z) < 0 for all z < 0. Let us fix 8 > B and consider the boundary value
problem:

(3.11) z{a) =7

z(b) =n

with A € [0,1], 7 € [0,8] and n > B. Observe that every solution of (3.11) is such that
z(t) < z(b) for each t € [a, b by (91+) and the fact that z > So, and must be nonnegative
since we extended g to be negative on | — oo, 0[ (a solution which starts nonnegative and
becomes negative a first time at some ¢ = to, should remain negative for all ¢ > tg); hence
we have that z(t) > 0 for all ¢t € ]a, b[ by Proposition 3.3.1.

It is known that we can write (3.11) as an operator equation of the form:

{ i+ Aa(t)g(z) = 0

b
2(8) = o (r, 2)(t) = helt) = A / G(t, 5)a(s)g(z(s)) ds,

where G is the Green function for the homogeneous two-point boundary value problem:

r=w
z(a) =z(b) =0
and h,.(t) = r+ 2= (t—a). The operator ¢ : [0, 1]x[0, 5] x C1([a, b]) = C*([a, b)) is completely
continuous {with respect to the C'-norm) and any solution of the operator equation:
z = px(r,3),
with A € [0,1] and r € [0, ] satisfies:

vVt € [a,b],

0<z(t) <n+1
|12(t)] < Mn

with My, = M(3_q)(n + 1) and M(p_q)(n + 1) defined according to Proposition 3.3.6, (note
that v = n + 1 and therefore t* = b). Now, with respect to the open and bounded set
Q ¢ C'([a, b]), defined by:

Q={zeCab): -1 <z(t) <n-+1and |(t)] < My Vi€ [a,b]},
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we have that:
deg(I — ¢1(r,-),Q,0) = deg(I — wo(r,-),,0) = deg(l,Q, h,) = 1.

By the Leray-Schauder Continuation Theorem applied to the equation z = ¢;(r,z) pa-
rameterized with respect to r € [0,5], we have that there is a compact connected set
S € [0,8] x C*([a,b]) such that for each r € [0, 5] there is z € C*([a, b)), with (r,z) € S,
and z = ¢1(r,x), that is, z is a solution of (3.10). The projection of S, via the operator
(r,z) = (r,2(a)) is a compact connected set T, C [0, 8] x [— My, My].

Cramv 1. For each integer k£ > 1/(b— a), there are Ly > 8 and j; such that every solution
¢ of (3.10), with r € [0, f], satisfies z(¢) < Ly, for every ¢t € [a,b — 1/k] and each n > j; .

Assume, by contradiction, that for some & there is a sequence of solutions z,, of equation
(3.8) such that z¢,(a) € [0, 5], ¢, (b) = £n and x4, (b~ 1/k) = max, p_1/4) T, — +00 as
n — +oo. By the assumption on ¢, there is a non trivial interval [t1,t2] C [b — 1/k,b] and a
real number m > 0 such that g(t) < —m for each t € [t1, %3] so that we have &,, > mg(z,,)
and # > 0 on [t1,t2]. Hence we have that:

d 1.,
T 5wzn(t)—mG(xen(t)> >0 Vte [t ts]

and therefore:

263.(0) =G, () > 4% (h) ~ mG(az, (1))

> —mG(mgn (tl)) Vi € [tl,tg].

From this, we have that:

gy, (1) > V2m(G(ze, () = Glze, (t1))) Vi€ [, 1]

and then, integrating on [¢1,¢2] and using (3.9), we find that:

1 & 1
Vmits —t1) < —= dz —+ 0, asn — +oo,
P VR ey ) V/G(@) = Gl (0))

since z;, (£1) > o, (b — 1/k). Hence, a contradiction is found and the claim is proved.

Cram 2. For each v > §, there are ¢ty €la,b[ and an index ¢, such that z(t) > ~ for all
t € [ty,b] and each n > i, if z is any solution of (3.10) with r € [0, A].

Assume, by contradiction, that there is v > £ and a sequence z,, of solutions of equation
(3.8) such that 24, (a) € [0, 8], z¢, (b) = £, — 400 as n — +oo and a sequence t,, — b with
Ty, (tn) = 7. Without loss of generality, we can assume that t,, > d for some fixed d € ]a, b[
and for all n. By Proposition 3.3.6, there is a constant M = My_,(7) such that |z}, (t)] < M,
for all ¢ € [a,t,]. Using Z < ||¢llcog(z) and £ > 0 on [t,, b], we have:

d |1,

|53, ~ lalleGlae, ()| <O Vi€ [tn,b]
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and therefore:

2520 ~ lalloGlae, () < 582, () = gl Glae, (30)
< M gleC() Yt € [tn,b].

Hence:

g, (8) < VM2 +2qlleo(Glae, (1) = G(7))  VEE [tn,l]
and then, integrating on [t,, b}, we find that:

£n 1
L VM2 +2||g]loo (G(z) — G(7))

de <b—1t, = 0.

Hence, a contradiction is found and the claim is proved.

From Claim 1 we know that if we fix an arbitrary constant b; €]a,b[, there is a constant
R = R(b1) > f such that if n is sufficiently large, then z(¢t) < R for all ¢t € [a,b;] and
any solution of problem (3.10) with r € [0, 8]. Now, we apply Proposition 3.3.6 for v = R
and taking n sufficiently large ((b) = n > R) in order to have t* > b; . Hence there is
N = M3, —0)(y) such that |2(t)| < N, for all t € [a, b;]. This proves that:

En C [Oaﬁ] X [_N:N]

for each n sufficiently large. Being the %, all contained in a compact set, we can take
a subsequence (that we still indicate with (X)), such that liminf %, # § and, therefore,
n-—+00

Lemma 3.3.5 ensures that:

E(IB) = hmsup Xp C [07/6] x [_NaN]

n—r00
is a continuum. Note that 7, (X(8)) = [0, 8].

Next, we describe how are the solutions of (3.8) with initial point in X(4). Let us take
(r,s) € Z(B). By assumption, there is a sequence (r;,,s;,) € X, which converges to (r, s).
For each n, there is a solution z;, of (3.8) with z;,(a) = rn, 25, (a) = s, and z;,(b) = jn .
From Claim 1 and Claim 2, via Ascoli~Arzeld’s theorem and a standard diagonal argument,
we have that a subsequence of the z,, converges (C?-uniformly on compact subsets of [a, b[)
to a solution % of (3.8) defined on [a, b[, with Z(a) = r, Z(a) = s and Z(b~) = +co. Therefore,
we have proved that:

e for each v € [0,8], there is s € [—N, N]| such that (r,s) € Z(B) and for each (r,s) €
X(f3), thereis a solution z of equation (3.8) such that z(a) =71, 2(a) = s and z(b™) =
+co.

Our last goal is to analyze what happens when § — +co. First of all, we note that the
arguments in the proofs of Claim 1 and Claim 2, are valid for the solutions of (3.8) with
r € [0, 8] and z(b™) = +oc0. Hence we have that:

e For each > fg there is N = N(B) such that for each 81 > B it holds that:

S(B) N (0,6l xR) C [0, 5] x [-NV, N].
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In fact, from Proposition 3.3.6 and Claim 2 (applied with v = § + 1) we see that any
solution of (3.8) with initial point in ¥(81), but with z(a) € [0, 8] satisfies |&(a)| < N(8) =
M4—q)(B+1), for afixed d €]a,b[. We take now § = k and define I'y := X(k) and Nj, = N (k).
Moreover, by a standard argument from real analysis, we can find a continuous function f :
[0, +-co[ = [0, +oo[ such that any solution z of (3.8) satisying z(a) = r and (z(a),z(a)) € T
for some k > 0, is such that |(a)| < f(r).

Consider now k — +co. Using again Lemma 3.3.5, we can prove that there is a closed
unbounded connected set I'7 C [0, +oco[ XR “joining” z = 0 with £ = +oco0 in the phase plane.
Actually, to enter rigorously in the setting of the lemma, which works for compact metric
spaces, one should first compactify the set 4 = {(r,s) € [0,+oo[ xR : |s| < f(r)}, adding a
point at infinity: Ap := AU {peo}. Then limsupI'y C Ao contains a compact connected set

k—co
Z C B[1] joining z = 0 and pe. If we consider now Z \ {peo }, we see that it must contain a
connected component I'T which is closed relatively to A and satisfies I'f = I'} U {poo}, s0
that 7 (T'F) = [0, +o0[.

By the way in which I'} is obtained and from the properties of the solutions with initial
value in T, for t = a, we have that for each 7 > 0, there is s € R, with (r,s) € I'{ and also for
each (r,s) € T’} there is at least one solution  of (3.8) with z(a) = r, 2(a) = s € [ f(r), f(r)]
with z(¢) defined in [a, b[ and such that lim; ;- z(t) = +o00.

As a last step, we observe that if z(a) = r tends to zero, then #(a) cannot be too small,
otherwise, z(#) remains small for all ¢ € [a,b]. To check this, it is sufficient to repeat a
computation similar to that at the end of Proposition 3.3.1. Analogously, we can prove (via
a similar computation) that if z(a) = r tends to infinity, then %(a) must be at least a little
negative, otherwise, we would have a blow up of the solution before ¢ = b. These remarks
permit to check (i) and (77) of Lemma 3.3.3 and thus we conclude the proof. |

In a completely simmetric manner a “negative” version of Lemma 3.3.3 can be proved
(and we omit the proof) assuming that the time to run only the trajectories of:

!

which pass through the points like (c,0), with ¢ < 0 (see figure 3.1), tends to zero as ¢ goes
to —oo. Of course, the condition:

m, 770 =0

is enough for (3.12), below.

Lemma 3.3.7 Let g :] — 00,0] — R be a continuous function satisfying g(0) = 0, (g1—),
(g0—) and:

(3.12) lim

¢ 1
Jam \/2—/_00 w————G(s) eTR ds =0,

and let g : [a,b[ =] — 00,0] be a continuous and bounded function such that:

be {t€la,bl: g(t) < 0}.

Then, there is an unbounded continuum I'; C]—o00,0] xR, with 74(I';) =]—00,0], such that
for each (zg,v0) € T'; there is a nonpositive solution x(-) of (3.8) with x(a) = zo, £(a) = yo,
z(t) < 0 for all t €la,b] and z(t) = —oc0 ast — b~. Moreover, the localization of the branch

T in the phase plane can be described as follows: there is § > 0 and:
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(i) there is € > 0 such that my(I'; N (] —¢€,0] x R)) C]— o0, —0],
(ii) there is K > 0 such that my(T7 N (] — oo, —K[ xR)) C]d,+o0].

The next result concerns the existence of continua of blow-up solutions which have exactly
one zero in [a, b[.

Lemma 3.3.8 Let g : R = R be a continuous function such that g(0) = 0 and satisfying
(g1+), (g1-), (g0+) and (g0—) and let q : [a,b[—] — 00,0] be a continuous and bounded
function such thot:

be {te€la,b[: q(t) <0}
Then, the following facts hold:

(3) if (3.9) holds, then there is an unbounded continuum I', C [0,4+oco[ xR such that
for each (zo,y0) € I’y there is a solution z(-) of (3.8) having ezactly one zero in
[a,b] and satisfying z(a) = =zo, £(a) = yo, and z(t) — +co as t — b™; moreover
7N (]—=o0,—fo] xR) C]—o00,—Po] [0, +00] and m,(I';) =] — 00, 0];

(1) if (3.12) holds then there is an unbounded continuum I't C [0,+oco[ xR such that
for each (zo,y0) € I'T there is a solution z(-) of (3.8) having ezactly one zero in
la,b] and satisfying x(a) = zo, #(a) = yo and z(t) = —oo as t — b~; moreover
' N ([Bo, +oo[ xR) C [Bo, +oo[ X | — 00,0] and 7 (T'F) = [0, +o0].

Proof. The proof is quite similar to the one of Lemma 3.3.3 and we are just going to
outline the main steps to be followed in order to prove the parts of the statement concerning
['7. For '] everything is quite symmetric.

At first we want to find a continuum of solutions of the boundary value problem:

& +q(t)g(z) =0
z(a) =7
{ z(b) =n

(3.13)

with r € [-$,0] and with fixed 8 > fy and fixed n > §. To this aim we consider again the
family of boundary value problems:

&+ Aq(t)g(z) =0
z{a) =71
z(b) =mn -

(3.14)

with A € [0,1] and r € [—3,0]. Observe that every solution of (3.14) is such that —f3 <
z(t) < n for each t € [a,b]. Indeed, if z(tg) < —f, then g(z(¢)) < 0 around ¢, by (g1-) :
hence #(¢) < 0 and ¢ is monotone decreasing around tp; in particular, if 2(ty) > 0, z is
increasing on [a, o], while, if #(tg) < 0, = turns out to be decreasing on [ty,b]. Therefore
we have either z(a) < —f or z(b) < —f, that is a contradiction. In a similar manner it is
possible to show that z(tp) > n cannot hold by (gl1+).

We write (3.14) as an operator equation of the form:

b
£(t) = a(r,2)(t) = ha(t) ~ A / G(t,)a(s)g(x(s)) ds,

as in the proof of Lemma 3.3.3.
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Any solution of z = @, (r,z), with X € [0, 1], 7 € [-8,0] and n > B, satisfies zlleo < 7.
Moreover, for every solution z of (3.14) there is to €]a, b[ such that:

n-—7r 2n
<

0<&(t) = b—a ~b—a’

by Lagrange’s theorem, and we can estimate |#| as follows:

t
/ﬁ 14(s)] ds

b
< 2l | lota@)lds

< Mn Vt E [a'u bL

|2 (2)]

IN

i:(to) +

where we have set: 5
n
= — o b— ax S)i.
My = 22+ o 6 — @) max lo(s)]

Now, with respect to the open and bounded set {2 C C*([a,b]), defined by:
Q={zeCab):|z(t) <n+1land|2(t)] <Mn+1 Vi€ [a,b]},
we have that:
deg(I — pa(r,-),Q,0) = deg(l — ¢o(r,),Q,0) = deg(,, hr) = 1,

for each A € [0,1]. If we consider r fixed and we apply the Leray—Schauder Continua-
tion Theorem to z = ¢y (r,z) with A € [0,1] as a parameter, we find a continuous family
{22 }xepo,) € C*([a,B]) of solutions with 2%(t) = hr(t); therefore z° has a unique simple
zero in [a,b]. If z* has more than one zero, then by a continuity argument there should be

a X €]0,1] and to € [a,b] such that z*(to) = 2*(to) = 0 with z* # 0 : this would be in
contradiction with Propositions 3.3.1 and 3.3.2 by (g0+) and (g0—). We can conclude that
7! has exactly one zero in [a, b]. '

On the other hand, by the Leray—Schauder Continuation Theorem applied to the equation
z = ¢1(r,z) parametrized with respect to r € [~f,0], we have that there is a compact
connected set Sn, C [—8,0] x C*([a, b]) such that for each r € [, 0] there is z € C'(la, b)),
with (r,z) € S, and z = @1(r,z), that is, z is a solution of (3.13) with exactly one zero
in [a,b]. The projection of S, via the operator (r,z) = (r,%(a)) is a compact connected set
L, C [=8,0] X [=Mn, Mp).

The same arguments used in the Claims 1 and 2 in the proof of Lemma 3.3.3 imply the
following analogous claims, respectively.

CLAIM 1. For each integer k > 1/(b— a), there are Ly > 8 and ji such that every solution
z of (3.13), with r € [, 0], satisfies |z(t)] < Ly for every € [a,b —1/k] and each n > ji .

CralM 2. For each v > B, there are ¢y é]a,b[ and an index 4, such that z(t) > v for all
t € [t,,b] and each n > iy, if = is any solution of (3.13) with r € [—4,0].

From now on the proof proceeds almost in the same way. It is possible to show that there is
N >0 such that
L, C[-B,0] x [N,N]  Vn,
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hence, up to pass to a suitable subsequence, we have that ligl 4i_nf Y, # 0 and that:
7 oo

%(B) = limsup X, C [-5,0] x [N, V]
n—+-00
is a compact continuum with 7, (Z(8)) =[-8, 0].

Then it is possible to show that for each r € [—f,0], there is s € [-N, N} such that
(r,s) € ©(B) and for each (r,s) € L(f), there is a solution x of equation (3.8) with exactly
one zero in [a,b] and such that z(a) = r, #(a) = s and z(b™) = +co.

Finally we let 8 go to infinity: it can be proved that for each § > fo there is N = N(f)
such that for each f; > § it holds that:

Z(B1) N ([=5,0] x R) C [=4,0] x [=IV, N].

We take now B = k € N and define I'; := £(k) and Ny = N(k). By a standard argument
from real analysis, we can find a continuous function f :] — c0,0] — [0, +oo[ such that any
solution z of (3.8) satisying z(a) = r < 0 and (z(a),2(a)) € I'y for some k > 0, is such that
|#(a)| < f(r). Using again Lemma 3.3.5, we consider the set A = {(r,5) €] —00,0] xR : |s| <
f(r)} and its compactification A9 = AU {pso} obtained by adding a point pe, at infinity, so
that [\ is now a sequence of compact continua in 4. Then we find a continuum I'; , which
is closed relatively to A and satisfies I'y = I'J U {peo} (the closure here is with respect to
Ag) and 7, (T'7) = [0, +o00[.

By the way in which I'] is obtained and from the properties of the solutions with initial
value in Ty, for t = a, we have that for each r < 0, there is s € R, with (r,s) € I'; and also for
each (r, s) € I'; there is at least one solution z of (3.8) with z(a) =7, Z(a) = s € [~ f(r), f(r)]
with z(t) defined in [a, [ and such that lim; ;- 2(t) = -+o0.

If z is a solution of (3.8) such that z(a) < —fp and #(a) < 0, then it can be shown
that actually z is decreasing wherever defined by (g1—) and cannot satisfy z(b™) = +o0.
Therefore, if (r,s) € ['; and r < fp, then s must be positive, proving that I'; N(]—o0, —fo] x
R) C]— 00, —fo] x [0, 400]. |

It is now possible to state analogous results about continua of solutions which present
the blow-up at ¢ = a : they can be obtained simply by the corresponding Lemmas 3.3.3,
3.3.7 and 3.3.8 and by an inversion of the time direction.

Lemma 3.3.9 Let g : [0, +oo[ = R be a continuous function such that g(0) = 0 and satisfy-
ing (g1+), (g0+) and (3.9) and let ¢ :]a,b] —]—c0,0] be a continuous and bounded function
such that:

a € {t €la,b[: q(t) < 0}.

Then, there is an unbounded continuum T'{ C [0, +oo] xR, with mz (T'}) = [0, +ool, such that
for each (zo,y0) € Ty there is a solution z(-) of (3.8) with z(b) = xo, £(b) = yo, z(t) > 0
for all t €la,b] and z(t) — +0o0 as t — a*. Moreover, the localization of the branch T'{ in
the phase plane can be described as follows: there is 6 > 0 and

(i) there is € > 0 such that my(T{ N ([0,&[ xR)) C] - o0, =4[,
(ii) there is K > 0 such that m,(T'; N (1K, +oo[ xR)) C]4, +co.
Lemma 3.3.10 Let g :] — 00,0] — R be a continuous function satisfying g(0) = 0 and

satisfying (g1—), (g0—) and (3.12) and let q :]a,b] =] — 00, 0] be a continuous and bounded
function such that:

a€ {t€la,b[: q(t) < 0}.
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Then, there is an unbounded continuum T'; C]—o0,0]x R, with 7,(T'y’) =]—00,0], such that
for each (zq,y0) € T there is a nonpositive solution z(-) of (3.8) with z(b) = zo, £(b) = Yo,
z(t) < 0 for all t €]a,b] and z(t) = —o0 ast — at. Moreover, the localization of the branch
L', in the phase plane can be described as follows: there is § > 0 and:

(i) thereis € > 0 such that my(Ty N (] —¢,0] x R)) C8, +oof,
(i) thereis K > 0 such that my(Ty N (] — oo, —K[xR)) C] — o0, —4[.

Lemma 3.3.11 Let g : R — R be a continuous function such that g(0) = 0 and satisfying
(g1+), (g1-), (g0+) and (g0—) and let g :]a,b] —] — 00,0} be a continuous and bounded
function such that:

a € {t €la,b]: g(t) < 0}.
Then the following facts hold:

(i) if (3.9) holds, then there is an unbounded continuum I'y C] = 00,0] x R such that
for each (zo,y0) € T there is a solution z(-) of (3.8) having ezactly one zero in
la,b] and satisfying z(b) = zo, £(b) = yo and z(t) — +oo as t — at; moreover
T N (] - o00,~fo] x B) C] — 00, —f] x [0,+00[ and mz(T) =] — o0, 0];

(i) if (3.12) holds, then there is an unbounded continuum Iy C [0, +oo[ xR such that
for each (zo,y0) € Ty there is a solution z(-) of (3.8) having ezactly one zero in
la,b] and satisfying x(b) = zo, £(b) = yo and z(t) = —oco as t = ab; moreover
T N ([Bo, +oo[ xR) C [Bo, +00[ x ] — 00,0] and 7o (L) = [0, +o0[.

An immediate consequence of Lemma 3.3.3 and Lemma 3.3.9 can be given in the case
when g satisfies g(0) = 0, (g0+), (g1+) and (3.9) and g is a bounded continuous function
defined in ]0,1[ and such that:

(q1) g(t) <0 for all £ €]0,1[ and 0,1 € {t €]0,1[: ¢(t) < 0}.

In fact, one can apply Lemma 3.3.3 on [a, b[ = [1/2, 1], obtaining the unbounded continuum
'} for the solutions blowing up at ¢ = 1, and 3.3.9 on ]a,b] =]0,1/2], obtaining the un-
bounded continuum T'§ for the solutions blowing up at ¢ = 0. Using a result like [92, Lemma
3], one can prove that the continua I' and I'{ intersect at some point (7,3) €]0, +-oo[ xK.
Consequently we have the following:

Theorem 3.3.12 Let g : [0, +oo[ — R be a continuous function satisfying g(0) =0, (g0+),
(g14) and (3.9) and let q :]0,1[toR be a bounded and continuous function satisfying (ql).
Then, the problem:

(3.15) { +q(t)g(z) =0

z(0T) =z(17) = +o0
has at least one positive solution.

Remark 3.3.13 With respect to preceding works dealing with problem (3.15), we don’t
assume that g(s) > 0 for all s > 0, but only for the s in a neighborhood of zero and
infinity. Moreover, our assumption (3.9) is more general than other growth conditions at
infinity previously considered in the literature. In particular it is always satisfied if g(s) is
monotone nondecreasing for all s sufficiently large and [ T Q(s)"12 ds < 400 (see Section
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3.4). As to the sign condition on the weight q(t), we observe that (g1) holds true when ¢(-) is
continuously defined on [0, 1], with ¢(¢) < 0 for all ¢ € [0,1] and ¢(0), g(1) < 0, but it may be
satisfied also when ¢(0) = 0 or ¢(1) = 0, provided that in any neighbourhood of 0 and 1 there
are points where ¢ is negative. Such a weak form of sign conditions was recently considered
by Cirstea and Radulescu in [30] for PDEs, in the case of a monotone nonlinearity.

Remark 3.3.14 The same kind of results may be obtained for the p-Laplacian scalar ODE:
(3.16) (¢p(w') +a(t)g(u) =0,

with ¢p(s) = |s[P~2s, for p > 1 or even for a more general ¢-Laplacian scalar ODEs of the
form:

(@(u") +a(t)g(u) =0,
with ¢ : R =+ R an odd increasing homeomorphism satisfying suitable upper and lower
o-conditions (see [78]). The assumptions on g will have to be modified accordingly. For
instance, in the case of the p-Laplace operator, (g0+) has to be replaced by:

(90+) / G(s)™M/? ds = +oo.
0

In the same manner, the time-map 7(-) = 7,(-) is now expressed by means of an integral like
kp f:m((}'(s) — G(c))™Y/? ds (with k, a suitable positive constant) and then (3.9) has to be
changed to:

(3.17) lim 7,(c) = 0.

e~

Remark 3.3.15 Denote by B(R) and B[R] the open and the closed ball in RY | with center
in the origin and radius R > 0. Let 2 = B(R») \ B[R;], with 0 < R; < Ry, be an annular
domain in RY, and let w :]R1, Ro[ — RY be a bounded and continuous function such that:

Rl,R‘_), < {T‘ E]R],Rg[: ’U)(’I‘) > O}

We observe that our assumptions for w are of the same kind like those considered by Lazer
and McKenna in [65, p.334] where for an arbitrary open domain they have a bounded and
continuous weight. On the other hand, we allow a more general condition on the sign. Then,
as a consequence of Theorem 3.3.12 and Remark 3.3.14, we have the following result.

Corollary 3.3.16 Ifg: [0, +o0o[ = R is any continuous function satisfying g(0) = 0, (g,0+),
(91+) and (3.17) and w(r) satisfies the above sign condition, then the boundary value prob-
lem:

(3.18) {Apu=w<1x|>g(u> x€Q

u(x) = +oo as x — 00

(with p > 1) has at least one radially symmetric positive solution.

Proof. The search of the radially symmetric solutions of (3.18) yields to the study of the
boundary value problem:

(3.19) {<¢P(“'(r>)>’+$¢p<u%r)>—w(r)g(um)_—_o r &R, R

u(r) = +oo asT = Ry, 7 = Ra,
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where ' = & denotes the differentiation with respect to r = x| and ¢p(s) = |s|P~2s, p > 1.
If we consider now the change of variable t — 7(t), 7 = t(r), where:
T N-1
5 e
R
=R
¢Vt a
R,

we transform problem (3.19) to:

{ (p(z'(1))) +a(t)g(x(t)) =0, t€]0,1]

u(t) = +co ast—0,t—1,
where:
qt) = __El“;_(iﬂ :
dr r=r(t)
and for this problem we can apply Theorem 3.3.12 with Remark 3.3.14. B

Note that no other restriction on the growth of g is needed here. This result answers a
question raised in [87, §6]. Moreover, with respect to [87], we allow more general conditions
on g than those considered in [87, Theorem 2] and, as remarked above, the assumption
g(s) > 0 for all s > 0 is not required as well. Furthermore, a general weight function is also
permitted.

3.4 Remarks about the conditions of superlinear growth
at infinity

We have expressed our assumption of superlinear growth at infinity for g by means of an
asymptotic condition on the time map associated to the autonomous system:

a:: Y

= g(z)
(cf. 7,7 in (3.2) with conditions (g2-), (3.9) and (3.12)). When we deal with the map 7, in
(3.2), the following kind of integrals have to be evaluated:

+o0
(3.20) fie) = | \/—g;_fl—a?)ds,
and:

+o00 1

(there is a similar integral depending on G~ (z) which can be handled in the same way like
£5). Our goal is to study under which conditions fi(z), f2(z) — 0 as z — 4co. We assume
throughout this section that g : R — R is a continuous function such that:

lim g(z)sign(z) = +oo;

T—+too
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therefore, the primitive G(z) = foz g(s) ds of g is strictly monotone in a neighbourhood of
+o0 and the inverses G;l, which have been considered at the beginning of this chapter, are

defined. :
For the first integral we easily see that fi(z) — 0 as z — +co if and only if:

:tOO 1
(3.22) / ds| < +o0.
G(s)

For the second one we have the following lemma.
Lemma 3.4.1 Assume that:

. og(z)
that there is a constant k > 1 such that:

. . .G(kz)

‘)

(3.24) bminf = !

and that (3.22) holds. Then (g2—) holds, that is:

S Ta () =0

Proof. By the above remark we can confine ourselves to the proof of fo(z) — 0 as z — +co.
With a simple change of variables, we consider the function:

B = L
. VG(s) - G(z)
Clearly, f2(z) — 0 if and only if f3(z) — 0. Now we split the integral as:
ka 1 +o0

1
. Voo " e Vo —em ™

For the first one, we have that:

kz

1
—— s
s VG(s) —Glz)

kz 1
/“‘ VIS 9(6) de “
kz

1
= z VS~ T/ Gmin (-'E) @
2/ (k-1)z

v/ Gmin ()
AV 1)\/?;-\/ g(égz)’

where we have set gmin(z) = ming 141 9(€) and & € [z, kz] is such that g(£,) = gmin(z).
From (3.23) easily follows that the first integral tends to zero as z — +co.
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By (3.24) there exist ¢ > 1 and 5 > 0 such that:
G(ks) > cG(s) V,s > §;

moreover we can assume without loss of generality that G is monotone increasing on [3, +oof .
Hence, for the second integral we can estimate:

ds
)

— . ds =
/kz VG(s) - G(a) ’ /kz NeoN = o)

/+OO 1

ds
VN
< 1/—9——/+m——1—--ds Vo>35
= Ve-1/w GO =

Thus also the second integral tends to zero as £ — 400 since (3.22) holds. |

IN

We remark that condition (3.24) is related to a well-known assumption which appears in
the theory of Orlicz—Sobolev spaces. Indeed, it is easy to prove that (3.24) holds when G;l
and |G satisfy a Ag-condition at infinity/ (see [1, p.232]).

We notice that a sufficient condition for the validity of (3.24) is that g is monotone in-
creasing in a neighbourhood of infinity. In fact, if z > 0 is large enough, by the monotonicity,
we have that G(2z) = 0% g(s)ds > 2 [ g(s)ds = 2G(z) (the case for z << 0 is treated in
the same manner) and therefore (3.24) is proved. In this case, however, we can obtain much
more, namely we have the following result.

Lemma 3.4.2 Assume that g is a monotone function in a neighbourhood of infinity satifying
(3.22). Then (g5 ) holds.

Proof. Via the change of variables £ = G(s) — G(z) and s = G7' (¢ + G(z)), the function
f3(z) defined in the proof of Lemma 3.4.1 can be written in the following way:

fa(z) = / - .
o g(GF (E+G(2))VE
By definition, the function ¢, : £ =+ m is positive and summable on ]0, +cof
+

for large ¢ > 0. Moreover, by the monotonicity of g, we see that ¢ (&) is monotonically
pointwise decreasing to zero as z — +o0o. As a consequence, the monotone convergence
theorem implies that f3(z) — 0 as z — +co. |

Remark 3.4.3 Suppose that h: R — R is a continuous function satisfying:

lim h(s)sgn(s) = +co
s—+too .

and assume also that:

|lg(z)| > |h(z)|, for |z| >>1.
Then, it is straightforward to check that the validity of the condition (g2) with respect to
the function h implies the same for the function g. In particular, if, for |z| large we have that
g "dominates” a monotone increasing function h at infinity, with h(z)/z — 400 as £ — £00

and | [** \/%5@1 < 0o, where H' = h, then (g) holds for g.
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From this remark, we see that a (non-necessarily monotone) function g which is larger than
kzlog®(|z| + 1) for |z| large and for some & > 0 and & > 2, satisfies (go)
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Chapter 4

Separated boundary conditions
for superlinear equations with
indefinite weight

‘We consider now the equation:
(4.1) i+q(t)g(z) =0

where g : R — R is locally Lipschitz continuous and superlinear, in the sense specified in
the previous chapters, and the weight function ¢ : 7 — R is allowed to change sign in I.
In particular, suppose that I can be written as the union of 2k + 1 adjacent and nontrivial

closed intervals:
T Sl 8 Pl

such that:
g>0,g#0onI;" and ¢g<0,g#Oonl .

From what we have seen in the preceding two chapters, we expect to find solutions of (4.1)
with a large number of zeros in I;” and with at most one zero in I ; - Actually in the theorems
we are going to prove we will find solutions z whose nodal behaviour in I (that is, the
distribution of their zeros in ) is described by a couple of vectors n = (ny,...,ngs1) € NeF1
and 6 = (61,...,dx) € {0,1}* in the following way:

e n,; is the number of zeros of z in the interval I;r ;
e §; is the number of zeros of z in the interval I];

Moreover we recall that in I a solution of (4.1) is strictly monotone, if it has one zero,
while it is convex or concave (depending on the sign of z) otherwise; therefore our solutions
will also have exactly 1 — §; changes of sign of the first derivative z in I7. If g does not
vanish identically in any subinterval of I, then we can say that & will have exactly 1 — d;
zeros, otherwise it might happen that £ = 0 in a subinterval of I7 where ¢ = 0.

We will prove at first a result about existence and multiplicity of solutions of a gener-
alized Sturm-Liouville boundary value problem. Then we will apply this result to obtain
solutions of usual Sturm-Liouville boundary value problems as well as homoclinic solutions
and solutions presenting blow-up at a given instant ¢*.

77
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Let us fix now some notation broadly used in this chapter. The function g : R — Rin
(4.1) will be here a a locally Lipschitz continuous function and ¢ : I — R will be continuous,
so that the local uniqueness holds for every intial value problem associated to (4.1). In
particular, for every p € R? and every to € I we can define z(-;t,p) to be the solution of
(4.1) which satisfies (z(to), (o)) = p and is defined in its maximal interval of continuability,
and z(; to,p) = (z(-5t0,p), ¥ (- t0,p)) = (2(5t0, D), #(-; %o, p)) to be the corresponding solution
of the equivalent plane system:

L
¥ =—q(t)g(z).

Throughout this chapter we will frequently use the following assumptions:

(g1) g(z)z >0 Vo #0,
(92+) Jim 7 (e) =0,
(52-) e (=0

(see (2.3) and (3.2)) and:

(q0) if g(t) > 0 for all ¢ in an interval I and g1 # 0, then ¢ is of bounded variation in I and
the set {t € I : g(t) > 0} is the union of a finite number of open intervals; moreover if
q(t) > 0 for every ¢ €]c,d[ and g(c) =0 (or g(d) = 0), then ¢ is monotone in a right
neighbourhood of ¢ (or, respectively, in a left neighbourhood of d).

Condition (g1) is the usual sign condition on g, while (g2+) and (g2—) are the hypotheses
of superlinearity needed, respectively, where ¢ > 0 and where ¢ < 0, in order to apply the
results discussed in the previous two chapters. We finally recall that (g0) ensures that there
are no problems of continuability for equation (4.1) in the intervals where ¢ > 0, as shown
by Corollary 2.1.3.

4.1 Generalized Sturm-Liouville boundary value prob-
lems

In the next two lemmas the situation in which ¢ is nonnegative in la, b] and nonpositive in
[b,c] is considered: taken an unbounded curve 7y, we describe how it is transformed by the
composition of the two Poincaré maps:

p+— z(b;a,p) and p+— z(c; b, p).

Lemma 4.1.1 Let g : R = R be a locally Lipschitz continuous function satisfying (g1),
(g2+) and (g2—) and let q : [a,c] — R be a continuous function satisfying (g0). Assume that
there is b € Ja, c[ such that:

g>0 and g0 on [a,b], ¢<0 and ¢#0 on b, c].

Then there is a constant R* (depending only on g and gl ¢ ) such that the following holds:
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e for each R > 0, there is n* = n} > 0 such that, for each n > n*, and for each
continuous curve 7y : (o, B[ — H™ (respectively, v : [a, f] — H™), with:

V@ <R, and |y(s)| = +oo, as s = 4,

there is an interval Jam,B,] Clo, B such that, for each s € lan, Brl, z(t;a,7(s)) is
defined for all t € [a,c] and z(-;a,7(s)) has ezactly n zeros in la, b, no zeros in [b, ]
and exactly one change of sign of the derivative in b, ¢[;

e if we set set:
n(s) = z(c;a,7(s)), Vs €lay,Bal,

we have that:
[ (Bn)l < R*,  and |ya(s)] = +o0, as s — al

and v, lies in Ay or in As, according to the fact that n is even or odd (respectively, vy,
lies in Az or in A1, according to the fact that n is even or odd).

Proof. By applying Lemma 3.1.1 to qlip,q With (r1,79) = (0, £1) and (r,75) = (£1,0),
we find that there is R* > 0 such that for every p € ({0} x R) U (R x {0}), with |p| > R*,
the solutions z(-;b,p) and z(-; ¢, p) are not continuable on the whole [b, ¢]; moreover let:

R =max{|¢] : |2(b; 0, )] < R},

which is finite by Corollary 2.1.3 and Lemma 2.2.2. For every R > 0 we set

sup {{robt](p) (0 < p| < maX{R,R’}}

E3
n-=np= + 1.
£ T

In other words, n} is the minimum integer n such that:

[ro;:}(p) Sn-Lr  VpeR:0<|p| <max{R,R'}
a,
and, roughly speaking, represents an upper bound for the number of zeros that a solution z
of our equation may have in ]a, b], if the starting point (z(a),z(a)) is inside the closed ball
of radius max{R, R'}. Note that, since g(s)/s is bounded in a neighbourhood of zero, n}, is
finite.

Let us consider a curve v : [, 8[— H* such that

(@) <R and lim |y(s)| = +oo;
s—=f

without loss of generality we may assume also that v(s) # (0,0) for every s € [, 8]: thus
z(t;a,7(s)) # (0,0) for every ¢ and for every s by the uniqueness of the zero solution. By
Corollary 2.2.8 we can find two continuous functions p : [, B[ =10, +c0[ and 0 : [, B[+ R
such that

1) 2(bsa,7(s)) = (p(s) cosb(s), p(s)sinb(s)), Vs € [a, B;

2) lim p(s) =+4co and lim 6(s) = —o0;
s—+(3~ s—3-
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T
3) 6(s) + pot(1(5)) € |-5.3] . vselml
(condition 3 can be achieved since v(s) € H + and 6 is uniquely determined up to multiples
of 27). Then we have that:
6(c) > —(n" — I,

by condition 3) above and by the definition of n*. Therefore, for every n > n*, we can
determine o', ' € [o, B] such that 8(a’) = —(n — Lyr, 8(8') = —(n + 1/2)m and ~(n +
1/2)r < 8(s) < —(n — 3)7 for every s ele/,B'[. We have that z(-;a,7(s)) has exact-
ly m zeros in ]a,b] for all s € [of, '[. We suppose for definiteness that n is even: then
z(b;a,7(s)) €]0,+0co[ xR as s ranges in Ja!, B'[; the other case can be treated in a complete-
ly symmetric way. We remark that z(-;a,7(c’)) and z(;a,7(8')) are not continuable on
the whole [a, ¢ since z(b;a,v(a')) and z(b; a,v(8")) belong to {0} x R, |z(b;a,v(e))| = E*
and |z(b;a,v(8"))| > R*, by the definition of n*; therefore, it can be deduced, by a simple
analysis of equation (4.1), that there are t1,%2 € 1b, ¢] such that:

lim z(t;a,v(e)) = lim 2(ta,7(a")) = +o0
' Pt

bt 21
and:
lim z(ta,v(8")) = lim #(t;a,v(8")) = —co.
t—rts tty
Let:

B" = inf{s €]o/, B'[: z(t; a,7(s)) <O for some ¢ €lb,c]}.

In the definition of 8" we do not care if z(-;a,7(s)) is not continuable up to c: we simply
ask that it is negative somewhere in the part of its interval of continuability which lies to
the right of b. Of course o’ < " < B

Now we show that z(-;a,y(8")) is actually continuable up to ¢ and is nonnegative and
decreasing on [b, c], with z(¢;a,v(8")) = 0 and &(c;a,v(8")) < 0. By the continuous de-
pendence on initial data we deduce that z(t;a,v(8")) > 0 for every ¢ € [b,c|, wherever it
is defined. Moreover, if z(t; a,v(s)) < 0 for some ¢ €]b,c] and s €lo/, B[, then z(:;a,v(s))
has a zero in ]b,c[, since z(b;a,7v(s)) > 0 for every s €la’,B8'[. On the other hand, every
solution of (4.1) on [b, ] is convex, wherever it is positive, and concave elsewhere; this im-
plies that every solution z of (4.1) may have at most one zero and, if this is the case, z is
strictly monotone decreasing. Thus z(; a,v(B")) is decreasing since it is limit of decreasing
functions by the continuous dependence on the initial data. Together with the nonnegativ-
ity, the decreasing monotonicity implies that z(-;a,7(8")) is continuable on [a,c]. Finally,
if z(c;a,v(B")) were positive, we should have, again by the continuous dependence on the
initial data, that z(¢;a,7(s)) > 0 for every t € [b,c] and every s in a neighbourhood of g",
and the definition of A" should be violated. Moreover we obtain also that i(c;a,v(8")) <0
by the uniqueness of the trivial solution. In particular we can deduce that all the solutions
z(+;a,7(s)) are positive (and then convex) on [b,¢[ (where defined) for all s € [/, B”].

Now let:

an = inf{o €]a’, "] : 2(-;a,7(s)) is continuable on [a,¢], Vs € [0, 8"},
thus o < an <",

lim z(c;a,7v(s)) = lim @(ca,7(s)) = +oo
s—+0i s—ral

and z(-;a,7(s)) is continuable on [a,c] for all s € Jan, B"]. Since #(c;a,v(B")) < 0, there.
is Bn €Jan, B[ such that z(c; a,v(Bn)) = 0 and z(c;a,v(s)) > 0 for all s €lan, Bnl- As a
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consequence of this construction, #(-; a,y(s)) must change sign exactly once in b, c[ and, by
the convexity, the zero set of 3(-) is either a point or a closed subinterval of b, c[.

If we set yn(s) = z(c;a,v(s)) as s ranges in Jan, Bn], then |y,(s)] = 400 as s = o;f and
|7 (Bn)| < R*, since, by construction, v,(8n) € R x {0} and 2z(-;¢,¥(Bn)) is continuable on
[, c].

An analogous argument can be used in the case v : [a, B[ — H™. B

A completely symmetric result is the following.

Lemma 4.1.2 Let g : R = R be a locally Lipschitz continuous function satisfying (gl),
(g2+) and (g2—) and let q : [a,c] = R be a continuous function satisfying (q0). Assume that
there is b € |a, ¢[ such that:

g>0 and ¢q#0 on [a,b], ¢<0 and ¢#0 on [bcl.

Then there is a constant R* (depending only on g and q|;p,o ) such that the following holds:

e For each R > 0, there is n* = n > 0 such that, for each n > n*, and for each path
v : [o, B[ — HT (respectively, 7y : [, B[ = H ™), with:

[¥(@)] <R, and |y(s)| = co, as s = f7,

there is an interval [an, Bu[ Cla, B[ such that, for each s €lan, B, 2(t;a,7(s)) is
defined for all t € [a,c] and z(-;a,7(s)) has ezactly n zeros in la,b[, ezactly one zero
in |b, ¢[ and no zeros of the derivative in [b, cl;

e if we set: _
7”(3) = Z(C;CL,’)’(S)) Vs S [ana/Bn[1

we have that:
lvn(an)] < R*, and |ya(s)| = o0, as s — B,

and Yn, 'l_z'es m 14—3_07‘ in A1 according to the fact that n is even or odd (respectively, vn
lies in Ay or in As according to the fact that n is even or odd).

Proof. We describe only the main changes to be performed on the proof of Lemma 4.1.1
in order to obtain Lemma 4.1.2. The first part of the proof can be left unchanged until it is
remarked that there are t1,%2 €1b, ¢] such that:

lim z(t;0,7(a')) = lim (¢ a, () = +o00

t—t; t—t]

and
lim z(¢;a,7(8)) = lim &(t;a,7(8")) = —co.
ity

t—ty

At this point we set:
an =sup{s €]a’, B'[: z(t;a,v(s)) > 0 for all ¢ €]b, c] where it is defined},

hence o’ < an, < f'.

Now it is possible to show by the same kind of argument that z(-;a,v(an)) is actually
continuable up to ¢ and on [b, ¢] is nonnegative and decreasing, with z(c;a,v(a,)) = 0 and
i(c;a,7(am)) < 0. In particular we deduce that all the solutions z(+;a,v(s)) are strictly
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decreasing (hence their derivatives have no zeroes) and with exactly one zeroes on b, ¢] for
all s € [an, ']
Now let:

Br. = sup{c €]an, '] : 2(-;a,7(s)) is continuable on [a,c] Vs € [an, 0]},
thus o, < fn, < 8,

lim z(ca,v(s)) = lim #(ca,v(s)) = —o0
s—Br s—Bn

and z(+; a,7v(s)) is continuable on [a, c] for all s € [an, Bn[.

If we set vn(s) = z(c;a,v(s)) as s ranges in [an, Bn[, then |v,(s)] = +o00 as s = f;; and
|vn ()] < R*, since, by construction, vn(an) € {0} x R and z(-;¢,vn(an)) is continuable
on [b,¢].

An analogous argument can be used in the case v: [a, B[ — H™. H

Remark 4.1.3 Note that the same choices of R* and n} work for both Lemma 4.1.1 and
Lemma 4.1.2.

Here is the main result of this section.

Theorem 4.1.4 Let g : R — R be a locallly Lipschitz continuous function such that:

(1) glz)z >0 Yz #0,
(92+) Jim 7 (e) =0
and:

(92) ST () =0

(see (2.3) and (3.2) for the definitions of T;’ and of 7,7 ); let g : [a,b] — R be a continuous
function such that:

(q0) if q(t) >0 for all t in an interval I C [a,b] and q|r # 0, then ¢ is of bounded variation
in I and the set {t € I : q(t) > 0} is the union of a finite number of open intervals;
moreover if q(t) > 0 for every t €]c,d] and g(c) =0 (or ¢(d) = 0), then ¢ is monotone
in a right neighbourhood of ¢ (or, respectively, in a left neighbourhood of d).

We assume that [a,b] can be written as the union of 2k +1 (k > 0) consecutive, adjacent,
nondegenerate and closed intervals:

+ 7= + 17— 7+
S CuNU b Sl S

such that ¢ > 0, ¢ 0 on Ii+ and ¢ < 0,q # 0 on I;. Let Ty,Ty C R? be two unbounded
continua such that one of the following two alternatives holds:

(i) To C HY and Ty, C H™ or, vice versa, Iy C H™ and 'y C HT,
) r,uly,cHY or T,UT, C H™.
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Then, there are k + 1 positive integers nj,...,ny., such that for each (k + 1)-tuple n =
(ni,...,npr1), with ng > nt, and each k-tuple 0 = (01,...,0r), with &; € {0,1}, such that:

k+1 k
Zm + Zéi is odd, if (i) holds, and even, if (ii) holds,
i=1 i=1

there is at least one solution x = =y s(-) of (4.1) such that:
(4.2) (z(a),3(a)) € Ta, (x(b),2(b)) €T

and:

1. z(-) has ezactly n; zeros in IZTF, ezactly 0; zeros in I and ezactly 1 — &; changes of
sign of the derivative in I, ;

2. for each i, |Tn,s(t)| + |&n,s(t)| = +00, as n; — +oo, uniformly int € I,

We remark that the case & = 0 is contained in Corollary 2.3.5.
Proof. We write the intervals I j: in the following way:

2

I:- = [ai;bi] and Im = [bi;ci]7

so, in particular, @ = a1, ¢; = a4+1 and byy1 = b.

We will deal only with the case ', C H™, since the other one can be treated analogously.
We first develop the proof assuming that I', is the image of a continuous curve in R’ and
then we will solve the general case by approximating a suitable portion of I'; by images of

continuous curves.
Let v : [0, +c0[— H™T be an unbounded continuous curve and let:

R, = sgﬁ{l'r(s}h

SteEp 1. Let Rf > 0 and nf be respectively the numbers R* and n* given by the two
Lemmas 4.1.1 and 4.1.2 applied to our equation on [a,c] = [a1,c1] with b =b; and R = R,
(see Remark 4.1.3). Fix any n; > n] and suppose that §; = 0 in 0. In this case there is an
interval Jou(n,,61)> B(na60)] C10, 400 such that for each s €lon, 6,); B(n,,5,)], We have:

o z(t;a1,7(s)) is defined for all ¢ € [a1, c1],

e z(-;a1,7(s)) has exactly ni zeros in Jag, b1[, no zeros in [by, c1] and exactly one change
of sign of the derivative in )by, c1]-

Moreover, setting:
Yine,s0) (8) = 2(c1;01,7(5)) Vs €la(ny 51, Bins,on))s
we have that:
Ve s0) Binn.s)l S BYy and |yny 5 ()| = 00, a8 s > e, 5,

and Y(n,,s,) lies in A; or in A; according to the fact that n; is even or odd.
On the other hand, if 6; = 1 in §, we obtain a completely similar result, but with:
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e z(-;a1,7(s)) has exactly n; zeros in Jai,b1[, exactly one zero in ]b1,c;[ and no zeros
of the derivative in [b1, c1]

and 7, 6,) lies in Az or in A; according to the fact that n; is even or odd.
If k = 1 we have to skip the next two steps, to set ¢ = y(n,,s,) and to go directly to STEP 4.

STEP 2. We repeat now inductively this kind of argument. Without loss of generality, we
suppose that yn, lies in A;. The proof is completely symmetric if v,, lies in Aj.

Let R; > 0 and n3 be respectively the numbers R* and n* given by the two Lemmas
4.1.1 and 4.1.2 applied to our equation on [a, c] = [ag, c], with b = by and R = R}. Observe
that nj depends on R, but not on n}. Fix any no > n3 and suppose that éo = 0in §. There
is an interval:

[0((n1,12),(81,82))» B((n1,m2),(61,82)) [ C1na,61) Bima b0)]s

such that for each s € [@((n; na),(61,62))> B((n1,m2),(51,62)) [ » We have:
o z(t;a1,v(s)) is defined for all ¢ € [ag, ¢2],

e z(-;01,7(s)) has exactly ns zeros in Jas, ba[, no zeros in [bs, c2] and exactly one change
of sign of the derivative in ]bs, caf.

Moreover, setting:

V((na,m2),(61,82)) (8) = 2(c2;01,7(8)) V'8 € [Q((n1,m2),(61,82)) Bl(nr sma).(61.,62)) L5

we have that:
[V((r1,m2),(51,62)) (X((m1,m2) (51,62))) | < B3,

and:

Ify((nlan2)>(51152))(s)l - OO’ as s — ﬂ((ﬂ1,ﬂ2),(51,52))

and Y((n, ns).(51,52)) lies in A; or in Az according to the fact that ns is even or odd.
On the other hand, if d2 = 1 in 8, we obtain a completely similar result, but with:

o z(-;a1,7(s)) has exactly ny zeros in ]as, bs[, exactly one zero in ]bq, ca[ and no zeros
of the derivative in [bg, ¢q]

and Y((ny,ns),(51,62)) li€s in Ag or in A; according to the fact that n2 is even or odd.

Asremarked above, it is clear that the same argument works if (., 5,) lies in Az. Actually,
we could now summarize all the different possibilities as follows: Y((n, n,),(5:,8,)) lies in Ay
or in Az according to the fact that ny + ne + 61 + 82, that is the total number of zeros in
la1, 2], is even or odd.

STEP 3.  Repeating this argument k-times, we find Ri,..., R and nf,...,n} and an
unbounded continuum I'* which is the image of a continuous curve:

D = V((nr,.m0).8)s

defined on a suitable half-open bounded interval I C ]a(x, 4,), B(n,,6,)], Such that T*NB[R}] #
¢ and:
T (- Al or I'* C Ag

according to the fact that Zle(ni + §;) is even or odd.
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We have that for each s € I the solution z(-;a1,7(s)) is defined on [a1, ¢ and, for each

i =1,...,k, it possesses exactly n; zeros on la;, b;[, exactly &; zeros in [b;, ¢;] and exactly
1 — &; changes of sign of the derivative in [b;, ¢;]. By construction, we notice that the curve
¢ : I — T'* is a homeomorphism and the numbers n; > n} (for i = 1,...,k) may be chosen

independently one from each other, depending only on the choice of n; which, in turn,
depends on R;_; and R;.

STEP 4. At this point, we can use Corollary 2.3.5 on the interval [ag41, biy1] = [ar+1,b] tO
find that there exists n}, ;, which depends on Rj and on R, = min{|p|: p € I';}, such that,
for every fixed ng41 > nj, 4 (even or odd, depending on the relative positions of I'"* and ),
there is at least one solution the following boundary value problem:

Z+q(t)g(z) =0
(z(ag+1), T(ak+1)) € T
(z(b),2(b)) € Tp-

In other words, there is at least one point p € I'* such that the solution z(-; ag41,p) of (4.1)
satisfies z(b;ax+1,p) € Iy and has exactly ng41 zeros in Jagy1,bps1]. Moreover, we have
that z(bgy1;axt1,p) and p € I'* belong to the same vertical half plane or to opposite ones,
according to the fact that ny41 is even or is odd. More precisely, if I'* C A; (respectively,
if T* C As), then @(bgr1;ar+1,p) > 0 if and only if ng41 is odd (respectively, if and only if
Tig+1 1S even).

In conclusion, we can take:

s = ¢ (p)
and have that the solution z(-;a1,v(s*)) is defined on [a1,bp+1] = [a,b], it has precisely n;
zeros in the interior of the I;" intervals, for each ¢ = 1,...,k + 1 and also it has exactly J;

zeros and 1 — §; changes of sign of the derivative in the interior of the I;” intervals. Thus,
the main part of the proof is concluded.

We make here two remarks that will be useful when we deal with the case in which T,
is a general unbounded continuum. The first one concerns the behaviour on 8I; of the
solutions we find; more precisely, we want to show that the choice of n} implies that any
solution z with nodal behaviour described, as in the statement of the theorem, by the vectors
§ and n with n; > n}, is such that neither z nor & vanish on 0I;, that is on the points
b; and ¢; for all i = 1,..., k. Indeed, if z(b;) = 0 or £(b;) = O for instance, then the point
(x(b;), 2(b;)) belongs to ({0} x R) U (R x {0}). Moreover, if we look to the definition of nj,
that is to the definition of n* in the Lemmas 4.1.1 and 4.1.2 applied on [a;, ¢;], it is clear that
|(z(b;), 2(bs))| > R* and, therefore, z should not be continuable on [b;, ¢;] by the definition
of R* in those lemmas, that is a contradiction since z is a solution on [a, b]. In the same way
it can be seen that z(b;) # 0 and %(b;) # 0. We note also that this argument is independent
of the fact that T, is or is not the image of a continuous curve: it’s just a matter of how we
have defined n; fori=1,...,k+ 1.

The second remark regards a priori bounds for solutions which have a fixed amount of
zeros. In fact, if we fix a 6 € {0,1}* and n € N*+1 | with n; > n}, Corollary 2.2.8 implies that
there is an apriori bound for the modulus |p}, if z(-; a, p) has exactly ny zeros in [a, a;]. More
precisely, there exists R® > R, such that every solution of (4.1)—(4.2) which has the nodal
behaviour in [a,b] prescribed by the vectors  and n, as in the statement of the theorem,
must start from a point p € Ty at t = a such that |p| € B[R]\ B(R,). Therefore, when
dealing with an arbitrary unbounded continuum I',, we need to approximate only a compact
and connected portion of I'; which lie in B[R}] \ B(Ra).

To this aim we fix £ > 0 and we denote by 7. : [0,1] = H™" a continuous curve such that:
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° I7€(0)l < R, and |75(1)| > Ry;
s for every s € [0, 1] the point .(s) belongs to the e-neighbourhood of T',.

Moreover we extend 7. to an unbounded and continuous curve [0, +oco[— H™ by defining
"~ v (s) = 87.(1) for every s > 1. By what we have already proved in the steps above and by
the previous remark, there exists s. € [0, 1] such that z(:;a, y,e(s.)) satisfies:

z(b;a,ve (35)) el

and has nodal behaviour prescribed by tha vectors ¢ and n. We have that . (s¢) belongs to
the compact annulus B[R:] \ B(R,), therefore 7:,, (s¢,.) = po € I's, up to choose a suitable
sequence g, — 0. Clearly z(-; a, po) is a solution of (4.1)-(4.2) by the continuous dependence
on initial data.

What remains to be checked is the behaviour of the zeros of the functions z,,(¢) =
z(t;a,Ye,, (Se,.)) as m — +co. By the first of the two remarks above, none of the zeros that
Tm and Z,, have in the open intervals ]a;, b;[ and ]b;, ¢;[, can approach the boundary of those
intervals as m goes to oo, otherwise the limit solution z(:;a,pg) or its derivative would
have a zero on some 0I; and this situation has been excluded. Moreover, the uniqueness of
the zero solution implies that all the zeros of z,, and z(-;a,pg) are simple and this actually
shows that the nodal behaviour of z(-; a, po) is the one prescribed by the vectors § and n. B

4.2 Applications

We apply the general result of the previous section to some particular boundary value prob-
lems associated to our equation:

(4.3) £(t) +q(t)g(z) = 0.
The first one deals with the two-point boundary condition:
(4.4) z(0) = z(w) = 0.

Theorem 4.2.1 Let g : R = R be a locally Lipschitz continuous function satisfying (g1),
(92+) and (g2-); let ¢ : [0,w] — R be a continuous function satisfying (g0). Let k > 0, be
an integer. Suppose that there are 2k + 1 consecutive, adjacent, nondegenerate and closed

intervals:
I I, L LE I IR

such that ¢>0,gZ 0 on I and g <0, ¢# 0 on I, . We assume also that ¢ <0, ¢ Z 0 on:

J= 0,0\ (UE L) U (VL))
if J# 0. Then, there are k +1 positive integers nj,...,n; , such that for each (k+ 1)-tuple
n=(ny,...,npr1) € Nt with n; > n?, and each k-tuple § = (81,...,6;) € {0,1}%, there
are at least two solutions z:é(v) and z, 5(-) of (4.3)-(4.4) such that:

1. gy 5(0) <0< 5(0);

2. xf"s() has ezactly n; zeros in I, ezactly §; zeros in I] and ezactly 1 — &; changes of

P

sign of the derivative in I, ;
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3. neither rf}a(v), nor :i:f’(s(-), may vanish in J \ {0,w};

4. foreachi=1,...,k+1, [xié(t)|+|:z':f’5(t)| — 400, as n; = +oo, uniformly int € I

Proof. Let Y™ = {0} x [0,+00] and Y~ = {0}x] — 00,0] be respectively the positive
and the negative vertical semiaxes. If J = ), the existence of :z:;'; 5(-) follows immediately
by applying Theorem 4.1.4 on [a,b] = [0,w] with I'y = Y+ and I'; being the positive or the
negative y-axis (it depends as usual on the total number of zeros that is required); on the
other hand we choose I'; = Y~ to find 9:;75(-).

If J O [0, a], we have that ¢ < 0 and ¢ # 0 in [0, a] and the sets YT NQ§ and Y~ NQG are
bounded by Lemma 3.1.1 (see (3.6) for the definition of the set {23) and contain the origin.
As a consequence there are o~ < 0 < a* such that the solution z(+;0, (0, s)) is defined on
[0, a] for every s € Ja™, ™[, but not for s = a®. In particular the curve v, :]a™, o [— R?,
defined by:

Ya(8) = 2(a;0, (0, 5)),

satisfies:
e 7.(0) = (0,0);

e Hm |v,(s)] = +oo;
s—rat

e 7.(]0,at[) C HY and v,(]Ja™,0[) C H™.

Therefore we can set I'a = 74(]0,aT[), to find solutions of (4.3)—(4.4) with £(0) > 0, or
I = 7.(]a™,0[) to find those with £(0) < 0. Similarly, if J 5 [b,w], we can apply again
Lemma 3.1.1 to Y* NP and to Y~ N QY to find that there are §~ < 0 < f7 such that the
curve v :] — beta™, B[ — R?, given by v(s) = z(b;w, (0, s), satisfies:

e 7(0) = (0,0);

li = ;
o lm, |y(s)] = oo

e 1(10,8T[) C H™ and v (]8~,0[) C HT.

We can set Ty = 75(]0, 87[) or Ty = 7(]87,0[) and apply Theorem 4.1.4 on [a, b] with the
choices made above for I'; and T'. ]

Let us consider now the Sturm-Liouville boundary conditions

(4.5) u1z(0) + ua(0) =0
’ vz(w) + v2i(w) =0
where |uy| + |us| > 0 and |v1| + |v2] > 0. With the same technique of Theorem 4.2.1, the

following result can be proved.

Theorem 4.2.2 Let g : R = R be a locally Lipschitz continuous function satisfying (g1),
(92+) and (92—); let g : [0,w] = R be a continuous function satisfying (g0). Let k > 0, be
an integer. Suppose that there are 2k + 1 consecutive, adjacent, nondegenerate and closed

intervals:
' + 7= + - 7+
A PR RN P PR
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such that ¢ >0, ¢# 0 on IV and ¢ <0, ¢ # 0 on I, . We assume also that ¢ <0, ¢ Z 0 on:

J=[0,w]\ (W) U (U 1)),

=1 "1

if J # 0. Then there are k + 1 positive integers ny,...,ny,; such that for each (k4 1)-tuple
n=(n1,...,Nk+1) € N with n; > n!, and each k-tuple & = (81,...,0;) € {0,1}*, there
are at least two solutions T 5(-) and z, 5(1) of (4.3))-(4.5), such that:

n,8

1wy 5(0) —ugzy, 5(0) < 0 < wigf 5(0) — uaz 5(0);

2. xia(-) has ezactly n; zeros in I, exactly &; zeros in I and ezactly 1 — 6; changes of
sign of the derivative in I ;

3. for each 1, |:1:::75(t)| + ]:&ié(t)] — 400, as n; = +00, uniformly in t € I}

Combining Lemmas 3.2.3 and 3.2.2 with Theorem 4.1.4 we imediately obtain the following
theorem about solutions which are homoclinic to zero.

Theorem 4.2.3 Let g : R — R be a locally Lipschitz continuous function satisfying (g1),
(g2+) and (g2—); let ¢ : R — R be a continuous function satisfying (¢0). Assume that there
are a,b € R with a < b such that Q(¢t) = foi q(s) ds is strictly decreasing on | — oo, a]U[b, +oo[,
with Q(Foo) = Loo. Suppose that there are 2k + 1 consecutive, adjacent, nondegenerate and

closed intervals:
oI, I I I

with g >0, ¢qZ0 oan' and ¢ <0, ¢ # 0 on I, such that:
a,b] = ((Ufilllj—) U (Ui'c:lji—)) :
Then, there are k + 1 positive integers ni,...,n;,; such that for each (k + 1)-tuple n =

(N1, ,ngp1) € N with ng > n?, and each k-tuple § = (61,...,0;) € {0,1}*, there are

at least two solutions m:’a() and z; 5(-) of (4.3) such that:

1.z, 5(t) <0 and & 5(t) <O for allt €] — oo, qa], while 33:,5(75) >0 and m':&(t) >0 for
allt €] — o0,al;

2. 5”?1:,5(') has ezactly n; zeros in I, ezactly &; zeros in I and ezactly 1 —&; changes of
sign of the derivative in I ;

3. zg 5(t) x @ 5(t) # 0 for all t € [b,+00[;

4. for each 1, Ixié(t)] + Ia':f,é(t)l — +00, a8 n; — +0o, uniformly in t € I;;

5. lmf’s(tﬂ + la’vf)a(tﬂ — 0 ast — %oo.

Using Theorem 4.1.4 with ', and I', provided by Lemmas 3.3.3, 3.3.7, 3.3.8, 3.3.9, 3.3.10
and 3.3.11, it is easy to prove the following theorem about solutions with prescribed nodal
behaviour and blow-up at the boundary of the domain.

Theorem 4.2.4 Let g : R — R be a locally Lipschitz continuous function satisfying (g1),
(g2+) and (g2—); let ¢ :10,w[—= R be a continuous and bounded function satisfying (q0).
Assume that:

O,w € {t €]0,w|: q(t) < 0}
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and that there are an integer k > 0, two points a,b € ]0,w[, with a < b, and 2k+1 consecutive,
adjacent, nondegenerate and closed intervals:

FAa R N el A
such that ¢ <0, g% 0 on]0,a]U b,w[,¢>0,¢#0 on I, g<0,g#0 onl and:

[a,8] = (VL) U (Uin 1)) -

Then, there are k + 1' positive integers n,...,ng,, such that for each (k + 1)-tuple n =
(n1,...,ngr1) € N¥FLwith ng > n}, and each (k + 2)-tuple 6 = (0o, - .., 0ks1) € {0,1}F+2,
there are at least two solutions z% 5(-) and z, 5() of (4.3) defined on 10, w{ and such that:

n,s

s _ o _ iy ot _ syt - .
1. gl_I)I(l) z, 5(t) = —o0, %a:g%mn’t;(t) = 400, %1}}% T, 5(t) = +oo and %%mnﬁ(t) = —00;

- p— — 1 ¢ — — . + . . + — .
2. lim oy 5(8)] = lim |3 5(8)] = Jim [a 5 (0)] = Jim |75 (6)] = +o0;

3. zf‘s(-) has ezactly n; zeros in I}, ezactly &; zeros in I and ezactly 1 — &; changes of
sign of the derivative in I, ;

4. a:ia(-) has ezactly 8y zeros and ezactly 1 — 8y changes of sign of the derivative in 10, a[
and has ezactly 041 zeros and ezactly 1 — 6k + 1 changes of sign of the derivative in
16, w[;

5. for each 1, |:):i5(t)\ + |mf5(t)[ — +00, as n; — 400, uniformly in t € I; .

Finally we note that in the same way we can obtain existence and multiplicity results for
boundary value problems associated to the equation (4.3) and different boundary condition
at the two endpoints of the domain of the weight function ¢. For instance theorems like those
stated above could be proved looking for solutions tending to zero as ¢ — —oo and having
blow-up at some t = tg, as well as solutions satisfying a Sturm-Liouville condition at one
endpoint and the blow-up condition at the other one, and so on.
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Chapter 5

Floquet—type boundary value
problems for superlinear
equations with indefinite weight

We give here some existence and multiplicity results for solutions of the equation:

(5.1) £ +q(t)g(z) =0
on an interval [0,w] and satisfying a boundary condition which can be expressed in the form:
(5.2) (z(w), &(w)) = A(z(0),2(0)),

A : R? — R? being a suitable continuous map. Such a boundary condition is called of
Floquet—type since generalizes the usual Floquet boundary condition which corresponds to
the map A given by the rotation of the plane by a fixed angle. Our map A will be nonde-
generate, in the sense that A(p) = (0,0) only for p = (0,0), and positively o-homogeneous,
that is, there is a real number o > 0 such that:

A(rp) =r"A(p) VpeR®VYr>0.

Thus A(p) = Mp is allowed for every 2 x 2 real and invertible matrix M. In particular the
periodic and the antiperiodic boundary conditions are included, since they are realized by
choosing M equal to the identity matrix I and to its opposite —I, respectively.

The hypotheses on g and g are the same we used in Chapter 4, that is the sign condition
ong:

(91) g(z)z >0  Vz #0,

the two superlinearity conditions on g :

: (o) =
(92+) egx_&o 7, (e) =0
and
(92-) Jim 77 (e) =0.

(see also (2.3) and (3.2)) and some regularity on ¢ in order to have no problems of continu-
ability for the solutions of (5.1) in the intervals where ¢ > 0:

91
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(g0) if g(¢) > 0 for all ¢ in an interval I and ¢|; # 0, then ¢ is of bounded variation in I and
the set {t € I : g(t) > 0} is the union of a finite number of open intervals; moreover if
q(t) > 0 for every t €]e,d[ and gq(c) = 0 (or ¢(d) = 0), then ¢ is monotone in a right
neighbourhood of ¢ (or, respectively, in a left neighbourhood of d)

(see Corollary 2.1.3). Moreover we will always deal with a locally Lipschitz continuous
function g : R — R so that the local uniqueness holds for every intial value problem associated
to (5.1). In particular, for every p € R* and every to € I we can define z(-;%o,p) to be the
solution of (5.1) which satisfies (z(t0),%(%0)) = p and is defined in its maximal interval
of Continua,bility, and Z(';to,p) = (m(‘itO:p):y(?tO’P)) = (a:(,to,p),z(,to,p)) to be the
corresponding solution of the equivalent plane system:

T =1y

v = —q(t)g().
Therefore, from now on, finding a solution of (5.1)—(5.2) is equivalent to determine some
p € R? such that the solution z(¢;0,p) is defined for all ¢ € [0,w] and satisfies:

z(w; 0,p) = A(p).

We recall also that, if p # (0,0) and z(t;a,p) is defined in [a,b], then z(¢;a,p) # (0,0)
for every t € [a,b] and we can measure the angle spanned by the vector z(¢; a, p), as ¢ varies
in [a,b], by the quantity:

(Y a(t)g(z(t;a,p)x(t;a,p) + 23t a, p)
(v) = / 22t 0,p) + 52(t: 0,p) .

rot
[a.8]

To fix some notation, let A; = [0, +o0[ X[0, +o0[, A2 =] — éo,D] x [0, 400, A5 =]~
00, 0]x ] = 00, 0], and A4 = [0, +00[ x ] — o0, 0] denote respectively the four closed quadrants
in the plane.

5.1 A general theorem

We prove at first a theorem for a general nondegenerate and positively o-homogeneous map
A : B2 — R?. We postpone to the next sections the discussion of what can be said when
more precise choices are considered for A.

Theorem 5.1.1 Let g : R — R be a locally Lipschitz continuous function satisfying (g1),
(g2+) and (92—), let ¢ : [0,w] = R be a continuous function satisfying (¢0) and let A : R —
R? be a continuous map such that:

e it is positively o-homogeneous for some o > 0, that is A(rp) = r°A(p) for allp € R?
and for all v > 0;

e it is nondegenerate, that is A(p) = (0,0) if and only if p = (0,0).
Suppose that there are 2k + 1 points t; E‘[O,w}, t=0,...,2k such that:
0=ty <t1 <ty < - <lgp1 <fyp=w
and:

q<0,9Z0in I =[tai—z,taim1] and ¢>0,¢#0in I} =[ty_1,t2],
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forali=1,...,k.

Then there exist k — 1 natural numbers ny,...,n;_, such that, for alln = (ny,...,np_1) €
Ne=L with ng > nf, and for all 6 = (61, ...,01) € {0,1}*, there exist two unbounded continua
I't C Ay and T~ C Ao such that the following facts hold for every p e T U™ :

1. z(¢;0,p) is defined on [0,w] and satisfies:
12(w; 0,p)] = |A(p)];

2. z(-;0,p) has ezactly n; zeros in Jto;—1,to for alli =1,...,k — 1;
8. z(-;0,p) has exactly §; zeros in Jtai_a,toi—1[ for alli =1,... k;
4. #(-;0,p) has exactly 1 — 6; changes of sign in Jto;_a,to;1[ for alli=1,...,k;

5. lim [ inf |2(¢;0,p)]| = +oo.
€]

|p|—++o0 tar—1,w]

Moreover, if we set:

IS = {z(tax—1;0,p) : pe T'"} and IS, _; ={z(t26-1;0,p) :p €T},
then I‘;k_l is an unbounded continuum contained in the first quadrant, if the number:
(5.3) S +mny -+ 0p1 +npoy + Ok

(that is the number of zeros that the solution z(t;0,p) has in [0, tar—1] for every p € TTUT ™)
is even, or in the third one, if (5.3) is odd, while T'y, | is contained in the first quadrant, if
(5.3) is odd, or in the third one, if (5.3) is even.

Finally there exist two unbounded sequences {p;"} C T+ and {p]"} C T~ such that:

z(w; 0,p7) = A(p]") and  z(w;0,p;) =A(p;) VieN

Proof. Foreveryi=1,...,k let:
R; = sup{lp| : p € [ UQETI N [({0} x B) U (R x {0})]}

be the supremum of the moduli of the initial conditions p that lie on the coordinate axes and
produce a solution z(t;f2;—2,p) or z(¢;t2;—1,p) which is continuable on the whole interval
[t2i—2,t2i—1] : each R; is finite by Lemma 3.1.1 applied to our equation on I7 = [tai—2,t2i-1]
with the choices (r1,72) = (£1,0) and (ry,m2) = (0, £1) and depends only on g, , ts_,]-
We note that, if we fix i = 1,...,k—1 and we apply Lemmas 4.1.1 and 4.1.2 to our equation
on the interval [a,c] = [t2i—1,t2:+1] with b = to;, we obtain a constant R* which coincides
with R;y1, as can be seen in the proof of those lemmas, and, for every R > 0 we obtain
a positive integer nf : let n be that positive integer obtained with the choice R = R;;
therefore each n; depends on the values of ¢ restmcted only on [ta;—2,t2:4+1], that is on the
three consecutlve intervals I;”, I;" and I
If we set:
= min |A(p)] and v = max |A(p)],
lpl=1 lpl=1

then 0 < p < v by the nondegeneracy of A and:

(5.4) 4 plpl” < |A(P)| <vipl]”  VpeR
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by the positive o-homogeneity of A. Since g > 0 on [tag—1,%2x] = [t2x—1,w], Lemma 2.1.2
and Lemma 2.2.2 apply to our equation (5.1) on the interval [tax—1,t2x] and we can define:

(5.5) ' Rit1 = max |z(w; tag—1,p)| < +oo '
|pI<R

and:

1/c
(5.6) Ry = max {Rl, (R’;H) } .

Let us fix § = (61,...,6;) € {0,1}* and n = (n1,...,nk—1) € N*~1 such that n; > n? for
alli=1,...,k— 1. To find the unbounded continuum 't C A4 we use an argument similar
to that employed in the proof of Lemma 3.2.3, therefore we first need to prove the following
claim.

CramM: For every continuous curve 7y : [0,1] = A4 \ B(Ro) with v(0) € [Ro, +oo[ x{0} and
~(1) € {0} x ] — oo, —Rp] there exists sp € [0, 1] such that the following facts hold:

1. z(t;0,7(s0)) is defined for all ¢ € [0,w];

2. z(-;0,7(s0)) has exactly n; zeros in Jta;—1,t24, for all ¢ = 1,...,k — 1, and &; zeros in
]tgz'_g,tgi_l[, for all i = 1, ceny k;

3. &(-;0,v(s0)) has exactly 1 — §; changes of sign in Jta;—2,t2,—1[, for alli = 1,... k;

4. 12(w;0,7(s0))| = [A((s0))];

5. z(t2k—1;0,7v(s0)) belongs to the first or to the third quadrant, depending on the fact
that §; +mny + -+« + 01 + ng—1 + O is even or odd, respectively.

Suppose that 6, = 0. We follow the idea of the proof of Lemma 4.1.1: by the definition of
Ry, z(t;0,7(0)) and z(t;0,~v(1)) are not defined up to ¢y, (¢;0,v(0)) is strictly positive and
monotone increasing, z(t; 0,7(1)) is nonpositive and monotone decreasing and they satisfy:

lim z(t;0,7(0)) = lim (t;0,7(0)) = +oo
t—by t—rby

and
lim z(#0,v(1)) = lim 2(¢0,7(1)) = —oc0

t—b] t—rb]

for some 0 < bg, b1 < t3. Letting:
B =inf{s € [0,1] : z(¢;0,~(s)) < O for some ¢ € [0,11]}

and using the continuous dependence on the initial data together with the monotonicity
properties of the solutions of (5.1) where ¢ < 0, it is possible to show that z(-;0,~(5))
is defined, nonnegative and monotone decreasing on [0,%;] and z(t1;0,v(8)) = 0, while
#(t1;0,7(8)) < 0. Then we can set:

ar =inf{s € [0, 8] : z(-;0,(u)) is defined on [0,%] Vu € [s, 5]}

and:
B1 = inf{s € [a1, B] : 2(t1;0,7(s)) < 0}
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Arguing like in the proof of Lemma 4.1.1 one can see that, for every s € le, B1], the solution
z(+;0,7(s)) is defined up to t1, is positive and convex and has exactly one change of sign of
the derivative in [0, ¢;] and moreover we have that:

lim z(t1;0,7(s)) = lim, (t1;0,7(s)) = +o0

s—rory s—a)

and:
(t1;0,7(B1)) = 0.

Hence, the curve vy :Jas, 1] — A: given by:
71(8) = Z(tl, O:’Y(S)))

is an unbounded curve in the first closed quadrant with v;(81) € [0, +oo[ x{0} : we have
that 1 (f1) € B[R] by the definition of R;.

In a similar manner, but following the proof of Lemma 4.1.2, if §; = 1, we can find a;
and B with 0 < 1 < a1 < 1 such that, for every s € [#1,a1[, the solution z(;0,7(s)) is
defined up to t1, is strictly monotone decreasing in [0, t1], has exactly one zero in 10, 1] and
moreover we have that:

lim z(¢1;0,7(s)) = lim #(t1;0,7(s)) = —c0

s—rQy S—rary

and:
z(t1;0,7(B1)) = 0,

so that again 7;(81) € B[R1] by the definition of R;.

We define J, =]ay, f1], if 61 = 0, or J1 = [B1, e[, if 61 =1, and 1 (s) = 2(t1;0v(s)), for
s € Jy, so that v1 is a continuous and unbounded curve whose image is contained either in
the first or in the third quadrant and which intersects the closed ball B[R;] and corresponds
to solutions having the desired nodal behaviour in the first interval [0,#;].

Now, for i = 1,...,k — 1, we inductively apply either Lemma 4.1.1, if §;41 = 0, or
Lemma 4.1.2, if §;41 = 1, to the interval [a,c] = [t2i~1,%2:41] and the curve v = 7;, with
b = ty;, R = R; and n = n;. We find, therefore, a subinterval J;+1 C J;, which is of the form
laist, Biral, if Gip1 = 0, and [Bity, asrn[, if diy1 = 1, such that the following facts hold:

o z(t;t05-1,7i(s)) is defined for every t € [t2i—1,t2i+1] and for every s € Jiy1;

o z(-;ta5-1,7(s)) has exactly n; zeros in Jtai—1, tai[, 6it1 zeros in Jta;, t2s41 [ and exactly
1 — 0;41 changes of sign of the derivative in ]ta;, t2i41[ for every s € Jija;

e if we consider the curve vi1; : Jir1 — R? given by:
Yir1(8) = z(tair1; t2j—1,7i(5)) = 2(t2ix1;0,7(s)),
then ;41 (Bi+1) € B[Riy1], Siién |¥i+1(@it1)] = +oo and ;41 (s) belongs to the first
141
or to the third quadrant for every s € J;11, depending on the fact that 6; +ng + -+
8; + ni + 8;11 is even or odd, respectively.

When we arrive at ¢ = k— 1 we obtain the final interval J C [0, 1] such that the solutions
z(t;0,7(s)), s € Ji, are defined in [0, t2z—1] (and, therefore, in [0,w] since ¢ > 0 in [top—1,w])
and have nodal behaviour in [0, ta;_;] prescribed by the vectors § and n (see points 1, 2 and
3 of the claim). Moreover we have that:
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(#) 12(w;0,7(Bx))| < Ry1, by the fact that [2(t2x-1;0,7(8k))| < Ry and by (5.5);
(#3) lim |z(w;0,v(s))| = lim |z(t2k—1;0,7(s))] = +o0;
S—raug S Qg

(i31) z(tar-1;0,7(s)) belongs to the first or to the third quadrant for every s € Jj, depending
on the fact that 6; +nq + -+ + d_1 + ng—1 + 0 is even or odd, respectively.

From (5.4), (5.6) and (i) we deduce that:
IAY(Be))| > ply(Be)l” 2 pRE > Rryr 2 |2(w; 0,7(Bk)]-

On the other hand, from (i7) and the fact that ([0, 1]) is compact and A is continuous, we
have that:

[A(Y())] < |2(w; 0,7(s))];
for every s in a (right or left) neighbourhood of ay. Therefore there is sg € Ji such that
[A(v(s0))| = |2(w;0,v(s0))|. This so satisfies the statements 1, 2, 3, 4, and 5 of the claim,
which is now proved.

The existence of 't follows from this Claim by an application of Lemma 3.2.1 like in the
proof of Lemma 3.2.3. We note that, by statement 5 of the Claim, z(t2x—1;0,p) belongs to
the same quadrant (the first or the third one, depending as usual on the total number of
zeros on [0,tax—1]) for every p € I't; therefore the set:

T}, = {z(tax-1;0,p) : pe '}

is an unbounded continuum contained either in the first or in the third quadrant.

In a completely analogous way we can find the other unbounded continuum I'™ C Aj \
B(Ryp) announced in the statement of the theorem.

What remains to do is to select two unbounded sequences {p, } C I'" and {p; } C I'"
such that z(w;0, pli) = A(p). Actually the two vectors z(w; 0, p) and A(p;5) have already
the same modulus, hence we have just to impose that they have the same angular coordinate,
up to multiples of 27. Let us show how to do only for the “+” case, the “~” one being of
course analogous at all.

Since trivially z(0;0,p) = p, it is possible to define a continuous angular function 6(0;p) :
{0} x [A4 \ B(Ro)] — R such that for all p € A4 \ B(Ry) :

* 0(0;p) € [—g,o];

¢ p = (lp| cos6(0; p); |p| sin 6(0; p))-
Then we extend continuously 8 to [0,w] x [A4 \ B(Ro)] by setting:

e ¢ q(t)g(z(s;0,p))x(s;0,p) + 3°(5;0,p)
o(tip) = 8(052) ~ /0 z2(s;0,p) + 2%(s;0,p) ds

We have that:

z(t;0,p) = |2(t; 0, p)| cos 8(¢; p)
{i"(t; 0,p) = |z(¢;0,p)|sin6(¢; p) Vi€ DulVp € A\ BR)

(see (2.16) and (2.17) for more details). Moreover we can also define a continuous angular
function ¥ : A4 \ {(0,0)} — R for A, in the sense that for every p € A4\ {(0,0)} we can
write:

A(p) = (JA(p)] cos I(p), |A(p)|sinH(p))
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and we have that 9(rp) = ¥(p) for every r > 0 since A is positively homogeneous.
Let us define ¢ : I't — R as follows:

Y(p) = 8(w;p) — V(p)-
The theorem is proved if we find an unbounded sequence {pf"} C 't such that:

»(p]) € 2xZ

and this will be possible if we show that ¥(I'"), which is an interval by the connectedness
of T't, is also unbounded. We can write ¥ (p) in the following way:

¥(p) = [0(w; p) — O(tan—1;p)] + [0(t2r—1;p) — I(p)].

Let N =6, +n3 +-«-+0g—1 +ng_1 + 0 be the constant number of zeros that the solutions
starting from I't have on [0, t25—1]. Therefore we have that:

—-725 + N7 < 0(tap—1;p) < --’25 +(N-Dr Vpelt.

Since ¥ is continuous and constant along the straight half lines starting from the origin, we
can set:

M = sup{|9(p)| : p € As\ {(0,0)}} = sup{|J(p)| : p € Ay, |p| =1} < +oc0.

Hence the term [f(tox—1;p) — 9(p)] is bounded for all p € I'". On the other hand, applying
Corollary 2.2.8 on [ta;—1,w], where ¢ is nonnegative, we obtain that:

lim [0(t2k—1;p) — B(w;p)] = +o00,

[pl—=++c0

thus ¥ (I'") is unbounded. |

Remark 5.1.2 What we can further obtain from the Claim in the preceding proof and
Lemma 3.2.1 is that the two unbounded continua I't and '~ also satisfy:

% N OB[Ro] # 0,

where Rp is defined in (5.6) and, therefore, depends on g, A and ¢ restricted to [0,%] U
[tog—2,w] = I Ul U I,’C", but it is independent of the choice of n and §. If we take, now,
po € ¥ NOB[Ry] # B, we have that:

|2(w; 0, po)| = [Apo)| =< vRg,
by (5.4). Hence we deduce that:
TL | NB[K]#0,

if we set:
K = max{|z(tag—1;w,p)| : |p| < vRF},

so that again K is a constant independent of n and 4.
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5.2 Applications

When particular choices are considered for the map A, one can hope to be able to improve
the statement of Theorem 5.1.1 and to prescribe the nodal behaviour of the solutions of:

i & +q(t)g(z) =0
(5.7) {(z(w),:b(w)) = A(z(0),2(0))

also in the final interval [tar—1,w]. This happens for instance if we consider the classical
Floquet boundary conditions, i.e.:

(5.8) z(w) \ _ 0 z(w) \ _ [ cosA —sinA z(0)

' iw) )7 M gw) ) T \UsinA cos A (0) )
where @, is the 2 x 2 matrix which is associated to a rotation of A radiants in R2. To
determine the nodal behaviour we will use again the quantity:

[P a®)g(z(ta,p)z(t; a,p) + 32 (t; a, )
e = / 22(t,0,p) + (4 0, p) a,

la,

which is considered in (2.22) and which measures the angle spanned in clockwise sense by
the vector z(t; a,p) as t goes from a to b, if p # (0,0). Indeed we have the following theorem.

Theorem 5.2.1 Let g : R — R be a locally Lipschitz continuous function satisfying (gl),
(92+) and (92—), let g : [0,w] = R be a continuous function satisfying (q0) and let A €
| — m, m]. Suppose that there are 2k + 1 points t; € [0,w], i = 0,...,2k such that:

O=to <t <tr < < top1 < bog = w
and:
¢<0,gZ0in I = [tayz,t2i-1] and ¢>0,gZ0in I = [tyi1,t0],
foralli=1,... k.
Then there exist k natural numbers ny,...,n} such that, for all n = (ny,...,n;) € N¢, with
n; > nf, and for all 6 = (61,...,6;) € {0,1}%, with:
[n| + 0| =ny + - +ng + 61 + -+ + & = even number,
there exist two points p:’ s € As and Pns € A2 such that the following facts hold:
1. z(t;O,pié) is defined on [0,w] and satisfies:
2(w;0,p5 5) = QA (PE 5);

2. z(; O,pia) has exactly n; zeros in Jto;—q1,tof foralli=1,... k- 1;
3. m(-;O,pf}a) has ezactly 6; zeros in Jtai—a,toi—1| for alli =1,...,k;
4. @ O,pié) has ezactly 1 — 6; changes of sign in [tai_a,ta;—1[ for alli=1,... k;

2 Lf](pi:,s) = (In| + |87 — .
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Proof. Let us apply Theorem 5.1.1 with A given by the rotation Q) in (5.8): of course, this
A is nondegenerate and positively 1-homogeneous and satisfies (5.4) with u = v = ¢ = 1.
Theorem 5.1.1 provides the first k¥ — 1 integer n7,...,n;_,. We define the last one n} using
the uniform constant KX determined in Remark 5.1.2:

/\+sup{ rot (p):0<lpl_<_K}
« [tor—1.w]
(59) Ny = - )

that is, nj, is the minimum integer n such that:

rot ](p)gmr-/\ VpeR*: 0< |p| < K.

[tak—1,w

Roughly speaking, ny is an upper bound for the number of zeros that a solution z of our
equation may have if the starting point (z(¢2x—1), Z(¢t2z—1)) is inside the closed ball of radius
K. Note that n}, is finite since g(s)/s is bounded in a neighbourhood of zero.

Let now fix § = (61,...,8;) € {0,1}* and n = (n4,...,n;) € N* such that:

e n; >nf foreveryi=1,...,k;
e In|+|d| =n1+---+ng+0; +---+ 0 is an even integer.

Then, if we consider the (k—1)-tuple (n,...,ng—1) and.the k-tuple § and we apply Theorem
5.1.1, we find the two unbounded continua I't C A4 and I'™ C A, such that the solutions
starting at ¢t = 0 from a point p in I'* are defined in [0,w] and satisfy:

2(w; 0,p)| = [@x(P)] = Ip|

and statements 2, 3 and 4 in Theorem 5.2.1. It remains to find pf, 5 € I'F such that statement
5 holds and:

(5.10) 2(w; 0,05 5) = Qa(pg 5)-

We show just the existence of pi s € I'T, since the other point can be found by similar

considerations.
As in the proof of Theorem 5.1.1, we define the angular coordinate 8 : [0, w]x [A4\{(0,0)}]

of the vector z(t;0,p) in such a way that:
e 9(0;p) € [—g,O] for every p € A4\ {(0,0)};
o p = (Ip|cos0(0;p); p| sin#(0; p)) for every p € A4\ {(0,0)};

o (t:p) = 6(0:p) _/Ot q(t)g(z(s;0,p))z(s;0,p) + 22(s;0, p) — 8(0:p) —

z%(s;0,p) + 32(5;0,p) ek

0
(0,2]

z(t;0,p) = |2(¢; 0,p)| cos6(t; p)
) {ﬂb(t; 0,p) = |2(t;0,p)| sin 6(¢; p) vie[0,w]Vpe A\ B(Ro)

(see (2.16) and (2.17) for more details).
Moreover we consider the continuous angular function 9 : A4\ {(0,0)} — R for A, which

satisfies:
A(p) = (|A(p)| cosI(p), |A(p)|sin P (p))
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for every p € A4 \ {(0,0)}. Actually, since now A is the rotation of A radiants in the plane,
we have that:
A(pl=1 and  9(p) =0(0;p) + A

Hence the function 9 we considered in the proof of Theorem 5.1.1 can be written as:
¥(p) = 0(w;p) —9(p) = O(w;p) — 9(0sp) = A = — rot (p) = .

Therefore, if we show that statement 5 holds, then also (5.10) is already proved, since ¥ (p)
turns out to be an integer multiple of 27 by the fact that [n| + |0] is even.
We split [rDot] (p) in the following way:
W

[Bc’)j](p) = [0(0;p) — O(tak—1;p)] + [0(t2k—1;p) — O(w; p)].
Since z(+;0,p) has exactly Nog—1 =n1 + -+ +ng-1 + |8] in [0, %2-1] for every p € I't and
since we know from Theorem 5.1.1 that I'j; _, (that is the image of I'" via the Poincaré map
p = z(tap-1;0,p)) is contained in the first or in the third quadrant, we have the following
estimate: -

—Nog—17 < O(tog—-1;0) < =Noggam + % Vpel*

and also:
(Nap—1 — 1) < 0(0;p) — O(tok—1;p) < Ngy—ym  VpeTlT.

Hence:

[got](p) < Nogoaw + [0(tor-15p) —8(w;p)]  Vpel™.

If we take po € I*NOB[Ry] and we let pag—1 = z(t2x—1;0,p0) € T;,Pl and poy, = z(w;0,p0) =
2(w; tag_1,D26—1), then we have |pae| = [A(po)| = |po| = Ro and, thus, |pag—1| < K (see
Remark 5.1.2, where K is defined for a general A). By (5.9) we obtain that:

O(tak—15p0) — O(w; po) = a2 }(ng—l) <ngm—A

2k —1,W
and:

(511) [BOt](po) S (Ngk_.1 -+ nZ)w .

On the other hand, we have that, if p € I'g and |p| — +o0, then |2(w;0,p)| = |A(p)| = |p| =
+0o and, therefore, |z(t2x—1;0,p)] = 400, too, since ¢ > 0 on [ta—1,w] and we can apply
there Corollary 2.1.3 and Lemma 2.2.2. A consequence of Corollary 2.2.8 on [toz_1,w] is
that:

lim rot (p) = +o0,

[p|—++co [tar—1.w]

hence, if p € 'y and |p| = +co, then:
O(tag—1;p) — O(w;p) = 1ot (2(tax—1;0,p)) = +o0.

[tak—1,w
This relation and (5.11) imply that for every ny > nj there is p;]", s € T such that:

[15013](1?3,5) = (Nog—1 +ng)m — A= ([n+[6))m — A,

which is statement 5. |
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Remark 5.2.2 In [57] Henrard proves a similar theorem for an equation of the form:
i+ f(z) =plt,z,2) te€lab],

with a bounded function p and a superlinear f. He proves that there is a n* such that for
every n > n” there exist at least four solutions such that satisfy:

(z(b), (b)) = Qa(z(a), £(a))
and:

[rac,ugz](z(a), z(a)) = 2nw — A

However, its proof does not work in the cases A = 0 and A = =+, that is in the cases of
periodic and antiperiodic boundary conditions, cases that we are able to handle. In fact, an
immediate consequence of this theorem is the existence of w-periodic solutions of:

£+ q(t)g(z) =0

with nodal behaviour precisely assigned. Indeed it is sufficient to apply Theorem 5.2.1 with
A=0.

Corollary 5.2.3 Let g : R — R be a locally Lipschitz continuous function satisfying (gl),
(g2+) and (g2—), let ¢ : [0,w] — R be a continuous function satisfying (q0). Suppose that
there are 2k + 1 points t; € [0,w], 1 =0,..., 2k such that:

O=ty <t1 <tg <---<tgpoy <lop=w
and:
g<0,q#0in I =[tyi_a,tei1] and ¢>0,gF0in I} = [tai_1,12],

foreolli=1,... k.
Then there exist k natural numbers ni,...,ny such that, for alln = (n1,...,n) € NF | with
n; > ng, and for all § = (61,...,6;) € {0,1}%, with:

|n| + 6] =n1 + -+ ng+ 0 + -+ J = even number,
there exist two points p;& € Ay and p 5 € Az such that the following facts hold:
1. :z:(t;O,piﬁ) is defined on [0,w] and is w-periodic, that is, it satisfies:
2(w; 0,p% 5) = pEs;

2. m(-;O,pié) has ezactly n; zeros in Jta;—1,te| for alli =1,...,k;
3. :B(-;O,pia) has ezxactly 6; zeros in Jtai—a,t2;—1] for alli=1,...,k;
4. :t(-;O,pis) has ezactly 1 — &; changes of sign in Jtaj—o,toi—1[ for all 1 =1,...,k;
Using a change of variables from [21], it is possible to find periodic solutions with pre-

scribed nodal properties and infinitely many subharmonic solutions also for the damped
equation:

(5.12) " +ct +7(s)g(8) =0,

where ¢ is a real constant and the apices denote derivation with respect to s.
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Theorem 5.2.4 Let g : R = R be a locally Lipschitz continuous function satisfying (91),
(g2+) and (g2-), let G : [0,w] = R be a continuous function satisfying (q0) and let c € R.
Suppose that there are 2k + 1 points s; € [0,w], ¢ =0,...,2k such. that:

D=35p <8 <83 < < Sgp—1 < S =W
and:
7<0,§20in I =[sgi-0,80i-1) and T>0,7#0in I} = [s5i-1, 52,

foralli=1,...,k.
Then there exist k natural numbers ny,...,n} such that, for alln = (n1,...,ng) € NF | with
n; > nt, and for all 6 = (dy,...,0%) € {0, 1}*, with:

|n| + |8 =n1 + - +ng + 61 + - + & = even number,
there ezist two w-periodic solutions 5;‘;5 and & 5 of (5.12) such that:
1. &, 5(0) <0 < & 5(0);
2. Eia has exactly n; zeros in |s2—1, S2i| for alli=1,...,k;
3. 53:5 has ezactly §; zeros in )sai—2, sai—1[ for alli=1,...,k;
4. (€X5)" has ezactly 1 — 6; changes of sign in ]s2—s, spi—1| for alli=1,...,k;

n,s

Moreover for every m > 2 there are infinitely many subharmonic solutions of (5.12) of order
m.

Proof. We carry out the proof in the case ¢ > 0, since the other case can be managed in
the same way.
Let us make the following change of variables (we found it used in [21]):

1
t=7(s)=-(1—-¢e"%),
¢
that is:
at is ) (t)_l .
S=W =T8T T
and define:

z(t) = (<))
then straightforward computations show that & is a solution of the equation (5.12) if and
only if z satisfies the equation:

(5.13) i+ q(t)glz) =0,
with ¢ defined by:

2

o0 = (125 Tt

1-ct
Looking for periodic solutions of (5.12), that is for solutions of (5.12) which are defined on
[0,], satisfy the boundary conditions:

{5@) =£(0)
¢ (@) = €'(0)
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and have the nodal behaviour prescribed by two vectors n and §, turns out to be equivalent
to find solutions of (5.13) which are defined on [0, w], with w = 7(0), satisfy:

{a:(w) = z(0)
#(w) = e°¥1(0)

and also have nodal behaviour prescribed by the same n and §.

In fact, if we define:
10
A(plapQ) = ( 0 evw ) (ii )u

our problem is now of the form (5.7) and A and g verify the assumptions of Theorem 5.1.1,

with the positions:
t; = 7(s4) Vi=0,...,2k,

so that in the remainder of the proof we will forget the equatlon (5.12) and we will concentrate

to the usual equation (5.13).

Theorem 5.1.1 provides as usual the first £ — 1 positive integers ni,...,n}_, and, as
in the proof of Theorem 5.2.1, we define the last one by means of the uniform constant K
defined in Remark 5.1.2: let n} be the minimum integer such that:

rot (p)<(n-1U= VpeR?:0<|p <K;

[tak—~1,w]

again, it exists and is finite since g(z)/z is bounded in a neighbourhood of the origin.
We fix now 8 = (61,...,6%) € {0,1}¥ and n = (ny,...,n;) € N¥ such that:

e n; >ni, foreveryt=1,...,k;
o |n|+|0| =ny+---+ng+ 0 + -+ & is an even integer,

and we apply Theorem 5.1.1 with the (k — 1)-tuple (n1,...,nk—1) and the k-tuple 4, finding
the two unbounded continua I't C A4 and I'™ C A such that the solutions starting at t = 0
from a point p in I'* are defined in [0,w], satisfy:

|2(w; 0,p)| = |A(p)]
and have the prescribed nodal behaviour in [0, t2x—1]. It remains to find pf, s € T'F such that:

(a) a:(-;O,pia) has exactly ny zeros in Jtax—1,w];

0) w0555 = (e ):

As usual, we show only the existence of p 5 € I+, since the other point can be similarly
found. As in the proof of Theorems 5.1.1 and 5.2. 1, we define the angular coordinate 8 :
[0,w] x [As \ {(0,0)}] of the vector z(¢;0,p) in such a way that:

o 0(03p) € [5.0] for every p € 44 \ {(0,0)};
= (|p| cos 8(0; p); |p| sin8(0;p)) for every p € As \ {(0,0)};

i (s
L N—
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. J#(t:0,p) =]2(£0,p)| cos 8(t; p)
{:b(t;o,p) = |2(£;0, p)| sin 8(; p) Vi€ [0,w]Vp e 4\ B(Ro)

(see (2.16) and (2.17) for more details). In particular, a point p € A4 is such that z(-;0,p)
has exactly n zeros in [0,¢] if and only if:

—-g— —nw < 8(t;p) < -——723 —(n—1)m.

Now, all the solutions starting at ¢t = 0 from p € I'" have exactly Nog—1 =ny+---+ng_1+|d]
zeros in [0, taj—1]; therefore, in order to satisy statement (a), we have to consider those p € r+
such that: x -
5 (Nog—1 + np)m < f{w;p) < -3~ (Nog—1 +ng — 1),
that is: - r
—5 = (| + [8))7 < O(w;p) < —5 — (In| + || = 7.

Arguing like in the proof of Theorem 5.2.1 and using the definition of nj it can be shown
that:

(w;TT) = {B(w;p) :p €T} D ]_OO:"‘(N%~1 +np)m + %} ’

Since @ is continuous, I'" is connected and nx > nj, we can find a connected and closed
I} C It such that:

6(w;Ts,) =[5 = (Il + |8)m, =2 = (| + 18] = ] .

We consider also the continuous angular function ¢ : A4 \ {(0,0)} — R for A, which
satisfies:

A(p) = (|A(p)| cos ¥(p), |A(p)| sin I (p))

for every p € As \ {(0,0)}. Since A now is a dilatation in the vertical direction it can be
easily shown that for every point p in the fourth quadrant A4 there holds that:

_g <0(0;0,p) <0 Vpe As\{(0,0)}.

Finally we define again the function ¢ : I' = R by:
¥(p) = 0(w;p) —¥(p),

so that we have to find pj; s € I such that z,b(pj;a) € 2nZ, in order to reach goals (a) and
(b).
Let p; € '}, be such that:
-
6wipr) = —5 = (In] +18)m;

then we can evaluate:

AN

b)) < - —(nl+[o)r+ 3
~(|nl + 8]}

IN

On the other hand, if p, € T’} is such that:

O(w;p1) = —g — (In] + 18] = D),
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then:

¥(p1)

v

T
~2 — (ol +16] - m
> —(n|+ 87 + 5
Therefore there exists p;(; € I't such that v,b(p;'; s) = —(|n] +1d])7.

Now the trick to find infinitely many subharmonic solutions is standard and without loss
of generality we can assume that w is the minimal period of ¢ (otherwise such minimal period
should be of the form w/l, with [ € N, and we could repeat the argument below with w/!
in place of w); we recall that a solution z of (5.12) is subharmonic if it is mw-periodic with
m € N, m > 1, and minimal period mw. Then we apply what the part of the theorem that
we have just proved to the interval [0, mw] (g is obviously mw-periodic) and with n and §
such that 2N = |n|+ |4] is an even number and /N and m are relatively prime numbers: then
we find a mw-periodic solution z of (5.12) with exactly 2N zeros in ]0, mw]; let us verify
that mw is the minimal period of z, since it could happen that z has a minimal period which
is incommensurable with w, as remarked in [104, pp. 10-11]. Let T" be the minimal period
of z; a direct inspection shows that this implies that T is also a period of g, then T' = kw
for some k € N, k < m. Now let 2M be the number of zeroes of z in [0, kw); if we look to
[0, mkw) as the union of either & intervals of length mw or m intervals of length kw, we find
2Nk zeroes of z in [0,mkw), in the first case, and 2M'm zeroes, in the second one, that is

2Nk = 2Mm; but this implies that:
m k

N N’
which is not possible for £ < m since m and N are relatively prime numbers, so k =m. B
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Chapter 6

Globally defined solutions for
superlinear indefinite equations
and chaotic dynamics

We have seen (and actually this is the main subject of the paper by Burton and Grimmer
[21]) that there are problems of continuability for the solutions of the equation:

(6.1) ' & +q(t)g(z) =0,

when g is a superlinear function and ¢ is negative somewhere. In this chapter we are consider
a function ¢ with infinitely many zeros and changes of sign and we look for solutions of (6.1)
which are “globally defined”, that is defined in the entire domain of ¢, and have prescribed
nodal behaviour in the sense of the preceding chapters: we divide the domain of ¢ into a
double sequence of alternating intervals in which ¢ is either positive or negative and we wish
to assign in every interval of positivity an arbitrary (but sufficiently large) number of zeros
and to decide in each interval of negativity if the solutions will be monotone with exactly
one zero or concave/convex with the first derivative that changes sign exactly once.

In Chapter 3 we have associated to each interval [tg,%;1], where ¢ < 0 and g # 0, the sets
Qié and Qi? of all the points p of the plane such that the solution of (6.1) starting from p at
t =ty and t = t;, respectively, is defined in the interval [to,?;]. If g satisfies:

(92_) e-]irinoo Tg (6) = 0’
where 7, is defined in (3.2), then the sets like Qi; are such that their intersections with every
straight line from the origin are bounded (cf Lemma 3.1.1). Suppose now that the domain
of g is an open interval ]a, b[ and that there is an increasing sequence {tz}rez CJa,b[ such
that:

lim t; =a and lim t; =05

k-—r—00 k—r-+co

and:
g <0, ¢ Z0in Jtak, togs1] VkeZ,

q>0,q#0in Jtogs1, tor2| VEkEZ.

If we consider the set of initial points which produce solutions from ¢ = tg that are defined
on [t—j,t;], then this set becomes smaller and smaller as j increases. However we are able

107
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to prove that, in the limit as j — oo, some point “survives” and gives raise to a solution

globally defined.
The method we use is based on the construction of solutions of (6.1) defined in intervals of
ever-increasing width; to be precise, let z(-; o, p) be the solution of the initial value problem:

{ +q(t)g(z) =0
(@(to), #(t0)) =,

for some p € R?, and let z(t to, p) = (z(¢; to, p), T(t; to, p)) be the corresponding phase vector.
Let n = {m}kez C N and § = {0 }rez C {0, I}Z be two double sequences; for every
7 € N we define the open set:

Qf = {p € Ay : z(-;to,p) is defined in [t_aj,ta;42], has exactly ny zeros
(6.2) in Jtagy1,terte[ and O zeros in Jtak,taxs1[ and (-5 to,p) has

exactly 1 — d;, changes of sign in [tog, tox+1[, V|k| < 4}

(an analogous definition is given in order to consider solutions such that z(tp) < 0 and

#(tg) > 0). Then we show that the intersection ﬂJeNQ is non-empty. To this aim, it is
sufficient to prove that every set Qj‘ is non-empty and bounded and that the family {Qj’} jeN
is “compactly” nasted, i.e.:

(6.3) 0f,c9f, vieN

Indeed, the fact that, for every j € N, the set Qj is non-empty and bounded directly follows
from the existence theorems of the preceding two chapters. Finally, in order to prove (6.3) we
need a detailed study of the boundary of Q+ (see Lemma 6.1.7) together with the application
of the so-called “elastic property” (see Lemma 6.1.5), which gives an a priori estimate for
the solutions of (6.1) having a prescribed number of zeros.

In the last section we restrict ourselves to the study of (6.1) when ¢ is w-periodic. In
this situation we provide, by the use of the Poincaré map, some consequences of the results
of the first section, which point out the chaotic features of our problem. First, we show (see
Proposition 6.2.3) the existence of an uncountable number of bounded non-periodic solutions
of (6.1). Then, we obtain that the Poincaré map associated to (6.1) has positive topological
entropy.

6.1 An existence and multiplicity result

We consider the differential equation:
(6.4) & +q(t)g(z) =0,

where g :]a,b[— R is a continuous function, with —co < a < b < +00, and satsfies the
following assumption:

(q0) there exists an increasing sequence {t;} CJa,b[, k € Z, such that:

lim # =a, lm ¢z =25
k——co k—+o0

and:
g <0,gZ0in Jta, tapsr] VkeZ,

g>0,q#0in Jtagtr, tante[ VEkEZ;
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moreover, the function ¢ is locally of bounded variation in every interval of the form
Jtors1,tapsal, with k € Z and, for every ¢ € [fap41,t2x+2] such that g(c) = 0, there
exist a left neighbourhood and a right neighbourhood of ¢ where g is monotone.

About g : R — R we assume that it satisfies the usual sign condition:

(g1) A glz)x >0, Ve #0

and the two hypotheses of superlinear growth at infinity:
; +(p) =

(92+) Jim 7 (e) =0

and:

(2-), (€)=

where 71 and 77 are defined by (2.3) and (3.2), respectively.
Under these assumptions, we are able to prove the following result:

Theorem 6.1.1 Let g : R — R be a locally Lipschitz continuous function satisfying (gl),
(92+) and (92—) and let g :]a,b[— R be a continuous function satisfying (q0), with —co <
a < b < +oo. Then, there exists a sequence n* = {n}}rez of natural numbers such that, for
every sequence n = {ny trez, with ny € N and ny > ng, and for every sequence § = {6k }rez,
with & € {0,1}, there exist two poinis p;';,a € Ag andp, 5 € Ao such that:

1. z(%; tg,pia) is defined for all t €a,b;

2. for everyk € Z, -’L‘(';to,pi(;) has ezactly ny zeros in ltakt1,tarr2[ and ezactly &y zeros
in Jtak, tak1[s

3. for every k € Z, i:(-;to,pia) has exactly 1 — 6 changes of sign in tog, tap+1]-

We underline the fact that, if the measure of the set where ¢ vanishes is zero, then Statement
3 in Theorem 6.1.1 can be improved by stating that the functions (-; o, pf} 5) has exactly
1 — 6 zerosin Jtog,tox41], for every k € Z.

Remark 6.1.2 It is possible to show that, for every k € Z, the integer n} only depends on
the behaviour of the function ¢ on the interval [ta2x, t2x+3], as can be seen from Lemma 6.1.5
and Lemma 6.1.4.

Remark 6.1.3 We first observe that, in contrast with various situations which can be found
in the literature, we do not assume any periodicity on g. A recent contribution where oscilla-
tory functions (not necessarily periodic) are considered, is due to S. Terracini and G. Verzini
[121]; however, in [121] an appropriate boundedness condition on g is required. We also re-
mark that the regularity assumptions on g (see condition (g0)) guarantee the continuability
of the solutions of the equation in (6.4) in every interval where g is positive by Corollary
2.1.3.

Assumptions (g2+) and (g2—) represent a superlinear behaviour of the function g at
infinity. They are clearly satisfied by functions g like g(z) = z|z|P~! log?(|z|+2), with either
p>1landgeRorp=1andg> 2. Condition (92+) is needed to deduce the properties of
the number of zeros of any solution to (6.4) in the intervals where g is positive (see Lemma
6.1.5); furthermore, we have to assume (g2—) in order to describe the sets of continuability
for the solutions of equation (6.4) in the intervals where g is negative (see Lemma 6.1.4 and
Section 3.1.
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For every k € Z, let us define the set:
(6.5) Q] = {p e R : z(-;t;,p) is defined in [min{;, ¢;}, max{t;, t;}]},

which is the set of all the points p in the plane such that the solution of (6.4) starting from p
at t = t;, is defined in the closed interval spanned by ¢; and ;. Lemma 3.1.1 implies that the
intersections of these set with the coordinate axes (actually, with every straight line passing
by the origin) are bounded whenever g is negative somewhere between ¢; and ¢;. Indeed, the
following result holds true.

Lemma 6.1.4 For every k € Z there exists Iy > 0 such that
p € Q2 N[({0} x B) U (R x {0})]
or = |p| <.
p €035, N[({0} x R) U (R x {0})]

Proof. Apply Lemma 3.1.1 on [tak, tag+1]- B

Now, it is easy to see, from the sign condition (g1) and the local Lipschitz continuity of
g, that every solution z of (6.4), z # 0, has only a finite number of zeros in every bounded
interval. We denote this number by ny; ;.,,1(z). Moreover, for every k € Z, let us set:

Ly = max(lg, le+1)-
We state our next preliminary result:

Lemma 6.1.5 The following statements hold:

1. for every k € Z there exists ny € N such that for every solution = #Z 0 of (6.4) we
have:

[(z(t*), 2(t*))| < Li, for some t™ € [tagr1, tansa] = Dty tae4.](2) < .

2. for every k € Z and for every N € N there ezists C = C(k,N) such that for every
solution = of (6.4) we have:

n[t2k+1,tzk+2](z) S N = ](a:(t),z(t))| S 07 Vie [t2k+17t2k+2]'

Proof. Statement 1 in Lemma 6.1.5 is a direct consequence of the uniqueness of the zero
solution z = 0, due to the local Lipschitz continuity of g : in fact, if Statement 1 is false,
it is possible to find a sequence of solutions which are bounded in C* and whose number of
zeros increase to infinity; passing to a suitable subsequence and using Rolle’s Theorem, it is
possible to show that they converge to a nonzero solution z such that z(t*) = £(t*) =0, a
contradiction with the uniqueness of the zero solution.

Statement 2 follows from Corollary 2.2.8 applied on [tag+1, tak+2], where we have that
g>0and g#0. [ |

We also observe that Statement 2 implies that the number of zeros of a solution of (6.4),
in any interval where ¢ is positive, is arbitrarily large provided that the norm of this solution
is large. :
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Remark 6.1.6 From the statements of Lemma 6.1.4 and Lemma 6.1.5, it is clear that, for
every k € Z, the number n} only depends on the restriction of the function g to the interval

[tak, tak+3]-

Now, we pass to the first step for the proof of Theorem 6.1.1. To this aim let us fix two
sequences n = {ny }rez, with nz € N and ny > n}, and 6 = {6;}rez, with 6 € {0,1}, as in
the statement of Theorem 6.1.1.

For every j € N, let us define:

Qj’ ={p € Ay : z(-;to,p) is defined in [t_s;, t2542], has exactly ny zeros in
(6.6) t2r+1, tanso| and exactly 8y zeros in [tak, tart1[ and (-5 tg, p)
has exactly 1 — dy changes of sign in |tas, tog1[ for every |k| < 5}
and:
Q7 = {p€ Az :z(to,p) is defined in [¢t_s;,2542], has exactly ny zeros in
(6.7) Jt2k41, tars2| and exactly 0y zeros in Jtay, tary1] and &(:;tg, p)
has exactly 1 — &; changes of sign in Jtax, tag41[ for every |k| < 5}.
By the definition of Qj‘, it is easy to see that z(t;to,p) is a solution of (6.4) defined on ]a, b,

with p € 44 and the nodal properties prescribed by the vectors n and § as stated in Theorem
6.1.1, if and only if:

+co
+.
Jj=0

analogously, z(t;to,p) is a solution of (6.4) defined on ]a,b[, with p € A4 and the nodal
properties prescribed by the vectors i and 6, if and only if:

+o0
DE ﬂ QJ‘
=0
Therefore Theorem 6.1.1 holds true if we prove that:
“+oo
(6.8) () 95 #0.
Jj=0
Actually we will show only that:
+oo
(6.9) 9f #0,
J=0
since the proof of the same relation for the sets (2} is similar. The crucial step of our method

is the following lemma, which describes the boundary of every set Qj

Lemma 6.1.7 For every j € N and for every p € Bﬂj the solution z(-;to,p) is defined in
[i..gj+1, t2j+2], but it is not deﬁned mn [t_gj,t2j+2].

Proof. We first show that, for 7 € N and p € 8(2;", the solution z(:;tg,p) is not defined
in [t_25,t2j4+2]. We argue by contradiction: let j € N and p € 89;’ be such that z(-; g, p) is
defined in [t_s;,t2j42]. Therefore, at least one of the following conditions holds true:
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(a) z(to) = 0;
(b) @(to) = 0;

(c) there exists k, with |k| < j, such that z(tax11;t0, D) T(t2k+2; to,p) = 0 (i.e. the solution
z(t; to, p) has a zero on the boundary of [tags1,tar+2]);

(d) there exists k, with |k| < j and 6 = 1, such that z(tax;t0,p) - z(tagr1;to,p) = 0 (e
z(t;to,p) has a zero on the boundary of [tax, tart1]);

(d’) there exists k, with |k| < j and & = 0, such that @(t2x;t0,p) - T(t2k+1;t0,p) = 0 (ie.
i (t;to,p) has a zero on the boundary of [tax, tap+1])-

We show that in any case we get a contradiction. Indeed, assume that (a) holds; then, we
have:
p€ N ({0} xR)

and thus, by Lemma 6.1.4, |p| < lp < L_;. Therefore, by Lemma 6.1.5, we should have:
M1 S n[t_l,to] < ntl S n—1,

which is absurd.
When (b) holds, we have p € Q3 N(Rx {0}) and we can conclude as in the previous case.
Assume now that (c) is fulfilled; if z(¢2g41;to,p) = 0, then:

2(taks1;to,p) € Q35,1 N ({0} X R)
and |z(tar+1; 0, P)| < Ik < Ly by Lemma 6.1.4. Therefore, by Lemma 6.1.5, we should have:

]<n2§nk,

ng < Miiop11,tonte

which is absurd. If z(tags2;t0,p) = 0, then we can similarly show that |z(t2g42)| < Ly and
this leads to the same contradiction.

In the same manner one can see that also (d) and (d’) cannot hold and this concludes
the first part of the proof.

Now we prove that, for j € N and p € BQ;-*, the solution z(-;tg,p) is defined in
[t—9jt1,t2j42]. We argue again by contradiction: assume then that there exist j € N
and p* € 69;‘ such that z(-;%p,p*) is not defined in [t_2j11,t2542]. Then, there exists
t* € [t_2j+1,t2j+2] such that:

Jim |2(¢; t0,p")| = 400

(actually ¢+ € [t—aj42,%2j+1], since there are no problems of continuability in the intervals
[t_2j+1,t—2j+2] and [t2j41,t2542], in which ¢ is nonnegative). Therefore, for every M > 0
there exists a (right or left) neighbourhood V' (¢*, M) of t* such that:

(6.10) |2(tito,p")| > M, Vte V(" M), t£¢".

On the other hand, since the number of zeros of = on every interval [t2x41, tar2], for [k] <,
is bounded, from Lemma 6.1.5 (Statement 2) we deduce that there exists C; > 0 such that:

(611) |Z(t;t0,p)l < Cj, Vte [t2k+1,t2k+2] V[k] <j Vpe Q;—

Now, we observe that in every interval of the form [tax, t2541], that is in every interval where
g is nonpositive, a kind of maximum principle holds for a solution z of (6.4), in the sense
that the modulus |(z(¢), £(¢))| attains its maximum value on the boundary of the interval,
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that is in #a5 or in fop.y1; this can be easily seen by checkig the sign of the derivative of
z2(t) + 22(t) and by making use of the fact that, where ¢ < 0, the solutions of (6.4) are
monotone or convex and positive or concave and negative. However, this implies that the
estimate (6.11) also holds in those intervals of negativity of ¢ which lie between ¢_5;11 and
tojra, L. in [tog, tog41] for every k = —j +1,...,7. Putting all these things together we
have:

(6.12) Iz(t; to,p)l < Cj Vite [i_2j+1,t2j+2] Vpe Q;—
Since p* € OO, there exists p, € O such that p, — p*; hence, from (6.12) we have:
(6.13) |2(t; to, pn)] < Cj, Vte [t_2j+1,tgj+2] VneN

If we take M = Cj+1in (6.10), an elementary continuous dependence argument shows that
(6.13) contradicts (6.10) and the result is proved. B

We are now able to prove the following result.

Proposition 6.1.8 For every j € N we have:

+
(6.14) 07 #0,
(6.15) Qj is bounded
and:
(6.16) o, caof.

Proof. The fact that, for every j € N, the set Q;r is not empty, directly follows by applying
one of the existence theorems discussed in the previous two chapters: for instance we could
apply Theorem 4.2.1 on the interval [t_s;,t25+2], in order to get a solution of (6.4) wich is
defined in this interval and has the prescribed nodal behaviour.

Moreover, from Lemma 6.1.5, Statement 2, we deduce that there exists C = C(—1,n_1) >
0 such that for every solution z of (6.4) with exactly n_, zeros in [t_;,to[ we have:

[(z(8),2(6)] < C, Vi€ [ty o]

In particular, taking ¢ = tg, this shows that |p| < C, for every p € Q;', for every j € N, ie.
Q7 is bounded.
Finally, from the definition of Q;.L we plainly deduce that:

+ +
Oy

and: o

Qf, cof,
for every § € N. Now, suppose that p € anj for some j € N; then, by Lemma 6.1.7, we
necessarily have that z(-;tg,p) is defined in [t_2j+1,82542], but not in [t_s;,t254.2]. On the
other hand, if p € ?2;":, we should have either p € Q;r_l_l orpé€ 30};1 and, in both cases,
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z(+;to, p) should be defined at least in [t—a;_1,t2j+4] by the definition of Q;1, and by Lemma
6.1.7 applied to 89;_1. Henceforth, p ¢ Q;LH and this shows that (6.16) holds. ]

We are ready to prove our main theorem.

Proof of Theorem 6.1.1. Let us consider the sets Q;" defined in (6.6); from Proposition
6.1.8 and an easy topological argument, it is immediate to see that (6.9) holds. By the
previous discussion, this concludes the proof. [ ]

Remark 6.1.9 Theorem 6.1.1 provides solutions of (6.4) with prescribed nodal behaviour
in the open intervals |t;,t;41[ for every ¢ € Z, but, may be, up to now it is not clear what
happens on the boundary of these intervals. Actually it can be proved that if x is a solution
of (6.4) such that z(t;) - £(t;) = 0 for some ¢ € Z, then the number of zeros of z either
in [t;_1,t], if 4 is even, or in [t;,t;41], if 4 is odd, is less than the correspondent minimum
number n} given by the Theorem (6.1.1) (combine Lemma 6.1.4 and Statement 1 of Lemma
6.1.5 as in the proof of Lemma 6.1.7). Therefore the solutions we find via Theorem 6.1.1
(and their derivatives, too) cannot vanish in #; for every i € Z.

Remark 6.1.10 Let us consider the damped equation:
(6.17) I+ et + g{t)g(z) =0,

where ¢ is a real constant, and suppose for instance that ¢ > 0 (the case ¢ < 0 can be treated
in a similar way). According to [21] (see also the proof of [99, Th. 3.2]), we set:

1 1—e 1 —ebe
t(T)_EIOgl—CT’ VTE:{ T [,
and:
1 I
1 * = e—
(6.19) ¢ = et vre [P A
(if a = —c0 or b = 400, we let e7%° = +co and e~% = 0, respectively). Then, z(t) is a

solution of equation (6.17) if and only if £(7) = z(¢(7)) is a solution of:

1—ea¢ ] —gbe {

(6.19) E+a@e© =0, Te | I

where ¢* is defined in (6.18). Now, it is easy to see that the function ¢* satisfies (¢0) if ¢
does; then, we are allowed to apply Theorem 6.1.1 to equation (6.19) and this gives that the
same Theorem 6.1.1 holds for the damped equation (6.17).

6.2 The periodic case: chaotic dynamics

Let us now consider the equation:

(6.20) v &+ q(t)g(z) =0,
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where ¢ : R — R satisfies (¢0) and is w-periodic and g : R — R satisfies (g1), (92+) and
(g2—). Without loss of generality we can assume that there exist:

0=+t <t1<-'-<t21_1.<tzl:w

such that: :
q(t) £0,q#0, VtEe[topn,tog—1]and k=1,...,1,

g(t) >0,¢g#0, Vt€ [tap_1,tox]and b=1,...,1.

According to the notation of Section 6.1, we are taking:
(6.21) tolivr = tg + 2liw, Vi€eZandVk=0,...,2] — 1,

so that {t;};ez is an increasing sequence of real numbers such that ¢; — +co as i — oo.
The aim of this section is to prove some results which show that the equation (6.20) exhibits
a chaotic-like behaviour. Our results will be consequences of Theorem 6.1.1 proved in Section
2; in the particular case of equation (6.20), it can be stated in the following way:

Corollary 6.2.1 Under the above assumptions there exist [ positive integers ny, ..., n} such
that for every pair of sequences of I-tuples n = {(ni,...,n}) € N'};¢z and 6 = {(d},... ,01) €
{0,1}}iez, there exist two points py 5 € Ay and p, 5 € Ay such that:

1. m(t;O,pia) is defined on the whole real line R;

2. z(y O,pff‘&) has ezactly n} + nk, zeros in Jtag—1 + iw, tag + iw| for every i € Z and for
every k=1,...,(;

3. z(+ O,pié) has ezactly 8% zeros in Jtog—2 +iw, tag_1 +iw| for everyi € Z and for every
k=1,...,1

4. :z':(~;0,pi:)5) has ezactly 1 — 6% changes of sign in |tog—o +iw, tag_1 +iw| for everyi € Z
and for every k=1,...,1L.

The difference between Corollary 6.2.1 and Theorem 6.1.1 is the fact that, in the present
case, the sequence (n}), ¢ € Z, whose existence is ensured in the statement of Theorem 6.1.1,
is such that ny = ny, 5, for every i € Z and for every k = 1,...,l. Indeed, recalling (6.21)
and Remark 6.1.2, this is a direct consequence of the w-periodicity of g.

Now, we pass to the description of the chaotic behaviour of the solutions of (6.20). We
first show that the boundedness of the solutions of (6.20) can be characterized by means
of the boundedness of the sequence n in Corollary 6.2.1. As a consequence, we are able to
prove that (6.20) has an uncountable set of bounded non-periodic solutions; as it can be seen
in [105], this is one of the features of a chaotic dynamics.

Proposition 6.2.2 Let us consider n and ¢ as in the statement of Corollary 6.2.1. Then:

a:(-;O,pf;a) is bounded in C*-norm <= n is bounded.

Proof. Assume that n is bounded; since g is periodic, from Lemma 6.1.5, Statement 2, we
know that there exists C' = C(g, n) such that:

(6.22)  [z(t0,pE)I < C,  VEE [tapy +iw, ey +iw], Ve =1,...,1, Vi€ Z.
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This means that z(-; O,pi 5) is bounded on every interval where ¢ is nonnegative. Now, as
observed in the proof of Lemma 6.1.7, in every interval [tag + tw, tag+1 + Gw], in which g is
nonpositive, the maximum of |z(t; 0, pi: s)| is attained on the boundary, which is in common
with some interval where g is nonnegative. This implies that the estimate (6.22) also holds
in the intervals of negativity of ¢, i.e. (t;0, pi s) is globally bounded on R.

In order to show that when z(-;0, pi 5) is bounded also n is bounded, it is sufficient to
apply Corollary 2.2.8 on every interval of positivity of g, recalling also that ¢ is a periodic
function. [

Proposition 6.2.3 There erists an uncountable set of bounded nonperiodic solutions of
(6.20) with an arbitrarily large number of zeros in every interval of positivity of g and at
most one zero in any interval of negativity of g.

Proof. Let us denote by S the set of the pairs (n,d) of sequences of I-tuples n =
{(ni,...,ni) € N}iez and § = {(8,...,6}) € {0,1}'}iez such that n is bounded and
at least one between n and 8 is not a periodic sequence (that is, for every m € N there
arei € Zand k € {1,...,1} such that either n§ # nj"™ or 8} # &6;"™). Clearly S is an
uncountable set (since the set of periodic sequences of integers is countable, while the set of
all bounded sequences of integers is not).

Now, let (n,d8) € S: z(+0, pf‘a), whose existence is guaranteed by Corollary 6.2.1, is
bounded by Proposition 6.2.2 and obviously cannot be periodic, since the sequece of its
zeros is not periodic. | ]

We observe that a result on the existence of bounded non-periodic solutions to (6.20) has
been proved also in [121].

In order to present our next results, we recall some basic facts on chaos theory and
symbolic dynamics. For every M € N, let Sar = {1,2,..., M} and let TM be the set [Spr]?
of the bi-infinite sequences s = (8;)iez, With s; € Sas; ¥M is a compact metric space equipped
with the distance:

“+o00 —
. 1 s =3
d(SVS)_AZ W1+|5i—§i|
i=—00

and let o : &M — M the Bernoulli shift map defined by:
(0(s))i = Sit1, for every s € &M

(see [127, p. 94-107] for details about ¢ and S
Moreover, we recall the following definition of the topological semiconjugation of maps.

Definition 6.2.4 A map ¥ : Q — Q C R? is topologically semiconjugated to the Bernoulli
shift if there exist a compact set A C € and a continuous surjection 7: A — ©M such that

the diagram:
A—T oM
(6.23) \pl Ja
A —T— M

commutes.



6.2. THE PERIODIC CASE: CHAOTIC DYNAMICS 117

Remark 6.2.5 In the case when the function 7 in Definition 6.2.4 is also injective, we say
that the maps ¥ and o are topologically conjugated. In this situation ¥ inherits all the
chaotic features of the Bernoulli shift and we can actually call it a chaotic map.

Another feature of chaotic maps is the fact that they possess positive topological entropy.

Definition 6.2.6 Let X C R? is a compact set and f : X — X is a continuous map, then
the topological entropy of f is given by :
1
lim limsup 285E™)
e—+0+ m—+00 m

with:
s(e,m) = max{card(E) : E C X such that Vz,y € E, with z # y,

|£7(@) = F7(y)| > & for some 0 < 7 < m};
on the other hand, if X is not compact, the topological entropy can be defined by:

. . log s(e,m, R
sup lim limsup —g—Ll-L—Z,
R>0 £=0% m—+co m

with:
s(e,m, R) = max{card(E) : E C X such that f"(E) C B(O,R)Vr=0,...,m, and
[ff(z) = fr(y)| >eVe,ye Ex #y, forsome 0 <7 <m }.
In both cases the topological entropy measures the exponential growth of the number of

bounded orbits which diverge as successive iterations of f are considered.

In particular, the entropy of the Bernoulli shift on £ is equal to log M. Moreover, any
map semiconjugated to the Bernoulli shift has positive entropy; in fact, we have the following
result.

Proposition 6.2.7 [105, Prop. 3.11] If ¥ : Q — Q s topologically semiconjugated to the
Bernoulli shift on ©M | then the entropy of U is at least log M.

Our aim is to show that the Poincaré map associated to (6.20) is topologically semicon-
jugated to the Bernoulli shift and so it has positive entropy. To do this, we recall that, for
p € R?, we denoted by z(+; 0, p) the pair (z(;;0,p),2(-;0,p)), where z(-; 0, p) is the solution of
(6.20) satisfying the initial condition (z(0),%(0)) = p; then, we introduce the Poincaré map
II by setting:

II(p) = 2(w; 0, p)
for all those p € R? for which the solution z(-;0,p) is defined on [0,w]. Moreover, with n}
given in Corollary 6.2.1, let us define:

(6.24) Q= {peR:2(;0,p) is defined on R and z has at least Ty, Zeros in
ltog—1 + iw, tog +iw[, for every k =1,...,{ and for every i € Z}.
Now, for any given natural number N, we can consider the subset Qy C € defined by:
Qny ={pe R :2(-0,p) is defined on R and 7 has at least n} and
(6.25) at most nj + N zeros in Jtop—1 + tw, tag + iw|
for every £ =1,...,1 and for every i € Z}.

The following lemma summarizes the properties of the sets 2 and Qy.
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Lemma 6.2.8 The following results hold true:
1. UR_ N C
2. I =&
3. for every N € N we have II{Qn) = Qu;

4. for every N € N the set Qn is nonempty and compact.

Proof. Statement 1 is trivial. Statements 2 and 3 are easy consequences of the fact that
q is w-periodic. As far as Statement 4 is concerned, the fact that every set {2y is nonempty
follows from Corollary 6.2.1. Moreover, from an application of Lemma 6.1.5, Statement 2,
we immediately deduce that Qy is bounded.

Finally, in order to show that it is closed, let us consider a sequence p, € {1 such that
P — Po, for some py € R2. For every n € N, we set z,(-) = z(-;0,p,) and zg = z(+;0,po).
According to proof of Proposition 6.2.2, the sequence (z,,) is bounded in C?*(R); then, an
application of Ascoli-Arzeld’s Theorem, together with a continuous dependence argument,
shows that, possibly passing to a subsequence, z,, — Tp in CZ.(R). This means that z, and
&, uniformly converge to o and Zo, respectively, on every interval of the form [~ jw, (j+1)w],
for every j € Z; this fact guarantees that zg is globally defined in R. Now, we need to prove
that the number of zeros of zy in every interval of the form Jtog—1 =+ iw, tag + iw[ is greater
than nj and less or equal to nj + N; to this aim, let us fix an interval Jtar—1 + iw, tag + tw]
and let us denote it by Ij ;. Recalling Remark 6.1.9, we know that neither z,, nor zo may
have a zero on the boundary of I ;; moreover, let us denote by 7, < ™ < ... < 7x the
zeros (they are all simple) of zg in I; ;. Using the continuous dependence of the solutions to
(6.20) on initial data, we deduce that, for every neighbourhood V; of 7;, j = 1,..., K, and
for n sufficiently large, x, has exactly one zero in Vj;; this shows that z,, for n sufficiently
large, has K zeros in I ;. Therefore, =, has the same number of zeros of z¢ in every interval
Jtak—1 + iw, tag + ww[, for n sufficiently large; since p, € Qn, the number of zeros of z, is
greater than n} and less or equal to nj + N and then the same holds true for zo, that is
po € Op. ]

The next result proves that the Poincaré map II is topologically semiconjugated, on the
sets Qy, to the Bernoulli shift.

Theorem 6.2.9 For every N € N, the Poincaré map Il : Qn — Quy is topologically semi-
conjugated to the shift map o : TM — M with M = (2N + 2)1.

Proof. If p €  we can define:

6t(p) = number of zeros of z(-;0,p) in Jtag—2 + iw, tag—1 + iw|
ni(p) = {number of zeros of £(;;0,p) in Jtog—1 + 1w, o +iw[} — nf,
for every i € Z and every k = 1,...,l. In particular we have associated to every p €  a

bi-infinite sequence of 2i-tuples of the form {(6,n%,85,n%, ..., 8%, ni)}iez, with 6% € {0,1}
and ni € N, which describes the precise nodal behaviour of the solution of (6.20) starting
from p at time 0. We stress the fact that such an association is surjective thanks to Corollary
6.2.1. ‘
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Now, let £ be the map defined by:

!
EN(Jl,')’Ll,(Sz,’ng, .. ,5l,nl) = Z(ZN + 2)~k~l[(N + 1)(5;,, + nk] +1;
k=1

£n is inspired by the map which converts a number of [ figures, expressed in a numera-
tion system with an alphabet of 2N + 2 symbols, into the correspondent number in the
decimal system and therefore it is a bijection between the set of all the 2i-tuples of the
form (61,7m1,02,na,...,0;,7), with §x € {0,1} and ny € {0,..., N}, and the set Sy, with
M = (2N 4 2)!. The map 7 : Oy — M defined by:

(TN(p))i = 51\7(622[ (p),ni(p),dé(p),né(p), R 5;(P)anf(l7)): Vie Z’:

is a topological semiconjugation of IT : Qn — Qn with o : &M — M Indeed, it is easy to
see, using Corollary 6.2.1, that 7y is surjective; moreover, the fact that c o7y = 7w oIl on
Qu is a direct consequence of the definitions of 7, II and o.

Finally, to show that 7w is continuous on {2, let us consider p, € Qx such that p, = po,
for some py € Qn. Arguing as in the proof of Lemma 6.2.8, we deduce that, for n large, the
functions z,(:) = z(-;0,p,) and zo(-) = z(-;0,po) have the same number of zeros on every
interval of positivity or negativity of g. This implies that (7 (pn)): = (75 (po))s, for n large
and for every 7 € Z,i.e. 7v(pn) = T~ (Do). B

From Theorem 6.2.9 and Proposition 6.2.7, we immediately deduce the following:

Corollary 6.2.10 For every N € N the map II : Qn — QN has topological entropy greater
or equal to [log(2N +2) and 11 : O — Q has infinite topological entropy.

Remark 6.2.11 In the literature several approaches to chaotic dynamics are considered; in
particular, in the introduction of [113] a w-periodic equation is called chaotic if the Poincaré
map II, restricted to a compact and invariant set, is semiconjugated to a suitable shift
map and, moreover, “the counterimage (by the semiconjugacy) of any periodic point of the
shift contains a periodic point of the Poincaré map”. If we translate the last condition
into our setting, it would mean that, if s € ™ is such that c™(s) = s for some m € N,
then there should be a point p € 75" (s) such that the solution z(-; 0, p) is mw-periodic: in
our case this is actually impossible for some choices of s. Indeed, let us consider a 2{-tuple
(61,m1,...,01,n) such that }:2:1(% +np+nj) is an odd integer and let us take the constant
sequence s = (8;)iez with s; = En(01,n1,...,0;, ) for all ¢ € Z, so that o(s) = s. Then,
TI-\}I (s) cannot contain the initial value of a w-periodic solution of our equation, otherwise we
would have a periodic solution with an odd number of zeros in a period (recall that the zeros
of nontrivial solutions of (6.20) are all simple by the uniqueness of the constant solution
x = 0). However, if we call admissible those 2i-tuples whose entries give an even sum we
have proved in Corollary 5.2.3 that there are at least two w-periodic solutions with nodal
behaviour prescribed by every fixed admissible 2/-tuple: in other words, if we restrict our
maps I, o and 75 to the “admissible” sets:

Q3m = {p € Qpn : z(+;0,p) has an even number of zeros in [0,w)}
and:
sM = {&n(61,m1,- ., 0,m0) ¢ (61,7, ..,0;,m) is an admissible 2i-tuple},

then our equation (6.20) turns out to be chaotic in the sense of [113].
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