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Introduction.

Let Q be a bounded domain in {RN, N 2 3, whose boundary is Lipschitz continuous
and is made of two manifolds I'y and I'y, with I'g having positive (N-1)-dimensional

Hausdorff measure.
We consider in Q2 the following equation

0.1) -Au =uP + Au in Q

with the mixed boundary conditions

u=20 on I’y
(0.2)

du/ov=0  onT},

where v denotes the outer normal to 0Q , p +1 = % and A is areal parameter.

It turns out that, despite of its simple form, problem (0.1) has a very rich structure and
provides open problems and new ideas. We start recalling some well known facts in the
case we have dQ =TI, (ie the Dirichlet problem ). The first contribute to this problem
was given in a pioneering paper of Brezis and Nirenberg ( see [BN] ).

In their work they look for solutions to (0.1) minimizing the functional

By = [ivuldx- 4 Jlufdx
Q Q

constrained on the manifold M={ue Hé(Q) such that _[lu!pﬂdx =1}.
Q

The major difficulty in proving that the infimum is achieved comes from the fact that
the function u — llull,,; is not continuous under weak convergence in H(l)(Q).

This is because p+1 is the critical exponent for the Sobolev imbedding

H(l)(Q) - LPH(Q) that is continuous but not compact.
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We remark that in the subcritical case p < %2— it is not difficult to see that there is

always a solution of (0.1) if A <A,(Q). Here A,(€2) denotes the first eigenvalue of - A
with homogeneous Dirichlet boundary condition. In the critical case the situation is
different. In fact, using the Pohozaev identity (see [Po]), it is possible to prove that the
infimum

S,(Q) = lnlf F(w)
ue Hy()

lally 411

is never achieved if A <0, forevery Q in RN (see [BN]). Moreover, if A <0 and Q
is starshaped there is no solutions to (0.1). To overcome these difficulties Brezis and
Nirenberg consider the case 0 <A <A;(€2) and they obtain the following results :

(a) when N2>4, problem (0.1) has a solution for every 0 <A <A;(€).

A
(b) when N =3, problem (0.1) has a solution if A € (A*, A;(Q)), A* >0 and A* =—4-1-

if Q isaball.

As we will show the situation is quite different if we deal with functions which do not
belong to Hé(Q). In fact, the space related to problem (0.1), (0.2), is V(Q) =
{ueHY(Q) :u=00nTy}.

First of all, if we consider the best Sobolev constant for the imbedding
V(Q) — LP*(Q), it is easy to see that the infimum

(0.3) S@ =S¢ @=inf | [IVulldx
ue V() L2
”U||p+1___1

does depend on Q and that it is not even possible to find a positive constant which

bounds from below all the numbers S(€2). In fact if we consider, for example, the sector
S(o,R) defined in chapter 1 and take the functions ug(x) which appear in the proof of

Lemma 1.3, we see that : S(o,R)) — 0 as the amplitude o tends to zero.

Hence there is a sharp contrast with the Dirichlet case, where



Se@=S= inf | [IVul®dx
ueHé(Q) Q
Ilullp+1=1

( best constant for the Sobolev imbedding Hy(Q)— LP*/(Q))

is not depending on Q (see [BN]).

Then, a natural question is to obtain a new "Sobolev inequality" , taking Q in some
fixed class of open sets, defined according to some geometric properties of I" 1- The class
that we consider is the class of open sets Q which exhibit the same isoperimetric
constant relative to I'y, Q(T';,L2) (see Chapter 1) .

Then we give a sufficient condition for the infimum

(0.4) inf d[lvulzdx ~ 2 [ u?ax
ue V(Q) Q
hall =1

to be achieved and we present some examples where this condition holds. The main result

of this chapter is the following (see [Gr1]).

Theorem 1.1
Let Q belong to Loy Then there exists a constant A< 7‘1 A= K*(Q N) such that

for all Ae]\¥, ll[ problem (0.1) admits at least one solution . Moreover ,
@) if T, isregular and N2 4, then A*<0.
(ii) for any k<0and N2> 3 there exists a domain Q_such that A*( Q )<k.

(here XI(Q) denotes the first eigenvalue of -A with mixed boundary condition (0.2)).

By ii) we note the difference between our case and the Dirichlet case. In fact, with
boundary zero data, we have that the infimum $;(Q) is never achieved for every A <0.

In Chapter 2 we consider the case A = 0. Since in general it is not possible to establish
if the infimum (0.3) is achieved (in Chapter 1 some case are considered where (0.3) is
not achieved) we consider domains with some geometrical or topological assumptions.
Let us point out that recently a sufficient condition for the minimum (0.4) to be achieved
has been derived by Adimurthi - Mancini (see[AM]). Their theorem is the followin g




Theorem (Adimurthi - Mancini )

Let a(x)e Loo(Q) such that -A+a is a positive operator on H(I'y) and assume that
the following geometrical condition on T’y holds :

there exists an X in the interior of Ty such that in a neighbourhood of x, , <2 lies
on one side of the tangent plane at x, and the mean curvature with respect (o the unit
outward at X, is positive, then the problem

(_Au + a(x)u = uP in Q
u>0 in Q
b,
u=20 on Iy
\du/dv =0 on [
NR2

admits a solution ug such that J(up) < N

(for N =2, results similar to this theorem appear also in Adimurthi - Yadava (see
[AY])).

Therefore nothing can be deduced by the previous theorem about the case of I';
having negative or zero mean curvature. The result of chapter 2 answers also this open
problem in the sence that among the domains for which we get an existence theorem (in
the case A =0 ) there are some where the mean curvature on I'; is always negative. A
case with zero curvature on I'j is also treated in Chapter 3.

We look for solutions to (0.1) as critical points of the functional
0.5) J(u) = L leuIzdx L J(u+)P+1dx
) 2Q p+1Q

It is easy to see that there is a one - to - one correspondence between the critical points
of J on V(Q) and the critical points of F on the manifold M={ue V(£2) such that

jlulP+1dx =1}. More precisely if u is a critical point of F in V({2) thenv = T kl:lllll ,
J p+l

k=( J-IVulde)(N'z)/4 is a critical point of J on M.
Q
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In the homogeneous Dirichlet problem Bahri and Coron (see [BC1], [BC2], [Co] )
exploit the topology of the domain €2 in order to prove the existence of a positive solution
to the equation (0.1).

Their results rely on the fundamental remark that the Palais-Smale condition holds,
for the functional J(u) defined in the space Hé(Q), in certain ranges of energy. This result

is a consequence of a careful analysis of how the compactness of the Palais-Smale
sequences can be lost in the space Hé(Q). To this analysis many authors have contributed

such as Brezis, Nirenberg, P.L.Lions, Struwe, Bahri, Coron and others. However we
refer the reader to the papers [Br2] and [Br4] for more details and for an extensive
bibliography.

In this chapter we carry out the same analysis for the Palais-Smale sequences of the
functional (0.4) in the space V(£2) in order to prove the existence of a positive solution of
(0.1) - (0.2) (recall that we are considering the case A = 0). Once this has been done then
one should look for geometrical assumptions on Q (and I'; in the mixed boundary
problem) which allow to construct Palais-Smale sequences which lie in a range of energy
where compactness is restored, as it has been done in the Dirichlet case by Bahri-Coron
([BC1],[BC2], Coron ([Co]), Ding([Di]), Passaseo [Pas]). At the end we emphasize that
while in the Dirichlet problem there are geometrical or topological conditions only on the
domain €2, in the mixed boundary problem we need to make geometrical and topological
assumptions also on I';.

In Chapter 3 we consider some existence and multiplicity results for domains with
symmetries (see [Gr2]). These results are inspired by the fundamental concentration -
compactness pripciple of P.L. Lions. As in [L2] - [L3] we consider open domains in RN
which are invariant by suitable subgroup G of the orthogonal group O(N) . Then when
we look for solutions of (0.1) as functions that achieve S,(2) , we can restrict F (u) to

the subspace consisting of all symmetric functions with respect to G. Precisely we

consider

(0.5) S;,(@) = inf F)
ue V¥(QQ)
AL

where V*(Q) = {ue V(Q) such that u(x) =u(gx) xe Q and ge G}.

Using the concentration - compactness principle it is possible to observe that the
minimizing sequences for S,(£2) which are not relatively compact, " concentrate" at a

point y belonging to f‘l (see [LPT] for a precise statement). If instead we consider the
infimum (0.5) then we have that if a minimizing sequences u, concentrates at a point y
then u, concentrates also at every point z=g-y forevery geG (see Theorem [3.1]).
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By this remark we obtain a sufficient condition for the minimizing sequences for (0.5)
to be relatively compact. A first application of this theorem is the existence of a solution of
(0.1) in the case A = 0 on a contractible domain (with suitable boundary condition)
having also zero corvature at any point of I7.

A second application is a multiplicity result for a Lipschitz continuous domain €,
defined by Q = {xe R? such that r < Ixl <r+d}x @, ® bounded domainin RN-2.

More precisely, when A*(Q) <A <A (), A*(Q,) > 0, we prove that the number of
solutions of (0.1) increases as r — oo . The proof of this last result is inspired by a paper
of Yan Yan Li (see [Ly]), where a different group action is used. We conclude pointing
out that the results of Chapters 1,2,3, are contained respectively in the papers [Grl],
[GP], and [Gr2].



Chapter 1

EXISTENCE AND NONEXISTENCE THEOREMS IN DEPENDENCE OF THE
PARAMETER A .

1.1 - PRELIMINARIES.

Let € be a bounded domain in [RN, N 2 3. Here we consider the following problem:

(-Au =u® + Au in Q
u>0 in Q
(D <u,=0 on Iy
Lg}-\}:O onI'y

where p = I—\IN—%, Ae R, 0Q =TyuI'; is Lipschitz continuous and I'y has positive (N-1)-

dimensional Hausdorff measure. By v we denote the outer normal to dQ . The aim of this

chapter is to prove Theorem 1.1; for this, we start with some preliminaries.
Let X, be an open cone in [RN , N = 3, with vertex at the origin and solid angle

o€ ]0,0n_1[, where y_; is the (N-1)-dimensional Hausdorff measure of the unit sphere
SN To be more precise, if Ag is a subset of SN with HN-l(AO‘) =0a then X, ={Ax,
x€ Ay and A€ ]0,+eo[}. We assume that 9Y,, is Lipschitz continuous and denote by 2(o,R)
the open sector in RN with solid angle o andradius R >0, thatis X(o,R) = X,"Bg,
where By is the ball in RN with center at the origin and radius R.

Let Q be a bounded domainin RN, N >3, whose boundary is Lipschitz continuous and is
given by the union of the manifolds I'j and I';, Iy having positive (N-1)-dimensional
Hausdorff measure. We recall that the "isoperimetric constant of £ relative to
I'; ", denoted by Q(I'y, ), is defined by (see [PT])

o (gD
QI )=Slép PoE




where IEl denotes the Lebesgue measure of a set E and the supremum is taken over all
measurable subsets E of Q such that dENI'; does not contain any set of positive (N-1)-
dimensional Hausdorff measure. Moreover Pn(E) represents the De Giorgi perimeter of E

relative to €, thatis

P (E)=sup {I [divydxl, ye [C5(Q)I", ly|<1]),
Q

Some properties of Q(I'y, Q) are shown in [PT], [LPT] and [Gr3] ; we just recall here that
if 2(o,R) is a convex sector and fo = { xedZ(o,R) , [x|=R}, fl = 0X(,R) \ I’y then
Q(T1,2(a,R) = Noy ™)™, with oy the measure of the unit sector X(ot,1) (see [PT] for

further details). Now let us consider the class EO‘N of domains Q of the above type such that

QI,Q) = (NOLII\{N )'1. Of course any convex sector ».(o,R) belongs to the class ’EaN

determinate by oy = [Z(a, 1)l
Then we consider the Hilbert space

V(Q) = {ueHI(Q):u=00nTl}}.

As a consequence of Theorem 2.1 of [LPT] we have that if Qe EQN, then a positive

constant ¥ exists such that

(1.2) J' IVul2 dx = S(oiy) ( J.lulpﬂdx )2/(P+1) , YueV(Q),p= %{22_ .
Q Q
INT
Ntoay) - T(N) 3N-2
where S(ay) = T and B = T TNA T (122 (see[Au], [T]).

BN

So that it makes sense to define

(1.3) $x@ = inf | [IVuizdx - [u2 dx|.
wevVi) | o Q
lullyy =1

Let us remark that in the case V(Q) = H(I,(Q) (i.e. Hy;(I';) = 0) the constant



S@= inf [IVul2dx
ueHO(Q)Q
lullyy =1

NCY
is precisely [Em] for any Q belonging to RN (here Cy is the measure of the unit ball

. N
in R,

Since S(£2) does not depend on €2 for the space Hé(Q) it will be denoted simply by S. This
is not the case when HN-l(Fl) >0, as it is shown in [LPT]. Moreover, again from [LPT], it

follows that if HN_I(Tl) > 0, then

2

I/N
N(Cy/2
S0(€2) < So(A) =[}f<—N-Nz—>/2m—-J

where A is a half ball in RY with radius R > 0 and its boundary is made by 9A = Iyul’,
Ty={xe0A,IxI=R}, T, =0A\ .

Lemma 1.1.
There is no solution of problem (1.1) for L 2 A,.

Proof.

Let ¢, be the eigenfunction of -A corresponding to A, with ¢; > 0 on Q. For a solution u of

(1.1) we have :

A J'uqbl = f(—Au—up)q)l <- JAuq)l = fVchpl - it-l-q)l =
Q Q Q Q ov

oQ

= [Vuvo =~ fuag,+ Ju%- =~ [udo, =2y Jug,
Q Q . ov o 1o

having denoted by v the outer normal to dQ. Therefore A < ;. ¢

Now we introduce a" concentration constant " C;'{\O " defined by
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Ct = lm SyQ)=lm[ inf [IVuZdx-A [u?dx] ,
X0 p—0t p—0* uEV(Qp) Q Q
lhullg =1 P P

where Qp = QNB(xop) , B(xg,p) = {xe R 1 Ix —xgl < p} and V(Qp) = {ue H'(Q) 1 u =0

on I' 8 } with I’g = 0Q,M€2 . We prove some properties of Ci‘o . First of all we consider the

number

S,y = inf C!
xpel' 0

and we will proof the following

Proposition 1.1.
Cio does not depend on A and

Ch =Cy=1lm ( inf [IVu?dx.
*0 p—0 ueV(Q))
il =1 7P

Proof.

I£220,then  [IVuP-d Ju? < [[Vul so that
Qp 2 Qo

C* <lm( inf [IVuR).
0 p—0 ueV(Qy) o
fhully =1 7P

On the other hand we have (see [LPT] ) that

Jvur 2 c( fup 2@ > cig e il
@ 9 “

if ue V(Qp).

Therefore,

Jivar - [tz aactigeny [ivae
2 2 %
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which implies

C* > m( inf [ IVuP)
X0
p—0 ueV(QB) Qp
lally 121

and our claim is proved in the case A = 0. If A < 0 we can repeat the same proof just reversing

the inequalities. ¢

By the previous proposition we may always write CXO and S(I'y) instead of Cio and S;(I'y).

Therefore S(I';) = inf C* . In the next proposition we compute C, in the case that xgis a
1 gl Xg 0
Xp€ 1"1
regular point of I'; .

Proposition 1.2.
2

N
. N(C\/2)
Ler %o be aregular point of T'\. Then C, = R N-DIN

Proof.
Since x is a regular point we have:

2
N
N(C,\/2
(1.4) im inf ( [IVuR)2 inf ( jxvuﬂ):[ -—(—(-I%:ﬁ,)-i-ﬁ—] = So(A)
p—0TuEVQ) g ueVA) o B
lhull  4=1 P hull =1 P
P+l p+1

where A isahalfballin RN,
In fact if the previous inequality is not true, there exist € > 0, rg > 0 such that for any

0 <p<ry there exists a function u, € V(€,)NC=(€Yy), with llull, =1, satisfying
(1.5) [IVup0dx < So (A) - &.
Q

Because xg is a regular point and € does not depend on pe ]0,rg[, (1.5) is not possible. In
fact by the definition of regular point it is evidently possible to construct a diffeomorfism H of
class Cl, between Q, and Ap = {the half ball centered in xo with radius p such that the outer
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normal vector v to I'; at xq is not contained in Ay} and such that H( Fg ) =8ApmaB(xo,p) if p is

sufficiently small.
Then the functions v,=u, 0 H,, belong to V( A, ) and we have:

[Ivv,dx
A
(1.6) - <C, [Vu,pe
) - P p
( fiv PrlanZen O
A"

where the numbers C, depend on the diffeomorfism H;, that by the definition of regular point,
can be chosen in such a way that C, —1 as p—0.

Then, choosing p sufficiently small, by (1.5) we have:

inf ([ IVuR) < So(A)
ueV(Ap) A
[MAES B

which is impossible because, for the invariance by scaling (see [LPT]),

inf ( [IVu2)= inf ([ IVul2 =S5(A)
ueV(A;) A weV(A) A
lhull =1 P Il 1=1

Now, if we consider the functions ¢(t) eCB"([ 0,+e°[), ¢, (t) =2 O such that ¢ (t) =1 if

0t S;} and ¢(t)=0 if t= = by a standard argument ( see, for example, [BN] or [LPT] ) it

can be proved that for r,e—0

V12 N2
o2 (N(CN/Z) ]
1,2 (N-2)/2N
i, B
where
(IX — Xol>
Ul(x) = Pr ,
&) (€ + Ix — xolHN-272
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/N 2
N(Cy2)'

Then, Cy, = [W—] . The proof is complete. ¢

Remark 1.1
By the definition of S, () and the proofs of the previous propositions we have that for every

Ae R the following holds
2

I/N
) N(CW/2)
S(Q) < 1nf_ CXO =8I < “TN-22N
XOE Fl B

1.2. PROOF OF THEOREM 1.1
We start with a lemma which is analogous to Theorem 2.2. of [LPT].
Lemma 1.2

Let u,, be a minimizing sequence for Sy(Q) . Then either n,, is relatively compact or the

weak limit u = 0. In the latter case there exist a subsequence Uy, and a point Xg& Iy such

thar

(1.7) g, PN 8L Vg P Sy@) 8y

mk my
weakly in the sense of measures .

Proof.
We distinguish the case A 2 0 and A < 0.

Case A2 0.

Then S)(Q) < So(Q). If S;(Q) < Sp(Q) then repeating the same proof as in Lemma 1.2 of
[BN] we first deduce that u # 0 and then that S5 (€2) achieves a minimum at u. On the other side,
if $5(Q) = So(Q), then u,, is minimizing for Sy(Q2). Hence we can repeat the same proof as in

[LPT ], Theorem (2.2), to obtain (1.7) for a point xye f"l.

Case A <0.
In this case the statement follows from an analogous theorem of P.L. Lions for minimizing
sequences in Hl(Q) (see [L2], Section 4 and [L.1], [L3] for further details). ¢

Now we are the following proposition
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Proposition 1.3
If 53(82) < S;(TI')) , then the infimum (1.3) is achieved.

Proof
Let u,, be a minimizing sequence for S;(2) and u its weak limit in V(). Thus, either u, is

relatively compact and consequently the infimum is achieved, or there exists xge 1_“1 for which
(1.7) holds (up to a subsequence that we still denote by u, ). Then, we consider the functions

(%) = up (GO0 lexgl)

where ¢, are the same functions considered in Proposition 1.2.
We have that T_(x) satisfy

(1.8) TGP > 1 and  JIVE PA 1T (0P — Sy(Q) .

for m —eo and for every r > 0. On the other hand by the definition of S(I";) we have

lim ( IVE (0P = A [ T (07 ) = S(Ty)

—0

which contradicts (1.8) since S;(€2) < S(I';). Hence u_(x) is relatively compact. 4

Remark 1.2.

From Proposition 1.3 it follows immediately the existence of a solution to problem (1.1) for
those domains Q for which S, (Q) < S(I'y). In fact, let u be a function which realizes S,.(Q).

We have

lllyyy =1 and [IVaR dx -2 [u2dx = Sy(Q) .
Q Q

Of course we can assume that u 2 0 on Q (otherwise we replace u by lul ). Since u is a

minimum on the constraint {llully,;1=1 }, a Lagrange multiplier 1 € RN exists such that

-Au=du +uu® on Q.
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In fact, L = S;(Q) and S;(Q) > 0 since A <A,. Then the function S, Vp+Dy satisfies (1.1)
since u> 0 in Q by the strong maximum principle. In fact since u solves the differential
inequality -Au-Au>0 then by the classical maximum principle, u >0 in £2 (even if A<0).

Our next purpose is to give a bound on the numbers A for which a solution to (1.1) exists by

using Proposition 1.3. We start with the following lemma .

Lemma 1.3
Let T beregular and N 2 4. Then $;(2) <S(I'y) for any Ae]OM[.

Proof.
As in the proof of Lemma 1.1 of [BN], we use some test functions to prove that

NC2)"™N
Sy(Q) < S(T';) forany Ae]O,Aq[. Since I'y is regular we have Sdy) = (W)

For xgel'y let

o(lx — xql)
(e +Ix = )(0!2)(1\1”2)/2

U (x) =

where ¢(t) € C‘(’)°([O,+oo[ ), 0(t) =2 0, with ¢(t) =1, if 0<t Si— and ¢(t) =0, if t=2 %— where

r is chosen in such that B(xg, '-5-) c Q. We claim that the following estimates hold

ky

0 IVu = +0(1)
) 272
s 2 _ k2
(ii) g 2, = e +0(1)
ks .

] T +0(1) fN2>S
(iii) Hugll2 =

kylloge] + O(1) ifN =4

where kj,...,k, denote positive constants depending only on N and such that
ky

= STp). Let us prove (i) :
2
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IV(Ix — xol)* Vo(lx — xgl)-(x-xg)
IV 2 = dx —2(N-2 dx +
%o J(e +Ix — xolH)™N-2 (N-2) J (e + Ix — xolH)NV

2(1x — xnal2)-1x- -l 12
+(N-2)2 ¢%(Ix — xql )lxz);ol - (N- 2) Q2(Ix — xgl)-Ix- xo x +O(1) =
(e + Ix —x¢I%) (€+Ix—xol)
2 IX'X()I
N-2 dx + 01 N-2 dx + O(1)
(N-2) J(e + 1x — xolH)N M= @2y (N2>/2 J(1 + 1y|2 N
Qxge
It follows that, being I'; regular
Ve I2= (N-2)* — x4y o +0(1)
o= (2 N2 (1 4 Ix — xoHY o= o 2)/2
Al=)

where A(eo) is the half-space tangent to £ in xg.

In a similar way we can prove (ii) and (iii). Then, we have for N2 5

IV I - Hu |5
€ [ (N-2)/2
k - Akqe + O(e ) Kk ks (N-2)12

$4(Q) < 13 =+ —A=2e+0( )< STy

* Il 12 k, + 0(e™ %) ky Ty !

¢ p+l1

for €> 0 small enough . In the same way we get the assertion for the case N =4. ¢
Lemma 1.4

If Qe Z“N and Sy(2) < S(I'y), then VA <0 there exists L > 0 such thar S;(uQ) < S(I'y).

Proof.

Let uQ = {ye (RN, y=ux, xe Q}, 4 > 0. By the very definition S(I'y) is the same for 2 and
p€. Since Sy(L2) < S(T'y), by Proposition 1.3 the infimum Sy(€2) is achieved at a function
ve V() such that

[ivveoiax
Q

= Sp(£2) < S(I'y).

( JveoP+iax e+
Q
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Thus, for the function u(x) = v(=) € V(uQ) we have
i

fivueolaxa [uc?
w0

< Sp(Q) - At

uQ

ST)-Sp(€2) _

using Holder's inequality. Then the assertion follows by choosing TR NQPN

Proof of Theorem 1.1.
Since Qe Eq, ST'y) 2 So(Q) in virtue of definition of S(I'}). Moreover le(Q) =0 and
SH(Q) > SM(Q) for A < A;. Therefore there exists a constant A< A, such that S3.(Q) <S(T7)

for Ae] A, A;[ (note that S, () is a continuous function with respect to A). Thus,by
1 A

Proposition 1.3 and Remark 1.2 the first assertion of Theorem 1.1 follows. Obviously (i) is a
consequence of Lemma 1.3 and Propositiori 1.3.

Let us prove (ii). We consider the domain Q = Q(h) ={xe [RN, 1< Ixl <h}, where N 2 3,
h >1. We set I‘g = {xe dQ(h) : xl = 1}, F}; = dQ(h)\ I'j. We consider the functions:

U(x) = IxI%~1 where q > 0 will be fixed later. It is clear that ue V(Q) forany g > 0. Then

[Ivueorax Joi %
Q

Q

2,,2q+n-2
Se(Q) < = =K g (h-1)

h 3
( JlU(x)Ip”dx)Z/(p”) ( J'(lxlq_l)pﬂdx)?,/(pﬂ) (2Q+N_2)(1j(tC1_1)p+1tN'1)2/(p+1)
Q Q

where K is a positive constant. From this we have

[Ivueorax

2 1/N
. Q B q N N-2)/N _ (N (Cn/2)
(1.9) }Piri =K 2q+N-2 {N_2<2q+N'2):} < [ B(N-Z)/ZN '

( JrueomaxeD
Q
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2
if we take q sufficiently small. Note that S(I’}f) = (—é'(NNzZ)/Z)_N") . Hence S(F?) does not

depend on h, as Ty is regular. Therefore, from (1.9) we get that Sp(€2) < S(I'y) for h
sufficiently large. Applying Lemma 1.4 and Proposition 1.3 we get (ii). ¢

Remark 1.3

If Q is a sector Z(oc,R)c:lRN, N >4 with T'j={xedX(a, R), |x] =R} and I'; =
dZ (o, R)\ Ty we have again (by repeating the proof of Lemma 1.3) that there exists a solution
to (1.1) for 0 <A <A, and N 2 4. Furthermore in this case there is no solution to (1.1) when
A <0. In fact, by Pohozaev's identity (see [Po]) for a solution u to (1.1) we would have

(110) 2 Jo Y j(xv)u e j( N2 L _[(xv)(au/av) do + J(x V)IVul?

Since x-v=0onTy and x-v>0on I, (1.10) is not possible. ¢

Remark 1.4
The domains Q(h) considered in the proof of Theorem 1.1 are not the only ones for which it
is possible to prove that Sy(€2) < S(I';) . Another example can be given by the domains

Cp={x=x\ye RNy R ,IxT<1 and O<y<h},

with Ty = {(x,y)€dCy,y=h}.

Then, by using the function u(x'y) = y as before it is possible to prove that
So(2)— 0 as h — 4o,

Remark 1.5
The case N =3 presents the same difficulties appearing in the study of the Dirichlet
problem, even for A >0, (see [BN]). Moreover, if Q is a particular convex sector 2(o,R),

we can use a symmetry theorem of Berestycki and Pacella ([BP]) to claim that all positive
solutions to (1.1) are radial functions. Then, by repeating the previous arguments for the case

of the ball it is possible to prove that X*(Z(oc,R)) =-75} and the result is optimal.
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Proposition 1.4
Let us suppose that 0Q is smooth. Then there exists € >0 such that Sy(€2) is achieved

whenever diam(I'y) <€.

Proof.
Suppose that the diameter of I'y is smaller than a positive number €. Thus I'y is contained
in a ball B, with radius € . We recall the definition of capacity of E respect to a set Q

cap(B,Q) = inf [ IVul? dx
ueHé(Q) Q
u=lon E

Then the capacity of B, with respect to a ball Bg with fixed radius R >¢, cap (Bg, Br),
tends to zero as € — 0 (see [Ma], section 2.2 ). Therefore, if € is sufficiently small, by the
definition of capacity it is possible to construct a function ue Hé(BR) which is identically 1 in

a neighborhood of B, and such that [IDuldx is very small. By considering the function
Br

v=1-u and extending itto 1 in Q\Bg we can define a new function ¢e V(L2) which
coincides with v in Bpn€ . Consequently J.qu)l dx is very small, which implies that Sg(€2)
3 ,

< 89(C,/2) =S(I'}) and hence by Proposition 1.3 the infimum is achieved. 3

The last proposition allows to construct many domains & for which Sy(€2) is achieved. It
also shows that if the mixed boundary problem (1.1) is "close" to a homogeneous Neumann
problem then a positive solution of (1.1) exists with energy, obviously, very small.

Let us observe that for the domains Q satisfying the hypotheses of the previous proposition
the isoperimetric constant Q(I'},€2) is very large. Therefore, even if not mentioned explicitly,
the sufficient condition given in Proposition 1.4 is again a condition on the isoperimetric
properties of £ with respectto I .

Finally we would like to point out that the previous propositions have been stated for smooth
domains Q only for simplicity. Similar results apply in the case of open sets with Lipschitz

continuous boundary after suitable modifications.

Remark 1.6

Another result which empathizes the deep connection between the "relative” isoperimetric
properties of Q and the solutions of mixed boundary problems has been obtained in [BP]. The
result obtained there is of different nature since it does not deal with an existence problem but
gives a description of the geometrical structure of positive solutions of semilinear elliptic
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equations in the general from Au + f(u) =0 with mixed boundary conditions of (0.2) type. In
particular it is shown that all positive solutions of such equations in some convex sectors are

spherically symmetric.

Remark 1.7
The question whether there are domains £ such that S;(Q) is achieved for all A <A, is

different from showing the existence of domains Q for which a solution to (1.1) exists for all
A <A; . In fact the last question has a positive answer as it can be easily shown by taking
Q = {xe RN:z< x| <R}NZ(a,R),Tj={x€0Q: Ixl=zorlxl=R},0<z<R and by using
the result of Brezis and Nirenberg on the existence of positive radial solutions for the analogous
Dirichlet problem in the annulus (see [BN]).

We end this chapter exhibiting some sufficient conditions for which the infimum (1.3) is
not achieved for A = 0. This results are contained in [EPT] .

Theorem 1.2
Ler Qe Egy . If S5(€2) = Sy(auy) » then Sy(Q) is not achieved.

Proof
In [EPT] have been proved the inequality

(1.11) IVuly 2 So(aplull,,; + Al

which holds for a positive constant A = A(ouy,s) depending on the class Eqy. Because of the
hypothesis we can replace Sy(cty) by Sy(Q) in (1.11). Thus, if Sy(£2) were achieved by a

function ve V(Q), we would have
S(Q)( d[ WPl dx )2/PD = JIVvlzdx

Combining this equality with (1.11) we would get llvllg = 0. But this is a contradiction since v
gives the minimum S,(). ¢

One way of checking the condition So(Q) = Sy(ay), Qe Eqy, is to investigate the

isoperimetric constant Q(I'1,Q). As an example we have the following
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Corollary 1.1
If QTLQ) = (N(Cle)l/N y! (ie. Qbelongs to the class Ecy,, ) then So(Q) is not

achieved.

Proof
As a consequence of Theorem 2.1 of [LPT] we get Sy(Q) 2 SO(CN/z) = SO(Z(ﬂ,R)). On the

other hand, repeating the Lemma 1.3 for the case A =0 we have that Sy(Q2) < SO(CN/2)°
Thus S4(€2) = Sp(Cy /2) and Theorem 1.2 applies. ¢

Remark 1.8

By the Corollary 1.1 the final part of the proof of the Theorem 1.1 would not work if the role
of I'; and T’y would be reversed for the domains €2(h) considered. Actually, if T’y =
{(xe R™, Ixl = 1} it is shown in [PT] that Q(T';,©) = (N(Cy)"" )™ and then by Corollary
1.1 we have that the infimum Sy, is not achieved. The aim of the next chapter is proving the

existence of a solution also for this class of domains.
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Chapter 2

EXISTENCE THEOREMS UNDER GEOMETRICAL ASSUMPTIONS.

2.1 - PRELIMINARIES.

For an open set G = R™ we denote by D'(G) the Sobolev space D}(G) = {ue LP*}(G)

such that IVule L%(G)}, where p+1= % If G has finite measure then D'(G) = H'(G),

otherwise H'(G) < D'(G).
Let us denote by Z, an open cone in [RN, N 2 3, with vertex at the origin and solid angle

Theorem 2.1

(N-2)12
If Xy is a convex cone then for any W > 0 the functions u(x) = E-I——lz—z—)(mf—z- are the
XI5+
only solutions of the problem
(-AU - u(N"‘Z)/(N"Z) in ZOL
u>0 in Z,
@1 1&g on 93,
ov
ueD'(Z,)
\
where v denotes the outer normal to dZ.
Proof
It is contained in the proof of Theorem 2.4. of [LPT]. ¢+

Now we recall some nonexistence results which will be used later.
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Theorem 2.2
i) Ler A be the half space: A={x=(X{,....XN)€E [RN, x; > 0}. If u is a solution of

f_Au - u(N+2)/(N-2) in A

(21)! < u=20 on aA

then u is identically zero in A.

ii) Let Tnp be the cone: Tpp= {xe RN, x=(p,01,...0y.1) ©;€]0,x[, i=1,..N-2,
On.1€10,m/2[, [xI=p >0} where (p,01,...,ON.1) are the polar coordinates in RN If uisa

solution of

Ay = FIND) S
u=20 on I'p={xe 90X, such that Oy =0}
2.1)" 3 du T
> =0 on I';={xe dZy), such that Oy =5
ue D' (Zpp)
.

where Vv denotes the outer normal to dXyp, then u is identically zero in L.

Proof

The proof of i) is given in [Gi] if u > 0 and in [EL] in the general case (actually in [EL]
much more general non existence results are proved).

The assertion ii) is easily reduced to i) by observing that the Neumann condition on I’y
allows to extend the solution u to the whole half space A, by reflection with respecttoI';. ¢
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2.2 - ANALYSIS OF PALAIS-SMALE SEQUENCES

Let Q be a open set of the type considered in the previous section, belonging to a certain
. . . . 1
class Eq, . From now on we will make the assumption that either d€ is regular (of class C')

and Tyn[)=D or Tgand T'; are regular and if Ton[}#@ then Tyand I'; intersect
orthogonally.
We start with a lemma

Lemma 2.1
For any oo > O let us consider the set Qy= af2. Then there exists a family of operators

{Py} such that
P, : V(Q,) — DYRMY

where V( ) = {ue Hl(Qa) such thatu=0on aly} and

i) P, (u(x))=u(x) Vxe Q,
i) ILIVPaulzdx <C [ivuldx

R Qa
i) LIPaulqu <C [ufax

R Qo

where C is a constant which does not depend on .

Proof
The existence of the operators P, for each o > 0, is a classical statement for which we

refer, for example, to [Brl], Theorem IX.7 when 0Q is of class Clorto [Ma], Section 1.1 1f
0€Q is only Lipschitz continuous. Here we want to point out that it is possible to choose the
operators P, in such a way that, in the inequalities ii) and iii) the constant C is independent of
o.

To do this let us fix =1 and consider the operator Py : V(Q) — Dl([RN) with the

properties

i) P,(u(x))=u(x) VxeQ
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i) ]LIVPlulzdx < Kﬂ[lvulzdx
R

i) LIPlulqu < KJlulqu
R

where K is a positive constant dependent on Q. Now, if v(x)e V(£,), the function
v (x)=v(ax) belongs to V(£2) and, for any o > 0, we can define the operator

P, (v)(x)= Py (ve)(S).
(64

Consequently if xe Q,, 2eQ and Pl(va)(-}s-) = va(-&) = v(x) = Py(v)(x).
o (04 (04

Moreover LIVPavlzdx=-l§- llVPl(va)(i)lzdx = o2 LlVPl(va)(y)lzdy <
(4 04
R R

R

<K aN’zJIVva(y)lzdy =K [IVveoitdx
QU.

In this way we have obtained ii) with C=K and similarly one gets iii). 3

Now let us consider the functional

J(u) = %-Qﬁvuizdx - i;i—l-gjw)"“dx Vue V(Q)

where u+=max(u,0).

We say that J(u) satisfies the Palais-Smale condition at the level ce R if

2.2) { every sequence {u,} in V(Q) such that F(u,)— c¢ and F'(un)-> 0

in the dual space [V(Q)]* is relativaly compact in V(£2).

As in the previous chapter we consider the constant X and S defined as
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[IVuldx

@3 = i A A={x=(x,...x0e RY, x; > 0)
ue

ux0 ( J.|u|P+1dx)2/(P+1)
A

1LIVuIde
R

2.4 S= inf
2.4) weDIRY)

w0 1L,u,pﬂdx)2/<p+1>
R

Lemma 2.2.
The Palais-Smale condition for the functional F fails at the levels

h N2
C =J(U0) +-N‘E

where h is a positive integer and uy is a solution of

( Ag = (NVDIND) Lo
u>0 in Q
2.5) <u=0 on I
du_ 0 on I’y
ov
.
Proof

Let us start by proving that if ug is a solution of (2.5) then the Palais-Smale condition fails
at the level ¢ =J(ug) + .I%I— N2,

To this aim let us consider the sequence:

(2.6) u,(x) =y + ‘P(x)Ugn(x), xe

with
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(N-2)/2

2.7 U x) = 5 , xeQ
@7 £ (en+ lx-xolz)m'z)/2 _

where xpe 1, €,— 0 and ¥(x)e C:(B(xg,p)); Y(x) 20, ¥x) =1 in B(xyp/2), and

p >0 is sufficiently small in such a way that u,(x) =0 forxe 'y
By making the same computations as in [BC1] (see also [LPT] or [Grl]) it is possible to

prove that

2.8) JFOUe_ () = %z““ 2

because xge I'; and Iy is smooth. It is also easy to see that ([BN]D)
‘P(X)Uen(x) — 0 weakly in V()

(2.9)
¥(x)Ug (x) > 0 strongly in L%(Q) for any s < p+1

Moreover we have that
Jqunlzdx = JIVuolzdx + 1'J'N(\PU&H)IZdX +0o(1)
because of (2.9), and

(2.10) ﬁ[lunlp““ldx - Qﬁuolf’“‘ldx N JI‘PUEUIpde +o(1)

4

because of a result of [BL] (see also [BN]).

Therefore I(u,) — J(up) + 'Il\f N2,

Let us prove that J '(un) —0in [V(Q)]*.
We have :
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(2.11) V(1) = -Au, - (u P=-Aug -A U, ) - (ag+¥U, )P=ub +

+ (FU¢ )P~ (ug+¥Ue ) +0,

where ¢,— 0 in [V(Q)]*, because u, is a solution of (2.5) and J '(\Pun) — 0 in [V(Q)]* by
standard computations ([BC1]). Now

(2.12) (ug+¥Ue )P=uf +

where {,— 0in L@®™D and hence in [V(Q)]¥, since LAYND — [v(Q)]*; (2.12) follows
from the inequality

l(g+¥U )P- uR - (FU )Pl < K(uB WU |+ lugl | $U, P).
0 e ~ o €y 0 €y €,

From (2.11) and (2.12) we deduce that J '(un) — 0in [V(Q)]*.
Obviously the sequence u,, is not relatively compact in V(Q) since LI‘Usn——> 0 weakly in

V(€2) but not strongly because of (2.8).
If, in the definition (2.6) - (2.7) of the sequence u,, we take the point x; in the interior of

2, arguing as in [BC1] we have that:

I N2_ 2 N2
(2.13) JWUe ) = 578 =52z

because S = 22N z.

N2

Therefore J(u,) — J(up) +—§I—E and J '(un) — 0 as before, while u, is not relatively

compact in V(€2). Finally, considering the sequences
£ (N-2)/2

m
u, =up+ Z‘Pi(x) —
i=1 (et Ix-%,

I2)(N-2)/2

with the points x(l) belonging either to I'; or £2, and taking the function W;(x) with disjoint

supports we obtain the assertion. ¢

Now we are ready to characterize the levels of J at which the Palais-Smale condition fails.
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Theorem 2.3
Let v, be a Palais-Smale sequence for the functional ], that is

(2.14) J(u) = ¢ and T'(u)— 0 in [V(QI*.
Then
(2.15) c=1J L

. = uO) + N 2

where h is a nonnegative integer and g is a solution of (2.5).

Proof
We adapt to our case a blow-up method based on the concentration-compactness principle
of P.L.Lions ([L2]) and used already in [BC]. From (2.14) we have

(2.16) jlvu Fax- 5 [P tax =c + o()
Q

and

(2.17) | Oy = -Au, - (0 P> 0 in [V(Q)]*.

Hence, multiplying (2.17) by w, and integrating
1 1

(2.18) 5 f [IVu )P ax =5 < 0y, u, >
Q

Subtracting (2.18) to (2.16) we get

1 1
(2.19) N—J(u;)?* dx e o(1)+ 10, o vl

which, together with (2.16) implies that u, is bounded in V(£2). Therefore, up to a subsequence
that we still denote by u,,, we have
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u,— u, weakly in V(Q)

(2.20) . s
u,— g strongly in L°(Q2) for any s < p+1

for some functions uye V(Q).

Now if u,— uq strongly in V(Q), the theorem is proved with h = 0. Therefore we
assume that u, is not relatively compact in V(2), so that u, does not converge strongly to ugin
V(€2). Consequently denoting by v, the sequence v, = u — uy we have

vpi— 0 weakly in V(Q)

(2.21) vp,— 0 strongly in LS(Q) for any s < p+1

v, does not converge strongly in V(£2)

Moreover

Jvp) = 5 fiVv,Pax - 5-1;—1— J(v;)qu =2 [ivu,Pax - [Vu,Vug ax + 3 [ivuglax -
Q ol Q Q Q

1 1 1 2 1 2 1 +yp+1 1 +\p+1
o () ax = g [IVufax- 3 fVugPax - oo [ ax o [ e
Q Q Q o S
+o(1)

Hence
(2.22) J(vy) =Ty - J(ugp)+ o(1)

To obtain (2.22) we have used the weak convergence of u, to uy in V() and a result
of [BL] as in (2.11). Moreover J '(vn) — 0 in [V(Q)]*. In fact, since J '(un) — 0 and u,—uyg

weakly, we have that ug is a solution of (2.5). Therefore

-Aug, = (0 P+ ¢, with ¢,— 0in [V(Q)]*.

and hence

-Av, -Auy = ug+v§+ 0.+ other terms which go to zero strongly in [V(Q)]* because they go

tozeroin [LP"(@)]*= LNy and  [LPUQ)]*c [V(Q)]* asin the case of (2.12).



-31-

Since ug is a solution of (2.5) we have -Aug = u%’l and consequently J '(vn) — 0 in

[V(€)]* so that we have

-Avy = vh+o, in Q
(2.23)
v,=0 on I’y

with ¢,— Oin [V(£2)]*.
Let us introduce the concentration function of v, : (see[L2])

Q,(t) = max it

xe RN QA(x+B)

where B is the ball centered in the origin with radius 1. Obviously we have

lim Q,(t) = J(v: Y**! and there exists R > 0 such that Q,(R) = J(v: »»*1. Since v, is not
t—300

relatively compact in V(£2), there exists o > 0 such that J(v: )p+1 > oo > 0. Therefore if

1e 10, there exist a sequence of positive number €, and a sequence of points a,e Q such
that :

Qule) =1 & j(v;:)f’“ =

QN (ap+e,B)
- Q-
Now we set U= en(N 202 v, (e,x+ &) ; evidently T is defined in Q= " and we have
81’1
(2.24) f @ =p
' B
(2.25) f @HP ! <p vze R®
Z+B

Let us prove now that € — 0, as n —yoe. Arguing by contradiction we suppose that
€,— A # 0. Then
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(2.26) f@)== lefdz 50
Q, g

Let (e Coo(ﬂ?N) a cut-off function whose support is contained in z+B. Since J '(vn) -0
in [V(Q)]* we have

2.27) VE, V@, = f @@ +o(1)
“n Q
On the other hand

JPavaeh = [VilCs2 Juvave= [Vaot (v
QL Qn Q, Q o

and hence using (2.27)

SN 2-2 ~hD-1 202 ~Hpt+1 Y (p-1)/p+1
Jvaor- [vefm= (@@ oms ([Tt )
Q B

2N(z+B) QN(z+B) Q N(z+B) Q. N(z+B)

( JrLPHYeD 4 o).

Q.N(z+B)
From (2.25) and (2.26) we get
2 HZ/N 2
V@O sy V@OF) +ory
Q. (z+B) 0 Q,(z+B)
[wuiax
(D since the ratio = ————— is invariant by dilatation we have the Sobolev inequality
( Jufana
I'a-
Jivuax > 5o fiu%ax)¥@ for any function u in HY(Q) such that u=0 on —
Q n

n n
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Therefore, choosing | sufficiently small we have JlV(ﬁnZ;)l2 < o(l) for any ze RN
Q N(z+B)

which implies that @i,— 0 strongly in Hlloc(lRN), contradicting (2.24). In this way we have

proved that € — 0. Now let us extend the functions . i, to the whole. RrY by using the. . .

operators P,=P;,e . Weset w=P i ,w eDl([RN) and, from ii) and iii) of Lemma 2.1
n 1/, n n“n n

(2.28) LIanlz <C [ivi, = cﬁflvvnlz <C
R 2

- (2.29) Llwnlpﬂdx <c [mPlao=c [wPldx<c
R o, o

where C' and C" do not depend on n. Therefore the sequence w,, is bounded in Dl([RN) and

hence
(2.30) w,—w  weaklyin D'(RY)
(2.31) W, o W weakly in LPH(R™)

for some we Dl([RN ). The function w is not identically zero on lRN, otherwise (2.26) would
hold and repeating the same argument we have just used to prove that £,— 0, we would get
that w, — O strongly in HL (R™) which contradicts (2.24).

Now let us denote by I the limit of the domains Q_; obviously w, — w weakly in DI(I)
so that

r[anVg = r‘-Vng +o(1) for any ge D)

But

r[anvg= [V, ve+ ﬁJ;anVg
IﬁQn I\ n
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and

I J;VWanl <( JlenF)”z( JIVg[Z)mS c( JIVg|2)1/2= o(1)
I n I n I n I n

because of (2.28) and ,— I. Therefore

JVWVg = [vE,ve+o) for any ge D*(D)
1InQ,

Repeating the same thing for r"(w;:)pg we finally get

(2.32) [va,ve- f @HPg = r[vag ! J(W}Pg + o(1)
InQ, N,
for every ge Dl(I)

. 'L R 1 Tn-a
Since J () = 0 in [V()]*, V(Q,) = {ue H(L,), such that u = 0 on 9 11

and , — I, from (2.32) we deduce

(2.33) - Aw = (wh)P in I

Now, denoting by d(-,") the euclidean distance in [RN, we have the following alternatives

N—oo €n
(0.1)in DYRM).

= +oo, S0 that a,— Xge L2, I=[RN, and w is a positive solution of

b) lim d(a,,0Q)
n—o0 €n
solution of (2.1) in A=X,,.

=me R, and a,— xge I, so that I=A the half space and w is a

c) Iim g@;n_ﬁ_ﬂlz me R , and a,— xpel7y, so that I=A and w is a solution of (2.1)".
n—oo €n
. d(a,0Q = = ) )
d) lim —Sa—’“——)= me R, and a,— xge [y "1 so that I = £ and w is a solution of
n—yoo €q

(2.1)", since we have assumed that I'yand I'y intersect orthogonally.
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Case ¢) and d) are easily excluded since Theorem 2.2 ensures that any solution of (2.1)" or
(2.1)" is identically zero, while w is not.
(N-2)/2
1)

( Ix |2 _le)(N-Z)/z
[Gi], [Au], [T], [Br3], [Br2] ), these are the only positive solutions of (0.1) in Dl({RN). If case

(N-2)12
K

( lx‘2+u2)(N-2)/2

If case a) occurs then w = for some L > O since by known results (see

for some L > 0 because of Theorem 2.1. Let us first treat

b) occurs then w =

case b). We set

1 X-a,
¢§(x) = vy(x) - — 2R w( - ), xe Q

L n

‘We have

1
-Z-ﬁV(bi ZJIV (N 575 JVV VW(X an) + (N 573 JIVW(X a“)lz
Q

€y
Q

%levnlz : QjVﬁan + %-QJIVMZ: %—JIVVHIQ- —;-[jlvmh o(L).
L n

Arguing in the same way to compute qu;,llp+1 we finally get

(2.34) T(v,) =T(OL+ %—JIVWIZ- ﬁ—flflwlp“ +o(1)

Since

1 +1 N/2
§JIVWI ] IJI wlP z 2 (see(2.8))
by (2.32) and (2.34) we get
(2.35) T(u,) = J(up) + —-zN’2+ IO + o).

If case a) occurs, then repeating the same argument we obtain

(2.36) T(uy,) =J(ug) + --ZN/2+ IO + o(1).
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since %—JIVW|2~ %JIWI"“ =S = 2Ny, when I =RN

Now, proceeding as we did for the sequence v, it is possible to prove that

(2.37) T(9h =0, ¢ —0weaklyin V(Q)
and obviously
(2.38) J(0}) = b =c - J(ug) - §-ZN’2 (k=1lor2)

From (2.38) we obtain
(2.39) % l Vol = f (D" )P™ = b+ o(1)
I 1

and, from (2.37)

(2.40) 0! = (00 ")P+ £, with £,— 0 in [V(Q)]*.
Then we get
(2.41) f Voul = f (@)™ + o(1)

Q Q

Combining (2.39) and (2.41) we deduce

f Vol = Nb'+ o(1) and j (@H" )P = Nb'+ o(1)
Q Q

Using the Poincaré-Sobolev inequality we obtain
(2.42) Nb! 2 S(Q)(NpHH P+

from which it follows that either b1= Oor
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N/2
1. S(Q)
(2.43) b = - N

If b'=0 (or equivalently (1)31 — 0in V(Q)) the assertion is proved with h = 1 (or 2). Otherwise’
we could repeat for the sequence (1)31 the same procedure we used for the sequence v, obtaining

the analogous of (2.34)

(2.44) 10h =162 + £V o(1). (k=1or2)

for some sequence q>§ which behaves exactly as the sequence cbrll.

In particular, by (2.43)
N/2
(2.45) b’= Lm J(@2)2 -3-9%-)-——
n—oo
and hence by (2.44)
1o 1 oN2
(2.46) b" 2 N—Z .

After a finite number of steps we reach a sequence cpf1 such that

j k oN2_ g 1 ¢Ni2
@) = ¢ - J(ug) - == bl g TV

(2.47) . :
: J' (o) = 0 and ¢l— 0 weakly in V(Q).

Then, either b'=0 or, by the analogous of (2.46), b must be greater than —IETZNQ., Since

this contradicts (2.47) bl is zero and the theorem is proved. ¢

Corollary 2.1
If (2.5) has no nontrivial solutions in V(Q) then the Palais-Smale condition for the
functional J fails only at the levels
k

_ kN2
(2.48) c= NZ
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where k is any positive integer.

Remark 2.1
A crucial point in the proof of Theorem 2.1 is to know exactly all positive solutions of
problems a) - d). This is the reason why we made the assumption that Iy and I'; are regular and

intersect orthogonally. In particular in the case d) we have used the fact that the mixed boundary

problem (2.1)" does not have nontrivial solution. If 0Q was regular and TyN fgt &, the

situation d) would become: I=A and w is a nonnegative solution of

(-Au - u(N+2)/(N-2) in A
u=0 on [g=0AN{x>0)
(2.49) 194 _ on T;=3AN{xx<0}
v
ueDY(A)
\.

Since, as far as we know, the positive solutions of (2.49) are not known (perhaps there

are not any) we could not conclude the proof of the theorem. However more general hypotheses

on the way f‘o and I_“l intersect could be allowed by using the nonexistence results of [EL]. The
same remark applies to I'y, in case it is only Lipschitz continuous.

Regarding the situation b), we could use Theorem 2.1 in case I'y is not of class C! but
has only some "convex corners". To be more precise if a,— xgeI'; and xq is the vertex of a
convex sector, then w would be a positive solution of (2.1) in a certain convex cone X,. Thus

N-2)/2
u( ).

( |X|2+“2)(N-2)/2

by Theorem 2.1 we know that w = for some 1 > 0 and, by standard

computations (see [LPT]), we have

1 1 1 2 12
(2.50) 71jlvwlz. f):l—r[lwlpﬂ = X (S (e RNV N N2

Thus if, for example, I'; has only a convex comner, the critical value ¢ would be

B k N2, h 20, N2
(251) C—J(u0)+ —N'E N'—C';I‘Z

where h and k are nonnegative integer.
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2.3 EXISTENCE RESULTS FOR DOMAINS WITH HOLES

Let D and G be bounded domains in [RN, N=>3, with smooth boundary such that

G < D and the origin Oe 9G. For a point x4e D\G we denote by B(xg,r) the ball with center in
xo and radius r >0 and consider the bounded domain = )y = D\(E}usz (xoT)) where xg,

and r > 0 have been chosen in such a way that 7\,2B (xq.1) C D\G, for any A€ ]0,1[. In other
words Q is a domain with two holes, one of which is going to be chosen very small.

Finally we set
To=0D ' =0GUI(A B (x,1))

and obviously Ty =@ and dQ=T,uUT};.
In this section we prove the following existence result.

Theorem 2.4

Let us consider the problem

(-Au = gD/ED) in Qy

u>0 in Ql
(252) Ju=0 on T

du
—=0 onI
ov !

.

where V is the outer normal to I'y.
Then there exists Ay such that for any Ae 10,A[, problem (2.52) has at least one solution.

To prove Theorem (2.52) we need some preliminary lemmata. We recall that Fy(u) is the

functional

Fo(u) = F(u) = dﬁwz

Moreover we define
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(2.53) X(Q)={ue V(Q),u=0}, M'=X(Q)nM

Lemma 2.3
Let u_ be a sequence in M such that

(2.54) F(u) - cel%, 2NE[  and  Fy - 0in [V(Q)]*

where FM is the derivative of the functional F defined on M. Then there exists at least one

solution of (2.52).

Proof

It is easy to see that there exists a sequence A, of Lagrange multipliers such that the

(N-2)/4

functions v, = u, make up a Palais-Smale sequence for the functional J on V(€2).

Moreover, by (2.54)

J(v,) = ce ]% sN2, ‘21\T SN2

If there are no solutions of (2.52), by the strong maximum principle, the problem (2.5)
does not have any nontrivial solution. Thus Corollary 2.1 applies and the Palais -Smale
conditions holds at the level c. This implies that v, converges (up to a subsequence to a critical
point of J which is a solution of (2.52)). ¢

Lemma 2.4 (Deformation Lemma)

Let us suppose that there are no solutions of (2.52). If ce |12, 22/NZ[ is not a critical value

for F on M then there exists a map
n:[0,1}1xM—-M
and a positive number €y such that for any € < g,
i) mNnOu=u Yue M
i) mntu)=u Yue {ueM, F(u) < c-e}UM\{ue M, F(u) <ct+e} Vte[0,1]

i) mtueM’ YueM" Vie[0,1]
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iv) mnweM n{ueM, Fu) < c-g/2}, Yue M 'n{ueM, F(u) < c+&/2).

Proof

This lemma is a variant of the classical Deformation Lemma and it holds because if (2.52)
has no solutions then F satisfies the Palais-Smale condition in the interval
1%, 22/NZ[ (see the previous lemma). Moreover M" is invariant for the gradient flow

associated to FM and this gives iii). However we refer the reader to [Ho] for more details. ¢

Now let us consider the functions

. H(N -2)/2

(2.55) 6,() u>0, acRY, xeRN

a (Ix-alP+p2)N-D2 ’

and the "cut-off" function e C™(Q), o(x)e[0,1] Vxe Q, such that

1 in Kq
ox) =
0 outside of K;

where K is a compact set in D containing B(x,r)UG in its interior and K is a compact set

—_— o —_—
such that Ky K; and K; cD.

Then the functions

(256) V” = G(X)~¢u(x)l o and WLL =

v, (%)

( J‘ lvilp-i—l dx)l/(p+1)
Q

belong to X(Q) and M" respectively, for any i >0, ac R".
As already shown in Chapter 1 that we have

Lemma 2.5

(2.57) lim F(w:) =%  foranyael}
p—0

and
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(2.58) lim F(w))=%  uniformly for ac I(A?Bx))C T
p—0

Proof of Theorem 2.4

We will prove the theorem arguing by contradiction. More precisely we assume that
(2.52) has no solutions and will show that F has at least one critical point v on M" such that
F(v)e 1%, 2*N5[ . Then the function u = [FM)]N 2y will be a critical point of J in X(Q)

and hence will give a solution of (2.52) contradicting the assumption. From now on let us

denote by B the ball ?\.2B(x0,r) and by y; the point kzxo. We defineamap h: B—o>M"

in the following way

(2.59) h(a) = Z(2)
(le(a)lp“dx)l/(p”)
where
( 0 g(a) . la-yql 1
(120 v_+ 2t if 1= Ky;r’ <5
z(a) = 3
i i

O is the origin in RN pit) = (t- %—)u* +(2-201 and g(a) is the point on 9B which lays on
the straight line through yg; and a on the same side of a with respect to yj. The

numbers p* and p will be fixed later.
Let us choose a number & >0 such that ¥ + & < 2Nz, By (2.57) and the hypothesis
that OeI'; we deduce

— 0
(2.60) there exists >0 such that F(w_) =F(h(0)) <X +8
n

Then we consider the function

(2.61) H:M — RV , H(u) = Jxlulpﬂdx
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Since we are assuming that (2.52) has no solutions, Lemma 2.6 implies that  Sy(£2) = Z.

In addition, by Lemma 2.5 and the hypothesis yg& 1—"1 we get that there exists a number
0, (£2) > 0 such that

2/N

(2.62) Hu)=xy = FW)2Z+0o(2) and I+ o) <27Z
On the other hand by (2.58) we can choose p* >0 so small that
o, (Q
(2.63) F(h(a)) = F(wi* ) <X+ —%—-—)- for any ac B

because 0B = a(kZB(xo,r)) c I'; . Note that if aedB, W(t) = 1L,/2 in the definition (2.59).

Moreover we have that

(2.64) there exists Ag> 0 such that if L_l = A <Ay, then F(h(a)) < 22Ny for any

ae B.

For convenience we postpone the proof of (2.64) and assume from now on that Q=
Q, issuch that A <Aq.Let us define the class of maps

F={feC®B,M"),flz =nly )

and set

¢ = inf max F(f(a))
fe F acB

Since he ¥ and (2.64) holds, ¢ < 27Nz, Using some argument of topological degree
theory that we will detail below it is possible to show that

(2.65) forany fe ¥ there exists ae B such that F(f()) 2 X + o (Q)

Therefore

(2.66) C2 T+ o (Q)
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Then ¢ must be a critical value for J on M. In fact if it was not we could apply the
Deformation Lemma 2.4 obtaining a map 1 and a number g; > 0 satisfying 1) - iv). By

definition of ¢, there exists T € F such that

(2.67) c< max F(T@)<c+5 e<gg
acB

We claim that the function 1,°F =7 (1,)° T belongs to . In fact, by (2.63) and
(2.66) we have

(2.68) F(h(a)) <c—¢ for any ac dB
choosing € < g sufficiently small. Thus by ii) of Lemma 2.4
(2.69) M;° )@ =M;°h)@) =h(a) for any ac 9B

which implies that 1,° T € .
On the other side, by iv) of Lemma 2.4

~ €

max F(m;° f)@a)<c—-7

= 2
aeB

and this contradicts the definition of c. Therefore ¢ must be a critical value of J on M and the
assertion is proved.
Let us explain (2.65)

Proof of 2.65
By (2.62) it is enough to prove that for each fe ¥ there exists ac B such that

H(f(a)) = ﬂL(xf(a)ll’”dx _—

Fixed fe ¥ we consider themap G=H°f from Bto RN which is homotopic to the

identity map I: B — B by the homotopy

Gy=sG+(1-5s)I , se ]0,1[
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We claim that Gg(a) # y, for every acdB and se]0,1[. In fact if acdB
G(a) = H(f(a)) = H(h(a)) # y, because of (2.62) and (2.63). Moreover by P.L. Lions principle

and Lemma 2.5 the function Ih(a)lp+1 = lwf,_*lp+1 — §, weakly in the sense of measure if

aedBc I'j,as p* — 0. Therefore H(h(a)) is very close to ae BKZB(xo,r) (if p* is

sufficiently small) and hence the segment joining G(a) = H(h(a)) to a does not pass through
the point yg . This proves that Gg(a) # yg forevery aedB and se]0,1[. Thus, by the

property of invariance under homotopy of the topological degree, deg(G; B; xg) = deg(; B; Xg)

=1 since xge B, so that there exists a solution of the equation  G(a) = H(f(a)) = y;.
The last thing to be proved is (2.64)

Proof of 2.64 ,
la-yol 1

Let us first prove (2.64) in the case 0 <t<—5— < 5 -
r

IVul?
Since the ratio is homogeneous of degree zero, to prove that

( {J’ lulp+1)2/(p+1)

F(h(a)) < 22Ny s equivalent to show

KJIVZ(&)I2
(2.70) < 22Ny

(ﬂ[lz(a) Ip+1)2/(P+1)

0 g(a)
where z(a)=(1-2t) v_ +2tv_ , te]0, %[ and g(a) being defined in (2.59). We now take
H H

i =X and, for simplicity, set

°_.0 A N

u=v_=v. =06(x) o

P SR o
and
g(a) A
- g(a) (N-2)/2
U=v_ =v, =0(x)
R - IQL
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where we have written AZb , be dB(x,1), instead of g(a)e a(XZB (Xgo1))-
The following estimates hold

@) [ivuy? = Ky o(1)
27

(if) [i7uy? = K+ o(1)
o

(i) [Vu,Vu, = K+ 0(1)
2

(iv) (JI(1~2t)u1+2tu2|p+1)2/(p+1) — K+ o(l) Vie 10, 5f

1o .
where K, =A{|VU|2, K2=(‘JIUIP+1)2KP+1) with U(x).—.(-l-—-—i-—‘—i)‘N D2 and A is the
+ IX

K
half space defined in Theorem 2.2. As it is well known (see [Au],[T] or [LPT]) _K';_l' =2 since

, IVul®
U is one of the functions which minimize the ratio in the space DI(A). The

(J[ulpﬁ-l)Z/(P-ﬂ)

estimates (i) and (ii) follow by standard computations for which we refer to [BC1] or [Gr1]. Let

us prove (iii).

Vo X
VuVu, = — 5 - (2 - N)——7)"
Q{ up vy J((k2+ lez)(N'z) ( )0\2+ ixl2>N/2)
),
2
Vo 2-N) o(x—A"b) ) A N-2

N2t o T e T,
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and

Vol _ Vo]
J A2+ xHTD24 x-A b2y J(x% kAN D24 1x—2 b2 N2
o7} Ko

where K is the compact set where ¢ = 1. Since O and A%b belong to K, we have

= 0
A2t xIHYND 24 x-A2py N2
278

2
J( Vol (D as A— 0

The same estimate holds for each integral where the term Vo appear. Therefore

x-(x—lzb)K(N’z)

Vu,Vu, = (N-2)2 + o2
Q£ bV =N )J(x% N2 2+ x-A 21N @)
A

because o=1 in KO
By the change of variable Ay = x-A%b we get

‘ ‘(Ab +y)
Vu,Vu, = (N=2)> J .
Q{ 1772 J(1+ N2 (1+ 1y +AbHN?
@A b)/A

+ 02 =

2
= (N-2)2 jﬁ%ﬁ + o(1) = Ky+ o(1)
A

Let us prove (iv). By making the same change of variable as before we obtain

A N-2)/2 A \(N2|p+a N
I(1-20u,+2t0, P = [P (1-21) (N-D2) o (s [Priy,
QJ;; ! 2 (k2+ Ay + kszZ) (K2+Iylz)
),
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2t 1-2t 1 N
| + [P+ oMy = N-2) j + o(1)
J(1+|y+>?bl"’)<1“'2>’2 (1+ly ™22 (1+ lyHN
@-A"bA
by standard computation (see[BN]) and because ¢ =1 in K. Hence
JI(1—2t)u1+2tuzlp+1)2/(p+l) = Ky+ o(1) Vie ]0,2 [
From (i) - (iv) we finally get
dflvz(a)l
4t K+(1-2¢t) K1+ 4t(1-t)K, + o(l) 2/N
K,+ o(1) Kz =r<2tE
(Q[lz(a)lp+l)2/(})+1) 2
as A — 0.
a yO[

Hence (2.70) holds if u A is chosen sufficiently small and 0 < —— »12— Obviously by

l'

(2.57) and (2.60),(2.64) also holds if ;—J, =XAand p* are taken sufficiently small.
Therefore, we first choose A and fix A <A in such a way that (2.64) holds for any

ae B and w* sufficiently small. Finally (once A is fixed) we choose a value of p* which
also satisfies (2.63). ¢

Remark 2.2
The topological explanation of the previous existence result is the following. If there are
no solutions to (2.52) then, by Corollary 2.1 and the P.L. Lions principle the level set

Fyim = {ue M",Fu) <Z+m)
has the homotopy type of f“l , i.e. two holes. While moving from Jg,, to J,2N5 = Jg this

homotopy type changes because we can also consider functions obtained connecting two

. a . . .. .
functions vu ,ae 'y by a segment. Therefore, since the Palais - Smale condition holds in the



-49-

ZZINZ[ there must be a critical value of J between X and 22N3,  The

interval ]Z,
assumption on the hole XZB(xo,r) (i.e. it is small and close to G) ensures that the critical value
¢ belongsto ]Z, 2#N Z[. Of course other topological hypotheses could be made in order to get

the same existence result. For example we can assume that 2 is the following domain
Q =D\ AB(xo,1)

where D is a bounded domain whose boundary is made by two smooth manifolds I’y and

I', such either Tyn ', =@ or they intersect orthogonally and OeT',. Then if
I, =T, wd( KzB(xo,r)) and A is very small it is possible to prove that there exists a solution
to (2.52) by repeating essentially the same proof. The assumption that I'y and I'; intersect
orthogonally is obviously needed to apply Corollary 2.1.
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Chapter 3
MULTIPLICITY RESULTS IN THE PRESENCE OF SYMMETRY.

1. THE GENERAL THEOREM.

In this chapter we consider some existence and multiplicity result to (1.1) in symmetric
domains. Both results follow from a general theorem regarding minimizing sequences for some
suitable functional, consequence of concentration-compactness principle of P.L Lions (see
[L2]), which we recall.

Theorem 3.1.
Let u, converge weakly in V(Q) to some function u and assume, as it is always the case

for some subsequences, that there exist two bounded measures |, L on Q such that lu [P

and Vul? converge weakly in the sense of measures to L, [\ respectively.

Then, there exists a countable set 1, distinct points (X)) € Q and real numbers pi>0
such that

i = lulp+l + Zujéxj
jelJ

(3.0) <

o= IVul2+ S(Q)Zuf/(p“)ij

\ jel
where ij is the Dirac mass at the point X; .

We start with some definitions

Definition 3.1 :
T
We say that Q belongs to the class Q-IaN if the following conditions hold

(3.1) Qe EUN for some one (0,Cn/2 ]
(3.2) there exists amap TeO(N) such that T(Q) = Q, Ty =Ty and T =T}

(3.3) T(x)#x , VxeIy (T is the closure of T relatively to 0Q).
Here O(N) denotes the group of orthogonal matrices in RN,
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Definition 3.2 :
For Qe sz we call VI(Q) the space of all functions in V(L) which are invariant by the

action of T: VI(Q) = {ueV(Q):uoT=u ae. in Q}.

Let
JIVuIZ—KJuz
(3.4) S,@) = inf (JiVuﬂ-}. w?) = inf ,
evT(©Q) ue VI(Q)
I“lu“p+1=1. 120 (JlulpH)Z/(pﬂ)
Remark 3.1

By the properties of T one can easily verify that A"l(lulp'1 u) liesin VT(Q) for every

ue VT(Q) . Consequently every minimizer u for E(Q) is a critical point of F(u) on M.

Definition 3.3 :
For Te O(N) we denote by G the cyclic group (finite or infinite) generated by T . Let

Og(x) = {gx, ge G} be the orbit of a point xe Q. If there exists some Xe& Q such that Og(x)

is finite (which is always the case if G is finite) we define (= C((T,Q) = inf d(Og(x))
xe O\F

where d(Og(x)) is the number of points.in Og(x) and F= {xe@ such thar x = Tx)}. If
Og(x) is never finite we set { = +oo.

We recall that, we cannot have any positive solutions to (1.1) if A 2 24,(Q) (see Lemma
1.1). Hence we consider the case A < A(Q).

We have the following theorem:

Theorem 3.2 :

T —
Let us suppose Qe EaN ,and Ty is smooth. If T has no fixed point in Q, A <A(2) and

(3.5) S2@ <)
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then there is a solution of (1.1) in VT(Q)(as a consequence of it, if { =+eo thereis always a
solution of (1.1) for any A <A{()). On the other side if T has at least one fixed point in

Q\T, and
(3.6) $,(Q) < 2N $(=(m, R)) = S

again there is a solution of (1.1) in VI (Q).
(See (2.3) and (2.4) for the definition of L and S ).

Proof.
We argue as in [L.2], Part 2, Corollary 4.3.

Let u, be a minimizing sequence for S,(Q2) . Hence u, satisfies

lugll,q = 1 ue VI(Q)

3.7) , =
IVu,z -2 J'un = S5,(Q) + o(1)
Q Q

where o(1) goes to zero when n goes to infinity.
It is easy to verify that u, is bounded in V(£2) . Then there exists ue V(Q) such that

u, — u weakly in V()
(3.8)

u, > u a.e.in Q

We remark that from (3.8) it follows that ue VT(Q). Then, by Theorem 3.1 we have the

following alternatives:

1) u, isrelatively compact
i) there exists a countable set J, distinct points (xj)jE 1€ Q and real numbers B> 0
such that (3.0) holds.

In the case i) we can pass to the limit in (3.7) and then we obtain that the infimum is achieved
by the function u. Of course, such an infimum provides a solution to (1.1) (see Remark 1.2).

Let us suppose that case ii) occurs. Our first aim is to prove that the weak limit u is
identically zero. Our proof is contained in [Br3], Lemma 2, but we repeat it for the reader's

convenience. By the definition of §;‘(Q) we have
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(3.9) JIV(unﬂp)lz ; KJl(un+¢)l2 25, ol Voe VIQ)
On the other hand, we have by convexity

(3.10) ly0lp 2 [(1+ @1 Jiuguz0) ]

Combining (3.9) and (3.10) and passing to the limit, we obtain

S, (Q) + ZQIVuV(b + JN@Z - 2xJu¢ Y quﬂz >

> S @[(1+ (p+1)J|u|p'1u¢>+]2/(P+1)

Replacing ¢ by t¢, we find, as t—0

JVuVQ) = $,(Q) Jmﬂ”uq) + 2 [ug Voe VT(Q)
and, in particular
(3.11) dﬁvuiz A SEN) JMPH
However we have
(3.12) JIVuIZ A S{Iulz > S, (Q) (d[mlpﬂ)”(w)

Combining (3.11) and (3.12), we obtain that either lullp,; 21 or llull,,; = 0. In the first
case we must have llull,,; =1 (since llully,; <1). It follows that, by standard arguments, we
deduce that u, is relatively compact in VT(Q)(and we return in the case 1)). Hence u=0 if u,

is not relatively compact. By Theorem 3.1 we have that there exists a countable set J, distinct

points (Xj)je Jeﬁ and real numbers |L;>0 such that
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.
u= Z Hidx,

jel

(3.13) <
i o2s@)3p Vs,

4 jel

where | and [ are the weak limits (in the sense of measure) of ]unlp+1 and IVunl2
respectively.

Now we prove that the set J 1is finite. In fact we have ( by the variational principle of 1.
Ekeland)

—Auy = S$5(Q) lu Py, +Au, + £, with £,— 0 in [VI(Q)]*

and we observe that for all ye Cé(E—Z)

< —Aug,u Y >= g;\(Q) Jlunlpﬂ\y + A J’Iule\p + < fuy >
¢
Q
i.e.

JWunlzw + JunV\qun = 'S:k(Q) Jlunlp“\y + A J[unlzw +<fup >
¢
Q

and because u, — 0 weakly in VT(Q) and strongly in L2(Q), we have passing to the limit for
n— oo

(3.13)' nydﬁ: $,(Q) Q(\ydu = L= S, (Qu

and (3.13) implies that J is finite.

Now we consider the case when T has no fixed pointin Q and { < . Our aim is to

prove that if "u is concentrated at y " then u is also concentrated at T(y). In fact, since
1 .
lu, P — W weakly in the sense of measures we have as n — oo

J{un(x)lpﬂ(i)(x)dx > 2 106 Yoe C%Q)
Jje
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and

J 1,COP TN — 1 o(T(x) Ve CAQ)

ie]

Now

gﬁ%mWme= ﬁ%awwﬂmkm@wmnm=ﬁ%wﬁwwmmx
T-1@)

for Idet TI=1being T an orthogonal matrix (see Definition 2.1). Hence
(3.14) T 00 = T 0(T(xy)  Voe CUQ)
i€l ie]

Since the set of the "points of concentration” (X))jey 1is finite, we will denote it by
C = {xy,..,x¢}, se N. We claim that if x; is a point which belongs to C then also T(x;)

belongs to C.
Arguing by contradiction, let us suppose that there exists x;€ C such that T(x;)e C, that is

T(x) # X; Vj =1,..,s.. We can choose a function ne CO(Ez) such that

0 if xe {X1,:%s T(X9),..,T(x) )
(3.15) nx) =

1 if x = T(xy)

Note that by the invertibility of T we have T(x;) = T(x;)) if j= 1 and therefore 1 is well
defined.

Then (3.14) becomes 0 = |, a contradiction since [, > 0. Then we have that  T(x;) = x,
for some me {2,..,s} and hence from (3.14)

11 0(T(x))

1=4

(3.16) HnO(T(x) + 2 pid(x) = 1yd(T(xp)) +
1#m

and choosing the same function 1 of (3.15) we have p= U,




-56-

Now, if we repeat such a procedure considering the points T(x), Tz(xl) we have that
Og(x;) c C. Since C is finite, we also have that Og(x;) is finite and hence
Og(xy) = {xl,T(xl),..,Tkl(xl)} for some k;e N. Hence (3.13) becomes

(3.17) L= ul(8x1+6T(x1)+..+61kl(x1)) + j§2 Y, ij

Then considering the other points x;€ C we have

H= ig'ui(sxi'*'aT(xi)"" '+6Tki(xi))

(3.18) _ .
2 S(Q) Z P I@, +87 - +37kix)

el

k; having the same meaning as k; and J'clJ.
Recalling the definition of u, we have

(3.19) 1=Jd“= T ki
et
and
(3.20) 5@ = Jdﬁ > S(@) T kyu 2D
ie]

Now we prove that I' is a singleton. Let us set z;= k;u; and we choose a function

¢1(X)€ C=(@Q)AVT(Q) such that

1 on Xy, T(Xi),.., Tki(xi)
0;(x) =

0 on X, T(Xj),--, Tkj<xj) j#1

Hence the function v, (x) = u,(x)¢;(x)e VT(Q) and from (3.13)" and (3.18) and the definition
of ¢;(x) we get
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Kili,
(kiui)Z/(p+l)

Jlenlz ~ {J'vﬁ f'Vun%?
m Q

= lim = S, ()

T J,Vn;pﬂ)z/(pﬂ) T flun|p+1¢P+1)2/(P+1)
Q
SA@ki)*™ < $,(Q)  since v, — 0 weakly in VI(Q).

But u,, is a minimizing sequence for §;L(Q) and then we must have k=1 VieJ'. This

last fact, together with the relation 2 k;p; =1 implies that J' is a singleton. Therefore the set
iel

Cis C={x, TCi),..,TE(i)} for some Xe Q ; hence, from (3.18) and (3.19) we get

T k
L= 1/k (8§+5T(i)+“+5T (;))
Now we consider the sequence of functions

wi(x) = u, (X)W(Ix—XI) xeQ, r>0

where e C([0,+<]) is a function satisfying (0)= 1 for t[0,5] and () =0 for

t>€
2 °

We have that, for every e <g,

f Ve = A J(wﬁ)z(x)
lim (9]

n—oo
3 1\2/(p+1)
( ’Iwn(x)lp+ )

= S, Q&) N

On the other side, arguing as in [LPT] (Corollary 2.1) we have that
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f IVwE(x)I2 - kJ(wi)z(x)
lim = >

e—0 ;
£\ o+ 11 2/(P+1)
(len(x) Ip+l)

hX

Then we must have
S, Q® N> =
which implies
S @Mz s 2N
and we have a contradiction with the hypothesis. Then u, is relatively compact.

Now we consider the case when { = +eo; here we cannot have a "concentration
Phenomenon"” of u,,. In fact utilizing the invariance of the set C for the action of the group G,
we have that if xe C then ye C Vye Og(x). But then we have that C is an infinite set while
we showed that C is finite.

Finally we consider the case when T has some fixed points in Q. Obviously, if C does
not contain any fixed point of T, we can repeat just the same proof of the case i) and the claim

follows by the assumption gx(Q) <23 < CZ/N ¥. Otherwise let us suppose that there exists

xq€ C such that x,=T(xy), with Xy€ Q\I. Let ¢(x)e C™(Q) be a positive function such that

d(xo)=1,0x)=0 on I'; and ¢(x) =0 on the set C\{xq]}-

Let vy(x) = uy(x)9(x)€ Hy(Q).

We have that
Q[ VyGOP*dx = Jlu,l(x)l"%(x)”“dx = Hod(xo)P =t S T
Moreover

fj Vv, (0)dx = J]Vun(x)lzcbz(x)dx +o(1)
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and since from (3.13)' :L = gk(Q)u we have that

Jivvieofax - J 62l = S J¢2du = LS.

Hence

J-|VVn|2 < -
2 q Q o,
u0;/(7;%1) = “a/N(Q) S\ < S <2y
( f]vn|p+1)2/(P+1) o

by hypothesis, and it is not possible since

[ivur
22Ny_g = inf
ue Hy(Q) p+1,2/(p+1)

o (JGOP

and v,,(x)e Hy(Q). *

Remark 3.2
If T'; is not smooth, but has only "convex corners", the critical constant in (3.5) and (3.6)

will be S(Z(a,R)) where Z(o,R) is a convex sector with vertex in some point of I'; (See
also Remark 2.2) .
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3.2. AN EXISTENCE RESULT

Let us consider Q2 = (J-a, a[)N-1x]0,a[ a>1, where ri= [(]-—a,a[)N'lx{O}\
(= 2pvix(0)) ol 0, aDN-1x(a) N5 2iN-x(a)) and T§=9Q\TT.

Let T be the "rotation of the angle g— " around the axis xy

T(XI,XZ,X3,.., XN) = (—Xz,xl,X3,.., XN) .

Obviously T verifies all the hypothesis of Definition 3.1 and the fixed points of T with

respect to Q do not belong to I“'; for every a.Moreover T = 1d.
Then by (3.6) of Theorem 3.2, we have a solution of (1.1)1in VT(Qa) if we proof that
S <2Nz=s.

We denote by [lez {xe RN: xn20)

Let us consider ¢ = ¢(xle C=(RY , [0,1]) such that

0 if leslzor x| > 2
oxh=31  if %Slxls%—

and for any integer k=1 let @(Ixe C°°(lRIj, [0,1]) be

-

6(lcx) if Ixl < IE
@ (Ix]) =3 ‘p(%) if Ixl >k
1 elsewhere
\.

(i)

N
e oA X E

uk(x) =
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Arguing as in [Co] we have that

R, R

lim = lim 27N =2MNg = 3
ke Lluklp«i—l 2/p+1 ke ][!{uklpﬁ-l 2/p+1
R, R
QVHRIZ
IR-{'-
Then there exists a k; such that <2*N'5 for any k 2 kj. We remark
2/(p+1
Lluklpﬂ p+1)
R

+
that, for a > 4k the functions uko(x)e VT(Qa) Hence for all a large enough we have

So(@™) < 22N $(Z(r, R)) and then we have a solution of (1.1) in vT(QY).

Let us remark that in this way we have proved the existence of a symmetric solution of (1.1)
in Q®(i.e. invariant by the action of T ). Note that if the infimum S(Q?) is also achieved by a
function ve V() we cannot say that there are two solutions of (1.1) in Q% since it could
happen that ve VT(Qa). We end by observing that the domain Q" has zero curvature at any

point of his boundary (see Introduction).
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3.3. A MULTIPLICITY RESULT

Let us consider a Lipschitz continuous domain €, defined by € = {xe R 2 such that
r<lxl<r+d) x o, wherer,d >0,N2>3 and ® isa bounded domain in RN, Since Q. is
supposed to be Lipschitz continuous it belongs to £°‘N for some cne ]0, Cp/2[ as we pointed

out in chapter 1. Let I'; = {xe R 2/ kl=1} x® and Ty=0\T}.
We consider the map T : RN > RN, 0eR

Ty(p, 8, x) = (9, O +%{°—, %)

where (p, 6, x) is the system of coordinates

B
x,; =p cos O

Xz-——'pSine

(3.21) QX5 = X3

XN--XN

\

In the new system of coordinates we have Q.= {(p, 0, x) suchthat r<p <r+d
0 < 6<2n,xew).

Let
o= if fivur-n fw) and 1= mf < [ivur -2 fu)
ue VTK(QI) ' ue V(L)
lallyyq =1 g =1

where k is a positive integer and VTk(Qr) = {ue V(Q,) such that u(Ty(x)) = ux)} ,
V=(Q,) = {ue V(L) u such that u(Ty(x)) =u(x) , Voe R}.

In other words u belongs to V™(€,) if u does not depend on 8. Using the same notation
of the previous section, we have {={(T},& )=k inthecase T =T
Obviously



-63-

A A
< <...5J < <. .
J % Jr,Z 1,285~ “ros+l 1,00

Proposition 3.1.
There exists a constant A¥*(r) >0 such that J?k is achieved for every A*(1r) <A <A ().

If N24 then \*(1) =0. Moreover J:'m is always achieved for every L <1;(Q,), N> 3.

Proof.

. . A e A .
First we consider the case Jr . - Let u, be a minimizing sequence for J . - Asinthe case

of Theorem 3.1 u, satisfies

Auy =T Pl + g + £ with £, 0 in [V=(Q)]*

If u, is not relatively compact, arguing as in Theorem 3.2, we have that u, 'concentrates at
a finite number of points of .". Let us denote by C this set. Because the sequence u,
belongs to VTk(Qr) for every k 2 1, repeating the same proof of Theorem 3.2, we have that
the cardinality of C is greater than k for every k> 1. Then C is an infinite set and we have a
contradiction. Hence u, is relatively compact.

Now let us consider Jr)”k , with k < +oo. Let us define

2
Qﬁ}( = {xe Q, such that Tz-t-(m-l) <6< %{Em ,m integer 1 <m<k)

k
We have mk-J— IQ?’I k= and T(Q])) = QY :

We consider the functions

Ul ) = 000

B (etbxxgHy ™A

X€ er,k , XgE BQikmfl , X2 (8Qiku8§2§k)

where ¢ is a C°-function such that O(x) =1in Bgp(xg), o(Ixl) = 0 outside of Bs(xp) and

o]
8>0 such that Bsxg)nQ, c Q!

Then we set
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U;r(x) for xe Ql,
U, (0= -
o UL (™) for xe Q7

Then as in Brezis-Nirenberg([BN] (Lemma 1.1)) or also [Gr1] we have, for e sufficiently
small

m m
[z -2 [vz.
m m

Qr .k Or.k
(3.22) <X

m 2/(p+1)
¢ [z
m

Qr k

for A >0 if N> 4, for A >A*(r) if N=3 where A*(r) is a positive constant depending on
Q. (see again [BN]).
Finally

[y, 2 - xJUEr
Q. T

(J‘U lp+1)2/(P+1)
E,r
T

and by Theorem 3.2 we have that Jr)‘k is achieved for any k= 1.

Lemma 3.1.
im J° =4 VA <A(Q).

I,
I

Proof.
By the previous lemma we have that for every >0 there exists u; = u(p,x’) >0 such that
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JIVurIZ - A fuf

I,oe )
( J’ |ur;p+1J 2/(p+1)

o

A

If we consider the coordinates (p, 8, x") we have that

r+d
J‘IVu,l2 dxy ... dxy=2% J f [(&-)—L-l-’-)z +|V,ou, 2] pdpdx’
Q, o I ap

Where
N
IVeu, 2= Z(QEE ’
=3 0x;
and
r+d
Jufzmj [ updpdx’ s>0
I o
T
Hence
r+d aur 5 ' r+d ) '
omf [ [(Z2)*+V,eu, 2] pdpdx' - 2nA] | u?pdpdx
T ap T o
A (O]
(3.23) er=

+d
o T

Let D, = wx]r,r+d[ . Now

+d
(3.24) [ [P pdpdx'= D[ WP IpPp Pdpdx’ < 1P J lu,plP* dpdx’
(O] .

T

in}

T T
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First we suppose N > 4. If we consider the function pu/(p,x): D, < RNT 5 R by the
Sobolev Theorem we have pu(p,x)e L /(N3 . Hence

P D[IW oPldpdx’ < Cr‘p( Jh& p‘(ZN-Z)/(N-3) dp dx.)N(N-3)/(N-2)(N—1) << C

T

P
= (vpuPdpax )N
DI'
where C does not depend on r and

fivur fivap
= inf s = inf 20 >0
eV(D V(D ) ,
u r) ( ﬁ (@N- -2)/(N- 3)dpdx )(N By V0 ( _[I (N 2)/(N-3) dpdx )(N 3)/(N-1)

{/(Dr) = {ue Hl(Dr) such that u =0 on dDN\({r}xm)}.
(Note that I does not depend on 1).
If N=3 we have the same conclusion, because puy(p,x)eLYD,) Vq= 1.

Hence, from (3.24) and the previous computations we get

(3.25) D,'ufﬂpdpdx' < r®( flV(pur)lzdpdx’)N/(N‘z)
Dr

I

Now
IV (pul’ = (IV (o) 2+ (= ("”f)) ) =p (Ve 2+ ( > )]+ 2pu, ';* o <
s zpz[(lvx‘ur 12 + (%EL)Z)] + 2LI?
P

Then

(JIvpuPapax)™ ™2 <y JPZ[(lvx-ur P+ (%u—rf)]dpdx']N’(N'” *
D, D
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+¢[ Juf]N’(N‘z) =K, +K,
D

T

K; < Ca(red) ™2 f p[(1V,u, 12+ (-ag-‘-)z)]dpdx’)N/(N'z)
D, P
and

J.uf-i-lp

D,

D,

1 C
KasCo o (DD g, = ¢ [uippl <o
Dr D, D,

Then if r is sufficiently large (3.25) becomes

oo s ortese) ™R [ol (7,0, + (22 Japax) 02

T

Dr
s =2 [urp < CuP( (p[ (17, 2+ (9 Japax) VO 4 L 21y
rp+1 r P SL3g P x'Yr ap P 2 T
D, D, D,
Consequently

(Jigpritors DD ([0 + (59 apa)
Dl'
D

T

Then (by Holder inequality)

fqurlz -2 Ju?
& ol

(3.26) .

T,00
[ j lurlwl}/(pﬂ)
Q
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™4 e dupy2 . m .
om | J[(s—) +|V,u, 2]pdpdx’ — 2nA [ [ u’pdpdx
r p T

(O]
@m)® D ([ [1uP pdpdx) ¥
[0 T

+d

2 2 1) 2 '
j J‘ urp /(pt+ )p /Ndpdx
T o

-

(p-1)/(1+p)
>l . en™y — >

C
10 QRN (] ] Pt pdpdx) YD
[0 T

oD D)
o Muz T - M(Q)Cqy

>

On the other side, for r>1

T

5 2n r+d 5
Vul M j[( ——(ae) + |V ou, ] pdpd@dx’

IN

A(Q) = inf = inf —

e V(Qp) 2 ueV(Qy)
o 4|u(x)l o j j flu(p 0,)%pdpdods

2nr+d Ju ou 5 9
[ =+ (—) +|V,u, P]dpdedx’
< 'nf o 0 T ap 6

w0 J I j lu(p,0,x")! dpdedx

*

Therefore if we set E)T =[0,2x[ x Jr,r+d[ X @ we have for 1 large enough

J‘IVul2 J]Vulz
g 2 _
(3.27) @) < B8 inf <o inf S =2y
ueV(Qr) ue V() 2
i
Qo

Hence, by (3.26) and (3.27) we have
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lim I = oo VA <Ay (Q,).

Theorem 3.3.
Let Q = {xe R2/r<kxl<r+d}x ® and A*(®) <A <A (Q), A @) =0for N24, 0¥ 1) >

0 for N =3 .Then the number of nonrotationally equivalent solutions of (1.1) tends to + oo
as 1 tends to infinity.

Proof.
According to Proposition 3.1 we have that, for every r > 0, K*(r) <A <A(Q)

A A A A A
AR /RS A (U

are achieved by some nonnegative function. By a regularity result (consequence of a Theorem
of Brezis and Kato, see[BK]) we have that the minimizers are functions of class C* in Q.

Our aim is to prove that, for r large, 3k, = ky(r) such that

A A A
Jr,1 <JL2 <'"<Jr,2k0 .

Let us prove that, for r large J? L < J:‘ )

Let u, be a function such that lhully,; =1 and Jr}tZ = fIVurIZ -X f lul2 . If we consider the
Q

&

change of coordinates (3.21) we have

Jwu =2 Jo o1 f[(a“ G+ (5 Tpcpatn -

2'Kr+d
=AJ [ | lul?pdpdOdx'
0r [0

and

+d 27
jlurlp’“l = j [ | e+l pdpdBdx' .
0 o

Q

-



-70-
Define ve VI1{(Q) by
v(p, 6, x) =u,(p, (29—, x") 0<6<2r.

Therefore

Phis %}

[T 1o papasas = [T 112 G (G2 psvatar
Similarly we have

fuprt= [t and = fiv.?.
Q o ot

In the proof of Proposition 3.1 we showed that Ii‘ 5 < N5 for any 1 > 0. Therefore by

0
Lemma 3.1 we have, for r large, J:‘z < J:‘w . Then —a%r— is not identically zero. Hence

< J‘IVVIP -y J'wrlZ < Iqurﬂ —A Jlurl2 = Jz‘z
i .

Qr Qr Q1r

Similarly, we can prove that J:‘z < Jz‘4 if r is so large that JZ‘4 < J?m and so on. Hence,

for r large we obtain the solutions uj, up, ..., Uk, (ko depending on r) that, clearly, are

nonrotationally equivalent and the number ky— e as 1 — . 1)
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