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Abstract

This thesis presents results from general relativistic numerical computations of primordial
black-hole formation during the radiation-dominated era of the universe. Growing-mode per-
turbations are specified within the linear regime and their subsequent evolution is followed
as they become nonlinear. We use a spherically symmetric Lagrangian code and study both
super-critical perturbations, which go on to produce black holes, and sub-critical perturbations,
for which the overdensity eventually disperses into the background medium. For super-critical
perturbations, we revisit the results of previous work concerning scaling-laws, noting that the
threshold amplitude for a perturbation to lead to black-hole formation is substantially reduced
when the initial conditions are taken to represent purely growing modes. For sub-critical cases,
where an initial collapse is followed by a subsequent re-expansion, strong compressions and
rarefactions are seen for perturbation amplitudes near to the threshold. We have also investi-
gated the effect of including a significant component of vacuum energy and have calculated the
resulting changes in the threshold and in the slope of the scaling law.

The specification of the growing-mode perturbations in the above work is approximate and in
the later part of the thesis, we introduce a more sophisticated and elegant formulation in terms
of curvature perturbations. This allows a direct connection to be made with the spectrum
of perturbations coming from inflation and also, using this, we find that there is no longer
evidence of shock production in connection with primordial black hole formation. Introducing
adaptive mesh refinement into our code, we are able to follow black hole formation nearer to
the critical limit and find evidence suggesting that scaling laws may continue down to very

small masses, in contrast with previous suggestions in the literature.
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Introduction

In the 1970’s Stephen Hawking gave an important contribution to the understanding of black
hole physics with the discovery of quantum effects associated with these objects. This gave
rise to the well known theory of black hole evaporation. What is probably not very well known
is that the idea of having black holes formed in the early universe (so called primordial black
holes) is the historical reason that led Hawking to this famous discovery. In 1971, in fact [1], he
considered the gravitational collapse of primordial perturbations in the early universe, when the
fluid is described by a relativistic equation of state, realising that it can lead to the formation
of primordial black holes (PBHs) if the perturbation amplitude is sufficiently high. To make a
simple estimate of the mass scale of PBHs we can compare the density of the early universe at
a certain time 7 with the density associated with a black hole of mass M, and we can see that
the mass of PBHs would be of the order of the horizon mass at their formation epoch

Mg = 2t ~ 10% (-L«) g. (1)

10723 5

This relation indicates that the masses of PBHs would span a wide range of orders of magnitude
with the possibility of forming very small black holes (with sizes comparable with ones of the
elementary particles) that it is not possible to form in other astrophysical scenarios. Hawking
realised that such small black holes could be strongly affected by quantum theory and his
famous work in 1974 showed that the mass-energy of a black hole is evaporated away with a
thermal radiation spectrum.

From that time, the interest of Hawking in black holes continued to follow the line of
unifying the theory of general relativity with quantum mechanics (quantum gravity), leaving
the subject of PBHs to be investigated by other colleagues. One in particular, Bernard Carr,
who was a student of Hawking in those years at Cambridge, worked with him on producing
the first quantitative work on PBHs [2], and then continued independently throughout his

subsequent career to be actively interested in this subject.

I began to be interested in PBHs during my undergraduate thesis work, collaborating with
my present supervisor John Miller, and his colleague Luciano Rezzolla at SISSA, who guided
me in the understanding of relativistic astrophysics and taught me the numerical techniques
that have been fundamental for this thesis. In summer 2003, during the second year of my
PhD, I was introduced to Bernard Carr and his colleague Alexander Polnarev at Queen Mary
University of London. Dr. Polnarev is another leading person in the field of PBHs; he was,
in fact, one of the group of students of Zel’dovich (together with Novikov and Nadezhin) who
in 1978 performed the first numerical calculation of PBH formation. One of the main original

11




12 INTRODUCTION

contributions of this thesis is due to ideas developed in collaboration with Carr & Polnarev
and we will try to show how the old ideas of the seventies, revisited in view of modern ideas
of cosmology, and deeply analysed with modern numerical techniques, can bring new light and
new interest to the study of PBHs.

The formation of PBHs has, so far, been just a possibility admitted by theory and it is
still very unclear whether they have a relevant cosmological impact. This depends on their
effective rate of formation, and on the distribution that they have now if they have survived.
If their mass is smaller than 10*® g, they will have completely evaporated away by now and
their main cosmological impact is given by the radiation emitted in the universe during their
lifetime. If their mass is larger than 10'® g, then the evaporation process is negligible and
they can be considered as candidates for different kinds of observation related to compact
objects. In particular there are three mass scales of PBHs that are particularly interesting,
the ones of the order of a solar mass (like MACHO type objects), ones of a few hundred solar
masses (the intermediate mass black hole range) and the largest ones that it is possible to
form, of the order of 10° - 10° solar masses, which might be the seeds to form the supermassive
black holes that we observe in the centres of galaxies. The scales correspond, in the history
of the early universe, to times ranging from that of the QCD phase-transition up to that
of nucleosynthesis. In general, the cosmological consideration of PBHs forming in the early
universe can put strong constraints on models of cosmological perturbations, and therefore
studying their possible formation is matter of interest even if their formation rate turns out to
be very small. In our opinion the link between a realistic cosmological scenario characterised
by a Gaussian spectrum of primordial perturbations and the numerical calculations presented
in the recent literature is not very strong and needs revision in the way of introducing initial
conditions. This thesis makes a contribution towards understanding how to treat this better.

Plan of the work

The work is divided in two parts. The first part (Chapters 1 - 3) reviews results taken from
established theory and recent published works. The second part (Chapters 4 - 6) describes the
original contributions of this thesis to the study of PBHs, giving particular attention to the
treatment of imposing initial conditions and to the subject of critical collapse

Chapter 1 gives a description of the standard theory of the hot big bang, describing very
synthetically the unperturbed universe, focusing attention on the radiative epoch when the
fluid was relativistic. Chapter 2 then reviews the standard theory of cosmological perturbations
coming as a Gaussian spectrum produced by inflation. We start with an introduction to the
idea of inflation, explaining how this mechanism affects the evolution of the universe and how
it can produce a spectrum of cosmological perturbations. Then we give a detailed analysis of
the linear theory of cosmological perturbations, that is a crucial basis for the developments of
the original calculations presented in the following chapters.

Chapter 3 gives an introduction to ideas about black holes and makes a summary of the
results in the literature about PBHs. The material to be included here could cover a very
wide range and we have therefore made a selection, presenting the subject of PBHs from our
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perspective, pointing out the main points that we think need to be studied more carefully.

Chapter 4 explains the hydrodynamical scheme used in our calculations, presenting the
set of equations used to write the computer code. We then show results from numerical cal-
culations made with initial conditions similar to ones used previously in the literature, but
with a fundamental improvement. Which clarifies an inconsistency that was noticed recently,
comparing two different sets of calculations.

Chapter 5 explains a new formulation for introducing initial conditions to be used in the
numerical simulations. We demonstrate that this formulation is self consistent for a spectrum of
perturbations coming from inflation and allows the perturbations of all of the hydrodynamical
variables to be expressed as functions of a unique time independent-variable, which is directly
linked with the curvature perturbation.

Chapter 6 investigates critical collapse, related to the formation of the smallest mass PBHs
at any given time, where the new formulation for specifying initial conditions explained in the
previous chapter is used. With an adaptive scheme for the numerical grid we have been able
to investigate regions of the mass spectrum that we were not able to investigate before.

The results presented in Chapter 4 and 5 have been presented in two different papers [3, 4],
while the results of Chapter 6 will be presented soon in a paper that is in preparation [5].







Chapter 1

Cosmology of the early Universe

The aim of this chapter is to summarise the elements of cosmology applied to the description
of the early Universe, the background scenario for primordial black hole formation. The main
references used are [6, 7, 8]. For more specific details other references are specified in the text.

The “standard” theory of the early Universe is the so called Hot Big Bang based on the
cosmological principle which says that, at least on large scales, the Universe is homogeneous
and isotropic. This is an observational statement and the most relevant observational proof
of it is the nearly identical temperature of the microwave background radiation coming from
different parts of the sky.

To clearly describe the evolution of the Universe it is convenient to divide it into two parts.
The large scale behaviour of the Universe can be described by assuming a homogeneous and
isotropic background. On the background it is then possible to superimpose perturbations on
different scales that evolving with time would give rise to the structures observed today in the
current Universe. This chapter is dedicated to the first of these two parts, giving attention to
all of the various aspects that play a role in the context of the PBH scenario.

1.1 The Friedmann Model

1.1.1 Hubble parameter and redshift

The first observational statement about the behaviour of the Universe is that it is expanding
with a rate measured by a universal scale factor a(t), where ¢ is the cosmic time as measured
by a family of “comoving fundamental observer”. For a point comoving with the expansion of
the Universe its distance measured from a defined location, can be written as

R(t) = alt)r, (1.1)

where 7 is the comoving variable appearing in the metric defined later. An equivalent relation
can be used to define a useful time variable, known as conformal time

dt
dr = Ok (1.2)

15




16 CHAPTER 1. COSMOLOGY OF THE EARLY UNIVERSE

The rate of the expansion of the Universe is given at any time by the Hubble parameter

1da a
H = — 0 == - 1.v
a dt a (1.3)

explicitly appearing in the Hubble law, measuring the expansion velocity U, abtained through
the time derivative of expression (1.1),

_dR
U:Tt

=HR. (1.4)
H has the dimension of the inverse of a time and H !, called the Hubble time, represents a
first order estimate of the age of the Universe when H is measured. The Hubble length cH~* is
called the horizon scale of the Universe (see section 1.2) because it provides an estimate of the
distance that light (idealised carrier of information) can travel while the Universe is expanding.
Later we will use two other quantities called “horizons”: the particle horizon (see section
1.2) is the distance that light could have travelled since the beginning of the Universe at a = 0,
while the event horizon (see Chapter 3) is the limiting distance that light would be able
to travel in the future. From the cosmological point of view the Hubble horizon is the most
important and therefore we will often refer to it just as “the horizon”.

The expansion of the Universe is usually measured with the redshift z, defined as the change
of wavelength dA/X of a photon that moves between the source and the observer, given by

>‘obs

l+z= (1.5)

ernit,

where Aops and Aemir are the observed and the emitted wavelength. Because A = a/k. where
k is the comoving wave number used in Fourier expansion, the redshift z is directly related to
scale factor a, by

a(to)
a(t1)
where the observer is supposed to be at the present epoch £y, and #; is the time of emission.

142z=

(1.6)

The observed redshift of the objects allows us to get a measure of the present value of the
Hubble parameter, affected by the uncertainty on the measure of distance of the objects. This
measure actually gives

he

-1 -1
= M = —
Hy = 100h km s pc 2000

Mpc”l,

where h specifies the actual observational value.

1.1.2 The metric

Starting with this point we will use for all the thesis the geometrical units (G = ¢ = 1), but
sometimes, when we think it is useful, we will write the constants explicitly.

In general a homogeneous and isotropic Universe is described by the Friedmann-Robertson-
Walker (FRW) metric given by

dr?

2 _ 4.2 2
ds? = —dt* +a* (t) | T—53

+r? (d6? + sin® 0d¢?) | . (1.7)
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The constant K is a curvature parameter with K = 0, -1, +1, corresponding to a flat, open
or closed Universe; a(t) is the scale factor of the Universe, where ¢ is the cosmic time, and
(r.0.¢) are the comoving spatial coordinates.

The definition of the conformal time given by (1.2) allows us to transform the FRW metric
into a different form that will be useful in the following chapter when we deal with metric
perturbations. Using conformal time the scale factor term a? multiplies the entire line element
and all the time dependence is isolated into a unique multiplicative factor.

ds* = a’(7) [—dr? + dx® + f(x) (d6? + sin® dg?)] (1.8)
where
sin™lr (K = 1)
' dr
= — = K =0 1.9
x / V1-—Kr? ' ( ) ( )
sinh™r (K = —1)
and
sin~tr (K = 1)
fx)==¢r (K = 0) (1.10)

sinh™'r (K

Il
I
=

An alternative way to write the metric (1.7) is to transform the space coordinate instead
of time coordinate. Setting

"= 1+I1(L'u2/4 (1.11)
one gets the isotropic form of the FRW metric, given by
ds® = —dt? + ———9-2-@-—2 [du® + u® (d6? + sin® 8dg?)] . (1.12)
(1+ Ku?/4)

It this way the spatial 3-metric component inside the square brackets has the same form as the
flat metric, and the curvature component appears just outside the brackets.

1.1.3 Friedmann and continuity equations

The general relation between acceleration of the Universe and gravitational sources is described

by the Einstein equations
1

R, — ig#,,R = ~87T,, + Ag (1.13)
where on the left hand side there are the geometrical terms R, g and R: the Ricci tensor,
the metric tensor and the Ricci scalar. On the right hand side there are the source terms,
T 1s the energy momentum tensor and A is the cosmological constant (this term could also



18 CHAPTER 1. COSMOLOGY OF THE EARLY UNIVERSE
be placed in the left hand side). We are treating the medium as a perfect fluid for which the
energy momentum tensor is given by

Ty = —pguv + (0 + €) upuy, (1.14)

where e is the energy density and p is the pressure.

Using the metric tensor of the FRW metric (1.7) one obtains the fundamental equations
that describe the evolution of the Universe:

A K

H? = —S—T—re + 5= Friedmann equation (1.15)
3 3 a?

e+ 3H{e+p)=0 Continuity equation (1.16)

The Friedmann equation (1.15) is obtained from the time component of Einstein equation,
while the continuity equation (1.16) is derived from the radial component (due to the spherical
symmetry the other spatial components give the same result as the radial one). The continuity
equation is equivalent to the emergy conservation law for adiabatic expansion, d&f = —pdV
where E = eV is the energy in a comoving volume V o a®. Therefore the term 3He is the
change of energy density due to the expanding volume and 3Hp is the energy change due to
the hydrodynamical pressure acting on the expansion.

These two equations can be combined into a third one where the acceleration of the expan-
sion @ appears directly.

47 @G
@ _ 7; (e+ 3p) Acceleration equation (1.17)
a

From the Friedmann equation it is possible to derive a particular value of the density p
(e = ch), known as the critical density, for which the Universe is spatially flat in the absence

of a cosmological constant,
3H?

and at the present time ¢ we have
pe (to) = 1.8882 - 1072 g em™ =2.77A7' - 101" Mp/ (B! Mpc)g.

This is very useful because we can discriminate between an open and closed Universe with the

density parameter
0

Pc

Q

fl

(1.19)

1.1.4 The equation of state

In general the early Universe is assumed to be very well described by a perfect fluid, except at
inflation or possible phase transitions, which are thought to be brief. For the cases of major
interest it is possible to use a simple equation of state for each component of the fluid such as

p = e (1.20)
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where v is a constant determined by the nature of the fluid: v = 0 for non relativistic particles
(matter domination era), v = 1/3 for relativistic particles (radiation domination era), v = —1
for vacuum energy (cosmological constant dominated era). ! The « parameter is related to the

, (&
2= (_52;) . (1.21)

8

sound speed for an adiabatic fluid

where s denotes the specific entropy.

The cosmological constant term present in the Einstein equations can be interpreted either
as a geometrical term or a source term. This second option, chosen to write expression (1.13),
can be very useful and leads to a simple expression for an effective equation of state taking into
account of both the normal matter and the cosmological term that can be included inside the
expression for the energy momentum tensor

Ty = Tp + S5 0m = —Pow + (B + pe?) uyu,y (1.22)
with the effective pressure  and effective energy j are related to the normal quantities by:
A A A
p=p - —, e =¢e+ —, 1.23
p=p-g- E=et o, (1.23)
that combined together with (1.20) gives
R . 149y A A
po= (e — —-———’)—> . (1.24)
v 87
This expressions is equivalent to (1.20) when e = 0 and v = —1.

1.1.5 The dynamics of the Friedmann model

The solution of the Friedmann equation and continuity equation with A = 0 is the so called
Friedmann Universe model. The substitution of the equation of state in the Friedmann and
continuity equation gives a general solution for the evolution of the energy density given by

=3(1+7)
e = eg <i> . (1.25)

agp
Combining the Friedmann equation with the equation of state and the expression for critical
density € measured at the present time ¢y, we obtain
2 14+3y
H? = H? (%) [QO (%) +(1 —QO)} . (1.26)
If we substitute the evolution of density p in the definition of Q given by (1.19) and then
insert in (1.26) we have an expression for the evolution of the Hubble parameter as function of
redshift,
H?(2) = H2(1+ 2)? [Qo (14237 4 (- Qo)] (1.27)

'Note that this usage of v is to be distinguished from that appearing in the polytropic law p = kp? =
(v — 1)pe, with p being the rest mass density and ¢ being the specific internal energy per unit mass. For a
radiation fluid this gives p = (y — 1)e
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Finally, substituting this into (1.19) we get an important equation

Qo (1+ 2,)1-1»37
(1-Qg) + Qo (14211377

Q(z) = (1.28)
which shows the property of the Universe to conserve the sign of spatial curvature. Infact if {)
is measured to be greater or smaller than one at a particular time it would be like that at every
time. In the special case of Q@ = 1 at a particular time it is just constant. In other words if
we measure our Universe to be spatially open, closed or flat at the present time, it would have
this property during all its past and future evolution.

The special case of = 1 is particularly important because we think that the Universe
roughly satisfies this and it is the one which we will use to describe the early Universe. The
explicit solution is easily written.

£\ 2/3(147)
a = ap <—> (1.29)
to
2 to 3(147)/2
- —H2 - H (1 Y 1.
H =gy = oy =+ (1.30)
2
to) 1
e =¢ey|— = 1.31
°<t 6(1+ )2 nt2 (1-31)

In the more general case of A not equal to zero it is also possible to get an explicit analytical
solution that is described in Appendix 1.

1.2 Scales of the Universe

1.2.1 Hubble Horizon

The fundamental time scale in an expanding Universe is given by the reciprocal of the Hubble
parameter, H~1. This time scale corresponds to a length scale which is called Hubble horizon
scale defined as 1

Rp = T (1.32)
This gives an estimate of the size of the region over which physical processes operate coherently
and it is also the length-scale at which general relativistic effects become important. An
important related quantity is the Horizon Mass, defined as the mass inside the Hubble
horizon.

4
My = -b;ﬂ'eR‘}I (1.33)

In the Friedmann model, described in the previous section, where the evolution of the scale
factor is just a power law of time, the horizon scale is given by

3(1
Ry = —L;l)t, (1.34)

which grows linearly with time. The horizon is therefore expanding faster than physical dis-
tances (d o t!/?). This has an important cosmological consequence, because regions that at an
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early time are separated by a distance greater than the horizon scale, would later be separated
by a distance smaller than the horizon. The horizon crossing moment, corresponding to the
time when the size of a defined region Ry = a(t)rg is equal to Ry, is in first approximation
the moment when all of the matter in the perturbation has come into causal contact. In the
Friedmann model, using therexplicit expression for the energy density, the expression for the

horizon mass is given by

My = §(-1—Z—’Y)t, (1.35)

From this expression we can see that the horizon scale can be related to the corresponding
mass by
Ry =2Mpyg v (1.36)

the same expression that we find for the event horizon when we discuss black holes in chapter
3. We will see better there that this is not a coincidence, because the physical nature of these
two horizons is similar.

1.2.2 Particle Horizon

The coordinate distance travelled by a freely moving photon emitted at time ¢ and observed at

ip .
d(t) :/ di (1.37)
Ji

2

the present time is

In the limit of the initial time of the Universe t — 0, using the idealisation of a(0) = 0 the
integral remains convergent. Replacing the present time with an arbitrary epoch we get the
definition of the particle horizon scale

* dt
Rhor = CLQ/ — . (1.38)
0o a
In the Friedmann model with ) = 1 the integral is easily solved by
1 2
Ruge = 2070, Ry . (1.39)

5+3y 543y

1.3 Epochs of the Universe

The contents of the Universe in the early epochs consisted of very hot gas. In particular our
main objective is to describe a radiative fluid corresponding to a phase of the Universe when the
temperature 7' of the fluid was higher than the rest mass of particles. To enter more into detail
we describe synthetically below the gas thermodynamics during the Hot Big Bang (discussed
more extensively in [8]).

1.3.1 Gas dynamics in flat space time

In statistical thermodynamics, without considering particle spin, the properties of an ideal gas
are specified completely by the distribution function f(t,r,p), which gives the number dN of




o
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particles with position r and momentum p. We assume that the processes of interaction between
particles are homogeneous, with a sufficiently fast transifion rate I. The interaction between
particles is considered as a thermalization process that produces and maintains thermodynamic
equilibrium among the interacting particles with some temperature 7'(t). Therefore we can treat
the system of particles as an ideal Bose or Fermi gas, characterised by a distribution function

gi 1
2m)7 expl(Ep — ) [T £ 1

fp) = ( (1.40)
where g; is the spin degeneracy factor of the species of particles, p; is the chemical potential,
E(p) = (p® + m?)'/? is the total energy and T' the temperature. The plus sign corresponds to
fermions and the minus one to bosons.

At any instant of time the Universe contains a black body distribution of photons with
some characteristic temperature 75 (t). If a particular species of particles is coupled with the
photons with a high enough rate of interaction (I' > H), then these particles will have the
same temperature as the photons. Because this is the case in the early Universe, the photon
temperature is considered as the temperature of the Universe. With the expansion of the
Universe, the temperature changes on the Hubble time scale H -1,

The energy density, pressure and number density of particles can be calculated using the
distribution function, where we suppress the time dependence and the subscript ¢ for simplicity.

n = /‘f(p)dp (1.41)

e = / f(p)E(p)dp (1.42)
[y P

p= [ 10) g (1.43)

For a relativistic luid E ~ |p|, while for non relativistic matter £ ~ m and in spherical
symmetry dp = 4np’dp.

1.3.2 Radiation dominated era

In the first period of the Universe the fluid particles are relativistic and their behaviour is
therefore described as pure radiation. The photon distribution has the black body form and
the energy density is directly related to temperature by

™
ey = 359 . (1.44)

Here the Boltzmann constant has been set equal to 1 and g, = 2 is the number of spin states
of the photon. This gives a photon number density equal to

(¢(3) T3

v =2 O (1.45)

where ¢ is the zeta function ({(3) = 1.202).
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In the radiation dominated era, photons and relativistic particles are in thermal equilibrium
with chemical potential equal to zero. This means that the distribution of these particles is
analogous to photons with a blackbody distribution, for both fermions and bosons. The energy
and number density of each particular species of particles are given by expressions (1.44) and
(1.45), with coefficient 3/4 for bosons and 7/8 for fermions. These expressions apply to any
particular species of particles until it becomes non relativistic, corresponding to temperature
T ~ m. In the radiation dominated era the energy density of the Universe is given by that of
relativistic particles .

er = — g (T)T*. 1.4
er 309,() ; (1.46)

where

9:(T) = 3 o + -87— > g (1.47)

bosons fermions

The number of particle species g;(T") depends on temperature because at different tem-
peratures there are different species in thermal equilibrium. In general g;(T') is an increasing
function of temperature, where the exact profile of the function depends on the model of ele-
~mentary particles is being considered (see for example Figure 2.1 of [6]).

A perfect fluid in thermodynamical equilibrium is also described by the second law of
- thermodynamics

4
de = Tds — p%—; (1.48)

where here V' o @ is the comoving volume, and s is the entropy density. Using (1.46) this
gives
. e+p 27 . .
S = I = e 0« T3 ~ O« 77}7 . (149)
T 45

This is a very important relation because it allows us to understand the variation of T with

respect the scale factor. In fact, if the Universe is adiabatic (no heat transfer) and isotropic
the entropy in a comoving volume S = sa® is constant, and therefore 7' o ' 13 0-1. The

variation of g, with temperature is negligible during the radiation dominated era, therefore

1
T x ~. (1.50)
a
This holds until the decoupling of neutrinos from the photons, corresponding to a temperature

of T' ~ 1 Mev.
In the Friedmann model, the radiation dominated era is characterised by (1.20) with v =

1/3 which gives
er < ™t and a o t1/?. (1.51)

1.3.3 The matter dominated era and the equivalence

At the present time we see that the Universe is dominated by non relativistic matter. In the
Friedmann model this corresponds to equation of state (1.20) with v = 0, because when the
particles becomes non relativistic the pressure given by their peculiar velocities is negligible




24 CHAPTER 1. COSMOLOGY OF THE EARLY UNIVERSE

with respect to their rest mass energy. Opposite to radiation, this kind of matter is sometimes

called dust. Putting v = 0 in the Friedmann model one gets

ey 0”3 and o o 23, (1.52)

At a time ¢ = o, in the past, the energy density of radiation and dust should have been

comparable,
erlteg) = ecQr(1+ 2eg)* = enrlteq) = ecQns (14 z¢e)® (1.53)
This transition era is called equivalence and the corresponding redshift and temperature are
14 2e = =% = 24000 Qoh?, (1.54)
Qr
Teg = To(1 + 2e) = 65500Qh° K . (1.55)

During this period the evolution of the scale factor is more complicated because we have to
include both components in the Friedmann equation,

(RN G N

This equation can be solved exactly in the conformal time 7 but there is not an explicit
analytical expression in cosmic time ¢,

a(r) _ (22 — 2) (T_> 1 (3-2_\/5) (__T_)Q'/ (1.57)

Oeg Teg Teq

2v/2 -2 3
- / . L5
Te Oeg 8Teeq (1.58)

1.3.4 The cosmological constant

Observations in recent years have indicated that matter in the Universe has less than the
critical density and that at the present time the Universe is accelerating. A way to explain
this, conserving a spatially flat Universe (K = 0) is to consider a non zero cosmological
constant in the Friedmann equation (1.15),

8 A
H?>="—"c+=. .
3e+3 (1.59)

When the Universe is dominated by the cosmological constant the solution gives an exponential

a(t) o exp <\/§t> . (1.60)

In this case the Hubble horizon scale is constant, while the scale of the particle horizon grows

expansion rate

from zero to reach asymptotically that of the Hubble horizon.

-1
Ry = ( %) (1.61)
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Rhor = {1 — exp @f} Ry (1.62)

The observations of distant supernovae are thought to give an appropriate measurement of
the expansion of the Universe. The result of these observations gives a value of the cosmological
constant roughly comparable with the energy density of the present Universe (Qp0 = 0.3 and
Qa0 = 0.7), which means that the Universe has started to accelerate recently. This introduces
a fine tuning problem that is being intensively studied. One possibility for avoiding this problem
is to have A not being constant but evolving with time, giving rise to models known by the
name of guintessence [9, 10].

1.4 The cosmic microwave background

The cosmic microwave background (CMB) was first detected in 1965. It is nearly a
uniform signal at microwave frequencies, coming from every direction in the Universe with
a high degree of isotropy. This signal is therefore not coming from discrete sources but it
is understood as having been produced from the last moment of scattering of photons with
matter. The CMB is characterised by a black body spectrum with an observed temperature
of T' ~ 2.7K at the present time. The very high degree of isotropy strongly supports having
a homogeneous theory of the Universe on sufficiently large scales. Recently satellites such as
COBE have measured small anisotropies (AT /T =~ —10°) on angular scales larger than 1 deg,
which corresponds to scales larger then the horizon scale at the time of the production of the
CMB. Understanding the initial spectrum of cosmological perturbations is an important field
of current research, which we discuss in the next chapter.

1.5 Thermal history of the Universe

In this last section we give a qualitative description of the history of the Universe, pointing out
what modern cosmology speculates today for the very early moments before nucleosynthesis.

Nucleosynthesis is the era when the temperature of the Universe, of the order of 1 MeV,
about 1 seconds after the big bang, allowed the formation of atomic nuclei. The predictions of
the nucleosynthesis model are in very good agreement with observations: mainly Hydrogen at
~ 75% and Helium at ~ 25%, while the presence of havier nuclei is very small [11, 12]. Nucle-
osynthesis is one of the great successes of hot big-bang cosmology and represents a threshold
between what is considered standard cosmology and speculative theory with indirect observa-
tional evidence.

The high degree of isotropy measured in the Universe with the CMB suggests that at a
certain primordial time the whole Universe should have been inside the Hubble Horizon, in
thermal equilibrium. At a certain point a particular mechanism, called inflation, connected
with the existence of scalar fields should have produced an exponential expansion with an
enormous acceleration. Following the theory of inflation (see next chapter) the exponential
acceleration is subsequently followed by an intermediate state where the scalar field decays
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producing a reheating of the whole Universe that is left with a temperature where relativistic
particles are dominant (radiation dominated epoch). The exponential acceleration makes the
dimensions of the Universe much larger that the Hubble scale but conserves the high level of
isotropy. Another important aspect of inflation is the possibility to have quantum oscillations of
the scalar filed at the end of this process, with the effect of creating cosmological perturbations.
The theory for the evolution of cosmological perturbations represents the basis for the origin
of structures on different scales and it will be reviewed in the next chapter.

In the following we give just a synthetic overview of the main epochs of the Universe,
starting from the very beginning at the Planck scale (T ~ 10 GeV):

e Tp > T > 102 Gev
This is the epoch when inflation (a(t) « exp(t)) is supposed to happen, leaving the
Universe with a value of the reheating temperature between 10'% and 10'° GeV, depending
on the model. The Universe then enters into the “hot big bang” evolution, dominated by
relativistic particles, with the scale factor a(t) o t1/2.

o 10°Gev> T > 10eV
The temperature of 100 GeV corresponds to the Electroweak phase transition and the
physics of particles is now described by the Standard Model or some extension of it.
This is the first important phase transition at which the electromagnetic and weak forces
separate and corresponds to the last possible time at which it is possible to generate
baryon asymmetry (baryogenesis).

Later, at T ~ 100 MeV there is a another important phase transition, corresponding to
the QCD scale when free quarks became bound to form hadrons.

For some time all the light particles (v, v, e, € n and p) are in thermal equilibrium, but
when temperature T ~ 1 MeV there is the decoupling of neutrinos and e€ annihilation.

When T ~ 0.1 MeV there is nucleosynthesis with the formations of the nuclei of Hydrogen
and Helium.

Finally at 7' ~ 10 eV the non relativistic matter reaches a density comparable to the
relativistic matter and the radiation epoch ends.

o T < 10eV
With the onset of matter domination the rate of the expansion changes to a(t) o< t2/3.
When T ~ 0.1 eV recombination occurs, where the majority of the electrons bind with
nuclei to form atoms. Initially the photons remain coupled to the ionised electrons that
remain free but soon afterwards the radiation decouples completely from the matter and
the photons are free to propagate. This is what we see today as the CMB.

After decoupling the sequence of thermal processes finishes and the rest of the history
of the Universe is characterised by gravitational processes of structure formation. '



Chapter 2

Cosmological perturbation theory

The aim of this chapter is to review some elements of cosmological perturbation theory that
are fundamental for PBH formation. We have tried to be fairly synthetic but at the same time
to give a homogeneous presentation of the main aspects.

Inflation is discussed in the first and second section, explaining which problems arise in
‘the “hot big bang model” presented in the previous chapter, and summarising the inflation
mechanism, that gives a mechanism to produce cosmological perturbations. In the third section
we describe the statistical properties of cosmological perturbations and their spectrum. Finally
in the fourth section we deal with the linear theory of cosmological perturbation evolution.

The main references for this chapter are [6, 7], other references are specified in the text.

2.1 The problems of the hot big bang model

One problem of the standard theory, known as the flatness problem, can be seen looking at
the Friedmann equation (1.15) written explicitly for the density parameter £, that is

k
Q-1=—5—. 2.1
aQ HQ ( )
From observations we know that at the present time 2 ~ 1 which implies, remembering that
|Q — 1jp o t*/3 and [ — 1|z o ¢ during radiation domination, that in the past  should have
been much closer to 1 (for instance at the era of nucleosynthesis we have [ — 1] < 10716).
This gives a fine tuning problem because it is very unlike that initial conditions were tuned to

be so close to a flat universe.

In the previous chapter we have discussed the existence of the CMB signal, characterised
by a very high degree of isotropy on scales much larger than the horizon at the time of the last
scattering. Also in this case there is no explanation for why regions of the universe that cannot
have interacted before decoupling have almost the same temperature, and the homogeneity
seems to be somehow part of the initial conditions. This is known as the horizon problem.
Another important aspect of the CMB signal is the small irregularities measured for example
by the COBE satellite. These perturbations are intrinsic to the last scattering surface and are

27
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on too large scales with respect the Hubble length at that time to have been created in the
early universe before decoupling. Therefore these perturbations must have been introduced at
the very beginning of the early universe, before the standard hot big bang history.

2.2 Inflation

2.2.1 The idea of inflation

The idea of inflation comes directly from the problems described in the previous section: one
needs a mechanism such that the horizon length is decreasing for a certain period of time and
the universe accelerates, avoiding the fine tuning problem. In this way regions that initially
were inside the horizon would be outside at the end of this process. Looking at the Friedmann,
continuity and acceleration equations one clearly sees that this corresponds to three equivalent
conditions:

H~1
INFLATION = —( ) (2.2)

e+3p <0

Because energy density is considered always positive the third condition of (2.2) implies that
during inflation pressure is negative.

The flatness problem is solved because encugh inflation would move any value of Q very
close to one so that it would be close to one until the present moment. The horizon problem
is solved by the second expression of (2.2), and the geometrical behaviour of the Hubble scale
is explained in Figure 2.1.

At the end of this section we will explain how inflation is connected with the origin of
cosmological perturbations.

2.2.2 Scalar fields

Scalar fields are used in particle physics to describe particles with spin equal to zero and they
are also associated with symmetry breaking between fundamental forces (although these fields
have not been observed yet). It is therefore plausible to assume existence of scalar fields in the
very early universe. The Lagrangian description of a homogeneous scalar field ¢ is given by

e = 2 + V(9) 23)

ps = 58 ~ V(9) (24)

where the first term can be interpreted as kinetic energy and the second as potential energy.
The form of the potential V(¢) of the scalar field determines in the evolutionary equation the
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Figure 2.1: Schematic plot of the inflationary solutions to the horizon problem, where comoving units
have been used. The figure has been taken from [6] :

behaviour of inflation. In the present context we do not want to discuss the various possible
forms of the potential, and therefore we treat V (¢) as a free function.

2.2.3 Equation of motion and solutions

Inflation is driven by the behaviour of the scalar field called the inflaton and its evolution
is determined from the substitution of expressions (2.3) and (2.4) into the Friedmann and
continuity equations, obtaining

2 _ B 1
H—-B[W@+2ﬁJ (25)
and av(

¢+ 3H$ = —~—d(7¢). (2.6)

The expressions appearing in (2.2) imply that the condition for inflation is satisfied if #? <
V(¢) and this is provided when the potential is flat enough. This allows the equations to be
solved in the slow roll approximation, where one term can be neglected in both (2.3) and
(2.4). This leads to

B = V), (27)

3H¢ ~ ~V'(¢), (2.8)
that in literature is often expressed by the slow-roll parameters
1 V! v

2
0= () <1 b= s L < 2.9)
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The amount of inflation is usually expressed by the number of e-foldings N

0 (Fer te e 17
N = hl( (I( .rd) > — Hdt ~ — / Ld(z), (2.10)
J 1

a(tinitial) &

o

where in the last passage the slow roll approximation has been used.

2.2.4 Reheating: the end of inflation

During inflation all the content of the universe is enormously expanded and red shifted to very
low density. To link the inflation expansion to the standard hot big bang one, suppose that
the scalar field that has driven inflation decays into relativistic particles, with a conversion
of the inflaton energy density into standard matter. This process takes places when the slow
roll approximation breaks down and gives rise to oscillations of the inflaton on the bottom of
the potential. The damping of these oscillations, that phenomenologically can be described as
a harmonic oscillator, produces the decay of the field into conventional matter at very high
temperature. Details on the topic of reheating can be found in (6,13, 14] .

2.2.5 Perturbation production

The most important property of inflation is that it produces a spectrum of density perturbations
and gravitational waves. The first can explain the formation of structures in the universe while
the second plays an important role in the interpretation of the microwave anisotropies measured
in the CMB signal ([6] and references within). For the purpose of this work we give attention
just to the density perturbations.

The density perturbations derive from the quantum perturbations of the inflation field and
to understand the mechanism we have to remember that perturbations on scales smaller than
the Hubble length are causally connected and therefore interact by gravitational processes. On
the other hand perturbation on scales larger than the Hubble length are frozen (the pressure
gradients are negligible as we will see later in this chapter) and their evolution is determined
just by the cosmological expansion. In the hot big bang model one has that initial super
horizon scale perturbations grow smoothly until they cross the horizon and then they start
to interact and eventually give raise to bound structures. During inflation one has just the
opposite because initially perturbations of the scalar field are on sub horizon scales and can
interact to solve the horizon problem. Later with the inflation expansion, that decreases the
Hubble scale and maintains constant the comoving scales of perturbations, the perturbations
cross outside the horizon and the causal physical interactions are stopped, leaving a spectrum
of perturbations frozen into the Universe. These perturbations are created on very wide range
of scales and the spectrum derived from the particular model of inflation specifies the scale
distribution.

The nature of the initial perturbations of the scalar field (¢ = ¢(t) + d¢(x,1)) is explained
by the Uncertainty Principle of quantum theory which ensures that one cannot avoid some
irregularities. The scale of these irregularities depends on the energy scale at which inflation
takes place. We will not enter into any details of the calculation of the vacuum fluctuation
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of the scalar field, that can be found in [6], giving just the final result that relates the field
perturbations to metric or curvature perturbations R.

R = — {H 55—.?} (2.11)
¢7 t=tx

The curvature perturbation R will be systematically defined later in section (2.4), where ¢,
is the initial time after inflation when the cosmological perturbations are introduced in the
standard hot big bang universe.

2.3 Gaussian perturbations

For the aim of this work we are mainly interested to consider cosmological perturbations during
the radiation dominated era, where the content of the universe is very well described as a
one component perfect fluid. We need therefore to take into account the simplest types of
cosmological perturbation, referred in literature as Gaussian and adiabatic perturbations.
These are characterised by the assumption that the inflaton field has only one component
which gives rise to a spectrum of perturbation with a spectral index close to 1 and to the
important property that the spatial curvature is time independent on scales well outside the
horizon. Another standard assumption is that there are no other important vacuum fluctuations
of fields different from the inflaton that have significant effect after inflation. The property of
R to be time independent allows the evolution of the density perturbations to be connected
to the initial time ¢, of perturbation production after inflation, when the right hand term of
expression (2.11) is calculated.

2.3.1 Fourier description of Gaussian perturbations

In the analysis of vacuum fluctuations it is useful to describe them with Fourier expansion
components in a comoving box characterised by a comoving length L

Sp(r,t) = > deu(t)e™™, (2.12)
k

where r is the comoving distance and the physical wavenumber is k/a (Ak = 27/L). In this
language the Gaussian property means that to a first approximation, the Fourier components
of the vacuum fluctuations are uncorrelated. To understand better this aspect we have to
consider the quantum description of the scalar field perturbations component ¢y, where these
are composed of a real and imaginary part, each described as a harmonic oscillator, with a
Gaussian probability distribution and no relation between them (Gaussian property). The
variances of the probability distributions can be calculated from the inflation model and are
independent of the direction k (stochastic property).

Now we apply the Fourier formalism to a generic perturbation g(r,t)

g(r,t) = ng(t)eik'r, (2.13)
k
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where the single mode gy is related to the primordial curvature perturbation using the transfer
function Ty(k, 1) as
gk (t) = Ty(k,t) Rk, (2.14)

and the curvature perturbation is fixed by the model of inflation used with expression (2.11).

The probability of finding the real part Ry of a generic perturbation mode gy is

1 RZ
P(Rk) - —\/—ﬁ exp —2—0*2— (215)
k k

where oy, is the dispersion of R, and the normalisation makes the total probability equal
to 1 (The same relation holds for the imaginary part Ii). A more convenient quantity is the
spectrum P, of generic perturbations gy, defined as

3
Py(k) = (%) 4k (| guc|?) - (2.16)

In the limit of large box size L, the Fourier series transforms into Fourier integrals and the
fundamental transformation rule to be used is

2\ ®
(f> do= /d?’k, (2.17)
k
that gives
Ly ; ! 2.18

Using the volume element d°k = 4nk?dk we can calculate the variance of the whole per-
turbation spectrum

2 2 > dk
oa(r) = (g°(r)) = ; Py(k) =, (2.19)
or alternatively
27
Py = I¥{lad?) = T5Py(h) (2.20)
2 1 o0 2
o2 (r) = 5;/0 P, (k)k%dk . (2.21)
The generic perturbation g(r) written as a Fourier series in (2.13) becomes a Fourier integral
as )
- ik-r 33
g(r) = @n)372 /g(k)e d’k (2.22)
or .
— —ik-r 43
gk) = CSEE /g(k)e d’r (2.23)

and the probability distribution of g(r) is Gaussian

_ ! g
P(g) = N exp (——27§> . (2.24)
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2.3.2 The window function

The integrals of (2.22) and (2.23) are not converging in the limit of large k& because of the large
number of structures on small scales. To get rid of this, one can use a smooth function called
the window function W considering a smoothed new quantity g(R,r) instead of g(r)

e(R,1) = %7/W’(Ir'——r{/R)g(r’)dgr’. (2.25)

The physical property of the window function W (y) is to weight the interaction of the nearby
regions as a filter, reducing it rapidly when y > 1 and its volume is

V = /WT(T/R>CZ3T = 47TR3/W(y)y2dy. ' (2.26)

The exact choice of the window function is arbitrary, just as matter of convenience. Two simple
choices frequently used are the top hat defined by W = 1fory <1and W = 0 for y > 1, and
Goussian defined by W(y) = exp(—~y?/2).

The convolution theorem states that

g(R.k) = W(kR)g(k) (2.

19
W]
=3

-

where W(kR) is the Fourier transform of W (r/R)/V

W (kR) = [ W(r/R)e™rd’r
T [W(r/R)d3r

(2.28)

and g(k) is given by (2.23). For the top hat and Gaussian expressions for W, one can perform
the integral of (2.28) analytically giving

sin(kR)  cos(kR)
/] 5 = - 2
W(kR) = 3 [ GRE T hE? (2.29)
for the top hat, and
kQRQ
W(kR) = exp (— 5 ) (2.30)

for the Gaussian. The filtering with the window function removes structures on scales < R
without affecting structure on much bigger scales. Applying the convolution theorem to the
variance of g, we have

&0 : dk
@R =) = [ wHERPm Y (2.31)
0
and if Py(k) is increasing with k, the function W2P, has a maximum at kg ~ 1 /R, giving
roughly
o5 (R) ~ P(kg). (2.32)

Usually R is taken to be time independent, comoving with the expansion of the universe.
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3.3 Spectrum of primordial curvature perturbation

The spectrum P, is related to the primordial spectrum of curvature perturbations P, with
the transfer function defined in (2.14), by

Py(t) = Ty(t)Pr. (2.33)

The possibility to calculate the primordial spectrum of curvature perturbations is important
for all of the subsequent comparisons of the model with observations. Applying the slow roll
approximation (see (2.11)) one has

Pr = {(%) 7%,41«)} ~ (2.34)

where the primordial time t, corresponds a few Hubble times after the time of horizon exit
given by k = aH. An important result of free field vacuum fluctuations (see [6] for derivation),
using a massless scalar field, is that after a few Hubble times after horizon exit the vacuum
fluctuations settle down to a constant value and their spectrum is simply given by

Pylk) = (-ff-) - (2.35)

27

Inserting this expression in (2.33) one gets the spectrum of the primordial curvature perturba-

o= (5 @)

where the term (H/ d)) can be calculated at horizon exit & = aH instead of at t*, because in

tions

the slow roll approximation the variation of the scaler field with time given by ¢ is negligible
during a few horizon time scales.

This last expression applied to most of the inflation models gives a simple power law for
the primordial perturbation spectrum of curvature

Pr(k) oc K", (2.37)

where the constant 7 is the spectral index, and the value n = 1 gives the scale invariant
Harrison-Zel'dovich spectrum [15, 16]. We now understand that having observational con-
straints on the value of n permits us to get observational constraints on inflation.

For future application of the power spectrum one should notice that (2.37) implies that the
spectrum of the density contrast Ps(k), with § = de/ep, becomes

Ps(k) o k™ (2.38)

on scales well outside the horizon.
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2.4 Linear theory of cosmological perturbations

In the linear theory of cosmological perturbations one intends to study analytically the evolution
of small perturbations away from homogeneity and isotropy. When the scales of a perturbation
is well within the horizon it is possible in good approximation to use Newtonian theory, while
when the scale is outside one need to use general relativity. We give attention mainly to the
relativistic approach that is converging to the Newtonian treatment if the perturbation is within

the horizon.

The results presented in this thesis have been obtained in spherical symmetry with a perfect
fluid, and therefore. we have neglected in the following parts of this chapter the discussion of
possible non spherical effects.

The linear approximation evolution is described by a set of coupled linear partial differential
equations because the derivatives are with respect space and time. To simplify these features
it is useful to use the Fourier expansion of the equations, because the background quantities
are just functions of time. We then obtain a set of coupled ordinary differential equations,
containing only time derivatives, that the Fourier coefficients of the perturbation have to satisfy
for each k. This simplification is possible because, as we have just said previously, there is no
coupling between different modes for Gaussian perturbations.

An important problem arising in general relativity is how to choose a coordinate system
and if there is a preferred one. In the case of an unperturbed universe, the choice is natural
because we have a set of comoving fundamental observers perfectly synchronised, that do not
observe any velocity field at their own position. It is then intuitive to consider an orthogonal
slicing of the space time along the world lines of each comoving observer, because on every slice

the universe is homogeneous.

Introducing perturbations, it is no longer possible to a have a preferred coordinate system
because the properties deriving from homogeneity and isotropy are lost. One is therefore free
to chose any possible coordinate system, with the only requirement being that it converges
to the standard one in the limit of vanishing perturbations. A choice of coordinate with this
constraint is called a Gauge choice, but now there is not a unique preferred possibility. For
the purpose of describing cosmological perturbations a useful choice is the comoving slicing,
orthogonal to the worldlines of comoving observers, where the space and time coordinates are
regarded as those of the unperturbed slicing, because taking into account their perturbations is
a second order effect. This slicing is also useful for the definition of perturbations of curvature
R given in the following.

2.4.1 Metric Perturbations

In (1.7) we have defined the FRW metric of the unperturbed universe in different gauges. Taking
as background metric the spatially flat one with K = 0, we perturb it using the conformal time
form (1.2) in the spherically symmetric case.

ds® = a®(r) [~(1+ 24)dr? + (1 + 2D)6;jdmida;] (2.39)
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with A, D « 1. The term A is the lapse function which gives the transformation between
the conformal time and the proper time.

it pr
-C{—IT—I:\/1+2A:1+A. (2.40)

The meaning of D is directly linked to curvature and we can see this using the definition of the
Ricci Tensor to calculate the corresponding three curvature

2
R® = 4D, (2.41)

Using this expression we can now define properly the curvature perturbation ® = D as the
comoving perturbation curvature on the comoving slice, which is equivalent to saying that

]{?2
R®) = 4R, (2.42)

We have just mentioned previously that this quantity is time independent at first order when
the perturbation is outside the horizon. In the following we will understand clearly how to
derive this statement when we see how R relates to the evolution equations.

2.4.2 Evolution equations

The hydrodynamical variables appearing in the energy momentum tensor for a perfect fluid
are just energy density and pressure. We need to specify the perturbation of the velocity field
of our density perturbations in relation to the Hubble parameter appearing in the Friedmann
and acceleration equations. Therefore we will define a variable local Hubble parameter H(r,t),

which is equivalent to giving a peculiar velocity to the comoving elements of the fluid.

e(r,t) = ep(t) + de(r, 1) (2.43)
p(rt) = po(t) + dp(r, ) (2.44)
H(r,t) = Hy(t) +6H(r,t) (2.45)

To begin, consider the general relativistic form of the continuity and acceleration equations:

de

i, = 3H(e + p), (2.46)
dH 4 1 V2

= g2 _ it 2.
@ 3 (e+3p) + 3(e+p) (2.47)

where the last term of (1.15) has been obtained using the Euler equation. These equations
are written with respect the proper time ,;, where dty; is the proper time increment along a
comoving worldline. We need now to recast the derivatives of these equations with respect the
time coordinate ¢ of the comoving slicing. Using (see [7])

=1- , (2.48)
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one gets the final form of the differential equations to solve,

bé = =3(e+p)dH — 3Hde (2.49)
. dar 1 Vzép
0H = —2H6H — —fe — = 2.5
3°°73 (e +p) (2.50)

where the overdot denotes 9/0t at fixed r. As we shall see in the next section these expressions
can be applied also in the limit of Newtonian theory to calculate the density evolution of
perturbations inside the horizon.

In Newtonian gravity, the gravitational effects are described by the Poisson equation®
V20, = 4re (2.51)

where ®g; is the gravitational potential that in a spherically symmetric unperturbed universe
is equal to 2ma®r?e/3. Introducing a perturbation one has

) |
Byrl(r,t) = geb + B(r,1) (2.52)

where & corresponds to an analogous relativistic quantity called the peculiar gravitational
potential, that appears in the perturbed Poisson equation

V23 = 4nde. (2.53)
To get rid of the spatial gradient it is useful to write each quantity as a Fourier series as in
(2.12), which means that, for each k, one can replace

k kN2
V=i, V2o - (—) : (2.54)
Q

It is useful for the following to define the adimensional density contrast § = de/e and we
can see that (2.53) can be written using Fourier expansion as

p) k2
= ol .
Oy . <aH) By, (2.55)

where we have taken into account the possibility of having a universe with Q # 1.

2.4.3 The evolution of density perturbations

Now we calculate the time evolution of energy density perturbation solving the system of
equations (2.49) and (2.50). The first step is to insert the equation of state p = e into the
continuity equation to write it as function of the adimensional density contrast § = (de/e),

1
H = 3 [6—3]:776] . (2.56)

!Usually the Poisson equation is written with density p instead of energy density e. Instead in this thesis we
have made the perhaps unusual choice in cosmology of using e instead of p as it is used later in the hydrodynamical
equations. The two quantities can anyway be identified as the same, in fact e = pc? and in our notation ¢ = 1.
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In the general case of v = (i) one has
§p = v¥de, 4 =3H(y - v?)(1+~) (2.57)

where v is the general sound speed that converges to the simple case of v = v? when 7 is
a constant as in the case of the radiation or matter dominated epochs. Substituting these
definitions also into (2.50) one gets

. 1 . oer 9 s 9
H= ——iu |§ ~3H(2v —0v* ~H (2 — 2.
J 3T+ ) (27 v)5+2 (2v* +~* —y)6| , (2.58)

and combining the two equations one gets finally the perturbation equation
; 3
S+ H[2-3(2y -] - SH(1- 6v® — 372 + 87) = »?V?. (2.59)

This important equation allows us to calculate the amplitude evolution of each mode dy using
the replacement V26, = —(k/a)?0y.

One can solve this equation changing the independent variable from ¢ to a, by

d d d . 3
— =a— = Hyu—, Hy= —-(1+7)H? 2.
i~ a = g = g (2.60)
and the perturbation equation becomes
d*s dé k20?
2 070k k :
- Ag—= B+ —— =0, 2.
@ + Ag i + ( + H2a2> de = 0, (2.61)
where 3 5
A= 5(1—5»y+2u2)., B = 5(1—61)2+8’y—372). (2.62)
In the radiative epoch v = v? = (1/3) and one gets
d%6 k?
2 k
: -2 = 0. 2.
¢ i (3H2a2 )‘5“ (263)

When the k-mode is well outside the horizon, the term (k?/3Ha?) < 1 can be neglected, and
this equation has two independent simple solutions:

81 x a® t, 6y oca o t™1/2, (2.64)

that in general combine linearly into the general solution § = ¢16;1 + ¢26,. The first mode §;
represents the growing mode solution, corresponding to the adiabatic component of the pertur-
bation (we will better understand this point later), while d; is the decaying mode component.
If the k-mode is well inside the horizon (k2/3Ha?) > 1 and we have that the solution is a
plane wave that oscillates rapidly, given by

.k
4 o< exp Z\/§Ha2 . (2.65)
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In the matter dominated epoch we can set v = ©? = 0 in the definitions of the coefficients
Aand B; v € 1 is the sound speed cg for a non relativistic fluid,

2§ 3 dd k22 : k
an Ok +§ diy i < Cq _E) S = 0. (2.66)

do? 2% e H2g2 2

This equation corresponds to the Newtonian treatment of gravity, where the role of the Hubble
horizon is replaced by the Jeans length \;, given by

2
A o= (2.67)

4dre

If the wavelength of the k-mode is larger than the Jeans length, the term (k2c2/Ha?) < 1
can be neglected, and this equation has a growing and decaying mode component as in the
relativistic case, that behave as

by x a o £33 8y o a™3? ot (2.68)

If the wavelength of the k-mode is smaller than the Jeans length the term (k%c2/Ha?) > 1
dominates inside the parenthesis and the solution of the equation has an oscillating behaviour,
giving raise to acoustic oscillations of the matter.

The presence of two different modes in the general solution of the perturbation equations is
related to the fact that the perturbation equation is a second order differential equation with
two degrees of freedom. Physically this means that there is no direct coupling in the initial
conditions between the energy density distribution and the velocity field. The decaying mode
component represents the uncoupled component of the initial condition that is soon dispersed
during perturbation evolution.

2.4.4 Adiabatic Condition

At beginning of section 2.3 we have made the assumption that the inflation field has only one
component, and that eventual vacuum fluctuations of other fields have no significant effect after
inflation. These assumptions are fundamental for proving that R is time independent on scales
well outside the horizon.

A way to understand this argument better is to consider the whole universe on super horizon
scales as being separated into different regions that evolve like separate FRW universes where
the vacuum fluctuations determines the difference between the locally measured proper times.
At horizon entry, when these regions become causally connected, the difference in proper times
corresponds to a difference in density of the regions, thus giving density perturbations, because
each region has evolved differently. In other words, if the perturbation is on a scale well outside
the horizon, it is possible to divide this scale into different regions such that in each one the
universe can be seen as unperturbed, looking therefore identical if their clocks are synchronised
on scales of constant ¢ a few Hubble times after horizon exit during inflation.

Entering more into details of this aspect is beyond the aim of this thesis and it is very
well analysed in [6]. It is however important to say that these properties lead to an important
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relation called the generalised adiabatic condition, that for each Fourier mode well outside
the horizon is

§ de ;
o Tk (2.69)
g é
This can be written in a form to relate the density perturbation of each particular species of

particles to the density perturbation of the total matter of the universe. If g is the density e;

of a particular species, applying to each species the continuity equation e; = —3H (e; +p;) one
gets
1 1
6 = é 2.70
Tre = T alet =)
that gives
§; =4 (radiation) (2.71)
& = 36 (matter) (2.72)
Identifying ¢ as the total pressure in (2.69) one obtains that
) e
Deoo Tk (2.73)
P é

and this expression allows one to show the time independence of curvature perturbation Ry.

2.4.5 The Curvature perturbation

Finally we can relate the curvature perturbation R to the density perturbation and see that
on scales well outside the horizon R is time independent. To simplify we consider just the case
of critical density corresponding to K = 0.

An equivalent definition of R seen in (2.42) appears in the local Friedmann equations,

7 2
8T o) + SR ) (2.74)

H(r,t) = 5

that is equivalent to perturbing the constant K appearing in the Friedmann equation as
2 92 2,2 -
0K = 30 V*R, 0K, = —gk R (2.75)

Now, if we consider equation (2.50) with dp = 0, we can see that, together with the continuity
equation we obtain an expression equivalent to (2.74) with §K being time independent. In fact
if we multiply (2.74) by a?, take the time derivative and use the continuity and acceleration
equation, we get

0Pk
e+p’

Ry = —H (2.76)
The physical statement now looks clear: on a sufficiently large scale well outside the horizon the
pressure gradients are negligible and therefore the curvature perturbation is constant in time.
To complete the proof we still need to show that épx < Ry, and to start we can rewrite
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[ o)
()
)
—

equation (2.74) using the definition of the peculiar gravitational potential @y seen in (2.7
and the the equation of state p = e, obtaining the time variation of Ry,

LRy _ 2ipx (L) 2 (2.77)
H 0t  3bex |\aH /) (1+7)Rx| '

Using the adiabatic condition (2.69), that implies that |dpk/der| ~ 1 at any scale well outside
the horizon, we see clearly that the time dependence of Ry is negligible far outside the horizon,
when (k/aH)? < 1, provided that |®y| ~ |Ry|-

To prove this last condition we consider the local Friedmann equation 2.74 for the perturbed

quantities
8 2 (k\?
QHOH, = —dey — = (2) Ry, (2.78)
3 3 \a
to eliminate § Hy in (2.49), and obtain
1. 543
=i+ T T3 = —(1+ )Ry (2.79)

The solution of this equation has the growing solution

3(1+7)

AN (2.
5+ 3y ke (2.80)

Oy =

showing that @) and Ry are of the same order.

The definition of the peculiar gravitational potential gives the relation between the density
and curvature perturbations corresponding to a pure growing mode, obtaining

20+~) [ k 2
_ " ) 2.
O 54+ 3y (aH) Ric (2.81)

Before ending this chapter we want to stress again that the result of the curvature perturbation
being constant is working as a consequence of the adiabatic condition of Gaussian perturbations,
with the additional assumption that there is only one degree of freedom, and this corresponds
to a pure growing mode solution of the perturbation equation.






Chapter 3

Primordial black holes in the
Universe

This chapter reviews the main ideas of PBH formation, from the initial landmark papers
appearing in the seventies until the last years. In the first introductory section we synthetically
introduce the general idea of what a black hole is. In the second section we discuss the idea of
PBHs starting from a historical perspective about their possible formation, taking into account
particularly the results of the numerical studies developed in the past. In the third section we
analyse the idea of PBHs from a cosmological point of view, pointing out the main aspects
where the possible presence of PBHs plays an interesting role (the structure of this section has
been mainly based on the recent review by Carr [17]). Finally we present some summarising
conclusions pointing out some open questions that arise and that we have tried to address in
the following chapters.

Naturally we cannot be exhaustive with all the literature produced on the topic during
about 35 years. This chapter is therefore our personal perspective of the argument, where we
have tried to be sufficiently exhaustive in mentioning different references related the topic of
PBHs.

3.1 An introduction to Black Holes

A possible definition of a Black Hole is a portion of space-time where there is a singularity
“hidden” behind a surface called an event horizon. The event horizon makes all information
coming from inside invisible to an outside observer, creating o trapped surface that it is
possible to cross inward but is impossible to escape from outward. To complete this definition
we need to specify the concept of singularity as a region of the space time where our measure of
curvature (Riemann tensor) diverge, stopping any further physical analysis. A more rigorous
and complete definition can be found in [18].

The simplest solution describing a black hole is the Schwarzschild metric that can represent
the empty space time around a spherical mass M collapsed in a central singularity. The metric

43
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Figure 3.1: Space time diagram for a black hole formation due to the collapse of a spherical region.
The figure has been taken from [19]

explains how the space time is “curved” around the centre,

, oMY oM\ !
dﬁ:-@-é)#+@-fﬁ dR? + R2d02 . (3.1)

Looking at the Schwarzschild metric one can see two different singularities, one is at the event
horizon at R = 2M, the other is in the centre, at R = 0. The first is a coordinate singularity
that can be eliminated with a coordinate transformation and this implies that nothing special
happens to a test particle that crosses that point. The nature of the central singularity is
different, this is in fact a genuine singularity that cannot be eliminated with any coordinate
transformation.

The coordinate singularity of the Schwarzschild metric represents the event horizon and in
figure 3.1 one can see a space time diagram of a black hole formed from a spherical gravitational
collapse. The meaning of the event horizon can be seen looking at the angles of the light cones
that do not allow particles to escape if R < 2M; such particles are then obliged to fall into
the singularity.

An important measurable effect of the curved metric around a black hole is the difference
in the lapse (the gog component of the metric tensor) measured by a comoving observer moving
toward the singularity and another one far away outside the hole. The first observer will
measure a finite proper time of the collapse without noticing special features of the space
time when he is crossing the event horizon. The second observer will instead see the first one
approaching the event horizon in an infinite amount of time, because of information from the
first observer becoming infinitely red shifted.
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3.2 Primordial black hole formation

3.2.1 Historical Overview

Many years ago it was realised that the high density associated with the early universe can
lead to the formation of black holes with a wide range of masses. It has been shown in (1.36)
that the relation between the Hubble horizon mass and the Hubble radius is the same that
relates the event horizon radius and the mass of the black hole. The reason for this analogy
is because both surfaces are trapped surfaces. More precisely a black hole event horizon is
the asymptotic location of the outermost trapped surface for outgoing light-rays whereas the
cosmological horizon is the innermost trapped surface for incoming light rays.

Comparing the density of the early universe at a certain time ¢ with the density associated
with a black hole of mass M, one can see that PBHs would have the mass of the order of the
horizon mass at their formation epoch.

13
My = 2t ~ 10% <10_23 s> g. (3.2)

The mass range of PBHs goes from very small values as such the Planck mass (1075 g) for holes
formed at the Planck scale up to such large values as for those formed at Nucleosynthesys (1 s),
of the order of 10% M. Although expression (3.2) was first derived by Zeldovich & Novikov [20]
they were not really considering black holes but a kind of “retarded core”. They were arguing
anyway that the presence of these objects should be very unlikely because they pointed out
they would be characterised by a catastrophically accretion [20]. The idea was based on a
Newtonian argument that allows these objects to grow at the same rate of the horizon through
all the radiation dominated epoch, reaching the horizon mass of 101 My, at the end of this era

Two years later Hawking [1] was the first to really realise that primordial density pertur-
bations in the universe might lead to formation of PBH of the order of the horizon mass by
gravitational collapse in the radiation dominated epoch. A few years later together with Carr
he disproved the argument of catastrophic accretion, pointing out that Zeldovich & Novikov
had neglected the cosmological expansion. More precisely they demonstrated that there is no
spherically symmetric similarity solution which represents a black hole attached to an exact
Friedmann model via a sound wave [2]. The conclusion was that after formation PBHs become
soon much smaller than the cosmological horizon, with negligible accretion.

The possibility of the real existence of PBHs stimulated Hawking to study their quantum
properties leading to the famous discovery of evaporation: black holes emit a spectrum of
thermal radiation as a blackbody with a temperature related to the mass of the hole,

1 M\
T=— ~107"{-— K. 3.3

8rG (M ® ) (3:3)
The evaporation rate is to first approximation proportional to the inverse of the mass squared

dM 1

@ TR (34)
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giving a timescale for the evaporation of

3
(M) x M3 ~ 108 M Y. (3.5)
]\JG)

This means that black holes with a mass larger than 10'° g would evaporate in a timescale longer
than the age of the universe at the present moment, making the effect completely negligible.
The final state of this process is still unclear, because at that stage a complete quantum theory
is needed. One possibility is to have a final explosion that would disperse all of the mass but a
more interesting option from the point of view of PBHs is a final stable remnant of the order
of Planck mass (see section 3.3).

We will see in the next section that the Hawking effect for possible PBHs with such small
masses imposes strong constraints on their possible existence. During the evaporation in fact
there is the emission of photons with energies of 100 Mev at the present epoch and the obser-
vational limits on the y-ray background gives a present density of such PBHs of 1078 times
the critical density. The possibility to detect them seems therefore unlikely but nevertheless
the PBH evaporation could still have interesting cosmological consequences changing many
processes in the early universe [21]. For example there is a possibility to modify standard
nucleosynthesis [22, 23] or to induce the reionisatioin of the universe [24] just to mention few
of them (see for example [17] for a more extended description).

Subsequently the attention on PBHs moved to other mechanisms of formation, for example
during phase transitions that might have happened in the early universe. It was proposed that
the gravitational collapse of primordial perturbations could be enhanced during some phase
transitions leading to an increment of PBH formation at some particular scales (See section
3.3). Other mechanisms of formation investigated have considered more exotic scenarios like
bubble collisions [25, 26, 27] and formation of compact cosmic string loops [28, 29, 30, 31, 32].

3.2.2 Formation mechanism

The first attempt to get a quantitative estimation of the amplitude required for a cosmological
perturbation to form a PBH was made by Carr in 1975 [33]. The idea was that the cosmological
perturbation must be able to overcome the pressure support of radiation (y = 1/3) but also
not to be so large as to create a topologically disconnected region, larger than the horizon.
This implies that the length scale of the perturbation at the moment of maximum expansion
should be less than that of the horizon and larger than the Jeans length

ViRe < R < Ry. (3.6)

Expressing the length scale as function of the perturbation amplitude § = Je/e, one gets, in
the radiation dominated epoch,
be S0 51, (3.7)

with 6, = 1/3, and a mass of the hole is of the order of the horizon mass. Naturally this was
just a first attempt to get an idea of the orders of magnitude involved, in order to make some
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cosmological estimations about the distribution of these objects. A more refined calculation
needs a numerical analysis of the relativistic effects of the gravitational collapse.

Nadezhin, Novikov & Polnarev in 1978 [34] carried out the first detailed numerical study
of PBH formation using a hydrodynamical computer code similar to those of May & White
(1966) [35] and Podurets (1964) [36] using a “cosmic-time” coordinate with a diagonal metric
which reduces to a form similar to that of the FRW metric in the absence of perturbations. A
well-known difficulty with this approach is that in a continuing collapse, singularities typically
appear rather quickly and stop the computation before the black hole formation is complete.
In [34], this difficulty was overcome by using an early form of excision with the evolution being
stopped in the region where the singularity would appear.
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Figure 3.2: These figures have been taken by the paper of Nadezhin, Novikov & Polnarev [34]. The
first shows schematically how they were describing the initial conditions: they were working with a
prescription that uses curvature, having a closed Universe in the region of radius R;, a flat universe
outside region of radius Rs and a transition region of amplitude A. The second figure shows the values
of parameters that they found to give black hole formation. In this second plot Rmay is corresponding
to Ry of the first diagram.

As initial conditions Nadezhin, Novikov & Polnarev considered a spherical region of radius
Ry described as a FRW universe with X = 1, and connected it to a spatially flat universe
with K = 0 at a radius Ry > R;, having a transition region of amplitude A (see figure 3.2).
The idea was of specifying initial conditions in this way was to describe the pressure gradients
growing with decreasing of A/R;1, and the amplitude of the perturbation growing with R.

Their result are summarised in figure 3.2 where the region of parameters that allow PBH
formation is shown and, as one can intuitively argue, high pressure gradients make formation
of PBHs more difficult. The qualitative features of the earlier picture therefore were basically
confirmed but it was found that the PBH masses were always much smaller than the horizon
mass.

Shortly afterwards, Bicknell & Henriksen (1979) [37] carried out related calculations using a
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method based on integration along hydrodynamical characteristics which avoids the problems
associated with the appearance of singularities. They used rather different initial data from
that of [34] and found formation of black holes with masses of the same order as the horizon
mass (or greater in cases where the overdensity in the initial perturbation was not compensated
by a surrounding under-dense region). They noted the appearance of both ingoing and outgoing
compression waves during evolutions leading to black hole formation.

Twenty years later Niemeyer & Jedamzik [38, 39] made further numerical calculations,
reformulating the problem and pointing out some new features. Historically this work has been
crucial for us because we started to be interested in the problem shortly after the outcome
of this work and we have used it as a starting point to develop our contribution. A detailed
description of their results will therefore be given in the next chapter when we start to present
our personal results. The main contribution of Niemeyer & Jedamzik was to point out the
relevance of scaling-laws for PBH formation. They found that the black hole mass Mgy
follows a power law in (§ — d.) when the latter is sufficiently small, which is a similar behaviour
to that seen in critical collapse by Choptuik [40] and many subsequent authors (see the review
by Gundlach [41]). The specific expression is

Mg x (6 —6,) My if (§-6.) < 1, (3.8)

where v is a characteristic parameter of scaling law behaviour [41]. Niemeyer & Jedamzik
started from initial perturbations specified at the moment when the overdensity enters the
horizon and then computed the subsequent evolution obtaining d. 2 0.7 for each of the three
tvpes of perturbation profile which they studied.

While Niemeyer & Jedamzik [39] demonstrated the existence of a scaling law for PBH
masses down to around one tenth of the horizon mass, they did not investigate smaller masses
and so it was not possible to determine whether the scaling law was likely to continue down
to vanishingly small masses (when § — §.) as in type II critical collapse [41]. In fact, the
calculations become very challenging from a numerical point of view when § is very close to
5. because of the appearance of strong shocks and deep voids outside the region where the
PBH is forming. Hawke & Stewart (2002) [42] addressed this problem using a sophisticated
purpose-built code which allowed them to make calculations for values of § closer to ., and to
handle the strong shocks which occur in these cases. They found that the scaling law does not
continue down to very small values of (6 — d.) but rather reaches a minimum value for Mgy
around 10™* of the horizon mass, with the limit resulting from the behaviour of the shocks
produced in nearly critical collapse.

We need to point out at this stage that the horizon mass normalisation used by Hawke &
Stewart [42] is not the same as that used by Niemeyer and Jedamzik [39], because in the first
case the initial conditions were imposed well within the horizon, while in the second case they
are imposed exactly at the horizon crossing time and the horizon mass used for normalisation is
that at the initial time in each case. This means that the results of these two papers cannot be
compared straightforwardly without taking into account the different scales of normalisation.
We will come back to this in chapter 6, when we investigate with our formulation the problem
of a possible minimum mass in the scaling law.
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Finally, almost contemporary with Niemeyer & Jedamzik Shibata & Sasaki (1999), [44]
presented an alternative formalism for studying the problem of PBH formation, nsing constant
mean curvature time slicing and focusing on metric perturbations rather than density pertur-
bations. A key point that they emphasised is the importance of using initial data which can be
directly related to perturbations arising from inflation. Their formulation was not restricted to
spherical symmetry (as had been the case for the previous authors mentioned here) but they
presented results only from spherical calculations. They located the threshold perturbation
amplitude for PBH formation (in terms of the metric perturbation) and found that this varied
considerably depending on the density of the medium surrounding the density peak. They
concluded from this that it is probably important to take into account spatial correlations of
density fluctuations when considering PBH formation.

It is not straightforward to make the link between results from this last type of calculation
and ones from the more standard approach focused on density fluctuations. However, this was
addressed in a recent paper by Green et al. (2004) [43]. They calculated the PBH abundance
produced from two different fluctuation spectra, using peaks theory together with the threshold
criterion of Shibata & Sasaki [44]. They then compared the results of this with ones obtained
from a standard calculation based on a Press-Schechter-like approach and using density pertur-
bations. They found that the Shibata & Sasaki results are consistent with ones using a density
perturbation if §. lies in the range 0.3 < 6. < 0.5 and, as they pointed out, there is an evident
discrepancy with the result of 6, 2, 0.7 [39].

3.3 Cosmological consequences and constraints of PBH

3.3.1 PBH and the spectrum of cosmological perturbations

Following the formalism defined 'in the previous chapter applied to the distribution of PBHs
[45] one can define the initial mass fraction 5; of PBHs, given by the fraction of the universe
satisfying equation (3.7),

. 1
g = PPBHI _ / P(5)ds (3.9)
Prot,i 1/3

where P(¢6) is the probability distribution for . For the lower limit of the integral we have
put the “primordial” estimation of Carr as is often done in the literature. The debate about
a more refined value is still open so, for the moment, we follow the main literature in using
d. = 1/3, keeping in mind that the value of 4, is an open question.

Assuming a Gaussian distribution of primordial perturbations, as described in Chapter 2,
one defines the mass variance o?( M) of the probability distribution as explained in the previous
chapter

o?(M) = %/OMP(K)W(kRQ)kzdk, (3.10)

usually evaluated at horizon crossing. Usually the power spectrum P (k) used is the power law
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form of (2.37), and the mass fraction of PBHs is given by

1t S 1 .
: - = e — X e 0 = A ex — . .
B(M) \/ﬂ/ua o (3) exp( ng(M)>d6 o*(l/f)(‘xp( 180%]%)) , (3.11)

where the approximation of the last relation uses the property of 4 being a rapidly decreasing
function. This expression for the mass distribution of PBHs can be related to the comov-
ing scales during inflation [45] therefore linking the distribution of PBH to the observational
constraints.

Many scenarios for the cosmological density perturbations give a scale-invariant behaviour
for o(M) in (3.11) corresponding to n = 1 in the power spectrum. The dependence of 8 on
this function is however very sensitive and even a tiny deviation from the scale invariance can
be important. If ¢(M) decreases with increasing M, then the spectrum falls off exponentially
and the distribution of PBHs is mainly given by the smallest ones. On the other hand, if o (M)
increases with increasing M, the spectrum rise exponentially and PBHs can form only on the
largest scales. This second possibility seemed anyway to be rejected, because in this case the
microwave anisotropies would be larger than observed.

Carr was the first in 1975 [33] to express the density parameter Qppy associated with PBHs
formed at a redshift z or time ¢ in relation to j,

= g z) ~ 10°8 | — ~ , 12
Qppn = BOr(1+2) = 10°8 (15) 10°°8 (1015g> : (3.12)

where Qr =~ 107 is the density parameter of the microwave background. The factor (1 + z)
appears because the density of PBHs scales as o, while the density of the radiation scales
as a*. The constraints placed on Qppy translate to BM) and these are summarised in the
first plot of figure 3.3, taken from Carr et al. [46]. The strongest constraints are coming from
the vy-ray limit associated with PBHs evaporating at the present epoch [47, 48], while PBHs
with masses larger than 10'® g are constrained only gravitationally, requiring that Qppy < 1.
Finally PBHs that have completely evaporated in the past have different constraints depending
on their mass scales. In table 3.1 we have summarised the different aspects with respect the
mass fraction of black holes at evaporation, qevap(M) = ppBH/pPraq. To interpret these one
needs to relate the black hole masses to their lifetimes [49, 50], by

:B'i tevap 12
) orm

where tevap and tem are the evaporation and the formation time. These constraints on o are

then translated to §, taking care of the model of the early universe, and then from f translated
to (M) using equation (3.11). These are summarised in the second plot of figure 3.3.

The calculation of the mass spectrum has not taken into account the relevance of critical
collapse in PBH formation pointed out by Niemeyer & Jedamzik [38]. Green and Liddle [51]
have recently analysed this under certain assumptions for the power spectrum, trying to see
under which conditions the results of Niemeyer & Jedamzik seem cosmologically consistent.
It is however a problem still to investigate, because Niemeyer & Jedamzik obtained a mass
spectrum between 0.1 — 1 times the horizon mass, not being able to see if smaller PBH are
allowed to form.



3.3. COSMOLOGICAL CONSEQUENCES AND CONSTRAINTS OF PBH 51

o
~10 F 4
=
2
&
Q
wd
=20 4
-30 . : *
10 20 30 40
Log,,(M/gm)
O H T T T T
ol . RERAEY
- ~ . N ~ - CMB Distortions 1
\\ \'\ \\
[N
~ ~ . ~
“OE S s TN T \\
=g ~ ~ ~ ~
&) ~ oS
) \\ ~ \\ \\
~ ~
~ P ~
~ . o~ N
~ > ~
~ - ~
-4 r Yo N3 N .
N -
\::: \\
SO0~
NN N
&\‘\\\
3\ 2COBE
\\\
_6 L 1 L 1 i
10 20 30 40 50 60

Log,,(M/gm)

Figure 3.3: The first plot shows a summarise of the different constraints on #(M), while the second
plot shows the constraints on o(M). These plots have been taken by [46].

3.3.2 PBH and inflation

Connecting PBHs with inflation one gets two important consequences. The first is a minimum
mass of the hole related to considering as the earliest time of formation the time of reheating.
This is because PBHs formed earlier will be diluted to a negligible density by inflation. We
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Constraints Range Reason
Cevap < 0.04 ~10° g < M < 10® g Entropy per baryon at nucleosynthesis [52, 53]
M
Qevap < 10726 <J\l—4—> M~5x10"%g v-ray from current explosions[47, 48]
Pl
M 1/2 )
Qevap < 6 x 10710 (-M—) 10°g < M <10% g nfi production at nucleosynthesis [54]
Pl
Clevap < 5 % 10728 (7\—4——> 1010 g < M <10t g Deuterium Destruction [55]
Pl
M 7/2
Cevap < 1 x 10759 (F 0% g < M <108 g He-4 spallation[56]
Pl

Table 3.1: Limits on the mass fraction of PBH at evaporation.

have therefore

T -2
M > Mp ( fh ) (3.14)
Tp

where T, is the reheating temperature which is different for the various models of inflation.

Using the highest value of Ty, ~ 10'® Gev we have that the minimum mass related to the
horizon scale is 1 g.

Another important limit coming from inflation is related to the slow roll approximation,
€, 7 < 1 that plays a role in the exact determination of the spectral index n of power spectrum
(2.38) written as [6]

n=1-6e+2n~1. (3.15)

Because o(M) oc M1=™)/% [45], this means that the fluctuations is slightly increasing with
scale. To get PBH formation in agreement with the normalisation required for galaxy formation
the perturbations should decrease with increasing mass (blue spectrum n > 1) and this is
possible only with a sufficient acceleration of the scalar field.

These considerations were made for the first time by Carr [57, 58], from where figure 3.4
has been taken, and subsequently they have been refined by Green and Liddle [45]. Similar
constraints have been obtained by several other people [59, 60], but an important aspect that
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Figure 3.4: Constraints on the spectral index n in terms of reheat time #;. This figure has been taken
by [58].

should be stressed is that completely different conclusions can be obtained by a suitable choice of
the field potential V() [61, 62]. Another aspect investigated recently is the complication arising
from a more complicated relation between the mass variance of the perturbations relevant for
PBHs and the present day horizon-scale density fuctuations if one assumes a not scale free
perturbation n # 1 [63, 64]. Many different models of inflation have been constrained in relation
to possible PBH formation ([17] and references therein).

3.3.3 PBH and dark matter

We know from observations that roughly 30% of the total density of the universe is in the form
of cold dark matter. PBHs, if they exists, are a natural candidate for this component of the
universe and some interests has been dedicated to holes larger than 10 g, that would not yet
have evaporated. For example they can play a role in the formation of large scale structure in
particular in the (sublunar) mass range of 10%° — 1026 g ([17] and references therein).

One interesting possibility is that PBHs may have formed during the quark hadron phase
transition, profiting from the temporary softening of the equation of state at around 1072 s
[65]. The order of mass associated to these PBHs is about 1 My and therefore they were
been suggested as candidates to explain the MACHO micro lensing results [66]. Niemeyer
& Jedamrzik have performed numerical simulations of PBH formation during the QCD phase
transition assuming it to be first order [65]. They obtained a significant reduction in the
threshold value of 6, with respect the value that they found just for the radiation case [39]
This implies that PBH formation would be strongly enhanced during this epoch with a mass
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distribution concentrated around 1 Ms,. Their calculation is anyway just preliminar because
they have assumed a very simplified model to describe the phase transition and so it is possible
that one would obtain different results with a more sophisticated treatment. ‘An implication
for PBHs formed in this way is the existence in the galactic halo of a population of binary
PBHs which at the present epoch would emit gravitational waves as they inspiral and coalesce
(see [17] and reference therein).

As we have just mentioned in the previous section, another possibility is that the evaporation
of PBHs stops near the Planck scale leaving stable remnants as a possible cold dark matter
candidate. PBH production is also possible during inflation and this imposes limits on (M)
included in figure 3.4, requiring that their density is less then the critical value. To produce a
relevant density of relics needs a fine tuning of n o~ 1.3 [33] which is on the limit of compatibility
with the WMAP results. Chen has also argued that hybrid inflation could produce relics from
~ 10% ¢ PBHs formed at ~ 10%2 s (see [17] and references therein).

3.3.4 PBH and high energy physics

If one considers with more attention the emission of particles during black hole evaporation it
should be taken into account that the process is strongly dependent on the model of elementary
particles used. One reasonable assumption made is that the effect of possible charge and angular
momentum associated with the hole would be lost through quantum emission on a shorter time
scale than the mass evaporation rate, so that the hole can be considered as non rotating and
uncharged during the most important stages of evaporation [67]. Taking this into account,
expression (3.4) and (3.5) can be rewritten as

dM os (M 72 .

— = _-5.10% = Mg s™?, )
p 5-10 (1g> f(M)gs™, (3.16)
toanM = 6 - 10-2 1 (M 3 (3.17)
evap= fon \1g) > '

where the function f(M) depends on the number of particles specie which are light enough to
be emitted by a hole of mass M. In the range of black holes larger than 10'7 g only massless
particles like photons, neutrinos and gravitinos can be emitted. In the range of 1015 g < M <
10*7 g it is also possible to emit electrons, and for 10'* g < M < 10'° g particles such as muons
are emitted, which subsequently will decay into electrons and neutrinos. When the mass falls
below 10 g, the process enters the scale of energy needed to emit hadrons and therefore
QCD should be taken into account [68]. Many simplifications can be applied to describe this
process and the result obtained is that black holes would emit quark and gluon jets that will
subsequently decay into hadrons over a distance where the gravitational attraction of the hole is
negligible. Other decays can then transform the hadrons into stable particles through weak and
electromagnetic interactions. In studying all of these processes one should take into account
that smaller holes will evaporate at an earlier cosmological epoch and therefore the energy of
the particles emitted will have been redshifted by the present epoch.

If the emission of particles is homogeneously distributed throughout the universe, it is
possible to calculate with good precision the background spectra [69]. If this is not the case as
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for the evaporation of PBHs in the galactic halo at the present epoch, the description of the
process is different [70].

Gamma ray bursts and cosmic rays emission might also be connected with Hawking evap-
oration and different constraints have been worked out in relation of the observations of these
phenomena [71].

3.4 Open questions

As one can see from this synthetic overview, there are still many aspects that are not clear
and need further investigation. In our perspective there are three key problems that we think
have priority. First there is the question about the value of §. that a perturbation must exceed
in order to give rise to PBH formation. The reason for the discrepancy between the value
of 0, = 0.7 obtained by Niemeyer & Jedamzik [39] and the interval of 0.3 < d. < 0.5 found
by Green et al. [43] needed to be understood. Knowledge of a precise value of &, is very
important for calculating the mass fraction of the universe that could be in the form of PBHs.
Second, there is the issue of knowing the extent to which the possibility of forming PBHs is
dependent on the particular choice of initial conditions and which kind of profiles best describe
actual cosmological perturbations. It would be very useful to go beyond the Press-Schecter-like
approach and connect the initial conditions directly with the statistics of vacuum fluctuations
coming from inflation. Third it is also important to clarify the question of the real impact of
critical collapse in the scenario of PBH formation, to know if PBH masses are all on roughly
the horizon scale at the time of formation or if the scaling law is preserved all the way down
to very small masses. These problems represent the challenge for the original contributions of
this work that we are going to present in the following three chapters.






Chapter 4

Computations of primordial black
hole formation

With this chapter we start to describe the original contributions that we have made to studies
of PBHs with our work. As we have said at the end of the previous chapter, we think that
there is not a good link between a realistic cosmological scenario of cosmological perturbations
coming from inflation with a Gaussian spectrum and the initial conditions used in the numer-
ical simulations recently performed [3]. As pointed out by Shibata & Sasaki [44], the initial
conditions should describe a pure growing mode solution. Lack of consistency with this may
have been the reason for the discrepancy observed between the results obtained by Niemeyer
& Jedamzik and those obtained by Shibata & Sasaki, as pointed out by Green et al. [43]. The
work of Shibata & Sasaki used a very complicated formulation of the equations, because they
were written generically to study also non-spherical collapse. When we started to be interested
in this subject we were able to profit from having available a pre-existing code developed by
John Miller to study isolated collapse in vacuum, with a similar formulation of the equations
to that used by Niemeyer & Jedamzik . This formulation is simpler to handle than that used
by Shibata & Sasaki, because the set of equation is specifically written in spherical symmetry.
For these reasons we have started by using this code, making necessary modifications to move
from an isolated collapse in vacuum to collapse of a cosmological perturbation within the FRW
background.

In the first section of this chapter we introduce the set of equations used to write the code,
describing the strategy of the simulations, and pointing out the modifications that we have
introduced to use the code in a cosmological context.

In the second section we describe in some detail in the numerical method used to run the
calculations, explaining how the equations are numerically integrated and how we have chosen
the initial conditions. We show also the agreement between the analytical and numerical
" solution representing the background as a proof of the correct behaviour of the numerical code
in that case.

In the third section we give a description of the results, where the initial conditions used
are very similar to those considered by Niemeyer & Jedamszik , but we introduce a fundamental

57
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improvement that allows us to explain the discrepancy observed by Green et al.[43], decreasing
the effective value of §. below that seen by Niemeyer & Jedamszik . Attention is dedicated
to the hydrodynamical features of the collapse, and to the scaling law relation, analysing also
the changes that occur when a cosmological constant component is included in the equations.
Finally we describe in detail the hydrodynamical processes that we observe in a subcritical

collapse, when the value of ¢ is slightly less that than threshold §,.

The order of the presentation in this part of the thesis follows the order in which the work
was done. In this chapter we present calculations made with a simple method for imposing
approximate growing-mode initial conditions in terms of § and 0U which represents a step
forward with respect to previous work, and allows several issues to be clarified. However this
treatment of initial conditions is still not optimal and in Chapter 5 we introduce a new and
more precise way for doing this in terms of curvature perturbations which enables a better link
to be made with a perturbation spectrum coming from inflation.

4.1 Mathematical formulation of the problem

As with most of the other literature on this subject, we are restricting attention here to spherical
symmetry, which very greatly simplifies the calculations, and we have used the formulations of
the relativistic hydrodynamical equations given by Misner & Sharp (1964) [72] and Hernandez
& Misner (1966) [73]. Both of these are Lagrangian formulations, the first using a diagonal
metric (with the time referred to as “cosmic time” which reduces to the familiar FRW time
coordinate in the absence of perturbations), and the second using an outward null slicing where
the time coordinate is an “observer time” (the clock time as measured by a distant fundamental
observer). The cosmic-time formulation is particularly simple and has the advantage of using
a slicing which many people find intuitive; this was the approach used by May & White (1966)
[35] in their classic paper studying spherically-symmetric gravitational collapse. However this
approach has a well-known drawback for studying black hole formation in that singularities
that are typically formed rather early in calculations of continuing collapse and it is not then
possible to follow the subsequent evolution. We will look at this in more detail in Section 4.1.2.

The outward null slicing approach is particularly convenient for calculations involving black
hole formation in spherical symmetry: anything which could not be seen by a distant observer
(e.g. singularity formation) does not occur within the coordinate timespan, while all observable
behaviour can be calculated. This is, in some sense, the optimal approach for studying black
hole formation in spherical symmetry as seen by an outside observer (being linked directly
to potential observations) although more sophisticated slicing conditions have advantages for
calculations away from spherical symmetry.

Following the introduction of the observer-time approach by Hernandez & Misner in 1966
[73], it was implemented soon afterwards in unpublished calculations. A brief presentation of
some results was given by Miller & Sciama (1980) [74] and a full discussion of the technique
used and of results obtained was given subsequently by Miller & Motta (1989) [75]. A problem
with the use of this method concerns the satisfactory specification of initial conditions which
is not natural to do on a null slice. Because of this, Miller & Motta [75] made a preliminary
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calculation using the Misner & Sharp [72] formulation in order to construct data on an outgoing
null slice from initial conditions specified on a space-like slice; the observer-time calculation
then proceeded from the null-slice data constructed in this way. Subsequently, Baumgarte,
Shapiro & Teukolsky (1995) [76] made calculations using a similar technique and it was these
which were used as a reference point by Niemeyer & Jedamzik [39].

4.1.1 The Misner-Sharp equations

For calculations in spherical symmetry, it is convenient to divide the collapsing matter into a
system of concentric spherical shells and to label each shell with a Lagrangian co-moving radial
coordinate which we will denote with r. The metric can then be written in the form

ds? = —a®dt? + b? dr® + R? (d6? + sin® 0dy?) (4.1)

where R (the Schwarzschild circumference coordinate), a and b are functions of r and the time
coordinate ¢. This was the form used Misner & Sharp (1966) [72].

For a classical fluid, composed of particles with nonzero rest-mass, it is convenient to use
the rest-mass u contained interior to the surface of a shell (or, equivalently, the baryon number)
as its co-moving coordinate r. For the case of a radiation fluid (as studied here), rest-mass and
baryon number are not available as conserved quantities to be used in this way but a similar
procedure can still be followed by introducing the concept of a conserved number of unit co-
i:;loving fluid elements (Miller & Pantano 1990) [77]. Denoting a “relative compression factor”
for these fluid elements by p (equivalent to the rest-mass density in the standard treatment),
one then has

dy = 4mpR?b dr, (4.2)
and identifying p and r then gives
~ 1
b= — 4.
47 R?%p (43)
Following the notation of [72], we write the equations in terms of the operators
1/0
Di==| = 4.4
=1(2), (4.4)
170
Dy=-|— 4.5
=1(2). (4.)
and applying these to R gives
DiR =1, (4.6)
D.R=T, (4.7)

where U is the radial component of the four-velocity in the associated Eulerian frame, using R
as the radial coordinate, and I is a generalization of the Lorentz factor.

In this thesis we are dealing with processes involving a perfect fluid described by (1.20),
where in general the parameter v can be time dependent. In this chapter we focus on the
radiation dominated era of the Universe for which v = 1/3. For one-parameter equations of
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state of the form p = p(e), the system of Einstein and hydrodynamic equations can then be

written as:

r M ,
DtU = — '("e":;)‘)‘DT]) + ‘J? + 4’/‘6’]‘?,]) . (48)
___r 2
Dip = — 525D (RD), (4.9)
Dje = +thP; (4.10)
P
D ) (4.11)
aQ = ——- s .
r et p TP,
D, M = 4rTeR?, (4.12)

where M is a measure of the mass-energy contained inside radius g and T’ can be calculated
either from (4.12) or from the constraint equation

2M
MP=1+U%- = (4.13)

4.1.2 Using Misner-Sharp approach for studying black hole formation

As mentioned above, using the cosmic time approach throughout for making calculations of
gravitational collapse leading to black hole formation has the well-known drawback that sin-
gularities appear after a finite time in the calculation, before an event horizon has formed as
far as this time-slicing is concerned. Once a singularity has formed, the calculation cannot be
continued further and so parts of the evolution which could potentially be seen by an outside
observer cannot be followed in this way. In particular, it is not possible to follow all of the
process of the formation of the event horizon. This drawback is the reason for the observer-time
formulation being used in the present work for cases where a black hole is formed rather than
continuing to use the cosmic time formulation throughout.

The present work is concerned with black hole formation in a radiation fluid, for which
the behaviour is rather different from that in a more standard fluid and it is useful to see
this first in the more familiar context of collapse of a destabilised isolated matter distribution
rather than of an over-density within an expanding background. In Figure 4.1 below, we show
results from a calculation of collapse leading to black-hole formation using the cosmic time
formulation throughout in the case of a fluid with a polytropic equation of state given by
p = kp®/3, following the paper by Miller & Motta (1989) [75]. The initial model is an isolated
equilibrium configuration which has been destabilised by reducing the internal energy, using
the same value of k as that used by May & White (1966) in their classic paper on this subject.
The behaviour during the collapse of the radius R, energy density e and the generalised Lorentz
factor I' are shown as functions of the co-moving coordinate 4 at a succession of times during
the calculation. The time ordering of the curves goes from top to bottom in the figures for
R and T and from bottom to top in the figure for e; p is normalised so as to be equal to
unity at the surface of the configuration. The well-known formation of an off-centre singularity
can be seen occurring after a finite time, with R — 0 and e — oo at u ~ 0.115, the region
where R decreases with increasing p corresponding to negative values of I'. The behaviour
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represents the progressively increasing distortion of the space-like hypersurfaces of constant #
as the collapse proceeds and their eventual pinching off at finite . Figures 4.2 show the same
quantities in an equivalent calculation for the radiation equation of state p = e/3. with the
initial model here having the same profile of pressure as a function of 4 as in the polytropic case
(calculations for the same profile of e as in the polytropic case do not lead to collapse of the
entire configuration). It can be seen that the singularity now forms much closer to the centre
in terms of p, appearing to be completely central here in the case of e. However, it seems that
the fundamental off-centre location of the singularity always continues to be seen whenever the
grid resolution in the central zones is made fine enough.

Our calculations for black-hole formation from over-densities within an expanding universe
are using a similar radiation equation of state and a similar phenomenology is seen as for the
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Figure 4.1: These plots show the evolution in cosmic time of R, e and T for an isolated collapse leading
to black hole formation, using the polytropic equation of state p = kp®/3. Note the formation of an
off-centered singularity, where R is going to 0 and e tends toward infinity.
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isolated collapse with the radiation fluid if the cosmic-time approach is used for all of the
calculation, except that the singularity now appears to form completely centrally with our grid
spacing. However. the fundamentally off-centred singularity formation probably always occurs
in fact, as discussed above. These considerations are interesting for having a more complete
picture of what is going on but since we are concentrating on using the observer-time slicing
in our present calculations for collapses leading to black hole formation, they are a side issue
here.
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Figure 4.2: These plots show the evolution in cosmic time of R, e and I for an isolated collapse leading
to black hole, using the radiation equation of state p = e/3. The initial model here has the same profile
of pressure as a function of x as in the polytropic case. Note the formation of a singularity located
almost at the centre with a similar behaviour to that in the previous case.
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4.1.3 The Hernandez-Misner Equations

Because of the problems mentioned above, Hernandez & Misner [73] introduced the concept
of “observer time”, using as the time coordinate the time at which an outgoing radial light

1

ray emanating from an event reaches a distant observer'. In the original formulation, this

observer was placed at future null infinity but for calculations in an expanding cosmological
background we use an FRW fundamental observer sufficiently far from the perturbed region to
be unaffected by the perturbation. Along an outgoing radial null ray we have

adt = bdr, (4.14)
and we define the observer time u by
fdu=adt—bdr, (4.15)

with f being an integrating factor which needs to be determined. In terms of this, the metric

becomes
ds® = —f?du® — 2fbdr du + R? (d6? + sin? 0dy?) (4.16)

which is no longer diagonal. The operators equivalent to (4.4) and (4.5) are now

— 1 8 i
179N , [0

where Dy is the radial derivative in the null slice and the corresponding derivative in the
Misner-Sharp space-like slice is given by

D, = Dy — Dj. (4.19)

The observer-time equations replacing the cosmic-time ones (4.8) — (4.12) are then:

1 r M
DU = _T——E {kap + i + 47 Rp
+c? (DkU + —Q—ZI:)] : (4.20)
R
Dtng [DtU—DkU- -2%11} (4.21)
Die = (e ’;p) Dip, (4.22)
M
Dyf = 14 <DkU + R + 4’/TRp) , (4.23)
Dy M = 4w R?[eT" — pU], (4.24)

YWe note that a somewhat similar approach, but based on a double null foliation, has recently been used by
Harada et al. [78, 79, 80] for studying some different aspects of PBH formation.
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where ¢; = +/(0p/0e) is the sound speed, which is equal to 1/+/3 in the radiative era. The
quantity I' is given by equation (4.13), as before, and also by

T'=DyR-U. (4.25)

Using equations (4.23), (4.24) and (4.13), it is possible to derive the following alternative
equation for f:

In calculations concerning collapse of an isolated object surrounded by vacuum in an asymp-
totically flat space time, the observer time is taken to be the clock time of a static observer at
future null infinity and so (I' + U)/f = 1 at the location of that observer (since I' =1, U =0
and f = 1 there). It then follows from equation (4.26) that (I' 4+ U)/f = 1 also at the surface
of the collapsing object, since the right hand side of (4.26) is zero in vacuum. The condition

}:—Mﬂw+pﬁ. (4.26)

F=T=+1, (4.27)

at the surface is used as a boundary condition for f and the values of f internal to that are
then calculated from equation (4.23).

‘The general condition for a trapped surface is DyR < 0. With outgoing null slicing,
DR = 0 should be reached only asymptotically in the future, accompanied by the lapse f
going to zero, and Dy R should never become negative. In practice, care is required in order
to achieve the exact synchronization of DyR — 0 and f — 0 in a numerical solution where
the equations are discretized; if the synchronization is not achieved, negative values of Dy R do
appear and the evolution becomes unphysical.

In the case of an isolated collapsing object surrounded by vacuum, using boundary condition
(4.27) together with equation (4.23) ensures the correct behaviour. However, for the present
situation, where the surroundings are not vacuum and the space time is not asymptotically
flat, it is necessary to proceed in a different way. We are wanting to synchronize the “observer
time” with the clock time of a co-moving FRW fundamental observer at the outer edge of the
grid (setting f = 1 there) and then to calculate f elsewhere using this as a boundary condition.
For doing this, we found it essential to use equation (4.26), which guarantees synchronization
of DR — 0 and f — 0, rather than equation (4.23), which always eventually gave rise to
unphysical behaviour with Dy R < 0. We think that this is a crucial point in using an outward
null slicing technique for any situation regarding black hole formation within non-vacuum
surroundings. It will apply equally to calculations of black hole formation from core-collapse
of high-mass stars.

4.2 The calculation method

As mentioned above, our calculations of PBH formation have been made using an explicit
Lagrangian hydrodynamics code based on that of Miller & Motta (1989) [75] but with the grid
organised in a way similar to that in the code of Miller & Rezzolla (1995) [74], which was
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designed for calculations in an expanding cosmological background. The method described by
Niemeyer & Jedamzik [39], following from the Baumgarte et al. code [76], is similar in most

respects.

4.2.1 Calculation scheme

For collapses leading to black hole formation, our calculations proceed in two stages: first,
initial data is specified on a space-like slice at constant cosmic time, specifying the energy
density e and the four-velocity component U as functions of R at an initial time ¢;. This data
is then evolved using the Misner-Sharp equations of Section 4.1.1 so as to generate a second set
of initial data on a null slice (at constant observer time). To do this, an outgoing radial light
ray is traced out from the centre and parameter values are noted as it passes the boundary of
each grid zone. The second set of initial data, constructed in this way, is then evolved using
the Hernandez-Misner equations of Section 4.1.3. For sub-critical cases, which end eventually
with dispersal of the perturbation into the surrounding uniform medium, we have continued
with the Misner-Sharp cosmic-time approach throughout. Figure 4.3 shows schematically the
two different foliations with cosmic time ¢ and observer time u.

u

"

u
0

Figure 4.3: This diagram shows the space time foliation for the two different prescriptions used in the
numerical simulations: ¢; represents the cosmic time levels, while u; represents the observer time ones.

The unperturbed background model is taken as a spatially-lat FRW model, for which
I' =1 (giving U = /2M/R) with e(r) = constant at any particular cosmic time ¢. The
perturbations of e and U are then superimposed on this background in the way described in
the next section. During the following evolutions, the metric functions a (for cosmic time) and
[ (for observer time) are set equal to unity at the outer boundary of the grid, thus synchronising
the cosmic and observer times with local clock time there as measured by the local co-moving
FRW fundamental observer.
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Figure 4.4: Schematic representation of the numerical evolution as represented in the gridding scheme
with two offset interlocking grids. Spatial gridpoints are numbered outward from the centre.

The numerical integration of both Misner-Sharp and Hernandez-Misner equations is done
using an explicit finite difference scheme using intermediate time levels, giving approximately
second order accuracy in space and time. Using two different overlapping grid-schemes we
can calculate the spatial and time derivatives correctly centered at each time-level. Figure 4.4
shows a schematic representation of the structure of the calculation on the grid. In the standard
methodology for Lagrangian hydrodynamics, intensive quantities are calculated at zone centres
and extensive quantities are calculated at zone boundaries. Figure 4.4 shows the basic scheme
used to obtain the centering of the time derivatives. A mid-zone quantity calculated at the
time-level n is evolved to level n + 1 using the space derivative calculated at level n+41/2 (solid
lines). In the same way a zone-boundary quantity calculated at the level n + 1/2 is evolved
to n + 3/2 using the spatial derivative at level n + 1 (dashed lines). As an example of this we
write the explicit expression used in the code to evolve the radial velocity U from level n —1/2
to n 4+ 1/2 in the Misner-Sharp scheme

n+1/2 n—1/2 n.n 2 I‘? p?‘i‘l/? —p?—l/Q MJTL n N
T

where
w = (e+p)/p (4.29)

is the specific enthalpy,

_ w?—1/2Ar“j—1/2 + w?+1/2A/‘j+l/2

n
and
n _ Plo1pBiii2 + Pi pBki (4.31)
Pj A : '
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(=]
~I

For maintaining numerical stability, the time-step needs to satisfy the Courant Condition.
In the cosmic time scheme this is given by

b [ Au 1 A
A< = | — | = —— | =+, 4.32
<32 < Cs ) 4 R?pa ( Cs > ’ (4.32)
where the second equality is obtained using (4.3). We set the timestep equal to the minimum
value of
k Ap
At = ——— | =% : 4.33
4mR?pa ( Cs > (4:33)

across the grid and have found that & = 0.2 is satisfactory for giving numerical stability in our
case. To maintain accuracy, the time-step is also controlled so as to limit changes, in p and e,
to at most 2% per time-step at any comoving location.

In the observer time scheme the equivalent of (4.33) is

1 Ap
At=k—r  (2H 4.34
R < % )’ (4.34)

and experiments have shown that a value of k = 0.1 is satisfactory to achieve stability. We
have also added a timestep constraint for changes in the lapse f so that it will not change by
more than 2 x 1073% per timestep at any comoving location. This low value is needed in order
to follow the asymptotic approach to Dy R = 0 with care.

In order to achieve good grid coverage, we have used a composite prescription for the grid
spacing, with Ay increasing exponentially going outward through the inner and outer parts
of the grid but remaining constant in an intermediate region. For the exponential part of
the grid we have used an increment Ap; = 1.024 x Ay;_1. We need to have a grid extending
sufficiently far out to describe perturbations also outside the overdensity region. We started our
perturbations in the linear regime with length-scales Ry larger than the cosmological horizon
radius Ry, and had the grid reaching out to 10 Ry with around 2000 grid points.

4.2.2 Evolving the background solution

The pre-existing code that we have used as a basis for developing the present one has been
widely tested and we will not go into details of this here. It was important to make an
additional test, however, to ensure that the new code could satisfactorily evolve the unperturbed
background FRW solution.

Figure 4.5 shows results from a calculation using the cosmic time formulation. In the top
frames we see the very good agreement obtained between the analytical and numerical solutions
for the energy density e and the Hubble parameter H, given analytically by

e@)zeua(i)—Q (435)

H=_. (4.36)
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Figure 4.5: These plots show the agreement between the analytical and numerical solutions for the
background quantities. In the top plots the evolution off the energy density ep calculated at a particular
location, is plotted in the left panel, while the Hubble parameter Hy, is plotted in the right panel. In the
bottom plots the behaviour of the cube of the circumferential coordinate R? is plotted in the left panel
against the Lagrangian coordinate p at successive times, while the radial velocity U is plotted against
Ry /Ry in the right panel. The dashed lines represent the initial profile in the bottom panels.

The energy density remains uniform across the grid, to within deviations less than 1076, The
analytical solution for R as a function of p is given by integrating equation (4.2) that when
p(R) is constant, gives

1/3
R, = |- / (4.37)
dmp

This means that R® plotted as function of p should give a series of straight lines with the
gradients increasing with time. The numerically-calculated behaviour is shown in the left
bottom panel of figure 4.5 where the correct behaviour is reproduced to very high accuracy. A
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Figure 4.6: Profiles of the perturbations. The amplitudes plotted corresponds to the threshold values
measured at horizon crossing time, as given by Niemeyer & Jedamzik [39].

similar test consists of verifying preservation of the Hubble law UV = HR. The right bottom
panel of Figure 4.5 shows the behaviour of the radial velocity U plotted against R and we can
observe a series of straight lines with decreasing gradient, consistently with expression (4.36).

In the observer-time slicing, we have no simple analytic solution for the background against
which to check the numerical code. However the quantity I' is gauge invariant and I' = 1 to
within one part in 10° for unperturbed-spatially flat solutions, for both of the schemes used
here.

4.2.3 Initial conditions

To specify the initial conditions we have decided to use the same prescription as [39], where
the perturbations were specified in terms of the dimensionless quantity
_e—ep de

e(R) = == = = (4.38)

where e is the uniform background density given, for v = 1/3, by ey, = 3/32n¢ at any par-
ticular time ¢. In [39] three different types of expression for §, have been used, and these are
shown in Figure 4.6, measured at horizon crossing time (when they were imposing their initial
conditions), for the threshold amplitude. The mathematical expression for these expression
different types of perturbations are:

Gaussian:

§e(R) = Aexp <f——2—}?—2—.) : (4.39)
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Megican hat:

R? 3R? A
Polynomaial:

) ?(1 R’ )(3 g ) if R<+/3(LRy)

- TomT
5o(R) = LRy (4.41)

if R>+V3(LRy)

[en)

where the parameters A and L set the amplitude and length-scale of the perturbation. For the
Mexican-hat and polynomial perturbations, the excess energy in the overdense region is exactly
balanced by the deficit in the outer underdense region (i.e. fooo 476, R?*dR = 0), whereas the
Gaussian ones have only an excess, decreasing asymptotically to the background value. The
latter is not very satisfactory for cosmological perturbations because it violates the energy
conservation with respect the unperturbed solution, and so we concentrate here on the first
two types.

We follow the previous literature in also using an “integrated” perturbation § which repre-
sents the mass-energy excess in the overdense region with respect to that in a corresponding
uniform solution:

“Rg '
/ 47 6. R%dR
§ = L0

; (4.42)
—3'7TR8

where Ry is the radius of the overdensity. (In the case of the Gaussian, Ry is defined as the
radins at which &, has fallen to 1/e? of its value at R = 0.)

Niemeyer' & Jedamzik started their simulations exactly at horizon crossing time, when
L = 1, and this implies nonlinear amplitude of the initial ¢ in order to get black hole forma-
tion. As was noted by Shibata & Sasaki [44], perturbing just energy density corresponds to
the initial conditions with comparable components of growing and decaying modes, and this
seriously affects the evolution of the perturbation. To investigate this we mostly started with
perturbations which were still on length-scales much larger than the horizon scale [Ry/Ry > 5]
and were well within the linear regime [typically § ~ 1072]. Setting initial conditions within
the linear regime makes it easy to specify consistent density and velocity perturbations repre-
senting better a purely growing mode: ¢, grows linearly with time and the associated velocity
perturbation is given roughly by
dy(R) ~ —%, (4.43)
where 0y is defined in the same way as for d. in equation (4.38):

U-U, U
bu(R) =~ b= T

(4.44)

with Uy(R) = HyR, being the velocity field of the background Hubble flow. (We are here
considering adiabatic perturbations with a Newtonian gauge, in which the perturbations do
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Figure 4.7: This plot shows the time evolution of energy density perturbation amplitude with (line 1)
and without (line 2) an initial perturbation of the radial velocity U, as given by 4.43. The solid line is
a straight line with gradient equal to 1, representing the theoretical linear evolution of a pure growing
mode.

@]

not generate off-diagonal components of the metric.) Expression (4.44) is obtained from (2.49)

1
SH = —————
‘ 31+7) {

fe — SHb'yde] (4.45)
with the perturbation in R here being neglected because de and 6U are expressed as functions
of the spatial coordinate R that in this approach is considered as an independent quantity.
Although this is not completely correct, it allows us to get a very reasonable description of a
pure growing mode in the linear regime, considering U = U + §U = (Hy + ¢H)R,.

In Figure 4.7 we see more in detail the importance of including the perturbation éy given
by (4.43), plotting the amplitude evolution against time, with § being normalized to its initial
value. The perturbation used has an initial length scale Ry = 5Rpy while the final time
corresponds to the horizon crossing time, when Ry = Ry (remember that Ry/Rpy o t1/2).
The linear regime is represented by the first part of the evolution plotted in Figure 4.7 (until
t/t; ~ 10) and the straight dashed line represents the linear behaviour that a pure growing
mode has in the linear regime. The solid line 1 represents an energy density perturbation with
an associated initial perturbation also in the radial component of the four velocity. The solid
line 2 instead, represents the same energy density perturbation without perturbing the four
velocity at the initial time. The difference between the solid line 1 (with initial gradient ~ 1)
‘and solid line 2 (with initial gradient =~ 1/2) is very clear showing explicitly that, without
perturbing U by use of (4.43), a significant component of decaying mode is present, giving later
with the evolution a completely different value of the amplitude later in the evolution.
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4.3 Description of the calculations

4.3.1 Evolution of supercritical perturbations (§ > §,)

In this sub-section, we describe results from representative evolutions leading to black hole
formation, carried out using the null-slicing formulation.

Before moving on to new calculations, we first needed to check on whether our code did
reproduce the results of Niemeyer & Jedamzik [39] when we used their choice of initial conditions
and a simple exponential grid similar to theirs. We found extremely close agreement. For
perturbations with the initial 6 only slightly larger than the critical value d., the masses of the
black holes produced, Mgy, follow a scaling law:

Mpy = K (6 —6.)" My(tm), (4.46)

where K and vy are constants and Mp(tg) is the cosmological horizon mass at the horizon-
crossing timetz (i.e. when Ro(tg) = Ry (tm)). The type of behaviour given by (4.46) is familiar
from the literature on critical collapse (which, however, is generally considering collapse under
simpler circumstances and not within the context of an expanding universe). Our results match
very closely with those of [39], with §, >~ 0.67 for the Mexican-hat profile and ~ 0.71 for the
polynomial and Gaussian profiles and with y between 0.36 — 0.37 in each case. These values
for v are very close to the value 0.356... calculated semi-analytically for the same equation of
state within the standard critical collapse scenario [81].
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Figure 4.8: Scaling behaviour for Mpy as a function of (6 — d.) calculated for growing-mode Mexican-
hat perturbations specified within the linear regime. The filled circles refer to the standard calculation
discussed in section 3.2, while the open circles are for a calculation including a non-zero cosmological
constant A, as discussed in section 3.3, giving y = 3.0 x 1073,

Following these initial calculations to reproduce previous results, we then carried out further
ones starting from approximate growing-mode perturbations specified within the linear regime
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and with length-scales larger than the cosmological horizon. These perturbations were evolved
with the Misner-Sharp code until the moment when they entered the horizon and the current
value of § was then calculated for use as our measure of perturbation amplitude in the discussion
of scaling laws. Having done this, we switched to the Hernandez-Misner code for completing
the calculation.

Plotting the eventual black hole mass against (§—6.), we obtained scaling curves very similar
to those of [39] (and with almost identical values of ) but with substantially different values
for d.: for Mexican-hat perturbations, we found 6, ~ 0.43 and for polynomial perturbations,
0c =~ 0.47. Our scaling-law results for Mexican-hat perturbations are shown as the A = 0 curve
in Figure 4.8. The reason for the changed values of 4. is clear: in [39] the initial perturbations,
specified at the horizon-crossing time, had part of their amplitude contributed by a decaying-
mode component which then rapidly decreased leaving only the growing-mode part visible.
Only the part of the perturbation amplitude corresponding to the growing mode is relevant for
the black hole formation and so the effective § is smaller than that calculated in [39].

Noting the work of Hawke & Stewart (2002) [42] and the fact that the horizon-scale is an
important length-scale in the problem, we do not know if the linear scaling law would continue
to indefinitely small values of Mpy and (§—4,) or, instead, if it would level off at some minimum
value of Mpy. Confirming this behaviour in the case of growing-mode perturbations starting
in the linear regime is of great interest but requires refinement of our present code to increase
resolution and understanding better the reason for the appearing of strong shocks when § is
sufficiently close to .. We return to this in Chapter 6, with the fundamental change in the
initial conditions described in the following chapter. '

Figure 4.9 shows some more detailed results for a particular representative case within the
linear scaling regime. This run starts from a growing-mode Mexican-hat perturbation with
Ro/Rp =5 giving (0 — d.) = 2.37 x 1073 at horizon crossing, which leads to formation of a
black hole with Mgy = 0.4415 My (t5). The top two panels show the evolution of the lapse
J and the corresponding behaviour of the fluid worldlines. The interpretation of the collapse
of the lapse is particularly clear when an observer-time formulation is used: as f — 0, the
redshift of outgoing signals increases and the evolution as seen by a distant observer becomes
frozen, corresponding to black hole formation (see also the small inset where log f is plotted).
Note, however, that strictly “black hole formation” occurs only asymptotically in the future
according to this formulation. In the plot for the worldlines, one can see the separation between
the matter which goes to form the black hole and the matter which continues to expand, with a
semi-evacuated region being formed between them. Note that some of the outer material first
decelerates but then accelerates again before crossing this semi-evacuated region to fall into
the black hole. The bottom left-hand panel of Fig. 4.9 shows the behaviour of the ratio 2M/R,
plotted against R at successive times. The event horizon corresponds to the asymptotic location
of the outermost trapped surface, where DR = 0 and R = 2M. For the present purposes,
we need an operational definition for calculating Mpy, bearing in mind that the black hole is
only formed asymptotically and that further material may continue to accrete. The bottom
left-hand panel of Fig. 4.9 shows the approach of 2M/R — 1: our operational definition for
Mpp is to set it equal to the value of M at the maximum of this curve when (1 — 2 /R)
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Figure 4.9: A typical evolution leading to black hole formation: the initial perturbation had a Mexican-
hat profile and gave (§ — d,) = 2.37 x 1072 at the horizon crossing time. The top left-hand panel shows
the behaviour of the lapse function (the time sequence of the curves goes from bottom to top on the
right hand side); the top right-hand panel shows the fluid-element worldlines (the time is measured
in units of the horizon-crossing time tgr). The bottom left-hand panel shows the profile of 2M/R at
different, times; the bottom right-hand panel shows the corresponding evolution of the mass-energy (in
both of these panels, the time sequence of the curves goes from top to bottom on the right hand side).

first becomes smaller than 10~%. The bottom right-hand panel shows a corresponding plot for
M against R. It can be seen that the profiles for M become very flat just outside the black
hole region at late times, a consequence of the very low densities being reached there (less
than 10~* of the background density at the horizon-crossing time). The small inset shows the
continuation of this figure up to larger radial scales. For calculations with ¢ closer to d, the
rarefactions formed become increasingly deep, and one sees strong shock waves appearing at
the outer edge of the under-dense region.
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4.3.2 Evolution of super-critical perturbations when A >0

We were also interested to investigate the effect for PBH formation of including a cosmological
constant large enough to affect the dynamics. We recognize that this is a highly idealised
scenario since the present-day cosmological constant would have had negligible effect in the
early universe and other vacuum energies present after inflation are unlikely to have been
constant in time (e.g. quintessence). However, it is of conceptual interest to find out what
the behaviour would be in this hypothetical case. A cosmological constant A is equivalent to
a false vacuum with energy density e, = A/87 and pressure p, = —A /8. Its effect can be
included by adding these terms onto the standard energy density e and pressure p wherever
those appear.

A positive A eventually causes the expansion of the universe as a whole to start accelerating
and acts against the growth of overdensities, while a negative A would aid general collapse.
(The equations governing the background expansion when A # 0 are summarised in the Ap-
pendix A.) As the background density decreases with time, the cosmological constant becomes
progressively more important until, when e, becomes greater than e, the deceleration is reversed
and becomes an acceleration [see equation (A.2)]. It is convenient to introduce a quantity y,
the ratio between the vacuum energy and the total energy in the uniform background

Ey
e+ ey

(4.47)

which can then be written as

y = §AMI%,, (4.48)

since My = .%WRH3(6 + ey) with Ry = 2Mpy (Note that this type of relation holds for the
cosmological horizon in the same way as for a black hole event horizon)?. In the following, we
will use y as a general measure of the importance of the A term, with My being measured at
the horizon-crossing time for a perturbation with § = d.. The influence of A during formation
of a black hole of mass Mpy can similarly be characterised by the quantity AM 123 g and so, for
a given A, is greatest for large black holes.

In making computations with A > 0, it is particularly important to start the calculation at
an early time when the perturbation has a length-scale larger than the horizon. For appreciating
its effects, one wants A to be sufficiently large so as to make a significant difference for the
collapse, but not so large that it creates a problem for constructing the null-slice initial data.
By starting the calculation sufficiently early, this can be achieved although the values of y
which we will be considering are all very small (in the range 1073 — 1072).

The qualitative picture of collapses leading to black hole formation is not changed very
greatly by the presence of a A term but there are significant differences in the parameters of
the scaling law. We started all of these calculations with perturbations at five times the horizon
scale (i.e. Ry/Rg = 5).

*Both are trapped surfaces. A black hole event horizon is the asymptotic location of the outermost trapped
surface for outgoing light-rays whereas the cosmological horizon is the innermost trapped surface for incoming
light rays.
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The impact of A on the scaling law can be seen in Figure 4.8: v decreases for A > 0 and
for sufficiently small A is found to follow a linear relationship

v(A) =~ ~(0) — 8.3y. (4.49)
The critical amplitude §, ncreases with increasing A and also follows a linear relationship:
8e(A) =~ 6.(0) + 0.98y. (4.50)

This behaviour can be interpreted as follows: a positive A acts against collapse, so that cor-
responding black hole masses will be lower and the threshold amplitude ¢, will be raised. For
a given A, its influence is greater for larger black-hole masses than for smaller ones (x M%)
and this gives rise to the observed decrease in 7.

4.3.3 Evolution of subcritical perturbations (§ < §.)

For subcritical perturbations with ¢ considerably less than ., the perturbation initially grows
but then subsides back into the surrounding medium in an uneventful way. However, for
perturbations with ¢ sufficiently close to ., some very interesting behaviour is seen and we
present results from a representative case of this in the present subsection. Our calculations
for subcritical perturbations use only the Misner-Sharp code.
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Figure 4.10: Worldlines for a Mexican-hat perturbation with (§ — 6,) = —3.0 x 10~2). This plot shows
alternating collapse and expansion of the perturbed region while the outer material continues to expand
uniformly. The “cosmic” time is measured in units of the time at horizon crossing.

The run presented starts with a Mexican-hat perturbation specified in the linear regime,
with (6 — 8. = —3 x 107%). In Figure 4.10, the fluid worldlines are plotted and the main
features of interest can already be seen from this. Figures 4.11 and 4.12 then show details of
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the evolution of the energy density e and the radial velocity U. Figure 4.11 shows a sequence of
snap-shots of these quantities, plotted as a functions of R, at key moments during the evolution.
Fignre 4.12 shows the time evolution of these quantities at three (comoving) locations: near the
centre of the perturbation, at an intermediate region (mid-way through the collapsing matter)
and at the edge of the grid where the fluid is unperturbed.

The evolution can be summarized in terms of the following steps (see particularly Figures
4.10 and 4.11):

1. Initially, the perturbation has very small amplitude (Je ~ 1072) and its length-scale is five
times the horizon scale; the perturbation amplitude then grows within the expanding fluid.
The deceleration in the perturbed region is larger than that in the unperturbed region
and its expansion lags progressively behind that of the outer matter until eventually it
starts to re-contract shortly after horizon crossing. The maximum infall velocity reached
1s, however, rather small [see row (a) of Figure 4.11] which is for a time considerably after
horizon crossing, when the perturbation has become very nonlinear]. The infall can be
clearly seen in Figures 4.10 and 4.11 but is only just visible in the third frame of Figure
4.12.

2. The contraction is not strong enough to produce a black hole and the fluid bounces
out again [row (b)]. expanding until it encounters the surrounding matter which did not
participate in the contraction. A compression wave forms where the two regions of fluid
meet, while the density becomes very low at the centre of the perturbation [row (c)].

3. The compression wave proceeds out into the swrrounding material [row (d)] but also some
matter is sent back into the middle of the rarefaction where it undergoes a second bounce
which is much more extreme than the first with a very abrupt change of velocity in the
central regions (as can be seen from Figure 4.12). Whereas the outward moving com-
pression 1s damped geometrically as it proceeds to spherical surfaces with progressively
larger areas, the inward-moving wave of material is geometrically amplified by the inverse
process. The reason for the second collapse and bounce being more violent than the first
is that while the first is a collapse of an overdensity which is resisted throughout by in-
ternal pressure, the second is essentially the collapse of a “shell” with near vacuum inside
it and is hence close to free-fall until just before the bounce.

4. The compression wave formed by the second bounce propagates out into the surrounding
medium following the first one [row (e)]. Both proceed to damp geometrically and even-
tually the medium returns to a uniform state. Note that the second compression wave is
very steep fronted (see Figure 4.11) but is not quite a shock. It is likely that that genuine
shocks would be seen for perturbations with § closer to d,.

It is useful to make some further comments about the plots in Figure 4.12. The left-hand
plot shows the density normalized to its initial value at the same comoving location: this shows
the variation of the local density against the background of the general decrease in density
as the universe expands and allows one to see clearly the local contraction and expansion of
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Figure 4.11: Plots of local quantities as functions of R/Rg(tg): the velocity U/c is shown in the
left-hand column and the energy density e/ep in the right-hand column. The frames correspond to the
following values of (t —to)/tm: (a) 7.02; (b) 25.92, (c) 31.67; (d) 33.64; (e) 40.11. Note that Ry is
increasing with time and so points with R/Rg(tz) > 1 can be within the current horizon scale at times
after horizon-crossing.
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Figure 4.12: Evolution of the energy density e and radial velocity U at three (comoving) locations:
near to the centre of the perturbation, at an intermediate region and at the edge of the grid where
the fluid is unperturbed. Each quantity is measured in units of its initial value at the same comoving
location.

the fluid. Initially, the perturbed region is also still expanding but it then starts to contract
when the perturbation amplitude has reached a high enough value. The right-hand plot shows
the local value of the radial velocity also normalized to its initial value at the same co-moving
location. This has a very different behaviour from that of the energy density, with the inward
velocity during the second collapse being very much greater than that during the first and the
second bounce being far more abrupt. We see just two bounces in our calculation: after this
the expansion of the universe prevents further ones, although we expect that more bounces
would be seen for an initial perturbation with § closer to &.

In this chapter the treatment used to set the initial conditions gives an approximate de-
scription of pure growing mode perturbations. This has been useful to clarify the discrepahcy
observed by Green et. al [43]. In the next chapter we will present a more sophisticated treat-
ment that will allow us to describe pure growing mode perturbations more accurately.






Chapter 5

Initial conditions in terms of a
curvature perturbation

In this chapter we will present an analytical calculation to reformulate the problem of imposing
initial conditions for PBH formation introducing the perturbations as functions of only one
component, the curvature profile. We will see that this enables us to specify a purely growing
mode more precisely than in Chapter 4, that is very useful to connect our initial conditions
with conditions coming from inflation.

5.1 Introducing a Curvature perturbation

We will now rewrite the Misner-Sharp equations in a perturbative form to derive how the
different variables depend on a specified curvature perturbation imposed at an initial time. To
explain the idea, we start by writing the Friedmann metric that describes the homogeneous
and isotropic background of the universe,

dr?

dSQ = —“dﬁg +52(t) 1—“_7(?}2

+r? (al(?2 + sin’ €d¢2) (5.1)

where s(t) is the scale factor and K is the curvature parameter that is equal to 0, +1 and —1
for flat, closed and open universes.

From the linear theory of cosmological perturbations [6] we know that a comoving curvature
perturbation R is related to a corresponding density perturbation and that, when the length
scale of the perturbation is much larger than the horizon scale, the curvature perturbation
is time independent, because pressure gradients are negligible. (Later we give a brief review
of the main relations for curvature perturbations, as found in the literature). In two recent
papers, Lyth et al. [82] and Langlois & Vernizzi [83] have shown that a quantity connected with
curvature perturbations is constant in time even away from the linear regime. Our method is
closely related to those results.

Remembering the general metric in spherical symmetry of the Misner-Sharp scheme, given
by expression (4.1) :
ds® = —a? dt* + b? dr® + R? (d6” + sin® 0dy?) (5.2)

81
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we want to consider here PBH formation in a spatially flat universe with K = 0. To do this one
can see that, introducing a profile K = K{(r) into (5.1), the FRW metric modified in this way is
still a solution of the Einstein equations if we perturb consistently the quantities a, b and R in
(5.2), which in the background are equal to 1, s(#) and s(t)r respectively. The perturbations of
these quantities tend to 0 in the limit of time ¢ — 0. This makes the modified FRW metric with
K = K(r) an asymptotic solution of the Einstein equations in the limit ¢ — 0, because K (r) is
time independent by definition, and so it should be built inside the geometry of the space time
from the beginning. Therefore it seems to us an intuitive and natural choice to represent the
curvature perturbation described in Chapter 2 with the function K (r) for perturbations with
scales much larger than the horizon length, and to solve the system of perturbed differential
equations in order to calculate how the set of variables depends on K (r) in this regime.

To develop the perturbative analysis for all the quantities appearing in the Misner-Sharp
equations we need to solve the following system of differential equations:

R=alU (5.3)
b U
Cl.l ,)/ eI
T T THqe (5.5)
M = —47vyeR?R
M' = dneR*R’ (5.7)
12 . IM
%:1+U2+ = (5.8)

where the dot and dash denote differentiation with respect to ¢ and r respectively, and we have
used the equation of state (1.20) to express the pressure as function of energy density, (4.7) to
give an expression for I', and p can be calculated later with equation (4.9). We will treat the
parameter -y generally, as v = y(t), focusing later on the simplest case of one fluid component
described by constant -y.

The background value of the energy density (indicated with the suffix “b”) is calculated

$\ 2 87
2) =gz==2_ .
() -m2=Fa, 5.9)

with the Friedmann equation

while the background value of the other quantities is derived from the FRW metric and the
above set of equations (5.3 - 5.8).

ay = 1 ( )

bb = S( ( )

Ry = s(t)r (5.12)

Mb = %WEbR% ( )
Uy = HyRp = 3(t)r ( )

When the perturbation length scale is well outside the horizon, the perturbations of all
quantities, except for curvature, are taken to be very small with respect to the background
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values and can be treated in terms of first order perturbations. It is useful to parametrise
the scale of the perturbations using an adimensional parameter ¢ defined as the ratio of two
physical distances, the physical length scale of the overdensity in the perturbation Ry = s(t)rg
and the horizon scale Ry = Hb‘].
[ Rp 2 B 1 2 . 1 1 _
€= (E) = (Hbsro> = << (5.15)

By definition, € is related only to the background quantities and is a function only of time,

with the behaviour of its time derivative being given by

S L R S 1 Sy | I L (5.16)
€ s e 3 s s

— ' fg:i: ! _Q_: ! 7
e=m(s), Sm=g=0, 2=0 (5.17)

In particular it is important to point out that expression (5.16) is a consequence of energy
conservation law and that it holds also when ~ is a general function of time.

Introducing e explicitly, we now define the perturbations of each quantity as:

R = Ry(l +€R) (5.18)
U=HR(1+el) (5.19)
R’ - ‘
b= (1 + ¢h) (5.20)
1—K(r)r?
a=1+c¢a (5.21)
e =ey(l + €é) (5.22)
4 . -
M = gﬂebR“‘(l + eM) (5.23)

where it should be noted that the quantities outside the brackets in the expressions for U, b and
M on the left hand side are not just the background quantities. Although this choice might
seem non-intuitive at first sight, we find that it simplifies the final form of the equations. If
the value of ¢ is small enough, we are allowed to make a linear perturbation analysis, apart
from the amplitude of the curvature perturbation profile K (r) which represents the source of
perturbations in this description. The aim is to express all of the tilda-quantities as functions
of K(r).

We can start to solve the problem perturbing equation (5.3), and using expressions (5.16) and
(5.17) we get,

al

R

3 - 8 - ~

, + (eR) = E(l +ea)(l+el)

sé~ OR _ -
- OR

1 it
( +37)R+6£

R
R.

Il

a+0U. (5.24)
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Perturbing equation (5.4) we get

R' = (aU)’
- a'U
(Eb) = —“‘El—
b+ eb=—ca'lr
s

(1+439)b+ % _ —ra. (5.25)

s el

Perturbing equation (5.5) we get

which is simply integrated as

Perturbing equation (5.6) we get

Bl

1, -

Ey | R T
€b+3R+(6J\[):| = (1 + ¢€)

Iny!

that, using (5.16), we can write as

D= 3(149)°
Ep 8

. R - }
_3(1 + v)g +3(147)5 — 301+ ’y)ZEM 4 (eB) +
+3§eM + 3")’%65 =0.
Using now equation (5.3) we get some simplifications
eNT + M — 37261\71 + 37§—eé+ 3(1+7)(ER +eR) = 0,
and finally using equation (5.24) and (5.26) we get

- OM .
M+ o = —3(14+)U. (5.27)

Perturbing equation (5.7) we get

J0-+at) 3 + ()] = 0+ el
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that after some algebra can be written as

Finally we have to perturb equation (5.8)

2 3
- 2 = . S 2 ~ SWEbR ~
[(1 — K (r)r?)(1 — 2€b) — 1] = SRY1+260) - (L + el),
that using (5.9) becomes
~ -2 ~ ~
- [K@ )2 4 2eb(1 — K(r)7~2)] = R2—2—26(2U _ M),
and now using expression (5.15) for e:
~ 7‘2 . ~
- [K(r)r2 +26b(1 — K(r)r?)] = 5(20 - ).  (5.29)
: 0

At this point we use the linear regime approximation for perturbations with length-scales larger
than the horizon (e <« 1) that allows the first order term to be neglected, giving

U= % [M - K(r)r(ﬂ . (5.30)

This is the only equation of the system where, at the end of the algebra, K(r) is appearing
explicitly. Expression (5.29) shows that the zero order perturbation in curvature (on the left
hand side of the Einstein equations) relates to the first order of the other quantities, because
of a cancellation of ¢ on the right hand side of (5.29). From the definition of T given in (4.7)

one can rewrite (5.30) as
1-T7?
K(r) = , (5.31)

r2

which is a useful expression to study later the accuracy of the linear approximation as a function
of of €. This relation shows also the connection between the profile K (r) and I', which is an
invariantly defined quantity representing an energy per unit mass.

Now we can solve the system of perturbative equations composed of the four differential
equations (5.25,5.24,5.27,5.28), and two algebraic equations (5.26,5.30). Substituting (5.30)
into equation (5.27) we get

oM  5+3y 3

5 s M =S (1+7)K(r)rg, (5.32)

and from this expression we can see that it is possible to separate the variables (r, £) because,
as we have assumed at the beginning, « is just a function of time related to the background
solution (remember that ¢ is the logarithmic time defined by (5.17)). We therefore write

M = ®(6)K (r)rd, (5.33)
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that gives the following differential equation for the function ®(&)

dd 543y
dé 2

3
PH = 5(1 + 7). (5.34)

Before entering into a detailed discussion of the particular equation of state, we treat for the
moment ®(¢) as a free function and solve the system of perturbed equations. Expression (5.33)
is the solution for the mass perturbation M and inserting this into (5.28) and subsequently
making all of the consequent substitutions in (5.26) and (5.30) we get the general expression
for the energy density perturbation €, lapse perturbation @ and radial velocity perturbation U:

1

E=0(8)55 (K ()] r? (5.35)
= ~(0) s K ()1} (5.36)
0 = 5 [8(6) ~ 1 K(r)rf (5.37)

Substituting these solutions into (5.24) and (5.25) we find two differential equations for the
perturbation quantities R and b, given by

- OR 1 19
(1+37)R+ % ~®(0)7 z,yg,;;g— [P K () 73
5 [8(6) ~ 1 K ()3, (5.38)
- Ob R S B T PN ! r
@ s 3= e [ k) | et (5.39)

that can be solved introducing two new free functions of time I7(¢) and I»(£) related to ®(¢)

K

R= 1O PO 18+ B6) X0x. (5.40)
b=I(&)r [3—:},— (rBK(r))I} g (5.41)

The relation between I3 5(£) and ®(¢) is obtained introducing (5.40) and (5.41) into (5.38) and
(5.39).

D usmne - L (542
T+ 1+ 3mne) = [2(6) - 1] (5.43)

This completes the general solution of the system of equations that is formed by expressions
(5.33), (5.35), (5.36), (5.37), (5.40), (5.41) for the set of perturbations and by the first order
differential equations (5.34), (5.42), 5.43) for the free functions. The elegance and simplicity of
this solution is in the separation in the perturbed quantities between the time evolution given
by € and ® and the space dependence given by K (r).

Now we discuss the nature of the free functions and can understand explicitly how they
are related to the background solution. In general if the matter of the universe is described by
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different components (labelled by the index“”) with different behaviours, the function v is a
function of time defined with respect to the composition of the matter of the universe. We can

write therefore

o= il D2ivigi Dot 5.44
y(s) = = . (5.44)
2.6 Dt €
where scale factor s has been used as a time variable for convenience. At the initial time it is
possible to express the presence of each component in the universe determining the fractional
amount f; with the correspondent coefficient v;, having for each component

€ = fie ~ 3_3(1+7i)7 Z fi = 17 (545)

where f; and v; are constants, because they are measured at a particular time. Therefore

Zi fi,.yis—3(l+’)’i)

"Y fancd ZZ fis—3(1+7i> (546)
Q(s) =32, fis 7307 o e(s) «x H2(s) (5.47)
4@ _dQ _ - —3(147) _ p=3(14%) 30 _ 3y
e T a s 32;fﬁ? 32;'nhs = -3Q = 37Q
dQ 3(1+7) 1dQ 1 dH
—_— I — 1 " —— T e e s T e K
i3 3(1+9)Q or 5 2 Odé T (5.48)

Using this last equation for v in equation (5.34) one obtains

dd ) 1 dH o= 1 dH

de¢ H d¢ - Hde’
and this equation can be solved with a general solution of the form
O = Fe!.

After substitution, it is found that F and p have to satisfy the following differential equations

dF __1dm_,
d¢ H de¢ ’
d 1dH
du g ldH
dé H d¢
giving
eh — ns-lnA _ &
e 7
ot [TE
H J, H
and then Hs) [* d
3 £
D(s)=1- . .
(5) ) H (5.49)

Finally we have to solve the two differential equations for I; and I» that are both of the

same form,

SI% + (14 37)1(s) = F(s) (5.50)
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where F'(s) = 1+ <I>(9) in the case of I(s) = I;(s), while F(s) = ®(s) — 1 when I(s) = I2(s).
From the expmqqlon (5.16) it is possible to write

1 de , [ d(1/H?s?)
1 = —— = %5 st 5.5
+ 3 e i s (b 7 (5.51)
and this allows the differential equations (5.50) to be written in a form that can easily be
integrated,
d 1 1
— =T = ——=F .52
2 | gratte)] = Pl (5.52)
therefore
I(s) = H2(s) &2 /SF( Lt g (5.53)
0 H%(s)s? s
which gives the following expressions for the two functions [, and Is:
8 1 ds
I(s) = H? 2/ 1) g = 5.54
1(5) (S)S 0 1_{_7(8) (S)HQ(S) 2 s ) ( )
8 1 ds
o= 12005 [0 -1k |
I(s) = H()s" | (@0) = V) gy (5.55)

All of the physical quantities are then related in a general and consistent way with three
fundamental degrees of freedom in the choice of initial conditions. The first one depends just
on time and is given by the time functions Q(s) or H (s) that specify the various components of
particles, scalar fields, cosmic strings, etc., present in the Universe at any particular time. In
other words the time functions (y(s), €(s), ®(s), I1(s), I2(s)), that we can calculate from the
particular choice of H(s), contain the background history of the Universe, from the beginning
until the time of imposing the initial conditions. The second degree of freedom depends just
on space and is given by the particular profile chosen for the spatial curvature function K (r).
The last degree of freedom is given by the choice of the initial perturbation scale with respect
to the horizon scale, chosen such that ¢ < 1 in order to make the perturbative analysis self-
consistent. In practice we will use the maximum value of this parameter for which the linear
approximation is sufficiently precise.

For the rest of this chapter we will concentrate on the simplest case for the equation of
state, with v constant. (In practice in the simulations we will set it equal to 1/3 because the
radiation epoch of the universe is the standard scenario for PBH formation.) This means that
the Hubble parameter behaves as -

3(+y

H(s) ~s 2, (5.56)
and the integrated functions @, I7, and I, are just constants

3(1+7)

_ 2 _ 3y
h=armaey " TG+ (5:58)
Lh=— (®-1)= 2 (5.59)

143y T (1439)(5+37)
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In this case, therefore, the tilda-quantities are time independent and the time evolution is
determined just by e. This allows us to reproduce easily the standard solution of cosmological
perturbation theory when +y is a constant. From (5.16) we can calculate the time evolution of e

2(1+37)
L

(t) = elto) (;) e (5.60)

0

and this is exactly the standard solution of the perturbation equation (2.59).

5.2 General properties of the curvature profile

One important aspect coming from the definition of b given by (5.20) is the mathematical
requirement that the argument inside the square root that must be positive,

1-K(r)r?>1 = K(r)< Flf (5.61)
otherwise in the range of r where the argument of the square root is negative the comoving
radius is not defined. This corresponds to the physical condition that a perturbed spherical
region of comoving radius r should not already be causally disconnected from the rest of the
Universe at early times. Another important property is the conservation of the total energy of
the Universe, when the perturbation is made,

oo
/ 4rr?E(r)dr = 0, ) (5.62)
Jo
that implies
lim P3K(r) =0, (5.63)
T—00

which means also that the Universe remains spatially flat on a large enough scale. A final
property of the profile of curvature is the value of ry that specifies the length-scale of the
overdensity in the perturbation; from (5.35) we have

B(ro) =0 = K(ro) + %UK'(TO) = 0. (5.64)

Considering the integrated quantity ¢ defined in Chapter 4 by (4.42), we can see from equation
(5.28), that any spherical integral of é is independent of the particular curvature profile used,
but depends just on the value of K (r) at the outer edge of the interval. The explicit expression
for § gives so

4 Lo e_g
55(§wg) | = = 2K (o, (5.65)
0 b

and we can appreciate from this expression that § is gauge independent since it is directly
proportional to K (rg)rg which is an invariantly defined quantity. The elegance of this expression
is seen in the perfect separation of the different physical contributions: e specifies the linear
evolution of the perturbation amplitude in the long wavelength limit, ® gives the contribution
of the equation of state and K (rg)r3 specifies the spatial profile of the perturbation.
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Now we show how to link the curvature profile K (r) to the comoving curvature perturbation
R introduced in Chapter 2. To simplify the discussion and avoid referring continually to
expressions introduced in the second chapter, we rewrite here the main expressions that we
have seen there in more detail. The definition of R comes from a linear perturbation of the
FRW metric, where the spatial part of the metric tensor is given by

gij = 52 [(1 -+ 27?,) 51']‘} s (5.66)

and the calculation of the spatial scalar curvature R(® gives

@ _ ,F
RO = 45R, (5.67)

where % is the comoving wavenumber associated with the perturbation. The comoving curva-
ture perturbation R is also connected with the pure growing mode solution of the perturbation
equation for the energy density by

e, _ 207) (k)
ey, 543y \sH

This relation is obtained using a quantity called the “peculiar gravitational potential” ®g
g

defined as ,
de 2/ k \°
_— = —— | — 5 r
o 3 (5H> da, (5.69)

that is linked to R by a first order differential equation

1. 5+ 3y
_(I)G+u+ s}

= ——og = —(L+7)R, (5.70)

that has a pure growing solution given by

$g = —355—1_1:—%%)—73. (5.71)
In the linear perturbation regime, when the length-scale of a perturbation is much larger than
the horizon scale, the pressure gradients are negligible and it turns out that R and ®g are
time independent. This is also connected with the adiabatic condition, that assumes that
the inflaton field has only one component, with negligible effects coming from other fields.
These characterise the production during inflation of vacuum fluctuations giving the origin of
cosmological perturbations.

If we calculate the spatial scalar curvature (see appendix B) with the curvature profile K (r)
explicitly written in the metric, we find that

8 3y—1 42 2(2 + 3y) K
= - —_ 1 P —_— .
R 6[8(1+65+37K>+82( 3 K)o (5.72)
where
K = K(r)+-K'(r). (5.73)

3
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Because the metric is diagonal the spatial component is perpendicular to the time one and
(3) 6 . [A— IR
RO = [A (r) + =K (T)] . (5.74)
- J

If we identify & = 1/7g, which is natural because the wave number is representing the inverse
of the wavelength of the perturbation, we see that

k 2
(L)

k Using this and comparing equation (5.67) with (5.74) we see that the two equations are the

ot

(5.75)

same if we identify

R = gr% [K(r) + gK'(r)} (5.76)

and the same result is obtained comparing (5.35) with (5.68). We notice also that equation
(5.70) is the same as (5.34), in fact the peculiar gravitational potential defined in (5.69) can be

written in our terminology as ®q = —(2/3)€ and then we can use equation (5.28) to change
the variable M to & in (5.34).

We have therefore shown that the comoving curvature R is directly linked to the curvature
profile K(r) even when R is not a small quantity. The validity of this direct relation is ensured
when the length scale of the perturbation is much larger than the horizon scale. The adiabatic
statement has an analogy in our formulation of the problem because in our general solution the
choice of a profile for K(r) is the only free component that one needs in order to specify the
behaviour of a perturbation. Expression (5.76) is very useful for connecting the perturbation
profile to the vacuum fluctuations produced during inflation, with equation 2.11 that we rewrite
as

R = — [H dﬁ} . (5.77)
QZS =1

5.3 Numerical implementation of the formalism

In this section we make a particular choice for the profile of K (r) in terms of two free parameters.
In section 5.3.1 we discuss this particular choice explaining how the curvature specification is
inserted into the code and showing how the shapes of the perturbations are modified when we
vary the parameters. In section 5.3.2 we make some numerical tests to calculate how small e
should be in order to be small enough to make the linear approximation satisfactory.

5.3.1 Parametrisation of the curvature profile

We specify the initial curvature perturbation by giving K as a function of r. However, both
r and K are gauge-dependent quantities and so care is needed when transferring the initial
perturbation profile onto the grid used for the numerical calculations. The Schwarzschild
circumference coordinate R used in the code is invariantly defined and is related to r by Ry =
s(t)r, where Ry is the background value of R at a co-moving location before introducing the
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perturbation. The particular values of s(#) and r are gange dependent, but what is important
is that their product is invariantly defined. Another gauge invariant quantity is the product
K(r)r?. We specify K (r) and this then determines the value of 7y at the outer edge of the
overdensity in the perturbation from equation (5.64). We then specify the physical length scale
Ry of the initial perturbation in terms of the initial horizon scale:

Ry = NRy, (5.78)

where N is the number of horizon scales inside the scale of the overdensity. We need to choose
N such that the perturbation length scale is much larger than the horizon scale and, from the
definition of ¢ in (5.15), we have

To have ¢ <« 1 we need to have N > 1 and N will be one of the input parameters used to
impose the initial conditions. Expression (5.78) gives also a direct link between the scale factor

and the value of rg
;
s(t) = N (5.80)
To

and we can use this to define the comoving coordinate as

Rb T0
i R A
s(t) NRy ©

(5.81)

where the value of the circumferential coordinate Ry, is calculated with equation (4.2), simply
integrated for the background universe as

I 1/3
= | - . .82
Rb <4TF/)) (58 )

To decide now how to parametrise K (r) we start by making some physical considerations
about what could be a reasonable perturbation shape. For a simple and natural description,
it is useful to start with a centrally peaked profile of the energy density that looks similar
to the Mexican hat profile used in Chapter 4, which means that outside the region of the
overdensity there is an under-dense region that tends asymptotically to the flat solution. To
describe an energy density profile with these properties one should choose a centrally peaked
profile of curvature that tends asymptotically to zero with a suitable continuous function. The
continuity should be ensured at least in the first and second derivatives, because these play a
key role in the expressions for the perturbation profiles of the different variables. To conserve
the common normalisation used in cosmology where a closed universe has a curvature equal
to 1, we choose to normalise the curvature profile to have K(0) = 1, and then connect this
point asymptotically to zero. This is of purely formal convenience however as the scaling is
determined when fixing the gauge by comparison with invariantly defined quantities.

We start with a family of curvature profiles based on a Gaussian shape, described by

K01 = (1 a1 -
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where o and A are two independent parameters. In the particular case o = 0, K(r) is exactly
Gaussian. To understand the behaviour of this function as the parameters are varied we need
to look at its first derivative given by

K'(r) = ~a— 1+af—7f— ex —i
2 2A2 ) | PP\ T oAz

that we use to calculate the value of ry as function of o and A using (5.83) and (5.64). We find

|

(5.84)

[

2
CYYE(QJ - (ba—2)zy — 6 =0, where Ty = —2% (5.85)
with the following solutions
,r‘g — 3A2 if aa=0 (5.86)
7‘% _ AQ(S&—Q):’: éz'cx—2)3+24a i a0 (5.87)

If o is positive only the solution of (5.87) with the positive sign is acceptable because the other
one gives rg being negative. If v is negative, both of the solutions are acceptable in these sense,
and the one to associate with ry is the smaller one, which is anyway the one with the positive
sign in front of the square root. The ratio (rg/A)? changes with o and its behaviour is plotted
in Figure 5.1. From (5.86) and (5.87) we see that, for a given value of «, ¢ is a linear function
of A.

Figure 5.1: The behaviour of (rg/A)? with varying a.

The solution for rq can now be used in (5.81) to transform the spatial comoving coordinate
in the background coordinate Ry,.
r? F(o)

ey her =
A2 oy , where Z NRp

(5.88)
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and

Fla) = ba—2)+V(a—22+24a if a#0 (5.89)

=3 if a=0 (5.90)

The variable Z is normalised with the length scale of the perturbation and therefore it is
equal to 1 at the edge of the overdensity. One can notice that the parameter A cancels in the
expression for r/ry in terms of Z, and this makes it simple to interpret the physical meaning of
o and A. In fact if we write the energy density perturbation profile as a function of Z we get

&(2) = cp(g)QA—:F(a) 1+ (ga— 1) %CC:)ZQ - % (F;;"))QZ“} x
X exp (—F%ﬁ) (5.91)

and we see that the spatial profile given by the expression inside the parentheses is dependent
only on «. The role of A, appearing only outside the brackets, is to parametrise the amplitude
of the overdensity, increasing with increasing A. The separation of components in (5.91) is very
useful from the practical point of view. It allows one to have complete control of the values of
the input parameters, without a change in one of them affecting the other. For studying the
curvature profiles, it is useful also to calculate the value of the second derivative of K (r) at the
centre, given by

. a—1
I\”(O) — _A‘i“

and we see that when o > 1 the value K"”(0) is positive and an off-centred peak appears in the

(5.92)

profiles of both curvature and energy density. For o« < 0, instead, there is a second overdense
region, corresponding to the second solution for ry found in (5.87). Because we are interested
in solutions that represent perturbations centred at r = 0 and behaving like a Mexican hat, we
restrict the range of shapesto 0 < a < 1.

In Figure 5.2 we have plotted corresponding curvature and energy density profiles for three
different values of o between 0 and 1, taking the same value of A. The particular case of
o = 01in (5.91) coincides with the Mexican hat shape used in the previous chapter during the
radiation dominated epoch, where & = 2/3:

3 3
&2) = A? [1 + -2-22} exp (-522>, (5.93)
where the parameter A appears with the same meaning as the quantity used there to parametrise
the perturbation amplitude.

A great advantage of this description is the possibility to calculate the perturbation ampli-
tude ¢ defined in (5.65), directly from the curvature profile. For a general value of o (in the
radiation epoch) this gives

5 = #%F(a) (1 + F—i?‘—)) exp (—%‘f_)> o (5.94)
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Figure 5.2: The left hand plot shows the curvature profile K (r) as function of the comoving coordinate
for three different value of o (0, 0.5 and 1). The right hand plot shows the corresponding profiles of
energy density perturbation & plotted as functions of Z. These cases and those described in the next
figures have been calculated with v = 1/3 (equivalent to ® = 2/3.)

‘Condition (5.61) should be taken into account to calculate the maximum allowed value of the
perturbation amplitude for each shape. Therefore one needs to calculate the maximum value
of A for each « and this is shown in Figure 5.3 for two different cases (¢ = 0 and o = 1).
We can see clearly how an increment of A in the profile of K (r) corresponds to an increment
in the perturbation amplitude.

It is interesting to look also at the perturbation profiles of other quantities, in particular
the radial velocity U and the circumferential radius B. Together with the energy density é
these form the set of perturbations that we need to insert into the numerical code in order to
specify the initial conditions. All of the other quantities instead are then calculated directly
by the code using the set of Misner-Sharp equations. Rewriting the initial conditions used in
Chapter 4 in terms of the tilda-quantities, expression (4.43) becomes

. . 1.

U~H = —7¢ (5.95)
A difference between this approximation and the more precise solution obtained with K (r) is
that the perturbation U calculated with (5.37) is always negative if the curvature profile is
always positive, while using (5.95) U is negative in the region of the overdensity and positive
in the region of the underdensity. The behaviour of U and R is plotted in Figure 5.4, for the
same values of parameters as used in Figure 5.3.

For completeness, we show in Figure 5.5 the behaviour for the two cases @ > 1 and & <
0. The left hand panels show the behaviour of K(r) while the right hand panels show the
corresponding behaviour of &(r). The top panels show cases with o > 1 and we can see that
increasing o enhances the off centred peak creating a kind of shell perturbation with spherical
symmetry. The bottom panels show the behaviours of K(r) and é(r) for & < 0 where the
curvature profile is similar to a Mexican hat. This leads to the appearance of a new overdensity
region outside the central perturbation, and the energy density profile tends asymptotically to
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Figure 5.3: The left hand plots show the curvature profiles K (r) as functions of the comoving coordinate
7, while the right hand plots show the corresponding profiles for the energy density perturbation € plotted
as functions of Z. For ¢ = 0 (upper plots) the different profiles correspond to A between 0.2 and 1.1658,
which is the maximum value allowed by (5.61). The values of A are higher for the higher curves. For
a = 1 (lower plots), the values of A used are between 0.15 and 0.77156.

the background from positive values, and not from negative ones as in the case of @ > 0. These
types of profile are, of course, quite exotic and unlikely to happen, therefore we do not pay any
more attention to them in the present work.

It is useful to consider also a different expression for the curvature that in some respects
is similar to the one analysed until now in the range 0 < a < 1. We consider the following
‘expression:

K(r) = | (5.96)
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Figure 5.4: The left hand plots show the behaviour of U corresponding to the curvature profiles of
figure 5.3. The right hand plots show the corresponding behaviour of R.

where the first derivative is
0 if r <A,

_ 3 _ 2
_%(r Ay) exp (———-—————(T ZAAQ*) ) if r> A,

In the left panel of figure 5.6 we show the behaviour of this new parametrisation of curvature

(5.97)

showing explicitly the two different parameters A and A,: A, specifies the length of the plateau
where K (r) = 1, while A gives the sharpness of the profile that connects the plateau to 0 at
infinity. In the particular case of A, = 0 the curvature profile coincides with case in the
previous chapter. Applying the condition given by (5.64) we obtain the equation to calculate
the value of rg:

(ro — AL)?
2A2
The analytical solution for z in this case is complicated and so we have used the Newton-
Rapson method to find the first positive root numerically. The behaviour of 7y as function of

zh 4+ Azl — 3A%2 — 6A* = 0, where Ty = (5.98)
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Figure 5.5: The left panel shows the behaviour of K (r) for @ > 1 in the top row and for a < 0 in the
bottom row. The right panels show the corresponding behaviour of the energy density perturbation é.

A has been plotted in the right panel of Figure 5.6 for A, = 0,0.5 and 1 and we can see that
the value of A, represents the lower limit for 7o when A = 0, corresponding to a square wave
curvature profile. Increasing A, the value of rg grows roughly linearly, in a similar way as in
the previous formulation for a fixed value of a. The maximum value of A, acceptable for the
condition (5.61) is 1 when A = 0, with the 1/r? curve touching the corner of the square wave
at K (7"0)‘ = rg = 1. The value of A,, giving the length of the plateau, gives the minimum value
of the perturbation amplitude §, corresponding to A = 0. The value of A is then specifying
the sharpness of the perturbation similarly to « in the previous case.

In Figure 5.7 we show in the left top panel, how the profile of K (r) is changing when A, is
constant and A is varying up until the limit given by (5.61), while in the left bottom panel we
show the simulation when A is constant and A, is changing. In the right panels we show the
corresponding behaviours of é(r).
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Figure 5.6: The left panel shows the general behaviour of K (r) given by (5.96), indicating explicitly
the meaning of the two parameters A and A,. The right panel shows the value of rp with varying A,
for three fixed values of A,.

5.3.2 Numerical tests

Now we discuss the numerical tests that we have made in order to be confident that the
perturbation profile X (r) has been introduced consistently into the code. We need to study
the approximation of imposing a perturbation with a length scale much larger then the horizon
length, in order to determine when ¢ is small enough to make higher order terms negligible.
One test is to use equation (5.29) to re-derive K (r) after calculating the initial conditions for
the various quantities. This expression is valid when the higher order terms are negligible,
therefore we expect to find some difference between the profile of K(r) calculated with (5.29)
and the original ones used to build the initial conditions. In Figure 5.8 and in the left panel of
Figure 5.9 we plot the result of this test using both expressions for K(r) with o = 0, o = 1
and A, = 0.5. In both cases we use a value of A very close to the maximum, corresponding
to K(r)r? = 1, in order to make the test harder. The solid lines are the analytical profiles of
K(r), while the dashed lines correspond to the derived profiles of K (r) with different values of
N. The first value used was N = 1, that we know is not large enough as is also clear from
the picture, and we then increase N progressively. We can appreciate the progressive approach
to the analytical solution obtained in this way, where the most precise case shown in the plots
corresponds to N = 10. The centre of the perturbation is the region where there is the largest
difference because it corresponds to the part of the perturbation that is initially inside the
horizon. It is therefore useful to quantify precisely the error in the centre of the perturbation
and study how it varies with respect to N. (The difference between the values of the integrated
§ will give a weaker estimate than this because their calculation takes into account also regions
outside the horizon where the convergence is easier, as one can see from Figure 5.8 and Figure
5.9.)

In the right panel of Figure 5.9 the difference between the central values of the analytical and
numerical solutions for K(r) is plotted as a function of N. The white and black triangles differ
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Figure 5.7: The left panels show the curvature profile K (r) for A, constant and varying A in the the
top row and for A constant and varying A, in the bottom row. The corresponding behaviour of the
energy density perturbation € is plotted in the right panels.

in the value of ¢, while the black dots refer to A, = 0.5, and we can see clearly that the error is
behaving like ¢ = 1/N?, represented by the dotted curve, with a slight difference between the
different cases considered. This test is consistent with the scheme of the perturbative analysis
that considers higher order terms behaving like €2.

To be completely sure of the accuracy, we have done also one more test for the same K (r),
comparing the evolutions of a perturbation obtained with the same curvature profiles but using
different initial values of IV, and in Figure 5.10 we show the value of ¢ calculated during the
evolution and plotted against 1/N. It can be seen that there is no significant difference between
initial values of N = 10 and N = 20, we therefore feel confident in using an initial value of
N = 10 to build the initial conditions with K (r) given by (5.83), corresponding to an error of
~ 1% in the inner region. The test for @ = 1 corresponds also to the second formulation with
A = 0 and in this case too N = 10 is a satisfactory choice.
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Figure 5.8: These plots show the comparison between the analytical (solid line) and the numerical
(dashed lines) profiles of curvature given by (5.83). The different dashed lines correspond to N =
1,2,3.4,6,8,10 with the higher curves corresponding to the higher values of N. The profiles in the left
hand plot are characterised by (o = 0, A = 1.15), and the profiles in the right hand plot by (a = 1,

A = 0.77).
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Figure 5.9: In the left panel we show the comparison between the analytical (solid line) and the
numerical (dashed lines) profiles of curvature given by (5.96). The different dashed lines correspond to
N =1,2,4,5,7,10 with the higher curves corresponding to the higher values of N. In the right panel
we show the difference between the central value of the analytical and numerical profiles of K(r) in
Figure 5.8 and in the left panel, plotted as a function of N.

5.4 Description of the numerical calculations

Calculations of black hole formation with these new initial conditions are for the most part
very similar to those presented in the previous chapter. Therefore we show just a sample case
in Figure 5.11, remembering that when using the observer-time slicing, black hole formation
occurs when the lapse f — 0 and I' + U — 0 together, (see equation (4.26)). The left hand
plot shows the behaviour of 2/ /R and we see the asymptotic approach to 1 of the maximum
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Figure 5.10: These plots show three time evolutions of § calculated with the same profiles of K(r)
studied in figure 5.8 and 5.9; the three evolutions have different initial values of N.

of this curve, that determines the exact location on the grid at which the apparent horizon is
forming. The right hand plot shows the corresponding behaviour of the mass, as a function of
R, giving value of the mass of the hole. In figure 5.11 the circumferential radius R and mass M
have been normalised with respect to the values for the horizon scale at the horizon crossing
time.
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Figure 5.11: A typical evolution leading to black hole formation: the initial curvature profile used is
characterised by @ = 0 and A = 1.02, which give (0 —d.) = 1.3 X 1072, The left-hand panel shows the
profile of 2M /R at different times with the approach to 1 of the maximum value; the right-hand panel
shows the corresponding evolution of the mass.

The only significant difference with respect to the earlier calculations is that we have not seen
any appearance of shock behaviour during the formation of black holes, for any of the profiles
used so far. In Chapter 4 we were observing the formation of shocks when the amplitude of
the perturbation was very close to the threshold ¢, for black hole formation ((6 —6.) < 1074).
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Figure 5.12: These plots show which values of & and A lead to black hole formation or, in the left
panel, to an initial perturbation already disconnected from the rest of the Universe.

As we said earlier, the initial conditions with @ = 0 give the same Mexican hat shape of
‘perturbation used in the previous calculations, and so it is plausible to think that the shock
‘_,‘behaviour was caused by a small residual decaying mode component which was still present in
fhe previous calculations but is avoided in the present ones.

It is useful to introduce at this stage a measure of § independent of the initial scale used
to impose the initial conditions, in other words independent of the particular value of N used.
‘Looking at expression (5.65), we can see that in the case of constant v, if we define § = N26,
the expression becomes time independent, giving in the radiation epoch

)
6 = EK(TO)T(Q). (5.99)

Comparing this value with the value of § at horizon crossing, we find that it is of the same
order (with a small correction due to the non linear growth near to the horizon crossing). We
therefore use 4 to characterise the amplitude of a perturbation for the rest of the discussion.

The most important result of this calculation is in establishing the parameter ranges giving
black hole formation. Using the first curvature formulation, what we did in practice was to fix
successive particular values of o and find the corresponding threshold values of A. In Figure
9.12 we see a synthesis of these calculations. The left hand panel shows the results obtained
for each value of A and o used in parametrisation (5.83), and this divides the plane into three
different regions: the first corresponding to no black hole formation, the second to black hole
formation and the third to a disconnected initial perturbation (K (r)r? > 1). The right hand
panel shows the same results but with A normalised with respect to the maximum value Ay,
corresponding to the boundary of the third region of the plane. In both ways of presenting
this, we see that the range of parameters leading to black-hole formation is narrow with respect
the range of no black hole formation, and this shows that black hole formation is difficult to
achieve, needing an amplitude of the perturbation near to the maximum value.

The same results are shown also plotting 6 with respect to « in Figure 5.13. This shows
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Figure 5.13: These plots show how 5., the threshold amplitude for black hole formation, varies with
a. The left panel also shows when the value of § is able to disconnect the perturbation from the rest of
the Universe.

an interesting feature that is the small change in 6. and max when the shape of perturbation
changes with changing a. We have found 8, ~ 0.45 and dyax =~ 0.60 for & = 0 and be == 0.47
and 8oy ~ 0.62 for @ = 1. This is consistent with figure 5.12, where the 1nc1easmg of v is
balanced by the decreasing of the threshold value of A, making the final values of 8, and Jmayx
almost unchanged. The value of 6. found is consistent with the result of Chapter 4, where we
found 6, ~ 0.43 at horizon crossing for a Mexican-hat profile. The slight difference occurs just
because of the difference between 5c and d, calculated at the horizon crossing time.

We can see this behaviour looking also at figure 5.14 where the variation of the curvature
and energy density profiles for the different threshold solutions is plotted. For the curvature
we see that there is a region where the values of K(r) for different values of o are nearly the
same and this corresponds, in fact, to the location of ro. The energy density profile shows that
the difference is just in the shape of the central part, with almost the same profile for Z 2, 0.5.

We can then conclude that the variations in the parametrisation of curvature given by (5.83)
have not played a large tole in the determination of the threshold amplitude 8, for black hole
formation. However, it is not clear from this that 8, is in general not strongly dependent on
perturbation shape; we need to compare the results obtained with other different expressions
for K (r) in order to really understand how strongly the threshold for black hole formation is
dependent on the initial perturbation shape.

In Figure 5.15 we show the parameter space for the second curvature parametrisation given
by (5.96). In the left panel we show the parameter space for A and A,, and we see the three
different regions of no black hole, black hole formation and disconnected perturbation seen also
in Figure 5.12. In the right panel we plot the same results using the parameters A, and 6
calculated with (5.99), and in this case we have a region of parameters that is mathematically
forbidden from the definition (5.99). The reason is due to the minimum value of ry given
by A, (see right panel of figure 5.6), and the curve that corresponds to the boundary of the
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Figure 5.14: These plots show the curvature and energy density profiles corr esponding to the threshold
solutions for black hole formation, where the different lines correspond to different values of a.
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Figure 5.15: These plots show the range of parameters A, A,, § referred to K(r) given by (5.96) that
gives origin to black hole formation.

forbidden region is given by 6 = 2/3 A2, Equation (5.99) also shows that the maximum value
of the “disconnected region condition” is when K(rg)r2 = 1, and this is exactly the value
corresponding to the edge of the right plot where A, = 1. The curve given by § = 2/3 A2
corresponds to square-wave perturbations. In general we can see that, when the profile is very
sharp (corresponding to A being small), the formation of black holes is more difficult, until the

limit of square-wave perturbations that never give black hole formation.

It is clear that the choice of perturbation shape significantly affects the results as regards
the possibility for having black hole formation and should be made on the basis of physical
considerations. The idea of connecting the curvature parametrisation to the power spectrum
coming from inflation is likely to be the right way to proceed. Another important aspect is that
we have observed no formation of shocks during black hole formation, for all of the range of
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parameters that we have explored. We suspect that this is a general feature for PBH formation
from purely growing mode initial conditions, and that the strong shock formation observed in
the past [42] was connected with the presence of a non-linear decaying mode component in the
initial conditions. Analysing this aspect in connection with other features of critical collapse is

the subject of the next chapter.



Chapter 6

PBHs and critical collapse

This final chapter is dedicated to the particular feature of critical collapse in the context of
PBHs. The discussion is divided in two sections, the first one gives a review of the previous
work of Hawke & Stewart [42], the second presents the numerical simulations that we have
performed with an improved numerical scheme, discussing the nature of the critical solutions
with our simulations and presenting a sequence of different scaling laws obtained using different
numerical resolutions. Our results suggest a different possibility from that proposed by Hawke
& Stewart.

This work is very challenging from the numerical point of view, and to get the results pre-
sented here we have improved the numerical scheme by inclusion of adaptive mesh refinement.
The numerics play a key role in this work and we want to be prudent in saying that what we
have observed seems to indicate a different result from but from before, to be more certain,
it is necessary to have a more extended analysis. This discussion is located at the end of this
thesis because the new formulation for imposing initial conditions, developed in the previous
chapter, is crucial for it. '

6.1 The problem of a minimum mass in the PBH mass spec-
trum

As we have seen in Chapter 4, the formation of PBHs is characterised by a scaling law behaviour
given by (4.46) when the amplitude § of the perturbation is quite close to the critical threshold
dc. This behaviour, if conserved all the way down to 4., allows production of very small PBHs
during all of the the early Universe, and the standard picture of the PBH masses being given
roughly by the horizon scale at the time of formation should be dropped. If this is really the
case, it would make an important difference from the standard scenario, because small PBHs
able to evaporate within the timescale of the Universe will be produced also later and the
mass spectrum of PBHs will change considerably. Therefore the question about the range of
applicability of a scaling law within the scenario for PBHs is an important problem that needs
to be clarified.

As we have seen in Chapter 4, in agreement with what has been obtained by Niemeyer &
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Jedamzik , the scaling law behaviour is appearing at least in the mass range Mpy = (0.1 —
1)My . For smaller masses the initial conditions used there were giving rise to strong shocks that
created a problem for the numerical scheme. This issue has been deeply investigated by Hawke
& Stewart [42] with a specially built code implemented with a modern high-resolution shock
capturing scheme, written in an Eulerian frame. Within their scheme they needed to consider,
as initial conditions, density profiles well within the horizon. Their results are summarised in
Figure 6.1, where, for black holes with Mgu/Mpy > 1073, they have the numerical evidence of
scaling as described by (4.46), with a value of the v ~ 0.36, consistent with what was observed
previously. However, for smaller black holes the scaling breaks and there is a minimum black
hole mass Mgy ~ 1073%% My. The parameter C used here is the initial amplitude of the
pressure perturbation with C, being the critical value for black hole formation. The values for
log(C — C,) are very similar to ones for log(é — é.), differing just by a small additive constant
which depends on the shape of the perturbation. The value of My used here is that at the
initial time of the Hawke and Stewart calculations and not at the horizon crossing time as
in our work. The horizon mass varies roughly as Mg o« (Rg/Rg)~2, where (Ry/Rpy) is the
radius of the initial overdensity in units of the initial horizon scale. While precise details of the
initial conditions are not given in the Hawke and Stewart paper, their minimum mass probably
corresponds to about 1072 My in our units.

In their simulations they saw the combination of two different effects: the initial collapse of
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Figure 6.1: Results obtained by Hawke & Stewart [42] for black hole mass as a function of the parameter
C using an initially Gaussian perturbation profile.
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the overdensity and an initial outward motion leaving behind a deepening void and eventually
fronted by a shock wave in nearly critical cases which then reflects back off the surrounding
medium. The shock produces a nonlinear perturbation of an otherwise roughly self similar
solution for the collapsing matter, that at a certain mass scale is able to break the self-similarity.
For their initial data they have seen that black holes with masses > 1073 My form before the
perturbations caused by the shocks can affect the solution (studied by Evans-Coleman in the
radiation fluid [84]), while for smaller black hole masses the shocks perturb this solution,
breaking the scaling law. They consider this perturbation of the self similarity as a kink mode
that, as shown by Harada, arises in spherically symmetric self-similar solutions when there is
the formation of high pressure gradients [85].

Following our earlier discussion here, we wanted to pay close attention to the initial condi-
tions used because, as we have seen, they can strongly affect the final result of the simulations.
We have noticed in the simulations of the previous chapter that imposing initial conditions that
describe a perfectly pure growing mode, we do not observe the shocks that we were observing
before in Chapter 4, where the growing mode solution was described with less precision. It
can seem surprising that an imprecision, that in the growing solution for the amplitude of e
was giving an error of a few percent (see Figure 4.7) can be responsible for the appearance
of shocks when the evolution becomes non linear. However we have to take into account that
the linear theory of perturbations is described by the Fourier components of the perturbed
quantities. A small deviation of the initial solution with respect to the pure growing mode
amplitude measured in the space-time is transformed in the Fourier space into a non-linear
component that, after horizon crossing, when the region becomes causally connected, can give
rise to Signiﬁéallt hydrodynamical effects. Hawke and Stewart have considered initial condi-
tions well within the horizon and did not perturb the velocity field. Cases where a black hole
is formed then correspond to strongly non linear initial perturbations with a serious decaying
mode compbnent.

6.2 Description of the numerical calculations

To proceed with our analysis and investigate black hole masses smaller that 10~ My we needed
to modify the code, giving the numerical resolution necessary to treat the regions of strong
rarefaction and compression that we have with these simulations. In fact the form of the
gridding introduced in Chapter 4 was satisfactory for cases where § was not extremely close to
dc but for cases extremely close to critical, problems arise because of the appearance of regions
with extremely low density in which the co-moving Lagrangian grid becomes severely over-
stretched giving poor spatial resolution. An obvious remedy for this is to introduce adaptive
gridding, with additional zones being added wherever necessary to improve resolution.

6.2.1 The adaptive grid

We have implemented a form of adaptive gridding using a fully-threaded-tree algorithm. It is
still in the process of being further developed but is already working well and giving greatly
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improved results for nearly-critical cases. We give just a brief overview here of the methodology
used.

Every 100 time-steps, a check is carried out to see whether the fractional zone spacing
AR/R is greater than 9% for any zone. If it is., that zone is sub-divided introducing a new
grid-point at its centre (in terms of the co-moving radial coordinate ) and quantities at the
new grid-point and in the two newly-created zones to either side of it are calculated by means
of linear interpolation. Only one zone is sub-divided at a time, allowing the solution to relax
before performing any subsequent sub-division. Doing this, we have not found it necessary to
introduce any additional diffusion into the code for suppressing numerical noise, an important
point for interpreting the appearance or absence of shocks. Also every 100 time steps (but offset
by 50 timesteps), we carry out a check to see whether AR/R has become less than 4% across
any zone resulting from a previous subdivision. If so, then it is merged with the zone from
which it was previously separated if that zone has the same Ap. Again linear interpolation is
used and only one merging is carried out at a time to allow relaxation. A key feature of the
fully-threaded-tree algorithm is to retain the possibility of reversing the sub-division history
when previously sub-divided zones become narrower than necessary. For doing this, history
arrays are introduced keeping a record of the number of sub-divisions of each zone and of the
identity of the zone from which it was separated at each stage.

Testing this algorithm we have realised that it is convenient to apply the merging zone
conditions also in regions that have never been subdivided. This because we use a simple
exponential grid in order to have a satisfactory resolution in the innermost region were the
collapse would occur, but in doing so we tend to have too many grid points at certain times of
the hydrodynamics, when the outermost region will be strongly compressed. We have therefore
allowed the code to merge zones outside the collapsing region, applying the same algorithm
explained above. After some experimentation we have been able to make this scheme work
efficiently.

A further development that can be interesting to investigate is to replace the linear in-
terpolation with a piecewise cubic interpolation, however it is not clear whether this would
give a significantly more stable and precise solution than the one obtained with simple linear
interpolation.

6.2.2 The behaviour of the critical solution

As seen in Chapter 4, an efficient way to understand whether a solution is going to give black
hole formation is to look, for example, at the behaviour of the ratio 2M/R and see if the
maxima of these curves, after the collapse in the centre has occurred, is increasing to 1 or is
decreasing to zero. The increasing behaviour, which is giving rise to black hole formation, has
been discussed previously in Chapter 4, and is shown in the top left panel of Figure 6.3. The
decreasing behaviour, shown in the top right panel of figure 6.3, is instead corresponding to
the subcritical solution.

The critical solution is represented by the balance between these two cases and is shown
in the bottom panel of figure 6.3; note how the relative maximum of the different curves is
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Figure 6.2: These three plots show the behaviour of the ratio 20 /R. The top left panel is for the
supercritical case corresponding to § > §.; the top right panel is for the subcritical case corresponding
to 6 < J;, and the bottom panel is the critical solution with § = §,. The time ordering of the curves
goes from top to bottom on the right hand side.

moving with a constant value =~ 0.48 towards the centre. This solution represents a clear
dividing line between the collapses that lead to black hole formation and those that are then
dispersed again into the background. The equilibrium of the peak is clearly understandable
as a perfect balance between the gravitational potential of the fluid and the internal pressure
support. We can observe, in fact, that the points corresponding to the maxima of the curves
of this critical solution is coincide with the edge of the collapsing region (U = 0). Instead in
the supercritical solution, the value of U is negative at that gridpoint, while in the subcritical
solution the corresponding value of U is positive.

The critical solution for the collapsing region should be characterised by a self similar
behaviour and so it should be possible to find an appropriate renormalisation of the curves at
every time step, giving an effectively time independent solution. Plotting the profiles at each




112 CHAPTER 6. PBHS AND CRITICAL COLLAPSE

time with respect to R/Ruax, Where Ryay is the location at each time of the maximnum of the
curves, we have verified this property in the collapsing region. This is a proof of the self similar
behaviour, and therefore of the critical nature, of the collapsing solutions with 0 = 6.

6.2.3 The scaling behaviour with different resolution

With the adaptive grid described above we have been able to get a satisfactory resolution for
studying black hole formation with (6 —§.) down to 10~7, decreasing the previous limit obtained
in Chapter 4 by three orders of magnitude. We are still not observing any shock formation,
although the behaviour of the fluid outside the collapsing region is becoming more and more
extreme as (6 — d.) is decreased. As we can see from Figure 6.3 at late times we have a rapid
expansion just outside the black hole producing a very rarefied region there. Getting closer
and closer to 6., this hydrodynamical process becomes more extreme and we can appreciate
the efficiency of our adaptive scheme that is now able to resolve hydrodynamical behaviours
that we could not follow before.

In Figure 6.4 we have plotted our results for the scaling law obtained with (6 — d.) going
down to 1077 (almost the same scale investigated by Hawke & Stewart as shown in Figure
6.1). The three curves correspond to the same type of initial Mexican-hat perturbation profile
studied with three different initial resolutions of the grid-spacing, (with central values of Ay =
(2.5,2.8,3.5) - 10~2 in our units, corresponding respectively to 630,777,864 zones). This is
a change of grid spacing at the initial time that is not related to the subsequent adaptive
mesh refinement. The figure shows that the scaling law behaviour is broken at a certain point,
levelling off the values to a minimum mass. Now, however, the reason for this behaviour, which
looks rather similar to that obtained by Hawke & Stewart, is different. Here the value of the
minimum mass depends on the initial resolution used to characterised the innermost region of
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Figure 6.3: These two plots show the behaviour of velocity U/c and energy density e /es(tm) plotted
against R/Rp(ty) at a late time in a collapse with (6 —d.) = 1078, In the left panel we can appreciate
the quite extreme behaviour of velocity within the very underdense region see in the right panel.
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Figure 6.4: The plot shows results obtained with different resolutions of the initial grid-spacing, ex-
pressed in our notation by Ap, with the same type of initial Mexican-hat perturbation. The solid line
represents the analytic fit for a scaling law behaviour with exponent v = 0.355.

the grid and the effect is clearly due to discretization error depending on the initial resolution.
For the finest resolution, the results stay close to the scaling law down to extremely low masses
but with some deviation which remains to be examined further after some more refinements
have been made to the code.

In conclusion we do not observe any shocks, and the scaling law behaviour is preserved down
to values of (§ — ¢.) which are comparable with those used by Hawke & Stewart. The fact that
the scale of the masses is different is probably due to the different normalisation, although we
have not yet been able to check this precisely. This seems to indicate that the scaling behaviour
may be preserved and that, with sufficient resolution, it may be possible to get smaller and
smaller PBHs. Of course we do not know yet whether some change could eventually arise,
changing the solution, and it is true that numerically we will never be sure that there might
not be a change at some point. However, the fact the we do see the shocks, that Hawke and
Stewart were observing (and that they interpreted as being responsible for the breaking of the
scaling law) seems to be an indication that the continued scaling behaviour may be a genuine
characteristic of the PBH formation scenario if the initial conditions are represented by pure
growing modes.

This is work in progress and we are currently investigating further improvements to the
code in order to make this discussion more solid.






Conclusions

This thesis has analysed the possibilities for PBH formation in the early universe, focusing
on the radiation-dominated era. In the first part (Chapters 1 - 3) we have given a review of
the background to the subject. Chapter 1 was dedicated to describing the properties of the
unperturbed cosmological background and in Chapter 2 we have then described the origin,
properties and evolution of cosmological perturbations in modern inflationary theory. Then,
in Chapter 3, we have specifically reviewed the literature on PBHs, discussing in some detail
the aspects that play an important role for the original contributions of this thesis, presented
in Chapters 4 - 6.

In Chapter 4, we have introduced the hydrodynamical scheme used for our calculations,
discussing all of the equations used to write the computer codes. We then presented results
from numerical simulations performed with these codes. Growing-mode perturbations were
specified within the linear regime and their subsequent evolution was then followed as they
become nonlinear both in the case of super-critical perturbations, which go on to produce
black holes, and of sub-critical perturbations, for which the overdensity eventually disperses
into the background medium. For super-critical perturbations, we revisited the results of
previous work concerning scaling-laws, noting that the threshold amplitude for a perturbation
to lead to black-hole formation is substantially reduced when the initial conditions are taken
to represent purely growing modes. For sub-critical cases, where an initial collapse is followed
by a subsequent re-expansion, strong compressions and rarefactions are seen for perturbation
amplitudes near to the threshold. k

The method used for specifying growing-mode perturbations which we used in that work
remained rather approximate, however, and was not completely satisfactory for making a proper
link with the cosmological spectrum of perturbations coming from inflation. In Chapter 5, we
presented a more sophisticated reformulation of the problem, introducing a new prescription
for setting up initial conditions, using time-independent curvature perturbations that can be
defined in a gauge-invariant way.

Finally, in Chapter 6, we have focused attention again on critical collapse and the related
scaling-law behaviour. Introducing adaptive mesh refinement into our code allowed us to inves-
tigate PBH formation nearer to the critical limit and to re-examine the suggestions by Hawke
& Stewart about the scaling law behaviour being broken near to the critical limit, giving rise
to a minimum mass for PBHs formed at any given epoch. With our formulation of the initial
conditions, we have not seen evidence for the formation of strong shocks in connection with
PBH formation which was a key feature of their work and we tentatively suggest that the
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scaling laws may continue down to very small masses, in contrast with the previous results.
This is work still in progress, however.

For future work we have a detailed plan of aspects that we think that it would be very
interesting to analyse. Starting from the description of the initial conditions with the curva-
ture perturbation, we intend then to make a further step to determine the probability asso-
ciated with different shapes of perturbation, which means connecting explicitly the curvature
parametrisation to the parameters that characterise the cosmological perturbation spectrum.
These calculations should give a meaningful result which can then be used to calculate the
abundances of PBHs in the current Universe.

Up to this stage, the analysis of the problem is being considered within the assumption
of spherical symmetry. It is, in fact, usually assumed that deviations away from spherical
symmetry will be negligible in this context. We want to check on this by calculating the
evolution of deviations away from spherical symmetry using the formalism developed by C.
Gundlach and J.M. Martin-Garcia [86]. This formalism, which was originally developed for
studying gravitational wave emission from stellar collapse, is a good starting point for us
because it uses an expansion in spherical harmonics, keeping a treatment based on an underlying
spherically symmetric calculation complemented by terms representing the sequence of spherical
harmonics.

Another problem concerning PBHs which we want to address concerns their possible for-
mation during phase transitions in the early universe. The role of phase transitions in the early
universe is to soften the equation of state, which can in principle favour gravitational collapse
[87, 65]. PBH formation at around the time of cosmological nucleosynthesis may give rise to
some very interesting consequences. The mass scale of 10° solar masses (often claimed as the
seed mass for later large-scale-structure formation) is also that characterising PBHs forming at
this time. To have a good treatment of PBH formation at this epoch, it is necessary to take
into account both ete™ production/annihilation and the diffusion of neutrinos (whose mean
free path is of the same order as the horizon scale at this time). For these simulations we intend
to use the methodology developed at SISSA by Miller and Rezzolla [88, 89]. By investigating
subsequent accretion onto PBHs with the aid of our analytical and numerical techniques, de-
veloped in the work described above, we expect to clarify the possible significance of PBHs for
the formation of QSOs and AGNs, as well as for the formation of large-scale structure. Other
interesting questions concern the possible contribution of PBHs to dark matter and whether
the observed Intermediate Mass Black Holes might have their origin as PBHs.

The final aspects which we would like to address concern the evaporation of PBHs and
comparison of the predicted abundances of PBHs with observations. This is a key point that
would link the theoretical work described above with observations, with the results obtained
being confronted with the observed gamma-ray bursts, cosmic rays and products of cosmolog-
ical nucleosynthesis. A possible constraint to be considered is the entropy bound/holographic
principle argument, related to the thermodynamical properties of black holes. Up to now, this
has been considered only within a very simple scenario [90], without using realistic models for
the gravitational collapse of cosmological perturbations.

The objective in studying these constraints is to develop a powerful tool for constraining
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key parameters of the early universe, relevant on scales much smaller than those disclosed by
the CMB and large-scale structure. Taking into account that PBH formation is tightly linked
with the primordial perturbation spectrum, we expect that this will be effective for placing
informative constraints on models for inflation or any other models giving a prescription for

primordial cosmological perturbations.







Appendix A

Friedmann model with non-zero A

We present here some of the analytic expressions describing an expanding universe with A # 0
in the radiation-dominated era. These equations are certainly not being presented here for the
first time but they are not easy to find in the usual cosmology textbooks and we think that it
may be useful to present them together here. In this part only, we use physical units and do
notset c=G = 1.

First, we note the forms taken by the Friedman equation and the associated acceleration
equation (we are taking the spatially flat case):

a SnG Ac?
(g) = WG‘F——B‘-, (A1)
i\ 87G Act : (A.2)
o) 32 \“ &G ) o
where ¢ is the energy density of radiation which scales as
i\ 4
e=e (1) , (A.3)
a .

(here the subscript i refers to a fiducial initial time). Inserting this into (A.1), we obtain the

integral equation
a; ,/a;

/““/‘” d (;)
VTR

If A > 0, the solution for the scale factor is

14 1/2
a(t) = a; (Sjﬁfz) l:sinh (2\/%@5)} , (A.5)

Using (A.5) in (A.1) we get the Hubble parameter

H(t) = '\/:j;ccoth (2\/?@) , (A.6)

119

= /0 . (A4)




120 APPENDIX A. FRIEDMANN MODEL WITH NON-ZERO A

which, in the limit A — 0, reduces to the standard expression H(f) = 1/2¢. Inserting (A.0)

-2
sinh <2‘\/§ct>} . (A7)

Another useful expression is the inverse of (A.6)

-1 A
j\ .H -+ 'gC

t = 41/_—0‘) | — Y37 (A.8)
( 3 H — »\/gc

which we have used in the cosmic time code to calculate the initial time for the calculation.

into (A.1) we get the expression for e(t)

Finally, for completeness, we calculate the expression for the two cosmological horizons.
From (A.6) we get a straightforward the expression for the Hubble horizon Ry =c¢/H,

Ry(t) = (%>_% tanh (z@q) . (A.9)

For the particle horizon, the calculation is more complicated. From the definition

toedt!
a(t)/o a) (A.10)

: 1/2
‘ A ¢
Ry (t) = l:sinh (’2\ / %ct)} / du 7 (A.11)
Jo .
[sinh (2\/; (:'u.>]

and. with the aid of integral tables, we get the final form of the solution

Fnl®) = (2\/§> B [Sinh (2‘\/%&5) v

F(g,k) (A.12)
where F(¢, k) is an incomplete elliptic integral of the first type:

Rp (1)

]

we get

F(¢p, k) = /¢ i (A.13)
T o (1= k2sin?9)1/2 )
with
1 —sinh (24\/§ct>
¢ = arccos , (A.14)
1 + sinh (2\/§ct>
and 1
b= —. Al
7 (A.15)

When A < 0, relations (A.5), (A.6) and (A.7) are unchanged apart from replacing the hyperbolic
functions by the corresponding trigonometric ones. This is consistent with the oscillating
behaviour of a universe with A < 0, characterized by a sequence of expanding and contracting
phases.



Appendix B

Ricci Scalar calculations for
curvature

The general spherically symmetric metric in the cosmic time coordinate is
ds? = —a?dt? + b2 dr® + R2d0? (B.1)

where the the metric tensor g,p is diagonal and a, b and R are, in general, functions of r and
t. The Christoffel symbols different from zero are calculated from

a 1 a¥as 89}30‘ 8_6175 ang”f
= %Y (E)JJ’V + dz8 920 )’ (B-2)

&

and making the whole calculation one obtains

Iy = i‘%% e, = 2%?; It =0 s =0

Fgo = %% F(1)1 = a%g? F(I)Q =0 P?s =0

I‘g():() YF81:O ng‘zg%]; I‘83:O

Y% =0 % =0 I, =0 I = %%?gm?e
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h=0  Th=0  th--28% 1o

'Yy =0 I, =0 Th =0 T, = —%%ﬁsm?@
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1 0R

Pgo =0 f%l =0 Fg‘z = ??}g 1%3 =0
Iy =0 If =0 T = R or Iy =0
4 1 0R 1 0R
I3y = R o T3 = B I, =0 I3 =0
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In the FRW metric the metric components are simpler
(1)
a=1 b= ——— R =s(f)r B.3
vV1—Kr? Y (B:3)

where the curvature X is a constant equal to 0, 1 and the non-zero Christoffel Symbols are

KT
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The components of the Ricci Tensor are given by

ar? 5 8Ty,
oz ozb

Rep = T3, T — Thglon + (B-4)

and to calculate the Ricci scalar we need to take into account only the diagonal components
Rae. In the background universe with the FRW metric we have that

Ry = 3::- (B.5)

58+ 252 4+ 2K

Fu = 1—Kr?



Ry = (854 2§+ 2K) r?

.92
R33 = Rossin® 6

and these are used to calculate the scalar curvature

P K

R=6(24+2 42
<3+52+$2

).
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The three curvature is obtained by removing the terms with the time derivatives and so

R = 65
52

(B.10)

In the case of the general metric given by (B.1), the diagonal components of the Ricci tensor

are

Rll

100 (100, 20RY , a0
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b28r2 " b oi2
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Now we can write the scalar curvature for the generic metric (B.1) and it is useful to define

the following operators:

190 s 1 0? 1
De=le D= DrEy
We then get
D? _D2R D2
=2 |t gttt o
R b TR T R R

(B.15)
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_92@D1R _ Dyo Dib n 2DTZ)DTR Dya Db 2D,.u. D.R 1 }

o R o b ;R T a b « R @ R?

and substituting in the expressions for the coefficients a, b and R given by (5.18,5.20,5.21) and
expressing &,b, R in terms of K (r), we get with the use also of (5.16), that the Ricci scalar is

(B.16)

given by
§ 3y -1 &2 2(24 3v) K
= - 11 —|1l-e——F - B.1
R 6[3( +65+37]C> +r32< € e K +52 ) (B.17)
where ,
K = K(r)+ -K'(r). (B.18)

3

It is useful to compare this with (B.9).
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