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Chapter 1

Introduction

The aim of this work is to study the motion of a quantum particle in R¢ which is
constrained to a submanifold M C R? of dimension m by a strong potential. More
explicitly, by this we mean that the Hamiltonian ruling the dynamics of the particle is
given by

2
~

h..
H(e,h) = —5—~A+V(q) + e2W(q), qeR?, (1.1)

where ¢ is a small parameter which eventually goes to zero, and, loosely speaking, the
constraining potential W is zero on M and strictly positive outside.

We have deliberately avoided to call M a “smooth” submanifold of the configuration
space, since an interesting case coming from applications to physics is when M is a
graph embedded in R? or R® and has therefore singular points given by the vertices.

The analysis of the spectrum and the dynamics generated by Hamiltonian (1.1) when
€ — 0 is an old problem in mathematical physics, whose counterpart in classical me-
chanics is perhaps more widely known because a simple result is quoted in Arnold’s
textbook to justify the standard treatment of holonomic constraints in Lagrangian me-
chanics ([Arn], chapter 4; see also [AKN], section 1.6).

From the same point of view, the quantum case has been studied formally by several
physicists to get effective equations of motion for a particle living in a proper submanifold
of the configuration space, i. e., to “realize holonomic constraints”.

In this introduction, we are going to review the main motivations which led to the
study of (1.1) both from this traditional aspect and from a more recent one, linked
to the effective one dimensional motion of a gas of electrons in modern semiconductor
devices, like the so-called quantum circuits. We will also briefly comment on other
kinds of partial differential equations (like the elasticity equation in thin domains and
the penalized wave equation) which have been analyzed along the same lines of (1.1).

Our aim is to give an account of the existing huge literature in the field, without
however the presumption of being exhaustive, but rather of pointing out what we think
is missing and deserves more investigation and of highlighting our contribution.
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Apart from this introduction, the thesis at hand contains two main parts. In chapter
2 we will study the semiclassical limit of the quantum flow generated by (1.1) under the
scaling € = afi, « € R,. The analysis will be carried out for smooth submanifolds of
generic dimension and codimension, under suitable regularity hypotheses on W (con-
ditions Wy and Wy of subsection 1.1.1). Using a technique developed by Hagedorn
[Ha;, Has] to construct approximate solutions to the Schrédinger equation which are
localized along a classical trajectory, we show that the semiclassical limit actually coin-
cides with the limit of the classical flow associated to the Hamiltonian (1.1) when & — 0.
When the assumptions on the potential are not satisfied, we will give an example where
an interesting phenomenon, called Takens chaos [Tak] occurs. This will give us also the
occasion to make a comparison with the results obtained in classical mechanics using
homogenization techniques for ordinary differential equations [Bor].

In chapter 3 we will consider the case where M is a graph embedded in R%. As
it is explained in section 1.2, this case is relevant for applications to nanophysics and
theoretical chemistry. In the framework of adiabatic approzimation, we will consider
initial states belonging to almost invariant subspaces [Teu| for the total dynamics, and
we will deduce an effective dynamics for the motion on the graph in every subspace. For
a generic graph, the limit equation will be calculated only outside the vertices, but for a
graph with two edges we will propose a different approximation which leads to Dirichlet
boundary conditions.

In the end we will discuss open problems and future perspectives, mainly regarding
applications to physics.

Even though it will not be stressed sectionwise, it should be emphasized that all the
results mentioned above have been obtained in collaboration with my Ph.D. advisor,
Gianfausto Dell’Antonio, and a part of them has already appeared in [DeTe).

1.1 A tool to realize holonomic constraints

From a physical viewpoint, one always thinks of a (holonomic) constraint as a complex
of forces acting on a system which is then obliged to stay in the vicinity of a given
submanifold M of the configuration space.

This gives rise to the distinction between ideal and real constraints (see, e. g., [Gal],
chapter 3 and mainly sections 3.6 and 3.10), or, in other words, to the question whether
the true motion of the system can be approximated by a simpler one which involves only
the variables belonging to M and to which extent the standard mathematical description
of constrained motion corresponds to physical reality.

For the sake of clarity, we split our discussion of this point into two parts. We first
recall known results in classical mechanics, and then we elaborate on the quantum me-
chanical case, which presents some characteristic features due mainly to the uncertainty
principle.
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1.1.1 Classical mechanics

To characterize a real holonomic constraint, we consider the Lagrangian (acting on
R? x R9)

Le(4,d) = 5md® — V(a) - W (a) (1.2

where V is bounded from below and W models the external forces which constrain the
system.! Concretely, we suppose that W satisfies the following

Condition Wj. Let the potential W be non-negative, W > 0, and let M = {q €
R? : W(q) = 0} = {qg € R? : DW(q) = 0} be a smoothly embedded m-dimensional
submanifold. Moreover, let us suppose that the Hessian H of W, defined as a field of
linear operators H : M — L(R?) by

< H(g)u,v >= D*W(q)(u,v) u,v€R? ge M, (1.3)
(< -+ > is the standard scalar product in R?) has range equal to T,M*,
R(H(q))=T,M*, qe& M. (1.4)

Essentially, this condition is the precise way of saying that W has a minimum on M,
or, in more physical terms, that, sufficiently near to the constraint, the particle feels a
strong harmonic restoring force.

Since H(q) is a self-adjoint operator, we can diagonalize it. We suppose, in addition,
that we can do it in a smooth way.

Condition W;. Let W be a potential satisfying condition Wy. The Hessian of W can
be diagonalized smoothly, i. e.,

H(q) = Zwk(Q)ZPk(Q/)7 g€ M, (1.5)
k=1

where wy,(q)? and Py(q) represent the smooth (nonzero) eigenvalues and eigenprojections
of the Hessian.
Since R(H(g)) = T,M*, we have that Py(q) : R¢ — T,M*. Moreover,
PoPy = 6 P, Pl = P,
and

P(g) =Y Pi(q)

k=1

When the constraint is a smooth submanifold, as in this section, we suppose that the potentials
involved are smooth functions too. The smoothness of the constraining potential will be discussed
further in chapter 3, where M will be a graph embedded in R? or R®.
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is the orthogonal projection from R? onto T,M*.

Condition Wy could seem a mere technicality, but if it is not satisfied the limit
structure described below completely breaks down, as it happens in Takens chaos (see
section 2.4).

If we assume that the energy surfaces E, = const. are compact submanifold of
R? x R?, then the flow of the Euler-Lagrange equations associated to (1.2) is complete,
so that the corresponding initial value problem is solvable for all times. For fixed initial
values, ¢.(0) = ¢, and ¢.(0) = v,, and a finite time interval [0, 77, there exists then a
unique sequence of solutions, g.(t). (It is possible to consider also a sequence of initial
values, g, . and v, ., converging to ¢, and v,; this generalization is technical and does not
change the nature of the problem; we refer the interested reader to [Bor, FrHe, Tak]).

Naively, one could expect that ¢. always converges to a function go : [0,T] — M,
but it is fairly simple to construct counterexamples [BoSc| showing that, if the energy

1 5 5 - 1 -
E. = ’imqg +V(g) + e W(g) = 5"7“’2 +Vi(g) +e ZVV(CI*)
is not uniformly bounded, then, even though the limit can exist, it can be supported
outside M. Moreover, solutions of equi-bounded energy have a more evident physical
meaning. We will say that they satisfy the

Condition EE (Equi-bounded Energy). The energy associated to the solution g, is
untformly bounded in €, B, < E,. This is equivalent to assume that q, € M, 1. e., that
the initial position is on the constraint.

The first rigorous investigation of solutions obeying to conditions W5, W, and EE
was made by Rubin and Ungar at R. Courant’s suggestion, [RuUn|. They however
considered in detail only the case when A/ has codimension equal to one. The general
case was first studied by Takens [Tak|, who pointed out the necessity of some non-
resonance condition on the eigenvalues of the Hessian in order to get a limit, when the
codimension (and the dimension of M) is greater than one. A further generalization to
the case where M is a submanifold of a general Riemannian manifold, with applications
to molecular dynamics, is given in [Bor].

A different point of view was taken by Froese and Herbst [FrHe|, who, aiming at the
study of the quantum case, have dealt with the case of unbounded energies. Since their
approach is motivated by quantum mechanics, we postpone an account of their results
to next subsection.

Roughly speaking, the theorems proved by the above authors say that if the potential
is “good”, the initial condition is correctly chosen and a certain resonance condition is
satisfied, then the sequence ¢. converges uniformly to a function gy which is the unique
solution of the Euler-Lagrange equations corresponding to the Lagrangian

) . .
Lo(q,4) = 5 <4:4>u ~V(¢) = Uhom(q), g€ M, q¢eT,M, (1.6)
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where < -, - > is the Riemannian metric induced on M by the standard scalar product
in R%.

If we had followed the usual geometrical approach to describe the motion of a system
constrained to M and subject to the external potential V' (see, e. g., [Arn]), we would
have written instead the Lagrangian

Lgeo = %’ < Qaq >M _V(q) <17)

The additional potential Upoy, is called the homogenization of U with respect to the
initial data ¢, and v,. To understand its origin we have to introduce another concept
which plays an important role in the analysis of the dynamics generated by (1.1), both
in the classical and in the quantum case, that of adiabatic invariance of the normal
actions.

As we have already said, we model the constraining force essentially like an harmonic
oscillator acting in the directions perpendicular to the submanifold. The frequencies are
scaled as 7!, so in the limit € — 0 the particle oscillates very fast in the normal
“.directions, while the motion along M is “slow”. Therefore, according to the definition
- of “adiabatic invariants” given, e. g., in [AKN] (chapter 6), we expect that the normal
action variables,

L
EE,k (t) 1
Vg = —— (1.8)
, wi(gare(t))

converge to constant functions (in t) when £ — 02 (this fact has been stressed from a
formal point of view in [Koi]).

This is the point where a condition on the normal frequencies enters, because the
presence of resonances can spoil the adiabatic invariance of the actions.

To be more precise, we have first to define what we mean by a “resonance”.

Definition 1.1. We say that the frequencies {wi(g)}, £k =1,...7, are in a resonance of

order j if
r

niwi + ...+ nw, =0, Zlnﬂ =7, (1.9)
k=1
where n, € Z.
We can now illustrate the lack of adiabatic invariance in presence of resonances by

a very simple example (which is a modified version of an example of Bornemann, [Bor]
chapter 1, section 2.6).

1We write ¢ in tubular coordinates, ¢ = qa + qu1, Where g € M and ¢+ € T,M~*. The total energy
can be decomposed in the same way. A detailed description of this system of coordinates is given on
page 10.

2Since we suppose that the energy surfaces are compact and we consider finite time intervals, con-
dition Wy implies that there exists w, > 0 such that wy > w. Yk, so (1.8) is well defined.
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Let us consider a one-dimensional forced harmonic oscillator,

T+ —3T = cos <2t>, (1.10)
z(0) =0 £(0) =

If w # @, then the solution is

ze(t) = w”fijffi |icos <§t) — cos (‘—S—t)}

It is evident then that z. — O uniformly on a finite time interval, and also that
TN ., W 2 2
BX(t) = 5 1) + s oe(t)? = O(e2) — 0.

If w = @ instead, the solution is

w

ze(t) = ;—t sin <—;t>. (1.11)

£ c

So, while it is still true that z. — 0 uniformly on a finite time interval, we have

1 1
EXt) = —8-7,‘2 +O0(g) — gtz = const.
Clearly we do not claim that this example gives a proof of the necessity of a resonance
condition in order to have adiabatic invariance of the normal actions, but we think it
makes it plausible.
To quote the main theorem of this section we need another definition.

Definition 1.2. Let z : [0,7] — M be a time dependent trajectory lying in constraint’s
submanifold. We say that z is non-flatly resonant up to order [ if, for every impact time
t, such that

w (2(t:)) + . .. + npwy(2(4)) = 0 = %[nlwl(z(t)) + ok ma()),, #0 (112)

for all resonances whose order is less than or equal to [. If equation (1.9) defines a hyper-
surface, then the above condition is equivalent to saying that z crosses the hypersurfaces
of resonance transversally.

Now we can state
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Theorem 1.1. ([Bor/, chapter 2, theorem 1, or, with more restrictive hypotheses on the
resonances, [Tak], theorem 1).
Given a sequence € — 0, consider the Lagrangian

. 1
Le(g,q) = §m92 ~V(g) —*W(g), geR“

Suppose that the potential W satisfies conditions Wy and Wh.

Let g. be the unique solution to the Euler-Lagrange equations associated to L. on
the finite time interval [0, T), with initial conditions g-(0) = ¢, ¢-(0) = v, satisfying
condition EE (i. e., g. € M ).

Let Uy be the homogenization of U with respect to the initial data, defined by

Uhom(Q) = Zﬁ*,kwk(Q)a S ]V[a (113)
k=1

where
_ < Pk(q*)vh Pk(Q*)U* >

Yok i= 1.14

’ Let qo be the unique solution to the Euler-Lagrange equations corresponding to the
Lagrangian

. . ) : ,
Lo(g,4) = 3 < ¢, ¢>m =V(g) = Unom(q), ¢€M, ¢eT M, (1.15)

with initial conditions qo(0) = ¢. € M and ¢o(0) = (I — P(q.))v. € Ty, M.
If qo is non-flatly resonant up to order 3, the sequence q. converges uniformly to qq
on [0,T].

Remark 1.1. The constants ¥, ; are exactly the limits of the normal actions ¥ ;, defined
in (1.8).

Remark 1.2. The theorem tells us that, if the initial velocity of the particle has a
component perpendicular to the constraint, then the energy of the normal oscillation
changes into a potential energy for the longitudinal motion. In this way, conservation
of energy holds also in the limit, in the sense that

Eo(ﬂ = < (]I - P(Q*))U*; (]1 - P(Q*))’U* >M +V(€I*) -+ Uhom(Q*) =

[NSR

2 (1.16)
= E]’U*|2 +V(g.) = E. = E.(t).
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1.1.2 Quantum mechanics

The description of constrained systems has been tackled since the early days of quantum
mechanics and several techniques have been created to deal with this matter.

The intrinsic approach, which was developed mainly by Dirac [Dir], parallels the
geometric treatment of constraints in classical mechanics. The idea is first to remove
the redundant degrees of freedom by constructing a consistent Hamiltonian formalism
for the classical theory and then to proceed using canonical quantization, i. e., enforcing
canonical commutation relations on suitably chosen observables.

As was first noticed by DeWitt however [DeW], when one tries to quantize the
classical Hamiltonian, operator ordering ambiguities arise. They are of order A? and
contain terms proportional to the local Gaussian curvature of the constraint, which is
the only coordinate-invariant quantity.

A simple example may help to clarify this issue. Let us consider a classical particle
constrained to move on a surface 2 embedded in the three-dimensional Euclidean space
R®. According to the standard procedure we can eliminate redundant degrees of freedom
introducing Lagrangian coordinates. We get that the system is described by L = % <
d,q >yx, where < -,- >y is the metric induced on ¥ by the Euclidean scalar product. In
a local chart the Lagrangian has the form L = %gw(q)Q"'q'“. Defining the generalized
momenta p,, := %;— we obtain the Hamiltonian H := $¢**(q)p.p,, where g" is the
inverse of the metric tensor. If we now quantize the theory, we face ordering ambiguities
between the multiplication operators corresponding to the ¢ and the differentiation ones
corresponding to p,,, which are not removed even though we require the covariance of the
resulting theory under point transformations (see [DeW| for more details). According
to the different ordering we choose, we get an operator of the form

N 2
H= —%A + R?aR, (1.17)

where A is the Laplace-Beltrami operator on X, R is its intrinsic scalar curvature and
a is a constant whose value depends on the ordering. If the submanifold is flat, like a
one-dimensional curve for example, R = 0 and the ambiguity does not arise. Similar
problems are encountered in Feynman’s path integral approach ([Sch], chapter 24).

To overcome these difficulties, a number of physicists have proposed to replace the
intrinsic approach with the constraining potential approach we have already outlined
in the classical case. Actually, a more precise statement is necessary. Instead of using
a smooth potential W, as we did in (1.1), we could model a constraint considering a
free quantum particle which moves in a neighbourhood of A, M., which shrinks in a
suitable way to M when € — 0.

To have a well defined free Hamiltonian, we have to impose boundary conditions on
the Laplacian. In the physics literature the smooth potential or the boundary conditions
approach have been used indifferently, but both for conceptual clarity and technical
reasons it’s better to distinguish them.
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Figure 1.1: Example of a rigid constraint

e [ ME

Definition 1.3. Let M be a submanifold of R? (or an embedded graph). We say that
M is a soft constraint for a quantum particle if the Hamiltonian ruling the dynamics
of the system is given by (1.1), where the constraining potential W satisfies conditions
Wi and Wy 1.

We say instead that A is a rigid constraint if there exists a sequence of open
neighbourhoods M., 0 < € < 1 such that

My D M., D M, (1>e2>¢,>0),
lime—o M, =), M. = M (the bar over a set denotes the closure of the set),

and the Hamiltonian for the particle is given by

-~ h2

Hp(e, h) = _3‘&5&: (1.18)

where B denotes the boundary condition defining the Laplacian on M,.

The choice of B depends on the specific physical phenomenon we want to describe. In
next section, we will argue that the most significant choice is given by Dirichlet boundary
conditions, which we denote by B = D. From a technical point of view however, the
analysis of the limit with Neumann boundary conditions (which we denote by B = IN)
turns out to be simpler, and it has received much more attention in the literature.

The rigid constraint approach has been exploited mainly for the case when M is a
graph embedded in R? or R® and the emphasis has been put on the convergence of the

1If M is an embedded graph we have to consider non-smooth constraining potentials; suitable analogs
of conditions Wy and Wy will be discussed in chapter 3.
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spectrum of H (e, k) and not of the dynamics'. For this reason, here in the introduction
we limit ourselves to give an account of the soft constraint case, which is actually the
one we are more interested in and refer the reader to next section for a review of physical
models involving soft or rigid constraints and to chapter 3 for a more detailed account
of the rigid constraint case and a comparison with our approach.

One obvious difference between the classical and the quantum case is that since any
proper submanifold M C R? is a subset of zero measure with respect to d—dimensional
Lebesgue measure, it is not possible to choose a non-zero initial condition which is
supported on M. Therefore, due to the Heisenberg principle, the mean value of the
Hamiltonian (1.1), taken on an arbitrary non-zero state, will diverge in the limit € — 0
(the better we localize the wavefunction on M, the bigger kinetic energy becomes).

Since the energy is not bounded, it is possible that an infinite amount of it is trans-
ferred from the normal to the longitudinal motion, resulting in a diverging effective
potential (the homogenized potential of the classical case, (1.13)). To avoid this prob-
lem, starting from the article of Jensen and Koppe [JeKo], the idea has been to choose
constraining potentials whose Hessian has constant eigenvalues, i. e., referring to equa-
tion (1.5), wi(q) = wx = const. Vg € M. The normal energy is then constant along
M and gives rise, in the limit € — 0, to a divergent constant which can be formally
discarded.

One then tries to solve the time-independent Schrodinger equation making the Ansatz
that the wave function can be separated into a product of a longitudinal part, which
belongs to L2(M), and a normal part, which describes the fast oscillation around the
equilibrium position given by M.

To better describe this point, we need to introduce suitable coordinates in R¢,
adapted to the submanifold M, called tubular coordinates.

Let M be a smoothly embedded compact? submanifold of R? (in the following we
identify the image of M under the embedding with M itself as it is customary). At
every point ¢ € M the tangent space T,R? = R¢ decomposes into the direct sum of the
tangent space to M, T, M, and a normal part T, M L. This decomposition, which depends
smoothly on ¢, extends to the restriction to M of the tangent bundle TR¢ = R? x R¢,
TR =TM@®TM~, where TM is the tangent bundle of M and TM* is a bundle over
M called normal bundle. By the tubular neighbourhood theorem [Lan], it is possible to
fix a sufficiently small ¢ such that there exists a diffeomorphism between

Us :={geR?: d(q, M) <5},  d(g,M):=inf{lg—z|:z e M}, (1.19)

and
TM; = {(¢g,n): ¢ € M,n € T,M*,|n| < §}. (1.20)

! An exception to this statement is given by [BeMe]. We will comment on this paper at the end of
this section.

2This compactness hypothesis aims only at streamlining the presentation. The whole discussion
holds locally for an arbitrary submanifold.
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Figure 1.2: Tubular coordinates for a curve embedded in R?, of parametric equation
given by ((z)

q=(q; - 9 )
4=0,() +y (L (0)

=5x) +ynf{ (%)

. The diffeomorphism can be chosen to be
flg,n)=g+n

(remember that we have identified every fiber T,M* with a subspace of R9).
This means that, given a basis for the normal bundle of M, {nx(¢)}\, (I := d—m),
and a local chart (7' : E C M — R™, we can define a system of coordinates in Us by

l
¢=C((@)+ Y unm(((z), gels, zeR™, yeR, (1.21)
k=1

(y :== (y1,---,u)). The tubular coordinates of the point ¢ are then given by z :=
(Z1, oy T Y1y - - - YL)-

The product Ansatz mentioned above is equivalent to assume that the solution to
the Schrodinger equation is, in the limit € — 0, the product of a term depending only on
the longitudinal coordinates (z1,...,Zn,) and a term depending only on the transverse
coordinates (Y1, ..., Y1)

As was first noted by da Costa [daC;, daCy] however, this Ansatz is not always
correct. The reason is that, supposing that the wave function is given in a product
form, we implicitly suppose that, when ¢ — 0, the Hamiltonian can be written as a
sum of two terms, one containing only longitudinal variables, the other only normal
variables. Even though we choose a constraining potential whose Hessian has constant
eigenvalues, this need not be true because the geometry of the constraint M can be such




12 Introduction Chapter 1

that the Euclidean metric is not diagonal anymore written in tubular coordinates, and
so it is not possible to separate the longitudinal and the transverse motion, which are
coupled by a kind of gauge potential.

Da Costa eliminated this problem restricting his attention to submanifolds which
satisfy a “no twist” condition [Mit], i. e., submanifolds for which the gauge coupling
is equal to zero. It can be shown that this is equivalent to require that the normal
fundamental form of M, which represents the connection induced by R? on the normal
bundle TM+*, defined by

beg[] =< g, dn;[] >pe, (1.22)

is identically equal to zero. If the dimension of M is equal to one, then we can always
make by ; = 0 by a suitable change of basis in the normal bundle, which corresponds
to a gauge transformation. Moreover, by ; is antisymmetric, by; = —b;y, so if the
codimension of M is equal to one, again by ; = 0, but, apart from these simple cases,
the gauge coupling can be non-zero.

In the physical literature there have been subsequently attempts to deal with the
general situation using various forms of perturbation theory, [KMH, MaDe, Mar;, Mars,
Mit, ScJal.

The results of these studies can be summarized into two main statements.

First, if the submanifold satisfies da Costa’s “no twist” condition, the formal limit
€ — 0 leads to an effective Hamiltonian for the longitudinal motion given by

H =——A+-—R——p (1.23)

where A is the Laplace-Beltrami operator on M, R is the intrinsic scalar curvature and
7 is the mean eztrinsic curvature of M. Note that, since the mean curvature depends
on the embedding of M in R?, it would be impossible to get a term containing it using
Dirac’s quantization procedure. Moreover, this additional potential has nothing to do
with the homogenized potential of the classical case, which, as we said above, in this
case is equal to a constant and is therefore discarded.

Second, in the general case, the effective Hamiltonian contains an additional term?,
which couples the longitudinal motion and the angular momentum in the transverse
directions. This term has the form of a minimal gauge coupling and prevents a straight-
forward separation of longitudinal and transverse motion, which is restored only treating
it as a perturbation.

From these brief remarks, it is clear that the quantum mechanical situation seems at
first sight very different from the classical one, because of the various kinds of effective
potentials involved. This is the reason why a systematic comparison was attempted only
recently by Froese and Herbst [FrHe| and Teufel ([Teu], section 2.4).

!The complete expression of the effective Hamiltonian will be given in chapter 2.
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Froese and Herbst analyze rigorously the case of a constraining potential which is
eractly quadratic in the transverse coordinates, i. e., whose Taylor expansion near
the constraint contains only the second order term, and whose Hessian has constant
eigenvalues.

They consider e-dependent initial quantum states, 1§, whose position density is more
and more localized near M when ¢ — 0. This condition is expressed in the form

= C
1 (e, Ryl < —, (1.24)
where H (e,h) is defined in (1.1). This request is natural from an “adiabatic” point of
view, as can be seen in a two-dimensional example.
Consider the Hamiltonian
= 16 & 1
K()=——|=—=+=— e 22

 where (z,y) € R? and w is a smooth function which is strictly positive, w(z) > w, > 0.

As in the classical case, we expect that the particle oscillates very fast around the
equilibrium position y = 0, while the motion along the z direction is comparatively
. “slow”. Then, according to the principles of quantum adiabatic approximation (for an
updated review see [Teu]), we can separate the dynamics in almost invariant subspaces,
supposing that the fast degrees of freedom immediately adjust themselves to follow the
slow evolution. Therefore, it is natural to pick an initial condition which lies in one of
these almost invariant subspaces, i. e., which is an eigenstate of the harmonic oscillator
in the y variable, with frequency w(z) (we denote it by ®Z . (y)). It is obvious then that

IR )7 )95,w)l < 2,

where f € H*(R).

In a slightly different framework, without explicitly mentioning the theory of almost
invariant subspaces, Froese and Herbst prove that, if the submanifold M satisfies da
Costa’s “no twist” condition,

sup |lexp ( — itH (e, ))vE — exp (— it Hy) - exp (= it Hose) U5 — 0, (1.25)
t€[0,7]

where fIL is defined in (1.23) and ETOSC is the Hamiltonian of the harmonic oscillator
with frequencies given by £, where wy, are the constant eigenvalues of the Hessian.

In the general case, however, they get a formula similar to (1.25), with a longitudinal
Hamiltonian which commutes with Ho., but acts on L*(TM*) and not on L2(M). Thus
it is not possible to interpret the approximate dynamics as a longitudinal motion with
superimposed transverse oscillations.
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Note again that the homogenized potential of the classical case is absent, because
the eigenvalues of the Hessian are constant functions.

A different approach was proposed by Teufel, who noted that, as far as classical
dynamics are concerned, it is equivalent to consider strong restoring forces normal to
the constraint or weak forces in the non-constraining directions. To illustrate this point,
let us suppose for simplicity that M = R™ C R, that the constraining potential is
strictly harmonic and V depends only on the longitudinal coordinates x:

1
T/V(n:,y):—2-<y,A($)y>Rz, l=d-m, qg=(z,y) € R™" x R' = R¢
Instead of looking at the classical Hamiltonian corresponding to (1.1),

1 1
He(g,p) = 50" + V(o) + 55 < v, Al@)y >,

we can rescale x and y, x = €z, y = €7, and consider

1 I S
He(G,p) = 57"+ V(eZ) + 5 < §, A(e2)f >m -

The potentials are now slowly varying in the longitudinal direction, instead of strongly
confining along the transverse one.
Rescaling also the time, ¢ = &t, one can check by direct computation that, if

(q(t),p(t)) is a solution of the equations of motion generated by H.(q,p) then

(q(t), p(2)) = (.I(t) p(f)> (1.26)

is a solution of the equations of motion generated by H.(¢,p). The motions generated
by the two Hamiltonians are related by a rescaling of space-time, so we can study the
limit € — 0 equivalently in one or the other scale.
On the quantum level however, this equivalence does not hold anymore, i. e., it not
possible, rescaling space-time, to pass from the operator
R? h?

~ 1
H(e,h) = "'é'Am - —2—Ay +Vi(z)+ 5 < y, Alz)y >

to the operator (we use the same symbol H for the classical and the quantum Hamilto-
nian to avoid to have too many of them)

~ B2 h? 1 o\~
H(e,h) = —?Z_Ai - ~2—Ag +V(ez) + 5 <9 Alex)y > . (1.27)

Therefore, in the quantum case, we have two different limit problems.
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One advantage of the Hamiltonian H (e,R) is that it does not suffer of the problem
of diverging energy which constitutes the main difficulty in treating H (e,k). On the
other end, since the two problems are independent, it is equally legitimate to study the
one or the other, as it happens, e. g., in models of field theory, like the massless Nelson
model, where classically one can consider the limit of fast photons or the limit of slow
particles, while in the corresponding quantum mechanical model the two limits are not
equivalent anymore, but both are relevant.

A point of view similar to the one of Teufel is taken by Ben Abdallah and Méhats
[BeMe], who have analyzed the limit ¢ — 0 of the quantum flow generated by (1.27),
in presence of a time-dependent external potential, V(¢,z,y), when M = R™ and the
codimension of M is equal to 1. To model the confinement of the particle, however, the
authors use a rigid constraint approach, imposing Dirichlet boundary conditions in the
strip defined by 0 < y < 1. Note that the transverse subspace is one-dimensional, and
the constraint is flat, therefore, in this case the difficulties linked to the geometric gauge
potential do not arise.

The authors perform the limit using Wigner functions, which are a well established
tool in semiclassical analysis. Actually, if we rescale the variable Z in (1.27), passing to
the variable z = ez, we get (using units in which = 1)

- 2
Hpy = -%—AI - %Ag + Vet 2, §), (BM=Ben Abdallah, Méhats)
Yy=0)=vy=1)=0, »(t=0) = g

(1.28)

so, with this scaling, the limit ¢ — 0 resembles a partial semiclassical limit made in the
tangential direction only.

They show that, if we split the solution of the time dependent Scrodinger equation
along the different transverse subspaces, the Wigner function of the longitudinal com-
ponents satisfies in the limit a Vlasov equation with potential given by the transverse
eigenstate (a nonlinear confining problem, given by a perturbed form of the Scrédinger-
Poisson system, is studied in [BAMP], where also a detailed discussion of the scaling
employed to arrive at (1.27) is given).

This result is, for the special case M = R™, codim M = 1, analogous to the one we
will prove in chapter 2, valid for a manifold of arbitrary dimension and codimension,
which is stated in wavefunction, and not Wigner function, language, but with a special
class of initial conditions.

Our starting point is however different from the one of the previous authors. We
propose to compare the classical and the quantum situation, taking account of the fact
that in quantum mechanics there is an a priors length scale (in units in which time and
mass are of order 1) defined by A.

In actual experiments there is always a natural boundary beyond which the particles
cannot be further localized. Moreover, in physical systems which can be described with
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good accuracy by the Hamiltonian (1.1), like the mesoscopic devices (see next section
for more details), the transverse direction cannot become smaller than 7, which is the
order of magnitude of atomic dimensions.

This is the reason why we propose to link the squeezing scale, determined by the
constraining potential, to the quantum scale given by 7 and subsequently study the
limit & — 0. This is what is done in chapter 2, which is an expanded version of [DeTe].

1.2 Physical applications: examples from condensed
matter physics and theoretical chemistry

The topics discussed above make clear that the study of the dynamics generated by
Hamiltonian (1.1) and their link with the corresponding classical flow is important from
a conceptual point of view to justify the traditional approach to constrained systems.

There are, however, also many concrete physical systems whose dynamical and spec-
tral properties are, with a certain degree of approximation, well described by an Hamil-
tonian containing a strong confining potential.

Here we give two examples, one concerning semiconductor devices in nanophysics
and the other the so called quantum network model for aromatic molecules and periodic
solids.

The reader will surely note that the constraints which naturally arise in applications
are non-smooth. Specifically, they are given usually by graphs. The study of this kind
of constraints poses additional problems to the ones encountered in the smooth case,
mainly related to the kind of differential operator one has to define on the graph to
describe the motion of the electrons. As stressed in a recent review in the field ([Ku,],
page R16), the method of the confining potential in the case of a graph “has not been
explored”. We will give some results in this direction in chapter 3, where we will define
quantum graphs and discuss possible ways of approximating them.

1.2.1 Nanostructures

The operation of many electronic nanostructures, like quantum wires and nanotubes,
relies on the formation of a low dimensional electron gas. The electrons are confined in
one or two directions, and can freely propagate in the other one(s).

Quantum wires are narrow almost one-dimensional conducting surfaces made of a
semiconductor material. They are created using a very thin substrate (which can reach
2 nm of thickness, which amounts to have several atoms only in the transverse cross
section) that is subject to a ion bombardment, after having masked a region similar to
a waveguide.

The region not covered by the mask becomes not conducting (black area in figure
1.3), so the electrons can move only in the remaining white area. In this way, it is
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Figure 1.3: Schematic representation of a quantum wire

possible to “draw” on the substrate various kinds of waveguide-like structures.
Another interesting example is given by nanotubes. They are made up of many
+ atoms situated in cylinder type spatial surfaces. The first kind of nanotube created
was the carbon nanotube, which is a variety of fullerenes. Recently, also metal-doped
2 nanotubes have been synthesized.
The main physical properties common to these structures are (see, e.g., [DuEx, LCM]
for more details):

1.

o

Small size.

We have already said that the thickness of quantum wire can reach 2 nm. The
transverse length d of figure 1.3 or the diameter of a nanotube are of the same order
of magnitude. These quantities are comparable with the de Broglie wavelength
A = 2n/kp ~ 1 nm of an electron with energy of the order of the Fermi energy
Er ~ 1 eV, while the longitudinal length L of a quantum wire or a nanotube are
much bigger (typically, L ~ 100 nm). This means that we expect quantum effects
to play a significant role in the transverse motion, while the longitudinal one can
be correctly described in classical terms.

Ballistic transport.

The electron mean free path can be a few pm or even larger, since it is possible to
fabricate devices of very high purity, so that the propagation is not disturbed by
scattering on impurities.

. Crystallic structure.

It is known that, in the first approximation of the strong-coupling method, the
dynamics of a particle in a crystal is described by the one particle free Hamiltonian,
with an effective mass m.,.
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4. Confinement.

The electron is confined inside the nanostructure by a strong potential barrier,
which prevents it from escaping outside.

From these remarks it is clear that we can describe the motion of an electron in
a nanostructure adding to the free Hamiltonian a constraining potential, whose small
parameter € is linked to the ratio between the transverse and the longitudinal length.
If we suppose that the potential barrier confining the electron is infinitely high, we get
Dirichlet boundary conditions, as in the rigid constraint approach.

Another model was put forward by Exner [Ex|, who considered a d-type interaction
in R? (respectively, R®) with support on a smooth curve (resp., a smooth surface). He
studied then the spectral limit when the coupling constant goes to infinity. Since an
attractive d-potential has bound states for negative energies only, this can be an alterna-
tive way of taking into account the fact that the confining barrier is not infinitely high.
However, if the codimension of the constraint is equal to two or three, the definition of
the d-potential becomes more problematic and if it is greater than three the Hamiltonian
with é-potential cannot be defined as an operator on a Hilbert space [AGHKH].

In any case, one should note that realistic quantum wires or nanotubes can have
bifurcations, i. e., they can form branched structures, like the one in figure 1.3. To
implement this feature, one should consider a non-smooth constraint given by a graph,
where the vertices correspond to the regions where several tubes meet.

1.2.2 Quantum network model

The quantum network model (QNM) has been used in theoretical chemistry to calculate
the electronic structure of haromatic molecules and periodic solids.

Its first application was probably given in a famous paper of Ruedenberg and Scherr
[RueSc] to analyze systems of conjugated double bonds in organic molecules. They
explicitly considered the case of the naphthalene (figure 1.4). Each atom contributes

Figure 1.4: Naphthalene molecule

three electrons for the chemical binding of the structure. In a first approximation, one
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supposes that two of them, the so called o-electrons, form bonds which mantain the
geometrical arrangement of the molecule, while the third one, the m-electron, moves
throughout the whole structure in the potential created by the other ones.

Essentially, the o-electrons create a “skeleton”, to which the 7-electrons are confined.

Figure 1.5: Naphthalene molecule’s skeleton

, In their paper, Ruedenberg and Scherr supposed that the constraining potential was
" zero on an thin tube containing the bond lines and infinite outside, adopting the rigid
" contraint point of view. As we have already mentioned before, we think that a smooth
potential is a better way to model a real potential barrier which, a fortiori, has to be
finite.

The quantum network model was afterwards extended to cover other systems of
chemical interest, like periodic lattices in metals, by Coulson [Cou|, who found a remark-
able agreement between his calculations and the spectrum of 7m-electrons in graphite.
Later, Montroll [Mon] studied the case when the vertices of the skeleton contain different
atoms, like in the boron nitride crystal. A recent review can be found in [ALM].

1.3 Other models of constrained partial differential
equations

The approximation of the dynamics of complex systems by the motion of systems of
reduced dimensionality, which describe a sort of “average” motion of the full system,
is not restricted to finite-dimensional classical systems nor, in the PDE domain, to the
Schrodinger equation. In this section, we give a number of examples which are related
to hyperbolic PDEs, both in the soft and in the rigid constraint approach.

The results of Rubin and Ungar, which were mentioned in section 1.1.1, were ex-
tended by Ebin [Eb;] to show that the motion of a slightly compressible inviscid barotropic
fluid can be approximated by that of an incompressible one.

Let us suppose for simplicity that the domain filled with the fluid is the n-dimensional
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torus T", which is equivalent to consider periodic motions in R"™ (for more general
domains see [Eby)).

If u(t) : T* — R™ is the curve of vector fields describing the fluid velocity (i. e.,
u(t)(z) is the velocity of the fluid particle which is at position z at time ¢, where z is
usually called Euler coordinate of the fluid) and p: T™ — R™ is the fluid density, then,
in absence of viscosity, they satisfy

1 1
A + ujdu = —=Vp = —=p'(0)Vp,
hu + uioju 5 VP Qp(@) 0 (1.29)

dyo — div(pu) = 0,

where p(p) is a given function, which expresses the pressure of the fluid in terms of the
density (this is possible, by definition, in barotropic fluids only).

For an incompressible fluid, the density is constant, gi, = const., while the velocity
field, denoted by v, satisfies

3,57) —+ ’Uj@j’l) = 07

.30
divv = 0. (1.30)

Apparently, these two systems of hyperbolic equations are unrelated, but, in appli-
cations, it is supposed that the solutions of (1.30) approximate the solutions of (1.29),
when the compressibility, defined by the reciprocal of dp/dp, goes to zero (note that, for
physical reasons, dp/dp is always positive).

This is exactly what Ebin proved, reformulating the problem of an incompressible
fluid as a constrained motion. In [EbMal, in fact, it is showed that the system of partial
differential equations (1.29) can be rewritten as an ordinary differential equation on
an infinite dimensional Riemannian manifold, given by the group G of C* diffeomor-
phisms of T”. In the same way, system (1.30) can be rewritten as an ODE on Gy, the
group of diffeomorphisms whose Jacobian is equal to one. In this way, considering an
incompressible fluid is equivalent to consider an infinite dimensional constrained system.

What Ebin proved is a theorem analogous to theorem 1.1, but he supposed that M is
a submanifold of an infinite dimensional Riemannian manifold. He, however, restricted
his attention to tangential initial data only (v, € T, M, with the notation of 1.1).

A different system of hyperbolic equations, the wave equation, was considered by
Shatah and Zeng, [ShZe]. They were interested in constructing wave maps, which
are maps from Minkowski space (R™"*! n) into an m-dimensional Riemannian mani-
fold (M, g), that satisfy the covariant wave equation. The target manifold M can be
isometrically embedded in R™*, where one considers a penalized wave equation

1
Ou+ V'(u) + EEI/VI(U) =0,

(1.31)
O=207- A, u: R x R™ — R™,
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where V' is a smooth potential and W is the constraining potential. Naturally, this
system has a conserved energy,

1 1 1
E.(u,0u) = ./mn dz §|8tu|2 + §|Vulz + V(u) + ?I/V(u)’

so we expect that, if we consider equi-bounded energy solutions, then the penalization
term will constrain the solution to M, and, in the limit € — 0 we will get a solution of
the covariant wave equation on M?!. This is true if the initial data are tangential to M.
When a normal part is present, as in the classical case, additional terms appear in the
limit equation for the tangential components. For the case of the wave equation, these
terms have been calculated by Keller and Rubinstein [KeRu], who showed that the limit
should satisfy a coupled system of transport and wave equations. This, together with
the well-posedness of the Cauchy problem, was rigorously proved in [ShZe].

Finally, we would like to conclude this section with an example of an application
to hyperbolic PDEs of the rigid constraint method which has been recently employed
[DeVWa, DeV] in the study of elastic bodies with one dimension significantly smaller
than the others, like long metal beams or rods.

The hyperbolic problem considered is given by

Ou = Lu (1.32)

where the operator L is defined by

Lu =8, <a (g) ayu> + b(%) V. - (Cl2) V).

The problem is posed in a three-dimensional domain, 3, of thickness d,
Q=wx (0,7d),

where w is a bounded two-dimensional domain of smooth boundary . To define it
correctly, we have to specify boundary conditions:
u=0 on-~vyx(0,7d) xR,

1.33
Oou=0 onFixR (Neumann boundary conditions), (1.33)

where F are the top and the bottom face of Q, F = {(z,y,2) : (z,y) € w,z = 7d},

F_:={(z,y,2) : (z,y) €Ew,z =0}
DeVille and Wayne show that it is possible to approximate the solutions of the full
three-dimensional problem by the solutions to a system of two-dimensional PDEs in the

!Note that in this case, as for classical dynamical systems, it is possible to choose initial conditions
which give rise to an equi-bounded energy. We have already remarked that this is not possible for the
Schrédinger equation.
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variables (z,y). In particular, they establish a hierarchy of two-dimensional equations
whose dynamics model the dynamics of the full plate, and each term of the hierarchy
lengthens the time interval over which the approximation holds.

The viewpoint adopted is to think the equation (1.32) as an infinite-dimensional
Hamiltonian system. In the phase space of this dynamical system, it is possible to
identify an (infinite-dimensional) submanifold which is left invariant by the reduced
two-dimensional PDE. Making then a canonical change of variables for the original
Hamiltonian, one can show that this invariant manifold is left approximately invariant
by the flow of the full three-dimensional PDE.

Actually, using a procedure which is reminiscent of the Nekhoroshev theory of clas-
sical mechanics, the authors make a sequence of canonical changes of variables which
change the approximately invariant submanifold slightly, leading to more refined effec-
tive equations, which approximate the true solution for longer and longer time intervals.
This procedure is also formally similar to space-adiabatic perturbation theory [Teu] in
the framework of which one can show that the wave function stays for longer and longer
times in “tilded” subspaces, constructed starting from the spectral subspaces of the
Hamiltonian. In fact, the ratio of the frequency of oscillation of the plate in the “long”
directions and in the “thin” direction is a natural adiabatic parameter in the problem.

As a last remark, we would like to stress that the use of Neumann boundary con-
ditions in (1.33) gives rise to a transverse Laplacian whose spectrum has always the
same ground state energy, £ = 0, independently of the thickness of the plate. This fact,
which sets the Neumann case apart from the Dirichlet and the smooth potential ones,
makes the analysis of the problem somewhat simpler. We will elaborate on this brief
remark in chapter 3, when we will speak of the approximation of quantum graphs by
fattened graphs employing different kinds of boundary conditions.



Chapter 2

Semiclassical limit in the case of
smooth constraints

In this chapter we study the semiclassical limit of the quantum flow associated to Hamil-
tonian (1.1), under the scaling

e=ah, aeR,. (2.1)

As it has already been stressed in the introduction, we derive an effective Hamiltonian
for the classical motion on M, using the technique developed in a series of papers by
Hagedorn ([Ha;, Hay] and references therein) to construct approximate solutions to the
Schrodinger equation which are localized along a classical trajectory.

To explain the characteristic features of the method we employ, we first analyze in
detail a number of explicit cases (R™ embedded into R™™, a smooth curve embedded
into a plane); we show then how the procedure generalizes to (non-flat) submanifolds of
arbitrary dimension and codimension.

We have already stressed that the scaling (2.1) is based on the fact that in quantum
mechanics there exists an a priori length scale defined through # (in units in which time
and mass are of order one).

In real systems, like the mesoscopic ones mentioned in section 1.2, the transversal
directions contain at least some atoms, so any realistic layer cannot become smaller than
fi, which is the order of magnitude of atomic dimensions. Therefore, in our opinion, it is
necessary to link the squeezing scale, determined by the constraining potential, to the
quantum scale given by A.

A simple example
To illustrate this point, we consider the standard two-dimensional example

AD 29
. PR+ 1 , ‘
Bo=2 0 Su(wf?, b= —ifd, T =3, (2:2)
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where w : R — R, is an arbitrary smooth function which satisfies w(z) > w, > 0
Vz € R.

The squeezing scale is determined by €, and we want it to be a function of #, £ = (k).
Since, as we argued before, £ cannot become smaller than %, and it has to go to zero
when 7 — 0 (to achieve the constraining limit), the simplest choice is

€ = ah® 0<a<l a  fixed >0 (2.3)

(there is no loss of generality, since what matters is the behaviour of e(k) when % — 0).
With this choice, the Hamiltonian (2.2) becomes

a2 2
= Dp D 1 2 2
=3 pazrz (@)Y

and we want to examine the limiting behaviour of the dynamics generated by H 7, When
h— 0.
If we unitarily scale the transversal direction to factorize &

th(a—i—l)ﬁy ay_ﬁh—(cv—{-l)/fZay’

we get
A

2
H, — —%83 +Rlme [ — 513 + 2—22w(r)2y2} :

If a # 1, using the same techniques illustrated in the next sections, it can be shown

that the influence of the normal motion on the longitudinal one is suppressed, and the

effective Hamiltonian is the free one. Therefore, in the following, we consider only the

more interesting case o = 1.

In the next section we analyze a generalization of (2.2), studying the case of a
potential confining to a flat submanifold M of R™*™. We realize the constraining limit
through dilations in the direction normal to M, i e., we put We(z,y) = W(z,y/e).
This allows us to consider generic dependence on the transversal variables, unlike what
is usually made in the literature [Bor, FrHe, Tak] where the first non zero term in the
Taylor expansion of the potential around the constraint is the quadratic one, and so the
problem is reduced to the analysis of harmonic motions.

In section 2.2 we consider a two-dimensional example where the constraining limit
is realized through the more traditional method of scaling of the coupling constant,
i. e, Wé(z,y) = e2W(z,y). In the case of a spectrally smooth potential confining
to a nondegenerate critical curve (conditions Wi and Wy, page 3) the semiclassical
limit motion we get along M is the same as the homogenized classical motion found by
Bornemann [Bor].

In section 2.3, we show that an analogous result holds for an n-dimensional non-
degenerate critical submanifold embedded into R™*"™. We exploit Hagedorn’s multiple
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scale technique to construct squeezed states whose centre and dispersion take account
of the (non-trivial) curved background.

Finally, we address an Hamiltonian showing the phenomenon of Takens chaos [Bor,
Tak], which is encountered when the constraining potential is not spectrally smooth. In
classical mechanics, the motion on the submanifold M is not deterministic anymore, 1.
e., it is not described by a natural mechanical system on M and the limit set obtained
forms a funnel. We show that the semiclassical limit offers a natural way to reduce (but
however not to eliminate, in general) the degeneracy, linking different trajectories in the
funnel to different quantum initial conditions.

2.1 Constraints by normal dilations

Let M = R™ and W¢(q) = W(z,y/e), where we split ¢ € R™™™ as (z,y), z € R,
y € R™.
‘We suppose that

V,W e L} and are bounded from below, (

loc

lim W(z,y) =00 Yz e R™ (confining hypothesis). (

[y|—c0

4)
5)

[

We impose also an implicit smoothness hypothesis on the potentials, through a
condition on the resolvent of the reduced Hamiltonian h(z), to be defined below.

As argued above, we put ¢ = afi. Actually, since we have several normal directions,
we can choose different /% ratios for each one.

Defining

ya::(lﬁ %) (2.6)

equation (2.19) becomes
& _ 1P ;
Hy= 5 + V() + W(z,y./h), (2.7)

where, for the sake of simplicity, we suppose that V' (gq) does not depend on y.
Scaling the transversal directions by the dilation operator

(Dyd)(z,y) = v (z, vy), (2.8)

we get an Hamiltonian of the same form as the Born-Oppenheimer operator, used in
molecular physics,

b5 5 Rz
Dﬁ_thDh—l =: Hpo = '“"Q“Am + b(ﬂ?),
(2.9)

Blz) = —2 Ay + Wiz, p) + V(z).
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It follows from (2.4), (2.5) that E(:c) is, for each z, a well defined self-adjoint operator,
with compact resolvent and nondegenerate ground state [ReSi;].

We suppose in addition that /[j\(:lt) has a smooth dependence on z, namely that
(h(z) — i)' is a C' function of z, for some [ > 2. This makes its eigenvalues E(z)
(which we will call also “transversal” or “normal” energy levels) C! functions of z away
from crossings or absorption in the continuous spectrum.

The behaviour of Born-Oppenheimer Hamiltonian when A — 0 is well understood
([Ha, Teu] and references therein).

The transversal motion adiabatically decouples from the longitudinal one and stays
approximately in a bound state of h( ) for a fixed value of z. On the other hand, the
longitudinal motion depends on the transversal one because it feels an effective potential
which is equal to the normal energy.

Using standard results [Ha;| we can elaborate on this qualitative argument:

Theorem 2.1. Suppose that there exists an open set U C R™ such that E(r) has a
nondegenerate eigenvalue E(z) for x € U, with corresponding real normalized C* eigen-
function ®(z).

Let a(t) and n(t) be the solutions of the classical equations of motion with potential
E(z) (which ezist and are unique since E(z) is C'(U) and bounded from below)

a(t) = n(t) (2.10)
i(t) = —V Blat)), (2.11)
a(0) = ag n(0) = no, (2.12)
then, for t € [0,T1,
exp (= TH)pu(A(0), B(O), b, a(0), n(0), 2)F(x) Da-+2(2)
- exp (122 g (A(9), B(0) (), n(t), ) () Dy 0(2)

L2 (IR'VL—FTM)

= O(h?), (2.13)

where S(t) is the classical action, A(t) and B(t) are linked to the dispersions of vy, in
(respectively) position and momentum and F is o cut function which is zero outside a
neighbourhood of the classical trajectory {a(t) : t € [0,T7]}.

Remark 2.1. The functions (A, B, k,a,n,z) were introduced by Hagedorn, to whom
we refer for the notation [Has]. They are a useful tool in studying the semiclassical
limit of quantum mechanics and they coincide with the “squeezed states” widely used
in quantum optics [Com]|. Essentially, they are minimal uncertainty wave packets with
different spreads in position and momentum.
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Remark 2.2. We will give a proof of a slightly more general version of theorem (2.1) in
sections 2.2 and 2.3, where we analyze the Laplace-Beltrami operator in a curved space.

2.1.1 Comments and examples

Let us analyze in greater detail the approximate evolution found in (2.13).
The transversal wave function Dy-1®(z) clearly describes a motion confined to the
submanifold M = R"™, since

< § >=< Dp1®(z),yDy-13(z) >= h < B(z), y®(z) >= O(h),

2.14
(AG)? =< Dps®(x),42Dps8(z) > — < Dpsd(x), y: Dysd(z) 2= O(h?), =14

while both < p, > and < Ap, > are O(1).

One should note however that we did not require W to have a strict minimum on
M. Actually this is not needed, since in our scale the average position of the normal
motion is always “seen” to be approximately zero, as equation (2.14) shows.

In the standard case where

W(z,y) sz )22, (2.15)

the effective potential for the motion on M will be

Baw) =Y Bt YD oy 2 Suoi(z) + V (=),

(n: + 1/2)_

€%

(2.16)

n=(Ng,...,Mm), 9 =

This is exactly the homogenized potential found by Bornemann and Takens (see
theorem 1.1), where the 9J; are, in the classical case, the adiabatic invariants associated
to the normal oscillations (4. e., the energy-frequency ratios).

Varying the squeezing factors a;, or the transversal wave function ®(z), ¥; can be
made to assume every positive value (the value ¥; = 0 can be obtained suppressing
the ith mode as we explained in section 2). The harmonic potential is particular in
this respect, because, as far as the effective potential is concerned, all normal states are
equivalent, since the various choices for ®(z) correspond simply to suitable scalings of
€ and .

One could even use an z-dependent scale, ¢ = a(z)h, without altering substantially
the structure of equation (2.16).

Such a simple picture cannot be expected when W is not harmonic.

In general, the effective potential will have a non-trivial dependence both on the
parameters a = (ai,...,an) and the transversal wave function. This gives a host of
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well-defined classical motions on M, whose form, however, cannot be given explicitly as
in the harmonic case.

It would be interesting, for instance, to compare the semiclassical effective Hamilto-
nians produced by a “flat” confining potential, like the sextic harmonic oscillator,

W(z,y) = Va2l + Ve(@)y®  (z,y) €R®  Vela)2Vi>0  (217)

with the corresponding homogenized classical motions (if any exists), to see if it is
possible to reproduce them in a purely classical way. ‘

Unfortunately, the spectrum of the reduced Hamiltonian associated to (2.17) is
known only for particular values of the squeezing parameter a. For example, if a =1
and Vy(z)? = 12V4(2)%/? it is known [SCDS, Ush] that the ground state is

Vi(z)
Ey(z) = ‘2“‘76%:‘)775,

but it is not possible to write an explicit expression for all values of a.

(2.18)

2.2 Constraints by scaling of coupling constant: a
curve in a plane

In this section we analyze, in a fairly detailed way, a two-dimensional example where
We = e72W. It allows to explain the main differences between the curved and the flat
case, avoiding technical complications arising from higher codimensions, which are not
essential for the result, and will be illustrated in next section.

We suppose, in the same spirit of (2.4), that V and W are C* and non-negative, but,
as is customary in classical mechanics [Bor, Tak|, we replace (2.5) with the hypothesis
that W is a spectrally smooth potential constraining to a nondegenerate critical curve
M (condition W7 and W5, page 3).

Our starting Hamiltonian (with the prescription € = a#) will be then

AP
)

F4

Hy +V(z,y) + (ah) W (z,v). (2.19)

Squeezed states are particularly suited to studying this sort of situations, where M
is not flat, because, as (2.13) shows, the evolution of a localized state is approximately
described (for a bounded time interval) by localized states. This allows us to analyze the
motion using one coordinate chart only and therefore local expressions for the operators
involved.

Essentially, what we will do here is to adapt the arguments of the last section to a
curved case, constructing an approximate solution to the Schrodinger equation which,
in suitable coordinates, is still given by a squeezed state in the longitudinal direction
and an (harmonic) oscillation in the transversal one.
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2.2.1 The Hamiltonian in curvilinear coordinates

We fix a tubular neighbourhood ¥ of M, and we consider a single chart of tubular
coordinates, defined on % C 7.

This simply means that, given a local parametric representation of M in terms of its
arc length s, gu(s) = (za(s), yar(s)), we can write (for ¢ € %)

a(s,w) = qu(s) + un(s), (2.20)

where n(s) is the unit normal of M (for more details, we refer the reader to the discussion
on page 10 and figure 1.2, page 11).
When ¢ varies over %, s and u vary, respectively, over two intervals I and J.

Lemma 2.1. The Hilbert space L*(% ,dq) is isometric to L*(I x J, dsdu).

Proof. This well-known lemma results from two facts.
First, the choice of curvilinear coordinates provides an isometry of L*(%,dq) to
L*(I x J,g*?dsdu), where
V2 = 1 4 k(s)u (2.21)

is the Jacobian of the transformation (z,y) — (s,u), and k(s) is the curvature of M.
Second, the multiplication by g'/* is a unitary operator from L*(I x J, g'/2dsdu) to
L2(I x J,dsdu). O

In the following, we will denote the isometry constructed above by U: L% ,dg) —
L2(I x J,dsdu).

We remark that U maps C§°(% ) onto Cg°(I x J) and Hh maps Cg° (%) into C°(% ),
so, denoting, with abuse of notation, the restrictions of U and H; to C§° functions with
the same symbols, we have

UHU: C(I x J) — C(I x J),

77707, JRLL Sy (R S U
T TR U H k(w2 \T + k(s)u (1 + k(s)u)i2
B_OR k)2 - e
- *2—33 RN TR AT V(s,u) + (ah)*W(s,u) = (2.22)
A2 9 B2k (s)u

9, — R*Q(s,u)+

o1+ k(s)u)? (14 k(s)u)?

2 ~
- P——BQ + V(s,u) + (ah)2W (s, u),

where V and W are V and W written in curvilinear coordinates and A2Q is the ex-
trapotential of purely quantum origin which we have already discussed in section 1.1.2.
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It appears also in mesoscopic physics, and can give rise to interesting phenomena, like
bound states, in a quantum waveguide [DuEx]. However, it will not concern us here,
since it disappears in the lowest order of semiclassical approximation.
Using again a dilation operator in the transversal direction u,
D, : L*(I x J.,,dsdu) — L*(I x J,dsdu)

(Do) (s,u) = v (s, 7u)
Jy={yuiue g}, (2.23)

we get the final form of the Hamiltonian which we will employ in the estimates:

ﬁBO : Cgo(l X Jh—x) — Cgo(f X Jﬁ—l),
ﬁIBo = D;_lﬁﬁhUTDh—l =

B2 hsk( ) (2.24)
—_ 2 |\ S)U _ ~
o201+ hk(s)u)Qas (1+ hk(s)u)sas H*Q (s, hu) +1(s),
where .
6(5) = —58124 + V(Sv hu) + (ah)_zﬁf(s, hu). (2.25)

Remark 2.3. Note that
B N S SN S e 3
(ah) "W (s, hu) = Qc?auw (s,0)u” + —6—a—28uﬂ (s,0)u"+

1 hu foa 1 _, " 3~r 3
" barr2 /o do(fu =)' 0 W (s v) = ggwls) v + g5 0W (s, 0+ Rl u),

Au
V(s, fiw) = V(s,0) + Fud,V(s,0) + / dv(hu — v)02V (s,v) =
0
=V(s,0) + hud,V(s,0) + Ry (A, u).
(2.26)

The scaling in the normal direction eliminates the dependence of E on # only at the
lowest order in the Taylor expansion around the constraint (which is the quadratic one
since M is a nondegenerate critical curve).

From now on, we will denote by §®(s) the harmonic part of (s):

1 1

§0(s) = =300 + gzwl()"u’ + V(5,0). (2.27)

2.2.2 The approximate evolution

In this subsection we prove the
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Theorem 2.2. Let ®(s,u) be a real normalized eigenstate of /6(2)(5), considered as
an operator on L*(R,du), with eigenvalue E(s). Let a(t) and n(t) be the solutions
of the classical equations of motion with potential E(s), and let F(s,v) be a function in
C5°(I x J) which is equal to 1 for s in a neighbourhood of the trajectory {a(t) : t € [0,T]}
and v near to 0.

Then
” exp ( - %ﬁ@ UTD,»L-190;€(A(O),B(O), fi,a(0),n(0), s)F (s, hu)®(s, u)

S(E)\ 5
— e (D)0 D A1), B2), B att) m(8), ) Fs, ) (s, )|
= O(h'/?), (2.28)
where S(t) is the classical action associated to (a(t),n(t)).
Remark 2.4. The function oy(A(t), B(t),h,a(t),n(t), s)F(s, hu)®(s,u) is in C(I x
Jn-1), 50 U D10k (A(2), B(2), i, a(t), n(t), s)F(s, hu)®(s, u) belongs to C(%).

The proof will follow closely the pattern developed by Hagedorn [Ha,], but the
remainder we get is different from that found by him, since E contains terms of order &
and the kinetic part of (2.24) is not simply —(h?/2)02.

The basic tool we use is a simple application of the fundamental theorem of calculus
(also known as Duhamel formula). We give it without proof.

Lemma 2.2. Suppose Hy is a family of self-adjoint operators for b > 0. Suppose ¥(A, t)
belongs to the domain of Hy, is continuously differentiable in t, and approzimately solves
the Schrodinger equation in the sense that

shO,W(h,t) = Hyp(B,t) + C(h, 1), (2.29)

where ((h,t) satisfies
(R, DI < p(h,t) (2.30)
Jor 0 <t <T. Suppose U(h,t) is the exact solution to the equation

ih0,U(h,t) = HyU(h,1) (2.31)

with initial condition ¥ (K,0) = ¢¥(k, 0).
Then, for 0 <t < T, we have

T
U (A, £) — b(B, 8)]| < A~ /O dru(h, 7). (2.32)
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Suppose now that a,(s,u,t) € C°(I x Jy-1) is an approximate solution to the
Schrodinger equation associated to the local Hamiltonian (2.24),

170, vap = Hpotap + ((h,1) (2.33)
with
IC(R, ) llzaxg,_y) = O(B*?)  for  0<t<T (2.34)

This implies that
178,01 D1t = Hpl' Dporibap + C(B, 1),

with ||C(F, 2)|| 22y = O(R*/?).
Using lemma (2.2) we get finally
it~ \ =~ =
xp | — — Dy =0)— UlDp_1b — O(BY?).
H e*{p( hHh>U Di1tbap(t = 0) — 1Dy, @,ap(t)HLz(Rz) O (2

Therefore, to prove theorem (2.2) we will construct an approximate solution to (2.33),
of the form :
Yap(s,u,t) = Yo(s,u, t) + Faba- (s, u, t), (2.35)

with ¥o(s, u,t) = exp(1S(t)/R)wr(A(t), B(t), B, a(t), n(t), s)F(s, hu)®(s, u) (the notation
w3 means that the transversal part of this term is orthogonal to ®).
An educated guess about the form of the remainder 3 can be made employing a
multiple scale technique, which allows to split the adiabatic and the semiclassical scale.
We will elaborate on this procedure in the more complicated case of next section, so
here we limit ourselves to verify that the right choice is

by (s,u,t) = r(A(t), B(£), h, alt),n(t), s)F (s, )
X7 (s) [in(t)@stb(s, w) — n(t)2k(s)ud(s,uv) — 8,V (s,0)ud(s,u)

1 4z
——— 9w 3 } 2.
6a2a“m (s,0)u’®(s,u)]|, (2.36)
where #(s) is the bounded inverse of the restriction of [§®(s) — E(s)] to the orthogonal

complement of ®(s,u) in L?(R, du).
Estimate (2.34) will follow if we note the following facts:

1. the terms containing derivatives of F' are O(h*). For instance,
/ dsdu |0, F (s, iu)pi(s)0,(s, u)|? (2.37)
IX.],.l._l

:_—/ dsdv|8,F (s, v)pr(s)E?8,®(s,vA™)|* < exp(~CR ™),
IxJ
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since 8, F has support away from zero in v, and 8, ®(s,vh™!) is a polynomial times
a Gaussian, in u = vh™1.

The derivatives with respect to s can be estimated in the same way, since y, is a
Gaussian in [s — a(t)] /A2

o

The term .
mk(s)u
(1 + hk(s)u)®
is O(h?) since O, is O(R71).

8s 71&313

3. The term
R2Q(s, u)ap
is O(R?) since Q(s,u) is bounded on the support of F.

4. The last term is

~

b(5)0ap = § Pt + %agms, 0)ulby + hud, V (s, 0)h + Ra(h, u)tbep +
L
+ R (Au)tbap + O(R?) = E(8)ap + ihipr(s)F (s, hu)n(t)d, (s, u) +

-+ (8) 2k (s)uibo + O(H?),
since Ra(A,u) and Ry(h,u) are O(A?) on the support of F.

5. The terms left combine themselves with the kinetic part and the time derivative
of 1, to give (2.34).

Remark 2.5. The effective motion on M is given by the potential

n+1/2)

E.(s) = ( w(s) + V(s,0) = dw(s) + V(s,0), (2.38)

a
and is equal, also in this case, to the homogenized classical motion.

The hypotheses that M is a nondegenerate critical curve and W is spectrally smooth
imply that the normal oscillation is harmonic, and so all transversal states are equivalent.

2.2.3 The magnetic trap

Using theorem (2.2) we can analyze the dynamics of a nonrelativistic particle in a strong
magnetic field (magnetic trap).

We suppose that the field is “strongly axially symmetric”, i. e., that the vector
potential is given, in cylindrical coordinates, by

A(r,z) = o (r, 2)0. (2.39)
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The Hamiltonian is

7= ( eA)2 (2.40)
TP T T ' '
Since divA = 0, in the subspace with zero angular momentum in the z direction
(2.40) becomes
-~ R 1 h? e?
H'=——24 (r8) — —8&?
2mr H(rd:) 2m =

or, scaling the wave function by the isometry

VLR, x R,rdrdz) — L*(R, x R,drdz)

Vip = rt/%y, (2.41)
PN K2 A2 h? e?
oyt — = 52 -8 (1, 2)2. 2.
VHTY 2m8T 8mr? 2m * + 2mc? (r) (242)

If we put m = 1 and consider the case of large electric charge, c/e = ah, we get in
the end

~ R, R, R? 1 5 .
H;—,“— ——2—8T —-3-82 ”—8_;'—2__{_2(127‘22%(77“) s (243)
which, except for the centrifugal term, is of the form (2.19), with W (r, z) = &(r, z)?/2.

Theorem (2.2) tells us that, if we consider an initial state localized away from the
origin, the semiclassical motion is constrained along the curve o7 (r, z) = 0, with effective

potential given by
E(s) = 0{0%[e (s,w)]*/2}, "%, = 9|0, (s,0)] = 9|B{(s,0)], (2.44)

where B is the magnetic field strength.

2.3 Constraints by scaling of coupling constant: gen-
eral case

When the submanifold M has dimension (and codimension) greater than one, the theory
developed in foregoing sections has to be generalized essentially in two aspects.

First, if dim M > 1, the metric Gjy, induced by the Euclidean metric of R on
M, may not be trivial, so both the classical motion of the centre of the squeezed state
and the evolution of the dispersion matrices A and B have to be modified to take this
into account. Thinking about the results we got above, it is not difficult to derive the
new classical equations; we will simply obtain a motion on a Riemannian manifold with
metric Gs(z) in the presence of a potential E(z) which is an eigenvalue of the reduced
Hamiltonian. In local coordinates this means (see, for instance, [AbMa])
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a(t) =n(t) (2.45)

0(t) = =T(a(t))(n,n) — G3; (a(t) V2 E(a(t)), (2.46)

where I'(n,n)" = Tin’n® (T}, are the Christoffel symbols associated to Gi) and V,
denotes the column vector whose coordinates are 0" := 0%.

The equations for the dispersion matrices are a bit more complicated, but, as we will
see below, they can be derived, using Hagedorn’s multiple scale method, from the term
of order A of the formal expansion of the solution of the Schrodinger equation in powers
of B1/2.

The second point is that, if codim M > 1, the Euclidean metric written in tubular
coordinates is not diagonal anymore. R

In a formal expansion of the Hamiltonian H, around the constraint, the off-diagonal
terms give rise, as we have already stressed in the introduction, to an induced gauge
field which minimally couples the longitudinal and the transversal motion.

At first sight, it might seem that in this case we can no longer split the motion into
a tangential and a normal part, even in the semiclassical limit.

Actually this is not true, since, applied to a squeezed state, the gauge coupling is
of order #, and, due to the antisymmetric character of the normal fundamental form, it
maps an eigenstate of the reduced Hamiltonian into a state which is orthogonal to it.

According to the proof of theorem (2.2), this means that, if we start from an initial
state which is concentrated along a classical trajectory, and we study its evolution when
i goes to zero, the gauge term contributes only to the remainder and not to the leading
term of the expansion in powers of A'/2, which is again given by a wave packet in the
longitudinal variables times an eigenstate of the normal Hamiltonian.

In principle, higher order corrections can be calculated following the procedure de-
veloped by Hagedorn [Ha,|, even though in the general case the formulae can be cum-
bersome.

In the following we will give some details of the calculations that justify these claims,
even though, given the previous warnings, they are analogous to those of the two-
dimensional case.

2.3.1 The Hamiltonian in tubular coordinates

Starting from the expression (1.21), we can calculate the coordinate form of the basis for
the tangent space in a point of &(9) simply differentiating with respect to a coordinate
z; or yi, and then calculate the scalar product of two basis elements to get the local
form of the metric.

The result is

Glz,y) = < é ]}7 ) ( GM(IO* o ?-) ( é ]}T >T, (2.47)
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where

Nin(z,y) = yeBi™(z) B =ni- Oy, (2.48)
Sijlz,y) = yk(GIT,})izafj(m) a,’“j (z) = ng - 6ltj, (2.49)

and t; denotes the basis for the tangent space (the index k and h always refer to the
normal coordinates, while the other indices refer to the tangential coordinates).

B and of are called, respectively, normal fundamental form and second funda-
mental form of the submanifold M. Together with the metric Gy, they characterize
completely the embedding of M into R™*™ up to a Euclidean motion [Spi]. We have
already noted that 8% = —3F so, when codim M = 1, 3 is identically zero.

Using (2.47), we can write the Hamiltonian in tubular coordinates, but, as we did
in the two-dimensional case, we have to modify the volume form given by g(z,y)? :=
[det G(z,y)]"/?, in order to get wave functions which have the right normalization when
integrated over the submanifold M.

After this, we have to dilate the normal coordinates by %, in order to separate the
reduced Hamiltonian from the longitudinal part.

This can be achieved by the unitary operator

1/4
(Vo)(z,y) = (“‘“”) R4 (2, y /),

9(z,y) (2.50)
V o LX(&(8/R), grr(z)?dzdy) — L*(&(6), 9(x,y) dzdy)
where gp(z) 1= det Gpr(z).
The result in the end is
Fso = THLV =
K2 14 —1/2 _ 2
= —on(e,y) oy (VI = VN (z,), BV ) gii -
(U= Sy CRE) 0 (Ve N oV, ) s, (25
0 I KV, Pr
+ V(z + hy) + (ah) W (z + hy),
where ( )
g(z, hy
z,y) = L&) 2.52
pr(z,Y) (2] (2.52)

When we further expand the equation (2.51), the terms containing px(z,y) give rise
to additive corrections which depend only on the second derivatives (or the square of
the first derivatives) of In pr. They are of order at least A2. This can be understood if we
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note that S(z,y) is linear in y, the second derivatives with respect to x are multiplied
by k% and

det{Gun|I — iS(z,y)]*}
det Gy

= 2Indet(l — AS(z,y)) = 2TrIn(I — &S)
= —2ATr(S) — K*Tr(S%) + O(K®)  (2.53)

Inpp(z,y) =In

Therefore, in the following, we will put py = 1 without other comments.
Expanding the potentials V and W, we obtain the reduced Hamiltonian

5 (z) = - A + 212y H(z)y + V(z), (2.54)

where H (z) is the matrix of the Hessian operator in the basis {nz(¢(z))}. The hypothesis
that W has a smooth spectral decomposition implies that we can choose the n; to be
eigenvectors of H, so we can write yT H(z)y = 5, ks wi(z )yi,kx

We will see in next subsection that, as before, the higher order terms in the Taylor
expansion must be included in the remainder.

2.3.2 The approximate evolution
To construct approximate solutions to the Schrordinger equation
RO = Hpot (2.55)

we use the same procedure outlined in previous sections, which is based on the multiple
scale expansion developed by Hagedorn [Ha;]. The operator (2.51) is not of the standard
form studied in the literature, so we briefly explain the modifications needed to cope
with this case.

When all the terms have been spelled out, (2.51) has the form of an elliptic differential
operator in z and y, with coefficients which depend on z and y as well as %, plus
the reduced Hamiltonian, plus a remainder of order #, which comes from the Taylor
expansion of V{(z + hy) and W (z + hy) up to first and third order, respectively.

According to Hagedorn’s method, to split the adiabatic and the semiclassical effects,
we have to introduce a fictitious new variable

z — a(t)

L=l (2.56)

which measures the “deviation” of the quantum evolution from the classical one, and
consider ¢ as an independent variable in the formal manipulations.

Associated to &, there is an auxiliary wave function, ¥(z,y,£;t), which satisfies the
equation obtained substituting

e Zl
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into (2.55), and adding to the right-hand side the term E(a(t) + h'/2¢) — E(z), which
formally equals zero when ¢ = [z — a(t)]/A*/2, where E(z) is a fixed eigenvalue of H®(z),
with multiplicity 1.

When we perform this substitution, we replace the z dependence in the coefficients
of the differential terms with a dependence on a(t) + AY/2¢.

This is justified because when we apply a function of z, f(z), to a squeezed state
wr(A, B,a,n, h, ), we can develop f(z) in Taylor series, up to order [, around the centre
of the packet, getting a remainder which, in norm, is of order A!/2*! ([Ha,] and references
therein).

At this point, we make the Ansatz that

- 7 TGula
3(a,.6) = exp (i8(2)/1) exp [ T CloE | piz,
X gar(a(t)) "4 (o + B2y + By + .. .), (2.57)

where a(t) and n(t) satisfy equation (2.45), S(¢) is the associated action

5(t) = | dsgn(s) Gula(o)n(s) - Blals)) (2.58)

and F'is a smooth function which has support in z near the classical trajectory, and in
Fy near 0.

Substituting this Ansatz in the equation for ¥, and keeping terms up to order 7,
we can determine 2y and 15, which, as shown in [Ha;] are what is needed to solve the
Schrédinger equation to lowest order in A'/2. The calculations are lengthy and not very
interesting, so we give simply the result.

The approximate solution, up to order A'/2, of (2.55) is

7 TGyla
upl,11) = exp (iS(2)/h) exp [ 1Y Saat)e } gus(a(t)) R

ka(A(t),B(t),1,0,0,5){<I>(z,y) +#(z) |7V
+in(t)" N(a(t), y)Vy@ + n(t)" Gula(t)S(a(t), y)n(t)®

R OITENS -————W@} } o (259)

Y= P

where ¢ is given by (2.56), N and S are defined in (2.48) and (2.49), and ®(z,y) is a
real eigenstate of 6(2)(1’), with eigenvalue E(z) of multiplicity 1.

As before, #(z) is the bounded inverse of the restriction of [§®(z) — E (z)] to the
orthogonal complement of ®(z,v) in L?(R™, dy).
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Remark 2.6. The evolution of the dispersion matrices A(t) and B(t) can be read from
the terms of order 7 in the expansion, and contains explicitly the metric G-

O, A(t)a = ne(t)[Gr0;Gf Jri(a(t)) A(t) 1t + 4G (a(t) B(8)]a (2.60)
9,B(t)a = %n(t)T[GM(f)ZGX} )Garl(a(®))n(t)At)j + O5E(a(t)) Alt)
—me(t)[Gu0,Grflei(a())B(t);  (2.61)
Remark 2.7. The term coming from the gauge coupling
()TN (a(t), y)V,®
can be written, using creation and destruction operators for the normal oscillations, as

k) (B 0 ( Ak ) () [Wo ] 172
7,77_7‘5](‘ s )y)\,kA By ¢ = -2-77]'5](- k)l )[E\-} (CLA,kAav,hu - CL/\,k,\CLi,hU

)hV

—!—a&,,CA Gy h, — a;‘_baiﬁhu)é . (2.62)

Since 3 is antisymmetric in (X, ky), (v, b, ), the above expression is orthogonal to ®,
as we claimed in the introduction to this section.

. 2.4 Takens chaos in quantum mechanics

When the constraining potential is not spectrally smooth, that is, roughly speaking,
when the eigenvalues or the eigenfunctions of its Hessian are not smooth, the classical
motion on the submanifold A shows peculiar features.

In this section we consider the quantum analogue of an example given by Takens
([Tak], see also [Bor]) where W fails to constrain spectrally smooth.

The Hamiltonian we study is
Py + P, 1

2 2
Pr, + Pz,
= 2 +— < R(z)y,y >, 2.

where ¢ = (z,y) € R*, < -,- > is the standard scalar product in R? and R(z) is the
Rellich matrix ([Kat] and references therein)

R(z) = le-[lu < il _x;l )} . (2.64)

The eigenvalues of R(z) are

we(z)? = ?1‘(1 + Jz|), (2.65)
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with corresponding eigenvectors
_( cos(4/2) _ [ —sin(6/2)
ve(2) = ( sin(¢/2) v-(z) = cos(¢/2) )’ (2.66)
where ¢ = tan™!(zo/z;), and the branch of the inverse tangent is chosen so that —7/2 <
¢ < 3m/2.

The eigenvectors are discontinuous along the semiaxis {z : z; = 0,z < 0}, or better,
they exchange place upon crossing the cut.

2.4.1 A brief review of the classical case

To get a confining potential which is bounded from below we restrict the configuration
space to

Y= {(z,y):|z] <1/2}. (2.67)
With this choice, the Hamiltonian (2.63) constrains the system to the submanifold
M :={(z,y) e ¥y =0} (2.68)

An (almost) complete description of the limit motions when e — 0 is given by

Theorem 2.3 ([Tak], theorem 3). Let

1
W(g) = 5 < R{@)y,y >,

then the solutions of the equations of motion

1
G=(t) = —‘E‘Z‘VT/T'/(QE(t))7 (2.69)
(15(0) =0 G(0) = v,
which satisfy Ov. 2
v, # 0, (2.70)

where Q : R* — R? is the orthogonal projector Q(z,y) = z, converge uniformly to the
unique solution of

.T(t) = —thom(x(t>7 ﬁ)v
z(0)=0  £(0) = Qu., .

where
Ubom(z,t) == 0 (O)wi(z) + I (H)w-(z). (2.72)

The functions ¥+ are constant for t # 0 and can have any discontinuity in t = 0,
provided that ¥, + ¥_ remains constant.

Remark 2.8. If Qu, = 0, the limiting behaviour is not known.
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2.4.2 A quantum analogue

In the quantum case, we consider the Hamiltonian

~ A2 1
Hy = —”Q—(Az +Ay) + 2o < g(|z|)R(z)y,y >, (2.73)

where g € C§°(R), g(z) = 1 when |z| < 1/2, g(z) = 0 when |z| > 3/5.
We use the same squeezing factor a for both transversal directions so that the eigen-
values of R(z) keep their simple form (2.65).
The quadratic form < g(|z|)R(z)y,y > is non-negative, so Hy is essentially self-
adjoint on C°(R*).
Scaling y as we did in the above sections, we get
P B2 ~
HBO - "‘T)‘Az -+ b(I),
R 2 (2.74)

1
B(z) = —5Ay + 55 < g2 R@)y,y >

Let us suppose from now on that |z| < 1/2, so that g(Jz|) = 1 (note that, in theorem
“(2.1), it is required that B(z) has an eigenvalue on an open set only, so this restriction
is immaterial).

To calculate the spectrum of H(LL’) we exploit the fact that, for every z, R(z) is a
real symmetric matrix, and can be diagonalized by an orthogonal transformation whose
form can be derived from (2.66), and is given by

cos(¢/2) —sin(4/2)
Z(z) = ( sin(¢/2) 025295/2) ) ' (2.75)

It shows the same discontinuity of v., but however is defined for all z.
The corresponding unitary operator

Z(z) : L}(R2) — LA(R2),

- . (2.76)
[Z(2)¢](v) = ¥(Z(z)y),
turns H(a:) into the Hamiltonian of two uncoupled harmonic oscillators,
5, w5 1 1 1
Z(@)0()2 () = —58y + 5o (248 + 5 (24h (277)
The eigenvalues of E(z) are then
n n—
Bnyn-(2) = Bool®) + . (2) + (),
(2.78)

weld) ¥ o) _ Ly oy 1 - ey,

EO’O(I) - 2a 4a
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The ground state

The eigenfunction corresponding to Eqo(z) is

Bo0(z,y) = [Z(2)To0)(z,9) = Voo(z, Z(z)y),

where Wqq is the eigenfunction of (2.77) with the same eigenvalue.
The result, with a suitable choice of normalization constants, is

1/4
Doo(z,y) = [Mc%ﬂ] exp (—— —2% < R(z)Y%y,y > ) (2.79)

The equations (2.78) and (2.79) tell us that both the energy and the wave function
of the ground state of i)\(m) are C™ functions of z for |z| < 1/2. Therefore, theorem
(2.1) can be used also in this case, and gives us a constrained motion in the cylinder
{(z,y) : |z| < 1/2,y = 0}, with effective potential Eqg(z).

The classical trajectory we obtained is the only one which is associated, in the funnel
described by (2.72), to a smooth homogenized potential. The semiclassical limit thus

singles out a specific motion, which is linked to the initial normal oscillation.

The excited states

If we consider the excited states of E(:c)7 we observe crossings between different eigen-
values in z = 0. Unlike what happens in the classical case, however, an incoming
semiclassical wave packet splits into two components only, giving rise to a bifurcation
of the motion, and not to a funnel.

For the first two excited states, for example, we have

Eoi(z) = Ego(z) +w-(z)/a (2.80)
Eio(z) = Ego(z) +wi(z)/a, (2.81)

(when |z| < 1/2 we have wy(z) < 2w_(z), so the other eigenvalues remain separated
from these).
The corresponding eigenfunctions are

Bo1(z,y) = a7 *Poo(, y)[2w- (z)]"/?[— sin(¢/2)y1 + cos(¢/2)ys] (2.82)
Pio(z,y) = a'l/QCI)D’D(x,y)[2w+(x)]1/2[cos(¢/2)y1 + sin{®/2)ya). (2.83)

Clearly, the two eigenvalues coincide when z = 0, and are not differentiable in such
point, while the eigenfunctions are not even continuous.

Carrying out a rotation between ®q; and &, we can construct a smooth basis in
the two-dimensional subspace generated by them.



It is easily seen that

() = (s ) (n) e

are smooth in the origin, since [2wy()]? = (1£|z|)V/* = 1 £ Lz + O(]z]?), so

- 1 1
Pp(z,y) =0 1/2‘130,0(17,3/){ = Y1 — ST — Y2 T2 + O(|93'2>}

4 4
_ 1 1
®p(z,y) =a 1/2@0,0(1”:1/){?;/2 + Zyll‘z - ZyZml + O(|$|2)}

Note that
< B3(z,9),5(2)Pa(z,y) >2@y=a”" sin(¢/2) cos(¢/2)lw-(z) —wy (z)]  (2.85)
=a? [ - }lzg + 0(;z13)] #0 Vr#0. (2.86)

Therefore, in Hagedorn’s classification [Ha4]|, this is a crossing of type I. The theory
developed by him allows to elaborate on the qualitative features of the propagation we
mentioned above.

If the system is initially in a semiclassical state associated to the level Ey; and
passes through the region of crossing, = = 0, with a non-zero velocity (this assumption
of generic crossing was already present in Takens’ theorem, (2.70)) the final state is a
superposition of two components, one evolving with the potential Eq; and the other
with the potential £, o. More precisely we have

Theorem 2.4 ([Ha;], theorem 6.3). There is an approzimate solution V(h, z,y,t) to
the Schrodinger equation generated by the Hamiltonian (2.74) that satisfies

V(h,z,y,t) = Pg1(z,y) exp (iS(O’1)3‘(t)/h)-

2.87
R LPIC(A(D,I);—(t)7 B(O,l);— (t), 77,, CL(D-‘l)(ﬂ,n(O’l)(t), :C) + O(ﬁl/r‘)) ( )
fort € [-T,T4], for any Ty > 0. Fort € [T}, T), this solution satisfies
V(h,z,y,t) = @oq1(z,y) exp (z’S(O’l);*(t)/h) X
X Y APV (ACDF (1), BOVT (1), B, 0OV (2), 0OV (), z)+
+ &y 0(z, y) exp (ST () /R) % (2.88)
x Y Al O, (AL (£), BEO (1), i, a0 (), nO(2), 2)+
fmi<|k|

+ O(R/?), for some a > 0.







Chapter 3

Soft approximation of quantﬂm
graphs

In the first part of this chapter we will define quantum graphs, and consider different
kinds of Hamiltonians which can be defined on them. In particular, we will refer to the
work of Kostrykin and Schrader [KoSc;], who classified all the self-adjoint extensions
of the Laplacian on a metric graph (see also the detailed review papers by Kuchment
[Kuy, Kug, Kug]). We will also mention, for comparison’s sake, the known results on the
rigid approximation of quantum graphs and spectral convergence and the works on the
convergence of diffusion processes (see section 3.1.3 for references).

In the second part, we will analyze the convergence of the dynamics for a soft ap-
proximation of quantum graphs, i. e., for an Hamiltonian, defined on L2(R?), which
contains a potential constraining to a graph I'. Taking a different perspective compared
with the one of last chapter, we will not consider anymore highly oscillatory longitudi-
nal solutions, whose wavelength is comparable to the transverse one, but we will deal
instead with the case when £ and % are unrelated.

In the case of oscillatory solutions, it is natural to use semiclassical approximation
because the longitudinal motion contains a “natural” small parameter given, e. g., by
the ratio between the longitudinal wavelength and the characteristic longitudinal length
of the tube where the particle moves. To analyze the case when this ratio is not small
requires, as we will see, different techniques. We will consider a specific potential, the
distance from the graph, discussing how to deal with more general cases and we will
obtain a limit equation outside the vertices which is the free Schrédinger equation. The
behaviour of the limit in the vertices for a generic graph is still unknown.

In the particular case of a graph with two edges, we will discuss a different kind of soft
approximation, which is amenable to a complete treatment. Loosely speaking, we will
show that, if we approximate the graph with a smooth curve, whose curvature grows in
a region which is big with respect to the localization of transverse states, then, in each
transverse eigenspace, the limit longitudinal dynamics is given by Dirichlet boundary
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conditions.

3.1 Quantum graphs

3.1.1 Basic features of quantum graphs

A (finite) graph! T' consists of a finite set of vertices V' = {v;}icr and a set E of edges
connecting the vertices, E = {e;}je;. We can associate to each edge a pair (v;,vy) of
vertices, but, if there are loops, this correspondence is obviously not one to one. We
suppose that, for each vertex, there exists at least one edge incident to it. This is a
reasonable hypothesis thinking to the physical models of section 1.2, where isolated
vertices do not play any role.

A graph is said to be a metric graph if to each edge e is assigned a length . € (0, +o00].
Edges of infinite length arise naturally if one considers scattering theory on graphs (see,
e. g., [MePa] and references therein), which, on the other end, is the first step in
calculating the conductivity in mesoscopic devices, via Landauer theory [La].

After having defined the length, we can identify each edge with a finite or infinite
interval [0, [.], with the natural coordinate z. along it. A metric graph then is naturally
a topological space, given by a finite union of intervals, with the quotient topology
obtained identifying the ends of the intervals according to the graph structure.

Therefore, a metric graph can be considered, in a purely abstract setting, as a one-
dimensional simplicial complex, in which the simplexes (i. e., the edges) have a smooth
structure with singularities at the vertices. However, in the applications we are interested
in there always exists a natural embedding of the graph in R? or R® (section 1.2).

Lebesgue measure can be defined in the obvious way on the graph, and then one
can define function spaces analogous to the usual ones, with some care concerning the
Sobolev spaces.

Definition 3.1. e The space L?(T) is the direct sum of the spaces L?(e), € € E,

LA(T) =P L(ey). (3.1)

=

o The space H'(T") is made up of all continuous functions on I' that belong to H'(e)
for each edge e. This is equivalent to say that, given a vertex v and the set £, of
all edges incident to it, the restriction, f, of a function f € H*(T") to the edge e
is in H'(e) and fe,(v) = fe, (v) for ¢;, e, € E,.

1In the following, without explicitly mentioning it again, we will consider only finite graphs. We
refer the reader interested in infinite graphs to [Kus].



Chapter 3 Approximation of quantum graphs 47

As remarked by Kuchment [Kuy], there does not exist a natural definition of higher
order Sobolev spaces, H*(T'), & > 2, because, as we will see below, it is necessary to
impose boundary conditions at the vertices to have a meaningful free Laplacian on the
graph.

A quantum graph is a metric graph equipped with a self-adjoint differential or pseudo-
differential operator which is called the Hamiltonian of the quantum graph. Standard
examples of Hamiltonians include

e the Schrodinger operator,

Fl) » — S 4 Vi) o) (32)

e the magnetic Schrodinger operator [KoScs),
2
1) = 3( ~ i - A®)) 1)+ V(@i (53)

e the Dirac operator [BuTt],

o) o (D)
f(a) ( f m) o
f(a) = ~i-- @ 1 f(x) + 1@ 03(z),

where oy and o3 are the standard Pauli matrices.

Clearly, it is necessary to specify also the domains where these operators are well
defined and self-adjoint. We will elaborate on this subject below, for the case of the free
Schrodinger operator, which is the one more common in the applications.

3.1.2 Self-adjoint extensions of the free Laplacian on a graph

To give a meaning to the formal expression (3.2) (in the case V = 0), we restrict our
attention to local boundary conditions, i. e., those that involve one vertex only at a time.
It is clear then that it is enough to consider a junction with one vertex v and n infinite
edgesej, 7 =1,...,n.

The Hilbert space of the system is given by

H = é[ﬁ(o, +00). (3.5)
j=1

Each element of H can be written as an n-tuple (¢1,...,%,), ¥; € L*(0,+c0), j =
1,...,n.
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On H we define the symmetric operator

— d2¢1 d%,bn
on the domain
D(80) = {1 € 18 € B0, +00),1(0) = 450) = . 1)

According to what we have said above, the possible free Hamiltonians for a quantum
graph are the self-adjoint extensions of Ag. Applying standard von Neumann'’s theory
(see, e. g., [ReSi;] section X.1) one easily obtains that the deficiency indices of Aq are
(n,n) and therefore the self-adjoint extensions are parametrized by the unitary group
U(n), that is by n® real parameters. To get an explicit expression of their domain in
terms of boundary conditions however, it is simpler to apply an equivalent description,
based on symplectic theory, which we are going to expound.

The adjoint of Ag, A := (Ag), can be calculated explicitly and is given by the
second derivative without any boundary condition,

i 2 2/
av it (T FE),

dz? dz?

(3.8)
D(A) = {¢’ EH: Y, € H2(0,+oo)}.
On D(A) we define the skew-Hermitian quadratic form by
Qp, V) =< A, th >p = <0, &Y >p= —Q(t, ). (3.9)

The link between () and the self-adjoint extensions of Ag is given by

Proposition 3.1. ! There is a one to one correspondence between self-adjoint extensions
of Ag and mazimal isotropic subspaces of D(A) (i. e., subspaces where @ = 0). More
specifically, the self-adjoint extensions of Ag are given by the restrictions of A to the
mazimal isotropic subspaces of D(A) which are closed with respect to the norm ||1||% =

1912+ | A2,

Since the functions in H? can be integrated by parts, we get

L0

Qe ) = > (@r(0)%1(0) — @L(0)¥(0) = wle], [¥]) =< l¢], W] >,

k=1

1t is a difficult task to trace the history of this proposition. Some hints are given in [KoScy, Kus).
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where J is the canonical symplectic matrix on C?",

= (-(-)11 g) , (3.10)

and [ ] : D(A) — C? is the surjective linear map

¥1(0)

_ |0 | _ (v0

¥ (0)

The form w is called an Hermitian symplectic form®, because the complex conjugate
in its definition makes it different from the standard symplectic form in C2*. In this
way, the problem of finding the maximal isotropic subspaces of D(A) is equivalent to
the problem of finding the Lagrangian planes of the Hermitian symplectic form w. This
can be done using a procedure entirely analogous to the one employed for Euclidean
forms.

The results can be summarized by

Proposition 3.2. [KoSc,] Let the subspace M(A, B) C D(A) be defined by the equation
AH(0) + BY(0) =0,

where A and B are two n X n matrices. Then M(A, B) is a mazimal isotropic subspace
of D(A) if and only if

the n x 2n matriz (A, B) has mazimal rank
and (3.12)
ABY is self-adjoint.

In this way we get a complete characterization of the self-adjoint extensions of Aq

in terms of boundary conditions.
Some simple examples satisfying (3.12) are?

1[KoScy]. This notion, together with the one of Hermitian symplectic spaces is thoroughly analyzed
in [Har].

2In the following the derivatives along the edges are always taken in the directions away from the
vertet.
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o-type conditions.

f(z) continuous on T,
at each vertex v, ) .cp a‘g—e(v) = oy, f(v).

Kirchhoff conditions.

at each vertex v, > ..p ffe—(v) =0.

{ f(z) continuouson T,

If there are only two edges incident to a vertex v, the Kirchhoff conditions say
that the vertex has no effect on the motion of the wavefunction, so, in a sense,
they correspond to an absence of interaction between the particle and the vertex
itself.

d’-type conditions.

These conditions are similar to the §-type ones, but with the role of functions and
derivatives reversed at each vertex.

Let f. denote the function f restricted to edge e.

The value of the derivative jf; = (v)is the same for all edges e € E,
ZeeEv fe(v) = av%(v)-
Dirichlet conditions.
fe(v) =0 Ve € E,.

In this case the Hamiltonian completely decouples into the direct sum of Dirichlet
Hamiltonians in each edge so that there is no communication between them.

3.1.3 Rigid approximation of quantum graphs

The above discussion shows that the requirement of self-adjointness alone does not single
out an Hamiltonian for a quantum graph. We have seen in section 1.2 however, that
quantum graphs typically appear as simplified models to describe electron motion in
nanophysics and theoretical chemistry. Therefore, a natural question arises: can we
eliminate the ambiguity and select between the n® parameters self-adjoint extensions
one that is the limit of a more realistic model?

This formulation of the problem requires to specify a physically sound model whose

dynamical and spectral characteristics are well approximated by a quantum graph in
certain regimes, i. e., for example, for a certain class of initial conditions or for the
calculation of physically relevant quantities like the conductivity.
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In the models we described in section 1.2 the electron is confined inside a branched
waveguide by the interaction with other particles (a crystal, the o-electrons...), so we
think that it is possible to get a suitable description of its motion employing a constrain-
ing potential.

Another appropriate choice is to consider a “thickened graph” composed of thin
tubes which have the same topology as the original graph and reduce to it in the limit
of vanishing tube radius. It is reasonable to suppose that the motion of the electron in
this thickened structure is free, but one needs to specify boundary conditions to get a
well-defined Laplacian. The most natural choice is to use Dirichlet boundary conditions,
which correspond to an infinite constraining potential barrier. Some light on this case
has been shed only very recently [Po].

For technical reasons however, much more attention has been devoted to the case of
Neumann boundary conditions, which is by now well understood.

Since we think that it is interesting to compare our results concerning soft approx-
imations with the ones already known for rigid approximations we give a brief account
of them, concentrating on the differences between the Neumann boundary conditions
case on one side and the Dirichlet and the constraining potential case on the other side.
Actually, as we will see in section 3.3, in certain situations these last two cases are
interchangeable.

As a last remark, we would like also to stress that all the results obtained so far
on the rigid approximation of quantum graphs concern the spectral convergence and
the convergence of diffusion processes on graphs whose edges have finite length, while
we are interested instead in the convergence of the dynamics in the spirit of adiabatic
perturbation theory and eventually to scattering theory.

Neumann boundary conditions

Let us consider a graph I" embedded in R?, whose edges have finite length. For simplicity,
we suppose that the edges of the graph are straight lines, but in the references we quote
below the reader will find the generalization to the case where each edge is a finite
segment of a C? curve.

Let M. be a domain consisting of narrow tubes U? surrounding the edges and small
neighbourhoods V* of the vertices,

M, = (UjEJ Ug) U (UkEK Vf) (313)

We assume for brevity that the cross-sections of the tubes are intervals with centers
on I', and that the neighbourhoods of the vertices are balls in R2.

Let € be the radius of the tubes surrounding the edges and A(e) the radius of the
balls centered at the vertices (see figure 3.1), where lim._A(¢) = 0. The Neumann
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Figure 3.1: Example of a thickened graph

Laplacian on M., A%, is defined in the standard way as the unique self-adjoint operator
associated to the quadratic form (see, e. g., [Dav], chapter 7)

Q5(f) = - /ﬂ da V5P
D(Q) = H'(M,).

(3.14)

The behaviour of the spectrum o(—A$%) (which, since M, is a compact set, is purely
discrete) in the limit ¢ — 0 has been investigated by Rubinstein and Schatzman [RubSc]
and by Kuchment and Zeng [KuZe;, KuZes], who considered also the case of the mag-
netic Neumann Laplacian. Later, Exner and Post [ExPo] studied much more general
“thickened graphs” considering abstract edges and vertices neighbourhoods, U and V%,
given by manifolds whose diameter shrinks to zerc. Their approach, which is more geo-
metric, does not depend on the particular embedding and contains the previous results
as particular case. A weak form of resolvent convergence (which somewhat resembles
what we do in section 3.2 for the time evolution) was studied by Saito [Sai;], who
analyzed also less usual thickened graphs, given by fractal domains [EvSa, Sais].

The convergence of diffusion processes was studied instead by Freidlin and Wentzell
([FrWe], [Fr] chapter 7) who considered the problem of determining the behaviour of
the solution of the equation

Relbhd) _Lau g, t>0 geM.
ot 2 (3.15)
Ou,(t, :
u:(0,9) = g(q), Duelt, 4) =0,

on(q) t>0,9€0M:
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as € — 0, where g(¢q) is a continuous bounded function and n(g) is the normal to the
boundary at ¢ € OM,.
The results which have been obtained can be summarized as follows:

1. Suppose A(e) = &%, with 1/2 < a < 1, then

e if we denote by 14(e), | € N, the eigenvalues of —A%, written in increasing
order and repeated according to multiplicity,

ta(g) — m(0), (3.16)
where 1;(0) are the eigenvalues of (minus) the Laplacian on the graph with
Kirchhoff boundary conditions.

e if we denote by 7(g) the point of I" closest to ¢ (if it is not unique, we take

any of them), then

sup |u5(t7 (_/) - U’O(t: W(Q))| —0, =0 (317)
QGI\{IE

where ug is the unique solution to the equation

Oug(t,z) l@%o(t,az)
o 2 0z2
uo(0, z) = g(z),

t>0, z&I\{ve}rek, (3.18)
with Kirchhoff boundary conditions at the vertices.

2. Suppose A(e) = €%, with 0 < a < 1/2, then () — (0), where y,(0) are the
eigenvalues of the operator

Hy =P -A3 00, (3.19)
jed
acting on the Hilbert space
Ho = L*(T) @ CK, (3.20)

where A% is the Laplacian with Dirichlet boundary conditions on the edge e;, 0
is the zero operator acting on C* and K is the number of vertices in the graph.

In other words, since in this case the vertex neighbourhoods are much bigger than
the edge neighbourhoods, the particle sees them as an insuperable obstacle and it
does not succeed in going through. However, there is an additional eigenmode for

each vertex, corresponding to the lowest eigenvalue of the Neumann Laplacian in
the big ball.




54 Approximation of quantum graphs Chapter 3

An analogous theorem, which can be found in the references given above, holds
for equation (3.15). In terms of diffusion processes, one can say that each vertex
becomes a trap for the limiting process, i. e., if a trajectory enters a vertex it stays
there forever and cannot come out.

3. Suppose A(g) = /2, the borderline case. As in the previous examples, it is possible
to show that py(g) — pi(0), where p;(0) are the eigenvalues of a positive self-adjoint
operator Hy which acts on the extended graph space of case 2, Hy = L*(T") @ CX.

The quadratic form associated to FIO is
Qulfa) =3 [ du 11 (3.21)
j v

with domain D(Q,) C H*(T") ® C¥ given by elements (f,a) € H' @ C¥ such that
ar = +/5f(v,) foreach r =1,..., K.

By direct calculation one can prove that Hy acts on elements (f,a) € D(ﬁfg) as

R 2
Hg(f,a)=< df >7 Zj € €5,

——=.c
27
d:r:j

where ¢ € C¥ is defined by

The eigenvalue problem ﬁo( f,a) = p(f,a) can then be rewritten as

——% =puf forz ce
f is continuous at each vertex vy, k=1,..., K, (3.22)
Douee; Jo;(Ve) = B f(uk)  ab each vertex vy, k=1,... K.

In this formulation of the spectral problem the extra variables in C* are elim-
inated, and there is some similarity between equation (3.22) and the eigenvalue
equation for delta boundary conditions (page 50). The difference is that the cou-
pling constant « in this case depends on the eigenvalue itself, i. e., we have a sort
of energy dependent delta interaction.

As we have briefly remarked at the end of chapter 1, one should stress that the

convergence results stated above are reasonable because the infimum of the spectrum

of the operator —A% is 0, independently of €, while if one uses Dirichlet boundary
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conditions or a constraining potential the infimum of the spectrum of the Hamiltonian
goes to infinity when ¢ — 0, so it is necessary, in some sense, to “renormalize” it in
order to get a finite answer in the limit.

Secondly, in the works we mentioned, to pass from M, to I', the authors project the
functions in M, onto the first eigenfunction of the Neumann Laplacian in the transverse
direction. We expect, however, that an adiabatic decoupling takes place for all the trans-
verse eigenstates, not only for the lowest one, and then that an effective Hamiltonian
can be obtained in every almost invariant subspace (i.e., in every transverse subspace).
The problem with this formulation is that near each vertex the different transverse
subspaces relative to each edge mix, and so it is conceivable that there is a transition
between orthogonal subspaces at the leading order.

In next section, 3.2, we will show that this is not possible for energy conservation
reasons, if we propagate a state which is localized away from the vertices.

Dirichlet boundary conditions

Rigid approximations of quantum graphs by Dirichlet boundary conditions have been
tackled only recently by Post [Po;]. He considered, as it is customary in rigid approxima-
tion framework, a graph embedded in R? whose edges have finite length, and a thickened
graph M, similar to the one drawn in figure 3.1, but with small vertex neighbourhood.
For the precise meaning of “small” we refer the reader to the original paper, but, just
to give a rough idea, we can say that vertex neighbourhoods have to be strictly smaller
than the standard e-neighbourhood defined by the distance from the graph,

Veais = {g € R? : dist(g, I') := inf g — o[ < e}, (3.23)

He then proved that, if y;(e) is the 1th eigenvalue of the Dirichlet Laplacian on M.,
—A%,, (counted with respect to multiplicity) then

ple) =5 — (), e—0, (3.24)

where 1;(0) denotes the 1th eigenvalue of
P -2z, (3.25)
jeJ

the direct sum of Dirichlet Laplacians on the edges, and p; is the first transverse eigen-
value.

This result tells us that, using the more realistic Dirichlet conditions, the edges
decouple already when the vertex neighbourhoods are small, unlike what happens with

n the case of curved edges, according to the heuristic calculations of Da Costa, equation (1.23),
an additional term containing the curvature appears, [Pos].
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the Neumann ones, where this occurs only when they are big. It also explicitly shows
the need of renormalizing the Hamiltonian to get convergence.

The cases we will analyze below can be considered in some sense dual to Post’s ones,
because we concentrate on an Hamiltonian with a constraining potential given by the
distance from the graph, which is the case excluded by his treatment. Moreover, we
have already stressed that we are interested in an approximate time evolution for a
suitable class of initial conditions, and we will show that, subtracting the corresponding
transverse eigenvalue, it is possible to get it in every almost invariant subspace, not only
in the subspace corresponding to the transverse ground state.

3.2 Convergence outside the vertices for a generic
graph

In this section we consider, according to the definitions of section 3.1.1, a finite metric
graph embedded in R?, T', whose edges, however, can have infinite length.

We approximate the dynamics on the graph using an Hamiltonian, acting on L?(R?),
with a constraining potential given by the square of the distance from I':

- 1 1
H() = —=A + —d2,

) 2 2 (3.26)
dr(q) := inflg - z|,

choosing units in which the (effective) mass of the particle and A are equal to 1.

Remark 3.1. Note that € and & are unrelated. Moreover, in the following we will consider
longitudinal initial conditions which are independent of . This means that we look at
a situation, different from that of chapter 2, where longitudinal wave packets have a
wavelength much bigger than the characteristic wavelength of the transverse motion. In
the actual experimental setting, external fields can be employed which cause the wave
function to vary rapidly in the longitudinal direction too. This can be an interesting
further field of study.

Remark 3.2. When the constraint is a smooth submanifold, the square of the distance
from it represents the prototype of a constraining potential satisfying conditions W;
and Wy (page 3). Thus, in the context of graphs, it is natural to analyze first a
model which uses it. Actually, the results we will prove can be generalized to more
general constraining potentials, which are not quadratic near the graph, but whose
Taylor expansion near the graph contains higher order terms (note however that we
only suppose the potential to be smooth away from the vertices, since dr is C°, but not
C*! near the vertices). The important hypothesis is that the Hessian of the potential is
constant along the graph. In last chapter we saw that, if we consider highly oscillating
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longitudinal wave packets, whose wavelength is comparable to the transverse one, then
the energy of oscillation changes into a potential energy for the longitudinal motion.
In this case, however, the potential energy would be of the form w(z)/e, so, in the
limit € — 0, we would get again a constraining problem and the wavefunction would
concentrate around the minima of w(z) (a phenomenon of this kind was studied for
classical trajectories by Hellfer and Sjostrand in the context of “mini-puits”, mini-wells,
[HeSj], see also [FrHe]). To avoid this type of problems, we restrict ourselves to potentials
with constant Hessian, and we analyze explicitly d2.

We denote by Uy(e) the unitary evolution associated to Hamiltonian (3.26),
(7}(5) = exp(——z‘tﬁ](e)), (3.27)

and we apply it to an initial state which, in physicists’ language, lies in a subband, i.
e., in a fixed transverse mode, localized inside one edge. As we have already stressed
in last chapter, these are the states which are thought to convey the propagation of the
particles in semiconductor structures.

We have then

¢O($ejoiy€j0> = f(xjo)cbfl(yjo)v (328)

where f € C3°(0, L, ) and, as in chapter 2, ®, is an eigenstate of the harmonic oscillator,

1 82 1 9 € Eﬂ e
(- 35+ ooe0” ) 8200 = 22500), -

1

E,=n+ 5

Ze,, is the natural coordinate along the edge e;, and Ye,, is the corresponding coordinate

in the orthogonal direction. z.; varies in the interval [0, 1., ] (or [0, +00) if the edge has

infinite length) and, since the edges are straight lines, y;, is well defined and assumes
values between —oco and +o0.

Figure 3.2: Schematic representation of the initial state

e

)

Applying ﬁt(s) to 1o we expect the appearance of a strongly oscillating factor, given
by exp(—iE,t/e). To cope with this fact, we subtract it from the Hamiltonian, and we
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consider the corresponding modified unitary group:

H(e) = H(e) - E? (3.30)
Wf == U(e)tho = exp(—itH (&))o.

To analyze the adiabatic decoupling, we split ¥, according to the different transverse
components in each edge:

St 356) = / dy; B (;) 05 (25, ), (3.31)

where z; is the natural coordinate along e; and y; is orthogonal to it.

Proposition 3.3. Let PT* the operator from S(R?) to H*(R?) defined by

Pro(ay) = /}R dy; B, (v;)" (25, 4;), (3.32)

then P} extends to a unique operator (of norm 1) from HYR?) to H*(R?), for every
keN k>0.

Proof. Given ¥ € S(R?) it is clear that
LTI = [y Bnly) 0Lb(0,4) =< B 06 >12,
A ,
= PO < Bl - [ dvieb(e, )P

= [ el (PPo)@P < 1@mlfe - 1001

k ke
= ”Ry?n'(pll?{k(ﬂ?\) = Z“aipjmlfflliﬁ(m < “‘I’m||2Z”ailb(ﬁy)“%z(m- (3.33)

=0 =0

O

Corollary 3.1. The components sT*(t,z;;€) are well defined, belong to H*(R) in the
variable z; and satisfy

sup Hs}”(t, €)@y < const. ) (3.34)
te[0,T]

1With an abuse of notation, we denote by 9§ (z;,y;) the function 4§ written in coordinates (z, ;).
Since the different systems of coordinates associated to each edge are linked to one another by a rigid
motion of the plane, this does not modify the differentiability or integrability properties of 1f. Note,
instead, that ®%, (y;) is an eigenfunction of the harmonic oscillator in the variable y,.
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Proof. The domain of the quadratic form associated to H () is given by

QH(e)) = HR*)NQ(d?) | (3.35)
where Q(d?) .= {¢ € L*(R?) : dr(z,y)¢ € L*(R?)}. v belongs to Q(H(e)), so Uf is in
HY(R?). O
Lemma 3.1. _

|H(e)iol| < C (independent of ¢). (3.36)

Proof. Since the Laplacian is invariant by rotations and translations, we have (for sim-
plicity we drop the index jy in z and y)

~ 1 1 E,
ey = 502 - 0u 31 830 nt 5gdef @ = f O =

'y
AR i soa(d 7)) B 1f - 50,

+f’2"6'§y'q)n"“’g‘f'q)n:
_ 1 2 1 2 2
~—531f'@n+§§(dr*y ) P

Let o be the infimum of the support of f, and b > a the supremum. Since f is
supported inside the edfre e;, and near each edge the distance from the graph is equal
to |y, (cl2 —y?)f - ®, will be zero when |y| < D, where D, depending
on the support of f , can be small, but it is strictly positive. Therefore we have

..1._2_2. 2~/b/ LQ__ZQ €/, V|2
It =yl = | e | dy @ - UERGP 687

Now we use the following two properties:

e d is equal to a polynomial of second order in the variables (z, y);
e ®f is equal to a polynomial in y/e!/? times exp(—y?/2¢).

The norm (3.37) contains then terms of the form (P and Q are polynomials)

’ 2
/ dz |f(z |2/ dy P(z,9)Q(z,y/Y?) exp (__ g_) _
@ ly|>D €

b
= [z [ iy PanQye e | - (2= 0} -t <
a ly|>D

b
< exp [* (-}— - M)DQ} / dx |f(:c)|2/ dy P(z,y)Q(z,y/e*?) exp(—My?) =
© a lyi>D
= O(e™%*).
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This implies that
1 —C/E
g (@ —4))f - @l = O™, (339)
and therefore the thesis is proved. a

Corollary 3.2. For every system of coordinates (z;,y;) associated to an edge e; we have

C

1 £112 1 €112 1 £112 !
102, il + SN0y, ¥Ell” + s lldrdill” < —- (3.39)

Corollary 3.3. Let F,.5s be the characteristic function of the set {(z,y) : dr(z,y) > 6},
where § is any positive number, then

sup || Fapzs U ll2@e) = O(e/?). (3.40)
te[0,17]
Proof. Last term in (3.39) gives
1 e112
2 ldre |2 < Cee.

Therefore we get

52 - < 'L/)f, Fdrzé wts >< < dl" ’l.th Fdr_>_<5 Clp ’lL’f >< 2Ce.

We are now ready to prove
Theorem 3.1. Form #n and j € J
5 (t, zj;€) 50, £—0, (3.41)
where the convergence is in the weak* topology of L*°((0,T), L*(R)).

Proof. For convenience of the reader, we recall that a bounded sequence f. of functions
in L*°((0,T), L*(R)) converges to a limit fo € L*((0,T), L*(R)) in the weak* topology
if and only if

T T
/0 dt o(t) < x(), fe(t,) >e@y— _/0 dt o(t) < x(), folt,") >r2m)

for every function ¢ € L*(0,T) and every function y € L*(R).

It is a standard fact about weak™ topology that it is enough to prove convergence
only for ¢ and y in dense subsets of L*((0,7")) and L?(IR) respectively (see, e. g., [Bor],
Appendix B or [Rud], theorems 3.15 and 3.16).
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Let us then show first that

sup |< x(+), 87 (8, ¢) >2@l — 0, €—0, (3.42)
te[0,T7]

for every function x € Cg°(R\{0,l,}) if the edge e; has finite length and for every
x € C3°(R\{0}) if e; has infinite length. We consider explicitly only the latter case, the
former being analogous.

If the support of x is contained in (—oo,0) then

|< X, 8T >rem)l = 1< x - O, ¥ >remey)] = 1< x- 85, Fy o > < ix- @5l - 1Py %]l =
= 0('/?),

where F) is the characteristic function of the support of x and we have used corollary
3.3.

If the support of x in contained in (0, +00), then, following the proof of lemma 3.1
we can show that

H(e)x(z;)®%,(y;)] = (we drop the index j) — -aa ®E +
1 Eﬂ1 - En
o (dh = P O+ 2R
Since y is supported away from the vertex (located at x; = 0), an equation similar to
(3.38) holds:

H—~(d2 ¥)x - 07 = O(e™).
Since m # n, we have then

£

X%, =

{Heton )+ Je5x - | + 0.

m —"n

This implies

< X()®%,, H(e) > +
+—x< -;—Bix C®E YE > +O0(e7F) =
= (lemma 3.1) O(e).

< X()a Sgn(u ';5) >=< X( ) mawt > =

Now, if ¢ € L*((0,T)), we get

T
/ dt o(t) < x(-), 87" (t, ) >remy | < llwllzr - S[%I;] | <x(),s5(t,5€) > |,
0 telo,

but we have just shown that the right-hand side goes to zero for x € C5°(R\{0}) (or
Co(R\{0, I, }) for an edge of finite length) which is dense in L?(R). O
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Theorem 3.1 shows that, although in a weak sense, there is indeed adiabatic sep-
aration between the different transverse states even in the presence of vertices, if the
initial state is localized in two senses: first, it has to be localized inside one edge to
avoid mixing between the different transverse states associated to each edge and second,
it has to be in one (or a finite number of) transverse band(s).

Since the limit of s7* for m # n is zero, to analyze in a complete way the (limit)
evolution of 1y we have to determine the behaviour of s%, j € J.

Theorem 3.2. There ezists a weak* convergent subsequence of s7(t, x;;€) in L=((0,T), L*(R))

(which, making an abuse of notation, we denote again by the same symbol), whose limit
sP(t,z;;0) € L=((0,T), L*(R)) satisfies

10,87 (t, 73, 0) = —%355}’(@:6]-; 0) in D'((0,T) x (0,1,)). (3.43)
Remark 3.3. By corollary 3.1, s}(t,z;;€) is a bounded sequence in L*((0,T), L*(R)).
Since the balls in L>((0,T), L?*(R)) are compact metric spaces with respect to the weak*
topology (see the theorems in the book of Rudin quoted above), a weak* convergent
subsequence certainly exists.

Moreover, if one shows that all the weak™ convergent subsequences converge to a limit
independent of the sequence itself, then this implies that the sequence itself converges.

The equation satisfied by the limit in theorem 3.2 is clearly independent of the
subsequence, but it does not determine the behaviour of the limit in the vertices, so we
cannot conclude from it the convergence of the sequence, but this is the strategy we
have in mind, which has been successfully applied by Bornemann [Bor] in the classical
case.

We split the proof of the theorem into a number of lemmas.

Lemma 3.2. s}(t,z;;¢) belongs to C*([0,T], L*(R)) and moreover it is an equicontin-
uous sequence of function from [0,T] to L*(R).

Proof. Let us denote by 8}(t,z;;¢) € C°([0, T], L*(R)) the function
Pr—iH(e)ys].

Using proposition 3.3 we have that

sP(t+h,se) = s7(t, 1 €) T _|lpn ﬁt+h(s) - fjt(a) T (e
h ](tv :E) L) ]D] [ h =+ Ut<E)H( )}wo
ﬁt+1(5) - ﬁt(g) 77 7
< “ [——)—h——-—— + ZUt(E)H(E)} || — 0.
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This proves that
10,57 (¢, z5,€) = 52(t, z5;€) = PP [—il, () H (e)vho). (3.44)

Since ||H ()|l is bounded (lemma 3.1), ||57*(t, z;; €)|| is bounded, therefore

tl
/t dr 0,87 (7, - €)

”S;'n(ta g E) - ST(tla g E)HLZ(R) =

t/
< [ drlo.spirse) < cle ¢,
t

showing that s;-”(t, z;;€) is an equicontinuous sequence. J
Corollary 3.4. There exists a subsequence sT'(t, z;;€) which satisfies:

1. sPM(t,zj;€) converges, in the weak topology of L*(R), uniformly in t, to a limit
s (t,z;;0) € L*(R). Moreover, the limit is continuous in t in the weak topology
of L.
2. 8,s™(t,x5,6) = 9,87 (t, x5;0) in L( (0,T), L*(R)), where the derivative 0,87(t, 5; 0)
is to be interpreted as derivative in D'((0,T) x R,).
Proof. The sequence s7*(t,z;;€) is contained in a ball in L*(R). This ball is a compact
metric space with respect to the weak topology. Since the sequence is equicontinuous
with respect to the strong topology, it will be equicontinuous with respect to the weak
topology too. Therefore, the theorem of Ascoli-Arzela (see, e. g., [Roy], theorem 10.40)
proves the first point.
Equation (3.44) implies that 0,s7*(¢, z;; €) is a bounded sequence in L*( (0, T'), L*(R)),
s0, extracting possibly another subsequence, we have that there exists g7* € L>( (0,T), L*(R))
such that (again, we denote the subsequence with the same symbol as the sequence itself)

*m

8t3§n(t7$j;€) — 95,

but this implies that V ¢ € C3°((0,7)), V x € Cg°(R),
T
[ at [z gpe et =
0
T T
= / dt @(t) < X()?g;n(t7 ) >L2(R)(_' / dt ‘10(1’-) <X atsgn(ta ';E) >=
0 0
T
=/ dt ¢(t)0, < x, 87 (¢, €) >=
* T
= —/ dt O,p < x,85'(t,;€) >— —/ dt O,p < x,s}”(t, 5 0) >=
0 0

T
= /0 dt /R dz s7(t,z;0)9,p(t)x (2),
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= g7

= 8,5 (t,z;;0) in D'((0,T) x R,).

We can now prove theorem 3.2.

Proof. We suppose that edge e; has infinite length. The proof for an edge of finite length
is analogous.
Corollary 3.3, together with the proof of the first part of the proof of theorem 3.1
implies that
sup | < x,s7(t, 5 €) > | = O("?),
te[0,T]

for all j € J and for all y € C°(—o0,0), but the first point of corollary 3.4 gives
< X,87(t, 5 0) >rewy= lin% < x, 87 (¢, €) >=0.
Equation (3.44) allows us to write, for all x € C§°(0, +00),

< ,\f,i@ts;?’(t, -;E) >L2(R):< X - @i“ H(E)’K/Jtz >L2(R2):< H(E)X . @;w; >=

1 2 € € 1 2 2 € £ 1 2 7
=< “‘2‘333/\’ ' q)n?,’?bt >+ < @(dr ) )X ) ®71.777/)t >=< —58:5;\/1 Sjn(ta ’5) >L2(R) +
1

+ < rz(d% —‘yz)X : @iﬂbf >

[N}

Since y is supported in (0, +00), equation (3.38) holds also in this case, therefore
Loo o 2 —c/
5 (dr =y )x - @oll” = O(e™F).
We have then, for all ¢ € C°(0,T), and for all xy € C5°(0, +c0),
T T
/ dt @(t) < x,10,87 (8, 0)) > 2@y / dt @(t) < x,10,57(t, - €) >r2m)=
0 0
T 1
= [ atett) < —500 53t 18 > +O( el
0

T
1 .
- / dt o(t) < =50, 57 (45 0) > @),
0

= 10,8} (t,7;;0) = —%—823”(@:@;0) in D'((0,T) x (0,+00)). (3.45)

J

O
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3.3 Full treatment of a graph with two edges

In this section, we are going to put forward a different kind of soft approximation for a
graph with one vertex and two infinite edges. Even though the geometry of the graph is
very simple, this model illustrates clearly a possible mechanism by which the adiabatic
decoupling between the different transverse states takes place. In particular, it shows
that the bound states localized near the vertex which can arise (and indeed do arise for
a rigid approximation of a quantum graph, [CLMM;, CLMM,, GoJa]) do not interfere
with the propagation of product states localized inside one of the edges at the leading
order, because their spectral distance becomes infinite in the limit.

We denote the graph by I'y, where ¢ is the angle made by the two edges, 0 < ¥ < 7.

As we have already mentioned in the introduction to this chapter, we do not consider
directly I'y, but we approximate it by smooth curves, I'y s, whose curvature becomes
bigger and bigger in a region whose width, given by d, goes to zero and we consider a
potential constraining to this family curves.
, More precisely, to specify the approximating curves we need only to specify their
~ curvature, k;, because, as it is well known, this specifies the curve up to rigid motions of
the plane. Naturally, we want that, when ¢ goes to zero, the curves tend to the graph.
This in particular implies that the turning angle has to become equal to ¥ when 6 — 0.

A simple choice which satisfies these requests is (s is the arc length parameter)

ks(s) = ?k(?) /R ds k(s) = 1,

ke C(=1,1) E=1 |s|<1/2
ON T YE=0 |s| > 3/4,

(3.46)

which amounts to deformate the graph in a neighbourhood of the vertex replacing it
with an arc of a circle. Note that the ¢ scaling is fixed by the request that the turning
angle of the approximating curves be 9,

¥ (s
ds k[ 2) =
/R 5 @

H(e, d(e)) = ——%A -+ 'SEW“(E)’ 6(e) — 0 when € — 0,

We consider the Hamiltonian

where, for simplicity, we suppose that

1

1.,
2d§(5) (.’L" y) = 'Q—dlst[(l', y), F:ﬂa(&-)]z

Wiy (T, y) =
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Remark 3.1, about the possibility to generalize the analysis to potentials with con-
stant Hessian, applies here too. As in the previous section, we are interested in the time
evolution of a product state which is initially localized away from the vertex.

Naturally, we expect that the particle oscillates very fast along the direction normal
to the curve, and, since we are considering the case of a curve embedded in R? we expect
tubular coordinates, defined on page 10, to be the most suitable for the analysis of the
motion, since the problems related to the existence of a gauge coupling do not appear
in the codimension one case.

However, tubular coordinates are defined only in the region

{(z,y) € R*: ds(z,y) < o}, (3.47)

where o is the radius of curvature of I'y 5. When ks is different from zero, this quantity
is proportional to ¢ itself, so, by hypothesis, it goes to zero when £ — 0.

To get rid of the region {(z,y) : ds(z,y) > d} we will use a theorem, proved first by
Froese and Herbst in the more general context of a potential constraining to a subman-
ifold (proposition 8.1 in [FrHe]), which basically says that if one starts from an initial
state more and more localized near the constraint, then all that matters for the time
evolution is a small region near the constraint itself. We repeat the proof of Froese
and Herbst because we need to keep track of the dependence of all the constants in the
estimates on &, to apply them to the region {(z,y) € R?: ds(z,y) < d(¢)}.

Theorem 3.3. Let ¢ € L*(R?), ||[¢| = 1 and [|ﬁ(5,6)¢|] < & (Cy independent of §).
Then,

. 1/2
| Faszse™ ™0y < (201)1/255—- (3.48)

F' indicates the characteristic function of the region indicated.

Moreover, let Hp(g, 6) be the Hamiltonian H (e, 6) with Dirichlet boundary conditions
on the set {(z,y) € R? : ds(z,y) = &}.

Let us suppose that 6 = 6(¢), lim._,0d(c) = 0. Taking into account (3.48), let us also
assume that

gl
21_5% oM 0. (3.49)
Then, for allt € [0,T], we have
itH(e.6 ~itHp(e,5) g/t g2
| Fuyese™ ey — B0 Ry )l < Co(Ch, T) <'5575 + W) (3.50)
Remark 3.4. The theorem implies that if we choose a d(g) such that
£1/10

lim =0 (3.51)

=5 5(e)
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then we can restrict ourselves to analyze the Dirichlet Hamiltonian Hp (e, §()), which is
localized inside the region where tubular coordinates are defined. This, however, means
that we have to consider a “tube” encircling the graph whose diameter is much bigger
than the localization of the transverse states, which for an harmonic oscillator is £1/2.

Remark 3.5. As already observed in [FrHe], the estimate (3.50) is not optimal.

Proof. Let us first prove (3.48).
Since ||H(g,0)¢| < -C—;L, we have from Schwarz inequality

<9 Beow>< D

This implies immediately that

C ~ - 1 1
— 2< Y2y, Y% >= |V + 5 lldsvlf = dsvll” < 2Cie. (3.52)

It follows then
§? < Fa>s, Fa>510 > < < dsFaz>s, dsFyg>5 > < ||d§’l/)”2 < 2Che. (3.53)

The same argument can applied also to e~®#(&0y 50 (3.48) is proved.

We need now to prove an estimate on the behaviour of the gradient of ¥ away from
the graph.

Let y € C3°(R) be 1 when 1/4 < |z| < 3/4 and 0 when |z| <1/8 or |z| > 7/8, then
the function

3 1 1 M
)= g Sy 1 7 )

will be 1 when A\; < |u| < « and 0 for |u| near zero. If we choose A; and « such that
0 <A <a<d,then y is well defined (and € C;°(R)) when u is the coordinate along
the direction normal to the curve I'y s (see figure 1.2, page 11).

We have then

[Py <ds<a VI = | Py <as<a VXD < IV

Using again the Schwarz inequality and the fact that yi» € D(A) (the potential is
bounded on the support of ) we get

IV < IAG)IM2lxelM?,

s0, to estimate || F), <q;<o V|| we need to get an estimate on ||A(x2)|. To obtain it, we
use an energy estimate of second order, 1. e., we calculate the quadratic form associated
to H(e,§)2.
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2

PN 1 1 - 1 1
H(e,6)* = lef4 + (@ﬁ) + ijz—ggd?spj - 'Q‘EEAC@, (3.54)
E

where p = —1V. The first three terms are positive operators, while if we take the mean
value of the last one with respect to the state xi we get

< xv, Adixip >= /

dzdy |[xv|*Adz = / dsdu [1 + uks(s)] |xw|* [1 + uks(s)] ™"
ds<d

lu|<é

x¥|? 2uks(s) <

[+ uks()N2u) = [ dsdull+uks(s)] [l - 2+ / dsdu
Juj<é |u|<d
< Cllxy P,

where the change to curvilinear coordinates has been described in last chapter (page
2.2.1) and in the last step we have used the fact that

sup |uks(s)] < 0ks(s) = ﬂk(%) < const. (independent of 0)

Jul<d
Taking the mean value of (3.54) with respect to 1 we obtain then
1580017 < N80 I + 5,

which can be written equivalently as

1/2

1A < T+ 1 e, 3 + 1A, .

2

The last term is equal to
(A, x]¢ = (Ax)¥ + Vx - VY,
and we can estimate its norm changing to curvilinear coordinates,

Vit = 0.8 g5y )

Ax = (1+ ksu) 710, [(1 + ksu)0,x] = Fox + (1 + ksu) " ks, x =

= *v(z(u ; viz(u ! = i
= 923 (x( ))Q(Q_/\l)ﬁazk( ( ))Z(a—/\l) lul 1+ ksu™

Using (3.52) to estimate ||[V||, we have then

c e, e,
+ (3.55)

AW S G g Y e T sa o
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In what follows, we will need to choose o and A; proportional to §. Assumption (3.49)
implies then that all terms in (3.55) are at most of order 1.
To sum up, we have

INCOTE (3.56)

from which it follows that (assuming that o and X, are proportional to ¢ and that &(e)

satisfies (3.49))

apelt O
§1/2 T gl/4g1/2”
Let now £ be a function in C°(R) such that £(z) = 1 when |z| < 1/4 and £(z) =0

when |z| > 1/2. We define the function ¢ by the equation &(u) := (u/§), where u is

the curvilinear coordinate normal to the curve.
Because of (3.48), to prove (3.50) is enough to show that

| Fys<ds<a V|| < Ce (3.57)

el/4

Y3 E. -1 E 51/2
“ itHp( 5)‘5 it H 5 &bH < C2 Cl,T) <55/—2 -+ —5‘73—>

for t € [0,T)]. Let

Gres = eitﬁp(s,&)f —nH(Eg _ e

Integrating the derivative we have

t
¢t_,s,5 = Z/ ds e”HD [HD(E 6)& §H(5 5)] —isH( EJ)v
0
t 7 —~
= [ ds e BoeOwe g2 age ey,
0
therefore

t _ o
I9cel =/ ds < e HPEN g, 5, [VE - p— (i/2)AgleHENy > |
0

Let now ¢ be a C°(R) function which is 1 on the support of 8, and 0 when || is near
zero. As above, we denote by ((u) := (u/6). We can then write

i ~ Lo .7}
!I¢t,a,5|l2é/0 ds |G P00,  5[|(IIVE - pe*HEDy|| 1 ||(1/2) Ade™*HEy))) <

1 1 t —isHple.s
= C<m + Zs‘) / s e Dl
(3.58)

where we have used (3.57) and the definition of £.
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Now
< Gres Hp(e,8)bress < 2 < £ HENy Hp(e,5)ge Dy > 4

+2 <&, Hp(e,0)6p >=2 < e #HENy, {— %As —iVE - p+ EHp(e,6) [ HEDY > 4
+ 2 < £, —%Ag—iV§-p+§ﬁD(5,5)}¢>.

Using again equation (3.57) and the definition of £, we get
C
'557

. C
<&, —iVE-py > < SVIVETE

|< 5 ¢7§ﬁD(5>5) w >| < ’g‘;

<€ 9, ~5AE 9 5| <

and corresponding equations with e~itH (=94 instead of ¥. If we suppose that the se-
quence 6(e) satisfies (3.49), then all the terms grow at most as €™}, so we obtain in the
end

< ¢t,6,57 HD(& 5)¢t,z,é ><

~
<

Repeating the proof of (3.48), we can then show that

o Cel/?
Ice oD, ) < C,
and substituting this back in (3.58) we get
1 1\ gl/2 gl/d g1z
2 e
”d)t,s,éu S C(w -+ '('5—2> —5— = C(m + —6T> (3.59)

0

Now, let us fix a sequence 6(g) satisfying (3.51). As in last section, we consider the
time evolution of a product state localized inside one of the two edges, away from the
vertex,

,¢§ — e—itﬁ(sﬁ(a))wg)
Yo(z,y) = f(2)Pn(y),

where (z,y) is the system of coordinates associated to one of the edges, f € Ci°(R) and
®¢ has been defined in (3.29). If we choose ¢ sufficiently small, the tubular coordinates

(3.60)
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associated to the curve I'ys, (s, us), coincide with (z,y) apart from a small neighbour-
hood of the vertex. The state 1 is then well defined and independent of 6. The limit
e — 0 gives us therefore the leading behaviour of an initial state which propagates
through a tube which curves slowly with respect to the transverse wavelength.
Equation (3.48) allows us to discard F5.y>5(e)%%, while (3.50) allows us to approxi-
mate Fd6(5)<5(5)¢t€ with E_ZtHD £.6(¢) )Fd5(5)<6(s)'¢’0
We can now prove

Proposition 3.4. Let ¢ be given by (3.60), then, for t € [0,T],

||exp[-—z'tﬁp(£, 5(5))}Fd6(5)<6(5)¢0+

_ (3.61)
— exp[—itK (6(€)) — itEn/el(f) - Fuz <se)Pr(use)ll = 0, € —0,
where
- 2
R(5(e)) = _.;:ag - ’“5(85> (3.62)

Proof. The proof is an application of Duhamel formula, lemma 2.2,

llexp[—itHp (e, 8(2))) Fay <steybot

— exp[—itK (8(€)) — tEn/e)(f) - Fuspoy<ite)®5 (use) || =

= |[{explitHpl(e, 6(c))] exp[~itK (6(c)) — itEn/e] — [} Fuyy . <se)f - 5 (ts(e)+
+ Fagi<se)f (2) @5 (us) — Fuy, <o) f(2) 25 (y)]| <

< |{explitHp(e, 5(e))) exp|—itK (5(e ))—ztE /&l = L} Fug <se) f - P us) I+
+ | Faseey <bie) F(2) @5, (us) — Flagy <) £ (2)@5,(9)]] =

= |[{exp[itHp(e, 6(c))] exxp|— th(5(6))—ztE /€] = LY Fag <50 f - B (us)ll,

because the second term is zero if € (and therefore 0) is sufficiently small.
Applying now Duhamel formula', we have that

{explitHp (e, 6(e))] exp[~itK (5(c)) — it En/e] = I} Fay s f - D) <

< /D ds [Eple, 8(e)) — R(5(c)) — En/el (3.63)
- exp|—isK (8(£)) — i5En /€] Fay <o) f - B5(us)]]-

1For every fixed 4, the domain of I?(é) is H2(R), so exp[—itf\’(é)](f) - Fiy; <s®(us) is in the domain
of Hp(e, 6).
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The Hamiltonian Hp(e, d(¢)) in curvilinear coordinates, acting on L(R x[0, 8], dsdu),
is given by equation (2.22),

PN 1 1 82 1 1o}
- uK(s)—=
Hole,0E) = ~ S i ramE 89 T T auks(op (95 TV (ewF
11,
20u2  2e%
where V is the geometric potential,
1 k2 uky 5 u?(kj)?
Vis,u) =={ — 5 o2~ el .
(5,0) 2{ M okP Tl tukp 40+ ukm} (3.64)

Making a unitary dilation by the factor £¥/2 along u, we get an operator acting on
L2(R x [0,6(¢)/e/?], dsdu), given by

~ 1 1 9 1 9]
1/2 e 8(eND!,,, = —= - 1/2, 10080 92
DarHp(e,8(€)Dess 2 [1 + /?uks(s))? Os? * 1+ 51/2uk5(5)]3€ UA‘S(S)85+
+ V(s,e¥?u) — L& - 1,2
20w 2

(3.65)

where

Dapt(u) = Y49 ().

Therefore, equation (3.63) becomes
{explitHp (e, 5(e))] exp[—itK (5(e)) — itEn/e] — I} Faypy<sie)f - @ (us)l| <
< [ ds 11Dannle, )DL = R(E(E) ~ Eufh
- exp|—isK (8(e)) — isEn /€] f - Fas<seyjerre - O *(us)|

Therefore, it is clear from previous equations that

IV (s, /2u) + k3 /8] exp[—is K (8()) = i5En/e]f - Fuy, <seyjerrs - 5 (us)l| =
=0(?/6%) — 0, &—0,

2 E,
H ( - %5%5 5}"“2 - _{) exp[~isK (8()) — isEn/elf

' Fd5(5)<5(5)/51/2 . @ffl(ucg) —0, £—0,

so we need to control only the terms containing the derivative with respect to s in (3.65).
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Using lemma 3.3, proved below, we have that

!l o /gluka (S)]le/Zukg(s)% exp[—itK (8(2)) — itE, /| f(s)-

Fuyyeseyeir - 57 (ws)|| < (211Kl - 10, F 2 + 18] - €2 Kl| oo | K11 o0 1 1 22):

@ @) = O(EY2/5%) — 0, &~ 0,

In the same way we have also that

1 1 o? L5 :
“ - —2—{ [1 + 51/2u/€5(5)]2 - 1}5_55 eXp[——th((S(e)) - ZtE”/E]f(S)'

Py <oy O (us)|| < CeV2lkslloolll02 ] + It
(2l kslloo - 1E5lloollOuf | + IRFIZ I + sllool 155 leo 1 F1)] = O(e12/6%) — 0, & — 0.

O

Lemma 3.3. Let H be the one-dimensional Hamiltonian H = ~102 +V, where V is a

potential bounded together with its first two derivatives, then, given ) € H Y(R), we have

110, EXP(—itHW’HL‘B(R) < NO Y| ey + [t 110,V | 2o - 19| L2y (3.66)
and, given ¢ € H*(R),

o2 exp(~itﬁ)¢l|L2(R) < 1820l 2@y +

(3.67)
+ 812110,V Iz - 100l z2®) + 183V Iz - o)l 2@®))

Proof. Since V' is bounded, the domain of the quadratic form associated to HisH YR),
and the time evolution sends it into itself. It makes therefore sense to write, for ¢ €

H'(R),
[—i0,, e_itﬁ]v,b = ¢mitH /Olt ds ase”ﬁ(-—iﬁz)e““ﬁzb =
= jeitH '/Ot ds eiSﬁ[ﬁ, —i@z]e_“ﬁv,/) — ¢ith /Ot ds e o,V e“”ﬁ@b,
but this implies immediately
~ id,e My = (0 ) + [~i,, ey

= ey < gl + [ ds Jo.ve Ty,
0
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which gives (3.66).
Following the same path and noticing that

[H,-8% = —82V — 28,V - 8, (3.68)
we get (3.67). O

Remark 3.6. The request that the time evolution of the Hamiltonian with a constraining
potential be approximated by the Hamiltonian with Dirichlet boundary conditions forces
us, as stressed above, to choose a “big” tube. Proposition 3.4 says that this choice gives
the same result as doing first the limit € — 0, i. e., as constraining first the particle to
the curve, and then doing the limit 6 — 0, i. e., changing the curve into the graph.

To complete the analysis of this case we need to study the limit of the dynamics
exp[—itK (6(¢))] when € — 0.

The limit of one-dimensional Hamiltonians containing rescaled potentials has been
studied in detail in the context of the approximation of singular interactions, like the
delta coupling, by short range smooth potentials (JAGHKH] and references therein).
The scaling used by us in (3.62) however, is not covered in the results presented in
[AGHKH], but it can be analyzed using exactly the same techniques.

The idea is to show convergence in norm of the resolvent of K (6(£)) to the resolvent
of the Hamiltonian with Dirichlet boundary conditions in s = 0. As it is well known
([ReSiy], theorem VIII.21) this implies strong convergence of the corresponding unitary
group.

One could expect convergence to Dirichlet boundary conditions because the potential
—k2/8 is a strongly attractive well, which becomes deeper and deeper, but whose range
is shorter and shorter. As explained in [EnSe] in a different context, we expect this
to give rise to Dirichlet boundary conditions. This in particular says that the strong
convergence of the unitary group (or the norm resolvent convergence) does not capture
the behaviour of the eigenvalues which go to —co when & — 0, because, even though the
ground state of K (8(¢)) tends to —oo, its resolvent converges to that of a semibounded
operator. This phenomenon has already been illustrated in [Ges].

We can now prove

Theorem 3.4. Let [K(6(c)) — 2271 be the resolvent of K(58(e)), where Sz > 0, then
[B(6(e) - 21" = [Kp— 2T, e—0, (3.69)

in the norm of bounded operators on L*(R), where Kp is the free Laplacian on L?(R)
with Dirichlet boundary conditions in s = 0.

Proof. The potential Q(s) := —k?/8 is in L'(R) N L*(R), so we can apply the dilation
technique described in [AGHKK] (see also [AGHKH]). Applying lemma A.1 of [AGHKK]
we get

[K(8(e)) — 227' = G, — As(2)[0 + Bs(2)]"Cs(2), Sz >0, (3.70)
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where G, is the free resolvent, with kernel g,(w),

Go= (B =7, galw) = et
o2 z (3.71)

D(Hy) = H(R),
while As(z), Bs(z) and Cs(z) are Hilbert-Schmidt operators with kernels

As(z,5,7) = ga(s = 67)|Q(r)[/2,
Bs(z,5,7) = =|Q(s)["?g:[d(s — n)]IQ(r)|*, (3.72)
Cs(z,5,7) = —|Q(s)]/?:(8s — 7).

It is not difficult to see (lemma 2.3 [AGHKK]) that

ﬁo =

A5 — A07
B5 s Bo, (373)
CJ - CU)

*in Hilbert-Schmidt norm, where Ag, By and Cp have kernels

Ao(z,5,7) = g:(5)|Q(r)['/?,
Bo(z,s,7) = ~g.(0)|Q(s)[/?|Q(r)[*/?, (3.74)
Colz,8,7) = ~|Q(s)'*g.(~7).

The operator By is not invertible on the whole Hilbert space, but it is clear from the

expression of the kernel that it actually acts on the one-dimensional subspace, denoted
by Hg, generated by the vector g given by

[

Q(s)[M? e
eo(s) = ; = (3.75)
TIRG)I oy ncz >||2€2R>
So we can write

By = —g:(0)|Q(s)| 2@y pe < pq,- > - (3.76)

On Hg, By is invertible and the inverse is given by

1

Bgt (3.77)

=- g <@g, >
9:(0)|Q(s)[| 22 m)

Since the operator Cy has range equal to Hq and A acts non trivially only on Hg,
we get that R
[ (8(e)) — 27" — G — AoBg ' Co,
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which has a kernel given by

gz(s)gz(_T)

O (3.78)

g:(s —7) =

which is the kernel of the resolvent of the Dirichlet Hamiltonian. O



Conclusions and future
developments

We have been motivated to study the problem of quantum systems with strong con-
straining potentials essentially by two reasons.

The first is to understand how it is possible to recover the known classical results
in the subject performing a suitable semiclassical limit on the quantum Hamiltonian
(1.1). Our interested was aroused by the fact that, as we have explained in detail in the
introduction, there seems to be a contradiction between the theorems proved in classical
mechanics and the results (many of which are in a non rigorous form) known in quantum
mechanics.

The main discrepancy is the presence, in the classical theorems, of the homogenized
potential (theorem 1.1) which does not appear in the quantum case. This is due above
all to the hypothesis, made in most of the published works, that the the constraining
potential (or better, its Hessian) is constant on the constraint. In chapter 2 we have
shown (theorem 2.2 and section 2.3) that, using a suitable scaling justified by physical
considerations, the motion on the submanifold is ruled, in the semiclassical limit, by
an Hamiltonian which contains exactly the same homogenized potential of theorem 1.1.
We have also shown, using a non standard perspective, that semiclassical limit can offer
new insights in dealing with the phenomenon of Taken chaos.

The second reason is that almost one or two-dimensional motions caused by the
action of a confining potential are relevant to explain the physical features of many
electronic nanostructures, like quantum wires, and have also been used in theoretical
chemistry as simple models to calculate complex band structures in solids. The essential
new feature, analyzed in chapter 3, is the presence in these structures of branching
regions, which, in the limit of constrained motion give rise to singular structures, the
“quantum graphs”.

We have shown (section 3.2) that, because of adiabatic decoupling, it is possible
to get an effective equation for the motion along the graph, outside of the vertices, in
every transverse subspace. This is, as expected, the free Schrodinger equation. Even
though our result is not complete, in the sense that the behaviour in the vertex is not
described, we would like to stress that all the results published in the context of the
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rigid approximation of quantum graphs and spectral convergence use the projection on
the transverse ground state. We think that this is due only to technical reasons, because
one expects, as we proved, decoupling in each transverse subspace.

In the same context, we have proposed to approximate a graph with two edges
by a smooth curve, making its curvature bigger and bigger in a region of decreasing
width. We have shown then that the limit motion on the graph is described by Dirichlet
boundary conditions.

To prove this result we have revisited a theorem of Froese and Herbst, to approxi-
mate the time evolution of an Hamiltonian with a constraining potential with the one
generated by an Hamiltonian with Dirichlet boundary conditions. With the estimates
available, this is possible only when the Dirichlet tube is much bigger than the local-
ization of the transverse states. It would be worthwhile to examine in which sense the
Hamiltonian with a constraining potential and the one with Dirichlet conditions are
equivalent for a different range of the parameters.

Another interesting related field of research would be the analysis of the convergence
of the time evolution for rigid approximations of quantum graphs, which, till now, have
been investigated considering (almost) only spectral convergence. Some results in this
direction have been recently announced [Pos)].

The reader will have noticed, passing from chapter 2 to chapter 3, that the behaviour
of the longitudinal states we consider is not homogeneous!, in the sense that they can
oscillate with a wavelength which is comparable to the transverse one or, in the opposite
case, vary slowly. The methods for dealing with these cases are different, but it would
be worthwhile to have a description for all these different classes of initial conditions,
which are not just of academic interest, but can be actually found in the experiments.

A related topic is the introduction, besides the constraining potential, which varies
on a scale of order &, of another potential, varying on a scale of order £'/? for example,
to model differently the interaction near the vertices. This could give rise to different
boundary conditions in the limit.

As a final remark, we would like to emphasize that this subject is actually linked to
the issue, which should certainly be studied in greater detail, of the connection between
our mathematical model and the actual physical devices we want to describe. First of
all, our model contains only one body interactions. One can argue that a more realistic
description, especially near the vertices, should contain at least two-body interactions,
like in the scattering model proposed in [MePal. Second, we have completely neglected
the spin of the electrons, even though it has been recently proposed to use nanotubes
for spin control purposes [EnMa), adding a spin-orbit term to (1.1).

1This concept has been stressed in [BDT].
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