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Chapter 1

Introduction

Orbifolds arise in geometry in two different ways and as a consequence they
can be given two different descriptions. On one hand, as a topological space
Y (respectively an algebraic variety) which is the union of open subsets U
of the form U = U /G, where U is a smooth manifold (respectively a smooth
variety) and G is a ﬁmte group acting on it by diffeomorphisms (respectively
algebraically). The data (U,U,G), as U varies, define an orbifold structure
[Y] on Y. This way of thinking about orbifolds is in some sense concrete
and geometric, but, to define a good notion of maps between such objects
requires some work. On the other hand, from moduli problems, orbifolds
arise in a more abstract but stil natural way. Orbifolds arising from moduli
problems are called smooth algebraic stacks in the sense of Deligne-Mumford
[21]. If [Y] denotes such a stack, the coarse moduli space Y associated to it
is, locally in the étale topology, the quotient of a smooth variety by the action
of a finite group. This variety parametrizes objects modulo isomorphisms.
Gromov-Witten invariants for proper orbifolds have been defined first by
Chen and Ruan [17] for almost complex orbifolds. Their construction arises
from orbifold string theory introduced by Dixon, Harvey, Vafa and Witten
[22], [23], for orbifolds which are global quotients. In the algebraic category,
orbifold Gromov-Witten theory has been developed by Abramovich, Corti,
Graber and Vistoli [1], [2]. The definition of Gromov-Witten invariants for
orbifolds is similar to that for almost complex manifolds and smooth vari-
eties. The main change is that one replaces stable maps by twisted stable
maps; these are orbifold morphisms from nodal curves with orbifold struc-
ture to a target orbifold. These morphisms have to satisfy some stability
conditions that guarantee the existence of a compact moduli space. Similar
to the smooth case, the genus zero orbifold Gromov-Witten invariants can
be used to define an orbifold quantum cohomology. The degree zero part of
the orbifold quantum cohomology, i.e. using only degree zero maps, is the
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6 CHAPTER 1. INTRODUCTION

orbifold cohomology ring of [Y].

The orbifold cohomology of [Y] has been defined by Chen and Ruan [16]
for almost complex orbifolds. This has been extended to a noncommutative
ring by Fantechi and Géottsche [28] in the case where the orbifold is a global
quotient. Abramovich, Graber and Vistoli defined the orbifold cohomology
in the algebraic case [2].

The underlying vector space of the orbifold cohomology is the direct sum
of the cohomology of Y and the cohomology of the twisted sectors. These
are orbifolds that parametrize points of [Y] together with nontrivial auto-
morphisms. Note that, if U = U /G is an open subset of Y and § € U, by an
automorphism of § we mean an element of the stabilizer of § in G. Twisted
stable maps, being orbifold morphisms, carry informations about automor-
phisms of points. So, twisted sectors come naturally in the picture of orbifold
cohomology.

We can see here a difference between the smooth case and the orbifold
case. In the smooth case, the degree zero part of the quantum cohomology is
the ordinary cohomology of the target space. In the orbifold case, the degree
zero part contains the ordinary cohomology of Y as a subring.

Let [Y] be a global quotient orbifold, i.e. its underlying space Y is of
the form Y = X/G. Originating in Physics [22], [23], [62], cohomological
invariants of the orbifold [Y] have been defined and studied [6]. These in-
variants can be recovered from the additive structure of H} ,([Y]). However,
the orbifold cohomology ring contains much more information, notably the
orbifold cup product.

Assume that [Y] is a Gorenstein orbifold (see Definition 3.4.3) and that
the coarse moduli space Y admits a crepant resolution p : Z — Y: this
means that Z is a smooth variety, p is an isomorphism outside the singular
locus and p*(Ky) = Kz (see also Definition 3.4.4). Here Ky and Kz are the
canonical bundle of Y and Z respectively.

Motivated from Physics, Ruan stated the following cohomological crepant
resolution conjecture [52], see also Conjecture 3.4.16. Let p : Z — Y be
a crepant resolution, assume further that we have chosen an integral basis
Bi, ..., B of the kernel Ker p, of the group homomorphism p, : Hy(Z,Q) —
H,(Y,Q). Then, we assign a formal variable ¢; to each class §;. Using con-
tributions from genus zero Gromov-Witten invariants of Z whose homology
classes belong to Ker p,, we can deform the ordinary cup product on H*(Z, C)
in order to obtain new ring structures. This deformation will depend on the
complex parameters gy, ..., g,. Giving these parameters the same value —1,
we get the so called quantum corrected cohomology ring H;(Z,C). Then the
conjecture states that, under suitable assumptions, H;(Z, C) is isomorphic



to Hp,([Y]).

There are several motivations for studying this conjecture. It is related to
the problem of understanding the behaviour of quantum cohomology under
birational transformations. Another motivation comes from mirror symmetry
as most of the known Calabi-Yau 3-folds are crepant resolution of Calabi-Yau
orbifolds.

The conjecture has been proved in the following cases: for Y = S®, the
symmetric product of a compact complex surface S, and Z = S the Hilbert
scheme of two points in S, in [38]; for Y = S the symmetric product of
a complex projective surface S with trivial canonical bundle Kg & Og, and
Z = Sl the Hilbert scheme of r points in S, in [28], Theorem 3.10; for
Y = V/G the quotient of a symplectic vector space of finite dimension by a
finite group of symplectit automorphisms, and Z a crepant resolution, when
it does exists, in [32], Theorem 1.2. Notice that in the last two cases, the
crepant resolution Z has a holomorphic symplectic form, so the Gromov-
Witten invariants vanish and there are no quantum corrections. This means
that the orbifold cohomology ring is isomorphic to the ordinary cohomology
ring of Z.

In this thesis, we study Ruan’s conjecture for orbifolds with transversal
ADFE singularities, which are in a sense the simplest ones to which the con-
jecture applies. Indeed, assume that in the orbifold [Y] the open subset of
points with trivial automorphisms group is dense. If [Y] is Gorenstein, and
even under the much more general assumptions that no chart (U, U, G) con-
tains a pseudoreflection, then the orbifold structure [Y] can be recovered by
the singular variety or analytic space Y. The simplest possible Gorenstein
singularities are the ADE surface singularities (or rational double points also
called Du Val singularities).

An orbifold [Y] has transversal ADE singularities if, étale locally, the
coarse moduli space Y is isomorphic to a product R x C*¥, where R is a
germ of an ADFE singularity. In general for any Gorenstein orbifold [Y],
there exists a closed subset W C Y of codimension > 3 such that Y\W has
transversal ADE singularities. So the case we study is in a natural sense
the simplest, ignoring higher codimension phenomena. On the other hand,
transversal ADE singularities occur natural in many contexts: transversal
A; in S® for S a surface; transversal A4, in many complete intersections
in weighted projective spaces; they also are, at least locally, examples of
symplectic orbifolds.

In this thesis, we lay down the structure to deal with general ADFE singu-
larities. After that, we concentrate on the transversal A,, case, with a further
mild technical assumption we address Ruan’s conjecture by computing ex-




8 CHAPTER 1. INTRODUCTION

plicitly both the orbifold cohomology and the quantum corrections. The
former is achieved in general, for the later we have an explicit conjecture
(see Conjecture 6.1.6) which is only verified under additional, and somewhat
unnatural, technical assumptions. We include a sketch of an argument which
would prove the conjecture in general, assuming some technical results which
we cannot so far prove. The conjecture is proven fully in the transversal A;
case. Finally, we construct an explicit isomorphism between the orbifold co-
homology ring H*,([Y]) and the quantum corrected cohomology ring H}(Z)
in the transversal A; case, verifying Ruan’s conjecture. In the transversal
As case, the quantum corrected 3-point function (see Chapter 3.4.2) can not
be evaluated in q; = g» = —1, so that H(Z,C) is not defined. Thus Ruan’s
conjecture has to be slightly modified. However we have found that, if g1 = ¢o
is a third root of the unit different to 1, then the resulting ring H*(Z)(q1, ¢2)
is isomorphic to the orbifold cohomology ring H},([Y]). Also in this case
we give an explicit isomorphism between them (see Theorem 7.2.4). Thus
proving a slightly modified version of Ruan’s conjecture. We expect that
in the A, case, the same modification of Ruan’s conjecture holds, i.e. if
@1 = ... = gy is an (n + 1)-th root of unity such that ¢ - - - g5 # 1, the
resulting ring H*(Z)(qi, .., gn) is isomorphic to the orbifold cohomology ring

;rb([y])'

The structure of the thesis is the following.

In Chapter 1 we collect some basic definitions on orbifolds, morphisms
of orbifolds and orbifold vector bundles. In Chapter 3 we first review the
definition of orbifold cohomology ring for a complex orbifold, then we state
the cohomological crepant resolution conjecture as given by Ruan in [52]. In
Chapter 4 we define orbifolds with transversal ADFE-singularities, see Def-
inition 4.2.5. Then we give a description of the twisted sectors in general.
Finally we specialize to orbifolds with transversal A,-singularities and, under
the technical assumption of trivial monodromy, we compute the orbifold co-
homology ring. In Chapter 5 we study the crepant resolution. We first show
that any variety with transversal ADE-singularities Y has a unique crepant
resolution p : Z — Y, Proposition 5.2.1. Then we restrict our attention to
the case of transversal A,-singularities and trivial monodromy and we give
an explicit description of the cohomology ring of Z. Chapter 6 contains the
computations of the Gromov-Witten invariants of Z in the A, case. We also
give a description of the quantum corrected cohomology ring of Z. In Chap-
ter 7 we prove Ruan’s conjecture in the A; case and, in the A, case with
minor modifications.
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Chapter 2
Orbifolds

We collect here some basic definitions. First of all we define smooth (or C'*°)
orbifolds and complex holomorphic orbifold using local charts, then we give
some examples of orbifolds to explain the definition. We give the definition
of a morphism between orbifolds and we show that the category of orbifolds
is a 2-category, which means that given two orbifolds the set of morphisms
between them has a structure of a groupoid. Finally we define orbifold vector
bundles over a given orbifold. As an example of orbifold vector bundle, we
will recall the definition of the tangent bundle to any given orbifold.

2.1  Definition of orbifold

The notion of orbifold was first introduced by Satake in [53] under the name
of V-manifold. A characterization of orbifolds, as defined by Satake, in terms
of their sheaves is given in [43]. A different definition was given by Chen and
Ruan in [17]. The second definition is slightly general then the first, indeed
it leads to the notion of non reduced orbifold while an orbifold as defined by
Satake is called reduced. In [17], section 4.1, the authors prove that the two
definitions are equivalent, once restricted to reduced orbifolds.

In this paper we will follow [53] and [43] with minor modifications in order
to include non reduced orbifolds.

11
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Let Y be a paracompact Hausdorff topological space. A uniformizing
system ! uniformizing system for an open subset U C Y is a collection of the
following objects:

U be a connected open subset of R?;

G be a finite group of C*®-automorphisms of U such that: the fixed-point
set of each element of the group is either the whole space or of codi-
mension at least 2, the multiplication in G is given by g1 - g2 = g1 0 92
where o is the composition;

x be a continuous map 7 — U that induces an homeomorphism from U/G
to U, where U /G is the quotient space with the quotient topology. Here
G acts on U on the left.

We will call the subgroup of G which consists of elements fixing the whole
space the kernel of the action, and will be denoted by Ker(G).

Notation 2.1.1. Given an open subset U of Y, a uniformizing system for U
will be denoted by (U, Gy, xv)- If the dependence from U is clear from the
context, it will also be denoted by (U, G, x).

Definition 2.1.2. The dimension of an uniformizing system (U, G, x) is
the dimension of U as a real manifold.

Let (U, G, x) and (U’, G', ) be uniformizing systems for U and U’ respec-
tively, and let U C U'. An embedding between such uniformizing systems is
a pair (@, \), where ¢ : U — U’ is a smooth embedding such that x' o ¢ = x
and X\ : G — G’ is a group homomorphism such that ¢ o g = A(g) o ¢ for all
g € G. Furthermore, X induces an isomorphism from Ker(G) to Ker(G').

Definition 2.1.3. An orbifold atlas on Y is a family U of uniformizing
systems for open sets in'Y satisfying the following conditions:

1. The family x(U) is an open covering of Y, for (U,G,x) €U.

2. Let (U,G,x),(U',G",x") € U be uniformizing systems for U and U’
respectively, and let U C U'. Then there exists an embedding (p, A)
(U,G,x) = (U,G,x).
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3. Let (U,G,x), (U, G",x") € U be uniformizing systems for U and U’
respectively. Then, for any point y € U N U', there exists an open
neighbourhood U" C UNU' of y and a uniformizing system (U",G", x")
for U" which belong to the family U.

Two such atlases are said to be equivalent if they have a common refine-
ment, where an atlas U is said to refine V if for every chart in U there ezists
an embedding into some chart in V.

A smooth orbifold structure on a paracompact Hausdorff topological
space Y is an equivalence class of orbifold atlases on'Y .

Notation 2.1.4. We denote by [Y] the smooth orbifold structure on the
topological space Y. We will call this simply an orbifold.

Definition 2.1.5. The orbifold [Y] is said of real dimension d if all the
uniformizing systems of an atlas have dimension d.

Remark 2.1.6. Every orbifold atlas for Y is contained in a unique maximal
one, and two orbifold atlases are equivalent if and only if they are contained in
the same maximal one. Therefore we shall often tacitly work with a maximal
atlas.

Proposition 2.1.7 ([43] Proposition A.1). Let (¢, ) and (¢, 1) be two
embeddings from (U, G, x) to (U’,G',x'). Then, there exists a ¢’ € G such
that

Yp=gop and p=g A-g "

Moreover, this g’ is unique up to composition by an element of Ker(G').

Remark 2.1.8. Notice that, for any uniformizing system (U ,G,x) and g €
G, there exists a g’ € G’ such that ¢ o g = g’ 0 . Moreover this ¢’ is unique
up to an element in Ker(G’). Thus, in the definition of an embedding (i, )),
the existence of A is required to guarantee a continuity for the kernels of the
actions.

Remark 2.1.9. The previous remark implies that, for any embedding (¢, A),
the group homomorphism A is injective.
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Lemma 2.1.10 ([43], Lemma A.2). Let (¢, ) : (U, G, x) — (U',G',x') be
an embedding. If ¢ € G’ is such that o(U) N (g' 0 ) (U) # 0, then g’ belongs
to the image of A.

Remark 2.1.11. Let (U, G, x) be a uniformizing system for the open subset
UofY. Let U' C U be an open subset. Then we have an induced uniformizing
system (U',G',x") for U', where U' is a connected component of x YU
and G’ is the max1ma1 subgroup of G that acts on U'. Clearly there is an
embedding of (U, G’,x') in (U, G, x).

It follows that, for a given orbifold [Y], we can choose an orbifold atlas
U arbitrarily fine.

Remark 2.1.12. Let [Y] be an orbifold and let (U1, G1,x1), (U, G2, X2)
be uniformizing systems for open subsets Uy, U of Y in the same orbifold
structure [Y]. For any point y € Ui MUy, there is an open neighbourhood Ui,
of y such that Ujp C Uy N Uy, a uniformizing system (U12,G12, X12) for Uno,
compatible with [Y], and embeddings (¢;, A:) (U12,G12, X12) — (U,, Gi, Xi)
for i € {1,2}. So, we ge the isomorphism:

P12 = P2 07 : o1(U12) — 02 (U2).

Let now Uy, U; and Us be open subsets of Y such that Uy N Uy N Us # 0,
and assume that there are uniformizing systems (Ul, G1,x1), (Ug, Gs, x2) and
(Us, G, x3) for Ui, Uy and Us respectively. Then, from Proposition 2.1.7,
there exists g € G3 such that

P23 0 P12 = G © P13,

where the equation holds if we restrict the functions to some open subsets of
the domains.

Definition 2.1.13. A reduced orbifold is an orbifold structure [Y] on Y
such that there exists an orbifold atlas U for [Y] with the following propertiy:
for any uniformizing system (U, G, x) € U, Ker(G) is the trivial group.

Definition 2.1.14. Let [Y] be a smooth orbifold and y € Y be a point. A
uniformizing system for [Y] at y is given by an open neighbourhood U, of
y in'Y and a uniformizing system (U,G,x) for Uy in the orbifold structure
[V] such that, U C R? is a ball centered in the origin 0 € R*, G acts trivially
on 0 and x *(y) = 0.
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Notation 2.1.15. For a given orbifold [Y] and a point y € Y, a uniformizing
system at y will be denoted by (U, Gy, X,) and x(U,) by U,. The group G,
will be also called the local group at v.

We now define a complex orbifold. We will use the same notation as in
the smooth case.

Let Y be a paracompact Hausdorff topological space. A complez uni-
formizing system for an open subset U of Y is a triple (U G, x), where
U c C% is a connected open subset, GG is a finite group of holomorphic au-
tomorphisms of U and X 1s a continuous map satisfying the same properties
required in the smooth case.

Definition 2.1.16. The complexz dimension of a compler uniformizing
system (U, G, x) is the dimension of U as a complez manifold.

Let (U, G, x) and (U, &, %/ ) be complex uniformizing systems for U and
U’ respectively, and let U C U'. A complez embedding between such uni-
formizing systems is a pair (i, \) satisfying the same properties stated in the
smooth case but where ¢ : U — U’ is holomorphic.

Definition 2.1.17. A complex orbifold atlas on'Y is a family U of com-
plex uniformizing systems for open sets in Y satisfying the conditions 1.,
2. and 3. of Definition 2.1.8 where we replace embeddings with complex
embeddings.

Two such atlases are said to be equivalent if they have a common refine-
ment, where an atlas U is said to refine V if for every chart in U there ezxists
a complez embedding into some chart in V.

A complex orbifold structure on a paracompact Hausdorff topological
space Y is an equivalence class of complex orbifold atlases on'Y .

Definition 2.1.18. The complez orbifold [Y] is said of complex dimension
d if all the uniformizing systems of a complez atlas have complex dimension

d.

Remark 2.1.19. Proposition 2.1.7, Lemma 2.1.10 and Remarks 2.1.6, 2.1.8,
2.1.9, 2.1.11 and 2.1.12, holds in the complex case. The notions of reduced
complex orbifold and of uniformizing systems at a point are defined for com-
plex orbifolds in the same way of the smooth case.




16 CHAPTER 2. ORBIFOLDS

Lemma 2.1.20 (Linearization lemma,[15] Theorem 4.). Let [Y] be a com-
plex orbifold and let y € Y be a point. Then we can choose a local uni-
formizing system (U, Gy, Xy) at y such that Gy acts linearly on U,.

2.2 Examples of orbifolds

In this section we give some examples of orbifolds, principally of complex
orbifolds.

Example 2.2.1 (Smooth and complez manifolds). Let Y be a smooth (resp.
complex) manifold. Let (U, ) be a chart, where U C Y isopenand a: U —
R¢ (resp. C%) is an homeomorphism with the image. Then (U =aU),G =
{1}, x = o) is a smooth (resp. complex) uniformizing system for U. Let
(U', /) be another chart in the same smooth (resp. complex) atlas of (U, o).
Then the previous construction gives smooth (resp. complex) uniformizing
system for U N U’ and for U’. Moreover we have smooth (resp. complex)
embeddings corresponding to UNU’ C U,U". It follows that a smooth (resp.
complex) manifold has a natural orbifold structure.

Example 2.2.2 (Global quotients). Let X be a smooth (resp. complex)
manifold with the action of a finite group of diffeomorphisms (resp. biholo-
morphic transformations) G. Let Y be the quotient space with the quotient
topology, Y = X/G. Clearly U = {(U = X, G, x)} is a smooth (resp. com-
plex) orbifold atlas for Y, where x : X — Y is the quotient map. So the
class of U define a smooth (resp. complex) orbifold structure over Y. This
orbifold structure will be denoted by [X/G] and is called global quotient.

Example 2.2.3 (Weighted projective space [P(ag, ..., a4)])- Let ag, ..., aq be
positive integers. Then P(ay, ..., aq) is, by definition, the quotient

P(ag, ..., aq) = (C+* — {0})/C*
of C¥*! — {0} under the equivalence relation
(zo, ey Ta) ~ (APxg, ..., A*Zq) for e C".

For any (%o, ..., z4) € C¥! — {0} we will denote with [zo, ..., z4] € P(ao, ..., a4)
the equivalence class of (q, ..., Z4)-

Let X; = {z; # 0} C C**! — {0} and U; = X;/C*. Forany i =0, ...,d, let
U, = C* with coordinates (2, ..., Zi, ..., za) and G; = g, the group of a;-th
rooth of unity, acting on U, as follows

€ (20y eeny Biy oy 2d) = (€ D20, .0y € % 2g) for €€ pg,-
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Then the map U; — P(aq, ..., agq) defined by
(Z(), . éi, ceey Zd) > [Zo, vy Zi—1, ]., Zig 1y ey Zd]

induces an isomorphism between Uz /tha; and U;.

In order to give an orbifold atlas on P(ay, .., ag) it is enough to construct,
for any [z] € P(ay, .., aq), a uniformizing system at [z], say (U, Gias X(a)),
and embeddings (U{x], Gla}, Xiz)) = (Uz, Ma;» Xi) Whenever Uy C U

Let [z] € U;, then take any 2 € U; such that [z] = [z]. Define G to be
the stabilizer in y,, of z. For U [z} take a small ball in U; such that Gy acts
on it and, for any g € g, — Gpap, 9(Ug) N Uy = 0. Let Uy be the quotlent
of U [z) by Gz and X[g : U — Ul be the quotlent map. By construction
there is an embedding (U,,], G[,;], X[z]) — (U3, tha;, Xi)-

If U C Uj for some j # i we have to construct an embedding

(U[m]aG ) —r ( JuuaJaXJ)

Notice that, if U; N U; # @, for any 2 € U; such that [2] € U; N U; there is
a blholomorphlc map W1th domain a suitable neighbourhood of z in U; and
values in U defined as follow

~ . 20 1 . 24
d)l] ( 05 -»9 #i5 =ey d) (zqo/a,- 1 Zﬂ:i/ﬂ:j Yy gy Zad/dj

J J J

where z; /%5 ig a choosed aj-th rooth of z;. Then using this we obtain the
requ1red embedding. Notice that, if 2’ = ¢;;(z), then [#/] = [z] and the
stabilizers of 2’ in u,; and of z in p,, are isomorphic.

Example 2.2.4 (Hypersurfaces in weighted projective spaces). We use the
same notation of the previous example. A polynomial F' in the variables
Zo, ..., Tq 18 weighted homogeneous of degree D, if the following holds

F(A%zg, ..., \%3y) = AP F(x, ..., z4),

for any A\ € C*. In this case, the equation F' = 0 defines a closed subvariety
Y of P(ag, ..., Gq)-

Assume that the affine variety {F = 0} is smooth in C#*! — {0}. Than
the same construction of the previous example can be used to give an orbifold
structure over Y.
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Remark 2.2.5. There is a more algebraic construction of P(ag, ..., ag) which
goes as follows ([24]). Define S(ay, ..., aq) to be the polynomial ring Clzy, ..., Z4]
graded by the condition deg(z;) = a;, for i € {0, ...,d}. Then

P(ag; -, ag) = Proj(S(ao, -, aa)).

Here we use the definition given in [33] for the Proj of a graded C-algebra.
The condition for F' to be weighted homogeneous of degree D means that
F is homogeneous of degree D in S(ao, ..., aq)-
Let YV to be a variety as in the last example. Then the canonical sheaf
Ky of Y is given as follows

d
Ky = Oy(D - Zai),

where, for any integer m, Oy (m) is the sheaf associated to the graded module
(S(ag, ..., aq)/(F)) (m), [24]. See Notation 3.4.2 for the definition of Ky.

This construction has been extensively used to give examples of orbifold
with trivial canonical bundle, i.e. Calabi-Yau orbifold.

Remark 2.2.6. In [11], the authors introduces the notion of toric Deligne-
Mumford stack, this is an orbifold structure over a simplicial toric variety.
Note that a simplicial toric variety is an algebraic variety with quotient sin-
gularities ([31], Section 2.2).

A toric Deligne-Mumford stack corresponds to a combinatorial object
called a stacky fan. A stacky fan X is a triple consisting of a finitely generated
abelian group N, a simplicial fan £ in Q ®z N with d rays (see [31], Section
2.2, for the definition of a simplicial fan), and a map f : Z¢ — N where the
image of the standard basis of Z* generates the rays in X.

A rational simplicial fan ¥ in some lattice N & Z? (where rational means
that any simplex of the fan is generated by vectors in the lattice) gives a
canonical stacky fan & = (V, X, §) where £ is the map defined by the minimal
lattice points on the rays. Hence, there is a natural toric Deligne-Mumford
stack associated to every simplicial toric variety.

Notice that weighted projective spaces and hypersurfaces in weighted pro-
jective spaces are toric varieties and the orbifold structures constructed in
Examples 2.2.3 and 2.2.4 are examples of toric Deligne-Mumford stacks.

2.3 Morphisms of orbifolds

In this section we review the notion of morphism between two given orbifolds
and of natural transformation between two morphisms of the same orbifolds.
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We will see that orbifolds and morphisms form a 2-category: 1-morphisms
are morphisms and 2-morphisms are natural transformations.

Satake in the paper [53] defined C*-map between orbifolds. With this
definition, smooth orbifolds and C*°-maps form a category. It turns out that,
given a C*°-map from the orbifold [X] to the orbifold [Y], and an orbifold
vector bundle [E] over [Y], it is not possible, in general, to pull-back [E]
using this map. This point is explained, for example, in [17] Section 4.4, [43]
Section 2 and in [46] Section 2.

In order to be able to pull-back vector bundles, the correct definition of a
morphism between two orbifolds is that of strong map defined by I. Moerdijk
and D. A. Pronk in [43] (Section 5), or good map defined by W. Chen and Y.
Ruan in [17], Definition 4.4.1. As proved in [39], Proposition 5.1.7, the two
definitions are equivalent.

Definition 2.3.1. Let [X] and [Y] be two orbifolds, f : X — Y be a contin-
uous map. A compatible system for f is given by the following objects:

1. two atlases V and U for [X] and [Y] respectively;

2. a correspondence that associate to any uniformizing system (f/, H,p)
m V, an uniformizing system (U,G,x) in U and a smooth function
fy 1V = U, such that

xofy = fop
3. a _correspondence that associate to any embedding (v, u) : (V, H, p) —

(V!,H',p') an embedding (p,)) : (U,G,x) — (U',G",X) between the
corresponding uniformizing systems such that

fino = pofy.

Moreover we require that the assignment of the above objects is functorial with
respect to the composition of embeddings (1, ) : (V, H, p) — (V',H', ') and
(,(/}I’ ‘LLI) . ('K/I7 Hl7pl) — (‘/II7 HII’ pll)'

Remark 2.3.2. From the definition we have that for any uniformizing system
(V,H,p)inV,let (U,G,x) be the corresponding uniformizing system of I,
then there is a group homomorphism fg : H — G such that

fyoh=fr(h)o fy for any h € H.
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Notation 2.3.3. A compatible system for f will be denoted by f:v—u.
Where V and U are atlases of [X] and [Y] respectively. For any uniformiz-
ing system (V,H,p) € V, we will denote by f (V,H, p) the corresponding
uniformizing system in Y. For any embedding (v, ) in V we will denote by
f(%, 1) the corresponding embedding in U,

Lemma 2.3.4 ([17] Remark 4.4.7). Let f; : V; — U;, for i € {1,2}, be two
compatible systems of the same function f : X — Y. Then there ezists a
common refinement V of both V1 and Vs, a refinement U of both Uy and Uy,
and compatible systems f’ Y — U, 1€ {1,2}, such that f’ is induced by fi
for any i € {1,2}.

The previous Lemma means that given two compatible systems we can always
assume that they are defined over the same atlases.

Definition 2.3.5. Two compatible systems fi : Vi = U, fori=1,2, of
the same map f, are said equivalent if they coincide when defined over the
same atlases.

A morphism [f] from the orbifold [X] to the orbifol [Y] is given by a
continuous map f : X — Y and an equivalence class of compatible systems

for f.

We now review the notion of natural transformation between two mor-
phisms.

Definition 2.3.6. Let fi and fz be compatible systems for f : X — Y.
Assume that they are defined over the same atlases V and U of [X] and [Y]
respectively. A natural transformation from fi to f, is a correspondence

that associate to any uniformizing system (V,H,p) €V an automorphism
67 of 1(V, H, p) = fo(V, H, p) such that

(f2)y = 0y o (fu)ys

and such that, for any embedding (v, ) : (V, H,p) — (V',H',p') in V, the
following diagram commutes

RV, p) 29 F o )

55 l law

oV H,p) 285 F 1 ).
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Remark 2.3.7. Let fi, fo : V —= U be compatible systems for f : X =Y,
and let {6; : (V,H,p) € V} be a natural transformation between them.
Let V' and U’ be refinement of V and U respectively. Then there is a natural
transformation {07, (V',H',p") € V'} between the compatible systems
f1 fb V' — U that are induced by f; and fo. We will say that {67} and
{65} are equivalent.

Definition 2.3.8. Let [f]; and [f]2 be morphisms from [X] to [Y]. A natu-
ral transformation between [f]; and [fls is an equivalence class of natural
transformations between two compatible systems that represents [f]1 and [f]a.

Notation 2.3.9. We will denote a natural transformation between the mor-
phisms [f1] and [fa] by [f1] = [f2]. We will use the same symbol for natural
transformations between compatible systems.

Remark 2.3.10. (Orbifolds as groupoids) Let [Y] be an orbifold. Any atlas
U of [Y] determines a groupoid which represents [Y]. This is shown in [44]
Theorem 4.1.1; for a detailed study of the relations between orbifolds and
groupoids see [43], [42].

By abuse of notation, we will denote also with ¢/ the groupoid associated
to the covering U.

Let [X] and [Y] be orbifolds and f : X — Y a continuous map. Then
a compatible system f : V — U induces a morphism of the corresponding
groupoids. Conversely, for any pair of groupoids V and U that represents
[X] and [Y] respectively, and a groupoid morphism f : V — U, there is
an induced compatible system for f. This is the content of Proposition
5.1.7 in [39]. Moreover, natural transformations between compatible systems
corresponds to natural transformations between the associated morphisms of
groupoids (see [42] Section 2.2 for the definition of natural transformation of
morphisms of groupoids). So, the notion of compatible system is the same
of strong map introduced in [43], Section 5.

Remark 2.3.11. (Orbifolds as stacks) There is another way to define orb-
ifolds, that is as smooth Deligne-Mumford stacks ([21], [27], [59]). The way
to pass from our definition to stacks is through groupoids. Indeed, given
an atlas U, we can construct the corresponding groupoid I/, then there is a
procedure that associate to the groupoid U a stack ([59], Appendix).

We now show that our definition of morphisms between orbifolds corre-
sponds to the definition of morphisms between stacks.
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Proposition 2.3.12. The 2-category of orbifolds with orbifold morphisms
is equivalent to the 2-category of smooth Deligne-Mumford stacks with mor-
phisms of stacks.

Proof. Let (Orb) denote the category of orbifolds and orbifold morphisms,
and let (Stacks) denote the category of stacks and stack morphisms. From
Remark 2.3.11 it follows that we have a correspondence that associate to any
object [Y] in (Orb) an object Y in (Stacks). We now construct a correspon-
dence that associate to any morphism in (Orb) a morphism in (Stacks) in
such a way that this gives a functor (Orb) — (Stacks) such that, for any pair
of orbifolds [X] and [Y], the map

MOI’(Orb) ([X], [Y]) — Mor(Stacks) (X, y) (21)

is bijective. Note that this would be an equivalence, indeed any smooth
Deligne-Mumford stack is represented by a groupoid ([59] Appendix), then
apply Remark 2.3.10.

Let [f] : [X] — [Y] be a morphism of orbifolds. We construct a morphism
F : X — Y of stacks in the following way:

1. we give open coverings {[V;/Hi|}icr of X and {[U;/G,]}jes of V;

2. we define morphisms F; : [f/',/Hz] - [ﬁy(i)/G,,(i)], where v: I — Jis a
function;

3. for any 4,7’ € I, we give a natural transformation &;z : Fiy = Fy;,
such that g 0 & = 0y on triple intersections, where F;; denote the
restriction of Fj to [V;/H;] xx [Vir/Hy).

Let f:V — U be a compatible system representing [f]. Then define
{[Vi/Hilyier == {[V/H] : (V,H,p) €V}
and
{{U;/Gil}jes = A{[U/G] : (U,U,x) €U}.
The function v : I — J is the correspondence given in point 2 of Definition
2.3.1. We now define a morphism F; : [V;/H;] = [Uy;)/Gus)] for any i € I.
Let fy. : Vi = Un and fg, : H; = G,() given as in Definition 2.3.1 and
Remark 2.3.2. An object in [V;/H;] over the base B is represented by the
following diagram:

P —V

!

B
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where P — B is a principal H;-bundle, and a: P — V; is an H;-equivariant
smooth function. This object can be also given by an open covering { By} x
of B and the following data

him € H;, for any [, m such thatB; N B,,, # 0, such that Amp - im = Ain
o : Bp— f/}, smooth functions such that oy = hyy,, 0 iy,

modulo the equivalence relation that identifies hy,, with A - Ay - bl and
ar with hg o oy for hy € H;, for any k € K. So, using this description
of the objects, we define F; on the objects to be given by the following
correspondence

Fy + {huim, art/ = {gim = fu,(him), Br = f, 0w} /"

On morphisms, F; is defined in an analogous way.

Let 7,7 € I. Then, the natural transformation 6;7 : Fyy = Fy; is con-
structed as follows. We can cover [V;/H;] x x [Vy/ Hy] using open embeddings
that are induced by embeddings of uniformizing systems as follows

U : [Vipn/ Hi) = [Vi/ Hi] % » [V /Hy],

where (Vzm,Hlm, pim) € V. Point 3 of Definition 2.3.1 gives natural trans-
formations from the restriction of F; on [f/}m/ H,,,] to the restriction of Fy;
on [Vim/Him]. The functoriality assumption in Definition 2.3.1 ensures that
these natural transformations patch together to give &;z. Finally, the cocycle
condition on natural transformations follows from the functoriality condition
given in Definition 2.3.1.

To show that the map (2.1) is bijective, we will construct an inverse. Let
F:X—=Y

be a morphism of stacks. Let Z € X be a point, and let (Vm,Hw,pm) be a
uniformizing system at . We assume that V, is simply connected. We can
assume that the restriction of F' to [V,/H,] take values in a global quotient
stack [U/G]. So, we have

F,: [Vz/H,) — [U/G].

The following object
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has group of automorphisms H,, where the horizontal map V. x Hy, — V.,
is given by (£, k) > k(&) and the vertical map is the projection. Indeed, for
any h € H, the following diagram is cartesian

V. x H, — V, x H,

! |

V:n — Va:

where the vertical arrows are projections, the lower horizontal is £ = h(¢)
and the upper horizontal (£,k) — (h(€),k - h™'). So we get a group homo-
morphism fy, : H; — G. Now notice that we have a morphism Ve, = [U/G]
which is the composition of V, — [V/H,] with Fy. This correspond to the
following diagram

Q — U
l (2.3)

where @ — V. is a principal G-bundle and Q — U is G-equivariant. But
since V, is simply connected, @ — V. has a section s. So, if we define
= fos, we get a map fi ¢ V. — U. Let h € H,. If we see h as an
automorphism of (2.2), then Fy(h) is an automorphism of (2.3). It follows
that ff/ oh= fH(h) o ff/.
So, we have costructed a map Mor(Stacks) (X, ) — Mor(Orb) ([X], [Y]).
We now show that it is an inverse of (2.1). Consider an object in [V,/H,](B).
Let it be described by the data {hy,, ax} with respect to the covering

{Bi}rex- Let us denote the image of this object under Fy by {9im;, Br}-
Then we have the following commutative diagram

B, - v, 2, @

| ! !

By — [Vo/Hs] —= [0/G).

This shows that S = fi o ax. Now, for any [,m € K, the equation o; =
hymoQ, means that Ay, is a morphism between two objects over the same base
By,. Then, if we apply the functor F, we have that Fy(him) is a morphism
between the corresponding objects. This shows that gim = fr, (him)- O
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2.4 Orbifold vector bundles

We shall now review the definition of orbifold vector bundles. We will follow
the definition given in [43]. Then, following [53], we will review the construc-
tion of the orbifold tangent bundle. The orbifold cotangent bundle and its
exterior powers are constracted in the same way. Then we review the no-
tion of differential form and also of the de Rham cohomology for orbifolds.
Finally we recall a Theorem, due to Satake, which state that the de Rham
cohomology of [Y] is isomorphic to the singular cohomology of the underlying
topological space.

Definition 2.4.1. Let [Y] be an orbifold and let U be the mazimal atlas. A
smooth orbifold vector bundle [E] on [Y] is given by:

1. for any uniformizing system (U,G,x) €U a (ordinary) vector bundle
Ez onU;

2. for each embedding (p,)) : (U,G,x) — (U',G',X') an isomorphism
E(p,A) : Eg — ¢*Eg, moreover we require that these isomorphisms
are functorial in (o, A).

Let [E] be an orbifold vector bundle on [Y]. A section [s] of [E] is given
by a (ordinary) section si of Eg, for any uniformizing system (U,G,x) € U,
such that, for each embedding (o, \) : (U,G,x) — (U, G", %),

B(p, N)(s5) = 5.

Remark 2.4.2. To define an orbifold vector bundle [E] on [Y] (up to iso-
morphism), it is enough to specify the bundles Ej and vector bundle maps
E(¢p, A) for all uniformizing systems (U, G, x) in some atlas with the property
that the images U = x(U) C Y form a basis for the topology on Y. This is
Remark 1, in Section 2, [43].

Remark 2.4.3. Let [E] be an orbifold vector bundle on [Y], and let (U, G, x)
be a uniformizing system. Then each g € G defines an embedding (g, Ad,) :
(U,G,x) = (U, G, x), where Ady: G — G isgiven by ¢’ + go g og~t. So,
we have an isomorphism

E(g,Ad,) : E5 — g Ejp.

This defines an action of G on Ej. Thus we see that Ej is a G-equivariant
vector bundle on U.




26 CHAPTER 2. ORBIFOLDS

Example 2.4.4 (Orbifold tangent and cotangent bundle). Let [Y] be a
smooth orbifold, and let 2/ be the maximal compatible atlas. The orbifold
tangent bundle of [Y] is the orbifold vector bundle Tjy] defined as follows:

1. (Tiy))g = Ty is the tangent bundle of U, for any uniformizing system
(U,G,x);

9. for any embedding (¢, \) : (U, G, x) — (U, G, %), Ti(p, A) = T is
the tangent morphism of ¢.

In the same way we define the orbifold cotangent bundle T[\{(} Then we
can form the p-th exterior product /\pT[\{,].

Definition 2.4.5. Let [Y] be a smooth orbifold. A differential p-form on
[Y] is a section of NPTy,
The space of differential p-forms over [Y] will be denoted by Q{’Y].

We can define the exterior differential d : Q’["Y] — Qf;,“]l and the wedge
product on differential forms (see [53], Section 3, for more details). So, we
define the p-th de Rham cohomology group of [Y] in the usual way:

[ _Ker(d:Ql["Y]—>Q‘[’#)
(Y] R) = R
Im(d : n [Y])

The following result holds, see [53] Theorem 1, [37] pag. 78.

Theorem 2.4.6. For any p > 0, there is a natural isomorphism between the
p-th singular cohomology group HP(Y,R) of the topological space Y and the
p-th de Rham cohomology group Hip([Y],R) of the orbifold [Y]. Moreover,
under this isomorphism the exterior product in ny] corresponds to the cup
product in HP(Y,R).

We can define connections on orbifold bundles. For an orbifold vector
bundle with a linear connection we have characteristic forms by Weil homo-
morphism. The cohomology class of a characteristic form is independent of
the choice of the connection. So we have Euler classes for oriented orbifold
vector bundles, Chern classes for complex orbifold vector bundles, and Pon-
trjagin classes for real orbifold vector bundles. Moreover one can see that
these characteristic classes are defined over the rational numbers.
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Integration over compact orbifolds is defined as follows. First of all, as-
sume that [Y] = [V/G] is a global quotient orbifold. Let w be a differential
p-form on [Y]. By definition, w is a G-equivariant p-form @ on V. Then the
integration of w on [Y7] is defined by

J/norb e _;E_ J/° .
Y] . |(;l v ’

where |G| is the order of the group G. We use the convention such that,
if the degree of the differential form is different from the dimension of the
manifold, then the integral is zero.

Let [Y] be a compact orbifold. Fix a C* partition of unity {p;} subordi-
nated to the covering {U;}, where each U; is an uniformized open set in Y.
For any p-form w on [Y], the integration of w over [Y] is defined by

orb orb
W= J/f Pi * WU,
/[Y] ; (U]

where [U;] has the global quotient structure. This definition is independent
of the choice of the partition of unity ([53], Section 8).

The following Theorem holds, which is a form of Poincaré Theorem for
orbifolds, see also [53], Theorem 3.

Theorem 2.4.7. The bilinear form
HR(VLR) x  Hig?(Y)E) — R

orb
(w,n) /[Y} wAn

is non degenerate.

We now recall the definition of complex orbifold vector bundle and of
holomorphic section over a complex orbifold.

Definition 2.4.8. Let [Y] be a complex orbifold and let U be the mazimal
atlas. A complex orbifold vector bundle [E] on [Y] is given by:

1. an ordinary complez vector bundle Eg on U, for any uniformizing sys-
tem (U,G,x) € U;

2. an isomorphism E(p, \) : Eg — ¢*Eg of complex vector bundles, for
any embedding (¢, A) : (U,G,x) = (U, G, x') such that these isomor-
phisms are functorial in (p, \).
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Let [E) be an orbifold vector bundle on [Y]. A holomorphic section [s]
of | E] is given by a ordinary holomorphic section si of Ey, for any uniformiz-
ing system (U, G, x) € U, such that, for each embedding (i, \) : (U,G, x) —
U, G x),

E((p, >‘) (SU) = Sg-



Chapter 3

Orbifold cohomology

The notion of orbifold cohomology ring was introduced by Chen and Ruan
for an almost complex orbifold [16]. This has been extended by Fantechi
and Géttsche to a noncommutative ring [28], in the case where the orbifold
is a global quotient. Abramovich, Graber and Vistoli gave the definition of
orbifold cohomology ring in the algebraic case, that is for a smooth Deligne-
Mumford stack [2].

This chapter can be divided in two parts. In the first part, Sections 1,2,3,
we review the definition of orbifold cohomology ring for a complex orbifold.
We follow closely the paper [16]. In the second part, Section 4 we state the
cohomological crepant resolution conjecture given by Ruan [52]. The aim of
this paper is to verify this conjecture for a certain class of orbifolds which
will be defined in the next chapter.

Notation 3.0.9. In this chapter all orbifolds will be complex orbifolds. So,
morphisms will be holomorphic and orbifold vector bundles will be complex.
Furthermore, we assume that [Y] has complex dimension rmdimc = d.

We will use the same notation 2.1.15, so, for any y € Y, (U, Gy, x,) will
denote a uniformizing system at y.

3.1 Imertia orbifold

Let [Y] be an orbifold. Let us consider the set

Yi={(y,(9)y) : v €Y, (9), C Gy is a conjugacy class},

as usual we will denote by (g), the conjugacy class of g € G,,. We want to
define an orbifold [Y7] in such a way that there is a morphism [Y;] — [Y] that

29
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induces the continuous map ¥; — Y given by (v, (¢),) — y. This orbifold is
the inertia orbifold.

We introduce an equivalence relation on the set Y;. Let y € Y and let
(l’]’y,G’y,xy) be an uniformizing system at y (2.1.15). For any ¢’ € Uy =
Xy(Uy), let (Uy,,Gy,Xy) be a uniformizing system at ' such that Uy C
U,. Then we have an embedding (¢, A) : Uy, Gy, Xy) — Ty, Gy, Xy)- By
Remark 2.1.9, X : Gy — Gy is injective, so, for any conjugacy class (g')y C
Gy, we can associate the conjugacy class of A(g") in Gy, ie. (A(g))y C
G,. Notice that, the class (A(¢'))y C Gy does not depend on the chosen
embedding (Proposition 2.1.7). In this situation, we say that (', (¢')y) is
equivalent to (y, (A(g'))y). This generate the claimed equivalence relation on
Y.

Notation 3.1.1. We will denote by T the set of equivalence classes of Y;
just described. Elements of T' will be denoted by (g). For any (g) € T, the
equivalence class (g) will be denoted by Y(y). The class of (y, (1),) € Y1 will
be denoted by (1), so Y1) =Y.

Lemma 3.1.2 ( [16] Lemma 3.1.1). For any (g9) € T, the set Y{y) has a
topology and an orbifold structure [Y(y] which is given as follows: for any
point (y, (9)y) € Y1) (g), an uniformizing system at (y, (g)y) s given by

U,C(9), xy ),

where g s a representative of (g)y, D’g is the fized-point set of g in U, C(g) C
G, 1is the centralizer of g in Gy and Xy | denotes the restriction of xy to (75 .
There is an orbifold morphism

()] : Vo)) = [Y]
which locally is given by the inclusion (75 — f]y and the group injection
C(g) — Gy.

The orbifold structure [Y1] is defined to be the disjoint union of [Y(g)], as
(g) varies in T, so that

M= || Mol
(9)eT
There is a morphism [r] : [Y1] = [Y] defined by requiring that its restriction

to [Y(g)] WS [W(g)].
Moreover, if [Y] is a complez orbifold, so is [Y1] and [x] : [Y1] — [Y] is
holomorphic.
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Definition 3.1.3. Let [Y] be an orbifold. The inertia orbifold of [Y] is
the orbifold [Y1] descrbed in Proposition 3.1.2.

For any (g) € T, (g9) # (1), the orbifold [Yiy)] is called a twisted sector.
On the other hand the orbifold [Y(1)] is the nontwisted sector.

Proposition 3.1.4. Let [Y] be an orbifold. Then, there is a morphism
[1]: 1] — Y]

which induces the map I : Yy — Y1 defined by: (v, (g)y) — (v,(g7%)y). It is
an involution, i.e. [I]o [I] = [id].

Proof. For any y € Y and an uniformizing system at vy, (ﬁy, Gy, Xy), We get
the following uniformizing system for [¥;]:

L] 08 ew,ceCl), || (o) llP)

(g)yCGy (g)yCGy

with the property that, if g represent (g),, then g~* represent (¢7*),. Then,
the restriction of [I] to this uniformizing system is given by

vs — U, T—1Z
Clg) — G(g™Y), hwh

3.2 Orbifold cohomology group

As vector space, H},([Y]) is the cohomology of the inertia orbifold [V;]. The
grading takes the degree shifting of the elements of the local groups into

account.

We review now the definition of degree shifting. Let y € Y be any point
and let (l'jy, Gy, Xy) be a uniformizing system at y (Definition 2.1.14). The
origin 0 of U, is fixed by the action of G, so we have an action of G, on the
tangent space of U at 0. We represent this action by a group homomorphlsm
R, : G, — GL(d, (C) where d = dim¢Y. For every g € G, R,(g) can be
Written as a diagonal matrix ([55], Chapter 2, Proposition 3):

Ry (g) = diag (exp(2mim; g/my,), ..., exp(27img g /my)) ,
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where m, is the order of Ry(g), and 0 < m;, < m, is an integer. Since
this matrix depends only on the conjugacy class (g), of g € G, we define a
function ¢ : Y1 — Q by

d

Wy, (9)y) = 3 28

m
i=1 9

Lemma 3.2.1. For any (g) € T (see Notation 3.1.1), the function ¢ : Yy —
Q s constant on each connected components.

Proof. From the definition of Y{; (see Lemma 77), it follows that it is
enough to prove the following statement. Let (y, (9)y), (%', (9')y) € Y(g) such
that there exists an embedding (¢, }) : (Uy/le:, Xy) = (Uy, Gy, xy) which
sends the origin 0, € Uy to the origin 0, € Uy, then «(y, (9)y) = ¢(/', (9')y)-

This follows from the fact that ¢ is A-equivariant, so the tangent map
Ty : T 0,/ (7y/ — T, Uy is a morphism of representations. O

Definition 3.2.2. For any (g9) € T, the degree shifting number of (g) is
the locally constant function

Ly, (9)y) : Y = Q

If Yy is connected, we identify u(y, (g)y) with its value, and we will denote
it also by t(y)-

Remark 3.2.3. In the literature, the degree shifting number is also called
the age.

Remark 3.2.4. Note that, for any (y, (9)y) € Y{g), exp(2mic(y, (g)y)) is the
eigenvalue of the linear map

detRy (g) : AdC? — AICH

Definition 3.2.5. For any integer p, the degree p orbifold cohomology
group of [Y], H? . ([Y]), is defined as follows

orb
HE L ([V]) = EB(Q)ETHP_2L(9) Yig)

where H*(Y(y)) is the singular cohomology of Y(g) with complex coefficients.
The total orbifold cohomology group of [Y] is

oro([Y]) = @pHpy ([Y])-
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Remark 3.2.6. Note that H},([Y]) is a priori rationally graded. It is inte-

orb

grally graded if and only if all the degree shifting numbers are half-integers.

Remark 3.2.7. From Remark 3.2.4 it follows that the degree shiftings are
integers if and only if the induced action of G, on /\dToy (701, is trivial. This
means that the canonical sheaf of the singular variety Y is locally free which
imply (and indeed is equivalent to say) that Y is Gorenstein, see Definition
3.4.3.

Remark 3.2.8. The orbifold cohomology group H},([Y]) = &,H? ,([Y])
can be splitted into even and odd parts, [28] Definition 1.8. By definition

Hgp* ([Y]) = @)er H (Yy)),

and analogously for the odd part. In general this decomposition is not related
with the even/odd decomposition given by the orbifold cohomology grading.
On the other hand, for Gorenstein orbifolds, the two gradings coincides.

On the vector space H},([Y]) there is a complex valued pairing (, )ors
which we will call the Poincaré duality.

Definition 3.2.9. Let [I] : [Y1] — [Y1] be the holomorphic morphism defined
in Proposition 8.1.4. Then [I] sends [Y{y)] to [Y(y-1)]. The Poincaré duality
pairing is the following pairing

(ors : HY W ([Y]) x HAP([Y]) = €, for 0 < p < 2n,

orb

defined as the direct sum of
(Yo s P20 (Yg)) x HP 6 (V) = C,

where

orb
@B%= [ a1,

[Y(g)]

We recall here Proposition 3.3.1 of [16].

Proposition 3.2.10. The Poincaré duality pairing is nondegenerate.
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3.3 Orbifold cup product

In this section we review the definition of orbifold cup product. It is an
associative product on the total orbifold cohomology group, the resulting
ring is the orbifold cohomology ring.

For any positive integer k, consider the following set

Vi={(y,(9)y): ¥y€Y, g= (91, 9x), 9 € Gy},

where (g)y is the conjugacy class of g. Here, two k-tuples (ggl), - g,(cl)) and
(g§2), - g,(f)) are conjugate if there exists g € G, such that g@ =g- g(l) g7t

foralli=1,..., k.

We can define an equivalence relation on the set Y as we did for Y7, see
Notation 3.1.1. The resulting set of equivalence classes will be denoted by
Ty.

Lemma 3.3.1 ([16] Lemma 4.1.1). For any (g) € Ty, let (Y)() be the cor-
responding equivalence class of Yy. Then, there is a topology and an orbifold
structure [(Yi)(g)] over (Yi)(g) such that, for any point (y, (9)y) € (Yi)(g), an
uniformizing system at (y, (g)y) is given by

(07, C(9), % D),

where g = (g1, .-, ) 15 a representative of (9)y» U = [751 a..N Zj'gk’ and
C(g) = C’(gl) Nn..N C(gk,)
We obtain an orbifold structure [Yy] defined as follows:

[Yi] = U Yol

(9)€T%
For any i =1,...,k, we have morphisms
le:] : [Yi] = [Y1]

that locally are given by: the topological inclusions Uyg — Ij’g*’ and the group
injections C(g) — C(gs)-

Moreover, if [Y] is a complez orbifold, so is [Yy] and each [ej] : [Yz] — [V1]
is holomorphic.
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Definition 3.3.2. Let [Y] be an orbifold. For any positive integer k, the
k-multisector of [Y] is the orbifold [Yy] constructed in Lemma 3.5.1.

Consider the map o : Ty — T induced by (g1, ..., %) > g1 - ... - gx- The
set Tp = 07'(1) is the subset of T consisting of equivalence classes (g) such
that g = (g1, ..., gx) satisfies the condition g - ... - gp = 1.

Notation 3.3.3. We will denote by Y, the set

Yy = |_| ’

(9ETRY )

and similarly, by [Y}?] the orbifold

vel= | Mgl

(9eTy

The definition of the orbifold cup product requires the construction of an
obstruction bundle [E(g)] over each component [Y(,)] of [Yy’]. We now review
the definition of [E(y].

Let ¥(4) be a component of Y2, (y, (g),) € Y{y) be a point and (Uy, C(9), Xy |
) be a uniformizing system of [Y{y] at (y, (g)).

If g = (g1, 92,93) is a representative of (g),, then g1 - g2 - g5 = 1. So we
have a morphism -

7T1(52_{051700}) - Gy
Vi v Gi

Here, S? is the unit sphere in R?, so m;(S? — {0,1,00}) is the free group
generated by three elements i, y2, v3 with the unique relation v, -y, -3 = 1.
Geometrically, we can represent 7,7, and 73 as loops around 0,1 and oo
respectively.

There is a compact Riemann surface ¥ and a projection 7 : ¥ — S? which
is a Galois covering, with Galois group the subgroup G of G, generated by
91, g2, gs, branched over 0,1, 00, see [28] Appendix. In particular, the group
G acts on the vector space H'(X, Ox).

Then we define a vector bundle over Uy as follows:

~\G
(Bg)os = (H'(Z,05) @ (T3, | TF) (3.)
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where ()¢ means the G-invariant part. Note that H*(%, Os) ® (T3,) | Uy is
a G-bundle, so (E(g))[jyg is a vector bundle. See [28], page 201, for further
details.

Let (9,1) : (U%,C(q), %y ) = (05 C(g), xy |) be an embedding com-
patible with {Y@] Then we can suppose that it is induced by an embedding

(0, A) : (Uy, Gy xy) = Uy, Gy Xy) compatlble with [Y]. Then, if G' denote
the subgroup of G, generated by g', A induces an isomorphism G'" — G,
where G is the subgroup of Gy generated by g- This induces an isomorphism
Y’ — X which is compatible with the group actions, where &' — S? is the
Galois covering associated to g'. So, we obtain an isomorphism

(E(g)) ' V(B g))f]ﬁ—' (3-2)

We have the following result.

Proposition 3.3.4 ([16] ). The vector bundles given by (8.1), for any uni-
formizing system, and the isomorphisms (3.2) associated to any embedding

of local uniformizing systems compatible with [Y(g)], satisfies the conditions
of Definition 2.4.1. So these data defines an orbifold vector bundle on [Y7].

Definition 3.3.5. The obstruction bundle for the orbifold cohomology of
[Y] is the orbifold vector bundle defined in Proposition 3. 3.4.

Notation 3.3.6. We will denote the obstruction bundle for the orbifold
cohomology of [Y] by [E]. The restriction of [E] to the component [Y{y)], for
any (g) € T5, will be denoted by [E(y)].

Definition 3.3.7. Let [Y] be a complex orbifold such thatY is compact. For
o, B,y € H:,([Y]), the 3-point function is defined as follows

(C\! IB '7 orb = Z / 61 O{/\ e2 6/\ [63] ’YACtap([E(g)])

(g ETO Y(Q)

where [e;] : [Yig] = V1], for i = 1,2,3, is the morphism defined in Lemma
3.3.1.
The orbifold cup product of [Y] is the product on H},([Y])

Uorb H;Tb([Y]) x orb([Y]) — :rb([Y])
(a,ﬂ) — anrbﬁ
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where o Uy B 18 defined by the following relation

(@ Uors B, Vore = (@, B,%)ors  for any v € H},([Y]).

Remark 3.3.8. The orbifold cup product can be defined also for an almost
complez orbifold that is not compact. We will not recall the definition in this
general case, it can be found in [16], Definition 4.1.2.

We will report in the following Theorem the most important properties
of the orbifold cup product. This is the main result of the paper [16], see
Theorem 4.1.5. Even if the Theorem holds for almost complex orbifolds
which are not necessarily compact, we will present the result under stronger
assumptions.

Theorem 3.3.9. Let [Y] be a complex orbifold such that the underlying
topological space Y is compact. Assume that [Y]| has complez dimension
dimc[Y] =d. The orbifold cup product preserves the orbifold grading, i.e.

Uars = Hyy([Y]) % Hoy([Y]) = Hi ' (YD),

orb
for any 0 < p,q < 2d such that p+ q < 2d, and has the following properties.

Associativity. The orbifold cup product is associative and has a unity e[y]-
Moreover, ey) € H),([Y]) = H°(Y) and it coincides with the unity of
the usual cup product of Y.

Poincar¢ duality. For any (a, 8) € H”,([Y]) x HXP([Y]), with 0 < p < 2d,
we have

orb
‘/[ a Uprp /8 = <057 6>orb-

Y]

Deformation invariance. The orbifold cup product U,y is invariant under de-
formations of the complex structure of [Y].

Supercommutativity. If [Y] is Gorenstein, the total orbifold cohomology is
integrally graded, and we have supercommutativity

a Uprp 16 = (_1)deg odeg ﬂﬂ Uorp €.

Compatibility with the usual cup product. The restriction of U,y to the co-
homology of the nontwisted sector, i.e. H*(Y'), is equal to the usual cup
product of Y.




38 CHAPTER 3. ORBIFOLD COHOMOLOGY

3.4 Ruan’s conjecture

In this section we recall the statement of the cohomological crepant resolution
conjecture, given by Ruan in [52]. The conjecture give a precise relation
between the orbifold cohomology ring of a complex orbifold [Y] and the
cohomology ring of a crepant resolution of singularities of ¥, when such a
resolution exists.

Notation 3.4.1. In this section Y will be a complex algebraic variety. For
an orbifold [Y], we mean a complex orbifold structure over the topological
space Y, where Y has the strong (or complex) topology, see [45] Chapter I,
Section 10.

3.4.1 Crepant resolutions

We first recall the definition of Gorenstein variety, Gorenstein orbifold, and
crepant resolution. For more details see [49] and [50].

Notation 3.4.2. For any normal variety Y, we will denote by ¥, the smooth
locus of Y and by [ : Yy — Y the inclusion. Then Ky will denote the sheaf
l,Ky,, where Ky, is the canonical sheaf of ¥;.

Definition 3.4.3. Y is Gorenstein if it is Cohen-Macaulay and Ky 1s
locally free.

A Gorenstein orbifold is a complex orbifold structure [Y] over a Goren-
stein variety Y.

Definition 3.4.4. Let Y be a Gorenstein variety. A resolution of singulari-
ties p: Z — Y is crepant if p*(Ky) = Kz.

Remark 3.4.5. Crepant resolution of Gorenstein varieties with quotient
singularities are known to exists in dimension d = 2, 3.

In dimension d = 2 the following stronger result hold, ([5], Chapter III,
Theorem 6.2).

Theorem 3.4.6. Every normal surface Y admits a unique crepant resolution
of singularities.

In dimension d = 3 the existence of a crepant resolution is proven in [51],
Main Theorem, pag. 493. However, in this case, the uniqueness result does
not hold.

In dimension d > 4 crepant resolution exists only in rather special cases.
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Example 3.4.7. (Hilbert scheme of points on surfaces). An important class
of examples for which a crepant resolution always exists, is the symmetric
product of a compact complex surface S.

Let S be a compact complex surface. The r-th symmetric product of S
is the quotient of S x ... X S, r-times, by the symmetric group &, acting
by permutation. We will denote this quotient by S(). Note that S is
a variety of dimension 2r with quotient singularities. Now, let SI) be the
Hilbert scheme parametrizing r-points in S. Then, there is a morphism
p: Sl — S which is a crepant resolution. See [7], Section 6, for a review.

Example 3.4.8. (Symplectic quotient singularities). Let V be a finite di-
mensional complex vector space equipped with a non degenerate symplectic
form. Let G C Sp(V) be a finite subgroup of the group Sp(V) of symplec-
tic automorphisms. The quotient V/G has a natural structure of irreducible
affine algebraic variety with coordinate ring C[V/G] = C[V'|¢, the subalgebra
of G-invariants polynomials on V. Moreover the variety V/G is Gorenstein
([8], Proposition 2.4).

There are strong necessary conditions on G in order for V/G to have a
crepant resolution ([58], Theorem 1.2). Moreover there are examples of G
that does not match these conditions, [32] Theorem 1.1.

3.4.2 Quantum corrections

We review the definition of quantum corrected cohomology ring given by Ruan
in [52].

Notation 3.4.9. In this section Y will be a Gorenstein projective algebraic
variety. So, for any crepant resolution p : Z — Y, Z will be a nonsingular
projective algebraic variety.

Let [Y] be a Gorenstein orbifold and let p : Z — Y be a crepant resolution.
Consider the group homomorphism

pe s Hy(2,Q) — Ha(Y, Q) (3.3)

induced by p. Choose a base fi, ..., B, of Ker p, C Hs(Z,Q) which consists
of elements that belong to the image of the morphism H»(Z,Z)/torsion —
Hy(Z,Q) which is induced by the group morphism Z — Q. We will call
B1, .-, B an integral base of Ker p,. Then, the homology class of any effective
curve that is contracted by p can be written in a unique way asI' = ), a8,
for a; > 0.
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For each ;, we assign a formal variable g;. Then I' corresponds to g;* - -+
g®~. Define the quantum corrected 3-point function as

<’Yla Y2, 73>qc(q1) sy QH) = Z \I!IZ‘ (r)/la Y2, 73)(]?1 T qzna (34)

a1,...,an >0

where 71,72, 73 € H*(Z) are cohomology classes, I' = ;" | a;5;, and UZ(y1, Y2, 73)
is the genus zero Gromov-Witten invariant.

Notation 3.4.10. We assume that the quantum corrected 3-point function is
represented by an analytic function in the variables gy, ..., ¢, in some region of
the complex space C". We will denote this function by (1,72, V3)qc(q1, > Gn)-
In the following, when we valuate this function on particular values of the
¢;’s, we will implicitly understand that the analytic function is defined on
such values.

We now define a family of rings H;(Z)(q1, -, ¢x) depending on the pa-
rameters qi, ..., gn, Where qi, ..., g, belong to the domain of definition of the
quantum corrected 3-point function.

Definition 3.4.11. The quantum corrected triple intersection (1, Y2, V3)qc(q1, - @n)
is defined as follows

<71772’73>p(Q17 7Qn) = <’Yl>’72773> + <717 Y2, 73>qc(q15 "'7Qﬂ)7

where {1, Y2, V3) = fz v Uy Uvs. The quantum corrected cup product
11 *, 2 s defined by the equation

(’)’1 *p 72:7) = (’Yla’Yz,’)’)p(Qh ---7Qn)

for arbitrary v € H*(Z), where (71,72) == [, 71U 2.

Remark 3.4.12. Note that the quantum corrected cup product is a family of
products on H*(Z) depending on the parameters qi, ..., ¢,. These parameters
belong to the domain of definition of the quantum corrected 3-point function

(71) Y2, 73>qc(q17 seey Qn)

Remark 3.4.13. Our definition of quantum corrected triple intersection
and of quantum corrected cup product is slightely general from that given
by Ruan in [52]. We can recover the definition given by Ruan by giving to
the parameters the value q; = ... = g, = —1, provided that this point belongs
to the domain of the quantum corrected 3-point function.
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Theorem 3.4.14. For any (q1, ..., ¢n) belonging to the domain of the quantum
corrected 3-point function, the quantum corrected cup product *, satisfies the
following properties.

Associativity. It is an associative product on H*(Z), moreover it has an
wdentity which coincides with the identity of the usual cup product of Z.

Supercommutativity. It is supercommutative, that is

M kp Y2 = (—1)08 B My, kg
for any v,y € H*(Z).

Homogeneity. For any v1,72 € H*(Z), the following equality holds
deg (71 %, 72) = deg 71 + deg 7s.

For any (qu, ..., qn) as before, the resulting ring structure on H*(Z) given by
*p, will be denoted by H;(Z)(q1, - n)-

Proof. Notice that the definition of the quantum corrected cup product,
*,, 1s analogous to the definition of the small quantum product for a smooth
projective algebraic variety Z, as given for example in [19], Definition 8.1.1.
(see also [19], Proposition 8.1.6.). The only difference is in the set where
the effective curves belongs. Indeed, for the small quantum product, the
quantum corrected 3-point function is defined as a sum over all the effective
curves in Z. In our definition, we take into account only effective curves that
are contracted by p.

Let B C Hy(Z,Z)/tor be the set of homology classes f of effective curves
in Z such that p.(8) = 0, where p, is defined in (3.3). Then, from Lemma
3.4.15 below it follows that the proof of associativity and supercommutativity
is the same proof of Theorem 8.1.4. in [19] with H,(Z,Z) replaced by B.

To prove the homogeneity property, notice that, for any f € B, the

following equality holds
/ &1 (Kz) = 0.
B

Then, apply Proposition 8.1.5., [19]. O

Lemma 3.4.15. Let B C Hy(Z,Z)/tor be the set of homology classes 8 of
effective curves in Z such that p.(B8) = 0, where p, is defined in (3.8). Then
B satisfies the following properties:

e B is a semigroup under addition and contains the zero of Hy(Z,7)/tor;
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o forany B € B, if B = a1+as with o1, 00 € Ho(Z,Z)/tor, then oy, 0z €
B.

Proof. The first condition is clear. So, we prove the second.
Let 8= oy + o € B, with a1, an € Ho(Z,Z)/tor. Then

0= pu(B) = pu(ca) + ps(a2)-

But, p.(c;) and p.(a2) are homology classes of effective curves in Y, and
since Y is assumed to be projective (Notation 3.4.9), p, (o) = p.(c2) = 0.

To see this, take any very ample line bundle L on Y. Then fp*(ai) c1(L)
0 for any ¢ = 1,2. Since [, g ci(L) = 0, it follows that Jostanyar(L) =
S ey CL(L) = 0. This implies that ps(a1) = pu(ag) = 0. O

Y

3.4.3 The conjecture

We review the statement of the cohomological crepant resolution conjecture.
We use the same notations of the previous section.

The quantum corrected cohomology ring of Z is the ring obtained from
H*(Z)(q1, .-, @) by giving to the variables g1, ...,gn the same value —1. It
will be denoted by H;(Z), so

H:(Z) = H*(Z) (=1, ., ~1).

Conjecture 3.4.16 (Ruan, [52]). The rings H}(Z) and H,([Y]) are iso-
morphic.

Remark 3.4.17. The conjecture has been proved in the following cases:

1. for Y = S® be the symmetric product of a compact complex surface
S, and Z = S be the Hilbert scheme of two points in S, in [38];

2. for Y = S be the symmetric product of a complex projective surface
S with trivial canonical bundle Kg = Og, and Z = Sl be the Hilbert
scheme of r points in S, in [28], Theorem 3.10;

3. for Y = V/G be the quotient of a symplectic vector space of finite
dimension by a finite group of symplectic automorphisms, and Z is a
crepant resolution, when it does exists, in [32], Theorem 1.2.
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Note that in cases 2 and 3, the crepant resolution Z has a holomorphic
symplectic form, so the Gromov-Witten invariants vanish and there are no
quantum corrections. This means that the orbifold cohomology ring is iso-
morphic to the ordinary cohomology ring of Z.

Remark 3.4.18. The aim of this thesis is to verify this conjecture for orb-
ifolds with transversal AD FE-singularities, see Definition 4.2.5. We will prove
the conjecture in the case of transversal A;-singularities in Chapter 7.1 and
for transversal Ay-singularities with minor modifications. Indeed, in this case,
the quantum corrected 3-point function can not be evaluated in ¢; = ¢z = —1.
However, we will show that by giving to ¢; and ¢» other values (which we
have found), the resulting ring H;(Z)(q1,¢2) is isomorphic to the orbifold
cohomology ring H?,([Y]). This is the content of Theorem 7.2.4.

orb
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Chapter 4

Orbifolds with transversal
AD E-singularities

In this Chapter we define orbifolds with transversal AD E-singularities. We
describe the inertia orbifold in terms of the monodromy, which we introduce
in Section 4. Finally, we compute the orbifold cohomology ring of orbifolds
with transversal A-singularities and trivial monodromy.

Orbifolds with transversal AD E-singularities are generalizations of orb-
ifolds associated to quotient surface singularities which are Gorenstein, also
called rational double points. So, in the first section we recall the definition
of such surface singularities and collect some properties.

4.1 Rational double points

Let G C SL(2,C) be a finite subgroup, G # {1}. The inclusion G C SL(2,C)
induces an action of G on C2. This action has 0 € C? as the only fixed point,
and is free on C?\{0}. The quotient C? /G has a structure of algebraic variety
whose ring of regular functions is C[u,v]®, the subring of the polynomial
ring Clu, v] consisting of functions which are invariants under the action of
G. Moreover, such quotient can be represented as an hypersurface R in C?
passing through the origin 0 € C?® and with 0 € C? as the only singular point
([26], Chapter 5, Section 40).

Definition 4.1.1. A rational double point is the germ of a surface sin-
gularity R C C* which can be obtained as a quotient C* /G of C? by a finite
subgroup G of SL(2,C).

Remark 4.1.2. Rational double points are Gorenstein, see Example 3.4.8.

45
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The finite subgroups of SL(2,C) can be classified in the following way.
There is a group homomorphism SL(2,C) — PGL(2,C) which is onto and
two-to-one. Then, the finite subgroups of SL(2,C) are inverse image of finite
subgroups of PGL(2,C).

By identifying the sphere S? with the complex projective line P, we can
see that the symmetry groups of the five regular polyhedra are finite sub-
groups of PGL(2,C). These groups are called the polyhedral groups. Now,
since the cube and the dodecahedron are duals respectively to the octahe-
dron and icosahedron, their symmety groups are isomorphic ([26], Chapter 2,
Section 8). So, the symmety groups of the regular polyhedra provides three
finite subgroups of PGL(2,C).

The classification of finite subgroups of PGL(2,C) is given by the follow-
ing theorem. The proof and other details can be found in [26], Chapter 2,
Section 10.

Theorem 4.1.3. Any finite subgroups of PGL(2,C) is conjugate to one of
the following subgroups: the symmetry group of the tetrahedron, Es, of order
12; the symmetry group of the octahedron, Er, of order 24; the symmelry
group of the icosahedron, Es, of order 60; the dihedral group, Dy, for n > 4,
of order 4(n — 2); the cyclic group, Ay, of order n+ 1.

To this classification of the finite subgroups of SL(2,C), corresponds a
classification of rational double points. We report now the classification of
rational double points as hypersurfaces in C* with coordinate (z,y,z). In
the left column we report the group, while in the right the equation of the
corresponding singularity.

A, zy — 2" forn>1
D,: z2+y?z+2""! forn>4
Bg: w2+y3+21 (4.1)

E;: 22+ +y2d
Eg: a?2+19y3+2°

This is proved in [26], Chapter 5, Section 39.
Remark 4.1.4. Can be proved that rational double points are the only

rational surface singulerities. For more details on this and on other charac-
terizations of rational double points, see [25].
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Remark 4.1.5. (Resolution graph). As pointed out in Remark 3.4.5, for any
rational double point R, there exists a unique crepant resolution p : R — R
([5], Chapter III, Theorem 6.2). The exceptional locus of p is union of ratio-
nal curves (4, ..., C,, with autointersection numbers equal to —2. Moreover, it
is possible to associate a graph to the collection of these curves in the follow-
ing way: there is a vertex for any irreducible component of the exceptional
locus; two vertices are joined by an edge if and only if the corresponding
components have non zero intersection. The list of the graphs obtained by
resolving rational double points is given in [25], Table 1, and in [5], Chap-
ter 111, Proposition 3.6. Each of this graph is called resolution graph of the
corresponding rational double point.

Remark 4.1.6. (McKay correspondence). McKay observed that the resolu-
tion graph of a rational double point can be recovered from the representation
theory of the corresponding subgroup G C SL(2,C) [41], see also [20].

Let G € SL(2,C) be a finite subgroup and @ = C? be the representation
induced by the inclusion G C SL(2,C). Let po,..., p be the irreducible
representations of G, with py being the trivial one. Then, forany j =1, ...,m
we can decompose () ® p; as follows

Q® pj = ®L0i05, aij = dimgHomg(pi, Q ® py).

The McKay graph of G C SL(2,C) is the graph with one vertex for any
irreducible representation, two vertices are joined by a;; arrows. This graph
is denoted by I'g.

The following theorem holds, [41], see also [20] Theorem 1.19.

Theorem 4.1.7. The McKay graph T is an estended Dynkin graph of ADE
type. Moreover the subgraph I'g consisting of nontrivial representations is the
resolution graph of the corresponding rational double point.

4.2 Definition

Convention 4.2.1. All the varieties are dfined over the field C of complex
numbers. By an open subset of a variety we mean open in the strong topology,
[45], Chapter I, Section 10. We will specify when we use a Zariski-open
subset.

Notation 4.2.2. From now on, R will denote a surface in C* defined by one
of the equations (4.1), i.e. a surface with a rational double point at the origin
0 € C*. The crepant resolution of R will be denoted by R.
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Let Y be a projective variety over C. We say that Y has transversal
ADE-singularities if the singular locus S of Y is connected, smooth, and the
couple (S,Y) is locally isomorphic to (C* x {0},C* x R).

Remark 4.2.3. Let Y be a 3-fold with canonical singularities. Then, with
the exception of at most a finite number of points, every point in ¥ has
an open neighbourhood which is nonsingular or isomorphic to C x R, [49],
Corollary 1.14.

The following Proposition is a particular case of the fact that every com-
plex variety with quotient singularities has a unique reduced orbifold struc-
ture, [56], Theorem 1.3.

Proposition 4.2.4. Let Y be a variety with transversal ADE-singularities.
Then there is a unique reduced complex holomorphic orbifold structure [Y]
onY.

Proof. The surface R is isomorphic to the quotient of C? by the action of a
finite subgroup G of SL(2,C).

For each point y € Y, ify € ¥ — S, we can take U, = U, = C**? and
G, = {1}, otherwise y has a uniformized neighbourhood U, = C* x R with
uniformizing system (0y > CF x C?,Gy = G, xy), where Gy acts trivially on
the first factor of C* x C?, while the action on the second factor is induced
by the inclusion G, C SL(2,C). Then one can see that these charts patch
together to give an orbifold structure [Y] over Y.

The uniqueness of the orbifold structure follows from [56], Theorem 1.3.

O

Definition 4.2.5. An orbifold with transversal ADE-singularities is
the reduced orbifold [Y] associated to a variety Y with transversal ADE-
singularities.

Remark 4.2.6. An orbifold with transversal AD FE-singularities is Goren-
stein. This follows from the fact that rational double points are Gorenstein.

4.3 Inertia orbifold and monodromy

We describe the inertia orbifold for orbifolds with transversal AD E-singularities.
We will use the same notation introduced in Section 1 of Chapter 3, in par-
tucular Notation 3.1.1.
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Notation 4.3.1. By a topological covering we mean a covering space as
defined in [41], Chapter 5, Section 2, with the difference that we don’t require
the connectedness.

Let p: X — X be a topological covering. For any point z € X, the
fundamental group m (X, z) of X in z acts on the fiber p~*(z), as defined
in [41], Chapter 5, Section 7. We will call this action the monodromy of the
coevring.

Proposition 4.3.2. Let [Y] be an orbifold with transversal ADE-singularities,
and let

Y= |__| Yig).
(9)ET(9)#(1)
Then, the restriction of 7 :Y; =Y to Y; is a topological covering
7Y =5,

moreover, the connected components of Y; are the sets Y-
For any y € S, the fundamental group m1(S,y) of S at y acts on the fiber
7 (y), and the map from the quotient set 71 (y)/m1(S,y) to T defined as:

T Hy)/m(S,y) = T
@y = (¥, (9)y)]

is a bijection, where T is as in Notation 3.1.1. Where (g), is a conjugacy
class of Gy and [(y, (9)y)] is the equivalence class of (y, (g),) in T.

Proof. The proposition follows easily from the definition of ¥; and the fact
that Y has transversal AD E-singularities. g

Notation 4.3.3. For any y € S, the fiber 771(y) is the set of conjugacy
classes of the local group G,. We will denote it by T,,.

For later use, we describe the monodromy of 7 : ¥; — S explicitly.

Proposition 4.3.4. Let [Y] be an orbifold with transversal AD E-singualarities.
Then the orbifold structure [Y] determines a group homomorphism from the
fundamental group of S in y, m(S,y), to the automorphism group of T,
Aut(T,). Let us denote such homomorphism by

my, (S, y) = Aut(T,).
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Moreover, if y1 € S is another point, for any continuous curvey in .S from
y to yi, we get isomorphisms m, 1 w1 (S, y) = m1(S, 1) and Ay Aut(Ty) —
Aut(T,,) such that the following diagram commutes

m(S,y) —— Aut(T,)
ml lA” (4.2)
(S, y1) —2 Aut(T,,).

Proof. Let y € S be a fixed point of S, let (U, Gy, xy) be a uniformizing
system at y, and let U, = Xy (T,).-

For any y' € U, N S such that Uy C Uy, there is an embedding (o, A) :
Uy, Gy Xyr) — (U,, Gy, Xy)- Moreover X : Gy — Gy is an isomorphism.
So, using A, we get a bijective correspondence T,y — T, given by (g), —

y
(A(g))y, where (g); € Ty and g is a representative of (g)!. But if (¢, p) :

y

Uy, Gyy Xay) — (U,, Gy, Xy) is another embedding, then p = g- A- gl
for some g € Gy, Remark 2.1.7. So the correspondence T,y — T, does not
depends on the chosen embedding.

Let [a] € m1(S,y) be a class of a loop a based on y. Choose a finite
number of points ¥ = Yo, Y1, ---, Yk, Ye+1 = ¥ in « such that the sets Uy, form
a cover of . The previous argument gives bijective maps Ty,,, — Ty,, for
any 1 = 0,...,k. The composition of these maps is a bijection T, — Ty
We will define m,([]) to be this bijection. Note that it depends only on the
homotopy class of . It is easy to see that this defines a group homomorphism
m,.
Let y; € S be another point. Let 7y : m1 (S, y) — m1(S, %1) be the standard
homomorphism, o] — [y~! - & - 7]. In the same way we defined my([c]), we
can define a correspondence T, : T, — Ty,. Then A, : Aut(Ty) — Aut(Ty,)

is defined by a — T,0aoT;". It is easy to see that 4.2 is commutative. O

Definition 4.3.5. Let [Y] be an orbifold with transversal AD E-singularities,
and let y € S. The monodromy of [Y] in y is the morphism

my : m1(S,y) = Aul(Ty)

constructed in Proposition 4.3.4.

Proposition 4.3.6. Let y € S be a fized point. Then the map
T /my(m(S,y) = T (43)
(9)y = [, (9)y)]
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is bijective. Where T is the set of equivalence classes defined in Notation
8.1.1, and [(y, (9)y)] € T is the equivalence class of (y, (g)y)-

Let y, € S be another point, and let v be a continuous curve from y to
y1. Then the application T, : T, — T,, defined in the proof of Proposition
4.8.4 induces a bijection

Ty/my(m1(S,y)) = Ty, /my, (m2 (S, 91)) (4.4)

which does not depend on the curve v and is such that the following diagram

commautes
T,/my(mi(S,y)) —— T

! I

Ty, /my, (m (S, 11)) —— T.

Proof. The fact that the map 4.3 is bijective follows easily from the definition
of the monodromy. The only thing to be proved is the second statement.

The map 4.4 is well defined. Indeed, let ¢, ¢’ € T, such that ¢/ = m, ()¢
for some a € m1(S,y)). Then

Y

Ty(my(@) ) = T, o0my(a) o TyH(T(0)
= myl(ﬂ-')’(a))'T‘/(c)a

in the last equality we have used the commutativity of 4.2. It doesn’t depend
on the curve . Indeed, if ¢ is another curve from y to y;, then Ty = my, (67*-
7)o T.,. (]

Remark 4.3.7. For any finite group G, the set of equivalence clesses of
irreducible representations of G modulo isomorphisms is in bijection with
the set of characters of G. Moreover the characters form a basis for the
vector space of class functions, where as usual a class function is a complex
valued function on G that is constant on each conjugacy class. So, the set of
characters of GG is bijective with the set of cnjugacy classes of G.

Remark 4.3.8. Let [Y] be an orbifold with transversal ADE-singularities,
let y € S and G, be the local group of [Y] at y. We identify each conjugacy
class (g)y of G, with its characteristic function ¢y , which is a class function.
The monodromy m, extends to an automorphism of the set of class functions
on Gy.
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Proposition 4.3.9. Under the same hypothesis of the previous Remark 4.3.8,
the set of characters of irreducible representations of Gy is invariant under
the action of the monodromy m, on the set of class functions on G,.

Moreover, under the identification of any irreducible representation with
its character, we have that the image of m, is a subgroup of the group of
automorphisms of the graph ng,.

Proof. Let (U,, Gy, X,) be a uniformizing system at y, and let U, = Xy (Uy)-
For any y' € U, N S such that Uy C U, NS, there is an embedding (¢, A) :
Uy, Gyy Xyr) — (U,, Gy, Xy)- Moreover A : Gy — Gy is an isomorphism.,
We obtain a map which sends a representation of Gy to a representation of
G, as follows. Let v: Gy — GL(V) be a linear representation of Gy, then
toA: Gy — GL(V) is a linear representation of G,

This map has the following properties: 1. is bijective; 2. the character of
to ) is the composition of the character of t with A; 3. sends isomorphic repre-
sentations of G, in isomorphic representations of G; 4. sends irreducible rep-
resentations of G, in irreducible representations of Gy; 5. is compatible with
the tensor product of two representations, that is (t; @) oA =110 A® 0 A;
6. sends the representation of G, on Nﬁfy 1,0 in the representation of G,

in Ng":y' _ . Where Nﬁyay /61,0 (resp. N.c, . ) is the fiber at the origin

yh Uyly /Uy’ ’0

0 € U, (resp. 0 € Uy) of the normal vector bundle of U in U, (vesp. of

~G,1

U," in U,. The last assertion is proved as follows. The tangent map

Tow : Ty, = To, 0

induces a linear map
N._c, . — N-a, -
Uy,yl /Uy,,O Uy Y/Uy,0

such that the following diagram commutes for any ¢’ € Gy

gl
N..G !~ '—'—"‘—) N...G ! -
g,¥ (0,0 7" Uy,

l l (4.5)

)\ !
Nogv ji,.0 = Nogv 0,0

If (¥, p) : (ﬁy:,Gy:,xyr) — (ﬁy,Gy,Xy) is anothe embedding, then p =
g-\-g~%, for some g € G,, Remark 2.1.7. So, for any representation of G,
the representations of G, obtained using A and y are isomorphic.

The previous arguments shows that we have a map from the set of iso-
morphism classes of representations of Gy, to the set of isomorphism classes of
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representations of Gy that satisfies properties 1., 2., 4., 5., 6. as before. We

will denote with n, the class of Nﬁfy 17,0 and by n, the class of Niff,y'/fly,,o'

Property 2. gives the first assertion. To show the second claim, let
T, ..., tm be the classes of irreducible representations of G, and let v,’, ..., t/
the classes of irreducible representations of G. Suppose that the correspon-
dence sends t; to . Let ny ® vy = ), azivj, and ny ® v’ = )5 ay;y'. Then
aji = ay; for all 4, 7. O

Remark 4.3.10. For G = A,, n > 1, D, n > 4, FEg, E7, Eg (see Theorem
4.1.3), the automorphism group of I'¢ is given as follows:

G Aut(I‘G)
A {1}
An n Z 2 Zz
Dy G
Dn n Z 5 Zz
Es Ly
Eq {1}
Eg {1}

where we have written on the left side the group G, and on the right Aut(T'g).

Proposition 4.3.11. Let [Y] be an orbifold with transversal singularities
of type A1, By or Eg, then, for any (g) # (1), the topological space Y4 is
isomorphic to S.

Let [Y] be an orbifold with transversal singularities of type A,, forn > 2,
or Dy, for n > 5, then, for any (g) # (1), the topological space Y, is
wsomorphic to S if the monodromy is trivial, it is a double covering of S if
the monodromy is not trivial.

As a consequence of the previous propositions we have the following de-
scription of the inertia orbifold in the case of transversal A,,-singularities with
trivial monodromy.

Proposition 4.3.12. Let [Y] be an orbifold with transversal A,-singularities
and assume that the monodromy is trivial. Then the twisted sectors [Y{g)], for

(9) # (1), are isomorphic to [S/pn+1], where pny1 s the group of (n+ 1)-th
roots of unity acting trivially on S.
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Moreover we can identify the local groups Gy with piny1 for ally € S in
a consistent way and, under this identification, we have

W=yl [ /el

9€H1n+1,9%1

4.4 Orbifold cohomology ring

We now describe the orbifold cohomology ring of an orbifold [Y] with transver-
sal A,-singularities and trivial monodromy.

Convention 4.4.1. We identify in a consistent way G, with p,,; for all
y € S. We also identify pn41 with the group Zn, of integers modulo n + 1
via the morphism:

271
n+1

a).

a € Zpy1 — exp(

Then, ¢1, g2 and g3 in pny1 correspond respectively to ay, as and a3 in Zg41.
We denote by a the vector (a1, ag, as).

Lemma 4.4.2. For anyy € S, let (ﬁy, Gy, xy) e a uniformizing system of
[Y] at y. Then, the normal vector bundles

Ngoy 5 = SNU,  foryes,
for any y € S, defines an orbifold vector bundle [N] over [S/Zp+1), of rank
2. Where the action of Zn1 on S is trivial.

If n > 2, then [N] is isomorphic to the direct sum of two orbifold vector
bundles [N]® and [N]®"" of rank 1, that is

[N] = [N)* @ [N

Proof. Let y € S, and let (U, Gy, x,) be a uniformizing system for [Y] at y.
Then (U2, Gy, xy |) is 2 umformlzmg system for [S/Zn+1] at y, where xy |
denotes the restriction of x, at U . Moreover, let 3y’ € S and (Uy Gy X))
be a uniformizing system at y' such that x,(U,) C Xy /(Uy). Then any
embedding (¢, \) : (Uy, Gy, Xy) (Uy, Gy, Xy) compatible with [Y] induces
an embedding (¢ |,A) : (U5, Gy, Xy |) — (UyG,y',Gyf,Xy/ |) compatible with
[S/Zn11). So, the orbifold [Y] induces an orbifold structure on S equivalent
to [S/Zp11)-
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For any uniformizing system (U ", Gy, Xy |), we define
Nogv = Nogvs,
For any embedding (¢ |, ) : (@Gy,Gy,xy ) — ([}'gy',Gyl,Xy, ), we get an

isomorphism Nyc, — ¢ l*Nﬁcy, which is induced by the tangent morphism
y y

Tgo : Tgy — T‘y,.
This data defines [N].
To define [N]? and [N]9"", notice that Z,,1 acts on Njey . So,
Yy

-1

N g g
Nyos = (Ngen) @ (Nyg) (46)
where g : Znyy — C* is the character a — exp(¥2%), g~! is the dual of g,

g -1

and (Nﬁcy> (resp. (Nﬁc:y>g ) is the subbundle of Nyc, on which Zy11

acts by the character g (resp. g!). Since the monodromy is tivial, the line
21

g g ) .
bundle (Nﬁfy) (resp. (Nﬁfy) ) define the orbifold vector bundle [N]
(resp. [N]# 7). O

Lemma 4.4.3. Let n > 2, and consider the natural morphism of orbifolds
[S/Zn—l—l] - S,

where the variety S is considered as an orbifold. Then, there are line bundles
L, M and K on S whose pull-back under this morphism are ([N]9“1)®”+1,
([N]#)®™+ and [N]5™ @ [N]? respectively.

Proof. We prove the statement about [N]9™" and L, the other are similar.
Let {(U;, Gi, xi) Yier be a set of uniformizing systems for [Y] such that {(U; N
S, G, Xi |) Yier is an orbifold atlas. We can assume that, for any 7,5 € I, we
have isomorphisms

g s (INP7) = (V™)

On triple intersections ffijk NS, the isomorphisms g;;, o g;; differ from g;; by
the action of an element of the group. So,

(7,;_7' ns ﬁjiﬂS )

n+1 n+1l .  n+l
ik °G5 T G -

This proves the claim. O
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Theorem 4.4.4. We have the following identification of vector spaces
ngb([y]) = HP(Y'(O)) @aEZn+1,a;ﬁ0 Hp~2(y'(a))

for all p. The orbifold cup product is given as follows for o € H*(Y(q,)) and
B € H*(Yay):

1. aUps B=aupe H(Y) ifa; =ay;=0

2. aUpp B=aUt*(B) € H (Yqy)) if a1 #0, a0 =0

3. aUpp = Zgi(aUp) € H(Y) if a1 #0, a2 = a;t

4. 00U 8= 2=aUBUci(L) € H*(Ya14ap)) f 01 # 0, a2 #0, a1 + a2 <

n+1
n+1linZ
5. aUpm B = 7o U BUc(M) € H* (Yata—ntn) if a1 # 0, az # 0,

a1 +ay >n-+11inZ,

where L and M are the line bundles defined in Lemma 4.4.83,1: S =Y
is the inclusion of the singular locus in'Y, and U is the ordinary cup product
of Y.

Note that, since [Y] is Gorenstein, Uqrp 1s supercommutative, see Theorem
3.8.9.

Proof. The orbifold vector bundles [E(,)] have rank 0 if a; = 0, az = 0 or
as = 0. This follows e.g. from [28], Lemma 1.12, where a relation between
the rank of [E(,)] and the degree shifting numbers of a1, a; and ag is proved.

Let y € S and a = (a1, as,a3) # (0,0,0). By definition (see equation 3.1)
we have

~ \G
(Bw)ss = (H'(Z,05)® (T3,) | TF)

where G C Zy; is the subgroup generated by ai,as,a3, L — P! is the
Galois cover with Galois group G branched over 0, 1, co € P! and monodromy
respectively ay, as, as.

We first notice that we can replace (T, ) | [7?;1 with the normal bundle
N

<, Then, we can replace & with the Galois cover C — P!, induced by
the inclusion G C Zpy1, which has Galois group Zn,;. So we have:

Zin+1
Lo 1 L
(E(Q_)) !%. = (H (C, OC) ® NU&'/Uy) .
Note that p : C — P! is an abelian cover in the sense of [47], so

p*C’)C = @cgzz+l(L_1)c
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where Z; ., is the group of characters of Z,; and Zy4y acts on (L71)° via
the character ¢. Note that the characters g and g~! defined in Lemma 4.4.2
are generators of Zy ;.

Using the fact H(C,O¢) & H'(P', p.O¢) and the decomposition (4.6),
we have

1 Znt1
(H (C, 00) ®Nf,3_/(-,y) ~
1/l —~1\g g_l 1/l -1 9—1 g
H'(P, (L)) @ (Nggyg,) @ H'BL (L)) @ (Nogyg, )
By Proposition 2.1 and in particular by example 2.1 i) of [47] we have
that

19— 0(2) ifCL1+CL2 <n-+1,
O1) ifa+a>n+1

and
-1 0(1) ifa1+a2 STL+1,
0(2) ifa1+a2>n—!—1.

8
o (Nﬁf/ﬁ'y) if ap+aa<n+1
i g
(N(jyg/[[y) if ay+ay>n+1

and the obstruction bundle is

[E )]Z{UV]"—l if a1+a<n+1
: [

N]g if ap+ay;>n+1

4.5 Examples

We give here some special examples of orbifold cohomology rings.

Example 4.5.1. (Surface case). We give now a description of the orbifold
cohomology of a surface with an A,-singularity:

Y ={(z,y,2) € C* : zy — 2" = 0}.
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Y is the quotient of C? by the action of the group un41 given by € (u,v) =
(€-u,et-v), € € g
As a vector space

(V) = H(Y) @ H2(S)(e1) © ... & H*(S){en)

where e; is a generator of H*(Y(;)) as H*(S)-module.
The product rule is given by

o Unr or = 0 if i + 7 # 0(mod n + 1),
PR il[S] € HA(Y)  if i+ = 0(mod n + 1).

Example 4.5.2. (Transversal A;-case).

(Y] = H*(Y) & H*(3)

orb

as vector space. Given (81, 1), (02, 02) € Hjy(Y), we have the following
espression for the orbifold cup product:

1. ” o
(51, Oél) Uorb ((52, 042) = (51 U 52 + 5’1;*(041 U 042), 1 (51) Uag +a;1 Uz ((52))

Note that in this case the ostruction bundle [E] has rank zero.

Example 4.5.3. (Transversal As-case).

(V) = H*(Y) @ H(S) @ H**(S)

orb

as vector space. Given (81, a1, 1), (02, g, o) € Hiiy(Y'), we have the follow-
ing espression for the orbifold cup product:

1.
(61,01,B1) Uors (02,02, 82) = (01 U d2 + 52*(% U Be+ B U ag),

Z*(51> Uag + oy U Z*(52) + ﬂl U ,32 U Cl(L),
’L*(51) U 62 -+ ,81 U Z*(ég) + o Uag U Cl(M))



Chapter 5

Crepant resolutions

In this Chapter we show that any variety with transversal AD E-singularities
Y (see Chapter 4.2) has a unique crepant resolution p : Z — Y. Then we
restrict our attention to the case of transversal A,-singularities and trivial
monodromy. In this case we describe the exceptional locus F in terms of the
line bundles L and M defined in Lemma 4.4.3. We compute the cohomology
ring H*(Z) of Z in terms of the cohomology of Y and of E.

In the first section we recall some facts about the resolution of rational
double points.

5.1 Crepant resolutions of rational double points

Let R C C® be a rational double point. Then, by Theorem 3.4.6, R has
a unique crepant resolution p : R — R. R can be obtained by blowing-up
successively the singular locus. The exceptional locus C C R is union of
rational curves C} whose autointersection numbers are C; - C; = —2. The
shape of C inside R is described by the resolution graph, see Remark 4.1.5.
We explain with the next example the A, case.

Example 5.1.1. (Resolution of A,-surface singulerities). Let
R={(z,y,2) € C*: zy— 2" =0}

be a surface singularity of type A,. Let r : Ry = BlyR — R be the blow-up
of R at the origin. Then R; is covered by three open affine varieties U,V

99
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and W, where
U = {(x,%,%) eC: (%) — g™ (%)Ml =0}
= pE e () ()70
s E Y ew: Loy

and the restruction of r to U, V, W is given as follows

v ow voow

T (3:, -, —) = (z,y,2) = (m,x-—,x—)
u U uu
U w U w

Twv: (ya ) _) = (x,y,z) = y_7y7y—>
v v v v

u v u v
Tiw (z,—u—)-,q—u—> = (z,y,2) = (z{U_,ZZU—’Z) .

If n = 1, Ry is smooth and the exceptional locus is given by one rational
curve C. A direct computation shows that C-C = —2. If n > 2, R; has a
singularity of type A,_o at the origin of W and the exceptional locus is given
by the union of two rational curves meeting at the singular point. Then,
after a finite number of blow-up, we get a smooth surface.

Let R be the first smooth surface obtained in this way and p : R —
R the composition of the blow-up morphisms. Let C = Ci,...,C, be the
components of the exceptional locus. A direct computation shows that C; -
C, = =2, for any [ = 1,...,n. From adjunction formula we get K3 - C; = 0,
for any | = 1,...,n. We want to prove that p*Kr = K. But

p*KR%JKR—l-ZazCl,

=1

for some integers ay, ..., an. The intersection of the right and left side of the
previous espression gives:

ZalC’l -Cr=0 forany k=1,..,n.
=1

Since the matrix with entries (C; - Cy) is negative definite ([5], Chapter III,
Theorem 2.1), it follows a; =0 for all [ = 1,...,n.

From this description, it is clear that the exceptional locus C is a chain
of rational curves whose dual graph is 'y, (see Remark 4.1.6).
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5.2 Existence and unicity

Proposition 5.2.1. Let Y be a variety with transversal ADE-singularities.
Then, there exists a unique crepant resolution p: Z —'Y.

Proof. To prove existence, one can proceed as follows. Let r : BlgY — Y
be the blow-up of S C Y. If BlgY is smooth, then define Z := BlgY and
p = r. Otherwise, blow-up again. As in the surface case, after a finite
number of blow-up, we will end with a smooth variety. Define Z to be the
first smooth variety obtained in this way, and p be the composition of the
blow-up morphisms. We will show that p* Ky = K. In general we have

n
P Ky & Kz + Z a by,
=1
where E; are the components of the exceptional divisor E of p and a; are
integers defined as follows. Let z € E; be a generic point, and g; = 0 be an
equation for Fj in a neighbourhood of z. Let s be a (local) generator of Ky
in a neighbourhood of p(z). Then q; is defined by the following equation

p(s) = g%(dzy A ... Ndzy),

where 21, ..., 24 are local coordinates for Z in z. For more details see [18],
Lecture 6. In our case, Y islocally a product RxCF, so Z is locally isomorphic
to R x C*. Then, since R — R is crepant, a; = 0 for alll=1,....d.

We now prove unicity. Assume that p; : Z; — Y is another resolution of
Y. By [29], Lemma 2.10, the exceptional locus of p; is of pure codimension 1
in Zy. Let Isyy be the ideal sheaf of S'in Y. The sheaf J := pi ! (Isy) - Og,
. is a sheaf of ideals of Oz, and the associated subscheme of Z; is supported
on the exceptional locus of p;. Let Jy.q be the sheaf of ideals of Oy, such
that Oz, /Jreq is the sheaf of regular functions on the exceptional locus of
p1 with the reduced structure. By [33], Chapter II, Corollary 7.15, we get a
morphism Bl;Z; — BlgY which lifts p;. Since J C J,..4, we have an inclusion
@p>0J? C B>oJr,,; of algebras which gives a morphism Bly, .21 — Bl;Z.
Using the isomorphism of Bl;__,Z; with Z; we get a morphism Z; — BlsY
which lifts p;. Repeating this argument we get a morphism f : 7, — Z,
furthermore f*K; = Kjz, becouse p; : Z; — Y is crepant. Then f is
an isomorphism. Indeed, f induces a morphism Tz, — f*Tz, taking the
determinant we have a morphism

ATy — AT, (5.1)

so we get a global section of Oz, (Kz, — f*Kz) & Og,. Since Z; is projective
and f is birational, this section is constant equal to 1. So it is a local
isomorphism and one to one. M|
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5.3 Geometry of the exceptional divisor

In this section we restrict our attention to varieties with transversal A,-
singularities and whose associated orbifold [Y] has trivial monodromy. In
this case, any component Fj; of the exceptional divisor has a structure of Pl-
bundle on S. We will describe E; as the projectivization of vector bundles
over S of rank 2. These vector bundles are defined in terms of the line bundles
L, M and K, defined in Lemma 4.4.3.

Notation 5.3.1. We will denote by E C Z the exceptional locus of p and
by E4, ..., B, the irreducible components of E. The restriction of p to E will
be denoted 7 : F — S and the restriction of 7w to F; with m; : B} — S.

Proposition 5.3.2. Let Y be a variety with transversal A;-singularities.
Then E is irredicible and there ezists a vector bundle F' on S, of rank two,
such that

E =2 P(F), (5.2)

where P(F) is the projective bundle of lines in F as defined in [30], Appendiz
B.5.5, where it is denoted by P(F).
Moreover, the normal bundle Ng/z is given as follows

where L is defined by A°F ® L = R'm,Ngz, Op(—2) is defined in [30],
Appendiz B.5.1.

Proof. In this case, Z = BlgY, and the normal cone CgY of SinY is a
conic bundle with fiber isomorphic to {(z,y,z) € C* : zy — 2* = 0}, so the
projection CgY — S induces to 7 : E = P(CsY) — S a structure of a P*
bundle over S. In particular it is irreducible.

Since S is smooth, there exists a rank two vector bundle on S, say F,
such that E & P(F). This follows from [33], Chapter II, Exercise 7.10(c).
Let us fix one of these bindles and denote it by F'.

The normal bundle Ng/z is a line bundle whose restriction on each fiber
7~1(s) is isomorphic to O-1(5)(—2). So, equation 5.3 follows. The descrip-
tion of L is a consequence of the projection formula, [33], Chapter III, Exer-
cise 8.3. |



5.3. GEOMETRY OF THE EXCEPTIONAL DIVISOR 63

Proposition 5.3.3. Let Y be a variety with transversal A,-singularities,
n > 2. Then, for any component E; of E, m;: E; — S is a P'-bundle and it
can be written as follows,

El = ]P(Ll D Ml) fO’I‘ [ = 1, .y n,
where L; and M, are line bundles on S that satisfies the following equation
LM 2Me(KY)® forl=1,..n. (5.4)

Moreover the intersection Er N E; has the following ezpression

0 if k=1 >1,
ELNE, = P(Ml_l) CE_, ifk=101-1,
P(L) C E, ifk=1-1.

Proof. In our case the monodromy is trivial, so we can identify the local
groups Gy, y € S, with Z,,; in a natural way. From this it follows that
the normal cone CsY of S in Y is the union of two components, each of
these being a vector bundle of rank 2 on S. So, we get two components of
E with the structures of P'-bundles over S. If we blow-up again, we get
other components of E. More precisely, if n = 3 we get one component, if
n > 4, then we must get two other componets. Each of these components
have clearly a structure of P!-bundles over S.

Since S is smooth, we can choose rank two vector bundles F; on S such
that E; = P(F}). But, for later use, we want F; to be of the claimed form.
Notice that, if E; = IP(F}), then for any line bundle L on S, E; 2 P(F; ® L).
So,if [} =L; & M,;, E; is dermined by L; ® Mlv.

We prove the Proposition in the following way: we think of Z as a finite
number of blow-ups; at each blow-up we compute the transition functions of
the vector bundles that forms the normal cone of the singular locus.

Let {U,}ier be an open covering of a neighbourhood of S in V. Assume
that each U; is given as follows

U = {(wi’xiayiazi) € CF x (O T;Y; — Z?+1 = O}

For any i € I, let (U;, Zp i1, xi) be a uniformizing system for [Y] such that
xi(U;) = U;. Let us assume that

ﬁi = {(y)_i,ui,vi) S @k X (C2}
We can suppose further that, for any 7,5 € I, there are isomorphisms

0ij 1 x;7 (UiNUj) = x5 UinUj)
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which are Z,1-equivariant.

Let ¢ = (@, F, @), where ®, F, G are the components of ¢ with respect to
the coordinates (w;, u;, v;). The fact that ¢ is Zni-equivariant imply that @
depends only on w; so it is an isomorphism between open subsets of S.

Using this coordinates we get bases for the normal bundles Nl-IiZ"“ o=

(2% 55 )- Moreover we have
0 o oF 8 4 G 8
Bui aui 6Uj 8uz a’Uj
o, 0P  0G9
Ov; Au; Bu; | Ov; O’
The condition for T;; : N gy, N 5P, to be an isomorphism of

Z.+1-representations implies ‘that F is 1ndependent on v; and that G does
not depend on u;.
The two conditions F'(e - u;) = € - F'(u;), G(e7 - v;) = ¢! - G(v;) imply

k(n +1)+1F
. k(n+1)+1 0
Flu) = Z k(n+1)+1
o0 k(n—i—l)—H a
- k(n+1)+1 a
Glo) = >
k=0 U;
From these expressions we see that F"*! and G™** depends only on ult =z,

and v7! = y; respectively and F-G depends on (z;, yi, z). S0 (Fm+t G”“, F.
@) is an automorphism of U; N U;. Moreover we have the following change

of variable expression
aF n+41
Tj = I ( ) +h.o.t’s

Bu,-
oG\ " ,
Yi = Yi e + h.o.t.’s
Z; = 8F G + h.o.t.’s.
7 auz sz

From the previous calculations it is clear that the normal cone of S in Y’
is the union of two irreducible components, C; and Cy. Cy and C, have a
structure of vector bundles of rank 2 over S and they are given as follows

Ch
Cs

MaK
LOK,

1R
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where L, M and K are defined in Lemma 4.4.3. Moreover, the intersection
Ci1NCyin CgY is given by the line bundle K.

After the first blow-up, we get a variety over Y with transversal A,_o-
singularities, the exceptional divisor is P(CsY’) = P(C;) UP(Cy), the singular
locus is P(C1) NP(Cs). So, if n > 2, we have to blow-up again. Let (a;, b;, z;),
(a;,bj, 2j) be coordinates in a neighbourhood of the singular locus. The blow-
up morphism, in these coordinates, is given by: z; = a;2;, y; = bz, z; = ;.
Then the two systems of coordinates, (a;, b;, z;) and (aj, bj, z;) are related ss
follows:

xT; _ F”“(aizi)

L= o\ .

a; - JaRE (5.5)
G Y a2

b, = %:—MF-(G ) (5.6)

5 = F.G. (5.7)

Note that, in the first two equations, numerator and denominator on the
right side, are both multiples of 7. So, after dividing by z;, 5.5 becomes

n+1

These calculations shows that the normal cone of the singular locus, after
the first blow-up, is the union of the following irreducible components P((M ®
KY)® K) and P(K @ (L ® KV)) intersecting along P(K).

Under the identification of the strict transform of P(CsY) with P(M &
K)UP(K @ L), we claim that P(M @ K¥)® K) NP(M ® K) = P(K) C
PIMeK),P(MRKV)oK)NP(M®K)=P(MRK") CP(M®K"®K)
and P(M @ K)NP(K @ (L ® K)) = 0. This follows from the surface case.
In this case Y = {2y — 2"*! = 0} and the blow-up is covered by three open

sets with coordinates (z, <), (y,£) and (2,2,2). The strict transform of the
z—axis is contained in the open with coordinates (z, £), £ = Z. Under the

identification of the exceptional locus with P({(z,v, z) : zy = 0}). O
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5.4 Cohomology ring of the crepant resolution

Let Y be a variety with transversal A,-singularities, suppose that the mon-
odromy of [Y] is trivial. In this section we describe the cohomology ring
of the crepant resolution Z of Y in terms of the cohomology of ¥ and the
geometry of the exceptional divisor E.

Notation 5.4.1. We will use the same notation of the preceding section.
Moreover, we will denote by j : E — Z the embedding of Fin Z,4: 5 =Y
the embedding of S in Y. The restriction of j to the component E; will be
denoted by j; : E; — Z. We will denote by k; : E; — E the morphism defined
by the equality j o k; = j;.

Proposition 5.4.2. Let Y be a variety with transversal A;-singularities.
Then the following map is an isomorphism of vector spaces

H*(Y)® H'*(S|E) = H(2)
§+aE — p*(8) + jum*(a).

Under the identification of H*(Z) with H*(Y) & H*%(S)(E) by means of
this map, the cup product of Z is given as follows

((51 + OllE) . ((52 -+ O!QE) =0, Udy — 22'*(041 U ()!2)
+ (Z*(51) Uag + oy U z*(52) + QCl(Rlﬂ'*NE/Z) U (631} U OAQ) E.

Proof. From projection formula we get
gem*(@) - p*(8) = ja (7" (@) - 5 p"(9)) = Jur* ez - 4°6).

So, aF -6 = (¢ Ui*6)E. To get the product rule between oy and ag, for
a1, a9 € H*(S), we write

Jem* (o) U Gum™ () = p*(6) + Jur* (@)
for some 6§ € H*(Y) and oo € H*(S). But, from projection formula and the
equality p. 0 j« = (po j)« = (i 07m), = iy 0 Ty, We have
§= pu(fur*(ar) Ujsm*(an)) = —2is(1U ), and
G (o) U fum* () = i (c1(Ngyz) Un(oa U ) -

On the other hand, 7*(a) is the coefficient of ¢;(Op(—2)) in j*(j.7* () U
j,m*(2)), which is 20y U e U ¢t (R Ngyz). O
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Notation 5.4.3. For any variety X and line bundle L on X, we will denote
by L the first Chern class ¢;(L) € H*(X). If @ € H*(X), then we will denote
by aL the cup product aUc¢; (L) € H*(X).

Convention 5.4.4. The variety Y has complex dimension d and so also Z
is of complex dimension d and S has complex dimension k := d — 2.

Proposition 5.4.5. The following map is an isomorphism of vector spaces
H'(Y) @, H*(S)(E) — H*(Z)

n
S+aBy+ ... +anE, — pf(6) + ij*ﬁ*(a’z)-
=1
Under this identification the cup product of Z is given as follows:

Ei i UE; = [S1+ ) {lleaha — ()it M + [i(cqicaa — (i = (e )al K} By

E;UE;, = —2[S]+ Z{[(Cﬁl)i—l,z — (e eyl M
=1

H= (0 = DlegDira — Alega + (@ + 1) (e i K B
EUE; = 0 i |i—j]>1
where [S] € H*(X) denotes the fundamental class i,([S]) of S in X, and

(cn)ij is the element in the i—th row and j—th column of the following n x n
matric

-2 1 0 0
1 -2 1 0 ... 0
Cn=| v e e e (5.8)
o .. 01 -2 1
0 0 1 =2

The proof will use the following lemmas.

Lemma 5.4.6. The following sequence is exact for any q,
0 — HU(Y) £ HY(2) L He(B) /m(HY(S)) — 0,

where [j*] is the composition of j* with the projection HY(E) — HY(E)/m*(H(S)).
The sequence splits, so we get an isomorphism of vector spaces

H*(Z) = H'(Y) @ H*(E)/r*(H*(S)).
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Proof. The exactness follows by comparing the exact sequences of the pairs
(E, Z) and (S,Y). The sequence is split since there is a push-forward mor-
phism p, : H*(Z) — H*(Y) which satisfies p. 0 p* = 1dg+(v). O

Lemma 5.4.7. There is a canonical isomorphism of vector spaces
H*(E)/m*(H"(5)) = & H" (Ey)/mi (H"(5)).

Proof. Let E‘l = F — E, be the closure of the complement of F; in E. Then
E =Lk U E, and E; N E1 =~ S. From the Mayer-Vietoris sequence with
respect to the covering {E1, El} of E it follows that the following morphism
is an isomorphism

H(B) jr (E0(S)) ST Fe(By) fr1(HO(S)) @ HO(B) /75 (H(S))

where k; : E; — E and k, : By — F are inclusions, and 7 is the restriction
of 7 to #. The result follows by induction. O

Proof of Proposition 5.4.5. As a consequence of the above lemmas we
have that the vector spaces H*(Y) @, H* ?(S) and H*(Z) have the same
dimension, so it is enough to show that the map is injective. Assume that

0 (8) + S0, it (ca) = 0. Then 6 = p.(p*(8) + Yoo, o (cu)) = 0. Next,
applying j; we get

Jr(e"(8) + D duri (@) = 0,

the left side of this equation, up to terms of the form 7j(..) assumes the
following expression:

.1 1
Wk(-aakq + o — §Olk+1) U ek,

where e, € H?(E}) is the class jj (ci(Oz(Ey))). We use the convenction
a_1 = apy1 = 0. It follows that

(c))poy =0 forany k=1,...,n.

So, oy = 0 for all [, since ¢, is nondegenerate.
Finally note that the following maps are isomorphisms

HT*(S) — HY(E)/; (H(S5))
a — [1(a)Ue).
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To prove 5.8, write
E; U Ej = p*(é) -+ Zjl*ﬂ'l*(ﬂll), (59)
=1

where 6 € H*(Y) and oy € H*(9).
We immediately get

§ = p(E;UE;) = p. (i ([E3]) U 35, ((E5))
pedix ([Bi]) U 57 35, ([E;])) = dumin ([E4]) U 57 5, ([E5)))-

Il

So,
0 if [ — j| > 1
d=1<1[9] ifli—j]=1
=2[S] ifji—j|=0.
We now pull-back both sides of (5.9) with j;. We get the following equa-
tion

B UE) = Gp'(6)+ > drdi(c)
=1
= mi (0) + Jp(aw—1Bx—1 + Ly + a1 B
= WZZ*(CS) -+ WZ(ak_l)[Ek_l NE, C Ek] + w;(ak)NEk/Z
+ TFZ(CMk+1)[Ek+1 NE, C Ek]

where by [Ej,_1NE}, C Fy] (resp. [Ey1NE; C E)]) we mean the cohomology
class dual of the homology class of Ej_; N E (resp. Ery1 N Ey) in Ey. Using
our description of F; (see Proposition 5.3.3) and [30], Appendix B.5.6, we
have the following expression for j;(E; U E;) up to terms which are pulled-
back from S with 7y:

]Z(Ez U Ej) = WZ(ak_l - ZCZk + Ckk_;_l)OFk(l), (5.10)

where, as usual, a_; = a,4; = 0.
On the other hand, the left side of (5.9) gives

Je(BiU E;) = jp (i ([Ei]) U 45, ((E5])) (5.11)
= [Ez NE, C Ek] N [EJ NE, C Ek] (512)

We now distingiush three cases.
Case |i — j| > 1. Then clearly E; U E; = 0.
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Case |i — j| = 1. Then

0 fork<i—1,
Ng,_,jzU[Ei1NE; C E; 1] fork=1-1,
Ng,zU[EBiaiNE; C E;) for k =1,
0 for k > 1.

(B UE;) =

In order to compute Ng,/z, let us denote by S;_1 = E;_1 N E;. Then notice
that Npyzs,_, = Nei_y/Bis and then, from [30] Appendix B.5.6, it follows
that

NEi/Z = OFi(—2)+7T;(K—Li—Mi). (5.13)
A direct application of [30] Appendix B.5.6 gives
[El-l NE C El—l] = OF1—1 (1) -+ 7"5*_1Ll—1- (5.14)

From (5.13) and (5.14) it follows that, up to terms of the form mi(.-.),
7 (Ei—1 U E;) is equal to

0 fork<i-—1,
Or,_, (1)K — M) for k=1i—1,
Or,(1)(M — (1 —-1)K) for k=1,
0 for k > 1.

it(Bii U E;) =

Then we get the following system of equations for the a;’s.

0 -2 1 0 . 0 aq
\ 1 -2 1 0 0 \
0 0 1 -2 1 0 0
1K —M . 0 0 1 -2 1 0 0 Q1
M — (z — 1)K - 0 0 0 1 =2 1 0 Q;
0
0 ) \o 1 =2)\ o )
Case |i — j| = 0. Then
(0 for k <i—1,
[Ei—l n Ez C Ei_1]2 fork=1— ].,
Je(Bi U Ey) = Ny for k =i,

[E'H-l n Ez C Ei_|.1]2 fork=1+ 1,
L0 for k > i1+ 1.
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Using again (5.13) and (5.14), we have that

p

0 for k <i—1,
Op_, ()M - (G—-1)K) fork=i-1,
I (B U ;) = S Op,(1)(—4K) for k =1,
Op, ()((E+1)K - M) fork=i+1,
0 for k> 1+ 1.

\

Then we get the following system of equations for the q;’s.

0 2 1 0 e e e O M
. 1 -2 1 0 0
. 0 1 -2 1 0 0
M ”_(ZI_{l)K 0 0 1 -2 1 0 0 b
Gank-m | =0 0 0 1 =21 . .0 o
; \ 0 o e 1 =2 \ o
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Chapter 6

Quantum corrections

We compute the quantum corrected cup product (see Definition 3.4.11) in the
transversal A, case and with trivial monodromy.

In the first section we give a description of the genus zero Gromov-Witten
invariants of Z that are needed in order to compute the quantum corrected
cup product. Some of these invariants are computed by a direct understand-
ing of the virtual fundamental class. To compute the ramaining, we use the
property that Gromov-Witten invariants are invariants under deformation of
the complex structure of Z, so we will impose some technical hypothesis on
Z which guarantee that some deformations of Z are unobstructed. In the
last Section, using also the results of Chapter 5, we give a presentation of the
ring H;(Z)(q1, ..., qn), as defined in Theorem 3.4.14. We review in Section 2,
some basic facts about virtula fundamental classes that are used in the proof
of the results.

6.1 Gromov-Witten invariants of the resolution
of transversal A,-singularities

We describe some of the genus zero Gromov-Witten invariants of Z in order
to compute the quantum corrected cup product. Since we are able to com-
pute some of the invariants in complete generality and some others under
particular hypothesis, we decided to collect these results in three different
Theorems.

Convention 6.1.1. Let X be a variety of dimension d, then we define to be
zero the integral of any cohomology class o € H*(X) on X of degree different
to 2d.

73
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Notation 6.1.2. Through this Chapter ¥ will be a variety with transversal
A,-singularities such that the corresponding orbifold [Y] has trivial mon-
odromy. We will denote by p: Z — Y the crepant resolution.

We have the following isomorphism of vector spaces (see Proposition
5.4.5):

H'(Y) @i, H2(S)(E) — H'(2)

S+aBi+...+o,E, = p(6)+ ng*ﬂl*(a{l).
1=1

So, a cohomology class v € H*(Z) of Z will be denoted by
y=6+0E + ..+ anB,, withd € H(Y), oy € H*(S).
The homology group Hy(Z,Z) of Z can be described as follows,
Hy(Z,Z) = Hy(YZ) ® Ho(S)(B1) & ... ® Ho(S)(Br),

where 3, € Hy(Z,Z) is the class of a fiber of m; : By — S, see Notation 5.3.1.
We have that Bi, ..., On is an integral basis of Ker p., where p, : H5(Z,Q) —
H,(Y, Q) is the group homomorphism induced by p, see Chapter 3.4. So, any
class ' € Hy(Z,Q) of a rational curve that is contracted by p, i.e. p.(I') =0,
is written in a unique way as

I'=ap1+... +anfB, with a; positive integers.

We now compute the 3-point, genus zero Gromov-Witten invariants

‘I’g(’)’l, Y2,Y3) = / vir evy (1 ® 12 ® v3) (6.1)
[Mo,3(2.1)]

where y; € H*(Z),T = ay - B1 + ... + an - B € Hy(Z,Z) is an homology class
such that p,(T') = 0, Mg 3(Z,T) is the moduli space of 3-pointed stable maps
[ : (C,p1,p2,p3) = Z] such that u,[C] =T, the arithmetic genus of C' is 0,
and evs : Mo3(Z,T') = Z x Z x Z is the evaluation map.

Theorem 6.1.3. Let Y be a variety with transversal A;-singularities and let
p:Z —Y be the crepant resolution. Then,

\pZ H) bl =
aﬁ(’)’l 72 73) {—8f5a1-O!z'Ols'Cl(Rlﬂ'*NE/Z) Zf’Yl:azE fo7“i=1,2;3.

Where a > 1 is an integer, m : E — S is the restriction to E of p, and the
dots denote the cup product of S.

0 if 1,72 or vz are in H*(Y);
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Theorem 6.1.4. Let Y be a variety with transversal A,-singularities, n > 2,
and let p: Z —Y be the crepant resolution. Then,

0 if y1,72 or v are in H*(Y);

\1’2(717’72,73) =

; (B, - Bij) (B, - Big) (Big - Big) [gon - oz - a3 - c1(K)
where the second possibility holds if ' = B := fi+...+f; for L <1< j < m,
and v; = a; - By, for i = 1,2,3. Here K is the line bundle on S defined in
Lemma 4.4.8.

Theorem 6.1.5. Let Y be a variety with transversal A, -singularities, n > 2,
and let' p : Z =Y be the crepant resolution. Assume further that the line
bundle K (defined in Lemma 4.4.3) is sufficiently ample, that H*(Z,Tyz) = 0
and H'(S,Ts) = 0. Then, we have the following ezpression for the Gromou-
Witten invariants:

0 if 71,7 or s are in H*(Y);
UL (1, 72,73) = § (Buy - Big) (Bry - Big) (Bry - B) [0 - g - ea(K)
0 in the remaining cases.

where the second possibility holds if I' = a - fi; == f; + ... + B; for a be a
positive integer, 1 <i < j<n, and v, = oy - Ey, fori=1,2,3.

Conjecture 6.1.6. Theorem 6.1.5 is true in complete generality, i.e. without
the hypothesis on K, on H?*(Z,Tz) and H*(S,Ts). We give in Section 6.3
an outline of the proof of this conjecture.

Remark 6.1.7. Notice that, if [Y] carries a global holomorphic symplecfic
2-form w, then we can identify L with MV by means of w. So,

(n+ 1)K M®L=QOg,

so, all the Gromov-Witten invariants vanish.
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6.2 Virtual fundamental class for Gomov-Witten
invariants

We review here some basic properties about the virtual fundamental class
[Myn(Z,T)]™. We follow clesely [10] and [9].

We recall the definition of obstruction theory for a Deligne-Mumford stack
X. We will denote by D(Oy,,) the derived category of Ox,,-modules, where
X, denote the small étale site of X. The cotangent complex of X will be
denoted by L%, € D(Ox,,).

Definition 6.2.1. Let X be a Deligne-Mumford stack. Let E* € 0bD(Ox,,)
be an object that satisfies the following conditions:

e h'(E*) =0, fori>1;

e hi(E*) is coherent, fori=0,—1.

Then, a morphism ¢ : E* — L%, in D(Ou,,) is called an obstruction
theory for X, if h%(¢) is an isomorphism and h™*(¢) is surjective. By abuse
of language we also say that E* is an obstruction theory for X.

The obstruction theory ¢ : E* — LY, is perfect, if E* is of perfect
amplitude in [—1,0].

Let E*® be a perfect obstruction theory for X. Assume that locally E° is
written as a complex of vector bundles [E~* — E°]. Then, the rank of E* is
defined to be

rk E* = dimE°? — dimE™".

Definition 6.2.2. The virtual dimension of X with respect to the perfect
obstruction theory E® is defined to be the rank rk E* of E*. We will denote
the virtual dimension by v.

Remark 6.2.3. The virtual dimension is a locally constant function on X.
We shall assume that the virtual dimension of X’ with respect to E° is con-
stant, equal to v.

Remark 6.2.4. Let E® be a perfect obstruction theory for . Then E*® give
rise to a vector bundle stack €, into which the intrinsic normal cone €y of
X can be embedded as a closed subcone stack ([10], page 72). Under the



6.2. VIRTUAL FUNDAMENTAL CLASS FOR GOMOV-WITTEN INVARIANTST77

hypothesis that £* has a global resolution ([10], Definition 5.2), the virtual
fundamental class [X, E°] of X, with respect to E°, is the class in the rational
Chow group A,(X), obtained by intersecting €y with the zero section of €,
[10], Proposition 5.3.

Notation 6.2.5. We will denote by M, ,(Z,T) the Deligne-Mumford stack
of stable maps of class I' € H(Z) from an n-marked prestable curve of genus
g to Z. The universal curve on M,,(Z,T') will be denoted by p : C —
M, n(Z,T), and the universal stable map by f:C — Z.

The universal curve p : C — M, ,,(Z,T) can also be seen in the following

way. Consider the stack MMH(Z ,I'), then, there is a morphism
Jnim Mg,nﬂ(Z: ') — Mg,n(Za I) (6.2)

which forgets the last marked point and contracts the unstable components.
Then fn41,, can be identified with the universal curve, the universal stable
map is the evaluation morphism of the (n + 1)-th point.

The cotangent complez of M,,(Z,T) will be denoted with L, 21y
It is an element in the derived category D(Oyy, ,(zr),,) of the category of
O, .(z1)-modules, where Mg ,(Z, T')¢ is the small étale site of My, (Z,T).

Remark 6.2.6. The moduli stack M, ,(Z,T") has a natural perfect obstruc-
tion theory given by

B* = R'p{[f"Qs — O] 8wy}, (6.3)

where {27 is the sheaf of relative differentials of Z over Spec(C), €, is the
sheaf of relative differentials of C over M ([33], page 175) and w, is the
relative dualizing sheaf in degree —1, see [10], page 82. Moreover E° has a
global resolution. The resulting virtula fundamental class will be denoted by
[Myn(Z, D).

This is proved in [10] Proposition 6.3, [9] Proposition 5, for the relative
case.

There are some basic properties that holds for [M,,(Z,T)]""", they are
given and proved for the virtual fundamental class given by any perfect ob-
struction theory on a given Deligne-Mumford stack in [10], Propositions 5.5-

5.10 and Propositions 7.2-7.5. Here we report some of these properties in the
special case of [M,,(Z,T)]""".
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Proposition 6.2.7. The virtual dimension v of My,(Z,T) is constant and
equal to
v=(1-g)(dimZ -3)—(I'-Kz)+n.

Proposition 6.2.8. Let M, ,(Z,T) be smooth. Then h*(E*") is locally free
and the virtual fundamental class is

[(Mgn(Z, D) = o (W (B™)) - (Mg n(Z,T)];

where r = rkh(E*Y).

Proposition 6.2.9. Let
Farin : Mgnt1(Z,T) = Mgu(Z,T)

be the forgetful morphism. Then f;L“H’n([./\;Ig,n(Z, D)]Ur) = (Mg (Z, 1)

Consider the following diagram of Deligne-Mumford stacks,

u

X — X
l l (6.4)
B —— B,

where B and B’ are smooth of constant dimension, v has finite unramified
diagonal.

Proposition 6.2.10. Let E* — Ly be a perfect obstruction theory for X
over B. If (6.4) is cartesian, then u*E* is a perfect obstruction theory for
X' over B'. If E* has a global resolution so does u*E* and for the induced
virtual fundamental classes we have

,U![M]'uir — [Ml]m'r
at least in the following cases.
1. v is flat,

2. v 18 a regular local immersion.
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Proposition 6.2.11. Let E® be the obstruction theory defined in (6.3). Then
we have the following exact sequence of coherent sheaves on M,

0= p.Qy = p.f*Tz — W (E°V[1]) = R'p.Q) — R'p.f*Tz — h'(E°V[1]) — 0,
(6.5)
where Q) = R’Homomg’n(zﬂét (€0, Oty n(z1))-

Proof. First of all notice that E*Y = Rp, ([f*Qz — ,]¥). Indeed, by
duality we have
EoV = R'Homomg,n(z,r)ét (Rp*([f*ﬂz — Qp] ® (.Up), OMg,n(Z,F)ét)
= Rp.RMomog  n. ([*Qz = Q) @ wy,wp)

(see [34], Sect. VIL4, page 393), then, since w, is locally free, we have
E* Rp.RHomoyg . ([f*Qz = Q) @w, ® Wy s Oty n(Z0)es) -
Consider the following distinguished triangle
FrQz = Q= [0z = Q] T,

where the sheaves f*(1z and €, here means complexes centered in degree 0,
the complex [f*Qz — §,] is the mapping cone of the morphism df : f*Q, —
€p. Taking duals in derived category, we get the following distinguished
triangle
[f*Qz = QY — QY — T, T
The axioms of triangulated categories implies that the following triangle is
distinguished
® * 1
: QY = Tz — ([f*Qz — Q)] .
Now apply the derived functor Rp. to get the following distinguished triangle

Rp.(Q)) — Rp. f*Tz — Rp.([f*Qz — Q,]V)[1] = .
Taking cohomology, we get the following long exact sequence

0 = R7p([f*Qz — Q]")[1] = pu(Q)) = puf Tz —= pu([f* Q2 — ]")[1]
= R'p.(Q)) = R'p.f"Tz — R'p.([f*Qz — Q]V)[1] = 0,

notice that [f*Qz — €] is centered in [—1,0] so ([f*Qz — ,]V)[1] is also
centered in [—1, 0].

Since f is a stable map, the morphism p,Q2 — p, f*T7 is injective. This
conclude the proof. O
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6.3 Proof of the Theorems

Notation 6.3.1. Through this Section, R will denote a rational double point
of type A, and R — R the crepant resolution. See Definition 4.1.1 and
Remark 4.1.5.

6.3.1 Genaral considerations

The key point in the proof of the Theorems is to notice that S is canon-
ically isomorphic to the moduli space Mgo(Z, ), for any i < j, and
that /\Zlo,o(Z, I') has a fibered structure over S with fibers isomorphic to
Moo(R,T).

Lemma 6.3.2. There is a morphism
¢ : M0,0(Z, F) )

such that, for any point p € S, the fiber $~*(p) is isomorphic to ./\7(0,0(]%, I).
Moreover, there is an étale cover U — S and a cartesian diagram

U x Moo(R,T) —— Moo(Z,T)
pnl lqﬁ
U — S.
IfT = Bij := B + ... + B, for i < j, then ¢ is an isomorphism.

Proof. Step 1. We first prove that for any scheme B of finite type over C

and any object

C~—f—+Z

d

B
in Mo o(Z,T)(B), there is a morphism g : C — E such that f = jog, where
j : E — Z is the inclusion.

Let Oz(E) be the line bundle over Z associated to the divisor E, and
let s be the section of Oz(E) defined by E, that is, s = {s;} where s; are
functions which defines the Cartier divisor E. Then f factors through E if
and only if f*s vanishes as section of f*Oz(E). We show that p, f*Oz(E) is
the zero sheaf.

First of all we assume that B = Spek(C). Then

p«f+([C]) =0,
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where p, and f, are the morphisms of Chow groups induced by p and f
respectively and [C] is the fundamental class of C. It follows that the image
of po f is a point y € Y. This point must belong to S because, outside S, p
is an isomorphism. So f(C) C E and, since C is reduced, f factors through
E ([33] exercise 3.11(d) chapter II). Note that f(C) is contained in a fiber of
m:FE —S.

Assume now that B is a scheme of finite type over Cand f: C — Z isa
stable map over B. Given a point b € B, let X be the subvariety of B whose
generic point is b, namely X = {b}. For any closed point z € X we have that
HY%(Cy, f*Oz(E);) = 0 becouse f | C, factors through a fiber of E over S.
By Cohomology and Base Change it follows that (p,f*Oz(F)). ® k(z) = 0,
since p, f*Oz(E) is coherent it follows that it is zero on a neighbourhood of
x, so it is zero on b.

Step 2. Let ¢ == mog : C — S, we prove that there exists a morphism
¢ : B — S such that p = ¢ op.

First of all we define a continuous map ¢ : B — S such that ¢ = ¢ op.
From Step 1 it follows that, if b € B is a closed point, then we can define

¢(b) by:
¢(b) = 7(f(Ch))-

Now, let b € B be any point, and let X be the subvariety whose generic
point is b. Then we define ¢(b) to be the generic point of M: the closure of
#(X) in S. The condition ¢ = ¢ op implies that ¢ is continuous. Indeed, p is
surjective and so, for any closed subset T' C S, ¢~H(T') = n(x~ (¢~ }(T))) =
m(¢~H(T)). Note that p is surjective since it is dominant and proper (the
flatness of p implies that p* : Op — p. O is injective).

In order to give a morphism ¢ : B — S it remains to give a morphism of
sheaves

¢ﬂ : OS — ¢*O B-

We have the following diagram

i
Og —2— 0,0¢ (6.6)

Ttp*p‘l(p”)
QD*p—IOB

where p~1(p") : p71Op — O¢ denote the adjoint of p! : O — p,Oc. Note
that o,p~!(p") is injective.

Since p is proper and surjective, a direct analysis show that the canonical
morphism Op — p,p~'Op is an isomorphism. So the morphism ¢,.0p —
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0. O0g = ¢.(p.p~Op) is also an isomorphism. Then we can replace in
the previous diagram (6.6), ¢.p~'Op with ¢,Op, and get

4
Os —Ls QO*OC

!

¢* OB

with the vertical arrow being an inclusion. It follows that we can consider
¢.Op as a subsheaf of ¢, O¢ and so it is enough to show that the image of Og
under ¢! is contained in ¢.Op. This is equivalent to say that the morphism
Os = ¢.0Oc/¢$.Op induced by ¢! is the zero morphism. But this is true on
the geometric points and so it is true everywhere.

The last statement follows from the fact that, if I' = fy + ... + 3, then
we have an inverse of ¢. It is given by sending any morphism B — S to the
following stable map

BxgE 172 7

Pﬁl

B

Lemma 6.3.3. Let v1,72 or v3 be elements of H*(Y). Then

ql?(71572)73) =0
for any ' = a1y + ... + anfhn.

Proof. By the Equivariance Axiom for Gromov-Witten invariants, see [19]
Chapter 7.3, we can assume that 3 = p*(d3). The virtual dimension of
M 3(Z,T) is equal to the dimension of Z, dimZ. So, let 71,72,73 be coho-
mology classes such that

deg(v1) + deg(72) + deg(ds) = dimZ.
We have the following commutative diagram
Mo 3(Z,T) By ZxZxZ
fa,zst,ol lidxidxp

Mo2(Z,T) x Moo(Z,T) 2255 Zx ZxY
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where ¢ =10 ¢. Then

ev; (1 ® 1 ®p*(d5) = (f32 % f30)*(eva X ©)* (11 ® 12 ® &3)
= [facus(n @ m)] - [£500"(65)]
= fia (levs(m ® 1)) - [fé‘,ow*@s)])

we have used the equality f30 = fop o fs2. On the other hand, the following
equalities hold

[/\;[o,s(Z, F)]vir _ f:—f,o [MO,O(Z,F)]UiT
= faf3o [Moo(2,1)]"™
= fiy [Moa(2Z, )] .
So,

UZ (71,72, p*(63)) fig (levs(m ® 72)] - [fr09"(85)])

/vf*'2 [MO,Z(Z,F)]MT

3

= (constant) - / i

oo levs(n ©12)] - [f09* (65)]
[Mo,z(Z,P)]

which is zero since the virtual dimension of Mg 4(Z,T') is the virtual dimen-
sion of My 3(Z,T") minus 1. O

It remains the computation of the invariants of the following form
\Illg(jll*ﬂl*l (1), Jia i, (02), 1o 77, (02)),
where a1, og, a3 € H*(S) satisfy the following equation
deg a; + deg as + deg a3 = dimS — 1.

With the next Lemma, we reduce this computation to an integral over the
following class:

$e[Moo(Z,1)]"" € A(S)

Lemma 6.3.4. The following equality holds,

‘IIIZ:(J'h*Wz*l (al):jlz*ﬁzq(a2)7jlz*ﬂig (012)) = (67)
(Ey, -T)(B, - T)(E, - T) / _ (o-on-0s).  (68)
@ [Mo,o(Z,T)]Ver
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Proof. Consider the following cartesian diagram, which defines ExsE'X g E,
EXSEXSE——+EXEXE
S — Sx8x%xS

where the botom arrow is the diagonal embedding.

From the previous Lemma 6.3.2 it follows that the evaluation morphism
evs : Mo3(Z,T) — Z x Zx Z factors through a morphism evs : Mo 3(Z,T) —
E x E x E and the inclusion E x E x E — Z x Z x Z. Moreover, since
the image of any stable map over a geometric point is contained in a fiber of
7: E — S, ety factors through a morphism et : Mo3(Z,T) = ExsExsE
and the inclusion E xg E xg FE — E x E x E. So, we have the following
equalities

\II?(jll *Wl*l (011), jlz*ﬂ-;; (012), jlz*ﬂ-;; (OQ)) =

= / €05 (57 (01) ® 57T (02) ® 57ta, 77y (025))
[Mo,3(Z,D)ver

_ / _ 60 (O (B )" (01) ® Op(Bi)m* (02) ® Op(Bi) " (0s))
[Mo,a(Z,T)]¥ir

Notice that j*ji, 7} (a) = Op(E)7*(c), for any [ = 1,..,n and o € H*(S).
Indeed, for any m =1, ..., n,

k" 17 (@) = ity (@) = (B N By C Bm] - 1, (0)

and

ki (Op(E)T (@) = jmOz (BT (),
which are equal (see [30], Chapter 2.3). Using the fact that €vs factors
through evs we get

/ _ 0 (On(B)r* (1) © Op(Ex)m*(02) ® Op(E)n* ()

[Mo,3(Z,D)]r

_ / _ €5 (On(Er) ® Op(Ez) ® Op(Bs)r* (01 - 0z - 03)).
[Mo,3(Z, D))"

Now apply the divisor axion and get

\II? (jll *7‘—;; (al)a jl2 *71—;; (a2>7 jlz *7Tl*2 (Ofg)) = (69)
(B, ) (B TY(E ) | #(0r-0z-03).  (6.10)
Mg o(Z,D)]Vi
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Let pt denote the unique morphism from any scheme over C to Spec(C).
Then the integral (6.1) is the degree of the homology class

Dts (311;(% ®72®73) N [Mos(Z, P)]W) .

Using the projection formula ([41] pag. 328) and the equality pt = ¢ o pt,
(6.9) becomes:

(Ey, -T) (B, - D) (E, - I)pt. (Ozl -0 - a3 N @, [MO,O(Z, I-\)]vir) '
O

At this point, to conclude the proof, we proceed as follows. First we show
that

1T A CN\vir — B
6. Ptan(Z, D) = { Mool Bl AT =0 )
0 otherwise.
Second, that B . ,
[Moo(Z, Bi)]"" = c1(K). (6.12)

Let us explain our idea to prove (6.11), it will be motivated by our proof
of Theorems 6.1.3, 6.1.4 and 6.1.5. Let us denote by M the moduli stack
Moo(Z,T) and by

the obstruction theory on M given as in (6.3). We will identify Mo (2, 8;;)
with S and the obstruction theory will be denoted by

¢s: Eg — L.

Remark 6.3.5. Since S is smooth, L% is given by the locally free sheaf Qg
in degree zero.

Suppose that we have a morphism ¢* (E%) — E%, such that the following

diagram commutes
¢* (Bs) — B3y

#@s)| [ (6.13)

¢* (Lg) — Liy
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where the botom row is the morphism induced by ¢ : M — S. Then, we can
complete (6.13) to a morphism of distinguished triangles as follows

° +1

¢* (E3) r B P Bpmys T

¢*(¢s)l ld’M 145/\4/5 (6.14)
* ° ° +1
¢* (L3) » Ly P Lws T

where L', /s is the relative cotangent complex of M over S and E}, /s is, a
priori, an object in D(Oy,,). We want to find conditions such that

drmys - Ejays = Liwys

is a relative obstruction theory for M over S, see [10] Section 7. From
diagram (6.14) it follows that, if the map

W (¢7 (B3)) = b7 (Bl

is injective, then dary/s @ B}y /s~ LS, /s is a relative obstruction theory.
Suppose that this is the case. Then, we have an induced perfect obstruc-
" tion theory on each fiber of ¢, [10] Proposition 7.2. An easy dimension count
shows that this obstruction theory has virtual dimension zero.
The fact that ¢ : M — S is locally trivial implies that, under the iden-
tification of each fiber of ¢ with Moo(R,T), the obstruction theory induced
on the former stack does not depends on the point in S.

Notation 6.3.6. Let us denote by F' the stack Mgg(R,T), by E} the ob-
struction theory on F' induced by E}, /s and by [F]*" the virtual fundamental
class.

Using the previous facts, we can prove the following formula
[ M]"" = degree([F]") - [S]"" (6.15)
So, to prove (6.11), it remains to show that

1 — .
degree([F]) = { if T = oy,

6.16
0 otherwise. ( )

We have to understand Ep. The obstruction theory E} can be obtained
as follows. Let X — A be a generic deformation of R, where A Cc Cis a
small open disc centered at the origin 0 € C. We mean that R is isomorphic
to the fiber of X — A in 0. Notice that X is a Calabi-Yau threefold. The
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embedding R — X gives a group homomorphism Hy(R,Z) — Hy(X,Z)
and, by abuse of notation, we will denote by I € Hy(X,Z) the image of
I' € Hy(R,Z). Since X — A is generic, we will have an isomorphism as
follows,

F = Moo(X,T).

This follows easily from the explicit description of the semiuniversal defor-
mation space of R given in [36] Theorem 1, see also [57] Section 3. Then Ef
coincides with the obstruction theory (6.3) for to Mg o(X,T).

Now, (6.16) follows from the computation given in [13] Proposition 2.10.

6.3.2 The A; case

Here we prove Theorem 6.1.3. This is a straightforward generalization of [38]
Theorem 3.5 (ii).

Notation 6.3.7. The exceptional divisor F is irreducible and moreover the
following description holds: E = P(F'), where F' is a rank two vector bundle
on S, Ng/z & Op(—2) ® m*L, where L is defined by A’F' ® L = R'1,Ng/z.
See Proposition 5.3.2.

In this section I will be af, for a positive integer a.

The universal stable morphism f : C — Z factors through a morphism
g:C — E. See Lemma 6.3.2.

Lemma 6.3.8. The moduli stack Mg o(Z,aB) is smooth of dimension dim S+
2a — 2. The virtual fundamental class is given by

[(Moo(Z,aB)]"" = cr (b} (EY)) - [Moo(Z, ap)] (6.17)

where
h'(E*Y) = R'p,(¢"Ng/z) (6.18)

s a vector bundle of rank r = 2a — 1.

Proof. The smoothness of Mg (Z, af) follows from the fact that the fibers
of ¢ are smooth, where ¢ is defined in Lemma 6.3.2. Indeed they are all
isomorphic to Mo o(P!,a8). Moreover from Proposition 6.2.7 it follows that
they have dimension 2a — 1.

Equation (6.17) follows from Proposition 6.2.8, so, it remains to prove
equation (6.18). We will show that

R'p,(f*Tz) is a vector bundle of rank 2a — 1,
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and that
R'p.(9"Ngjz) = R'p.(f*Tz). (6.19)

Then the Lemma will follows from Proposition 6.2.11.

Since H2(p™(u), f*Tz|p-1w)) = 0, R?p.(f*Tz) is locally free of rank 0,
see [33] Theorem 12.11 (Cohomology and Base Change). So, it is enough to
prove that H(p™(u), f*Tz)|p-1(w)) is independent from u.

Let u=[u: D — Z] € Myo(Z,ap) be a stable map. From the following
exact sequence of locally free sheaves on £

0T — Tz|lp = Ng/z = Op(-2) — 0,
we get the following
0— Ty — pwilz|lp = wOp(—-2) — 0.
Since HY(D, u*Tg) = 0, we get
HY(D, 1 Tz) = H'(D, 1" Oy (~2))
which has dimension 2a — 1.

To prove (6.19), consider the following exact sequence
0—Tg '—>TZ|E — NE/Z — 0,

then apply R°p.. O

Remark 6.3.9. From the previous Lemma, it follows that

[Moo(Z, B)]"" = er(R' 1 Ngyz) - [Moo(Z, B)]-

Lemma 6.3.10. We have the following ezact sequence:
0 — ¢*(R'7.Ng/z) = R'p.(¢°Ngjz) = F =0,

where F is a vector bundle of rank 2a — 2 whose restriction on each fiber
of ¢ is given as follows. Let p € S and consider the following commutative
diagram:
9
Comrp) — Ly

A |

671 (p) =2 {p}
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where Cg-1(p) 18 p~H(¢7*(p)) and p | (resp.g |) is the restriction of p (resp.
g) on it, E, is the fiber n7Y(p) and m, is the restriction of w. Then, the
restriction of F to p~(¢71(p)) ds:

R'p|, (91"(Og, (1) ® Og,(-1))).

Proof. Since E = P(F'), we have the surjective morphism: 7*(FV) — Op(1).
Its kernel is (A%7*(FV)) ® Op(—1). So, we have the following exact sequence

0 — (A*7*(FY)) ® Op(=1) = 7*(FY) = Op(1) = 0,
which, tensorized with (7* A2 F ® L) ® Or(—1) gives the following one
0— Ngjz = m*(F® L) ® Op(—-1) = m*(R'm.Ng,;z) — 0, (6.20)

see Proposition 5.3.2.

The pull back, under g, of (6.20) on C gives a short exact sequence of
vector bundles, and then taking R°p, we have the following long exact se-
quence:

0 — pug"Ngjz = p ("0 (F ® L) ® " Op(—1)) — p.p*¢*R'1.Ng/z
— R'p.(9"Np/z) = R'p. (p"¢*(F ® L) ® g*Op(-1))
- Rlp*(p*¢*R17r*NE/Z) — 0.

Notice that

1%

P« (P*¢"(F®L)®g"Op(—1)) 20
by Cohomology and Base Change. Moreover, projection formula gives

p*p*qﬁ*leNE/Z qb*(le*NE/Z) and
Rlp*(p*¢*R17r*NE/Z) ¢*(R17r*NE/Z) ® Rlp, O 2 0.

S0, the result follows by defining
F:=R'p. (p"¢*(F ® L) ® g"Or(-1)).

1R

O

Finally, to prove (6.11), and so to complete the proof of Theorem 6.1.3,
we have to show that

/¢_1( )C?.a,——z (Rlp,* (gr(C’)EP(—l) D OE,,(—-l)))) _ _13_

a

This is proved in [19] Theorem 9.2.3.
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6.3.3 The A, case, n > 2

We prove Theorem 6.1.4.

Notation 6.3.11. For any 4,5 € {1,..,n} with 1 < i < j < n, we will
denote by Ej; the union E; U ... U Ej. The restriction of 7 to Ey; will be

denoted by ;.
The moduli stack Mg o(Z, Bi;) will be denoted by S, see Lemma 6.3.2.

Notice that we can assume that ¢ = 1 and j = n, so that E;; = E and
Bi; = Pi, .-, Bn- The moduli stack is smooth of virtual dimension dim S —1,
so the virtual fundamental class is given by

[S]" = er(WH(ESY)) - S
where Eg is given as follows, see (6.3):
Ef = R'm.([Qz15 = Q] ® wr)-
Lemma 6.3.12.
h(E3Y) 2 R'm.Ngz.
proof. The complex of sheaves on E:

Qzp = O, (6.21)
is isomorphic, in the derived category D(Og), to a locally free sheaf G in
degree —1. Indeed, the morphism Qz|5 — {1, is surjective and, denoting by
G its kernel, we have the following exact sequence

0—-G—=Qz | E—Qy—0.

Since 2, is of projective dimension one, it follows that G is locally free.
So,

rY(ELY) =2 R'm, (GY).
We have the following exact sequence

0= Oz(—E)|E—G—=71"Qs—0. (6.22)
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This follows from a diagram chasing in the next diagram,

0
Qg
0—=0z(-E) | E—Qz | E Qp 0
:1
0 G Qz | E Qr 0
0

Then, taking the dual of (6.22) and applying R°w, we get the following
isomorphism

Rlﬂ’* (Gv) = Rlﬂ'*NE/Z,

which complete the proof. U

"The proof of Theorem 6.1.4 will be completed by the following Lemma.
Lemma 6.3.13.
Rlﬂij*NEij/Z =K.

Proof. Let us first assume that ¢ < Jj- Let a be an integer which satisfies
1<a<j. Let_Ea =E;U..UE, and E,y; = Ej;; U...UE;. Let us denote
by S, = E, N E4y1. Consider the following exact sequence

0— OEij — OEa @ OEEH — Oga — 0,
this gives the following,
0 — NEij/Z — NEG/Z(SG) EB NED,+1/Z(SG) - NEij/ZlSa)

notice that Ng,;/z | Ba = (Oz(EBa+FEat1)) | Ba = N, ;,®0z(Earr) | E, and
Oz(Eq4+1) | B is, by definition, the line bundle associated to the intersection

of B, with the divisor Eq1, so it is O (S,).

We now claim that

Rlﬂ'ij*NEij/Z = NE/Z I Sa.
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This follows from the long exact sequence associated to the functor R°m.
once we notice that

RPNz, ;7(Sa) = RPm.Ng,,,/z(S.) =0 forallp > 0. (6.23)

To see this, let C, be a fiber of E,, Cor1 be afiber of Eq11 and p, = CaNCos1.
We can assume that C’a, C,+1 and p, are embedded in the surface R as a part
of the exceptional divisor of R — R. Then, to prove (6.23) is equivalent to
prove the following identities,

H?(Ca, Ng, j7(pa)) = H?(Cay1, Ng, ., 5(pa)) =0 forallp > 0.

To prove the equality: H? (C, Ne,, 7(pa) = 0, we proceed by induction on a.
As before we have the exact sequence

0 — Ng, /i = No,_yy2(Pa-1) ® Ne, j2(Pa-1) = No, i | Pa-1 0
which tensorized by Og, (pa) gives

0 — N, /a(pa) = Né,_,/(Pa-1) ® N, 2 (a1 +Pe) = Neyyi | Pa-1-
To prove the second isomorphism notice that

Ngjz | Sa = (Oz(Es+ Egi1)) | Se
= (Ng,/z ® Oz(Eap1) | Eo) | Sa
= Ng,/z | 5o ® Og,(Sa) | Sa-

The result follows from the explicit description of the divisors F; in terms
of the line bundles L;, M; and K given in Proposition 5.3.3. O

We now prove Theorem 6.1.5. We will use the fact that Gromov-Witten
invariants are invariants under deformation of the complex structure of Z.
The hypothesis of the Theorem will allow us to deform Z in a convenient
way.

Notation 6.3.14. For any variety X, we will denote by Tx the sheaf of
C-derivations, i.e.,
TX = ’HO’ITLOX (Q}(, Ox),

where QY% is the sheaf of differentials of X.
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Proposition 6.3.15. Under the hypothesis H*(Y,Ty) = 0, we have the fol-
lowing ezact sequence of cohomology groups:

0— Hl(}/, Ty) — HI(Z, Tz) — @?leO(S, Rlﬂl*NEl/Z) — 0. (624)

Proof. From the Leray spectral sequence, we have the following exact se-
quence of cohomology groups,

0 — HYY,Ty) — HY(Z,Tz) — H°(Y, R*p.T%)
- Hz(KTY)_—)Hz(ZaTZ)a

where we have used the fact that p, Tz is isomorphic to Ty . This is true since
Y has quotient singularities, see [56] Lemma 1.11 for the proof, see also [14]
for a proof in dimension 2. The vanishing of H?(Y,Ty) gives the following
short exact sequence:

0— H'(Y,Ty) — HY(Z,Tz) — H(Y,R'p,T2) — 0.

We now claim that R'p, T} is isomorphic to i, (&, R'm,Ng,/z). First
of all notice that there is a morphism

R'p, Ty — iy (@, R'm.Ng,/7) - (6.25)

It is the composition of the morphism * (R'p,T7) — R, Tz | E, as defined
in [33] remark 9.3.1 Chapter III, and the morphism induced by Ty | E —
®j=1NE,/z, as the sum of Ty | E — Ng,;z. We will prove that (6.25) is an
isomorphism.

Since this is a local problem, let us suppose that Z = C* x R. Then,
from Kiinneth formula and the fact that the surface singularity is rational,
we have the following isomorphism

HYCF x R, Tony ) & H(CF, O ) @ HY(R, T).

Let C = CyU...UC, C R be the exceptional locus with the C; be the
irreducible components. Then, we have the following isomorphism:

Hl(RJ TR) = 69lnzl'H'l(C'la NCZ/R))

see [14] (1.8), and this shows that (6.25) is an isomorphism. O

Remark 6.3.16. It is known that H*(Y,Ty) is in 1 —1 correspondence with
the set of locally trivial first order deformations of ¥ modulo isomorphism.
In the same way H'(Z,T7) is in 1 — 1 correspondence with the set of first
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order deformations of Z modulo isomorphisms. So, the sequence (6.24) has
the following meaning in deformation theory: to any first order locally triv-
ial deformation of Y we can associate a first order deformation of Z, the
remaining deformations of Z come from H°(Y, R'p,Tz). We are interested
in understanding the last deformations.

Lemma 6.3.17. For any subset I C {1,...,n}, let us denote by E; = Ujer by
Let 77 : By — S be the restriction of w. Then HY(S, le*NEI/Z) s an
obstruction space for deformations of Er in Z. This means that, there is a
morphism

ob: HO(S, @?lel’lTl*NEl/z) — H° (S, Rlﬂ'l*NEl/z)

which associates to any o € H°(S, @ R'm,Ng,/z) the obstruction ob(c) to
extend E; to the first order deformation associated to o, see Remark 6.3.16.

Proof. There is a morphism
ob: HI(Z, Tz) — Hl(EI, NEI/Z)

which associate, to any first order deformation Z of Z, the obstruction to
the existence of a first order deformation &; of Ey in Z, see [54] Proposition
11.3.3. Since H'(Y,Ty) corresponds to locally trivial deformations Y of Y,
any element ), of the family has tranversal A, singularities. The deformation
Z of Z induced by Y is a simultaneous resolution, so it contains a deformation
of E;. Tt follows that ob factors through H°(S, &}, R'm.Ng,/z). By abuse
of notations we will denote by ob this induced morphism.
To conclude the proof, we will show that

HY(Er, Ng,jz) = H°(S, R%WI*NEI/Z)-

We use the Leray spectral sequence, H?(S, Ri11,Ng,/z) = H?*4(Er, Ng;/z),
to get the following exact sequence:

0 — Hl(S, WI*NEI/Z) — Hl(E[,NEI/Z) — HO(S, RIW[*NEI/Z)
— Hz(S, WI*NEI/Z),

where 77 : E;y — S is the restriction of 7 to Ey. Since 77, Ng,;z = 0 and
H*(S,m1,Ng,,z) = 0, we have an isomorphism between H'(Er, Ng,/z) and
HO(S, Rlﬂ'I*NEI/Z). O
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Let 0 € H°(S, ®,R'm.Ng,/z) be a section, and let

Z 2

! !

Spec(C) —— Spec (%i]))
be the corresponding first order deformation of Z. Then, there exists a finite
deformation of Z which, at the first order, coincides with the one given by
o, we will denote this deformation as follows

S —— Z

| | (6.26)

{0} — A

where A is a small disc in C around the origin 0 € C. Indeed, by the
Kodaira-Nirenberg-Spencer Theorem (1958), there exists a complete family
of deformations of Z, see [54] for a review.

Let V be a neighbourhood of F in Z and 7 : V' — S be a morphism whose
restriction to E coincides with 7. Now, the deformation (6.26) induces a
deformation V of V. We can choose V such that r extends to 7 : V — S, here
we use the hypothesis H'(S,Ts) = 0. Moreover, for K sufficiently ample,
the deformation (6.26) can be chosen in such a way the locus of points p € S
such that there exists a rational curve in 7~!(p) whose homology class is I’
has codimension one, if I' = af;;, and has codimension strictly greater then

one if I' # af;;.

The previous considerations shows that, if I' # af;;, then all the Gromov-
Witten invariants vanish. Indeed the virtual dimension of Mo(Z,T) is
dim S—1. If I" = af;;, then the locus of points p € S such that there exists a
rational curve in #7*(p) whose homology classis"is {p € S : ob(c)(p) = 0},
where o € H°(S, @}, R'm,NE,/z) and ob is the morphism defined in Lemma
6.3.17.

6.4 Quantum corrected cohomology ring for A,-
singularities

Let Y be a variety with transversal A,-singularities and p : Z — Y be

the crepant resolution. We compute the quantum corrected cup product *,
Defined in Chapter 3.4.
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Convention 6.4.1. We will tacitly assume that uor spaces S,Y, Z fulfil the
required hypothesis in order to be able to apply Theorem 6.1.3, 6.1.4 or 6.1.5.

Notation 6.4.2. Since the crepant resolution p : Z — Y is unique, the
quantum corrected cup product *, will be denoted by *.

Let v1, 72 € H*(Z), then the product y; %7y, will be represented by a family
of cohomology classes in H*(Z) which depend on n complex parameters
q1, .-, Gn- More precisely, for any 71, 72,73 € H*(Z), one defines the quantum
corrected triple intersection (71, 7¥2,73)p(q1, -+, @n) as follows:

(71,72,”)’3>p(Q1, ---,Qn) = (’)’1,’)’2,’73> + <71,72>’73>qc(Q1, ---7Q7z)7

where (1,72, 73) = [; 71 U2 U7s and (1,72, ¥3)qe(q1, -+ ¢n) 18 the quantum
corrected 3-point function, see (3.4). Note that, (y1,72,73)s(q1, - Cn), is @
complex valued function defined on the domain of definition of the quantum
corrected 3-point function. Then, the quantum corrected cup product, y1*72,
is defined by the following equation:

(71 %72, 7) = (71,72, 7) (@15 s @), for all v € H*(Z).

So, 1 * 72 is a cohomology class in H*(Z) which depends on the parameters
1, ..., . The vector space H*(Z) with the product * forms a family of rings
depending on the parameters qi, ..., gn, sSee Theorem 3.4.14. This family will
be denoted by H*(Z)(qy, ..., qn). Clearly the parameters qi, ..., g, belongs to
the domain where the quantum corrected 3-point function is defined.

Notation 6.4.3. Let us define v; *. 2 by the following equation
<le *e 7277) - <717’Y27’7>qc(917---,Qn)7 fOI' au v c H*(Z) (627)
Then, if Uy = 6+ a1 By + ... + anEp and 7y xc 2 = 6 + €1 By + ... + €. B,

Y1 %Y =06+ 6+ (a1 + 1) B + ... + (o + €r) En.

Remark 6.4.4. If v, € H*(Y) or 7, € H*(Y), then %, = 0. Indeed,
under these hypothesis, all the Gromov-Witten invariants WZ(vy1,72,73) are
zero.

So, we can assume y; = F; and v, = Ej.

Remark 6.4.5. F;x E; € H*(Y)*, where H*(Y)* is the subspace of H*(Z)
which is orthogonal to H*(Y") with respect to the ususal pairing (,) = [,.
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Lemma 6.4.6. The following expression holds:

n

Ei *e Ej = Z (C;l)lmRijm(g)Cl (K)El, (628)

l,m=1

where, ¢, s the n X n matriz (5.8), K is the line bundle on S defined in
Lemma 4.4.8 if n > 2 and is R'm.(Ng/z) if n = 1, (q) denote (qu, .., qn),
and Rijm(q) is defined by the following ezpression:

Rijm(ﬂ) = Z(E Brs)(E ﬂrS)(E ﬂrs)i—:z‘*'q’s"q:

As usual, Brs = Br + ... + Bs.

Proof. Let E; x. B; = e1E1 + ... + €, E,. Then, the left hand side of (6.27)
becomes '

<E’Z *e Ej, OAEk) = / Z]l*ﬂ'l ‘fl ] CYEk
Z

=1

.S | i@ vaty
_ z / puiie (@) U ji*(0:Bx))
— Z /Y T (T (6 Ua) U[E; N By, C E))

= /(Ek—l —_ 2€k + 6k+1) Ua.
S

On the other hand

(B ByaBeld = 50 3 (@ ) (B 6u2) (B - 5r) (B - ) [avex)

a=1 1<r<s<n §
= Riulo) / o U e (K).
S

So, we get the following equations for €, ..., €,:

/(ek_l —2€¢, + €pr) Ua = Rijik(q) / aUc(K) forae H*(S).
s s

As a consequence, we have the following result.
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Proposition 6.4.7. The following expression holds for E; x Ej:

n

E; x Ej = Z (C;I)lm{Rijm(ﬂ)cl(K) -+ aiﬂ}El, (629)
I,m=1
where

(0
if li =gl > 1
0,..,0iK—-MM-(i—-1)K,0,...,0

(@ij1y oo Qijn) = 3 ( o ( ) )

yj=1-1
0,..,00M — (i — 1)K, —4K, (i + 1)K - M,0,...,0)

szj = 7:7

where, in the second row, 1K — M is in the (i — 1)-th place, and in the third
—4K 1s in the i-th place.



Chapter 7

Comparisons for Ay, Ay and
conclusions

We put together the computations of the previous chapters in order to verify
Ruan’s conjecture for orbifolds with transversal A,-singularities. Actually we
have a complete picture only when n = 1,2. These cases gives informations
about how things should go in the general case.

7.1 The A; case

Form Lemma 6.4.6 we immediately get

q

E*EE=41_q

(55} (Rlﬂ'*NE/Z)E

S0, from Proposition 5.4.2, we get the following expression for the quantum
corrected cup product:

E+E= <2+41q

) Cy (Rlﬂ'*NE/Z).

Notice that for ¢ = —1, this is zero.
The orbifold cohomology ring H*.,([Y]) has been computed in Example
4.5.2. It is easy to see that the following morphism is a ring isomorphism

os([Y]) = H*(Z)(-1)

orb
(6,) — (6, ga),

where H*(Z)(—1) is the ring H*(Z)(q), defined in Theorem 3.4.14, for ¢ =
—1.

99
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7.2 The A; case

We will tacitly assume that uor spaces S,Y, Z fulfil the required hypothesis
in order to be able to apply Theorem 6.1.3, 6.1.4 or 6.1.5.

Notation 7.2.1. We will use the following notation: §; = 72—, 6, =

q 1-q?
— _q1q2
and 53 = gz

The following expressions holds for *.:

Eyx By = —2[S]+ ((2+ 461 + 63)M + (3 + 461 + 65)L) Ex
+((61 + 83)M + (2 + 62+ 63) L) By

El *e E2 = [S] -+ ((_‘1 - 2(51 + 53)M 4 (—251 —+ 63)[1) El
-+ ((——252 -+ 53)M + (—1 — 2(52 -+ 53).[/) Ez

Eyxc By = —2[S]+((2+ 61+ 63)M + (81 + d3)L) Ey
+ ((3 + 482 + 63) M + (24 02 + 65) L) Es.

Remark 7.2.2. Notice that, for g; = go = —1, §3 = 00, so, we have to mod-
ify slightly the cohomological crepant resolution conjecture (see Conjecture
3.4.16). In any case,

The orbifold cohomology ring for transversal Aj-singularities has been
computed in Example 4.5.3. The resulting ring is described as follows:
e1Ugp 1 = L62
1
€1 Uorp €2 = 5[5]

ey Uprp €2 = M€1.

Remark 7.2.3. Notice that the previous expressions, for the quantum cor-
rected cup product * and for the orbifold cup product, are symmetric if we
exchange E; <> Es, L <+ M and 6 < 6,.
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Theorem 7.2.4. The pairs (q1,q2) for which there exists a ring isomorphism
H*(Z)(q1,q2) — H:,([Y]) which respects the symmetry described in Remark

orb

7.2.8 are: g1 = qo = exp(%m’) and ¢ = qu = exp(%m’).

Proof. We are looking for a linear isomorphism

E1 a b €1

(2)-(a)(5) &
In order for it to respects the symmetry, we must have a = d and b = ¢. The
condition to be a ring homomorphism gives a lot of equations, in particular
we have d; = J3. Moreover we get the following two possibilities: a =
V3exp(%i) and b = v/3exp(2ni), or @ = —/3exp(27i) and b = v/3exp(Zi).
The first choice corresponds to ¢, = g; = exp(3ni), the second to ¢; = ¢, =
exp(3mi). a

Comments 7.2.5. As pointed out in Remark 6.1.7, if the orbifold [Y] carries
a holomorphic symplectic 2-form, then our Gromov-Witten invariants are
zero. It is easy to see that the isomorphisms H*(Z)(q1,¢2) — H:,([Y])
founded in Theorem 7.2.4 are still isomorphisms in this case, i.e. in the
holomorphic symplectic case. So, to find an isomorphism in the A, case,
one can try to find an isomorphic under the additional hypothesis for [Y] to
carries an holomorphic symplectic 2-form, and then try to prove that this is
still an isomorphism in the general case. Of course the natural candidates
for the parameters ¢, ..., g, is ¢1 = ... = ¢, equal to a nth root of unit, such
that ¢, - - - g, # 1.
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