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INTRODUCTION

Mirror symmetry has developed during the last decade as a result of the work
of many physicists and mathematicians. It takes its origin in Physics, as a
duality between string theories compactified on different Calabi-Yau mani-
folds, however it translates into deep geometrical problems when properly
formalized. From this point of view, mirror symmetry may be regarded, in
a very simplified way, as a correspondence between symplectic and complex
manifolds identifying suitable structures on these manifolds. This is what
is known as the homological mirror symmetry conjecture, formulated by M.
Kontsevich (see [18]).

From the physical viewpoint, mirror symmetry is an example of duality.
A given physical theory may admit more than one theoretical formulation
and the respective levels of difficulty in analysing these distinct formulations
can be widely different. This happens in mirror symmetry where two topo-
logically distinct Calabi-Yau compactifications of string theory give rise to
identical physical models. The consistency of the quantized theory requires
the target manifold (i.e., the manifold where the strings moves) to be 10-
dimensional (this in the case of superstrings, string models which incorporate
fermion fields and exhibit supersymmetry). A part of M will play the role of
the four Minkowski space-time. The most intuitive representation of this idea
is that in which six of the ten spatial dimensions in the flat space approach
are compactified, that is, are replaced by a compact six dimensional manifold
X, so that M = My x X. It can be prooved that the symmetries of a theory
are encoded in the geometry of X. In particular, N = 2 supersymmetry and
conformal invariance imply that X is a Calabi-Yau manifold.

String theories on X are parametrized by a “moduli space” which con-
tains the moduli space M$ of complex structures on X and the moduli

space MX of complexified Kahler structures on X. When string theories



compactified on different Calabi-Yau manifolds are mirror-symmetric (have
the same quantum spectra), then M§ =2 Mf\{ and Mg’; =~ ML, which im-
plies, considering the tangent spaces, that H* (X, C) = H(X,C) and
H* 17X, C) = H“(X,C). This is what is known as topological mirror
symmetry. Quantum spectra of string theories corresponding to type //B
and ITA also include extended objects, called A-cycles and B-cycles respec-
tively. An A-cycle is a special Lagrangian submanifold U of X together with
a line bundle L on U. A B-cycles is a complex submanifold of X support-
ing a holomorphic vector bundle with a compatible connection satisfying a
deformed Einstein-Yang-Mills condition. The form of mirror symmetry sug-
gested by physicists is just a correspondence between A-cycles on X and
B-cycles on X. v

From the mathematical viewpoint, to state precisely the homological mir-
ror conjecture seems to be still very difficult, however we will try to give a
simple idea, inevitably with few details, according to what Fukaya explains
in [13].

Given a symplectic manifold (M, w), the conjecture first of all asserts the
existence of a complex manifold (M, w)", called a mirror for M. Which con-
ditions on M would ensure the existence of a mirror are still unknown. A
sufficient condition might be for example the existence of a fibration M — B,
possibly singular, such that the general fibre is a Lagarangian torus. This is
just the case this thesis will be concerned with, under the further assumption
that the fibres are smooth. Moreover, when a mirror exists, it is not even

known if it is unique. The first part of the conjecture can be stated as follows:

For each pair (L, L) of unobstructed Lagrangian submanifolds and flat line
bundles L, we can associate an object £(L, L) in the derived category of co-

herent sheaves on (M,w)".



Here unobstructed is referred to the existence of Lagrangian intersection
Floer homology. For example L is unobstructed when H,(L,Q) — H,(M, Q)
is injective. If (Li,L;) and (Lg, Ly) are unobstructed, we can define Floer
homology HF((Ly, L1), (L2, L)) between them. The second part of the con-

jecture can be formulated as follows:

There ezists a canonical isomorphism
HF((Ly, £1), (L, L2)) =2 Ext(E(L1, L1),E(L2, L2)) (1)

between Floer homology and extension.

On Floer homology it can be defined a product structure

my 1 HE((L1, £1), (L2, £2))®HF((Ly, L2), (L3, £3)) — HF((L1, £1), (L3, L3))
(2)

on the other hand, given objects &; in the derived category of coherent sheaves

on MY, we have a map

EIt(S(Ll, El), g(LQ, EQ))@E:Et(g(LQ, Eg), S(Lg, ﬁg)) — El‘t(g(Ll, ,Cl), E(Lg,, £3))
(3)

The third part of the conjecture can be expressed as follows:

If & = E(Ly, L;), then the map (3) coincides with the map (2) through the

isomorphism (1).

Before stating the last part of the conjecture, we review the notion of A,—
category, which extends that of category by not requiring the associativity of
the composition of morphisms. This a collection C of a set ObC (the set of ob-
jects), of chain complexes C(c,d) for each ¢, d € ObC (the set of morphisms),

and of maps

my : C(cy,c1) @ ... @ Cc—1, cx) — C(co, Ck)
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such that m; : C(co, ¢1) — C(cg, ¢1) is the boundary operator and

Z imk#jﬂki(%l XR. Q1 1R mj_i+1(:z¢i ®..Q SL‘]') ® Tj41 ®..Q 33];) =0
0<i<j<k
We can rewrite this equation in a different way introducing the bar complex
BC(c,d) for each ¢,d € ObC, defined as

Bee,d) = P Clen,c)® .. @Clegr, )

k=1 c=co,c1,...,cx,=d

my, then induces a homomorphism 71y, : BC(c, d) — BC(c, d)

fnk(:rl ®..R :Em) = Z 1 ®...® mk(:z:i, . xi—}—k——l) ®R.QT,

satisfying

E iﬁ‘bkl o mk2 =0
ki+ka=k+1

To each symplectic manifold (M,w) we can now associate an A.,— category
LAG(M,w) such that: |

-the objects are pairs (L, L), where L is an unobstructed Lagrangian sub-
manifold and £ is a flat line bundle on it;

-the homology (with respect to the boundary operator my) of LAG((L1, L1), (L2, L2))
is canonically isomorphic to the Floer homology HF'((L1, L1), (L2, L9));
-the map my of the Aco-structure induces the map (2) in homology.

In this thesis, though we do not work on a generic manifold M, we will be able
to define a Fourier-Mukai transform only on a subcategory of LAG(M,w). It
would be interesting to extend the transform to the whole Fukaya category
and compare our construction with that proposed by Fukaya in [13]. Con-
sider now M” and let O be the set of chain homotopy equivalence classes of
chain complexes of sheaves of Oya-modules on M” with coherent homology
sheaves. For each F € O fix a representative C(F) of it such that C*(F)
is locally free and flabby. We define an A, —category SH = SH(M") as

6




follows:

-the set of objects of SH is O;

Af FL,Fp € O, then SHF(Fy, F) = @ Hom(CHF), CH(F));

-ms is the usual composition of homomorphisms, m; = 0 for ¢ > 2.

The definition of SH(M") is independent from the representatives up to ho-
motopy equivalence. The last part of the conjecture can now be stated as

follows:

There ezists an Ao—functor F : LAG(M,w) — SH(M,w)") such that:
-the quasi isomorphism class of F(L, L) 1s E(L, L);

-the homomorphism
F((L1,£1)>(LZ,£2)) : 'C'Ag((le El)? (L27 £2)) — ’S/H(E(Lh Cl)a E(L% ﬁz))

induces the canonical isomorphism (1).

It seems that the A, -functor F is not a homotopy equivalence. It is not
clear yet which singular Lagrangian submanifolds must be included in order
to make F a homotopy equivalence.

The idea of studying mirror symmetry through Lagrangian fibrations orig-
inates from a conjecture proposed by Strominger, Yau and Zaslow in [25],
according to which all mirror dual pairs of Calabi-Yau manifolds are equipped
with dual special Lagrangian tori fibrations. The geometry of such fibrations
and their compactification were studied by Gross in [14] and [15]. On the
other hand, as already explained, in his contruction Fukaya is concerned with
the A-category LAG(M,w) where Lagrangian submanifolds are considered
up to Hamiltonian diffeomorphisms of M. Presumably these two construc-
tions are compatible, since one can expect that for some class of Lagrangian
submanifolds the speciality condition picks up a unique representative in each

orbit of Hamiltonian diffeomorphisms group. From this point of view, the
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construction performed in this thesis is close to that developed by Fukaya.

The idea that, in accordance with the Strominger-Yau-Zaslow conjec-
ture, a kind of Fourier-Mukai transform should describe mirror symmetry
dates back to 1996 (see [10]). The original Fourier-Mukai transform, map-
ping coherent sheaves on an abelian variety X to coherent sheaves on the dual
abelian variety X, was introduced by Mukai in [23], as a functor D(X) —
D(X), where D(X) is the derived category of coherent sheaves of Ox-
modules. A relative Fourier-Mukai transform for elliptic surface was devel-
oped by Bartocci, Bruzzo, Herndndez Ruipérez and Muitioz Porras in [4] and
[5], by Bridgeland in [7] and again by Herndndez Ruipérez and Mufioz Porras
in [16], and was shown to describe, as conjectured in [25], D-branes transfor-
mation pattern under mirror symmetry in [4], in the paper [1] of Andreas,
Curio, Herndndez Ruipérez and Yau, and by Aspinwall and Donagi in [3].
In the case of Calabi-Yau threefolds which are fibred in (special Lagrangian)
real 3-tori, the construction of such a transform should be provided by a real
Fourier-Mukai transform. That is the aim of this thesis. A big problem is
represented by the presence of singular fibres, and, since it is not clear how
to handle them, we consider the simplified case when the fibration has only
smooth fibres. Before outlining the content of the thesis, we mention the
most relevant works on this problem.

The mirror symmetry equivalence was proved for elliptic curves by Pol-
ishchuk and Zaslow in [24], by Arinkin and Polishchuk in [2] and by Kreufler
n [19]. The construction given in [2] is similar to the one presented in this
thesis. However the transform is defined only for skyscraper sheaves or, in
the relative setting, only for sections of the fibration, and the exposition lacks
many details. A more geometric approach is exhibited in the work [21] by
Leung, Yau and Zaslow. There the transform is defined for local systems
supported on Lagrangian sections. They consider, when the fibration has

real dimension 6, a special Lagrangian submanifolds such that its projection




on the base of the fibration has real dimension 1, computing the transformed
object on the mirror manifolds, showing that the transformed support is a
complex submanifold of X and that the transformed vector bundle over it
has a holomorphic structure. In both works the problem of singular fibres
is not considered and moreover Lagrangian sections are supposed to be not
ramified over the base of the family.

What is presented in this thesis is the construction of a relative Fourier-
Mukai transform on a symplectic family of smooth Lagrangian tori X, yield-
ing a correspondence between local systems supported on Lagrangian sub-
manifolds and holomorphic vector bundles supported on complex subvarieties
of the mirror X which are flat along the fibre directions of X. Besides con-
sidering only fibrations with smooth fibres, we too assume that Lagrangian
submanifolds of X are not ramified covers over the base of the family. More-
over to obtain a complex structure on the transformed objects we have to
require further conditions on the Lagrangian submanifolds. We also prove
that, with some hypotheses, the transform is invertible. This correspondence
closely resembles Fukaya’s homological mirror symmetry in [13] and it would
be interesting, as already remarked, to compare these two constructions, be-
sides including singular fibres.

In the first chapter we extend certain results given for line bundles over
complex tori by Lange and Birkenhake in their book [20]. We will describe the
group Pic(X) of isomorphism classes of U(1) complex bundles on a real torus
in terms of factors of automorphy. More precisely a factor of automorphy is

a smooth map f: A x V — U(1) satisfying the relation

FO+p) = fh v+ p)f (1 0)

for all \,u € A and v € V. These factors form a group Z(A) under mul-
tiplication. The factors of the form (), v) — A(A + v)h(v)~}, for some non

vanishing smooth function on V/, are called boundaries and form a subgroup



B(A) of Z(A). The quotient Z(A)/B(A), denoted with H(A), turns out to be
canonically isomorphic to Pic(T). Now, if P(A) is the set of all pairs (4, x)
where A € Alt>(A,Z) = H?*(T,Z) and x is a semicharacter for A, then the
group homomorphism P(A) — Pic(T), which associates to (4,x) € P(A)
the line bundle generated by the factor of automorphy aga,,y : A XV — U(1)
given by

a(\, ) = x(A)em4EN

is an isomorphism. This is a real version of— the Appel-Humbert theorem,
which says that Pic(T) is an extension of H*(T, Z) by the group Hom(A,U(1)) =
Pic®(T). As an example, we will show the construction of the Poincaré bun-
dle for a real torus 7. The generalization of the results in [20] ends at this
point, since it is hard to extend theta functions to real tori and also it is not
necessary to our purposes.

The second chapter is devoted to the construction of the Fourier-Mukai
transform for a real torus 7', the absolute case. This will be useful to define
the Fourier-Mukai transform in the relative setting, that is for a fibration in
Lagrangian tori, since local computations will be quite similar, but for the
presence of the coordinates of the base of the fibrations. We outline now some
ideas of this construction. The Levi-Civita connection Vp of the Poincaré

sheaf P on T x T has a Kiinneth splitting into two operators
Vi:P— PO, Vy:P —P@O%

both squaring to zero, but with anticommutator equal to curvature of Vp.
Given a pair (£,V), where £ is a Cj'f’—module and V is its flat connection,
we pull it back to 7" x T and couple it with the pair (P, V1), obtaining a
complex
0 = kerVEap€aP s peeP ool
Y PO ..
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Since locally the operator V¢ coincides with the exterior differential, this
sheaf complex is exact, and is a fine resolution of the sheaf ker V¢. This
gives an isomorphism between the cohomology of the sheaf ker V¢ and the
cohomology of the complex (I'(p*€ ® P ® 2*?), V{). When the support of £
is a subtorus of T' of dimension &, we find out that R/p, ker V¢ = 0 for every
j# k (€ is said to be WITy), so as a sheaf, the transform of the pair (£, V),
is defined as
£ = RFp, ker V&

If V§ anticommutes with V¢, then a flat connection will be induced on each
higher direct images. The problem is that the anticommutator of V¢ and
V5 is the curvature of the Poincaré bundle, however when £ is supported
on a subtorus the curvature of the Poincaré sheaf P vanishes on the product
of the support of £ and £. As a first step, following this procedure, we
will introduce funtors Sky(7") — Loc(T) and Loc(T) — Sky(T), where
Sky(T') is category of skyscraper sheaves on T while Loc(T) is the category
of flat vector bundles on 7', and we will show that their composition is the
identity. The second step will be the extension of the transform to a local
system supported on a generic affine subtorus of 7. The main features of
this transform can be resumed as follows: if the support of £ is a subtorus of
dimension & then & is supported on a subtorus of T of dimension g — k and
“orthogonal” to the support of F; the support of ¢ is partly determined by
V, while V is determined by the support of £.

The third chapter contains the construction of the Fourier-Mukai trans-
form for a symplectic family of smooth Lagrangian subtori X — B. This is
similar to the construction developed in Chapter 2. Consider the split exact
sequence

0 — p"QL — Qf -T—>Q‘IZ/X.——>O (4)
which defines the sheaf le % of p-relative differentials. For every sheaf &£ of
C¥-modules endowed with a flat connection V, one defines two differential

11



operators:
VEPERPRO, = pE@P QT

obtained by coupling the pullback of the connection V with the connection
of the Poincaré sheaf Vp, and V¢, obtained by composing V¢ with the
projection r onto the relative differentials. One has (VE)? = 0, and so,
as for tori, we consider the higher direct images R'p, ker V&, which are the

cohomology sheaves of the complex
~ * Vf ~ % 1 Vf ~ * 2
P.(p*E @ P) —5 pu(p 5®P®QZ/X’) — Pa(p 5®73®QZ/X,) — ... (5)

If the sheaf & is supported on a closed submanifold S C X and RIp, ker V&
is supported on a closed submanifold S c X, then a connection is induced
on the sheaf R7p, ker V& when the curvature of the Poincaré bundle vanishes
on S x58 C Z. We first analyze the two extreme cases, that is when the
submanifold is a fibre of X and when it is a Lagrangian section of X. In the
first case, a local sheaf £ on a fibre turns out to be WIT, and it is trans-
formed into a skyscraper sheaf, supported on the point of X parametrizing
the flat line bundle corresponding to £*. In the second case one finds that
the transform is a holomorphic line vector bundle with unitary connection
on X which is flat along any fibre of X, or in other words we get what may
be called a holomorphic family of flat vector bundles. This sets up a bijective
correspondence between local systems supported on Lagrangian sections of
X and holomorphic line bundles with unitary connection, flat along the fibre
directions of X (and satisfying some further conditions). The intermediate
cases (when one considers a Lagrangian submanifold S C X whose projection
onto B has a dimension strictly between 0 and dim B) are more involved.
To get a well-behaved transform one needs to assume that S intersects the
fibres X, of X (here b € B) along subtori S, of X3, and that the vertical
tangent spaces to S undergo parallel displacement under the natural Gauss-

Manin connection defined in 7X. Under this condition the transform of a
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local system on S is a holomorphic vector bundle supported on a complex
submanifold S of X, which intersects the fibres of X along affine subtori of
complex dimension k£ and such that the connection V is invariant under the
action of 79 on X while its horizontal part is flat. These results hold true
whatever is the dimension of X, and do not require X to be Calabi-Yau (and
not even complex). One should note that, when X is a Calabi-Yau manifold,
the additional condition on the support S we have previously described is
in general quite unrelated to the condition of S being special (in addition
to being Lagrangian), and coincides with the latter only when X is complex
3-dimensional, and the projection of the Lagrangian submanifold onto the
base is (real) 1-dimensional (this corresponds to a transformed sheaf which

is a line bundle supported on a curve in X).
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duced me in this subject and helped me during these four years in achieving
the results presented in this thesis. His ideas and advices has been conclusive
to attain the aim. I'd like to thank also Fabio Pioli for his precious collabora-
tion. Finally, I am thankful to Daniel Herndndez Ruipérez and Kenji Fukaya

for useful discussions.
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Chapter 1

LINE BUNDLES ON REAL
TORI

The purpose of this chapter is the description of U(1) bundles over a real
torus 7' in terms of factors of automorphy. This theory is well known for
holomorphic line bundles over a complex torus (see [20]). What we are going
to do is a simple extension of this theory to real tori. As a consequence we
will give an explicit construction of the Poincaré bundle over 1" x T, where
T is the dual torus. Along all this chapter, for simplicity by line bundle we
will mean a U(1) line bundle

If V is g-dimensional real vector space and A a lattice in V', that is a discrete
subgroup of rank g of V, we call a g-dimensional real torus 7" the quotient
V/A.

Definition 1.0.1. A factor of automorphy is a smooth map f : AxV — U(1)

satisfying the relation

FO+pv) = f(h v+ p)f ()

forall \,p e A andv eV

14




These factors form a group Z(A) under multiplication.
Any factor f defines a line bundle L on 7" in the following way: on the trivial
line bundle V' x C — V consider the action of A

AMw,s) = (v+ A, F(\v)s)

for A € A. Set
L=(VxC)/A

then it can be prooved that L is a complex manifold and that the projection
L — T is a complex line bundle on 7. We call f the factor of automorphy
of L.

The factors of the form (X, v) — h(\ + v)h(v)™*, for some non vanishing
smooth function A on V, are called boundaries and form a subgroup B(A) of
Z(A). The quotient Z(A)/B(A) is denoted with H(A). Now let Pic(T) be
the group of isomorphism classes of U(1) bundles on T". The following is a

transposition of a result proved in [20]

~

Proposition 1.0.2. There is a canonical functorial isomorphism Pic(T) =
H(A).

The following lemmas are consequences of the previous proposition:

Lemma 1.0.3. Let L1, Ly € Pic(T) whose associated factors of automorphy
are respectively fi and fy, then the factor of automorphy of Ly @ Lo s the
product fif.

Proof. Tt follows from the fact that the isomorphism of Proposition 1.0.2 is

a group homomorphism. O

Lemma 1.0.4. Let ¢ : T — Ty be a smooth map of real tori and L a
smooth line bundle over Ty with factor of automorphy f, let ¢ : Vi — V5 be
the induced map on the universal covers V; of T; and ¢, : Ay — Ay be the

induced map on lattices, then the factor of automorphy of ¢*L is given by

(o x @) f.

15



Proof. This again is a transposition of the same result prooved for complex

tori in [20]. O

The factor of automorphy f associated to a line bundle L on 7" allows to
describe the group of global sections of L. These turn out to be the smooth
functions ¢ : V' — C satisfying

o+ A) = FO,v)t(w)

forallv eV and A € A.

Remark 1.0.5. To change the factor of automorphy of a line bundle L by
a boundary is equivalent to act on L by an automorphism (or to change
gauge). Indeed, an automorphism of L is induced by a map ¢:V — U(1)

which changes the factor of automorphy as follows
ap(z,A) = é(z + A ar(z, ) ¢(x) .

The isomorphism Alt?(A,Z) = H?*(T,Z), where Alt*(A,Z) denotes the
space of alternating 2-forms on A, allows to identify the first Chern class
of a line bundle L on T with an alternating 2-form on the lattice A. If

A € Alt?(A,7Z), a semicharacter for A is a map x : A — U(1) such that

XA+ ) = x(\) x(p)e™ 4w

for all A,z € A. Call P(A) the set of all pairs (4, x) where A € Alt*(A\,Z)
and y is a semicharacter for A. With respect to the composition (A, x1) o
(As, x2) = (A1 + Az, x1X2), it is easy to see that P(A) has a group structure.
Consider the group homomorphism P(A) — Pic(T') defined as follows: to
each (A, x) € P(A) we associate the line bundle generated by the factor of
automorphy aay) : A x V' — U(1) given by

a(),v) = x(N)em e

16




As for complex tori, provided that we define Pic’(T) as the dual torus T,
it is possible to prove the Appell-Humbert theorem, which says that Pic(T)
is an extension of H*(T,7Z) by the group Hom(A,U(1)) = Pic®(T). This
means that we do not consider only the C* structure over line bundles on 7',

but also a flat connection, otherwise Pic’(T") would be trivial.
Theorem 1.0.6. There is a canonical isomorphism of ezact sequences

| —— Hom(A, U(1)) —= P(A) ——= H(T, Z) —=0

{0

Pic®(T) Pic(T) — H*(T,Z) —0

13

1

Proof. It is enough to show the isomorphism Hom(A,U(1)) 2 Pic®(T). We
have defined Pic®(T) as the dual torus 7' which is the quotient /A, where
Q = Hom(V,R) and A = {1 € Q(A) C Z}. The canonical morphism
Q — Hom(A,U(1)), given by v — exp(2mit)), since it is surjective and has

A as its kernel, induces an isomorphism T — Pic® (X). O

So, given a line bundle L with ¢;(L) = A, there is a semicharacter x for
A, such that aga ) is a factor of automorphy of L called the canonical factor
of automorphy. For flat line bundles the canonical factor of automorphy
reduces to a character, that is a semicharacter corresponding to A = 0. If
y is a point of T, then the flat line bundle L, on T parametrized by y has

factor of automorphy given by

— 2miy(N)
ay =e

Even in the real case, it is possible to prove the existence of a Poincaré bundle

for T', that is a line bundle P on the product 1" x T satisfying

P

Xx{y}g Ly Yy € T and

The next theorem gives an explicit construction.

17



Theorem 1.0.7. There ezists a Poincaré bundle P on 1T x T’_, uniquely de-

termined up to isomorphisms.

Proof. Consider the pair (4, x) € P(A x A) where

A((A1, p1), (Mg, pio) = p1(A2) — pa(A1)

X, p) = €™

According to the Appell-Humbert theorem this pair defines a line bundle P
on T x T with factor of automorphy given by

ap(z,y, \, p) = emN—u@)=p]

We are showing that P is a Poincaré bundle for 7' x T. To this purpose it is
convenient to apply the automorphism induced by the map
oV xV =UQ), oy =
thus obtaining a new factor of automorphy
ab(z,y, A, p) = 2 (1.1)

This description of the Poincaré bundle shows explicitly that Pjpyyy = Ly,. If
instead we act on ap with the automorphism ¢(z,y) = e ¥(® we obtain the
factor of automorphy % (z,y, A, p) = e~271®) which shows that the second

property defining the Poincaré bundle holds for P. O

Remark 1.0.8. Note that since the factor of automorphy ap and af are
equivalent, it follows that after the identz’ﬁcationT ~ T, the dual bundle PY

s a Poincaré bundle for TxT.

Let V» be the connection of P. The universality property of this con-
nection implies that its connection form A, in the gauge where the factor of

automorphy of P has the form a%, is written as

g
A=2irY 2l dy (1.2)
i=1

18




while its curvature is

9
F=2irY del Ady; (1.3)

J=1
where (z',...,29) are flat coordinates on T and (y1,...,y,) are dual flat

coordinates on 7'. The restriction VP (a}x7 18 the flat connection of L on T.
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Chapter 2

FOURIER-MUKAT
TRANSFORM FOR REAL
TORI

The second chapter is devoted to the study of a Fourier-Mukai transform
for a real g-dimensional torus 7. The motivation lies in the fact that this
is the first step towards the construction of a Fourier-Mukai transform for
a fibration whose fibre are smooth real tori. The objects that we want to
transform are subtori of T' together with a smooth vector bundle endowed
with a flat unitary connection, including the limit case when the subtorus is
the whole torus T or it reduces to a point supporting a skyscraper sheaf.
Consider the Poincaré sheaf P on T x 7' and denote by p, p the projections

onto the two factors of 7' x T'. To simplify the notation we shall set
™ = OF B =50 8o, 70
where p* denotes the pullback of C*°-modules, i.e.
p'E =5 By Ol
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and similarly for p*. Remember that in general the box product X, for
sheaves of modules over the structure sheaf of a differentiable manifold, is
defined as follows: if X, Y are differentiable manifolds, and F, G are sheaves

of C¥- and C{*-modules, respectively, then

F.g p*F®C g7

XXY

where p and ¢ are the projections onto the two factors of X x Y. The

connection Vp of P has a Kiinneth splitting into two operators
ViP=PRQY, VyaP PO

both squaring to zero (but their anticommutator is the curvature of Vp).

The action of V1, V3 on sections is locally written in the form

9.9 ‘ /0 L
V1f=Z—a—léd:cj, szzz<’§£“2”$Jf>dl/jv
j=1 /

J=1

or
(0 , :
IR LA
]:

and we switch from the former to the latter simply acting on P with an
automorphism as already done in the proof of theorem 1.0.7.

Let £ be a C°-module with a flat connection V, where by a connection on
a C®-module £ (not necessarily locally free) we mean a map V:& — £ ® QL

satisfying the Leibniz rule
V(fs) = fV(s) +5® df.

The purpose is to develop a procedure to construct a C°°—module ® with a
flat unitary connection V on 7. Of course, this procedure does not work

for every C¥-module. In other words, we will have to determine on which



categories to define the functor. By pulling the pair (£, V) back to T' x T

and coupling it with the pair (P, V1) we obtain a complex

£
0 — kerV‘f%p*E@P—&p”‘E@P@QLO
I
T o e@P@O0 ...

Since locally the operator V¢ coincides with the exterior differential, this
sheaf complex is exact, and is a fine resolution of the sheaf ker V4. Thus we

obtain an isomorphism
HY(T x T,ker V) ~ H'(T(p*€ @ P Q*), VE),  i>0

between the cohomology of the sheaf ker V§ and the cohomology of the com-
plex (T'(p*€ @ P ® Q*0),VY), where I is the global sections functor. Si-
milar results hold for the operator V5. Consider the higher direct images
Rip,ker V€. To compute these sheaves, by definition of direct image, we

have to study the presheaves
U~ H(T x U, ker V) ~ H{(T(p*€ @ P @ Q) (T x U), V¥)
where U is an open subset of 7.

Definition 2.0.9. The pair (£,V) is said to be WITy if R'p, ker V$ = 0 for
ik

The operator V§ defines a connection on each higher direct images pro-
vided that it anticommutes with V. The anticommutator Vo V5 +V5oV¢,
as an operator p'£ QP — p*E QP ® Q;XT, coincides with 1 ® F, where F is
the curvature of the Poincaré bundle. This is clear from local computations
(cf. equation (1.3))

Vo VEf+ Vo Vif =




= 27 fdz? A dy
As a consequence of this, we can state the following proposition

Proposition 2.0.10. Assume that the sheaf £ is supported on a closed sub-
manifold S C T, the sheaf R'p, ker V¢ 1s supported on a closed submanifold
S c T, and the curvature operator F vanishes on S X S C Z. Then the

operator V§ induces a connection on the sheaf RIp, ker V5.

Definition 2.0.11. If the pair (£,V) is WIT, and satisfies the condition
in Proposition 2.0.10, the pair (€,V), where & = RFp.ker V¢ and V is
the connection induced as in Proposition 2.0.10, is called the Fourier-Mukas
transform of (£,V). We denote the transform by F.

There is a class of submanifolds of 7" which satisfies theorem 2.0.10 and

which we are going to define.

Definition 2.0.12. Let T = V/A be a real torus, where V' 1s a real vector
space and A a lattice in V. An affine subtorus S of T is a subset of the form
U/(UNA)+z for some z € T and some vector subspace U of V' such that
UnN A is a mazimal sublattice of U. For simplicity, we will call subtorus an

affine subtorus.
We introduce now the categories we will be concerned with.

Definition 2.0.13. (1) the category Mod(Cr) of Cr-modules, where Cr is
the constant sheaf on T

(1a) the subcategory Sky(T) of skyscrapers of total finite length (i.e.,

dim H%(T, M) < oo for all M € Ob(Sky(T)))

(1b) the category Loc(T) of unitary local systems on T (see [9]). Objects of
this category are pairs (E, V), where E is a smooth complex vector bundle on
T, and V is a flat unitary connection. Morphisms in this category arelvector

bundle morphisms compatible with the connections. The objects in Loc(T)
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can also be regarded as locally free Cr-modules of finite rank equipped with a
hermitian metric defined up to homothety (cf. [8])

More generally, we can consider unitary local systems supported on affine
subtori and define the categories Locy(T), for k = 0, ..., g, in such a way that
Sky(T) = Locy(T') and Loc(T) = Loc,(T).

Definition 2.0.14. We call Locg(T) the category of U(1) local systems sup-
ported on affine subtor: of T of dimension k. Objects of this category are
triples (S, E, V) (where S is an affine subtorus in T, E a line bundle on S,
and ¥V a flat unitary connection on E) modulo isomorphisms, i.e., modulo
vector bundle isomorphism:s which commute with the actions of the connec-
tions (the two line bundles having the same support). The space of Wiorphz'sms
between two objects (Si, F1, V1) and (S, Fa, Va) of Lock(T) is defined by
taking into account that the intersection S = S; NSy is a (possibly empty)

finite collection of (possibly zero-dimensional) affine tori R;, and one sets

NIOI‘((SIJ Eh vl); (52) EQ: v2)) = @N{OIV<(RZ'7E1) Vl); (RiaE27 v?));

where Mory ((R;, E1, V1), (Ri, B, V3)) is the set of morphisms between B g,

and Fy p, compatible with the connections Vi and Vs.

To build a real Fourier-Mukai transform F for real tori we start from the
easiest case, that is we apply the construction just outlined to the category
Sky(T). As a result we will have defined a functor F: Sky(T) — Loc(T).
Let M be a an object of Sky(7'), and denote by M the corresponding C7°-
module, with multiplication given by evaluation of functions. In this case we
have ker V; = p* M ® P, and the higher direct images vanish apart from RY,

in other words, M is WIT,. Moreover

P(PPM®P)
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is locally free of finite rank, so it is the sheaf of sections £ of a vector bundle
E on T, with tkE = length(M). The operator V, naturally extends to
p*M ® P, and since the latter sheaf is supported on {z} x T, it induces an

operator V : B — F @ QL which is a flat unitary connection.
p g

Example 2.0.15. Let C(0) denote the one-dimensional skyscraper at 0 € T'.
One has F(C(0)) ~ C;. Indeed, in this case we have p" M @ P =~ Cfg}xf,
while the operator Vy reduces on this sheaf to-the exterior differential along

the T' direction. As a consequence, (£,V) = (€, d), and F(C(0)) = kerd =~
Cs.

For every z € T let t, be the associated translation, t,(z') = = + 2.
Moreover, identify 7' with T'.

Proposition 2.0.16. For every © € T and M € Ob(Sky(T)) there is an
isomorphism F(t;1 M) ~ L_, ® F(M).

Proof. 1t is a consequence of the following property of the Poincaré bundle
(see [23]): t'y)P = P ® 7' L, as follows from lemma 1.0.3 and 1.0.4. [

As a consequence, in view of Example 2.0.15, we have
Corollary 2.0.17. For every z € T' one has F(C(z)) ~ L_,.

This defines the action of F on the whole category Sky (7).

The morphisms transform as morphisms of sheaves. Observe that the si-
tuation is not so involved since Hom(C(z), C(y)) and Hom(£,, £,) are empty
when z # y. We have only to check that the transformed morphism com-
mutes with the transformed connection This is clear because if ¢ is a mor-
phism of a skyscraper sheaf, then p*y, being supported on {z} x TinTxT,
commutes with Vs.

Therefore this procedure does define a functor.
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It is not clear how to define an inverse for the functor F by means of the
adjunction theory for C-modules. The next step is a direct construction of
a functor F: Loc(T) — Sky(T) which inverts the functor F. Let (E, V) be
an object in Loc(7), let £ be the sheaf of sections of E. Reverting the roles
of T and T, we consider on the sheaf p*€ ® PV an operator V¥ obtained
by coupling the pullback of V with the operator V,. The following result

characterizes the functor £.

Proposition 2.0.18. 1. Rip, kerVs =0 forj=0,...,9—1 (£ 1s WIT,)
2. The sheaf RIp, ker V§ is a skyscraper of finite length.

Hence the functor F is defined as F((F, V)) = R9p, ker V.

Proof. As a first step we compute the action of F on the trivial line bundle,
ie, we take & = Cj?f’ and V = d. Thus we want to compute the sheaves

Rip, ker Vo, and, as explained, we have to study the presheaves

U~ HI(U x T, ker V) ~ H <('PV © 0% (U x 1), vz)
Proposition 2.0.19. H°(U x T, ker Vs) = 0 for all open sets U C T, so
that p, ker Vo = 0.

Proof. An element of H(U x T', ker V) restricted to {z} x T, with 2 € U,
yields a global section of the flat line bundle L,, which is zero unless z = 0.

By a density argument we get the result. O

To compute the higher-order direct images we first consider the case g =
1.

Proposition 2.0.20. If g = 1, then R'p. ker V, ~ k(0).

Proof. We compute the cohomology groups H'(U x T, ker V,) ~ H'((P¥ ®
Q) (UxT),V3). We represent T’ as R/Z), with A € R\ {0}, and T asR/Zy,
with o = 1/A. Let W be the inverse image of U in R. We work now in a gauge
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where the factor of automorphy of PV is e #(®) and the operator Vy is the
T-part of the exterior differential. An element in ((PY®Q%') (U x T'), ker V5)
may be written as 7 = t(z,y) dy, where ¢ is a function on W x V" satisfying

the automorphy condition
t(z,y + p) = t(z,y) 7O,

Since g = 1 clearly 7 is closed. If 7 is a coboundary, 7 = Vs, one has

s(z,y) = v/oy t(z, u) du + c(x).

The function s must satisfy the automorphy condition

Y+

Yyt p
s(z,y+p) = / t(z, u) dutc(z) = / t(z,u) du—l—/ t(z,u) dutc(z) =
0 0 I
changing varaibles u = v +
p Y |
:/ t(z,u) du—l—/ t(z,v+ p)dv+c(z) =
0 Jo
and using the automorphy condition for £ we obtain

. y ILL A
— p2imu(@) / t(z,v) dv + / t(z,u) du + c(z) =
0 0

= 2 HE) (5(z,y) — clz,y)) + /0“ t(z,u) du+ c(z) =

4 ) H
_ eQW“(m)S(w,y) + C(I)(l . €2mu(m)) +/ t(;z;,u) du
0

hence the automorphy condition for s amounts to the following condition on
c:

e(z)(1 — 2 )y = — /OM t(z,u) du. (2.1)

If 0 ¢ U this condition may be solved for ¢, which means that 7 is a co-
boundary, so that HY(U x T, ker V3) = 0. Thus R'p, ker V is a skyscraper
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supported at 0 € 7. If 0 € U, the condition (2.1) may be solved if and only
if
W
/ t(0,u) du =0
0

this gives a surjective map ((PY®@Q%1) (U x T), ker V) — C whose kernel are
the coboudaries, so that H(U x T, ker V5) ~ C. This proves the claim. [J

We move to the higher-dimensional case by means of a Kiinneth-type

argument.

Proposition 2.0.21. I[fdimT = g we have

1. Rip,kerVy =0 forj=0,...,9—1;

2. R9p.ker Vs, ~ k(0).

Proof. A choice of flat coordinates (z*,...,z9) on T fixes an isomorphism
T ~ S' x ...S'. The Poincaré sheaf P on T x T is the box product of the
Poincaré sheaves P; on the 7 factors of T'x T, as one can check for instance by
describing the Poincaré bundles by their factors of automorphy. Let U C T’
be of the form U = Uy x ... x U, where each U, lies in a factor of T. Ifg=2a
word-by-word translation of the Kiinneth theorem for de Rham cohomology

(cf. e.g. [6]) gives a decomposition

HI(U x T,ker Vo) = @ H™Uy x S' ker Vi) @ H*(Up x S, ker V)

m-+n=j

whence we have, by Proposition 2.0.19,
HI(U x T,kerV,) =0 for j=0,1, H*U xT, kerV,)=~C.
Induction on ¢ then yields, for every g,
HI(U xT,kerV5) =0 for j=0,...,9—1, H(U xT,kerVy) ~C.

This proves both claims. : O
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We have also obtained

0 for 7=0,...,9—1,

H(T x T, ker V) = { C tor i
: or j=g.

The C*(T)-module structure of the g-th cohomology group is given by f-a =
f(0) . This concludes the proof of proposition 2.0.18. O

Let £, be the local system corresponding to the line bundle L, with its

flat connection. In analogy with Proposition 2.0.16, we have

Proposition 2.0.22. ff(S_z Rc, S) ~ t;lj’}(G) for every x € T and every
local system G on 7.

Corollary 2.0.23. F(£_,) ~ C(x) for every z € T.

Remark 2.0.24. Since any flat vector bundle on a torus is a direct sum
of flat line bundles (i.e., every local system on T is a direct sum of local
systems of the type £,), Corollary 2.0.23 completely describes the action of
the functor F.

Nothing to prove as to the behaviour of morphisms under the functor
F: in fact these transform as morphisms of sheaves and moreover both
Hom(C(z),C(y)) and Hom(£,, £,) are empty when z # y. Corollaries 2.0.17
and 2.0.23 and Remark 2.0.24 eventually prove

Theorem 2.0.25. The functors F, F are inverse to each other, and establish

~

an equivalence between the categories Sky(T') and Loc(T).

After the easiest case, we want to extend the transform to U(1) local
systems supported on subtori of 7' of general dimension, that is to define
the transform on the categories Locg (7). So let £ be a U(1) local system
on a k-dimensional affine subtorus S of 7', and let £ = £ ®c C5° be the

corresponding flat line bundle on S. By restricting the sheaves P ® Q™0 to
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the closed submanifold S x 7 C T x T one obtains, as already explained, a

complex

) Vi .
0 — ker V‘lc —p 5L® p{SxT — P IL® (P & Ql’o)[SxT
vt . -
— PIL® (P ® QQ,O)]SXT R

where j : S < T is the natural embedding.
Proposition 2.0.26. 1. Rip, ker VL =0 for all j #k (so £ is WITy);

2. RFp, ker V£ is supported by a (g — k)-dimensional affine subtorus S of

T, which is normal to S;

3. if L is trivial, then S goes through the origin of T, otherwise it is an

affine subtorus translated by the element ofT corresponding to L*.

4. The sheaf RFp, ker VE is a line bundle, and has a flat connection which

makes it into a local system L.

Proof. We first consider the case when S is a 1 dimensional subtorus of 7.
The direct images R'p,(ker V¥) we want to compute are by definition the

sheaf associated to the presheaf
U~ HY(S x U, ker V5) ~ H' (Q"O(p*L ® P)(S x ﬁ),Vf)

where U is an open subset of the dual torus T.

For 7 = 0, take an element s in H%(S x U, ker V%) and consider, for y € U,
its restriction to S x {y}, which is a global section of £L ® Pgyy,;. A line
bundle over T is a representation of 71(7") in U(1), that is, an element of
Hom(my(T),U(1)) = T. The embedding S « T gives a map m(S) —
m1(T"), which, considering the long exact sequence in homotopy associated
to (S,T) and dualizing, induces a map ¥ : T — Hom(m(S),U(1)) such
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that keri) = Hom(A/Ag,U(1)), where Ag is the lattice associated to S. Its

decomposition in a free part and a torsion part is
Hom(A;, U(1)) x Hom(A4, U(1))

so, since rkAf < rkA and the torsion is finite, it follows that kery is a non
dense subgroup of 7. This means that Psx iy} is non trivial for every y in
the complement of kerty, which is a dense subset of T. The same holds for
L ® Psxiy} Since VT |sxqy} S |sxgyy= 0 for e\;ery y € T, the restriction of s
to S x {y} vanishes in a dense subset of T'. The continuity of s implies that
s vanishes everywhere.

When 7 = 1 we need to write the equation of S explicitly. In order to simplify
the computations involved we will restrict to the case when dim7" = 2. Let
z* be flat coordinates on T" and ¥; the dual coordinates on T. We pick a

gauge where the Poincaré bundle has factor of automorphy

L1 2 2w +Xayo
aP<a’ y X ,y1,y2,)\1,/\2,ﬂ1,#2) =e” Pupat oy())'

The equation of S in the universal cover of T  is given by the affine line
2> = az' + x. Let A = & da! be the 1-form connection of the local system
(£, V%) on S. We need to compute H'(S x U, ker V). So take an element
7 e (QX(p* LRP)(SxU), VE) which can be written as ¢;(z?, 22, y1, yo)dz' -+
to(z', 2% y1, yo)dz?. Observe that 7 is exact with respect to V£ because
dim S = 1. The automorphy condition satisfied by 7 can be expressed with
respect to the natural coordinate ¢ on S in the following way: having set
a = ¢/p with p, ¢ coprime, the relations between ¢ and p, q are

_AVITE ST
p q

and substituting in 7 we obtain

7(z! %Y1, Y2) = P 751( Pe a5
/p2 o+ q2 /p2 4 qz \/p2 + q2
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q t2< 148 q¢
\/p2+q2 \/}32+q2, \/p2+q2
so the automorphy condition becomes

1, %2) dC = B(C, 11, 12)dC

P(C+ PP+, y2) =

P ¢ q¢
= t1< +p, +q,y1,y2>dC+
\/pQ i qz \/p2 4 qz /pz + q2
q 28 q¢ -
. tz( +p,——~———+q,y1,yz)dC=
/p? + ¢2 /p? + ¢ /p? + ¢

p q
=———ti(z' +p, 2%+ q Y1, ¥2) + to(z' + 0,77+ ¢, Y1, Y2) =

/p2 + q2 pZ + q2
— ep(y1+§1)+qy2 ( p

q
/—‘——‘——p2 +q2tl($17x27y13y2) + _\/_”“})th(ml’xz’yl7y2)> =

= PWFIT2G(C gy, )

Suppose that 7 is exact so that we can write 7 = V{s with s € C®(S x

U, ker V£). Then s can be written in the form

¢
S(C;ylayiz):/o P(u, 11, y2)du + c(y1, yo)

which, to be well defined, must satisfy the automorphy condition. This

happens when

0

C(yl, yg)(l — 627ri(p(y1+§1)+qyg)) = — gb(’u,, Y1, yg) du. (22)

This equation may be solved for ¢ in the complement of the set S defined by

plyn +&) +qy2 =0

or in term of a by




this means that 7 is exact when U does not intersect S and that the coho-
mology vanishes on such U, thus the support of R*p.ker V¥ is exactly S. In

the case dimT' = n > 2 the computations are similar: indeed, let
' =a'z' + i (2.3)

be the equations defining S and A = & dxz; the 1-form connection of the local

system (£, V¥) on S, then the equation of the support is given by
h+ays+ . Fa"y, + & =0 (2.4)
To compute the sheaf R'p,ker V£, note that the map

Y QY0P LR P)S x U) = C®(SNT)

T — —/ d(u, Y1, y2) du
is surjective. : O

Indeed suppose that the local system is trivial and a = 0, so that S is
represented by {y; = 0)}, and let S = {y, = 0} be the dual torus of S: if
feC®(SNU) and s is a section of the Poincaré bundle over S x S, or, in
other words, a function on the universal cover V satisfying the automorphy
condition

S(‘rl +p) yl) - 627T’ipy15(x1’ yl)

then the 1-form 7 = ¢d( defined by

¢(Cy1,92) = Bs(C, 1) f(y2)
with 1/8 = — [V PH o (u,0)du, satisfies (r) = f. Note that we can

choose s such that its restriction s(u, 0), which is a periodic function, satisfies

Iy pite’ s(u,0)du # 0. When a # 0, we call again S’ the dual torus of S,

which is a line orthogonal to S and s a function on S x S satisfying the

following automorphy condition
S(C+ VP + 2,y 1) = eQ”i(pyl‘qu?)s(C,yl,yz),

33



With a coordinate  on S’

nVP @ ye/p ¢

p )

the automorphy condition for s can be rewritten as
s(C+ /P> + a7 m) = VP S(C )

Given now a couple (y,32) in 70T, we define s(C, y1,2) as 5(C, pr(r, v2)),
where pr(y1,ys) is the orthogonal projection of (y1,%2) on S’. The 1-form
T = ¢d( defined by

¢(€7 Y1, y?) = /BS(C7 Y1, yz)f(?h)

with 1/8 = — D\/ms(u,yl,yg)du, where y1, y2 € S, satisfies ¥(7) = f.
Moreover ¢ is a section of p* L&P, since it satisfies the automorphy condition.
As before we can choose s such that 3 is a nowhere zero function.

This shows that 1 is surjective, thus that H'(Sx U, ker V£) = C® (SN0).

The transformed sheaf is endowed with a flat connection induced by V£,
the (0,1) part of the connection p* V4 ®@ Vp. The hypotheses of proposition
2.0.10 are satisfied. Consider, indeed, for simplicity the case when n = 2.
Since the equation of S is 22 = az! + x and the equation of S is yp =
w;ll-yl — %, the curvature of the Poincaré bundle, given by 2mi(dz* A dy; +
dz? A dys), vanishes on S x S. This happens also in general because S and
S are “orthogonal”. In fact, substituting in the curvature of the Poincaré
bundle F = 27 Z?:l dz? Ndy; the expressions of S and S’ given by equations
(2.3) and (2.4) respectively, we realize that

F = dz' A dy; + a?dzt Adys + ... +a" Hdz! A dy,_1+

an—l

1 2
+a”d:z:1 AN <——a}:dy1 — %dyz — ... dyn—l> =0

aTL
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So it follows that the (0,1)-part of the connection p*V* ® Vp induces a

connection on R'p,ker V£, which has the following expression in coordinates
A= —zldy; — 2idy, =

1
= —aldy, — (az + ) (—=dy) = —(~2)dy

Note that the expression of A using the coordinate ys is

A= —xdys
. In a similar way when n > 2
A=—zldy, — ... — 2"dy, =
= —gl(=a’dy, — ... — a"dy,) — (Pz' + xP)dys + ... =
= —xdys — .. — X"dyn

In order to show that R'p,(ker V) = 0 for ¢ > 1, it is enough to observe

that the groups
HY(S x {y}, ker Vi |sxq) 22 (R'pa(ker Vi))y

vanish because S is has dimension 1.

We can now extend this result to the case when dimS = k£ > 1 using a
Kiinneth formula. To this purpose we write S as a product S = Sf x ... x S}
where S} are 1-dimensional subtori of 7. Since by “universality” the Poincaré
bundle (P, V) on S x T is the box product of the Poincaré bundles (P;, V;)
on S; x T, we can apply the Kiinneth formula getting:

R ”*keer =0 wheni#k

RFp.kerVE is a local system with support on an (n — k& _subtorus of 7.
1 Y
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For example, if S? is a 2-subtorus, then we can write S* = S} x.S; for suitable

1-subtori S} and S3, so by the Kiinneth formula

H(S? x U, ker V¥) = HO(S! x U, ker V£) @ H°(S; x U, ker V¥)
HY(S? x U, ker V5) = H°(S} x U, ker V) @ H'(S3 x U, ker V{)+
+H'(S! x U, ker V&) @ H(S} x U, ker V)
H(S? x U, ker V&) = H(S! x U, ker V) @ H°(S: x U, ker V£)+
+HY(SIxU, ker VEYQH (S2x U, ker VE)+HO (S} x U, ker VE)@H?(Syx U, ker V)

and so on. Since, as seen, only H(S! x U,ker V£) # 0 and H'(S§ x
U, ker V£) # 0, it follows that only H'(SIx U, ker VE)@H'(Six U, ker V£) #
0, so only H%(S% x U, ker V¥£) # 0. Tts support is the intersection of the sup-
ports of é% and é;, which is non empty since, on the universal cover, it is
given by the intersection of two (n—1)-hyperplanes orthogonal to two incident
lines. So this intersection is a (n — 2)-subtorus. The transformed connection
on S? is the transformed connection of S} or S5 (these in fact coincides on
the transformed support Sy N S,). For a generic k-subtorus S¥ = S} x ... x S}
there is only one non vanishing term, and it is the one which contains the
term ®*_, H(S} x U, ker V{), so it is H*(S* x U, ker V). The support is
given by the intersection of the supports of 531, which are (n — k)-subtori,

and the transformed connection is the transformed connections of S ]1 O

Let us describe the content of this Proposition in local coordinates. Let
(z!,...,29) be flat coordinates in T, (y1,...,¥,) the corresponding dual
flat coordinates in the dural torus 7, and write the equation for the affine

subtorus S in the form

g
Za}ijr,\/i:O, i=1,...,9—k.
=1
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The equations 37

the equations of the dual torus Sy may be written implicitly as

_, at 27 = 0 describe a corresponding “linear subtorus” Sp;

g
Za;g'ﬂyﬁzoz izl;"'ag—k7
J=1
where the constant functions g’ are the components of the natural flat metric

on T, or explicitly as

k
ye:Z&anm, t=1,...,9 (2.5)
m=1

for a suitable k& x (g — k) matrix a. The specification of the local system £
corresponds to a choice of the parameters (&3, ..., &) in equation (2.5). The

support S of the transformed local system is given by equations

9
nygny]—*"émzoa m':l:"'aka
i=1 o

where ”yg is a matrix satisfying ?:1 'yg a§ = 0. The local system £ is given by
the point in Sy (regarded as the dual to the linear subtorus Sy corresponding

to §) whose coordinates are the numbers x*.

Definition 2.0.27. The pair F(S, £) = (5, L) is the Fourier-Mukai trans-
form of the pair (S, L).

Of course we may perform the same transformation from 7" to 7', and we

have:
Proposition 2.0.28. The Fourier-Mukai transform of (S, £) is naturally
isomorphic to the pair (S, £).

Proof. We start cheking the invertibility when the local system is supported
on a subtorus S of dimension 1, since, when the support is an higher dimen-
sional subtorus, through the Kinneth formula, we reduce to transform local

systems supported on subtori of dimension 1.
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If S has equation 22 = az' +x and the local system on it is defined by the
flat connection A = &,dz!, then the transformed local system has support
and connection given respectively by v, = -—%yl — %— and A = Xy We
apply now to this local system the inverse transform, which is performed
by means of the dual Poincaré bundle: the support is given by solving the

equation

while, as to connection, we take the (1,0)-part of the connection of the dual
Poincaré bundle

A= —ydzt — ypda® =
1 1 3! 1 1
= —ydr — (—=y — E)ad:c = &1dx
a

This shows the invertibility of the transform.

When dim 7 is bigger than 2, and dim S = 1, written S as z* = a’z! + X/,
with 7 = 2,...,n, and the connection of the local system on it as A = & dz?,
the transformed local system is defined by a support S, whose equation is
Y1+ a’ys + ... + ay, + & = 0, and a connection A = —x2dys — ... — X dyn.
To transform back this local system, we have to find n — 1 independent lines
lying in the hyperplane just found, transform them and take the intersec-
tion, according to the Kiinneth formula, of the corresponding transformed
hyperplanes. A natural choice of these lines is the following: the line r;, with

1= 2,...,n, is defined by the equations
yi+ay+& =0

y; =0

with 7 = 2,...,n, j # 1. But transforming these lines with their connections,

we get the hyperplanes whose intersection is the line we started with. The
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same for the connection, though with longer computations:

A= —ydst — ... — yudz” =
= —ydz’ — 512—(——311 — & — ays — ... — a™yp)aldzt+
——alg(—yl — & = alyy — atyy — ... — a"yp)atdzt — .+
——alg(-—yl —& —adlyy— ... —a"lyp_1)a"dat =
= &dat.

In the general case we proceed as in the previous one. If dimS =k, S is

defined by the equations

k41 k+1 k+1 k+i

T =] T+ ey T+ X

with i = 1,...,n — k, and connection

k
D&y
j=1

To use the Kiinneth formula, we choose k independent lines lying in .5, for

example the family of lines {51, ..., Sy} where S; has equations

tt=0 fort=1,...k t#]

k-1

mk-{-z — a;ﬁrl

4+ x fori=1,...n—k

transforming the S;’s with their connection, and applying the Kunneth for-

mula, we obtain the transformed local system S with support
Y; + af“ +otajy, +& =0

for j =1, ..., k, and connection

n—k

A= Z Xk+idylc+i

=1
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To apply now the inverse transform we choose n — k lines gl, o Sk lying

in S, for example we can take S; to be the line whose equations are
yj=—ai Py — & forj=1,.k

Ykts = 0 for s #1

It is quite easy to check now that the inverse transform of this family of lines
with their connections gives, after having applied the Kiinneth formula, the

initial local system S. O

So the Fourier-Mukai transforms F and F yield an equivalence of cate-

gories
Locy(T) = Loc,—(T)

When a local system &, supported on a subtorus of dimension &, has rank
n bigger than 1, it splits as direct sum of local sytems &; of rank 1. So it
follows that its transform is a collection of n local systems of rank 1 supported
on parallel subtori of dimension g—%. This happens because the support of £
(which coincides with those of &;) is “orthogonal” to the supports of & (this
means that they are parallel), moreover these are displaced according to the
connections V; of &. The transformed support of & and éj concide when
the parameters (€1,...,&L) and (€7,...,€]), which appear in equation (2.5)
and represent the connections V; and V, respectively, differ by an element
of the lattice. What just explained can be generalized to a family of local

systems of generic rank supported on a family of parallel subtori of 7.
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Chapter 3

THE TRANSFORM FOR A
LAGRANGIAN FAMILY OF
TORI

In this chapter we extend the construction described in the second one for
a real torus to a family of real tori, providing a real relative Fourier-Mukai
transform. A big problem is represented by singular fibres because it is not
clear how to handle them. So as a first step, one may consider the simplified
case when there are no singular fibres.

Let (X,w) be a connected symplectic manifold admitting a map f: X — B
whose fibres are g-dimensional smooth Lagrangian tori. We assume that f
admits a Lagrangian section o: B — X. The following theorem comes from

a work of Duistermaat [11]

Theorem 3.0.29. Let (X,w) be a connected symplectic manifold of dimen-
sion 2n which supports a fibration w : X — B such that for every b € B
the fibre Fy, = w=1(b) is a compact connected Lagrangian submanifold of X .
Then the following statements are equivalent:

1. X ~ T*B/A as symplectic manifolds fibred over B in Lagrangian sub-
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manifolds, where A is a covering of B such that Ay = ANTyB is a lattice
for every b € B.
2. the bundle w : X — B admits a global Lagrangian section

X clearly satisfies the hypothesis of this theorem, so the existence of
the section o gives the isomorphism X ~ T*B/A. The symplectic form w
provides an isomorphism between T'X and 7™X and this, in turn, an isomor-
phism Vert TX ~ f*T*B. We also have an identification 7B ~ R'f,RQC%¥,
which endows 7B with a connection Vg, given by 1 ® d, which is flat
and torsion-free, and called the Gauss-Manin connection of the local sys-
tem R!'f,R. The holonomy of this connection coincides with the mono-
dromy of the covering A (indeed, the horizontal tangent spaces may be iden-
tified with the first homology groups of the fibres with real coefficients).
Let X = R'f,R/R'f.Z be the dual family, with projection f:X — B.
Dualizing the isomorphism Vert7TX =~ f*7*B we get a new isomorphism

Vert TX ~ f *T'B; combining this with the splitting of the Atiyah sequence
0— Vert TX —TX — f*TB =0

provided by the Gauss-Manin connection (which can be regarded as a con-

nection on T'X), one has a splitting
TX ~ f*TB& f*TB.

By letting J(«o, 8) = (=0, «) this induces a complex structure on X, such
that the holomorphic tangent bundle to X is isomorphic, as a smooth bun-
dle, to f*TB ® C. On X we may consider local symplectic coordinates
(!, ...,2%vy1,...,y,) such that the z’s are local coordinates on B, and for
fixed values of the z’s, the y’s are flat coordinates on the corresponding torus
(local action-angle coordinates). Analogously, we may consider on X local
coordinates (z!,..., 29, w!,. .., w9) such that the w’s are dual coordinates to

the y’s. Local holomorphic coordinates on X are given by 2/ = 27 -+ iw?.
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In this relative context it is natural to consider the fibre product Z = X x s X
of the fibrations X and X. We shall denote by p, p the projections of Z onto
its factors. On Z there is a Poincaré bundle P which may be described in an
intrinsic way, however, it is enough to say that P a line bundle on X xp X
equipped with a U(1) connection Vp whose connection form may be written

in a suitable gauge as
g
A=2iT ijdyj.
=1

Moreover, P has the property that for every § € X, Pls-1(¢) is isomorphic to
L (the line bundle on X -1(¢ parametrized by £) as a U(1) bundle. Let us

consider the exact sequence

0= " QY% = Qp — Q=0 (3.1)

which defines the sheaf QIZ % of p-relative differentials. Sections of this sheaf
are locally written as 7 = gzl 7 (z,y,w) dy;. The Gauss-Manin connection
Ve provides a splitting of this exact sequence. Analogously, we have the
exact sequence

0—p Q% — Q5 Qb — 0 (3.2)

which defines the sheaf Q0 /x of p-relative differentials. For every sheaf &
of C¥-modules endowed with a flat connection V, one defines the following
differential operators:

(i) the operator
VEP EQRPRQ, - pé@PRO,T,

obtained by coupling the pullback of the connection V with the connection
of the Poincaré sheaf Vp;

(ii) the operators V£, V¢ obtained by composing V¢ with respectively
the projections r, 7 onto the relative differentials.
One has (V)% = (V)% = 0.
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We shall consider the higher direct images R'p, ker V&, which are the

cohomology sheaves of the complex
~ * Vf ~ * 1 Vf ~ * 2 5
PP ERP) 5 (P E@P Dy ) > B(PEQRP O, o) — ... (33)

Also in the relative context, we introduce the WIT notion, whose defini-
tion is the same as in Chapter 2 (cf. definition 2.0.11) and which we recall

now

Definition 3.0.30. The pair (£,V) is said to be WIT), if R'p,ker VE = 0
for i #£ k.

Now we want to state a condition for the sheaves R7p, ker VE to admit a
connection induced, so to say, by the part of the operator V¢ complementary
to V& . The splitting of the exact sequence (3.1) provided by the Gauss-

Manin connection Vg allows one to make a splitting
Ve =vE+ Ve,

where

VEPERPRIAL @0 »pEQ@P RPN, © Q5T
The V¢ operator induces connections on the higher direct images R7p, ker V¢
provided it anticommutes with the operator V4. The anticommutator
VEoVE+VEoVE may be regarded as an operator p*£®@P — p*EQP®Q% and
as such it coincides with 1 ®TF, where I is the curvature of the connection Vp

of the Poincaré bundle. As a consequence, we have (cf. proposition 2.0.10):

Proposition 3.0.31. Assume that the sheaf &€ is supported on a closed sub-
manifold S C X, that the sheaf R7p, ker V& is supported on a closed sub-
manifold S C X, and that the curvature operator F vanishes on S xS CZ.

Then the operator V¢ induces a connection on the sheaf R7p. ker V.

Eventually, we may introduce the Fourier-Mukai transform
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Definition 3.0.32. If the pair (£,V) is WITy and satisfies the condition
in Proposition 3.0.31, the pair (é,@), where £ = Rfp,ker V¢ and V is
the connection induced as in Proposition 3.0.31, is called the Fourier-Mukai
transform of (€,V) .

The following lemma is useful when one wants to check if the WIT pro-

perty holds for some sheaf and connection.

Lemma 3.0.33. Let £ be a sheaf of Cj?f—modzlles supported on a closed sub-
manifold of X which intersects every fibre Xy along a closed submanifold, and
let V be a flat connection on €. For every j = 1,...,g there is a canonical
isomorphism:

(R7p. ker V) 3, — Ripy.ker Vi*, (3.4)

where b = p(€), pp: Xp X X, — X, is the canonical projection onto Xy, & is
the restriction of €& to X, and ker Vf” is the operator introduced in chapter
2.

Proof. Standard homological arguments provide a morphism as in equation

(3.4). Moreover, one has the canonical isomorphism
(R7p.ker VE)e ~ HI (57 (€), (ker Vi) jp-1()) -

Since the restriction of V¢ to Xj is V‘fb, the group in the r.h.s. is isomorphic
to H7(X,, ker V%), so that the restriction of the morphism (3.4) to every

stalk is an isomorphism. O

The case of a local system £ supported on a fibre X, is the simplest to
deal with. It is enough to consider the case rank £ = 1, since the higher rank
case reduces immediately to this. Notice that the isomorphism class of the
local sistem £* singles out a point in X}, which we denote by [£*]. We obtain

the usual “tautological” property of the Fourier-Mukai transform.
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Proposition 3.0.34. Let L = £ ®CY. Then L is WIT,, and the sheaf
L = R, ker V£ is isomorphic to the skyscraper Cig-).

Proof. The sheaf R7p, ker V¥~ is obtained by “sheafifying” the presheaf

U~ H((X xUp' LOP QY ¢)) (3.5)

where U is an open set in X. The sheaf p*L ® P ® Q° .. vanishes outside

N "Z)X
the set X x Uy, where U, = U N X}, so that the group in the r.h.s. of (3.5) is
actually H’(T'(X, x Uy, py L@ Py @ p;Q%,)) where Py = Py, %, and py is the
projection onto the first factor of X x X,. Comparison with the absolute

case in chapter 2 shows that £ is WIT,, and that L~ Kpge- O

We turn now to the costruction of a transform for local systems supported
on sections of X — B. This will generalize the tautological correspondence
that in the absolute case holds between skycrapers of length one on a torus
and U(1) local systems on the dual torus. The transform will produce holo-
morphic line bundles on X with compatible U(1) connections which satisfy
some further conditions.

Let S € X be the image of a Lagrangian section of X — B, and £ a
unitary local system on S. Set £ = £®CZ and call ps and ps the canonical
projections of S xp X onto the factors S and X, and Pg the restriction of
the Poincaré bundle P to S xp X.

Proposition 3.0.35. 1. The pair (L, V) is WITy;

2. L= Ps.« ker VE is a rank-one locally free C;?—module.
Proof. Both claims follows from Lemma 3.0.33 and the absolute case. O

~ Since lF]SXB;( = 0 the conditions of Proposition 3.0.31 are met, so that L
carries a U(1) connection V.
Let us express this connection in coordinates. We write the local equa-

tions of S as y; = ¢;(z). Moreover, the z's can be thought of as local
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coordinates on S. If the connection form associated with the local system £
is A=14Y29_, Aj(z)da, with 224 = %2, then V may be represented by the

connection form

zg: dx] — 2 Z €z cle

Remark 3.0.36. In these coordinates the components of the connection form
A do not depend on the w’s. Moreover, both the horizontal and vertical part
(with respect to the splitting given by the Gauss-Manin connection) are flat,
and 1n particular, the restriction of@ to any fiber X, of X — B is flat. The
independence of the components A on the w’s can be stated invariantly in
a variety of ways. For instance, one can use the fact that the zero-section
of X makes the latter into a (trivial) principal T9-bundle over B; then, \v/

commutes with the action of T9 on X.

The Hodge components of curvature form F' of this connection may be
written — recalling that in the complex structure we have given to X the

coordinates 2/ = 27 + 1w’ are complex holomorphic — as

R Oe; :
YO Ll
F? E azi dzF A dz?

~ aE
0,2 _ g sk —
F E p) kd/« A dZ

Fl’lng(aek aE])d~ AdZ.

> Ozl Ox*
0 o} .
Since S is Lagrangian we have 5%— = (95:]; thus F02 = F20 = (, so that

£ may be given a holomorphic structure compatible with the connection V.

Moreover, we have

il Za T dzk A dF
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Definition 3.0.37. The Fourier transform of (S, L) is the triple (L, V).

We now want to generalize this construction including local system sup-
ported on more general Lagrangian submanifolds of X. To this purpose we

select the following class of submanifolds of X:

(C1) S is a Lagrangian subvariety of X;

(C2) the intersection S, = SN X, of S with a fibre of X, when nonempty, is
a (possibly affine) subtorus S, of X}, whose dimension does not depend

on b.

Let £ be a U(1) local system on S and V the corresponding flat connection
on L=L®cCS.
We define as before a Fourier-Mukai transform of the local system (S, £, V)
at the sheaf level as
L = R™ps. ker V£
where m is the dimension of the tori S;. This definition has its motivation

in the following result.

Proposition 3.0.38. Let (S, £, V) be a local system supported on a Lagran-
gian subvariety S which satisfies the conditions C'1, C2. Then the sheaf L 1is
WIT,,.

Proof. Tt follows from Lemma 3.0.33 and Proposition 2.0.26. O

Lemma 3.0.33 and Proposition 2.0.26 also imply that after restriction to
its support, £ is a line bundle. We shall now show that, under some suitable
conditions on the support S, the transform L is supported on a complex

submanifold S of the dual family X. More precisely, we assume:

(C3) the vertical tangent spaces of the family of subtori {S}ees(s) are par-
allelly transported by the Gauss-Manin connection Vg, regarded as a

connection in T X.
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This requirement can be translated into a more explicit form in terms of
the action-angle coordinates (x,y) we have previously introduced, in that it

amounts to the condition that the family of subtori {S;} can be written as
g -
Za’gyz_‘_Xz:O) Z'_‘lzzg_"m
J=1

with the matrix a/ constant and the ;s are local functions on B.

Lemma 3.0.39. Conditions C1, C2 and C3 imply that f(S) is a submanifold
of B of dimension k = g — m, and that it can be parametrized by the first k

action coordinates 7.

Proof. The first claim follows from the fact that the horizontal part of the
tangent space to S has costant dimension; the second from the Lagrangian
condition which implies that the local equations of f(S) in B are linear in

the action coordinates. O

Proposition 3.0.40. Let (S, £, V) be a local system supported on a Lagran-
gian submanifold S fulfilling the conditions C'1 and C2. The condition C3
18 satisfied if and only if the support S of the transform L is a complex sub-
manifold of X .

Proof. For notational convenience we suppose that & < g/2; the complemen-
tary case k > ¢g/2 can be treated similarly. In the usual coordinates z, y, w

we can write the local equations for S as

{ yg-k+j = 779—k-+j(l‘1, e ,iTjk,yl, ... 7yg—k) , j = 1, .. .,k (36)

wk+i:Ck+i(xl7...,CUk), Z:17ﬂg_k
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Since S is Lagrangian the symplectic form vanishes on S. So one has

4 g
aCe 5‘77[ .
7 ’ ) ! ’
T 07 OYm
o Kot oy
< m Z __;n" 07 7':1: » g 2;@',771-—-1, 7k7
Oz t=g—k+1 O™ O+
g
a¢t on,  OCt Oy .
; — 1 =0, 1<j<m<k.
D bﬂ@ﬂz D™ B EsIsTs
(3.7)
The equations of the subtori Sy, with b = (z1,..., %), can be written in a
linear form
Yg—k+j = Za’g k+] 7~'-7xk)ym+Xg~k+j(m17"'7xk>a ]:17:k
(3.8)

To find the equations of S we shall perform a fibrewise transform and use

the Kiinneth formula. First we split every subtorus S, as a product of 1-

dimensional tori 7;(b) which have linear equations given by

{W:o, (=1,...,9—k, L+#1
Yg—kti = o i (T )y A+ Xgons (2, k), j=1,...,k.

Observe that we can also split the local system £ on S, as a box product of

local systems £;(b) on r;(b) where ¢ = 1,...,¢g — k. Transforming the local

system £;(b) on r;(b) we get the following equations for the support of £;(b):
g
w' + Z ab(zt, .. ")y wh+ ¢ (3.9)
l=g—k+1
where the constant term &' describes the automorphy of £; (here 7 is fixed).

Then $ is the intersection of the supports 7;, so that its equations are of the

form

Z kgt ) wd + Rt L2, i=1,.0,9—k (3.10)
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together with the second set of equations (3.6). Here we have solved with re-
spect to w', ..., w*. These equations may be used to substitute the functions

n in the system (3.6), thus getting

g a ¢
5;14‘ EE: 5;;‘&?':30, ], =1 ...,k
f=g—k+1
e bt =0, i=1,...,9-2km=1,... .k
ox™ Pt oz ’

i{%m_wm

‘ - | = 1<y < k. .
oz Ox™ 8:(:’"8:61} 0, lsj<ms (3.12)

l=g—k+1

The equations in (3.11) can be rewritten as the collection of the following

sets of equations for m=1,...,k
9 £
3@
07" + aft —— =0, =1,...,k
mng | (3.13)
abtt =0, i=1,...,9— 2k
ame“Z’faxm » 2T L d
f=g—k+1

To solve this system, observe that it is similar to (3.9) (wherei =1, ...,9—k),
in the sense that the unknowns have the same coefficients. Therefore the
solution of (3.13) is

agk—m’ )
W:(F\;/TI'CII+I7 TTI,:].,...,k, 221779—]{: (314)

If the submanifold S is Lagrangian, the conditions (3.14) admit solutions in
(. We must check that the support S is holomorphic, i.e., the equations that
define it fulfil the Cauchy-Riemann conditions. The latters are satisfied if
and only if the coefficients 7¥*¢ do not depend on the z’s, but this is true if
and only if the coefficients aj’,,; are in turn independent of the z’s. As a
result, we have proved that when S is Lagrangian, the tangent spaces to the

Sy’s are parallelly transported by Vg if and only if S is holomorphic. O
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One may note that the coefficients X’ play no role in the specification of

the complex structure of S.

Remark 3.0.41. In our setting there is no constraint on the dimension of
X, the latter space is assumed to be just symplectic, and we consider local
systems supported on Lagrangian submanifolds of X. On the other hand,
string-theoretic mirror symmetry assumes, on physical grounds, that X is a
(usually 3-dimensional) Calabi- Yau manifold, and one considers special La-
grangian supports (let us recall that a special Lagrangian submanifold of a
Calabi-Yau n-fold X is an oriented real n-dimensional submanifold Y which
18 Lagrangian w.r.t. the Kdhler form of X, and such that the global triviali-
zation Q of the canonical bundle of X may be chosen so that its imaginary
part vanishes on Y. For more details cf. [17]). In this case, the condition
that S is special Lagrangian implies, for k = 1, that the coefficients a{ ’s are
constant, so that this is a particular case within our treatment. On the con-
trary, for k = 2 the speciality property seems to be unrelated to the conditions

that ensure the support S to be complex holomorphic.

Proposition 3.0.42. Under the conditions of Proposition 3.0.40, the opera-

tor V£ induces on £ a U(1) connection.

Proof. We know that V£ induces a connection on the Fourier-Mukai trans-
form if the curvature F of the Poincaré bundle on Z = X Xp X vanishes on
S xp S, where S and S are the supports of £ and L, respectively. In view
of the form of F, this condition is met if the intersections of S and S with
the fibres X,, X, yield for all b € B subtori of X, X, that are normal to
each other. But looking at the equations of the supports, (3.6) and (3.10),
and comparing with the absolute case (Proposition 2.0.26), we see that this
condition is fulfilled. ' O

Proposition 3.0.43. If the support S of the transformed sheaf L is a complez

submanifold of X, then £ has a holomorphic structure.
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Proof. The connection 1-form of the connection V can be written in an ap-

propriate gauge as

k g—k
A :iZaj(asl,...,x’“)dacj +2z'7r§:§edyg,
7=1 =1

with the quantities £¢ constant. From the proof of Proposition 2.0.26 we
know that the transformed connection V is given in local coordinates by the

1-form
9 k
A=—2ir Z yelzt, ..., zF) dw? —!—Z'Zaj(:cl, o aR)dad

t=g—k+1 j=1

Rewriting this in terms of w?, ..., w* we obtain
9 k . k

A=-2r Z ng(ml, : ..,a:k)fyfdwj +iZaj(m1, o, x®) dad
t=g—k+1 j=1 ' j=1

where the coefficients 7¢ are constant. Since d(3; cv; dz?) = 0 because of the

flatness of V, it follows that the curvature of V is given by

g k
, , e ., o m
F=-2 E E 8335' FE dz? A dw™.

b=g—k+1jm=1

. g9+7
Since 7977 =

mn ozm

the equation F%2 = 0 can be written as

i PC‘] Oxe  9¢" Oxe

9zl dz™  Ox™ Oxd

, where the functions (#*7 are those of the equations (3.6),

}:0, 1<j<m<k.
b=g—k+1

These are the equations which comes from the Lagrangianity of S, more
precisely they are those which were not used in the proof of the complex
structure of the transformed support, therefore when S is Lagrangian, this

condition is automatically satisfied. O
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Remark 3.0.44. (The higher rank case.) So far we have for simplicity con-
sidered only the transformation of local systems of rank one. However the
higher rank case, under the same conditions, can be treated along the same
lines, obtaining on the X side holomorphic vector bundles of the correspond-

ing rank supported on complex submanifolds of X.

The aim is now to prove that the Fourier-Mukai transform inverts. How-
ever we shall only discuss the inverse transform of rank 1 sheaves, since the
higher rank case requires to consider Lagrangian submanifolds of X which
ramify over B.

We shall therefore consider a holomorphic line bundle L supported on
a k-dimensional complex submanifold S of X, equipped with a compatible

U(1) connection V. Moreover, we shall assume that:

(D1) S intersects the fibres of X along affine subtori of complex dimension
k;

(D2) the horizontal part of the connection V is flat (horizontality is given

by the Gauss-Manin connection);

(D3) the connection V is invariant under the action of 79 on X (cf. Remark
3.0.36).

These conditions allow us to write the local connection form of V as
k k
A=1 Zaj(:cl,...,:z:k)dccj + QiﬁZﬁj(xl,...,xk)dwj,
j=1 j=1

where the functions o satisfy (as a consequence of D2) the closure condition
%g—% = g%. This shows that the restriction of V to any fiber Xb of X - B
yields a flat connection on [',l 2,

We consider the operator
VE=Fo (P VE@1+1® Vav)

o4




and in terms of it we define a Fourier-Mukal transform from sheaves on X

to sheaves on X (notice that we twist with the dual Poincaré bundle PV).

Proposition 3.0.45. L is WITy, and L = R*p, ker Vf s supported on a
Lagrangian submanifold S of X such that the intersection Sy, = SN Xy of
S is an affine subtorus of dimension g — k (when nonempty). Moreover the
family of subtori Sy is parallelly transported by the Gauss-Manin connection

Vau. Finally, a flat connection V is naturally induced on L.

Proof. The WIT condition follows immediatly from Lemma 3.0.33. To show

the remaining part of the claim we write local equations for S as

gt = kil 2R, j=1,...,9—k

Wt =S8 P (L aR) w4+ QR ah), J =1, 0 — k.

)

Il

Performing a fibrewise transform we obtain the following equations for the

support S of the transform £:

g
Y+ Z ‘le(xla‘"J-Zk)ym'f"ﬂl(ﬂfl,...,xk)—_:O

m=k+1
where [ =1, ..., k. It remains to show that S is Lagrangian and that the fam-
ily {Sb},e j(s) is parallelly transported by the Gauss-Manin connection. The
latter point follows from the complex structure of S (cf. Proposition 3.0.40):
the Cauchy-Riemann equations for S imply that the coefficients P{“H and
QF*J are constant. As far as the Lagrangian property of S is concerned, the
holomorphicity of S and £ imply equations (3.7) in the proof of Proposition
3.0.40 . Therefore S is Lagrangian. Observe that the transformed connection

V has a 1-form given by

k g
A:iZO&j(Il,...,xk)dl’j-—Qiﬂ Z Q™ dy,m ,
7j=1

m=k+1

whence we can immediatly deduce its flatness. O
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So, as a consequence, we obtain

Theorem 3.0.46. The Fourier-Mukai transform F we have defined is in-

vertible.

This can be checked in a more intrinsic way by resorting to the absolute
case. From Proposition 2.0.26 it follows that the fibrewise transforms F, and
Fy satisfy the condition F, o Fp =~ Idg, for every b € f(S) and Fyo Fy ~
Idg, for every b € f(S). Since F, and Fy are the restrictions of F and
F respectively (cf. Lemma 3.0.33), it follows that the compositions F o F
and F o F differ from the identity functor by a term which comes from the
base B. Since the transforms F and F preserve such terms, it follows that
FoF ~1dg, FoF ~1Idx. This parallels the classical result in [23].

These results generalize the one in [2], whose authors consider the case
where X and X are Sl-fibrations over S' (X is actually an elliptic curve)
and L is a local system on an affine line S C X. Observe that in this case
the conditions C1, C2, C3 and D1, D2, D3 are trivially satisfied.

Finally, we would like to comment upon the relation of the construction
we have described in this paper with Fukaya’s homological mirror symmetry.
First we notice that, in the absence of the B-field and with no singular fibres,
our “mirror manifold” X coincides with Fukaya’s, also taking into account its
complex structure. Let S be a Lagrangian submanifold of X, and g = (£, V)
a local system on it. Fukaya proposes to construct on X a coherent sheaf
whose fibre at a point (b, @) € X (where o = (Lo, Vo) is a local system on

the fibre X}) is given by the Floer homology
HF.((XIN CY), (S> /B)) .
This homology may be proved [12] to be isomorphic to

H* "8 (85 Xy, Homy (Lo, £))
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where 1(X,,S) is a Maslov index, and Homy(Lq, £) is the sheaf of V-
compatible morphisms between £, and £. It is not difficult to show that
only one of these cohomology groups does not vanish (in the correct degree),
and that it is isomorphic, up to a dual, to the fibre of our transform L. How-
ever, the concrete construction done in [13] is not in terms of Floer homology,
but it is an ad hoc one, which may be compared with ours when X = T2,
B = T9 and S is a Lagrangian embedding of T9. In this case the vector
bundle constructed on X coincides with ours.

It should be noted that our construction provides on the “mirror side”
X more data, in that we obtain on £ a connection, which is not present
in Fukaya’s approach. It is interesting to note that this connection is not
invariant under Hamiltonian diffeomorphisms of X, while the remaining ge-

ometric data on X are.
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