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Introduction

Let Q be an open set of R"; let ¢ be a smooth real function defined in €2, such that
©'(y) # 0 for all y € Q; let S be a level surface of ¢, S = {y € Q| p(y) = 0}. We consider
the following partial differential equation of order m:

(0.1) F(y, (0yu(y))aca) =0,

where A is a finite subset of N™ and m = maxqse4 |af.
If it happens that: for two any solutions to (0.1), u; and uy:

Uy =ug In “the past” Uy = us Iin “the future”
1 2 1 2

02 mene) <0} T i in{yefQ|o@) >0},

then we say that the equation (0.1) has the uniqueness in the Cauchy problem with respect
to S. The investigation on the relations between the equation (0.1), the surface S, and the
property (0.2), is a classical subjects of the theory of partial differential equations and it
is one of the pre—eminent parts of the more general topic known as the Cauchy problem.

There exist a large number of studies concerning the uniqueness in the Cauchy prob-
lem: the intent is to give sufficient conditions to obtain the property (0.2), conversely to
deduce from (0.2) necessary conditions on F' and S, and, as far as possible, to make neces-
sary conditions and sufficient conditions close to one another, in order to have a criterion
for the uniqueness.

In the following we will not face this problem in its maximal generality but we will
bound ourself to some aspects only. First of all we will consider the problem locally, i. e.
in a neighborhood of a point yo of S. Moreover the equation (0.1) will be taken linear.
Let P be a linear partial differential operator:

P(y, Dy) = Z aa(y)D;a
lal<m

(here and in the following Dy means (1/ i)|°‘|6§‘ ). The problem we are interested in is: to
find conditions on P and S such that if there exists a neighborhood V' of yy and a function
usuchthat Pu=0mV andu=0in VN{y € Q|¢(y) <0}, then u = 0 in a neighborhood
of yg.

From the historical point of view, the first theorem on this subject goes back to a clas-
sical work of Holmgren. In [Hol] it was shown that if the coefficients of P and the function ¢
are analytic and S is non—characteristic, i.e. p(yo,¢'(yo)) = 2]a]=m aa(yo)(¥'(y0))* # 0,
then P has the uniqueness in the class of the distributions solutions. The proof is based
on the Cauchy-Kowalewski theorem which makes impossible to adapt it to the case of C*
coeflicients.



2 Introduction

Many years after the result of Holmgren, Carleman proved in [Car] a uniqueness
theorem for operators with real C*® coeflicients and simple complex characteristics, in
_the two dimensional case. Apart from the very particular result obtained, the work of
Carleman has a basic importance as it introduced the technique, today known under the
name of Carleman estimates, which is still now the only useful tool in the proofs of the
uniqueness in the Cauchy problem in the C* framework. Let us explain it very briefly.
Suppose that, given a real smooth function 1 defined on €, such that 9 (yo) = 0, and given
a neighborhood W of y,, the following integral inequality holds:

(0.3) /e_z7¢|u|2dy§g-/ e 27| Pu|’dy,
w 7 Iw

for all u € CP(W) and for all ¥ > 7. ((0.3) is called Carleman estimate, where the
function e~ ¥ is the corresponding weight function).

Suppose now that w € C®(W), Pw = 0 in W, and suppw C {y € Q[¥(y) =
§ly — yo|?}, where § > 0. Then (0.3) implies that w = 0 near yo. In fact considering a
fuction 8 € C®(R) such that §(t) = 1 for t < 1/2 and 6(t) = 0 for t > 1, we have that
there exists M > 0 such that w(y)8(Mv(y)) € C§°(W). Applying (0.3) we have that:

/ e 2w |?dy
0<v(y)<zhr

< / =79 Mp)wldy < © / &2 7% | P(O(M)w) *dy
0<P(y) <A T Jo<w(n<F
| <= =278 | P(O(MpYw) " dy.
T <o)<
We get:

Q

=4 wPdy < S | [PO(Mpyw)Pdy,
0<P(y) <5kt v sy <v(W)<Hr

and finally:

Cl
/ lw|*dy < eI,
0<w(¥) <5k v
Letting v go to 4+co we deduce that w = 0 for ¢(y) < 537
In the early 50’s the study of the uniqueness received a new impulsion by the works of
Plié [P1] and De Giorgi [DG]: using functions defined in strips and glued together by cut
off functions, they constructed operators with C* coefficients, having C* solutions which
are identically zero for ¢ < 0 but having 0 in the support. These techniques improved
" by Cohen in [Co], were also used by Hormander in [Hérl, Th.8.9.2] where he first gave a
non-uniqueness theorem under simple geometrical hypotheses.
A fundamental step was made few years later by Calderén. In his famous paper
of 1958 [Call], he showed that for operators with real principal part, if the surface of
initial data is non-characteristic, the uniqueness is deduced by some properties of the
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roots of the characteristic polynomial. More precisely if the roots of the polynomial in
7, p(Yo,7¢'(yo) + 1), are simple for all n € R™ non-parallel to ¢'(yp), then P has the
uniqueness in the class of the classical solutions. The importance of this result lies not
only on its conclusions about the Cauchy problem, but also on that it is one of the first and
more interesting applications of the theory of pseudo-differential operators, which easily
gives the way to obtain, for operators having the named properties, an inequality like (0.3).

Later on Hérmander, improving the original Calderén result, introduced, in [Horl,
Ch. 8], new general concepts like the set of principally normal operators and the strong
pseudo—convexity of the surface of Cauchy data (see Chapter 2 for precise definitions and
statements). Roughly speaking he related the uniqueness to some convexity properties of
the hypersurface carrying the initial data with respect to the bicharacteristic curves of the
operator.

Moreover, starting from the more and more precise non—uniqueness results given by
Plis [P2], [P3], [P4], Hormander worked out in [Hor2] a general technique of construction
of operators having C* solutions not satisfying the uniqueness property. This technique
is based on the asimptotic developments of the geometrical optic and it is now universally
used for such kind of results.

These last years have seen the issue of many works on all these themes; referring to the
monography of Zuily [Zu2] and to a survey paper of Alinhac [A2] for an almost complete
bibliography, we want only to mention some of them.

The Calderén’s theorem has been generalized in many directions, we remind the pa-
pers of Calderén [Cal2], Smith [S], Nirenberg [Nil], Zeman [Zel], [Ze2], Watanabe [Wal],
Watanabe and Zuily [WZ], Héormander [Hor3, Ch. 28], and others [Rob], [Nal], [Na2],
[CDS2]. -

The uniqueness result of Hérmander [Horl, Th. 8.9.1] has been extended to larger
classes of operators by Lerner in [L], where the definition of principally normal operator
is weakened, and by Hoérmander in [H6r3, Ch. 28]. Let us cite also the works of Strauss
and Treves [ST], Zuily [Zul], Alinhac [A3], Lerner and Robbiano [LR], Bahouri and Rob-
biano [BR], Saint Raymond [SR3], [SR4], and others [LZ], [D], [DSSR1].

Refined non—uniqueness results have been obtained by Alinhac, who essentially showed
the necessity of the hypotheses of Hormander uniqueness theorem in [A1]. Other precise
discussions on the necessity of the hypotheses for the uniqueness in various different cases
can be found in the papers by Alinhac and Zuily [AZ], Saint Raymond [SR1], [SR2],
Robbiano [R1], [R2], Bahouri [Bal] and others [D], [Nal], [Na2].

For the study of the degenerate operators and the questions connected with the lower
order terms of the operators, let us recall the works of Watanabe [Wa2], Nirenberg [Ni2],
Bahouri [Ba2], Colombini, Del Santo and Zuily [CDSZ1], [CDSZ2], for the degenerate
elliptic case and the papers of Colombini, Jannelli and Spagnolo [CJS] and Colombini and
Spagnolo [CS] for the weakly hyperbolic one.

Finally let us say that we have completly neglected in this introduction the so called
unique continuation of solutions for the elliptic partial differential equations, which has
many common aspects and similar techniques with the uniqueness of the Cauchy problem.
Exhaustive references on this subject can be found in the paper of Kenig [K].

Let us come now to the contents of this Thesis. Before describing the results presented
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in each chapter, we want to say few words about the techniques we exploit in the proofs.
A new fundamental idea from the point of view of the tools handled, is the use of para-
differential operators instead of pseudo-differential ones. The theory of para—differential
- operators, as worked out by Bony in [Bo] and adapted to our pourposes by the introduction
of symbols depending on a parameter or on a “large parameter” (essentially following the
ideas of Hormander [Hor3, Ch. 28] and Métivier [Mét2]) gives us the possibility of proving,
for operators with a low regularity in the coefficients, results already known for operators
with C* leading part. In the Appendix we have collected all the definitions needed to
outline this theory and all the results utilized in the proofs of the uniqueness theorems
and reminded in the chapters of the Thesis. Such results on para-differential operators
are well known (at least in the case of operators not depending on parameters), therefore
in the Appendix we give only a sketch of some interesting proofs, providing, by the way,
precise references for all the unproved statements. Apart from this the techniques are
classical: we use Carleman estimates for the proofs of uniqueness, and the asimptotics of
the geometrical optic in the construction of the non—-uniqueness example of Paragraph 1.7.
In Chapter 1 we present some results, obtained in collaboration with F. Colombini,
regarding Calderén’s uniqueness theorem. In the first part of the chapter, by using para—
differential operators, we prove for operators having C 3 coefficients, the improved version
of Calderén’s theorem stated for operators with C* principal part, by Nirenberg in [Nil].
More precisely, if the principal symbol of the operator P admits the following factorization:

p(et,6m) = [1(7 =2 60)" 1] (=X 60),

j=2s+1

the uniqueness, with respect to {¢ = 0} at the origin, is proved under the following hypothe-
ses: Aj € 'Tp(w), with p > 1, and if Aj(z,¢,£) = a;j(z,t,&) + ibj(z, ¢, €) with aj, b; € Rt

b £0  ifj=1,...,s,

(0.4) o
bj#0 or b;=0 ifj=2s+1,...,m,

(see Paragraph A.5 for the definition of 'I'}'(w)). In this way we recover the Calderén’s

result as stated in [Cal2]. Moreover if for simple roots, i. e. for j = 2s+1,...,m, the

following conditions are verified: A; € 'T'j(w) and:

bj 20,
or
(0.5) el
Cb; + Bibj + ) (8z,a;0¢,b; — 0z,b;0¢,a) <0,
k=1

then we prove the compact uniqueness with respect to {t = 0} at the origin (i.e. uniqueness
with respect to all the surfaces lying in {t > 0}, tangent to {t = 0} and having {0} as
intersection with {t = 0}). Apart from the regularity of the coefficients, condition (0.5) is
slightly weaker than Nirenberg’s one and it can be found in [Hor3, Prop. 28.1.6]. All these
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claims are proved by showing a certain number of Carleman estimates of type (0.3), where

the weight function is e71=T)* The estimates on P are obtained by a method similar to the
original Calderén’s one, starting from estimates on first order para-differential operators.

In the second part of the chapter we prove some other Carleman estimates for first
order para—differential operators using singular weight functions like =7 and e7/?. By these

estimates we obtain some new results: e. g. for operators of order two we can weaken the
condition (0.5) up to:

bj 20,
or
(0.6) n-1
bj + t(atbj + Z(axk ajaﬁk bj — 0z, b;O¢, aj)) <0,
k=1

proving under this condition the the C*®°—compact uniqueness (i.e. compact uniqueness
for C* solutions). Moreover, following the works of Roberts [Rob], and Nakane [Nal],
[Na2], the last estimates permit us also to show new uniqueness theorems for second order
singular operators of Fuchsian type and second order degenerate operators admitting a
factorization like, e. g.:

p1($,t,£,T) = (T - tkAl(xatvg))(T - tk’\2($’taf)) 7

pa(e,t,6,7) = (1 — e T Ay (x, 1, 6))(r — e Ma(a, £, £)) .

Finally we give a non-uniqueness example, showing that the condition (0.6) is almost
necessary at least with respect to a family of operators. Precisely let @ be > 0 and -
consider the operator: '

Pa(z,t, Dy, D¢) = D} — D? —~ D2, +§(D?, +2tD,, D,, + (1 + a)t*D2).

If @ > 1/3 then the roots of the characteristic polynomial of p, satisfy (0.6) and therefore
Pat lower order terms has the C*°-compact uniqueness. If 0 < o < 1/3 we show that
there exist two C*° functions a, u such that 0 € suppu C {t > 0} and pou + au = 0.

Chapter 2 is devoted to the Hormander’s uniqueness theorem. We state a result
obtained in collaboration with X. Saint Raymond, [DSSR1]. The operator P, having
principal symbol p, is said to be principally normal in weak sense if:

Hyp(y,n) = 20 Re(q(y, np(y,m)),

where Hp = } . Oy, p(y,1)0y; — Oy; p(y,n)0y; is the Hamiltonian vector field associated to
p on the cotangent boundle T*§2, and ¢ is a L2 function defined on T*Q, homogeneous
of degree m — 1 in 7.

The Hormander’s uniqueness theorem states that if P has C* principal part and it
is principally normal in weak sense, and S is strongly pseudo—convex with respect to P
at yo (see Definition 2.3), then P has the uniqueness in the Cauchy problem. The same
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in true if P has C? principal part and ¢ is C! in the y’s and C* in the ’s. The para—
differential operators depending on a large parameter, introduced by Métivier in [Mét2],
play a central réle in the proof, which is different from Hérmander’s one, as we do not
dispose of a Feﬁ'erman—Phong inequality for para—differential operators.

Chapter 3 is the precise reproduction of a joint work with X. Saint Raymond. Deal-
ing with second order operators with real principal part, the hypotheses of Hormander’s
uniqueness theorem are very simple: the strong pseudo-convexity of the hypersurface S
with respect to P at yo, turn out to be equivalent to the following condition: for all

n € R™\ {0}:
(0.7) p(yo,n) = Hpp(yo,m) =0 = Hp(yo,n) <0.

Under (0.7), P has the uniqueness with respect to S at yo. If the operator P is of principal
type, i.e.
9yp(yo,m) # 0,

for all n € R™\ {0}, then Lerner and Robbiano showed in [LR], that P has the compact
uniqueness under the following weaker form of (0.7): for all n € R™\ {0} and for all y € {2

¢(y) = p(y,n) = Hpe(y,n) =0 =  Hi(y,n) <0.

As usual this result is obtained for operators with C* principal part. We give an alternative
proof for this theorem, and we obtain the same conclusion for operators with coeflicients
in C7/3. Again our tool is the theory of para—differential operators. In some particular
cases this result is proved for operators with C3/% or C! coefficients.



Chapter 1. Calderén’s Uniqueness Theorem

1.1. Introduction

The aim of the first part of this chapter is to show how para—differential operators can be
used to prove the classical Calderén’s uniqueness theorem [Call, Th. 6]. In particular we
will state and prove a uniqueness result for operators with non—-smooth coefficients in the
principal part and Calderén’s theorem will follow. Our generalization is inspired to a work
of Nirenberg [Nil] on operators with C*® leading part, and our main idea is to substitute
pseudo—differential operators with para—differential ones, avoiding in this way the smooth
regularity assumption.

The proof of the main result is very similar to Nirenberg’s one and it is divided into
two fundamental steps: the Calderén’s reduction of the equation to a first order system,
and some Carleman estimates for first order para—differential operators. In establishing
the estimates as well as in the reduction, the properties of para—differential operators will
be essential.

As they may have a certain interest independently on the application in the proof of
the Calderén’s theorem, we first state and prove the Carleman estimates in Paragraph 1.3
and then we only give a sketch of the proof of the main result in Paragraph 1.4.

The second part of the chapter, which summarizes a joint work with F. Colombini
[CDS2], is devoted to prove other Carleman estimates for first order para—differential op-
erators and to show some applications of them.

In particular in Paragraph 1.5 we prove Carleman estimates with a singular weight
function and, following the ideas of Roberts [Rob] and Nakane [Nal], [Na2], we deduce some
uniqueness theorems for some classes of operators with non—-smooth coefficients, namely
Fuchsian type operators and degenerate operators.

In Paragraph 1.6 the same is done for more singular weight functions, and we obtain
a result for operators which have an infinite order degeneration.

In the last paragraph we present an interesting example. We consider the following
operator:

po(,t,Dz, D) =D} — D2 —D? + (D2 +2tDg, D,y + (1 + a)t?D2)

If & > 1/3, then the hypotheses under which the Carleman estimates of the Paragraph 1.5
hold, are verified, therefore the operator p,+ Iower order terms has the C*°-compact
uniqueness. If 0 < a < 1/3, the previous hypotheses are no more valid and the surprising
fact is that there exist u,a € C* such that 0 € suppu C {t > 0} and pou + au = 0: this
example gives a partial information about the necessity of the hypotheses of our version
of Calderén’s uniqueness theorem. Moreover the operator p, satisfies , for all o > 0, the
condition (P) of Nirenberg and Treves [NT1], [NT2], [NT3], which consequently is not
sufficient to guarantee the uniqueness in the Cauchy problem.
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1.2. Calderén’s Uniqueness Theorem

The celebrated uniqueness theorem of Calderén [Call, Th. 6] gives sufficient conditions for

the uniqueness of the solutions to the Cauchy problem for a partial differential operator in

terms of the roots of the principal part of the operator itself. To recall this result precisely

let us introduce some notation. Let Q be an open set of R™; let P be a linear partial
- differential operator of order m, with complex bounded coeflicients in {2,

(1.1) P(y,Dy)= > aa(y)D5 ,
la|<m

with aq € L{2.(£2,C). The operator:

(1.2) p(y,Dy) = Y aa(y)DY ,

la|=m

will be called principal part of the operator P, and the function:

(1.3) py,m) = > aay)n® ,

|o|=m

the principal symbol of P. Let S be a C? hypersurface in 2, S = {y € Q| ¢(y) = 0}, where
¢ is a C? real valued function such that ¢' # 0 on S. Let yo be a point of Q such that
Yo € S. Weset ST = {y € Q|p(y) > 0}.

We require that S is non—characteristic at yo, with respect to P, i.e.:

P(Y0,%'(30)) # 0

Theorem 1.1 [Call, Th. 6]. Suppose that there exists p > 1 such that a, € C*(2,R)
for all « € N™ such that |a| = m (for the definition of C* see Paragraph A.1). Suppose
that the polynomial in T:

(1.4) P(yo, 7¢'(yo) + 1)

has, for all n € R™\ {0}, n non—parallel to ¢'(yo), m distinct roots.
Then P has the uniqueness in the Cauchy problem with respect to S at yg, i.e. if
u € C™(Q), Pu = 0 near yo and suppu C S, then u = 0 near y,.

This result was obtained in the last 50’s as an application of the theory of singular
integral operators Calderén was working out in those years (let us remark that the original
statement in [Call] has some more technical hypotheses, see also [Cal2]).

In his book of 1963, Hormander gave a completly different proof of this result extending

/it to the case of C! real or C? complex principal part (see Theorem 2.4).
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Later on, with the progress of the pseudo—differential operators theory, the result was
revisited and refined by several authors (see [S],[WZ],[Zu2], [Zel],[Ze2]), each of them giving
weaker conditions on the roots to satisfy for the same conclusion, but, as the classical theory
of pseudo~differential operators works with smooth symbols, requiring essentially that the
coefficients of the principal part and the roots of (1.4) are C* functions. Nirenberg’s
version [Nil, Th. 5 and Th. 5’] can be considered the model of such results. In order
to present it, let us observe that there exists a change of variables such that in the new
coordinates S and yg become the hypersurface {(z1,...,zn-1,t) € 2|t = 0} and the origin
respectively. The non-characteristic condition on S implies that the operator P has, up
to a non zero factor, the following Kowalewskian form:

(1.5) P(z,t,D;, D) =D"+ Y aq,(z,t)DSD]
laj+i<m
I<m

(in the following we call S the hypersurace {t = 0}).

Theorem 1.2 [Nil, Th. 5 and Th. 5°’]. Assume that for the operator P defined in

(1.5), aq,j € C=(Q,C) for all « € N™! j € N such that |a| +j = m. Assume that
there exists a neighborhood of the origin, V, such that the multiplicity of the roots of the

- polynomial in 7, p(z,t,£,T), is constant and < 2, for all (z,t,£) € V x ™2 (here and in

the following S™~2? = {¢ € R™!||¢] = 1}), and p admits the following factorization:

(16) ' p(.’l,',t,f,’l')= H(T_’\j(wataé)f H (T—)\j(w,t,é.)) 9
j=1 j=2s+1

with A\j # A if j # k, and Xj(z,t,€) = aj(z,t,€) +1bj(z,,£), where aj, bj are continuous
real valued functions defined on V x R™~!\ {0}. Suppose that, for 1 < j < s,

(1.7) bj(z,t,8)#0 for all (z,t,§) €V x S"2% |

and, for each 2s + 1 < j < m, one of the following conditions is true:

(1.8) bj(z,t,) >0  forall (z,t,§)eV xS"% ;
n—1

(1.9) (Cbj+ Bibj + Y (92,0;0¢,b; — 0z,b;0¢,07))(2,1,6) <O
k=1

for some constant C > 0 and for all (z,t,£) € V x §"~2.
Then P has the compact uniqueness in the Cauchy problem with respect to S at
the origin, i.e. there exists W, open neighborhood of the originy W C V, such that if

u € C™(V'), Pu = 0 near the origin, suppu NS CC W and suppu C ST, then v = 0 near
the origin.
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Moreover, if for each 2s+1 < j <m, (1.7) or:
(1.10) bi(z,t,6)=0  forall (z,t,§)€eV x8§"2%
- holds, then P has the uniqueness in the Cauchy problem with respect to S at the origin.

Even if the hypotheses of Theorem 1.2 are less restrictive than those of Theorem 1.1,
the latter is a corollary of the former only in the case of smooth coefficients in the principal
part. This unpleasant situation can be avoided: by using the Bony’s para-differential
operators theory [Bo| and its variants for operators depending on a parameter, as presented
in the Appendix, we will prove the following result.

Theorem 1.3. In the hypotheses of Theorem 1.2, suppose that a, ; € C3(Q2, C) for all
o € N™1 4 & N such that |a|+ j = m.
Then the same conclusions of Theorem 1.2 hold.

Remark 1.4. The proof of Theorem 1.3 will show that if conditions (1.7) and (1.10)
are satisfied, then CP-regularity, with p > 1, is sufficient to guarantee uniqueness, and
consequently Theorem 1.1 is recovered. Moreover using the proof of Theorem 1.3 together
with a localization argument it is possible to show that a result similar to Theorem 1.1
is valid for operators with C? complex principal part admitting double complex roots (see

[Cal2] and [Ho6r3, Th. 28.1.1}).

"Remark 1.5. As it will be clear in the proof it would be sufficient to require the conditions
(1.7), (1.8), (1.9) and (1.10) to hold only in S x S™~2. Let us observe that hypotheses
(1.8) and (1.9) are not symmetric with respect to t: this is not surprising as we are proving
forward continuation only. Moreover, as already pointed out by Nirenberg, it would be
sufficient that only one of the conditions (1.8) or (1.9) holds locally, i.e. for all {; € S™~2
there exists a neighborhood of (0,0,&,) in which one of the two named conditions holds.

Remark 1.6. There exist in literature many uniqueness results which don’t require the
constant multiplicity condition, substituting it with a smooth regularity condition on the
roots of polynomial (1.5) (see [WZ],[Ze2],[Zu2]). It is not known if analogous results holds
for less regular roots, i.e. in the hypotheses of Theorem 1.3, as the technique of the
proof of these results is not directy applicable to the situation presented in the following
paragraphs.

Example 1.7. The following simple example is inspired to an example of [Nil]. Suppose
that f is a C? real function and there exists C > 0 such that f(0) = 0and Cf(¢)+ f'(¢) > 0
for ¢t > 0. Then the operator:

P, = (D —ifD.)(D? + D?) + lower order terms

satisfies the hypotheses of Theorem 1.3 and consequently has the compact uniqueness in
the Cauchy problem with respect to {t = 0} at the origin.
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Analogously, consider the operator:
Py = D} — D2 — D +if(t)(D2 + 2D2) + lower order terms .

P, satisfies the hypotheses of Theorem 1.3 and has the compact uniqueness.

Example 1.8. Let (a;(t)) be a (n — 1) x (n — 1) matrix of C? real functions. Suppose
that there exists C' > 0 such that the matrix:

(Caj k(t) + aj k(1))
is positive semidefinite. Then the operator:

n—1 n—1
Py = D} — Z Di’, +1 Z a;j k(t)Dg; Dy, + lower order terms

=1 5,k=1

satisfies the hypotheses of Theorem 1.3 and consequently P; has the compact uniqueness.
1.3. Carleman Estimates for Para—Differential Operators of First Order

As said, we start proving Theorem 1.3 giving some Carleman estimates for para—differential
operators of first order. We will use the notation and the results collected in the Appendix.
‘87 (w) will indicate the set of para—differential symbols of order m, regularity p, depending
on a parameter ¢, and defined on w. ‘I'f(w) C 'X7(w) will be the set of the homogeneous
symbols. Let | € ‘L7 (w) be a para—differential symbol; we will denote with T} the para—
differential operator of symbol I. Let now w be a neighborhood of the origin in R*~! and
T > 0 a constant such that w x [0,T] C V, the set in which conditions (1.7), (1.8), (1.9)
and (1.10) hold; according to the Definition A.25, under the hypotheses of Theorem 1.3,
the roots A; are in 'T'}(w). The first lemma will provide two Carleman inequalities under
conditions (1.7) and (1.10).

Lemma 1.9. Let p > 1 and let A = a + b, where a and b are real symbols of tI‘},(w).
Assume that:

(1.11) b(z,t,€) #0 for all (z,t,¢) €w x [0,T] x S™~% |
or
(1.12) b(z,t,6)=0  forall (z,t,§) €wx[0,T]x S"?

Then there exist T, r, v9 and C positive constants such that, for v > vy,:

T T)? 2 c [T 2 )2
(1.13) / T Pt < 2 f 21T || Dy — Tyu||2dt
0 0
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and, under condition (1.11),

T ‘ T
(1.14) / 117§ || DeDjull?dt < C(1 +T%) / =T Dy — Tou|?dt
0 0

laj+i<1

for all u € C° such that suppu C B, x [0,T/2] (|| - || denotes the norm of L2(R™ ), |- s
denotes the norm of H*(R*™!), and B, = {z € R*!||z| < r}).

Proof. We set v = eYt=1’y, where u € C§° with suppu C B, x [0,T/2]. We obtain:

e7t=D*(Dyu — Tou) = Dy — Tav — iThv + 2iy(t — T)v

So:
T 2
/ 27D Du—Thul|2dt
0
T ) T ,
= Dyw — T,v||"dt Tyv — 24(t — T)vl|®dt
(1.15) Lllw ol +Alhv 7(t =Tl
T
+ 2Re/ (D — Tov, —iTpv + 2iy(t — T)v)dt
0
=h+Jlo+J++Is+Js ,
where:

T
J1 =/ | D — Too|2dt
0
T
Jo= [ Wi =290t - TolPat
0
T
Js = 2Re/ (D, —iTpv)dt
0
T
Jy = 2Re/ (D, 2iy(t — T)v)dt ;
0
T
Js = 2Re/ (=T,v, —iTpv)dt ;
0

T
Js = 2Re/ (=T,v, 2iy(t — T)v)dt
0

Easy computations, together with the Theorem A.20 (see also Paragraph A.5), give:
T
B=2 [ lolPar
0

T T
%:Rgfzm@-ﬂun—zwuwz~aﬁ/.Wwﬁs
0 0
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and this is enough to prove (1.13) under condition (1.12), if T' is sufficiently small. Let
now (1.11) hold. From the inequality: ||Dw]|| < ||Dw — Tov|| + ||Twv||, we immediately
deduce that: for all € > 0 there exists C. > 0 such that:

Dl o]l < €| Dew — Tov||* + Celfvl|* + Cllv]laflo]]

Using this, the Theorem A.26 and the Theorem A.20, we obtain:

T T
J3 =— Re/ (Ts,pv, v)dt + Re/ (v, o(Ty — Tp)Dyv)dt
0 0

(1.16) . T T
>=3h=c(f Iollolide+ [ ol
0 0
Moreover:
T T
(1.17) Js = Re/ W(T7Ty — Ty To)v, v)dt > ——C’/ lolla]lvlldt
0 0

where, as always, C represents different constants independent from v, v, T. Now we use
the ellipticity of b. By the Theorem A.22 (see also Paragraph A.5) we have that:

[vlls < C(|Tsoll + llvll)

Consequently:

(1.18) [vlls < C(||Tbv — 29(t — Tholl + (L + Ty)lloll)

and so we obtain that for all € > 0 there exists C, > 0 such that:
T T
| Ielholidt < 22+ Cor+7) [ o
0 0
Therefore, by (1.15), (1.16) and (1.17), if T~ and 7, are sufficiently great,:
T 2 1 1 T
(1.19) / #D7 Ds — TyulPdt > 72+ 20, +~,J[ Iol|2dt
0 0
which implies (1.13). Moreover, from (1.18),:
T T
| 1ol <ca v o) [ pipar
0 0

and from this and (1.19) we obtain that:

T T
/ Hv”fdt <C(1+ T27)/ e27(t_T)2”Dtu = T,\ullzdt ,
0 0
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from which (1.14) is easily obtained. This ends the proof.
The following lemma will furnish the estimate (1.13) under the hypothesis (1.8).

Lemma 1.10. Let p > 2 and let A = a + 1ib, where a and b are real symbols of tl"},(w).
Assume that:

(1.20) b(z,t,6) >0  forall (z,t¢)€wx[0,T]xS"?
Then (1.13) follows.

Proof. With the notation in the proof of Lemma 1.9,
T 2
—Im/ =D (Dyu — Tou, v)dt
0
T
= ——Im/ (Dyv — Thv + 2iy(t — T, v)dt
0
T T
= —-Im/ (—Thv, v)dt — 27/ (t — T)||v||*dt
0 0

T T T
= Re/ (T-ixv, v)dt + —2—7/ ||lv||2dt
0 0

From this and the Schwarz inequality we deduce:

T ) T T T
/ e210=T || Dy — Tyu[%dt > Re f (T_ixv, v)di + (57~ ©) / Iol|2dt
0 0 0

and we get (1.13) by bounding from below the first right-hand-side term, using (1.20) and
the sharp Garding inequality for para—differential operators as stated in the Theorem A.24
(see also Paragraph A.5). The proof is concluded.

Let us finally state the Carleman estimate regarding the last situation, i.e. condi-
tion (1.9).

Lemma 1.11. Let p > 3 and let A = a + ib, where a and b are real symbols of *I';(w).
Assume that there exists C > 0 such that:

n—1

(1.21) (Cb+8:b+ Y (0:,00,b — 85,00, 0))(,1,6) <O,

k=1

for all (z,t,£) € w x [0,T] x S*~2.
Then (1.13) follows.
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Proof. Following again the notation used in the previous proofs, and defining:

. n—1
i(t,2,6) = a(t,,6) = 5 3 0:.0g.a(t7,6)
(1.22) -

. n—1 ’
- )
W%@:m@@—32¢ﬁmuag,
k=1
we have that T, — T; and Ty — Tj are bounded in L? (see Paragraph A.5); therefore:

T T
2 / =T || Dy — Tyul|%dt > f 1Dew = Tsv — iTjo+2iy(t — T)v||*dt
0 0

T
—c / lol2dt
0

Calling I the first right-hand-side term, we have that:

T T
I =/ | Dsv — Tsvl||*dt + / | T5v — 2v(t — T)v||?dt
0 0

1.23 T
(123) + 2Re/ (D — Tsv, —iT3v + 2iy(t — T)v)dt
0

=h+L+l+di+Ts+Js

where, as iﬁ Lemma 1.9,
3 T T |
h:ﬂRﬁ/(Dw,mﬂpqm@ﬁ=27/ ol|2dt
0 0
~ T T
thzﬂk/(—ﬂvJKLJDwﬁZ—CTn/|WW&
0 0

Moreover, by the choice of @ and b, and by the Theorem A.26 and the Theorem YA.20,
remarking that T3 — Tj is 1-regularizing, we obtain:

T T T
Js = 2Re/ (Dw, —iTjv)dt = —Re/ (v, Tp,5v)dt + Re/ (v, i(T7 — T3)Dsv)dt
0 0 0

T T 1.
> —-Re/ (Ta,pv, v)dt — C/ l|v]|2dt — -é-Jl ,
0 0

and

T
Js = QRe/ (—Tav, —iTyv)dt
0

T T
> n _ 2
- RGA (T—Zk=1(3¢k a'afk b——a,k bafka)v 9 v)dt C/O ”'U” dt ,
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By these estimates and (1.23), we get:

1. . T
I> ZJtdy+(2- Ty - 0)/ o2t
(1.24) 0

T
+ Re T n-1 v, v)dt .
; (T_,6- " (8ey 00, b—02, b0 0) )

Let us now use the condition (1.21) and define the symbol:

n—1

r(2,t,6) = —(Cb+0:b + ) (8s,a0,b — 02,00, a))(z,1,€)

k=1

Obviously r € *I'(w) and r > 0 in w x [0,T] X S™~2. Using the sharp Garding inequality,
it follows that there exist C > 0 such that:

T T
Re/ (Tyv, v)dt > —C’/ lvl?dt
0 0

for all v € CZ° such that suppu C B, x [0,T/2]. Now it is easy to prove that:

T
Re/ (T—B,b—-E:=1(6,,ka85kb——axkbaeka)v’ v)dt
(1.25) °

T
>-C(+19) [ IplPdt- 57
0

By choosing T~ and 7o sufficiently great, (1.24) and (1.25) imply (1.13). The proof is
complete. :

Remark 1.12. If all the roots satisfy condition (1.7) or (1.10), C#-regularity, with p > 1, is
enough for the conclusions of the Theorem 1.3 to hold. In fact under the named conditions
Lemma 1.9 furnishes all the estimates needed in the next proof. Analogously, if only (1.7),
(1.8) or (1.10) are involved C%-regularity is sufficient to the compact uniqueness.

Remark 1.13. The example of Paragraph 1.7 shows that the condition:

(1.26) b(z,t,€) <0  forall (z,t€)€[0,T]xwx S 2

is not sufficient to guarantee the uniqueness for the operator D; — T. It is not clear how
much the condition (1.26) must be strengthened to imply this property or the validity of

a Carleman estimate like (1.13). This problem seems to be connected with open problems
. on the local solvability of pseudo—differential operators.
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1.4. Proof of Theorem 1.3

We will follow very closely the proof of the Theorem 1.2 as given by Nirenberg [Nil, Th. 5].
First of all we remark that, as conditions (1.7) and (1.10) are invariant under Holmgren’s
change of variable, it will be sufficient simply to prove compact uniqueness. This one will
be classically deduced by the following result.

Lemma 1.14. Under the hypotheses of Theorem 1.3, there exist T, r, o and C positive
constants such that:

T . 2 T
e [ e S pepjutar < oY) [ ene-pua
0 la+j<m—1 T

for v > 7o and for all u € C§° such that suppu C B, x [0,T/2].

Proof. First of all we remark that, by Poincaré’s formula, (1.27) is equivalent to the
following condition: there exist T, r, 7o and C positive constants such that:

T ) 2 T
a2 [ e S pepjupar < oY) [Cene
0 0

lo|+j=m-1 v

for v > 7o and for all u € C§° such that suppu C B, x [0,T/2]. We write:

p(z,t,D;, D) =D + Y _Ii(z,t,D,)D"™
Jj=1

where:

G(.‘L’,t,g) = Z aa,m—j(a;’t)ga H

le|=3
and we consider the operator:
(1.29) T,=D"+> T, DI
Jj=1

where, for j = 1,...,m, Ty; is the para-differential operator of symbol /; € tl"{,(w), with
p 2 3. It is important to remark that p > 1 will be enough all over the proof up to the
Carleman estimates for the first order para—differential operators. By the Theorem A.15
and Poincaré’s formula we have that (1.28) is obtained by the following estimate: there

exist T, r, 70 and C positive constants such that:

T 2 T
2 . 14+7T
(1.30) / =T N 1|D:D:un?dtsc<—~+77-> / 21T | Tyu)%dt

la|+ij=m—1
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for 4 > 7 and for all u € C§° such that suppu € B, x[0,T/2].
Denoting by A the para—differential operator of symbol 1 + [€|, we set:

(1.31) uj=A™"D{"u
and
Ui
U =
Um

Therefore we obtain:

Dyuj = Aujiqy forj=1,...,m—1

1.32 = :
(1.32) Dy + ZTI,-AI—JumH—j + (RU)m =Tpu

j=1

where R is o-regularizing operator for every o € R. Let us now indicate with h(z,t,€)

. the matrix symbol:

0 —¢ 0 0
0 U
h(m7t7£)= : Te ., 0
0 R | R
L™ . Ll ok

We have h € *Si(w) and (1.32) can now be written:

0
DtU+ThU+TrU=( : ) ;

Tpu

where T, is a matrix para—differential operator with symbol in tZg(w). With this notation,
again using Poincaré’s formula, (1.30) can be easily deduced by the following (see [Nil,

p- 33]):

T 2 T
_/ 210=T7 |[U | dt sccl-if-l) / 1| DU + ThU |t
0 0

(1.33) T 2 j
N S L R e ERES
0 la|+i<m~1

The idea now is to reduce the matrix h to its Jordan canonical form. To this end
we remark that the eigenvalues of h are the negative of the roots of the polynomial (1.6).
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Using the hypothesis of constant multiplicity we have that it is possible to find a C? non
singular m X m matrix s such that:

(shs™N)(z,t,6) = j(z,t,€)

where j is the Jordan canonical form of h; this matrix s is defined locally in a neighborhood
of each point (0,0,¢&), with £, € S™ 2. From this covering of S®~2 we extract a finite
covering {§2,}, and we consider 3, #2(£) = 1, a partition of unity subordinate to {£2,}.
Extending, for each v, ¢, as an homogeneous function of order 0 in £, we can consider the
corresponding para—differential operator Ty, and, defining U, = Ty, U, it is easy to see
that (1.33) is now reduced to:

T z T
| e < o) [t pg, + 0 P
0 0

(1.34) i

T
+C/ =T U, |12, dt
0

Always following the proof of Nirenberg, let 1), be a smooth map on S"~2 such that
$,(S"?) € Q, and ¥, = 1 on the support of ¢,. We define h,(z,t,&) = h(z,t,1,(£))
and we extend it as an homogeneous function of degree 1 in €. Defining analogously s,
and j,, we have that:

-1 _
Suhysy =Jv

and j, = j on the support of ¢,. By the Theorem A.23 we deduce that:
WUy =Tw U, + MU,
where M, is a (p — 1)-regularizing operator. Moreover, setting T, U, = V,,, we can write:
V=TV + NU,
and as N, is a (—1)-regularizing operator, we obtain:
(1.35) 1N < CUVLI + 1T -1)
Finally we have that:

Ts,, (DtUu - ThUu) thVu + Tat Sy Uu - Ts,,(Th - Th,, )UV
— T4, T4, T,-1V, — Ty, Ti, N,U,
=DV, — Tj,, V. + LVUV 9

where L, is bounded in L%, and this implies that :

(1.36) 1DV, = T, Vol < CIDU, + TuU, || + |U, )
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Using (1.35) and (1.36), is now not so hard a work to see that (1.34) can be deduced by
the following:

T 2 T
asn [ e mmpa o) [ DDy, T v
0 0 .

Recalling that j, is the Jordan form of the matrix h,, (1.37) is now obtained acting on
. each block of the Jordan form with Lemmas 1.9, 1.10, 1.11. This completes the proof of
Lemma 1.12 and consequently the thesis of Theorem 1.3 is achieved.

1.5. Carleman Estimates for Degenerate Operators and Applications

The Calderén’s uniqueness theorem has been extended to many particular classes of differ-
ential operators and its proof has been adapted and improved for each different situation.
Nevertheless the pseudo—differential technique has always been used as a basic tool and
consequently only operators with C coefficients, at least in the principal part, have been
considered. We want to give here some other examples of how operators with non-smooth
coefficients can be studied with respect to uniqueness, by using para—differential operators
instead of pseudo—differential ones.

Again we start giving some Carleman estimates for first order para—differential oper-
ators. The main difference between the following lemmas and those of Paragraph 1.3 is
the choice of the weight function: in the integral inequalities we substitute the function
e7¢=T)* with the function ¢~7. This brings some considerable consequences: on one hand
we will obtain estimates useful for the study of operators which degenerate on the sur-

"face of initial data, i.e. Fuchsian type operators and other degenerate operators, but on
the other hand we will obtain the compact uniqueness or the uniqueness only for the C*°
solutions (we will call these properties C*°~compact uniqueness and C*°-uniqueness).

The first lemma is the analogous of the Lemma 1.9.

Lemma 1.15. Let k > 0 be an integer. In the hypotheses of Lemma 1.9 there exist T', r,
vo and C positive constants such that:

T C T
(1.38) / 7272w 2dt < ;/ t727||Dyu — Tyepul®dt
0 0

and, under condition (1.11),

T . T
(1.39) / 21 S ¢l DaDiuldt < C / =27 Dyu — Tpesul2dt
0

° la]+i<1

for v > o and for all u € C§° such that suppu C B, x [0,T/2].
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Proof. The proof is similar to that of Lemma 1.9. Let 7, 0 € R. We set v = t~"u, where
u € C§° and suppu C B, x [0,T/2]. We have:

t7 7T (Dyu — Ty su) = 17Dy — Tyrgo gv — i Tyr4oyv — 1787 10

So that:
T
/ tQ(a_T)‘|Dtu—Ttk XLL”zdt
0
T ‘ T
(1.40) = / [t Dyv — Tyrse av”2dt + / | Tk 4050 + Tto’_lvHth
0 0
T
+ 2Re/ (tth'U - Ttk+a av 9 —iTtk+a b'U - 'I:Tta—lv)dt .
0
Easily:

T T
Re [ (t7 D, —irt* oyt = ~(20 D)7 [ |7l
0 0

T T
QRe] (—Tirteqv, —iTt" " lo)dt > ——CTk+17/ 1t~ v||?dt
0 0

If b= 0, posing 0 = 0 and 7 = v, (1.38) follows from these inequalities and (1.40).
If (1.11) holds, let ¢ = —k/2. Then:

T
QRG/ (taDtU 9 _iTtk+a'bv)dt
- Jo
T T
=— Re/ (Ta,pv, v)dt + Re/ (v, i(Ty — Tp)Dw)dt
0 0

T
> [ oDl + ol ol
0

(1.41) T .
> — C/ t 727147 Dy — Tyt ]| ||t o|dt — C/ 0 |||t || de
0 0
1 T T
>3 / 16 Div — Tyoro gol|2dt — C / £72° ||| 2dt
0 0
T
—c / £ o]y 4o b
0
Moreover:
T
2Re/ (—Ttk-}-a'a'u, "—?:Ttk+dbv)dt
0
T
(1.42) > Re/ i((T:;c.*., aTtk-;-ab — T:;c.(..ngtlc-faa)U, 'U)dt
0

T
2=C [ el
0
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We use the ellipticity of Tj. We get:
(1.43) t=7|olly < C(|Tpxtepv + 7t ol + 7]It7T0]])
and this implies that for all € > 0 there exists C, > 0 such that:
T T
/ t=o || 1]|t7 || dt < a/ | Ty 4o pv + 787 0|2 dt
0 0
T ,
+C:(1+ TT)/ [t~ v]|%dt .
0

' From this, (1.40), (1.41) and (1,.42), if T and 4~ are sufficiently small, we deduce:

T T
/ +=k=27|| Dyu — Ty pul|2dt > CT/ t=k=2)|v||2dt
0

0

and finally setting v = k/2 + 7, (1.38) follows.
From (1.43) we immediately obtain:

T T : T
/ t*||v]|2dt < C/ | e 4o 5 + 77 10| 2dt + C'rz/ t7~v||2dt
0 0 0
and arguing as in the Lemma 1.9 we obtain (1.39). The proof is complete.

The next lemma gives the Carleman estimate under condition (1.8).

Lemma 1.16. Let k > 0 be an integer. In the hypotheses of Lemma 1.10, (1.38) follows.

Proof. We set v =t~ 7u and we have:
T
-—Im/ t=Y(Dyu — Ty pu, t~1v)dt
0
T T
= —Im/ (=T pv, t1o)dt + 7/ It~ v||2dt
0 0
T T
= Re/ (T_jx-1pv, v)dt + 'y/ |t~ 1v||%dt
0 0
By the sharp Garding inequality for para—differential operators we have that:
T T
Re / (T_speryv, v)dt > —C / £=1]|y | 2dt
0 0

(1.38) is easily reached by using the Schwarz inequality. This concludes the proof.

The last lemma will furnish the Carleman estimate in the remaining situation.
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Lemma 1.17. Let k > 0 be an integer. Let p > 3 and let A\ = a + b, where a and b are
real symbols of 'I'}(w). Assume that there exists e > 0 such that:

. n—1
(1.44) (L+E—e)b+10b+ " (8,;00¢b — 05,09 a))(,£,6) SO,

J=1

for all (z,t,£) € w x [0,T] x S™~2.
Then (1.38) follows.

Proof. Let & and b be the symbols defined in (1.22). As usual we set v = ¢~7u and we
obtain:

T T !
2/ t=27|| Dyu — Ty yul|2dt > / | D —Tizv —iTpzv — i')’t_IUHth - o7 / llvlf*ds .
0 0 ’

We call I the first right-hand-side term and we have:

1 (T T g
135 [ 10w = TagolPdt + [ T+t olPdt 1 [ o
0 0 0

T T
(1.45) - CTzk/ lloll*dt + Re/ (T_(ktr=1b4tk 5,00 , v)dE
0 0

T T
T ; t— 2dt.
+ Re/(: ( —126 (3" (8a; ad; b=, b3; ) v)d C/O |l

We define the symbol:

n—1
r(z,8,6) = —[(1+k — e)b+ 100 + t*+ ) "(8:;a; b — 05,60, a)](z, 1, €)

Jj=1

Using the sharp Garding inequality we deduce from (1.44) that:

T T
Re [ (Tucsyo, o) 2 —07* [
0 0

and this implies that:

T
Re\/(; (T—(ktk'lb-!-tk 8, b-+12k (Z;.—_1(a"’j aaéj b_a:j ba{j a)))'U ; 'U)dt

T T
(1.46) > Re / (Tpor,, 0)dt + (1 — €)Re / (Tppo , t=10)dt
0 0

T T
1
> =((1=epy+1) [ Il - g [ o ttol e
0 0
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The proof is easily concluded by using (1.45) and (1.46).

Let us now come to some applications of these estimates. Let P be a second order
differential operator of Fuchsian type, i.e.:

P(mvtv-Dz,Dt) :t2p2(m7t7Dx7Dt) +tP1($,t,Dz,Dt) +p0(l',t) )

where, for j = 0,1,2, p; is a j—th order homogeneous operator with bounded complex
coeflicients. Suppose that ps has the following form:

n—1 n—1
(1.47) p2(z,t,D2,D) = D + > a;(2,8)De; De+ Y Bix(2,t)Da; Do, -
Jj=1 J k=1

Theorem 1.18. Let the coefficients of p2 be in C3(Q,C). For j = 1,2, let \j(z,t,£) =
aj(z,t,&)+1bj(z,t,£) be the roots of the polynomial py(z,t,€, 7). Let V be a neighborhood
of the origin.

If the roots are simple and for each of them one of the following conditions is verified:

(1.8) bj(z,t,€) >0 for all (z,t,§) €V x S* % ;

there exists € > 0 such that:

(1.48) (1= €)bj +10:b; +t Y (s,0;06,b; — 0z,b;0¢,7))(x,1,6) <0,
k=1

for all (z,t,£) € V x S™2, then P has the C®-compact uniqueness with respect to
S = {(z,t) |t =0} at the origin.

If the roots are simple and for each of them the condition (1.7) or (1.10) is satisfied,
then P has the C*°—uniqueness with respect to S at the origin.

If A\; = Ay and (1.7) holds, then P has the C*°—uniqueness under the following Levi
type condition: the coefficients of p; are in C? with p > 1 and there exists f € C? such
that:

(1.49) p1(2,0,€,7) = f(z)(T — A1(2,0,8))

Remark 1.19. This problem has been studied, for operators with C* coefficients, by
Roberts in [Rob]. In that work operators of the form P = t™p,, +t™ !p,,_1 + ... + po,
where, for each j, p; is a homogeneous operator of order j, are considered and the C>-
uniqueness is obtained under two main assumptions: the roots of p,, are of constant
“multiplicity < 2, where double roots satisfy (1.7) while simple roots satisfy (1.7) or (1.10),
and a Levi type condition, analogous to condition (1.49), holds. Under the condition (1.8)
and a condition a little stronger than (1.48) on the simple roots, C*°—compact uniqueness
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is also shown. We were not able to prove this result for operator with C® coefficients,
though it would be possible to use para—differential operators theory to show an analogous
result for operators with C™ coefficients: in this case the proof of Roberts can be modified
and the regularity of the coefficients is sufficient to avoid the troubles coming from the
commutation of the para—differential operators with the operator D;.

Remark 1.20. Also in this case the regularity of the coefficients can be weakened if only
the conditions (1.7) and (1.10) are fulfilled. The same in the case of (1.7) (1.8) and (1.10).

Using the proof of the Theorem 1.18 it is easy to show the following result, which is
also a particular case of the Theorem 1.23 but which we prefer to state here.

Theorem 1.21. Let p, be the operator defined in (1.47) and let the coefficients of p, be
in C3(§2, C). If the roots of the characteristic polynimial of p; are simple and for each of
them (1.8) or (1.48) holds, then the operator:

p2(z,t,D;,Dy) + lower order terms

has the C®—compact uniqueness.

Example 1.22. Let (a; (%)) be a (n — 1) x (n — 1) matrix of C? real functions. Suppose
that there exists € > 0 such that the matrix:

((1 = )ajk(t) + taf 1(1))

is positive semidefinite. Consider the operator P = t%py + tp; + po, where:

n-—1 n
pae,,D5,D) = D} = 3 DL +i Y aju()Ds; sy
j=1 7, k=1

and p;, po are homogeneous operator of order 1 and 0 respectively. Then P satisfies the
hypotheses of the Theorem 1.18 and consequently has the C*°~compact uniqueness. By
Theorem 1.21 also the operator:

p2(z,t, Dz, D¢) 4+ lower order terms

has the same property.

Proof of the Theorem 1.18. Using a singular change of variables (see [BZ]) under which the
conditions (1.7), (1.10) and (1.49) are invariant , it is possible to reduce the proof to the
establishing of the C*°—compact uniqueness in all the cases. This property will be easily

deduced by the following Carleman estimate: there exist T, r, v and C positive constants
such that:

T T
(1.50) / t_27_4||u]|2dt§C/ t727|| Pul|?dt
0 ]
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for 4 > ¢ and for all u € C§° such that suppu C B, x [0,T/2].
Let us first consider the case of simple roots. We write:

n—1 n—1
pa(e,t, Dz, D) = Di+ Y @j(z,t)Dg; Di+ Y B a(z,t)Ds; Dsy
j=1 i k=1 '

and defining a(z,t,¢§) = z;:ll aj(z,t)¢; and B(z,t,€) = ZZ;_I__I Bj.x(z, )€€k, we consider
the operator:
Tp, = D+ ToD: + Tp

By the Theorem A.15 we have that:
T T .
(1.51) / =27 |pu — Tp,ul|?dt < C/ 2 Z |DEDju|?dt

for all u € Cg° such that suppu C B, x [0,T/2].
From the Theorem A.20 and the Theorem A.26 we obtain:

TP2 = (Dt —TAl)(Dt - Tz\z) +Rt ’
TP2 = (Dt—’T)\z)(Dt —TA1)+R2 ’

where R; and R} are bounded operator from H' to L? with norms bounded in t. Using
(1.38) with k = 0, we obtain: :

T T -
/ t"27||Tp2u|I2dt 207/ t_z‘y_z(”Dtu - T/\1u|l2 + "‘Dtu - TMUHQ)dt
(1.52) 0 0

T T
— Cf t727||u||2dt + 072/ 2774 ||| 2 dt
0 0
We remark that Ty, _x,u = (D; — T,) — (D¢ — T, ) and this implies that:
175 -2, ull® < 20| Dew — Ty ull® + |Deu — Th,ulf?)
As the roots are simple, T, _», is elliptic, so that:

(1.53) 1D — Tnul® + | Dsu = Tauf* 2 C ) | D Djul®
ler|+5<1

From (1.52) and (1.53) we deduce:

T T _
/ £=21|1T, u]|%dt > C(y — C") / 22 S | D2DjulPds
(1.54) 0 0 le|+5<1

T
+C~/2J[£ 7274 |u|%dt .
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It is very easy to reach the conclusion using (1.51).

Suppose now that p; has a double root verifying condition (1.7). Hypothesis (1.49)
implies that:

(1.55) lp1(z,t, Dz, Do)ull < C(|Deu — Taul| +t ) ||DgDiu|)
lal+i<1 '

Using (1.38), we have:
T T
/ t 2| Ty, u||? dt 207/ t72772||Dyu — Thu||*dt
0 0

T T
_C / +=27|u)|2dt + Cy? / =274 || 26k
0 0
Therefore, by (1.39), there exists € > 0 such that:
T T
f £=29|| T, ul|%dt >Cry / +=212|| D — Thul2dt
0 0
T -
(1.56) e [ 2 S |D2Djular
0 lo|+5<1

T T
_c / +=2||u|[2dt + Cy? / £ 274 |2t
0 0

Putting together the information coming from (1.55) and (1.56), if T' is sufficiently small,:

T T
| roimpaz s [ e 2 palar
0 0

from which the inequality (1.50) is reached by using (1.51) and (1.56). This completes the
proof.

Let us finally show another application of the estimates (1.38) and (1.39). Let P be
a second order differential operator with bounded complex coefficients, P = py + p; -+ po
where, for each j, p; is a homogeneous operator of order j.

Theorem 1.23. Let k > 0 be an integer. Assume that the coefficients of p, are in C3(Q2, C)
and that p; admits the following factorization:

pz(m,t,ﬁ, T) = (T - tkAl(wata 6))(7— - tk)‘2(mst7£)) ’
where, for j = 1,2, A; = a; + 1b; with a; and b; real symbols in T'}(w).

Suppose that for j =0,...,n, there exists §; € L. (2, C), such that:

loc

n—1
(1.57) pi(z,,€,7) = So(z,t)7 + 571 Y " 65(, 1)E;

j=1
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If X1 # A, and for each of them the condition (1.8) or the condition (1.44) holds, then
P has the C*°-compact uniqueness with respect to S = {(z,t) |t = 0} at the origin.

If My # A2 and for each of them the condition (1.7) or the condition (1.10) holds, then
P has the C*- uniqueness.

If Ay = Ag and (1.7) holds, then P has the C*°— uniqueness under the following Levi
type condition: for j = 0,...,n, the function §; are in C*(Q2,C) with p > 1 and:

n—1
7=1

Remark 1.24. The above C*°- uniqueness result for operators with smooth coefficients in
the principal part was given in [Na2]. In that work operators of order m are studied. Again
we were not able to prove an analogous result for operator of order m and C3? coefficients,
but it is possible to give a result for operators with C™ coefficients. Finally the Remark 1.20
can be done in this case also.

Example 1.25. Let (a;x(t)) be a (n — 1) x (n — 1) matrix of C? real functions. Suppose
that there exists € > 0 such that the matrix:
(T +E —€)aji(t) + taj 1(t))

is positive semidefinite. Consider the operator P = p, + py + po, where:

n

p2(z,t, Dz, Dy) = D? _tzk(ZDZ;’ +1 Z aj,k(t)DszIk) s

j=1 J,k=1
pi(z,t, Dz, Dy) = o(z,t) Dy + 571 §i(2,8)Ds;
j=1 ,
and pg is a homogeneous operator of order 0, then P satisfies the hypotheses of the Theo-

rem 1.23 and consequently has the C*°—compact uniqueness.

Proof of the Theorem 1.23. The proof is similar to that of the Theorem 1.18. We write

n—1 n—1
p2(m)t7Dth) = D? + tk Z Olj((lt,t)ijDt + t2k Z ﬁj,l(w,t)ijDzl ’
j=1 Jl=1

so that defining a(z,t,£) = 377 ' aj(z,t)¢; and B(z,t,£) = 2] 1—1 Bii(z,t)€& and con-

sidering the operator:

Tp, = D} +t*To Dy + ¥ T |

we obtain:

T T
(1.58) /0 t"27||p2u—Tp2u||2dt§C/o =22k N g2elk DeDlu|?dt
laf+5<1
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In the case of two simple roots we have:

sz = (Dt - TtkAl)(Dt - Tik)\z) + R, 3
Tp, = (Dt = Tpex, )(Ds ~ Tyx ) + Ry,

where:

T T
/ =21 Ryu%dt < C / $-20-R Dy 20
1] ]

T T
/ t 72| Rbu|2dt < C / 720k 24
0 0

Therefore, by (1.38), we deduce:

T T
/ 21Ty w2t >Cy / #7272\ Dy — Ty, ull® + Dot — Tye, u|?)dt
(1.59) 0 0

T T
_c / §=20=F4D) [y 2 + Cr? / §=274 |y 24t
0 0
By the ellipicity of Ty, _», we get that:

|Dets = Tyen,ull? + D = Toop,ull® > CE*H|ull2 + | Do)

From this and (1.59) we deduce:

T T T
/ t2 | Ty ul?dt > C(y - ) / ¢~ E D | 1dt + Cy / t=2772|| Dyl *dt
(1.60) *° 0 0 :

T
+Cy? /0 7274 ||| 24t .

Using (1.58), (1.60), and (1.57) we achieve the conclusion. The case of the double root is
similar to that of Theorem 1.18. This concludes the proof.

1.6. Operators with Degeneration of Infinite Order

Inspired by a work of Nakane [Nal], we want to give here two new Carleman estimates
for infinite order degenerate operators. As an application of them we will obtain a C>°—
compact uniqueness result for a class of second order differential operators with non-
smooth coefficients having an infinite order degeneration. We exploit the main idea of
Nakane. First of all we will consider a set of functions vanishing of infinite order in ¢t = 0.
The reciprocals of these functions will have the good properties to be the weight functions
in some Carleman estimates. It will be possible to apply these estimates to a class of
degenerate operators, if the degeneration of them will have a certain relation with the
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weight functions. The Carleman estimates will be valid only for a proper subspace of C§°.
Nevertheless these estimates will be sufficient to recover the C*°—compact uniqueness in
our application, by using a lemma on ordinary differential equations.

Let us now present precisely all the matter. Let p be a C? real function on [0, 7] such
that:

(1.61) p(0)=p'(0)=0 and pt)y >0  for t>0

To the function p we associate the following function defined on [0, 7] :

T -1
— | 7 (8)ds
(1.62) o) = {e fc for t>0

0 for t=0
It is easy to see that o is an increasing C* real function with an infinite order zero in ¢ = 0.
We denote by B,(B, x [0,T/2]) (or more simply B,) the set of all the functions u of
Cg° such that suppu C B, x [0,T/2] and for all ¥ € R, the functions u(z,t)o~7(t) and
" Dyu(z,t)o~7(t) are bounded.
The following two lemmas are the analogous ones of Lemma 1.10 and 1.11, where now

the weight function is o~ and the estimates are valid only for the elements of B,.

Lemma 1.26. In the hypotheses of Lemma 1.10, there exist T, r, vy and C, positive
constants, such that:

T C T
(1.63) ' / o™ 72 |ul|?dt < —/ o™ Dyu — Toaul|®dt
0 Y Jo
for v > 7o and for all u € B,.

Proof. Let us set v = 0~ Yu, with u € B,. We have:
T v
-—Im/ o~ (D — Toru, —)dt
0 I
T T
:—Im/ (=Tprv, E)dt+7/ 122
0 H o H
T T v
= Re/ (T-iz v, v)dt+7[ | =112d¢
0 * 0o M

The sharp Garding inequality for para—differential operators easily provides the conclusion.

Lemma 1.27. Let p > 3 and let A = a + 1b, where a and b are real symbols oftZ},(w).
Assume that there exists € > 0 such that:

(164) ((1 - 6)b+”aib+ pno Z(axjaafjb_ azj ba&ja))(mvtv E) S 0 ’

i=1
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for all (z,t,€) € w x [0,T] x S"~2,
Then (1.63) follows.

Proof. Let us set again v = 0™ 7u, with u € B,. We have:

v

0" (D — Tyau) = Dy — Toppv — 1 Topv — 19— .
7
Considering @ and b as defined in (1.22) and arguing as in Lemma 1.17, we obtain:

T T v T v
2/ o2 Dyu — Typul|dt > / |Dev — Tpav — iT g0 — iy—||?dt — C_/ | =1I%dt.
0 0 H o H
Calling I the first right-hand-side term it follows:

1 /7 ... 1 /T v,
123 | [1Dw ~ Toav||"dt + 5 i ||Tozv+’7;|| di

<

T v T
+ ’)’/ /J’”;”th + Re/ (T_(%b+aat nHY, 'U)dt
0 1]

T T
Y2
+Re /O (T a5 o a2y, s DV = € /0 142t

We define the symbol:

r(vzc,t, €)= —[(1—¢e)b+ puodb+ ,ucf(Z(azj adg; b — 0;; b0, a))|(z,1,£)

j=1

Again from the sharp Garding inequality we get:

T T v
Re/ (Te,v, v)dt > —C/ |=]|%dt
o " 0o M
Consequently:

1 [T o, 1 [T v,
I> | |Dw-Toao|dt+5 | |IT,50 +y2||"dt
2 /o 2 Jo “

T Y2 T 2
+ / — dt——C/ —||*dt
7 ull’ull A ll#H
T v
— eRe / (T, Lyt
0 B

Finally, by the Schwarz inequality:

T v 1 [T Voo T v 2
—€Re | (T, —)dt 2 —7 | |Tygv+v—|I"dt+(evy=C) [ [=|"dt.
0 p 4 Jo I o M



32 Chapter 1

Putting all together we obtain:
1 (T 2 1 /T V9
1> 2 [ 1Dw-ToavlPdt+ 5 [ 1T 50 ++ 2]
2 Jo 4 Jo I

T v T v,
+7/0 e+l dt——c/O |2

As lim;_o p/(t) = 0, choosing T and 4 ! sufficiently small we reach the thesis. The proof
is complete.

It is easy to imagine how these estimates can be used. Let us only sketch the result
paraphrasing Theorem 1.23. Let P be a second order differential operator with complex
bounded coefficients, P = p, + p1 + po where, for each j, p; is a homogeneous operator of
order j. Let p and o two function as described in (1.62) and (1.63).

Theorem 1.28. Assume that the coefficients of py are in C3(§2,C) and that p, admits
- the following factorization:

pa(z, 1,6, 7) = (1 — o A1z, t,€)) (7 — o Aoz, t, £) ,

where, for j =1,2, \j = a; + zb], with a; and bj real symbols in ‘T'§(w).
Suppose that for 7 =0,...,n, there exists 5 € L2 (Q,C), such that:

pi(e,t,6,7) = bo(z, )7 + 2 (t) Za (2,8))

If A1 # Ag and for each of them the condition (1.8) or the condition (1.64) holds, then
P has the C*®-compact uniqueness with respect to S = {(z,t)|t = 0} at the origin.

Example 1.29. Let u(t) = t2, so that o(t) = e~'/%. Let f be a real C* function such that
there exists € > 0 such that (1 —€)f(t) + t2f'(¢) > 0. Then the operator:

..|..‘

P, =D?—¢" (1 +if(1))2D2 + saDz+BDe+y

where «, 3, v are complex bounded functions, sat1sﬁes the hypotheses of the Theorem 1.28
and consequently has the C*°—compact uniqueness.

Analogously let (a;j(t)) be a (n —1) x (n — 1) matrix of C? real functions. Suppose
that there exists € > 0 such that the matrix:

(1 = €)aji(t) +t%aj 1(1))
is positive semidefinite. Consider the operator P = p, + p1 + po, where:

pa(z,t,D;, D) =D? —¢ t(ZD2 +1 Z ajx(t)De; Dgy)
j,k=1
o

p1(z,t, D, Dy) = o(z, t)Dt—i— Za (z,8)Ds;
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and pg is a homogeneous operator of order 0, then P satisfies the hypotheses of the Theo-
rem 1.28 and has the C*®-compact uniqueness.

Proof of the Theorem 1.28. The only new point in the proof is that we have to deduce
C>—compact uniqueness from an estimate in B,. This can be done in the following way:
let u € C* such that Pu = 0, suppu C St and suppunS CC B,. Then there exist T > 0
and a real smooth function 6, such that 6(¢) = 1 for t < T/3, 6(¢) = 0 for ¢t > T'/2 and
6u € C§°. A consequence of Lemma 1 in [CDS1] show that fu € B,. Finally a Carleman
estimate similar to (1.50) gives the conclusion.

1.7. A Non-Uniqueness Example

Let us consider the following operator:
po(2,t, Dz, D) = D} —= D2 — D% +14(D% +2tD;, D,y + (14 a)t*D2)).

We ask if the operator P, = p,+ lower order terms has the uniqueness in the Cauchy
problem with respect to the hypersurface {(z,t) € R®|¢ = 0} at the origin. To this end
we consider the roots of the characteristic polynomial. The roots are the following:

VEE+E2)2 + (62 + 266 + (1 + a)t262)2 + (E2+ £2)
2

€2 4 2t + (1 + a)t2£2
\/2\/(51 TV + (@ 2l + (L+ P8 +2(3 +E7)
A2($ata£) == Al(mat,g) .

Obviously A1, Ay € *T'j(w) for all p. Let as usual \; = a;+ibj, with aj,b; € R, for j = 1,2.
We immediately have that:

)‘1('7:7t’§) =

(1.64) bi(z,t,6) >0  forall (z,t,6) e R® x St.
and, if @ > 1/3, an easy computation gives that there exist € > 0 and T > 0 such that:
(1.65) (1 —e)ba(z,t,€) + t0sba(z,,6) <0 forall (z,t,€) € R*x[0,T] x S*.

Consequently the Theorem 1.21 ensures that P, has the C*°—compact uniqueness if o >

1/3.

Theorem 1.30. If 0 < @ < 1/3, then there exist a,u € C®(R?) such that 0 € suppu C
{(z,t) € R3|t > 0} and pau + au = 0 in a neighborhood of 0.

Remark 1.31. From the point of view of Calderén’s theorem, this example shows that
requiring only the simplicity of the roots it is not enough to get the uniqueness, even if
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the roots are smooth and their imaginery part has a definite sign. This means that it is
necessary to make some other hypothesis. At least in the case of operator py, the couple
condition (1.64) and (1.65) seems to be near a necessary and sufficient condition for the
uniqueness.

.Remark 1.32. For every a > 0, P, satisfies the condition (P) of Nirenberg and Treves
[NT1], [NT2], [NT3] (i.e. if we call p; and p; respectively the real and the imaginery
part of pa, p2 does not change sign along any null bicharacteristic strip of p;). Therefore
the Theorem 1.30 shows that the condition (P) is not sufficient for the uniqueness with
respect to a strongly pseudo—convex hypersurface of initial data (see Definition 2.3). The
problem of knowing if the condition (P) is sufficient or how much it must be streghtened

. to guarantee the uniqueness was raised by Hormander in [Hor3, Notes on Ch. 28].

Proof of the Theorem 1.30. The proof is rather long and technical; it is based on a
refinement of some results of the geometrical optic. Examples of this technique can be
found in [AZ], [Zu2] and [Al], but our proof will follow very closely the proof of the
Theorem 3 in [CDSZ2).

Let us set:
&(6) = <
(1.66) 9
£2(6) = T
We consider the- following functions:
1-4s 45°
Fils,6) = 3(1+a) 9(1 + a) ’
2 4 2 4 54 4s
\/2\/(5 Tograr) Tl smray * 9(1+ 2+ 20+ gy
4 4
£a(s,6) \/(52 + 9(1+a)7)'~’+5 (1- 3(1+ a) + 9(1+a)) +(6% + g(1+ )7)
2438, =

2

f1 and f; are C* functions, defined in [1 — 9,1 + €o] X [0, éo], while it is easy to see that:

_1_ _ 4 ny ( _ 4s 452 ).
62 9(1+ a)?6* 6% 3(1+ a)é? 9(1 + a)é?

.1
(167) (f1(3,5) + Zgé‘fQ(S, 6))2 - —
Let ¢1, ¢ be the following functions:

&1(356) :‘/1 fl(a, (S)dO’, ‘52(375) = ﬁsz(ava)daa
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we define:

(1.68) 0(5,8) = a(5,6) + @ .

Lemma 1.33. There exists §g > 0 such that the function ¢ satisfies the following condi-
tions:

(1.69) Red(1,8)=0  forall 6€[0,8) ;

there exist My, My > 0 such that:

(1.70) M; < —Re0,6(1,8) —Re 82¢(1,8) < M,

for all § € [0, 6]

Proof. Let us verify (1.70). We know that Red;¢(s,§) = fi(s,6). Let us set:

4s 452 4
—1- d K@) =6"+—.
9=l T i e ™ @) =8+ gaFar

Therefore:
Re 824(s, 6)

_ g9'(s) _(1- §%9%(s) )
\[2\/1«:2(5) T 8i(s) + 2K(6)  (VEP(8) +8%9%(s) + 2K ()N K(8) + 8%g%(s)’

- g(s) +64F(s,6)
V2VEEE) + 5ig%(s) + 2K ()

where F(s,§) is bounded on [1—¢g, 1+¢0] X [0, 6o]. It will be sufficient, taking a sufficiently
small §; > 0, to verify that there exist M{, M; > 0 such that:

Mj < —g(s)—g'(s) < M,

9

for all s € [1 — g9, 1 + €], for a suitable g > 0. The proof is complete.

Before going on with the proof of the theorem, let us explain the structure of it. The
function u will have the form:
DL

k>ko

where every i has the support contained in R? X [bx41, bk—1], (bx) being a suitable de-
creasing sequence going to zero when k goes to infinity. Each i will be obtained from
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a function ug, by multiplication with a cut off function. The functions u; are defined as
follows:

9

up(z,t) = e~ V(bk) gink€(br)-z ovi $(t/bk ,bk)w(%’ bi)

where the functions £(§) and ¢(s,8) have been already defined in (1.66) and (1.68) re-
spectively, v(§) and w(s, §) will be constructed in the following pages and (pr), (v&) will
be suitable sequences. Finally the function a will be obtained posing a = —pou/u and
verifying the correctness of this definition. For a detailed description of this method we
refer to [Zu2] and [SR2].

Let u be the following function:

9

u(,,6) = e_7(5)8i”£(5)’ze”‘ﬁ(t/&ﬁ)w(%a5)

where £(6), ¢(s,6) have already been defined. We set v = §7/? and p = v/§ = §=(e+P)/¢
"(p and o will be chosen later on), and however we will often continue to write v and p.
Let finally be b = k~?. We set:

ur(z,t) = u(z,t,br)

and uj, will be considered, as said, on R? X [bg41,bk-1].
Let us now choose the function 7. For ¢ € [bgy1,br_1], we define:

i i
(1.71) Gk(t) = VkRe d?(——, bk) — Vk+1Re gi)(-—, bk+1)
bk bk+1

Lemma 1.34. Let my; = %bk + —é—bk“ and Iy = Gg(my).
Then there exist w > 1 such that:

Iy = —Re 8,¢(1,0)pk" ! + O(k°~¥)

Proof. 1t is enough to use the Taylor formula in (1.71).

We shall take:

where k > ko — 1, with k¢ >> 1. We have:

7t = Re8,4(1,0 24 + Ok —)

It is now possible to choose 7 € C*[0, §] and define () = §=°/#%(§) in such a way that,
for all k > ko,: '

(1.72) v(bk) = 1k
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Let us now come to the construction of the function w. By (1.66), (1.67), and (1.68)
we have:

T S AU S
Pt = 54[ 26 33¢(6,5)38w(6,6) ) 83¢(5’5)w(6’6)
62 5 1 "y
_— =~ 5V e—7(8) oiTE(8)-z (v $(t/6,6)
” asw(a, )e e e
We consider the following operators:

LO = 26263(‘75(3’ 6)63 - 6263(;5(37 6)
L1 - 83

Reminding (1.68) we have that 620,6(s,8) = 82fi(s,68) + ifz(s,6) and fa(s,6) > 0 in
[1 —€0,14 0] X [0,60]. So that the following Cauchy problems for O.D.E.:

Logo = 0
gO|3=1 = 1 3

Ly gj =—Ligj1 for 721
gj|3=1 =0 9

and

have solutions g; which are C* functions on [1 — €9, 14 ¢€o] x [0, 60]. Let ¢ be a real valued
C* function such that supp® C [~1,1],0 <9 <1 and (t) =1 for |t| < 3/4. We define:

B(s,6,0) = Y _%(;60)87g;(s,8)
=0

where ();) is an increasing sequence of real numbers going to infinity fast enough. Finally
we set:

52
w(s,d) = (s, 6, ;/—)

Lemma 1.35. For t € [bg41,bk—1], we define:

Dok
Uk

Tk(t) =

Then for each j € N there exists Hj > 0 such that for each N € N there exists
C;,~ = 0 such that:

(1.74) |D{rk(t)| < Cj,Nk"HfN for each k> ko.
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Proof. First we prove (1.74) for j = 0. We have:

wi(s) = w(s, by)

= @(s,bk,b—i)
N— b2

LSy ) k)fg,(s b + (2 )N Zw ”k)( ShyiNgy(s,bu)
7=0
N-1

I

PO EP g5, b0) + () Rv(s, 1)

0

%,
Il

where Ry is a C* function in s such that for all j there exist C;,6; > 0 such that
|0IRN(s,6)] < Cj for 0 < 6§ < §; and for all s € [1 —€g,1 + €o]. Remarking that
b3/vi = k~2P~7, we have that there exists ky such that for k > ky, p(A;03/vg) = 1 if
0 <j < N. Then:

62 b2 b2 b2
Lowk(s) + 'V_:Llwk(s) = (V—:)NL:lgN-—l(S, br) + (V—’;)NLORN(S, br) + (L—II:-)NHL1RN(S, b).

So that:

ri(t) = kot4P [Lowk( )+ kLlwk( )]

( )

— k(o+4p)—(c+2p)N

i
Lign—1(~= ) + LoRn(~-. by

t
+ k‘°_2pL1RN('b-;, be)],

and this implies that:
lre(®)] < CNk(°'+4P)“("+2P)N ,

for k > kn. Eventually taking a bigger Cny we reach the conclusion. The case 7 > 0 is
analogous.

We study now the set where |ug| = |ug41|- For (z,t) € R? X [bry1, b, we consider:

uk(:c t)

+1(z,)

= —y(bx) + vkRe ¢('— be) + v(bk+1) — vi+1Re ¢( bk+1) + log |

Fi(t) = log | ———I

w('li7bk) I

( bkil ’ bk+1) °

Lemma 1.36. Suppose that o > 1 and that there exist ky € N and C > 0 such that, for
all k > ki |
—(o + p)Re 8,6(1,by) — pRe 8%4(1,b;) > C.
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Then there exists kg € N such that for all k > ko and for all t € [bg41, byl

(1.75) Fi(t) > %k”"‘l :

Proof. We have:

t t
FI(t) = ZERe 8,8( ) bi) — —FERe By(— br1) + O(K”)
b bi brt+1 br41
t
bry1’

= (2 - PR 0,60 ) + TR (Re Dud(, ) — Re (s be)

C Vb brpa bri1

t ‘ i
n Vi41 (Re ds¢(+—, bx) — Re 0:6(+—, br+1)) + O(k?)
b1 D41 b

=0+@+®+®.
Consequently:
@ = —(0 + p)k"*7'Re 8,4(1,bx) + O(k7T77),
@ > —pk” TP Re 83(1, bk) + O(R7TP7%),
® =0(k"7"),
@ = O(k),
and this completes the proof.

Let us finally choose ¢ and p. We set o = 3 and we fix p and kj such that:

—(o + p)Re d;¢(1,bx) — pRe 85 6(1,by) > %l >0,

for all k > kj; this is possible, thank to condition (1.70). From (1.71) and (1.72) we have

that: me )
1 1 w 5. 1Yk

F — ( b —Jog |——le "

k(M) Fk(2bk+ 5 k+1) Og|w( T b)

| =0Q1).

Then, by (1.75) we deduce that there exists a unique point t; € [bk+1,bk] such that
lup(t9)] = lur1(t5)], and |tf —mi| < Ck=P=7%1 so that t% is always “in the center” of
the interval [brt1,bx]. From now on the proof is exactly the same as that one of the
Theorem 3, g), h) of [CDSZ2]. We give only a sketch.

Using Whitney’s theorem [Wh] it is possible to show that there exist functions zj
which are C* on [bry1,br_1] and such that, if we define:

; i
ir(z,t) = e ™ eie&(bk) -z eum(t/bk,bk)[w(_b_;’bk) + zi(t)]

tr(z,t) .

Fk(t) = lOg ﬁk.*_l(ﬂ,',t)

’
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and : ia(z.1)
~ PaUk\T,
t) = fx B/
mk(?) ar(z,t)
then for F| + the same statement of Lemma 1.36 holds, while for 7 the same statement of
Lemma 1.35 is valid and 7} is flat on ] and ¢} ;.

Finally, letting x be a real valued C* function such that supp x C [-1 1] 0<x<1,
x(t) = 1for |t| £ 3/4, and

t — bg )
t —_= ——————————————— 3
xk(t) = x (bk ———

we define:
u(z,t) = Z xk(t)ik(z,t),
k>ko
and (2.1)
__pat(s,
a(z,t) = a(z,t)

It is a standard computation to verify the correct definition and smoothness of these two
functions. The proof is complete.



Chapter 2. Hormander’s Uniqueness Theorem

2.1. Introduction

In this chapter we will collect some results on the uniqueness in the Cauchy problem which
are essentially due to Hérmander [Ho6rl, Th. 8.9.1], [Hér3, Th. 28.3.4]. Although there
are some common aspects with the subject of the previous chapter, as we will see, the
approach to the problem of the uniqueness is here different, the new matter being the joint
geometry of the operator and the oriented hypersurface of initial data. The geometrical
notion of strong pseudo—convexity of a hypersurface with respect to an operator at a
point, will be crucial in giving new sufficient conditions for the uniqueness for large classes
of operators. The most important of these ones is the class of principally normal operators.
The definitions of strongly pseudo—convex hypersurface and of principally normal operator,
together with the main uniqueness results, are the content of the first paragraph.

Paragraph 2.2 is devoted to a theorem obtained in collaboration with X. Saint Ray-
mond [DSSR1]. By using the para—differential calculus we extend to operators with C2
coefficients a result of Hormander for principally normal operators with C*° coefficients.
As the proof of Hérmander’s result is based on the Fefferman-Phong inequality, and this
one has not been proved for para—differential operators, we are forced to add a normality
assumption and we give a proof which use the Garding inequality for para—differential
operators “with a large parameter”, first introduced by Métivier in [Mét2].

2.2. Hormander’s Uniqueness Theorem

Let €2 be an open set of R™; let P(z, D) be the following operator:

(2.1) P(z,D;)= Y aa(z)D ,

la|<m

with ap € L2 (Q,C). Let S be a hypersurface in Q, S = {z € Q | ¢(z) = 0} where
¢ € C?(Q,R), and let zg € S such that ¢'(z¢) # 0. As usual we will denote by p(z,D,) =
zlal=m aq(z)Dg the principal part of P, and by p(z,£) = Elal—tm aq(z)E?, its principal
symbol.

Definition 2.1. The operator P defined in (2.1) will be called elliptic at x¢ if there exists
a neighborhood V' of x4 such that:

p(z,£) #0 for all (z,6) e VxR"™\ {0}
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Let now T*Q be the cotangent boundle of Q, and let f, g be two complex C! functions on
T*Q). The Poisson bracket of f, g is defined by:

{f, g}z,6) =D (0a; fBe;9 — Bz; 90, f)(2,€)

j=1

Definition 2.2 [Horl, Def. 8.5.1]. The operator P defined in (2.1) will be called
principally normal (in strong sense) at zq, if the coefficients of p are in C*(§2, C), there
exists a function ¢(z,£) such that ¢ is a polynomial in § of degree m — 1 with coefficients
in C1(§, C), and there exists a neighborhood V of z¢ such that:

(22) {137 p}(.’E,E) = 2:Re (ci(:v,é)p(:v,f)) 9
for all (z,€) € V x R™\ {0}.

Let us remark that the operators with real C! principal part are principally normal
(in strong sense).
Definition 2.3 [Hor3, Def. 28.3.1]. Let P, defined in (2.1), be elliptic or principally
normal at z¢. The oriented hypersurface S = {z € Q | ¢(z) = 0} is said to be strongly
pseudo—convex at xo, with respect to P, if, for each { = € —iTp'(z9) #0, £ € R", T € R,
such that p(zo,¢) = {p,¢}(z0,() = 0, we have:

(23) s P, Pr}(@0,6) > 0 i T £0

(2.4) Re{p, {p, p}}(z0,€) <0 if 7=0 ,
where pro(z,€) = p(z, & —ityp'(z)) .
We can now state the main result.

Theorem 2.4 [Horl, Th. 8.9.1]. Let P be the operator defined in (2.1). Assume either
that P is elliptic at o, with C! principal part, or else that P has a C! real principal part,
or that P is principally normal (in strong sense) at xo, with C? pincipal part. Assume also
that S is a strongly pseudo—convex hypersurface at to with respect to P.

Then P has the uniqueness in the Cauchy problem with respect to S at z.

Remark 2.5. The Theorem 1.1 is a corollary of the Theorem 2.4. In fact it is easy to
see that under the hypotheses of the Theorem 1.1 there are no { = & —itp'(zg) # 0, such
that p(zg,¢) = {p,¢}(z0,{) = 0. Better than this, as already pointed out by Hérmander,
the condition: the polynomial in 7: p(zo,7N + 1) has, for all n non parallel to N, m
distinct roots, is a necessary and sufficient condition to the strong pseudo—convexity for
every hypersurface through z¢, with normal N.
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Remark 2.6. The Theorem 2.4 doesn’t require that the hypersurface S is non—character-
istic, so it can be applied also in the case of characteristic but strongly pseudo-convex
surface of initial data.

Remark 2.7. There is an interesting geometrical interpretation of the strong pseudo-
convexity for an operator P of order 2 with real principal part, in terms of the bicharac-
teristic curves associated to p (see [Horl, Def. 1.8.6]): S is strongly pseudo—convex (an
consequently P has the uniqueness in the Cauchy problem), if all the null bicharacteristic
curves which are tangent to S at z¢, have a contact of order 2 in 7y and lie “in the past”,

ie. in {z € Q|p(z) <0}

Remark 2.8. There exists a wide number of works which investigate the necessity of the
hypotheses of the Theorem 2.4. Let us only mention the well known paper of Alinhac [A1].

Let us now give a weaker version of the Definition 2.2 (see also [L] for another version
of this definition).

Definition 2.9 [Hor3, Def. 28.2.4]. The operator P defined in (2.1) will be called
principally normal (in weak sense) at xq, if the coeflicients of p are in C1(2, C), and there
exist a neighborhood V of xy and a function ¢ € L{2.(V x R™\ {0}, C) such that ¢(z,¢&)
is homogeneous in £ of degree m — 1, and (2.2) holds.

The result for principally normal operators in weak sense is the following.

Theorem 2.10 [H6r3, Th. 28.3.4]. Let P, defined in (2.1), be principally normal (in
weak sense), with C* principal symbol. Let S be strongly pseudo-convex at z,, with
respect to P.

Then P has the uniqueness in the Cauchy problem with respect to S at zq.

Remark 2.11. The proof of the theorem 2.10 is based on the Weyl calculus and on the
highly non trivial result of Fefferman and Phong on lower bound for non-homogeneous
pseudo-differential operators (see [FP] and [Hor3, Th. 18.6.8]). This result has not been
proved for para-differential operators (even if it seems reasonable that a similar inequality
must be valid for these operators too). Consequently the proof cannot be simply adapted
to para—differential operators.

2.3. A Result for Operators with C? Coefficients

At the end of Chapter 28 of his book [Hor 3], Hérmander remarks that it is not clear how
regular the coefficients of p must be for the Theorem 28.3.4, i.e. Theorem 2.10 above,
to hold. Our main aim is to give a partial answer to this question. We think that the
requirement on the regularity of the coeflicients in the principal part essentially depends
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on the strength of the normality assumption. More clearly, if the normality condition is
strong (e. g. the operator has a real principal part), then a low regularity of the coefficients
(actually C!) is sufficient to the uniqueness. On the contrary if the normality condition is
weaker (e. g. the operator is principally normal in weak sense), then the regularity must
be higher (we conjecture C*).

We show here that under a certain normality assumption on the operator, C? regularity
will be sufficient to the uniqueness. Our condition will be stronger than the principal
normality in weak sense , but weaker than principal normality in strong sense.

Theorem 2.12. Assume that the differential operator P defined in (2.1) has C* coefficients
in the principal part. Assume that its principal symbol p satisfies condition (2.2) for a
function g(z,&) of class C' in & and C* in £ (this means that Ogq is a C' function of
(z,€) for all « € N™), homogeneous in £ of degree m — 1. Assume also that S is strongly
pseudo—convex with respect to P at zo.

Then P has the uniqueness in the Cauchy problem with respect to S at zy.

Remark 2.13. The normality condition in Theorem 2.12 will be satisfied if it can be
shown that an equality {p, p} = 2i Re(gp) holds near every zero of p for some local
function ¢; indeed a global ¢ can then be constructed by using a partition of unity.

Remark 2.14. The part of the Theorem 2.4 regarding the principally normal operators
in strong sense is a corollary of the Theorem 2.12.

Remark 2.15. We could also give a result under the weaker assumption that P is princi-
pally normal in weak sense (i.e. ¢ is merely locally bounded, see Definition 2.9) if we were
able to prove a Fefferman-Phong inequality for paradifferential operators, as it is easily
seen in the proof below.

" Proof of the Theorem 2.12. As in the model Theorem 28.3.4 of [Hor3], the uniqueness
result follows from a Carleman estimate proved for a weight function admitting a given
family of smooth strongly pseudo—convex level surfaces (see [Hor3, Prop. 28.3.3]). Thus, if
this family is given as the level surfaces of a function 1, we may assume, after a change of
variables, that (z) = z,, then we set ¢(z) = —e~4%(2) (4 is then an increasing negative
function of z,); introducing the norms:

lull2y = (2r)~ / (O + [EP)*a(6)Pde

and the neighborhoods of zop : Q. = {z € Q| |z — z¢| < €}, the result stated in
Theorem 2.12 can be classically deduced from the following estimate.

Lemma 2.16. Let P be as in the statement of the Theorem 2.12 and assume that the
hypersurface S = {z € Q | ¥(z) = 0}, ¢(z) = zn, is strongly pseudo—convex at zo.
Then there exist constants A, C, and € > 0 such that, with ¢ = —e~4¥,

(2.5) Ae|le™ulmoyx < Clle™p(z, D2 )ully
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for all u € C§°(§2,) and A\ > -i—

Proof. As usual we set v = e™*%u and we consider the operator:
Py, = e ¢ op(z,D;)o er = pa(z,Dg) +ra(z,D;)
where pa(z,£) = pag(z,€) = p(x, E—iA¢'(z)), and ry(z, ) is a (m—1)-st degree polynomial
" in (A, €); with this notation, the estimate (2.5) becomes:
(26) A ellm-1x < C|[Paoll
for all v € C§°(2¢) and A > %

At this point we will use a para—differential calculus with a large parameter as given in
[Mét2, App. B] (see Paragraph A.6), that is we’ll use the spaces )T;” and )‘E;" introduced

by the Paragraph A.6, and their properties; here, it is clear by homogeneity that py € *I'7".
In the proof of estimate (2.6) we will use the following lemmas.

Lemma 2.17. Under the assumptions of Lemma 2.16, there exist two constants A and § >
0, and a symbol ex € *I'}™~? such that for = sufficiently close to zq and ¢ = € —1irg'(z),

—-{p)\,p)\} QRe[(q—l—)\AQQﬁKlz)p)‘] = dex and  ex(z,€) > §(O% +|¢H)™ !

Proof. Let us set 7 = —/\A¢(w) , so that ( = £ —1A¢/(z) = £ — iT9p'(z); reminding that

"=0, an easy computation gives:

7{px,px} = 2Im (pi(z, (), P}(e,Q)) + 247{p,¥}(z,O)? ;

(here (-, -) denotes the scalar product in R™).
On the other hand, our normality assumption shows that the polynomial in :

Im (pi(e, (), P(2,)) — Re(a(z,&)p(z,())

vanishes for 7 = 0 and therefore it can be written 71(z,£,7) where ! is a C! function in z,
C* and homogeneous in ({,7) of degree 2m — 2; furthermore, the convexity assumption
implies that for z in a compact neighborhood of zg,

Jnf [i(, &)+ A({p, ¥} (=, " + Ip(=, O)*)) = 6 > 0,

for some large constant A. Thus we can use homogeneity to write:

—{P,\,P,\} 2Re (g + AA2p1 RE 22V pal

= 2Tl(:c,§,r)+2A'rl{p,lb}($y012 + 247 'P(K'g)'
= 27|¢1*™ 2 (U(e, = I)P +Ip(z,

= A e)\(m, 5)

l)+A(l{p,¢}( , l)! )|

lCl I¢ I¢ I¢
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where ey has the wanted properties. The proof is complete.

Lemma 2.18. With the notations of Lemma 2.17, the symbo]:

Pr = pa + ¢ + 276D ICI2

satisfies py € *EL5*. Moreover the operator:
Ry = (TA)'To — To(T5)" — AT,

is bounded from H™~! into H'~™ uniformly in X (for the definition of TP}‘A see Definition
A.28).

Proof. The property #x € *Z5* simply follows from the fact that py is a sum of homoge-
neous functions of (£,)). As for the boundedness of Ry, we continue to use that all our
symbols are sums of homogeneous terms, so that it is an easy consequence of the following
result which refines Proposition B.1.3 of [Mét2], but the proof of which is a straightforward
extension of the classical paradifferential machinery (see [Bo, Th. 3.9], [GR, Par. 3] and
Paragraph A.6).

Lemma 2.19. Let p, 0, m and [ be positive integers and set, for homogeneous symbols
a€ ’\P:," and b€ T :

1 = 1 o o
at = > ~0¢Dga  and afb= > ~0gaD3b
C al<e |a| <o

Then (T))* — T (respectively T; Ty — Ty, ) is bounded from H® into H*~ mtp
(respectively into H*~™~!%) uniformly in X.

Let us now come to the proof of the estimate (2.6). First, we can write:
[Pavllo 2 ”P,\(CE D)vllo = llra(z, D)vllo
> | Ty 0llo — lI(pa(e, D) = Ty Jvllo = llra(z, D)vllo
> T vllo = Clivllm-1x
thanks to estimates similar to that of Theoerm A.15. On the other hand, we have:
I3 = (Rav, 0) + [(T) 0lls + NI v, v) 2 MThv, v) = Cllollh 1,

thanks to the uniform boundedness of R given by Lemma 2.18. Finally the estimate we
have for ey in Lemma 2.17 and a Gérding inequality such as in Proposition B.1.4 of [Mét2]
(see also Theoerm A.22), imply:

1T\ 0ll5 > Allvllm 13— CAvllaa = Cllvllmoa s

whence we get the estimate (2.6) if € is chosen sufficiently small and A sufficiently large to
absorb all the error terms in the main term 5/\||v|]m 1
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Few years after the famous result of CALDERON (2], Hormander proved
in 1963 a uniqueness theorem for operators with C! coefficients (resp. C*
coefficients) in the principal part simply by integrating by parts explicitly
once (resp. twice) [4]. Then the use of pseudo-differential Garding inequa-
lities allowed many authors to extend these results in the case of operators
with C coefficients in the principal part, see e.g. HORMANDER [5].

Recently [3], the authors of this paper revisited Hormander’s unique-
ness theorem [5, th. 28.3.4] to weaken the smoothness assumption on the
coefficients of the principal part. In the present paper, we now consider
Lerner-Robbiano’s uniqueness theorem {7], as improved by HORMANDER
[5, th. 28.4.3], to examine again the smoothness assumption on the coef-
ficients of the principal part. Easy arguments, parallel to those of [3] and
consisting essentially in replacing pseudo-differential Garding inequalities
with para-differential Garding inequalities, show that Lerner-Robbiano’s re-
sult is still valid for second order operators of real principal type with C*
coefficients in the principal part. But we can get much better, namely that
this result is still valid when the coefficients belong to the Holder class C7/3.

This improvement follows from two different facts : first, that we do not
need to change variables explicitly to work with the operator in the standard
form D? + g(z,D'), and second that we can treat a not very good error
term coming from our Garding inequality using an interpolation estimate
suggested by C. Zuily, whom we thank.

We also show in our last section that the result is still valid for C5/3
coefficients (or even C') is some special situations; the trick is to replace the
paradifferential Garding inequality with a differential Garding inequality :
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indeed, the error terms in the latter situation are better than in the former.
This modification of the proof is based on an algebraic result on real
quadratic forms which is recalled in an appendix.

1. Statement of the main result

1.a. General assumptions. Let ¢ be a smooth real valued function
defined near a point zo € R™ and such that ¢(zo) = 0 # ¢'(z0). Near this
point, we are also given a second order linear partial differential operator

P= Z aq(z) D*
Jal<2

where a = (@1,...,an) € NT, la|=a1+... +an, D¥= D ...Dg~ and
D; = —i8/0z;. We assume that the complex-valued coefficients ao satisfy

ae €C! if |a|=2, a€L™ i |af<1,

and that P is of real principal type at zo (in the strong sense), i.e. its
principal symbol

p(z,8) = > aq(z)€"

|oe|=2
is real valued and has the property
pe(z0,6) #0 if £€R™\ {0} .

Finally, we also assume that the initial surface ¢(z) = 0 is noncharacteristic
at zg, a property which can be written :

P(z0,#'(20)) # 0 -

1.b. The pseudo—"convexity property. For the class of operators we
have just described, HORMANDER [4] proved a uniqueness result under the
assumption of strong pseudo-convexity at zo ; introducing the Hamiltonian

vector field H, = (p¢(z,€),0:) — (p’.(z,€),0¢) associated with the symbol

p, this condition of strong pseudo-convexity at zo can be written

VEeR™\ {0}, p(z0,8) = Hpp(z0,£) =0= Hz‘{’(l’o,f) <0.

Later, LERNER and ROBBIANO [7], then HORMANDER (5, th. 28.4.3] proved
another uniqueness result under the weaker assumption of pseudo-convexity
we give in theorem 1 below, but for operators with C= coefficients in
the principal part. The situation we want to examine here is the case of
coefficients with a limited regularity as in [4], under the weak pseudo-
convexity assumption of [5, th. 28.4.3].
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l.c. Measuring the smoothness of the coefficients. For k € N,

we denote by C¥ the class of k times continuously differentiable functions
defined in a neighborhood of zo. Then we introduce the Holder classes C? :

first if p € (0,1), we say that a € C? if there is a neighborhood V of z
and a constant C such that

la(z) —a(y)| < Clz—y|? forall z,yeV ;

next if p € Ry '\ N, we denote by [p] the largest integer smaller than p,
and we say that a € C? if a € ClAl and D%a € C*~ 1 for all @ € N with
o] = [o].

We can now state our result, which is exactly theorem 28.4.3 of

HORMANDER [5] with the exception of the smoothness assumption on the
coefficients.

THEOREM 1. Let P be, as above, a second order linear partial differential
operator of real principal type at o, and ¢(z) = 0 be a smooth, noncha-
racteristic hypersurface through zo. Assume that a, € C7/3 for || =2,
and that the following weak pseudo-convezity condition holds near z¢ :

Vz eR™, V€€ R", ¢(z) =p(z,€) = Hpp(z,§) =0=>H2(p(3:,§) <0.

Then, we have the fallowmg uniqueness property : any solution u € H{ _(R™)
of Pu =0 vamshmg ina nezghborhoocl of {z # zo;¢(z) < 0} must also

vanzsh near zg9 in R™.

We give in section 4 below variants of this theorem where the assumption
aq € C™3 is replaced with a, € cs/3 (resp. aq € c? ).

2. Standard reductions and estimates

2.a. General notation. First we fix a set of notation which will be
used throughout the paper.

Let p > 1 be areal number; we are given n?—n coefficients (a;);>; and
P 3 g ili>

(ajk)j>1,k>1 With ajx = aij ; these coefficients are C? real valued functions
defined near 0 € R™ and we set

Uz, 8) =&+ ) aj(z)é ,

i>1
a(z) = ) (8a;/0z;)(z)
i>1
a(z,€)= > ai(2)éib
i>1,k>1

r(z,¢'") = Heq(z, &) + a(z) ¢(z,€') = z bie(z) €5k

§>1,k>1
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where the real valued coefficients bj; can be chosen so that bz € cr-1
and bjx = bg;. For any a € L™ defined near 0 € R" and any ¢ > 0, we

set a®(z) = a(ez). With the previous £, ¢ and r, we now associate the
following operators

Lfu = Dyju+ ZaiDju ,

i>1
Qfu = Z Dj(a5x Dyu) ,
Ji>1,k>1
Ru= Y = Dj(bDru) .
i>1,k>1

In our proof, which follows the standard method of Carleman estimates, we
are going to use the L? scalar product and norm

(u,v) = / u(z)(z)dz and |u||* = / [u(z)|* dz

for u,v € C$°(R™), the weight function ¢(z1) = (z}/2)—z; and the compact
set W={ze€R";0<z; <1/2, |z'| <1}, and we recall that u € Cse (W)
means u € C$°(R™) with suppu C W. A little bit further, we will also use
the more general Sobolev norms

Jull2 = )™ [+ 1Py e de

for s'€¢ R and u € C§°(R"). Theorem 1 will be easily deduced from the
Carleman estimate that can be stated as follows.

PROPOSITION 2. With the notation given above, assume that p = T/3,

that the quadratic form ¢(0,£') is non degenerate and that for some small
6>0,

z € 6W and ¢(z,8)=0=r(z,£)>0.

Then, for some large constant C and all sufficiently small € > 0 we have

3 ”ef‘f’u”2 + T ”c"¢ L‘u”2 + Z He”’S Dju”2 <C ||e7'¢((L‘)2 + QE)MH2
21

for all ue CP(W) and 72> 4.

2.b. Proof of theorem 1. With the help of proposition 2, we can
now prove theorem 1.

First, using a smooth change of variables, we can assume that z¢ = 0
and that ¢(z) = z;. Since z; = 0 is noncharacteristic at 0, we can divide
P by the nonvanishing coefficient of D?, then using the smooth change of
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variables of HORMANDER [5, lemma 28.4.2], we get that P can be written,
with the notation of section 2.a.,

P=(L'V+Q"+) bDj+c
21

where ¢ and r satisfy the assumptions of proposition 2 (including the Cc7/3

smoothness of the coefficients), and (bj);j>1 and ¢ are bounded complex-
valued coefficients.

For small € > 0, a straightforward computation gives
(Pu)® = (L) + Q°)(u®) + €71 ) 85 Dj(u”) + c*(u?)
i1
so that we can write
(L) + Q°)(u°)-= X (Pu)* —e » b3 Dj(u’) — *c*(uf) .
i1
Thus it follows from proposition 2 that for small € > 0,

@I + 25 lem® D3

>t
<0 Py + & S Jert D) ¢ Jert ] ).
izl
which proves that for a small fixed € > 0 and all v such that u® € C§°(W),
| @ < flemPuye]” -

Finally, the uniqueness property of theorem 1 follows from this estimate
thanks to standard arguments such as in [5]. O

2.c. Estimates of some commutators. In this end of section 2, we
show that most of the estimates needed in the proof of proposition 2 can be
obtained by integrating by parts just once, and this is why we need no more
than the assumption p > 1 in corollary 4.

The commutator of two operators @ and R is defined as the operator
[Q, R]v = Q(Rv) — R(Qv). In the following statement, :z; stands for the
operator of multiplication by iz;.

4

LEMMA 3. For all v,w € C§°(R™), we have

(i) (v,Lfw) = (Lv,w) —ie(a®v,w);

(il) (Q%v,L*w) = (Lv,Q°w) —ie(Rv,w) ;

(ili) [Q%,iz;] = QF —ieai where Q5 =23 45, a5 D and
aj =3 k51 0ajk/0zk ;
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(iv) [(L%)%,iz;] =2a5L° + e(Laj)e.

PROOF : Formulas (i), (iil) and (iv) are easy to obtain, and are therefore
left to the reader; as for (ii), we just have to sum over j > 1, k¥ > 1 and
£ > 1 the identity -

(D,-(a?k Dyv), 0§ Dew) — (4% Dev, Da(a D;v))-
= is((aal/axj)‘ajkav,Dgw)
- ie((a(agajk) /8 ¢)¢ Dyv, Djw)
+ie (a;k(aat /8zx)* D, D ,-w)
which comes from the identities
(a5 Ds(ase Div), Dew) = (Dj(a3 a5 Div), Dew)
+ ie((@ag/@a:j)‘a;kDkv,Dgw) ,
(Dg(afaikav),Djw) = (a; a5 D¢ Dy, D,-w)
| —is((a(agajk)/a:cg)‘Dkv,Djw) :
(a;k a5 Dy Dy, D ,-w) - (a;k Dy(a5 D), D ,-w)

+ ie(.ajk(aa[/azk)‘ Dlv,Djw) .

COROLLARY 4. With ¢(z1) = (23/2) — =1, we define the operator
Jle — (Le)2 47— (T¢I)2 + Qc ;
then, for sufficiently small € >0, we have:
(i) Forall T >3 and v=—c"*ue C(W),
”ertﬁ((Lc)fl + Qe)u“2
' 1 3
> 2e7(=¢' Rv,0) + 5 50> + o ol + 72 L] ;
(ii) If the quadratic form ¢(0,') is nondegenerate, then there is a constant
K such that for all v € C§®(W), '
2 €
oll < K50l + lloll® + 12°0]) -
PROOF : We have e™®((L%)? + Q%)u = ™ ((L°)* + Q°)(e~"%v), and
erqS((Le)2 + Qe)e—r¢ — er¢~ LE e—f¢ Lt + i,reﬂﬁ L ¢l e——rqS + Qs
= (L) 4+ 2ir¢' L+ 7— (¢ +Q°=J{ + J5
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with J§ = 2ir ¢' L. Thanks to lemma 3 (i) and (ii),

(Jiv, Lw) = (L*v, Jiw) + re(a® Ly, Lw)
—ie(as, (r - (ré)?)w) + (ir*g' - i€ R%)o, w)

we have

9

and this gives
(Jfv, J5v) = (va, 2ir¢', L] v) + (va,L‘(2i‘r¢'v))
= (Jfv,~27v) + (.rfv, Jf(2z"r¢'v)) + ie(a‘L‘v, Lé(2ir qﬁ'v))
~ic(afv, (r = (rg"))2ir #v) + ((2ir¢' — ic B, 2ir¢'v)
= —2r(Jfv, v) + (L=v, [J5, 267 ¢ v) — (Jfv, Jtv)

TOLTIL I +e7* ol ) + 47 [|§'0]® + 267 (=g v, v)
and since [J§,2ir ¢'] = 47 L* | we get for small ¢ >0

PR {0 T50) 2 =5 ol =2 ol 212 o 4 2 (g, )

The obvious estimate I Jz"u”2 > 12 ”L"a”2 finally gives

17 (E) + Q)ull* = 1750l + 1 750]? + 2Re( 20, J5v)

1 3
2 267 (=4' Bo,0) + 2 foll* 4+ T ol + 72 ze)?
for 7 >3, and this is estimate (1).
Next, the assumption that 9(0,€') is nondegenerate can be written
Lo
Z ajral el > o &'
F>1,k>1,51 o
if €>0is sufficiently small. Thus we have
Iolly = lol® + 3" 1D;0)
j21
< oli* + Lo + ¢y >_IDjel*
i>1
S+ +CoC S Rea, Dio, a5, Do)
I>1,k>1,0>1 '
. CoC e 2
S e [
. i>1
for the operators Q5 considered in le

and (iv), we can write, for all j > 1

Q5 =15, izj] - 25 L + e

for a fixed Cy > 0

mma 3 (iii). Thanks to lemma 3 (ii1)
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where f; is a continuous function. This gives

lQ5oll* = (JGzv), Q50) — (i I5v, Q50) + (5 — 205 1) v, Qv -

Using tedious calculations similar to the proof of lemma 3, we can show that

(i Giz50), Q50) = (@3(izsv), I5v) | < Ce(lol + IL<0])

and since [Q%

iz;] = 2a%;, we obtain an estimate

j? SER)

Q5" = 2Re(iz; Q5v, Jiv) + (2a%,v, Jiv) + ((5,9; —2a; L‘)v,ij)
+O(e loll} + € I1Z50]%)
< 3150l + 5 10l + C ol + € L0l + Ce o
which yields
Q5w ]1” < 10|1750]> + 2C [lo]|* + 2C || L<0|* + 2C¢ [lo][} -
| Since we previously proved the estimate [|o|| < |[o|f+C X5, [|Q5v|”, this

" completes the proof of our claim (ii) in corollary 4. O

It is easy to see that proposition 2 follows from the estimates in
corollary 4 as soon as we have an estimate for the term 2er(—¢' R°v,v);
this term will be treated in the next section.

3. Estimates under the pseudo-convexity assumption

It is in this section, which will provide the estimate of the term
(¢' R°v,v), that we need the additional smoothness of the coefficients we
assumed in theorem 1. This smoothness assumption can be taken into

account conveniently through Bony’s paradifferential calculus that we review
in section 3.a.

3.a. On the paradifferential calculus. We begin with the simplest
paradifferential operator, the operator of paramultiplication : let ¢ > 0;

then corresponding to any a € C?, BONY [1] constructed an operator T,
with the following properties.

LEMMA 5. Let ¢ > 0 and a € C7; then there ezist constants C,
(depending linearly on the C7 norm of a) such that for all y € C§°(R™) :

(1) VseR, [Tov|l, < Cs o], ;
(ii) Vs € RJ VJ 2 1: ”[Ta,Dj]'U", <C, |lU”a+ma.x(0,1—a) ’
() Vse(0,0), l(a=Ta)ol, < Csllol,, -

PROOF : Properties (i) and (ii) are given by BONY [1]. Using the same
ideas, we can prove (iii) as follows.
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Let us choose a Littelewood-Paley decomposition a = Ypa, and
v = Xgvg ; we have av = I, ja,v, while T,v = X, o5p4 N 6,0, ; thus

(a—T,)v = Z GpUpir + Z ap v, .

P)lrlSN p,q<p—N

In the first sum and for each fixed r, supp a,v,4, is contained in some
ball of radius C2P ; moreover we have

Y 2 llapvpar]* < Ca Y 270 fupy P < Cap 0],
P P

which gives an estimate HZP,I"ISN ap vp+rIL < C|v|,_, for s>0.

For the second sum, we set w, = ¥g<,_n a, v, which satisfies, for p=£0,

supp @, C {{ € R™; C712F < [¢| < C2P} for some constant C ; moreover,
we have

2°° flwpl| < Ca Y (lvgll 22077 (2079¢=) = (uy % 1),
. 45<p

where uz, = |[lv,]| 27(s=9) is an ¢? sequence with norm smaller than
Clvll,—s, and u; , = C, 2p(s=9) is for s < o, an #! sequence with norm
equal to C, (1 —2°77)71; it follows that the sequence 27° lw,]| is an €2
sequence with norm estimated by ||v|[,_, , and this gives the second estimate

| 5 av| <00 X 2wl < i,
b4

. p,q<p—N
which proves the lemma. O
Next, BONY [1] defined more general paradifferential operators : for

o >0 and m € R, he considers the class X7 of symbols a(z,¢) satisfying
estimates

029 a(z,€) — 8288 a(y,€)| < Caplz — y|” 71 (1 + |17

for all « and B € Z%} with |a| = [o], then he comstructs operators T,
corresponding to these symbols.

However, we are going to deal here with symbols depending only on
§', where £ = (£1,¢'), and therefore, we need actually a variant of Bony’s
paradifferential calculus where the variable z; is merely a parameter. Thus
we define the class ‘ST of symbols a(z,¢') satisfying estimates

82 O a(z,£) ~ 02 0L a(y,€')| < Cap o — y|" ™ (L4 ¢’ 1Al

for all @ € Z% and B € Z}™! with |a| = [0], then we construct operators T

corresponding to these symbols through Littlewood-Paley decompositions in
z' only.

It is not difficult to modify Bony’s proofs to get the following estimates.
y g g
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LEMMA 6. Let 0 >1, m>0 and £ >1—m. Then we have :
(i) VYae'Sy,, 3C:Vve C(RY), |Tovl| < Clloll

T m . L — .

(i) Vee'Ey, Vi21, [D;,Te]=Tp,.;

(i) Yae'S™, Vbe'st, 3C: Vv e CP(R™),
(T2 — Ta T3)oll S Cllvll e s

(iv) For any quadratic form s(z,£') = Xj>1k>1¢k(2) 5k € B2 with
cjk = ckj, there is a C such that for all v € Cg°(R"),

I(S — T;)vll < Cllvll;
where Sv = Zj>1,k>1 Dj(cjx Div).

PROOF : As an example, we give the proof of (iv) : it is convenient to
introduce the norms

, o , R 1/2
Iolle = (o [+ 1Py e )
which satisfy ||v||; < ||v||, when ¢ >0 ; then we have

s-myel< 3 |
i>1,k>1

< 3 {len-m0],+ 7o D] }

f

Dj(cjk — Tc',,k)Dkv

+ H[D;‘,Tc',-,,]Dkv

)

i>kE>1
< C(llvllz—o + lIvlly) < Cllvlly
by using lemma 5 (iii) and lemma 6 (i). m

Our last statement in this section can be easily deduced from the
paradifferential Garding inequality of HORMANDER [6].

LEMMA 7. Let 0 < 0 < 1 and s € '¥2, satisfying Res < 0 on
§W x {¢ € R*71; |¢/| > 1}. Then there is a constant C such that for
any € <§/2 and for all v CF(W),

Re(The v,v) < Clvlli_(o/2)
where s¢(z, ') = s(ez,&').

REMARK. Since the estimates of lemma 6 will be used for symbols of the
form a®(z,¢') = a(ez,&'), it is important to poini out that these estimates
hold with constanis C independent of ¢. Indeed, these constants depend
only on the constants Cup occuring in the assumption a € 'ET, and it is

obvious that a € 'S™ implies a® € 'ET with the same constants Cqup if
e<l1.



On the Uniqueness Theorem of Lerner and Robbiano

3.b. Estimate of (¢’ R°v,v). This estimate is obtained thanks to the
following decomposition of the quadratic form r.

PROPOSITION 8. Under the assumptions of proposition 2, there ezist two
symbols A\ € '22/3 and 3 € '22/3 such that 7 = Ag+ s and s > 0 on

§W x {¢& €R™15 & > 1),

PROOF : Let us denote by a the set of variables (aji)j>1r>1 € R(n—l)z’
then set Q(qa,&') = Zj>1,k>1 a;r€; & which is an analytic function of
the variables (a,f'). If aji(z) are the coefficients of ¢(z,¢'), we write
a® = (2;£(0))j>1,k>1 and finally we set

K= {(a,&') € R(*=1)* g1 ;ja=a’ and |¢'| = 1} .

If Q does not vanish at a point (a?,&)) € K, we define the analytic
functions Z(a,€') = 0 and A(q,b,¢') = Q(b,¢')/Q(a, ") for (a,€') close
to (a%¢)) and b € R(*=1* If Q does vanish at the point (a,&5) €
K, we can use the assumption “¢(0,{’) is nondegenerate” and standard
arguments (implicit function theorem, Taylor formula) to construct two

analytic functions Z(a,{') and A(a,b,€'), for (a,&') close to (a?,&)) and
b € R(*=1* such that
Q(a,5(a,¢")) =0
and :
Q(5,¢) = Q(4,5(a,&")) + A(e,5,¢') Q(a,¢') .

In both situations, we set S(a,d,£') = Q(b,=(a,")).

Now, using a nonnegative partition of unity 1 =32, ,«n ¢u({') and
the homogeneity in- ¢’ of @, we see that we can construct two C™ functions
A(a,b,¢") and S(a,b,¢') globally defined on A x R(r=1)* x Rr-1 , Where A

is a neighborhood of a° in R(»-1)? , respectively homogeneous of degree 0
and 2 in ¢ for |£'| > 1 and such that

Q(5,¢") = A(a,5,£") Q(a,&") + S(a,b,¢")
where, for |¢'| > 1, '

Stab,€)= 3 @u(€/1ENQ(5,Z" (e e/ 1€N) I

1<v<N
and the functions =¥ all satisfy Q(a,="(a,£")) =0.

Finally, if ajx(z) and bjr(z) are respectively the coefficients of the
quadratic forms ¢(z,£¢') and r(z,€'), we set A(z,£') = A(a(z),b(z),¢)
and s(z,{') = S(a(z),b(z),¢'). Using the homogeneity for the derivatives
in ¢ and the chain rule for the derivatives in z, we see that a and

be C¥? imply A € 'Tys and s € '} since ¢(z,¢') = Q(a(x),£)

o7
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and r(z,¢') = Q(b(z),¢'), we have r = Ag + s; at last, we also have for
z € §W (maybe for a smaller 6 >0) and [¢{'| > 1,

(@)= 3 @& (2, ) e/IED) €T 20

1<v<N
since g(z,Z*(a(2),€'/ 1€'])) = Q(a(=), E*(a(x), &'/ [€])) = 0 implies
r(z, 2 (al2),€'/ 1€'])) 2 0. 0

We can now write our estimate for (¢' Rv,v).

COROLLARY 9. Under the assumptions of proposition 2, we have an esti-
mate

(¢' R, v) < O(™H |5l + 772 lofl} + 7 |1 Z%0])” + 72 o]

for all ve CP(R™), 7>1 and € < §/2, where Jf is the operator defined
in corollary 4.

PROOF : Using the estimates (iii) and (iv) of lemma 6 and that of lemma 7,
| we have ‘

(¢ B0,v) = (¢ The gope v,9) + (#'(R° = Ti)v,v)
= Re(¢ The Thev,v) + Re (qs'(Tg, o« — The The)v, v)
+ Re (T'_,¢ (=) /2 v), (—¢')1/2 v) + %e(qi'(R‘ — T, v)
< Re(¢' The Qv,v) + C|lolly o]l + Cllvllys -

The product ||v||, ||v]| can be estimated by 7 ||v[|§ + T[lv"2 while the
interpolation estimate ||v||3 /a S 7| +72 Ilvll2 directly follows from the

easy inequality (1 + |¢] )2/3 <711+ lfl ) + 72 ; thus, the last two terms
are estimated as required.

As for the first term, we have Q° = Jf — (L¢)? — 7 + (1 ¢')?, then
I(¢' T Q%v,0)| < |(4' T (¢'Tg,(L=)2v,v)l +Cr |o|?
<Z l(qﬁ T\« D;(a5 L), )I

+Clll (15oll + 1Ll + T [lol)
< S {106 The (a5 20), Djo)| + €| (¢ Tip, aye (a5 L0), v)

i21

}

+ |(The Lo, 0) [ + Cllo] (155l + | Z°0]| + 7* [[]))
< O Ioll” + 7t ol + 7 IL0)* + 72 o))

thanks to estimate (i) and formula (ii) of lemma 6. a
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3.c. Proof of proposition 2. From corollaries 4 and 9 we get
lem?((29)? + @)’
> (é— - Ce> 175o] + G— - C’a) = [loll? + (1 = Ce)r? | Lo
so that we have for sufficiently small € > 0 |
(2 + Q)] 2 5 (5ol + 72 ol + 7 1250
On the other hand, thanks to corollary 4 (ii) again, we have for 7 > 4
™ [letu” +"NC"’SL‘“H + ZIIeT¢D ul

=7 |o||* + 7 |(L¢ +ird’ )Ull + (D +irg")ol* + > [1Djoll®
i>1

<37° |o]f® + 37 [|L50||* + 2 v]f3

<(3+2K)7® [Ivli + (3 +2K)7? ||L‘UH + 2K |[J1v“

<5(3 + 2K) |]fz"¢’((L‘)2 + Q%) u”

as required. O

4. Variants of theorem 1

In this section, we want to show that the assumption ay € C7/3 of
theorem 1 can be weakened in some special situations.

First, we recall that, thanks to a remark of LERNER and ROBBIANO
[7, lemme 2.1.1], our general assumptions (see section 1.a) imply that

2= {(2,6)52 = 20, p(e0,6) = Hpip(z0,£) = 0, [¢] = 1}

(for any choice of local coordinates) is an analytic manifold of dimension
n — 3. Since the pseudo-convexity assumption of theorem 1 implies that
H ]fcp < 0 on %, the zeroes of this analytic function are critical points. In
our next result, we assume that these critical points are nondegenerate.

THEOREM 10. Let P be, as above, a second order linear partial differential
operator of real principal type at =4, and p(z) =0 be a smooth, noncharac-
teristic hypersurface through zo. Assume that aq € C5/3 for le] =2, that
the weak pseudo-convezity condition of theorem 1 holds near zo and that
the zeroes of the function H:(plz are nondegenerate critical points. Then
the same conzlusisy. as in theorem I i.usds.

PRrROOF : Using the same arguments as in section 2.b, we see that the
problem is just to prove the estimate of proposition 2 under the assumptions
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that p = 5/3, ¢(0,¢') is nondegenerate, g =0=>r >0 on §W X R*1, and
the zeroes of r|{o}xx, where K = {¢' e R*71;¢(0,¢") =0, |'| = 1}, are
nondegenerate critical points. We proceed in two steps.

Step 1 : decomposition of the quadratic form r. Using theorem A in the
appendix we see that there is a real-valued function A(z) such that r(z,£")—
Az)q(z,€') 20 on 6Wx R"—1. We claim that this function A can be chosen
so that A € C?/3.

We first remark that we can assume that ¢(z,{') = (]E"I2 — "y /2
where &' = (£",£") ; indeed, since the conclusion is just that r — Ag > 0,
we can forget the link between z and ¢ and calculate with &' expressed
in any basis, even depending on z. Thus, using the standard process, we
can reduce ¢(0,¢') to ([E"|2 - |€”'|2)/2, and it is then easy to see that, by
continuity, there is a C5/® change of bases reducing ¢ to (|§”]2 — lf"'lz)/Z
everywhere near 0. In this new basis, r(z,£') is still a quadratic form with

C2/3 coefficients, and we have K = {&' = (€",€"); "> = |¢" =1/2}.
Then, let us set p(z) = 32& r(z,¢') (thanks to our assumptions, we

have g > 0 on 6W). If for every small z this infimum is reached at some
point £, € K, we can write

p(y) < r(y, &) = r(z, &) + [r(y, €5) — (2, €2)]
< p(z) +Cly— o

so that p € C2/3 . We now consider the quadratic form s(z,¢') = r(z,{') —
p(z) |¢']?, which still has C%/3 coefficients, satisfies ¢ = 0 = s > 0 on
R™ x R*! and is such that K, = {¢' € K;s(z,£') = 0} # ¢. We can
assume that p(0) = 0 since otherwise the surface is strongly pseudo-convex
at 0 and the result is easier (see e.g. theorem 11 below), and this implies
that the zeroes of s|(o}xk are still nondegenerate critical points. Then it
follows from an easy Morse lemma that the points of K, are C?/? functions
of z. Finally, using proposition B in the appendix, we see that the formula
A(z) = (sg (2,€2), 9 (€z)) , where ¢! is any point of K, defines a C?/3 real
valued function A such that s(z,¢') — A(z)¢(z,€') > 0, and this is our claim
since r(z,¢') > s(z,{') on §W X R,

Step 2 : estimate of (&' Rv.v). We complete the proof of theorem 10
by showing that the estimate of corollary 9 can be obtained thanks to the

decomposition r = Ag + s with A € C%*3 and s > 0 on §W x R*™! we
wrote in step 1.

Indeed, let us set cjx = bjr—Aajk (we know that Zj>1,k>1 cik€iér =0
for z € §W and €' € R"™1). Since (¢' R°v,v) = 3 .51 k>1 (D_,-(qS’ bSx Dkv),v) ,
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we are led to estimate
(D;(¢' b5 Div), ) = (D;(4' X% Dev),0) + (45 Dev, D)
- ( 'afy Dev, { (A = Tne) D; + [T;,,Dﬂ}v)
+ (Dj(a;kav),qS’TA‘v) + (¢' ¢ Div, Djv)
< Re (D,-(a§k Div), ¢' The v) + Re(¢' 5 Dxv, Djv)
+C ||¢ a% Deol|_, 1y (103 = Tae) Dyolly s + lTne, Dloly o )
< Re(D;(a5t Drv), ¢/ T v) + Re(#' 5 Dev, Do) + C [loll3s
thanks to the estimates of lemma 5 and since ajx € C' implies
”45'a§kav”__l/3 = H[ 'a;th]v” + ”qya;kv“;z/:’»
I e
<ottt e

<C "vnz/a .

After summing over j > 1 and k¥ > 1 and using the nonpositivity of ¢'s®,
we get :

(8' R°v,v) < Re(Q%v, ¢' Taev) + C ||v|| /3
S Re(J50,¢' Tyev) + C72 ol]* = Re((L9)%0, ¢/ Taev) +C oll3 5
<7 5ol = Re (L0, Y Dj(a5¢/ Taew) ) + C(7 ol + 1ol o)
j21
<P 477 ol + O Il + 7 12]?)

by using the same interpolation estimate as in the proof of corollary 9, and
this is the estimate of corollary 9. O

2/3

REMARK. We believe that the decomposition of the quadratic form r in
the form A(z)q(z,é") + s(z,¢') with A € C?/3 and s >0 on §W xR"! is
still possible under the assumptions of theorem 1. The proof of theorem 1
using this method would have been complete if we had proved that A € C?/3
when p = 7/3; however, all we have been able to prove in this direction is
that A € C(?~1/2 when p < 2. 7

We also point out that the same proof allows us to get the following
result, which was first proved by HORMANDER [4].

THEOREM 11. Let P be, as above, a second order linear partial differential
operator of real principal type at zo, and @(z) = 0 be a smooth, noncha-
racteristic hypersurface through zo. Assume that ay € C! for || =2, and
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that the surface <p(:v) = 0 1s strongly pseudo-convez at zo (see section 1.B)
Then we have the following uniqueness property : any solution u € H* (R™)

loc
of Pu =0 wvanishing in {z € R™; p(z) < 0} must also vanish nearozo n

R™.

PROOF : It is similar to that of theorem 10, but here we can find

a constant A such that r(z,¢') — Ag(z,¢') > 0. O

Finally we conclude our article with a corollary of theorems 10 and 11
which treats our problem in the case of equations in three or two variables.

COROLLARY 12. Keep the same assumptions as in theorem 1 ezcept “ay €
C™3 for |a| = 27". Assume that either n =3 and a, € C5/3 for || =2,
or n=2 and ay € C! for |a| = 2. Then the conclusion of theorem 1 still
holds.

PROOF : Since dimY = n — 3, the zeroes of Hly|y are automatically
nondegenerate critical points when n =3 (resp. H 3(p does not vanish on &
when n = 2). Therefore, the assumptions of theorem 10 (resp. theorem 11)

are fulfilled. O

Appendix. Results on pairs of real quadratic forms

Let ¢ and: r be two real quadratic forms on R™, n > 1. Our goal in this
appendix is to determine the real numbers A such that r — Ag is positive
semidefinite. Since we don’t know if this problem was explicitly studied in
the literature, we give here a short way to get the result needed in the proof
of theorem 10 above. They are deduced from the “main theorem” in UHLIG
[8] which states that if

(P) VEER™\ {0}, q(§)=0=r(§)>0,

then there exists a A € R such that the quadratic form r — Aq is positive
definite.

THEOREM A. Let q and r be two real quadratic forms on R™ satisfying
the nonnegativity condition

(NN) VEER™, ¢(&)=0=r(£)>0.

Assume in addition that if q does mot change sign, then ¢ is positive or
negative definite. Then there ezists a A € R such that the quadratic form
T — Ag 13 positive semi-definite. ;

PROOF : When ¢ is positive or negative definite, we just have to take a
sufficiently large A such that A\g < 0.

When ¢ changes sign, let us choose n and ¢ € R™ such that ¢(n) = 1
and ¢(¢) = —1. If s is a positive definite quadratic form, then condition
(NN) implies that for € > 0,

VEER™\ {0}, q(&)=0=r(¢)+es(§) >0 ;
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thanks to the “main theorem” of [8] we then have r+es — Aeq > 0 for some
Ae € R, and this also implies that

=r({) —€es(() S A Sr(n) +es(n) ;
it follows that A. is bounded when ¢ tends to zero, and we thus get by
compactness a sequence £ tending to zero such that A, tendstoa A €R;
this A solves our problem since we can take the limit in the inequalities
T+ ers—A,q>0. O

REMARK. Theorem A fails to hold when the quadratic form ¢ is degenerate
and does not change sign as in the following example in R? : ¢(£) = £2,

7'(5) =26 6.

The proof given above does not provide explicitly the values of A solving
T — Ag > 0. We get them in our next result.

PROPOSITION B. Keep the assumptions of theorem A, then set Cy =
{f € Rn?Q(’ﬁ) > O}: c_ = {é € Rn;Q(f) < O}: Ay = infC+ (r/Q) and
A- = supg_ (r/q) (with the convention : Ay = +oo if Cy = ¢, and
Ao = —o0 if C_ = ¢). Then Ay > A_, and r — Aq > 0 if and only
f A€ [A-,Aq]. Moreover if q is nondegenerate, Ay = A_ if and only
if ¢ and T do not satisfy condition (P), and in this situation we have
(&) = A d'(€) = A-q'(€) for all solution & € R™ of q(§) = r(€) =0

ere, ¢' and:r' denote the gradients of ¢ and r, which are vectors in the

dual of R™).

PROOF : It follows from our definitions that r —Ag > 0 on C (resp. on
C_) if and only if A < Ay (resp. A > A_); since by assumption (NN) we
also have r — Ag > 0 on the zeroes of ¢ for all A € R, ) solves the problem

if and only if A < A < A;. The existence result of theorem A thus implies
that A_ <AL,

If ¢ and r satisfy condition (P) and if s is a positive definite quadratic
form, then ¢ and r — s still satisfy condition (P) for some & > 0, and
lg| < Cs for some C > 0. Then, if A¢ is such that r —es — Aog > 0, it
follows that A_ < Ag — (e/C) < Ao + (¢/C) < Ay

Finally, if ¢ is nondegenerate and ¢(¢) = r(¢) = 0 for some ¢ € R™\ {0},
then ¢'(€) #0 and r'(€) = Ao ¢'(€) since r has a minimum at ¢ under the
constraint ¢ = 0. Therefore, if 7 € R™ is chosen such that (¢'(¢),n) > 0,
then & + tn belongs to Cy for small ¢ > 0 and to C_ for small # < 0,
and since Ao = (7(6),1) /(¢'(€),n) = lim r(€ + tn)/a(€ + tn), we have

A+ < Ao < A it follows that these three values are equal. - O
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Appendix. Para—Differential Calculus

Following the idea of a calculus for operators having a symbol with minimal regularity,
originally exposed in the book of Coifman and Meyer [CM] which prophetical title is “au—
dela des opérateurs pseudo—différentiels”, Bony [Bo] developed in the early 80’s a theory for
the operators he called “para—différentiels”. This theory has found successful applications
in the study of non-linear partial differential equations.

We want to give in this Appendix a rough survey of this theory, collecting here defini-
tions and statements of all the fundamental results and sketching only few proofs: in doing
so we will follow very closely the cited work of Bony. In the last part of the Appendix we
outline some results for operators depending on a parameter and a “large parameter”, for
these are the operators used in the proofs of the uniqueness results of this thesis.

As said, the fundamental work on para—differential operators is [Bo]. Related topics
can be found in [CM], [Zu3], [Mey], [Mét1], [Mét2], [Bou], [A4], [Hor4], [Horb], [Hor6],
[GR].

A.1. The Littlewood-Paley’s Decomposition

Lemma A.1. Let k > 1 be a real number. There exist two even functions ¢ , ¢ € C$°(R),
with the following properties: suppv¥ C [—1,1] , suppy C {z € R| k™! < |z| < 2k} and
for all z € R:

+co N-1
Y(@)+ Y e(27P2)=1 , @)+ Y ¢(27Pz) =2 Vz)

Proof. See [Zu3, Prop. 1].

Definition A.2. Let k, ¢, ¢ as in Lemma A.1. Let u be an element of S'(R™), the set
of temperate distributions. We will call a Littlewood—Paley’s decomposition (or dyadic
decomposition) of u (with respect to k, ¥, ) the series:

+co
(A1) > u

p=-1
where u_y = $(|D|)u = F~1(¥(|¢])Fu(§)) and up = ¢(27?|D|)u = F =1 (p(27P|€]) Fu(£))
for all p > 0 (F, as well as*, denotes the Fourier transform).

Let us remark that, for all p > —1, u, is an analytic entire function and the series (A.1)
is convergent in S’ to u.
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Important function spaces are characterized in terms of the Littlewood-Paley’s de-
composition, i. e. in terms of the convergence properties of (A.1). Before showing some of
these characterizations we are forced to give a detailed notation. Let s be a real number.
- H*® denotes the Sobolev space of index s:

H° ={ue SR+ a¢) € L*R™)}

and we set |[ull, = ((27)~™ (1 + |€]?)°]a(€)|?d€) /2. Let o be a real number, o > 0. If
0< o <1,C% =Cy is the Holder space of index o:

b

C° = Cl;‘ — {’LL € Loo(Rn)! 21;1‘; lu(‘a;):;ltgyﬂ — [U]o' < +OO}

and we set |u|s = ||ullco + [u]s. If 0 € N, Cf denotes the set of all the o—continuously

differentiable functions on R", such that all the derivatives up to the order ¢ are bounded,
in this case we set |ulo =}, <4 |ID%||oo- f o > 1, 0 € N we define C7 = Cy as follows:

c°=cf ={uecl|D*u e forall asuchthat |o| = [s]} ,

and in this case we set |u|s = |u|[s—1 + Zl“l=[ﬂ] |D%u|y_[5]. Finally, if o € N, C7 is the
Zygmund space of index ¢: for ¢ = 1:
—h _
€l = {ue Lo(R)| sup MEZRHUEF =R 1, < o)
ho£0

and |ul1,« = ||u|[eo + [t]1; for o > 1,0 € N;:
C?={ueC{ '|D*ueC, forall asuchthat|a|=0—1} |,

and [l = [uls—1 + 5 oo D0l
We give now the characterization of the Sobolev spaces.

Theorem A.3. Let s be a positive real number and let u be a temperate distribution.
Let k > 1 be a real number. The following conditions are equivalent:

(A.2) ve H°

+oo
v Z Up, Up € L2 supp i, € Cp, and there exists (cp) € I?
p=—1

such that ||upllo < ¢277°, for all p,

(A.3)

(here and in the following C_y = By and Cp = {{ € R™ | k~12P < |¢| < k2P11} if p > 0);

+co
us Z up, up € L?, there exists k' > 0 such that supp i, C Brior ,
p=-1

and there exists (cp) € I* such that ||upllo < ¢277°, for all p;

(A.4)
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+o0 '
us Z Up, up € C™, and there exists (c,) € I* such that
p=-1

| D%upllo < ¢,27P*FPlel for all & € N™ and for all p.

Moreover there exist two positive constants C and C' not depending on u, such that:

Cllulls < lep)llz < Clulls

Proof. See [Zu3, Prop. 7).

Let us remark that (A.2) is equivalent to (A.3) also in the case of s < 0. We charac-
terize now the Holder and the Zygmund spaces.

Theorem A.4. Let o be a positive real number and let u be a temperate distribution.
Let k > 1 be a real number. The following conditions are equivalent:

(A.6)

(A7)

(A.8)

(A.9)

u€C’ if o ¢N and ueCJ if 0 €N.

+o0
uz Z up, up € L, suppi, C C, and there exist K >0
p=-1

such that ||up||eo < K27P7, for all p;

+oo
U Z Up, up € L™, and there exist k', K > 0 such that
p=-1 '

supp iy C Bror and ||uplleo < K277, for all p;

+o0
Uz Z Up, U, € C™, and there exists K > 0 such that
p=—1

|D%upl|co < K27P7FP* for all a and for all p .

Moreover there exist two positive constants C and C' not depending on u, such that, if

c & N,:

Clul < K <C'luls

and, respectively, if o € N,:

Clula,* S K S C’]u!a,*
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Proof. We prove the theorem in the case ¢ = 1, the other ones being similar (see also [Zu3,
Th.6]). Suppose (A.6) is valid. Let ) u, a Littlewood-Paley’s decomposition for u. So:

u_1(z) = (FH((ED) * u)(),
up(z) = (F (@277 [¢])) *u)(z), f p20

Obviously u, € L* for all p. Moreover:
(A.10) lu—1lloo < IFHWUEMN N 22 lulloo
For p > 0, up(z) = [ F~ 1 e(|€)))(2)u(z — 27Pz)dz. As ¢ is even and ¢(0) = 0, we have:

lup(2)] = 277 / Ea (90(2|€D)(Z) ulz +2772) +;E:lz—l 277z) — 2u()|

|zldz

and from this:

(A1) fuplle < 27 [ IZEEDE g, 1,

.(A.10) and (A.11) imply (A.7). Let us remark that K < Cla|; ., with C not depending
on u. The implications (A.7) = (A.8) and (A.8) = (A.9) being evident, we show the next
one, i.e. (A.9) = (A.6). The series ) u, is convergent in L, so u € L* and:

(A.12) lullo < 4K

Let us consider:

u(z — h) +u(z + h) — 2u(z)

N + oo
= Z (up(z — k) + up(z + h) — 2up(z)) + Z (up(z — k) + up(z + h) — 2up(z)) .
p=-1 p=N+1

Knowing that if v € C} then:

suf |'U(CU - h) + vl(ljlz"l' h) - 2’0(:17)| < Z ”DaU“oo ,
,f;éo |a|=2

we deduce:

N +co
lu(z — B) + u(z + h) = 2u(z)| < Y KC2P[h[*+ D  16K277
p=-1 p=N+1
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where C depends only on n, the dimension of the euclidean space R™. If now N is such
that 2=V-1 < |a| < 27N, we get:

N
lu(z — ) +u(z + k) —2u(z)| < (Y KC2P~N)|n| + 32K |h| < C'K|h|

p=-1

and finally [u]; < KC'. From this and (A.12) we have that u € C}, with |u]; . < KC".
The proof is complete.

For some other function spaces characterized in term of Littlewood—Paley’s decompo-
sitions see [Mey].

A.2. The Para—Multiplication

Definition A.5. Let k, 9, ¢ as in Lemma A.1. Let No > 1+ 2log, k. Let a € L™ and

v € H® and let ) ap, Y u, the corresponding Littlewood—-Paley’s decompositions. We
define:

(A.13) Tou = Z vg = Z (uq Z ap)
g>No—1 g>2Noe—1  p<Lg—No

The operator T, is the para—multiplication operator of symbol a.
From the Theorem A.3 we immediately deduce the following result.

Theorem A.6. T, is a continuous operator from H® to H*, for all s € R, and the norm
of T, is < C||al| oo, Where C depends only on n and s.

Lemma A.7. Let a be in C? if p ¢ N, orin Cf if p € N. Let u be in H® and let k, 1,
¢ as in Lemma A.1. Suppose that there exist k' > k, (cq) € I* and a sequence (v,) of L?
functions such that:

+oo

(A.14) u= Y vy, suppdy CCy, and [[v,llo < 277,

g=-1

(where C'_; = By and C), = {€ € R"|(k')7127 < |¢| < k'2071}),
Suppose also that there exist € > 0, with ¢ < 1/2k', K > 0 and a sequence (A44) of L™
functions such that:

(A.15) supp Ay C Beza, |lafleo < K, and |ja — Aglleo < K279,
Then Tou — Y Agvy, € H* P and there exists C not depending on a and u such that:

+oo
(A.16) | Tau — Z Aguglls+p < CK||(cy)llie

g=-1
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Proof. see [Zu3, Th.27] and [Bo, Rem. 2.2}

We are now ready to state the theorem on the symbolic calculus for the para—
mutiplication operator, and to verify the independence of it, up to a p-regularizing oper-
ator, from the Littlewood—Paley’s decomposition chosen.

- Theorem A.8. Let a, b bein C?, if p ¢ N, or in Cf if p € N.

Then T,Ty — Tas is a p-regularizing operator, i. e. it maps continuously H* in H**?
for all s € R, and its norm is < Clal,|b|,, or < Cla|, «|b]p,« respectively.

Let a beinCP if pg N, orin Cf if p € N.

Then T* — Tj is a p-regularizing operator, with norm < Cla|,, or < Clal,,. respec-
tively.

Proof. We prove the first part; for the second statement see [Bo, Th. 2.4]. From (A.13)
we have that Tyu = ) v, where vg = ug ), ..y, bp- The sequence (vy) satisfies (A.14),
where u is substituted by Tpu. So that, posing A, = Ep(q—-No ap, we have:

+oo
| Ta(Tou) — Z Agvgllst+p < Clal,|| Toulls < Clalp[blpllulls

g=-1

Consider now:

+oo +oo +oo
Z Aqug = Z( E a;br)uq = Z Zqugq

g=-1 g=-1 j<q—-No g=-1
k<q—No

" We have that supp Z, C Be2: and |lab—Z,||co < Clal,|b],279. Using again the Lemma A.7
we deduce that:

+oo
I Z Agvg — Tapulls4p < Clal,|b]pllu]ls
g=-1

The proof is complete.

Theorem A.9. Let a beinC? if p € N, orinCf if p € N. Let {k,¢,, No}, {k',¥',¢', Ny}
two possible sets of parameters for the definition of the para—multiplication. Let T, and
T! the corresponding para—multiplication operators of symbol a.

Then T, — T! is a p-regularizing operator of norm < Clal,.

Proof. It is again a consequence of the Lemma A.7. See [Zu3, Cor. 27’

Let us remark that some other interesting properties of the para—-multiplication are
collected in the Lemma 5 of the Chapter 3 of this thesis. Finally we want to state a result
which gives the relation between the para—multiplication operators and the differential
operators.
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Theorem A.10. Let a be in Cf. Let h be a C* function, homogeneous of degree m,
defined in R™\ {0}, and let s be a C* function such that s(z) =1 if |z| > 1 and s(z) = 0
if |z| £1/2.
Then:
s(IDDM(D)Taw = ) T peo(OgH(D)s(|D)u) + Ru
lal<p

where R is a (p — m)-regularizing operator with norm < C||hl|¢cam (sn-1)|al,.
Proof. We prove the theorem for p = 1. We have that Tou = 3 vy = 3 (ug >, <, N, @p)-
We know that suppd, C Cj. In particular this implies that there exists ¢ such that, for

q > §, we have supp 9, N By = §. Considering now a function ¢ € C$° with supp ¢ C C¥/
and ¢(£) =1 on C}, we deduce that:

s(IDDA(D)Tyu =) s(IDDA(D)vg + ) #(27*D)h(D)v, = @ + @

g<q q>q

Easily we obtain that for all s, o, there exists C, , > 0 such that:

(A.17) [@lls+o < Cs,ollhllLee (sn-1)lalallulls
Let us come to 2). We get:
$(27 D)h(D)vg = F~((271E)R(£)5,(€)) = 27" F 71 ($(277E)h(279€)(€))
Calling now ¢(&)h(€) = H(£), we have that H € C§° and:
$(27'D)h(D)vy = 29" F 1 (H(27%)) * v,
Let now r = F~1H; so:

$(27ID)h(D)vy = 291" (29z2) % v,
= 2™ /r(z)vq(m —2792)dz
= 2™ /r(z)( Z ug(z —2792)ap(z — 2792))dz

p<g—Ng
=29 ap r(z)ug(r —27%2)dz
(p;q:% ) [ e )
4 24m / > (ap(z —27%2) — ay(2))r(2)ug(z — 2792)dz
p<g—No
=29"( Y a,)H(27'D)uy,
p<q—No
gm—q ap(e = 2712) — ap(2) zlr(2)ug(z —2792)dz
+2 /p;%( s P e (gl — 272)d

=2"(HQ2 'Dyug)( ) a)+fq

p<g—No
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We remark that supp fq - C’;" and that:

(A18) Nfalle 200 D apllllugllo/IzHr(z)ldz < 2977 bl ae (sn-nylalillugllo

p<Lg—No

Finally:
s(IDDA(D)Tau =@ + Y (M(D)u)o( Y a))+D> fi

729 p<g—No 929
from (A.17) and (A.18) we reach the conclusion.

A.3. Global Para—Differential Operators

Let Agn-1 be the Laplace-Beltrami operator on S n—1 Let (72,,) be a hortonormal basis of
L?(S™ 1), such that Agn-1h, = A h,, for each v. We know that there exist M, C1, Cq,
. and ¥ such that for v > 7 we have 0 < C; < |\, /v™| < Cy, and for all N € N there exists
Cn > 0 such that:
1By llen -1y < Cyw¥ (N+E+D

Definition A.11. Let [(z,¢) be a function on R" x R™\ {0}, with the following properties:
lisC{ inz and C*® in ¢ (i. e. for every fixed z, f(z,-) € C*°(R™\ {0}) and for every fixed

B € N™ and for every fixed £, 3gf(,f) € Cf(R™)), l is homogeneous of degree m in ¢, and
| has compact support in x. The set of such functions will be denoted by I'}}.

Let p be the maximum between all the integer < p. L7 will indicate the set of all the
functions [l such that:

I=lp+lnorteotlms

where l,,_; € I‘Z’_—jj . We call &7 (T';}) the set of the global para-differential (global
homogeneous para—differential) symbols of degree m and regularity p.

To define the para—differential operators corresponding to the symbols of I'}* and %77,
we need the following lemma.

.Lemma A.12. Let l(z,£) € T}, and let us define h,(§) = ﬁy(é—’) There exists a sequence
(ay) in C§ such that:

(A.19) I(z,6) =Y au(2)hy(£)

v

Moreover for every k, there exists Cy such that |a,|, < Crv™FM.

(A.19) is called the spherical harmonic decomposition of I.
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Definition A.13. Let | € I'}}, and let (A.19) be the spherical harmonic decomposition of
l. Then the following operator:

(A.20) Ty = To,(s(|D|)hy(D)u)

is the global para—differential operator of symbol | (the function s is defined in the state-

ment of the Theorem A.10). '
FleXy,andl=lp+lma+...+1lm_p with lp,_; €T 7, then:

p—Jj’

L=T,+T, ,+...+T,_,

Using the information we have on the norms of h, and a, it is easy to verify that for
each s the series ) Ty, (s(|D])h,(D)) is convergent in the space of the linear continuous
functionals from H* to H*~™, and the norm of T} only depends on supgcgn-1 10g1(+, )l -

Let x(6,n) be a C* function on R™ x R"™, homogeneous of degree 0 in (4,n) for
6] + |n| > 1, and such that there exist 0 < &1 < €3 < 55 such that:

x(6,m) =1 for || <eiln| and ||+ || >1
1
x(6,n) =0 for |6] > ealn| or |6] +|n| < 5

We can verify that, defining 7} in the following way:

(A.21) (Thu)(€) = (27) " / X(& = mmF(I(, M)(E - ma(dy

T, — T is a (p — m)-regularizing operator. This essentially means that (A.21) is an
alternative way to define the para—differential operator associate to I, and this also shows
that T; is independent, up to a (p — m)-regularizing operator, on the Littlewood—Paley’s
decomposition and on the spherical harmonic representation chosen. Moreover it can
be shown in this way that T; € Op(S{;), where ST is the Hérmander’s set of pseudo-
differential symbols of type 1, 1. For more on this subject see [Mey], [Mét1], [Mét2], [Hor4]
[Ho6r5], [Hor6], [Bou], [Chin).

We give now the formula for the composition of homogeneous para—differential oper-
ators. From this formula it will be easy to obtain the general one.

I

Theorem A.13. Let [; € e, e 2. We set:
1 o e 4
I=h#lh = ) —0¢hDsl,
la]<p

Then Ty, (T1,) = T1 + R, where R is a (p — my — my)-regularizing operator. Moreover
the norm of R depends only on supgcgn-1 |0811(+,€)|, and supgcgn-1 Iaglg(-,f)lp.
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Proof. It is a consequence of the Theorem A.10 and of (A.20). See [Bo, Th. 3.2].
Analogously the following result gives a formula for the adjoint operator.
Theorem A.14. Let l € . We set:
*= L agDel
- Z ~0¢D3
lal<p

Then T} = Tj» + R, where R is a (p — m)-regularizing operator. Moreover the norm
of R depends only on supgegn-1 lafl(-,g)l,,.

Proof. Tt is a consequence of the Theorems A.8 and A.10 and of (A.20). See [Bo, Th. 3.3].

Finally let us state two theorems, the first of them furnishes an estimation on the
difference between a para—differential operator and the corresponding usual differential
operator, and the second one will give the relation of para—differential operators with the
pseudo—differential ones.

Theorem A.15. Let | € T''. We denote by I(z, D) the operator:

iz, Du(z) = (25)™" [ 410z, O)s(l€Da(€)dg
Then for all 0 < o < p there exists C, > 0 such that:

I Trw = U(2, D)ullo < Collullm—o

Proof. Let 0 < 0 < pand u € H™™?. Then s(D)h,(D)u € H~?, and:

ls(D)hy(D)ull -5 < Cllhyl|Lee (sn-1)llteflm—0o

Then by the claim (iii) of Lemma 5 in Chapter 3, we have that:

I(Ta, — au)(s(D)hy(D)u)llo < (Ta, — ay)(s(D)hy(D)u)ll oo
< CAa,,],,”S(D)h,,(D)U“-.,
< Colaypllhvl| Loo (sn-1)llul| m—o

The proof is completed by using the information on the spherical harmonic decomposition.

Theorem A.16. Let [ € T’ for every p.
Then T; — l(z, D) is a o-regularizing for every o.
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Proof. The proof is analogous to that one of the Theorem A.15.
A.4. Para—Differential Operators on an Open Set

Let w be an open set of R".

Definition A.17. Let m,p € R with p > 0. T'J{(w) is the set of all the functions I
defined on w x R™\ {0} such that: 1 isC{ in z and C* in ¢, and [ is homogeneous of degree
m in . I'*(w) will be called the space of the homogeneous para—differential symbols, of

degree m and regularity p, on w. Let now p be the maximum between all the integer < p.
Y7 (w) is the set of all the functions | such that:

l=lm it tlms

where I, _; € I“Zl__jj (w). We call X7}(w) the set of the para—differential symbols, of degree
m and regularity p, on w.

To each symbol we want to associate an operator. To do this let us remind a definition.

Definition A.18. Let L be a linear map of D'(w) (the set of the distributions on w) into
itself. We say that L is properly supported if, for all K, compact set of w, there exists
K, compact set of w, such that if u € D'(w) with suppu C K then supp Lu C K, and if
u e D'(w) with suppu N K = § then supp Lu N K = 0.

Definition A.19. Let | € T}(w). Let (U;) be a locally finite open covering of w and let
®j,Xj € C§°(Uj;) such that: (p;) is a partition of unity and x; = 1 on a neighborhood of
the support of ¢;, for every j. We define the operator T} in the following way:

(A.21) Tou =Y xiTy;i(p5u)
i

Fle Ll (w),andl=ln+1ln_1+...+l;m_p with l_j € I‘m_J(w) then:

T; = T[m +T1m._1 +...+T1m_p

T} 1s a properly supported operator on D'(w) and it is easy to see that T} : HS (w) —
H; -™(w) and that for all K, compact set of w, and for all ¥ € C§°(w), x = 1 on a neigh-
borhood of K, the operator T; — xT,; maps continuously the functions of H*® with support
in K into H®~ Sy and the norm of such an operator only depends on sup,¢ gn-1 [3 I(-,6)|,
and on the sequences (¢;) and (x;).
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Let us finally remark that our definition is slightly more restrictive than Bony’s one.
This is caused by our aim to define para—differential operators depending on a parameter.

The fundamental result on para—differential operators on an open set are collected in
the following theorem.

Theorem A.20. Let [ be in Z7*(w).

Then T; is independent from the open covering and the sequences (¢;) and (x;) up
to continuous operators from Hy (w) to HE-™%?(w) (i.e. (p —m)-regularizing operators).
Let I € T (w) and Iz € T7?(w).

Thenl=li#ly =3 14 1<, 50¢11Dgly is in B3 t™2(w), and T, (Ti,) = Tt + R, where
R is a (p — my1 — ma)-regularizing operator.

Let I € T (w).
Then I* = EIQI<P é@g‘Dgl— is in ¥7'(w) and T} = T+ + R, where R is a (p — m)-

' regularizing operator.
Proof. See [Bo, Th. 3.9].
Let us give some other results.

Theorem A.21. Let | € T'}}(w), with l(z,£) # 0 for all z € w and for all £ € R™ \ {0}.
Then there exists h € £;™(w) such that Tp(T1) = I1d + R, where R is p-regularizing.

Proof. It is enough to find h € ¥ ™(w) such that h#l = 1. Such a function h is built
using the homogeneity. Hence we apply the Theorem A.20.

The following result is a simple consequence of the Theorem A.21.

Theorem A.22. Let | € I'}}(w) with p > 1. suppose that l(z,£) # 0 for all z € w and for
all £ e R™\ {0}.
Then for each K compact set of w there exist Ck,cg > 0 such that:

[Tiullo + Crllullm-1 2 cxllullm

and:
Re (Tiw, u) + Cellulfazs > exfulle

for all u € C§° with suppu C K.

Proof. The first claim being an immediate corollary of the Theorem A.21, let us sketch
the proof of the second. We can suppose that I(z,€) € R and I(z,£) > 6|¢|™, with é > 0.

Let b = +/I. We have that b € F?/z(w). Then:
Re(Twu, u) = Re(Tyu, Tpu) + Re(Ru, u) ,

where R is (1 — m)-regularizing. From this the conclusion is easy.
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Theorem A.23. Let u € H*(w) with compact support in w and such that supp C T,
where T' is a conic set in R". Suppose that | € £7"(w) is such that I = 0 on w x I, where
IV is conic neighborhood of T.

Then Tyu € HS~™mte,

Proof. Let ¢ € C°(R™ \ {0}) be a function such that 1 is homogeneous of degree 0,
suppy € IV and ¢y = 1 on I'. Let a € C§°(w) be a function such that a = 1 on a
neighborhood of the support of u. Then u = Tyyu + Ru where R is o-regularizing for
every o (see the Theorem A.16). So that:

Twu = T](Ta¢u) + TiRu = Tl#wu + R'u + T)Ru ,

where R' is a (p — m)-regularizing operator. The proof is concluded by observing that

I#a3p = 0.

Let us finally state a fundamental result on para-differential operators: the so called
sharp Garding inequality.

Theorem A.24. Let | € X7 (w). Suppose that Rel(z,€) > 0 for all z € w and for all
¢ € R with |¢] > C.

Then for each K compact set of w there exists Cg > 0 such that:

Re (T, u) > —Cxkllul3m=, f0<p<2 ,

4

and

b

Re(Tyu, u) > —Cxllufts  if p>2

for all u € C§°(w) with suppu C K.

Proof. See [Hérs, Th. 7.1], [Bo, Th. 6.8] and [Mét2, Prop. B.1.4]. This proof is highly
non-trivial. Using the result of Cordoba and Fefferman [CF] together with a theorem due
to Coifman and Meyer [CM, Th. 2.9], it is possible to see that the constant Cx depends
on K, on supgecgn-1 |0g1(+, )|, and on the sequences (;) and (x;).

A.5. Para-Differential Operators Depending on a Parameter

Let m, p, T be real numbers, with p,7T' > 0. Let w be an open set of R™.

Definition A.25 'T'}}(w) is the set of the functions [ : w x [0,T] x R™\ {0} — C with the
following properties: 1 is C{ in (z,t) and C* in ¢, and [ is homogeneous of degree m in €.
‘L7 (w) denotes the set of all the functions | such that, if j is the maximum integer
< p:
l=lptlnat.tlm;
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where I, _; € tI‘:,n__jj(w).
Let [ € 'T'}}(w), we remark that for all 3 € N™ there exists Cy > 0 such that:

(A.22) sup |8£1(-,t,6)[, <Cs ,
gesn—1

for all ¢ € [0, T]. This fact has some remarkable consequences. Let us show some of them.
Let [ € tZ;"(w). For every fixed t, we can associate to [ a para—differential operator
on w. We denote such an operator by Tyy). Let now l; € ‘I'J(w) and I € T2 (w);
considering (I;(t)#2(t))(z,€) = ZM@&agll(:c,t,g)Dglg(x,t,g) = l(z,t,£), we have
that | € tZ:,"1+m2(w) and Ty, ()(Th, 1)) = Tir) + Ry, but for every K, compact set of w,
there exists Cx > 0 not depending on ¢, such that for all v € H*(w) with suppu C K we
have:

| Beulls—m+p < Cxllulls
Analogously let I € *I'}'(w). We consider I*(z,1,£) = Z]Q"(P 5631)37(3:,15,5). We have
that I* € *E7*(w) and Ty =Ty + R}, where R} has the same properties as R;. Finally
suppose that for every fixed t, I(z,t, &) satisfies the hypotheses of the Theorem A.22 or of
the Theorem A.24. Then the constants C'x and cx don’t depend on t.

Suppose now that u € C§°(R™*') has support in w x [0,T]. Then, if [ € *Z7(w),
for every fixed t, the function z +— Tyyu(z,t) is in C§°. Let us consider the function
(z,t) — Tyeyu(z,t). Such a function is measurable and in particular this implies that,
for I; € *E7(w) and l; € *TT?(w), the function t — (Ty, (nyu(z,t), Tmyu(z,t) 2,12 is
measurable on [0,T]. This remark easily shows that, for instance, if K is a compact set of
w X [0, T}, then there exists Cx > 0 such that:

T T
( / Ty, )2 mdt) /2 < Cic( / a2

for all u € C°(R™*!) such that suppu C K.
Finally we give a result on the commutator between Tj(;) and D;.

Theorem A.26. Let p > 1 and suppose that | € *S7H(w).
Then [Dy, Ty Ju = T'p,yzyu for all u € CS°(R™1) such that suppu C w x [0, T].

Proof. Let p > 1 and let a(z,t) be a function in Cf(w X [0,T]) with compact support. Let
u € C§°(R™1) such that suppu C w x [0,7]. We have that:

Tuu(z,t) = > up(z,)( D aglz,t))= Y vy(z,t)

p>No—1 9<p—No p>No—1

For a fixed z we have that:

Dy(vp(z,1)) = De(up(z, 1)) Z ag(z,t) + up(z,t) Z Diay(z,1)

g<p—No g<p—No
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Moreover Dy(up(z,t)) = (Diu)y(z,t) and Dy(a4(z,t)) = (Dia)y(z,t). As the series
>~ Di(vg) is uniformly convergent, we deduce that the function ¢ — T,nu(z,t) is dif-
ferentiable and:

Dt(Ta(t)u(:C,t)) = TDta(t)u(xat) + Ta(t)(Dtu)(:E, t)‘

Using the spherical harmonic decomposition and the partition of unity we reach the con-
clusion.

A.6. Para-Differential Operators Depending on a Large Parameter

Let k, ¢, ¢ as in the lemma A.1. Let A € R, A > 1. Let u be a temperate distribution in
R"™. We consider the series:

+oo
(A.23) > ouy o,

p=-1

where ud; = F1(y(\/ N2 % [EP)i(€)) and u} = F-I($(2P(y/ A+ [EE)a()) for all

p 2 0. We call the series (A.23) a A-Littlewood-Paley’s decomposition for u.

Definition A.27. Let a € L. The operator:
A
Thu= > (5 3 @)
g2No—1  p<g—No

is called the A—para—multiplication operator of symbol a.

It is possible to show that T} : H® — H*® for all s, and setting:

lullan = ((27)~" / (2 + €)la(e)Pde)

there exists C; not depending on A such that || T)ullsx < Cjlalsollte]]s a-
Let now h(A,£) be a C* function defined in [1, +00[ xR™\ {0}, homogeneous of degree
m in (A, €). We set, for u € S’

[(A, D)u(z) = (?ﬂf)_n/\‘em'él(kﬁ)s(\/A2 +1E12)a6)d¢

Then h(A, D) maps H® into H*~™, continuously with respect to the norm ||-|| s,2- Let finally
I(z, A, ) be a Cf function in z and a C* function in (A, &), for (), €) € [1, +oo[ xR™\ {0},
homogeneous of degree m in (A, {), and with compact support in z (the set of such functions
will be denoted by *T'7"). Let:

h(z,2,6) = Y a(@)h, (A 8)

14
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a spherical harmonic decomposition of | with respect to the variables (), £).

Definition A.28. The operator:

TPu= Y Tx(hs(A\, D)) ,
4

is called the global A—para—differential operator of symbol .

As we have already done for the para-differential operators, we can define the set
’\E;" with the sums of the elements of ’\F:’n__jj, for y =0,1....,p, and we can associate to
these symbols the corresponding sum of homogeneous operators. As an analogous result
of Theorem A.10 holds, we can obtain the symbolic calculus, which is summarized in
Lemma 2.19. Also a result similar to the Theorem A.22 is valid. This is enough for our

pourposes.
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