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Introduction

The aim of this thesis is the study of time-dependent singular interactions,
namely singular time-dependent perturbations of the Laplacian supported
on “small” sets and described by formal Schrédinger operators of the form

—A + Vi(Z)

for 7 € R? with d = 2,3, where the potential V() is singular, i.e. is sup-
ported on sets of Lebesgue measure zero. Roughly speaking the potential can
be thought to be V(Z) = a6(£ — 9) in L2(R%, du,), where s (S) = 0 and pur
is the Lebesgue measure. This kind of operators can be rigorously defined
by means of the theory of self-adjoint extensions of symmetric operators.
The time-dependences we shall consider are of two kinds, time-dependent
coupling constants' «(t) and moving supports® S;. The Hamiltonians of
such systems will be explicitly given in both cases, together with their resol-
vent, spectrum and unitary propagator.

Moreover, using Laplace transform techniques, we shall solve the problem of
asymptotic complete ionization for systems with time-dependent point inter-
actions. In the case of rotating singular perturbations we shall study also
the asymptotic limit of large angular velocity, proving convergence in the
strong sense of the time propagator to some one-parameter unitary group
with time-independent generator.

Let us start with some historical remarks about point interactions.
Schrodinger operators with point interactions were first introduced by Kro-
nig and Penney [37], as a model for one-dimensional crystals. At the same
time point interactions were proposed as realistic potentials describing the
two-body nuclear interaction at low energy by Bethe and Peierls [6], Thomas
[53] and Fermi [29].

Up to now point interactions (also called Fermi pseudo-potentials) have been

!The precise physical and mathematical meaning of the coupling constant shall be
clarified later on.
2 Actually we shall only study uniformly rotating supports.
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extensively used in nuclear physics and in condensed matter physics (see e.g.
[7, 22, 39)).

Nevertheless in almost all the physical applications above the operator —A+
ad(Z—7) has only a formal meaning and is used to perform first order pertur-
bation theory (i.e. the Born approximation) calculations. Indeed subsequent
orders give rise to divergent terms and so perturbation theory can not be
used.

The first rigorous definition of Hamiltonians with point interactions as self-
adjoint operators is due to Berezin and Faddeev [5] in 1961: applying Krein’s
theory, they define such operators as self-adjoint extensions of the Laplacian
restricted to smooth functions vanishing in a neighborhood of the point ¥,
where the singular perturbation is supported.

In fact many different methods can be employed to define rigorously the
Schrédinger operator —A + ad(Z — ¥) (see [3] and references therein). For
instance the singular potential 6(Z — ), which is not an operator perturba-
tion in dimension greater than one, even in terms of the associated quadratic
forms, can be approximated by regular potentials V.(Z), as € — 0, with a
suitable scaling in € and a suitable renormalization, in such a way that the
corresponding Schrodinger operators H, converge in strong resolvent sense.
Indeed let us consider the resolvent associated to the operator H = —A —puV
in three dimensions: for A > 0,

(H+N = (—A=—pgV+0)" = 1= p(-A+0)"WV) T (=Aa+ N =

=(-A+ N1+ i (B(=A+XTV) (A + X7
and then, substituting V(%) = 0(Z),
(H+2)7H &) = GA(F— &) + Ga(&) (p7 — G1(0)) "' GA(@)

where

is the Green function associated to the free Hamiltonian —A.
Of course the expression above is formal because G,(0) does not exist, but

if we formally set
,Uf_l = Go(O) + o

for some o € R, we shall see that the expression above coincide with the
kernel of the resolvent associated to the Hamiltonian with a point interaction
at the origin.
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Indeed the usual way to define Hamiltonians with a point interaction at ¥ is
the analysis of self-adjoint extensions of the symmetric closable operator

H=-A
on the domain of smooth function with support away from 7, i.e.

D(H) = C&°(R* - {7})

with d = 2,3. The operator H has deficiency indexes equals to (1,1) and
its self-adjoint extensions are given by the one-parameter family of operators
H,, with domain

D(H,) = {w € I2(RY) | 33, € HX(RY), U = &,(7)+

+(a+ VA/m) 00 GrE - D)} (£.1)
where A > 0 and G\(Z) is the Green function of —A in d dimensions, i.e.
GA(f—-f')E(——A—i—)\)_l(f;f’) (1.2)
Moreover
(Ha+ M) T = (—A+2X)d, (1.8)
and
4

(Ho+ ) 7(&F) = GA(E-2) + CAE-DCAF -9 (14)

4m+\/X

We want to stress that the domain (I.7) can be written in a slightly different
way, having in mind an analogy with electrostatics,

D(Ho) ={V € I*(R%) |3 € C, ¥ — ¢ G\(Z— ¥) € H*(RY)} (1.5)
where the “charge” ¢ is fixed by the boundary condition,

lim {\1/ - qG,\(g'c'—yj)} = (a+ —g) q (L6)

T—7

For any —oo < @ < oo and ¥ € RY, the essential spectrum of H, is purely
absolutely continuous and covers the nonnegative real axis, i.e.

O'ess(Ha) = Uac(Ha) = [O: OO) (I 7)
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In three dimensions, if & < 0, there is exactly one negative, simple eigenvalue,
ie.
op(Ha) = {~(4ma)’} (1.8)

with strictly positive normalized eigenfunction

L exp{dna|Z — ¥
pold) = +/Fla] ZZLZE (19)
while, if « > 0,

op(Ha) =10 (£.10)

On the other hand in two dimensions, for any value of a € R, there exists
one negative, simple eigenvalue,

op(Ha) = {—4exp[—4ma +2¥(1)]} (I.11)
with normalized eigenfunction
0o(Z) = (i/4) H{" [2i exp{—2ma + U(1)} |Z — 4] (L12)

Strictly speaking, the parameter o, obtained after the renormalization pro-
cedure described above, is not the strength of the interaction, but it is asso-
ciated to the inverse of a scattering length, indeed it is easy to see that the
scattering length of H, is precisely —1/4ma.

The previous discussion clarifies also the reason why point interactions do
not exist in dimension greater that three: the operator —A, restricted to the
domain of smooth functions vanishing in a neighborhood of ¢, is indeed es-
sentially self-adjoint in L2(R%), for d > 4 and then it has a unique self-adjoint
extension, which coincides with the free Hamiltonian.

By means of the same method, it is also possible to give a rigorous meaning
in L?(R?) to Schrédinger operators of the form

~A+adE-S8)

where S C R¢ is a set of lower codimension, e.g. a plane in three dimensions
or a straight line in two dimensions. For a detailed account of the subject
see [51, 52] and references therein.

Suppose for instance that S is a regular closed surface in three dimensions,
the quadratic form associated to the previous formal operator is given by

F, o(0, ) = /

RB

07 |V’ - /SdE @) 2@ (119)
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where dY is the restriction of the Lebesgue measure to S and y(Z) some
suitable smooth, real valued function on S, which never vanishes. Setting

¢u(Z) = 1(2) ¥(3)| (L14)
$a(E) = V() — (GAE) (& (1.15)

and, for every = € R3, | |
(6:9)@ = [ =@ 6@ -1 @) (1.16)

G denoting the Green function (I.2), the quadratic form ([.18) can be
rewritten in the following way

Fs(¥,0) = F3(T,0) + &) (8w, &w)

where

fg(\y,\y)z/ d3f|v¢k|2+,\/ d?a?|¢,\|2—>\/ Bz (L17)
R3 R3 R3

=12
sene = [ e 2O e a@ Go@ 1)
Since the quadratic form (I.18) is bounded and then closed in L?(S,dZ) (we
denote the corresponding bounded self-adjoint operator with I‘,’Y‘ ) and the
form (I.17) is bounded from below and closed in L?(R?®), the whole form
F,s(U, ) is closed. Hence it defines a self-adjoint operator H, s and it is
not difficult to see that it is given by

D(H,s) = {¥ € L*(R®) | 3 &y € L*(S,dT), ¥ — Gh&w € H(R),

[\If _ é@] ls - rg,Sg\p} (1.19)
(Hys +A)U = (Ho + A\)ha (1.20)

Up to now many models of point interactions has been suggested to study
problems like the interaction between a quantum particle and a polymer [24],
the constrained motion of a quantum particle inside a wave guide [28, 20], the
quantum Rayleigh gas [21], the rigorous derivation of the Gross-Pitaevskii
equation from a microscopic dynamics [2], justifying a certain interest in sin-
gular perturbations of the Laplacian.
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However the main motivation in investigating such models from a mathe-
matical and physical point of view is that Schrédinger operators with point
interactions are “solvable”, in the sense that their resolvent, spectrum, eigen-
functions, as well as their scattering data can be determined explicitly. Such
nice features make point interactions very useful to build simplified physical
models, that maintain all the relevant aspects of the problem and, at the same
time, can be treated in an easier way. We are referring to what Simon [49]
calls the “second level foundation” problems of quantum mechanics, which
are of particular physical interest in condensed matter physics.

A remarkable example of such problems is the study of the long time behav-
ior of a quantum system evolving under a time-dependent Hamiltonian of
the form

H(t) = Hy + Hi(¢) (1.21)

From a physical point of view, this problem is strictly related to the ionization
of atoms and dissociation of molecules: in the usual setting a system is in a
bound state at time ¢ = 0 and then, switching on an external time-dependent
potential H;(t), one would know the probability of survival P(¢) of the bound
states for ¢ > 0. From the time-dependent Schédinger equation

.00
ia = (Ho+ Hi(t)) ¥,

one obtain the expression for P(t),

P(t) = Z l(‘l’t ) Un)

where the sum runs over all the bound states of the system.

This problem has been already investigated in the early years of quantum
mechanics and, if the external potential is small enough to be treated as
a time-dependent perturbation of the free Hamiltonian, a solution is given
by the well known Fermi’s golden rule (see e.g. [8, 30, 38]). Starting from
the ground state of the system, the behavior at large time of the survival
probability is given by

2

P(t) ~ e trt (I1.22)

where I'r is proportional to (the squared modulus of) the matrix elements of
Hj between bound and scattering states times the scattering state density. In
deriving (I.22), one applies perturbation theory, assuming that the pertur-
bation series converges uniformly for all times and that the limits ¢ — co and
n — oo (n is the order of perturbation) can be interchanged. This assump-
tion remains unproved, even for small smooth time-dependent potentials and
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indeed, even if H; is in some sense small with respect Hy, it is possible (see
[50, 17]) to find special potentials, such that the long time behavior of the
survival probability is an inverse power law decay.

The problem is much harder when the external potential is not small in any
sense with respect Hy. For instance Bayfield and Koch (see [4] for a review),
analysing experimentally the ionization of an atom by an intense electric field,
found an unexpected nonlinear dependence of P(t) on the initial and exter-
nal data. Such nonlinear behavior is also verified in experiments on strong
laser field ionization of multielectron atoms and dissociation of molecules:
in many cases increasing the strength of the field reduces the probability of
ionization of the system?®.

It has been shown by Costin et al. [12, 13, 14, 15, 16], that the same fea-
tures are present in a simplified model involving attractive point interactions.
These authors consider a one-dimensional system with an Hamiltonian of the
form (1.21), where H;(t) is given* by —a(t)6(z), for some a(t) > 0:

H(t) = Ho — a(t)5(z)

Using non-perturbative methods, thanks to the solvability of point interac-
tions models, they deal with the problem of asymptotic complete ionization
and find that under suitable and very weak conditions on the function (%),
the survival probability of the bound state has a power law decay at large
time. On the other hand, if the conditions are not satisfied by «(t), there is
asymptotic partial ionization, i.e. the survival probability does not tend to
zero. Moreover they show (see [16]) a connection between this behavior and
the stabilization phenomenon cited above.

This analysis shows that point interactions models may be very useful as
toy models in approaching complicated time-dependent problems, like the
asymptotic complete ionization, the power law decay of the survival proba-
bility and nonlinear phenomena.

The first part of this thesis is devoted to the study of two such models.

In Chapter 1 we consider® the time evolution of a three dimensional system
given by a quantum particle under a time-periodic zero-range interaction.
The Hamiltonian of the system is then formally given by

H(t) = Ho + a(t)5(2)

3This phenomenon is often called stabilization. For a review on theoretical models
about it see for example [23, 32].

4Since the model is one-dimensional, the distribution «(t)d(z) defines a quadratic form
which is small with respect to the quadratic form associated with the Laplacian [3, 45].

5The contents of Chapter 1 are a more detailed version of [10].
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or, more rigorously, by the the self-adjoint operator (1.3) with domain (1.1)
and (1.5), where the parameter o = «(t) is a continuous periodic function of
t and ¥ = 0. Studying the time-evolution, we prove complete ionization of
the system as t — oo, starting from a bound state at ¢ = 0, under suitable
generic conditions on «(¢); namely we show that the survival probability of
the bound state has a power law decay as t — oo (with exponent —3).

A remarkable feature of this model is that the asymptotic ionization holds,
whatever is the value of the parameter «(t), provided that it satisfies the
genericity condition. In particular this means that, even if for every t € R*
a(t) < 0 and then there exists a bound state at any given time (see (1.8)
and (1.9)), nevertheless the survival probability decay to zero. On the other
hand, if o(t) is always positive (and then there is no bound state), the re-
sult does not require the genericity condition (see the Remark at the end of
Chapter 1 and Appendix A).

Moreover, under the same genericity conditions, we derive a stronger ver-
sion of the ionization statement, i.e. every state ¥ in the Hilbert space of
the system is a scattering state. According to the geometric time-dependent
scattering theory (for a review see [25, 34, 46]), the scattering states of a sys-
tem with time-dependent Hamiltonian H(t) are the Hilbert states ¥, which
satisfy the property,

lim = dT/d3 T @) =0 (1.23)

t—oo T

for every compact set S C R3, ¥, = U(t,0)¥ denoting the time evolution of
the state W.
Another interesting feature of time-periodic scattering theory is related to the
eigenvalues of the Floquet operator associated to H (t) (see [33, 35, 57]): given
a time-periodic Hamiltonian (with period T'), one can define the Floquet
operator
.0

= zat—}-H(t) (1.24)
acting on L?(Tr)®L?(R?), where Tr is the torus R/TZ. It is usually claimed,
but proved only for a small class of potentials, that there is a (one-to-one)
correspondence between the bound states of the system and the eigenval-
ues of 7. As a consequence of absence of bound states, we show that the
discrete spectrum of the Floquet operator is empty, although the explicit
relation between the genericity condition and the discrete spectrum of F re-
mains unknown.
The main ingredient in the proofs is the analysis of the time-evolution equa-
tion satisfied by the “charge” q(t) (see (1.5) and (I.6) for its definition),
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which is a Volterra-type integral equation with weakly singular kernel (see
e.g. [18]). The asymptotic behavior of ¢(¢) for large time is obtained from
the study of singularities of its Laplace transform, essentially applying the
analytic Fredholm theorem to the transformed equation. The cited genericity
condition on the Fourier coefficients of «:(t) enters explicitly to exclude the
existence of non-zero solutions of the associated homogeneous equation.

In Chapter 2 we study® a slightly more complicated model: we assume
that the Hamiltonian of the three-dimensional quantum system has the form
(1.21), where the unperturbed Hamiltonian describes a particle interacting
with a zero-range time-independent attractive perturbation, while H(¢) is a
time-periodic point interaction, i.e. formally

H(t) = Hy+ ad(Z) + a(t)é(z —7)

The N point interactions Hamiltonians can be defined in the same way as
(1.8) (see [3]), i.e. identifying the self-adjoint extensions of the symmetric
operator given by the Laplacian on the domain of smooth functions with
compact support away from the centers of the interaction. Such self-adjoint
extensions form a N parameters family and their domain is given again by
L2-functions which can be decomposed in a regular part @, € H*(R?) and a
singular part given by the sum

N
Z g GA(f — %)
i=1

where §; denotes the position of the i-th point interaction and the “charges”
g; solve a boundary condition similar to (1.6).

Hence in our case one has to deal with two “charges”, which solve two coupled
integral equations and depend both on time. However the Laplace transform
techniques used before work also for these equations. Indeed, by means of
almost the same methods, we prove asymptotic complete ionization in the
generic case, with the same decay for the survival probability, and absence
of generalized bound states.

We want to stress that this result is somehow unexpected, since there is no
requirement on both the “strength” and the frequency of the time-dependent
perturbation. Indeed even if a(t) is very large (small) for every ¢, so that
the perturbation is in fact small (large) in some sense, the system shows
asymptotic complete ionization; moreover this is still true for a frequency so
small that the perturbation can be considered time-adiabatic. These features

6A brief review of these results can be found in [11].
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witness the highly non-perturbative nature of the results about ionization.

In the second part of this thesis, we deal with a simple case of moving singular
perturbations of the Laplacian, namely the uniformly rotating case. The
formal time-dependent Schrédinger operators we consider are

HE) = Ho+ Vi = A+ V (1.95)
on L*(R"), n = 2, 3, with uniformly rotating potentials
V(@) = V(R™(t) ) (1.26)

where V' is a singular potential (e.g. formally V(Z) = §(Z — ,)) and R(%) a
rotation on the z, y—plane with period 27 /w.

As pointed out by Enss et al. [25], uniformly rotating Hamiltonians can be
studied in a simpler way than general time-dependent operators. Considering
the time evolution Upe(t,s) of the system in a uniformly rotating frame
around the z—axis, it is easy to see that the following relation with the time
evolution in the inertial frame Uyyer (¢, ) holds

Usners (£, ) = R(t) Usey(t — 8) Ri(s) (1.27)

where R(t)¥(Z) = U(R(t)™ %) and Upt(t,8) = Uret(t — 8) is the one-
parameter unitary group

Ut (t — 5) = 79 (1.28)
with a time-independent generator K, formally defined in the following way
K=Hy—wJ+V (1.29)

Here J stands for the third component of the angular momentum and V is
the time-independent potential (I.26).

Our purpose is to define in a rigorous way the time-dependent Hamiltoni-
ans (1.25) when the potential has a singular behavior: we study’ rotating
point perturbations of the Laplacian in 2 and 3 dimensions (Chapter 3) and
rotating blades (Chapter 4), namely rotating singular potentials supported
on sets of codimension 1 (a segment in 2 dimensions and an half-disc in 3
dimensions respectively).

Using this trick suggested by Enss et al., we define such time-dependent
Hamiltonians considering the corresponding formal time-independent gener-
ators in the rotating frame and studying their self-adjoint extensions. This

"Chapters 3 and 4 refer to [9].
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goal is achieved by means of Krein’s theory of self-adjoint extensions and
studying the associated quadratic forms for rotating blades respectively. In
particular, since the operator H, = Hy — wJ has a spectrum unbounded
from below, we need to use some limit procedure, in order to give a rigorous
meaning to rotating blade.

In this way we give an explicitly expression for such Hamiltonians, their
resolvent, spectrum and propagator: the use of the rotating frame is very
useful to avoid the problem associated to the definition of time-dependent
operators, as for regular potentials.

The last goal is the analysis of the asymptotic limit of the systems when the
angular velocity w — oo: by means of the explicit expression of resolvents we
prove convergence in strong sense of Usert(t, s) to some one-parameter uni-
tary group Ussympt (t —s) with time-independent generator Hagymps. Moreover
we show that, for point interactions, Hasympt is given by the Laplacian with
singular perturbation on a circle, while the asymptotic limit of the rotating
blade is simply a regular potential supported on a compact set.
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Chapter 1

Ionization for a
Time-dependent Point
Interaction

1.1 Introduction

This Chapter is devoted to the study of asymptotic complete ionization for a
quantum particle subjected to a time-dependent zero-range potential, start-
ing from a bound state of the system at the initial time.

In Section 1.2 we introduce the model and the associated time evolution,
which is given in terms of a corresponding evolution equation for the “charge”
(see (1.5), (1.6) and the following (1.6)). After having described the assump-
tions on the time-dependent parameter «(t), which identifies the Hamiltonian
of the system, we focus our attention on the equation for the charge and we
state two results about the large time behavior of the solution (Proposition
1.1) and the absence of a non-zero solution of the associated homogeneous
equation (Proposition 1.3). The first result together the unitarity of time
evolution guarantees existence and analyticity of the Laplace transform of
the solution in the open right half-plane (Proposition 1.2). Therefore we
introduce the Laplace transform of the equation (1.6), in order to infer the
asymptotic behavior for large time of the “charge” from the singular behavior
of its Laplace transform in a neighborhood of the origin.

The analysis of the Laplace transform of the “charge” is performed in three
slightly different ways, according to the sign of the 0-th Fourier coefficient
ap of a(t). In fact the results do not depend on the sign of op but the proof
has to be suitably modified. In Section 1.3 we consider the case ap < 0, in
Section 1.4, ag = 0 and in Section 1.5, ag > 0 respectively.
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In all the three cases we study, we extend the transformed equation on the
imaginary axis and we check the singularities of the solution there. By means
of the analytic Fredholm theorem we prove analyticity of the solution on the
imaginary axis for p # iwn, n € Z (Propositions 1.5, 1.11, 1.13). In the
case ap < 0 we need an extra discussion, due to the presence of poles in the
coefficients of the equation, but, using the genericity condition, we explicitly
show that the solution is in fact analytic there (Propositions 1.6).

In the same way, we prove that the solution has branch point singularities at
p =1wn, n € Z, where it behaves like the square root of p (Propositions 1.7,
1.12, 1.14). This point of the proof requires the genericity condition (1.19),
except for a(t) > 0, Vt € Rt (see the Remark at the end of the Chapter). If
@ < 0 an additional proof is needed in the resonant case, i.e. w = 1/N for
some integer N (Proposition 1.8).

A straightforward consequence of the above results is the power law decay
of the survival probability of the bound state (Theorem 1.1 and Corollary
1.1, Theorem 1.3 and Corollary 1.3, Theorem 1.5). Moreover, extending the
discussion to a large class of initial states, we prove that all the state of the
system are scattering states (Theorems 1.2, 1.4, 1.6) and that, in the generic
case, the Floquet operator has empty point spectrum.

1.2 The model

The model we are going to study is a quantum particle subjected to a time-
dependent point interaction fixed at the origin in three dimensions, namely
a system defined by the time-dependent self-adjoint Hamiltonian Hyy,

D(Han) = {¥ € L&) | 30:(t) € C, (V@) - :(8) GM(3) € F(RY),

(- 00) )= (a0 + L) 09 1)

(Hay + N ¥ = (Ho + ) (T — qa(t) GP) (1.2)
where A € R, A > 0 and

\ ., e—VE-&|
GNE—-7)= ——+
E-2)= =7
is the Green function of the free Hamiltonian Hy = —A.

According to the discussion contained in the Introduction, the Schrédinger
operator above can be interpreted as

—A+ Hy(t)

5



where formally

Hi(t) = a(t)é(Z)

Actually one should use this heuristic argument with some care, since the
parameter «(t) is not the coupling constant, because of the renormalized
required in order to define point interactions in three dimensions. In fact it
is proportional to the inverse of the scattering length.

At any fixed time ¢, the operator (1.2) has absolutely continuous spectrum
if a(t) is positive, while, when a(t) < 0, there exists exactly one negative
eigenvalue —(4ma(t))?, with normalized eigenfunction

2| Cu(t)l e4vrcx(t)[:‘c‘|
|Z|

(1.3)

Pat) (5) =

It is well known (see [19, 31, 48, 56]) that the operator (1.2) defines a time
propagation U(t,s) given by a two-parameters unitary family, solving the
time-dependent Shrodinger equation

o,

2—5; = a(t)\llt (14:)

and
U (Z) = U(t, s) Us(Z) = Up(t — )T, (Z) +z’/ dr q(1) Up(t — 75 ) (1.5)

where Up(t) = exp(—iHopt), Up(t; Z) is the kernel associated to the free prop-
agator and the charge ¢(t) satisfies a Volterra integral equation for ¢ > s,

a(T)q(T) (Us(7)W,)(0)

o(t) + 4/ / gr 204T) m — 4/ / N (1.6)
In order to prove the result above, it is sufficient to study the time evolution
of the quadratic form associated to H,y), starting from a initial state in
Cs°(R? \ {0}) (so that ¢(0) = 0) and using the ansatz (1.5) about the form
of the state at time ¢. The result can be then extended to any initial state in
L?(R3) by the unitarity of the evolution. For a complete review of the proof
see [18], where the procedure is applied to a slightly different case, namely
when the position of the point interaction moves along a smooth path while
the parameter o does not depend on time.
We are interested in studying complete ionization of system defined by (1.2)
and (1.4), starting from initial conditions

Uo(Z) = Qo) (F) (1.7)
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¥a(0)(Z) being the bound state' of Hyg).

We assume that «(t) is a real periodic continuous function with period T
The meaningful parameter of the system is the negative lower bound of a(%).
Indeed, if inf(a(t)) > 0, the wave operator associated to (Ho, Ha(y)) is unitary
(see [56]) so that any initial state evolves into a scattering state (see also the
Remark at the end of Section 1.5). Hence we require that

1. a(0)<0 (1.8)

Continuity of a(t) guarantees that it can be decomposed in a Fourier series
and the series converges uniformly on every compact subset of the real line.
In terms of the Fourier coefficients of a(t), we assume

. 2
alt) =S ane™™ {an} € 44(Z), w= %

nez (1.9)

In order to apply the Laplace transform to (1.6), we are going to prove that
the solution ¢(t) is bounded for any finite time and does not diverge worse
than e® as t — oo, for some positive constant c: indeed in that case the
Laplace transform §(p) of ¢(t) exists (and is analytic) for R(p) sufficiently
large.

Proposition 1.1 For any t € R*, the solution q(t) of (1.6) satisfies the
following estimate,

lg(®)] < C e
where 9
c= (47r sup |a(t)})
teRT
and C < 0.

Proof: We start noticing that from (1.6) we have
| (Us(7)%0) |(0)

lg(t)| < 4v/7 sup(|al) /dT Jaml. +4\/_/ dr T

from which we deduce that n(t) — |¢(¢)] > 0, if n(¢) is the unique solution of
the equation

7(t) = 47 sup }an/ dr +4f/

n order to do this analysis we shall require that «(0) < 0.

(1.10)

|(Uo(7)%0) |(0)
Viert

(1.11)
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Iterating (1.11) once and differentiating we obtain for n the differential equa-
tion

dt = 167%(sup(|a]))*n + 1672| (Uo(t) o) |(0) (1.12)

where the inhomogeneous term is finite at each time ¢ with, at most, an
integrable singularity at ¢ = 0. We conclude that

la(t)] < m(t) < C etom cuplieD) (113)
a

As a consequence the Laplace transform of g(t), denoted by

mEfwﬂw

0

exists analytic at least for R(p) > 1672 (sup(|o]))’.
Applying the Laplace transform to equation (1.6), one has

q(p) = —47r\/g > on d(p +iwk) + f(p) (1.14)

keZ

where

f E2w/2la / A e~k _
R kP

47a(0))?

2|a
-\ 25 [ e -
i /2] (0)| 47 (0) + +/—ip
—ip  (4ma(0))2 +ip

and with the choice of the branch cut for the square root along the negative

real line: if p = p e, )
VP =+/0 /2 (1.15)

with —7 < ¢ < 7.
By unitarity of the evolution (1.4), it follows that the Laplace transform of
g(t) is indeed analytic on the open right half plane:

Proposition 1.2 The Laplace transform of q(t), solution of (1.6), is ana-

lytic at least for R(p) > 0.




Proof: Using the decomposition of the wave function at time ¢ defined by
(1.5), we can write the survival probability in the following way:

= (‘Pa(O) , e“iH(’t‘Pa(O)) + (1.16)
L2(R?)

8(t) = (%(0) ,\Ilt)

L2(R3)

./ L2(R3)

+i (cpa<o>(f)-, /0 " dr () Ut - T;f))

Let us define
A (t) = <‘Po¢(0) ) e_iHOtsoa(O))

By the usual dissipative estimate for the free propagator, one has

L2(R3)

lZI(t)| S (&) t_%

as t — oo for some constant ¢; € R. Hence Z(t) belongs to L}(R*) and
then its Laplace transform Z;(p) is analytic at least for R(p) > 0.
The second piece .of the scalar product is given by

Z(t) = i(ﬁﬁa(O)(f) 7 /0 " dr () Uolt ~ 7 f)) =

L2(1R3) .

t
=1 / dr q(7) (e_iH"(t"T)gaa(o)) (0)
0

and taking the Laplace transform of Z(t), we have

Z(p) = Zs(p) d(p)

olp) = — 4./27|(0)|
2\P) = 4ra(0) — +/—ip
is analytic for #(p) > 0 and never equal to 0, because of condition (1.8).
Hence the Laplace transform of 6(¢) is given by

0(p) = Z1(p) + Za(p) d(p)

But (t) is a bounded function?, because of unitarity of the evolution (1.4),
and then its Laplace transform is analytic on the open right half plane. The
claim then follows from analyticity of Z;(p), Z2(p) and absence of zeros of

Zz (p)-

2Actually |6(t)] < 1, since the initial state is normalized.

where
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A well known property of Volterra integral operators, with regular or
weakly singular kernel, implies

Proposition 1.3 The homogeneous eguations associated to (1.6) has no
non-zero solution in LY (R*), 1 < p < oo.

~ Proof: The proof (see e.g. [42]) exploits the fact that the n-fold iterated
kernel is a contraction in any LP(0,7,) with T, increasing to infinity for
increasing n.

0O

In the following sections we shall prove asymptotic complete ionization of
the system under generic conditions on «(t). Although the result does not
depend on the sign of the mean g of a(t), we have to discuss separately the

case ap < 0 and oy > 0, because of the slightly different form of equation
(1.14).

1.3 CASE I: o <0

Since a(0) < 0, changing the energy scale, it is always possible to assume
that «(t) satisfies the normalization

4 o0)=> an= —% (1.17)
neZ

Moreover we introduce another condition we shall use later on: let 7 the
right shift operator on 4;(N), i.e.

(Ta)n = Qp41 (118)

we say that & = {an,} € £1(Z) is generic with respect to 7, if & = {an}n>0 €
£1(N) satisfies the following condition

(1,0,0,. \/ Tné (1.19)
n=0
For a detailed discussion of genericity condition see [12].
If (1.17) holds, equation (1.14) becomes (at least for R(p) > 0)

47 2iv/2r 1 —+/—1ip

i(p) = —————— o §(p + iwk) — - -
a(r) 47T060+w/—ZPk€ZZ k(P ) drag++/—tp 1-+1p

k0

(1.20)
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and by Proposition 1.2 its solution is analytic on the open right half plane.
In the following Section we shall extend the equation (1.20) above to the
imaginary axis and study the behavior of the solution there.

1.3.1 Behavior on the imaginary axis at p # 0

Setting ¢,(p) = G(p + iwn), we obtain a sequence of functions on the strip
I={peC, 0<3(p) <w},

a(p) = {gn(p) }nez

so that equation (1.20) can be rewritten

q(p) = L(p) a(p) + 9(p) (1.21)
where
(0,0 =~ g Dk esl) ()
k=£0

and g(p) = {gn(p)}nez With

(p) = — 21/ 2m 1—+/wn—1p (1.23)
IniP) = drag ++/wn —ip 1+ip —wn '

From the explicit expression of the operator (1.22) and (1.23), it is clear that
the coefficients of the equation fails to be analytic on the imaginary axis at
7 = ((4rag)?® — wh)i, for some 7 € Z and then the solution may be singular
there.

Since Y(p) € [0,w), one has

2 2
G l<ii< (4mayp)
w w

(1.24)

and then the singularity appears at most in the equation for g; (there is only
one integer® which satisfies the previous inequality) at 5 = ((4rag)? — wi)i.
For instance, if w > (4may)?, the pole may be at § = (4mag)?i in the equation
for qq.

Actually we have to distinguish the so called (see [12]) resonant case, i.e.

when
(4map)? = Nw

for some N € N, because in that case we can have a pole only at p = 0 and
then the solution is immediately seen to be analytic on the whole imaginary

3In fact 7 must be non negative.
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axis except at most for p = 0.

Let us first consider the behavior of the solution on the imaginary axis for
p # 0,5. We are going to prove that the solution is in fact analytic there.
We prove first an important property of the operator L:

Proposition 1.4 For p € Z, R(p) = 0, p # 0,5, L(p) is an analytic
operator-valued function and L(p) is a compact operator on £o5(Z).

Proof: Analyticity on the imaginary axis for p # 0, p easily follows from
the explicit expression of the operator.
Moreover L(p) can be written

L(p) =b(p) Y o T
keZ
k0

where b(p) is the operator

0 On®) = 50(5) (o) = ~ o

and 7 is the right shift operator in £5(Z).

Since ||7|| = 1, the series converges strongly to a bounded operator. More-
over b(p) is a compact operator on the imaginary axis for p 5 0, p: b(p) is the
norm limit of a sequence of finite rank operators, because lim,,_, b,(p) = 0.
Hence the result follows for example from Theorem VI.12 and VI.13 of [44].

O

Proposition 1.5 There ezists a unique solution g,(p) € £o(Z) of (1.21) and
it 15 analytic on the imaginary axis for p # 0, p.

Proof: The key point will be the application of the analytic Fredholm
theorem to the operator £(p) (Theorem VI.14 of [44]), in order to prove that
(I - L(p))~" exists for p # 0, .

Since there is no non-zero solution in L (R*) of the homogeneous equation
associated to (1.6) (see the Proposition 1.3), then the homogeneous equation
associated to (1.21) has only the trivial solution in £»(Z). Moreover the
operator L is compact and thus analytic Fredholm theorem applies. The
result easily follows, because g(p) € f2(Z) and each gn(p) is analytic for

p# 0,p.
O
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We can now study the equation (1.21) in a neighborhood of 7 (if p # 0).
An important preliminary result is the following

Lemma 1.1 Let (1.9) and the genericity condition (1.19) be satisfied by
{an}. The system of equations

47
= — —n h
g, Lot 0}

k#n,fi

(1.25)

has a unique solution {r,} € lo(Z\ {R}) in a pure imaginary neighborhood of
P, where i € Z and p € I, R(p) = 0, are defined by (1.24), for every h,(p)
such that

hn(p)

hl
() dmag + /wn — ip

belongs to L2(Z \ {7i}).
Moreover, if hn(p) is analytic in a neighborhood of p, the solution is analytic
in the same neighborhood.

Proof: Equation (1.25) is of the form
r=Lr+h

where &’ = {h/,} belongs to £o(Z \ {7}) and L’ is a compact operator (see
Proposition 1.4).

In order to apply analytic Fredholm theorem to the operator £’, we need
to prove that there is no non-zero solution in a neighborhood of  of the
homogeneous equation. Suppose that the contrary is true, so that {R,} €
£5(Z \ {n}) is a non-zero solution of i

47
= — E (a7
Rn 47T0{0+ r——-—————wn_ip o k an
k#n,7

Multiplying both sides of equation above by R} and summing over n €
Z\ {7}, one has

Z\/wn —ip an|2 = —47 Z R, op_n Ry,

neEZ n,k€Z
n#n nkei

and, since the right hand side is real,
S[Z\/wn— ip [Rn|2} =0
neZ

nF#n
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for p =i\, 0 < A < w, and then R, = 0 for n < 0. Now suppose that R # 0
and let ng € N be such that R, = 0, n < ng, and R, # 0 (hence ng > 0).
Fixing Rz = 0, for each n < ng the homogeneous equation gives

i ak_an =0

k=ng

or, setting k =ng — 1+ k', for n > 0,

oo
E OprpnBng—140 = 0

k'=1
which implies (see (1.9)), for each n > 0,

<R/ ,T”a) £(N) =0

where R;, = R} _,,, and (-, -) stands for the standard scalar product on
£5(N).

If {a,} satisfies the genericity condition (1.19), R’ has to be orthogonal also
to e; and then R,, = 0, which is a contradiction. Therefore R = 0.

The first part of the Lemma then follows from analyticity of £'(p) and ana-
lytic Fredholm theorem. Moreover if {h,(p)} is analytic in a neighborhood
of p, analyticity of the solution is a straightforward consequence.

O

Proposition 1.6 If {a,} satisfies (1.9) and the genericity condition with
respect to T (1.19), the unique solution {g,} € £o(Z) of (1.21) is analytic on
the imaginary axis except at most for p = 0.

Proof: If (4map)? = Nw for some N € N (resonant case) there is nothing
to prove, since the coefficients of (1.21) fails to be analytic only at p = 0.
On the other hand, in the non resonant case, Proposition 1.5 guarantees
analyticity on imaginary axis for p # 0,p. Therefore it is sufficient to study
the behavior of the solution in a neighborhood of p, where the coefficients of
(1.21) have a singularity. We are going to prove that in fact the solution is
analytic at p.
The strategy of the proof is to analyze separately the terms g,, n # i, 7 being
defined in (1.24), and then prove that also gz is analytic in a neighborhood
of p.
By Lemma 1.1 there is a unique solution of the system

4:7T05ﬁ_n

ty, = —nt 1.26
" 47rcv0 + \/wn kEZZ Wk—nlle = Aoy + /wn — ip ( )




Setting g, = r, + tnga, n #* 71, on (1.21), one has

4
Tn+ tngn = il Qp—nGn + z Qk—n Tk + thn) -+
47raeo + Jwn —

keZ
k#n,i

21/ 21 1—+/wn—1p
drag + /wn —ip 1+1ip —wn

and therefore the equation for {r,}, n # 7, becomes

4 . 1 —+/wn—1p
n = — - Tn + 127
" drag + /wn — zp{ Z YkTntk Vor l-4+1ip—wn } (1.27)

while ¢ satisfies the equation

_ 4 Za ('r iy ) . 1 —y/wn—1p
&= dmag + /wh — 2p h=a\Thk T tkn w/27r 14ip —wn

kez
ki
or S
2iN/ 2w
4o + . —ip + 47 Qi == —4TY Qp_aT
[ o+ W + kezzknk] ;knk 1+\/LT_
kst kR

Since the last term is analytic in a neighborhood of p and {t.}, {r.} €
25(Z \ {7}) are both analytic, as it follows applying Lemma 1.1 above to
(1.26) and (1.27), it is sufficient to prove that

z Qi # 0
kez
kA

where )
tn = tn(p)|

Assume that the contrary is true: from equation (1.26) we obtain

Z(llwozo +y/wn — It [ = —4r7 Z oty — 47?2 ot =

p=p

neZ n,kEZ neZ
nFi n, ks, nk nn
n,kEZ
n,k#£7,n#k
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where we have used condition 2 in (1.9). The previous equation implies (the
{ight hand side is real) t, = 0, Vn < N = 2 and then, since -1 < N < 0,
tn = 0, Vn < 0. Hence from (1.26) we have, Vn < 0,

Zak—nfk + zp, =0
k>0
ki

Now supposing without loss of generality that £y # 0 and setting T}, = t,_1,
n#n+1, and 7541 = 1, we obtain, Vn > 0,

oo
Z Qpnll =0
k=1

and using the genericity condition (1.19) (as in the proof of Lemma 1.1) we
get T1 = to = 0, which is a contradiction.

In conclusion g5 is analytic in a neighborhood of p: analyticity of g,, n #
n is then a straightforward consequence of analyticity of {r,}, {¢,} and
decomposition ¢, = 7, + t,g5. The proof is then completed, since r,, and ¢,
belong to ¢»(Z\ {7}) in a neighborhood of p = p.

1.3.2 Behavior at p=0

We shall now study the behavior of the solution of (1.21) on the imaginary
axis at the origin. With the choice (1.15) for the branch cut of the square
root, it is clear that we must expect branch points of §(p), solution of (1.20),
at p = iwn, n € Z, which should imply a branch point at p = 0 for each g,
in (1.21).

We are going to show that g¢,, n € Z has a branch point at p = 0. The
non-resonant case and the resonant one will be treated separately.

Proposition 1.7 (non-resonant case)

If (4mag)® # Nw, YN € N and {a,} satisfies (1.9) and (1.19) (genericity
condition), the solution of equation (1.21) has the form g,(p) = cu(p) +
dn(p)\/D, 1 € Z, in an imaginary neighborhood of p = 0, where the functions
cn(p) and d,(p) are analytic at p = 0.

Proof: Setting g, = rn + tnqo, n # 0 and choosing a solution {t,} €

£5(Z\ {0}) of the system of equations (1.26) with 7 = 0, we obtain that {r,}
must satisfy (1.27). It is easy to see that the result of Lemma 1.1 holds also
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in a neighborhood of p = 0 with 7 = 0, so that {r,}, {tn} € £2(Z\ {0}) are
unique and analytic at p = 0.
Thus it is sufficient to prove that go, which is solution of

262w (1 — +/—1
Aoy + / —ip + 4w Zaktk} Go = —47TZOfka _Z ( )

k€eZ keZ 141p
ks£0 k0

has the required behavior near p = 0.
First, setting t2 = t,(p = 0), we have to prove that

Zaktz # -

keZ
k0

but, assuming that the contrary is true and multiplying both sides of equation
(1.26) by 2" and summing over n € Z, n # 0, one has

Z Vwn |t = —4r Z 2% ot + 4dmag
nezZ n,kEZ o
n,k#0

and then, because of genericity condition (1.19), {t°} = 0, Vn € Z\ {0},
which is impossible, since {t,} solves (1.26).
Now, calling

keZ

k£0
and

= —47r2akrk

keZ

k=£0
we have

- 26/ 27(1 — \/—1
[47rao+\/—-zp+F] g =G+ 1(+z'p p)

and

@o=F+p G

where F’ is analytic in a neighborhood of p = 0, because of analyticity of F’
and G, and

2iy/=2mi (dmap + F + 1)+ /=i (1 +1ip) G

¢'=- (1 +ip) (47w + F)2 + ip]

(1.28)
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The resonant case, i.e. 4mag = —VwN for some N € N, is not so different
from the non-resonant one and we shall prove that the solution has the same
behavior at the origin. The proof is slightly different because we need to
show the absence of a pole at p = 0: from (1.21) one has

47 1 1—+wN—1ip
qn(p) = . Z @ gn+k(P) + —
VwN — \JwN —ip V2r 1+ip—wN

keZ
k0

and the coefficients have a singularity at p = 0.

We are going to prove that in fact the solution has no pole at the origin:
proceeding as in the proof of Proposition 1.6, let us begin with a preliminary
result, which take the place of Lemma 1.1:

Lemma 1.2 Let (1.9) and the genericity condition (1.19) be satisfied by
{an}. The system of equations

Tp = m _4\7;00—7172-1;{ Z 0Tk + hn(p)} (1.29)
kEZ

ks£0,—n

has a unique solution {r,} € £o(Z\ {N}) in a purely imaginary neighborhood
of p =0, for every h,(p) such that

/ — hn(p)
hn(p)—m_m

belongs to £2(Z\ {N}).
Moreover, if hy(p) is analytic in a neighborhood of p = 0, the solution is
analytic in the same neighborhood.

Proof: We shall proceed as in the proof of Proposition 1.6, separating the
contribution of ry, which may be singular: setting r,, = u, +v,7y, n # 0, N,
on (1.29), one has

47
Up +UpTN = . {CYN—nTN + E Qg (Un+k + 'Un+k7'N) }-I-
VwN — /wn —p Py
k#0,~n,N—n

21/ 21 1—+/wn—1p
VwN — yJwun —ip 1+ip—wn

18
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and requiring that {v,}, n # 0, N, solves

4 47TOZN__.,7,
CrUn+k + (130)
\/ — 3/ wn — % VWiV — /wn —
k:;éO —n,N—n

the equation for {u,}, n # 0, N, becomes

47 { 1—+/wn— Zp}
Up = : > oty + (1.31)
VwN — \/wn —1p po \/ 1+ip—wn :

k#£0,—n,N—n

Moreover ry satisfies

47 i 1—\/wn—ip}
N = E oy (ug +vern) + :

N \/wN—\/wN—ip{ e bt 04 Vor l+ip—wn
ke£0,—N

or

[\wa—— VWwN —ip—4m Z ozk_va} TN =

keZ
k#0,N
i 1—y/wn—1p
=4
ﬂ:é;ak Nuk+ ,—_277 1+'ip——wn

k£0,N
Applying the discussion contained in the proof of Lemma 1.1, it is not difficult
to see that the solutions of equations (1.31) and (1.30) are analytic in a
neighborhood of the origin and belong to £3(Z\ {0, N}). Therefore it remains
to prove that (setting v2 = v, (p = 0))

Z ak_N'U,S 75 0

keZ
k#0,N

but the argument in the proof of Proposition 1.6 excludes this possibility, if
{a;,} satisfies the genericity condition. The proof is then completed, because
analyticity of ry implies analyticity of all r,, n # 0, N.

O
Proposition 1.8 (resonant case)
If (47ag)? = Nw, for some N € N and {a,} satisfies (1.9) and (1.19)
(genericity condition), the solution of equation (1.21) has the form g,(p) =
cn(p) + dn(p)y/B, N € Z, in an imaginary neighborhood of p = 0, where the
functions c,(p) and d,(p) are analytic at p = 0.

Proof: See the proof of Proposition 1.7 and Lemma 1.2 above.
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1.3.3 Complete ionization in the generic case

Summing up the results about the behavior of the Laplace transform §(p) of
q(t) we can state the following

Theorem 1.1 If{o,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, as t — oo,

lg@)| < At™2 + R (1.32)

where A € R and R(t) has an exponential decay, R(t) ~ Ce™B! for some
B,C > 0.

Proof: Propositions 1.5, 1.6 and 1.7 guarantee that §(p) is analytic on the
closed right half plane, except branch point singularities on the imaginary
axis at p =iwn, n € Z.

Therefore we can chose a integration path for the inverse of Laplace transform
of G(g) along the imaginary axis like in [12].

Proposition 1.7 implies that the contribution of the branch point at p = 0 is
given by the integral

2i/ dp+/p G'(—p)e™™
0

~ where G, defined in (1.28), is a bounded analytic function on the negative
real line: from explicit expression of F' and G and equations (1.27) and (1.26),
it is clear that G’ is analytic and lim, ., G'(—p) = 0 on the real line. So
that the corresponding asymptotic behavior as t — oo is

[ v cepem

0

50/ dp/p e =At"2
0

Let us consider now the contribution of branch points at p = iwn, n # 0:
from Propositions 1.7 and 1.8 it follows that, in a neighborhood of p = 0,

qn(p) = Cn(p) + dn(p) \/1—9

where c¢,(p) and d,(p) are analytic at p = 0. Moreover using the decompo-
sition g, = 7, +tnqo, 7 # 0, as in the proof of Proposition 1.7 and 1.8, and
studying the equation (1.26) for ¢,, we immediately obtain {d,} € £;(Z\{0}),
because of condition 2 in (1.9). Since g, (p) = §(p + iwn), the contribution of
singularities at p = iwn, n # 0, is then given by

Wn

2y dp dn(p — iwn)\/p — iwn € =

nez iwn—oo

n#0
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=2 /OOO dp {Z dn(=D) e""’"t}\/ﬁ e Pt =

nez
n#0

Z dn("'p) e’iwnt

neEZ

n#0
converges uniformly to a bounded: function of ¢, because {d,} € 1(Z \ {0}).
Adding up the contributions of every branch cut, one obtain the required
leading term in the asymptotic behavior. Indeed the rest function R(t) is
given by the contribution of poles outside the imaginary axis and then shows
an exponential decay as t — oo.

and the series

O

A straightforward consequence of Theorem 1.1 is that the scalar product
(and thus the survival probability of the bound state)

‘9 (t) = (SDa(O) ;‘I"t)

L2(R3)
tends to 0 when ¢ — oo:

Corollary 1.1 If {o,} satisfies (1.9) and the genericity condition (1.19)
with respect to T, the system shows asymptotic complete ionization and, as
i — 00,

6(t)] < D% + Et)

where D € R and E(t) has an ezponential decay.

Proof: The Laplace transform of 8(¢) can be expressed in the following
way (see the proof of Proposition 1.2)

0(p) = Zi(p) + Z2(p) d(p)

where Z;(p) is analytic on the closed right half plane and Zy(p) has only a
branch point at the origin of the form a; + az./p.

Hence § (p) has the same singularities as §(p) and then its asymptotic behavior
coincides with that of g(t), i.e.

6()| < Dt + E(2)

for some constant D € R and for a bounded function E(¢) with exponential
decay.
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In the following we shall prove a stronger result about complete ionization
of the system, namely that every state ¥ € L?(R?) is a scattering state?* for
the operator Hy), i.e.

Jim = /dT”F }sR)U_(T,O)\If“z:o (1.33)

where F'(S) is the multiplication operator by the characteristic function of
the set S C R® and U(t, s) the unitary two-parameters family associated to

Hyp (see (1.4)).

In order to prove (1.33), we first need to study the evolution of a generic
initial datum in a suitable dense subset of L?(R?) and then we shall extend
the result to every state using the unitarity of the evolution defined by (1.4)

(see e.g. [18]).

Proposition 1.9 Let ¥ € C3°(R®\ {0}) a smooth function with compact
support away from 0 and q(t) be the solution of equation (1.6) with initial
condition Vo = V. If {o,} satisfies (1.9) and the genemczty condition (1.19)
with respect to T, ast — o0,

la(t)] < At% + R(2) (1.34)

where A € R and R(t) has an ezponential decay, R(t) ~ Ce~Bt for some
B > 0.

Proof: The proof of Proposition 1.2 still applies, considering

0'(t) = (111 ,qft) .

instead of (t), so that §(p), solution of (1.14) with initial condition ¥y = ¥,
is analytic Vp with R(p) > 0.

Hence we can consider the Laplace transform of equation (1.6), which has
the form (1.14) with

f(p) = \/_g \/z / dt e~ Pt dBE @(E) e~z‘k2t
TP Jo R3

“For the definition of scattering states of a time-dependent operator see e.g. 25, 34].
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where W(k) is the Fourier transform of ¥(Z).
The equation for g(p) is then given by

- 47 . . 9(p)
= Gp + k) + =
aw) drag + /—ip £ k4P ) dmag + +/—ip

k40

N s o n o 2
g(p) =14/ = / dt e’pt/ d*k W(k)e ™
™ Jo R3

It is now sufficient to show that the solution §(p) is also analytic on the
imaginary axis except at most square root branch points at p = iwn as in
the discussion of section 3.2 and 3.3.

For every smooth function ¥ with compact support, @(E) is a smooth func-
tion with an exponential decay as k — 0o, so that

- U(k)
d*k \/‘/ dk
glis) = T£%+[AS 7"+(3—|—k2 RS s + k2

is a bounded function for s > 0. Hence the function g(p) has no pole for
S(p) € (0,w) and therefore the result contained in Proposition 1.6 still holds.
Moreover

g(0)=\/§ &F ¥ k)/ dt =t — Z\/E/ o7 L)
. LT TR

which is again bounded, so that g(p) has at the origin at most a branch point
singularity of the form a(p) + b(p)./p: following the proofs of Proposition 1.7
and 1.8, we can show that §(p) has the same behavior at the origin.

In conclusion the solution is analytic on the closed right half plane except
for branch points at p = iwn, n € Z, of the form a(p) + b(p)y/p — wn. The
proof of Theorem 1.1 then implies that g(t) has the prescribed behavior as
t — 00.

where

O

Theorem 1.2 If{a,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, every U € L%(R?) is a scattering state of Hyy), i-e.

i
Jim / dr | F(|7 < RU(r,0)|* = 0
—00 0
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Proof: We shall restrict the proof to the dense subset of L*(R?) given
by smooth functions with compact support and then we shall extend the
result to every state using the unitarity of the evolution defined by (1.5) (see
e.g. [18]). Actually we are going to prove a slightly stronger statement, i.e.
Ve > 0, there exists tg such that Vi > g,

|F(1Z] < R)U(,0)¥| < e
The evolution of an initial state ¥ according to (1.5) is given by

Uy(E) = UL, )T, () = Uo(t — 8)Ts(E) + i / dr q(r) Uolt — 733)  (1.35)

Moreover, since W; € D(Hyy)), the following decomposition holds

U4(Z) = () + 4(;(% (1.36)

where ¢(t) is the solution of (1.6), ¢; € HZ.(R®?) and
0:(0) = a(t)q(?)

We are going to show that, if g(t) € L*(R™), U, satisfies the required prop-
erty. Let us start analyzing the second term in (1.35): imposing the unitarity
condition of the evolution we have

2

12 = ) = ||Vt - ) Ta(@) +1 / dr q(r) Us(t — 73 )

and then

_ zg( / dr g(P) Uot—7: ), Uo(t—s)qfs(f)) -

s

/t dr q(1) Up(t — 73 )

= 23 [ /S t dr ¢* (1) (e—m"("‘s) ‘;[Js> (O)]

but, using the decomposition (1.36),

( e—z'Ho(s—T)\I;s) (0) = ( —iHo(s—7) %> O+ [ & 7 gmik?(r—s) q(s)

- e
— —iHo(s—7) q(S)
= () 0+ =
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Since ¢, € HE,(R?), the absolute value of the first term on the right hand
side is bounded by a constant ¢(7, s) < oo such that ¢(s, s) = ¢(s) and

lim ¢(7,s) =0

T—00

Hence there exists s;(g) > 0 such that, Vs > s,

i * —iHp(s—7 252
e

8

2

if ¢(t) € L*(R*). Moreover by the same reason there exists sa(€) > 0 such

that Vs > so, .
. q(s) 2¢?
2 d — | < —
[ oo A<
Setting so(g) = max(s1(g), s2(€)), one has Vs > sg
t
2
/ dr (1) Up(t — ;D) || < ?.g (1.37)

so that the whole L?—norm of the second term in decomposition (1.35) is
suitably small for s > sq.

On the other hand the first term in (1.35) is the free evolution of a L2—function
and hence there exists §(¢) > 0 such that Vt > s+ ¢ and VR < oo,

|F(3 < R - 5T, < £ - (3)

Setting to(€) = so(€) + 6(g), from (1.35), (1.37) and (1.38) one has
IF (2] < R)T.|| <«
Vit > to, if q(t) € LY(RT).
By Proposition 1.9 the inequality is then satisfied by every ¥ € C5°(R3\ {0}):
unitarity of the family U(t, s) allows to extend the result to the whole Hilbert
space L*(R3).
O

Corollary 1.2 If {an} satisfies (1.9) and the genericity condition with re-

spect to T (1.19), the discrete spectrum of the Floguet operator associated to
Ha(t) 7

.0
= —Zb—t + Ha(t)

1S empty.

Proof: The result is a straightforward consequence of Theorem 1.2: every
eigenvector of K differs from a periodic function by a phase factor and hence
can not satisfy (1.33).

O
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1.4 CASE IL: oy =0

If a(t) = ap = 0 does not depend on time, the problem has a simple solution:
the spectrum of Hy(y is absolutely continuous and equal to the positive real
line, with a resonance at the origin; hence there is no bound state and the
system shows complete ionization independently on the initial datum.

On the other hand if a(t) is a zero mean function, we shall see that the
genericity condition (1.19) is still needed to prove complete ionization.

So let us assume that ag = 0, the normalization (1.17) holds and the initial
datum is given by (1.7): equation (1.14) then becomes

i(p) = ——471'\/-;?2 o §(p + iwk) — 24 2m }—:ﬂ (1.39)

keZ p 1+1p
k=20

with the choice (1.15) for the branch cut of \/p. By Proposition 1.2 the
solution is analytic in the open right half plane. In the following section we
shall study the singularities on the imaginary axis.

1.4.1 | Singularities on the imaginary axis

Setting g,(p) = G(p +iwn), p € T = [0,w), as in Section 3.1, equation (1.39)
assumes the form (1.21),

q(p) = M(p) q(p) + o(p) (1.40)
with 4
(Mg) (p) = “\/m—l———j{ﬁ ’CEZZ @k Gk (P) (1.41)
k=20

and o(p) = {on(P) }nez,

()=~ 2o
o) =" Jon—ip (1 + n — ip)

Proposition 1.10 For p € Z, R(p) = 0, p # 0, M(p) is an analytic
operator-valued function and M(p) is a compact operator on £y(Z).

(1.42)

Proof: See the proof of Proposition 1.4.
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Proposition 1.11 There ezists a unigue solution g,(p) € f2(Z) of (1.40)
and it is analytic on the imaginary azis for p # 0.

Proof: See the proof of Proposition 1.5.
O
Proposition 1.12 If{a,} satisfies (1.9) and the genericity condition (1.19),
the solution of equation (1.40) has the form g,(p) = ca(p) +dn(p)\/p, n € Z,

in a neighborhood of p = 0, where the functions c,(p) and d,(p) are analytic
atp=0.

Proof: Let us proceed as in the proof of Proposition 1.7: setting g, =
Tn -+ tngo, n € Z \ {0}, where {tn} is the solution of

4o
t = _S_  Qplpgr — ———— (1.43)
keZ Wi —1p
k:;éD —n

A slightly different version of Lemma 1.1 guarantees that the solution {¢,} €
£5(Z\ {0}) is unique and analytic at p = 0.
By means of this substitution we obtain

20V 2T |
Z CpTntpk — (1'44')

= - Jwon—ip ~ Vwn —1p (1++/wn —ip)
k#O,—n
and
47 : 23/ 2m
do = — . ok (Tk + o) — : .
0= TR )~ e i v
k0
or

(\/_:ZE‘*'F)%:G—%

where (like in the proof of Proposition 1.7)

F= 47rZaktk

kEZ
k40

G= —47r2ak7°k

keZ
k=0

and
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Moreover F(0) # 0, because of genericity condition (1.19) (see the proof
of Proposition 1.7), F and G are analytic in a neighborhood of p = 0 (see
Lemma 1.1), so that

q0 — FI + \/1—) G/

where F” and G’ are analytic and

2v/=2mi(F + 1) — /=i(1 +ip)G

G= (1 +ip) (B2 + p)

1.4.2 Complete ionization in the generic case
As in section 3 we can now state the main result:

Theorem 1.3 If{a,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, ast — oo,

lg(®)] < At™% + R(¢) (1.45)

where A € R and R(t) has an ezponential decay, R(t) ~ Ce 5" for some
B>0.

Proof: See the proof of Theorem 1.1.
O

Corollary 1.3 If {a,} satisfies (1.9) and the genericity condition (1.19)
with respect to T, the system shows asymptotic complete ionization and, as
T — 00,

16(t)| < D&% + E(t)
where D € R and E(t) has an ezponential decay.

Proof: See the proof of Corollary 1.1.
0O

Theorem 1.4 If{a,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, every U € L?(R3) is a scattering state of Hyw, i-e.

i
Jim 2 / dr |F (7 < R)U(r, 0)%|f = 0
—r00 0

Moreover the discrete spectrum of the Floguet operator is empty.

Proof: See the proof of Proposition 1.9 and Theorem 1.2.
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1.5 CASE III: ¢y >0

To complete the analysis of the problem, we shall consider the case of mean
greater than 0: taking the normalization (1.17) and the initial condition
(1.7), (1.14) assumes the form (1.20):

- 4T 29/ 2T 1—+/—ip
i) = == D dlp +iwk) - . .
47ra0 ++/—ip drag ++/—ip 1+1p

keZ
k=0

(1.46)

Analyticity of the solution on the open right half plane is a consequence of
Proposition 1.2.

Moreover, following the discussion contained in section 3 and setting g, (p) =
g(p + iwn), I(p) € [0,w), the equation assumes the form (1.21).

Let us now consider the behavior on the imaginary axis: singularities for
R(p) = 0 are associated to zeros of 47 + vwn + s, s € [0,w), but, since
ap > 0, it is clear that the expression can not have zeros on the imaginary
axis. Hence the proof of Proposition 1.5 can be extended to the closed right
half plane except the origin: ‘

Proposition 1.13 If{a,} satisfies (1.9), the solution §(p) of (1.46) is unique
and analytic for R(p) > 0, p # iwn, n € Z.

Proof: See the proof of Proposition 1.5, Propositions 1.4 and 1.3 and the
previous discussion.

Moreover the behavior at the origin is described by the following

Proposition 1.14 If {a,} satisfies (1.9) and the genericity condition with
respect to T (1.19), then, in an imaginary neighborhood of p = iwn, n € Z,

the solution of equation (1.46) has the form §(p) = cp(p) + dn(p)A/P — wn,
where the functions c,(p) and d,(p) are analytic at p = iwn.

Proof: The proof of Proposition 1.7 still applies with only one difference:
since, independently of w, the solution can not have a pole on the imaginary
axis, we need not to distinguish between the resonant case and the non-
resonant one.

We can now prove asymptotic complete ionization of the system:
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Theorem 1.5 If{a,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, ast — 00,

lq(t)] < At™% + R(t) (1.47)

whefe A € R and R(t) has an exponential decay, R(t) ~ Ce B for some

B>0.
Moreover the system shows asymptotic complete ionization and, ast — co,

6(t)] < Dt~2 + E(t)
where D € R and E(t) has an ezponential decay.

Proof: See the proof of Theorem 1.1 and Corollary 1.1.

a

Theorem 1.6 If{a,} satisfies (1.9) and the genericity condition (1.19) with
respect to T, every ¥ € L2(R3) is a scattering state of Hyy, ie.

t
lim % dr |F(1#| < R)U(r,0)¥|” = 0
0 -

t—00

Moreover the discrete spectrum of the Floguet operator is empty.

Proof: See the proof of Proposition 1.9 and Theorem 1.2.

O

Remark: If a(t) > 0, Vi € R*, Proposition 1.14 holds without the gener-
icity condition on the Fourier coefficients of a(t): for instance the genericity
condition enters (see the proof of Proposition 1.7) in the proof of absence of
non-zero solutions of the homogeneous equation

Ty = an Z ot
" dagy +/wn+ s kntk

keZ
k£0,—n

where s € [0,w). Let us suppose that there exists a non-zero solution {7,,} €
£5(Z). Multiplying both sides of the equation by T}, one has

Z\/wn + 8 |Tn)? = —4n Z T cp—n Ty

nez n,kEZ
n#0 n,k7#0
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Since the right hand side is real, T,, = 0, Vn < 0. Moreover, fixing 75 = 0

and setting
T(t)=> T,e ™™
nez

it follows that

—dr 3" TrapnTy = —4r (T(t), a(t)T(t))

\ <
e 220

because a(t) > 0, Vt € [0,T], but the left hand side is positive and then
T, =0,Vn € Z.
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Chapter 2

Decay of a Bound State under
a Time-dependent Singular
Perturbation

2.1 Introduction

In this Chapter we discuss the decay of a bound state under a time-periodic
perturbation, studying a toy model which involves time-dependent point in-
teractions. Indeed we consider a zero-range time-dependent perturbation of
a system given by a quantum particle interacting with a zero-range (time-
independent) potential (see Section 2.2). Assuming that the unperturbed
Hamiltonian has a bound state and the system is in that state at the ini-
tial time, we investigate the problem of asymptotic complete ionization (see
Chapter 1).

Following the same procedure of Chapter 1, that is applying the Laplace
transform to the evolution equation of the “charges” and studying the singu-
larities of the solutions in a neighborhood of the origin (Sections 2.3, 2.4 and
2.5), we prove that the system shows asymptotic complete ionization (Sec-
tion 2.6) under the same genericity conditions introduced in Chapter 1 (see
(1.19)) on the parameter a(t), identifying the time-dependent perturbation.
In that case we prove that the survival probability of the bound state has a
power law decay to zero as t — oo and that every state of the system is a
scattering state (Section 2.6).
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2.2 The model

The model we are going to study describes a quantum particle with a zero
range interactions fixed at the origin and of strength —1/4m, subject to a
periodic force, which we shall take of zero range and placed in a point of
coordinates 7 and with strength «(¢) of nonnegative mean. If the time-
dependent part of the interaction were not present, the system would have a
bound state, with normalized wave function .

e_lil
To(7) = ———
0= U

and the remaining part of the spectrum would be absolutely continuous con-
ciding with [0, co).

The entire system is described by the time-dependent self-adjoint Hamilto-
nian Ha(t},

(2.1)

D(Ho) = {xp e I2R®) | 3¢W (1), (@) € C,

oA = (qf(f) () 6:(@) — 4D (2) Ga (& — fv) c H2<R3>} (2.2)

(Haw +2)¥(Z) = (Ho+ ) [‘I’(f) —¢(t) GA(@) — ¢P () Ga( - 7”)’} (2.3)

where ) is an arbitrary positive parameter. The “charges” ¢ (t) are deter-
mined by the boundary conditions

143X
02(0) = =—— ¢V(t) = Ga(7) ¢? ()
(2.4)
dra(t) — A
oaP) = T2 ) g, g s
and
- — e_ﬁlf—i’l
M=) = m 7
is the Green function of the free Hamiltonian Hy = —A.

The essential spectrum of the operator (2.3) is purely absolutely continuous
and equals the positive real line [0,00). Moreover there exist at most 2
negative eigenvalues (counting multiplicity) and —k* € op(Hagw), k > 0, if
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and only if det[Iaz) (k)] = 0, where I'o ) (k) is the 2 X 2 matrix

—1—;;]3 —Gi(7)
Lo (k) = ) . (2.5)
G () wait; +

The multiplicity of the eigenvalue k2 is equal to the multiplicity of the eigen-
value 0 of the matrix. The corresponding eigenfunction can be expressed in
the form

k(%) = c1 Ge(Z) + co Gp(T —7)

where (cy, c3) are the eigenvectors with eigenvalue 0 of I'y (k).
It is well known (see [18, 19, 31, 48, 56]) that the solution of the time-
dependent Schrodinger equation
| 20U
’I,-“'gf = Ha(t)\Ijt (26)

associated to the operator (2.3) is given by

Uy (2) = Up(t — 8)Wy() + i / t dr [q(l)(T) Up(t — 7 &)+

+ ¢ (1) Up(t — ;% — F)} (2.7)

where Uy (t) = exp(—iHot), Up(t; ) is the kernel associated to the free prop-
agator and the charges g% (¢) satisfy a system of Volterra integral equations
for t > s,

(1) v

Uo — 7;7) 1 ¢ q(l) (1)

q dT 2)(T Vi—o _\/:ﬂ d’r\/t-—'r=
= 4v/Ti / t dr(—qﬂf;—tly (2.8)
2 [t g oloc =77 a(r) ¢?
q(2)(t)+g/5 d'rq(l)(T)[r do U ”—'—_t——a_’) +4\/_/ dr )____tq_; m) _ =
:4\/%'/1t dT—(—[—I—O—(—T—————— y‘) (2.9)

We are interested in studying complete ionization of the system defined by
(2.3) and (2.6), starting by the normalized bound state (2.1) at time ¢ = 0.
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Moreover we require that a(t) is a real continuous periodic function with
period T, so that it can be decomposed in a Fourier series, for each ¢t € R,
and the series converges uniformly on every compact subset of the real line.
Then, in terms of Fourier coefficients of a(t), we assume

= Z an e Jan} € £(Z), ag >0
neZ (210)

E 3
2. ap=ar,

We recall the definition of the genericity condition (1.19): if 7 denotes the
right shift operator on £5(N), we say that @ = {a,} € £2(Z) is generic with
respect to 7, if & = {an }nso € £2(N) satisfies the following condition

(1,0,0,. \/ Tré (2.11)

n=0

By simple estimates on the sup norm of r;(t) = ¢ () e, it is easy to prove
that the charges ¢U)(¢) have at most an exponential behavior as ¢t — oo, i.e.
asymptotically g (¢)] < Ajebst.

Proposition 2.1 There exist A; > 0, j = 1,2, such that, Vb > by € R* and
VteRT, '
gV )] < Aze” (2.12)

Proof: Let us do the substitution ¢¥}(t) = r;(t)e" in equations (2.8) and
(2.9):

—b(t—T)

\/17r—z \/

b a(r) ro(T) et
rz(t)=—4m/0 ar 20 \/(t)TT

/ drra()D(t—7) + filt)  (2.13)

7'17’)

+[ (D -m)+ fa(t) (2.14)

where
D(t—-— _ \/—2Z/d Uo 7'7:‘)
Vi—o
and

fit) = a/mi e / “ar @_%zw
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It is easy to see that, for each b > 0, the functions f;(¢) are bounded for each
te R ie.
[ filloo = ci(b) < o0

at least for initial states in the dense subset given by the domain D(Hy))-
Moreover

sup |2 /’f G e _ |rilleo sup F e nlle
teR+ |V =T Jo VE—T - \/7? teR+ | JO \/-77 \/E

dm||aloo|ralloo

Vb

sup
teR+

t o aT)rg(T) e7tT)
47 d <
vai [ar AL <

and
sup < e(d)Irilleo
teR+

/O “dr ry(r)D(t —7)

where

c(b) = sup /t dr|D(7)|

teRT JO

is finite Vb > 0 and goes to 0 as b — oo.
Therefore, taking the norm || ||o of (2.13) and (2.14) and using the triangular
inequality, one has

Vvb—1
Vb

Ir1llos < c(®)lIrallos + 1(B)

[I72]]0o

lIr2lle0 < 7t c(b)lIrlleo + c2(b)
and
1 Ab)Vb c(b)cy (b)Vb
1o o= T imllee < S 4 0)
Now, since

blim c(b) = blim ci(b) =0

it is always possible to find a by > 1 such that the claim is true.

Therefore the Laplace transform of ¢ (t), denoted by
g (p) = / dt e7Ptgl) (t)
0
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exists analytic at least for %(p) > by. Hence, applying the Laplace transform
to equations (2.8) and (2.9), one has

D (p) = — )+ F 2.15

47 e~V
52 () = 5(2) iwk 5(1) - (2.16
q (p) —ip Z Qg (p + 2w ) + 271'7‘\/:—2—7?77]—) q (p) + F2(p) ( )

keZ

where the explicit expression of Fj(p) for the initial datum (2.1) is given by

2iV2m
1+

Fi(p)=—

Fylp) = 2021 eV — T
2P = v—=ip r(1+ip)
Let us start considering the system of equations (2.15) and (2.16), for the

specific initial datum (2.1): analyticity at least for for R(p) > by suggest
to choose the branch cut of the square root along the negative real line: if

p=ope?

VD=0 e (2.17)

with —7 < 9 < 7.

Before dealing with the behavior of the solution, let us simplify the problem:
setting ¢’ (p) = ) (p + iwn) we obtain a sequence of functions on the strip
IT={peC, 0< 3p) < w} and setting ¢;(p) = {q,(,j)(p)}nez, equations
(2.15) and (2.16) can be rewritten

q(p) = M1 q2(p) + Gi(p) (2.18)
g2(p) = L ga(p) + Ma q1(p) + Ga(p) (2.19)
where .

_ 1 e~ TVwn—ip
(Mig),(p) = - vor—w gn () (2.20)

1 g~ TVwn—ip
(M2 Q)n(p) = (277_)%7_47_‘_&0_1_ m Qn(p) (221)
(ﬁ Q>n(p) = _471'6‘(0 +Ai7/rl,7’fl,—-—_zp- % Q QTH-k(p) (222)

k0
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and G;(p) = {g%" (p)}nez with

2iv/2m
O = — 2.23
; —r/wn—ip __ ,—T
91(12) 21/ 21 e e (2.24)

() = - r (4drap + wn —ip)(1 — wn + ip)
2.3 Analyticity on the (open) right half plane

We are going to prove that the solution of equations (2.18) and (2.19) exists
and is analytic for R(p) > 0.
Let us start with some preliminary results:

Proposition 2.2 Forp € Z, R(p) > 0, M;(p) are analytic operator-valued
functions and M (p) are compact operators on 25(Z).

Proof: Let us consider only M, since the argument does apply to M,
too.
The analyticity of the operator is a straightforward consequence of the ex-
plicit expression (2.20). Moreover the operator M;(p) is a multiplication
operator in #5(Z) and it is bounded and compact since

(2m)sr 1 —wn—1ip

on the open right half plane: indeed the choice (2.17) for the branch cut of
the square root implies R(v/wn —ip) > 0, if R(p) > 0.

} € £(Z)

O0

Proposition 2.3 Forp € Z, R(p) > 0, L(p) is an analytic operator-valued
function and L(p) is a compact operator on £s(Z).

Proof: Analyticity and compactness follow from the explicit expression
(2.22) as in the proof of Proposition 1.4.

O

Lemma 2.1 For each r,w € RT and for R(p) > 0

o e-—2rm
S| /wn—1 <0
P+ (27)3r21 — Jwn —p

Vn € Z.
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Proof: First of all we want to stress that the choice (2.17) for the branch
cut implies that R(y/wn —4p) > 0 and I(v/wn —1p) < 0, if R(p) > 0.
Calling z = R(y/wn — ip), y = S(v/wn — 1p) and

1 e—2r(x+i1/)
(2m)3r2l—z— iy]

fr(z,y) =S [ﬂf + iy +
one has ,
1 e—2r(a:+zy) . 1
(2m)3r2 1 —x — iy < (2m)3r2|y|

and then f.(z,y) <0, if Jy| > —~5. Moreover
(2m)2r

_(2m)*r?[(1 - 2)® + y?]y + e 2" [y cos(2ry) — (1 — z) sin(2ry)]
o) = (1 - 2P +

and the claim is true if z > 1, since sin(2ry) < 0 and cos(2ry) > 0, for

1
y= (27!‘)%1"'

Hence it is sufficient to prove that f,.(z,y) < 0 on the set

R= {(m, ) €R? |z < 1,-1/[(2m)r] <y < o}

Now set NIV 2 2
oz, y) = (2m)°r?[( —xzj + 97 fo(z,y)

and consider

%9 _ 2(2m)3ry —2e2r® [r sin(2ry)

r(1 —z)cos(2ry) (1 — z)sin(2ry)
Ay i - }

Y 2y?
Since, for (z,y) € R,
2e~ ¥ sin(2r|y|) < 2(2m)3r%y|

and
2ry cos(2ry) < sin(2ry)

the partial derivative of g, with respect to y is always negative in R.
Thus
gr(z,y) > g-(,0) >0

In conclusion g,(z,y) > 0 and then f.(z,y) <0, ¥Y(z,y) € R.
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Proposition 2.4 The solution 9 (p), j = 1,2, of (2.15) and (2.16) exists
unique and analytic for R(p) > 0.

Proof: Since Gi(p) € £2(Z) is analytic on the right half plane and thanks
to Proposition 2.2, we can substitute (2.18) in (2.19) and consider only the
second equation. So that (2.19) now read

02(p) = [L£ + MaM;i] ga(p) + M3 Gi1(p) + Ga(p) (2.25)

Then the key point will be the application of the analytic Fredholm theorem
(Theorem VI.14 of [44]) to the operator L'(p) = L + MMy, in order to
prove that (I — £'(p))~! exists for R(p) > 0.
So let us begin with the analysis of the homogeneous equation associated to
(2.25),

a(p) = L'(p) q(p)
and suppose that there exists a nonzero solution Q(p) = {Qn(P)}nez- Mul-
tiplying both sides of the equation by @} and summing over n € Z, we
have

: | 1 e rvun—ip
Z wn = p (2m)3r2 1 — yJwn —tp

neZ

} lin2 = —4m Z Q: Qg Qk

n,kEZ

but, since the right hand side is real, because of condition 2 in (2.10), it
follows that '

o : 1 e-—-2’r\/m:i—]5 ) 0
S Z win —1p + (2m)%r2 1 — \Jwn —1p S

nez

and then, by Lemma 2.1, @, = 0, Vn € Z.

Since there is no nonzero solution of the homogeneous equation associated to
(2.25) and £ is compact on the whole open right half plane, analytic Fred-
holm theorem applies and the result then easily follows, because M1,G1(p) +
Gs(p) € £y(Z) and, for each n € Z, [M2Gi(p) + G2(p)], is analytic for
R(p) > 0.

O

2.4 Behavior on the imaginary axis at p # 0

The equation for go(p) can be written

(4mao + ca(0)) ¢P ) = —47Y_ongZ(0) + £ (p) (2.26)
kEZ
k0
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where

o~ 2r/Em=ip

cn(p) = \/wn —ip + (= Vo =) (2.27)

9 . 2?:\/ 27 (271')2 -1 _rm __-r ‘
fé)(p)=—r(1_wn+z,p) o)l e ] (2.28)

and it is clear that the solution may have a pole where

=T
dmog + /wn — ip + =0

(27)3r2(1 — \/wn —ip)

and that the coefficients of the equation for g @) fail to be analytlc at p =1
for p € Z, R(p) = 0, and n € Z, the unique solution of 1 — \/wn — ip = 0 is
p=1i,n=0.

In the following we shall see that in fact the solution is analytic on the
imaginary axis except at most some singularities at p = O Let us start
considering the position of the eventual pole:

Lemma 2.2 There ezists a unique i € N and a unique p € I, R(p) = 0,

such that
e—2r\/u7ﬁ—:z?
Aoy + v/ wh — 1D+ - =0

(2m)3r2(1 — \/wh — ip)
Moreover Vn € Z, n < 0 and Vp € Z, R(p) = 0,
8—27'\/:312-—_2';1
(2m)3r2(1 — Jwn — zp)}

Proof: Let us first consider the second statement: on the strip Z and for
n <0, ywn —ip =X, with A € R, A > 0. Hence

>0

S4rag + /wn — ip +

ol vy P2 (1 4+ A%)X 4+ Acos(2r)) — sin(27))
Senl@) = @rPr(l+ 22)

and following the proof of Lemma 2.1, it can be easily proved that the ex-
pression above is positive VA € R*. On the other hand, if n > 0 and p € Z,
R(p) =0, ywn —ip = A, with A > 0, and, Vr,w € R*, the equation

2m)r*(dmag + A (A — 1) = e~2
has a unique solution for A € R*. Then, since there exists a unique 7 € Z,

R(p) = 0, such that, for fixed A € R*, the equation p = i(\? —w) is satisfied
for some 7 € N, the proof is complete.
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O0

Lemma 2.3 If{a,} satisfies (2.10) and the genericity condition with respect
to T (2.11), the solution of (2.15) and (2.16) is unique and analytic on the

imaginary azis for p # 0,4, P.

Proof: Since for p € Z, R(p) = 0, and p # 0,4,p, the coefficient of
equation (2.18) and (2.19) are analytic (see Lemma 2.2) and belong to £»(Z)
and since the operators £, M; and M, are still compact on the same region,
it is sufficient to show that the homogeneous equation associated to (2.26)
has no non zero solution, in order to apply analytic Fredholm theorem.

If Q. is such a non zero solution, following the proof of Proposition 2.4, we
immediately obtain the condition

e 1 e~ 2rVen=ip 2 R
Z wi =P+ (2m)3r2 1 — Jwn —ip @al" €

neZ

and then Lemma 2.2 guarantees that @, = 0, Vn < 0. Now suppose that
there exists ng € N, such that Qn, # 0. For n < ng, onehas } 72 ap_nQr =
0 or, setting k =ng— 1+ k', for n > 0,

o0
_S_ CWc'+nQ'n,o-—1+l<:’ =0

k'=1

and then, for each n > 0,

(Q, ,T”a) £5(N) =0

where @), = Q} _1,, and (-, -) stands for the standard scalar product on
£5(N). Finally the genericity condition (2.11) implies that @} = @5, = 0 and
then @, =0, Vn € Z.

O

Proposition 2.5 If {a,} satisfies (2.10) and the genericity condition with
respect to T (2.11), the solution of (2.15) and (2.16) is unique and analytic
on the imaginary axis except at most at p = 0.

Proof: In the first part of the proof we are going to consider only the
equation (2.26) for go(p) and we shall extend then the results to g;(p).
In order to prove analyticity of the solution we need to analyze the behavior
of the solution of (2.26) in a neighborhood of p = j (see Lemma 2.2) and p =4
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separately and show that it has no singularity, while, for p € Z, R(p) = 0,
and p # 1, p the proof of Proposition 2.4 still applies (see Lemma 2.3).
Let us look for a solution of (2.26) of the form (for simplicity we are going
to omit the index 2)

Gn = Up + Ungp

for n # n: gy satisfies (2.26) if and only if {u,} € £o(Z\ {#}) and {v,} €
25(Z \ {n}) are solutions of

Cn(p) Up = —4772ak—nuk + f'rg,z) (p) (229)
keZ
k#7

cn(p) vy = —47rZak_nfuk — 4oy (2.30)

keZ

kR
Existence of non-zero solutions of the homogeneous equations associated to
(2.29) and (2.30) can be excluded because of the genericity condition as in
the proof of Lemma 2.3 and then, since the coefficients of the equations above
are analytic in a neighborhood of p and belong to £2(Z \ {7}), {un}, {va} €
£5(Z \ {n}) are analytic in the same neighborhood.
Moreover g¢; satisfies the equation

{477040 +ca(p) + 47rZak_ﬁvk}qﬁ = “4W2ak_ﬁuk + ff(LZ) (p)
k€eZ kEZ
ki k#n

It is then sufficient to show that

> onvr(B) # 0

keZ
kR

Let us suppose that the contrary is true: calling V, = v,(p), multiplying
equation (2.30) at p = p by V¥ and summing over n € Z, n # 7, one has

Z e—2r\/wn——iﬁ IV l2 4 Z V v

wn —p + = = —47 *op—n Vi
nez (2m)*r2(1 = vn —dp) [ " n,k€Z S
nF#EN n,k#7

Using condition (2.10) and the genericity condition (2.11), as in the proof of
Lemma 2.3, one obtain V,, = 0, Vn € Z \ {fi}, but this is impossible since V,,
satisfies equation (2.30).

This concludes the proof of analyticity of go(p) in a neighborhood of p = p.

43



In the same way it is possible to conclude that go(p) is also analytic at p = 1.

It remains to study the behavior of ¢;(p) and in particular to analyze qc(,l) (p)
in a neighborhood of p = 4, where it may have a pole (see equation (2.18)):
from (2.26) we have

e—2rvun+1 @ ___.27:\/ 2 (27‘(‘)% -1 _, wn+1 -
~oya (1) = 7 ° °
(2m)3r T (2m)2

and then ¢{P (s) = iv/2r.

2.5 Behavior at p =0

We shall now study the behavior of the solution of (2.18) and (2.19) on the
imaginary axis at the origin. With the choice (2.17) for the branch cut of the
square root, it is clear that we must expect branch points of 5 (p), solutions
of (2.15) and (2.16), at p = iwn, n € Z, which should imply a branch point
at p = 0 for each q,(zj).

We are going to show that the solutions of (2.18) and (2.19) have a branch
point singularity at the origin.

Proposition 2.6
If {ay} satisfies (2.10) and (2.11) (genericity condition), the solution of the
system (2.15), (2.16) has the form §9(p) = c;(p) + d;(p)\/D, § = 1,2, in
an imaginary neighborhood of p = 0, where the functions c;(p) and d;(p) are
analytic at p = 0.

Proof: The resonant case, namely if, for some N € N, w =1 /N, and the
non-resonant one will be treated separately.
1) Non-resonant case

Setting g, = Un+vngo, n # 01in (2.26), one obtains the following equations

for {un}, {vn} € £2(Z\ {0}),

cn(D) tn = =47y _o_nti + g2 (p) (2.31)
keZ
k0

en(p) vp = —4w2ak_n'vk —dra_, (2.32)
kEZ
k70
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If, for every n € Z, ¢,(0) #* —4mway, using the genericity condition, it is easy
to prove that {u,}, {vn} € €2(Z\ {0}) are unique and analytic at p = 0. On
the other hand if the condition above is not satisfied and there exists N; € Z
such that
6—27*\/&;7\7'1

(2m)3r2(1 — VwlN;)
one can repeat the trick, setting for example v, = u] + v/ vy, for n # Ny,
and prove that in fact {u,} and {v,} are still analytic in a neighborhood of
p=0.

Thus it is sufficient to prove that qg, which is solution of

{47rao + co(p) + 47 Zakvk} qo(p) = —4n Zakuk + fi (52) (p)

kEZ keZ
k20 k0

0

dmag + v/ wNy +

has the required behavior near p = 0. First, setting v2 = v,(p = 0), we have

to prove that
1

0
E o, F —0p — T
port 47 (27)3r
k#0

but, assuming that the contrary is true and multiplying both sides of equation
(2.32), with . = 0, by 2" and summing over n € Z, n # 0, one has

Z\/L—uﬁ 091 = —4m > oY op v + dmon + (2—7;1)3—7"-2-

neL n,kEZ

n#0 n,k#0
The right hand side is still real so that, assuming that the genericity condition
is satisfied by {a,} and applying the argument contained in the proof of
Proposition 2.5, we immediately obtain {v2} = 0, which is a contradiction,
since {v2} solves (2.32).
The result for §® follows then directly from the equation for gq, since e~ 2"V~
has a branch cut along the negative real line. The extension to ¢ is thus
trivial.
2) Resonant case

As before let us look for a solution of (2.26) of the form g, = u, + vnqo ,

n # 0, so that {u,}, {vn,} € £2(Z\ {0}) solve (2.31) and (2.32) with w = 1/N.
Multiplying both sides of (2.31) and (2.32) for n = N by 1 —n/N — ip, one
sees that uy and vy have no pole singularity at p = 0. On the other, if there
exists N7 € Z such that

A \/—]ﬁ 6—2T\/N1/N 0
oy + A\ =7 T =
° N 7 (2n)3r2(1 — /N /IV)
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the solutions could have a pole at p = 0, for n = N; (the expression above
guarantees that N; s N). Nevertheless, repeating the above procedure for
n = Ny, it is easily seen that in fact {u,}, {v,} € £2(Z\{0}) are both analytic
in a neighborhood of p = 0.

The behavior of ¢ near p = 0 is then proved like in the non-resonant case,
but we have now to take care about ¢(), since the coefficient in M; (see the
definition (2.20)) has a pole at p = 0 for n = N. But from (2.26) one has

(2m)ér2 ™" r(l++/n/N) L (2m)2

so that q](\})(O) = i/ 2.

2.6 Complete ionization in the generic case

Summing up the results about the behavior of the Laplace transforms @ (p),
j =1,2, we can state the following

Theorem 2.1 If {a,} satisfies (2.10) and the genericity condition (2.11)
with respect to T, as t — o0,

4P ()] < A t7% + By(1) (2.33)
where A; € R and R;(t) has an ezponential decay, R;(t) ~ C;e~Pit for some

Bj > 0.
Moreover the system shows asymptotic complete ionization and, as t — 0o,

6] = |(vaw  ¥:)| < D7E + B(t)

where D € R and E(t) has an ezponential decay.

Proof: Propositions 2.4, 2.5 and 2.6 guarantee that §(p) is analytic on the
closed right half plane, except branch point singularities on the imaginary
axis at p = iwn, n € Z. Therefore we can chose a integration path for the
inverse of Laplace transform of §(q) along the imaginary axis like in [12] and
the result is a straightforward consequence of the behavior of q(j)(p) around
the branch points given by Proposition 2.6 (see e.g. the proof of Theorem
1.1 in Chapter 1).
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The Laplace transform of 6(t) can be expressed in the following way (see e.g.
Proposition 1.2 and Corollary 1.1)

8(p) = Z(p) + Z1(p) §V (p) + Za(p) T (p)

where Z(p) is analytic on the closed right half plane a,nd~Zj (p) has only a
branch point at the origin of the form a; + b;,/p. Hence 6(p) has the same
singularities as §(p) and then its asymptotic behavior coincides with that of

q(?).
0

In the following we shall prove a stronger result about complete ionization
of the system, namely that every state ¥ € L%(R?®) is a scattering state for
the operator Hy), i.e.

i
tgrgo% i dr |F(12| < R)U(r,0)¥|* = 0 (2.34)
where F(S) is the multiplication operator by the characteristic function of
the set S C R® and U(¢, s) the unitary two-parameters family associated to
Hyp (see (2.6)). ,

In order to prove (2.34), we first need to study the evolution of a generic
initial datum in a suitable dense subset of L?(R3) and then we shall extend
the result to every state using the unitarity of the evolution defined by (2.6)
(see e.g. [18]).

Proposition 2.7 Let ¥ € CP(R3 \ {0,7}) a smooth function with compact
support away from 0,7 and g9 (t) be the solutions of equations (2.8) and (2.9)
with initial condition o = V. If {a,} satisfies (2.10) and the genericity
condition (2.11) with respect to T, as t — oo,

dD(8)] < A; 73 + R, () (2.35)

where A; € R and R;(t) has an ezponential decay, R;(t) ~ Cje~Pit for some
Bj > 0.

Proof: The estimate on the behavior for large time contained in Section
2.2 still applies, so that §¥)(p) is analytic Vp with R(p) > bq.
Hence we can consider the Laplace transforms of equations (2.8) and (2.9),
which have the form (2.18) and (2.19) with

2 [ = oa o
Gi(p) = \/;./o dte P . Bk U(k) e **
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where U(k) is the Fourier transform of W.

Since for every smooth function ¥ with compact support, @(E) is a smooth
function with an exponential decay as k — oo, so that G;(p) has the same
singularities as in the case already studied, i.e. a branch point singularity at
the origin of the form a(p) + b(p)/p

a

Theorem 2.2 If {an} satisfies (2.10) and the genericity condition (2.11)
with respect to T, every ¥ € L*(R®) is a scattering state of Ha, i.€.

1 i
lim —/ dr ||F(|Z| < R)U(r,0)¥|* =0
t—oo T 0
Moreover the discrete spectrum of the Floquet operator associated to Hy),

0
= '—’L—a'z -+ Ha(t)

1S empty.

Proof: The proof follows from unitarity of the evolution and the explicit
expression (2.7), together with Proposition 2.7 (see the proof of Theorem
1.2). The absence of eigenvalues of the Floquet operator is a straightforward
consequence: every eigenvector of K differs from a periodic function by a
phase factor and hence can not satisfy (2.34).

a0

Remark: All the results about asymptotic complete ionization still hold for
oy < 0. The proof can be given in the same way but it is slightly more
complicated, because 4mag + ¢, (p) in Lemma 4.1 could vanish in two points
instead of one. Nevertheless the argument contained in Proposition 4.1 can
applied once more, in order to exclude the presence of the corresponding
singularity of the solution.

48







Part I1

Rotating Singular Interactions
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Chapter 1

Rotating Point Interactions

1.1 Introduction

In this Chapter we consider a simple kind of moving point interactions,
namely zero-range perturbations of the Laplacian supported on a uniformly
rotating point in three and two dimensions.

We first give an heuristic definition of the models in terms of “pseudo-
potentials” and then we classify the Hamiltonians of such systems (Sections
1.2.2 and 1.3.1) as a family of suitable self-adjoint extensions of some sym-
metric operator: studying the system in a uniformly rotating frame we elim-
inate the time-dependence of the Schridinger operator and, by means of
the Krein’s theory, we show the explicit expression of its self-adjoint exten-
sions (Theorems 1.2 and 1.6). As a straightforward consequence, the integral
kernel of the resolvent and the spectrum of such self-adjoint extensions is
obtained (Theorem 1.1, 1.5, 1.3, 1.7).

In Sections 1.2.3 and 1.3.2 we study the asymptotic limit of large angular
velocity and we prove, in both the three dimensional and the two dimen-
sional case, that the unitary family describing the time evolution converge in
strong sense to some one-parameter unitary group (Theorems 1.4 and 1.8).
The generator of such group is proved to be a time-independent self-adjoint
operator given by a zero-range perturbation of the Laplacian supported on
a circle.
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1.2 Rotating Point Interactions in Three Di-
mensions

1.2.1 The Hamiltonian

The system we consider is defined by a formal time-dependent Schrodinger
operator on L%(R™), n = 2,3, of the form

H(t)= Hy+ Vi = —A+7, | (1.1)
with a uniformly rotating potential
Vi(Z) = V(RT'(t) 2) (1.2)
where V is the formal zero-range perturbation
V() = a 6Oz ~ ) (1.3)
and R(t) a rotation on the z,y—plane with period 27 /w:

cos(wt) —sin(wt) 0
R(t) = | sin(wt) cos(wt) 0
0 1

Our purpose is to define in a rigorous way the time-dependent Hamiltonians
(1.1) when the potential has the singular behavior (1.3).
Following the discussion contained in the Introduction and using the relation

Usners (t, 8) = R(t) Uros(t — 8) RT(s) (1.4)

where R(t)U(Z) = U(R(¢)™' I), it is clear that the generator of unitary
time evolution Uset(t — s) in the rotating frame is given by the formal time-
independent operator

K = Hy— wJ +a6®(F — §io)

i.e., at least formally, ,
Urot(t - 3) = e_zK(t—S) (15)

Therefore the Hamiltonian of the system (in the rotating frame) is a self-
adjoint extension of the operator

Kyo = Hw
D(Ky,) = C&°(R* — {#i})
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The operator Ky, is symmetric and then closable; let K, be its closure, with
domain D(Ky,).
The function

0.5 = [ EY S ot @ em@®  06)

=0 m=~I]
for 7 € R® — {fp} and z € C — R, is the unique solution of
K (%) = 2T,(Z)

with ¥ € D(K;O) (see Proposition B.1).
The operator Ky, has then deficiency indexes (1, 1) and its self-adjoint exten-
sions are given by the one-parameter family of operators K, ,,, a € [0, 27):

D(Kago) = {f +cGs + ce"“g- |9 € D(Ky,),c € C} (1.7)
Koo (f + cGy +ce®G_) = Ky g + icGy — ice®G_ (1.8)
where , A
e P 1
gi(fli)ﬁ: G+i(Z, %0) = /o dk ; El m i (T0) Prim (%)

for ¥ € RB {go}
Moreover the self-adjoint extension Kr,, corresponds to the “free” Hamilto-
nian H,: indeed, if ¥ € D( Koo,

U=Ff+c(Gr—G-)

and the difference G, — G_ is a continuous function at & = ¢, which belongs
to the domain of H,, so that K, ,, becomes exactly the operator H,,.

Using this result and applying the Krein’s theory of self-adjoint extensions,
it is easy to obtain the following

Theorem 1.1 The resolvent of Ko, has integral kernel given by

(Kago = 2)7H(Z, &) = G.(Z, &) + Mz, 0)G2(F, §0)G:(Z, 7o) (1.9)
with z € 0(Kay,), T,T €R3, T4 T, T, # §p and
1 1 -
o) = oy (¢ +0(0:(),6-@) (1.10)
A—i, @) = 22];&'3“;”2 (1.11)

54




Proof: Since Kyo is a densely defined, closed, symmetric operator with
deficiency indexes (1,1), we can apply Krein’s theory (cfr. [3, 43]) to classify
all its self-adjoint extensions: from Krein’s formula we immediately obtain

(Koo — z)—l - (K'/r,yo - z)“l =Xz, ) (95(5)7 )g»Z(f)

for 2 € o(Kay,) N o(Hy). It follows that (Kay, — 2z)”" has integral kernel
given by

(Kage = 2)7HET) = (Ho — 2) U, T) + Mz, @) G5 (&', 50)9:(F, o)
Moreover A(z, «) satisfies the following equation

11
Mz, @) M2, a)

(2 — 2)(G2(E), G (%))

The explicit expression of the factor A(—i, @) is given in the following Theo-
rem.

O

Theorem 1.2 The domain D(Kay,), @ € [0,27), consists of all elements
U € R® which can be decomposed in the following way

U(Z) = ,(Z) + Mz, @)@ (30)F:(Z, o)
for & # Go, ®, € D(H,) and z € o(Kay,). The previous decomposition is
unique and on every VU of this form

(Koo — 2)¥ = (H, — 2)®,

Proof: First of all we observe that functions belonging to D(H,,) are
Holder continuous with exponent smaller than 1/2 in every compact sub-
set of R3. Indeed the domain of self-adjointness of H,, contains functions
in H2 (R®): on every compact set S C R3, the domain® of H§ is strictly
contained on the domain of JS, since J is a bounded operator on D(Hj) =
H2(S), therefore D(H5) = D(H5) = H*(S). Hence it makes sense to write
®(f,) for every ® € D(H,) and g, € R®.

Moreover

D(Kay,) = (Kago — Z)ﬁl(Hw - Z)D(Hw)

1The notation AS denotes the restriction of the operator A to the Hilbert space L2(3).
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and the claim follows from the expression of the resolvent given in the pre-
vious Theorem 1.6.
To prove the uniqueness of the decomposition let ¥ = 0, so that

1+e’LO¢
2G- @]

but ®,(Z) must be continuous at Z = §,: it follows that ® (yo) = 0 and then
®,=0
Finally the last equality of the Theorem easily follows from

(Kﬂf,yo - Z)‘I(Hw - Z)q)z = q)z + )\(Z, CM) (gi(f), (Hw - Z)q)z(f))gz =W

®,(%) = — s —7m5 2 (0) G- (T)

To find the explicit expression of A\(—i, @) it is sufficient to study the behavior
of functions in D(Kyy,) at fo. Let U(Z) € D(Kay,),

U(Z) = f(Z) + G+ (Z) + ce™G_(2)
with f € D(H,,) and c € C.

Since
( 2 . o o
()= / dkzomzz [ —mw +1i +.|k2 — mw — 4|2 Piim 00) goklm;(m) B
where

g(x yO / dkz Z Ikz __ ZIQ QDZlm(gO) (pklm(f)

=0 m=-~I
belongs to D(H,,), Vi, € R3, we obtain
U(Z) = £(Z) + 2ic g(&, 5o) + (1 +€*)G_(Z)
and

im [\11(:2’) — o1+ em)g_(f)] = 2ic]|G_(2)||2

Z—o

Thus ¥ can be uniquely decomposed in
U(Z) = B(Z) + M—1, ) (7o) G- (Z)
with ® € D(H,) and boundary condition

Jim | 9(@) - A(~i, 0)0([)0-(2)]| = 2(5)
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Comparing the two boundary conditions we obtain
O(§o) = 2ic||G-(D)|2-

c(1+ ') = A(~i, a)2(%)

and then .
c= ® (%)
24| G- (Z)2:
1+ et@
A ""i, Q) = ="
=59 = Sl @I
O
Theorem 1.3 The spectrum o (K, ,,) is purely absolutely continuous and
0(Kayo) = Oac(Kay,) = 0(Hu) =R (1.12)

Proof: Considering the explicit expression of the resolvent given in The-

orem 1.1, we immediately see that ¢(Ka,y,) = o(H,) = R: indeed, since
(Kayo—2) "t = (H,—2z)" is of rank 1 for each z € R and « € [0, 2), Weyl's
Theorem (see for example Theorem XIII.14 in [44]) implies Oess(Koy) =
0, ess(Hw)~ A ‘ :
In order to prove absence of pure point and singular spectrum, we are going
to apply the limiting absorption principle (see Theorem XIIL.19 in [44]): to
this purpose we need to prove that the following inequality is satisfied for
every interval [a,b] C R,

o, [ [9[(0 (o= =9 9] <20

with ¥ in a dense subset of L?(R?) and p > 1.
Since the operator H, has no singular spectrum, the inequality is easily
satisfied if & = 7. So, let o # 7, from Theorem 1.1 one has

(v, (Koo —3- ie) ') = (¥, (Hy—=- i) "0)+

+ Mo, z + i€) (ga:—ie: ‘I’> (‘I’, gm-l—ie)

and again the inequality holds for the first term. It is very easy to see that
the second term is a bounded function of z if € > 0, so that we have only to
control the limit when € — 0. Since the singular spectrum of H,, is empty,
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we can choose the dense subset of L?(R®) given by functions of the form
(H, — z)p where ¢ € D(H,):

<gz—ie ) ‘I’> (‘I’ ) g:c+is) = [(Hw —T— iE)_l(Hw - 93) 90] (7o) -

. [(Hw —z— z's)_l(Hw - x)go*] () — |g0(yj’0)|2 < 00
since functions in D(H,) are continuous and because
[(Hw —z —ig) - (H, — ) (p] (7o) = @(@o) + is[(Hw — T — ig) —190] (%o)
and .
lim e (H, — o — ie) "] (@0)| < lme || Gae] lloll = 0

Indeed from Proposition B.1 we can easily extract the following upper bound

for ||Goic||, .
“ga:—'is“ S =

NG

Finally from equation (1.10) it follows that
| Mo,z + i) — 0
e—0

Since the previous argument applies for each interval [a, b] C R, the proof is
completed.

1.2.2 Asymptotic Limit of Rapid Rotation

Let Urot(t — s) be the unitary group generated by K, ,, for some « € [0, 27),
i.e.

Unert(t, 8) = R(t) Uros(t — 8) RI(s)
In the following, we are going to prove that

5= lim Usere(t, 8) = e F0(=)
w—Cco

where H,, ¢ is an appropriate self-adjoint extension of Hg, a singular pertur-
bation of the Laplacian supported over a circle of radius %, in the x, y—plane?.

%See (1.18)-(120) in the Introduction for the definition of singular interactions sup-
ported on set with lower codimension.
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Let C the curve 7(¢) = (yo, 5, ¢), ¢ € [0,27], and H¢ the closure of the op-

erator
He = Hy

D(He) = C5°(R* - C)

we first classify the self-adjoint extensions of He:

Proposition 1.1 The self-adjoint extensions of the operator Hg, that are
invariant under rotations around the z—azxis, are given by the one-parameter
family H, ¢, v € R, with domain

D(H, ) = {¥ € L*(R®) | I¢&y € D(T1c(2)), ¥ — G.&y € HA(R?),

(T — G.t)|, = Tyol2)éu} (1.13)
(Hye— 2)¥ = (Ho — 2) (¥ — G,&w) (1.14)
where z € C, &(z) > 0,

D(Ty0(2)) = {€ € L*([0,27]) | Ty, 0(2)mém € I°} (1.15)

=.__]_-__.. o —imge
b= = /0 dpE(d)e

2 eVzl7(8)-7(e")
Co@8)@) =160) - | ad ¢) @) )

Lyoln=r=2n [ @63 gloum@l (17

I=|m|

[T VAT
(6.6)@) = /0 4

47r|Z

and

Proof: See [51, 52]. The formula for I', (), is obtained expressing the
free resolvent in terms of spherical waves.

O

Proposition 1.2 For every U € L*(R?), z € o(H,¢), S(2) > 0 and g =

(0,0, 0), 1 1
(ch —2)7U(&) = (Ho—2) ¥(Z)+

+Zr

m=-—-o0

— m* (=4 = —i
C z)m yD) (Gz (SU 7y0) 7\11(3" ))LZ(IR3)
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where

G7 (%, o) / dk Z k2 ~ Phim (%o) Prim (%)

I=|m]
Proof: The expression for the resolvent of H., ¢ for a generic curve C is
given in [51, 52]:
-1 s -1 - = -1 -1
(Hyo — 2) 7 0(E) = (Hy— 2) " 0(2) + G, {I‘%c(z) ((Ho —2) \11> u

Since I'y,c(2) is diagonal in the basis en(¢) = —5-€™? of L*([0,2n], dg),

o0

Ce@8)@) = 3 5o

m=—oo = 1

Em em(9)

and therefore

where

[(momaro)|] =iz [(asee [ 2w [Tary s S

=0 m/=

e Gl (&) rame(§(8)) V() = V/Fm ™ / &7 G, o) U(T)

Finally

T 00 l
(G: em)(2) = / 2 = dk Z Z 1 Crime (T(8)) Prm (F) €™ =
0 \/% 1=0 m'=—1 K2~z

O

Corollary 1.1 If ¥(Z) € L*(R®), U(Z) = x(r)Y7°(0,¢) and z € o(H, ),
X(z) > 0,

((r,c=270)@ = [ are gt xtr) ¥7o0.0) +
6

0




27 Y (m/2,0)
Pa (Z)mO

G™(3, )/ dr'r” g1 (yo, ()

where

go(r,r’) = / dk ]lo(kr)jlo(kr = (Ho — 2) “1|’H;"° (r,7")
0

and H;° is the subspace of L2(R3) spanned by x(r)Y;7° (0, ¢).
Proof: The result follows from a straightforward calculation: indeed, if

W(E) = X(r)Y]°(0,9),
(67@, 30, 9(@)) = B Y7 (r/2,0) [ '™ g (un,1x(r)

and

(-2 0)@ = [~ sblrnts) Y70(0.0

Now we can state the main result:

Theorem 1.4 For everyt,s € R,
s— lm Upers(t, 8) = e~ Hno(t=9)
w—0o0o

where v(®,yo) € R and

1 12
’Y(Oé, yO - 27‘-/ de[ 1+61a>lk2+zl2 +Z:l '(pklO(yO)I

Proof: First we observe that (see Lemma 1.1 below)

0 0
s— lim dt e ¥t UL o (£, 0) = ( i(Hy o — z)‘l — / dt =17t giHy,ot

[
w00 00 -0

and, since the previous equality holds for every z € C, §(z) > 0, we obtain

s— hm Ut . (t,0) = et

and therefore _
s— lim Uipers(t,0) = e "ot
w—00

The result then follows from the property of the 2-parameters unitary group
Uvinert (ta 5):

s— lim Uipers(t, 8) = s— Hm | Uiners (t, 0) Upiors (s, 0) | = e HHmo(t=9)

W00 W—00
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O

The explicit expression of the parameter v(«, yo) is given in the following
Lemma 1.1.

Lemma 1.1 For every z € C, $(z) > 0,

0
s— lim dt €7 Up oy (2,0) = —i(Hy o — 2)

—
w—oo J_ o

-1

Proof: We shall verify the equality on the dense subset of L2(R?) given

by functions of the form ¥(Z) = x(r)Y"°(6, ¢), with lp =0, ... 0o and mg =
—lo, - -+, lo,

U ert (8 0)U(Z) = eEon B* (1) U(F) = el Kamotmowlty ()

inert

Therefore
0

0
/ it €7 U (1, 0)U(F) = / df &7 e TN (F) =

—00

0
/ dt e~ im0t et (F) = —i(K 0 + mow — z) ()
—00
Hence we have now to prove that

lim (Ko, +mow — 2) "~ () = (Hyo — z)_l\I/(f)

Ww—o0

First of all we observe that, for each z € C, $(2) > 0, mg € Z and ¢, =

(O) Yo, O)’
im0 G o (7, G0) = GT°(Z, )

in the norm topology of L?(R3): indeed, since
gz—mow (f, ?70) - G;Tbo (fa g()) + RTO (57 50)
with

e = [T Y o = P 9un (@)

0 1=0 m———l
m#mg

it is sufficient to prove that

lim ||[R7°(Z, 50)]| y2 gay = O

Ww—00
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but

“R;”O(f,ﬂo)”iz(w) / dkzzlkz (= m) Zl2|90klm(’yo)|

=0 m=—
m#mo

and the right hand side is bounded for each w € R (see Proposition B.1), so
that we can exchange the limit with the integration

u}}-{%o dkz }: k2 — (m — mo)w — Z|2i%lm(%)|2=

=0 m=-—I
mz#mg

S S b b g =

e — (m — mo)w — z|?

m#mg

Now, since (see Theorem 1.1)

(e 0w = 2) 0] () = (G2, 2(@))

L2 (}R.3)

(2 = mow, ) (Goma(F,50), UE)) |, Grmmo(E,G0)

L2(R3)
and

Jim (G2 (8, 2), v(@)) = emE (G (3,7), V(@) | =

L2(R3) L2(R3)

_ / dr'r gl (yo, 1') x (') Yi™(m/2,7/2)
0

w—00

1, (om0, UE)) , = €™ (G0 (@0, 9(3))

L}}_{EO gz-—-mow(fa gO) = eimO%GTO (fa _'0)

L2(R3) L2(R3)

we obtain
lim (Ka vo + Mow — z / dr'r’® go(r,m)x(r") Y0, ¢) +

+ B(z, o) GT°(Z, %o) / dr'r’® g5 (yo, ™)x(r') = (Hyo — 2) " U(Z)
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with3
B(z,a) = lim Az — myw, @)
and
F’ch(z)mﬂ — ]‘
2 B(z, a)
It remains to find the explicit expression of y(e, yo): using the relation (see
Theorem 1.1)

1 1
Mz —mow,a)  A(—i,a)

— (2 — mow + 1) (Q-mowz(f): g-(f)>

we obtain
1 I
—— = lim
Blza) v

1+eza/ Z k2 + |2|€0klo yo)l +/ dkzkz ICszo Z/o)l +
"/ dk Z k2 ISDkzmo yo)l

l=|my|

[X(‘}f&i = (2 = mow + ) (Gmows(2), G- (:z:'))] -

and hence the result. We want to stress that, as it was expected, v € R:

' 2 1 1 2
*‘{(1+e"a)lk2+il2 i k2+z‘} |k2+il2{“[1+emJ }

1 {%[27:+2z'e-m] _ 1} _ o

=|k2+z’]2 2+ 2cosa

O

1.3 Rotating Point Interactions in Two Di-
mensions

1.3.1 The Hamiltonian

As in the previous Section, the formal time-dependent Hamiltonian we con-
sider is given by
H(t) = Hy+a 6@ (z - §(t)) (1.18)

3Actually ) is a function separately of z — mow and w, since the Green’s function G_ (Z)
depends on w.
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where (t) = R(¢)Jo. Hence the corresponding formal generator in the uni-
formly rotating frame is

K =Hy— wJ+a(5(2)( — 7o)

The Hamiltonian of the system is then a self-adjoint extension of the sym-
metric operator
K, =H,

D(Ky,) = C5°(R* = {})

According to the discussion of Section 2, such self-adjoint extensions are
given by the one-parameter family of operators

D(Kay,) = {f +cGs + ce®G_|g € D(Kyo)> ceC} (1.19)

Koo (f + Gy + ceG) = Kyog +icGy — iceG_ (1.20)
with a € [0, 27) and where

G+(Z) = Gui(Z, Jo)

6.5 = [ @Y g k@ en@ (120

n=-—0o0

for 7 € R2 — {go}
As in the 3D case, the self-adjoint extension Kry, corresponds to the “free”
Hamiltonian H,, and

Theorem 1.5 The resolvent of Kqy, has integral kernel given by

(Kago — 2)7H& &) = G:(Z,7) + Mz, 2) G5 (T, 0) 9= %) (1.22)

with 2 € o(Kay,), T,% €R2, E+ &, 2,7 # fo and

1 1

e - i~ F0G:2),0-(3) (1.23)

1+ ei®
2i||G-(Z)|]?
Proof: See the Proof of Theorem 1.1 and Proposition B.2.

A—i, @) = (1.24)
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Theorem 1.6 The domain D(Ka,,), o € [0,27), consists of all elements
¥ € R3 which can be decomposed in the following way

U(Z) = ©.(Z) + Az, ) @:(%0)9=(Z, o)

for T # o, ®, € D(H,) and z € 9(Kay,). The previous decomposition is
unique and on every U of this form we obtain

(Kayo —2)V = (H, — 2)2,
Proof: See the Proof of Theorem 1.2.
O
Theorem 1.7 The spectrum o(Kq,y,) 15 purely absolutely continuous and
0(Kags) = Tuc(Kags) = 0(Ha) = R (1.25)

Proof: See the Proof of Theorem 1.3, Theorem 1.1 and Proposition B.2.
O

1.3.2 Asymptotic Limit of Rapid Rotation
As in the 3D case, we are going to prove that
—iH., ¢ (t—s)

s— lim Uiper(t,8) =€
W00

where H., ¢ is an appropriate self adjoint extension of H¢, a singular pertur-
bation of the Laplacian supported over a circle of radius yo: let C' the curve
7(0) = (v0,6), 0 € [0,27], and H¢ the closure of the operator

He = Hy
D(He) = CP(R* - C)

Proposition 1.3 The self-adjoint extensions of the operator Hg, that are
invariant under rotations around the z—azis, are given by the one-parameter
family of operators H, ¢, v € R, with domain

D(H, o) = {¥ € L*(R?) | 3¢y € D(Ty0(2)), ¥ — G&y € HA(R?),
(¥ - G.t)|, =Thol2)ta} (1.26)
(Hyo—2)¥ = (Ho— 2) (¥ — G.&v) (1.27)
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where z € C, ¥(z) > 0,
D(T, c(z)) = {¢ € L*([0, 27]) | Ty.0(2)nén € I”} (1.28)

—inf __
&n = Vor / i £(0)e (e"’ 6‘1’) L2([0,2],d8)

2m eiV2I7(0)—7(0)]|
o) =2 | d9/47T|?7( —€®)  (129)

1
Lpole)a = - = 2 /0 e (1.30)

[ EEg)
(sz)($)=/o dgmf(a)

and

Proof: Singular perturbations of the Laplacian supported on a curve in
R? are analogous to singular perturbations supported on a surface in R3:
indeed the quadratic form

F(T, \II)E/RZ d%ﬂvqflz—/Cdey(e)m(g(e))f

is easily seen to be a closed semibounded quadratic form (see e.g. [51, 52]
and the discussion contained in the next Chapter) on

D(F) = {T € L}(R?) | 3¢y € LX(C), U — Gty € H'(R?)}
and it can be proved that it is associated to the self-adjoint operator H, c.

|
Proposition 1.4 If U(Z) € L*(R?), ¥(Z) = x(r)en,(0) and z € o(H,c),
S(z) > 0,
((Hv,c -7 0)@ = [ g +
0

+ G (Z yo)/ dr'r’ g2°(yo, ") x(r")

( Jno

where
o(r, ") / dk J}n0|(7€7”)=7|n0|(k’f') = (Ho— z)~liﬂn0 (r, ")
and

oo * 1
G2(@ 70 = / db 5 G1n(T) in(2)
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Proof: See the Proof of Proposition 1.2 and Corollary 1.1.

O
Theorem 1.8 For everyt,s € R,
s— lim Uiens(t, 5) = e et
where y(a, yo) € R and
(e 40) = /0°° ak k[(l n eiaf;Tk? Al k21+z' Jo (o)
Proof: See the Proof of Theorem 1.4 and the following Lemma 1.2.
O

Lemma 1.2 For every z € C, §(z) > 0,

0
s— lim dt €7 Ut (t,0) = —i(Hy o — 2)

—
w—oo f_ o

-1

Proof: The first part of the proof is analogous to the Proof of Lemma 1.1
(the only difference is the dense subset of L?(R?) given by functions of the
form W (%) = x(r)en, (6), with ng € Z).

Hence it remains to prove that

lim (Koo + now — 2) () = (Hyc — 2) y(F

w—0o0

NOW, for each z € C, (2) > 0, no € Z and g = (0, y),

lim gz—now(t ?jD) = GZO ("E’ go)

wW—+00

in the norm topology of L?(R?): since
gz—now(fa gD) = GTZLO (f: gO) + RT;O (57 370)

with

70 % /= _,
Re@ )= [ dkn;m e () 01

n#ng

it is sufficient to prove that
lim (|22, 50 gy = 0
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But

no (= 1
822 ) ey = [ dkn;wikz O]
n#ng

and the right hand side is bounded (see Proposition B.2) for each w € R, so
that exchanging the limit with the integration, we obtain the result.
Now, substituting in the expression of the resolvent (see Theorem 1.5),

[(Bao +mow = 2) 0] (@) = (G2 (@ 7), ¥(@))

LZ(RE:)

Az = Mo, @) (oo (2, 60), U(E)) . - Gomrs ()
the result follows from a straightforward calculation. Moreover we obtain
the same relation between v and a:

F'Yac(‘z)no — 1
2m B(z, )
where | | "
B(z,a) = lim A(z — now, a)
but
1 1 . ) )
)\(Z — NoWw, a) - >\(—'I;, Ot) - (Z — Nopw + Z) (g_now+z($), g_ (g;))

and then

L iim [Xf—lz—a) ~ (2= mw + ) (Gongus ), g_(f))} -

2i o0 1 2 o0 1 12
= ; dkys—rs Ui dk i
1 + eic [) klkz -lzlwko(yo)i +/ L2 +i|90k0(y0)l +

/ dk I ‘Pkno ) |2
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Chapter 2

Rotating Singular Interactions
Supported on Sets of Lower
Codimension

2.1 Introduction

In this Chapter we extend the results of Chapter 3 to uniformly rotating sin-
gular perturbations of the Laplacian supported on sets of lower codimension:
we study the so called rotating blade, namely a singular perturbation sup-
ported on a rotating surface in three dimensions and on a rotating segment
in two dimensions respectively.

In Sections 2.2.1 and 2.3.1 we identify the Hamiltonians of such systems in
the rotating frame with families of suitable self-adjoint operators. The start-
ing point is the procedure defined in the Introduction ((1.18) and following),
which allows us to split the quadratic form into the “free” form (I.17) and the
“charges” form (I.18). Nevertheless, since the operator H,, is not bounded
from below, it is not possible to go further: the “free” part of the form is
evidently not bounded from below and then we can not easily conclude that
the whole form is closed. Therefore we introduce a cut-off on the spectrum
of H,, so that the entire form is closed and defines a self-adjoint operator
which is now bounded from below. The last step-is then the removal of the
cut-off (Theorems 2.2 and 2.6), which is done proving the converge of the
cut-off Hamiltonians in strong resolvent sense to a self-adjoint operator.

As in Chapter 3 we also study the asymptotic limit of large angular ve-
locity and, by means of an explicit expression of the resolvents, we prove
that the unitary family describing the time evolution converge strongly to a
one-parameter unitary group (Theorems 2.4 and 2.8), whose generator is a
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time-independent Schrodinger operator with a regular potential.

2.2 The Rotating Blade in 3D

2.2.1 The Hamiltonian

Let D be the half-disc D = {(r,0,¢) e R3 |0 <r < A, 0< 60 <m ¢=0}and
©p(z, z) its characteristic function. The formal time-dependent Hamiltonian
of the system is given by

H(t) = Ho + a(z, 2z) R(t) ©p(z, z) 6(y) (2.1)

where R(t)¥(Z) = U(R(¢)"! £) and |||l < oo. Therefore in the rotating
frame the formal generator of time evolution is

K = Hy—wJ + aOBp(z, z) §(y)
or more rigorously a self-adjoint extension of the symmetric operator
Kp=H,
D(Kp) = C°(R* - D)

The Hamiltonian cannot be easily defined with the method of quadratic form,
because of its unboundedness from below. Hence are going to pursue a dif-
ferent strategy: we define a sequence of cut-off Hamiltonians which converge
to the operator H,, in the strong resolvent sense and that are self-adjoint and
bounded from below; then we add the singular perturbation and prove that
the so obtained operators are self-adjoint. Finally prove that the limit (in the
strong resolvent sense) of the sequence of cut-off perturbed Hamiltonians is
a self-adjoint operator that we identify with the Hamiltonian of the system.
So let

HI = H, T, (2.2)

where II;, is the projector on the subspace of L2(R?) generated by functions of
the form x(r)Y;™(6, ¢), with [ < L. It is very easy to prove that the operator
HZ is self-adjoint on the domain H?(R®): the operator J is bounded on the
domain of the projector II; and therefore it is an infinitesimally bounded
perturbation of Hy, so that we can apply the Kato Theorem [36]. Moreover
for each z € o(HE) the resolvent (HZ — z)~! is given by an integral operator
with kernel

k2 —mw—z

gzL(-’f) 11_3”) — / dkz ‘pkzlm )‘Pklm(f) (23)

=0 m=—1
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Proposition 2.1 The sequence of cut-off Hamiltonians converge as L — oo
in the strong resolvent sense to the self-adjoint operator H,.

Proof: For each L € N and z € C — R, the function GF(&, ) belongs to
L2(R3, d3%):
2@ 2" < llg:(@ &) < oo
and then the result is a stralghtforward consequence of Proposition B.1. The
operator H,, was studied in [25, 54].

O

Now we can defined the perturbed cut-off Hamiltonians with the method
of quadratic form: let!

For(T, ) = F, (T, ) - /D dup@® o [T,AF  (24)

where Fw, 1, is the closed? semibounded quadratic form associated to HZL The
form F, 1, is well defined ifve D(F, 1) and « is a smooth real function on
D bounded away from 0.

_Proposﬂuon 2.2 Letze C~ ]R the form F, 1 can be written in the follo'w-
- ing way,

For(¥,0) = FZ (T, U+ 0560 0) =20 (¥, Gie)] - 29)
where |

50(0, V) = Fp (V=G 6w, V=G Ew) —R(2) | ¥ - GF&a P +R(2) 17| (2.6)

8o, Co) = %[(S‘I’  Ta(®) g‘l’)Lz(D,d#D)] (2.7)

and

Fr@a]m =22 - [ dnt) e D pn &™) (29)

(65 (@) / dup() GF(E, )| op E(F)

Here dup (F) stands for the restriction of the Lebesgue measure to D, namely dup(7) =
72 dr dcos @ for 7= (r,0) € D; 7 denotes the restriction of # € R3 to D, i.e. 7= (r, ).
?The form F,, y, is closed on the domain D(F,, 1) = H!(R3).
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Proof: The result follows from a simple calculation: setting

&u(7) = a(F) U] ,(7) (2.9)
one has

For(¥, W) = Fup (¥ — GFéw, U - GLéw) = (616, HL (¥ — G1€))+
5 Sel* _
+(v, HEGE) - [ dup B =
/ dpp ‘g“" — (GFe, (HE - 2)GEe) - 2| Ge||* + 2R [2( , GFe)| =
@71 (6w, Ev) — R(2)||GE€]|* + 2R [2(w, GF¢) ]

since
S(2) ||GFe|* = S[(G2¢ , (HE - 24)GE¢)]
but
|Ge|* = ||w - Gl - |[wl* + 2% [ (¥, G¢)]
so that we obtain the result.
O

Of course the form F, 1, is independent on z and the decomposition ¥ =
0, + GEEy is unique, since GLéy ¢ D(F, 1) if & € L*(D,dpp). Moreover
the form @7, ; (&, £) is bounded and one can choose z € C such that the form
satisfies another useful inequality:

Proposition 2.3 The form @7 ;(£,§) is bounded for each § € L?(D,dup).
Proof: The first term of the form is of course bounded if £ € L*(D, dup)

and
/D dup € (G26)°|, | <

but we are going to prove that the function (GZ¢)|p(7) is bounded V7 € D,
so that

1€l 220, 16 | 20,0

” (-@;5) |D||L2(D,dup) < C(4) ”EH%z(D,duo)
and hence the result. Indeed

@9, = (5. Dl pen - €6)

2
) o)
L2(D,dpp)!

" 2
<95 @ D)o aunien 122 umy < € 1l z20 000
since the Green’s function G (Z,%,) belongs to L*(R?), for each z € C —R
and o € R3.
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O

Proposition 2.4 For each smooth real function o on D bounded away from
0, there exists ( € R, ¢ < 0 such that, for each z € C— R, R(z) < (, the
following inequality holds

87,1(6,€) ~ 25(2) [ (¥, G%6w)| — (R(z) +wL) ¥ - GEeul? > 0 (2.10)
Proof: We first point out that (see Proposition B.1)

Lm ||GE(Z, )| < C(3(2)) < o0

R(z)—o0

Thus, since the form @ ; (£, £) remains bounded for each z € C—R, $(z) # 0,

and

plm R = G| = oo

3 9((v, Fen)]| < 030 el
we can always found a ( satisfying the requirement.

O

But now we can prove that the complete form F, , is closed and bounded
from below:

Theorem 2.1 The form Fq 1 is bounded from below and closed on the do-
main o '

D(Faz) = {U € LX(R®) | 3y € IA(D, dup), ¥ — Gléy € H' (R} (211)
where z € C — R.

Proof: Semiboundedness is trivial thanks to Proposition 2.4: since the
form F,, 1, does not depend on z, we can choose z € C—R, R(2) < ¢, so that
the inequality (2.10) applies and

For(¥,0) > Fu 1 (¥ — GL6w, ¥ — GEéy) + wL |0 — GLey|? + R(2) ||T)? >
> Fo(U — GEee, U — GEew) + R(2) |2]? > R(2) || )

So it remains to prove closure. Let U,, = ¢, + G,&, be a sequence in D(Fao,r)
converging to ¥ in the norm topology of L?(R?), such that?

n TI}LIHOO (fa,L - %(Z)) (\I/n — IIfm) =0

#Fp is simply the form associated to the free Hamiltonian, i.e. Fo(¥,¥) = [ |V
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lim (FQ,L - %(Z)) (\If'n - ‘Ijm) > lim FO(‘pn - SOm) >0

T, T~ 00 ,M—00

so that
lim Fylpn — @om) =0

n,M—00

and
lim @z,L(fn —&m) =0

n,Mm—00

The result easily follows, because Fy and @7 ;, are closed forms (see Proposi-
tion 2.3).

a
Thus the form F, ; defines a semibounded self-adjoint operator:
Proposition 2.5 The operators KL defined below are self-adjoint:
D(KL) = {¥ € L’(R%) | 3w € L*(D, dpp), ¥ ~ G7€w € D(H),
(v —-Glew)|, = Ta(2)éu} (212)
(K% —2)¥ = (H) — 2) (¥ - G7éw) | (2.13)

where a € C(D), o) # 0, for each 7 € D.
T - e = [ -0 @)+

+ /D &7 [P4) [ (HE ~ ) 7| (7) 6@ ) e (2.14)
for each z € o(Ka).

Proof: The result easily follows from Theorem 2.1. The explicit expression
of the resolvent is a direct consequence of the equation (2.13). We want only
to remark that the operator I'Z(z) is invertible if $(z) # 0: the form @7 ;
can be written in the following way

2,66 = [ dup K- nio)azelf

Since Hg~§'§l|2 is bounded by C($(2)) [I€]12, if S(2) # 0, we can always choose
the real part of z is such a way that the form is positive.

O
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At last we can remove the cut-off in the angular momentum and define
the Hamiltonian of the system:

Theorem 2.2 For each a € C(D), a(F) # 0, V7 € D, the sequence of
semibounded self-adjoint operators KL converge as L — oo in the strong
resolvent sense to the self-adjoint (unbounded from below) operator K, :

D(K,) = {¥ € L*(R®*) | 3y € L*(D,dup), ¥ — G.¢y € D(H,),
(¥ — Gobw)|p = Tal2)éu } (2.15)
(Ko = 2)0 = (H, — 2) (¥ — G.&v) (2.16)

where

() 6] = 22 = [ un(®) Gl D spp ) (27
[Talz) &

(G.£)@ = / dp(*) Gu(F, 7)o )

Moreover the resolvent of K, is
[(Ka - z)_l\If] (&) = [(Hw _ z)—l‘ll] () +
+/ |- )7 6@ (@19

for each z € p(K,).

Proof: The key point of the proof is the application of the Trotter-Kato

Theorem (see Theorem VIII.22 in [45]) to the sequence of self-adjoint oper-
ators KZ: we shall prove that (KL — 2)~! converge in the strong sense for
all z € C — R to the operator (K, — z)™!, then the Trotter-Kato Theorem
guarantees that there exists a self-adjoint operator T such that KZ converges
in the strong resolvent sense to 7. The identification of T with K, is then
trivial.
So we shall start with the analysis of the sequence of bounded operators
(Ko —2)71, z€ C—R, defined in (2.14): thanks to Proposition 2.1, the first
part of the resolvent converges in the strong sense to (H, — 2)™!, so that, in
order to prove convergence of the whole operator, we need to consider the
second part,

[ & rHe) [ - ]| ) 662,
D
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but, for the same reason,
nglc}o gz (%, fl)]flep = G:(Z, fl)'f'ep
in L?(R%) and
3 L _ -1 - — _ -1 —
(i3] 1= [ 3]
in L*(D, dup), for all ¥ € L*(R3). Hence, to complete the first part of the

proof, it is sufficient to show that

lim [T%(2)] ™ = T7(2)

L—oo

in the norm topology of L?(D, dup), but this is again a consequence of Propo-
sition 2.1: for each L the operator I'Z(z) is invertible (see the Proof of Propo-
sition 2.5) and, in the same way, we can prove that I';!(z) is bounded and
well defined, if $(2) # 0; moreover it is easy to see that

Llim TL(2) =Ta(2)
We have then proved that, for each z € C — R,
s— lim (K2 —2) " = (Ko—2)"

L—oo

and the operator (K, — z)~! has of course a dense range. Thus the Trotter-
Kato Theorem applies and the limiting self-adjoint operator T is immediately
identified with K,: the domain of K, is given by functions of the form
(Ko, — 2)~20, U € L?%(R3), and the action of the operator on its domain
follows from (2.18).

O

Theorem 2.3 The spectrum of K, is purely absolutely continuous and
0(Ky) = 0ac(Ko) = 0(H,) =R

Proof: First of all we shall prove that the operator

-1

R = (Ky—2)" = (Hy —2)

is a compact operator Vz € C —R. Let ¥, be a weakly convergent sequence
in L?(R%), namely (¢, ¥, — ¥,,) — 0 when n, m — oo for each ¢ € L*(R?),

R (Up — Um) = / a7 Fc_xl(z) [(Hw - z)_l(‘yn - \I’m>:} ID G:(Z, fl)‘f’eD

D
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and

IRz (@ = v < GNT2 N | (2 Tn— T )| <

—_ 0
T, M—00

gcl(gz*,\pn-wm)

since the operator I';'(z) is bounded (see the Proof of Theorem 2.2).
Therefore we can apply Weyl’s theorem and thus

Jess(Ka) = dess(Hw) =R

To prove that the singular and pure points spectrum of K, are empty, we
refer again to the limiting absorption principle. To show that the condition
of the principle is satisfied, we have to consider the scalar product (where
z =z +1€)

<

(5.7 -

/Dd2f’ YI‘gl(z)[(Hw - z)—llll] 'D (\If, gz(a':‘, f’)}i,eD)

< ||Ir3t@)||

/Dd27:’ (gz* (f’f,)lfreD ’ ‘I]) (‘I]’ G:(@ :E,)IEIGD)

The operator I';!(z) remains bounded when € — 0 and, applying the same
trick used in the Proof of Theorem 1.3, one has

lty (Ge-ie(Z ) |zep - ¥) (¥ Gorie@ ¥) ) = ) < 00

where ¥ = (H, — z)p and ¢ € D(H,,), so that

O<e<l

sup /b dz !(llf, Rﬁ"’“‘l’) ,p < 00

for some p > 1 and for each interval [a, 8] C R.

2.2.2 Asymptotic Limit of Rapid Rotation

In this Section we shall study the asymptotic limit of rapid rotation of the

unitary group
Usnert (¢, 5) = R(t) Urot(t — 8) R (s)

which represents the time evolution in the inertial frame associated to the
formal time-dependent Hamiltonian defined in (2.1), while Uy (t — ) is the

78




unitary group associated to the self-adjoint generator K,: our main goal will
be the proof of the following result,

s— lim Uger(t, s) = g~ il (t=s)
W=+
where H, is the self-adjoint generator*
H, = Hy — a(F) ©5(F) (2.19)

and Og(7) is the characteristic function of a sphere S of radius A centered
at the origin.

Theorem 2.4 For everyt,s € R,
s— Hm Uper(t, 8) = g~ iHa(t—5)
W—roo

where

H, = Hy — o) Os(F)

Proof: See the Proof of Theorem 1.4 and the following Lemma 2.1.

Lemma 2.1 For every z € C, $(2) >0,

0
s— lim dt €7 Uty (t,0) = —i(Hy — 2) -

—
w—oo f_ o

Proof: Like in the Proof of Lemma 1.1, we shall prove the result on the
dense subset of L?(R?) given by functions of the form ¥(Z) = x(r)Y;* (¢, ¢),
with lp = 0,...00 and mg = —ly, . . ., lo. The first part of the Proof of Lemma
1.1 still applies, so that it is sufficient to prove that

lim (Ko +mow—2) " W(Z) = (Ha— 2) " U(2)

w—00

First of all we observe that

(Ko + mow — z)—llll = (H, + mow — z)—lllf +

4The operator H, is easily defined with the method of quadratic form (see for example
[45]): since the potential (r) is bounded, it is associated to a form infinitesimally bounded
w.r.t. the free Hamiltonian Hy. Hence the operator Hy + a(r) ©p (7) is self-adjoint on the
domain of Hy.
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-+ (I‘;l(z* — mow) [(Hw + mow — Z*) —lqj] }D ) gz-—mow(f7 f,)lfleD)LZ(D,dpD)

and
lim (H, +mow —2) "0 = (Hp - 2) ¥

wW—00

as we have proved in Lemma 1.1.
Therefore we need only to study the second part of the resolvent: it is easy
to see that

i (1 + o) 0], = [(0-) 0]

Ww—00 D

in L*(D, dup). Moreover, since [(Hy— z) _I\I'] I p(7) is a function of the form
x(r)Y;*(6,0), we can apply the result found in the following Lemma 2.2:

1mrj@—mwﬂm+mw“ddﬂ’=

W—00 D
= Z,(2) [(Ho —2) _I\I’] ID =
= a(7)Op(7) (Ho — () Os(7) — 2) " ¥

In conclusion we obtain

lim - (Ka + mow — z)—I\I! = (Ho - z)_1 [1 + a@D(Ho —aBg — z)—l]lll = .

= (Hy— a Oy —-z)_l\I!
O

Lemma 2.2 Let T»(2) the operator defined in (2.17) and (%) € L2(R3) of
the form U (Z) = X(r)Yl;n"(Q, ?),

Jim T2z — mow) ¥|p = Ea(2) ¥)p
in L2(D,dup), where
(Ea(z)\lflp) (7)) = [a(v‘) (Ho — () O5(F) — z) - (Ho — z) \IIID] () (2.20)
Proof: First of all we are going to prove that
norm-— wlggo Fa(z — mow) = Ay(2)

where ¢
(4@ €) = £ = [ dun(®) 67°@,7)] o)
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for the definition of G7* see Proposition 1.2.
Indeed
Loz — mow) = Ap(2) + R

where R™ is a bounded integral operator on L*(D,dup) with kernel

Rmo — —-rr / onlm('r-j) Qakzlm(’Fy)

(r7) —(m—mo)w — 2

=0 m=— l
mz#mo

that goes to 0 when w — oo (see the Proof of Lemma 1.1).

Moreover Yw € R the operator I'y(2) is invertible if $(2) # 0 (see the Proof
of Theorem 2.2) and, for each lp € N, mg = —lo,...,lp, 2 € C—R it can be
seen that the operator A, is also invertible: indeed, let ¥ is the dense subset
of L?(D, dup) given by functions of the form x(r)Y"(0,0),

(0ole) ¥1o) (.0) = 125 0) T 00 [ gt g ) )
and
[(Fy = 2)a(2) 1)) = [ (o 9 22] () — 0069 91017

so that A (2)¥|p = Za(2)¥|p.

2.3 The Rotating Blade in 2D

2.3.1 The Hamiltonian

The formal time-dependent Hamiltonian of the system is given by the oper-
ator

H(t) = Hy + a(z) R(t) ©a(z) 6(y) (2.21)
where © 4(z) is the characteristic function of the segment 0 < z < A. In the
rotating frame the generator of time evolution is a self-adjoint extension of
the symmetric operator

Ks=H,
D(Ks) = CP(R? - S)

where S is the segment S = {(z,0) e R? |0 < z < A}.
In order to rigorously define the self-adjoint extensions of the operator K,
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we shall proceed like in the 3D case, namely we shall introduce a sequence
of cut-off perturbed Hamiltonians and then we shall identify their limit with
the Hamiltonian of the system.
So let

HY = H, Ty (2.22)

where IIy is the projector on the subspace of L?(R?) generated by functions
of the form x(r)e,(6), with |n| < N. The operator HY is self-adjoint on the
domain H?(R?) (see the discussion at the beginning of Section 4) and, for
each z € o(HJ), the resolvent (HY — z)~! is given by an integral operator
with kernel

® N Pha(@) Prn(E)
Nz, &) = / dk ke (2.23)
0 'n=——N k2 - wn - Z

Proposition 2.6 The sequence of cut-off Hamiltonians converge as N — oo
in the strong resolvent sense to the self-adjoint operator H,.

Proof: See the Proof of Proposition 2.1 and Proposition B.2.

The pe‘fturbed/éﬁt—off Hamjlténian is associated to the form
Fun(¥,T) = Fyn(,0) - / duso(r) [T, (2.20)
s

which is well defined® if ¥ € D(F, x), F, v being the closed semibounded
form associated to the self-adjoint operator HY, and a € C(S), a(r) # 0,
VreS.

Proposition 2.7 Let z € C — R, the form F,n can be written in the fol-
lowing way,

Fan (¥, ) = F n(P,0) + @ y(Eu, Ew) — 29(2) 3[(‘1’ , 55{5\1:)] (2.25)

where

on(T,0) = Fun(¥ — Gl éw, ¥ — GV6w) — R(2)|¥ - Ve | + 3?(2)(|!‘1’H2)
2.26

q’Z,N(E‘I’a E‘I’) =R [(6‘1’ 3 I‘\é\f(z) g\P)Lz(S’dﬂs)] (227)

5In the 2D case, the measure dug is given by r dr.
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and

€ (r)
a(r)

[0 () &a] () = 2220 - /S dus(r') GV (E 7|y pes E0r)  (2:28)

(Vo) (@) = /S dus(r’) GV(& @) o E(F)

Proof: See the Proof of Proposition 2.2.

Now we shall prove that the properties of the form ®Z y still hold:
Proposition 2.8 The form @ y(&,€) is bounded for each § € L2(S,dus).

Proof: Using the result proved in Proposition B.2, we can follow the Proof
of Proposition 2.3. ‘

O

Proposition 2.9 For each smooth real function o on S bounded away from
0, there ezists ( € R, ¢ < 0 such that, for each z € C — R, R(z) < (, the
following inequality holds

¥ u(6,€) — 23(2) S[(¥, Gl)] - (R(=) +wN) ¥~ GXEl” > 0

Proof: See the Proof of Proposition 2.4 and Proposition B.2.

We can now state the following Theorem,

Theorem 2.5 The form Fon is bounded from below and closed on the do-
main

D(Fon) = {¥ € L*(R?) | Iy € L*(S,rdr), ¥ - Géy € H'(R?)} (2.29)

Proof: See the Proof of Theorem 2.1.
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Proposition 2.10 The operators K defined below are self-adjoint:
D(KZ) = {¥ € L*(R*) | Hy € L*(S, dus), ¥ — G'¢s € D(HY),
(¥~ Glés)|, = TN (2)60} (2.30)
(KLY = 2)U = (HY - 2) (0 — GVey) (2.31)
where o € C(D), a(F) # 0, for each ¥ € D.
Moreover '
(&Y —2)7"e]@) = (&) - 2) "] @) +
+ [ @ e @ - 9| e E ), e
D D
for each z € p(K,).

Proof: The result follows from Theorem 2.5. Like in the 3D case it is
possible to prove that the operator I'Y(2) is invertible if (z) # 0.

O

Theorem 2.6 For each a € C(S), a(r) # 0, Vr € S, the sequence of
semibounded self-adjoint operators KY converge as N — oo in the strong
resolvent sense to-the. self-adjoint (unbounded from below) operator K,:

D(K,) = {¥ € L*(R?) | 3y € L*(S, dus), ¥ — G.&y € D(H,),
(T —Gobw) | =Tal2)u} (2.33)
(Ko—2)0 = (H, - z) (¥ — szxp) (2.34)

where

re@a]n =20 [ast) 6.6 0a0) @)

(G.6)@) = /S dus(r') Gu(#,7)|ep £0F)

Moreover the resolvent of K, is

(K- 2) 70 @) = (7 - 2) o] (@) +

+ /S dr' v’ F;l(z)[(Hw - z)“lqr] 'S(r') Ga (%, 7)o (2.36)
for each z € p(K,).
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Proof: See the Proof of Theorem 2.2.

Theorem 2.7 The spectrum of K, is purely absolutely continuous and
0(Ky) = 0ae(Ko) = 0(H,) =R
Proof: See the Proof of Theorem 2.3, Theorem 2.6 and Proposition B.2.
il

Remark. An interesting application of previous results is the study of
the 3D rotating needle, i.e. a singular rotating perturbation of the Laplacian
supported on a (finite) segment. Indeed the system can be easily reduced
to a 2D rotating blade on the plane of rotation and a free motion on its
perpendicular axis: the Hamiltonian is formally given by

H = Hg¥ + o(z) R(t) ©a(z) 6(y) + H3

where © 4(z) is the characteristic function of the segment 0 < z < A. Ac-
cording to the previous discussion, the self-adjoint extensions of H are given
by the family of operators K%V + H§, where K%V denotes the Hamiltonians
of the 2D rotating blade defined in (2.34). Moreover the domain of self-
adjointness can be identified with the set of functions ¥(Z) = f(z,y) g(2)
such that f € D(K,) and g € H?(R).

2.3.2 Asymptotic Limit of Rapid Rotation

In this Section, we shall prove that

s— lim Uiper(t, 8) = g~ Ha(l=s)
w—00

where H, is the self-adjoint generator
H, = Hy — a(r) O¢(r) (2.37)

and ©¢(r) is the characteristic function of a circle C of radius A centered at
the origin.

Theorem 2.8 For every t,s € R,

s— lim Uiper(t, §) = e~ Halt=9)

w—00

where
H, = Hy— a(r) ©¢(r)
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Proof: See the Proof of Theorem 1.4 and the following Lemma. 2.3.

Lemma 2.3 For every z € C, I(z) > 0,
0 . .
s— lim dt €7 Uy (8,0) = —i(Hy — 2)

—
w—0oo f_ o

Proof: Like in the Proof of Lemma 1.2, we shall prove the result on the
dense subset of L?(R?) given by functions of the form U(Z) = x(r)en,(6),
ng € Z. Following the Proof of Lemma 1.2, it remains to prove that

lim (Ko +now —2) " U(Z) = (Hy — 2) " U(E)

w-—00

but
(Ka + now — z)—lllf = (Hw + now — z)_llll -+

+ (FZI(Z* — now) [(Hw + now — z*) ~1\P] Is ) Grnaw(, 7) If'es) L2(S,dps)

and
lim (H, + now — z) y = (Ho — z) ~y

as we have proved in Lemma 1.2. Moreover

lim [(Hw + now — Z)_I‘I’] 's - [(H" N z)_lq’] ls

W00

in L?(S,dus) and, applying the result found in the following Lemma 2.4,

lim T2 (2 — now) [(Hw + ngw — z)_llIf] ] —

w—+00 S
= Za(2)| (Ho—2) 0] | =

= o(r)Os(r) (Ho — a(r) O¢(r) — 2) W

In conclusion we obtain

lim (Ka + now — z)—l\I’ = (Ho —_ z)—1 [1 +a@5(Ho —aB¢— z)—l]llf ==

W00

= (Ho—-a@c——z)_l\ll
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Lemma 2.4 Let T',(z) the operator defined in (2.85),

lim T3 (2 — now) = Ea(2)

in L2(S, dug), where

(2(9)() = |alr) (o= o) Octr) =) (Ho ) e

Proof: First of all we are going to prove that
norm— lim Ty (z — now) = Ag(2)
W00

where

M@ 6= - o [ aus(r) a2l

for the definition of g7° see Proposition 1.4.
Indeed L
To(z = now) = Aa(2) + R

where R is a bounded integral operator on L2(S dug) with kernel

Rno ,’, T‘I) _/ Z k2 ‘Pkn onn('r) -0

(n—no)w — z

n;éno

as w — oo (see the Proof of Lemma 1.2).

(2.38)

Moreover for each ng € Z and z € C — R it can be seen that the operator A,

is invertible: indeed
[0~ () €] = | (o= )| ) - 050 0

so that A (z) = Eq(2).
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Appendix A

The Genericity Condition

This Appendix is devoted to the analysis of the genericity condition we have
defined and used in Chapter 1 and 2. Let us recall its definition (see (1.19)):
we say that a sequence a = {a, }ren € £2(N) satisfies the genericity condition
if

oo
e1 = (1,0,0,...) € \/T”a (A1)
n=0
where
(Ta), = an (A.2)

is the right shift operator on £5(N).

In the following discussion we often refer to [12], for a more detailed study
of the condition and to [41], for the properties of the right shift operator.
In order to understand if a sequence a satisfies the genericity condition, it is
interesting to look for nontrivial solutions in £;(N) of the system of equations

(b, T7a) =0 (A.3)

Vj € N. As suggested in [12], such solutions define analytic Z2-functions on
the unit disk { € C | |z| < 1}, setting

Alz) =) a, 2" (A.4)
B(z)=) byz" (A.5)

So that (A.3) becomes

A(z) — A(0)

ok A(k)
boA(z) + by 33__4___(92} N

+...+bnx“”[A(x)—Z P

k=0
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or

zZ—X

}[ A@BA/Z) 4. g (A.6)
|z]=1

where we have used the Cauchy’s formula,

1 [A(g;) ~ i mkA(k)(O)} 1 j{ A(z) i

" L ~ omi ol=1 2"(z — )

The analytic functions A(z) such that equation (A.6) has nontrivial solutions
are very special and they relate to the Beurling inner functions (see [41]).
However in the following we check the genericity condition for some simple
functions and we discuss the relation with asymptotic complete ionization
for a time-dependent point interaction (see Chapter 1).

A.1 Examples

(i) In order to apply the discussion above, we prove that the sequence

1
Uy = —
n

satisfies the genericity condition. The associated function on the disc
is then given by A(z) = In(1 — z) and equation (A.6) becomes, setting
t=1/z, '

1 [ B@h(-1) . 1 [ B  _
j{tl:l————-——dt j[ i =0

_C-E— t—z1 T Jig=1 t(t - CE—]‘)

Taking the cut of the log on [1, 00), the first integral vanishes since the
function is analytic on the unit circle, and then one has

1 j[ Bl 1 _ [ BOhO , _,
lt|=1

T t A |t|=1 t - .’E—l

Studying the analyticity properties of the second integral (see [12] for
the details), it is possible to prove that the existence of the cut implies
B=0.

(ii) A simple case in which the genericity condition fails is given by geo-
metric sequences, that is
an = A" (A7)

for some |A| < 1. Indeed 77a = Xa, so that the subspace generated
by T7a for any j € N is in fact one dimensional.

91



A.2 Is the Genericity Condition Necessary?

In this Section we want to investigate the role of the genericity condition
in the proof of asymptotic complete ionization for a time-dependent point
interaction' (see Chapter 1). The main question is then: is such condition
necessary or only sufficient?

A key point about the meaning of the genericity condition is the Remark at
the end of Chapter 1: if the function «(t) is positive at any time ¢t € RY,
the proof of asymptotic complete ionization does not require any condition
at all.

Having a closer look to the condition (1.19), one can see that it does not
involve the 0-th Fourier coefficient ap. Let «(t) be a continuous real func-
tion and o, its Fourier coefficients?, we say that c(t) satisfies the genericity
condition if the sequence a, = oy, n > 0 is generic with respect to 7 (see
(1.19)). Hence the coefficient ag does not enter in the condition and it can
be chosen freely.

On the other hand, since we can always take ap sufficiently large so that the
function «(t) is positive at any time, one can easily construct examples of
non-generic positive functions (), for which the system still shows asymp-
totic complete ionization. Therefore such a condition can not be necessary.
Nevertheless one can expect that the condition could be necessary, excluding
positive functions. It should therefore be investigated the asymptotic be-
havior of the system when the function a(t) does not satisfy the genericity
condition and is yet negative for a very short time. We conjecture that for
such a small class of functions, it should be also taken into account the fre-
quency and perhaps other parameters like e.g. the L!-norm of the negative
part of a(t).

It is then clear that the problem is very subtle and it could be solved only
by a detailed analysis of the point spectrum of the Floquet operator.

A similar discussion holds also for the decay problem studied in Chapter 2.
2Since the function is assumed to be real, o, = a,, and we can only consider the
coefficient o, for n > 0.
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Appendix B
The Green’s Function of H,

In this Appendix we shall study the Green’s function G, (&, %) of H,, and we
shall prove that it belongs to L2(R", d"%), Vi, € R™ with n = 2, 3.
We shall start from the 3D case:

Proposition B.1 The resolvent (H, — z)™!, z € C — R, has the following
integral representation

(H, - 2)"'0(z) = /R &G.3,7) V(@)

with U(Z) € L*(R3,d%z) and

0.5.7)= [ EXY b @@ B

=0 m=-I

The functions @g,(Z) are the spherical waves':

rim () = ﬁjl(kr) Y™ (0, )

Moreover, for every ijo € R® and z € C — R, G,(Z, 7o) € L*(R®, d°%).

Proof: The integral representation of the Green’s function of H, is a
straightforward consequence of the eigenvectors decomposition of H,,. More-
over in the following we shall prove that, for each ¥ € L%(R%), z € C— R
and 7, € R3,

|(2:@.5), v@)

'Here 7;(r) denotes the spherlcal Bessel function of order [ (see [40, 55]) and Y;™(6, ¢),
with [ € N and m = —,...,l, the spherical harmoniecs.

L2(R3 d33)
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Every function ¥ € L?(R?%) can be decomposed in terms of spherical har-

monics: o
V() = Z Z Ui () Y™(0, ¢)
=0 m=—

with the L%-condition

oo l

Z Z ”\Iilm(r)”iZ(R-;-’,rzdr) < o0

1=0 m=-I

(o650, v@)[ <> 5 [(Goma@, ), Tin(¥7(6,8))| <

1=0 m=-1

< Z Z ”Gz+mw T yO)Hiz(Ra,dsi)“\I,lm(r)yim(ga ¢)||2 <

=0 m=—1
) Z Z “\Illm 7‘)”LZ(R'*' r2dr) < o0
1=0 m=-1
because the Green’s function of the free Hamiltonian
eiVzFmuw|Z—iol
Goymu(Z, T) = EE=E

belongs to L*(R®, d°%) for each z € C — R and ¢ € R®: we have to choose
the root of z + mw with imaginary part

[(R(2) +mop +9GP] - 8GE) -mo 55

&‘s(\/z-i-mw}:\J 5 > 5 >0

so that G,4me € L? independently on m € Z.

An analogous result can be proved in the 2D case:

Proposition B.2 The resolvent (H, — z)™, z € C — R, has the following
integral representation

(Hy = 2)"10(3) = /R PG5, 7)0(7)
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with ¥(Z) € L*(R?, d%z) and®

0532 [Ca Y pre @@ (B2

n=—oco

= k in
Prn(T) = 4| 5= Jpni (k) € ?

Moreover, for every 7, € R? and z € C — R, G,(%, %) € L*(R?, d*Z).

Proof: Following the Proof of Proposition B.1, we shall consider the scalar

product
(9:(@,9), v(@)

L2(R3,d37)

with ,
U(7) = Z v ('r')
and we obtain
'(gZ’(m Jo) )’ Z |Gt (Z ﬁo)‘|i2(R3,d35)llg'n(T)Hi2(m+,r2dr) < 0
n=—0c0

since®

Geinal@,30) = 7 H (V770 |2~ o)
belongs to L*(R?, d*), for each z € C — R and ¥(+/z + nw) > 0.

2J,(r) stands for the Bessel function of order n € N.
3H(§1) denotes the Hankel function of first kind and order zero (see [1]).
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