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1 Introduction

Antiferromagnetic Heisenberg (AFH) spin chains and ladders have attracted
notable theoretical and experimental interest in recent years because they
may provide some insights into the physics of high-T, superconductors. It
is believed in many quarters that some aspects of cuprates superconductors
might be understood if one assumed that the parent normal phase is not
a conventional Fermi-liquid metal but rather some spin-liquid phase which
emerges by the spin-frustration induced by doping holes in the Mott an-
tiferromagnetic insulator at half-filling, for a recent brief review paper see
[1].

Spin-liquid insulating phases are known to exist in one-dimensional mod-
els, like spin-ladders [2, 3] or single chains with competing nearest and next-
nearest neighbor exchanges [4]. Even more, there are several evidences that
doped holes in those model produce an enhancement of superconducting fluc-
tuations [5, 6]

From this viewpoint, it would be desirable to have a unique theoretical
framework which would allow to properly describe on equal footing frustrated
and un-frustated spin-chains, which is still lacking in one-dimension, not to
speak about higher dimensions. That would represent not only an important
achievement in the theory of one-dimensional systems, but it might also
represent a first step towards a generalization in higher dimensions.

In low dimensions quantum fluctuations play an important role, even if
frustration is not considered. Indeed, Mermin-Wagner theorem states that
quantum fluctuations prevent any Neel-type of long range order in spin-
isotropic Heisenberg chains. Therefore conventional methods to study spin-
models, like the spin-wave theory, are useless in one-dimensions. Fortunately,
we have at our disposal not only the exact Bethe Ansatz solution of the
simplest Heisenberg chain with only nearest neighbor coupling, but also other
powerful techniques like bosonization (a short review of the latter being given
in the next section). What we know about the Heisenberg spin-chain is that
it has a gapless spectrum and is critical, namely all spin correlation functions
decay algebraically. Remarkably, the conventional spin-wave excitations, i.e.
the S=1 magnons, are not coherent as they decompose into two massless
S=1/2 domain walls (spinons): a realization of fractionalized excitations. A

carton of magnon excitation can be visualized as T/7]:}:}T]T! in which the
domain walls are free to move, thus creating two S=1/2 objects T[:[T{T{:11].



The spin dynamical structure factor, which describes the spectrum of S=1
excitations, comprises therefore a gapless two-particle continuum, which was
indeed observed in neutron scattering experiments on K CuF;|[7].

In the route from one to higher dimension, a first step may be represented
by n-rung spin ladders, namely n weakly coupled AFH spin-chains. Indeed,
already in these simple cases interesting phenomena occur. For instance,
spin ladders with n odd or even behave differently. While the former remain
critical, the latter are gapped with exponentially decaying spin-spin corre-
lation function [5]. This prediction has been confirmed experimentally in a
series of coumpounds, Srr_1CUn4103,, which realize n-rung spin ladders [8].
This gap should vanish, presumably as a power law when n — oo, namely in
the two-dimensional case, where it is believed that the ground state is Neel
ordered with gapless magnon-excitations.

The simplest model to investigate the properties of ladders is the n = 2
case in which each spin interact with only one spin in the other chain either by
a ferromagnetic or antiferromagnetic interchain exchange interaction J, . It is
known that this ladder is gapped in both strong and weak interchain coupling
limit (as compared with the AF intrachain coupling Jjj). The existence of the
gap is obvious in the large AF interchange coupling limit, at which a singlet
is formed along the rung, and the triplet excitations are separated from the
singlets by a large gap, of the order of J;. Yet this gap persists aven when
Ji <K Jjj. Therefore, in the presence of J, two massless spinons get confined
to form a coherent massive magnon. The presence of the spin gap is also
confirmed in Cus(C5H12N3)2Cly, in which the Cu™ ions with S = 1/2 are
coupled antiferromagnetically along and across the chains [9)].

Besides the single magnon excitation, a continuum of two-magnons can be
observed in the n = 2 ladder, which is highly sensitive to the interchain spin
interaction: an antiferromagnetic interchain coupling can bind two magnons
and create a bound state with a well defined excitation peak at an energy

- slightly below the two particles threshold. In the strong coupling limit, J; >

Jjj, the singlet bound state has been observed in optical measurements on
(La,Ca)14CusOq [11], in agreement with the theoretical predictions [10].

On the contrary, an interchain ferromagnetic coupling can not confine
two magnons to form a bound state.

The 'second step towards more realistic models which might be relevant



for higher dimensions, is to include frustration. Indeed, when frustration
comes into play, quantum fluctuations get even more pronounced leading
to novel physical behaviors. The appearance of unconventional spin-liquid
phases in frustrated Heisenberg models arotund a critical point separating
different magnetic ordered phases is a long standing intriguing issue which has
attracted notable theoretical and experimental interest in recent years[12].
From a theoretical point of view, this is quite a challenging problem which
calls for a deep reexamination of standard theories. Conventionally, the
stability of a spin-ordered phase may be investigated by spin-wave theory or
by more sophisticated field-theoretical approaches based on the non-linear
o-model. Spin-wave theory is in principle able to detect instabilities at any
wave-vector, although a reliable description would require a systematic 1/5
expansion, S being the magnitude of the spin. The non-linear o-model offers
a better description of the critical behavior close to an instability point,
yet it has a major limitation. Namely, it takes into account only the long-
wavelength Goldstone modes of the ordered state under consideration, but
fails to describe the excitations at the wave-vector of the competing ordered
state. Hence it does not provide any information about the phase which can
emerge under increasing the effect of frustration.

The simplest example of one-dimensional frustrated spin model is the
spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbor exchange
J' and frustrating next nearest neighbor exchange J (for a recent review and
references therein, see Ref.[13]). Besides the general interest, this model is
also relevant for realistic materials, such as C'soCuCly, in which magnetic
Cu ions get arranged into a zig-zag fashion.[14]

In the classical limit, the J-J' spin chain has a Neel long range order
for j = J/J' < 1/4, with characteristic momentum ¢ = 7/ao. In the Negl
phase time reversal symmetry is preserved if combined with a translation by
one lattice spacing ag. For larger values of j, a spiral ordering at momentum
satisfying cos(gap) = —1/4 7 is stabilized at the classical level. There parity
and time reversal symmetries are separately broken.

Quantum fluctuations modify the classical phase diagram [18]. As we
said, spin rotational symmetry cannot be broken in one dimension: the Neel
long-range ordered phase turns into the quasi-long range ordered one char-
acterized by power-law decaying correlations of the staggered magnetization.
The low-energy effective critical theory is the level-1 Wess-Zumino-Novikov-
Witten (WZNW) model (free massless bosons with central charge C' = 1).
On the contrary, the spiral order disappears completely in favor of a sponta-
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neoulsy dimerized phase. The transition point is sligthly shifted with respect
to the classical value, j. o~ 0.241 [19, 20]. Within the WZNW model formal-
ism, the transition is driven by a perturbation which is marginally irrelevant
(relevant) at j < j. ( > j.). At j = j. a Berezinskii-Kosterlitz-Thouless
transition takes place, and an exponentially small spectral gap opens up in
the region j > j.[21]. The system continuously passes to a two-fold de-
generate, spontaneously dimerized, massive phase. Upon further increasing
J, the gap reaches its maximum at the exactly solvable Majumdar-Ghosh
point [22], j = 1/2, after which it slowly decreases [21]. Even though the
ground state of the J-J' chain remains dimerized at all j > j., above the
Majumdar-Ghosh point the system reveals signatures of the classical spiral
phase: the spin-spin correlations become incommensurate, as it was shown
numerically in Refs.[21, 23]. Since this occurs far away from the region of
applicability of the SU(2); WZNW model, there is little scope to improve
the field-theoretical description of the gapless phase at j < j, to account for
incommensurate correlations that emerge well above j.. More promising is
to approach this problem from the opposite side, j > 1. If J' = 0, the even
and odd sublattices of the spin chain decouple, and the model effectively
describes two decoupled Heisenberg chains, one for each sublattice. Classi-
cally this corresponds to the case when the spiral wave number is equal to
g = 7/2ap. Switching on a small J' transforms the model to a weakly cou-
pled two-chain zigzag spin ladder, with the interchain coupling giving rise to
a marginally relevant perturbation that opens up a gap and brings the system
back to the dimerized phase. In addition it should also move the relevant
momentum ¢ away from 7/2ag towards 7/ag. Therefore incommensuration
and the spectral gap are supposed to appear together in this limit, which
makes a field-theoretical description more plausible.

Indeed, in the limit j > 1, a novel, parity-breaking (twist) perturbation
was identified in Ref. [24] as a natural sourse of the spin incommensurabil-
ities. The twist term has a tendency to support a finite spin current along
the chains which would account for the expected shift of the momentum.
However, for the SU(2)-symmetric zigzag ladder, the situation still remains
rather unclear. Apparently, the appearance of a nonzero spin current is not
compatible with the requirement of unbroken spin rotational symmetry (see,
however, the discussion in sec.VII). On the other hand, no reliable informa-
tion about the actual role of the twist operator at the strong-coupling fixed
point can be extracted from the Renormalization Group (RG) analysis [24]
because of the perturbative nature of this approach. Thus, the structure of
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the low-energy effective field theory for the SU(2)-symmetric S=1/2 zigzag
ladder still remains unknown.

The situation changes much to the better in the presence of strong spin
anisotropy. Namely, close to the XX limit, a self-consistent, symmetry-
preserving mean-field approach shows that the twist operator can stabilize
a new, spin-nematic (chiral) phase [24]. In this doubly degenerate phase a
nonzero spin current polarized along the easy axis flows along the ladder, and
the transverse spin-spin correlations are incommensurate and may even decay
algebraically within some parameter range, as it is the case at the XX point.
This picture is supported by recent numerical simulations [25, 26, 27, 28]. In
particular, the numerical work by Hikihara et al [25, 26] has indeed confirmed
the existence of the critical spin-nematic phase in a broad region of the phase
diagram for spin-anisotropic chains, both for integer and half-integer spins.
NMR experiments on CaV,0, [29], which physically realizes a spin-1 zigzag
ladder, have indeed revealed the gapless nature of the spectrum, which may
be an indication in favor of a critical chiral state. On the other hand, nu-
merical simulations also show the existence of a new gapped chiral state in
a very narrow region between the dimerized and the critical chiral phases,
but, within numerical accuracy, only for integer spins. In that gapped phase,
the spin current coexists with dimerization; accordingly, the spin-spin corre-
lations are incommensurate but decay exponentially. The phase diagram for
general spin S has also been studied analytically by bosonization technique
[30] and through the non-linear o-model [31], verifying the existence of both
critical and gaped chiral phases for integer spin.

In this thesis we aim to clarify some aspects which are still obscure or
controversial, both for unfrustrated and for frustrated spin-ladder.

In Part I we deal with the problem of bound states in the standard ladder.
That will also give us the opportunity to briefly review quantum spin chains
and bosonization technique, which is done in Section 2. The standard ladder
is instead introduced in the section 3. There we review the analysis of Ref. [2]
which allows, in the limit of small interchain exchange interaction J, < Jj),
to characterize the ground state and part of the spectrum. Upon taking into
account the residual interaction between singlet and triplet magnon excita-
tions, we study for the first time the bound states which can appear in the
ladder at weak coupling.

Part II of this thesis contains most of our original work. Here we present a
detailed study of the phase diagram of the XXZ frustrated spin-1/2 chain in
the limit J' < J. Using a variational analysis of the bosonized Hamiltonian
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we identify possible phases of the model. In addition to the critical spin-
nematic phase and to the commensurate spontaneously dimerized one, we
find conditions for the existence of a massive spin-nematic region for the
S = 1/2 case. We also characterize the topological excitations which occur
in each region of the phase diagram.

In section 7 we introduce the model and discuss the bosonization ap-
proach. In section 8 we demonstrate how the variational approach can be
applied to the twistless ladder, in which only the dimerization operator plays
a role. Critical spin nematic phase, driven only by the twist operator, is
studied in section 9. The interplay between dimerization and twist operator
and other emerging phases is discussed in section 10 . In section 11 we anal-
yse the ferromagnetic phase dual to the critical spin nematic phase, while
in section 12 we perform an RG approach to study the interplay between
different twist operators at the border of these mutually dual phases. The
last section contains conclusions.

11



Part 1

Bound states of standard spin
ladder

This part is devoted to the weakly coupled standard spin ladder, its spectrum,
ground state and excitations. Special emphasis has been put on the possible
bound states of the ladder, the formation of which prominently changes the
nature of spin-spin correlation functions. Bound states of magnons has been
observed in some compounds [11] in which the interchain and inchain cou-
pling are of the same order. Since the theoretical work is restricted to strong
coupling limit [10], a weak coupling analysis seems to be useful.

12



2 Review of quantum spin chain

In one dimensional (1D) quantum systems the role of quantum fluctuations
is dominant. We consider the antiferromagnetic (AF) Heisenberg spin-1/2
chain

N
H=J Z(Sﬁsﬁ—u + 5’5{8}{“ + AS:S:L+1) (S?\lf—l-l = S7). (1)
n=1

with —1 < A < 1 being the exchange anisotropy parameter. This model can
be mapped to spin-less fermions on a lattice, by means of the Jordan-Wigner
transformation

N 1 ' n—1 _
Si=alan— 5, ST =dlexp[—ir dala), S; =[5 2)
j=1

in which a and a are fermionic operators. As two spin operators anti-
commute on the same sites but commute on different sites, the nonlocal string

operator exp[—im Z?;ll aT-a,j] is implemented to guarantee correct commuta-

J
tion relations. In fermionic language the Hamiltonian reads

My = 2 3 (ehaner + he) + JA S (ehon = 1/2)(ohom ~ 1/2). ()

At the XX-point, A = 0, these fermions are free with

H} = S e(k)alax, (4)

k

where the single-particle spectrum is given by
e(k) = J cos ka. (5)

When the total magnetization is zero, (2) implies that the fermionic model
is at half-filling Ny = % The particle-hole excitation spectrum is shown in
Fig(1). The system is gap-less (critical) so all its correlation functions show
a power law decay and there is no long range order. This can be seen from
the simple observation that < S, >= 0 and < 9,5, >= — L, iz

T2 T (n=m)2 -
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Figure 1: Particle-hole spectrum of the
spin-1/2 AF Heisenberg chain.

2.1 Continuum Limit

At at low energies compared to the band-width J or large distances compared
to the lattice constant, universal properties emerge which can be approached
by an appriopriate continuum limit. It consists in taking J — oo, a — 0
but Ja = vy = constant, so that the original bounded spectrum e(p) will
transform onto two linear branches er(p+ §) = vrp and e (p — §) = —vrp
near the two Fermi points kr = £%. In this limit, the Hamiltonian (5)
becomes

H} = const + y_ pur[R'(p)R(p) — L'(p)L(p)] (6)

[pl<A

in which R (L) is the right (left) fermion near k¥ = 7 (k = —%). The

momentum cutoff A is supposed to be very large. All negative energy states
are supposed to be filled. In the following, any operator is considered as the
normal ordered one, in order to avoid the contribution from the unphysical
infinity of filled and empty states. Associated with the operators R(p) and
L(p) are the slowly varying fields R(z) and L(z)

1 1
VNG 52 VNG p 2
which satisfy the canonical anti-commutation relations
{R(z), RY(a")} = {L(z), L(")} = é(z — =),
{R(z),L(z")} = {R(z),L'(z)} = 0, (8)
in the limit when A — oo. In Fourier representation

an — a[(=4)"R(z) + 1" L(z)]. 9)

14
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and the Hamiltonian reads

HO = —jup / dz[R' ()0, R(z) — L' (2)8,L(z)]. (10)

The equation of motion for the right fermion 8;R(z,t) = —vr8,R(z,t) guar-
antees that for the free right mover R(z,t) = R(z —t) = R(z_). In the
same way L(z,t) = L(z +t) = L(z;). On the other hand as (R(p)R!(p')) =
(p) py one concludes that

1
2m(y~ — 2~ +1id)

i

FEILE) = L) = s ()

(R'(z7)R(y7)) = (R(z")RI(y7)) =

At each Fermi point we define the densities of the right and left fermions
through

Jr(q) =>_ R;T;Rp+q, AOEDS LI)LP+q7 (12)
D Y4

The most striking property of these operators is the so-called anomaly, namely
if we calculate the commutator e.g. of the right-mover density

[JR(Q)a JR(ql>] = Z[R;[)Rﬁ-l-q: R;’Rp'+q'] = Z(R;Rp+q+q' - R;[)—q’ P+q)7

pp’ p

by the shift p — p + ¢’ it seems naively to vanish. Yet, by assuming that
all negative energy states in the infinite Dirac sea are filled, the ground state
average of this commutator turns instead finite:

(FI Ur(@), TR |F) = dgug 0D [na(p) — nplp+q)] = %6q+q’,0-(13)

where n%(p) = 6(—p) is the vacuum Fermi distribution function for the
right-movers and |F) is the Fermi vacuum. For the L-density operators one

similarly finds .
(F| [72(@), J2(d)] |[F) = =580 (14)

Therefore it is not correct that the commutator is zero; instead it is equal to
the constant which represents its vacuum average. In real space the above
equations realize a U(1) Kac-Moody algebra

[JL(z™), Jo(0)] = %5—5($+) [Jr(z™), Jr(0)] = 5%@—5(96") (15)

15



Now we consider the retarded Green functions for the right and left den-
sities defined as

Dp r(z,t) = —i0(t)( [JrL(z,t), Jr(0,0)] )

dPk Nk — N
D — LD -+q ]
(q,w) / @mMPw—e(k+e(k+q)) +1id

(16)

In one dimension this function has a pole structure and represents the Green
function of of one dimensional massless bosons with linear dispersion relation

W = Vg . .
q
D e 17
Rr(0 ) 27w F qup + 10 (17)

The poles indicate that we are dealing with two coherent bosonic modes
which are particle-hole excitations near the same Fermi point Fig(1). Such
bosons are called Tomonaga bosons.

2.2 Bosonization

Now we try to express the density operators Jg ,Jz, and the free Hamiltonian
(10) in term of bosonic fields. The free massless boson Hamiltonian is

Hiums = - [ do [(0:0)° + (0:2)") = v [ da [(Bupn)® + (Bupr)?].  (18)

in which vg is the particle velocity, ® = ¢g + ¢y and I1 = 9,0 = 0,(—ypgr +
wr,) are two canonical conjugate fields with

[&(z), ()] = 6(z — 2')  [®(z), B(z)] = [O(z), O(z")] = 0. (19)

The vacuum expectation values of these fields are given by

fl

(2(@)B(0)) = (O(=)O(0))) = ~ = n ( ; )

)
((®(2)0(0))) = ——2—% arctani: — —&sign z. (20)

If the following relations between right and left fermion density operators
and bosonic fields are assumed

Jn(z) = % wor(@), Ji(z) = %amm). (21)
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then we recover the anomaly (15) as well as the correct equations of motion
(Gt + ’Upam)JR(:E,t) = 0, (ag - T)FB,E)JL(IL‘, t) = 0.

We need also to express the fermionic operator R, L in term of bosonic
fields. The relation is not trivial (see[15]) and we only quote the final expres-
sion

Ri(z) = Vg;ae»cpwa—<1><oc>+e<m>},
L(z) = \/Z%exp[z\/?{wH@(w)}, (22)

Considering (20) the above correspondence will give the right fermionic com-
mutation relation (8) and the fermionic correlator (11).

We can now bosonize the spin operator which according to the JW trans-
formation (2) and the continuum form of the fermion operators (9), is

S,

2 = ala,: — aS*(x),
Si(z) = J(z) + (=1)"°n*(z) (23)
where the slowly varying (smooth) part of the spin density
1

wam@(:c) (24)

JH(z) = JR(:B)-i—JL(x):\/_

while the staggered part is
n*(z) = RY(z)L(z)+ LY(z)R(z) = —7—% sin V4n®(z). (25)

Bosonization of the transverse spin operators S is a more complicated
problem due to the presence of the string operator in (2). The reader can
follow the details in [16], here we just write the final result:

St — aSt(z) = J* + (=1)%°n*(z)

JH(z) = — \/Qlﬁ sin V47 ®(z) expliv/mO(z)] n*(z) ~ _\/ilwa explivTE(26)

(27)

Our last goal is to see how the interacting term : ala, :: a}; £10n+1 ¢ In
(3) transform in bosonization language. Using (23) in the the continuum, we

17



get:
Hipy = vFA/das [: J*(z)J*(z + a) : —: n*(z)n®(z + a) 3. (28)
The bosonization of the first term is trivial and gives : J*(z)J*(z + a) :—

1(0;®(x))?. This perturbation can be absorbed in the free bosonic Hamilto-
nian (18) by rescaling the bosonic field according to

3(z) — /Qb(z), T()— \/—%ﬁ(m) (29)

where @ is a A-dependent parameter. This transformation preserve the
bosonic commutation relation. The exact value of () can be computed by
the Bethe ansatz solution of the X X Z chain:

1
©= 2 — 2arccos(A) /7 (30)
At the X X-point @ = 1 and at SU(2) point we get @ = 1/2.
All together we get
_u 2, 1 2
Hxxz =75 [ du [QI° + 5(2:2)’ (31)

where © = vrp/Q The transformation of the second term in (28) is more
subtle. In the fermionic language this term contain the so called Umklapp
term in which two left movers scatter onto two right movers or vice versa.
The bosonic form is given by

n*(z)n®(z +a) = -——2—(—7—3(1? - cos V161®(z) : .

Adding the above term to (31) we finally get a sine-Gordon Hamiltonian for
which the Umklapp term turns out to be an irrelevant operator, which only
affect the proper dependence of @ upon A. Consequently in the whole region
—1 < A < 1 the spin-1/2 AF Heisenberg chain is in a critical phase described
by a free bosonic Hamiltonian (18)

Taking into account the rescaling of the fields, the spin operators are
bosonized as follows

J(z) = \/Zj-c’?m@(:c), JT(z) ~ —\/21_7Ta sin /47 Q®(z) exp[z'\/zr;(:)(:c)]
n*(z) = ——7% sin 1/47Q®(z), nt(z) = _2 exp[i\/g@(x)] (32)

™a
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where A is a non-universal constant. These relations are valid for -1 < A <
1. At the SU(2) point a more appropriate mapping is needed, see e.g. [17].

Now we can calculate spin correlation functions for the X X Z spin chain.
For the the total magnetization, through (20) and (32), we get:

N
(@) J0)) = —55—- (33)
while for the staggered magnetization
z z 1 x T 1
(n*(z)n*(0)) ~ e (n*(z)n*(0)) ~ Rk (34)
Note that at the SU(2) point @ = 1 and two critical exponents become

equal, as they should .

Finally it is instructive to bosonize the the dimerization field e(z) defined
by
en ~ (—1)"Sp - Spyi- (35)

In the bosnized form it reads

e(z) = ;:—;— cos /4TQ® () (36)
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3 Standard Ladder

A single spin-1/2 chain is critical in whole range —1 < A < 1. The excitations
are massless spinons. The fate of spinons in weakly coupled spin-1/2 chains
is an interesting problem. It is expected that ladders with even number of
spin-1/2 chains are gapped with exponentially decaying spin-spin correlation
functions, in contrary to those with odd number of chains which remain
critical. Two weakly coupled spin-1/2 chain forming the standard spin-1/2
Heisenberg ladder are the best candidates to study the crossover form 1D
spin chain to 2D spin systems. Moreover there are compounds which are
physical realizations of spin ladders, like Cug(CsHioNo)oCly.
The standard ladder is described by the Hamiltonian :

H=J; >, > 8;(n)-Sj(n+1)+J.>_ Si(n)-Ss(n) (37)

j=1,2 n

in which the in-chain coupling Jj > 0 is antiferromagnetic but the inter-chain
coupling J; can take any sign Fig(2).

b----}

Figure 2: The standard ladder with in-
chain coupling J and inter-chain cou-
pling J, .

The strong coupling J, > J analysis of the model reveals the existence
of a spin-gap: in the strong ferromagnetic —J; > J region local triplets
formed along each rung effectively leads to spin-1 AF chain with Haldane
gap. On the other hand, in the strong AF limit a large gap (of order J, )
separates rung spin-singlet from spin-triplet configurations. Remarkably, the
gap persists down to infinitesimal values of J; .

Bosonization approach can be used near the critical point J, = 0 separat-
ing these two massive phases. In the continuum limit the critical properties
of each ladder is described by the free Hamiltonian Hy in (18), which equiva-
lently can be written in term of the total and the relative fields @, = glj—fz.
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In the continuum limit each spin is represented by a smooth (total magnetiza-
tion) and a staggered part, S = J+(—1)"n. The inter-chain interacting term
is taken as a small perturbation. The ladder posseses the parity symmetry
P} ® P or P} @ P? (P and Ps are the link and site parity) which foretells
that the strongly relevant term n; - ny plays the leading role in the low en-
ergy effective Hamiltonian. The slowly varying part of each spin contributes
in the marginal interaction J;.J,. In bosonized form the total Hamiltonian
reads

Ho(z) = % (I + (8:2,)%) + ?r% cos VAT®d., (39)
s 2
H_(z) = %— (Hz_ + (Bz@)_)Q) + W—n;— cos VAT®_ + —7;2}— cos VATO_ (40)
0 0

Here m = %7%2- (A is a non-universal constant) and Hi,; is the marginal
perturbation J; - Jo. The (+) channel Hamiltonian is equivalent to a free
massive Thirring model and can be mapped onto the model of two Majorana
fermions with the same masses (see Appendix). In the same way the (-)
channel Hamiltonian can be represented by two free Majorana fermions this
time with different masses. The total 'free’ Hamiltonian is

H = Hm[f—] + Hap[&o)

= T [ - g o) —im e
+ -5 0.0 - & .8)) + im ehed (41)

The Majorana fermion &y, & describes the singlet excitations and f, £ ac-
counts for the triplet excitations. The interacting term breaks the SU(2) ® SU(2)
symmetry of the decoupled ladder down to SU(2) ® Z, which is mirrored in
SO(3) ® Zy-symmetric real fermions Hamiltonian (41).

We need to express the smooth and the staggered part of the spin operator
in terms of Majorana fermions. Only the chiral components of the smooth
part of the total and relative spin can be expressed locally in term of fermions:

(Sl + 82)]a ~ ieabc(fagbj'_gagb) (42)
(S1 = S2)|* ~ i(€abo + €ao) (43)
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The staggered part of the spin and also the dimerization operator, are non-
local function of Majorana fermions. The dimerization field e(z) defined in
(35) is the forth relevant field of SU;(2) WZW model. These fields can be
expressed in terms of order (o) and disorder () Ising operators [2]:

nt ~ (H10203 10, 011203140, 010'2/13#0)
n~ ~ (01pops00, 10244300, 1 H20300)
€4 ~ Uiflofl3tlo €4 ~ 01020300 (44)

where nT = n; £ n, and ey = €; + €.

The most important feature of the standard ladder is that the triplet
excitations contribute a coherent peak to the dynamical spin susceptibility
at ¢ = m and w = my;. Assuming that J; < 0 the Ising phase of the triplet
(singlet) fermions is ordered (disordered) m; ~ T —T, <0 (ms; ~ T =T, > 0)
so that the two-point correlation functions can be simply read from those of
the Ising model, see (80). (For the singlet the role of ¢ and p is interchanged).
The magnon coherent peak will appear in the correlation function

<n*(r)[n*(0) >~ Ko(|mulr) (45)
which in Fourier space describes a free boson propagator. At the same time
< e_(r)e~(0) >~ Ko(|ms|r) (46)

implying that the an elementary excitation of relative dimerization is a co-
herently propagating particle. For antiferromagnetic coupling J; > 0 the
role of all order and disorder Ising operator are interchanged and the coher-
ent magnon peak is observed in < n™(r)|n~(0) > correlation function and
the coherent singlet peak in < e, (r)e;(0) >.

The triplet and singlet massive Majorana fermions are weakly coupled by
a marginal perturbation

2 aJ
2

aJ, /1 = - o
Hint = == (ér-éz) €r- €1 EREY (47)
which, being the spectrum massive, results in a renormalization of the masses
and velocities. Moreover it can lead to the formation of two particle bound

states depending on its sign as we shall discuss in the next section.
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3.1 Non-conventional Haldane phase

The rung-singlet and the Haldane phases, both with coherent magnons, are
not the only possible massive spin liquid phases. An example of gapped spin
liquid with mass threshold spectrum instead of a coherent peak was proposed
by [3] upon introduction of a four-spin interaction

Heatar = u(S1(n).S1(n + 1)(Sa(n).Sa(n + 1)) (48)

which effectively can be generated from spin-phonon interaction or from or-
bital degeneracy. This interaction leads to the relevant term €;.e; , and
contributes to the renormalization of all the masses equally, reflecting the
fact that the SU(2) x SU(2) ~ SO(4) symmetry of the decoupled ladders is
not affected by it. The free Hamiltonian is now

H@) =23 KHZ +(0:8,)7) + % - M@S}

2 s=+
?:'Us v v v v : VeV
= {—_( r Ou€p — &L 0u€1) —im fRfL] (49)
v=1,2,3,0 2

in which m = u\?. We can’t distinguish between triplet and singlet due to
SO(4) invariant symmetry. Besides the four-spin interaction contributes the
marginal interacting term

V#EL
anmu
7_{scala'r = §Z— E : f’fz&fﬁfg
T u=1,2,3,0

to the Hamiltonian, which comes from the smooth part of the spin (see
appendix 3).

Including the four-spin interaction, from now on we consider the general-
ized spin ladder in which the mass of fermions are given by

Ji\? Ji N2
=S =u/Jy) me= =3+ u/ L) (50)

™ ™

my

and the total interacting terms will be:

a(J, —u/6) /= =~2 a(J.+u/6
'Him&:"“"‘—““““(J_4 /)(§R€L> “"‘_—“_—‘(lz /)
As long as myms < 0 we are in the rung-singlet phase, but for myms > 0

the role of four-spin term is dominant and the properties of the system change

€n - € €362 (51)

23



Figure 3: The phase diagram of the general-
ized spin ladder.

drastically. Fig(3). The phase transition is either a Kosterlitz-Thouless tran-
sition (the line of m; = 0) or an Ising one (the line of my = 0). In the
dimerized spin phase the degenerate ground state of the Hamiltonian breaks
the translational invariance and is characterized by long-range dimerization
ordering along each chain either with zero or = relative phase ¢; = ey de-
pending on the sign of the fermion masses. When the triplet and singlet
masses are positive, all Ising models are disordered so that

e—2]m|r
< e(r)es(0) >= ClL + O(—5—)] (52)
while, when all fermion masses are negative, the role of e_ and €, is inter-
changed. The ground state is shown in Fig(4).

The important feature of this so-called non-conventional Haldane phase
(or dimerized spin liquid phase) is that the elementary excitations are neither
coherent magnons nor massive spinons but propagating massive singlet or
triplet kinks. This shows up in the correlation functions of the total and
relative staggered magnetization

< nt(r)n™(0) >~ Kg(myr) < n(r)|n~(0) >~ Ko(myr)Ko(msr). (53)
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Figure 4: The in-phase (the above fig-
ure) and alternating-phase (the lower
figure) vacuum state of the dimerized
spin liquid.

So at ¢ = 7 the total and relative spin correlation functions have singularity
at two mass thresholds s = 2|m;| and s = |my| + |m;| respectively [3]:

0(s — 2my)

gX-F(w)W_Q)N o > 5
myy/w? — ¢% — 4dm;

9(5 — My — M)

Mgy/w? — g% — (my + ;)2

Sx—(w, m—¢q) ~

3.2 Bound states in the standard spin ladder

Now we turn to the task of finding the bound states in the standard ladder.
Bound states of two magnons has been predicted theoretically [49, 10, 50, 51]
in the strong coupling limit of the standard ladder J, >> J by mapping each
spin into triplets and a singlet creation and annihilation operators. These
bound sates have been observed in the optical spectrum of (La,Ca);4CugqOyy
[11]. Here we derive various bound states of the standard ladder simply
by using Majorana fermions representation of the model (41) in the weak
coupling region. Moreover we show in which correlation functions the bound
states peak is expected to be seen. In the neutron scattering experiment, the
scattering cross section is proportional to the dynamical structure factor.In
the case of spin ladder this is given by

12 s .
§%(q,01,0) = 7= > 5 / de™teiatnmm)=iao=h) < ga | GF

b: 'I’Lm._

(55)
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Information about the low-energy part of the spin fluctuation is contained in
the smooth (g ~ 0) and the staggered (¢ ~ 7) parts of the structure factor
both for the total ¢, = 0 and the relative ¢, = 7 spins.

To this end we need first to identify those correlation functions which
are singular near the mass threshold. In the appendix we have discussed the
case of simple sine-Gorgon model consisting of two Majorana. The discussion
can be easily generalized for the non-Abelian O(3)-case (41) which we are
dealing with. So the first group of two-particle propagators consists of those
involving two triplet fermions and have the singularity at s = 2|m;|. The
second group deals with one triplet and one singlet fermion so that it is
singular at s = |mg| + |m.|. Let first enlist the first group:

e The total spin density is defined in (42) and its correlation func-
tion corresponds to the structure factor (55) at ¢ = 0, ¢, = 0. The bare
correlation function is given in (94) and near the s = 2m = 2|my| is

R, ~ q27;12 f(s < 2m)
S VP g -
2¢*m?
S —dm?
The vanishing of x, at ¢ = 0 reflects the fact that the total spin density is a
conserved quantity (the global SU(2) symmetry of the Hamiltonian). This

result is reported in [2].
e The dual of the total spin density (42) is

J* ~ 1€%(Ea6p — Eap).

and defines the parallel spin current (or vector chirality order parameter)

Smy,p(w, q) ~ (56)

Jj ~ S1(n) x Si(n+ 1) + Sy(n) x Sa(n + 1). (57)

The z-component of this function is (jﬁ ~ 0,0.). The correlator of spin
current is given in (94) and its real part singularity reads as

w?m? 1

s3 Am? +¢* —w?

As the total current is not a conserved quantity, it will not vanish at ¢ = 0.
The bare correlation functions of total density and current are related to each
other by continuity equation (95).

Rixs] ~ (58)
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e The third singular correlator at s = 2|m;| consists of any two different
triplet fermions with opposite chirality:

iﬁabc(gagb + gaéb) . (59)

The z-component of (59) is sin V4w ®, ~ i(£,€; + £1&5), so is expected to be
one of the singular correlators of sine-Gordon model. Its propagator is given
in (98) and below the threshold its propagator behaves as

m2

Rixome] ~ =0t (60)
The function (59) can be assigned to
(S1(n) - S1(n +1))82(n) + (S2(n) - 82(n +1))S1(n)
= €Ny + €Ny ~ €4Ny —€_N_. (61)

In the case of rung-singlet and Haldane phase the above function is a three-
spin correlation function. However when we are in the non-Haldane phase
according to (52) the propagator of (61) effectively reduces to the correlation
function of total staggered magnetization < n;(r) | ny(0) >, namely the
structure factor at ¢ = m, g, = 0. So in the dimerized spin liquid phase one
gets the result of Ref. [3] for Sx4(w, 7 — q) (54).

The second group of singular two-particle propagators, contain one triplet
fermion and one singlet one. In the rung-singlet phase these two Majorana
fermions have different masses and opposite sign. By the duality transfor-
mation

f—o — —f_o o — O_ (62)

the problem of the sign can be resolved and now we can use the results of the
appendix but keeping in mind that the role of sin/47©_ and sin VATrd_
is interchanged and moreover the duality transformation changes the sign
of singlet-triplet interaction in (51). Obviously in the non-Haldane phase
no duality transformation is necessary. In both cases the singularity can be
observed at s = |m;| + |m| in the following function:

e The relative spin density defined in (43). The propagator is given
in (111) by x,. Note that in general the relative spin density is not a con-
served quantity, obviously because the spin-spin interaction J,S5;.5; breaks
the SU(2) x SU(2) symmetry of decoupled ladder down to the global SU(2)
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symmetry. In contrary to this the four-spin interaction €;.€; leaves this sym-
metry intact and only in this particular case (J, = 0), in (111) one can set
A =0 and x, vanishes at ¢ = 0 and the relative spin density as well as total
spin density is conserved.

e The dual of this function, i.e relative spin current

S1(n) x S1(n+ 1)|* — Sa(n) x Sa(n+ 1)|* ~ i(&éo — &) (63)

which its correlator is given in (111) by x;. This is also not a conserved
quantity except at the the special point

le ~ 111.10] — €1€9 (64)

which corresponds to setting m = my +m, = 0 in ;.
e The transverse spin current

3i ~ 81 x Sp|* ~ i(ﬁof_a - f_oﬁa) (65)

shows a singularity in its correlation function, only in the rung-singlet and
Haldane phases. The z-component of the transverse spin current is sin /470 _.
The correlation function is given in (112). In the non-Haldane phase this
propagator is not singular and just shows a square root threshold.

e The three-spin function

(S1(n) - S1(n +1))Sa(n) — (Sa(n) - S2(n +1))S;1(n)

= €1Ng — €N ~ E€_Ny —€E N v i(fof_a + f_ofa) (66)

has a singular propagator only in the non-Haldane phase. In this phase from
(52) one infers that the propagator of this function effectively reduces to the
structure factor at ¢, = 7 and ¢ = 7, namely < n_(r) | n_(0) >. So one
arrives at the result of (54).

How two-particle interaction modifies those correlation functions 7 In
(51) the two lines at which the signs of two-particle interaction terms change
are not those which separate rung-singlet phase from dimerized spin liquid
phase. To avoid complication here we study the extreme case of each phase:
in the rung-singlet phase we assume that |J;| > |u| and in the non-Haldane
phase we assume that |J,| < |u| but still both weak compared to Jj. Let
us start from the rung-singlet phase with antiferromagnetic interaction [area
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(A) in Fig(3)]. In this phase as a consequence of triplet-triplet interaction
a bound state can be formed below s = 2|my|, so the singularity in the
correlation function of total spin density (42), S**(g ~ 0,q,. ~ 0,w), total
spin current (57) and also (61) will be removed in favor of a coherent peak
followed by a nonsingular broad continuum Fig(5). The same is true for
those propagators which are singular at s = |m;| + |m,| namely the relative
spin density (43), S**(q ~ 0,q. ~ m,w), the relative spin current (63) and
the transverse spin current (65).

The situation remains almost the same deep inside the dimerized spin
liquid phase with u < 0 (area (B) in Fig(3)), but instead of transverse spin
current (65) we must consider (66).

In other two extreme cases namely inside the Haldane phase with fer-
romagnetic inter-chain exchange (area C) and dimerized spin liquid phase
with u > 0 (area D) no bound state can be formed and the above mentioned
function keeps their singular character.

o
=

s=2m 5

Figure 5: The bare singular correlation
function at s = 2m (dashed line). In
the presence of the interaction, instead
of singularity a bound state will appear
(solid line).

Now we try to present a simple physical picture of the low energy ex-
citations. We start from the dimerized spin liquid phases. In the dimer-
ized ground state the excitation are kink-like which connect two degener-
ate vacua as shown in Fig(6). As at the position of each kind ¢; — —¢;

and € — —€g , or equivalently ®y9y — ®Py9) + (/7/2, we have either
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o, - O+, O - P_or & — d_+ /7, &, — P,.. In the ex-
treme case J; = 0 according to (49) this correspond to a soliton kink either

in the (+) or (-) channel sine-Gordon model respectively. In the first case
we have a kink of total spin AS% = L [A®_dzr =1 and in the second case

™

a kink of relative spin AS* = _1\/? JA®_dz = 1, Fig(6). Assuming a peri-

«—» 5§ e« e »

e ¢ e« e »

—>» 4 e >3 e«
e 4 e—» o

Figure 6: The kink excitations of
the in-phase dimerized spin liquid
(the above figure) and the alternating
dimerized phase (the lower figure).

odic boundary condition the kinks can appear only in pairs and, as long as
the interaction is not considered, they propagate freely without making any
bound state. However, in the in-phase dimerized ladder a small attraction
between kinks and anti-kinks in the (4) sector confine them and creates a
bound state at s < 2|m;|. In the same way, a kink anti-kink pair in the (-)
sector binds at s < |my| + |ms|.

A very similar picture can be seen the rung-singlet phase. The kink
excitations are schematically shown in Fig(7). The ground state of the rung
singlet (Haldane) phases consists of n;+ny (n; —n,) singlets, similar to e; %es.
The kink excitations are shown in Fig(7. An antiferromagnetic inter-chain
coupling can bind a kink and antikink excitation only in the rung-singlet
phase.

3.3 Conclusion

We have studied the generalized standard spin ladder in which, besides the
inter-chain exchange coupling J, , the four spin interaction (48) with strength
v is included, both of them in the weak coupling regime u < Jjj, JL < Jj,.
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Figure 7: The triplet excitations in the
rung-singlet phase (the above figure)
and in the Haldane phase (the lower
figure). Along the line spins have a ten-
dency to form singlets.

The spin ladder can move from rung-singlet or Haldane phases towards spin-
dimerized phases, either through the Ising transition line 3J, +u = 0 or
through the KT transition line J, — v = 0. We have shown that deep
inside the rung-singlet phase with antiferromagnetic inter-chain coupling and
deep inside the in-phase dimerized spin liquid, with v < 0, bound states of
total and relative spin-1 excitations appear respectively below s = 2|my|
and s = |my| + |ms|. For ferromagnetic coupling, J; < 0, and for v > 0
one instead observes a two particle mass threshold singularity at those two
values in accordance with Ref. [2].
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4 Appendix I: Quantum Ising chain

The quantum Ising chain is the 1D Ising model in a transverse magnetic field:
N

Hlo] = —J 3. (0307541 + M%), (67)
n=1

By duality transformation:

#fz+1/2 = H?:W?a wal/z =0,0m11 (68)

we equivalently get

N
Hip) = —-J Z(Aufb—l/QﬂfL+1/2 + Hint1/2) (69)
n=1

Comparing to (67) we see that H[o,\] = AH[u,1/)\] which implies that
Ac = 1 is the self-duality critical point. So A < 1 is the ordered phase in
which < 0% ># 0, < p? >=0 and A > 1 is the disordered phase in which
< pf >#0, <o >=0 and near the critical point the mass gap is

m(\) ~ |1 = X ~ |T - Tu|/T.. (70)

The Jordan-Wigner transformation

n—1
0% =2afa, —1, o = (=1)"explir Y ala;)(afan) (71)
j=1

transforms the model onto
H= ;{J(C’L - an)(aLH +anq1) — A(Cl:f1 — an)(ajZ + ay)]
By introducing the real lattice Majorana fermions:
(o=l +an 7= —i(al, - a5)
the Hamiltonian transforms to

H = iZ[Jnn(<n+1 - Cn) - (A - J)%Cn]
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which in the continuum limit is
H = [ dsfion(2)8.¢ (w) — imn(z)( (@)

Here 2Ja = v,2(A — J) = m and the continuum fields 7, = v/2an(z), (, =
Vv2a((z) satisfy the anti-commutation relations

{n(z),n(z")} = {{(2),¢(z')} = é(z — ), {¢(=),n(z")} = 0.
Finally by introducing the chiral Majorana £z = (n—¢)/v/2 and &, = (n+¢)/V/2

we arrive the free massive Majorana Hamiltonian

H(a) = (€101 — Endutn) — imEnt ()

in which m is given in (70). As Majorana fermions are real the Fourier space
of the fields is restricted to k > 0 and &(k)! = £(—k).
The Green Function of Majorana fermion is given by

o = (582 2662)
_ 1 (ie.+k, —im ) (73)

Yet our goal is to map the bosonic operators which appear in the sine-
Gordon model onto Ising-like operators. Since the bosonic fields are related
to Dirac fermion fields, we start by writing a single Dirac fermion ¢ = (R, L)
in term of two real (Majorana) fermions

_ &(z) +i6(x)
1%)(»’6) = \/§

As the Bosonization of Dirac fermion is know one can write

€(0) +iE¥@)les = o=

where « is the short distance cut off of the bosonic theory. The chiral currents
are expressed as

0:® = IVT(EREn + €167), 8.0 = ivm(—ERER + £1£5) (75)

exp[+Pg 1(z)] (74)
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The mass bilinears RIL = —--2;;1—& exp|—iv4r®] and RILT = 5%5 expliv4r )]
is written as

cos V4D = ima(E2€7 + £RED)

oS VATO = ima(E4E2 — €LEL)

sin V4T® = —ima(ELE2 + £1€2)

sin VArO = ira(ELe2 — €1€d) (76)

The important relation between the sine-Gordon model at $? = 47 and free
massive Dirac can then be established as

Mar(d) = H(z) = 2 3 (3083 — £40:E8) — iméhes

a=1,2

Hsg = ?zi[(am@)z + (D)2 — % cos VA d(z) (77)

Now we are able to fully exploit the relationship among the quantum Ising
chain and the sine-Gordon model[2]. We start considering the sine-Gordon
model Eq. (77) in the disordered phase, m > 0. In the Ising language that
implies < 07 >=< g5 >= 0 and < p; >=< py >+# 0, which translated into
the sine-Gordon language means < cos/7® ># 0, < sin/7® >=0.

On the contrary, in the ordered phase, m < 0, < 07 >=< 03 >#£ 0, <
p1 >=< py >= 0 and equivalently < cos/7® >= 0, < sin/7® >+# 0.
Therefore

0109 ~ Sin/T®, g ~ cos/Td. (78)

By making the duality transformation
®—0, tp— € 1< m

we get
U1y ~r SINA/TO, oy ig ~ cos/TO (79)

The correlation function of noncritical T' > T, Ising operator in long
distance |m|r — oo is given in [48]:
<o()o(0) >~ Allt g™ < p(r)u(0) >~ ZKo(hmir) ~
8w (mr)? T

(80)
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in which the Mac-Donald function Kq(|m|r) is the real space propagator of
a free massive boson

1

Hollmir) = e
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5 Appendix II: Breathers in the sine-Gordon
model

Theé sine-Gordon model (77) contains quantum solitons and antisolitons in
its spectrum, in the massive region #% < 87. Below the Luther-Emery point
(3% = 4 the bound states of soliton and antisoliton, known as breathers can
be formed with the mass spectrum

M, =2mssinmvn/2 n=1,2,.,<1/v (81)

in which m, is the mass of a soliton, and

1 8«

S E 1. (82)
The number of the breathers and their masses depend on 5. We are inter-
ested, in the vicinity of Luther-Emery point, when only the first breather is
present. It’s well known that exactly at this point J[< sin S | sin P >]
shows a square root singularity at the two-mass threshold s = y/w? — ¢? = 2m.
Below (32 < 47 the first breather mass show itself as a coherent peak in this
correlation function slightly below the two mass threshold and moreover the
singularity will disappear. The fact that the first breather is odd under
charge conjugation can explain why the the breather peak must be searched
in the correlation of sin §® operator: if the correlation function of the opera-
tor @ is going to show an excitonic pole, then its expectation value between
the vacuum and the first breather state < 0|O|B > must be nonzero which
is valid only for odd operators like sin 6, the density operator p and the
current operator J.

Here we discuss that the appearance of the first breather mass can ex-

plained using the particle-hole (soliton-antisoliton) content of the model and
and their interaction. To this end, by first rescaling the fields

|47 | B2
one maps the sine-Gordon model to

H = Z((8,9)° + (8:0)°] = —cos Vir® + ;2 [(8:2)" — (8.6)

4 do
— =14 =, 83
B2 + T (83)
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in which gg is a small parameter which goes to zero at the Luther-Emery
point. The first term describes the model of free fermions (77) and go-term
plays the role of small interacting term. Written in the Majorana fermion
language the interaction is

Hint = —2g0&1&26182 (84)

At 3% = 47 (or go = 0) the model consists of free massive fermions. In
the whole region 47 < % < 87 for which the interaction term is attractive
go < 0 no bound state can be present. In contrary when £? < 4 the
interaction between massive fermions is repulsive go > 0, implying that the
solitons (particles) and antisolitons (holes) can attract each other and form
breathers. Note that from (81) and (82) for small value of gg the first breather

mass is given by
2

M; =2m,(1 - %9) (85)

which shows that the difference between the breather mass and soliton-
antisoliton mass 2m; is of the second order in gy. The interaction will also
re-normalize the single soliton mass m; which in the first loop approximation
gives ms = my(1+ 2L In mﬁs) We assume that this correction is already taken
into account in the fermion mass. Below we first calculate those two-particle
correlation functions like density-density and current-current which show a
singular behavior near the two-mass threshold. Switching on the interaction
we keep the most divergent terms in the RPA perturbation series of these
propagators, and show that the first breather appears as a true pole of them.

5.1 DBare propagators

From (75) density-density correlation x, = £ < G,®(0) | 9;®(z) > and
current-current correlation y; = = < 8;0(0) | 9,0(x) > are given by

Xopg =< >+ k< >=D+D+2C.  (86)

For free massless fermions these two correlations are the same and is just the
sum of two anomalous terms in (17). This is because the Hamiltonian of the
free fermions (6) is invariant under independent U(1) ® U(1) transformation

R — e ®RR [ — eor], (87)
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which implies that the right and left current density Jg, Jr are independently
conserved and so the continuity equation does not distinguish between the
density and the current:

Op+ 0 J =0+ Gpp+0;J =0. (88)

The mass term m(R'L + L'R) violates independent chiral-currents con-
servation. Now (87) is valid only if ag = a1 and so only the total density
is conserved. In this case as pp — JJ is Lorentz-invariant we first calculate

—x;=4C = 4< .. Using (73) we get

C =< = —mx (59)

in which x can be written in a compact form

_ 1 pidntd
X =T 5 — 5

where s? = (iw)?—¢?, s, = \/(iw)2 —4m2 —¢?and §,, = \/4m2 + g% — (iw)2.
The real part of it is given by

—s- tan” 1(s/§m) 5§ < 2m
R ~ - — e " tanh~ Ysm/s) 2m<s
(90)
which is singular when s goes to 2m from below
1
R[x] = “oes. °T 2m (91)

while the imaginary part is singular when s approach the two-mass threshold
from the above 2m — s

0(s — 2m). (92)

(v A
Sx 283m

The chiral graph D = <___> and its dual D = - are not Lorentz

invariant and contain anomalous term:

D= >=—o eIy

27r1w+q w+q
— o 1 i
D=l 2
2miw — q w—gq

(93)
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The mass correction (second term) contains the singular function y. Now
the bare density-density and current-current propagators can be calculated

Xo =< 8ay | 80y > < >+ b TS

= ;rg;-(l + 4mm?x)

X =< 804 | 004 > < >+ TS

- 7r32(1 4 >247rm ) (94)

The vanishing of x, at ¢ = 0 reflects the fact that spin density is a conserved
quantity. The total spin current is not conserved and so it does not vanish
at ¢ = 0. The current-current and density-density correlation functions are
related to each other by continuity equation

w*x, — ¢*xj = ¢°/m. (95)

Note that the ’shift’ term g2/ is originated exactly from the anomaly term.

From (76) the correlation function of xsing =< sin vV4r®(z) | sin v47®(0)
and Ysing =< sin V47O (x) | sin/47O(0) > is:

Xsin ¢/ sin 9 "’A—f—'\;/:t/j/ \ (96>

Obv1ously < / = —<':"j:> = —C so we need to ca,lculate only L =

2 2 2
L=< >=—tf2+ "0y (97)
with £ = %1n-7j7\—1. So
Xsing = 2(L+C) = —£ 4+ 52 x
Xsing = 2(L —C) = —£+ s2x (98)

Note that as near the threshold x ~ 1/§,, the correlation function xsin g shows
only the square root threshold ${xsing] ~ V2 —4m?. In contrary to this,
Xsing Shows a square root singularity $[Xene] ~ 1/vs% — 4m? near s = 2m.
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These are the bare graphs which appear in different propagator of physical
quantities. All of them are even function of incoming momenta (w, ¢) and in
each of them the chirality of two incoming fermions is either intact or both
changed. In the perturbation series one encounters new graphs which are
odd function of (w, g):

1
R=_>=_0=-_>==">=—5im(w-q)x
= <\\&/ = < = "’\\4_“," = —(\ ...... o= —--—2-1m(1w + q)x

As it'’s clear from the structure of these graphs they connect the current-
current type diagrams to Lorentz-invariant type like Xsin ¢, Xsino-

5.2 Perturbation Series

We have identified all singular propagators of the sine-Gordon model. Now
we switch on the interaction and calculate the above correlation in RPA
approximation. In the perturbation series keep only the most singular terms
and drop the rest, so in the n-th order only g"x™ terms are retained and for
example g""1x" is neglected.

We rewrite the current-current interacting Hamiltonian (84) as

Hint = —g€abr6rés
Note that in compare to (84)
9= —290. (99)

In general considering two Majorana each with two chirality there are 16
graphs and so 16 equations. But obviously some original symmetries of the
bare graphs must be restored to the end. Consequently they can be classified
to four different and independent groups. The first two groups contain full
graphs of the current and density operators :

O+l <>+QQ( - g(\/@~g\
gl D> el

T O+ D> S+l




ot O e

and its dual:

The next two groups contains Lorentz-invariant full graphs, from which
the correlation function of the sin v47® and sin 47O can be derived:

‘ > >= 0
=9 oA =9 X ool g o o= >

By interchanging & + &; we get

-

gk o X g X oe o=

These equations can be written as
M.X = Xy (100)

in which X contains all sixteen graphs and M is a 16 x 16 matrix, but block
diagonalized, each block a 4 x 4 matrix, all are related to each other by a
unitary transformation. So basically we need only one of them, let say the

first group. By defining O =D, <:> =C, /> — —R,, \> _
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—R,, the dressed graphs X = (D, C, Ry, Rz) can be expressed in term of
bare correlators X = M~ - X, in which

14+9C gD  —gR —gR
gD 1+9C gR, gR:

M= i (101)
gR1 "QRQ 1+ gC’ —gL

gRy —-gR,  —gL 1+4+gC

The inverse matrix can be found and from that the full correlation functions
is derived:

L + O — Xginﬁ
1+9C+gL 1+ gx%e

_g+ (1+gC —gL)(D+D —2C —2/g) —2g(R+ R)?

Xsing = 2

X =y Q
2 (14+9gC—gL)(D+D+2/g+2C)—29(R— R)?
XJ=——"+
g Q@
1 (1+g¢C)?—-¢°DD
(sing = —— + 102
Xaimg =~ 20 (102)

The propagator of xsing has a trivial RPA form which could be derived
simply by subtracting two first equations of the third (or forth) group. This
function doesn’t have any pole because near the mass threshold L + C = f—gu
doesn’t show any singularity. All other three correlation functions have a
common pole. The function @ is the common denominator of all of them
and is given by:

Q = (1+9C—gL) (1 + gC)* — g?DD)+2¢* (9DR* + gDR? + 2(1 + gC)RR)
(103)
Actually det|M| = (14+9gC+gL)Q. As there is no singularity in 1+¢gC+gL =
1+ gfgmx this factor is not important.
Now we will show that ) is only the first order function of gx. Keeping
only the singular terms g"x™: perturbation

(14 gC)* - ¢*DD ~ 1 — 2gm*x
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2

1—|—gC’—-ngl-—g%—X

2

¢*DR* 4+ ¢ DR* + g*2RR(1 + gC) ~ —g2m2%xz.
Finally ,
% +4m
@~ 1— g5 =1 (s )y (104)

The position of the pole is given by @ = 0. Note that near the mass threshold
R[x] < 0, for go < 0 no pole exists. For go > 0 the pole is located at

s* = 4m?*(1 — g3) (105)

in agreement with (85).
The bound state coherent ¢ function will smear out the square root sin-
gularity of the singular correlation functions:

2, 9@ +dmmix - 95%)

Xp = 7s? 2T Q@
2 (1= -2)(1 52 w? 4 2
zij(~%(—@ﬂﬂ%?~wwmﬂ
XJ ) 0
$2x(1 + g2 e
Xsing = X 54ﬂ“ (106)

We demonstrate this only for the xsns as an example. The pole at @ = 0
contributes a ¢ peak to the imaginary part of ysng for s* < 4m?. However
for s? > 4m? the imaginary part of the correlation is given by:

s?|x|
14 g2(£Ema)2|y |2

%[Xsin qb] ~ 9(5 - 277’2,)

which near s = 2m is

835,
2.2 9/ 52+4m2\9
s2sZ, + g*(=5™)

%[Xsin(ﬁ] = 9(5 - 2m) (107)
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which indicates that near the threshold, instead of square root singularity,
this propagator shows a square root threshold. Fig(5).

The same is true for x, and x;. Moreover in the presence of interaction
the continuity equation reads:

O.)2

T gonXe 4 (1 =gom)x; = ¢/ (108)

e Duality Transformation It’s instructive to see what happens if we
make the duality transformation ® — ©. First in the Hamiltonian (83)
instead of the mass term we have the superconducting term (R'L! + LR)
which now reduce the U(1) ® U(1) symmetry (87) to U(1) symmetry ag =
—ay, and so this time only the total spin current .J is conserved. On the other
hand we expect that this time ygng will be the singular function instead of
Xsing- Lhese two expectations come true if we note that as the consequence
of duality, £&; — —&; and so only the sign of C' graph will change C' — —C.
Moreover this transformation changes the sign of the interacting term in (83)

Jgo — —Jo-

We should repeat above calculations when the mass of two fermions are
different. This is useful because in (41) beside the CDW term m cos v/47®_
the superconducting term A cos v/4w©_ is also present. In term of Majorana
we have two fermions with different masses:

2

Z(gaamfa - gaamga) - imagaga

a=1

mi=m+A, my=m-—A (109)

U
1—

H =
2

We assume that A < m so both Majorana have positive masses, if not we
just need to apply the duality.

Clearly the RPA is intact and only the bare propagators had to be re-
calculated. First we derive density and current propagator. The Lorentz
invariant part of them (the graph C) is given by

2 _ g2

- S bt
<:,,I> =(C = —mimgx = m—4—X
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The singular function y is

ngl tanh™ (55 /5) 8 < 2A < 2m

Sm

RIX]~ —| 7oz tan™'(sa/3m) 2A < s < 2m
——mism tanh™!(s,,/54) 2A<2m <s
(110)
the singularity is near s = 2m (x — 5-).
The chiral graphs read
g 1 iw—g mA m+A ~mish + A?s?
D= S 1 m
<> 2riw+q w+q s? nlm—AH_ 52 X)

_ . 1 iw+qg mA. m+A  m’sh + A%
== (i T AT S
m—A s?

T 2Miw—gq  w—gq s
which lead to the following result for the current and density propagators

m2q?s% + A2w?s2, q°
Xp ™ 54 52
o TS BT e O ()
X7 54 782

None of these propagators vanishes at ¢ = 0 and the continuity equation
is not valid anymore as the U(1) ® U(1) (87) is broken totally by mass
and superconducting term. The bare density-density and current-current
propagators (111) have singularity at s = |my| + |mg| = 2maz{m, A}.
To calculate Xsing¢ and Xsino We need
0 1 0 s +s%

TN = T = D22 2 2y, _ _~
S - L 2 2( 2m 2A)>\, 2+ 4

Xsing = 2(L + C) = —{+ 872nX Xsing = 2(L - C) = —{+ SaX (112}

sofor A <m (A >m) only Xene (respectively xsmg) is singular at s = 2m

(at s =2A).
Lastly we need R; and Ry:
im . _ im .
=Ry = =P w —qx <= Ragy = 2w + )
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In the perturbation series only the most singular terms g”x™ has to be
kept:

> 2 — g2 Am2A2s2 2
(1+9C)?—¢*DD~1+ 295”14—%)( _ gzxgﬂs_jm—s‘é
(14 g0)? — PL2 m 1 — g%y TZA+29 n A,

2
@PDR? + *DR? + 2¢?RR(1 + ¢C) =~ —92%X2 — PA2s2 P

_ _ _ 2
@PDR? + *DR? — 2¢? RR(1 + ¢C) ~ +¢*2- 2 — ¢*m?s2x°

16g*m?A?R2R? = g'm? A2ty
The determinant of M is given by

Q= ((1 +gC)? - gQLz) ((1 +gC)? — gzDD> + 16g*m2A?R?R?
+2m?(1 + gL + gC)(¢°DR? + ¢°DR* + 2¢*(1 + gC)RR)
—2A%(1 — gL+ gC)(¢®*DR* + ¢®*DR? — 2¢*(1 + gC)RR) (113)

This function can be simplified as:

s% (8% +4m? 8m2A%(s? — 2A2
0 (1-gBUti], ol —2a7) )
s s
2 (g2 4 AA2 2A2(g2 _ 92
x <1+gs’”'ﬂ(82:2 )x-928m (22 i )x2> (114)

When A — 0 the second order term x? vanishes and the first line reduces
to (104) and the second one becomes a non-singular propagator Xsng. De-
pending on the ratio % this function can have a pole for only one sign of
g. Here we assume that A < m then the pole near the mass threshold

s=my+my=2mis (g =—2g0)

§? = 4m? (1 —ga(1+ m» (115)
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6 Appendix III: The bosonized form of four-
spin interaction

The relevant part of the 4-spin interaction is given by:
(51882 8) = (=i
Ta

(S is S(n) and S’ is S(n + 1) ) which has the bosonized form:

9
T 2022 QCOSV Py cos V2P, = oy 22 5 2(COSV47T<I>++COS\/ 7®_)
In term of Majorana it reads

9

T a2 27’a

(fofo + Eé
The marginal term is given by
(S1- S&)(Sz ) Sg) = (M; - M’1)(M2 ) Mlz) =

in which M = J + J is the total magnetization. We just need to calculate
the z — z component interaction and then use the SU(2) symmetry to drive
the rest:

MEM? = (JF 4+ TYJF 4 JF) = JAJE 4+ JEJ7 + JEJF + TP U7

Using the relation

1 1 = - 1
3 3 _ 305\ T3() —
J (Z).] (w) - {2 (Z _ w)z ) J ("‘)J (’UJ) {72 (2 1D>2
we get: )
- + — 8 molm qb
From this one concludes:
3 1 - 2
M; M, = ——— + =0,0:0;¢7 — —— V871 d
1 1 An2a2 + Wé? ¢>18 (251 (27TCL)2 cos V8w
so that
3 1 - 3

! ! 1 I

(= 4m2a?
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= o (001 + i+ |
_ _ﬁ% (804 + 6208 (Bs +6-) + Bu(bs — $)0u(s —F) +.. ]
3

1 - _
= T Iran ]:8$¢+am¢+ + Opp_Onp_ + .. }

in which ellipsis represent the transverse components.
In the fermionic form
3 . S _ -2
(M- M}) (M - Mj) = Py [51525152 + £2836283 + £3€18361 + €0 - 50]

In whole we have

X = o
k(S1-S7)(S2 - S5) = ui(%)@&,gﬂ —£-§)
+%§(§1§2§_15~2 + Golsbols + &6EE) + aftol - &) (116)

9%
w2a?2 "

in which u =

Now for comparison we do the same for S; - S, interaction. The marginal
term is given by:

1 - _

- %%[az(m F$)00(e — B_) + 00y — $_)0u(Bs + 3)]

— _1_ x Iy _ _£1€2'§1£_2 - 63605350
- 27T (a’n¢+az¢+ 8a:¢—8m¢—) - 2

So =z ==
”515251522— £2€382ls EabrEady + g&)g‘ &

Ml'M2=

The relevant part is simply:

A2 1 1
n - ng = (cos VATO_ + 5 cos Vard_ — 5 cos Vard,)

w202

——

i)\Z _ -
= — 3 —
27ra( oo — &£)
Adding this contribution to the four-spin term we get (51).
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Part II
Ordered phase of XXZ-zigzag
spin-1/2 Heisenberg ladder

In this part using bosonization approach, we derive an effective low-energy
theory for XXZ-symmetric spin-1/2 zigzag ladders and discuss its phase dia-
gram by a variational approach. A spin nematic phase emerges in a wide part
of the phase diagram, either critical or massive. Possible crossovers between
the spontaneously dimerized and spin nematic phases are discussed, and the
topological excitations in all phases identified.
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7 The model and its low-energy limit

We consider a frustrated spin-1/2 Heisenberg chain with 2L sites, described
by the Hamiltonian

2L
H= 3 S [J588%, +JaS2 58], (117)
a=z,Y,z n=1

where

Je=J,=J>0, J,=JA,
Jo=J=J >0 J =JA (118)

In what follows, A and A’ will be treated as independent anisotropy param-
eters. Upon the transformation

S2n - Sl(n)u SQn-H - Sz(’l’b),

the model (117) is mapped onto the zig-zag spin-1/2 ladder Hamiltonian

L
H= 5 Y LSmsin+1)

a=z,Yy,z n=1 z=1’2

+ 3 > T[S (n) + SE(n+1)] S5(n) (119)

a=z,y,Z 1

Figure 8: The zigzag ladder with in-
chain coupling J and inter-chain cou-
pling J'. For small J it can be viewed
as a single ladder (along the dashed
line) with next nearest neighbor inter-
action.
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Let us discuss some general properties of this model. In the limit J = 0,
(117) describes a standard Heisenberg antiferromagnetic chain where the
spin-spin correlations are modulated with wavevector ¢ = 7. On the contrary,
when J' = 0, the equivalent model (119) describes two decoupled spin chains.
The modulating wavevector in this case is ¢ = 7/2. When both J and J’'
are finite, we may expect two possible behaviors of the spin structure factor
S(q) = (2L) "1 T m(Sn-Sm)em™: either it is peaked at ¢ = 7 and ¢ = 7/2,
or it shows a single peak at an incommensurate gy which smoothly moves from
g=m/2at J> J towards ¢ = 7 when J' > J. Translated into the zig-zag
ladder language, the former case implies that, for n large,

(S1(n) - $1(0)) = (Sz(n) - S2(0))

= Fo(|2n]) + Fr(|2n]) + (=1)" Frp2(In)),
(S1(n) - S2(0)) = Fy(|2n + 1) — Fr(|2n + 1)),
(S2(n) - $1(0)) = Fy(|2n — 1[) — Fr(|2n — 1)),

where Fy(|n|), Fx(|n|) and Fr/o(|n|), as well as the primed ones, are smooth
real functions describing the contributions of the ¢ =0, ¢ = 7 and ¢ = 7/2
modes, respectively. The difference between the 1-2 and 2-1 spin-spin corre-
lators, as well as the absence of inversion symmetry n — —n, reflect the fact
that the zigzag ladder lacks two Z; symmetries — the 1 + 2 interchange sym-
metry and site parity Ps (understood as Pél) ® Péz)). However, if the model
is gap-less or possesses a small spectral gap inducing a macroscopically large
correlation length, then site-parity is effectively restored at long distances.

If, apart from ¢ = 0, the spin structure factor has a peak at an incom-
mensurate wave vector qo € [7/2, 7], then we expect that

(81(n) - 81(0)) = (S2(n) - 55(0))
= Fo(|2n[) + Fg(|2n) cos 2ngo,
(81(n) - 8a(n)) = Fy(|2n +1])

+ Fy,(12n + 1]) cosgo(2n + 1), (120)
(82(0) - S1(n)) = Fy(|2n — 1)
+ F, (|2n — 1]) cos go(2n — 1). (121)

We notice that the presence of the modulating factors in (120),(121) makes
the the breakdown of Pg even more pronounced and, contrary to the com-
mensurate case, this breakdown will survive the continuum limit we are going
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to adopt. Thus, the two different types of spin correlations — commensurate
or incommensurate — can be distinguished within a continuum, low-energy
description by an asymptotic restoration or breakdown of the site-parity sym-
metry.

As discussed in the Introduction, in this paper we are going to study the
model (119), or equivalently (117), in the limit J > J' of weakly coupled
chains. That allows us to adopt the well-known continuum description of
each XXZ chain based on the bosonization approach, as discussed in section
2.2 (see also Ref. [16, 32] and then treat the inter-chain coupling as a weak
perturbation. Bosonization of the XXZ zigzag spin-1/2 ladder has already
been discussed in Ref.[33].

The universal, low-energy properties of a single XXZ spin-1/2 chain, in
the gap-less Luttinger liquid phase (—1 < A < 1) are adequately described
by the Gaussian model for a massless scalar field p(z) = pgr(z) +¢r(z) (31).
The dependence @ = Q(A) in the whole range —1 < A < 1 is given in (30)
Note that () varies in the range co > @ > 1 when A takes values within
the interval —~1 < A < 1. In particular, @ = 2 at the XX point (A = 0),
and @ = 1 at the SU(2)-symmetric (Heisenberg) point (A = 1). Throughout
this paper it will be assumed that A < 1 (i.e. @ > 1). In this case the
perturbation to the Gaussian model (31), Ay cosv/8mp (Ay ~ JA), which
in terms of the Jordan-Wigner fermions originates from Umklapp processes,
is strongly irrelevant and will be dropped in what follows.

Since for each chain only the uniform and staggered low-energy modes sur-
vive the continuum limit, the corresponding spin densities can be parametrized
as follows:

Si(n) — aeSi(z), (z=nag)

(122)
St(m) = Ji,R(x) -+ Ji,L(iE) —+ (-—1)”1’11(23) (Z = l, 2)

(123)

Here qg is the lattice spacing, J; g are chiral components of the smooth
part of the magnetization of the 4-th chain, and n; is the staggered magne-
tization. The latter is even under site parity transformation (Ps) and odd
under link parity transformation (Pr). A distinctive feature of the zigzag
ladder is that it is invariant under mixed parity: P_él) ® PI(JZ) and Pl(,l) ® PS(Q).
By this symmetry, strongly relevant terms, n{nj, which determine the spin-

liquid properties of the unfrustrated spin-1/2 ladders [2], are instead forbid-
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den in model (119). As a result, in the low-energy limit, the inter-chain
perturbation, H' = Hj; + Hiwist, is contributed by the “current-current”
interaction[21, 34]

Hiy=2 Y g.JiJ3, (124)

a=I,Y,Z

and also by “twist” terms[24] allowed by the Pél) ® P,-Ez) symmetry:

1 1
Hiwist = 5 > gaaoT® + '2‘9000T0, (125)
a=z,Yy,z
Here
T% = n$d,ng — n50n$, T° = €10,62 — €20.€1, (126)

are chirally asymmetric operators with conformal spin 1, and ¢; ~ (—1)"S;(n)-
S;(n+1) represent the continuum limit of the dimerization operators. (Note
that for a single chain €(z) is even under P, and odd under Ps.) The coupling
constants are given by g, = g, = g1 = J'ag, g. = g = J'Aae.

The “current-current” and twist perturbations are of different nature.
The former are parity [i.e. Pé?L)Pé%}J)] symmetric. If acting alone, provided
that the inter-chain exchange is antiferromagnetic, these lead to spontaneous
dimerization of the ground state (see section III), the existence of massive
topological excitations (spinons), and the onset of short-ranged commensu-
rate inter-chain spin correlations [21, 35]. The twist terms, whose appearance
stems from the frustrated nature of inter-chain interaction, explicitly break
parity. However, by the previous discussion, parity can be broken either in
a mild way, which is the case when the leading asymptotics of spin-spin cor-
relations are still commensurate, or more profoundly, i.e. explicitly inducing
incommensurations in the spin correlations. Both patterns of the low-energy
behavior of the system will be discussed below.

In model (119), only the vector part of the twist perturbation, g,7*,
emerges in the continuum limit. The scalar part, goT°, although absent in
the bare Hamiltonian, is generated in the course of RG flow[24].

For this reason we will assume that such a term is present at the outset,
with a bare amplitude go.

Let us first bosonize M. In terms of the rescaled fields, ¢; = (1//Q)y;
and 6; = /QU;, the “currents” J? = Jig -+ J{', are given by [36]

._ .9 __C B >
JZ' - 5‘7;81:(]31’ Jq; - ﬂ'(l'e cos 277'@(;31’ (127)
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where o is the short-distance cutoff of the bosonic theory, and ¢(Q) is a
nonuniversal (and yet unknown) positive constant approaching the value 1
in the SU(2) limit. Using the definitions (127) and passing to the symmetric
and antisymmetric combinations of the fields, ¢+ = (¢1 & ¢2)/V/2, O =
(61 £ 6,)/+/2, we find that the longitudinal (zz) part of H,; adds to the
Gaussian part of the model transforming the latter into

Hg — Z "2 [Ro(860)* + R7(8u0)?] (128)
with

do_ve_ 1299 .99

= =1 =1 g+ 0. (129)

The exact dependence of R. on the dimensmnless parameter gy@/7v, is
unknown. Therefore we will restrict ourselves to the case |gy|Q/mvs < 1
and keep only linear terms in the expansion (129). For a weak inter-chain
interaction (|gy|/mvs < 1), this is justified almost for the whole range |A| < 1
except for a narrow region A + 1 ~ (gy/mv,)* close to the ferromagnetic
transition point. The parameters R. then satisfy the relation R = R, =
1/R_ which considerably simplifies the perturbative analysis.

Performing an additional rescaling of the fields, ¢+ = /Ri®y, 01 =
v/R=©y, for the transverse (xx, yy) part of H;; one finds:

A
HJJ;J_=29J_ Z ijg_ =

a=z,y

D = cos/4TK P, cos/4TK_O_,
(131)
F =cosy/4dm/K_®_cos\/4ntK_O_, (132)

where \| = g,(%/ma, and
K, =QR, K_=R/Q. (133)

To bosonize the twist perturbation (125), we use the bosonization for-
mulas for the staggered magnetization of the S=1/2 XXZ chain (see section

2.2):
n; = —(C,/ma)sin/27Q ¢
(134)

ny = (Cg/ma)exp(£iy/27/Q 6;), (135)
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where C,(Q) (a = z, z) are nonuniversal parameters (their exact dependence
on () was recently found in Refs. [37, 38]). Then, in terms of the fields &,
O, the twist term becomes:

7—{t:wist = Z A'L'O'i: (136)
1=1,2,3
with
M~ Clgifa, Xog~ Ci(xgy+g0)/c, (137)

and three bosonized twist operators O3 related to T (i = 0,1,2,3) as
follows:

2
O1=T*+TY = - in/4rK_©_
1 + \/K_+a O, siny/4rK_O_, (138)
T + 1%
Oy = + =4/K, 0,9, sm“ (139)
70 Tz
O3 = 5 8 &_sin/4rK, D, (140)

Thus, the bosonized continuum version of our model, H = Ho + H .1 +
Hiwist, represents a Gaussian field theory of two scalar fields,

Ho= 3 HEY = 3 2 [(6:2)° + (8:6,)7] (141)
o=% o=*x 2

with perturbations (130) and (136) which couple the (+) and (—) channels
together. Since Hy is perturbed in a relevant way, the relationship between
the coupling constants of the original model (117) and the parameters of H,
obtained within our weak-coupling approach, is not to be trusted. For this
reason we will consider those parameters as independent. Namely, we will
treat the Hamiltonian H as a low-energy effective theory for a most gen-
eral class of frustrated zigzag spin-1/2 ladders, sharing the same symmetry
properties with the model (117).

The scaling dimensions of the perturbing operators are:

1
dp=K,+K_, d]:——K_-I"E
(142)
1
di=1+K_, do=14—, dz3=1+K,. (143)

K_
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Their relevance (d < 2) or irrelevance (d > 2) can be understood from Fig.(7)
where the plane (K_, K, ) is shown. The point K, = K_ = 1 corresponds to
the SU(2)-symmetric zig-zag ladder where all perturbations (including the
Umbklapp term) are marginal[24]. This point and its close vicinity will not be
discussed in this paper. Due to the condition K, /K_ = Q% > 1, the physical
part of the (K_, K. ) plane lies above the line Ky = K_ and can be divided
into four sectors in which at least one twist operator is relevant:

sector A : dy < 2, dr > 2, dz,dg,dp > 2,

(144)
sector B: dy <dp <2, do,ds,dr > 2,

(145)
sector C: dp <d; <d; <2, do,dr > 2,

(146)
sector D: do <2, dF>2, dy,ds,dp>2. (147)
Ky

@ )
Or

K_
Figure 9: The parameter space of the model

Notice that, except for the operator D, all other perturbing operators
have a nonzero Lorentz spin: Si23 = 1, Sg = 2. Strictly speaking, the
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conventional criterion of relevance does not apply to such operators (see e.g.
Ref. [32]) because in higher orders of perturbation theory they can generate
relevant scalar perturbations. Using standard fusion rules for the Gaussian
model, we have analyzed the structure of various terms appearing in the
second order of perturbation theory. There are marginal terms leading to
small corrections to the parameters K. and the velocities vy, as well as
those which renormalize the already existing coupling constants. Besides,

new scalar operators cos2./4ATK, @, cos 24/4n/K_®_, cos 3+/4rK_©O_ and
cos 24/4nK_©_ are generated. The first two of them have scaling dimensions
4QR and 4Q/R, respectively, and are therefore strongly irrelevant (since
@ > 1, R ~ 1). The third operator has dimension 9X_ = 9R/() and becomes
relevant roughly at Q@ > 9/2, which is a region of the ferromagnetic intrachain
exchange, far away from the XX point. This region will not be considered
here. Finally, the last perturbation ~ cos2+/47K_©_ has dimension 4K_ =
4R/Q and thus becomes relevant at K_ < 1/2, which corresponds to a
vicinity of the XX point Q = 2. However, even in that case its role is
subdominant, as we will show later.

Thus, the continuum model we will be dealing with in the remainder of
this paper reads:

H=H0'—‘ ()\J_/WQ{)D‘*‘ Z )\7;07;. (148)

1=1,2,3

where H, is given by (141). For later purposes, we have suitably inverted
the sign of the coupling constant A, by making a shift of the field ®,:
&, — &, + +/7/4K,. In what follows, we will analyze possible phases of
this model in the four sectors A,B,C,D by using a generalization of the stan-
dard variational approach [39] that accounts for ground states with nonzero
values of topological charges, (9,0_) and (9,®.). The very possibility to in-
corporate such states within the variational method stems from the fact that
the twist operators (138)—(140) are products of fields belonging to different
Gaussian models Hz.

8 Twistless ladder

Before addressing the role of the twist terms in (148) it is instructive first
to apply the variational approach to a simpler frustrated two-leg ladder
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model[40, 35] which, in the continuum limit, is free from parity-breaking
perturbations yet being spontaneously dimerized. This model is the two leg-
ladder version of the standard J;-J, frustrated Heisenberg plane, in which
the inter-chain coupling includes besides the usual on-rung coupling, J., a
frustrating exchange, Jy, across the diagonals of the plaquettes. In the XXZ
case its Hamiltonian reads:

Hgn = 3 3 JuSi(n)Si(n+1)+ 3 J,SH(n)S3(n)

a,n i=1,2 a,n
(149)
+ 2 JLISi(m)SE(n+ 1) + Si(n+ )8 ()], (150)
where J, are defined as in (118), and

Jp=J, = Ji, J,=J. A,
(151)

Jp = Jy = Jy, J, = Jy A
(152)

The Pé&) ®P§2) reflection symmetry of the model (150) forbids the marginal
twist perturbations to appear in the continuum limit. The additional condi-
tion J; = 2J eliminates the n{nJ part of the inter-chain coupling and thus
makes the two decoupled Gaussian models only perturbed by the current-
current inter-chain interaction (124) with coupling constants g, = 2J,A’ag
and gy = 2Jxao. So the bosonized continuum Hamiltonian has the structure
of Eq.(148) with A; # 0 and A123 = 0. As we shall see below, the dimer-
ized phase it describes also occurs in the most part of sector C of the zigzag
ladder, Eq.(148), where D is the most relevant perturbation to the Gaussian
models (141).

To implement Coleman’s variational procedure[39], we introduce a trial
ground state,

vac) = [0;m, m_) = [0;m.) ® |0;m-), (153)

which describes free bosons in the (&) sectors with masses m.. These are
regarded as variational parameters. To estimate the variational ground-state
energy density, Eo(my, m_) = (vac|H|vac), one needs to normal order the
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Hamiltonian with the prescription that, in the normal-mode expansions of
@ (z) and ©4(z), my should be treated as infrared regulator masses.
Upon normal ordering[39]

M = N 1]

(154)
1 v\, mia?
8muL {2<a) +mi+0( vl ’ (155)
Ky i
my|a
cos/4nK &, = (‘—il—) N, _cos\/47rK+<I)+] ,
(156)
[ Im_|a K- r }
cos/4TK_O_ —( — N _cos\/47rK.6~ ,
(157)

where M, are the normal ordering symbols. Subtracting from (155) the
diverging contribution of the zero-point motion when o — 0, ignoring for
simplicity the difference between the velocities v, and defining the dimen-
sionless quantities,

dra? 4
£=""Y g, My=122 o =02 (158)
v v v
we find that
M2 4 M2
E(M,y, M_) = —+—“2L—— 2 | M| M| (159)

Without loss of generality we choose M1 to be positive. With the condition
z| < 1in mind, it should be understood that the masses M., obtained upon
minimization of £, should satisfy My <« 1.

At dp > 2 only a trivial solution exists, My = 0, corresponding to a
critical regime in which the inter-chain interaction is irrelevant and the two
chains asymptotically decouple in the low-energy limit. Atdp = K, +K_ < 2
we find a nontrivial solution,

My M el it (160)

5
5
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with ground state energy given by:

o (1-K.\ ., [(1-K.\ ,

Ep = ( TR >M+ ( i )M_ (161)
B 2-dp\ . ,
= <2K+ >M+ (162)

This solution describes a strong-coupling, massive phase in which the fields
®, and O_ are locked in one of infinitely degenerate minima, of the potential
U(P4,0_) = —(A1/ma)D. Since A; > 0, these minima decouple into “even”
and “odd” sets:

™ ™
B, =, [——2 o= /—n_;
(163)
™ ™
Ty = [-— (2 1), 6_=,/— (2n_

where ny = 0,+£1, 42, .... The existence of these two inequivalent sets reflects
two-fold degeneracy of the spontaneously dimerized ground state. Transverse
dimerization is the order parameter; it is defined as (e, (z)) where [21, 35]

€1 (z) = ny(z) - na(z) x G2 cos/4nK_O_

1
—I—§C’z2 (cos\/47rK+<I)+ -+ cos 1/47r/K_<I>N> . (166)

Since the field ©_ is locked, its dual ®_ is disordered and, hence, the expec-
tation value of the last term in (166) vanishes. Hence,

1
(€1) = *eq, € oc C2|M_|K- + -Z-CflMJ,[K““, (167)

with the two signs of € corresponding to the even and odd vacua, respectively.

The discrete (Z,) symmetry that is spontaneously broken in the ground
state is generated by even-odd interset transitions of the fields,

AD, = +/n/dK,, AO_ =+ \/n/dK_, (168)
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and is related to translations by one lattice spacing on one chain only. This
is not an exact symmetry of the microscopic Hamiltonian (150) but rather
appears as an important property of the corresponding low-energy model
with a “current-current” perturbation. The excitation spectrum of the model
consists of pairs of massive topological kinks (spinons) interpolating between
two adjacent minima of the potential Z/. The kinks carry two topological
quantum numbers — the total spin

‘¢ o
5% = \/%i /_w dz 8,0 (z), (169)

and the relative longitudinal spin current

i Ju = —\/% /_ °:O dz 8,0_(a), (170)

which, according to (168), take fractional values +1/2 [41].

9 Critical spin nematic phase

Now we are coming back to the continuum model (148) for the XXZ zig-zag
ladder. We begin our discussion with sector A where the twist operator O, is
the only relevant perturbation to the two decoupled Gaussian models ’H(()i).
Making a shift ©_ — ©_ + (1/4)+/7m/K_ we write the low-energy model in
sector A as follows:

22X
e

This model has the same structure as that for the XX zigzag ladder consid-
ered in Ref.[24]. Not surprisingly, the variational procedure we will follow
now leads to qualitatively the same results as those obtained for the XX case
within a symmetry-preserving mean-field approach[24].

Ha=HE + 1§ +

0,04 cos /4K _O_. (171)

The interaction term in (171) couples the vertex operator in the (-) chan-
nel to the topological current density 0,0, in the (+) channel. The latter
determines the z-component of the spin current which flows along the chain

direction, 3ﬁ,
[K
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We observe that a finite A1, see Eq. (171), generates an additional contribu-
tion to the spin current, jj, which flows along the inter-chain bonds. By the
continuity equation related to the conservation of the z-component of the
total spin, one finds that

2

3 = 7 A1 cosy/4nK_©_. (173)
The total spin current is therefore 7% = §ﬁ —I—}j, and the twist operator O, is
nothing but a coupling term 3f| 3_21_

The structure of the perturbation in the model (171) suggests that the
ground state admits finite values of the mass gap in the (=) channel and the
spin current in the (+) channel. So one needs to treat both of these two

quantities as variational parameters. To this end, we keep boundary condi-
tions periodic for the field ©_(z) but impose twisted boundary conditions

for the field ©4(z):
1 /7
0. (z) = 0% (z) — ;\,_f(:hm' (174)

Here 0 (z) is a massless harmonic Bose field satisfying periodic boundary
conditions, and j% is the average value of the current operator (172) which
is to be determined self-consistently. The variational procedure is the same
as in the previous section with the exception that the ground state energy
in the (+) channel will acquire a piece proportional to (j%)?. Otherwise this
sector remains gap-less: M, = 0. Using dimensionless notations,

2o T ﬁg

Ty = 77(_—5]“ z1=4 AR (175)
for the variational energy density £ we obtain:
1
E(J, M-) = 5 (M2 + 72) F T ME-. (176)

As before, we have chosen M_ to be positive. The (F) signs in the interaction
term correspond to two sets of vacuum expectation values of the field ©_:

©_ =4/m/K_nand ©_ = /7/K_(n+ 1/2), respectively.

Minimizing £ with respect to My and J; we find that the (=) channel is
gapped,

1 __1_
TI-K_) 1-K_

M_=K” P (177)
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if K_ < 1. This is actually the condition d; < 2 for the twist operator O; to
be a relevant perturbation, which is satisfied in sector A. At the same time,
the gap supports a finite value of the spin current in the (4) channel:

M K- 3
T, = i-\/—_——f_(i_— = £ KT R (178)

We notice that the dimensionless transverse current defined by

n 2o
I = _—K-_i-—ujj = z1c084/4TK_O_, (179)

also acquires a finite ground-state expectation value
JL = («jl) = Fz M-, (180)

which exactly cancels Jj = J, so that the total spin current is zero. This
results in a spin nematic (or a staggered spin-flux) phase characterized by
local spin currents circulating around elementary plaquettes in an alternating
way. This type of ordering does not break time reversal symmetry. In sector
A the spin nematic phase is critical because the spin-density fluctuations in
the (4) channel remain gap-less.

We notice that the transverse current can be associated with the chirality
order parameter. The latter is defined as

ke = (R2(2)),  Ka(2) = [m(z) X ma(2)], , (181)

and, according to bosonization rules (135), transforms in the continuum limit
to
Ko(z) o< cos /4T K_O_(z) o 71 (). (182)

As the dimerized phase discussed in sec.Ill, the spin nematic phase is
doubly degenerate because the mixed parity symmetry Pé&)Pg)s) is spon-
taneously broken in the ground state. The two degenerate phases differ in
the signs of the longitudinal and transverse currents. Consequently, apart
from the massless bosonic mode describing low-energy fluctuations of the to-
tal magnetization, there exist massive topological Z; kinks corresponding to
vacuum-vacuum fransitions,

To— —Tp, O_— O_ £ \[r/dK_,
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and thus carrying the relative spin current j /u = +1/2; see Eq.(170).

The presence of a finite longitudinal spin current in the ground state
makes the transverse (xy) spin correlations incommensurate. Since the (+)
channel is massless and described by a Gaussian field with a K, depen-
dent compactification radius, the correlations will decay algebraically with a
nonuniversal exponent. Making use of bosonization rules (135), Eq. (174)
and the fact that the field ©_ is locked, one easily finds the asymptotic
behaviour of the transverse spin correlation function:

(1t
Im[l/2K+

(ST (x)STy) o g0 (183)
where the wave vector ¢ = mJ)/uK,. At the XX point (@ = 2, R = 1,

K, = 2) the spin correlations decay according to the power law |z|*/2, in
agreement with Ref. [24].

The ground state energy of the critical spin nematic (CSN) phase is given
by

2K_

Before closing this section, we would like to briefly discuss the role of
the scalar operator cos2+/4nK_©_, which is generated in a higher orders
and becomes relevant at K_ < 1/2. In the presence of a finite spin cur-
rent in (+) channel, this term transforms the effective Hamiltonian in (-)
channel to a double-frequency sine-Gordon model: Hg — Aeg sin /47 K_O_ —
gcos2\/4ArK_©_, where Aeg o A1(j%). It is known [42, 43] that the g-
term can induce an Ising transition to a new massive phase if g > 0 and
gt/2A—2K-) )\:f/f(z_K”). The last inequality, however, is not satisfied since
the amplitude g ~ A% is rather small and, hence, the presence of the second
harmonics does not qualitatively affect the above results.

Ecsn = — (1 - K‘) M2 (184)

10 Massive spin nematic and dimerized phases

Let us now move to sectors B and C where the properties of the systems
are determined by the interplay between two most relevant perturbations,
O, and D. The second twist perturbation, Os, is either irrelevant (as in
sector B) or the least relevant (as in sector C). In Appendix A we explicitly
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show that its role is indeed subdominant in sectors B and C far from the
SU(2)-symmetric point, K, = K_ =1,

Thus, the effective Hamiltonian reads:

Hpe = HEP +HS

(185)
A
— %cos\/47rK+<I>+cos 4TrK_©_
(186)
+ —2)\—18@ sin/4TK_© (187)
VE: T S

The potential in (187) contains both the sine and cosine of the field ©_; so
its vacuum value O is expected to be located somewhere within the interval

(0,4/m/4K_) and must be such that in a massive phase with M_ # 0

(vac| cos \/4TK_©* |vac) = M*~,

(188)

(vac|sin /4T K_©7 |vac) = 0. (189)

Setting ©_ = ©* — ~//AnK_, we arrive at the following expression of the
dimensionless variational energy:

1
E(T, My, M_,7) = 5 (32 + M2 + 72)
(190)
:Fz1J+M£(“ siny — lef“LMf{‘ cos 1. (191)

Its minimization with respect to M4, J; and the angle  yields the following
set of equations:

M_{(‘(lef” siny F 217, cosy) =0, (192)

T F M5 siny =0, (193)

My(1 — 2z K, ME2 05 cosy) = 0, (194)
M_(1 -z K_M* M5 cosy

(195)

T 2 K_Jo M5 "siny) = 0. (196)
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There are two obvious solutions of these equations in which only one of
the two perturbing operators is effective. In these solutions the angle v takes
two values: 0 and 7/2. The corresponding phases are, respectively: (i) a fully
gapped D phase already described in sec.III, with zero current (7, = 0) and
nonzero masses My given by Eq.(160), and (ii) a CSN phase with nonzero
J+ and M_ given by Egs. (178) and (177).

Egs. (192)-(196) admit one more solution where the combined effect of
the two relevant perturbations leads to an intermediate value of the mixing
angle -,

M, [K_
CoSy = F_ K—+, (197)

and a finite mass gap in the (+) channel,
M, = (z21+/K ) 2) TR (198)

This is a noncritical or massive spin nematic (MSN) phase characterized by
the coexistence of a reduced spin current J,

T+ = [Ttloensiny (199)

and a nonzero dimerization
1
€L o £ |C2M5 cosy + §Cfo+] . (200)

An important observation is that the minimal value of the variational
energy (191) is still given by expression (161). Therefore, the energies of the
MSN and CSN phases are related as

K, —1
2K,

Evsn = Eosn + M2,
So in sector B (K, > 1) the MSN phase is energetically less favorable than
the CSN phase, and the ground state should be chosen between CSN and D

phases. Accordingly, in sector C (K, < 1) the competing phases are MSN
and D.

Consider first sector B. Here we need to compare the ground state energies
of the D and CSN phases given by Eqgs.(162) and (184). These are of the
same order when the mass gaps of the two phases, Egs. (160) and (177),
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become comparable. Notice that the coupling constants z; and z, are both
proportional to g; and, hence are of the same order of magnitude; their ratio
is

z1/z = Cy/Ky, (201)

where C is a nonuniversal number. Therefore, the condition

2 2
2P~ (202)

can be satisfied only in some vicinity of the line K, = 1 where scaling
dimensions of the operators D and O become equal.

As already mentioned, it is not possible to establish a precise relationship
between the parameters of the original, microscopic model (119) and the
effective low-energy theory (148). As a result, the parameter C in (201)
is unknown. Therefore we are forced to consider two cases, z; > z; and
z1 < z3, on equal footing and draw plausible scenarios for each of them,
leaving the final choice to future numerical work.

Setting Ky = 1+ 6 with [0] <« 1, we find that the condition (202)
translates to the relation

In(z./z)
11’1(1/21) ’

This relation determines a line § = §(K_) which lies entirely in sector B (§ >
0) and is located very close to the line K, = 1 only if 2; < z;. Under this
condition the relation (203) determines a phase boundary between the CSN
and D states. The transition is of first order, associated with discontinuities
of the spin current and dimerization order parameters. It can be easily shown
that in the case z; < z, the D phase, occupying a narrow region close to the
line K, =1, extends over the whole C phase.

§=(1-K.) (203)

In the opposite case, z; > 2z, Eq.(203) has no solution for § > 0, implying
that CSN is a stable ground state in the whole sector B. Moving to sector C
opens a possibility for the MSN phase. If 1 — K, <« 1, the condition z; > z,
admits a small nonzero mass M given by (198). Thus is sector C the upper
boundary for the MSN phase is K, = 1. The lower boundary is found from
the requirement cosy < 1 (see Eq. (197)). Within the logarithmic accuracy,
this brings us again to Eq.(203), this time for 6(K_) < 0.
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Thus, if the ratio 2;/z; > 1, then the CSN and D phases are “sandwiched”
by the MSN phase occupying a narrow region in sector C
In(z1/21)
l—(l—K_)m <K+ <1 (204)
attached to the line K, (see Fig. 10). In all this region &ysy < &p. The
transitions that occur on the upper and lower boundaries of the MSN phase
are continuous. When moving from sector B to sector C through the MSN
phase, the mixing angle 7 varies from 7/2 to 0. Correspondingly, the cur-
rent J, decreases from its nominal value [7.]csy and vanishes at the lower
boundary, whereas the transverse dimerization €, increases from zero at the
upper boundary and reaches its value €y, Eq.(167), in the pure D phase at
the lower boundary (see Fig. 10). A possible way of driving the ladder to
pass through these phases is shown in Fig. 11.

K,

K_

Figure 10: Possible phase transitions in the ladder: the left one is when z; < 2,

MSN phase is very narrow, and the right one is for z; > 2;

11 Ferromagnetic phase

Let us now consider sector D where K, > K_ > 1. This condition im-
plies that K, K_ = R?> > 1, and so this sector corresponds to the case of
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a ferromagnetic inter-chain interaction (gy < 0). The effective low-energy

model
Hp =HST +H) + A/ K 0,®@ ., sin yJAr /K _&_ (205)

contains only one relevant twist operator and is dual to model (171) describ-
ing the SN phase in sector A: mapping between these two models is achieved
by duality transformations

2)\1 — )\2, K:]: — 1/K:|:, CI):E s 91 (206)

Using this correspondence, we can readily translate the results of sec.IV to
the present case. In particular, the spontaneously generated spin current 7.
of the SN phase transforms to the z-component of the uniform spin density.
So the ground state of the system in sector D is ferromagnetic (F). Contrary
to the spin nematic phase, the F phase breaks time reversal invariance but
preserves parity Pél) ® Pf).

Shifting the field ®_ by «/mK_/4 and passing to dimensionless notations
for the coupling constant,

20 = 0/ TK L 22

and total magnetization

2ra
S+ = mz,

vie

we write the variational energy density as

&= % (M2 +82) F S MYE-, (207)

Its minimization yields a finite gap in the (—) channel,

K. K

M_=K_ =0 (208)

which supports a nonzero magnetization directed along the exchange anisotropy
axis:
o K
Sy =4 K_M_=+K 5"V (209)
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The (+) channel remains gap-less. Together with the finite spontaneous
magnetization this circumstance makes the longitudinal spin correlations al-
gebraic and incommensurate:

z z ' z K+ 1
(55 (z) 1,2(O)> = (S )2 )
(210)
—1)z/a0
+ const(|x—llK)+72— COS o, (211)

where g = S4+/K 4 /2a. The transverse spin correlations are short-ranged.
The ground state is doubly degenerate: the two vacua transforming to
each other under time reversal. The corresponding topological kinks have a
finite mass gap and carry the relative spin
1

. _ > s
S__m/_mdm 8,0 = . (212)

Ky

5| osN MSN D

K_

Figure 11: The first path shows one possible way of
going through CSN, MSN and D phases when z; <
21, by increasing A and keeping A’ to be a constant.
The right figure shows the qualitative change of the spin
current (solid line) and the dimerization order parameter
(dashed line) following this path. In the second path
by decreasing A’ and keeping A at constant value, the
ladder enters the F phase.
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12 RG approach at A-D boundary

The results of sections IV and VI are valid far enough from the boundary be-
tween sectors A and D where one of the two twist operators, Oy 5, is strongly
relevant while the other is strongly irrelevant. On the boundary K_ = 1
separating these sectors both twist operators become marginal. Therefore
we can expect that in the immediate vicinity of the boundary,

K_=1-6_, |b_|<]1, (213)

far away from the SU(2)-symmetric point, i.e. K, > 1in the sense that K, —
1 = O(1), the infrared behavior of model will be controlled by the interplay
between the two parity-breaking operators with a nonzero conformal spin,
O;2, and the longitudinal (conformal-scalar) terms 835(1)%5:”@% responsible
for renormalization of the coupling constants. So the starting low-energy
model should therefore contain both twist terms:

H o= H+H
(214)
+ 710,04 i BO_ + 28, P., sin fD_. (215)

Here 7y, 5 differ from A; 2 by some multiplicative factors, and
-~ 47 o_
== =/J47rK_ = — 52
Jé] 5 AT Vir l:l—é— 5 + O( _)J (216)

Notice that the two twist terms in (215) contain vertex operators (the
sines) of mutually dual and nonlocal fields, ©_ and ®_. Models of this kind
cannot be treated by the variational method used in the preceding sections.
This is why in this section we address the RG flow of this model which will
be studied using a mapping of the bosonic Hamiltonian (215) onto a theory
of four interacting real (Majorana) fermions (c.f. Ref.[24]).

Let us first make all perturbations in (215) strictly marginal. This can
be done by the following rescaling of the fields in the (-) and (+) sectors:

o — /K o, .- (1/\/K)e. (217)
oy — a2y,  O4— (1/VEr) 04 (218)

The meaning of the first rescaling is transparent: we enforce the twist op-
erators in (215) to have the scaling dimension 2. This rescaling generates
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a current-current term in the (~) channel. On the other hand, fusing the
two twist operators, one generates a similar term in the (+) sector; that
will renormalize the parameter K., K, — K, = K_q,. Below we will set
g+ = 1 — 6, assuming that |§;| < 1. The Hamiltonian (215) then acquires
the form:

H o= 53 [(0:00)° +(3:04)] = 2u 3 :0:Persir
s=+

s==%
(219)
+ 710;0948nV4ATO . + 7120, D sin vV4rD_ (220)
where d.. satisfy the initial conditions
89 =0, §9=4_ (221)

It is understood that extra factors appearing due to rescaling of K, are
absorbed into a redefinition of the coupling constants y; and .

The structure of (220) immediately suggests mapping onto four real (Ma-
jorana) fermions, £* (a = 0, 1,2, 3). This can be done using a correspondence

(©4,04) = (£1,&2), (2-,0-) = (&,&0) -

and standard fermionization rules for the currents and vertex operators. The
resulting theory is given by the Euclidean action describing four degenerate
massless fermions with a chirally asymmetric interaction:

3 — -— -
§=%" / 4%z (e8¢ + £°0€9)
a=0

(222)
+27”)/dzz 64 £166:& + 60— E3€obao
(223)
+ 71 (6162830 + E16aEsto)
(224)
+ v-(£16260Gs + E1626063)]. (225)

Here £,(z) and &,(Z) are holomorphic (left) and antiholomorphic (right) com-
ponents of the Majorana fields, z = v7 + iz and Z = vT — iz are complex
coordinates, 8 = 8/0z, & = 8/9%, and

w32

2mu

Y+ = (M £7) (226)
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Due to its chiral asymmetry, the interaction in (225) gives rise to renor-
malization of the velocities already on the one-loop level. For this reason we
will discriminate between the velocities of different Majorana species, and
set v, = v(1 — 4mwp,) (@ = 0,1,2,3), where the dimensionless parameters p,
are subject to renormalization with initial conditions p(® = 0.

Using the standard fusion rules for fermion fields[45], one can easily derive
the following one-loop RG equations:

O0p = =297, 0_ =0, (227)
Vi =07, Y- =874, (228)
pr=p = 7+, (229)
ps=7%, =12, o (230)

where g = dg(l)/dl, I = In(L/a).
First of all, we observe that the coupling constant _ stays unrenormal-
ized:
5_(1)=46-(0)=46_ (231)

Representing A\ as
Yo =g1Ego, g2 = (7a/2mu)Y10
we rewrite the first, third and fourth RG equations as
5 = —2(gt-g}) (232)
g1 = 0-g1, ga = —0_g2 (233)

We see that, depending on the sign of d_, either g;(!) or g2(l) grow up upon
renormalization:
(a) 6_->0

q1(l) = g0, g(l) = gPe =0 (234)
Strong-coupling behavior of g;(l) in (234) is associated with a dynamical

generation of a mass gap
my oc gV~ (235)

(b) 6-<0
g2(1) = g7l gy (1) = g -1 0 (236)
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Here the mass gap is estimated as
my o |go|/18-1. (237)

The cases (a) and (b) describe the CSN and F phases, respectively. Es-
timations (235), (237) are consistent with the power-law scaling of the cor-
responding mass gaps, Eqgs.(177) and (208). In both cases, |6, (I)| flows to
strong coupling. It goes to large negative values in the case (a), implying
that K, becomes even larger upon renormalization. In the case (b) it flows
to large positive values; so the effective K significantly reduces, and that
might indicate the importance of the neglected twist operator Oz. Stability
of the F phase is therefore under question.

Exactly at the boundary between sectors A and D §_ = 0. In this case
both g; and g; stay unrenormalized. Moreover,

6+ (1) = —2(g — g)L. (238)

So, if in addition we set g1 = g¢gs, the 1-loop RG will display a weak-
coupling regime for all coupling constants. This is the self-dual point of
the model where the interaction is not renormalized: for all effective cou-
plings parametrizing interaction the f—function vanishes. Amazingly, in this
case the Majorana action (225) decouples into two chirally asymmetric, in-
dependent parts, S = St + Si1, where

3
Si= [ (Z £°9E" + P9 +g5152§3€°) (239)
a=1
and Sy is obtained from S; by reversing the chiralities of all the fields. Notice
that even though the present case corresponds to an essentially anisotropic
regime (remember that we are far away from the SU(2)-symmetric point of
the model), the effective theory on the boundary between sectors A and D
(K_ = 1) with the self-duality condition g; = go exhibits an enlarged, chiral
SO(3) ® SO(3) symmetry. Consistent with this symmetry is renormalization
of the velocities. The velocity of the singlet fermion, £°, stays intact: go = 0.
However, the triplet velocity is renormalized. The RG equation p; = 4g°
(ps = pr 1 = 1,2, 3) shows that 4mp.(l) increases upon renormalization and
reaches values of the order of 1 in the region where g2l ~ 1. This sets up
an infrared energy scale in the problem, wg ~ Aexp(—const/g?), at which
the triplet collective excitations soften significantly. This is in agreement
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with the exact results for the spectrum of model (239), recently obtained by
Tsvelik [44].

Interestingly enough, the exact solution [44] shows that the chiral SO(3)
symmetry of the action (239) is spontaneously broken at T=0, and the
ground state of the model represents a “chiral ferromagnet” characterized
by a nonzero expectation value of the vector current:

<I> 7£ Oa I*" = _(i/z)eabcgbgc-

Similarly, for action Sy

(D) #0, I*=—(i/2)eGk..

As long as the actions St and Sy are decoupled, there is no correlation be-
tween (I) and (I), or equivalently, between the magnetization m = (I) + (I)
and spin current j = (I) — (I). Such correlation appears upon deviation from
the A-D boundary since in this case chirally-symmetric terms that couple
the actions St and Sy (and also introduce a finite XXZ anisotropy) are gener-
ated. Thus, in the A-vicinity of the A-D boundary m, # 0, j, = 0, whereas
in the D-vicinity the situation is just inverted: m, = 0, j, # 0. So, the
resulting picture at the A-D boundary depends on the side from which this
boundary is approached, implying that the CSN ~ F transition is first-order.

Even though the action S = S1+ Sy provides the simplest field-theoretical
model for a frustrated ladder with a chirally asymmetric interaction and,
hence, is quite interesting in its own right, we will refrain from its further
discussion because it does not account for the low-energy properties of the
zigrag spin-1/2 ladder with the generic SU(2) symmetry (the point K, =
K_=1).

13 Conclusions

In this part of the thesis we have analyzed the phase diagram of the spin-1/2
anisotropic zigzag ladder with a weak inter-chain coupling (J' < J). Using
the Abelian bosonization method combined with a variational approach, we
have found that, depending on the anisotropy parameters, the system occurs
either in the parity and time-reversal symmetric, spontaneously dimerized
phase, or in one of those phases in which either parity is spontaneously
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broken while time reversal preserved, or vice versa. These are the critical
and massive spin nematic phases (CSN,MSN) and the critical ferromagnetic
(F) phase. We have shown that the CSN phase extends well beyond the
XX limit and covers broad regions A and B in the parameter space of the
XXZ model (see Fig.10). Each of these phases is characterized by topological
excitations carrying fractional quantum numbers.

Starting from a vicinity of the XX point, we addressed the nature of
the transition between the CSN and D phases taking place upon increasing
the intra-chain anisotropy parameter A, say, at a fixed positive value of
A'. Typical curves are shown in Fig.11. In these two Figures we show two
possible scenarios whose realization depends on the ratio (21/z,) between the
amplitudes of the main competing perturbations — the twist operator O; and
the dimerization field D. The reason we considered each of these scenarios on
equal footing is due to the fact that the relationship between the parameters
of our bosonized model, Eq.(148), and those of the microscopic Hamiltonian
(119) is nonuniversal and, hence, known only by the order of magnitude. If
z| > z1, the CSN — D transition is first order. In the opposite case, z; < 2,
the CSN and D phases are sandwiched by the MSN phase characterized by the
coexistence of a finite spin current with dimerization. Then the variational
approach unambiguously shows that CSN-MSN and MSN — D transitions are
continuous, even though it is inadequate to identify their universality classes.
We believe that the final choice between the two possibilities discussed in this
paper will be made in future numerical work (The accuracy of the recent
DMRG calculations [25, 26] for the S=1/2 zigzag ladders was reported to be
inadequate to resolve this issue. Moreover, the non-linear ¢ model approach
of Ref. [31], which excludes the massive chiral phase for half integer spins, is
only valid in the vicinity of the classical Liftshitz point j = 1/4.)

Starting from the region A occupied by the CSN phase, one can also
keep the in-chain anisotropy intact and vary continuously the inter-chain
anisotropy. In particular, one can smoothly go from the case of an anti-
ferromagnetic inter-chain coupling (gy > 0) to the case of a ferromagnetic
coupling (g < 0) (see Fig.7). We have shown that in such situation the
ladder crosses over from the CSN phase to the F phase, the latter being dual
to the former.
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14 Appendix I: More about sector C

In this Appendix we address the role of the so far neglected twist perturbation
A303 which becomes relevant in sector C. Adding this term to the effective
Hamiltonian leads us to the following theory:

He = HP+HS

(240)
A
- ;T—;lcos\/éle_F@_,_cos drK_O_
(241)
2\ .
T 4 -
+ —~—-———\/_I_{:8 O, sin/4nK_©
(242)

A .
+ ——%__Bm@_ sin /47K, D. (243)

It is convenient to introduce dimensionless notations for the coupling constant

and the z-component of the relative spin density,
Q_ = 2/malb,®_.

The variational approach we followed in section V is straightforwardly gen-
eralized for the present case. As compared to section V, here we have two
additional variational parameters: the relative spin density Q_ and a mix-
ing angle ¢ for the field ®,. The variational energy then depends on six
variables:

1
o = =(M2+M?+7J%+ Q%)

2
(244)
K_ . Ky -
F I M " siny F23QM,_ " sin(
(245)
Ky 2 7K
— 2y M{TM”~ cosvycos(. (246)
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Its minimization yields the following set of equations:

Mf(_(zJ_MfJ“ siny cos { F 21 J4 cosy) =0,

(247)
Mf*(zLMf‘ cosysin( F z3Q_ cos() = 0,
(248)
J+ F lef{' siny = 0,
(249)
Q_F ngf’“ sin =0,
(250)
M_(1F 2T K_M*"2siny
(251)
— 2 KM ME-"2cosycos¢) =0,
(252)
M. (1F z3Q_K+Mf+-2 sin ¢
(253)
— z_LK+Mf'Mf+"2 cosycos() =0 (254)

There exist solutions of these equations in which the second twist pertur-
bation A3O3 plays no role:

() y=¢=0,J. =Q_=0 - D phase;

(ii)y=n/2,(=0,Q_=0 — CSN phase;;

(i) 0<y<w/2,(=0,Q2-=0 —MSN phase.

There exists a pair of solutions which are “dual” to (ii) and (iii), i.e. can be
obtained from the latter by the replacements z; — 23, Jy — Q—, M4 «— M_:

(iv)y=0,¢=mn/2,Jy =0. This is a critical phase with a nonzero
relative magnetization (CRM), Q_ # 0;

v)y=0,0<(<n/2,J; =0 - the massive version of the above
phase (MRM). In these two phases the twist operator O; plays no role.

There also exist solutions in which both twist perturbations are effective.
One of them corresponds to the case

(vi) v = ©/2 , ( = m/2 , in which the z,-perturbation is ineffective
and the variational energy decouples into a direct sum Ecsy + Ecrm- The
resulting phase is fully gapped and represents a mixture of CSN and CRM
phases — mixed (M) phase with nonzero J; and Q_.
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The case of arbitrary values of the mixing angles, v, ¢  0,7/2, should be
abandoned because, as follows from Eqgs.(254), it requires that 2222 = 22, - a
condition which represents just a point in the parameter space of the model
and which, on the other hand, cannot be satisfied for all coupling constants
being of the same order.

The minimal value of the variational energy is again given by Eq.(161).
From this expression it is obvious that in sector C (K4 < 1) the M phase has
a lower energy than each of its “constituents”, i.e. CSN and CRM phases.
So we are left to find out if the M and MRM phases can compete with the
D and MSN phase.

Consider the MRM phase assuming the most favorable condition z3 > z,.
Since the MRM phase is “dual” to the MSN phase, from Eq.(204) we can
read off the range where it can exist:

In(23/2.1)
In(1/z23)

We see that, except for an extremely unrealistic case 22 > z,, the condition
(255) determines a vicinity of the negative semiaxis K_ = 1, K, < 1, which
is located in the unphysical part of the (K, K_) plane, well beyond sector
C. Thus the MRM phase should be abandoned.

Let us compare the energies of the M and MSN phases. In both cases
the mass M_ is given by the same expression, so we only need to compare
the masses in the (+) channel. Comparing the mass M, in the M phase,
M, ~ zé/(l_KJ“), with that in the MSN phase, Eq. (198), we find that, except
for extremely small values of 2z, , namely z; < 223, the MSN phase is always
more favorable.

Finally, we are left to compare the energies of the M and D phases. On

one hand, in the D phase we are below the line (204). This means that
1 1

ijk_E > 2z, "~ implying that the mass gap of the D phase is greater than
the mass M_ of the M phase. On the other hand, to the left of the MSD-

1 1
D transition line (255) we have the condition 2] " > z "t that tells us
that the mass of the D phase is greater than the mass M, of the M phase.
Consequently, the D phase is energetically more favorable than the M phase.

1—(1-Ky) <K_ <1 (255)
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15 Appendix II: Twist Interacting Term

In this section is our last attempts to treat the twist term as a perturbing term
to the Hamiltonian of standard ladder (41), as what we did for the current-
current interaction. So we assume that both interactions are present. In each
normal current-current interaction vertex we have only one pair of fermions
and its dual. Contrary to this each twist interacting vertex contains all four
fermions and so each block diagonal matrix is 8 x 8. Below we represent only
one of these eight matrices. Here <> for example is < &€ | £1&2 > and
four new graphs are those in which all fermions are present so for example
<]> =< £3&p | £1€2 >. The twist vertex z; represents the vertex in which

£, has different chirality i.e £&62€3& and so on.
O+ O+ D 0o D= X

+25< >+ 23 o o+ o D+ x>
+2 > DOta A Dral > el A D=

A d PR Zgzzii:><]> + zo<:'.f:_f_‘j:<]>

T+ D+ D e A D e
+zﬁ<><1>+zs_ /D+% oD




+z2\\//> + a0 /> + 2 + 2 \>
< “9\:\\D+\D+9\ <]>+9<><[> =0

+Z§<><> + zaC)O + 23<\<:> + Zo@(D
+2 O D+ a K D+ al O o+ >
A D K DA+ o gl > =0

+z3/< >+ 25 X Otz > _> + 20< / ‘-\

—g< <[>y \\ >+9 """ K l >+ [ D+g > =0
Written in M. X = Xy form M is given by
My M
M= 256
(le M22> (256)

Two matrices My; and My, is what we have derived before adding twist
operator, for (1,2) and (3,0) fermions respectively:

1+9C gD  —gR1 —gRy
_| 9D 1+g9C gRy, gk
Mu=1"gR  —gRy 1490 —gL (257)

9B —gRy 1+4+9C —gL

1+9C"  —gL' gRs —gRo

My = —gL’ 1+4+g9C" gRy  —gR3 (258)



Twist term appears only in Mj, and Ms;, those elements which connect
(1,2) fermions to (3,0)

z5D + qu 23D + zoq zgR_g + zi R, le_g + 2Ry

Mg = z5C + Z3D_ z5C + ZQD_ —z3 Ry — szZ —z1 Ry — zé@%g
—z5Rs + 23]?1 —2z3R + zol_zl 2L — z;C 2L — zy
*-ZﬁRl + Zng ~Z§R1 + 20R2 —ZQO + ZiL -210 -+ ZQL
Z()L/ - Zﬁcﬁ Z3L/ - ZOC/ 21R3 - Z§R0 —ZiRo + ZQRQ,
My = 23l — z5C"  —23C"+ 2! —zR3+ 2Ry —zRs+ zQC@)GO
ZgRg + ZﬁRg ZgRQ -+ Z0R§ ZQD’ -+ le’ ZIDI -+ 25

—ZgRo - Z()Rg —23R3 - ZoRQ ZﬁOl -+ Zl.DI Zj:cl + ZQD/

The effect of twist terni is considered only in the symmetric case in which
ms = —m, which correspond to the standard ladder with additional four-spin
interaction in which the most relevant term is n; - ny — €; - €5. Equivalently
the twist operator is

n10;n0—€18,62+(1 = 2) = —Eo€16083+6061 6083 +E061Eals+Eol1€2Es+(R = L)

(261)
so that 21 = 20 = 23 = —2p = 25 = —21 = —23 = —2z3. In this case the pole
must be searched in:

W = (1+9C—gL) (1 +9C)* — " DD)+2 (4°DR? + g DR* + 2gRR(1 + ¢C))

+22% ((C = L)(D + D — 2C +2(C? — DD)) — 2(R + R)? + 49(DR® + DR? + 2CRR))
which simplifies to
2 2’2(]2

2.2

S gzq
W=1-2¢m?+g¢g— + "+ /. 262
(29 92 - QWQ)X (262)

The first two terms are those in (104). The effect of twist term is embodied
in the correction to the current-current interaction as z2;‘1:—2. This correc-
tion comes from the anomalous part of current-current term <>—I—<:‘f" N

Note that this correction always reduces the effective gg ~ J i.e it's a fer-
romagnetic correction which opposes the formation of bound sate. Moreover
it breaks the Lorentz-invariance. In order to have a bound state the center
of mass momentum of the pair must satisfy

2 < 87rm290.

(263)

22
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When ¢ exceed this limit the bound pairs break. In the absence of the twist
term the bound states can basically move with any center of mass momenta
g provided that s? < 4m?. By breaking Lorentz invariance, in the presence
of twist term only those two particles with almost opposite momentum can
bind together. To see this we note that the position of the bound state is
given by

goz2)+q298z2 g z* (1 %y
™m m2m 1672m? T

w? = ME+¢*(1+
(My = {/4m?(1 — g3) is the bound state mass in the absence of twist term).
The nontrivial solution ( with ¢ # 0) is

o 16mgy  16m?m®  32m2g,
R —(m g+
2 z z

which already exceeds the limit (263).
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16 Conclusion

In this thesis we have studied the simplest spin ladders namely the stan-
dard ladder Fig.(2) and the frustrated zig-zag ladder Fig.(8). Ladders are
important because there exist some compounds which can be best described
by ladders [5, 7, 8, 14]. Moreover they are intermediate models between
one dimensional (1D) spin chains and two dimensional spin systems. In one
limit, the antiferromagnetic Heisenberg (AFH) spin chains is disordered by
dominant quantum fluctuations, leading to a power-law falloff of the spin-
spin correlations, and gapless spinon (AS = 1/2) excitations. In the other
limit, the 2D AFH systems is known to be long range ordered with gapless
magnon (AS = 1) excitations. Ladders lay in the route between these two
limits which nevertheless is not a trivial route. The ladders with odd num-
ber of chains have gapless spin excitations and power-law falloff the spin-spin
correlations (apart from logarithmic corrections); however the ladders with
even number of the legs are gapped with short range spin-spin correlations
although they are unfrustrated.

In the first part we have studied the simplest prototype of spin ladders
namely the two-leg standard ladder with inchain coupling J and interchain
coupling J;, Fig.(2). The properties of the ladder is well understood in the
strong interchain coupling limit |J;| > J. In this limit for ferromagnetic
interchain coupling, triplets are formed along each rung separated by a gap
of the order J, from singlet excitations. The ladder is effectively described by
the well known gapped S = 1 Haldane chain. In the strong antiferromagnetic
interchain coupling, singlets are formed along each rung, and interact weakly
with each other through inchain coupling J, leading to the simple massive
magnon dispersion w(q) = J, + Jcos(g). Even in the weak coupling limit
magnons remain massive, as we will discuss soon. Moreover in the strong
coupling limit, besides individual magnon excitations, bound states of two
magnons were predicted to exist theoretically and observed experimentally
[10, 11}, slightly below the two-magnon continuum. As in the compounds
the typical interchain coupling is of the order of the inchain coupling, it
is interesting to address the fate of two magnon bound states in the weak
coupling limit, also because they can change the nature of correlation function
considerably.

In the weak interchain coupling limit the bosonization technique can
be implemented to investigate the ground state and the excitations of the
ladder[2]. In the continuum limit each spin is described by a slowly varying
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smooth part (i.e total magnetization) and a staggered part. It is the inter-
action between the staggered part of spins along each rung which opens the
gap of the order of J, in the model. For ferromagnetic interchain coupling
J1 < 0 the ladder is known to be in the Haldane phase at which two spins
along each rung form a triplet. This fact is best illustrated in the total stag-
gered magnetization correlation function or S(g = m,q; = 0,w) (see (55)),
which shows a coherent magnon peak (45). For antiferromagnetic interchain
coupling, the singlet is formed along the rung of each unit cell, the ladder
being in the rung-singlet phase. This time the triplet excitations contribute a
coherent é-peak to the relative staggered magnetization correlation function
ie S(¢ = m,q. = m,w). In both cases magnons are optical, i.e they have
spectral gap. At the same time the smooth part of the total and relative
magnetization, S(¢g = 0,¢; = 0,w) and S(¢ =~ 0,¢q. = 7,w), show a two-
particle mass threshold singularity respectively at two triplet mass s = 2|my|
and a triplet and singlet mass threshold s = |my| + |mg].

However, exactly here, the marginal interacting term between the smooth
part of the spins along the rungs plays its role and cause an effective interac-
tion among triplet excitations and between a triplet and a singlet excitation
(47). While in the Haldane phase ,J; < 0, the interaction is 'repulsive’ and
just renormalizes the triplet and singlet masses, in the rung-singlet phase
J1 > 0 it can create bound states; which in turn changes the behavior of
spin-spin correlation functions.

The coherent bound state §-peak can be observed in the correlation func-
tion of the smooth part of total (relative) magnetization, S(¢ ~ 0,¢, = 0,w)
(S(qg = 0,q. = m,w)). The peak is slightly below the two triplet masses
s = 2|my| (below the triplet and singlet mass threshold s = |my| + |my).
These peaks replace the square root singularity at these two points by a
square root threshold Fig.(5). So in spite of both being a spin gap, we pre-
dict that there will be a clear distinction between the antiferromagnetic and
ferromagnetic interchain coupling due to the formation of bound states. The
difference is in principle observable in experiments by measuring the struc-
ture factor S(g =~ 0,¢; =0,w) and S(g =~ 0,q; = T, w).

Including the four-spin interaction (48) (which can be generated for ex-
ample by phonons) can cause dimerization in the ladder. The picture of
the two-fold degenerate ground state is simple Fig.(4) and consists of singlet
pairs formed along each individual chain, which break the translation invari-
ant symmetry. The singlet pairs in different chains are either in-phase or are
out-of phase. In Fig.(3) we have shown the phase diagram of the standard
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ladder including these so called dimerized spin liquid phases.

The excitations of two dimerized spin liquid phases differ from those of
Haldane and rung-singlet phases. While in the latter phases the triplet ex-
citations form a coherent magnon peak, the excitations of dimerized spin
liquid phases are propagating massive topological singlets or triplets Fig.(6).
For instance in the in-phase dimerized spin liquid, looking at the correlation
function of the total and relative staggered magnetization i.e (S(¢ = 7, ¢ =
0,w)) and (S(g = 7,¢1L = m,w)), instead of a J-peak, one observes a singular
mass threshold at respectively s = 2|m;| and s = |my| + |m,| (54). For out
of phase dimerized spin liquid, the role of total and relative staggered spin
correlations is interchanged. (The correlation function of total and relative
smooth magnetization i.e (S(¢g = 0,9, = 0,w)), (S(g = 0,q) = 7,w)) have
two-mass singularity at s = 2|m;| and respectively s = |m:| + |ms| in all
above mentioned four phases.)

Taking into account the interaction between excitations will change the
nature of spin-spin correlation functions very similar to the case of the rung-
singlet and Haldane phase. This time bound states are formed only in the
in-phase spin dimerized phase below s = 2|m;| and s = |my|+|m,|. Herein all
spin-spin correlation functions instead of a singular threshold, one observes
a bound state d-peak followed by a nonsingular mass threshold. In the out of
phase dimerized spin liquid, the interaction only renormalizes the excitations
masses.

In the second part of the thesis we have included frustration. The inter-
play between frustration and quantum fluctuations makes the problem even
more interesting. We have considered the simplest model, namely the AFH
spin chain with nearest neighbor interaction J' and antiferromagnetic next
nearest neighbor interaction J, which equivalently, when J > J' can be
viewed as the zig-zag Heisenberg ladder Fig.(8). The ladder has some real-
izations in compounds like C's;CuCly. The classical ground state of the chain
is the Neél ordered phase for j = J/J' < 1/4 with characteristic momen-
tum g = 7 and the spiral order for j > 1/4 with characteristic momentum
g = — arccos(1/47).

For small value of the next nearest neighbor interaction j < j. ~ 0.241
, quantum fluctuations disorder the classical Neél order phase. Instead, for
j > j. =~ 0.241, quantum fluctuations spoil out completely the spiral clas-
sical order, and induce a spontaneously dimerized phase. The transition
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between these two phases is a Berezinskii-Kosterlitz-Thouless transition. In
the dimerized phase a spin gap opens up in the system, whose value becomes
maximum at the so-called Majumdar-Ghosh point j = 1/2 at which the ex-
act ground state of the ladder is known. In the whole dimerized phase j > 7.,
the excitations of the ladder are massive spinon dimerization kinks, carrying
S =1/2. So in comparison to standard ladder in which two spinons confines
to form a massive coherent magnon, in the frustrated ladder one observes
massive fractionalized spinons.

By further increasing j, the value of the mass decreases as expected since
for j — oo one approaches the two decoupled chains limit. Moreover the
spin-spin correlation functions show another change in their nature namely
they become incommensurate i.e their characteristic momentum is neither
g = 7 (in the limit of single chain) nor ¢ = 7/2 (in the limit of two decoupled
chains). So the trace of the classical phase ordering is best observed in the
large j >> 1 limit.

In this limit, the interchain coupling, is a weak perturbative interaction
added to the free Hamiltonian of two AFH chains. It is expected that this
interaction will simultaneously induce incommensurability and dimerization
in the ladder. In fact the interchain interaction of the smooth part of the
spins can open up a gap in the system [21] while the interaction between the
staggered part of the spins leads to the parity breaking twist term which is
known to be responsible for incommensurate spin-spin correlations [24] (see
(124,125)).

At the SU(2) point the interplay between these two operators is still
an unsolved problem. The authors of [24] has shown that in the strong
anisotropic X X-limit the role of the twist term is dominant. In the two-fold
degenerate ground state there is a finite spin current along two chains and
(in opposite direction) along the zig-zag line. The spin current is nothing
but the chirally vector operator S, x S, +1 so that in the large spin limit one
recovers the classical spiral long range order. In this ground state the time-
reversal symmetry is preserved but the parity is broken. The presence of spin
current induce incommensurability in spin-spin correlation function. The
transverse spin-spin correlation shows an algebraic decay and moreover it is
incommensurate (183). The existence of this so called critical spin nematic
(CSN) phase is confirmed in numerical studies for integer and half-integer
spins[25].

Far away from SU (2)-symmetric point, we have used the Abelian bosoniza-
tion method combined with a variational approach, to derive the phase di-
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agram of the system and the possible crossover between these phases. The
inchain and interchain spin anisotropy has been threated independently. By
changing these two parameters we can cover various regions of the phase dia-
gram at which the role of the dimerization operator, twist operator or both of
them are dominant so that we can study the interplay between dimerization
and incommensurability (see Fig.10).

We have shown that the CSN phase extends well beyond the XX limit
and covers broad regions in the parameter space of the XXZ model.

Increasing the intra-chain anisotropy parameter, ultimately a phase tran-
sition occurs to a spontaneously dimerized phase with broken translational
invariance symmetry. In the dimerized phase spin correlations decay expo-
nentially but they are commensurate, so this is the extreme limit at which the
role of dimerization is dominant and there is no trace of incommensurability.

We have shown that the transition from CSN to D phase can happen
either directly or through an intermediate state called massive spin nematic
MSN phase. The latter possibility is interesting because in the new phase
both dimerization and twist operators play a role. The M SN phase is char-
acterized by the coexistence of a finite spin current with dimerization. In
another words even though the spin-spin correlation functions falloff expo-
nentially they remain incommensurate. Recent numerical works show that
in the case of integer spin such a phase can be seen in a narrow region be-
tween fully dimerized phase and CSN phase [25]. For half-integer spins the
numerical precision is not enough to decide whether such possibility can exist
or not. What we have shown here is that this possibility is not excluded for
spin-1/2 ladder.

Finally we have shown that for the ferromagnetic coupling (J’ < 0) the
ladder can be in a new ferromagnetic phase (F phase). This ferromagnetic
phase is the dual of the CSN phase. So while in the latter a finite spin current
is induced in the system, in the former there appears a finite magnetization.
Time reversal symmetry is broken in this phase but the parity is preserved.
The ground state is two-fold degenerate and the massive kinks which inter-
polate between these two vacua carry relative spin S% = 1/2 (212).
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