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Notation

Throughout the text we adopt the following notation:
R"™ denotes the n-dimensional Euclidian space,

We use the summation convention with respect to the repeating indices i, 7,1 which, however, does
not apply to the index k = 1,...,n, which denotes single partial derivative with respect to xj,
and to indices m,r = 1,..., N, which index incremental problems,

M, denotes the space of all n x n symmetric matrices, equipped with a Hilbert-Schmidt scalar
product o : § = ;&5

1 denotes the n x n identity matrix,

I stands for the identity tensor, which is a linear operator from M " to itself, such that I(M) = M
for all M € M7 X"

sym
a ® b stands for the symmetrized tensor product of two vectors a,b € R™, given by the formula
(Cl © b)ij = %(aibj + ajbi),
LP(Q;R™) is the Lebesgue space of functions from € into R, having the finite norm

»Q = (/Q | P d95>1/p»

WHP(€;R™) is the Sobolev space of all functions from €2 into R™ with the norm

/]

1/p

l
lip.0 = (/QQZ%IV“J”’) :

L™ stands for the n-dimensional Lebesgue measure on R™,

I/

H"~1 is the (n — 1)-dimensional Hausdorff measure,

My(2; R™) is the space of all bounded Radon measures on Q with values in R™,

For a measure p € My(Q;R™), by p* and pu® we denote its absolutely continuous and singular
parts with respect to a corresponding Lebesgue measure L£",

For p € My(S;R™), by |u| we denote its total variation, which is an element of M;(Q2), and we
consider the norm ||ul1. = |u/(Q),

BV (9Q) is the space of all functions in L'(€;R™) such that Du € M;(€;MZ5"), equipped with
the norm Jully, 1.0 = [lullio + [[Dulla,

BD(Q) is the space of all functions in L'(Q;R"™) such that e(u) € My(;M2%"), where &(u)

sym
Vut+Vul _
P} 1,1, —

is the symmetrized gradient of w, e(u) = ; the norm in BD is defined as ||u

[ullie + lle(w)lia,
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For Q C R? we denote by BH(Q) the space of all functions in L!(Q) such that Du € BV (£;R?),
equipped with the norm |Jul|2,1;0 = ||ull1,1.0 + [[D?*ull1.0,

(-]-) denotes the duality between two objects, where the duality relation depends upon the context.



Chapter 1

Introduction

In this work we develop a rigorous mathematical analysis of variational problems describing the
quasistatic evolutionary problems in plasticity. The common feature of the problems under con-
sideration is the variational energy formulation, where the mathematical difficulties arise due to
the presence of a term with a linear growth in the symmetric part of the gradient of the unknown
vector-valued functions in a volumetric case, or on the Hessian of the unknown scalar function in
two-dimensional problems for plates. In the applications these functions represent displacement
fields of a body.

The issue of the correct formulation of plasticity problems in the mechanics of the continuum
media from the mathematical viewpoint was addressed, for example, in [DL76, Joh76, Suq81,
Tem85]. The usual way to treat the problems of this kind is to understand the corresponding
physical background, to introduce a concept of an appropriate weak solution to the problem, and
to prove existence theorems in spaces of generalized functions.

Apart from the existence results for quasistatic problems in plasticity, for which, by now, have
been developed a number of quite standard approaches (see, for example [DL76, Sug81]), the most
interesting and difficult problem concerns the regularity properties of these weak solutions. There
are surprisingly few works concerning the higher differentiability of weak solutions to problems
in plasticity (see [BF93, BF96, FS00, Kne06, Ser93c, Ser94, Ser85, Ser87, Suq82] for the essential
contributions): due to the linear growth of objective functionals one is forced to use spaces like
BV and BH, where it is relatively easy to get the existence of weak solutions, but establishing
further differentiability turns out to be an extremely hard task.

In the present work we study the two aspects of mathematical formulation of evolutionary
problems in perfect plasticity: existence and smoothness of these generalized solutions.

Precisely, we focus on the following problems:

1. Euxistence of weak solutions to evolution problems for pressure-sensitive materials. Based on
the author’s work [DDDO7] in collaboration with G. Dal Maso and A. DeSimone, we treat the
problem of existence of weak solutions to quasistatic evolution problems for pressure-sensitive
materials.

The class of materials under consideration includes concrete, granular media, metallic foams,
and porous metals. Following the energy formulation of quasistatic problems (see [Mie02] for
a general discussion of this approach), we prove the existence result under very mild technical
assumptions. We also obtain some fine pointwise properties of generalized solutions.

7
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2. FExistence of weak solutions to evolution problems for elasto-plastic plates. Based on the
author’s work [Dem09], we present the existence result for quasistatic evolution problems for
clamped perfect elasto-plastic plates.

Following the general scheme for proving the existence of weak solutions of the continuous-
time energy formulation of rate-independent processes (see [Mie02]), we prove the existence
result and establish fine pointwise properties of solutions.

3. Differentiability properties of weak solutions in the Prandt-Reuss perfect plasticity. We
present the results of author’s work [DemO8b].

We study the smoothness of the stress tensor in the Prandtl-Reuss model of perfect plasticity.
We develop a general approach to proving the Sobolev differentiability of the stress tensor,
which can be applied to other models in plasticity as well (the author has used it to study
regularity of bending moments in an evolutionary problem for perfect elastoplastic plates,
see [Dem08a]). By using the regularity results of G. Seregin (see, for example, [Ser87, FS00,
Ser93c, Ser96]) and the approximation procedure of [DDMO06] (which leads to an existence
result, according to the energy approach), we get the V[/lloc2 -regularity of the stress tensor.

We also discuss the issue of regularity for displacements, by giving the regularity counterex-
amples.

4. Differentiability properties of weak solutions to quasistatic evolution problems for clamped
perfect elasto-plastic plates. We develop on the differentiability results for bending moments
of the vertical displacement in evolutionary problems for perfect elasto-plastic plates, ob-
tained in [Dem08a].

Following the methodology, developed in [Dem08b] for the Prandtl-Reuss plasticity, we use
the regularity results of [Ser93a, Ser87| for the static case and estimates for approximate
solutions of [Dem09], to prove Wllof -smoothness of bending moments tensor.

We mention the author’s previous works, concerning the existence of solutions to phase tran-
sition problems of mechanics of two-phase elastic medium: necessary and sufficient conditions for
lower semicontinuity, leading to the existence of solutions, were established in [Dem04, Dem06],
while relaxation and I'-convergence were studied in [Dem05].

1.1 Weak solutions and their further differential properties

As usual in the Calculus of Variations and the theory of Partial Differential Equations, the strategy
of solving a problem is the following.

1. First one introduces a notion of an appropriate generalized solution of the problem, which
on the one hand should be weak enough for one to be able to prove its existence, and on the
other hand, it should capture the essential features of the problem.

Thus, this step consists in identifying a space of generalized functions and formulating initial

problem in a weak form to obtain the following relations:

classical solution is a weak solution,

a sufficiently smooth weak solution is a classical solutuion. (1.1)



1.2. EXISTENCE OF WEAK SOLUTIONS 9

2. Then, hopefully, one shows that the weak solution found possesses an additional regularity,
and thus, thanks to (1.1), it is actually a strong solution to the original problem. Therefore,
the problem of differentiability properties of weak solutions attracts a lot of interest.

The higher regularity of weak solutions is an important problem even if, in many cases, due
to considerable technical complexity caused by the nonlinearity, it is not always possible to
show that weak solutions possess sufficient differentiability to be strong ones.

1.2 Existence of weak solutions

As already mentioned, the first step in dealing with a problem is to introduce a suitable notion of
weak solution and prove its existence.

There are several equivalent ways of formulating an original problem in perfect plasticity in a
relaxed form, the most popular of them being:

e wvariational inequalities formulation in rate form, proposed in [Joh76] and [Sug81], where the
existence result is proved by a visco-plastic approximation;

e continuous-time energy formulation for rate-independent processes (see [Mie02] for a review
of the approach), where the existence is proved by time-discretization and piecewise approx-
imation by solutions of the corresponding incremental problems.

Below we adopt the second approach for proving the existence of weak solutions for evolutionary
problems for pressure sensitive materials (following [DDDO07], see Chapter 2) and for evolutionary
problems for perfect elasto-plastic plates, proved in [Dem09] and presented in Chapter 3.

Both results are obtained by applying a standard machinery of rate-independent processes (in
a way, used in [DDMO06] for the Prandtl-Reuss perfect plasticity) and defining appropriate dualities
between measures and weakly differentiable function, corresponding to the pairing between stress
and plastic part of the strain (in the case of perfect plasticity for pressure-sensitive materials) and
bending moments and plastic curvatures in the case of plates.

Concerning the history of the problem, the existence result for pressure-sensitive materials
[DDDO7] is new, as well as the fine properties of the stress tensor.

The existence problem for plates was already studied by many authors (see, for example,
[BKOO] for a similar problem with different boundary conditions, obtained by means of parabolic
regularization), but, to our best knowledge, it has never been studied under a quasistatic evolu-
tion framework and the fine pointwise properties of the solution (Theorem 1.2.8) were not known
previously. Moreover, the way we construct approximations with piecewise constant functions,
obtained by solving iteratively incremental problems (1.3) allows one to apply the methods of
[Dem08b] (see Chapter 4) for studying further differential properties of bending moments, as it was
done in [Dem08a] (see Chapter 5).

1.2.1 Quasistatic evolution for pressure-sensitive elastic materials

With reference to a domain 2 C R"™, the problem can be formulated as follows. The linearized
strain e(u), defined as the symmetric part of the spatial gradient of the displacement u, is de-
composed as the sum e(u) = e + p, where ¢ and p are the elastic and plastic strains. The stress
o is determined only by e, through the formula ¢ = Ce, where C is the elasticity tensor. It is

constrained to lie in a prescribed convex subset K of the space M of nxn symmetric matrices,



10 CHAPTER 1. INTRODUCTION

whose boundary JK is referred to as the yield surface. In this context, pressure sensitivity of the
yield criterion leads to the hypothesis that K is bounded.

The data of our problem are a time-dependent body force f(t,x), defined for ¢t € [0,7T] and
xz € Q, a time-dependent surface force g(¢,x) acting on a portion I'y of the boundary 02, and
a time-dependent displacement prescribed on the complementary porion I'y of 9€2. The classi-
cal formulation of the quasistatic evolution problem consists in finding functions u(¢,x), e(t, z),
p(t,xz), o(t,x) satisfying the following conditions for every ¢ € [0, 7] and every z € §2:

1. additive decomposition: &(u)(t,x) = e(t,z) + p(t, x),
2. constitutive equation: o(t,z) = Ce(t,x),

3. equilibrium: —div o(t,z) = f(¢,x),

4. associative flow rule: p(t,x) € Nx(o(t, z))

where Nk(€) is the normal cone to K at £. The problem is supplemented by initial conditions at
time ¢ = 0, by displacement boundary conditions u(t,z) = w(t,x) for t € [0,T] and z € Ty, and
traction boundary conditions o (¢, z)v(z) = g(t,z) for ¢ € [0,T] and = € T'y, where v(z) is the
outer unit normal to 0f.

In recent work [DDMO6], a similar problem was considered for the pressure-insensitive case
where K is a cylinder in ngxn’j containing all scalar multiples of the identity matrix. There, the
existence of a suitably defined weak solution was obtained by time-discretization. According to a
general energy approach, see e.g. [Mie02], the discrete time formulation consists in solving a chain
of incremental minimum problems which are quadratic in e and have linear growth in p.

Namely, the entire time interval [0,7] is divided into N subintervals by means of points

0=t <tV <. <tN_, <tV =1,

N

and the approximate solution ul, eV, pN at time ¢V is defined, inductively, as a minimizer of

the incremental problem

min {Q(e) +Hp-pY)) —f[tﬁv]u}, (1.2)

(w,e,p)EA(w(t]))

where for the moment A(w(t)) denotes the set of all triples (u, e, p), such that e(u(z)) = e(x)+p(z)
for z € Q and u(z) = w(t, z) for x € Ty, the quadratic form Q, corresponding to the stored elastic
energy, is defined by

Qe) :== %/Q(Ce edz,

the functional H is given by
H(p) = / H(p(x)) de,
Q

with H : M;‘yxn’j — R being the support function to the set K, and the total load F[t] is defined
by
Fltju = / ft) - udz +/ F(t)-udH" "
Q I

Since H has linear growth, problem (1.3) has, in general, no solution in Sobolev spaces. Thus,
the direct methods of Calculus of Variations lead to a weak formulation, with a displacement u
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being an element of BD(2), the space of functions with bounded deformation, whose theory was
developed in [KT83, Tem85, TS80], the elastic strain e lying in LQ(Q;M’;;W’}), and the plastic
strain p belonging to M;(Q2 U Ty, M?JW’L‘), the space of bounded Radon measures on 2 U Ty with
values in M7E0.

According to the theory of convex functionals of measures (see [GS64] and [Tem85, Chapter
IT]), define the functional H(p) : Mp(QUT o, MZX") — R as

sym

H(p) = / /bl di

extending in an appropriate way the definition of the set of admissible triples A(w(t)) (see Section
2.2.2 for the details).
We define the piecewise constant interpolations

W)=, N =N, N = e, o) = ol

i i

where i is the largest integer such that ¥ <t.
We introduce a definition of continuous-time quasistatic evolution in the functional framework
ue BD(Q), e e L2(ME5), pe My(QUTo; MEysn), o € L2(Q; M), and prove that, up to

sym sym
a subsequence, the discrete-time solutions u™ (t), eV (t), p™(t), o™ (t), obtained by solving the
weak formulations of problems (1.3), converge to a continuous-time solution u(t), e(t), p(t), o(t),
provided max;(tN —tN ;) — 0 as N — oo.

i

For every time interval [s,t] C [0,7] introduce the dissipation associated with H given by
M
Dy (p; s,t) = sup { ZH(p(tj) —p(tj—1)) : s=tg < <ty =t, M€ N}.
j=1
A variational formulation of the quasistatic problem is expressed by the following definition.
Definition 1.2.1. A quasistatic evolution is a function
(u,e,p) : [0,T] — BD(Q) x L* (M) x Mp(2U To; M),
which satisfies the following conditions
(gsl) (global stability): For every t € [0,7] the triple (u,e,p)(t) € A(w(t)) and
Q(e(t)) — Fltlu(t) < Qn) +H(g —p(t)) — Fltlv
for every (v,m,q) € A(w(t)),

(as2) (emergy balance): p : [0,T] — M(Q U To; Mg ) has bounded variation and for every
tel0,T]

Q(e(t)) + Dr(p; 0,t) — Fltlu(t) =
= Q(e(0)) — F0]u(0) + /0 [(o(s), (i (s))paize — Flslio(s) — FlsJus)] ds

where o(t) = Ce(t).
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The existence and time-regularity result is summarized in the following theorem, which estab-
lishes the existence of a solution to the quasistatic problem in perfect plasticity, satisfying the
prescribed initial conditions, provided a uniform safe-load condition holds.

Theorem 1.2.2 (Theorems 2.4.3, 2.4.5 and 2.4.7). Let initial data (ug,eg,po) € A(w(0)) satisfy
the stability condition

Q(eo) — F[0Jup < Q(n) + H(g — po) — F[0]v,

for every (v,m,q) € A(w(0)). Then there exists a quasistatic evolution

(u(t), e(t), p(t)),
such that
u(0) = ug, €(0) = eo, p(0) = po.

Moreover, the elastic part of the symmetrized gradient t — e(t) is unique and a quasistatic evolution
(u,e,p) as a function from [0,T] to BD(2) x L*(Q;MZ<7) x My(Q U To; ML) is absolutely
continuous in time.

To investigate the relation between a weak solution in the form of a quasistatic evolution and
a variational inequalities formulation in the rate form, we establish the following result.

Theorem 1.2.3 (Theorem 2.4.8). Let (u,e,p) : [0,T] — BD(Q)x L (€; MZ") x My (QULo; Mz %)
and let o(t) = Ce(t). Then the following conditions are equivalent:

(a) t— (u(t),e(t),p(t)) is a quasistatic evolution;
(b) t— (u(t),e(t),p(t)) is absolutely continuous and
(b1) for every t € [0,T] we have (u(t),e(t),p(t)) € A(w(t)), o(t) € B(Q)NKL(NN), —dive(t) =
f@) in Q, and [o(t)v] = g(t) on Ty,
(b2) for a.e. t €[0,T] we have
(o(t) = 7lp(t)) = 0
for every T € B(Q) NK(Q) with [Tv] = g(t) on Ty.
Here the pairing (-,-) corresponds to the duality between stress and a plastic part of the strain,

defined in Section 2.3.2, and the set X(Q) N K(Q) stands for the mechanically admissible stress
tensors.

As in [DDMO6] one can investigate further properties of the quasistatic evolution and establish
the following pointwise version of a flow rule.

Theorem 1.2.4 (Theorems 2.4.10 and 2.4.11). Let (u,e,p) : [0,7] — BD(Q) x LZ(Q;M?;,,?) X
My(QQU Tos ME ), o(t) = Ce(t) and let p(t) = L™ + [p(t)|. Then t — (u(t),e(t),p(t)) is a
quasistatic evolution if and only if

(d) t— (u(t),e(t),p(t)) is absolutely continuous and

(d1) for every t € [0,T] we have (u(t),e(t),p(t)) € A(w(t)), o(t) € T(QUK(RY), —divo(t) =
ft) on Q, and [o(t)v] = g(t) on Ty,
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(d2) for a.e. t € [0,T] there exists 6(t) € L

iy (QUTos MIEER) such that

sym

g(t)=0(t) L"—a.e onf,

p(t)

[o(t):p(t)] = a(t) : Whﬁ(m in My(92 U To; M),
- 0 (t)| — a.e. x
o (&) € Ni(@(t,2)) - for [p()] - a.e. 2 € QUTo.

Moreover, if the set K is strictly conver, then we can refine the definition of &, by showing,
that it is a strong p(t)-limit of the mean values of o. Namely, the following holds:

1

T — P : 1 LM X T
o 00) = T T gy " 7 ) Lo M)

for a.e. t€10,T].

1.2.2 Quasistatic evolution for elasto-plastic plates

Here the reference configuration is a bounded open set 2 C R? with a Lipschitz boundary and
the elastic domain K is a bounded closed convex subset of ngxn% (the space of symmetric 2 x 2
matrices) with the nonempty interior, whose boundary 9K plays the role of the yield surface.

Given a scalar valued function f(¢,z) defined for ¢ € [0,7] and = € 2, which represents
the transversal body force, the strong formulation of the evolution problem consists in finding a
scalar valued function u(t, x) (the vertical displacement) and three matrix-valued functions e(t, ),
p(t,x) and M (t,z) (the elastic and plastic curvatures and the bending moments) such that for
every t € [0,T], for every x € Q the following conditions hold:

1. kinematic admissibility: D?u(t,z) = e(t,z) + p(t,z) in Q,
u(t,z) =0, %(t,x) =0 on 09

2. constitutive equation: M (t,x) = Ce(t, z),
3. equilibrium: divdiv M (¢,z) = f(¢,x) in Q,
4. moment constraint: M(t,z) € K,

5. associative flow rule: p(t,z) € Nx(M(t,x)),

where v(z) is the outer unit normal to 9Q and C is the rigidity tensor. The symbol Nk(¢&)
denotes the normal cone to the set K at the point £ in the sense of convex analysis. The problem
is supplemented by initial conditions at time ¢t = 0.

The boundary conditions v = 0 and g—ﬁ =0 on 0N reflect the mechanical assumption that the
plate is clamped.

Dealing with quasistatic evolution problems of the type considered above, we approximate them
numerically by solving a finite number of incremental variational problems. As discussed in the
previous section, the time interval [0, 7] is divided into N subintervals by means of points

0=t <tV <. <t _, <tV =1,
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and to get the updated values u2, eV and p¥, we solve the incremental problem
min{Q(e) +H(p—pN)) f[tfv]u}, (1.3)
u.e,p

where the minimization is carried out over the set of all kinematically admissible triples (u,e,p),
such that D?u(z) = e(z) + p(z) for x € Q, u(x) =0 and % for x € I'y, the quadratic form Q,
corresponding to the stored elastic energy, is defined by

Qe) :== %/Q(Ce edx,

the functional H is given by

H(p) : H(p(x)) dz,

Q
with H : szx,i — R being the support function to the set K, and the total load FJt] is defined
by

]:[t]u:/ﬂf(t)udx.

Due to the linear growth of H, one has to relax the problem to look for vertical displacements in the
space BH(2) of functions with bounded deformation (the reader is referred to [Tem85, Chapter III]
for the definition and basic properties of BH(S2)), for elastic curvatures in the space L2(£2;M2X2)

sym

and for plastic curvatures in the space M;(§2) of ngxn% -valued bounded Radon measures.

The relaxed version of H : M,(Q;M2X2) — R takes the form

sym

H(p) == /5 H(p/lpl)dlp.

For t € [0,T] define piecewise constant interpolations

uN (t) == ud

N N N N N N
i € (t)::ei » P (t)::pi y O (t)::Ui )
where i is the largest integer such that ¢V <t.

Working in the functional framework u € BH(2), e € L*(;M2x2), p € My(QUTo; M22),
o€ L3 Mf;ﬁb), we introduce a notion of continuous-time quasistatic evolution and prove that
the approximate solutions u™ (¢), e™(t), p™(t), o™ (t) converge to a continuous-time solution
u(t), e(t), p(t), o(t), provided max;(t) —t¥ ;) -0 as N — co.

For every interval [s,t] C [0,T] the H variation of p on [s,t] is defined as

N
Dy (p;s,t) = SUP{ZH(P(ti) —p(ti-1)): s=to<--<tn=t NE€ N}-
=1

A weak solution to the problem is defined as the following quasistatic evolution. Note, that in
the definition below (-,-) stands for the scalar product in L?((2.)

Definition 1.2.5. A quasistatic evolution is a function ¢ — (u(t),e(t),p(t)) from [0,7] into
BH(Q) x L2(§;M™X7) x My (2; M2 X") which satisfies the following conditions

sym sym
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(gsl) for every t € [0,T] the triple (u(t),e(t),p(t)) is kinematically admissible and

Q(e(®)) — {(f(BO)u(®)) < Qn) +H(g — p(t)) = (f()|v) (1.4)

for every kinematically admissible (v,n,q);

(as2) the function ¢ +— p(t) from [0,7] into M,(;ME)") has bounded variation and for every
te0,T]

Q(e(t)) + D(p; 0,1) — (f (1) |u(t)) =

— 0(e(0)) — (£(0)]u(0)) — / (F(3)lu(s)) ds. (15)

The following theorem states the main existence and time-regularity result for weak solutions
of the quasistatic problem for perfect elasto-plastic plates. Note, that it is implicitly assumed that
an appropriate safe-load condition is satisfied.

Theorem 1.2.6 (Theorems 3.4.3, 3.5.1, and 3.5.6). Let initial data (ug,eo,po) be kinematically
admissible and satisfy the stability condition

Q(eo) = (f(0), uo) < Q(n) + H(g — po) — (f(0),v),

for every kinematically admissible triple (v,n,q). Then there exists a quasistatic evolution

(u(t), e(t), p(t)),
such that
u(0) = ug, e(0) =eg, p(0) = po.
Moreover, the elastic curvatures tensor t — e(t) is unique and a quasistatic evolution (u,e,p) as
a function from [0,T] to BH () x L*(Q; M2%2) x My (Q; M2x?%) is absolutely continuous in time.
The following result relates the quasistatic evolution properties with the classical formulation
of the flow rule.

Theorem 1.2.7 (Theorem 3.6.1). Let t — (u(t),e(t),p(t)) be a function from [0,T] into BH (£2)x
L2(Q; M25%) x My(Q; M2<2) and let M (t) := Ce(t). Then the following conditions are equivalent:

(a) t — (u(t),e(t),p(t)) is a quasistatic evolution;
(b) t— (u(t),e(t),p(t)) is absolutely continuous and

(b1) for every t € [0,T)] the triple (u(t),e(t),p(t)) is kinematically admissible, M(t) € S(Q)N
K(Q) and divdiv M(t) = f(t) in Q,
(b2) for a.e. t €[0,T] we have
(M(t) —ml|p(t)) = 0
for every m € S(Q) NK(Q).
Here the pairing (-,-) corresponds to the duality between bending moments tensor and a plastic

curvatures, defined in Section 3.2.2, and the set S(Q)NIC(QL) stands for the mechanically admissible
bending moments tensors.
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As in [DDMO06] and [DDDO07], we can study the pointwise properties of a bending moments
tensor and formulate a pointwise version of a flow rule.

Theorem 1.2.8 (Theorem 3.6.3). Let t +— (u(t),e(t), p(t)) be a function from [0,T] into BH () x
L2(Q; M2X2) x My(;M2%2) et M(t) := Ce(t), and let u(t) := L2+ [p(t)|. Then t — (u(t),

sym sym

e(t), p(t)) is a quasistatic evolution if and only if
(e) t— (u(t),e(t),p(t)) is absolutely continuous and

(e1) for everyt € [0,T] the triple (u(t),e(t),p(t)) is kinematically admissible, M(t) € S(Q)N
K(§2), and divdiv M (t) = f(t) in Q,

(e2) for a.e. t €[0,T) there exists M(t) € L, (€4 M2X2) such that

u(t) sym

M(t) = M(t) L*-a.e. onQ,

o = (xren - PO Y , _
V() s p(1)] = (VI(t) W)@(m in My(9),
p(t) . . B
o] ) € Ne(M(2)) - for lp(t)]-0-e. 2 € Q.

Moreover, if the set K is strictly convex, then one can refine the definition of M, by showing, that
it is a strong p(t)-limit of the mean values of M . Namely, the following holds

1

Mt2) = e n

/ M(t,y) dy — NI(t,z) in LLg (9 M252),
B(z,r)NQ (

for a.e. t€10,T].

1.3 Regularity of weak solutions

As already discussed above, the issue of regularity of solutions of (systems of) PDEs and variational
problems is very important and presents a considerable interest.

The question of regularity is already technically difficult, with many astonishing counterexam-
ples, even for quite simple systems of PDEs. In this particular situation of perfect plasticity, the
problem becomes even more complicated, due to the arising nonlinearities.

First let us discuss the static case of Hencky perfect plasticity. The main local regularity result
(see [Ser87, Ser93c, BF93]) is that the stress tensor, which is known to be an L2(£2; M™X") function,

sym

is actually VVIIOC2 (Q; Mg 57) . Further partial regularity results are due to G. Seregin, and we refer

the reader to [FS00, Ser87, Ser93c| for the details. The only global regularity result known to

the author is [Kne06], where it is shown that, under appropriate technical assumptions, the stress
tensor is in W1/279(Q; M) for any & > 0.

The main approaches to investigating the Sobolev differentiability of stresses in Hencky perfect

plasticity consist in approximating the original problem (P) with a sequence of “more regular”

ones, (P,) in a way, that

Solutions o, of (P,) are Wllo’f(Q;M?yX"?); (1.6)
0. converge to the solution o* of problem (P) in some weak topology; (1.7

sup,, [loalli,2,:00 < C(€) holds, for every Q' CC Q. (1.8)
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If one constructs a sequence of problems (P,), satisfying (1.6)-(1.8), then the solution ¢* of
problem (P) is also Wlif(Q,ngXn?)

In [BF93] the authors used the Norton-Hoff regularization and a method of translations (as in
[Sug82]), while in [FS00, Ser87, Ser93c] the original minimum problem is approximated by adding
a “coercive” term, that guarantees the existence of a minimum in I/Vlloc2 (Q; M)

The main observation of G. Seregin is that working with a dual variational problem for the
stress tensor gives more information, needed for investigating differentiability properties.

This approach towards regularity is based on the idea that the stress tensor is the most im-
portant quantity from the physical viewpoint, since it determines the elastic and plastic zones
within the body. Therefore, the main object to study is the dual variational problem for the stress
tensor, which has a unique solution. The form of this problem differs from the standard problems
in calculus of variations: the functional does not involve any derivative of the unknown functions,
the yield condition acts as a pointwise constraint, and the equilibrium equations for the stresses
have to be incorporated in the class of admissible functions. Despite these difficulties one obtains
additional regularity for the stress tensor.

Afterwards, by using the duality relations, which can be regarded as a weak form of the con-
stitutive equations, one also establishes some regularity for the displacement field.

Recall, once again, that these results concern the static Hencky plasticity.

As for the quasistatic situation, for the Prandtl-Reuss case Norton-Hoff approximations were
used in [BF96] to establish that the stress tensor satisfies

0 € L([0, T) Wyl (% ME).

In the sequel we present two regularity results: the smoothness of the stress tensor for the
Prandtl-Reuss perfect plasticity (following [Dem08b], see Chapter 4) and the differentiability of the
bending moments in quasistatic problems for perfect elasto-plastic plates (according to [Dem08a],
see Chapter 5). We use the ideas of [FS00, Ser87, Ser93c, Ser93a], developed for static problems
and the piecewise-constant approximations constructed in [DDMO06, Dem09], that were briefly
described in Sections 1.2.1 and 1.2.2.

Shortly, for a solution (ul,elN,pYN) of each incremental problem of the type (1.2), (1.3) we

prove that
eN e Wh(Q)

loc

by an estimates, similar to that of [FS00, Ser93c, Ser93a]. Then we perform some analytical work
to make this estimate uniform in ¢ and N. Namely, we obtain

sup max [l [|1,2,00 < C(), (1.9)
NeNi=0,...N
for any ' CC Q. This is done by using a Gronwall-type iterative estimate for el¥, for i =
1,...,N. Finally, one uses (1.9) and pointwise convergence of the piecewise constant approxima-

tions (uV(t),eMN(t),p™ (t)) to the solutions of the original problem to get

sup |le(t)[l1,2:00 < C()
t€[0,T

for any ' ccC Q.

Observe that, even though the Prandtl-Reuss case was already studied in [BF96], the method
proposed in [Dem08b] is of completely different nature, imposes different restrictions on the data of
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the problem, and, what is more important, provides a general methodology for proving reqularity of
solutions to various problems in perfect plasticity. It has proved to be useful for establishing Wﬁ)f
regularity of bending moments in the case of clamped perfect elasto-plastic plates, see [Dem08a]
and Chapter 5, which is a new result.

1.3.1 Regularity of stresses in Prandtl-Reuss perfect plasticity

A strong formulation of the Prandtl-Reuss model of perfect plasticity is the following: given a
domain Q C R",

body force f(t,z):[0,7] x Q@ — R,

boundary displacement w(¢,z) : [0, 7] x Ty — R™,

surface force F(t,z) : [0,T] x T'; — R",

the problem is to find functions
u(t,z), e(t,z), p(t,z) and o(t, )
such that for every ¢ € [0,T], for every x € Q the following hold:
1. kinematic admissibility: e(u)(t,x) = e(t, z) + p(t,x) in Q, u(t,z) = w(t,z) on Ty
2. constitutive equation: o(t,r) = A~le(t,z),
3. equilibrium: div o(t,z) = —f(¢t,z) in Q, o(t,x)v(z) = F(t,z) on I't,
4. stress constraint o(t,x) € K,
5. associative flow rule: (£ —o(t,z)) : p(t,z) <0 for every € € K,

where
Vu+ Vul
=5

K={reM>" : |7P| < V2k.}

sym

and A is the compliance tensor (the inverse of the elasticity tensor), which in the isotropic case

has the form
tro 1 p

—— 14+ — P, 1.10
n2 Ky + 2u 7 (1.10)
where nKj is the first Lamé constant, and g is the shear modulus. The problem is supplemented
by initial conditions at time t = 0.

Under some technical conditions on volume and surface forces and on the geometry of the
boundary 92, described in detail in Section 4.2, the regularity result is expressed by the following
Theorem.

Ao =

Theorem 1.3.1 (Theorem 4.2.1). Suppose that n = 2,3, 9Q € C?, A has the form (1.10) and
the assumptions (4.3)-(4.5) are satisfied. Then for the solution (u,e,p) of the quasistatic problem,
see Definition 4.3.6, we have

o € L>([0,T); Wb (Q; M2Xmy),

sym

with o(t,z) = A te(t, ).
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We use the construction of piecewise constant approximations, obtained by discretizing the
time interval [0,7] (as outlined in Sections 1.2.1 and 1.2.2). The details are presented in Sections
4.3.1 and 4.3.2.

To prove the regularity theorem, we should obtain estimate (1.9) for the solutions (ul¥,eN, p,
O’zN) of the incremental problems of the form (1.2). Fixed N, for every i = 1,..., N we consider a
certain minimax program similar to that proposed in [FS00, Ser93c| for the Hencky plasticity (see
Section 4.5 for details). We define a Lagrangian L(-,-), and consider the following problem

find a pair (§ul¥,o}), such that
LY (6ulN,7) < LN (6ul,oN) < LY (v,0}) for all admissible (v,7),

(A ’L

such that its saddle points (dulY, o) give rise to solutions of the corresponding incremental prob-
lems of type (1.2). Observe that since we work in nonreflexive spaces, we actually consider a
relaxed version of this problem, working with an extended Lagrangian va , rather than LY.
As usual, saddle points (dul,o) of Efv solve the corresponding primal and dual problems,
respectively. The primal problem takes the form

find dul¥

7

such that IV (0ul¥) = inf IV (v), with I;(v) := sup EZN(U,T), (1.11)

while the dual one is

find oV, such that RN (cN) =sup RN (7), with RN (7) := inf LY (v, 7).

The main difficulty is that the functional IV in (1.11) has a linear growth with respect to £(v),
and thus has a minimum in the space BD only To attain a better regularity, for every a € (0,1)
we consider the regularized problem of the form

min { 703 + 1Y (0) }.

which, due to the Korn inequality, has a solution u$ in space W1H2(Q; M) -

By introducing auxiliary functions o, defined by adding correction terms to the functions

ae(uf) + 0L (uf),

we write the Euler equation as
div (¢9) = fN. (1.12)

Then we establish the following convergence properties:

*

u® > dulY weakly* in BD(Q;R"),

3 3

o® = o weakly in L2(Q;M2X1), (1.13)

7 sym
as a — 0.
By local regularity results we have that

uf € Wi (Q; My,

loc sym

that is
of € Wh2(Q; M. (1.14)

sym
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Using Euler equation (1.12) and (1.14) we then prove the estimate

sup |0 [[1,2i00 < C(4, N5 Q) (1.15)
ae(0,1)

for every subdomain Q' CC Q. Thus, (1.15) and the convergence (1.14) immediately imply that

«@ N

as a — 0 weakly in W, (Q; M"X"), (1.16)

loc sym

and
oM 11200 < C(i, N; Q).

It remains to make the last estimate uniform with respect to ¢ and N. By using the improved
convergence (1.16) (instead of (1.13)) and some quite technical transformations, we get the uniform
estimate (1.9), which implies Theorem 1.3.1.

Thus, we have established the W2 regularity of stresses o(t). Another interesting problem
to investigate concerns possible regularity for displacements wu(t), similar to the static case of the
Hencky plasticity (see [FS00] and [Ser85]). In Section 4.10 we present two counterexamples with
C* data, where the quasistatic evolution has a unique solution (u(t),e(t),p(t)). In the first one
the displacement u(t) develops a jump after a prescribed time ¢*. In the second one we fix a
singular diffuse measure p and arrange the data such that e®(u(t*)) = p for some time t*. These
examples show that one cannot expect that u(t) € W% (Q; R™) for every t, even with C™ data.

loc
1.3.2 Regularity of bending moments for quasistatic evolution problems
for perfect elasto-plastic plates

Given a scalar valued function f(¢,x) defined for ¢ € [0,7] and z € Q, which represents the
transversal body force, the strong formulation of the evolution problem consists in finding a scalar
valued function wu(¢, z) (the vertical displacement) and three matrix-valued functions e(t, x), p(t, x)
and M (t,z) (the elastic and plastic curvatures and the bending moments) such that for every
t € 10,77, for every x € Q the following conditions hold:

1. kinematic admissibility: D?u(t,x) = e(t,x) + p(t,z) in Q,
u(t,z) =0, g—g(t,x) =0 on 00

2. constitutive equation: M (¢, x) = Ce(t,x),

equilibrium: divdiv M (¢,2) = f(t,z) in Q,

moment constraint: M(t,z) € K,

ook W

associative flow rule: p(t,x) € Nx(M(t,x)),

where v(z) is the outer unit normal to 9Q and C is the rigidity tensor. The symbol Nx(¢&)
denotes the normal cone to the set K at the point £ in the sense of convex analysis. The problem
is supplemented by initial conditions at time ¢ = 0.

The boundary conditions v = 0 and g—;‘ =0 on 0N reflect the mechanical assumption that the
plate is clamped.

For the regularity we restrict ourselves to the isotropic case where K is a ball centered at the
origin, and A is the multiple of the identity tensor I, which can be reduced to considering

K= By(0), C=1
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Under some technical conditions on the volume force and the safe-load condition, described in
detail in Section 4.2, the regularity result is expressed by the following Theorem.

Theorem 1.3.2 (Theorem 5.2.2). Suppose that C is a multiple of the identity tensor, the set K is
a ball, centered at the origin, and the assumptions (5.3), (5.4) are satisfied. Then for the solution
(u,e,p) of the quasistatic problem (see Definition 5.3.4) we have
L2 70, Wr2x2
M € L>([0, T]; Wy,2 (S MZ/0)),

loc
with M (t,z) = Ce(t, ).

We use the construction of piecewise constant approximations, obtained by discretizing the
time interval [0,7] (as outlined in Section 1.2.2). The details are presented in Section 5.3.

To prove the regularity Theorem, we should obtain uniform estimate (1.9) for the solutions
(ulN,eN,pN, MN) of the incremental problems (1.3). Fixed N, for every i = 1,..., N we consider
a certain minimax program similar to that, proposed in [Ser93a] for the static problem for perfect
elastoplastic plates (see Section 5.4 for details). We define a Lagrangian L(-,-), and consider the

following problem

find a pair (6ul¥, M}V), such that
LY (6ulN,m) < LN (6ul, MN) < LN (v, MY) for all admissible (v, m),

such that its saddle points (dul, M}) give rise to solutions of the corresponding incremental
problems (1.3). Note that, since we work in nonreflexive spaces, we actually consider a relaxed
version of this problem, working with an extended Lagrangian va , rather than LY.
As usual, saddle points (§ul¥, M) of Efv solve the corresponding primal and dual problems,
respectively. The primal problem takes the form

find dulY

7

such that IV (0u)) = inf IN (v), with IN (v) := sup LY (v, m), (1.17)

while the dual one is

find MY, such that RN (M) = sup R (m), with RN (m) := inf LN (v, m).
The main difficulty is that the functional IV in (1.17) has a linear growth with respect to D?v,

and thus has a minimum in the space BH only. To attain a better regularity, for every « € (0,1)
we consider the regularized problem of the form

min { D230 + 1Y (0)

which has a solution u¢ in space W12(Q).
By introducing auxiliary functions M/, defined by adding some correction terms to the func-
tions
a D*uf + oI (uf),

we rewrite the Euler equation as
divdiv M = . (1.18)
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Then we establish the following convergence properties

ug = dulN  weakly* in BH(Q),
Mg — MY weakly in L?(Q; M2X2), (1.19)

sym

as a — 0.
By local regularity results we have that

ul € W23(Q),

loc

that is
1,2
M € WEHQ: M), (1.20)
Using the Euler equation (1.18) and (1.20) we then prove the estimate

sup || M7 |1 200 < C(i, N; Q) (1.21)
a€e(0,1)

for every subdomain €' CC Q. Thus, (1.21) and the convergence (1.20) immediately imply that

M — MY as a — 0 weakly in W,12(Q; M2X2), (1.22)

loc sym
and
[ MN |1 200 < C(i, N; Q).

It remains to make the last estimate uniform with respect to ¢ and N. By using the improved
convergence (1.22) (instead of (1.19)) and some quite technical transformations, we get the uniform
estimate (1.9), which implies Theorem 1.3.2.



Chapter 2

Quasistatic evolution problems for
pressure-sensitive plastic materials

2.1 Introduction

Several materials of interest for applications, such as concrete, granular media, metallic foams, and
porous metals, exhibit a pressure-sensitive yield behavior. There exists a large literature focusing on
yield criteria for these materials, which identify the onset of irreversible inelastic behavior with the
fact that a suitable measure of the state of internal stress reaches a threshold. Examples include
the Gurson criterion for porous ductile materials [Gur77], the criterion of Ottosen for concrete
[Ott77], the Desphande-Fleck criterion for metallic foams [DF00], and, for soils, Cam-Clay and the
many subsequent variants (see, e.g., [DT05] and the references quoted therein). These criteria and
several others are discussed in detail in [BP04].

Following the engineering literature, we work for simplicity in the framework of associative
elasto-plasticity. Moreover we limit our analysis to the case of no hardening (perfect plasticity).
With reference to a domain 2 C R™, the problem can be formulated as follows. The linearized
strain Fu, defined as the symmetric part of the spatial gradient of the displacement u, is de-
composed as the sum Fu = e + p, where e and p are the elastic and plastic strains. The stress
o is determined only by e, through the formula ¢ = Ce, where C is the elasticity tensor. It is
constrained to lie in a prescribed convex subset K of the space M7 of nxn symmetric matrices,
whose boundary OK is referred to as the yield surface. In this context, pressure sensitivity of the
yield criterion leads to the hypothesis that K is bounded.

The data of our problem are a time-dependent body force f(t,z), defined for ¢ € [0,7] and
x € Q, a time-dependent surface force g(¢,x) acting on a portion I'y of the boundary 99, and
a time-dependent displacement prescribed on the complementary porion I'g of 9. The classi-
cal formulation of the quasistatic evolution problem consists in finding functions u(t,z), e(t,z),
p(t,z), o(t,x) satisfying the following conditions for every ¢ € [0,T] and every = € Q:

additive decomposition: Fu(t,z) = e(t,z) + p(t, x),
constitutive equation: o(t,z) = Ce(t, ),
equilibrium: —div o(t,2) = f(t, ),
associative flow rule: p(t,x) € Nx(o(t, z)),

(2.1)

where Nk(§) is the normal cone to K at £. The problem is supplemented by initial conditions at

23
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time ¢ = 0, by displacement boundary conditions u(t,z) = w(t,x) for t € [0,T] and z € Ty, and
traction boundary conditions o (¢, z)v(z) = g(t,z) for ¢ € [0,T] and = € T'y, where v(x) is the
outer unit normal to 0.

In recent work [DDMO6], a similar problem was considered for the pressure-insensitive case
where K is a cylinder in M "' containing all scalar multiples of the identity matrix. There, the
existence of a suitably defined weak solution was obtained by time-discretization. According to a
general energy approach, see e.g. [Mie02], the discrete time formulation consists in solving a chain
of incremental minimum problems which are quadratic in e and have linear growth in p. Thus,
the direct methods of the calculus of variations lead to a weak formulation with v € BD(Q), the
space of functions with bounded deformation, e € L*(€;M7<"), and p € My(QU o, M7x"), the
space of bounded Radon measures on U Ty with values in Mg 7.

Notice that allowing for measure-valued plastic strains is also natural from the point of view of
mechanics, see [Sug81]: indeed, localization of plastic deformation and formation of shear bands
are often observed experimentally in the materials to which the models we analyze should apply.

In this work, we extend this approach to the case where K is an arbitrary convex bounded
subset of ngﬁg with nonempty interior. To adapt the technique to the new situation, we have
to introduce a suitable duality product (o, p), between stress and plastic strain, defined for every
o € L>e(;Mgn) with dive € L™(;R") and for every p € My(2 U Lo, Mg ) of the form
p = Fu—e with u € BD(Q) and e € L*(Q; M7 "). This is done in Section 2.3, using results from
[KT83, Anz83].

After the properties of this duality have been established, we follow the lines of the proof of
[DDMO6], and obtain, under suitable hypotheses on the data f, g, and w, an existence result (The-
orem 2.4.3) for a weak formulation (Definition 2.4.1) of problem (2.1), with v € AC([0, T]; BD()),
e € AC([0,T]; LQ(Q;MQyXJ;)), and p € AC([0,T]; My(Q2U Lo, M 7)) . Moreover, we prove that e,
and hence o, are uniquely determined by the initial conditions.

We emphasize that our results are obtained under very general qualitative hypotheses on the
yield surfaces 0K and on the elasticity tensor C. Namely, we just assume that K is a convex,
bounded set with nonempty interior, and that C, regarded as a linear operator acting on M7x™

sym
is symmetric and positive definite. In particular no assumption of isotropy is required.

2.2 Preliminaries

2.2.1 Mathematical preliminaries

Given a locally compact subset X of R™ and a finite dimensional Hilbert space =, the space of
bounded =-valued Borel measures on X is denoted by M;(X;Z) and is endowed with the norm
[leell == |p|(X), where |u| € My(X;R) is the variation of the measure p. By Riesz representation
theorem (see, e.g., [Rud66, Theorem 6.19]) M;(X ;=) can be identified with the dual of Cy(X; =),
the space of continuous functions ¢: X — = such that {|p| > €} is compact for every € > 0. This
defines the weak* topology in M(X;Z).

For every p € My(X;Z) we consider the Lebesgue decomposition p = p® + p®, where p®
is absolutely continuous and p® is singular with respect to Lebesgue measure L£™. The space
L' (X;Z) of Z-valued L"-integrable functions is regarded as a subspace of My(X;Z), with the
induced norm. When = = R, the indication of the space = is omitted.

The LP norm, 1 < p < oo, is denoted by || - ||,. The brackets (-|-) denote the duality product

between conjugate LP spaces, as well as between other pairs of spaces, according to the context.
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The space of symmetric nxn matrices is denoted by Mg l; it is endowed with the euclidean

scalar product {:(¢ = tr(§() = >_,;&;Ci; and with the corresponding euclidean norm (] :=
(€:6)Y/2. The symmetrized tensor product a ®b of two vectors a, b € R is the symmetric matrix
with entries (a;b; + a;b;)/2.

For every u € LY(U;R™), with U open in R™, let Fu be the M, -valued distribution on
U, whose components are defined by E;ju = (Dju; + Dyu;). The space BD(U) of functions
with bounded deformation is the space of all u € L'(U;R") such that Eu € My(U; MZ<"). 1t is
easy to see that BD(U) is a Banach space with the norm ||ul|; + ||Eul|/1. It is possible to prove
that BD(U) is the dual of a normed space (see [MSE79] and [T'S80]), and this defines the weak*
topology of BD(U). A sequence uy converges to u weakly* in BD(U) if and only if ugy — u
weakly in L'(U;R") and Fuy, - Fu weakly* in M, (U;My,57). For the general properties of
BD(U) we refer to [Tem85].

In our problem w € BD(U) represents the displacement of an elasto-plastic body and Ewu is
the corresponding linearized strain.

We recall that a function f from [0, 7] into a Banach space Y is said to be absolutely continuous
if for every € > 0 there exists § > 0 such that »_. || f(t;) — f(si)|ly < e, whenever ), (t; —s;) <0
and 0 < 81 < t1 < 89 < tg < -+ < 8 < tp < T. The space of these functions is denoted by
AC([0,T];Y). For the general properties of absolutely continuous functions with values in reflexive
Banach spaces we refer to [Bre, Appendix]. When Y is the dual of a separable Banach space, one
can prove (see [DDMO06, Theorem 7.1]) that for a.e. ¢t € [0,T] there exists the weak *-limit

f(t) :== w*- lim fls) = 1) f(t)

s—t s—t

Note that in this general situation it may happen that f is not Bochner integrable.

2.2.2 Mechanical preliminaries

The reference configuration. Throughout the paper the reference configuration §2 is a bounded
connected open set in R™, with Lipschitz boundary 02 = T'oUT';. We assume that T'g £ @, T'; is
closed, and 'y NIy = @.

The constraint and its support function. The constraint on the stress is given by a closed
convex set K C ngfg with nonempty interior. Its boundary 0K plays the role of yield suface.
For the energy formulation of problem (2.1) it is convenient to introduce the support function
H Mg — R of K defined by
H(€) = sup€ < C. (2.2)
CekK
H is convex and positively homogeneous of degree one.
For every p € M(Q2 U To;ME)Y), let pu/|u| be the Radon-Nikodym derivative of p with
respect to its total variation |u|. According to the general theory of convex functions of measures,

we introduce the nonnegative Radon measure H(u) € My(2UTy) defined by

I
mo8) = [ (L) (23)
B |l
for every Borel set B C QUTy. Finally we consider the functional H: My(2 U To; My ") — R
defined by
H(u) = H(1)(QUTS). (2.4)
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We refer to [GS64] and [Tem85, Chapter II, Section 4] for the properties of H(u) and H(u).

The data of the problem. Let us fix a time interval [0,7]. We assume that the body force f,
the surface force g and the prescribed boundary displacement w satisfy the following assumptions:

f e AC([0,T]; L* (€ R™)),
g€ AC([O LL (Flv ))» (25)
w € AC([0,T]; HY(Q; R™)).

Stress and strain. For a given displacement u € BD(Q) and a boundary datum w € H*({; R"),
the elastic and plastic strains e € L2(Q;M2X") and p € M,(Q U To; M2X") satisfy the relation

sym sym

Eu=e+pinQ, (2.6)

p=(w—u)©vH"! on Ty, (2.7)
so that e = F% — p® a.e. on Q and p® = Eu on Q. The stress o € L?(;M2X") is defined by

sym
o = Ce. (2.8)

The stored elastic energy Q : L?(;M7X") — R is given by

sym

Q(e)zl/Ce:edx:}/cr:edx.
2 Ja 2 Ja

For a w € H'(2;R™), the set of admissible displacements for the boundary datum w on Ty is
denoted by A(w) and it is defined as:

Aw) = {(u,e, p) € BD(Q)x LX(Q; ML) x My(Q U T M) : (2.6), (2.7) hold}. (2.9)

The space IIp, (£2) of admissible plastic strains is the set of all p € M(QUTo; MZX") for which

sym

there exist u € BD(Q),w € H(Q,R") and e € L?(;M™*"), such that (u,e,p) € A(w).

sym
The following lemma, that can be proved as in [DDMO06, Lemma 2.1] shows, that the multi-
valued map w — A(w) is closed.

Lemma 2.2.1. Let wy € H*(;R") and let (uy,ex,pr) € A(wy). If

Uk — Use weakly® in BD(Q), e — es weakly in L?(S; M5,

sym

Pk — Poo weakly™ in My(QUTo; MZX™),  wy, — wee weakly in H'(R™;R™),

sym

then (oo, €oos Poo) € A(Weo) -

The traces of the stress. If o € L>(Q; M} ?) and dive € L™(Q;R™), then one can define a
distribution [ov] on 9 by

<[01/]|1/J>:/Qdiva'qjjdx+/0:Ewdm (2.10)

Q
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for ¢» € W11 (Q;R"). By Gagliardo’s extension result [Gag05, Theorem 1.1, it is easy to see that
[ov] € L (0Q;R™) and that

[oxv] = [ov] weakly* in L*°(9Q;R"), (2.11)
whenever o} — ¢ weakly* in Leo(; Mg s7) and div oy, — dive weakly in L™(Q;R™).

Uniform safe-load condition. We assume that there exist a function ¢ in the space AC([0,T];
L>e(Q;M2xm)) and a compact set Ko C int K, such that for every ¢t € [0,T]

sym

div o(t) = —f(t) in Q, [o(t)v] =g(t) on Ty, o(t,x) € Kq in Q. (2.12)

2.3 Stress-strain duality

In this section we develop the notion of duality between the stress and the plastic part of the strain.
We begin with the definition and properties of the duality between stress and strain in the spirit
of [KT83], where only the deviatoric part of the stress is bounded, and [Anz83], where a similar
problem is studied in BV (Q).

In the sequel we will make use of the following space

Y(Q)={ce LM ") : dive € L"(Q;R™)}.

sym

2.3.1 Duality between stress and strain

For every u € BD(Q2) and o € X(2) we can define a distribution [o : Fu] on Q by

([a:EuHap):—/ngu-divadx—/ﬁaz(uQVgo)dx (2.13)

for every ¢ € C°(€Q). Arguing as in [KT83, Theorem 3.2] one can prove that the distribution
[0 : Eu] is a bounded measure on {2 and its variation satisfies

[0+ Bull < o]l [Bul in My(9). (2.14)
Moreover [Anz84, Corollary 3.2], with obvious changes, implies that
[0:FEul*=0:E% a.e. in Q. (2.15)
From the definition (2.13) it follows that
[o: Eul =¢[o: Eu] in My(Q) (2.16)

for every 1 € C1(Q).
We define the measure [0 : E°u] on € by putting

[o: E°u]l :=[o: Eu]® = [0 : Eu] — o0 : E%u. (2.17)

Inequality (2.14) yields
[[o: Eu)] < ||o||loo |E°u| in My(S2). (2.18)
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Remark 2.3.1. This inequality implies that [o7 : E*u;1] = [o2 : ESus] in Mp(€2) whenever o1 = 09
a.e. in Q and E®u; = E’usy.

As in [KT83, Theorem 3.2] one can prove the following stability property: if
o =0 weakly* in L= (Q; Mg, 0,
divor — dive  weakly in L™((;R™),
then for every u € BD(Q)
(o) : Bu] > [0: Bu] and [0}, : ESu] = [0 : Eu] weakly* in (Cy(9))’

that is, for each bounded continuous function ¢: {2 — R one has
/ pdlog : Eu] — / pdlo : Eul, / pdfoy : Eu] — / pdlo : E°ul. (2.19)
Q Q Q Q

2.3.2 Duality between stress and plastic strain

Given o € %(Q) and p € Hr,(Q), fix v € BD(Q), e € L*(Q;M%%") and w € H'(R"),

sym

satisfying (2.6) and (2.7). Then we define a measure [0 : p| € Mp(Q2UTy) by setting
[c:pl:=c:p*+[oc:Ful=[c:Ful—0c:e on{,
[o:p]:=[ov] - (w—u)H"' on Ty,
so that

/QUFOSDd[UIP]Z/Qcpd[o:Eu]—/Qapa:edx—f—/m(p[gy}.(w_u)dHn—1 (2.20)

for every ¢ € Cy(2UTy), the space of bounded continuous functions on Q UTy. In this case
Remark 2.3.1 shows that the measure [o : p] is well defined, that is, it does not depend upon the
particular choice of u, e and w.

It follows from the definition that

[0:p]*=0:p* a.e. onQ, [0:p]° =[o: E°u] in Mp(Q)
and
[o:pll < llollclpl  in Mp(2UTo),  lo: pl* < [lofloclp®  in Mp(R2UTY). (2.21)
Moreover (2.16) implies that
[ho :p]l =plo:p] i My(Q2UT)

for every 1 € C'(Q; M?X") and using the definitions one can deduce that

sym
/ pdlo:p] = / podp (2.22)
QU QUIg
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for every o € C1(Q;M™X") and every ¢ € C*(Q). By (2.21) we deduce, that (2.22) holds for all

o€ C(ME7) and ¢ € C(Q). Therefore for every o € C(€;M{y") and p € TIp, (2) we have

[c:p]=0:p in My(QUTY),

where the right-hand side denotes the measure defined by

(Uip)(B):/BUz'deij

for every Borel set B C QUT.
Also it is easy to see that the relation

[o:p]=(0c:p)-L" in Mp(Q)

holds in the case o, p € L*(;M7x").
It follows from the definition and from (2.11) and (2.19) that

o) i p] = [o:p] weakly* in (Cp(QUTY)) (2.23)

whenever o, — ¢ weakly* in Lo (M) and divoy, — dive weakly in L™ (€;R").

Finally, for every o € () and p € I, (), we define

[o:p](QUTy) =

= / o:p*de+[o: Eul(Q) +/ [ov] - (w —u)dH" ! =
Q

Lo

(olp)sm

— lo: Bu(®) - |

o: 6daz+/ [ov] - (w — u) dH" .
Q Ty

where u € BD(Q2), e € L?(Q;M7%") and w € H*(;R") satisfy (2.6) and (2.7).

sym
Let us now prove the integration by parts formula for stresses and displacements:

Proposition 2.3.2. Let 0 € %(Q), w € H' (R, f € L™(R™), g € L®(T'1;R™) and let
(u,e,p) € A(w). Assume that —divo = f in Q and [ov] =g on T'y. Then

/ @d[o:p]—i—/goa:(e—Ew)dx—i—
QU Q

+/ﬂa:((u—w)®V<p) dx = (2.24)
=/@f~(u—w)dw+/ pg-(u—w)dH"
Q I

for every ¢ € C1(9Q).
PROOF: First, let us establish the following formula for o € 3(2), v € BD(Q) and ¢ € C1(Q):

/ go[ou]-vd’l-(”_lz/g@diva-vdm—i—/a:(v@Vgo)dw—i—/god[o:Ev]. (2.25)
oQ Q Q Q
Arguing as in [DDMO06, Lemma 2.3] we can find a sequence oj in C°°(Q), such that

or — o strongly in LP(Q;M2X"), divoy — dive strongly in L™(Q;R"™)

sym
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for every 1 < p < co. By the integration by parts formula for BD(2), formula (2.25) holds for
every oj. The left-hand side converges to that of (2.25) by (2.11), while the convergence of the
right-hand side follows from (2.19). This proves (2.25).

By the assumptions of the theorem, for v = u —w € BD(Q) formula (2.25) takes the form:

_/S;pr.(u_w)dx—k/go': <(u—w)®V<p>d$—|—/Qcpd[a:E(U—w)]:

= [ el =yt [ oo e

(2.26)

On the other hand, (2.20) gives

/Qurowd[azp]-l-/ﬂwaz(e—Ew)dm—i—/Qa: ((U—w)®V<p)dw:

:Afmp:Em—wn+Afn(m—uo@vé%m—ﬁ;@wﬂmu—wmumﬁ

Thus, the last relation together with (2.26) yields (2.24). O

Let
K(Q):={oc e L*(Q;M"): o(z) € K for a.e. z € Q}.

sym
The following proposition can pe proved as in [DDMO06, Proposition 2.2].
Proposition 2.3.3. Let p € Il (). Then
H(p) = [o:p] in My(Q2UTy) (2.27)
for every o € B(Q)NK(Q), and
H(p) = sup{{olp) : o € S NKO)}. (2.28)
Moreover, if g € L>°(T'1;R™) and there exists o € () NK(Q) such that [ov] = g on Ty, then

H(p) =sup{(olp) : 0 € Z(Q) NK(Q), [ov]=g onT1}. (2.29)

2.4 Quasistatic evolution

2.4.1 Definition and existence result

From assumptions (2.5) it follows, that for the functional F(t) € BD(Q2)", defined by

(Ft)|u) = /Qf(t)udz +/F g(t) u, (2.30)
the weak™® limit

exists in BD(Q) for a.e. t € [0,7], and that

<ﬂmwzzy@um+/g@w (2.31)

I
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Therefore the function t — (F(t)|u(t)) belongs to L*([0,T]) whenever t — u(t) is in L>([0, T];
BD(Q)).
A function p : [0,T] — M( U To; Mg <) will be regarded as a function defined on the time

interval [0, T'] with values in the dual of the separable Banach space Co(Q2UTg; Mg 57). Its variation
V and H—variation D are defined as

N
V(p; s,t) =Sup{2|lp(tj) —ptj—) : s=tg <--- <ty =t, NeN},
j=1

N
D (p;s,t) = sup{ZH(p(tj) —p(tj—1)) - s=tog<---<ty=t, Ne€ N}.
J=1

The notation Dy for the H-variation is motivated by the more standard case in which the
set K of admissible stresses contains the origin in its interior. In this case, H is positive and the
‘H-variation of p has the physical interpretation of plastic dissipation in the time interval (s,t).

Next we give a variational formulation of the quasistatic problem.

Definition 2.4.1. A quasistatic evolution is a function t — (u(t),e(t),p(t)) from [0,7] into
BD(Q) x L?(Q; M™X") x My(2UTo; M2%") which satisfies the following conditions:

sym sym

(gsl) global stability: for every ¢ € [0,T] we have (u(t),e(t),p(t)) € A(w(t)) and
Q(e(t)) — (F(O)u(t)) < Qn) +H(g — p(t)) — (F(B)v) (2.32)
for every (v,n,q) € A(0).

(as2) energy balance: the function t — p(t) from [0,7] into M(Q U T'o; Mg") has bounded
variation and for every ¢ € [0, 7]

Q(e(t) + Pri(ps0,) = (F(Bu(t)) = Q(e(0)) + (FO)|u(0))+
+ [ (te1Bit) = (F)li) = Flus)) ds

where o(t) = Ce(t).
Remark 2.4.2. Since the function ¢ — p(t) from [0,T] into My(Q2 U To;MZX%™) has bounded

sym
variation, it is bounded and the set of its discontinuity points (in the strong topology) is at most
countable. As the estimates of [DDMO06, Theorem 3.8] are true also in this case, the same continuity
property holds for ¢ +— e(t) and t — o(t) from [0,7] into L?(Q;M72%") and for ¢ — wu(t) from

sym
[0,T] into BD(2). Therefore

(2.33)

e, o € L=([0,T]; L*(:;M™%™))  and u € L>([0,T]; BD()).

sym

Finally, as w € L*([0,T]; WH2(Q;R")) and Ew € L*([0,T]; L?(Q; M7<")), the integral in the
right-hand side of (2.33) is well-defined.

Theorem 2.4.3. Assume (2.5) and (2.12). If (ug, e, po) € A(w(0)) satisfy the stability condition
Q(e(0)) = (F(0)|uo) < Q(e) +H(p — po) — (F(0)|w)

for every (u,e,p) € A(w(0)), then there exists a quasistatic evolution t +— (u(t),e(t),p(t)) such
that U(O) = Uo, 6(0) = €0, p(O) =Po-
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PROOF: The proof can be obtained by time discretization. For every k € N we fix a subdivision
0=1t) <t < - <! <tk =T, satisfying (4.11) of [DDMO06]. At each time step we solve
the incremental minimum problem (4.12) of [DDMO06], adopting the definitions of A(w) and H
of the present paper. Then we define the piecewise constant interpolations ux(t), eg(t), pr(t),
or(t) as in (4.15) of [DDMO06], and we prove that for every t € [0,T] ug(t) = u(t) weakly* in
BD(2), ex(t) — e(t) weakly in L?(Q;MZ<") and py(t) Xop(t) weakly* in My (Q U To; M),
where t — (u(t),e(t),p(t)) is a quasistatic evolution.

The details can be recovered by repeating the arguments of [DDMO06, Section 4], with obvious
modifications due to the new definitions introduced in Section 3 of the present paper. O

The next theorem shows, that the convergence of elastic strains and stresses takes place in the
strong topology of L?(Q;M7X"). See [DDMO06, Theorem 4.8] for the proof.

sym
Theorem 2.4.4. Assume that
pr(t) = p(t)  weakly™ in My(Q2UTo; M) (2.34)
for every t € [0,T]. Then ex(t) — e(t) and oy (t) — o(t) strongly in L*(Q; M%) . Moreover,
tim > () —pet7) = () Ipe(t) — pe(ti ™) | =
o<t <t

= Du(p; 0,) — <9(t)|p(t)>+<9(0)lp(0)>+/0 (0(s)|p(s)) ds

for every t € [0,T7.

2.4.2 Regularity and uniqueness

The next statement shows that the quasistatic evolution is absolutely continuous with respect to
time. We refer to [DDMO06, Theorem 5.2] for the proof.

Theorem 2.4.5. Let t — (u(t),e(t),p(t)) be a quasistatic evolution. Then

e € AC([0, T]; L*(Q; M™X™)),  p e AC([0, T]; My(QU To; M5, w e AC([0, T]; BD(Q)).

sym sym

Moreover, for a.e. t € [0,T]
ez < Crlle(B) ]l + | Ew(@)]l2),

(2.35)

1P < Calllo®) oo + 1Ew(#)]l2), (2.36)

[EW(t)[1 < Cr(l[e()]loe + [[Ew(t)]l2), (2.37)

[a(®)llr < Cr(llo(®)lloo + [Ew (B2 + [[(t)]|2)- (2.38)

Remark 2.4.6. Assume that u € AC([0,T]; BD(Q)), e € AC([0,T]; L*(QM)")), and p €

AC([0,T]; Mp(Q2UTo); Mg 1) . Assume that (u(t),e(t), p(t)) € A(w(t)) for every ¢ € [0,T]. Then

(a(t),e(t),p(t)) € A(w(t)) for a.e. ¢t € [0,7]. Indeed, it is enough to apply Lemma 2.2.1 to the
difference quotients.

As in [DDMO06, Theorem 5.9] we can prove that ¢t — e(t) (and, consequently, ¢t — o(t)) is
uniquely determined by its initial condition.

Theorem 2.4.7. Let t — (u(t),e(t),p(t)) and t — (v(t),n(t),q(t)) be two quasistatic evolutions
and let o(t) := Ce(t) and 7(t) := Cn(t). If e(0) = n(0), then e(t) = n(t) for every t € [0,T].
Equivalently, if o(0) = 7(0), then o(t) = 7(t) for every t € [0,T].
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2.4.3 Equivalent formulations in rate form

Let ¢t — (u(t),e(t), p(t)) be a quasistatic evolution. Suppose for now that p(t) € L(Q;MZ<").
In this section we want to prove that

p(t,z) € Ng(o(t,x)) fora.ex €, (2.39)

which represents the classical formulation of the flow rule. By the definition of Nk it is easy to
see that (2.39) is equivalent to saying that

(o(t) —T()[p(t)) =2 0 (2.40)

for every 7 € () N K(Q) with [rv] = g(¢) on I'y. Indeed, the implication (2.39)=(2.40) is
straightforward, while the converse one is obtained by considering the test functions of the form
7=+ (1 - ¢)o, with a cut-off ¢ € C*(Q2), 0 < ¢ <1 and arbitrary £ € K.

Note, that the variational inequality (2.40) makes sense even if one considers the duality between
2(2) and IIp, (), defined in Section 2.3, since p(t) € IIr,(2) by Remark 2.4.6. We will regard
(2.40) as the weak formulation of the inclusion (2.39) when p(t) € My(2 U To; MZ 7).

The following theorem collects three different sets of conditions, including (2.40) and expressed
in terms of the time derivatives p(t), é(t), and @(t), which are equivalent to the conditions con-
sidered in Definition 2.4.1. For its proof we refer to [DDMO06, Theorem 6.1], with obvious modifi-
cations.

Theorem 2.4.8. Let (u,e,p) : [0,T] — BD(Q) x L*(; M) x My(Q U To; MZS") and let
o(t) = Ce(t). Then the following conditions are equivalent:

(a) t — (u(t),e(t),p(t)) is a quasistatic evolution;
(b) t— (u(t),e(t),p(t)) is absolutely continuous and
(b1) for every t € [0,T] we have (u(t),e(t),p(t)) € A(w(t)), o(t) € T(VNNK(Q), —divo(t) =
f(t) in Q, and [o(t)v] = g(t) on Ty,
(b2) for a.e. t €[0,T] we have
(o(t) = 7lp(t)) = 0
for every T € L(Q) NK(Q) with [Tv] =g(t) on T'y;
(c) t— (u(t),e(t),p(t)) is absolutely continuous and

(c1) for every t € [0,T] we have (u(t),e(t),p(t)) € A(w(t)), o(t) € () NK(Q),
—divo(t) = f(t) in Q, and [o(t)v] =g(t) on T,
(c2) for a.e. t€[0,T] we have

H(B(t) = (o()p(1));

Remark 2.4.9. By Proposition 2.3.3 the measure H(p(t)) —[o(¢t) : p(t)] is nonnegative on QUT,
so that (b2) implies that
H(p(t)) = [o(t) : p(t)] on QUT. (2.41)

Let us return to the classical formulation of the flow rule, which makes sense for p(t) €
L2(Q;M7X™). Tt can be written equivalently in the form

sym

———=— € Nkg(o(t,z)) for L™ —a.e. z € {|p(t)| > 0}. (2.42)
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When p(t) € Mp(QUTo; M2%") | we can consider the Radon-Nikodym derivative p(t)/|p(t)| of

sym
p(t) with respect to its variation |p(t)|, which is a function defined |p(t)|-a.e. on QUTy.
We notice that

PO oy = PED) ez {p()] > 0}

p@1 Ip(t @)
when p € L?(€;M7<"). Unfortunately, when p € M;,(QUI; MZ<") one cannot prove the inclusion
p(t)
()]

that is the natural generalization of (2.42), as a pointwise formulation of the flow rule, since its
left-hand side is defined |p(t)|-a.e. on QUTq, while its right-hand side is defined only £™-a.e. on
Q. In the following Theorem this difficulty is overcome by introducing a representative (t) of
o(t), which is defined p(t)-a.e. on QUT. For the proof see [DDMO06, Theorem 6.4].

Theorem 2.4.10. Let (u,e,p) : [0,T] — BD(2) x L2(Q; M%") x My(QUL; M2X"), o (t) = Ce(t)

sym sym

and let u(t) = L™+ |pt)|. Then t — (u(t),e(t),p(t)) is a quasistatic evolution if and only if
(d) t— (u(t),e(t),p(t)) is absolutely continuous and

(d1) for everyt € [0,T] we have (u(t),e(t),p(t)) € A(w(t)), o(t) € T(QHUK(Q), —diva(t) =
f(®) on Q, and [o(t)v] = g(t) on T,

(d2) for a.e. t €[0,T] there exists 6(t) € L%, (QUTo; MZX") such that

u(t) sym
G(t)=0() L"—ace onQ, (2.44)
) e

[o(t) : p(t)] = &(t) WWU\ in Mp(Q U Loy MZ7T), (2.45)

p(t) . .
(0] (x) € Ng(6(t,z)) for |p(t)] — a.e. z € QUT,. (2.46)
For every 7 > 0 and every ¢ € [0,T] we consider the function ¢”(t) € C(€;M7x") defined by
"(t,2) e [ ety (2.47)

o'(t,x) = —————— ol(t, . .
[,n(B($,T) N Q) B(z,r)NQ

When K is strictly convex, the previous result can be improved by making the definition of &
more precise. We refer to [DDMO06, Theorem 6.6] for the proof.

Theorem 2.4.11. Assume that K is strictly convex. Let t — (u(t),e(t),p(t)) be a quasistatic
evolution, let u(t) = L™ + |p(t)|, let o(t) = Ce(t), and let o"(t) be defined by (2.47) . Then
" (t) — 6(t) strongly in L}L(t)(Q;M?anﬁ) for a.e. t €[0,T], where 6(t) satisfies (2.44)-(2.46).



Chapter 3

Quasistatic evolution in the theory
of perfectly elasto-plastic plates:
existence of a weak solution.

In this chapter we combine

3.1 Introduction

In this paper we study the quasistatic evolution of clamped perfectly elasto-plastic plates under
the action of a time-dependent transversal body force. The reference configuration is a bounded
open set 0 C R? with Lipschitz boundary and the elastic domain K is a bounded closed convex
subset of Mﬁ;,i (the space of symmetric 2 X 2 matrices) with nonempty interior, whose boundary
OK plays the role of the yield surface.

Given a scalar valued function f(¢,z) defined for ¢t € [0,7] and = € , which represents
the transversal body force, the strong formulation of the evolution problem consists in finding a
scalar valued function u(t, ) (the vertical displacement) and three matrix-valued functions e(t, x),
p(t,x) and M (t,z) (the elastic and plastic curvatures and the bending moments) such that for
every t € [0,T], for every z € 2 the following conditions hold:

1. kinematic admissibility: D?u(t,z) = e(t,z) + p(t,z) in Q,
u(t,z) =0, 2%(t,z) =0 on 9N

’ v
2. coustitutive equation: M (t,x) = Ce(t,x),
3. equilibrium: divdiv M(¢,z) = f(¢,x) in Q,
4. moment constraint: M (¢, z) € K,

5. associative flow rule: p(t,x) € Nx(M (¢, x)),

where v(z) is the outer unit normal to 9Q and C is the rigidity tensor. The symbol Nk(¢&)
denotes the normal cone to the set K at the point £ in the sense of convex analysis. The problem
is supplemented by initial conditions at time ¢t = 0.

35
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The boundary conditions v = 0 and % = 0 on 99 reflect the mechanical assumption the
plate is clamped.

The existence of weak solutions for variational problems in the theory of perfect plasticity was
extensively studied during last decades (see, for example, [Anz84], [AG82], [DDMO06], [Dem8&9],
[FS00], [Ser94], [Sug81], [Tem85]). In this paper we develop an energy approach to the existence
of weak solutions of this problem (Definition (3.4.1) below), which turns out to be particularly
useful for studying their further differential properties (see Ref. [DemO08b]). The particular case
of perfectly elasto-plastic plates has been studied by many authors, subject to various boundary
conditions (see, for example, [BK00], [Dem83], [Tem85]). We examine here the quasistatic analogue
of static problem, studied in [Dem83], [Ser93a], [Tem&5].

The aim of this paper is to develop a new approach to the existence of weak solution to problem
(1)-(5) (see Definition 3.4.1 below) in the spirit of the energy formulation of rate-independent
problems, studied in [Mie02]. The advantage of this general approach is twofold. On the one hand
it allows to obtain a weak formulation of the flow rule (5) in a measure-theoretic sense, on the
other hand it is crucial in the proof of further differentiability properties of M (¢, z), that will be
obtained in [Dem08a)].

As usually in the energy approach (see [DDD07], [DDMO06]) we obtain the existence of solutions
by a time-discretization procedure: first, we consider a sequence of incremental minimum problems
and show that an appropriately constructed sequence of piecewise-constant approximations has a
bounded variation and satisfies the so-called discrete energy inequality. Then, by using a version of
Helly theorem, we extract a converging subsequence, whose limit satisfies (2)-(4), a relaxed form of
(1) and an an energy equality. These conditions are considered a weak formulation of the original
problem.

By construction this weak solution has bounded variation with respect to time. the energy
equality allows to prove that it is actually absolutely continuous.

At the end of the paper we follow the arguments of [DDMO06] to investigate some fine pointwise
properties of the tensor of moments M and we prove a weak formulation of the flow rule (5).

This paper is the first step of a program of proving higher differentiability of the tensor of
moments M. In fact, the use of piecewise constant approximations constructed below will allow
us to use the results of [FS00], [Ser93a] for proving that we have not only the regularity with
respect to time (see Theorem (3.5.1) below)

L T2(0). \M2X2
M e AC([0,T7; L*(2; M5,..)),
but actually we are able to say something about the spatial properties of M. Precisely, the
expected result is:

M e L=([0,T]; W22 (Q; M2%2))

loc sym

(see [DemO8b] for the analogous result in the case of Prandtl-Reuss perfect plasticity).

The paper is organized as follows: in Section 2 we state some preliminary notions and results.
Every single incremental problem is considered in details in Section 3. In Section 4 the definition
of a weak solution is given, and its existence is proved. Absolute continuity of weak solutions with
respect to time and the uniqueness of the tensor of moments are obtained in Section 5. Equivalent
definitions in rate form and some fine properties of the tensor of moments are discussed in Section
6.
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3.2 Preliminaries

The set of admissible moments

Let K be a closed convex set in M2x2 , such that By, (0) C K C Bg,(0) for some positive constants
rg and Rg. The set K plays the role of a constraint on the tensor of bending moments. The
boundary OK is interpreted as the yield surface.
The set of admissible moments () is defined as

KQ) = {M € LA (;M2%2): M(z) € K for ae. = € Q}

sym

2X2
sym

The support function H : M — R of K is given by

H(m) := AS/IuE%m:M

and satisfies
relé| < H(€) < Rg|¢|, for all £ € M2X?

sym*

For every p € My(Q;MZ2x%) we introduce the nonnegative Radon measure H(p) € M(€2)
defined by

H(p)(B) := / H(p/|p|)d|u| for every Borel set B C Q.
B

We consider the convex functional H(p) : My(2;M2%2) — R defined by the formula

sym

mm:mmm=éﬂwwwm

As well-known (see, for example, [Tem85], Chapter II), H is lower semicontinuous on M;(Q; M2?)

and the following holds

H() = sup { (m, ) s m € CE@MER) N Q) }. (3.1)

The rigidity tensor

C is the rigidity tensor, considered as a symmetric positive definite linear operator C : Mf;,% —
M2X2 | We introduce the quadratic form @ : M2X2 — [0, +00) of C by putting

sym * sym

1
Q) = §C§ : €.
Thus, there exist two constants a¢ and ¢ with 0 < a¢ < f¢ < +00, such that

aclé® < Q(€) < Aelél*. (3.2)

The stored elastic energy functional Q : L?(2;M2X2) — R is given by

sym

Q(e)z/QQ(e)dx: %/Q(Ce:edz. (3.3)
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3.2.1 Transversal body force

Suppose, that a transversal body force f : [0,T] — L?(Q) is given, such that f is absolutely
continuous as a map from [0,7] in L*(Q).

We also assume the uniform safe-load condition: there exists a function m! : [0,7] — L2(£);
M?x2) and a constant a > 0, such that for every ¢ € [0, 7]

divdivm!(t,z) = f in Q

and m'(t,z) + £ € K for a.e. 2 € Q and for every £ € M2¥2 with [¢] < a.

Concerning the regularity of ¢ — m!(t), we assume it to be absolutely continuous as a map
from [0,7] into L?(Q;M2x2).

sym

Kinematic admissibility

Now we give a definition of a kinematically admissible triple. Remark, that the first condition
is responsible for an additive decomposition, the second one reflects the boundary conditions for
wu, while the third one is the relaxed form of the boundary conditions, which are typical in the
variational theory of functionals with linear growth.

Definition 3.2.1. A triple (u,e,p) € BH () x L*(€2; M2<2 ) x My, (Q; M2% ) is called kinematically
admissible, if the following conditions hold

D*u=e+p inQQ,
u=0 on 99,
p=-VuovrH" ! ondQ.

Definition 3.2.2. The space II(Q2) of admissible plastic curvatures is defined as the set of all
p € My(Q;M2x2) for which there exist u € BH(2) and e € L*(€;MZ25?2), such that the triple
(u, e, p) is kinematically admissible.

It is easy to see that the definition of a kinematically admissible triple is stable under weak
convergence in the appropriate topologies.

Lemma 3.2.3. Let a triple (ug,ek,px) be kinematically admissible. Assume that uyg A U in
BH(Q), er — e in L*(G;M252) and py A oo in My (S MZ252). Then (Uoo, €oos Poo) s also
kinematically admissible.

3.2.2 Moments and curvatures

Let us introduce the set:

_ 2000 WI2X2Y - div 2
S(Q) = {M € L2 M22) : divdiv M € L (Q)}. (3.4)

We note, that the following approximation result holds for the functions from S(€). Remark,
that the proof presented in [Tem85], Chapter III, contains an error. A correct proof was proposed
by G. Seregin ([Ser]), and we present it here for completeness.
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Lemma 3.2.4. Let Q be a bounded Lipshitz domain in R?* and let M € S(Q)NK(2). Then there
exists a sequence My € C(;M2X2)NK(Q) satisfying

sym

My, — M in L”(Q;Mi;,i), for any p < oo,

divdiv My, — divdivM in L*(Q), (3.5)
[Mp|lpe < C||M]|pee.

PROOF: Denote the space L?(£2; M2%2 x R) of vector-valued functions by L. Let D be a subspace

sym
of L?(Q) such that (m,divdivm) € L. Let Dy be the closure of C>(Q;MZ2X2) in the norm of
the space L.
Assume that there exists an element (m.,divdivm,) € D\ Dy. As Dy is closed and convex
in L, by Hahn-Banach theorem there exists a pair (uy,u) € L*(Q; M252) x L*(Q,R) (i.e., simply
from L) such that

/(m* cup +udivdivm,)de =1
Q
and
/(m cup +udivdivm)de =0
Q

for any m € Dy. The last identity shows that u; = u. So, u € WZ(2) and u has usual traces on
0Q (u and v - Vu), where v is the normal to 9Q. Those traces of u are zero that follows from
the second identity. So, if the domain 2 is not bad, for example Lipshitz, u belongs to the closure
of C§°(Q) in W2(Q) (see [Maz85]). This means that there exist function v € C§°(Q2) such that

/(m* : V20 +vdivdivm,) de > 1/2
Q
The left hand side vanishes by definition of div div , which leads to a contradiction. O

Traces of the bending moments

For M € S(Q) one can define distributions M;;v;v; and bo(M) being the elements of H~'/2(99Q)
and H~3/2(0Q) respectively as
ov
<bO(M),'U>H*3/2;H3/2 - <MijViVj7 87>H71/2;H1/2 =
v
(3.6)
= / vdivdiv M dx — / D?*v : M dx
Q Q

for v € W22(2). To see this it is enough to observe, that H3/2(9Q) x HY/?(9Q) is precisely the
space of traces and of normal derivatives of functions from W?22(Q).

Remark 3.2.5. Arguing, as in [KT83], Lemma 2.4, one easily shows that M;;v;v; € L>(0N)
whenever M € S(€2) N L>°(;M22), and the estimate

[ Mivivi|leo < C(IM ||
holds.
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Moments-curvatures duality

Below we introduce an analogue of the duality between bending moments and plastic curvatures
(defined in (3.8)), following the scheme, proposed in [DDMO06] for studying weak solutions of
quasistatic problems in perfect plasticity. As usually, the definition is constructed in a way to
provide immediately the integration by parts formula (Proposition 3.2.8).

First of all, we recall the following construction: for v € BH(2) and M € S(Q) we define a
distribution [D?u : M] by

(D% M.} = [

ugodivdidex—Q/(Vu@Vgo):de—/u(chp:M)dx
Q Q

Q

for every ¢ € C(€2). The next statement (see [Dem89, Proposition 2.3]) describes some of its
properties.

Proposition 3.2.6. Let M € S(Q)NL>®(;M2%2), uw € BH(Q) and [D*u : M| be the distribution

sym
defined above. Then [D?u : M| can be extended to a bounded measure on 0 satisfying

I[D?u : M]| < |D?u| | M||p= in My(S).

Moreover the following integration by parts formula holds
/ wd[D*u: M) =
Q

:/ugpdivdidex—Q/(Vu@Vgo):de—/u(chp:M)dxwL (3.7)
Q Q Q
u ¢ -1 / -1
Mviv; | o— — | dH" — bo(M)updH" ™+,
—&—/89 Juu][goay—l—uay} H . o(M)up dH
for every ¢ € C%(Q).

Note, that
[ M : D*u] = ¢[M : D*u]
for every 1 € C?(Q) and as in [Anz84], Corollary 3.2, one can show, that the following holds:
[D?u: M]® = D*u®: M a.e. in Q.

We define the measure [M : p] € Mp(Q2) by putting

[M:p|=M:p*+[M: D> =[M:D?u—M:e onf

3.8
[M :p] = —% MijViVj dHn_l on 0f). ( )

Thus, the following duality between S(Q) and II(Q) is well defined
(Mlp) == [M : p|(Q). (3.9)

Then we have

I[M :p]| <Clp| in My(Q),

which implies, that the definition of the duality does not depend on a particular choice of u and
e.
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Remark 3.2.7. Given M € C?(;M2%2) and an admissible triple (u,e,p), the following holds

sym

/gpd[M:p] = ([M : pllp) = (pM|p) := /,@Mijdpij,
Q Q

for every ¢ € C?(2), where in both sides we have a duality pairing between M;(€;MZ2x2) and

M € C(Q;M2%2). By the definition of p and [M : p] we are left to verify the equality of boundary

sym
integrals

n—1 8U

oM (Vuov)dH" " = 0

o0 oq  Ov

In the following calculations 7(x) stands for the tangential vector to 92 at the point = € 99

MikVin dHn_l.

/ oM : (Vuov)dH"* :/ o(Mv) - VudH"! =
o on

= / cp(MikVin)l/ju,j dHn_l +/ (p(MikI/iTk)Tju’j dHn_l =
o 1919)

= / @(Mikyiyk)z/ju,j dHn_l —/ ’U,E(QO MikViTk) dHn_l = / %2 @ Mikuil/k dHn_l,
o0 o OT o OV
as u =0 on 09.

From the very definition of measure [M : p| and Proposition 3.2.6 we deduce the integration
by parts formula for M € S(Q2) and displacements u € BH(£2), involving the elastic and plastic
curvatures e and p.

Proposition 3.2.8. Let M € S(Q) N L>®(Q;M2X2), f € L*(Q) and let (u,e,p) be kinematically

sym

admissible. Assume that divdivM = f on Q. Then

/ pd[M :p] =
Q (3.10)

:/ugofdxf/@(M:e)dmf/u(DQcp:M)dfo/(Vu@)ch):Md:c
Q Q Q Q
for every ¢ € C?(Q). In particular,

@ = |

Q

u fdx — /Q(M ce)dz. (3.11)

The following proposition makes the representation formula (3.1) more precise, expressing it
by means of duality (3.9).

Proposition 3.2.9. Let p € TI(Q)). Then
H(p) > [M :p] in My(2) (3.12)
for every M € S(Q)NK(Q), and

H(p) = sup{(M|p) : M € S(Q) NK(Q)}. (3.13)
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PRrROOF: Let M € S(2) NK(Q). First, we will show that

(H(p)le) = ([M : plle) (3.14)
for every p € C(2) with ¢ > 0 on Q. By Lemma 3.2.4 there exists a sequence Mj, € C™(Q; M22)

NIC(Q) such that (3.5) holds. From the very definition of convex functional of a measure and be
Remark 3.2.7 we have that

(H(p)lp) = ([Mj, : pll#)- (3.15)

The integration by parts formula (3.7) and the convergence (3.5) permits us to pass to the limit
in the right-hand side, so that (3.12) is proved. B
We remark, that in (3.1) one can restrict the set of test functions to C*°(Q;M2x2), which

implies (3.13). O

3.3 The minimum problem

In this section we show that each incremental problem has a solution, study the necessary conditions
for minimality, which turn out to be also sufficient, due to convexity of the problem, and prove
continuity estimates for the solutions.

Given pg, to get the updated values u, e and p of displacement, elastic and plastic curvatures
we will solve the minimum problem

min){Q(e) +H(p —po) — {flw)}, (3.16)

(u,e,p

where the minimum is taken over all kinematically admissible triples (u,e,p). Note, that in the
sequel we often write this minimization problem without mentioning explicitly that only kinemat-
ically admissible triples participate.

For the existence result we will assume the safe-load condition: there exists m! € S(Q) and
a > 0 such that

divdivm! = f on Q,

m!(z) + & € K for a.e. x € Q and for every £ € M2)2 with [¢] < a. (3.17)
3.3.1 Existence of a minimizer
Lemma 3.3.1. Let f € L*(Q) and assume (3.17). Then
(flu) = (m']e) + (m|p)
for every admissible triple (u,e,p).
Proor: Follows from the integration by parts formula (3.11). O

Lemma 3.3.2. Let f € L*(Q), m! € S(Q) and o > 0. Assume that condition (3.17) holds. Then

H(p) — (m'|p) > allpllx

for every p € TI(2).
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PrOOF: By Proposition 3.2.9 we have

H(p) — (m'p) = sup { (M — m'[p) : M € S(QNK(Q) } =
> sup { (mlp) : m € S(Q), |m]l < a} = alph.

O

Theorem 3.3.3. Let py € II(2), f € L*() and assume (3.17). Then minimum problem (3.16)
has a solution.

PROOF: By Lemma 3.3.1 minimum problem (3.16) is equivalent to

min {Q(e) — (me) + H(p — po) — <m1|p—p0>}. (3.18)

(u,e,p)

Let (uk,ex,pr) be a minimizing sequence of kinematically admissible triples. By Lemma 3.3.2 we
have
H(p — po) — (m*|p — po) > allpk — poll1,

and (3.2) implies, that

ac 1
Q(ex) — (m'ley) > 7”61«”% - %Hml\\%.

Therefore the sequences e; and py are bounded in L?(Q;MZ2¢2) and My (Q; M2x2) respectively.

sym

As D?uy, = ey, + pi, in Q, it follows that D?uy, is bounded in Mb(Q;ngxn%). As uip =0 on 09,
ug are bounded in BH (). So we may assume that uy — u in BH(Q), ex — e in L2(0; M2x2)

and pp = p in My(Q;M2%?). By Lemma 3.2.3 we know that the limit (u,e,p) is kinematically

sym
admissible. The lower semicontinuity of Q gives

Q(e) — (m'|e) < liminf { Q(ex) — (m'fex) }, (3.19)
so it remains to show that
H(p = po) = {m'[p — po) < lim inf {H(pk —po) — (m'|px — po) } (3.20)

The integration by parts formula (3.10) implies
(m*[px —po) = (flug) — (m'lex) — (m*|po).
Passing to the limit as & — oo and using (3.10) again, we conclude that
lim <m1|pk —po) = (ml lp — po)-
k—o0
So, the latter relation and lower semicontinuity of H yield
H(p — po) — (m'|p — po) < 1imkinf{H(pk —po) — (m'|px — po)}-

Now, as (u,e,p) is kinematically admissible, the inequalities (3.19) and (3.20) guarantee that
(u,e,p) is a minimizer of (3.18). O



44 CHAPTER 3. QUASISTATIC EVOLUTION FOR ELASTO-PLASTIC PLATES

3.3.2 The Euler conditions

Below we derive the necessary and sufficient conditions for a triple (u,e,p) to be a solution to
problem (3.16) with p = py.

Theorem 3.3.4. Let f € L*(Q), let (u,e,p) be kinematically admissible and let M := Ce. Then
the following conditions are equivalent:

(a) (u,e,p) is a solution of (3.16) with p = pg;
(b)) —H(q) < (M|n) — (flv) < H(—q) for every kinematically admissible (v,n,q);
(¢) M e S(Q)NK(Q) and divdivM = f.

ProOOF: First, let us prove the implication (a)=-(b). Take a kinematically admissible triple
(v,m,q). As the triple (u—+ev,e+en,p+ eq) is also kinematically admissible for every € € R, the
minimality condition yields

Q(e+ev) +H(eq) — e(flv) > Q(e) for every € € R.
Then, by the positive homogeneity of H
Qe £ en) +e(xq) Fe(flv) > Qe) for every € > 0.

Now, taking the derivative with respect to € at € = 0 we get (b).
The implication (b)=-(a) holds true by convexity.

Let us prove (b)=(c) Assume (b) and let v € C°(€;M2y2). Since the triple (v, D*v,0) is
kinematically admissible, we obtain

(M|D?v) = (flv), (3.21)

which implies that divdivM = f.
Now let 7 € L?(Q;MZx%). Then the triple (0,7, —n) is kinematically admissible, and (b) yields
—H(=n) < (Mln) < H(n).
Fix an arbitrary matrix ¢ € M2X2 | a Borel set B C Q and take n(z) = 1g(z)¢. Then the

sym
latter relation yields
—H(=&) < M(z): (£ < H() forae. ze.

Therefore M(z) € 0H(0) =K for a.e. € Q. Thus, M € S(Q) N K(£).

Now, let us show (¢)=-(b). Assume (b) and let (v,7,q) be kinematically admissible. By
Proposition 3.2.9 we have
—H(=q) < (Mlg) < H(q)- (3.22)

Using the integration by parts formula (3.11) we get
(Mlq) = (flv) — (M]n),
and (b) follows from (3.22). O

By using Theorem 3.3.4 one can easily establish the stability property, expressed in Theorem
below.
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Theorem 3.3.5. Let (ug,er,pr) be a sequence of kinematically admissible triples. Assume that
Up = Uy 0N BH(Q), ex — exo in LZ(Q;M%T%), Dk — Poo N Mb(Q;MEyX,%) and fr — foo in
LA(Q;MZ)32).
If
Qex) — (frlur) < Qn) +H(qg — pr) — (frlv)

for every k and for every kinematically admissible (v,1,q), then (too, €cos Poo) 1S also kinematically
admissible and

Q(eoo) = (fooltico) < Q) +H(q = Poc) — (foo|v)

for every kinematically admissible (v,1n,q).

3.3.3 Continuous dependence on the data

Next we will show that solutions (u,e) to minimum problem (3.16) depend continuously on f and
D.

Theorem 3.3.6. For i = 1,2, let fi € L*(Q). Suppose, that (u;,e;,p;) is a solution of (3.16)
with pg = p;. Then
lea — e1ll2 + [|D*uz — D?usl1 + luz —ur |1 <

3.23
< O(Ip2 -l + Ip2 = 21172 4 112 = fulla). (329

PROOF: Let v =us —uy, n=e3 —e; and ¢ = ps — p1. As (v,n,q) is kinematically admissible,
by Theorem 3.3.4 one has

—H(p2 —p1) < (Cexln) — (filv)

(Cezln) — (falv) < H(p1 — p2).

Adding these two inequalities we obtain

(C(ea —e1)lez —e1) < (f2 — filv) + 2Rk||p2 — p1]|-

Therefore
2ac|lez —e1ll3 < |[f2 — fill2 lvll2 + 2Rkllp2 — p1ll1-

As v =0 on 012, we have
lolls < CID%0lly < C(llez = exllo + Ip2 = il ) (3.24)

The last two inequalities imply
1/2
lez = exlls < C(I1f2 = fullo + Ip2 = Pl + lIp2 = p1137*).
Now, as D?u; = e; + p;, we get
1/2
1D%ug — D*uq )1 < C(||f2 — full2 + llp2 — pally + llp2 — pally/ )

Finally, as
lv]l1 < C[|1D?0],

the latter inequality guarantees (3.23). O
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3.4 Quasistatic evolution

In this section we define a concept of quasistatic evolution - a weak solution to our initial problem,
formulated in Section 1. As usually in the calculus of variations, strong solution is a weak solution,
and vice versa, a sufficiently regular weak solution is a classical one.

3.4.1 Definition of quasistatic evolution

Below, we will apply the results of [DDMO06, Section 7], with X = M, (Q;M2X2), Y = Co(; M2X2)

sym sym

and B = K(Q) N Co(Q;M2%2). For a function p : [0,7] — My(Q,M2%2) with values in the dual

sym sym
2x2), for every s,t € [0,T] with s < t, the total variation of

of a separable Banach space Cp(§2; M
p on [s,t] is defined as

N
V(p;s,t) = sup { Z Ip(t:) = pti-)la,@ 0 s=to < <tn=t NE€ N}~
i—1

The H variation of p is defined as

N
Vi (p; s, t) = sup{ZH(p(ti) —p(ti—1)): s=to<---<ty=t, N¢€ N}

i=1

Definition 3.4.1. A quasistatic evolution is a function ¢ — (u(t),e(t),p(t)) from [0,7] into
BH () x L*(Q;M252) x M, (Q; M2x?%) which satisfies the following conditions

sym

(gsl) for every t € [0,T] the triple (u(t),e(t),p(t)) is kinematically admissible and

Q(e(t)) — (f(D)|u(t)) < Q) +H(g — p(t)) — (f(t)|v) (3.25)
for every kinematically admissible (v,7,q);

(qs2) the function ¢ — p(t) from [0,T] into My(€;MZ)%?%) has bounded variation and for every
tel0,T]

Q(e(t)) + Du(p; 0,8) — (f () |u(t)) =

= Q(e(0) = (FO)1u(0) = [ (F(s)fute)) ds. (3.26)

The following theorem uses the integration by parts formula (3.11) to express conditions (gsl)
and (gs2) in an equivalent form, involving the safe-load condition ¢ — m?(t).

Theorem 3.4.2. A function t — (u(t),e(t),p(t)) from [0,T] into BH(Q) x L*(;M2X2) x

— sym
Mb(Q;Mzgjﬁl) is a quasistatic evolution if and only if it satisfies the following conditions:

(qs1’) for every t € [0,T] the triple (u(t),e(t),p(t)) is kinematically admissible and

Qe(t)) — (m' (B)le(t)) < Qn) — (m' (t)In) + H(q — p(t)) — (m' (t)lg — p(t)) (3.27)

for every kinematically admissible (v,n,q).
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(qs2’) the function t — p(t) from [0,T] into My(Q;MZ2%%) has bounded variation and for every
tel0,T]

Q(e(t)) + Dr(p; 0,1) — <m1(t)|6(tt)> — (m'(®)|p(t)) =

= Q(e(0)  (m 0e(0) ~ (0 OIp(0) ~ [ [(i 6t} + Gt oot Jas. 2

PRrROOF: The equivalence of (gs1) and (qsl’) follows from Lemma 3.3.1.
By Lemma 3.3.1 we have

(fOlv) = (m' (&)lm) + (m' (t)lq) (3.29)

for every t € [0,T] and every kinematically admissible triple (v,n,q). Hence

(f(@)]v) = (i ()]n) + (' (t)]g)

for a.e. ¢t € [0,7] and every kinematically admissible (v,7,q).
If conditions (gs1) or (gsl’) hold, then

(we.p) € L(0.T): BH(Q) x L ME2) x My(@:M22).
As (u(t), e(t), p(¢)) is kinematically admissible for every ¢ € [0,T], we have
FO0) = (i ()e(t)) + (i (1) p(1).
Thus . .
i s = [ [t @)lets) + i s) s s (3.30)

Now the relations (3.29) and (3.30) imply the equivalence of (qs2) and (qs2’). O

3.4.2 The existence result

The following theorem states the existence of a weak solution.

Theorem 3.4.3. Let (ug,eq,po) be kinematically admissible and satisfy the stability condition

Q(eo) = (f(0)|uo) < Q(e) +H(p — po) — (£(0)|w) (3.31)

for every kinematically admissible (u,e,p). Then there exists a quasistatic evolution t — (u(t),
e(t), p(t)) such that u(0) = ug, e(0) =eg and p(0) = pg.

We prove Theorem 3.4.3 by a time discretization process. Fix a sequence of subdivisions
(ti Yo<i<k of the interval [0,77], with

0=t) <th<---<thl<th=T, (3.32)
li ti — i)y =0. .
0 20 (e~ T ) =0 (33

For i =0,...,k we set fi := f(t}) and (m')i :=m!(ti).
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For every k we define ul, e} and pi by induction. We set (uf,e%,p?) 1= _(uo,_eo,po), which,
by assumption, is kinematically admissible, and for ¢ = 1,...,k we define (u}, €}, p},) as a solution
to the incremental problem

min {Q(e) +H(p—pi ") — (filw) }, (3.34)

(w,e,p)

where minimum is sought among all kinematically admissible triples (u,e,p).
The existence of a solution to this problem is established in Theorem 3.3.3. By Lemma 3.3.1
the minimum problem (3.34) is equivalent to

min {Q(e) — ((m")ile) +H(p— pi ) — ((m")ilp —pi ) |- (3.35)

(w,e,p)

Moreover, by the triangle inequality the triple (ug,ex,px) is also a solution of the problem

min £0(e) + H(p ) ~ (filu) | (3.36)

For i = 0,...,k we set M} := Ce} and for every t € [0,7] we define the piecewise constant
interpolations

u(t) ==y, ex(t) :=ep, p(t):=pk, My(t):= M, (3.37)

fe() = fio my(t) = (mb)y,

where i is the largest integer such that ti < t. By definition (uy(t),ex(t),pr(t)) is kinematically
admissible and by (3.36) we have

Qex(t)) — (fu(®)ur(t)) < Qn) + H(g — pr(t)) — (fu(®)|v) (3.38)

for every admissible triple (v,7,q).

3.4.3 The discrete energy inequality

Now we derive an energy estimates for solutions of the incremental problems which is an essential
ingredient of the proof of Theorem 3.4.3.

Lemma 3.4.4. For every k and every t € [0,T] the following holds true

Q(er(t) ~ (mi(Blew() + S {Hh —pf ") — (m (tp)lek — )} <

0<tr<t

i (3.39)
< Qlep) — (m(0)en) — / (1 (5)ex(s)) ds,

where i is the largest integer such that ti <t.

ProOOF: We have to prove that It is enough to adapt the proof of [DDMO06, Lemma 4.6]. O
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3.4.4 Proof of the existence theorem

Having Lemma 3.4.4 we now prove Theorem 3.4.3.
PRrROOF OF THEOREM 3.4.3: Let us prove the following estimates

sup |lex(t)]]2 < C and Var(pg;0,T) < C (3.40)
t€[0,T)

for every k, where the constant C' depends only on the constants ac, Oc and «, and on the
functions ey and t — m!(t).
From (3.39) we deduce

aclec®l3 +a D Ik —p ' <
o<ty <t
< Belleol3 + [lm* (0)]|2 leoll>+ (3.41)

+ sup fen(®lla( sup 'Ol [ it (5)]zds)
t€[0,T) t€[0,T) 0

for every k and every t € [0,T].
Now we deduce the former estimate in (3.40) by using Cauchy inequality. As for the latter, by
(3.41) and the first estimate in (3.40) we conclude that

S ok -pMh<C

o<ty <t

for every k and every t € [0,T]. Thus, as t — pg(t) is constant on the intervals [tz_l,t;), we
deduce the second inequality in (3.40).
By the generalized version of the classical Helly Theorem (see [DDMO06, Lemma 7.2]), there

exists a subsequence, still denoted by pj., and a function p : [0, T] — M;(;MZ22) with bounded
variation on [0, T, such that py(t) = p(t) in My(Q; M2x2) for every t € [0,T].

From (3.40) it follows that |ux(t)|pr(o) < C uniformly with respect to k and t. Let us fix
t € [0,T]. There exists a subsequence k;, depending on ¢, and two functions u(t) € BH(Q) and

e(t) € L*(;M2)2) such that ug, (t) = u(t) in BH(Q) and ey, (t) — e(t) weakly in L?(€; M2x2).

By (3.38) we can apply Theorem 3.3.5 to get that (u(t),e(t),p(t)) is a solution of the minimum
problem

min { Q(n) +H(g — p(t)) — (f(B)l0) }. (3.42)
(v,m,9)
Theorem 3.3.6 implies that there exists the unique (u,e) € BH () x L*(€;MZ2)2) such that

(u,e,p(t)) is a solution to (3.42). Therefore, the convergence holds for the whole sequence, that is
ug(t) = u in BH(Q) and eg(t) — e(t) in L2(Q;M22).

Let us show that the function ¢ — (u(t),e(t),p(t)) is a quasistatic evolution satisfying (u(0),
e(0), p(0)) = (uo,eo,po). The initial condition is fulfilled. We observe, that the condition (3.25)
is fulfilled by (3.42).

To prove the energy balance (3.26), or, equivalently (3.28), by Theorem 3.4.5 below, it is enough
to prove the energy inequality

Q(e(t)) + Dr(p; 0,8) — (m' () e(t)) — (m' (t)|p(t)) <

< Q(e(0) ~ m O)fe(0)) ~ (m Op(0) — [ [t (oelo)) + i lple Jas.
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Let us fix ¢ € [0,7]. Since ¢+ p(t) is constant on the intervals [t} ', ¢}), we have

Du(pr; 0,t) = > Hpr —pp ),

o<t <t

so by the lower semicontinuity of the dissipation one obtains

D (p; 0,1) <hm1nf Z H(p, —ph). (3.44)
F=eo oSt
Let us write
r ’I“ 1\ 147 1r—1 r—1
S lm ok — o) = — S (m (6) — m (1) )+ (5.45)

. ,r::l
+(m' () pk) — (m* (0)[po).
Since t — m'(t) and t — f(t) are absolutely continuous from [0,7] into L*(€;MZ2x2) and
L?(Q) respectively, by (3.11) we have that

i i i

S ((m(t) — mEIpL ) = / (F(s) un(s)) - / (1 () ek (s)) ds.

r=1

Passing to the limit as & — oo and using (3.10) again we obtain

[ t
i S ' (1) =t (5pi ) = [ ! (9lpte)) ds. (3.46)
r=1
Analogously we can show that
T (m! (1)l = (m* (1) lp(0)) (3.47)

Combining together (3.44)-(3.47) we obtain that
Di(p; 0,1) — (m (t)[p(t)) + (m (0)[p(0)) +/0 (1! (s)|p(s)) ds <
< mint 3 {HGk — ) - (m' (DI~}

Finally (3.43) follows from the last inequality, the weak convergence e (s) — e(s) for every
s € [0,T] and the lower semicontinuity of Q. O

(3.48)

As usually in the energy approach to rate-independent processes the inequality, opposite to
(3.43) is obtained automatically by the construction of approximate solutions.
Theorem 3.4.5. Let t — (u(t),e(t),p(t)) be a function from [0,T] into BH(Q) x L*(€; M25x2) x
My (;M2%2) which satisfies the stability condition (3.27) in Theorem 3.4.2. Assume that t — p(t)

sym

from [0,T] into My(Q; M2x2) has bounded variation. Then for every t € [0,T] we have
Q(e(t)) + Dr(p; 0,t) — <m1(t)\6gt)> — (m*(t)[p(t)) =
> Q(e(0)) ~ (m(0)1e(0)) — (m' O)lp(0)) ~ [ [t @) + (! (9)p(s) ]
If, in addition, (3.43) is satisfied, then the exact energy balance (3.28) holds.
PRrOOF: It is enough to adapt the proof of [DDMO06, Theorem 4.7]. O

(3.49)
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3.4.5 Convergence of the approximate solutions

The next theorem states that, chosen a sequence of approximate solutions, such that py(t) = p(t)
for every t € [0,T], the curvatures ey (t) converge to e(t) strongly in Lz(Q M2x2).

Theorem 3.4.6. Assume that the plastic curvatures of the approximate solutions satisfy

pre(t) = p(t)  weakly™ in My(Q;M2x2).

sym

Then e (t) — e(t) and My(t) — M(t) in L*(;M222). Moreover,

sym

i > (M - p ) = ek~ 9y ) =

k—oo

O<tpst . (3.50)
= Dy (p; 0, 1) — (m* (8)[p(#)) + (m*(0)|p(0)) + /O (m*(s)|p(s)) ds

for every t € [0,T].

PROOF: By the discrete energy inequality (3.39) for every t € [0,T] we have

> (M —pi) — ! Ik~ | <

0<tr<t
k 5 (3.51)
< Q(eo) — (m*(0)]eo) + (my,(t)lex(t)) —/ (' (s)lex(s)) ds,
0
where ¢ is the largest integer, such that t}‘€ < t. By the energy balance (3.28) we have also
t
Qe(t)) + Du(p; 0,t) — (m* ()|p(t)) + (m' (0)|p(0)) +/ (1 (s)|p(s)) ds = 552)
= Qfew) — pm*O)ew) + (' (et — [ i (et
0
As the right-hand side of (3.51) converges to that of (3.52),
imsup { Q(er() + 30 {0k -5~ i)k~ i} | <
0<tr<t
t
< Q(e(t)) + Du(p; 0,8) — (m' ()|p(t)) + (m'(0)|p(0)) +/0 (1 (s)[p(s)) ds
By the lower semicontinuity of @ and by (3.48) we obtain that
Qlex(t)) — Qle(t)),
which gives strong convergence of ey(t). O

3.5 Regularity with respect to time and uniqueness result

In this section we prove that every quasistatic evolution t — (u(t),e(t),p(t)) is absolutely contin-
uous with respect to time, and that the functions ¢ — e(t) and ¢ — M (t) are uniquely determined
by their initial conditions.
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3.5.1 Regularity with respect to time

In the following proposition we establish the absolute continuity of the quasistatic evolution.

Theorem 3.5.1. Let t — (u(t),e(t),p(t)) be a quasistatic evolution. Then the functions t —
e(t), t — p(t) and t — u(t) are absolutely continuous from [0,T)] into L*(Q;MZ5%), My (€; M2x2)
and BH(Q) respectively. Moreover, for a.e. t € [0,T] we have

le@®)ll2 + lp@)11 + ID*a®)l1 + [la(®)ll < Cllm (1) oo (3.53)

PrOOF: Since H(p(t2) — p(t1)) < Dy (p;ti,te) by the energy equality (3.28) we obtain, after
integration by parts,

3 (M(t2)le(t2)) — 3(M(t1)]e(t1)) + H(p(t2) — p(tr)) <
< (m' (t2)le(t2)) — (m (t1)le(tr)) + (m (t2)|p(t2)) — (m (t1)Ip(t1))—

" (3.54)
= [ o et + i lpts s

for every ti, to € [0,7] with t; < to. Consider now the functions v := u(ts) — u(t1), n =
e(ta) — e(t1), and the measure q := p(t2) — p(t1). As (v,7,q) is kinematically admissible and
(u(t1),e(t1),p(t1)) is a solution of the minimum problem (3.16) with pg = p(t1) and f = f(t1),
by Theorem 3.3.4 and Lemma 3.3.1 we obtain

—(M(t1)le(t2) — e(t1)) + (m* (t1)]e(t2) — e(tr)) + (m' (t1)[p(t2) — p(t1))+
< H(p(t2) — p(t1)),
so that (3.54) implies

3 (M(t2)|e(t2)) — 5 (M(t1)]e(tr)) — (M(t1)le(tz) — e(tr)) < (m'(t2) —m' (t:)]e(t2))+

(m (1) = ! (2))) = | { (! (9)]e(s) = {12! (9)lp(s) } s

Therefore,
%(C(e(tz) —e(t1))]e(ts) — e(t1)) <
< /t 2 {<m1(8)|e(t2) — e(s)) + (i (s)|p(t2) _p(8)>} ds.
Thus,

aclle(tz) —e(t1)]3 <
" t2 3.55
< [ 1t allets) — elo)ads + [ 1t 0)elpes) —plt) . (3:59)

By Lemma 3.2 we have that for every t; < s < to

allp(t2) = p(s)ll < H(p(tz) — p(s)) — (m' (t2)|p(t2) — p(s)),
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therefore (3.54) with t; = s implies

allp(t2) = p(s)ll < 5(M(s)le(s)) — 5(M(t2)Ip(t2))+
+Hm(t2)le(t2) — e(s)) + (m'(t2) — m*(s)]e(s)) + (m' (t2) — m'(s)[p(s))—

- /:2 {<m1(t)le(t)> + <m1(t)|p(t)>} dt.

Observe that sup, ||m!(t)|s, sup, |le(t)||2 and sup, ||p(t)||1 are finite. The previous inequality
implies that

Iptta) ~ p(e2)ls < O (le(t2) = ez + m t2) ~ m(s)|o) + € [ [ 0] .

Therefore, for every t; < s <ty

p(t2) — ()l < C lle(ts) — e(s) 2 + C / it (1) . (3.56)

By (3.55) and (3.56) and the triangle inequality |le(t2) —e(t1)]l2 < |le(t2) —e(t1)]l2 + |le(s) —e(t1)||
we deduce that

Je(t2) = e(t)I < Cllet) = et | ! ()] s+
4 [t ()l = et s+ [ it s) e ds)

that is
12

le(t2) —e(t)B < [ wls)lels) — et)lads + ([ () ds)”

t1 tl
where
P(s) = Clli! ()| o-

By a version of Gronwall lemma, stated in Lemma 3.5.2 we have

lle(tz) —e(t1)|2 < g/tlz P(s)ds < C’/tl2 It (8) || oo ds (3.57)

Thus, t +— e(t) is absolutely continuous from [0, 7] into L?(Q;M2%2) and

sym

le(®)ll2 < Cllrin* (2) oo (3.58)
So, (3.56) implies the absolute continuity of ¢ — p(t) and the estimate

151 < Cllnt ()] - (3.59)

Now, the additive decomposition D?u(t) = e(t) + p(t) yields that t — D?u(t) is absolutely
continuous from [0, 7] into M;(;MZ2y2) and D?u(t) = é(t) + p(t) for a.e. t € [0,T]. Finally, as
u =0 on 09, we have that

lut2) = u(ty)llr < CllD*u(tz) — D*u(ty)llr,
so t +— u(t) is absolutely continuous from [0,7] into BH(2) and (3.53) holds. O
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Lemma 3.5.2. ([DDM06, Lemma 5.3]) Let ¢ : [0,T] — [0,+00) be a bounded domain and let
¥ :[0,T] — [0,400) be an integrable function. Suppose that

2 t $)Y(s)ds t s 32
o7 < [ opwas+ ([ veas)
for every t € [0,T]. Then
o) <5 [ v s
for every t € 10,T7].

Lemma 3.5.3. Let t— u(t), t —e(t), t — p(t) be absolutely continuous function from [0,T] to
BH(Q), L*(M2y2) and My (Q;M2x2), respectively. Assume that (u(t),e(t),p(t)) is kinemati-
cally admissible for every t € [0,T]. Then (u(t),é(t),p(t)) is also kinematically admissible for a.e.
tel0,T].

PRrROOF: The proof follows from Lemma 3.5, applied to difference quotients. O

Proposition 3.5.4. Let t +— (u(t), e(t),p(t)) be an absolutely continuous function from [0,T] into
BH(Q) x L*(Q;MZ2%) x My(Q;M2x2) and let M(t) := Ce(t). Then the following conditions are
equivalent:

(a) for every t € [0,T]
Q(e(t)) + Dr(p; 0, 1) — {f(D)]u(t)) = Q(e(0)) — (£(0)[u(0)) +/0 (f(s)lu(s)) ds;

(b) for a.e. t€[0,T]
(M()]e(t)) + H(p(L) = (f(t)]a(t))
(c) for a.e. t€[0,T]
(M(t) = m' (t)|e(t)) + H(p(t) = (m' (B)]p(1))
(d) for every t € [0,T]

ProOF: It is a matter of differentiation and integration by parts, as in Lemma 3.3.1. O
Proposition 3.5.5. Let t — (u(t),e(t),p(t)) be a quasistatic evolution. Then

T
sup [le(®)l < C{leO)la+ sup )+ [ o0zt (3.60)
te[0,T] t€l0,T 0

)

and

T 2
sup o0l < [pO) s+ C{IOIB+ sup 'O+ ([ it 0)]ede)?}. (@61
] te[0,T) 0

te[0,T
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PrOOF: By Theorem 3.5.1 the function t +— (u(t),e(t),p(t)) is absolutely continuous from [0, 7]
into BH () x L*(Q;M252) x My(Q;M2y2). As t — (u(t),e(t),p(t)) satisfies (gs2) in Definition
3.4.1, it satisfies conditions (a) and (d) of Proposition 3.5.4. After an integration by parts, we

obtain from (d)
Qe(t)) + / {H(s) = m()[p(s)) }ds — (m" (©)]e(t)) =
= Q(e(0) ~ [ it (s)e(s)) ds — (! (0)e(0)).
0

Thus, for every t € [0,7] we have

t
aclle(®)]3 + 0&/0 lrn (s) 11 ds < Belle(0) 5+

. (3.62)
+2 sup |[Im'(t)[|2 sup |le(t)]2 +Sup||€(t)||2/ i’ ()2 ds,
t€[0,T) t€[0,T] 0
which yields (3.60) and (3.61). O

3.5.2 Uniqueness of bending moments and elastic curvatures

Our next aim is to prove that ¢ +— e(t) and t — M(t) are uniquely determined by their initial
conditions.

Theorem 3.5.6. Let t — (u(t),e(t),p(t)) and t — (v(t),n(t),q(t)) be two quasistatic evolutions
and let M(t) := Ce(t) and m(t) := Cn(t). If e(0) = n(0), then e(t) = n(t) for every t € [0,T].

PRrOOF: By Theorem 3.5.1 a quasistatic evolution is absolutely continuous with respect to time.
By condition (c) of Proposition 3.5.4 we have

(M(t) —m' (t)le(t)) + H(p(t) = (m' (B)|p(1)), (3.63)
(m(t) — m () + H((1)) = (m (O]d(1). (3.60)
By the global stability condition (3.25) and Theorem 3.3.4 for every ¢ € [0,7] we have that
m(t) € S(Q)NK(Q) and divdivm(t) = f(t) in Q. Lemma 3.5.3 implies that (a(t),é(t),p(t))
is kinematically admissible for a.e. ¢ € [0,T]. Therefore Proposition 3.2.9 gives H(p(t)) >
(m(t)|p(t)). By (3.63) this implies
(M(t) —m (B)]e(t)) + (m(t) —m" ()[p(t)) < 0.
As divdiv (m(t) — m!(t)) = 0, by using the integration by parts formula (3.11) we deduce
(M(t) —m(t)[é(t)) < 0.
Analogously, from (3.64) we obtain
(m(t) — M(@)]i(t)) < 0.
Thus, summing these two inequalities one concludes that
(Cle®) —n(®))[e(t) —n(t)) <0,
hence d
7 (Cle(®) —n(®))le(t) = n(t)) < 0.

As e(0) = n(0) by the assumption, the theorem is proved. O
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3.6 Equivalent formulations in rate form

Recall the classical formulation of the flow rule:

p(t,z) € Ng(M(t,z)) forae. z €. (3.65)

Unfortunately, this condition makes no sense whenever p is a bounded Radon measure, and M €
L?(Q; M2X2). However, instead of (3.65) we can consider the inequality

(M(t) —mlp(t)) =0 (3.66)

valid for every m € S(Q) N K(Q).
For p sufficiently regular (p € L?(2;M2X2)) conditions (3.65) and (3.66) are equivalent, while

sym

(3.66) has an advantage of being defined also for p € M;(Q; M2X2) by means of duality (3.9).

sym

Thus, (3.66) is considered the weak form of (3.65) when p € M, (Q; M2X2)

sym

3.6.1 Weak formulation

Theorem 3.6.1. Let t — (u(t),e(t),p(t)) be a function from [0,T] into BH () x L*(€; M2x2) x
My(Q;M2%2) and let M(t) := Ce(t). Then the following conditions are equivalent:

sym

(a) t— (u(t),e(t),p(t)) is a quasistatic evolution;
(b) t— (u(t),e(t),p(t)) is absolutely continuous and

(b1) for every t € [0,T] we have (u(t),e(t),p(t)) is kinematically admissible, M(t) € S(Q)N
K(Q) and divdiv M(t) = f(t) in €,
(b2) for a.e. t € [0,T] we have
(M(t) —mlp(t)) = 0
for every m € S(Q)NK(Q).
(c) t— (u(t),e(t),p(t)) is absolutely continuous and

(c1) for every t € [0, T] we have (u(t),e(t),p(t)) is kinematically admissible, M(t) € S(Q)N
K(Q) and divdiv M(t) = f(t) in €,
(c2) for a.e. t €[0,T] we have
H(p(E)) = (M(B)]p(1));

PROOF: Let us first establish the equivalence (a)< (c). By Theorem 3.5.1 a quasistatic evo-
lution is absolutely continuous. Theorem 3.3.4 guarantees, that (cl) is equivalent to the global
stability. By Proposition 3.5.4 it is enough to prove, that for an absolutely continuous function
t — (u(t),e(t),p(t)), satisfying either (c1) or (gsl), condition (c2) is equivalent to the balance of
powers
(M(t)]e(t)) + H(p(t) = (f (@) |i(t)) (3.67)

for a.e. t € [0,T]. As (u(t),é(t),p(t)) is kinematically admissible for a.e. ¢ € [0,7] by Lemma
3.5.3, condition (c¢2) is equivalent to (3.67) in view of the integration by parts formula (3.11).

To prove (b) < (c) it is enough to show that, if (c1) is satisfied, then (b2)< (c2). Condition
(b2) is equivalent to

(M()p(e) = sup { (mlp(t) : m € () NKQ) ],
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which is equivalent to (¢2) by Proposition 3.2.9. O

Remark 3.6.2. As the measure H(p(t)) — [M(t) : p(t)] is nonnegative on Q, the condition (b2)
implies that
H(p(t)) = [M(t) : p(t)]  in My(Q). (3.68)

3.6.2 Strong formulation and precise definition of the bending moments

Below (Theorem 3.6.3) a precise representative M (t,z) of M(t, ) is defined almost everywhere
with respect to the measure u(t) = £2 + |p(t)|. Theorem 3.6.5 states, that if K is strictly convex,
this representative is unique and can be obtained as limit of the averages of M .

Theorem 3.6.3. Let t — (u(t),e(t), p(t)) be a function from [0,T] into BH(Q) x L*(Q;M2x2) x
My (;M2)%), let M(t) := Ce(t), and let p(t) == L* + [p(t)|. Then t — (u(t),e(t),p(t)) is a
quasistatic evolution if and only if

(e) t — (u(t),e(t),p(t)) is absolutely continuous and

(el) for every t € [0,T] we have that (u(t),e(t),p(t)) is kinematically admissible, M(t) €
S(Q)NK(Q), and divdiv M(t) = f(t) in Q,

(e2) for a.e. t €[0,T] there exists M(t) € L, (4 M2X2) such that

iy S5 Mgy,
M(t) = M(t) L%-a.e. onQ, (3.69)
P N (O RYP AL (O
(0(0) (0] = (N10) : 2 )] in M), (3.70)
p(t) ’ . ol
(0] (x) € Nx(M(t,z)) for |p(t)|-a.e. x € Q. (3.71)

Remark 3.6.4. Assume that t — (u(t),e(t), p(t)) is absolutely continuous. If (el) holds, then from
(3.10) it follows, that condition (3.70) of Theorem 3.6.3 is equivalent to the following integration
by parts formula: for every ¢ € C?(Q) we have

Y & ; — Y ; - _ é — {4 D? _
/ﬁso(M- |p(t)|)d|P(f)| (pM(t)|p(t)) = —(M(t)|@ é(t)) — (D | M(t)) (3.72)
—2(M(1)[Vu(t) @ V) = (f(t)|ei(t)) = ([M : plle),

where in the left-hand side we have the duality between the measure p(t) and a bounded measurable
(with respect to this measure) function @M (t).

As the matrix p(t)/|p(t)| has the unit norm |p(t)|-a.e. on Q and Ng(£) = 0 if ¢ is in the
interior of K, we deduce from (3.71) that for a.e. ¢t € [0,T]

M(t,z) € 9K for |p(t)]-a.e. z € Q. (3.73)
By the formulas from the convex analysis we can prove that condition (3.71) is equivalent to

p(t)
()]

N(t,z) € aH( (x)) for [p(t)-a.e. z € Q. (3.74)
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Since OH is positively homogeneous of degree 0, this is equivalent to the fact, that both of the
following two inclusions are satisfied:

M(t,z) € OH(p*(t)(x)) for L2-a.e. x € {|p*(t)] > 0}, (3.75)
M(t,z) € (C)H(|p2 ;| (x)) for |p*(t)]-a.e. x € Q. (3.76)
PROOF: We adopt the proof of [DDMO06, Theorem 6.5]. O

For every r > 0 and every ¢ € [0,T] we consider the function M"(t) € C(Q; M2x?2) defined by

T e 1
M (t2) = e /B My (3.77)

As K is convex, it follows that M"(t,z) € K for every x € Q.
It K is strictly convex, then H is differentiable at all points § # 0. Thus, for a.e. ¢t € [0,7)
the function M(¢) is uniqiely determined p(t)-a.e. on QUTy by (3.69) and (3.70)

M(t)=M(t) L*-ae. on Q, (3.78)
p(t)
i = o ) (3-79)

The following theorem states, that M (t,2) can be obtained in Q as the limit of M"(t) as
r — 0. It reflects the intrinsic character of the precise representative introduced in Theorem 3.6.3.

Theorem 3.6.5. Assume that K is strictly convezr. Let t — (u(t),e(t),p(t)) be a quasistatic
evolution, let p(t) = L2 + |p(t)|, let M(t) = Ce(t) and let M"(t) and M(t) be defined by (3.77)
and (3.78)-(3.79). Then M"(t) — M(t) strongly in L} () (€ M2x2) for a.e. t €[0,T).

sym

PRrROOF: We refer to [DDMO06, Theorem 6.6], for the proof. O



Chapter 4

Regularity of stresses in
Prandtl-Reuss perfect plasticity

An application of the main result

4.1 Introduction

A strong formulation of the Prandtl-Reuss model of perfect plasticity is the following: given a
domain 2 C R™,

body force f(t,z):[0,T] x Q@ — R™,

boundary displacement w(t, z) : [0,7] x 'y — R™,

surface force F(t,z): [0,T] x T'; — R",

the problem is to find functions
u(t,z), e(t,z), p(t,z) and o(t,z)
such that for every t € [0, 7], for every x € Q the following hold:
1. kinematic admissibility: e(u)(t,z) = e(t,z) + p(t,z) in Q, u(t,z) = w(t,z) on Iy
2. conmstitutive equation: o(t,z) = A~le(t, ),
3. equilibrium: div yo(t,z) = —f(¢,2) in Q, o(t,z)v(z) = F(t,x) on I'y,
4. stress constraint o(t,x) € K,
5. associative flow rule: (£ —o(t,z)) : p(t,x) < 0 for every £ € K,

where
Vu + Vul
e(u) = ——5—,
2
K={reM>" : |7P| < V2k,}

sym

59
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and A is the compliance tensor (the inverse of the elasticity tensor), which in the isotropic case

has the form
tro 1 5

Ao_n2K01+2MU , (4.1)
where nKj is the first Lamé constant, and u is the shear modulus. The problem is supplemented
by initial conditions at time t = 0.

During the last decades there was an extensive study of this problem in its weak formulation
(see e.g. [DDDO7, DDMO06, Joh76, Sug81]). Due to the linear growth of the functional with respect
to £(u), arising in this problem, one looks for displacements « in the space BD(2) and for stresses
o in the space L%(§); M ;7). However, one can expect a better regularity of the stress tensor o.
Namely, as it was shown in [Ser87, Ser96, Ser93c, Ser93a, Ser93b], in some static situations the
stress belongs to the space Wl{)f(Q, R™).

In this paper we address the issue of a higher regularity of the stress tensor o(t) with respect
to spatial variables. The main result (see Theorem 4.2.1 below) states that for the Prandtl-Reuss
model one has

o € L=([0, T); W2 (M)

loc sym
for n =2,3.

A similar result was obtained in [BF96] for arbitrary n, using Norton-Hoff approximations
and the dual theory of elliptic equations. However, our proof is based on a completely different
approach, developed by G. Seregin for proving regularity of stresses in the case of Hencky perfect
plasticity (see [Ser87, FS00, Ser96, Ser94]). Observe that, due to this fact, our assumptions on the
data of the problem are different from those of [BF96].

The method proposed in this paper will be used for proving the differentiability of stresses for
other models occurring in plasticity (see [Dem09, Dem08a]).

Shortly, the strategy for proving Theorem 4.2.1 consists in refining the proof of the existence
of a solution to the quasistatic problem, carried out in [DDMO06], by generalizing the estimates
obtained in [FS00] for proving the regularity of stresses in the case of Hencky perfect plasticity.

More precisely, we follow the general scheme for proving the existence of weak solutions of
the continuous-time energy formulation of rate-independent processes (see e.g. [Mie02] and the
references contained therein). Our arguments are similar to the ones used in [Ser94] for the case of
plasticity with hardening. Note, that in [Joh76, Suq81] the existence was proved by visco-plastic
approximations, while in order to use the methods of [FS00] one needs to have some analogue of
the static problem. This is why we follow the proof of the existence given in [DDMO06], where
a quasistatic problem in perfect plasticity was solved by time discretization. In this case the
incremental problems one has to solve to get the updated values of solutions, play the role of the
static problem, where one can use the machinery of [Ser87, FS00].

We perform the standard time-discretization procedure, and for suitably defined approximate
solutions (un(t),en(t),pn(t),on(t)), converging to a weak solution of the quasistatic problem, we
obtain the estimate

sup sup HO-N(t)HWLIJ(Q;M?yXWYLL <C, (4.2)
NENte[0,T] oc
which yields Theorem 4.2.1.

To get (4.2), one looks for solutions of the incremental problems, regarded as saddle points of
some minimax problem, similar to the one considered in [FS00, Ser96] for the static case of Hencky
perfect plasticity. The main difference is the presence of a term which takes into account the
preceding history of plastic deformation. Then we approximate every incremental problem with

a sequence of regularized problems and show, that their solutions ¢%,, with « € (0,1) converge



4.2. PRELIMINARY DEFINITIONS AND THE MAIN RESULT 61

to oN

m>

Then we show, that for every incremental problem the bound

a solution to the corresponding incremental problem, weakly in L?(; Mgn), as a — 0.

ilipo ||U%||W1,2(Q/;ngx7g) <Cn

holds for any domain ' CcC £, where the constant C,, depends on the discretization step and
on (V. This guarantees us, that o2 is itself in Wllof (;MZ7), and that the convergence of oy,
to oY is actually better, and depends on the critical Sobolev exponent. Afterwards, we manage
to make this estimate uniform, to get (4.2).

Let us note that Theorem 4.2.1 does not give any information about the behavior of the stress
tensor near the boundary. As it was observed in [Ser99], the method we use is not suitable for the
investigation of regularity up to the boundary, at least in the case of a nonconvex domain 2. The
issue of boundary regularity was discussed also in [FM99].

To our best knowledge, the only global regularity result for the stress in the case of Hencky
perfect plasticity is contained in [Kne06], where under appropriate assumptions it is proved that
o € W/2792(Q) for every § > 0.

The paper is organized as follows: in Section 4.2 we introduce the definitions and state the
main result. In Section 4.3 we present a weak formulation of the quasistatic problem, outline the
proof of existence of the quasistatic evolution and obtain some time-continuity estimates for the
approximate solutions. In Section 4.4 an abstract scheme of relaxation of convex functionals in
non reflexive spaces is described. A minimax formulation of the incremental problems is given in
Section 4.5. In Section 4.6 we formulate the regularized problems, which are used for obtaining
the differentiability of stresses, and show the convergence properties of their solutions. Section
4.7 contains the estimates of the V[/lloc2 norms of the solutions to the regularized problems, which
imply that for every approximate solution we actually have

sup ||UN||W,1’2(Q;M';‘,;<,,];) < C(N),
te[0,T ¢

however, without any uniformity with respect to N. The uniform estimates (4.2) and the proof
of Theorem 4.2.1 are contained in Section 4.9. In Section 4.10 we consider the examples which
show that there is no analogue of regularity theorem, as in [Ser87, FS00, Ser96, Ser93c|, for the
displacement u and the plastic strain p.

4.2 Preliminary definitions and the main result

We use the following notation:
R"™ denotes the n-dimensional Euclidian space,

M denotes the space of all n x n symmetric matrices, equipped with a Hilbert-Schmidt scalar

product o : & =37, 1 0i;&j,

1 stands for the identity matrix, and we consider the orthogonal decomposition M7 = ME" @
R1 of the space ML " into the subspace of trace-free matrices M7E™ and of the multiples of
identity R1,

a ® b stands for the symmetrized tensor product of two vectors a,b € R™, given by the formula
(a ©b)yy = 3(aibj +azbi),
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LP(Q;R™) is the Lebesgue space of all functions from Q into R™, having the finite norm
([ 1517 o',
Q

WHP(€; R™) is the Sobolev space of all functions from €2 into R™ with the norm

! W\ LT
o= ( [ S

Mp(€2;R™) is the space of all bounded Radon measures on Q with values in R™,
BD() is the space of all functions in L'(Q; R™) such that e(u) € My (Q;M"),
L" stands for the Lebesgue measure on R™,

H"~! is the (n — 1)-dimensional Hausdorf meausure.

In the sequel we will make use of the spaces
D21(Q) = {v € LR : [olla1 = Idiv ol z2(o) + ol o) + 6P (@) 0y < +oo

D2’1(Q) = {v eD>(Q):v=0 on Fo},

o

which are well-known spaces of weakly differentiable vector-valued functions. For their properties
we refer to [FS00, Appendix A.2]. Let us introduce the notation

sym

X = {a € LX(Myn) ¢ dive € L*(R™), oP € LO"(Q;MTZ‘)X")},

K= {a € L2(;M2x) ¢ o(z) € K for ae. x € Q}

sym

4.2.1 The main result

We impose the following assumptions on the data of the problem

f e AC([0,T]; L™ (% R™)) N L ([0, T]; CfL (4 R™))
F € AC([0,T); L=(T1)) (4.3)

w € AC([0, T); WH2(Q; R™)).
We also assume the so-called uniform safe-load condition:
there exists a function ¢ € AC([0, T}; L*(€; M77)), such that
div,o(t) = —f(t) in Q and [ov] = F(t) on I'y for every ¢ € [0,T],
loP (t,2)| < (1 — \)V/2k, for some 0 < A\ < 1, a.e. z € Q, for every t € [0, 7],
and oP € AC([0,T]; L*°(Q;ME*™)).

(4.4)

Suppose that 9 € C? is partitioned into two disjoint open sets 'y, I'; and their common
interface v = 0l'g = 0T :
o0 = FO @] 84 U Fl.



4.3. WEAK FORMULATION OF THE QUASISTATIC PROBLEM 63

Further, assume that

for each x € v, there exists a C? diffeomorphism defined in a
neighbourhood of x which maps 92 to an (n — 1)—dimensional (4.5)
hyperplane, and « to an (n — 2)-dimensional plane.

Finally, following [FS00] we require the following condition on the domain Q and the partition-
ing Ty, I'; that guarantees the density of smooth functions in anisotropic spaces:

DEH () N O (4 R™) s dense in Df (Q). (4.6)

Remark, that there are number of cases, which satisfy this condition, among them pure Dirich-
let (Tp = 9Q) and Neumann (I'; = 0€2) cases, as well as numerous cases of mixed boundary
conditions. We refer to [FS00, Appendix A.2] for some examples.

The main result of this paper is the following theorem.

Theorem 4.2.1. Suppose that n = 2,3, 9Q € C?, A has the form (4.1) and the assumptions
(4.3)-(4.6) are satisfied. Then for the solution (u,e,p) of the quasistatic problem, see Definition
4.8.6, we have

o € L=([0, T); Wyl (% M),

loc sym

with o(t,z) = A te(t, ).

4.3 Weak formulation of the quasistatic problem

There are several equivalent ways to state the original problem in a weak form. In this section
we present a formulation, expressed in terms of energy balance and energy dissipation, presented
in [DDMO06]. Then we state the existence and regularity results for this quasistatic problem and
briefly discuss the method of the proof, which consists in time-discretization procedure. Finally,
in the end of the section, we obtain a discrete version of the absolute continuity with respect to
time, which holds also at the level of incremental problems.

4.3.1 Weak formulation: quasistatic evolution

The variational formulation of rate-independent processes expresses the evolution in terms of energy
balance and dissipation. In the rest of this section we follow the exposition of [DDMO06]. First, we
recall two definitions, which are needed to deal with boundary conditions in a relaxed form and
to have the duality between the plastic part of the strain and functions from the set X, defined
above. We note that the latter definition generalizes the well-known stress-strain duality, studied
in [KT83].

Definition 4.3.1. A triple (u,e,p) € BD(Q) x L*(Q; M%) x M,(Q U To; M7 ™) is said to be

sym

admissible for a given boundary data w € W12(Q;R"), if
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1. e(u)=e+pin Q,
2. p=(w—u)©vH" ! on Iy.

The set of all admissible triples for a given w is denoted by A(w).

Remark 4.3.2. We point out that the first part of this definition is responsible for the additive
decomposition, while the second condition reflects the weak form of the boundary conditions, which

are typical in the variational theory of functionals with linear growth.

Definition 4.3.3. For w € W12(Q;M?%"), an admissible triple (u,e,p) € A(w) and o € ¥ we

sym

define a measure [0 : p] € My(QUTy) by
/ odlo? : p] = / odlo? : eP(u)] - / ol s eP da +/ o(w —u) - [ov]t dH" 1,
QU Q Q I'o
for every ¢ € C(2UTy). Thus, the following duality is well-defined:
(P pysn = [0 1 p|(QUTY).

Remark 4.3.4. Here [oP : ¢P(u)] is the measure, defined in [KT83]. As in the case of stress-
strain duality, here the difficulty is due to the fact, that ¢ is an L> function, while p is just a
bounded Radon measure.

One can show, that for the duality defined in this way, the usual integration by parts formula
holds:

Proposition 4.3.5. Let 0 € &, f € L"(Q;R™), F € L>®(T1;R"™) and let (u,e,p) € A(w) with
w € HY(QR™). Assume that dive = —f a.e. in Q and [ov] = F on T'y. Then

<0D7P>2;n +/

Q

0:(e—a(w))dgc:/Qf-(u—w)dﬂc—i—/F F-(u—w)dH" " (4.7)

Now let us define the functionals which appear in the energy formulation of the problem. We
start by defining the quadratic form Q : L2 (Q,M?UXW?) — R, corresponding to the stored elastic
energy, by

1
Q(e) = 7/ A™le: edu.
2 Ja

Denoting by H : My*" — R the support function to the sections of K, which in the case of

Prandtl-Reuss perfect plasticity has a very simple form, we introduce in the usual way the convex
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functional of measures H : M(Q UTo; M7*") — R. Then the dissipation associated with H in
any time interval [s,t] C [0,T] is given by

M
Dy (p; s, t) = sup{ZH(p(tj) —p(tj—1)) : s=tg<---<ty=t, M€ N}.
j=1

Finally, we define the total load F :[0,T] — BD(f)" by
Fltlu = / f@) -udx+/ F(t) -udH" . (4.8)
Q I
Now we are in a position to give a variational formulation of the quasistatic problem.

Definition 4.3.6. A quasistatic evolution is a function

(u,e,p) : [0,T] — BD(Q) x L*(;MZ") x My(2 U To; M<™),
which satisfies the following conditions
(gsl) (global stability): For every ¢ € [0,T] the triple (u,e,p)(t) € A(w(t)) and
Q(e(t)) — Fltlu(t) < Q(n) + Hlq — p(t)) — Fltlo

for every (v,7,q) € A(w(t)),

(gs2) (energy balance): p : [0,7] — M(Q U I'o; My*") has bounded variation and for every
te0,T]

Q(e(t)) + Dr(p; 0,t) — Fltlu(t) =
= Q(e(0) = FOu(0) + [ [(o6) 2 (6))a — FIli(s) = lsfuls)] ds
where o(t) = A~ te(t).

4.3.2 Existence result and time-discretization

The following theorem establishes the existence of a solution to the quasistatic problem in perfect
plasticity.

Theorem 4.3.7. Let (ug, e, po) € A(w(0)) satisfy the stability condition

Q(eo) — F[0Juo < Q(n) + H(q — po) — F[0]v,
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for every (v,n,q) € A(w(0)). Then there exists a quasistatic evolution

(u(t), e(t), p(t)),

such that

u(0) = uo, €(0) = eo, p(0) = po.

Moreover, the elastic part of the symmetrized gradient t — e(t) is unique and a quasistatic evolution

(u,e,p) as a function from [0,T] to BD(S2) x L?(;M™X") x My(Q U To; MY™) is absolutely

sym
continuous in time.

In [DDMO6] this theorem is proved by a discretization of time. We divide the interval [0, 7]
into N equal parts of length T//N by points (X),,—0. n. For m =0,..., N we set

w% = U}(t%), N = f(tr]X)v Fy = F(tz)a fn]\mf = f[tr]mv and Qan = Q(tz)‘ (4.9)
For every N we define uY, eX and pY by induction. We set
(u(])\f7eé\f7p(])\/') = (Uo,eo,po) € A(w(O)),
while for every m = 1,..., N we define (u?, e, plV) as a solution to the incrementa