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Chapter 1

Introduction

At present, microscopical physics is well described by Quantum Field Theory. In the Stan-
dard Model of particle physics, three of the four fundamental forces of nature are described
by the dynamics of quantum fields. The fourth force, gravity, at the subatomic scales is
the weakest one and does not fit into the same quantum description. One fundamental
feature of Quantum Field Theory is renormalisation: the quantisation of a classical field
theory leads to the appearance of divergences; if these divergence are such that they can be
reabsorbed into a redefinition of a finite number of parameters of the theory, the theory is
called renormalisable. If a Quantum Field Theory has to be a candidate for a fundamental
theory, it clearly has to be renormalisable. The naive quantisation of the classical dynamics
of gravity, which is best described by General Relativity, unfortunately does not lead to
a renormalisable theory. This is one of the reasons why the Standard Model of particle
physics is not believed to be a fundamental theory.

One of the key ingredients of Quantum Field Theory is the emergence of particles
from the fields. In the absence of gravitational interactions, we may set the theory in a
flat Minkowski background. The Hilbert space of a particle carries the smallest possible
representation of the smallest symmetry group of the theory: irreducible representations
of the Poincare group. Particles emerge naturally out of quantum fields in flat spacetime
and viceversa: quantum fields emerge naturally as the the description of the interactions
of point particles.

The physical origin of the divergences of quantum field theory resides in the local
pointlike interaction between fields. A natural way to avoid this kind of pathologies is
to think of point particles as a non fundamental but derived concept. The simplest way
of doing this is to consider extended one dimensional objects, strings, as fundamental
objects instead of point particles [1, 2]. The quantum relativistic description of a string,
a very simple problem at a first sight, leads surprisingly to a huge amount of physical
consequences. Although this is not the reason why String Theory was originally introduced,
this is the modern perspective we have on it.

The so called bosonic string has only three fundamental 1ngred1ents from which an ex-
tremely rich variety of consequences can be drawn: strings are fundamental objects, special




relativity and quantum mechanics. The dynamics of quantum relativistic strings contains
pointlike particles and quantum fields as oscillation modes of the strings but probably its
most exciting feature is that it contains also a consistent description of the quantum dy-
namics of gravity, namely a quantisation of General Relativity. The propagation of bosonic
strings is free of quantum anomalies only in 26 spacetime dimensions. However, bosonic
strings have several undesired features: most of all they have a tachyonic instability

In order to get a consistent theory of strings a fourth ingredient is extremely helpful:
supersymmetry. Supersymmetry is an enlargement of the symmetry group of spacetime
obtained by a grading of the Poincare’ algebra. In terms of particle and fields is a symmetry
relating bosonic and fermionic degrees of freedom.

Supersymmetric String theories are non anomalous only in 10 spacetime dimensions.
The four dimensional physics is usually recovered through reduction over a compact six
dimensional manifold (compactification).

As we have anticipated, historically, the motivations we have given so far were not the
ones which lead to the discovery of string theories. In the 1960’s in order to explain the so
called Regge trajectory of the lightest hadrons a string model was proposed. Although later
it was realised that the fundamental dynamics of strong interactions was better described by
a non abelian gauge field theory, QCD,; still the connection between strong interactions and
String thoeries has remained silent but present troughout the years and found a new impulse
of interest in the last ten years or.so thanks to the so called AdS/CFT correspondence.

- At low energies, QCD ‘becomes strongly coupled -and it is not easy to perform calcula-
tions. One possible approach is to use numerical simulations on the lattice. It was suggested
by 't Hooft [3] that the theory simplifies in the limit of N = co and then one could perform
a 1/N expansion down to N = 3. Furthermore, the diagrammatic expansion of the field
theory suggests that the large N theory is indeed a string theory. The argument is very
general and can be applied for basically any gauge field theory. The resulting string models
are four dimensional. As we have already said, strings cannot be quantum mechanically
consistent in four dimensions: a scalar field must be introduced in this model. However,
since any string theory contains gravitational physics, the introduction of a further field
effectively makes the theory five dimensional. As we will see, internal symmetries of the
original gauge theory leads us to introduce further dimensions and a correspondence to
quantum consistent 10 dimensional strings can be constructed for several supersymmetric
gauge theories.

Among the a priori unexpected features of String theory there are the so called D-
branes. D-branes are extended dynamical objects of the String theory which can be zero
up to nine dimensional. They are solitons of the string theory [4] and in fact their tension
is proportional to the inverse of the string coupling g..

D-branes are defined in string perturbation theory in a very simple way: they are
surfaces where open strings can end. These open strings have some massless modes, which
describe the oscillations of the branes, a gauge field living on the brane, and their fermionic
partners. If we have N coincident branes the open strings can start and end on different
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branes, so they carry two indices that run from one to N. This in turn implies that the
low energy dynamics is described by a U(NN) gauge theory. D-p-branes are charged under
p+ 1-form gauge potentials, in the same way that a 0-brane (particle) can be charged under
a one-form gauge potential (as in electromagnetism). These p + 1-form gauge potentials
have p + 2-form field strengths, and they are part of the massless closed string modes,
which belong to the supergravity (SUGRA) multiplet containing the massless fields in flat
space string theory (before we put in any D-branes). If we now add D-branes they generate
a flux of the corresponding field strength, and this flux in turn contributes to the stress
energy tensor so the geometry becomes curved. Indeed it is possible to find solutions of
the supergravity equations carrying these fluxes. Supergravity is the low-energy limit of
string theory, and it is believed that these solutions may be extended to solutions of the
full string theory. These solutions are very similar to extremal charged black hole solutions
in general relativity, except that in this case they are black branes with p extended spatial
dimensions. Like black holes they contain event horizons.

If we consider a set of N coincident D-3-branes the near horizon geometry turns out
to be AdSs x S°. On the other hand, the low energy dynamics on their worldvolume is
governed by a U(IN) gauge theory with A = 4 supersymmetry [5]. These two pictures
of D-branes are perturbatively valid for different regimes in the space of possible coupling
constants. Perturbative field theory is valid when ¢,N is small, while the low-energy
gravitational description is perturbatively valid when the radius of curvature is much larger
than the string scale, which turns out to imply that g,/N should be very large. As an object
is brought closer and closer to the black brane horizon its energy measured by an outside
observer is redshifted, due to the large gravitational potential, and the energy seems to
be very small. On the other hand low energy excitations on the branes are governed by
the Yang-Mills theory. So, it becomes natural to conjecture that Yang-Mills theory at
strong coupling is describing the near horizon region of the black brane, whose geometry is
AdSs5 x §°. The first indications that this is the case came from calculations of low energy
graviton absorption cross sections [6, 7, 8]. It was noticed there that the calculation done
using gravity and the calculation done using super Yang-Mills theory agreed.

N = 4 supersymmetric theories in four dimensions are maximally supersymmetric.
Any extension of the supersymmetry algebra would lead to gravitational multiplets. The
high level of supersymmetry highly constrains the theory and make it a Conformal Field
Theory.

The radius of curvature of Anti-de Sitter space depends on N so that large N corre-
sponds to a large radius of curvature. Thus, by taking N to be large we can make the
curvature as small as we want. The theory in AdS includes gravity, since any string theory
includes gravity. So in the end we claim that there is an equivalence between a gravi-
tational theory and a field theory. However, the mapping between the gravitational and
field theory degrees of freedom is quite non-trivial since the field theory lives in a lower
dimension. In some sense the field theory (or at least the set of local observables in the field
theory) lives on the boundary of spacetime. One could argue that in general any quantum
gravity theory in AdS defines a conformal field theory (CFT) “on the boundary”.

Notice that when we say that the theory includes “gravity on AdS” we are considering
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any finite energy excitation, even black holes in AdS. So this is really a sum over all
spacetimes that are asymptotic to AdS at the boundary. This is analogous to the usual
flat space discussion of quantum gravity, where asymptotic flatness is required, but the
spacetime could have any topology as long as it is asymptotically flat.

The fact that the field theory lives in a lower dimensional space blends in perfectly
with some previous speculations about quantum gravity. It was suggested [9, 10] that
quantum gravity theories should be holographic, in the sense that physics in some region
can be described by a theory at the boundary with no more than one degree of freedom
per Planck area. This “holographic” principle comes from thinking about the Bekenstein
bound which states that the maximum amount of entropy in some region is given by the
area of the region in Planck units [11]. The reason for this bound is that otherwise black
hole formation could violate the second law of thermodynamics. We will see that the
correspondence between field theories and string theory on AdS space (including gravity)
is a concrete realisation of this holographic principle.

Plan of the work

In this Thesis we address the study of several supersymmetric Sectors of the AdS/CFT
correspondence. Most of the work presented here is inspired by a beautiful paper [12], in
which the correspondence between a class of half BPS operators in the CFT and asymp-
totically AdSs x S geometries was explicitly constructed.

- In the next Chapter we introduce. in more details the AdS/CFT correspondence. Most
of the material presented there is well established (useful reviews are [13, 14, 15]) but
some Sections contains original derivations and observations. In Chapter 3 we present
the study of a half BPS Sector of the correspondence. The discussion of Section 3.1 has
several original points. Section 3.3 contains original yet unpublished material. Chapter 4
basically contains the results published in [16] about regularity of the half BPS geometries
that were discussed in the previous Chapter. Chapter 5 contains the extension of the cases
studied to less supersymmetric Sectors of the standard AdS/CFT correspondence which
were studied in [17] while Chapter 6 contains a construction similar to the one described in
Chapter 3 for the less supersymmetric version of the correspondence which relates N =1
theories to String theory on BPS supergravity solutions [18]. In Chapter 7 we present our
conclusive remarks. The Appendix contains a summary of our notations and conventions.



Chapter 2
AdS/CFT correspondence

2.1 Black 3-branes

In this Section we give a description of 3-branes in terms of solutions to the supergravity
equations of motion.

| 211 Lagrangian and equations of motion

Solutions of type IIB Supergravity which describe p-dimensional extended objects are
known. The bosonic part of the action of type IIB Supergravity is!

1
S = ___15_ / \/ge“m (R—i— 40,20"® — —!H3|2> +
265, 2

1 1 1, - .
/ [\/g <§|F1l2 + -2-1F3|2 + 4|F5[2> + 244 A Hs A Fg} (2.1.1)

T 5.9
265,

where the field strengths are defined by

([ Fy =d4,
H3 = dB2
Fg = dAz - 4AOH3 : (2]‘2)
~ 1 1
F5=dA4—§A3/\H2+§Bz/\F3

The self-duality condition F5 = *10F5 has to be imposed on the equations of motion and
not at the level of the Lagrangian. The ten dimensional Newton constant is related to the
constant 9 and the string length as

16mGho = 262597 = (2m)"18g2. (2.1.3)

1We use the notation g = /= det ganv and F, = L Fay o, dz™ A -+ Ada™n with
|Fnl? = L Fagy.q, FMMn . See Appendix A




Generic p-branes solutions can be constructed for p = 1,3,5,7. A p brane is an electric
source for the p + 2-form while a 6 — p-brane is a magnetic source for the same p + 2-form.
We will focus here on the configuration of NV coincident extremal black flat 3-branes.

The only non trivial fields appearing in such a setting are the metric and the RR 5-form.

For this reason we have 3
F5 =F5 =dA4. (214)

The number N of branes is calculated via the Dirac quantisation condition, which, with
our normalisations, take the form?.

/ Fy = 4120/ N (2.1.5)
s

where 25 is any five dimensional cycle transverse to the worldvolume of the branes.
The ten dimensional metric in the string frame is given by

ds? = H(r)™Y?dz*dz, + H(r)*/? (dr® + r2d02) (2.1.6)

where dz*dz,, is the flat Minkowski four dimensional metric and dQ? is the metric on the
unit radius five dimensional sphere. The function H(r) is given by

H(ry=1+ ey (2.1.7)
while the five form has the expression
gsFs = F5 + *10Fs5
Ty = %d:co Adz! Adzy Adzd AdHT? (2.1.8)
*10F5 = —éi—fdﬂs

where d)s is the volume form on the unit radius round 5-sphere.
It is not difficult to verify that the equations of motion

2

Ryy = %FMMle nan, Fy VNN N (2.1.9)
are satisfied.
Noticing that
dH
r5—7 = —4L* (2.1.10)

we can conclude, from the Dirac quantisation condition (2.1.5) and the expression for Fj:

L* = 47%g,0” N (2.1.11)

2The normalisation for F5 used troughout this thesis differs for a factor of 1/4 with respect to the most
commonly used



Although the metric may look singular at small r, indeed it is not and have a notable
regular limit. Let us expand the metric at leading order for r — 0

2

L2
ds? dz#dz,) + —T—2—dr2 + L*dQs (2.1.12)

ZZE(

which is the metric of AdSs x S® where both the factors have radius L. Iri the same limit,
the 5-form has the expression

1
F= %VOZL (AdSs) + TVolz (5°) = L*Vol (AdSs) + L*Vol (5°) (2.1.13)
For later convenience, we will now absorb g, into the definition of Fj:

gsF5 — F5 <2114)

2.1.2 Supersymmetry variation

For a background in which the only non trivial fields are the metric and the five form, the
only.non vanishing supersymmetry variation is the variation of the gravitino which has the
form

i
Oxm =V + —=Fn v Mz Mo

M1 M2 MsMaMs —_
480 Fary

1
= Vyy + EFMM2M3M4M5FM2M3M4M5¢ (2.1.15)

where the two 32 component Majorana-Weyl spinor supersymmetry parameters of the IIB
theory are grouped into a single complex Weyl spinor v obeying the chirality constraint

The covariant derivative V1) is given by
1 ATB
Vu = 0uy + ZWABMP ¢, (2.1.17)
where the torsionless spin connection 1-form w?g,,dz™ is defined through the 10-bein
e#,,dz™ by the structure equations
de? +wig nef =0 (2.1.18)

and the metricity condition :
WAB = —WAB - (2.1.19)
A supersymmetry parameter which satisfies the equation
oxm =0 (2.1.20)

is called a Killing spinor. The background describing the black 3-brane has 16 linear
independent Killing spinors. This means that it preserves half of the supersymmetries of
the theory and thus is denoted as 1/2 BPS.




2.1.3 Supersymmetry and equationsA of motion

The existence of a Killing spinor v constrains the form of the background. In particular,
integrability of the equation

DM¢ VM’QD + OFM1M2M3M4M5I‘\M1M2M3M4M5]_"M¢ =0 (2121)
requires the vanishing of the mixed derivatives

Run = [DM,DN] v=0 (2.1.22)

The commutator of the covariant derivative can be found in [19]. Contraction with three
gamma matrices gives

1
PPMN[DM,DN]’I,b = EPMPM’¢ -+ gFM1M2M3VM4FpM1M2M3M4¢ =0 (2.1.23)

where the symmetric tensor Eyn gives the equations of motion

1 1
Eyn = Run = 59unE — cFannmanFy M aMsMs (2.1.24)

Due to the selfduality of the five form we have
V - F5 = x10d #19 F5 = *10df5 = 0 (2.1.25)

which states that the equations of motion for Fj coincide with the Bianchi identity. Pro-
vided the latter are satisfied, the commutator of the derivatves gives

EyunTN¢ =0 (2.1.26)
We define an orthogonal frame
8
ds® = 2ete” + Z (e%)? (2.1.27)
Let A, B,... denote tend dimensional tangent space indices and a,b,... tangent space

indices in the positive definite tra.nsverse subspace thus A can take values +,—,a. Let EA
be the dual vector fields® to e* defined by e* (Ep) = 4.

Following [20], we define the vector x = ¥T'M zDBM Remembering [21] that, for any
type IIB Killing spinor x the vector « is null

k2=0, (2.1.28)

3Pay attention to the possible confusion between the tensor Ensn and the vector fields E4 which are
very different objects!
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we set L .
k=E_. = et=xryds™. (2.1.29)

Going to the tangent frame, the contraction of (2.1.26) with ¥ on the left gives
0= FEups® =E,_ (2.1.30)

which amounts to 10 of the 55 equations of motion.
On the other hand, if we hit (2.1.26) with E,cT'® we conclude that

ExEE =0 nosumonA. (2.1.31)
Being E4— = E} = 0 this gives
0=FEsE8=En4EY = Eu=E;=0. (2.1.32)

which give other 44 components of the Einstein equation. Thus, the existence of a single
Killing spinor and the Bianchi identity for Fy are sufficient to guarantee that all but one
the Einstein equations are satisfied. The only equation of motion which is not implied by
the integrability conditions is the E,, component.

Assume now that there is a second Killing spinor 3’ such that the bilinear

K =P TMy Oy (2.1.33)
is null and not parallel to k. Then the scalar product is not vanishing
K- k=y(zM) £0 (2.1.34)

and we can choose
E,=v"% = e =~tk)d". (2.1.35)

We can consider the equation in (2.1.26) with 1/’ instead of % and contract it with ¢/ on

the left to obtain ~
0= EapxTPx = Eay (2.1.36)

which gives in particular the last missing equation

E.,=0. (2.1.37)

The existence of enough Killing spinors on a specific background is thus sufficient to guar-
antee that the background satisfies all of the Einstein equations, provided that the Bianchi
identities (and thus the equations of motion) for the self dual 5-form are satisfied.

2.2 N =4 Super Yang - Mills

In this Section we will review some properties of N/ = 4 SU(N) superconformal gauge
field theories which will be useful in the following. We will mainly refer to the well known
reviews [14, 15].
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2.2.1 Lagrangian and conformal symmetry

The Lagrangian of N' = 4 SU(N) superconformal gauge field theories is given by

01 ouy 1 v : i i : Ya=
L= T&{@FWF“ T (FWF“ +3 D, X' DX +1Y ] X5* DA+

i=1 a=1
= O [XE 0] = Ciph® [XF, 0] — -;: > [Xi,XJ']2> } (2.2.1)
a,b,i 1,7

where the constants Cfb and C,, are related to the Clebsch Gordan coefficients in the
SU(4) = SO(6) R- symmetry group and the reduction of the 10 dimensional Clifford
algebra to 4 dimensions. By construction the Lagrangian is invariant under /' = 4 Poincare
supersymmetry, which has 16 generators

2 Ows a=1,...,4 a,a==1 (2.2.2)
acting as follows [22, 23):
[ Z?Xi] — CiabAab
{Q6 W} = Fu (028 + 851X", X7)(Cyy)
(@435} = 0%, D, X0
[ ZVAI-L} = (O-I—L)QBXg |

and their complex conjugate relations.
The transformation of a conformal field ¢ under scaling of the coordinates such as

(2.2.3)

T, — T, = ATz, (2.2.4)
is specified by an assignment of conformal dimension [¢] as
¢ (z) = Ngp(Az) . (2.2.5)

The Lagrangian (2.2.1) is naively scale invariant assuming that the fields and the parame-
ters appearing in it transform as conformal fields with the following conformal dimensions:

A]=[X]=1 D=2 [ =6 =0 (2.2.6)

The scale symmetry extends to the whole conformal group. Indeed the lagrangian is
invariant for any coordinate transformation generated by the infinitesimal transformations

ozt = gt + o* (2.2.7)
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with

Up = Qy
1%
Uy = Wy T Wy = —W
7 v v W vi
e (2.2.8)
V= QT

— 4 2
v, = 2,77, — T°Cy

The first two lines represent the generators of the Poincare group, translations, rotations
and boosts, the third line represents simple rescaling and the last line shows the so called
special conformal transformations.

The action of the conformal algebra on a local conformal field is given by

[Py, &(z)] = i0,0(x)

)
M, ¢(z)] =1[(z,0, — .,0,) + Z] ¢(z)
D, ¢(2)] =i (A + 28, ¢(z) (2:2:9)
Ky, ¢(z)] = [i (2°0, — 22,270, + 22,A) — 22"%,,] ¢(z)

where X, is the representation of the Lorentz group which acts on the (here suppressed)
- Lorentz indices of the field ¢(z). One can see that the algebra of the 15 generators above
can be reorganised to give the generators Jr; of the isometry group SO(2,4)

: 1 1
JuuzMuu JI_L4=§(K/J*PM> ’]ﬂ5=§l(Kﬂ+Pﬂ) .J45=D (2210)
which satisfy the commutation relations
[Juw, Jrg] = i(vrdus — vgJur — mardng + magJnr) (2.2.11)

where 1 has signature (—,+,+,+,+, —). Notice in particular that the generators of the
maximally compact subgroup SO(2) x SO(4) of SO(2,4) are given by

1
Jos = 3 (Ko + Fo) (2.2.12)

and
1

2

To these bosonic generators one has to add the 16 supersymmetry generators Q%, Q2.
The inclusion of both conformal invariance and supersymmetry requires the introduction
of a further set of symmetry generators S2, S,s which are known as the superconformal
generators. Their origin is due to the fact that the supercharges do not commute with
the special conformal generators and the commutator is not a linear combination of the
other generators. We give here a schematic description of the commutation rules. More
precise expressions can be found in e.g. [24, 15, 13]. We first analyse the commutator of
the dilatation operator with the other generators:

Jij=M;y;  Ju=5(K:—-F) i,j=123 (2.2.13)

[D,P]=—-iP [D,K]=iK [D,M]=0 (2.2.14)
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These relations state that that P has A = 1 and is a raising operator for the scaling
generator D while K has A = —1 and is a lowering operator and M commutes with D.
This is not hard to understand looking at the action of the symmetry generators on a
conformal field as in (2.2.9): P is a derivative operator, while K has two factors of z and
one derivative and M has one factor of z and one derivative. Being D real and recalling
from standard supersymmetry that [@, @], = P it is not hard to see that

i - i
D.Ql=-2Q [D,Q]=-20. (2.2.15)
2 2
As we said, the generators S are defined by
[K,Q=S [K,Q=S (2.2.16)
which implies ) '
D,S]=35  [D,§]=38 (2.2.17)

the S generators act as a second set of lowering operators.
In analogy to the relation between supercharges and momentum the anticommutator
of the superconformal generators in proportional to the special conformal transformation

[S,5] =K. (2.2.18)

In a Hilbert space which carries a unitary representation of the conformal algebra, can-
not exist operators with negative scaling dimension [25, 26]. As such, in any multiplet
obtained by acting on a conformal field by elements of the algebra there must be a lowest
dimension operator O which is called a conformal primary field. In the conformal case
(not superconformal) this is achieved by requiring that

[K,0]=0 forz=0.. (2.2.19)

In the superconformal case we we have a further set of lowering operators given by the S, S
generators. Being the conformal group a subgroup of the superconformal one, in order to
have a unitary representation of the superconformal group there must be in the multiplet
an operator O which commutes with the generators S in the origin

[S,0]: =[5,0]+ =0. (2.2.20)

where with the index & we have included the possibility that such operator is fermionic
and thus the grading of the superconformal algebra requires an anticommutator to appear.
An operator of this type is called a superconformal primary operator. It is clear from the
commutation relations {5, 5} = K and the Jacobi identity, that a superconformal primary
operator is also a conformal primary operator.

Another interesting relation is the anticommutator of the @) and S generators

[Q,S+=D+M+R (2.2.21)
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where R represents generators of the R-symmetry group SO(6). A relevant subset of the
superconformal primary operators is given by the so called chiral primary operators: they
commute with some of the supersymmetry generators ¢). As such they satisfy

[D+M+R,O]=0 (2.2.22)

which means that their scaling dimension is determined by their R symmetry and Lorentz
transformation properties.

2.2.2 Compactification and state operator correspondence

As we will see, one of the key ingredients of the AdS/CFT correspondence is the iden-
tification of the isometry group of AdSs with the conformal group of R¥3. Therefore it
would be useful to review the conformal structure of R*® and consider the action of the
conformal group under a new perspective.

The metric on the Minkowski space in in 4 dimensions is expressed in polar coordinates

as:
ds® = —dt* + dr® + r?dQ3, (2.2.23)

where dQ)y is the metric on the unit sphere S2. We can perform a series of coordinate
transformation and bring the metric in the following form:

e’ = —dupdu+ %(w —u)’d,  (ux=tEr)
1 o 1 ... 5 )
= o ﬂ+ o E <——d'LL+dU.. -+ Z sin? (U+ - U_)ng) , (’u,i = tan /u'i)
= 1 _ (—-d7'2 + d#? + sin? Gdﬂg), (Ge = (T £6)/2). (2.2.24)

4 cos? 1. cos? U

As shown in figure 2.1, the (¢,7) half-plane (for a fixed point on 5?) is mapped into a
triangular region in the (7,6) plane. The conformally scaled metric

ds"? = —dr* + df* + sin® dQ23 (2.2.25)

can be analytically continued outside of the triangle, and the maximally extended space
with
0<f<m —00<T<+00, (2.2.26)
has the geometry of R x S (Einstein static universe), where § = 0 and 7 corresponds to
the north and south poles of S3.
Since
0o 1 9y O 1 0

—_— I — —— p— 2 PR ——
57 =51+ u)ge + 3+ ul)g, (2.2.27)

the generator H of the global time translation on R x S® is identified with the linear
combination 1
H = '2‘(Po -+ Ko) = J05, (2228)
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t=const

r=const

Figure 2.1: The conformal transformation maps the (¢, 7) half plane into a triangular region
in the (7,0) plane.

where Fy and K are given by

Pozé(i-!-—a*), Ko:-l—<2 0 u? 8) (2.2.29)

Ouy  Ou_ 2 u+—3—u: ~Bu_

on R'3 defined in the previous Section. As we have already noticed, the generator H = Jys
corresponds to the SO(2) part of the maximally compact subgroup SO(2) x SO(4) of
S0O(2,4). Thus the subgroup SO(2) x SO(4) (or to be precise its universal cover) of the
conformal group SO(2,4) can be identified with the isometry of the Einstein static universe
R x S3. The existence of the generator H also guarantees that a correlation function of a
CFT on R"® can be analytically extended to the entire Einstein static universe R x S2.
Notice that it is only in its realisation on R x S* that the full superconformal group
(and not just its algebra) has a unitary representation [27, 28]. This is important for the
AdS/CFT correspondence in which the conformal group is mapped to the isometry of
AdSs: since AdSs is the background of the String theory dual to the CFT, the Hilbert
space of the String theory carries a unitary representation of the full conformal group [29];
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in order to establish the duality, the Hilbert space of the dual conformal field theory should
also carry a unitary representation of the full conformal group.

Another interesting feature of the formulation of the CFT on R x S° is that it doesn’t
have vacuum degeneracy. From the lagrangian (2.2.1) one can easily derive the potential
for the scalars

V o [X*, X)X, X5 (2.2.30)
Classical vacua are thus specified by the vanishing of the commutators
(X% X7 =0. (2.2.31)

We can distinguish two classes of solution to this equations

e The superconformal phase in which all the X* vanish. The full gauge algebra and
the superconformal are algebra are unbroken.

o The Coulomb phase in which some of the X* don’t vanish. The gauge algebra can be
broken up to U(1)" and the superconformal symmetry is also spontaneously broken.

When the theory is formulated on R x S® the six scalars are conformally couple to the
curvature of the background and the potential acquire a term

V o« RTrX? (2.2.32)

where R is the scalar curvature of the background. This leads to a mass term for the
scalars and thus the Coulomb phase is removed.

On a conformal field theory defined on R x 53, one can easily apply the standard
construction of the state operator correspondence in conformal field theories [14]. Such
correspondence states that if there is a local conformal field ¢(x) with conformal dimen-
sion A with respect to the dilatation operator D, then there is a corresponding eigenstate
|A) of the generator of global time translations (the Hamiltonian H = 3(Pp + Ko)) with
eigenvalue A + Eq, where Egq is the Casimir energy of the vacuum. We will see an explicit
realisation of this correspondence pointing out the origin of the Casimir energy in Section
3.1. The state |A) is obtained by acting on the unique vacuum of the theory |2) with the
corresponding local operator evaluated on the fixed point of the action of the dilatation D
(the origin, z = 0) $a(0)

$a(z) +— |A) = 9a(0)|2) (2.2.33)

Thanks to this correspondence, we may equivalently consider a representation of the
(super)conformal group on the Hilbert space of the theory or on its algebra of operators.

A representation of the superconformal algebra can be obtained by acting on a super-
conformal primary with different generators of the algebra: operators obtained in this way
are called descendants. In general a superconformal multiplet will contain several confor-
mal primaries, i.e. operators which commute with the special conformal generators K but
by the superconformal S. An obvious way of getting such conformal primary is by acting
on a superconformal primary with ¢). Indeed

[K,[Q,0lz] = —[Q,[0, K]l £ [0, [K, Q]l= = 0. (2.2.34)
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The complete superalgebra is isomorphic to the superconformal algebra of SU(2,2|4).
Unitary representationsions of the latter can be labelled by the quantum numbers of the
bosonic subgroup

SO(1,3) SO(1,1) SU(4) (2.2.35)
‘ ' (s+,8-) A [p,q,r] (2.2.36)

where s; are positive half integers, representing the value of the Casimirs of SU(2) x
SU(2) = 50(1,3), A > 0 is the dimension of the primary operator in the multiplet and
[p, g, 7] is the Dynkin label of the representation of SU(4).

2.2.3 Chiral primary operators

As we noticed in Section (2.2.1), a relevant subset of superconformal primary operators
is represented by the chiral primary operators. They are annihilated by some of the Q
charges '

@,0]=0 (2.2.37)

As a consequence, the multiplet constructed on them are shorter than the standard multi-
plet because some of the descendants are vanishing. As we noticed, the scaling dimension
of a chiral primary is completely determined by its Lorentz and R symmetry quantum num-
bers. In analogy to what happens in standard extended supersymmetry, where the mass
of the short or BPS multiplets is determined by their quantum numbers, chiral primary
operators are also called BPS states.

It is interesting to have explicit forms for the chiral primary operators in the N =
4 SU(N) Super Yang Mills theory. The construction is based on the fact that a super-
conformal chiral primary is not the @ commutator of another operator. Let us recall
schematically the value of the ¢) commutator on the fields of the SYM theory

(QA}=F+[X,X] [@,X] =2

{@,2}=Dx [0, F| = DA (2.2.38)

where D stands for the covariant derivative. The easiest way of constructing chiral pri-
maries is just to avoid the presence of any term which appear in the r.h.s. of the above
relations. Gauge invariant superconformal primaries of this type are constructed out of
traces of symmetric combination of scalar operators

Tr (X% ... X') ' (2.2.39)

where the R-symmetry indices are symmetrised. In general, BPS operators which commute
with different ¢) charges can be obtained by taking products and suitable (anti)symmetrised
combinations of such operators [30] which transform under irreducible representations of
the SU(4) R symmetry group labelled by integers p, q,7.

Since there is a one-to-one correspondence between chiral primary operators and unitary
superconformal multiplets, and so all the state and operator multiplets can be labelled in
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terms of superconformal chiral primary operators. Recall now that the anticommutator of
the @ and S generators is schematically given by

@,S]l+=D+M+R (2.2.40)

and it vanishes on chiral primaries. As such, the scaling dimension A of BPS operators is
protected against quantum corrections.

Generic chiral primary operators obtained by sum and products of operators of the
form (2.2.39) were classified in [25, 31, 32] and are characterised by the number of Poincare’
supersymmetries they preserve which can amount to %, ;11- or é of the 16 total supersymme-
tries. The simplest class is that of %-BPS operators the elements of which are characterised
by the SO(6) R-symmetry representations given by Young tableaux with a single row of
length p, i.e. traceless, symmetric SO(6) rank p tensors, or in Dynkin notation, the [0, p, 0]
of SU(4). In this case equation (2.2.40) implies that the conformal dimension of the BPS
operators is given by

A=p (2.2.41)

An SO(6) highest weight state of this representation can be obtained by using one of the
complex adjoint scalars, Z = Zz = X° + ¢X°, which has charge 1 with respect to the
SO(2) generator, Js = Lz * , in SO(6). Out of Z, one can construct multitrace composite
SUHN) singlet operators of the form

s Opry = (Tr28)™ . (Tezin) " (2.2.42)
with n :
A=p= Zliki- (2.2.43)
2==1

We will analyse in detail the structure of gauge invariant 1/2 BPS states in Section 3.1. The
lower supersymmetry cases are again best described in terms of SO(6) Young tableaux:
the % and -é— cases correspond to tableaux with two rows (of lengths p,q, p > ¢) and
three rows (of lengths p,q,r, p > ¢ > r) respectively. Again, in discussing highest weight
states it is convenient to use the three complex scalars Z; = X! +1X?, Z, = X3 +iX*
and Zsz, which have charges (1,0,0), (0,1,0) and (0,0,1) with respect to the three Cartan
generators (Jy, Jp, J3) SU(4) respectively. Highest weight states satisfy the BPS relation
A=Ji+Jh=p+gand A=J,+Jo+Js=p+g+rinthe ; and § case, respectively.
This is summarised in the following table:

p=g=0,7#0|pg#0,r=0|p,qr#0
1/2BPS | 1/4BPS |1/8BPS

Let us consider the % case, which is the most generic in this class: given the three complex
scalars Z1, Zo, Z3 of the N = 4 SU(N) Super Yang Mills theory one can construct a basis

4Here J; = Lo;—1,2; in terms of the standard generators of SO(6)
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of the ring of gauge invariant, local, composite operators in the [p, ¢, r] of the R-symmetry
group SU(4) as [30]

Tr(Z)Tx(Z3)Te(Z5) + - - - (2.2.44)
where the dots mean suitable (anti)-symmetrisation and trace structure that projects to
the chiral primaries in the (p,q,r) representation of SU(4). We will further analyse the
properties of these operators in Section 5.1

2.3 The Maldacena conjecture

In this Section we finally present a formulation of the AdS/CFT correspondence

2.3.1 Low energy and near horizon limit

As we have noticed in Chapter 1, there are are two different descriptions of D-branes
in String theory and the dynamics of quantum Strings looks quite different in the two
descriptions. Let us specify the features of these two different descriptions in the case of
N coincident D3-branes.

D-branes can be described as surface where open strings can end. Let us consider the
dynamics of strings on a flat background with a flat % BPS D3-brane. If we consider
energies much lower than the string scale [;! only massless states can be excited: open
strings give the states of 4 dimensional N'= 4 U(N) gauge theory and closed strings give
a gravity supermultiplet which is described at low energies by the type IIB supergravity
Lagrangian. The complete effective action for such massless states include a brane term,
a bulk term and an interaction term

S = Shrane + Sbulk + Sint (2.3.1)

Note that although the action above involves only massless fields it contains contribution
from all the massive states that have been integrated out. The brane action is given by the
N =4 U(N) gauge theory plus higher derivatives term which are proportional to powers
of /. We explicit now the way we take the low energy limit of the theory by sending the
string length lg — O (which of course implies &' — 0). In this limit gravity becomes free
and it decouples from the brane modes. Higher derivatives term in the brane action also
vanishes and we are left with just pure N'=4 U(N) SYM and decoupled supergravity on
flat space.

Since D-branes source the closed strings modes, we can also describe them as p-branes
solution to the supergravity equations. We have already written such solutions

ds® = H(r)™"2dz*dz, + H(r)'/* (dr® + r?dQ2) (2.3.2)
where dz#dz,, is the flat Minkowski four dimensional metric and dQ22 is the metric on the
unit radius five dimensional metric. The function H(r) is given by

L4 4 5]\7 2
H(r)=1+-7;z=1+—3r—g——9‘—-. (2.3.3)

r4
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Notice that the energy E, of an object as measured by any observer at a constant position
in 7 is related to the energy E as measured at infinity by the redshift factor

E=HYE,. (2.3.4)

We now take again the low energy limit which is specified by sending o’ — 0 and keeping
constant r/l,. There are tow type of low energy excitations (from the point of view of an
observer at infinity): massless particles propagating in the bulk with vary large wavelength
or any kind of excitations which lives close to r = 0. The bulk and the “near horizon”
excitations decouple because the absorption cross-section goes like [6] o oc R¥/A\? where X
is the wavelength. Hence, the low energy theory consists of two decoupled parts, free bulk
supergravity and string theory on the near horizon region. The metric in the limit

r,ls—0  r/ls =U constant (2.3.5)

takes the form

2 2
ds? = o _417{—9—N (dztdz,) + 47rgsNdUi2 + \/47TgsNdQ5] . (2.3.6)

‘We ﬁerform now the further coordinate transformation

viang.N (2.3.7)

U=
U
which takes the metric to the form
2
ds® = o/\/dmg,N [uz (dztdz,) + %U;- + dﬂ% : (2.3.8)

We can now take the string theory non linear sigma model on the background above
focusing in particular on the metric part without considering the contribution of the 5-
form. Notice that the metric can be written as gy = &'/4rg,Ngyn where Gprn is free
of parameters. The sigma model will take the form

1 N
= = | VI o (00X XY = i / VI gun(X)0aX M 0pX T
dma! Js ar Js
(2.3.9)
It is clear from this simple derivation that the role that is usually taken in string theory

by the parameter 4w¢’ is now taken by

Sa

4

Y A= gsN. (2.3.10)
The low energy effective action of string theory is expressed in terms of a double expansion
in o’ and g,. In the context of String Theory on the background of AdSs x S° it becomes
an expansion in A and g,. Notice in particular that purely quantum gravitational effects

are driven by g2/\2 = N72.
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2.3.2 Formulation of the conjecture

We have just seen that D-branes in String Theory can have two quite different description
and in particular that, in a suitable low energy limit, both the descriptions have contain
the dynamics of free strings in the bulk. It is thus natural to identify such dynamics on
both sides. We are left with N' = 4 U(N) SYM with coupling constant gy, = gé/ > on
one side and Type IIB string theory on AdSs x S® with L* = 4w \l* on the other side. In
a milestone paper Maldacena conjectured [33] that these two theories are actually dual or
equivalent: they describe the same dynamics.

The dynamics of a U(N) Yang-Mills theory is determined by a double expansion in the
't Hooft coupling A = g2,,N and N. Analysis of loop diagrams can be trusted for small
values of A while the classical gravity description is valid in the incompatible regime of
large A. This makes hard to give a proof of the conjecture.

A notable limit of the gauge theory consist in taking A\ fixed and large N. This is
known as the 't Hooft limit [3]. This corresponds to a topological expansion of the Feyn-
man digrams of the theory. On the String theory side, keeping finite values of A while
sending N — oo implies small g, and thus corresponds to the limit of weak coupling string
perturbation theory, or classical strings.

The AdS/CFT correspondence may be intended in three different formulations of de-
creasing strength

o The full /' = 4 Superconformal U(N) Yang-Mills Theory with arbitrary values of
the 't Hooft coupling A and N is equivalent to String Theory on AdSs x S° where
the mappings of the dimensionless parameters is done as following

12 A\ A
e (Z%) 0= (2.3.11)

e Thel /N 't Hooft limit expansion of the SYM theory is equiiralent to the g, expansion
of Type IIB String Theory on AdSs x S°

e The expansion of N/ = 4 SYM in powers of A~'/2 for large \ and large N is equivalent
to the expansion of Classical Type IIB Supergravity on AdSs x S° at large L/l

Notice that of course the strongest formulation implies the two weaker ones but each of
the weaker formulations can be valid independently on the validity of the stronger one(s).

A short remark is due here. The SYM theory describing N coincident D-branes is
a UN) = SU(N) x U(1). The U(1) factor describes collective motion of the branes
and decouples from the SU(N). On the gravity side, it correspond to the inclusion of
a topological B field on the theory which lives on the boundary and decouples from the
dynamics of the remaining degrees of freedom of the theory. One may or may not include
the further U(1) factor in the correspondence. In this thesis we will not consider the
inclusion of such mode.
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2.3.3 Matching of global symmetries

AdSpo of radius L can be thought as the Lorentzian hyberboloid of radius L in a p +
3 dimensional flat space with diagonal metric of signature (— + --- + —). Introducing

coordinates Yp, Y1, -+, Yp4o it is specified by the equations
p+1
Y4+ Y, -y V=0 (2.3.12)
i=1

It is clear that its symmetry group is SO(2,4). Global coordinates on the hyperboloid are
given by
Xo = LcoshpcosT Xp+2 = Lcosh psinT
p+1
2.3.13
X;=LQsinhp » Q=1 (2313)

i=1
The metric in these coordinates is given by
) ds? = L? (- cosh’pdr® + dp? + sinh®pdQ?) . (2.3.14)

The topology of the manifold is S* x RP*! and thus contains closed timelike curves. One
can easily avoid such pathology unwrapping the S* which amounts to take the universal
~overing of the hyperboloid. The SO(2) factor in the maximally compact subgroup of the

isometry group SO(2,p -+ 2) maps to global time translations. An interesting remark is
due here, specifying to the case of our interest: Type IIB String Theory on AdSs x S°.
The spectrum of the Kaluza Klein compactification on S° of type IIB Supergravity on
AdSs x S5 has been classified in [34, 35]. Curiously they found that all the excitations have
energies, with respect to the global time translation, which are integer multiple of (27 L)~
this amounts to say that supergravity is well defined on the single cover of AdSs.

The isometry group SO(2,4) of AdSs under the duality with the CFT is mapped to the
conformal group. The global time translations in AdSs are mapped to time translations on
R x S3 as noted in Section 2.2.2. Moreover in the formulation of the SYM theory on R x 53
we have a unitary representation of the full superconformal group, a unique vacuum and
thus an unambiguous interpretation of the state operator correspondence in the CFT. For
such reasons, when dealing with the AdS/CFT correspondence we will intend the CFT as
formulated on R x S%

AdSs x Ss is a maximally supersymmetric solution of Type IIB Supergravity and as
such it preserves 32 supersymmetries. Half of them are mapped to the 16 supersymmetry
generators () of the CFT and the other half to the 16 superconformal S generators.

2.3.4 Field - operator correspondence

It is straightforward to see that at large values of p the metric of global AdS spacetime,
after the coordinate transformation

z=2e" — 0 (2.3.15)
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takes the form 2 : , ,
ds* = — (=dr* +dOp +d2?) . (2.3.16)

The conformal boundary of AdS,., is specified by z = 0 and is given by R x SP. In
particular, for AdSs the conformal boundary is R x S2. Consider the version of the N’ = 4
CFT on R x 53. We will show now that the properties of the conformal boundary of AdSs
allow us to give a more precise “holographic” formulation of the AdS/CFT correspondence.

For each field propagating in AdSs x S° we perform a Kaluza Klein expansion over
tensor spherical harmonics in S°.

2(z,9) = 3 4(@)Y () (2:8.17)

where z indicates coordinates in AdSs and y indicates coordinates in S°. Lorentz indices
have been suppressed. The D’Alambertian operator in AdSs for z — 0 takes the form

Os = 2204 + (26,)* —420,. (2.3.18)

where [J, is the D’Alambertian operator in R x S3. Near the boundary where z is small,
the fields can be approximated by 2% ¢°(Z) where Z denotes coordinates on R x S3. Each
Lorentz component of the fields ¢; has to be a solution of the Klein-Gordon equation in the
anti-de Sitter space, for which the D’Alambertian equals the quadratic Casimir operator
C; [36]. In terms of the ground state energy Ey of the anti-de Sitter representation, we
have C; = Ey(Ep — 4) , which shows that we have the identification d = Ey or d =
4 — Ey. This identification is somewhat remarkable in view of the fact that Ey is the
energy eigenvalue associated with the SO(2) generator of the anti-de Sitter algebra and
not with the noncompact scale transformation D which scales z and corresponds to the
SO(1,1) generator. 4

The quadratic Casimir operator is, by definition, the coefficient of the quadratic term
in the action which is usually denoted as m?. This term in general does not coincide with
the mass squared M? of the field, which can be measured by looking at the wave equation
in locally flat coordinates. The relation between the mass and the Casimir operator C,
depends on the spin of the fields. For example, in generic AdSp spacetime for the lowest
spins it is given by [36]

1
C;calar — __ZD(D_2)_I_M2
C3PnT = -—é-D(D—l)-}-M?
Cgector — M2
ciemser = M2, (2.3.19)

The first relation in particular gives an elementary interpretation of the well known Breitenlohner-
Freedom bound [37] which coincides with the requirement M? > 0.
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Generic solutions of the Klein Gordon equations on AdSs are thus determined by bound-
ary conditions at z = 0 represented by a specification of a field ¢°(Z) such that

o(x) — 2%¢5(7) (2.3.20)

The isometry group of AdSs acts locally on the field ¢(z), thus the field ¢9(Z) transforms
as a conformal field of weight d under scaling of the R x S® coordinates.

Let us focus for simplicity on a scalar field ¢(z). The exponent d can take the two
values A,4 — A with

A=2+Vi+m? (2.3.21)

We choose the non normalisable solution determined by the choice d = 4 — A. The
boundary value ¢J_, can be used as a source for an operator O of dimension A in the
CFT generating function

exp {Tlga(2)]} = <exp / ¢>2_AOA> (2.3.22)
RxS3 CFT
We can now define the String partition function Zg(¢°) on the KK reduction of AdSs x
$5 to AdSs with the boundary condition that ¢(z) approaches z4~2¢3_, (Z). For example,
in the approximation of classical supergravity, one computes Zg(¢°) by simply solving the
éﬁuations for ¢(z) with the specified boundary condition and then taking the exponent of
the classical supergravity Is[@] action calculated on the solution

Zs [¢°] = exp {~Is[¢]} (2.3.23)
The holographic formulation of the AdS/CFT correspondence states that
exp {TI¢a (2)]} = Zs [¢4] (2.3.24)

The main problem at this point is to construct the dictionary between conformal operators
Op in the CFT and fields on the AdS side.
We will describe some steps in this direction it the next Chapters.
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Chapter 3
Half-BPS States in AdS/CFT

One of the first steps in understanding the AdS/CFT correspondence is to set up a precise
dictionary between the different states and the spectrum of the theories on the two sides of
the correspondence. In the previous Chapter we have argued how to identify the conformal
dimension of the operators of the CFT with the mass of linear fields propagating on the
Supergravity AdSs backround.

Type IIB Supergravity is a good approximation of type II B String Theory at low
energles-compared to the string scale and small string coupling. When the mass and the
energy of the linear fields grow, backreaction on the metric should be taken into account.

The identification of the parameters of the N/ = 4 SU(N) SYM, namely A = ¢&,,N
and N and the parameters of type IIB String Theory on AdSs x S°, namely L 443, s, gs,

1s done as follows
L,%ldS _ _)_‘_
4ml? 4T

We may thus consider solutions to the supergravity equations of motion which are asymp-
totically AdSs x S® as good candidates for dual of states in the CFT of generic energy,
provided that N > A > 1 and any dimension four curvature invariant of the solutions,
R4, satisfies

N1

A

Rl K A N. (3.0.2)

If one wants to construct the map between the states of the CFT and geometries
obtained in this way, supersymmetry is helpful in a twofold way. First, it constrains renor-
malisation properties of the operators in the CFT and secondly, as any other symmetry
assumption, it simplifies the derivation of the solutions to the Einstein equations. In par-
ticular, as we have noticed in Section 2.1.3 it reduces the problem of solving the second
order differential Einstein equations to the one of solving the first order Killing spinor
equations and a few second order equations corresponding to the Bianchi identities for the
non vanishing field strength.

One may hope to be able to identify the states of the two theories in the full dual BPS
sector. A very beautiful and relatively simple construction of such a dictionary in the half
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BPS sector has been performed in [12](LLM). The authors considered geometries dual to
half BPS states in the CFT, associated to chiral primary operators which are obtained by
taking traces of powers of the operator Z = Zz = X° + iX% In LLM, exact half BPS
solutions to the supergravity equations of motion are derived by exploiting the bosonic
symmetry of the problem.

In this Chapter we will at first give a description of half BPS chiral primaries in terms
of free fermions and Young tableaux. We will later summarise the LLM construction and
a direct simple generalisation to plane wave geometries.

3.1 Fermion picture of half-BPS C'F'T chiral primaries

In this section we will give a description of 1/2 BPS chiral primaries in terms of free fermions
in a harmonic potential and in terms of Young tableaux. The original construction was
developed in [38, 39]. Look also [40].
. As we have argued in Section 2.2.3, in every SO(6) multiplet of 1/2 BPS chiral primaries
we can identify operators of the form

Ogry = (TrZ2)™ .- (Trz)™ (3.1.1)
The conformal dimension of such operators is given by
A=p=> lk. - (312)
i=1

from which is clear that (3.1.2) generic half-BPS operators of charge p are characterised
by the partitions of p. The partition {l;, k;} of p can be described by a Young tableau with
k; columns of length I; putting columns in order f decreasing length. For example

1]
=4k =Lh=2k=2%=1k=1} = O (3.1.3)

b

Notice that there is no bound on the number of columns but, since TrZV** with k > 0
can be expressed as a linear combination of traces of Z to a lower power, the maximum
length of each column is V.

3.1.1 Oscillators basis

We can expand the field Z(z) into spherical harmonics on S%. The CFT states associated
to local operators O(z) are obtained by acting on the unique conformal vacuum with O(0)
which coincides with the s-wave mode on S® of the operator O(z). Due to this state-
operator correspondence we will frequently jump between an operator based and a state
based language.

In order to study the CFT states associated to the half-BPS operators, we consider the
reduction of the full theory on R x S® to the s-wave modes of the fields Z and Z: thus,
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from now on, Z will be a complex matrix. Direct reduction of the lagrangian of the N =4
theory on R x S gives rise to quadratic as well as quartic terms in Z, Z:

L= p*Tr (D,ZD, 2"~ ZZ") + Vp (3.1.4)
Vp « Tr ([2,2] [Z,21])
where
- Q
Zt=27 =2 3.1.6
29%/1\4 ( )
with Q3 the area of S® and

Ay acts as a Lagrange multiplier and can be gauged away. Its equation of motion implies
that the generator of gauge symmetries ) vanishes on the states, which is implemented by
taking gauge invariant states.

We will further reduce to the abelian sector of the model, assuming that

[2,2'])|0)=0. (3.1.8)

for any half-BPS state |O). In the free theory limit, Vp = 0. At one loop, the contribution
from the D-term in the scalar potential Vp to the dilatation operator is cancelled by fermion
and gauge loops [41, 42]. One can translate this to the dual Hilbert space as,

(0T ([2,2Y]2,2) |0) = 0. (3.1.9)

Since these states are protected by supersymmetry, we expect this to be true independently
of the gauge coupling. It is thus natural to guess that the effective dynamics of these states
will be described by a normal gauged matrix model with an harmonic oscillator potential
[43, 38, 39, 44],

L=p*Te(D,ZD,Z" - z2%, [2,Z2]=0. (3.1.10)

The momenta conjugated to the fields Z, Z are given by
I =5u2%0,2 (3.1.11)
1= 4%0,2 (3.1.12)

We define the destruction operators A, B as

1/ - i 1 i
A=— Z+——H> Bz———(Z-!——H) 3.1.13
\/5(# # AR ( )

The Hamiltonian is given by

1 ES
H=Tr (/—ﬁn‘fn - u2ZTZ> =Tr(A'A+ B'B+N) . (3.1.14)

28



The vacuum energy is thus given by N2. The SO(2) generator J = J; of Section 2.2.3
which acts as a phase on Z is given by

J="Tr(A'A- B'B) . (3.1.15)

Referring to the discussion of Sections 2.2.2 and 2.2.3, chiral primary states are constructed

out of Z and verify
H-N’=J=A (3.1.16)

Since they have to be gauge invariant, they must be obtained acting on the conformal
vacuum with traces of the creation operators A' only?.

At the beginning of this Section we pointed out that gauge invariant half-BPS states
are characterised by partitions of the J charge p. Consider the description of the same
states in terms of traces of the operators Af. Generically, they will take the form:

O(AN g,k = (TrAT™)™ o (TrATt)™ (3.1.17)

with .

p=> liki. (3.1.18)
i==1

Each of these operators is also characterised by a partition of p. Indeed the relation

béj;;Ween the description is terms of Z and AT is very simple. By definition, the operator

Bannihilates the vacuum [<2) and thus we have

—iII|Q) = p*Z|0) (3.1.19)
which implies
(TrAf)™ .. (TeAt) " 0 = Q%% (Tez?)™ - (Te i)™ (3.1.20)

3.1.2 Eigenvalues basis

Since we have restricted observables to a single set of oscillators, it should be possible to
rewrite the Hamiltonian in terms of a single hermitian matrix of operators. We define

1
Q= E (A + AT) (3.1.21)

1

P=—(4-4) (3.1.22)

1

S

which obey the commutation relations®

[Qij, Pr) = 1600 % - (3.1.23)

1An identical argument can be carried on in the case of half-BPS states defined by A = —J, just by
exchange the roles of the A and B oscillators.
2Notice the non trivial pairing of the indices in the Kronecker symbols.
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Neglecting the Casimir energy, we can derive the lagrangian which, in terms of the hermi-
tian matrices @, 3;(Q) takes the form

L= 1T (6.0 - ¢ (3.1.22)

We have thus reduced our model to that one of a hermitian matrix in a harmonic potential.
There always exists a unitary matrix U such that[45]

Q=U'AU (3.1.25)
with A = diag(A1,-- -, An). We have:

Q= (A+ [UUT, AD U. (3.1.26)

We can now perform an SU(N) gauge transformation on the matrix ). The SU(N)
transformation will be in general time dependent, and in order to recover gauge invariance,
we have first to restore the gauge potential A; in the covariant derivative.

So far, we have assumed that A; = 0. We can easily reabsorb the commutator term in
(3.1.26) into a gauge transformation and we can reduce the lagrangian of our model to

o 1 \2 2
=33 (,\i - /\i) (3.1.28)

i=1

So the dynamics is governed by the classical motion of the N eigenvalues is that of a
harmonic oscillator’. However, quantum mechanically there is a change of measure from
the matrix basis to the eigenvalue basis. This change of measure is the volume of the gauge
orbit of the matrix X, and it is equal to the square of the Van der Monde determinant of
the \;, namely

p=A0=T]= ) (3.1.29)

7]

So that the Hamiltonian in the quantum theory will be given by

By =23 ~u76, (ubr) + Mo (3.1.30)

with ¢ the wave function of the eigenvalues.

The measure can be absorbed in the wave functions for the J;, by attaching a factor
of the Van der Monde to the wave function. We define 1(X) = A™}(A\)()), where $())
is the new wave function in the X variables expressed in terms of the eigenvalues of X

3Rigorously, since we are dealing with an SU(N) theory there are only N — 1 independent eigenvalues.
In the large N limit this distinction is irrelevant and we will ignore it here
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(these are the )\;), and the measure for 9 is is just J]d);. This can be done for any one
matrix model quantum mechanics [46] with a single trace potential. This is a similarity
transformation on the space of wave functions, so it affects the form of the Hamilltonian.
The new Hamiltonian is 1

H= 3 Z —8, + X2 (3.1.31)
80 it becomes a Hamiltonian for N free particles in the harmonic oscillator potential well.
After this is done the wave functions are completely antisymmetric in the A;: the eigen-
values become fermions due to the Van Der Monde determinant. The system is reduced
to N free fermions in a given potential, which for us is just V(z) = z%/2. For our setup,
an orthogonal basis for the N-particle wave functions is given by Slater determinants of
one particle wave functions for the Harmonic oscillator (these are in turn given by Hermite
polynomials times a Gaussian factor H™:()) exp (—A?/2). This basis for the wave functions
is given explicitly by

H™(\) H™(\) ... H™(\y)
H '(Al) H .()\2) H :(AN) exp(—Z)\2/2) (3.1.32)

.

iz;(n17"'7nN)Ndet : : .
() H™() ... H™(\)

In ﬁarticular, the Fermi statistics imply that all of the n; are different, and that we can
order the n; so that n; > mg > ng > --- > ny > 0. The energy of a state is then
S~i(ni +1/2). The ground state of the system is such that the n; are minimal. This is,
ny—k = k. From here it follows that the ground state energy of the system is

N-1
1 N?
% 5(21@ )=~ (3.1.33)

which coincides half of the vacuum energy that we found in (3.1.14). This is due to the
fact that we are quantising only one of the two independent harmonic oscillators.

Each excited state can also be parametrised by a set of integers representing the exci-
tation energy of the i-th fermion over its energy in the ground state[39, 47]:

ri=(mi—n)=mn; —i+1. (3.1.34)

The r; form a non-decreasing set of integers ry > ry-1 > ---7; > 0, which can be encoded
in a Young diagram T in which the i-th row has length r;. For example,

1]
(4,3,1,1} = O— (3.1.35)

Thus, orthogonal excited half-BPS states are in one to one correspondence with Young
diagrams. Notice that the maximum length of a column in these type of Young tableaux
is N. The energy above the vacuum, and the J charge, of each excited state is equal to
the number p of boxes in the Young tableau.
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3.1.3 Schur’s polynomials basis

We will now describe a second basis of the space of 1/2 BPS chiral primary operators: the
Schur polynomials of degree p for the unitary group SU(N). Let us consider a generic
SU(N) matrix U. It acts on an N dimensional vector v € V = C" of coordinates v* as

(Uv)t = U4 (3.1.36)
Its action on the symmetrised space 0, = Sym(V®P) is given by
U1 ®-®up) = (Uv) ® - ® (Uv,) (3.1.37)

and commutes with the action of the symmetric group S? on Sym(V®P) which simply
permutes the vectors v,, i.e. for o € S*:

(U1 ® - ®Up) = Usz) @+ ® Vo(p) (3.1.38)

As a consequence, the given representations of the unitary group and of S? on ), are
reducible.

An irreducible representation R of the symmetric group is specified by a Young tableau
Tr. To each representation R of the symmetric group is associated a unique irreducible
representation of SU(N) which acts on , as follows

R(U)(’U1 R--- Qv p 11 P l Z XR(O‘)U o(j1) U o(jp )’U1 ’ng (3139)

n o€SP

Each representation acts on tensors of a definite symmetry type which is dictated by
the corresponding Young tableau. A column of length m in a Young tableau represents
complete antisymmetrisation over m indices. Clearly, representations associated to Young
tableaux with columns of length greater than N are empty: hence, the maximum length
of a column in an allowed Young diagram is V.

Let us consider now the representation of the su(/N) algebra which is induced by a
representation of the group S U(N). An SU(N) gauge transformation U acts on an element
X of the algebra as

X = UXU. (3.1.40)

In each representation R of SU(N), and hence of su(N), we can take the gauge invariant
combination

1 i ip
Xr(X) =TrrX = = > xa(o)X otin) X

" oesP

(3.1.41)

o(ip)

These operators are known as Schur’s polynomials. With the same definition, Schur’s
polynomials can be taken for generic complex matrices. They form an orthogonal basis
in the space of SU(NN) invariant functions of the matrix X, where SU(N) acts on X by
conjugation as in (3.1.40).
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The dimension of each representation R of SU(N) is easily given by

Dr = xn(l ] Z XR(0)8 iy 8y = ] Z Xr(c) N (3.1.42)

P oESP oesP
where I is the identity matrix and C(c) is the number of cycles of the permutation o.
The generic term in the sum which defines a Schur polynomial for the field Z is proportional
to
Opory = (Trz28)™ ... (Trzin)™ (3.1.43)

where the integers [;, k; are dictated by the number k; of cycles of length [; in the permuta-

tion. Since the Schur polynomials are a basis for the half-BPS operators, the relation can

be inverted, and any operator of the form O, i, can be expressed as a linear combination
of Schur polynomials.

Let us consider the simplest example: p = 2. We have only 2 permutations

I=(12) , (3.1.44)

= (21). (3.1.45)

- The identity has two cycles of length one and ¢ has one cycle of length two. The two

possible partitions of p = 2 correspond to the Young tableaux

Ts=CDO Ta=H. (3.1.46)
We have xs(1,0) = (1,1) and x4(1,0) = (1,—1) and thus

Dg = %(N2 +N) Da= %(N-2 —N) (3.1.47)

The Schur polynomials for the S and A representations are given by
Xs(X) = 5 [TR(X)? + Te(X?)] CERTY
(X)) = % [Te(X)? — Te(X2)] (3.1.49)

As a less trivial example, we consider p = 3 and the totally symmetric representation
corresponding to
Ts =1 (3.1.50)
We have ys(c) = 1 for any o in S®. The possible permutations and the number of their
cycles are

o | C(o)
(123)] 3
(132)| 2
(321)] 2 (3.1.51)
(213)] 2
23| 1
(312)} 1




Thus, the dimension of the representation is
1
T3l
and the associated Schur polynomial is

Ds (N® +3N? +2N) (3.1.52)

xs(X) = % [Te(X)? + 3Te(3X)Tx(X) + 2Tr(X?)] (3.1.53)

3.1.4 Relationships between different bases

So far, we have described three different bases for the half-BPS states in the CFT. The
relationship between the oscillators basis and the Schur polynomial basis has been clarified
in the previous subsection. Orthogonal elements of both the Schur polynomial basis and
the eigenvalues basis are specified by different Young tableaux. We have also associated
each Young tableau to orthogonal elements of the eigenvalues basis. Happily an element
of the eigenvalues basis associated to a Young diagram T turns out to be exactly the same
state as created by the Schur polynomial operator xr(Z) associated to the same Young
diagram. This is because the asymptotic behaviour of the Schur polynomial associated
to a Young diagram matches the asymptotic behaviour of the Slater determinant [38, 39).
As we have already noticed, the conformal dimension of the operators, A, is equal to the
number of boxes p appearing in the diagram 7.

3.2 Half-BPS geometries in Type II B Supergravity

In this Section we will describe the so called LLM construction, which was developed in
[12]. The authors obtained the supergravity duals of the half-BPS states of the CFT that
we have studied in the previous Section for large angular momentum J « N2.

When the angular momentum J is small as compared to the rank NV of the gauge group,
the supergravity duals are given by gravitons and excitations of the RR 5-form propagating
in AdSs x S° [48, 49]. When J is of order N the gravitons effectively become extended
object, spherical half-BPS D3-branes rotating in S° (giant graviton) or propagating in
AdSs (dual giants) [50, 51, 52, 43] . When the dimension grows to become comparable to
N? we expect that the backreaction on the geometry is no longer negligible and we get
new geometries characterised by a complicated topology. These are the geometries which
were constructed in LLM. They represent the geometrical transition between probe giant
gravitons or dual giant gravitons and fully backreacted geometries.

3.2.1 The LLM solutions

The construction is based on the assumption that the geometries have to preserve the same
amount of bosonic symmetries and supersymmetries that the states in the CFT do. The

latter preserve an
RBPS X SO(4)R X 50(4)5 (3.2.1)
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bosonic symmetry. The first factor is due to invariance under simultaneous dilatation and
R-symmetry rotation D' = D — J and is a direct consequence of the chirality of the CFT
operators under examination. The second factor is due to invariance under the SO(4)
subgroup of the R symmetry which doesn’t rotate X>°. The third factor is due to the fact
that we are taking the S® scalar (s wave) component of the fields. Moreover, on R X S8
these states preserve a total amount of 16 supercharges [12].

The problem of finding geometric duals of such CFT states is highly simplified by
the presence of supersymmetry. We expect to find solutions of the type IIB Supergravity
equations of motion which preserve the same (super)symmetries and have the same charges
as the CF'T states. Since we are looking at duals of operators which contains only the scalar
Z, the only non trivial Supergravity fields will be the metric and the RR 5-form.

In Supergravity, invariance of the background under a supersymmetry transformation
is equivalent to the existence of a Killing spinor, as we have outlined in 2.1.2. The LLM
procedure amounts to formulate an Ansatz for the metric and the RR 5-form which is
invariant under SO(4) x SO(4) and ask that Killing spinors exist on such a background.
Due to the amount of Killing spinors admitted by the LLM solution, following the analysis
of 2.1.3, this will be sufficient to guarantee that the background satisfy the full Einstein
 equations of motion.

" The result of the LLM analysis is that the full Supergravity solutions are determined
by a single function z(z1,z2,y) which is defined on the three dimensional flat halfspace
y > 0. The complete solutions have the following form:

ds? = —h~2(dt + Vidz')? + h3(dy? + 8i;da’da?) + yeCdQ3 + ye CdO2 (3.2.2)
Fs) = Fuda* Adz” AdQ + Fda# A de” AdQ (3.2.3)

F=¢CxF (3.2.4)

(3.2.5)

with y > 0.
~The function z(z1, Z2, y) determines the entire solution (up to choice of gauge that we will

35




discuss in Chapter 4),

2= %tanhG (3.2.6)
h=2 = 2ycosh G = Y 3.2.7
V(1/2=2)(1/2+ 2) (827
dV = é %3 dz (3.2.8)
F=d(By(dt+V))+dB (3.2.9)
F=d(By(dt+V))+dB (3.2.10)
B; = —i—yzezg Bt = —%lyze—2c (3211)

R 1 1/2 + 2z 2 1 1/2— =2

where *,, indicate the Hodge dual in n flat dimensions.
For the consistency of (3.2.8) and (3.2.12) we must have

(@ + 8)z + yay(éayz) —0 (3.2.13)

The solutions for z and thus the whole supergravity solutions are determined by boundary
conditions in the {z1,z2,y} space. These include the boundary conditions at infinity and
on the 2-pane y = 0. In particular, with suitable boundary conditions at infinity, if z
on only the values :i:% on y = 0 then the solutions are guaranteed to be singularity free
space-times. The value of p = 1/2 — z on the boundary plane can be interpreted as a
semiclassical fermion density, thus providing direct contact to the CFT dual Yang-Mills
theory picture that we have described in the previous Section. We will discuss in details
several issues regarding the boundary conditions and regularity of the solutions in Chapter
4.

3.2.2 The LLM construction

In this Subsection we give a sketch of the LLM construction. The complete details can be
found in the Appendix of [12]. We will here review some subtle points of their analysis
and point out a few observations which will be useful in the following. In Section 3.3 we
generalise the LLM construction including the case of generic plane wave geometries.

Statement of the problem and basic assumptions

Our starting point is an Ansatz for the metric and the five-form which exploits the SO(4) g x
SO(4)s bosonic symmetry

ds? = g, dztdz” 4+ e#TCdO2 + eP~Cd02 (3.2.14)
Fs) = Fuda* Adz” AdQ + F,dz” A dz? A dQ (3.2.15)
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where dQ2, dﬁg denote the metric and df2, dQ the volume 3-forms on the two unit radius
sphere. The self duality condition for F(5) implies

F=e°%«F F=-e3%xF F=dB F=dB (3.2.16)

the only nontrivial equation for the Killing spinor is

1
VM"? -+ ?48—0‘FM1M2M3M4M5F(IgleMsM‘lMEPM'I] (3.2.17)

We choose a basis of tangent space gamma matrices
I,=7%0180181 lNL=%®0®0®l Ti=3®081®0  (3.218)

where the o are standard Pauli matrices, 75 = ipy1727y3- The 10 dimensional chirality
operator is given by

F11 ZPO"'PQ,HFQHF&:’}’50'3 (3219)

and the spinors satisfy the chirality condition
Fn’l] = Y5037 =1T] (3220)

Killihg spinors on the 3-sphere
Let us consider spinors obeying the Killing spinor equation on the round unit radius n-
sphere _

Vex = a-;—acx (3.2.21)

being o, in the Clifford algebra of SO(n + 1) and
V.=3,+ %Q;baab (3.2.22)

with og = %aaab and X, are the vector fields dual to the chosen n dimensional metric
connection on the sphere.

Integrability conditions imply @ = #1. There are exactly 22! linearly independent
solutions for each value of a [53, 54].

Specifying this result for n = 3 we get 2 solutions.for each value of a. We will denote

the two doublets as )
Ya = <X2i> (3.2.23)
X
A natural choice for the n-bein of the 3-sphere is given by left invariant SU(2) one forms.
The spin connection is then given by (see the Appendix A for a complete derivation)

0. = eqe (3.2.24)

c
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from which we can easily deduce that the spinors in the doublet y, do not depend on
the coordinates of the sphere. As we will explain in details in Section 5.5, the doublet ..
(resp. x-) transforms in the positive (negative) chirality representation of SO(4) under
SO(4) isometry transformation on the sphere.

The bilinears - L ‘ . ot .
= () ondm, LY = () o, (32:)
are Killing vectors for the S? and generate the SU(2), x SU(2)_ isometry of the metric.
We can consider, for each group L., L_, the four real combinations
1 1
LY, L2, Li=—= (L2 +13) , [+ = — (I} - 1% 3.2.26
=02 M E=TE ( + -_!-) /2 ( + :I:) ( )

Clearly, only three out of the four Killing vectors in each group are linearly independent.
For example, if we consider the positive chirality doublet we may identify the two spinors
X ? as the two eigenvectors of o3

osx’ = x* (3.2.27)
osx’ = —x (3.2.28)
If we normalise the spinors such that (Xj_)Jr 7 =%, we get

L}=-I”=%; Li=% Li=-% (3.2.29)

Reduction to a four dimensional problem

The 3-sphere components of the spin connection for the metric (3.2.14) are given by

1
Vi@ = Vi@ ~ 7 a@%(H £ G) (3.2.30)
being V. i@ = = Oaa) + QZC 2 F . Let us calculate the contribution from the F - T' con-

traction

MTyn = 480FM1 MsF() MsTpm =
= Zl§ (e_%(H‘FG)F“”F#,,e

1
=—7¢ 2(H+G)'y ¥ s Tym

abe

pabe _ e—g(H—G)FwﬁW%yaﬁa) Ty = (3.2.31)

where in the last equality we have used the duality relations coming from (3.2.16), the
identity

1 -
Y5V = lifuupa’)/p (3232)
and the fact that the chirality condition implies

V502 = 1011 Y5017 = —ioan. - (3.2.33)
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The a and @ components of (3.2.17) multiplied by respectively ys01I'; and v50,0; take
the form

1 1
Y501(2)(Tag@ Vi) + ef<HiG>ZF“ap(H + Q)+ er @ )y = 0 (3.2.34)

The 4 dimensional components of the spin connection are a function of g,, only and involve

only u components.
We can write

1501 TV, = 1@ 1(03V,) ® 1

= 3.2.35
Y5023V =1®1®1Q (05Va) ( )

Thus, the most general solution can be written as
N = €ab® Xa ® X (3.2.36)

with xq,Xs obeying (3.2.21) with o = a, b respectively. The € spinor is acted on by the v,
and o; matrices and satisfies the equations

s g 1
<1ae—%(ﬂ+">~/sal +57"0u(H + G) + 2M> e=0 (3.2.37)
1
<ibe-%<H-G>fysaQ +57"0u(H = G) = 2M> e=0 (3.2.38)
Vue+ My,e=0 (3.2.39)

Spinors bilinears

We define the set of spinor bilinears

K, = —&ye L, = &ysy.e Y = &yu0i€
fi=1Ec1e  fo =iE0qe (3.2.40)
s = el

Using (3.2.39) one can show that

Vufr= e 2H-OF K (3.2.41)
Vufo = —e THOF K (3.2.42)
VK, =e 2 H¥OF, £ 4 ¢ i H-OF 1 (3.2.43)
1
Vu.L, = o~ 5 (H+G) _ingApY/\p - Fﬂ PY y — FUPYPM} (3.2.44)

From (3.2.43) one can see that K, is a Killing vector for g,, and by Fierz rearrengements

one can show
K-L=0 L[*=-K?=f?4f} (3.2.45)
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The standard ten dimensional Killing vector coming from the sandwich of the spinors is
given by, in ten dimensional covariant tangent space components

k= (KR, fax!ax(X7%), - 1 (xTX)%'5%)
Here  stays for any one of the x’,. We also have, as expected from general observations,
see Section 2.1.3,

K? = K2 ()P (002 + 12 Y (xToax) (o) (R10)? + £ Y (7oa®) (Rloui) =

=(=ff=FB+H+7)M*FE%)?=0 (3.246)
where we have used (3.2.45) and the identity

3
> 085055 = 200505y — 6aplas (3.2.47)

a=1

which implies for every two dimensional spinor ¢ that
S (Cload)(¢Toul) = (¢1¢)?

The Killing spinor equation implies that

8a(x'x) = 0a(X'%) = 0 (3.2.48)
and the vectors ) L,
(0,29 13x,0) , (0,0,e2-95l5y) (3.2.49)
are Killing vectors, corresponding to the SO(4) x SO(4) symmetries of our Ansatz.

The case f; # 0, fo # 0: LLM geometries

Assume that f;o # 0: this is the case that has been considered in [12] and the complete
solution for the metric and five form has been given in Subsection 3.2.1. In [12] it is shown
that .
fr,2 o e3HFC) (3.2.50)

and thus also the vector _ B

(K,0,0) = s+ J(¥'%) + J(x"x) (3.2.51)
obtained as the sum of x and a Killing vector of the SO(4) x SO(4) symmetry, is a Killing
vector for the full metric. This vector is identified with d;, which is possible since

K*=—f2—f2<0 (3.2.52)

The fact that f15 # 0 is thus crucial for all the construction of the 1/2 supersymmetric
solutions in [12]. The Killing vector K corresponds to the generator of shifted dilatation
operator D' = D — J on the CFT side. The non compact U(1) symmetry of the states
which was not made explicit in the Ansatz (3.2.14) is thus correctly recovered as a direct
consequence of the supersymmetry of the solutions.
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The case f; # 0, fo = 0: unphysical solutions

The analysis performed in [12] breaks down in the case one or both of the f;, functions
vanishes. Assuming

L#0  fo=0 (3.2.53)

(the argument is analogous when f; = 0, f> # 0, simply interchanging the two S8 spheres)
In this case, the sum of (3.2.37),(3.2.38) basically implies

e = 0(i.e. no supersymmetry)
or

If we force the analysis to the case e = 0 we get

ds? = ye~C(—dt? + dO2) + ieG (dy? + 6;;dzida?) + ye€dO3 (3.2.54)
. - 1 1

F=dB= ——2-y2e"2G§dy Adt — %dxl A dz? (3.2.55)

F=¢C«, F= ——%yzezGédy Adt — -;-emdan1 A dz? (3.2.56)

Thus one of the spheres shrinks to zero size and the other blows up to infinity.

3.3 LLM plane waves

An interesting class of solutions to the Killing spinor equations which were not considered
in [12] is given by the case
h=f=0 (3.3.1)

which implies that &

=,

k= (K(x'x)(%'%),0,0)

is covariantly constant and we get immediately
OH - K=0G-K=0 (3.3.2)

We can assume ’
| (M (x'x) =1 (3.3.3)

so there is no distinction between K and k.
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Choice of coordinates

We choose a coordinate v such that K = 0,. The most general four dimensional metric
guv Will be of the form

ds® = 2dudv + A(u, z*, 2%)du? + Vi(u, z', 2%)dude’ + hydz'da?
and we can choose the z! cc;ordinates such that V; = 0 and thus
ds® = 2dudv + A(u, 2%, z%)du® + hij(u, z*, 22)dz'de’ - (3.3.4)
The target space index gamma matrices are defined by
Tu = Vo€, (3.3.5)

where we assume /i, v... as target space indices and «, §... as tangent space indices and e®
is the vierbein. We thus have

m

A
T
Yo = V= (3.3.6)
1
=——(13 %
Ve \/5(73 Yo)

First projector on ¢

The gauge choice for the v coordinate implies

K,=1,K,=K;=0 (3.3.7)
and thus . ]
0= K, =—¢elypy_e = —¢f(1 + €. 3.3.8
Yoy 7 (I +7s) (3.3.8)
The operator ; .
! P =2 (1+%7) (3.3.9)

is an hermitian projection operator: PT = P, P? = P and thus eq. (3.3.8) implies
Yowe =0 1ie ~yyE=—¢ ~ ~ (3.3.10)

Let us now study the other consequences of gauge choice we have made. From the first
relation in (3.3.7)

A
1=K, = —6%(-2-7- +y4)e =

1
= —6T’Yo’?/+ = %51—(1 - ’)’0’)/3)5 = \/§ETE (3311)
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ie ele= % The other two equations in (3.3.7) are implied by (3.3.10)

K; = —elyomie = elorinose = ehmonomne = eore = —K;
=
K, =0

Constraints on F' and its contractions

From (3.2.41),(3.2.42) we get

F = F,du A dz?

Thus we have
1 _simeq) ’ l —s@+o)p i
Me = —7¢ 2 FEuy"rysoe = 1€ 2 Fuy'e=0
We take the sum of (3.2.37) and (3.2.38), multiplied by 01, and its adjoint

o1@He = (—ige~2H+G)n, 4 be~3(H=))e
1

EUI@H = —ﬂ—-iae“é(ﬂ'*c)% 4+ be” 2 (H_G))
obtaining .
8/JHfl = ‘;‘E_{’)’“, @HO’]}E,‘ = —ae"%(H'*‘G)LH

and thus
L,=0

This equation implies two new constraints on &

Lo = —e"ygyoyse = elyse = 0
Ls = el ypys3vse = —eTyse = 0

(3.3.12)

(3.3.13)
(3.3.14)
(3.3.15)

(3.3.16)

(3.3.17)
(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

which will be taken into account in the following. The other two components of ¢ = 1,2 of

(3.3.20) are trivially satisfied

L; = —elyovise = €m0 vse = eMmoronse = epovse = —Li

=
L;=0.

From (3.2.44) we get
-;- G RY M + FEYP + Y =0
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As a consequence of (3.3.10) all the components of Y#* vanish apart from the Y which
has to satisfy the constraint .
FiY" =0 (3.3.24)

The latter can be rewritten as )
(ET')’]'U']E:) hW'F, =0 (3.3.25)
Solution for G, H and h

We can now write again the sum of (3.2.37),(3.2.38) multiplied by o, and the difference of
the two, remembering Me = 0

(010H + iae'%(H+G)75)s = be~3(H-C)¢ (3.3.26)
(010G + iae"’%(H'*'G)fys)e = —be~2(H-O)¢ (3.3.27)
Using v, =0, 0H - K = 0,H = 0 we can expand the derivatives into
010He = (Av,0,H + . e“8;H)e (3.3.28)
and analogous for G. e°; is the 2 dimensional vierbein of h;;. Since we have
Y503 = € (3.3.29)
Yoy = —¢€ (3.3.30)
we need
O H=0,G=0 (3.3.31)

One can note, that in the subspace identified by the two projectors (3.3.29),(3.3.30) above
the matrices o171, 0172, ¥5 act as the generators of the SU(2) algebra, and we can call them
respectively &1, 09, 03.

By taking the square (3.3.26),(3.3.27) it is now immediate to get that the functions H
and G must satisfy the conditions ‘

(DH)? — e~ (H+O) — =(H-G) (3.3.32)
(0G)? — e HHO) = e~ (H=0) - (3.3.33)
We now choose coordinates
gl =1l = e3(H+0) (3.3.34)
2 = 2 = g3(H-G) (3.3.35)

z
In these coordinates the equations (3.3.32),(3.3.33) can be written
1 2 11 1 ? 22 1 12 1 2 1 2
(2) v (A ma e () (3] o

Pl=p2=1 p2=0. (3.3.37)

and thus

The metric h is thus flat.
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Second projector on € and its consequences

We can now rewrite (3.3.26),(3.3.27) as

1_ 1. . 1_ 1
FUl + -730'2 -+ 1&;_—1‘0'3 £ = b’f’_2€ (3338)
1 1_ .1 1
;—1-0'1 - ;—2-0'2 + la;’—10'3 E= —b;2-€, (3339)
multiplying by r? we get
(e7%5y + &y + iae™C%F3)e = be (3.3.40)
. (e7%Fy — 5, +1iae™CF3)e = —be (3.3.41)

and taking the sum and the difference of the 2 previous equations we get
(61 +iad3)e =0 (3.3.42)
(Ga —b)e=0. (3.3.43)

Pﬁtting the second equation into the first one we can show that we have non trivial solution
if and only if

b=—a (3.3.44)
Foe = 01706 = be (3.3.45)

As a consequence of (3.3.45), we have
elor1yie = (0, be'e) (3.3.46)

and, using (3.3.25)
0 = (" 006) W' Fyi = (elyj01€) 67 By = beTeFyy
=
Fup =0 (3.3.47)

Moreover, the condition (3.3.21)
elyse = eldze = 0 (3.3.48)

is satisfied again as consequence of (3.3.45).
Summarising, we have a nonzero solution of (3.2.37),(3.2.38) and the constraints coming

from the bilinear equations if

V503€ =€ (3.3.49)
Yoy3E = —€ (3.3.50)
01726 = be (3.3.51)

b= —a (3.3.52)
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Since the 3 operators appearing on the Lh.s. commute and each of them squares to the
identity and is traceless and since each product of one, two or three of them is again
traceless, these conditions select a 1 dimensional subspace of ¢ in the original 8 dimensional

one.

Differential equations

We can now go back to the four dimensional part of the Killing spinor equation, that is

(3.2.39)
Vyuée+ My,e=0

noting again

1 —£ v
M= ”Ze 3<H+G)’}’uuF“ Y5015

Yur = —i'ie,u,upcrp)’pa
F* = €00 F°dazt AN dz¥ = —Fdu A dz?

we can write .
i
Ve — (— —~——3Fu1%7201> Yug =0

. 4 (rt)
Calculating the spin connection and using 7,6 = 0 we get
V€ = 0ue

The p=1v,1,2 components of (3.3.57) simply imply

Oye = 016 = Ohe =0
while the u component con be written as
1 i1

Fuiyeoie = b'é(—rl-)—sFm €

Solutions of the constraints and final expressions

1
0 = 3T

Consistency with (3.3.59) requires
Fup = (r')*u)

and thus : S , : -
Fisy = Mu)du A <(r1)3dr1 AdQ + (r?)3dr? A dQ)

We can solve the differential equation for €
e(u) = eP7 Juo MOty
The full ten dimensional metric is now given by
ds® = 2dudv + A(u,r?,r?)du® + (dr')? + (dr?)? + (r1)2dQ + (r?)2dQ

which is actually flat in the 8 dimensional transverse space.
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(3.3.53)

(3.3.54)

(3.3.55)
(3.3.56)

(3.3.57)

(3.3.58)

(3.3.59)

(3.3.60)

(3.3.61)

(3.3.62)

(3.3.63)

(3.3.64)



Minkowski coordinates
Switching to Minkowski coordinates

ds? = dudv + A <u > @, Z(mi)2> du® + ) (dz*)? (3.3.65)

i=1 1==5

Fisy = Mu)du A (da' A de® Adz® Adz* + dz® Adz® A dz” A dz®) (3.3.66)

i=1

As we will discuss in the next Section, the supersymmetry of the solutions is not sufficient
to guarantee that the Einstein equations are satisfied in this case. One equation has still
to be imposed:

A A= -32)\(u)? (3.3.67)
The complete solutions are the most general half-BPS plane wave which has SO(4) x SO(4)
symmetry. If one of these plane wave solutions could be in the class of solutions studied in
[12] it should have 16 extra Killing spinors whose bilinears f; 2 do not vanish. This means
that the solution must have 32 Killing spinors and it will be the maximally supersymmetric
plane wave of [55].

3.4 Einstein equations and counting of supersymme-
tries

The complex dimension of the subspace of 7 of the solutions to the Killing spinor equation
is given by
4><4x8><—1-><1><l=8 (3.4.1)
2 4 2

The first two terms are dimension of the spaces x%., X% which has to be multiplied by the
dimensionality of the £ space. This is reduced by a factor of % by 10 dimensional chirality
projector, other two factors of 1 come from the two projectors in (3.3.50),(3.3.51) and
finally we have to add a factor of % because of the condition a = —b: we have thus half of
the original 16 complex supersymmetries. Looking carefully at the Appendix of [12] one
can realise that in the LLM case the counting proceeds in exactly the same manner with
the only distinction that the final projector is given by a = b.

As we have outlined in Section 2.1.3, having enough supersymmetries can be sufficient
to assure that the Einstein equations are satisfied. In particular, in type IIB supergravity,
it is necessary and sufficient to have two Killing spinors n, 7’ whose null vector bilinears

k=nTMnoy K =TTk, 0y (3.4.2)

are not proportional and thus have non vanishing scalar product. We have seen in Section
3.2.2 that the bilinear x for generic 7 is given by

k= (KO &%), fax'ax (%), A lxx)x'5%)

4For the dual of states satisfying A = J. The dual of states with A = —J satisfy a = —b
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Each of spinors ¥, x can effectively be in a 4 dimensional space and thus carries tho indices

x=x, x=%xF (3.4.3)
ab==+ ij=12

The generic & has thus four indices. However both in the original LLM construction and
in the derivation of LLM plane waves the indices a and b are not independent. It must be
either a = b or a = —b. Hence, there are effectively three indices which can take two values
each and give the eight independent Killing spinors that we have counted at the beginning
of this Section. Notice that the spinor ¢ is independent of such indices. Referring to the
notation of page 38, let us consider the two independent Killing spinors

n=e®x: ®X: (3.4.4)

-1 =2

/ X+t X
ﬂ=e®xi®(47§i> (3.4.5)

We choose to normalise the spinors x, X to unity. In components, the two corresponding
Killing vectors have the form

k= (K;0,0, f2;0,0, — f1) (3.4.6)
K,/ = (K;0,0,fz; —fl,0,0) (347)

The two Killing vector bilinears are precisely of the required form. They are both null,
and their scalar product is given by

k&' =K+ f2 = —fF (3.4.8)

which is non vanishing in the LLM case.
In the plane wave case, f; = f» = 0, and thus, independently on the choice of spinors
X, X, the vector bilinear has the form

k= (K;0,0,0,0,0,0) (3.4.9)

which means that all the bilinears are proportional to each other, as expected from general
observation on plane waves. This is the reason why in the plane wave case we had to
impose one of the Einstein equations, the 4+ component in the language of Section 2.1.3,
at the end of the analysis.
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Chapter 4

Singularities and Closed Timelike
Curves in LLM Geometries

As we have described, LLM solutions are determined by a single function which obeys an
s¢lliptic equation. In this Chapter we consider the most general allowed (on the supergravity
side) boundary conditions for the elliptic equation. This means that we study the full set
of moduli of this sector of supergravity that consists of metrics asymptotic to AdSs x S°,
with an R x SO(4) x SO(4) isometry group and preserving half of the supersymmetry
~of type IIB string theory. The supergravity solutions in general will be singular. The
spacetime singularities appearing are always naked and fall into two distinct classes: null
and timelike. The null ones can be considered as seeded by a fermion density between
0 and 1 and have been considered in, for example [56, 57, 58, 59, 60, 47] together with
the possible local quantum effects responsible for their resolution: the singularity is due
to an average over configurations of N fermions in a gas with average density less than
one. An individual configuration with the same asymptotics can actually be shown to have
as source a collection of N giant gravitons [51, 43] separated one from the other. In the
supergravity theory, the resolution of the singularity thus appears as a sort of space-time
foam [61, 47] while in the dual CFT one sees that such a configuration corresponds to the
Coulomb branch of the theory.

The AdS/CFT correspondence has maybe something more interesting to tell us about
the fate of the timelike singularities. The solutions with this kind of singularity are highly
“pathological”: they have closed timelike curves passing through any point of the spacetime
and they include unbounded from below negative mass excitations of AdSs x S°.

It has already been conjectured, [62, 63, 64], that geometries with these features should
be considered as truly unphysical via global considerations in the setting of a full quan-
tum theory of gravity. The AdS/CFT correspondence applied to the space-times of [12]
suggests one particular mechanism for the global removal of solutions containing timelike
singularities. The deformations of the geometry which produce these singularities appar-
ently correspond to negative dimension operators in the dual field theory. The unitarity
of the representations of the superalgebra SU(2,2|4) [25, 26] indicate in particular that
unitary operators must have a positive conformal dimension. Our observations indicate
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that there should actually exist a general proof of the chronology protection conjecture
[65] in this sector of supergravity . A first indication of this mechanism linking unitarity
to chronology protection can be found in [66] and in the current context in [67, 68].

Extending these works, we prove here that closed timelike curves (CTCs) are unavoid-
able in any solution with a timelike singularity and that they are excluded in the case
of regular and null singular solutions, these being the spacetimes that can be represented
in terms of dual fermions, a result anticipated but not proven in [67]. This provides a
clear division between these two classes of singular spacetimes which is also reflected in
the two different mechanisms responsible for the resolution of their respective spacetime
singularities.

In Section 4.1 we review in more details the construction of [12] and we show the most
general allowed boundary conditions for a supergravity solution satisfying the symmetry
requirements. We clarify the role of the boundary conditions in determining the radius of
the asymptotic AdSs x S° and we show the relation between the boundary conditions and
the appearance of spacetime singularities.

In Section 4.2 we exhibit some examples of singular supergravity solutions and we
uncover some of their properties such as CTCs and peculiar geometric features. In partic-
ular we exhibit unbounded from below (for fixed AdS radius) negative mass excitations of
AdSE, X 55.

~ In Section 4.3 we show that most of the interesting features of the examples in Section
4.2, regarding mainly the appearance and the properties of CTCs, are generic for the case
of solutions with timelike singularities. Moreover we prove a theorem which clearly relates
the appearance of CTCs to the boundary conditions responsible for timelike singularities.

In Section 4.4 we return to a discussion of the meaning of these results, and in par-
ticular the possibility of proving the chronology protection conjecture for this class of
geometries, by showing that the AdS/CFT correspondence relates naked time machines
to non-unitarity in the CF'T.

This Chapter is mainly based on [16].

4.1 LLM construction: regular and singular solutions

In the first part of this section we review the construction of [12] in a language adapted to
the considerations that follow in the rest of this paper.

In [12] a class of BPS solutions of type IIB supergravity is constructed. This is the most
general class of BPS solutions in type IIB supergravity with SO(4) x SO(4) isometry, one
timelike Killing vector and a non-trivial self-dual 5-form field strength F{sy. The solutions
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are given by

ds? = —h~2(dt + Vidz!)? + h*(dy® + 6;;dz’da’) + ye©dO3 + ye~Cd02 (4.1.1)
Fis) = Fpda* Adz” AdQ + F,da* Adz” AdQ (4.1.2)
F=eC s F (4.1.3)
(4.1.4)
with y > 0.

We can define a function z = z(z;, T3, y) which determines the entire solution (up to choice
of gauge that we discuss below),

1
z = EtanhG (4.1.5)
h=% = 2ycosh G = Y 416
VA= 727) -
o dV' = é *3 dz (4.1.7)
5 F=d(B(dt+V))+dB (4.1.8)
F=d(B(dt+V)) +dB (4.1.9)
1 -
B, = —Zy2e2G B, = ~-}Iy2e-2G (4.1.10)
A 1, 1/2+z =z 14 1/2 -z
dB = 31 % d ( - > dB = 7y s d ( ” (4.1.11)
where *, indicate the Hodge dual in n flat dimensions.
For the consistency of (4.1.7) and (4.1.11) we must have
1
(2 +03)z+ yﬁy(aayz) =0 (4.1.12)

The solutions for z are determined by boundary conditions in the {z1,z2,y} space as we
will now discuss.

4.1.1 Boundary conditions
The solution is well defined for z restricted to the range
-1/2<2<1/2 (4.1.13)

Equation (4.1.12) implies that z takes its maximum and minimum on the boundary of
its domain of definition’ ¥ C R? x R*. A solution of the supergravity equations is thus

1The equation (4.1.12) can be rewritten as

<65+6§+6§-§ y) z=0 (4.1.14)
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specified by a choice of T, and by a function z, defined on % such that

z =2z on 9% (4.1.15)
~1/2< 2 < 1/2

Following [12] one can easily show that if © extends to infinity and z goes to either 1/2 or
—1/2 for r* = 2% + 23 + y* — o0, the solution is asymptotically AdS; x S°. Changing z
into —z is a symmetry of the solution and thus we assume for definiteness

1
Z=3 for r* =} + 2 +4% — 0 (4.1.16)

We call 9%, the intersection of % with the y = 0 plane, and 8% = 4% \ 0Zg. We note
that if z5 # :k::,lz- on 8% then the metric can be analytically continued as far as y = 0 or
z= i%. In general, after analytically continuing the solution, we have a larger “maximal”
domain ¥’ D ¥ where —1 < z < 2.

For convenience we will call again ¥ this mazimal domain of definition. The most
general asymptotically AdSs x S® solution of the supergravity equations is then specified
by the domain ¥ and a function zy on 8T

-—% S 20 S % on 320
2 =+1 on 85 (4.1.17)
20— 3 for r — oo
as illustrated in Figure 1.
We define a new function ®
i_,
o=t (4.1.18)

The equation for z is equivalent to the Laplace equation for ® on a flat six dimensional
space of the form R? x R* where z1,z, are the coordinates on the R? and y is the radius
for spherical coordinate on the R%. Since (4.1.12) and the definition of & are singular for
y = 0, Dirichlet boundary conditions for z on y = 0 take the role of charge sources for ®
located at y = 0. Thus ® satisfies the equation

1 1
(6F + 00)2 + 50,(4°8,2) = xod %6 A = —47*(5 — 20)3 ()x(%o)

o =2 7 ondL

where
1 lf (.’L‘l,iﬂz) & Eg

] (4.1.20)
0 otherwise

X(Xo)(21,22) = {

Assume that @ is an internal stationary point of z, then clearly 0yz(Q) = 0. The equation for z implies
that (8% + 63 + 82) z(Q) = 0, and thus @ cannot be a maximum (nor a minimum).
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a0 /.

%

Figure 4.1: The domain of definition &

The forms B, B and V are defined up to a gauge transformation. From now on we will
use the following convenient gauge for V

4.1.2 Asymptotic behaviour

The boundary conditions (4.1.17) imply that

A A

0] = —
T &g ey

r — 00, A>0. (4.1.22)

Integrating (4.1.19) we obtain
1
A47T3 = / (——- *g dq)) = / (— *g d@) -+ 47T2/ ('— e 20(331,932)> d$1d$2 (4123)
55(r) b 550 \2

where S°(r) is a 5-sphere of radius r centred on the origin, and 35 is the 5-manifold
obtained by the fibration in spherical coordinates of a 3-sphere S*(y) over 0.
Going to polar coordinates R, ¢ in the {1, 2} sections and for R? +9? — oo, V has the
asymptotic behaviour
RQ

In [12] it has been shown that the quantity A determines the radius of the asymptotic
Ad55 x 8%

R% s, = Ris = AY? (4.1.25)
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In the asymptotic region we can construct a smooth five dimensional manifold As by
fibering the three sphere 53 over a surface A,.
The topology of As is asymptotically S°. The flux of the five form through this surface is
given by '
-_—1-/ dB A dd —_.-—1_-./*@—-1_,4—_1_34 (4.1.26)
T 4riid i, PTUI6rNL Jy, O amld T gk Adss -

which agrees with the standard formula for the relation between the radius of AdSs and
the flux of F(5).

The mass of the excitation of AdSs x S° can be computed by looking at subleading
terms in the expansion of ® around r — oo.

4.1.3 Regular solutions and dual picture

If we choose ¥ = R? x Rt the solution can be written as?

1 1 32 / p(z}, zh)d%z’
=--0yP=--= L2 41.27
=3 Y =377 [(z1 = 20)% + (22 — 25)2 + 12]2 ( )
1 z; — =) p(zh, b)) APz’

V;=-——e¢j/ ( - 2“)p( : 2,) — (4.1.28)

™ [(z1 = 24)? + (22 — 25) + 7]

with . '
p(z1,22) = 57 z0(71, 72) (4.1.29)

According to [12], in the dual field theory these excitation of AdSs x S° are described by N
free fermions. The plane y = 0 can be identified with the phase space of the dual fermions
and the function p(z1, z2) can be identified with the semiclassical density of these fermions.

It can be shown that the metric is regular if ¥ = R? x R+ and 2, takes the values +1 /2
on the y = 0 plane [12]. In these cases p is non vanishing just inside the “droplets” where
20 = -1 / 2

(4.1.30)

__JB=1 inside the droplets
p= 0 outside

Since we have assumed that z — 1/2 at infinity, we can always find a circle large enough
to encircle all “droplets”. With these boundary conditions z is given by

1 g2 / d?z’
2 7 Jp [(z1 = 2)? + (22 — 75)2 + y?)2

(4.1.31)

~
~

2Note that ) .
lim Y

LA S )
T g ena)
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D being the union of the droplets where z = —1/2. The V form can be written

/ (z ol Vs 3 (4.1.32)

—21)? + (22 — 75)% + ¢

The determinant of the sections {z1, zs,y} is given by

1/4 — 22

G=h* -V -V}i= " - V2 (4.1.33)

Note that here and in the following V2 is formed by contracting indices using the Kronecker
delta, i.e. V2 = V2 + V2. Theorem 4.3.1 of Section 4 states that for any® D, § > 0 and
the {z1,zs,y} sections do not contain time-like directions. This guarantees in particular
that the original LLM solutions are free of CTCs and are “good” supergravity solutions.

From the analysis of Section 4.1.2, we can deduce that the radius of the asymptotic

AdSs x S° is given by s

RAdS - - = A ' (4134)
where

S= / dzidz, (4.1.35)
is the total area of all droplets where z = —-— (p = 1). The quantisation of the flux (4.1.26)

gives the quantisation condition on the area of the droplets
S =4n’I’N | (4.1.36)

If D consists of one single circular droplet then the spacetime is precisely AdSs x S°. For a
generic set of droplets D the mass (and the angular momentum) of the excitation is given

by ,
M=J=— 1/(332—1— 2)d? 1/d2 2 >0 4.1.37
U emlE |2 Jpo e 21 Jp ) (4137

The origin of the coordinates is chosen such that the dipole vanishes, that is,

/ z;d%z = 0. (4.1.38)
D

Not surprisingly one can show by a direct calculation that the equality (M = J = 0) holds
for a single disk. Given any D we can build a disk Cp of the same area. The first term is
clearly larger for D than for Cp and thus in general M > 0 for the non-singular solutions.

3Even extended to infinity, that is relaxing the hypotheses z — 1/2 for » — oo and allowing more
general asymptotics than AdSs x S°
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4.1.4 More general boundary conditions and singularities

In all cases with boundary conditions different from the ones studied in [12] we have
spacetime singularities.

It is easy to see that the solutions have a naked time-like singularity when 85 is non-
empty. Consider a surface in the region y > 0 on which z = —1/2 (the discussion does
not change in any substantial way if instead we took z = 1/ 2). Choose a point @ on
this surface and define a coordinate € in the {z;,zs,y} space orthogonal to this surface
such that 2 = —1/2 4 ae for some positive constant o. Complete € to a new orthogonal
coordinate system by introducing two coordinates v; with origin at Q. This is just an
orthogonal transformation and translation of the original coordinate system. At Q we can
assume that V is finite with a power series expansion away from this point. The subleading
terms in this expansion are not important for studying the singularity. We also define a
new time coordinate near Q by T' = ¢t + V;(Q)z;. Keeping just the leading divergences and
introducing p = («e)®/* the metric expanded around Q is

ds® = ap™?/3(—dT? + dO2) + ;—g—dpz + 3 (do? 4 d02). (4.1.39)

A short calculation then shows that the metric is singular with scalar curvature as p—0

)
R=-1os (4.1.40)

and the singularity is clearly time-like with no horizon.

Singularities are located also on the subset of 9%, where z = £3. L. All these singularities
are naked and null.

Indeed assuming that 1/4 —2* — o? as y — 0 and looking at the {t, y} sections we find

ds®> = —alydt* + aydy. (4.1.41)
With the change of variables, u = \/y/ae™? v = /y/ae!/?, the metric becomes simply
ds® = dudv (4.1.42)

and the singularity is along the curves, v = 0 and v = 0. The singularity is due to the way
in which the radii of the two three spheres, S° and 5% go to zero [56].

4.2 Singular sblﬁtions: some examples

Interpreting p = 1/2~ 2 as the density of the dual fermions, one first natural generalisation
of the boundary conditions in [12] is to have density p # 1. We note that for generic
p(z1, T3), the radius of the asymptotic AdSs x S° is given by

1
Rbus = = / plz1, 2)d% (4.2.1)
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*2

p<0
X1

Figure 4.2: Two regions of y = 0 plane, one with p > 1 and the other with p < 0, leading
to a non trivial 8% attached to the y = 0 plane

We have that 0 < p <1 (that is —1/2 < z5 < 1/2), if and only if 8% = 0. In this case all
the singularities will be null.
The mass of the excitation is now given by

1 1 1 2
=3 R [%/P($1,$2)($§+x§)d2x~ (g/p(xl,mz)d2x> j} (4.2.2)

with origin chosen again in such a way that the dipole vanishes

/ p(z1, zo)z:d*z = 0. (4.2.3)
D

We note that for fixed value of R44¢ there is a lower bound on the mass obtained for
P= wR4Ad55(2)(:c1, Ty),
RS
_ ftags
32728,

A priori we can consider also p(z1,z2) < 0 in some domains provided that the integral
defining R ;5 remains positive. One can easily see that the cases p > 1 and p < 0
correspond to choosing a % not empty and attached to the y = 0 plane, as in Figure 2.
Taking p negative in some region we can easily obtain arbitrary large negative value of the
mass for fixed Ruqg. It’s enough to have p < 0 even in a very small region provided it is
located at large 12 +z2. In the next subsections we will restrict to the case p > 0, studying
some examples with features that will serve as a guide for the general analysis of Section
4.

Moo, = (4.2.4)
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The appearance of CTCs, which we will show to be unavoidable in Section 4, and
unbounded from below negative mass values suggest that one should consider as unphysical
the geometries seeded by a density p that does not remain between 0 and 1. For the
sake of causality and for the stability of the quantum version of the supergravity theory,
these solutions should be regarded as unphysical on the basis of some global argument.
If the singularity was resolved by quantum effects through some local mechanism and
“smoothed”, then the asymptotics and mass could not change significantly; moreover, we
know that the existence of CTCs is a manifestation of global properties of the spacetime.
Before discussing the possibility of such a resolution we will study these singular geometries
in more detail.

For simplicity, we will first study the case of piecewise constant p. Assuming p =
>: Bix(D;) the z function can be written as

_ 3 -,!i% . d2$'
R e e EAEEE 425)

The solution seeded by these density distributions can have null singularities or naked
time machines. Solutions with null singularities are already discussed in the literature in
various places [56, 57, 58, 59, 60] although we have some additional interesting observations
to make. These issues will be discussed in section 3.1. In section 3.2 and 3.3 we will
discuss the general features of configurations with naked timelike singularities, in particular
illustrating a novel geometric mechanism for producing CTCs. In Section 3.4 we study the
specific case of the geometry seeded by a circular droplet of density 8 > 1.

In Section 4.2.5 we discuss a class of solutions which does not have a density distribution
p(z1,22) in the y = 0 plane as source, but rather appears as a natural continuation of the
solutions studied in 4.2.4. These solutions are indeed determined by a 8% which does not
intersect the y = 0 plane. They exhibit CTCs and their mass is unbounded from below.
Any possible direct connection to the free fermion picture is lost.

4.2.1 f; <1 with at least one ; < 1

This case was already briefly considered in [12]. These geometries have null singularities
located on the y = 0 plane inside the droplets. We will show in Section 4.3.3 that also
these geometries are free of CTCs.
- It is straightforward to show that if §; < 1 the mass given by (4.2.2) is always nonnega-
tive. These configurations can be viewed as an averaged version of a dilute gas of fermions.
In this case one can think that the singularity is resolved by local quantum effects by the
appearance of a “spacetime foam” [61] and in the dual theory by simply moving to the
Coulomb branch of the moduli space.

Geometries corresponding to a single circular droplet of density 8 < 1 are precisely the
solutions considered in [56).

In the limit that the radius goes to infinity, this describes the N — oo limit of the
Coulomb branch in the dual gauge theory, as amply discussed in [12]. The corresponding
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classical geometry is singular but is regularised as above by the dilute Fermi gas, or in
geometric language, a dilute gas of giant gravitons, the geometry of which is clearly smooth.

This solution leads one to an interesting relation between a limit of the dual SCFT and
the singular homogeneous plane wave metrics that arise generically as the Penrose limit of
“reasonable” space-time singularities [69].

For simplicity one can actually consider the boundary condition p = 8 < 1 for all
(z1, 7). Consider a null geodesic that ends on the “null” singularity and take the Penrose
Limit with respect to this null geodesic.

In such a case it is easy to see that the resulting metric is exactly,

6
d 2
ds? = 2dudv + (3(z? + z3) — wa)—s; + dz? + du?. (4.2.6)

i=1

In principle this provides a SYM dual description of the singular plane waves as a limit
(analogous to the BMN [70] limit of AdS/CFT) of the N — oo Coulomb branch in the
orlgmal dual CFT.

422 Some §; > 1

Thls boundary condition is equivalent to lifting the surface z = —1/2 above the {z1, xz}
plane keeping its boundary fixed at y = 0. The continuation of z inside this surface to
y-= 0 will give a non-trivial function everywhere less than —1/2. This is the first example
of the non-empty 8% introduced in Section 2.

The emerging geometries have timelike singularities on 8% and CTCs. They include
also negative (but bounded from below) mass excitations of AdSs x S°, as anticipated at
the beginning of this section.

In the next subsections we will focus on the {z1,zs,y} sections. They contam almost
all of the interesting features.

4.2.3 Zooming

We consider the leading term of the expansion of z and V for points close to y = 0 and
the boundary of one droplet of constant density 8 > 1. More precisely, with L the typical
dimension of the droplet and R the radius of curvature of the boundary, we assume that
y and the distance to the boundary are both much smaller than L and R*. The leadmg
term can be obtained solving the equations for z with boundary condition

plzy, z2) = {ﬁ 22 <0 (4.2.7)

0 , $2>0

The case 3 = 1 has already been considered in [12] and corresponds to the maximally
supersymmetric plane wave [55]. We note here that only in the case of 8 = 1 the “zooming”

4For a calculation of the subleading terms in such an expansion, see [71].
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Figure 4.3: Zoom showing light cone near a droplet with £; > 1 on the {z1, T2} plane at
y=0.

limit that we are considering here coincides with the Penrose limit. Indeed the BFHP plane
wave is the only plane wave geometry that can be obtained via the LLM construction and
its generalisation with the most general boundary conditions on z considered in previously.
All (generalised) LLM metrics, have 16 Killing spinors ¢ whose bilinears YT M) are null
Killing vectors® but not covariantly constant (c.c.). Any plane wave has 16 Killing spinors
with c.c. Killing vector bilinear, and the only one which has 16 extra Killing spinors is the
maximally supersymmetric one. The details of the proof can be found in the Appendix.
For generic § we have

R VN S

z= §m+§(l_ﬁ) =3 cosf + 2(1 ,8) (428)

Vi = B =£ Vo=0 (4.2.9)
2¢/1¢+y2 2R

The plane cosf = % is A% and the domain T is defined by

A -9
1> cosf > p-2 (4.2.10)
154
The vector 0,, is a Killing vector and
1 B
g1 = ———=| (1 =08)(1 —cosb) ) <0 (4.2.11)
yv/p(1—p) \2

®As all such bilinears in type IIB solutions [21]



so that it is timelike. The limit y — 0, cos8 — 1 is finite and gives

1
1- —— 2.
gu—(1-5) 52:82 (4.2.12)
In the same limit, we have
g2 = h* — VB (4.2.13)
2.’172

In a neighbourhood of 8D, the {z;, .} plane is thus a Lorentz submanifold. We note that
the opening of the lightcone is given by

dzo [ 91
tan¢p = — ==+, /-~ ==+ -1 4.2.14
¢ dz; 922 (6-1) ( )

From this analysis it is straightforward to conclude that if we have a droplet D with
Bp > 1 of smooth boundary 8D, provided we stay close enough to the y = 0 plane and to
8D we have CTCs going around D (Figure 3). Since these geometries have no horizon a
CTC passes through any point of the spacetime.

4.2.4 The disk

Tt*is possible to perform a detailed analysis of the geometry seeded by one single circular
droplet of constant density 8 > 1. The analysis is interesting because it displays some
generic features of the timelike singular geometries and it is useful for introducing the
more general timelike singularities which we will study in the next section.

We assume that the radius of the droplet is Ry. The radius of the asymptotic AdSs x S°
is thus given by

1
Rius =+ [ o= % (4.2.15)

These geometries have already been studied in [67] where it is shown that they can be
viewed as a generalisation of the superstar studied in [56]. The superstar geometries are
parameterised by a charge @ and a scale parameter L, which are related to our B and Ry
in the following way.

1

T 1+ QI Ry=IL*L*+Q) = Rass =1L (4.2.16)

s

For fixed value of L we have
~L’<Q<0=p>1 (4.2.17)

Q = — L2 corresponds to p = 7L*6® (21, 75). We will discuss the continuation to @ < —L?
in the next section.
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R6=0

Figure 4.4: Singularity and velocity of light surface for a disk with 8 > 1.

Following the analysis in Section 4.2.3 we expect to find CTCs in these geometries.
Going to polar coordinates R, ¢ in the 1, z, plane we have

2_ P2 .2

— 1
2=8 Rty +=(1-0) (4.2.18)

2/(R2+ R+ 422 — 4R2RZ 2
V = V,de (4.2.19)

Rz 2 2
v,=2(1- Lty (4.2.20)
2 V/(R? + RZ + y2)? — 4R?R2
The equation for the 83 is given by z = —1
—92 \? B2
Rz+< -RDL) —Rir—— =0 4.2.21

YTReEmT) TRIEo) 422

Thus the geometry is defined in the y > 0 halfspace, outside a sphere of radius %Ro

with centre at R =0and y = 25;7_?_—1&. In particular it crosses the y axis at y = Rgy/B — 1.
~ The square of the Killing vector 8, is

Jopo = —h7?V2 + R?R? (4.2.22)
and we have |
y2 R2 )
9¢¢20<=>ﬂ_1+—ﬂ——R0_>_0. (4.2.23)

The surface on which gy, = 0 is known as the velocity of light surface (VLS).
From this analysis, three main features follow (see Figure 4). We will show in Section
4.3.1 that they are generic for geometries seeded by boundary conditions such that 83 # (.

1. The VLS touches the singularity where® V2 = 0. If the VLS did not touch the
singularity we would have CTCs which are contractible to a point remaining timelike.
At such a point the local orientability of spacetime would be lost - possibly indicating
also a change in the signature of spacetime to two time-like directions. The fact that

®Note that V2 = R~2V2 and V,, = O(R?) as R — 0
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the VLS touches the singularity at a point, in such a way that there is no loss of time
orientability should be guaranteed, but we know of no general theorem that proves
this.

2. The opening of the lightcone in the {R, ¢, y} sections inside the ellipsoid is given by

2

_ Y 2 2
tanfd = mv‘p —R (4224)
This means that provided we stay close enough to the singularity at z = —%‘ and that

we go “around” it in the direction indicated by 0, we have CTCs.

3. All generalised LLM geometries are without horizon and thus a CTC passes through
any point of the spacetime.

Following (4.2.2) we can calculate the mass of these excitations over AdSs x S° as

3 1 |1/ 1,5, 1/12 _ (BR3?1

M= e [n / pale+ ) <7r 3 = gy — Y 2%

Thus for 8 > 1 a circular droplet seeds a negative mass excitation. For fixed value of
2

R%,s = BR2, the minimum mass is given by Mmin = %%T),; 3];’:3; and corresponds

to 8 = 0o, @ = —L?. As expected from the general con51derat10ns at the beginning of this

Section, this corresponds to p = TR 4 250® (21, 25). In this case the surface z = —1/2is a

sphere of radius Rags, tangent to the {z1, 22} plane and centred on (R,y) = (0, 2RAdS)
The VLS is determined by the saturation of the inequality,

gpp >0 = 3>+ R* > R} 4. (4.2.26)

4.2.5 Lifting the sphere

In the previous subsection we have considered geometries seeded by a spherical 9% in-
tersecting or tangent to the {z;,z,} plane. One could ask which geometries correspond
to a spherical 0% not touching the {z1, 22} plane. In this subsection we will answer this
question. As in the case of the circle of density § > 1, these highly symmetric geometries
illustrate some features that will be shown to be generic for any solution seeded by a %
not attached to the {z1,z2} plane in Section 4.3.2.

The functions

R — R2 4y 1
a=b Y +=(1-8) (4.2.27)
2./(R2+ R2 +y?)? —4R?R, 2
v.oB(i_ R+ R +y (4.2.28)
72 V(R*+ R + 122 — 4R’R}
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determine an asymptotically AdS; x S° provided BR3 > 0. Since R2 (and not Ry) appears
in these functions we can analytically continue to 8 < 0 and R% < 0. Recalling that

1

this corresponds to Q < —L2.
We define for convenience
Ry =+/—R2 (4.2.30)
and rewrite z and V as
2 D2 2
z=.§. Mty +%(1—ﬁ) (4.2.31)
V(B2 + 42 — B2 + 4R2 2
2 2 _ D2
v, =§ 1- Rty —f (4.2.32)

\/ (R? + y2 — R2)? + 4R2RR2

This choice for z corresponds to choosing 85 to be a sphere of radius 5\;1—%15{0 with centre
at R=0,y = %Ro, 0% coincides with the {z;,z,} plane and

1 onox,
=<2 . 4.2.33
%0 {——-;- on 0% ( )

The expressions (4.2.31),(4.2.32) are the analytic continuation of the solution for z and V
with these constraints. Clearly this continuation cannot be regular everywhere inside the
sphere and we expect to find a charge somewhere. Looking at the leading order expansion

of @ for (R,y) = (R, Ry +¢) — (0, Ro)

12—z o G 1

¥ T 2R VRt e
~B (e

Yem3 (1 NG +e2> (423

we can identify the charge and assume that @ satisfies the equation

s d %g A = B 6(y — Ry) 6@(R) (4.2.36)
: 2R,

®

(4.2.34)

We will briefly show in Section 4.3.2 that whenever a subset of 8% is not attached to the
{1, 72} plane then we expect ® to satisfy a similar equation.
Integrating over the five-sphere at infinity we find that

A= —PR}=pBR2 =" (4.2.37)
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Figure 4.5: “Medusa” diagram: singularity, velocity of light surface and cylinder connecting
the singularity (6‘2) to the y = 0 plane, for the lifted sphere.

and so as expected Rags = L.

‘We have
2 2

Opp = 0 <= yﬁ+%—R2>O (4.2.38)

As happened in the case —L? < Q < 0 also here the velocity of light surface touches the

singularity, precisely at R = 0 and y = Rov/T—= As already mentioned in that case

we expect this to be a general feature of geometrles with CTCs and we will show this in

Section 4.3.2. A more precise way to state this situation is to say that inside the VLS the
lightlike direction has a non-trivial 7.

On the segment of the y axis, between the y = 0 plane and the lower intersection with

the singularity at y = \/—‘B we have

g(,p(p = —RAdS (4239)

\/R2 (1-5

Thus, the segment is actually a cylinder and so again there are no CTCs which are con-
tractible to a point while remaining timelike as shown in Figure 5.

Looking at the next to leading order expansion of the metric for R? 4+ y? — oo we can
derive the mass of these excitations of AdS® x S°

_ (BRY)?
o o32n2g (/6 )

(4.2.40)

which is clearly negative and, for fixed Raqs, tends to minus infinity for § — 07.
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4.3 Singular solutions: generic properties

In this section we will prove the following

Theorem 4.3.1. Geometries of the type studied in Section 2 have closed timelike curves
if and only if 85 5 0

In particular standard LLM geometries are free of CTCs as well as all geometries seeded
by boundary conditions such that 8% = § and

L ,
3~ 20(T1,22) = p(z1,22) 0<p<1 (4.3.1)
On the other hand, whenever p > 1 or p < 0, (and thus 8% 0), we have CTCs in the

spacetime.

We will divide the proof into the 2 subsections 4.1 and 4.3. In subsection 4.2 we will
comment on the generic (Lorentz) topology of the solutions and show that some of the
interesting features of the examples in Sections 4.2.4 and 4.2.5 are indeed quite general.

4.3.1 Sufficient condition for CTCs

It’s easy to show that when 85 s () we have CTCs.
Looking at the asymptotic expansion for large values of 22 + 22 + y2 in Section 4.1.2, we
can see that the vector field

(V101 + V202) (4.3.2)

1
By = —e
VR VR

has closed”, almost circular orbits at infinity. We can shift V by a constant amount such
that V = 0 at a point P € 8% with & y2(P) ;é 0 and the orbits of 9y are closed around P.

Let’s assume for definiteness that z(P) = —2. In a neighbourhood of P we have
1
2(x1,T9,Y) = 5t 0z (4.3.3)
Vi(z1, 72, y) = 6V, (4.3.4)
where 0z and 6V are linear in the co-ordinates (z; —z(P), 75 — z(P), y—y(P)). The metric

1/42)

of the sections {1, 2y, y} is (recalling that h* = 2=

R —h72V2 RV, 0
G=| -2V R2—h2V2 0 |~
' 0 0 h?
z=y(PPoVE  y(P)*6VidVa 0

N ————e= | y(P)?6Vi6Va bz —y(P)%VE 0
y(P)Vbz 0 0 i 0z

(4.3.5)

- TThis is due to the gauge choice &, Vi -+ §2Va = 0
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VLS

Figure 4.6: 85 and the VLS touching at V2 = 0.

The vectors

By
1
0y = —=(-V20, + V10 .3.
VIZ—I-VZZ( 201 + V10,) (4.3.6)
81/

are eigenvectors of § with eigenvalues respectively

1
B2 — B 2(V2+ VA, B2, B2 & ———=(62 — y(P)*6V?, 6z, 62 4.3.7

Thus for
6z —y(P)*6V*? <0 (4.3.8)

the sections are timelike. This equation also shows that the velocity of light surface always
touches the singularity where V = 0, as shown in Figure 6.
- The opening of the lightcone is given by
P 2
tanf = h (V2 + V) - 1= y<—52-5v2 -1 (4.3.9)
z
Thus any closed curve going around P in the sense indicated by 0y is a CTC provided
that we stay close enough to P and 8% (on which we recall ¢z = 0 by definition). Since
the CTCs are not hidden by a horizon, also in this general case a CTC passes through any
point of the spacetime.

4.3.2 (Lorentz) topology

(3

In the case discussed in Section 4.2.5 we have z; = % on the entire {z1, 2o} plane and z = —
on a sphere centred on the y axis. The appearance of contractible CTCs is excluded by a
detailed analysis of the structure of the metric. The Lorentz topology is thus nontrivial,
as one could expect in order to preserve the regularity of the local structure of spacetime.
The same analysis shows that the topology of the {z;, 72, y} sections is still R? x R*, even
if at first sight one would say that a sphere has been removed. This is essentially due to
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- the non vanishing of V,, along the y axis in the segment between the y = 0 plane and the
sphere.

Assume we have a connected subset of 85 which is not attached to the {z, 22} plane.
We can analytically continue z (and thus @) to the |z| > 3 side of 83%.. We will necessarily
encounter some pole singularity in the equation for @, as ¢ sources centred on some point
@. In a neighbourhood of such a point (%, o) we have to leading order

1
z = oyl 4.3.10
yo, (y—yo) + R? : ( )

Y—%
VaVde Vomoy|l- (4.3.11)
v (y — y0)? + R?
where R, ¢ are polar coordinates in z1,z2 centred on . By continuity, we can argue that
in a neighbourhood of this @, for y < yo, the vector V;§; is circulating around a line £ on
which it doesn’t vanish. Going locally to polar coordinates centred on the intersection of
this line with a constant y plane, we have that

Gpo = —h 2V} + Rh? (4.3.12)

is non vanishing at R = 0 and thus the line £ is topologically a cylinder. As in section 3.5,
the shape of the space-time around such a point @ is similar to the “Medusa” diagram of
Figure 5. We expect that several disconnected components of 85 may give rise to more
complicated geometrical structures.

4.3.3 Necessary condition for CTCs

In this Section we will show that if 8% = 0, then there are no CTCs. Looking at the metric
(4.1.1) it is clear that if the determinant § of the spatial section {z, 7y, y} is positive, then
there cannot be CTCs. We recall from Section 2 that

p(zy, z5)d%x
2(z1, 20, y) = = — ——/ (4.3.13
@ 2P + (o2 — ey 7 4 )

(mj )p(xl,zz)dQ !
Vi = —Z¢; 4.3.14
w“/[<x1—ml>2+<x2—x2>2+y]2 (43.14)
(4.3.15)

and the determinant of the three dimensional sections
1/4 — 22
G=ht—v2=Mi—F 2 S

1 p(ay, o) d*z ¥ p(ah, o) d’z ?
oo / (21— 24)? + (z2 — 2p)? + 42 7 </ [(z1 = 27)? + (22 — 24)% + y2]2> i
L ([ - Y

2.7 () el Fp) 4319
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Any possible geometry seeded by a function p(z1, ) with 0 < p < 1 can be approximated
as well as desired by a piecewise constant p such that p = 0,1. So it is enough to prove
that the determinant is positive for standard LLM geometries defined by droplets of density
p=1 :

We will prove that, given any possible distribution of droplets D and any point P =
(z1(P),z2(P),y), there is a halfplane II distribution for which 2(P) is the same as for
the original distribution and V(P)? is larger. In this way the determinant §(P)p for the
halfplane distribution is smaller than the original determinant gp . As noted already in
[12] a halfplane distribution corresponds to the maximally supersymmetric plane wave and
for this metric the determinant always satisfies the relation

_1/4-2

T Vi=0 (4.3.17)

gu
So we have gp > g = 0.
We first make some assumptions in order to simplify the proof. Given the point P =
(z1(P), z2(P), y) we move the origin of the {1, z} plane to (z1(P), zo(P)). We then define
a 2-vector V such that V? = V?

- 1 .
Vi DI(P =-/ L Pz 4.3.18
VE+VE=VE+ VY (4.3.19)

where D is the union of all the droplets. We also have

) P
Z’D(P) = = - A'DZ = 5 - dz.’L‘ (4320)

yf/ 1
™ Jp (3 + 23 +y?)°

We identify the direction of V with the z, axis. Let us assume that the droplets are all

contained in the strip
Lmin S ") S Tmax (4321)

where one or even both of i, and ZTmay can also be infinite. A distribution corresponding
to the (half)plane I, defined by zy > Ty will give us

2 (P) < 2p(P) (4.3.22)
since D C Tl
The equality holds just in the case that the original distribution is already a halfplane®.
In all the other cases, we take a halfplane II defined by
To > T (4.3.23)

with > T, such that
2n(P) = zp(P) (4.3.24)
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Figure 4.7: Changing D into II

We note that for a generic domain D we have the following relation between Apz and

T,[D](P) .
TA[D](P) = ;;’" (22)p

() __l/ zod%z <1/ d’z >_1
VP m o (@ 2+ ) \T o (@ + 2k + 7).
= /962 pp(T2)dzs
o (m ) _ 1/ . d.’El (l/ diL’ldng )——1
P o (@ 5 + 92’ \T Jp (2 + 2+ 2)
/ ,U/D(LL'Q)dCCQ =1

Thus pp(z2) acts as a normalised weight function.

with

From the definition of pup(zy) and from the fact that, by definition of II

A'DZ = AHZ

l.e.

1 1 1 1

—/ 2 zd’z = _/ ;&

™ Jp (2f + 23 +y?) ™ Jn (2 + 23 +?)
one can easily see that

pr(ze) > pp(ze) , z 2>z
#H(m2) =0 , zm<z

(4.3.25)

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)
(4.3.32)

80r a completely filled plane, which we neglect since it is trivial: the solution is empty Minkowski space
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‘We have

(To)n = 2+ (T2 — 2))m =
=z +/,un(:cz)(x2 —z)dze > +/ up(ze)(zy — z)dze > (zo)p (4.3.33)

2>T

The last inequality holds because

(@aho =+ [ no(es)(os - 2)doa =
= a:+/ § up(ze)(z2 — z)dzo —|~/ ) pp(z2)(ze — z)dze (4.3.34)

and the last term is clearly negative.
Recalling (4.3.25) and (4.3.29) we conclude

Va[I)(P) > VA[D](P) (4.3.35)

and thus we have
1/4 — zn(P)?
Y4~ z:(P)

— V2
D yg

-VE=0 (4.3.36)

The case y =0

In the proof we have implicitly assumed y > 0. In the limit y — 0 one can argue, by
continuity
gp >0 (4.3.37)

With a bit of effort, we can prove that the equality holds only for the halfplane.
Instead of choosing z in order to fix z(P) we decide to fix

_ 2
lim —————1/4 i

lim == (P) (4.3.38)

which is finite since by hypotheses z — +1 and is even in y. Recalling that

2 d? 1 PeD
lim £ / T = _ (4.3.39)
v=0 7 Jp (22 + 23 + ¢?) 0 PeD
we have .
1 1 T
1/4 — 22 iz = 3 Jp (m§+zg)§ PeD (4.3.40)
— .O.
v ~plor— L foigy PeED
(a3+=3
Noting that Vp = —Vjs, in both cases we can use the same argument as for y # 0 provided

that we change D into D when P € D. Thus § > 0 and again the equality holds only for
the halfplane.
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4.4 Supergravity singularities and dual field theories

There already exist in the literature on AdS/CFT duality, some indications that geometries
with naked time machines are related to non-physical phenomenon in the dual gauge theory.
The dual picture should provide a field theory interpretation for the quantum mechanism
at work in the resolution of these pathologies, possibly through a careful treatment of
unitarity. :

In particular, the overrotating solutions of [66] are exactly of this type and as already
noted in that paper, and further elucidated in [72, 73], the operator in the corresponding
D-brane configuration that takes an underrotating geometry to an overrotating one is non-
unitary.

In that case it was first noticed [72] that the overrotating geometries have a VLS that
repulses all geodesics that approach from the outside, and thus the region of CTCs is
effectively removed from the space-time. It was then noticed in a series of works on the
enhancon mechanism that incorporating extra charge sources one can remove the causality
violating region[74]. A similar idea is developed for example also in [75]. Our naked time
machines do not have a repulsive VLS and as a consequence this method for removing the
singularity cannot be applied here.

That some form of chronology protection mechanism should however be present has
been conjectured in [67]. In this paper the rotationally symmetric singular configurations
that we have studied in Section 4.2.4 are noted to not have a description in terms of the
dual free fermion picture as they violate the Pauli exclusion principle.

In general relativity and in supergravity there are of course many geometries that
contain CTCs and naked singularities. Is it possible that a similar principle could also
rule out those geometries? In particular is it possible that these geometries are in general
related to non-unitarity in the dual gauge theories? The violation of the Pauli exclusion
principle suggests that our naked time machines may more generally be related to some
non-unitary behaviour in the dual gauge theory®.

The conformal dimension A of an operator in the CFT dual to an asymptotically
AdSs x S° geometry is equal to the mass or angular momentum (M = J as a consequence
of the BPS condition) of the configuration. For a solution seeded by a density distribution

p
A T 8ng [W/PQ(M'HSZ) <.7r/’0§> } (4.4.1)

As noted in Section 3.4, for a density which is § inside a disk, we have

_ _ BRELCIS 1
M=A= 3%%(5 1) (4.4.2)

From the CFT point of view a configuration with @ 2 1 can be seen as a “small” deforma-
tion of a configuration with 8 = 1 and slightly larger radius. Equation (4.4.2) shows that

9For a recent and somewhat different perspective on the relationship between unitarity and CTCs, see
[76].
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this deformation corresponds to an operator with negative conformal dimension.

In general we expect, even though we cannot prove it directly, that configurations with p
not between 0 and 1 correspond to deformations of the CFT by negative conformal dimen-
sion operators. As seen in Section 3.5, solutions with more general boundary conditions
can still be interpreted as continuous deformations of solutions seeded by density distribu-
tions and a similar argument should also relate them to operators of negative conformal
dimension.

In a series of papers [25, 26] all unitary irreducible representations of the relevant
superconformal algebra, su(2, 2|N), are found and in particular unitarity requires that they
have positive conformal dimension. The “unphysical” geometries that we have studied in
this paper then apparently correspond to deformations by non-unitary operators (with
negative conformal dimension) in the dual CFT. This observation together with the
observed violation of the Pauli exclusion principle provides strong evidence for the existence
of a theorem, for 1/2 BPS configurations in IIB supergravity, relating the chronology
protection conjecture to unitarity in the dual CFT.
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Chapter 5
1/8 BPS States in AdS/CFT

It is natural to ask how the above very precise correspondence between geometry on the one
hand, and features of the quantum mechanical states of the reduced gauge theory on the
other, extends to cases with less supersymmetry. There have been various attempts in this
direction: for example, in [77] one quarter BPS geometries were found by assuming a non
trivial axion-dilaton. This corresponds to putting smeared D7 branes in the background
and thus to adding flavour to the gauge theory. A description of one eighth and one
quarter BPS geometries in the language of five dimensional gauged supergravity has been
given in [78]. The construction of a class of one quarter BPS solutions directly in type
IIB appeared in [79, 80] and an interesting further generalisation was presented in [81]
Another interesting related work is presented in [82]. This problem was also approached in
the probe approximation, where the backreaction on the geometry is neglected: D3 branes
can wrap more complex three dimensional surfaces in S° and give rise to giant gravitons
with fewer supersymmetries [83]. In [84] the authors have been able to count such states.
The quantisation of their classical phase space has been performed in [85]. Other works
that present interesting connection with ours can be found in [86, 87, 88].

In this Chapter we address the problem of finding BPS supergravity solutions which
represent the fully backreacted geometry of a class of 1/8 BPS giant gravitons. Our
solutions correspond to gauge theory states associated to linear combinations of composite

operators
O(q,r) =Tr(ZHTe(ZHTe(ZE) + - -- . (5.0.1)

where Z, Z; and Z3 are the three complex scalars of the A = 4 CFT as in Section 2.2.3.
The dots signify other terms with suitable (anti)-symmetrisation and trace structures,
which have all a total of ¢ Z; and Z, fields and r Z5 fields. They are chosen such that
O(q, ) are chiral primary operators which are invariant under the S U(2), subgroup of the
SU(2)r x SU(2)r acting on Z1, Z,. We consider linear combinations of O(g, r) which have
all the same value of ¢ but may have different values of 7.

The lowest mode O(g,r) in the expansion on spherical harmonics on $® saturates the BPS

bound:
A=2q+r, (5.0.2)
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where A is the conformal dimension of the operator. The total amount of bosonic symme-
try preserved by the corresponding states is thus given by SO(4)kx x SU(2)L x U(1)g.
Consequently, we start from an Ansatz for the metric and the self-dual RR 5-form which
preserves this amount of symmetry. This implies, as for LLM, that the resulting background
will depend non-trivially on three coordinates (an additional symmetry will be associated
to the time coordinate, like in LLM). We also require that the background possesses the
required amount of supersymmetry by demanding that it possesses a Killing spinor. Ap-
plying techniques similar to those in [12, 89, 90, 91, 92, 93] we have been able to express
the full solution in terms of four independent functions defined on a three dimensional
half-space. As a result of certain Bianchi identities and integrability conditions, these four
functions have to satisfy a system of nonlinear, coupled, elliptic differential equations. A
unique solution to these equations is obtained once a set of boundary conditions at infinity
and on the boundary plane is specified; boundary conditions should be chosen in such a
way as to give non-singular geometries with AdSs x S° asymptotics.

" We present here the boundary conditions that give rise to asymptotically non-singular
AdSs x 5% geometries. We solve the equations asymptotically up to third order in a large
radius expansion. From this analysis we can extract the two dimensionless charges ¢) and
J carried by the solution. These are the charges corresponding to two out of the three
U(1) Cartan gauge fields arising from the KK reduction of IIB supergravity on S5 to five
dimensional maximal gauged supergravity. These charges in turn correspond to the g and
rcharges of the gauge theory side. Moreover, we verify that our solutions saturate the
expected BPS bound: ,

TLa4s
M= 4G5

Unfortunately, a more exhaustive analysis of such boundary conditions is quite difficult
due to the complexity (non linearity) of the differential equations. In other words we do
not know which of the boundary conditions give rise to globally non-singular backgrounds.
We will comment on this issue in the conclusions. This chapter is organised as follows: the
conventions and notations are the same used toughout the whole Thesis and reported in the
Appendix A; in Section 5.1 we present the gauge theory description of the 1/8 BPS states
that we wish to study. In Section 5.2 we show how the 1/8 supersymmetry constrains the
components of the metric and 5-form and we reduce these constraints to four differential
equations on four scalar functions. The details of this derivations are postponed to Section
5.5. In Section 5.3 we present the large radius asymptotic analysis. Section 5.4 contains a
discussion on the results derived in this Chapter. The last two Sections of this Chapter are
slightly more technical. As anticipated, Section 5.5 contains the details of the construction
of 1/8 BPS geometries. In Section 5.6 we make some observations on the formal which also
apply to the original LLM construction. Due to the complexity of the equations involved,
the complete analysis has been performed by means of the software Mathematica. All the
derivations that are not described in full detail in the text were obtained with the help of
such software.

(171 +2|Q)). (5.0.3)
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5.1 BPS operators in N =4 SYM

As outlined is Section 2.2.3, —é» BPS gauge invariant chiral primary operators can be con-
structed out of the three complex scalars Zi, Z,, Z3 of the N' = 4 SU(N) Super Yang
Mills theory. Elements of a basis of such operators which transform in the [p,q,7] of the
R-symmetry group SU(4) [30] take the form

Te(Z27) Tr(Z8)Te(Z5) + - - - (5.1.1)

where the dots mean suitable (anti)-symmetrisation and trace structure that projects to
the chiral primaries in the (p, g, ) representation of SU(4).

We are interested in constructing duals of the states corresponding to linear combina-
tions of such operators. However, generic operators of this type break fully the non-abelian
SO(6) R-symmetry, up to possible U(1) factors which act by an overall phase on them.
However, if

p=q. (5.1.2)

we can construct operators which are invariant under the SU(2), of the SO(4) = SU(2); x
SU(2)g which rotates the four real scalars : '

X1 RZ,

x| |8z

x| = |z (5.1.3)
X4 2,

This is best seen by observing that SU(2); and SU(2)g act as left and right multiplication
respectively on:

Z1 —Z:z
- , T Z

Therefore Z; and Z, transform as a doublet of S U(2)1, whereas they have the same charge
under J3 = iL;’—JZ The operators with p = ¢ are clearly singlets of SU(2)z, and they
acquire an overall phase under J3. They satisfy the relation

A=2g+r. (5.1.4)
The bosonic symmetry preserved by these states is:

RBPS X (SU(Z)L X U(l)R) X 50(4)1{}( (515)

R—charge
where the first R corresponds to the transformations generated by
D=D-2J3-1J, (5.1.6)

with J = J3 acting on Z, D is the dilatation operator and the last SO(4) factor represents
the fact that we are considering s-wave modes on S? in the reduction of SYM theory on
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R x 52 [48]. These are the symmetries that will motivate the Ansatz for the metric and
five-form on the supergravity side: we will keep a round 3-sphere with the SO(4) isometry
corresponding to the SO(4) above. Another S° (related to the SO(4) R-symmetry of the 1
BPS case) which is in the S® of the AdS5 x S° background, will be squashed with isometry
group reduced to SU(2)r x U(1)g.

It will be useful for the subsequent analysis of the Killing spinor equation on the su-
pergravity side, to understand the quantum numbers of the preserved supersymmetries.
In an N = 1 and SU(3) x U(1) C SU(4) notation, the supersymmetry variations of the
complex scalars Z; are:

57, = £+ £ + B, (5.1.7)

Here the two-component spinors A and ¢; are the gaugino and the chiral matter fermions,
while £ and & are the supersymmetry parameters. They are in the 13,2 and 3_;/; of
SU(3)y) respectively. More precisely the Cartan charges of A, ¢ are (3,3, 3), and those of
P1,& are (3, —3,—1), and similarly for 953,£53. From (5.1.7) it is clear that the highest
weight % BPS operators are invariant under the supersymmetry corresponding to £. As
for the SU(2). x SU(2)gr = SO(4) C SU(3) quantum numbers, the roots of SU(2); are
(£1,F1,0) and those of SU(2)g are (£1,=£1,0). Therefore the preserved supersymmetry
3 1

parameter £, whose charges are (—3,—3,—3), is a singlet of the unbroken SU(2)r and

lowest weight with respect to the broken SU(2)g.

5.2 Generic Solutions

We are looking for supergravity solutions dual to BPS states constructed from linear com-
binations of the operators

Olq.r) = T(Z) e (Z9)Tx () + - 521)

for constant g, where the meaning of the dots has been explained in the previous two
sections. The geometries will thus be invariant under SU(2); x SO(4)kx as defined in
the previous section and invariant but charged under the remaining U(1)r. The extra
non-compact time-like symmetry (Rppg of the previous section) is associated to invariance
under the transformations generated by D’ in the gauge theory and will emerge naturally
in our construction®.

The most generic Ansatz consistent with these symmetries is given by

ds? = gudzidz” + p3[(07)2 + (07)?] + p3(0° — Auda®)’ + P03 (5.2.2)

where p1, ps, §, A, and g, are functions of the four coordinates z#. The space is a
fibration of a squashed 3-sphere (on which the SU(2) left-invariant 1-forms o® are defined)
and a round 3-sphere (on which the SU(2) left-invariant 1-forms o? are defined) over a

1See Appendix B for details.
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four dimensional manifold.
The left invariant 1-forms are given by

—1(cos ) d + sinv) sin § qu) ol = ~L(cost) df +sin ¢ sind dq5)
02 = ——(-— smz/) df + cos ) sinfdp) o? = —-%( smv,b di + cos¢ sin 8 d) (5.2.3)
1
g '2'(

Q,

o = ———(dzb-i—cos@dqﬁ) dzb—f—cos(?dgb)

and satisfy the relations

do' = € k(ﬂ Aok
- (5.2.4)
do' = 6;;,;03 A (7 .
With this normalisation the metric on the unit radius round three sphere is given by
dQ2 = (61)? + (6%)? + (0%)?, (5.2.5)

with 0@ being either ¢ or ¢?.
We choose our “d-bein” to be

e™ =g, dz* (5.2.6)
5 pro? a=172
é_ X 5.2.7
e {p3<a3 - Ade) a=3 520
e’ =po? (5.2.8)

Since we are looking for the geometric dual to operators which involve only scalar fields
in the gauge theory, the only possible non-zero Ramond-Ramond field strength is the five
form Fi5) and the dilaton is assumed to be constant. The most generic Ansatz for the five
form which is invariant under the given symmetries is:

Fgy =2 (@mnem A€ 4+ Vne™ A e + §ei A eé) A PP A+

2(—GmﬁAeﬁﬂéAe%ﬂé+&ﬂ7AéAei—mgA§),(52%

where
1 -
Gmn = é'emnqumn (5210)
~ 1 -
*4V = —é‘—emnqume“ AeP A el (5211)
k=g net AP Aél : (5.2.12)
The Bianchi identity dF(s = 0 implies:
d(GF® —V A Apsf®) = 0 (5.2.13)
511 5
V—2%pﬂwm) (5.2.14)
d(Gpips) =0 (5.2.15)
d(GPlps ANA+*x4V) —2x45=0. (5.2.16)
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Since we are looking for the dual of BPS states, the background should preserve a fraction
of the supersymmetry and so there should exist a supersymmetry parameter ¢ such that
the gravitino variation vanishes:

i
Sxmr = Vet + 1os FanMaMs g DM MMaMST ) 0y = 0 (5.2.17)
The Bianchi identity and the existence of the spinor ¢ are sufficient for our supergravity
background to satisfy the full equations of motion of type IIB Supergravity.
The existence of the spinor 7 is also sufficient to express the complete solution in the
following form:

2 . -~
ds? = —h~2(dt + Vida')? + h2g—§(T25ijdx’dx’ +dy?) + P02+
+ 02(6% + 63) + p3(63 — Adt — Aida’)®  (5.2.18)
where the coordinate y is the product of two radii

y=mp>0, (5.2.19)

£ h—2 = ,52 + pg(l + At)2 . (5220)

The vector 8, is the Killing vector which generates the extra non-compact timelike U(1)
and thus all the entries of the metric depend only on (z',z?,y), where y is constrained to
be positive. They can be expressed in terms of four independent functions:

m,n,p,T
as follows: 2 2
4 __ mp+n® 4 4 ~4 __ m
pL="E0 05 = iy P (5.2.21)
h4 = Fn'% At = P%E A.; = At‘/z - %Qjaj‘ InT :
and
dV = —y 3 [dn + (nD + 2ym(n — p) + 2n/y)dy] (5.2.22)
d,InT =D (5.2.23)
D =2y(m+n—1/y%), (5.2.24)

where *5 indicates the Hodge dual in the three dimensional diagonal metric

ds? = T%0y;dz'd? + dy?. (5.2.25)
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The various four-dimensional forms from which the 5-form field strength is constructed are

5= L1y a (5.2.26)
b1 ' -
5>_ 11 ~ 23
by ﬁgd(gplp ) (5.2.27)
Gpips = dB; A (dt + Vida?) + BdV + dB (5.2.28)
~ 1 ~ ) - 2
Gp® = 5gpf;'a‘ScflA +dB; A (dt + V;dz') + B,dV +dB, (5.2.29)
where
S 1 ,n—1/y
B = ——:—l—y3 *3 [dm + 2m.D dy]
16 (5.2.30)
__L.n
£ 16y m
.1
dB = —1® %3 [dp + dyn(p — n)dy].

16

Differential equations

The Bianchi identities and the integrability condition for the equation (5.2.22) give

ddV =0
ddB=0 . (5.2.31)
ddB =0

These three conditions together with (5.2.24) give a system of nonlinear coupled elliptic
differential equations

¥ (87 + 85)n + 0, (v*T?0,n) + 428, [T?(yDn + 2y*m(n — p))] +4y*DT?*n =0
y*(8; + 05)m + 6, (y*T?0,m) + 8, (v*T*2mD) =0

v (07 + 8)p + 8, (v*T?0,p) + 9, [v*T?4ny(n — p)] =0

8,InT = D.

(5.2.32)

A solution to these equations is determined by a set of boundary conditions at infinity
(large values of y,z") and on the plane y = 0; they should be chosen in such a way as to
give a non-singular geometry asymptotic to AdSs; x S®. Due to the non-linearity of the
equations the relationship between boundary conditions and non-singular solutions with
AdSs x S® asymptotics is difficult to control. This set of boundary conditions may be
regarded as a parametrisation of the space of solutions to our problem.
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The LLM limit

The LLM solutions are clearly a subset of ours. They are specified by the additional
constraints,

1 1/2 -z
n=p=-&—2—-—m= " T=1. (5.2.33)
In this case we have
and the three second order equations collapse to one single linear equation
y3 (02 + 8%)n + 8, (v*T?0,n) . (5.2.35)

As this equation is linear it has been possible to completely identify the boundary conditions
at y = 0 and at infinity that give rise to regular asymptotically AdSsx S° geometries[12, 16].
This set of boundary conditions can be directly identified with the classical phase space of
the dual states in the free fermion picture.

5.3 Asymptotics and Charges

In this section we discuss asymptotic solutions to the differential equations of the previous
section which give AdSs x S° asymptotics . We solve the equations to third order in an
‘expansion for large values of y, z!, 22

We can identify the boundary conditions at infinity by comparing the leading order of
this expansion to the same order of LLM, requiring in particular AdSs x S® asymptotics.
The first corrections to the AdSs x S® geometry capture the global U(1) charges under the
gauge fields arising in the Kaluza Klein reduction of IIB supergravity over S°. We will show
that the solutions support non-vanishing fluxes for the the KK gauge fields associated to
two of the three Cartan generators of the SO(6) isometry of S°. In the dual gauge theory
picture these generators map to the R-symmetry generators Lse and Lio + L3g.

It is not hard to see that the following expressions for our functions

~ Rt (5.3.1)

satisfy the equations at leading order for large R, with (R, 0, ¢) polar coordinates in the
(z1, z2,y) space and p; is a constant parameter. We have also, to the same order,

2
vy~ B 3;28 ° vi~o (%) , (5.3.2)

2 A study of more general boundary conditions at y = 0 will be presented in [94].
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with 72 = 22 4+ 22, r = Rcosf and y = Rsind.

Defining
R=R
- /v (5.3.3)
b=¢—t
we get ‘
2 2 1,2 dR? 52 1592 2 20172 1 2 0102
ds* = \/p, | —R*dt +—R—2—+R dQ23 + d#* + cos® d¢? + sin 6d2; (5.3.4)

which is AdSs x S° in Poincare coordinates. The parameter p; and the radius L of AdSs

are related by
L= N/R (5.3.5)

We recall here the expression for the left-invariant one forms

= —1(cos) df + sin ¢ sin 4 d)

—3(—sin df + cos v sin § dg) (5.3.6)
1
2

£ s
Il

>

o
o)
o = —1(dy) + cos 6 dg) .
The metric on the unit radius round three sphere ng is
. . 5 5 1, » ~ A Aon e
d2 = (c1)" + (0?)° + (%) = 7(d6° + d¢* + d9? + 2 cos bdpdd) . (5.3.7)

We can transform it into the more conventional form

Q% = dw? + cos? w dg? + sin? w dg? (5.3.8)
where R .. A A
_Y _v+e _Y-—9¢

weg o = 2= —5— (5.3.9)

We will now consider the next two orders in the asymptotic expansion of our functions
and solve the differential equations. For the sake of simplicity we will assume that 0Oy is
also a Killing vector of our solutions. Despite this simplifying assumption, in general the
solutions will still be charged under the corresponding KK gauge field. From the geometric
point of view this means that the solutions are generically stationary. On the gauge theory
side, this choice corresponds to looking for duals of linear combinations of states which
have all the same Lsg charge® and are thus constructed from linear combinations of O(q,r)
at fixed ¢ and r.

3The analog of this choice in the LLM picture would be to consider solutions seeded by rotationally
symmetric configurations of bubbles on the y = 0 plane.
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We thus assume the following expansion of our functions:

1 P1 m2(9) m3(6)
MR TR TR TR

o (6 )+ na(0)

"R R TR (5.3.10)
P +P2(9) +P3(9)
T Rs RS R®
t(6) | t2(6)
Tr~1+ R + R
Recalling that D = 2y(m -+ n — 1/y?), the equation
8,InT = D (5.3.11)
implies that :
: t1(6) =0. (5.3.12)

Moreover we note that
p; cos® 6 + V()

Vg ~ 7 i V.=0. (5.3.13)
With a suitable coordinate transformation
R=,/p1 R+ hl(e)
6=+ 2l (5.3.14)
¢ = gb + t

it should be possible to bring the metric to the following form:

R? dR? 1
dt2+———— 1— =)+ RdOZ| +
R) R2 ( R)

ds® = Q(R,H)L? {—(1 + R*—

- VA 2
+ L? [g§5d92 + g5 cos 6 (dgb + ~R—2—dt> +

+ Guw sin? Gdw? + gy sin® 0 <cos2 w(dey — —]%dt)Z + sin® w(dgs — —]%dt)?ﬂ (5.3.15)

up to subleading corrections. To the leading order the metric components gz = gz =
Guw = Yo = 1 and reproduce S5. The constants J and  are proportional to the total
flux of the U(1) gauge fields arising from the KK reduction of the supergravity over S°.
In particular @ is the total charge of the solutions under both the gauge field associated
with coordinate transformations generated by A(£)9,, and u(£)0s, (being & coordinates in
the AdSs factor); these are dual respectively to the J; = L5 and J, = L34 R-symmetry
generators. For this reason the expected BPS relation is

”L2 T 71+ 218D, (5.3.16)
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. The conformal factor Q(R, §) satisfies (R = 0o, ) = 1 and contains terms up to order
R~ The mass of the excitations over the 4dSs vacuum is given by

3nL? -

M = S—Fo (5.3.17)

where Gf is the five-dimensional Newton constant?. We recall now the expression for the
metric:

2
ds® = —h72(de + Vde)? + h2%(T25ijdxidxj + dy?)+
3

+ 7PA9%G + A [(01)" + (09)*] + p3(0° — Audt — Agdg)? =
= gudt® + grrdR? + p2d02 + 2gordfd R+
+ g,3dtde + gadio’+
+ gepdh? + gg,d;d&z + gégdq; o + p? [(01)2 + (02)2] + ,0§ (0'3)2 (5.3.18)
with

2
g = —h 214+ Vp)? + hz%ﬂz’? + Ay + A)?
3

9
JRR = hz%—(sin2 0 + T2 cos® 6)
P3
o
GoR = hZB%Rsin(?cos 6(1 —1T%)
3

2
Gy = —h 21+ V)V, + h2%r2T2 + P2 A+ Ag)Ag (5.3.19)
2 |
915 = —p3(A: + Ay)

2
9os = hz—p—%R2(cos2 0 + T?sin” 0)
P3
2
955 = —h?Vi + h2;§:7"2T2 + ps A%
955 = P3As

~ We can now derive the @ charge of our solutions. Using the definition (5.3.6) and the
coordinate transformation (5.3.9) we get

Q=-2BF - (4,+4,). (5.3.20)
933

4This approach follows the one in [12]. A more precise and detailed approach can be taken following
e.g. the work in [95]
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We note that 4; = (n —p)/p = O(1/R?) and Ay = A}V + 376, InT = O(1/R*) and thus
the leading behaviour of the r.h.s. is determined by A; and we have

Q= ?—@%}&@. (5.3.21)

Using these relations we can solve the equations (5.2.32) up to second order in 7 and
demanding that the solutions are regular we find

~

po(0) = d(3cos® 6 — 1)
na(6) = p2(6) + PiQ
m2(6) = —pa(0) — 257Q (53.22)

Vo(8) = “;‘ cos’ ‘9[(pr —d+3d Cos(26')]

\

- where d is a generic real integration constant. The J charge is given by

j=fp_ 2 4 g (5.3.23)
934 P

" The conserved charges @ and J can be also obtained by evaluating Komar integrals asso-
ciated with the Killing vectors 55 (the dual vector field to 63) and 5% respectively.

We will now solve the equations to the next order and find the transformation (5.3.14)
that brings the metric to the form (5.3.15) enabling us to check that the BPS mass formula

M =201+ 21@) 5320
is satisfied.
We have ) .
95z = [M(6) = 2vPa:(0) 5 (5.3.25)
which fixes |
0 (0) = -;—i—%- (5.3.26)

We are not really interested in the conformal factor Q(R, é) and we thus proceed to the
calculation of the ratio

grr _ 1 N d(3cos?f — 1) — 6p>*hy(8)

RR — _ 5.3.27
P? Rt f ( )

which should satisfy the equation

s 11
9RR . _ = (5.3.28)



This requirement gives immediately, -

p? 4+ d(3cos?f — 1)

hi(6) = " (5.3.29)
Using this relation we obtain
ge _ g1 204 4 45)1
5= 1 = + 3 <p§ 1 3@) 1 (5.3.30)
which gives )
Ry = 3(7—20Q) (5.3.31)
and thus - 12
M="2R= T2 (- 20). (5.3.32)
. 4G5
This should be compared to
wL?
M=— 2 3.3
- (91+21Q)), (53.33)

which apparently requires that J > 0 and @ < 0. Up to now, J and Q have appeared in
the solution to the differential equations as constants of integration. As such, they can take
any real value. Constraints on their possible values should come from a global analysis of
the solutions °. Indeed given the leading behaviour at large R, these subleading corrections
should be completely determined by the boundary conditions at y = 0. Unfortunately we
are not able to express these charges in terms of the data at y = 0 plane which could
have allowed us to establish the above bounds on J and Q. As a matter of comparison, in
the LLM construction only the J charge is present and its value is determined by a set of
integrals performed on the y = 0 plane. In that case, the bound J > 0 is trivially imposed
by the specific type of boundary conditions at y = 0.

5.4 Discussion and Observations

In this Chapter we have shown how to extend to the 1/8 BPS case the construction of [12].
Due to the reduced amount of symmetry of our background the expressions we find turn
out to be rather more complex; in particular the differential equations which determine the
background are highly non linear. We performed an asymptotic analysis for large values of
R and were able to show that solutions with the desired asymptotics and regularity exist
in this limit. Of course, a satisfactory understanding of the boundary conditions at y = 0

5As in the LLM case, the sign of J is correlated with the relative chirality of the Killing spinor with
respect to the two SO(4)’s. From the gauge theory side, as follows from the discussion at the end of Section
2, the sign of @ is correlated with the U(1)s charge of the Killing spinor. As it emerges from the detailed
analysis of Appendix B, this charge is captured by the eigenvalue s with respect to a Pauli matrix oz. In
our analysis we have set for definiteness s = +1. Had we chosen s = —1, Q would have been positive.
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which lead to non-singular solutions is necessary in order to connect the geometry of the
supergravity solutions to the phase space of the quantum mechanical system arising from
the dual gauge theory on R x S3. In particular it would be very interesting to understand
the relationship between our construction and the work of [82, 83, 85, 84]. Once the space
of solutions is understood from the supergravity point of view one could proceed to its
quantisation by a procedure like that presented in [96, 97].

Our solutions have a non empty intersection with the solutions described in [80, 79
and in [78]. A partial discussion of the dictionary between those papers and our work can
be found in [81]

Some of the so-called superstar geometries in [56] are also contained in our description.
These solutions are known to have singularities and it is possible to identify the boundary
conditions at y = 0 that are responsible for them. With a more detailed understanding
of boundary conditions which give rise to non-singular solutions, and their relation to the
CFT, one may better understand the resolution of the singularities in a manner similar
to that of [67, 16, 47]. Finally different types of boundary conditions at large R can be
studied. Indeed ome can find solutions with asymptotics of the form AdSs x YP4: such
geometries correspond to 1/2 BPS operators in the AV = 1 superconformal quiver gauge
theories and will be the subject of the next Chapter.

5 5 Reduction of the Killing spinor equations

In this Section we present the step by step derivation of the results presented in Section
5.2.

Metric and 5-form Ansatz

The most generic Ansatz for our solutions is given by
ds? = g detde” + p2[(01)? + (02)?] + p3(0° — A,dzt)? + P02, (5.5.1)

The space is thus made up of a fibration over a four dimensional manifold of a squashed
3-sphere (on which the SU(2) left-invariant 1-forms o are defined) and a round 3-sphere
(on which the SU(2) left-invariant 1-forms o are defined).

The left invariant 1-forms are given by

ol %(cosv,bd@-!—smz/) s1n6d¢>) ? = ~%(cos¢d9+s1n¢ sm9 dgb)
02 —%(— sm?,bdﬁ—l-cosv,b sin § d) o’ =—3(~ sin ¢ d0+cos¢ sin 6 d) (5.5.2)
0% = —1(dyp + cos 6 dg) 0% = —1(dy + cosf do)

and satisfy the relations

do* = E“,;,O'; A Uf“
Y (5.5.3)
dO’ = 6;5,'60"7 Ac*
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~With this normalisation the metric on the unit radius round three sphere is given by

a3 = (¢')? + (6%)* + (0*)? (5.5.4)
with o® being either 0@ or .
We choose our “d-bein” to be
e™ =¢™ dz* (5.5.5)
(e 123
e* =po” (5.5.7)

The only non zero Ramond-Ramond field strength is the five form F(5y and the dilaton
is assumed to be constant. The most generic Ansatz for the five form which is invariant
under the given symmetries is

Frpy=2 émnem/\e"—}—f/mem/\eé-l-gei/\eﬁ Aﬁ3dQ3+
(5)

2 (—quep Aefnel net ned + VAl Ae? - *4G N\ e§’> , (5.5.8)

where
1 -
Gmn = §emnqumn (5.5.9)
~ 1 -
*V = é—!emnpqvme” NeP A el (5.5.10)
x5 =g Net NeZ A €. (5.5.11)

The Bianchi identity dFs = 0 gives rise to the set of equations,

d(GF* =V A Apsp®) =0 (5.5.12)
- 11
V= >——d(g%p* 5.5.13
3 aF? (3,1P°) ( )
d(Gpips) =0 (5.5.14)
A(Gpips NA+%V) —2x45=0. (5.5.15)
Spin Connection and Covariant Derivative.
The inverse d-bein is
By =0, + AnTh0; (5.5.16)
1 -
E; =—X',0 (5.5.17)
1 ~
E; =52@lé§., (5.5.18)
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where Z,, is the inverse vierbein of €™ and ¥;; is the inverse of %% We will denote
ten-dimensional tangent space indices by A, B, C.... The spin connection is given by

1
wap =—des Ep+dep- Ea+ 35 (e° - [Ea, EB]) ec. (5.5.19)

Using the explicit expressions for E,, we have
(B, En) = [Zm, Zn) + 23 (Em(4 - ) — En(4-ER)) . (5.5.20)
We can thus write, using the relation (A.O.12)
- 3 1 - = - - —_ —_
Wnn = Wmn + € pag (—A - [Em,Bn] +Em(A-En) —En(A-Ep)) =
= QOpp + E03Em - dA-E,. (5.5.21)

In order to get the other components of the spin connection we will need the explicit form
of the exterior derivative of * = pa0°® — psdf Ame™ and of €® = po®

de? = dp; A o® + pydo® — pgégdA - 5§‘dp3 A Ape™ (5.5.22)
de® = dp; A 0% + pzdo® (5.5.23)

By definition

N R
do’ = €zp0" Ao

- . . (5.5.24)
do' = emcﬂ A c*
and thus
[Za, 23] = —26661325
5.5.2
[Za, Tp] = —2e53 %z, ( o)
so that
1 1 1 2 '
[Ea, Em] = ;Eampaza + -p—Am[Z&, Zé] = ;Eampazcg - ;‘Ameéaézé . (5.5.26)
In the end
1 p
Wam = —dez By, + —2-6 [Ea, Em]EP =
" . 1
= Oppac® + 6§ep(p3§Fpm — ApBmps) (5.5.27)
1 .
Wam = —dez Ep + §5P[Eﬁ7 Em]eP = amﬁo-a (5528)
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and
1 M
Wep = —-deaEf) -+ degEa, + —2-6 . [Ea, Eg]eM =

2 2 2
+ —
= €abe (%ﬁ) “ €ais 2A (5.5.29)

1 -
= —dez By + deg B + -2-6M - [Ea, Eglem = e55.0°. (5.5.30)

‘The spin connection part of the covariant derivative acting on spinors as presented in
Appendix A is

L opn DTN =
4

7 1. mywn 1 m3
dz ZwmnF r "'4"p3]'7'/_m—,']:1 P+

—Au( 165 31“11“2—1 sl "L + ;pianrmr”)}

2 2
: ' (5.5.31)
ol (lpli ab3PbF3 5 mplIﬂml'\a>
a=1,2
5 (1 P2\ s 1 5 1
3_2__§ 12___m m3 2 mwn
+0o <2< 2 r-r 5 5[ F+p38anPF +
a 1 c 1 ~m TG
a? ( n €5 I°T% — 50mpT™T >
a=1,2,3
Killing spinor
Conventions and Ansatz
We choose the following ten dimensional gamma matrices
ln=1m®l@1lel IM=186®0ne®l I"=106,0110 (5.5.32)

The two 32 component Majorana-Weyl spinor supersymmetry parameters of the IIB theory
can be grouped into a single complex Weyl spinor ¢ obeying the chirality constraint

'ny =1 (5.5.33)
T = H Lm H Ta HFa =703 Y5 =~ (5.5.34)

The supersymmetry variation of the gravitino x,, is given by
Oxym =V + 8OFM1M2M3M4M5FM1M2M3M4M5FM¢~ (5-5_35)
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In order to have a supersymmetric background we need to impose that this variation is
zero giving rise to the Killing spinor equation on 1,

VM’(p + FM1M2M3M4M5PM1M2M3M4M5]-—‘Mw =0. (5536)

480

As a consequence of our symmetry assumptions we look for a 1) of the form
Y=ep) QX ®Xw)- (5.5.37)

Where 9 is an 8 component complex spinor a and ¥, X are 2 components complex spinors
defined on the two 3-spheres satisfying

Tak=0  o3%=sx (5.5.38)
S S
aX = bzoaXe) (5.5.39)

where V' is the covariant derivative on the unit radius three sphere which has spin connec-

tion wly, = €ape and s,b = £1. As we are going to show in the following, this choice means
‘that ¥ is a constant spinor and thus a singlet of the SU(2) isometry of the squashed
sphere, as required by our analysis of the gauge theory description of supersymmetries in
Section 5.1.

Isometries and Spinors

On a unit radius round three sphere there exist two linearly independent solutions to the
equation

Vax = B50ax (5.5.40)

for each choice of 8 = +1. The sign of § is correlated with the chirality of the doublet of
solutions under the SO(4) = SU(2) x SU(2) isometry group of S°. This can be understood
as follows.
Given a d-bein e%(y) and an isometry I we choose a local orthogonal transformation A
such that

A% TI (") = e® (5.5.41)

where T1I, is the pullback of one forms associated with I. The d-bein is thus invariant under
these transformations and it is possible to give meaning to the transformatlon properties
of spinors under the isometries of the metric.

In our case, since 5° =~ SU(2), we can identify the points y with elements of S U(2). For
the round 3-sphere S® the action of the isometry group SU(2); x SU(2)g is given by left
and right multiplication by generic elements of SU(2). For the squashed three sphere the
action of the isometry group SU(2); x U(1)g is given by left multiplication by generic
elements of SU(2) and right multiplication with a U(1) subgroup.

Let’s focus on the left isometries L,. They are defined by

Lg(y) = gy.- (5.5.42)
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As our 3-bein is built out of left-invariant one forms o2, we have by definition
TLg.(0%) = (5.5.43)

which implies that, for such transformations, A% = §%. The action SL, on spinors of this
isometry is thus very simple

SLyx(gy) = x(v) - (5.5.44)

The action of left multiplications is clearly surjective and thus a spinor  is invariant under
this action if and only if it is a constant spinor. This means that our spinor ¥ is a singlet
under the SU(2), isometry of the squashed 3-sphere, while the spinors ¥4 transform in the
(0,3) for upper sign and (%, 0) for the lower sign. For a discussion of spinors in squashed
3- spheres see [98, 99].

Equations and bilinears

We turn now to the contribution of the Ramond-Ramond form to the gravitino variation.

We define

M= e OFM1M2M3M4M5FM1M2M3M4M5 (5.5.45)

The chlrahty condition on ¢ and the self-duality of F(5 imply that

MTpp = — <¢+ Vrso103 + igag) 562 a1 (5.5.46)

Due to the conditions on the spinor, ¥ and ¥; factorise in each component of the gravitino
variation equation which then becomes the following system of coupled differential and
algebraic equations on €®

- 1 A ' o - A
V,L - ZFWE”mfymfy‘r’als +iA,s — (G-I— V5618 + 1gs> 750274 e=0 (5.5.48)
B
3 537501 + @Pl +p1 ($+ Vrs61s — 198> ’)/502} e=0 (5.5.49)

1

_i
5(2 gs)fywr s + goAPtns-+ o = Prsons s )| e =0 (55,50
1

—b")/50'2 + = @p p($—|— Vs61s + 1gs> 7502} e=0. (5.5.51)

6For example the ﬁrst equation is obtamed as follows
- 1 . - s
(Vy+ ML) = (v# — 7P BT + A, (23 + F1r2) — A5+ MPA) =
- 1 5 -
= (v# - ZngﬂuE”mrmrf‘ + A%+ M (T, + A”p3T3)> Y=

-~ 1 — m 3 .
= (v” - Zngﬂ,,:. m7Y 0'3 +ApU§ -+ M’)’u) ’(Z) (5547)
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Note that the first equation is a first order differential 4-vector equation for € while the
last three are algebraic 4-scalar equations.
We now define a useful set of bilinears

K, =&y L, = &vysve Y = &€
fi=iEoie  fr=if0se (5.5.52)
E=cly
The world indices u, v of these bilinears are obtained by contraction of the tangent space
indices with the vierbein £™,. When raising and lowering 4 indices we will always use the

metric §,, unless otherwise is specified. By Fierz rearrangements the following relations

can be proved
K*=-[’=-f~f}=-h"% [FK,=0 (5.5.53)

Algebraic relations

By multiplying the algebraic equations (5.5.49),(5.5.50),(5.5.51) with different combina-
“tions of gamma matrices and contracting with £ one can obtain the following relations for

the spinor bilinears:

K*0upr =0 (5.5.54)
K*0,p3 =0 (5.5.55)
K*0,p=0 (5.5.56)

P11 -
L, =24 5.5.57
fz pf’ F; y(plp) ( )
K*V, =0 (5.5.58)

~ 8 N1 fzp3)
= — | b= — =~ 5.5.59
T ( FooA ( )
and also equations for the 2-forms F,, = 0,4, — 0,4, and G v
2 ( pg> 1 b
F,=——|—|2—= ] —€uuKL°+—-(K,L,— K,L,)+
. PS(f12+f§)[ pi) ps M ,0( # 2

- flep,upaKpaa h’l(pgﬁ) - f2 (Kuau ln(p3ﬁ) - Kllap ln(Psﬁ))-l-

+4f1(KV, - KV,) + 4fzeu,,p.,K"f/P} (5.5.60)

- 1 b
= To57r2 L 12y — =g 0 — ~ P ao ~
Gu 22+ /D) { (2/3 gs> (fl(Kua,, Injg— K,0,1np) + fo€ppKFO lnp)-{-

- f2 (KHVL - Kuv,u) + fleuupo'KpVJ:l (5561)
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Differential relations

We can use (5.5.48) to prove the following relations

VK, =4 (éw fi+ G f2) - %EF,W 25 + 260,ps VPKs — 25Y 5 (5.5.62)
Oylnfi=0,Inp (5.5.63)
8, (%) = F,K"s. (5.5.64)

3

The first equation says that K*9, is a Killing vector for g,,. We make the natural gauge
choice
K9, = 0;. (5.5.65)

The second equation can be easily integrated to give, with a suitable choice of constant
of integration

h=p. (5.5.66)
Note further that as a consequence of these equations and of the Bianchi identity
=11 d(gp2 ) (5.5.67)
3 0 PP). 5.

that F, is t independent and we can make a gauge choice for A, such that 8,4, = 0.
Integrating the equation for f, we obtain

fo=ps(c+ Ass). (5.5.68)
We define the coordinate
Y= pip (5.5.69)
and thus
Lyde* = —Lldy. (5.5.70)
P3

Since K - L = 0 there is no cross term gy, in the metric. We can additionally make a
coordinate choice such that there are also no gyi cross terms. We have thus reduced our
Ansatz for the four dimensional part of the metric to the following

2 i ) 2
ds? = —h~2(dt + Vidz! + Vada?)? + hQ-Z-;-hijdxlde + hZ-Z—;-dyz . (5.5.71)
3 3
Note that

R?=fE+ f2. (5.5.72)

For convenience we set,
A,=0. (5.5.73)

All the entries in the metric and in the 5-form are parametrised by a set of functions that
we can distinguish on the basis of their transformation properties in the {z', 22} plane.
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Scalars | Vectors | Symmetric Tensor
p1, p3, P, Ac | Vi, A hij

Recalling that the scalars are subject to the constraint
y=pmp. (5.5.74)
From now on we will assume for definiteness that s = 1.

Specifying the spinor

Due to our gauge choice we have

K=& =n'! = £e=hr" (5.5.75)
Ly= LBy = 221 = _p1, (5.5.76)
P3 P1
‘‘‘‘‘ (5.5.77)
-We thus have: ;
E—'yggﬁf =—1 = ipype=—c. (5.5.78)

:We can now take the sum of equations (5.5.51) and (5.5.49) divided by, respectively, p and
p1 from which we obtain

(V1+e 206, +i15e™¢ — 1)e =0 (5.5.79)
where e = -% The solution to this equation is given by
g =¢emWhg,  yfie; =g (5.5.80)

with sinh(26) = e¢. The normalisation h~! = efe implies &; = le/ %e0 with ehep = 1.
These conditions are enough to satisfy all the algebraic equations (5.5.49),(5.5.50),(5.5.51).

Due to the three projectors (5.5.33),(5.5.78),(5.5.80) and the conditions on the X, ¥
spinors, the solution space of the Killing spinor equation is two dimensional and complex.

We will now use the differential equations (5.5.48) and the Bianchi identities (5.2.13)-
(5.2.16) to express the unknown vectors and tensors in terms of the scalars.

The spacetime metric and the gauge field A

We define three new bilinears

I /
Wy = €2 Yu€

s 5.5.81
Wﬁf = 5t727u’)’u01,25 . ( )
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Using (5.5.48) we can derive

Bty — Oy, = —-1EF#”W2 — 2i(Ayw, — Apwy) + deppe VAW — 4GWL, . (5.5.82)
We note that .
wudet = L&, 118 )da? = — L do (5.5.83)
Ps P3
where é"“j is a 2-bein for the metric 77,1-?-. Thus, from (5.5.82) we can get an equation
involving dé*. Singling out the y dependence using the (y,z') component of (5.5.82)

h? P fz
0,6% = —2—— | (= p2)+ L2 —bp?)| & = Dé>.. 5.5.84
&= -2 | Lt )+ i —b)| @y = 0. sy

With a further y independent coordinate transformation we can put ﬁij in diagonal form.
We introduce a conformal factor T and set

g =T  §,T=DT (5.5.85)

Looking at the (z',2?) component we can establish a relation between the remaining
derivatives of T and the connection A;

1
Ai = (At +b— C)‘/,, - 56,‘_7‘83' InT. (5586)
The constant ¢ can be absorbed into a gauge transformation and we will set
b=c=1. (5.5.87)

The right hand side of the {¢, z'} component of equation (5.5.82) is proportional to b — ¢
and thus also this equation is consistent with our gauge choice.
We have now an expression for A; by which we may calculate the components of F,,. This
F,,, must be equal to the one obtained in (5.5.60). The contraction with K* is trivial. The
F; components give the constraint

b=c (5.5.88)

which is solved by our gauge choice. The Fi, component glves an equation for (62 + 82)T
that we will discuss later.

We have thus reduced our set of unknowns to five scalars and one 2-vector. Two scalars
are constrained by the relations y = p;p and so we have just four independent scalars and
one 2-vector.

Scalars Vector
P1,P3,ﬁ,At,T V;
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‘We have reduced the four dimensional metric to the form
2
ds? = —R72(dt + Vida')? + hz—Z—;(T%jdxidxj +dy?). (5.5.89)
3

To simplify the final equations we now express the 4 functions p1, ps3, p, A; in terms of
three independent functions that we will call m,n, p are defined by

2

4 _  damptn® 4 _ D
Pl=—m, A=
mp-+n P
With these definitions we have
D=2y(n+m-—y7?). (5.5.91)

With some effort it can be shown that all the equations on the spinor £ are now solved.

Counting of Supersymmetries and Einstein equations

As we noticed in Section 5.5, the space of solutions to the Killing spinor equations is two
~~dimensional and complex. The complex two dimensional space is spanned by the vectors
= )2};2 , in the notation of page 38. As such, there exist two Killing spinors whose null bilinears
are not orthogonal and thus are not parallel. They can be constructed precisely in the same
way we did for the original LLM case. We repeat here the construction for convenience.
Let us consider the two independent Killing spinors

n=e®xi®¥XL (5.5.92)
-1 o2
X3+ X
'—e®@YL ® <____._______+ +) 5.5.93

We choose to normalise the spinors x, ¥ to unity. In components, the two corresponding
Killing vectors have the form
"= (K;O7O7f2;0707"—fl) (5594:)
K’, = (K70707f27 '—’flaO;O) (5595)

The two Killing vector bilinears are precisely of the required form. They are both null,
and their scalar product is given by

Kok =K+ f}=—f? (5.5.96)

which is non vanishing. The existence of the Killing spinors guarantees that the full Einstein
equations are satisfied provided that integrability conditions and the Bianchi identities for
the Ramond-Ramond 5-form are satisfied. Let us now investigate what the consequence
of these final constraints are.
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Differential Equations

We will first establish a relation between the vector V; and the various scalar functions.
The equation (5.5.62) is an equation for dK with

K = —h7%(dt + Vidz') . : (5.5.97)
We can extract from this equation an expression for dV:
dV = —y*z [dn + (nD + 2ym(n — p) + 2n/y)dy] (5.5.98)
where by x3 we mean the Hodge dual in the three dimensional diagonal metric
ds} = T?6;;dz'dz? + dy?. (5.5.99)

Returning to the Bianchi identities

d(Gp® -V A Apsp®) =0 (5.5.100)

- 11
V = =——d(§pip’ 5.5.101
by (9p1P") ( )
d(Gpips) =0 (5.5.102)
d(GPps NA+5V) —2%,§G=0. (5.5.103)

Substituting in the first equation V as obtained from the second equation we find

~ 1_ ..
d(Gp® — §gpfp3F) =0. (5.5.104)

We may thus set locally
4B = G ~ S5 AP F
B=By(dt+V)+B (5.5.105)
dB = Gpips
B=B(dt+V)+B.

The algebraic equation (5.5.61) for G, and for its dual for Gy give rise to four new
relations

~ 1 ,n—1/°
By=-——p 1L

i 16y D
4B = 4« [dm + 2mD)]

16 (5.5.106)

B, = ___1. 2

£ 16y m

L1
dB = —=y” %3 [dp + dyn(p — n)dy].
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We need to impose the three equations

ddv =0
ddB=0 . (5.5.107)
ddB =0

The last Bianchi identity (5.5.103) is implied by these three. In addition to these equations

we have also
OyInT =D (5.5.108)

which together with the previous ones can be used to see that also the consistency equation
for Fy, is satisfied.
We have thus a set of 4 equations for 4 unknowns: m,n,p,T. The equations are defined

on the half space
(z', 2%,y > 0) (5.5.109)

and are quite complicated being a set of coupled non-linear second order elliptic differential
equations.

y3 (8% + )n + B, (y°T?0yn) + y?8,[T*(yDn + 2y*m(n —p))] + 492 DT?*n =0
y3 (82 + 02)ym + 8, (y*T?0,m) + 8, (y*T*2mD) = 0 (5.5.110)
y*(8F + 2)p + 9, (v°T°8,p) + 6,[y*T*4ny(n —p)] =0

5.6 Killing vectors and the Kaluza Klein Ansatz

In this appendix we present a geometrical interpretation of the bilinears that we constructed
and that we used in Appendix B

Assume we have a fibration of a group manifold over some d dimensional base manifold
with metric

ds® = g (2)dztda” + Bu(z) (%(y) — A%(z)da*) (E°(y) + AL (z)dz*) (5.6.1)

where é° is a basis of left-invariant one forms on the group manifold.
We define )
k= K*0, + a(z)*E, . , (5.6.2)

We recall that given any covariant 2-tensor a and three vector W, Vi, V; the Lie deriva-
tive of a is given by

Let us calculate Lkg
(L:g) (84,8,) = (LxG) (04, 8y) + KPO, (BupALAL) — 8,0°Bap AL — 8,0°Bap AL,
(£9) (Ba, E ) K 8pfab + (Lad(2)) (Ee, Bb)
(£29) (B Ba) = KP0,(=BusAL) + BusOue® + Poac® AL fy,
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where § = B€°€° and f{, the structure constants of the group.

When K = 0, By = kqp With kg the Killing form of the group and so we obtain the
non abelian Kaluza Klein setup.

Assume for the moment that K is a Killing vector of § and a°F, is a Killing vector
of g, what are the conditions on « , Bab, A, such that K is a Killing vector for the whole
metric? This is easily seen from our previous equations

K(Bap) =0 (5.6.4)
dua = K(A2) — frolAS . (5.6.5)

We can now specialise to our setting. The group manifold is SU(2) x SU (2). We can
define the ten dimensional vector

MOy = oTMpdy, =
I
P3

5.6.6
K*8, + (Ame (5:6.6)

)zza+f1~f ST 0;
p

where we have chosen the normalisation x"y = ¥'x = 1. & is a Killing vector and it is null

[21]. Since it is null we have

K? = K, K" = —f2 - f (5.6.7)

which was previously seen as consequence of Fierz rearrangements and whereas here we
can see its geometrical origin. From the equation on V,K, we know that K is a Killing
vector for g, and moreover, due to the Killing equation on ¥ and the properties of the
Ansatz, we have that

U OO (5.6.8)
are Killing vector of the group manifolds. We thus conclude ‘
K(p1) = K(ps) = K(p) =0 (5.6.9)
O, (f—j) =0 (5.6.10)
p
o, <A,,K" - —Z—:zs) = K(4,) (5.6.11)
3
The second one can be written in the form we already encountered earlier

O, (f2> FLK"s. (5.6.12)

P3

We have thus clarified the geometrical origin of the relations between f, fo and the
metric entries.
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Chapter 6

Extensions of the Maldacena
conjecture

‘In this Chapter we will briefly introduced some non trivial geﬁeralisations of the AdS/CFT
correspondence to less supersymmetric cases and then study the half BPS sector of theses
sextended version of the duality.

6.1 Sasaki-Einstein manifolds and Quiver gauge the-
ories

In the correspondence between string theory on AdSs x S® and d = 4 N = 4 SYM theories,
some of the most direct checks, such as protected operator dimensions and the functional
form of two- and three-point functions, are determined by properties of the supergroup
SU(2,2/4). Many of the normalisations of two- and three-point functions which have been
computed explicitly are protected by non-renormalisation theorems. If we want to prove
that the correspondence is a fundamental dynamical principle, we have to test it in less
(super)symmetric settings. Orbifold theories [100] provide interesting examples; however
it has been shown [101, 102] that at large N these theories are a projection of N =4
super-Yang-Mills theory; in particular many of their Green’s functions are dictated by the
Green’s functions of the A/ = 4 theory. The projection involved is onto states invariant
under the group action that defines the orbifold. Intuitively, this similarity with the

mathcal N = 4 theory arises because the compact part of the geometry is still (almost
everywhere) locally S°, just with some global identifications. Therefore, to make a more
non-trivial test of models with reduced supersymmetry, we are more interested in geome-
tries of the form AdSs x Ms where the compact manifold Ms is not even locally S°.

In fact, such compactifications have a long history in the supergravity literature: the
direct product geometry AdSs x Ms is known as the Freund-Rubin Ansatz [103]. The
curvature of the anti-de Sitter part of the geometry is supported by the five-form of type IIB
supergravity. Because this five-form is self-dual, M5 must also be an Einstein manifold, but
with positive cosmological constant: rescaling Mjs if necessary, we can write Rag = 4gap-
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For simplicity, we are assuming that only the five-form and the metric are involved in the
solution.

A trivial but useful observation is that five-dimensional Einstein manifolds with Rap =
4g.p are in one-to-one correspondence with Ricci-flat manifolds Cg whose metric has the
conical form

dsg, = dr* +r’dss,, . (6.1.1)

It can be shown that, given any metric of the form (6.1.1), the ten-dimensional metric
: ) L —1/2 . . : L4 1/2
ds?, = <1 + F) (—dt® + dz} + dz3 + dz3) + <1 -+ }—4—) dsg, (6.1.2)

is a solution of the type IIB supergravity equations, provided one puts N units of five-form
flux through the manifold Ms, where

N _
4= YT F Nz‘;v E (6.1.3)

Furthermore, it was shown in [104] that the number of supersymmetries preserved by
the geometry (6.1.2) is half the number that are preserved by its Ricci-flat L — 0 limit.
Preservation of supersymmetry therefore amounts to the existence of a Killing spinor on
dsés, which would imply that it is a Calabi-Yau metric. In this case the manifold Mj is
called a Sasaki—Einstein manifold. Finally, the r < L limit of (6.1.2) is precisely AdSsxMs,
and in that limit the number of preserved supersymmetries doubles.

The metric [104] describes a flat 3-brane placed at the tip of the Calabi Yau cone Cg
in a R®! x Cs background. In analogy to the construction we described in Section 2.3,
we may equivalently consider the dynamics of such a system as described by open strings
ending on a flat D3-brane placed at the tip of the cone.

In this case, the AdS/CFT correspondence states that Type IIB string theory on
AdSs x Ms is dual to an N = 1 four-dimensional superconformal field theory.

Until the paper [93], the only Sasaki-Einstein five-manifolds that were known explicitly
in the literature were precisely the round metric on S® and the homogeneous metric 7!
on S? x S3, or quotients thereof. For the five-sphere the Calabi—Yau cone is simply C3
and the dual superconformal field theory is the maximally supersymmetric N = 4 SU(N)
theory. For T™* the Calabi-Yau cone is the conifold and the dual A = 1 superconformal
field theory was given in [105, 106]. ,

In the paper [93] a countably infinite class of ezplicit Sasaki-Einstein metrics on 52 x S3
topology was given explicitly. These were initially found by reduction and T-duality of &
class of supersymmetric M~theory solutions discovered in [92]. The family is characterised
by two relatively prime positive integers p, ¢, with ¢ < p and the generic metric is commonly
called Y74, The manifold Y0 coincides with the already known case of T%!. Each of
this metric has an SU(2) x U(1) x U(1) local symmetry. In the special case of 7!
this symmetry is enhanced to SU(2) x SU(2) x U(1). The topology of each manifold is
52 x 53 and thus it has one non homologically non-trivial three cycle. Among the infinite
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number of homologically equivalent 3-cycles, there are four supersymmetric cycles X;. Here
supersymmetric means that the metric cones C(%;) are calibrated submanifolds (in fact
divisors) in the Calabi—Yau cone. As such D4-branes wrapping these manifolds preserve
half of the supersymmetry of the background. They are called dibaryons since are the dual
of baryonic operators in the corresponding gauge theories.

In the papers [107, 108] the superconformal theories which are dual to String theory on
AdSs x YP? have been constructed. These are Quiver gauge thoeries with 4p + 2¢ fields
transforming in the bifundamental of 2p SU(N) gauge groups. Many properties of the
theories can be derived from purely geometrical considerations. The field content of the
theories is summarised in the following table The SU(2) x U(1) x U(1) bosonic symmetry

| Field | number | R — charge - UL | UD)r
Y | pt+q | (=49 +3¢ +2pg+ (20— 9)/4* —3¢%)/3¢* | p—q | -1
Z | p—gq |(~4p"+3¢° = 2pg+ (2p+q)+/4p> —3¢*) /3¢ | p+q | +1
Ue p (2p(2p — /4p* — 3¢%)) /3¢ —p 0
Ve g (3¢ —2p+ /4p* — 3¢2)/3q g +1

of the YP4 metric translate into R and flavour symmetry. The fields U%, V* transform in
the doublet of SU(2) while the fields Y, Z are singlet. In the case of T%! they combine
into a doublet of the second SU(2) factor. The R charges were calculated in [108] and
they perfectly agree with the purely geometrical derivation of [93, 107]. Notice that, apart
from the R and flavour charges, a further charge is shown in the table. This represents the
baryonic charge of each field.

Since all the 2p gauge groups have the same rank, N, it is possible to construct simple
dibaryonic operators with one type of bifundamental field A4 F:

B[A] = gtieN Acgl ce AaﬁNN EB..BN - (614)

In the Y?? quivers there are four classes of bifundamental fields, so there are four classes
of dibaryonic operators: B[Y], B[Z], B[U] and B[V]. Since the fields U® and V* transform
in the 2-dimensional representation of the global SU(2), the corresponding baryonic oper-
ators transform in the (IV +1)-dimensional representation, as explained in [109]. Elements
of the chiral ring generated by the baryons with conformal dimension of the order N corre-
spond to D3-branes wrapping non trivial supersymmetric three cycles. Since the operators
like (6.1.4) are chiral, their scaling dimension is precisely the scaling dimension of the bi-
fundamental A, multiplied by /N. These scaling dimensions correspond holographically to
the volumes of the corresponding 3—cycles.

In the following Sections we will address the analysis of a class of Supergravity duals
of dibaryons with conformal dimension of order N2. They are given by supersymmetric
solutions of the complete supergravity equations of motion.
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6.2 Introduction to Quiver half-BPS dual geometries

As we outlined in the previous Sections, the AdS/CFT correspondence extends naturally
to the case of String Theory on AdS%Y?? and N = 1 Quiver gauge theories. In particular it
would be very interesting to mimic the beautiful LLM construction that we have described
in Chapter 3 to the case of the chiral ring of Quiver gauge theories. In the next Sections
we address this problem.

Every Y79 manifold has an SU(2) x U(1) x U(1) isometry group and the AdSs x Y4
solutions preserve 8 of the original 32 supersymmetries of type IIB supergravity. Super-
symmetric branes wrapping cycles in Y79 have been analysed in the probe approximation
in [110, 111] and they may be considered as generalisations of giant gravitons. A distin-
guishing feature of the Y?? manifolds with respect to the standard S° is the presence of a
non-trivial 3-cycle. D3-branes can thus wrap such a non trivial cycle and be stable: such
branes are dual to baryons in the Gauge theory, the so called dibaryons, which are built out
of products of N chiral superfields [112]. Dual giant gravitons were studied in [113, 114].
These are good candidates for the supergravity duals of states in the chiral ring of the
N =1 theories in the regime of conformal dimension of the order of N.

- In Chapter 5, we constructed solutions of the type IIB equations of motion with non
trivial Ramond Ramond 5-form and R x SO(4) x SU(2) x U(1) isometry group preserving
4 supercharges. AdSs x YP? geometries are clearly contained in this class: the R x SO(4)
is the non compact version of U(1) x SO(4) C SO(2,4), while the SU(2) x U(1) x U(1)
isometry group of Y7 is contained in the generic SU(2) x U(1) bosonic symmetry.

We will now show in detail how to recover the AdSs x YP? geometries from the generic
solutions studied in Chapter 5 by requiring that an additional 4 supercharges are preserved.
We then study 1/2 BPS excitations of such geometries, namely generic 1/8 BPS solutions
of type IIB supergravity with AdS; x YP9 asymptotics and R x SO(4) x SU(2) x U(1)
isometry: they represent an expansion of the fully backreacted geometries of D3 branes in
AdSs x Y9 and the dual of half-BPS states in the Quiver theories for conformal dimensions
of the order of N2. The description of these geometries is already implicitly contained in
the analysis of the last Chapter and is given by the solutions of a system of four coupled
non linear differential equations. We will study a class of such solutions which differs from
the one studied previously already at the level of the boundary conditions that they satisfy
in the asymptotic region. This is due to the fact that we are interested in the dual of
states in the Quiver gauge theories and thus the geometries should approach AdSs x Y74
asymptotically ‘

The brane source of the probe picture is substituted by flux in the same spirit as in the
original [12]. The geometries we will obtain carry three net global U(1) charges which
are dual to the R-charge, a U(1) flavour charge and the baryonic charge of the gauge the-
ory. In order to specify the asymptotics and charges of the solutions we solve the system
of differential equations perturbatively at large AdSs radius. The zeroth order fixes the
boundary conditions such that the metric and the RR 5-form describe correctly asymptoti-
cally AdSs x YP? geometries, the first subleading corrections determine the aforementioned
global U(1) charges and the second subleading correction is necessary to obtain the value of
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the mass. Solutions which carry only R-charge have been studied in [115] at the linearised
level.

Due to intrinsic complexity of the solutions, we face here a problem which we easily
turn around in the previous Chapter. The definition of mass is somewhat subtle in asymp-
totically AdS spacetimes, [116, 117] but it is even more subtle when one is dealing with
states in asymptotically AdSs x X°, with compact non trivial X3, due to the fact that the
subleading terms in the metric, that in principle can be used to determine the mass, mix
the AdS; and X5 coordinates. This is due to the fact that it is not possible to reduce the 10
dimensional theory to 5-dimensional gauge Supergravity consistently in the non-Abelian
case [115]. We deal with this problem by adopting a 10-dimensional version of the general
construction of [118] to find the conserved Hamiltonian and thus the correct definition of
the mass. We then determine the mass of our states and check that the BPS condition,
relating the mass to the R-charge, is indeed satisfied by our asymptotic solutions.

The paper is organised as follows. In Section 6.3 we give a brief summary of the results
of [17]. In Section 6.4 we show how to obtain the AdSs x Y79 geometries from the general
solutions. In Section 6.5 we solve the system of second order equations up to second order
in large AdSs radius (the detailed form of the second order solutions is given in Section
6.10). In Section 6.6 we show how to obtain the R charge and the U(1) flavour charge of
the solutions. In Section 6.7 we discuss subleading corrections to the RR. 5-form and derive
the baryon charge of the solutions. In Section 6.8 we discuss how to correctly define the
mass for a space-time which is asymptotically a product with an AdSs factor. Finally, in
Séction 6.9 we present some discussion.

6.3 Summary of 1/8 BPS geometries

We summarise here for convenience the results of the last Chapter where we constructed
generic solutions of type IIB Supergravity preserving 4 of the 32 supersymmetries of the
theory and an R x SO(4) x SU(2) x U(1) bosonic symmetry. The metric takes the form

ds? = —h72(dt + Vidz')? + h2§z—(T25ijdxidxj + dy?) + p2dO2+
3
+ 02 (61 + (6% + p3(0° — Adt — Aida?)> (6.3.1)
with 7 = 1,2; the coordinate’y is the product of two of the radii,
y=p1p>0. (6.3.2)
and the function h is given by
R =5+ pa(l + Ap)?. (6.3.3)

The space is a fibration of a squashed 3-sphere (on which the SU(2) left-invariant 1-forms
o® are defined) and a round 3-sphere Q3 (on which the SU(2) left-invariant 1-forms o@ are
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defined) over a four dimensional manifold.
The left invariant 1-forms are given by:

0‘? = —-—%(COS¢ df + sin<) sin 6 d¢) a% --§-(cos¢/~) df + sin sin G do)
0% = —5(=s sin 1) df + cosw sin 4 d¢) 0> = —35(—sinydf +cosy sinfdg)  (6.3.4)
0% = —1(di) + cos ) 0° = —3(d + cos 6 dg)

and satisfy the relations (with o® being either o@ or o@)
do® = €00 A 0. (6.3.5)
With this normalisation the metric on the unit radius round three sphere is given by
d3 = (01)? + (62)? + (c%)2. (6.3.6)

The only non trivial field strength in our Ansatz is the Ramond-Ramond 5-form: it is
more conveniently expressed in terms of the “d-bein”

e? =h71(dt + Vidz") (6.3.7)
el =h2LTsids (6.3.8)
Ps3
et =hLldy (6.3.9)
P3
- p10% a=1,2
- . 6.3.10
) {03(03*Aud$”) a=3 ( :
e =po” (6.3.11)

as
Fisy =2 <émnem A€e™ + Vpe™ A e+ gei A e§> A P+

2 (~quep ANedAel Ae? Aed +V Ael Aed —xG A e‘§’> , (6.3.12)

where
1 -
' Gmn = §6mnqupq (6313)
~ 1 ~
*V = iemnpqvme“ NeP el ‘ (6.3.14)
x5 =g’ Net ne? Ned. (6.3.15)

The complete solution can be expressed in terms of four independent functions m,n,p,T
defined on the halfspace (z!,z?,y), as follows

4 mp+n p? ~4 m

pr="E0t = oty P = e 6.3.16
h4 - _m_p___ ‘ At — n—p Az’ = At‘/z — %Eijaj InT ( - )

mp-+n? D
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and

dV = —y %3 [dn + (nD + 2ym(n — p) + 2n/y)dy| (6.3.17)
8,InT =D (6.3.18)
D =2y(m+n—1/y%), (6.3.19)

where %3 indicates the Hodge dual in the three dimensional diagonal metric
ds2 = T%6;;dz’*dz? + dy”. (6.3.20)

The various four-dimensional forms from which the 5-form field strength is constructed
are given by

= L1y (6.3.21)
R A -
- 11,
= §p—353d(gpf“fp3) (6.3.22)
Gpips = dB; A (dt + Vida') + B,dV +dB (6.3.23)
Gt = %-gpip?’dA +dB, A (dt + Vide') + B,dV +dB, (6.3.24)
with
= 1 ,n—1/7
Bi= 16y P
dB = ———1-y3 *3 [dm + 2m.D dy]
16 (6.3.25)
B, = __1_ 2
k 16y m
|
dB = —1—6y3 *3 [dp + 4yn(p — n)dy] .

The Bianchi identities on F(sy and the integrability condition for (6.3.17) give three second
order differential equations on m,n and p which, together with (6.3.18), give a system of
nonlinear coupled elliptic differential equations

y3 (6% + 82)n + 8, (y*T0yn) + y*0, [T*(yDn + 2y°m(n — p))] + 4°DT?*n =0

y* (0} + 8)m + 8, (v*T?8ym) + 9, (v*T*2mD) = 0

v (82 + 82)p + 4, (y3T2<9yp) + 0, [y3T24ny(n - p)] =0

OyInT=D.

(6.3.26)

6.4 AdS; x YP4 solutions

Taking solutions for the m,n,p,T function of the previous Chapter which have rotational
symmetry in the {z*, z?} plane, the bosonic symmetry is enhanced to R x SO(4) x SU(2) x
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U(1) x U(1). We will first consider a subset of solutions which preserve 8 supersymmetries
(the generic solution preserves only 4 of them as explained in the previous section). The
well known AdSs x Y? [107] are clearly contained in this subset: the round $° is a factor
in AdSs, as suggested by the analysis in [17], with R x SO(4) the non compact version of
U(1) x SO(4) C SO(2,4), while the remaining SU(2) x U(1) x U(1) is the isometry group
of the generic Y?¢ metric.

6.4.1 Constraints for enhanced supersymmetry

Since the solutions described in [17] generically preserve only 4 supersymmetries, the
AdSs x YP4 geometries will be specified by a set of constraints on the four functions
m,n,p and T. We will now show how these constraints arise.

The supersymmetry parameters that leave invariant our background are the solutions
to the Killing spinor equation

oxm = Vup + OFM1M2M3M4M5FM1M2M3M4M5FM7/) =0. (6.4.1)
As a consequence of the symmetry assumptions we look for a solution % of the form

YV=e@X®Xp)- | (6.4.2)

Here ¢ is an 8 component complex spinor and X, X are 2 component complex spinors
defined on the two 3-spheres satisfying

8« x=0  o3x=sx (6.4.3)

Vike) = bZUaX(b) (6.4.4)

where w?, w? are coordinates on the two spheres. V' is the covariant derivative on the unit
radius three sphere and s,b = £1. The spinor ¥ is a singlet under the SU(2);, isometry
of the squashed 3-sphere, while the spinors ¥ transform as the (0, ;) for upper sign and
(3,0) for the lower sign, of the S 0(4) isometry of the round S%, which is part of AdSs.

The analysis in [17] fixes b = s = 1, i.e. § has definite chlrahty in SO(4) and x is
highest weight of the broken SU(2)g. € is proportional to some gy obeying ESED = 1. Since
we have a doublet of X(1), the space of solutions is 2 dimensional and complex giving rise to
4 real preserved supersymmetries. We will show that AdSs x VP9 geometries are obtained
by requiring that spinors with b = —1, s = 1 are also solutions of the equations (6.4.1). In
this case there are two doublets of ¥ and thus 8 real solutions to (6.4.1). This agrees with
what one expects from the N' =1 SCFT side: there, out of the 4 pairs of Killing spinors
&2, A=1,...,41n the 4 of SU(4) of the N = 4 theory on R x $%, obeying

i
D&l = iﬁa”gf (6.4.5)
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only the SU(3) singlet &4 in SU(3) x U(1) C SU(4) survives in the N' =1 case. This has
SU(4) weights (3,1, %) and, picking the SO(4) inside SU(4) corresponding for example
to the first two entries, we see that it is a singlet of, say, SU(2); and highest weight of
SU(2)g in the SO(4) C SU(4). Furthermore the two signs in (6.4.5) correspond to the two
chiralities.of the SO(4) isometry group of S3. Since this S® corresponds to the S® inside
AdSs this checks with the above requirement of b = +1.

Due to the conditions on the spinor, ¥ and ¥ factorise in each component of the
gravitino variation equation which then becomes equivalent to the following system of
coupled differential and algebraic equations on !

- . o
V- ZF#,,E”mfym'yS[ns +iA,s — <¢-’+ V618 + i§s> 75&274 e=0 - (6.4.7)
s .1 A

5-‘0—1-")/50'1 + -2'@/)1 + G‘*‘ V’Yso'ls — 198 | V502 | € = 0 (648)
i 2\ .1 1, . T

5 2~ i V501 + 5@,@3 + §p3F'y5ols + o3| F— V5618 +1gs |ys62| e =0 (6.4.9)
i 1

i .. A~ =~ . . N

-2-b7502 + -2—@p - p<$+ V5618 + 195) 7502] e=0. (6.4.10)

Note that the first equation is a first order differential 4-vector equation for € while the
last three are algebraic 4-scalar equations.
~ We now express all the supergravity fields via the functions m, n, p and T of the previous
section. We are thus guaranteed that a solution to the above system with b = s = 1 exists
by the analysis in [17]. We now ask that a second solution to these equations exists for
b=-1,s=1.

We have used Mathematica to solve explicitly the equations. The existence of solutions
implies certain constraints on the background, which are more conveniently expressed in
terms of the metric entries as

1+ Ay = o2/
P~ p5 = 5%/t (6.4.11)
T28,In(p1/ps) [26%/ % — 2+ yy In(p1/ ps)] + [, In(p1/ps)]” = 0

where (7, ¢) are polar coordinates in the (z!, z?) plane. Notice that the first two constraints
together with the relation y = p;1p allow us to express the four functions p1, ps, g, A in

1For example the first equation is obtained as follows
- 1 . =
(Vp+MT) ¢ = (vu - ZngWEermPB' + Ay (23 - rlrz) —AuVs+ Mr#) Y=
- 1 5 ;A
= (Vu - Zpg,F,“,E"mI‘mI‘3 + AT+ M (T, + A,lpgl‘g)> S

~ 1 —y 3
= (V“ - ZPSFW; my o + Auos + M'yﬂ> 1 (6.4.6)
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terms of only one function. The last constraint together with the equation for 9,1 can
be used to eliminate T'. Moreover, the three second order differential equations that came
from the integrability condition for the 1/8 supersymmetric geometries are reduced to a
single equation which is more easily expressed in terms of the function z

Z= % [1 + tanh (_P_s%l-_{lﬁﬂ (6.4.12)

2/ 92
%a, (rorz) + yd, {ng [ays +45(1— 2)3-1-@-;———1} } =0 (6.4.13)

where the combination p?/p2 is given by

-1
2 14 /1 —484132
p y*z
;:;{: = 5 (6.4.14)

and T can be found by solving the third equation in (6.4.11). The solution is thus specified
completely by the single function Z. :

6.4.2 AdS; x YP? metrics

In this section, we are going to show how the AdSs x YP? geometries arise from the generic
description given above. As a first step we present the conditions that should be satisfied
by the 1/4 supersymmetric solutions in order that they factorise into,

AdSs x X5, | . (6.4.15)

for some supersymmetric five-manifold X°. These will turn out to be equivalent to a single
first order differential equation which implies the second order equation in (6.4.13). The
opposite cannot be proven as the generic solution preserving 8 supersymmetries does not
appear to be factorisable in general.

As a second step we will prove, by giving the explicit coordinate transformation to the
gauge in [107], that the X°® factor is indeed a generic Y9 manifold.

First of all we will change to the more convenient set of coordinates (3, p1, ¢, 9’ ) defined
by

Yy =p1p
r=r(p1,p)
¢ = q3+ it (6.4.16)

=1 -2yt —20¢ =1 — (2y+286)t— 26

Using the constraints in (6.4.11) the solution is completely specified once the explicit form
of the function r(py, ) is known.
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The last shift implies that the left invariant one-form o is shifted to o/ + (v+ cé)dt-{-
6d¢. With a slight abuse of notation we will keep calling this shifted one form ¢®. The
metric of (6.3.1) is thus

ds? = —h72(dt? + Vde)? + hZ%(Tzéijdmidxj + dy?)+
+ 7203 + 22 (o) + (62)°] + p3(0® — Audt — Agde)? =
= gndt® + g55df” + °dQ3 + 2g,5dtd¢ + 29, }dp1dp+
+ 900 + 95508° + A2 (01)" + (o) 7]+
+ 03 [0’3 + (v — A — E(Ap—6))dt — (Ay — 6)dq~5} 2 , (6.4.17)
with

2
gi = —h~2(1 + &Vy)% + a2h2g—;T2r2
3

2 2
p dlnr
%=*éP%T“(z;>

2
03 = —h2(1+ EVy)V, + eh?f’i:/*%n2

alnralnr
3~ Op1

P+ T2 (31n7‘)2
9p

2
_ —27,2 2P1 2 2
gngg—-——h V¢+h;)gTT

(6.4.18)

gp1p_h2zl [pp-f-TQ 2

2P1
9p1p1 = h "g

We recall the constraint on the metric components coming from the requirement of 1/4
supersymmetry,

2

]. + At = %
P3
54 6.4.19
A-d= (6419
P1

h=2 =5 + o}/ k.
In order that the metric factorises we need the dt o term to vanish which requires that

A+ EAy—8)=1. (6.4.20)
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Imposing also g,5 = 0 we obtain
2
5h2p—;T2r2 =h2(1+&V,)Vy. (6.4.21)
3

In order to have an AdSs factor we should have —g,; = L? + * which gives, using the last

relation
R2(14¢8Vy) = L2+ p°. (6.4.22)

We also demand that gz; = -L—%r%g which after a little bit of algebra gives

Olnr cp
0p T LE4p%

(6.4.23)

Requiring that we have a product metric means that we also must impose that g,,; = 0
which implies

Olnr __ ‘
= Flgmor. 6.4.24
op1 * P§L2 - Plll ( )
As a result we find immediately that
272
piL
Ipipy = ~5me—F 6.4.25
p1p1 ngz — p‘f . ‘ ( )
and . .
= (2B 4.
9= % ( p§> (6.4.26)

The generic solution to equation (6.4.23) for the upper sign is
r = (L2 + ) r o)k (6.4.27)
where we have extracted the pf for future convenience. (6.4.24) is an equation for ro(p;)

L?(p1 — 5%)

T = T 6.4.28
0(p1) p’{' — szl(plll _ 34) O(Pl) ( )
Using the last constraint in (6.4.11)
T8, In(p1/ps)[202 /05 — 2+ vy In(p1/ps)] + y[0; In(ps /p3)]2 =0 (6.4.29)
we can find T. Note that both the first order differential equation for T
OyInT =D (6.4.30)

and the second order equation in (6.4.13) are satisfied when ro(p;) satisfies the equation
(6.4.28).
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6.4.3 Relation to standard Y?? coordinates

Now we will give the coordinate transformation that takes the metric on X5 to the standard
form of the metric on Y9 as presented in [107]. We perform the rescaling

p— Lp, p; — Lp;, S— LS (6.4.31)

which puts the metric of AdSs into the form

~2

. d .
ds?yg, = L? ( — (P +1)dt* + = i T+ pzdﬂg) . (6.4.32)

while the metric on the “internal” part is

2 4
P71 2 1 4 72
dpi + = ( - —) do“+
L A

+2[(1)? + (03] + g2 (0® - (44 — 6)d9) 2} . (6.4.33)

dsg = Lz[

The standard form for the metric on Y7 [107] is,

I — i . o .
ds? = =— (362 + sin? 6d?) + Al —dj? + a(v) (d9) + cos Gd)?
w(j )q(y) 9 6.4.34
ac— 2 +7 2 (6.4.34)
+ w()) |da — ———2"—"(de) + cos d }
() |da = S22 @)+ cosdad)
with?
o 2(a—17?
w(y) = 2221
() = a— 3y + 2cf® (6.4.35)
q y - a— Qz
Recalling that )
Ji‘ —3(cos ¥ df + sin 1 sin 6 qu)
a? =—3(- smzpdé’ + cos7,b sin 6 d) (6.4.36)
o® %(dw + cos§ d@)
we immediately get .
P = g(l —cf) (6.4.37)
and
12 2+ ac® — 6¢j + 3c%) (6.4.35)

1= 18(1 = ¢p)

2Notice that the 7 of [107] has the opposite sign to that used here.
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Recalling that p? — p2 = 5*/p? we have

‘We also have

1 1

P3

Assuming that a = 8¢ and equating the d¢? component of the metric we get

i - ﬁ 2 A, —6 2 _ ~\ 12
= 2 | +r5(Ag = 6)° = w(9)B
¢ P3
which implies after some straightforward algebra that

1 c

= - =:L' .

The coefficient of the cross term dé o is

1, ~ac— 29+ 9%

Zp2(A, —6) = — i N

which implies that we must have § = —z-. We can therefore set
1

Using the expression for r
r=(L*+ ") *ro(p1) S

: . LXpi—-5%
rolen) = & ga = 5y o)

and the definition
A¢ = AtV¢ +=rg, InT

[NR

we get

which gives

1

=3
for ¢, & # 0. Finally, the matching of the d§? factor
1 2 1

902 — ot w(@)a(®)

(6.4.39)

(6.4.40)

(6.4.41)

(6.4.42)

(6.4.43)

(6.4.44)

(6.4.45)

(6.4.46)

(6.4.47)

(6.4.48)

(6.4.49)

is identically satisfied. Finally, we observe that the polynomial ¢(§) = a — 33* + 2ci®,
whose zeroes §; and g, (with §; < 0 and g the smallest between the two other positive
zeroes), determine the range of §, §1 < § < @, can be expressed in terms of p; as ¢ =
—27(08 — p* + S*)/4. Notice also that in the metric (6.4.34) any non zero value of ¢ can

be reabsorbed in a rescaling of § and a. We may thus set ¢ = 1 whenever ¢ # 0.
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c¢=0 case

Let us now take a look at the singular case

c=¢=0

(6.4.50)

which corresponds to the Sasaki-Einstein internal manifold Y*° = 75!, From the equations

(6.4.21),(6.4.47) we can immediately obtain

1
V=0
and from (6.4.37),(6.4.38),(6.4.39)
2
p? peerd p3 perd —3—
4
S 57

The equation for p; implies that

2 5.
y-\/;Lp.

Given these explicit values for p; and ps, the last constraint in (6.4.11)

T8, 1n(p1/ps) [203/ 0% — 2+ y8, In(p1/ps)] +y[8: n(p1/ps)]” = 0

is automatically satisfied.
The metric on the internal manifold becomes

d 2

r

ast = 17 | Sr(ry

where

T = (5" + 1)T§nr)2

is such that 7' solves the equation

OyInT =D <= 0;InT =

T+ ad) 4 20 4 ()] + (0" - (4 - 5)a)

(6.4.51)

(6.4.52)

(6.4.53)

(6.4.54)

(6.4.55)

(6.4.56)

(6.4.57)

We now match this expression with the one in [107]. For ¢ = 0, a can be reabsorbed in

a coordinate redefinition. We set, for convenience,

a=3
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and obtain,

1— ¢

1, . o 1 o Al n
? = 2(df® + sin® 0d¢?) + ———d)* + < (d 6dg)®
ds 6( + sin ¢>+6(1-g}2) ] +3(3_52)(¢+cos ?)
" 9 (6.4.59)
.2 v 5 A1t
+2(3—y ) da + w(d¢+0089d¢)
Assuming, as in the generic case, that a = —¢ and equating the gs, and g, components
- we get .
Ay —0=-39 (6.4.60)
and 5
-2-7—2 +4F =23 -9%) = T =401-¢). (6.4.61)
Assuming r = () and equating the d§? term gives
Olnr 1 1—-9 F1/12
o e AR te=) (6462

where X is an arbitrary constant and we fix A\ = 1. We are now able to determine the
constant ¢ through the equation

1 1

which fixes the upper choice for the sign and

1
6=—3. (6.4.64)

In order to bring the metric to the standard 7! form we set

§ = —cosf (6.4.65)
which gives
~\ 1/6
0 / -2
r = | tan 3 , T=4sin"f (6.4.66)
and thus
ds§ 1 ) 2572 1 A2 - A1l 1 2 Aq7 ~17\2
Iz = 6(dé? -+ 36sin” d¢”) + —é(de +sin fd¢?) + 5 () +cosfde + 6 cos bdg)” (6.4.67)

which is the 7% metric up to the trivial rescaling

¢— =¢. (6.4.68)

(o R o)
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6.5 Asymptotic expansion for half BPS states in AdSsx
yPa

In this section we study generic asymptotic perturbations of the AdSs x YP¢ geometries
that preserve 1/2 of the bulk supersymmetries. We relax the constraints of (6.4.11) which
give back AdSs x YP? and solve the differential equations (6.3.26) with the boundary
conditions that the solutions approach AdSs x Y77 at large distances (including also the
particular case ¢ = 0). We will work in the mixed coordinates (y, %) or (y, ) and solve the
equation in an expansion for large y, with the simplifying assumption that the solutions
are invariant under shifts in ¢. We make the following Ansatz for the expansion of our
functions,

o=y =) (14 05 + 0 Z) (65.1)
= L\/ e D (1 @S+ 0% ) 652
5= ;@’; (6.5.3)
Y T O e 650

r =y ro (). (6.5.7)

This expansion reproduces the ¢ = 0 limit upon setting a = 3, as in the previous section.
In these coordinates, the condition (6.4.28) becomes

2 + ac® — 6cf) + 3c2?

The functions m,n, p are given by

1
m = — 6.5.9
PR W] (6:5.9)

(1+ At)P%

n— 6.5.10
PP 0% AV (6.5.10)

2
f1 . (6.5.11)

P= PR+ (1+ Aed
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The constraints in (6.4.11) and the equations (6.4.12) are satisfied at leading order in y.
We rewrite the generic equations (6.3.26) in polar coordinates dividing them by 72 and
exploiting the U(1) symmetry of our solutions

2T2 7"8 (ré.n) + 8y (v 38yn) + %9, [(yDn + 2y*m(n — p))]
+2y°D(2n+ yd,n +yDn) =0
2T2 70, (ré,m) + 9, (y 38ym) + 0, (y*2mD) + 2Dy*(6,m + 2Dm) = 0 (6.5.12)
3
2T2T<'>‘ (réwp) + 8y (v°8yp) + 8, [y*4ny(n — p)] + 2Dy*[B,p + 4ny(n — p)] =0
8,InT =D
where
R df cro(f) d df
Ofy,9) = | = —52% | + 5 6.5.13
vf (6. 9) yl.  2rp(9) dyl, dyl, (6:5.13)
. df ro(9) df ,
rO f(y, ) =r = — = 6.5.14
fly.g)=r 3 =w@ A, ( )

The generic asymptotic solutions to these equation are specified, at each order, by 7
integration constants. As in [17], requiring regularity of the solutions implies that not all
of them are independent and indeed we have only three independent integration constants.

For the case of T'! asymptotics, specified by ¢ = 0 the first subleading corrections are
given by:

pgl)(é) = —k+ C; cosf (6.5.15)
P80 (8) = o1V (6) + KV(6) (6.5.16)
EM(0) =k (6.5.17)
Agl)(é) = C, — 4C, cos § - (6.5.18)
2 i 4
£ (F) = L*\/2/3(1 + 9k) sin @ (6.5.19)
tan 2
V2 (6) = —gog sin?f ~ (6.5.20)

118



while in the generic case we get:

W), ARCK +9Ak + 4§BCY]
p(0) = 2 ; 2772
6(2 + ac® — 6¢y + 3c27?)
@) = (@) + KV (9)
Al4LK +9( — 2 + 8¢ — 3¢%3® — ac*(4 — ) k]
6(2 + ac? — 6y + 3c¢%3?)
—4c2A3K 2A 4
AW 5y = —(Cy — -AC
. (#) ((2+ac2 — 6cy + 3c29%)? T 3AeT
9 Ala®E + §P(12 — 26cp + 21c%)? — 6¢°9°) + 2a(—2 + 3¢ — 339 + )]
2LB

KO () =

k

_ A(4L — 27k)

() = 2

where

A=1-cy

B =2+ ac® — 6cj? + 2ci)®
K =a-3)*+ 2
L=1-ac

The three arbitrary integration constants, Ci,Cy, k will turn out to be related to the
supergravity dual of the flavour and baryon charge of the solutions. The second order
regular solutions are rather complicated. In general, they will involve new integrations
constants together with an inhomogeneous part. The expressions for the inhomogeneous
part can be found in the Appendix.

As already noticed, any c # 0 can be reabsorbed by a redefinition of U and so we set
c= 1L

6.6 U(1) charges

We will now show how the first subleading corrections described in the previous section give
rise to the Kaluza-Klein reduction of type IIB supergravity on the Y7 manifolds respecting
the symmetry of our Ansatz. We will calculate the global charges of the solutions under
three U(1) massless KK gauge fields living in AdSs; two of them can be identified with
the KK modes of the metric associated to the Killing vectors 8, and 0, and which are
dual to the flavour and R charges of the dual quiver gauge theory (more precisely to linear
combinations of the charges) while the third one is associated to the expansion of the RR
4-form potential on the cohomology of Y74 and it is dual to the baryon charge of the gauge
theory. Since the third Betti number of such manifolds is one there is only one baryon
charge.
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In general the metric on the compact manifold is modified by the metric KK gauge
fields

ds® = gag(de® + KFALdz#)(de? + K7 ALdz”) (6.6.1)
where £¢ are coordinates in Y?? and z* in AdSs and
K; = K[0, I=1,...,n (6.6.2)

are n Killing vectors of Y?9. In our case only two gauge fields are turned on and they are
‘associated to 9, and 9;. We denote the two global gauge charges respectively as J and @.
The leading order of the corresponding gauge fields A;, Ag is thus given by

J Q

A= ?dt Ag = ;3-2—dt. (6.6.3)
The metric is modified by the shifts
dp — dep + det (6.6.4)
da — da + ﬁ—idt (6.6.5)
to .
ds2-2 = 1= (d6? + sin? 6d¢?) + ———1——@2 9y )(dw + th+ cos Adg)>

(ﬁ)q(ﬂ) 9
X J —20+ y c Q ’

Given the expression above for the metric and the solution of the equations of motion
up to the first sub-leading order we obtain

Q@ =3Cy — 20, (6.6.7)

Similarly, in the case of T*! we have

ds?[ 2 = %(dé2 + 36sin? H(d¢ + ﬁidt)Z) + -é—(dé2 + sin §d¢?) +
Q J 2
(dw + = dt + cosfdé + 6 cos H(dg + dt))” (6.6.9)
with

Q=30 (6.6.10)
J=-C) (6.6.11)



R-charge and Reeb vector

In order to correctly identify the R charge we proceed as in [109, 107, 119]. We define the
new coordinates

Y =9 (6.6.12)
= —6a + c1p (6.6.13)
In this coordinate system we can write the metric as a local U(1) fiber over a Kahler-

Einstein manifold and ¢’ is a coordinate on the local U (1) fiber. From (2.17) of [107], we

have R N X R
A0 = (92 + ()2 + (€9) + (¢°)7 + ()7 (6.6.14)

where the one forms on Y77 are,

\ 1 — ol - \ l—ci) . . =
ef =/ 6cyd9, e =1/ 6Cysin0d¢, (6.6.15)

1 . wq PO '
V= oV 2
e mdy , € 5 (dB + ccos6dg) , (6.6.16)
7 1 ~ A A A A
eV = g(—dgb’ — cos0d¢ + §(dB + ccos6dg)) . (6.6.17)

As noted in [109], the R-symmetry is identified with a shift in the angular variable

Yr = -9/ (6.6.18)

at constant . As a consequence, the U(1) R-symmetry gauge field is given by
1

Ap = _‘2‘AQ (6.6.19)
and 1
Qr= 5@ (6.6.20)
The associated Killing vector is given by
c
Kp=-20; - gﬁa (6.6.21)

which coincides with the Reeb vector of the Sasaki-Einstein manifold. Notice that our
Reeb vector differs by a factor of 2/3 from the one in [93],[107].
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6.7 The 5-form and baryon charge
The self-dual Ramond-Ramond field strength Fi5) can be written as

Fisy = Fs +*10F5 - ‘ (6.7.1)
With our conventions and ﬁormalisations, the leading order for 75 is given by

Fo = L*Vol(Y™9) | (6.7.2)

where Vol(Y??) is the volume form of the unit radius ¥Y?9. The background metric is
perturbed by the KK gauge fields as described in the previous chapter: the field strength
is also perturbed in order to satisfy the equations of motion. The corrections are known
to be of the form [109, 119, 120]

Fi=L'd(AgAwg+ AjAwy+ Ap Awsg) . (6.7.3)
The Y79 three forms wy are defined by
dwr + LKIVOZ(Yp’q) =0 (6.7.4)

where Ky, I = J,Q is the Killing vector of Y79 associated with the A; gauge field. The
3-forms w; g are clearly defined up to the addition of a closed form. The 3-form wp is the
generator of the one dimensional cohomology of the Sasaki-Einstein manifold and Ap is
the gauge field dual to the baryon current of the CFT. The arbitrary shift by a closed form
of the wy g corresponds to the possibility of shifting the mesonic symmetries of the theory
by an arbitrary baryonic one.

In the case of generic YP? for ¢ # 0 we obtain the following form for the subleading
corrections to Fis),

2 k7 i s
_7-'51=—~—-dp/\dt/\{4 [<a3—3g(1—;§/)da)/\01/\02— o /\da/\dyJ

21 -9)?
Q a—-lg a—2@(a—-1)—-3@2+2@3 5 5 2+ a — 67 + 37>
— d A A
A 20— 9) @) TR T g
J a—2y+y a-2ay+y i 5 a— 2§+ 9* 3 R
— da | A A\ _———0> Ada Ad
3[( 20— 9) T

+ ;—th A ( —~ Q(l—g‘?-/lda - J—4—(—1—;—y—)03) AdgAc Ao (6.7.5)

o Ada A dgj]

while for the case ¢ = 0 and going to the natural coordinate (6, ) defined by (f,a) =
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(—cosf, —¢) we get
Fl= -—ﬁ%dﬁ A dt{ _Z '(203 - 6cos(§dg5> Aot Ao? = 3sinbod AdiA dgli]

1. o A .1 . 3 5
+X (§ 3—cos9d¢> /\al/\02+§sin903/\d9/\d¢]

JI/ 4 -5 1 T T T SO B
+= <——§ cos o + 51 +7c:0829)dq5) Aot Ao® + -2-sin2«9c73 Adé /\d¢} }
1 9 4 5 T I )

+§dt/\ Q§d¢+J—9-a Asinfdf Ao Ao (6.7.6)

- The volume form on Y79 is given by®

Vol(YP9) = —ef AP A Aeb A e = Zl(l—g—(iy—zdyj AdaAdt Ao Ac®, (6.7.7)

and we define the three forms
wize’ﬁl/\(eé/\e‘iieg/\eﬂ) =

1/ 4 —ch) ;5 1 ~
=3 (203(1 —cf) — 6Qda> A (?-gg—q—@al Ao*F —?;dg} A (co® + 3da)> (6.7.8)

The local Kéhler form Jy is given by

j 7 o 1 Y
Jo=ene? —el Nef = §de¢ (6.7.9)

The closed form wp is given as in [119] by
wp = -—————9—-———(172 - *w_ | (6.7.10)
872(1 — c)?
With this normalisation and assuming that Ap = %—fdt, the baryon charge @p is given by

2

Q= Wk (6.7.11)

In the case of T™' and recalling the change of coordinates (, o) = (— cosf, —@) we get

2 . < - A -
Wy = <§a3 — 2cos Odqﬁ) A (gal A o £ sin §df A dgb) (6.7.12)
with 9
Wp = gpw- (6.7.13)

3The orientation is chosen to satisfy (6.7.2)
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and

Op = %fk (6.7.14)
We now rewrite the expansion of F; as
Fi=L'3(ArRANwr+ Ag Aws+ Ap Awp) . (6.7.15)
where )
Ap=—3Aq,  As=—64,—Aq | (6.7.16)

are the gauge fields associated to the Killing vectors

1 1
Kp=-20; — 580, Op = —gﬁa . (6.7.17)
The remaining 3-forms are given by
1
WR =~ G+ (6.7.18)
_ (a-2947) 5 (23, 3 ~ -

wg = 18 g A i No 2(1_@)2d0z/\dy + (6.7.19)

a—2aj+9° i, 5

——— e No“. .

180 —7) daANo' Ao (6.7.20)

It can be shown without difficulty that they satisfy the expected relations

dwp + L(_z%_%aa)VOZ(Yp’q) =0, (6.7.21)
dwy + LaBVOZ(Yp’q) =0. (6.7.22)

6.8 Mass in Asymptotically AdSs x X°

In this Section we derive the expression for the mass in the asymptotically AdSs x YP¢
spacetimes under examination. There has been a considerable amount of work over the
years on the definition of mass and other conserved charges in general relativity. The issue
becomes even subtler in the case of the definition of the mass in asymptotically AdS spaces.
For example, the standard expression given in terms of a Komar integral gives a divergent
result in this case and the procedure of renormalisation is ambiguous. We will follow the
definition of conserved charges given by Wald and collaborators [118, 117], which provides
a possible general framework for addressing this issue, and apply it to our case for the
computation of the mass. Since our solutions mix, beyond the leading order, AdS and
VP4 coordinates, it is natural to take a ten dimensional approach for the definition of mass
as it has the advantage of being relatively simple both from the conceptual and from the
technical point of view. A different approach to this problem, more holographic in spirit,
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which uses a detailed analysis of the KK reduction of the 10 dimensional theory to AdSs
has been recently followed in [121].
The main result of this section is to prove that, with the adopted definition of mass,

the expected BPS relation

ML = gR, (6.8.1)

which follows from the A" = 1 superconformal algebra on the field theory side, is satisfied.

6.8.1 Definition of charges in asymptotically AdSs x X5

We are dealing with an asymptotically AdS; x X° spacetime, where X is a compact
manifold.

It is convenient to choose coordinates such that, defining a radial AdS coordinate Q,
goa=L?/Q® and goyr =0for M #£Q, M denotmg a ten dimensional coordinate. We W111
also denote the AdS coordinates with p,v,... and the internal coordinates with a,b, .. ..
At leading order for large Q2 we have

2
ds® = % [dQ? — de® + dQZ] + L2ds*(YP9). (6.8.2)
We will keep corrections to orders Q% with k = 0,1,2 for the AdS part, 9w, k=1,2
for the internal, gas, and mixed parts, g,, respectively. There are of course corrections of
higher order in 2 to the background 5-form given by the volume forms on AdSs and Y4
which we will discuss later.

In general the construction of conserved charges proceeds as follows: let us denote for
the moment as ¢ the generic field appearing in a Lagranglan L. The variation of the
Lagrangian with respect to ¢ is given by

5L = E(p)bp + db(p, 5) . (6.8.3)

where E(y) denotes the equations of motion. This defines 6, corresponding to the boundary
term that arises from integrating by parts in order to remove derivative of § @. It is a 9-form
in spacetime.

We will be interested in the following asymptotic symmetry generator

0
"ot
We want to identify the Hamiltonian generator H; of this symmetry The value that it
takes on our solution will be the definition of the mass of the metric?. He is defined via

its variation with respect to a generic fluctuation ¢, obeying the linearised equations of
motion in a given background obeying the full equations of motion [118]:

§H, = / (6Qc —&-6) (6.8.5)

0%

(6.8.4)

4We are specifying here to a particular symmetry generator since we are interested in the mass, but
the same procedure con be applied to the most general asymptotic symmetry generator [118].
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where ¥ is a 9 dimensional submanifold of the spacetime without boundary, a “slice”

corresponding to the vector field £. By the integral over 0¥ we mean a limiting process in

which the integral is first taken over the boundary 0K of a compact region inside > and

then K approaches ¥ in a suitable manner. The 8-form @), is the Noether charge of the

asymptotic symmetry £. It has a contribution coming from the gravitational lagrangian:
1

grav . __ bec ) 8.
Lo =~ Tgmg Y € benrran (6.8.6)

where € = /= det g d'%z is the volume form. Also, the gravitational contribution to 6 is:

1
grav. _ "~ .0
b s 167G 7™ (6.8.7)
with
v = V64,2 — V%6g,° (6.8.8)

Finally, the RR 5-form contributes both to Q¢ and @, giving rise to a single term in the
combination 6@Q¢ — & - . With our normalisation for the 5-form F5, the final result for 6H,
is

' 1 V Tav a a
0He = /32 Tem (—5@? — &% (V%40 ag — 128Fa1...a55Aa6...a9)) (6.8.9)

where F®) = dA®.
Under mild assumptions [118], a necessary and sufficient condition for the existence of
He is the integrability of the equation for H, :

(5152 - 5251)7"‘5 = O . (6810)

1.€.
0 =& [0:20(¢, 6150) — 626(0, 620)] (6.8.11)

When this condition is satisfied it is guaranteed that there exists an 8-form /. exists whose
variation is

0l =0Q—§&- 0. (6.8.12)
The value of the global charge associated with the asymptotic isometry generated by ¢ is
given by a simple “surface” integral, up to an arbitrary constant which can be determined
by fixing the value of the charge for a “reference solution”,

He = / Ie + HZ. (6.8.13)
oz

Notice that the 8-manifold A% in the present case reduces asymptotically to S x Y, where
5% is a 3-sphere of radius L/ inside AdSs. The existence of H can be explicitly checked
for a background with the asymptotic behaviour we have discussed above for the metric.
The expression for #97* in our gauge is proportional to

€07 (5g) = (226(9™MBagart/9) — 9" \/9(Babgmn — Top89p)) €san sy (6.8.14)
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One can verify, using the asymptotic expansion for the metnc given before, that 6,0(d59) =
0. The crucial fact for this result to hold is that 6,/g = +g™Vgyn = (’)(Q) This is satis-
fied by our BPS solutions, but can be proven to hold more generally, even for non necessarily
BPS solutions of the equations of motion, given an appropriate asymptotic behaviour [94].
One can similarly verify that the contribution of the 5-form to 6 is integrable.

Once we have verified the existence of H, we can define the mass of a generic solution
M to the equations of motion as the value of H¢ on such a solution

My =He,, . (6.8.15)

6.8.2 Calculation of mass and R-charge

We will now proceed to the calculation of the mass and R-charge for the solutions we have
described in the previous sections. We are interested in the dependence of the mass M
on the integration constants, Cy, C3 and k. Therefore we will compute, 2 5 M and 2 3k , by
puttmg into the formula (6.8.9), the expressions for the background given by our solutions.

«Using the expressions for the leading order, first and second subleading orders for the
metric and the 5-form given in 6.6 and in the Appendix one can calculate

oM / ( 0 oraw k
— —Qg — & 9 ) = O
ak S3xYr.a 6 5
R oM grav — mL?
o /S . (a R ) 2 (6.8.16)

oM 0 grav 2 wL?
- = — —£.6%2) = 3
803 ‘/‘;'3 xYP.q ( 302 QE § ) 4G5

where G is the 5-dimensional Planck constant Gs = G1p/Vol(YP9) and

% ! a a b
9a1.‘,_a9 = Tore [(V°8i9,* = V8igy") €aar--as — 128 Fy...a50; Aag.ap) (6.8.17)
ith
v g=2 9 (68.18)
"0k’ AC; e
Putting everything together we conclude that:
wL? wL2Q

M=—— iC. ——(2C, = 3Cy) = — TRk (6.8.19)

where we have set the integration constant to zero. Some comments are in order here.
First note that the 8-form to be integrated involves directions orthogonal to ¢t and €. The

relevant contribution from the 5-form is of the type F(51)235 A ;123, which turns out to be

0. (4) ; 2 6 () (5)
of order Q°: 8A¢123 goes like Q% and Fﬂ¢123 a A¢123 ~ §2. On the other hand, F 2155

the dual of the latter, goes like Q =2, Therefore the 5-form term gives a finite contrlbutlon
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to 8;M. The gravitational contributions to 0; M on the other hand contain terms of order
1/2, and are therefore potentially divergent. However the coefficients of these terms turn
out to be total derivatives in the internal coordinates: more precisely, the coefficient is
proportional to s q( j), therefore it gives a vanishing contribution after integrating over g
between the two zeroes of ¢(9), §1 and J,. Although here we are making reference to our
BPS solutions this fact can be proven more generally [94].

Let us now proceed to verify the BPS relation between the mass M and the R-charge
R. With our normalisation of the Reeb vector, the BPS relation is given by

ML= gR (6.8.20)

where R is the charge which sources the KK gauge field Ag. The ﬁve dimensional equation
of motion for its field strength F¥ are given by

Trrdxs PR =% J%. (6.8.21)

where J% is the one-form charge current and 7gr comes from the KK reduction. Taking
the integral of the equation of motion, the total charge R can be read from the flux at
infinity of the field strength ' :
R = lim 7gg FE (6.8.22)
oo Js3(p)
where S3(p) is the three dimensional sphere in AdSs at constant t,5. In Section 6.6 we
derived

rR. @
~ ——di 6.8.23
A 572 (6.8.23)
at leading order in large 5. Following [122] we have
TRR = — /% YRUOL(YPY) = ! ' (6.8.24)
167TG10 RYR 127TG5

where we have used gygy, = 5 as can be seen from (6.6.17) and (6.6.18). We can now

explicitly write the value of the total R charge

QL?

R= —127I'G5

Vol(S®) = 3ML (6.8.25)
which satisfies the expected relation.
Let us mention that we have also computed M using a 5-dimensional definition involv-

ing the intrinsic 5-dimensional Wey! tensor due to Ashtekar and collaborators [116] and
rederived in [117], ‘

1 -
=M=— E.vol(S°® 8.2
He -t /S 00l(S%) (6.8.26)
where 1
Ey = 59“2@2&9. (6.8.27)
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where Cipeq is the Weyl tensor of the unphysical metric § = Q%g. Beyond leading order
AdSs and YP4 coordinates mix, so, in general the metric on the deformed AdS; depends on
the choice of the 5-dimensional slice inside the 10-dimensional manifold. The calculation,
done using our explicit form of the perturbed metric and allowing a slice dependence on the
internal coordinates, actually reveals that the slice dependence drops out in the Weyl tensor
and gives the correct result for the mass, as in the previous 10-dimensional computation.
The degree of generality of this result is under investigation [94].

6.9 Observations and discussion

In this paper we have performed an asymptotic, large distance, analysis of 1/2 BPS states
in TIB supergravity AdSs x Y74, The corresponding differential equations are the same as
those found in [17], where 1/8 BPS states of IIB supergravity on AdSs x S° were analysed.
The difference resides in the boundary conditions, here we require solutions which are
asymptotic to AdSs x YP9. They carry non trivial charges under the asymptotic isometries
which are dual to the R-charge and one U(1) flavour charge of the quiver gauge theories.
Wehave shown that the charges are consistent with the holographic principle which in this
case relates V' = 1 quiver gauge theories to gravity on AdSs x Y?4, These geometries are
therefore the exact analog of those found in [12] for the maximally supersymmetric case.

In the course of the analysis we had to cope with the problem of defining the mass of
the states in the asymptotically AdSs; x YP¥ spacetime. We adopted a ten dimensional
approach, which uses the definition of charges given by Wald and collaborators. It gives a
finite (and correct) result. We had indications, however, that at least for our backgrounds
an expression due to Ashtekar and Das [116, 117], which involves the intrinsic Weyl tensor
in the deformed AdSs, also gives the correct result. This leads one to ask in the finiteness
of the Wald et al. expression can be established in more general terms without relying on
a particular form of background. That is, one would like to prove in general, assuming
just that the equations of motion hold and with the asymptotic behaviour of the fields
implied by AdS/CFT correspondence, that potentially divergent terms are total derivatives
in the internal compact manifold. Similarly, it would be interesting to see under which
circumstances the ten dimensional approach finally coincides with the 5-dimensional one
of Ashtekar et al. This is still an problem at the moment.
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6.10 Second order solutions

We give here the complete expression for the second order solutions

pD(9) = —(L8(=1+c))?((—4+4ac®+27k)?(—80+496c) — 584 *§° —2696¢%)° + 116669
—19494c%9° + 16281c%° — 6696c™)” + 1080c®® + a®c®(—65 + 72 + 20247)+
+a2ct(50+82¢f+159¢%2 75232 +380c *) +ac? (—40—56cj+ 756> — 3572 * +6449c* § +
— 4536¢°° + 1080c%3°))+
—8(—=1+ac?)(—4+4ac®+27k)(2+ac® —6cj+3c*§%)(—204cfj(4—84C, ) — 26435 (1+4C)
+120c*9*(14+4C;) + c*92(133+ 552C ) + ac® (5 — 60C; + 20¢*7*(1+3C ) + 2¢(§ + 549C1))
+32(=1+ac®)?(2+ ac? — 6¢f + 3¢?9%) (=10 + cfi(2 — 84C1) + 10c*)*(—1 + 10C,; + 27C%
+ac? (=2 (17+41C1)+10¢*(§+3§C1 ) ?+5(3+8C, —6C2) ) —2c* 3 (1+143C; +270C3+30C;
232(29 + 252C1 + 180C2 + 90C5))))/(4320(~1 + ac?)?(2 + ac® — 6¢f + 39%)%)

+
+
+
.+.

~— N N

P2 (@) = o (@) + ED(9)

ED(9) = (L8(L — cL)*(((1 = ) (16(=1 + ac?)?* (=1 + c)(2 + ac® — 6cj + 3c*§*)?

(11 4 4ac® — 30cf + 15¢%5°%) — 4(—1 + ac®)(—4 + 4ac® + 27k)(2 + ac® — 6¢j) + 3¢*9°)
(—44+284cj—576c2 42 +4263 5 —90c* §* —9c°§° +a’c* (— 14-+5¢)) +2ac* (— 34+103cj— 72>+
F12639%))+ (—4+4ac?+27k)2 (a3 P (11+ch)+6ac (— 1 T+25c)— 21297+ 7 P) + 3ac®(— 36 +220ci+

— 324c*)? + 2003G° — 51t + 3¢%7)°) + 2(—22 + 202¢f) — 666c29% + 894c%)° — 531t +
+1175)))/ (1= ac?) (2+ac® —6ci+3c*9%)?) — 12¢(4a® P (—4—8C, +Te(§+2§C1 ) +6Cs )+
+ §(27k(2 — 8¢ + 3>7%) (1 + 2C1) — 4ef(—3 + 2¢§)(—4 — 8C + Te(§ + 29C1) + 6C2))+
+ac(4e(=T+27k)(14+2C; ) +56c*)* (1+2C;) ~ 493 (29+58C, — 12C,) +8(2+4C; — 3Cy)+

— 3¢%2(=16 + 9k — 320, + 18kC; + 24C5)))))/(648(2 + ac® — 6¢f + 3c*?)?)

tD() = (L3(=1 + c)*(2187k3(—1 + ¢f)*(—2 + 14cf — 9% + ac® (=7 + 4cf)) +
= 216(=1+ ac®)k(—1+ c))(2 + 2a°¢* + 27¢%)° — 45°5°+
+ 18c4* + ac?(—13 + 9cf)) + 16(—-1 + ac®)?(=9(=1+ ch)*(2 + ac® — 6cj + 3c*)*)+
+8(—1+c)) (24+ac®—6¢j+3*9)*Cr+1/1—ac?(3(—(=1+ac?)2Cy—3(=1+ac?)? (= 1+cf)*Co+
+27(=1+¢)’C[3] = (=1 + ac®) (=1 + c)3(—4 + 4ac® + (9 — 9¢))C2))))))/(216(1 — ac?)
(24 ac® — 6cj + 329%)%)
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Chapter 7

Conclusions and perspectives

The AdS/CFT correspondence is a very promising tool for the understanding of quantum
.aspects of gravity and dynamical aspects of gauge theories. In this Thesis we mainly focused
on gravitational aspects of the correspondence. In particular, in Chapter 4 we have shown
how a class of gravitational singularities and pathologies such as closed timelike con be
interpreted in the CFT and how unitarity of the CFT provides a mechanism for their
resolution.

. Later on we have shown how it is possible to study the correspondence in less supersym-
.metric case. We have first studied a class of 1/8 BPS asymptotically AdSs x S° geometries.
" They are described by a set of four functions which are defined on a half space and obey
a set of non linear elliptic differential equations. Solutions are thus specified by boundary
conditions. It has been possible to correctly identify the boundary conditions at infinity
which give rise to asymptotically regular solutions. Unfortunately, although a discussion
of regularity of the geometries on the other boundary, a 2-plane, is not hard, it looses
part of its interest since it is not possible to have control on regularity of the full solutions
in the bulk. This is mainly due to the complexity of the elliptic equations involved and
we do not exclude that it is possible to find a solution to this problem in a reasonably
short time. It would be helpful to identify some already known regular solutions which
are inside the class we have studied: looking at their structure, one can and try deduce
which conditions must be generically satisfied to guarantee regularity. Once this has been
achieved, a second step would be to identify singular spacetimes in this class in order to
see if the dual CFT picture has something to tell us about the way Strings resolve such
singularities, as happened for example in the half-BPS case.

A natural extension of the work in Chapter 5 has lead us to study the half BPS sector
of more general formulations of the AdS/CFT correspondence. A certain class of N =1
quiver gauge theories are conjectured to be dual to Type IIB String theory on AdSs x Y
backgrounds. Y?9 are Sasaki Einstein manifolds and the product with AdSs gives 1/4 BPS
Type IIB solutions which are inside the class of 1/8 BPS geometries we have considered. In
this setting it has been possible to perform a construction which closely-recalls the original
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LLM picture: an interesting subset of the half supersymmetric sector of this correspondence
has been considered and dual geometries have been constructed. Unfortunately, things
are more complicated in this case and a nice picture as in LLM is not possible at the
moment. Again, boundary conditions at infinity can be correctly identified and lead to
asymptotically regular spacetimes. Some subtleties arise in this case in the calculation
the mass, or energy of the excitations. A direct Kaluza Klein reduction over Y?? to five
dimensional gauged Supergravity is not possible because non abelian metric gauge fields
source massive excitations of the AdSs metric [115]. A full 10 dimensional approach is due
here: we applied a general procedure due to Wald and collaborators to our case. In this
setting, it would be interesting to ask a series of questions analogous to the ones we posed
for the previous case, namely if it is possible to identify regular solutions and, once this is
done, if it is possible to identify some mechanism for the resolution of singularity. Moreover
if we were able to complete this task at least partially in both the sectors, a comparison
of the two would make possible to recognise the generality of the adopted mechanisms
for the resolution of singularities. Another interesting point concerning asymptotically
AdSs x YP9 gpacetimes is related to the possibility of counting mesonic and baryonic
states: this problem has been approached and solved recently in the dual field theories
[123], and the correct mapping to the Supergravity side would be highly desirable.
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Appendix A

Conventions

We set up our conventions for the wedge product of 1-forms

1 :
ay A A Qp = ;—1—' ZO’(’L)Q@U) R R ai(’n) (AO].)

where the sum is over the n! permutations 7 and (i) is the parity of the permutation.
An n-form o in a d dimensional space (o € A,,) is given by

1
o= Ay, dzf Ao Adahr = E,—am.‘.#ndx“‘ A=+ Adxhn (A.0.2)

with ay, ..., the complete antisymmetrisation of &,,...,,.
When a metric is present we can introduce the Hodge dual

i Ay — Ay (A.0.3)

Given a d-bein of the metric {€™},21 .4,

*eM AN =

(d — n)' €m1,...mn;mn+1,..- ,mdemn+1 /\ ce /\ emd (AO4)

where indices are lowered with the tangent space metric. From this definition it follows
that

A ’
*dzht A - Adatn = xghk .. cgrrEne e €A N e =

— ML ... ghnb .. L, T Mg 1,0+ g e =
=g~ g "Cmyuf € Emnsa N\ Nemy =

Emnbh ()

1 ! ’ 4 !
pRY VOG- gt e ATt A Adzta L (ALD.5)

- d

(

The exterior derivative of a 1-form is defined by
B =da=0,0,dz" Ndz" = %(Bua,, - 0,0,,)dzH A dz” (A.0.6)
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or in terms of components f,, = 0,0, — 0,a,. The generalisation to any n-form is given
by

f=da= }Tayaul...yndfc“ Adz"t A--- Adam =
n!

1 1 /
= (n+ 1)!6[Mavl"~1/n]dmu Adz"™ A---Adr™ = m,@w...yndmm A---Adz" (A0.7)

where noW Buv;.vn = O[uQy,...,,) and square brackets indicate antisymmetrisation without
normalisation.
The torsionless spin connection 1-form is defined by the structure equation:

de® +wi Aeb =0. (A.0.8)

Requiring metricity of the connection
Wap = —Whg (A.0.9)
allows us to explicitly express wy, in terms of the d-bein (E, are the inverse d-bein vector

fields, defined by e® - Ey = 62),

Wep = —deg - By +dep - Eg + % (e [Ea Br]) ec =

1 1
= l: - _é (aueau - aueali) E‘/b + —2— (aﬂeby - 81/6’3#) Eva—'_
1, ., v
+ 55 (B%0.E%, — E%0,E%,) ceu d =
1 1
- [ - 5 (81160,11 - 31/&1/4) EVb + 5 (aﬂebl’ - aVeb#) EVG+

- —;—E”a (8ue, — B,e5,) precu] dzt =

= —de, - By +dey - E, — (E, -de’ - Ey)e. (A.0.10)
where in going from the second to the third line we have used
0= 0uNap = Oy (€aw B") = (Ouar) B + €au (OuE™) - (A.0.11)

This is an explicit realisation of the identity

1
V-da-W:§d(a-W)-V——;:d(a-V)-W—%a-[V,W], (A.0.12)

which holds for any one form a and any pair of vector fields V, W.
The covariant derivative of a spinor is given by

1
Vb = 8,0 + Zwaburarbw. (A.0.13)
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Group manifolds

Consider a Lie algebra of vector fields on a d-dimensional group manifold. It is a d dimen-
sional vector space of vector fields satisfying

[Ea, Eb] = fop Ee- (A.0.14)

The exterior derivative of the dual one forms is given by

1
ogpe® A€l (A.0.15)

de = =
€T3

These are the Maurer Cartan 1-forms. Indeed, we have

1

E,-def- E, = §aabc (A.0.16)
and according to (A.0.12)
1
Ea - de - Eb = -——2-66 . [Ea, Eb] (A017)
which give
‘ an’ = —fu’- (A.0.18)
The Lie derivative of a 1-form is defined by
(Ljw) K =0k(w-K)—w-[J,K] (A.0.19)
and thus
Lp,e® = —f,°" (A.0.20)

Taking these e® as the d-bein, the spin connection on the group manifold is given by

1 1
Wabe = 5(’“acba + Qeap + fabc) - '2‘(fcba - fcczb + fabc) . (A021)
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