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ory 53

3.1 The Thomas-Fermi approximation . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 An improvement of Thomas-Fermi theory: the von Weizsäcker correction . 54
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Introduction

Since its theoretical foundation established in the 1960s [1, 2], Density Functional Theory

(DFT) has increasingly gained attention, and, in fact, has become nowadays a standard

tool for electronic structure calculations of atoms, molecules, solids and complex mate-

rials. Although DFT is an exact theory for ground state properties for any electronic

system, an approximate treatment of the so-called exchange-correlation (xc) energy is

required in practical applications. DFT with two widely-used approximations, namely

the Local (Spin) Density Approximation (LSDA) [2, 3] and (many flavors of) Generalized

Gradient Approximations (GGA) [4], has given many spectacular successes in predicting

and explaining the properties of electronic systems, such as cohesion, bonding, structures,

vibrations, etc. There exist many systems, however, where DFT within LDA and GGAs

performs poorly, if not fails completely. They can be divided into two classes: sparsely

packed systems having small overlapping density where long range correlation effects are

important, and strongly correlated systems. The failure of DFT in the latter is attributed

to the strong and localized electron-electron interaction that makes the non-interacting

electron picture become not suitable. As for the former, the poor performance is due to

the local (LDA) or semi-local (GGAs) nature of these approximations which obviously

can not give a good description of systems with important long-range correlation effects.

These kinds of systems are frequently met in nature, e.g. in bio-molecules, as well as in

physical and chemical processes, such as, for instance, in absorption on surfaces, chemical

reactions, etc.

During the past decade, many attempts have been done to improve performance of

DFT in description of sparsely packed systems. The natural way is to include non-local

1



2 Introduction

correlations, an important ingredient missing in both LDA and GGAs. Obviously the

picture of a slowly varying density, that is the basis in the development of LDA and

GGAs, does not help much. In searching for a truly non-local functional, the Adiabatic-

Connection Fluctuation-Dissipation (ACFD) [7] theory plays a special role. In this formal-

ism, the exchange-correlation (xc) energy can be expressed in an exact formula through

dynamic response functions of all fictitious systems which connect the non-interacting

Kohn-Sham (KS) system with the real many-body interacting one. The formalism pro-

vides not only a theoretical framework for systematic developments of truly non-local

functional but also a practical way to calculate xc-energy accurately. In fact, all of the

limited number of successful DFT descriptions of van der Waals systems start with the

exact expression of correlation energy derived from this formalism. These descriptions

ranges from crude approximations using electron-gas local response functions [8, 9] to the

direct evaluation of the exact formula for the correlation energy which is unfortunately

very demanding [10, 11, 12, 13, 15].

In the former approach, the exact adiabatic-connection formula for the correlation

energy is simplified in term of the dielectric function which is then approximated by

using locally the dielectric function of the homogeneous electron gas calculated for the

local density [8]. This approach has been applied to study a number of van der Waals

bound systems with some successes. In a few first applications, the correlation energy

was obtained from post-DFT perturbative calculations, i.e. without any self-consistency.

Very recently [9], the procedure has been made self-consistent although it is still much

more expensive than standard DFT. In our opinion, this approach could demonstrate to

be a practical way to overcome the limitation of LDA-GGA-type functionals in many

systems. However, more calculations need to be performed to validate the method. As

for the latter, correlation energy is also calculated in a post-DFT procedure but without

any simplification of the adiabatic connection formula. Exchange and correlation are thus

treated on the same footing in this approach. Despite of the fact that one still needs

an approximation for xc-kernel, it has been shown that by using the Random Phase

Approximation (RPA) – the most computationally convenient approximation – plus a
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local-density correction for short range correlation, one ends up with a reasonably good

description of the van der Waals energy [12, 13, 15]. This type of calculation is, however,

computationally very demanding which is the most important practical limitation of this

approach.

In our opinion, more calculations and further developments need to be pursued in order

to explore the potential offered by an approximate treatment of ACFD formula for the

calculation of accurate exchange-correlation energies. In the present thesis, we will present

our approach, from both computational and physical point of views, aiming at building

a realistic, computationally efficient description of van der Waals, or, in general, long

range correlations, in DFT based on ACFD formula. We will present our implementation

for direct evaluation of RPA correlation energy based on calculation of eigenvalues of

response functions which has several advantages comparing to existing implementation.

We will also investigate the possibility to simplify the description of frequency-dependent

response function, the key quantity in the calculation of the correlation energy in ACFD

formalism, by using Thomas–Fermi–von Weizsäcker (TFvW) approximation for kinetic

energy functional.

The thesis is organized as follows. After this short Introduction, we will present in

Chapter 1 basic concepts of electronic structure theory with emphasis on Density Func-

tional Theory in the plane-wave pseudopotential approach. The failure of LDA and GGAs

for van der Waals systems and the need for the development of new approaches will be

discussed at the beginning of Chapter 2. We then will recall the formalism by which

exchange and correlation energies of an electronic system can be expressed in term of

linear response functions through an exact formula. Our efficient implementation for the

calculation of correlation energy in the RPA is also described here with some technical

details of its implementation in plane-wave pseudopotential method. To validate the im-

plementation and to improve its efficiency, we have chosen bulk silicon system as the

test ground to perform a detailed analysis of relevant issues. We will then apply our

approach to study the system of Beryllium dimer where LDA or GGA fails qualitatively.

Although EXX/RPA+ study of this system has been performed in the past [12], we will
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show that our calculation is more accurate and the result will demonstrate that in fact

special care must be taken in the calculation of both exact-exchange and RPA correla-

tion energies. Chapter 3 will be devoted to the discussion of approximate linear response

functions using the non-interacting Thomas–Fermi–von Weizsäcker kinetic energy func-

tional. Applications of the methods described in Chapter 2 and Chapter 3 to study some

test cases will be shown in Chapter 4. We will first present the results and comparisons

for the asymptotic long-range interactions via van der Waals coefficients of atoms and

molecules calculated both from exact and approximate response functions. We will also

demonstrate the efficiency of our implementation of ACFD formula for the calculations

of correlation energy of atomic systems. The potential of TFvW approximation to cap-

ture the essence of long range correlations will be discussed on the basis of the results of

correlation energies obtained for atomic and molecular systems.



Chapter 1

Basics of electronic structure

calculations

1.1 Theory of electronic structure

Quantum mechanical simulations of electrons and ions is no doubt one of the most pow-

erful tools that people have at present for explaining and predicting a vast range of

phenomena in (low-energy) physics, chemistry and biology. In quantum theory, electrons

and ions are described by a mathematical object called wave function. Although the wave

function does not represent any physical quantity, its square modulus is interpreted as the

probability density of the distribution of particles. The distribution, or more generally

the dynamics, of electrons and ions is the key ingredient for understanding the behaviors

of the systems they constitute.

1.1.1 Schrödinger equation

From the theoretical point of view, knowing the wave function is enough to describe all

the properties of the systems. It is postulated that the wave function is the solution of

the well-known Schrödinger wave equation

ĤΨ = WΨ, (1.1)

5



6 Chapter 1. Basics of electronic structure calculations

where Ψ and W are the wave function and total energy of the system, respectively. The

non-relativistic Hamiltonian Ĥ is written explicitly for systems consisting of N electrons

and M nuclei as

Ĥ = T̂e + Ûe−e + Ŵe−n + T̂n + Ŵn−n

=
N∑
i=1

(
− h̄2

2me

∇2
i + v(ri)

)
+
e2

2

∑
i 6=j

1

|ri − rj|
+ T̂n + Ŵn−n,

(1.2)

with

v(ri) = −
∑
α

e2Zα
|ri −Rα|

and Ŵn−n =
e2

2

∑
α 6=β

ZαZβ
|Rα −Rβ|

. (1.3)

The operators in (1.2) are associated, respectively, with the kinetic energy T̂e of electrons,

electron-electron interaction energy Ûe−e, the potential energy Ŵe−n of electrons moving

in the field of nuclei of charge Zα, the kinetic energy T̂n of nuclei, and the Coulomb

interaction energy Ŵn−n between nuclei. Equation (1.1) is an eigenvalue equation for

N -electron-M -nucleus many-body wave function Ψ(r1, ..., rN ; R1, ...,RM) with Hermitian

operator Ĥ. The Hamiltonian is too complicated for a direct handling, neither analytically

nor numerically. Approximations are therefore needed for more realistic and practical

descriptions.

1.1.2 The Born-Oppenheimer approximation

In finding a possible simplification of the full N -electron-M -nucleus Hamiltonian, a natu-

ral question comes out first: Since electrons and nuclei are very different, is it possible to

handle them separately? The answer, to a very good approximation, is yes. This is the

well-known adiabatic or Born-Oppenheimer approximation [16]. The physical reason for

the excellent accuracy of this approximation rests on the fact that electron mass is much

smaller than that of nuclei (usually me
M

is between 10−4 and 10−5). As a consequence, the

typical electronic time scale is much shorter than that of nuclei and the dynamics of the

system can be obtained, to a good approximation, by first considering the nuclei fixed

at positions R1,R2, ...,RM and determining the corresponding ground state (GS) energy

of electrons, Eel({Ri}. Then the electrons no longer appear explicitly in the equation of
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motion for the nuclei which is determined by the nuclear kinetic energy and an effective

potential Eel({Ri}) + Enuc({Ri}), which is called (GS) Born-Oppenheimer potential en-

ergy surface. Mathematically, this approximation allows to write the total wave function

as the product of the wave function of nuclei and electrons

Ψ({ri}, {Ri}) = Φ({Ri})ψ({ri}; {Ri}), (1.4)

where Φ({Ri}), in the adiabatic approximation, is the solutions of the equation(
− h̄2

2Mα

M∑
α=1

∇2
α + Eel({Ri}) + Enuc({Ri})

)
Φ({Ri}) = EΦ({Ri}), (1.5)

and ψ({ri}; {Ri}) satisfies the Schrödinger equation for the electrons in the fixed positions

of the nuclei(
− h̄2

2me

N∑
i=1

∇2
i −

N∑
i=1

M∑
α=1

e2Zα
|ri −Rα|

+
N∑
i=1

N∑
j>i

e2

|ri − rj|

)
ψ({ri}; {Ri}) =

Eel({Ri})ψ ({ri}; {Ri}) ,

(1.6)

and depends parametrically on the atomic positions {Ri} only through the external po-

tential. Although, the Born-Oppenheimer theorem allows to work with the much simpler

problem of considering motions of electrons and nuclei separately, the problem of the

electrons only itself is still a many-body problem. Solving the equation for electrons (1.6)

is the main task of computational electronic structure theory.

1.1.3 Methods for quantitative electronic calculations

Due to the presence of non-local Coulomb interaction, there is no way to solve this many-

body Hamiltonian directly by analytical methods, even for the simplest case of Helium

atom. On the contrary, numerical methods for finding the ground state solution work-

ing directly with this Hamiltonian is possible. The very first quantitative calculations

for atomic systems had been done soon after the advent of quantum mechanics, as, for

instance, variational calculation of ground state of Helium atom by E. A. Hylleraas [18],

or self-consistent field calculation by D. R. Hartree [17] (later improved to include ex-

change effect by V. Fock [19] forming the well-known Hartree-Fock method which is still
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widely-used nowadays. These early calculations are prototypes of many modern methods

for electronic structure calculation. The greatest challenge of electronic structure theory

is the electron correlation. Although the effect of correlation through the Pauli exclusion

principle, the electron exchange, is properly treated in Hartree-Fock method, total elec-

tronic energy includes additional correlation originating from electron-electron interaction

which, in many cases, is very important and difficult to describe. Correlated methods of-

ten used by the quantum chemistry community, such as Configuration Interaction (CI),

Many-Body Perturbation Theory (MBPT), while giving accurate description of electron

correlation, are very expensive and can be applied to study systems with a number of elec-

trons not larger than a few tens even with modern computational facilities. Mean-field

independent-particle methods are rather cheap compared to the correlated ones. However,

their early developments usually did not give very accurate results since correlation due

to electron-electron interaction was not taken into account. The advent of Density Func-

tional Theory in the 1960s, with a constantly improved quality of exchange-correlation

functionals and with many technical developments for solving the independent-particle

equations, has made it the most widely used approach for quantitative calculations on

realistic problems in physics, chemistry and materials science nowadays.

1.2 Density Functional Theory

Unlike other mean-field independent-particle methods, the one based on density functional

theory gives, in principle, an exact description of the electronic ground state. Approxi-

mation is then needed in practical applications, but in the elegant formulation of Kohn

and Sham [2] both exchange and correlation effects are taken into account which make it

supersede other approaches. Contrary to traditional many body wave-function methods

where a mathematical quantity, the wave function, is used to describe the electronic sys-

tem, in DFT, a measurable physical quantity, the electronic density, is used as the solely

needed variable. This has a conceptual advantage because when the number of electron in

the system increases, the wave function, which depends on 3N variables for a system of N
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electrons, becomes a very complicated object while the electronic density always depends

only on 3 spatial variables. The description of electronic system in term of density is

made possible by the fact that any property of a many-body interacting particles can be

viewed as a functional of the ground state density [1].

The idea of using the density to describe properties of electronic systems had actually

appeared in the work by Thomas and Fermi long before the foundation of DFT [20, 21].

At that time, it was not known whether the energy functional could be formally written

in terms of the density only, and, in fact, the energy functional was derived from the

heuristic argument. Since exchange and correlation among electrons were neglected in

the theory, it is not accurate enough for practical purposes. However, the extension by

Dirac [22] to include a local approximation for exchange, which is still in use today, did

not help much because the local-density approximation for the kinetic energy adopted in

the Thomas-Fermi theory is too crude.

1.2.1 The Hohenberg-Kohn theorems

Hohenberg and Kohn have proven two theorems allowing to formulate density functional

theory as an exact theory of many-body systems [1]. This remarkable result of DFT was

proven by surprisingly simple reductio ad absurdum arguments. The first theorem states

that the ground state density n0(r) of a bound system of interacting electrons in some

external potential Vext(r) determines this potential uniquely up to an additive constant.

This means that n0(r) determines both the number of electrons N and the external po-

tential Vext(r), the quantities which fix the Hamiltonian. Therefore, n0(r) determines

implicitly all properties which are derivable from the Hamiltonian of the system. The

second Hohenberg and Kohn theorem states that the ground state energy, the most im-

portant property of the electronic ground state, is a functional of n0(r) and satisfies a

variational principle, i.e. n0(r) minimizes the following energy functional

E[n(r)] = F [n(r)] +

∫
drVext(r)n(r), (1.7)
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where F [n] = T [n] + Eint[n] includes all internal energies (kinetic and potential) and

is a universal functional (in the sense that it is independent of the external potential

Vext(r)). Unfortunately the Hohenberg and Kohn theorem gives no information about how

to construct this universal functional for an interacting system. All direct approximations

of this functional in term of the density alone, e.g. the Thomas-Fermi-Dirac theory, give

poor results. It is the approach proposed by Kohn and Sham in 1965 that has made DFT

the most widely used method for electronic structure calculations.

1.2.2 The Kohn-Sham equations

In a seminal paper follow the theoretical foundation of DFT, Kohn and Sham [2] developed

a good approximation for the functional F [n] by introducing an auxiliary system of non-

interacting electrons which has the same ground state density as the interacting one. In

this way the functional F [n] can be decomposed as

F [n] = Ts[n] +
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n], (1.8)

where the first term Ts[n] is the kinetic energy of the non-interacting system, the second

one is the classical electrostatic interaction energy of the electronic density distribution

(including the self-interaction), and the last one is called the exchange-correlation energy,

Exc, and is defined by equation (1.8) itself. More explicitly, Exc can be written as

Exc[n] = T [n]− Ts[n] + Vee[n]− e2

2

∫
n(r)n(r′)

|r− r′|
drdr′. (1.9)

In this form, it is clearer that all many body effects are included in Exc. Minimizing the

energy functional E[n] defined by equation (1.7), with the constraint that the integration

of the density gives the correct number of electrons, is equivalent to solving the set of
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self-consistent equations, called the Kohn-Sham equations

− h̄2

2m
∇2ψi(r) + VKS(r)ψi(r) = εiψi(r),

VKS(r) = Vext(r) + VH(r) + Vxc(r),

VH(r) =

∫
n(r′)

|r− r′|
dr′, Vxc(r) =

δExc(n)

δn(r)
,

n(r) =
∑
i∈occ.

|ψi(r)|2.

(1.10)

This is a nonlinear system of equations because the Kohn-Sham potential VKS depends

on the solutions {ψi} through the dependence of the Hartree and exchange-correlation

potential (VH and Vxc) on density n(r). Once the functional Exc[n(r)] is explicitly defined,

the Kohn-Sham equation can be solved self-consistently, for instance, by a variety of

numerical methods. It is worth mentioning that the self-consistent solution of the Kohn-

Sham equations in two widely used LDA and GGA approximations for the xc-functional

is minimally more difficult than the solution of the Hartree equation and much easier

than the solution of the Hartree-Fock equations. This makes the method computationally

attractive.

1.2.3 Approximation for exchange-correlation functional

So far DFT has been presented as a mathematically exact formulation of electronic struc-

ture from the perspective of the electronic density n(r). On a concrete calculation, a

practical approximation for functional F [n(r)] in the Hohenberg-Kohn formulation, and

for Exc[n(r)] in the Kohn-Sham formulation is needed. Clues for finding an efficient ap-

proximation are obviously out of DFT scope; they must come from the physics of electronic

structure. It is intriguing to write the exchange-correlation functional as

Exc[n(r)] =

∫
εxc(r; [n(r̃)])n(r)dr, (1.11)

where εxc(r; [n(r̃)]), a functional of density n(r̃), represents an exchange-correlation energy

per particle at point r. In the limit of the homogeneous electron gas, the effects of exchange

and correlation are local in character; εxc is a function of the density which is a constant
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over the whole space for this specific system1. Naturally the same function would be

a good approximation for an inhomogeneous system with slowly varying density when

applying locally this functional form (thus the name Local Density Approximation.) As

pointed out in the original paper by Kohn and Sham, solids can often be viewed as close

to the limit of homogeneous electron gas. And experience has shown that LDA and its

extension to deal with spin-polarized systems (LSDA) work remarkably well. The success

of LDA when applied to solids (and also atomic or molecular systems to a lesser extent)

is far more than originally expected, regardless of inhomogeneity of these systems. For

weakly correlated materials like semiconductors and simple metals, LDA gives accurate

descriptions of structural and vibrational properties: lattice constants, bulk moduli and

phonon vibrational frequencies are typically accurate to within a few percent. For cohesive

energies of solids, dissociation energies of molecules and ionization energies of atoms, the

LDA gives less accurate results, typically within 10 − 20%. In modern implementation

of LDA, the functional form of the correlation energy density is parametrized from the

very accurate data calculated by using Quantum Monte Carlo methods [23] and can be

considered an exactly known function.

The success of LDA has led to the development of many extensions by including also

the gradient of the density into the functional, resulting in various Generalized Gradient

Approximations (GGAs) [4], which, in many cases, give remarkable improvement over the

LDA, especially for cohesive and dissociation energies. Another approach for the extension

of LDA is the hybrid method proposed by A. Becke in 1993 [5]. A hybrid functional

incorporates a portion of exact exchange from Hartree-Fock theory with exchange and

correlation from other sources, e.g. in LDA or GGAs. This approach is particularly

useful when energetics is concerned and is used popularly in the chemistry community.

1The form of the function was already known, though not very accurately, before the seminal work of

Kohn and Sham.
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1.3 Solving Kohn-Sham equations: Plane-wave pseu-

dopotential method

The Kohn-Sham equations (1.10) can be solved, for a periodic system, either by using a

discretized form of the linear differential operators and orbitals on a grid in real space or

by expanding the orbitals in a complete set of known functions called a basis set, such

as, for example Gaussian functions, atomic orbitals, plane-waves, etc. By expanding into

a basis set, the integro-differential KS equations are transformed into the algebraic ones,

which can be solved by a variety of available numerical methods. Among various options

for solving the Kohn-Sham equation using a basis set, we restrict our discussion to the

case of plane waves (PW).

The Plane-Wave basis set. Plane-wave basis set has many advantages: the matrix

elements of the Hamiltonian are simple, the basis functions are orthonormal by definition,

unbiased by the atomic positions so that they give the same accuracy at every points in

space and thus having the ability to accurately describe different kinds of structure. The

convergence of the calculation with respect to the quality (in this case is the size) of the

truncated basis set can be simply checked by increasing the kinetic energy cutoff used to

define which plane waves are included in the basis. Besides these attractive features, the

existence of fast Fourier transform (FFT) algorithms [24] gives computational advantages

to plane-wave basis set. Because the potential term in equation (1.10) is diagonal in real

space while the kinetic term of the same equation is so in reciprocal space, this algorithm

allows a fast transformation from one to the other space and vice versa thus allowing an

efficient application, for instance, of the Kohn-Sham Hamiltonian to a trial wave function.

The basis of orthonormal plane waves consists of functions

|q〉 =
1√
Ω

exp(iq.r), (1.12)

where Ω is the volume. The orthonormality property requires the condition

〈q′|q〉 ≡ 1

Ω

∫
Ω

exp(−iq′.r) exp(iq.r)dr = δq,q′ . (1.13)
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Kohn-Sham equation in the plane-wave basis set. In a periodic system, the or-

bitals can be required to be normalized and obey the periodic boundary conditions. Using

the fact that any periodic functions can be represented by a set of Fourier components,

the eigenfunctions of the Kohn-Sham equation (also called Kohn-Sham orbitals) can be

written as

ψi(r) =
∑
q

ci,q.
1√
Ω

exp(iq.r) ≡
∑
q

ci,q|q〉 (1.14)

The KS equation (1.10) in Fourier space reads

∑
q

〈q′|ĤKS|q〉ci,q = εi
∑
q

〈q′|q〉 = εici,q. (1.15)

The matrix elements of the KS Hamiltonian consists of two parts with different repre-

sentation in Fourier space. The matrix element of the kinetic energy operator is simply

derived

〈q′| − h̄2

2me

∇2|q〉 =
h̄2

2me

|q|2δq,q′ . (1.16)

The potential VKS(r) is periodic and can be written as the sum of its Fourier components

VKS(r) =
∑
m

VKS(Gm) exp(iGm.r), (1.17)

where Gm are reciprocal lattice vectors, and

VKS(G) =
1

Ωcell

∫
Ωcell

VKS(r) exp(−iG.r), (1.18)

with Ωcell the volume of the primitive cell. Therefore the matrix elements of the potential

operator

〈q′|VKS(r)|q〉 =
∑
m

VKS(Gm)δq′−q,Gm , (1.19)

are not zero only if q and q′ differ by a reciprocal lattice vector Gm. If we introduce the

vector k inside the first Brillouin zone such that q = k + Gm and q′ = k + Gm′ , then

the KS equation for a given k couples only the coefficients ci,k, ci,k+G1 , ci,k+G2 , ... corre-

sponding to plane waves whose wave vectors differ from k by a reciprocal lattice vector.

Therefore, the original equation is separated into many independent equations, each of
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them corresponding to a vector in the first Brillouin zone. Changing the summation index

from q,q′ to m,m′, the KS equation with a given k vector in matrix form reads

∑
m′

Hm,m′(k)ci,m′(k) = εi(k)ci,m(k), (1.20)

with

Hm,m′(k) =
h̄2

2me

|k + Gm|2δm,m′ + VKS(Gm −G′m). (1.21)

The eigenfunction ψi(r) corresponding to a solution of (1.20) can be written

ψi,k(r) =
∑
m

ci,m(k).
1√
Ω

exp(i(k + Gm).r) = exp(ik.r)
1√
Ncell

ui,k(r), (1.22)

where Ω = NcellΩcell with Ncell and Ωcell being the number of primitive cells in the volume

Ω and the volume of primitive cell respectively and

ui,k(r) =
1√
Ωcell

∑
m

ci,m(k) exp(iGm.r) (1.23)

It is obvious that ui,k(r) has the periodicity of the crystal and equation (1.22) is nothing

but the well-known Bloch theorem. We have seen that the KS equation (1.20) is inde-

pendent for each k vector in the first Brillouin zone. The eigenstates therefore can be

labelled by the wave vector k. At each k there is a discrete set of eigenstates labelled

by i = 1, 2, 3, .... In the limit of macroscopic system (large Ω), the allowed values of k

become very dense and the set of eigenvalues εi(k) become a continuous bands.

In principle, expansion coefficients and hence Kohn-Sham eigenstates at each k-point

are obtained from the solutions of the eigenvalue problem (1.20) in the basis of discrete

but infinite number of plane waves with wave vectors k + Gm. In practice, it is not really

so because one can take advantage of the fact that at high energy the Hamiltonian is

kinetic-energy dominated thus making high wave-vector components in the plane wave

expansion of the smooth and slowly varying valence functions small. The number of

plane waves needed to have a good representation of the occupied orbitals is therefore

small enough to make the numerical solution of Eq. (1.20) practical. Plane waves used

in calculation are usually chosen to have kinetic energy smaller than a given value called
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cut-off energy Ecut
h̄2

2me

|k + Gm|2 ≤ Ecut. (1.24)

As stated previously, convergence with respect to the number of plane waves can be easily

checked by increasing Ecut.

In atoms and molecules, the charge density and the wave functions in the bonding

and tail regions are slowly varying, and a plane-wave basis set could be used without any

problem. However, they still vary strongly in the core region, and the number of plane

waves needed to describe them well becomes intractable in practice. In order to use a

plane wave basis set, the core region needs to be treated in a different way. This is done

in the pseudopotential approximation briefly mentioned in the next section.

Pseudopotential method. Independent-particle wave functions of core electrons vary

strongly with nodes due to the strong Coulomb attraction of the nucleus and orthogonality

requirement. This makes the use of plane-wave basis set impractical. However, many

relevant properties of a system, e.g. bonding, chemical reactivity and response to external

perturbations, are mostly related to valence electrons only. In other words, core electrons

are quite inert to the act of external changes in many cases. It is therefore a good

approximation to consider the core electrons and the corresponding nucleus as a rigid

object. One can see core electrons as frozen in the nuclei and the sea of valence electrons

in matters as moving in a background of ion cores composed of nuclei and inert core

electrons. In this approximation, the effects of the nucleus and the core electrons on the

valence electrons via Coulomb interaction are replaced by an effective potential, which is

call pseudopotential. This potential must give nodeless pseudo wave-functions which are

identical to all-electron wave functions in the region outside a given radius and smooth

enough in the core region in order to be well represented by a rather small number of

plane waves in practical calculations.

Most modern pseudopotentials are based on the same idea, although they can be built

by different procedures. Pseudopotentials are constructed for isolated atom and then

used for calculations of molecular and solid systems. First, an all-electron calculation
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is performed, e.g by solving Kohn-Sham equation in a given DFT framework, for single

isolated atom in order to obtain the electronic states. Then the core electron states are

kept in the ground state of atomic configuration, whilst valence ones are pseudized in

such a way that they are unchanged in the region outside a cut-off, and are smooth and

nodeless in the region inside. The corresponding pseudopotential is found by inverting the

Kohn-Sham equation. The requirement that the norm of the wave functions, i.e. their

total charge, is conserved leads to the so-called norm conserving pseudopotentials [25].

This norm-conservation condition ensures the correct description of the atomic scattering

properties around the atomic reference energy and leads to much improved results with

respect to empirical pseudopotentials which are not norm-conserving.

Norm-conserving pseudopotential of elements like N, O, F and the first row of transi-

tion metals are still quite “hard”; significant amount of Fourier components are needed to

have a good representations. This can be remedied in a procedure proposed by Vanderbilt

called ultrasoft pseudopotential [26] scheme where the norm-conservation requirement can

be relaxed without compromising the atomic scattering properties and the pseudopotential

is chosen as smooth as possible to reduce the number of plane wave used in the expan-

sion. The usual Kohn-Sham eigenvalue problem now becomes a generalized eigenvalue

problem with the addition of an overlap operator which depends on the inonic positions.

The full electron density is obtained by adding an augmentation charge, localized in the

core regions, to the usual part coming from the square modulus of the orbitals as in the

norm-conserving case. This approach is technically rather complicated, but it has been

demonstrated to be extremely successful in practical electronic calculations.

The supercell approach for finite systems. The plane-wave pseudopotential method

was originally designed for infinite periodic system like bulk crystals. In many system,

such as atoms, molecules, surfaces, periodicity is not present at least in one direction. It

is also natural to think that for finite systems other methods, such as the use of localized

basis sets or solving KS equations directly on a real-space grid, are more appropriate. It

turns out, however, that plane-wave pseudopotential method is also very useful in study-
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ing systems lacking periodicity. This is done by using the so-called supercell approach.

In this approach, the system is artificially repeated to form a periodic system which is

suitably studied by plane-wave pseudopotential method. The supercell method should be

accurate if there is enough empty space between atoms or molecules in the artificially peri-

odic system in order to eliminate spurious interactions of the system located in a unit cell

with its periodic images. The need for a large image separation means that many plane

waves must be used. Nevertheless, due to the efficiency of the plane waves method this

has been proven to be an effective way of solving the problem. We will use this approach

together with plane-wave pseudopotential method in calculating RPA correlation energy

and van der Waals coefficients for non-spherical systems (molecules) presented later.

Developments and improvements of methods, algorithms as well as computational

facilities during last several decades have made DFT with plane-wave pseudopotential

method become the most widely-used tool in electronic structure calculation nowadays.

Plane wave pseudopotential method as briefly presented above for calculations of elec-

tronic total energy as well as many other quantities, such as, for instance phonon frequen-

cies, infrared and Raman cross section, electron-phonon interaction coefficient, etc, has

been implemented in the suite of code called Quantum-ESPRESSO [65].



Chapter 2

Correlation energy in the Adiabatic

Connection Fluctuation-Dissipation

Theory

2.1 Introduction

It has been mentioned in the previous chapter that the Local Density Approximation and

the Generalized Gradient Approximations for exchange-correlation functional describe

well many properties of both finite and extended systems. However, it is also well known

that DFT within LDA or GGAs fails in many other cases, for instance, in strongly corre-

lated materials and in a variety of weakly bonded compounds of which noble gas dimers

and solids, layered materials, and bio-molecules are a few examples.

The limitations of LDA and GGAs in describing weakly bound systems are due to

their local and semilocal nature. Nonlocal correlations, of which van der Waals forces

are one manifestation, are obviously out of the scope of LDA and GGA. During the last

two decades, there have been several attempts to overcome this limitation of LDA and

GGA. A simple and computationally convenient way is to add to the energy obtained

with traditional DFT calculations a dispersion energy contribution in the form of C6/R
6

19
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multiplied by an appropriate damping function that removes the divergence at zero sep-

aration of the fragments that constitute the system [27]. This approach has been applied

to study many van der Waals complexes with some successes [28]. The main limitation

is in its semiempirical nature; there is not a unique way to select the damping function

and C6 coefficients. There have been attempts, such as X3LYP hybrid functional [29],

to construct a “standard” xc-functional being able to describe van der Waals forces, but

with very limited success.

Recently, more sophisticated approaches based on the exact expression for the correla-

tion energy given by the Adiabatic Connection Fluctuation-Dissipation (ACFD) theorem

[7] have been shown to be a promising way to obtain accurate correlation energies of

electronic systems. Together with very accurate treatment of the exchange energy in the

DFT exact-exchange calculation, these approaches open a possibility to describe properly

van der Waals systems. These applications made so far range from atomic systems [6, 14]

to simple molecules [9, 10, 11, 12] and bulk solids [13, 15] with implementations based

on real-space radial grid, localized basis set and plane wave pseudopotential method.

This approach is however very computationally involved (even in comparison with the

exact-exchange calculation which is already much more expensive than standard DFT

within LDA or GGA.) This is probably the main reason why only a limited number of

applications of the method have been made so far.

In the following we will derive some expressions useful for the calculation of correlation

energy in the ACFD formalism. We will also present our implementation of the formalism

based on the framework of Density Functional Perturbation Theory [30], starting with

presentation of the formalism in a very general form, independent of the basis set. For-

mulae useful for practical implementation in the plane-wave pseudopotential method will

then be shown together with the application to bulk silicon system serving as a testing

ground. A variant of the implementation suitable for closed-shell atomic systems, where

one can take advantage of spherical symmetry property to solve equations on a radial

grid, will be described in the appropriated place in the following chapters.
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2.2 Correlation energy in the Adiabatic Connection

Fluctuation-Dissipation Theory

In this section we will re-derive the exact expression of exchange-correlation energy based

on the Adiabatic-Connection Fluctuation-Dissipation Theorem (ACFDT). Let us start by

considering a system consisting of N electrons interacting with each other via Coulomb

interaction and moving in an external local potential vext(r). The Hamiltonian reads

H = T + vext + vint, (2.1)

where T and vint are the kinetic energy and non-local Coulomb operator, respectively.

Let us call n(r) the ground state electronic density and introduce fictitious systems of N

electrons where Coulomb interaction between electrons is scaled by λ (0 ≤ λ ≤ 1) and

the external potential is vλext such that the ground state density is unchanged

Hλ = T + vλext + λvint. (2.2)

When λ = 0, these electrons are non-interacting and the corresponding auxiliary system

is nothing but the Kohn-Sham system and hence vλ=0
ext = vKS = vext + vH + vxc. In the

other limit, i.e. λ = 1, the interaction is the physical one hence vλ=1
ext = vext. If we denote

Ψλ the ground state of Hλ, then according to Hellmann-Feynman theorem

dE(λ)

dλ
=

d

dλ
〈Ψλ|Hλ|Ψλ〉 = 〈Ψλ|vint|Ψλ〉+ 〈Ψλ|∂v

λ
ext

∂λ
|Ψλ〉. (2.3)

Integrating this equation over λ between 0 and 1 we obtain

Eλ=1 = Eλ=0 +

∫ 1

0

dλ〈Ψλ|vint|Ψλ〉+

∫
dr n(r)[vext(r)− vKS(r)] (2.4)

With the following decompositions of energy functional

Eλ=1 = Ts + EH + Exc +

∫
vext(r)n(r)dr,

and

Eλ=0 = Ts +

∫
vKS(r)n(r)dr,
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we get the familiar identity

EH + Exc =

∫ 1

0

dλ〈Ψλ|vint|Ψλ〉. (2.5)

Now we will relate the integrand on the right hand side of the above equation to the

density-density linear response function at imaginary frequency χλ(r, r
′; iu). To this end,

we will first prove the following identity

〈Ψλ|vint|Ψλ〉 =
1

2

∫
drdr′

1

|r− r′|
{〈n̂(r)n̂(r′)〉λ − δ(r− r′)〈n̂(r)〉λ}, (2.6)

where n̂(r) =
∑N

i=1 δ(r − ri) is the number-density operator and 〈...〉λ means average in

the ground state corresponding to coupling constant λ. Indeed, we can write the left hand

side as follows

〈Ψλ|vint|Ψλ〉 = 〈Ψλ|1
2

∑
i 6=j

1

|ri − rj|
|Ψλ〉 =

1

2

∑
i 6=j

∫
dr1...drN

1

|ri − rj|
|Ψλ(r1, ..., rN)|2

=
1

2

∫
drdr′

1

|r− r′|
nλ2(r, r′), (2.7)

where the pair-probability density nλ2(r, r′) is obtained by integrating N − 2 arbitrary

variables of |Ψλ|2 and then multiplying by N(N-1) (the result is the same for any set of

variables because |Ψλ|2 is fully symmetric due to the indistinguishability of particles). On

the other hand, after inserting the definition of number-density operator, the right hand

side of Eq. (2.6) becomes

1

2

∫
drdr′

|r− r′|

∫
dr1...drN

{
N∑

i,j=1

δ(r− ri)δ(r
′ − rj)− δ(r− r′)

N∑
i=1

δ(r− ri)

}
|Ψλ|2

=
1

2

∫
drdr′

|r− r′|

∫
dr1...drN

{
N∑
i,j 6=i

δ(r− ri)δ(r
′ − rj) +

N∑
i=1

δ(r− r′)δ(r− ri)−

δ(r− r′)
N∑
i=1

δ(r− ri)

}
|Ψλ|2

=
1

2

∫
drdr′

|r− r′|
{nλ2(r, r′) + δ(r− r′)n(r)− δ(r− r′)n(r)}

=
1

2

∫
drdr′

1

|r− r′|
nλ2(r, r′).
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This is exactly the right hand side of the Eq. (2.7) and thus the identity is proven.

Next we introduce the density fluctuation operator defined by

δn̂(r) = n̂(r)− n(r). (2.8)

Putting n̂ = n+ δn̂ into the definition of the pair-probability density (by Eqs. (2.6) and

(2.7)) with the note that 〈δn̂〉 = 0, we have

nλ2(r, r′) = 〈Ψλ|δn̂(r)δn̂(r′)|Ψλ〉+ n(r)n(r′) + δ(r− r′)n(r). (2.9)

This equation shows that the pair-probability density can be expressed through the

ground-state density and the density fluctuation (the first term on the right hand side)

of the system. On the other hand, the latter can be related to the energy dissipation, i.e.

the imaginary part of the density-density linear response function, of the system by the

celebrated Fluctuation-Dissipation theorem, first derived in Ref. [31] and later restated

in DFT framework [7]. In this context, the relation between the pair-density nλ2(r, r′) and

density-density response function χλ(r, r
′; iu) reads1

−
∫ ∞

0

du

π
χλ(r, r

′; iu) = nλ2(r, r′)− n(r)n(r′) + δ(r− r′)n(r). (2.10)

Multiplying both sides with 1/|r− r′| and integrating over r, r′ and λ we obtain

− 1

2

∫ 1

0

dλ

∫
drdr′

1

|r− r′|

{∫ ∞
0

du

π
χλ(r, r

′; iu) + δ(r− r′)n(r)

}
=

1

2

∫ 1

0

dλ

∫
drdr′

1

|r− r′|
nλ2(r, r′)− 1

2

∫ 1

0

dλ

∫
drdr′

n(r)n(r′)

|r− r′|

=

∫ 1

0

dλ〈Ψλ|vint|Ψλ〉 − EH

(2.11)

Comparing with (2.5), we get an exact expression for Exc

Exc = − 1

2π

∫ 1

0

dλ

∫
drdr′

1

|r− r′|

{∫ ∞
0

χλ(r, r
′; iu)du+ δ(r− r′)n(r)

}
(2.12)

1It is more convenient to use the density-density response function at an imaginary frequency since

this quantity is a real and smooth (without pole) function on the imaginary axis.
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It is noted that if χλ in this expression is replaced by χ0 which is the density-density

response function of the (non-interacting) KS electrons, having the familiar expression in

term of KS orbitals, φi(r), KS eigenvalues, εi, and occupation numbers, fi,

χ0(r, r′; iu) =
∑
i,j

(fi − fj)
φ∗i (r)φj(r)φ∗j(r

′)φi(r
′)

εi − εj + ih̄u
, (2.13)

an expression similar to the one for the Hartree-Fock exchange but evaluated with the

Kohn-Sham orbitals instead of the Hartree-Fock ones is obtained

Ex = −e
2

2

∫
drdr′

|
∑occ

i φ∗i (r)φi(r
′)|2

|r− r′|
. (2.14)

The exchange-correlation energy can thus be separated into the KS exchange energy, Ex,

and the correlation energy, Ec. The former is represented by the Eq. (2.14) and is the

counterpart of Hartree-Fock exchange energy in the context of density-functional theory.

The latter, i.e. correlation energy, can be expressed in term of response functions as

Ec = − 1

2π

∫ 1

0

dλ

∫ ∞
0

du Tr{vc[χλ(iu)− χ0(iu)]}, (2.15)

where the notation Tr is the trace over spatial coordinates. The interacting response χλ

can be evaluated in the framework of time-dependent density functional theory by solving

the Dyson-like equation relating χλ and χ0 [32]

χλ(iu) = χ0(iu) + χ0(iu)
[
λvc + fλxc(iu)

]
χλ(iu), (2.16)

with the unknown exchange-correlation kernel fλxc(iu) needing to be approximated in

practical applications.

2.3 Practical EXX/RPA+ scheme for exchange and

correlation energies

Exchange and correlation energies calculated from equations (2.14) and (2.15) are ex-

act provided that exact Kohn-Sham orbitals are used. In practice, the xc-functional is
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not know and one can only use approximate Kohn-Sham orbitals to evaluate them. In

principle, one can make a self-consistent procedure by taking functional derivatives of Ex

and Ec with respect to the density to obtain exchange-correlation potential for the next

iteration. In fact, the calculation of exact exchange potential can be carried out routinely

at present for both molecular [33] and extended systems [34]. The evaluation of the cor-

relation potential in the ACFD theory is however a practically formidable task; almost

all of the calculations of correlation energy in this formalism made so far did not include

any attempt of self-consistency. The correlation energy is evaluated using LDA, GGA,

or EXX Kohn-Sham orbitals and energies as commonly done in excited state MBPT

calculations [35].

Practical calculations of correlation energy in ACFD theory still need an approxima-

tion for the xc-kernel in Eq. (2.16) in order to evaluate χλ. The knowledge that can

be used to construct a physical approximation for the xc-kernel is much less than that

for the xc-functional since xc-kernel also depends on coupling constant λ and imaginary

frequency iu. Several attempts have been spent on developing an approximate xc-kernel

[36], but very limited improvement has been achieved. Although xc-kernel is definitely

relevant in the determination of the absolute correlation energy of an electronic systems,

it is expected, and in fact there is some evidence that the choice of xc-kernel is not very

critical for evaluating structural properties [37, 38]. This is because structural properties

are determined by the energy differences between different configurations of an isoelec-

tronic system for which some degree of error cancellation can be expected. Nevertheless,

this is still an open issue [11], and there are several attempts to find an optimal xc-kernel

for correlation energy calculations [39].

Random Phase Approximation (RPA) corresponds to the simplest approximation

where the xc-kernel is completely neglected and it has been known to account for long

range correlation effects [7], but its description of short-range correlation is very poor [40].

The RPA correlation alone gives too large (in magnitude) correlation energy and it has

been abandoned for direct use in DFT calculations a few decades ago. Quite recently, it

has been proposed that the inaccuracy of RPA in the description of correlation energy
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can be improved by combining RPA with a short-range correction of LDA or GGA cor-

relations. Kurth and Perdew pointed out in Ref. [37] that the short-range correction to

RPA can be done in a local approximation, while gradient-correction contribution to this

correction are significantly smaller than those needed for the full correlation energy. This

suggests a procedure to obtain more accurate exchange and correlation energies which has

proven to describe properly several difficult systems in which long-range van der Waals

energy plays a crucial role.

The practical scheme, often called EXX/RPA+, which gives more accurate xc-energy

by combining the exact exchange and RPA correlation energy can be described as follows.

First, a standard DFT calculation with LDA (GGA) is performed to get the ground state

charge density. Then the exact exchange energy2 defined in Eq. (2.14) and the RPA

correlation energy defined in Eq. (2.15) is calculated using the DFT/LDA(GGA) charge

density as input. The local density correction is also computed from this density. Finally

the total energy of the system is obtained by replacing the LDA(GGA) exchange and

correlation energies by the exact exchange energy and RPA correlation energy with the

correction for the short-range part.

2.4 Existing implementations

As already mentioned in the Introduction, computation of correlation energy in ACDF

formalism is extremely demanding for general systems where chemically bonded regions,

e.g. in molecules or real solids, are fully treated in DFT calculation. In fact, the first im-

plementations of the method addressed very simple cases, such as model jellium slabs [56],

asymptotic van der Waals interaction of small atoms [6], or, with further simplification,

asymptotic interaction of any neutral fragments [67]. The first implementation which

includes the full treatment of chemically bonded regions only appeared quite recently by

F. Furche [10]. This implementation is based on atomic orbitals and has an unfavor-

2 Calculations of the exact-exchange energy in the present thesis will be performed as implemented in

the PWscf code [64]. See also section 2.6.2.
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able N6 scaling with N being the size of the atomic orbital basis. Applications of this

implementation were indeed limited to small atomic and molecular systems [10, 11].

Implementations based on plane-waves and pseudopotentials were developed quite

recently with better scaling as the fourth power of the system size. They have been applied

to study successfully several difficult systems where long-range correlation effects play a

crucial role, ranging from an improved description of equilibrium cohesive energies and

lattice constants of noble gas solids [15] to a successful description of very weakly bonded

Beryllium dimer [12], and hexagonal boron nitride (h-BN), the layer structure isoelectronic

to graphite [13]. In these implementations, one needs to solve the Kohn-Sham equation not

only for occupied but also for many unoccupied orbitals in order to obtain an accurate

representation of the Kohn-Sham response function from the explicit evaluation of the

expression in term of occupied and empty orbitals given in Eq. (2.13). This representation

is done in reciprocal space, resulting in a large memory requirement to store large matrices.

Interacting response functions at any given coupling constant, λ, and imaginary frequency,

iu, are then calculated by solving the Dyson-like equation (2.16) which now becomes

a linear equation relating full matrices. CPU time and memory requirements of these

calculations increase rapidly with kinetic energy cut-off, i.e. with the number of plane

waves used to represent the response function. It has been observed that correlation

energy converges slowly with respect to the cut-off energy. It is therefore unpractical to

apply the strategy of standard DFT calculation to get converged result, namely increasing

the cut-off energy until convergence. Practical calculations of the correlation energy are

usually performed for an energy cut-off as small as possible and then an extrapolation

scheme is used to get the correlation energy in the limit of infinite cut-off energy [13,

15]. Integrations over interaction strength, λ, and imaginary frequency, iu, can be done

efficiently by the Gauss-Legendre method since correlation energies are smooth function

of these variables.

There are several disadvantages in these implementations. First, the full spectrum, or

at least a good part of the conduction states of the Kohn-Sham Hamiltonian is needed

to represent the non-interacting response function. This prevents one from using efficient
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iterative diagonalization techniques. Second, storing large matrices and solving linear

equation relating them are memory-demanding and cpu-time-intensive operations that

limit the size of the systems that can be treated. Finally, there is no easy way to do the

λ-integration even in the case of random phase approximation where analytic results are

available. In the next section, we will introduce our implementation which can overcome

some of these shortcomings.

2.5 New implementation: iterative diagonalization of

dielectric function

2.5.1 General formulation

In our implementation, the traces in the exact formula for the correlation energy from the

ACFD theory, Eq. (2.15), are evaluated by summing up the eigenvalues of vcχ0 and vcχλ.

A number of eigenvalues of these two operators are obtained by explicit diagonalization.

In principle, every eigenvalue contributes to the correlation energy and one would need

to calculate the whole spectrum of these operators whose size equals the number of plane

waves in the basis set.

Band structure calculations of the inverse RPA dielectric matrix [57] for several bulk

crystals have shown however that only a small fraction of the spectrum differs significantly

from 1; all the rest approaches 1 quite rapidly. As RPA dielectric function, εRPA, is simply

related to vcχ0 by

εRPA = 1− vcχ0, (2.17)

this means that only a small fraction of the spectrum of vcχ0 differs significantly from

zero; the remaining eigenvalues will be close to zero. Also, very recent calculations for

several silicon nanostructures confirm this behavior [58]. Therefore correlation energy can

be obtained accurately (at least this is expected for correlation-energy differences if not

for absolute values) calculating only a limited number of low-lying eigenvalues (vcχ0 is a

negative definite operator) which give significant contribution to the correlation energy;
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the contribution from the remaining part of the spectrum can be reduced to an arbitrarily

small value by increasing the number of the calculated eigenvalues or can be approximated,

for instance, by a model as done for the calculation of electronic band gap in the Ref.

[59].

In our implementation of ACFD formulas we focus on RPA, i.e neglecting the xc-kernel

in Eq. (2.16). In this approximation eigenvalues of vcχλ are related to those of vcχ0 by a

simple relation, thus allowing an analytical evaluation of the λ-integration. To show this

relationship, let us start by introducing the following two generalized eigenvalue problems

for vcχ0 and vcχλ

χ0|wα〉 = aαv
−1
c |wα〉, (2.18)

χλ|zλα〉 = bλαv
−1
c |zλα〉, (2.19)

where {aα, |wα〉} and {bα, |zλα〉} are the eigenpairs of the two eigenvalue problems, respec-

tively. Once the sets of {aα} and {bλα} are known, the correlation energy contribution for

a given interaction strength λ can be calculated as

Eλ
c = − 1

2π

∫ ∞
0

du
∑
α

{
bλα(iu)− aα(iu)

}
. (2.20)

Since the xc-kernel is set to zero in RPA, the Dyson-like equation, Eq. (2.16) becomes

simply

χλ = χ0 + λχ0vcχλ. (2.21)

Response functions and Coulomb operator are negative and positive definite quantities

respectively, they are invertible3 and the above equation can be written in the form

χ−1
0 = χ−1

λ + λvc. (2.22)

Therefore when the xc-kernel is approximated in RPA, there is a simple relation be-

tween bλα and aα which enable us to compute correlation energy from {aα} only. To see

3 Both χ0 and χλ (and v−1
c ) have a zero eigenvalue corresponding to a uniform perturbing potential.

Beside this “trivial” solution, whose contribution can be calculated analyzing the limit for slowly varying

potentials, the stability of the system implies that χ0 and χλ are negative definite quantities.
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this, let us write the eigenvalue problems of Eq. (2.18) and (2.19) in the equivalent forms

χ−1
0 |wα〉 =

1

aα
vc|wα〉, (2.23)

and

χ−1
λ |z

λ
α〉 =

1

bλα
vc|zλα〉. (2.24)

Using the relation (2.22) between χλ and χ0 together with Eqs. (2.23) and (2.24), one can

see that χλ and χ0 have the same set of eigenfunctions, i.e. zλα ≡ wα and their eigenvalues

are simply related as

bλα =
aα

1− λaα
. (2.25)

The integration over λ can therefore be done analytically and we obtain the final expres-

sion for Ec in term of eigenvalues {aα} of the non-interacting problem alone

Ec =
1

2π

∫ ∞
0

du
∑
α

{aα(iu) + ln(1− aα(iu))}. (2.26)

This expression means that knowing the eigenvalues of the problem defined by Eq. (2.18)

is sufficient to compute the correlation energy Ec.

In order to determine the needed eigenvalues we proceed by solving iteratively the

eigenvalue problem (2.18). To this end we implemented a variant of the Davidson diago-

nalization used in the solution of the KS equation, but any other iterative diagonalization

scheme could also be used. The basic operation involved in any iterative diagonalization

routine is the one where the response function χ0 is applied to some trial perturbing po-

tential. The result of this action is the linear density response which can be computed

efficiently in the same way as in the calculation of vibrational properties with the well-

established techniques of Density Functional Perturbation Theory [30]. Note that the

density response we need to calculate here is that of the non-interacting system, thus

there is no need of performing a self-consistent cycle as instead is needed in the actual

DFPT calculations of the density response to the screened perturbing potential. This

makes the calculation of a single density response used in the iterative diagonalization

procedure cheaper than that of other calculations, such as, for instance, phonon frequen-

cies. However several iterations, i.e. several applications of χ0 to trail potentials, are
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needed to obtain well-converged eigenvalues. This makes the computational cost of the

two calculations for a given system become more or less similar.

In summary, following the approach discussed above one can avoid the need of comput-

ing a large number of unoccupied Kohn-Sham orbitals as well as cumbersome summations

over occupied and unoccupied states. Valence states of the Kohn-Sham Hamiltonian and

low-lying eigenvalues of the generalized eigenvalue problem (2.18) needed for evaluation

of the correlation energy can be computed efficiently by iterative-diagonalization tech-

nique. We wish to mention that a similar idea has been used very recently by Wilson and

co-workers as presented in Ref. [58] but for the calculation of static dielectric properties

of several silicon nanostructures.

2.5.2 New implementation in plane wave pseudopotential ap-

proach

The formulation of our method for the calculation of RPA correlation energy presented

in the previous section is very general and in principle applies to all cases. More detail of

the implementation for applications to systems with spherical symmetry will be discussed

later in the appropriate place. In this section, we will present some technical aspects of

the implementation in the plane-wave pseudopotential method based on the phonon code

which is part of the Quantum-ESPRESSO distribution [65].

In the plane wave pseudopotential approach, a system is treated as periodic although

it can be aperiodic or partially periodic, e.g. isolated molecules, polymer chains and slabs.

As a consequence of this periodicity, the dielectric function in plane-wave representation

is block diagonal and can be classified by a vector q in the first Brillouin zone. Its

eigenpotentials can be chosen as Bloch’s waves with the same q-vector. Therefore one

can evaluate the correlation energy by diagonalizing separately the generalized eigenvalue

problem (2.18) for each block to compute the contribution at a given q-vector. The total

correlation energy is then obtained by integration over the first Brillouin zone. As a result
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of this, expression (2.15) for the correlation energy can be written as

Ec = − 1

2π

∫ 1

0

dλ

∫ ∞
0

du
1

Nq

Nq∑
q=1

Tr{vc[χλ(q, iu)− χ0(q, iu)]}. (2.27)

The corresponding expression in the case of RPA, Eq. (2.26), becomes

Ec =
1

2π

∫ ∞
0

du
1

Nq

Nq∑
q=1

Neig∑
α

{aα(q, iu) + ln(1− aα(q, iu))}, (2.28)

where aα(q, iu) is an eigenvalue of the generalized eigenvalue problem (2.18) for χ0(q).

In practice, the sum over a regular grid of q-vectors in the first Brillouin zone can be

reduced by making use of the special point technique [60]. This is because, like in the case

of electronic band structures, the eigenvalues of vcχ0 at equivalent q-vectors, i.e. those

transformed to each other by a symmetry operation of the system, are equal. Unlike the

case of electronic band structure, special care must be taken when doing the calculation in

the limit of q→ 0 because of the non-analyticity of dielectric function at q = 0. In other

words, the generalized eigenvalue problem (2.18) for the case of χ0(q = 0) is ill-defined.

We have not found any better solution to overcome this problem than simply avoiding

the point q = 0 by using a shifted grid of q-vectors in the special point technique.4

In our implementation, we will calculate low-lying eigenvalues aα(q, iu) of the non-

interacting problem in Eq. (2.18) by using a variant of the Davidson iterative diagonal-

ization algorithm for dealing with the generalized eigenvalues problem starting from a

set of (random) trial eigenpotentials. The basic operation involved in this (or any other

iterative diagonalization scheme) is the application of the non-interacting χ0 to a trial po-

tential to obtain the induced density response. This can be done by resorting to the linear

response techniques of Density Functional Perturbation Theory [30], simply generalized

to imaginary frequency as already explained below5. Similar techniques were introduces

4 This point was not mentioned in other plane wave pseudopotential implementations [12, 13, 15] but

it is likely that the same strategy could also have been adopted in these implementations.
5 A general derivation of the equation to determine the density response starting from the expression

of non-interacting linear response function (2.13) will be given in the Appendix A.
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by Mahan [52, 54] for the calculation of frequency dependent polarizabilities of atomic

systems.

Let us consider the following eigenvalue problem for an electron in a periodic solid

within the independent particle approximation

ĤSCF (r)ϕ0
k,v(r) = εk,vϕ

0
k,v(r), (2.29)

where ĤSCF is a time-independent Hamiltonian. Time dependence of the wave function

is simply given by a phase factor

ψ0
k,v(r, t) = ϕ0

k,v(r)e−iεk,vt. (2.30)

The application of the non-interacting response function to a trial potential, needed to

be done routinely in the iterative diagonalization procedure, gives the density response

defined by

∆n(r; iu) =

∫
χ0(r, r′; iu)∆V (r′; iu)dr′ (2.31)

For given q-vector, this imaginary-frequency density-response can be computed efficiently

using the linear response technique of Density Functional Perturbation Theory by con-

sidering the following time-dependent perturbation potential added to the Hamiltonian

ĤSCF (r)

∆V (r, t) =
[
∆v(r)eiqr + ∆v(r)∗e−iqr

]
eut, (2.32)

with ∆v(r) being a lattice-periodic potential. Under this perturbation, the ground state

wave function ψ0
k,v(r, t) changes to ψk,v(r, t) which can always be decomposed as

ψk,v(r, t) = ψ0
k,v(r, t) + ∆ψk,v(r, t). (2.33)

where ∆ψk,v(r, t) can be written in the form

∆ψk,v(r, t) =
[
∆ϕ+

k,v(r)eiqr + ∆ϕ−k,v(r)e−iqr
]
e−iεk,vteut. (2.34)

The corresponding density response induced by the perturbation is simply

∆ñ(r, t) =
∑
k,v

{
ψ0

k,v(r, t)
∗∆ψk,v(r, t) + ψ0

k,v(r, t)∆ψk,v(r, t)
∗}

=
∑
k,v

{[
ϕ0

k,v(r)∗∆ϕ+
k,v(r) + ϕ0

k,v(r)∆ϕ−k,v(r)∗
]
eiqr + c.c.

}
eut, (2.35)



34 Chapter 2. Correlation energy in the ACFD Theory

or in a compact form

∆ñ(r, iu) =
{

∆n(r)eiqr + ∆n(r)∗e−iqr
}
, (2.36)

with

∆n(r) =
∑
k,v

{
ϕ0

k,v(r)∗∆ϕ+
k,v(r) + ϕ0

k,v(r)∆ϕ−k,v(r)∗
}

(2.37)

( frequency dependence is implicitly implied.)

Linear density response can be obtained from variations of the wave functions ϕ+
k,v(r)

and ϕ−k,v(r) keeping only first-order terms of the perturbation expansion. Equations to

determine them can be derived by inserting the expression of ψk,v(r, t) in Eq. (2.33) into

the time-dependent Schrödinger’s equation that must be fulfilled(
ĤSCF (r) + ∆V (r, t)

)
ψk,v(r, t) = i

∂

∂t
ψk,v(r, t), (2.38)

and keeping only the linear order terms. We obtain(
ĤSCF (r)− εk,v − iu

)
∆ψk,v(r, t) = −∆V (r, t)ψ0

k,v(r, t) (2.39)

Using the explicit expression of ψk,v(r, t) in Eq. (2.34), we find the following two equation

for ϕ+
k,v(r) and ϕ−k,v(r)(

ĤSCF (r)− εk,v − iu
)
ϕ+

k,v(r) = −∆v(r)ψ0
k,v(r) (2.40)(

ĤSCF (r)− εk,v − iu
)
ϕ−k,v(r) = −∆v(r)∗ψ0

k,v(r). (2.41)

Solving these equation at a finite value of iu is no more complex than the case of iu = 0,

typically occurring for calculation of phonon frequencies. The only difference is that for

the latter the operator on the left hand side is Hermitian, hence methods for solving

linear systems like conjugate gradient apply directly. For the former, the operator is

no longer Hermitian due to the appearance of iu, thus one needs to use a more general

algorithm to deal with non-Hermitian linear systems, e.g. biconjugate gradient [24] or

minimal residual [61]. We have chosen however to use the efficient bi-CGSTAB algorithm

invented by H. van der Vorst in 1992 [62] since this algorithm is the most stable with
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better convergence rate among several ones that we have tried. We have also found that

the higher the imaginary frequency iu, the faster the convergence of the linear system.

Therefore, computational workload at finite iu is not more than that of the static case.

Now we turn to the discussion of the efficiency of our implementation in comparison

with the other plane-wave pseudopotential implementations of ACFD formalism whose

most involved operations are i) the construction the noninteracting Kohn-Sham response

function χ0 in Eq. (2.13) by making summation over occupied and empty states and ii)

the solution of the Dyson-like equation relating χ0 and χλ. Since some general aspects of

the similar method have already been discussed in Ref. [58], we will limit the discussion

here to the points related to the calculation of RPA correlation energy. In a plane wave

representation, the set-up of non-interacting response function by summation over valence

and conduction bands scales like N2
pwχ0

NvNc, where Npwχ0 is the size of the basis set used

to represent χ0, and Nv, Nc are the number of valence and conduction states used in the

sum, respectively. The most time-consumming part in our implementation is the calcu-

lation of the linear density response via DFPT. This calculation takes a time propotional

to NpwψN
2
v with Npwψ being the number of plane wave used to represent the wave func-

tion (typically smaller than Npwχ0 by an order of magnitude.) Since this calculation is

done repeatedly in the iterative diagonalization procedure, the total computational cost

must be multiplied by the number of eigenvalues (Neig) we want to calculate and the

number of iterations Niter. The latter is independent of the system size while the former

is easily propotional to it. Therefore the total scaling of this approach is propotional to

NpwψN
2
vNeig which grows as the fourth power of the system size, i.e. the same as those

of other plane wave implementations.

Although the scaling of our implementation is not better than those of other plane

wave implementations, its pre-factor is much smaller, at least of the order of 102, making

our implementation more efficient. To see this in detail, let us recall that in general Nv �

Npwψ � Npwχ0 and the relative scaling of the former and the latter isNiter
Npwψ .Neig .Nv .Nv
Npwχ0 .Npwχ0 .Nv .Nc

.

Since
Npwχ0

Npwψ
∼ 10,

Npwχ0

Neig
∼ 10 ÷ 100 (as can be seen in the next section), Nc

Nv
∼ 10, and

the number of iterations in iterative diagonalization procedure Niter is not more than 10,
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the pre-factor in our implementation is 102 ÷ 103 smaller.

Moreover, it is easy to see that our approach also has significant advantages due to its

iterative nature. Eigenvalues and eigenvectors of the generalized eigenvalue problem (2.18)

will converge very rapidly if the initial guess of the eigenpotentials is close to the real ones.

It is reasonably to expect that the form of eigenpotentials of a system will not dramatically

change if some parameters to determine them, e.g. k-point sampling or the basis set, are

varied. This suggest a procedure that may save considerable CPU time by first doing the

calculation with looser convergence parameters, then using the obtained results as the

starting trial-vectors for more refined calculations. Since the calculation of correlation

energy requires the computation of eigenvalues on a grid of q-vectors, eigenpotentials

calculated at a vector q are also a good guess at q + ∆q with small ∆q. Similar behavior

can be also observed looking at the problem at iu and iu + δiu which is needed to be

solved for integration over imaginary frequency. Finally, as already mentioned in the

general formulation, coupling constant integration in our implementation is completely

avoided and this also saves a lot of computational time.

2.5.3 Testing and improving numerical efficiency of the imple-

mentation

In order to validate the implementation described above, we have chosen to reproduce

some results appeared in literature. First of all, we compared our results for some top

eigenvalues of RPA dielectric function of eight-atom bulk silicon simple-cubic cell with

those calculated by explicit diagonalization of the dielectric matrix and by Projective

Dielectric EigenPotential method which is a scheme very similar to ours which has been

very recently described in Ref. [58]. Table 2.1 presents top 20 eigenvalues of dielectric

matrix calculated by two methods discussed in the Ref. [58] and those obtained from our

implementation. Calculation was done using norm-conserving pseudopotentials [66] at

q = 0.01 in the z-direction with the kinetic energy cut-off of 12 Rydberg and a cubic cell

of 10.20 bohr size length. Iterative diagonalization procedure was terminated when the
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Index RPA PDEP Ours Index RPA PDEP Ours

1 14.7432 14.7538 14.7611 11 2.4910 2.4925 2.4925

2 3.4231 3.4237 3.4238 12 2.4905 2.4920 2.4920

3 3.3908 3.3914 3.3915 13 2.4905 2.4920 2.4920

4 3.3908 3.3914 3.3915 14 2.4716 2.4721 2.4721

5 3.3908 3.3914 3.3915 15 2.1964 2.1972 2.1972

6 3.3908 3.3914 3.3915 16 2.1960 2.1968 2.1968

7 3.3589 3.3596 3.3596 17 2.1959 2.1966 2.1967

8 2.4910 2.4925 2.4925 18 2.1959 2.1966 2.1967

9 2.4910 2.4925 2.4925 19 2.1958 2.1966 2.1967

10 2.4910 2.4925 2.4925 20 2.1958 2.1966 2.1967

Table 2.1: Top 20 eigenvalues of dielectric matrix for the eight-atom bulk silicon cubic cell.

RPA: from direct evaluation of diagonalization of the dielectric matrix. PDEP: from similar

method proposed in the Ref. [58]. Ours: from calculation in our implementation.

differences between eigenvalues at successive iterations were less than 10−5 Rydberg. The

table shows clearly that there is an excellent agreement between our calculated values

and those obtained from a similar method but in different implementation6, and both

results are also in good agreement with the result obtained by direct diagonalization of

the dielectric matrix. As already mentioned in Ref. [58], lower-lying eigenvalues were also

found to be close although those of RPA direct method are highly sensitive to the number

of empty states used in the calculation of the dielectric matrix.

Next, we performed calculations of total energies for bulk silicon, hence lattice constant

in EXX/RPA+, with correlation energies treated in the EXX/RPA+ scheme. Note that

the same calculations have been done by Garćıa-González and co-workers as shown in Ref.

[13], where due to the very large computational cost calculations were not fully converged

6This implementation makes use of the method of orthogonal iteration with Ritz acceleration which

requires twice applications of the linear response function to a set trial potentials at each iteration step.
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and some extrapolation technique was needed to make the calculations feasible. We have

chosen these calculation to be the reference for checking the validity of our implementation.

Bulk silicon is a typical covalently bond solid and many properties, such as, for in-

stance, structural and vibrational properties, are described satisfactorily in DFT within

LDA. One can anticipate that the difference between LDA and EXX/RPA+ results will

be marginal. Nevertheless, the calculation will be illustrative since, as pointed out in Ref.

[13], the results demonstrate well the error cancellation between exchange and correlation

energies in LDA. Moreover, the calculation also illustrates the robustness of EXX/RPA+

method, namely not only does it give better description of systems where long-range cor-

relation plays an important role, but also preserves the LDA or GGA already satisfactory

description of densely-packed systems. From the computational point of view, it is useful

to perform calculations on system with moderate computational expenses like bulk sili-

con in order to collect data for developing an extrapolation schemes to improve numerical

efficiency of this approach.

For systems with dispersive electronic levels like bulk silicon, the most important

parameters whose convergence needs to be carefully checked in the calculation are the

number of k points in the standard LDA calculation for the ground state charge density,

the number of q points used in the evaluation of Eq. (2.27) and the number of plane

waves, i.e. kinetic-energy cutoff, used in the representation of quantities like wave func-

tions, charge density, potential, etc. Specifically to our implementation, there is another

important parameter determining efficiency of the approach: the number of eigenvalues

needed to evaluate correlation energy from Eq. (2.28).

First of all, let us investigate the convergence of the correlation energy with respect to

the number of eigenvalues included in the summation of Eq. (2.26). For this purpose, we

have used well-converged parameters for standard LDA calculation of silicon ground state

charge density to evaluate the exact-exchange and RPA-correlation energies. Namely, the

calculation was performed for the diamond structure in the fundamental face-centered

cubic with lattice constant of 10.20 bohr (corresponding to the equilibrium geometry at

LDA level) using a regular grid of 64 k-point, a kinetic-energy cut-off of 20 Rydberg,
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Figure 2.1: RPA correlation energy as function of the number of eigenvalues included in

the summation in Eq. (2.26) for fcc bulk silicon. The two curves are for different number of

special q points in the Brillouin zone integration of Eq. (2.28).

and the same pseudopotential used for the calculation of the top most eigenvalues of the

dielectric function of the eight-atom bulk silicon cubic cell presented above. We show in

Fig. (2.1) the dependence of RPA correlation energy, ERPA
c , on the number of eigenvalues

included in the sum Neig. E
RPA
c is indeed a rapidly converging function of Neig; truncating

the sum at 80 or 100 eigenvalues already ensures a convergence within a few mRy. Also

the summation over special q-point representing the integration in the first Brillouin zone

converges very rapidly; the correlation energy changes only a few mRy when the number

of special points increases from 2 to 6.

We have also calculated total energies of bulk silicon at different lattice constants

in the EXX/RPA+ scheme in order to determine its equilibrium properties, i.e. the

lattice constant and the bulk modulus. Fig. 2.2 shows the total energy per unit cell for

bulk silicon as function of lattice constant (the value at experimental lattice constant is

subtracted) calculated using different values Neig (Neig = 50, 100, 150 and 200) for the

number of eigenvalues included in the summation in Eq. (2.26) in our implementation for

the EXX/RPA+ scheme. The (nearly) coincidence of the different curves confirms the
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Figure 2.2: The total energy (per unit cell) differences at different lattice constants and

that at the experimental one of bulk silicon calculated using different number of eigenvalues

values included in the summation in Eq. (2.26) in our implementation of EXX/RPA+ scheme.

The inset is the true total energy. i.e. the values at the experimental lattice constant is not

subtracted.

expectation that energy differences are rather insensitive to the number of eigenvalues,

Neig, used in the calculation of the RPA correlation energy. This is because, as clearly

seen in the inset where the true EXX/RPA+ total energy are shown, the curves calculated

with increasing values of Neig are almost rigidly shifted downward.

Table 2.2 shows the predicted equilibrium lattice parameter a0, bulk modulus B and

pressure derivative of the bulk modulus B′ as a function of the number of eigenvalues

Neig used to evaluate RPA correlation energies. The differences of these quantities when

changing Neig from 50 to 200 is very small, of the order of 0.1% for a0 and B and 1% for

B′. We can therefore conclude that only a relatively small number of eigenvalues used for
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Neig a0 (a.u.) B (GPa) B′

50 10.155 99.5 4.22

100 10.158 99.4 4.21

150 10.162 99.3 4.19

200 10.166 99.1 4.17

LDA 10.235 92.5 4.16

Expt† 10.26 99.2 4.15

† Experimental data are taken from Ref. [63]

Table 2.2: Predicted equilibrium lattice parameter a0, bulk modulus B and pressure derivative

of the bulk modulus B′ as function of the number of eigenvalues Neig used to evaluate RPA

correlation energies. The corresponding LDA and experimental values are also shown in bottom

rows.

the evaluation of RPA correlation energy in our implementation of the ACFD formalism

is needed to get a good description of many equilibrium properties of the system.

On the other hand, looking at the predicted equilibrium lattice constants in table 2.2,

it seems that more accurate (and sophisticated) treatment of xc-energy in EXX/RPA+

scheme slightly worsens the LDA results compared to the experimental values. Neverthe-

less, as pointed out in Ref. [13], there are several points that can affect the final results:

(i) EXX/RPA+ scheme is not self-consistent and the RPA correlation energy is evaluated

using LDA Kohn-Sham orbitals, (ii) RPA is the simplest approximation to the xc-kernel

within ACFD formalism, and (iii) EXX/RPA+ scheme here is implemented in a pseu-

dopotential approximation. Possible influences of these points to the final results were

also discussed in Ref. [13].

It is worth mentioning that when looking at the exchange and correlation energies sep-

arately, our results also show the well-known cancellation of errors in these two quantities

in the standard DFT/LDA calculation as already presented in Ref. [13]. Namely, when
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compared with the more accurate values obtained in EXX/RPA+ scheme, the (absolute)

LDA exchange-energy underestimates the EXX one while the opposite behavior is found

for the correlation energy. These two errors compensate each other leading to practically

the same values for the total LDA and EXX/RPA+ xc-energies.

Let us now turn to the discussion of the convergence of RPA correlation energy with

respect to other parameters. Slow convergence of the absolute RPA correlation energy in

ACFD formalism as implemented in a plane-wave pseudopotential approach with kinetic-

energy cutoff has been observed in other implementations [13, 15], and efficient extrapola-

tion schemes were needed to get the correlation energy at infinite value of energy cut-off.

Since our implementation here is also in the plane-wave pseudopotential approach, these

extrapolation schemes can be easily adapted to fit the same purpose. For the convergence

with respect to the Brillouin zone integration, both for k point used for the calculation

of ground state charge density which is then used as input for the calculation of RPA

correlation energy and q point used for evaluation of the correlation energy itself from

Eq. (2.28), we have carefully analyzed the data and have found that the dependence of

ERPA
c on these parameters is very well-behaved.

For instance, in Fig. 2.3 we plot in each panel the difference between RPA correlation

energy calculated using a coarser grid of special q points generated using Monkhorst-Pack

recipe [60] and the value calculated using the very accurate grid of 6 × 6 × 6 (Nq = 28)

as function of the kinetic-energy cutoff. Note that the value obtained by 6× 6× 6-grid is

well-converged since the difference between the results of this grid and the 5× 5× 5 one

(the bottom panel) is of the order of less than one mRy. The figure shows clearly that the

differences of ERPA
c calculated using a coarser grid of q vectors and the well-converged

value obtained from a denser grid are almost unchanged with respect to the kinetic-energy

cutoff once the cutoff is larger than a certain, but not very large, value (12 − 16 Ry.)

A similar behavior was also observed when keeping fixed the number of q points and

varying the number of k points. This suggests an extrapolation scheme similar to the one

proposed in Ref. [13] which can help reducing significantly the computational effort in

large systems for which even the present very efficient implementation is too demanding
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Figure 2.3: The differences between RPA correlation energy calculated at a small number of

special q points, Nq, and that at well-converged values Nq = 28 as function of kinetic-energy

cutoff.

to reach complete convergence directly. The procedure can be described as follows: First

a coarse grid of k- and q-points for the Brillouin zone integration is used to calculate RPA

correlation-energy at different kinetic-energy cutoffs. Second, the correlation energy in

the infinite cutoff limit is obtained by extrapolating the results obtained at finite cutoffs.

Finally, the errors due to the coarse k- and q-point sampling of Brillouin zone are corrected

by using finer grids evaluated at small kinetic-energy cutoff (which can be estimated from

the convergence behavior of the correlation energy computed with the coarser grids.)

2.6 EXX/RPA+ description of the Beryllium dimer

2.6.1 Previous DFT studies of Beryllium dimer

Beryllium dimer is one example of weakly bonded systems where standard DFT within

LDA or GGA performs poorly. The first DFT study of Be2 in the plane wave pseudopo-
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tential method with a supercell approach for the description of isolated molecules was

probably performed by Richardson and co-workers more than two decades ago [69]. In

this study, the LDA result for the bond length of the molecule was 4.53 bohr which is

quite in good agreement with the experimental value of 4.63 bohr. LDA predicts however

a too large binding energy, four times larger in absolute value (0.43 eV) than the experi-

mental one (0.098 eV). The ground-state vibrational frequency of 373 cm−1 also seriously

overestimates the experimental value of 275.8 cm−1. Later developed GGA functionals,

while giving a value of bond length closer to experiment, do not improve much the LDA

results for the binding energy and vibrational frequency (see, e.g. the recent calculations

reported in Ref. [12].)

Ground state properties of Be2 molecule have been re-investigated recently by Fuchs

and Gonze [12] in the ACFD approach with a plane-wave pseudopotential implementation.

In this study, the binding energy, bond length, and vibrational frequency have been

calculated using different approximations for the xc-kernel in Eq. 2.16, namely RPA and

the more sophisticated orbital-dependent PGG kernel [36]. Equilibrium properties of Be2

molecule is then determined from the total energies as a function of interatomic distance

calculated in much the same way as in the EXX/RPA+ scheme presented above, but

the short-range correction for RPA correlation energy is not included in the EXX/RPA

scheme, and the correlation energy is calculated with PGG-kernel in the EXX/PGG one.

The results of all three schemes improve much LDA and GGA descriptions of the ground-

state properties of Be2 demonstrating the ability of ACFD approach to describe weakly

bound systems. This calculation is however numerically still not very accurate as the

quoted convergence error in the binding energy calculation is about as large as 50%.

Beside serving as another testing ground for our implementation of ACFD approach, Be2

will also demonstrate that very accurate treatments of both exact-exchange and RPA(+)

correlation energies is indeed needed in order to get well-converged results. It is very

important to have accurate calculations since the quality of RPA approximate xc-kernel,

and hence the EXX/RPA(+) scheme, is usually drawn from its performance when applied

to study real systems and this evaluation should not be contaminated by numerical or
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convergence errors.

2.6.2 Controlling numerical accuracy of the exact-exchange and

RPA correlation energies in our implementation

In our calculation, we used the same norm-conserving pseudopotential as in Ref. [12]

which was generated from a free-atom calculation within exact Kohn-Sham exchange.

Since the supercell approach is used to simulate an isolated molecule, we have to carefully

check the convergence with respect to the following parameters: kinetic-energy cutoff, size

of the supercell, and the number of eigenvalues used for evaluation of the RPA correlation

energy.

First of all, it is natural to estimate the values of the kinetic-energy cutoff and the size

of the supercell that should give converged results in EXX/RPA+ scheme by performing

some convergence tests at the LDA level. As for the kinetic-energy cutoff, we found

that with a given simple-cubic supercell of 22 bohr, increasing the cutoff from 25 to 30

Ry makes the total energies of Be2 change by less than 0.5 mRy at a number of Be-Be

-0.401

-0.400

-0.399

-0.398

-0.397

-0.396

-0.395

E
cR

R
P

A
(d

B
e-

B
e) 

(a
.u

.)

a = 22 bohr
a = 30 bohr

4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62

dBe-Be(a.u.)

-1.414

-1.412

-1.410

-1.408

-1.406

-1.404

E
xE

X
X
(d

B
e-

B
e) 

(a
.u

.)

a = 22 bohr
a = 30 bohr

Figure 2.4: Exact-exchange and RPA correlation energies of Be2 at different Be-Be distances

(dBe−Be) calculated using a simple cubic cell size lengths of 22 (square) and 30 (circle) bohr.

The dotted lines are simply drawn as a guide.
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distances around the LDA predicted equilibrium value. This suggests that a kinetic-

energy cutoff of 25 Ry will also give well-converged results for exact-exchange and RPA

correlation energies. Our explicit calculations confirm that this is in fact the case: the

energy change of the exact exchange energy between 25 and 30 Ry is of the same order

as the total energy differences mentioned above while it is an order of magnitude smaller

for the case of RPA correlation energy.

Convergence with respect to the size of supercell is much more delicate as shown in

Fig 2.4 where we plot the exact-exchange and RPA correlation energies as a function of

the distance between two Be atoms. While the LDA total energies (not shown) and RPA

correlation energies are only slightly changed (of the order of 0.1 mRy, see the top panel of

Fig. 2.4) when the size of the simulation cell increases from 22 to 30 bohr, the differences

of the exact-exchange energies is at least one order of magnitude larger than this value

for all Be-Be distances (see the bottom panel). Slow convergence of the exact-exchange

as implemented in a plane-wave pseudopotential method with respect to the Brillouin

zone sampling has been known for a long time [70] (see also Refs. [13] and [15]). This is

because in a plane-wave representation, the expression for exchange energy contains an

integrable divergence which prevents the direct application of the special-point technique.

The problem is usually circumvented by using a procedure originally developed by Gygi

and Baldereschi [70] where a reference term with the same singularity is subtracted to

remove the divergence. It is possible to choose the reference term in such a way that its

integration in the Brillouin zone can be done analytically. By this device the divergence

is removed and the special-point technique can be applied. However, there is still a term

which remains non-divergent in the limit of q → 0 but can not be computed at q = 0

since it is a 0/0 limit [71]. If this term is simply neglected (as usually the case) one

makes an error proportional to 1/(ΩNk), where Ω and Nk are the volume of the unit

cell and the number of special k points used for representation of the Brillouin sampling,

respectively. From the computational point of view, it is convenient to use a number of

k points as small as possible and, in the supercell approach, to use a simulation cell with

small volume. Therefore the error in the exact-exchange energy by neglecting the limiting
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Figure 2.5: Exact-exchange energies as function of supercell volume for Be2 at the Be-Be

distance of 4.54 bohr calculated with (square) and without (circle) extrapolation scheme.

Inset: The same quantities but subtracted twice the exact-exchange energy of a single Be

atom simulated in the same supercell. The dashed and dotted line are simply drawn as a

guide.

term may be large.

This problem can be partly alleviated by using an extrapolation scheme to extract

an estimate of the limiting term [71]. The scheme is based on the assumption that the

grid of points used for Brillouin zone integration is dense enough so that a coarser grid

formed by keeping only half of the k-points in each direction also gives the same result

for the integral. Since the number of point in the denser grid is 8 time larger than that

of the coarser one, the estimated value of the limiting term is given by the difference of

8/7 times the value of the integral in the denser grid and 1/7 times that of the coarser

one. This extrapolation scheme has been implemented in the PWscf code [64] which is

part of the Quantum-ESPRESSO distribution [65]. We show in Fig. 2.5 a comparison
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of the convergence with respect to the volume of the supercell for Be2 at Be-Be distance

of 4.54 bohr using simple cubic cells with size length of 22, 25, 30, 35 and 40 bohr. The

figure shows clearly that neglecting the limiting term, i.e. without extrapolation, there

is a large error inversely proportional to the supercell volume since the EEXX
x energy

plotted as a function of the inverse volume is almost on a straight line. Moreover, the

convergence in this case is rather slow; when the size of the supercell increases from 22 to

40 bohr, the value of EEXX
x varies more than 10 mRy. On the contrary, its change is of the

order of the mRy if the extrapolation scheme is exploited, demonstrating the efficiency

of the scheme7. Note that some degree of error cancellation can also be expected when

calculating the energy difference with the reference system (single Be atom in this case)

which presumably makes the convergence rate faster even without using the extrapolation

scheme. However, as shown in the inset in Fig. 2.5 where these energy differences are

plotted, the errors at 22 bohr are still large, more than 1 mRy (with extrapolation) and 2

mRy (without extrapolation). The error decreases rapidly to a few tenth of mRy for the

former while it still more than 1 mRy for the latter at 30 bohr supercell. Due to this slow

convergence of the exact exchange, one needs to be very careful in order to have accurate

results (less than 1 mRy) in the EXX/RPA(+) scheme.

Finally, in order to investigate the convergence with respect to the number of poten-

tial eigenvalues included in the summation of Eq. (2.28), we plot in Fig. 2.6 the RPA

correlation energies of Be2 calculated at a number of Be-Be distances (dBe−Be) around

the predicted bond length, using different number of eigenvalues Neig for evaluation of

Eq. (2.28). We are fully confident that a convergence within 0.5 mRy for the absolute

correlation energy can be obtained using a Neig as large as 220 because the figure shows

clearly that energy differences between Neig = 180 and Neig = 220 are less than this value.

7We have also checked the convergence with respect to the k point integration for the case of Argon

solid calculated using LDA wave-functions. In this case, using a regular grid of 6× 6× 6 points is enough

for a convergence of the order of 0.1 mRy (less than 2 meV), while in a similar calculation recently

reported in Ref. [15], not including any correction for the q→ 0 limit, a much denser grid of 12×12×12

points must be used in order to reach this accuracy.
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Figure 2.6: RPA correlation energies of Be2 at different Be-Be distances (dBe−Be). The

curves are for different number of eigenvalues Neig included for evaluation of Eq. (2.28):

N = 120 (circle), N = 180 (square), and N = 220 (diamond). The lines are simply drawn as

a guide. Inset: RPA correlation energies of Be2 at the Be-Be distance (dBe−Be) of 4.56 bohr

placed in a simple cubic supercell with the size length of 22 (blue dashed line) and 30 bohr

(red solid line).

This can also be seen in the inset where RPA correlation energy of Be2 at dBe−Be = 4.56

bohr as a function of Neig is plotted. Note that one can expect a much smaller error

of the correlation-energy differences which actually determine equilibrium properties like

bond length or binding energy. The inset also shows that a fully converged result for the

correlation energy can be obtained using a simple-cubic supercell with a size of 22 bohr

as the change is negligible when using a larger cell of 30.
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2.6.3 Equilibrium properties of Beryllium dimer studied in the

EXX/RPA+ scheme

Having reached a good control of accuracy with respect to all parameters as discussed in

the previous section, let us now present our results for Beryllium dimer studied in the

EXX/RPA+ scheme. Table 2.3 shows binding energies, bond lengths, and vibrational

frequencies of Be2 calculated in EXX/RPA and EXX/RPA+ schemes as a function of the

kinetic-energy cutoff, Ecut, and the number of eigenvalues, Neig, used for the evaluation

of RPA correlation energy. Let us first discuss the effect of changing kinetic-energies

cutoff on the equilibrium properties. Increasing the kinetic-energy cutoff from 25 to 30

Ry makes a negligible change in the results for both schemes (less than 0.5% for binding

energy, practically unchanged for bond length, and 1% for vibrational frequency.) When

the number of eigenvalues Neig is increased from the value of 120 to 220, the variations

for all quantities are of the same order. Although Neig needs to be as large as 220 in order

to ensure that the absolute correlation energy convergence is less than 1 mRy, including

only about half of that number is enough to get fully converged results of the interesting

structural quantities which are actually determined by energy differences. This behavior

is not totally unexpected as already discussed in chapter 2 for the case of bulk silicon. For

the sake of comparison with the results by Fuchs and Gonze, we have used the parameters

as similar as possible to what they used (it is impossible to choose them to be identical

due to some technical differences between the two implementations). When comparing

the results of Ecut = 25 Ry, whose computational parameters are closest to those used in

Ref. [12], we found that our results for the absolute value of the binding energy (0.065 vs

0.08 eV in EXX/RPA scheme and 0.036 vs 0.06 eV in EXX/RPA+ one), the bond length

(4.52 vs 4.52 bohr and 4.56 vs 4.59 bohr, respectively), and the vibrational frequency (297

vs 311 cm−1 and 298 vs 298 cm−1, respectively) are almost always smaller. Although

the results of the two calculations are still in agreement within the large error bar of 0.03

eV as quoted for the binding energy in the calculation by Fuchs and Gonze (notice also

that the binding energy in EXX/RPA+ in Ref. [12] is just twice this value), we see this
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Ecut(Ry) Neig Eb(eV) d0(bohr) ωe(cm−1)

EXX/RPA EXX/RPA+ EXX/RPA EXX/RPA+ EXX/RPA EXX/RPA+

25

60 -0.0667 -0.0377 4.516 4.553 296.1 298.5

120 -0.0657 -0.0368 4.521 4.558 296.6 298.7

180 -0.0655 -0.0367 4.523 4.560 296.3 299.2

220 -0.0654 -0.0365 4.524 4.561 297.1 298.5

30

60 -0.0667 -0.0376 4.515 4.551 300.0 300.4

120 -0.0658 -0.0368 4.520 4.556 300.5 301.5

180 -0.0658 -0.0368 4.521 4.557 300.4 301.5

220 -0.0657 -0.0368 4.522 4.558 299.8 301.7

Table 2.3: Binding energy, bond length, and vibrational frequency of Be2 calculated in

EXX/RPA and EXX/RPA+ schemes as function of the kinetic-energy cutoff, Ecut, and the

number of eigenvalues, Neig, used for evaluation of RPA correlation energy.

as a systematic difference which deserves to be carefully studied. It turns out that the

differences largely come from the exchange energy. When we used the value for the exact-

exchange energy calculated without extrapolation technique, we obtained much closer

values for the binding energy: −0.080 eV for EXX/RPA and −0.050 eV for EXX/RPA+

compared to −0.08 eV and −0.06 eV in Ref. [12], respectively. Note that the short-range

correction for RPA+ correlation energy is not uniquely defined; using different definitions,

e.g. including the gradient correction or not, would lead to slightly different results. We

thus attribute the difference of our result for the binding energy in EXX/RPA+ scheme

with respect to the result obtained by Fuchs and Gonze in part to this reason.

As carefully discussed when investigating the numerical accuracy of our calculations,

the convergence of exact exchange energy with respect to the size of the supercell, hence

the binding energy at EXX/RPA(+) level, is rather slow which is at variance with the be-

havior of RPA correlation energy (as well as for the total energy at the LDA level).

This leads to a slow convergence of the total energies in the EXX/RPA(+) scheme.
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For instance, at the kinetic-energy cutoff of 25 Ry and Neig = 220, EXX/RPA and

EXX/RPA+ schemes give the a binding energy of −0.065(−0.037), −0.059(−0.030), and

−0.054(−0.025) eV with supercells of 22, 25 and 30 bohr, respectively. From Fig. 2.5 we

are confident that the exact-exchange energy calculated with our extrapolation scheme

is converged at 30 bohr within 1 mRy. Therefore, our accurate calculations show that

while EXX/RPA(+) schemes definitely improve the poor performance of LDA or GGA

for weakly bound systems like Be2 molecule, their results may not be as good as suggested

in Ref. [12]. Therefore, the performance of RPA xc-kernel in ACFD formalism to describe

real weakly bound systems still needs to be carefully investigated.
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Approximate response functions by

Thomas-Fermi-von Weizsäcker

theory

3.1 The Thomas-Fermi approximation

Thomas-Fermi method for calculating electronic structure of atomic systems [20, 21] was

probably the first theory using charge density to describe the total energy of a system.

In this most rudimentary form of modern DFT, electrons are treated as independent

particles. The electron-electron interaction energy only comes from the classical Hartree

interaction. Moreover, the kinetic energy of interacting electrons is approximated by

applying locally the expression for the homogeneous non-interacting electron gas. The

total energy as a functional of electron density n(r) is thus given by

E[n] =

∫
t[n(r)]dr +

e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
Vext(r)n(r)dr, (3.1)

where t[n0] is the kinetic energy density of the non-interacting homogeneous electron gas

with density n0

t[n0] =
3h̄2

10m
(3π2)2/3n

5/3
0 . (3.2)

53
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The electronic density in this approximation is found by minimizing the energy func-

tional E[n] in (3.1), subjected to the condition that the number of electrons is kept fixed∫
n(r)dr = N (3.3)

Using the method of Lagrange multipliers, the corresponding Euler equation, which is the

well-known Thomas-Fermi equation, is obtained

5

3
ckn(r)2/3 + e2

∫
dr′

n(r′)

|r− r′|
+ Vext(r)− µ = 0, (3.4)

where ck is used to denote 3h̄2

10m
(3π2)2/3 and µ is the Lagrange multiplier which is connected

to the chemical potential.

Apparently, Thomas-Fermi approximation of kinetic energy is good for systems with

slowly varying density where an electron at given point r sees an essentially homogeneous

medium with density n(r) around it. This is the main reason, besides the lack of proper

treatment of exchange-correlation effects, why only moderate successes have been achieved

when applying the method to study atoms and molecules, limited to qualitatively correct

behaviors of charge density and electrostatic potential. An infinite charge density at the

nucleus, a power low decaying instead of exponentially vanishing charge density in the

region far from the nucleus, the lack of shell structure in describing atoms, and the inability

to describe chemical binding are probably the most serious defects of the Thomas-Fermi

approximation. Many improvements of this theory had been proposed and, in the next

section, we will focus on the one proposed by von Weizsäcker in the 1930s, quite soon

after the original work by Thomas (1927) and Fermi (1928).

3.2 An improvement of Thomas-Fermi theory: the

von Weizsäcker correction

The Thomas-Fermi theory fails when a rapidly varying density occurs. In an attempt to

overcome this problem, von Weizsäcker improved the approximation of the kinetic part by
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introducing a correction related to the gradient of the density. The kinetic energy density

in Thomas-Fermi approximation plus von Weizsäcker correction reads

t[n(r)] =
3h̄2

10m
(3π2)2/3n(r)5/3 +

h̄2

2m

γ

4

|∇n(r)|2

n(r)
, (3.5)

where γ is the parameter determining the contribution of the von Weizsäcker gradient-

correction to the kinetic energy. The value of γ = 1 was empirically used in the original

work [45].

The von Weizsäcker correction term was introduced by using intuitive and semiclas-

sical arguments. Other attempts to improve the Thomas-Fermi approximation using

density gradient expansion, focussing on systems possessing slowly varying density, ob-

tained a lowest-order correction with the same functional form as the one proposed by

von Weizsäcker, with a coefficient γ reduced by a factor of 9. Using this new coefficient

in self-consistent calculation did not, however, always give better results and this reduced

value of γ leads to unsatisfactorily low energies for atoms [47] and unimpressive perfor-

mance in predicting other atomic properties [48]. As a consequence, empirical values of

γ were usually chosen by varying between 1
9

and 1 so that the results calculated in the

theory best fit with experiment data.

Moreover, for the case of non-interacting electron gas, the two special values of the

gradient-correction coefficient, γ, mentioned above reproduce the correct behavior of the

response function in the limit of slowly and rapidly varying external perturbations as

pointed out by Jones and Young in Ref. [49]. In particular, the authors compared the

response function of uniform electron gas obtained by von Weizsäcker method for general γ

with that of the non-interacting electron gas in the limits of small and large wave lengths.

For an uniform electron gas of density n, Thomas - Fermi - von Weizsäcker method gives

the response function

FTFvW (q) = −kF
π2

1

1 + 3γη2
η =

q

2kF
, (3.6)

with kF = (3π2n)1/3 being the Fermi wave vector.



56 Chapter 3. Approximate response functions by TFvW theory

The asymptotic behaviors of FTFvW (q) are

FTFvW (q) =


−kF

π2 (1− 3γη2 + ...) small q

−kF
π2

1
3γη2 large q

(3.7)

On the other hand, the exact response function of the non-interacting electron gas is

the well-known Lindhard’s function

F (q) = −kF
π2

{
1

2
+

1− η2

4η
ln

∣∣∣∣1 + η

1− η

∣∣∣∣} (3.8)

which behaves asymptotically like

F (q) =


−kF

π2 (1− η2

3
+ ...) small q

−kF
π2

1
3η2 large q

(3.9)

Comparing these two response functions, it is clear that the value γ = 1/9 in the von

Weizsäcker correction term is the choice for slowly varying external potentials. This is

the value obtained in the gradient expansion approach. On the contrary, the original

value γ = 1 used by von Weizsäcker, which is not the gradient expansion result, is

appropriate for rapidly varying perturbations. And, as thoroughly discussed in the Section

5.5 of Ref. [50], there is evidence that the von Weizsäcker functional is the exact kinetic

energy functional in the limit of rapidly varying densities. As for this point, it is worth

mentioning the interesting property that the von Weizsäcker correction term gives the

exact kinetic energy in those regions of space where only one wave function is relevant.

This means that the approximation will be essentially exact in the tail region of atoms and

molecules where the density is small and determined by one wave function only. Moreover,

electrons in the tail region are loosely-bound to nuclei, thus contribute the dominant part

to the polarization of the whole system. The Thomas-Fermi approximation with the von

Weizsäcker correction is therefore expected to capture essential polarization properties of

finite systems like atoms and molecules.

The long-range van der Waals interaction in the asymptotic region has a close relation

with the polarization properties of the system. As discussed above, the tail region is
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described better with the value of γ = 1. We will use this value of γ, i.e. the original

von Weizsäcker correction, when applying the approximation to calculate polarizabilities

of atoms and molecules. The sensitivity of the final results on the value of γ will be also

checked (and found to be small). On the other hand, we will find that the value of the

full correlation energy is more sensitive to the value of γ and we will carefully study this

dependence.

3.3 Approximate linear density response by TFvW

functional

In order to understand the physical properties of a system, one usually acts on it with

some external probe and see the change of physical quantities. In the context of Density

Functional Theory, a quantity of great interest is the change of electronic density under

the action of a perturbation. This is because, from the principles of DFT, any quantity

can be calculated once the electronic density is given. The density response ∆n(r) in the

linear response regime can be obtained by solving a type of modified Sternheimer [52]

(for atomic systems) or DFPT [30] (for periodic systems) equations which defines the

change of wave functions under an external perturbation. Since these equations involve

all the ground-state wave-functions that give contributions to the charge density, the

computational workload becomes very demanding when one deals with a large system.

The calculation of correlation energy as described previously in Chapter 2 becomes even

more demanding since one has to repeat the calculation of the linear density response to

different external perturbations many times in the process of diagonalizing the response

functions. Therefore, it is worth investigating the possibility of making an approximation

for this kind of calculation which reduces significantly the computational workload while

still keeping the accuracy to an acceptable level. In the following, we will describe one

such possibility based on the the TFvW approximate kinetic energy functional.

In the context of Thomas-Fermi and von Weizsäcker approximation, it is convenient
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to introduce an auxiliary wave function ϕ(r) related to the density as

n(r) = N |ϕ(r)|2, (3.10)

where N is the number of electrons and ϕ(r) satisfies the normalization condition∫
dr|ϕ(r)|2 = 1. (3.11)

The total energy functional in the Thomas-Fermi and von Weizsäcker approximation can

thus be expressed in term of ϕ(r) as

E[ϕ] =
3h̄2

10m
(3π2)2/3

∫
[Nϕ(r)]5/3dr +

Nh̄2

2m
γ

∫
|∇ϕ(r)|2dr + EH [ϕ(r)]

+ Exc[ϕ(r)] + Eext[ϕ(r)]−Nµ
[∫
|ϕ(r)|2dr− 1

]
, (3.12)

where EH [ϕ(r)] and Eext[ϕ(r)] are the Hartree and external potential energies, respec-

tively,

EH [ϕ(r)] =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′, (3.13)

Eext[ϕ(r)] =

∫
Vext(r)n(r)dr, (3.14)

Exc[ϕ(r)] is the exchange-correlation energy which is approximated by LDA or some kinds

of GGA, and µ is the chemical potential (Lagrange multiplier).

The self-consistent ground-state density n(r), and hence ϕ(r), minimizes the energy func-

tional (3.12). From the minimization condition

δE[ϕ]

δϕ
= 0, (3.15)

the equation determining ϕ(r) is derived

− γ h̄
2

2m
∇2ϕ(r) +

[
Vext(r) + VH(r) + vxc(r) +

h̄2

2m
k2
F (r)

]
ϕ(r) = µϕ(r). (3.16)

For a given Vext(r), self-consistent solution of this equation gives the ground-state den-

sity in the Thomas-Fermi and von Weizsäcker approximation. In fact, the equation above

has been used for an approximate solution of the electronic structure problem of atoms
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and molecules long before the advent of Kohn-Sham density functional theory. Electron

densities for atomic systems obtained by this method exhibit the correct asymptotic be-

havior, decaying exponentially instead of decreasing as 1/r6 in the Thomas-Fermi model.

Electron densities also remain finite at the nuclear position at variance with the infinite

charge density obtained if the gradient correction is not included. The shell structure,

however, is still missing in TFvW model, and the charge density cannot be considered

very accurate.

It is important to notice here that we are not interested in obtaining the electronic

ground-state density from TFvW method as much more accurate charge density can be

obtained by solving the Kohn-Sham equation in LDA or GGA. Rather we are interested

in calculating an approximation to the response function. It is well known that TFvW

approximation give rather accurate estimate for the non-interacting kinetic energy when

accurate charge densities are used while gives poor results when used to determined self-

consistently the ground-state density. On a similar ground it can be hoped that also

response functions (that are related to functional derivatives of the kinetic energy) are

better behaved when evaluated for an accurate density. Indeed we have verified that the

calculation of TFvW response function on inaccurate self-consistently determined TFvW

densities leads to very poor results while the use of accurate densities leads to reasonably

accurate ones.

In order to impose the desired unperturbed density distribution in the calculation of

the response function it is convenient to denote the term inside square brackets in equation

(3.16) by Veff (r) which can be formally obtained from ϕ(r) =
√
n(r) as

Veff (r)− µ = γ
h̄2

2m

∇2ϕ(r)

ϕ(r)
. (3.17)

In principle, Veff (r) is defined from this equation once ϕ(r) is given. For practical reasons

it is not always straightforward to apply this definition in regions of low density where

numerical inaccuracy in the value of ϕ(r) may induced a noisy Veff (r). While in systems

with spherical symmetry this is not very problematic since one can easily enforce the

known asymptotic behavior of Veff (r) beyond a still safe radial value, for non spherical
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systems expanded in plane waves the problem is more serious and some regularization

procedure is needed. This procedure will be briefly outlined at the end of this chapter,

let us assume for the moment that Veff (r) has been defined.

Under a small perturbation, e.g an uniform electric field, all the quantities in Eq.

(3.16) deviate by a small amount from their unperturbed values. For instance, ϕ(r)

becomes ϕ(r) + ∆ϕ(r), n(r) becomes n(r) + ∆n(r), etc. If only the linear order terms

are considered, the variations of these quantities satisfy the following set of self-consistent

equations

∆n(r) = 2NRe[ϕ∗(r)∆ϕ(r)], (3.18)

∆Veff (r) = ∆Vext(r) + ∆VH(r) + ∆vxc(r) +
h̄2

3m

k2
F (r)

n(r)
∆n(r), (3.19)[

−γ h̄
2

2m
∇2 + Veff − µ

]
∆ϕ(r) = −[∆Veff (r)−∆µ]ϕ(r), (3.20)

with

∆µ =

∫
ϕ∗(r)∆Veff (r)ϕ(r)dr, (3.21)

and the normalization condition ∫
ϕ∗(r)∆ϕ(r)dr = 0 (3.22)

is implied.

The linear density response ∆n(r) is obtained by solving equations (3.18 ÷ 3.20) with

the conditions (3.21,3.22) self-consistently starting with the external perturbing ∆Vext(r).

The equation determining the change of the wave function (3.20) is similar to the so-called

modified Sternheimer equation [51]. However, one needs to solve only one such equation

to obtain the density response no matter how many electrons are present in the system. In

the original scheme instead one equation for each occupied level needs to be solved. From

the computational point of view, this reduction is very desirable especially for application

to large systems.

The above procedure has been outlined for the case of static response-function. How-

ever, the calculation of RPA correlation energy in ACFD theory, as shown in Chapter 2,
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or of van der Waals coefficients presented in the next section requires the determination of

the response functions at finite imaginary frequencies. Fortunately, calculation of density

responses at finite imaginary frequency can be done much in the same way with the only

minor change that µ in equation (3.20) is replaced by µ+ iu as shown in details by Mahan

in the Ref. [52] or in a different derivation presented in Appendix A.

3.4 Polarizability and van der Waals coefficient in

TFvW approximation

It is well know that when two atoms or molecules are far from each other so that the

overlap of their electronic densities is essentially zero, they interact with each other via

the so-called van der Waals force. In the non relativistic theory, interaction energy due

to van der Waals force has a well known expression which is inversely proportional to the

sixth power of the distance between the fragments

E(R) = −C6

R6
, (3.23)

where C6 is called the van der Waals coefficient.

Calculation of van der Waals energy, i.e. of the asymptotic long-range interaction, is

the most natural check for the validity of the approximate linear response functions by

TFvW theory in capturing the non-local long-range interaction. This is done by calcu-

lating the van der Waals coefficients using the approximate scheme as described below.

In fact, this kind of calculation must be performed in order to see if this approximate

treatment of response functions is feasible for developing a density-based method that

includes properly long-range correlations at any distances. van der Waals coefficient can

be calculated via linear polarizabilities, αa,b(iu), through the relation

C6,ab =
3

π

∫
duαa(iu)αb(iu). (3.24)

In response to an external electric field, the system develops an induced moment which

can be expressed in term of the field and polarizabilities. For example, a spherically
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symmetric atom would develop a dipole moment p whose value is given by

p = αE +
γ

3!
E3 + ..., (3.25)

where E is the strength of the field and α and γ are linear and nonlinear polarizabilities,

respectively. For systems with high symmetry like spherical atoms, these quantities are

scalars, but they can be tensors for lower symmetric systems.

In the expression of C6 given above, αa,b(iu) are linear polarizabilities depending on

imaginary frequency iu of the fragments a and b. These quantities are not exactly the

same as the static ones defined by (3.25), but the way they are calculated are essentially

the same. By definition, linear polarizability can be computed from the density response

∆n(r; iu) of the system under a constant external electric field E through the following

expression

α(iu) =

∫
z∆n(r; iu)

E
dr. (3.26)

The linear response density ∆n(r; iu) is obtained by solving self-consistently the set of

equations from Eq. (3.18) to Eq. (3.20), replacing µ by µ+ iu, starting with the external

perturbation ∆Vext(r) = eEz. Then the polarizability is easily calculated using expres-

sion (3.26).

In summary, van der Waals coefficient is obtained by the following steps.

i) Compute unperturbed ground state electronic density n(r) via a stan-

dard Kohn-Sham self-consistent procedure within LDA or GGA.

ii) The effective potential Veff (r) is computed from n(r) via Eq. (3.17) or

the method described in the following section.

iii) For any given frequency iu, the density response ∆n(r; iu) is calculated

by solving the modified Sternheimer equation (3.18 ÷ 3.22).

iv) Compute the polarizability α(iu) from ∆n(r; iu) (Eq. 3.26).

v) Repeat steps iii, and iv, for each frequency iu.

vi) Compute C6 from α(iu) (Eq. 3.24).
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van der Waals coefficients between closed-shell ions have been computed in the frame-

work of DFT by many authors over the years, starting by G.D. Mahan [52]. In these works

the modified Sternheimer equations are solved for many occupied Kohn-Sham orbitals.

The spherical symmetry of the considered systems is exploited in order to implement all-

electron calculation in DFT framework within LDA. van der Waals coefficients as well as

static polarizabilities obtained by Mahan and others are in good agreement with values

from experiment or calculated by other methods. The calculation procedure, however, is

demanding for larger and more complex systems. Our procedure, though being an ap-

proximation, is simpler because only one wave function needs to be computed instead of

all electronic wave functions as in the method by Mahan. This advantage gives a chance

to extend the calculation to complex systems, e.g. molecules or surfaces. We will com-

pare with results in Ref. [52] in order to check the validity of the Thomas-Fermi and von

Weizsäcker approximation for van der Waals coefficients.

3.5 Iterative procedure for construction of effective

potential

As mentioned before for closed-shell spherical systems, direct determination of the ef-

fective potential, Veff (r), defined in Eq. (3.17) is not problematic since the numerical

implementation is made simple by exploiting the spherical symmetry of the systems. The

Kohn-Sham equations for determining the ground state charge density as well as the

modified Sternheimer ones for calculating density response is solved on a radial grid with

highly accurate Numerov’s integration scheme. This leads to very accurate charge density,

hence ϕ(r), in the asymptotic regions. The effective potential therefore can be obtained

from finite difference of expression (3.17), plus few iteration steps to add the corrections

of order of square of grid spacing.

Unlike the case of closed-shell spherical ions, the effective potential can not always

be obtained directly from its definition in the region where ϕ(r) is vanishing. In the
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plane-wave pseudopotential method for describing low symmetry systems, the charge

density is calculated accurately up to a given cutoff of Fourier components. This gives

insufficient numerical accuracy of the charge density, typically in the tail region of atoms

and molecules where the density decays exponentially to zero. Unless very high kinetic-

energy cutoff is used, the accuracy of ϕ(r) obtained by simply taking the square root of

the charge density as in definition (3.10) in the asymptotic region is not good enough

which leads to noisy and unstable values for Veff if evaluated directly from Eq. (3.17).

In these region however the value of Veff is not very relevant, exactly because the charge

density is vanishing. The problem can be overcome by constructing the effective potential

in an iterative process where at each iteration the corrective potential is smoothen so that

at the end a smooth potential that admits ϕ(r) as its ground state wave function is found.

This iterative minimization process is similar to iterative construction of the optimized

effective potential in Ref. [55] and can be described as follows.

Given an approximate Veff (r), a quantity S(r), called residual, is defined by

〈ϕ| − h̄2

2m
∇2 + Veff (r)|ϕ〉 = S(r). (3.27)

S(r) vanishes at all points, r, if Veff (r) is the desired potential that gives the ground

state electronic density from equation (3.16). This effective potential can be found by

an iterative procedure starting with a trial potential V 0
eff (r). Let us denote V i

eff (r) and

Si(r) the potential and the corresponding smooth correction at the step i of the iterative

process. Since the potential is still not converged to the desired potential at this iteration,

the smooth corrective potential Si(r) is still not identically vanishing to zero. The ground

state density, ni(r), corresponding to the potential V i
eff (r) is found by solving equation

(3.16). A new trial effective potential V i+1
eff (r) is then constructed from the old one by the

relation

V i+1
eff (r) = V i

eff (r) + αSi(r) + β. (3.28)

With this expression, the new residual Si+1(r) is easily computed

Si+1(r) = Si(r)[1 + αn(r)] + βn(r). (3.29)
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and the values of α and β are then obtained by minimizing the L2 − norm of the new

residual defined by

||Si+1(r)|| =
∫
Si+1(r)2dr. (3.30)

The procedure is repeated until the preset condition is fulfilled. In our calculation, it

happens when the total absolute deviation of the charge density from the desired value

δn =

∫
|n(r)− ni(r)|dr (3.31)

is less than some given values (of the order of 10−2).

This iterative procedure works well when only valence electrons are is taken into

account. We have also calculated Veff (r) starting with densities having a core correction

included. In these cases, the convergence rate of the iterative process becomes very slow

even when a very large cut-off energy is used. Therefore, calculating an accurate effective

potential in the presence of core density is presently impracticable. Although the role

of core electrons is not negligible, we will show in the next chapter that core electrons

have a very small effect on the value of van der Waals coefficients. For these reasons,

core-electron charge-density will not be included when calculating the response functions

in TFvW approximation for molecular systems.
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Chapter 4

Applications to atomic and

molecular systems

4.1 van der Waals coefficient of atoms and molecules

In order to calculate asymptotic long-range van der Waals interaction energies, we have

implemented the scheme presented in Chapter 3 in the atomic code for suitable for the

calculation of spherical atoms and in the PWscf plane-wave pseudopotential code for

dealing with generic molecules. Both of them are part of the Quantum-ESPRESSO

distribution [65] and our implementations are now distributed in the package. These im-

plementations allow us to compute van der Waals coefficients by both the full (as already

done for the case of closed-shell atoms and ions by Mahan [52]) and approximate (in the

TFvW theory) treatments of the response function. The quality of TFvW approximation

for linear response functions in capturing the long-range interactions will be observed by

comparing the results of two calculations.

4.1.1 van der Waals coefficients of spherical atoms

Numerical results for closed-shell ions show a good agreement with those obtained by Ma-

han with an accurate but more expensive calculation for a wide range of atomic number

67
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Figure 4.1: Dynamic polarizabilities of some spherical atoms calculated within the TFvW

approach compared with the corresponding quantities computed by Mahan in Ref. [52].

and frequency. This can be seen in Fig. 4.1 where frequency-dependent polarizabilities

of some closed-shell ions obtained by the two methods are compared. In Table 4.1 the

results of vdW coefficients for a number of pairs of rare gases calculated using both full

and approximate schemes are given. We also compare our results to those of Mahan’s

full calculation [52] and the results by Hult and co-workers in Ref. [67] where frequency-

dependent polarizabilities of atoms and molecules were calculated by solving an electro-

dynamic equation with a crude treatment of dielectric functions by applying locally the

expression for the dielectric function of the non-interacting homogeneous electron gas.

Our results are all in the range and at least as accurate as those reported in Ref. [67]

when compared to the reference ones. Note that there is a small discrepancy between

our full calculation and those by Mahan. This is because we have been able to calculate

atomic polarizabilities at high frequencies to numerically ensure the convergence of the

integral for vdW cofficients from Eq. (3.24), while they were obtained by an extrapolation

scheme in the calculations by Mahan.
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Dimer Present Mahan Unified Reference

TFvW Full

He 2.36 3.64 3.64 2.58 2.92

Ne 14.2 14.5 13.96 15.0 13.8

Ar 122 138 132.2 143 134

Kr 244 275 261.4 291 266

Xe 572 602 — 663 597

Table 4.1: C6 values for dimers (Rydberg atomic units). Present: our results using both full

and TFvW approaches. Mahan: calculations in the full approach by Mahan shown in Ref.

[52]. Unified: calculations from Ref. [67] from solutions of an electrodynamic equation with

a crude approximate dielectric function. Reference: Numbers quotes in Ref. [67].

In Fig. 4.2 our calculated C6 values both for homonuclear and mixed pairs of 14

spherical ions are plotted against those reported in Ref. [52]. The good agreement between

the results obtained by the two methods are indicated by the narrow spread of the points

around the diagonal. Quantitatively, the difference never exceeds 25% and in most cases

is less than 10% and improved for heavier atoms.

There are several factors that affect the values of the C6 coefficients calculated above.

First of all, the values of C6 somehow depends on the quality of the charge density used as

input for the calculation. For instance, using different xc-functionals in DFT calculation,

i.e. slightly different but still accurate densities, leads to a slight change in the result

of C6 coefficients. Second, varying the values of γ which determines the von Weizsäcker

gradient correction contribution in the TFvW approximate kinetic functional between 1

and 1/3 also changes the values of C6. Calculations performed for all noble gas show

however that final results are not sensitive to the parameter γ.

Finally, it is important to remind that our calculations using TFvW response functions
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Figure 4.2: C6 values of all possible pairs of 14 ions calculated by our method plotted (in

logarithmic scale) against the corresponding values shown in Ref. [52]

are calculated around an accurate charge density. For this purpose, we need to introduce

an effective potential admitting the square root of the charge density as its ground state

wave function as already discussed in Chapter 3. One may wonder if this is indeed neces-

sary since it seems natural to calculate the charge density also in TFvW approximation

and then use it as input for the calculation of C6 coefficient. Moreover, doing calculation

in this way makes the construction of the effective potential needed in our calculation un-

necessary because it is determined in the self-consistent solution of Eq. (3.16). We have

tried this option for the case of noble gas atoms and the results is disastrous. For example,

C6 coefficient of He changes from 2.1 a.u. when computed with LDA-DFT charge density

to 15.07, 36.38 and 227.15 (a.u.) when calculated with charge densities obtained from

solution of the Hartree equation and self-consistent TF-vW approximation with γ = 0.2

and 1.0, respectively. This indicates the importance of calculating the response functions
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with accurate charge densites. This is not totally unexpected since it is well-know that

also the TFvW kinetic energy itself – the quantity on which the approximate response

function is based – can give accurate estimates when applied to accurate charge density

but behaves poorly if treated self-consistently. This shows that our approach, though still

not being a self-consistent procedure (as commonly done in the EXX/RPA+ scheme or

MBPT excited state calculations), is the correct way to calculate vdW coefficient using

TF-vW approximation.

4.1.2 Effects of core electrons on polarizability and van der

Waals coefficient

For systems not possessing spherical symmetry, the calculation of polarizability becomes

much more complicated and more general computational methods which are available in

modern electronic structure calculations, e.g. the plane-wave pseudopotential approach

must be used. Most modern electronic structure calculations use pseudopotential approxi-

mation where only valence electrons are taken into account. This approximation allows to

avoid the computational difficulties in dealing with localized core electrons but its validity

fro the calculation of C6 coefficients in the TFvW approach is unclear. Therefore, before

considering more complicated systems, it is worthwhile to examine the contributions of

core electrons to polarizabilities and van der Waals coefficients in a few atomic cases in

order to see whether pseudopotential are also a good approximation for calculating van

der Waals coefficients in this scheme.

This purpose have been done by comparing results of several atomic calculations where

TFvW C6 coefficients were computed starting from different charge densities used as

input, namely all-electrons density, valence only density and valence density with part

of core charge added as done in the non-linear core correction (nlcc) approximation [44].

Calculations have been done for two atoms: Beryllium and Argon. The number of core

and valence electrons are comparable in these two atoms, but the atomic numbers are

quiet different. Since Beryllium atom has two core and two valence electrons with small
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Figure 4.3: Radial part of the density responses of Be under a uniform electric field pertur-

bation for all-electron (black solid curve), valence with nonlinear core correction (nlcc) (blue

dotted curve), and valence only (red dashed curve) densities. The inset shows the correspond-

ing unperturbed charge densities.

atomic number, the contribution of the core electrons to the total polarization of atom is

perhaps significant. For the case of Argon atom, the number of core electrons is more than

that of the valence ones. On the other hand, Argon has a large atomic number, hence,

the core electrons are tightly-bound to the nucleus. The contribution of core electron in

this case is expected to be small. It is interesting to note that the static polarizability

of Be2+, i.e. the polarizability of two core electrons alone is very small, less than 10−2

(in a.u.), and a similar result was found for the case of Argon. These observations lead

to the expectation that the contribution of the core electrons to the total polarization of

atoms is not considerable and it could be neglected in the calculations within plane-wave

pseudopotential method.

Fig. 4.3 shows the radial part of the density responses of Beryllium atom under an

uniform electric field calculated from three input electronic densities, namely all-electron



4.1 van der Waals coefficient of atoms and molecules 73

0 1 2 3 4 5 6
r(a.u.)

0

0.025

0.05

0.075

0.1

0.125

∆n(r)

AE
NO CORE
WITH CORE(NLCC)

0 1 2 3 4
r(a.u)

0.0

5.0

10.0

15.0

20.0

n(r)

Figure 4.4: The same as in Fig. 4.3 but for Argon atom.

density, valence electron density including core charge in the nonlinear core correction

approximation, and valence only density. Core electrons have two opposite effects on

polarization of Beryllium atom. On the one hand, a large charge density in the core

region leads to a large response density, i.e. makes polarizability increase. On the other

hand, core charge prevents the penetration of valence electrons into the core region. In

other words, it makes the valence electrons less polarizable, i.e. makes polarizability

decrease. These effects do not cancel each other exactly, but still make the contribution

of core electrons become less important. A similar behavior also appears in the case of

Argon as shown in Fig. 4.4.

Table 4.2 gives static polarizabilities and van der Waals coefficients of Beryllium and

Argon with the three kinds of charge densities. The results show that even for Beryllium,

the contribution of core charge, expected to be significant, is just a few percent of the total

van der Waals coefficient. A similar result is also present in the case of Argon. This is

consistent with the observation about the role of core charge from static polarizability of

ions composed of core electron only mentioned above. The results of Be and Ar lead us to
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Atoms α(0) C6

ae nlcc valence ae nlcc valence

Be 33.07 33.05 33.54 194.10 194.14 190.58

Ar 10.93 10.92 10.96 66.80 66.85 63.80

Table 4.2: Static polarizabilities α(0) and van der Waals coefficients C6 (in Rydberg atomic

units) for Be and Ar. The notations ae, nlcc and valence indicate the results obtained with

all-electron, valence with nlcc and valence only densities.

the conclusion that van der Waals coefficients, in a good approximation, can be obtained

in the Thomas-Fermi and von Weizsäcker method even when only valence electron density

in a pseudopotential approximation is considered. This is a very useful property when

extending the calculation to general system with the use of plane-wave basis set which

would require enormous computational efforts when dealing with localized core electrons.

4.1.3 van der Waals coefficients of a few molecular systems

To exemplify the general scheme, we have calculated dynamic polarizabilities and vdW

coefficients for a number of molecules. To show the efficiency of TFvW approximation,

let us give here a more detailed investigation for the case of methane and benzene, two

molecules with different nature of chemical bonds and geometric structures.

The KS equations for each isolated molecule were solved using periodic boundary

condition in a simple cubic simulation cell with side length of 12 and 10 Å and kinetic-

energy cutoffs of 80 and 60 Ry, respectively. Simple LDA exchange-correlation functional

with norm-conserving pseudopotentials were used to obtain the GS charge density of the

isolated molecules.

Fig. 4.5 shows the imaginary-frequency dynamic polarizabilities of methane and ben-

zene molecules calculated in our scheme, compared with the result of the full calculation

which has also been implemented in the PWscf plane-wave pseudopotential code. For
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Figure 4.5: Imaginary-frequency dependent polarizabilities of methane (the inset) and benzene

molecules calculated by TFvW method (solid red curves) compared to results of full calculation

(dashed black curves).

methane molecule, the result of our simplified calculation compares excellently with the

one of the more accurate method. Although this is not the case for benzene molecule,

nevertheless the difference between the two calculations is still not very large.

Dimer TF-vW Full Reference

CO2 372 322 317

CH4 264 271 259

C6H6 4956 3593 3446

Table 4.3: van der Waals C6 coefficients (in the Rydberg atomic units) of CO2, CH4, and

C6H6 molecules computed by full and simplified calculation compared with reference values

obtained from the dipole oscillator strength distributions as quoted in Ref. [68]
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Table 4.3 presents van der Waals C6 coefficients of CO2, CH4, and C6H6 computed

by full and simplified calculation in comparison with the reference values taken from the

data quoted in the Ref. [68]. Very good agreement of the data is found for CO2, CH4 with

strong covalent bonds, while the result from the simplified calculation for benzene is less

impressive than those of other molecules. It is worth mentioning that the computational

time required by the simplified calculation has been at least one order of magnitude lower

than that of the full calculation and it is expected to become increasingly more convenient

for larger systems.

4.2 RPA and RPA+ correlation energy of rare gas

atoms

Let us now apply the scheme presented above to the calculation of RPA correlation

energies for a number of spherical atoms. We exploit the symmetry of these systems

to solve the Kohn-Sham and Sternheimer equations numerically on a logarithmic grid

with the highly accurate Numerov’s method. In spherically symmetric systems, ground

state orbitals of Kohn-Sham system are classified by the principal quantum number n

and the angular momentum numbers l,m and can be solved within a given LDA or GGA

functional on a radial grid. The KS response function is block-diagonal and (2l + 1)-

fold degenerate with respect to angular momentum number l and m, respectively. Thus

diagonalization of χ0 can be done independently for each block in the following steps:

i) Choose a potential to be considered as a perturbation and calculate the

corresponding linear density response by solving the modified Sternheimer

equation [51]. Note that this is the response of the non-interacting Kohn-

Sham system, thus no self-consistent cycle needs to be performed in solving

Sternheimer equation.

ii) Orthonormalize, with overlap matrix vc, this density response to any previ-

ously computed one; the perturbation potential is transformed accordingly
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since χ0 is a linear operator; calculate the corresponding Hartree potential

which will be used as the new trial perturbation.

iii) Build the matrix representation of the eigenvalue problem related to χ0 in

Eq. (2.18) by using the basis set composed of density responses, and then

diagonalize it to get eigenvalues {aα}.

This three-step process is repeated until convergence in the sum over eigenvalues in Eq.

(2.26) is reached. The same calculation procedure is then repeated at different values of

iu (for integrating over imaginary frequency) and angular momentum. An efficient inte-

gration over imaginary frequency in Eq. (2.26) is obtained by dividing the frequency axis,

from zero to a maximum values umax, into many intervals and evaluating the integrated

quantity in each interval by Gauss-Legendre method. While increasing the maximum

value of the angular momenta, typically to lmax = 20 to get the the convergence within
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E
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Figure 4.6: The dependence of RPA correlation energy on the number of eigenvalues for

Xenon atom. The curves are for significant contributions to the total correlation energy from

some of the lowest angular momentum numbers (higher l are not plotted.) Calculation up

to 25 eigenvalues is enough to ensure a convergence within 1mRy, which is also used as the

threshold for convergence with respect to angular number l.
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1mRy of the correlation energy with respect to the summation over angular momenta,

does not pose any problem, some difficulties do arise when increasing the maximum imag-

inary frequency, umax, to get the same accuracy. Convergence within 1mRy with respect

to the frequency integration of the correlation energy can only be achieved by integrating

up to frequencies high enough that the absolute value of the integrand is as small as 10−8

Rydberg. This is very critical, especially for heavy atoms, since frequencies as high as 106

Ry must be considered and special care must be taken in order to reach this accuracy.

The difficulty arising at high frequencies stems from solving the modified Sternheimer

equation numerically on a radial grid which is a boundary value problem whose asymp-

totic behaviors of the solution at the origin and infinity are known. Technically, the

boundary value problem is usually turned into an initial value problem by assuming ar-

bitrary values of the solution at the boundaries. The solution is then obtained by first

integrating outward and inward to the classical turning point. The correct values of solu-

tion at two boundary points assumed arbitrary values before will be fixed using matching

and smoothness conditions of the solution at the turning point. However, inward inte-

gration is performed for exponentially increasing function thus makes numerical values

of the solution are easily become too large. One usually makes use of the linearity prop-

erty of the second order differential equation (the modified Sternheimer equation) to do

a trick by rescaling these values whenever they are larger than a given threshold. For

the same system, the larger the imaginary frequency, the faster the solution increases, i.e.

the larger is the number of rescaling required. A large number of rescaling will reduce

numerical accuracy of the solution below the required level making iterative diagonaliza-

tion procedure unstable. We have overcome this problem by replacing the inward and

outward integration step by setting up a tridiagonal linear system whose solution can be

easily obtained. Although, asymptotic behaviors of the solution of the Sternheimer equa-

tion near the origin and infinity are generally difficult to determine, they can be roughly

approximated, e.g. assuming the same forms of the corresponding Schrödinger equation.

The errors caused by this crude approximation can be reduced to an arbitrary small value

by changing the values of the radial grid boundaries, namely reducing the value of the
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boundary point near the origin and and increasing the value of the point considered to

be at infinity.

Let us investigate the convergence of the RPA Ec with respect to the number of eigen-

values of the generalized eigenvalue problem (2.18) included in the summation in Eq.

(2.26). Fig. 4.6 shows the dependence of RPA correlation energy – separated in different

angular momentum contributions – on the number of eigenvalues for Xenon atom, the

heaviest atom considered in this work. It is clearly seen that the correlation energies

converge quite rapidly; including up to 25 eigenvalues is enough for a total correlation

energy convergence within 1mRy. These calculations therefore confirm explicitly, for the

case of spherical atoms, our expectation that RPA correlation energy can be obtained

Table 4.4: Full RPA and RPA+ correlation energy (in Rydberg atomic units) of spherical atoms

compared to the reference and exact values. The reference data were calculated from EXX-only

(i.e. exact-exchange and no correlation) Kohn-Sham orbitals in a different implementation [14].

Atom †Eexpt
c ELDA

c ERPA
c ERPA+

c

ρLDA ρEXX Ref. ρLDA ρEXX Ref.

He -0.084† -0.229 -0.168 -0.167 -0.166 -0.096 -0.094 0.094

Be -0.190† -0.447 -0.373 -0.367 -0.358 -0.230 -0.224 0.216

Ne -0.786† -1.474 -1.216 -1.195 -1.194 -0.821 -0.800 0.800

Ar -1.463† -2.842 -2.221 -2.206 -2.202 -1.503 -1.487 1.482

Kr -4.15‡ -6.533 -5.226 -5.192 n/a -3.736 -3.702 n/a

Xe -6.86‡ -10.358 -8.312 -8.278 n/a -6.049 -6.016 n/a
†Experimental values are those quoted in Ref. [37]. However, they are not available for Kr and Xe, and the

corresponding numbers shown in the second column for these two atoms are correlation energies in the Hartree-Fock

sense which are practically equal to correlation energies in DFT sense. Data were taken from A. Ma et al., Phys.

Rev. E 71, 066704 (2005).
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from only a relatively small number of eigenvalues of the problem (2.18).

Table 4.4 shows the full RPA and RPA+ correlation energies calculated in our imple-

mentation by using electronic densities from EXX-only[53] and standard LDA functionals.

Experimental values and the data calculated from EXX-only charge densities with a differ-

ent implementation[14] chosen as reference are also shown for comparison. All calculated

values in Table 4.4 are accurate within a few mRy. The results slightly depend on the dif-

ferent xc-functionals used in the self-consistent calculation, i.e. on the different electronic

densities used as input. Focusing on the results obtained starting from EXX-only charge

densities, our calculated values for the full RPA correlation energy (the fifth column in

the table) agree well with the reference data (sixth column) within the error bar (with the

exception of Be case). The small residual differences between the values obtained in the

two implementations may be attributed to a slight difference in the electronic densities

used as input.

Not surprisingly, the RPA correlation energies alone indeed largely overestimate the

exact values and when combined with local-density corrections to form the RPA+ ap-

proximation they become much closer to the exact values. Our calculations thus support

the validity of RPA+ scheme.

4.3 Approximate RPA and RPA+ correlation energy

of atoms

As a first step in an attempt to make the RPA+ scheme less computationally involved,

we now explore the possibility to approximate the independent particle response func-

tions by using Thomas-Fermi-von Weizsäcker (TFvW) kinetic energy functional. This

approximation has the computationally desirable feature that it only involves a single

auxiliary wave-function regardless of the number of electrons. As we have shown in the

previous Sections, TFvW approximation can capture reasonably well asymptotic long
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Figure 4.7: Full and approximate RPA correlation energies of uniform electron gas plotted

as function of rs. The inset shows data with exact correlation energy subtracted. For γ

between 0.3 and 0.5, the difference of exact and TFvW approximate correlation energy is

almost constant in a wide range of density.

range interactions via van der Waals coefficients. It is a purpose of the present section to

demonstrate that TFvW approximation can be used also to calculate approximate, yet

reasonably accurate, correlation energies with much less computational effort with respect

to the full RPA calculation.

For the case of free electron gas, TFvW approximation to the kinetic energy alone at a

given value of parameter γ which determines the contribution of von Weizsäcker gradient

correction to the kinetic energy gives the following expression for the response function

at imaginary frequency, iu, wave-vector, q:

χ̃0(q, u; γ) = − 3n

2εF

[
1 +

3

4

γ2q̃4 + 4ũ2

γq̃2

]−1

, (4.1)

where q̃ = q/kF and ũ = u/(2εF ) with εF , kF and n being Fermi energy and Fermi wave-

vector and electronic density, respectively. It can be noted that this response function
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is exact in two limits: the limit of long-wavelength when γ = 1/9, and the limit of

short-wavelength with γ = 1. This explains why in practical applications of the TFvW

approximation the value of γ in the range between these two limiting values has often

been chosen. Although solving Dyson-like equation is very demanding in general, it is

extremely simplified for uniform electron gas where linear response functions are diagonal

in reciprocal space due to translational invariance. The full RPA correlation energy and

the approximate one in TFvW approximation are easily computed for the jellium model

from the exact Lindhard’s function and the approximate χ̃0(q, u; γ) above, respectively,

and are plotted for several values of γ in Fig. 4.7.

It is clearly seen that for all values of γ between 0 and 1 and for a wide range of

density, the approximate RPA (ARPA) correlation energies are closer to the exact value

than those from full RPA. Moreover, for γ in the range between 0.3 and 0.5, the difference

between the approximate and exact correlation energy is almost constant in the range of

densities show in the figure. This suggests to use a kind of local-density correction to

the correlation energy calculated from the approximate linear response function by using

TFvW functional in the spirit of RPA+. In order to apply the Local Density correction to

the approximate RPA correlation a parametrization of the ARPA correlation energy for

the electron gas is needed. We have chosen to parametrize these data by Perdew-Zunger’s

formula for spin unpolarized electron gas [43] and namely by

εc =
γ

β1
√
rs + β2rs

(4.2)

with γ = −0.1423, β1 = 1.0529, β2 = 0.3334 for rs ≥ 1, i.e. in the high density limit, and

εc = A ln(rs) +B + Crs ln(rs) +Drs (4.3)

with A = 0.0311, B = −0.048, C = 0.0020, D = −0.0116 for rs ≥ 1, i.e. in the intermedi-

ate and low density limit. This parametrization will to be used later in the calculation of

short-range correction in the RPA+ scheme.

For a general non homogeneous system, the TFvW functional can be used to calculate

linear response functions in an approximate manner following much the same procedure
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outlined earlier for the full RPA calculation. But here it is simplified by the fact that

linear density response corresponding to a trial perturbation ∆V is obtained by solving

a kind of modified Sternheimer equation involving only one auxiliary normalized wave-

function, ϕ, which is the square root of the density, Eqs. (3.18 ÷ 3.20), instead of the

multi-band procedure of DFPT.

Approximate RPA and RPA+ correlation energies calculated within the scheme out-

lined above are shown in Table 4.5 for several values of γ. Again all calculated values here

are accurate to within a few mRy and convergence with respect to imaginary frequency

was carefully checked. The general trend is that approximate RPA correlation energies

stay in between the exact (experimental) and full RPA values. This is consistent with the

behavior shown in Fig. 4.7 for the homogeneous electron gas. Although the approximate

RPA Ec depends on the value of γ, the dependence is rather mild. When we include

a local-density correction to the approximate RPA (ARPA) energies, we obtain the ap-

proximate RPA+ (ARPA+) energies, whose magnitude increases as γ decreases from 1 to

0. They also do not depend sensitively on the parameter γ and a good agreements with

experimental results–as good as that obtained for the full RPA+ calculation—is found for

a range of γ between 0.3 and 0.5. These results suggest a possible strategy to efficiently

calculate accurate correlation energies in van der Waals systems where standard DFT

with LDA or GGAs alone does not give satisfactory descriptions.
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Conclusion

In the present thesis a new computational strategy for the calculation of RPA correlation

energy in the Adiabatic Connection Fluctuation-Dissipation formalism has been proposed.

Technical details of the method as implemented in the plane-wave pseudopotential ap-

proach were discussed at some level. The implementation has been applied to study bulk

silicon system and Beryllium dimer which demonstrate the efficiency of the method. We

have also investigated the possibility to approximate the response functions needed to be

diagonalized for calculating correlation energy in our method by using the Thomas-Fermi-

von Weizsäcker approximation for the (non-interacting) kinetic energy functional. This

approximate scheme is computationally much less involved, especially for large systems,

and has been applied to several test cases with promising results.

LDA or GGA treatments of xc-energy in DFT calculation is known to fail for systems

where long-range correlations play an important role, and an alternative promising ap-

proach where the correlation energy is treated in RPA approximation for the xc-kernel

in the ACFD theory has been proposed and investigated recently. Existing plane-wave

pseudopotential implementations for the calculation of RPA correlation energy in ACFD

formalism [12, 13, 15] usually follow the same strategy, namely the calculation of the non-

interacting Kohn-Sham response function by performing a cumbersome summation over

occupied and empty states, and the calculation of the interacting response function at a

given coupling constant by the solution of a Dyson-like equation relating it to the non-

interacting one. Our implementation is based on the calculation of a rather small number

of eigenvalues of the RPA dielectric function by an iterative diagonalization procedure

where the well-established and very efficient techniques of Density Functional Perturba-
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tion Theory can be used. Although the scaling of the needed computational effort in our

implementation is not better than that of the existing ones (growing as the power fourth

of the system size), this new implementation is more efficient since its scaling pre-factor

is at least two order of magnitude smaller.

The validity of our implementation has been carefully checked by applying to several

systems which have been studied in other implementations before. While the study of

bulk silicon crystal helps to validate the implementation and to develope an extrapolation

scheme useful for the treatment of larger systems, our study of Beryllium dimer, thanks

to its better numerical accuracy as compared with previous studies [12], allows us to have

a clearer picture of the performance of EXX/RPA+ scheme in describing weakly bound

systems where this scheme is expected to perform well. Our calculation confirms the

important improvements of EXX/RPA+ with respect to LDA or GGA due to a more

accurate treatment of the xc-energy but also shows that its performance in the delicate

case of Be dimer is less impressive than previously concluded. The possibility of a careful

control of numerical accuracy will be useful for application of the method to other realistic

systems.

Since the calculation of RPA correlation energy in ACFD formalism is very compu-

tationally demanding, it becomes impractical when the size of the system is large, even

within a very efficient implementation. A possibile strategy to make this calculation

less computationally demanding by using approximate Thomas-Fermi-von Weizsäcker re-

sponse functions in the evaluation RPA correlation energy has been proposed and studied

in this thesis. This approximation is very computationally desirable since application of

the response function to a trial potential, which is performed routinely in our implemen-

tation of ACFD method can be obtained by solving only one DFPT-type equation instead

of a multitude, as needed in the full treatment, no matter how many electrons are present

in the system. The potential of this approximate scheme in capturing the long-range

correlations has been shown by a good agreement, typically within 20%, of the van der

Waals coefficients calculated with approximate and full response functions for a number

of closed-shell atoms and molecules. Approximate RPA and RPA+ correlation energies,
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i.e. energies calculated with the same procedure used for the full RPA correlation energy

in ACFD formalism but using approximate response functions as ingredients, have been

calculated for a number of rare-gas atoms and the results show the promise of the ap-

proximation. Although more systematic calculations of this approximate scheme needs to

be performed for more realistic systems in order to assess its quality, we believe that this

approximate scheme would be useful in the treatment of large systems to some degree of

accuracy.

In conclusion our implementation of a new computational strategy for RPA correla-

tion energy in ACFD theory is presented and the results obtained from a few case studies

have shown the efficiency of the method. The implementation allows us to be able to

perform accurate calculations on very weakly bound systems which is important for as-

sessing the accuracy of RPA xc-kernel. Our implementation can be easily adapted to use

approximate response functions in order to make it less computationally demanding at

the price of making it more approximate. An approximation base on the Thomas-Fermi-

von Weizsäcker scheme has been explicitly tested. From the results of some test cases,

we believe that, although this approximation may not be able to give very accurate de-

scription of the correlation energy, it can capture long-range correlations to some degree

of accuracy and thus can be useful for many applications where van der Waals interaction

plays important role.
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Appendix A

Response function at finite

imaginary frequency

In this appendix, the derivation is given for the result quoted in Chapter 2 that density-

response to a static perturbation calculated at finite imaginagy frequency, iu, of the Kohn-

Sham response function can be obtained with the same procedure used for zero frequency

just replacing the eigenvalue εi in the Sternheimer of DFPT equation by εi + iu.

Let us start with the well-known expression for χ0(r, r′; iu)

χ0(r, r′; iu) =
∑
i,j

fi − fj
εi − εj + iu

φ∗i (r)φj(r)φ∗j(r
′)φi(r

′), (A.1)

where {εi} and {φi(r)} are the sets of eigenvalues and eigenfunctions of the Kohn-Sham

Hamiltonian −1
2
∇2 + VKS(r), respectively, and fi being the occupation of state φi(r).

By definition, density response ∆n(r; iu) at finite imaginary frequency iu correspond-

ing to a given perturbation potential ∆V (r) is

∆n(r; iu) =

∫
dr′χ0(r, r′; iu)∆V (r′) (A.2)
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Replacing χ0 in Eq. (A.2) by its expression in Eq. (A.1) we get

∆n(r; iu) =
∑
i,j

fi
φ∗i (r)φj(r)

εi − εj + iu

∫
dr′φ∗j(r

′)∆V (r′)φi(r
′)

+
∑
i,j

fj
φ∗i (r)φj(r)

εj − εi − iu

∫
dr′φ∗j(r

′)∆V (r′)φi(r
′). (A.3)

Interchanging the dummy indices i and j in the second term, one can show that the two

terms are indeed complex conjugate. Therefore, one can write the expression for ∆n(r; iu)

in a form which is more convenient for computational purpose.

∆n(r; iu) = 2Re{
∑
i

fiφ
∗
i (r)∆φi(r; iu)}, (A.4)

with

∆φi(r; iu) =
∑
j

φj(r)

∫
dr′

φj(r
′)∆V (r′)φi(r

′)

εi − εj + iu
(A.5)

Note that the occupation number fi vanishes if the energy εi belongs to the unoccupied

bands and ∆φi(r; iu) needs to be computed for the occupied levels only.

Let us find an equation for this quantity by applying the Kohn-Sham Hamiltonian to

it

[−1

2
∇2 + VKS(r)− εi − iu]∆φi(r; iu) =

∑
j

(εj − εi − iu)φj(r)

∫
dr′

φj(r
′)∆V (r′)φi(r

′)

εi − εj + iu

= −
∫
dr′{

∑
j

φj(r)φj(r
′)}∆V (r′)φi(r

′)

= −
∫
dr′δ(r− r′)∆V (r′)φi(r

′)

= −∆V (r)φi(r).

Hence we avoid the cumbersome summation over all unoccupied states in Eq. (A.1) or

(A.5) by solving the following linear equation for each occupied state

[−1

2
∇2 + VKS(r)− εi − iu]∆φi(r; iu) = −∆V (r)φi(r). (A.6)

This can be done efficiently by iterative techniques.
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Note for calculation of spin-polarized

systems

In this appendix, we show that the procedure presented in Chapter 2 for calculating Ec in

the ACFD formalism for spin-unpolarized systems in RPA approximation is still applicable

to the case of spin-polarized systems with appropriate definition of the response functions.

Let us start with a generalization of the relation between xc-energy and response

function for the case of spin-polarized systems

Ec = − h̄

2π

∫ 1

0

dλ

∫
drdr′vc(r, r

′)×
∫ ∞

0

du
∑
σ,σ′

[χσσ
′

λ (r, r′; iu)− χσσ′0 (r, r′; iu)], (B.1)

with both non-interacting Kohn-Sham response function and the interacting one becoming

a 2 × 2 matrix, though the non-interacting one is still diagonal in spin-space, i.e. χud0 =

χdu0 = 0. The Dyson-like equation that relates the interacting to the non-interacting

response function in this case reads

χσσ
′

λ = χσσ
′

0 +
∑
ν,ν′

χσν0 (vc + f νν
′

xc )χν
′σ′

λ , (B.2)

where integration over spatial coordinates on the right-hand-side is implicitly implied and

the Coulomb kernel vc couples in the same way all spin components to each other. In
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RPA, xc-kernel fxc is set to zero, and the Dyson-like equation can be written in matrix

form as

 χuuλ χudλ

χduλ χddλ

 =

 χuu0 0

0 χdd0

+

 χuu0 0

0 χdd0


 vc vc

vc vc


 χuuλ χudλ

χduλ χddλ

 . (B.3)

If we define

χ0 = χuu0 + χdd0 , (B.4)

χλ = χuuλ + χudλ + χduλ + χddλ , (B.5)

then after some trivial algebra we get

χλ = χ0 + χ0vcχλ, (B.6)

which is exactly the same formula as for spin-unpolarized systems.

With the note that Tr(A+B) = Tr(A)+Tr(B) and the trace of a matrix is invariant

under a similarity transformation, it is easy to see that Ec of spin-polarized systems can be

calculated with the same procedure used for spin-unpolarized case discussed in Chapter 2.

The only thing that needs to be changed here is that χ0 is now the sum of the responses

of spin-up and spin-down electron-densities to the same perturbing potential.
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