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Chapter 1

Introduction

Consider an n x n system of conservation laws on a bounded interval:
us + fu)e =0, t>0, z€la,b. (1.0.1)

The system is assumed to be strictly hyperbolic, each characteristic field being either linearly
degenerate or genuinely nonlinear in the sense of Lax [34]. We shall also assume that all charac-
teristic speeds are bounded away from zero. More precisely, let f : U — R" be a smooth map,
defined on an open set U C R". For each u € U, call \1(u) < --- < Ap(u) the eigenvalues of the
Jacobian matrix D f(u). We assume that there exists a minimum speed ¢y > 0 and an integer
p € {l,...,n} such that

i 0, if i<p,

(w) < BorsP (1.0.2)
)\i(u) > Da if d =D

|)\i(u)| >cp >0, ue U (1.0.3)

By (1.0.2), for a solution defined on the strip ¢ > 0, = €]a,b[, there will be n — p characteristics
entering at the boundary point z = a, and p characteristics entering at z = b. The initial-
boundary value problem is thus well posed if we prescribe n — p scalar conditions at = a and p

scalar conditions at z = b . In a very general form, these can be written as

{soa (ult,a+)). for t>0,

=0, (1.0.4)
op (ult,b=)) =0, for t>0, o

for suitable functions ¢, : R* — R"7P, ¢, : R* — RP. See also [1, 2] for the case of general
entropy-weak solutions taking values in the space BV of functions with bounded variation.
In the present thesis we study the effect of boundary conditions on the solution of (1.0.1) from

the point of view of control theory. Namely, given an initial condition

U(O,.’L‘) = (}5(.’1?), z E]a, b[, (105)




we assume that the evolution of the system can be affected by an external controller, acting
through the boundary conditions. Instead of (1.0.4), the conditions will thus take the form

{%(u(tﬂﬂva(t)) =(§” for £>0, (1.0.6)

oy (u(t,b—), B(t)) = for t>0,

for suitable control functions a(-), B(-). Given an initial data as in (1.0.5), one of our main

concerns will be to describe the set of attainable configurations:
A(T, ¢) = {u(T,-)solution of (1.0.1), (1.0.5), (1.0.6) for some aq, o} C L*([a,b]; R™) (1.0.7)

which can be attained by the system at a given time T" > 0 (see [28, 33, 45] and references therein

for several weak formulations of (1.0.6)).

Definition 1.0.1 Given a family F of initial states and T' > 0, we say that the problem (1.0.1) is
ezactly controllable at time T to the state v € L ([a, b];]R") if for every ¢ € F there exist control
functions a, B such that the solution of (1.0.1), (1.0.5), (1.0.6) satisfies

u(T,-) = v, a.e.in [a,b].

We say that the problem (1.0.1) is asymptotically stabilizable near the state v € L*([a,b]; R") if
for every ¢ € F there exist control functions o, B such that the solution of (1.0.1), (1.0.5), (1.0.6)
satisfies '

u(t,:) — v, in L'([a, b]) as t — +oco0.

To see the very simplest example, consider a strictly hyperbolic system with constant coeffi-

cients:
up + Aug =0, (1.0.8)

where A is a n x n constant matrix, with real distinct eigenvalues
A< <A <0< Appy <o < Ay

Assume that all incoming components at each boundary point can be assigned by the controller,
namely consider the boundary conditions (1.0.6) with

‘Pa(u, a) = Wa(u) - aQ, ‘Pb(uyﬂ) = ﬂ'b(u) -5, (109)

where 7, m are suitable projections on R™. Call

T = max - b-a
|Adl
the maximum time taken by waves to cross the interval [a,b]. In this case, it is easy to see that
the reachable set in (1.0.7) is the entire space: A(T) = L! for all T > 7. In other words, the

system is completely controllable after time 7. Indeed, for any T > 7 and initial and terminal



data ¢,7 € L*([a,b];R"), one can always find a solution of (1.0.5), defined on the rectangle
[0,T] x [a,b] such that

u(0,z) = ¢(z), u(T, z) = (), z € [a,B].
Such solution can be constructed as follows. Let [;,...,l, and rq,...,r, be dual bases of right
and left eigenvectors of A so that l; - r; = d;;. For i =1,...,n, let u;(¢,z) be a solution to the

scalar Cauchy problem

Uit + AUy =0,

li . ¢($)7 it ze [a, b]y
ui(O, SL') =< ;- 1/)(3: -+ )\iT), if ze [a - XT, b— )\iT],
0, otherwise.

Then the restriction of

u(t,z) = Z u;(t, z)r;

to the interval [0,7 x [a, b] satisfies (1.0.8) and takes the required initial and terminal values. Of
course, this corresponds to the solution of an initial-boundary value problem, determined by the

n boundary conditions

l; - u(t,a) = ui(t, a), if i=p+1,...,n,
I; - u(t,b) = u(t, b), if ¢=1,...,p.

This result on exact boundary controllability has been extended in [35, 36] to the case of general
quasilinear systems of the form
ug + A(u)ug = 0.

In this case, the existence of a solution taking the prescribed initial and terminal values is obtained
for all sufficiently small data ¢, € C!.

Aim of the present thesis is to study analogous controllability properties within the context of
entropy weak solutions ¢ ~+ u(t,-) € BV, or L*. For the definitions and basic properties of weak
solutions we refer to [12]. For general nonlinear systems, it is clear that a complete controllability
result within the space BV or L' cannot hold. Indeed, already for a scalar conservation law
with boundary conditions (1.0.6), (1.0.9), it was proved in [7] (see also [32] for the results on the
Burgers equation) that the profiles 1 € BV which can be attained at a large time T' > 0 are
precisely those which satisfy the Oleinik-type conditions

f'(¥(2))
(z —a)f"(¥(z))’

For general n x n systems, a complete characterization of the reachable set A(T') does not

for a.e. x € [a,b].

P(z) <

seem possible, due to the complexity of repeated wave-front interactions.
The thesis is organized as follows. In Chapter 2 (see [4, 3]) we consider the case of Temple
class systems [46] with boundary conditions (1.0.6), (1.0.9). We provide a description of the




corresponding attainable set (1.0.7) in terms of suitable Oleinik-type estimates, which is a natural
extension of the results in [7, 8, 32] concerning scalar conservation laws.

In Chapter 3 (see [14, 3]) we show that for general nonlinear systems, one cannot expect such
an exact controllability result. We prove for a class of strictly hyperbolic, genuinely nonlinear
2 x 2 systems of the form (1.0.1) that constant states cannot be exactly reached in finite time,
but only approached exponentially fast, as t — co. A particular system belonging to that class is
the one studied by DiPerna in [27]:

pt + (up)z =0,
u2 K2 (1.0.10)
—_ v—1 —

et ( 2 * Y- 1p ):1: 07

with 1 <+ < 3. Here p > 0 and u denote the density and the velocity of a gas, respectively. The
system describes the evolution of a particular gas.

In Chapter 4 (see [14, 3]) we look for the asymptotic stabilizability of the system (1.0.1)
with boﬁndary conditions (1.0.6), (1.0.9) near the constant states. We prove that if the initial
condition ¢ has sufficiently small total variation, then the system is asymptotically stabilizable
at any nearby constant state u*. The rate of convergence is faster than exponential. Indeed it
can be estimate by

Jut,”) — v ||, <Coe™®™,  t>0, (1.0.11)

for some positive constants Co, k.

As in [35], all of the above results refer to the case where total control on the boundary values
is available. As a consequence, the problem is reduced to proving the existence (or nonexistence)
of an entropy weak solution defined on the open strip ¢t > 0, = €]a, b[, satisfying the required
conditions. This is a first step toward the analysis of more general controllability problems,
where the control acts only on some of the boundary conditions. We shall be mainly concerned
the asymptotic stabilization near constant states. For this purpose we fix a constant state u* such
that

Pa(u”) = pp(u") =0,
and we look at the corresponding linearized system at u*. In this connection, the two following

conjectures seem natural:

exact controllability for the linearized system

Y

asymptotic stabilizability for the nonlinear system near v* with rate as in (1.0.11)

and

exponential asymptotic stabilizability for the linearized system

4

asymptotic stabilizability for the nonlinear system near u~.



The analysis of these more general boundary controls should thus begin by looking at what
happens in the linear case with constant coefficients. In Chapter 5 we thus consider the system

ta+)~‘20au U]ta, )—%—ZFMI al(t), i=17---,P,
j=1

Uj(t, b—) = z Cb,ji ) ui(tv b—) =+ lz Fb,jl ) ﬂl(t)a .7 =p+ 1: L)
i=p+1 =1

for 0 < ¢t < T, so the outgoing waves from the boundaries z = a and z = b depend on the
incoming characteristics and on the controls. To simplify the notations and the computations we

consider the following

4

we + A- wm:O a<z<b t>0,
w;(t,a) = ZC'M]wj(t a), t>0,i=p+1,...n
(1.0.12)
w;(t,b) = Z Cy,jiwi(t, b) +Zrbﬂal >0, j=1,..,p,
i=p+1
L w(0,z) = wo(x), a<z<b.

Observe that
i) all the controls act on the boundary z = b;

ii) we have only v < p scalar controls, namely less or equal controls than outgoing character-

< istics from = = b;

zu) " we work in the L1 —functional framework, instead of the L? one, that is the most commonly

used for linear control problems like (1.0.12).

In Chapter 5 (see [5]) we prove that under orthogonality assumptions on the boundary and
control matrices {Cy i; }ij> {Ch.ji}sir {Lb,ji}ii> (1.0.12) is exactly controllable at time T' > 0, for
T sufficiently large. Moreover we show that some of these conditions are necessary.

In Chapter 6 (see [5, 42]) we look for two smallness assumptions on the boundary and control
matrices {Ca,ij}ij» {Cbji}jir {Lb,ji}j1, that guarantee the exponential asymptotic stabilizability
of (1.0.12) in the L' and L? norms. Finally, in the last section we show with some examples that
the conditions in [5] are independent of the ones in [42]. Our conditions are sufficient but not

necessary for the asymptotic stabilizability as is shown in Section 6.3.






Chapter 2

The Attainable Set for Temple
Class Systems

Consider the initial-boundary value problem for a strictly hyperbolic, genuinely nonlinear, system

of conservation laws in one space dimension

us + fu)g =0, (2.0.1)
(0, z) = T(x), (2.0.2)
u(t,a) = Uq(t), (2.0.3)
u(t, b) = Up(t), ‘ (2.0.4)

on the strip Q@ = {(t,z) € R® ; t > 0,z € [a, b]}. Here, u = u(t,z) € R" is the vector of
the conserved quantities, U,, Uy are measurable, bounded boundary data, and the flux function
f: U — R" is a smooth vector field defined on some open set U C R™, that belongs to a class
of fields introduced by Temple [46, 45] for which rarefaction and Hugoniot curves coincide. We
recall that, for problems of this type, classical solutions may develop discontinuities in finite time,
no matter of the regularity of the initial and boundary data. Hence, it is natural to consider weak
solutions in the sense of distributions. Moreover, since, in general, the conditions (2.0.3)-(2.0.4)
cannot be fulfilled pointwise a.e. (see [10, 28]), different weaker formulations of the boundary
conditions have been considered in the literature (see [1, 33, 44] and references therein). Here,
following F. Dubois, P. G. LeFloch [28], we will adopt a formulation of (2.0.3)-(2.0.4) based on
the definition of a time-dependent set of admissible boundary data, that is related to the notion

of Riemann problem.

In the present chapter, having in mind applications of Temple class systems to problems of
oil reservoir simulation, multicomponent chromatography, as well as in traffic flow models (see
[9, 21, 22, 23, 30, 31, 38, 40, 41]), we study the effect of the boundary conditions (2.0.3)-(2.0.4)
on the solution of (2.0.1)-(2.0.2) from the point of view of control theory. Namely, following the
same approach adopted in [7, 8] for scalar conservation laws, we fix an initial data @ € L*°([a, b])

9
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and we consider the family of configurations
AT Ua, Up) = {u(T,-); u isasol. to (2.0.1) = (2.04), U, €Us, Uy €U} (2.0.5)

that can be attained at a given time T > 0 by solutions to (2.0.1)-(2.0.4), with boundary data
Uq, Up that vary in prescribed sets U,, Uy C L°°(R") of admissible boundary controls. In the
case of scalar, convex conservation laws, it was proved in [7], by using the theory of generalized
characteristics [24], that the profiles w(z) which can be attained at a fixed time T' > 0 are only
those for which the map z — f'(w(z))/z is non increasing. Under the assumption that f'(u) > 0
for all u, and for solutions of the mixed problem (2.0.1)-(2.0.4) on the region Q, this condition is

equivalent to the Oleinik-type inequalities

Druw(z) < @ _fégﬁgzg(m)) - for ae. z€la,b], (2.0.6)

(D*w denoting the upper Dini derivative of w). For general n x n systems, a complete character-
ization of the attainable set does not seem possible, due to the complexity of repeated wave-front
interactions. However, in the particular case of Temple systems, wave interactions can only change
the speed of wave-fronts, without modifying their amplitudes, due to the special geometric fea-
tures of such systems. Therefore, the only restriction to boundary controllability is the decay
due to genuine nonlinearity. We then consider here a convex, compact set I' C U, and provide a

description of the attainable set
A(T) = A(T; U™, U™), U = L*([0,71,T),

in terms of certain Oleinik-type conditions. We also establish the compactness of A(T) in the
L' topology. Applications to calculus of variations and problems of optimization (where the
cost functional depends on the profile of the solution at a fixed time T') motivate the study of

topological properties of A(T).

The chapter is organized as follows. Section 2.1 contains the basic definitions and the statement
of the main results. We also provide in this section a review of the existence and well-posedness
theory for the mixed problem (2.0.1)-(2.0.4), and a description of a front tracking algorithm that
will be used throughout the chapter. In Section 2.2 we establish some preliminary estimates, and
a regularity result concerning the global structure of solutions to the mixed problem (2.0.1)-(2.0.4)
generated by a front tracking algorithm. The proof of the main results is contained in Section 2.3.

2.1 Preliminaries and Statement of the Main Results

2.1.1 | Formulation of the Problem

Let f : U — R® be the flux function of the strictly hyperbolic system (2.0.1) defined on
a neighborhood of the origin U C R™. Denote by Ai(u) < --- < A,(u) the eigenvalues of the
Jacobian matrix Df(u), and let {r1(u),...,rn(u)} be a basis of right eigenvectors of Df(u). By
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possibly considering a sufficiently small restriction of the domain U, we may assume that the
following uniform strict hyperbolicity condition holds.

(SH1) For every u,v € U, the characteristic speeds at these points satisfy

Ai(u) < X (), Vi<i<j<n. | (2.1.1)

We also assume that there is a fixed set of characteristic lines entering the interior of the strip
[a,b] x RT at the boundaries z = a, £ =b, i.e. that, for some index p € {1,...,n}, there holds

Ap(u) < 0 < Apyi(u), YueU, (2.1.2)
and we let A™I®, \™3% denote the minimum and maximum characteristic speed so that there holds
0 < ABIR < |\ (m)] < A2, YueU. (2.1.3)

Moreover, we assume that each i-th characteristic field r; is genuinely nonlinear in the sense

of Lax [34], and that system (2.0.1) is of Temple class according with the following.

Definition 2.1.1 A system of conservation laws is of Temple class if there exists a system of
coordinates w = (wy,...,w,) consisting of Riemann invariants, and such that the level sets

{u € U; w;(u) = constant} are hyperplanes (see [45]).

By possibly performing a translation of coordinates, it is not restrictive to assume that the
Riemann invariants are chosen so that 0; A\;(w) > 0, ¢ = 1,...n, for all w = w(u),u € U.
Throughout the chapter, we will often write w;(t,z) = w;(u(t,z)) to denote the i-th Riemann
coordinate of a solution u = u(t, z) to (2.0.1). We recall that, for a Temple class system, Hugoniot
and rarefaction curves coincide [46]. Moreover, as observed in [6], thanks to the existence of
Riemann coordinates one can show that the assumption (SH1) implies the invertibility of the
map f:U — f(U).

We next introduce a definition of weak solution to (2.0.1)-(2.0.4) which includes an entropy
admissibility condition of Oleinik type on the decay of positive waves, so to achieve uniqueness.
The boundary conditions (2.0.3)-(2.0.4) are formulated in terms of the weak trace of the flux f(u)
at the the boundaries z = @, z = b, and are related to the notion of Riemann problem in the
same spirit of [28]. To this purpose, letting u(t,z) = W (€ = x/t; ur,ugr), ur, ug € U, denote
the self-similar solution of the Riemann problem for (2.0.1) with initial data

ur if x <0,

u(0,z) = _
ur ifz >0,

for any given boundary state & € U, we define the set of admissible states at the boundaries

Vo(@) = {W(0+; @,ur) ; ur € U},
(2.1.4)
V(@) = {W(O——; ur,u) ; ur € U}.
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Definition 2.1.2 A function u : [0, T] X [a,b] = U is an entropy weak solution of the initial-
boundary value problem (2.0.1)-(2.0.4) on Qr = [0, T] x [a,b], if it is continuous as a function
from 10, T] into L', and the following properties hold:

(i) u is a distributional solution to the Cauchy problem (2.0.1)-(2.0.2) on Qr in the
sense that, for every test function ¢ € C} with compact support contained in the set
{(t,z) € R%; a <z <b,t<T}, there holds

T b b
/0 / (u(t, 3) - bo(t, ) + F(u(t, D) - fa(t,2)) de dt + / () - $(0, z)ds = 0;

(ii) the fluz f(u) admits weak® traces at the boundaries T = a, x = b, i.e. there exist two
measurable functions U,, ¥y : [0, T] — R™ such that

fu(,z) — T, Ful,z) — T in L=(, T)), (2.1.5)

z—rat T—b—

and the boundary conditions (2.0.3)-(2.0.4) are satisfied in the following sense

T,(t) € f(Va(Ua(t))), Ty(t) € F(V(Tn(2))) for a.e. 0<t<T; (2.1.6)

(iii) w satisfies the following entropy conditions on the decay of positive waves in time and in

space. There ezists some constant C > 0, depending only on the system (2.0.1), so that
(a) For any 0 <t < T, and for a.e. a <z <y < b, there holds

witt) - wiltya) < ¢ {152 viog (L23) ) i (tonh
(2.1.7)

w;(t,y) —wi(t,z) < C- {Z’i—;—f-l-log (y—a>} if i1e{p+1,...,n};

T—a
(2.1.8)
(b) For a.e. a <z <b, and for a.e. 0 <7y <73 <T, there holds
w; (7, z) — wi(n,z) < C- {7-2 — L 1 log (ZE)} if  ie{l,...,p},
z—b 5
(2.1.9)

wi(me, z) — wi(m,z) < C- {72 —n + log (?)} if ie{p+ 1,...,n}.
- 1
(2.1.10)

Remark 2.1.1 The set of admissible flux values at the boundaries z = a, z = b, can be expressed

in Riemann coordinates as
FVa@) ={f); wiw) =wi@ Vi=p+1,...n},

(2.1.11)
FO@) = {F@) s wiw) =wi@  Vi=1,....p}.



13

Hence, by the invertibility of the map f : U — f(U), the above boundary conditions (2.1.6) are
equivalent to the set of equalities

w; (f71(Ta(8)) = wi(Ua(t)) for ae. 0<t<T, i=p+1,...,n,
(2.1.12)
0<t<T,

w; (f7H(T(2))) = wi(Us (1)) for a.e.

IA

t1=1,...,p.

This means that the boundary conditions (2.1.6) guarantee that, at almost every
time ¢t € [0, T, the solution to the Riemann problem for (2.0.1), having left and right initial
states ul = U, (t), uf = f~1(¥,(t)), contains only waves with negative speeds, while the solution
to the Riemann problem with initial states ul = f~1(¥4(t)), u® = %y(t), contains only waves
with positive speeds. Thus, in particular, such solutions do not contain any front entering the

domain [t, +oo[ x]a, b].
In the present chapter we regard the boundary data as admissible controls and, in connection
with a fixed convex, compact set I' C U having the form
r={uem w;(u) € [as, Bil, i:L“wﬂ, (2.1.13)
we study the basic properties of the attainable set for (2.0.1)-(2.0.2), i.e. of the set
A(T) = {u(T,"); u isasol. to (2.0.1) — (2.0.4), U, U € L®([0,T),I)} (2.1.14)

which consists of all profiles that can be attained at a fixed time T' > 0, by entropy weak solutions
of (2.0.1)-(2.0.4) (according with Definition 2.1.2) with a fixed initial data @ € L*([a,b],T"), and

boundary data u,, up that vary in
Uy = L=([0,71,I). (2.1.15)

We will establish a characterization of (2.1.14) in terms of certain Oleinik type estimates on the

decay of positive waves, and we will prove the compactness of (2.1.14) in the L' topology.

2.1.2 Statements of the Main Results

For any p > 0, consider the set of maps

( wilp()) —wile(@) _ _p {for ae a<z<y<h)
y—x zZ—a if ie{p+1,..,n}
Kr={pe L*®(a,b], ) ; -
wilely)) ~wilp(@)) __p {for ae. a<z<y<h,
\ y—=z T by if ie{l,..p} J

(2.1.16)
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The inequalities in (2.1.16) reflect the fact that positive waves entering through the boundaries
x = a, T = b decay in time. Therefore, their density (expressed in terms of Riemann coordinates)
is inversely proportional to their distance from their entrance point on the boundary.

The main results of this chapter are the following (see [4, 3]).

Theorem 2.1.1 Let (2.0.1) be a system of Temple class with all characteristic fields genuinely
nonlinear, and assume that the strict hyperbolicity condition (SH1) is verified. Then, for every
fized 7 > 0, there exists p = p(T) > 0 such that

A(r) C K* V1r>7. (2.1.17)
Moreover, there exist T > 0 and p' < p(T'), such that

K Cc Alr) Vr>T. (2.1.18)

Remark 2.1.2 Observe that, given ¢ € K*, any map = — w;{(¢(z)), 1 € {1,...,n}, is essentially
bounded and has finite total increasing variation on subsets of [a, b] bounded away from the end
points a, b. Hence, any map = — w;(¢(z)), i € {1,...,n}, has also finite total variation on such
sets and, in particular, it admits left and right limits in any point = €]a, b[. Moreover, since an
element ¢ of K” is defined up to L' equivalence, we may always assume that there is a right
continuous representative of w;(p), ¢ € {1,...,n}, that satisfies the inequalities appearing in the
definition of K?.

Theorem 2.1.2 Under the same assumptions of Theorem 1, the set A(T) is a compact subset
of L*([a,b], T) for each T' > 0.

Indeed, we will prove in Section 2.3 that the compactness of the attainable set A(T") holds
even in the case where A(T) is defined as the set of all configurations that can be reached at
time T only by solutions of the mixed problem for (2.0.1) that admit a strong L' trace at the
boundaries z = a, = = b (as the ones generated by a front tracking algorithm).

2.1.3 Existence and Uniqueness of Solutions

We describe here a front tracking algorithm that generates approximate solutions to (2.0.1) on
the strip [a,b] x Rt continuously depending on the initial and boundary data, which represents
a natural extension of [6, 16]. Fix an integer » > 1 and consider the discrete set of points in I’

whose coordinates are integer multiples of 27:
I"’i{ueI‘; wi(u) € 277, i:l,...,n}. (2.1.19)
Moreover, consider the domain

DY = {(u,u’,u”); u € L*®([a,b],T), v',u" € L®(R",T"), u,u',u" are piecewise consta.nt}.

(2.1.20)
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On D¥ we now construct a flow map E” whose trajectories are front tracking approximate solu-
tions of (2.0.1). To this end, we first describe how to solve a Riemann problem with left and right

initial states u”, v € I'V. In Riemann coordinates, assume that
LN = L _ (L L Ry - R _ (R R
w(u”) =w” = (wy,...,wy), w(u™) =w™ = (wi, ..., w,).

Consider the intermediate states

20 =l e 2 =uwf, . wf el wh), cees = (2.1.21)
The solution to the Riemann problem (u”,u®) is constructed by piecing together the solutions to
the simple Riemann problems (271, 2%), i = 1,...,n. If w® < w’, the solution of the Riemann

1. 2%, and traveling with

problems (2?71, z!) will contain a single i-shock, connecting the states z*~
the Rankine-Hugoniot speed \;(z*~, 2*). Here and in the sequel, by \;(u,u/) we denote the i-th

eigenvalue of the averaged matrix
1
Al ') = / Df (6u + (1 — ) do. (2.1.22)
0

- If wf > wkF, the exact solution of the Riemann problem (z*~!,z¢) would contain a centered

PER]
- rarefaction wave. This is approximated by a rarefaction fan as follows. If w = wl + p; 277 we

insert the states

zi’ei(wf‘,...,w{’+E2_”,wiL_{Ml,...,w£‘), £=0,...,pi, (2.1.23)
so that 240 = z¢~1 24P = 7. Our front tracking solution will then contain p; fronts of the i-th

family, each connecting a couple of states 2441, 2 and traveling with speed \; (24671, z%%).

For any given triple of (piecewise constant) initial and boundary data (@, U, , U ) € DY, the
approximate solution u(t,-) = EY(T, Uy, Up ) is now constructed as follows. At time ¢ = 0, for
a < z < b we solve the initial Riemann problems determined by the jumps in @ according to the
above procedure, while at £ = a we construct the solution to the Riemann problem with left and
right initial states ul = U, (0+), u® = w(a+) and take its restriction to the interior of the domain
. In the same way, at z = b, we take the restriction to the interior of Q of the solution to the
Riemann problem with initial states u’ = @(b—), u® = Uy(0+). This yields a piecewise constant
function with finitely many fronts, traveling with constant speeds. The solution is then prolonged

up to the first time #; at which one of the following events takes place:

a) two or more discontinuities interact in the interior of Q;
b) one or more discontinuities hit the boundary of Q;

¢) the boundary data %, has a jump;

d) the boundary data up has a jump.

If the case a) occurs, we then solve the resulting Riemann problems applying again the above
procedure, while in the other three cases b)-c)-d) we construct the solution to the Riemann
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problem with left and right initial states ul = W, (t1+), uf = u(t,a+), or ul = u(ty,b-),

uft

= Up(t1+), and take its restriction to the interior of the domain 0. This determines the
solution wu(t,-) until the time ¢ > t; where one of the events a), b), c) again takes place, etc. ..
Notice that at any time where case b) occurs but ¢) or d) do not take place, no new wave is
generated. Therefore, waves entering the domain {2 at the boundaries z = a, z = b are produced

only by the jumps of the boundary data @,, ;.

As in [6, 16], one checks that the approximate solution u constructed with this algorithm is
well defined for all times ¢ > 0. Indeed, the following properties hold.

- The total variation of u(t, -), measured w.r.t. the Riemann coordinates w1 (t,-),. .., wa(f,),

is non-increasing in time.

- The number of wave-fronts in u(Z,-) is non-increasing at each interaction. Hence, the total

number of wave-fronts in u(t,-) remains finite.

It is then possible to define a flow map
p— E/p, p= (T, U, up) €D, t>0 (2.1.24)

of approximate solutions of (2.0.1). By construction, each trajectory ¢t — E}p is a weak solution
of (2.0.1) (because all fronts of u(t,-) = E} p satisfy the Rankine-Hugoniot conditions), but may
contain discontinuities that do not satisfy the usual Lax stability conditions (due to the presence
of rarefaction fronts). On the other hand, one can verify as in [6, Lemma 4.4] that, due to genuine
nonlinearity, the amount of positive waves in u(t,-), measured w.r.t. the Riemann coordinates
wy(t, ), .-, wa(t,-), decays in time and in space. Hence, for a.e. a < z <y < b, one obtains the

Oleinik type estimates

w;(t,y) —wi(t, z) < C-{y;z+log<%——:—li)}+N,,2“” if ie{l,...,p},
(2.1.25)

y—-z y—a - . .
w;i(t,y) —wi(t, z) < C’-{——t—-—-i-log (F—a—)}—!-N,,Z v it ie{p+1,...,n},

where N, denotes the maximum number of shocks of each family present in the initial data @,
and in the boundary data U, , up. Similarly, one can check that along the z-sections, for a.e.
0 < 711 < 73, there holds

w;i(m2, 1) —wi(n,z) < C- {72:21 + log (:—2)} +N, 277 if 1e{l,...,p}
' (2.1.26)
w;i(m2,z) —wi(r,z) < C- {%}g + log (:—i)} +N, 27" if de{p+1,...,n}.
Remark 2.1.3 Observe that, if u(¢, z) is a front tracking solution of the Cauchy problem for (2.0.1)
(with initial data w(z) = u(0,z)) constructed by the algorithm in [16] on the upper half
plane RT x R, then the restriction of u(t,-) to the interval [a, b] coincides with the front tracking
solution EY (%W, U, , Uy ) of the mixed problem for (2.0.1), with boundary data %, (t) = u(t,a),

o (t) = u(t,b).
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As v =+ oo, the domains D become dense in
D= {(a, o @) We L®([a,b],T), g, Uy € L°°(1R+,r)}. (2.1.27)

Thus, following the same technique adopted in [6], one can define a flow map E; on D as a suitable
limit of the flows EY in (2.1.24), that depends Lipschitz continuously on the initial and boundary
data. Namely, the following holds.

Theorem 2.1.3 Let (2.0.1) be a system of Temple class with all characteristic fields genuinely
nonlinear, and assume that the strict hyperbolicity condition (SH1) holds. Then, there ezists a

continuous map
(t, W, Uy, Up) — Ei(T, Ua, Up) t>0, (T, U, u) €D, (2.1.28)

and some constant C > 0 depending only on the system (2.0.1) and on the domain I', so that,
for every fized 0 < § < (b —a)/2, and for all p1 = (T, Uy, Up ), P2 = (T, Ua, Up) € D, letting
Ly = Li(8) = C(1 + log(t/d)), there holds

”Eyfpl - EtP?HI}([aJra, b—4]) < Li {” - HLl([a.,b]) + ”ﬂa - 5a“Ll([o,t]) + “ﬂb - 6b”f}([o,t])}
(2.1.29)
for all t > 6. Moreover, the map (t,z) + E¢(7W, Ua , Us )(x) yields an entropy weak solution (in
the“sense of Definition 2.1.2) to the initial-boundary value problem (2.0.1)-(2.0.4) on Q, that
admits strong L' traces at the boundaries = a and © =, i.e. there exist two measurable maps
Va, by : RT — U such that
lim / (T, T, T )(5) — balt)] dt =0,
z—rat Jg
B V>0 (2.1.30)
tim [ |B(@, T, T)(2) — bol)] a =0,
0

b~

The proof of Theorem 2.1.3 can be obtained with entirely similar arguments to those used to
establish [6, Theorem 2.1}, where a continuous flow of solutions to (2.0.1) is constructed in the
case of a mixed problem on the quarter of plane {(t,z) € R? ; ¢ > 0,z > 0}, with a single
boundary at z = 0.

Concerning uniqueness, with the same arguments in [6] one obtains the following result which
is the extension of [6, Theorem 2.2] to the present case of a domain { with two boundaries at

z=aand at z = b.

Theorem 2.1.4 Let (2.0.1) be a system of Temple class satisfying the same assumptions as in
Theorem 2.1.3. Let u = u(t,z) be an entropy weak solution to the mized problem (2.0.1)-(2.0.4)
on the region Qr = [0, T] x [a,b] (in the sense of Definition 2.1.2). Assume that the following

conditions hold.
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(i) The map (t,z) — (u(t,-), u(-,z)) takes values within the domain

Dp = {(a, Ta, ) ; TE L®([a,b],T), Ga, U € L“([O,T],F)}. (2.1.31)
(1) There holds
b
ess sup / ]u(t, z) ——ﬂ(m)] dz =0. (2.1.32)
t—0t+ Ja
(iii) There holds
T
ess sup / |wi (u(t, z)) — wi(Ua(t))|dt = 0 Vi=p+1,...,n, (2.1.33)
z—at JO
T
ess sup / Iwi(u(t,m)) —wi(ilb(t))ldt =0 Vi=1,...,p. (2.1.34)
z-+b— JO

Then, u coincides with the corresponding trajectory of the flow map E; provided by Theorem 2.1.3,
namely one has
u(t, ) = By (T, Ua, ) (), vo<t<T. (2.1.35)

The next result shows that the conditions (2.1.32)-(2.1.34) are certainly satisfied by entropy
weak solutions to the mixed problem (2.0.1)-(2.0.4) obtained as limit of front tracking approxi-

mations.

Theorem 2.1.5 Let (2.0.1) be a system of Temple class satisfying the same assumptions as
in Theorem 2.1.3. Consider a sequence u”(t,-) : [a,b] — 'V of wave-front tracking approzimate
solutions of the mized problem for (2.0.1) (constructed with the above algorithm) that converges
in L', as v — oo, to some function u(t,-) : [a,b] = T, for every t € [0,T]. Then, there exist
the right limit at T = a, and the left limit at x = b, of the map z — u(t,z) for every t € [0,T],
and the right limit at t = 0 of the map t — u(t,z) for every z € [a,b]. Moreover, there is a
countable set N' C R such that u(t,a) = u(t,a+), u(t,b) = u(t,b=) for all t € [0,T]\ N, and
u(0,z) = u(0+,x) for all x € [a,b] \ N, and, setting T = u(0,), Uy = u(-,a), Uy = u(-,b), there
holds (2.1.95).

Remark 2.1.4 It was shown in [6, Lemma 2.1] that an alternative way to prove the essential
limits (2.1.33)-(2.1.34), is to employ the distributional entropy inequalities associated to the
“boundary entropy pairs” for (2.0.1), introduced by G.-Q. Chen and H. Frid in [19, 20]. How-
ever, in order to apply [6, Lemma 2.1] to a function u obtained as a limit of approximate so-
lutions w”, it is necessary to know the L! convergence of the sequence of the corresponding
boundary data u%, uj. Instead, the result provided here by Theorem 2.1.5 allows to derive the
limits (2.1.33)-(2.1.34) requiring only the L* convergence of the sequence of the approximate so-
lutions u”(t, -), for all . This property will be crucial to establish the main result of the chapter
stated in Theorems 2.1.1-2.1.2.
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In order to prove Theorem 2.1.5, we will show in the next section that, for Temple systems,
solutions of the mixed problem (2.0.1)-(2.0.4) with possibly unbounded variation enjoy the same
regularity property (of being continuous outside a countable number of Lipschitz curves) possessed
by solutions with small total variation of a general system, thus extending the regularity results
obtained under the smallness assumption of the total variation by DiPerna [26] and Liu [39]
(for solutions constructed by the Glimm scheme) and by Bressan and LeFloch [17] (for solutions

generated by a front tracking algorithm).

Proposition 2.1.1 In the same setting as Theorem 2.1.5, consider a sequence u”(t,-) : [a,b] =
T% of wave-front tracking approzimate solutions of the mized problem for (2.0.1) (constructed
with the above algorithm) that converges in L', as v — oo, to some function u(t,-) : [a,b] = T,
for every t € [0,T]. Then, there exist a countable set of interaction points © = {(7, z); | €
N} ¢ Q7 =0, T] x [a, b], and a countable family of Lipschitz continuous shock curves T = {z =
Ym(t); t €]rm, sm[, m € N}, such that the following hold.

(i) For each m € N, and for any T €rm, sm[ with (7,ym(7)) € ©, there exist the derivative
Um (7) and the left and right limits

(s,y) =u, s,y) =ut.  (2.1.36)

lim U lim U
(5:9) = (73ym (7)), Y<Ym () (8:9) =T ym (7)), y>ym ()

Moreover, these limits satisfy the Rankine Hugoniot relations
Jm (1) - (uF —u7) = fu®) - fu7) (2.1.37)
and, for some i € {1,...,n}, there hold the Laz entropy inequalities

Xi(wh) < gm(t) < Xiu7). (2.1.38)

(ii) The map u is continuous outside the set @ U Y.

2.2 Preliminary Results

In this section we first provide some estimates on the distance between two rarefaction fronts
of a front tracking solution (constructed by the algorithm described in Section 2.1.3) similar
to [16, Lemma 4], [11, Prop. 4.5]. We next show how to approximate the profile u(t,-) of a
solution of the mixed problem (2.0.1)-(2.0.4), with a function taking values in the discrete set I'”
defined at (2.1.19), which enjoys the same type of estimates on the positive waves as u(t,). We
conclude the section establishing the regularity result stated in Proposition 2.1.1 on the global

structure of solutions to the mixed problem for (2.0.1), which in turn yields Theorem 2.1.5.

Lemma 2.2.1 There ezists some constant C; > 0 depending only on the system (2.0.1) such that

the following holds. Consider a front tracking solution u(t, z) with values in T, constructed by the
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algorithm of Section 2.1.3 on the region [r,7'] x [a,b]. Then, given any two adjacent rarefaction

fronts of u located at z(t) < y(t), t € [r, '], and belonging to the same family, there holds

ly(r) —z(7)| < Jy(r) —z(r)| + Co(r' = 1) 27" (2.2.1)

Proor. Consider two adjacent rarefaction fronts of the k-th family z(¥) < y(i), t € [r, 7], and
let 71 < ... < Ty be the interaction times of z(¢) in the interval [r,7']. Set 0 = 7, Tn41 = T/,
and fix @ € {0, ..., N}. Let ¢t = 2(t; s, z) be the characteristic curve of the k-th family starting at
(s,z), i.e. the solution to the ODE

2 = A (ult, 2)), 2(s;8,1) = .

Notice that, although the above ODE has discontinuous right hand-side (because of the discon-
tinuities in the front tacking solution w), its solution z(-;s,z) is unique and depends Lipschitz
continuously on the initial data z since it crosses only a finite number of jumps (see [13]). Choose
to < t1 < Tas1 SO that the characteristic curve z(;tg, z(tg)) does not cross any wave-front of
the other families in the interval [to, t1], and then, by induction, define a sequence of times
{t:}icz C |7a,Ta+1[ so that
To <t_jo1 <t-j <to <ty <tjp1 < Tat1, 1EN,
_ (2.2.2)
im ¢ = 7q, lim & = T4,

G - 00 i—¥-+00

with the properties that the characteristic curve of the k-th family starting at (¢;,z(¢;)), does not
cross any wave-front of the other families in the interval [¢;, ¢;41], for each i € Z. Thus, setting

uf =ult, z(t)+),  up = ult, (t)-),
and observing that, by construction, one has |w(u}) — w(u])| < 277, we derive
|2(tig1s ti (t3)) — T(tig1)| < (Gipr — &) - [ (uf) = Ae(uf, ;)]
< e (tigr — ) - lw(uf) —wu])| (2.2.3)
<c-(tipr —t)- 277

for some constant ¢ > 0 depending only on the system. Relying on (2.2.3), and since z(7'; tit+1, T)
depends Lipschitz continuously on the initial data z, we deduce that there exists some other
constant ¢’ > 0, depending only on the system and on the set I', so that there holds

|2(7'; ti, B(ta)) = 2(7"; tigr, (tign))| < - |2(tiza; s, T(t:)) — @(tiga)|

< cd-c- (ti+1 —ti) -27Y

(2.2.4)

for any i € Z. Thus, by (2.2.2), and thanks to (2.2.4), we obtain
|2(7"; Ta, 2(7a)) — 2(7; Tap1, T(1a))| £ D |2(7s ti,3(t)) — 2(7'; tiga, ,3(tis1))]
i€Z (2.2.5)

<cd-e (Tat1—Ta)-277.
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Repeating this computation for every interval |74, To+1], @ € {0,..., N}, we get

N
|2(7"; 7, 2(n)) = 2()] < D [2(1'; T, 2(7a)) = 2(7'; Tat1, (7))

a=0

(2.2.6)
<cd-c-(r"=71)-27V.
Clearly, one obtains the same type of estimate as (2.2.6) for the other rarefaction front y(t), i.e.

there holds
l2(7s 7 y(7) —y(r)| < e (7 = 1) 27 (2:2.7)

On the other hand, by (2.1.3), we have
|2(7'; 7, 2(7)) = 2(7; 7, y(7))] < () —y(m)| + 207> (7 = 7). (2.2.8)

Thus, (2.2.6)-(2.2.8) together yield (2.2.1), concluding the proof. |

In the following, in connection with any (right continuous) piecewise constant map
Y [a,b] = 27V Z, we will let m(¥) = {zp = a < z; < --- < z7 = b} denote the partition
of [a,b] induced by v, in the sense that ¢(z) is constant on every interval [zg, zo11], 0 < £ < L.
Then, given p > 0, for any v > 1, consider the set of piecewise constant maps

( 3

¢ ; a<zp<zR <D,
‘ . or
wz(ﬁp(wzi) ;vz(so(l‘h)) <= 5p - ) Th, T € m(W; © ),
Ty — Th R
(if  ie{p+1,.,n}
Kf=q¢:[a,b] =TI (-
rf a<zp <z <b
. . or
wz(w(mkz)z - :;(ﬂP(xh)) < ; Epwk Th, Tk € T(w; 0 @),
\ if e {l,..,p} )

(2.2.9)
The next lemma shows that we can approximate in L! any map ¢ € K* with a piecewise constant

function ¢, € K.

Lemma 2.2.2 For any given @ € K?, there exists a sequence of right continuous maps ¢, € K?,

v > 1, such that:
a) for every i € {1,...,n}, and for any z, € w(w; o v, ), there holds

Wiy (@h41)) > wilpo(zn)) = wilp(@na)) = wile(zn)) +277;  (2.2.10)

b) there holds
Yy =@ in L*([a, b]). (2.2.11)
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1. First observe that, by Remark 2.1.2, any map =z — w;(p(z)), ¢ € {1,...,n} has finite total vari-
ation on [a+¢, b—¢], £ > 0. Hence, we may assume that w;(¢(-)) admits left and right limits in any
point = €la, b, and that w;(p(z)) = ws(p(z™)) = lime_,z+ wi(p(€)), for all i € {1,...,n}. Let
{¥i.m ; m € N} be the countable set of discontinuities of w;((-)), ¢ € {1,...,n}. Then, we
can find a partition §i1,m = Yim < E%m < --- <L 55:',‘7:‘ = y; m Of each interval [Y; m, Yi,m' [ where

z + w;(p(x)) is continuous, so that:

i) for every 1 < £ < {;, there holds
wi((€ ) €27 T (2.2.12)
ii) for every 1 < £ < {; , one has
wilp(e) —wileEm))| <277 Vo €lEhn, Gl (2:2.13)

Notice that the Oleinik type conditions stated in the definition of K” imply that, at any discon-
tinuity point y;m of wi(p(-)), one has

lim wi(p(€)) > wileo(yim))- (2.2.14)

E_-)yi,rn.

2. Let @, : [a,b] = I'” be the piecewise constant, right continuous map defined by setting, for

every i € {1,...,n}, and for any interval [y; m, Yi,m/[ Where w;(y(-)) is continuous,
( . zelél,,, &L, and
2 2* wi (i (€ ) if e e (op e (e .
wi(oy (€ )) <277 (12 wie(él )] +271),

2

z €&, Eml, and

wi(py (6 ) > 277 (12" wile (&) +271),

(wi(p (€ ) if  zelg, &l 1<l<lim,

(o ()=
w 2 (12w, ) 1) i {

(2.2.15)
where |-| denotes the integer part. Notice that, by construction, and because of (2.2.12)-(2.2.13),
(2.2.14), the map ¢, : [a,b] = I'V enjoys the following property

wi(y (z1)) > wilow (zh))
= wilp(er) > wilp(za)) +27F . (2216)
zp < T € m(w; 0py)

Therefore, since ¢ € KP?, relying on (2.2.13), (2.2.16), we deduce that, for every w;(y,(-)),
i€ {p+1,...,n}, and for any =, < z € m(w; o ,) such that wi(p, () > wi(py(zh)), there

holds
wi(ipy (k) — wilpw(@a)) _ wilp(zr)) —wilp(en)) + 2-v-b
T — Th - T — Th

< 5 (wilp(zk)) — wilp(zn))) (2.2.17)

Ik — Ih

<-2r
Thp —Q
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Clearly, with the same computations, we can show that, for every w;(¢,(+)), i € {1,...,p}, and
for any z, < z), € 7(w; © @, ), there holds

wi(py (z1)) —wilpu(zn)) . _5p (2.2.18)
T — Th Th-my B

The estimates (2.2.17)-(2.2.18), together, imply that ¢, € K2, while (2.2.13) yields (2.2.11).
On the other hand observe that, by construction, and because of (2.2.14), the map ¢, satisfies
condition (2.2.10), which completes the proof of the lemma. O

We now provide a further estimate on the distance between two rarefaction fronts of a front

tracking solution that, at a fixed time 7, attains a profile belonging to the set (2.2.9).

Lemma 2.2.3 Consider a front tracking solution u(t,z) with values in I'V, v > 1,constructed by
the algorithm of Section 2.1.8 on the region [r,7'] x [a,b]. Assume that u(7',-) is right-continuous,
verifies condition a) of Lemma 2.2.2, and satisfies

Amin

u(r',-) € K,’,’l, p 2

= 2.2.
6C, (2.2.19)

where X™0 Cy, are the minimum speed in (2.1.3), and the constant of Lemma 2.2.1. Then, given
U any two adjacent rarefaction fronts of u located at x(t) < y(t), t € [r, T'], and belonging to the
same family, there holds

z(71) < y(1). (2.2.20)

"~ ProoF. To fix the ideas, assume that z(t) < y(t) are the locations of two adjacent rarefaction
fronts of the k € {p+1,...,n} - th family, and hence, by (2.1.2), have positive speeds. Observe
that, by condition a) of Lemma 2.2.2, one has

wi (u(r', y(1')) —wi(u(r’, 2(r'))) =27". (2.2.21)

Moreover, since u is a front tracking solution constructed by the algorithm of Section 2.1.3 on
the region [7,7'] x [a,b], we can apply Lemma 2.2.1. Thus, using (2.1.3), (2.2.1), (2.2.21), and
recalling the definition (2.2.9) of K 7' we deduce

y(r') — a(r) < y(r) = 2(7) + C(r' = 7) 2

<3(r) - o) + 0 2D (o, 4() ~ wli (2(1)
< ()~ 2(r) + Cr o - (y(r) ~ 2(r"))

which, because of (2.2.19), implies

proving (2.2.20). O
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We next derive a regularity property enjoyed by general BV solutions of Temple systems
defined as limit of front tracking approximations, which allows us to establish Proposition 2.1.1.
This is an extension of the regularity results obtained in [26, 39, 17] for solution with small total
variation of general systems. The arguments of the proof are quite similar as for the corresponding
result in [17], but we will repeat some of them for completeness, referring to [17] (see also [12,
Theorem 10.4]) for further details.

Lemma 2.2.4 Let (2.0.1) be a system of Temple class satisfying the same assumptions as
in Theorem 2.1.3. Consider a sequence u”(t,-) : [c, d] = TV, ¢ € [r, 5], of front tracking approz-
imate solutions of the mized problem for (2.0.1) (constructed by the algorithm of Section 2.1.3),
that converges in L', as v — oo, to some function u(t,-) : [c, d] — T, for every t € [r, s] C RT.
Assume that

Tot. Var.(u”(t,-)) < M, Tot. Var.(u”(-,z)) < M Vit v, (2.2.22)

for some constant M > 0. Then, there exist a countable set of interaction points
© = {(n,m); L € N} C D =[r,s] x[c,d], and a countable family of Lipschitz continuous
shock curves T = {z =y (t); t €Jrm, sm[, m € N}, such that the following hold.

(i) For eachm €N, and for any T € [Ty, Sm[ with (T,ym (7)) € ©, there exist the left and right
limits (2.1.36) of u at (T,ym (7)) and the shock speed ., (T). Moreover, these limits satisfy
the Rankine Hugoniot relations (2.1.37) and the Laz entropy inequality (2.1.38), for some
ie{l,..,n}.

(it) The map u is continuous outside the set © U Y.

Proor.

1. To establish (i) we need to recall some technical tools introduced in [17] (see also [12, The-
orem 10.4]). For every front tracking solution u”, we define the interaction and cancellation
measure ,u,{c that is a positive, purely atomic measure on D, concentrated on the set of points P

where two or more wave-fronts of u” interact. Namely, if the incoming fronts at P have size

01,...,0¢ (w.r.t. the Riemann coordinates), and belong to the families i1, ..., respectively, we
set
pl(P) = |oa aﬁ|+z< Yo loal=| Y oa ) (2.2.23)
@B i\ {ia;ia=i} {ia ia=i}

Since pl¢ have a uniformly bounded total mass, by possibly taking a subsequence we can assume

the weak convergence
pll —~ pfc (2.2.24)

for some positive, purely atomic measure /¢ on D. Call © the countable set of atoms of ulc,

i.e. set
© = {P € D; ,uIC(P) > 0}.
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For every approximate solution u” taking values in 'V, v > 1, and for any fixed ¢ > 277,
by an e—shock front of the i—th family in u” we mean a polygonal line in D, with nodes

(10,Z0), -, (T, Znv), having the following properties.

(I) The nodes (74,z5) are interaction points or lie on the boundary of D, and the sequence of

times is increasing g < 7 < --- < TN -

(II) Along each segment joining (7h—1,a—1) With (7, zp), the function u” has an i—shock with

strength |op| > €.

(III) For h < N, if two (or more) incoming i—shocks of strength > ¢ interact at the node (74, n),
then the shock coming from (751, Zr—1) has the larger speed, i.e. is the one coming from
the left.

An e—shock front which is maximal with respect to the set theoretical inclusion will be called a
mazimal e—shock front. Observe that, because of (III), two maximal e—shock fronts of the same
family either are disjoint or coincide. Moreover, by (2.2.22), the number of maximal e—shock
front that starts at the boundary of D is uniformly bounded by 3M/e. On the other hand, the
special geometric features of Temple class systems guarantee that no new shock front can arise
in the interior of D. Indeed, the coinciding shock and rarefaction assumption together with the
exisffence of Riemann invariants prevents the creation of shocks of other families than the ones of
the'?i;ncoming fronts at any interaction point. Therefore, for fixed € > 0, and i € {1,...,n}, the
number of maximal e—shock front of the i-th family remains uniformly bounded by M, = 3M /e

in all 4¥, v > 1. Denote such curves by
Yo * [Ems ] + R, m=1,.., M.
By possibly extracting a further subsequence, we can assume the convergence
€ 3 £,k e,® —
Yom () — Ym (), tom =t m=1,.., M,

for some Lipschitz continuous paths y&, : [t5,~, t5;7] = R, m = 1,..., M.. Repeating this construc-
tion in connection with a sequence £; — 0, and taking the union of all the paths thus obtained,
we find, for each characteristic family ¢ € {1,...,n}, a countable family of Lipschitz continuous
curves ym : [to,th] = R, m € N. Call T the union of all such curves.

2. Consider now a point P = (T,ym (7)) € © along a curve y,, € T of a family 7 € {1,...,n}.
Notice that, by construction, and because of (2.2.24), no curve in T can cross y,, at P. Moreover,
by (2.2.22), the function u(r,-) has bounded variation, and hence there exist the limits

lim  u(r,z)=u", lim  u(r,z) =ut. (2.2.25)

T—+Ym (T)— z—ym (T)+

We claim that also the limits (2.1.36) exist, and thus coincide with those in (2.2.25). To this

end observe that, by construction, there exist a sequence of shocks curves y, », of the i-th family
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converging to y,, along which each approximate solution »” has a jump of strength > &*, for
some €* > 0. Then, relying on the assumption

wC{PY =0, (2.2.26)

and letting B(P,r) denote the ball centered at P with radius r, one can establish the limits

lim lim sup sup ]u”(t, z) — u—l =0, (2.2.27)
=0+ ystoo \ (¢,2)eB(Pyr)

<Yy, m ()
lim lim sup sup uw(t,z) —u"| ) =0, 2.2.28
r=0+ pytoo ((t,z)EB(P,r)[ ( ) I) ( )

T>Yu,m(t)
which clearly yield (2.1.36). Indeed, if for example (2.2.27) do not hold, by possibly taking a
subsequence we would find € > 0 and points P, = (t,, &) — P on the left of y,, , such that

|u”(t, &) — u"| >e Y.

On the other hand, by the first limit in (2.2.25), and since u”(7,z) — u(r, ) for a.e. = € [a, 8],
we could also find points @, = (7, &) — P on the left of y, m such that
v ! - ‘gv - 5” max
U(T,EU)'—)U ’ 'tV—TI >)\ VV,
where A™#* denotes the maximum speed at (2.1.3). But then, for each solution u”, the segment,

1—3:22—:,) would be crossed by an amount of waves of strength > £. Hence, by strict hyperbolicity
- and genuine nonlinearity, this would generate a uniformly positive amount of interaction and
cancellation within an arbitrary small neighborhood of P (see. [12, Theorem 10.4-Step 5]) which,
by the definition (2.2.23), and because of (2.2.24), contradicts the assumption (2.2.26).

To complete the proof of (i) observe that, by construction, the states u, ,(7), u;f,,(7) to the
left and to the right of the jump in u” at y, ,(7) satisfy the Rankine Hugoniot conditions. Thus,
relying on (2.2.27)-(2.2.28), and on the convergence ¥, m — ¥y, one deduces (2.1.37). The proof
of (ii) can be established with the same type of arguments (see. [12, Theorem 10.4-Step 8]). O

As an immediate consequence of Lemma 2.2.4, we derive Proposition 2.1.1 stated in Sec-
tion 2.1.3.

PROOF OF PROPOSITION 2.1.1. Consider a sequence u”(t,-) : [a,b] — T of front tracking
approximate solutions of the mixed problem for (2.0.1) on the region Qr = [0,T] x [a, b], that
converges in L', as v — oo, to some function u(t,-) : [a,b] =+ T, for every ¢ € [0,7]. Observe
that, by Theorem 2.1.3 one can find another sequence {v*},>; of approximate solutions of (2.0.1)
on the region Qr, whose initial and boundary data have a number of shocks NV, < v for each
characteristic family, and such that

[|u”(t,) = v (¢, ')”Ll([a,b]) <1/v Vitel/v, T].
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Then, thanks to the Oleinik estimates (2.1.25)-(2.1.26), and because all v” take values in the
compact set (2.1.13), there will be, for every fixed € > 0, some constant M. > 0 such that

Tot.Var.{v”(t, ) ; [a+e,b—e]} < M. Vitelg, T],

. VreN  (2.2.20)
Tot.Var.{v” (-, ) ; [, T} < M. Vzelate b—egl,

Thus, writing Q7 as the countable union
Qp = U Dy, Dy = [l/k, T] X [a+ (l/k,’), b— (1/.71:)],

and applying Lemma 2.2.4 to each sequence of maps vy = v” [p,, v > 1, defined as the restriction
of v¥ to the domain Dy, we clearly reach the conclusion of Proposition 2.1.1. O

We are now in the position to establish Theorem 2.1.5, relying on Proposition 2.1.1 and

on Theorem 2.1.4.

PROOF OF THEOREM 2.1.5. Let u”(¢,) : [a,b] — 'V be a sequence of front tracking approximate
solutions of the mixed problem for (2.0.1) on the region Q7 = [0,7] X [a,b], that converges in
L', as v — oo, to some function u(Z,-) : [a,b] = T, for every ¢ € [0,T]. Since, by construction,
each u” is a weak solution of (2.0.1), and because uv”(0,-) — u(0,-) = %, also the limit function
u is:a weak solution of the Cauchy problem (2.0.1)-(2.0.2) on the region Q7. Moreover, applying
Proposition 2.1.1, we deduce that u admits at ¢ = 0 and at = = a, z = b the left and right
limits stated in Theorem 2.1.5. On the other hand, by the same arguments used in the proof
of Proposition 2.1.1, we may assume that the initial and boundary data of each approximate
solution u” have at most N, < v shocks for every characteristic family. Then, letting v — oo
in (2.1.25)-(2.1.26), by the lower semicontinuity of the total variation we find that u satisfies
the entropy conditions (2.1.7)-(2.1.10) on the decay of positive waves. It follows that u is an
entropy weak solution of the mixed problem (2.0.1)-(2.0.4) according with Definition 2.1.2. Hence,
observing that by construction the map (¢,z) — (u(t,-), u(, z)) takes values within the domain
Dr defined in (2.1.31), and applying Theorem 2.1.4, we deduce that (2.1.35) is verified. O

2.3 Proof of Theorems 2.1.1-2.1.2

PROOF OF THEOREM 2.1.1. We shall first prove that, for every fixed 7 > 0, there exists
some constant p = p(F) > 0 so that (2.1.17) holds. Given u, € U°, up € U, T > 7, let
u = u(t,z) be an entropy weak solution of (2.0.1)-(2.0.4) on the region [0,7] x [a,b] according
with Definition 2.1.2. Then, the Oleinik-type estimates (2.1.8) on the decay of positive waves
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imply that, fori € {p+1,..,n}, 7 > 7, and for a.e. a < z < y < b, there holds

wi(r,y) — wi(r,z) <C- {E%E +log (y-a)}

y—z T —a
S(b—a)C-{%—l-xia} (2.3.1)
LCl-a(b-a+7) 1
- T T—a

Clearly, with the same computations, relying on the Oleinik-type estimates (2.1.7), we deduce
that, for i € {1, ...,p}, 7 > 7, and for a.e. a < z < y < b, there holds

wi(ry) —wi(rz) CO-o)(b-0a)+7) 1
y—x - 7 b—y.

(2.3.2)

Hence, taking

L5 C-a) ((: —a)+7) (233)

from (2.3.1)-(2.3.2) we derive u(r,-) € K*, which proves (2.1.17).

Concerning the second statement of the theorem, we will show that, letting A™i®, o', be the
minimum speed in (2.1.3), and the constant (2.2.19) of Lemma 2.2.1, and taking
4(b-a)

A\min

T = (2.3.4)

the relation (2.1.18) is verified, i.e. that, given ¢ € K?, and 7 > T, there exist Uy € U,
up € U7°, and a solution u(t, z) of (2.0.1)-(2.0.4) on [0, 7] x [a, b] (according with Definition 2.1.2),
such that u(r,-) = ¢. Notice that, by Remark 2.1.2, we may assume that w;(p(z)) admits left
and right limits in any point z €]a, b[, and that w;(p(z)) = w;(p(z™)) = lim,_,,+ w;(p(€)), for
all i € {1,...,n}. The proof is divided in two steps.

Step 1. Backward construction of front tracking approximations. Letting p' > 0 be
the constant in (2.2.19), consider a sequence {i,},>1 of (right continuous) piecewise constant
maps in Kfj', satisfying the conditions a)-b) of Lemma 2.2.2, and take a piecewise constant
approximation @ : [a,b] — I of the initial data %, so that @ — @ in L. Given 7 > T (T
being the time defined in (2.3.4)), for each v > 1, we will construct here a front tracking solution
u”(t,z) of (2.0.1) on the region [0, 7] x [a, b], with initial data u”(0,-) = %", so that

u(r, ) =, . (2.3.5)
This goal is accomplished by proving the following two lemmas.

Lemma 2.3.1 Let T, p' > 0 be the constants in (2.3.4) and (2.2.19). Then, for every (right
continuous) @, € K¢, v > 1, satisfying the condition a) of Lemma 2.2.2, and for any T > T,
there exists a front tracking solution u”(t,z) of (2.0.1) on the region [(3/4)T, 7] x [a,b], with
boundary data Uy, = v (-, a), Uy =u”(-, b) € L>([(3/4)T, ], T?), so that

v’ ((3/4)T, z) = w, v’ (1, ) = ¢, (2), V z € [a,b], (2.3.6)
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for some constant state w € TV,

Proor. Given 7 > T, and ¢, € K{fl, v > 1, satisfying the condition a) of Lemma 2.2.2, we
will use the algorithm described in Section 2.1.3 to construct backward in time a front tracking
solution that takes value ¢, at time 7. To this end, we first observe that according with the
algorithm of Section 2.1.3 we can always construct the backward solution of a Riemann problem

with terminal data

ul if Tz <€,
u(t,z) = { R s s>, (2.3.7)

if the the terminal states u®, uf* € I'V have Riemann coordinates

w(uL) =wh = (wf’ . 7w£)7 w(uR) =wf = (wf: . :'wf
that satisfy
wl < wf =  wl=wl+27 Vi (2.3.8)
Indeed, if we consider the intermediate states
ul if =0,
2t = w(w, . wk  wl if O0<i<mn, (2.3.9)
uft if i=n,

we realize that, because of (2.3.8), the solution of every Riemann problem with initial
states (z'1, 2%) (defined as in Section 2.1.3) contains only a single front. Thus, we can construct
the solution to the Riemann problem with terminal data (2.3.7) in a backward
neighborhood of (¢, £) by piecing together the solutions to the simple Riemann problems (271, 2%),
i=1,...,n.

A front tracking solution u” can now be constructed backward in time starting at ¢ = 7, and
piecing together the backward solutions of the Riemann problems determined by the jumps in ¢,.
The resulting piecewise constant function u”(r—, -) is then prolonged for ¢ < 7 tracing backward
the incoming fronts at ¢ = 7, up to the first time 7, < T at which two or more discontinuities
cross in the interior of ). Observe that, since u” is a front tracking solution constructed by the
algorithm of Section 2.1.3 on the region [71,7] X [a,b], we can apply Lemma 2.2.3. Hence, it
follows that the left and right states of the jumps occurring in u¥ (71, -) satisfy condition (2.3.8),
because (2.2.20) guarantees that two (or more) adjacent rarefaction fronts of the same family
cannot cross at time ;. We then solve backward the resulting Riemann problems applying again
the above procedure. This determines the solution u” (¢, -) until the time 7» <7y at which another

intersection between its fronts takes place in the interior of 2, and so on (see Figure 2.1a).
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With this construction we define a front tracking solution u”(¢,z) on the whole
region [(3/4)T, 7] % [a, b], that verifies the first equality in (2.3.6), and corresponds to the boundary
data u) = u”(-,a), uy =u”(-,b) € L*([(3/4)T, 7], ['V). Clearly, the total number of wave-fronts
in w”(t, -) decreases, as ¢t | (3/4)T, whenever a (backward) front crosses the boundary points
z = a,z = b. Since (2.1.3) implies that the maximum time taken by fronts of u” to cross the
interval [a, ] is (b — a)/\™i®, the definition (2.3.4) of T guarantees that all the (backward) fronts
of u¥ will hit the boundaries z = a, x = b within some time 7' €](3/4)T, 7[, which shows that

also the second equality in (2.3.6) is verified, thus completing the proof. O

Lemma 2.3.2 Let T' > 0 be the constant in (2.5.4). Then, for any piecewise constant function
¥ € L*([a,b],T%), and for every state w € T, there erists a front tracking solution
u’(t,z) of (2.0.1) on the region [0, (3/4)T] x [a,b], corresponding to some boundary data
@, @ € L°([0, (3/4) T),T%), so that

v’ (0, ) =u”(z), v ((3/4)T, z) =w, YV z € [a,b]. (2.3.10)

Proor. The approximate solution w” is constructed as follows. By Remark 2.1.3,
for t € [0,T/4], we can define u”(¢,z) as the restriction to the region [0,7/4] x [a,b] of the
front tracking solution to the Cauchy problem for (2.0.1), with initial data

Jﬂ”(a—i—) if z<a,
(z) = < ¥ (x) if a<z<hb,
u’(b—) if x>0,
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(constructed as in [16] with the same type of algorithm described in Section 2.1.3). Observe that,
since u” contains only fronts originated at the points of the segment {(0,z); = € [a, ]}, because
of (2.1.3), (2.3.4) these wave-fronts cross the whole interval [a,b] and exit from the boundaries
z = a, £ = b before time T'/4 (see Figure 2.1b). Hence, there will be some state w' € I'” such that

u’ (T/4,z) =w' vV z€la,b]. (2.3.11)
Thus, introducing the intermediate state

~ . ' '
@ = (Wi, Wpy Wiy, -5 W)

between ' and w, we will define u”(t,x), for ¢t € [T'/4, T/2], as the restriction to the region
[T/4,T/2] x [a,b] of the approximate solution to the Riemann problem for (2.0.1), with initial

data
u(w") if  =z<b,

u’(T/4,z) =

(T/4,) {u(w) if z>b,

while, for t € [T'/2, (3/4)T), we will let u” (¢, 7) be the restriction to the region [T /2, (3/4)T]x[a, b]
of the approximate solution to the Riemann problem for (2.0.1), with initial data

(2.3.12)

u(w) if z<a,

u(@) if z>a. (2.3.13)

v (T/2,z) = {
By the definition of @&, and because of (2.1.3), (2.3.4), on [T'/4, T'//2] the solution of the Riemann
proSlems with initial data (2.3.12) contains only wave-fronts originated at the point (7'/4, b), that
crdéé the whole interval [a,b] and exit from the boundary z = a before time T'/2. Similarly, still
by (2.1.3), (2.3.4), for ¢t € [T/2, (3/4)T] the solution of the Riemann problem with initial data
(2.3.13), contains only wave-fronts originated at (T'/2,a), that cross the whole interval [a,b], and
exit from the boundary z = b before time (3/4)T (see Figure 2.1b). Hence, u”(t,z) is a front-
tracking solution defined on the whole region [0, (3/4) T] % [a, b], that corresponds to the boundary
data 7% = u”(-,a), @Y =u”(-,b) € L=([0, (3/4)T],I™), and verifies the conditions (2.3.10). O

Step 2. Convergence of the approximate solutions. By Step 1, for a given p € K ¢ (with p'
as in (2.2.19)), we have found a sequence of initial data @”, and of boundary data uf, uj € U7°,

so that, letting u”(,-) = E¥(u”, U%, ©¥) be the corresponding front tracking solution, there holds
T’ =T, w”(r,") = in  L'([a, ). (2.3.14)

By the same arguments used in the proof of Proposition 2.1.1, we may assume that the initial
and boundary data of each approximate solution u” have at most N, < v shocks for every
characteristic family. Then, thanks to the Oleinik-type estimates (2.1.25), and because u” are
uniformly bounded since they take values in the compact set (2.1.13), for every fixed € > 0, there
will be some constant C. > 0 such that

Tot.Var.{u”(¢,-) ; [a+e&,b—¢]} < Cc Vi€l

bee VveN.  (2.3.15)
/ ju” (¢, z) — u”(s,2)| de < Ce|t — 5| Vi,5€leT],
a-te
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Hence, applying Helly’s Theorem, we deduce that there exists a subsequence {u"/ };>¢ that con-
verges in L' ([a,b], T") to some function u.(t,-), for any ¢ € [e, 7]. Therefore, repeating the same
construction in connection with a sequence £, — 0+, and using a diagonal procedure, we ob-
tain a subsequence {u” (t, )}wr>o0 that converges in L*([a,b],T') to some function u(t,-), for any

€ [0, 7]. Then, by Theorem 2.1.5, there holds (2.1.35), with T, = u(-,a), U = u(-,b) € U,
while (2.3.14) implies u(7,) = ¢, which shows ¢ € A(7). This completes the proof of Theo-
rem 2.1.1. |

We next establish the compactness of the attainable set (2.1.14) stated in Theorem 2.1.2. The
proof is quite similar to that of [6, Theorem 2.3]. We repeat it for completeness.

Proor or THEOREM 2.1.2. Fix T > 0, and consider a sequence {u”}u>0 of entropy weak
solutions to the mixed problem for (2.0.1) on Q7 = [0, 7] x [a, 8] (according with Definition 2.1.2),
with a fixed initial data @ € L*([a,b],T). Since all u* are uniformly bounded, and because of
the Oleinik-type estimates (2.1.7)-(2.1.8), one can find, for every € > 0, some constant C. > 0
so that (2.3.15) holds. Thus, with the same arguments used in Step 2 of the previous proof,
we can construct a subsequence {u”'},/>¢ so that, for any t € [0, T), u”'(t,-) converges in L' to
some function u(t,-), which is continuous as a map from ]0,7] into L*([a, b],T), and satisfies the
entropy conditions (2.1.7)-(2.1.10) on the decay of positive waves. On the other hand, the weak
traces ‘IIZ’, oy " of the fluxes i (u”’) at the boundaries z = a, z = b are uniformly bounded, and .
hence are weak™ relatively compact in L ([0, T]). Thus, by possibly taking a further subsequence,
we have

o Ay, v A2w, i Lo(0,T)), (2.3.16)

for some maps ¥,, ¥, € L*°([0,7]). Notice that, by the properties of the Riemann invariants,
the set f(I') is closed and convex, and hence also the weak limits ¥,, ¥, take values in f(I').
Moreover, since each v” is a distributional solution of (2.0.1)-(2.0.2) on Qr, also the limit function
u is a distributional solution of the Cauchy problem (2.0.1)-(2.0.2) on the region Q7. Then,
setting U, = f~! o U,, Uy = f~1 o Uy, it follows that u is an entropy weak solution of the mixed
problem (2.0.1)-(2.0.4) (with boundary data in ¢$°) according with Definition 2.1.2, which shows
that u(T,-) € A(T). This completes the proof of Theorem 2.1.2. O

If we take in consideration only solutions to the mixed problem (2.0.1)-(2.0.4) that are tra-
jectories of the flow map E obtained in Theorem 2.1.3 (which, in particular, admit a strong L'
trace at the boundaries z = a,z = b), we are lead to study the set of attainable profiles

Ag(T) = {ET(E, Ug, Up) ; Uq, Up € L]0, T],F)} . (2.3.17)

Since Ag(T) C A(T), and by the proof of Theorem 2.1.1, it clearly follows that the character-
ization of the set A(T') provided by the inclusions (2.1.17)-(2.1.18) of Theorem 2.1.1 holds also
for Ap(T). Concerning the compactness of the set .Ag(T), observe that, given any sequence of
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exact solutions u” (¢,-) = Ey(%”, U}, U} ), v > 1, by Theorem 2.1.3 one can find another sequence
of approximate solutions v”(t,-) constructed by the front tracking algorithm of Section 2.1.3, so
that

w” () —v* (2, -)HLl([a,bD <1/v vte[l/y, T).

Therefore, relying on the regularity property of a solution obtained as limit of front tracking
approximations provided by Theorem 2.1.5, with the same arguments used in the proof of Theo-
rem 2.1.2 one can establish also the compactness of the set Ag(T').

Theorem 2.3.1 Under the same assumptions of Theorem 1, the set Ag(T) is a compact subset
of L*([a,b], T") for each T' > 0.




34



Chapter 3

A Counterexample to Exact

Controllability

An interesting question is whether the constant states can be exactly reached, in finite time. By
the results in [4, 3, 7, 35], this is indeed the case Temple class systems, scalar conservation laws
with convex flows and general quasilinear systems when the initial data have small C! norm,
respectively. On the contrary, in this chapter, we show that exact controllability in finite time
cannot be attained in general, if the initial data is only assumed to be small in BV.

QOur counterexample is concerned with a class of strictly hyperbolic, genuinely nonlinear 2 x 2

systems of the form (1.0.1). More precisely, we assume the following.
(H) The eigenvalues A1 (u), A2(u) of the Jacobian matrix A(u) = D f(u) satisfy
=2 <A (u) < A <0 < Al < Ag(u) < AT, (3.0.1)

for some constants 0 < A\, < A*. Moreover, the right eigenvectors rq(u), r2(u) satisfy the

inequalities
DX -ry >0, DXg-19 >0, (3.0.2)

riATy <0, 11 A(Drp-r1) <0, ro A (Dry - 12) < 0. (3.0.3)

Here D);, Dr; denote the differentials of the functions A;(u), r;(u), while A is the wedge product:

if v = (v1,v2), w = (w1, ws), we define
VAW = viWe — VWi -

A particular system which satisfies the above assumptions is the one studied by DiPerna [27]:

pt+ (up)x =0,
w?  K?

ug + (—— + pV‘l) =0,
2 -1 =

35
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with 1 < < 3. Here p > 0 and u denote the density and the velocity of a gas, respectively and
this system describes the evolution of a gas in presence of explosions.

The last two inequalities in (3.0.3) imply that the rarefaction curves (i.e. the integral curves
of the vector fields ry,r2) in the (uj,us) plane turn clockwise (Figure 3.1). In such case, the

interaction of two shocks of the same family generates a shock in the other family.

L)

v
Figure 3.1

The main result of this chapter is the following (see [14]).

Theorem 3.0.2 Consider a 2 x 2 system satisfying the assumption (H). Then there ezist initial
data ¢ : [a,b] — B2 having arbitrarily small total bounded variation for which the following holds.
For every entropy weak solution u of (1.0.1), (1.0.5), with Tot. Var.{u(t, )} remaining small for
all t, the set of shocks in u(t,-) is dense on [a,b], for each t > 0. In particular, u(t,-) cannot be

constant.

As a preliminary, in Section 3.1 we establish an Oleinik-type estimate on the decay of positive
waves. This bound is of independent interest, and sharpens the results in [15], for systems
satisfying the additional conditions (H).

As a consequence, this implies that positive waves are “weak”, and cannot completely cancel a
shock within finite time. The proof of Theorem 3.0.2 is then achieved by an induction argument.
We show that, if the set of 1-shocks is dense on [0, T x [a, b], then the set of points P; = (t;,z;)
where two 1-shocks interact and create a new 2-shock is also dense on the same domain. Therefore,
new shocks are constantly generated, and the solution can never be reduced to a constant. Details
of the proof will be given in Section 3.2.

Throughout the following, we denote by r;(u), [;(u) the right and left i-eigenvectors of the
Jacobian matrix A(u) = Df(u). As in [12], we write ¢ — R;(c)(uo) for the parametrized i-
rarefaction curve through the state ug, so that

-&%Ri(a) =71;(Ri(0)), Ri(0) = uo.
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The i-shock curve through ug is denoted by o +— S;(0)(uo). It satisfies the Rankine-Hugoniot

equations
F(Si(0)) = f(uo) = Ai(o) (Si(e) — uo),

for some shock speed \;. We recall (see [12, Chapter 5]) that the general Riemann problem is

solved in terms of the composite curves

we={ S0 os
3.1 Decay of Positive Waves
Throughout the following, we consider a 2 x 2 system of conservation laws
ug + flu); =0, (3.1.5)

satisfying the assumptions (H). Following [25], p. 128, we construct a set of Riemann coordinates
(w1, w2). One can then choose the right eigenvectors of D f(u) so that

Ou BAZ - D)\'L ey > 07 7 = ]_,2_ (316)

ri(u) = 6_111:-’ 5‘11‘);

It will be convenient to perform most of the analysis on a special class of solutions: piecewise

" Lipschitz functions with finitely many shocks and no compression waves. Due to the geometric

structure of the system, this set of functions turns out to be positively invariant for the flow
generated by the hyperbolic system. We first derive several a priori estimate concerning these
solutions, in particular on the strength and location of the shocks. We then observe that any
BYV solution can be obtained as limit of a sequence of piecewise Lipschitz solutions in our special

class. Our estimates can thus be extended to general BV solutions.

Definition 3.1.1 We call U the set of all piecewise Lipschitz functions u : R — R2 with finitely
many jumps, such that:

(i) at every jump, the corresponding Riemann problem is solved only in terms of shocks (no

centered rarefactions);
(ii) mo compression waves are present, i.e.: Wiz (z) > 0 at almost every z € R, i = 1,2.

The next lemma establishes the forward invariance of the set I/.

Lemma 3.1.1 Consider the 2 x 2 system of conservation laws (3.1.5), satisfying the assumptions
(H). Let u = u(t,z) be the solution to a Cauchy problem, with small total variation, satisfying
u(0,-) €eU. Then

u(t,-) € U, (3.1.7)

for allt > 0.
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ProoOF. We have to show that, as time progresses, the total number of shocks does not increase

and no compression wave is ever formed. This will be the case provided that

(i) the interaction of two shocks of the same family produces an outgoing shock of the other
family;

(ii) the interaction of a shock with an infinitesimal rarefaction wave of the same family produces

a rarefaction wave in the other family.

Both of the above conditions can be easily checked by analyzing the relative positions of shocks
and rarefaction curves. We will do this for the first family, leaving the verification of the other
case to the reader.

Call 0 — R;(0) the rarefaction curve through a state ug, parametrized so that
A]_ (Rl(O')) = )\1 (Uo) +o.

It is well known that the shock curve through ug has a second order tangency with this rarefaction

curve. Hence there exists a smooth function ¢, (o) such that the point

Si1(o) = Ry(o) + cl(a)gg—rg (u0)

lies on this shock curve, for all ¢ in a neighborhood of zero. From the Rankine-Hugoniot equations

it now follows

x(o) = (f(Rl(U)+Cl(U)(U3/6) r2(uo)) -—f(uo)) A (RI(U)+C1(U)(US/6) Tg(Uo)—Uo) =0. (3.1.8)

Differentiating the wedge product (3.1.8) four times at o = 0 and denoting derivatives with upper
dots, we obtain |
d*x . .
2510 =4[ (u0)R1(0) + 2R1(0) + Aa(uo) c1(0)rs (uo)] A Ra(0)
+6[ A1 (u0) By (0) + R1(0)] A R1(0) + 41 (uo)B1(0) A [E1(0) + c(0)ra (uo)]
= 4(/\2(1/,0) - Al(uo))cl (0) r2(uo) Ari(uo) + 2(Dry - r1)(up) A 1 (uo)
=0

Hence, from (H),
(DT‘l . 7'1) ATy
A2 = A)(ri Are)

By (3.1.9), the relative position of 1-shock and 1-rarefaction curves is as depicted in Figure 3.1.

1 (0) = x <0. (3.1.9)

By the geometry of wave curves, the properties (i) and (ii) are now clear. Figure 3.2a illustrates
the interaction of two 1-shocks, while Figure 3.2b shows the interaction between a 1-shock and
a l-rarefaction. By ui, um,u, we denote the left, middle and right states before the interaction,
while u; is the middle state after the interaction. In the two cases, the solution of the Riemann

problem contains a 2-shock and a 2-rarefaction, respectively. O
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Figure 3.2a Figure 3.2b

The next lemma shows the decay of positive waves for solutions with small total variation,

taking values inside /.

Lemma 3.1.2 Let u = u(t,z) be a solution of the Cauchy problem for the 2 x 2 system (8.1.5)
satisfying (H). Assume that

u(t,-) €U, t > 0. (3.1.10)
Then there eist k,6 > 0 such that if Tot. Var.(u(t,-)) <6 for all ¢, then its Riemann coordinates

(w1,w2) satisfy
0 <wig(t,z) <

S| &

t>0,i=1,2. (3.1.11)

Proor. We consider the case ¢ = 1. Fix any point (¢, Z). Since centered rarefaction waves
are not present, there exists a unique l-characteristic through this point, which we denote as

t— z1(¢; T, Z). It is the solution of the Cauchy problem
&(t) = M (u(t, (1)), z(t) = 7. (3.1.12)

The evolution of w; , along this characteristic is described by

d 15)) o
ZWle (t,21(t)) = wiet + MWigz = —(MWi5)s + MWz = —ﬁwiz — Bfgwl,mwlw-

Since the system is genuinely nonlinear there exists k1 > 0 such that 6A; /8w, > k1 > 0, hence
d
—Wie (t21(8) < ~krwi; + O(1) - wipws,a. (3.1.13)
Moreover, at each time t, where the characteristic crosses a 2-shock of strength |o,| we have the

estimate
w1z (tat) < (1+OQ1) - |oa])wi,e(ta—)- (3.1.14)

Let Q(t) be the total interaction potential at time ¢ (see for example [12], p. 202) and let V5(t) be
the total amount of 2-waves approaching our 1-wave located at z;(t). Repeating the arguments
in [12], p.139, we can find a constant Cp > 0 such that the quantity

T(t) =Vi(8) + CoQ(1), t>0,
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is non-increasing. Moreover, for a.e. t one has
T(t) < —|As = At |Jwae| (¢, 31 (2))
while at times f, where z; crosses a 2-shock of strength |o,| there holds
T(ta—) < T(ta+) —|oal.
Call W (t) = w4 (t,z1(t)). By the previous estimates, from (3.1.13) and (3.1.14) it follows form
W(t) < ki W2(t) — CT@)W(2), (3.1.15)

W(ta+) = W(ta—) < C[Y(tat) = T(ta=)]W (ta—), (3.1.16)

for a suitable constant C. We now observe that

e—CY(t)

yit) = ———
/ k1e CTG) gs
0

is a distributional solution of the equation
§=~ky’ - CT@)y,
with y(t) — oo as t = 0+. A comparison argument now yields W(t) < y(¢). Since T is positive

and decreasing, we have
1 eCT(D)

1
1/ e~ T gg !
0

for all ¢ > 0. This establishes (3.7) for i = 1, with & = e“T(®) /k;. The case i = 2 is identical. O

We conclude this section by proving a decay estimate for positive waves, valid for general BV
solutions of the system (3.1.5). For this purpose, we need to recall some definitions introduced in
[15]. See also p. 201 in [12].

Let u : R — R? have bounded variation. By possibly changing the values of u at countably
many points, we can assume that u is right continuous. The distributional derivative p = D u is
a vector measure, which can be decomposed into a continuous and an atomic part: p = p. + fg-
For i = 1,2, the scalar measures u® = pi + pf are defined as follows. The continuous part of u'

is the Radon measure u? such that
/¢ dut = /gbli(u)-d,uc, (3.1.17)

for every scalar continuous function ¢ with compact support. The atomic part of y¢ is the measure

% concentrated on the countable set {z4; a@ =1,2,...} where u has a jump, such that

pe({2a}) = das = Bi(u(za—), w(zat)) (3.1.18)
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is the size of the i-th wave in the solution of the corresponding Riemann problem with data
u(zo%). We regard p! as the measure of i-waves in the solution u. It can be decomposed in a

positive and a negative part, so that
ph= it -t W' =yt + (3.1.19)
The decay estimate in (3.1.11) can now be extended to general BV solutions. Indeed, we show

that the density of positive i-waves decays as x/t. By meas(J) we denote here the Lebesgue

measure of a set J.

Lemma 3.1.3 Let u = u(t,z) be a solution of the Cauchy problem for the 2 x 2 system (8.1.5)
satisfying (H). Then there ezist k,6 > 0 such that if Tot.Var.(u(t,-)) < & for all t, then the

measures jy T, uiT of positive waves in u(t,-) satisfy
pit(J) < ?meas(]), (3.1.20)

for every Borel set J C R and everyt > 0,i=1,2.

ProoOF. For every BV solution u of (3.1.5) we can construct a sequence of solutions u, with
u, — u as v — co and such that u,(¢,) € U for all ¢t. Calling (w¥, w¥) the Riemann coordinates

of u,, by Lemma 3.1.2, we have
0 < wly(t,) < i:- £>0,i=1,2, v>1. (3.1.21)

“For a fixed ¢ > 0, observe that the map = — wy(¢,z) has upward jumps precisely at the points
T, where u(t, ) has a 2-shock. Define fi, as the positive, purely atomic measure, concentrated

on the finitely many points z, where u(¢,-) has a 2-shock, such that
fiv ({2a}) = w} (t, To+) — Wi (t, £a—) < Cloal?, (3.1.22)

for some constant C. By possibly taking a subsequence, we can assume the existence of a weak
limit fi, — . Because of the estimate in (3.1.22), the measure f is purely atomic, and is
concentrated on the set of points zg which are limits as v —+ co of a sequence of points z, where
u,(t,-) has a 2-shock of uniformly positive strength |o,,| > § > 0. Therefore, i is concentrated
on the set of points where the limit solution u(¢,-) has a 2-shock, and makes no contribution to
the positive part of ui+. We thus conclude that the positive part of u%"‘ is absolutely continuous

w.r.t. Lebesgue measure, with density < x/t. An analogous argument holds for p2*. |

Corollary 3.1.1 Let u = u(t,z) be a solution of the 2 x 2 system (1.0.1). Let the assumptions
(H) hold. Fiz ¢ > 0 and consider the subinterval [a',b'] = [a + &, b—€]. Assume that, at time
t = 0, the measures p**, p** of positive waves in u(0,-) on [a,b] vanish identically. Then, for
every t > 0 one has

*

i H)\
#t+(=]) <

meas (J), (3.1.23)
for every Borel set J C [a’,b'] and everyt >0, i =1,2.

Indeed, recalling (3.0.1), the values of u(t, -) restricted to the interval [a’, b'] can be obtained by
solving a Cauchy problem, with initial data assigned on the whole interval [a, b] at time ¢ — &/A*.
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3.2 Proof of Theorem 3.0.2

Lemma 3.2.1 In the same setting as Lemma 3.1.2, assume that there exists &' > 0 such that
0 <w;g(t,z) <K, te€[0,T], i=1,2. (3.2.24)

Let t > z(t) be the location of a shock, with strength !a(t)]. There exists a constant 0 < ¢ < 1
such that
lo(®)] > c|a(s)], 0<s<t<T. (3.2.25)

Proor. To fix the ideas, let u(t, ) have a 1-shock located at x(t), with strength [o*(t)]. Outside
points of interaction with other shocks, the strength satisfies an inequality of the form

d

a|a(t)] > —C- (wl,m (t,z(t)+) + w1z (b, 2(t) = Ywao (¢, 2(t) +) +wau (¢, 2(2) ——)) lo(t)]. (3.2.26)

At times where our 1-shock interacts with other 1-shocks, its strength increases. Moreover, at

each time ¢, where our 1-shock interacts with a 2-shock, say of strength |o,|, one has
|o(tat)| > |o(ta=)| (1 = C’|oal) - (3.2.27)

for some constant C’. Assuming that the total variation remains small, the total amount of 2-
shocks which cross any given 1-shock is uniformly small. Hence, (3.2.26)-(3.2.27) together imply
(3.2.25). i

Lemma 3.2.2 Let t — u(t,-) € U be a solution of the Cauchy problem for a genuwinely nonlinear
2 x 2 system satisfying (3.0.3). Assume that there exists k' > 0 such that '

wiz(tz) < K, tel0,T], i=1,2. (3.2.28)

Since no centered rarefactions are present, any two i-characteristics, say z(t) < y(t), can uniquely

be traced backward up to time t = 0. There erists a constant L > 0 such that

y(t) — (t) < L (y(s) — z(s)), 0<s<t<T. (3.2.29)

Proor. Consider the case i = 2. By definition, the characteristics are solutions of

B(t) = o (ult,z(¥),  §(t) = Aa(ult, y(2)))-

Since the characteristic speed \s decreases across 2-shocks, we can write

y(t)
y(t) —&(t) < C / w16 (8, 6)] + w2 (£,9)]d+C > |oa(t)], (3.2.30)
2(®) a€Si[z,y]
where Si[z,y] denotes the set of all 1-shocks located inside the interval [z(t), y(t)]. Introduce
the function
0 if z<z(),
z — z(t)

y(6) — ()’
1, if z2>y(t),

o(t,z) = if z(t) <z <y(t),
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Moreover, define the functional

o) = Y o(t,2alt)) loa(®)| + CoQ),
aES)
where the summation now refers to all 1-shocks in u(t,-) and @ is the usual interaction potential.
Observe that the map t — ®(¢) is non-increasing. By (3.2.28) and (3.2.30), we can now write

(t) —3(t) < C' (1-3@) (y(t) — z(t)),

for some constant C'. This implies (3.2.29) with L = exp {C'T + C'$(0)}. ]

The next result is the key ingredient toward the proof of Theorem 3.0.2. It provides the

density of the set of interaction points where new shocks are generated.

Lemma 3.2.3 Fiz ¢ > 0 and define o’ = a + 2¢, b = b — 2¢. Consider a 2 x 2 system of
the form (1.0.1), satisfying (H). Let u be an entropy weak solution defined on [0,7] x [a,b], with
T =¢e/4)\*. Let (3.1.28) hold for all t € [0,7], and assume that u(0,-) has a dense set of 1-shocks
on the interval [a, b"]. Then, for 0 <t < r, the solution u(t,-) has a set of 1-shocks which is

dense on [a", b’ — X\*t] and a set of 2-shocks which is dense on [a”, b"].

PROOF. By the assumptions of the lemma, there exists a sequence of piecewise Lipschitz solutions
t = u,(t) € U such that u, — uin L*,

Oﬁwzz(tﬁ)ﬁ 3 7::1,2, I/Zl,

and moreover the following holds. For every p > 0, there exists § > 0 such that each u,(0,-)
(with v large enough) contains at least one 1-shock of strength [U,, (O)l > § on every subinterval
J C [a”, b"] having length > p.

To prove the first statement in Lemma 3.2.3, fix t € [0, 7] and consider any non-trivial interval
[p,q] C [a", b" —tA*]. Call s — py(s), s = g, (s) the backward characteristics through these

points, relative to the solution u,. We thus have

{Ms) = M1 (w (s, pu(s))), {puw =p,
0(s) = i(wls, a(s))), o) =q

By Lemma 3.2.2, ¢,(0) — p,(0) > p for some p > 0 independent of v. Hence, each solution u,
contains a shock of strength |a,,(s)| > § located inside the interval [p,(0), ¢,(0)]. Lemma 3.1.3
now yields ]o*,, (t)[ > ¢d. By possibly taking a subsequence, we conclude that the limit solution
u(t,-) contains a 1-shock of positive strength at the point z(¢) = limz, (¢) € [p, q].

To prove the second statement, we will show that the set of p:/)ints where two 1-shocks in u

interact and produce a new 2-shock is dense on the triangle

A={(tz); te0,7], o' <z <b —Nt}
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Indeed, let ¢ € [0,7] and p < ¢ be as before. For each v sufficiently large, let ¢ — z,(t) be the
location of a 1-shock in u,, with strength ]a,,(t)] > 6 > 0. Assume z,(-) = z(-) as v — oo, and
z,(t) € [p,q], so that z(¢) is the location of a 1-shock of the limit solution u, say with strength
]U(t)] > 0.

Figure 3.3

We claim that the set of times { where some other 1-shock ¢’ impinges on o and generates
a new 2-shock is dense on [0,t]. To see this, fix 0 < ' < ¢ < ¢. For each v sufficiently large,
consider the backward 1-characteristics y,, z, impinging from the left on the shock z, at times
t”,t' respectively (see Figure 3.3). These provide solutions to the Cauchy problems

Uv(t) = M (us (8,90 (1)), v (") = 2, ("),

2,(t) = A1 (uw (8, 2, (1)), z,(t") = z,(t),

respectively. Observe that
ZV(O) - yu(o) > P,

for some p > 0 independent of v. Indeed, the genuine nonlinearity of the system implies

A (w2 (1)) — 20 () > &

uy (2, 2, (0)+)) — us (t, a:,,(t)—)l > KO.

Therefore,
zu(t) =y (') 2 p' >0,

for some constant p' > 0 independent of ». By Lemma 3.2.1, the interval [y, (0), z,(0)] has
uniformly positive length. Hence it contains a 1-shock of u, (0, -) with uniformly positive strength
|o,(0)] > 6 > 0. By Lemma 3.2.3, every u, has a l-shock with strength low ()| > 6 located

along some curve t — Z,(t) with
Y () < Z,(t) < 2,(¢), te[0,t].

Clearly, this second 1-shock impinges on the shock z, at some time t, € [¢/,#"], creating a new

2-shock with uniformly large strength. Letting v — co we obtain the result. a
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PROOF OF THEOREM 3.0.2. Let §p > 0 be given. We can then construct an initial condition
u(0,-) = ¢, with Tot.Var.{¢} < 8, having a dense set of 1-shocks on the interval [a, b], and no
other waves. As a consequence, for any € > 0 by Corollary 3.1.1 we have the estimate (3.1.23) on
the density of positive waves away from the boundary.

Fix 7 = ¢/4\*, and consider again the subinterval [a”, "] = [a + 2¢, b — 2¢]. We can apply
Lemma 3.2.3 first on the time interval [0, 7], obtaining the density of 2-shocks on the region
[0,7] % [a", b"']. Then, by induction on m, the same argument is repeated on each time interval

t € [mr, (m + 1)7], proving the theorem. |
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Chapter 4

Asymptotic Stabilization

The result of this chapter is concerned with stabilization near a constant state. Assuming that
for the system (1.0.1) all characteristic speeds are bounded away from zero, we show that the
system with boundary conditions (1.0.6) and (1.0.9) can be asymptotically stabilized to any state
u* € U, with quadratic rate of convergence (see [14, 3]).

The main statement of this chapter is the following.

Theorem 4.0.1 Let K be a compact, connected subset of the open domain U C R™. Then there
exist constants Cy, 0,k > 0 such that the following holds. For every comstant state u* € K and
every initial data u(0) = ¢ : [a,b] — K with Tot.Var.{¢} < &, there ezists an entropy weak
solution v = u(t,z) of (1.0.1) such that, for all t > 0,

onrt

Tot.Var.{u(t,")} < Coe™® (4.0.1)
lu(t, ) —u*| e < Coe ™. (4.0.2)

The proof will be given in Section 4.1.

Throughout the following, we denote by r;(u), l;(u) the right and left i-eigenvectors of the
Jacobian matrix A(u) = Df(u). As in [12], we write o — R;(0)(uo) for the parametrized i-
rarefaction curve through the state ug, so that

;;Ri(o') =71i(Ri(0)),  Ri(0) = uo.
The i-shock curve through ug is denoted by o + S;(0)(ug). It satisfies the Rankine-Hugoniot
equations
F(Si(a)) = f(uo) = Xi(0) (Si(o) — uo),
for some shock speed A;. We recall (see [12, Chapter 5]) that the general Riemann problem is

solved in terms of the composite curves

R,,;(’U,())(O'), if o 2 0;

. (4.0.3)
Si('ulo)(d), it o<0.

U;(uo)(o) = {

47
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4.1 Proof of Theorem 4.0.1

The proof relies on the two following two lemmas.

Lemma 4.1.1 In the setting of Theorem 4.0.1, there exists a time T > 0 such that the following
holds. For every pair of states w,w’ € K there exists an entropic solution u = u(t,z) of (1.0.1)
such that

u(0,2) = w, uw(T,z) =o', (4.1.4)

for all z € [a,b].

Proor. Consider the function
®(01,...,00; v, V') = Up(on)o---o ‘I'p+1(‘7p+1)(vl) = Wy(op) 00 Wy(oy)(v). (4.1.5)

Observe that, whenever v = v’, the n x n Jacobian matrix 8®/90y - -+ o, computed at o1 =

09 = -+ = op, = 0 has full rank. Indeed, the columns of this matrix are given by the linearly
independent vectors —r1(v),...,=7p(v), Tp41(v),...,7n(v). By the Implicit Function Theorem
and a compactness argument we can find § > 0 such that the following holds. For every v,v' € K,
with v - v'| < §, there exist unique values oy, ..., 0, such that
V" = Up(on) 00 Upia(op41)(v') = Tp(ap) 0+ 0 Ty (o1)(v). (4.1.6)
Defining the time
b—a

= max sup ————, 4.1.7
TS e A (u) | (#-L7)

we claim that there exists an entropy weak solution w : [0, 27] X [a,b] — U such that
u(0,z) = v, u(2r,z) =0, (4.1.8)

TN

Figure 4.1
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The function u is constructed as follows (see Figure 4.1). For ¢ € [0, 7], we let u be the solution

of the Riemann problem

v, if z<b,
u(0,z) = 419
02) {v”, if > b (4.1.9)
Moreover, for ¢ € [1, 27], we define u as the solution of the Riemann problem
,1 .f < b
u(r,z) = {v” 1 rsa (4.1.10)
v, it z>a.

It is now clear that the restriction of u to the domain [0, 27] x [a, b] satisfies the conditions (4.1.8).
Indeed, by (4.1.6), on [0, 7] the solution u contains only waves of families < p, originating at the
point (0,b). By (4.1.7) these waves cross the whole interval [a,b] and exit from the boundary
point a before time 7. Hence u(r,z) = v". Similarly, still by (4.1.6), for ¢ € [r, 27] the function u
contains only waves of families > p+1, originating at the point (7, a). By (4.1.7) these waves cross
the whole interval [a,b] and exit from the boundary point b before time 27. Hence u(27,z) = v'.

Next, given any two states w,w’ € K, by the connectedness assumption we can find a chain of
points wy = w,ws,...,wy = w' in K such that |w; —w;—1| < d for every i =1,..., N. Repeating
~ the previous construction in connection with each pair of states (w;—1,w;), we thus obtain an

entropy weak solution u : [0, 2N7] x [a,b] — U that satisfies the conclusion of the lemma, with

- T =2Nr. v ]

In the following, we shall construct the desired solution u = u(t,z) as limit of a sequence of
front tracking approximations. Roughly speaking, an e-approximate front tracking solution is a
piecewise constant function u®, having jumps along a finite set of straight lines in the ¢-z plane

say T = T4(t), which approximately satisfies the Rankine-Hugoniot equations:
S [f(u(t, Tat)) = F(ult, za—)) — o (u(t, Ta+) — u(t,:va—))l <e,
(2
for all ¢ > 0. For details, see [12], p.125.

Lemma 4.1.2 In the setting of Theorem 4.0.1, for every state u* € U there ezist constants
C, 60 > 0 for which the following holds. For any € > 0 and every piecewise constant function
@ :[a,b) = U such that

p= sup [ﬂ(z) - u*l < do, § = Tot.Var.{a} < do, ' (4.1.11)
z€[a,b]
there exists an e-approzimate front tracking solution u = u(t,z) of (1.0.1), with u(0,z) = u(z),
such that
sup |u(3r, z) —u*| < C&, Tot. Var.{u(3r)} < C4>. (4.1.12)
z€[a,b]
PROOF. On the domain (t,z) € [0,7] X [a, b], we construct u as an e-approximate front tracking

solution in such a way that, whenever a front hits one of the boundaries z = a or z = b, no
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reflected front is ever created (see Figure 4.2). Since all fronts emerging from the initial data @
at time ¢ = 0 exit from [a, b] within time 7, it is clear that u(7) can contain only fronts of second
or higher generation order. In other words, the only fronts that can be present in u(r,-) are the
new ones, generated by interactions at times ¢ > 0 (the dotted lines in Figure 4.2). Therefore,
using the interaction estimate (7.69) in [12] we obtain

sup |u(r, z) —u*| = O(1) - (p+6), Tot.Var.{u(r)} = O(1) - 6%. (4.1.13)
z€[a,b] .
7 /
/// L
L7 L
’ [ —

Figure 4.2

We now apply a similar procedure as in the proof of Lemma 4.1.1, and construct a solution on
the interval [r, 37] in such a way that u(37) ~ u*. More precisely, to construct u on the domain
[7, 27] x [a, b], consider the state v’ implicitly defined by (4.1.5), with v = u(7,b—), v’ = u*. On
a forward neighborhood of the point (7, b) we let u coincide with (a front-tracking approximation
of) the solution to the Riemann problem

u(r,b-), if z<b,
u(re) = v if >0

This procedure will introduce at the point (7,b) a family of wave-fronts of families i = 1,...,p,
whose total strength is O(1)-(p+4). Because of (4.1.7), all these fronts will exit from the boundary

z = a within time 27. Of course, they can interact with the other fronts present in u(r,-). In any



51

case, the total strength of fronts in u(27,-) is still estimated as
Tot.Var.{u(27)} = O(1) - 6*. (4.1.14)

Next, to define u for ¢ € [27, 37], consider the state v’ implicitly defined by

{ u(@r,a+) = Tn(o) 00 Uppa (o) (@), (4.1.15)

u* = Ty(ap) 0+~ 0 T1(o) (™).

On a forward neighborhood of the point (27, a) we let u coincide with (a front-tracking approxi-

mation of) the solution to the Riemann problem

u(27, at+), if z>a,

T if z<a.

u(27,z) = {

This procedure introduces at the point (27, a) a family of wave-fronts of families 7 = p+1,...,n,
whose total strength is O(1)-(p+4). Because of (4.1.7), all these fronts will exit from the boundary
z = b within time 37. Of course, they can interact with the other fronts present in u(27,-). In

any case, the total strength of fronts in u(37,-) is still estimated as
Tot.Var.{u(37)} = O(1) - 6>. (4.1.16)

Moreover, the difference between the values u(37, z) and u* will be of the same order of the total
strength of waves in u(r,-), so that the first inequality in (4.1.12) will also hold. |

Proor oF THEOREM 4.0.1. Using the same arguments as in the proof of Lemma 4.1.1, for every
€ > 0 we can construct an e-approximate front tracking solution u = u(t,z) on [0, 2N7] X [a, b]
such that

sup "U,(2NT, z) —u*| = 0(1) -4, Tot.Var.{u(2NT1)} = O(1) - 6. (4.1.17)
z€la,b]

Choosing § > 0 sufficiently small, we can assume that, in (4.1.17), O(1) - § < d < 1/C, the
constant in Lemma 4.1.2. Calling T' = 2N7, we can now repeat the construction described in
Lemma 4.1.2 on each interval [T + 3kr, T + 3(k + 1)7]. This yields

sup |u(T + 3kt, z) — u*| < O, Tot. Var.{u(T + 3k7)} < 0, (4.1.18)
z€[a,b]

where the constants dy satisfy the inductive relations
Spa1 < CO2. (4.1.19)

Choosing a sequence of e-approximate front tracking solutions u, satisfying (4.1.18)-(4.1.19) and
taking the limit as € — 0, we obtain an entropy weak solution u which still satisfies the same
estimates. The bounds (4.0.1)-(4.0.2) are now a consequence of (4.1.18)-(4.1.19), with a suitable

choice of the constants Cpy, &. m]
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Chapter 5

Exact Controllability for Linear

Systems

In this chapter we look for the finite time controllability of the following linear problem

wi + A-wy =0, a<z<b t>0,

+ta =Ca' ~t7 H t 0’

wt(t,a) w™(t,a) > (5.0.1)
w(t,b) = Cp -wt(t,b) + Ty - a(t), t>0,

w(0,z) = wo(z), a<z<b,

where 4 € R*", C, € R-Px2 ¢, ¢ RPX("=P) T, € RP*¥ are constant matrices, a(-) € R?

and we use the following notations

Wy Wpt1 wh
wm=| .. | eRrr, wt=] .. | eR"P, w=|..|eRr,

Wy Wn Wn

p €{1,..,n} and v € N. Moreover we assume that A is diagonal, namely

Ar ... O
A= .. . . (5.0.2)
0 An
with eigenvalues
A < KA <0< Appr < e < A (5.0.3)

Fix a time T > 0 and an initial condition wy € L*([a, b]; R™), denote
Aqg(T,wo) = {w(T, ) solution of (5.0.1) for @ € L*([0, T;R") },

we will care of the cases ¢ = 1, 2.

53
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Definition 5.0.1 We say that (5.0.1) is exactly controllable at time T' > 0 if and only if
Al(T, UJQ) = L1 ([a, b], Rn),
for each initial condition wo € L' ([a, b]; R™).

Remark 5.0.1 Due to the linearity of the problem (5.0.1), we can split the effect of the initial
condition and of the controls in the attainable set, namely the two following propositions are

equivalent
i) (5.0.1) is exactly controllable at time T,
ii) A1(T,0) = L' ([a, b]; R").
The main result of this chapter is the following (see [5]).
Theorem 5.0.1 Assume that

rank(Ca) =n—p, rank(C’b|I‘b) =p,

and b b
—-a —-a
n — = p, T Z l ("—'— + ) ’
P Dol Apt
rank((Cy - Ca)! ™" - Tp|...|T) = p,
or

n—p<p T>l(b—a+b—a> b—a
’ - [Ap Apt1 [Ap|’

ra.nk(Ca (Cp - C)'L - Tp|...|Ca - r,,)) =n—p,

then (5.0.1) is exactly controllable at time T, where | € N such that

I-1<

TP«
14

The proof of this will be done in the next sections.
Fix T' > 0 and consider the operator
C: Ll([O,T]; R") — ! ([a, b];R”), (5.0.4)

where C'a is the solution of (5.0.1) at time T with wy = 0. Using the method of the characteristics

(see [29]) one can prove the following.

Theorem 5.0.2 The operator C is linear and bounded from L' ([0,T]; R”) to L' ([a,b]; R*) and
from L*([0,T]; R”) to L*([a,b]; R™). Moreover

Im(C) = A: (T, 0), C(LZ ([0, T1; R")) = A,(T,0), (5.0.5)

and so (5.0.1) is ezactly controllable at time T if and only if C is surjective.
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5.1 The Adjoint Problem

Consider the initial boundary value problem

v+ A-v, =0, a<z<b 0<t<T,
v (t,a) = —(A")"1 - CT - At vt (t,a), O0<t<T, (5.16)
vE(t,b) = —(AT)" - CF - A~ v (t,b), 0<t<T, o
(T, z) = vr(x), a<z<b,
where CT and C{ are the transpose of C, and C} respectively,
M. O Apt1 - O
AT = T IS AT =
0 Ap 0 An
and consider the operator
C* : L*([a,b]; R*) — L*([0,T;R"),  C*vp=-T} -A™ v (D), (5.1.7)

and I'! is the transpose of I',. The mixed problem (5.1.6) is called the adjoint problem of (5.0.1)

Theorem 5.1.1 The operator C* is the adjoint one of the restriction of C to L2([O,T]; IR”).

The proof of the previous theorem is based on the following.

Lemma 5.1.1 Let w = w(t,z), v = v(t,z) be the solutions of (5.0.1) and (5.1.6) respectively,

there results
(U(Ta ')7w(Ta '))La - (’U(O, ')aw(oa '))Lz = _(P{ CAT T (': b)7a)L27 (5'1'8)

for each T > 0.
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PrOOF. Let w = w(t,z), v = v(t,z) be the solutions of (5.0.1) and (5.1.6) respectively. Since A

is symmetric we have

(U(Ta ‘)7 w(Tv '))Lz - (U(Oa ')7""’(03 "))Lz =

/a«b (T,2)T - w(T, z)dx — /abv(o,a:)T'w(O,m)dm _

= /OT(—% </bv(t,:c)T -w(t,z)dm) dt =

/ / vt 2)T - wt,z) +v(t, )T w(t, z))dzdt =

—// ve(t, z)T ~A-w(t,z)+v(t,:c)T-A-wm(t,w))dmdt:

/ / (v(t, )T A-w(t, z))dzdt =
- / (w(t,B)T - A - w(t,B) — vu(t, a)T - A - wit, a))dr.
0

Observe that

v(t,0)T - A-w(t,b) =

o . A= 0 ) w(t,) —
= (v=(t,0)T, vt (t,0)T) (O A+> <w+(t,b)>"

= (v=(t,B)T, vt (t,5)7) - <j; :J‘rg 2) _

=7 (t,0)T - A™ -w™(t,b) + vt (t,0)T - AT - w(t,b) =

=v=(t,0)T - A= - (Cy - wF(£,0) + Ty - a(t)) + v+ (t,5)T - A - wt(t,b) =

=07 (t,0)T - A~ - Cp- wF(t,b) + v (£,0)T - A~ - T - a(t)~
— ((AF)"L-CF - A= o (4,0) T AT - wh () =
=v=(t,5)T - A= - Ty - a(t).

and using the same arguments

v(t,a)T - A-w(t,a) =0.

By (5.1.9), (5.1.10) and (5.1.11), we obtain

(U(T7 ')7w(T; '))Lz - (U(01 ')7"‘}(07 '))L2 -

= —/b'u_(t,b)T AT Ty a(t)dt = —(T] - A7 -v7(0),0) .,

so (5.1.8) is proved.

(5.1.9)

(5.1.10)

(5.1.11)

(5.1.12)
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PRrROOF OF THEOREM 5.1.1. If wg = 0, we have
—IT A= v (-,b) = C*vr, w(T,)=Ca
and by (5.1.8) we have

(C*vr, @) =—(I7-A"-v=(,b),0),, =

L2
- ——('L)(T, '),W(T, '))L2 = (UT; Oa)L27

namely C* is the adjoint operator of the restriction of C' to L?([0, T]; R ). O

5.2 Necessary Conditions for Controllability

In this we show some necessary conditions for the exact controllability in finite time.

Theorem 5.2.1 Let T > 0, if the problem (5.0.1) is ezactly controllable at time T' then
b—a b—a
T> + )

Dol el

Moreover, there results

rank(C,) =n —p, rank(Cy|T's) = p. (5.2.13)

rank(Cb|1"b) =D = P S n—p+v,

(5.2.14)
rank(Co) =n—p = n-p<p.

b— _
ProOF. The proof of T' > 2-a, b-a
i)‘P| |Ap+1|

We prove the second identity of (5.2.13). Let @+ € R™? be a constant state, since we are
assuming that (5.0.1) is exactly controllable at time T', there exists a map o™ € L' ([0, T];R")

such that

is direct consequence of [42, Theorem 3.6].

(Cat)yt =at.
Let w = w(t, ) be the solution of (5.0.1) in correspondence of @ and wy = 0, by definition,
wH(T,) = (Cat)T =at.

Fix ¢ such that B
. —a
0,7 — —— t<T
max{, |/\n1}< <1,

we have that
Wpt1 (T, Ap1 (T — 1) + a)

]
€1

wt(t,a) =
wn (T, (T —t) + a)

Moreover, by the boundary conditions in (5.0.1),

wt(t,a) = Cy-w™ (t,a) € Im(C,),
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$O
% € Im(C,).
Then
Im(C,) =R*7?,
namely

rank(Cy) =n — p.

We continue proving the third of (5.2.13). Let @~ € RP be a constant state, since we are
assuming that (5.0.1) is exactly controllable at time T, there exists a map a~ € L!([0, T}; R¥)
such that

(Ca)y=a.

Let w = w(t, z) be the solution of (5.0.1) in correspondence of @~ and wg = 0, by definition,
w (T, )=(Ca )" =o".
Fix t such that
max{O,T |/\1 }<t<T

we have that
w1 (T, (T — 1) +b)
w(t,b) = =@,
wp(T, Ap(T' — t) +b)

Moreover, by the boundary conditions in (5.0.1),

w (b)) =Cp - w+(t a) + Tpa™ (t) = (Cp|Ty) - <w;_(t(;) )) € Im(Cy|Tp),

O
@~ € Im(Cp|Ts).
Then
Im(Cy|Tp) = RP
namely

rank(C’b]I‘b) =P

This completes the proof of (5.2.13).
We prove the first of (5.2.14). Since

dim (Im (C|T's)) = p, dim (Dom (Cb|T's)) =n —p+v

and
dim (Dom (C|I)) = dim (Ker (C}|T)) + dim (Im (C5|T)),

there results
p = dim (Im (Cy|T')) < dim (Dom (Cy|T)) =n —p+v.
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Finally, to prove the second of (5.2.14) we have just to observe that
dim (Im (C,)) =n —p, dim (Dom (C,)) =p

and
n —p=dim (Im (C,)) < dim (Dom (C,)) = p.

This concludes the proof. O

5.3 A Counterexample to the Exact Controllability

Unfortunately the necessary conditions stated in Theorem 5.2.1 are not sufficient. Look for
example to the following.
Consider (5.0.1) in the case

with
0 C C 0 1
Ca = sl IR Y RS VRS
Ca21 Cap2 Cho1 0 0

Ca21-Cai2 - Cho1 #0.

and assume

We want to prove that it is not exactly controllable in finite time for any T' > 0. By Theorem
5.0.2, it is sufficient to prove that the kernel of the linear operator C* defined in (5.1.7) does not

coincide with {0}. Observe that in this case
C* rvp — v (,b),

where v = v(¢,z) is the solution of (5.1.6) corresponding to vr and the boundary conditions of
(5.1.6) are the following

(2 (t, b) _ CT U1 (t7 b) _
va(t,b) P \wt,t)) ‘
_ Cri1 Chm vy (2, b) _ Ch,1101 (t,0) + Cp21v2(t,b)
B 0 0 V2 (ta b) B 0
v1 (t, a) _ CT U3 (tv a’) —
vo(t, a) T \walta))

_ 0 Cam) [vs(tia)) _ Ca21v4(t, a)
Cai2 Cap2/) \w(t,a) Can203(t,a) + Caoovs(t,a))

and
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Clearly there results
va(t,0) =0, 0<t<T.

Let v = v(t, z) be the solution of (5.1.6) corresponding to

where ko, ks # 0 are constants. We claim that

v(t,b) =0, 0<t<T.

b—a

[ A

Distinguish three cases. If T — <t < T, there results

’Ul(t, b) = 'Ul(T,b—FA]_(T-— t)) - ’L)T,l(b'i'Al(T—'t)) =0.

b—a b-a b—a
Tl — —— - —— <t < T~ ———, there results
RS I P VY [ A
b—a b—a
v1(t,b) =v (t+ —~—,a]) = C4a21v t+————,a):
60 = (14 55 a) = Cuanon (14
= a,21U4<T,a+A4(T—t-—§-:—a->>:
|Az]
b—a
=Convra |0+ (T —t—=—— ] ] =0.
[ A1
b—a b—a

Finally, if 0 <t < T — , we have, by (5.3.15),

Pal Pl

b—a b—a
t,b) =wv t+——~——,a>=Ca U (t—}- ,a):
mied) = (445 S AP

= Camv <t+b'“+f’—1‘f b)—O
= Cq,21UT4 N IV = 0.

This concludes the proof of (5.3.16), so we have
vr € Ker(C™).

On the other hand vy # 0, then :
Ker(C™) # {0},

S50
Im(C) # L* ([a, b}; R"),

and by Theorem 5.0.2, (5.0.1) is not exactly controllable in finite time.

(ColTs) = (Cb’u ° 1) :

Moreover since

Cpo1 0 O

(5.3.15)

(5.3.16)



61

we have
rank(cblrb) =p=2, rank(C’a) =n-p=2,

so the necessary conditions for the exact controllability in finite time of Theorem 5.2.1 are satisfied.

0 0
Co Ty = L G-CaTh=("],

namely the assumptions of Theorem 5.0.1 are not satisfied.

Finally observe that

5.4 Topological Properties of the Attainable Set

In this section we prove the closure of the attainable set.

Theorem 5.4.1 Using the previous notations, Ay (T,wo) is a closed subset of L' ([a,b]; R™) for
eachwo € L ([a,b]; R*) and As(T,wo) is a closed subset of L*([a, b]; R™), for eachwo € L* (la, b]; R™)
and

b—a b—a

T>-——++
2ol

"\p—kll'

The fundamental step of the proof of the previous theorem is the following.
Theorem 5.4.2 Using the previous notations, ImC is a closed subset of L! ({a, b];R") and
C(L2([0,T);R")) is a closed subset of L*([a,b]; R™) for each

b—a b—a

T>—-+ .
P‘pl |)‘p+1’

Remark 5.4.1 Using the method of the characteristics (see [29]) one can easily prove that the

L?—spaces are invariant for the operator C, namely
co(1(10, ThR")) € L7 (o, B "),

for each 1 < ¢ < +00.

- bh—
Lemma 5.4.1 There exist two positive constants Ko, K1 such that for each T > T/\_l_a + ﬁ’
P p+1
wo € L ([a,b]; R") and f € L'([0,T];RP), being w = w(t,z) the solution of the mized problem
we+A-w, =0, a<z<b t>0,
wt(t,a) = C, -w™(t,a), 0<t<T,

(5.4.17)
w™(t,b) = Cp -w™(¢,b) + F(1), 0<t<T,

w(0,z) = wo(z), a<z<h,
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there results

Ifllz2 < Kollwollzz + Kallw(T, )|l 22, (5.4.18)
if wo € L*([a,b; R"), f € L*([0,T}; R?) and

IFllz: < Kollwollzr + Kil|w (T, -)liz1, (5.4.19)
if wo € L*([a,b); R"), f € L*([0,T; R?).

PROOF. (5.4.18) is a consequence of [42, (3.20)]. Since the proof of that formula is based on the
method of the characteristics, using the same argument we can prove also (5.4.19). O

PrOOF OF THEOREM 5.4.2. Let ¢ € {1,2}. Consider {w*} c C(LI([0,T;R*)) and @ €
L([a,b]; R™) such that
w’ — @, in L?([a,b]; R"), (5.4.20)

we have to prove that
@ e C(L([0,T;R)). (5.4.21)

By definition, there exists {a”} C L?([0,T]; R“) such that

Cao”

w”, veN
Denote
7 (t) = Tpa” (¥), 0<t<T, veN (5.4.22)

Consider the solution w = w(t,z) of (5.4.17) corresponding to wp = 0 and f¥ — f*, for some

v, i € N, by linearity, there results
w(T, ) = w” —wh,
5o, by (5.4.18) or (5.4.19),
177 = fPllee < Kaljw” = w¥||za.

Then, by (5.4.20), {f*} is a Cauchy sequence in L?([0,T]; R?), namely there exists a map f €
L4([0,T]; R?) such that
f*— 7, in LI([0,T;RP). (5.4.23)

Since, by (5.4.22),
77 () € Im(Ts), ae. 0<t<T, veN,

and, by (5.4.23),
1) — fl), ae 0<t<T,

we have that
f(t) € Im(T), ae 0<t<T.

Define the linear map

P:Im(T;) — (Ker(Ty))",  P(Ty-v) =w.
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Since

C(Pf,) =Clay) = wy, veEN,

and P is continuous, we have

This concludes the proof. 0

PROOF OF THEOREM 5.4.1. The proof is direct consequence of Theorems 5.0.2 and 5.4.2. O

Corollary 5.4.1 Using the previous notations and considering the restriction of C to L? ([O, TY; IR") ,
there results
C(L*([0,T};R")) = (Ker O*)l. (5.4.24)

Moreover, the following are equivalent
i) (5.0.1) is ezactly controllable at time T,
1) C 1is surjective,
i91) C* is injective,
iv) Im(C) is dense in L' ([a,b); R"),

v) A2(T,0) = L*([a, b]; R*).

PROOF . The claim is direct consequence of the Theorems 5.0.2, 5.4.1 5.4.2 and [18, Teorema
11.18]. O

5.5 Exact Controllability: The case v > p

In this section we begin the proof of Theorem 5.0.1. We start looking at the case

p<v,

the main result of this section is the following one.

Theorem 5.5.1 Let T > 0, A € R**", C, € R(r=P)xP (e RP*(=P) T, € RPXY satisfying
(5.0.2), (5.0.3) and the following ones

b—a b-—a

rank(Cy|Ty) =p, rank(Ca) =n—p, rank(l})=p, T> B +
P

s 5.5.25
onp 65

then (5.0.1) is exactly controllable at time T.
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Remark 5.5.1 Since

then, by (5.5.25), we have
p<vu. (5.5.26)

Lemma 5.5.1 (Null-Controllability) With the assumption of Theorem 5.5.1, for each initial
datum wo € L' ([a,b]; R"™) there ezists a map o € L*([0,T7]) such that the solution w = w(t,z) of
(5.0.1) satisfies the following

w(T, z) =0, a<z<hb, (5.5.27)

in this case we say that (5.0.1) is null-controllable at time T'.

PROOF. Let wy € L*([a,b]; R") and consider the following control problem

w+ A -wy =0, a<z<b t>0,
+ t = CCL W t; ) t O’
writ,a) w=(t,a) > (5.5.28)
w”(t,0) = Cp - wh(t,b) + f(¢), ¢>0,
w(O,IE) = UJO(E)a a<z< b,

where f € L'([0,T]; R?). By [42, Theorem 3.2], there exists f € L*([0,T);RP) such that the
corresponding solution of (5.5.28) satisfies (5.5.27). Since, by (5.5.25), the following identity
holds

L'([0,T};RP) = {Tsa; a € L'([0,T;; R) 1,

there exists a map a € L' ([0,T]; R”) such that
f =a,

then the solution of (5.0.1) corresponding to & satisfies (5.5.27). i

Lemma 5.5.2 With the assumption of Theorem 5.5.1 and the previous notations, let w = w(t, z)
be a solution of (5.1.6) such that

v(T,-) € Ker(C*) N L? ([a, b]; R”), v(0,) =0, (5.5.29)

then
v(t,z) =0, (5.5.30)

foreach 0<t<T anda <z <b.

PROOF. Denote

We begin proving that
o(t,z) =0, a<z<b 0<t<T. (5.5.31)



Letbe 0 << T, by definition of T, there results

~ t
v;(t,a) = v; <O,a - ————) =0, i=1,..,p.

Al

By (5.5.25),
Ker (CT) = (Im (C,))™ = {0},

since, by (5.1.6) and (5.5.32),
~(A7)7-C - AT vt (fa) = v (Fa) =0,

by (5.5.33), we have
vt (t,a) =0.

On the other hand,

~ t
vi(t,b):vi<0,b—:\7> =0, i=p+1,..,n,

by (5.1.6) and (5.5.36),
—(AN)TCf AT v (G ) = v (3, D) =0,
namely
CT - A= v (,b) =0.

Since,
T A= 0= () =0,

by (5.5.37) and (5.5.38),
(Cy|Te)T - A~ -v™(£,b) =0,

by (5.5.25)
v~ (t,b) = 0.

By (5.5.32), (5.5.35), (5.5.36) and (5.5.40),

o(t,a) =v(t,b) =0, 0<t<T
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(5.5.32)

(5.5.33)

(5.5.34)

(5.5.35)

(5.5.36)

(5.5.37)

(5.5.38)

(5.5.39)

(5.5.40)

(5.5.41)

and this implies (5.5.31). Using again this argument in each rectangle of the type [kf, (k+1)T]

we obtain (5.5.30).

O

Lemma 5.5.3 With the assumption of Theorem 5.5.1 and the previous notations, if (5.0.1) is

null controllable at time T, then it is ezactly controllable at the same time.

ProoF. We begin proving that

C(L*([0,T;R”)) = L*([a, B; R™).

(5.5.42)
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Let v = v(t,z) be a solution of (5.1.6), such that
u(T,-) € Ker C* N L?([a, b; R™). (5.5.43)

We have to prove that
v(T,z) =0, a<z<hbh. (5.5.44)

By Lemma 5.5.1, there exists a € L2([0, T1) such that the solution w = w(t, z) of (5.0.1) satisfies
the following ones

w(T,)=0,  w(0,-)=v(0,). (5.5.45)
By (5.5.45), there results
(v(0,),w(0,)) o = Ilo(0,)]I32, (5.5.46)
by (5.5.43),
(TF - A= v (,b),@) ,, = (C*u(T, ), ). =0, (5.5.47)
so by (5.5.45),
(v(T,),0(T, ")) 1» = (v(T,-),0) ,, = 0. (5.5.48)

Finally, by (5.1.8), (5.5.46), (5.5.47) and (5.5.48), we have

“U(Ov )“%2 = (v(07')1w(07 '))Lz =

(5.5.49)

= (U(Ta '),L()(T, '))Lz + (FE “AT - IU_(': b)7a)L2 = 07

then .
v(0,z) =0, a<z<bh (5.5.50)

By Lemma 5.5.2, we have (5.5.44) and by Corollary 5.4.1, (5.5.42) is proved.
By the density of L?([a,b]; R) in L*([a,b]; R*) and Corollary 5.4.1 the proof is done. m]
Proor oF THEOREM 5.5.1. It is direct consequence of Lemmas 5.5.2 and 5.5.3. a

Corollary 5.5.1 With the assumptions of Theorem 5.5.1, the problem (5.0.1) is asymptotically
ezponentially stabilizable.

Proor. It is direct consequence of Theorem 5.5.1 and [43, Theorem 3.14]. ’ O

5.6 Exact Controllability: The Case n—p<v <p
In this section we continue the proof of Theorem 5.0.1 considering the case
n—p S v ..<_ Y2

the main result of this section is the following one.
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Theorem 5.6.1 Consider (5.0.1) and assume that
b—a b-a

v < p, T>2—+ 77— 5.6.51
PR vy (3631
and
rank(C,) =n —p, rank(C, - Ts) =n —p, rank (Cy|Ts) = p. (5.6.52)
Then (5.0.1) is exactly controllable at time T'.
Remark 5.6.1 Since
rank(C, - Ty) < v,
then, by (5.6.51) and (5.6.52), we have
n—p<v<p. (5.6.53)
Consider now this new control problem
up + A-ugy =0, a<zT<b t>0,
+(t,a) = Cy - u~(t, ), t>0,
w(t,0) = Ca 0™ (1,0) + () 5650
u~(¢,b) = Cp - uT(¢,b), t>0,
(0, z) = uo(z), a<zT<b,

and define the linear operator
C: L*([0,T; R") — L*([a, b; R"),

where C f is the solution of (5.6.54) at time T with ug = 0.
First of all remind that (5.6.54) is exactly controllable for each time > Tp+Tp41 (see Theorem
5.5.1), where

then there results
Im(C) = E(Lz([Tl,T];]R”)) = .= O(1*(1T,, T} R”)), (5.6.55)
where we use the following identifications
LT, T RY) =~ {g € L*([0,T;R”);9(t) =0if 0<t < T3}, i=1,..,n (5.6.56)
Lemma 5.6.1 Assume (5.6.51) and (5.6.52). Let a € L*([0,T};R”) such that
at)=0 if T-T,<t<T. (5.6.57)

Define
fa(t) = Caga(t) = Ca(ga1(t), - Gaw (1)) (5.6.58)
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where

0, if 0<t<T;,
Gai(t) = Lo=ts (5.6.59)
Tanai(t—TH+ ...+ Tpa, 0 —T3), i T;<t<T.

There results
Ca=Cfa. (5.6.60)
PrOOF. Let w = w(t,z) be the solution of (5.0.1) corresponding to a with ug = 0, by definition
w(T,z) = (Ca)(z), a<z<h,
and u = u(t, z) be the one of (5.6.54) corresponding to f, with wp = 0, by definition
w(T,2) = (Cfa) (@), a<z<h

Distinguish some cases. If 0 < t < T} there results (see Figure 5.1)

Figure 5.1

wt (t,a) = Cow™ (t,a) = Co(w1(0, A1t + b)), ...,wp (0, A\pt + b)) =0

and

ut(t,a) = Cou~(t,a) = C, (ul(O, A1t +0), e, up(0, At + b)) =0.

If 71 <t < 7Ty, there results (see Figure 5.2)



wt(t,a)
Observe that,
wy(t —T1,b)
and
wt(t —1T1,b)
then

Moreover we have that

ut(t,a)

Observe that, for £k =1, ...

and
u‘*‘ (t - T]_, b)

then

.
[
.

Figure 5.2

= Cow™ (t,a) =
= C;(uu(t-Ja,a),u@(o,Agta—bL.",a@(o,Apt4—bn =
= Ca(wl(t - Tl,a),O, ey 0)

= [wa+(t -1y, b)]l + Do (t— )+ ...+ Tt — Tl) =
= [CowT (¢t = T1, b)), + 91 (8)

= (wP+1(t _Tl,b),--.,wn(t Tl, ) =
= (utper (0, s = T5) + @) 0 0, (6 = T3) +)) =0,

wh(t,a) = falt).

= G, (ur (t — T1,b),u2(0, Aat + b), ..., up(0, Apt + b)) + fa(t) =
Cy(ur(t — T1,0),0,. )+fa(t)

E

’U,l(t - Tl,b) = [C’bu+(t - Tl, b)]l

= (’U,p_'_l(t—-Tl,b), ( Tl, ) =
= (up+1(0 /\p+1(t—T1 +a) , Up ( t—-Tl)-i—a)) 0,

ut(t,a) = falt).
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If the positive characteristics have a reflection on the boundary z = d, we are reduced to the

previous case. Arguing in this way one can prove that

Let a <z < b, observe that, by (5.6.61), for k =p + 1, ...,n, (see Figure 5.3)

moreover, by (5.6.57), for k = 1, ...,p, (see Figure 5.3)

[(Ca) (z)]k = wp(T,z) = wg <T+ x/\_—ka’a> =

[(C’a) (:c)] L= wi(T, z) = wy (T +

Cpuwt (T +

= [wa'f' (T -+

b

b

k

k

wt(t,a) = ut(t,a),

— T

— T

0<t<T.

= Up (T+

,b)} 'I‘Fklal (T +
k

,b)L.

T —

Ak

b—=zx

Ak

Figure 5.3

)

b

a,a) =ug(T,z) = [(éfa)(m)]

— T

Ak

) + o+ Ty (T +

b—=z
Ak

)

(5.6.61)



Observe that, by (5.6.61),

then
b—=zx

[(C’a)(x)]k = w(T,z) = wg (T+ __j\.l_c__,b) _

= [Cbm (T+b—x,b>} = [C,,m (T+ b““’,b)} -
Ak & Ak k

= up (T+ ?_:_E,b> =u(T,z) = [(5fa)($)] ;

A
and this proves (5.6.60).
Define the linear operator

F:L*([0,T;R") — L*([0,T}; R"),

such that
(Fa)(t) = Ca,ga(t)o 0<t<T,

where g, is defined in (5.6.58) and (5.6.59) and denote
X={ac*(0, TR );a() =0 f T-T,<t<T}, X=F(X).
Clearly, by (5.6.60),
C(X) c Im(C).
Lemma 5.6.2 Assume (5.6.51) and (5.6.52). There results
C(X) is dense in L*([a,b; R*),
where we use the previous notations.
Define the linear operators
Fy, ., Fp : L*([0,T; RY) — L?([0, T RY),

such that
1=1,.,p—1,

a t; fTZ<t<TZ7
(R {C“"’() P st st

0, otherwise,
Coga(t), #T,<t LT,

0, otherwise,

(Fpa)(t) = {

71

(5.6.62)

(5.6.63)
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there results
Fa=Fa+..+Fa, (Fo,Fa),=0, aclL?(0,T;R"), (5.6.64)
for each 4,57 =1, ..., p distinct.
Lemma 5.6.3 Assume (5.6.51) and (5.6.52). Using the previous notations
Fp(X) is dense in L*([T,, T); R”), . (5.6.65)

where we follow the identification of (5.6.56).

Proor. It is sufficient to prove that
Pr C Fy(X), kEeN, (5.6.66)

where P is the set of the polynomials defined on [Tp,T] with values in R” of degree < k. We
argue by induction.
We begin proving
Po C Fy(X), (5.6.67)

remind that Py is the set of the constant map defined on [T}, T'] with values in R”. Let be h € R¥
by (5.6.52), there exists a vector a € R"? such that

?

(Ca . Fb)a = h.

Since « is constant, we have

a€ X, Foa=(C,-Th)a=h,

then
h e F,(X)
and this proves (5.6.67).
Let k£ € N, assume that
Pr C Fp(X), (5.6.68)
we prove
Pri1 C Fp(X). (5.6.69)

Let f € Pry1, namely ‘
F&) = fopt™™ + .+ fo,

where fo, ..., fr+1 € R*™P are constants. By (5.6.52), there exists a constant & € R”, such that
(Co-Th)a = frqa-

Define
a(t) = atk+t,



by definition

aeX, (Fp@)(t) = (Cq - Tp)at*™ + py = fraat™ +pi,

where p € Pr. By (5.6.68), there exists & € X such that
(Fpa)(t) = fut® + ... + fo — pu(t),
then, by the linearity of Fj,

(Fp(a+ @) @) = fapat™ + .+ fo = ()
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and this proves (5.6.69). By induction, (5.6.66) is done and by wellknown arguments the claim is

proved.

PrOOF OF LEMMA 5.6.2. By (5.6.55) and (5.6.65),

C(x) = C(Fp(X)) = C(L2(IL,, T RY))) = L2 (o, B "),

this concludes the proof.

O

a

PROOF OF THEOREM 5.6.1. Since, by Theorem 5.4.2, Im(C) is closed, by (5.6.62) and (5.6.63),

we have

L?([a,b;R*) = C(X) C Im(C) C L*([a, b;R™),

namely
Im(C) = L*([a, b]; K*).

Then, by Corollary 5.4.1, (5.0.1) is exactly controllable at time T'.

5.7 Exact Controllability: The Case v <n—p=7p

In this section we continue the proof of Theorem 5.0.1 considering the case

v<n-p=p,
the main result of this section is the following one.
Theorem 5.7.1 Consider (5.0.1) and assume that

b—a b—a-
v <n—p, T>1Q__+___)=w,
P =\ Pl T o] °

and

rank(C,) =n —p, rank((Cy-Co)' ™" -Ty|.../Ts) =p, rank(Cy|Ts) =p,

where | € N such that
-1< 222 <.
v

Then (5.0.1) is ezactly controllable at time T'.

(5.7.70)

(5.7.71)
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Consider now this new control problem

us+ A-uz =0, a<z<b t>0,

T(t,a) = C, -u(t, t), t>0,

u™(¢,a) u”(t,a) + f(t) > (5.7.72)
u™ (¢,b0) = Cp - uT(t,b), t>0,

(0, z) = ug(z), a<z<b,

and define the linear operator
C: ([0, T; R*"?) —s L'([a,b]; R),

where Cf is the solution of (5.7.72) at time T with ug = 0.
First of all remind that (5.7.72) is exactly controllable for each time > T}, +Tp41 (see Theorem
5.5.1), where

then there results
Im(C) = 6’(L1([T, T; ]R")), 0<T<(—1)T, (5.7.73)

where we use the following identification
L[, T RYP) ~ {f € L}([0,T);R*"?);9(t) =0 if 0 <t <7}, 0<T<T. (5.7.74)

Consider now this second control problem

ve+ A-v, =0, a<z<b t>0,

T(t,a) =C, -v ™ (¢,a), t>0,

vh(ta) v (ta) (5.7.75)
U—(t,b):Ob-U+(t,b)+g(t), t>07

U(O,III) = ’UQ(ZE), a<<z< b,

and define the linear operator
C:L*([0,T;R?) — L*([a, b R"),
where Cg is the solution of (5.7.75) at time T with vy = 0. Clearly we have
Ca=C(Tya), aeL*([0,T;R).

Remind that also (5.7.75) is exactly controllable for each time > Tp + Tp41 (see Theorem
5.5.1), then there results

Im(C) = C’(Ll([r, T}; IR”)), 0<T<(—1)T, (5.7.76)

where we use the identification in (5.7.74).
Define the linear operator

F:LY[0,(I — 1)Tp + Tp); R™P) — L ([0,1To); R*7),
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fit—T3), if T; <t <o,

i=p+1,..,n.
0, otherwise,

@umw={
Observe that, if f € L' ([(j — 1)To + Tp, jTo + Tp; R*~P) for some j = 1,...,I — 1, then
[iTo, (j + 1)To] C supp(F(f)) C [(f — DTo + T + T, (7 + 1)T0). (5.7.77)
Define this new linear operator
F: L0, (I - 1)To]; ®) — L*([0, (I — 1)To + T,; R?),

gi(t—Ti), T <t< (l—l)To+Tp,

=1,..,Dp.
0, otherwise,

(F(9),@) = {
Observe that, if g € L!([(j — 1)To, jTo); R?) for some j = 1,...,l — 1, then
[(j = 1)To + Ty, §To + Tp] C supp(F(g)) C [(7 — DT + T1, iTo + T]- (5.7.78)
Arguing as in Lemma 5.6.1 we can prove the following.
Lemma 5.7.1 Assume (5.7.70) and (5.7.71). Using the previous notations, there results
C(f)=C(Co-F(f)), Clo)=C(Ca-Flg), (5.7.79)
for cach f e L[0,(I - 1)Ty + Tp; R™P) and g € L* ([0, (I — 1)To]; B?).
Finally, define the linear operator
F:IM(0, (I - VT, RP) — LH([0,ITo; R?),  F(g) =Cy- F(Ca- F(9)),

and observe that
C(F(a) =Clg), g€ LM([0,( — VTol; R). (5.7.80)

Indeed, by (5.7.79),
C(F(g)) = C(Cy-F(Ca-Flg)) = C(Ca-Flg)) = Clg), (5.7.81)
for each g € L*([0, (I — 1)To); R®).
Remark 5.7.1 Let k € R? be a constant, j € {1,...,l — 1} and consider the map
g(t) = k- X|(-1)To 1o} (), 0<ELT,
then for Ty < t < (J + 1)To, there results
(F(9))(t)=Cy-Ca - k.
Let o € L*([0,1Tp]; R”), denote
Qi = & X[(i—1)To,iTo]» 1=1,..,1

and observe
[(l = )To,1Tp] Csupp(F'*(Then)),  i=1,...,01- 1
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Remark 5.7.2 Observe that, if
a; = k;(constant) on [(z - 1Ty, iTO],
then, by Remark 5.7.1,
(F* (Tpau)) (t) = (Cp - Ca)' ™" Tgki  on [(I = 1)To, ITo).

Define these linear operators

l
F o LH[0,ITo; R”) — LMN[0,ITo[i R?),  F(a) =) FI™H(Tha),

i=1

and
F: LM[0,1T0); R") — L*([(1 = 1)To, 1 To); RP), Fla) = Fla) = X[(1—1)To i To]-
By definition and (5.7.81),
C(F(@) =Ca, aec L[0,IT;R), (5.7.82)
so it is clear that
Im(F) C Im(F) € L}([(I — 1)Tv,ITo; ®) and Im(C(F)) C Im(C). (5.7.83)
Lemma 5.7.2 Assume (5.6.51) and (5.6.52). Using the previous notations
Im(F) is dense in L*([(1 — 1)To, I To); R?), (5.7.84)

where we follow the identification of (5.7.74).

Proor. It is sufficient to prove that

Pr C Im(F), k eN, (5.7.85)

where Py, is the set of the polynomials defined on [(I — 1)Ty, ITp] with values in RP of degree < k.
We argue by induction.
We begin proving
Py C Im(F), : (5.7.86)

remind that Pp is the set of the constant map defined on [(l — )T, lTo] with values in RP. Let
h € RP, by (5.7.71), there exists a vector o € R¥ such that

((Cy - Ca)t - Tp|...|Tp) = h.
Since a is constant, by Remark 5.7.2, we have

Fa=((Cy-Co) -Th|..Th)a = h,
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then
h € Im(F)
and this proves (5.7.86).
Let k& € N, assume that
Py, C Im(F), (5.7.87)
we prove
Prr1 C Im(F). , (5.7.88)

Let f € P41, namely

Ft) = foprt®™™ + .+ fo,
where fo, ..., fri1 € RP are constants. By (5.7.71), there exists a constant & € R”, such that
((Cb . Ca)l . Fbl...|l“b)o7 = frt1-

Define

a(t) = ath*t,

by definition,
(Fa)(t) = ((Cs - Ca)t - To|-o|To) at" Y + pr = frgr ™' + pr,

for some py € Py. By (5.7.87), there exists & € L*([0,1Tp); R”) such that
(Fa)(t) = futh + .+ fo — pe(t),
then, by the linearity of F ,
(Fa+&) ) = frprt™ + ... + fo = f(t)

and this proves (5.7.88). By induction, (5.7.85) is done and by wellknown arguments the claim is
proved. 0

PROOF OF THEOREM 5.7.1. Since, by Theorem 5.4.2, Im(C) is closed, by (5.7.76) and (5.7.83),

we have

L ([a,8]; R*) = C(Im¥F) C Im(C) C L*([a, b; R"),

namely,

Im(C) = L' ([a, b]; R™).

Then, by Corollary 5.4.1, (5.0.1) is exactly controllable at time T |
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5.8 Exact Controllability: The Case v <n—p<p

In this section we conclude the proof of Theorem 5.0.1 considering the case
v<n—p<p,

the main result of this section is the following one.

Theorem 5.8.1 Consider (5.0.1) and assume that

b—a+ b—a)+b~a
Aol [l gl

v<n-—p, T>1 < (5.8.89)
and

rank(C,) =n —p, rank(C, - (Cp-Co)'™* - Tpl...|Ca -Ty) =n—p, rank(Cy|Ts) =p, (5.8.90)

where | € N such that
I-1<

nTP oy
14

Then (5.0.1) is exactly controllable at time T .
Consider now the linear operators
C:L'([0,T;R*?) — L*([a,8;R*),  C:L'([0,T};R?) — L' ([a,b]; R?),

defined in Section 5.7 and denote
b—a b—a b—a
To = —— + —, ;=
T el T P

Define the linear operator

F: LY ([0, (I = 1)To + 2T, R*?) —» L([0,IT, + T}, R*7),

ft=T), # T;<t<ITo+T,,

. it=p+1,..,n,
0, otherwise,

(F(5),® = {
where we use the identification in (5.7.74). Observe that, if f € L*([(j —1)To+Tp, jTo+Tp); R*~P )
for some j =1,...,1 — 1, then

[iTo, (j + 1)To] C supp(F(f)) C [(j — 1)To + Tp + Tn, (G + 1)To]- (5.8.91)

Define this new linear operator
F o LM[0,1To; RP) — L1([0, 1T, + Tp); R?),

R (t—=T;), if T;<t<ITo+T,, .
(F(g))i(t):{gzu A sistlotdy i=1,..,p

0, otherwise,

Observe that, if g € L!([(j — 1)Tp, jTo}; R?) for some j = 1, ..., — 1, then
(G = DTo + T, jTo + Tp) C supp(F(g)) C [(j — V)T + T1,5To + T). (5.8.92)

Arguing as in Lemma 5.6.1 we can prove the following.
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Lemma 5.8.1 Assume (5.7.70) and (5.7.71). Using the previous notations, there results

C(H=C(C-F(f)), Clg)=0(Ca-Fly)), (5.8.93)
for each f € L*([0, (I — 1)To + 2T,[; R*P) and g € L*([0,ITo}; RP).
Let oo € L*([0,1T5]; R), denote

%= a Xm0 = 1l

and observe
[(l = 1)To + T, ITp + T}] C supp (CQF((F""(I‘(,ai)))), i=1,..1—1.
Remark 5.8.1 Observe that, if
a; = k;(constant) on [(i—1)Ty,iTo],
then, by Remark 5.7.1,
CQF((F’_i(I‘bai)))(t) = Co-(Cy-Co)l™ - Tyky  on [(I = 1)To +Tp,ITo + T3

Define these linear operators
l ~ .
G: L ([0,IToRY) — LM (01T + TER™),  G(a) = CuF (Fi(Tha)),
d=1

and
G: L'([0,IT; ) — L ([((—DTo+Tp, ITo+ T, R¥P),  Gla) = Fe) = Xju-1)Torruzorr)-
By Lemma 5.7.1 and (5.7.82), we have
C(6(a)) =Ca,  ae L*([0,ITo];R"),

so it is clear that

Im(G) ¢ Im(G) LY([(1 - 1)To + T, 1To + T,); R*?)  and Im(é(g)) CIm(C). (5.8.94)
Lemma 5.8.2 Assume (5.8.89) and (5.8.90). Using the previous notations,

Im(G) is dense in L*([( — 1)To + Ty, ITp + Tp); R*P), (5.8.95)

where we follow the identification of (5.7.74).

Proor. It is sufficient to prove that

P C Im(G), keN, (5.8.96)




80

where P}, is the set of the polynomials defined on [(l ~ 1)To + T, ITo + Tp] with values in R*?
of degree < k. We argue by induction.
We begin proving

Po C Im(3), (5.8.97)

remind that Py is the set of the constant maps defined on [(l - 1)To + T, 1T + Tp] with values
in R"P. Let be h € R" P, by (5.8.90), there exists a vector & € R” such that

(Ca - (Ch-Ca)'™" - Ty)...|Cq - T) = h.
Since a is constant, by Remark 5.8.1, we have

Ga=(Co (Cy-Co)' ™t -T|...|Ca - To)a = B,

then
h € Im(G)
and this proves (5.8.97).
Let k € N, assume that
Py, C Im(G), (5.8.98)
we prove
Prt1 C Im(G). (5.8.99)

Let f € Pry1, namely
ft) = feart®™ + .+ fo,

where fo, ..., fro1 € R*™? are constants. By (5.8.90), there exists a constant @ € R”, such that
(Co - (Chp-Ca)™t - Ty|..Ca - To) & = fota-

Define
G(t) = at*+?,

by definition,
(Ga)(8) = (Ca - (Cy - Ca)' ™! -Ty|.o|Ca - To) G+ + pp = fiprt™* +py,
for some py, € Py. By (5.8.98), there exists @ € L* ([0, ITo); R”) such that
(Ga)(t) = futk + ... + fo — pr(D),
then, by the linearity of G ,
(F(a+@)@®) = forrt™™ + ..+ fo = F()

and this proves (5.8.99). By induction, (5.8.96) is done and by wellknown arguments the claim is
proved. O
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Proor oF THEOREM 5.8.1. Since, by Theorem 5.4.2, Im(C) is closed, by (5.7.76) and (5.8.94),

we have

L' ([a,b); R*) = C(ImG) C Im(C) C L*([a, b]; R™),

namely,
Im(C) = L*([a, b]; R™).

Then, by Corollary 5.4.1, (5.0.1) is exactly controllable at time T'. |

Proor oF THEOREM 5.0.1. It is direct consequence of Theorems 5.5.1, 5.6.1, 5.7.1 and 5.8.1.0
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Chapter 6

Asymptotic Stabilization and
Exact Controllability for Linear

Systems

In this section we look for the asymptotic stabilization of

wp + A-we =0, a<zT<b t>0,

*(t,a) =C,-w (t,a), t>0,

wt(t,a) =C,-w(t,a) >0 (6.0.1)
w(t,b) = Cp - wt (t,0) + T - a(t), t>0,

w(vaﬂ)zwo(fE), a<xz<b.

Definition 6.0.1 Let 1 < g < +co. The problem (6.0.1) is L?—asymptotically stabilizable if and
only if there exists K € R*(""P) such that the solution w = w(t,z) of

wi+A-wy =0, a<z<b t>0,

*(t,a) = C, -w (t,a), t>0,

wT(t,a) w™(t,a) >0 (6.0.2)
wo(t,b) = (Cp + Ty - K)w*(t,b), >0,

w(0,z) = wo(z), a<z<b,

satisfies the following condition
lw(®, lze — 0, as t — +o0,

for each wo € Lq([a,b];R"). Moreover (6.0.1) is LY—asymptotically exponentially stabilizable if
and only if there exist K € Rv*(n=0) gnd ko, ky > 0 such that the solution w = w(t,z) of (6.0.2)

satisfies the following condition
llw(t, Mze < koe ™ Hlwollze, ¢ >0,
for each wo € L?([a,b]; R™).
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The chapter is organized as follows. In Section 6.1 we prove some sufficient condition for
the L'-asymptotic exponential stabilizability (see [5]), in Section 6.2 we prove some sufficient
condition for the L?—asymptotic exponential stabilizability (see [42]) and finally in Section 6.3
we show with some examples that the assumptions of the other Sections are independent.

6.1 Asymptotic Stabilization in L!

The main result of this section is the following (see [5]).

Theorem 6.1.1 Using the previous notations, if
3
max {[|Call - IGI?, [ICall'/2 - | Coll} < log (5), (6.1.3)

and let w = w(t, z) be the solution of

wg+A-wgy =0, a<z<b t>0,
+ =C, -w(ta), ,
h =G 10 614
w(0,z) = wo(z), a<z<b,
then there exist two positive constants ko, k1, depending only on C,, Cy, A, such that
lw(t, Mz < koe™lwollr,  t>0, (6.1.5)
for each wo € L*([a, b; R™).
In this section we shall use the following notations
. - —a — -
Ti?]_xjhg;:, Ti"lm‘ub%a, (6.1.6)
since 7 < T' there exists a unique integer k such that
kr<T < (k+1)7. (6.1.7)

We begin proving some lemmas.

Lemma 6.1.1 Using the previous notations, and let w = w(t, ) be the solution of (6.1.4), there

results o

llw™ (T, iz < lICall - IICbH(/O |w™ (2, B)ldt + [lw™ (0, ')”L1> (6.1.8)
and o

llw™ (T, Mz < NICall - IICbH</O |w™ (¢, b)dt + [|w* (0, -)Hm>, (6.1.9)

for each wo € L*([a,b]; R).
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PROOF. We begin proving (6.1.8). By (5.0.3), (6.1.4) and the definitions of T and 7, we have

/ lw™ (T z)|d:z:</_b |lw™ (8, b)|dt < “Cb”/ *(t,b)|dt <
T-——— T—-~——
<Gl W (¢, a)ldt = ||Csl |w (¢, a)|dt <
’ /”W f;+1 ’ /
T__b-a
<fcalical [t ade < (6.1.10)

b—a

sllCalHIObH(/0 = mlw“(t,b)ldt+/: [w"(O,m)Idz).—:

- ||cauncbu( / o e+ / b |w-(o,x>|dm).

Then, by (6.1.10),

b
o (F, Y|z = / o™ (P, 2)|dz <
T—r b
< HCall-qun/O ]w“(t,b)ldt+/ lw™(0,z)|dz < (6.1.11)

T—7
sncau-ncbn( [ e+ <,->nu).

So (6.1.8) is proved. Using the same argument we can prove also (6.1.9). i

Lemma 6.1.2 Using the previous notations and let w = w(t, ) be the solution of (6.1.4), there

results
T—7 T—hTt
[ bl < el -1e | e
h—1 het (6.1.12)
+( 3 Ul HEol) Yl (0, Mz + ( D Il HICHIH ) ™ (0, Iz
j=1 j=1
and
T—r T—hr
[ i < (- 1) / (™ () dt+
A1 ' A1 (6.1.13)
+ (3 (1l - NGl Yt 0, s + (D2 NGl ICHIF ™) o™ (0, Yz,

for each h € {1,...,k} and wy € L*([a,b]; R™).

PRroOF. We begin proving (6.1.12). We proceed by induction on h.
If h =1, (6.1.12) becomes

T Fr
/ Wt (8, B)ldt < / o (2, B) dt
0 0
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that is trivial. Assume that (6.1.12) holds for one h € {1,...,k — 1}, we prove that it holds also
for h + 1. Observe that, by (6.1.4),

T—hr T—hr
/ o™ (&, B)ldt < |Gy / w6, Bldt <
4] 0

<licsl [ "~

< Gl /

b/\—na. b
lw* (&, @)ldt + [y / (0, 2)|d <

T— h,T————
|w™ (¢, a)[dt-l—lleH/ lwt(0,z)|dz <

b—a

T—-h‘r—v-— =T
<licaliical | o (&, ) di+ (6.1.14)
0
b b
+ICalloH [ 1™, 2)ldz + Gl [ (0, 5)1do =
- (h+1)7'

A eAl / W (4, 5)|di+

b
HICA G / o™ (0, 2)(dz + ||y / ™ (0, 2)|de,

then

T—hr
/ o™ (8, B)|dt <
1]

T—(ht1)r (6.1.15
<1l sl | W (2, B)|dt+ )

HNCall - NGl - llw™ (0, Hlzr + 1Tl - lwt (0, )l 2

Since (6.1.12) holds for A, by (6.1.15), there results

T—hr

Tt
[ kbl < (1l ey JEl
0 0

h-1 h—1
(2 (1l - 1661 )™ (0, Mz + (32 ICalFHICHIE ) e (0, ]z <

J=1

_ T—(h+1)r (6.1.16)
h —
< (ICall - ICull)* ™ [Ilc’all : IleH/0 |w™ (¢, b)|dt+

HICall - 1Cs ]| - 1™ (0, )2 + [IColl - [lw* (0, ~)Hu] +
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i

h—1 h—1
(3 Gl NG Y o™, Mz + (D2 NCal G )™ (0, s
j=1 j=1

T (ht1)r
= (lical-lcu)” | o &, B+

+(ICall - 1) "l (0, )12 + ICal*HICs 1Ml (0, )l z2 +

h—1 . h—1 ‘ '
(3 Gl NG 1) Y o™ @, Mz + (2 NGl G ) (0, Lz =
J=1 j=1

T—(h+1)T
= (IGa] -Gl / o (1, 5)|dt+

h ) R
(2 (1l -1l @,z + (S ICall MG ) o0, Y,

Jj=1
so (6.1.12) holds for h + 1. By the Induction Principle, (6.1.12) holds for each h € {1,....k}.

Using the same argument you can prove also (6.1.13). O

Lemma 6.1.3 Using the previous notations and let w = w(t,z) be the solution of (6.1.4), there

results

T—kT
/0 |w™ (¢, B)ldt < {|Call - 11l - llw™ (0, Mizx + ICsll - [l (0, )| (6.1.17)

and
T—kr
/0 lw* (¢, B)|dt < [|Call - 1Cs]l - [lw* (0, )22 + 1Call - lw™ (0, s (6.1.18)

for each wo € L*([a,b); R™).

PROOF. We begin proving (6.1.17). By (5.0.3), (6.1.4) and the definitions of T and 7, we have

T—kr 7 kT
/ (2, B)ldt < ||cb||/ (¢, B)|dt <
0]
b=z o}

max{T— kr—=z=%,0} b
< |lcl / W (t, ) |d + (|G / Wt (0, 2)|de <

max{T— Lr—"%ﬂ“—,O} b
< ICallIGH] / ™ (¢, @)l dt + |Gl / (0, 2)|dz <

max{T—kr— 52 — 15,0}

< [IC.lllCs] /O ™ (1, 5)|di+ (6.1.19)

b b

HGICH [l ©.2)lds + 1G] [l (0,2l =
max{T—(k+1)7,0}

= licaliicill | o™ (&, Blde+

b b
+|ICaHHCbl|/ Iw‘(O,w)ld:vHICbH/ |w* (0, z)\dz.
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By (6.1.7),
max{T — (k + 1)7,0} =0,

so, by (6.1.19),
T—kr b b
/0 =t D)lde < [ICLIICH | o™ (0, 9)lds + il [ 0,0l (6.1.20)

and then
kT
/ o™ (8, B)dt <
0

b b
6.1.21
<ICNGH | o™ @,)lde + Gl [ o (0,)lde < (6121
a a
SCall - NGl - Nlw™ (0, YIzx + 1G] - [lw™ (0, )l
So (6.1.17) is proved. Using the same argument we can prove also (6.1.18). O
Lemma 6.1.4 Using the previous notations, if
E41 ' k1 ' A 41 . _
K =3 (ICall - ICol)” + max {(Z AL AYNGY ncauﬂnobw-l)} <1, (6122
Jj=1 j=2 =2

and let w = w(t,z) be the solution of (6.1.4), then there exist two positive constants ko, ki1,
depending only on Cy, Cy, A, such that

lw(t, Mo < koe ™™ |lwollzs, ¢ >0, (6.1.23)

for each wy € L ([a,b]; R™).

Proor. By Lemmas 6.1.1, 6.1.2 and 6.1.3, we have

o™ (2, llzr < NCall- NGyl (&, B)ldt + [1Call - Il - o™ (0, 2 <

T—kr
< ICall - 1G] [(HCaII : IIC’bII)k_I/0 |w™ (2, b)|dt+

k-1

(1l - 16 ) e~ 0, )12+

=1

k—1 ' ' (6.1.24)
O A TeA T ) -)uu} Gl G -0, )2 =
j=1

k

T—kr )
= (G- Gl)* [ e+ (3 (1l - IC31) om0, s+

=2

k
(D UCalHCH Yl 0, Mz + Call - Gl - oo™ (0, Vs =

j=2
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T—kr
= (ICall - llcsl))* / = (&, B)|di-+

k k
O CARET Y )™ @Mz + (S NCalFHICHI ) w0, s <

=2

< (ICall - 1CIN* [UCall - ICsll - Ieo=(0, Y2 + UColl - (0, )]z ]+
k
+(32 (Call- Iel) Yl @ lzs + (Nl IO )l (0, )l =
J J=2
(

k
= (ICall - 1CI) w0, Yl zx + [ICal*ICHF+ flw* (0, |2+
k

-

+(XC (lCall- licslh )nw-m,-)um+(Znoanf-lncbuf)nw(o,->||L1:

o -
= (32 (ICal -Gl o™ (0, Mar + (D ICalFHICHF )l (0, Iz
j=1 j=2

and analogously

k+1

-
o (2, )llzs < (Z ICall - 1G ) Y ©, Mlzs + (2 NCall I ) lo™(0, e (6.1.2)
(6.1

Hence, by (6.1.22), 24) and (6.1.25),
(T, M = N~ (T, Mzs + ot (T, )z <

k+1

< (3 (1l - NG ) o0, e+
j=1 (6.1.26)
k41 ) ] k+1 ) ]

+( S NCHFH NG Yl ©, Mz + (3 IClFICHIE™ )™ (0, e <
=2 j=2

< K- [[w(0, )|z
Moreover, using this argument, we are able to deduce
(@ + 8,z < K- Qlw(t, Iz, 20, (6.1.27)

Fixed t > 0, there exist an integer p and 0 <5 < T such that

t=pl+s, pl<t<(u+DT,  (6.1.28)
namely
L l<p< ~t~ (6.1.29)
i H=7 .
By (6.1.27) and (6.1.28), :
lw(®, Mz < K*llw(s, )z (6.1.30)

Moreover, there exists Ko > 0 such that

lw(®, )Izr < Kollw(0, )|z,  0<8< T (6.1.31)
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By (6.1.22), (6.1.29), (6.1.30) and (6.1.31)

K — _
flw(®, Iz < _I_{g KT w(0, )| o2 = ko - €7 lw(0, )| 2, (6.1.32)
where
. K . |log(K
ko = —EO-, kl - ]—g—g:———)—;
So the proof is done. O

ProoF oF THEOREM 6.1.1. In the following we shall assume that

ICall < NICsl. (6.1.33)
By (6.1.3), we have
ICall < 1, (6.1.34)
and then
k1 k41 ' _
K= (ICall-ICsl)’ + Y ICallF= lICH 11, (6.1.35)
ji=1 j=2

where K is the constant defined in Lemma 6.1.4. Moreover, by (6.1.3) and (6.1.34),
3
ICall- Il < Ol -G < 1og (3 ) (6.1.30)

and since ]
7<i-1, jeN\{o,1},

by (6.1.34), we have
ICalP = ICsI7 < LIP3 (IC - (6.1.37)

By (6.1.3), (6.1.35), (6.1.36) and (6.1.37),

k+1 k+1 .
; J
K <Y (ICl- el + 3 (Ical2icl)” <
j:l ]=2
< ellCalliCsll 1 glical el _g <33 5 ¢
273
then, by Lemma 6.1.4, the claim is done. |

Theorem 6.1.2 If

1 2 (3 1 3
inf ||Cy +w Smax{——lo “ («) , — lo (—)} 6.1.38
vetmiryy 190 0! ICE 8 \2) " jcaF 8 \2 (6.1.38)

then there ezist two positive constants ko, ks, depending only on C,, Cy, A, T'y, and o € L1 (R*)
such that
lw(t, Mz < ke flwollz, >0, (6.1.39)

for each wy € L*([a,b]; R™), namely (6.0.1) is L* asymptotically ezponentially stable, where w =
w(t,z) is the solution of (6.0.1).
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PROOF. By (6.1.38), there exists u € R"*™ 7P such that

1 3 1 3
1/2 b — hd
[|Ch + Tou||" /= < Co log (2) , ICy + Thul| < ToAIRE log <2> ,

so, we have only to set
a(t) =u-w'(t,b), t>0,

and use Theorem 6.1.1. O

Remark 6.1.1 Since 0 € Im(T',), Theorem 6.1.1 is direct consequence of Theorem 6.1.2. Indeed,
if (6.1.3) holds, then also (6.1.38) holds and so in this case we do not need of a feedback control

to stabilize the system.

6.2 Asymptotic Stabilization in L?
The main result of this section is the following (see [42]).
Theorem 6.2.1 If there exists v > 0 such that
(wh, (AT + C'{;r CAT - Chwt) = qlw T, wr eR*P, (6.2.40)

(W, (A~ +CT AT - Co)w™) €0, o' eRP, (6.2.41)

and let w = w(t, ) be the solution of

w +A-wy, =0, a<z<b t>0,
T(t,a) =C, -w™ (t,a), t >0,
wh(t,a) w™(ta) (6.2.42)
w™(t,b) = Cp - wt(t,b), t >0,
w(0,z) = wo(zx), a<z<hb,
then there exist two positive constants p, py such that
llw(t, Mz < e lwollzz, >0, (6.2.43)

for each wo € L*([a,b}; R™).
We begin with some lemmas.

Lemma 6.2.1 For each T > boa + b-a
Aol gl

f € L*([0,T]) such that the solution v = v(t,z) of the problem

and vo, vr € L*([a,b]; R™) there exists a map

v+ A vy, =0, a<z<b t>0,
v (t,a) = —(A7)"1- CT - AT vt (¢,a), 0<t<T,
vt(t,b) = —(AT)"L-CF - A= v (t,b) + f(t), 0<t<T,
v(T, z) = vr(x), a<z<b,

(6.2.44)
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satisfies the following
’U(O, ) = Ug-

Moreover, there exist two positive constants Ko, Ky such that
l7llz2 < Kollvollz2 + Killvr||z2- (6.2.45)

Proor. It is direct consequence of [42, (3.20)]. O

Lemma 6.2.2 Let w = w(t,z) be the solution of (6.2.42). The map
E:t 20— [lw(t, )]z
is decreasing if and only if (6.2.41) and
(wh (AT +Cf - 4™ - Cy)w™) >0, wh e R*P, (6.2.46)
hold. Moreover, if (6.2.40) and (6.2.41) hold there results
LB () <~ (5, D), (6247

dt
for each t > 0.

PRrROOF. Assume that (6.2.41) and (6.2.46) holds, we have to prove that E is decreasing. Since A
is symmetric there results
d b b
——/ lw(t, z)|>de = 2/ (we(t, z),w(t, z))dz =
dt J, e
b b ’
= ——/ (we(t,2), A w(t,z))ds — / (w(t,z), A wy(t,z))dz =
a a (6.2.48)

;.
=-/a é;(w(t,x),A-w(t,w))da:z

= (w(t, a), A w(t, a)) - (w(t, b), A - wl(t, b))

w™(t,a) A7 -w(t,a) _
N\wT(t,a)) " \AT -wH(t,a)
_ w™(t,a) A™ - w(t,a) _
C\\C.rwta)) \ AT CL - w (¢, 0) (6.2.49)

= (W™ (t,a), A - w(t,a)) + (Cq - w™(t,a), At - Cy - w™(t,0)) =

By (6.2.41), we have

I

(w(t,a), A - w(t,a))

= (W™t a),(A” +CF - AT - Co)w™ (t,a)) <0,
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by (6.2.46), we have

I

((t,), A - w(t, ) w™(t,b) 7 A7 - w™(t,b) _
wt(t,b) AT - wt(t,D)
[ (Ch-wt(t,D) A~ - Cp-wt(t,b) _
B wr(t,b) )\ At -wt(,b) B (6.2.50)
= (Cp-wt(t,b),A™ - Cp-wt(t,b)) + (w(t,0), AT - w(t,b)) =
= (w¥(¢,b), (AT + CT - A~ - Cy)w ™ (¢,b)) >0,
and analogously by (6.2.40), we have
(w(z,b), A - w(t, b)) > ylw™ (¢, 0)[ (6.2.51)
Then if (6.2.41) and (6.2.46) hold, substituting (6.2.49) and (6.2.50) in (6.2.48), there results
d [
—/ |w(t,z)|*dz < 0, (6.2.52)
dt J, ,
instead if (6.2.41) and (6.2.40) hold, substituting (6.2.49) and (6.2.51) in (6.2.48), there results
d rb
& [ e oPds < 6,0, (6.2.53)

and then (6.2.47) holds.
Now assume that F is decreasing, we begin proving (6.2.41). Let @~ € RP and @ = @(¢, z) be
the solution of (6.2.42) such that

—ia if 1= 17'") ’
T

0, otherwise.

Fix0<t< bT/\:_|2, there results
1

@t (t,0) =0, a(tae=a",

since, by assumption, E is decreasing, we have, by (6.2.48), (6.2.49) and (6.2.50),

o< &/ |6t 2) Pl =
= (G)"(t,a), (A™+ Cc’ir AT Ca)w™ (2, a)) - (5)+(t,b), (A+ + CIT CAT Cb)m+(t7 b» =
= (@, (A~ +CT - A+ . C)a),

then (6.2.41) holds. Using the same argument, we can prove also (6.2.46). This concludes the
proof. 0O
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Proor or THEOREM 6.2.1. Using the same argument of the previous proof we can deduce

(6.2.53). Let T > bza b_—“, by (6.2.47), we have
Aol Apt1

T
(T Mz = llw(0, )22 < —7/0 lw* (¢, b)ldt = —vl|w™ (-, D)l 2.

Let be v = v(t, z) the solution of (6.2.44) such that
o(T,-) =w(T,),
by Lemma 6.2.1 there exists f € L?([0,T7]) such that
v(0,-) =0
and there results

If1lz2 < Kollo(T, -)llL2 + Kollv(0, )l 2 = Kollw (T, )| z2-

Moreover
T
”w(Tv)”%? = (W(T7 ')7U(T7 '))Lz - (UJ(O, ')7U(Oa '))Lz =-/O %(w(tf)’v(t? '))Lz
and J g
a—(w(t D0t ) e = El—t/ (w(t, z),v(t,z))ds =
b a
= / ((wt(t, z),v(t,z)) + (w(t, z), v (2, x)))dm =
b
= —/ ((A cwe(t,x),v(t,z)) + (w(t,z), A - vy(t, :z:)))da: =
)
.—:--/‘l 6:L'(A w(t, z),v(t, z))de =
—(A - w(t,b),v(t, b)) + (4 w(t,a),v(t,a)).
Since
_( (A )
st = (57, ()
= (A7 -w™(4,0),v7(t,b)) + (AT - wT(t,b), U+ t,b)) =
(A -Cy-wt(8,b),v7(t,0))+
+(AT Wt (,0), —(AT)H-CF - AT v (8,0) + F(7) =
= (4" -Cy-wt(t,b),v(t,b)) -
— (A7 Cp - wh(t,b),v7(t,b)) + (AT - wt(t,b), F(£) =
= (-A+ 'w+(t:b)7f(t)):
and

((A ~(t,a) v~ (t,a)
(4-w(t,a),0(t,) = ( <A H a>) ( ¢, >))

= (A™ -w™(t,a),v" (t,a)) + (A+ wt(t,a),vt(t,a)) =
= (A7w™(t,0) ( T)hef AT v+(t a))+
+(A*-C, (t a),v*(t,a)) =

dt

(6.2.54)

(6.2.55)

(6.2.56)

(6.2.57)

(6.2.58)



substituting (6.2.57) and (6.2.58) in (6.2.55) we obtain

T
(T, ) = / (A* -t (5,0), F(2))dt <

< aflwt (D)2l fllze < ekollw™ (-, D)2 llw (T, )z,

namely
l|lo(T, Iz

< NwT (- .
= <l (Dl

By (6.2.54), we obtain

Bt Mz < fogo, e — ot iz

O:Ko
and so
lw (T, Mze < Mlw(0, )Lz,
where .
M= ——————7—(< 1).
14+ —
CYKO

Let t > 0 there exists k£ € N such that
ET <t <(k+ 1T,
by Lemma 6.2.2 and since M < 1, there results

llw(t Mize < kT, iz < MHw(0, )z <

< MF (0, Y2z = e w0, )z,

where
p = - p= logD)]
M’ T
So the proof is concluded.

Theorem 6.2.2 If (6.2.41) holds and there ezist K € Rv*("=P) gnd v > 0 such that

(W (AT + (Co+ Ty - K)T - A - (Co + T - K))w) > ywt?, wteR¥P
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(6.2.59)

(6.2.60)

(6.2.61)

(6.2.62)

(6.2.63)

(6.2.64)

for each wt € RPP then for each wy € L?([a,b];R*) there emists o € L*(Ry.) such that the

solution w = w(t,z) of (6.0.1) satisfies the following

lw(t, Mz < pre™#llwollp2, 20,

(6.2.65)

where p, p1 are two positive constants depending only on Cqa, Cy, A, Ty, K, namely (6.0.1) is L?

asymptotically exponentially stable.

Proor. We have only to set
a(t) = K -wh(t,b), t>0,

and use Theorem 6.2.1.
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6.3 Examples

In this section we show with some examples that the previous conditions are sufficient but not
necessary and that they are independent.

Example 6.3.1 Consider the case n =2, p =1, with

)\1 = -—/\2 = 1, Ca = Q, Cb = ,3, (6.3.66)
such that 5
a>1, 0<B<1, o?F<log? (5> : (6.3.67)
and denote . b
—a —-a
T= = =b—a. 6.3.68
A1 ] ( )
There results
A=+ CT - AT . Co=-1+02>0, AT+CT-A~-C,=1-p%>0, (6.3.69)

namely (6.2.46) holds, but (6.2.41) does not. However, the system is L2 exponentially stable.
Indeed,

|Ca - Chll = af < a*B < log® (g) <1, (6.3.70)

and for each t > 0, we have
b b
/ lw(t + 2T, 2)|%dz = / (lwr(t + 2T, 2)|* + |wa(t + 2T, z)|*)dz =
a a
b
= / (B*|wa(t + T, 2) | + o?|wy (t + T, z)|*)dz =

b b
=/ (@2BPlwr(t,2)) + &®B|wa(t, z)[*)dz = a2ﬁ2/ |w(t, z)[*dz,
‘ : (6.3.71)
and then for each n € N,

b b
/ lw(t + 2nT, z)[2dz = (aB)*" / lw(t, z) |*dz. (6.3.72)

Finally observe that

ICcHE = avB <tog (3), IC.IHIH = Vs < /B <1og ().

namely (6.1.3) holds.

Example 6.3.2 Consider the case n = 4, p = 2, with

A“i<_2 0), A*i(l O), Oaé(lﬁ O), cbi<0 ‘/§> (6.3.73)
0 -1 0 8 0 0 0 0
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There results

o ()0 D07
0 0 0 O 0 0

Cy-Ca = (0 \/§> _ (1/x/§ 0) N (6.3.74)
0 0 0 0
and then
ICa - Coll = \E >1, |G- Call=0. 6575)
Moreover

S (10 0 0\ (-2 0) (0 3\ _
ATHG AT G "<o 8>+(\/§ 0>'(0 —1> (0 o)“
10 0 0\ (0 —2v3)
(o 8>+(\/§ 0>'<0 0 )‘ (6.3.76)
(1 0) (o 0) (1 o)
N = >0,
08/ \o -6/ \o 2

1/f 0 10\ (1/v2 0\ _

0o 0)
(W’ 0) (W 0) (6.3.77
-2 0>+<1/2 0)2(—3/2 0)<0.
0 -1 0 0 0 -1

So (6.2.40) and (6.2.41) hold, but

Il

and

A=+ CT. AT -C,

|
© [N]
l
v
+

Il

Il
/‘\/"\/‘\
o

l
\__/
+

Il =v3>1,  [|Ca-Chll = \/g > 1. (6.3.78)

Example 6.3.3 Consider the system (6.2.42) in the case

n=4, M=-2 d=-1, Ag=1 A=2
Co = V2o o . Cy= vz 0
0 1//2 0 V2

10
Co - Co=0Cp-Cy =
=ore= (5 7)

and

Observe that
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and

At +CT-A--C, =

A= +CT A% .0, =

10\ (v2 0\ _
0 2 0 1/v2)
Arguing as in Lemma, 6.2.2, we deduce

lw(t, e = llwollz2, 20,

then (6.2.43) does not hold.

Example 6.3.4 Consider the case » = 1 and assume that (6.2.46) holds and there exists two
matrices M; € RP*! and M, € R1*("~P) guch that

Co=M;-My, MI-A"-Ty#0. (6.3.79)

Denote
K =pM,, m=MT-A"-Ty, (6.3.80)

for some constant p € R. There results

(w"", (A+ +(Cp + Ty - K)T' AT - (Cb + Ty - K))w"‘) =
= (wh, (AT +CT - A~ - Cp)w™)+

6.3.81
+2(wt, (CF - A~ Ty - K))wt)+ ( )
+(w’*‘, ((Pb . K)T AT (Fb . K))w"‘).
Observe that, by (6.3.79) and (6.3.80),
T. A= .T,- K = oM -M)T -A— .T}- M> =
Cp A7y pUMy - M) br Mz (6.3.82)

= pMT - (MT - A= -Ty) - My = py MT - Mo,

let p with the same sign of 3, so CF - A= - T}, - K is positively definited. Let 75 > 0 such that
(Wt MI - Mow™) > plwt?, wteR™?, (6.3.83)

so there results
(Wh,CF - A7 Ty - Kwh) > pyryewt]?, wt e R*P, (6.3.84)

Moreover, we have
Ty KT A= - (Ty-K)=KT - (If -4~ -T}) - K, (6.3.85)
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by (5.0.3),
p
—ys =TT A" Ty = [[b]ih <0, (6.3.86)
i=1
and, by (6.3.83),
(Wh KT - Kwh) > pPrpalwt]?, wh e R*P. (6.3.87)
Finally, fix p such that
2pm — p*7s > 0, (6.3.88)

since the eigenvalues of CT - A~ -T'y- K are bigger than 2py17; and the ones of (I'- K)T- A~ T - K
are less than —p2yyv3, by (6.3.88), there results

(w, (AT + (Co + Ty E)T - A7 - (Cp + Ty - K))wh) > (20m — 2 y3) 2|0 P, (6.3.89)

and so (6.2.64) holds.
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