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Introduction

This thesis is devoted to the study of two different problems: the properties of the
disintegration of the Lebesgue measure on the faces of a convex function and the existence
of smooth approximations of bi-Lipschitz orientation-preserving homeomorphisms in the
plane.

The first subject is analyzed in Part I, Chapters 1-3, while the second subject is treated
in Part II, Chapters 4-5. Our contribution to the material contained in this thesis is
mainly contained in a joint work with L. Caravenna [19] and in two papers obtained in
collaboration with A. Pratelli [23], [24].

In Part I we deal with the explicit disintegration of the n-dimensional Hausdorff mea-
sure on the graph of a convex function f : Rn → R w.r.t. the partition given by its faces.
By faces of a convex function we mean the convex sets obtained by the intersection of the
graph with its tangent hyperplanes.

As the graph of a convex function naturally supports the n-dimensional Hausdorff mea-
sure, its faces, being convex, have a well defined linear dimension, and then they naturally
support a proper dimensional Hausdorff measure.
Our main result is that the conditional measures induced by the disintegration are equiv-
alent to the Hausdorff measure on the faces on which they are concentrated.

Theorem 0.1. Let f : Rn → R be a convex function and let H n graph f be the
Hausdorff measure on its graph. Consider the partition of the graph of f into the relative
interiors of the faces {Fα}α∈A .
Then, the Lebesgue measure on the graph of the convex function admits a unique disinte-
gration

H n graph f =
∫
A
λα dm(α) (0.1)

w.r.t. this partition and the conditional measure λα which is concentrated on the relative
interior of the face Fα is equivalent to H k Fα, where k is the linear dimension of Fα.

In particular, as yield by formula (0.1), we recover the H n-negligibility of the set of
relative boundary points of the faces whose dimension is greater or equal than 1, which
was first obtained with other methods in [40].

The absolute continuity of the conditional probabilities w.r.t. the proper dimensional
Hausdorff measures of the sets on which they are concentrated, despite seeming an intuitive
and natural fact, does not always hold for Borel partitions of Rn into locally affine sets,
i.e. relatively open subsets of affine planes of Rn. The only cases in which the result
is trivial are the partitions into 0-dimensional sets (i.e., single points) and n-dimensional
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4 INTRODUCTION

sets. Indeed, on one hand existence and uniqueness of a disintegration can be obtained by
classical theorems relying on weak measurability conditions on the quotient maps defining
the partition. On the other hand, as soon as n ≥ 3, there exist examples of Borel collections
of disjoint segments such that the conditional measures induced by the disintegration of
the Lebesgue measure are Dirac deltas (see the counterexamples in [40], [3]).
Hence, for this kind of result further regularity properties are needed. For partitions defined
by a Lipschitz quotient map between two Euclidean spaces, the absolute continuity of the
conditional probabilities is guaranteed by the Coarea Formula (see e.g. [5]), and also for
local Lipschitz conditions one can reduce to the same tools (in applications to optimal
mass transport problem, see for example [56], [17], [4], [7]). In particular, when n = 2
the directions of a family of disjoint segments satisfy the local Lipschitz property, up to an
L 2-negligible set, and then Theorem 0.1 holds (see [6]).

In our case, up to our knowledge, the directions of the faces of a convex function do
not have any weak differentiability property which can be used to prove Theorem 0.1 by
standard Coarea Formulas. Therefore, our result, other than answering a quite natural
question, enriches the regularity properties of the faces of a convex function, which have
been intensively studied for example in [27], [40], [41], [6], [49].

In absence of any Lipschitz regularity for the directions of the faces, we look for another
kind of “regularity”. In particular, we show that the directions of the faces of a convex
function can be approximated, in a suitable sense, by vector fields of partitions belonging to
a class for which the absolute continuity property holds and, moreover, passes to the limit
in the approximation process (the cone vector fields defined in 1.8). While the construction
of the approximating vector fields and their convergence heavily depends on the specific
problem, namely the fact that the directions we are approximating lie in the faces of a
convex function, the definition of this suitable approximation property and the fact that,
when satisfied, it guarantees the absolute continuity of the conditional probabilities, can
be extended to arbitrary Borel partitions into locally affine sets –namely, sets which have a
well defined linear dimension. Due to the structure of the approximating vector fields, this
property will be called cone approximation property and, in this thesis, it will be studied for
general Borel locally affine partitions. For families of disjoint segments, this approximation
property was first introduced in [13] in order to solve a variational problem and it has been
successfully applied to show the existence of optimal transport maps for strictly convex
norms in [18].

Our result is the first dealing with the absolute continuity problem for locally affine
partitions into sets of arbitrary dimension (i.e., possibly greater than 1). Actually, the
approximation technique developed in the thesis can be also interesting for possible appli-
cations to other fields. Indeed, the disintegration theorem is an effective tool in dimensional
reduction arguments, where it may be essential to have an explicit expression for the con-
ditional measures. In particular, in the optimal transportation framework, the problem of
the absolute continuity of the conditional measures on a partition given by locally affine
sets was addressed by V.N. Sudakov in [55]. While trying to solve the Monge problem for
general convex norms in Rn and absolutely continuous initial measures, which is straight-
forward when n = 1 due to monotonic rearrangement, he had the idea of reducing the
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transport problem, via disintegration of the initial and final measures, on the partition
into locally affine sets where the potential of the dual problem is an affine function and
the norm is linear. In particular, for strictly convex norms, these sets form a collection
of disjoint segments. Then, the absolute continuity of the conditional mesures of the first
marginal would permit to solve the so obtained family of independent 1-dimensional Monge
problems and finally, gluing the so obtained optimal transport maps, to find a solution of
the original Monge problem on Rn. Unfortunately, the proof was based on a faulty lemma,
which claimed the absolutely continuity property to be true for all Borel partitions into
locally affine sets. Several years later, the counterexample in [3] opened the problem of
filling the gap in Sudakov’s proof. For uniformly smooth and convex norms and abso-
lutely continuous initial mesures, thanks to a kind of Lipschitz regularity satisfied by the
segments of the partition in this case, it was solved by L. Ambrosio in [4] (see also [7]
for the extension to non-compactly supported measures, and [17] and [56] for the case in
which both the initial and final measures are compactly supported and absolutely contin-
uous). As mentioned before, for general strictly convex norms the problems was solved
by L. Caravenna [18], proving that the segments where the potential is affine satisfy the
approximation property introduced in [13]. The general convex case has been recently
settled in a joint work with S. Bianchini [12].

Just to give an idea of how this technique works, focus on a collection of 1-dimensional
faces C which are transversal to a fixed hyperplane H0 = {x ∈ Rn : x·e = 0} and such that
the projection of each face on the line spanned by the fixed vector e contains the interval
[h−, h+], with h− < 0 < h+. Indeed, we will obtain the disintegration of the Lebesgue
measure on the k-dimensional faces, with k > 1, from a reduction argument to this case.
First, we slice C with the family of affine hyperplanes Ht = {x · e = t}, where t ∈ [h−, h+],
which are parallel to H0. In this way, by Fubini-Tonelli Theorem, the Lebesgue measure
L n of C can be recovered by integrating the (n−1)-dimensional Hausdorff measures of the
sections of C ∩Ht over the segment [h−, h+] which parametrizes the parallel hyperplanes.
Then, as the faces in C are transversal to H0, one can see each point in C ∩ Ht as the
image of a map σt defined on C ∩H0 which couples the points lying on the same face.
Suppose that the (n − 1)-dimensional Hausdorff measure H n−1 (C ∩ Ht) is absolutely
continuous w.r.t. the pushforward measure σt#(H n−1 (C ∩ H0)) with Radon-Nikodym
derivative αt. Then we can reduce each integral over the section C ∩Ht to an integral over
the section C ∩H0:∫

C
dL n =

∫
[h−,h+]

H n−1 (C ∩Ht) dt =
∫

[h−,h+]

∫
C∩H0

αt(σt(z)) dH n−1(z) dt.

Exchanging the order of the last iterated integrals, we obtain the following:∫
C
dL n =

∫
C∩H0

∫
[h−,h+]

αt(σt(z)) dt dH n−1(z).

Since the sets {σ[h−,h+](z)}z∈C∩H0 are exactly the elements of our partition, the last equal-
ity provides the explicit disintegration we are looking for: in particular, the conditional
measure concentrated on σ[h−,h+](z) is absolutely continuous w.r.t. H n−1 σ[h−,h+](z).
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The core of the proof is then to show that

H n−1 (C ∩Ht)� σt](H
n−1 (C ∩H0)).

We prove this fact as a consequence of the following quantitative estimate: for all 0 ≤ t ≤
h+ and S ⊂ C ∩H0

H n−1(σt(S)) ≤
Ç
t− h−

−h−

ån−1

H n−1(S). (0.2)

This fundamental estimate, as in [13], [18], is proved approximating the 1-dimensional
faces with a sequence of finitely many cones with vertex in C ∩Hh− and basis in C ∩Ht.
At this step of the technique, the construction of such approximating sequence heavily
depends on the nature of the partition one has to deal with. In this case, our main task
is to find the suitable cones relying on the fact that we are approximating the faces of a
convex function.
One can also derive an estimate symmetric to the above one, showing that σt#(H n−1 (C ∩
H0)) is absolutely continuous w.r.t. H n−1 (C ∩ Ht): as a consequence, αt is strictly
positive and therefore the conditional measures are not only absolutely continuous w.r.t.
the proper Hausdorff measure, but equivalent to it.

The fundamental estimate (0.2) implies moreover a Lipschitz continuity and BV reg-
ularity of αt(z) w.r.t t: this yields an improvement of the regularity of the partition that
now we are going to describe. In Chapter 3 we present these results for general locally
affine Borel partitions satisfying the cone approximation property, while here for simplicity
we consider the partition given by the faces of a convex function.
Consider a vector field v which at each point x is parallel to the face through that point
x. If we restrict the vector field to an open Lipschitz set Ω which does not contain points
in the relative boundaries of the faces, then we prove that its distributional divergence is
the sum of two terms: an absolutely continuous measure, and a (n− 1)-rectifiable measure
representing the flux of v through the boundary of Ω. The density (div v)a.c. of the abso-
lutely continuous part is related to the density of the conditional measures defined by the
disintegration above.
In the case of the set C previously considered, if the vector field is such that v · e = 1, the
expression of the density of the absolutely continuous part of the divergence is

∂tα
t = (div v)a.c.α

t.

Up to our knowledge, no piecewise BV regularity of the vector field v of faces directions is
known. Therefore, it is a remarkable fact that a divergence formula holds.

The divergence of the whole vector field v is the limit, in the sense of distributions,
of the sequence of measures which are the divergence of truncations of v on the elements
{K`}`∈N of a suitable partition of Rn. However, in general, it fails to be a measure.

In the last part of Chapter 3, we change point of view: instead of looking at vector fields
constrained to the faces of the convex function, we describe the faces as an (n+ 1)-uple of
currents, the k-th one corresponding to the family of k-dimensional faces, for k = 0, . . . , n.
The regularity results obtained for the vector fields can be rewritten as regularity results for
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these currents. More precisely, we prove that they are locally flat chains. When truncated
on a set Ω as above, they are locally normal, and we give an explicit formula for their
border; the (n+ 1)-uple of currents is the limit, in the flat norm, of the truncations on the
elements of a partition.

An application of this kind of further regularity is presented in Section 8 of [13]. Given
a vector field v constrained to live on the faces of f , the divergence formula we obtain
allows to reduce the transport equation

div ρv = g

to a PDE on the faces of the convex function. We do not pursue this issue in the thesis.

In Part II we deal with approximations of bi-Lipschitz orientation-preserving homeo-
morphisms u : Ω ⊆ R2 −→ ∆ ⊆ R2, where Ω and ∆ = u(Ω) are two open bounded subsets
of R2. In particular, we show that both u and its inverse can be approximated in the W 1,p-
norm (p ∈ [1,+∞)) by piecewise affine or smooth orientation-preserving homeomorphisms.
Our main theorem is the following.

Theorem 0.2. Let Ω ⊆ R2 be any bounded open set, and let u : Ω −→ ∆ be a bi-
Lipschitz orientation-preserving homeomorphism. Then, for any ε̄ > 0 and any 1 ≤ p <∞,
there exists a bi-Lipschitz orientation-preserving homeomorphism v : Ω −→ ∆ such that
u = v on ∂Ω,

‖u− v‖L∞(Ω) + ‖u−1 − v−1‖L∞(∆) + ‖Du−Dv‖Lp(Ω) + ‖Du−1 −Dv−1‖Lp(∆) ≤ ε̄ , (0.3)

and v is either countably piecewise affine or smooth. More precisely, there exist two geo-
metric constants C1 and C2 such that, if u is L bi-Lipschitz, then the countably piecewise
affine approximation can be chosen to be C1L

4 bi-Lipschitz, while the smooth approximation
can be chosen to be C2L

28/3 bi-Lipschitz.

Thanks to a result by C. Mora-Corral and A. Pratelli [46] (see Theorem 4.1 below),
the problem of finding smooth approximations can be actually reduced to find countably
piecewise affine ones –i.e. affine on the elements of a locally finite triangulation of Ω, see
Definition 4.4.

The fact that v might not be (finitely) piecewise affine but countably piecewise affine
is due to the fact that we require u = v on ∂Ω and it may happen that either Ω is not
a polygon or that u is not piecewise affine on the boundary. In fact, we also prove the
following

Theorem 0.3. If under the assumptions of Theorem 0.2 one has also that Ω is polygonal
and u is piecewise affine on ∂Ω, then there exists a (finitely) piecewise affine approximation
v : Ω −→ ∆ as in Theorem 0.2 which is C1C

′(Ω)L4 bi-Lipschitz.

About the dependence of C ′(Ω) in Theorem 0.3 on the domain Ω, see Remark 4.22.
The first naive idea coming to one’s mind in order to construct a piecewise affine approx-

imation of u could be the following: first, to select an arbitrary locally affine triangulation
of Ω with triangles of sufficiently small diameter; then, to define v as the function which, on
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every triangle, is the affine interpolation of the values of u on its vertices. Unfortunately,
if on one hand the functions defined in this way provide an approximation of u in L∞,
on the other hand they may fail to be homeomorphisms. The problem is due to the fact
that, taking arbitrary nondegenerate triangles in Ω –no matter how small– then the affine
interpolation of u on the vertices of the triangles can be orientation-preserving on some
triangles and orientation-reversing on the others (see Figure 1). This prevents the affine
interpolation to be injective since an homeomorphism on a connected domain in R2 must
be either orientation-preserving or orientation-reversing on every subdomain. An explicit
example of a function with such a bad behaviour can be found in [53].

T ′

u

D C

BA

T

u(B)

u(D)

u(A) u(C)

Figure 1. The square ABCD is divided in the triangles T and T ′. The affine
interpolation v of u on ABCD is not injective, since v(T ) ⊆ v(T ′) (v(T ) and
v(T ′) are shaded). Moreover, u is orientation-preserving in the square while v is
orientation-reversing on T .

The general problem of finding suitable approximations of homeomorphisms u : Rd ⊇
Ω −→ u(Ω) ⊆ Rd with piecewise affine homeomorphisms has a long history. As far as
we know, in the simplest non-trivial setting (i.e. d = 2, approximations in the L∞-norm)
the problem was solved by Radó [50]. Due to its fundamental importance in geometric
topology, the problem of finding piecewise affine homeomorphic approximations in the L∞-
norm and dimensions d > 2 was deeply investigated in the 50s and 60s. In particular, it
was solved by Moise [43] and Bing [14] in the case d = 3 (see also the survey book [44]),
while for contractible spaces of dimension d ≥ 5 the result follows from theorems of Con-
nell [20], Bing [15], Kirby [38] and Kirby, Siebenmann and Wall [39] (for a proof see,
e.g., Rushing [52] or Luukkainen [42]). Finally, twenty years later, while studying a class
of quasi-conformal varietes, Donaldson and Sullivan [25] proved that the result is false in
dimension 4.

Let us consider now homeomorphisms u which are bi-Sobolev, i.e. u ∈ W 1,p and
u−1 ∈ W 1,p for some p ∈ [1,+∞]. As pointed out by Ball (see [9], see also Evans [26]), the
problem of proving the existence of piecewise affine approximations of bi-Sobolev homeo-
morphisms as in (0.3) arises naturally when one wants to approximate with finite elements
the solutions of minimization problems in nonlinear elasticity (e.g. the minima of neo-
hookean functionals, see also [8], [10], [21], [54]). In that context, the function u represents
the physical deformation of a material with no interpenetration of matter (in particular,
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d = 2 as in the present paper, or d = 3). The reason why one requires that the approxima-
tion in the Sobolev norm holds also for the inverse of u is that the functionals of nonlinear
elasticity usually depend on functions of the Jacobian of u which explode both at 0 and
+∞. The physical meaning of choosing such functionals is that too high compressions or
strecthings require high energy.

The additional difficulty in this case is to keep under control the derivatives of the
approximating piecewise affine functions. In particular, one has to prevent the angles and
the sides of the triangulations defining v from becoming comparatively too big/small.

The results available in the literature provide, under increasingly weaker hypotheses
on the derivatives of u, piecewise affine or smooth approximations of u and its deriva-
tives, but not of its inverse u−1. The first results were obtained by Mora-Corral [45] (for
planar bi-Sobolev mappings that are smooth outside a finite set) and by Bellido and Mora-
Corral [16], in which they prove that if u ∈ C0,α for some α ∈ (0, 1], then one can find
piecewise affine approximations v in C0,β, where β ∈ (0, α) depends only on α.

Recently, Iwaniec, Kovalev and Onninen [37] almost completely solved the approxi-
mation problem of planar Sobolev homeomorphisms, proving that whenever u belongs to
W 1,p for some 1 < p < +∞, then it can be approximated by smooth homeomorphisms v
in the W 1,p-norm (improving the previous result for homeomorphisms in W 1,2 [36]).

However, as mentioned also by the authors of [37] themselves, the original problem
posed by Ball and Evans of finding approximations of bi-Sobolev homeomorphisms together
with their inverses still remained a completely open problem.

Our construction is the first one to take care also of the distance of the inverse maps,
leading to a partial result towards the solution of the general problem: in fact, we are able
to deal with homeomorphisms which are bi-Sobolev for p = +∞. The techniques adopted
in [16] and [37] are completely different with respect to the ones which will be used
throughout this paper. While the proof in [16] is based on a refinement of the supremum
norm approximation of Moise [43] (which, as pointed out by the authors themselves, cannot
be extended to deal with the Sobolev case) and the approach of [37] makes use of the
identification R2 ' C and involves coordinate-wise p-harmonic functions, our proof is
constructive, thus lomg, but it does not make use of more sophisticated tools than the
Lebesgue differentiation Theorem for L1-maps in Rd and the Jordan curve Theorem.

Here we give a very short and rough scheme of the construction, simply aiming at
introducing the main chapters and sections of the second part of the thesis. First, exploiting
the nicer properties of u around the Lebesgue points of Du, we show that we can cover
an arbitrarily large (in the Lebesgue sense) part of Ω with a family of uniform squares
on which we can take v equal to the piecewise affine interpolation of the values of u on
the vertices of the squares. Indeed, we prove that, in a sufficiently small neighborhood
of a Lebesgue point of Du, the phenomenon depicted in Figure 1 cannot happen. Then,
we cover the remaining part of Ω with a countable “tiling” made of right squares and we
construct the piecewise affine approximation of u on the sides of these squares. Finally, to
complete the construction, we have to define v in their interiors.

In order to do so, we use a planar bi-Lipschitz extension theorem for homeomorphic
images of squares obtained in a joint work with A. Pratelli [24].
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The proof of this bi-Lipschitz extension theorem will be the subject of Chapter 5. In
particular, we prove that, given a planar bi-Lipschitz homeomorphism ũ defined on the
boundary of the unit square, it is possible to extend it to a function ṽ of the whole square,
in such a way that ṽ is still bi-Lipschitz. Denoting by L and ‹L the bi-Lipschitz constants
of ũ and ṽ, with our construction one has ‹L ≤ CL4 (being C an explicit geometrical
constant). The existence of a bi-Lipschitz extension of a planar bi-Lipschitz homeomor-
phism defined on the boundary of the unit square had already been proved in 1980 by
Tukia (see [57]), using a completely different argument, but without any estimate on the

constant ‹L. Moreover, we show that if ũ is a piecewise affine function, then ṽ can be
taken piecewise affine too. Hence, taking ũ equal to the restriction of v to the boundary
of any square of the countable “tiling” and defining v = ṽ in the interior, we complete the
construction of the countably piecewise affine approximation of u. The explicit bound for
the Lipschitz constants of our bi-Lipschitz extensions in terms of the Lipscitz constant of
u will be actually essential in order to choose the approximating v as close as we want to
u in the sense of (0.3).

More precisely, let ũ : ∂D → u(∂D) ⊆ R2 be a bi-Lipschitz orientation-preserving
homeomorphism on the boundary of the unit square D = D(0, 1). By the Jordan curve
Theorem, its image ũ(∂D) is the boundary ∂Γ of a bounded closed Lipschitz domain
Γ ⊆ R2.

Our main result is the construction of a piecewise affine bi-Lipschitz extension when ũ
is a piecewise affine function, hence Γ is a closed polygon.

Theorem 0.4. Let ũ : ∂D → ∂Γ be an L bi-Lipschitz orientation-preserving piecewise
affine map. Then there exists a piecewise affine extension ṽ : D → Γ which is CL4

bi-Lipschitz, being C a purely geometric constant. Moreover, there exists also a smooth
extension ṽ′ : D → Γ, which is C ′L28/3 bi-Lipschitz.

Moreover, thanks to the geometric Lemmas 4.19 and 4.20 and Theorem 0.2 of Chapter
4, we also prove the existence of a (countably piecewise affine) bi-Lipschitz extension for
any bi-Lipschitz map.

Theorem 0.5. Let ũ : ∂D → ∂Γ ⊆ R2 be an L bi-Lipschitz orientation-preserving
map. Then there exists an extension ṽ : D → Γ ⊆ R2 which is C ′′L4 bi-Lipschitz, being C ′′

a purely geometric constant. Moreover, ṽ can also be taken countably piecewise affine with
constant C̃L4 or smooth with constant C̃ ′L28/3.

Hence, Theorem 0.4 is needed in the proof of Theorem 0.2, while Theorem 0.3 is needed
in the proof of Theorem 0.5.

Our proof of Theorem 0.4 is constructive, thus quite intricate. However, the overall
idea is simple and we try to make it as clear as possible in Chapter 5.

We conclude observing that, in the proof of Theorems 0.2, 0.3, 0.4 and 0.5, we can give
an explicit –though rough– bound on the values of the costants C1, C2 and C3 (while the
constant C ′(Ω) depends on the set Ω, see Remark 4.22)

C1 = 724C3 , C2 = 70C
7/3
1 , C3 = 636000
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C = 636000 , C ′ = 70C7/3 , C ′′ = 236C .

Plan of the thesis

In Chapter 1 we deal with general Borel partitions of Rn into locally affine sets (see
Definition 1.12).
In Section 1.1 we recall the definition of (strongly consistent) disintegration of a mea-
sure over a partition and a general abstract theorem which guarantees the existence and
uniqueness of a disintegration in the cases analyzed in the thesis.
The main issue of this chapter is to show that, whenever collections of segments obtained
by slicing the sets of the partition with transversal affine planes satisfy a suitable “cone
approximation property”, then the conditional probabilities of the disintegration of the
Lebesgue measure on the sets of the partition are absolutely continuous w.r.t. the proper
dimensional Hausdorff measures of the sets on which they are concentrated. These collec-
tions of segments are the 1-dimensional model sets, introduced in Section 1.2.
The aim of Section 1.2 is to define the “cone approximation property” for 1-dimensional
model sets and show that it implies the absolute continuity w.r.t. H 1 of the conditional
probabilities.
In Section 1.3 we show how to reduce the problem of absolute continuity of the disin-
tegration on Borel locally affine partitions to testing the approximation property on the
1-dimensional model sets obtained with suitable slicings of the sets of the partition.

In Chapter 2 we deal with the locally affine partition given by the relative interiors
of the faces of a convex function f : Rn → R. After giving the main notation and
preliminary definitions (Section 2.1), in Section 2.2 we prove that this partition satisfies
the required measurability properties in order to support a unique and strongly consistent
disintegration. In Lemma 2.3 of Section 2.3 we prove the “cone approximation property”
for the 1-dimensional slices of the faces. Finally, in Section 2.4 we show that the “cone
approximation property” and the fact that the faces are convex sets imply the Lebesgue-
negligibility of the relative boundary points of the faces. Thus, we can conclude the proof
of our main Theorem 0.1.

Chapter 3 deals with the divergence of the directions of the sets of locally affine par-
titions satisfying the “approximation property” as in Chapter 1. In particular, the results
we obtain apply to the directions of the faces of a convex function. Section 5.2 contains
a study of the regularity properties of the density function of the conditional probabilities
of the disintegration w.r.t. the Hausdorff measures on the sets of the partition. Sections
3.2 and 3.3 describe, with two different approaches, how the regularity properties of the
density function reflect on the regularity of the divergence of the directions of the sets
of the partition. In Section 3.2 we consider the divergence of any vector field which at
each point x ∈ Rn is parallel to the face of f through x. In Section 3.3 we consider the
boundaries of the (n+ 1)-uple of currents associated to the faces of f , the k-th one acting
on k-forms on Rn.
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In Chapter 4 we prove that any planar bi-Lipschitz orientation-preserving homeomor-
phism u can be approximated by countably piecewise affine homeomorphisms v as in The-
orem 0.2. In Section 4.1 we give an idea of the proof. The construction is based on a
suitable subdivision of the domain Ω into a tiling made of “Lebesgue squares” and into a
countable tiling of “non-Lebesgue squares”, up to the boundary of Ω. In Section 4.3 we
define the “Lebesgue squares” and construct a piecewise affine approximation of u on these
sets. In Section 4.4 we complete the construction defining v out of the “Lebesgue squares”.
Finally, in Section 4.5 we prove the existence of (finitely) piecewise affine approximations
of u under the assumptions of Theorem 0.3.

Chapter 5 is devoted to the proof of the piecewise affine bi-Lipschitz extension Theorem
0.4 for piecewise affine bi-Lipschitz maps defined on the boundary of the squares. In
Section 5.1 we introduce the main notation and Section 5.2 contains a brief scheme of the
construction. Each of the Sections 5.3-5.10 corresponds to a step of the proof. Finally,
in Section 5.11 we show how to get smooth bi-Lipschitz extensions, also for general bi-
Lipschitz maps as in Theorem 0.5.
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Part I. The disintegration of the Lebesgue measure on the faces
of a convex function
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CHAPTER 1

Disintegration on locally affine partitions of Rn

In this chapter we prove that, whenever suitable subpartitions into 1-dimensional sets
of a locally affine partition of Rn –called 1-dimensional slices (Definition 1.23)– satisfy a
regularity property called cone approximation property (Definition 1.11), then the condi-
tional probabilities of the disintegration of Lebesgue measure on these sets are equivalent
to the proper-dimensional Hausdorff measure of the sets on which they are concentrated.
Our main result is the following

Theorem 1.1. Let {Xk
α} α∈Ak

k=0,...,n

⊂ Rn be a Borel partition into locally affine sets whose

1-dimensional slices satisfy the cone approximation property. Then,

L n
⋃
k,α

Xk
α =

∫
µkα dm(k, α),

where the conditional probability µkα which is concentrated on the k-dimensional set Xk
α is

equivalent to H k Xk
α, for m-a.e. (k, α).

The definition of the regularity property for general locally affine partitions needed in
Theorem 1.1 is not straightforward. However, the core of the technical role of this property
at the aim of proving the absolute continuity of the conditional probabilities is already clear
in the particular case in which the locally affine sets are 1-dimensional sets (i.e., segments)
whose projections on a fixed direction of Rd are given by a fixed segment. Collections of
disjoint segments of this kind will be called 1-dimensional model sets (Definition 1.7). The
aim of Section 1.2 is to define the cone approximation property for 1-dimensional model
sets (Definition 1.11). Instead of defining it at the beginning of the section, we introduce
it as the final ingredient of a disintegration technique which permits to show the absolute
continuity property. The content of Section 1.2 was first presented in [13] for a partition
into segments coming from a variational problem, though not stated within this general
framework.

In Section 1.3 we first deal with partitions into higher dimensional sets, called k-
dimensional model sets. All the sets of such partitions have the same dimension (equal to
some k ∈ {1, . . . , n − 1}) and their projection on a fixed k-dimensional subspace of Rn is
given by a fixed k-dimensional parallelogram. In particular, when k = 1 the definition is
consistent with the one of 1-dimensional model set given in Section 1.2. By a Fubini-Tonelli
argument, we will see that whenever all the 1-dimensional model sets obtained by slicing
a k-dimensional model set with transversal affine planes (i.e., the 1-dimensional sices of
the model set) satisfy the cone approximation property defined in Section 1.2, then the

15



16 1. DISINTEGRATION ON LOCALLY AFFINE PARTITIONS OF Rn

result of Theorem 1.1 holds. Finally, in Subsection 1.3.1 we deal with general locally affine
partitions. After showing how to reduce via a countable covering argument from general
locally affine partitions to k-dimensional model sets called k-dimensional D-cylinders (as
in [19] for the faces of a convex function), we complete the proof of Theorem 1.1, which is
implied by the validity of the cone approximation property defined in Section 1.2 for the
1-dimensional slices of the so obtained k-dimensional D-cylinders.

1.1. An abstract disintegration theorem

A disintegration of a measure over a partition of the space on which it is defined is a
way to write that measure as a “weighted sum” of probability measures which are possibly
concentrated on the elements of the partition.

Let (X,Σ, µ) be a measure space (which will be called the ambient space of the disinte-
gration), i.e. Σ is a σ-algebra of subsets of X and µ is a measure with finite total variation
on Σ and let {Xα}α∈A ⊂ X be a partition of X. After defining the following equivalence
relation on X

x ∼ y ⇔ ∃α ∈ A : x, y ∈ Xα,

we make the identification A = X/∼ and we denote by p the quotient map p : x ∈ X 7→
[x] ∈ A.
Moreover, we endow the quotient space A with the measure space structure given by the
largest σ-algebra that makes p measurable, i.e.

A = {F ⊂ A : p−1(F ) ∈ Σ},
and by the measure ν = p#µ.

Definition 1.2 (Disintegration). A disintegration of µ consistent with the partition
{Xα}α∈A is a family {µα}α∈A of probability measures on X such that

1. ∀E ∈ Σ, α 7→ µα(E) is ν-measurable;

2. µ =
∫
µα dν, i.e.

µ(E ∩ p−1(F )) =
∫
F
µα(E) dν(α), ∀E ∈ Σ, F ∈ A . (1.1)

The disintegration is unique if the measures µα are uniquely determined for ν-a.e. α ∈ A.
The disintegration is strongly consistent with p if µα(X\Xα) = 0 for ν-a.e. α ∈ A.
The measures µα are also called conditional probabilities of µ w.r.t. ν.

Remark 1.3. When a disintegration exists, formula (1.1) can be extended by Beppo
Levi theorem to measurable functions f : X → R as∫

f dµ =
∫ Ç∫

f dµα

å
dν(α).

The existence and uniqueness of a disintegration can be obtained under very weak assump-
tions which concern only the ambient space. Nevertheless, in order to have the strong con-
sistency of the conditional probabilities w.r.t. the quotient map we have to make structural
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assumptions also on the quotient measure algebra, otherwise in general µα(Xα) 6= 1 (i.e.
the disintegration is consistent but not strongly consistent). The more general result of
existence of a disintegration which is consistent with a given partition is contained in [48],
while a weak sufficient condition in order that a consistent disintegration is also strongly
consistent is given in [35].

In the following we recall an abstract disintegration theorem, in the form presented
in [11]. It guarantees, under suitable assumptions on the ambient and on the quotient
measure spaces, the existence, uniqueness and strong consistency of a disintegration. Before
stating it, we recall that a measure space (X,Σ) is countably-generated if Σ coincides with
the σ-algebra generated by a sequence of measurable sets {Bn}n∈N ⊂ Σ.

Theorem 1.4. Let (X,Σ) be a countably-generated measure space and let µ be a mea-
sure on X with finite total variation. Then, given a partition {Xα}α∈A of X, there exists a
unique consistent disintegration {µα}α∈A. Moreover, if there exists an injective measurable
map from (A,A ) to (R,B (R)), where B (R) is the Borel σ-algebra on R, the disintegration
is strongly consistent with p.

Remark 1.5. If the total variation of µ is not finite, a disintegration of µ consistent
with a given partition as defined in (1.1) in general does not exists, even under the assump-
tions on the ambient and on the quotient space made in Theorem 1.4 (take for example
X = Rn, Σ = B (Rn), µ = L n and Xα = {x : x · z = α}, where z is a fxed vector in Rn

and α ∈ R).
Nevertheless, if µ is σ-finite and (X,Σ), (A,A ) satisfy the hypothesis of Theorem 1.4,

as soon as we replace the possibly infinite-valued measure ν = p#µ with an equivalent σ-
finite measure m on (A,A ), we can find a family of σ-finite measures {µ̃α}α∈A on X such
that

µ =
∫
µ̃α dm(α) (1.2)

and

µ̃α(X\Xα) = 0 for m-a.e. α ∈ A. (1.3)

For example, we can take m = p#θ, where θ is a finite measure equivalent to µ.
We recall that two measures µ1 and µ2 are equivalent if and only if

µ1 � µ2 and µ2 � µ1. (1.4)

Moreover, if λ and {λ̃α}α∈A satisfy (1.2) and (1.3) as well as m and {µ̃α}α∈A, then λ
is equivalent to m and

λ̃α =
dm

dλ
(α)µ̃α,

where dm
dλ

is the Radon-Nikodym derivative of m w.r.t. λ.
Whenever µ is a σ-finite measure with infinite total variation, by disintegration of µ

strongly consistent with a given partition we will mean any family of σ-finite measures
{µ̃α}α∈A which satisfy the above properties; in fact, whenever µ has finite total variation
we will keep the definition of disintegration given in (1.1).
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Finally, we recall that any disintegration of a σ-finite measure µ can be recovered by
the disintegrations of the finite measures {µ Kn}n∈N, where {Kn}n∈N ⊂ X is a partition
of X into sets of finite µ-measure.

Throughout this part of the thesis it will be convenient to denominate in a different
way the partitions of Rn satisfying the assumptions of Theorem 1.4 with Σ = B (Rn).

Definition 1.6. We say that a partition of Rn into sets {Xα}α∈A ⊂ Rn is a Borel
partition if the quotient map p : ∪

α∈A
Xα → A is (B (Rn),A )-measurable and there exists

an injective measurable map from (A,A ) to (Rm,B (Rm)) for some m ∈ N.

The unique strongly consistent disintegration of a finite measure µ over a Borel partition
{Xα}α∈A will be denoted as

µ =
∫
µα dm(α), µα(Xα) = 1 for m-a.e. α ∈ A. (1.5)

1.2. Disintegration on 1-dimensional model sets

In this section we consider partitions of Rd into segments as in the following

Definition 1.7 (1-dimensional model set). A 1-dimensional model set is a σ-compact
subset of Rd of the form

C 1 =
⋃
r∈R

`r,

where {`r}r∈R ⊂ Rd is a collection of disjoint segments for which there exist a unit vector
e ∈ Sd−1 and two real numbers h− < h+ such that

{x · e : x ∈ `r} = [h−, h+], ∀ r ∈ R.

Moreover, let us assume that for all t ∈ [h−, h+], the map

σt : `r 3 z 7→ `r ∩ {x · e = t}, ∀ r ∈ R

has σ-compact graph and that L d(C 1) < +∞.

For an example of 1-dimensional model set see Figure 1.
Notice that, by the abstract disintegration Theorem 1.4 there exists a unique strongly

consistent disintegration

L d C 1 =
∫
µ1
r dm(r), µ1

r(`r) = 1 for m-a.e. r ∈ R. (1.6)

Our aim is to show that, if the segments of a 1-dimensional model set satisfy an addi-
tional “regularity property” called cone approximation property (Definition 1.7), then we
get the equivalence w.r.t. H 1 of the conditional probabilities µ1

r. In particular, this prop-
erty will be presented as a final tool which permits to complete a disintegration technique
for showing absolute continuity, first developed by S. Bianchini and M. Gloyer in [13].

Given a 1-dimensional model set C 1, we always fix a vector e and two real numbers
h−, h+ as in Definition 1.7. We also define the transversal sections Zt = C 1∩{x : x·e = t},
for all t ∈ [h−, h+].
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〈e〉

a(z)

{x · e = h−}

Rn

z ∈ Z0

{x · e = 0} {x · e = h+}

b(z)

Figure 1. A 1-dimensional model set. Given a subset Z0 of the hyperplane
{x ·e = 0}, the above model set is made of disjoint segments passing through
some z ∈ Z0, truncated between {x · e = h−} and {x · e = h+}.

1.2.1. A Fubini-Tonelli technique and absolute continuity on transversal hy-
perplanes. In this short section we show that, by a Fubini-Tonelli argument, we can revert
the problem of absolute continuity w.r.t. H 1 of the conditional probabilities {µ1

r}r∈R to the
absolute continuity w.r.t. H d−1 of the push forward by the flow induced by the directions
of the segments of the H d−1-measure on transversal sections.

First of all, we cut the set C 1 with the affine hyperplanes which are perpendicular to
the segment [h−e, h+e], we apply Fubini-Tonelli theorem and we get∫

C 1
ϕ(x) dL d(x) =

∫ h+

h−

∫
Zt
ϕ dH d−1 dt, ∀ϕ ∈ C0

c (Rd). (1.7)

Then we observe the following: for every s, t ∈ [h−, h+], the points of Zs are in bijective
correspondence with the points of the section Zt and a bijection is obtained by pairing the
points that belong to the same segment `r, for some r ∈ R. In particular, this bijection is
given by the map σt|Zs : Zs → Zt.

Therefore, as soon as we fix a transversal section of C 1, say for e.g. Z0 = {x ·e = 0}∩C
assuming that 0 ∈ (h−, h+), we can try to rewrite the inner integral in the r.h.s. of (1.7)
as an integral of the function ϕ ◦ σt|Z0

w.r.t. to the H d−1 measure of the fixed section Z0.

Setting for simplicity of notation σt = σt|Z0
and Z = Z0, this can be done if

(σt)−1
# (H d−1 σt(Z))� H d−1 Z. (1.8)

Indeed, ∫
σt(Z)

ϕ(y) dH d−1(y) =
∫
Z
ϕ(σt(z)) d(σt)−1

# (H d−1 σt(Z))(z)

and if (1.8) is satisfied at least for L 1-a.e. t ∈ [h−, h+], then

(1.7) =
∫ h+

h−

∫
Z
ϕ(σt(z))α(t, z) dH d−1(z) dt,
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where α(t, z) is the Radon-Nikodym derivative of (σt)−1
# (H d−1 σt(Z)) w.r.t. H d−1 Z.

Having turned the r.h.s. of (1.7) into an iterated integral over a product space isomor-
phic to Z + [h−e, h+e], the final step consists in applying Fubini-Tonelli theorem again so
as to exchange the order of the integrals and get∫

C 1
ϕ(x) dL d(x) =

∫
Z

∫ h+

h−
ϕ(σt(z))α(t, z) dt dH d−1(z).

This final step can be done if α is Borel-measurable and locally integrable in (t, z).
By the uniqueness of the disintegration stated in Theorem 1.4 we have that, calling

r(z) the index r ∈ R such that z ∈ Z ∩ `r,

dµ1
r(z)(t) =

α(t , z) · dH 1 `r(t)∫ h+

h− α(s, z) ds
, for H d−1-a.e. z ∈ Z. (1.9)

Moreover, we observe that if also the reverse absolute continuity estimate

σt#(H d−1 Z)� H d−1 σt(Z) (1.10)

holds, then α(t, ·) > 0 H d−1-a.e. on Z and the conditional probabilities (1.9) are equivalent
to the 1-dimensional Hausdorff measure on the segments.

1.2.2. An approximation property and absolute continuity estimates. In this
section we want to find additional conditions on the segments of a 1-dimensional model set
so that (1.8) and (1.10) hold for a.e. t ∈ [h−, h+]. In this way, by the reasoning made in
Section 1.2.1, we get the equivalence to H 1 of the conditional probabilities (1.6). These
conditions will be expressed by the cone approximation property defined in Definition 1.11.

First of all, given a 1-dimensional model set C 1 we denote by ve : C 1 → Sd−1 the unit
vector field such that ve · e > 0 and 〈ve(z)〉 = 〈`r(z) − z〉 and we call it direction vector
field of C 1. Let us observe that ve is constant on each segment `r, thus a 1-dimensional
model set is completely identified by e, h−, h+ and ve. Moreover, notice that, for all z ∈ Z,
s ∈ [h−, h+]

σs(z) = z + s
ve(z)

ve(z) · e
. (1.11)

We also set vse = ve|Zs .
Now we fix u ∈ (h−, h+) and we introduce a class of collections of segments which will

be shown to satisfy (1.8) or (1.10).

Definition 1.8 ((Finite union of) Cones). A cone with basis Z+
u ⊆ {x · e = u} (Z−u ⊆

{x · e = u}) and vertex in Zh+ (Zh−) is a set of the form⋃
z∈Z+

u

[z, y+]

(resp. ∪
z∈Z−u

[z, y−]) for some y+ ∈ Zh+ (y− ∈ Zh−). The point y+ (y−) is called vertex

of the cone. A finite union of cones is a subset of Rd given by a finite collection of cones
which intersect at most in a H d−1-negligible subset of {x · e = u}.
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We notice that, for all s ∈ [u, h+) the intersection of a finite union of cones C 1
u,+ with

basis Z+
u and vertices in Zh+ with the set {x ∈ Rd : x · e ∈ [u, s]} is a 1-dimensional

model set. The same holds by simmetry for finite union of cones with basis Z−u and
vertices in Zh− , taking s ∈ (h−, u]. Therefore, on C 1

u,+ ∩ {x ∈ Rd : x · e ∈ [u, h+)} we

can define a direction vector field vue,+ as done for the 1-dimensional model set C 1.On

C 1
u,− ∩ {x ∈ Rd : x · e ∈ (h−, u]} we define the direction field vue,− in such a way that

ve,− · e < 0. Moreover, we define

σu,s+ (z) = z + (s− u)
vue,+(z)

vue,+(z) · e
, ∀ s ∈ [u, h+], z ∈ Z+

u

σu,s− (z) = z + (s− u)
vue,−(z)

vue,−(z) · e
, ∀ s ∈ [h−, u], z ∈ Z−u .

The importance of the finite unions of cones lies in the fact that they satisfy the
following quantitative estimates on the push-forward of the H d−1-measure on transversal
sections.

Lemma 1.9. Let C 1
u,+ be a finite union of cones with basis Z+

u and vertices in Zh+.
Then, for all s ∈ [u, h+) and for all A ⊆ Z+

u

H d−1
Ä
σu,s+ (A)

ä
≥ H d−1(A)

Ç
h+ − s
h+ − u

åd−1

. (1.12)

Let C 1
u,− be a finite union of cones with basis Z−u and vertices in Zh−. Then, for all

s ∈ (h−, u] and for all A ⊆ Z−u

H d−1
Ä
σu,s− (A)

ä
≥ H d−1(A)

Ç
h− − s
h− − u

åd−1

. (1.13)

Moreover, (1.12) (resp. (1.13)) holds also for finite union of cones with basis in {x·e = h−}
(resp. {x · e = h+}).

The proof of Lemma 1.9 is a straightforward consequence of the similitude criteria for
triangles.

Now, let us see how the estimates (1.12),(1.13) imply (1.8) and (1.10). If t > 0, taking
u = 0 and s = t in (1.12) we get (1.10), while choosing u = t and s = 0 in (1.13) we obtain
(1.8). If instead t < 0, then (1.8) (resp. (1.10)) is obtained taking u = t and s = 0 in
(1.12) (resp. u = 0 and s = t in (1.13)).

We are then ready to state and prove the main result of this section. We prove that, if
the restrictions to transversal sections of the direction vector field of a 1-dimensional model
set can be pointwise approximated with finite unions of cones with vertices in Zh± , then
the (d−1)-dimensional Hausdorff measures of the transversal sections satisfy the estimates
(1.12) and (1.13), thus yielding the equivalence w.r.t. H 1 of the conditional probabilities.

Lemma 1.10. Let C 1 be a 1-dimensional model set and let ve : C 1 → Sd−1 be its
direction vector field. Let us assume that, for all u ∈ (h−, h+), there exist two sequence of
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direction vector fields of finite union of cones {vue,+,j}j∈N and {vue,−,j}j∈N with bases in Zu
and vertices respectively in Zh+ and Zh− such that

H d−1(Zu\ dom vue,±,j) = 0, ∀ j ∈ N (1.14)

vue,±,j −→ ±vue , H d−1-a.e. on Zu. (1.15)

Then, for all h− < s ≤ t < h+ and for all A ⊆ ZÇ
h+ − s
h+ − t

åd−1

H d−1
Ä
σs(A)

ä
≤ H d−1

Ä
σt(A)

ä
≤ H d−1

Ä
σs(A)

äÇh− − t
h− − s

åd−1

. (1.16)

Moreover, the right estimate in (1.16) holds also for t = h+ in case there exists an approx-
imating sequence {vh+

e,−,j}j∈N and the left estimate holds also for s = h− if there exists an

approximating sequence {vh−e,+,j}j∈N as above.

Before proving Lemma 1.10, we give the following

Definition 1.11 (Cone approximation property). We say that a 1-dimensional model
set C 1 ⊆ Rd satisfies the cone approximation property if it satisfies the assumptions of
Lemma 1.10.

Proof of Lemma 1.10: First of all we observe that, by symmetry, it is sufficient
to fix t = 0 ∈ (h−, h+] and prove that, if ∃ {v0

e,−,j}j∈N converging to −v0
e as in (1.14) and

(1.15), then the r.h.s. of (1.16) holds for all s ∈ (h−, 0].
The estimate (1.13) of Lemma 1.9 with u = 0 tells us that, for all j ∈ N, s ∈ (h−, 0]

and A ⊆ Z

H d−1
Ä
σ0,s
−,j(A)

ä
≥ H d−1(A)

Ç
h− − s
h−

åd−1

. (1.17)

Moreover, (1.17) is stable under pointwise limit. Indeed, take any compact set Aε ⊆ A
such that: H d−1(A\Aε) < ε, and v0

e and v0
e,−,j are continuous on Aε for all j ∈ N. In

particular, {σ0,s
−,j(Aε)}j∈N is a sequence of compact sets that, due to (1.14), converge w.r.t.

the Hasudorff distance to the compact set σs(Aε) ⊆ σs(A). By the upper-semicontinuity
of the (d − 1)-dimensional Hausdorff measure on compact sets of {x · e = s} converging
w.r.t. the Hausdorff distance, we have

H d−1
Ä
σs(A)

ä
≥ H d−1

Ä
σs(Aε)

ä
≥ lim sup

j→∞
H d−1

Ä
σ0,s
−,j(Aε)

ä
(1.17)

≥ H d−1(Aε)

Ç
h− − s
h−

åd−1

≥ (H d−1(A)− ε)
Ç
h− − s
h−

åd−1

.

Letting ε tend to 0 we get exactly the r.h.s. of (1.16) for t = 0.
�

1.3. Disintegration on locally affine partitions

The aim of this section is to define the 1-dimensional slices for Borel locally affine
partitions in Rn and to give a proof of Theorem 1.1.

First of all we give a rigorous definition of locally affine set.
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Definition 1.12. A nonempty set E ⊆ Rn is locally affine if it consists of a single
point or if there exist k ∈ {1, . . . , n} and an affine k-dimensional plane V ⊆ Rn such that
E ⊆ V and E is relatively open in V . By relatively open in V we mean open in the relative
topology induced by Rn on V .

Given a set E ′ ⊆ Rn, we denote by aff(E ′) the affine hull of E ′, namely the minimal
(w.r.t. set inclusion) affine subspace of Rn containing E ′. We denote by ri(E ′) the relative
interior of E ′, which is the interior of E ′ in the relative topology induced by Rn on aff(E ′)
and by rb(E ′) its relative boundary. If ∅ 6= ri(E ′) ⊆ E ′ ⊆ clos (ri(E ′)), the dimension
of E ′ is defined as dim(E ′) := dim(aff(E ′)). Whenever dim(E ′) = k, we say that E ′ is a
k-dimensional set and single points are equivalently called 0-dimensional sets. An example
of sets whose linear dimension is well defined are the convex sets.

Concerning the disintegration on 0-dimensional and n-dimensional sets we make the
following

Remark 1.13. The result of Theorem 1.1 for k = 0, n is trivial. Indeed, for all α ∈ A0

we must put µ0
α = δ{X0

α}, where δx0 is the Dirac mass supported in x0, whereas if α ∈ An

we have that µnα = L n
Xn
α

|L n
Xn
α |

.

Hence, from now onwards we will care only about the disintegration on the sets of
dimension k ∈ {1, . . . , n− 1}.

1.3.1. Disintegration on k-dimensional model sets. In this subsection we define
a class of locally affine partitions into sets of a fixed dimension k ∈ {1, . . . , n− 1} called k-
dimensional model sets, which generalize the concept of 1-dimensional model set introduced
in Definition 1.7. Then, we define the 1-dimensional slices for these kinds of partitions
and prove Theorem 1.1 in this special case.

We fix k ∈ {1, . . . , n− 1} and a plane V ∈ G (k, n), where G (k, n) is the Grassmanian
of k-dimensional planes of Rn passing through the origin. We denote by Sn−1 ∩ V the
(k − 1)-dimensional unit sphere of V w.r.t. the Euclidean norm and πV : Rn → V the
projection map on the k-plane V . We consider an orthonormal set {e1, . . . , ek} in Rn such
that 〈e1, . . . , ek〉 = V and two k-uple of points l = (l1, . . . , lk), m = (m1, . . . ,mk) ∈ Zk with
lj < mj for all j = 1, . . . , k. Then we define the k-dimensional

Ck(l,m) :=
k∏
j=1

[lj ej,mj ej].

Now we are ready to give the definition of k-dimensional model sets

Definition 1.14. A k-dimensional model set is a σ-compact subset of Rn of the form

C k =
⋃
r∈Rk

C k
r , (1.18)

where {C k
r }r∈Rk is a collection of disjoint closed k-dimensional sets such that

πV (C k
r ) = Ck(l,m).
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Moreover we assume that, for all w ∈ Ck(l,m) the map

C k
r 3 z 7→ C k

r ∩ π−1
V (w)

has σ-compact graph.

Again by the measurability assumptions made in Definition 1.14, Theorem 1.4 applies
and then there exists a unique strongly consistent disintegration

L n C k =
∫
µkr dm(k, r), µkr(C

k
r ) = 1. (1.19)

Given a k-dimensional model set C k, we always fix a k-plane V and a k-dimensional
rectangle Ck(l,m) as in Definition 1.14. We also define the transversal sections Zk

w =
C k ∩ π−1

V (w), for all w ∈ Ck(l,m)
As in Section 1.2, the problem of the absolute continuity (or equivalence) of the con-

ditional probabilities w.r.t. H k can be reduced to the problem of absolute continuity
(equivalence) w.r.t. H n−k of the push-forward of the (n− k)-dimensional Hausdorff mea-
sure on transversal sections.

As soon as we fix a transversal section Zk = Zk
w, the set C k can be parametrized with

the maps

σw+te : Zk → Zk
w+te, σw+te(z) = z + t

ve(z)

|πV (ve(z))|
, (1.20)

where e is a unit vector in Sn−1 ∩ V , t ∈ R satisfies w + te ∈ Ck(l,m) and ve(z) is the unit

direction contained in the set C k
r passing through z which is such that πV (ve(z))

|πV (ve(z))| = e. We

observe that, according to our notation,

(σw+te)−1 = σ(w+te)−te.

For all w ∈ Ck(l,m) we also define the real numbers

h+(w, e) = sup{t : w + te ∈ Ck(l,m)}, h−(w, e) = inf{t : w + te ∈ Ck(l,m)}
The first step of the proof of Theorem 1.1 for the partition (1.18) consists in cutting

the set C k with affine hyperplanes which are perpendicular to ei for i = 1, . . . , k and apply
k-times the Fubini-Tonelli theorem. Then, the main point is again to show that, for every
e and t as above,

(σte)−1
# (H n−k Zk

w+te) is equivalent to H n−k Zk (1.21)

and, after this, that the Radon-Nikodym derivative between the above measures satisfies
proper measurability and integrability conditions.

The main observation is now that the sets of the form⋃
z∈Zk

¶
σw+te(z) : t ∈ [h−(w, e), h+(w, e)]

©
(1.22)

are 1-dimensional model sets as in Definition 1.7, living in the d = (n− k+ 1)-dimensional
space π−1

V

Ä
[h−(w, e), h+(w, e)]e

ä
. Hence, if the 1-dimensional model sets (1.22) satisfy the

approximation property of Definition 1.11, in the same way as shown in the previous section
one gets that (1.21) holds.
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The role of the 1-dimensional model sets (1.22) in proving Theorem 1.1 leads us to give
the following definition

Definition 1.15. We call 1-dimensional slice of a k-dimensional model set C k any
1-dimensional model set of the form (1.22)= C k ∩ π−1

V

Ä
[h−(w, e), h+(w, e)]e

ä
.

As we have just observed, Lemma 1.10 of Section 1.2 can be rewritten adapting to this
context in the following way.

Lemma 1.16. Let C k ∩ π−1
V

Ä
[h−(w, e), h+(w, e)]e

ä
be a 1-dimensional slice of a k-

dimensional model set C k which satisfies the cone approximation property. Then, for all
h−(w, e) < s ≤ t < h+(w, e) and for all A ⊆ Zk

wÇ
h+(w, e)− s
h+(w, e)− t

ån−k
H n−kÄσw+se(A)

ä
≤ H n−kÄσw+te(A)

ä
≤ H n−kÄσw+se(A)

äÇh−(w, e)− t
h−(w, e)− s

ån−k
. (1.23)

Moreover, the right estimate in (1.23) holds also for t = h+(w, e) and the left estimate
holds also for s = h−(w, e).

Indeed, Lemma 1.10 implies the following

Corollary 1.17. Let C k be a k-dimensional model set whose 1-dimensional slices
satisfy the cone approximation property and let σw+se(Zk), σw+te(Zk) be two sections of
C k with s and t as in Lemma 1.16.. Then, if we put s = w + se and t = w + te, we have
that

σ
t−|s−t|e
#

Ä
H n−k σt(Zk)

ä
� H n−k σs(Zk) (1.24)

and by the Radon-Nikodym theorem there exists a function α(t, s, ·) which is H n−k-a.e.
defined on σs(Zk) and is such that

σ
t−|s−t|e
#

Ä
H n−k σt(Zk)

ä
= α(t, s, ·) ·H n−k σs(Zk). (1.25)

Proof. Without loss of generality we can assume that s = 0. If H n−k(A) = 0 for
some A ⊂ Zk, by definition of push forward of a measure we have that

(σw+te)−1
#

Ä
H n−k σw+te(Zk)

ä
(A) = H n−k(σw+te(A)) (1.26)

and taking s = 0 in (1.23) we find that H n−k(A) = 0 implies that H n−k(σw+te(A)) =
0. �

In the proof of Theorem 1.1 we will also need the following

Remark 1.18. The fuction α = α(t, s, y) defined in (1.25) is measurable w.r.t. y and,
for H n−k-a.e. y′ ∈ σw+te(Zk), we have that

α(s, t, y′) = α(t, s, σt−|s−t|e(y′))−1. (1.27)
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Moreover, since
(σw+se)−1 = (σw+te)−1 ◦ σs+|s−t|e

we have that

α(s,w, z)H n−k Zk = (σw+se)−1
# (H n−k σs(Zk))

= (σw+te)−1
#

Ä
σ

s+|s−t|e
# H n−k σs(Zk)

ä
= (σw+te)−1

#

Ç
α(s, t, y) ·H n−k σt(Zk)

å
= α(t,w, z) · α(s, t, σt(z)) ·H n−k Z. (1.28)

From (1.23) we immediately get the uniform bounds:Ç
h+(t, e)− u
h+(t, e)

ån−k
≤ α(t + ue, t, ·) ≤

Ç
u− h−(t, e)

−h−(t, e)

ån−k
if u ∈ [0, h+(t, e)],Ç

u− h−(t, e)

−h−(t, e)

ån−k
≤ α(t + ue, t, ·) ≤

Ç
h+(t, e)− u
h+(t, e)

ån−k
if u ∈ [h−(t, e), 0]. (1.29)

In particular, α(·,w, z) > 0 on Ck(l,m) for m-a.e. z ∈ Zk.

Now we can finally give the proof of Theorem 1.1 for k-dimensional model sets.

Proof of Theorem 1.1 for k-dimensional model sets: To end the proof of
the theorem we only have to make rigorous the Fubini-Tonelli Tonelli argument which
leads to check 1.21 on the 1-dimensional slices. For simplicity of notation, let us fix
w = 0 ∈ Ck(l,m) and let us set Zk = Zk

w, h±i = h±(w, ei), for all i = 1, . . . , k and
σ(t1e1+···+tkek) = σw+(t1e1+···+tkek).

Our aim is then to show that, for all ϕ ∈ L1
loc(Rn),∫

C k
ϕdL n =

∫
Zk

∫ h+
k

h−
k

. . .
∫ h+

1

h−1

α(t1e1+· · ·+tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dt1 . . . dtk dH
n−k(z),

(1.30)
where α is the function defined in (1.25).

We proceed using the disintegration technique which was presented in Section 1.2.∫
C k
ϕ(x) dL n(x) =

∫ h+
k

h−
k

. . .
∫ h+

1

h−1

∫
C k∩{x·ek=tk}∩···∩{x·e1=t1}

ϕdH n−k

=
(1.24)

∫ h+
k

h−
k

. . .
∫ h+

1

h−1

∫
Zk
α(tkek, 0, z) . . . α(t1e1 + · · ·+ tkek, t2e2 + · · ·+ tkek, σ

(t2e2+···+tkek)(z))

· ϕ(σ(t1e1+···+tkek)(z)) dH n−k(z) dt1 . . . dtk

=
(1.28)

∫ h+
k

h−
k

. . .
∫ h+

1

h−1

∫
Zk
α(t1e1 + · · ·+ tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dH n−k(z) dt1 . . . dtk

=
(1.29)

Rem 1.18

∫
Zk

∫ h+
k

h−
k

. . .
∫ h+

1

h−1

α(t1e1 + · · ·+ tkek, 0, z)ϕ(σ(t1e1+···+tkek)(z)) dt1 . . . dtk dH
n−k(z).



1.3. DISINTEGRATION ON LOCALLY AFFINE PARTITIONS 27

By the uniqueness and strong consistency of the disintegration guaranteed by Theorem
1.4, analogously to (1.9) we have that

µkr(z)(dt1 . . . dtk) =
α(t1e1 + · · ·+ tkek, 0, z) H k C k

r(z)(dt1 . . . dtk)∫ h+
k

h−
k

. . .
∫ h+

1

h−1
α(s1e1 + · · ·+ skek, 0, z) ds1 . . . dsk

, (1.31)

�

1.3.2. Reduction to k-dimensional model sets and global disintegration. In
this section we finally consider a general Borel locally affine partition into sets {Xk

α} α∈Ak
k=0,...,n

⊂

Rn. Neglecting by Remark 1.13 the 0-dimensional sets, we show that the set

T :=
⋃

k∈{1,...,n}

⋃
α∈Ak

Xk
α (1.32)

can be partitioned, up to an L n-negligible set, into a countable family of k-dimensional
model sets called k-dimensional D-cylinders. Finally, we complete the proof of Theorem
1.1.

In order to find a countable partition of T into model sets like the set C k which was
defined in Section 1.3.1, w.l.o.g. we start assuming that T is a σ-compact set and that the
quotient map p of Definition 1.6 has σ-compact graph. In fact, it is sufficient to remove an
L n-negligible set. We also define

Xk =
⋃
α∈Ak

Xk
α, ∀ k = 0, . . . , n (1.33)

and the (multivalued) equivalence map R : ∪
k,α
Xk
α → ∪

k,α
Xk
α

Xk
α 3 x 7→ R(x) = Xk

α, for all k = 0, . . . , n, α ∈ Ak. (1.34)

Moreover, we define the multivalued direction map

D : T → Sn−1, D(x) :=

®
y − x
‖y − x‖

: y ∈ R(x)\{x}
´
. (1.35)

By the assumptions on the quotient map p, it is easy to check that the maps R and D
have σ-compact graphs.

Now we can start to build the partition of Xk into k-dimensional model sets.

Definition 1.19. For all k = 1, . . . , n, we call sheaf set a σ-compact subset of Xk of
the form

Z k = ∪
z∈Zk
R(z), (1.36)

where Zk is a σ-compact subset of Xk which is contained in an affine (n− k)-plane in Rn

and is such that

R(z) ∩ Zk = {z}, ∀ z ∈ Zk.

We call sections of Z k all the sets Y k that satisfy the same properties of Zk in the Defi-
nition 1.19.
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A subsheaf of a sheaf set Z k is a sheaf set W k of the form

W k = ∪
w∈Wk

R(w),

where W k is a σ-compact subset of a section of the sheaf set Z k.

Now we prove that the set Xk can be covered with countably many disjoint sets of the
form (1.36).
First of all, let us take a dense sequence {Vi}i∈N ⊂ G (k, n) and fix, ∀ i ∈ N, an orthonormal
set {ei1 , . . . , eik} in Rn such that

Vi = 〈ei1 , . . . , eik〉. (1.37)

Recalling the notation set at the beginning of Section 1.3.1, we denote by πi = πVi :
Rn → Vi the projection map on the k-plane Vi. For every fixed 0 < ε < 1 the following
sets form a disjoint covering of the k-dimensional unit spheres in Rn:

Sk−1
i =

¶
Sn−1 ∩ V : V ∈ G (k, n), inf

x∈Sn−1∩V
‖πV (x)‖ ≥ 1− ε

©
\
i−1
∪
j=1

Sk−1
j , i = 1, . . . , I,

where I ∈ N depends on the ε we have chosen.
In order to determine a countable partition of Xk into sheaf sets we consider the

k-dimensional rectangles in the k-planes (1.37) whose boundary points have dyadic coor-
dinates. For all

l = (l1, . . . , lk), m = (m1, . . . ,mk) ∈ Zk with lj < mj ∀ j = 1, . . . , k

and for all i = 1, . . . , I, p ∈ N, let Ck
iplm be the rectangle

Ck
iplm = 2−p

k∏
j=1

[lj eij ,mj eij ]. (1.38)

Lemma 1.20. The following sets are sheaf sets covering Xk: for i = 1, . . . , I, p ∈ N,
and S ⊂ Zk take

Z k
ipS =

®
x ∈ Xk :D(x) ⊆ Sk−1

i and S ⊆ Zk is the maximal set such that

∪
l∈S

Ck
ipl(l+1) ⊆ πi(R(x))

´
. (1.39)

Moreover, a disjoint family of sheaf sets that cover Xk is obtained in the following way:
in case p = 1 we consider all the sets Z k

ipS as above, whereas for all p > 1 we take a set

Z k
ipS if and only if the set ∪

l∈S
Ck
ipl(l+1) does not contain any rectangle of the form Ck

ip′l(l+1)

for every p′ < p.
As soon as a nonempty sheaf set Z k

ipS belongs to this partition, it will be denoted by

Z̄ k
ipS.

For the proof of this lemma we refer to the analogous Lemma 2.6 in [18].
Then, we can refine the partition into sheaf sets by cutting them with sections which

are perpendicular to fixed k-planes.
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Definition 1.21. (See Figure 2) A k-dimensional D-cylinder of {Xk
α} α∈Ak

k=1,...,n

is a k-

dimensional model set of the form

C k = Z k ∩ π−1
〈e1,...,ek〉(C

k), (1.40)

where Z k is a k-dimensional sheaf set, 〈e1, . . . , ek〉 is any fixed k-dimensional subspace
which is perpendicular to a section of Z k and Ck is a rectangle in 〈e1, . . . , ek〉 of the form

Ck =
k∏
i=1

[t−i ei, t
+
i ei],

with −∞ < t−i < t+i < +∞ for all i = 1, . . . , k, such that

Ck ⊆ π〈e1,...,ek〉(R(z)) ∀ z ∈ Z k ∩ π−1
〈e1,...,ek〉(C

k).

We set C k = C k(Z k, Ck) when we want to refer explicitily to a sheaf set Z k and to a
rectangle Ck that can be taken in the definition of C k.
The k-plane 〈e1, . . . , ek〉 is called the axis of the k-dimensional model set and every set Zk

of the form

C k ∩ π−1
〈e1,...,ek〉(w), for some w ∈ ri(Ck)

is called a section of the D-cylinder.

We also define the border of C k transversal to D and its outer unit normal as

dC k = C k ∩ π−1
〈e1,...,ek〉(rb(Ck)),

n̂|
dCk

(x) = outer unit normal to π−1
〈e1,...,ek〉(C

k) at x, for all x ∈ dC k. (1.41)

Lemma 1.22. The set T can be covered by the D-cylinders

C k(Z k
ipS, C

k
ipl(l+1)), (1.42)

where S ⊆ Zk, l ∈ S and Z k
ipS, Ck

ipl(l+1) are the sets defined in (1.39),(1.38).

Moreover, there exists a countable covering of T with D-cylinders of the form (1.42)
such that

πi

ñ
C k(Z k

ipS, C
k
ipl(l+1)) ∩ C k(Z k

ip′S′ , C
k
ip′l′(l′+1))

ô
⊂ rb[Ck

ipl(l+1)] ∩ rb[Ck
ip′l′(l′+1)] (1.43)

for any couple of D-cylinders which belong to this countable family (if i 6= i′, it follows from
the definition of sheaf set that C k(Z k

ipS, C
k
ipl(l+1)) ∩ C k(Z k

i′p′S′ , C
k
i′p′l′(l′+1)) must be empty).

Proof. The fact that the D-cylinders defined in (1.42) cover T follows directly from
Definitions 1.19 and 1.21 as in [18].

Our aim is then to construct a countable covering of T with D-cylinders wich satisfy
property (1.43).
First of all, let us fix a nonempty sheaf set Z̄ k

ipS which belongs to the countable partition
of T given in Lemma 1.20.
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〈ek+1, . . . , en〉

Z k

π−1
〈e1,...,ek〉(C

k)

Ck

Rn

Ek
∇f(z)

z ∈ Zk

〈e1, . . . , ek〉

Figure 2. Sheaf sets and D-cylinders (Definitions 1.19, 1.21). Roughly, a
sheaf set Z k is a collection of k-dimjensional sets, which intersect exactly at
one point some set Zk contained in a (n−k)-dimensional plane. A D-cylinder
C k is the intersection of a sheaf set with π−1

〈e1,...,ek〉(C
k), for some rectangle

Ck = conv({t−i ei, t
+
i ei}i=1,...,k), where {e1, . . . , en} are an orthonormal basis

of Rn. Such sections Zk are called basis, while the k-plane 〈e1, . . . , ek〉 is an
axis.

In the following we will determine the D-cylinders of the countable covering which are
contained in Z̄ k

ipS; the others can be selected in the same way starting from a different
sheaf set of the partition given in Lemma 1.20.
Then, the D-cylinders that we are going to choose are of the form

C k
Ä
Z k
ip̂Ŝ
, Ck

ip̂̂l(̂l+1)

ä
,

where Z k
ip̂Ŝ

is a subsheaf of the sheaf set Z̄ k
ipS.

The construction is done by induction on the natural number p̂ which determines the
diameter of the squares Ck

ip̂̂l(̂l+1)
obtained projecting the D-cylinders contained in Z̄ k

ipS

on the axis 〈ei1 , . . . , eik〉. Then, as the induction step increases, the diameter of the k-
dimensional rectangles associated to the D-cylinders that we are going to add to our
countable partition will be smaller and smaller (see Figure 3).

By definition (1.39) and by the fact that Z̄ k
ipS is a nonempty element of the partition

defined in Lemma 1.20, the smallest natural number p̂ such that there exists a k-dimensional
rectangle of the form Ck

ip̂̂l(̂l+1)
which is contained in πi(Z̄ k

ipS) is exactly p ; then, w.l.o.g., we

can assume in our induction argument that p = 1.
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Rn

〈eik+1 , . . . , ein〉

〈ei1 , . . . , eik
〉

Figure 3. Partition of Ek into D-cylinders (Lemma 1.22).

For all p̂ ∈ N, we call Cylp̂ the collection of the D-cylinders which have been chosen up
to step p̂.
When p̂ = 1 we set

Cyl1 = {C k(Z̄ k
i1S, C

k
i1l(l+1)) : l ∈ S}.

Now, let us suppose to have determined the collection of D-cylinders Cylp̂ for some p̂ ∈ N.
Then, we define

Cylp̂+1 = Cylp̂
⋃ ®

C k = C k(Z k
i(p̂+1)S̃

, Ck
i(p̂+1)̃l(̃l+1)

) : Z k
i(p̂+1)S̃

is a subsheaf of Z̄ k
ipS and

C k * C k(Z k
ip′S′ , C

k
ip′l′(l′+1)) for all C k(Z k

ip′S′ , C
k
i′p′l′(l′+1)) ∈ Cylp̂

´
.

�

Before completing the proof of Theorem 1.1, we give the following

Definition 1.23. We call 1-dimensional slice of a locally affine partition any 1-
dimensional slice of the k-dimensional sets given by its k-dimensional D-cylinders as in
Definition 1.15, for all k = 1, . . . , n− 1.

Indeed, by Remark 1.13, the disintegration on n-dimensional D-cylinders is simply a
consequence the σ-additivity of the Lebesgue measure

Proof of Theorem 1.1. As we observed in Remark 1.13, it is sufficient to prove the
theorem for the disintegration of the Lebegue measure on the set Xk when k ∈ {1, . . . , n−
1}.
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Moreover, by (1.43), for all k = 1, . . . , n − 1 there exists a L n-negligible set Nk such
that

Xk\Nk = ∪
j∈N

C k
j \dC k

j ,

where {C k
j }j∈N is the countable collection of k-dimensional D-cylinders covering Xk which

was constructed in Lemma 1.22, so that the sets Ĉ k
j = C k

j \dC k
j are disjoint.

The fundamental observation is the following:

∪
j∈N

Ĉ k
j = ∪

j∈N
∪

α∈Ak
Xk
α,j = ∪

α∈Ak
∪
j∈N

Xk
α,j = ∪

α∈Ak
Xk
α\Nk,

where Xk
α,j = Xk

α ∩ Ĉ k
j .

For all j ∈ N, we set

Ak,j = {α ∈ Ak : Xk
α,j 6= ∅},

we denote by pk,j : Ĉ k
j → Ak,j the quotient map corresponding to the partition

Ĉ k
j = ∪

α∈Ak
Xk
α,j

and we set νk,j = pk,j#L n Ĉ k
j .

Since the quotient space (Ak,j,B (Ak,j)) is isomorphic to (Zk
j ,B (Zk

j )), where Zk
j is a

section of C k
j , and since by assumption the 1-dimensional slices defined in Definition 1.23

satisfy the cone approximation property, by the proof of Theorem 1.1 for k-dimensional
model sets given in Section 1.3.1 we have that

L n C k
j (Ej ∩ p−1

j (Fj)) =
∫
Fj
µkα,j(Ej) dνk,j(y), ∀Ej ∈ B (C k

j ), Fj ∈ B (Ak,j), (1.44)

where µkα,j is equivalent to H k Xk
α,j for νk,j-a.e. α ∈ Ak,j.

Moreover, for every E ∈ B (Rn) ∩Xk there exist sets Ej ∈ B (C k
j ) such that

E = ∪
j∈N

Ej

and for all F ∈ B (Ak), where Ak = ∪
j∈N

Ak,j, there exist sets Fj ∈ B (Ak,j) such that

F = ∪
j∈N

Fj and p−1(F ) = ∪
j∈N

p−1
j (Fj).

Then,

L n K(E ∩ p−1(F )) =
+∞∑
j=1

L n C k
j (Ej ∩ p−1

j (Fj))

=
(1.44)

+∞∑
j=1

∫
Fj
µkα,j(Ej) dνk,j(α)

=
+∞∑
j=1

∫
Ak,j

1Fj(α)µkα,j(Ej) dνk,j(α)
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=
+∞∑
j=1

∫
Ak

1Fj(α)µkα,j(Ej)fj(α) dνk(α), (1.45)

where fj is the Radon-Nikodym derivative of νk,j w.r.t. the measure νk on Ak given by
p#L n (K ∩Xk).

Since, by Theorem 1.4, there exists a unique disintegration {µkα} α∈Ak
k=0,...,n

such that

L n K(E ∩∇f−1(F )) =
∫
F
µkα(E) dp#L n K(k, α) for all E ∈ B (Rn), F ∈ B (A),

we conclude that the last term in (1.45) converges and

µkα =
+∞∑
j=1

fj(α)µkα,j for νk-a.e. α ∈ Ak,

so that the Theorem is proved. �





CHAPTER 2

Disintegration on the faces of a convex function

In this chapter we deal with the Disintegration Theorem 0.1. For the proof we will
show that the partition given by the relative interiors of the faces of a convex function
satisfies the approximation property of Theorem 1.1 (Lemma 2.3) and that the points in
the relative boundaries of the faces of dimension greater or equal than 1 are a negligible
set (Lemma 2.4).

For notational convenience, instead of considering the disintegration of the n-
dimensional Hausdorff measure on the faces of the graph of a convex function f : Rn → R,
we consider the disitegration of the n-dimensional Lebegue measure on the sets given by
the projections of the faces on the first n-coordinates (2.4). This and other preliminary
questions and definitions will be discussed in Section 2.1. Moreover, in Section 2.1 we
will state Lemma 2.3 and 2.4 and prove that the validity of Lemma 2.3 and Lemma 2.4
immediately yields Theorem 0.1 (see the proof at Page 37). In Section 2.2 we prove that
the partition into “projected faces” satisfies the measurability assumptions of Definition
1.6, which guarantee the existence and uniqueness of a disintegration (see Theorem 1.4).
Section 2.3 contains the proof of the approximation Lemma 2.3. In Lemma 2.4 of Section
2.4 we finally prove the negligibility of the relative boundary points of the faces.

2.1. Preliminaries and main results

In this section we set some notation and basic definitions which enter into the statement
and the proof of our main Theorem 0.1.

First of all, let us consider the ambient space (see Section 1.1)

(Rn,B (Rn),L n K),

where L n is the Lebesgue measure on Rn, B (Rn) is the Borel σ-algebra, K is any set of
finite Lebesgue measure and L n K is the restriction of the Lebesgue measure to the set
K. Indeed, by Remark 1.5 in Section 1.1, the disintegration of the Lebesgue measure w.r.t.
a given partition is determined by the disintegrations of the Lebesgue measure restricted
to finite measure sets.

Then, let f : Rn → R be a convex function.
We recall that the subdifferential of f at a point x ∈ Rn is the set ∂−f(x) of all r ∈ Rn

such that
f(w)− f(x) ≥ r · (w − x), ∀w ∈ Rn. (2.1)

From the basic theory of convex functions, as f is real-valued and is defined on all Rn,
∂−f(x) 6= ∅ for all x ∈ Rn, it is a closed convex set and it consists of a single point if and

35
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only if f is differentiable at x. Moreover, in that case, ∂−f(x) = {∇f(x)}, where ∇f(x)
is the differential of f at the point x.
We denote by dom∇f a σ-compact set where f is differentiable and such that Rn\dom∇f
is Lebesgue negligible. ∇f : dom∇f → R denotes the differential map and Im∇f the
image of dom∇f with the differential map. By the convexity of f , we can moreover assume
w.l.o.g. that the intersection of ∇f−1(y) with dom∇f is convex, for all y ∈ Im∇f .

Now we give the formal definition of face of a convex function and relate this object
to the sets ∇f−1(y).

Definition 2.1. A tangent hyperplane to the graph of a convex function f : Rn → R
is a subset of Rn+1 of the form

Hy = {(z, hy(z)) : z ∈ Rn, and hy(z) = f(x) + y · (z − x)}, (2.2)

where x ∈ ∇f−1(y).

We note that, by convexity, the above definition is independent of x ∈ ∇f−1(y).

Definition 2.2. A face of a convex function f : Rn → R is a set of the form

Hy ∩ graph f|dom∇f . (2.3)

Definition 2.2 corresponds to the notion of exposed face of the epigraph of f given in [51].
The faces of a convex function are a family of disjoint convex sets whose union covers
graph f|dom∇f .
It is easy to check that, ∀ y ∈ Im∇f and ∀ z such that (z, f(z)) ∈ Hy ∩ graph f|dom∇f , we
have that y = ∇f(z).

If we denote by πRn : Rn+1 → Rn the projection map on the first n coordinates, one
can see that, for all y ∈ Im∇f ,

∇f−1(y) = πRn(Hy ∩ graph f|dom∇f ). (2.4)

For this reason, the sets {∇f−1(y)}y∈Im∇f} ⊂ Rn will be called projected faces of f .
Notice that the projected faces are a partition in Rn into convex sets whose union covers
dom∇f . For notational convenience, the set ∇f−1(y) will be denoted as Fy. We also write
F k
y instead of Fy whenever we want to emphasize the fact that the latter has dimension
k, for k = 0, . . . , n (where the dimension of a convex set C, denoted by dim(C), is the
dimension of its affine hull aff(C)). We also denote by ri(Fy) the relative interior of a face
and by rb(Fy) its relative boundary (see Definition 1.12).

Due to the fact that the map graph f : Rn → Rn×R is bi-Lipschitz and that its inverse
πRn preserves the convexity of the faces, their disjointness and their linear dimension, we
have the disintegration Theorem 0.1 is implied by the following two lemmas.

Lemma 2.3. Let f : Rn → R be a convex function and let {ri(Fy)}y∈Im∇f ⊂ Rn be the
partition given by the relative interiors of the projected faces of f . Then, the 1-dimensional
slices of {ri(Fy)}y∈Im∇f ⊂ Rn (see Definition 1.23) satisfy the cone approximation property
(see Definition 1.11).
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Lemma 2.4. The set
N =

⋃
y: dimFy≥1

rb(Fy) (2.5)

is L n-negligible.

Indeed, we have the following

Proof of Theorem 0.1: Let us assume that Lemma 2.3 and Lemma 2.4 hold.
Then, by Theorem 1.1, for all K ⊂ Rn such that L n(K) < +∞

L n K =
∫
µky d∇f#(L n K)(y), (2.6)

where µky is equivalent to H k F k
y for ∇f#(L n K)-a.e. y ∈ Im∇f .

Finally, by the properties of the map graph f : Rn → Rn × R mentioned above, this
immediately yields the Disintegration Theorem 0.1.

�

2.2. Measurability of the faces directions

The aim of this subsection is to show that the set of the relative interiors of the pro-
jected faces of a convex function f (2.4) can be parametrized by a Borel measurable (and
multivalued) map as in Definition 1.6. This will give the existence of a unique strongly
consistent disintegration and will allow us to decompose dom∇f into a countable family
of k-dimensional model sets as in Section 1.3.2.

Since ∇f is a Borel map, we can assume that the quotient map p of Definition 1.2 is
given by the restriction of ∇f to the set ∪

y∈Im∇f
ri(Fy) and that the quotient space is given

by (Im∇f,B (Im∇f)), which is measurably included in (Rn,B (Rn)).
Therefore, we are left to prove the set ∪

y∈Im∇f
ri(Fy) is Borel.

To this aim, let us set some more notation and define sets and (multivalued) maps
relative to the projected faces, which will be used also in the rest of the chapter.

First of all, we define the equivalence maps

dom∇f 3 x 7→ P(x) :=
¶
z ∈ dom∇f : ∃ y ∈ Im∇f s.t. x, z ∈ Fy

©
(2.7)

and

dom∇f 3 x 7→ R(x) :=
¶
z ∈ dom∇f : ∃ y ∈ Im∇f s.t. x ∈ Fy and z ∈ ri(Fy)

©
. (2.8)

We notice that P(x) is the projected face of f to which x belongs, while R(x) is its relative
interior. Moreover, ⋃

y∈Im∇f
ri(Fy) = π2(graphR), (2.9)

where π2 : Rn × Rn → Rn denotes the projection onto the second factor.
Since the disintegration over the 0-dimensional faces is trivial, we will restrict our

attention to the set (see (1.32))

T = {x ∈ π2(graphR) : R(x) 6= {x}}. (2.10)
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On T we can also define the direction map (see (1.35))

T 3 x 7→ D(x) :=

®
y − x
‖y − x‖

: y ∈ R(x)

´
. (2.11)

Our aim is then prove the following lemma. We recall that a multivalued map is defined
to be Borel measurable if the counterimage of any open set is Borel.

Lemma 2.5. The graphs of the multivalued maps P, R and D are a σ-compact sets.

As a consequence of Lemma 2.5 and equations (2.9)-(2.10), the domain of our partition
∪

y∈Im∇f
ri(Fy) and T are σ-compact, thus Borel.

Proof of Lemma 2.5: From the continuity of f and from the upper-semicontinuity
of its subdifferential (2.1), we have that the graph of the multivalued map P̃ : Rn → Rn

defined as

P̃(x) :=
¶
z ∈ Rn : ∃ y ∈ ∂−f(x) s.t. f(z) = f(x) + y · (z − x)

©
is closed in Rn × Rn.

Hence, since dom∇f is σ-compact (see Section 2.1), the sets

graphP = graph P̃ ∩ dom∇f × Rn, graphR = graph P̃ ∩ dom∇f × dom∇f.

The fact that the graph of D is σ-compact follows from the continuity of the map Rn×Rn 3
(x, z) 7→ z−x

|z−x| out of the diagonal. �

2.3. Validity of the cone approximation property

This section is devoted to the proof of Lemma 2.3. Using the notation of Chapter 1,
with Xk

α = ri(F k
y ) for some y ∈ Im∇f , we can restrict to prove the cone approximation

property for a 1-dimensionalD-cylinder C with axis 〈e〉 generated by a unit vector e ∈ Sn−1,
direction vector field ve and parameterizing map σw+te (see Definition 1.21). Moreover,
w.l.o.g., we can assume that w = 0 and we set, for simplicity of notation, σt := σw+te,
h± = h±(w, e) and Zt = Zw+te. By symmetry, it is sufficient to prove the existence of
approximating finite union of cones {vte,−,j}j∈N for −vte as in Lemma 1.10 with bases in Zt
for some fixed t ∈ (h−, h+] and vertices in Zh− . We also introduce the following notation

Ht := {x ∈ Rn : x · e = t}, where t ∈ [h−, h+] and h−, h+ ∈ R : h− < 0 < h+;

Bn−1
R (x) = {z ∈ H{x·e} : ‖z − x‖ ≤ R};

Ct = ∪
s∈[h−,t]

Hs ∩ C ;

lt(x) = R(x) ∩ Ct, ∀x ∈ Ct;

∀x ∈ Rn, x̃ := (x, f(x)) ∈ Rn+1 and ∀A ⊂ Rn, Ã := graph f|A ;

vtj = vte,−,j.

Moreover, we recall the following definitions:
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Definition 2.6. The convex envelope of a set of points X ⊂ Rn is the smaller convex
set conv(X) that contains X. The following characterization holds:

conv(X) =

® J∑
j=1

λj xj : xj ∈ X, 0 ≤ λj ≤ 1,
J∑
j=1

λj = 1, J ∈ N
´
. (2.12)

Definition 2.7. The graph of a compact convex set C ⊂ Rn+1, that we denote by
graph(C), is the graph of the function g : πRn(C)→ R which is defined by

g(x) = min{t ∈ R : (x, t) ∈ C}.

Definition 2.8. A supporting hyperplane to the graph of a convex function f : Rn → R
is an affine hyperplane in Rn+1 of the form

H = {w ∈ Rn+1 : w · b = β},
where b 6= 0, w · b ≤ β for all w ∈ epi f = {(x, t) ∈ Rn×R : t ≥ f(x)} and w · b = β for at
least one w ∈ epi f . As f is defined and real-valued on all Rn, every supporting hyperplane
is of the form

Hy = {(z, hy(z)) : z ∈ Rn, hy(z) = f(x) + y · (z − x)},
for some y ∈ ∂−f(x). Whenever y ∈ Im∇f , Hy is a tangent hyperplane to the graph of f
according to Definition 2.1.

Definition 2.9. A supporting k-plane to the graph of a convex function f : Rn →
R is an affine k-dimensional subspace of a supporting hyperplane to the graph of f (see
Definition 2.8) whose intersection with graph f is nonempty.

Definition 2.10. An R-face of a convex set C ⊂ Rd is a convex subset C ′ of C such
that every closed segment in C with a relative interior point in C ′ has both endpoints in
C ′. The zero-dimensional R-faces of a convex set are also called extreme points and the
set of all extreme points in a convex set C will be denoted by ext(C).

The definition of R-face corresponds to the definition of extremal face of a convex set
in [51].
We also recall the following propositions, for which we refer to Section 18 of [51].

Proposition 2.11. Let C = conv(D), where D is a set of points in Rd, and let C ′ be
a nonempty R-face of C. Then C ′ = conv(D′), where D′ consists of the points in D which
belong to C ′.

Proposition 2.12. Let C be a bounded closed convex set. Then C = conv(ext(C)).

In our construction we first approximate the 1-dimensional faces that lie on the graph of
f restricted to the given D-cylinder and then we get the approximating vector fields {vtj}j∈N
simply projecting the directions of those approximations on the first n coordinates.

Proof of Lemma 2.3: Step 1 Preliminary considerations
Eventually partitioning C into a countable collection of sets, we can assume that σt(Z) and
σh
−

(Z) are bounded, with σt(Z) ⊂ Bn−1
R1

(x1) ⊂ Ht and σh
−

(Z) ⊂ Bn−1
R2

(x2) ⊂ Hh− . Then,
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if we call Kt the convex envelope of Bn−1
R1

(x1) ∪ Bn−1
R2

(x2), the function f|Kt is uniformly
Lipschitz with a certain Lipschitz constant Lf .

Step 2 Construction of approximating functions (see Figure 1)
Now we define a sequence of functions {fj}j∈N whose 1-dimensional faces approximate,

f|Ht

Hh− Ht

y4

f|H
h−

ỹ3

ỹ2

ỹ4

ỹ1
Rn+1

Rn

y1

y3

y2

Figure 1. Illustration of a vector field approximating the one dimensional
faces of f (Lemma 2.3). One can see in the picture the graph of f4, which is
the convex envelope of {ỹi}i=1,...,4 and f |Ht . The faces of fj connect H n−1-
a.e. point of Ht to a single point among the {ỹi}i, while the remaining points
of Ht correspond to some convex envelope conv({ỹi`}`) — here represented
by the segments [ỹi, ỹi+1]. The region where the vector field vt4, giving the
directions of the faces of fj, is multivalued corresponds to the ‘planar’ faces
of f4. The affine span of these planar faces, restricted to suitable planes
contained in Ht, provides a supporting hyperplane for the restriction of f
to these latter planes — in the picture they are depicted as tangent lines.
The intersection of σt(Z) ⊂ Ht with any supporting plane to the graph of
f |Ht must contain just one point, otherwise D would be multivalued at some

point of σt(Z).

in a certain sense, the pieces of the 1-dimensional faces of f which are contained in Ct.
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The directions of a properly chosen subcollection of the 1-dimensional faces of fj will give,
when projected on the first n coordinates, the approximate vector field vtj.

First of all, take a sequence {ỹi}i∈N ⊂ σ̃h
−

(Z) such that the collection of segments

{l̃t(yi)}i∈N is dense in ∪
y∈σh− (Z)

l̃t(y).

For all j ∈ N, let Cj be the convex envelope of the set

{ỹi}ji=1 ∪ graph f|
Bn−1
R1

(x1)

and call fj : πRn(Cj)→ R the function whose graph is the graph of the convex set Cj.

We note that πRn(Cj) ∩ Hh− = conv({yi}ji=1) and graph fj |
conv({yi}

j
i=1

)

=

graph(conv({ỹi}ji=1)).
We claim that the graph of fj is made of segments that connect the points of

graph(conv
Ä
{ỹi}ji=1

ä
) to the graph of f|

Bn−1
R1

(x1)
(indeed, by convexity and by the fact that

ỹi = (yi, f(yi)), fj = f on Bn−1
R1

(x1)).
In order to prove this, we first observe that, by definition, all segments of this kind are
contained in the set Cj. On the other hand, by (2.12), all the points in Cj are of the form

w =
J∑
i=1

λiwi,

where
J∑
i=1
λi = 1, 0 ≤ λi ≤ 1 and wi ∈ {ỹi}ji=1 ∪ graph f|Bn−1

R1
(x1)

. In particular, we can write

w = αz+(1−α)r, where 0 ≤ α ≤ 1, z ∈ conv
Ä
{ỹi}ji=1

ä
and r ∈ epi f|Bn−1

R1
(x1)
. (2.13)

Moreover, if we take two points z′ ∈ graph(conv({ỹi}ji=1)), r′ ∈ graph f|Bn−1
R1

(x1)
such that

πRn(z′) = πRn(z) and πRn(r′) = πRn(r), we have that the point

w′ = αz′ + (1− α)r′

belongs to Cj, lies on a segment which connects graph(conv
Ä
{ỹi}ji=1

ä
) to graph f|Bn−1

R1
(x1)

and its (n+ 1) coordinate is less than the (n+ 1) coordinate of w.

The graph of fj contains also all the pieces of 1-dimensional faces {l̃t(yi)}ji=1, since by
construction it contains their endpoints and it lies over the graph of f|πRn (Cj)

.

Step 3 Construction of approximating vector fields (see Figure 1)
Among all the segments in the graph of fj that connect the points of

graph(conv
Ä
{ỹi}ji=1

ä
) to the graph of f|Bn−1

R1
(x1)

, we select those of the form [x̃, ỹk], where

x ∈ σt(Z), yk ∈ {yi}ji=1, and we show that for H n−1-a.e. x ∈ σt(Z) there exists only one
segment within this class which passes through x̃. The approximating vector field will be
given by the projection on the first n coordinates of the directions of these segments.
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First of all, we claim that for all x ∈ Bn−1
R1

(x1) the graph of fj contains at least a
segment of the form [x̃, ỹi] for some i ∈ {1, . . . , j}.
Indeed, we show that if x̃ is the endpoint of a segment of the form [x̃, (y, fj(y))] where

y ∈ conv
Ä
{yi}ji=1

ä
but (y, fj(y)) /∈ ext

Ä
conv

Ä
{yi}ji=1

ää
, then there are at least two segments

of the form [x̃, ỹk] with ỹk ∈ ext(conv({ỹi}ji=1)) ⊂ {ỹi}ji=1 (here we assume that j ≥ 2).
In order to prove this, take a point (z, fj(z)) in the open segment (x̃, (y, fj(y))) and a
supporting hyperplane H(z) to the graph of fj that contains that point. By definition,
H(z) contains the whole segment [x̃, (y, fj(y))] and the set H(z)∩

Ä
Hh−×R

ä
is a supporting

hyperplane to the set graph(conv({ỹi}ji=1)) that contains the point (y, fj(y)).

Now, take the smallest R-face C of conv
Ä
{ỹi}ji=1

ä
) which is contained in

graph(conv
Ä
{ỹi}ji=1

ä
)) and contains the point (y, fj(y)), that is given by the intersection

of all R-faces which contain (y, fj(y)).

By Propositions 2.11 and 2.12, C = conv
î
ext
Ä
conv

Ä
{ỹi}ji=1

ää
∩ C

ó
and as (y, fj(y)) /∈

ext
Ä
conv

Ä
{ỹi}ji=1

ää
, dim(C) ≥ 1 and the set ext

Ä
conv

Ä
{ỹi}ji=1

ää
∩ C contains at least two

points ỹk, ỹl.
In particular, since both C and x̃ belong to H(z) ∩ graph(fj), by definition of supporting
hyperplane we have that the graph of fj contains the segments [x̃, ỹk], [x̃, ỹl] and our claim
is proved.

Now, for each j ∈ N, we define the (possibly multivalued) map Dtj : Bn−1
R1

(x1)→ Rn as
follows:

Dtj : x 7→
®
yi − x
|yi − x|

: [x̃, ỹi] ⊂ graph(fj)

´
and we prove that the set

Bj := σt(Z) ∩ {x ∈ Bn−1
R1

(x1) : Dtj(x) is multivalued } (2.14)

is H n−1−negligible, ∀ j ∈ N.
Thus, if we neglect the set B = ∪

j∈N
Bj, we can define our approximating vector field as

vtj(x) = {Dtj(x)}, ∀x ∈ σt(Z)\B, ∀ j ∈ N. (2.15)

In order to show that H n−1(Bj) = 0 we first prove that, for H n−1-a.e. x ∈ Bn−1
R1

(x1),
whenever Dtj(x) contains the directions of two segments, fj must be linear on their convex
envelope.
Indeed, suppose that the graph of fj contains two segments [x̃, ỹik ], where ik ∈ {1, . . . , j}
and k = 1, 2, and consider two points (zk, fj(zk)) ⊂ [x̃, ỹik ] such that

z1 = x+ se + a1v1, s ∈ [h− − t, 0), v1 ∈ H0;

z2 = x+ se + a2v2, s ∈ [h− − t, 0), v2 ∈ H0.

As fj is linear on [x, yik ], we have that

fj(zk) = fj(x) + rk · (se + akvk), (2.16)

where rk ∈ ∂−fj(x), k = 1, 2.
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Moreover, since

πH0(∂−fj(x)) = ∂−f|Bn−1
R1

(x1)
(x)

and the set where ∂−f|Bn−1
R1

(x1)
is multivalued is H n−2-rectifiable (see for e.g. [58, 1]), we

have that, for H n−1-a.e. x ∈ Bn−1
R1

(x1)

r · v = ∇(f|Bn−1
R1

(x1)
)(x) · v, ∀ r ∈ ∂−fj(x), ∀ v ∈ H0.

Then, if we put w = ∇(f|Bn−1
R1

(x1)
)(x), (2.16) becomes

fj(zk) = fj(x) + rk · se + w · akvk. (2.17)

If z̄ = (1− λ)z1 + λz2, we have that

fj(z̄) ≤ (1− λ)fj(z1) + λfj(z2)

(2.17)
= fj(x) + s((1− λ)r1 + λr2) · e + w · ((1− λ)a1v1 + λa2v2). (2.18)

As ((1− λ)r1 + λr2) ∈ ∂−fj(x), we also obtain that

fj(z̄) ≥ fj(x) + s((1− λ)r1 + λr2) · e
+ ((1− λ)r1 + λr2) · ((1− λ)a1v1 + λa2v2) =

= fj(x) + s((1− λ)r1 + λr2) · e + w · ((1− λ)a1v1 + λa2v2) =

(2.17)
= (1− λ)fj(z1) + λfj(z2).

Thus, we have that fj((1− λ)z1 + λz2) = (1− λ)fj(z1) + λfj(z2) and our claim is proved.
In particular, there exists a supporting hyperplane to the graph of fj which contains the

affine hull of the convex envelope of {[x̃, ỹik ]}k=1,2 and then this affine hull must intersect
Ht × R into a supporting line to the graph of f|Bn−1

R1
(x1)

which is parallel to the segment

[ỹi1 , ỹi2 ].
Thus, if all the supporting lines to the graph of f|Bn−1

R1
(x1)

which are parallel to a segment

[ỹk, ỹm] (with k,m ∈ {1, . . . , j}, k 6= m) are parametrized as

lk,m + w,

where lk,m is the linear subspace of Rn+1 which is parallel to [ỹk, ỹm] and w ∈ Wk,m ⊂ Ht×R
is perpendicular to lk,m, we have that

Bj = σt(Z) ∩
ñ

∪
k,m∈{1,...,j}

k<m

∪
w∈Wk,m

πRn(lk,m + w)

ô
.

By this characterization of the set Bj and by Fubini theorem on Ht w.r.t. the partition
given by the lines which are parallel to πRn(lk,m) for every k and m, in order to show that
H n−1(Bj) = 0 it is sufficient to prove that, ∀w ∈ Wk,m,

H n−1(σt(Z) ∩ πRn(lk,m + w)) = 0. (2.19)
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Finally, (2.19) follows from the fact that a supporting line to the graph of f|Bn−1
R1

(x1)

cannot contain two distinct points of σ̃t(Z), because otherwise they would be contained in
a higher dimensional face of the grapf of f contraddicting the definition of σ̃t(Z).

Then, the vector field defined in (2.15) is defined H n−1-a.e..

Step 4 Convergence of the approximating vector fields
Here we prove the convergence property of the vector field defined in (2.15) as stated

in Lemma 1.10.
This result is obtained as a consequence of the uniform convergence of the approximating
functions fj to the function f̂ which is the graph of the set

Ĉ = conv
Ä
{l̃t(yi)}i∈N

ä
.

First of all we observe that, since Cj ↗ Ĉ,

dom fj = πRn(Cj)↗ dom f̂ = πRn(Ĉ) and fj(x)↘ f̂(x) ∀x ∈ ri(πRn(Ĉ)),

where fj(x) is defined ∀ j ≥ j0 such that x ∈ πRn(Cj0).

In order to prove that fj(x) ↘ f̂(x) uniformly, we show that the functions fj are
uniformly Lipschitz on their domain, with uniformly bounded Lipschitz constants.
We recall that the graph of fj is made of segments that connect the points of graph f|Bn−1

R1
(x1)

to the points of graph(conv
Ä
{ỹi}ji=1

ä
).

In order to find and upper bound for the incremental ratios between points z, w ∈
dom fj, we distinguish two cases.

Case 1: [z, w] ⊂ [x, yk], where x ∈ Bn−1
R1

(x1), yk ∈ {yi}ji=1 and [x̃, ỹk] ⊂ graph(fj).
In this case we have that

|fj(z)− fj(w)|
|z − w|

=
|fj(x)− fj(yk)|
|x− yk|

=
|f(x)− f(yk)|
|x− yk|

≤ Lf ,

where Lf is the Lipschitz constant of f on Kt.
Case 2: Otherwise we observe that, since fj is convex,

|fj(z)− fj(w)| ≤ sup
r∈∂−fj(z)∪∂−fj(w)

|r · (z − w)|. (2.20)

Let then r ∈ ∂−fj(z) ∪ ∂−fj(w) be a maximizer of the r.h.s. of (2.20) and let us
suppose, without loss of generality, that r ∈ ∂−fj(z). If x ∈ Bn−1

R1
(x1) is such that

(z, fj(z)) ⊂ [(y, fj(y)), x̃] ⊂ graph(fj) for some y ∈ conv({yi}ji=1), we have the follow-
ing unique decomposition

w − z = βj(z, w)

Ç
x− z
|x− z|

å
+ γj(z, w)q,

where q ∈ Sn−1 ∩H0 and βj(z, w), γj(z, w) ∈ R.
Then,

r · (w − z) = βj(z, w)

Ç
r · x− z
|x− z|

å
+ γj(z, w)(r · q). (2.21)
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The first scalar product in (2.21) can be estimated as in Case 1.
As for the second term, we note that the supporting hyperplane to the graph of fj

given by the graph of the affine function h(p) = fj(z) + r · (p − z) contains the segment
[(z, fj(z)), x̃] and its intersection with the hyperplane Ht × R is given by a supporting
hyperplane to the graph of f|Bn−1

R1
(x1)

which contains the point x̃.

Moreover, as q ∈ H0, we have that

r · q = πH0(r) · q,

and we know that πH0(r) ∈ ∂−f|
Bn−1
R1

(x1)
(x).

By definition of subdifferential, for all s ∈ ∂−f|Bn−1
R1

(x1)
(x) and for all λ > 0 such that

x+ λq, x− λq ∈ Bn−1
R1

(x1),

f(x)− f(x− λq)
λ

≤ s · q ≤ f(x+ λq)− f(x)

λ
(2.22)

and so the term |r · q| is bounded from above by the Lipschitz constant of f .
As the scalar products βj(z, w), γj(z, w) are uniforlmly bounded w.r.t. j on dom fj ⊂
dom f̂ , we conclude that the functions {fj}j∈N are uniformly Lipschitz on the sets
{dom fj}j∈N and their Lipschitz constants are uniformly bounded by some positive constant

L̂.
If we call f̂j a Lipschitz extension of fj to the set dom f̂ which has the same Lipschitz
constant (Mac Shane lemma), by Ascoli-Arzelá theorem we have that

f̂j → f̂ uniformly on dom f̂ .

Now we prove that, for H n−1-a.e. x ∈ σt(Z)\B, vtj(x)→ ve(x).

Given a point x ∈ σt(Z)\B, we call ỹj(x), where j ∈ N, the unique point ỹk ∈ {ỹi}ji=1 such
that

vtj(x) =
yk − x
|yk − x|

.

By compactness of graph(conv({ỹi}i∈N)) , there is a subsequence {jn}n∈N ⊂ N such that

ỹjn(x) → ŷ ∈ graph f,

hence

vtjn(x)→ v̂ =
ŷ − x
|ŷ − x|

.

As the functions fj converge to f̂ uniformly, the point ŷ and the whole segment [x̃, ŷ]

belong to the graph of f̂ .
So, there are two segments l̃t(x) and [x̃, ŷ] which belong to the graph of f̂ and pass through
the point x̃.
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Since f̂|Bn−1
R1

(x1)
= f|Bn−1

R1
(x1)

, we can apply the same reasoning we made in order to prove

that the set (2.14) was H n−1-negligible to conclude that the set

σt(Z)∩
®
x ∈ Bn−1

R1
(x1) : ∃ more than two segments in the graph of f̂

that connect x̃ to a point of graph(conv({ỹi}i∈N))

´
has zero H n−1-measure.

Then, [x̃, ŷ] = l̃t(x) and v̂ = −vte(x) for H n−1-a.e. x ∈ σt(Z), so that the lemma is
proved.

σt(Z)
σh+

(Z)y1

Z

{x · e = h−} {x · e = h+}{x · e = t}{x · e = 0}

Rn

Figure 2. The vector field ve is approximated by directions of approximat-
ing cones, in the picture one can see the first one. At the same time, Z is
approximated by the push forward of σt(Z) with the approximating vector
field: compare the blue area with the red one.

�

For the proof of Lemma 2.4 in the next section, we will use the following remark, which
extends the cone approximation property also to the 1-dimensional model sets containing
relative boundary points of the faces.

Remark 2.13. In Lemma 2.4 we proved the cone approximation property for 1-
dimensional D-cylinders, i.e. 1-dimensional model sets given by the intersection of
∪

y∈∇f(F̃k)
ri(F k

y ) with some (n − k + 1)-dimensional affine plane, for some F̃ k ⊆ F k and

k ∈ {1, . . . , n − 1}. Now we observe that, since the sets F k
y are convex, then also every

point x ∈ ∪
y∈∇f(F̃k)

rb(F k
y ) belongs to a 1-dimensional model set obtained intersecting ∪

y∈F̃k
F k
y

with some (n − k + 1)-dimensional affine plane. In fact, for all x ∈ rb(F k
y ) there exists

some e(x) ∈ Sn−1 and either some t+ > 0 such that (x, x+ t+e(x)] ⊆ ri(F k
y ) or some t− < 0
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such that [x+ t−e(x), x) ⊆ ri(F k
y ). Repeating exactly the same reasoning made in the proof

of Lemma 2.4, one can prove that for the points in ∪
y

rb(Fy) the cone approximation prop-

erty of Lemma 1.10 holds in the direction ±e of the corresponding 1-dimensional model set
pointing towards the relative interior of the faces. Hence, for such points, one of the two
absolute continuity estimates for the endpoints of the segments of a 1-dimensional set as
in (1.23) holds.

2.4. Negligibility of relative boundary points

In this section we prove Lemma 2.4.
We observe that the union of the borders of the n-dimensional faces has zero Lebesgue

measure by convexity and by the fact that the n-dimensional faces of f are at most count-
able.

For faces of dimension k, with 1 < k < n, the proof is by contradiction: one considers
a Lebesgue point of suitable subsets of ∪y rb(F k

y ) and applies one of the two fundamental
estimates of (1.23) (see Remark 2.13) in order to show that the complementary is too big.

Equation (2.5) was first proved using a different technique in [40] –where it was shown
that the union of the relative boundaries of the R-faces (see Definition 2.10) of an n-
dimensional convex body C which have dimension at least 1 has zero H n−1-measure.

Proof of Lemma 2.4: Consider any n-dimensional face F n
y . Being convex, it has

nonempty interior. As a consequence, since two different faces cannot intersect, there are
at most countably many n-dimensional faces

¶
F n
yi

©
i∈N; moreover, by convexity, each F n

yi

has an L n-negligible boundary. Thus

L n

Ç⋃
i

rb
Ä
F n
yi

äå
= 0.

Since N ⊂
n⋃
k=1

F k∪Σ1(f), where Σ1(f) is the L n-negligible set of non-differentiability

points of f , the thesis is reduced to showing that, for 1 ≤ k < n,

L n
Å
F k \ Ek

ã
= 0, (2.23)

with Ek = ∪
y

ri(F k
y ).

Given a k dimensional subspace V ∈ G (k, n), a unit direction e ∈ Sn−1 ∩ V , and
p ∈ N0 = N ∪ {0}, define the set Ap,e,V of those x ∈ N ∩ F k

∇f(x) which satisfy the two
relations

inf
d∈D(x)

‖πV (d)‖ ≥ 1/
√

2 (2.24)

πV
Ä
F k
∇f(x)

ä
⊃ conv

Å¶
πV (x)

©
∪ πV (x) + 2−p+1e + 2−p

Ä
Sn−1 ∩ V

äã
. (2.25)

Choosing (p, e, V ) in a sequence {(pi, ei, Vi)}i∈N which is dense in N0×
Ä
Sn−1∩V

ä
×G (k, n),

the family
¶
Api,ei,Vi

©
i∈N provides a countable covering of F k\Ek with measurable sets. The
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measurability of each Ap,e,V can be deduced as follows. The set defined by (2.24) is exactly

D−1 ◦ π−1
V

Ç
V \ ri

Ç
1√
2
Bn
åå

.

Moreover, (2.25) is equivalent to

πV
Ä
P(x)− x

ä
⊃ conv(2−p+1e + 2−p

Ä
Sn−1 ∩ V

ä
).

Since P and D are measurable (Lemma 2.5), then the measurability of Ap,e,V follows.
In particular, if by absurd (2.23) does not hold, then there exists a subset Ap,e,V of

F k\Ek with positive Lebesgue measure. Up to rescaling, one can assume w.l.o.g. that
p = 0, V = 〈e1, . . . , ek〉, where {e1, . . . , en} is an orthonormal basis of Rn, and e = e1.
Moreover, we will denote Ap,e,V simply with A.

Before reaching the contradiction L n(A) = 0, we need the following remarks.
First of all we notice that, thanks to Remark 2.13, for 0 ≤ h ≤ 3 and t ∈ πV (A), one can
prove the fundamental estimate

H n−kÄσt+he
Ä
S
ää
≥
Ç

3− h
3

ån−k
H n−kÄSä ∀S ⊂ A ∩ π−1

V (t) (2.26)

exactly as in Lemma 1.10, with the approximating vector field given in Step 3, Page 41.
Indeed, the (n− k+ 1)-plane π−1

V (Re) cuts the face of each z ∈ A∩π−1
V (t) into exactly one

line l; this line has projection on V containing at least [t, t + 3e].
Notice moreover that, by (2.25), each point x ∈ l, with πV (x) ∈ ri

Ä
[t, t + 3e]

ä
, is a point

in the relative interior of the face. In particular, it does not belong to A.
Let us now prove the claim, assuming by contradiction that L n(A) > 0 (see also

Figure 3). Fix any ε > 0 small enough. w.l.o.g. one can suppose the origin to be a
Lebesgue point of A. Therefore, for every 0 < r < r̄(ε) < 1, there exists T ⊂ ∏k

i=1[0, rei],
with H k(T ) > (1− ε)rk, such that

H n−kÄA ∩ π−1
V (t) ∩ [0, r]n

ä
≥ (1− ε)rn−k for all t ∈ T . (2.27)

Moreover, there is a set Q ⊂ [0, re], with H 1(Q) > (1− 2ε)r, such that

H k−1
Ä
T ∩ π−1

〈e〉(q)
ä
> (1− ε)rk−1 for q ∈ Q. (2.28)

Consider two points q, s := q + 2εre ∈ Q, and take t ∈ T ∩ π−1
〈e〉(q). By the fundamental

estimate (2.26), one has

H n−kÄσt+2εre
Ä
St,r

ää
≥ (1− ε)n−kH n−kÄSt,r

ä
where St,r := A ∩ π−1

V (t) ∩ [0, r]n.

Furthermore, condition (2.23) implies that ‖x + 2εre − σt+2εre(x)‖≤ 2εr for each x ∈
A ∩ π−1

V (t). Moving points within π−1
V (t) ∩ [0, r]n by means of the map σt+2εre , they can

therefore reach only the square π−1
V (s) ∩ [−2εr, (1 + 2ε)r]n. Notice that for ε small, since

our proof is needed for n ≥ 3 and k ≥ 1,

H n−k([−2εr, (1+2ε)r]n\[0, r]n) = (1+4ε)n−krn−k−rn−k ≤ 4(n−k)εrn−k+o(ε) < n2nεrn−k.
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V

A

〈e2, . . . , ek〉

T

〈ek+1, . . . , en〉

〈e1〉

Rn

s = q + 2εr

t̄

q
π−1
〈e1〉(q)

π−1
V (s)

Figure 3. Illustration of the construction in the proof of Lemma 2.4. A
is the set of points on the border of k-faces of f , projected on Rn, having
directions close to V = 〈e1, dots, ek〉 and such that, for each point x ∈ A,
πV (F k

∇f(x)) contains a fixed half k-cone centered at x with direction e1. T is

a subset of the square
∏k
i=1[0, rei] such that, for every t ∈ T , π−1

V (t) ∩ A is
‘big’. Finally, q, s = q+2εre1 are points on [0, re1] such that the intersection
of T with the affine hyperplanes π−1

〈e1〉(q), π−1
〈e1〉(s) is ‘big’. The absurd arises

from the following. Due to the fundamental estimate, translating by 2εre1

the points T ∩ π−1
〈e1〉(q), one finds points in the complementary of T . Since

T ∩ π−1
〈e1〉(q) was ‘big’, then T \ π−1

〈e1〉(s) should be big, contradicting the fact

that T ∩ π−1
〈e1〉(s) is ‘big’.

As a consequence, the portion which exceeds π−1
V (s) ∩ [0, r]n can be estimated as follows:

H n−kÄσt+2εre
Ä
St,r

ä
∩ [0, r]n

ä
≥ H n−kÄσt+2εre

Ä
St,r

ää
− n2nεrn−k.

As notice before, condition (2.25) implies that the points σt+2εre
Ä
St,r

ä
∩ [0, r]n belong to

the complementary of A. By the above inequalities we obtain then

H n−kÄAc ∩ π−1
V (t + 2εre) ∩ [0, r]n

ä
≥ H n−kÄσt+2εre

Ä
St,r

ä
∩ [0, r]n

ä
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≥ (1− ε)n−kH n−kÄSt,r

ä
− n2nεrn−k

(2.27)

≥ (1− ε)n−k+1rn−k − n2nεrn−k

≥ 1

2
rn−k.

The last estimate shows that, for each t ∈ T ∩ π−1
〈e〉 (q), the point s = t + 2εre does not

satisfy the inequality in (2.27): thus
Ä
T ∩ π−1

〈e〉 (q)
ä

+ 2εre lies in the complementary of T .
In particular

H k−1
Ä
T ∩ π−1

〈e〉 (s)
ä
< rk−1 −H k−1

Ä
T ∩ π−1

〈e〉 (q)
ä
.

However, by construction both t and s belong to Q. This yields the contradiction, by
definition of Q:

1

2
rk−1

(2.28)
< H k−1

Ä
T ∩ π−1

〈e〉 (s)
ä
< rk−1 −H k−1

Ä
T ∩ π−1

〈e〉 (t)
ä (2.28)
<

1

2
rk−1. �



CHAPTER 3

A divergence formula

The disintegration technique developed in Chapter 1 for locally affine partitions sat-
isfying the assumptions of Theorem 1.1 led to define of a function α, on any D-cylinder
C k = C k(Z k, Ck), as the Radon-Nikodym derivative in (1.25).
In the present section we find that on C k the function α satisfies the system of ODEs

∂t`α

Ç
t = π〈e1,...,ek〉(x), 0, x−

k∑
i=1

x·eivi(x)

å
= (div v`)a.c.(x)α

Ç
π〈e1,...,ek〉(x), 0, x−

k∑
i=1

x·eivi(x)

å
for ` = 1, . . . , k, where we assume w.l.o.g. that 0 ∈ Ck, 〈e1, . . . , ek〉 is an axis of C , vi(x)
is the vector field

x 7→ 1C k(x)(〈D(x)〉 ∩ π−1
〈e1,...,ek〉(ei))

and (div vi)a.c.(x) is the density of the absolutely continuous part of the divergence of
vi, that we prove to be a measure.
This is a consequence of the Disintegration Theorem 1.1 and of the regularity estimates
on α which will be proved in Proposition 3.1.
Notice that even the fact that the divergence of vi is a measure is not trivial, since the
vector field is not weakly differentiable.

Heuristically, the ODEs above can be formally derived as follows.
In Section 1.2.1 we saw that C k is the image of the product space Ck + Zk, where Zk =
C k ∩ π−1

〈e1,...,ek〉(0) is a section of C k, with the change of variable

Φ(t + z) = z +
k∑
i=1

tivi(z) = σt(z) for all t =
k∑
i=1

tiei ∈ Ck, z ∈ Zk. (3.1)

In Theorem 1.1 we found that the weak Jacobian of this change of variable is defined,
and given by

|J(t + z)| = α(t, 0, z).

From (3.1) one finds that, if vi was smooth instead of only Borel, this Jacobian would be

J(t + z) = det

Ñ[vj · ei]i=1,...,n
j=1,...,k

∣∣∣∣∣
ñ k∑
`=1

t`∂zj〈v`(z) · ei〉+ δi,j

ô
i=1,...,n

j=k+1,...,n

é;

51
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by direct computations with Cramer rule and the multilinearity of the determinant, more-
over, from the last two equations above one would prove the relation

∂t`J(t + z) = trace

Ç
Jv`(z) (JΦ(t + z))−1

å
J(t + z),

where Jg denotes the Jacobian matrix of a function g.
By the Lipschitz regularity of α w.r.t. the {ti}ki=1 variables given in Proposition 3.1, one
could then expect that

∂t`α(t, 0, z) =

Ç n∑
j=1

∂xj(vi(Φ
−1(x)) · ej)|x=Φ(t+z)

å
α(t, 0, z). (3.2)

Notice that
∑
j ∂xj(vi(Φ

−1(x)) · ej)|x=Φ(t+z) is the pointwise divergence of the vector field
vi(Φ

−1(x)) evaluated at x = Φ(t + z). In this article, we denote it with (div(vi ◦ Φ−1))a.c..
Finally, given a regular domain Ω ⊂ Rn, by the Green-Gauss-Stokes formula one should
have ∫

Ω
(div(vi ◦ Φ−1))a.c. dL

n(x) =
∫
∂Ω

vi(Φ
−1(x)) · n̂ dH n−1(x), (3.3)

where n̂ is the outer normal to the boundary of Ω.

The analogue of Formulas (3.2) and (3.3) is the additional regularity we prove in this
section, in a weak context, for direction vector fields parallel to the sets of the partition
and for the current of the k-dimensional sets. We give now the idea of the proof, in the
case of partitions into 1-dimensional sets.

Fix the attention on a 1-dimensional D-cylinder C with axis e and basis Z = C ∩π−1
〈e〉 (0).

Consider the distributional divergence of the vector field v giving pointwise on C the
direction of projected faces, normalized with v · e = 1, and vanishing elsewhere (i.e., the
direction vector field of the 1-dimensional slice of C in the direction e defined in Section
1.2.2). The Disintegration Theorem 1.1 (see the proof at page 26) decomposes integrals
on C to integrals first on the sets {R(z)}z∈Z , with the additional density factor α, then
on Z. By means of it, one then reduces the integral

∫
C ∇ϕ · v, defining the distributional

divergence, to the following integrals on the sets of the partition:

−
∫

[h−e,h+e]
∇ϕ(x)|x=z+t1v(z) · v(z)α(t, 0, z) dH 1(t) where z varies in Z.

Since α is Lipschitz in t and ∇ϕ|x=σw+t1e(z) · v = ∂t1(ϕ ◦ σw+t(z)), by integrating by parts
one arrives to∫

[h−e,h+e]
ϕ ◦ σw+t(z)∂t1α(t, 0, z) dH 1(t)− [ϕ ◦ σw+t(z)α(t, 0, z)]

∣∣∣∣t=h+e

t=h−e
.

Applying again the disintegration theorem in the other direction, by the invertibility of
α, one comes back to integrals on the D-cylinder, where in the first addend ϕ is now
integrated with the factor ∂t1α/α.
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An argument of this kind yields an explicit representation of the distributional diver-
gence of the truncation of a vector field v, parallel at each point x to the set R(x) through
x, to C k. This divergence is a Radon measure, the absolutely continuous part is basically
given by (3.2) and, as in (3.3), there is moreover a singular term representing the flux
through the border of C k transversal to D, already defined as

dC k = C k ∩ π−1
〈e1,...,ek〉(rb(Ck)), n̂|

dCk
outer unit normal to π−1

〈e1,...,ek〉(C
k). (3.4)

As C k are not regular sets, but just σ-compact, there is a loss of regularity for the
divergence of v in the whole Rn. In general, the distributional divergence will just be a
series of measures.

3.1. Regularity of the density function

In this section, we show that the quantitative estimates of Lemma 1.16 allow not only
to derive the absolute continuity of the push forward with σw+te and prove Theorem 1.1,
but also to find regularity estimates on the density function defined in 1.25. This regularity
properties will be used in the rest of this chapter.

Proposition 3.1. Let C k(Z k, Ck) be a k-dimensional D-cylinder parametrized as in
Section 1.3.2 and assume without loss of generality that w = π〈e1,...,ek〉(Z

k) = 0. Then,
the function α(t, 0, z) defined in (1.25) is locally Lipschitz in t ∈ ri(Ck) (and so jointly
measurable in (t, z)). Moreover, for H n−k-a.e. y ∈ σt(Z) the following estimates hold:

1. Derivative estimate

−
Ç

n− k
h+(t, e)− u

å
α(t + ue, t, y) ≤ d

du
α(t + ue, t, y) ≤

Ç
n− k

u− h−(t, e)

å
α(t + ue, t, y);

(3.5)

2. Integral estimateÇ |h+(t, e)− u|
|h+(t, e)|

ån−k
(−1)1{u<0} ≤ α(t + ue, t, y) (−1)1{u<0} ≤

Ç |h−(t, e)− u|
|h−(t, e)|

ån−k
(−1)1{u<0} ;

(3.6)

3. Total variation estimate∫ h+(t,e)

h−(t,e)

∣∣∣∣∣ dduα(t + ue, 0, z)

∣∣∣∣∣ du ≤ 2α(t, 0, z)

ñ |h+ − h−|n−k

|h+|n−k
+
|h+ − h−|n−k

|h−|n−k
− 1

ô
, (3.7)

where h+, h− stand for h+(t, e), h−(t, e).

Proof. Lipschitz regularity estimate First we prove the local Lipschitz regularity of
α(t, 0, z) w.r.t. t ∈ ri(Ck). We repeat the reasoning made in Remark 1.18.
Given s, t ∈ Ck, we set e = s−t

|s−t| .

As
σs−|s| s

|s| = σt−|t| t
|t| ◦ σs−|s−t|e,
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then

σ
s−|s| s

|s|
# (H n−k σs(Z)) = σ

t−|t| t
|t|

#

Ä
σ

s−|s−t|e
# H n−k σs(Z)

ä
= σ

t−|t| t
|t|

#

Ç
α(s, t, y) ·H n−k σt(Z)

å
= α(t, 0, z) · α(s, t, σt(z)) ·H n−k

|Z . (3.8)

By definition of α it follows that

α(s, 0, z)− α(t, 0, z) = α(t, 0, z)[α(s, t, σt(z))− 1]. (3.9)

Now we want to estimate the term [α(s, t, σt(z))−1] with the lenght |s−t| times a constant
which is locally bounded w.r.t. t. In order to do this, we proceed as in the Corollary 2.19
of [18] using the estimateÇ

h+(t, e)− u2

h+(t, e)− u1

ån−k
H n−k(σt+u1e(S)) ≤ H n−k(σt+u2e(S))

≤
Ç
u2 − h−(t, e)

u1 − h−(t, e)

ån−k
H n−k(σt+u1e(S)), (3.10)

which holds ∀ h−(t, e) < u1 ≤ u2 < h+(t, e) and ∀S ⊂ σt(Z).
Indeed, (3.10) can be rewritten in the following way:Ç

h+(t, e)− u2

h+(t, e)− u1

ån−k ∫
S
α(t + u1e, t, y) dH n−k(y) ≤

∫
S
α(t + u2e, t, y) dH n−k(y)

≤
Ç
u2 − h−(t, e)

u1 − h−(t, e)

ån−k ∫
S
α(t + u1e, t, y) dH n−k(y).

(3.11)

Therefore, there is a dense sequence {ui}i∈N in (h−(t, e), h+(t, e)) such that for H n−k-a.e.
y ∈ S and for all ui ≤ uj, i, j,∈ N the following inequalities holdñÇ

h+(t, e)− uj
h+(t, e)− ui

ån−k
− 1

ô
α(t + uie, t, y) ≤ α(t + uje, t, y)− α(t + uie, t, y)

≤
ñÇ
uj − h−(t, e)

ui − h−(t, e)

ån−k
− 1

ô
α(t + uie, t, y).

(3.12)

Thanks to the uniform bounds (1.29), for all y ∈ σt(Z) such that (3.12) holds, the function
α(t + ·e, t, y) is locally Lipschitz on {ui}i∈N and for every [a, b] ⊂ (h−(t, e), h+(t, e)) the
Lipschitz constants of α on {ui}i∈N ∩ [a, b] are uniformly bounded w.r.t. y.
Then, on every compact interval [a, b] ⊂ (h−(t, e), h+(t, e)) there exists a Lipschitz exten-
sion α̃(t + ·e, t, y) of α(t + ·e, t, y) which has the same Lipschitz constant.
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By the dominated convergence theorem, whenever {ujn}n∈N ⊂ {uj}j∈N converges to some
u ∈ [a, b] we have∫

S
α(t + ujne, t, y) dH n−k(y) −→

∫
S
α̃(t + ue, t, y) dH n−k(y), ∀S ⊂ σt(Z).

However, the integral estimate (3.11) implies that∫
S
α(t + ujne, t, y) dH n−k(y) −→

∫
S
α(t + ue, t, y) dH n−k(y),

so that the Lipschitz extension α̃ is an L1(H n−k) representative of the original density
α for all u ∈ [a, b]. Repeating the same reasoning for an increasing sequence of compact
intervals {[an, bn]}n∈N that converge to (h−(t, e), h+(t, e)), we can assume that the density
function α(t + ue, t, y) is locally Lipschitz in u with a Lipschitz constant that depends
continuously on t and on e.
Then, by (3.9), the local Lipschitz regularity in t of the function α(t, 0, z) is proved.

Derivative estimate If we derive w.r.t. u the pointwise estimate (3.12) (which holds for
all u ∈ (h−(t, e), h+(t, e)) by the first part of the proof) we obtain the derivative estimate
(3.5).

Integral estimate (3.5) implies the monotonicity of the following quantities:

d

du

Ç
α(t + ue, t, y)

(h+(t, e)− u)n−k

å
≥ 0,

d

du

Ç
α(t + ue, t, y)

(u− h−(t, e))n−k

å
≤ 0.

Integrating the above inequalities from u ∈ (h−(t, e), h+(t, e)) to 0 we obtain (3.6).

Total variation estimate In order to prove (3.7) we proceed as in Corollary 2.19 of [18].∫ 0

h−(t,e)

∣∣∣∣∣ dduα(t + ue, 0, z)

∣∣∣∣∣ du ≤
∫
{ d
du
α(t+ue,0,z)>0}∩{u∈(h−(t,e),0)}

d

du
α(t + ue, 0, z) du

+
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)

|h+(t, e)− u|
du

≤
∫ 0

h−(t,e)

d

du
α(t + ue, 0, z) du+

+ 2
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)

|h+(t, e)− u|
du

≤ α(t, 0, z) + 2
∫ 0

h−(t,e)

(n− k)α(t + ue, 0, z)

|h+(t, e)− u|
du. (3.13)

From (3.9) we know that α(t + ue, 0, z) = α(t, 0, z) α(t + ue, t, σt(z)).
Moreover, since u < 0

α(t + ue, t, σt(z)) ≤
(3.6)

Ç |h+(t, e)− u|
|h+(t, e)|

ån−k
.
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If we substitute this inequality in (3.13) we find that

(3.13) ≤ α(t, 0, z) + 2α(t, 0, z)
∫ 0

h−(t,e)

(n− k)|h+(t, e)− u|n−k−1

|h+(t, e)|n−k
du

= −α(t, 0, z) + 2α(t, 0, z)
|h+(t, e)− h−(t, e)|n−k

|h+(t, e)|n−k
. (3.14)

Adding the symmetric estimate on (0, h+(t, e)) we obtain (3.7). �

3.2. Divergence of direction vector fields

In the present subsection, we study the regularity of a vector field parallel, at each
point, to the corresponding k-dimensional set through that point.

3.2.1. Study on D-cylinders. As a preliminary step, fix the attention on the D-
cylinder

C k = C k(Z k, Ck).

One can assume w.l.o.g. that the axis of C k is identified by vectors {e1, . . . , ek} which are
the first k coordinate vectors of Rn and that Ck is the square

Ck =
k∏
i=1

[−ei, ei].

Denote with Zk the section Z k ∩ π−1
〈e1,...,ek〉(0).

Definition 3.2 (Coordinate vector fields). We define on Rn k-coordinate vector fields
for C k as follows:

vi(x) =

0 if x /∈ C k

v ∈ 〈D(x)〉 such that π〈e1,...,ek〉v = ei if x ∈ C k.

The k-coordinate vector fields are a basis for the module on the algebra of measurable
functions from Rn to R constituted by the vector fields with values in 〈D(x)〉 at each point
x ∈ C k, and vanishing elsewhere.

Consider the distributional divergence of vi, denoted by div vi. As a consequence of
the absolute continuity of the push forward with σ, and by the regularity of the density
α, one gains more regularity of the divergence.

Let us fix a notation. Given any vector field v : Rn → Rn whose distributional di-
vergence is a Radon measure, we will denote with (div v)a.c. the density of the absolutely
continuous part of the measure div v.
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Lemma 3.3. The distribution div vi is a Radon measure. Its absolutely continuous part
has density

(div vi)a.c.(x) =
∂tiα

Ä
t = π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x)
ä

α
Ä
π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x)
ä 1C k(x). (3.15)

Its singular part is H n−1
Ä
C k ∩ {x · ei = −1}

ä
−H n−1

Ä
C k ∩ {x · ei = 1}

ä
.

Proof. Consider any test function ϕ ∈ C∞c (Rn) and apply the Disintegration Theo-
rem 1.1, Page 26:

〈div vi, ϕ〉 := −
∫

C k
∇ϕ(x) · vi(x) dL n(x) = −

∫
Zk

∫
Ck
α(t, 0, z)∇ϕ(σt(z)) · vi(z) dH k(t) dH n−k(z),

where we used that vi is constant on the sets of the partition, i.e. vi(z) = vi(σ
t(z)). Being

σt(z) = z +
∑k
i=1 tivi(z), one has

∇xϕ(x = σt(z)) · vi(z) = ∇xϕ(x = σt(z)) · ∂ti(σt(z)) = ∂ti(ϕ(σt(z))).

The inner integral is thus∫
Ck
∇ϕ(σt(z)) · vi(z)α(t, 0, z) dH k(t) =

∫
Ck
∂ti(ϕ(σtz))α(t, 0, z) dH k(t).

Since Proposition 3.1 ensures that α is Lipschitz in t, for t ∈ Ck, one can integrate by
parts: ∫

Ck
∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) =−

∫
Ck
ϕ(σt(z))∂tiα(t, 0, z) dH k(t)

+
∫
Ck∩{ti=1}

ϕ(σt(z))α(t, 0, z) dH k−1(t)

−
∫
Ck∩{ti=−1}

ϕ(σt(z))α(t, 0, z) dH k−1(t).

Substitute in the first expression. Recall moreover the definition of α in (1.25), as a Radon-
Nikodym derivative of a push-forward measure, and its invertibility and Lipschitz estimates
(Remark 1.18, Proposition 3.1), among with in particular the L1 estimate on the function
∂tiα/α. Then, pushing the measure from t = 0 to a generic t, one comes back to the
integral on the D-cylinder

〈 div vi, ϕ〉 =
∫
Zk

∫
Ck
ϕ(σt(z))∂tiα(t, 0, z) dH k(t) dH n−k(z)

−
∫
Zk

∫
Ck∩{ti=1}

ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

+
∫
Zk

∫
Ck∩{ti=−1}

ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

=
∫

C k
ϕ(x)(div vi)a.c.(x) dL n(x)−

∫
C k∩{x·ei=1}

ϕ(x) dH n−1(x) +
∫

C k∩{x·ei=−1}
ϕ(x) dH n−1(x).

where (div vi)a.c. is the function
∂tiα

α
precisely written in the statement. Thus we have just

proved the thesis, consisting in the last formula. �
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Remark 3.4. Consider a function λ ∈ L1(C k; R) constant on each set of the partition,
meaning that λ(σt(z)) = λ(z) for t ∈ Ck and z ∈ Zk. One can regard this λ as a function
of ∇f(x). Then the same statement of Lemma 3.3 applies to the vector field λvi, but the
divergence is clearly div(λvi) = λ div vi. The proof is the same, observing that

〈div(λvi), ϕ〉 :=−
∫

C k
∇ϕ(x) · λ(x)vi(x) dL n(x)

(1.30)
= −

∫
Zk

∫
Ck
λ(z)∇ϕ(σt(z)) · vi(z)α(t, 0, z) dH k(t) dH n−k(z)

=−
∫
Zk

∫
Ck
λ(z)∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) dH n−k(z)

=
∫
Zk

∫
Ck
λ(z)ϕ(σt(z))∂tiα(t, 0, z) dH k(t) dH n−k(z) (3.16)

−
∫
Zk

∫
Ck∩{ti=1}

λ(z)ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

+
∫
Zk

∫
Ck∩{ti=−1}

λ(z)ϕ(σt(z))α(t, 0, z) dH k−1(t) dH n−k(z)

(1.30)
=

∫
C k
ϕ(x)λ(x)(div vi)a.c.(x) dL n(x)−

∫
C k∩{x·ei=1}

ϕ(x)λ(x) dH n−1(x)

+
∫

C k∩{x·ei=−1}
ϕ(x)λ(x) dH n−1(x).

Suitably adapting the integration by parts in the above equality (3.16) with∫
Ck
λ(σt(z))∂ti(ϕ(σt(z)))α(t, 0, z) dH k(t) =

−
∫
Ck
λ(σt(z))ϕ(σt(z))∂tiα(t, 0, z) dH k(t)−

∫
Ck
∂tiλ(σt(z))ϕ(σt(z))α(t, 0, z) dH k(t)

+
∫
Ck∩{ti=1}

λ(σt(z))ϕ(σt(z))α(t, 0, z) dH k−1(t)−
∫
Ck∩{ti=−1}

λ(σt(z))ϕ(σt(z))α(t, 0, z) dH k−1(t)

one finds moreover that for all λ ∈ L1(Rn; R) continuously differentiable along vi with
integrable directional derivative ∂viλ, the following relation holds:

div(λvi) = λ div vi + ∂viλ dL
n (3.17)

Notice that in (3.17) there is the addend λH n−1 (C k∩{x ·ei = 1}), which would make no
sense for a general λ ∈ L1(Rn; R). Now we prove that the restriction to C k ∩ {x · ei = 1}
of each representative of λ which is C1(R(z) ∩ C k), for H n−k-a.e. z ∈ Zk, identifies the
same function in L1(C k ∩ {x · ei = 1}).

Indeed, any two representatives λ̃, λ̂ of the L1-class of λ can differ only on a L n-negligible
set N . By the Disintegration Theorem 1.1, and using moreover Fubini theorem for reducing
the integral on Ck to integrals on lines parallel to ei, one has that the intersection of N with
each of the 1-dimensional slices whose projection on 〈e1, . . . , ek〉 is parallel to ei is almost
always negligible:

H 1
Ä
N ∩ {q + 〈vi(q)〉}

ä
= 0 for q ∈ C k ∩ {x · ei = 0} \M , with H n−1(M)=0.
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Being continuously differentiable along vi, one can redefine λ̃, λ̂ in such a way that N ∩
{q + 〈vi(q)〉} = ∅ for all q ∈ C k ∩ {x · ei = 0} \M . As a consequence N ∩ {x · ei = t} is a
subset of τ tei(M), where τ tei is the map moving along each set of the partition with tvi:

C k ∩ {x · ei = 0} 3 q 7→ τ tei(q) := q + tvi = σ(π〈e1,...,ek〉(q))+te1(q).

By the push forward formula (1.25), denoting wq := π〈e1,...,ek〉(q) and zq := π〈ek+1,...,en〉(q)

H n−1 (τ tei(S)) = α(wq,wq + tei, zq)τ
tei
] (H n−1(q) S)) for S ⊂ C k ∩ {x · e1 = 0}.

Therefore, as H n−1(M) = 0, one has that λ̃ and λ̂ identify the same integrable function
on each section of C k perpendicular to ei, showing that the measure λH n−1 ({x · ei = 1})
is well defined.

Actually, the same argument as above should be used in (3.16) in order to show that
λ(z) is integrable on Zk, so that one can separate the three integrals as we did. Indeed,
being constant on set of the partition by assumption, the restriction of λ to a section is
trivially well defined as associating to a point the value of λ corresponding to the set of
that point, but the integrability w.r.t. H n−1 on each section is a consequence of the push
forward estimate.

As a direct consequence of (3.17), by linearity, one gets a divergence formula for any
sufficiently regular vector field which, at each point of C k, is parallel to the corresponding
set of the partition.

Corollary 3.5. Consider any vector field v =
∑k
i=1 λivi with λi ∈ L1(C k; R) contin-

uously differentiable along vi, with directional derivative ∂viλi integrable on C k. Then the
divergence of v is a Radon measure and for every ϕ ∈ C1

c (Rn)

〈div v, ϕ〉 =
∫

C k
ϕ(x)(div v)a.c.(x) dL n(x)−

∫
dC k

ϕ(x) v(x) · n̂(x) dH n−1(x),

where dC k, the border of C k transversal to D, and n̂, the outer unit normal, are define in
Formula (3.4). Moreover, for x ∈ C k

(div v)a.c.(x) =
k∑
i=1

λi(x)
∂tiα(t = π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x))

α(π〈e1,...,ek〉(x), 0, x−∑k
i=1 x · eivi(x))

+
k∑
i=1

∂viλi(x).

(3.18)

Remark 3.6. The result is essentially based on the application of the integration by
parts formula when the integral on C k is reduced, by the Disintegration Theorem 1.1, to
integrals on Ck: this is why we assume the C1 regularity of the λi, w.r.t. the directions of
the k-dimensional set passing through each point of C k. Such regularity could be further
weakened, however we do not pursue this issue here. As a consequence, one can easily
extend the statement of the previous corollary to sets of the form C k

Ω = Xk ∩ π−1
〈e1,...,en〉(Ω),

for an open set Ω ⊂ 〈e1, . . . , ek〉 with piecewise Lipschitz boundary, defining dC k
Ω := Xk ∩

π−1
〈e1,...,en〉(rb(Ω)).
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3.2.2. Global Version. We study now the distributional divergence of an integrable
vector field v on T , as we did in Subsection 3.2.1 for such a vector field truncated on
D-cylinders.

Corollary 3.7. Consider a vector field v ∈ L1(T ; Rn) such that v(x) ∈ 〈D(x)〉 for
x ∈ Rn, where we define D(x) = 0 for x /∈ T . Suppose moreover that the restriction to
every set Xk

α, for α ∈ Ak, is continuously differentiable with integrable derivatives.
Then, for every ϕ ∈ C1

c (Rn) one can write

〈div v, ϕ〉 = lim
`→∞

∑̀
i=1

® ∫
Ci
ϕ(x)(div(1Civ))a.c.(x) dL n(x)−

∫
dCi
ϕ(x) v(x) · n̂i(x) dH n−1(x)

´
.

(3.19)

where {C`}`∈N is the countable partition of T in D-cylinders given in Lemma 1.22, while
(div(1Civ))a.c. is the one of Corollary 3.5 and dCi, n̂i are defined in Formula (3.4).

Remark 3.8. By construction of the partition, each of the second integrals in the r.h.s.
of (3.19) appears two times in the series, with opposite sign. Intuitively, the finite sum of
these border terms is the integral on a perimeter which tends to the singular set.

Remark 3.9. Suppose that div v is a Radon measure. Then Corollary 3.7 implies that

1C k(div v)a.c. ≡ (div(1C kv))a.c..

Proof of Corollary 3.7. The partition of T into such sets {C`}`∈N is given exactly
by Lemma 1.22. Therefore, by dominated convergence theorem one finds that

〈div v, ϕ〉 = −
∫
T

v(x) · ∇ϕ(x) dL n(x) = − lim
`→∞

∑̀
i=1

∫
Ci

v(x) · ∇ϕ(x) dL n(x).

The addends in the r.h.s. are, by definition, the distributional divergence of the vector
fields v1Ci applied to ϕ. In particular, by Corollary 3.5, they are equal to

−
∫

Ci
v(x)·∇ϕ(x) dL n(x) =

∫
Ci
ϕ(x)

Ä
div v

ä
a.c.

(x) dL n(x)+
∫

dC ki

ϕ(x) v(x)·n̂i(x) dH n−1(x),

proving the thesis. �

3.3. Divergence of the currents of k-dimensional sets

3.3.1. The currents of k-sets. In the present subsection, we change point of view.
Instead of looking at vector fields constrained to the sets of the partition, we regard the
k-dimensional sets as a k-dimensional current. We establish that this current is a locally
flat chain, providing a sequence of normal currents converging to it in the mass norm. The
border of these normal currents has the same representation one would have in a smooth
setting.

Before proving it, we devote Subsection 3.3.1.1 to recalls on this argument, in order to
fix the notations. They are taken mainly from Chapter 4 of [47] and Sections 1.5.1, 4.1
of [28].
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3.3.1.1. Recalls. Let {e1, . . . , en} be a basis of Rn. The wedge product between vec-
tors is multilinear and alternating, i.e.:Å n∑
i=1

λiei

ã
∧ u1 ∧ · · · ∧ um =

n∑
i=1

λi(ei ∧ u1 ∧ · · · ∧ um) m ∈ N, λ1, . . . , λn ∈ R

u0 ∧ · · · ∧ ui ∧ · · · ∧ um = (−1)iui ∧ u0 ∧ · · · ∧ ûi ∧ · · · ∧ um 0 < i ≤ m, u0, . . . , um ∈ Rn,

where the element under the hat is missing. The space of all linear combinations of¶
ei1...im := ei1 ∧ · · · ∧ eim : i1 < · · · < im in {1, . . . , n}

©
is the space of m-vectors, denoted by ΛmRn. The space Λ0R is just R. ΛmRn has the
inner product given by

ei1...im · ej1...jm =
m∏
k=1

δikjk where δij =

1 if i = j

0 otherwise
.

The induced norm is denoted by ‖·‖. An m-vector field is a map ξ : Rn → ΛmRn.
The dual Hilbert space to ΛmRn, denoted by ΛmRn, is the space of m-covectors.

The element dual to ei1...im is denoted by dei1...im . A differential m-form is a map
ω : Rn → ΛmRn.

We denote with
¨
·, ·
∂

the duality pairing betweenm-vectors andm-covectors. Moreover,
the same symbol denotes in this paper the bilinear pairing, which is a map ΛpRn×ΛqRn →
Λp−qRn for p > q and ΛpRn ×ΛqRn → Λq−pRn for q > p whose non-vanishing images on a
basis are

dei1...i` =
¨
dei1...i` ∧ dei`+1...i`+m , ei`+1...i`+m

∂
if p = `+m > m = q

ei`+1...i`+m =
¨
dei1...i` , ei1...i` ∧ ei`+1...i`+m

∂
if p = ` < `+m = q.

Consider any differential m-form

ω =
∑
i1...im

ωi1...im dei1...im

which is differentiable. The exterior derivative dω of ω is the differential (m+ 1)-form

dω =
∑
i1...im

n∑
j=1

∂ωi1...im
∂xj

dej ∧ dei1...im .

If ω ∈ Ci(Rn; ΛmRn), the i-th exterior derivative is denoted with diω.
Consider any m-vector field

ξ =
∑

ξi1...im ei1...im

which is differentiable. The pointwise divergence (div ξ)a.c. of ξ is the (m − 1)-vector
field

(div ξ)a.c. =
∑
i1...im

n∑
j=1

∂ξi1...im
∂xj

¨
dej, ei1...im

∂
.
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Consider the space Dm of C∞-differential m-form with compact support. The topology
is generated by the seminorms

νiK(φ) = sup
x∈K, 0≤j≤i

‖djφ(x)‖ with K compact subset of Rn, i ∈ N.

The dual space to Dm, endowed with the weak topology, is called the space of m-
dimensional currents and it is denoted by Dm. The support of a current T ∈ Dm

is the smallest close set K ⊂ Rn such that T (ω) = 0 whenever ω ∈ Dm vanishes out of K.
The mass of a current T ∈ Dm is defined as

M(T ) = sup

®
T (ω) : ω ∈ Dm, sup

x∈Rn
‖ω(x)‖ ≤ 1

´
.

The flat norm of a current T ∈ Dm is defined as

F(T ) = sup

®
T (ω) : ω ∈ Dm, sup

x∈Rn
‖ω(x)‖ ≤ 1, sup

x∈Rn
‖dω(x)‖ ≤ 1

´
.

An m-dimensional current T ∈ Dm is representable by integration, and we denote it
by T = µ∧ξ, if there exists a Radon measure µ over Rn and a µ-locally integrable m-vector
field ξ such that

T (ω) =
∫

Rn

¨
ω, ξ

∂
dµ ∀ω ∈ Dm.

If m ≥ 1, the boundary of an m-dimensional current T is defined as

∂T ∈ Dm−1,
Ä
∂T
ä
(ω) = T (dω) whenever ω ∈ Dm−1.

If either m = 0, or both T and ∂T are representable by integration, then we will call
T locally normal. If T is locally normal and compactly supported, then T is called
normal. The F-closure, in Dm, of the normal currents is the space of locally flat chains.
Its subspace of currents with finite mass is the M-closure, in Dm, of the normal currents.

To each L n-measurable m-vector field ξ such that ‖ξ‖ is locally integrable there corre-
sponds the current L n∧ ξ ∈ Dm(Rn). If ξ is of class C1, then this current is locally normal
and the divergence of ξ is related to the boundary of the corresponding current by

−∂
Ä
L n ∧ ξ

ä
= L n ∧ (div ξ)a.c.,

Moreover, if Ω is an open set with C1 boundary, n̂ is its outer unit normal and dn̂ the dual
of n̂, then

∂
Ä
L n ∧ (1Ωξ)

ä
= −(L n Ω) ∧ (div ξ)a.c. + (H n−1 ∂Ω) ∧

¨
dn̂, ξ

∂
. (3.20)

In the next subsection, we are going to find the analogue of the Green-Gauss For-
mula (3.20) for the k-dimensional current associated to k-faces, restricted to D-cylinders.
In order to do this, we will re-define the function (div ξ)a.c. for a less regular k-vector field
and this definition will be an extension of the above one.
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3.3.1.2. Divergence of the Current of k-dimensional sets on D-cylinders. As a prelim-
inary study, restrict again the attention to a D-cylinder as in Subsection 3.2.1, and keep
the notation we had there.

The k-dimensional sets, restricted to C k, define a k-vector field

ξ(x) = 1C kv1 ∧ · · · ∧ vk.

In general, this vector field does not enjoy much regularity. Nevertheless, as a consequence
of the study of Section 3.2, one can find a representation of ∂

Ä
L n ∧ ξ

ä
like the one in a

regular setting, (3.20). This involves the density α of the push-forward with σ which was
studied before, see (1.25).

Lemma 3.10. Consider a function λ such that it is continuously differentiable on each
set of the partition and assume C k bounded.
Then, the k-dimensional current

Ä
L n ∧ λξ

ä
is normal and the following formula holds

∂
Ä
L n ∧ λξ

ä
= −L n ∧ (div λξ)a.c. +

Ä
H n−1 dC k

ä
∧
¨
dn̂, λξ

∂
,

where dC k, n̂ are defined in (3.4), dn̂ is the differential 1-form at each point dual to the
vector field n̂, and (div λξ)a.c. is defined here as

(div λξ)a.c. :=
k∑
i=1

(−1)i+1(div λvi)a.c. v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

with the functions (div vi)a.c. of (3.15):

(div λvi)a.c.(x) =

Ç
λ(x)

∂tiα
Ä
t = π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x)
ä

α
Ä
π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x)
ä + ∂viλ(x)

å
1C k(x).

Proof. Actually, this is consequence of Corollary 3.5 in Subsection 3.2.1, reducing to
computations in coordinates. One has to verify the equality of the two currents on a basis.

For simplicity, consider first

ω = φ de2 ∧ · · · ∧ dek.

with φ ∈ C1(Rn). Then

dω = ∂x1φ de1 ∧ · · · ∧ dek +
n∑

i=k+1

∂xiφ dei ∧ · · · ∧ den,

〈dω, ξ〉 = ∇φ · v1

¨
ω, (div λξ)a.c.

∂
= (div λv1)a.c.φ

¨
ω,
¨
dn̂, ξ

∂∂
= φ n̂ · e1

and the thesis reduces exactly to Lemma 3.3, and Remark 3.4:

∂
Ä
L n ∧ λξ

ä
(ω) :=

∫
C k
〈dω, λξ〉 dL n 3.3

= −
∫

C k

¨
ω, (div λξ)a.c.

∂
dL n +

∫
dC k

¨
ω,
¨
dn̂, λξ

∂∂
dH n−1

=: −L n ∧ (div λξ)a.c. + (H n−1 dC k) ∧ (n̂ ∧ λξ).

The same lemma applies with (−1)i+1vi instead of v1 if

ω = φ de1 ∧ · · · ∧ d̂ei ∧ · · · ∧ dek,
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since the following formulas hold:

〈dω, ξ〉 = (−1)i+1∇φ·vi
¨
ω, (div λξ)a.c.

∂
= (−1)i+1(div λvi)a.c.φ

¨
ω,
¨
dn̂, ξ

∂∂
= (−1)i+1φ n̂·ei.

Let us show the equality more in general. By a direct computation, one can verify that

v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk =
k−1∑
h=0

∑
k<ih+1<...
···<ik−1≤n

∑
σ∈S(1...̂ı...k−1)
σ(1)<···<σ(h)

sgnσ v
ih+1

σ(h+1) . . . v
ik−1

σ(k−1) eσ(1)...σ(h)ih+1...ik−1
,

where vji is the j-th component of vi, S(1 . . . ı̂ . . . k) denotes the group of permutation of
the integers {1, . . . , ı̂, . . . , k}, with i is missing, and, if σ ∈ S(1 . . . ı̂ . . . k), sgnσ is 1 if the
permutation is even, −1 otherwise.
On the other hand, consider now a (k− 1) form ω = φ dei1...ih ∧ deih+1...ik−1

, where 1 ≤ i1 <
· · · < ih ≤ k, and k < ih+1 < · · · < ik−1 ≤ n. Then, again by direct computation,¨

dω, ξ
∂

=
∑

σ∈S(1...k)
σ(2)=i1,...,σ(h+1)=ih

(∇φ · vσ(1)) sgnσ v
ih+1

σ(h+2) . . . v
ik−1

σ(k) ,

¨
ω, (div λξ)a.c.

∂
= φ

k∑
i=1

(−1)i+1(div λvi)a.c.

∑
σ∈S(1...̂ı...k−1)

σ(1)=i1,...,σ(h)=ih

sgnσ v
ih+1

σ(h+1) . . . v
ik−1

σ(k−1)

=
∑

σ∈S(1...k)
σ(2)=i1,...,σ(h+1)=ih

(φ · (div λvσ(1))a.c.) sgnσ v
ih+1

σ(h+2) . . . v
ik−1

σ(k) ,

and finally ¨
ω,
¨
dn̂, ξ

∂∂
=

k∑
i=1

(−1)i+1(n̂ · ei)
¨
ω, v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

∂
=

∑
σ∈S(1...k)

σ(2)=i1,...,σ(h+1)=ih

(φ n̂ · vσ(1)) sgnσ v
ih+1

σ(h+2) . . . v
ik−1

σ(k)

Therefore the thesis reduces to Corollary 3.5, being each vij constant on each face. �

3.3.1.3. Divergence of the current of k-dimensional sets in the whole space. In the pre-
vious section, we considered a k-dimensional current

Ä
L n C k

ä
∧ ξ identified by the re-

striction to a D-cylinder C k of the k-dimensional sets of the partition, projected on Rn.
We established the formula analogous to (3.20) for the border of this current, which is
representable by integration w.r.t. the measures L n C k and H n−1 dC k. In particular,
when C k is bounded it is a normal current.
Moreover, we have related the density of the absolutely continuous part to the function α
by

(div ξ)a.c. =
k∑
i=1

(−1)i+1
∂tiα

Ä
t = π〈e1,...,ek〉(x), 0, x−∑k

i=1 x · eivi(x)
ä

α
Ä
π〈e1,...,ek〉(x), 0,

∑k
i=1 x− x · eivi(x)

ä 1C k(x) v1∧· · ·∧v̂i∧· · ·∧vk.
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We observe now that the partition of Rn into the sets {Xk}nk=1, and the remaining set

that we call now X̃0, define a (n + 1)-uple of currents. The elements of this (n + 1)-uple
are described by the following statement, which is basically Corollary 3.7 when rephrased
in this setting.

Corollary 3.11. Let {C k
` }`∈N be a countable partition of Xk in D-cylinders as in

Lemma 1.22 and, up to a refinement of the partition, assume moreover that the D-cylinders
are bounded.

Consider a k-vector field ξk ∈ L1(Rn; ΛkRn) corresponding, at each point x ∈ Xk, to
the k-plane 〈D(x)〉, and vanishing elsewhere. Assume moreover that it is continuously
differentiable if restricted to any set Xk

α, with locally integrable derivatives, meaning more
precisely that ξk ◦ σw`+t(z) belongs to L1

H n−k
(z)

(Zk
` ; C1

t (Ck; ΛkRn)) for each `.

Then, the k-dimensional current L n ∧ ξk is a locally flat chain, since it is the limit in
the flat norm of normal currents: indeed, for k > 0 one has

∂
Ä
L n ∧ ξk

ä
= F - lim

`

∑̀
i=1

¶
−L n ∧ (div(1C ki

ξk))a.c. +
Ä
H n−1 dC k

i

ä
∧
¨
dn̂i, ξk

∂©
, (3.21)

where (div 1C ki
ξk)a.c. is the one of Lemma 3.10, dC k

i , the border of C k
i transversal to D,

and n̂i, the outer unit normal, are defined in Formula (3.4), and dn̂i is the dual to n̂i.

Notice finally that the current L n∧ξk is itself locally normal if restricted to the interior
of Xk. However, in general Xk can have empty interior. If ∂

Ä
L n ∧ ξk

ä
is representable

by integration, then the density of its absolutely continuous part w.r.t. L n, at any point
x ∈ C k

` , is given by div(1C k
`
ξk)a.c.(x).

The following table collects some of the notations used in this part of the thesis.
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B (Rn) Borel sets in Rn

L n n-dimensional Lebesgue measure
H k k-dimensional Hausdorff outer measure
(X,Σ, µ) Σ = σ-algebra of subsets of X and

µ = measure on Σ, i.e. µ : Σ→ [0,+∞], µ(∅) = 0
and µ is countably additive on disjoint sets of Σ

L1
(loc)(µ) (locally) integrable functions (w.r.t. µ)

L∞(loc) (locally) essentially bounded functions
Ck(c) k-times continuously differentiable

functions (with compact support)
1A 1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise
µ A restriction of a measure µ to a set A
µ =

∫
µα dν disintegration of µ, see Definition 1.2

µ� ν µ(A) = 0 whenever ν(A) = 0
(absolute continuity of a measure µ w.r.t. ν)

equivalent µ is eqivalent to ν if µ� ν and ν � µ (1.4)
separated two sets A and B sets are separated

if each is disjoint from the other’s closure
perpendicular A set A is perpendicular to an affine plane

H of Rd if ∃w ∈ H s.t. πH(A) = w
v · w Euclidean scalar product in Rn

‖·‖ Euclidean norm in Rn

Sn−1,Bn {x ∈ Rn : ‖x‖ = 1}, {x ∈ Rn : ‖x‖ ≤ 1}
G (k, n) Grassmaniann of k-dimensional vector spaces in Rn

πL orthogonal projection from Rn to the affine plane L ⊆ Rn¨
·, ·
∂

pairing, see Subsection 3.3.1.1
〈v1, . . . , vk〉 linear span of vectors {v1, . . . , vk} in Rn

aff(A) affine hull of A, the smallest affine plane containing A
conv(A) convex envelope of A, the smallest convex set containing A
dim(A) linear dimension of aff(A)
ri(C) relative interior of C, the interior of C w.r.t. the topology of aff(C)
rb(C) relative boundary of C, the boundary of C w.r.t. the topology of aff(C)
R-face see Definition 2.10
extreme points zero-dimensional R-faces
ext(C) extreme points of a convex set C
dom g the domain of a function g
graph g {(x, g(x)) : x ∈ dom g} (graph)
epi g {(x, t) : x ∈ dom g, t ≥ g(x)} (epigraph)
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∇g gradient of g
∂−g subdifferential of g, see Page 35
g|a evaluation of g at the point a
g|ab the difference g(b)− g(a)
g|A the restriction of g to a subset A of dom g
f a fixed convex function Rn → R
dom∇f a fixed σ-compact set where f is differentiable, see Section 2.1
Im∇f {∇f(x) : x ∈ dom∇f}, see Section 1.3
face of f intersection of graph f|dom∇f with a tangent hyperplane
k-face of f k-dimensional face of f
Fy ∇f−1(y) = {x ∈ dom∇f : ∇f(x) = y}
F ky Fy when dim(Fy) = k, k = 0, . . . , n
F k the set ∪

y
F ky

P(x) see Formula (2.7)
R(x) see (1.34) and (2.8) for the faces of a convex function
T {x ∈ dom∇f ∩ π2(graphR) : R(x) 6= {x}}
D multivalued map of set directions, see Formula (1.35)

and (2.11) for the faces of a convex function
Zk section of a sheaf set, see Definition 1.19
Z k sheaf set, see Definition 1.19
[v,w] segment that connects v to w, i.e. {(1− λ)v + λw : λ ∈ [0, 1]}
Πk
i=1[vi,wi] k-dimensional rectangle in Rn with sides parallel to {[vi,wi]}ki=1,

equal to the convex envelope of {vi,wi}ki=1

C k(Z k, Ck) k-dimensional D-cylinder C k, see Definition 1.21
dC k, n̂|

dCk
border of C k transversal to D and outer unit normal, see Formula (3.4)

σw+te a map which parametrizes a D-cylinder C k(Z k, Ck), see Formula (1.20)
σte σte = σ0+te, where e ∈ Sn−1, t ∈ R
σt if we write t = te with e a unit direction, then σt = σ0+te

α(t, s, x) see Formula (1.25)
div v if v ∈ L1

loc(Rn; Rn), its divergence is
the distribution C1

c (Rn) 3 ϕ 7→ −
∫

v · ∇ϕ
(div v)a.c. see Notation 3.2.1, Formula (3.18)
vi see Definition 3.2
(div vi)a.c. see Formula (3.15)





Part II. Approximation of orientation-preserving
homeomorphisms
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CHAPTER 4

Smooth approximation of planar bi-Lipschitz
orientation-preserving homeomorphisms

4.1. Scheme of the proof

The aim of this section is to present a short scheme of the construction of a count-
ably piecewise affine approximation of u as in Theorem 0.2. Indeed, as mentioned in the
introduction, the smooth extension readily follows by the following recent result from [46].

Theorem 4.1. Let v : Ω −→ R2 be a (countably) piecewise affine homeomorphism,
bi-Lipschitz with constant L. Then there exist a smooth diffeomorphism v̂ : Ω −→ v(Ω)
such that v̂ ≡ v on ∂Ω, v̂ is bi-Lipschitz with constant at most 70L7/3, and

‖v̂ − v‖L∞(Ω) + ‖Dv̂ −Dv‖Lp(Ω) + ‖v̂−1 − v−1‖L∞(v(Ω)) + ‖Dv̂−1 −Dv−1‖Lp(v(Ω)) ≤ ε .

Approximation of u on Lebesgue squares. The first idea is to use the fact that,
in a sufficiently small neighborhood of each Lebesgue point z for the differential Du, the
map u is arbitrarily close, both in W 1,p and in L∞, to an affine L bi-Lipschitz map (given
by its linearization around the point z). The W 1,p estimate is simply a restatement of the
definition of Lebesgue point of Du, while the L∞ estimate is proven in Lemma 4.13. Indeed
we prove that, given a square D̃ ⊆ Ω (e.g. a neighborhood of z), the more Du is close in
Lp(D̃) to an L bi-Lipschitz matrix M (given e.g. by Du(z)), the more u is close in L∞(D̃)
to an L bi-Lipschitz affine map uM with DuM = M . Moreover, since u is bi-Lipschitz, we
have that also the inverse of u is close both in W 1,p(u(D̃)) and in L∞(u(D̃)) to the inverse
of uM .

The main implication of these estimates towards the construction of a piecewise affine
bi-Lipschitz map approximating u is the following. Let us take a square D̃ ⊆ Ω as above
and let us consider the piecewise affine function v which coincides with u on the vertices
of D̃ and is affine on each of the two triangles obtained dividing D̃ with a diagonal. If
‖Du−M‖Lp(D̃) is sufficiently small, then the L∞ estimate implies that u(∂D̃) is uniformly

relatively close to the parallelogram of side lengths at least side(D̃)/L given by uM(∂D̃).
Hence, since v = u on the vertices of the square and is affine on each side of ∂D̃, the
same uniform estimate holds also for v. In particular, the map v is orientation-preserving,
injective, and approximates u and its inverse as desired.

Finally, thanks to the fact that the Lebesgue points of Du have full measure in Ω,
we fix two orthonormal vectors e1, e2 ∈ R2 and, ∀ ε > 0, we find a set Ωε ⊂⊂ Ω with
L (Ω \ Ωε) ≤ ε which is made by a uniform “tiling” {Dα}α of squares with sides parallel
to e1, e2 with the following property. On each square Dα of the tiling, Du is sufficiently

71
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close to an L bi-Lipschitz matrix M (in particular, M will be equal to Du(z) for some
Lebesgue point z ∈ Dα). Then, putting together the previous remarks, one can show
that the piecewise affine function v obtained interpolating between the values of u on the
vertices of the squares is injective and satisfies (0.3) on Ωε. Moreover, v is L+ε bi-Lipschitz.
The squares of the tiling covering Ωε will be called Lebesgue squares, and the set Ωε right
polygon, due to its shape –see Figure 1.

Ω

Ωε

Figure 1. An open set Ω and a right polygon Ωε ⊂⊂ Ω

Thus, the first idea of the proof leads to define a piecewise affine approximation of u
on a set whose Lebesgue measure is as close as we want to L (Ω). In order to complete
the construction, we have to define v in the interior of the set Ω \ Ωε.

Countably piecewise affine bi-Lipschitz extension. The second idea of our proof
is to reduce to the following model case: Ω \ Ωε is a square of Lebesgue measure at most
ε and u|∂(Ω\Ωε)

is a piecewise affine function. In particular, by the previous construction,
v = u on ∂Ωε.

In this case, an approximating function v is provided by the planar bi-Lipschitz exten-
sion Theorem 0.4 proved in [24]. Indeed, it is sufficient to take ũ = v|∂Ωε

and v = ṽ. In
particular, as mentioned at the end of the Introduction, in [24] it is shown that one can
take the geometric constant C3 = C = 636000.

It is then easy to verify that, provided ε is chosen sufficiently small at the beginning,
such an extension of u|∂(Ω\Ωε)

together with the already defined piecewise affine interpola-
tion of u on the Lebesgue squares, satisfies the assumptions of Theorem 0.2. Indeed, by
definition, v is injective on the whole Ω. Moreover, we know by the previous construction
that it satisfies (0.3) on Ωε. On the other hand, on Ω \ Ωε, |Du| and |Dv| are bounded
by the two Lipschitz constants L and C3L

4 (together with their inverses) on a set of small
area and then the W 1,p estimates in (0.3) follow. Finally, since Ω \ Ωε and u(Ω \ Ωε) have
small Lebesgue measure, v and v−1 are also close to u and u−1 in L∞.

In order to reduce to this model case, we perform the following steps:
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Ω

Figure 2. The countable tiling of Ω \ Ωε (the shaded region is Ωε)

1. We cover Ω\Ωε with a countable (locally finite in Ω) “tiling” of small squares whose
sides are parallel to e1 and e2 (see Figure 2).

2. On the 1-dimensional grid Q given by the boundaries of the squares of the tiling
we define the piecewise affine approximation v in such a way that v(Q) ⊆ ∆ and v is 72L
bi-Lipschitz.

3. We “fill” the squares of the tiling extending v|Q by means of Theorem 0.4, thus
getting a globally C3(72L)4 bi-Lipschitz function on Ω \ Ωε.

The fact that the Lipschitz constant of v on Ωε depends only on the Lipschitz constant
of u will tell us that, as in the model case, the W 1,p and L∞ norms of u− v and u−1− v−1

can be made as small as we want –provided we choose ε sufficiently small at the beginning.
Thus we end the proof of Theorem 0.2.

Let us also give a very rough idea of how the proofs of Steps 1, 2 and 3 works. While
Step 1 is a simple geometric construction, Step 2 essentially consists in approximating u
on the grid Q with a piecewise affine function. This will be possible thanks to Lemma 4.19,
which tells that it is possible to approximate u on the segments, and Lemma 4.20, which
takes care of the “crosses”. Finally, Proposition 4.15 in Section 4.4 concludes the argument
of Steps 2 and 3. The essential idea there is that, since on the “non-Lebesgue squares”
the behaviour of u is wilder, one cannot simply take v equal to the affine interpolation of u
on the vertices. Indeed, as already pointed out in the introduction, this could easily give a
non-injective function. However, since the total area of the non-Lebesgue squares is small,
any approximation of u on them is ok, and this is why we use the extension of v|Q given
by Theorem 0.4 in Step 3.

4.2. Notation and Preliminaries

In this section we give some preliminary definitions and fix some useful notation which
will be used in this part of the thesis.
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We denote by Ω a bounded open subset of R2 and by clos Ω its closure.
First we recall the following

Definition 4.2 (L bi-Lipschitz map). We say that a function u : Ω → u(Ω) is L
bi-Lipschitz for some L > 0 if

1

L
|y − x| ≤ |u(y)− u(x)| ≤ L|y − x| , ∀x, y ∈ Ω. (4.1)

In particular, L ≥ 1.

Then we recall the definition of orientation-preserving (resp. reversing) homeomor-
phism.

Definition 4.3 (Orientation-preserving (reversing) homeomorphism). We say that an
homeomorphism u : Ω −→ u(Ω) ⊆ R2 is orientation-preserving (reversing) if whenever a
simple closed curve [0, 1] 3 t 7→ γ(t) ∈ Ω is parameterized clockwise, then [0, 1] 3 t 7→
u(γ(t)) ∈ u(Ω) is parameterized clockwise (resp. anti-clockwise).

It is well known that if Ω is connected, then any homeomorphism u : Ω −→ u(Ω) ⊆ R2

is either orientation-preserving or orientation-reversing. Moreover, if u is a diffeomorphism
being orientation-preserving (reversing) is equivalent to satisfy detDu ≥ 0 (detDu ≤ 0)
pointwise on Ω.

Next, we define the class of (countably) piecewise affine functions, in which we look
for approximations of orientation-preserving homeomorphisms. To this aim we recall the
definitions of (finite) triangulation of a polygon and of locally finite triangulation of Ω. A
polygon is an open connected subset of R2 whose boundary is given by a finite union of
segments intersecting only at their endpoints.

Definition 4.4 ((Finite) triangulation). A (finite) triangulation of a polygon Ω′ ⊆ R2

is a finite collection of closed triangles {Ti}Ni=1 whose union is equal to clos Ω′ and for all
i 6= j

Ti ∩ Tj is either empty, or a common vertex, or a common side of Ti and Tj . (4.2)

Definition 4.5 (Locally finite triangulation). Let Ω ⊆ R2 be a bounded open set. A
locally finite triangulation of Ω is a locally finite collection of closed triangles {Ti}i∈N such
that Ω ⊆ ⋃i∈N Ti ⊆ closΩ and (4.2) holds.

We notice that, unless Ω is a polygon, the number of elements of a triangulation cannot
be finite.

Definition 4.6 (Piecewise affine and countably piecewise affine function). A function
v : Ω −→ R2 is countably piecewise affine if v|T is affine on every triangle T of a suitable
locally finite triangulation of Ω. If Ω is a polygon and the triangulation is finite, then we
say that v is (finitely) piecewise affine.

In order to build the triangulation on which the function v of Theorem 0.2 is countably
piecewise affine, we will use, on a subset of Ω of Lebesgue measure as close as we want to
L (Ω) (i.e., the Lebesgue measure of Ω), uniform triangulations into right triangles. The
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union of such triangles will be called a right polygon, according to the following definition.
From now on, e1, e2 will be two fixed orthonormal vectors in R2.

Definition 4.7 (Right polygon). An open bounded set Ω′ ⊂ R2 is called a right polygon
of side-length r (or simply an r-polygon) if it is a finite union of closed polygons whose
sides are all parallel to e1, e2, and have lengths which are integer multiples of r > 0.

Points in Ω will be denoted by z ∈ R2 or by (x, y) ∈ R × R, with z = xe1 + ye2.
We denote with B(z, r) the ball of center z and radius r and with D(z, r) the square of
center z, side length r and sides parallel to e1, e2. Moreover, the generic square of a
collection of squares {D(zα, rα)}α∈N will be also sometimes denoted simply by Dα. Instead
of working directly with triangulations, it will be convenient, in order to apply our method,
to subdivide Ω into a countable and locally finite family of squares called tiling.

Definition 4.8 (Tiling). Given an open, bounded set Ω, a tiling of Ω is a locally finite
(in Ω) collection of closed squares {Dα(zα, rα)}α∈N whose union is contained between Ω
and clos Ω and such that, ∀α 6= β ∈ N, Dα ∩ Dβ is either empty, or a common vertex of
Dα and Dβ, or a side of one of the two. Two squares of a tiling are said to be adjacent if
their intersection is nonempty.

Notice that a tiling of Ω can be either finite or countable, and in particular it is surely
countable if Ω is not a right polygon.

It will be often useful to regard a given tiling of Ω as the union of the finite tiling
corresponding to a right polygon Ω′ ⊂⊂ Ω and a countable tiling of Ω \Ω′, locally finite in
Ω. Since these kinds of “sub-tilings” will be frequently used in the paper, we define them
separately.

Definition 4.9 (r-Tiling of a right polygon and tiling of (Ω,Ω′)). Given an r-polygon
Ω′, the r-tiling of Ω′ is the (unique) finite collection of closed squares {D(zα, r)}α∈I (r)

whose union is equal to clos Ω′ and, ∀α 6= β ∈ I (r), Dα ∩ Dβ is either empty, or a
common vertex, or a common side of Dα and Dβ. Given a bounded, open set Ω and an
r-polygon Ω′ ⊂⊂ Ω, a tiling of (Ω,Ω′) is a tiling of Ω whose restriction to Ω′ is the r-tiling
of Ω′.

The 1-dimensional skeleton of a tiling will be called grid, according to the following
definition.

Definition 4.10 (Grid). Let {Dα}α∈N be a tiling of Ω. We call grid of the tiling the
1-dimensional set given by the union of the boundaries of the squares of the tiling. Each
side (resp. vertex) of the squares of a tiling will be called side (resp. vertex) of the grid.

A possible definition of a piecewise affine approximation of u on a given r-polygon,
which will be used in Section 4.3, is the following.

Definition 4.11 ((Ω′, r)-interpolation of u). Let Ω′ ⊂⊂ Ω and {Dα}α∈I (r) be an

r-right polygon and its r-tiling. We call (Ω′, r)-interpolation of u the piecewise affine
function v : Ω′ −→ v(Ω′) ⊆ R2 which coincides with u on the vertices of the r-tiling and,
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for each α ∈ I (r), is affine on the two right triangles forming Dα and having as common
hypothenuse the north-east/south-west diagonal of Dα.

We conclude this section with a table collecting the main notation.

S1 unit sphere of R2 ,
Ω ⊆ R2 a given open bounded set ,
u : Ω −→ ∆ a given L bi-Lipschitz function ,
M (2× 2) two by two real matrices ,
|M | sup

¶∣∣∣Mv
∣∣∣ : |v| = 1

©
,

M (2× 2;L)
¶
M ∈M (2× 2) : DetM > 0,
|M | ≤ L, |M−1| ≤ L

©
,

e1, e2 two fixed positively oriented
orthonormal vectors in R2 ,

B(z, r) ball with center z and radius r ,

D(z, r) square with center z, side length r
and sides parallel to e1, e2 ,

D D(0, 1),
L Lebesgue measure on R2 ,
H 1 1-dimensional Hausdorff measure ,
intA interior of a set A ⊆ R2 ,
clos A closure of A ,
∂A boundary of A ⊆ R2 ,
Ω′ ⊂⊂ Ω clos Ω′ ⊆ Ω ,
d(A,B) inf{|z − w| : z ∈ A, w ∈ B} .

4.3. Approximation on “Lebesgue squares”

The aim of this section is to prove the following

Proposition 4.12. For every ε > 0 there exists a right polygon Ωε ⊂⊂ Ω of side
length r such that the (Ωε, r)-interpolation v : Ωε −→ v(Ωε) ⊆ R2 is L+ ε bi-Lipschitz and
satisfies

∆ε := v(Ωε) ⊂⊂ ∆ , (4.3)

‖v − u‖L∞(Ωε) + ‖v−1 − u−1‖L∞(∆ε) + ‖Du−Dv‖Lp(Ωε) + ‖Du−1 −Dv−1‖Lp(∆ε) ≤ ε ,
(4.4)

L (Ω \ Ωε) ≤ ε , L (∆ \∆ε) ≤ ε , d(Ωε,R2 \ Ω) ≥ 2r , (4.5)

‖v − u‖L∞(Ωε) ≤
√

2r

6L3
. (4.6)

The reason why the piecewise affine interpolation of u will be injective on Ωε is that,
for each square Dα of the r-tiling of Ωε, the function u will be uniformly close to an affine
L bi-Lipschitz function on the nine squares around Dα. The linear part of each of these
affine functions will be the differential of u at some Lebesgue point for Du inside Dα. For
this reason, the squares of such r-tiling will be called “Lebesgue squares”.

The plan of this section is the following. Section 4.3.0.4 contains Lemma 4.13, which
is the main ingredient in the proof of Proposition 4.12. Indeed, Lemma 4.13 says that,
when on a square Du is close in average to an L bi-Lipschitz matrix M , then u is close in
L∞ to an affine function uM with DuM = M . Then, in Section 4.3.0.5, we will determine
Ωε as a suitable union of squares of an r-tiling on which Lemma 4.13 holds and provides
a sufficiently strong L∞ estimate. Finally, in Section 4.3.0.6 we show that the (Ωε, r)-
interpolation of u satisfies the required properties.
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4.3.0.4. An L∞ Lemma. We are now ready to begin the proof of Proposition 4.12,
starting from the following fundamental lemma. Here and in the following, by M (2×2;L)
we denote the set of the two by two invertible matrices M such that the affine map
z 7→ M(z) is L bi-Lipschitz. Moreover, Ω and u will always be a set and a function
as in the assumptions of Theorem 0.2.

Lemma 4.13. For any η > 0 there exists δ = δ(η) > 0 such that, if z̄ ∈ Ω, M ∈
M (2× 2;L) and ρ > 0 are so that D(z̄, ρ) ⊂⊂ Ω and

−
∫
D(z̄,ρ)

|Du(z)−M | dz ≤ δ, (4.7)

then there exists an affine function uM : R2 −→ R2 with DuM = M and so that

|u(z)− uM(z)| ≤ ηρ ∀ z ∈ D(z̄, ρ) . (4.8)

Proof. Up to a translation, we are allowed to assume for simplicity that z̄ = u(z̄) =
(0, 0) ∈ R2. Let us then call, for a big constant R to be specified later,

B1 :=

®
x ∈

î
− ρ/2, ρ/2

ó
:
∫ ρ/2

−ρ/2
|Du(x, t)−M | dt ≤ ρRδ

´
,

B2 :=

®
y ∈

î
− ρ/2, ρ/2

ó
:
∫ ρ/2

−ρ/2
|Du(t, y)−M | dt ≤ ρRδ

´
.

Notice that, since u is bi-Lipschitz on Ω, then so is its restriction to the horizontal and
vertical segments of the square D(0, ρ). Hence, the above integrals make sense for every x
and y. By (4.7) and Fubini–Tonelli Theorem, we readily obtain

H 1
Åî
− ρ/2, ρ/2

ó
\B1

ã
≤ ρ

R
, H 1

Åî
− ρ/2, ρ/2

ó
\B2

ã
≤ ρ

R
. (4.9)

Define now uM(z) = Mz, and ϕ(z) = u(z)− uM(z). For any x1, x2 ∈ B1 and y1, y2 ∈ B2

we immediately get∣∣∣ϕ(x1, y1)− ϕ(x2, y2)
∣∣∣ ≤ ∣∣∣ϕ(x1, y1)− ϕ(x2, y1)

∣∣∣+ ∣∣∣ϕ(x2, y1)− ϕ(x2, y2)
∣∣∣

≤
∫ x2

x1

∣∣∣Du(t, y1)−M
∣∣∣ dt+

∫ y2

y1

∣∣∣Du(x2, t)−M
∣∣∣ dt ≤ 2ρRδ .

(4.10)

Let now (x, y) ∈ D(z̄, ρ) be a generic point. By (4.9), there exist x1 ∈ B1 and y1 ∈ B2 so
that ∣∣∣x− x1

∣∣∣ ≤ ρ

R
,

∣∣∣y − y1

∣∣∣ ≤ ρ

R
,

and since u and uM are L bi-Lipschitz, thus ϕ is 2L-Lipschitz, we get∣∣∣ϕ(x, y)− ϕ(x1, y1)
∣∣∣ ≤ 2

√
2ρL

R
. (4.11)

Let finally (x, y) and (x̃, ỹ) be two generic points in D(z̄, r). Putting together (4.10)
and (4.11) we immediately get∣∣∣ϕ(x, y)− ϕ(x̃, ỹ)

∣∣∣ ≤ 4
√

2ρL

R
+ 2ρRδ ≤ ηρ ,
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where the last inequality is true up to take R big enough and then δ small enough. Since
ϕ(0, 0) = 0, this concludes the proof. �

4.3.0.5. A large right polygon made of Lebesgue squares. In this section we show that,
for any η > 0, it is possible to construct a right polygon Ωη ⊂⊂ Ω of side length rη such
that L (Ω \ Ωη) ≤ η and such that, for any square D(z, rη) of the rη-tiling of Ωη, the
assumption (4.7) of Lemma 4.13 holds on the bigger square D(z, 3rη). As we will show
in Section 4.3.0.6, if we choose η and then rη small enough, the corresponding (Ωη, rη)-
interpolation of u satisfies the requirement of Proposition 4.12. Then, Ωη will turn out to
be the right polygon of Lebesgue squares we are looking for. The goal of this section is to
show the following estimate.

Lemma 4.14. For every η > 0 there exists a constant r = r(η) > 0 and an r-polygon
Ωη ⊂⊂ Ω such that L

Ä
Ω \ Ωη

ä
≤ η and each square of the r-tiling {D(zα, r)}α∈I (r)

satisfies the following properties,

D(zα, 3r) ⊂⊂ Ω ∀α ∈ I (r) , (4.12)

−
∫
D(zα,3r)

|Du(z)−M | dz ≤ δ(η) for some M = M(α) ∈M (2× 2;L) . (4.13)

Proof. We start selecting some r0 = r0(η) > 0 and an r0-polygon Ω0 ⊂⊂ Ω such
that L

Ä
Ω \ Ω0

ä
≤ η/2 and each square of the r0-tiling of Ω0 satisfies (4.12). Then, for

every r such that r0 ∈ rN, we can regard Ω0 also as an r-polygon, and consequently call
{D(zα, r)}α∈I 0(r) its r-tiling. We define the set

I (r) :=
ß
α ∈ I 0(r) : −

∫
D(zα,3r)

|Du−M | ≤ δ for some M = M(α) ∈M (2× 2;L)
™
,

where δ = δ(η) is given by Lemma 4.13, and we let

Ωη :=
⋃

α∈I (r)

D(zα, r) .

Since property (4.13) is true by construction, to conclude the proof it is enough to select
a suitable r = r(η) in such a way that L

Ä
Ω0 \ Ωη

ä
≤ η/2.

To do so, we apply the Lebesgue Differentiation Theorem to the map Du finding that,
for L -a.e. z ∈ Ω0, there exists r(z) > 0 such that D(z, 4r(z)) ⊆ Ω0 and

−
∫
D(z,ρ)

∣∣∣Du(w)−Du(z)
∣∣∣ dw ≤ δ

2
∀ 0 < ρ ≤ 4r(z) .

We can then choose r = r(η) so small that the set A(r) :=
¶
z ∈ Ω0 : r(z) ≤ r

©
satisfies

L
Ä
A(r)

ä
≤ η/2 . (4.14)

We now claim that, for each α ∈ I 0(r),

D(zα, r) 6⊆ A(r) =⇒ α ∈ I (r). (4.15)
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Indeed, letting M = Du(z) for some z ∈ D(zα, r) \A(r), by definition of A(r) and r(z) we
get

−
∫
D(zα,3r)

|Du−M | = 1

9r2

∫
D(zα,3r)

|Du−M | ≤ 1

9r2

∫
D(z,4r)

|Du−M | = 16

9
−
∫
D(z,4r)

|Du−M |

≤ 8

9
δ ,

thus (4.15) is obtained. As a consequence, by (4.14) we have that

L
Å

Ω0 \ Ωη

ã
= L

Ç⋃
α∈I 0(r)\I (r)

D(zα, r)

å
≤ L

Ä
A(r)

ä
≤ η

2

and, as we noticed above, this concludes the proof. �

4.3.0.6. Affine approximation of u on Lebesgue squares. In this section we complete
the proof of Proposition 4.12. At this point, the proof reduces to show that, provided
we choose η small enough, the (Ωη, r)-interpolation of u on the right polygon Ωη as in
Lemma 4.14 satisfies the properties of Proposition 4.12.

Proof of Proposition 4.12: Let ε > 0 be a given constant. Then, let η = η(ε) be
a sufficiently small constant, whose value will be precised later. Define now δ = δ

Ä
η(ε)

ä
as in Lemma 4.13, and define also r = r

Ä
η(ε)

ä
and Ωε = Ωη(ε) according to Lemma 4.14.

We will show that the right polygon Ωε fulfills all the requirements of the proposition as
soon as η(ε) is small enough. To this aim we call, as in the statement, v : Ωε −→ ∆ε the
(Ωε, r)-interpolation of u (see Definition 4.11) on the right polygon Ωε.

Let us briefly fix some notation which will be used through the proof. For any α ∈ I (r),
we define Mα ∈M (2× 2;L) so that (4.13) holds. Applying Lemma 4.13 with ρ = 3r, we
get an affine function uα : R2 −→ R2 such that Duα = Mα and∣∣∣u− uα∣∣∣ ≤ 3ηr on D(zα, 3r) . (4.16)

Figure 3 depicts the functions u, v and uα.
We can then start the proof, which will be divided in some steps for clarity.

Step I. For any α ∈ I (r), v
Ä
D(zα, r)

ä
⊆ u
Ä
D(zα, 3r)

ä
.

Take α ∈ I (r). Keeping in mind (4.16) and recalling the definition of v, we get that

v
Ä
D(zα, r)

ä
⊆ B

Å
uα
Ä
D(zα, r)

ä
, 3ηr

ã
. (4.17)

Similarly, we get that

u
Ä
D(zα, 3r)

ä
⊇
ß
x : B(x, 3ηr) ⊆ uα

Ä
D(zα, 3r)

ä™
. (4.18)

Hence, the step is concluded if

B
Å
uα
Ä
D(zα, r)

ä
, 6ηr

ã
⊆ uα

Ä
D(zα, 3r)

ä
,

which in turn, recalling that Duα ≡Mα ∈M (2× 2;L), is true as soon as η < (6L)−1.
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D C

BA

u

v

uα

uα(B)

uα(D)

u(B)

u(C)

uα(A)

uα(C)u(D)

u(A)

Figure 3. The functions u, v and uα on a square.

Observe that, as an immediate consequence of this step and (4.12), we have ∆ε ⊂⊂ ∆,
that is, (4.3) holds.

Step II. Injectivity of v.
Take α ∈ I (r). Applying again (4.16) as in Step I, we deduce that v is injective on

D(zα, 3r)∩Ωε as soon as η < (6L)−1. To conclude that v is injective, then, we have to show
that v

Ä
D(zα, r)

ä
∩ v
Ä
D(zβ, r)

ä
= ∅ if D(zα, r) and D(zβ, r) are two non-adjacent squares of

the tiling of Ωε. But in fact, if Dα and Dβ are non-adjacent, then

D(zα, 3r) ∩ D(zβ, r) = D(zβ, 3r) ∩ D(zα, r) = ∅ ,
thus the fact that v

Ä
D(zα, r)

ä
∩ v
Ä
D(zβ, r)

ä
= ∅ follows as an immediate consequence

of (4.17) and (4.18) applied to α and β.

Step III. Estimate on ‖v − u‖L∞(Ωε) and on ‖v−1 − u−1‖L∞(∆ε).
Fix a generic square Dα of the r-tiling of Ωε, and observe that ‖uα − u‖L∞(Dα) ≤ 3ηr

by (4.16). Moreover, v and uα are both affine on each of the two right triangles on which
Dα is divided, and since on the vertices of these triangles v equals u, again by (4.16) we
deduce also ‖v − uα‖L∞(Dα) ≤ 3ηr. Thanks to these two estimates, we deduce

‖v − u‖L∞(Ωε) = sup
α∈I (r)

‖v − u‖L∞(Dα) ≤ sup
α∈I (r)

‖v − uα‖L∞(Dα) + ‖uα − u‖L∞(Dα)

≤ 6ηr ≤ ε

4L
,

(4.19)

where the last inequality is true as soon as η, hence also r, is small enough.
Since we have already proven that v is injective, the L∞ estimate for the inverse maps

is now a simple consequence. Indeed, taking a generic point w = v(z) ∈ ∆ε, with x ∈ Ωε,
by (4.19) we have∣∣∣u−1(w)− v−1(w)

∣∣∣ =
∣∣∣u−1(v(z))− u−1(u(z))

∣∣∣ ≤ L
∣∣∣v(z)− u(z)

∣∣∣ ≤ ε

4
,
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so that
‖u−1 − v−1‖L∞(∆ε) ≤

ε

4
. (4.20)

Step IV. Estimate on ‖Dv −Du‖Lp(Ωε).

Let us start observing that, since by construction |Du| ≤ L and |Dv| ≤
√

2L, one has

‖Dv −Du‖pLp(Ωε)
=

∑
α∈I (r)

‖Dv −Du‖pLp(Dα)

≤
Ä
3L
äp−1 ∑

α∈I (r)

‖Dv −Du‖L1(Dα)

≤
Ä
3L
äp−1 ∑

α∈I (r)

‖Dv −Duα‖L1(Dα) + ‖Duα −Du‖L1(Dα) .

(4.21)

By (4.13), we already know that for each α ∈ I (r) it is

‖Du−Duα‖L1(Dα) =
∫
D(zα,r)

∣∣∣Du−Duα∣∣∣ ≤ 9r2−
∫
D(zα,3r)

∣∣∣Du−Mα

∣∣∣ ≤ 9δr2 = 9δ
∣∣∣Dα∣∣∣ . (4.22)

Let us then concentrate on ‖Dv −Duα‖L1(Dα). Consider the triangle T = z1z2z3, being

z1 ≡ zα +
Ä
− r/2,−r/2

ä
, z2 ≡ zα +

Ä
r/2,−r/2

ä
, z3 ≡ zα +

Ä
r/2, r/2

ä
.

Since both v and uα are affine on T , then in particular Dv − Duα is a constant linear
function on T . Recalling again (4.16), let us then calculate∣∣∣∣ÄDv|T −Duαä(re1)

∣∣∣∣ =
∣∣∣∣Äv(z2)− v(z1)

ä
−
Ä
uα(z2)− uα(z1)

ä∣∣∣∣
=
∣∣∣∣Äu(z2)− u(z1)

ä
−
Ä
uα(z2)− uα(z1)

ä∣∣∣∣ ≤ 6ηr ,

and similarly∣∣∣∣ÄDv|T −Duαä(re2)
∣∣∣∣ =

∣∣∣∣Äv(z3)− v(z2)
ä
−
Ä
uα(z3)− uα(z2)

∣∣∣∣ ≤ 6ηr .

We deduce that ‖Dv−Duα‖L∞(T ) ≤ 6
√

2η. We can argue in the very same way for all the
different triangles in which D(zα, 3r) ∩ Ωε is divided, thus we get∥∥∥Dv −Duα∥∥∥

L∞(D(zα,3r)∩Ωε)
≤ 6
√

2η ≤ 9η . (4.23)

Inserting this estimate and (4.22) into (4.21), we get

‖Dv −Du‖pLp(Ωε)
≤
Ä
3L
äp−1

9
Ä
δ + η)

∑
α∈I (r)

∣∣∣Dα∣∣∣ =
Ä
3L
äp−1

9
Ä
η + δ

ä∣∣∣Ωε

∣∣∣ ≤ Çε
4

åp
, (4.24)

where again the last inequality holds true as soon as η, hence also δ, is small enough.

Step V. Bi-Lipschitz estimate for v.
Take a point z ∈ D(zα, 3r)∩Ωε. Recalling that uα is L bi-Lipschitz and (4.23), we get

1

L
− 9η ≤

∣∣∣Dv(z)
∣∣∣ ≤ L+ 9η . (4.25)
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Let then z, z′ ∈ Ωε be two generic points, and assume that z ∈ D(zα, r). If one has
z′ ∈ D(zα, 3r), then an immediate geometric argument using the definition of v and (4.25)
yields Ç

1

L
− 9η

å∣∣∣z − z′∣∣∣ ≤ ∣∣∣v(z)− v(z′)
∣∣∣ ≤ ÄL+ 9η

ä∣∣∣z − z′∣∣∣ . (4.26)

On the other hand, assume that z′ /∈ D(zα, 3r), so that |z − z′| ≥ r. In this case, the L∞

estimate (4.19) gives∣∣∣v(z)− v(z′)
∣∣∣ ≤ ∣∣∣u(z)− u(z′)

∣∣∣+ ∣∣∣v(z)− u(z)
∣∣∣+ ∣∣∣v(z′)− u(z′)

∣∣∣ ≤ ÄL+ 12η
ä∣∣∣z − z′∣∣∣ , (4.27)

and similarly∣∣∣v(z)− v(z′)
∣∣∣ ≥ ∣∣∣u(z)−u(z′)

∣∣∣− ∣∣∣v(z)−u(z)
∣∣∣− ∣∣∣v(z′)−u(z′)

∣∣∣ ≥ Ç 1

L
− 12η

å∣∣∣z− z′∣∣∣ . (4.28)

Putting together (4.26), (4.27) and (4.28), provided that η is small enough we conclude
that v is L+ ε bi-Lipschitz.

Step VI. Estimate on ‖Dv−1 −Du−1‖Lp(∆ε).
Fix a generic α ∈ I (r), and recall the elementary fact that, given two invertible

matrices A and B, one always has
∣∣∣B−1−A−1

∣∣∣ ≤ ∣∣∣A−1
∣∣∣∣∣∣B−1

∣∣∣∣∣∣B−A∣∣∣. Since by construction

u and uα are L bi-Lipschitz, and Duα is constant on Dα, then Step I, (4.13) and (4.22)
ensure that

‖Du−1 −Du−1
α ‖L1(v(Dα)) =

∫
v(D(zα,r))

∣∣∣Du−1(z)−Du−1
α (z)

∣∣∣ dz
≤ L2

∫
u(D(zα,3r))

∣∣∣DuÄu−1(z)
ä
−Mα

∣∣∣ dz ≤ L4
∫
D(zα,3r)

∣∣∣Du(w)−Mα

∣∣∣ dw
= 9r2L4−

∫
D(zα,3r)

∣∣∣Du−Mα

∣∣∣ ≤ 9r2L4δ = 9L4δ
∣∣∣Dα∣∣∣ .

On the other hand, again using
∣∣∣B−1 − A−1

∣∣∣ ≤ ∣∣∣A−1
∣∣∣∣∣∣B−1

∣∣∣∣∣∣B − A∣∣∣, the fact that Duα is

constant on Dα, the fact that uα is L bi-Lipschitz by definition while v is (L+ε) bi-Lipschitz
by Step V, and (4.23), we readily obtain∥∥∥Dv−1 −Du−1

α

∥∥∥
L∞(v(Dα))

≤ L(L+ ε)9η ≤ 18L2η .

We can then repeat the same argument as in (4.21) to get

‖Dv−1 −Du−1‖pLp(∆ε)
≤
Ä
3L
äp−1 ∑

α∈I (r)

‖Dv−1 −Du−1
α ‖L1(v(Dα)) + ‖Du−1

α −Du−1‖L1(v(Dα))

≤
Ä
3L
äp−1

Å
18L2η

∣∣∣∆ε

∣∣∣+ 9L4δ
∣∣∣Ωε

∣∣∣ã ≤ Çε
4

åp
,

(4.29)

where as usual the last estimate holds up to possibly further decrease η and then also δ.

Step VII. Conclusion.
Let us now conclude the proof of Proposition 4.12 by checking that Ωε fulfills all the re-

quirements of the statement. The fact that v is L + ε bi-Lipschitz is given by Step V.
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The validity of (4.3) has been observed in Step I. The estimate (4.4) just follows by
adding (4.19), (4.20), (4.24) and (4.29). Concerning (4.5), the facts that Ω\Ωε is small and
that d(Ωε,R2 \ Ω) ≥ 2r are given by Lemma 4.14, while the fact that also ∆ \∆ε is small
is immediate by the bi-Lipschitz property of u and the L∞ estimate (4.8) of Lemma 4.13.
Finally, (4.6) is an immediate up to choose η ≤

√
2/(36L3), since (4.19) ensures that

‖v − u‖L∞(Ωε) ≤ 6ηr. �

4.4. Approximation out of “Lebesgue squares”

In this section we complete the proof of Theorem 0.2, defining the countably piece-
wise affine approximation of u out of the large right polygon Ωε of “Lebesgue squares”
constructed in Proposition 4.12. Following the scheme outlined in Section 4.1, the con-
struction is carried out in three steps: the covering of Ω \Ωε with a suitable (locally finite)
tiling, the definition of a bi-Lipschitz piecewise affine approximation of u on the grid of the
tiling and, finally, the extension of the approximating function to the interior of the grid
by means of Theorem 0.4. The main result of this section is the following.

Proposition 4.15. Let vε : Ωε −→ ∆ε be a piecewise affine bi-Lipschitz function as in
Proposition 4.12. Then, there exists a C1L

4 bi-Lipschitz countably piecewise affine function
ṽε : Ω \ Ωε −→ ∆ \ ∆ε, where C1 is a geometric constant, such that ṽε = u on ∂Ω and
ṽε = vε on ∂Ωε.

We can immediately notice that Theorem 0.2 will follow as an easy consequence of
Propositions 4.12 and 4.15.

Proof of Theorem 0.2: Take ε > 0, and apply Proposition 4.12 to get an r-
polygon Ωε ⊂⊂ Ω and a piecewise affine bi-Lipschitz function vε : Ωε −→ ∆ε. By
Proposition 4.15, we have a C1L

4 bi-Lipschitz function ṽε : Ω \ Ωε −→ ∆ \ ∆ε, so we
can define the function v : Ω −→ ∆ as v ≡ vε on Ωε and v ≡ ṽε on Ω \Ωε. Since vε (resp.,
ṽε) is bi-Lipschitz with constant L + ε (resp., C1L

4), and ṽε = vε on ∂Ωε, we have that
v is a bi-Lipschitz homeomorphism with constant C1L

4. Moreover, by construction v is
countably piecewise affine, and it is orientation-preserving since so is u and v ≡ u on ∂Ω.
We are then left with showing that v satisfies (0.3), and by (4.4) this basically reduces to
consider what happens in Ω \ Ωε. Since ṽε is bi-Lipschitz with constant C1L

4, by (4.5) we
clearly have

‖Dv −Du‖Lp(Ω\Ωε) ≤ ‖Dv −Du‖L∞(Ω\Ωε)
∣∣∣Ω \ Ωε

∣∣∣1/p ≤ ÄL+ C1L
4
ä
ε1/p , (4.30)

and similarly
‖Dv−1 −Du−1‖Lp(∆\∆ε) ≤

Ä
L+ C1L

4
ä
ε1/p . (4.31)

Concerning the L∞ estimates, since
∣∣∣Ω \ Ωε

∣∣∣ ≤ ε then for every z ∈ Ω \ Ωε there exist

z′ ∈ Ωε such that |z − z′| ≤
»
ε/π, thus by (4.4) we find

|v(z)− u(z)| ≤ |v(z)− v(z′)|+ |v(z′)− u(z′)|+ |u(z′)− u(z)|

≤
Ä
L+ C1L

4
ä  ε

π
+ ‖vε − u‖L∞(Ωε) ≤

Ä
L+ C1L

4
ä  ε

π
+ ε .
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Arguing in the very same way to bound |v−1(w)− u−1(w)| for a generic w ∈ ∆ \∆ε yields

‖v − u‖L∞(Ω\Ωε) ≤
Ä
L+ C1L

4
ä  ε

π
+ ε , ‖v−1 − u−1‖L∞(∆\∆ε) ≤

Ä
L+ C1L

4
ä  ε

π
+ ε .

(4.32)

Putting together (4.30), (4.31) and (4.32), we find that v satisfies (0.3) as soon as ε is
chosen small enough, depending on ε̄. Hence, we have found the countably piecewise affine
approximation as required. Concerning the smooth approximation, its existence directly

follows applying Theorem 4.1, thus we have in particular C2 = 70C
7/3
1 . �

We have now to prove Proposition 4.15. To do so, let us fix some notation. Recall
that Ωε is an r-polygon for some r = r(ε). We will then start by selecting a suitable tiling
{Dj = D(zj, rj)}j∈N of (Ω,Ωε), according with Definition 4.9. This means that {Dj} is a
tiling of Ω whose restriction to Ωε coincides with the r-tiling of Ωε. The only requirements
that we ask to {Dj} are the following,

rj = r ∀ j : closDj ∩ ∂Ωε 6= ∅ , (4.33)

Dj ⊂⊂ Ω ∀ j ∈ N . (4.34)

Notice that (4.33) is possible thanks to (4.5), while (4.34) basically means that the tiling
has to be countable instead of finite, and the squares have to become smaller and smaller
when approaching the boundary of Ω. Of course, in the particular case when Ω itself is a
right polygon, instead of (4.34) one could have asked the tiling to be finite (we will discuss
this possibility more in detail in Remark 4.21).

Since it is of course possible to find a tiling of (Ω,Ωε) which satisfies (4.33) and (4.34),
from now on we fix such a tiling, and we denote by Q its associated 1-dimensional grid
according with Definition 4.10. Moreover, we set Q′ = Q∩ (Ω \ clos Ωε), which is the part
of the grid on which we really need to work. Notice that Q′ is a 1-dimensional set, made
by all the sides of the grid Q which lie in Ω \ clos Ωε.

Let us call now wα the generic vertex of Q′, hence, the generic vertex of the grid Q
which does not belong to Ωε (but it may belong to ∂Ωε). Each vertex wα is of the form
wα = zj + (±rj/2,±rj/2) for some j, and it is one extreme of either three, or four sides of
Q. To shorten the notation, we will denote the other extremes of these sides by wiα with
1 ≤ i ≤ ī(α), being then ī(α) ∈ {3, 4}. Finally, we will denote by `α the minimum of the
lengths of the sides wαw

i
α. Observe that if wα /∈ ∂Ωε, then wα is one extreme of either

three or four sides of Q′ ⊆ Q. On the other hand, if wα ∈ ∂Ωε, then by (4.33) it is one
extreme of four sides of Q, either one or two of these four sides lies in Q′, and `α = r.

Thanks to Theorem 0.4, to obtain the piecewise affine function ṽε of Proposition 4.15
we essntially have to define it, in a suitable way, on the 1-dimensional grid Q′. To do
so, our main ingredients are the following two lemmas. The first one, Lemma 4.19, states
that, on any given segment of Ω, u can be approximated as well as desired in L∞ with
suitable piecewise affine 4L bi-Lipschitz functions. This is of course of primary importance
to define the piecewise affine approximation ṽε of u on the sides of the grid Q′, but it is
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still not enough. In fact, we have to take some additional care to treat the “crosses” of
Q′ (that is, the regions around the vertices), in order to be sure that our affine ṽε on Q′
remains injective. This will be obtained thanks to the second Lemma 4.20.

To state the next two lemmas, it will be useful to introduce some piece of notation.

Definition 4.16 (Interpolation of u). Given a segment pq ⊂⊂ Ω, let {zizi+1}0≤i<N be
N essentially disjoint segments whose union is pq, with z0 = p and zN = q. For any such
subdivision of the segment, will call interpolation of u the finitely piecewise affine function
upq : pq −→ R2 such that, for any 0 ≤ i ≤ N − 1 and any 0 ≤ t ≤ 1,

upq

Å
zi + t

Ä
zi+1 − zi

äã
= u(zi) + t

Ä
u(zi+1)− u(zi)

ä
.

Definition 4.17 (Adjusted function and crosses). Let {ξα}α∈N be a sequence such that
for any α one has 3Lξα ≤ `α. For any α ∈ N and any 1 ≤ i ≤ ī(α), we define ξiα as the
biggest number such that

∣∣∣∣u(wα)− u
Ä
wα + ξiα(wiα − wα)

ä∣∣∣∣ ≤ ξα if wαw
i
α ⊂ Q′ ,∣∣∣∣u(wα)− vε

Ä
wα + ξiα(wiα − wα)

ä∣∣∣∣ ≤ ξα if wαw
i
α ⊂ Q \ Q′ .

We will call adjusted function the function uadj : Q −→ R2 defined as follows. First of
all, we set uadj = vε on Q \ Q′. Then, let wαwβ be a side of Q′, thus being wβ = wiα and

wα = wjβ for two suitable i and j. We define

uadj

Ä
wα+t(wβ−wα)

ä
:=


u(wα) + t

ξiα

Å
u
Ä
wα + ξiα(wβ − wα)

ä
− u(wα)

ã
in (0, ξiα) ,

u
Ä
wα + t(wβ − wα)

ä
in (ξiα, 1− ξ

j
β) ,

u(wβ) + (1−t)
ξj
β

Å
u
Ä
wβ + ξjβ(wα − wβ)

ä
− u(wβ)

ã
in (1− ξjβ, 1).

In words, for any side in Q′, uadj coincides with u in the internal part of the side, while
the two parts closest to the vertices wα and wβ are replaced with segments. Moreover, for
any vertex wα of Q′ we will define its associated cross as

Zα =
ī(α)⋃
i=1

ß
wα + t(wiα − wα) : 0 ≤ t ≤ ξiα

™
.

Remark 4.18. Some remarks are now in order. First of all, since u is L bi-Lipschitz on
Ω, and also vε is L bi-Lipschitz on any segment wαw

i
α ⊆ Q \ Q′, by the choice 3Lξα ≤ `α

we directly deduce that 0 < ξiα ≤ 1/3 for any α and any i. Thus, two different crosses
have always empty intersection. For the same reason, each of the ī(α) extremes of the
cross Zα has a distance at least ξα/L from wα. Finally, for all different α and β one has
B(u(wα), ξα) ∩ B(u(wβ), ξβ) = ∅. Indeed, assuming without loss of generality that `α ≥ `β,

we have
∣∣∣u(wβ) − u(wα)

∣∣∣ ≥ `α/L. And as a consequence, ξα + ξβ ≤ `α/(3L) + `β/(3L) ≤
2`α/(3L) <

∣∣∣u(wβ)− u(wα)
∣∣∣.
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Lemma 4.19. For every segment pq ⊂⊂ Ω and every δ > 0, there exist a function
uδpq : pq −→ ∆ which is a 4L bi-Lipschitz interpolation of u with the property that ‖uδpq −
u‖L∞(pq) ≤ δ.

Lemma 4.20. There exists a sequence {ξα}α∈N such that the associated adjusted function
uadj : Q −→ R2 is 18L bi-Lipschitz and uadj(Q) ⊆ ∆.

Before giving the proof of Lemmas 4.19 and 4.20, we show how they enter into the
proof of Proposition 4.15.

Proof of Proposition 4.15: To define the searched function ṽε : Ω\Ωε −→ ∆\∆ε,
let first uadj : Q −→ R2 be an adjusted function according with Lemma 4.20, corresponding
to the sequence {ξα}. Our strategy will be first to define a suitable piecewise affine and
injective function u′adj : Q −→ ∆, coinciding with uadj near the vertices wα, and then to
obtain ṽε extending u′adj in the interior of each square making use of Theorem 0.4. We
divide the proof in some steps.

Step I. Definition of u′adj : Q −→ ∆.
First of all, we define u′adj = uadj = vε on Q \ Q′. Then, consider a generic side

wαwβ ⊆ Q′, and define pq the internal segment of the side wαwβ, that is, p and q are the
extremes of the segment wαwβ \

Ä
Zα ∪ Zβ

ä
. Taken now a small constant δ = δ(α, β), to

be precised later, we set u′adj = uadj on wαwβ ∩
Ä
Zα ∪ Zβ

ä
, and u′adj = uδpq on pq, where uδpq

is given by Lemma 4.19.
By definition, it is clear that u′adj is a continuous, countably piecewise affine function

on Q. Moreover, since the different constants δ(α, β) are independent and any internal
segment pq is compactly supported in Ω, one clearly has that u′adj(Q) ⊆ ∆ up to choose
the constants small enough. In addition, since u′adj is obtained glueing the 4L bi-Lipschitz

functions uδpq and the 18L bi-Lipschitz function uadj, we clearly have that u′adj is 18
√

2L-
Lipschitz (but, a priori, not bi-Lipschitz!). To conclude the proof, we will first show that
in fact u′adj is bi-Lipschitz, thus in particular injective, then eventually we will extend u′adj

to the interior of the squares of the tiling, hence to the whole Ω \ Ωε.
Let us then fix two points z, z′ ∈ Q. In the next Steps II–IV we will show that∣∣∣u′adj(z)− u′adj(z

′)
∣∣∣ ≥ 1

72L
|z − z′| , (4.35)

considering separately the different possible positions of z and z′.

Step II. The case when z ∈ pq ⊆ wαwβ, z
′ /∈ wαwβ .

The first case is when z belongs to an internal segment pq which is contained in the
side wαwβ ⊆ Q′, and z′ does not belong to the side wαwβ. In this case, as observed in
Remark 4.18, we know that |z − z′| ≥ ξα/L. Thus, there are two subcases. If z′ does not
belong to any internal segment (hence, either z′ belongs to some cross, or z′ ∈ Ωε), then
u′adj(z

′) = uadj(z
′) and then by Lemma 4.20, provided that we choose

δ(α, β) ≤ min{ξα, ξβ}
36L2

, (4.36)
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we have∣∣∣u′adj(z)− u′adj(z
′)
∣∣∣ =

∣∣∣uδpq(z)− uadj(z
′)
∣∣∣ ≥ ∣∣∣uadj(z)− uadj(z

′)
∣∣∣− ∣∣∣uδpq(z)− uadj(z)

∣∣∣
=
∣∣∣uadj(z)− uadj(z

′)
∣∣∣− ∣∣∣uδpq(z)− u(z)

∣∣∣ ≥ 1

18L
|z − z′

∣∣∣− δ(α, β)

≥ 1

18L
|z − z′

∣∣∣− ξα
36L2

≥ 1

36L
|z − z′

∣∣∣ ,
so that (4.35) is proved.

Consider now the other subcase, namely, when z′ belongs to some other internal segment
p′q′ ⊆ wα′wβ′ . In that case, since by construction and (4.36) it is |z− z′| ≥ 36Lδ(α, β) and
|z − z′| ≥ 36Lδ(α′, β′), one directly has∣∣∣u′adj(z)− u′adj(z

′)
∣∣∣ =

∣∣∣uδpq(z)− uδ′p′q′(z′)
∣∣∣ ≥ ∣∣∣u(z)− u(z′)

∣∣∣− ∣∣∣u(z)− uδpq(z)
∣∣∣− ∣∣∣u(z′)− uδ′p′q′(z′)

∣∣∣
≥ 1

L
|z − z′

∣∣∣− δ(α, β)− δ(α′, β′) ≥ 17

18L
|z − z′| ,

hence again (4.35) is established.

Step III. The case when z ∈ pq ⊆ wαwβ, z
′ ∈ wαwβ .

The second case is when z still belongs to an internal segment pq contained in the
side wαwβ ⊆ Q′, and also z′ belongs to the side wαwβ. In particular, if also z′ is in the
internal segment pq then we already know the validity of (4.35) because u′adj(z) = uδpq(z)

and u′adj(z
′) = uδpq(z

′), while uδpq is 4L bi-Lipschitz. Therefore, we can directly assume that
z′ ∈ wαp, being the case z′ ∈ qwβ clearly the same.

By Definition 4.17 we know that u′adj(z
′) = uadj(z

′) lies in the segment u(wα)u(p), which

is a radius of the ball B
Ä
u(wα), ξα

ä
. Hence, for any point s outside the same ball, a trivial

geometric argument tells us that

∣∣∣s− uadj(z
′)
∣∣∣ ≥

∣∣∣s− u(p)
∣∣∣+ ∣∣∣u(p)− uadj(z

′)
∣∣∣

3
. (4.37)

Notice now that it is not true, in general, that u′adj(z) = uδpq(z) lies outside the ball

B
Ä
u(wα), ξα

ä
. However, recalling that uδpq is an interpolation of u, by Definition 4.16

we know that uδpq(z) is in a segment whose both extremes are out of the ball. Thus, if∣∣∣uδpq(z)− u(wα)
∣∣∣ < ξα, it is anyway surely true that

ξα −
∣∣∣uδpq(z)− u(wα)

∣∣∣� ∣∣∣uδpq(z)− u(p)
∣∣∣ ,

up to possibly decreasing δ(α, β). Putting this observation together with (4.37) we readily
obtain that ∣∣∣uδpq(z)− uadj(z

′)
∣∣∣ ≥

∣∣∣uδpq(z)− u(p)
∣∣∣+ ∣∣∣u(p)− uadj(z

′)
∣∣∣

4

=

∣∣∣uδpq(z)− uδpq(p)
∣∣∣+ ∣∣∣uadj(p)− uadj(z

′)
∣∣∣

4
,
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recalling that uadj(p) = uδpq(p) = u(p) (of course, by selecting δ(α, β) small enough, we could
have used any number greater than 3, instead of 4, in the above estimate). Therefore, since
uδpq is 4L bi-Lipschitz while uadj is 18L bi-Lipschitz, we readily obtain

∣∣∣u′adj(z)− u′adj(z
′)
∣∣∣ =

∣∣∣uδpq(z)− uadj(z
′)
∣∣∣ ≥

∣∣∣uδpq(z)− uδpq(p)
∣∣∣

4
+

∣∣∣uadj(p)− uadj(z
′)
∣∣∣

4

≥
|z − p

∣∣∣
16L

+
|p− z′|

72L
≥ |z − z

′|
72L

,

recalling that z, p and z′ are aligned. Hence, (4.35) is checked once again also in this case.

Step IV. The case when neither z nor z′ are in some internal segment.
Thanks to Step II and Step III, and by the symmetry of the inequality (4.35), we are

left to consider only the situation where no one between z and z′ is inside some internal
segment. In other words, both z and z′ must be either in Q \Q′ or in some cross. By the
definition of u′adj, this means that u′adj(z) = uadj(z) and u′adj(z

′) = uadj(z
′). And thus, since

uadj is 18L bi-Lipschitz thanks to Lemma 4.20, the validity of (4.35) is already known.
Summarizing, we have shown the validity of (4.35) in any possible case, and this means
that the function u′adj : Q −→ ∆ is injective and 72L bi-Lipschitz.

Step V. Conclusion.
We have now to define the piecewise affine and bi-Lipschitz function ṽε : Ω \ Ωε −→

∆ \ ∆ε, matching u on ∂Ω and matching vε on ∂Ωε. To do so, consider each square Dj
of the tiling contained in Ω \ Ωε. The function u′adj is 72L bi-Lipschitz from ∂Dj to a
subset of ∆, then by Theorem 0.4 it can be continuously extended to a piecewise affine
bi-Lipschitz function of the whole square Dj, with bi-Lipschitz constant C3724L4. Define
ṽε as the countably piecewise affine function on Ω \ Ωε which gathers all these extensions
on all the squares Dj ⊆ Ω \ Ωε of the tiling.

For each square Dj ⊆ Ω \ Ωε, we clearly have that ∂
Ä
ṽε(Dj)

ä
= u′adj(∂Dj). This

yields that ṽε is injective. Moreover, by continuity it is clear that ṽε = u on ∂Ω, and by
construction ṽε = vε on ∂Ωε. As a consequence, ṽε : Ω \ Ωε −→ ∆ \ ∆ε fulfills all our
requirements. In particular, one has C1 = 724C3. �

Let us now make a simple observation, which will be useful in the sequel.

Remark 4.21. Assume that Ω is a right polygon of side-length r̄ and that u is piecewise
affine on ∂Ω. Then, consider the right polygon Ωε of side-length r given by Proposition 4.12.
By the construction of Section 4.3, it is not restrictive to assume that r̄ ∈ rN, and that Ωε is
a subset of the r-tiling of Ω. Therefore, we can repeat verbatim the construction of Propo-
sition 4.15 using, as tiling, the r-tiling of Ω. Notice that in this case assumption (4.34) is
not valid –see the remark right after (4.34)– but in fact if Ω is a polygon, and u is affine on
its sides, there is no need for the tiling to use smaller and smaller squares at the boundary.
As a consequence, the bi-Lipschitz approximation provided by Proposition 4.15 is (finitely)
piecewise affine instead of countably piecewise affine. Observe that the assumption that u
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is piecewise affine of ∂Ω is essential, because otherwise the approximation ṽε would not
coincide with u on ∂Ω.

To conclude the proof of Theorem 0.2, we then only need to give the proofs of
Lemma 4.19 and of Lemma 4.20.

Proof of Lemma 4.19: Let ρ > 0 be a small number, to be fixed later. Define then
t0 = 0, z0 = p and then recursively

ti+1 := max
ß
t > ti :

∣∣∣u(zi)− u
Ä
p+ t(q − p)

ä∣∣∣ ≤ ρ
™
, zi+1 := p+ ti+1(q − p) .

In this way, we have selected a finite sequence of points z0 = p, z1, . . . zN = q in the
segment pq, where N = N(p, q, ρ). We can then already define the function uδpq by setting,
for any 0 ≤ i ≤ N − 1 and any 0 ≤ t ≤ 1,

uδpq

Å
zi + t

Ä
zi+1 − zi

äã
= u(zi) + t

Ä
u(zi+1)− u(zi)

ä
.

Hence, uδpq is the interpolation of u associated with the points {zi}, according with Defi-

nition 4.16. The function uδpq is by construction finitely piecewise affine and L-Lipschitz,

and by the uniform continuity of u in pq it is also clear that the bound ‖u−uδpq‖L∞(pq) ≤ δ
holds true as soon as ρ is small enough. To conclude, we have thus only to check that∣∣∣uδpq(z)− uδpq(z′)

∣∣∣ ≥ 1

4L
|z − z′| (4.38)

for all z, z′ in pq. If both z and z′ belong to a same segment zizi+1, then the estimate is
true because uδpq is affine on that segment and u is L bi-Lipschitz.

Assume then that z ∈ zizi+1 and z′ ∈ zjzj+1 with j > i. If j = i + 1, thus z and
z′ belong to two consecutive segments, then by the definition of the points zi the angle

uδpq(z)⁄�uδpq(zi+1)uδpq(z
′) is at least π/3, hence

∣∣∣uδpq(z)− uδpq(z′)
∣∣∣ ≥

∣∣∣uδpq(z)− uδpq(zi+1)
∣∣∣

2
+

∣∣∣uδpq(zi+1)− uδpq(z′)
∣∣∣

2

= |z − zi+1|

∣∣∣u(zi)− u(zi+1)|
2|zi − zi+1|

+ |zi+1 − z′|

∣∣∣u(zi+1)− u(zi+2)|
2|zi+1 − zi+2|

≥ |z − z
′|

2L
,

so that (4.38) is checked.
Instead, consider what happens if j > i + 1. In this case, since uδpq(z) ∈ u(zi)u(zi+1)

and for all l > i + 1 one has u(zl) /∈ B(u(zi), ρ) ∪ B(u(zi+1), ρ), an immediate geometric
argument ensures that |uδpq(z)− uδpq(z′)| ≥

√
3ρ/2. As a consequence, we have∣∣∣u(zi)−u(zj+1)

∣∣∣ ≤ ∣∣∣uδpq(z)−uδpq(z′)
∣∣∣+2ρ ≤

Ç
1+

4

3

√
3

å∣∣∣uδpq(z)−uδpq(z′)
∣∣∣ ≤ 4

∣∣∣uδpq(z)−uδpq(z′)
∣∣∣ ,

which yields

∣∣∣uδpq(z)− uδpq(z′)
∣∣∣ ≥

∣∣∣u(zi)− u(zj+1)
∣∣∣

4
≥

∣∣∣zi − zj+1

∣∣∣
4L

≥

∣∣∣z − z′∣∣∣
4L

,
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hence (4.38) holds true also in this case and we conclude the proof. �

Proof of Lemma 4.20: Let us take a vertex wα of the gridQ′. Take then a constant
ξα ≤ `α/(3L), with ξα = `α/(3L) = r/(3L) if wα ∈ ∂Ωε, while if wα /∈ ∂Ωε the inequality
can be strict. In particular, it is admissible to ask that for any α one has

ξα <
r

2L
. (4.39)

Define now ξiα as in Definition 4.17 and, for any 1 ≤ i ≤ ī(α), let pi = wα + ξiα
Ä
wiα − wα

ä
.

If wα ∈ Ω \ ∂Ωε, then we have

u(wα)u(pi) ⊂⊂ ∆ ∀ 1 ≤ i ≤ ī(α) , (4.40)

up to possibly decrease the value of ξα. Instead, if wα ∈ ∂Ωε, then (4.40) is already ensured
by (4.6) and (4.5) in Proposition 4.12, without any need of changing ξα.

We introduce then the adjusted function uadj of Definition 4.17: to obtain the thesis,
we need to check that it fulfills the requirements of Lemma 4.20. Thanks to (4.40), we
already know that uadj : Q −→ ∆. Hence, all we have to do is to check that

|z − z′|
18L

≤
∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ 18L|z − z′| . (4.41)

for all z, z′ ∈ Q. We will do it in some steps.

Step I. For all α, u−1
adj

Å
closB

Ä
u(wα), ξα

äã
= Zα.

We start observing an important property, that is, for any α and for any z ∈ Q we have

that
∣∣∣uadj(z)− u(wα)

∣∣∣ ≤ ξα if and only if z ∈ Zα. In fact, if z ∈ Zα then z ∈ wαpi for some

1 ≤ i ≤ ī(α), and since uadj is affine in the segment wαpi, while
∣∣∣uadj(pi) − u(wα)

∣∣∣ = ξα,

then of course
∣∣∣uadj(z)− u(wα)

∣∣∣ ≤ ξα.

On the other hand, assume that z /∈ Zα: we have to show that
∣∣∣uadj(z)−u(wα)

∣∣∣ > ξα. If

z ∈ wαwiα for some 1 ≤ i ≤ ī(α), then there are three possibilities. First, if wαw
i
α ⊂ Q\Q′,

then uadj = vε is affine on the side wαw
i
α, so the claim is trivial. Second, if wαw

i
α ⊂ Q′ and z

belongs to the cross Zβ associated to the vertex wβ = wiα, then again the claim is immediate
since uadj(z) belongs to the ball B

Ä
u(wβ), ξβ

ä
, which does not intersect B

Ä
u(wα), ξα

ä
by

Remark 4.18. Lastly, if wαw
i
α ⊂ Q′ and z /∈ Zβ, then uadj(z) = u(z), thus the claim is

again obvious by the definition of ξiα.
To conclude the step, we have to consider a point z /∈ Zα which does not belong to any

side of Q starting at wα. We have again to distinguish some possible cases. If z belongs
to the cross Zβ for some β, then again the claim follows by the fact that B

Ä
u(wα), ξα

ä
∩

B
Ä
u(wβ), ξβ

ä
= ∅. If z does not belong to any cross and z ∈ Q′, then uadj(z) = u(z) so the

claim follows because, using the bi-Lipschitz property of u and the fact that ξα ≤ `α/(3L),
we have

u(z) ∈ B
Ä
u(wα), ξα

ä
=⇒

∣∣∣z − wα∣∣∣ ≤ `α
3
,
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which is impossible because |z − wα| > `α. Finally, consider the case when z ∈ Q \ Q′. In
this case, we surely have |z − wα| ≥ r by construction, thus by (4.6) and (4.39) we get∣∣∣uadj(z)− u(wα)

∣∣∣ =
∣∣∣vε(z)− u(wα)

∣∣∣ ≥ ∣∣∣u(z)− u(wα)
∣∣∣− ∣∣∣u(z)− vε(z)

∣∣∣
≥

∣∣∣z − wα∣∣∣
L

−
√

2r

6L3
≥ r

2L
> ξα ,

thus the first step is concluded.
Now, taken two points z, z′ ∈ Q, we have to show the validity of (4.41).

Step II. Validity of (4.41) if z, z′ ∈ Zα.
Let us first suppose that both z and z′ belong to a same cross Zα. By construction,

uadj is L bi-Lipschitz on each segment wαpi, hence to show (4.41) we can assume without
loss of generality that z ∈ wαp1 and z′ ∈ wαp2. Therefore, on one side we have∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ ∣∣∣uadj(z)− uadj(wα)

∣∣∣+ ∣∣∣uadj(wα)− uadj(z
′)
∣∣∣ ≤ L

Ä
|z − wα|+ |wα − z′|

ä
≤
√

2L |z − z′| .

On the other side, to estimate
∣∣∣uadj(z) − uadj(z

′)
∣∣∣ from below, assume without loss of

generality that
∣∣∣uadj(wα)− uadj(z)

∣∣∣ ≤ ∣∣∣uadj(wα)− uadj(z
′)
∣∣∣, and define z′′ ∈ wαz′ so that∣∣∣uadj(wα)− uadj(z)

∣∣∣ =
∣∣∣uadj(wα)− uadj(z

′′)
∣∣∣ .

Since the triangle uadj(wα)uadj(z)uadj(z
′′) is isosceles, then

uadj(z)Ÿ�uadj(z′′)uadj(z
′) ≥ π

2
. (4.42)

Moreover, we claim that ∣∣∣uadj(z)− uadj(z
′′)
∣∣∣∣∣∣z − z′′∣∣∣ ≥ 1

2L
. (4.43)

Indeed, if both wαw
1
α and wαw

2
α belong to Q′, then by definition∣∣∣uadj(z)− uadj(z

′′)
∣∣∣∣∣∣z − z′′∣∣∣ =

∣∣∣uadj(p1)− uadj(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ =

∣∣∣u(p1)− u(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ ≥ 1

L
,

so (4.43) holds true. Conversely, if both wαw
1
α and wαw

2
α belong to Q \ Q′, then since vε

is L+ ε bi-Lipschitz we have∣∣∣uadj(z)− uadj(z
′′)
∣∣∣∣∣∣z − z′′∣∣∣ =

∣∣∣uadj(p1)− uadj(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ =

∣∣∣vε(p1)− vε(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ ≥ 1

L+ ε
,

so again (4.43) holds true. Finally, assume that wαw
1
α ⊆ Q′ while wαw

2
α ⊆ Q \ Q′ (the

case of wαw
1
α ⊆ Q \Q′ and wαw

2
α ⊆ Q′ being completely equivalent). In this case, it must

clearly be wα ∈ ∂Ωε, hence by Remark 4.18 we know that |p1−wα| and |p2−wα| are both
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at least ξα/L = r/(3L2), thus |p1 − p2| ≥
√

2r/(3L2). Therefore, recalling again (4.6), we
have∣∣∣uadj(z)− uadj(z

′′)
∣∣∣∣∣∣z − z′′∣∣∣ =

∣∣∣uadj(p1)− uadj(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ =

∣∣∣u(p1)− vε(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣
≥

∣∣∣u(p1)− u(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ −

∣∣∣u(p2)− vε(p2)
∣∣∣∣∣∣p1 − p2

∣∣∣ ≥ 1

L
−
√

2r/(6L3)√
2r/(3L2)

=
1

2L
,

thus (4.43) has been finally checked in all the possible cases. This inequality, together
with (4.42) and again with the fact that uadj is L bi-Lipschitz on the segment z′z′′ ⊆ wαp2,
yields

∣∣∣uadj(z)− uadj(z
′)
∣∣∣ ≥ √2

2

Å∣∣∣uadj(z)− uadj(z
′′)
∣∣∣+ ∣∣∣uadj(z

′′)− uadj(z
′)
∣∣∣ã

≥
√

2

2

Ç |z − z′′|
2L

+
|z′′ − z′|

L

å
≥
√

2

4L
|z − z′| .

Summarizing, under the assumptions of this step
√

2

4L
|z − z′| ≤

∣∣∣uadj(z)− uadj(z
′)
∣∣∣ ≤ √2L|z − z′| . (4.44)

Therefore, (4.41) is shown and this step is concluded.

Step III. Validity of (4.41) if for all α one has z, z′ /∈ intZα.
Consider now the situation when neither z nor z′ belong to the interior of any cross.

In this case, we have that uadj(z) = u(z) if z ∈ Q′, while uadj(z) = vε(z) if z ∈ Q \Q′, and
the same holds for z′. Since u is L bi-Lipschitz while vε is L + ε bi-Lipschitz, the validity
of (4.41) is obvious if both z, z′ ∈ Q′, as well as if both z, z′ ∈ Q \ Q′. Therefore, we can
just concentrate on the case when z ∈ Q′, z′ ∈ Q \ Q′.

In this case, the main observation is that |z−z′| ≥
√

2r/(3L2), since both z and z′ must
be at distance at least r/(3L2) from any vertex wα ∈ ∂Ωε, because they do not belong to
any cross Zα. As a consequence, again by (4.6) we get∣∣∣uadj(z)− uadj(z

′)
∣∣∣ =

∣∣∣u(z)− vε(z′)
∣∣∣ ≥ ∣∣∣u(z)− u(z′)

∣∣∣− ∣∣∣u(z′)− vε(z′)
∣∣∣

≥ |z − z
′|

L
−
√

2r

6L3
≥ |z − z

′|
2L

,

while ∣∣∣uadj(z)− uadj(z
′)
∣∣∣ =

∣∣∣u(z)− vε(z′)
∣∣∣ ≤ ∣∣∣u(z)− u(z′)

∣∣∣+ ∣∣∣u(z′)− vε(z′)
∣∣∣

≤ L |z − z′|+
√

2r

6L3
≤
Ç
L+

1

2L

å
|z − z′| ,
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thus also in this case (4.41) is proven (keep in mind that, since u is a L bi-Lipschitz map,
then of course L ≥ 1!). In particular, under the assumptions of this step one has

|z − z′|
2L

≤
∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ 3

2
L |z − z′| . (4.45)

Step IV. Validity of (4.41) if z ∈ Zα and for all β one has z′ /∈ intZβ.
We pass now to consider the case when z belongs to some cross Zα, while z′ does not

belong to the interior of any cross. In particular, we can assume that z ∈ wαp1. To get
the above estimate in (4.41), it is enough to make a trivial geometric observation, namely,
that there exists 1 ≤ i ≤ ī(α) such that

|z − z′| ≥
√

2

2

Å
|z − pi|+ |pi − z′|

ã
,

not necessarily with i = 1. As a consequence, we can use the estimate (4.44) of Step II for
the points z and pi –which both belong to Zα– and the estimate (4.45) of Step III for the
points pi and z′ –none of which belongs to the interior of some Zβ– to get∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ ∣∣∣uadj(z)− uadj(pi)

∣∣∣+ ∣∣∣uadj(pi)− uadj(z
′)
∣∣∣ ≤ √2L|z − pi|+

3

2
L|pi − z′|

≤ 3

2

√
2L|z − z′| .

On the other hand, to get the below estimate in (4.41), let us recall that by Step I we have

uadj(z) ∈ closB
Ä
u(wα), ξα

ä
, uadj(z

′) /∈ B
Ä
u(wα), ξα

ä
. (4.46)

Since uadj(z) belongs to the radius u(wα)uadj(p1), then an immediate geometric argument
from (4.46) implies, as already observed in (4.37), that

∣∣∣uadj(z)− uadj(z
′)
∣∣∣ ≥

∣∣∣uadj(z)− uadj(p1)
∣∣∣+ ∣∣∣uadj(p1)− uadj(z

′)
∣∣∣

3
. (4.47)

Thus, using the L bi-Lipschitz property of uadj in the segment wαp1, and the estimate (4.45)
of Step III for p1 and z′, we get∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≥ |z − p1|

3L
+
|p1 − z′|

6L
≥ |z − z

′|
6L

.

Summarizing, under the assumptions of this step we have

|z − z′|
6L

≤
∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ 3

2

√
2L|z − z′| , (4.48)

hence in particular (4.41) is again checked.

Step V. Validity of (4.41) if z ∈ Zα and z′ ∈ Zβ.
The last situation which is left to consider, is when z and z′ belong to two different

crosses. This situation will be very similar to that of Step IV. Indeed, for the above estimate
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in (4.41) we can again start observing that for some 1 ≤ i ≤ ī(α) it must be

|z − z′| ≥
√

2

2

Å
|z − pi|+ |pi − z′|

ã
.

Then, we use the estimate (4.44) of Step II for the points z, pi ∈ Zα, and the estimate (4.48)
of Step IV for the points z′ ∈ Zβ and pi –which does not belong to the interior of any cross–
getting ∣∣∣uadj(z)− uadj(z

′)
∣∣∣ ≤ ∣∣∣uadj(z)− uadj(pi)

∣∣∣+ ∣∣∣uadj(pi)− uadj(z
′)
∣∣∣

≤
√

2L|z − pi|+
3

2

√
2L|pi − z′| ≤ 3L|z − z′| .

Finally, to find the below estimate in (4.41) we notice again that (4.47) is in force, and we
use the L bi-Lipschitz property of uadj in wαp1 and the estimate (4.48) of Step IV for p1

and z′, obtaining ∣∣∣uadj(z)− uadj(z
′)
∣∣∣ ≥ |z − p1|

3L
+
|p1 − z′|

18L
≥ |z − z

′|
18L

.

Thus, we have finally checked (4.41) in all the possible cases, so that the proof is concluded.
�

4.5. Finitely piecewise affine approximation on polygonal domains

In this last short section we give a proof of Theorem 0.3. In fact, the proof is quite
short, since it is just a simple adaptation of the arguments of Section 4.4.

Proof of Theorem 0.3: First of all, assume that Ω is an r̄-right polygon and that
u is piecewise affine on ∂Ω. Then, as already underlined in Remark 4.21, we can slightly
modify the proofs of Proposition 4.12 and Proposition 4.15 to get what follows. First of
all, there exist some r such that r̄ ∈ rN, an r-right polygon Ωε ⊂⊂ Ω, which is part of
the r-tiling of Ω, and an L + ε bi-Lipschitz and piecewise affine function vε : Ωε −→ R2

for which (4.3), (4.4), (4.5) and (4.6) hold. Moreover, there exists also a finitely piecewise
affine map ṽε : Ω \ Ωε −→ ∆ \ ∆ε which is C1L

4 bi-Lipschitz and which coincides with
u on ∂Ω and with vε on ∂Ωε. Therefore, glueing vε and ṽε exactly as in the proof of
Theorem 0.2, we immediately get the required C1L

4 bi-Lipschitz and (finitely) piecewise
affine approximation of u.

Consider now the general situation of a polygon Ω with a map u which is piecewise
affine on ∂Ω. Of course, there exists a right polygon “Ω and a bi-Lipschitz map Φ : Ω −→ “Ω,
having bi-Lipschitz constant C(Ω). The map u ◦ Φ−1 is a C(Ω)L bi-Lipschitz map from

the right polygon “Ω to ∆, which is piecewise affine on the boundary. Then, we can apply
the first part of the proof to get an approximation v : “Ω −→ ∆ which is finitely piecewise
affine and C1C(Ω)4L4 bi-Lipschitz. Finally, v ◦ Φ : Ω −→ ∆ is a C1C(Ω)5L4 bi-Lipschitz
approximation of u as desired. Thus, the proof is concluded by setting C ′(Ω) = C(Ω)5. �
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Remark 4.22. Observe that the (best) constant C ′(Ω) depends on the geometric features
of Ω, such as the minimum and the maximum angles of its boundary. However, by the
construction above one has that C ′(Ω) = 1 whenever Ω is a right polygon.





CHAPTER 5

A planar bi-Lipschitz extension theorem

In this chapter we let ũ : ∂D → ũ(∂D) ⊆ R2 be a bi-Lipschitz orientation-preserving
homeomorphism on the boundary of the unit square D = D(0, 1). By the Jordan curve
Theorem, its image ũ(∂D) is the boundary ∂Γ of a bounded closed Lipschitz domain
Γ ⊆ R2. As mentioned in the Introduction, our aim is to find a bi-Lipschitz extension of
ũ to the whole square D, with a Lipschitz constant which can be explicitely estimated in
terms of the Lipschitz constant of ũ times a geometric constant.

Our main result is Theorem 0.4, in which we construct a piecewise affine bi-Lipschitz
extension when ũ is a piecewise affine function, hence Γ is a closed polygon. In particular,
as observed in the Introduction and in the previous Chapter, Theorem 0.4 permits to end
the proof of Theorem 0.2.

Moreover, by an approximation argument exploiting also Theorem 0.2 of the previous
chapter, in Section 5.11 we prove Theorem 0.5, yielding the existence of a (countably
piecewise affine) bi-Lipschitz extension for any bi-Lipschitz map ũ.

5.1. Notation

In this short section, we briefly fix some notation that will be used throughout the
chapter. We list here only the notation which is common to all the different steps of the
proof of Theorem 0.4: some steps, in fact, use some additional specific notation which will
be specified only when needed.

We recall that D = [−1/2, 1/2]2 is the unit square in R2 with center at O = (0, 0). The
points of D will be always denoted by capital letters, such as A, B, P, Q and so on. On the
other hand, points of Γ will be always denoted by bold capital letters, such as A, B, P , Q
and similar. To shorten the notation and help the reader, whenever we use the same letter
for a point in ∂D and (in bold) for a point in ∂Γ, say P ∈ ∂D and P ∈ ∂Γ, this always
means that ũ(P ) = P . Similarly, whenever the same letter refers to a point P in D and (in
bold) to a point P in Γ, this always means that the extension ṽ that we are constructing
is done in such a way that ṽ(P ) = P .

For any two points P, Q ∈ D, we call PQ and `(PQ) the segment connecting P and Q
and its length. In the same way, for any P , Q ∈ Γ, by PQ and by `

Ä
PQ

ä
we will denote

the segment joining P and Q and its length. Since Γ is not, in general, a convex set, we
will use the notation PQ only if the segment PQ is contained in Γ.

Moreover, for any two points P, Q ∈ ∂D, we call P̄Q the shortest path inside ∂D
connecting P and Q, and by `(P̄Q) ∈ [0, 2] its lenght. Notice that P̄Q is well-defined

97



98 5. A PLANAR BI-LIPSCHITZ EXTENSION THEOREM

unless P and Q are opposite points of ∂D. In that case, the length `(P̄Q) is still well-

defined, being 2, while the notation P̄Q may refer to any of the two minimizing paths (and

we write P̄Q only after having specified which one). Accordingly, given two points P and

Q on ∂Γ, we write P̄Q to denote the path ũ
Ä
P̄Q
ä
. Observe that, if ũ is piecewise affine

on ∂D, then P̄Q is a piecewise affine path for any P and Q in ∂Γ.

5.2. An overview of the construction

In this section we give an overview of the proof of Theorem 0.4, which will be the object
of Sections 5.3-5.10.

First of all (Section 5.3) we determine a “central ball” “B, which is a suitable
ball contained in Γ and whose boundary touches the boundary of Γ in some points
A1, A2, . . . , AN , being N ≥ 2. The image through ṽ of the central part of the square D
will eventually be contained inside this central ball.

For any two consecutive points Ai, Ai+1 among those just described, we consider the
part of Γ which is “beyond” the segment AiAi+1 (by construction, the interior of this
segment lies in the interior of Γ). We call “primary sectors” these regions, and we give
their formal definition and study their main properties in Section 5.4. It is to be observed
that Γ is the essentially disjoint union of these primary sectors and of the “internal polygon”
having the points Ai as vertices (see Figure 2 for an example).

We start then to consider a given sector, with the aim of defining an extension of ũ
which is bi-Lipschitz between a suitable subset of the square D and this sector. In order
to do so, we first give a method (Section 5.5) to partition a sector in triangles. We will
call vertex of a sector any point P ∈ ∂Γ which is a vertex of one of these triangles. Then,
using this partition, for any point P we define a suitable piecewise affine path γ, which
starts from P and ends on a point P ′ on the segment AiAi+1 (Section 5.6). These paths
will be called “paths inside a primary sector”. We also need a bound on the lengths of
these paths, found in Section 5.7.

Then we can define our extension. Basically, the idea is the following. Take any point
P ∈ ∂D such that P is a vertex of ∂Γ inside our given sector. A temptative method to
define the extension of ũ is the following. Denoting by O the center of the square D, we
send the first part of the segment PO of the square (i.e., a suitable segment PP ′ ⊆ PO)
onto the path γ found in Section 5.6, while the last part P ′O of PO is sent onto the segment
connecting P ′ with a special point O of the central ball “B (in most cases O will be the

center of “B). Unfortunately, this method does not work if we simply send PP ′ onto γ at
constant speed; instead, we have to carefully define speed functions for all the different
vertices P of the sector, and the speed function of any point will affect the speed functions
of the other points. This will be done in Section 5.8.

At this stage, we have already defined the extension ṽ of ũ on many segments (paths
inside a primary sector) of the square, thus it is easy to extend ṽ so as to cover the whole
primary sectors. To define formally this map, and in particular to check that it is CL4 bi-
Lipschitz, is the goal of Section 5.9. Finally, in Section 5.10, we put together all the maps
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done for the different primary sectors and fill also the “internal polygon”, while keeping
the bi-Lipschitz property. The whole construction is done in such a way that the resulting
extending map ṽ is piecewise affine. In Section 5.11 we conclude the proof of Theorem
0.4, showing the existence of a smooth extension ṽ. This will obtained from the piecewise
affine map thanks to a recent result by Mora-Corral and the second author in [46], see
Theorem 5.32. Moreover, thanks to the results obtained in Chapter 2, we give the proof
of Theorem 0.5.

5.3. Choice of a “central ball”

Our first step consists in determining a suitable ball, that will be called “central ball”,
whose interior is contained in the interior of Γ, and whose boundary touches the boundary
of ∂Γ. Before starting, let us briefly explain why we do so. Consider a very simple situation,
i.e. when Γ is convex. In this case, the easiest way to build an extension ũ as required
by Theorem 0.4 is first to select a point O = ṽ(O) having distance of order at least 1/L
from ∂Γ, and then to define the obvious piecewise affine extension of ũ, that is, for any
two consecutive vertices P, Q ∈ ∂D we send the triangle OPQ onto the triangle OPQ in
the affine way. This very coarse idea does not suit the general case, because in general Γ
can be very complicated and a priori there is no reason why the triangle OPQ should be
contained in Γ. Nevertheless, our construction is somehow reminiscent of this idea. In fact,
we will select a suitable point O = u(O) ∈ Γ in such “central ball” and we will build the
image of a triangle like OPQ as a “triangular shape”, suitably defining the “sides” OP
and OQ which will be, in general, piecewise affine curves instead of straight lines. Since
our “central ball” will be sufficiently big, in a neighborhood of O of order at least 1/L the
construction will be carried out as in the convex case.

The goal of this step is only to determine a suitable “central ball” “B. The point O will
be chosen only in Section 5.10, and it will be in the interior of this ball –in fact, in most
cases O will be the center of B̂.

Lemma 5.1. There exists an open ball “B ⊆ Γ such that the intersection ∂“B∩∂Γ consists
of N ≥ 2 points A1, A2, . . .AN , taken in the anti-clockwise order on the circle ∂“B, and

with the property that ∂D is the union of the paths ¸�AiAi+1, with the usual convention
N + 1 ≡ 1.

Remark 5.2. Before giving the proof of our lemma, some remarks are in order. First
of all, since the ball “B is contained in Γ, then ∂Γ ∩ “B = ∅. As a consequence, the path
∂Γ meets all the points Ai in the same order as ∂“B, hence also the points Ai ∈ ∂D are in
the anti-clockwise order (since ũ is orientation preserving). Hence, the thesis is equivalent
to say that for each i, among the two injective paths connecting Ai and Ai+1 on ∂D, the
anti-clockwise one is shorter than the other.

In addition, notice that from the thesis one has two possibilities. If N = 2, then

necessarily `(A1A2) = 2, so that the two paths Ȧ1A2 and Ȧ2A1 have the same length. On
the other hand, if N ≥ 3, then it is immediate to observe that there must be two points

Ai and Aj, not necessarily consecutive, such that `
Ä
ĂiAj

ä
≥ 4/3. In any case, by the
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bi-Lipschitz property of ũ, this ensures that the radius of “B is at least 2
3L

, since the circle

∂“B contains two points having distance at least 4
3L

.
Finally notice that, given a ball B contained in Γ and such that ∂Γ ∩ ∂B contains at

least two points, there is a simple method to check whether “B = B satisfies the requirements
of the lemma. Indeed, B is a central ball unless there is an arc of length 2 in ∂D whose
image does not contain any point of ∂Γ ∩ ∂B.

Proof of Lemma 5.1. First of all, we define the set

S =
¶
(A,P ) ⊆ ∂Γ× ∂Γ : A 6= P and ∃B ⊆ Γ s.t. {A,P } ⊆ ∂B ∩ ∂Γ

©
.

We notice that S is symmetric and nonempty. Indeed, since Γ is a polygon, for almost all
A ∈ ∂Γ there exists an inward normal at A, i.e. a direction ν ∈ S1 such that for some
ε > 0

B
Ä
A+ εν, ε

ä
⊆ Γ.

Of course, if ν is an inward normal at A, then the above inclusion holds true for all
0 < ε ≤ ε̄ = ε̄(A, ν) and then any point P ∈ ∂Γ ∩ B(A + ε̄ν, ε̄) is such that (A,P ) ∈ S.
In the following, we will denote by N(A) ⊆ S1 the set of inward normals at A. Notice
that, for any A ∈ ∂Γ, the set N(A) is either empty (at internal corners), or a single point,
or a proper closed interval of S1 (at external corners). Then, we will say that ν < ν ′ if ν ′

follows ν in the anti-clockwise order on N(A). In the same way, we will say that A < P

on ∂Γ if A is the first point of ĀP according to the anti-clockwise order. Moreover, we
denote by B(A,P ) a ball contained in Γ such that {A,P } ⊆ ∂B(A,P ) ∩ ∂Γ.

Then, there are two cases. The first case is when there exists (A,P ) ∈ S with `(ĀP ) =
2. If this happens, then by Remark 5.2 any ball B(A,P ) is a central ball.

Now, let us consider the case in which `(ĀP ) < 2 for all (A,P ) ∈ S. By a compactness

and continuity argument we take (A,P ) ∈ S such that `(ĀP ) is maximal in S. Indeed it
is easy to see that, for all n ∈ N, the set¶

(A,P ) ∈ S : `(ĀP ) ≥ 1/n
©

is compact and that the length of the minimal arcs is a continuous function. Moreover,
supposing e.g. that A < P , among the balls contained in Γ and containing A and P on
their boundary, we take B(A,P ) = B

Ä
A+ ε̄ν, ε̄

ä
such that ν is maximal in N(A).

The proof of the lemma is then concluded once we have shown the following

Claim: There is some point R ∈ ∂B(A,P ) ∩ ∂Γ \ ĀP .

In fact, let R be a point in ∂B(A,P )∩∂Γ\ ĀP , which exists thanks to the claim, and

consider the three points A, P and R on ∂D and the corresponding shorter paths ĀP , ĀR

and P̄R. Since R 6∈ ĀP by construction, by the maximality of `(ĀP ) we derive that ĀR

does not contain P and P̄R does not contain A. Thus, ∂D is the essentially disjoint union

of the three paths ĀP , ĀR and P̄R. But then, if we take any path of length 2 in ∂D, this
intersects at least one between A, P and R. Thanks to the last observation of Remark 5.2,
this gives a central ball “B = B(A,P ).
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Let us now prove the claim. We show that, if such R does not exist, then the pair

(A,P ) is not maximal, thus contradicting our assumptions. Since `(ĀP ) < 2, we can find

two points A′,P ′ ∈ ∂Γ such that A′ < A, P < P ′, Ă′P ′ ⊇ ĀP and `(Ă′P ′) < 2 (see

Figure 1). Moreover, since we have assumed that ∂B(A,P ) ∩ ∂Γ \ ĀP = ∅, there exists

δ > 0 such that dist(∂Γ\Ȧ′P ′, ∂B(A,P )) ≥ δ. Then, by a simple continuity argument, we
claim that there exist two pointsA′ ≤ A′′ ≤ A and P ≤ P ′′ ≤ P ′ such that (A′′,P ′′) ∈ S
and the center of the ball B(A′′,P ′′) lies out of the region Θ shaded in Figure 1, i.e. the

closed subset of Γ enclosed by ĀP and by the two radii of B(A,P ) passing through A
and P . By the maximality of ν, at least one between A′′ and P ′′ must be different

from A, resp. P . Then, since A′′ ≥ A′ and P ′′ ≤ P ′, we have that Ȧ′′P ′′ ⊇ ĀP and

`(Ȧ′′P ′′) > `(ĀP ), thus contradicting the maximality of (A,P ) in S.

P ′

P

ν

δ-neighborhood of B(A,P ) in Γ

A

A′

Θ

Figure 1. Argument for the proof of the Claim of Lemma 5.1

�

5.4. Primary sectors

In this step, we will give the definition of “sectors” of Γ, we will study their main
properties, and we will call some of them “primary sectors”. Let us start with some
notation.

Definition 5.3. Let A and B be two points in ∂Γ such that intAB ⊆ int Γ. Let

moreover ĂB be, as usual, the image under u of the shortest path connecting A and B on
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∂D (or of a given one of the two injective paths, if A and B are opposite). We will call
sector between A and B, and denote it as S(AB), the subset of Γ enclosed by the closed

path AB ∪ ĂB.

Remark 5.4. It is useful to notice what follows. If A, B, C, D ∈ ∂Γ, and C, D ∈
ĂB, then C̆D ⊆ ĂB. Moreover, if both intAB and intCD lie in the interior of Γ, then
one also has

S(CD) ⊆ S(AB) .

We observe now a very simple property, which will play a crucial role in our future
construction, namely that the length of a shortest path in ∂D can be bounded by the
length of the corresponding segment in Γ.

Lemma 5.5. Let P , Q be two points in ∂Γ such that the segment PQ is contained in
Γ. Then one has

`
Ä
P̄Q
ä
≤
√

2L `(PQ) . (5.1)

Proof. The inequality simply comes from the Lipschitz property of u, and from the
fact that D is a square. Indeed,

`
Ä
P̄Q
ä
≤
√

2 `(PQ) ≤
√

2L `(PQ) .

�

Remark 5.6. We observe that, of course, the estimate (5.1) holds true because P̄Q is
the shortest path between P and Q in ∂D (however, this does not necessarily imply that

P̄Q is the shortest path between P and Q in ∂Γ). We will see that the estimate (5.1) is
the reason why we had to perform the complicated construction of Lemma 5.1 so as to find

points Aj on ∂Γ such that each path ¸�AiAi+1 does not pass through the other points Aj.

We now fix a central ball B̂ as in Lemma 5.1 and define the “primary sectors”, which
are the sectors between consecutive points Ai.

Definition 5.7. We call primary sector each of the sectors S(AiAi+1), being Aj the

points of B̂ obtained by Lemma 5.1.

Notice that the above definition makes sense, because the points Ai are all on the
boundary of the central ball “B and “B does not intersect ∂Γ, thus the open segments
intAiAi+1 are entirely contained in the interior of Γ. Moreover, by the claim of Lemma 5.1
it follows that the sectors S(AiAi+1) are essentially pairwise disjoint. The set Γ is the
essentially disjoint union of the sectors S(AiAi+1) and of the polygon S = A1A2 . . .AN ,
as Figure 2 illustrates.

5.5. Triangulation of primary sectors

In view of the preceding sections, we aim to extend the function ũ in order to cover
a whole given primary sector. This extension of the function ũ, which is the main part
of the proof, will be quite delicate and long, being the scope of Sections 5.5-5.9. In this
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S

A4

A1

A3

O

Figure 2. A set Γ with four primary sectors

section, we describe a method to partition a given sector in triangles. Let us then start
with a technical definition.

Definition 5.8. Let S(AB) be a sector, and let P , Q and R be three points in ĂB
such that the triangle PQR is not degenerate and is contained in Γ. We say that PQR is
an admissible triangle if each of its open sides is entirely contained either in ∂Γ, or in Γ\∂Γ.

If PQR is an admissible triangle, we say that PR is its exit side if P̆R = P̄Q ∪ Q̄R.

Figure 3 shows a sector S(AB), drawn in black, with five numbered triangles, having
dotted sides. Triangles 1 and 3 are not admissible because they contain a side which is
neither all contained in ∂Γ, nor all in Γ \ ∂Γ, in particular triangle 1 has a side which is
half in ∂Γ and half in Γ \ ∂Γ, while triangle 3 has a side which is all contained in Γ \ ∂Γ
except for a point. On the other hand, triangles 2, 4 and 5 are admissible, and an arrow
indicates the exit side for each of them.

Remark 5.9. It is important to observe that each admissible triangle has exactly one
exit side. As the figure shows, an admissible triangle can have all the three sides in the
interior of Γ, as triangle 2, or two, as triangle 5, or just one, as triangle 4. In any case,
the exit side is always in the interior of Γ.

It is also useful to understand the reason for the choice of the name. Consider a

point T ∈ P̆R, being PR the exit side of the admissible triangle PQR, and consider the
segment TO which connects T = ũ−1(T ) to the center O of the square D. If ṽ : D → Γ is
an extension as required by Theorem 0.4, then the image of the segment TO under ṽ must
be a path inside Γ which connects T to O. This path must clearly exit from the triangle
PQR through the exit side PR.
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1

5

3

A

B

4

2

Figure 3. Some (admissible or not) triangles in a sector

Before stating and proving the main result of this step we fix some further notation.
Recall that Γ is a polygon obtained as the image of ∂D under ũ. Hence, ∂D is divided in
a finite number of segments and ũ is affine on each of these segments. We will then call
vertex on ∂D each extreme point of any of these segments. Therefore, the four corners of
∂D are of course vertices, but there are usually much more vertices. Correspondingly, we
call vertex on ∂Γ the image of each vertex on ∂D. Thus, all the points of ∂Γ which are
“vertices” in the usual sense of the polygon (i.e. corners), are clearly also vertices in our
notation. However, there may be also other vertices which are not corners, hence which are
in the interior of some segment contained in ∂Γ. We will also call side in ∂Γ any segment
connecting two consecutive vertices on ∂Γ. Hence, some of the segments which are sides
of ∂Γ in the sense of polygons are in fact sides according to our notation, but there might
be also some segments contained in ∂Γ which are not sides, but finite union of sides.

Finally, notice that it is admissible to add (finitely many!) new vertices to ∂D and then
correspondingly to ∂Γ. This means that we will possibly split some side in two or more
parts, which is possible since of course ũ will be affine on each of those parts.

Remark 5.10. As an immediate application of this possibility of adding a finite set of
new vertices, we will assume without loss of generality that for any two consecutive vertices
P and Q in D, one always has P “OQ ≤ 1/50L.

We can finally state and prove the main result of this step.

Lemma 5.11. Let S(AB) be a sector. There exists a partition of S(AB) in a finite
number of admissible triangles such that:

a) each vertex in S(AB) is vertex of some triangle of the partition,
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b) for each triangle PQR of the partition, whose exit side is PR, the orthogonal
projection of Q on the straight line through PR lies in the closed segment PR
(equivalently, the angles PR̂Q and RP̂Q are at most π/2).

To show this result, it will be convenient to associate to any possible sector a number,
which we will call “weight”.

Definition 5.12. Let S(AB) be a sector, and for any point P ∈ ĂB (different from
A and B) let us call P⊥ the orthogonal projection of P onto the straight line through
AB. We will say that AB “sees” P if P⊥ belongs to the closed segment AB and the
open segment PP⊥ is entirely contained in the interior of Γ. Let now ω be the number of

sides of the path ĂB. We will say that the weight of the sector S(AB) is ω if AB sees

at least a vertex P in ĂB. Otherwise, we will say that weight of S(AB) is ω + 1
2
.

ω = 2, 5 ω = 6, 5ω = 3, 5

A

B

B

A

B

ω = 2

V

B

ω = 2

A
A

B

A

Figure 4. Some simple sectors and their weights

In other words, the weight of any sector is an half-integer corresponding to the number
of sides of the sector, augmented of a “penalty” 1/2 in case that the segment AB does

not see any vertex of ĂB. For instance, Figure 4 shows some simple sectors and the
corresponding weights. Notice that the last sector has non-integer weight because AB
does not see the vertex V , since the segment V V ⊥ lies also out of Γ. We now show a
simple technical lemma, and then we pass to the proof of Lemma 5.11.

Lemma 5.13. If the sector S(AB) has a non-integer weight, then there exists a side

A+B− in ĂB such that AB sees only points of the side A+B−.

Proof. First, notice that the property that we are going to show appears evident from
the last three examples of Figure 4.

Let us now pass to the proof. For any point D which belongs to the segment AB,

there exists exactly a point C ∈ ĂB such that AB sees C and C⊥ = D. This point
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is simply obtained by taking the half-line orthogonal to AB, starting from D and going
inside the sector: C is the first point of this half-line which belongs to ∂Γ, and in particular

it belongs to ĂB by construction.
The proof is then concluded once we show that all such points Cs are on the same side.

Indeed, if it was not so, there would be some such C which is a vertex, contradicting the
fact that the sector has non-integer weight. �

Proof of Lemma 5.11. We will show the result by induction on the (half-integer)
weight of the sector.

If S(AB) has weight 2, which is the least possible weight, then the two sides of the
sector must be AC and CB for a vertex C. Moreover, AB sees C, because otherwise
the weight would be 2.5. Hence, the sector coincides with the triangle ABC, which is a
(trivial) partition as required.

Let us now consider a sector of weight ω > 2, and assume by induction that we already
know the validity of our claim for all the sectors of weight less than ω. In the proof, we
distinguish three cases.

A

C

B

A

BC

A

C
B

Figure 5. The three possible cases in Lemma 5.11

Case 1. ω ∈ N.
In this case, there are by definition some vertices which are seen by AB. Among these

vertices, let us call C the one which is closest to the segment AB. Let us momentarily
assume that neither AC nor BC is entirely contained in ∂Γ. Then, by the minimality
property of C, the open segments AC and BC lie entirely in the interior of Γ, as depicted
in Figure 5 (left). Hence, one can consider the sectors S(AC) and S(BC), as ensured by
Remark 5.4. Moreover, of course the weights of both S(AC) and S(BC) are strictly less
than ω, so by inductive assumption we know that it is possible to find a suitable partition
in triangles for both the sectors S(AC) and S(BC). Finally, since by construction the
sectors S(AC) and S(BC) are essentially disjoint, and the union of them with the triangle
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ABC is the whole sector S(AB), putting together the two decompositions and the triangle
ABC we get the desired partition of S(AB).

Let us now consider the possibility that AC ⊆ ∂Γ (if, instead, BC ⊆ ∂Γ, then the
completely symmetric argument clearly works). If it is so, we can anyway repeat almost
exactly the same argument as before. In fact, BC is entirely contained in the interior of
Γ, again by the minimality property of C and by the fact that ω > 2. Moreover, the sector
S(BC) has weight strictly less than ω, so by induction we can find a good partition of
S(BC), and adding the triangle ABC we get the desired partition of S(AB).

Case 2. ω 6∈ N, A+ 6≡ A, B− 6≡ B.
In this case, we can use the same idea of Case 1 with a slight modification. In fact,

define C ∈ A+B− the point such that C⊥ is the middle point of the segment AB (this
point is well-defined as shown in the proof of Lemma 5.13). Again, by definition and by
Lemma 5.13 we have that the open segments AC and BC are in the interior of Γ, see
Figure 5 (center).

Let us then decide that the point C is a new vertex of ∂Γ. This means that from now
on we consider the point C as a vertex, and consequently we stop considering A+B− as a
side of ∂Γ, instead, we think of it as the union of the two sides A+C and CB−. However,
notice carefully that this choice modifies the weight of S(AB)! In fact, the number of sides
of S(AB) is increased by 1, and since AB sees C by construction, then the new weight
of S(AB) is ω + 1

2
.

We can now argue as in Case 1. In fact, again the sector S(AB) is the union of the
triangle ABC with the two sectors S(AC) and S(BC), so it is enough to put together
the triangle ABC and the two partitions given by the inductive assumption applied on
the sectors S(AC) and S(BC). To do so, we have of course to be sure that the weight of
both sectors is strictly less than the original weight of S(AB), that is, ω (and not ω+ 1

2
!).

This is clear by the assumption that A+ 6≡ A and B− 6≡ B, since the side A+B− is

neither the first nor the last of the path ĂB, thus the weight of both sectors is at most
ω − 1.

Case 3. ω 6∈ N and A+ ≡ A or B− ≡ B.
By symmetry, let us assume that A+ ≡ A. In this case, we cannot argue exactly as in

Case 2, because if we did so the sector S(BC) may have weight either ω or ω − 1
2
, and in

the first possibility we could not use the inductive hypothesis.
Anyway, it is enough to make a slight variation of the argument of Case 2. Define C,

as in Figure 5 (right), the point of AB− such that BC is orthogonal to AB−. This time,
it is clear that the open segment BC lies in the interior of Γ. Let us now decide, exactly as
in Case 2, that the point C is from now on a vertex, thus changing the weight of S(AB)
from ω to ω + 1

2
.

By construction, the segment AB sees the point C, and the sector S(AB) is the union
of the sector S(BC) and of the triangle ABC. Hence, we conclude exactly as in the other
cases if we can use the inductive assumption on the sector S(BC). In this case, notice
that the number of sides of S(BC) equals exactly the original number of sides of S(AB),
that is, ω − 1

2
. Hence, in principle, the weight of S(BC) could be either ω − 1

2
or ω, as
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observed before. But in fact, by our definition of C, we have that the segment BC sees
the vertex B−, so that the actual weight of S(BC) is ω − 1

2
, hence strictly less than ω,

and then we can use the inductive assumption. �

To give some examples, let us briefly consider the three cases drawn in Figure 5. In
the left case, the weight of S(AB) was ω = 12, and the weights of the sectors S(AC) and
S(BC) are both 6. In the central case, the weight of S(AB) was ω = 6.5, then it becomes
7 because we add the new vertex C, and the weights of the sectors S(AC) and S(BC)
are respectively 3 and 4.5. Finally, in the right case, the weight of S(AB) was ω = 7.5, it
becomes 8 as we add C, and the weight of the sector S(BC) is 7.

An explicit example of a sector with a partition in triangles done according with the
construction of Lemma 5.11 can be seen in Figure 6.

We conclude this step by noticing a natural partial order on the triangles of the partition
given by Lemma 5.11 and by adding some remarks.

Definition 5.14. Let S(AB) be a sector, and consider a partition satifying the prop-
erties of Lemma 5.11. We define the partial order ≤ between the triangles of the partition
as PQR ≤ STU if the exit side of PQR is one of the sides of STU . Equivalently, let
PQR and STU be two triangles of the partition, being SU the exit side of the latter.

One has PQR ≤ STU if and only if all the points P , Q and R belong to the path S̄U .

T 1

T 2

T 3 −T 4 −T 5

T 6

T 7

T 9

T 8

P

T 10

B

A

Figure 6. Partition of a sector in triangles, and natural sequence of trian-
gles related to some P

Remark 5.15. Notice that the relation defined above admits as greatest element the
triangle having AB as its (exit) side. Moreover, each triangle except the maximizer has a
unique successor.

We remark also that, since the triangles are a finite number, in all the following con-
structions we will always be allowed to consider a single triangle of the partition and to
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assume that the costruction has been done in all the triangles which are smaller in the
sense of the order.

Definition 5.16. Let S(AB) be a sector subdivided in triangles according to

Lemma 5.11, and consider a point P ∈ ĂB = ∂Γ ∩ S(AB). We will call natural
sequence of triangles related to P the sequence

Ä
T 1, T 2, . . . , T N

ä
of triangles of the

partition satisfying the following requirements,

• T 1 is the minimal triangle containing P in the sense of the order of Definition
5.14,
• T N is the triangle having AB as its (exit) side,
• T i+1 is the successor of T i for all 1 ≤ i ≤ N − 1.

It is immediate, thanks to the above remark, to observe that this sequence is univoquely
determined. Figure 6 shows a sector subdivided in triangles and a point P with the related
natural sequence of triangles

Ä
T 1, . . . , T 10

ä
, with the arrows on the exit sides.

5.6. Paths inside primary sectors

In this step we define non-intersecting piecewise affine paths starting from any point

P ∈ ĂB, where S(AB) is a given sector. This is the most important and delicate point
of our construction. The goal of this step is to provide the “first part” of the piecewise
affine path from a vertex P to the center O, that is, the part which is inside the primary
sector S(AiAi+1) to which P belongs. Of course, to eventually obtain the bi-Lipschitz
property for the function ṽ, we have to take care that all the paths starting from different
points P 6= Q do not become neither too far nor too close to each other. We can now give
a simple definition and then state and prove the main result of this step.

Definition 5.17. Let S(AB) be a sector, and let P ∈ ∂Γ ∩ S(AB). Let more-
over

Ä
T 1, T 2, . . . , T N

ä
be the natural sequence of triangles related to P , according

to Definition 5.16. We will call good path corresponding to P any piecewise affine
path PP 1P 2 · · ·PN such that each P i belongs to the exit side of the triangle T i (then
PN ∈ AB). Notice that N depends on P .

Figure 7 shows a sector S(AB) subdivided in triangles as in Lemma 5.11 and shows
two good paths corresponding to the points P and Q.

Lemma 5.18. Let S(AB) be a sector. Then there exist good paths PP 1P 2 · · ·PN

corresponding to each vertex P of ∂Γ ∩ S(AB), with N = N(P ), satisfying the following
properties:

(i) for any P and for any 1 ≤ i ≤ N(P ), the segment P i−1P i makes an angle of at
least arcsin

Ä
1

6L2

ä
with the side of T i to which P i−1 belongs, and an angle of at

least π/12 = 15◦ with the exit side of T i;

(ii) for any P , `
Ä
ṖPN

ä
= `(PP 1) + `(P 1P 2) + · · ·+ `(PN−1PN) ≤ 4 `

Ä
ĂB

ä
;
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P

A

Q5

Q1

Q

Q4

P 1

P 3

P 2

P 4

P 5

P 6

P 10

B

P 9

Q3

Q2

P 8
P 7

Figure 7. A sector with two good paths corresponding to P and Q

(iii) for any P , Q, if for some 1 ≤ i ≤ N(P ) and 1 ≤ j ≤ N(Q) one has that P i and
Qj belong to the same exit side of some triangle, then

`
Ä
P̄Q
ä

7L
≤ `
Ä
P iQj

ä
≤ `
Ä
P̄Q

ä
,

and moreover, if i < N(P ) then

`
Ä
P i+1Qj+1

ä
≤ `
Ä
P iQj

ä
;

(iv) the piecewise affine paths PP 1P 2 · · ·PN are pairwise disjoint .

For the sake of clarity, let us briefly discuss the meaning of the requirements of
Lemma 5.18, having in mind the example of Figure 7. Condition (i), considered for the
point P and with i = 3 (so that T i = CDE) means that

sin
Å
P 3P̂ 2D

ã
≥ 1

6L2
, sin

Å
P 3P̂ 2E

ã
≥ 1

6L2
, P 2P̂ 3C ≥

π

12
, P 2P̂ 3E ≥

π

12
.

Condition (ii) just means that `
Ä
ṖP 7

ä
≤ 4 `

Ä
ĂB

ä
, where ṖP 7 denotes the piecewise

affine path PP 1P 2 · · ·P 7. Similarly, `
Ä
Q̇Q3

ä
≤ 4 `

Ä
ĂB

ä
.

Condition (iii) ensures that

`
Ä
P̄Q
ä

7L
≤ `
Ä
P 7Q3

ä
≤ `
Ä
P 6Q2

ä
≤ `
Ä
P̄Q

ä
.

In particular, concerning the second half of (iii), notice that by construction if P i and Qj

belong to the same exit side of a triangle, then also the points P i+1 and Qj+1 belong to
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the same exit side of a triangle and so on. Hence, the second half of (iii) is saying that the
function l 7→ `

Ä
P i+lQj+l

ä
is a decreasing function of l for 0 ≤ l ≤ N(P )− i = N(Q)− j.

Finally, condition (iv) illustrates the whole idea of the construction of this step, that
is, the piecewise affine paths starting from the external part ∂Γ ∩ S(AB) and arriving to
the segment AB do not intersect to each other, as in Figure 7.

Proof of Lemma 5.18. We will show the thesis arguing by induction on the weight
of the structure S(AB), as in Lemma 5.11. In fact, instead of proving that the thesis is
true for structures of weight 2 (recall that this is the minimal possible weight) and then
giving an inductive argument, we will prove everything at once. In other words, we take a
structure S(AB) and we assume that either S(AB) has weight 2, or the result has been
already shown for all the structures of weight less than the weight of S(AB).

Let us call C ∈ ∂Γ ∩ S(AB) the point such that ABC is the greatest triangle of the
partition of S(AB) with the order of Definition 5.14.

Consider now the segment AC, which lies entirely either in the interior of Γ or on ∂Γ.
In the first case, S(AC) is a sector of weight strictly less than that of S(AB). Then,
by inductive assumption, there are piecewise affine paths PP 1 · · ·PN for each vertex

P ∈ ĀC, with PN ∈ AC, satisfying conditions (i)–(iv) with S(AC) in place of S(AB).
We have then to connect the points PN on AC with the segment AB. In the second

case, i.e. if AC ⊆ ∂Γ, then ĀC = AC, thus we have to connect all the vertices contained
in AC (which are not necessarily only A and C!) with the segment AB. The same
considerations hold for BC in place of AC.

The construction of the segments between AC ∪ BC and AB will be divided, for
clarity, in several parts.

Part 1. Definition of C1.
By definition, C is a vertex of ∂Γ. Hence, the first thing to do is to define the good

path corresponding to C, that is a suitable segment CC1 with C1 ∈ AB. Let us first
define two points C+ and C−, on the straight line containing AB, as in Figure 8. These
two points are defined by

`(BC+) = `(BC) , `(AC−) = `(AC) .

In Figure 8, C± both belong to the segment AB, but of course it may even happen that
C+ stays above A, and/or that C− stays below B. Let us now give a temptative definition

of C1 by letting C̃1 be the point of AB such that

`
Ä
ĀC
ä

`
Ä
ĀB
ä =

`(AC̃1)

`
Ä
AB

ä . (5.2)

Taking C1 = C̃1 would be a good choice from many points of view, but unfortunately one
would eventually obtain estimates weaker than (i)–(iv).

Instead, we give our next definition. We define C1 to be the point of the segment
C−C+ which is closest to C̃1. In other words, we can say that we set C1 = C̃1 if C̃1
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belongs to C+C−, while otherwise we set C1 = C+ (resp. C1 = C−) if C̃1 is above C+

(resp. below C−).

C+

C1

C−

A

B

C

Figure 8. The triangle ABC with the points C+, C− and C1

Notice that C1 belongs to AB, since so does C̃1 thanks to (5.2). It is also important
to underline that

`
Ä
ĀC
ä
≤
√

2L `
Ä
AC1

ä
, `

Ä
B̄C
ä
≤
√

2L `
Ä
BC1

ä
. (5.3)

By symmetry, let us only show the first inequality. Recall that by (5.1) we know

`
Ä
ĀC
ä
≤
√

2L `
Ä
AC

ä
, `

Ä
ĀB
ä
≤
√

2L `
Ä
AB

ä
.

As a consequence, either C1 = C−, and then

`
Ä
AC1

ä
= `
Ä
AC−

ä
= `
Ä
AC

ä
≥
`
Ä
ĀC
ä

√
2L

,

or `
Ä
AC1

ä
≥ `
Ä
AC̃1

ä
, and then by (5.2)

`
Ä
AC1

ä
≥ `
Ä
AC̃1

ä
= `
Ä
ĀC
ä `ÄABä
`
Ä
ĀB
ä ≥ `

Ä
ĀC
ä

√
2L

.

Recall now that, to show the thesis, all we have to do is to take each vertex D ∈ AC∪BC
and to find a suitable corresponding point D′ ∈ AB, in such a way that the require-
ments (i)–(v) are satisfied. Having defined C1, we have then to send the points PN of AC
in AC1 and those of BC in BC1.
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We claim that the two segments can be considered independently, that is, we can limit
ourselves to describe how to send BC on BC1 and check that the properties (i)–(iv) hold

for points of B̆C. Indeed, if we do so, by symmetry the same definitions can be repeated

for AC, and the properties (i)–(iv) hold separately for points of B̆C and ĀC. The only
thing which would be missing, then, would be to check the validity of (iii) for two points

P ∈ ĀC and Q ∈ B̆C. Moreover, this will be trivially true, because since C belongs to
both the segments AC and BC, then it is enough to use (iii) once with P and C, and
once with C and Q, recalling that clearly

`
Ä
P̄Q
ä

= `
Ä
P̄C
ä

+ `
Ä
C̄Q
ä
, `

Ä
P iQj

ä
= `
Ä
P iC1

ä
+ `
Ä
C1Qj

ä
.

For this reason, from now on we will concentrate ourselves only on the segment BC. We

will callD the generic point ofBC, which clearly corresponds to PN−1 for some P ∈ B̆C,
as discussed at the beginning of the proof.

Part 2. Construction for the case C1 = C+.
In this case, for any D ∈ BC we set its image as the point D′ ∈ BC1 for which

`(BD) = `(BD′). Then in particular all the segments DD′ are parallel to CC1. Let us
now check the validity of (i)–(iii), since (iv) is trivially true.

Let us start with (i). Given D ∈ BC, and D′ its image, call β = AB̂C ∈ (0, π/2].
Then one has

DD̂′B = D′D̂B =
π − β

2
, DD̂′A = D′D̂C =

π + β

2
,

thus (i) holds true.
Let us now consider (ii). Given a point D ∈ BC, by construction one has

`
Ä
DD′

ä
≤ `
Ä
CC1

ä
≤ `
Ä
AC

ä
≤ `
Ä
ĀC

ä
. (5.4)

We can then consider separately two cases. If BC ⊆ ∂Γ, then one simply has P ≡D and
PN ≡ P 1 ≡D′, so clearly

`
Ä
ṖPN

ä
= `
Ä
DD′

ä
≤ `
Ä
ĀC

ä
≤ `
Ä
ĂB

ä
.

On the other hand, if the open segment BC lies in the interior of Γ, then one has

`
Ä˝�PPN−1

ä
≤ 4`

Ä
B̆C

ä
(5.5)

by inductive assumption, thus (5.4) and (5.5) give

`
Ä
ṖPN

ä
= `
Ä˝�PPN−1

ä
+ `
Ä
DD′

ä
≤ 4`

Ä
B̆C

ä
+ `
Ä
ĀC

ä
≤ 4`

Ä
ĂB

ä
,

hence also (ii) is done.
It remains now to consider (iii). Thus we take two points D ≡ PN−1 and E ≡ Q

Ñ−1

on BC, denoting for brevity N = N(P ) and Ñ = N(Q). We have to consider separately
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the two cases arising if BC lies in the boundary or in the interior of Γ. In the first case,
P ≡D and Q ≡ E, thus by the Lipschitz property of u we have

`
Ä
P̄Q
ä

L
≤ `
Ä
P̄Q

ä
= `
Ä
DE

ä
= `
Ä
D′E′

ä
,

so that (iii) is trivially true. In the second case, `
Ä
D′E′

ä
= `
Ä
DE

ä
, so (iii) is true by

inductive assumption.

To conclude the proof, we now have to see what happens when C1 6= C+. We will
further subdivide this last case depending on whether β > π/12 = 15◦ or not, being

β = AB̂C.

Part 3. Construction for the case C1 6= C+, β ≥ π/12.
In this case, for any D ∈ BC we define D′ ∈ BC1 as the point satisfying

`
Ä
BD′

ä
= min

®
`
Ä
BD

ä
, `
Ä
BC1

ä
−
`
Ä
P̄C
ä

7L

´
, (5.6)

being as usual P ∈ B̆C the point such that D = PN−1. Observe that this definition
makes sense since, also using (5.3), one has that the minimum in (5.6) is between 0 and
`
Ä
BC1

ä
for each D ∈ BC. In particular, the minimum is strictly increasing between 0

and `
Ä
BC1

ä
as soon as D moves from B to C, so (iv) is already checked. Let us then

check the validity of (i)–(iii).
We first concentrate on (i). Just for a moment, let us call D∗ ∈ BC+ the point

for which `
Ä
BD

ä
= `
Ä
BD∗

ä
, so that the triangle BDD∗ is isosceles. Therefore, one

immediately has

DD̂′B ≥D‘D∗B =
π − β

2
≥ π

4
, D′D̂C ≥D∗D̂C =

π + β

2
≥ π

2
. (5.7)

Moreover, by construction it is clear that

DD̂′A ≥DB̂A = β ≥ π

12
. (5.8)

To conclude, we have to estimate D′D̂B, and we start claiming the bound

`
Ä
BD′

ä
≥
`
Ä
BD

ä
√

2L2
. (5.9)

In fact, recalling (5.6), either `
Ä
BD′

ä
= `
Ä
BD

ä
, and then (5.9) clearly holds, or otherwise

by (5.3) and the Lipschitz property of u

`
Ä
BD′

ä
= `
Ä
BC1

ä
−
`
Ä
P̄C
ä

7L
≥
`
Ä
B̄C
ä

√
2L
−
`
Ä
P̄C
ä

7L
≥
`
Ä
B̄C
ä
− `
Ä
P̄C
ä

√
2L

=
`
Ä
B̄P
ä

√
2L
≥
`
Ä
B̆P

ä
√

2L2

≥
`
Ä
BD

ä
√

2L2
,
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thus again (5.9) is checked. Concerning the last inequality, namely `
Ä
B̆P

ä
≥ `
Ä
BD

ä
, this

is an equality if the segment BC belongs to ∂Γ, while otherwise it is true by inductive

assumption on the sector S(B̆C), applying (iii) to the points P and Q ≡ B. Consider
now the triangle DBD′: immediate trigonometric arguments tell us that

`
Ä
DD′

ä
sin
Ä
D′D̂B

ä
= `
Ä
BD′

ä
sin β , `

Ä
BD

ä
sin β = `

Ä
DD′

ä
sin
Å
D′D̂B + β

ã
,

from which we get, using also (5.9),

sin
Ä
D′D̂B

ä
=
`
Ä
BD′

ä
`
Ä
BD

ä sin
Å
D′D̂B + β

ã
≥ sin(π/12)√

2L2
≥ 1

6L2
. (5.10)

Putting together (5.7), (5.8) and (5.10), we conclude the inspection of (i).
Concerning (ii), it is enough to observe that

`
Ä
DD′

ä
`
Ä
ĀC

ä ≤ `
Ä
DD′

ä
`
Ä
AC

ä =
sin
Ä
CÂB

ä
sin
Ä
DD̂′A

ä ≤ 1

sin(15◦)
≤ 4 . (5.11)

Therefore, as in Part 2, either BC ⊆ ∂Γ, and then

`
Ä
ṖPN

ä
= `
Ä
DD′

ä
≤ 4`

Ä
ĀC

ä
≤ 4`

Ä
ĂB

ä
,

or thanks to the inductive assumption one has

`
Ä
ṖPN

ä
= `
Ä˝�PPN−1

ä
+ `
Ä
DD′

ä
≤ 4`

Ä
B̆C

ä
+ 4`

Ä
ĀC

ä
= 4`

Ä
ĂB

ä
,

so (ii) is again easily checked.
Let us now consider (iii). As in Part 2, we take on BC two points D ≡ PN−1

and E ≡ Q
Ñ−1

with N = N(P ) and Ñ = N(Q), and we assume by symmetry that

`
Ä
BD

ä
≤ `

Ä
BE

ä
. Since it is surely `

Ä
DE

ä
≤ `

Ä
P̄Q

ä
, either as a trivial equality if

BC ⊆ ∂Γ, or by inductive assumption otherwise, showing (iii) consists in proving that

`
Ä
P̄Q
ä

7L
≤ `
Ä
D′E′

ä
≤ `
Ä
DE

ä
. (5.12)

We start with the right inequality. Recalling the definition (5.6), if `
Ä
BD′

ä
= `
Ä
BD

ä
then, since `

Ä
BE′

ä
≤ `
Ä
BE

ä
, one has

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≤ `
Ä
BE

ä
− `
Ä
BD

ä
= `
Ä
DE

ä
.

On the other hand, if

`
Ä
BD′

ä
= `
Ä
BC1

ä
−
`
Ä
P̄C
ä

7L
,



116 5. A PLANAR BI-LIPSCHITZ EXTENSION THEOREM

then we get

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≤

Ñ
`
Ä
BC1

ä
−
`
Ä
Q̄C
ä

7L

é
−

Ñ
`
Ä
BC1

ä
−
`
Ä
P̄C
ä

7L

é
=
`
Ä
P̄Q
ä

7L
≤ `
Ä
DE

ä
,

where again the last inequality is true either by the Lipschitz property of u if PQ = DE,
or by inductive assumption otherwise. Thus, the right inequality in (5.12) is established,
and we pass to consider the left one.

Still recalling (5.6), if `
Ä
BE′

ä
= `
Ä
BE

ä
then

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≥ `
Ä
BE

ä
− `
Ä
BD

ä
= `
Ä
DE

ä
≥
`
Ä
P̄Q
ä

7L
,

being again the last equality true either by the Lipschitz property of u or by inductive
assumption. Finally, if

`
Ä
BE′

ä
= `
Ä
BC1

ä
−
`
Ä
Q̄C
ä

7L
,

then again we get

`
Ä
D′E′

ä
= `
Ä
BE′

ä
− `
Ä
BD′

ä
≥

Ñ
`
Ä
BC1

ä
−
`
Ä
Q̄C
ä

7L

é
−

Ñ
`
Ä
BC1

ä
−
`
Ä
P̄C
ä

7L

é
=
`
Ä
P̄Q
ä

7L
,

so the estimate (5.12) is completely shown and then this part is concluded.

Part 4. Construction for the case C1 6= C+, β < π/12.
We are now ready to consider the last –and hardest– possible situation, namely when

C1 6= C+ and the angle β is small. Roughly speaking, the fact that C1 is below C+ tells
us that the segment BC has to shrink, in order to fit into BC1. On the other hand, the
fact that β can be very small makes it hard to obtain simultaneously the estimate (iii) on
the lengths and the (i) on the angles. As in Figure 9, we call H the orthogonal projection
of C on AB.

Since β < π/12, the point C− belongs to the segment AB, and then we obtain, by a
trivial geometrical argument, that

`
Ä
BC1

ä
≥ `
Ä
BC−

ä
≥ `
Ä
BH

ä
− `
Ä
CH

ä
= `
Ä
BC

äÅ
cos β− sin β

ã
≥
√

2

2
`
Ä
BC

ä
. (5.13)

Let us immediately go into our definition of PN for every vertex P ∈ B̆C. First of all,

since we need to work with consecutive vertices, let us enumerate all the vertices of B̆C
as P 0 = B, P 1, P 2, . . . , PM = C. The simplest idea to define the points P i

N would be
to shrink all the segment BC so to fit into BC1, thus getting, for any pair P i, P i+1 of
consecutive vertices,

`
Ä
P i
NP

i+1
N

ä
=
`
Ä
BC1

ä
`
Ä
BC

ä `ÄP i
N−1P

i+1
N−1

ä
.
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Unfortunately, this does not work, since from the inductive assumption

`
Ä
P i
N−1P

i+1
N−1

ä
≥ 1

7L
`
Ä¸�P iP i+1

ä
one would be led to deduce

`
Ä
P i
NP

i+1
N

ä
≥
`
Ä
BC1

ä
`
Ä
BC

ä 1

7L
`
Ä¸�P iP i+1

ä
≥
√

2

14L
`
Ä¸�P iP i+1

ä
,

by (5.13), so the induction would not work.
However, our idea to overcome the problem is very simple, that is, among all the pairs

P i, P i+1 of consecutive vertices we will shrink only those which are still “shrinkable”, that
is, for which the ratio

%i :=
`
Ä
P i
N−1P

i+1
N−1

ä
`
Ä¸�P iP i+1

ä (5.14)

is not already too small, more precisely, not smaller than 1/(3L). Let us make this formally.
Define

δ :=
∑®

`
Ä
P i
N−1P

i+1
N−1

ä
: %i ≤

1

3L

´
, (5.15)

and notice that

`
Ä
B̄C
ä
≥
∑®

`
Ä¸�P iP i+1

ä
: %i ≤

1

3L

´
≥ 3Lδ ,

then by (5.1)

δ ≤
`
Ä
B̄C
ä

3L
≤
√

2

3
`
Ä
BC

ä
. (5.16)

Finally, we define the points P i
N in such a way that any segment P i

NP
i+1
N has the same

length as P i
N−1P

i+1
N−1 if %i is small, and otherwise it is rescaled by a factor λ < 1 (constant

through all BC). In other words, setting the increasing sequence δi as

δi :=
∑®

`
Ä
P j
N−1P

j+1
N−1

ä
: j < i, %j ≤

1

3L

´
, (5.17)

so that comparing with (5.15) one has δ0 = 0 and δM = δ, we define P i
N to be the point

of BC1 such that

`
Ä
BP i

N

ä
= δi + λ

Å
`
Ä
BP i

N−1

ä
− δi

ã
. (5.18)

The constant λ is easily estimated by the constraint that PM
N = C1 and by (5.13)

and (5.16), getting

1 > λ =
`
Ä
BC1

ä
− δ

`
Ä
BC

ä
− δ

≥
√

2
2
`
Ä
BC

ä
− δ

`
Ä
BC

ä
− δ

≥
√

2
2
−
√

2
3

1−
√

2
3

>
3

7
. (5.19)
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For future reference, it is also useful to notice here another estimate of λ which depends
on β, obtained exactly as the one above from (5.13) and (5.16), that is,

λ =
`
Ä
BC1

ä
− δ

`
Ä
BC

ä
− δ

≥
`
Ä
BC

äÄ
cos β − sin β

ä
− δ

`
Ä
BC

ä
− δ

≥
cos β − sin β −

√
2

3

1−
√

2
3

. (5.20)

Notice that by (5.17) and (5.18) one readily gets

`
Ä
P i
NP

i+1
N

ä
=

 `
Ä
P i
N−1P

i+1
N−1

ä
if %i ≤

1

3L
,

λ `
Ä
P i
N−1P

i+1
N−1

ä
otherwise .

(5.21)

Now that we have given the definition of the points P i
N , we only have to check the validity

of (i)–(iii), since again (iv) is trivial by definition.

H

C∗

C

D

D′

A

B

β

C+

Figure 9. The triangle ABC in Part 4

Let us start with (i). Take 0 ≤ i ≤ M and call, as before, D = P i
N−1 and D′ = P i

N .

Since by construction `
Ä
BD′

ä
≤ `
Ä
BD

ä
, then one immediately gets DD̂′B ≥ D′D̂B,

from which one directly gets

DD̂′B ≥ π − β
2
≥ 11

24
π , D′D̂C = π −D′D̂B ≥ π + β

2
≥ π

2
, (5.22)

so that the first two angles are checked and we need to estimate D′D̂B and DD̂′A. To do
so, let us call C∗ ∈ AB the point such that `

Ä
BC∗

ä
= λ `

Ä
BC

ä
, so that by construction

D′D̂B ≥ C∗ĈB , DD̂′A ≥ CĈ∗A . (5.23)
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The point C∗ must lie either between H and C+ or between B and H . In the first case
also the other two angles are immediately estimated, since then by (5.23) one has

D′D̂B ≥ C∗ĈB ≥HĈB =
π

2
− β ≥ 5

12
π , DD̂′A ≥ CĈ∗A ≥ π

2
. (5.24)

Assume then that, as in Figure 9, C∗ is between B and H . Then we can estimate, also
recalling (5.20),

`
Ä
C∗H

ä
= `
Ä
BH

ä
− `
Ä
BC∗

ä
= `
Ä
BC

äÅ
cos β − λ

ã
≤ `
Ä
BC

äÇ
cos β −

cos β − sin β −
√

2
3

1−
√

2
3

å
= `
Ä
BC

ä √2
3

sinβ
1+cosβ

+ 1

1−
√

2
3

sin β .

As a consequence, we have

HĈC∗ = arctan

Ç
`
Ä
C∗H

ä
`
Ä
CH

ä å ≤ arctan

Ç √2
3

sinβ
1+cosβ

+ 1

1−
√

2
3

å
≤ arctan

Ç √2
3

sin 15◦

1+cos 15◦
+ 1

1−
√

2
3

å
≤ 0.36 π ≤ 65◦ .

Finally, from this estimate and (5.23) we get

D′D̂B ≥ C∗ĈB =
π

2
− β −HĈC∗ > π

18
,

DD̂′A ≥ CĈ∗A =
π

2
−HĈC∗ ≥ 25◦ .

(5.25)

Putting together the first two estimates from (5.22), and the last two estimates either
from (5.24) or from (5.25), we conclude the proof of (i).

Let us now check (ii). Repeating the argument of Part 3, we have that (ii) follows at

once as soon as one shows (5.11), that is, `
Ä
DD′

ä
≤ 4 `

Ä
ĀC

ä
. But in fact, using (5.25),

we immediately get

`
Ä
DD′

ä
≤

`
Ä
CH

ä
sin
Ä
DD̂′A

ä ≤ `
Ä
AC

ä
sin
Ä
DD̂′A

ä ≤ `
Ä
ĀC

ä
sin
Ä
25◦
ä < 2.5 `

Ä
ĀC

ä
≤ 4 `

Ä
ĀC

ä
.

Let us then consider (iii). It is of course sufficient to check the validity of the inequality

only when P and Q are two consecutive vertices of B̆C. Let us then take 0 ≤ i < M and
recall that we have to show

`
Ä¸�P iP i+1

ä
7L

≤ `
Ä
P i
NP

i+1
N

ä
≤ `
Ä
P i
N−1P

i+1
N−1

ä
(5.26)

knowing, again either by inductive assumption or by the Lipschitz property,

`
Ä¸�P iP i+1

ä
7L

≤ `
Ä
P i
N−1P

i+1
N−1

ä
≤ `
Ä¸�
P iP i+1

ä
. (5.27)
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The right inequality in (5.26) is an immediate consequence of (5.21), being λ < 1. Con-
cerning the left inequality, it is also quick to check, distinguishing whether %i is small or
not. In fact, if %i ≤ 1/(3L), then by (5.21) also the left inequality in (5.26) derives from the
analogous inequality in (5.27). Otherwise, if %i > 1/(3L), then one directly has by (5.21),
(5.14) and (5.19) that

`
Ä
P i
NP

i+1
N

ä
= λ `

Ä
P i
N−1P

i+1
N−1

ä
= λ%i `

Ä¸�P iP i+1
ä
>

1

3L
λ `
Ä¸�P iP i+1

ä
>

1

7L
`
Ä¸�P iP i+1

ä
,

thus concluding the proof. �

5.7. Lenght of paths inside a sector

In Section 5.6, we have described how to get a piecewise affine path PP 1P 2 · · ·PN

which starts from a given point P ∈ ĂB and ends on the segment AB, being S(AB) a
given sector. In this step, we want to improve the estimate from above of the length of this
path. This is important because this path will be (up to a small correction in the future)
part of the image of the segment PO ⊆ D under the extension ṽ of ũ that we are building,
and then its length gives a lower bound to the Lipschitz constant of the map ṽ. After a
short definition, we will state the main result of this step.

Definition 5.19. Let S(AB) be a given sector, P ∈ ĂB and let PP 1P 2 · · ·PN be
the piecewise affine path given by Lemma 5.18. We will then denote this piecewise affine

path as ṖPN . More in general, for any 1 ≤ i < j ≤ N , we will denote by Ṗ iP j the
piecewise affine path P iP i+1 · · ·P j.

Lemma 5.20. Let S(AB) be a sector. Then, for any P ∈ ĂB one has

`
Ä
ṖPN

ä
≤ 113 min

ß
`
Ä
ĀP

ä
, `
Ä
P̆B

ä™
.

Let us fix a generic point P ∈ ĂB. The proof of the lemma will require a detailed
analysis of the different triangles of the natural sequence of triangles related to P . Recall
that the natural sequence of triangles, according with Definition 5.16, is the sequenceÄ
T 1, T 2, . . . , T N

ä
such that every P i of the path ṖPN belongs to the exit side of T i.

Let us start by calling for simplicity AiBi the exit side of the triangle T i, being Ai ∈ ĀP
and Bi ∈ P̆B, so that in particular AN = A and BN = B. Moreover, we call A0B0 the
side of T 1 which contains P = P 0. Notice that, by the construction of the triangles done
in Section 5.5, for any i the exit side of the triangle T i is a side of the triangle T i+1, thus
the exit sides of T i and T i+1 have exactly one point in common. In other words, either
Ai+1 = Ai, or Bi+1 = Bi.

We give now an idea of how our estimate works. Let us assume, by simmetry, that e.g.

`(P̆B) ≤ `(ĀP ). Since

`(P̆B) = `(P̆BN) ≥ `(P 0B0) +
N−1∑
i=0

`(BiBi+1) = `(P 0B0) + `(¸�B0BN),
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where ¸�B0BN = B0B1 + · · ·+BN−1BN , we will prove that

`(P̆PN) ≤ 113
Ä
(P 0B0) + `(¸�B0BN)

ä
= 113

Ä
`( ˚�P 0BN)

ä
. (5.28)

On one hand, if Bi+1 6= Bi for some triangle T i+1, by property (i) of Lemma 5.18

`(P iP i+1) ≤ 4`(BiBi+1).

Indeed, this is a consequence of the fact that P i
’P i+1Ai+1 ≥ π/12. If instead Bi = Bi+1,

the length of the segment P iP i+1 does not apparently contribute to the increase of the

path `( ˚�P 0BN). However, due to the fact that by construction

`(P i+1Bi+1) ≤ `(P iBi) if Bi = Bi+1,

the sum of the angles of the form Ai
”BiAi+1 cannot increase too much unless triangles T i

for which Ai
”BiAi+1 > 0 (or, equivalently, Bi = Bi+1) alternate sufficiently often with

triangles with Bi
”AiBi+1 > 0 (and then Bi 6= Bi+1). In other words, the worst case is

when S(AB) has a spiral/snake shape. In order to overcome this problem, we will first
subdivide the natural sequence of triangles

Ä
T 1, T 2, . . . , T N

ä
into sequences of consec-

utive triangles U =
Ä
T i, T i+1, . . . , T i+j

ä
called “units”, then we will group consecutive

sequences of “units” into “systems of units” S =
Ä
U i, U i+1, . . . , U i+j

ä
and consecutive

sequences of “systems of units” into “blocks of systems” B =
Ä
S i, S i+1, . . . , S i+j

ä
.

Passing from one category of objects to the one containing it, the spiraling effect increases:
however, we will see that at every step this effect can be controlled, leading to the estimate
(5.28).

We can now introduce the first category.

Definition 5.21. Let 0 ≤ i ≤ j ≤ N be such that {i, i+ 1, · · · , j−1, j} is a maximal
sequence with the property that Bl is the same point for all i ≤ l ≤ j (by “maximal” we
mean that either i = 0 or Bi−1 6= Bi, as well as either j = N or Bj 6= Bj+1). We will then
say that U =

Ä
T i+1, T 2, . . . , T j+1

ä
is a unit of triangles, where i+ 1 is substituted by i

if i = 0, and j+1 is substituted by j if j = N , and then no unit is defined if i = j = N > 1.
To any unit we associate two angles, that is,

θ+ := P i
”BiAj , θ− := BjÂjBj+1 ,

while θ+ := P 0B̂0Aj if i = 0, where P0 = P .

The reason for this strange definition with i + 1 and j + 1 will be clear later. The
meaning of the definition is quite simple: the first unit starts with T 1 and ends with T j,
where j is the smaller index such that Bj 6= B1. The second unit starts with T j+1 and
ends with T j′ , where j′ is the smaller index, possibly j+1 itself, for which Bj 6= Bj′ . And
so on, until one reaches T N , and then one stops regardless whether or not BN is different
from BN−1. It is immediate from the definition to observe that the sequence of trianglesÄ
T 1, T 2, . . . , T N

ä
is the concatenation of units of triangles. To understand how the

units work, it can be useful to check the example of Figure 10, where N = 10 and the units
of triangles are

Ä
T 1, T 2, T 3, T 4,

ä
,
Ä
T 5

ä
,
Ä
T 6, T 7, T 8

ä
,
Ä
T 9

ä
and

Ä
T 10

ä
. Notice also
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T 1
T 2

T 3

T 4 T 5

T 6 T 7

T 8 T 9

T 10

A0

A2

A6

B4

B8

B9−10 ≡ B

B5−6−7

P ≡ P 0

B0−1−2−3

A3−4−5

A7−8−9

A10 ≡ A

A1

Figure 10. A natural sequence of triangles T i with the points Ai and Bi

and the angles θ±

that for any unit of triangles one has θ+ > 0, unless the unit is made by a single triangle,
as
Ä
T 5

ä
in the figure. Similarly, one has that θ− > 0, unless j = N and Bj = Bj−1, asÄ

T 10

ä
in the figure.

The role of the units is contained in the following result.

Lemma 5.22. Let U =
Ä
T i, T i+1, . . . , T j

ä
be a unit of triangles. Then one has

`
Ä˝�P i−1P j

ä
≤
Ä
1 + θ+

ä
`
Ä
P i−1Bi−1

ä
− `
Ä
P jBj

ä
+ 5 `

Ä
Bi−1Bj

ä
, (5.29)

`
Ä
Bi−1Bj

ä
≥ θ−

π
`
Ä
P jBj

ä
, (5.30)

`
Ä
P jBj

ä
≤ `
Ä
P i−1Bi−1

ä
+ `
Ä
Bi−1Bj

ä
. (5.31)

Proof. The proof will follow from simple geometric considerations thanks to
Lemma 5.18. To help the reader, the situation is depicted in Figure 11. First of all,
one has by definition

`
Ä˝�P i−1P j

ä
= `
Äˇ�P i−1P j−1

ä
+ `
Ä
P j−1P j

ä
. (5.32)

We claim that

`
Äˇ�P i−1P j−1

ä
≤
Ä
1 + θ+

ä
`
Ä
P i−1Bi−1

ä
− `
Ä
P j−1Bi−1

ä
. (5.33)

In fact, if i = j then `
Äˇ�P i−1P j−1

ä
= 0 and then (5.33) is trivially true. Otherwise, let us

consider the triangle P i−1Bi−1P i. Thanks to property (iii) in Lemma 5.18, one has

`
Ä
P iBi−1

ä
≤ `
Ä
P i−1Bi−1

ä
,
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T jθ+

P j−1

Bi−1 ≡ Bj−1

Bj

B′j−1

P j

Aj−1 ≡ Aj

θ−

P j−2

P i
T i

P i−1

Figure 11. Situation in Lemma 5.22

and then an immediate trigonometric argument tells us that

`
Ä
P i−1P i

ä
≤ 2`

Ä
P i−1Bi−1

ä
sin

Ç
P i−1

’Bi−1P i

2

å
+ `
Ä
P i−1Bi−1

ä
− `
Ä
P iBi−1

ä
≤ `
Ä
P i−1Bi−1

ä
· P i−1

’Bi−1P i + `
Ä
P i−1Bi−1

ä
− `
Ä
P iBi−1

ä
.

We can repeat the same argument more in general. In fact, for any i ≤ l ≤ j − 1 one has
from Lemma 5.18 that

`
Ä
P lBi−1

ä
≤ `
Ä
P l−1Bi−1

ä
≤ · · · ≤ `

Ä
P i−1Bi−1

ä
, (5.34)

hence the previous trigonometric argument implies

`
Ä
P l−1P l

ä
≤ `
Ä
P i−1Bi−1

ä
· P l−1

’Bi−1P l + `
Ä
P l−1Bi−1

ä
− `
Ä
P lBi−1

ä
.

Adding this inequality for all i ≤ l ≤ j − 1 one gets

`
Äˇ�P i−1P j−1

ä
=

j−1∑
l=i

`
Ä
P l−1P l

ä
≤

j−1∑
l=i

`
Ä
P i−1Bi−1

ä
· P l−1

’Bi−1P l + `
Ä
P l−1Bi−1

ä
− `
Ä
P lBi−1

ä
= θ+`

Ä
P i−1Bi−1

ä
+ `
Ä
P i−1Bi−1

ä
− `
Ä
P j−1Bi−1

ä
,

which is (5.33).
Let us now point our attention to the triangle T j. First of all, let us call H (resp.

B⊥) the orthogonal projection of P j−1 (resp. Bi−1) on the straight line passing through
AjBj (these two points are not indicated in the figure, for the sake of clarity). Since by (i)
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of Lemma 5.18 we have P j−1P̂ jH ≥ 15◦, it is

`
Ä
P j−1P j

ä
=

`
Ä
P j−1H

ä
sin
Å
P j−1P̂ jH

ã ≤ 1

sin 15◦
`
Ä
P j−1H

ä
≤ 4 `

Ä
P j−1H

ä
, (5.35)

and similarly

`
Ä
Bi−1Bj

ä
≥ `
Ä
Bi−1B⊥

ä
= `
Ä
Aj−1Bi−1

ä
sin θ− ≥ `

Ä
P j−1Bi−1

ä
sin θ−

≥ 2θ−

π
`
Ä
P j−1Bi−1

ä
,

(5.36)

recalling the by definition of the triangles of the sectors one has θ− ≤ π/2. Moreover, since
P j−1 ∈ Aj−1Bi−1, then clearly `

Ä
P j−1H

ä
≤ `
Ä
Bi−1B⊥

ä
, so (5.35) and (5.36) imply

`
Ä
P j−1P j

ä
≤ 4 `

Ä
Bi−1Bj

ä
. (5.37)

Let us now call, as in the figure,B′j−1 the first point of the piecewise affine path which starts
from Bj−1 and arrives to AB according to Lemma 5.18 –with the notation of Lemma 5.18
we should have called that point (Bj−1)1. Applying twice condition (iii) of Lemma 5.18
we get

`
Ä
P jBj

ä
= `
Ä
P jB

′
j−1

ä
+ `
Ä
B′j−1Bj

ä
≤ `
Ä
P j−1Bi−1

ä
+ `
Ä
Bi−1Bj

ä
.

This inequality allows us to conclude. Indeed, together with (5.32), (5.33) and (5.37) it
concludes the proof of (5.29). Then, together with (5.34), it yields (5.31). And finally,
together with (5.36), it gives (5.30) since

2`
Ä
Bi−1Bj

ä
≥ 2θ−

π
`
Ä
Bi−1Bj

ä
+ `
Ä
Bi−1Bj

ä
≥ 2θ−

π

Å
`
Ä
P jBj

ä
− `
Ä
P j−1Bj−1

äã
+

2θ−

π
`
Ä
P j−1Bj−1

ä
=

2θ−

π
`
Ä
P jBj

ä
.

�

After this result, we can stop thinking about triangles, and we can start working only
with units. In fact, notice that any unit of triangles, say U =

Ä
T i, T i+1, . . . , T j

ä
, starts

with the exit side of T i−1 and finishes with the exit side of T j and that the estimates (5.29),
(5.30) and (5.31) are already written only in terms of points of those sides. Let us then
number the units as U 1, U 2, . . . , U M , with M ≤ N , and let us define il and jl, for
1 ≤ l ≤M , in such a way that U l =

Ä
T il , T il+1, . . . , T jl

ä
. Notice that i1 = 1, jM = N ,

and jl + 1 = il+1 for each 1 ≤ l < M . Let us give the following definitions,

Ql := P jl , C l := Ajl , Dl := Bjl , Q0 := P 0 = P , D0 := B0 = B1 , (5.38)

where the last two definitions are done to be consistent. Call also θ±l the angles θ± related
to the unit U l. Hence, the claim of Lemma 5.22 can be rewritten as

`
Ä¸�Ql−1Ql

ä
≤
Ä
1 + θ+

l

ä
`
Ä
Ql−1Dl−1

ä
− `
Ä
QlDl

ä
+ 5 `

Ä
Dl−1Dl

ä
, (5.29’)

`
Ä
Dl−1Dl

ä
≥ θ−l

π
`
Ä
QlDl

ä
, (5.30’)
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`
Ä
QlDl

ä
≤ `
Ä
Ql−1Dl−1

ä
+ `
Ä
Dl−1Dl

ä
. (5.31’)

Before passing to the definition of “systems” of units, and in order to help understanding
its meaning, it can be useful to give a proof of Lemma 5.20 in a very peculiar case.

Lemma 5.23. The claim of Lemma 5.20 holds true if

`
Äˇ�D0DM−1

ä
≤
`
Ä
Q0D0

ä
4

, (5.39)

`
Ä
QlDl

ä
≥
`
Ä
Q0D0

ä
2

∀ 1 ≤ l ≤M − 1 . (5.40)

Proof. First of all notice that, by the two assumptions and an easy geometrical ar-
gument (recalling that all the triangles T i are disjoint, hence in particular the segments
QlDl cannot intersect), one finds that

M∑
l=1

θ+
l −

M−1∑
l=1

θ−l ≤
13

6
π . (5.41)

Moreover, by (5.31’) and (5.39), one gets

`
Ä
QlDl

ä
≤ 5

4
`
Ä
Q0D0

ä
∀ 0 ≤ l ≤M − 1 . (5.42)

We can now evaluate, using (5.29’), (5.42), (5.41), (5.40) and (5.30’),

`
Ä¸�Q0QM

ä
=

M∑
l=1

`
Ä¸�Ql−1Ql

ä
≤

M∑
l=1

Ä
1 + θ+

l

ä
`
Ä
Ql−1Dl−1

ä
− `
Ä
QlDl

ä
+ 5 `

Ä
Dl−1Dl

ä
≤ 5

4
`
Ä
Q0D0

ä M∑
l=1

θ+
l + `

Ä
Q0D0

ä
− `
Ä
QMDM

ä
+ 5`

Ä¸�D0DM

ä
≤ `
Ä
Q0D0

äÇ
1 +

65

24
π

å
+

5

4
`
Ä
Q0D0

äM−1∑
l=1

θ−l + 5`
Ä¸�D0DM

ä
(5.43)

≤ 10 `
Ä
Q0D0

ä
+

5

2

M−1∑
l=1

θ−l `
Ä
QlDl

ä
+ 5`

Ä¸�D0DM

ä
≤ 10 `

Ä
Q0D0

ä
+

5

2
π
M−1∑
l=1

`
Ä
Dl−1Dl

ä
+ 5`

Ä¸�D0DM

ä
≤ 10 `

Ä
Q0D0

ä
+
Ä
5 +

5

2
π
ä
`
Ä¸�D0DM

ä
≤ 10 `

Ä
Q0D0

ä
+ 13`

Ä¸�D0DM

ä
.

Finally, recall that

`
Ä
P̆B

ä
= `
Ä
ṖB0

ä
+ `
Ä
Ḃ0B

ä
≥ `
Ä
PB0

ä
+ `
Ä¸�B0BN

ä
= `
Ä
Q0D0

ä
+ `
Ä¸�D0DM

ä
,

hence from (5.43) we directly get `
Ä
ṖPN

ä
= `
Ä¸�Q0QM

ä
≤ 13`

Ä
P̆B

ä
. Since it is admissible

to assume, by symmetry, that `
Ä
P̆B

ä
≤ `
Ä
ĀP

ä
, we conclude the proof of Lemma 5.20

under the assumptions (5.39) and (5.40). �
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It is to be noticed carefully that the key point in the above proof is the validity of (5.41),
which is a simple consequence of (5.39) and (5.40), but which one cannot hope to have
in general. Basically, (5.41) fails whenever the sector S(AB) has a spiral shape, and in
fact (5.39) and (5.40) precisely prevent the sector to be an enlarging and a shrinking spiral
respectively.

Since the assumptions (5.39) and (5.40) do not hold, in general, through all the units,
we will group the units in “systems” in which they are valid.

Definition 5.24. Let k0 = 0. We define recursively the increasing finite sequence
{k1, · · · , kW} as follows. For each j ≥ 0, if kj = M then we conclude the construction
(and thus W = j), while otherwise we define kj < kj+1 ≤M to be the biggest number such
that

`
Ä ˇ�DkjDkj+1−1

ä
≤
`
Ä
Qkj

Dkj

ä
4

, (5.39’)

`
Ä
QlDl

ä
≥
`
Ä
Qkj

Dkj

ä
2

∀ kj < l < kj+1 . (5.40’)

Notice that the sequence is well-defined, since if kj < M then the assumptions (5.39’)
and (5.40’) trivially hold with kj+1 = kj + 1. Hence, W ≤ M ≤ N . We define then
system of units each collection of units of the form S j =

Ä
U kj−1+1, U kj−1+2, . . . , U kj

ä
,

for 1 ≤ j ≤ W .

Thanks to this definition, we can rephrase the claim of Lemma 5.23 as follows: “the
claim of Lemma 5.20 holds true if there is only one system of units”. But in fact, the
argument of Lemma 5.23 still gives some useful information for each different system, as
we will see in a moment with Lemma 5.25. Before doing so, in order to avoid too many
indices, it is convenient to introduce some new notation in order to work only with systems
instead of with units. Hence, in analogy with (5.38), we set

Rj := Qkj
, Ej := Ckj , F j := Dkj , R0 := Q0 = P , F 0 := D0 = B1 . (5.44)

We can now observe an estimate for the systems which comes directly from the argument
of Lemma 5.23.

Lemma 5.25. Let S j be a system of units. Then one has

`
Ä˝�Rj−1Rj

ä
≤ 13 `

Ä˝�F j−1F j

ä
+ 10 `

Ä
Rj−1F j−1

ä
. (5.45)

and moreover

`
Ä
RjF j

ä
≤ `
Ä
Rj−1F j−1

ä
+ `
Ä˝�F j−1F j

ä
. (5.46)

Proof. First of all, repeat verbatim, substituting 0 with kj−1 and M with kj, the proof
of Lemma 5.23 until the estimate (5.43), which then reads as

`
Äˇ�Qkj−1

Qkj

ä
≤ 10 `

Ä
Qkj−1

Dkj−1

ä
+ 13 `

Äˇ�Dkj−1
Dkj

ä
.
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This estimate is exactly (5.45), rewritten with the new notations (5.44). On the other hand,
concerning (5.46), it is enough to add the inequality (5.31’) with all kj−1 +1 ≤ l ≤ kj, thus
obtaining

kj∑
l=kj−1+1

`
Ä
QlDl

ä
≤

kj∑
l=kj−1+1

`
Ä
Ql−1Dl−1

ä
+

kj∑
l=kj−1+1

`
Ä
Dl−1Dl

ä
,

which is equivalent to

`
Ä
Qkj

Dkj

ä
≤ `
Ä
Qkj−1

Dkj−1

ä
+ `
Äˇ�Dkj−1

Dkj

ä
.

This estimate corresponds to (5.46) when using the new notations. �

Notice that, by adding (5.45) for all 1 ≤ j ≤ W , one obtains

`
Ä
ṖPN

ä
= `
Ä¸�Q0QM

ä
= `
Ä¸�R0RW

ä
≤ 13 `

Ä¸�F 0FW

ä
+ 10

W−1∑
j=0

`
Ä
RjF j

ä
,

and since ¸�F 0FW = ¸�B1BN ⊆ P̆B, to conclude Lemma 5.20 one needs to estimate the last
sum.

Having done this remark, we can now introduce our last category, namely the “blocks”
of systems. To do so, notice that by Definition 5.24 of systems of units and using the new
notations (5.44), for any 1 ≤ j < W one must have, by maximality of kj,

either `
Ä˝�F j−1F j

ä
>
`
Ä
Rj−1F j−1

ä
4

, or `
Ä
RjF j

ä
<
`
Ä
Rj−1F j−1

ä
2

. (5.47)

We can then give our definition.

Definition 5.26. Let p0 = 0. We define recursively the increasing sequence
{p1, · · · , pH} as follows. For each i ≥ 0, if pi = W then we conclude the construction
(and thus H = i), while otherwise we define pi < pi+1 ≤ W to be the biggest number such
that

`
Ä
RjF j

ä
<
`
Ä
Rj−1F j−1

ä
2

∀ pi < j < pi+1 .

Notice again that this strictly increasing sequence is well-defined since the inequality is
emptily true for pi+1 = pi + 1. We then define block of systems each collection B i =Ä
S pi−1+1, S pi−1+2, . . . , S pi

ä
, for 1 ≤ i ≤ H.

We can now show the important properties of the blocks of systems.

Lemma 5.27. For any 0 ≤ i < H, the following estimate concerning the block B i holds
true,

`
Ä˛�RpiRpi+1

ä
≤ 13 `

Ä˛�F piF pi+1

ä
+ 20 `

Ä
RpiF pi

ä
. (5.48)

Moreover, for any 0 ≤ i < H − 1, one also has

`
Ä
Rpi+1

F pi+1

ä
≤ 5 `

Ä˛�F piF pi+1

ä
. (5.49)
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Proof. It is enough to add (5.45) for pi + 1 ≤ j ≤ pi+1 to obtain

`
Ä˛�RpiRpi+1

ä
=

pi+1∑
j=pi+1

`
Ä˝�Rj−1Rj

ä
≤ 13

pi+1∑
j=pi+1

`
Ä˝�F j−1F j

ä
+ 10

pi+1∑
j=pi+1

`
Ä
Rj−1F j−1

ä
= 13 `

Ä˛�F piF pi+1

ä
+ 10

pi+1−1∑
j=pi

`
Ä
RjF j

ä
< 13 `

Ä˛�F piF pi+1

ä
+ 20 `

Ä
RpiF pi

ä
,

thus (5.48) is already obtained.
Consider now (5.49). Recalling the definition of the blocks, the maximality of pi+1 tells

us that either pi+1 = W (and this is excluded by i < H − 1) or

`
Ä
Rpi+1

F pi+1

ä
≥
`
Ä
Rpi+1−1F pi+1−1

ä
2

.

Hence, keeping in mind (5.47) with j = pi+1, we also have that

`
Ä ˇ�F pi+1−1F pi+1

ä
>
`
Ä
Rpi+1−1F pi+1−1

ä
4

.

Let us apply now (5.46) with j = pi+1, to get

`
Ä
Rpi+1

F pi+1

ä
≤ `
Ä
Rpi+1−1F pi+1−1

ä
+`
Ä ˇ�F pi+1−1F pi+1

ä
≤ 5 `

Ä ˇ�F pi+1−1F pi+1

ä
≤ 5 `

Ä˛�F piF pi+1

ä
,

and so also (5.49) is proved. �

We finally end this step with the proof of Lemma 5.20.

Proof of Lemma 5.20. By symmetry, we can assume that min
ß
`
Ä
ĀP

ä
, `
Ä
P̆B

ä™
=

`
Ä
P̆B

ä
. Using (5.48) and (5.49), we then estimate

`
Ä ˚�P 0PN

ä
= `
Ä¸�Q0QM

ä
= `
Ä¸�R0RW

ä
=

H−1∑
i=0

`
Ä˛�RpiRpi+1

ä
≤

H−1∑
i=0

13 `
Ä˛�F piF pi+1

ä
+

H−1∑
i=0

20 `
Ä
RpiF pi

ä
= 13

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 20 `

Ä
R0F 0

ä
+ 20

H−2∑
i=0

`
Ä
Rpi+1

F pi+1

ä
≤ 13

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 20 `

Ä
R0F 0

ä
+ 100

H−2∑
i=0

`
Ä˛�F piF pi+1

ä
≤ 113

H−1∑
i=0

`
Ä˛�F piF pi+1

ä
+ 20 `

Ä
R0F 0

ä
= 113 `

Ä¸�F 0FW

ä
+ 20 `

Ä
R0F 0

ä
= 113 `

Ä¸�B1BN

ä
+ 20 `

Ä
P 0B1

ä
≤ 113 `

Ä ˚�P 0BN

ä
= 113 `

Ä
P̆B

ä
.

�
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5.8. Speed of paths inside a sector

A temptative choice to complete the path from P to O could be the piecewise affine

path ΓP = ṖPN ∪PNO, which consists of the path ṖPN defined in Section 5.6 followed
by the segment PNO. However, we can easily see that sending the segment PO to the
path ΓP at constant speed is not the right choice. Basically, the reason is the following: if

two points P and Q in ĂB have distance ε > 0, the lengths of ṖPN and of Q̇QN may
differ of Kε for any big constant K (e.g. spiral shape of Section 5.7), thus if we use the
constant speed in the definition of ṽ we end up with a piecewise affine function making use
of triangles with arbitrarily small and big angles, thus with an arbitrarily large bi-Lipschitz

constant. For this reason, we parameterize the paths ṖPN with a non constant speed.
Choosing the correct speed is precisely the aim of this step.

Let us start with the definition of a possible speed function.

Definition 5.28. Let S(AB) be a sector, and let Σ be the union of the paths ṖPN for

all the vertices P of ĂB (such union is disjoint by Lemma 5.18). We say that τ : Σ→ R+

is a possible speed function if for any vertex P ∈ ĂB one has

• τ(P ) = 0 ,

• for each vertex P ∈ ĂB and each 0 ≤ i < N(P ), the restriction of τ to the closed
segment P iP i+1 is affine .

Moreover, for any S belonging to the open segment P iP i+1, we shall write

τ ′(S) :=
τ(P i+1)− τ(P i)

`
Ä
P iP i+1

ä . (5.50)

To avoid misunderstandings in the following result it is useful to underline that, if one

considers τ(S) as the time at which the curve ṖPN passes through S, then in fact τ ′(S)
corresponds to the inverse of the speed of the curve. Let us then state and prove the main
result of this step.

Lemma 5.29. There exists a possible speed function τ such that

1

60L
≤ τ ′(S) ≤ 1 ∀S ∈ Σ , (5.51)

if P i and Qj belong to the same exit side of a triangle, then

|τ(P i)− τ(Qj)| ≤ 170L `
Ä
P̄Q

ä
.

(5.52)

Proof. We start noticing that, in order to define τ , it is enough to fix τ ′ within the

whole path ṖPN for any vertex P ∈ ĂB. We argue again by induction on the weight of
the sector.

Case I. The weigth of S(AB) is 2.
In this case, the sector is a triangle ABC, and we directly set τ ′ ≡ 1 within all Σ, so

that (5.51) is clearly true. Consider now (5.52). Since there is only a single triangle, then
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necessarily i = j = 1 and P 1 and Q1 belong to AB, so that

τ(P 1) = `
Ä
PP 1

ä
, τ(Q1) = `

Ä
QQ1

ä
,

by the choice τ ′ ≡ 1. It is then enough to recall Lemma 5.18 (iii) and to use the triangular
inequality to get

|τ(P 1)− τ(Q1)| =
∣∣∣`ÄPP 1

ä
− `
Ä
QQ1

ä∣∣∣ ≤ `
Ä
PQ

ä
+ `
Ä
P 1Q1

ä
≤ 2`

Ä
PQ

ä
,

so that (5.52) holds true.

Case II. The weigth of S(AB) is at least 3.
In this case, let us consider the maximal triangle ABC. Then, we can assume that τ

has been already defined in the sectors S(AC) and S(BC), emptily if the segment AC
(resp. BC) belongs to ∂Γ, and by inductive assumption otherwise, and with the properties
that ∣∣∣τ(PN−1)− τ(QN−1)

∣∣∣ ≤ 170L `
Ä
PQ

ä
, (5.53)

for every P , Q ∈ ĂB, and that 1/60L ≤ τ ′(S) ≤ 1 for every S ∈ S(AC) ∪ S(BC).
Thus, we only have to define τ in the triangle ABC and by definition of possible speed
function it is enough to set τ on the segment AB or, equivalently, to set τ ′ on the triangle
ABC.

Let us begin with a temptative definition, namely, we define τ̃ by putting τ̃ ′ ≡ 1/60L
in ABC, and we will define τ as a modification –if necessary– of τ̃ . Notice that, for any
PN−1 ∈ AC ∪BC, our definition consists in setting

τ̃(PN) = τ(PN−1) +
1

60L
`
Ä
PN−1PN

ä
. (5.54)

Of course the function τ̃ satisfies (5.51), but in general it is not true that (5.52) holds.
We can now define the function τ by setting

τ(PN) := τ̃(PN) ∨max
ß
τ̃(QN)− 170L `

Ä
P̄Q

ä
: Q ∈ ĂB

™
, (5.55)

for any vertex P ∈ ĂB. Since by definition τ ≥ τ̃ , it is clear that τ ′ ≥ τ̃ ′ = 1/60L in the
triangle ABC, so the first inequality in (5.51) holds true also for τ .

It is also easy to check (5.52). Indeed, take P and Q in ĂB, and consider two possi-
bilities. If τ(QN) = τ̃(QN), then

τ(PN) ≥ τ̃(QN)− 170L `
Ä
P̄Q

ä
= τ(QN)− 170L `

Ä
P̄Q

ä
. (5.56)

On the other hand, if τ(QN) = τ̃(RN)− 170L `
Ä
Q̄R

ä
for some R ∈ ĂB, then

τ(PN) ≥ τ̃(RN)− 170L `
Ä
P̆R

ä
≥ τ̃(RN)− 170L `

Ä
P̄Q

ä
− 170L `

Ä
Q̄R

ä
= τ(QN)− 170L `

Ä
P̄Q

ä
,

so that (5.56) is true in both cases. Exchanging the roles of P and Q immediately
yields (5.52). Summarizing, to conclude the thesis we only have to check that τ ′ ≤ 1
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on ABC, which by induction amounts to check that for any P ∈ ĂB one has

τ(PN)− τ(PN−1) ≤ `
Ä
PN−1PN

ä
.

Let us then assume the existence of some vertex P ∈ ĂB such that

τ(PN)− τ(PN−1) > `
Ä
PN−1PN

ä
, (5.57)

and the searched inequality will follow once we find some contradiction. By symmetry,
we assume that PN−1 ∈ AC. Of course, if τ(PN) = τ̃(PN) then (5.54) already prevents
the validity of (5.57). Therefore, keeping in mind (5.55), we obtain the existence of some

vertex Q ∈ ĂB such that

τ(PN) = τ̃(QN)− 170L `
Ä
P̄Q

ä
, (5.58)

which gives

τ(PN) = τ(QN−1) +
1

60L
`
Ä
QN−1QN

ä
− 170L `

Ä
P̄Q

ä
.

Recalling (5.53) and (5.57), and eventually applying the triangle inequality if QN−1 ∈ BC,
we deduce

τ(PN−1) ≥ τ(QN−1)− 170L `
Ä
P̄Q

ä
= τ(PN)− 1

60L
`
Ä
QN−1QN

ä
> τ(PN−1) + `

Ä
PN−1PN

ä
− 1

60L
`
Ä
QN−1QN

ä
,

so that

`
Ä
QN−1QN

ä
> 60L `

Ä
PN−1PN

ä
. (5.59)

Call now, as in Figure 12, P⊥ and Q⊥ the orthogonal projections of PN−1 and QN−1

on the segment AB, and note that by a trivial geometrical argument –recalling that
PN−1 ∈ AC– one has

`
Ä
PN−1P⊥

ä
`
Ä
QN−1Q⊥

ä ≥ `
Ä
APN−1

ä
`
Ä
AQN−1

ä ,
where the inequality is an equality if QN−1 ∈ AC, while it is strict if QN−1 ∈ BC. Then,
recalling Lemma 5.18 (i) and (5.59), one has

`
Ä
PN−1PN

ä
≥ `
Ä
PN−1P⊥

ä
= `
Ä
QN−1Q⊥

ä `ÄAPN−1

ä
`
Ä
AQN−1

ä
= `
Ä
QN−1QN

ä
sin
Ä
QN−1

‘QNA
ä `ÄAPN−1

ä
`
Ä
AQN−1

ä ≥ 1

4
`
Ä
QN−1QN

ä `ÄAPN−1

ä
`
Ä
AQN−1

ä
> 15L `

Ä
PN−1PN

ä `ÄAPN−1

ä
`
Ä
AQN−1

ä ,
which means

`
Ä
AQN−1

ä
≥ 15L `

Ä
APN−1

ä
.
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A

B

P⊥

PN

Q⊥

QN

QN−1

PN−1

Figure 12. The triangle ABC with the points PN−1, PN , P⊥ and QN−1, QN , Q⊥

Making again use of Lemma 5.18 (iii), we then have

`
Ä
P̄Q

ä
≥ `
Ä
PN−1QN−1

ä
= `
Ä
AQN−1

ä
− `
Ä
APN−1

ä
≥ 14L `

Ä
APN−1

ä
≥ 2 `

Ä
ĀP
ä

≥ 2

L
`
Ä
ĀP

ä
,

so that

3 `
Ä
P̄Q

ä
≥
Ç

1 +
2

L

å
`
Ä
P̄Q

ä
≥ 2

L

Ä
`
Ä
ĀP

ä
+ `
Ä
P̄Q

ää
≥ 2

L
`
Ä
ĀQ

ä
.

Hence, by (5.58) and the Lipschitz property of u,

τ̃(QN) ≥ 170L `
Ä
PQ

ä
≥ 340

3
`
Ä
ĀQ

ä
. (5.60)

On the other hand, by definition and inductive assumption,

τ̃(QN) = τ(QN−1) +
1

60L
`
Ä
QN−1QN

ä
≤ `
Ä˝�QQN−1

ä
+

1

60L
`
Ä
QN−1QN

ä
≤ `
Ä
Q̇QN

ä
,

which recalling Lemma 5.20 of Section 5.7 gives

τ̃(QN) ≤ 113 `
Ä
ĀQ

ä
<

340

3
`
Ä
ĀQ

ä
.

Finally, this gives a contradiction with (5.60) and the proof of the lemma is concluded. �
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5.9. Extension in the primary sectors

We are finally ready to define the extension of ũ inside a primary sector. The goal
of this step is to take a primary sector S(AB), being A = ũ(A) and B = ũ(B), with
A, B ∈ ∂D as usual, and to define a piecewise affine bi-Lipschitz extension ũAB of ũ which
sends a suitable subset DAB of the square D onto S(AB) (see Figure 13). First we observe
a simple trigonometric estimate for the bi-Lipschitz constant of an affine map between two
triangles and then we state and prove the main result of this step.

Lemma 5.30. Let T and T ′ be two triangles in R2, and let φ be a bijective affine map
sending T onto T ′. Call a, b and α the lengths of two sides of T and the angle between
them, and let a′, b′ and α′ be the correponding lengths and angle in T ′. Then, the Lipschitz
constant of the map φ can be bounded as

Lip(φ) ≤ a′

a
+
b′ sinα′

b sinα
+

∣∣∣∣∣b′ cosα′

b sinα
− a′ cosα

a sinα

∣∣∣∣∣ ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
. (5.61)

Proof. Let us take an orthonormal basis {e1, e2} of R2. Up to an isometry of the plane,
we can assume that the two sides of lengths a and a′ are both on the line {e2 = 0}, that
the two triangles T and T ′ both lie in the half-space {e2 ≥ 0} and that the vertices whose
angles are given by α, α′ coincide with the point (0, 0). Hence, one has that φ(x) = M x+ω,
for some vector ω ∈ R2 and a 2× 2 matrix M . We have then

Lip(φ) = |M | = sup
ν 6=0

|Mν|
|ν|

.

With our choice of coordinates, we have clearly

M
Ä
a, 0
ä

=
Ä
a′, 0

ä
, M

Ä
b cosα, b sinα

ä
=
Ä
b′ cosα′, b′ sinα′

ä
,

which immediately gives

M =

á a′

a

b′ cosα′

b sinα
− a′ cosα

a sinα

0
b′ sinα′

b sinα

ë
,

from which the estimate (5.61) immediately follows. �

Lemma 5.31. Let S(AB) be a primary sector. Then there exists a polygonal subset
DAB of D, and a piecewise affine map ũAB : DAB → S(AB) such that:

(i) for any P ∈ ∂D, one has DAB ∩ OP = ∅ if P /∈ ĀB, DAB ∩ OP = {P} if P ∈
{A, B}, and DAB ∩OP = PPN with PN = tO+ (1− t)P and 0 < t = t(P ) < 4/5

if P ∈ ĀB \ {A, B} .
(ii) ũAB = ũ on ĀB = ∂D ∩ DAB .
(iii) ũAB is bi-Lipschitz with constant 212000L4.

(iv) For any two consecutive vertices P, Q ∈ ĀB, one has PN(P )
◊�QN(Q)O ≥

1

87L
.
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Figure 13. The function ũAB : DAB → S(AB)

Proof. We will divide the proof in three parts.

Part 1. Definition of γ̄, γ̄, ũAB : ∂γ̄ → ∂γ̄, and validity of (i) and (ii).

First of all, we take a vertex P ∈ ĀB and, for any 1 ≤ i ≤ N = N(P ), we set

Pi = tP,iO + (1− tP,i)P , with tP,i =
τ(P i)

10L
, (5.62)

where τ is the function of Lemma 5.29. Then, we define ũAB on the segment PPN as
the piecewise affine function such that for all i one has ũAB(Pi) = P i. It is important to
observe that

0 ≤ tP,i ≤
4

5
, ∀P ∈ ĀB, 1 ≤ i ≤ N = N(P ) . (5.63)

Indeed, using (5.51) in Lemma 5.29, (ii) in Lemma 5.18, and the Lipschitz property of ũ,
one has that

τ(P i) ≤ τ(PN) ≤
N∑
j=1

`
Ä
P j−1P j

ä
= `
Ä
ṖPN

ä
≤ 4 `

Ä
ĂB

ä
≤ 4L `

Ä
ĀB
ä
≤ 8L ,

so by (5.62) we get (5.63).
We are now ready to define the set DAB. Let us enumerate, just for one moment, the

vertices of ĀB as P 0 ≡ A, P 1, P 2 . . . , PW−1, PW ≡ B, following the order of ĀB. The

set DAB is then defined as the polygon whose boundary is the union of ĀB with the path
AP 1

N(1)P
2
N(2) · · ·P

W−1
N(W−1)B, as in Figure 13, where for each 0 < i < W we have written

N(i) = N(P i). Hence, property (i) is true by construction and by (5.63).

Then we take two generic consecutive vertices P, Q ∈ ĀB, and we call γ̄ ⊆ DAB the

quadrilater PPNQMQ, and γ̄ ⊆ S(AB) the polygon whose boundary is PQ ∪ ˚�QQM ∪
QMPN ∪ ṖNP , where we have set N = N(P ) and M = N(Q). Notice that, varying the
consecutive vertices P and Q, DAB is the union of the different polygons γ̄, while S(AB)
is the union of the polygons γ̄. We will then define the function ũAB so that ũAB(γ̄) = γ̄.
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Let us start with the definition of ũAB from ∂γ̄ to ∂γ̄. The function ũAB has been already

defined from the segment PPN to the path ṖPN and from the segment QQM to the path˚�QQM . Hence we conclude defining ũAB to be affine from the segment PQ to the segment
PQ, and from PNQM to PNQM . Notice that, as a consequence, also property (ii) is true
by construction.

Now we see how to extend ũAB from the interior of γ̄ to the interior of γ̄ satisfying
properties (iii) and (iv).

B

A

P

Q

P4

Q2

O

uAB

P

P 2

A

B

Q2

P 4

P 1
Q1

Q

P 3

Figure 14. The sets γ̄ and γ̄

Recalling the partition of S(AB) in triangles done in Section 5.5, PQ is a side of some
triangle PQR, and since PQ ⊆ ∂γ̄ it cannot be the exit side. Let us then assume, without
loss of generality, that the exit side is QR. Hence, it follows that N > M . Moreover, ifÄ
T 1, T 2, . . . , T N

ä
is the natural sequence of triangles related to P , as in Definition 5.16,

then it is immediate to observe that Q belong to the exit side of T i for all 1 ≤ i ≤ N−M .
Figure 14 shows an example in which N = 4 and M = 2. In the following two parts, we will
define ũAB separately on the triangle PPN−MQ and on the quadrilateral PN−MPNQMQ,
whose union is γ̄.

Part 2. Definition of ũAB in the triangle PPN−MQ, and validity of (iii) and (iv).
In this second part we define ũAB from the triangle PPN−MQ to the polygon in γ̄

whose boundary is ˛�PPN−M ∪ PN−MQ ∪QP . The definition is very simple, namely, for
any 0 ≤ i < N −M we let ũAB be the affine function sending the triangle PiPi+1Q onto
the triangle P iP i+1Q, as shown in Figure 15. We now have to check the validity of (iii)
and (iv) in the triangle PPN−MQ. Keeping in mind Lemma 5.30, to show (iii) it is enough
to compare the lengths of PiPi+1 and P iP i+1, those of Pi+1Q and P i+1Q, and the angles

Pi’Pi+1Q and P i
’P i+1Q.
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Figure 15. The situation in Part 2

We start recalling that (iii) in Lemma 5.18, together with the Lipschitz property of ũ,
ensures

`
Ä
PQ
ä

7L
≤ `
Ä
P i+1Q

ä
≤ `
Ä
PQ

ä
≤ L`

Ä
PQ
ä

(5.64)

(keep in mind that, since P and Q are consecutive vertices, then PQ = P̄Q and PQ =

P̄Q). Recalling now (5.52) of Lemma 5.29 and (5.62), we get

tP,i+1 = tP,i+1 − tQ,0 =
τ(P i+1)− τ(Q0)

10L
≤ 17 `

Ä
PQ

ä
≤ 17L `

Ä
PQ
ä
. (5.65)

We want now to estimate `
Ä
Pi+1Q

ä
. To do so, let us assume, as in Figure 15 and without

loss of generality, that P and Q belong to the left side of the square D and that P is above
Q. Call also V ≡ (−1

2
,−1

2
) the southwest corner of D, and let δx and δy be the horizontal

and vertical components of the vector Pi+1 −Q, so that

`
Ä
Pi+1Q

ä
=
»
δ2
x + δ2

y .

By construction one clearly has δx = tP,i+1/2. We claim that
√

2

2
`
Ä
PQ
ä
≤ `
Ä
Pi+1Q

ä
≤ 17

√
2

2
L `
Ä
PQ
ä
. (5.66)

In fact, since Pi+1 belongs to the segment PO, then one surely has

`
Ä
Pi+1Q

ä
≥ `
Ä
PQ
ä

sin
Ä
O“PV ä ≥ √2

2
`
Ä
PQ
ä
,

so that the left inequality in (5.66) holds. To show the right inequality in (5.66) we
consider two cases, depending on whether Pi+1 is above or below Q or, in other words,
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whether Pi+1
“QV is bigger or smaller than π/2. If Pi+1 is above Q, then δy ≤ `

Ä
PQ
ä
, so

that thanks to (5.65) we get

`
Ä
Pi+1Q

ä
=
»
δ2
x + δ2

y ≤

ÃÇ
tP,i+1

2

å2

+ `
Ä
PQ
ä2 ≤ ÃÇ17

2
L `
Ä
PQ
äå2

+ `
Ä
PQ
ä2

=

√
293

2
L `
Ä
PQ
ä
≤ 17

√
2

2
L `
Ä
PQ
ä
.

(5.67)

On the other hand, if Pi+1 is below Q, then
π

4
≤ O“QV ≤ Pi+1

“QV ≤ π

2
,

hence

`
Ä
Pi+1Q

ä
=

δx

sin
Ä
Pi+1

“QV ä ≤ √2δx =

√
2

2
tP,i+1 ≤ 17

√
2

2
L `
Ä
PQ
ä
,

which in both cases yields (5.66).
Keeping in mind (5.64), from (5.66) we obtain

√
2

2L
≤

`
Ä
Pi+1Q

ä
`
Ä
P i+1Q

ä ≤ 17 · 7
√

2

2
L2 ≤ 85L2 . (5.68)

It is much easier to compare `
Ä
PiPi+1

ä
and `

Ä
P iP i+1

ä
. Indeed, by immediate geometrical

argument, recalling (5.62), (5.50) and condition (5.51) of Lemma 5.29, and letting S be
any point in the interior of P iP i+1, one has

`
Ä
PiPi+1

ä
≤
√

2

2

Ä
tP,i+1 − tP,i

ä
=

√
2

20L

Ä
τ(P i+1)− τ(P i)

ä
=

√
2

20L
τ ′(S) `

Ä
P iP i+1

ä
≤
√

2

20L
`
Ä
P iP i+1

ä
,

and analogously

`
Ä
PiPi+1

ä
≥ tP,i+1 − tP,i

2
=
τ(P i+1)− τ(P i)

20L
=
τ ′(S)

20L
`
Ä
P iP i+1

ä
≥ 1

1200L2
`
Ä
P iP i+1

ä
.

Thus, we have

1

1200L2
≤

`
Ä
PiPi+1

ä
`
Ä
P iP i+1

ä ≤ √2

20L
. (5.69)

Let us finally compare the angles Pi’Pi+1Q and P i
’P i+1Q. Concerning P i

’P i+1Q, it is
enough to recall (i) of Lemma 5.18 to obtain

15◦ ≤ P i
’P i+1Q ≤ 165◦ . (5.70)

On the other hand, concerning Pi’Pi+1Q, we start observing

Pi’Pi+1Q = P’Pi+1Q ≤ π −O“PQ ≤ 3

4
π . (5.71)
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To obtain an estimate from below to Pi’Pi+1Q, instead, we call for brevity α := Pi’Pi+1Q =

P’Pi+1Q and θ := O“PV − π
2
∈
î
−π/4, π/4

ä
, so that an immediate trigonometric argument

gives

`
Ä
PQ
ä

=
tP,i+1

2

Å
tan(θ + α)− tan θ

ã
. (5.72)

We aim then to show that

α ≥ 1

19L
. (5.73)

In fact, if

θ + α ≥ π

4
+

1

19
,

then since θ ≤ π/4 we immediately deduce the validity of (5.73). On the contrary, if

θ + α <
π

4
+

1

19
,

then recalling (5.72), the fact that θ ≥ −π/4, (5.65) and the Lipschitz property of u we
get

`
Ä
PQ
ä

=
tP,i+1

2

Å
tan(θ + α)− tan θ

ã
≤ tP,i+1

2

α

cos2

Å
π
4

+ 1
19

ã ≤ 17

2
L `
Ä
PQ
ä α

cos2

Å
π
4

+ 1
19

ã ,
from which we get

α ≥
2 cos2

Å
π
4

+ 1
19

ã
17L

≥ 1

19L
,

so that (5.73) is concluded. Putting it together with (5.71), we deduce

1

19L
≤ Pi’Pi+1Q ≤

3

4
π . (5.74)

Finally we show the validity of (iii), simply applying (5.61) of Lemma 5.30. Indeed, let us
call φ the affine map which sends the triangle PiPi+1Q onto P iP i+1Q and, for brevity and
according with the notation of Lemma 5.30, let us write

a = `
Ä
Pi+1Q

ä
, b = `

Ä
PiPi+1

ä
, α = Pi’Pi+1Q ,

a′ = `
Ä
P i+1Q

ä
, b′ = `

Ä
P iP i+1

ä
, α′ = P i

’P i+1Q .

Then, the estimates (5.68), (5.69), (5.70) and (5.74) can be rewritten as
√

2

2L
≤ a

a′
≤ 85L2 ,

1

1200L2
≤ b

b′
≤
√

2

20L
, sinα′ ≥ 1

4
, sinα ≥ 1

20L
, (5.75)

where for the last estimate we used that

sinα ≥ sin

Ç
1

19L

å
=

1

19L

Ç
19L sin

Ç
1

19L

åå
≥ 1

19L

Ç
19 sin

Ç
1

19

åå
≥ 1

20L
. (5.76)

Therefore, (5.61) and (5.75) give us

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤
√

2L+ 48000L3 + 20
√

2L2 .
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On the other hand, exchanging the roles of the triangles, we get

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 85L2 +

2
√

2

5L
+ 340L2 .

To conclude this part, we want to check (iv) for the pairs of consecutive vertices P, Q
such that the side PNQM is in the triangle PPN−MQ. Notice that this happens only when
M = 0, or in other words, if Q ≡ A or Q ≡ B. Let us then assume that Q is either A or
B, and let us show that (iv) holds, that is,

QP̂NO ≥
1

87L
, PN “QO ≥ 1

87L
. (5.77)

Taking i = N − 1 and applying the second inequality in (5.74), we immediately find

QP̂NO = π − PN−1P̂NQ ≥
π

4
>

1

87L
.

In the same way, applying the first inequality in (5.74) and recalling Remark 5.10, one has

PN “QO = π −QP̂NO −Q“OPN = PN−1P̂NQ− P “OQ ≥ 1

19L
− 1

50L
>

1

87L
.

Hence, (5.77) is checked.

Part 3. Definition of uAB in the quadrilateral PN−MPNQMQ, and validity of (iii) and (iv).
The definition is again trivial: we take any N − M ≤ i < N and, setting j = i −

N + M ∈ [0,M), we have to send the quadrilateral PiPi+1Qj+1Qj on the quadrilateral
P iP i+1Qj+1Qj. To do so, we send the triangle PiPi+1Qj+1 (resp. Qj+1QjPi) onto the
triangle P iP i+1Qj+1 (resp. Qj+1QjP i) in the bijective affine way, as depicted in Figure 16.
Then, we have to check the validity of (iii) and (iv). As in Part 2, checking (iii) basically
relies, thanks to Lemma 5.30, on a comparison between the lengths of the corresponding
sides and between the corresponding angles. The argument will be very similar to that
already used in Part II, but for the sake of clarity we are going to underline all the changes
in the proof.

First of all, the argument leading to (5.69) can be verbatim repeated for both the
segments PiPi+1 and QjQj+1, leading to

1

1200L2
≤

`
Ä
PiPi+1

ä
`
Ä
P iP i+1

ä ≤ √2

20L
,

1

1200L2
≤
`
Ä
QjQj+1

ä
`
Ä
QjQj+1

ä ≤ √2

20L
. (5.78)

The argument that we used in Part 2 to bound the length of the segment Pi+1Q works,
with minor modifications, to estimate the lengths of PiQj and Pi+1Qj+1. Let us do it in
detail for PiQj, being the case of Pi+1Qj+1 exactly the same. First of all, assuming without
loss of generality that P and Q lie in the left side of D, and that P is above Q, let us call
xj ∈ (−1/2,−1/5) the first coordinate of Qj, set Vj ≡ (xj,−1/2), V ≡ (−1/2,−1/2), and
define P⊥ the point of the segment OP having first coordinate equal to xj. We also assume
w.l.o.g. that τ(Pi) > τ(P⊥).

As in (5.65), then, we obtain

tP,i − tQ,j ≤ 17L `
Ä
PQ
ä
, tP,i+1 − tQ,j+1 ≤ 17L `

Ä
PQ
ä
. (5.79)
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Figure 16. The situation in Part 3

We claim that √
2

10
`
Ä
PQ
ä
≤ `
Ä
PiQj

ä
≤ 17

√
2

2
L `
Ä
PQ
ä
. (5.80)

–notice the presence of
√

2/10 in the left hand side, while there was
√

2/2 in the corre-
sponding term in (5.66). To show the left inequality in (5.80) we start observing that,
being Pi in OP , one has

`
Ä
PiQj

ä
≥ `
Ä
P⊥Qj

ä
sin
Ä
OP̂⊥Qj

ä
= `
Ä
P⊥Qj

ä
sin
Ä
O“PV ä ≥ √2

2
`
Ä
P⊥Qj

ä
.

Moreover, the segment P⊥Qj is parallel to PQ, then (5.63) immediately gives `
Ä
P⊥Qj

ä
≥

`
Ä
PQ
ä
/5. Hence, we get `

Ä
PiQj

ä
≥
√

2
10
`
Ä
PQ
ä
, that is the left inequality of (5.80).

Let us now pass to the right inequality. To do so we call again δx and δy the horizontal
and vertical components of PiQj, so that `(PiQj) =

»
δ2
x + δ2

y . Notice that by construction

δx = |tP,i − tQ,j|/2. If Pi is above Qj, as in Figure 16, then δy ≤ `
Ä
PQ
ä
, so that exactly as

in (5.67) we get, using (5.79) and the Lipschitz property of u,

`
Ä
PiQj

ä
=
»
δ2
x + δ2

y ≤

ÃÇ
tP,i − tQ,j

2

å2

+ `
Ä
PQ
ä2 ≤ ÃÇ17

2
L `
Ä
PQ
äå2

+ `
Ä
PQ
ä2

=

√
293

2
L `
Ä
PQ
ä
≤ 17

√
2

2
L `
Ä
PQ
ä
.
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On the other hand, if Pi is below Qj, then surely

π

4
≤ O”QjVj ≤ Pi”QjVj ≤

π

2
,

thus

`
Ä
PiQj

ä
=

δx

sin
Ä
Pi”QjVj

ä ≤ √2δx =

√
2

2

∣∣∣tP,i − tQ,j∣∣∣ ≤ 17

√
2

2
L `
Ä
PQ
ä
,

and so the validity of the right inequality in (5.80) is established in both cases. Since (iii)
of Lemma 5.18 gives

`
Ä
PQ
ä

7L
≤ `
Ä
P iQj

ä
≤ `
Ä
PQ

ä
≤ L `

Ä
PQ
ä
,

from (5.80) we immediately obtain

√
2

10L
≤

`
Ä
PiQj

ä
`
Ä
P iQj

ä ≤ 85L2 . (5.81)

The same argument, exchanging i and j with i+ 1 and j + 1 respectively, gives also
√

2

10L
≤

`
Ä
Pi+1Qj+1

ä
`
Ä
P i+1Qj+1

ä ≤ 85L2 . (5.82)

We now have to consider the angles Pi’Pi+1Qj+1, Qj+1
”QjPi and their correspondent ones

in γ̄. By Lemma 5.18 (i), we already know that

Qj+1

Qj

Pi Pi+1 P⊥P ′

P

Q

O

Figure 17. Position of the points Pi, Pi+1, Qj, Qj+1, P⊥ and P ′

15◦ ≤ P i
’P i+1Qj+1 ≤ 165◦ , sin

Å
Qj+1Q̂jP i

ã
≥ 1

6L2
. (5.83)

As in Figure 17, let us then call P ′ the orthogonal projection of Qj+1 on the segment OP ,
and P⊥ the point of the segment OP with the same first coordinate as Qj+1. Assume for
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a moment that, as in the figure, P ′ does not belong to PPi+1. By (5.79) and by (5.63) we
have

`
Ä
Pi+1P

⊥ä =
|tP,i+1 − tQ,j+1|

2 sin
Ä
O“PQä ≤ √2

2
17L `

Ä
PQ
ä
, `
Ä
P⊥Qj+1

ä
≥
`
Ä
PQ
ä

5
,

`
Ä
P⊥P ′

ä
= `
Ä
P⊥Qj+1

ä
cos
Ä
O“PQä , `

Ä
Qj+1P

′ä = `
Ä
P⊥Qj+1

ä
sin
Ä
O“PQä .
(5.84)

Therefore, we can evaluate

tan
Ä
P ′’Pi+1Qj+1

ä
=
`
Ä
Qj+1P

′
ä

`
Ä
Pi+1P ′

ä ≥ `
Ä
Qj+1P

′
ä

`
Ä
P⊥P ′

ä
+ `
Ä
Pi+1P⊥

ä ≥ √
2

2
`
Ä
P⊥Qj+1

ä
√

2
2
`
Ä
P⊥Qj+1

ä
+
√

2
2

17L `
Ä
PQ
ä

=
`
Ä
P⊥Qj+1

ä
`
Ä
P⊥Qj+1

ä
+ 17L `

Ä
PQ
ä ≥ 1

86L
,

which immediately gives

Pi’Pi+1Qj+1 = π − P ′’Pi+1Qj+1 ≤ π − arctan

Ç
1

86L

å
. (5.85)

Notice that, if P ′ belongs to PPi+1, then Pi’Pi+1Qj+1 ≤ π/2, so (5.85) holds a fortiori true.
We claim that one also has

Pi’Pi+1Qj+1 ≥
1

87L
. (5.86)

To show this, we are going to argue in a very similar way to what already done in Part 2.
In fact, if tP,i+1 ≤ tQ,j+1 then (5.86) trivially holds true. Assuming, on the contrary, that

tP,i+1 > tQ,j+1, we call for brevity α := Pi’Pi+1Qj+1 and θ := OP̂⊥Qj+1 − π
2
∈
î
− π

4
, π

4

ä
,

and we notice that an immediate trigonometric argument gives

`
Ä
P⊥Qj+1

ä
=
tP,i+1 − tQ,j+1

2

Å
tan(θ + α)− tan θ

ã
. (5.87)

We can assume that

θ + α ≤ π

4
+

1

87
,

since otherwise (5.86) is already established. Hence, recalling (5.84), (5.87), the fact that
θ ≥ −π/4, (5.79) and the Lipschitz property of u we get

`
Ä
PQ
ä
≤ 5 `

Ä
P⊥Qj+1

ä
=

5

2

Ä
tP,i+1 − tQ,j+1

äÅ
tan(θ + α)− tan θ

ã
≤

85L `
Ä
PQ
ä

2

α

cos2

Å
π
4

+ 1
87

ã ,
which implies

α ≥
2 cos2

Å
π
4

+ 1
87

ã
85L

≥ 1

87L
.
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Thus, (5.86) is now established. If we repeat exactly the same argument that we used to
obtain (5.85) and (5.86) in the symmetric way, that is, substituting Pi, Pi+1 and Qj+1 with
Qj+1, Qj and Pi respectively, then we get

Qj+1
”QjPi ≤ π − arctan

Ç
1

86L

å
, Qj+1

”QjPi ≥
1

87L
. (5.88)

Finally, we can check the validity of (iii) by making use of (5.61) of Lemma 5.30. Indeed, let

us call φ (resp. φ̃) the affine maps which send PiPi+1Qj+1 on P iP i+1Qj+1 (resp. Qj+1QjPi
on Qj+1QjP i). According with the notation of Lemma 5.30, let us write

a = `
Ä
Pi+1Qj+1

ä
, b = `

Ä
PiPi+1

ä
, α = Pi’Pi+1Qj+1 ,

a′ = `
Ä
P i+1Qj+1

ä
, b′ = `

Ä
P iP i+1

ä
, α′ = P i

’P i+1Qj+1 ,

ã = `
Ä
PiQj

ä
, b̃ = `

Ä
QjQj+1

ä
, α̃ = Qj+1

”QjPi ,

ã′ = `
Ä
P iQj

ä
, b̃′ = `

Ä
QjQj+1

ä
, α̃′ = Qj+1Q̂jP i .

The estimates (5.78), (5.81) and (5.82) for the sides, and (5.83), (5.85), (5.86) and (5.88)
for the angles, give us
√

2

10L
≤ a

a′
≤ 85L2 ,

1

1200L2
≤ b

b′
≤
√

2

20L
, sinα′ ≥ 1

4
, sinα ≥ 1

88L
, (5.89)

√
2

10L
≤ ã

ã′
≤ 85L2 ,

1

1200L2
≤ b̃

b̃′
≤
√

2

20L
, sin α̃′ ≥ 1

6L2
, sin α̃ ≥ 1

88L
, (5.90)

where the estimates for α and α̃ can be obtained in the very same way as (5.76). As in
Part 2, then, we can apply (5.61) together with (5.89) and (5.90) to obtain

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤ 5
√

2L+ 211200L3 + 440
√

2L2 ≤ 212000L3 ,

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 85L2 +

2
√

2

5L
+ 340L2 ,

Lip(φ̃) ≤ ã′

ã
+

2b̃′

b̃ sin α̃
+

ã′

ã sin α̃
≤ 5
√

2L+ 211200L3 + 440
√

2L2 ≤ 212000L3 ,

Lip(φ̃−1) ≤ ã

ã′
+

2b̃

b̃′ sin α̃′
+

ã

ã′ sin α̃′
≤ 85L2 +

3
√

2L

5
+ 500L4 ≤ 212000L4 .

Thus, we have checked the validity of (iii).
Concerning (iv), we have to show that

PN‘QMO ≥
1

87L
, QM P̂NO ≥

1

87L
. (5.91)

In fact, applying (5.85) with i = N − 1 and then j = M − 1, we have that

QM P̂NO = π − PN−1P̂NQM ≥ arctan

Ç
1

86L

å
≥ 1

87L
,



144 5. A PLANAR BI-LIPSCHITZ EXTENSION THEOREM

and the same argument, exchanging the roles of PN and QM ensures the validity of (5.91).
Thus, (iv) is established and the proof is concluded. �

5.10. Extension in the whole square

We finally come to the explicit definition of the piecewise affine map ṽ. It is important
to recall now Lemma 5.1 of Section 5.3. It provides us with a central ball “B ⊆ Γ which is
such that the intersection of its boundary with ∂Γ consists of N points A1, A2, . . . , AN ,

with N ≥ 2. Moreover, for each 1 ≤ i ≤ N one has that the path ¸�AiAi+1 does not
contain other points Aj with j 6= i, i + 1. Or, in other words, that for each 1 ≤ i ≤ N
the anticlockwise path connecting Ai and Ai+1 on ∂D has length at most 2 (keep in mind
Remark 5.2). Notice that this implies, in the case N = 2, that the points A1 and A2 are
opposite points of ∂D. The set Γ is then subdivided in N primary sectors S(AiAi+1), plus
the remaining polygon Π (see e.g. Figure 18, where Π is a (coloured) quadrilateral).

Moreover, thanks to Section 5.9, we have N disjoint polygonal subsets Di as in the
Figure, and N extensions ũi : Di → S(AiAi+1). It is then easy to guess a possible
definition of ṽ, that is setting ṽ ≡ ũi on each Di and then sending in the obvious piecewise
affine way the set D \ ∪iDi (coloured in the figure) into the polygon Π, defining ũ(O) as

the center of “B. Unfortunately, this strategy does not always work. For instance, if N = 2,
then Π is a degenerate empty polygon, thus it cannot be the bi-Lipschitz image of the
non-empty region D \ ∪iDi. And also for N ≥ 3, it may happen that the polygon Π does

not contain the center of “B, which is instead inside some sector S(AiAi+1). And in that

case, obviously, the center of “B can not be the point ũ(O). Having these possibilities in
mind, we are now ready to give the proof of the first part of Theorem 0.4, that is, the
existence of the piecewise affine extension ṽ of ũ.
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Figure 18. The sets Di in D and the set Π in Γ
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Proof of Theorem 0.4 (piecewise affine extension). We need to consider
three possible situations. To distinguish between them, let us start with a definition.
For any 1 ≤ i ≤ N , we call di the signed distance between the segment AiAi+1 and the

center of “B, where the sign is positive if the center does not belong to S(AiAi+1), and neg-
ative otherwise –for instance, in the situation of Figure 18 all the distances di are positive.
Let us also call r the radius of “B, and observe that

2

3L
≤ r ≤ 2L

π
. (5.92)

The first inequality has been already pointed out in Remark 5.2. Concerning the second
one, it immediately follows by observing that the perimeter of Γ is at least 2πr by geometric
reasons, and on the other hand it is less than 4L since it is the L−Lipschitz image of the
square D which has perimeter 4. We can then give our proof in the different cases.

Case A. For each 1 ≤ i ≤ N , one has di ≥ r/4.
This is the simplest of the three cases, and the situation is already shown in Figure 18.

We start by calling O the center of “B. Then, for all 1 ≤ i ≤ N , let us define ṽ ≡ ũi on Di.
We have now to send D\∪iDi into Π. In order to do so, consider all the vertices Pj of ∂D.
For each vertex Pj, which belongs to some set Di for a suitable i = i(j), there exists a point
Qj, which is the last point of the segment PjO which belongs to ∂Di. Indeed, the segment
PjO intersects ∂Di only at Pj and at Qj, and the two points are the same if and only if
Pj ≡ Ai or Pj ≡ Ai+1). By the construction of Step VII, we know that ṽ(Qj) = (P j)N(Pj),
and we will write for brevity Qj := (P j)N(Pj). Now notice that D \ ∪iDi is the union of
the triangles QjQj+1O, and on the other hand Π is the union of the triangles QjQj+1O.
We then conclude our definition of ṽ by imposing that ṽ sends in the affine way each
triangle QjQj+1O into the triangle QjQj+1O. Hence, it is clear that ṽ is a piecewise affine
homeomorphism between D and Γ, which extends the original function ũ. Thus, to finish
the proof we only have to check that ṽ is bi-Lipschitz with the right constant. Since this
is already ensured by Lemma 5.31 on each primary sector, it is enough to consider a single
triangle QjQj+1O. Using again Lemma 5.30 from Section 5.9 to estimate the bi-Lipschitz
constant of the affine map on the triangle, we have to give upper and lower bounds for the
quantities

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = OQ̂jQj+1 .

Let us then collect all the needed estimates: first of all, notice that the ratio a/a′ has
already been evaluated in Lemma 5.31, either in Part 2 or in Part 3. Thus, recalling (5.75)
and (5.89), we already know that

√
2

10L
≤ a

a′
≤ 85L2 . (5.93)
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Concerning the ratio b/b′, notice that by geometric reasons and recalling (5.63), we have

1

10
≤ b ≤

√
2

2
, (5.94)

while by (5.92) and the assumption of this case

1

6L
≤ r

4
≤ b′ ≤ r ≤ 2L

π
. (5.95)

Thus,
π

20L
≤ b

b′
≤ 3
√

2L . (5.96)

Let us finally consider the angles α and α′. Concerning α, property (iv) of Lemma 5.31
tells us that

1

87L
≤ α ≤ π − 1

87L
. (5.97)

On the other hand, by the assumption of this case we clearly have

arcsin
1

4
≤ α′ ≤ π − arcsin

1

4
,

and then
1

sinα
≤ 88L ,

1

sinα′
≤ 4 . (5.98)

We can then apply (5.61) making use of (5.93), (5.96) and (5.98) to get

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤ 5
√

2L+
3520

π
L2 + 440

√
2L2 ,

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 85L2 + 24

√
2L+ 340L2 ,

thus the claim of the theorem is obtained in this first case.

Case B. There exists some 1 ≤ i ≤ N such that −r/2 ≤ di < r/4.

Also in this case, we set ṽ(O) = O to be the center of “B. Let us write now D = ∪iAi,
where each Ai is the subset of D whose boundary is AiO∪Ai+1O∪¸�AiAi+1. Notice that for
each i, one has Di ⊆ Ai, and in particular we set Ii = Ai \ Di, the “internal part” of Ai.
Our definition of ṽ will be done in such a way that, for each 1 ≤ i ≤ N , v(Ai) will be the
union of the sector S(AiAi+1) and the triangle AiAi+1O. Observe that, in the Case A,
we had defined ṽ so that for each i one had ṽ(Di) = S(AiAi+1) and ṽ(Ii) = AiAi+1O.

Let us fix a given 1 ≤ i ≤ N , and notice that either di ≥ r/4, or −r/2 ≤ di < r/4. In
fact, since we assume the existence of some i for which −r/2 ≤ di < r/4, then it is not
possible that there exist some other i with di < −r/2.

If di ≥ r/4, then we define ṽ exactly as in Case A, that is, we set ṽ ≡ ũi on Di, and for

any two consecutive vertices Pj, Pj+1 ∈ ¸�AiAi+1 we let ṽ be the affine function transporting
the triangle QjQj+1O of D onto the triangle QjQj+1O of Γ, where Qk = PN(Pk). In this

case, ṽ is bi-Lipschitz on Ai with constant at most 5
√

2L + 3520L2/π + 440
√

2L2, as we
already showed in Case A.
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O
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Figure 19. The situation for Case B, with the sets Ai and the points M ,
D and C

Consider then the case of an index i such that −r/4 ≤ di ≤ r/4, as it happens for
i = 2 in Figure 19 (where d2 is positive but smaller than r/4). As in the figure, let

us call C ∈ ∂“B the point belonging to the axis of the segment AiAi+1 and to the sector
S(AiAi+1), and let also D ∈ OC be the point such that `

Ä
OD

ä
= r/4. We now introduce

a bi-Lipschitz and piecewise affine function Φ : AiAi+1C → AiDAi+1C. If we call M the
mid-point of AiAi+1, the function Φ is simply given by the affine map between the triangle
AiMC and AiDC, and by the affine map between Ai+1MC and Ai+1DC. The fact
that Φ is piecewise affine is clear, being Φ defined gluing two affine maps. Moreover, by
the fact that −r/2 ≤ di < r/4, Φ is 2−Lipschitz and Φ−1 is 3−Lipschitz. We will extend
Φ : S(AiAi+1) → S(AiAi+1), whitout need of changing the name, as the identity out of
the triangle AiAi+1C. Of course also the extended Φ is 2−Lipschitz and its inverse is
3−Lipschitz.

We are now ready to define ṽ in Ai. First of all, we set ṽ ≡ Φ ◦ ũi on Di. Thanks
to Lemma 5.31 and the properties of Lipschitz functions, we have that ṽ is piecewise
affine and bi-Lipschitz with constant 3 · 212000L4 = 636000L4 on its image, which is
S(AiAi+1) \AiAi+1D. To conclude, we need to send Ii onto the quadrilater AiOAi+1D.

To do so, consider all the vertices Pj ∈ ĂiAj, and define Qj ∈ ∂Di as in Case A. This
time, we will not set Qj = ũi(Qj): instead, Qj will be defined as Qj := Φ

Ä
ũi(Qj)

ä
, so that

ṽ(Qj) = Qj as usual. Notice that, again, Ii is the union of the triangles QjQj+1O, while
the quadrilateral AiOAi+1D is the union of the triangles QjQj+1O (up to the possible
addition of a new vertex corresponding toD). The map ṽ on Ii will be then the map which
sends each triangle QjQj+1O onto QjQj+1O in the affine way. Clearly the map v is then
a piecewise affine homeomorphism, so that again we only have to check its bi-Lipschitz
constant (Figure 20 may help the reader to follow the construction). As usual, we will
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apply (5.61) of Lemma 5.30, so we set the quantities

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = OQ̂jQj+1 .

Recall that, studying Case A, we have already found in (5.93) that for each vertex Pj ∈
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Figure 20. A zoom for Case B, with Qj, Qj+1, ũ2(Qj), ũ2(Qj+1), Qj and Qj+1¸�AiAi+1 one has √
2

10L
≤

`
Ä
QjQj+1

ä
`
Å
ũi(Qj)ũi(Qj+1)

ã ≤ 85L2 . (5.99)

Notice also that now we have `
Ä
QjQj+1

ä
= a, exactly as in Case A, but it is no more true

that `
Å
ũi(Qj)ũi(Qj+1)

ã
= a′. However, since Φ is 2−Lipschitz and Φ−1 is 3−Lipschitz, we

have

a′ = `
Ä
QjQj+1

ä
= `
Å

Φ
Ä
ũi(Qj)

ä
Φ
Ä
ũi(Qj+1)

äã
≤ 2 `

Å
ũi(Qj)ũi(Qj+1)

ã
,

a′ = `
Ä
QjQj+1

ä
= `
Å

Φ
Ä
ũi(Qj)

ä
Φ
Ä
ũi(Qj+1)

äã
≥
`
Å
ũi(Qj)ũi(Qj+1)

ã
3

,

which by (5.99) ensures √
2

20L
≤ a

a′
≤ 255L2 . (5.100)

To bound the ratio b/b′, we have to estimate both b and b′. Concerning b, we already know
by (5.94) that

1

10
≤ b ≤

√
2

2
.
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On the other hand, let us study b′. The estimate from above, exactly as in (5.95), is simply
obtained by (5.92) as

b′ ≤ r ≤ 2L

π
.

Instead, to get the estimate from below, it is enough to recall that Qj belongs to the
segment AiD (or Ai+1D). Thus, being di ≤ r/4, an immediate geometric argument and
again (5.92) give

b′ ≥ 1

2
√

7
r ≥ 1

3
√

7L

Collecting the inequalities that we just found, we get

π

20L
≤ b

b′
≤ 3

2

√
14L . (5.101)

Concerning the angles, (5.97) already tells us that

1

87L
≤ α ≤ π − 1

87L
.

Moreover, an immediate geometric argument ensures that sinα′ is minimal if α′ = O”AiD,
and in turn this last angle depends only on di and it is minimal when di = −r/2. A simple
calculation ensures that, in this extremal case, one has

α′ = arctan
1√
3/2
− arctan

1/2√
3/2

> 15◦ ,

thus we have

1

sinα
≤ 88L ,

1

sinα′
≤ 4 . (5.102)

Therefore, by applying (5.61) having (5.100), (5.101) and (5.102) at hand, we get

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤ 10

√
2L+

3520

π
L2 + 880

√
2L2 ,

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 255L2 + 12

√
14L+ 1020L2 .

Case C. There exists some 1 ≤ i ≤ N such that di < −r/2.
Notice that this i is necessarily unique, since d1 < −r/2 implies that for all i 6= 1 one

has di > r/2. In this case, differently from the preceding ones, we will not set O to be

the center of “B. Instead, as in Figure 21, let us call M the midpoint of A1A2, C ∈ “B
the point such that the triangle A1A2C is equilateral, and D and O the two points which
divide the segment CM in three equal parts. We aim at defining the extension ṽ in such
a way that ṽ(O) = O.

Before starting, we need to underline a basic estimate, that is,

4

3L
≤ `
Ä
A1A2

ä
≤ 2
√

3

π
L . (5.103)
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The right estimate is an immediate consequence of the assumption d1 < −r/2 and of (5.92).
Concerning the left estimate, recall that, as noticed in Remark 5.2, there must be two points
AiAj ∈ ∂“B such that `

Ä
AiAj

ä
≥ 4/3L. Thus the left estimate follows simply by observing

that the distance `
Ä
AiAj

ä
is maximal, under the assumption of this Case C, for i = 1 and

j = 2.
We can now start our construction. Exactly as in Case B, call Φ : S(A1A2)→ S(A1A2)

the piecewise affine function which equals the identity out of A1A2C, and which sends
in the affine way the triangle A1MC (resp. A2MC) onto the triangle A1DC (resp.
A2DC). Also in this case, one easily finds that Φ is 2−Lipschitz, while Φ−1 is 3−Lipschitz.
We are now ready to define the function ṽ. As in Case B, for any i our definition will be
so that ṽ(Ai) = S(AiAi+1) ∪AiAi+1O.
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�����
�����

A1M

A4

C

D

A3

A2

O

Qj+1

Qj

Figure 21. Situation in case C, with A1, A2, C, D,M and O

Let us start with i = 1. First of all, we define ṽ : D1 → Γ as ṽ = Φ ◦ ũ1, which is,
exactly as in Case B, a 636000L4 bi-Lipschitz piecewise affine homeomorphism between D1

and S(A1A2) \ A1A2D. Moreover, defining Qj and Qj as in Case B, the internal part
I1 is the union of the triangles QjQj+1O, while A1OA2D is the union of the triangles
QjQj+1O (again, possibly adding a vertex corresponding to D). We will then define again
ṽ : I1 → D by sending in the affine way each triangle in its corresponding one, and since ṽ
is again a piecewise affine homeomorphism by definition we have to check its bi-Lipschitz
constant. To do so, we define as in Case B the constants

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,
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a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = OQ̂jQj+1 .

The very same arguments which lead to (5.100) and (5.97) give again
√

2

20L
≤ a

a′
≤ 255L2 ,

1

sinα
≤ 88L . (5.104)

Since (5.94) is still true, to estimate b/b′ we again need to bound b′ from above and from
below. By easy geometric arguments, since Qj belongs to A1D or to A2D, we find

√
7

14
`
Ä
A1A2

ä
≤ b′ ≤ `

Ä
A1O

ä
=

√
3

3
`
Ä
A1A2

ä
.

(recall that Figure 21 depicts the situation and the position of the points). Thanks
to (5.103), then, we deduce

2
√

7

21L
≤ b′ ≤ 2

π
L ,

which by (5.94) yields
π

20L
≤ b

b′
≤ 3

4

√
14L . (5.105)

Finally, we have to estimate sinα′. As is clear from Figure 21, sinα′ is minimal if Qj ≡ A1,

thus if α′ = OÂ1D. Since in this extremal case one has

α′ = arctan
2
√

3

3
− arctan

√
3

3
> 15◦ ,

we obtain

sinα′ ≥ 1

4
. (5.106)

Applying then once more (5.61), thanks to (5.104), (5.105) and (5.106) we get

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤ 10

√
2L+

3520

π
L2 + 880

√
2L2 ,

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 255L2 + 6

√
14L+ 1020L2 .

To conclude, we have now to consider that case i 6= 1. Notice that now we cannot
simply rely on the calculations done in Case A as we did in Case B, because this time
O is not the center of “B. Nevertheless, we still define ṽ ≡ ũi on Di, which is 212000L4

bi-Lipschitz by Section 5.10, and again, to conclude, we have to send Ii onto AiAi+1O.
Since the first set is the union of the triangles QjQj+1O, while the latter is the union of
the triangles QjQj+1O, we define ṽ on Ii as the piecewise affine map which sends each
triangle onto its correspondent one, and we only have to check the bi-Lipschitz constant of
ṽ on I1. As usual, we set

a = `
Ä
QjQj+1

ä
, b = `

Ä
QjO

ä
, α = O”QjQj+1 ,

a′ = `
Ä
QjQj+1

ä
, b′ = `

Ä
QjO

ä
, α′ = OQ̂jQj+1 .
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Let us now make the following observation. Even though the situation is not the same as
in Case A, as we pointed out above, the only difference is in fact that now O is not the
center of “B. And this difference clearly affects only b′ and α′, thus (5.93), (5.94) and (5.97)
already tell us

√
2

10L
≤ a

a′
≤ 85L2 ,

1

10
≤ b ≤

√
2

2
,

1

87L
≤ α ≤ π − 1

87L
.

Concerning b′, since any point Qj is below A1A2 by construction (recall Figure 21), we
immediately deduce that

b′ ≥ `
Ä
MO

ä
=

√
3

6
`
Ä
A1A2

ä
≥ 2
√

3

9L
,

also using (5.103). On the other hand, by the assumption d1 < −r/2 and by construction

it immediately follows that O is below the center of “B, then keeping in mind (5.92) we
have

b′ ≤ r ≤ 2L

π
.

Finally, concerning α′, it is clear by construction that both α′ and π−α′ are strictly bigger
than A1Â2O, thus

sinα′ ≥ sinA1Â2O = sin

Ç
arctan

√
3

3

å
=

1

2
.

Summarizing, we have
√

2

10L
≤ a

a′
≤ 85L2 ,

π

20L
≤ b

b′
≤ 3
√

6L

4
, sinα ≥ 1

88L
, sinα′ ≥ 1

2
.

Now, it is enough to use (5.61) for a last time to obtain

Lip(φ) ≤ a′

a
+

2b′

b sinα
+

a′

a sinα
≤ 5
√

2L+
3520

π
L3 + 440

√
2L2 ,

Lip(φ−1) ≤ a

a′
+

2b

b′ sinα′
+

a

a′ sinα′
≤ 85L2 + 3

√
6L+ 170L2

and then the proof of the first part of Theorem 0.4 is finally concluded. �

5.11. Smooth extension and Proof of Theorem 0.5

In this last section, we show the existence of the smooth extension ṽ′ of ũ, thus con-
cluding the proof of Theorem 0.4, and we prove the existence of bi-Lipschitz extensions for
a general bi-Lipschitz function ũ (i.e., not necessarily piecewise affine) as in Theorem 0.5.

The proof of the last statement of Theorem 0.4 is an immediate corollary of the following
recent result by C.Mora-Corral and A.Pratelli (see [46, Theorem A]; in fact, we prefer to
claim here only the part of that result that we need in this paper).
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Theorem 5.32. Let v : Ω → R2 be a (countably) piecewise affine homeomorphism,
bi-Lipschitz with constant L. Then there exists a smooth diffeomorfism v̂ : Ω→ v(Ω) such
that v̂ ≡ v on ∂Ω, v̂ is bi-Lipschitz with constant at most 70L7/3, and

‖v̂ − v‖L∞(Ω) + ‖Dv̂ −Dv‖Lp(Ω) + ‖v̂−1 − v−1‖L∞(v(Ω)) + ‖Dv̂−1 −Dv−1‖Lp(v(Ω)) ≤ ε .

Proof of Theorem 0.4 (smooth extension). Let ṽ be an affine extension of ũ
having bi-Lipschitz constant at most CL4, which exists thanks to the proof of the first
part of the Theorem 0.4, Section 5.10. By Theorem 5.32, there exists a map ṽ′ which is
smooth, concides with ṽ on ∂D, and has bi-Lipschitz constant at most 70C7/3L28/3. This
map ṽ′ is a smooth extension of ũ as required. �

We now give the proof of Theorem 0.5, which will be obtained from Theorem 0.4 by
a quick extension argument. We will use the following geometric result, which is a simple
adaptation of Lemmas 4.19 and 4.20 of Chapter 4 to define piecewise affine approximations
on the boundary of a square.

Lemma 5.33. Let ϕ : ∂D → R2 be an L bi-Lipschitz map. Then, for any ε > 0, there
exists a piecewise affine map ϕε : ∂D → R2 which is 4L bi-Lipschitz and such that

|ϕ(P )− ϕε(P )| ≤ ε ∀P ∈ ∂D .

We can now show our Theorem 0.5.

Proof of Theorem 0.5. Let ũ : ∂D → R2 be an L bi-Lipschitz map. Fix ε > 0 and
apply Lemma 5.33, obtaining a 4L bi-Lipschitz and piecewise affine map ũε : ∂D → R2,
with ‖ũε− ũ‖L∞(∂D) ≤ ε. Theorem 0.4, applied to ũε, gives then an extension ṽε : D → R2

which is 236CL4 bi-Lipschitz and satisfies ṽε = ũε on
Then, applying Theorem 0.2 to ṽ, we obtain respectively a countable piecewise affine

function v̄ which is very close to ṽ, coincides with ṽ on ∂D, and is C1

Ä
C ′′L4

ä4
bi-Lipschitz,

and with a smooth function v̄′, again very close to ṽ, coinciding with ṽ on ∂D and
C2(C ′′L4)28/3 bi-Lipschitz. These two function v̄ and v̄′ are the searched extensions of
ũ in the secon claim of the theorem. �

We conclude the chapter with a last observation.

Remark 5.34. One could be not satisfied to pass from the first to the secon claim of
Theorem 0.5 passing from L4 to L16 (resp. L112/3). In fact, it is possible to modify the
construction of Theorem 0.4 so as to directly obtain, in the case of a general L bi-Lipschitz
function ũ : ∂D → R2, a countably piecewise affine extension ṽ of ũ which is ‹CL4 bi-
Lipschitz. And then, thanks to Theorem 5.32, one would also get a smooth extension ṽ
which is 70‹C7/3L28/3 bi-Lipschitz.
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