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Abstract

In this thesis we address the problem of modeling swimming in viscous fluids. This is

a fancy way to denote a fluid dynamics problem in which a deformable object is capable

to advance in a low Reynolds number flow governed by the Stokes equations. The fluid

is infinitely extended around the swimming body and the propulsive viscous force and

torque are those generated by the fluid-swimmer interaction. No-slip boundary condi-

tions are imposed: the velocity of the fluid and that of the swimmer are the same at the

contact surface. Moreover, a self-propulsion constraint is enforced: no external forces or

torques.

The problem is treated with techniques coming from the Calculus of Variations and

ContinuumMechanics, through which it is possible to define the coefficients of the ordi-

nary differential equations that govern the position and orientation parameters of the

swimmer. In a three-dimensional setting, there are six of them. Conversely, the shape

of the swimmer undergoes an infinite-dimensional control. The relations between the

infinite-dimensional freely adjustable shape and the six position and orientation vari-

ables is given by an explicit linear relation between viscous forces and torques, on one

side, and linear and angular velocities on the other.

Suitable function spaces are defined to let the variational techniques work, both in

the case of a plain viscous fluid (governed by the Stokes system) and in the case of a

particulate fluid, which we model using the Brinkman equation.

Finally, a control problem for a mono-dimensional swimmer in a viscous fluid is ad-

dressed. In this part, which is still work in progress, the existence of an optimal swim-

ming strategy is proved, and the controllability of the swimmer is achieved by showing

and explicit sequence of moves to advance. At the very last, the Euler equation for char-

acterizing the optimal chape change is set up, and some comments on its structure are

made.
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CHAPTER1

Introduction

What does it mean to swim? This is the important question that E. M. Purcell addressed

in his 1977 paper Life at low Reynolds number [35].

Motion in fluids receives particular interest from the scientific community, since a

huge number of interesting phenomena takes place in a fluid environment. Scientists

are tackling this kind of problems since the early Nineties, and research has proceeded

covering both the theoretical and the experimental aspects.

The aim of this work is to give a contribution to the study of self-propelled micro-

swimmers immersed in a viscous fluid. Before introducing the new results, we will

present the “state of the art” in the study of swimming at low Reynolds numbers. After

presenting the main equation that we will use to govern the fluid velocity field, we con-

duct a chronological development of the main important contributions and examples to

the subject, to conclude pointing out the novelty of the matter of the following chapters.

1.1 The Stokes equations

When talking about fluid dynamics the first, essential element that comes into mind

is the celebrated Navier-Stokes system. In their general form, the Navier-Stokes equa-

tions expresse the balance of linear momentum in a Newtonian incompressible fluid

[17, Chapter VIII]. Let F ⊂ R
3 be the spatial region occupied by the fluid and let

v : F×[0, T ] → R
3 and p : F×[0, T ] → R be the velocity and pressure fields in the

Eulerian formulation. The incompressibility constraint reads

div v = 0 in F , (1.1)
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while the above-mentioned balance of linear momentum gives the following vector equa-

tion

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∆v + f in F , (1.2)

where ρ > 0 is the fluid density, µ > 0 its viscosity, and f is the external force. The

system of equations (1.1)-(1.2) goes under the name of incompressible Navier-Stokes

equations. Using an imprecise language, we could say that these equations are good

to model phenomena in “non extreme” conditions. In order to be more clear and pre-

cise about the preceding statement, we need to introduce some peculiar dimensionless

quantities associated to fluid flows and to cast the equations in a non-dimensional form.

To this end, let ω > 0 be a frequency parameter, let L > 0 have the dimension of a

length, and let V > 0 have the dimension of a velocity. We now define the dimensionless

quantities

t∗ := ωt, x∗ :=
x

L
, v∗ :=

v

V
, p∗ :=

L

V µ
p,

from which the following starred operators are derived

∇∗ = L∇, ∆∗ = L2∆,
∂

∂t∗
=

1

ω

∂

∂t
.

Therefore, equations (1.1) and (1.2) can be re-written in the dimensionless form (con-

sider f = 0) 



βRe
∂v∗

∂t∗
+Re v∗ · ∇∗v∗ = −∇∗p∗ +∆∗v∗,

div∗ v∗ = 0,
(1.3)

where Re := LV ρ
µ is the Reynolds number of the flow, and β := ωL

V . Taking the formal

limit as both Re and βRe tend to zero means to neglect all the inertial effects with

respect to the viscous ones. In a world where viscosity dominates over inertia, the

Navier-Stokes equations reduce to the steady Stokes equations for modeling a steady

creeping flow {
∆∗v∗ = ∇∗p∗,

div∗ v∗ = 0,

which are better known in their dimensional form
{

µ∆v = ∇p,

div v = 0.
(1.4)

This vanishing Reynolds number regime is one that could be considered as “extreme”,

in the imprecise terminology used above. Viscous creeping flows are better modeled

by Stokes equation, instead of the full Navier-Stokes system. It must be said that the

opposite regime, in which Re → ∞, is suitable for modeling inviscid fluids, the set of

equations governing which goes under the name of Euler equations. Since this latter

case is outside of the purpose of this work, we limit ourselves to low Reynolds number

flows and Stokes equations.
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The mathematical theory for Stokes equations is very well established, and a num-

ber of results has been stated. Theorems proving existence and uniqueness and regu-

larity of the solutions to the Stokes equations can be found in [14], [28], [39], [41], and

in the references therein. Those that will be useful for our discussion will be cited at

due time.

1.2 Swimming in viscous fluids

In 1851 G. G. Stokes derived the formula for the drag force experienced by a sphere

of radius R moving linearly at a constant velocity V in an unbounded viscous fluid, its

expression being

F = −6πµRV.

This formula, in its simplicity, already shows some characteristics of drag forces: they

are linear with respect to the dimension and the velocity, and they depend upon the

viscosity µ of the fluid.

In the mid Nineties great contributions to the field have been given by G. I. Taylor

and M. J. Lighthill, who studied viscous flows and shed light on the comprehension and

modeling of important phenomena. Taylor proposed a simple model for swimming in

a viscous fluid, the so-called Taylor’s swimming sheet [40] (see also [37] for a recent

improvement), while Lighthill suggested a possible definition for swimming efficiency

[30]. Another important contribution is the book by S. Childress [10], where the Taylor’s

swimming sheet is also discussed; for a comprehensive list of references, the reader can

refer to the recent review [29]. Among the more mathematical contributions we quote

[15], [25], [36], and [7].

The breakthrough in the study of self-propelled motion in viscous fluids came in

the late Seventies with the paper Life at low Reynolds number by E. M. Purcell [35]. He

proved the so-called Scallop Theorem, which states that too simple swimming strategies

are not effective in a viscous fluid, and contemporarily proposed a very simple swimmer

that can actually swim in those conditions. The setting is that of an infinite viscous fluid

in which an object capable of deforming itself is located. The rules are that the swimmer

has to perform a cyclic change of shape, without any external force acting on it. This

constraint is usually referred to as self-propulsion. The Stokes equation together with

the no-slip boundary condition is the model for the external fluid which is generally

used 



ν∆v = ∇p, in Ωext,

div v = 0, in Ωext,

v = Vswimmer , on ∂Ωext,

(1.5)

where we have written equation (1.4) using the kinematic viscosity ν = µ/ρ, and have

called Ω ⊂ R
3 the swimmer and Ωext := R

3 \Ω the domain occupied by the fluid. It must



4 1. Introduction

be noticed that, up to rescaling, it is always possible to set ν = 1, and this choice, as well

as the notation, will be generally maintained throughout the whole thesis.

We can derive a useful mathematical expression for the self-propulsion constraint

from the balance of the forces. We consider Newton’s second law of dynamics and ob-

serve that the total force is the summation of external and viscous forces. Therefore,

ma = F = F ext + F visc;

in this expression we can neglect the acceleration term, since at low Reynolds number

viscosity is predominant over inertia, as well as the contribution of the external forces,

because of the self-propulsion constraint. An analogous equation can be cast for the

torques, so that the two of them together embody the self-propulsion constraint

F visc = 0, Mvisc = 0. (1.6)

These expressions are those that will allow us to write the equations of motion for the

swimmers. Generally, both quantities in (1.6) are expressed by means of boundary inte-

grals

F visc :=

∫

∂Ω

σ(x)n(x) dS(x), Mvisc :=

∫

∂Ω

x×σ(x)n(x) dS(x), (1.7)

where σ := −pI + 2νEv is the stress tensor (Ev is the symmetric part of ∇v), n is the

outer unit normal to ∂Ω, and dS is the surface measure. All these objects will be defined

better when appropriate.

Before proceeding further, we give a simple proof of the Scallop Theorem and com-

ment about the “three links swimmer” proposed by Purcell to overcome the Scallop The-

orem.

Theorem 1.2.1. A scallop cannot swim by reciprocal motion in a low Reynolds number

fluid.

Proof. Let us call c the position of the hinge of the scallop and θ the angle measuring

the opening of the valves. Since the Stokes equation is linear, it follows that the viscous

force depends linearly on the boundary velocity, which in turn is a combination of ċ and

θ̇. Therefore, we can write

0 = F visc = φc(c, θ)ċ+ φθ(c, θ)θ̇, (1.8)

where φc 6= 0 and φθ are coefficients that depend only on the configuration of the scallop,

that is on its shape. The zero on the left side of (1.8) comes from the self-propulsion con-

straint; moreover, both coefficients φc , φθ do not depend on c, by translation invariance.

Thus we can solve (1.8) for ċ and integrate over a period of time [0, T ] to obtain the net

displacement after a stroke. Let V (θ) := −φθ(θ)/φc(θ), and notice that θ(0) = θ(T ), since

the motion has to be T -periodic (reciprocal, using Purcell’s terminology). Define

Ψ(θ) :=

∫ θ

0

V (s) ds. (1.9)
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Now compute the net displacement and take (1.9) into account

∆c =

∫ T

0

ċ(t) dt =

∫ T

0

V (θ(t))θ̇(t) dt =

∫ T

0

d

dt
Ψ(θ(t)) dt = Ψ(θ(t))−Ψ(θ(0)) = 0. (1.10)

The Scallop Theorem is proved.

Needless to say, real scallops indeed swim. They do that by squirting water through

some small holes located where the two valves are hinged together. Yet, we are not

pointing out the excessive meagerness of the model. What the Scallop Theorem puts in

evidence is that one variable describing the spatial position of the swimmer, c, and one

variable describing its shape, θ, are not enough to obtain a profitable reciprocal motion.

More degrees of freedom must be added, and a sort of symmetry breaking must occur.

The first example in this direction has been given by Purcell himself. It is the

so-called “three links swimmer”, consisting of three rigid rods linked together by two

hinges. This system has three parameters: the center of the central link, or the barycen-

Figure 1.1: Purcell’s three links swimmer.

ter of the system can be used as a position variable, while the two angles θ1 and θ2 are

the shape variables. Again, the idea is to swim, that is to achieve a non zero net dis-

placement, by changing shape. Purcell himself proposed a sequence of movements, orig-

inating a reciprocal motion, that allow the three links to advance. They can be better

viewed in Purcell’s original scheme. Performing the sequence of movements S1 , . . . , S5

as illustrated in Figure 1.2 will make the swimmer to achieve a non zero net displace-

ment along the direction of the central rod. This easily follows by a symmetry argument,

once we impose the two extremal rods to be equally long and θ1 and θ2 to span the same

angle.

Another example of a simple swimmer has been proposed in 2004 by A. Najafi and R.

Golestanian [32] and is known by the name of “Three linked spheres”. Three identical

spheres are lined and it is assumed that they can vary the reciprocal distance. The two
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Figure 1.2: The three links swimmer’s effective sequence of movements.

shape parameters are the distances between the the central sphere and the peripheral

ones, while the barycenter can play the role of the position variable. The situation is

very close to that of Purcell’s Three links swimmer, and indeed also Najafi and Golesta-

nian’s swimmer can get to a non zero net displacement at the end of a reciprocal stroke;

see Figure 1.3.

Figure 1.3: (a) The three linked spheres swimmer. (b) The sequence of movements to

swim.

Some common properties between Purcell’s and Najafi and Golestanian’s swimmers

can be pointed out. In both cases we can identify one positional variable, say the

barycenter, and two shape variables, the angles in the three links swimmer or the dis-

tances between the spheres in the other case. Moreover, both swimmers, at the end of a

stroke, will have advanced along a line. This is a property that is enjoyed also by a par-

ticular class of swimmers, namely the axisymmetric swimmers. These have been studied

thoroughly in the works [2, 4]. Let us call, as before, Ω ⊂ R
3 the region occupied by the

swimmer, and let Ωext be the complementary region occupied by the fluid. In order for

the swimmer to be axisymmetric we have to ask Ω to have cylindrical symmetry, and

let us assume, for sake of simplicity, that the axis of symmetry coincides with the x-axis

of an orthonormal reference frame. Assume that the shape of the swimmer is described

by N shape parameters ξ = (ξ1 , . . . , ξN ) and let c be the position of the barycenter along

the x-axis. Notice that this is enough to describe the motion of the swimmer, since its

displacement is confined along the x-axis by symmetry. Recalling (1.7), and taking into
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account the symmetry argument, the self-propulsion constraint is expressed by

i ·

∫

∂Ω

σn dS = 0, (1.11)

where i is the unit vector identifying the x-axis. Taking into account that the velocity

of the fluid must be linear with respect to the boundary data given by ξ̇1 , . . . , ξ̇N , ċ, and

the translation invariance of the system, equation (1.11) can be rephrased as

N∑

i=1

φi(ξ)ξ̇i + φN+1(ξ)ċ = 0, (1.12)

where the non-vanishing coefficient φN+1 represents the drag force corresponding to a

rigid translation along the symmetry axis at unit speed. Again as in the proof of the

Scallop Theorem, we can solve (1.12) for ċ and integrate over a time period to obtain the

displacement after a stroke. Therefore, the condition for swimming is

∆c =

∫ T

0

N∑

i=1

Vi(ξ(t))ξ̇i(t) dt 6= 0, (1.13)

where Vi(ξ) := −φi(ξ)/φN+1(ξ), which can be interpreted by requiring that the differen-

tial form γ :=
∑N

i=1 Vidξi is not exact. Thus, only those cyclic change of shape that will

produce non exact differential forms γ will be able to generate an effective motion. The

non exactness of γ is the symmetry breaking condition we were mentioning beforehand.

Another example of non-trivial swimmer is the Push-Me-Pull-You swimmer. It con-

sists of two spheres that can somehow exchange volume between themselves and get

closer to one another or move away from each other [5]. Also this system is capable of

producing a sequence of moves which originate an effective reciprocal stroke.

An important feature of these kinds of motion is that there is a net separation be-

tween velocities and shape parameters. The velocities enter linearly in the formulae,

and this is due to the linearity of the Stokes system (1.5); on the other hand, the shape

parameters enter in the coefficients of the velocities and determine the effect of those

on the motion. This will become more clear in the following chapters.

As a particular case, the motion of flagella in viscous fluids is attracting great inter-

est for the obvious applications to Biology. The study of organisms such as Escherichia

coli, spermatozoa, the nematode Caenorhabditis elegans is devoted to understand how

they move and their swimming strategies. For some of these organisms comparison

tests have been conducted to discover whether they propel themselves more efficiently

in a plain fluid or in a particulate one [22]. Among the huge amount of literature on the

matter, we cite the following works [23], [27], [43], [42], and refer the reader to them

and to the references therein for a more complete overview on the subject.

On the other hand, the mathematical modeling of a flagellum beating in a fluid is

rather complicated: approximating the flagellum as a mono-dimensional object in a

three-dimensional ambient introduces a dimensional gap when stating the boundary
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conditions. On the other side, it is not completely clear how to perform a limiting proce-

dure starting from a three-dimensional, thick flagellum and letting the thickness go to

zero.

For these reasons approximate theories to model flagellar motion successfully have

been proposed in the past decades. We are talking about slender body theory [6, 24]

and resistive force theory, also known as local drag theory [21]. A crash course on these

approximate theories can be found in the review on the hydrodynamics of swimming

micro-organisms by E. Lauga and T. Powers [29].

An interesting approach to the study of swimming, in a general setting, has been

proposed by A. Shapere and F. Wilczek in [38]. They exploit a gauge field theory ap-

proach in the space of shapes. They give explicit examples in the two-dimensional case

and in the case of infinitesimal deformations of a sphere. In the same spirit, axisym-

metric swimmers described by finitely many shape parameters were studied in [2, 3, 4].

The novelty in the present work is that we develop a theoretical framework to study

swimmers whose shape changes are completely general and genuinely infinite dimen-

sional. This seems to clash with the old disposition to describe the shape by the lowest

possible number of parameters, a tendency that must be followed keeping the Scallop

Theorem clear in mind: too few parameters do not provide a useful model. With the fol-

lowing two definitions of swimming and self-propulsion, we propose is a framework in

which an arbitrary shape is capable of deforming and moving in the fluid by exploiting

the viscous fluid-structure interaction.

Definition 1.2.2. Swimming is the ability of an organism to perform a variation of its

spatial position caused by the variation of its shape, under the self-propulsion constraint.

Definition 1.2.3. Self-propulsion is the absence of external forces or momenta.

We will show how it is possible to separate the contribution of the shape change

from the variables that describe the spatial position and orientation of the swimmer,

and how the first determines the latter. In this setting, the six parameters to locate

and orient the swimmer in the three-dimensional space are determined by the infinite-

dimensional shape change. We exploit a linear representation of the viscous force and

torque in terms of the linear and angular velocities of the swimmer and of the velocities

given by the deformation, and solve a linear system of ODE’s for the former in terms

of the latter. The coefficients of the systems will be determined by the shape of the

swimmer and will be obtained via variational methods.

We now present the outline of the present work. In Chapter 2 we present an analyt-

ical framework to study the motion of micro-swimmers in a viscous fluid.

In Chapter 3, which contains the results of [11], we deal with the case of a swim-

mer immersed in a viscous fluid governed by the Stokes equation. Our main result is

Theorem 3.4.4, which states that, under very mild regularity assumptions, the change
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of shape determines uniquely the motion of the swimmer. Thanks to the low Reynolds

number regime and the self-propulsion constraint, Newton’s equations of motion reduce

to the vanishing of the viscous force and torque acting on the body. By exploiting an

integral representation of viscous force and torque, the equations of motion can be re-

duced to a system of six ordinary differential equations. Variational techniques are used

to prove the boundedness and measurability of its coefficients, so that classical results

on ordinary differential equations can be invoked to prove existence and uniqueness of

the solution. The difficulties in achieving the result are indeed in the proof of the mea-

surability of the coefficients of the ODE’s. We gave the minimal assumption for them to

be measurable, instead of continuous, both to prove a more general result and to allow

more general, even discontinuous in time, shape functions. The above-mentioned mea-

surability os obtained by means of technical constructions for extending the boundary

velocities to solenoidal vector fields in the interior of suitable domains.

In Chapter 4, which contains the results of [31], we turn to the case of a self-propelled

micro-swimmer in a particulate viscous medium, modeled as a Brinkman fluid. Within

the same analytical setting, Theorem 4.4.6 is obtained, and it extends the result ob-

tained in Chapter 3. We use essentially the same method and we adapt the functional

setting according to the Brinkman equation. Even though the equation contains an

additional term, the function space needed appears to be easier to handle.

In Chapter 5, which contains the results of [12], we abandon the full generality of

three-dimensional swimmer to concentrate on flagellar motion. The study is conducted

in the case of a flagellum performing a planar motion in a three-dimensional fluid, and

resistive force theory is used to model the drag forces and torques. Interestingly, once

this approximation is assumed, the fluid becomes totally irrelevant to the computation

of any physical quantities. In this case we prove three main results, namely, the exis-

tence, uniqueness, and regularity of the solution to the equations of motion; the control-

lability of the swimmer; the existence of an optimal beating strategy. The controllability

of the system is something one could easily expect, given the huge availability of possi-

ble shapes. We were able to avoid a number of explicit computations by wisely choosing

shape functions with some symmetries. Finally, we perform some computation to study

the associated Euler equation, of which we highlight the general structure. The same

study can be easily extended to the three-dimensional case, notations would become

slightly heavier.

The main difference between the case of three-dimensional swimmers in the un-

bounded fluid (particulate or not) and the flagellum is that in the former the viscous

force and torque are determine by the boundary integral of the normal component of

the stress tensor, which is in turn obtained by solving an exterior Stokes (or Brinkman)

problem in the fluid domain. On the contrary, as we have already mentioned, in the

local drag theory approximation the fluid plays no active role, and the forces are defined

locally in terms of the velocity on the flagellum. The same physical phenomenon, that of
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swimming, is therefore modeled in two different ways according to the dimension of the

swimmer. Moreover, in the second case no variational machinery has to be introduced

to solve the equations of motion.

1.3 Notation

We collect here the notation used throughout the work.

∇ the gradient with respect to the space variables.

× the cross product in R
3.

△ the symmetric difference between sets.
⊤ superscript: the transpose.

n the exterior unit normal.

dS(·) the surface measure.

M
3×3 the Hilbert space of 3×3 real matrices.

σ : ξ =
∑3

i,j=1 σijξij the Euclidean norm in the space of matrices.

a⊗ b = aibj the dyadic product between vectors.

σ, σt the stress tensor (Chapters 2, 3, and 4).

σ(t) the position of the center of the bump (Chapter 5).

A ⊂ R
3 the reference configuration of the swimmer.

At ⊂ R
3 the current configuration of the swimmer.

Bt ⊂ R
3 the intermediate configuration of the swimmer.

Ω ⊂ R
3 a general domain.

Ωext = R
3 \ Ω the exterior domain with respect to Ω.



CHAPTER2

General setting for swimming

2.1 Shape and position

As we stated in the Introduction, swimming consists in the ability to change position by

changing shape periodically and exploiting the interaction with the surrounding liquid.

Shape change induces a flow in the fluid. The propulsive effect arises from the action

and reaction principle: the swimmer must exert forces to set the fluid in motion and

hence it receives from the fluid a propulsive force. In the absence of other actions on its

body, this is the only force the swimmer can exploit (self propulsion). In what follows

we will focus on the case in which the swimmer is completely immersed in the liquid.

Flows generate both inertial and viscous forces. In a Newtonian fluid, their rela-

tive importance is measured by the Reynolds number Re := V L
ν and by the Womersley

number α := (ω L
V Re)1/2, where V is the swimming velocity, L the size of the swimmer,

ν = µ/ρ the kinematic viscosity of the fluid, and ω is the frequency of the motion. Typi-

cal swimmers move with a speed which is of the order of some body-lengths per second,

and execute cyclic shape changes with frequencies not exceeding a few thousand Hertz

[10, Table 1.1]. Therefore, for swimmers of sufficiently small size L, both Re and α are

small, and all inertial effects are negligible.

Thus, a fish swims by accelerating the surrounding water, while bacteria and other

unicellular organisms move by exploiting viscous resistance. The striking difference

between these two strategies and the subtleties that follow are beautifully illustrated

in [35].

In this work we deal with micro-swimmers immersed in a viscous liquid, therefore

the fluid dynamics is governed by the Stokes system [10, Chapter 2].
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The motion of a swimmer is described by a map t 7→ ϕt , where, for every fixed t, the

state ϕt is an orientation preserving bijective C2 map from the reference configuration

A ⊂ R
3 into the current configuration At ⊂ R

3.

Given a distinguished point x0 ∈ A , for every fixed t, we consider the following

factorization

ϕt = rt ◦ st , (2.1)

where the position function rt is a rigid deformation and the shape function st is such

that

st(x0) = x0 , (2.2a)

∇st(x0) is symmetric. (2.2b)

In the applications we have in mind, one can choose the map t 7→ st in a suitable class of

admissible shape changes and use it as a control to achieve propulsion as a consequence

of the viscous reaction of the fluid. By contrast, t 7→ rt is a priori unknown and it

must be determined by imposing that the resulting ϕt = rt ◦ st satisfies the equations of

motion.

The factorization (2.1) of the motion into data (the freely adjustable shapes st) and

unknowns (the position and orientation rt achieved by the swimmer as a consequence

of having executed some strokes) is conceptually appealing and has far reaching conse-

quences in the analysis of biological and engineered systems. Moreover, it simplifies the

problem, reducing it to a system of ordinary differential equations since rt(z) = yt+Rtz

is finite dimensional; here yt and Rt are the translation and rotation characterizing the

rigid motion rt. Finally it is natural, because t 7→ st represents the motion as seen by

an observer moving with the swimmer, while t 7→ rt represents the motion of this ob-

server with respect to a fixed frame. To establish a link with the language of [38], notice

that conditions (2.2) select one special gauge for the description of the system, that st
describes the standard (unlocated) shape of the swimmer, and ϕt gives its located shape.

The equations of motion that the map t 7→ ϕt must satisfy are the balance of linear

and angular momentum, which, since inertia is negligible, reduce to the vanishing of

total force and total torque acting on the swimmer At . Since we assume self propulsion,

there are no external forces applied to At , so that the total force and torque reduce to

the ones arising from the viscous resistance exerted by the fluid on the boundary ∂At :

0 = FAt,ϕ̇t :=

∫

∂At

σt(y)n(y) dS(y), (2.3a)

0 =MAt,ϕ̇t :=

∫

∂At

y×σt(y)n(y) dS(y). (2.3b)

Here σt is the stress tensor, n is the outer unit normal to ∂At , dS indicates the inte-

gration with respect to the surface measure, and × is the cross product in R
3. Since

the Reynolds and Womersley numbers are small, stresses are computed by solving the
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outer Stokes problem in Aext
t := R

3 \At





∆ut(y) = ∇pt(y) in Aext
t ,

div ut(y) = 0 in Aext
t ,

ut(y) = ϕ̇t(x)|x=ϕ−1
t (y) on ∂At ,

ut(y) → 0 for |y| → ∞,

where ut is the velocity and pt is the pressure, so that σtn = −ptn + (∇ut + (∇ut)
⊤)n

(recall that the viscosity is assumed to be 1).

Our main existence, uniqueness, and regularity results are Theorem 3.4.4 and The-

orem 4.4.6 stating that for every sufficiently smooth shape change t 7→ st , the position

functions t 7→ rt are uniquely determined by the initial conditions at t = 0. More pre-

cisely, there exists a unique family of rigid motions t 7→ rt such that the state functions

t 7→ ϕt := rt ◦ st satisfy the equations of motion (2.3), and ϕt (or equivalently rt) takes a

prescribed value at t = 0. This result provides a rigorous mathematical justification for

the viewpoint pioneered in [38]: the motion of a micro-swimmer is uniquely determined

by the history of its shapes.

The main ingredients in the proof are the following. By exploiting the linearity of

the Stokes system, we reduce the equations of motion (2.3) to (3.22) and (4.14), namely,

ẏt = Rtbt , Ṙt = RtΩt ,

a system of ordinary differential equations involving the translational and rotational

velocities associated with the rigid motion t 7→ rt . The coefficients bt and Ωt of these

equations, given in (3.21), depend only on st and ṡt. They are obtained from the shape

function t 7→ st by solving some auxiliary outer Stokes problems on Aext
t .

The main difficulty is to prove the continuity, or at least the measurability, of these

coefficients. To this aim, we have to obtain the continuous dependence of the solutions

to the outer Stokes and Brinkman problems on their domains and on their boundary

data; the main technical issue is the fact that they both depend on time.

Once continuity of the coefficients and measurability of the data of the equations

of motion are proved, our existence and uniqueness problem can be solved by using

classical techniques for ordinary differential equations.

We close this section by noticing that several interesting questions related to swim-

ming can be phrased as control problems where the function t 7→ ṡt is the input and

the function t 7→ rt is the output. For example: which net positional and orientational

changes can be achieved within a given class of time-periodic shape changes? Problems

of this type have been solved, e.g., in [2, 3, 4] for swimmers described by finitely many

shape parameters.

In the context of control problems, it is very useful that the input variables are al-

lowed to be discontinuous in time. This is the main reason why we have insisted in

proving our result for the case of Lipschitz continuous t 7→ st , even though a C1 regu-

larity in time would have simplified the proofs very much. Infinite dimensional control
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problems for swimmers of fixed shape that can control the velocity of the surrounding

fluid at points in contact with the swimmer’s boundary have been considered, e.g., in

[15], [36]. We plan to address in future work control problems for swimmers of variable

shape, possibly described by infinitely many shape parameters.

2.2 Kinematics

In this section we fix the notation and the assumptions for the kinematics of the swim-

mer. As mentioned in Section 2.1, we show that it is possible to decompose the de-

formation into a pure shape change followed by a time-dependent rigid motion, whose

rotations and translations are Lipschitz continuous with respect to time. This holds for

both a Stokes (Chapter 3) and a Brinkman (Chapter 4) fluid, as well as in the specific

case of the mono-dimensional swimmer discussed in Chapter 5.

The reference configuration A ⊂ R
3 is a bounded connected open set of class C2.

The time-dependent deformation of A from the point of view of an external observer is

described by a function ϕt : A→ R
3. We assume that, for every t,

ϕt ∈ C2(A;R3), (2.4a)

ϕt is injective, (2.4b)

det∇ϕt(x) > 0 for all x ∈ A. (2.4c)

Here and henceforth ∇ denotes the gradient with respect to the space variable. Under

these hypotheses the set At := ϕt(A) is a bounded connected open set of class C2 and

the inverse ϕ−1
t : At → A belongs to C2(At;R

3).

We assume in addition that

the sets R3 \At are connected for all t ∈ [0, T ]. (2.5)

Concerning the regularity in time, we require that

the map t 7→ ϕt belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)), (2.6)

so that ‖ϕt+h − ϕt‖C1 6 L |h|, for a suitable constant L > 0.

We now prove that for almost every t there exists ϕ̇t ∈ Lip(A;R3) such that

ϕt+h − ϕt

h
→ ϕ̇t , uniformly on A as h→ 0. (2.7)

Indeed, condition (2.6) implies that t 7→ ϕt belongs to Lip([0, T ];W 1,4(A;R3)). There-

fore, the general theory of Lipschitz functions with values in reflexive Banach spaces

(see, e.g., [8, Appendix]) implies that for almost every t the difference quotient in (2.7)

converges strongly in W 1,4(A;R3) to some element ϕ̇t of W 1,4(A;R3). The embedding
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of W 1,4(A;R3) into C0(A;R3) implies the uniform convergence considered in (2.7). Fi-

nally the bound ‖ϕt − ϕs‖C1 6 L |t− s| implies that Lip(ϕ̇t) = L in A, where, for every

function f , Lip(f) denotes the Lipschitz constant of f .

It turns out that the Eulerian velocity on the boundary ∂At, defined by

Ut := ϕ̇t ◦ ϕ
−1
t (2.8)

belongs to Lip(∂At;R
3) with Lipschitz constant independent of t.

We now describe the kinematics from the point of view of the swimmer. We fix a

point x0 ∈ A and we look for a factorization of ϕt of the form (2.1), where st : A → R
3

satisfies properties (2.2) and rt : R3 → R
3 is a rigid motion of the form

rt(z) = yt +Rtz, (2.9)

with yt ∈ R
3 and Rt ∈ SO(3), the set of orthogonal matrices with positive determinant.

Conditions (2.2) allow us to interpret st as a pure shape change from the point of view

of an observer located at x0. Therefore, the deformation ϕt, from the point of view of an

external observer, is decomposed into a shape change followed by a rigid motion.

It follows from (2.1), (2.4), and (2.9) that, for every t,

st ∈ C2(A;R3), (2.10a)

st is injective, (2.10b)

det∇st(x) > 0 for all x ∈ A, (2.10c)

and, consequently, that

the inverse s−1
t : Bt → A belongs to C2(Bt;R

3), (2.11)

where Bt := st(A), see Fig. 2.1. Note that Bt is a bounded connected open set of class

C2 and that rt(Bt) = At and rt(∂Bt) = ∂At . Notice that, since A is bounded and st is

continuous, there exists a ball Σρ centered at 0 with radius ρ such that

A ⊂⊂ Σρ−1 and Bt ⊂⊂ Σρ−1 . (2.12)

It follows from (2.5) that

the sets Σρ \Bt are connected for all t ∈ [0, T ]. (2.13)

Conditions (2.1), (2.2), and (2.9) imply that

Rt = ∇ϕt(x0)
[√

∇ϕt(x0)⊤∇ϕt(x0)
]−1

, (2.14a)

yt = ϕt(x0)−Rtx0 . (2.14b)

The existence of a factorization (2.1) satisfying (2.2) and (2.9) is obtained by setting

st := r−1
t ◦ϕt , where rt is given by (2.9) with yt and Rt defined by (2.14). Moreover, (2.6)

together with (2.14), implies that

t 7→ Rt and t 7→ yt are Lipschitz continuous. (2.15)
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Figure 2.1: Notation for the kinematics.

Finally, since st = r−1
t ◦ ϕt,

the map t 7→ st belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)), (2.16)

so that ‖st+h − st‖C1 6 L |h|, for a suitable constant L > 0. Properties (2.10c) and (2.16)

imply that ∥∥s−1
t

∥∥
C2(Bt;R3)

6 C, (2.17)

where C < +∞ is a constant independent of t.

As for function ϕt , we can exploit condition (2.16) to prove that there exists ṡt ∈

Lip(A;R3) such that

st+h − st
h

→ ṡt , uniformly on A, as h→ 0.

Notice that

the map t 7→ ṡt belongs to L∞([0, T ];W 1,p(A;R3)) for every p ∈ [2,∞[,

therefore, by the Sobolev immersions,

the map t 7→ ṡt belongs to L∞([0, T ];C0(A;R3)),

and, by the continuous immersion of H1(A;R3) into H1/2(∂A;R3),

the map t 7→ ṡt belongs to L∞([0, T ];H1/2(∂A;R3)).

Again as for ϕ̇t , we can prove that

Lip(ṡt) 6 L, with L independent of t. (2.18)

Moreover, for any fixed x ∈ A, the map t 7→ ṡt(x) is measurable.
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Recall the definition of Ut given in (2.8) and define now Vt(z) := R⊤
t Ut(rt(z)) and

Wt(z) := ṡt(s
−1
t (z)), for every z ∈ ∂Bt . An elementary computation shows that for

almost every t ∈ [0, T ]

Vt(z) = R⊤
t ẏt +R⊤

t Ṙtz +Wt(z) for every z ∈ ∂Bt .

Now we would be ready for the description of the motion of the swimmer. Formally,

it is the same for both the Stokes and the Brinkman cases, but the same quantities are

defined in two different ways according to the underlying functional setting. This is why

we will present the equations of motion in the two chapters separately.
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CHAPTER3

Swimming in an unbounded Stokes fluid

In this Chapter we develop the theory for the case of a swimmer immersed in an infi-

nite viscous fluid governed by the Stokes equation. For this, the functional setting is

presented in Section 3.1, the extension theorems are presented in Section 3.3, and the

main results in Section 3.4. All these results are contained in [11].

3.1 The exterior Stokes problem

In this section we recall some known results on the exterior Stokes problem. In addition,

we introduce a weak definition of the viscous force and torque, which does not require

any regularity assumption on the velocity field. Finally, we prove that the solutions

depend continuously on the domains for special boundary conditions.

Let Ω be an exterior domain with Lipschitz boundary, i.e., Ω is an unbounded, con-

nected open set whose boundary ∂Ω is bounded and Lipschitz. The strong formulation

of the exterior Stokes problem is





∆u = ∇p in Ω ,

div u = 0 in Ω ,

u = U on ∂Ω ,

u = 0 at ∞,

(3.1)

which includes a decay condition at infinity.

To write the weak formulation of this problem, we consider the Deny-Lions space

D1,2(Ω;R3) := {u ∈ L6(Ω;R3) : ∇u ∈ L2(Ω;M3×3)},
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whereM3×3 is the Hilbert space of 3×3 real matrices endowed with the Euclidean norm

σ : ξ :=
∑

i,j σijξij . The space D1,2(Ω;R3) is endowed with the norm

‖u‖D1,2(Ω;R3) := ‖∇u‖L2(Ω;M3×3) . (3.2)

It is well known thatD1,2(Ω;R3) is a Hilbert space and that there exists a constant C(Ω)

such that

‖u‖L6(Ω;R3) 6 C(Ω) ‖u‖D1,2(Ω;R3) ,

for all u ∈ D1,2(Ω;R3). For a thorough exposition on these spaces, see the classical work

by Deny and Lions [13].

Let Eu := 1
2 (∇u + (∇u)⊤) denote the symmetric gradient of u. The inequality

‖∇u‖
2
L2(Ω;M3×3) 6 C(Ω) ‖Eu‖

2
L2(Ω;M3×3) , (3.3)

proved in a more general setting for weighted spaces of functions defined on unbounded

domains [26, Section 3, Theorem 1], shows that ‖Eu‖L2(Ω;M3×3) is an equivalent norm

on D1,2(Ω;R3). Since ∂Ω is bounded, for every u ∈ D1,2(Ω;R3) the trace of u on ∂Ω,

still denoted by u, belongs to H1/2(∂Ω;R3) and the trace operator is continuous between

these two spaces.

The following density result plays a crucial role in the theory.

Theorem 3.1.1 (Density, [20]). Let Ω ⊂ R
3 be an exterior domain with Lipschitz bound-

ary. Then the space

{u ∈ C∞
c (Ω;R3) : div u = 0 in Ω}

is dense in {u ∈ D1,2(Ω;R3) : div u = 0 in Ω, u = 0 on ∂Ω} for the norm (3.2).

To write the weak formulation of the exterior Stokes problem, we introduce the

spaces

V(Ω) := {u ∈ D1,2(Ω;R3) : div u = 0 in Ω},

V0(Ω) := {u ∈ V(Ω) : u = 0 on ∂Ω}.

Given a function U ∈ H1/2(∂Ω;R3), which plays the role of the boundary condition,

the weak formulation of (3.1) is given by





u ∈ V(Ω), u = U on ∂Ω,∫

Ω

Eu : Ew dx = 0 for every w ∈ V0(Ω).
(3.4)

Remark: We notice that no other assumptions are to be made on the boundary ve-

locity field. If Ω were a bounded domain, then the following condition would have been

necessary ∫

∂Ω

U · n dS = 0. (3.5)

Now we state the main existence and uniqueness result for the exterior Stokes prob-

lem. Its proof is classical and can be found in the books by Galdi [14], Sohr [39], and

Temam [41].
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Theorem 3.1.2. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary and let

U ∈ H1/2(∂Ω;R3). Then problem (3.4) has a solution. Moreover, there exists p ∈ L2
loc(Ω),

with p ∈ L2(Ω∩Σρ) for every ball Σρ centered at the origin and of radius ρ > 0, such that

∆u = ∇p in D′(Ω;R3).

If u and p are the velocity and pressure fields of problem (3.1), the stress tensor is

given by

σ := −p I+2Eu, (3.6)

where I is the identity matrix (recall, again, that the viscosity is equal to 1). Note that

if u satisfies (3.4), then

div σ = −∇p+∆u+∇(div u) = 0. (3.7)

If σn has a trace in L1(∂Ω;R3), then the viscous force, defined as the resultant of the

forces acting on the boundary ∂Ω, is given by

F :=

∫

∂Ω

σ(x)n(x) dS(x), (3.8)

while the viscous torque, defined as the resultant of the corresponding momenta with

respect to the origin, is given by

M :=

∫

∂Ω

x×σ(x)n(x) dS(x). (3.9)

A technical problem arises from the fact that σn has not, in general, a trace in

L1(∂Ω;R3), even if u satisfies the outer Stokes problem as in Theorem 3.1.2, so that

F and M cannot be defined via (3.8) and (3.9). Thanks to (3.7), the following definition

allows us to introduce the trace of σn as an element of H−1/2(∂Ω;R3). Through this we

can define in a consistent way the power of the viscous force and of the torque.

Let M3×3
sym be the space of 3×3 symmetric matrices. Every σ ∈ M

3×3
sym can be orthogo-

nally decomposed as

σ = trσ
3 I+σD ,

where the deviatoric part σD satisfies trσD = 0.

Definition 3.1.3. Let Ω be an exterior domain with Lipschitz boundary and let σ ∈

L1
loc(Ω;M

3×3
sym) be such that σD ∈ L2(Ω;M3×3

sym) and div σ ∈ L6/5(Ω;R3). We define the trace

of σn on ∂Ω, still denoted by σn, as the unique element of H−1/2(∂Ω;R3) satisfying

〈σn, V 〉Ω :=

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx, (3.10)

where 〈·, ·〉Ω denotes the duality pairing between H−1/2(∂Ω;R3) and H1/2(∂Ω;R3) and v

is any function in V(Ω) such that v = V on ∂Ω.
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We will drop the subscript Ω whenever the domain of integration is understood. If σ

is sufficiently smooth, then an integration by parts shows that

〈σn, V 〉Ω =

∫

∂Ω

σn · V dS,

for every V ∈ H1/2(∂Ω;R3).

Returning to the general case, it is easy to see that the right-hand side of (3.10) is

well defined, since div σ ∈ L6/5(Ω;R3), v ∈ L6(Ω;R3), σ : Ev = σD : Ev, σD ∈ L2(Ω;M3×3
sym),

and Ev ∈ L2(Ω;M3×3
sym). Moreover, the definition of σn does not depend on the choice of

v, since the right-hand side of (3.10) vanishes whenever v ∈ V0(Ω). This follows from

the distributional definition of div σ whenever v ∈ C∞
c (Ω;R3) and div v = 0, and can be

obtained by approximation in the general case using the Density Theorem 3.1.1. Finally,

by choosing v ∈ V(Ω) the solution to problem (3.1) with boundary datum V on ∂Ω, we

conclude that (3.10) defines a continuous linear functional on H1/2(∂Ω;R3).

Let U ∈ H1/2(∂Ω;R3) and let u be the solution to the Stokes problem (3.4) with

boundary datum U and let σ be the corresponding stress tensors defined by (3.6). Since

σ ∈ L2
loc(Ω;M

3×3), σD ∈ L2(Ω;M3×3
sym), and div σ = 0 by (3.7), we can apply Definition

3.1.3 and for every V ∈ H1/2(∂Ω;R3) we obtain

〈σn, V 〉 =

∫

Ω

σ : Ev dx =

∫

Ω

[−pI : Ev + 2Eu : Ev] dx

= −

∫

Ω

p div v dx+ 2

∫

Ω

Eu : Ev dx = 2

∫

Ω

Eu : Ev dx,

(3.11)

where v is an arbitrary element of V(Ω) such that v = V on ∂Ω. In particular, we can

take as v the solution to the Stokes problem (3.4) with boundary datum V . This leads

to the reciprocity condition,

〈σn, V 〉 = 〈τn, U〉,

where τ is the stress tensor corresponding to v. By taking U = V in (3.11), we get

〈σn, U〉 = 2 ‖Eu‖2L2(Ω;M3×3
sym) . (3.12)

We now show that the quadratic form 〈σn, U〉 is positive definite. Indeed, if 〈σn, U〉 = 0,

by (3.12) we obtain Eu = 0 almost everywhere on Ω. This implies that that u(x) = c+Ax,

where c ∈ R
3 and A is a skew symmetric 3×3 matrix. Since u ∈ L6(Ω;R3), we have c = 0

and A = 0, so that U = 0.

By using the duality product 〈σn, V 〉 for a suitable choice of V , one can define the

viscous force F and the torque M in a rigorous way, extending (3.8) and (3.9) to the

general case where the trace σn is not necessarily integrable on ∂Ω.

Definition 3.1.4. Let Ω be an exterior domain with Lipschitz boundary, let u ∈ V(Ω)

be the solution of the Stokes problem (3.4) with boundary datum U ∈ H1/2(∂Ω;R3), let

σ be the corresponding stress tensor defined by (3.6), and let σn ∈ H−1/2(∂Ω;R3) be the
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trace on ∂Ω introduced in Definition 3.1.3. The viscous force exerted by the fluid on the

boundary ∂Ω is defined as the unique vector F ∈ R
3 such that

F · V = 〈σn, V 〉 for every V ∈ R
3. (3.13)

The viscous torque exerted by the fluid on the boundary ∂Ω is defined as the unique vector

M ∈ R
3 such that

M · ω = 〈σn,Wω〉 for every ω ∈ R
3, (3.14)

whereWω(x) := ω×x is the velocity field generated by the angular velocity ω.

We conclude this section by proving the continuous dependence on the domains of

the solutions to the Stokes problems. To this aim, we introduce a notion of convergence

for subsets of R3. We say that a sequence of sets (Sk)k converges to S∞ , and we write

Sk → S∞ , if for every ε > 0 there exists m such that for every k > m

S−ε
∞ ⊂ Sk ⊂ S+ε

∞ , (3.15)

where S−ε
∞ = {y∈R

3 : dist(y,R3 \ S∞) > ε} and S+ε
∞ = {y∈R

3 : dist(y, S∞) 6 ε}.

Theorem 3.1.5. For k = 1, 2, . . . ,∞ , let Sk be a bounded connected open set of class C1,

and let wk be the solution to the minimum problem

min

{∫

R3

|Ew|
2
dx : w ∈ V(R3), w =W on ∂Sk

}
, (3.16)

whereW denotes either a constant vector a ∈ R
3 or the affine functionWω(x) = ω×x, for

some ω ∈ R
3. Assume that Sk → S∞ in the sense of (3.15). Then wk → w∞ strongly in

V(R3).

Notice that wk coincides in Sext
k := R

3 \ Sk with the solution to the Stokes problem

(3.4) in Ω = Sext
k with boundary condition wk =W on ∂Sk , while wk =W in Sk .

Proof. Consider a ball Σρ centered at 0 and containing the closures of all the Sk ’s. It is

possible to find a solenoidal function Ψ ∈ C∞
c (R3;R3) such that Ψ =W in ∂Sk .

WhenW is a constant vector a, we consider a smooth closed curve Γ passing through

the origin, whose tangent vector coincides with a in all points of Γ∩Σρ , and with curva-

ture less than 1/(2ρ). In the tubular neighborhood Γ + Σ2ρ, we consider the vector field

Ψ(x) := ψ(dist(x,Γ))τ(πΓ(x)), where πΓ is the projection on Γ, τ returns the tangential

component, and ψ ∈ C∞
c ([0, 2ρ[) with ψ(r) = 1 for 0 6 r 6 ρ. It is easy to see that Ψ

is solenoidal, coincides with a on Σρ , and vanishes near the boundary of the tubular

neighborhood. Its extension by 0 provides the required function in C∞
c (R3;R3).

In the case W = Wω , it is enough to take Ψ(x) = ω×φ(x)x, with φ a radial scalar

function with compact support such that φ(x) = 1 for x ∈ Σρ .

By minimality,
∫

R3

|Ewk|
2 dx 6

∫

R3

|EΨ|2 dx, for k = 1, 2, . . . ,∞.
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It follows that the sequence (wk)k admits a weak limit w∗ in V(R3).

Notice that ∆W = 0 and divW = 0 on Sk , hence wk = W on Sk for k = 1, 2, . . . ,∞.

Since S−ε
∞ ⊂ Sk for k large enough by the first inclusion in (3.15), we get w∗ =W on S−ε

∞ .

As ε is arbitrary, we conclude w∗ = W on S∞ , which implies that the same equality

holds for the traces on ∂S∞ . Therefore, w∗ is a competitor in the problem for ∂S∞ .

We now show it is also the minimum. For this, consider an admissible function v for

the problem (3.16) for k = ∞. Then v −Ψ ∈ V(R3); it follows that v − Ψ = 0 on ∂S∞. In

particular, v−Ψ ∈ V0(S
ext
∞ ) and by Theorem 3.1.1 there exist functions ϕη ∈ C∞

c (Sext
∞ ;R3)

such that ϕη → v − Ψ when η → 0. For every η > 0 the function vη := ϕη + Ψ coincides

with W in a neighborhood of ∂S∞ . By (3.15), this implies that vη is a competitor for

problem (3.16) on ∂Sk , for k large enough. Therefore, by the minimality of wk

∫

R3

|Ewk|
2
dx 6

∫

R3

|Evη|
2
dx.

Taking the limit first as k → ∞ and then as η → 0, we get

lim sup
k→∞

∫

R3

|Ewk|
2
dx 6

∫

R3

|Ev|
2
dx.

By the lower semicontinuity of the norm in V(R3), we have
∫

R3

|Ew∗|
2
dx 6 lim inf

k→∞

∫

R3

|Ewk|
2
dx 6 lim sup

k→∞

∫

R3

|Ewk|
2
dx 6

∫

R3

|Ev|
2
dx,

thus proving the minimality of w∗. By uniqueness, we have w∞ = w∗. The last chain

of inequalities, applied with v = w∞ , shows also that ‖wk‖D1,2 → ‖w∞‖D1,2 , hence

wk → w∞ strongly in V(R3).

3.2 The equations of motion

The motion t 7→ ϕt determines for almost every t ∈ [0, T ] the Eulerian velocity Ut

through the formula

Ut(y) := ϕ̇t(ϕ
−1
t (y)) for almost every y ∈ ∂At .

As shown in Section 2.2, At is of class C2 and

Ut ∈ H1/2(∂At;R
3) for almost every t ∈ [0, T ].

We can apply Theorem 3.1.2 with Ω = Aext
t := R

3 \At and, for almost every t ∈ [0, T ], we

obtain a unique solution ut to the problem




ut ∈ V(Aext
t ), ut = Ut on ∂At ,∫

Aext
t

Eut : Ew dy = 0 for every w ∈ V0(A
ext
t ).
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Let FAt,Ut andMAt,Ut be the viscous force and torque determined by the velocity field

Ut according to (3.13) and (3.14). Since we are neglecting inertia and imposing the self-

propulsion constraint, the equations of motion reduce to the vanishing of the viscous

force and torque, i.e.,

FAt,Ut = 0 and MAt,Ut = 0 for almost every t ∈ [0, T ]. (3.17)

We assume that ϕt is written as ϕt = rt ◦ st , where rt is a rigid motion as in (2.9) and

t 7→ st is a prescribed shape function. Our aim is to find t 7→ rt so that the equations

of motion (3.17) are satisfied. More precisely, we prove Theorem 3.2.1 below, which

shows that (3.17) is equivalent to a system of ordinary differential equations where the

unknown functions are the translation t 7→ yt and the rotation t 7→ Rt appearing in (2.9).

To define the coefficients of these differential equations, we consider the sets Bt =

st(A) introduced in Section 2.2 and the 3×3 matrices Kt , Ct , Jt , depending only on the

geometry of Bt , whose entries are defined by

(Kt)ij := 〈σ[ej ]n, ei〉Bext
t
, (3.18a)

(Ct)ij := 〈σ[ej ]n, ei×z〉Bext
t
, (3.18b)

(Jt)ij := 〈σ[ej×z]n, ei×z〉Bext
t
, (3.18c)

where Bext
t := R

3 \Bt , the duality product is given in Definition 3.1.3, and σ[W ] denotes

the stress tensor associated to the outer Stokes problem in Bext
t with boundary datum

W . The notation σ[W ] emphasizes that, by the linearity of Stokes system, the depen-

dence of σ on W is linear. Formula (3.11) shows that Kt and Jt are symmetric. The

matrix [
Kt C⊤

t

Ct Jt

]

is often called in the literature grand resistance matrix, and is invertible [19]. Let
[
Ht D⊤

t

Dt Lt

]
:=

[
Kt C⊤

t

Ct Jt

]−1

(3.19)

be its inverse. For almost every t ∈ [0, T ], let Wt := ṡt ◦ s
−1
t , and let F sh

t and M sh
t be

the viscous force and torque on ∂Bt determined by the boundary valueWt. According to

(3.13) and (3.14), the components of F sh
t andM sh

t are given by

(F sh
t )i = 〈σ[Wt]n, ei〉Bext

t
, (3.20a)

(M sh
t )i = 〈σ[Wt]n, ei×z〉Bext

t
. (3.20b)

Let A : R
3 → M

3×3 be the linear operator that associates to every ω ∈ R
3 the only

antisymmetric matrix A(ω) such that A(ω)z = ω×z. In other words, ω is the axial

vector of A(ω). Finally, we define

bt := HtF
sh
t +D⊤

t M
sh
t , Ωt := A(DtF

sh
t + LtM

sh
t ), (3.21)

which depend on st via (3.20) and the definition ofWt.
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Theorem 3.2.1. Assume that the shape function t 7→ st satisfies (2.10), (2.11), and (2.16)

and that the position function t 7→ rt satisfies (2.9) and (2.15). Then the following condi-

tions are equivalent:

the deformation function t 7→ ϕt := rt ◦ st satisfies the equations of motion introduced in

(3.17);

the functions t 7→ yt and t 7→ Rt satisfy the system

ẏt = Rtbt , Ṙt = RtΩt , for almost every t ∈ [0, T ], (3.22)

where bt and Ωt are defined in (3.21).

Proof. It is convenient to set the problem in the intermediate configuration Bt , thus

assuming the point of view of the coordinate system of the shape functions.

After performing the change of variables y = rt(z), z ∈ Bext
t , it turns out that the

velocity field vt(z) := R⊤
t ut(rt(z)) is the solution of the Stokes problem





vt ∈ V(Bext
t ), vt = Vt on ∂Bt ,∫

Bext
t

Evt : Ew dz = 0, for every w ∈ V0(B
ext
t ),

where Vt(z) = R⊤
t Ut(rt(z)), see Fig. 3.1.

Figure 3.1: Notation for the boundary velocities.

Let FBt,Vt and MBt,Vt be the viscous force and torque on ∂Bt determined by vt ac-

cording to (3.13) and (3.14), with Ω = Bext
t . It is easy to check that FBt,Vt = R⊤

t FAt,Ut

andMBt,Vt = R⊤
t MAt,Ut , so that the equations of motion (3.17) reduce to

FBt,Vt = 0 and MBt,Vt = 0 for almost every t ∈ [0, T ]. (3.23)

Let ωt be the axial vector of ṘtR
⊤
t , i.e., the unique vector ωt ∈ R

3 such that ωt×z =

ṘtR
⊤
t z. It is easy to see that R⊤

t Ṙtz = (R⊤
t ωt)×z, so that

Vt(z) =Wt(z) +R⊤
t ẏt + (R⊤

t ωt)×z for almost every z ∈ ∂Bt,
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where Wt(z) = ṡt(s
−1
t (z)). Let (F tr

t ,M
tr
t ) and (F rot

t ,M rot
t ) be the pairs viscous force–

torque on ∂Bt corresponding to the boundary values R⊤
t ẏt and (R⊤

t ωt)×z, respectively.

It is well known, see, e.g., [19] that

F tr
t = −KtR

⊤
t ẏt , F rot

t = −C⊤
t R

⊤
t ωt ,

M tr
t = −CtR

⊤
t ẏt , M rot

t = −JtR
⊤
t ωt ,

where Kt , Ct , and Jt are the matrices defined in (3.18). Recalling the linearity of the

equations, we get

[
FBt,Vt

MBt,Vt

]
= −

[
KtR

⊤
t C⊤

t R
⊤
t

CtR
⊤
t JtR

⊤
t

][
ẏt

ωt

]
+

[
F sh
t

M sh
t

]
,

hence the equations of motion (3.23) become

[
Kt C⊤

t

Ct Jt

][
R⊤

t 0

0 R⊤
t

][
ẏt

ωt

]
=

[
F sh
t

M sh
t

]
. (3.24)

It follows from (3.19) and (3.24) that the equations of motion (3.23) are equivalent to

[
ẏt

ωt

]
=

[
Rt 0

0 Rt

][
Ht D⊤

t

Dt Lt

][
F sh
t

M sh
t

]
for almost every t ∈ [0, T ].

The first equation reads

ẏt = Rtbt , with bt = HtF
sh
t +D⊤

t M
sh
t . (3.25)

To write the second equation in the form (3.22), we use the equality A(ωt) = ṘtR
⊤
t . In

order to rewrite the second equation

ωt = Rt(DtF
sh
t + LtM

sh
t ) (3.26)

in a more useful way, we need a formula for A(Rω) when R is an arbitrary rotation. In

view of the following equalities

A(Rω)z = (Rω)×z = Rω×RR⊤z = R(ω×R⊤z) = RA(ω)R⊤z,

we can conclude that A(Rω) = RA(ω)R⊤. Therefore, by applying A to both members of

(3.26), we get

ṘtR
⊤
t = A(ωt) = A(Rt(DtF

sh
t + LtM

sh
t )) = RtA(DtF

sh
t + LtM

sh
t )R⊤

t ,

so that, eventually, equation (3.26) reads

Ṙt = RtΩt , with Ωt = A(DtF
sh
t + LtM

sh
t ). (3.27)

This concludes the proof.
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Remark: We claim that every absolutely continuous solution to the second equation

in (3.22) belongs to SO(3), whenever R0 ∈ SO(3). Indeed, by differentiating RtR
⊤
t with

respect to time, we get

(RtR
⊤
t )

· = ṘtR
⊤
t +RtṘ

⊤
t = RtΩtR

⊤
t −RtΩtR

⊤
t = 0,

where we used the fact that Ωt is skew symmetric. This shows that the matrix RtR
⊤
t is

constant in time and the claim follows.

The standard theory of ordinary differential equations with possibly discontinuous

coefficients [18], ensures that the Cauchy problem for (3.22) has one and only one Lip-

schitz solution t 7→ Rt , t 7→ yt , provided that the functions t 7→ Ωt and t 7→ bt are

measurable and bounded. By (3.25) and (3.27), this happens when the functions

t 7→ Ht , t 7→ Dt , t 7→ Lt , t 7→ F sh
t , t 7→M sh

t (3.28)

are measurable and bounded. This property for the first three functions follows from

the continuity of the block elements of the grand resistance matrix

t 7→ Kt , t 7→ Ct , t 7→ Jt , (3.29)

which will be proved in the last part of this section. The proof of the measurability and

boundedness of the last two functions in (3.28) requires some technical tools that will

be developed in Sections 3.3 and 3.4.

To prove the continuity of the function in (3.29) we will use Theorem 3.1.5. To this

aim, in the next lemma, we prove a continuity property of the set-valued function t 7→

Bt .

Lemma 3.2.2. Let st satisfy (2.16). Then if t→ t∞ the sets Bt converge to the set Bt∞ in

the sense of (3.15).

Proof. We recall that Bt = st(A) for all t ∈ [0, T ]. Let us prove the two inclusions

separately. To see that st(A) ⊂ (st∞(A))+ε, consider a point y ∈ st(A): then, there exists

a point x ∈ A such that y = st(x). We conclude if we prove that |st∞(x)− st(x)| 6 ε, for

all x ∈ A and for all t sufficiently close to t∞ .

sup
x∈A

|st(x)− st∞(x)| 6 ‖st − st∞‖C1(A;R3) 6 L |t− t∞| 6 ε,

provided that |t− t∞| 6 ε/L. For the inclusion (st∞(A))−ε ⊂ st(A), a simple topological

degree argument can be applied, so we can conclude the proof.

We are now in a position to prove the continuity of the elements of the grand resis-

tance matrix.

Proposition 3.2.3. Assume that st satisfies (2.10), (2.11), and (2.16). Then the functions

t 7→ Kt , t 7→ Ct , t 7→ Jt , (3.30a)

t 7→ Ht , t 7→ Dt , t 7→ Lt (3.30b)
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are continuous.

Proof. Recalling (3.18) and (3.11), we can write

(Kt)ij = 2

∫

R3

Evjt :Ev
i
t dz, (3.31a)

(Ct)ij = 2

∫

R3

Evjt :Ev̂
i
t dz, (3.31b)

(Jt)ij = 2

∫

R3

Ev̂jt :Ev̂
i
t dz, (3.31c)

where vjt and v̂jt are the solutions to problem (3.16) for Sk = Bt, with W = ej and

W = ej×z, respectively. Since the convergence of the sets Bt is guaranteed by Lemma

3.2.2, we can now apply Theorem 3.1.5 and we obtain that the functions in (3.30a) are

continuous. The continuity in (3.30b) follows from (3.19).

The proof of the measurability and boundedness of t 7→ F sh
t and t 7→ M sh

t requires

much more work, due to the fact that both the domains Bt and the boundary data

Wt = ṡt ◦ s
−1
t depend on time. Moreover, the boundary valueWt might be discontinuous

with respect to t, so that we cannot expect the functions t 7→ F sh
t and t 7→ M sh

t to be

continuous.

To prove the measurability we start from an integral representation of F sh
t andM sh

t ,

similar to (3.31). As
∫
∂Bt

Wt ·n dS is not necessarily zero, we have to replace R3 in (3.31)

by the complement of an open ball Σ0
ε ⊂⊂ Bt . Since, in general, this inclusion holds

only locally in time, we first fix t0 ∈ [0, T ] and z0 ∈ Bt0 and select δ > 0 and ε > 0 so that

the open ball Σ0
ε := Σε(z

0) of radius ε centered at z0 satisfies

Σ0
ε ⊂⊂ Bt , for all t ∈ Iδ(t0) := [0, T ] ∩ (t0 − δ, t0 + δ). (3.32)

This is possible thanks to the continuity properties of t 7→ st listed in the previous

Section.

Next we consider the solution wt to the problem

min

∫

Σ0,ext
ε

|Ew|
2
dz,

where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w = Wt on ∂Bt

and w = λt(z − z0)/ε3 on ∂Σ0
ε , where

λt := −
1

4π

∫

∂Bt

Wt · n dS.

The value of λt is chosen so that the flux condition (3.5) on ∂Bt ∪ ∂Σ
0
ε is satisfied.

Finally, recalling (3.20) and (3.11), we can write the following explicit integral repre-

sentation of F sh
t andM sh

t

(F sh
t )i = 2

∫

Bext
t

Ewt :Ev
i
t dz = 2

∫

Σ0,ext
ε

Ewt :Ev
i
t dz, (3.33a)

(M sh
t )i = 2

∫

Bext
t

Ewt :Ev̂
i
t dz = 2

∫

Σ0,ext
ε

Ewt :Ev̂
i
t dz, (3.33b)
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where vit and v̂
i
t have been defined in the proof of Proposition 3.2.3 and where the last

equalities are due to the fact that Evit = Ev̂it = 0 in Bt . We deduce from Theorem 3.1.5

and Lemma 3.2.2 that the functions t 7→ vit and t 7→ v̂it are continuous from Iδ(t0) into

V(Σ0,ext
ε ). Therefore, the measurability and boundedness of t 7→ F sh

t and t 7→M sh
t will be

proved if we show that the function t 7→ wt from Iδ(t0) into V(Σ0,ext
ε ) is measurable and

bounded.

Even the boundedness of ‖∇wt‖L2 is an issue, since all estimates for a solenoidal

extension of Wt considered so far in the literature depend on the geometry of ∂Bt . In

Section 3.3 we make this dependence explicit and conclude that under our assumptions

on t 7→ st the L2 bound for the gradient of the solenoidal extension is uniform with

respect to t. This result will be used in Section 3.4 to prove the measurability of the

function t 7→ wt .

3.3 Extension operators

We give now two extension results of a function defined on ∂Bt to an open region con-

taining ∂Bt . Lemma 3.3.2 is classical, but for our future purposes we need a solenoidal

version, as stated in Proposition 3.3.3. Its proof requires a number of preliminary lem-

mas that are proved beforehand. The next lemma shows that, locally in time, the sets

Σρ \Bt are C2 diffeomorphic to each other.

Lemma 3.3.1. Assume that st satisfies (2.10), (2.11), and (2.16), and let Σρ be as in

(2.12). Let t0 ∈ [0, T ]. Then, there exists a neighborhood Iδ(t0) = [0, T ] ∩ (t0 − δ, t0 + δ)

of t0 with the following property: for every t ∈ Iδ(t0) there exists a C2 diffeomorphism

Φt0
t : Σρ → Σρ , coinciding with the identity on Σρ \Σρ−1 , such that Φt0

t = st0 ◦ s
−1
t on Bt.

In particular, we have

Φt0
t (Bt) = Bt0 and Φt0

t (Σρ \Bt) = Σρ \Bt0 . (3.34)

Moreover,
∥∥Φt0

t

∥∥
C2(Σρ;R3)

+
∥∥(Φt0

t )−1
∥∥
C2(Σρ;R3)

6 C, (3.35)

where C is a constant independent of t0 , t.

Proof. Recall that Bt ⊂⊂ Σρ−1 by (2.12), so that Bt ∪ (Σρ \ Σρ−1) has a C2 boundary.

Therefore, it is possible to find a function Ψt0
t ∈ C2(Σρ;R

3) such that Ψt0
t = st0 ◦ s

−1
t − I

on Bt , Ψ
t0
t = 0 on Σρ \ Σρ−1 , and

∥∥Ψt0
t

∥∥
C2(Σρ;R3)

6 C
∥∥st0 ◦ s−1

t − I
∥∥
C2(Bt;R3)

, where

I is the identity map and C is a constant depending only on ρ and t0 (see, e.g., [16,

Theorem 6.37, page 136]). Since st0 ◦ s
−1
t − I → 0 in C2(Bt;R

3) as t → t0 , there exists a

neighborhood Iδ(t0) of t0 such that
∥∥Ψt0

t

∥∥
C2(Σρ;R3)

6 1/2.

For every t ∈ Iδ(t0) let us define Φt0
t := I + Ψt0

t . Then Φt0
t = I on Σρ \ Σρ−1 and Φt0

t =

st0 ◦ s
−1
t on Bt , which proves the first equality in (3.34). Notice that

∣∣Φt0
t (x) − x

∣∣ 6 1/2
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for every x ∈ Σρ , so that this implies Φt0
t (Σρ−1) ⊂ Σρ . Since Φt0

t (Σρ \Σρ−1) = Σρ \Σρ−1 ,

we conclude that Φt0
t (Σρ) ⊂ Σρ .

Let us prove that Σρ ⊂ Φt0
t (Σρ). Since Φt0

t = I on Σρ \ Σρ−1 , it is enough to show

that Σρ−1 ⊂ Φt0
t (Σρ). To this aim we fix y ∈ Σρ−1 . We want to show that there exists

x ∈ Σρ such that x + Ψt0
t (x) = y. This is equivalent to solve the fixed point problem

x = y − Ψt0
t (x). Since

∥∥Ψt0
t

∥∥
C1(Σρ;R3)

6 1/2, the map x 7→ y − Ψt0
t (x) is a contraction of

Σρ−1/2 into itself. This implies the existence of a fixed point and concludes the proof of

the inclusion Σρ−1 ⊂ Φt0
t (Σρ).

The injectivity of Φt0
t follows easily from the inequality

∥∥Ψt0
t

∥∥
C1(Σρ;R3)

6 1/2. There-

fore, Φt0
t : Σρ → Σρ is bijective. Its inverse is of class C2 by the Local Invertibility

Theorem. The second equality in (3.34) follows now from the first one.

Estimate (3.35) is a consequence of (2.16) and (2.17).

Given two Banach spaces X and Y , the symbol L(X ;Y ) denotes the Banach space of

continuous linear maps from X into Y . Given a function Φ ∈ H1/2(∂A;R3), let us define

λt := −
1

4π

∫

∂Bt

(Φ ◦ s−1
t ) · n dS,

for every t ∈ [0, T ]. The constant λt is chosen so that if u|∂Bt = Φ ◦ s−1
t and u|∂Σρ =

λtz/ |z|
3, then ∫

∂(Bext
t ∩Σρ)

u · n dS = 0.

Lemma 3.3.2 (Extension operators). Under the assumptions of Lemma 3.3.1, there ex-

ists a continuous function from Iδ(t0) into L(H1/2(∂A;R3);H1(Σρ;R
3)), denoted t 7→ St ,

such that

St(Φ) = Φ ◦ s−1
t on ∂Bt ,

St(Φ) = λt
z

|z|
3 on ∂Σρ ,

‖St(Φ)‖H1(Σρ;R3) 6 C ‖Φ‖H1/2(∂A;R3) ,

where the constant C is independent of t and Φ.

Proof. By known results on Sobolev spaces [33, Theorem 5.7, page 103], there exists

St0 ∈ L(H1/2(∂A;R3);H1(Σρ;R
3)) such that St0(Φ) = Φ ◦ s−1

t0 on ∂Bt0 . Let Φt0
t be the

function given in the proof of Lemma 3.3.1. It is easy to show that [St0(Φ)]◦Φ
t0
t = Φ◦s−1

t

on ∂Bt . It is enough to define St(Φ) = [St0(Φ)] ◦ Φ
t0
t .

Proposition 3.3.3 (Solenoidal extension operators). Under the assumptions of Lemma

3.3.1, let t0 ∈ [0, T ] and let z0 ∈ Bt0 . Let δ > 0 and ε > 0 be such that (3.32) holds true.

Then there exists a uniformly bounded family (Tt)t∈Iδ(t0) of continuous linear operators

Tt : H
1/2(∂A;R3) → H1(Σρ \ Σ

0
ε;R

3)

such that
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for all t ∈ Iδ(t0) and for all Φ ∈ H1/2(∂A;R3),

Tt(Φ) = Φ ◦ s−1
t on ∂Bt , (3.36a)

Tt(Φ) = λt
z

|z|
3 on ∂Σρ , (3.36b)

div(Tt(Φ)) = 0 in Σρ \ Σ
0
ε ; (3.36c)

for every Φ ∈ H1/2(∂A;R3) the map t 7→ Tt(Φ) is continuous from Iδ(t0) into H1(Σρ \

Σ0
ε;R

3). In particular, the following estimate holds

‖Tt(Φ)‖H1(Σρ\Σ0
ε;R

3) 6 C ‖Φ‖H1/2(∂A;R3) , (3.37)

where the constant C is independent of t and Φ.

The proof of Proposition 3.3.3 requires the estimates contained in the following

lemma, whose proof can be found in [33, page 187], [41, Proposition 1.2], [14, Exercixe

III.3.3], and in [39, Lemma II.1.5.4].

Lemma 3.3.4. For every bounded connected open set Ω ⊂ R
3 with Lipschitz boundary,

there exists a constant γ(Ω) > 0 such that

‖p‖L2(Ω) 6 γ(Ω) ‖∇p‖H−1(Ω;R3) , (3.38)

for every p ∈ L2(Ω) with
∫
Ω p dx = 0.

The constant γ(Ω) plays a crucial role in the following result concerning the estimate

of a particular solution of the equation div u = g in Ω with Dirichlet boundary conditions

u = 0 on ∂Ω.

Lemma 3.3.5. Let Ω ⊂ R
3 be a bounded connected open set with Lipschitz boundary

and let g ∈ L2(Ω) with
∫
Ω
g dx = 0. Then there exists a unique u ∈ H1

0 (Ω;R
3) such that

div u = g in Ω,
∫
Ω
∇u :∇v dx = 0 for all v ∈ H1

0 (Ω;R
3) with div v = 0 in Ω. Moreover, the following

estimate holds

‖u‖H1
0 (Ω;R3) 6 γ(Ω) ‖g‖L2(Ω) ,

where γ(Ω) is the constant in Lemma 3.3.4.

Proof. The first part of the Lemma is classical and can be found in various texts, e.g.,

[41, page 22], [14, Theorem V.2.1 and Exercise V.2.1], and [39, Theorem III.1.4.1]. The

estimate then follows by a straightforward computation.

In order to prove Proposition 3.3.3 we have to show that the constants γ(Bt) and

γ(Σρ \ Bt) are uniformly bounded with respect to t. This will be achieved through the

following lemma, thanks to Lemma 3.3.1.
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Lemma 3.3.6. There exists a non decreasing function a : [0,+∞) → [0,+∞) such that

the constant γ introduced in Lemma 3.3.4 satisfies the estimate

γ(Φ(Ω)) 6 a
(
‖Φ‖C2(Ω;R3) +

∥∥Φ−1
∥∥
C2(Φ(Ω);R3)

)
γ(Ω), (3.39)

for every bounded open set Ω ⊂ R
3 with C2 boundary and for every invertible function

Φ ∈ C2(R3;R3).

Proof. As shown in [33], (3.38) is a consequence of the following inequalities

‖p‖L2(Ω) 6 γ1(Ω)
(
‖∇p‖H−1(Ω;R3) + ‖p‖H−1(Ω)

)
,

inf
t∈R

‖p− t‖H−1(Ω) 6 γ2(Ω) ‖∇p‖H−1(Ω;R3) ,

valid for every p ∈ L2(Ω). By a change of variables it is easy to see that γ1(Ω) and γ2(Ω)

satisfy (3.39). The conclusion follows.

Let Σρ be as in (2.12) and t0, z0, δ, ε, Iδ(t0), and Σ0
ε be as in Proposition 3.3.3. For

every t ∈ Iδ(t0) let Ut :
{
g ∈ L2(Bt \ Σ0

ε;R
3) :

∫
Bt\Σ0

ε
g dz = 0

}
→ H1

0 (Σρ \ Σ0
ε;R

3)

be the linear operator defined by Ut(g) = u, where u|Bt\Σ0
ε
is the unique function in

H1
0 (Bt \ Σ

0
ε;R

3) such that

div u = g in Bt \ Σ
0
ε , (3.40a)∫

Bt\Σ0
ε

∇u :∇v dz = 0 for all v ∈ H1
0 (Bt \ Σ

0
ε;R

3) : div v = 0 in Bt \ Σ
0
ε , (3.40b)

and u = 0 in (Σρ \ Bt). By Lemmas 3.3.1, 3.3.5, and 3.3.6, there exists a constant M ,

independent of t, such that

‖Ut‖Lt
6M, (3.41)

where Lt is the Banach space of continuous linear operators from
{
g ∈ L2(Bt \ Σ

0
ε;R

3) :
∫
Bt\Σ0

ε
g dz = 0

}
into H1

0 (Σρ \Σ
0
ε;R

3).

Lemma 3.3.7. Assume (2.10), (2.11), (2.13), and (2.16). Let t0 ∈ [0, T ] and let tk ∈ Iδ(t0),

k = 1, 2, . . . ,∞ , and let g ∈ L2(Σρ \ Σ
0
ε) with

∫
Σρ\Σ0

ε
g dz = 0 and

supp(g) ⊂⊂ Btk \ Σ0
ε for every k. (3.42)

Assume that tk → t∞ as k → ∞. Then Utk(g) → Ut∞(g) strongly in H1
0 (Σρ \ Σ0

ε;R
3). A

similar result holds if we exchange the roles of Btk \ Σ0
ε and Σρ \ Btk in the definition of

Ut and in (3.42).

Proof. For k = 1, 2, . . . ,∞ , let utk := Utk(g). By (3.41), the sequence (utk)k is bounded in

H1
0 (Σρ \ Σ0

ε;R
3). Therefore a subsequence, still denoted by (utk)k , converges weakly in

H1
0 (Σρ \Σ

0
ε;R

3) to some function u∗.

We claim that u∗ ∈ H1
0 (Bt∞ \ Σ0

ε;R
3). First notice that utk ◦ (stk ◦ s−1

t∞) = 0 on ∂Bt∞ ,

hence utk ◦ (stk ◦ s−1
t∞) ∈ H1

0 (Bt∞ \ Σ0
ε;R

3). Since stk ◦ s−1
t∞ → I in C1(Bt∞ \ Σ0

ε;R
3) as
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k → ∞, and utk ⇀ u∗ weakly in H1(Σρ \ Σ
0
ε;R

3), we obtain utk ◦ (stk ◦ s−1
t∞) ⇀ u∗ weakly

in H1(Bt∞ ;R3). This implies that u∗ belongs to H1
0 (Bt∞ \ Σ0

ε;R
3) and proves the claim.

Since supp(g) ⊂⊂ Btk \ Σ0
ε for every k, condition (i) in Lemma 3.3.5 gives div utk = g

in Σρ \ Σ
0
ε for every k, hence div u∗ = g in Σρ .

If v ∈ C∞
c (Bt∞ \ Σ0

ε;R
3) with div v = 0, from (ii) we have

∫

Btk
\Σ0

ε

∇utk :∇v dz = 0, for k large enough.

Passing to the limit as k → ∞, we get
∫

Bt∞\Σ0
ε

∇u∗ :∇v dz = 0.

An approximation argument based on Theorem 3.1.1 gives the same equality for every

v ∈ H1
0 (Bt∞ \ Σ0

ε;R
3) with div v = 0. By the uniqueness result proved in Lemma 3.3.5,

we have u∗ = ut∞ .

To prove the strong convergence of (utk)k in H1
0 (Σρ \Σ

0
ε;R

3), we fix a connected open

set B with Lipschitz boundary such that supp(g) ⊂⊂ B ⊂⊂ Btk \ Σ0
ε for every k. By

Lemma 3.3.5, there exists w ∈ H1
0 (B;R3) such that





divw = g on B,∫

B

∇w :∇v dz = 0 for every v ∈ H1
0 (B;R3) with div v = 0.

We extend w by setting w = 0 on (Σρ \ Σ
0
ε) \ B. Since supp(g) ⊂⊂ B, we have divw = g

on Σρ \ Σ
0
ε .

We take v = utk − w as test function in condition (ii) and we obtain
∫

Σρ\Σ0
ε

|∇utk |
2 dz =

∫

Σρ\Σ0
ε

∇utk :∇v dz, for k = 1, 2, . . . ,∞.

Since ∇utk ⇀ ∇ut∞ in L2(Σρ \ Σ
0
ε;M

3×3), taking the limit as k → ∞ we get
∫

Σρ\Σ0
ε

|∇utk |
2
dz →

∫

Σρ\Σ0
ε

|∇ut∞ |
2
dz,

which concludes the proof of the strong convergence in H1
0 (Σρ \ Σ

0
ε;R

3).

Lemma 3.3.8. Under the hypotheses of Lemma 3.3.7, let t 7→ gt be a continuous function

from Iδ(t0) into L
2(Σρ \Σ

0
ε), endowed with the strong topology, and let Ut be the operator

defined in (3.40). Assume that

∫

Bt\Σ0
ε

gt dz = 0 for every t ∈ Iδ(t0). (3.43)

Then the function t 7→ Ut(gt) is continuous from Iδ(t0) intoH
1
0 (Σρ \Σ

0
ε;R

3), endowed with

the strong topology. A similar result holds if we exchange the roles of Bt \Σ
0
ε and Σρ \Bt

in the definition of Ut and in (3.43).
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Proof. Let us fix τ ∈ Iδ(t0) and η > 0. There exists h ∈ L2(Σρ \Σ
0
ε) with compact support

in Bτ such that

‖h− gτ‖L2(Bτ\Σ0
ε)
< η.

By continuity, for t sufficiently close to τ we have

‖h− gt‖L2(Bt\Σ0
ε)
< η,

and supp(h) ⊂⊂ Bt \ Σ
0
ε. By (3.41) we have

‖Ut(gt)− Uτ (gτ )‖H1

6 ‖Ut(gt − h)‖H1 + ‖Ut(h)− Uτ (h)‖H1 + ‖Uτ (h− gτ )‖H1

6 ‖Ut‖Lt
‖gt − h‖L2(Bt\Σ0

ε)
+ ‖Ut(h)− Uτ (h)‖H1 + ‖Uτ‖Lτ

‖h− gτ‖L2(Bτ\Σ0
ε)

6Mη + ‖Ut(h)− Uτ (h)‖+Mη.

Lemma 3.3.7 yields

lim sup
t→τ

‖Ut(gt)− Uτ (gτ )‖H1 6 2Mη.

As η is arbitrary, we have shown that the convergence Ut(gt) → Uτ (gτ ) is strong in

H1(Σρ \Σ
0
ε;R

3).

Proof of Proposition 3.3.3. For all t ∈ Iδ(t0), let ζt := St(Φ) be the extension given by

Lemma 3.3.2. Define gintt and gextt as div(ζt) restricted to Bt\Σ
0
ε and Σρ\Bt , respectively.

An easy computation shows that
∫

Bt\Σ0
ε

gintt dz =

∫

Σρ\Bt

gextt dz = 0.

Therefore, there exist functions uintt ∈ H1
0 (Bt \ Σ

0
ε;R

3) and uextt ∈ H1
0 (Σρ \ Bt;R

3) satis-

fying conditions (i) and (ii) of Lemma 3.3.5. One can define ut = Ut(gt) as the function

defined by uintt on Bt \Σ
0
ε and by uextt on Σρ \Bt . Notice that ut agrees with zero on ∂Bt ,

on ∂Σρ , and on ∂Σ0
ε .

Consider now Tt(Φ) := St(Φ) − Ut(gt) = ζt − ut . This extension is clearly in H1(Σρ \

Σ0
ε;R

3) and agrees with (3.36) so that (i) is satisfied. Moreover, by the continuity proper-

ties of St and Ut , it turns out that also Tt is continuous from Iδ(t0) into H1(Σρ \ Σ
0
ε;R

3),

so that (ii) and estimate (3.37) follow.

3.4 Dependence on the data

Using the tools developed in the preceding section, we are finally ready to prove some re-

sults concerning continuity and measurability properties of the solutions to the Stokes

problems. These will lead us to the statement of Theorem 3.4.4 about the existence,

uniqueness, and regularity of the rigid motion t 7→ rt that causes the swimmer’s dis-

placement in the viscous fluid.
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Proposition 3.4.1. Assume that st satisfies (2.10), (2.11), and (2.16). Let t0 ∈ [0, T ] and

z0 ∈ Bt0 , and let Σ0
ε and Iδ(t0) be as in (3.32). Let Iδ(t0) be given as in Lemma 3.3.1.

Suppose that the map t 7→ Φt belongs to C
0(Iδ(t0);H

1/2(∂A;R3))∩L∞(Iδ(t0); Lip(∂A;R
3)).

Define

λt := −
1

4π

∫

∂Bt

(Φt ◦ s
−1
t ) · n dS.

Let wt be the solution of the problem

min

∫

Σ0,ext
ε

|Ew|2 dz, (3.44)

where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w = Φt ◦ s

−1
t on

∂Bt and w = λt(z − z0)/ε3 on ∂Σ0
ε . Then t 7→ wt belongs to C

0(Iδ(t0);V(Σ
0,ext
ε )).

Proof. Let (tk)k ⊂ Iδ(t0) be a sequence that converges to t∞ ∈ Iδ(t0). Let ψtk be the ex-

tension of Φtk ◦ s
−1
tk provided by Proposition 3.3.3. It can be further extended by λtz/ |z|

3

on R
3 \ Σρ, so that ψtk ∈ V(Σ0,ext

ε ) and is a competitor in the minimum problem (3.44)

corresponding to t = tk; therefore,
∫

Σ0,ext
ε

|Ewtk |
2 dz 6

∫

Σ0,ext
ε

|Eψtk |
2 dz 6 ‖ψtk‖

2
H1(Σρ\Σ0

ε;R
3)

6 C2(Lip(Φtk) + max |Φtk |)
2
6 (CM)2,

where C is the constant in (3.37) and M > 0 is a uniform upper bound of Lip(Φtk) +

max |Φtk |, whose existence is guaranteed by the fact that t 7→ Φt belongs to L∞(Iδ(t0);

Lip(∂A;R3)). Thus, the sequence (wtk)k is equi-bounded in V(Σ0,ext
ε ) and, up to a subse-

quence, it converges weakly to some w∗ ∈ V(Σ0,ext
ε ).

We claim that w∗ is a competitor in problem (3.44) for t = t∞ . First, notice that

Φtk ◦ s−1
t∞ = wtk ◦ (stk ◦ s−1

t∞) on ∂Bt∞ . Let Φtk
t∞ be the extension of stk ◦ s−1

t∞ considered

in Lemma 3.3.1. Arguing as in the proof of that lemma, we find that Φtk
t∞ → I in

C1(Σρ;R
3) as tn → t∞ . Since wtk ⇀ w∗ weakly in H1(Σρ \ Σ0

ε;R
3), we obtain that

wtk ◦ Φtk
t∞ ⇀ w∗ weakly in H1(Σρ \ Σ0

ε;R
3). This implies that wtk ◦ (stk ◦ s−1

t∞) ⇀ w∗

weakly in H1/2(∂Bt∞ ;R3). On the other hand, Φtk ◦ s−1
t∞ → Φt∞ ◦ s−1

t∞ in H1/2(∂Bt∞ ;R3).

As Φtk ◦ s−1
t∞ = wtk ◦ (stk ◦ s−1

t∞) on ∂Bt∞ , we deduce that w∗ = Φt∞ ◦ s−1
t∞ on ∂Bt∞ . This

concludes the claim.

Let v ∈ V(Σ0,ext
ε ) be another competitor in problem (3.44) for t = t∞ , and let ζ :=

v−ψt∞ , where ψt∞ := Tt∞(Φt∞) is the extension provided by Proposition 3.3.3, extended

by zero on R
3 \ Σρ. The function ζ vanishes on ∂Bt∞ and its restrictions to Bt∞ and

Bext
t∞ belong to H1

0 (Bt∞ \ Σ0
ε;R

3) and V0(B
ext
t∞ ;R3), respectively. Then by the Density

Theorem 3.1.1 and by a classical density result in H1
0 (Bt∞ \ Σ0

ε;R
3), for every η > 0,

there exists a function ζη ∈ V(Σ0,ext
ε ), vanishing in a neighborhood of ∂Bt∞ , such that

‖ζη − ζ‖D1,2(Σ0,ext
ε ;R3) 6 η. Define now vηtk := ψtk + ζη, and observe that, for k large

enough, it is a competitor in the minimum problem (3.44) for t = tk . Therefore,
∫

Σ0,ext
ε

|Ewtk |
2 dz 6

∫

Σ0,ext
ε

∣∣Evηtk
∣∣2 dz =

∫

Σ0,ext
ε

|Eψtk + Eζη|2 dz.
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Taking the limit first as k → ∞ and then as η → 0, we get
∫

Σ0,ext
ε

|Ew∗|2 dz 6 lim sup
k→∞

∫

Σ0,ext
ε

|Ewtk |
2 dz

6

∫

Σ0,ext
ε

|Eψt∞ + Eζ|2 dz =

∫

Σ0,ext
ε

|Ev|2 dz,

where the convergence of Eψtk to Eψt∞ is guaranteed as a consequence of (ii) in Propo-

sition 3.3.3. This proves that w∗ is a minimum, so that w∗ = wt∞ . By taking v = w∗, we

get the convergence of the D1,2 norms, therefore wtk → wt∞ strongly in V(Σ0,ext
ε ). This

concludes the proof.

We notice that Theorem 3.1.5 turns out to be a particular case of Proposition 3.4.1,

for special boundary data not depending on time. Nonetheless, we think it is useful to

present both results, since the technique of the proof is much easier in Theorem 3.1.5.

As we have seen at the end of Section 3.2, Theorem 3.1.5 applied to purely linear

and purely angular boundary velocities guarantees the continuity of the elements of the

matrices in (3.19), while Proposition 3.4.1 will give the continuity of the known terms

F sh
t andM sh

t in (3.24).

Theorem 3.4.2. Assume that st satisfies (2.10), (2.11), (2.13), and (2.16), and let t0 ∈

[0, T ] , z0 ∈ Bt0 , and let Σ0
ε and Iδ(t0) be as in (3.32). Assume, in addition, that Iδ(t0)

satisfies Lemma 3.3.1. Let wt be the solution of the problem

min

∫

Σ0,ext
ε

|Ew|
2
dz, (3.45)

where the minimum is taken over all functions w ∈ V(Σ0,ext
ε ) such that w = ṡt ◦ s

−1
t on

∂Bt and w = λt(z− z0)/ε3 on ∂Σ0
ε . Then the function t 7→ wt is measurable and bounded

from Iδ(t0) into V(Σ0,ext
ε ).

Proof. We approximate the functions ṡt with the sequence Φη
t defined by

Φη
t (x) :=

∫

R

κη(t− τ)ṡτ (x) dτ, (3.46)

where κη is a regularizing kernel supported in the ball Ση of radius η and of unit mass.

Since the function τ 7→ ṡτ belongs to L∞(Iδ(t0);W
1,p(A;R3)) for every 2 6 p < ∞, the

integral in (3.46) can be seen as a Bochner integral inW 1,p(A;R3). This implies that t 7→

Φη
t belongs to C0(Iδ(t0);W

1,p(A;R3)); in particular, it belongs to C0(Iδ(t0);H
1/2(∂A;R3)).

Moreover, by (2.18), we have Lip(Φη
t ) 6 L. Therefore, the map t 7→ Φη

t belongs to

C0(Iδ(t0);H
1/2(∂A;R3)) ∩ L∞(Iδ(t0); Lip(∂A;R

3)). Moreover, for almost every t ∈ Iδ(t0),

Φη
t → ṡt strongly in H1/2(∂A;R3).

Let wη
t be the solutions to problems (3.45), where the minimum is now taken over

all functions w ∈ V(Σ0,ext
ε ) such that w = Φη

t ◦ s
−1
t on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0

ε .

By the properties of the functions t 7→ Φη
t mentioned above and by Proposition 3.4.1, the

functions t 7→ wη
t are continuous from Iδ(t0) into V(Σ0,ext

ε ).
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We recall that, for almost every t ∈ Iδ(t0), Φ
η
t → ṡt strongly in H1/2(∂A;R3). This

implies that Φη
t ◦s

−1
t → ṡt ◦s

−1
t strongly inH1/2(∂Bt;R

3). By the continuous dependence

of the solutions on the data, we have wη
t → wt in V(Σ0,ext

ε ) for almost every t ∈ Iδ(t0).

This implies the measurability of t 7→ wt .

Theorem 3.4.3. Under the hypotheses of Theorem 3.4.2, the vector bt and the matrix

Ωt in (3.21) are bounded and measurable with respect to t. If, in addition, the function

t 7→ st belongs to C
1([0, T ];C1(A;R3)), then t 7→ (bt ,Ωt) belongs to C

0([0, T ];R3×M
3×3).

Proof. As noticed in Section 3.2, it is enough to prove that the functions in (3.28) are

bounded and measurable, and that they are continuous under the additional assump-

tion on t 7→ st. Moreover, it is sufficient to prove the measurability and boundedness

of these functions in a subinterval of time; the measurability and boundedness on the

whole [0, T ] will easily follow. As for the first three functions, this property is proved

in Proposition 3.2.3. The function t 7→ wt from Iδ(t0) into V(Σ0,ext
ε ) is bounded and

measurable by Theorem 3.4.2. By Proposition 3.4.1 it is also continuous under the addi-

tional assumption. By formulas (3.33), this yields the boundedness and measurability

of t 7→ F sh
t and t 7→ M sh

t , and the continuity under the additional assumption on t 7→ st,

since the functions t 7→ vit and t 7→ v̂it are continuous from Iδ(t0) into V(Σ0,ext
ε ) by Theo-

rem 3.1.5 and Lemma 3.2.2.

We are now in a position to prove the main existence, uniqueness, and regularity

result.

Theorem 3.4.4. Assume that t 7→ st satisfies (2.10), (2.11), (2.13), and (2.16). Let y∗ ∈ R
3

and R∗ ∈ SO(3). Then (3.22) has a unique absolutely continuous solution t 7→ (yt , Rt)

defined in [0, T ] with values in R
3×SO(3) such that y0 = y∗ and R0 = R∗. In other words,

there exists a unique rigid motion t 7→ rt(z) = yt+Rtz such that the deformation function

t 7→ ϕt = rt ◦ st satisfies the equations of motion (3.17).

Moreover this solution is Lipschitz continuous with respect to t. If, in addition, the

function t 7→ st belongs to C
1([0, T ];C1(A;R3)), then the solution t 7→ (yt , Rt) belongs to

C1([0, T ];R3×SO(3)).

Proof. The existence and uniqueness of the solution of the Cauchy problem for (3.22)

follow immediately from Theorem 3.4.3, by standard results on ordinary differential

equations with bounded measurable coefficients, see, e.g., [18, Theorem I.5.1]. The as-

sertion concerning the deformation function t 7→ ϕt and the equation of motion (3.17)

follows from the equivalence Theorem 3.2.1. The Lipschitz continuity of the solution

follows from the boundedness of the right-hand sides of the equation in (3.22).

If, in addition, the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then Theorem

3.4.3 ensures that the coefficients of the equations in (3.22) are continuous with respect

to t, and therefore the solutions are of class C1.
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We notice that assumptions (2.2) are not needed in Theorem 3.4.4. As a consequence,

the theorem holds in a more general setting, when st is not a pure shape change. For

instance, if st were a rigid motion for every t, the unique rt given by the theorem would

be rt = s−1
t . Consequently, ϕt would be the identity for every t and the swimmer would

not move.
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CHAPTER4

Swimming in an unbounded Brinkman fluid

In this Chapter we develop the theory for the case of a swimmer immersed in an infi-

nite viscous fluid governed by the Stokes equation. For this, the functional setting is

presented in Section 4.2, the extension theorems an the main results are presented in

Section 4.4. A final section about possible future directions follows. All these results are

contained in [31].

4.1 Motivation

In a recent paper by S. Jung [22], the motion of Caenorhabditis elegans is observed in

different environments: this nematode usually swims in saturated soil, and its behavior

was studied in different saturation conditions as well as in a viscous fluid without solid

particles. It must be noticed that the locomotion strategy of C. elegans is not completely

understood, as it is shown by the many studies on this nematode in different conditions;

nevertheless it has been taken as a model system to approach the study of many bio-

logical problems [43]. A satisfactory attempt to understand its locomotion dates back to

[42], where the experiment was conducted in an environment close to the one in which

C. elegans usually lives, yet the wet phase in which the particles are usually immersed

was neglected. Other and more recent experiments have been run on agar composites

[23], [27], and they could give a hint on the swimming strategies of C. elegans, showing

that it moves more efficiently in a particulate medium rather than in a viscous fluid

without particles [22].

The aim of the work presented in this chapter is to provide a theoretical framework

for the motion of a body in a particulate medium. Following the approach proposed in
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[22, III.C], we model the particulate medium surrounding the swimmer as a Brinkman

fluid. We use the framework introduced in Chapter 2, showing that is can be adapted to

the case of a Brinkman problem in an exterior domain, provided the definition of suit-

able function spaces. Thus, the existence, uniqueness, and regularity result contained

in Theorem 4.4.6 can be considered as a generalization of Theorem 3.4.4 obtained for

the Stokes system.

4.2 The exterior Brinkman problem

In this section we present some results about Brinkman equation. It was originally

proposed in [9] to model a fluid flowing through a porous medium as a correction to

Darcy’s law by the addition of a diffusive term. A rigorous mathematical derivation

from the Navier-Stokes equation via homogenization can be found in [1].

In a Lipschitz domain Ω ⊂ R
3, the Brinkman system reads






ν∆u− α2u = ∇p in Ω,

div u = 0 in Ω,

u = U on ∂Ω,

u = 0 at infinity.

(4.1)

The positive constant α takes into account the permeability properties of the porous

matrix and the viscosity of the fluid, the constant ν is an effective viscosity of the fluid,

while the third equation in the system is the no-slip boundary condition. The condition

u = 0 at infinity is significant, and necessary, only when the domain Ω is unbounded.

From now on, we will get rid of the effective viscosity, upon a redefinition of α, by setting

ν = 1. A brief discussion on the constant ν can be found in Brinkman’s paper [9].

In order to cast equation (4.1) in the weak form, we introduce the function spaces in

which we will look for the weak solution. Define

X (Ω) := {u ∈ H1(Ω;R3) : div u = 0 in Ω}, X0(Ω) := {u ∈ H1
0 (Ω;R

3) : div u = 0 in Ω}.

Both X (Ω) and X0(Ω) are equipped with the standard H1 norm but we introduce this

equivalent one

‖u‖
2
X (Ω) := α2 ‖u‖

2
L2(Ω;R3) + 2 ‖Eu‖

2
L2(Ω;M3×3

sym) ,

the equivalence being a consequence of Korn’s inequality.

The weak formulation of equation (4.1) is now given by




find u ∈ X (Ω) such that u = U on ∂Ω,

2

∫

Ω

Eu : Ew dx+ α2

∫

Ω

u · w dx = 0, for every w ∈ X0(Ω),
(4.2)

where the boundary velocity is a given function U ∈ H1/2(∂Ω;R3), the solution being

the unique minimum in X (Ω) of the strictly convex energy functional

E(u) := 2

∫

Ω

|Eu|2 dx+ α2

∫

Ω

|u|2 dx = ‖u‖2X (Ω) .
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If we consider the term α2u as a forcing term f in system (4.1), we can invoke a

classical existence and uniqueness result, see, e.g., [14], [39], or [41].

Theorem 4.2.1. Let U ∈ H1/2(∂Ω;R3). Then the following results hold:

(a) Let Ω be a bounded connected open subset of R3 with Lipschitz boundary. If

∫

∂Ω

U · n dS = 0, (4.3)

there exists a unique solution u to problem (4.2). Moreover, there exists p ∈ L2(Ω)

such that ∆u −∇p = f in D′(Ω;R3).

(b) Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary. Then problem (4.2) has

a solution. Moreover, there exists p ∈ L2
loc(Ω), with p ∈ L2(Ω ∩ Σρ) for every ρ > 0,

such that ∆u −∇p = f in D′(Ω;R3).

The following density result, which is an adaptation of Theorem 3.1.1, is particularly

useful when dealing with exterior domains.

Theorem 4.2.2 (Density). Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary.

Then, the space {u ∈ C∞
c (Ω;R3) : div u = 0 in Ω} is dense in X (Ω) for the H1 norm.

The stress tensor associated with the velocity field u and the pressure p was defined

in (3.6), and also the viscous force and torque have the same form as in (3.8) and (3.9).

The same considerations that were done in Section 3.1 are still valid in the Brinkman

setting.

Definition 3.1.3 of the trace of σn on ∂Ω can be rephrased adapted to the new function

spaces

Definition 4.2.3. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary and let

σ ∈ L1
loc(Ω;R

3) be such that σD ∈ L2(Ω;M3×3
sym) and div σ ∈ L2(Ω;R3). The trace of σn, still

denoted by σn, is defined as the unique element of H−1/2(∂Ω;R3) satisfying the equality

〈σn, V 〉Ω :=

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx, (4.4)

where 〈·, ·〉Ω denotes the duality pairing between H−1/2(∂Ω;R3) and H1/2(∂Ω;R3), and v

is any function in X (Ω) such that v = V on ∂Ω.

If there is no risk of misunderstanding, the subscript Ω will be dropped whenever the

domain of integration is clear. Notice that if σ is sufficiently smooth then integrating

(4.4) by parts leads to the equality

〈σn, V 〉Ω =

∫

∂Ω

σn · V dS, for every V ∈ H1/2(∂Ω;R3).

In the general case, the right-hand side of (4.4) is easily proved to be well defined,

given the assumptions on σ. In fact, div σ ∈ L2(Ω;R3) and v ∈ L2(Ω;R3) make the first
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integral well defined, while the second one is also good since σ : Ev = σD : Ev, because of

the symmetry of Ev, and both σD and Ev belong to L2(Ω;M3×3
sym). Lastly, the definition

is independent of the choice of v ∈ X (Ω), since the right-hand side vanishes for every

v ∈ X0(Ω): this follows from the very same computation for the more regular case, by the

Density Theorem 4.2.2. It is easy to see that (4.4) defines a continuous linear functional

on H1/2(∂Ω;R3) by choosing v ∈ X (Ω) an extension of V .

We now proceed in showing other useful properties of the duality pairing introduced

in Definition 4.2.3. Let U ∈ H1/2(∂Ω;R3) and let u be the solution to the Brinkman

problem (4.2) with boundary datum U and let σ be the corresponding stress tensor. Since

all the assumptions of Definition 4.2.3 are fulfilled, for any given V ∈ H1/2(∂Ω;R3) we

have

〈σn, V 〉 =

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx = α2

∫

Ω

u · v dx+

∫

Ω

[−p I : Ev + 2Eu : Ev] dx

= α2

∫

Ω

u · v dx−

∫

Ω

p div v dx+ 2

∫

Ω

Eu : Ev dx

= α2

∫

Ω

u · v dx+ 2

∫

Ω

Eu : Ev dx,

(4.5)

where v is an arbitrary element in X (Ω) such that v = V on ∂Ω. If we take, in particular,

v to be the solution to problem (4.2) with boundary datum V , we recover the well known

reciprocity condition (see, e.g., [19, Section 3-5])

〈σn, V 〉 = 〈τn, U〉,

with τ being the stress tensor associated with v. Moreover, by taking U = V in (4.5) we

obtain

〈σn, U〉 = α2 ‖u‖
2
L2(Ω;R3) + 2 ‖Eu‖

2
L2(Ω;M3×3

sym) = ‖u‖
2
X (Ω) .

This equality allows us to show that the quadratic form 〈σn, U〉 is positive definite: if

〈σn, U〉 = 0, then it follows that u = 0, and therefore U = 0.

Also the weak definition of the viscous force and torque is easily adapted, keeping

Definition 4.2.3 in mind.

Definition 4.2.4. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary, let u ∈

X (Ω) be the solution to the Brinkman problem (4.2)with boundary datum U ∈ H1/2(∂Ω;R3),

let σ be the corresponding stress tensor defined by (3.6), and let σn ∈ H−1/2(∂Ω;R3) be

the trace on ∂Ω defined according to (4.4). The viscous force exerted by the fluid on the

boundary ∂Ω is defined as the unique vector F ∈ R
3 such that

F · V = 〈σn, V 〉 for every V ∈ R
3. (4.6)

The torque exerted by the fluid on the boundary ∂Ω is defined as the unique vectorM ∈ R
3

such that

M · ω = 〈σn,Wω〉 for every ω ∈ R
3, (4.7)

whereWω(x) := ω×x is the velocity field generated by the angular velocity ω.
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Notice that this definition allows us to define two different physical quantities by

means of the same mathematical object, namely the duality pairing defined in (4.4).

4.3 The equations of motion

We proceed now to the description of the motion of the swimmer. The motion t 7→ ϕt

determines for almost every t ∈ [0, T ] the Eulerian velocity Ut through the formula

Ut(y) := ϕ̇t(ϕ
−1
t (y)) for almost every y ∈ ∂At .

Notice that Ut ∈ H1/2(∂At;R
3) for almost every t ∈ [0, T ]. By applying Theorem 4.2.1 (b)

with Ω = Aext
t := R

3 \ At and, for almost every t ∈ [0, T ], we obtain a unique solution ut
to the problem





find ut ∈ X (Aext
t ) such that ut = Ut on ∂At ,

2

∫

Aext
t

Eut : Ew dy + α2

∫

Aext
t

ut · w dy = 0 for every w ∈ X0(A
ext
t ).

(4.8)

Let FAt,Ut andMAt,Ut be the viscous force and torque determined by the velocity field

Ut according to (4.6) and (4.7). By neglecting inertia and imposing the self-propulsion

constraint, the equations of motion reduce to the vanishing of the viscous force and

torque, i.e.,

FAt,Ut = 0 and MAt,Ut = 0 for almost every t ∈ [0, T ]. (4.9)

By assuming that ϕt is factorized as ϕt = rt ◦ st , where rt is a rigid motion as in

(2.9) and t 7→ st is a prescribed shape function, our aim is to find t 7→ rt so that the

equations of motion (4.9) are satisfied. To this extent, we present Theorem 4.3.1 below,

whose result is that (4.9) is equivalent to a system of ordinary differential equations

where the unknown functions are the translation t 7→ yt and the rotation t 7→ Rt of the

map t 7→ rt.

The coefficients of these differential equations are defined starting from the inter-

mediate configuration described by the sets Bt = st(A) introduced before and the 3×3

matrices Kt , Ct , Jt , depending only on the geometry of Bt , whose entries are defined

by

(Kt)ij := 〈σ[ej ]n, ei〉Bext
t
, (4.10a)

(Ct)ij := 〈σ[ej ]n, ei×z〉Bext
t
, (4.10b)

(Jt)ij := 〈σ[ej×z]n, ei×z〉Bext
t
, (4.10c)

where Bext
t := R

3 \ Bt , the duality product is given in Definition 4.2.3 by formula (4.4),

and σ[W ] denotes the stress tensor associated with the outer Brinkman problem in
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Bext
t with boundary datum W . The notation σ[W ] is chosen to emphasize the linear

dependence of σ onW . Formula (4.5) shows that Kt and Jt are symmetric. The matrix
[
Kt C⊤

t

Ct Jt

]

is often called in the literature grand resistance matrix, and is symmetric and invert-

ible. It originally arises in the case of a Stokes system [19], but the adaptation to the

Brinkman system is straightforward: it only shares the structure with the original one,

while the values of the entries are computed with a different formula, namely (4.5). Let

[
Ht D⊤

t

Dt Lt

]
:=

[
Kt C⊤

t

Ct Jt

]−1

(4.11)

be its inverse. For almost every t ∈ [0, T ], we definedWt = ṡt ◦ s
−1
t , and let F sh

t andM sh
t

be the viscous force and torque on ∂Bt determined by the boundary velocity field Wt.

The components of F sh
t andM sh

t are given, according to (4.6) and (4.7), by

(F sh
t )i = 〈σ[Wt]n, ei〉Bext

t
, (4.12a)

(M sh
t )i = 〈σ[Wt]n, ei×z〉Bext

t
. (4.12b)

Consider now the linear operatorA : R3 → M
3×3 that associates to every ω ∈ R

3 the only

skew-symmetric matrix A(ω) such that A(ω)z = ω×z; therefore, ω is the axial vector of

A(ω). Finally, we define a vector bt and a matrix Ωt according to

bt := HtF
sh
t +D⊤

t M
sh
t , Ωt := A(DtF

sh
t + LtM

sh
t ), (4.13)

which depend on st and, most importantly on ṡt , via (4.12) and the definition ofWt.

Theorem 4.3.1. Assume that the shape function t 7→ st satisfies (2.10), (2.11), and (2.16),

and that the position function t 7→ rt satisfies (2.9) and is Lipschitz continuous with

respect to time. Then the following conditions are equivalent:

(i) the deformation function t 7→ ϕt := rt ◦ st satisfies the equations of motion (4.9);

(ii) the functions t 7→ yt and t 7→ Rt satisfy the system

ẏt = Rtbt , Ṙt = RtΩt , for almost every t ∈ [0, T ], (4.14)

where bt and Ωt are defined in (4.13).

The proof is the same as in Theorem 3.2.1 and need not be modified, so we skip

it. Changing the variables according to y = rt(z), z ∈ Bext
t , the velocity field vt(z) :=

R⊤
t ut(rt(z)) is the solution to the problem





find vt ∈ X (Bext
t ) such that vt = Vt on ∂Bt ,

2

∫

Bext
t

Evt : Ew dz + α2

∫

Bext
t

vt · w dz = 0, for every w ∈ X0(B
ext
t ),

(4.15)
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where Vt(z) = R⊤
t Ut(rt(z)), see Fig. 3.1.

Denote by FBt,Vt and MBt,Vt the viscous force and torque on ∂Bt determined by the

velocity field vt according to (4.6) and (4.7), with Ω = Bext
t . A straightforward computa-

tion yields FBt,Vt = R⊤
t FAt,Ut and MBt,Vt = R⊤

t MAt,Ut , so that the equations of motion

(4.9) reduce to

FBt,Vt = 0 and MBt,Vt = 0 for almost every t ∈ [0, T ].

Again by a simple manipulation we obtain the following form of the equations of motion
[
ẏt

ωt

]
=

[
Rt 0

0 Rt

][
Ht D⊤

t

Dt Lt

][
F sh
t

M sh
t

]
for almost every t ∈ [0, T ],

which read, by means of (4.13), as (4.14).

Now, the standard theory of ordinary differential equations with possibly discontin-

uous coefficients [18] ensures that the Cauchy problem for (4.14) has one and only one

Lipschitz solution t 7→ Rt , t 7→ yt , provided that the functions t 7→ Ωt and t 7→ bt are

measurable and bounded. By (4.11) and (4.13), this happens when the functions

t 7→ Kt , t 7→ Ct , t 7→ Jt , t 7→ F sh
t , t 7→M sh

t (4.16)

are measurable and bounded. The continuity of the first three functions will be proved

in the last part of this section. The proof of the measurability and boundedness of

the last two functions in (4.16) requires some technical tools that will be developed in

Section 4.4.

Theorem 4.3.2. Let wt be the solution to the exterior Brinkman problem (4.2) on Bext
t

with boundary datum W on ∂Bt , where W can be either a constant vector a ∈ R
3 or the

rotationWω := ω×z, with ω ∈ R
3. Define w̃t to be the extension

w̃t :=

{
W on Bt ,

wt on Bext
t ,

(4.17)

Assume that t 7→ st satisfies (2.16). Then the map t 7→ w̃t is continuous from [0, T ] into

X (R3).

Proof. Let (tk)k ⊂ [0, T ] be a sequence that converges to t∞ ∈ [0, T ]. Lemma 3.2.2

ensures the convergence of the sets Btk to Bt∞ in the sense of (3.15).

Since wtk are solutions to Brinkman problems, we have the bound 2
∫
Bext

tk

|Ewtk |
2
dz+

α2
∫
Bext

tk

|wtk |
2
dz 6 C, which, in turn, implies that

2

∫

R3

|Ew̃tk |
2
dz + α2

∫

R3

|w̃tk |
2
dz 6 C.

Therefore, w̃t admits a subsequence that converges weakly to a function w∗ ∈ X (R3).

By the convergence of the Btk , it is easy to see that w∗ = W on Bt∞ . We now prove
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that w∗|Bext
t∞

solves the exterior Brinkman problem on Bt∞ . Too see it, consider a test

function ϕ ∈ C∞
c (Bext

t∞ ;R3). For k large enough, ϕ ∈ C∞
c (Bext

tk
;R3), so that

2

∫

sptϕ

Ewtk :Eϕdz + α2

∫

sptϕ

wtk · ϕdz = 0.

This equality passes to the limit as k → ∞, showing that w∗|Bext
t∞

is a solution to the

Brinkman problem at t∞ . Therefore, w∗ = w̃t∞ , and we have proved that t 7→ wt is

strongly continuous from [0, T ] into X (R3).

We can now prove the following continuity result for the elements of the grand resis-

tance matrix by means of Theorem 4.3.2.

Proposition 4.3.3. Assume that st satisfies (2.10), (2.11), and (2.16). Then the functions

t 7→ Kt , t 7→ Ct , t 7→ Jt , (4.18)

and consequently t 7→ Ht , t 7→ Dt , t 7→ Lt , are continuous.

Proof. Formulae (4.10) and (4.5) provide us with an explicit form for the elements of the

grand resistance matrix

(Kt)ij = 2

∫

Bext
t

Evjt :Ev
i
t dz + α2

∫

Bext
t

vjt · v
i
t dz, (4.19a)

(Ct)ij = 2

∫

Bext
t

Evjt :Ev̂
i
t dz + α2

∫

Bext
t

vjt · v̂
i
t dz, (4.19b)

(Jt)ij = 2

∫

Bext
t

Ev̂jt :Ev̂
i
t dz + α2

∫

Bext
t

v̂jt · v̂
i
t dz, (4.19c)

where vit and v̂
i
t are the functions defined in (4.17) with W = ei and W = ei×z, respec-

tively. We prove the result for Kt only, since the others are similar. We write

(Kt)ij = 2

∫

R3

Eṽjt :Eṽ
i
t dz + α2

∫

R3

ṽjt · ṽ
i
t dz − α2

∫

Bt

ej · ei dz,

where ṽit and ṽjt are the extensions considered in (4.17). By Theorem 4.3.2, the first

two integrals are continuous with respect to t. The continuity of the last integral is

guaranteed by Lemma 3.2.2.

The proof of the measurability and boundedness of t 7→ F sh
t and t 7→M sh

t is a delicate

issue. The difficulty arises from the fact that both the domains Bt and the boundary

data Wt = ṡt ◦ s
−1
t depend on time. Moreover, since it is meaningful and interesting to

consider boundary values Wt that might be discontinuous with respect to t, we cannot

expect the functions t 7→ F sh
t and t 7→M sh

t to be continuous.

To prove the measurability we start from an integral representation of F sh
t andM sh

t ,

similar to (4.19). As
∫
∂Bt

Wt · n dS is not necessarily zero, we will not be able to compute

integrals over the whole space R
3, so we will have to work in the complement of an open

ball Σ0
ε ⊂⊂ Bt . Since, in general, this inclusion holds only locally in time, we first fix
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t0 ∈ [0, T ] and z0 ∈ Bt0 and select δ > 0 and ε > 0 so that the open ball Σ0
ε := Σε(z

0) of

radius ε centered at z0 satisfies

Σ0
ε ⊂⊂ Bt , for all t ∈ Iδ(t0) := [0, T ] ∩ (t0 − δ, t0 + δ). (4.20)

This is possible thanks to the continuity properties of t 7→ st listed in the first part of

this section.

Next we consider the solution wt to the problem

min
{
‖w‖2X (Σ0,ext

ε ) : w ∈ X (Σ0,ext
ε ), w =Wt on ∂Bt , and w = λt(z − z0)/ε3 on ∂Σ0

ε

}

In order for the flux condition (4.3) to be fulfilled by wt on ∂Bt ∪ ∂Σ
0
ε , we choose

λt := −
1

4π

∫

∂Bt

Wt · n dS.

Finally, putting together (4.12) and (4.5), we obtain the following explicit integral

representation of F sh
t andM sh

t

(F sh
t )i = 2

∫

Σ0,ext
ε

Ewt :Ev
i
t dz + α2

∫

Σ0,ext
ε

wt · v
i
t dz − α2

∫

Qε,t

wt · v
i
t dz

(M sh
t )i = 2

∫

Σ0,ext
ε

Ewt :Ev̂
i
t dz + α2

∫

Σ0,ext
ε

wt · v̂
i
t dz − α2

∫

Qε,t

wt · v̂
i
t dz

where vit and v̂
i
t have been defined in the proof of Proposition 4.3.3 and Qε,t := Bt \ Σ

0
ε.

We deduce from Theorem 4.3.2 and Lemma 3.2.2 that the functions t 7→ vit and t 7→ v̂it

are continuous from Iδ(t0) into X (Σ0,ext
ε ). Therefore, the measurability and boundedness

of t 7→ F sh
t and t 7→ M sh

t will be proved once t 7→ wt is proved to be measurable. We first

show that t 7→ wt is measurable and bounded from Iδ(t0) into X (Σ0,ext
ε ) and eventually

we will prove that the function t 7→
∫
Qε,t

wt dz is continuous with respect to time. These

two results are proved in the next Section.

4.4 Extensions of boundary data and main result

In order to prove the main result, some work is still to be done to prove the regularity

property of the coefficients of the equations of motion (4.14). To this aim, results con-

cerning the extension of boundary data are needed to be able to use standard variational

techniques to solve the relevant minimum problem of Theorem 4.4.4. The following re-

sult is an adaptation of Proposition 3.3.3 to the Brinkman case.

Proposition 4.4.1 (Solenoidal extension operators). Assume that st satisfies (2.10),

(2.11), and (2.16), and let t0 ∈ [0, T ] and z0 ∈ Bt0 . Let δ > 0 and ε > 0 be such that

(4.20) holds true. Then there exists a uniformly bounded family (Tt)t∈Iδ(t0) of continuous

linear operators

Tt : H
1/2(∂A;R3) → X (Σρ \ Σ

0
ε)

such that
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(i) for all t ∈ Iδ(t0) and for all Φ ∈ H1/2(∂A;R3),

Tt(Φ) = Φ ◦ s−1
t on ∂Bt ,

Tt(Φ) = λt
z

|z|3
on ∂Σρ ,

(ii) for every Φ ∈ H1/2(∂A;R3) the map t 7→ Tt(Φ) is continuous from Iδ(t0) into X (Σρ \

Σ0
ε).

In particular, the following estimate holds

‖Tt(Φ)‖H1(Σρ\Σ0
ε;R

3) 6 C ‖Φ‖H1/2(∂A;R3) , (4.21)

where the constant C is independent of t and Φ.

Proposition 4.4.2. Assume that st satisfies (2.10), (2.11), (2.13), and (2.16). Let t0 ∈

[0, T ] and z0 ∈ Bt0 , and let Σ0
ε and Iδ(t0) be as in (4.20). Suppose, in addition, that

for every t ∈ Iδ(t0) there exists a C2 diffeomorphism Ψt0
t : Σρ → Σρ coinciding with the

identity on Σρ \ Σρ−1 , such that Ψt0
t = st0 ◦ s−1

t on Bt . Let the map t 7→ Φt belong to

C0(Iδ(t0);H
1/2(∂A;R3)) ∩ L∞(Iδ(t0); Lip(∂A;R

3)). Let wt be the solution to the problem

min
{
‖w‖2X (Σ0,ext

ε ) : X (Σ0,ext
ε ), w = Φt ◦ s

−1
t on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0

ε

}
,

(4.22)

where λt := − 1
4π

∫
∂Bt

(Φt ◦ s
−1
t ) · n dS. Then t 7→ wt belongs to C

0(Iδ(t0);X (Σ0,ext
ε )).

Proof. The proof can be easily adapted from that of Proposition 3.4.1. The following

important estimate provides a uniform bound for the norms of the wt’s in X (Σ0,ext
ε ) that

will also be useful in the proof of Proposition 4.4.3

2

∫

Σ0,ext
ε

|Ewtk |
2
dz + α2

∫

Σ0,ext
ε

|wtk |
2
dz 6 2

∫

Σ0,ext
ε

|Eψtk |
2
dz + α2

∫

Σ0,ext
ε

|ψtk |
2
dz

6 ‖ψtk‖
2
H1(Σρ\Σ0

ε;R
3) 6 C2(Lip(Φtk) + max |Φtk |)

2
6 (CM)2,

(4.23)

where ψt ∈ X (Σ0,ext
ε ) is defined by

ψt :=





Tt(Φt) in Σρ \ Σ
0
ε

λt
z

|z|
3 in Σext

ρ

and is the function provided by Proposition 4.4.1 and extended on Σext
ρ , C is the constant

in (4.21), and M > 0 is a uniform upper bound of Lip(Φtk) + max |Φtk |, whose existence

is guaranteed by the fact that t 7→ Φt belongs to L∞(Iδ(t0); Lip(∂A;R
3)).

Proposition 4.4.3. Under the hypotheses of Proposition 4.4.2, recalling that Qε,t =

Bt \ Σ
0
ε , the maps

t 7→

∫

Qε,t

wt dz, t 7→

∫

Qε,t

z×wt dz (4.24)

where t 7→ wt ∈ X (Σ0,ext
ε ) is the solution to the minimum problem (4.22) as in Proposition

4.4.2, are continuous with respect to time in Iδ(t0).
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Proof. We check the continuity with the definition
∣∣∣∣∣

∫

Qt+h

wt+h dz −

∫

Qt

wt dz

∣∣∣∣∣ =
∣∣∣∣∣

∫

Qt+h

(wt+h − wt) dz +

∫

Σ0,ext
ε

wt(χQt+h
(z)− χQt(z)) dz

∣∣∣∣∣

6

(∫

Σ0,ext
ε

|wt+h − wt|
2
dz

) 1
2

|Qt+h|
1
2 +

(∫

Σ0,ext
ε

|wt|
2
dz

) 1
2

|Qt+h△Qt|
1
2

6 ‖wt+h − wt‖X (Σ0,ext
ε ) |Qt+h|

1
2 + ‖wt‖X (Σ0,ext

ε ) |Qt+h△Qt|
1
2

6 |Σρ|
1
2 ‖wt+h − wt‖X (Σ0,ext

ε ) + CM |Qt+h△Qt|
1
2

h→0
−−−→ 0.

Here, χQ denotes the characteristic function of the set Q, △ is the symmetric difference

operator, and CM is the uniform (with respect to t) upper bound coming from (4.23).

The continuity for the second map is achieved in the same way.

Proposition 4.4.2 and Proposition 4.4.3 combined together give the continuity of t 7→

F sh
t and t 7→ M sh

t with respect to time, in the case of regular boundary data Φt ◦ s
−1
t on

∂Bt, where the map t 7→ Φt belongs to C0(Iδ(t0);H
1/2(∂A;R3)) ∩L∞(Iδ(t0); Lip(∂A;R

3)).

The next results will prove that when the boundary data on ∂Bt are given by ṡt ◦ s−1
t ,

then the maps t 7→ F sh
t and t 7→M sh

t are measurable and bounded.

Theorem 4.4.4. Assume that st satisfies (2.10), (2.11), (2.13), and (2.16). Let t0 ∈ [0, T ]

and z0 ∈ Bt0 , and let Σ0
ε and Iδ(t0) be as in (4.20). Suppose, in addition, that for every

t ∈ Iδ(t0) there exists a C
2 diffeomorphismΨt0

t : Σρ → Σρ coinciding with the identity on

Σρ \ Σρ−1 , such that Ψt0
t = st0 ◦ s

−1
t on Bt . Let wt be the solution to the problem

min
{
‖w‖

2
X (Σ0,ext

ε ) : w ∈ X (Σ0,ext
ε ), w = ṡt ◦ s

−1
t on ∂Bt , and w = λt(z − z0)/ε3 on ∂Σ0

ε

}
.

Then the function t 7→ wt is measurable and bounded from Iδ(t0) into X (Σ0,ext
ε ). More-

over, also the functions (4.24) considered in Proposition 4.4.3 are measurable and bounded

in Iδ(t0).

Proof. It suffices to convolve the boundary datum with a suitable regularizing kernel

and to apply Propositions 4.4.2 and 4.4.3. By passing to the limit, the continuity is lost

but the functions turn out to be measurable and bounded.

Proposition 4.3.3 and Theorem 4.4.4 give the regularity result for bt and Ωt in (4.13),

as stated in the following result.

Theorem 4.4.5. Assume that t 7→ st satisfies (2.10), (2.11), (2.13), and (2.16). Then the

vector bt and the matrix Ωt in (4.13) are bounded and measurable with respect to t. If, in

addition, the function t 7→ st belongs to C
1([0, T ];C1(A;R3)), then t 7→ (bt ,Ωt) belongs to

C0([0, T ];R3×M
3×3).

We are now in a position to state the existence, uniqueness, and regularity result for

the equations of motion (4.14).
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Theorem 4.4.6. Assume that t 7→ st satisfies (2.10), (2.11), (2.13), and (2.16). Let y∗ ∈ R
3

and R∗ ∈ SO(3). Then (4.14) has a unique absolutely continuous solution t 7→ (yt , Rt)

defined in [0, T ] with values in R
3×SO(3) such that y0 = y∗ and R0 = R∗. In other words,

there exists a unique rigid motion t 7→ rt(z) = yt+Rtz such that the deformation function

t 7→ ϕt = rt ◦ st satisfies the equations of motion (4.9).

Moreover this solution is Lipschitz continuous with respect to t. If, in addition, the

function t 7→ st belongs to C
1([0, T ];C1(A;R3)), then the solution t 7→ (yt , Rt) belongs to

C1([0, T ];R3×SO(3)).

The proof is the same as that of Theorem 3.4.4, so we skip it. The main effort was to

prove the measurability of the data.

4.5 Comments

In our model, we neglected the interactions between the solid particles and the swim-

mer, considering only the body-fluid phase viscous interaction. We think this is a rea-

sonable approximation for using a simple model such as the Brinkman equation. Also,

the mathematical model to describe the experiments in [22] is the same, and in that

case the elastic and adhesive interactions between the nematode and the surrounding

particles are neglected as well. Nevertheless, we think it can be interesting to develop

more complex models to take into account also that kind of contact forces, and that could

be the object of a future study.

Even though it has not been addressed in this work, we also expect our model to

be able to predict, on the basis of an energy comparison, whether swimming in a par-

ticulate medium is more efficient than swimming in a plain viscous fluid; that would

be an interesting theoretical check of the thesis advanced by Jung on the basis of his

experimental results that C. elegans swims more efficiently in a particulate medium.



CHAPTER5

Controllability of a mono-dimensional swimmer

In this chapter we draw our attention on the study of the motion of a mono-dimensional

swimmer immersed in an infinite viscous three-dimensional fluid. The viscous forces

and torques will be obtained from an approximate theory, and the equation of motion are

obtained. Theorem 5.2.1 states that the associated initial value problem has a unique

solution which depends with continuity on the initial data. Moreover, the controllability

of the swimmer is proved, as well as the existence of an optimal swimming strategy,

see Theorem 5.3.1. Also, the Euler equation relative to the constrained minimization

of the expended power functional is derived. Yet, for the time being, the result is still

partial, since the expression involved are rather complicated. We plan to address the

problem of a thorough study of the Euler equation in future work, in order to derive

some qualitative properties of the solutions. Nonetheless, the general structure of this

equation will be presented in Section 5.5.

5.1 Introduction

As we anticipated in the Introduction, dealing with mono-dimensional bodies immersed

in a three-dimensional fluid can be difficult: the dimensional gap does not allow to

write boundary conditions in a proper way. Usually, singular solutions are placed along

the mono-dimensional set, but these might be hard to be dealt with. Thus, two main

approximation techniques have been proposed to model this case, slender body theory

[6, 24] and resistive force theory [21]. We will adopt the second method to deal with the

modeling of a flagellum-like swimmer immersed in a three-dimensional fluid.

Using resistive force theory means to express the force and momentum per unit



54 5. Controllability of a mono-dimensional swimmer

length linearly with respect to the velocity. This means that the local tangential and

normal forces per unit length acting on the flagellum are proportional to the local tan-

gential and normal velocities of the flagellum, through the resistance coefficientsC‖ and

C⊥ [34]. Thus, if we let χ : [0, L]×[0, T ] → R
3 denote the position of the swimmer with

respect to an absolute external reference frame, the linear densities of viscous force and

torque are

f(s, t) = C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t),

m(s, t) = χ(s, t)×(C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t)).
(5.1)

Here, χ′ := ∂χ/∂s denotes the partial derivative with respect to the spatial variable

s, while χ̇ := ∂χ/∂t denotes the one with respect to time t; moreover, throughout

the whole chapter, we prefer to put the time variable t in evidence, instead of writ-

ing it as a subscript as in the preceding ones. The quantities χ̇‖ and χ̇⊥ are nothing

but the projection of the velocity χ̇ on the tangent and on the normal, respectively:

χ̇‖(s, t) = 〈χ̇(s, t), χ′(s, t)〉 and χ̇⊥(s, t) = 〈χ̇(s, t), Jχ′(s, t)〉, J =

[
0 −1

1 0

]
being the

rotation matrix of an angle π/2. Notice that, for the moment, we intend the partial

derivatives in the distributional sense, that is, given a generic χ ∈ L1
loc(0, T ;L

1(0, L)),

χ′ = ∂χ/∂s and χ̇ = ∂χ/∂t are the functions such that, for every ϕ ∈ C∞
c ([0, L]×[0, T ]),

∫ L

0

∫ T

0

χ′(s, t)ϕ(s, t) dsdt = −

∫ L

0

∫ T

0

χ(s, t)
∂ϕ(s, t)

∂s
dsdt,

∫ L

0

∫ T

0

χ̇(s, t)ϕ(s, t) dsdt = −

∫ L

0

∫ T

0

χ(s, t)
∂ϕ(s, t)

∂t
dsdt.

The self-propulsion constraint can be written as

0 = F (t) =

∫ L

0

f(s, t) ds =

∫ L

0

Kχ(s, t)χ̇(s, t) ds, (5.2a)

0 =M(t) =

∫ L

0

m(s, t) ds =

∫ L

0

χ(s, t)×Kχ(s, t)χ̇(s, t) ds, (5.2b)

where

Kχ(s, t) := C‖χ
′(s, t)⊗ χ′(s, t) + C⊥(Jχ

′(s, t))⊗ (Jχ′(s, t))

is the matrix expressing the linear relation between viscous force and velocity.

We conclude this section by introducing the function space to which our state func-

tions, as well as the shape functions that we will introduce later on, belong

Ξ := {χ : [0, L]×[0, T ] → R
2 : χ ∈ L∞(0, T ;H2(0, L)), χ̇ ∈ L2(0, T ;L2(0, L))}.

The space is endowed with the norm

‖χ‖Ξ := ess sup
06t6T

‖χ(·, t)‖H2(0,L) +

(∫ T

0

‖χ̇(·, t)‖2L2(0,L) dt

)1/2

,



5.2 Equations of motion 55

with respect to which it is complete.

We shall remark that the natural inclusion L∞(0, T ;H2(0, L)) ⊂ L2(0, T ;L2(0, L)) im-

plies that χ ∈ H1(0, T ;L2(0, L)), and thus that there exists a continuous representative

χ(·, t) such that

‖χ(·, t)‖H2(0,L) < +∞, for every t ∈ [0, T ].

Therefore, the map t 7→ χ(·, t) is continuous from [0, T ] into L2(0, L) with respect to the

strong topology.

Proposition 5.1.1. Let χ ∈ Ξ. Then the map

t 7→ χ(·, t) : [0, T ] → H2(0, L)

is globally bounded and continuous with respect to the weak topology of H2(0, L) and to

the strong topology of H1(0, L). Moreover, the map

t 7→ χ′(·, t) : [0, T ] → L2(0, L) (5.3)

is strongly continuous.

Proof. To prove the first claim, we will show that if χ is the continuous representative,

then there holds

‖χ(·, t)‖H2(0,L) 6M = ess sup
06t6T

‖χ(·, t)‖H2(0,L) +

(∫ T

0

‖χ̇(·, t)‖2L2(0,L) dt

)1/2

.

Let N denote the zero measure set up to which the essential supremum is actually a

supremum, and let us fix t0 ∈ [0, T ]. Consider a sequence tn /∈ N which converges to t0,

such that ‖χ(·, tn)‖H2(0,L) 6 M . Then, since χ(·, tn) → χ(·, t0) in L2(0, L), and since the

H2 norm is lower-semicontinuous with respect to the L2 convergence, this implies

‖χ(·, t0)‖H2(0,L) 6 lim inf
n→+∞

‖χ(·, tn)‖H2(0,L) 6M.

Notice that for the continuous representative the estimate holds for every t0 ∈ [0, T ],

and the essential supremum is actually a supremum.

The strong continuity in L2(0, L) implies the weak continuity in H2(0, L) which in

turn implies the strong continuity of t 7→ χ(·, t) : [0, t] → H1(0, L), since the the embed-

ding of H2(0, L) in H1(0, L) is compact.

This last property implies that (5.3) holds true.

5.2 Equations of motion

The general setting introduced in the preceding section is suitable when studying fully

three-dimensional motions. We restrict here to swimmer performing planar motions,

but still immersed in a three-dimensional fluid. Their position with respect to an ab-

solute reference system is given by the function χ : [0, L]×[0, T ] → R
2, such that the



56 5. Controllability of a mono-dimensional swimmer

spatial variable s is the arc-length coordinate. It follows that the tangent vector χ′(s, t)

must satisfy the constraint

|χ′(s, t)| ≡ 1, ∀ t ∈ [0, T ].

By means of a change of reference of the type (2.1), it is possible to separate the

rigid contribution of the motion from that coming from the deformation of the flagellum.

Indeed, by introducing the deformation function of the flagellum with respect to its own

reference system ξ : [0, L]×[0, T ] → R
2, we can write

χ(s, t) = x(t) +R(t)ξ(s, t), (5.4)

where x(t) can be regarded as the position of the barycenter of the flagellumwith respect

to the absolute reference system and R(t) is the rotation of angle θ(t) between the two

coordinate systems. It must be noted that a necessary and sufficient condition for x to

be the barycenter in the absolute reference is that

∫ L

0

ξ(s, t) ds = 0, ∀ t ∈ [0, T ]. (5.5)

Indeed, averaging (5.4) on [0, L] (5.5) yields

x(t) =
1

L

∫ L

0

χ(s, t) ds.

By the change of reference (5.4), it is possible to rephrase the self-propulsion con-

straint (5.2) and eventually obtain ordinary differential equations governing the time

evolution of x and θ. Those will be the equations of motion of the flagellum. By differen-

tiating (5.4) with respect to time, by noticing that Kχ(s, t) = R(t)Kξ(s, t)R
⊤(t), and by

plugging all the terms in (5.2), we obtain
(

F (t)

M(t)

)
=

[
R(t) 0

0 1

]{[
A(t) b(t)

b⊤(t) c(t)

][
R⊤(t) 0

0 1

](
ẋ(t)

θ̇(t)

)
+

(
F sh(t)

M sh(t)

)}
, (5.6)

where R(t) =

[
A(t) b(t)

b⊤(t) c(t)

]
is the grand resistance matrix of [19], whose entries are

given by

A(t) :=

∫ L

0

Kξ(s, t) ds, b(t) :=

∫ L

0

Kξ(s, t)ξ(s, t) ds, c(t) :=

∫ L

0

〈ξ(s, t),Kξ(s, t)ξ(s, t)〉ds,

and it is easy to see that they are ultimately determined by the shape of the flagellum

only. The terms

F sh(t) :=

∫ L

0

Kξ(s, t)ξ̇(s, t) ds, M sh(t) :=

∫ L

0

〈ξ(s, t),Kξ(s, t)ξ̇(s, t)〉ds, (5.7)

are the contributions to the force and torque due to the shape deformation of the flagel-

lum, and they also depend on the time derivative of ξ.
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By setting (5.6) equal to zero and solving for ẋ and θ̇, we finally obtain the equations

{
ẋ(t) = R(t)v(t),

θ̇(t) = ω(t),
(5.8)

where

v(t) := Ā(t)F sh(t) + b̄(t)M sh(t), ω(t) := b̄⊤(t)F sh(t) + c̄(t)M sh(t), (5.9)

and Ā(t), b̄(t), and c̄(t) are the block elements of−R−1(t). The structure of this system of

ordinary differential equations is the same as in (3.22) and (4.14). The following result

holds

Theorem 5.2.1. Let ξ ∈ Ξ. Then, given x0 ∈ R
2 and θ0 ∈ R, the equations of motion

(5.8) have a unique absolutely continuous solution t 7→ (x(t), θ(t)) defined in [0, T ] with

values in R
2×R such that x(0) = x0 and θ(0) = θ0. In other words, there exists a unique

rigid motion t 7→ r(t)(z) = x(t) + R(t)z such that the deformation function defined by

(5.4) satisfies the equations of motion (5.2).

Proof. The result easily follows from the classical theory of ordinary differential equa-

tions, see, e.g., [18]. Indeed, the coefficients b̄⊤ and c̄ are continuous function of t, since

they come from the inversion of the grand resistance matrix R, whose entries are con-

tinuous in t. On the contrary, F sh and M sh are only measurable functions of time. This

is enough to integrate the second equation in (5.8). By plugging the solution for θ into

the first equation and by an analogous argument on the coefficients Ā and b̄, also the

equation for x can be integrated.

Some notes on the matrix K and on the coefficients C‖ and C⊥ are in order. First, we

assume that 0 < C‖ < C⊥, secondly, we notice that the matrix Kχ (and therefore Kξ) is

symmetric and positive definite, and defines a scalar product in the space Ξ. Indeed, by

introducing the power expended during the motion

P(χ) :=

∫ T

0

∫ L

0

〈f(s, t), χ̇(s, t)〉dsdt, (5.10)

we obtain that χ̇ = 0 implies P(χ) = 0, and conversely that P(χ) = 0 implies χ̇ = 0, since

the resistance coefficients C‖ and C⊥ are non negative. This can be better observed if

we write the power density with respect to the reference given by the tangential and

normal components of the velocity. Then (5.10) reads

P(χ) =

∫ T

0

∫ L

0

[C‖χ̇
2
‖(s, t) + C⊥χ̇

2
⊥(s, t)] dsdt,

and the conclusion is immediate.

Moreover, it emerges from the proof of Theorem 5.2.1 that the matrices Kξ and Kχ

belong to the space C0([0, T ];L1(0, L)).
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Finally, the strict inequality assumption C‖ < C⊥ guarantees that translational mo-

tions are “achievable”. If we had C‖ = C⊥, then Kχ(s, t) would be a multiple of the

identity matrix and therefore, from (5.2a), we had

0 = F (t) = C‖

∫ L

0

χ̇(s, t) ds =
d

dt

(∫ L

0

χ(s, t) ds

)
= ẋ(t),

which is expressing that the barycenter does not move as time evolves. Notice that this

does not imply no motion at all; the above formula is telling us that whatever movement

is performed by the swimmer, it has no net effects on its displacement. Yet, a motion

which as an overall result has a rotation is achievable.

5.2.1 On the deformation function ξ

As of now, we are missing an important assumption of the shape function ξ, that will

be enjoyed by χ as well. We introduce the following external disks condition, which

prevents the flagellum from self-intersections. More precisely, what the condition states

is that two different points of the flagellum cannot be too close to each other.

External disks condition – (EDC) For every s ∈ [0, L] there exist open disks B1 , B2

of radius ρ > 0 such that B1 ∩ B2 = Ø, ξ(s, t) ∈ B1 ∩ B2 , and ξ(σ, t) /∈ B1 ∪ B2 for every

σ ∈ [0, L] and for every t ∈ [0, T ]. Moreover, there exist open half disks B−, B+ of radius

2ρ centered at ξ(0, t) and ξ(L, t), respectively, whose diameters are given by the segment

joining the centers of B1 and B2 at s = 0, L, and such that ξ(σ, t) /∈ B− ∪ B+ for every

σ ∈ [0, L] and for every t ∈ [0, T ].

An equivalent condition is the following. Consider ρ > 0 and define CL,ρ := [0, L] +

Bρ(0) the cigar-like set obtained by enlarging [0, L]. Call (s, y) the generic point of CL,ρ ,

with s ∈ (−ρ, L+ρ) and y being such that (s, y) ∈ CL,ρ . Define now a map ht : CL,ρ → R
2

by

ht(s, y) := ξ(s, t) + yJξ′(s, t).

Then it is easy to see that the following proposition holds.

Proposition 5.2.2. The map ht is injective if and only if the external disks condition

holds true.

Proof. Let us assume that the external disk condition holds, and let us consider two

points in CL,ρ , (s1, y1) 6= (s2, y2). From the external disks condition, there exist B1(s1)

and B2(s1) such that ξ(s2, t) /∈ B1(s1) ∪B2(s1). Notice that

|ht(s1, y1)− ht(s2, y2)| > lim
y→ρ

|ht(s1, y)− ht(s2, y)| > 0,

which implies that ht is injective.

Let us now assume that ht is injective, and consider (s1, ρ) 6= (s2, ρ). Let B1(s1)

and B2(s1) be the open balls centered at ξ(s1, t) + ρJξ′(s1, t) and ξ(s1, t) − ρJξ′(s1, t),
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respectively. From the injectivity it follows that |ξ(s1, t)± ρJξ′(s1, t), ξ(s2, t)| > 0, and

therefore the external disks condition is verified.

The condition at the extremal points s = 0, L can be easily verified to hold as well

and the lemma is proved.

We now prove a result stating that a bound on the angle ϑ0 formed by the tangent

with the x-axis implies the non self-intersection of the flagellum.

Lemma 5.2.3. Let ϑ0 ∈ C1([0, L]), and let |ϑ0| < π/4. Then, the non self-intersection

condition holds.

Proof. The C1 regularity implies that |ϑ′0| 6 κ̄ < +∞, which is a bound on the curvature

of the flagellum. Therefore, it is enough to take any ρ < ρ̄ := κ̄−1 and consider the map

h0 : CL,ρ → R
2 defined by h0(s, y) := ξ0(s) + yJξ′0(s), where ξ0 is defined by integration

ξ0(s) =

∫ s

0

(cosϑ0(σ), sin ϑ0(σ)) dσ. (5.11)

We will achieve the result by proving thatH is injective. Let (s1, y1) 6= (s2, y2). If s1 = s2 ,

then it must be |y1 − y2| > 0, and therefore |h0(s1, y1)− h0(s1, y2)| = |y1 − y2| > 0. If

s1 6= s2 , then again |h0(s1, y1)− h0(s2, y2)| > 0, because of the constraint on the radius

of the osculating circle. Injectivity follows and the lemma is proved.

The preceding lemmawill be useful in Section 5.4 to guarantee that the deformations

we construct to prove the controllability of the flagellum are good.

5.3 Optimal strokes

This section is divided into two parts. In the first one we prove Theorem 5.3.1 about

the existence of the optimal beating strategy. The result is achieved by proving that a

minimum problem for the power expended (5.10) has a solution. In the second part we

show how it is possible to recover the optimal stroke if, for instance, it is possible to act

on the curvature as a control.

5.3.1 Cost estimates

Let us recall the definition of power expended that we have already introduced in (5.10)

P(χ) :=

∫ L

0

∫ T

0

〈f(s, t), χ̇(s, t)〉dsdt =

∫ L

0

∫ T

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉dsdt. (5.12)

Up to a change of coordinates, it is possible to representKχ in diagonal form, where the

entries are C‖ and C⊥. Since C‖ < C⊥, it follows that

P(χ) > C‖

∫ L

0

∫ T

0

|χ̇(s, t)|
2
dsdt.
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Theorem 5.3.1. The minimum problem

min{P(χ) : χ ∈ Ξ, (5.2) and (EDC) hold, χ(·, 0) = χ0(·), χ(·, T ) = χT (·)}, (5.13)

where χ0 and χT are assigned states, has a solution.

Proof. Let us consider a minimizing sequence (χk)k ⊂ Ξ for P . Therefore,
∫ L

0

∫ T

0

|χ̇k(s, t)|
2 dsdt 6M < +∞, ∀ k.

Without loss of generality, we can assume that χk is parametrized by arc-length in s for

every k, so that |χ′
k(s, t)| ≡ 1, for all (s, t) ∈ [0, L]×[0, T ] and for all k. Notice that the

non self-intersection constraint gives a control on the second spatial derivative of χk .

In order to prove that (χk)k is uniformly bounded in Ξ, we are left with the estimation

of
∫ L

0

∫ T

0 |χk(s, t)|
2
dsdt.

We have that |χk(s, 0)| = |χ0(s)| for all s ∈ [0, L] is uniformly bounded above by some

constant C. Therefore, we can now estimate

|χk(s, t)|
2
6 |χk(s, 0)|

2 +

∫ T

0

|χ̇k(s, t)|
2 dt,

from which we easily get ∫ L

0

|χk(s, t)|
2 ds 6 C2L+M.

Thus,

sup
t∈[0,T ]

‖χk(·, t)‖
2
L2(0,L) 6 T (C2L+M),

which implies that χk ∈ L∞(0, T ;L2(0, L)). Therefore, (χk)k is uniformly bounded in Ξ,

and therefore it admits a subsequence, which we do not relabel, which converges to a

function χ. It is easy to see that the condition |χ′
k(s, t)| ≡ 1 passes to the limit, so that s

is the arc-length parameter for the limit χ. We have that

χk ⇀ χ in H1(0, T ;L2(0, L)), (5.14)

since we have proved that (χk)k is bounded in H1(0, T ;L2(0, L)); moreover, χ̇k ⇀ χ̇ in

L2(0, T ;L2(0, L)). Once we will have proved that the limit function χ satisfies the con-

straints in the minimum problem, we will have proved that it is the solution we were

looking for. The other following convergences hold true: χk → χ in L2(0, T ;L2(0, L)).

Moreover, notice that H1(0, T ;L2(0, L)) ⊂ C0(0, T ;L2(0, L)). Therefore, for every g ∈

L2(0, L), if we let evalt(f) := 〈f(t), g〉L2(0,L) , we have defined a continuous linear func-

tional on C0(0, T ;L2(0, L)). Now, evalt(χk) → evalt(χ), since 〈χk(·, t), g〉 → 〈χ(·, t), g〉 for

all g ∈ L2(0, L) by (5.14), and this means that

χk(·, t)⇀ χ(·, t) in L2(0, L), for all t ∈ [0, T ].

Recalling that ‖χ′′
k‖∞ is uniformly bounded for every k, we get by interpolation that also

‖χ′
k‖∞ is uniformly bounded. Therefore, (χk(·, t))k has a weak limit in H2(0, L), which
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must coincide with χ. It also follows that the first spatial derivatives converge strongly

in H1(0, L), so we can write

χk(·, t)⇀ χ(·, t) in H2(0, L); χk(·, t) → χ(·, t) in H1(0, L).

Finally, this last convergence implies that χk(·, t) → χ(·, t) in C0(0, L).

Let us verify that also the other constraints pass to the limit. The self-propulsion

constraint for χk reads, for the force,

0 = Fk(t) =

∫ L

0

Kχk
(s, t)χ̇k(s, t) ds.

The weak convergence of χ′
k to χ′ in H1(0, L) is indeed strong in L2(0, L) and therefore,

by dominated convergence, also Kχk
→ Kχ strongly in L2(0, T ;L2(0, L)). Let now ϕ be a

time dependent test function. We have

∫ T

0

ϕ(t)Fk(t) dt =

∫ T

0

∫ L

0

ϕ(t)Kχk
(s, t)χ̇k(s, t) dsdt→

∫ T

0

0 · ϕ(t) dt

as k → ∞ for all ϕ. Therefore, F (t) = 0 for almost every t ∈ [0, T ]. The analogous

result holds for the torqueM(t). It follows that χ is a minimizer for P in Ξ, as both the

conditions on the initial and final times and (EDC) pass to the limit easily.

The theorem just proved states the existence of an optimal strategy to connect two

different states of the flagellum, namely χ0 and χT . This strategy is the one that min-

imizes the power expended. The next subsection contains the instruction to recover

this stroke, while in Section 5.4 we will show explicitly how perform translations of a

straight flagellum along its axis and rotations around its center, thus showing that the

set in which we look for the minimum of the power functional P is not empty.

5.3.2 Recovering the stroke

We now see how it is possible to recover the optimal stroke of the flagellum once the

function χ which realizes the minimum of the power expended has been selected. We fix

ξ(0, t) = 0 and ξ′(0, t) = e1, and these choices will allow us to determine the translation

x and the rotation R. Indeed, observe that

χ(0, t) = x(t) +R(t)ξ(0, t) = x(t)

and

χ′(0, t) = R(t)ξ′(0, t) = R(t)e1,

from which we see that the rotation matrix is such that its columns are the tangent and

the normal vectors to χ(0, t):

R(t) = (χ′(0, t)|Jχ′(0, t)). (5.15)



62 5. Controllability of a mono-dimensional swimmer

Then, if the curvature function κ : [0, L]×[0, T ] → R is prescribed, it is possible to

reconstruct ξ via the angle it forms with the x-axis. Recall, in fact, that ξ′(s, t) =

(cosϑ(s, t), sinϑ(s, t)), as in (5.11), where

ϑ(s, t) =

∫ s

0

κ(s̄, t) ds̄. (5.16)

Using together (5.16) to reconstruct ξ and (5.15) allows us to recover, according to (5.4),

the function x(t) = χ(s, t)−R(t)ξ(s, t).

5.4 Controllability

In this Section we show that the flagellum is controllable, i.e., it is possible to prescribe

a deformation that brings it from a given state χ0 at time t = 0 into another given

state χT at time t = T . The main effort will be to show that it is possible to produce

motions to translate and rotate a straight flagellum. In addition, two homotopies will

transform the flagellum from the configurations χ0 and χT into a straight rod. Let

H0,HT : [0, L]×[0, 1] → R
2 be continuous functions such that

H0(s, 0) = χ0(s), H0(s, 1) = Σ0(s), HT (s, 0) = χT (s), HT (s, 1) = ΣT (s),

where Σ0 , ΣT are two segments of length L in R
2. To summarize, the whole control

process is organized as follows.

χ0
H0(·,t)
−−−−→ Σ0(·)

rotation, translation, rotation
−−−−−−−−−−−−−−−−−−→ ΣT (·)

HT (·,1−t)
−−−−−−→ χT (·).

For sake of simplicity of notations we decide to perform the “stretching” of the flag-

ellum from χ0 to Σ0 and the inverse operation from ΣT to χT in a time interval outside

that on which we focus for the translational and rotational motions; this is done essen-

tially for keeping notations a little lighter.

The functions H0 and HT exist and are unique, by virtue of Theorem 5.2.1, and are

obtained by solving the equations of motion whose boundary conditions are the initial

and final shapes, χ0 and Σ0, and χT and ΣT , respectively. The main point here is that

once we perform the stretching we know that the flagellum will turn into a straight

rod, but the computation of its potision and orientation is not immediate; one has to

let time evolve and see where are the final position and orientation of the rod. It must

be pointed out that, by fixing the initial and final shapes, final position and orientation

cannot be chosen freely. This is why we have to develop all the machinery for making

the rod translate and rotate to pass from Σ0 to ΣT .

Also notice that any intermediate state H0(s, t), HT (s, t), for t ∈ (0, 1), is such that

all the assumptions on the regularity of the shape χ, and in particular the non self-

intersection property, are respected.

Once the flagellum is in a straight configuration some bumps are formed and are

made slide along the flagellum itself, so that the perturbation they produce has the
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Figure 5.1: Sequence of the control process (the curved flagella might not be to scale).

effect of making it either advance along its axis or rotate around its center. We can

distinguish three phases of this motion, which takes place in the time span [0, T ]: the

transient of formation of the bumps [0, τ ], the translation of the bumps [τ, T − τ ], and

the transient of destruction of the bumps [T − τ, T ]. We will show that it is possible to

assign a function describing the angle that the flagellummakes with the positive x-axis,

which acts as a control, through which the three phases of the motion are described. Let

ϑ0 : I → R be such function. Here, I is an interval on the real line contained in [0, L],

which differs between the translation and rotation cases, and which will be specified in

due time. We require ϑ0 to be smooth and with compact support, and we extend it by

zero to the whole R. Let γ0 : [0, L] → R
2 be the reference configuration of the flagellum,

so that γ′0(s) = (cosϑ0(s), sinϑ0(s)). Roughly speaking, the bumps will be located in the

region where ϑ0 is different from zero.

Since our aim is to produce motion via the sliding of the bumps along the flagellum,

we consider a function γ : [0, L]×[0, T ] → R
2 which also takes into account the time

variable. To fix the ideas, let us assume that the bumps are sliding in the negative

direction of the x-axis with velocity c > 0; then we define γ(s, t) = γ0(s+ c(t− τ))− c(t−

τ)e1, to represent the translation phase of the bumps. Here time runs in the interval

[τ, T − τ ]: the bumps are completely formed and are moving. It is possible to take into

account the formation and destruction transient phases, by representing the function γ

via integration of its tangent vector

γ(s, t) =

∫ s

0

(cosϑ(s′, t), sinϑ(s′, t)) ds′, (s, t) ∈ [0, L]×[0, T ],

where the angle ϑ is defined, for every s ∈ [0, L], by

ϑ(s, t) =






t

τ
ϑ0

(
s− σ(τ)

l

)
, t ∈ [0, τ ],

ϑ0

(
s− σ(t)

l

)
, t ∈ [τ, T − τ ],

T − t

τ
ϑ0

(
s− σ(T − τ)

l

)
, t ∈ [T − τ, T ],

(5.17)
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where 0 < 4l < L is the length of the deformed part and σ(t) describes the position of

the center of the bumps at time t. The bound on l is necessary to avoid that the length

of the deformed portion exceeds the total length of the flagellum; the function σ will be

defined in two different ways, which we denote by σtransl and σrot , according to the type

of movement we are studying.

In order to make the computation easier and to have only translational movements

when we are translating the flagellum and rotational movements when we are rotating

it, some symmetry assumptions will be made from case to case, and of course, they will

be on the function ϑ0 which generates the bumps.

Before we proceed, we want to list and prove a number of preliminary results in Ra-

tional Mechanics that will allow us to simplify the forthcoming calculations by actually

proving that some quantities vanish.

Recall that the general form of the flagellum, as seen by an observer in the lab

reference, is given by the structure formula (5.4), which now reads

χ(s, t) = x(t) +R(t)γ(s, t);

we prefer to change notation here and in the remainder of this section from ξ to γ to

stress the fact that we are using a shape function we can manipulate. By plugging this

into formulae (5.1), we have the expressions of the density of force and moment

f(s, t) = C‖〈χ̇(s, t), χ
′(s, t)〉χ′(s, t) + C⊥〈χ̇(s, t), Jχ

′(s, t)〉Jχ′(s, t), (5.18a)

m(s, t) = χ(s, t)×f(s, t) = C‖〈χ̇(s, t), χ
′(s, t)〉〈Jχ(s, t), χ′(s, t)〉 (5.18b)

+C⊥〈χ̇(s, t), Jχ
′(s, t)〉〈χ(s, t), χ′(s, t)〉,

which will be written more specifically later on according to the motion we will be study-

ing.

The following lemma contains a well known result about the integration of even

functions. The analogous result for odd functions is a triviality.

Lemma 5.4.1. Let f : [a, b] → R be a symmetric function with respect to the middle

point c := (a + b)/2 of [a, b], that is f(x) = f(2c− x). Then, the integral function F (x) :=
∫ x

c f(s) ds is antisymmetric in [a, b] with respect to c, that is F (x) = −F (2c− x).

Proof. The proof is a simple calculation

F (2c− x) =

∫ 2c−x

c

f(s) ds = −

∫ x

c

f(2c− s) ds = −

∫ x

c

f(s) ds = −F (x).

5.4.1 Translation

Now we deal with the case of translations. We will specify the choices for the interval I,

the form of σ = σtransl, and the symmetry assumption on the angle function ϑ0 . Let us
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consider a smooth function with compact support ϑ0 : I = [−2, 2] → R such that

ϑ0 is odd: ϑ0(−σ) = −ϑ0(σ), for all σ ∈ [−2, 2]; (5.19a)

ϑ0(2− σ) = ϑ0(σ), for all σ ∈ [0, 2]; the function is even in [0, 2] and in [−2, 0]; (5.19b)

ϑ0(1− σ) = −ϑ0(σ), for all σ ∈ [0, 1]; the function is odd in [0, 1]; (5.19c)

ϑ0(2) = 0, in order to be oriented, at the extrema σ = ±2 as in σ = 0; (5.19d)

From these assumptions, in particular from (5.19d), it also follows that

∫ 1

0

sinϑ0(σ) dσ =

∫ 2

0

sinϑ0(σ) dσ = 0.

An example of a flagellum whose function ϑ0 enjoys the properties listed above is

illustrated in Figure 5.2.

Figure 5.2: Bumps on a flagellum

When dealing with translations, we need to define σtransl(t) := L−2l−c(t−τ). Notice

that given the time interval subdivision we assumed in formula (5.17), the transient

time τ and the bumps velocity c are not independent. The value of c is chosen so that

σ(τ) = L− 2l and σ(T − τ) = 2l. Therefore c = (L− 4l)/(T − 2τ).

We will show that the symmetry assumptions we made on the function ϑ0 prevent

our flagellum from rotating both when the bumps form and disappear and when they

move along the flagellum. For the moment we take it for granted.

The absence of rotation allows us to fix R(t) = I for every t ∈ [0, T ]. Moreover, the

vertical component of the total viscous force vanishes by the symmetry assumptions

(5.19a)-(5.19c), so we can infer that x2(t) = 0. Notice also that in principle ẋ(t) can

depend on l; to keep notations lighter, we will stress the dependance on l when needed.

Plugging these information in (5.18a), we get

f(s, t) = C‖〈(ẋ1(t; l), 0) + γ̇(s, t), γ′(s, t)〉γ′(s, t)+

C⊥〈(ẋ1(t; l), 0) + γ̇(s, t), Jγ′(s, t)〉Jγ′(s, t),
(5.20)

where ẋ1(t; l) is the unknown global translational velocity along the x-axis. We can

expect that ẋ1(t; l) will have different expressions in the different phases of the transla-

tional motion. At the end of one stroke, the distance along the x-axis that the flagellum

will have covered is given by

∆x1(l) =

∫ T

0

ẋ1(t; l) dt =

∫ τ

0

ẋ1,form(t; l) dt+

∫ T−τ

τ

ẋ1,transl(t; l) dt+

∫ T

T−τ

ẋ1,destr(t; l) dt.
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Recall, from (5.17), that for t ∈ [T − τ, T ] the prefactor in front of ϑ0 in the expression for

the angle ϑ is (T − t)/τ , therefore, a change of variables t → T − t in the third integral

above allows us to rewrite the formula as

∆x1(l) = 2

∫ τ

0

ẋ1,form(t
′l) dt+ (L− 4l)a(l),

where it has also been used, as it will emerge from the expression the translational ve-

locity, that ẋ1,transl does not depend on time, and the expression of c has been employed.

The value of a(l) will be derived in (5.21).

Figure 5.3: Configuration of the flagellum for the translation at t ∈ (0, τ).

Figure 5.4: Configuration of the flagellum for the translation at t ∈ (τ, T − τ).

Figure 5.5: Configuration of the flagellum for the translation at t ∈ (T − τ, T ).

Let us now focus on the time interval [τ, T − τ ] and make the bumps translate to the

left with velocity c, as illustrated in Fig. 5.4. From (5.20), we can compute the expression

of the total viscous force

Ftransl(t) =

∫ L

0

f(s, t) ds =

∫ L−4l

0

[C‖〈(ẋ1,transl(t), 0), (1, 0)〉(1, 0)+

C⊥〈(ẋ1,transl(t), 0), (0, 1)〉(0, 1)] ds

+

∫ σ(t)+2l

σ(t)−2l

[C‖〈(ẋ1,transl(t), 0) + γ̇(s, t), γ′(s, t)〉γ′(s, t)+

C⊥〈(ẋ1,transl(t), 0) + γ̇(s, t), Jγ′(s, t)〉Jγ′(s, t)] ds

=:F
(1)
transl(t) + F

(2)
transl(t).

It is easy to see that F (1)
transl(t) = ((L−4l)C‖ẋ1,transl(t; l), 0), while, upon changing variables
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σ = (s− σ(t))/l, we get

F
(2)
transl(t) =lẋ1,transl(t; l)

∫ 2

−2

(
C‖ cos

2 ϑ0(σ) + C⊥ sin2 ϑ0(σ)

0

)
dσ

+ C‖lc

∫ 2

−2

〈(
cosϑ0(σ) − 1

sinϑ0(σ)

)
,

(
cosϑ0(σ)

sinϑ0(σ)

)〉(
cosϑ0(σ)

sinϑ0(σ)

)
dσ

+ C⊥lc

∫ 2

−2

〈(
cosϑ0(σ)− 1

sinϑ0(σ)

)
,

(
− sinϑ0(σ)

cosϑ0(σ)

)〉(
− sinϑ0(σ)

cosϑ0(σ)

)
dσ,

from which it is also possible to see that the second component vanishes, by symmetry

and by Lemma 5.4.1. Gluing all together and solving Ftransl(t) = 0 for ẋ1,transl(t; l), we

get

ẋ1,transl(l) = c

l

∫ 2

−2

[C‖(cos
2 ϑ0(σ) − cosϑ0(σ)) + C⊥ sin2 ϑ0(σ)] dσ

C‖(L − 4l) + l

∫ 2

−2

[C‖ cos
2 ϑ0(σ) + C⊥ sin2 ϑ0(σ)] dσ

=: ca(l). (5.21)

We notice, as we announced before, that the velocity ẋ1,transl is constant, does not

depend on time, and is linear with respect to the velocity c of the bumps. Moreover,

since C⊥ > C‖, a(l) is always positive, so there is actually a positive net advancement,

regardless the swimming strategy. Nonetheless, this becomes important as soon as we

want to optimize the distance covered during one stroke. Also observe that the function

a is continuous with respect to l and a(0) = 0.

In order to verify that the moment of the forces vanishes, we will exploit the symme-

tries of the angle function ϑ0 and will apply Lemma 5.4.1. We will compute the moments

with respect to xtransl(t), since in this way computations are a bit easier. Moreover, we

will assume that R(t) = I and ω(t) = 0 for all t. This guess will turn out to be correct

if we actually prove that M(t) = 0, by means of the uniqueness of the solution to the

equations of motion. The moment density (5.18b) reads then

mtransl(s, t) = (χ(s, t)− xtransl(t))×f(s, t)

= C‖〈ẋtransl(t) + γ̇(s, t), γ′(s, t)〉〈Jγ(s, t), γ′(s, t)〉+

C⊥〈ẋtransl(t) + γ̇(s, t), Jγ′(s, t)〉〈γ(s, t), γ′(s, t)〉,

and therefore, exploiting that ẋ2,transl(t) vanishes, the total moment is given by

Mtransl(t) =

∫ L

0

mtransl(s, t) ds

=

∫ σ(t)+2l

σ(t)−2l

[C‖〈ẋtransl(t) + γ̇(s, t), γ′(s, t)〉〈Jγ(s, t), γ′(s, t)〉+

C⊥〈ẋtransl(t) + γ̇(s, t), Jγ′(s, t)〉〈γ(s, t), γ′(s, t)〉] ds
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which vanishes due to the symmetries of ϑ0. The computation can be developed by

writing all the terms explicitly and exploiting Lemma 5.4.1. This proves a posteriori

that our choice R(t) = I and ω(t) = 0 for all t ∈ [0, T ], was correct.

5.4.2 Translation transients

Let us now focus on the time interval [0, τ ] to study the formation transient; see Figs. 5.3

and 5.5 for the formation and the destruction transients, respectively. Starting from a

straight flagellum at time t = 0 we will obtain a flagellum with the bumps located at the

tail after the transient time t = τ . According to (5.17) the tangent, the flagellum shape,

and the velocity functions are described by

γ′(s, t) =

(
cos

(
t

τ
ϑ0

(
s′ − σ(τ)

l

))
, sin

(
t

τ
ϑ0

(
s′ − σ(τ)

l

)))
, (5.22)

γ(s, t) =

∫ s

0

(
cos

(
t

τ
ϑ0

(
s′ − σ(τ)

l

))
, sin

(
t

τ
ϑ0

(
s′ − σ(τ)

l

)))
ds′,

γ̇(s, t) =
1

τ

∫ s

0

(
− sin

(
t

τ
ϑ0

(
s′ − σ(τ)

l

))
, cos

(
t

τ
ϑ0

(
s′ − σ(τ)

l

)))
ϑ0

(
s′ − σ(τ)

l

)
ds′.

Here, the computations are formally the same as for the case t ∈ [τ, T − τ ], but in this

case the velocity cannot be easily integrated. Notice that, for s ∈ [0, L − 4l] we have

γ′(s, t) = (1, 0), γ(s, t) = (s, 0), and γ̇(s, t) = (0, 0), while for s ∈ [L − 4l, L] we have γ′ as

in (5.22),

γ(s, t) = (L− 4l, 0) + l

∫ (s−σ(τ))/l

−2

(
cos

(
t

τ
ϑ0(σ)

)
, sin

(
t

τ
ϑ0(σ)

))
dσ,

γ̇(s, t) =
l

τ

∫ (s−σ(τ))/l

−2

(
− sin

(
t

τ
ϑ0(σ)

)
, cos

(
t

τ
ϑ0(σ)

))
ϑ0(σ) dσ,

after the change of variables σ = (s′ − σ(τ))/l. If one develops the computations, then

the final result for the velocity will be

ẋ1,form(t; l) =
−
l2

τ
(C‖F

(1)
form(t) + C⊥F

(2)
form(t))

C‖(L − 4l) + l

∫ 2

−2

[
C‖ cos

2

(
t

τ
ϑ0(σ)

)
+ C⊥ sin2

(
t

τ
ϑ0(σ)

)]
dσ

,

where

F
(1)
form(t) =

∫ 2

−2

〈∫ σ

−2

(
− sin(tϑ0(σ

′)/τ)

cos(tϑ0(σ
′)/τ)

)
ϑ0(σ

′) dσ′,

(
cos(tϑ0(σ

′)/τ)

sin(tϑ0(σ
′)/τ)

)〉
·

· cos

(
t

τ
ϑ0(σ)

)
dσ,

F
(2)
form(t) =

∫ 2

−2

〈∫ σ

−2

(
sin(tϑ0(σ

′)/τ)

− cos(tϑ0(σ
′)/τ)

)
ϑ0(σ

′) dσ′,

(
− sin(tϑ0(σ

′)/τ)

cos(tϑ0(σ
′)/τ)

)〉
·

· sin

(
t

τ
ϑ0(σ)

)
dσ,
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Notice that in this case, by setting σ(t) = σ(τ) = L− 2l, there is no influence of c on

ẋ1,form, as one could reasonably expect since the bumps are forming and not translating.

The same thing happens for the destruction transient, where σ(t) = σ(T − τ) = L− 2l−

c(T − 2τ) = 2l.

It is interesting to notice the presence of the factor 1/τ in the expression of ẋ1,form,

which somehow compensates the duration of the transient. It is noteworthy that ∆x1
depends in an essential way on l, which is the size of the portion of flagellum where

the deformation takes place: from the expressions of the velocities, it is evident that

if no perturbation occurs, then no net displacement is achieved, and also that the dis-

placement is a continuous function of the parameter l. Therefore, once l is fixed, the

maximum displacement obtainable is given by

∆x1(l) = 2

∫ τ

0

ẋ1,form(t; l) dt+ (L− 4l)a(l).

Now, if a certain distance ∆x̄ is assigned to cover, the flagellum can perform the swim-

ming strategy as follows. There exists an integer k > 0 such that ∆x̄ = k∆x1(l) + δx1,

where δx1 < ∆x1(l). By the continuity properties of ∆x1 as a function of l, there will ex-

ist a value l∗ such that δx1 = ∆x1(l
∗). Therefore, it is enough to divide the time interval

[0, T ] in k + 1 subintervals, k of which of size ∆x1(l)/∆x̄, and the last one of size δx1/∆x̄

and swim accordingly. This is necessary since, of course, ∆x1(l) cannot exceed the total

length L of the flagellum, and it is possible since the motion is rate independent.

5.4.3 Rotation

In the case of the rotation, we will show that it is possible to make a straight rod rotate

around its center, by means of two bumps analogous to those for the translation case

are used. This time, their configuration is as shown in Figure 5.7, and both bumps move

towards either the center or the ends of the rod in order to achieve either a counterclock-

wise or a clockwise rotation, respectively. Also in this case some symmetry argument

can be carried out to simplify the computations. First of all, it is more convenient to

let the arclength parameter s run in [−L/2, L/2]. It is easy to see that the total force is

zero, since the position function of such a configuration enjoys the symmetry property

γ(s, t) = −γ(−s, t), for −L/2 6 s 6 0. Therefore,

γ′(s, t) = γ′(−s, t), γ̇(s, t) = −γ̇(−s, t), for −L/2 6 s 6 0.

This implies that the density of force (5.18a) is an odd function in the variable s, so that

F (t) =
∫ L/2

−L/2 f(s, t) ds = 0 for all t ∈ [0, T ].

In this case, let ϑ0 : [−1/2, 1/2]→ R still describe the structure of the bump we want

to form, and let ϑ(s, t) denote the angle of the tangent γ′ to the curve with the positive
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Figure 5.6: Configuration of the flagellum for the rotation at time t ∈ (0, τ).

Figure 5.7: Configuration of the flagellum for the rotation at time t ∈ (τ, T − τ).

Figure 5.8: Configuration of the flagellum for the rotation at time t ∈ (T − τ, T ).

x-axis; we extend ϑ0 by zero outside its support and make the following assumptions

ϑ0(−σ) = −ϑ0(σ), for all σ ∈ [−1/2, 1/2],

ϑ0(σ) > 0 for 0 < σ < l/2,

ϑ0(σ) ∈ (π/4, π/4), for all σ ∈ [−1/2, 1/2].

and therefore the real angle will be given again by formula (5.17), where this time

σ(t) = σrot(t) = L/2− l/2− c(t− τ) and c is chosen here so that σrot(τ) = L/2− l/2 and

σrot(T − τ) = l/2, that is c = (L − 2l)/2(T − 2τ). To be precise, we should distinguish

the right bump from the left one. Two different expressions for σ(t) would be needed,

but given the symmetry of the configuration, it is enough to restrict our attention only

to one bump, and we choose the one on the right.

Notice that with the symmetry assumption we have made, the term we called b(t) in

the grand resistance matrix R(t) and the term F sh(t) defined in (5.7) vanish. Therefore,

the equations of motion (5.8) read ẋ(t) = 0, θ̇(t) = ω(t) = c̄(t)M sh(t). This implies that

there is no net translation of the flagellum, therefore we can neglect x(t).

Since we have proved that the total viscous force vanishes, let us concentrate on

the moment. To this end, recall that χ(s, t) = R(t)γ(s, t), χ′(s, t) = R(t)γ′(s, t), and

χ̇(s, t) = ω(t)R(t)Jγ(t) + R(t)γ̇(s, t), ω(t) being the angular velocity. The density of force
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(5.18a) is given by

f(s, t) = C‖〈χ̇(s, t), χ
′(s, t)〉χ′(s, t) + C⊥〈χ̇(s, t), Jχ

′(s, t)〉Jχ′(s, t)

= C‖〈ω(t)Jγ(s, t) + γ̇(s, t), γ′(s, t)〉R(t)γ′(s, t)+

C⊥〈ω(t)Jγ(s, t) + γ̇(s, t), Jγ′(s, t)〉R(t)Jγ′(s, t),

and therefore the moment density (5.18b) is

m(s, t) = γ(s, t)×(C‖〈ω(t)Jγ(s, t) + γ̇(s, t), γ′(s, t)〉γ′(s, t)

+ C⊥〈ω(t)Jγ(s, t) + γ̇(s, t), Jγ′(s, t)〉Jγ′(s, t))

= γ(s, t)×(C‖〈γ̇(s, t), γ
′(s, t)〉γ′(s, t) + C⊥〈γ̇(s, t), Jγ

′(s, t)〉Jγ′(s, t))

+ ω(t)γ(s, t)×(C‖〈Jγ(s, t), γ
′(s, t)〉γ′(s, t) + C⊥〈γ(s, t), γ

′(s, t)〉Jγ′(s, t))

= C‖〈γ̇(s, t), γ
′(s, t)〉〈Jγ(s, t), γ′(s, t)〉+ C⊥〈γ̇(s, t), Jγ

′(s, t)〉〈γ(s, t), γ′(s, t)〉

+ ω(t)[C‖〈Jγ(s, t), γ
′(s, t)〉2 + C⊥〈γ(s, t), γ

′(s, t)〉2],

(5.23)

where we separated the contributions depending on ω(t). Now observe that the center

of the bump is located in σ(t) = L/2 − l/2 − c(t − τ), and that the position γ(s, t) also

intervenes in the computations. The computation of the total moment of the forces can

be split into three parts, according to

M(t; l) =

∫ σ(t)−l/2

0

m(s, t) ds+

∫ σ(t)+l/2

σ(t)−l/2

m(s, t) ds+

∫ L/2

σ(t)+l/2

m(s, t) ds

=:M̃1(t; l) + M̃2(t; l) + M̃3(t; l).

(5.24)

For s ∈ [0, σ(t) − l/2], we have ϑ0 = 0, and so γ′(s, t) = (1, 0), γ(s, t) = (s, 0), and γ̇(s, t) =

(0, 0). Thus,

m(s, t) = ωrot(t; l)[C‖〈Jγ(s, t), γ
′(s, t)〉2 + C⊥〈γ(s, t), γ

′(s, t)〉2] = ωrot(t; l)C⊥s
2,

which implies that

M̃1(t; l) = ωrot(t; l)M1(t; l) =
ωrot(t; l)C⊥

3

(
L

2
− l − c(t− τ)

)3

.

Similarly, for s ∈ [σ(t) + l/2, L/2], we have

γ(s, t) =γ(σ(t) + l/2, t) +

∫ s

σ(t)+l/2

(
1

0

)
ds′

=

(
σ(t) − l/2

0

)
+

∫ σ(t)+l/2

σ(t)−l/2

(
cosϑ0(4(s− σ(t))/l)

sinϑ0(4(s− σ(t))/l)

)
ds+

(
s− σ(t) − l/2

0

)

=

(
s− l

0

)
+ l

( ∫ 1/2

−1/2 cosϑ0(σ) dσ

0

)
=:

(
s− l + lCϑ0

(τ)

0

)
,

where

Cϑ0
(t) := 2

∫ 1/2

0

cos

(
t

τ
ϑ0(σ)

)
dσ. (5.25)
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Therefore,

M̃3(t; l) =ωrot(t; l)M3(t; l) = ωrot(t; l)C⊥

∫ L/2

σ(t)+l/2

(s− l + lCϑ0
(τ))2ds

=
ωrot(t; l)C⊥

3

[(
L

2
− l + lCϑ0

(τ)

)3

−

(
L

2
− l − c(t− τ) + lCϑ0

(τ)

)3
]
.

The calculations for M̃2(t; l) are slightly more cumbersome. In this case, s ∈ [σ(t) −

l/2, σ(t) + l/2], and so

γ(s, t) =

(
σ(t) − l/2

0

)
+ l

∫ (s−σ(t))/l

−1/2

(
cosϑ0(σ)

sinϑ0(σ)

)
dσ,

and the velocity reads

γ̇(s, t) =

(
−c

0

)
+ c

(
cosϑ0((s− σ(t))/l)

sinϑ0((s− σ(t))/l)

)
.

Consider the summands in the last line of (5.23) separately. Therefore, the contributions

to the total moment M̃2(t; l) = cl2M
(1)
2 + ωrot(t; l)M

(2)
2 (t; l) are

cl2M
(1)
2 = C‖cl

∫ 1/2

−1/2

[1− cosϑ0(σ)]
[(
σ(t)−

l

2

)
sinϑ0(σ)

+ l
[
sinϑ0(σ)

∫ σ

−1/2

cosϑ0(σ
′) dσ′ − cosϑ0(σ)

∫ σ

−1/2

sinϑ0(σ
′) dσ′

]]
dσ

+ C⊥cl

∫ 1/2

−1/2

sinϑ0(σ)
[(
σ(t) −

l

2

)
cosϑ0(σ) + l

[
sinϑ0(σ)·

·

∫ σ

−1/2

sinϑ0(σ
′) dσ′ + cosϑ0(σ)

∫ σ

−1/2

cosϑ0(σ
′) dσ′

]]
dσ

= 2C‖cl
2

∫ 1/2

0

[1− cosϑ0(σ)]
[ ∫ σ

−1/2

sin(ϑ0(σ)− ϑ0(σ
′)) dσ′

]
dσ

+ 2C⊥cl
2

∫ 1/2

0

sinϑ0(σ)
[ ∫ σ

−1/2

cos(ϑ0(σ)− ϑ0(σ
′)) dσ′

]
dσ

=: 2cl2(C‖I1 + C⊥I2),

where the odd terms have been dropped.
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M
(2)
2 (t; l) = C‖l

∫ 1/2

−1/2

[(
σ(t) −

l

2

)
sinϑ0(σ) + l

[
sinϑ0(σ)

∫ σ

−1/2

cosϑ0(σ
′) dσ′

− cosϑ0(σ)

∫ σ

−1/2

sinϑ0(σ
′) dσ′

]]2
dσ

+ C⊥l

∫ 1/2

−1/2

[(
σ(t) −

l

2

)
cosϑ0(σ) + l

[
sinϑ0(σ)

∫ σ

−1/2

sinϑ0(σ
′) dσ′

+ cosϑ0(σ)

∫ σ

−1/2

cosϑ0(σ
′) dσ′

]]2
dσ

= C‖l

∫ 1/2

−1/2

[(
σ(t) −

l

2

)
sinϑ0(σ) + l

∫ σ

−1/2

sin(ϑ0(σ) − ϑ0(σ
′)) dσ′

]2
dσ

+ C⊥l

∫ 1/2

−1/2

[(
σ(t) −

l

2

)
cosϑ0(σ) + l

∫ σ

−1/2

cos(ϑ0(σ)− ϑ0(σ
′)) dσ′

]2
dσ.

Recall that solving the equation of motion for the rotation is equivalent to setting (5.24)

equal to zero. This, from (5.24) , gives the value for ωrot(t; l)

ωrot(t; l) = −4
cl2M

(1)
2

M1(t; l) +M
(2)
2 (t; l) +M3(t; l)

, (5.26)

where the extra factor 2 takes into account the left bump. First, notice that the numer-

ator has a sign. In fact, from the assumptions on ϑ0, it is easy to see that I2 > 0, while

to prove that also I1 > 0 we argue as follows. We divide the domain of integration of the

inner integral in I1 in three parts [−1/2, σ] = [−1/2,−σ]∪ [−σ, 0]∪ [0, σ] and perform the

change of variable in the first two integrals σ′ → −σ′; therefore we have

∫ σ

−1/2

sin(ϑ0(σ)− ϑ0(σ
′)) dσ′ =

∫ 1/2

σ

sin(ϑ0(σ) + ϑ0(σ
′)) dσ′ + 2

∫ σ

0

sinϑ0(σ) cosϑ0(σ
′) dσ′,

which is easily seen to be a positive number. Since 1 − cosϑ0(σ) > 0 in [0, 1/2], we

conclude that I2 > 0, which eventually yieldsM (1)
2 > 0.

It is interesting to point out the dependencies of ω on c and l. A closer look at the

various functions that enter in the expression of ω allows us to write

ωrot(t; l) = −4cl2
M

(1)
2

Md
rot(t; l)

,

whereMd
rot(t; l) :=M1(t; l)+M

(2)
2 (t; l)+M3(t; l) is a polynomial whose degree in l is three

and in t is two, and whose constant term is L3/3. From this we see that if l = 0, then

no motion occurs, as it is reasonable to expect since there is no deformation. Moreover,

Md
rot(t; l) is bounded away from zero as t varies. A straightforward calculation shows

that d
dtM

(2)
2 (t; l) > 0 in the interval [τ, T − τ ], thereforeM (2)

2 (t; l) ∈ [M
(2)
2 (τ ; l),M

(2)
2 (T −

τ ; l)] and the left extremum is larger than zero. An analogous calculation shows that also

M1+M3 is increasing in [τ, T−τ ], thereforeM1(t; l)+M3(t; l) ∈ [M1(τ ; l)+M3(τ ; l),M1(T−

τ ; l) +M3(T − τ ; l)]. It follows that Md
rot(t; l) > Md

rot(τ ; l) > (L/2 − l)3. Also, Md
rot(t; l) <
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Md
rot(T − τ ; l). The monotonicity ofMd

rot with respect to time implies that of ωrot , which

turns out to be decreasing in [τ, T − τ ]. This is also reasonable, since, as t approaches

T − τ the perturbation is closer to the center of the flagellum and therefore the moment

arm is shorter, yielding a lesser moment.

5.4.4 Rotation formation transient

The contribution to the rotation due to the bumps formation transient (see Fig. 5.6)

is computed via a very similar analysis as before, but now the following expressions

hold. For s ∈ [0, L/2 − l], γ′(s, t) = (1, 0), γ(s, t) = (s, 0), and γ̇(s, t) = (0, 0), while for

s ∈ [L/2− l, L/2]

γ′(s, t) =

(
cos

(
t

τ
ϑ0

(
s− σ(τ)

l

))
, sin

(
t

τ
ϑ0

(
s− σ(τ)

l

)))
,

γ(s, t) =

(
L

2
− l, 0

)
+ l

∫ (s−σ(τ))/l

−1/2

(
cos

(
t

τ
ϑ0(σ)

)
, sin

(
t

τ
ϑ0(σ)

))
dσ,

γ̇(s, t) =
l

τ

∫ (s−σ(τ))/l

−1/2

(
− sin

(
t

τ
ϑ0(σ)

)
, cos

(
t

τ
ϑ0(σ)

))
ϑ0(σ) dσ.

Recalling (5.23), we can write

Mform(t; l) =

∫ L/2

0

m(s, t) ds =

∫ L/2−l

0

m(s, t) ds+

∫ L/2

L/2−l

m(s, t) ds

= ωform(t; l)

∫ L/2−l

0

[C‖〈Jγ(s, t), γ
′(s, t)〉2 + C⊥〈γ(s, t), γ

′(s, t)〉] ds

+ ωform(t; l)

∫ L/2

L/2−l

[C‖〈Jγ(s, t), γ
′(s, t)〉2 + C⊥〈γ(s, t), γ

′(s, t)〉] ds

+

∫ L/2

L/2−l

[C‖〈Jγ(s, t), γ
′(s, t)〉〈γ̇(s, t), γ′(s, t)〉+

C⊥〈γ(s, t), γ
′(s, t)〉〈γ̇(s, t), Jγ′(s, t)〉] ds

= ωform(t; l)M
(1)
form(l) + ωform(t; l)M

(2)
form(t; l) +M

(3)
form(t; l).

(5.27)

Let us compute the three summands separately. Computations yield:

M
(1)
form(l) =

C⊥

3

(
L

2
− l

)3

,

M
(2)
form(t; l) =C‖l

∫ 1/2

−1/2

[(L
2
− l

)
sin

(
tϑ0(σ)

τ

)
+ l

∫ σ

−1/2

sin

(
t

τ
(ϑ0(σ) − ϑ0(σ

′))

)
dσ′
]2
dσ

+ C⊥l

∫ 1/2

−1/2

[(L
2
− l

)
cos

(
tϑ0(σ)

τ

)
+ l

∫ σ

−1/2

cos

(
t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
dσ′
]2
dσ,
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M
(3)
form(t; l) =

C‖l
2

τ

∫ 1/2

−1/2

[ ∫ σ

−1/2

sin

(
t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
ϑ0(σ

′) dσ′
]

·
[(L

2
− l

)
sin

(
tϑ0(σ)

τ

)
+ l

∫ σ

−1/2

sin

(
t

τ
(ϑ0(σ) − ϑ0(σ

′))

)
dσ′
]
dσ

+
C⊥l

2

τ

∫ 1/2

−1/2

[ ∫ σ

−1/2

cos

(
t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
ϑ0(σ

′) dσ′
]

·
[(L

2
− l

)
cos

(
tϑ0(σ)

τ

)
+ l

∫ σ

−1/2

cos

(
t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
dσ′
]
dσ.

Setting (5.27) equal to zero allows to find the expression for ωform(t; l)

ωform(t; l) = −2
M

(3)
form(t; l)

M
(1)
form(l) +M

(2)
form(t; l)

. (5.28)

Notice that the numerator is of the form a1(t)l
3 + a2(t)l

2, whereas the denominator

is a complete third degree polynomial in l, whose constant term differs from zero. This

implies again that if l → 0, then ωform(t; l) → 0 and nomotion occurs. Moreover, ωform(t; l)

goes to zero faster by a factor l with respect to ωrot(t; l), when l → 0, whence the effects

of the formation transient is negligible, for small perturbations.

5.4.5 Rotation destruction transient

For analyzing the contribution to the moment of the destruction transient (see Fig. 5.8),

recall that the following expressions hold for s ∈ [0, l]

γ′(s, t) =

(
cos

(
T − t

τ
ϑ0

(
s− σ(T − τ)

l

))
, sin

(
T − t

τ
ϑ0

(
s− σ(T − τ)

l

)))
,

γ(s, t) = l

∫ (s−σ(T−τ))/l

−1/2

(
cos

(
T − t

τ
ϑ0(σ)

)
, sin

(
T − t

τ
ϑ0(σ)

))
dσ,

γ̇(s, t) =
l

τ

∫ (s−σ(T−τ))/l

−1/2

(
sin

(
T − t

τ
ϑ0(σ)

)
,− cos

(
T − t

τ
ϑ0(σ)

))
ϑ0(σ) dσ,

while, for s ∈ [l, L/2], γ′(s, t) = (1, 0) and, taking into account the symmetry property of

ϑ0, the other following expressions are valid

γ(s, t) = l

∫ 1/2

−1/2

(
cos

(
T − t

τ
ϑ0(σ)

)
, 0

)
dσ + (s, 0),

γ̇(s, t) =
l

τ

∫ 1/2

−1/2

(
sin

(
T − t

τ
ϑ0(σ)

)
, 0

)
ϑ0(σ) dσ.

Notice that in this second case γ̇(s, t) = γ̇(l, t) does not depend on s. Recalling (5.23), the

total moment will be

Mdestr(t; l) =

∫ L/2

0

m(s, t) ds =

∫ l

0

m(s, t) ds+

∫ L/2

l

m(s, t) ds

= :M
(1)
destr(t; l) + ωdestr(t; l)M

(2)
destr(t; l) + ωdestr(t; l)M

(3)
destr(l).
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M
(1)
destr(t; l) = −

C‖l
3

τ

∫ 1/2

1/2

[ ∫ σ

−1/2

sin

(
T − t

τ
(ϑ0(σ) − ϑ0(σ

′))

)
ϑ0(σ

′) dσ′
]

·
[ ∫ σ

−1/2

sin

(
T − t

τ
(ϑ0(σ) + ϑ0(σ

′))

)
dσ′
]
dσ

; l −
C⊥l

3

τ

∫ 1/2

1/2

[ ∫ σ

−1/2

cos

(
T − t

τ
(ϑ0(σ) + ϑ0(σ

′))

)
ϑ0(σ

′) dσ′
]

·
[ ∫ σ

−1/2

cos

(
T − t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
dσ′
]
dσ

M
(2)
destr(t; l) = C‖l

3

∫ 1/2

1/2

[ ∫ σ

−1/2

sin

(
T − t

τ
(ϑ0(σ) + ϑ0(σ

′))

)
dσ′
]2

dσ

+ C⊥l
3

∫ 1/2

1/2

[ ∫ σ

−1/2

cos

(
T − t

τ
(ϑ0(σ)− ϑ0(σ

′))

)
dσ′
]2

dσ

The last contribution is easily calculated to be

M
(3)
destr(l) =

C⊥

3

[(
L

2
+ lCϑ0

(T − τ)

)3

− l3 (1 + Cϑ0
(T − τ))

3

]
,

where Cϑ0
(T − τ) is defined in (5.25). Therefore, we find that

ωdestr(t; l) = −2
M

(1)
destr(t; l)

M
(2)
destr(t; l) +M

(3)
destr(l)

. (5.29)

The same qualitative comments we have done for ωform on the dependencies on l can be

done for ωdestr as well.

Taking into account (5.28), (5.26), and (5.29), once l has been fixed, the total angle

spanned by this rotation process will therefore be

∆Θ(l) =

∫ τ

0

ωform(t; l) dt+

∫ T−τ

τ

ωrot(t; l) dt+

∫ T

T−τ

ωdestr(t; l) dt,

As we argued for the translation case, we notice that ∆Θ is a continuous function of l,

which takes value zero for l = 0. Therefore, if a certain angle ∆Θ̄ is assigned to span,

there exists an integer k > 0 such that ∆Θ̄ = k∆Θ(l) + δΘ, where δΘ < ∆Θ(l). Invoking

the continuity of ∆Θ with respect to l, there exists a value l∗ such that δΘ = ∆Θ(l∗).

Thus, it is enough to divide the time interval [0, T ] in k + 1 subintervals, k of which

of size ∆Θ(l)/∆Θ̄, and the last one of size δΘ/∆Θ̄, and perform the swimming motion

accordingly.

5.5 Euler equation

In this section we tackle the problem of studying the Euler equation associated with the

constrained minimum problem (5.13). The constraints that we will give on the initial

and final states are on the barycenter and the orientation of the head-tail segment. The

barycenter of the flagellum at time t is given by
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g(t) :=
1

∫ L

0
|χ′(s, t)| ds

∫ L

0

χ(s, t) |χ′(s, t)| ds, (5.30)

where we have introduced the length element |χ′(s, t)| = |ξ′(s, t)| since it gives a non-

trivial contribution to the integral whenever s is not the arc-length parameter of the

curve. We have to take this into account since, in order to obtain the Euler equation, we

will consider small perturbations of the shape function ξ which might not be parame-

terized by arc-length. We underline the fact that now x(t) can be still considered as the

barycenter, provided that a refined version of (5.5) holds, namely
∫ L

0

ξ(s, t) |ξ′(s, t)| ds = 0, ∀ t ∈ [0, T ].

Moreover, we notice that, given an arbitrary ξ ∈ Ξ parameterized by arc-length, it is

always possible to recover a state function χ(s, t) = x(t) + R(t)ξ(s, t) for which x(t) is

the position of the barycenter and such that the line joining the head and the tail is the

x-axis. Indeed, starting from ξ, one can construct its barycenter,

x̂(t) :=
1

L

∫ L

0

ξ(s, t) ds,

and a rotation R̂ such that the line from the tail of the curve to its head is directed like

the horizontal axis. The rows of the matrix R̂ are given by ˆ̺, J ˆ̺, where

ˆ̺(t) =
ξ(L, t)− ξ(0, t)

|ξ(L, t)− ξ(0, t)|
.

Now, the vector

ξ̃(s, t) := R̂(t)(ξ(s, t) − x̂(t))

represents the curve for which the barycenter is the origin and the tail and head lie on

the horizontal axis. Notice that |ξ̃′(s, t)| ≡ 1 again. The procedure we have described

before allows us to construct the curve

χ(s, t) := x̃(t) + R̃(t)ξ̃(s, t)

= x̃(t)− R̃(t)R̂(t)x̂(t)︸ ︷︷ ︸
x(t)

+ R̃(t)R̂(t)︸ ︷︷ ︸
R(t)

ξ(s, t),

referred to the laboratory frame, such that the viscous forces and torques due to its

velocity according by the resistive force theory vanish. Once again, notice that |χ′(s, t)| =

|ξ′(s, t)| ≡ 1. The vector x and the matrix R are uniquely determined once x̂, R̂, x̃, R̃ are

known. We recall that x̃, R̃ are the solutions to the system of ODE’s
{

˙̃x(t) = R̃(t)ṽ(t),
˙̃
θ(t) = ω̃(t),

(5.31)

where θ̃ is the angle associated with the rotation R̃ and the notation ṽ, ω̃ stresses that

those elements are found starting from ξ̃. Theorem 5.2.1 guarantees that the initial
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value problem for (5.31) is well posed and has a unique solution which depends contin-

uously from the initial data.

We denote by ϕ(t) the angle that the head-tail line of χ makes with the positive

horizontal axis, that is the one associated with the rotation matrix whose lines are

given by ̺ and J̺, where

̺(t) =
χ(L, t)− χ(0, t)

|χ(L, t)− χ(0, t)|
.

Taking into account the comments on the arc-length parametrization, we rewrite the

energy in equation (5.12) as

P(χ) =

∫ T

0

∫ L

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉 |χ
′(s, t)| dsdt;

a simple computation shows that it is possible to consider P as a function of the shape

variable ξ

P(ξ) =

∫ T

0

∫ L

0

〈|ξ′(s, t)|Kξ(s, t)χ̇∗(s, t), χ̇∗(s, t)〉dsdt,

where χ̇∗(s, t) = R⊤(t)χ̇(s, t) = v(t) + ω(t)Jξ(s, t) + ξ̇(s, t).

Define now the map G : Ξ → R
2×R

2×R×R which associates to every curve ξ ∈ Ξ the

position of its barycenter and its orientation at times t = 0 and t = T ,

G(ξ) = (g(0), g(T ), ϕ(0), ϕ(T )).

We want to find first order conditions on ξ for it to be optimal among all the swimming

strategies that minimize the energyP under the given constraint (g(0), g(T ), ϕ(0), ϕ(T )) =

(g0, gT , ϕ0, ϕT ). For this, an equation involving the Lagrange multipliers will be written,

namely,

∇ξP(ξ) + Λ · ∇ξG(ξ) = dP(ξ)[η] + Λ · dG(ξ)[η] = 0, ∀ η ∈ Ξ, (5.32)

in order to study which it is necessary to describe the behavior of P and G under varia-

tions of the form ξε(s, t) := ξ(s, t) + εη(s, t), where η is the variation. For this, we need

to compute the Fréchet derivatives of P and G in the direction η. It turns out, using the

symmetry of K, that

dP(ξ)[η] =

∫ T

0

∫ L

0

[〈H(s, t)χ̇∗(s, t), χ̇∗(s, t)〉 + 2〈Ẋ∗(s, t),K(s, t)χ̇∗(s, t)〉] dsdt

=: I(1) + 2I(2).

(5.33)
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where

H(s, t) :=
∂Kε(s, t)

∣∣ξε′(s, t)
∣∣

∂ε

∣∣∣
ε=0

= −〈ξ′(s, t), η′(s, t)〉K(s, t) + C‖[η
′(s, t)⊗ ξ′(s, t) + ξ′(s, t)⊗ η′(s, t)] (5.34)

+C⊥[(Jη
′(s, t))⊗ (Jξ′(s, t)) + (Jξ′(s, t))⊗ (Jη′(s, t))],

χ̇∗(s, t) := R⊤(t)χ̇(s, t) = v(t) + ω(t)Jξ(s, t) + ξ̇(s, t),

Ẋ∗(s, t) :=
∂χ̇ε

∗(s, t)

∂ε

∣∣∣
ε=0

= z(t) + ψ(t)Jξ(s, t) + ω(t)Jη(s, t) + η̇(s, t),

z(t) :=
∂vε(t)

∂ε

∣∣∣
ε=0

, ψ(t) :=
∂ωε(t)

∂ε

∣∣∣
ε=0

J =

[
0 −1

1 0

]
.

Notice that H(s, t) is a symmetric matrix. Since it will appear also in the following

computations, it is useful to have a simplified expression for the terms like the first one

in (5.33), namely 〈Hv1, v2〉. We have

〈Hv1, v2〉 =− 〈〈ξ′, η′〉Kv1, v2〉+ C‖[〈(η
′ ⊗ ξ′)v1, v2〉+ 〈(ξ′ ⊗ η′)v1, v2〉]

+ C⊥[〈(Jη
′)⊗ (Jξ′)v1, v2〉+ 〈(Jξ′)⊗ (Jη′)v1, v2〉]

=− 〈〈Kv1, v2〉ξ
′, η′〉+ C‖〈(v1 ⊗ v2 + v2 ⊗ v1)ξ

′, η′〉

+ C⊥〈((J
⊤v1)⊗ (J⊤v2) + (J⊤v2)⊗ (J⊤v1))ξ

′, η′〉

(5.35)

Now, using (5.35) with v1 = v2 = χ̇∗(s, t) yields

I(1) =

∫ T

0

∫ L

0

{−〈〈K(s, t)χ̇∗(s, t), χ̇∗(s, t)〉ξ
′(s, t), η′(s, t)〉

+ 2C‖〈(χ̇∗(s, t)⊗ χ̇∗(s, t))ξ
′(s, t), η′(s, t)〉

+ 2C⊥〈((J
⊤χ̇∗(s, t)) ⊗ (J⊤χ̇∗(s, t))ξ

′(s, t), η′(s, t)〉} dsdt

=

∫ T

0

∫ L

0

〈w
(1)
1 (s, t), η′(s, t)〉dsdt,

where

w
(1)
1 (s, t) = [− 〈K(s, t)χ̇∗(s, t), χ̇∗(s, t)〉I + 2C‖(χ̇∗(s, t)⊗ χ̇∗(s, t))

+ 2C⊥((J
⊤χ̇∗(s, t))⊗ (J⊤χ̇∗(s, t))]ξ

′(s, t).
(5.36)

To compute
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I(2) =

∫ T

0

∫ L

0

〈z(t) + ψ(t)Jξ(s, t) + ω(t)Jη(s, t) + η̇(s, t),K(s, t)χ̇∗(s, t)〉dsdt

=

∫ T

0

∫ L

0

〈K(s, t)χ̇∗(s, t), z(t)〉dsdt+

∫ T

0

∫ L

0

〈ξ(s, t), J⊤K(s, t)χ̇∗(s, t)〉ψ(t) dsdt

+

∫ T

0

∫ L

0

〈ω(t)J⊤K(s, t)χ̇∗(s, t), η(s, t)〉dsdt+

∫ T

0

∫ L

0

〈K(s, t)χ̇∗(s, t), η̇(s, t)〉dsdt

=

∫ T

0

〈κ1(t), z(t)〉dt+

∫ T

0

κ2(t)ψ(t) dt+

∫ T

0

∫ L

0

〈w
(2,3)
0 (s, t), η(s, t)〉dsdt

+

∫ T

0

∫ L

0

〈w
(2,4)
2 (s, t), η̇(s, t)〉dsdt

= I(2,1) + I(2,2) + I(2,3) + I(2,4),

we need to evaluate z(t) and ψ(t), which is a cumbersome task. Here,

κ1(t) :=

∫ L

0

K(s, t)χ̇∗(s, t) ds, κ2(t) :=

∫ L

0

〈ξ(s, t), J⊤K(s, t)χ̇∗(s, t)〉ds,

w
(2,3)
0 (s, t) := ω(t)J⊤K(s, t)χ̇∗(s, t), w

(2,4)
2 (s, t) := K(s, t)χ̇∗(s, t). (5.37)

To our purpose, the integrals I(2,3) and I(2,4) do not need to be modified, since they

already show the explicit coefficients of η and η̇. Recalling the definition of v and ω

given in (5.9) and the formula for the derivative of the inverse matrix, we have

z(t) =

[
I2 0

0 0

]
R−1(t)

[
S(t)R−1(t)

(
F sh(t)

M sh(t)

)
−

(
DF (t)

DM (t)

)]

= Ā(t)[α(t)Γ(t) + β(t)δ(t) −DF (t)] + b̄(t)[β⊤(t)Γ(t) + γ(t)δ(t) −DM (t)]

= z1(t) + z2(t) + z3(t) + z4(t) + z5(t) + z6(t),

(5.38a)

ψ(t) =

[
02 0

0 1

]
R−1(t)

[
S(t)R−1(t)

(
F sh(t)

M sh(t)

)
−

(
DF (t)

DM (t)

)]

= b̄⊤(t)[α(t)Γ(t) + β(t)δ(t) −DF (t)] + c̄(t)[β⊤(t)Γ(t) + γ(t)δ(t)−DM (t)],

=ψ1(t) + ψ2(t) + ψ3(t) + ψ4(t) + ψ5(t) + ψ6(t),

(5.38b)

where

R−1(t) =

[
Ā(t) b̄(t)

b̄⊤(t) c̄(t)

]
, S(t) :=

[
α(t) β(t)

β⊤(t) γ(t)

]
=
∂Rε(t)

∂ε

∣∣∣
ε=0

,

DF (t) :=
∂(F sh)ε

∂ε

∣∣∣
ε=0

, DM (t) :=
∂(M sh)ε

∂ε

∣∣∣
ε=0

,

Γ(t) := Ā(t)F sh(t) + b̄(t)M sh(t) ∈ R
2, δ(t) := b̄⊤(t)F sh(t) + c̄(t)M sh(t) ∈ R.
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We must now compute all the Fréchet derivatives involved in these expressions. We

have

α(t) =

∫ L

0

H(s̄, t) ds̄ (5.39a)

β(t) =

∫ L

0

[H(s̄, t)Jξ(s̄, t) +K(s̄, t)Jη(s̄, t)] ds̄ (5.39b)

β⊤(t) =

∫ L

0

[(Jξ(s̄, t))⊤H(s̄, t) + (Jη(s̄, t))⊤K(s̄, t)] ds̄ (5.39c)

γ(t) =

∫ L

0

[2(Jξ(s̄, t))⊤K(s̄, t)Jη(s̄, t) + (Jξ(s̄, t))⊤H(s̄, t)Jξ(s̄, t)] ds̄ (5.39d)

DF (t) =

∫ L

0

[H(s̄, t)ξ̇(s̄, t) +K(s̄, t)η̇(s̄, t)] ds̄ (5.39e)

DM (t) =

∫ L

0

[ξ̇(s̄, t)⊤K(s̄, t)(Jη(s̄, t)) + (Jξ(s̄, t))⊤H(s̄, t)ξ̇(s̄, t) (5.39f)

+(Jξ(s̄, t))⊤K(s̄, t)η̇(s̄, t)] ds̄

Taking (5.39) into account, the summands in (5.38a) can be written as

z1(t) =

∫ L

0

Ā(t)H(s̄, t)Γ(t) ds̄,

z2(t) =

∫ L

0

[δ(t)Ā(t)H(s̄, t)Jξ(s̄, t) + δ(t)Ā(t)K(s̄, t)Jη(s̄, t)] ds̄,

z3(t) = −

∫ L

0

[Ā(t)H(s̄, t)ξ̇(s̄, t) + Ā(s̄, t)K(s̄, t)η̇(s̄, t)] ds̄,

z4(t) =

∫ L

0

[b̄(t)(Jξ(s̄, t))⊤H(s̄, t)Γ(t) + b̄(t)(Jη(s̄, t))⊤K(s̄, t)Γ(t)] ds̄,

z5(t) =

∫ L

0

[2δ(t)b̄(t)(Jξ(s̄, t))⊤K(s̄, t)Jη(s̄, t)

+δ(t)b̄(t)(Jξ(s̄, t))⊤H(s̄, t)Jξ(s̄, t)] ds̄,

z6(t) = −

∫ L

0

[b̄(s̄, t)ξ̇(s̄, t)⊤K(s̄, t)(Jη(s̄, t)) + b̄(s̄, t)(Jξ(s̄, t))⊤H(s̄, t)ξ̇(s̄, t)

+b̄(s̄, t)(Jξ(s̄, t))⊤K(s̄, t)η̇(s̄, t)] ds̄.
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Analogously, the summands in (5.38b) can be expressed in the form

ψ1(t) =

∫ L

0

b̄⊤(t)H(s̄, t)Γ(t) ds̄,

ψ2(t) =

∫ L

0

[δ(t)b̄⊤(t)H(s̄, t)Jξ(s̄, t) + δ(t)b̄⊤(t)K(s̄, t)Jη(s̄, t)] ds̄,

ψ3(t) = −

∫ L

0

[b̄⊤(t)H(s̄, t)ξ̇(s̄, t) + b̄⊤(t)K(s̄, t)η̇(s̄, t)] ds̄,

ψ4(t) =

∫ L

0

[c̄(t)(Jξ(s̄, t))⊤H(s̄, t)Γ(t) + c̄(t)(Jη(s̄, t))⊤K(s̄, t)Γ(t)] ds̄,

ψ5(t) =

∫ L

0

[2δ(t)c̄(t)(Jξ(s̄, t))⊤K(s̄, t)Jη(s̄, t)

+δ(t)c̄(t)(Jξ(s̄, t))⊤H(s̄, t)Jξ(s̄, t)] ds̄,

ψ6(t) = −

∫ L

0

[c̄(t)ξ̇⊤(s̄, t)K(s̄, t)Jη(s̄, t) + c̄(t)(Jξ(s̄, t))⊤H(s̄, t)ξ̇(s̄, t)

+c̄(t)(Jξ(s̄, t))⊤K(s̄, t)η̇(s̄, t)] ds̄.

These terms can be reorganized, recalling that v⊤1 Mv2 = 〈v1,Mv2〉, that v1〈v2, v3〉 =

(v1 ⊗ v2)v3 , and invoking the symmetry of K and H , to obtain

z(t) = z1(t) + z2(t) + z3(t) + z4(t) + z5(t) + z6(t)

=

∫ L

0

[(Ā(t) + b̄(t)⊗ (Jξ(s, t)))H(s̄, t)(Γ(t) + δ(t)Jξ(s̄, t)− ξ̇(s̄, t))

+ (δ(t)Ā(t) + (b̄(t)⊗ (Γ(t) + 2δ(t)Jξ(s̄, t)− ξ̇(s̄, t))))K(s̄, t)Jη(s̄, t)

− (Ā(t) + b̄(t)⊗ (Jξ(s, t)))K(s̄, t)η̇(s̄, t)] ds̄

=

∫ L

0

[Z1(s̄, t)H(s̄, t)ζ1(s̄, t) + Z2(s̄, t)K(s̄, t)Jη(s̄, t)− Z1(s̄, t)K(s̄, t)η̇(s̄, t)] ds̄,

(5.40)

ψ(t) =ψ1(t) + ψ2(t) + ψ3(t) + ψ4(t) + ψ5(t) + ψ6(t)

=

∫ L

0

[〈b̄⊤(t) + c̄(t)Jξ(s̄, t), H(s̄, t)(Γ(t) + δ(t)Jξ(s̄, t)− ξ̇(s̄, t))〉

+ 〈δ(t)b̄⊤(t) + c̄(t)Γ(t) + 2δ(t)c̄(t)Jξ(s̄, t)− c̄(t)ξ̇(s̄, t),K(s̄, t)Jη(s̄, t)〉

− 〈b̄⊤(t) + c̄(t)Jξ(s̄, t),K(s̄, t)η̇(s̄, t)〉] ds̄

=

∫ L

0

[〈H(s̄, t)ζ2(s̄, t), ζ1(s̄, t)〉+ 〈J⊤K(s̄, t)ζ3(s̄, t), η(s̄, t)〉

− 〈K(s̄, t)ζ2(s̄, t), η̇(s̄, t)〉] ds̄,

(5.41)

where the following positions are made

Z1(s̄, t) := Ā(t) + b̄(t)⊗ Jξ(s̄, t), (5.42a)

Z2(s̄, t) := δ(t)Ā(t) + b̄(t)⊗ (Γ(t) + 2δ(t)Jξ(s̄, t)− ξ̇(s̄, t)), (5.42b)

ζ1(s̄, t) := Γ(t) + δ(t)Jξ(s̄, t)− ξ̇(s̄, t), (5.42c)

ζ2(s̄, t) := b̄⊤(t) + c̄(t)Jξ(s̄, t), (5.42d)

ζ3(s̄, t) := δ(t)b̄⊤(t) + c̄(t)Γ(t) + 2δ(t)c̄(t)Jξ(s̄, t)− c̄(t)ξ̇(s̄, t), (5.42e)
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Now, from (5.40), taking into account (5.35) we get

I(2,1) =

∫ T

0

〈κ1(t), z(t)〉dt

=

∫ T

0

∫ L

0

[〈Z⊤
1 (s̄, t)κ1(t), H(s̄, t)ζ1(s̄, t)〉+ 〈J⊤K(s̄, t)Z⊤

2 (s̄, t)κ1(t), η(s̄, t)〉

− 〈K(s̄, t)Z⊤
1 (s̄, t)κ1(t), η̇(s̄, t)〉] ds̄dt

=

∫ T

0

∫ L

0

[〈w
(2,1)
0 (s̄, t), η(s̄, t)〉+ 〈w

(2,1)
1 (s̄, t), η′(s̄, t)〉+ 〈w

(2,1)
2 (s̄, t), η̇(s̄, t)〉] ds̄dt,

I(2,2) =

∫ T

0

κ2(t)ψ(t) dt

=

∫ T

0

∫ L

0

κ2(t)[〈H(s̄, t)ζ2(s̄, t), ζ1(s̄, t)〉+ 〈J⊤K(s̄, t)ζ3(s̄, t), η(s̄, t)〉

− 〈K(s̄, t)ζ2(s̄, t), η̇(s̄, t)〉] ds̄dt

=

∫ T

0

∫ L

0

κ2(t)[〈w
(2,2)
0 (s̄, t), η(s̄, t)〉+ 〈w

(2,2)
1 (s̄, t), η′(s̄, t)〉

+ 〈w
(2,2)
2 (s̄, t), η̇(s̄, t)〉] ds̄dt,

where

w
(2,1)
0 (s̄, t) := J⊤K(s̄, t)Z⊤

2 (s̄, t)κ1(t), (5.43a)

w
(2,1)
1 (s̄, t) := [−〈K(s̄, t)ζ1(s̄, t), Z

⊤
1 (s̄, t)κ1(t)〉I + C‖ζ1(s̄, t)⊗ (Z⊤

1 (s̄, t)κ1(t)) (5.43b)

+C‖(Z
⊤
1 (s̄, t)κ1(t))⊗ ζ1(s̄, t) + C⊥(J

⊤ζ1(s̄, t))⊗ (J⊤Z⊤
1 (s̄, t)κ1(t))

+C⊥(J
⊤Z⊤

1 (s̄, t)κ1(t))⊗ (J⊤ζ1(s̄, t))]ξ
′(s̄, t),

w
(2,1)
2 (s̄, t) := −K(s̄, t)Z⊤

1 (s̄, t)κ1(t) (5.43c)

w
(2,2)
0 (s̄, t) := J⊤K(s̄, t)ζ3(s̄, t), (5.43d)

w
(2,2)
1 (s̄, t) := [−〈K(s̄, t)ζ1(s̄, t), ζ2(s̄, t)〉I + C‖ζ1(s̄, t)⊗ ζ2(s̄, t) (5.43e)

+C‖ζ2(s̄, t)⊗ ζ1(s̄, t) + C⊥(J
⊤ζ1(s̄, t))⊗ (J⊤ζ2(s̄, t))

+C⊥(J
⊤ζ2(s̄, t))⊗ (J⊤ζ1(s̄, t))]ξ

′(s̄, t)

w
(2,2)
2 (s̄, t) := −K(s̄, t)ζ2(s̄, t) (5.43f)

From these expressions, it turns out that formula (5.33) can be written as

dP(ξ)[η] =

∫ T

0

∫ L

0

[〈w0(s, t), η(s, t)〉+ 〈w1(s, t), η
′(s, t)〉+ 〈w2(s, t), η̇(s, t)〉] dsdt, (5.44)

where

w0(s, t) := 2[w
(2,1)
0 (s, t) + κ2(t)w

(2,2)
0 (s, t) + w

(2,3)
0 (s, t)],

w1(s, t) := w
(1)
1 (s, t) + 2[w

(2,1)
1 (s, t) + κ2(t)w

(2,2)
1 (s, t)],

w2(s, t) := 2[w
(2,1)
2 (s, t) + κ2(t)w

(2,2)
2 (s, t) + w

(2,4)
2 (s, t)],
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and all these terms are defined in (5.36), (5.37), and (5.43).

Let us now turn our attention on the functional G. We have to compute

dG(ξ)[η] =

(
∂gε(0)

∂ε

∣∣∣
ε=0

,
∂gε(T )

∂ε

∣∣∣
ε=0

,
∂ϕε(0)

∂ε

∣∣∣
ε=0

,
∂ϕε(T )

∂ε

∣∣∣
ε=0

)
.

Recalling the definitions in (5.30), the conditions on the barycenter of ξ(·, t) and η(·, t),

and defining

y(t) :=
∂xε(t)

∂ε

∣∣∣
ε=0

, S(t) :=
∂Rε(t)

∂ε

∣∣∣
ε=0

= R(t)J
∂θε(t)

∂ε

∣∣∣
ε=0

=: R(t)JΘ(t), (5.45)

{
u1(t) = r(t) cosϕ(t)

u2(t) = r(t) sinϕ(t)
,

we have

∂gε(t)

∂ε

∣∣∣
ε=0

= −
1

L

∫ L

0

g(t)〈ξ′(s, t), η′(s, t)〉ds+
1

L

∫ L

0

χ(s, t)〈ξ′(s, t), η′(s, t)〉ds

+
1

L

∫ L

0

[
y(t) + S(t)ξ(s, t) +R(t)η(s, t)

]
ds

=
1

L

∫ L

0

[(χ(s, t)− g(t))⊗ ξ′(s, t)]η′(s, t) ds+ y(t),

∂ϕε(t)

∂ε

∣∣∣
ε=0

=
∂ϕε(t)

∂uε1

∂uε1
∂ε

∣∣∣
ε=0

+
∂ϕε(t)

∂uε2

∂uε2
∂ε

∣∣∣
ε=0

=
−u2(t)

u21(t) + u22(t)

∂uε1
∂ε

∣∣∣
ε=0

+
u1(t)

u21(t) + u22(t)

∂uε2
∂ε

∣∣∣
ε=0

=
−[R(t)(ξ(L, t)− ξ(0, t))]2

|ξ(L, t)− ξ(0, t)|
2 [R(t)(Θ(t)J(ξ(L, t) − ξ(0, t)) + η(L, t)− η(0, t))]1

+
[R(t)(ξ(L, t)− ξ(0, t))]1

|ξ(L, t)− ξ(0, t)|2
[R(t)(Θ(t)J(ξ(L, t) − ξ(0, t)) + η(L, t)− η(0, t))]2

=
〈J(ξ(L, t)− ξ(0, t)),Θ(t)J(ξ(L, t)− ξ(0, t)) + η(L, t)− η(0, t)〉

|ξ(L, t)− ξ(0, t)|
2

=
〈J(ξ(L, t)− ξ(0, t)), η(L, t)− η(0, t)〉

|ξ(L, t)− ξ(0, t)|2
+Θ(t),

where u(t) = (u1(t), u2(t)) = χ(L, t)− χ(0, t) = R(t)(ξ(L, t) − ξ(0, t)), and y and Θ satisfy

the system (see (5.8) and (5.45))

{
ẏ(t) = R(t)(Θ(t)Jv(t) + z(t))

Θ̇(t) = ψ(t)
, y(0) = 0,Θ(0) = 0. (5.46)
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It turns out that

ḡ0 :=
∂gε(0)

∂ε

∣∣∣
ε=0

=
1

L

∫ L

0

[(χ(s, 0)− g(0))⊗ ξ′(s, 0)]η′(s, 0) ds,

ḡT :=
∂gε(T )

∂ε

∣∣∣
ε=0

=
1

L

∫ L

0

[(χ(s, T )− g(T ))⊗ ξ′(s, T )]η′(s, T ) ds+ y(T ),

ϕ̄0 :=
∂ϕε(0)

∂ε

∣∣∣
ε=0

=
〈J(ξ(L, 0)− ξ(0, 0)), η(L, 0)− η(0, 0)〉

|ξ(L, 0)− ξ(0, 0)|
2 ,

ϕ̄T :=
∂ϕε(T )

∂ε

∣∣∣
ε=0

=
〈J(ξ(L, T )− ξ(0, T )), η(L, T )− η(0, T )〉

|ξ(L, T )− ξ(0, T )|
2 +Θ(T ),

and the dependence on η, η′, and η̇ will be explicit once we find a suitable expression for

Θ(T ) and y(T ). From (5.46) and (5.41), we have

Θ(T ) =

∫ T

0

∫ L

0

[〈w
(2,2)
0 (s, t), η(s, t)〉 + 〈w

(2,2)
1 (s, t), η′(s, t)〉+ 〈w

(2,2)
2 (s, t), η̇(s, t)〉] dsdt,

where the coefficients w(2,2)
i are given in (5.43d), (5.43e), and (5.43f). The computation

of y(T ) requires more effort. We have

y(T ) =

∫ T

0

Θ(t̄)R(t̄)Jv(t̄) dt̄+

∫ T

0

R(t)z(t) dt =: y(1)(T ) + y(2)(T ),

and we compute the two contributions separately. Define

V (t) :=

∫ T

0

11[0,t̄](t)R(t̄)Jv(t̄) dt̄, (5.47)

so that we get

y(1)(T ) =

∫ T

0

[∫ T

0

∫ L

0

11[0,t̄](t)[〈w
(2,2)
0 (s, t), η(s, t)〉+ 〈w

(2,2)
1 (s, t), η′(s, t)〉

+ 〈w
(2,2)
2 (s, t), η̇(s, t)〉] dsdt

]
R(t̄)Jv(t̄)dt̄

=

∫ T

0

∫ L

0

[(V (t)⊗ w
(2,2)
0 (s, t))η(s, t) + (V (t)⊗ w

(2,2)
1 (s, t))η′(s, t)

+ (V (t)⊗ w
(2,2)
2 (s, t))η̇(s, t)] dsdt,

y(2)(T ) =

∫ T

0

∫ L

0

[R(t)Z1(s, t)H(s, t)ζ1(s, t) +R(t)Z2(s, t)K(s, t)Jη(s, t)

−R(t)Z1(s, t)K(s, t)η̇(s, t)] dsdt.

Adding these two terms yields

y(T ) =

∫ T

0

∫ L

0

[W⊤
0 (s, t)η(s, t) +W⊤

1 (s, t)η′(s, t) +W⊤
2 (s, t)η̇(s, t)] dsdt,
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where, recalling the expression for H(s, t) from (5.34),

W⊤
0 (s, t) = V (t)⊗ w

(2,2)
0 (s, t) +R(t)Z2(s, t)K(s, t)J,

W⊤
1 (s, t) = V (t)⊗ w

(2,2)
1 (s, t)−R(t)Z1(s, t)K(s, t)ζ1(s, t)⊗ ξ′(s, t)

+C‖〈ξ
′(s, t), ζ1(s, t)〉R(t)Z1(s, t) + C‖R(t)Z1(s, t)(ξ

′(s, t)⊗ ζ1(s, t))

+C⊥〈Jξ
′(s, t), ζ1(s, t)〉R(t)Z1(s, t)J

+C⊥R(t)Z1(s, t)((Jξ
′(s, t))⊗ ζ1(s, t))J,

W⊤
2 (s, t) = V (t)⊗ w

(2,2)
2 (s, t)−R(t)Z1(s, t)K(s, t).

Upon defining Λ := (λ0, λT , µ0, µt) ∈ R
2×R

2×R×R and

G⊤(s, t) :=
1

L
(χ(s, t)− g(t))⊗ ξ′(s, t), φ(t) :=

J(ξ(L, t)− ξ(0, t))

|ξ(L, t)− ξ(0, t)|
2 ,

we can write

〈Λ, dG(ξ)[η]〉 =〈λ0, ḡ0〉+ 〈λT , ḡT 〉+ µ0ϕ̄0 + µT ϕ̄T

=

∫ L

0

〈G(s, 0)λ0, η
′(s, 0)〉ds+

∫ L

0

〈G(s, T )λT , η
′(s, T )〉ds

+ µ0〈φ(0), η(L, 0)− η(0, 0)〉+ µT 〈φ(T ), η(L, T )− η(0, T )〉

+

∫ T

0

∫ L

0

[〈W0(s, t)λ0 + µTw
(2,2)
0 (s, t), η(s, t)〉+

〈W1(s, t)λ0 + µTw
(2,2)
1 (s, t), η′(s, t)〉+

〈W2(s, t)λ0 + µTw
(2,2)
2 (s, t), η̇(s, t)〉] dsdt

(5.48)

Finally, combining equations (5.44) and (5.48), and defining

hi(s, t) := wi(s, t) +Wi(s, t)λ0 + µTw
(2,2)
i (s, t)

(the convention is that hi will be the term multiplied by the derivative of η with respect

to the i-th variable), equation (5.32) becomes

0 =

∫ T

0

∫ L

0

[〈h0(s, t), η(s, t)〉+ 〈h1(s, t), η
′(s, t)〉 + 〈h2(s, t), η̇(s, t)〉] dsdt

+

∫ L

0

〈G(s, 0)λ0, η
′(s, 0)〉ds+

∫ L

0

〈G(s, T )λT , η
′(s, T )〉ds

+ µ0〈φ(0), η(L, 0)− η(0, 0)〉+ µT 〈φ(T ), η(L, T )− η(0, T )〉,

(5.49)

for all η ∈ Ξ. Choosing η ∈ Ξ such that spt η ⊂⊂ [0, L]×[0, T ], equation (5.49) gives the

following condition

h0 − h′1 − ḣ2 = 0, in [0, L]×[0, T ]; (5.50)
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choosing η ∈ Ξ such that spt η is compact with respect to t only and considering (5.50),

we get

0 =

∫ T

0

[〈h1(L, t), η(L, t)〉 − 〈h1(0, t), η(0, t)〉] dt, for all such η’s,

which gives

h1(0, t) = h1(L, t) = 0, for all t ∈ [0, T ]; (5.51)

choosing η ∈ Ξ such that spt η is compact with respect to s only and considering (5.50),

we get

0 =

∫ L

0

[〈h2(s, T )−G
′(s, T )λT , η(s, T )〉−〈h2(s, 0)+G

′(s, 0)λ0, η(s, 0)〉] ds, for all such η,’s

which gives

h2(s, 0) +G′(s, 0)λ0 = h2(s, T )−G′(s, T )λT = 0, for all s ∈ [0, L]; (5.52)

finally, if η ∈ Ξ does not have compact support in [0, L]×[0, T ], we get the contributions

of the vertices of the square [0, L]×[0, T ]. Keeping into account (5.50),(5.51), and (5.52)

we obtain

0 =〈G(L, 0)λ0, η(L, 0)〉 − 〈G(0, 0)λ0, η(0, 0)〉+ 〈G(L, T )λT , η(L, T )〉 − 〈G(0, T )λT , η(0, T )〉

+ µ0〈φ(0), η(L, 0)− η(0, 0)〉+ µT 〈φ(T ), η(L, T )− η(0, T )〉.

Thus, there must hold

G(0, 0)λ0 + µ0φ(0) = G(L, 0)λ0 + µ0φ(0) = 0, (5.53a)

G(0, T )λT + µTφ(T ) = G(L, T )λT + µTφ(T ) = 0. (5.53b)

These imply that

G(0, 0) = G(L, 0), G(0, T ) = G(L, T ). (5.54)

Equation (5.49) is the most explicit version of (5.32) that we can give so far. The

associated partial differential equation is (5.50), while (5.51), (5.52), and (5.54) are the

boundary conditions.
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