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Introduction

In this thesis we gather some recent results concerning the wellposedness of a class
of nonlinear PDEs having the following general form:

U + f(u)a: =0. (1)

Equations (1) are commonly called conservation laws in analogy to the examples of
such systems which arise in physics (fluid dynamics, electromagnetism, elasticity,
chromatography and others). Here the (unknown) solution vector of conserved
quantities v € R™ depends on the one dimensional space variable z € R and time
t > 0, while f : R® — R™ is a smooth flux function, yielding suitable properties
- such as hyperbolicity and ’convexity’ of characteristic fields, of the associated
quasilinear system u; + D f(u)ug = 0.

It is worth to note that the equation (1), despite its simple form, incorporates
basic phenomena of nonlinear wave propagation such as the formation, collision, or
cancellation of waves.

In this setting, the recent progress in the field has shown that within the class of
initial data @ € L' N BV(R,,R™) with sufficiently small total variation, the initial-
value problem: (1) together with

u(0,z) = 4, (2)

is wellposed in L'(R,R"™). Namely, its admissible solutions constitute a semigroup
(called Standard Riemann Semigroup, and abbreviated here to SRS) which is Lip-
schitz continuous with respect to both time and initial data. The semigroup with
these properties is unique and its trajectories are the limits of piecewise constant
so-called approximate solutions, generated by the method of wave front tracking.
The contraction with respect to a suitably weighted L! distance, yielding the Lips-
chitz continuity of the SRS, is established by defining a Lyapunov functional (called
so by comparison with the corresponding idea in ordinary differential equations),
decreasing in time and measuring the distance between the time profiles of two
arbitrary approximate solutions.

At this point, two natural directions for further research are the following:

e To extend the understanding of the structure of the semigroup solutions
to (1) (2), in particular to provide simple, easily checkable conditions
sufficient or necessary for a BV solution to be a trajectory of the SRS.
In turn, this yields new uniqueness results for the initial-value problem
within some general classes of entropy weak solutions.
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s To establish the wellposedness of the Cauchy problem (1) (2) for a larg-
er domain of initial data, possibly including functions with large total
variation.

In this dissertation we present several results related to these topics.

Chapter 1 contains what was originally published as [BLe]. In the framework of the
first point above, we prove that every Lax admissible weak solution of (1) coincides
with the corresponding SRS trajectory if and only if it has locally bounded variation
along a suitable family of space-like curves. By the uniqueness of SRS, there follows
a uniqueness result for (1) (2), within the class of solutions having the mentioned
property.

Chapters 2 and 3 are concerned with the L! stability of wave patterns containing
some non-interacting large shock waves. We study the problem (1) with @ in (2)
being a small L'N BV perturbation of fixed Riemann data. We a priori assume that
the solution of the latter problem is given by a number of (arbitrarily large) Lax
compressive and Majda stable shocks of different characteristic families. We formu-
late the BV and L! Stability Conditions that express the expected mutual influence
of the large waves. By constructing suitable Glimm and Lyapunov functionals ap-
plicable to our setting, we show that the former condition guarantees the existence
of a unique, global in time and space, ‘admissible’ solution to (1) (2); while the
latter condition is essential for the stablity of this same solution under (a class of)
perturbations of its initial data. This is carried out in Chapter 2, containing the
results of [Lel].

In Chapter 3 we present a revised version of the article [Le2], with some new
additions. Several authors had investigated the issue of wellposedness of (1) (2) in
various contexts, introducing different stability conditions. Some of them require
that the eigenvalues of suitable matrices related to wave transmissions - reflections
are smaller than 1 in absolute value, other refer to different algebraic properties of
the linearised system, such as for example existence of weights with whom the flow
of the system becomes a contraction. We explain and compare these conditions,
showing that the conditions of Chapter 2 generalize or unify them in appropriate
ways.



CHAPTER 1

A uniqueness condition for hyperbolic systems of
conservation laws

1. Introduction

Consider a hyperbolic system of conservation laws in one space dimension:
ug + flu)z = 0. (1.1)

The following standard conditions [L] [Sm] will be assumed throughout. The flux
function f: — R" is smooth and defined on an open set (! C R™ containing the
origin. The system is strictly hyperbolic, i.e. for each v € Q the Jacobian matrix
A(u) = Df(u) has n real distinct eigenvalues: Aj(u) < -+ < Ap(u). We can thus

choose bases of right and left eigenvectors r;(u), I;(u), i = 1,... ,n, normalized so
that
1 if =35
=1, l;, ;) = ’ 1.2
Il (s, 73) {0 I (1.2
for every i,j € {1,...,n} and u € Q. For each i = 1,...,n, we assume that the

i-th field is either linearly degenerate, so that

Ai hr; - X
Vi -ri(u) = lim (u thr (u)) Ai(w) =0 for every u € Q,
h—0 h

or genuinely nonlinear, so that
VAi-ri{u) >0 for every u € Q.

In this setting, it was proved in [BC2] [BCP] [BLY] that the system (1.1) admits a
uniformly Lipschitz continuous semigroup of solutions S : D x [0,0) + D, defined
on some nontrivial domain D C L'(R,R™). More precisely, the following is true
(cf. [B3)):

THEOREM 1.1. There ezist a closed domain D C L', a continuous mapping
S :[0,c0) x D — D, and positive constants &, L depending only on the system
(1.1), such that
(i) D contains all functions & € L' N BV(R,R") with T.V.(@) < do. In
particular, if u € D then u attains values in Q.
(Z‘l) So(ﬂ) - ’L—L,
Sits(@) =S¢ (Ss(@)) Vt,s >0VaeD.
(iii) || S¢(@) — Se(w) |l < L-(Jt — s8]+ || & — @ ||1) Vt,s >0 Va, @ € D.
(iv) If @ € D is piecewise constant then, for small t, S;(@) coincide with the so-
lution u(t,-) to (1.1) obtained by piecing together the selfsimilar solutions
to Riemann problems arising at the discontinuities of 1.

Conditions (%) (1) (iv) automatically imply:

3
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(v) Each trajectory t — S¢(@) is a solution to (1.1) with a given initial con-
dition
u(0,)=aw€D. (1.3)
Moreover, this solution coincides with the limit of the approzimate front
tracking solutions of (1.1) (1.8).

Since, given a positively invariant domain D, the semigroup S satisfying conditions
(ii)~(iv) above is unique (see [B3]), it is customary to call it Standard Riemann
Semigroup (abbreviated in the sequel to SRS). A way to establish the uniqueness
of solutions to the Cauchy problem (1.1) (1.3) is thus to prove that every entropy
weak solution u = u(f, z) actually coincides with the SRS trajectory:

ult,)) = S (1.4)

for all t > 0. Regularity conditions which imply the identity (1.4) were introduced
in [BG] [BL]. These conditions provide some control on the oscillation of u in a
forward neighborhood of each given point (¢, ).

Below we consider an alternative regularity condition, quite simple to state, and
prove that it suffices to guarantee uniqueness.

(A3) (Locally Bounded Variation) There exists 6 > 0 such that, along every
space-like curve ¢ = y(z) with tdfy/ do:] < § almost everywhere, the total
variation of u is locally bounded.

In other words, we require that, whenever ¢t = y(z) is a space-like curve satisfying
|y(z) —v(z')| < 6|z —2'|  forall 2,2,

then the total variation of the composed map = +— u(7v(z), z) is bounded on bound-

ed intervals. For completeness, we restate below our basic assumptions on weak
solutions and the Lax entropy conditions.

(A1) (Comnservation Equations) The function u = u(t,z) is a weak solution

of the Cauchy problem (1.1) (1.3), taking values within the domain D

of a Standard Riemann Semigroup S. More precisely, u : [0,T] = D

is continuous w.r.t. the L! distance. The initial condition (1.3) holds,
together with

// (wps + f(u)ps) dedt =0 (1.5)
for every C* function ¢ with compact support contained inside the open
strip (0,7) x R.

(A2) (Entropy Condition) Let u have an approximate jump discontinuity
at some point (7,£) €]0,7[xR. More precisely, let there exists states
v~ ,ut € Q and a speed A € R such that, calling

U(t,z)i{u— if z<&+At-1),

wt i > E+AE-T), (1.6)

there holds

) 1 T+p  pE+p
pgr& z - /g—p lu(t, z) = U(t,z)| dzdt = 0. (1.7



A wuniqueness condition for hyperbolic sysiems of conservation laws 5

Then, for some 7 = 1,... ,n, one has the entropy inequality:

Ai(uT) > A > Ag(uT). (1.8)

With the above assumptions, the main result of this Chapter is the following:

THEOREM 1.2. Assume that the system (1.1) generates Standard Riemann
Semigroup S : D x [0,00) — D. Then, for every @ € D, T > 0, the Cauchy
problem (1.1) (1.8) has a unique weak solution u : [0,T] — D satisfying the as-
sumptions (A1)—(A3). Indeed, these assumptions imply the identity (1.4) for all
te[0,T].

A proof of this theorem will be given in Section 4, while in Sections 2 and 3 we
collect a number of preliminary estimates.

2. More on SRS

In this Section we recall two useful estimates valid for the trajectories of a Standard
Riemann Semigroup S. For their proofs, see [B2].

LEMMA 2.1. Letw : [0,T] +— D be Lipschitz continuous. Then for every interval
[a,b] € R there holds:

lw(T) - STW(O)”Ll([a—!-/\*T,b—/\*T],R“) (21)
T w(r + k) = Spw(r)|l;, . . )
=0(1)- / {liminf | e (oA (TR b2t R L o
0 h—0+ h

Here and in the sequel, with the Landau symbol O(1) we denote a quantity whose
absolute value satisfies a uniform bound, depending only on the system (1.1).

Before stating the local integral estimates valid for semigroup trajectories, we need
to define two local approximate solutions of (1.1). Let w € D and fix a point £ € R..
Call w = w(t, z) the unique self-similar entropy solution of the Riemann problem

wi + f(w)z =0, w(0,2) = {Zg;; ;_f z i 8’

For ¢t > 0, let
w(z) if |z —¢ > At

Next, call A = Df(w(é)) the Jacobian matrix of f computed at w(¢). For t > 0,
define U*(t,z) to be the solution of the linear hyperbolic Cauchy problem with
constant coefficients

U + AU =0, U (0) = w.
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- LEMMA 2.2. For every function w € D, every £ € R and h,p > 0, with the
above definitions one has

E+p—h3
% /E_p hi I(Shw) (z) — Uﬂ(h,x)’ dz (2.2)
=0) - TV{w; E=p, O U (& E+0) ),
E+p—hi
% e pthi \(Sh’w) (z) - Ub(h,m)\ dz -

=0(1)-(T.v.{w; (E—p, £E+0p) })2.

3. The regularity conditions

In this Section we explain which information on the structure and regularity of
solution u : [0,7] — D to (1.1) is enclosed in the conditions (A1)-(A3).

Since D < L! N BV, for sake of definiteness we shall always work with right-
continuous representatives, so that our functions w € D will satisfy w(z) = w(z+)
for all z € R. Moreover, given a continuous map u : [0,T] — D, we will identify it
with the corresponding function of two variables u € L! ([0, T] x R, R"), defined in
the natural way.

The following two lemmas concern the condition (A1).

LEmMMA 3.1. Let u : [0,T] = D satisfy (A1l). Then u is Lipschitz continuous
w.r.t. the L' distance.

LEMMA 3.2. Let u: [0,T] = D satisfy (Al). Then u € BV (]0,T[xR; R™).
Moreover, there ezists a set N of Lebesque measure 0, containing the endpoints
of the interval [0,T], such that for every 7 € [0,T}\ N and every §£ € R the
following holds. Either u is approzimately continuous at (7,&), i.e. (1.7) holds
with U(t,z) = u(r,€—) = u(r,€+), or u has a non-horizontel approzimate jump
discontinuity at (1,£), so that (1.6) and (1.7) hold. In this latter case one has the
additional relations

uw” =ul(r, &), ut = ulr,&+),
At =] = Fwh) = f(u).
If u satisfies (A2), then (1.8) holds for some i =1,... ,n.

A proof of Lemma 3.1 can be found in [BG]. The first statement of Lemma 3.2 is a
corollary of Lemma 3.1. For the proof of the other statements see [BG] [BL] [EG].
The next two lemmas derive some local properties of u, implied by our assumption
(A3).

LEMMA 3.3. Let u : [0,T] = D satisfy (A3). Fiz T € [0,T] and € > 0. Then
the set

B = {§ €R; limsup [|u(t,z)—u(r,€)|> E} (3.1)

t—=74, T3¢

has no limit points.
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PRroOF. If the conclusion fails, then there exists a monotone sequence {¢;} of
points in B; ., converging to some limit point &. To fix the ideas, let the sequence
be decreasing, the other case being entirely similar. For each ¢ > 1, by the right
continuity ot the function z ~ u(r, ) one can find a point w; € (&;,&—_1) such that
lu(r, w;) —u(r, &)| < /2. Next, let t; > 7 and x; €]w;y1,w;[ satisfy the inequalities

|u(t’iaz’i) - U(Ta €L)l 2 &,
|t; — 7] < 6 - max {|z; —wi|, |z — wir1]}- (3.2)

Define a space-like curve ¢ = y(z), with z € [{, &1], by setting

T if z=¢& orz>w,
y(z) =< ti — (z — ;) - —j:—:—ml if ze[z,w], (3.3)
T+ {x — wip1) z,-t-i;;l if z€ w1, i)

By (3.2), v is Lipschitz continuous with Lipschitz constant §. Since |u(t;, z;) —
u(t,w;)] > €/2 for all i > 1, the total variation of the composed map =
u(v(z), ) on the interval [£), &1] is infinite. This contradicts the assumption (A3),
thus proving Lemma 3.3. |

Throughout the following, we consider a fixed number A* > 1/§ strictly larger than
the absolute values of all propagation speeds A; of the system (1.1).
LEMMA 3.4. Letu: [0,T] — D satisfy (A3). Then for each (1,€) € (0,T) xR
térll,né-—mi u(t,z) = u(r, €x).

le—€&|>A*(t—7)

PRrRoOOF. Suppose the conclusion of the lemma fails. To fix the ideas, assume
that, for some (1,&) € (0,7') x R, there exist decreasing sequences t; — 7+ and
z; = &+, such that

lz; — &l > A*[t; — 7], lu(ts, z;) — u(r,&)| > &,

for some € > 0 and every index j. The case z; — & — can be treated in the same
way.

Define the sequence of points
’wjizrl'%'(fj—ﬂ
and observe that w; — §+ as j —+ co. By possibly taking a subsequence, say
{(t;,z:)}, we can assume that the corresponding w; satisfy
7; € (Wir1,wi), |t; — 7] <6 max {|z; —wi|, |zi —wita|} for all i.

Now let v be the space-like curve defined by (3.3). Since w; — £+, for every ¢
large enough, we have |u(T, w;) —u(r, §+)] < &/2, hence Iu(ti,zi) —u(r, wi)l >e/2.
Therefore, the total variation of the map z — u(vy(z),z) on the interval [£o,w1] is
infinite, in contradiction with (A3). O

We conclude this section by recalling two technical results, that will be needed for
proving Theorem 1.2. Their proofs can be found in [BG].
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LEMMA 3.5. Let w € L'(Ja, b[,R™) be such that for some Radon measure p,

one has ]
‘/ w(z)dz| < p([é, ¢]) whenever a < G <G <b.

Then ,
/ |w(z)| dz < p((a, b)).

LEMMA 3.6. Letu : [0,T] ~ D be Lipschitz continuous. At a given point (7,§),
l~et the conditions (1.6) (1.7) hold, for some uv~,ut € R™, A € R. Then, for each
A > 0 one has

by
lim sup / [u(r + R, &€+ X+ py) —ut| dy =0,
PO+ Jhi<p Jo

0
lim sup / ]u(T-l—h, E+ Ah+ py) ~u‘{ dy = 0.
P20+ |ai<p J-X

4. Proof of the main result

Let u satisfy (A1)—(A3). To deduce (1.4), in view of Lemma 2.1 it suffices to show
that for every interval [a,b] C R and a.e. 7 € [0,T] one has

i i [[u(r +h) = Shu(T)HLl([a,b],R")
h—0+ h

We will show that (4.1) is valid for every [a,b] € R, whenever 7 € [0,T]\ NV. The
proof is divided in 3 steps. The aim of the first two steps is to derive the appropriate
estimates on the error

= 0. (4.1)

”u('r +h) — Shu(”')”Ll(I,Rn):

when h > 0 and the interval I C [a, b] are small enough. This will be done using the
inequalities in Lemma 2.2, namely (2.2) near points where u(7, -) has large variation,
and (2.3) on intervals where the total variation of u(r,-) is suitably small.

In the third step we construct a suitable covering of [a,b] and complete the proof
of (4.1) combining the estimates obtained in steps 1 and 2.

STEP 1. Fix £ > 0 and assume 7 ¢ A. Then, at every point £ € R, the limit (1.7)
holds for some u~,ut, . Observe that u™ = u™ at a point where u is approximately
continuous, while ut # u~ if u has an approximate jump discontinuity at (7,§).
By (1.7), from Lemma 3.6 it follows
1 E4+N*h
lim — ]u(T+h,x) —U(T+h,m)|d:c
h—0+ R Je_xop

1 [EFATR
< lim —/ |u(r + h,z) —uh|da
h—0+4 h E—A*h

1 gEFAR
+ lim —/ ‘u('r—l—h,a:)—u‘lda::o.
h—0+ h £—A*h
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Hence
1 E+A*h
- ‘U(T+h,$)~U(T+h,.II) dr <e
B Je—an
for all A > 0 sufficiently small.
By Lemma 3.2, U(t,z) = U*(t — 7,z) in a forward neighbourhood of the point
(7, €). Hence by (2.1) we get '
1 E+A"h
- [u(r + b, 2) = (Shu(r) (@) da
B Je—xen

EFATA
Sets /E_M (Swur))(@) ~ U(r +h, )| o (4.2)

=e+ 0(1) -T.V.{u(T); (E—2\"h, &) U (& &+ 2/\*h)}) < 2¢

for A > 0 small enough. Note that here the maximum size of h depends on &, T
and e.

STEP 2. Fix £ > 0 and an interval (¢,d) C R centered at a point & and such that
(¢,d) N B, =0. Here B, is the set (3.1) of points where the oscillation of u is
> e. For any h > 0, let ', be a trapezoid defined as

T, = {(s,:t:); selrr+hl, ze (c+(s—7)A, d— (s — T)A*)}.
We first show that for small A > 0 and every (s,z) € ', one has
Iu(s,a:) - u(r, f)[ <2+ T.V.{u(r); (c,d)} (4.3)

Indeed, by Lemma 3.4 the inequality (4.3) clearly holds for points (s, z) contained in
small neighbourhoods of the lower corner points (7, ¢) and (7, d). It thus remains to
prove (4.3) in a region of the form [7,7+h] x [c+h',d—}'], with A’ > 0 given and for
some h > 0 suitably small. Since [c+h',d—h'|NB;. =0, for every y € [c+h/,d—}]
we can find hy, py > 0 such that (4.3) holds when (s, z) € [, T+hy] X (y—py, y+p).
Covering the compact interval [c + h',d — h'] with finitely many open intervals
(Yj — Py;» Yj +Py;)» 3 =1,...,N and choosing h = min hy;, we obtain (4.3) for
all (s,z) € [r,7+ h] X [c + h',d — h']. We now show that, for all A > 0 with

h < (d — ¢)/2X*, the following estimate holds:

d—A*h
/ |’LL(’I‘—|-h,.’B)-—-Ub(T+h,:B)|dZE
c+A*h

=0(1)- sup |u(s,z)— u(r,
(1) (s,i>£rh1( ) = u(r, §)] (4.4)

. /TMT.V.{U(T); [c+ X\t —1), d——)\*(t—r)}}dt.

To derive (4.4), we proceed as in [BG]. For each i = 1,...,n call A;,l;, 7 re-
spectively the i-th eigenvalue and the left and right eigenvectors of the matrix
A = Df(u(r,§)), normalized as in (1.2).

Let ¢’ < (" belong to the interval (c+ A*h,d — A*h). We now need to estimate the
quantities
G2
E; = [li(u(‘r + h,z) = U*(h, x))] dz.
C1
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Obviously
I Ul’(h,:c) =1, U0,z — Nih) = I; u(r, = — AR).

Integrating (1.1) over the domain
{(s,z); selr, T+h, (+Nls—T-h) <z <"+ NE-T~ h)},
we obtain

¢ ¢ -
E; = / I u(t + h,z)dz ——/ l; u(t,z — Ajh) dz
¢ ¢

T+h - - 5
= / Lo (flu) = Xu)(t, ¢+ (@E—7—h)A)dt (4.5)

T-+h N B
—/ Li- (flu) = Au)(t, ¢+ (t—7 = Rh)N;) dt.

Consider the states

u' iu(t, C+ (-7 —h);\i), T u(t, ¢+ (t—'r——h);\i),

&
Il

= u(7, §)

and define the averaged matrix

1
A° —'—_./ [Df (su" + (1 = s)u’) — Df(@)] ds.
0
One can check that

I (7 = F) = M = )

(Df(a) (W =) = AU — u')) I A~
A*(ull — ul)'

li
I;

I

Therefore

L(ﬂw3~fw3—MW”—wD.=Oﬂ%hﬂ—UWﬂAW
=0(1) - " =] (ju” — 4|+ ju’ —a]).

Together with (4.5) this yields:
T+h 5 B
|Ei| = O(1) - / {|u(t,(’ +(t=T—R)X) —ult, "+ (E—T—h)AN)|-
(Jut, ¢ + (¢ =7 = WA) — u(r,©)|

n [u(t, "+ (t—71— R)A;) — u(r, E)D } dt
=0(1)- sup |u(s,z) —u(r, &)l

(S,CB) €l'n

r+h
/ T.V.{u(t); [¢+(t-T—hX, ¢+ (-7 h):\,.]} dt.
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Therefore

<> B

i=1

=0(1)- sup J|u(s,z)—u(r,§)|

(s,z)€Tn

T+h [ 71
/T [ZT.V.{’L&(@; 1¢+(t=1=h)A;,

i=1

/C” I:U(T + h,z) — Ub(h, a:)] dz

14

¢ (-1 = BN }] dt.

In view of Lemma 3.5, this establishes (4.4).

Combining (4.3), (4.4) and (2.3) we obtain

d—A*h
/c lu(r + 1,2) — (Sru()(=)| do

+A*h
=0(1) - (2e + TV A{u(r); (e d)})
(4.6)

T4+h
/ TV {u); e+ (6 -mX, d— (6 -] b
+0(1)-h- (TV.{ulr); (e},
valid for small A > 0.

STEP 3. Fixe > 0, a time 7 € [0,7]\ A and an interval [a,b] C R. By Lemma 3.3,
the set B;. N |[a,b] contains finitely many points, say {& < &2 < ... < &v. Observe
that every point & where u(r,-) has a jump > ¢ is certainly included in the above
list.

We can now cover the set [a,b] \ {&1,...,€n} with open intervals (cq,ds), @ =
1,..., M, satisfying the following conditions:

@) {&,... . EnINULL, (cards) =0,

(i) T.V.{u(r); (Carda)} <2 foreverya=1,...,M,

(iii) every point of [a, ] is contained in at most two distinct intervals (cq,dq) -

By steps 1 and 2, for every h > 0 small enough one has

1 pGtATh .
z B e
h Je;—xen ’u(r+h,x) (Spu(r))(z)| dr < N’



12 Chapter 1

and

da—A"h
/c 'u(T + h,z) — (Shu(r))(g;)l dz

a+A*h
=0(1) -¢- /T+hT.V.{u(t); (ca+ (= T)N*, do — (t - T)A*)} dt
+O0(1) - he - T.V.{u(T); (Ca, da)}

foreveryi=1,... ,N and every o = 1,... , M. Finally,

1 b
i

u(r + by z) — (Shu(r)) (a;)j dz

5+,\h

—-Z /5 Cen u(T +h,z) - (Sh'U«(T))(ZE)ld:E

+§:/

T+h
<e+0Q1)- % / T.V.{u(t); R}dt +O0(1) -e-T.V.{u(r); R}
=0(1) -e.
Letting £ — 0 we obtain (4.1). We have thus shown that if u satisfies (A1)—(A3),

then it must coincide with the corresponding semigroup trajectory ¢ —» Si@. On
the other hand, one can easily check that the assumptions (A1)—(A3) are satisfied
by all semigroup trajectories, because these are obtained as limits of wave-front
tracking approximations. The proof of Theorem 1.2 is thus completed. a

de—A"h

u('r + h,z) — (Spu(r)) (x)‘ dz

+A*h



CHAPTER 2

L' stability of patterns of non-interacting large
shock waves

1. Introduction

In the previous Chapter we dealt with systems of conservation laws with initial
data that are small in L' and BV. We recalled the basic result (Theorem 1.1,
Chapter 1) saying that the entropy solutions to such Cauchy problems constitute
a semigroup which is Lipschitz continuous with respect to time and initial data. A
major question which remains open is whether the uniqueness of solutions also holds
for arbitrarily large initial data. Observe that, because of the finite propagation
speed, this is essentially a local problem, which can thus be reduced to proving
the wellposedness of the Cauchy problem with the initial data % being a small
perturbation of a fixed Riemann problem. The solution of the latter consists in
general of M (large) waves of different characteristic families, but we shall restrict
ourselves to the case where all these waves are (large) shocks.

More precisely, in the n-dimensional state space M + 1 (M € {2...n}) distinct
states {ud}}L, are fixed, with their corresponding open disjoint neighbourhoods
{Q9}ML, such that:

M

e The flux function f :  — R™ is smooth and defined on {2 = U QI CcR™
g=0
e f is strictly hyperbolic in Q, that is: at every point u € {2 the matrix
Df(u) has n real and simple eigenvalues Ay (u) < ... < Aq(u). Note that
consequently one has:

Ap(u) = As()|>c  Vk#sVYqg:0...M Yu,ve ! (1.1)

with some positive constant ¢, if only the neighbourhoods Q¢ are suffi-
ciently small.
e Each characteristic field of the system:

ut + f(u)e =0 (1.2)

is either linearly degenerate or genuinely nonlinear, that is: with a basis
{rr(u)}r, of corresponding right eigenvectors of D f(u); Df(u)ry(u) =
A (u)rg (u), each of the n directional derivatives ryVA; vanishes either
identically or nowhere.

We assume that the Riemann problem: (1.2) with:
w(0,") =14, (1.3)

13
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0
i ug <0
= 14
a(a) {uy R (14)
has an M-shock solution:
uwd T <A
u(t,z) =ud A<z <A™ ¢:1..M-1 (1.5)

ud x> AM,

in which the states ul are joined by M (large) shocks (ud™,ud), g:1... M, trav-
elling with respective speeds A9.

Q0
t .'.
0/
I
Figure 1.1

The following standard conditions on the nature of the large shocks are assumed.
For (1.5) to be a distributional solution of (1.2) (1.3) (1.4), we need that for every
g :1...M the Rankine-Hugoniot conditions are satisfied:

Fu™) = F(ud) = AT(uf™ — uf). (16)
Moreover, the shocks (™', ul) are said to belong to the corresponding i,-chara-
cteristic families (1 < 43 < 42 < ... < iy < n) and assumed to be compressive in
the sense of Lax [L]:
Xi, (wd™h) > AT > N, (ud). (1.7)
Note that (1.7) yields in particular that the shocks of characteristic families carrying
bigger indices travel with the faster speed: A! < ... < A, as in Figure 1.1.
Finally, we require that all large shocks are stable in the sense of Majda [M], that
is:
The n vectors
T1 (Ug_l), v 7Tiq—1(uq~1)7ug - Ug_l,riq+1 ('U’g)! s :Tn(ug) (18)
are linearly independent.
for every g : 1...M. This condition, satisfied automatically when the shock

(ud™',u?) has small amplitude, will be explained and discussed in detail in the

next Chapter.

The following questions arise naturally:
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I. Do we have the (global in time and space) existence of a solution u to
(1.2) (1.3) when @ stays ’close’ to the Riemann data (1.4)?

I1. In case the answer to I is positive, is the solution v stable under small
perturbations of its initial data?

Differently from the case of small initial data, the assumptions introduced so far
are not sufficient to ensure the positive answer to any of the above questions.
The more, even the solvability of Riemann problems (u™,u*) with u™,u™ € Q is
not just a simple consequence of the existence of the solution (1.5) but requires an
additional hypothesis. This and other stability conditions implying positive answers
to questions I and IT will be discussed in Chapter 3.

The purpose of this Chapter is to prove the wellposedness of (1.2) (1.3) under the
following assumptions:

WEIGHTED BV STABILITY CONDITION
There exist a constant § € (0,1) and positive weights w{, ... ,wg (for every
g : 0...M ) such that the following holds. Consider a small wave of a
family k < i,, hitting from the right the large initial i,-shock (uwd™t ul),
as in Figure 1.2. Condition (1.8) guarantees that the Riemann problem
(ud™",ud) can be uniquely solved (see Section 2 in Chapter 3). Then

ip—1 n
2 -1
wg 9 out ’LUg 9 out
Z ——wq . —aein 63 -+ Z —'I:UT . -——aein Es < 9 (19)
s=1 K k s=ig+1 K k
L= =0.
g out Qq‘l q

a) b)
FIGURE 1.2

Symetrically, in case when a small k-wave with k& > i, hits the shock
(wd™',ud) from the left (as in Figure 1.3), there holds:

ig—1 n
g—1 q
Ws . 9 Eout + W . 0 out <@ (1 10)
g—1 8€in s wq-—l aein s :
s=1 Wy k s=ig+1 k k
aten=... =l =...=¢r=0.

Regarding w? as the weight given to an s-wave located in the region between the
g — 1 and the g-th large shock, conditions (1.9) (1.10) simply say that, every time
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b)

FIGURE 1.3

a small wave hits a large shock, the total weighted strength of the outgoing small
waves is smaller than the weighted strength of the incoming wave.

WEIGHTED L' STABILITY CONDITION
In the setting of Figure 1.2:

Cwrt | 8 et (out — A9
2 o oo
— \ ) oo (1.11)
w! eout . (\out — A9
o 3 o (Toem)| <2
at €" = ... =€ = ... = €™ =0, while in the setting of Figure 1.3:
g1 - ou ou
g ' 2 (Est'(’\st-Aq)
g—1 aein (/\zn - Aq)
. w k k
s=1 "~k 5 t ( t (1.12)
i w? €gut . (A9¥ — A7)
+ 5ol | <8
S=i§q:+1 w! Lo oein ( (Aim — Ag) )l
atell=...=¢el=...=¢€r=0

Observe that it is always possible to define the weights {w(} and {w}} such that
(1.9) - (1.12) are satisfied, provided that the suitable weights {w?}, ¢ ¢ {0, M}

exist.

Also, as follows from Theorem 5.2 in Chapter 3, the Weighted L! Stability Condition
is indeed stronger than the Weighted BV Stability Condition.
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Now we turn to the main point of this Chapter. Define the domain 550 by:
ﬁgg =cl {u :R — R"; thereexist points ' <z < ... < z¥ in R

uy <zt
such that calling u(z) = {wuf 27 <z <2zl g:1..M—-1 (1.13)
w x> M

we have: u — o € L'(R,R"™) and TV.(uv—1) < 50},

with the closure taken in L (R,R™).

Our main results are the following:

THEOREM 1.1. If the Weighted BV Stability Condition (1.9) (1.10) is satisfied,
then there exists 8o > 0 such that for every @ € Ds, (1.2) (1.3) has a solution
(defined for all times t > 0).

THEOREM 1.2. If the Weighted L* Stability Condition (1.11) (1.12) is satisfied,
then there ezists 6o > 0, L > 0, a closed domain Ds, C Li,.(R,R") containing Ds,,
and a continuous semigroup S : [0,00) x Ds; — Ds, such that:

(i) So(@) = 1,
Seys(0) = 5;(Ss(@)) Vi, s >0Va € Ds,.
() || Se(a) = Ss(@) lLr< L- (|t = sl+ || @ =@ [|L2) V2,5 > 0 Va,d € Dy,.

(iti) Each trajectory t — Sy() is a solution of (1.2) (1.8).

The rest of this Chapter is organised as follows. Toward the proof of Theorem
1.1, in Section 2 we describe the wave front tracking algorithm working in the
presence of large shocks and generating the approximate solutions of the system
(1.2). The main features of the wave front tracking approximate solutions are
listed in Theorem 3.4. In Section 3 we define the Glimm potentials, measuring the
total strength of all small waves in these approximate solutions, and the amount
of interaction between themselves or against the large shocks. The existence of the
Glimm potential implies the validity of Theorem 1.1 in the standard way.

Section 4 contains the definition of the Lyapunov functional and the basic L! sta-
bility estimates for the wave front tracking algorithm. Our functional is motivated
by the similar one in [BLY]; the difference is that it now contains some extra terms
accounting for the interactions and coupling of the small waves against the large
shocks. In Section 5 we prove the stated stability estimates, concluding the proof
of Theorem 1.2. Finally, in Section 6 we comment on the relation of these results
to other papers.

2. Wave front tracking approximations

Given a Cauchy problem (1.2) (1.3), one of the main strategies [B3] [D] to obtain
the existence of its global in time solution is the following;:
(i) Approximate the initial data @ by piecewise constant data ..
(ii) Give a recipe for construction an approximate solution u, to (1.2) with
u(0, ) = @.. The function u, should have relatively simple structure, e.g.




18 Chapter 2

be piecewise constant, with finitely many jumps occuring along straight
discontinuity lines.

(iii) Show that for some parameter sequence €, — 0, the sequence u., has a
limit in L] ., and that this limit is a solution to (1.2) (1.3).

Tn this Section our goal is to realize (ii) by means of the wave front tracking algo-
rithm [BJ] [R], that we adjust to work in the presence of large shocks.

The ’fundamental block’ for building the approximate solutions u. is provided by
the suitable piecewise constant approximation of the self-similar solution to an ar-
bitrary Riemann problem (u~,u™). If both the states u™,u™ belong to the same
set 09, then this solution is given by the already standard Accurate or Simplified
Riemann Solvers [BJ]. Their construction depend on two positive parameters: §
which bounds the strength of the wave fronts in every rarefaction fan approximat-
ing centered rarefaction wave in the real solution, and A (strictly larger than all
characteristic speeds of (1.2)) that is the speed of non-physical waves, generated
whenever the simplified method is used.

Below we present the corresponding solvers for the large amplitude Riemann prob-
lems (u~,ut) € Q77 x Q7. Having it done, the wave front tracking algorithm
works as follows.

Assume we are given a piecewise constant function u(0,-) € 550, for
some small 6 > 0 (such functions are dense in the domain Dj,).

Fix a treshold parameter p > 0. At each discontinuity point z of u(0, ),
its corresponding Riemann problem (u(0,z—),u(0,z+)) is solved ap-
proximately on a forward neighbourhood of (0,z) using Accurate Rie-
mann Solver. The approximate solution u(-, -) is thus defined until a time
t1, when the first interaction(s) between two or more wave fronts takes
place. Decreasing slightly the speed of the slowest front, we may without
loss of generality assume that at the first interaction time ¢; exactly two
fronts interact. This interaction creates a new Riemann problem, that
is to be solved according to the following rules.

First, define the strength of any large wave connecting two states in
Q9-1 and Q9 to be equal to some fixed number B < 1, bigger than all
strengths of small waves.

Now if both incoming fronts (small or large) are physical, and their
strengths ¢, ¢’ satisfy |ee'| > p, then the Accurate Riemann Solver is
used. On the other hand, if |ee'| < p or if one of the incoming fronts
is a non-physical wave (thus with speed }), we then use the Simplified
Riemann Solver. (Note that whenever a big wave is involved in the
interaction then we use one of the new Solvers, described below.)

This way a piecewise constant approximate solution u(-,-) is generated
up to the time ¢o when the second interaction takes place. We use the
decribed procedure again to solve the new Riemann problem and thus
prolong the function » up to the time ¢3, and so on ...

This completes the definition of the algorithm. Next we introduce the Riemann
Solvers, assuming that the problem under consideration is (u=,ut) € Q97! x Q4.
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ACCURATE RIEMANN SOLVER

Acurate Riemann Solver is the self-similar admissible solution of the Riemann prob-
lem (u~,uT), described in Theorem 2.1 in Chapter 3, with every rarefaction wave
(w, Ry (w)(€)) replaced by a piecewise constant rarefaction fan:

u(t,z) = Ri(w)(s€) for % € (Ak(Rk(w)(sE)), A (R (w)((s + l)E)))
Vs:0...N -1
where N = [¢/8] +1, é=¢/N.

SIMPLIFIED RIEMANN SOLVER

CASE 1. Let k > i, be the family of a small (physical) wave of strength e,
interacting from the left with a large i, shock, as in Figure 2.1.

FIGURE 2.1

We solve the Riemann problem (u~,u") in the following way:

u= for z/t < Ala(u=,us)

U for z/t € (Afa(u™,us), A\p(ua,us))
us = Wr(uz,e) forz/te (A (uz, us), A)

ut for z/t > X.

Here Uy (us,-) is the k-th wave curve through its left state us ([L]). The speed
(f(u™) = flu),u” —us)

lu™ —uaf?

Aiq (u_, UQ) =

is the Rankine-Hugoniot speed of the outgoing large shock. The outgoing strength e
is equal the strength €% in the solution of the problem (u~,u™) given in Theorem
2.1 in Chapter 3. The corresponding speed:

)\k(u27u3) =

Ak (u2) if € > 0 and the k-field is genuinely nonlinear
(f(u2) — f(us), uz — ug)

5 otherwise.
lua — us|
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The middle state uy is taken such that |us — u~| = |u; — u*| and that us can
be connected to u~ by a large i, shock. The existence and uniqueness of uy is
guaranteed by the analysis in Section 2 in Chapter 3.

If the small k-wave hits the large i,-shock from the right (k < ig), we construct
the Solver in the analogous way; letting the k-wave pass through the shock with
its strength changed by an appropriate factor, and create a new non-physical wave
travelling with speed X

CASE 2. A large i,-shock is hit by a small wave of the same family or by a non-
physical discontinuity. This case is treated exactly as in [BJ].

3. Glimm’s potentials

Once the steps of the algorithm have been defined, it remains to show that it
generates a piecewise constant function u., defined for all times ¢ > 0, and that the
sequence {u.} converges to a solution of (1.2) (1.3) as ¢ tends to 0, for a suitable
choice of the algorithm parameters p and ¢ (depending on €). Since the large shocks
of different families do not interact, the standard analysis (as in the case of only
weak shocks present [B1] [BJ] [R]) applies, provided one finds suitable a priori
bounds on the Total Variation of the profiles u.(¢,-) and bounds on the global
number of wave fronts and the total strength of all non-physical waves. To this
end, we shall define the so-called Glimm’s potentials. Their properties are stated
in Proposition 3.3.

Let u(t,z) be a piecewise constant approximate solution, generated by the wave
front tracking algorithm. At a fixed time ¢ > 0, the function u(t,-) is piecewise
constant, with jumps located at the wave front positions. There are precisely M
large jumps, while the others are small, their left and right states belonging to the
same set 9.

DEFINITION 3.1. (Approaching waves)

(i) We say that two small (possibly non-physical) fronts o and B, located
at points T, < zg and belonging to the characteristic families ko, kp €
{1...n+ 1} respectively, approach each other iff the following two condi-
tions hold simultaneously:

— x4 and zg lay together in one of the M +1 intervals (M of them un-
bounded) into which R is partitioned by the locations of large shocks.
In other words: the states joined by the fronts under consideration
both belong to the same set Q9.
— Either ko < kg or else ko = kg and at least one of the waves is a
genuinely nonlinear shock.
In this case we write: (o, ) € A.

(ii) We say that a small wave a of the characteristic family ko € {1...n+1},
located at o, approaches a large shock of family kg = iq for some q :
1...M, located at a point g iff one of the following conditions hold:

— The states u—,ut joined by the small wave under consideration both
belong to Q97" and kq > i4.
— The states u~,u™ belong to Q7 and kg < 1.
We then write: a € A;,.
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We adopt the following notation. For a small wave of family k& and strength e,
connecting two states ™ and ut, we define its weighted strength as

b, =wi e  ifuT,ut €l (3.1)
w} as in the Weighted BV Stability Condition.

DEFINITION 3.2. For a fized t > 0 we define the following (weighted) total
variation and interaction potentials:

V() = Z{{ba[; a - the small waves of all families},
Qalt)= > I|babsl,

(a,B)eA

Q= > |bal, g:1...M.

atAh;,

The Glimm’s potentials:

M
Q) = kQa(t) + > Qi, (1),

M-1
L) = V() +EQ() + ) lug(t) — ul,
g=1

where k,% > 0 are constants to be specified later. The vectors uj(t) are the right
states of the iq-th large shock in u(t,-), respectively.

The following result is implied by the assumed Weighted BV Stability Condition
(1.9) (1.10).

PROPOSITION 3.3. Assume that the Weighted BV Stability Condition holds.
Then for some constants ¢, k, &, 8o > 0 the following is satisfied. If u(0,-) is piece-
wise constant and belongs to 550, then for any t > 0 when two wave fronts of
families a and 8 interact we have:

()
AQ(t) = Q(t+) — Q=)

—clby - bg|  if both waves are small
| —clbal if o 1s a small wave and f is a large shock.

(ii) The same estimate as in (i) holds for AT'(t) = '(t4) — T'(t—).

The proof of Proposition 3.3 is standard, the details can be found in [LT].

Following [BLY] below we gather the main properties of the wave front tracking
approximate solutions. '

THEOREM 3.4. Assume that the Weighted BV Stability Condition is satisfied
and let u(0,-) € Ds, be a piecewise constant function, for do suitably small. Fiz
€ > 0. Then for some parameters p,8 > 0 (depending on €) the wave front tracking
algorithm generates the function u. : [0,00) x R — R™ with the properties:
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(i) u. is piecewise constant, with discontinuities occuring along finitely many
lines in the (t,z) plane. Only finitely many interactions take place, each
involving exactly two incoming fronts. Jumps can be of four types: small
shocks (or contact discontinuities), rarefactions, non-physical waves and
large shocks, denoted as 7 = SURUNPULS.

(ii) Along each shock (or contact discontinuity) T = x4, a € S, its left and
right states satisfy:

Ue (b, Tot+) = Up, (ue(t, Ta—), €a)

for some kg : 1...n and the corresponding wave strength €,. Here Uy_(u™, ")
stands for the wave curve through a fized left state u™ (see [L]). If the kq
characteristic family is genuinely nonlinear, then e, < 0. Moreover, the
speed of the shock satisfies:

|j3a - )\ka ('U'e(ty ma")» Ue(ta ma"‘))l <e (32)
(#i) Along each rarefaction front x = zo, a € R, one has:
Ue(t, Tat+) = ¥i, (ue(t, To—), €a)
for some genuinely nonlinear family k., and the corresponding wave strength
o € (0,€). Moreover:
|Za — Akg (Ue(t, za+)| <. (3.3)

(iv) Every mon-physical front £ = zo, o € NP, has the same speed T = A,
where A is a fized constant strictly greater than all characterictic speeds.
The total strength of all non-physical waves in u(t, ) remains uniformly
small:

D7 lue(t, wa—) = te(t, za+)| <€ VE>0. (3.4)
aENP
(v) Each of the M large shocks © = zo, o € LS is admissible in the sense
of Theorem 2.1 in Chapter 3, and travels with the ezact speed T, =
Afe(u(t, o), uc(t, Ta+)).
The function u. as above will be called an e-approzimate solution of (1.2).

4. The Lyapunov functional

This Section serves to define the Lyapunov functional ® [LY1] [LY2] [LY3] [BLY],
measuring the L' distance between the time profiles of two arbitrary e-approximate
solutions u,v : [0,00) x R — R™ constructed by wave front tracking algorithm
(see Theorem 3.4). The two crucial features of ® will be the following:

1

o hu(t) —v(t,) o< @t ),v(t, ) S O flult ) ot ) e, (41)

D(u(t,),v(t, ") < 2(u(s,-),v(s,-)) +O(1) -e-(t—s) VE>s2>0. (4.2)
Fix a time ¢t > 0 and consider a space point z € R which is not a discontinuity

point of the functions u = u(t,-), v = v(t,-). Let u(z) € O, v(z) € O, for some
i,7 :0... M. We define the scalar quantities {bx(x)}7_, as the weighted strengths of
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the corresponding shock waves in the jump (u(z), v(z)). More precisely, we consider
the Riemann data:

(4.3)

(w™ w*) = {(““’)’”(m” o<y

(v(z),u(z)) ifi>j.
By a slight modification of Corollary 5.3 in Chapter 3 one can see that the Rie-
mann problem (1.2} (4.3) has a unique self-similar solution, whose all small waves
are shocks (possibly nonadmissible). The weighted strengths of the waves in this
solution wii be called by (z). In particular, if for example u(z),v(z) € Q°, then for
every k : 1...n we have by(z) = w) - €4(z) where the strengths {e,(z)}}_, are
implicitely defined by:

v(z) = Snl... ,S1{u(z), e1(z)), ... ,en(z)).
By Ax(z) we denote the corresponding speed of the k-th wave e ().

‘We define the functional:
Buv) =S / b (2)| Wi (),
k=1Y ~>®

where the weights W), are given by:
Wi(z) := 1+ k1 Ar(z) + 52[Q(u) + Qv)]. (4.4)

The constants x;, k2 in (4.4) are to be defined later. @ is the Glimm interaction
potential, introduced in Definition 3.2. The amount Aj(z) of waves in ¢ and v,
approaching the wave ex(z) is defined in the following way:

By(z) + Cr(z) if k-wave by(z) is small, joining
‘ the statesin Q°, s:0... M
Dy(z) + Fp(z) if k-wave by (z) = B is large,
k=1isforsomes:1...M

Ap(z) = (4.5)

Gr(z) 1if k-field is genuinely nonlinear and k-wave by (z)
-+ is small, joining the states Q°, s:0... M
0 otherwise

The summands in (4.5) are defined as follows:

Bm=| 2t 2 g

SE€LS, ka€{isisp1}  @E€LS, ka€lisigp1}
2o <z, ka>k o>z, kog<k

> el if k=i,

aELS

g <z, ka=is

Z Ieal if k= is+1,

a€LS
T >, ka=i3+1

+
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> + >

Gk(x) = | a€J\LS, wa<z, k<ka<n, a€I\LS, za>z, 1<ka <k, Ifaly

both states joined by o both states joined by «

| are located in Q° are located in Q°
+ 2
Di(x) = Z €
I»( ) wecs, wccls, | al:
za>T, ka=ig. ze <z, k:a=i3+1

2 + 2

Fk(x) = a€T\LS, za<z, k<ka<n, *€T\LS, za>z, 1<ka<k, lfal
both states joined by « both states joined by a
are located in Q°7! or in Q°  are located in 2°~?! or in Q°

> X

T | ces\Ls, sa<o, ba=k, GEI\LS, za>e, kaz=k, |€a|;
both states joined by o both states joined by «
are located in Q°? are located in Q°

, 2. + 2

«€T(W\LS, 2a<z, ka=h, a€T(WN\LS, zad>z, ka=k, '504] if bx(z) <0

both states joined by « both states joined by «
are located in Q° are located in Q°
Gr(z) = <
E + E
Q€T (WNLS, sa<e: kamh,  G€T(WNLS, sa>e, ha=k, | |€a| if bx(z) > 0.
both states joined by « both states joined by o
\ | are located in Q° are located in Q° |

Here ¢, stands for the (nonweighted) strength of the wave a € J, located at point
T and belonging to the characteristic family k.. J = J{(u) U J(v) is the set
of all waves in v and v, by £S,R,S,C we denote respectively: the large shocks,
rarefactions, (weak) shocks and non-physical waves in v and v.

We assume the convention that in the above definitions we sum only the terms whose
indices lie in their admissible ranges; for example if s = M, then obviously there
are no large waves with the index is4; and thus we do not treat the corresponding
terms calling the strengths of these waves.

We comment briefly on the formula (4.5). The summands By (z) and Dy (x) account
for the large waves approaching the k-wave under consideration. However, only
these large waves are considered, whose right or left state belongs to the set Q°
containing at least one of the states joined by the k-wave.

Cr(z) and Gg(z) are the usual summands, identical with the ones in the corre-
sponding definition of Ax(z) in [BLY]. Their presence says that a small k-wave is
approached by any wave of a faster family, located to the left and any wave of a
slower family, located to the right. Only small physical waves, living’ in the same
set (1° as the k-wave, are involved.

The summand Fy(z) contains the strengths of the small physical waves approaching
a large k-wave under consideration, according to their locations and speeds. The
convention as in the definition of By(z) is valid. The presence of the second term
in Fi(z) is due to the assumed Lax stability of large shocks.
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Let a be a wave in u (or v), located at a point z,, with speed Z,. Following [BLY]
define:

Eox = bk (0 +) Wi (za+) (As(Tat) — Ta) = |bk(xaf)lpvk(wa_)(/\k(wa’) - &a).
The standard argument [BLY] [LT] shows that (4.1) (4.2) are implied by:
f:Emk =0(1) - |eal VaeC (4.6)

k=1

Y Y Eax=001) ¢ (47)

aeJ\C k=1

If ¢ is an interaction time of two fronts in u or v then all weights

Wi (z) decrease at time . (4.8)

The statements (4.6) and (4.8) are proved as in [LT], using Definition 3.2. In
the remaining part of the article we will focus on (4.7). As usual, if no ambiguity
created, we abbreviate the notation and for a particular wave o under consideration
write: b instead of b(za+), Wy instead of Wi (zo—), etc.

Keeping in mind a possible 'representative’ configuration of wave locations in u and
v, as in Figure 4.1 we formulate the following condition:

FIGURE 4.1

At least for one wave a € LS (of the family i5) both wave vectors

{b7}2_, and {bf }7_, contain a large wave of the same family . (4.9)

The proof of (4.7) will be performed according to whether (4.9) holds or is violated.

Case 1. - (4.9) holds.
Note that one may always take i € {i5—1,%s+1} so that, by (4.5):

Ei, = B- (Wi =W )(OE — &) + WIOE = 2] € -1 B, (4.10)
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where ¢ > 0 is a small uniform constant, bounded away from zero. The inequality
in (4.10) follows from the fact that /\;: — A, in there is of the order of the sum of

all small waves in {e; }7_; and {e] }7_;.

We thus see that E;, provides a big negative term that eventually overwhelms all
the other terms Ej,, because:

Ey=B-WEOF=X;) ifdf =by =Band k¢ {is—1,0511},
Ep = | - WHOF —2a) = b5 |- Wi (A —iq) if both b and by are small,
E;, = B- WX\ —2a) — b7 W AT — da| < B-WEOE — 4).

In all the above cases:

n n
- +
B, =0(1) - ; ekl + g lecT) (4.11)
ap LS ap LS

Similar analysis works for Ef with 8 € LS, 8 # . In case a € SUR, the following
estimate will be shown in Section 4:

> B =0(1) - |eal- (4.12)
k=1

Observing that by Proposition 3.3 the quantity

Z leal

TaeJ\LS

is bounded (uniformly in time), one sees that (4.10) - (4.12) imply (4.7) if only &,
is big and Jp in (1.13) is small enough.

CasE 2. - (4.9) is violated.
The above is possible if and only if no large wave can be found between the locations
of any pair of the large shocks of the same family (occuring in » and v). In other
words: one of the immediate large successors or predecessors of any large wave in
u or v, must be of the same characteristic family as this wave — see Figure 4.2.

FIGURE 4.2
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For a fixed s : 1... M, denote by a the wave in v of the family s, and by £ the
large jump in w of the same family. Then, as shown in Section 5:

> Bak+y Esr<0, (4.13)
k=1 k=1
and
> Bar=0(1)-¢€-|eal Va€SUR. (4.14)
k=1

Certainly (4.13) and (4.14) imply (4.7).

5. Proofs of the stability estimates

CASE OF LARGE SHOCKS
— THE ESTIMATE (4.13)

We assume that the waves location pattern looks as in Figure 5.1, all the other
possible configurations can be treated in entirely the same way.

FIGURE 5.1
Using notation of Figure 5.1, we will show that:
T n T
> Eap+) Epi= > Il - W (A — #a) — b5 |- Wi (A — #a)]
k=1 k=1 k=1 (5 1)
+ > (1651 Wi (X = 3) — [bul - We (A — #5)] < 0.
k=1

First, we estimate Y ,_; Fa,k- By Lemma 5.1 in [LT] and definitions (4.5) we get:

Bau, =B-0(1)- Y [by| = 1b5;] - (O(1) + 281 B) - |}, — #al, (5.2)
k> '
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S Bagp= 3, (bl O = &)W = Wy)
k<is—1 k<is—1
+ W (b6l Ok = 3a) — 15 10 — 2a)) ]
< S0 [= bkl Ak — dalmaB

k<io—1

+ 261 B (|5 [1Ag = &al = [kl A6 = Zal) ]

(5.3)
0@ - | > el + > by

k<is E>i,

= 3B Y. bkl —dal +20 B Y Bl — e

ksis—l ksis——l
+o) - | S0 bkl + D b5l
k<i, k21,

Z Eog = Z [o&] - (A = 2a) (Wi — W)

fem1 <k<i, tam1<k<is
+ Wi (106l O = #a) — 1B [(Ag — 2a)) ]
< Z [ = Ib&] - | Ak — Eolk1 B] (5.4)

i5—1 <k<7;sv

+0(1) - [Z bkl + > lbzl} ,

k<is k>,

S Bar= Y (Bl O g (Wi = W)

i <k<ist1 iy <k<ist1
+ Wi (|bel (k= a) — b5 1Ay — 2a)) ]
< 3 [=Il- Py —dalmB

iy <k<is41
4B (Bl — ol — 71N = 2a)] 55
+0(1)- Y by
E>is
=-26B- > |b;lIAf — al
i <k<ist1

+raB- S (bl —dal +01) - D 17

iy <k<isy1 k>i,



LY stability of patterns of non-interacting large shock waves 29

Y Eagp= Y [l (e = aa) (Wi = Wy)

k>isq1 k2is41
+ Wi (1be) (A — Ea) — b7 1A — Ea)) ]
< 57 [l I\ — @almB

k>iat1
+ 20 B (Jbel s — gl = 71N - 2al)] (56
+0(1)- > by |
E>i,
=268+ > [B;IA; —dal +361B- D [bell A — dal
k>is 41 k>is41
+0(1) - > ;-
k>i,

As usual, we do not take into account these terms in the above formulae, that
contain the 'nonexisting’ indices 151 O t541.

Summing the inequalities (5.2) - (5.6) we obtain:

Y Bag <=3mB- Y [l —dal—mB- Y [bllh = dal

k=1 k<isa o1 <k<is

+m B > |bellA — gl + 381 B+ D [bell Ak — dal

s <k<isg k2i5+1

e e (5.7)

+26B- > B —dal = 2B Y b5 lIA] —

k<is_1 E>i,
+0(1) - | 30 loel + D 1551 -

k<is k>i,

Now we estimate the terms in > r_, Eg x:

Bpi, =B-0(1)- Y bF| = (b1 (OQ1) + 261 B) - |A] — g5, (5.8)
k<i,
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ST Bse= Y bkl O — ) (W — W))

E<i,_1 E<is—1

W (B — ) = |0 — 3)) ]
S [lbel - IAe — dplis B

k<is—1

IA

+ 261 B (|bxll\ — 2] = 0 [1A] — al) ]

+0(1)- {Z LES Ika}

b<is k>,

S3aB. Y Bulhe -l —2mB- Y BN — 2l
k<ig—1 k<is—1

+0(1) - [Z b+ > lbki} ,

E<is k>,

ST Ber= > IO - (W - W)

i1 <k<i, iy <k<is
+ Wi (155 1O = 28) = 1o (A — 25)) |

< 3o =B IN ~ dalkaB]
151 <k<is

+ k1B ([bgl| Ak — g] — B [IAL — 2]) ]

+0(1) - {Z HEDY w}
k<, k>,

11 <k<is

+rB- Y |bllA — gl
'is-1<k<is

o)- [Z i+ lbkl} ,

k<i, E>i,

Z Egy = Z “bkl (e = 38)(We = W)

is<k<ist1 iy <k<isy1
+ Wi (I 1(XF = 5) — | (A — £8)) |
> [ 18kl - 1A — Ealra B

is <k<i,,+1

+0(1) - [Z B+ S lbkl} ,

IN

k<, E>i,

Chapter 2

(5.9)

(5.10)

(5.11)
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ST Bor= S0 (el (= ) (We = W)

k2ts4 k2is41

+ W (07T = 6) — [bx] (A — 20)) ]
< ST [~ lbel 1Ak — dplmB

k>iat1
+ 261 B (B IINF — 2] — [br]| Ak — 25]) ]

(5.12)
+O) - | Y IEI+ Y bl

k<i, E>i,

==3mB- > |l — gl +20B- Y BN — gl

k>igp1 k>ieq1
+O) - | DB+ D bl -
k<is k>,

Thus, in view of (5.8) - (5.12), we get:

ZEB”“ <3k B - Z |bk||Ae — .’i;g' + k1 B - Z [bi || Ak — T3]

k=1 k<ig_1 o1 <k<is
—mB- > bl —Esl =3B D |bel| Ak — 5]
is<k<igy1 k>isqq
it g Nt g (5.13)
=281 B+ Y BFIINS —dpl + 26 B > BN — gl
k<is k>i541
+O) | DB+ D bl | -
k<i, k>,
Summing (5.7) with (5.13) and recalling that
|ta —dal =0() - | > 151+ Y b7,
k>, k<i,
we get:
n T
ZEO"I“ + ZEﬁ,k
k=1 k=1
<2B- (Y BrlAT =l = 2 157 AT — el
k<ig_1 k>,
‘ , (5.14)
= SOBEIAE = sl + Y BEING ~ asl)
ks‘is k2i3+1

O)- | > Ibil+ D foel+ > 1B -

E>i, ki, k<i,
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Since
> bkl =0(1) - {Z I lb;ﬂ} :
ktis k>i, k<is

we see that once we fix v € (0, 1), without loss of generality the following estimate
holds:

n n
> Bkt Ba
k=1 k=1

<2 B[ Y bplae —del+ D [BLIIN — gl (5.15)
k<is—1 k>isq1
—y (1R IAT = gal + 3 EIAE — 5.
k>, k<is

Note that if v > 6 then the right hand side of (5.15) is nonpositive by the following
two estimates:

S Joek = AT = b OO A+ D (bl — A7)

E<is—1 E>is41

(5.16)
<y- >0 I lIAY — A%,
E>i,
ST lbew = A = bEOF = A+ D el — A7)
k2i5+1 kSis—l (5 17)
<y BRI =A%),

k<i,

that are the consequences of the Stability Condition (1.11) (1.12) and can be proved
as in Lemma 5.5. in [LT]. Indeed, summing (5.16) with (5.17), we have:

- (B IAG - A%+ BEIAE - A°l)

k>ig
> [ 30 B - A= 3 el = AT Y bkl — A7
k<ig—1 k<is_1 E>isp1
[0 B AT = 3D elde = AT+ DD bl — A%
E>is1 E>igq41 k<ig1
= 3 Bl - A+ DT EiNy - A%
k_<_i,_1 kZis+1

that implies (4.13) in view of (5.15).
CASE OF SMALL PHYSICAL WAVES

— THE ESTIMATES (4.12) AND (4.14)

Denote by 9, the 'real’ speed of the o wave under consideration, that is: o =
Mk, (v™,vt) in case @ € S or §o = Mg, (vt) in case a € R. For k: 1...n let us
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estimate the difference between Ej and a similar expression where 3, replaces Z :
B = [[bi Wi O = ) = 165 17, O = )] (5.18)
= (Yo — 2o) [0} W5 — 105 IWy ] = 0(1) - € |eal, '

because |Jo — o] < €.

Below, we will assume that §, = #, and prove that under this hypothesis, (4.12)
holds in Case 1, while

> B <0 (5.19)
k=1
holds in Case 2. These together with (5.18) will yield, respectively, (4.12) and
(4.14).
We assume that o — the wave under consideration — is located in 2°, for some

s:0,...,M. In other words, both states joined by a belong to £°.

CASE A. Assume first that both wave vectors {b; }7_, and {b;}7_, contain
a large wave of the family iy € {is,7s41}. We treat here the case iy = i, with wave
configuration as in Figure 5.2, the other cases being similar. We have:

M

FIGURE 5.2

B =B (W7 —W)O% - ol +WIOE D] 0
< —Bcky - lea| + O(1) - B - |eq|
(the choice of the upper or lower superindices depends on the family number ko).
For indices k such that bf and by are small, as in [LT] we obtain:
By = o] - (W = W) - (OF — &)
+ Wi (B = 2a) = 155 1O = 2a)) (5.21)
< (0(1) +4m B) - (O(1) - by = b | +0(1) - [b7 lleal) + O(1) - leal-
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If the k wave is large b = by = B, but k # is, then W;F = W and
Ey =B W\ = X;)) =0(1) - (O(1) + 4s1B) - |eal- (5.22)
Now, summing (5.20) with (5.21) we receive:

E;, + Z Ey < — Bric-lea| + O(1) - ol
En
(5.23)
-0 4B Y [t by |+ elleal] <0,
i

if only &, is big enough and all the weights are wj, small.

Note that in Case 2:

kileon
bE£B

ZEIC =E;, + Z Ey,
k=1

so (5.19) follows from (5.23).

In Case 1 some terms of the form (5.22) may be added to (5.23), thus we can hope
only for the weaker inequality (4.12), which indeed follows from (5.20) (5.21) (5.22).

Case B. - Figure 5.3

. 1 S et T
A Iss1 M Q -
) , S S
- v
v X .7
l l - )
! ! u 1o €y
i I Ay I
. | oo S
u T . I_ 4T
. ! o {bi}
g ! Ko 0 dgm . K
s:0..M
a) b)

FIGURE 5.3

This case has been treated in [BLY]. If the constant B is small enough and &y is
big (with respect to the uniform constants O(1) in all the formulae), we get (5.19)
as in [BLY].

6. Relations to previous works

In this short Section we comment on the relations of the results presented in this
Chapter to other works.

In [S], Schochet was the first to introduce a BV stability condition, giving positive
answer to question I. The global solution to the Cauchy problem under considera-
tion is constructed there by the method of Glimm’s scheme.
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In [BC1], Bressan and Colombo consider the general Riemann problem for sys-
tems of two equations and assuming the corresponding stability condition, answer
question IT positively.

More recently, the paper [LT] proves Theorems 1.1 and 1.2 (for systems of n > 2
equations) in the presence of two large shocks. Substantial differences between
M = 2 and M > 2 occur in particular in the proof of Theorem 1.2. Namely,
the straightforward generalization of the Lyapunov functional introduced in [LT]
does not provide a functional decreasing along the wave front tracking solutions,
when M > 2. On the other hand, our functional defined in Section 4, reduces
when M = 2 to a Lyapunov functional that can be seen as a simplification of the
one from [LT]. Also, instead of Majda’s criterion (1.8), the paper [LT], following
[BC1], used a differently stated assumption. We will show the equivalence of the
two conditions in Chapter 3.

Other connections of our results to existing papers (in particular [Ch] [LiY] [W])
will be pointed out in the next Chapter.



CHAPTER 3

Stability conditions for patterns of non-interacting
large shock waves

1. Introduction

In the study of local existence and stability of solutions to the Cauchy problem for
an x n system of conservation laws in one space dimension:

ut—i—f(u)m =0 (1.1)

u(0,) =4, (1.2)

due to the finite speed of propagation, one is led to consider the special case where
the initial data % is a small perturbation of a Riemann data:

a(s) = {u“ <0 (1.3)

ut z>0.

In the previous Chapter we have shown that existence and stability of solutions
can be obtained under suitable linearized stability conditions for the solutions of
(1.1) (1.2) (1.3). The main purpose of this Chapter is to compare the various
assumptions of this kind, appearing in the literature, and prove their equivalence.
As before, we shall restrict ourselves to the case where the solution of (1.1) (1.2)
(1.3) consists of M + 1 constant states, M € {2,...,n}, separated by (possibly
large) admissible shocks, say in the characteristic families 43 < ... < ip. Calling

ud = u",ud,ud, ... ,ud! =ut these intermediate states, and A? the speed of the i,
shock, the linearized system has the form:
v+ Df(ul) vy =0,  z/t€ (A, A, (1.4)

Along shock lines we have the boundary conditions obtained by linearizing the
Rankine-Hugoniot equations, that yield the linear dependence of the strengths of
the outgoing waves on the components of the incoming wave vector interacting with
the 44 large shock under consideration:

et = Y al e (1.5)
L k:lon
incoming
(see Figure 1.1).
This Chapter is organized as follows. In Section 2 we focus on the admissibilty

and stability of a single large shock in the reference solution (1.1) (1.2) (1.3). In
particular the Majda [M] and Chern [Ch] stability conditions are studied.

In Section 3 we formulate a so-called Finiteness Condition, which guarantees the
stability of a multiple-shocks pattern within the class of Riemann data.

36
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I3 out

Figure 1.1

Section 4 gathers some preliminary facts on matrix analysis. Sections 5, 6, and 7
discuss different BV and L' Stability Conditins. In Chapter 2 (as in [Lel]), these
conditions are formulated in terms of the existence of a suitable family of weights
such that the corresponding BV or L! norm of any solution of the linearized system
(1.4) is non-increasing in time. In Section 5, we give various equivalent formulations
of these conditions, requiring that the eigenvalues of corresponding matrices, related
to wave reflections-transmissions, are smaller than 1 in absolute value. This enables
us to compare our conditions with the Finiteness Condition (Theorem 5.2), as well
as to prove the equivalence of our conditions with other assumptions of this kind
that can be found in [S] (Theorem 6.1) and [LiY] (Remark 5.4).

In the last Section we treat the case of systems of n = 2 equations, with the presence
of M = 2 large shocks and deal with the corresponding conditions introduced in
[BC1] [W] [LT].

We end this Section recalling the setting of the Cauchy problem (1.1) (1.2) from
Chapter 2. In the n-dimensional state space M + 1 distinct states {ug}gio are fixed,
with their corresponding open disjoint neighbourhoods {Q¢ }24, such that:

M

e f:0 — R"is smooth and defined on O = U Q7 C R™

=0

e f is strictly hyperbolic in , that is: at eaqch point u € , the matrix
D f(u) has n real and simple eigenvalues A; (u) < ... < A (u).

e Each characteristic field of (1.1) is either linearly degenerate or genuinely
nonlinear, that is: with a basis {rj(u)};_, of corresponding right eigen-
vectors of Df(u), Df(u)rr(u) = Ag(u)ri(u), each of the n directional
derivatives r;, VA vanishes either identically or nowhere.

The solution to (1.1) (1.2) with the initial data

0
_ uy <0
= 1.6
=) {ué"" x>0 (1.6)
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is given by M shocks (ug_l,ug), qg:1...M, belonging to respective characteristic
families ¢, and travelling with respective speeds A?:

ud T <AY _
u(t,z) = qul A<z <A, ¢:1..M-1 (1.7)
udf = > AM¢,

as in Figure 1.1 in Chapter 2.

2. Stability of a single large shock

In this Section we discuss conditions yielding the stability of a single (possibly large)
shock in the solution of (1.1) (1.2). We assume that the shock connects the states
u™ # ut, belonging to their respective disjoint open neighbourhoods 2~ and 2,
and travels with the speed A. In the notation of the previous Section this reads
wW=u,uy =, Q0 =070 =0M =QF A=A,

The shock satisfies the Rankine-Hugoniot conditions:
F@™) = fluh) = AL —u*), (2.1)

belongs to the i-th characteristic family, and is compressive in the sense of Lax [L],
that is:

Ai(u”) > A > A(ut). ' (2.2)

If we drop the convention 2~ N QF = § and assume instead that O = Q- U QT is
convex, then for any pair u,u’ € Q the following averaged matrix can be defined:

1
Al o) = /0 Df(Bu+ (1 8)u')de.

It is then easily seen that (2.1) holds if and only if A is an eigenvalue of A(u™,u™)

with the corresponding eigenvector u~ — ut. In particular, if v~ is close to u™,
then in view of (2.2), the vector equation (2.1) is equivalent to the following one
(h(u™,uM),u” —ut) =0 Vk#i, (2.3)

where by {l(u,u')}7_; we denote the base of left eigenvectors of the strictly hy-
perbolic matrix A(u,u’).

For n = 2 and i = 1 these n — 1 equations reduce to the scalar condition:
U(u~,ut) =0,
where
U(u,u’) = (la(u,u'),u —u'). (2.4)

Note that if the strength of the shock (u~,u") is large, then in general one does
not expect the matrix A(u~,u") to be strictly hyperbolic. In the spirit of this
reasoning, the following condition has been assumed in [BC1] (for n = 2 equations
in (1.1)):
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(i) A(u,u’) is defined and strictly hyperbolic for every pair
u,u’ € .
(i) The 1-shock (u~,u™) is stable, that is

<%\I}(u‘,u+),7’z(u+)> # 0,

with ¥ as in (2.4).
In the general case, a further extension of (2.3) was given in [LT]:

There exists a smooth function ¥ : Q= x Ot — R™~! such that:
(i) ©(u®,u') = 0 iff the states u’ and u' can be connected by a
(large) shock of the i-th characteristic family, with the speed
A(u® u'). The Rankine-Hugoniot condition holds: f(u%) —
fut) = A(u®,u?)(u® — u?). In particular ¥(u~,ut) =0 and

A(u—,u+) — A. (2.5)
(ii) The n — 1 vectors:
ov -1 OF (i L
{ auo(u , U ) Tk(u )}kzlu 8u1 (’LL U ) Tk(u )}k=i+1

are linearly independent.

Under this assumption we are going to show that if only the sets 27, Q" are small
enough, then any Riemann problem with the states in 07, Q% has a unique self-
similar solution. Note that in the proof of this fact, the condition (2.5) is actually
equivalent to the hypothesis of the implicit function theorem.

THEOREM 2.1. Assume (2.5) and (2.2). Then the following is true.

(i) Every Riemann problem (u°,u') € Q= x QF for (1.1) has a unique self-
similar solution, composed of n shock or rarefaction waves, connecting the
states u® = ug,u1,... ,ui—1 € Q7 and Ui, Uir1, ... Uy = ut € QT, as in
Figure 2.1.

(ii) The admissibility of this solution is understood in the following sense.
Call Uy (u,-) the k-th wave curve passing through a left state u (see [L]).
Then for every k # i one has up = Vy(ug—1,€x), for some parameter €.
Moreover, the i-th wave (u;—1,u;) 5 a (large) compressive Laxz shock, that
18: :

\I’(ui_l,ui) = 0,
Ai(wio1) > Aluio,us) > Aj(ug).

ProOF. Define the C? function F : O~ x QF x I"™! — R™! (I denotes a
small interval containing 0 € R):

0,1 —
Fl,u' e1,... ,€-1,€... ,€p) =

‘I’(‘I’,‘,I(...@2(‘1’1(710,61),62)...61‘_1), (26)

‘il‘i—i—l(- .. \ffn_l(\iln(ul, —En), _En—l) e = €i+1> .
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FIGURE 2.1

Here the fuctions Wx(-,-) are such that ¥y (¥} (u,e), —¢) = u. Note that
Fu™,u",0)=¥(u ,u") =0
and the derivative 7

%,

O(€1y -+ y€im1,€ir- -+ 1€En)

F(u™,u",0)

is a (n — 1) x (n — 1) matrix, having the n — 1 vectors in (2.5)(ii) as its columns.

Therefore, by (2.5)(ii) and the implicit function theorem, for any given pair of
states (u0,u') € Q™ x QF there exists exactly one (n — 1)-dimensional wave vector
(€1,...,€-1,€it1,--- ,€n) (depending in a C* way on (u®,u?)) such that

o ,1
F(U 7 A % R P I PR ,En):O.

The states {ug}7_, are then defined as follows:

ug = u®

up = Up(... Ug( Ty (w0, €1),€2) ... ,65) fork=1...i—1

g = Ugp1 (. T 1 (T (ul, —€n), —€n—1) .-y —€kt1) k=1...n—1
Up = ul.

O

In Chapter 2, the stability of the large shock (u™,u") satisfying (2.1) (2.2) is
understood in the classical sense of Majda [M]:

The n vectors
), rie (@), uT —ut i w"),... ,ra(u™) (2.7)
are linearly independent.

Again, for weak shocks the condition (2.7) is always satisfied. The main result of
this Section is the following.

THEOREM 2.2. Let (u™,u™) be a Rankine-Hugoniot shock, such that its speed
A in (2.1) is not an eigenvalue of D f(u™) neither of Df(u"). Then the conditions
(2.5) and (2.7) are equivalent.
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The proof of Theorem 2.2 relies on the construction of a particular function ¥y,
whose zero level set consists of those pairs of states (u®,u!) € Q7 x Q* that can
be connected by an admissible ¢-shock as in (2.5)(i).

‘We define ¥q as follows: .

o, u!) = {{F(u)) = F@), V(' %))}

where V}, are any smooth functions defined on a neighbourhood of the vector ug =
ut — 4~ # 0 with values in R"™, and such that for every u the space

span{Vi(u),... , Vo-1(u)}

is the orthogonal complement of the vector w.
LEMMA 2.3. {Vj k;ll can be taken so that:

Vi(uo) = —=[DVi(u0)]” - uo Vk:1...n—1. (2.9)

n—1
(2.8)

y
k=1

PRroor. By ei,...,e, we denote Ehe standard Euclidean base of R™.
For u close to e, define the vectors {V(u)}7=] applying the Gramm-Schmidt or-
togonalization process to n linearly independent vectors: u, ey, ... ,e,—1. Namely,

set:

Vi(u) = e1 = (e1,u) - 14

Vk(u) =€ — [(ek:u> : {312 +ZI;;;<€1C,T75(U)> . VS(U)] Vk:2...n—1.
(2.10)

Note that:
Vilen) =€, Vk:1...n—1 (2.11)
and:
e <17k(u),u> =0 Vk:1...n—-1
® {Vk}z__‘_ll are smooth functions of u.

Thus, span{V; (u),. .. , Vi1 (u)} always complements orthogonally the vector u.
Moreover, using (2.11) and the fact that V, € span(es,...,ex,u), by the explicit
formulas (2.10) one proves inductively that:

~ -1 f ) =(n,k
DVk (en) = [dsl]s,l:l...n; dsl = or (S ) ('l’l ) (212)
0 otherwise.
Now for u close to ug define:
Vii(u) = A7" -V (Au), (2.13)

where A is an orthogonal transformation composed with an appropriate dilatation
such that Aug = e,. Consequently

A7 = |u|?AT. (2.14)

Obviously {V;}7Z; are smooth functions, and by the corresponding property of
{V4}721 they span the orthogonal complement of its argument vector.
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By (2.13) (2.14) (2.12) and (2.11) we get:
[DVi(uo)]” - uo =AT - [DVi(en)]” - (A7) - up = A1 - [DVi(ea)]T - Auo
=— A"ley = =A™ Vi(Aug) = —Vi(uo),
which proves (2.9). O

Using the above lemma one finds a convenient formula for the derivatives of Ug:

o
—(,E%(u*,uﬂ =V . [Df(u") — AId), (2.15)
0% _ 4 +
»5&—1(71 ,wut)y=V  [Df(u™) — Ald). (2.16)
Here V is the (n — 1) x n matrix, whose rows are the vectors V; (ug), - .. , Vn—1(u0)-

Note that since rank V = n — 1, then A not an eigenvalue of neither D f(u™) nor
Df(ut), this in view of (2.15) (2.16) implies:

0¥y, _ 0%y, _
rank~(—9—u—0(u yut) = rankw(u ,ut) =n—1. (2.17)

ProoF oF THEOREM 2.2.
STEP 1. By (2.15) (2.16) we get:

%\%(u“,uﬂ rp(uT) = —((uT) = A) Ve (uT) VRl -1,
%(U”,lﬁ) re(ut) = (@) = A) - Verg(u®) VEritl.on

Since A ¢ {Me(u)}izt U {Ae(ut)}p_,, we see that the condition (2.5)(ii) for
our function ¥y is satisfied iff the vectors {V - r(u™)}izh U{V - rp(ut)}n,,, are
linearly independent, which is in turn equivalent to Majda’s condition (2.7), as
ker V = span(ug). We have thus shown that (2.7) is equivalent to (2.5)(ii) for the

function ¥y. One sees this way that (2.7) implies (2.5).

STEP 2. Now we turn towards proving the converse implication. Let ¥ be any
function satisfying (2.5). In particular, by (2.5)(ii), rank D¥(u~,u*) is maximal
and equal to n — 1. The same is true for D¥o(u™, ut), by (2.17), so:

rank D¥(u~,u") = rank D¥o(u",u™). (2.18)
Another important remark is that
ker DU (u~,u") = ker DUo(u",u™). (2.19)
The spaces in (2.19) both coincide with the tangent space of the manifold (¥)~*(0)
at point (u~,u™).
The following simple fact of linear algebra will be used in the sequel:

LEMMA 2.4. Let A, B : R™ — RS be two linear operators, s < n. Assume that
rank A =rank B = s and ker A = ker B. Then for any s vectors vi,... ,vs € R"
there holds: the vectors {Auvg}5_, are linearly independent iff {Bur }i_, are linearly
independent.
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In view of (2.18) (2.19), we can apply Lemma 2.4 to the linear operators
DU (u~,ut), DUy(u",ut): R — R*!
and the following set of n — 1 test vectors in R?":
{re(u™)", 0. 0T HEL U0 0,mi ()T H_ g

By (2.5)(ii) we receive that the same condition is satisfied by our function ¥,. This
in turn, is equivalent to (2.7), as shown in step 1. O

REMARK 2.5. The proof of Theorem 2.2 shows that if a function ¥ as in (2.5)
exists, then it can be replaced by the function Wy, in this case necessarily enjoying
the properties (2.5)(i) (2.5)(ii) and (2.17). This last property is crucial for the
construction of the wave front tracking approximate solutions to (1.1) in Section 2,
Chapter 2.

In the remaining part of this Section we recall the so-called Chern stability condition
[Ch] for a single Lax shock (u™,u%) if the i-th characteristic family:

Every Riemann problem (u% u') € O x QF for (1.1) can be solved

uniquely by a composite of n elementary waves. The states separating (2.20)
these waves lie in 27 UQ™ and depend on (1, ') smoothly. The i-th '
wave in this solution is a Lax admissible shock.

Condition (2.20) has been introduced in [Ch] to study the stability and truncation
error of the Glimm scheme — it has been shown, in particular, that under this
condition the Glimm approximate solutions converge to a global solution of (1.1)
(1.2) with initial data % containing only one strong discontinuity (u°, u'). Note that
the existence and stability of this solution follows immediately from our analysis in
Chapter 2 - indeed, for M = 1 the Weighted BV and L' Stability Conditions are
always satisfied. The only apparently missing point is the Majda stability of the
single large shock in the reference solution.

However, by Theorems 2.1 and 2.2 one easily gets: :

COROLLARY 2.6. The three conditions: (2.20), (2.5) and (2.7) are equivalent.

3. The Riemann problem

The analysis in Section 2 has shown that for a single i-shock (u™,u™), the Majda
stability condition (2.7) implies the assertions (i) and (ii) of Theorem 2.1. Below
we study the similar problem for a general pattern of M (large) shock waves (1.7).
It appears that the solvability of Riemann problems close to (ud,u)?) is not just a
simple consequence of the admissibility of each single shock in (1.7), but requires an
additional hypothesis about the mutual influence of the large shocks. To introduce
this *finiteness’ condition we will need some special notation.

First of all, assume that every large shock in the reference solution (1.7) is Majda
stable and Lax compressive (that is, conditions (1.6) (1.7) (1.8) in Chapter 2 hold).

Then, for every g : 1... M define the (n—1) x4, matrix G}, expressing the strengths
of the small outgoing waves in terms of the strengths of waves interacting from the
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right with the large i4-shock. More precisely, using the notation as in Figure 1.2 in
Chapter 2, we have:

g a aeout

T . . s

Gq - [ask]&lw?}, s#ig, Qgp = dein . . (31)
k:l...ig k |E;cn:0

Analogously, in case when the interacting k-waves approach the large shock from
the left (see Figure 1.3 in Chapter 2), we have the (n— 1) x (n — i, + 1) matrix G:

out
_ 0¢?
in
Oe}] le

Gf} = [agk]szlv..n, sF1q, a'gk (32)

Citg... in_
kiig..n =0

Define now the square M - (n — 1) dimensional matrix G, called in the sequel the
finiteness matrix’:

e] &1
Gy [0] G}
G= Gy [6] Gj (3.3)

Giy [6]
(here [©] stands for the (n — 1) x (n — 1) zero matrix).

We are ready to state our new stability condition for the pattern (1.7).

FINITENESS CONDITION : 1 is not an eigenvalue of the matrix G. (3.4)

The next theorem can be seen as a generalization of Theorem 2.1.

THEOREM 3.1. In the above setting, let the Finiteness Condition (3.4) hold.
Then any Riemann problem (u™,ut) € Q0 x QM for (1.1) has a unique self-similar
solution, attaining n + 1 states, consecutively connected by:

- weak waves of the corresponding families (if both left and right states of a
pair under consideration belong to the same set Q9),

- M admissible large shocks, joining the states belonging to different sets
09,

as in Figure 3.1.

PROOF. By Theorem 2.2, for every shock (ud ™", ud) there exists its constitutive
function W9, as in the condition (2.5), whose zeros are the pairs of nearby states
(ud=t,u9) € Q971 x Q7 that can be joined by an admissible large i, shock. The
function (compare (2.6))

F: (0% Q! x...x QM) x

Iz';-—l % Iiz—’il—l % Iia—iz—l X ... X IiM—iM_1—1 % In—iM ; RJ\/I-('nml)
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1 g1
A (uo,ul) Aq(ll ,uq>

X
Ficure 3.1
has now the following form:
F((u',ul,uz,...uMﬁl,u“L),
(517 €2,..- 367:1—1); (67:1-]-1) v )Ei2~1)7 R (e‘iz\,r—{-ly mee JETL))

= ‘1’1 <\Pi1_1(651_1, .. .\Ifl(el,u“) . .), ’U,l),

\112 (\piz-—l (Eig~—1a PR \I'il_,_l(eil,,,l,ul) e ), u2) N

‘IIM (‘Ilim—l(eim—la v ‘Ilizvx—1+1(6iM—1+17UA{—I)" . )1

@z‘M+l(“5iM+17 .. \i/n(—en, u"‘) . )) .

The functions ¥, and ¥} are as in the proof of Theorem 2.1.

Call A the M - (n — 1) dimensional square matrix that is the derivarive of F with
respect to the variables (ul,...,u™™1), (e1,... ,€,) at the point

((ug, -, udh), (0,...,0)).

We will show that A is invertible if and only if the Finiteness Condition (3.4) holds;
by implicit function theorem the proof will be then complete.

Note first, that the invertibility of A is equivalent to the invertibility of the following
matrix (which without loss of generality we also call A), of the same dimension:

A, BT
Bl A, B

A= B} . (3.5)

Ay Ay
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Here
ol
0 (ud,ud) + [ri(ud) .. ri,—1(ud)] forg=1
A, =
owe _ - _
HuiT (ud™ ud) - [ri_ 41 (ud Y, (ud Y] forg:2...M
and
I = oM ( M-1 M)'[r_ ( M) ( M]
M=z Yo Y% im+1(ug ) - Tnlug )],
PAA _ _ _
Bé = —3_’1;‘1_—1 (ug 1,Ug) . [rl(ug 1)_..rn(ug 1)],
. 0w - -
By = 00 g™ [ ) ™)
For every g : 1... M define a square (n — 1) dimensional matrix:
ow? _ _ _
Co= | = g (7wl [ ™) i (),
ows
Dud (ug 1,Ug) : [riq+1(ug)...rn(u8)] :

In view of Theorem 2.1 one can find (using again the implicit function theorem)
the following formulae, expressing some of the minors of our matrix A in terms of
the blocks constituting the matrix G in the Finiteness Condition (3.4):

owe _ - -
o g u) [, (u8™) (™) = = G- G
o (3.6)

™ u) - () mi, (6B)] = G- G,
for every g:1... M.

Introducing (3.6) in (3.5), and permuting the columns of A in the appropriate way,
we receive that A is invertible if and only if the following matrix (which we again
denote by A) is invertible:

¢, C,-GI
Co-Gy —Cy Cy-Gj

(3.7)
Cu -Gy —Cu
Note that by (ii) in the stability condition (2.5), each martix C; is invertible. We
can thus multiply A by the square block matrix:
crt
—1
2
-1
Ch
and conclude that the invertibility of A in (3.7) is equivalent to the invertibility of
the matrix G — Id, which is exactly the Finiteness Condition (3.4). O
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4. Three lemmas on matrix analysis

In this Section we present three abstract lemmas on matrix analysis, that will be
used in the sequel.

LEMMA 4.1. Let Q = [gsk]s,k:1..n be @ n X n matriz with nonnegative entries:
gsk > 0. The following conditions are equivalent: ’
(1) spRad(Q) < 1.
(i1) There ezists a diagonal matriz W = diag(w1, ... ,wn) with positive diag-
onal entries ws > 0, such that || WQW ™1 ||1< 1.
Here the norm of a n x n matriz P = [psg]s k:1..n 15 defined by:

n
| Pll: = max > |pl-
k:l..n =

PROOF. (ii) = (i). Since Spec (WQW ~!) = Spec Q, without loss of generality
we may assume that W = Id.

The matrix Q7 is nonnegative, so (see [G]) there exists a real nonnegative (maximal)
eigenvalue A and a corresponding eigenvector r = [r1,... ,rn]T with nonnegative
components, such that for any other eigenvalue p there must be: |p| < A. Let
k € {1,...,n} be such that:

7, = max rs > 0.
s:l..n

We have:
n n
AT = Zst"'s < (Z Q.slc>7'lc <@l re <.
s=1 s=1

Since )\ is also a maximal eigenvalue of @, this part of the proof is done.

(i) = (ii). We prove that (i) implies the existence of a diagonal matrix W =
diag(ws, . .. ,wn) with each wy, > 0 and such that || (WQW )T ||;< 1. This is
enough since (W2QW)T = WQTW ! and Spec Q = Spec Q7.

We proceed by induction on n. For n = 1 the assertion is trivially satisfied. For

n > 1, let A be a maximal eigenvalue of @, with a corresponding nonnegative
eigenvector 7 = [r1,...,7n]T # 0. By (i) there must be A < 1.

Let T ={k:1...n; ry # 0}. Define:
wp =1, forkel (4.1)

In case the set {1...n}\ Z is nonempty, consider the square nonnegative matrix
Q, composed of the rows and columns of Q carrying the indices not belonging to
Z. Since for k ¢ 7 one has:
k13
Z GrsTs = 0,
s=1

there must be:
qrs =0 VseI,k¢ZT.
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Thus the maximal eigenvalue Xof Q belongs to Spec @, so X< 1. By inductive
assumption, there exists a diagonal matrix W = diag({wg; k ¢ I}) with positive
diagonal entries such that || (WQW )7 ||1< 1. Fix e > 0 and define:

wy =€y forkgZ. (4.2)
By (4.1) (4.2) we have:
n
vk ¢ z Z( IQVV)AS = wk Z qksws = wk Z lJsts)
s=1 s¢T
Zkaws < WQW 1>T “1< 1,
sgéI
123
Vkel Z( IQW)ks = w},, Zkaws = Tk Z QrsTs + Z ka"'s
s=1 seL S¢EZL
= 1(2 kars) + 7';1(2 kaews)
s=1 s¢T
=r; g + er;l(z W,) < 1,
s¢T
if only € in (4.2) is small enough. Thus we get || (W 1QW)7T ||1< 1. O

LEMMA 4.2. Let A, B be two n X n matrices with nonnegative entries:

A= [ask]s,kzl..km B = [bsk]s,kzl...n-
Assume that there exist two sets of indices: col,ver C {1...n} with the properties:

o col Nver = 0,

e VkdcolVs:1...n as =bps =0,

e Vsdwer Vk:1...n ag =Dbgs =0.
Then the following two statements are equivalent:

(i) There exists W = diag(wy, ... ,wn) with allwy > 0 such that || WAW ™ ||1<
1and || WBW™ 1< L.

(#7) There ezists W = diag(ws, ... ,w,) with allwg > 0 such that || WABW ™! |1 <
1.

The matriz norm || - ||1 is defined as in Lemma 4.1.

PRrOOF. (i) = (47). For every k : 1...n we have:

STWABW )y =) (WAW™ . WBW ™)y

s=1

)
ey

n n

S WBW e - S (AW,

§= =1

< || WAW )y - | WBW™! 1< 1,

which implies:
| WABW™! ||;< 1.
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(#1) = (i). Since WABW ™! = (WAW1)(WBW™1), we may without loss of
generality assume that || AB ||1< 1 and prove the existence of a diagonal matrix
W satisfying (4).

By (i7) we have:

Z [bsk- Z am} <1 Vk € wver.

s€col rTEver

For a fixed € > 0 define:

Z asy +€ for k € col,
wg =

sgver
1 otherwise.
Then
Z Welsp = Z asy < wp Yk € col,
sE€ver scver
Z Wsbsp = Z ( Z am)bsk + Z ebsp < 1 =wy Vk € ver,
s€col s€col rever s&col

provided that e is small enough.
We have thus proved that || WAW ™! |;< 1 and || WBW™! |;< 1. O

LEMMA 4.3. Let A, B be two n X n matrices with nonnegative entries and such
that|| A+ B |l1< 1. Then || B- (Id— A)™" |1 < 1.

PrOOF. Note first that since || A ||1< 1, then the matrix Id — A is invertible
and its inverse

(Id—=A) ' =Td+ A+ A%+ ...

has nonnegative entries. From the assumption it follows moreover that:

n n n

Vk:1l...n Z[B]ik <1l- Z[A],.k = Z[Icl— Alig,
and thus h B B
Vk:1l...n ;[B (Id—A) i = é (g[B]is) [(d = A) sk
< }; (g[ld = Alis) - [(Id = A)

[(Id—A)-(Id—A) a =1,

I
NE

I
X

which proves our lemma. O
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5. Stability conditions compared

In this and the next Sections we discuss different BV and L' stability conditions,
appearing in the literature, and compare them to the conditions (1.9) - (1.12) in
Chapter 2. Recall that these last conditions guarantee the wellposedness of the
problem (1.1) (1.2) and the existence of the Lipschitz continuous semigroup of
solutions, whose domain contains all the small L' N BV perturbations of the initial
data % in (1.6) (Theorems 1.1 and 1.2 in Chapter 2).

First, we reformulate the conditions of Chapter 2, using the language of matrix
analysis. Define the square M - (n — 1) dimensional matrix H, in the same manner
as the finiteness martix G in (3.3), but with the submatrices G replaced with the
corresponding Hg. The matrices Hf (z € {l,7}) have the form as in (3.1) and
(3.2), the only difference is that now their elements enclose also the shift ratios in
the wave interaction patterns:

out
e <€out./\s_;é_q_)
s % s in __ *
¢y leg>=0 AYT — As

For a given matrix @, by |Q| we denote the nonnegative matrix that consists of the
absolute values of the elements of Q. By specRad Q we mean the spectral radius

of Q.

We are now ready to reformulate and compare our stability conditions:

BV StaBILITY CONDITION : specRad |G| < 1, (5.1)
L STABILITY CONDITION : specRad [H| < 1. (5.2)
THEOREM 5.1. The BV Stability Condition (5.1) is equivalent to the Weighted

BV Stability Condition (1.9) (1.10) in Chapter 2. The L' Stability Condition (5.2)
is equivalent to the Weighted L' Stability Condition (1.11) (1.12) in Chapter 2.

The proof of Theorem 5.1 is a direct application of Lemma 4.1.

THEOREM 5.2. The Finiteness Condition (3.4) is weaker than the BV Stability
Condition (5.1), which is in turn implied by the L' Stability Condition (5.2).

ProoF. To prove the first assertion, note that if (5.1) holds, then by Lemma
4.1 without loss of generality we have || |GT| |l;< 1. Assume that G -7 = r, for
some nonzero vector r of the appropriate dimension. Let s be the index such that:

Irs| = max 7%

Then:

Irs| =

ZG’ks Tk
k

which is a contradiction.

<D 1G] Irel < (Z]les) “Irst <Irsl
k k

To prove the second implication, we use Theorem 5.1. Assume that the Weighted
L' Stability Condition (1.11) (1.12) in Chapter 2 is satisfied. For g:1...M -1
and s:1...n define

£}

= Xe(u) — AT
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while w{ are set to be: small for s :4p7 +1...n, and big for s : 1...45. We will
show that the inequalities (1.9) (1.10) in Chapter 2 hold for all ¢ : 1... M, with the
new weights {@w?}.

Indeed, to prove (1.9), compute:

n ~

lg—1 ~p
iwg 1‘ 9 6cmt_l_ Z _’U'_)_g_ 9 out
o in 8§ ot 3
s=1 wz aek 5:iq+1 wlg ae}cn s
Tg—1 — —1
— < : ! A a cout! I)‘S(ug _)__Aq‘
Zowp |07 | e(ug) — ATt
+ i wi | 9 ou| Ps(ug) — AT <1
Wl B | e(ud) A <
§=1g+1
by the assumption and the following easily received inequalities:
e uf) = AT > [\e(ud) — A1 VE < g,
|k (ud) — AT < [Ak(ud) = AT VE > gy
The other estimate (1.10) is justified in a similar way. O

From Theorems 5.2 and 3.1 it follows:

COROLLARY 5.3. Let the Weighted BV Stability Condition hold. With any
Riemann data (u™,u™), v~ € Q4Lut € W,0< i < j < M, (1.1) has a unique
self-similar solution, attaining n+ 1 states, consecutively connected by:

- weak waves of the corresponding families (if both left and right states of a
pair under consideration belong to the same set Q9,1 < g <j),

- j —1i large admissible shocks, joining the states belonging to different sets
Q9.

This result has been used in Chapter 2, to define the weighted L' distance between
two approximate solutions of (1.1) (1.2).

REMARK 5.4. It has recently been brought to our attention that conditions
similar to our conditions (5.1) and (5.2) can be found in the book [LiY].
The authors investigate on the (short time) existence and regularity of classical
solutions to the so-called typical boundary value problems on fan-shaped domains,
for quasilinear hyperbolic systems with smooth coefficients. In particular, they
show the existence of a unique C' solution to this problem, provided that the so-
called minimal characterizing number of the characterizing matrix for the typical
boundary value problem, is smaller than 1 (Theorem 1.1 in Chapter 4). If the same
holds for the second characterizing matrix (see Paragraph 4 in Chapter 7), then
the corresponding solution is C? regular (Theorem 1.1 in Chapter 7).
These results can well be applied to the quasilinear system (1.4) with the boundary
conditions (1.5) along the boundaries of the angular domains given by the large
shocks in the solution of (1.1) (1.2) (1.3). The boundary conditions (1.5) appear
already in the solvable form (see Lemma 5.10 in Chapter 2) that is, some of the com-
ponents of u at the vertex £ = 0,¢t = 0 (namely, the components corresponding to
the outgoing modes) are explicitely expressed as functions of the others (correspond-
ing to the incoming modes). It is not hard to notice, that the characterizing matrix
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out
ein €s

of this problem is made up of the quantities in such a way that its

minimal characterizing number is smaller than 1 if and only if our BV Stability Con-
dition holds. In a similar manner, the mentioned solvability condition for the second
(Egut N (/\gut - Aq))} .

- - , is e-
o \" (¢ — A9)
quivalent to our L! Stability Condition. It is worth noting that for nonnegative
matrices the minimal characterizing number is nothing else but the spectral radius
(see Appendix 1). In particular, our Lemma 4.1, which came up independently in
the investigations leading to [Le2], can be seen as a corollary of this result.
The analysis in [LiY] implies thus the local in time existence of the piecewise C*
(respectively, C2) solution to the problem (1.1) (1.2) with & smooth except at the
point = 0, where it induces the Riemann problem ’close’ to (u™,u™). We expect,
that this solution actually coincides with the solution given as the limit of the wave
front tracking approximations (see Chapter 2 in this thesis).

characterizing matrix, containing the numbers {

We end this Section with a technical lemma (to be used in Section 6), showing some
other possible reformulations of the Weighted BV Stability Condition. For every
q:1...M define four nonnegative matrices:

Qzl = [lagk”s:l..‘i‘q—lyi Qgr = “agkl]*qu'”"”
k:l..dy kil...iq

whose elements are absolute values of these defined in (3.1), and

Qizl = [ladplls:1. g,y szr = [ladillssigsr..m,,
kiig..n fqen

with al, as in (3.2).

Note that in the above, the range of s (indexing the outgoing small waves) depends
on the neighbouring large shock (of the family 44—1 or ig+1). Indeed, it is relevant
to keep track of only these new born waves that in the future may possibly interact
with large shocks, thus changing the global wave pattern.

Keeping in mind the above comment, we also remark that the notation for the
matrices Q7!, QF, QY, Q77, Q%r, Q74 is ambiguous, however in view of what we have
said the precise form of these matrices is irrelevant in the following analysis.

Finally, for every matrix Q3¥, z,y € {l,r} define the corresponding square n x n
matrix @gy, by completing all the 'missing’ entries with zeros. For example:

asg fors:ig...n, k:1...4p,

@;T = [lask Hs,k:l...n Qsp = {

0 otherwise.

LEMMA 5.5. The following conditions are equivalent to the Weighted BV Sta-
bility Condition (1.9) (1.10) in Section 2:
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(i) There exist M — 1 diagonal matrices {I/Vq}g’izl, with positive diagonal
entries such that:

IR < 1, | (5.3)

| Wa—i Gl (wa=1)=L 4 WaQin(we-1) =t [1< 1

~ ~ Vg:2...M -1 5.4
| wedy o+ W Gpw T fa<t G

| WM QR (WM T i< 1. (5.5)
(i1) Define two block square matrices of the dimension (M —1)-n:
QT 0 ... ... 07
o Qf af o
Oddy=|  QF Qy 0 ,
0 0 QU
L 0O _
@8 Q0 0]
oy 0
Eveny = 0 0 Qf A
Qf ey
0
Then ) )
spRad(Oddy; - Bvenyr) < 1. (5.6)

Proor. The condition (i) is obviously equivalent to the Weighted BV Stability
Condition, if we set W7 = diag(w?{,... ,wi) forallg:1...M —1.

Note that (5.3) (5.4) (5.5) are equivalent to
| W-Oddy - W™ ||< 1, | W Evenp - W™t ||< 1, (5.7)
where W is the block diagonal matrix of the dimension (M — 1) - n, given by:
W = diag(W?,... ,WM-1),
By Lemma 4.1 and 4.2, (5.7) is in turn equivalent to (5.6), what proves (ii). O

6. The Schochet BV Stability Condition

Below we state the Schochet BV Stability Condition from [S] and prove its equiva-
lence to our BV Stability Condition. Once Theorem 5.1 has been proved, in what
follows with the term 'BV Stability Condition’ we shall refer to (1.9) (1.10) in
Chapter 2, or (5.1), as necessary.

Consider the first pair of large shocks: (ul,u3) and (ul,u?) and a tuple v =
[Vk]g:i..n Of small waves travelling in the region between these shocks, and ap-
proaching the second one. By interaction of v with (ud,u2), then interaction of the
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new born ‘reflected’ waves with (u$,ug), and so on, further waves travelling in the
region between the two shocks under consideration are produced. Call

R' =QT". (6.1)
The total strength of such waves, belonging to the cﬁaracteristic families & > 42 is
then seen to be:
[ra+ RQl + (RQY)" +...] Il = (1 - B'QY) ™ 1yl = Pl
(where || = [k /]4.i,...n)» Provided that the first stability requirement:

all eigenvalues of R - Q¥ are < 1 in absolute value (6.2)

is satisfied.

Now, view the pair of the first two large shocks as a single entity. The reflexion
matrix R1~2, expressing the strengths of the outgoing small waves of families k > i3,
exiting the region between the first and the second large waves to the right of the
latter one, in terms of the incoming waves of the families £ < 13, possibly interacting
with the (i, — i9) couple of large shocks from the right, has the form:

Rl-—2 — Qgr + Qgrpl—lele-

Thus, the natural stability requirement for the triple (i1 — 12 — 13) of large shocks,
analogous to (6.2) is:

all eigenvalues of R'~2 - Q% are < 1 in absolute value.

Proceeding in the same manner and viewing any fixed combination (33 —... — ig)
of consequtive large shocks as a single entity, influencing its succeeding large wave
iq+1, We obtain the following (M — 1) assertions, that constitute:

THE SCHOCHET BV STABILITY CONDITION [S]

spRad(F'~2%) < 1,

spRad(F*=27%) < 1,
(6.3)

spRad(F*~~M) < 1.

The stability matrices F' are defined inductively together with the corresponding
reflection and production matrices R, P, by recalling (6.1) and setting:
Fl=emt = gl gf forg:2...M (6.4)
pr==i = (Id— F*=m9) forg:2...M (6.5)
Ri=me = Q4 QUPYT-TIRIT TR forgi2.. .M ~1. (6.6)

The main result of this Section is:

THEOREM 6.1. The BV Stability Condition (5.1) is equivalent to the Schochet
BV Stability Condition (6.3). :
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ProoF. STEP 1. (5.1) = (6.3). We use the equivalent form of the BV Stability
Condition (5.1) given in Lemma 5.5 (i).
‘We first show that )
Vg:1...M -1 ||W?-R'"=~7. (W)~ |;< 1. (6.7)

We proceed by induction on ¢. For ¢ = 1, (6.7) is equivalent to (5.3) in view of
(6.1). For g:2...M — 1, by (6.6) we have:

We. R (W) = WIQT (W)
+ [Wq@lqrﬁl-...—qﬁl-,..—(q—-l)(Wq——l)—l] . I:Wq—légl(wq)—l} )
The desired conclusion (6.7) will thus follow from the second inequality in (5.4)
provided that
| WeQlr pr-mt Rl ey~ | < 1 (6.8)
Note that:
Sl Bl—...—g pl—...—(g—1 —1y-1
weQh Pt 1R {a )(Wq )
~ ~ N1 o
— I/VqQér . (Id _ Rl——..A—(Qal)Qél) 3 R1~—...~(q—l) (I/Vq—l)—l
= [wegr w7 (6.9)
~ ~ -1
. {Id - [Wq—llem—(q—l)(Wq—l)—l] . I:Wq—le)l(Wq—l)—l] }
. [Wq—l§1~...—(q—1)(T/Vq—l)——l] )
Setting N
A=wQlwr ™, B=wQrweh™
and combining Lemma 4.3 with the inductive assumption:
[RZAED N (A I R
we get (6.8) by (6.9) and thus complete the proof of (6.7).

We now prove inductively that the BV Stability Condition (5.1) implies (6.3). For
M = 2, the conditions (5.3) and (5.5) are by Lemma 6.1 and Lemma 4.1 equivalent
to:

all eigenvalues of Q7" - Q% are < 1 in absolute value. (6.10)

But
Spec Q’{TQZQI C Spec @{T@lg C (Spec Q{"le) U {0},
so (6.10) is equivalent to
spRad(F'™?) < 1,
that is in turn precisely the condition (6.3).
Note that above we proved even more than we need at this point - we proved the
equivalence of (5.1) and (6.3) in case M = 2 of only two large shocks present.
Let now M > 2. Since (5.4) for ¢ = M — 1 implies

| Wwo2Ql_ (w7 i< 1,
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by the inductive assumption we get:
spRad(F'="9) <1 Vg:2...M 1.
But, by (5.5) and (6.7) for ¢ = M — 1, in view of Lemma 4.2 and definition (6.4)
I WM =1l My M=1y=1 || 1
which by Lemma 4.1 implies finally
spRad(F' M) < 1.
This finishes the proof of (5.1) = (6.3). O

STEP 2. (6.3) = (5.1). We use the equivalent form of the BV Stability Condition
(5.1) given in Lemma 5.5 (ii).

We proceed by induction on M. For M = 2 the assertion has already been estab-
lished in step 1. Let M > 2 and fix A > 1. We will show that

det(Oddys - Evenpyr — AId) # 0, (6.11)

that by the property of nonnegative matrices mentioned in the proof of Lemma 4.1,
will prove the theorem.

Assume first that M is an odd number. By known formulae on the determinant of
block matrices (see [G]), and few easy computations one gets:

det(Oddys - Eveny — Ald)
= det(OddM_l - Evenpr_1 — )\Id)

- det (@5(4 Onr_ + QU Ay - (M — Oddyr—y - Buenpg—y) ™"
B - Q3 — AId),
where Apr is an x (M — 2) - n) block matrix of the form:
Aw=[0 .. .0 @,

and By is a ((M — 2) - n) x n block matrix:

(6.12)

BM:[o e 0 QR ég}_z]T,

while Oddr—1 and Evenpr_1, are defined analogously to Oddps and Evenys as in
Lemma 5.5 (ii).

Note that the Schochet condition (6.3) implies (by the inductive assumption):
det (Oddpr—1 - Evenpr—1 — AId) # 0, (6.13)
spRad(F*—~M) < 1. (6.14)
By the definitions (6.4) — (6.6):

Fl—A..——]VI — Q%{[ A [Qﬁ—-l + Ql]\rl—l (Id—Fl—"’—(M—l))«l 'Rl“m_(M—Q)Q?\f[_l] .
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Thus, in view of (6.13) and (6.14), the needed (6.11) will follow from (6.12) provided
that:
Apr - (Id— Oddpr—y - Evenyr—1) ™" - Bur

= ~l]\/TI—1 } ([d_ﬁl—...—(M_l))—l (M=) (6.15)

By the same kind of reasoning it is possible to prove that for M even, (6.11) is a
consequence of the formula:

Cp - (Id — Oddps—1 - Evenyr—1)™" - Dy

~ o~ ~ 6.16
— (Id-— Fl—-._.—(M—l)) 1 . Rl—...—(]\/f——?) i Q?\}[—l; ( )

where Ciys is a n x (M — 2) - n) block matrix of the form:
Cy = [ 0o ... 0 é%_g ~7]};_2 ],
and Dy is a ((M — 2) -n) x n block matrix:

Dy=[0 ... .. 0 Q% ]T.

In the remaining part of the proof we will concentrate on showing that (6.15) holds
for every odd number M. The proof of (6.16) is entirely the same. We are going
to prove (6.15) by induction on odd numbers M. For M = 3, the left hand side of
(6.15) reduces to:

Qy - (1~ Q- Q)™ - AY,
which is precisely equal to Q¥ - (Id — ﬁl_z)"l - R, by (6.1) and (6.4).
For M > 3 and odd, computing (Id — Oddpr—1 - Evenyr—1)~ ! in terms of the

matrices Oddps—3, Evenp—3, and the basic block-interaction matrices Q7¥, we get
the equivalent form of the left hand side of the formula (6.15):

Ap-(Id = Oddps_y - Bvenpr—1) ™ - By

= [ 0 Qs ]
- Id— :ll{’f—? @ﬂ-’—? . ~1]~\2_3 0
ll‘r4—" Q-2 0 M1
o (6.17)
- Q;\;-I_z Apr—2 - (Id = Oddpr—3 - EvenM_g)’l
Qrr—2
-1 .
rl
Bu- .0 Qhr—2 |
M—2 [ Q-3 ] } { o, ]
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Using the inductive assumption and the definition (6.6) we reformulate the right
hand side of (6.17):

Apr - (Id = Oddps—y - Bvenys_1)™' - By

= [ 0 Q.

B[ 3 O]H

= [ 0 Q4. ] . {Id_ [ legf—z @Zvlf—z J (6.18)

Cv)M—2 M—2

Qz@z
izl

bk
—

@M 3t . )
sy I R ) o
Rl— (M- 4)Q7\5[~3 ~ QR/T[_Q
o Q-
Al Arl
= | YM—2 QM—Q
= [ 0 Q]VI 1 ] {Id { er_z QR;__Q J

Calling

X =1d-QY,_,Rt——(M-3)
Y= _Q QM 1»

7= _@Mn2R1~...—(M—3),
W=1Id~- Qi _,Q%_,,

we rewrite the right hand side of (6.18):
~ x v |@
b : M—2
[0 QM—I][Z W} ,:TN;_QJ
= Q-1 - ( ~(W=-2ZXx7'y)lzx-t . g,
(6.19)
+(W=2X7Y)T Q. 2)
Qi W= ZX7Y)™ - (Qh_, ~ ZX " ir—2)
QM 1 (Id-— Rl-—...— M—2)Q% _1)—1 .Rl—A..—(M—2)7
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because, by definitions (6.4) — (6.6):
W—2ZX"'Y =Id— R'=-—M=200
Qg — X1y = R (M2,

The equality (6.19) together with (6.18) prove (6.15). The proof of step 2 and thus
also the proof of Theorem 6.1 is complete. O ‘ O

7. Systems of two equations

In the particular case n = M =2, i; = 1, iy = 2, the matrices Q]" and Q¥ reduce
to single numbers, and the BV Stability Condition (5.1) appears in a simple form:

out
0¢3

86—‘7:[” |57in =0

out
O¢€f

66%” ]65’"‘ =0

<1 (7.1)

Similarly, the L! Stability Condition (5.2) is equivalent to:

8631“ 66?“ . Al (’U,é) - A2 . /\2 (’Ll%) — Al
detn lein =0 Heir le» =0 Ar(ud) — AL Ao(ud) — A2

<1 (19

In both (7.1) and (7.2) the first derivative corresponds to the right interaction with
the large shock of the first family, while the second derivative corresponds to the
left interaction with the large shock of the second characteristic family.

In this Section, we show that (7.1) and (7.2) are equivalent, respectively, to the
appropriate conditions providing stability results in [BC1] and [W].

Indeed, in the setting of [BC1]:

B‘IIQ(UOQ,‘U.Ql) 1
6€gfu.t < Fal ,T1 (UO)
k1= in | g =
in __ oW (ul,ul
O™ Jef" =0 <-————L-°—éu1 ),rz(u}))>
and
AW (ul ud) 1
e (204 o )
k2 = in ; =-
in AW (ul,u?) ’
b It =0 (P ()
where

T (ut,u?) = (1 (ut,u?), ut - u?),

T2 (u,ut) = (o (u®,ut),u® — ul),
Iy and l; being the left eigenvectors of the averaged flux gradient matrix between
the reference points u (compare (2.4)).
One sees that the Bressan-Colombo Stability Condition
A1 (ud) — A2 Ao (ud) — Al

My = AT N = Az | <1

is precisely (7.2).

In [W], (1.1) (1.7) is assumed to satisfy the following Stability Condition.
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Let
(A'Td— Df(ub)) ™ (uh — ud) = ar1 (uh) + Bra(uf), 3
(DF(ub) = A1d) ™" (ul — ub) = yr (ud) + Grs(ud). '
Then:
18] < |ed|. (7.4)

This condition is a reduction of a multidimensional BV stability condition (to be
found in [Me]) to the case of one space dimension.

THEOREM 7.1. Assume that both shocks in the reference solution (1.7) (recall
that M = 2) are Majda stable and Laz admissible. Then the condition (7.4) is
equivalent to the BV Stability Condition (7.1).

PrOOF. It is enough to show that in the context of (7.3) (7.4) (7.1), there hold:

AP (7.5)
o afiﬂ' Ie:i‘n =90 ’ ’
,l _ 6€§ut

hé’ ~ | en e =0 . (7.6)

We focus on (7.5), thus the case when the large shock (ud, u) is hit from the right
by a small wave of the first characteristic family and strength €. The proof of
(7.6) is entirely similar, so we omit it.

Let F: Q0 x Q' x I — R be defined as follows:
F(Uﬁau-*_: €) = To(u~, i}2<u’+7 —€)),
where Uy is the constitutive function of the large 1-shock, as in (2.8) (compare

Theorem 2.2 and Remark 2.5), and the functions ¥, ¥ are as in the proof of
Theorem 2.1.
The fundamental equation relating the strengths €™ and e3“* in (7.5) has the form:
F(ug, ©1(ug, "), 65™) = (7.7)
Differentiating (7.7) with respect to €™ at € = 0 and using (2.16), we receive:
¢
0= D20t ra(ud) + ) ) o

(7.8)
out
— Viud — )" - [D(ud) - AT - (raud) +ralud) - oo .
et lein =0
Since V4 (ul — uQ) is orthogonal to uf — ug, (7.8) is equivalent to:

€ gut

[Df(ug) — A'1d] - (n(ué)+rz<ué)- gein Iein_()) =s-(s—up) (7.9)
in =

with some s # 0, as A! is not an eigenvalue of D f(u}). The first formula in (7.3)
is equivalent to:

[DF(ub) — A'1d] - (—ary (ug) = Bra(up)) = (up — u),
and thus by (7.9) we get (7.5). O
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