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Chapter 1

Introduction

Gamma-ray bursts (GRBs) are bright and short high energy flashes of extra galactic
origin, isotropically distributed in the sky. Though GRBs are very difficult to localize
with the accuracy required for a follow up, counterparts GRBs at longer wavelengths
are now routinely detected. The long lasting emission detected after the gamma-ray
flash, named afterglow, spans the whole electromagnetic spectrum from X-rays to the
radio band. The observed flux in any fixed energy band initially grows to a peak and
then decays, higher frequency light curves peaking earlier than lower frequency ones.

The peak frequency of the spectrum is softening with time.

The observed afterglow emission has been naturally interpreted, within the frame-
work of the fireball model, as synchrotron emission from relativistic electrons of the
medium surrounding the explosion site which are swept up and heated by the rela-
tivistic shock at the leading edge of the expanding fireball. Standard fireball models
are usually based on spherical or jet-like geometry. Predictions for the afterglow light
curves are generally in agreement with the observations although unusually steep tem-
poral decay slopes and breaks are still a matter of debate and there are competing
interpretations for them. Recently, the possibility of explaining some GRB and af-
terglow observational features with an anisotropic fireball having a smooth angular
distribution in baryon loading, expansion Lorentz factor and gamma-ray luminosity
viewed from different directions have been considered. Models assuming GRBs to be
the result of collapse of rotating massive stars would naturally channel the emitted en-
ergy along the rotation axis, which is also the most baryon free direction, and give rise
to a fireball with a smooth spread in ejected energy and baryon loading in directions

far from the axis. Recently a growing amount of indirect evidences in favour of the
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8 CHAPTER 1. INTRODUCTION

GRB-massive star collapse connection is being collected. So, theoretical investigations
concerning the class of smooth anisotropic fireballs are very appealing.

The final aim for the present work is the detailed calculation of afterglows and
spectra emitted from smooth anisotropic fireballs viewed by different directions. Our
detailed calculation of the observed radiation is intended to fully take into account the
interior emission of the fireball, the relativistic beaming, the light travel delays of radi-
ation emitted by different volume elements of the fireball and the effect of cooling via
synchrotron radiation and adiabatic volume expansion on the emitting electrons. Thus,
light curves and spectra have been calculated through whole integration of lab frame
boosted emissivity over the volume delimited by the place of points from which radia-
tion emitted by the post—shock fluid arrives simultaneously to the observer (Equal-T
surface).

We have modeled the anisotropic fireball interior assuming that the fluid evolution
along any fixed direction is not affected by the adjacent directions and resembles a
portion of a spherically symmetric expanding fireball having the same baryon loading
as the anisotropic fireball in that direction, and a total energy equal to 47 times the
total energy per unit solid angle of the anisotropic fireball in that direction.

It has already been shown that for ultrarelativistically expanding spherical fireballs
results of afterglow calculation with the procedure described above qualitatively agree
with rough estimations based on the fact that because of relativistic beaming, and
because of the post—shock particle distribution highly concentrated close to the shock
(almost shell shaped), radiation that reaches the observer at each given time mostly
comes from the fluid just behind the shock along the line of sight. A calculation as
precise as the one we perform is important for predictions on timescales at which the
flow (or the shock front) becomes marginally relativistic, lateral portions of the fireball
can contribute significantly to observed radiation and the fireball internal structure is
no longer approximable as a thin shell. But it is also important to show that, even
in case of ultra-relativistic shocks, realistic afterglow calculation produces light curves
and spectra much more smooth and far from simple broken power laws than rough
approximations, suggesting that broken power law fits actually performed on afterglow
data might appear to be too simple as soon as better quality and more complete data
sets will be acquired.

The complete hydrodynamical evolution of a spherical fireball, from the time of
explosion to non relativistic Sedov expansion, has been described, along any given di-

rection, by matching the analytic laws characterizing the different known evolutionary



stages. In order to have a consistent and smooth global evolution from the initial rela-
tivistic expansion to the late Newtonian one, it has been necessary to use generalized
jump conditions at shocks and generalized energy conservation law and to derive a set
of analytical approximations allowing either for a good match between different laws
and a relatively easy and fast calculation of the comoving time. As far as the radiation
process is concerned, once verified that within the ranges of intrinsic fireball parame-
ters used synchrotron radiation from shock accelerated electrons dominates over other
possible radiation mechanisms, we have performed the exact calculation of the comov-
ing synchrotron emissivity of the shocked fluid. The cooling of the emitting electrons
due to synchrotron energy losses and adiabatic expansion has been carefully taken into
account thanks to the knowledge of the whole fireball structure and evolution, and
different hypotheses about the magnetic field strength evolution have been tested.

The detailed afterglow light curve and spectra from spherical fireballs that have been
calculated so far with comparable accuracy have always concerned fireballs with a very
low degree of baryon pollution (i.e. baryon loading parameter n 2 100, see section
3.2 for the definition of 7)), because this value, though not directly measurable, seems
to be always compatible with observed data in spherical geometry and is suggested
by the high value of the lower limit on the bulk Lorentz factor of the flow needed to
solve the compactness problem [Fenimore, Epstein & Ho 1993, Woods & Loeb 1995].
Under this assumption the observed X-ray, optical and radio afterglows should always
be emitted during the Blandford & McKee stage, the relativistic self-similar expansion
stage that is expected to start when the mass of the swept—up external medium becomes
high enough to decelerate the fireball. Thus, this has always been considered to be
the most relevant stage for afterglow predictions and light curve and spectra detailed
calculation have been restricted to it.

Since the spherical fireball evolution is determined by the values of the baryon
loading parameter 7 and the total energy, and the start times of different evolution-
ary stages depend on these parameters, in an anisotropic model with smooth angular
distribution of baryon loading and “isotropic” energy spanning two decades in values,
the radial evolution will go on with different timescales in different directions. The
start time of each evolutionary stage will depend on the direction, and stages before
the Blandford & McKee one must be taken into account for a consistent description of
the whole fireball evolution and proper definition of its shape.

For this reason we have built an approximated but complete and realistic version

of the hydrodynamical evolution of a spherical fireball with arbitrary baryon loading
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parameter value, valid at least for n as low as 3 (i.e. quite high baryon pollution).
We have developed a single code for the numerical calculation of afterglow light
curves and spectra from either an anisotropic fireball or a spherical fireball with intrinsic
parameters varying in the ranges required for the corresponding anisotropic calculation.
To date, we have fully tested the code calculating afterglows for all the spherical
models of interest both neglecting and taking into account the cooling on the evolution
of the emitting particle distribution.
Since the code is complete, the forthcoming development of the project will be the

full calculation of afterglows in the anisotropic case at varying viewing angles.

1.1 Plan of the thesis

In chapter 2 we introduce the observational properties of GRBs and afterglows, de-
scribing the main features of these events and summarizing the currently proposed
interpretations within the framework of the fireball model.

In chapter 3 we introduce the complete theoretical treatment of the hydrodynamics
of a spherical fireball and the whole set of analytical approximations we have derived
and used (sections from 3.2 to 3.5), the general procedure for the detailed calculation
of afterglow light curves and spectra (section 3.6) and of the comoving emissivity
of shocked matter according to the theory of synchrotron radiation and the fireball
hydrodynamics (sections 3.7 and 3.8).

The anisotropic fireball model we have developed, based on spherical hydrodynam-
ics with a direction dependent baryon loading, is introduced in chapter 4.

Finally, in chapter 5 we present the results of the calculation of afterglows and
spectra from spherical fireballs with intrinsic parameters varying in the range required
for building an anisotropic fireball. After presenting (standard) approximated predic-
tions about afterglows from spherical fireballs (section 5.2), we show the results of
calculations performed neglecting the cooling of emitting electrons (section 5.3.1), and
then the results of calculations performed taking into account the cooling of electrons
(section 5.3.2).
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1.2 Results

We present only results regarding afterglows from spherical fireballs.

The spherical fireball afterglows we have calculated under the same approximations
of the similar estimate performed by [Granot, Piran & Sari 1999c¢| are consistent with
their results over the time interval corresponding to the Blandford & McKee stage, if
the fireball intrinsic parameters (baryon loading parameter 7, total energy Er, degree
of equipartition of the electron energy e., and of the magnetic energy eg) and the

observation frequency v satisfy the relation (5.25), i.e.

U NV £ oeg N /e, \ L2 B\ Y2
Se 1.1
>80 <1016> <0.01> (0.1) (1052> (1.1)

This relation corresponds to the condition that the peak time of the light curve occurs

during the Blandford & McKee stage. The extension outside this range has not been
performed before this work. Furthermore, even in the range determined by equation
(1.1) we extend the results to before and after the Blandford & McKee stage.

From an observational point of view, at very early time after the explosion ( < 100s)
the light curves we calculate would be probably out-shone by the GRB emission (in
the soft y—rays and X-rays) or by the reverse shock emission (in the optical /NIR), and
would be probably undetectable because of the low flux in the radio. The early part
of the light curve we predict might be observed only for fireball parameters that imply
the Blandford & McKee stage beginning after the first ~ 100 s. The late part of the
light curves we calculate (after ~ 1 year) should always be difficult to be observed at
frequencies from the X-rays to the infrared because of the low flux compared to the
flux coming from the host galaxy or, possibly, the remnant of the progenitor.

The main result we find is that if the fireball parameters and the observed frequency
do not satisfy (1.1), the qualitative behaviour of the peak of the afterglow light curve
changes. Light curve peaks always occur during the early deceleration stage, after the
fireball has stopped the coasting stage (i.e. expanding at constant speed), and have
a different shape. The peak times are frequency independent, but energy and baryon
loading dependent exactly like the Blandford & McKee’s phase start time. Thus, at
moderately low baryon loading parameter values (1 ~ 20, corresponding to a relatively
large baryon pollution) and standard total energy values (Ep ~ 10%% ergs) we expect
the afterglow peak to fall just on timescale of real afterglow detections. The second im-
portant characteristic of peaks of this second family, arising when (1.1) is not satisfied,

: : : : (o=
is that the peak height (i.e. the maximum detectable flux) scales as oc Ep n'%/3 v~ o
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unlikely the “standard” peak heights scaling as oc E7. This makes, for instance, X-ray
afterglows significantly dimmer than optical at the maximum, allowing for the occur-
rence of GRB events with an intrinsically faint X-ray afterglow as compared to the
optical.

The afterglow light curve calculation including effects of electron cooling via syn-
chrotron and adiabatic expansion energy losses reflects the same general peaking be-
haviour we have just described, with the second family of afterglow peaks just having
a peak time value different within 20% from the corresponding peak time calculated
without electron cooling. Comparison of absolute values of peak heights with or with-
out accounting for the electron cooling is delicate in all cases, but the scaling laws with
the fireball intrinsic parameters are roughly the same.

The most relevant result in this case is that both light curves and spectra are
difficult to be well approximated by broken power laws. Spectral peaks and breaks are
very broad and smooth, and curve segments far from peaks or breaks are definitely not
straight lines in a log—log plot. This is not surprising, and should be considered as a
warning to observers for future analysis of better quality afterglow data.



Chapter 2

Gamma—Ray Bursts and Afterglows

2.1 GRBs observational features

Gamma-Ray Bursts (GRBs) are bright, irregular, transient events in the gamma-ray
sky, unpredictable in time and location, with a typical duration of a few tens of seconds
though possible durations span from a fraction of second to minutes (for reviews, see
[Fishman 1995, Fishman 1999, Fishman & Meegan 1995, Meegan 1998]). The bright-
est bursts have gamma-ray fluences of order 107 erg cm™2, but they have been de-
tected down to limiting fluxes of ~ 1077 erg cm™?s™! or fluences of 107% erg cm™2.
This cutoff is determined primarily by the threshold of the sensitivity of the detectors
combined with the trigger method. GRBs are currently detectable at a mean rate of
~ 103 per year.

Most of energy of the bursts is released in the 0.1-1 MeV range. Spectra gener-
ally display featureless smooth continua well fitted by the classical spectral model by
[Band et al 1993] consisting of a low energy power law with an exponent «, being ex-
ponentially cut off at F ~ Ej, and by a high—energy power law with the exponent £.
Though the values of («, 8, Eo) can be different for individual bursts, they usually are
in the ranges o ~ [—2,0.5], 8 ~ [-3.5, —1], Ep ~ [100, 200] keV* [Preece 2000]. More-
over, quite irregular spectral evolution (i.e. evolution of the parameters (o, 3, Fp)) is
~observed during all bursts [Ford 1995]. All these spectra, integrated or time resolved,
are definitely far from a black body, so it is widely believed that the source of gamma

radiation is optically thin, i.e. the photon mean free path is larger than the emitting

"Remind that the exponents o and S usually refer to the photon number spectrum, i.e. we write
N(E) < E~% at low energy and N(E) < E~7 at higher energy.

13
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plasma cloud. Yet the spectra are not always described by nonthermal emission in a
simple synchrotron shock model (see e.g. [Crider 1997, Preece 2000]). Especially their
low energy tails are sometimes incompatible with pure synchrotron emission since such
a radiation mechanism would forbid spectral slopes a > —1/3 [Katz 1994] as those
observed for instance in GRB 970111 [Frontera et al. 2000].

The time profiles of pulses of gamma-ray radiation show a great variety. There
are single—pulse bursts, bursts showing a few of prominent spikes and bursts show-
ing many pulses (even hundreds). The variability timescale in GRB light curves can
be very short, usually significantly smaller than the total duration of the burst, the
shortest rise time of a luminosity peak ever detected being of 0.2 ms (GRB 910711)
[Bath et al. 1992]. It is hard to observe any regularity in the time profiles of bursts
though [Stern & Svensson 1996] claim that they find scale-invariant properties in the
light curves of GRBs.

It is most probable that the source of gamma radiation, moves towards us with ex-
treme relativistic speed, corresponding to a Lorentz factor v ~ 100. This was originally
deduced as the only reasonable solution to the compactness problem, that is a paradox
due to the simultaneous presence of variability timescales as short as 0t ~ 1072 seconds
and non thermal gamma-ray spectra [Guilbert, Fabian & Rees 1983]. The compact-
ness problem arises because of the conflict of the naive estimate of the source size
R ~ 8t ¢ ~ 3 x 10® km with the observed nonthermal GRB spectra: a number of
gamma photons as large as the observed one confined within such a small region would
imply an optical depth for ete™ pair production that large to unavoidabiy thermalize
radiation and produce a black body spectrum. The conflict can be resolved if one sup-
poses that the emitting region moves towards the observer with an extreme relativistic
speed, i.e. a very high value of the Lorentz factor . Then, the actual size of the emit-
ting region would be R ~ 4% 6t ¢ ~ 3 x 10'* ¢m, and the optical depth would become
correspondingly smaller allowing non thermal emission in an optically thin environment
[Paczyrisky 1986, Goodman 1986, Krolik & Pier 1991, Rees & Mészaros 1992].

Now-days relativistic motion in GRBs is widely accepted because of the apparent
superluminal expansion measured during the radio afterglow of GRB 970508 thanks to
interstellar scintillation [Goodman 1997, Waxman, Kulkarni & Frail 1998] (see fig. 2.5
and its caption).

The nature of the GRB progenitors is still unsettled, though it now appears likely
that at least some of them originate in explosions of very massive stars or occur in or

near the regions of massive star formation in other galaxies.
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We have already noticed that their duration (0.1-100 s) and intrinsic variability
timescale (1073 s) suggest a spatial scale comparable to that of stars and dense stellar
remnants, i.e. Black Holes (BHs) or Neutron Stars (NSs).

Actually, though many new ideas continue to be generated, after the establishment
of the cosmological distance scale of the GRBs and therefore the energetic scale (see
next section) the debate about progenitors has focussed on two types of models: explo-
sions of very massive (> 30 M7) stars (also known as “collapsar” or “hypernova” type
models [Paczynski 1998, MacFadyen & Woosley 1999]), and mergers of compact stellar
remnants [Eichler, Livio, Piran & Schramm 1989] (NS, BH, or even white dwarfs; but
with at least one merger being a NS or a BH).

In both cases, the end product is a stellar mass scale BH, surrounded by a rapidly
rotating torus, whose orbital kinetic energy can be extracted via magneto hydrody-
namical (MHD) processes and used to power the GRB. If the BH itself is threaded
by a magnetic field (which has to be amplified to ~ 10'® G), its spin energy can
be extracted via the Blandford-Znajek mechanism [Blandford & Znajek 1977]. Both
mechanisms can extract ~ 10° ergs, and both provide a natural collimation (spin)
axis, for energy release via Poynting jets. Additional energy (~ 10° ergs) can be pro-
vided by thermal neutrino cooling, vv — e*,~. The gra\}itational wave component is
strongly model-dependent and is highly uncertain at this point; hopefully it will be
settled observationally with LIGO and LISA. Regardless of the exact model for GRBs,
it appears highly likely that black holes are involved.

The evidence for the collapsar/hypernova type of models is becoming increasingly
compelling, at least for the well-studied long bursts, but the case is still not closed. It
is entirely possible that more than one physical model is at work, where very different
physical mechanisms lead to a roughly comparable observed phenomenology. This
can happen because after a while fireballs loose memory about the initial explosion
mechanism they were produced by.

We will not refer to any particular GRB progenitor model because the physics of
the afterglows is reasonably well understood, and has been tested and confirmed very

well by the observations regardless detailed knowledge on the GRB origin.

2.2 A bit of history

The first GRB was recorded with the Vela satellites on July 2, 1967
[Klebesadel, Strong, & Olson 1973, Strong, Klebesadel, & Olson 1974].  More than
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2000 bursts were detected by numerous space—based experiments in the following 30
years, but for all the three decades, the nature of GRBs have remained mysterious.
The main reason for the missing identification of the burster population was that prior
to 1997 no small, arcmin-sized GRB error boxes were available for rapid follow—up
observations. This unsatisfactory observational situation led to an enormous flood of
publications and culminated in more than 100 theories about the nature of the bursters.
(RB distance were absolutely uncertain: their distance D from the earth could vary in
different models from tens of astronomical units (1 AU ~ 1.5 x 10 c¢m), up to Giga-
parsecs (1 Gpe &~ 3x10%7 cm). So, for a typical fluence F' ~ 107° ergs cm™ the total en-
ergy emitted in gamma-rays under assumption of isotropic emission, E, ;5o = 47 F D?,
could be as low as ~ 10%* ergs for the nearest locations, and go up to ~ 10°° ergs for
1 Gpe. And if F is 4 orders of magnitudes higher (as e.g. for GRB 990123), and/or
the distance is larger than 1 Gpec, then the energy release in gamma photons becomes
correspondingly higher.

An indirect evidence for cosmological location of GRBs, i.e. on the Gpc distance
scale and on the luminosity scale as a consequence, is their isotropic distribution on
sky [Prilutskii & Usov 1975].

The 1990’s have seen two observational breakthroughs in GRB research. The first

came with the Burst and Transient Source Ezperiment (BATSE)
on the Compton Gamma-Ray Observatory (CGRO)
[Fishman 1981],[Fishman et al. 1993],[Fishman et al. 1994]. It characterized the pe-
riod from 1991 to 1996. During this period several GRB experiments aboard various
satellites were carried out, but BATSE was most successful. In operation since 1991,
BATSE detected about 1 burst/day, corresponding to a full sky rate of about 800 a
vear [Meegan et al. 1992]

The method of checking with high precision the angular isotropy of the bursts on
the sky worked very well with the large sample of BATSE detected bursts in spite of
the very large error boxes (=~ tens of degrees), and, based on BATSE gamma-ray data
alone, over the years it became more and more difficult to postulate a Galactic halo
origin of all bursts [Briggs et al. 1996, Hakkila et al. 1994, Tegmark et al. 1996b].This
included constraints on burst repetition [Meegan et al. 1995, Tegmark et al. 1996a].

This evidence represented substantial progress. However the missing item was the
direct observational proof of an extra galactic origin of the bursts. This second ob-
servational breakthrough was initiated by the Italian-Dutch gamma-ray/X-ray satel-
lite Beppo—-SAX launched in 1996 [Boella et al. 1997, Costa et al. 1998, Frontera 1998]
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and later it included successful GRB localizations with RXTE [Bradt & Smith 1999,
Smith et al. 1999] and HETE [Price, Kulkarni et al. 2002].

Contrary to BATSE, Beppo-SAX can provide an arcmin-sized GRB error box
within hours after the GRB trigger, though only about ten bursts a year because of its
small field of view.

Beppo-SAX has both a gamma-ray detector (GRBM) and a wide field (~ 40° x40°)
soft X-ray camera (WFC). It could for the first time find an X-ray transient in the
same field where a GRB flashed, provide X-ray positions with accuracy of a few arc
minutes and re-point them with the Narrow Field Instruments (NFI, imaging instru-
ments orthogonal to both the GRBM and the WFC axes) after a delay of only 4-6 hours
for processing. The technique led to the discovery by Beppo-SAX [Costa et al. 1997]
of the first X-ray transient associated with GRB 970228. This allowed follow—ups in
X-rays (by Beppo-SAX itself), in visual light [van Paradijs et al. 1997] as well as at
radio wavelengths [Frail et al. 1997]. The transient counterparts to GRBs are called
X-ray, optical (i.e. visual light) and radio Afterglows. X-ray afterglows usually become
undetectable in a day, optical afterglows last a few days and radio afterglows last some
weeks. For some of them the observations last many months [Zharikov et al. 1998].
The number of discovered GRB afterglows is growing continuously and much has been
learned about GRBs based on multi-wavelengths observations of afterglows.

The breakthrough in proving that at least some of GRBs are at cosmological dis-
tances occurred when absorption lines with redshift z = 0.835 were measured in the
spectrum of the optical transient counterpart of GRB 970508 [Metzger et al. 1997).
Since the absorption was seen in the light of the afterglow, the source could be
only more distant. Thus z = 0.835 is a lower limit to the redshift of the tran-
sient and the GRB that induced it. Later, in some cases, the identification of can-
didate host galaxies was suggested. Spectroscopy of the likely host galaxy gener-
ally shows that the absorption redshift measured during the afterglow coincides with
the redshift of the galaxy emission lines, confirming the association of the GRB
with the proposed host. An outstanding example is the galaxy associated with
GRB 971214, its redshift probably being z = 3.418 [Kulkarni et al. 1998]. The cor-
rectness of this value has been matter of debate, since there is only one emission
line discernible above the noise level of the spectrum of this very distant galaxy, and
the identification relies heavily on the assumption that the line is a Lyman-a. For
GRB 000301C and GRB 000131 the lower limit to the afterglow redshift has been

determined through identification of absorption edges with the Lyman limit and in-
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tervening Lyman—a forest [Smette, Fruchter et al. 2001, Masetti, Bartolini et al. 2000,
Garnavich, Loeb & Stanek 2000, Andersen, Hjorth et al 2000]. The obtained redshifts
are actually higher than the average: z = 2.033 the former and z = 4.5 the latter. Much
more convincing is the observation of a system of absorption lines with z = 1.6 in the
spectrum of the afterglow of the very bright burst GRB 990123 [Kulkarni et al. 1999]
followed by host identification [Fruchter, Thorsett et al. 1999]. An energy output in
gamma-Tays [, ;s, of at least 3.4 x 10%* ergs is implied by such a redshift if emission
is isotropic. Moreover, the sub—sample of GRBs with reported spectroscopic redshift
shows estimated values of the isotropic emergy output between 10°' and 10%* ergs,
with the only exception of the very special burst GRB 980425, maybe coming from
the local universe because it has been suggested for an association with the anomalous
Type Ic Supernova SN1998bw at redshift z=0.0085. If such an association were correct,
GRB 980425 would have E. ;50 ~ 107 ergs, quite less than the average.

The huge energy release in some of the bursts implied by their extra galactic origin
poses extremely hard questions to theorists who try to explain these super powerful
events. Even if the beaming is invoked, which reduces the energy budget by a couple
of orders of magnitude (if emission were confined within a cone of half-opening ¥,
pointing to us the total emitted energy would be E., ~ 4E., ;s,/9%), this is still too high
for conventional models that involves collapses or mergers of objects with masses on
the solar mass scale.

2.3 The Afterglows

The occurrence of broad—band afterglows following GRBs was expected on theoreti-
cal grounds ([Rees 1998], and references therein). Compared to the duration of the
bursts, afterglows in the long—wavelengths bands were expected to be long-lived, mak-
ing the precise localization of the bursters possible and extending GRB research into
international multi—-wavelength observing campaigns.

According to the currently most accepted theoretical GRB model, the afterglows are
due to external shocks when a relativistically expanding fireball released by a compact
source sweeps up matter from the “interstellar” medium surrounding the burster (for
an introduction into this subject and/or a review, see Mészdros 1997, Mészaros 2000;
Piran 1997, Piran 1999, Piran 1999a; Rees 1999). This medium could be, for example,
the ordinary interstellar medium in a spiral galaxy, or the stellar wind environment
from the GRB progenitor [Chevalier & Li 2000, Halpern et al. 1999]. The afterglow
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emission process is most likely synchrotron radiation (see, e.g., Sari, Piran, & Narayan
1998; Wijers, Rees, & Mészaros 1997, and references therein).

At the date of submission of this thesis, long-lasting optical afterglows have been
observed from about 25 GRBs, and about 20 radio afterglows have been discovered.
In three cases (GRB 970828, GRB 981226, and GRB 990506) the radio afterglow
has been detected in spite of the lack of optical counterparts. Evidence for a short—
lived afterglow in the gamma-ray band has been reported in the case of GRB 980923
[Giblin et al. 1999]. About 60% of all GRB afterglows seen in the X-ray band show
no detectable optical emission, whereas almost all well localized GRBs detected by
Beppo-SAX exhibited an X-ray afterglow [Costa 1999].

Then, X-ray afterglow emission appears to be ubiquitous. The failure to find radio
afterglow is most likely due to lack of sensitivity (see section 2.4.3), but the discussion
on failed detection of optical afterglows, i.e. the problem of the “dark” GRBs, is
more delicate. Many causes can concur to make optical searches unsuccessful (see also
[Djorgovski, Frail et al. 2001]). First of all, as we will explain in section 2.4.2, optical
afterglows show a larger range of decay rates with respect to other afterglows, and
have ka rather wide range of magnitudes measured at equal times from the GRB, so
they might be intrinsically faint, rapidly decaying, or dim because of the large redshift,
causing the Lyman—« break to affect the optical spectrum. This, together with the lack
of a straightforward correlation between optical emission and gamma-ray brightness
of the prompt event, makes it difficult to predict the detection level and to devise an
optimal observing strategy. Therefore, in some cases, the lack of an optical detection
may be due to the insufficient sensitivity of the search [Taylor, Bloom et al. 2000,
Fynbo, Jensen et al. 2001, Frail, Kulkarni et al 1999)].

Moreover, to date, there are about 23 reported redshift measurements of GRB
afterglows and/or host galaxies [Bloom, Kulkarni & Djorgovski 2002]. The redshifts
measured so far either with spectroscopy or broad—band photometry span the range
~0.4 to ~4 (excluding the peculiar case of GRB 980425). The data seem to indicate
that the redshift distribution of the bursters peaks around 1, with a long tail towards
higher redshifts (for model fits see, e.g., [Schmidt 1999]).

Precise localization of the GRBs via afterglow detection and redshift measure-
ments is very important in constraining the progenitor model. The statistical
study of the offsets of GRBs from their apparent host galaxy centers performed by
[Bloom, Kulkarni & Djorgovski 2002], for instance, provides strong observational ev-

idence for the connection of GRBs to star—formation and allows to rule out at the
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2 x 1073 level the compact objects binary merger model for GRB progenitors.

But just the large number of successful host galaxy identifications within the sub-
sample of GRBs showing an optical counterpart simply suggests that GRBs usu-
ally occur inside galaxies. So optical afterglows may be affected by absorption
in their host galaxies as well as by extinction in the plane of our Galaxy (which
is instead transparent to gamma-rays, to hard X-rays and to radio wavelengths)
and this makes their detection largely more difficult than detection at other wave-
lengths. The further evidence of association of GRBs to star forming regions found by
[Bloom, Kulkarni & Djorgovski 2002] can only strengthen the idea that many optical
afterglows might be simply undetectable because highly absorbed.

By simulating the absorption experienced at the center of a dense dust clump,
similar to those found in star forming regions in our Galaxy and in external ones, in a
number of directions randomly distributed, Lamb determined that in only 35% of the
lines of sight the optical depth is 7 £ 1 (i.e. optical radiation from a GRB afterglow
might escape the dust clump and reach the observer), while in the remainder it is 7 > 1
[Lamb 2001]. This statistic is consistent with the percentage of dark GRBs, supporting
the idea that local dust absorption may hamper or completely prevent optical detection
of the GRB afterglow and strengthening the importance of infrared observations to
verify the presence of substantial quantities of dust at the burst explosion site and
confirm the association of GRBs with star forming regions. Although the result of this
test would relate all dark GRBs to the effect of dust extinction, perhaps this is only
one of the possible causes for a failed optical detection.

An alternative view [Lazzati, Covino & Ghisellini 2001] is that dark GRBs
can be heavily extincted only if dust sublimation by the strong UV /optical
[Waxman & Draine 2000] and X-ray radiation [Fruchter, Krolik & Rhoads 2001] fol-
lowing the explosion does not play a significant role. If dust destruction around the
burst site is important [Galama & Wijers 2001], then dark GRBs should belong to a
distinct population with respect to GRBs with detected optical afterglows.

Anyway the basic questions if all GRBs have the same kind of progenitor and if
all GRBs produce afterglows (X-ray afterglows at least) are still open mainly because
the Beppo-SAX GRB sample [Frontera et al. 2000] is entirely composed of long bursts
(ie. bursts with duration longer than 10 s). No short (i.e. lasting less than 1 s) GRB
has been localized accurately enough for multi wavelength follow—ups and hence for
afterglow and host galaxy detection. The GRB 000301C, which was detected by the
Interplanetary Network (IPN) with a 2 s duration and exhibited a bright variable coun-
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terpart, cannot be unambiguously classified as long, sub-second hard, or intermediate
GRB [Jensen, Fynbo et al. 2001].

2.4 Multi wavelength Afterglow Properties

The time-dependent flux density of a detected afterglow generally follows a
power-law decay, F,(T) o T7%v7=® in accordance with fireball models and syn-
chrotron emission from shock accelerated electrons [Sari, Piran & Narayan 1998,
Wijers, Rees, & Mészéros 1997]. Since afterglows have been detected only associated
to long GRBs, we refer only to this class of GRB.

Higher frequency afterglows are detected and are seen to fade earlier than lower
frequency afterglows. X-ray afterglows are usually detected a few hours after the
GRB, likely starting even earlier, maybe during the burst itself, and lasting a few tens
of hours. Optical afterglows are usually detected within a day from the GRB and last
a few days. Radio afterglows are usually detected within a few days or weeks from the

GRB and last a few weeks or months.

2.4.1 X-ray afterglows

X-ray afterglows detected by Beppo-SAX have time slope § in the range 1.1-1.5
[Frontera et al. 2000] and typical 2-10 keV fluence! of the order of 107% ergs cm™2,
comparable to the GRB fluence in the 2-10 keV band and also to the GRB fluence
in the 40-700 keV band. (Beppo-SAX usually detects X—ray emission simultaneous to
gamma-ray emission from the main burst). The X-ray afterglow fluence ranges from
0.4% to 1% of the GRB fluence in the 2-10 keV band and from 0.4% to 20% of the
GRB fluence in the 40-700 keV band, but the three quoted fluences are not strictly
related. Thus, it seems that.the total amount of energy emitted in gamma-rays and/or
X-rays during the burst is comparable, on average, with the total amount of energy
emitted in X-rays during the afterglow. Anyway how the X-ray emission observed
during the burst connects to the X-ray afterglow is uncertain. The 2-10 keV afterglow
spectral slope a is in the range 0.7-1.4 [Frontera et al. 2000]. In a few cases the X-ray

afterglow light curve presents some evidence of steepening (see section 2.4.2).

t According to [Frontera et al. 2000] for X-ray afterglow 2-10 keV fluence we mean the integral of
X-ray afterglow radiation from the end of the GRB up to 10% s, integral obtained by extrapolating
the observed fading law.
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Figure 2.1: Figure extracted from [Kuulkers, Antonelli et al. 2000]. X-ray (filled circles)
and optical R-band (open triangles) light curves of the afterglow of GRB 990510. The R-
band measurements (Stanek, Garnavich et al. 1999, Harrison, Bloom & Frail 1999, Covino,
Lazzati et al. 1999) have been corrected for reddening (Ar = 0.54, Harrison, Bloom €&
Frail 1999) and reduced to the same photometric system. For the R-band we also show the
corresponding fit to a steepening power—law (solid curve) as given in the literature (Harrison,
Bloom € Frail 1999, Stanek, Garnavich et al. 1999, Israel, Marconi et al. 1999). The X-ray
light curve can be satisfactorily described by a single power law (solid line) or a steepening
power law similar to that describing the R-band data, but with parameter values appropriate
for the X-ray data.
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Figure 2.2: Figure extracted from [Pian, Soffitta et al. 2001]. Beppo-SAX light curves of
GRB 990510 in the 2-10 keV range: WFC temporal profile (solid curve, filled triangles and
3-0 upper limits) and afterglow NFI measurements (filled circles). Also shown are the single
power-law f(t) o< t™142 (dot) fitted to the afterglow by [Kuulkers, Antonelli et al. 2000] (see
fig.2.1), the power—law f(t) o< t737 (short dash) which best-fits the last four points of the
WFC profile, and the double power-law of indices oy = 1 and ap >~ 2 (long dash) required for
the afterglow to fit the jet model by [Panaitescu & Kumar 2001a]. The extrapolation of the
single power-law t™1*2 backward to the time of the prompt event is not consistent with the
WFC latest points and upper limits, while the double power—law matches well the last WFC

point and upper limits.
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2.4.2 Optical Afterglows

At epochs between a few hours and ~1 day after the GRB the afterglow de-
cays following approximately a temporal power-law ¢t™® with an index « rang-
ing from ~1 to ~2. These slopes are sometimes steeper than the corresponding
ones at other wavelengths (see discussion in section 2.5). Moreover, rapid fading
(¢ > 2) has been observed in GRB 980326 [Groot et al. 1997] and GRB 980519
[Halpern et al. 1999, Vrba et al. 2000] and GRB 991208 [Castro-Tirado et al. 2001].

For GRB 970508 a ”plateau” (o = 0) has been observed between 3 hours and
1 day from the bursts [Pedersen et al. 1998, Castro-Tirado et al. 1998]. The optical
light curve reached a peak in two days [Djorgovski et al. 1997, Galama et al. 1998]
and was followed by a power law decay with a = 1.2. Another plateau was detected
in the near infrared light curve of GRB 971214 between 3 and 7 hours from the burst
[Gorosabel et al. 1998].

Usually the optical transient following a GRB has an R-band magnitude of about
18-23 when it is detected some hours after the burst [Pian 2001], provided that no
strong extinction occurs in the GRB host galaxy or in our Galaxy. Such initial
luminosities of GRB optical afterglows are two orders of magnitudes larger than
maximum supernova luminosities (GRB 980425, possibly associated to SN1998bw,
was an exception [Galama et al. 1998]) and obviously out-shine their parent galax-
ies, which become visible weeks or months after the main burst. This can make
the optical transient detectable to 1-m class telescopes. When the flux of the tran-
sient subsides under the brightness of the host galaxy, the optical light curve lev-
els off. This allows a photometric estimate of the host magnitude, which is gener-
ally confirmed or refined by successive direct HST imaging. The afterglow magni-
tudes reported by [Pian 2001] have been obtained from a fit with a single or double
power—law after subtraction of the host galaxy flux, and in some cases after decom-
position of a possibly underlying supernova using SN1998bw as a template, appropri-
ately redshifted. Actually, the still debated association of GRB 980425 to the peculiar
Typelb/c Supernova SN1998bw [Galama et al. 1998] coincident with a galaxy at red-
shift z = 0.0085 suggested to interpret bumps observed in the late light curves of
GRB 970228 [Reichart 1999}, [Galama et al. 2000}, GRB 970508 [Sokolov et al. 2001],
GRB 980326 [Castro-Tirado & Gorosabel 1999], [Bloom et al. 1999], GRB 980703
[Holland et al. 2001], GRB 991208 [Castro-Tirado et al. 2001] and GRB 000418
[Klose et al. 2000, Lazzati et al. 2001] as contributions from a SN1998bw-like Su-
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pernova. But alternative explanations for the existence of such bumps in the
Optical Afterglow light curves exist, like, for instance, scattering of a prompt
optical flash by 0.1 My dust located beyond the sublimation radius (0.1-
1 pc from the main burst origin) producing an echo after 20-30 days as ob-
served [Esin & Blandford 2000]; delayed energy injection by late shell collision
[Kumar & Piran 2000], [Kumar & Piran 2000a], or finally, axially symmetric jet sur-
rounded by a less energetic outflow [Panaitescu, Mészdros & Rees 1998]. In any case,
to complicate further the picture, the afterglow of GRB 990712 provides a firm evidence
that no underlying Supernova was present [Hjorth et al. 2000].

In a large fraction of the best monitored optical and/or near—infrared afterglows
the initial power—law decline steepens at times ranging from ~0.5 to ~5 days af-
ter the GRB explosion. The first break deviating from a power-law decay was
observed 1.5 days after the burst in GRB 990123. Further breaks have been re-
ported in other GRBs: GRB 990123 [Castro-Tirado, Zapatero-Osorio et al. 1999],
[Fruchter, Thorsett et al. 1999], [Kulkarni et al. 1999, GRB 990510
[Harrison, Bloom & Frail 1999], [Stanek, Garnavich et al. 1999],
[Israel, Marconi et al. 1999], GRB 991208 [Castro-Tirado et al. 2001], GRB 991216
[Halpern, Uglesich et al. 1999], GRB 000301C [Masetti, Bartolini et al. 2000],
[Jensen, Fynbo et al. 2001], [Rhoads & Fruchter 2001], [Bhargavi & Cowsik 2000],
GRB 000926
[Fynbo, Gorosabel et al. 2001], [Rol, Wijers et al. 2000], [Price, Harrison et al. 2001],
GRB 010222 [Stanek, Garnavich et al. 2001], [Masetti, Palazzi et al. 2001]. Fig.2.3
illustrates the achromatic break in the light curves observed in different visual
bands for this last GRB. The effect is clearly seen as a smooth increase of
the flux decay rate and is suggested also by the X-ray data in a few cases:
GRB 990510 [Pian, Soffitta et al. 2001], GRB 000926 [Harrison, Yost et al. 2001],
[Piro, Garmire et al. 2001], GRB 010222 [Zand, Kuiper et al. 2001].

A very special case is the case of GRB 990123, where an astonishingly bright op-
tical flash was detected for the first (and still unique) time when the burst was still
in progress in the gamma-ray band [Akerlof et al. 1999]. The detection was due to
ROTSE-I, a robotic optical telescope consisting of a two-by-two array of 35 mm
lenses performing automatic follow—ups of just detected GRBs. The optical flash of
GRB 990123 was detected in 22 seconds from the trigger and peaked about 45 sec after
the onset of the burst at a mean V-band magnitude of about 9 on a frame with a 5

sec exposure [Akerlof et al. 1999]. The (minimum) redshift of the burster was found to
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Figure 2.3: The BVRIJHK light-curves of the afterglow of GRB 000926, from & hours to
80 days after the GRB, with model fits corresponding to an isotropic ISM and an p ~ 72
(i.e., simple stellar wind) medium [Harrison, Yost et al. 2001]. Also evident is a break
in the light-curve at t ~ 1.5 days, interpreted as evidence for collimation of the ejecta
[Price, Harrison et al. 2001]. Fluzes from the underlying host galazy and another contami-

nating galazy have been subtracted using late-time HST observations.

be 1.60 [Andersen et al 1999, Kulkarni et al. 1999], so that the optical flash translates
into an ultraviolet rest—frame luminosity of about 3 x 10 L [Kulkarni et al. 1999)].
This early optical peak seems to be uncorrelated with gamma-ray peaks of the burst,
and the ROTSE-I light curve is fitted by a steeper temporal power law than the after-
glow points, indicating a different radiation mechanism (see fig. 2.4). Prompt emission
at optical and near—infrared wavelengths simultaneous with a GRB, or delayed by a
few seconds, was predicted from theory (see [Mészaros, Rees & Papathanassiou 1994,
Mészaros & Rees 1997, Mészdros 2000, Sari & Piran 1999b], and references therein; for
a phenomenological approach, see [Ford & Band 1996]). It is expected to take place as
a consequence of a reverse shock propagating into the explosion ejecta, and is therefore
distinct from the afterglow, which should be produced by the interaction of the forward
shock with the external medium. The estimated power output in the optical flash of
GRB 990123 of about 1% of that gamma-ray energies [Galama, Briggs et al. 1999,
seems to be in agreement with the reverse shock interpretation and allows an estimate

of the plasma initial Lorentz factor [Sari & Piran 1999b].
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Figure 2.4: Figure extracted from [Fruchter, Thorsett et al. 1999] illustrating the R-band
light curve of the GRB990123 afterglow. ROTSE-I data are reported (from immediately
after the light mazimum to ~ 10 minutes after the GRB) along with the measurements of
successive afterglow taken at bigger telescopes. All points, except for the HST point (rightmost
filled square), represent measurements taken from the ground and are reduced to a common
fluz standard with the galazy fluz subtracted. Error bars (1 o) are shown where available, and

arrows indicate 95% confidence upper limits.

The last important observational campaign regarding GRB afterglows in the vi-
sual band is polarimetry. We have already said that the multi wavelength af-
terglow spectrum is thought to be primarily produced by synchrotron radiation
from a relativistic plasma expanding in the interstellar medium or in a wind pre—
ejected by the GRB stellar progenitor [Piran 1999, Chevalier & Li 1999]. Besides
the approximately good agreement of the relation between temporal and spectral
slopes of observed afterglows with the predictions of synchrotron emission based
afterglow models, that has long been considered a convincing argument in fa-
vor of the model itself (see discussion in the following section) also linear polar-
ization, measured in the optical afterglows of GRB 990510 and GRB 990712 at
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the level of a few percent [Wijers, Vreeswijk et al 1999, Covino, Lazzati et al. 1999,
Rol, Wijers et al. 2000}, represents a good test of the synchrotron mechanism
[Loeb & Perna 1998, Gruzinov & Waxman 1999]. In the case of GRB 000301C, near—
infrared polarimetry yielded only an upper limit of 30%. Although not very constrain-
ing, this is consistent with a synchrotron origin of the continuum in a relativistic jet
[Stecklum, Fischer et al. 2001].

2.4.3 Radio afterglows

The first radio afterglow detection came following the localization of GRB 970508
[Frail et al. 1997]. The radio afterglow of GRB 970508 is famous for several reasons:
it was the first radio detection, it gave the first direct demonstration of relativistic
expansion (see the caption of fig. 2.5), and it remains the longest-lived afterglow
[Frail, Waxman & Kulkarni 2000].

The more extended international collaboration for radio afterglow detection
[Frail et al 1999] uses the interferometer facilities of the Very Large Array (VLA), the
Australia Telescope Compact Array (ATCA), the Very Long Baseline Array (VLBA)
and the Owens Valley Radio Observatory (OVRO) Interferometer. At high frequencies,
single dish telescopes which include the James Clerk Maxwell Telescope (JCMT) and
the OVRO 40-m Telescope are used. All afterglow searches begin as quick as possible
with the VLA in the northern hemisphere (dec.> —45°, opps = 45 pJy in 10 min.,
FOV~ 5') and the ATCA in the southern hemisphere (dec.< —45°, oms = 45 pJy in
240 min., FOV~ 5), typically at a frequency of 8.5 GHz, which provides a balance
between sensitivity and field—of-view. Follow—up programs at the other radio facilities
are begun after a VLA or ATCA transient is discovered.

Since 1997 only for 40% of the GRBs observed with the VLA a radio afterglow has
been detected. Usually the rising to a peak followed by power law decay is observed
(see e.g. GRB 980703 in fig. 2.5) [Frail et al 1999, Kulkarni et al. 2000]. In contrast,
at optical and X~ra,y wavelengths, most of the times we see only the decaying portion
of the light curve (as expected, the higher frequency afterglow light curve peaks on
shorter timescales). The peak fluxes of the radio afterglow detections range from 1200
1Jy to 150 pJy. This small range of values suggests that our ability to detect radio
afterglows is severely limited by the sensitivity of the telescope. The brightest radio
afterglow to date is that from GRB 991208 with a peak flux of 2 mJy, a 60-c detection

(at centimeter wavelengths) whereas the weakest afterglow is typically around 5o. In
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contrast, at optical and X-ray wavelengths, afterglow emission is routinely detected at
hundreds of sigma.

The “lifetime” of the radio afterglows is signal-to-noise limited but it is clear, at
least among bursts of comparable brightness, that it varies substantially. Of special
note are the three GRBs (970828, 981226, and 990506) which have no optical coun-
terparts. These may represent an important group of GRBs whose optical emission is
extincted by dust.
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Figure 2.5: Figure extracted from [Kulkarni et al. 2000]. Left: The radio light curve of
GRB 980703. This is a typical afterglow, a rise to a peak followed by a power law decay.
Right: The radio light curve of GRB 970508 [Frail, Wazman & Kulkarni 2000]. The wild
fluctuations of the light curve in the first three weeks are chromatic. At later times, the
fluctuations become broad-band and subdued. These fluctuations are a result of multi-path
propagation of the radio waves in the Galactic interstellar medium. As the source ezpands
the scintillation changes from diffractive to refractive scintillation. According to the theory
of interstellar scintillation, the time at which oscillations stop gives a measure of the source
linear size and consequently allows to estimate the average ezpansion speed of the source.
This speed appears to be superluminal, and relativistic expansion must be invoked to explain

the observations.
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2.5 Discussion

The classical fireball model we will illustrate in detail in the following chapter (under
the assumptions of spherical symmetry and impulsive energy ejection) has specific
predictions for the temporal evolution of the broad-band spectral shape of afterglows
[Sari, Piran & Narayan 1998]. This has been modified to include the detectable effects
of the presence of a jet [Sari, Piran & Halpern 1999].

The basic model assumes that electrons are accelerated by the shock into a power—
law distribution N(v.) ~ 7P for 7. > 7vm. The lower cutoff of this distribution is
assumed to correspond to an electron energy density equal to a fixed fraction €, of
the total internal energy density of the plasma. It is also assumed that a considerable
magnetic field is being built behind the shock and that it is again characterized by
a certain fraction eg of the internal energy density of the plasma. The relativistic
electrons then emit synchrotron radiation which is the observed afterglow. The broad
band spectrum of such emission was given by [Sari, Piran & Narayan 1998] (see fig.

2.6). At each instant, there are three characteristic frequencies:

(1) vy which is the synchrotron frequency of the minimal energy electrons, having a

Lorentz factor v,.

(41) The “cooling frequency” v, that corresponds to the characteristic Lorentz factor
ve, above which electrons can cool on the dynamical timescale of the system.
Remind that the cooling time of an electron is inversely proportional to its Lorentz
factor v,. Therefore, electrons with a Lorentz factor higher than the critical value
v, for which the cooling time is equal to the dynamical timescale of the fireball,

have a shorter cooling time.

(i1) The critical frequency v, below which the synchrotron radiation is self absorbed

and the flux is given by the Rayleigh—Jeans portion of a black body spectrum.

The evolution of this spectrum as a function of time depends on the hydrodynamics.
The simplest, which also describes the data well, is the spherical adiabatic model with
a surrounding medium uniform or with a density oc r~2 (where r is the distance from
the centre of the explosion, or the centre of the expanding spherical fireball). The rest
mass collected by the shock at radius R, is about Ri’nimp where n; is the external
medium particle density. On the average, the particles move with a Lorentz factor 2

in the observer frame, and therefore the total energy is given by Er ~ v2R3n;m,c?.
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Figure 2.6: From [Sari, Piran & Narayan 1998]. Theoretical spectra of synchrotron emission
from a power—law distribution of electrons. Two different regimes are illustrated: (a) Fast
cooling, which is expected at early times. In this case all the emitting electrons cool on
a timescale shorter than the hydrodynamical timescale, i.e. v, < vy. The characteristic
frequencies decrease with time as indicated; the scalings above the arrows correspond to an
adiabatic evolution, and the scalings below, in square brackets, correspond to a fully radiative
evolution. (b) Slow cooling, which is expected at late times. In this case v. > Vm and
only electrons with a Lorentz factor greater than -y, cool on a timescale shorter than the
hydrodynamical timescale. The evolution is always adiabatic. Electron energy power—law
indez p &~ 2.2 — 2.4 fits well the observed spectra. The temporal scalings correspond to the

case of a spherical fireball shock expanding into a constant density medium.
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Figure 2.7: From [Sari, Piran & Narayan 1998]. Theoretical lightcurves corresponding to the
afterglow models shown in fig. 2.6, in the high frequency (a) and low frequency (b) regimes.
The four segments that are separated by the critical times as labeled correspond to the spectral
segments in fig. 2.6. The observed flux varies with time as indicated; the scalings within

square brackets are for radiative evolution, and the other scalings are for adiabatic evolution.
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Assuming that the radiated energy is negligible compared to the flow energy, we
obtain that v, ~ R;%/2 or in terms of the observer time, T = R,/vZc (see section 3.6.1
for a proper definition of the observer time), we get v, ~ T-3/8. If the external particle
density drops as 7~2 (as is expected if the surrounding is a wind produced earlier by

the progenitor of the burst) we get v; ~ T4

. These simple scaling laws lead to the
spectrum evolution illustrated in fig. 2.6.

One can then construct light curves at any given frequency. These will consist of
power laws, changing from one power law to the other once the break frequencies sweep
through the observed band (see fig. 2.7). These power laws are in good agreement with
the observations.

According to this simple model simultaneous multi wavelength observations at var-
ious epochs during the evolution of the afterglow allow the measurement of the spectral
slopes and breaks and the estimate, in principle, of the relevant physical parameters
of the afterglow: total emergy, ambient medium density, magnetic field energy den-
sity, electron energy density, plasma Lorentz factor (see e.g., [Wijers & Galama 1999,
Panaitescu & Kumar 2001a, Panaitescu & Kumar 2001b]). The knowledge of both
temporal decay slopes and spectral slopes in afterglows should allow also the mea-
surement of the slope p of the electron energy distribution.

Afterglows typically have energies < 10° ergs, and power—law electron energy
distributions with index p ~ 2.3. However, some afterglows appear to have harder
electron energy distributions, with p & 1.5 and a high energy cutoff. Moreover the
optical photometric observations, which are often accurate and sufficiently extended
in time to make a good signal-to-noise ratio measurement of the spectral and tem-
poral slopes possible, show that the optical spectra of some afterglows, corrected for
Galactic extinction, are steeper (i.e., redder) than expected from the theory based
on comparison with the temporal decay rate. This has been commonly attributed to
absorption intrinsic to the source or, especially for GRBs at very high redshift, in-
tervening along the line of sight [Ramaprakash, Kulkarni et al. 1998, Reichart 2001].
Reddening by dust in the GRB host galaxy has been invoked in many cases to
reconcile the afterglow spectrum with its temporal decay, using extinction curves
typical of our own Galaxy, of star-forming galaxies, or of the LMC and SMC
[Palazzi, Pian et al. 1998, Vreeswijk, Galama et al. 1999, Dal Fiume & Amati 2000,
Masetti, Palazzi et al. 2001,

Harrison, Yost et al. 2001, Lee, Tucker et al. 2001, Jensen, Fynbo et al. 2001]. While

even a moderate quantity of dust at the GRB source redshift may significantly at-
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tenuate the observed optical spectrum (which corresponds, at the average z ~ 1,
to rest—frame ultraviolet wavelengths), or even completely obscure it, near—infrared
data are less affected and may be more effective in determining the overall afterglow
spectrum, when combined with data at other frequencies [Palazzi, Pian et al. 1998,
Dal Fiume & Amati 2000, Lamb, Castander & Reichart 1999]. Observations in the
near—infrared range are therefore critical for the study of afterglows.

The simple spherical model just described can be easily modified to allow for a
non homogeneous external medium. This would allow for a wider range of possi-
ble spectral and temporal slopes of afterglows, but due to the sparseness of multi
wavelengths data for individual objects it is currently difficult even to distinguish be-

2 wind-stratified

tween spherical models in which the ejecta expand into a n; ~ r~
ISM, and models in which the ejecta expand into an n; ~ const. ISM, although the
latter appears to be preferred in some cases [Harrison, Yost et al. 2001]. Barly—time
measurements may help distinguish between these possibilities. There have been sug-
gestions [Panaitescu & Kumar 2001a] that the particle density of the ISM can be very

-3

low in some cases, ~ 107% — 10™* ecm™3. While this may present difficulties for the

collapsar-type models, it might be explained in terms of pre—existing super bubbles
[Scalo & Wheeler 2001].

Anyway, the change in the temporal slope sometimes observed in optical and even
X-ray afterglows is thought to witness the presence of a decelerating jet. Collima-
tion of the radiation in a jet structure has been long invoked by theorists also be-
fore light curve breaks observation because it would reduce the huge energy out-
puts (~ 102 — 10% ergs) derived from the observed gamma-ray brightnesses and
the measured distances of GRBs, in the assumption of isotropy (see section 2.2). It
can be shown that in case of a jetted fireball pointing toward the observer, when
the aperture of the radiation cone, ~ 1/7,, (beaming angle), which progressively in-
creases as the relativistic plasma decelerates, becomes larger than the jet opening
angle vy, the observer is expected to perceive a faster light dimming, independent of
wavelength, due to the jet edge becoming visible and/or to jet sideways expansion
[Mészdros & Rees 1999, Sari, Piran & Halpern 1999, Rhoads 1999]: in the first case
the decreasing brightness of the shock front would not be any longer partially com-
pensated by the increasing of the emitting area visible to the observer; in the second
case the sudden lateral expansion would cause a faster deceleration of the shock front.
The prediction of [Sari, Piran & Halpern 1999] is that these two effects Should happen

almost simultaneously and might cause a single break in the afterglow light curve at a
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W=

time of the observer o (%) (ﬁb)%, with the temporal decay slope alpha of the after-
glow passing from the value %(p —1) to p at frequencies below the cooling frequency v,
and from the value i—p — % to p at frequencies above the cooling frequency v., provided

that the slow cooling regime (i.e. the v, < 1) has started as expected.

The change in fading rate should be however smooth, due to light travel
time effects at the ending surface of the jet [Panaitescu & Mészaros 1999,
Moderski, Sikora & Bulik 2000]. The steepening of the afterglow light curve would
then be a probe of the GRB and afterglow emitting geometry.

In this scenario we would expect different GRBs to have jets with different opening
angles and breaks in the optical afterglow light curve at different times. But not
all afterglows do exhibit a detectable steepening in their optical light curve. This may
simply be due to under sampling: when not detected, the steepening may have occurred
at early, not well-sampled epochs (many afterglows are described by power—laws with
temporal indices steeper than 2), or at late epochs, when the afterglow behaviour is
significantly contaminated by the emerging host galaxy or supernova, so that discerning
a decay rate variation is more difficult. A further complication might be that one would
expect jets are not always pointing toward the observer. The effect of off axis view
can be either a flattening or a steepening of the light curve [Livio & Waxman 2000].
However a complete theoretical description of afterglow emission from jets as a function

of the viewing angle is still missing in the fire-cone scenario.

To date specific jet models for individual cases have been proposed
[Panaitescu 2001, Berger, Diercks et al. 2001, Berger, Sari et al. 2000],
and [Stanek, Garnavich et al. 2001] have noted an anti-correlation between the slope
change Aa accompanying optical breaks and the isotropic gamma-ray energy of the
burst, suggesting that the different jet opening angle may be responsible for it. An
unambiguous interpretation of the whole set of data on afterglows, or at least its

greatest part, in terms of a simple jet model is not possible yet.

This is mainly because light curve steepening cannot be uniquely ascribed to a de-
celerating jet, even allowing for varying viewing angle, but may be caused instead, or in
addition, by the transition of a spectral break (most likely the cooling break) through
the observing frequency band [Sari, Piran & Narayan 1998] or by the propagation of
the external shock in a non homogeneous medium [Panaitescu, Mészéros & Rees 1998,
Mészaros, Rees & Wijers 1998, Chevalier & Li 1999, Jaunsen, Hjorth et al. 2001] (al-

though in these cases the steepening would be frequency dependent, as opposed to
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what is usually observed; see however [Kumar & Panaitescu 2000] for detectability of
a jet in a stratified medium), or by the transition of the plasma kinematic conditions
from relativistic to Newtonian in a dense medium [Dai & Lu 1999, Dai & Lu 2001,
Masetti, Palazzi et al. 2001, Huang, Dai & Lu 2000]. In some cases the interpre-
tation is not unique [Halpern, Kemp, Piran & Bershady 1999, Li & Chevalier 2001],
although simultaneous multi wavelength observations may resolve the ambi-
guity [Chevalier & Li 2000, Harrison, Yost et al. 2001, Panaitescu & Kumar 2001a,
Piro, Garmire et al. 2001]. In summary, the data are consistent with all optical af-
terglows virtually undergoing a change of temporal slope, whatever the cause of such
a change might be among the different possibilities theoretically devised up to now.
Sideways expansion and edge viewing effects due to the presence of a jet are often quite
consistent explanations for individual cases, but it is not possible to firmly conclude
that a temporal steepening in the afterglow is in all cases associated with a decelerating

and sideways expanding jet.

2.6 The possible role of anisotropy

A possible explanation of some observational features of GRBs (spread in the isotropic
energy emitted in y-rays) and afterglows (breaks in the lightcurves) that is now becom-
ing popular as alternative to the uniform jet with varying opening angle model, is the
existence of an axially symmetric anisotropic outflow, with smoothly varying baryon
loading and initial Lorentz factor but a standard total energy reservoir, viewed from
different angles.

Many GRBs are now found to be associated to with star forming regions, close to
remnants of massive stellar progenitors or supernovae, and these observations give
support to the idea that GRBs could origin from a special and rare kind of col-
lapse of massive stars. The suggested model assumes a catastrophic collapse of the
core of a massive rotating star to a stellar black hole of a few solar masses pro-
ducing a collimated outflow, or a jet along the rotation axis of the massive star,
going through the stellar envelope. Numerical simulations show that the emitted
energy is preferentially channelled along the rotation axis, which is also the lowest
baryon contaminated direction because angular momentum takes matter away from
the axis and on axis matter (with low angular momentum) falls into the black hole
[MacFadyen & Woosley 1999, MacFayden, Woosley & Heger 2001, Aloy et al 2000]. A

broad spread of Lorentz factors of the flow, with the maximum attained along the rota-
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tion axis, i.e. the direction with the lowest degree of baryon pollution, is then expected.
The measured flux will be correspondingly higher for an observer with a viewing di-
rection close to the axis, and this would give rise to the spread in the observed GRB
luminosities. In any case, from the theoretical point of view a simple general law relat-
ing the directional degree of pollution of an anisotropic outflow with energy radiated
via internal shocks in the same direction is still missing. Thus, the idea of explaining
some puzzling spreads in observed quantities with a standard type of event viewed from
different orientations is very appealing but still needs for the angular distributions of
baryon loading, initial Lorentz factor and burst luminosity of the anisotropic outflow
to be theoretically investigated and constrained by observations.

Also the uniform jet interpretation explains the apparent dispersion in the isotropic
energy as caused by a distribution of jet opening angles at constant energy reservoir.
[Frail et al. 2001] and [Panaitescu & Kumar 2001b] have shown that the conical open-
ing angles derived from the presence of breaks in afterglow light curves make the
gamma-ray energy release of the corresponding GRBs, corrected for geometry, nar-
rowly clustered around 5 x 10%° érg, and suggest a standard total luminosity of GRBs
very close to the standard energy release of an ordinary Supernova.

On the other hand, [Rossi et al. 2002] have shown that an axially symmetric
anisotropic outflow with bulk Lorentz factor varying oc ¥=% with o > 0 and lumi-
nosity varying oc 972 viewed by different directions can mimic the same afterglow
behaviour of uniform jets with a distribution in opening angles.

Recently [Ramirez-Ruiz & Lloyd-Ronning 2002] have shown that the anisotropic
scenario may also help explaining tentative correlations of the isotropic luminosity
with the degree of variability of ”spikiness” of GRBs [Fenimore & Ramirez—Ruiz 2002],
the differential time lags for the arrival of burst pulses at different energies
[Norris, Marani & Bonnell 2000, Norris 2002}, and the rest frame GRB peak energy
[Lloyd-Ronning & Ramirez—Ruiz 2002].

A detailed calculation of the hydrodynamical evolution and afterglows from an
anisotropic fireball with a smooth angular distribution in baryon loading, expansion
Lorentz factor etc. viewed from different directions has not been performed yet and
would be very important. As in the spherical case, introduction of realistic treatment
of hydrodynamics and radiation is expected to smooth away simple broken power law
behaviours of afterglow light curves and spectra. This makes somewhat unreliable
fireball intrinsic parameters derived by fitting the observed afterglow data with broken

power laws, though the use of power law fits is often adequate to the sparseness and



38 CHAPTER 2. GAMMA-RAY BURSTS AND AFTERGLOWS

inhomogeneous quality of currently available data. Larger inconsistencies in these
“simple” fits may occur in the future, when better quality data will be at disposal.

We have focussed our investigation on the lateral view of smooth anisotropic fire-
balls, aiming at the understanding of geometrical effects on decay slopes, peak times
and breaks with realistic (though approximated) hydrodynamical evolution and radi-
ation model. The fireball model which we have developed is axially symmetric (see
chapter 4). It is thought of as the result of a direction-dependent energy ejection that
leads to the creation of a non spherical shock front surrounding the centre of the explo-
sion which then expands radially with different Lorentz factors in different directions,
being faster where the energy output was higher. The pure radial expansion is likely
satisfied up to very late times in the evolution (see section 4.4). The delays in the ar-
rival times of simultaneously emitted photons lead to a further distortion of the fireball
shape as seen by a distant observer, especially when the line of sight is not aligned with
the direction of greatest energy output. Moreover, the faster traveling regions of the
blast wave will accelerate electrons to a higher average Lorentz factor and emit harder
synchrotron radiation which is highly beamed. At any given time, the observer will
see only that part of the shock front whose emission beam is wide enough to include
the line of sight. Since the fireball expansion slows down as time passes, if the line of
sight were not aligned with the fireball axis it might happen that the fastest part of
the blast wave, initially not visible because of the emission beam being too narrow,
becomes visible after a while when the emission beam becomes wider as the expansion
velocity decreases. This effect can produce an apparent re-burst at a frequency higher
than the typical emission frequency of the shock front along the line of sight and change
the temporal decay slopes of afterglow light curves and the timescales for detection and
visibility of the afterglow in a given energy band.

All these effects should be calculated and quantified as deviations from the “stan-
dard” models in order to help the interpretation of better quality observations coming

in the near future thanks to GRB and afterglow study devoted spatial missions like for
instance SWIFT.



Chapter 3

Spherical Fireballs

3.1 Introduction

A simple model for GRB afterglows, still able to explain the general behaviour of de-
tected afterglows, is the spherical fireball model. This model is based on an isotropic
instantaneous explosion in a extraordinarily but not completely baryon free environ-
ment (details are coming later). It was originally formulated as a tentative model for
the GRB prompt emission and discarded after a while as it cannot explain the main

burst variability timescales.

Refinements of the fireball model for GRBs require wind-like and intrinsically vari-
able energy ejection by a central engine instead of a single “explosion” to properly
explain the main burst variability. An extreme case could be random expulsion of ran-
domly sized and baryon polluted shells of energy. In this case multiple collisions among
shells of plasma traveling at different relativistic speed could be at the origin of the
prompt GRB radiation. The shell collisions lead anyway to a final unique “average”
shell as if there had been a single explosion, so that the simple impulsive model can
still be used for modeling the system after the GRB emission.

Afterglows are a natural prediction of any fireball model (impulsive or wind driven).

In a fireball model afterglows are thought to arise from the radiation emitted by
the matter that surrounds the progenitor as it is shocked by the expanding blast wave
at the fireball outer edge. Interaction with the surrounding matter via a shock wave
cannot be avoided (see the SNR case as an example) and is likely to be independent of
the impulsive or wind-like nature of the energy deposition mechanism/explosion. Thus

afterglow radiation can be modeled as synchrotron radiation from relativistic electrons

39



40 CHAPTER 3. SPHERICAL FIREBALLS

accelerated at the shock with the external matter.

Because of this, impulsive and wind-like spherical fireballs predict the same after-
glow properties though only the second type reasonably predicts a main burst too via
the standard external shock scenario. |

Since I am interested in afterglows light curves and spectra only I will use as basic
model the impulsive fireball model and simply neglect possible emission from the ejecta,
that in the wind-like model are the site for internal shocks and GRB emission but finally
settle down in an cold single shell as in the impulsive case. I will assume that the outer
shock wave that sweeps the external matter during the fireball expansion is born at
the explosion, immediately starts shocking the surrounding medium and accumulates
an outer thin shell of shocked matter all around the expanding ejecta cloud. I am
going to calculate emission from this thin shell, i.e. from the shocked external matter
only. I will neglect also radiation possibly emitted by the ejecta as they are shocked by
the reverse shock associated to the outer expanding one that sweeps external matter,
usually named the forward shock. Because of the finite thickness of the ejecta shell,
radiation eventually emitted by ejecta at the reverse shock passage can contribute to
the afterglow only for a short time interval from the GRB detection, and we are more
interested in the long lasting component of afterglow emission, that can be better
observed and studied.

The light curves I will obtain must be considered as a component to be added to
(and observationally not distinguishable from) the GRB emission during the main burst
and the reverse shock emission. They are expected to model the observable radiation
only after the GRB end and/or the end of early and very short afterglow component
possibly due to the reverse shock. So I will trust my calculation only after the GRB,
whose time of occurrence and duration must be estimated as if internal shocks have
taken place.

Now I am going to introduce the impulsive fireball model in details.

I illustrate the fireball hydrodynamics up to non relativistic expansion as it can be
qualitatively predicted via physical principles.

In the quantitative hydrodynamical treatment I use an approximated analytical
approach to join smoothly analytic solutions corresponding to different evolutionary
stages. So I will able to describe the whole hydrodynamical evolution of the shock
front radius and shocked matter distribution behind the shock from the very initial to
the late stages. Then I will be able to calculate continuous light curves through all

the different evolutionary stages of the fireball up to very late times from the explosion
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and /or starting by very low values of the baryon loading parameter 1 (i.e. very high
baryon pollution) as compared to the standard ones (see section 3.2 for the definition
of ). I can follow smoothly, for instance, the transition to non relativistic expansion
and model light curves from a fireball that is not extremely relativistic from the very
beginning of its life.

T will describe how observed spectra and light curves can be calculated in a detailed
way, i.e. all relativistic Doppler shifts of emitted radiation and light travel delays
included, once the complete fireball hydrodynamics is known and a particular radiation
mechanism is assumed.

It will be necessary to discuss how the time measured by a far observer is related
to the coordinate time of the lab frame (the frame in quiescence with respect to the
fireball centre of mass) and the comoving time of fireball volume elements and define
the Equal-T surfaces.

T will illustrate detailed calculation of light curves due to synchrotron emission by
relativistic electrons in the swept up plasma accelerated at the forward shock. Assump-
tions and approximations in the radiative part of the model will be discussed. I will
calculate light curves and spectra also taking in account the cooling of the emitting
electrons due to synchrotron radiation itself and adiabatic expansion of the fluid under
the hypothesis that the only site for particle acceleration (and eventually for magnetic
field amplification) is just behind the shock front and that from the hydrodynamical
point of view emitting electrons are frozen in within the volume element they were
injected in at the shock passage. This calculation will require an approximated esti-
mation of the comoving time elapsed from the moment each single volume element has
been shocked.

The results will be illustrated discussed and compared to rougher estimations at
the end.
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3.2 Impulsive Fireballs and Afterglows

An impulsive fireball is what originates from the sudden release of a large amount of

energy within a small region of space polluted with relatively few cold baryons (that

will represent the ejecta) and surrounded by a tenuous and cold external medium. For

sake of simplicity we will now assume the external medium to be homogeneous and

delay to future developments of the model the detailed study of implications of a non

homogeneous environment. The reader can refer to [Wijers, Rees, & Mészaros 1997]

for the first discussion of the problem.

The initial conditions of an impulsive fireball are

1.

[Q]

the total initial energy released

Er =102 Es, erg (3.1)

. the radius of the region where the energy is released

r; = 107r; cm (3.2)

. the total mass of baryons entrained in this region

Mr = 10"Moy g (3.3)

and the density of the external medium
n; = 1 ng protons/cm? (3.4)

(and the density profile of the external medium if it is not uniform).

A useful parameter to be defined directly from the initial conditions is

the baryon loading parameter

Er_ 111 x 102252

= M My (3.5)

U

This parameter measures the degree of initial baryon pollution of the released
energy. High values of 7 (>> 100) correspond to low baryon contamination and

vice versa.



3.2. IMPULSIVE FIREBALLS AND AFTERGLOWS 43

We will be interested in spherical fireballs with baryon loading parameter 1 in the
range 3 <1 <300 and total energy Er varying accordingly in the range 10° erg
< BEp 5105 erg for a fixed total ejecta mass My = 3.6 x 10*® g. These are the values
of the fireball parameters corresponding to all the spherical models required to build
an anisotropic model as described in chapter 4. We will also use a fixed initial radius
7, = 107 cm and a homogeneous ambient medium with typical interstellar matter
density n; ~ 1 protons/cm?.

In what follows I will try to explain how crucial is the baryon loading in determining
the fireball hydrodynamics and summarize the expected fireball evolution for the initial

conditions in the range above.

3.2.1 Initial evolution and Baryon Loading role

First of all, if the initial energy density is high enough and the initial baryon con-
tamination is low enough (i.e. high n values, 7 > 1) a radiation dominated optically
thick plasma of photons, e*e™ pairs and protons quickly develops and starts expand-
ing isotropically. This can be easily proved to happen even if all the energy Er were
initially electromagnetic, no pairs were present at the beginning and the baryons were
perfectly cold. Remember that the average optical depth for eTe” pair creation in a

photon plasma of total energy E7 confined within a sphere of radius 7; is

Er 1 E
18 52
Tor) = MmO ~ fpm———s7—=07Ti ~ 9.6 X 10°° f—
i TP omee? sr Por,
4, .
where op = 5—3’—rm%€c4 is the Thomson cross section, m. and ¢, are the electron mass
€

and charge and f, is the fraction of photon pairs of energy E; and E3 such that

B Fy > mec®. The value of 7, corresponding to typical initial energy and initial
size we have chosen is expected to be really large for any reasonable initial photon
energy distribution, so, even if no pairs were initially present, they would rapidly form
and then these pairs would Compton scatter lower energy photons, resulting in a huge
optical depth for all photons on a very short timescale. The very hot and highly opaque
photon-lepton plasma cloud that forms, with its low baryonic load included, is what
was originally named the fireball. The high radiation pressure causes the fireball to
explode, i.e. to expand faster and faster, initially unimpeded by the tenuous external
medium swept up and accumulated outside (free ezpansion), no matter if the external

medium is not homogeneous.
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The optically thick plasma of the ejecta forms a geometrically thin shell that ac-
celerates up to relativistic velocities and acts as a piston on the surrounding medium.
During the acceleration stage the Lorentz factor of the ejecta shell grows linearly with
the shell radius v = R/r; [Mészdros, Laguna & Rees 1993]. The acceleration stops
when an expansion Lorentz factor equal to n is reached (all initial energy has been
converted into bulk kinetic energy of the baryons and no radiation and pairs are left),
or equivalently when the ejecta shell has expanded to a radius r, = r;n. From that
point the expansion of the ejecta shell goes on at constant (relativistic) speed and the
coasting stage begins.

No radiation can be observed from the expanding ejecta shell (or from the region
it surrounds) until it becomes optically thin. The GRB radiation must be produced
after optical thinning of the ejecta. If the baryon loading parameter n is lower than
Nmaz ~ 1.52 % 1O5E§£3r; 2/ 3, the fireball expansion velocity saturates to a constant value
before optical thinning (see [Mészédros, Laguna & Rees 1993] for a more detailed dis-
cussion) i.e. no residual thermal radiation is emitted at thinning (consistently with the
observation that GRB seem to show no thermal precursors nor thermal components in
their spectra) and opacity just before thinning is not dominated by electron—positron
pairs, whose population have already drop out of equilibrium and have almost com-
pletely annihilated, but by electrons associated to the polluting baryons.

This is why fireballs producing GRBs are thought to have baryon loading parameter
spanning at most between 1 and 7,,4., with a typical value of a few hundreds suggested
by the short variability timescale of the GRB observed light curves.

The ejecta shell remains optically thick out to radii as large as 74, such that the

optical depth for Thomson scattering by the electrons associated to baryons 7, is ~

M-
2
47TrthAej,com mp

comoving density of baryons and Ag; qon is the thickness of the shell of ejecta in the

1. So, at thinning 7, = nyo7rAcj com ~ orA¢jcom ~ 1, where n, is the

comoving frame. It simply comes

M\ Ep \"° . [E
Tth = (gz T) == (U—T T 2> ~ 592 X 1013 “—2; cm (36)
dmn myc

4m m, o

The time at which the ejecta become optically thin can be considered as an estimate
of the time after which the non thermal GRB radiation can be produced for instance
via internal shocks among different sub-shells of the ejecta expelled by the central
engine if the fireball were not impulsive. A better estimate of GRB start time could

be the time at which two spherical sub-shells of ejecta entering the coasting stage with
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Lorentz factors close to n but differing by a factor two, catch each other. The estimate
of a GRB end time is more delicate, and we will simply use an average value of some

tens of seconds after the beginning (in the observer view) according to observations.

I recall anyway that, no matter how many colliding sub-shells of ejecta are expelled,
no matter how long they take to catch each other and merge into a single shell, it is
quite reasonable that the explosive event drives from the very beginning a blast wave
in the medium surrounding the central engine, and that by the time the ejecta starts
coasting this blast wave has become an ultra relativistic shock wave slightly faster than

the ejecta itself that goes on sweeping the external medium.

In the very simple model consisting of a single homogeneous ejecta shell acting as
a piston, I assume that from the very beginning of the expansion a second thin shell
of external matter is continuously accumulated at the outer edge of the ejecta shell.
This external matter is thought to have been compressed and heated by a spherical
forward traveling shock wave (of radius R;) born at the time of the explosion and
moving as fast as needed to be compatible with the Rankine Hugoniot conditions (see
section A). By the time of optical thinning of the ejecta the external blast wave
has long become an ultra relativistic shock (note that from the ry, definition (3.6),
thinning occurs during the coasting stage, so that the maximum possible expansion
velocity has already been attained). The outer shell of shocked external matter is both
geometrically and optically thin from the beginning, and it can emit radiation from the
beginning. Moreover, the most reasonable nature of emitted radiation is synchrotron
radiation by relativistic electrons accelerated at the shock.

After a few assumptions on the physics of shocks and shocked plasma, I will cal-
culate synchrotron radiation emitted by the shocked external matter only, but use the
resulting light curves as afterglow predicted light curves only after the time of thinning
of the ejecta.

3.2.2 Deceleration

Until optical thinning, and long after, the fireball ejecta show up in a spherical homo-
geneous shell of external radius R, whose lab frame thickness A,; is initially constant
and equal to the initial radius r; then starts growing (Ag; ~ R/~*) when R ~ 1), = rin?
(i.e. after the coasting stage has started but typically before optical thinning if

Er > 2.8 x 10% 72 n erg). The broadening radius r, is estimated as the radius
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such that a velocity difference Av between the front and the back of the ejecta shell®
due to radial velocity spread would give rise to a comoving shell thickness Ar ~ r%ﬂ
substantially larger than r;, which would be the comoving shell thickness without any
radial velocity spread.

The swept up matter shell, on the other hand, will have a radius Ry and a lab frame
thickness A such that R; = R+ A and the comoving particle density is uniform and
equal to the post—shock particle density.

The total mass of the swept up matter (~ %Terni) is negligible as compared to the
total mass of the ejecta Mr during all the early evolutionary stages (free expansion and
coasting) and thus the shocked matter shell travels at the same speed of the ejecta shell.
During the free expansion both shells move forward with a Lorentz factor v = R/r;
(growing linearly with the ejecta shell radius) and during the coasting stage the shells
move with a constant Lorentz factor v, = n. Only when the total mass of swept up
matter has grown enough to influence the fireball hydrodynamics causing a deceleration
the double shelled internal structure of the fireball starts to change. This change should

begin/start when an amount of external matter as large as %l‘- has been swept up, i.e.
c

5 3Br  \"°
4 dmn;myc?ny.

for an homogeneous external medium. At about this radius the coasting stage ends

at about an outer radius

and the fireball enters a deceleration stage composed by an initial transition stage and
a later self-similar relativistic expansion stage, known as Blandford & McKee stage,
during which the swept up external matter dominates on the original fireball ejecta
and the fireball interior is no more shell shaped as during the early stages of evolution.

The transition stage, because of its transient and unsteady nature, can only be
properly modeled via numerical simulations. Numerical simulations presented for in-
stance in [Panaitescu, Wen, Laguna & Mészdros 1997] show that during the transition
to the Blandford & McKee stage the ejecta shell is slowed, widened and smoothed
back towards the inner regions of fireball by multiple reverse shocks and rarefaction
waves going back and forth and, though still denser than matter on the other side of
the contact discontinuity, ejecta soon becomes substantially colder, too cold to radiate.
Moreover, during all this process the contact discontinuity is continuously slowed down

and migrates further and further inwards (relatively to the forward shock front) while

*If the front and the back of the ejecta shell expand respectively with Lorentz factors v¢ 2 vp ~ 1

. )
we can estimate Av ~ £ (fg - 7%) ~cnT2
2 \37 752
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the hot external shocked matter that fill the most part of the fireball volume finally
distributes according to the Blandford & McKee solution. The transition ends more
or less when the post-shock matter Lorentz factor has decreased to about two thirds
of its initial value and the shock radius has nearly doubled.

Before going on I must recall that together with the forward shock a second reverse
blast wave should be born at the explosion. This second blast wave is expected to start
traveling back through the ejecta from the beginning, causing the ejecta shell to be
composed by an outer shell of shocked ejecta in pressure equilibrium with the shell of
shocked external matter at the contact discontinuity and an inner shell of unshocked
ejecta. According to the treatment of [Sari & Piran 1995], with the initial conditions
we have chosen the internal energy and particle density of the ejecta shell are always
so high as compared to the external medium that the reverse shock is not expected to
become relativistic during all the coasting stage.

At the beginning of the deceleration stage the reverse shock has just shocked
a tiny fraction of the total ejecta mass, and up to that moment its presence can
be completely ignored. The reverse shock is expected to actually shock the whole
ejecta during the early deceleration stage, ending before the Blandford & McKee
stage sets in. As noted by [Mészdros & Rees 1999, Sari & Piran 1999b] the reverse
shock passage through the ejecta should produce a short flash of non thermal ra-
diation to add to the standard afterglow emission due to the forward shock (the
early optical flash in the afterglow of GRB012300 has been interpreted in this
way in [Mészaros & Rees 1999, Sari & Piran 1999b]) but we are not going to cal-
culate any kind of radiation coming from the ejecta. After the reverse shock has
completely burnt the ejecta once, they substantially cool by adiabatic expansion;
subsequent shocks and rarefaction waves traveling back and forth as predicted by
[Sari & Piran 1995, Panaitescu, Wen, Laguna & Mészdros 1997] are not expected to
heat them enough to cause further observable radiation.

After the transition stage we can completely forget about the ejecta. They would
at most appear as a dense and cold feature in the fireball internal structure near to the
centre, the contact discontinuity now being very close to the centre, everything outside
evolving as if they simply were not present. '

We expect the fireball enters an evolutionary stage that is well approximated by
the Blandford & McKee solution with a total mass equal to the total swept up external
mass only and a total energy equal to ~ Er.

Note that all the previous hydrodynamical evolution has been almost adiabatic,
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Figure 3.1: Figure extracted from [Panaitescu, Wen, Laguna & Mészdros 1997] repre-
senting density, pressure and flow Lorentz factor profiles for I’y = 100, Ep = 10°! ergs,
r; =10% ¢cm and n; = 1 cm™?, at times indicated in the legend. The left column shows
these profiles for non-adiabatic evolution, while the right column is for the adiabatic
interaction. The time %4, is the time at which the forward shock starts deceleration.
The structure is much thinner than its curvature radius of the spherical fireball and
the position inside it is indicated relative to the contact discontinuity, whose radius is
named r.d. Negative values correspond to the inner shell of ejecta, positive values to
the outer shell of shocked external matter. Note that in the adiabatic interaction, the
outer shell is less dense and more extended, and that the gradients in density, pressure
and Lorentz factor are smaller. After ¢ = 0.9 ¢4 the reverse shock crosses the inner
shell, in both cases.
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Figure 3.2: The same profiles as those shown in fig.3.1 in the radiative and adiabatic
cases, after the reverse shock has crossed the ejecta shell. A second reverse shock can

be seen easier in the Lorentz factor v graph.
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Figure 3.3: Same as in figures 3.1 and 3.2, until ¢t = 2.0 4., when most of the initial
kinetic energy has been radiated (in the non-adiabatic case) and the simulation is
ended. Shortly before ¢t = 2.0 ¢4, the second reverse shock crosses the rarefaction fan
behind the contact discontinuity.
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the radiated energy was always negligible as compared to the reservoir, included the
energy loss in the internal shocks, if we had considered them, since they are not effi-
cient radiators. During the initial evolutionary stages, all the initial energy had been
gradually converted into kinetic energy of the ejecta first and into internal and kinetic
energy of the shocked external matter later. It can be shown that by the beginning
of the deceleration the total amount of energy in the shocked matter is equal to Er,
though the mass is still n times lower than Mr.

Since I always use analytic approximations to hydrodynamical evolution laws and
matter distributions, and I do not have an adequate one for the transient early de-
celeration stage, I simply choose to model the transition joining smoothly the known
solutions in the easiest way I find. I know that during the transition stage the ejecta
must become ”negligible” because the final Blandford & McKee solution does not de-
pend on them, it regards only the swept up external matter. Then, as I have decided
not to calculate the possible ejecta contribution to emitted radiation even before the
transition to Blandford & McKee, it seems reasonable to model the transition as if the
ejecta were not present, i.e. joining the shocked matter distributions in the coasting
and in the Blandford & McKee stages in a smooth way, with the total mass and energy
of the shocked matter growing from the values they had at the end of the coasting
stage to the values they must have at the beginning of the Blandford & McKee stage.

The Blandford & McKee solution, described in appendix B, is adiabatic as well,

and in fact there are negligible radiation losses via the afterglow also during this stage.

3.2.3 Non relativistic expansion

The fireball deceleration can be driven by the Blandford & McKee solution until the
expansion velocity becomes marginally relativistic (y £ +/2). After that, a second
transition should lead to a Newtonian stage of expansion resembling the Supernova
Remnants expansion, i.e. well approximated by the Sedov solution. During this transi-
tion we expect the post—shock plasma too becoming non relativistic, i.e. the adiabatic
index 4 passing from the value % to the value g and the jump conditions for internal
energy and particle density at the shock changing accordingly. The Sedov solution is
an adiabatic solution as the Blandford & McKee, and also this second transition should
be modeled as conserving the energy.

The Sedov Taylor self-similar expansion stage is expected to set in more or less

when an amount of external matter of total rest mass as large as the initial bulk
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kinetic energy Mpc?v, has been swept up. This corresponds to a shock radius
gy gt p

3 Ep, 1/3
Rsed~<~§—£l—>

dmn;mpc?n

At about this radius we will start to use not exactly the Sedov solution, but a slightly
modified law having the Sedov solution as asymptotic limit. In fact physical conditions
of the post-shock plasma will be far from typical SNR post-shock plasma conditions
during the Sedov stage yet.

In the following sections I will illustrate in more details the shock evolution and
post-shock matter distributions laws used in the different hydrodynamical stages, tran-
sitions included, and introduce all the physical quantities required for the mathematical
treatment of the problem.

But before starting I need to remind some concepts that will be useful in defining

all these laws.
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3.3 Jump conditions at a shock

In the case of a planar collisionless shock that propagates into a cold external medium
we can easily relate the comoving physical properties of the post—shock fluid to the
unshocked ones.

Asin appendices A and C, we will mark pressure, particle/energy densities and adi-
abatic index in the the unshocked fluid with and index 1 and pressure, particle/energy
densities and adiabatic index in the post—shock fluid with an index 2. The shock
Lorentz factor and velocity will be I and U respectively, while post~shock fluid Lorentz
factor and velocity relative to the unshocked fluid will be v and u respectively. Adia-
batic indices will be named 4.

As shown in appendix A, if the shock is ultra relativistic, i.e. I' > 1 we have

r

= 3.7

7 (3.7)

ny = 2v2n, T (3.8)

ey = 2T nymy,c? (3.9)
20 2

p2 = gF nyMmypC (3.10)
.4

Remind that here e, represents the internal energy density of the post-shock fluid,
but in the ultra relativistic case the internal energy is the dominant component of the
post—shock fluid total energy and can be assumed equal to it.

From appendix C we can derive the corresponding relations for a non relativistic

shock, ie. £ <1

= U 3.12

u R ( )
Yo + 1

— 3.13

g = T A — 1 ( )

€y = (’3") - 1)]72 (3 1—:‘:)

2 -

2=z 1nlmpU2 (3.15)
5

These two sets of relations must be limits in the ultra relativistic and non relativistic

case of “more general” laws. Since in our calculation we are going to deal with shocks
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decelerating from ultra relativistic velocities to non relativistic ones, we need to use
generalized jump conditions having as ultra relativistic and non relativistic limits the
expressions above.

These generalized jump conditions have been calculated by Blandford &McKee in
[Blandford & McKee 1976] and are the following ‘

- 3.17
P22 =)y =1)+2 (@17)
(v +1)

Nng = 3.1

Tig 1 (30 — 1) (3.18)
(F2y +1) 2
€y = M1~ 1pc" (7 — 1 3.19
2 1 (,\/2 _ 1) P ( 14 ) ( )
€2

= 3.20
D2 (AQ — 1) ( )
For I' > 1 and 4, = § these equations tend to (3.7), (3.8), (3.9) and (3.10) while for

2
Y « 1 and 4, = 2 they reduce to (3.12), (3.13), (3.14) and (3.15).
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3.4 Energy conservation

The adiabatic expansion of the spherical blast wave produced by a strong explosion in
a cold homogeneous medium is expected to approach the Sedov self-similar solution in
case of non relativistic shock expansion velocity or the Blandford & McKee self-similar
solution in case of ultra relativistic shock expansion velocity. The two solutions are
presented in appendices C and B. Since both solutions are adiabatic, in both cases the
total energy of the explosion Er, once converted into internal and bulk kinetic energy
of the flow, must conserve. In both cases, the conserved energy Er can be expressed
as a function of the shock radius R(t) and velocity U(t) (or the shock Lorentz factor
I'(t)).
For the Sedov solution we have calculated (see equation (C.33))

Er = BK(’y)%meniRB ®U(t)? (3.21)
where n; is the unshocked particle density and 4 is the shocked fluid adiabatic index.
For 4 = g— the constant K () is equal to ~ 0.245.

For the Blandford & McKee solution we have calculated (see equation (B.29))

Er = %mimpcm(t)i*r(m (3.22)

Since the only quantity we can measure is the post—shock fluid velocity u(t) (or the
post—shock fluid Lorentz factor v(¢)), we’'d better rewrite (3.21) and (3.22) in terms of
u(t) and ~y(t) respectively using (3.12) and (3.7). We have

16 4
Er =3K(5 /3)—9—§7rmpni33(t)u(t)2 (3.23)
1 5
B = Igmmpcq-‘z(tm(t)? (3.24)

Note that the right hand side in (3.24) is the total energy of the flow (rest mass of
the shocked matter included), while in principle the conserved energy Er has been
converted into internal and kinetic energy only. In the ultra relativistic limit (3.24)
represents a very good approximation, but in order to have a slightly more general

conservation law we should write

16

16
ET = —ﬁ’ﬂ'nimPCQR(t)Sﬂ}/(t)Q -

mnymyct R(t)® ~ —ﬁﬂnimpch?’ (’y(t)z - 1) (3.25)

Q|

Then, note that when @ < 1 we can write

2 _ 2 1 _ ¢ 2 2 2
u(t)? =c (1—7“)2) = (v@®?=1) ~ & (v(8)> - 1)

\
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so also the energy conservation for the Sedov expansion can be generalized as
164

Er = 3K(5/3)5

Tmynic” R3(t) ('y(t)2 - 1) (3.26)

The two energy conservation laws (3.25) and (3.26) can be thought as the limiting

cases for v(t) > 1 and (¢) ~ 1 respectively of the general law
Er = Q(t)rmynic® R3(¢) (v(t)? — 1) (3.27)

if the factor Q(¢) tends to the constant Qg = % when v(¢) > 1 and tends to the
constant Qggpp = LK (5/3) when ~(t) ~ 1.

An expanding spherical blast wave that decelerates adiabatically from very high
Lorentz factors to Newtonian velocities should smoothly change its evolution laws
from the Blandford & McKee self-similar solution to the Sedov self-similar solution.
Since (3.24) should hold at the beginning of the evolution and (3.23) should hold at
the end of the evolution, once the complete evolution is known, it is always possible to
define a function €2(¢) such that equation (3.27) holds at any time. But we don’t know
the complete shock radius and post—shock Lorentz factor evolution laws for a spherical
blast wave that decelerates from very high to very low velocities, so we cannot calculate
the exact function Q(t). We will prefer approximating the functions R(t) and ~(¢) for
our spherical expanding blast wave during the transition form the Blandford & McKee
stage to the Sedov stage in such a way that (3.27) holds with a reasonable choice for
the function (¢), like for example a linear change with time from the value Qg,s to

the value Qgsgp.
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3.5 Detailed evolution of a Spherical Fireball

In this section I present the detailed analytic treatment of the impulsive fireball evo-
lution previously illustrated in section 3.2.

For each stage the forward shock radius and Lorentz factor evolution laws are
explicitly written down together with matter distributions behind the shock. The

transition times and radii are calculated.

3.5.1 Free expansion stage

The free expansion stage is the initial accelerated expansion of the fireball. During this
stage the fireball is double shell shaped. We start at ¢ = 0 from a sphere of radius
r; containing a total mass My in cold baryons and a total energy Ep. At t > 0 we
have an inner homogeneous shell of ejecta of total mass Mr, radius R(t) and lab frame
thickness A.; = r;, and an outer shell of shocked matter, homogeneous as well, having

a lab frame thickness A(t) such that the forward shock radius is
Ry(t) = R(t) + A(?)
the total mass in the shell is
4
My (t) = 57 (Ra() = rf)

and the comoving particle density is equal to the expected post—shock density

(s(t) +1)
(¥ -1)

where v,(t) is the post—shock fluid Lorentz factor and ¥ is the post—shock fluid adiabatic

n(t) = n;

index, set equal to f;— during the whole stage.

The two shells expand at the same Lorentz factor +,(t) = B and the forward

T3

shock expands at a slightly higher Lorentz factor I's(¢) given by

(@) + 1) (Bl (1) = 1) + 1)
Fa(t) = J 5@ )t 1) + 2

This system of equations can be solved completely giving us the following solution

o) = /14 (fff)Q (3.28)

T4
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R(t) = ryy,(1) (3.29)
R (t) = R(t) + A(2) (3.30)
with A(t) solution of the equation
O +1) 37 (Rs(t)? — )

"TG-T T RGP - i (R0 - 1 00A0) o2
The right hand side term of this equation is simply the comoving particle density in
the shell of shocked matter given as the ratio of the swept up mass and the comoving
volume calculated as the difference between the volume of the sphere of radius R(t)
and the volume of the sphere of radius R(t) —vs(t)A(¢), being v,(¢t)A(t) the comoving
thickness of the shell. Equation (3.31) is a cubic equation in A(t) with a unique real
solution that can be easily found using the general solution for cubic equations in
[Abramowitz & Stegun 1970].
Note that when R4(t) > r;, i.e. when ¢ > r;/c, equation (3.31) reduces to

TECD T SR - i (Ba(t) - 1()AWD)

~ 4 :
{
So, at ¢t > r;/c we can approximate A(t) with the solution of equation (3.32), i.e. we

expect

_(Alsm-1+2\1/3
1 - (M)

Vs (B)-1)+2)1/3
7(t) - (1 - (b))

This approximation is expected to be valid at the end of the free expansion stage,

A(t) ~ R(%) (3.33)

unless the baryon loading parameter is too small ( < 10), that is the initial amount of
baryons is too large. Since we want to use 7 values as low as 3, we will not use (3.33)
in the general case. We will prefer solving exactly equation (3.31).

The free expansion ends when the expansion Lorentz factor reaches the value 7, i.e.
at the time

to= /2 1 (3.34)
c

and we have t, > r;/cif only if n > 1.

At the time . the ejecta shell has reached a radius 7, = n r; and the forward shock
has reached a radius R, = r. + A, with A, solution of the equation (3.31) at the time
to.
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If n > 1 we can use approximation (3.33) and write

2
R. = il (3.35)

n—1-+ (’%})1/3

As far as the shocked matter distributions are concerned, since we have just said
that during the free expansion the shocked matter is confined within an homogeneous
shell, we will define the comoving particle density, the internal energy density and the
fluid Lorentz factor distributions as constant functions in the radial position behind

the shock as follows:

n; (s (1)+1) Tmin(t) <z <1

n'(t,xz) = -1 -7 (3.36)
0 0<xr< ajmm@)
Z("/'Ys(t)"‘l) 2 o ) —1 i 1) < <1
e'(t, CC) — n (¥—-1) (7 ( ) ) z m( ) =T = (337)
0 v 0<z< CUmm(t)
s 3 min < <1
Wtz =1 (8) Tminlf) < o < (3.38)
1 0 <2< zmin(t)
with R(t) A)
/
Tl = 2w =T R (3:39)

2
Remember that during this stage the post—shock Lorentz factor is vs(t) = /1 + (f:t-) ;
the forward shock radius is R,(t) = r;7vs(t), the shocked shell thickness is A(t) satisfying
(3.31), the time ¢ varies between 0 and t, and the radial coordinate relative to the

forward shock, z, is defined as = £ where r is the distance from the centre of
5

explosion of a generic point inside the sphere of radius R,(?).

3.5.2 Coasting stage

The coasting stage is the second stage of expansion during which the fireball is com-
posed by two homogeneous shells expanding at the same speed, but the expansion
Lorentz factor is now constant and equal to v, =

In this case we have
7s(t) =1 (3.40)

Jml) (g —1) +1)°
F2 =) (n—1)+2

[s(t) =

=T, (3.41)
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9

1\
R(t)=r.+c <1 - 77—2> (t—t.) (3.42)
Rs(t) = R(t) + A(t) (3.43)
with A(¢) solution of the equation (3.31).

In this case, being [' constant too and equal to I'., we should better use
1\ 12
Rs(t) = R.+c (1 — 1“3) (t —t.) (3.44)

and redefine R(¢) in such a way that R(t) = R,(t) — A(¢) with A(¢) solution of (3.31).
The coasting stage will last until the total swept up mass is equal to My /7., i.e.
until the forward shock has expanded out to a radius Ry such that

gwnimp (Ri - Tf’) = %

Thus, the end of the coasting stage corresponds to a shock radius

B 1/3
Ry=|1+—"F— 417 (3.45)
FTNMpC 1Y
or equivalently a time
Ry— R,
=t 4 Fa= o) (3.46)

During the coasting stage the inner shell of ejecta becomes optically thin. We have
already calculated in section 3.2.1 that this happens when the ejecta shell reaches a

radius ry, such that

1/2
or ET
== 3.47
e (47r n mpc2> (3.47)
The corresponding time of thinning #;;, will be about
r T
b = g 3 7 (3.48)
e(1-3)

Another happening of the coasting stage is the broadening of the ejecta shell that

start when it reaches the radius 7, = r;n%, or equivalently at the time

(rp ~7c)
c(1-3)"

c

ty =t.+ (3.49)

Before this time we had A.;(t) = r;. After this time we will have A.;(t) = Af((f)g.
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The shocked matter comoving particle density, internal energy density and Lorentz
factor distributions during the coasting stage are defined exactly as during the free
expansion stage provided that now the post—shock fluid Lorentz factor is vs(t) = n and
the forward shock radius is R,(t) = R, +¢ (1 - flz) i (t —te).

3.5.3 First transition stage

This is the stage lasting from the end of the coasting stage to the beginning of the
Blandford & McKee stage.

We do not know exactly how the shock radius should evolve during this stage,
we simply know from numerical simulations that the Blandford & McKee stage should
start when the post-shock Lorentz factor v, has reduced more or less to 7o = %fyc = %—77.

Note that the knowledge of the initial post—shock Lorentz factor o allows to con-
strain also the initial radius Ry of the shock front. Since the fireball expansion is
assumed adiabatic from the beginning and the fireball total energy Er during the
Blandford & McKee stage can be simply expressed in terms of the shock radius and
the post-shock Lorentz factor as explained in section 3.4, we can derive the value Ry
of the shock radius corresponding to the post-shock Lorentz factor 7o by solving the
Blandford & McKee energy conservation equation

ET = QB]\/[TFTLimpCZRS ("/3 - 1) (350>

with QBM = %O_BM and OBM — % We get
1/3 2 1/3
1/3 1 7 1 n?
Ry = (RS~ 13 (_______> ~ Ry <_--~___ 351
° ( ¢ Z) Sopmivs—1 Somming — 1 (3:51)

We do not know yet at what time ¢ the Blandford & McKee stage starts and we
will not know until we fix a particular radius evolution law R(t).

The easiest choice for R,(t) we can do is
R,(t) = At* + Bt+C (3.52)

with the coefficients A < 0, B, C and the time t; to be determined through the

continuity conditions
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Di(ty) =Ty =T, (3.55)
(o+1) (Yo —1) +1)°
Di(tg) =Tg = 4| — - 3.56
o) =t J 23— 1)+ 12:20)
the adiabatic index being 4 = 3 and
1 -
Iy(t) = - (3.57)
g1 — (2Atc+B)“
The solution can be easily calculated and is the following
1V - V7
= IR R, (3.58)
B=-2At;+V, (3.59)
C=Rg—tsVy+ Ati (3.60)
and R P
to = tg + 20— 2 3.61
0= tg T (3.61)
where

1
Vi=c |l — = (3.62)
V'8
Vo=c /1 - = (3.63)
0 — G F% 2. 0¢

Once the shock front radius and Lorentz factor evolution laws R,(t) and I';(¢) are
known we can calculate the post—shock Lorentz factor evolution law v,(¢) too solving

at each t the cubic equation

s () + 1) (Gln(t) — 1) + 1
Lot = () 1) 12

(3.64)

=
[©)
|

-

with ¥ = %
Now we must specify the post-shock matter distributions n'(¢,z), €'(t,z) and
v(t,z). They should be functions that connect continuously the corresponding uni-
form shell distributions and Blandford & McKee distributions. A simple way to define

them is a time weighted linear combination as the following
n'(t,z) =

r— [Mnen(t, @) (B0 — ) + nlpar(t, ) (= ta)] (3.65)
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1

/
t,3) = ——

[€henn(t, ) (fo — 1) + €y (8, 7) ( — 1) (3.66)

1 | -
v (t,z) = P— [Veneu(t, ) (to — 1) + Voar (8, @) (8 — t4)] (3.67)

where nl, ., (t, ), €., (t,z) and ..., (t, z) are defined as in (3.36), (3.37) and (3.38);
o (t, 1), €5 (t, z) and g, (¢, 2) are defined as in (3.69), (3.70) and (3.71).

3.5.4 Blandford & McKee stage

This is the self-similar relativistic stage of adiabatic decelerated expansion that sets in
at the time
to = tq+ QH
when the forward shock has reached a radius
1/3
Ro= (B3 —19)" (-::1—3*2—77—2“> /
30BMT Yo — 1
and the post—shock Lorentz factor has decreased to
2
Yo = 5%

Since we want to model the fireball expansion also at late times and marginally
relativistic expansion speed, we prefer to use a slightly modified version of the classical
Blandford & McKee solution for a spherical adiabatic flow presented in appendix B,
which is strictly valid only for shock Lorentz factors > 1.

First of all remember that we have always used the generalized jump conditions
at the shock introduced in section 3.3 because they are more appropriate for fireballs
with rather law baryon loading parameter (1 2 3) i.e. fireballs with rather high initial
baryon contamination. We should go on using these jump conditions also during the
Blandford & McKee stage and after. This can be simply done by rewriting (B.20) in
terms of 7, instead of I'y via the relation v, = 1“5/\/5 that holds when I'; > 1, and
then defining

(b, 2) = 1+ 167,(£)% (1 — ) (3.68)
n'(t,z) = ni%ax(t,x)"5/4 (3.69)

e'(t,z) = niwmch(%(t) — 1)x(t, z)" 12 (3.70)

(v-1)
Y(t,x) = () x(t, z) 7/ (3.71)



64 CHAPTER 3. SPHERICAL FIREBALLS

These functions reduce to (B.20), (B.19), (B.21) and (B.17) in the limit ,(¢) > 1 with
4 = 4/3, but can be used also for lower values of v,(¢). Note that €’ is the internal
energy density of the shock fluid, while the corresponding energy density e, used in
appendixes A and B is the total energy density in the shocked fluid. In the ultra
relativistic limit the post—shock rest mass energy density is negligible with respect to
the internal energy density, and total and internal energy density are comparable. This
is why the asymptotic expression of (3.70) for ~(¢) > 1 can be compared to (B.21).
As far as the functions 7, () and R,(t) are concerned, since we want the generalized

energy conservation law (3.25) to be valid from now on, we expect

Y5 (t) = J 1+ s OE \’ 14 8= DB (3.72)

8 . 2 3
SOBMTNMpC* Ry Rs(t)

Note that the law (3.72) reduces to the familiar Blandford & McKee law ~,(t) =
-3/2
Yo (RS(“) Y in the limit v > 1.

Ro
The function R,(t) should be found as the solution of the Cauchy problem
dR, _ 1 2
@ =c(-rig) (3.73)
Rs(ts) = Ry
where
— JEs@HDAG -0+ o .
La(t) = \/ et 1= 3 (8:74)

but we will prefer using a different function R,(t), whose numerical calculation is less
time consuming, provided that it approximates reasonably well the exact solution of
(3.73). Now we are going to introduce it.

We will explain in section 3.6.1 that the time interval T a far observer measures
from the explosion is different from the coordinate time ¢ of the lab frame we are using.
Moreover, simultaneously emitted photons do not arrive simultaneously to the observer
and in principle there is no unique relation between a time of emission (i.e. radius Ry)
and a time of observation of photons emitted by the fireball as a whole.

Let us concentrate on photons emitted by the post—shock fluid on the line of sight
(the volume element just behind the forward shock along the line of sight). If the
shock radius at the time ¢ after the explosion is R,(t), the observer will be reached by
photons emitted at the time ¢ by the selected volume element after 7' seconds from the

time he has been reached by photons emitted at time ¢t = 0, with

Bi(t) | m (3.75)
Cc C

T'=1t-
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The differential time interval between arrival of photons emitted at time ¢ and arrival

of photons emitted at time ¢ + dt will be

Vi(t 1\
dT = dt — _-Eth = dt — <1 - ) di (3.76)

R S L
TL()? o, (1)°

Vit)~c = dR~cdt

If T's(t) > 1 we have

and

so that

iR |
a7~ 377
ST, ()2 (8:77)

If the fireball expansion follows the Blandford & McKee law T's(t) = I' <R°’(t))—3/2

Ro
for t > tg, the observer sees photons emitted at a time ¢ arriving 7" — T seconds after
photons emitted at ¢y with

R0 R dR R,(t) R i
T-Th= /Ro di ~ /Ro 2cT(R)? ~ 8cl,(t)>  8cl'2 (3.78)

provided that approximation (3.77) is valid up to time ¢. On the other hand, using

(3.75) we can write
Ry 7

To=1to— — + — (3.79)
c c
and Rt
FURTIELIO (3.80)
c c
Thus, for t > t; we have
R,(t)— R Ry(t R
o RO-R R R sy

- 8¢l (1) 8cl2

The Blandford & McKee shock radius evolution law R, (t) should be well approximated
~3/2

by the solution of equation (3.81) until I';(¢) = Iy (%) Y > 1.

We expect that with a relativistic shock evolution law R (t) slightly different from
the classical Blandford & McKee one, the arrival times of photons emitted by the post-
shock fluid on the line of sight, T', would be slightly different from those predicted by
(3.78), but well approximated by a law similar to (3.78) like the following:
R4 (t) Ry R (1) Ry

T —Ty= - : -
O T8N, (8)2 8ACD2  16Aeys(£)? 16Mcyd

(3.82)
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with the constant A # 1 depending on the particular shock radius evolution law we are
using. A constant speed shock radius evolution law would need, for instance, A = 0.25.

We choose to approximate our R,(t) for ¢t > #; (the solution of the Cauchy problem
(3.73,3.74)) as the solution of the system of equations

T-Th = 16A£§E:tv)s(t)2 - 16A5§m§
T =¢— Ll 4 n
< T o RO 4 (3.83)
“/S \/1 +(vd—1) ( E
with \ga such that Ty = ﬁfﬁfcﬁ’ ie.
A = -@9;% 16 ¢ 2 (3.84)

Thus, we will use R,(¢) such that for each ¢t > tg

R (t) (1 + T ) =t
RS
() =1+ 0F = 1) 5

or equivalently

1
Rs(t) |1+ = =ct+rm (3.86)

16X s {1 + (75 — 1)Rs(§)3]

with A\gys given by (3.84).

The values of Mgy, with n varying from 3 to 300 are always around 0.3 (from ~ 0.27
for n ~ 3 to ~ 0.34 for n ~ 300).

The relativistic expansion stage we have just defined can last until the post—shock
velocity is high enough that the internal energy density dominates the total post—shock
energy density. When the rest mass energy density becomes important as a component
of the post-shock energy density, the adiabatic index in the shocked fluid cannot be
assumed equal to 4/3 any longer. A transition to the Newtonian adiabatic index value
5/3 starts.

We will set the end of the Blandford & McKee stage when v,(t) = Yot ~ 2, i€
when a radius

1/3
vy — 1 .
Rcmt RO ( /O 1) (387)

’Ycrzf -
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is reached, and consequently at a time
R..
terit = "%—ZE (1 +

3.5.5 Second transition stage

T3
16/\31\4731‘7:) Cc (3.88)

The second transient stage in the fireball evolution is the one connecting the self-similar
relativistic stage of expansion to the self-similar non relativistic stage of expansion
known as the Sedov stage.

The only things we ask to this second transient stage are (i) that it is accompanied
by a smooth change in the adiabatic index from the value 3 to the value 2, (i) that it
is adiabatic as the rest of the evolution and (7ii) that the constant total energy of the
fireball Er smoothly changes its expression as a function of the shock radius and the
post-shock velocity from (3.24) to (3.23).

As we have explained in section 3.4 we can assume for simplicity a linear change
with time of the value of the adiabatic index %4 from Yy, = % t0 Ysgp = g and a linear
change with time of the factor Q(t) in the conservation of energy law (3.25) from the
85 to the value Qspp = £ K(5/3).

The start time for the change will be t..;;, and the end time for the change will be

value QB]L[ = %O—Bl\/f

the time t,,4 corresponding to the beginning of the Sedov stage that we are going to
calculate later.

The exact functions 4(¢) and Q(t) we have used are

YBM T < terit

YO = ¢ i [em(tsea = £) + FsED(E = tori)] Terit << tsed (3.89)
YSED t 2 tsed
Qe U< lerit

Q) = i Qs (tsea — 1) + Qsep(t = torit)] terit <1< Tsea (3.90)
{lsep t 2 tsed

The shock radius evolution law R (¢), post—shock Lorentz factor v,(t) have been defined
as during the Blandford & McKee stage:

R [1+

=ct+ 7 (3.91)

Opum B2
16ABam [1 +(% - Dy 51]-%!5 t)3]
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Qpn R}

0 R (1) (3.92)

7s(t) = Jl +(5—1)
with Apjs still given by (3.84).

The post—shock fluid distributions n'(t, z), €'(¢, ) and (¢, z) have been defined as
during the first transition stage as a time weighted linear combination of the distri-
butions expected during the Blandford & McKee stage and those expected during the
Sedov stage. An alternative way to define the distributions n/(t, x), €'(¢, z) and (¢, z)
would be the weighted linear combination that follows

(Fs()? — Dnipy (¢, ) + nlspp (b, 2) ey

n’(t, a;) = (I’S(t)Q — l) T (Ts(ézﬁl) (393)
f N (Fs (t)2 - 1)6/]31\/[(t7 x) -+ e’SED(t)x)zfX%Z—:T) /
e(t,z) = CEP— 1)+ o (50_1) (3.94)

L (@@ = Dyt ) +’YSED(?5 ) D 3
v(t,z) = T — 1)+ 2 - (3.95)
(3.96)

where n'g,, (¢, ), €y (8, 2) and ypa(t, z) are given by (3.69), (3.70) and (3.71), and
nspp(t, @), €spp(t,z) and yspp(t,x) are given by (3.109), (3.110) and (3.111). The
definitions (3.93), (3.94) and (3.95) do not connect smoothly to the corresponding
distributions in the Blandford & McKee and the Sedov stages, but it is clear that
they can be extended also to these stages without introducing large errors: the Sedov
distribution would not contribute substantially during the relativistic stages and the
Blandford & McKee one would not contribute substantially during the non relativistic
stage. Thus, if we want to use (3.93), (3.94) and (3.95) we must similar definitions for
all the fireball evolution.

We have tried both the alternatives and checked that we cannot appreciate the
difference in the final light curves.

The Sedov stage should start more or less when a total mass of external matter
equivalent to the total energy Ep has been swept up. This will happen at a radius
Ripons such that |

4
grmimprmmc = ET (397)
E 1/3
Rirans = 4——2’_2 (398)
§7rnimpc
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Substitution of Rirqns in (3.91) would give us a tentative start time for the Sedov stage

tirans- Lhe Sedov expansion start time and radius, tsq and R4, should satisfy the

relation Ry = S tiés with S given by

51 EBp )P
5= <167r 3K(5/3) nimp> (3:99)
and K (5/3) ~ 0.245 (see appendix C).

. 2/5 .
Since Stt/ans # Rirans, We cannot use tyqns and Ryqns as Sedov expansion start

time and radius. We need to define

Rsed =« Rtrcms (3100)
with o such that the Sedov start time
R J 5/2 5 Rt 5/2
tsed = | —= = a®/? (—P—> 3.101
d ( S ) “ S (3.101)

satisfies equation (3.91). The value of the constant « will slightly depend on 7 and
Er, but it always has a value very close to 2.6. (the exact value goes from ~ 2.33
for n ~ 3 to ~ 2.268 for n ~ 300). The last important quantity to calculate is the
post—shock Lorentz factor at the Sedov stage starting, 7s;.s. We can solve equation
(3.92) at t = t4.q and get

3
Qpu Ry

o 3.102°
QsppR3., (3.102)

Yoed = \ll+ (v —1)

Finally, the forward shock Lorentz factor at the time #,.4, I'seq, Will be related to the

post—shock fluid Lorentz factor ;.4 as usual by equation (3.17) with adiabatic index —g

From such a I'y.4 we get the forward shock velocity Vg = ¢ <1 - r+

sed

> that in principle

should be equal to the velocity V,,; = %%ff (see appendix C). This last equality is

not satisfied, but the two velocities are comparable, and our I'y.4 is in any case a very

V! 2 —1/2
good approximation of ', = (1 — (——ﬂi> ) )

c

3.5.6 Sedov stage

When entering the non relativistic stage of expansion the fireball is expected to ap-
proach the self-similar Sedov solution.
We are going to assume that during this stage the shock radius expansion law is
exactly the Sedov one
R,(t) = S ¢*/° (3.103)
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with S given by (3.99).
The start time, radius and post—shock Lorentz factor for the non relativistic expan-
sion stage previously calculated can be expressed in terms of the constants S, K(5/3)

and « as follows:

1/3
Rsed fd (i—% c3 ) / 55/3
5/6
tood ab/? (5%1 (5/3)) §5/3 (3.104)
_ 1
Ysed = /1 TIIK(5/3)

The post-shock Lorentz factor evolution law will be defined as in section (3.5.4) and

(3.5.5) through the energy conservation law. For any ¢ > t,,q we can write

Er = Qpymnimp Ry (Ve — 1) = Qsppmnimp Ry (Yoea — 1) = (3.105)
= Qsppmnim, (St /5) (s(8)* = 1)
The function v,(¢) that satisfies (3.105) can be rewritten as
9182
s(t) =41+ —==—t-6/° 3.106
¥s(t) \/ ‘i ( )
The forward shock Lorentz factor will be
(s (W+D)(3sEp (¥ O-1+1)* - _ 5 =
Ls(t) =\ Sseottsen)(e-Ds2 » VSED =3 (3.107)
Note that for ¢ — +oco the forward shock velocity
1/2
i 1 2 . 2R,(t) dR.(t)
Vit)=c|l—- =—= - SSM e 3.108
(t) C< Fs(t)2> 5 5 ¢ dt (3.108)

Thus definition (3.107) gives a good approximation to the Sedov forward shock velocity,
and guarantees the expansion laws we are using to approach asymptotically to the exact
Sedov laws.

Finally the post-shock distributions we will use during this last evolution stage are

() +1)

n'(t,z) =n; ) () (3.109)
vy oy @41
€ (t/ I) = ni——W pC (’Ys(t) - l)Fp(l’) (3110)
~1/2

(3.111)

At 2) = {1 - (Healy

1/2
o(t,z) = c (1 - %(1@2) Fy(x) (3.112)
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The functions F,(z), Fp(z) and Fy,(z) are those presented in appendix C.
Note that to define the internal energy density €'(t,z) we have used the relation

"t,
e'(t,z) = L,
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3.6 The observer view

3.6.1 Time of the observer

The natural reference frame for describing the fireball evolution is the frame in quies-
cence with respect to the fireball centre of mass, usually named lab frame. The lab
frame coordinate time ¢ (i.e. the time measured by a clock located at the centre of mass
of the fireball, which is also the centre of the explosion and the origin of the coordinate
system) is the natural time to use to describe the evolution of the fireball. The zero for
the time ¢ has been set coincident with the explosion. However, a terrestrial observer
at a distance D from the centre of explosion will set his zero reference time at the GRB
detection, i.e. after about D/c seconds from the explosion. Moreover, the observer will
assign a time T to any subsequent event measuring how many seconds after the GRB
the photons produced in that event are received. The relativistic motion of the fireball
will cause the time intervals between events as measured by the observer to be different
from (shorter than) the coordinate time intervals between them. A far observer will
see a relativistically expanding fireball evolving on a timescale shorter than the true
one by a factor ~ 1/T2.

To illustrate this, suppose that a spherically symmetric fireball expands at constant
relativistic speed V' corresponding to a constant Lorentz factor I' > 1. The coordinate
time interval that passes while the shock front expands from a radius R; to a radius
Ry is

At =

Rg—RlNAR<1+ 1 )Nﬁ
V 212

On the other hand, the time interval between the arrival of photons emitted just behind
the shock on the line of sight at the two radii R; and R is

AT =242 "2 _ - ~

R, D-— R, R1+D—R1]_R2—R1 Ry—Ry AR At
Vv c v c Y% c 2cT2 oI

This is the time required for the shock to travel a distance AR in the observer’s opinion,
and it is shorter by a factor ~ 1/I'? than the true time it takes the shock to expand. If
the fireball were not expanding at constant speed but according to the law I' oc R=3/2
(with T' > 1 during all the time of interest), the observer would estimate the time

required to travel the distance AR as

Ry dR | D=Ry Ra — [fR1 gk | D= R; Ry dR _ (BR2—Ri)
fRo X» [IRO v ] le v c ~

Ra 1 Y\ dR (R) 7‘1) AR .&
1 (1 + 2I‘2) c ¢ 7 &z ™Y s
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The expansion timescale is again contracted by a factor ~ 1/T%.

Since we want to calculate observed afterglow light curves and spectra, we must
use the time of the terrestrial observer T instead of the lab frame coordinate time £.

Unfortunately it is not possible to find a unique conversion function 7°(t) because
photons simultaneously emitted by different portions of the fireball do not arrive si-
multaneously to the observer. The only thing we can do to properly calculate the
observed radiation at a given observer time 7' is taking in account all contributions
from different emission times.

First of all we need a definition of the zero for the time of the observer 7. As we
said, the zero for T should be the GRB detection time as no other reference time makes
sense in real observations, but for our purposes this is not a well defined zero time.

In the following we are going to call time of the observer 7" the time measured from
a terrestrial observer starting from the arrival of photons emitted at ¢t = 0 by matter
just behind the shock on the line of sight. According to this definition the time 7" at
which photons emitted at the lab time t., by the point with coordinates (rem,?, @)
are seen by the observer is

D —r,pcosd D —r;cost Tom COST 715

T = tom + = = tom — ~ (3.113)
C & c c

If the internal /external shock scenario is correct and GRB photons start to be produced
after optical thinning of the ejecta the GRB detection will not be at time 7" = 0 but

at time Tgrp >ty — 0 + =

Since the definition of T' depends also on the angle ¢ formed with the line of sight
by the line connecting the emitting point and the centre of explosion, the observer
will see the fireball entering the different evolution stages at different times in different
directions. The shock portion on the line of sight expanding towards the observer will
appear to be the first entering a new stage, while the opposite portion of the fireball
will appear to be the last.

We will define the direction dependent observer times of transition from one stage

to another as follows:

e Coasting stage beginning

Rc 2
T.(9) =t — —*cos ) + L (3.114)
C
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e Thinning of the ejecta
T (0) = ty, — %ﬁ cos )+ (3.115)
e Deceleration stage beginning
Ta(9) =tq — %cosﬁ—k% (3.116)
e Blandford & McKee stage beginning
To(9) = tg -—%lcoswr% (3.117)
e Transition to non relativistic expansion beginning
Torit(9) = teps — Rzm cos ¥ + % (3.118)
» Sedov stage beginning
Tieq(9) = toeq — Rfd cos + % (3.119)

All the lab frame transition times and radii have been defined and calculated in the

previous sections.

3.6.2 The Equal-T Surface

As we have explained in section 3.6.1, photons simultaneously emitted by a spherical
expanding shock do not arrive simultaneously to the observer because of relativistic
light travel delays, and to calculate the radiation observed at a given observer time
one needs to know the region from which simultaneously detected photons come. The
surface limiting such a region will be named Equal-T surface.

The observed radiation at the time 7" will be the volume integral on the region
surrounded by the equal-T surface of the radiation emitted, properly boosted and
Doppler shifted.

The Equal-T Surface is the surface from which photons emitted by the shock front
arrive to the observer at the same time 7'. The volume inside it will be the region from
which photons emitted by the fireball interior arrive to the observer at 7' too.

The Equal-T surface will be represented by a function ReqT (9, ¢, T) giving the

radius of the region from which photons arrive to the observer at the time 7" as a
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function of the direction 9, . If the fireball is spherical the Equal-T surface is axially
symmetric, i.e. the function Reql does not explicitly depend on ¢.

Now we explain how to calculate the function ReqT.

If ReqT is the radius of the Equal-T Surface in the direction 9, ¢, photons emitted
by the shock in that position (and seen by the observer at the time 7') must be emitted
at the time t.,, =T + EeciT— cos¥ — *. At that time the shock radius in the direction
Y, should have been exactly ReqT. Thus, the function ReqT must be such that

ReqT

Ry (T +
c

cos ) — %i) = ReqT (3.120)

This equation in the variable RegT" can be solved once the analytic expression of R (¢)
is known.

The shock radius evolution law R (t) we have defined in the previous sections is
composed by different analytic expressions at different times, so we expect the function
ReqT' (¥, T) to be composed by different expressions too.

The general definition of ReqT (J,T) will be

4

ReqTrree(0,T) T <T.(V)
ReqTecoast(9,T) T.(9) < T < Ty(9)
ReqTprc(9,T)  Ty0) <T < Ty(9)
ReqTgp (0, T) To(0) <T < Terir(9)
ReqTrrans(0,T) Teit(9) < T < Tyran(0)
ReqTsep(9,T) T > Tyan(9)

ReqT (9, T) =

\

where the times T,(9), Ty(9), To(9), Tmiu(¥) and Tiq(d) have been defined in
section 3.6.1 and the functions ReqTrrpr(Y,T), ReqTcoast(9,T), ReqTppc(9,T),
ReqTpy (0, T), ReqTrrans(9,T) and ReqTsgpp(9,T) are the functions solving the
equation (3.120) with the different analytic expressions of R,(t) corresponding to the
different stages. ‘

During the coasting stage, for instance, we have

1\ L2
Ry(t) = Rcoasr(t) = R.+c¢ (1 — ﬁ) (t—1.)

and the Equal-T surface will be the solution of the equation

ReqT

RC‘OAST(T -+ cos ¥ — %) = ReqT
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ReqT i
ecq cosd — I t.) = ReqT
c

1 1/2
Rc+c<1—f§) (T +

S0
Re+ V(T —t,— %)

c

ReqTcoasr(V,T) =

1— %cosz?

with V. = ¢ (1 - %)1/2.

c

During the first deceleration stage
Ry(t) = Rpgc(t) = At* + Bt + C
and the Equal-T surface will be the solution of the equation

R T i
Rpec(T + —%]—— cos ¥ — 7—6—) = ReqT

80
[ - {2A(cT = r;) cosd + c[Bcosd — c+

ReqTpo(9,T) = \/(B cos — )2 — 4AcosI(cT — r; + C cos ﬁ)J} L 9AT
| &[4 —ric@TA+B)+ & (T(TA+ B) + )] b=1

During the remaining stages the solution of equation (3.120) must be found numer-
ically.

The Blandford & McKee stage, for instance, has a shock radius evolution law
Rpar(t) such that

3 ()
Rpu() |1+ B ( : )zct—%—ri
24 (1) ( 16A5a [Ry (t) + (76 — 1) R3]

The Equal-T surface must be Reqlgp such that

ReqTsy, <
T = teg — SEITBM g9+
C
with t.q satisfying
RGQTI;’M
RegTep | 1+ = Clegt + 75
q”( 16X an [ReqTdp + (1 — VRY) — O

Thus the equation to solve for Reqlg)s will be

ReqTg ( Rengw >
T—=-""2"""11—-cos?+ - ‘ 3.123
c 16Agy [ReqT3y, + (v — 1) R ( )
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and, similarly, the equation to solve to calculate ReqTrrans will be

ReaT ReqT?
T = SEEIRANS | s + LN (3.124)
16Agnm [REQTI?’"RANS + AT +%LN{1:’_:’.)€J5:AJ\_TS_O_%) '

Finally, the Equal-T surface ReqTsgp during the Sedov stage will be the solution

of the equation

T, 0\
S° (T—l— Reqlsen cos ¥ — T—) = ReqTinp (3.125)

c c

The Equal-T surface gives the fireball shape the observer actually sees. The ob-
served fireball shape is very different from the intrinsic one even in the spherical case.
Figure (3.5) shows that for a spherical fireball the Equal-T surface is egg shaped for
almost all the fireball evolution. It can also be seen how the egg curvature evolves with

time.

3.6.3 Detailed calculation of afterglow light curve/spectrum

If we assume that the shocked plasma emits radiation via a specific radiation mecha-
nism, knowing the complete hydrodynamics of the fireball we can calculate the comov-
ing emissivity j'(¢') of each fireball fluid element at any time'. Once the instantaneous
comoving emissivity of a fireball fluid element is known, the calculation of the instan-
taneous observed spectrum contributed by the given element is straightforward. Now
I am going to illustrate it.

First of all, suppose that a fireball fluid element emits radiation at the lab frame
coordinate time ten, from the position (rem,d, @) such that Te, = ns < L
The lab frame volume of the fluid element will be dV = 1% dremsinddddy =
Ry(tem)? 22, dTom sin9dddp. The comoving particle and internal energy densities will
be 7' (tem, Tem) and € (tem, Tem). The fluid element Lorentz factor relative to the lab
frame will be 7(tem, Tem), and the fluid element will expand radially. The comov-
ing particle density n'(t,z), the internal energy density €'(t,z), and the shocked fluid
velocity field (¢, z) can in principle depend also on the angle ¥ and on the second

coordinate angle ¢ of the spherical coordinate system having the line of sight as z axis.

tRemember that if emission in the comoving frame is isotropic, the quantity dP,, = 4mj'(v')dV

will be the instantaneous comoving spectrum emitted by the element
{Remember that because of the spherical coordinate system choice in the lab frame the line of sight

forms an angle ¥ with the radial direction connecting the fluid element to the centre of the explosion.
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. . 53
Shock radius evolution  E; = 2x1077
" 020 T T T T ‘ T T T T ‘ T T T T
coasting before thinning
coasting after thinning
early deceleration
L -~ Blandford & McKee
———— transition to Sedov
Sedov expansion
1 01 8L i
1 01 6L |

n = 303

Radius (cm)

10121

1072 109 10° 10
Observer time T (s)

10

Figure 3.4: The shock radius evolution with the time of the observer is shown. Segments
of different colors represent different evolutionary stages as in the legend. The upper line
refers to a spherical fireball with a baryon loading parameter n = 300 and a total energy
Er = 2 x 10% ergs, and the lower line refers to a fireball with a baryon loading parameter
n =3 and a total energy Ep = 2 X 1031 ergs. Since the total energy is the same in both cases
the two curves meet during the Sedov stage. The non relativistic self-similar ezpansion looses
completely memory about initial conditions with the only exception of the total energy of the

explosion.
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Figure 3.5: In this figure we can see how the Equal-T surface evolves with the time of the

observer in the two extreme cases n = 303 (upper panel) and n = 3 (lower panel) with the
same total energy Ep = 2 x 105 ergs. We plot the function ReqT'(9,T)/ReqT(0,T) for T

growing from about 10° s to about 108 s. The line of sight is the horizontal direction, with

the observer far on the right side of the figures and the centre of the explosion corresponding

to the origin. You can see the front of equal-T surface gradually becoming spherical after the

time Tyeq(0) at which the fireball front starts non relativistic Sedov expansion.






80 CHAPTER 3. SPHERICAL FIREBALLS

This happens for instance for non spherical fireballs. Nothing changes in what follows
provided that angular dependencies are properly added everywhere.

If the line connecting the fluid element position to the observer forms an angle
= with the radial direction, then the emitted frequency v’ will be observed as the
frequency v such that

V' = vy(tem, Tem) (1 — B(tem, Tem) COSE) (3.126)

Note that the comoving emissivity j'(¢') should depend on the local comoving
particle density, on the local internal energy density and also on the comoving time
elapsed since the shock passage t'. The times t.,, and t' are related as follows:

tem dt
t = —e (3.127)
ts Yt zs(t))
where t, is the lab frame coordinate time at which the volume element has been shocked

and z(t) is defined as z(t) = %;((_?) with ¢ (t) being the solution of the Cauchy problem

%{— = (1 - m)lﬂ ¢, r4(ts) = Ry(ts). Both t, and t’' are expected to be known
functions of re,, and t., (see section 3.8).

After expanding all possible dependencies, we can write the comoving emissivity
as a function of the same variables used for the hydrodynamical quantities and the
frequency: 7/ (V) tem, Tem)-

Then, remember that 15,%’1 is a Lorentz invariant, so that the lab frame emissivity
7(v) is related to the comoving emissivity j'(v') by the expression

U\ 2
i) =10 (%) (3.128)

Using (3.126) we van conclude that

jI(V'Y(tema xem) [1 - ﬂ(tema xem) COS E] s tem wem)
V2 (tem, Tem) [1 — B(tems Tem) cos E)°

j(l/, tem,xemag) = (3129)
from which we see that the lab frame emissivity depends on the observation angle =,
i.e. the emission in the lab frame is no longer isotropic as expected by the relativistic
beaming effect.

Now that we know the lab frame emissivity j(¥, tem, Tem, =) We can say that the
contribution of the fluid element to the observed flux is
drem cosZ 12 sinddddy  j(V, tem, Tem, Z)dV
cos = d? B d?

ey

dF, = j(V, tem, Tem, Z) (3.130)
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where d is the distance of the fluid element from the observer, that depends on repm,
and = is the angle formed with the radial direction by the line connecting the observer
and the fluid element at the time tem. The angle = depends on the volume element
position too.

In the case of a very distant observer we can approximate d with the distance of
the center of the explosion from the observer D, which is constant, and the angle =
with 9 because all the directions to the observer can be considered parallel directions.

The final result is

- _— j/[l/"/(tem,l‘em)(l_ﬁ(tem @em)COSﬁ),tem,mem]
dFy (tem, Tems '19) = V2 (tam Zem )1 —B(tem Tem ) COS U2 (3 131>
Re(tem )12, dem sind dddyp =
D2

If the fireball is not spherical, then we expect the functions v and 5 to depend also on
the angles ¢ and ¢, and the elementary observed flux will depend also on .
The elementary flux (3.131) will be observed at the time

T = tom — Tecm cosd + — (3.132)
C

We already know that if we fix the lab frame time of emission fepm, different fluid ele-
ments of the fireball will contribute to the observed flux at frequency v with elementary
fluxes dF, that will reach the observer at different times T' depending on their different
positions (Tem, ). In order to calculate the observed flux at a fixed observer time 7',
we must take in account elementary fluxes emitted by different portions of the fireball
at different lab frame times #.,,. The volume from which the observer gets radiation at
the time T is the region inside the Equal-T surface, i.e. the place of all the shock front
positions from which the emitted radiation reaches the observer at the same time 7'
The Equal-T Surface is a closed surface around the centre of the explosion, described
through a function RegT'(¥,T) that gives the radius corresponding to the direction
(9, )"

In conclusion, the observed flux at 7" will be obtained by integration of the elemen-
tary observed fluxes (3.131) over the whole volume enclosed by the Equal-T surface.
In this way we can in principle calculate both the total observed flux at the time T,
F(T), and the monochromatic observed flux at the time 7, F,(T), i.e. the observed
instantaneous spectrum.

Since the generic fluid element centered on the point (Tem, U, ) internal to the
Equal-T Surface (i.e. such that 0 < rem < RegT (¥, T)), contributes to the radiation

§0nly in case of anisotropic fireballs the function ReqT” depends explicitly also on the angle .
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observed at the time T by emitting at the time t.,, = T — 2= cog ¢ + © an elementary

C

flux dF, (tem, Tem, ¥) where z,, = 'RQ%TZS? the observed spectrum at 7" will be

vy(t,z) [1 — B(t,x) cos ] , ¢, 7] dv
V2(t, @) [1 = B(t, z) cos 9] D2

F(T) = /dFu(wn?) = /j/[ (3.133)

more precisely

2 T ReqT(9,T) 4/ . . .
F(T) = = / dy / sin® do / TN 7 eyt z) [L = Bt ) cos V] a]
0 0 0

"D 72(t,2) [1 = B(t, z) cos 0]
(3.134)
where
r T3
t=t(r,9,T) =T+ —cost — —
c c
r=z(rd,T)= r
- T _RS(T+§00819~%)
and the observed bolometric light curve will be
F(T) = / dvF,(T) (3.135)

Anyway, what is usually observed is not an instantaneous broad band spectrum nor a
bolometric light curve, but a narrow band frequency integrated light curve, which is
expected to be well approximated by (3.134) at fixed v once normalized at the mean
frequency of the observation band.

In order to simplify the numerical calculation we can do the following change of

variables
.
4¥ = - f .19
ReqT (9, T) (3.136)
and rewrite (3.134) as ’
27 i 1
F(T) = 51—5/ d(p/ sind ReqT'(9, T)> dﬁ/ I(X,9,T, 1) X?dX (3.137)
0 0 0
where VR(X, 0, T), (X, 9, T), €(X. 0. T
1(X,9,T,v) = L9, T), X9, T), (X, 9, T)] (3.138)

h(X,9,T)?

with

WX, 0,T) = ~(X,9,T),6(X,9,T))
[1 = B (H(X,9,T),&(X,9,T)) cos 9] (3.139)

XReqT(9,T)

§X.9,T) = R, (t(X,9,T))

(3.140)
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and
X ReqT (9, T Z.
HX,0,T) =T + ———6q~é~§—~> cos ) — = (3.141)
C
Finally
1 2w T 1 o
FAT) =25 | do [ af sing [ dX X* ReqT(9,T)° 1(X,9,T,v) (314
“JOo 0

In the case of anisotropic fireball the functions ReqT', I, h, & and t explicitly depend
on ¢ too. For spherical fireballs, on the contrary, we can simply write

2 T . 1 R
FAT) = = /0 d9 sind /0 dX X? ReqT(9,T) I(X,9,T,v) (3.143)

Results of the calculation of (3.143) for different values of the fireball parameters and

a different observation frequencies will be shown in sections 5.3.1 and 5.3.2.



84 CHAPTER 3. SPHERICAL FIREBALLS

3.6.4 The integration volume

The change of variables (3.136) apparently makes the integration volume a sphere of
radius 1. But the situation is more complex.

At any given time 7' and for each fixed direction (¥, ), any value of the variable
X corresponds to a value of the position relative to the shock radius at the emission,
%. We know that if the time of emission ¢(X, 9, T') is such that the fireball
is in the coasting stage (or even before it), the fireball is shell shaped and only values of

x greater than T, = 1— 3% are allowed. So the (low) X values corresponding to times

T =

of emission lower than t; and z lower than z,,;, must be excluded by the integration
region.

If 0 <9 < 7, when X grows then ¢(X,9,T) grows but z grows all the same. If
5 < ¥ <, when X grows then t(X,9,T) decreases and z grows even faster. So, the
integration in X must be limited to the interval from X, (7, 9) to 1, with X, (T, 9)
such that for any X > X,,;,(T,9) the corresponding z is greater than ., that is

XReqT(9,T) _ | A((X,9,T))

R((X,9,1) =" R(HX,9,T))

or equivalently
XReqT(8,T) 2 Ry(t(X,,T)) — A#(X,9,T)) = R(X, 9, T))

You can easily see that X,,;,(7,9) approaches 0 as T’ grows, and there is a time
Ty after which X (7,9) = 0 in every direction. In the spherical case we are now
considering Ty = tq + % + . See fig. 3.6.

The final formula to use for the calculation of the observed monochromatic light
curve is

' 1 2m & . 1 R 3 - )
FAT) = 5 /0 d /O d9 sind /X gy WX X ReqT(0, T I(X,0.T,0) (3144)
In the spherical case the integration in ¢ simply gives a factor 27 but (3.144) is valid
also in the general anisotropic case, when X,,;,, Re¢T and I are actually ¢ dependent.

3.6.5 Effects of the volume integration

Following [Granot, Piran & Sari 1999¢] I have tried to single out the angular integra-

tion and the radial integration in the afterglow light curve calculation from a spherical
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Spherical Fireball: Emitting Volume
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Figure 3.6: The growth of the integration volume for the observed fluz calculation
as a function of the observer time T is shown. We illustrate the case of a spher-
ical fireball. The solid line in the plot is the fraction Vipt/Viet, where Vipy =
02” dp [y ddsind fz%’min(T,ﬁ) dX X?ReqT(9,T)® is the volume of the integration domain to
use in (3.144) and Vit = D27r dy [y ddsin? fol dX X?ReqT(9,T)? is the whole volume de-
limited by the Equal-T surface. The vertical line A represents the beginning of the deceleration
stage on the front of the fireball and the vertical line B represents the beginning of the decel-
eration on the back of the fireball, i.e. the time Ty after which we expect to be reached by
radiation from the whole volume Vior. Actually the solid line becomes constant and equal to

1 after the vertical line B representing Ty

fireball, in order to find out the different effects each integration has on the observed
flux.

The importance of radial integration can be investigated calculating the observed
flux due to photons emitted along the line of sight only. To do this we assume that
at each point photons are emitted only radially in the fluid element comoving frame.

This would correspond to a comoving emissivity
Traa(V') = 5/ ()6 (2 = /(7))

where j'(¢') is the isotropic comoving emissivity defined in the previous section, ' the
solid angle in comoving frame and 7 the unit vector parallel to the radial direction in

the comoving frame. Since passing from the comoving to the lab frame the solid angle
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transforms as d2 = (1 — £ cos9)dQY [Rybicki & Lightman 1979] we obtain
6(Q = Q7)) = v*(1 — Beos )5 (Q — Q7))

and the calculation of the observed flux in this case leads to

Frad(TY = / N (0, T, T A i | 24 14
ras(T) 7 /. j [1/ (v, T,r), T + . 7RS(T+%Q)} redr (3.145)

with

r—r; T
¢ 'Ry(T+=H

T T

Vv, T,r) =vy(T + )) [1 - B(T + T; Rl T__CL))} (3.146)

On the other hand, in order to single out the effect of angular integration, I should
calculate the observed radiation as if it were coming from a thin shell of lab frame
thickness A just behind the shock, and take the limit for A — 0. Since I do not use
the same change of variables used by [Granot, Piran & Sari 1999c¢] for volume integra-
tion, because it is optimized for the Blandford & McKee solution and easy to be used
only during that evolutionary stage, I do not follow Granot’s exact calculation of the
afterglow light curve from a infinitely thin shell. I simply calculate

Fon9(T) = -5—5 /02” dip /OW d9 sind ReqT'(9,T)® I(1,9,T,v) (3.147)
where the function I is defined by (3.138).

It will be shown in section 5.3.1 (fig.5.7) that in the spherical case both radial and
angular integration become important in a light curve calculation when the fireball
front decelerates to Lorentz factors below ~ 2 (i.e. the transition to non relativistic
expansion starts; see the definition of 7., in section 3.5.4). At earlier times the light
curve is reasonably well approximated (with the exception of the time interval around
the peak) by the emission of electrons just behind the shock front along the line of
sight. The volume integration is important to establish the light curve peak or break

shape and the shape of spectral breaks.

3.6.6 Normalization of afterglow light curve/spectrum

If we believe that afterglow radiation is produced by synchrotron emission from rela-
tivistic electrons accelerated at the forward shock, then we can estimate the observed
monochromatic light curve and spectra in a very rough way assuming that at any time

T all emitting electrons are mono energetic with a Lorentz factor 7,,(T) equal to the
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minimum Lorentz factor of just shocked electrons along the line of sight, i.e. (see

section 3.7.2)

(T = (r=2) e (eu@\]’

V(L) = Yemin(T) J 1+ { o) (néos (T)ﬂ (3.148)
where

Rios(T) = ReqT (T, 0) (3.149)
Yios(T') =¥ (T + RZOSC(T) . 1> (3.150)
M5 (T) = 1 (T + —B“LC(Q - % 1) (3.151)
€los(T) = € (T Rl"‘”'c(T) -~ % 1> (3.152)
Blos(T> = 871’6]36205 (T) (3153)

are respectively the shock radius and the post-shock Lorentz factor, particle density,
internal energy density and magnetic field strength at the time 7' along the line of
sight.

The total number of emitting electrons can be assumed to be the total number of
external electrons the forward shock has swept up, 1.e.

N(T) = %RZOS(T)% (3.154)

Each emitting electron will emit an instantaneous spectrum peaked at a comoving

frequency (see appendix D)

S (T) = V(D)) = = B D) 2 (3.155)

16 mec
The observed peak frequency will be

B v, (T)
Vm (T) - 7103(T)(1 — /glos (TD

Moreover, since the total power emitted by the single emitting electron in the comoving

(3.156)

frame can be estimated as

2
PL(T) = orcn (T 2oL

3.157
3 87 (3 )
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and, consequently, the observed total power from a single electron is

B Pt/ot (T)
Piot(T) = Yios (T)*(1 = Bios(T))3

we can conclude that the radiation observed at the time 7', peaking at the frequency

(3.158)

vm(T'), should produce a total flux per unit frequency

L vy Pe@) 1 P(T) 1

Pl = N0 = 5™ 0 3P0 = BT

(3.159)

Note that in the limit 705(7) > 1 we have 1 — B55(T) ~ m and consequently

U (T) ~ 205, (T) 105 (T') (3.160)
Ptot(T) ~ 8P£ot<T>’)’los (T)2 (3"161)
Fi(T) = 47:[)2 ( )];Z’f(%) 45105 (T) (3.162)

A better approximation might be obtained assuming the emitting electrons are
power law distributed, with an average Lorentz factor equal to 7, (7). In this case the
total flux per unit frequency at frequency 1,,(T) of the observed radiation would be
(see appendix D.1.3)

4(p — 1) 1 Ptat(T)
0 T)=088—= N(T -
Fo(T) =0 S5 T )Vm(T)
Ap-1) 1 Piy(T) L

= 0.83 (3.163)

3p—1 47 D? (T) V(T Y10s(T)3 (1 — Bros(T))?
where the factor 0.88%;’{1—) has been added to fit the synchrotron peak of the approxi-
mated spectrum produced by a power law distributed electron population without any
high energy cut off due to cooling.

After substitution of (3.154), (3.155) and (3.157) we get

4p—1) ni 4 16mec (5 Bn(T)*Rios(T)*\/¢),(T)

T)=0. Py ‘
Eot( ) 0.38 3]9 —1 3D2 SUTC 3e 8 'Ylos(T)B(l - BZOS(T))Z

(3.164)

In the ultra relativistic limit

4(p—1) n; 4  16me.c [eg 3 /5
~ 0. - 5 W/ 405 3.165
Fiot(T) ~ 0.88 3p 1307377 3 87rRlOS(T> €05 (1) 47105 (T) (3.165)

The estimated total flux per unit frequency (3.164) is now independent on the aver-

age Lorentz factor of the emitting electrons. If the hydrodynamical evolution of the
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freball follows the Blandford & McKee law we can write yis(7") o< Rios(T)™? and
since €}, (T) ~ 47105 (T)2mpnic? we conclude that Fyt(T) o< Rios(T)*+/€los (1) ios (T)
Rios(T)3¥10s(T)? < Ep o constant. Thus, the quantity (3.164) is expected to be
constant during the Blandford & McKee stage, and for this reason can be used as
a normalization constant for the function F,(T) calculated with the (3.144). It is of
course a total energy (or baryon loading parameter) depending constant.

In our case, since the approximation f,(T) ~ 1 might not be verified during all
the Blandford & McKee stage for low baryon loading parameter values and since we
are not using the original Blandford & McKee law 7i05(T") o< Rios (T)~3/% but a slightly
modified one, we will not have a perfectly constant Fis(T) during the Blandford &
McKee stage. Calculation shows a very slow growth of about the 5%. We will then
choose as normalization constant Fi,.. the value of Fi(T) at the beginning of the
Blandford & McKee stage, i.e. at T = Tp(0) = to — £2 + Z. In this way we have again
an unambiguously determined baryon loading parameter dependent constant.

In conclusion, we are going to use as normalization constant for light curves and

spectra the quantity
1
Fre = gFtot(Td(O)) (3166)

that 1s

A(p = 1) 64 mior mee? (25 Bm(Ta(0)Rios Tal0)P el TulO) L
3]9 -1 27 D2 e 8 ’Ylos(Td(O))g’(l - ﬁlos(Td(O)»Q 8 |

Frgz = 0.88

where the factor —18— has been added to improve the fit with the true peak heights of
numerically calculated monochromatic afterglow light curves that actually peak during
the Blandford & McKee stage.

For 1 decreasing from 300 to 3 our Fi,,, decreases of about 4% and we can write

- Er N\ 172 12 ( D - .
Frae(n) = 372.6 x (1052> €g ny <1028> f(n) mly (3.168)

where the total energy Fr is measured in ergs, the distance D is measured in cm and
the adimensional function f(n) is plotted in fig. 3.7. Our flux normalization is about 5
times greater than the one used in [Granot, Piran & Sari 1999c]. This difference is due
to the modified hydrodynamical evolution we adopt during the Blandford & McKee
stage.

Recall that for comparison with observed afterglows as distance D the luminosity
distance value should be used and a redshift factor (1 + z) should be added to (3.168).
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Figure 3.7: Plot of the function used in (3.168)

3.6.7 Self—similarity of afterglow light curve/spectrum

Before ending the chapter note that if the afterglow spectrum at the time 7 peaks at
a frequency strictly proportional to v,,(T) given by (3.156), then the monochromatic
light curve at the generic frequency v is expected to peak at a time Tpeqr(v) such that
V/Vm(Tpeak) = constant (i.e. independent on v). Moreover, for a peak occurring during
the Blandford & McKee stage we expect that also the quantity F,(Tpear)/Finaz does
not depend on v.

As have been noted by Granot, when electron cooling is completely neglected,
during the Blandford & McKee stage it is possible to define a self-similar variable

1%
T) = )
o(v,T) o (T (3.169)
and a universal function f(¢) with a peak at ¢peqr ~ 2 such that f (¢(v,T)) = %ﬁ?

The function f(¢) will represent both an afterglow spectrum at a fixed time and an
afterglow monochromatic light curve at a fixed frequency.
The function ¢ that Granot defines will be called hereafter Ggranot and is strictly

3/2.

proportional to v T~ Actually the definition (3.169) gives exactly this result in

the ultra relativistic limit (corresponding to high baryon loading parameter values)
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with a perfect Blandford & McKee evolution. We prefer to adopt (3.169) instead of
Granot definition to be consistent with the deviations introduced by our generalization
of the evolution laws. The function f(¢) required to describe afterglow light curves
and spectra will be such that f(¢) o P/3 for ¢ < dpear and that f(¢) o P~ e=1/2
for ¢ > ¢pear also for us (see section 5.2, and in particular function F2PP(T") defined
by (5.17)). However, the self-similarity property of afterglow light curve/spectrum is
expected to hold only during the Blandford & McKee stage. In particular, the peak
time Tpear(v) is expected to satisfy the condition ¢(v, Tpear(v)) = constant = 2 only
if belonging to the Blandford & McKee stage. Light curves peaking before or after
such a stage may have “unusual” peak times or profiles, and it would be interesting to
investigate how evident are such effects and if they could be observed.

Finally, when we stop neglecting electron cooling, we have two characteristic fre-
quencies to deal with (see section 5.2) and the study of Blandford & McKee afterglows

self-similar properties is no longer useful.
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3.7 Radiation emitted by the shocked matter

We have already said that the most likely radiation process in GRB afterglows is
synchrotron emission from relativistic electrons accelerated at the shocks.

The parameters that determine synchrotron emission from a shocked plasma are
the emitting electrons energy distribution and the magnetic field strength.

For all known astrophysical sources that are believed to emit synchrotron radiation,
a power law distribution for the emitting electrons energy provides a good fit to the
observed spectra, and this is true for afterglow spectra as well. Also theoretical studies
suggest that the most reasonable energy distribution expected for charged particles
accelerated at shocks is a power law [Draine & McKee 1993]. The range, slope and
normalization of this power law should in principle be extracted by the microscopic
physical processes that take place at the shock and compared to the corresponding
observed values to test the acceleration process theory, but astrophysicists usually
prefer to assume them as free parameters and constrain them through observations
because, unfortunately, the acceleration process theory itself is somewhat incomplete.

Another parameter that is usually left free in modeling a shocked plasma is the de-
gree of amplification of the ambient magnetic field at the shock, likely due to turbulence
in the plasma.

Now I am going to describe the current view on the microscopic striicture and
composition of a shocked astrophysical plasma.

Then I will introduce the mathematical formalism required for detailed calculation
of the synchrotron total power and spectrum emitted by an element of shocked plasma.

3.7.1 Particle acceleration at shocks

Many astrophysical plasmas are so rarefied that the particle mean free path is too large
to allow energy dissipation through collisions at a shock. The free path for a proton
in the solar wind, for example, is larger than the distance of the earth from the sun
[Longair 1981, Draine & McKee 1993]. For this reason, shocks that are relevant in an
astrophysical context are collisionless shocks, i.e. shocks where the plasma is heated
and compressed in a very thin transition layer via the interaction with electromagnetic
fields due to collective motions of the charged particles. Actually collisionless shocks
are expected to compress and amplify seed magnetic fields too.

Collisionless shocks are observed in nature. The best known example is the bow



3.7. RADIATION EMITTED BY THE SHOCKED MATTER 93

shock between the solar wind and the earth magnetosphere, that is a stationary shock.
It is so close to us that we can even send instruments and perform direct measures on
it. Moreover, many planets and satellites in the solar system show similar bow shocks.
Other widely accepted examples of collisionless shocks are the forward and reverse
shocks in galactic Supernova remnants, that are non relativistically expanding shocks.
Such shocks are clearly visible in many shell remnant images at different wavelengths.
On the contrary, relativistic shocks (collisionless or not) have not been directly observed
yet. We have only indirect evidences of their existence in nature.

In what follows I will outline the physical principles underlying our theoretical
understanding of collisionless shocks.

At a collisionless shock, the particle heating process being electromagnetic, incom-
ing protons and electrons feel the same forces, so electrons, that are significantly lighter
than protons, are accelerated to a larger extent. Since accelerated charged particles
radiate proportionally to the fourth power of their acceleration, electrons immediately
loose almost all the energy that the shock gives them, unlike protons. After escaping
the shock, the still cold shocked electrons actually heat a bit more in collisions with
the hot shocked protons, but equipartition is not reached because of the very low rate
of encounters due to the plasma low density.

Then, electrons and protons in the shocked plasma are expected to be thermal but
at substantially different temperatures.

Anyway, because of their low mass, electrons are faster than protons, and in partic-
ular a small fraction of them, the fraction living in the high energy tail of the Maxwell-
Boltzmann energy distribution, has a thermal velocity greatly higher than the average
one. Since the cross section for scattering is inversely proportional to the squared veloc-
ity of the particle, those highest velocity electrons in the shocked plasma that are occa-
sionally scattered back toward the shock can travel freely such a long distance that can
eventually cross the shock before being scattered back again. These fast electrons that
go up and down the stream many times gain energy at each shock re-crossing via the
Fermi acceleration process [Protheroe 1998, Gallant, Achterberg & Kirk 1999a]. They
quickly form a second population of non—thermal high energy electrons with a
power low energy distribution, which is expected to emit radiation mainly via syn-
chrotron cooling because of the presence of the magnetic field in the plasma. The
thermal electron population is expected to emit radiation but mainly via thermal
bremsstrahlung process.

The total internal energy density of the shocked plasma €' can be expressed as the
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sum of the protons thermal energy density e, and the electrons energy density e,. The
latter can be further split up into the sum of the thermal electrons energy density
€., and the non thermal electrons energy density e}, ,,_,,. All these quantities are
measured in the shocked fluid comoving frame. Another component of the comoving
internal energy density of the plasma to be accounted for is the the magnetic energy
density e'y, but for the moment we will neglect it basing on the fact that it is expected
to be a smaller component.

Despite of the Fermi acceleration process, that helps enhancing the electrons energy,
equipartition between electrons and protons is hardly reached and the electrons energy

density e is expected to be a fraction ¢, < 0.5 of €. So we will always write
e, = eqe’ (3.170)

with
€e = ee,non—th + e:e,th i (3171)

Behind a non relativistic collisionless shock non-thermal electrons, i.e. Fermi
accelerated electrons, are actually not the bulk of the electron population. In this case
thermal electrons are much more numerous than the non—thermal ones and

/ o !
ee’th ~ 66 = €e€

Measures of particle temperatures behind terrestrial bow shocks and observations of
the other bow shocks in the solar system tell us that for non relativistic shocks e, < 0.1
[Schwartz, Thomsen, Bame & Stansberry 1988] and the €, value is lower for stronger
shocks. Observations of the X-ray emission of some Supernova remnants tell us that
behind a non relativistic strong shock the non—thermal electrons take with them an
energy density e ., 4, that is only a fraction { £ 0.1 of the thermal electrons energy
density e, ;.

Then, the plasma shocked by a non relativistic collisionless shock is thought to
be composed of a population of thermal protons, an extended population of thermal
electrons at a temperature lower than the protons such that e}, ~ e, = e’ with
€. ~ 0.1, and a restricted population of non-thermal electrons generated via Fermi
acceleration processes (that is the one we are interested in) such that €] ,,,,_,, = (el ~
Ceee! with ¢ ~ 0.1.

As far as ultra—relativistic collisionless shocks are concerned, no direct mea-

sures of post-shock temperatures and densities have been possible yet and only rough
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theoretical predictions are at disposal. What is known is that the average electron
energy increase < AFE > at each shock crossing from downstream to upstream, is
greater in the case of a relativistic shock than in the case of a non relativistic shock.
The Fermi process theory states that for an electron of energy I, S—A—E& ~ 2 ifyy e
[Protheroe 1998] while <522 ~ 2if v, > 1 [Gallant, Achterberg & Kirk 1999a]. Then,
non relativistic shocks accelerate electrons through many small kicks (the process is
slow and continuous, and only the electrons that do many crossing/re-crossing of the
shock front definitely leave the thermal population) while relativistic shocks accelerate
electrons through few big kicks (the process is fast and more efficient and a greater
number of thermal electrons enter the non thermal population as a few crossing/re-
crossing are enough to have an energy substantially greater than the average). When
the shock is ultra-relativistic we expect the number of non thermal electrons to en-
hance at the expense of the number of thermal electrons and the Fermi accelerated
electrons to become the bulk population. We expect e, ., to be much greater than
el ., and almost equal to the total electron energy density e’,, which is supposed to
be approximately the same fraction of the total internal energy density of the shocked
fluid ¢’ as in the non relativistic shock case (i. e. about 10%).

The plasma shocked by an ultra—relativistic shock can then be roughly described
as a two component fluid, made of a population of thermal protons and a population

of non thermal electrons whose energy density is given by

!

7 !
ee,non—th ~ € = €eC

with €, ~ 0.1.

In the case of non relativistic collisionless shock as well as in the case of ultra—
relativistic collisionless shocks, we expect the non—thermal electrons to have a power
law energy distribution and we prefer to assume the power law range, slope and normal-
ization as free parameters to be constrained through observations rather than deducing
their values by the microscopic physical process acting at the shock with aim at com-
paring them with the observations to test the physical acceleration process theory.

In our fireball evolution the forward shock gradually slows down from ultra rela-
tivistic velocities to non relativistic ones. We should take in account that at the shock
derelativization the post-shock energy density of accelerated electrons is expected to
become a lower fraction of the fluid internal energy density, passing from e, ,,,,, ;5 ~ €c€’
with €, ~ 0.1 when v, > 1 t0 €] ,pn—sn ~ (€€ With ( ~ €. ~ 0.1 when 7, ~ 1 but we

prefer to neglect this effect because it would complicate too much the calculation.
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Thus, we will assume that just behind the shock

/

I !
ee,non-—th ~ € = €€

with a constant €, ~ 0.1 during all the fireball evolution.
Before ending the section remember that the protons temperature just behind the
shock can be estimated as (see section 3.3)

4 !

- € R e N _
KT~ (Y =15~ (= D)~ (7 = Dmpe®(7: = 1) (3.172)

that is
T, ~10%(y,— 1) K (3.173)

3.7.2 The post—shock electron distribution

As astrophysicists usually do, we will assume that electrons accelerated via Fermi
acceleration processes just behind a planar shock traveling in a uniform medium have

the following power law distribution:
dN = N(v.)dve = Ny, Pdye (3.174)

Here dN represents the number of shock accelerated electrons per unit volume with
Lorentz factor between 7, andy, + dv., p > 0 is the slope of the distribution and -,
varies between Ve min and Ve maz-

The existence of an upper limit for the velocity that accelerated electrons can reach
is quite reasonable. The maximum energy electrons can acquire via shock accelera-
tion is limited by synchrotron losses occurring during the acceleration process itself
[Piran 1999]. Other limits on the maximum energy are placed by the dimensions of |
the acceleration region and the time available for acceleration. In realistic cases e oz
is so high as compared to e m:, that in first approximation we can use Yemar = +00
in all calculations. This is what has been assumed in all previous works and we will
assume it as well. In addition, we anticipate that a realistic standard value for p is
about 2.5.

The normalization factor N, in (3.7.2) is to be determined in such a way that the
integral of N(v.) over the range [Ye min, +00] gives exactly the total number of shock
accelerated electrons per unit volume in the shocked plasma, n.. Then we have the
relation

+00 _Ne

n, = Nev Pdry, =
¢ Ye,min ¢ /e rye (p -

AP —E
1) Ye,min (31(9)



3.7. RADIATION EMITTED BY THE SHOCKED MATTER 97

Note that we must assume p > 1 if we want the right hand side in (3.175) to be finite.

As we stated in section 3.7.1, in the case of an ultra—relativistic collisionless
shock the shock accelerated electrons are the bulk of the electron population in the
shocked plasma, and the total number of electrons per unit volume is always expected
to be equal to the total number of protons per unit volume in the shocked plasma n'
because of plasma charge neutrality, so n, ~ n'.

In the case of a non relativistic collisionless shock the bulk electron population
is made of thermal electrons, and we do not know exactly the number per unit volume
of shock accelerated electrons. It will be only a fraction of n’. This would lead to the
introduction of a new free parameter representing this fraction. We might infer it from
the observations of Supernova remnants shocks, but we prefer not to introduce it and
to assume n/, ~ n' also for marginally relativistic and non relativistic shocks.

Another important relation to be satisfied is the following: the total energy per
unit volume of shock accelerated electrons, e,, must be equal to the integral of N (ve)7e

over the range [Yemin, +00]. Thus we must have

! +oo 1— 2 ‘/VE 2 2—
e, = Nyt Pmec’dye = ———meCY, i (3.176)
Ve, min (p—2) ,
We see again that in order to have a finite value of the right hand side we have to use
only p values greater that 2.

We have already said in section 3.7.1 that €] is expected to be a fraction of the total
internal energy per unit volume of the shocked plasma €', i.e. e, = ¢.e’. The coefficient
€., like the slope of the electron energy distribution, cannot be reliably predicted by
the microscopic processes and is left as a constant free parameter neglecting the fact
that it would be lower for the non relativistic shocks than for the ultra relativistic ones
(by up to a factor 10). A realistic value for ¢, in the ultra-relativistic case is about 0.1.

At this point note that the average Lorentz factor of shocked electrons < 7. > can

be calculated as follows

J':FOOA Ne’}/e—p’yedf)/e 1 6,
< >= Je,min _ (2 3177
Thus, combining (3.177) with the ration of (3.175) and (3.176)
(p—1) ]
< Ye >= Ye,min -
(p—2) ( )

This means that in all cases the bulk of the electron population has a Lorentz factor

roughly equal to the minimum one. The acceleration process produces an almost mono
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energetic population of shocked electrons. The high energy electrons are very few and
whatever approximation we make about the upper limit to the energy range is surely
not important. A very rough approximation could be treating all shocked electrons as
having the same Lorentz factor e m, but randomly distributed directions of motion.
Finally, we know that the comoving proton number density and energy density of
the shocked matter, n' and €', are completely determined by the comoving properties of
the unshocked matter and by the shock Lorentz factor I’y through the jump conditions
(3.17), (3.18) and (3.19). Thus we can conclude that, once p and €, are fixed, Ve min, Ve
and < 7, > are completely determined by the shock Lorentz factor Iy, the unshocked

particle density n; and the shocked matter adiabatic index 4. We get

(p*2> 1n”g(s_l)

Ye,min = (p=1) €e . (3.179)
< Yo >= g B (y, — 1) (3.180)
Me

Ne = (p = 1)1/ puin (3.181)

where . )
n =, 00D (3.182)

(7 —-1)

and the post shock Lorentz factor v, satisfies
s+ 1) (3(ys — 1) + 1)
. J (1) (G~ 1) +1) s
Y2 =)y - 1) +2

In the particular case of a strong relativistic shock with I'y; >> 1 the above formulae
must reduce to the standard ones used for example by [Granot, Piran & Sari 1999a).

First of all we have
n o~ 2V20m;, €~ 22myc?n;, Ty = V2,

(see appendix A). Then we get

p—2) m
Ye,min = €e Ep — li # Vs (3184)
<y >= ee%’% (3.185)

e

Note that if T’y ~ 100, p = 2.5 and €, = 0.1 then 7, pin ~ 4 x 10°.

The definitions (3.179) and (3.180) have a serious problem when the value of ~,

decreases too much: Ve min and < 7, > become lower than 1, and this is not acceptable
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for a Lorentz factor! To solve the problem we must find a generalized definition for
Yemin and < 7. > that reduce respectively to (3.179) and (3.180) when s > 1 but
never give unphysical values for vemin and <y, > when v, — 1.

A way to generalize (3.179) and (3.180) is recalling that, to be precise, particle shock
acceleration produces a non thermal electron population with power law distributed
momentum. In case of ultra relativistic shock, all the accelerated electrons are ultra
relativistic as well, their momentum p, is almost directly proportional to their energy
because the relation p.c ~ 7Yemec® holds, and a power law in momentum roughly
corresponds to a power law in energy and/or Lorentz factor. The approximation that
the newly shocked electrons follow a power law energy distribution is very good for
ultra relativistic shocks, and is not that bad even for non relativistic shocks, but the
use of the true electron distribution (i.e. that corresponding to a power law for the
momentum) in the ultra relativistic limit leads to slightly different estimates of Ve, min,
< 7. > and N, more convenient for a generalization to the non relativistic case.

Let us assume the shock accelerated electron distribution to be

Npe (pe) = Kpp;67 De > De,min (3186)

The electron momentum p, is related to the electron energy by the relation

2 [oa o P2 -
Ve = \/p2c? + mict = mec? |1+ m;c? (3.187)
e

and the fluid element electron number density and energy density are given by

e 2 - [T s De in
=) Np(pdmpdpe=Arky, | dp, = 4K, "% (3.188)
+00 2
€ = / Np, (pe)mec? |1+ > 247Tp2(lpe =
Pe,min e
+o0 2
—_— g 2 2—6 pe ;
= 47 K,mec /pe’mm P 4|1+ m2e? dpe (3.189)

In writing (3.189) we are making the approximation that the electrons are always so
relativistic that their internal energy el is almost equal to the total energy.
The energy distribution corresponding to (3.186) will be N(v,) such that

N(ve)dve = Ny, (pe)dmpzdpe (3.190)



100 CHAPTER 3. SPHERICAL FIREBALLS

Using (3.186) and (3.187) we can conclude that

1-4

N() = dn By (me) ™ e (= 1) 7, %o > emin = 1+ 522 (3191)

The true energy distribution (3.191) reduces to N(y.) = Ny, P in the ultra relativistic

limit if we define
—_ & 6-3 — c
K, = y (mec)’2, d=p+2 (3.192)

In the ultra relativistic limit we can also assume 2= > 1 and approximate (3.189) as

follows
+00 p4_‘5.
¢ = dnk,c / pildp, = 4rK, ¢ S (3.193)
Note that being p > 2 we are guaranteed that ¢ > 4.
At this point the ratio of (3.193) and (3.188) gives us
S—4de 1 p—2¢e,
S PR (3.194)

pe’min:5—3n;c p—1n'c

p—2 /€ €e 2
Ye,min = 1+ D— 1 (;) meCQ (3.195)

N, = 47Ky (mec)®™° = (6 = 3)n'pl %, (mee)® ™ = (p — 1)n’ (’yfmm — 1)  (3.196)

Moreover we can calculate

and consequently

S
|
—

1570 Ny, (pe)pedmpidp, pit s—3 1
. — e,min 4 K emm 3. P
<Pe = . R P o Ry (3.197)
S0
p—1 e\ e
< Pe >= ;‘__zpe,min = (;) f (3.198)
and then
e/ . 1?
< Yo >= Jl + [(E) mE CQJ (3199)

Finally we can use the definitions of n’ and e’ in terms of the post—shock Lorentz factor

and conclude

2
pP—2 my v
min — 1 ——Ce -1 2
. J #2222, - ) (3.200)
. |
< >= \/1 + {eef‘—”(% - 1)} (3.201)
Me

p=1
3

Ne=(p— 1)n’(73,mm —~1)
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As we have anticipated, the definitions (3.200), (3.201) and (3.202) are generalizations
of (3.179), (3.180) and (3.181) respectively having the same ultra relativistic limit, but
never leading to unphysical values in the non relativistic regime. So we will prefer to
use the power law electron energy distribution N(7.) = Nev.? for ve > vemin With Ne,
Yemin and < v, > defined through (3.202), (3.200) and (3.201).

3.7.3 Magnetic field strength and orientation

in a shocked plasma

Another important topic is equipartition of energy between magnetic field and particles
in the shocked plasma.

If we assume that the cold and uniform unshocked medium is slightly magnetized,
then we expect a shock to compress and amplify it. We expect that turbulent processes
in the hot shocked plasma may further amplify the seed magnetic field after the shock
compression, and randomize its orientation. Then, the magnetic energy density in the
shocked plasma might be substantially higher than what expected as a result of pure
compression of the frozen in field lines. The magnetic energy density enhancing should
of course happen at the expense of the particle thermal energy because any turbulent
process is expected to lead to equipartition of energy. Since relevant timescales for these
turbulent processes might be too long as compared to the hydrodynamical timescale to
guarantee perfect equipartition among the various forms of energy involved (particle
thermal energy and magnetic energy), we expect the magnetic energy density behind
the shock to be only a fraction of the internal energy density of the shocked plasma.
This fraction could in principle be estimated theoretically, but we prefer, as usual, to
leave it as a constant free parameter to be constrained by the observations. We will
introduce the parameter ep and write

2
=B
T

ey = — = ege’ (3.203)

or equivalently

B = /8mepe’ (3.204)

A typical value for eg could be ~ 0.01.

Relation (3.204) can be used as a definition of the magnetic field strength in the
newly shocked plasma. The hypothesis about the magnetic field orientation underlining
(3.204) is that the magnetic field in the shocked plasma is completely tangled.
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In order to give an idea of the order of magnitude of the post—-shock magnetic field
amplitude recall that if we assume, for instance, ¢’ = 2m,c*I'>n; as it is in the case of

a relativistic shock, then we can say that
B? = 16megm,c*Tn, (3.205)

and if T'y ~ 100, eg ~ 0.01 and n; ~ 1 cm™3 then B ~ 3 Gauss.

Note that the turbulent magnetic field amplification process is expected to act
everywhere in the shocked plasma, not only just behind the shock. It requires only the
existence of a seed magnetic field to amplify. So, we can in principle use the relation
(3.204) to define the magnetic field everywhere within the fireball, regardless of what
the external magnetic field were. The parameter eg is assumed to be a universal one,
though it might depend in principle on the shock Lorentz factor and the time elapsed
from the shock passage. Anyway we want to explore also the alternative case in which
turbulent processes are no longer efficient far from the shock and the magnetic field
generated at the shock with the strength (3.204) subsequently evolves as a frozen in
magnetic field conserving the magnetic flux. In this alternative case we will use (3.204)
only for the magnetic field By just behind the shock and then assume

o\ 2/
B =B, <E> (3.206)
elsewhere. Here quantities with the subscript s regard the fluid element just behind
the shock and the corresponding quantities without the subscript s are the ones char-
acterizing the fluid element at later times or a fluid element far from the shock.

So we can conclude that strictly speaking the equipartition relations (3.170) and
(3.204) can be applied only to matter immediately behind the shock. In the case of an
expanding fireball whose internal density, pressure and energy density profiles are given
by the fireball hydrodynamic evolution, it is not known whether equations (3.170) and
(3.204) are valid throughout the fireball volume and whether ¢, and e are universal
constants.

We are going to test two different assumptions about the magnetic field strength:
(i) the definition (3.204) is valid at any time throughout the fireball volume with a
universal ep and (%) the definition (3.204) is valid only for newly shocked matter and
after the shock passage the magnetic field evolves conserving the magnetic flux, i.e.
according to (3.206).

On the contrary, in the general case the relation (3.170) will always be used only

for newly shocked matter, but with a universal value of €,. The electron energy density
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long after the shock passage will be determined according to the evolution of the
initial electron energy distribution due to synchrotron radiation losses and volume
expansion. Doing this we are neglecting any other possible electron heating process
but the acceleration at the shock.

We will use the relation (3.170) at any time throughout the fireball volume with
a universal €., together with the hypothesis that the electron energy distribution is
always a power law up to arbitrarily high v at any time throughout the fireball volume
only to reproduce Granot’s results.

3.7.4 The evolution of the shocked electrons

energy distribution

For the reasons we have explained in section 3.7.1 the electron energy distribution in a
fuid element of shocked matter immediately after the shock passage (i.e. at the time
# = 0 of a comoving observer) is expected to be the power law (3.174). The range and
normalization of (3.174) are (Ve,min(0), +00) and N,(0) such that

et = 1+ (255 ()] o)

P

N(0) = (p — 1)nL(0) (Yeymin (0)® — 1)"5 (3.208)

where we assume n(0) = n/(0) and e,(0) = €.e'(0) regardless of the shock velocity. The

exact expressions for n’(0) and €'(0) depend on the shock velocity and on the external
particle density as prescribed by the generalized jump conditions at a shock presented
in section 3.3. In principle the parameter €. ought to be different for relativistic and
non relativistic shocks (much lower in the latter case, see discussion in section 3.7.1),
but we will neglect this effect and use always the same value for ¢,. The same problem
would exist for the relation n’(0) = n’(0), which ought not to be used in the case of
non relativistic shocks, since the non—thermal electrons are only a fraction of the total

in that case, but we will assume it all the same.

Since the electron acceleration timescale is short compared to the hydrodynamical
timescale, it is reasonable to think that the power law of electrons (3.174) with the
range and normalization (3.207) and (3.208) is instantaneously injected in the fluid

element at the shock passage and left there to radiate and cool afterwards.
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If the comoving observer looks at the electron energy distribution a given time
interval ¢ after the shock passage, he will see only those electrons whose cooling time
was longer than #'. Moreover he will see even the “survived” electrons having an energy
slightly different than the initial one because of radiation losses. If the fluid element
is also expanding adiabatically, the adiabatic cooling of the shocked matter will affect
the electron energy distribution too.

The right formalism to calculate the evolution of an injected electron energy dis-
tribution by taking in account the most important energy loss processes, adiabatic
cooling included, is discussed in appendix E. Over there we show also that the domi-
nating radiation process in our case is synchrotron radiation and diffusion of shocked
accelerated electrons to adjacent fluid elements can be neglected.

Now I only stress that the energy distribution per unit volume N(7.,#') of the
electron population in the shocked matter must always be a function such that the

comoving number density of electrons at the comoving time ¢’ is given by

Ye,mazx (t,)

nl(#) = / N (e, ) e (3.200)

e,min(tl)

and the comoving energy density of electrons at the comoving time ¢’ is given by

; ' 'Ye,maa:(t,) ,

e () ::jf TN Ot (3.210)

Ye,min
where we must have n(t') = n/(t) at any time after the shock passage in order to
guarantee charge neutrality but we do not expect any longer €,(¢') = e.€/(t') after the
shock passage.
The electron energy distribution N(v,,%') is simply related to the corresponding

distribution Ng(F,t') introduced in appendix E by the relation
N(e,t') = Ne(yeme®, t')mec” (3.211)

The time of the shock passage in the comoving frame will be ¢ = 0. So, the assumption
that a power law distributed electron population is injected instantaneously at the
shock passage corresponds to the following initial condition for the electron energy

distribution
N(V@:O) = Ne(o)f}/e—p for Ye > ”/e,min(o) (3'212>

with V. (0) and 7e,min(0) given by (3.208) and (3.207), or equivalently

Ng(E,0) = K()E™ for E > Epmn(0) (3.213)
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with K(0) = N(0)(m.c®)P™ and Fpin(0) = Yemin(0)mec?.

If we assume that the injected power law of electrons radiates mainly via syn-
chrotron radiation and is affected by adiabatic energy losses, we find (see again ap-
pendix E) that at the generic time ¢’ the distribution of the emitting electrons is

Nty PG
[G(t’)—irrchsz((t'))]z‘P ’Yeami‘n(tl) < Ye < Ye,maz (tl)

N(7e,t) = (3.214)
0 Ve < "Ye,min<tl) OT Ve > Ye,maz (t’)
e 0)G()
(0)G(t
i H) = Ye,min 5
Yeamin(t') 1+ amec®ve min(0) H2(t) (3.215)
/ G(t)
~ t e DU A, .
Ve,maz(t') ey IETEY (3.216)
and
N(t) = (p = Dy () emin(0)* — 1)°F (3.217)
and where
4 opc 1
= -5 3.2
¢ 3 (mec?)? 8w (3:218)
G(t') = e o st (3.219)
tl
H(t) = /0 G(s)B2(s)ds (3.220)
"2 ! ! n2 nlf(tl) %
B(t')? = 8megey(t')  or B(t')* = 8mege’(0) (0] (3.221)
! 1 !
o(t) = 5 (Vv (¥) (3222)

The functions e’(t'), ns(t') and vy (') are the comoving energy density, the comoving
particle density and velocity of the fluid element we are considering, and they actually
vary with the comoving time.

In order to say what exactly e/(t'), n;(t') and v;(t') are, we recall that the dis-
tribution of matter behind the shock is known through the functions €'(¢, ), n'(t, ),
and v(t,z) where ¢ is the coordinate time of the lab frame (not the comoving observer
time) and x is the radial coordinate, spanning from 0 to 1, that gives the position of
the fluid element behind the shock relative to the shock radius, i.e. z = ﬁf(t_) with r

radial coordinate of the polar coordinate system in the lab frame. Any fluid element
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of shocked matter will “move” through the space according to an 7¢(t) law, such that
the shock passage occurs at the time t;, i.e. 7¢(t;) = R,(t;) and, at any ¢ after ¢;,

ﬁf— - B 1 I/QC
dt (1 vz(t,Tf(?f)/Rs(t))>

Thus, the comoving time elapsed from the shock passage at the lab time ¢ after ¢, will
be

(3.223)

_ t dz

Y= ) TR (3.224)
Finally we can say that

ep(t') = €'(t,7;(t)/Rs(t)) (3.225)

np(t') = n'(t,7;(t)/Rs(t)) (3.226)
and o

N T L :

vp(t) = (1 ﬁ(t')) (3.227)

with

5 (t) =~ (t, 77 (1) / Rs(t)) (3.228)

where t is the coordinate time corresponding to the comoving time ¢ through the
equation (3.224).
Before ending the section remember that the fluid velocity field in our shocked

plasma is purely radial, so

(V vg) () ~ ) (3.229)

9(t) = r¢(t)

Lol —

3.7.5 Synchrotron radiation from the shocked matter

We have seen in section 3.6.3 that in order to calculate the radiation seen by a distant
observer at a given time 7" we must know the comoving monochromatic emissivity of
the fluid, i.e. the function j'(v/,¢,z) giving the power per unit volume, per unit solid
angle and unit frequency emitted in the comoving frame by a fluid element located
at ¢ = r/Rs(t) behind the shock front at the lab frame time ¢. Once we know this
function, we can simply calculate the Equal-T surface at the time 7" and perform the
numerical integration over the volume it surrounds using the formula (3.142).

If we assume that the shocked fluid emits only via synchrotron radiation, we can

calculate the comoving monochromatic emissivity of a fluid element emitting from the
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position e, at the lab frame time tem | @S
7 <z/', fo _I_T._> _ / Temeslt) dv.N(7.,t) < P (/) > (3.230)
’ Rs(fem) Ye,min (t) 7 e
where ¢ is the comoving time elapsed since the fluid element was shocked, < P (V') >
is the average single particle spectrum of synchrotron emission (see the exact definition
(D.14) in appendix D) and N(7., ') is the evolved electron distribution (3.214) whose
range (Yemin(t'), Ye,maz(t')) is given by (3.215) and (3.216).
We have already explained that in order to find the right value of t' for our emitting
element we must calculate the lab frame time t, at which the fluid element was shocked
and the evolution law of its position 7;(¢) during the time interval from s t0 tem. After

that we can define
o ftem
# = / B (3.231)
oyt zp(t))

()
Rs(t)”

If we knew the time of shock passage t, we might simply calculate the function

where x¢(t) =

r4(t) as the solution of the Cauchy problem

d?‘f 1 1z

— = |1l= te) = Ry(ts 3.232
= (1 ) @ T =R (3.232)
but unfortunately we do not know t,. A way to calculate both and 7(t) is solving
analytically the Cauchy problem (3.232) leaving ¢, as a free parameter and then find

t, as the solution of the equation

rt(tem) = Tem (3.233)

This is actually what I have done, but the detailed calculation has been seriously
complicated by the fact that the function v(t,z) has different analytical expressions in
the different evolution stages. The way to deal with the actual function ~(t, x) defined
in section 3.5 will be illustrated below in section 3.8.1.

Now I only want to point out that the parameter G(t') that characterize the electron
distribution in the fluid element at the time of emission t., can be calculated using

the following relation

G = [ syas = — [P ey A
nG(t) =~ [ o(s)ds == | 7 =) o,
. _ tem U(t,l" (t)) < by
- “/t _.;}é—)—— dt (3.234)

97f the emitted radiation is to be observed at the time T then tep, and 7., must be related by the
equation te, = T + f== cos® — . See section 3.6.1.
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and the same change of variable can be used to calculate H2(#). Anyway in real
calculation the value of H%(#') has been approximated as

H2(#) ~ %(G(t’)Bg (') + B*(0))¢ (3.235)

because precision on the value of H is less important than on the value of G.
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3.8 The comoving time

In this section I am going to show the result of the calculation of the lab frame coor-
dinate time ¢, at which the fluid element emitting at the lab frame time ., from the
position 7., was shocked. I am also going to calculate the comoving time t' elapsed

between shock passage and emission, given by

tem. dt
= [T 3.236
SRT0) 13250
where z(t) is defined as z(t) = %f;% with r;(¢) solution of the Cauchy problem
dry

= (1= k) o

Ty (ts) = Rs(ts)

The detailed calculation of ¢, and ¢ depends on the value of the time of emission.

3.8.1 Calculation of the time of shock passage
Emission during the Free expansion stage

If the time ., is such that 0 < te, < t., then the shock passage must have occurred
during the free expansion stage too.

Looking at the evolution laws defined in section 3.5.1 we can say that the evolution
of the fluid element position 7(¢) from R,(t,) at the time £, to 7ep, at the time ey,

must have been such that

dry ct ety 2] 72

dt T I: + <7’Z) ] (3 3()
The general solution of such a differential equation passing from the position 7 at the
time £ is

_ ct\? o\ _
TQf(t,t,r) =Ty 1+ (;—) — T 14 ;— +7‘ZR(1I)-*R(B+T (3238)
with
ct\ 2

So, the time of shock passage t; must be the solution of the equation

Tos (tss tems Tem) = Rs(ts) = R(ts) + A(ts) (3.240)
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or equivalently
A(ts) = Tem — Rltem) (3.241)

with

(k) +1) _ (B(ts) + Alt))” =17 (3.249)
(;Y - 1) (R(ts) + A(ts))g - (R(ts) + A(ts) - 75(755>A(ts)>3 N

provided that

L(ts)

’YS(tS) = ) ¥ =
T

ol
—~
&2
[\N]
=~
(Wy)
—

In conclusion, to find ¢; we must solve the equation in z

20224+ 1) (riz +9)° = (42 +3) (riz — y(z — 1)) = 1 (3.244)

7

with
Y = Tem — R(tem) (3.245)
and once the solution of (3.244) has been found numerically we can say that

ty= /71 (3.246)
C

Finally, we can calculate the comoving time elapsed between shock passage and emis-

sion and conclude that
t’ = Tfree (i& Rs (ts)a 7fem; Tem) (3247)

with

(3.248)

cty + R(tg)
cty + R(tl)]

7.
Tiree(t1, 71, b2, T2) = zzlog [

Emission during the Coasting stage

If the time tep, is such that ¢, < t., < t4 the shock passage can have occurred during

the coasting stage or during the free expansion stage.

e Let’s start assuming t; > £, (shock passage in the coasting stage, like the emission

time).

Looking at the evolution laws defined in section 3.5.2 we can say that the evolution
of the fluid element position r(t) from Rs(ts) at the time ¢, to 7, at the time
ter, must have been such that

de o 1

P E— 3.
o= 7 (3.249)
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The general solution of such a differential equation passing from the position 7

at the time t is

_ / 1 - 1

1 T
R(t) =cty/l — =+ =
0 Voo

So, the time of shock passage t; must be the solution of the equation

with

Tlf(tmtemv?nem) = Rs(ts) = R(t.s) + A(ts)

or equivalently
A(ts) =Tem — R(tem)

with
(Fvs(ts) +1) _ (R(ts) + A(t,))° — 1}
(¥ —1) (R(ts) + At:)” — (R(ts) + A(ts) — 7s(ts) Alts)”
provided that
4
Ys(ts) = V=3

In conclusion, to find t; we must solve the cubic equation in z

24w +az+a;=0

with
ao=—y* [B+4) (1= (1—n)) —1] =7}
ar = =3y" [B+4dn) (1~ (1-n)°) 1]
ag = =3y [(3 + 4n)n — 1]

and

Y="Tem — R(tem)
and once the solution of (3.256) has been found we can say that

Ti 1
to= |2 ——
n)c 1*"—2

n

(3.257)
(3.258)
(3.259)

(3.260)

(3.261)
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Finally, we can calculate the comoving time elapsed between shock passage and

emission and conclude that

t, = Tcoast (t57 Rs (t5)7 tem; Tem) (3262)
with
to 1y
Tcoast(tly 1, t?; 7“2) - — (3263)
n 7

If the value given by (3.261) is less than ¢., we must assume the fluid element
has been shocked during the free expansion stage rather than during the coasting
stage. In this case the evolution of the fluid element position from R,(¢5) at the
time #, to ¢, at the time t., must have been 7(¢) satisfying (3.237) from ¢, to
t. and (3.249) from t, t0 tep,. So we will need to use ros from ¢, to . and r{; from
t. t0 tem- Then the time of shock passage t; will be the solution of the equation

ro(te; ts, Rs(ts)) = 71 (te, tem, Tem) (3.264)
or equivalently
R(te) — R(t;) + Rs(ts) = R(te) — Rltem) + Tem (3.265)
which can be rewritten as
Alts) = rem — Rltem) (3.266)
with R(tem) = Ctemy/1 — 515 + 7 and A(ts) satisfying (3.242) associated to the
laws (3.239) and (3.243).

In conclusion, to find ¢, we must solve the equation in z (3.244) with

1 T
Y="Tem — Clemr/1 —— + — 3.267
\/ o (3.267)

and once the solution of (3.244) has been found numerically we can say that

ty= /ZF 1 (3.268)

c
Then, we conclude that the comoving time elapsed between shock passage and
emission 1s
t, = 7-f7‘€‘3 (tS’ RS (ts)a tca 'rlf(tc, temy Tem)) +
Teoast (tCJ Tlf(tm tem; Tem)y tema Tem) (3269)

o Ty cte + /12 + 22 tor o
= —log - + | === (3.270)
¢ cts + /77 + 22 non

or simply
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Emission during the Relativistic deceleration

Let’s assume the emission time t.,, has a value between t, and ts.4. In this ways we are
going to treat as a single evolutionary stage all the three stages that we had previously
distinguished in: transition from the coasting stage to the Blandford & McKee stage,
Blandford & McKee stage and transition from the Blandford & McKee stage to the
Sedov stage. In all of these stages we can use the same approximation for the Lorentz

factor distribution of shocked matter:

y(t, 1) ~ s ()x(E,m) (3.271)
with
‘ 1 T
(t,7) = (1) |1 - ~ 167 2( —#> 3.27
x(t,r) =1+ 167:(?) (1 Rs(t)> 167:(6)° (1= — (3.272)
SO
1

7(7577“)“4\/—1——_—;

This approximation is surely good for 7, > 1 and must be verified a posteriori at
decreasing values of ;.

Anyway, if we use (3.273), in the case the time of shock passage ¢, is greater than ¢4
like the emission time we expect that the evolution of the fluid element position 7(t)
from R,(ts) at t5 10 Tem at tem is such that

dry r(t)
R I 274
il 8¢ (1 > (3.274)

‘The general solution of such a differential equation passing from the position 7 at the
time  will be

_ f—F
rop(t5,7) =t — 18 - L (3.275)
So, the time of shock passage t; must be the solution of the equation
C tem —
Ry(ts) =ct, — 13 —Zem_Tem (3.276)
te'm
that can be rewritten as
c 1 —
8 — ;ﬁs +- QRS(tS) =0 (3.277)
with
C tem —
Yy = Clem ~ Tem (3.278)

7f8

em
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The solution of (3.277) can be found numerically. Then, we can calculate the comoving

time elapsed between shock passage and emission and get

tl = Tdec(tSv Rs (ts): tem: Tem) (3279)
with
8 T9 8 T
T e, Te) = oty |1 — —2 — Sp 1 — L1 2
Taec(t1,71, T2, 72) 5t P Py (3.280)

If the solution of (3.277) is < t4, then we expect the fluid element has been shocked

during the coasting stage, or even before. We must distinguish the two cases.

o If the fluid element has been shocked during the coasting stage the evolution
of its position from R(fs) at the time ¢, to 7., at the time ., must be 4 (t)
satisfying (3.249) from t, to ¢; and (3.274) from #4 t0 tem. So we will need to use
iy from 5 to tg and oy from tg to te,. Then, the time of shock passage t, will
be the solution of the equation

Tlf(tﬂh lsy RS (ts)) = TEf(tcb tem, Tem) (3281)

or equivalently
R(td) - R(ts) + RS (ts) =Tof (td) tem; Tem) (3282)

that can be rewritten as
A(té‘) — TQf(tdy tem: Tem) - R(td) (3283)

with rof(ta, tems Tem) = € tg — 15 U—%;r—m, R(ty) = ctgy/1 — 77% + o and A(t)
satisfying (3.254) associated to (3.251) and (3.255).

Thus, the time of shock passage t; during the coasting stage will be
T 1
Q:G—i>;—%7~ | (3.284)

with z solution of the cubic equation (3.256) in the case

Yy = T?f(tda Lem, 7’em) - R(td) (3285)

and finally the comoving time elapsed between shock passage and emission will
be

t/ = Tcoast (ts> Rs (ts): td, Tof (td: tema Tem)) +
Tdec (tdv TQf(tdy tem; Tem)7 tem;rem) (3286)
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or simply

td s rem td; e Tem) .
t/ - - 7 - ‘e, _t 1 - 3-28”
(n ) { Ji- d\/ = } (3.287)

If the fluid element has been shocked during the free expansion stage the evolution

of its position from R,(t;) at the time t; to 7y, at the time te, will be rs(t)
satisfying (3.237) from ¢, to t., (3.249) from ¢, to ¢4 and (3.274) from t4 to tem.
So we will need to use 7oy from t; to t., 715 from ¢ to tg and 795 from 24 to tep.
Then the time of shock passage t; will be the solution of the equation

rof(te, ts; Bs(ts)) = 17 (te, ta, T2 (e, Tem, Tem)) (3.288)
or equivalently
R(tc) — R(ts) + Rs(ts) = rif (e, ta, 725 (tas tems Tem)) (3.289)
that can be rewritten as

A(ts) = Tlf(tm ta, Tay (td: tem, Tem)) - R(tc) (3290)

with R(t.) = riy/1+ (5)” and A(t,) satisfying (3.242) associated to (3.243)
and (3.239).

Thus, a time of shock passage t; during the free expansion stage will be

ty = 7; 21 (3.291)
with z solution of the equation (3.244) in the case
Yy = Tlf(tc, td, 7‘2f(7fd, tem, T'em)) — R(tc> (3292)

and finally the comoving time elapsed between shock passage and emission will
be
tl = Tfree (ts: Rs (ts)7 ta Tlf(tc: tab Taf (td: 7fem; Tem))) +
Tcoast(tc: Tlf<t67 td? TQf(tdy temy 'rem))a td: TQf(tda tema rem)) -+
Tdec(td: T2f (tdy tem> 'rem),s tema Tem) (3293)

or simply
cte + /12 + 212 ¢
¢ Cts + /12 + 212 Ui

8 Tem Taf tda em:7em)
— | tem —tgy/1 — 3.294
9 { Ji- \/ = } (3204
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Emission during the non relativistic expansion

If the emission time t., is such that f., > t,q4, then the shock passage can have
occurred during the non relativistic expansion stage or before. Looking at the evolu-
tion laws defined in section 3.5.6 and in appendix C we can say that during the non

relativistic expansion stage

that can be rewritten as

(3.296)

_2
5

Bl

\/1+ 10 ct3/°

Let’s assume t; > tsq t00. In this case the evolution of the fluid element position
from R;(t¢5) at the time ¢, t0 rem at the time te,, must have been r;(t) such that

%i = u(t,r;(t)) (3.207)

with v (¢, 7) given by (3.296). The general solution of such a differential equation passing

~72/3
tys[1+—Vﬁ4—(%-;%g)}

from the position 7 at the time ¢ is

raf(t, 1, ) =7 273 (3.298)
- A 2
o1+ i+ (s i)
Then the time of shock passage will be the analytic solution of the equation
Ry(ts) = 737 (ts, tem, Tem) (3.299)
that can be rewritten as
- 12/3
2 / 3 S\
St2° =1, - YE (3.300)
2
2§1+du«%c%)

or equivalently

3 5\
2/5
S 25 1+Jl+<m :%)

35 ) .
= Tem |1+ \}1 + (—1—0 ’C‘?g) (3301)
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The comoving time elapsed between shock passage and emission will be

t' = Tyea(ts, Rs(ts), tem, Tem) (3.302)
with 7s.¢ approximated as

Ttree(t1, 71, £2,72) = t2 — (3.303)

If the solution of (3.301) is < .4, then the fluid element has been shocked before

the non relativistic expansion beginning.

e Let’s start assuming tg < ts < tseq. In this case the evolution of the fluid element
position from R,(t;) at the time t; to rep, at the time te, will be r 7(t) satisfying
(3.274) from t; to tseq and (3.297) from tseq t0 tem. So we will need to use rof
from ¢, t0 tsq and r3f from teq t0 tem. Then the time of shock passage s will be

the solution of the equation

TZf (tsedy tsv Rs (ts)) - TBf(tsed: tema Tem) (3304)
or equivalently the solution of equation (3.277) with

zsse - 755 7tema em
y = Tsf(g cd; temn, Tern) (3.305)

tsed

and the comoving time elapsed between shock passage and emission will be

t = Tdec(ts: Rs (ts)a seds T3r (tsedy Lem, Tem))) -+

Tsed(tssdu Taf (tsed; tem: Tem); tem; Tem) (3306)
or simply
8 TSf(tsed-tenzyrewm) ]%s(ts)
t =2 | teeat/1 — ‘ )1 - tom — tse 3.307
9 l: d\/ c tsed c ts " < d) ( )

e If the solution of (3.277) as calculated above is < ¢, then we must expect the fluid
element has been shocked during the coasting stage. In this case the evolution
of its position from R(ts) at the time t, to Tem at the time t., would be ¢(t)
satisfying (3.249) from ts to tq, (3.274) from t4 to tseq and (3.297) from tsq to
tom. SO we will need to use 715 from ¢, to tq, 725 from tg to tseq and sy from tseq

t0 tom. Then, the time of shock passage ¢, will be the solution of the equation

Tlf@d; tsy Rs (ts)) - 7‘2f(td7 tsed; T3f (tsed; tem7 Tem)) (3308)
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or equivalently
R(td) - R@s) + Rs (ts> = Toy (tda tsedy T3f (tsed: tem; Tem)) (3309)

that can be rewritten as

A(ts) = 7’2f(td7 Lsed, Tsf (tsedy tern, Tem)) - R(td) (331())

with R(ts) = ctay/1— ;5 + % and A(t,) satisfying (3.254) associated to (3.255)
and (3.251).

Thus, the time of shock passage ¢, during the coasting stage will be
Ti 1
ts = (z - —) ——— (3.311)
c
P
with z solution of the cubic equation (3.256) in the case

Y = Tay (td, tsed: T3f (tseda temy Tem)) - R(td) (3312)

and finally the comoving time elapsed between shock passage and emission will
be

t, = Tcoast (t37 Rs (ts)a td; Taf (tda tsed; T3f (tseda tem: Tem))) +
Tdec(td: 7“2}‘(7fd; tsed; T3f (tsed; tem.; rem)); tsed; T3f (tsedp Ztem» Tem)) +

Tsed (tsedy T3f (tsedy tem, Tem)a tem, 'rem) (3313)

If the fluid element had been shocked during the free expansion stage the evolution
of its position from R,(¢;) at the time ¢, to 7., at the time t.,, would be ¢ (t)
satisfying (3.237) from &, to ¢, (3.249) from t, to t4, (3.274) from t; to ts, and
(3.297) from tgeq t0 tem. So we will need to use ros from 2 to tc, r1f from . to
ta, 7oy from g to t5eq and 73y from tgeq to t.p,. Then the time of shock passage t,
will be the solution of the equation

TOf(tm ts; Rs (ts)) - Tlf(tm tdy TQf(tda tsed: TSf (tse(h temy Tem))) (3314)

or equivalently

R(tc> - R(ts) + Rs(ts,) - rlf(tc: td7 TQf(td: tsed: TBf(tsed; 7-L’ema Tem))) (3315)
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that can be rewritten as

A(ts) - Tlf(tc; tq, Toy (td, tsed, T3f (tsedy 2fema Tem))) - R(tc> (3316)

with R(¢) given by (3.239) and A(¢,) satisfying (3.242) associated to (3.243) and
(3.239).

Thus, a time of shock passage ¢; during the free expansion stage would be
ts = —Vvz2 -1 (3.317)

with z solution of the equation (3.244) in the case

Yy = Tlf(tm td; TQf(td7 tsed: 7'3f (tsedy tema Tem))) - R(tc) (3318>

and finally the comoving time elapsed between shock passage and emission would
be

t, = Tfree (t37 Rs(t ) tm 7Alf(tm td) TZf(tdu t.seda rBf (tsedy em» Tem)))) +

Tcoast(tm T1if (tc: Ld, T?f(tda tseds T3f (tsed; Lem, Tem))) tq, Tay (td7 seds T3f (tsed.: em "“em))) +
Tdec(td: 'r2f<td, Lsed, T3f (tseda tem, Tem))a tsed, T3f (tseda em> Tem)) +

)

Tsed(tseda T3f (tsedz tem, Tem) em Tem
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Chapter 4

Anisotropic fireballs

In this thesis we have worked entirely within the framework of the fireball model. In
other words, we believe that the event at the origin of a GRB is a sort of explosion, that
is a prompt release of a large amount of energy entraining a small amount of baryons
(the ejecta) in a rather small region surrounded by a very tenuous medium. Such an
initial event quickly produces an expanding cloud of optically thick hot plasma (a fire-
ball) driving an ultra relativistic blast wave into the surrounding medium, and along
with the fireball subsequent evolution the observed radiation is produced. According to
the internal/external shock scenario, the GRB radiation might be produced at shocks
arising in collisions between different shells of ejecta traveling at different speeds, while
afterglow radiation might be synchrotron radiation from relativistic electrons acceler-

ated at the forward shock sweeping the external matter.

The ultimate goal of this work is intended to be the detailed calculation of the
observed afterglow when the expanding fireball is not isotropic from the very beginning
of its evolution and the observer looks at it by an arbitrary direction. I want to
investigate effects of “smooth” anisotropy on afterglow light curves and spectra. For
simplicity I have always assumed that the fireball expansion takes place in a cold and
uniform interstellar medium (ISM).

In this chapter I want to illustrate how the spherical fireball model illustrated in
chapter 3.5 can be easily modified adding appropriate angular dependencies to the
physical quantities, in order to be transformed into an anisotropic fireball model, and
which difficulties are introduced by these modifications in the afterglow light curve and

spectra calculation described in section 3.6.3.

The situation which we are interested in corresponds to the existence of a preferen-
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tial direction for the energy ejection mechanism which is not aligned with the observer
line of sight. Then, we will characterize the fireball intrinsic anisotropy by assuming
that the baryon loading parameter n, i.e. the initial ratio of internal energy to baryon
rest mass energy of the ejecta, is direction dependent and peaks along a given axis,
but not negligible ejection occurs also normally to the preferred axis. The particular
direction dependent baryon loading parameter law we use will be described in section
4.2.

Finally, in sections 4.3 and 4.4 we will show that the fireball anisotropic model we are
building evolves radially as if it were a portion of a spherical fireball in every direction,
le. it can be calculated varying the spherical model with varying direction. For this
reason, a unique code has been written for the numerical calculation of afterglows and
spectra from spherical and anisotropic fireballs, that can be run for different viewing
angles relative to the axis of symmetry of the anisotropic model. By default the program
calculates the afterglow from the spherical fireball corresponding to the radial evolution
of the anisotropic model along the line of sight, eventually allowing for an artificial
change of the total energy, and the baryon loading parameter value of the spherical
model can be changed changing the viewing angle. Thus, the range of allowed values
of n corresponds to the range of the function (4.29), and by default the total energy
of each spherical fireball model is proportional to the baryon loading parameter (see
section 4.2.3). An appropriate flag makes the program run for calculating the afterglows
from the anisotropic fireball viewed from the chosen direction. Other flags control the
use of different magnetic field evolution laws, the inclusion of electron cooling effects
and so on. The code is flexible enough to allow an easy change of the baryon loading
parameter angular distribution function, and test other anisotropic models.

To date the code has been tested on all the spherical models needed for the full
anisotropic calculation, which is very time consuming and is still ongoing. Results of
the spherical afterglow calculation have been presented in chapter 4. Results for the

full anisotropic calculation are expected in a few months.

4.1 Afterglows in an Anisotropic Fireball Model

If the fireball is not isotropic because of a direction dependent baryon loading param-
eter, then the spherical symmetry of the external shocks breaks down.
As a first approximation we can neglect internal friction and transversal pressure

gradients. Under this approximation we can assume that the fireball evolution along
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any fixed direction is not affected by the adjacent directions and resembles that of
a spherical fireball having the same baryon loading parameter that the anisotropic
fireball has in that direction and a total energy ~ 4w times the energy ejected in that
direction. ’

We expect the directions with less baryon contamination (i.e. higher values of the
baryon loading parameter 1) to develop faster forward shocks (remembering that the
coasting Lorentz factor equals 77) and to start deceleration at smaller distances from
the centre of explosion (remember that the required amount of swept up ISM matter
for starting deceleration is inversely proportional to the coasting Lorentz factor, that
is n). In this situation the forward shock cannot be spherical around the centre of
explosion. It must be axially symmetric and elongated in the direction of the greatest
energy output.

The delays in the arrival times of simultaneously emitted photons lead to a fur-
ther distortion of the fireball shape in the observer’s view (i.e. the equal-T surface),
especially when the line of sight is not aligned with the preferred direction for energy
ejection.

Moreover, the faster traveling regions of the blast wave are going to accelerate elec-
trons at higher average Lorentz factors and give rise to harder synchrotron radiation,
but also to more beamed emission. Remember that the opening angle of the emission
beam of a radially expanding fluid element is ~ 1/ centered on the radial direction
and the that emission beam widens as emitting matter slows down.

As usual, at any given time the observer will see only that part of the shock front
(and fireball interior) whose radiation beam includes a direction parallel to the line
of sight. Thus we expect that at the beginning only matter confined within a narrow
cone around the line of sight is really important for afterglow emission, so that the
observer would think to be looking at a spherical fireball with baryon loading parameter
corresponding to the direction pointing to him (and total energy according to it). But
if the fireball were anisotropic and if the line of sight were not perfectly aligned with the
fireball axis it might happen that the fastest part of the forward shock, always emitting
radiation harder than the radiation coming from line of sight, even if it was not visible
at the beginning because of beaming, becomes visible after a while when the beaming
angles widen enough and provides a re-burst at a frequency higher than the typical
emission frequency of matter along the line of sight. This effect may substantially
modify afterglow light curves and spectra. Slopes, peak times and peak heights will

be affected and the deviations from spherical fireball afterglows will depend on the
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viewing angle and on the baryon loading parameter angular variation law.

The whole volume integration of emission from the fireball interior will be carefully
taken in account in our afterglow light curve and spectra calculation. However, we
have already seen that in the spherical case the approximated calculations based on
post-shock conditions along the line of sight only is good enough up to the end of
the Blandford & McKee stage, and we could use it for rough approximation in the

anisotropic case too. Finally, the effect of electron cooling will be fully considered.

4.2 Mathematical Description of the Model

Now I am going to introduce the formalism required for the calculation of the light
curve of a GRB afterglow produced by an anisotropic expanding fireball. We shall
assume an axially symmetric distribution of the ejected energy to ejecta rest mass
ratio. We shall use a distribution peaked along the fireball axis of symmetry, forming
an angle £ with respect to the line of sight. The sharpness of this distribution will be

established in section 4.2.4 in order to satisfy the pure radial expansion approximation.

4.2.1 Coordinate Systems for the Lab Frame

First of all we will call z, the fireball axis of symmetry. Then, given the observer line
of sight, already named z, intersecting the z, axis in the centre of the explosion O
at an angle £ with the z, axis itself, we can define two different Cartesian coordinate
systems x,V,Z, and xyz for the lab frame in the following way: choose as z, axis the
perpendicular in O to the plane z,z, set the x axis coincident with x, and place the v,
and y axis accordingly. In this way the system xyz is obtained from the system x,v,z,
through a clockwise rotation by an angle ¢ around the x, = x axis. The coordinate

transformations are the following:

Xqg — X X = X,
Yo = YCOSE +zsine Y= YaCOSE — zg8ine (4.1)
Zo = —ySine+zcose Z= Y,Sine +z,c08¢€

We can also introduce the two polar coordinate systems rid, ¢, and rdyp respectively
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associated to the Cartesian systems x,y,z, and xyz in the standard way:

X, = 71sin?, cos @, x = rsintdcosy
v, = rsind,sing, y = rsindsing (4.2)
7o = TCOSU, z= rcost

Note that the radial coordinate r is the same for both the polar systems. We will use
mainly the X,7,z, and the rd,¢, coordinate systems for the mathematical description of
fireball intrinsic properties and the remaining two coordinate systems for the calculation

of fireball observed properties.

4.2.2 The Observed Time

We are still going to use both the lab frame coordinate time ¢ and the time T measured
from the terrestrial observer starting from the GRB photons arrival.

The zero reference time for 7" will correspond to the hypothetical arrival of photons
emitted at the time ¢t = 0 form the point at distance r; from the lab frame origin on
the line of sight. So, the time T at which photons emitted by a generic point at the

lab time ¢ are seen by the observer is

v T
T COS +T— (43)
C &

T=t-

where (7,7, @) are the polar coordinates of the emitting point with respect to the xyz
reference frame.

Remember that the zero reference time we have chosen for 7' corresponds to a
moment slightly preceding the GRB detection itself, so that our light curves, usually
calculated from time T = 0 on, must be considered ”observable” only after a time

equal to the average observed duration of long GRBs, i.e. for T 2 100.

4.2.3 Initial Conditions

In the spherically symmetric fireball model [Mészdros, Laguna & Rees 1993] the ex-
panding fireball arises from the evolution of an initial compact sphere of radius r;
containing a photon—pair plasma of total energy Er uniformly polluted with baryons
of total mass My. In the simplest version of the model, the external medium too is
assumed uniform with particle density n;, cold (i.e. e, ~ n;m,c*) and quite rarefied as

compared to the initial baryon density inside the sphere of radius r; (i.e. nym, < i%%}),
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so that its presence does not affect the fireball evolution during the very early stages.
The initial conditions for spherical fireball expansion are then completely summarized

through the following three parameters: initial fireball radius r;, initial total energy of

Er
Mpc?®

An anisotropic fireball too may arise from an initial compact sphere of radius r;

the fireball Fr and baryon loading parameter n =

containing a photon—pair plasma polluted with baryons and surrounded by a uniform
rarefied cold medium, but in this case we must assume the plasma and baryon dis-
tributions within the sphere of radius r; are not uniform and there are, for instance,
d'u‘ecti;ms where the internal energy to baryon rest mass energy ratio (i.e. the local
baryon loading parameter) is lower/higher.

Thus, the initial conditions for an anisotropic fireball can be given through the
parameters 7; (initial fireball radius), Ep (initial total energy of the fireball), Mr (total
mass of the baryons polluting the photon-pair plasma) plus a function specifying the
internal energy to baryon rest mass energy ratio in each direction within the sphere of
radius r;, i.e. a direction dependent baryon loading parameter law.

The definition of a direction dependent baryon loading parameter law should
be the following: given an infinitesimal solid angle element d$2 = sin 9,d¥,dp, centered
on the direction (¥,, v, ) let dE and dM be respectively the fireball initial internal en-
ergy and the fireball initial baryon mass within d€2. Then, the baryon loading parameter

in the fixed direction is

1 dFE
n(Va, pa) = SR (4.4)
If we define E (U, 00) = £ and M (9,, ) = 4 then we have
1 E(V4,¢a)

1V, Pa) = (4.5)

2 M(9,,90)

The total initial internal energy and mass of the fireball can be expressed in terms of

the just defined quantities as

2 T o 27 T -
Er E/ dgoa/o E(V,, ©0q) sin9,dd, :/ dapa/ N9, Pa) M (94, 04)c sin 9, dd,
0 0 0

(4.6)
and )
My = / de, / M (9, 0a) sin Dadd (4.7)
0 0
Then we will define total baryon loading parameter of the fireball the quantity
E
N = (4.8)

= My
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~1

and average baryon loading parameter of the fireball the quantity

1 2m i
<n>= *—/ dgoa/ (s, o) sinJadd, (4.9)
4 Jo 0
Note that, in the most general case
nr #<n > (4.10)
Actually
47

We will work under the simplifying assumption of uniform initial baryon pol-

nr=<n> & M,p.)= (4.11)

lution, i.e.
My

4
This will make every property of the baryon loading parameter function directly related

M (0., 00) = constant = M (94, ¢a) = (4.12)

to a corresponding property of the energy ejection mechanism.
In case of an axially symmetric fireball we expect the initial conditions are

axially symmetric too, so we expect the functions FE and 1 do not depend on ¢, , i.e.
E(Ya,a) = E(0a), and n(Ya, ) = n(Ja)
In this case we can rewrite, for instance,
Fr=2r /O " B(8,) sin dadt, = /0 "B (90)d9, = /0 T @) M (9)EdS,  (413)

by defining

E'(9,) = 20 B(9,) sin ¥, (4.14)

and .
M'(9,) = 2r M (9,) sin 9, = 5 M sind, (4.15)

Finally remember that we want to study the axially symmetric case corresponding
to the existence of a strongly preferred direction for the energy ejected by
the GRB progenitor (the fireball axis of symmetry z,), with a smooth transition
in the energy output going from the preferred direction to the normal ones.
Then we expect a further reflection symmetry of the initial conditions (as of the re-
sulting fireball) with respect to the plane normal to the z, axis through the centre of
the explosion (the plane x,y,). In such a case the fireball baryon loading parameter

analytic expression must have the further following property:

n(m — Ua) = n(Va) (4.16)
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We will refer to such a property as to a front—back symmetry.
Before ending this section recall the definition of the solid angle covered by the
double-sided cone of half opening ¥, < Z:

Yo
Qv,) =2 x 27?/ sinzdr = 4w (1 — cosd,) (4.17)
0

and of the corresponding solid angle fraction:

Q0
e(d,) = 20%) _ (1 - cosd,) (4.18)
4
The total energy emitted within such a cone if the initial internal energy distribution
is axially symmetric, front-back symmetric and uniformly baryon polluted as we have
supposed, will be:

I Ya
B(9)) =2 [ B'()dz = Mrc [ n(z)sinzda (4.19)
0 0

4.2.4 Physical Constraints to the Initial Conditions

As a further constraint, we want to choose our fireball baryon loading parameter n(Y,)
in such a way that
E(U42) = E(Va7) = constant (4.20)

1

whenever
Q(V4,2) = constant x 2(J,1) (4.21)

We might be interested, for instance, in a situation such that every time the solid
angle of the cone centered on the z, axis is increased by a factor ten, the fireball energy
output within it increases by a fixed amount AE. So, if in a fraction 10~ of the solid
angle (n positive integer) a total energy E.... is emitted, then, in a fraction 10—"+!
the energy output will be Egye + AE, in a fraction 1072 the energy output will be
Eeore+2AE and so on. The total energy output of the fireball will be Ep = E,,..+nAE.

This condition is to be considered reasonable because if an almost linear relation
existed between the energy output per unit solid angle in a given direction and the GRB
luminosity observed from that direction, then a random distribution of viewing angles
would naturally correspond to a few decades broad distribution in estimated isotropic
energy v-rays of the GRBs, with the property that GRBs presenting isotropic energy
10 times larger than the average are 10 times less numerous, which is roughly what

is observed. Unfortunately, theoretical studies are not yet able to tell precisely the
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relation connecting the fireball energy output and the observed energy in y-rays, and
this is usually assumed to be a power law with a free parameter slope to be constrained
by observations.

A function n(d,) satisfying (4.16) and satisfying also (4.20) whenever (4.21) occurs

can be, for example, the following:

1
1 —|cosd,| +eo

n(da) o (4.22)

The small parameter £q in (4.22) allows us to avoid a divergence ford, = O0and v, = 7
and leads to a finite E7 (see below). It can be chosen very small in order to very slightly
perturb the (1 — | cos 19,1))‘1 dependence of 7 out of a narrow cone centered on the z,
axis. However, we will show later (in section 4.4) that £o cannot be too small if we want
the fireball evolution to resemble the spherical one in all directions. We will also show
that typical values for a realistic fireball will be g ~ 102, According to our previous
definitions, the parameter £y can be regarded as the solid angle fraction covered by a
narrow double—sided cone centered on the z, axis within which all fireball properties are
roughly uniform. The fireball properties start to change significantly with 9, outside
this central cone. The central cone half-opening will be V40 = arcos(1 — ep).

We can easily check that the analytic expression (4.22) has the required properties
by noting that

cos(m —1,) = —cos U, (4.23)
and that for (9,2)
g K €('L9a 1) = = &2 , K>1 and 9,2 < z (424)
’ K ' 2
we find
a2 sin ¥ Yoz d(e(,) + €0)
E(0,5) — E(Uay) o< M 2/ s 49, / dleWa) +20) _
(Ja2) (Fa,1) oc Mre 9a1 1 —cos, + € * 9.1 €(04) + €0
s(Pa2)+e0 dz e(U,;:
/ Py Y (—(—i)i—@) ~ In K = constant (4.25)
e(Pap)teo 2 £(Ua1) + €0

The required normalization factor N in equation (4.22) can be calculated by using
equations (4.13), (4.15) and (4.12):

My 7 . L2 sind.dd,
Ep =2 2 / 9,) sin ,d0, = M ~N/ _
r X 47 i 0 n(7a) sin Te M o 1—rcos?, +eg
/2 d(e(V, I+eo (z 1
— MpAN, / de(a) T20) _ pp 2y, / " MM In (1 + ——) (4.26)
0 5(19@ —+ €p €0 Z €0
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then, we can say that

Er 1 T
Ny = —— x = (4.27)
Mrc®  In (1 + E%) In (1 + ;:13)
and consequently
N 1
n(Ya) - o (4.28)

T1- | cosV,| + &¢ a 111(1+g13) (1 —|coss| +€q)

The function (4.28) is our final choice for the direction dependent baryon loading pa-
rameter of an homogeneous sphere of radius r; containing a total mass My in baryons
and a total internal energy E7 in photons-pairs plasma that represent our initial con-
dition for the expanding fireball.

Summary

We approximate the anisotropic fireball generation process through the prompt emis-
sion of a total energy E7 within a spherical region of radius r; uniformly polluted with a
mass Mr of baryons. We assume that the rarefied medium outside the sphere of radius
7i is uniform and cold. We further assume that the energy is emitted anisotropically,
that a preferential direction z, for the energy ejection exists, and that the corresponding

direction dependent baryon loading parameter is given by

N(Ya) = Nk, (%a) = o !

= X 4.29
1n(1+§5) 1 —|costy| + go (4.29)

where ¥, is the angle with respect to the preferred direction z,.
This model has the free parameter, 0 < gy < 1, that determines the half-opening
Va0 (¥a0 = arcos(1l—ep)) of a central cone where the energy output is roughly uniform.
The constant nr that appears in equation (4.29) is not a free parameter, since it is

related to the total energy and ejecta mass by the formula

- Mgpc?

nr (4.30)

It represents the average baryon loading parameter of the fireball.

Note that a constant n(J,) (i.e. a spherical fireball) cannot be obtained for any
value of g9, so the spherical fireball model cannot be considered as a particular case of
our anisotropic fireball model.
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Reasonable choice for Ev , My and &g

Let us call dynamical range of our anisotropic fireball the parameter

0 1 1
n(0) _ +50:1+_

TR

A reasonable assumption is n(0) ~ 300 (about the maximum baryon loading pa-

D

I

rameter value expected in real GRBs) and D ~ 100.

This assumption corresponds to
Eq 10—2

(which is marginally compatible with the condition for no lateral expansion discussed

in section 4.4) and leads to

1
nr = 1(0)eo In (1 + ——) ~ 14

€0

Furthermore, we can assume Er ~ 10°2 ergs and consequently

E /
My =5 ~4x107* Mg
nre

These are the physical parameters that we are going to use.

4.3 The anisotropic fireball evolution

We shall assume that within the solid angle dS) centered on the direction (¥a, @),
the evolution of our anisotropic fireball resembles that of an adiabatically expanding
spherical fireball with baryon loading parameter 7(1J,) and total energy Espherica(Va) =
n(9,) Mrc®. This will be a good approximation when interactions with the fluid evolv-
ing in the adjacent directions can be neglected. We will discuss the validity of this
approximation in section 4.4. The standard adiabatic evolution of a spherical fireball
has already been discussed in chapter 3.5. Thus, the shock radius, shock Lorentz factor
and internal structure of our anisotropic fireball can be simply deduced adding a v,
dependence on the baryon loading parameter and on the total energy in all laws intro-
duced in chapter 3.5, and remembering that the angle U, represents the angle between

the generic radial direction and the fireball axis z,, which forms an angle ¢ with the
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line of sight z. For the complete description of the anisotropic fireball evolution from

the observer point of view we can simply recall that
cos ¥, = cose cos VY, — sine sin, sin ¢, (4.31)

We expect that all transition radii and transition times are now direction dependent.
The fireball intrinsic shape will not be spherical any longer; it will be slightly elongated
along the axis z,, and consequently the equal-T surface will not be axially symmetric
around line of sight any longer. This will introduce a true ¢ dependence in the analytic
expression of ReqT', and the ¢ integration in (3.142) will be unavoidable.

Finally, the normalization of the light curve will be done using the normalization
factor Fin,e defined by (3.167) relative to the line of sight. The normalization will be

viewing angle dependent.

4.4 Sideways expansion

Now we discuss the approximation of spherical-like radial evolution. Such an approx-
imation is strictly related to the so called problem of sideways expansion expected
at late times for any narrow uniform jet expanding in vacuum. We can think of our
anisotropic fireball as being composed of many adjacent narrow jets evolving indepen-
dently from each other (and thus evolving as if they were a portion of a sphere) until
sideways expansion takes place. We will show that for large enough values ( 2 1072)
of the core solid angle ¢, we can avoid sideways expansion and assume spherical-like

evolution along every direction at any time.

4.4.1 General Criterion

From the point of view of a comoving observer comoving with the shock front in the
position ¥, at the lab time t, the local causally connected region has a radius
t dt’
[(9,,t :/c )
(9%, ) 0 (e )Fs(ﬁa,t’)
where ¢;(1J,,1) is the velocity of sound for shocked matter just behind the shock in the

position 9, at the time t, and dr = P (‘éta’t) is the comoving time interval corresponding

(4.32)

to the lab time interval dt. We can define 7(J,,¢), the time elapsed from the explosion

in the comoving observer’s opinion in the following way

T
/(ﬁa,t)—/o E (4.33)
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Remember that a locally comoving observer just behind the shock sees the shocked
matter around him as homogeneous and at rest, so I(J,,¢) represents the maximum
distance from which elements of such an homogeneous fluid can have sent signals to him
up to the time 7(¢), i.e. 1(9,,t) defines the causally connected region for the observer.

The causally connected region around our comoving observer subtends an angle
AY, to the center of the explosion that is roughly

[(Ya, 1)

A’I.()a('ﬂa, t) ~ m

(4.34)

Our comoving observer will not be able to realize that he is sitting on the expanding
front of an anisotropic fireball, if the variations of the Lorentz factor I';(J,,t) within

an angle Ad, from the observer’s position are negligible, i.e. if

(g — AU, t) — Ts(94 + Ay, 1)
G <1 (4.35)
or equivalently
A x OE (9, 8) x —— <1 (4.36)
©T 9, Y Ts(9,,t) '

in the case AY, < 1.

If the comoving observer cannot realize that the fireball is not isotropic, locally he
will see the evolution going on as if the fireball were spherical. The evolution along
a given direction will resemble the evolution of a spherical fireball having the same
baryon loading parameter (and the same energy output per unit solid angle) that our
comoving observer measures. No local sideways expansion will take place.

We have calculated numerically the left hand side of (4.35) versus the angle 9,
through the whole fireball evolution and found out that it is always definitely less than
1foreg 2 1072 (see fig.4.1). The “critical” time, i.e. the moment at which the left hand
side of (4.35) reaches its maximum, is before the end of the Blandford & McKee stage.
At that time, the observer at an angle ~ 9, with the fireball axis might realize to be
living on an anisotropic fireball if the central cone of half-opening ¥, ¢ were too narrow,
and we might expect this central cone to expand laterally as if it were in vacuum. In
order to avoid this complication that we are not able to treat consistently we calculate

our models only for g5 2 1072







134 CHAPTER 4. ANISOTROPIC FIREBALLS

15 L S R T T LI T T
H €, = 5x107!
€o = 1x107) ——m
L €g = Sx1075 —=mme-
€g = 1><1O_3 ~~~~~
8 €y = 5)(10_3 ~~~~~~~~~~~~~~~
€ = 1x10
.
[
o
1.0F I |

6, angle (rad)

Figure 4.1: Plots of the left hand side of (4.35) versus the angle U, at the time terit for
different values of ey (as indicated in the legend) at constant mazimum baryon loading

parameter value n(0) = 300. The peak drops below 1 for g9 2 1072, The peak angle is

~ Jq,0 = arcos(l — &o).






Chapter 5

Results

5.1 Introduction

We have restricted our attention to spherical fireballs only. As explained in chapter
4, an essential ingredient for an anisotropic fireball model with smooth anisotropy
is the knowledge of spherical evolution, so we start studying those spherical fireballs
that are needed for the anisotropic calculation. From this study we can, nevertheless,
extract some general predictions about afterglows from spherical fireballs and devise

behaviours that have not been considered before.

First of all, in section 5.3.1, we show that the afterglow light curves and spectra
we obtain under the assumption of pure slow cooling and magnetic field equiparti-
tion agree with the results obtained by [Granot, Piran & Sari 1999c¢| for high baryon
loading parameter values (7 2 100) on the observer time interval corresponding to the
Blandford & McKee stage, i.e. more or less the time interval between T5(0) and Ten;.(0)
(see definitions in section 3.6.1). Actually the standard choice of £ 100 is the one for
which the time interval between T5(0) and T,,;;(0) corresponds to the typical timescale
of afterglow search and detection unless extreme values for the other fireball parameters
are invoked. We show that for baryon loading parameter values n < 100, correspond-
ing to “non standard” GRBs, the Blandford & McKee stage beginning Ty(0) shifts
to times so late that afterglow emission produced during an earlier stage of evolution
might be accessible to observations. Afterglow peaks might occur before Tp(0) and, in
such a case, the peak shape and behaviour would be different and emission over the
time interval between Ty(0) and T,.+(0) would result dimmer than expected as if the

energy conversion efficiency were lower.
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Then, in section 5.3.2, we show the results of the calculation when we take into
account electron cooling by synchrotron radiation and adiabatic energy losses. In this
case, the combination of the effect of cooling on the fluid comoving emissivity and
detailed volume integration of emitted radiation seems to cancel any definite power
law raise or decay far from peaks and/or breaks either in spectra and light curves.
As already noted by [Granot & Sari 2002], in this case broadband spectral fitting with
analytic models different from a simple broken power law is required for the complete
determination of the burst parameters. The break shape too becomes a signature of
cooling.

The radiation process model could be further complicated (including for example
synchrotron self-absorption, inverse Compton radiation etc.) but we have restricted our
attention to the very basic model illustrated in section 3.7.5, provided that the choice
of fireball parameters is such that neglected effects are really negligible, in order to
disentangle more easily geometrical and radiation effects in the calculation of afterglows
light curves and spectra from anisotropic fireballs.

We do not aim at including all possible radiation and electron cooling mechanisms
in our afterglow calculation Actually this has been done by [Granot & Sari 2002] and
[Sari & Esin 2001] and we will refer to them (or to previous classical works) for a check
of our results whenever comparison is possible. We focus our attention to effects of
generalized hydrodynamics including early and late expansion stages that these authors
do not take in account, both for the new perspectives they give in the spherical case
(see discussion in section 5.3.3) and for the more consistent treatment of the anisotropic
case that will come later.

We have explored mainly spherical fireball models needed for building up an
anisotropic fireball model as explained in chapter 4. Baryon loading parameter val-
ues between n ~ 3 and 77 ~ 300 have been used, because the anisotropic fireball model
presented in chapter 4 has a maximum 7 value compatible with the “standard” ex-
pected one for spherical fireballs ( 2 100) and a dynamical range of two decades in 7
at most in order to satisfy the condition of no lateral expansion (see section 4.2.4). A
total energy Er between 2 x 10°! and 2 x 10° ergs is then required for building up
the anisotropic fireball model with 7 varying from 3 to 300 of chapter 4. Since we have
assumed a constant ejecta mass per unit solid angle and have chosen a maximum value
of Ep consistent with the maximum GRB isotropic energy ever observed, ~ 10% ergs,
the values of Er to explore must span at least as many decades as the values of . In
any case we have used also values of the fireball total energy Er as low as 2 x 10 ergs.
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Observation frequencies between 10'° and 10 Hz have been explored, roughly
corresponding to the whole range of afterglow detection from radio to hard X-rays.
We can more or less consider a light curve at 10! Hz (or 40 keV) as a typical afterglow
in the soft y—ray band, a light curve at 10'® Hz (or 4 keV) as a typical X-ray afterglow,
a light curve at 10'7 Hz (or 0.4 keV) as a typical afterglow in the soft X-ray band,
a light curve at 10'® Hz (or 40 eV) as a typical ultraviolet afterglow, a light curve at
10%5 Hz (or 3000 A) as a typical optical afterglow, a light curve at 10** Hz (or 30 p) as
a typical afterglow in the Near Infrared, a light curve at 10'* Hz (or 300 y) as a typical
afterglow in the Far Infrared, a light curve at 10" Hz (or 3 mm) as a typical afterglow
in the microwave band.

The external particle density n; has been always fixed to the value of 1 cm™ typical
of Interstellar Medium.

Equipartition parameters e, and ep have been fixed to values such that “relevant
frequencies” (peak and cooling frequency) actually fall in the frequency range above
in most cases and we can consistently neglect synchrotron self-absorption and inverse
Compton radiation (see section 5.2).

The electron power law slope p has been fixed to an average value among the
“measured” ones. In particular, the value p = 2.6 we use is the same used by
[Granot, Piran & Sari 1999c].

Note that radio afterglow detections actually are at frequencies of a few GHz, but we
do not show any calculation at v = 10 Hz because for a right description of afterglow
emission at this frequency over the whole range of fireball parameters we use we should
have taken into account synchrotron self-absorption. However qualitative behaviour at
10° Hz neglecting synchrotron self-absorption can be inferred from results at 10 Hz

according to the scaling properties that will be discussed in the following sections.
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5.2 Rough estimate of the expected light curves

We can calculate in a very rough way the expected monochromatic afterglow light
curves assuming that the emitting electrons at the time 7' are a single population
with a power law energy distribution having a minimum Lorentz factor v,,(T) equal
to the minimum Lorentz factor of electrons shocked along the line of sight at the
time 7, Yemin(T'), and a cut off Lorentz factor v.(7') such that only electrons with a
Lorentz factor lower than it have not cooled down during the comoving time interval

corresponding to the observer time T.

Relevant frequencies

First of all we define the shock radius along the line of sight at the time 7', Ry,s(7'),
and all the quantities regarding matter just shocked along the line of sight, ~,,s(T),
Ny, (T), €),5(T) and Bios(T") as we have done in section 3.6.6.

Then we can define the minimum Lorentz factor of the emitting electrons as

p—2 € e,(T) 2
T) = Yemin(T) = 4|1 + 2k
’)’m( ) e, ( ) J [p —1 ecg n;os (T)

(5.1)

and the observed synchrotron frequency of electrons with Lorentz factor «,,(T) as

_ E—eBlos(T) ,.}/m(T)Q
16 mec Yios(T)(1 = Bios(T))

Then, we estimate the comoving time corresponding to the observer time 7" as

o= (%) (&)=L e )

The cut off Lorentz factor for our power law will be ~.(7") such that

V(T (5.2)

3 8mmec 1
A = tepor (Ve o(T)) ~ = S 5.4
thus s 8 .
TMeC _
Yol(T) = 2 — (5.5)

N Z O'TBZOS(T)Z Z—t—/
and the observed synchrotron frequency of electrons with Lorentz factor +.(7"), known

as the cooling frequency, will be

3 eBy,(T) 7e(T)?
ve(T) = 15 e Yios(T) (1 = Bios(T))

(5.6)
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Figure 5.1: Temporal evolution of the peak and cooling frequencies vy, and v, for a spher-
ical fireball with total energy Er ~ 2 x 10%3 ergs, baryon loading parameter n = 303, and
equipartition parameters e, = 0.1 and eg = 0.01. The dashed lines represent corresponding
estimation by [Sari, Piran & Narayan 1998], i.e. laws (5.9) and (5.10), expected to be in
agreement with (5.2) and (5.6) only during the Blandford & McKee stage, i.e. in the time
interval between the vertical line B and the vertical line C, after multiplication by 1.5 and
0.77 respectively (see text). The cross point corresponds to the time Ty, at which occurs the
transition from fast-cooling regime (all emitting electrons cool on a timescale shorter than
the hydrodynamical timescale) and slow—cooling regime (only electrons with a Lorentz factor
greater than -y, cool on a timescale shorter than the hydrodynamical timescale). The slopes
of the solid curves during the other stages of ezpansion (coasting stage up to the vertical line
A, first deceleration stage in between the vertical line A and the vertical line B, transition to

Sedov in between C and D and Sedov after D) agree with the predictions in section 5.2.1.
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Note that the peak and cooling frequencies v,, and v, we calculate through (5.2)
and (5.6) respectively are in good agreement with the peak and cooling frequencies
calculated by [Sari, Piran & Narayan 1998] in case of adiabatic expansion (see equation
(11) therein) during the time interval corresponding to the Blandford & McKee stage
(see fig.5.1, region between the vertical lines B and C).

The Blandford & McKee stage can be roughly assumed to last from the time 75(0)
to the time T,.;(0). These times are roughly given by

Ep\Y3 / n 83

TO(O) ~1.1x 102 (1—0'55) (m) S (57)
E 1/3

Teriz(0) ~ 1.4 x 10° (I(%) s (5.8)

A further slight dependence on 7 would lead to a 40% greater value of T(0) and a
30% greater value of T,,4(0) at n = 3, but as a first approximation we can neglect this
effect and use (5.7) and (5.8).

We can rewrite [Sari, Piran & Narayan 1998| expressions for vy, and v, as

1/2 2/ F\ /2
U ~ 177 x 101 (6%) <§—1-> <16Z’;2> T-3/2 Hy (5.9)
—-3/2 -1/2
Ve ~ 7.9 x 107 (%) (—1%) n7 T2 Hy (5.10)

In principle the peak frequency v,,(T) weakly depends on the electron power law slope
p and [Sari, Piran & Narayan 1998 use the value p = 2.5, which represents the average
of the best fit values obtained in case of observed afterglows, while we use p = 2.6 as
done by [Granot, Piran & Sari 1999¢| for a better comparison with their results. In
(5.9) we have reported the value of v, (1) corrected to p = 2.6". Nevertheless we
find that in order to have the laws (5.9) and (5.10) tangent to ours within the time
interval corresponding to the Blandford & McKee stage in the case p = 2.6 (the value we
always use) we must multiply (5.9) by 1.2 and (5.10) by 0.77. This discrepancy must be
ascribed to the approximated Blandford & McKee hydrodynamics we adopt. Following
[Sari, Piran & Narayan 1998] we can define the time Ty, at which v, (T) = (7). This
will be the time at which the fireball passes from fast—cooling regime to slow—cooling
regime and will depend on the fireball total energy E7, on the baryon loading parameter

n, on the external particle density n; and on the equipartition parameters €. and ep.

*The correction factor is simply %% ~ 1.26 with f(p) = %}%—%;.
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The approximated expression given by [Sari, Piran & Narayan 1998], or the expression
obtained equating the “corrected” (5.9) and (5.10),

2 2

() () () o
approximates reasonably well our exact value of T§; when it happens during the Bland-
ford & McKee stage. A correction factor of 1.56 accounts for our approximated Bland-
ford & McKee hydrodynamics and provides a better match between the value given by
(5.11) and T¥s.

Actually, for the typical values we use for the equipartition parameters ¢, = 0.1
and eg = 0.01, the time T}, given by (5.11) is expected to be a time of the Bland-
ford & McKee stage, i.e. a time in between T(0) and T,,;;(0), for n 2 155 (1%‘;%)_1/4,
that is for high baryon loading parameter values. This case corresponds to the one
usually studied in literature by authors that use pure Blandford & McKee evolution
[Granot & Sari 2002]. Thus, in the following sections we will discuss first of all pre-
dictions and results for this typical case. In the case n < 155 (%%)*1/4 the transition
time from fast cooling to slow cooling fixes at about 7p(0) and eventually disappears at
very low values of the baryon loading parameter. In fig.5.2 it can be seen, for instance,
what happens to the transition from fast to slow cooling in the case already presented
in fig.5.1 at decreasing 7. First of all it can be seen the fast cooling stage reducing to
a short episode at the beginning of the deceleration preceded by a slow cooling stage,
then, for baryon loading parameter values < 20 we have no fast cooling episode at all.

Then, to conlude the discussion about the relevant frequencies in our after-
glow spectrum, we recall Granot’s estimation of the synchrotron self-absorption fre-
quency Vs, i.e. the observer frequency below which the Blandford & McKee ex-
panding fireball of shocked ISM would be optically thick to its synchrotron radiation
[Granot , Piran & Sari 2000, Granot & Sari 2002]

— 1)3/5 (p - 1) €, \ 1 €B 1/5 Er 1/5 a5
~ 49 x 1002 (___> (____) (m) 5o, (510
Vsa X (3p + 2)3/5 (p — 2) 0.1 0.01 1052 n; Z ( )

The range of values we use for the total energy Er makes us sure that this frequency
is usually below the interval of observed frequencies 10°-10'° Hz we are exploring,
provided that the equipartition parameters ¢, and eg and the electron power law slope
p are not too far from the standard values indicated. Thus we are self consistent in

neglecting synchrotron self-absorption.
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Figure 5.2: Temporal evolution of the peak and cooling frequencies vy, and v, for spherical
fireballs with total energy Ex ~ 2 x 10%3 ergs, different baryon loading parameter values and
equipartition parameters €, = 0.1 and eg = 0.01. The dashed lines represent corresponding
estimation by [Sari, Piran & Narayan 1998] just renormalized as ezplained in the text, i.e.

laws (5.9) and (5.10) corrected by factors 1.2 and 0.77 respectively.
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Total Flux per unit frequency

The total number of emitting electrons will be
4
N(T) = gwR;OS(T)Sni (5.13)

like in section 3.6.6, and the observed total flux per unit frequency (at peak frequency)
is expected to be
1 4(]9— 1) T 4 1677230 €EB ﬁm(T)QRlos(T)s \/ €;OS(T)

Fopy(T) = =0.88 =
a(T) = 3 30— 1 302377 3¢ V81 ios(T)P(1 — Bros(T))2

(5.14)

exactly as calculated in section 3.6.6, but the factor —é, which have been added to

improve the fit to numerical results.

Monochromatic Light curves and Spectra

Then, if we remember that the spectrum emitted by a cooled electron power law is
expected to be a broken power law as explained in [Sari, Piran & Narayan 1998] (see
fig.2.6) we can conclude that a reasonable approximation to the afterglow light curve

might be following:

Fiot(T) (VCI(T)>1/3 v < v.(T)
FPP(T) =4 Fi(T) (;_c.aﬂ)—ll/; Vo(T) < v < vp(T) (5.15)

Fu(T) (22)” )"

in the case v.(T) < v, (T) (fast—cooling regime, equivalent to T' < T¥,), or

) (m v > I/m(T)

L \1/3
Ftot (T) <7/m(T)) VvV < VUpm (T)
—(p—1)/2
FSP(T) = Fiu(T) (Um”m) B0l Un(T) < v < 1e(T) (5.16)
Ve =(p-1)/2 y , \—P/2
Fiot(T) ( Um@)) (%(T)) v > vo(T)

in the case v.(T) > vm(T') (slow—cooling regime, equivalent to 7" > T¥;).
If we wanted to neglect completely synchrotron cooling as done by
[Granot, Piran & Sari 1999c] we would obtain a light curve approximated by

| L \1/3
Fo(T) = { Full) i) st (5.17)

v y N\ ~-1/2
FoolT) (777) v 2 vm(T)
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5.2.1 Slopes prediction

Starting from (5.15), (5.16) and (5.17) and using the definitions (5.2), (5.6) and (5.14)
together with the hydrodynamical evolution laws, we can easily predict the expected
slopes of light curves and spectra in all possible cases. In order to illustrate the proce-
dure, now we are going to discuss in detail predictions in the “standard” case presented
in fig.5.1, i.e. a case with high baryon loading parameter (low initial baryon contamina-
tion), high total energy, and transition from fast to slow cooling during the Blandford
& McKee stage.

e During the coasting stage (for 7.(0) < T < T4(0)), for instance, we have
approximately 7ios ~ constant, Rjps o< t, T o< t, €],3 X Vi, ~ constant, nj,, o
Yios ~ constant, Bjos X Y05 ~ constant thus we expect v, ~ constant, v, T2
and F,,; o« T3. The frequency range we investigate (from 10'® to 10'° Hz) is
completely below v,. As a consequence, we expect that when we neglect the
cooling of electrons

Fare (T oc T34/3 (5.18)

If we allow for electron cooling, since for the choice of fireball parameters made

we should be in the fast cooling regime, then we expect

TURYB 4 <y (T)
Fljlpp(T) x T2,~1/2 Vc(T) <v< Um(T) (5'19)
TQV—;D/Q v > l/m<T)

e During the Blandford & McKee stage (for Tp(0) < T < Ti4(0)) we have

F11 ¢ . -3/8 1/4 .1 ~2 /
approximately 7o, o< 7738 Ryps oc TH4, €] - o< V2., Nps X Vioss Blos X Yios thus

we expect vm o< T2 v, oc T7*? and Fiy ~ constant. As a consequence, we
expect that when we neglect the cooling of electrons

T2 M3 v < vm(T)

(p—1)

FoPP(T) . |
T-ie-Dp="5 v > v, (T)

(5.20)

If we allow for electron cooling, since the transition from fast cooling to slow

cooling occurs during this stage, we expect

TH6,1/8 v < v, (T)
FPP(T)oc {0 T Y4712y (T) < v < vy (T) (5.21)
T_(3p4—2) y_p/2 V> l/m(T)
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for T < Ty (or vo(T) < v, (T)) and

TY2y1/3 v < vp(T)
Fer(T) oc { T=0-Dy=55 ) (7Y <y < o (T) (5.22)

_(3p~2)

T-—7 P/ v > v(T)
for T'> Ty, (or vy (T) < ve(T)).

e During the Sedov stage (for 7' > Ty.4(0)), we have approximately v, ~ 1,
Bros o< T35, Ry oc T3, €}, o< BE, mi,, ~ constant, By, o< [los thus we expect
Um o< T73, v o T7Y% and Fyy ~ T°/°. Now the frequency range we investigate
is completely above v,,. As a consequence, we expect that when we neglect the

cooling of electrons
FoP(T) o 73550~ (5.23)

If we allow for electron cooling, since we should be in the slow cooling regime

and above 1,,, we expect

| T -0 (T) < < (T)
FIPP(T) _Bp=d s o
75202 s (T

Discussion of the expected slopes of light curves and spectra during the transition
stages is not as simple because gross time dependencies of v,,, v, and F},; are not pure
power laws. So, we will not give explicit predictions for expected slopes during these

stages.
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5.3 Reproducing results in literature....

and beyond

5.3.1 Results neglecting the cooling of the electrons

This is the case that has been already calculated in [Granot, Piran & Sari 1999c]. How-
ever Granot’s results should be used only for the description of afterglows produced
during the Blandford & McKee stage, i.e. over the time interval between T,(0) and
T..:+(0), and are especially devoted to explore and characterize the light curve peak
shape.

We have described the fireball hydrodynamics in a self-consistent way also before
and after the Blandford & McKee stage, so we can follow the afterglow light curve on
a more extended temporal range, including early evolutionary stages and transition
to the non relativistic expansion stage. We will show when and how the light curve
behaviour should differ from Granot’s predictions and discuss if such deviations might

be observed.

In what follows we will often plot light curves down to very low (and likely unde-
tectable) flux levels, or late observer times, just to check the consistency of the results

of our numerical calculations.

In this section, first we will discuss the general behaviour of a set of afterglow light
curves in different bands form a single fireball, i.e. with a fixed value of the baryon
loading parameter and a fixed value of the total energy. We will present the set of light
curves referring to n = 303 (high value) and Er = 2 x 10° ergs in fig.5.3 and then
we will show that our results match very well Granot’s results on the time interval
corresponding to the Blandford & McKee stage and also agree with the approximated
light curve estimation calculated as described in section 5.2 on the same time inter-
val, though the properly calculated light curve peaks are smoother and broader. At
this regard fig.5.4 will illustrate the matching of light curve peak times with Granot’s
predictions, fig.5.5 will illustrate the agreement of light curve slopes with predictions
of section 5.2.1 and fig.5.6 will show the comparison of calculated light curves with
their rough approximations F?P(T) given by (5.17). As far as the reliability of the
shape of the light curves set of fig.5.3 is concerned, figs.5.7 and 5.9, always referring

to n = 303 and By = 2 x 10° ergs will show respectively that pure radial and pure
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angular integration equally contribute to the observed flux, though becoming impor-
tant only by the end of the Blandford & McKee stage, and that the effect of exact
synchrotron emissivity calculation is making light curve peaks even broader than what
obtained with the broken power law approximation. Finally fig.5.8 shows that the light
curve segments in the time interval corresponding to the Blandford & McKee stage are
scarcely contributed by radiation emitted before the Blandford & McKee stage.

Then, fig.5.17 referring to n = 25 (moderately low value) and Er = 1.8 x 10°" ergs,
gives a second set of afterglow light curves at fixed baryon loading parameter and
total energy. In this case it is apparent that the agreement with Granot’s results over
the time interval corresponding to the Blandford & McKee stage is not universal any
longer because there is a sub set of light curves having a different shape and peak time
evolution with the observed frequency.

At this point we will study the effect of varying the total energy at fixed baryon
loading parameter (fig.5.10 for n = 303 and fig.5.16 for n = 25) on the light curves
peak time, just to conclude the comparison with Granot’s results and start introducing
the new ones.

After that, since we have seen comparing figs.5.3 and 5.17 that decreasing the n and
Er values a new family of light curves appears, we will discuss the general behaviour of
a set of light curves in a fixed band produced by a sample of spherical fireballs having
the same total mass of ejecta My and different total energy Er, i.e. different baryon
loading parameter . We will show the set of light curves in fig.5.12, we will illustrate
the considerations about peak times in figs.5.13 and 5.14 and the considerations about
the slopes in fig.5.15. All these figures refer to the observed frequency 10'® Hz). The
sample of spherical fireballs with fixed ejecta mass we use covers the whole range of
spherical models required to build up an anisotropic fireball as described in chapter 4.
Just before of fig.5.12, we will present also the effect on the afterglow light curve of
varying the mass of ejecta at fixed total energy, i.e. varying the value of 7 at fixed Ep
instead that at fixed Myp (see fig.5.11, always referring to the single observed frequency
10'® Hz). The aim of plotting and analysing all these light curves is the identification
of the ranges of fireball parameters and observed frequency for which the light curves
do not match Granot’s ones, and the characterization of the properties of the just
identified second family of light curves. Thus, a global discussion on the afterglow
peaks will be presented and looking again at figs.5.4, 5.13, 5.14 and 5.17 will help in
summarizing the properties of the two families of light curves. Finally, fig.5.18 is shown

as a tool to establish peaks detectability.
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Now I will discuss in details all the figures I have just quoted.

In fig.5.3 we see a set of afterglow light curves calculated under the same phys-
ical assumptions of [Granot, Piran & Sari 1999¢|: no electron cooling, magnetic field
equipartition at a constant level e, power law distributed shocked electrons energy,
total electron energy equal to a constant fraction e, of the fluid internal energy, local

comoving emissivity approximated as a broken power law as shown in appendix D.1.3.

In this figure, as in all figures that follow, the equipartition parameters ¢, and €p
have been fixed to the values 0.1 and 0.01 respectively, and the electron power law
slope p has been fixed to the value 2.6.

The parameter p affects mainly light curve slopes’ and we have chosen the same
value used in [Granot, Piran & Sari 1999¢| for a better comparison with their results.
As it comes out from the discussion in section 5.2 the parameters €, and ep, instead,
sensibly affect the peak and cooling frequencies vy, (T') and v.(T") and the “transition
time” T's. Their values have been chosen in such a way that, for total energies and
baryon loading parameter values varying respectively in the ranges 10°°-10® ergs and
3-300, at least one of the relevant frequencies v, or v, is always in the “observable”
frequency range going from 10'° Hz (radio) to 10*° Hz (soft y—rays), while v, is always
below it and synchrotron self-absorption never affects our considerations. Remember
the parameter ep also influences the light curve normalization, though less than the

fireball total energy, being F., X egQET.

For the light curves shown in fig.5.3, the shape between the vertical lines B and
 C that mark the beginning and the end of the Blandford & McKee stage should be,
and actually is, the same found by [Granot, Piran & Sari 1999¢]. According to section
3.6.7, the peak times Tp.q; falling between B and C are well approximated by the
solutions of the equation ¢(v,T) = ITJV(TT = Opeak With Ppeqr = 2¢. A change of variable
from T to ¢ actually makes all the curves a single one, at least in the part near the
peak occurring at @ ~ @peq (remember that we do not expect self-similarity in the
variable ¢ out of the Blandford & McKee stage) with the exception of the highest and
lowest frequency light curves. Such curves peak outside the time interval delimited by

B and C and have respectively a slightly less broad and a slightly broader peak. The

tFrom definitions (5.2) and (5.14) it is apparent that also the peak frequency v, (T') and the total
flux per unit frequency at v, (T), Fiot(T), slightly depend on p, but this dependency is weaker than
anyone else.

fRemember that in [Granot, Piran & Sari 1999¢] the light curve peak time Ty, was found as the
solution of the equation ¢granot(v,T) = Ppear With Ppeqr = 1.88
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estimated peak time values found as solutions of the equation ¢(v,T) = @peqr With
Gpeak = 2 start to disagree slightly from the “true” peak times when the observation
frequency v decreases (see fig.5.4) and/or when 7 decreases (see fig.5.13). In the
general case, in our model, light curve peaks occurring during the Blandford & McKee
stage correspond to values of ¢ equal t0 ¢pear(n, v) = 29(n, v) where the function g is
equal to 1 within about 20% over the range of frequencies and baryon loading parameter
values we explore. This varying behaviour of ¢peqs, interpreted as a small violation of
self-similarity of afterglows, is related to the modified evolution laws we use for the
Blandford & McKee stage, which are slightly violating self-similarity themselves.

Remembering that during the Blandford & McKee stage the peak frequency vy, (T)
can be approximated with the law (5.9) times the factor 1.2, that the start time of
the Blandford & McKee stage can be approximated with the law (5.7), and using the
approximation ¢peq(n, V) ~ 2, we can rewrite the condition that the peak time Tpear ()
satisfying the equation @¢(v, Tpear(v)) = m = ¢pear(n, v) actually falls between
the lines B and C (i.e. Tpear(v) > Tp(0)) as

v \Y4 [ eg \"U8 /e, \"V2 / Ep 1/24
e —_L 2
n>80 (1016) (0.01) (0.1) (1052) (5.25)

The relation (5.25) can be interpreted as a law saying which minimum baryon loading

parameter a fireball must have in order to see the afterglow peak during the Blandford
& McKee stage (or after) at a given frequency v, or below which frequency the afterglow
would be seen peaking in the Blandford & McKee stage (or after) given a certain fireball
with its fixed baryon loading parameter. A further relation telling the maximum baryon
loading parameter for which the afterglow at a given frequency peaks in the Blandford
& McKee stage (or before), or the minimum frequency at which the afterglow from a
given fireball peaks in the Blandford & McKee stage (or before) can be found from the
condition Tpeqr(v) < Terit(0), but for our choice of fireball parameters and observation
frequencies it is less constraining than the previous one, and for simplicity we will not
use it.

The relation (5.25) is telling us the range of parameters for which we expect to be
consistent with Granot’s results, and the light curve is expected to have the self-similar
shape discussed in [Granot, Piran & Sari 1999c].

Actually it can be calculated that for n = 303 and Ep = 2 x 1052 ergs (the values
used for fig.5.3), the light curve at 10'® Hz should peak before the Blandford & McKee
stage, while for n = 25 and Ep = 1.8 x 10°? ergs (the values used for fig.5.17), all the
light curves at v > 10 Hz should peak before the Blandford & McKee stage. In both
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cases only the lowest frequency light curve at 10'° Hz is expected to peak just at the
end of the Blandford & McKee stage.

Afterglow lightcurves from a spherical fireball
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Figure 5.3: Monochromatic afterglow light curves from a fireball with total energy Er =
2 x 10% ergs and baryon loading parameter n = 303 in the case €, = 0.1 and eg = 0.01
and for an electron power law slope p = 2.6. The vertical lines A,B,C and D represent
the times at which the fireball front enters respectively the deceleration stage, the Blandford &
McKee stage, the transition to the Sedov stage and the Sedov stage. The vertical lines E and F
represent the times at which the fireball back enters the transition to Sedov stage and the Sedov
stage respectively. The black crosses mark the peak positions and the coloured crosses indicate
estimated peak positions according to the requirement ¢(v,T) = #(T) = constant = 2.

These light curves have been calculated approzimating the fluid element emissivity with the
same broken power law used by [Granot, Piran & Sari 1999c¢] (see section D.1.8, equations
(D.25) and (D.34)) for a better comparison with their results.
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Figure 5.4: In the upper panel peak times Tpeqr of the light curves in fig.5.3 are plotted versus
the observed frequency. Only the frequencies for which the peak is expected during the Bland-
ford & McKee stage are shown. The agreement between estimated values (coloured crosses
in fig.5.3) and “true” values (black crosses in fig.5.3) is quite good. In the lower panel I
plot versus the observed frequency a quantity proportional to ¢granot(V, Tpeak) < v Tﬁe/fkn"l/z,
expected to be constant for peaks occurring during the Blandford & McKee stage if the hy-
drodynamics were ezactly that used by [Granot, Piran & Sari 1999c] (see section 3.6.7). It
can be seen that neither the estimated values of Tpeqr nor the “true” ones give rise to an
horizontal line. This was expected in the case of estimated peak times because they have been
calculated solving ¢(v,T) = Enij(_T_) = Ppeak = 2 with vy (T) given by (5.2) instead of solving
¢gmnot(z/, T) = ¢peak = 2. However, the small discrepancy between the two curves in the
lower panel, corresponding to estimated and “true” Tpeqr, values respectively, tells us that the
self-similarity property of afterglows during the Blandford & McKee stage is slightly violated,
clearly because of our generalizations of evolution laws. To be precise the “true” values of
the peak time Tpeqr, do not satisfy the relation ¢(v, Tpeak(V)) = Ppeak = 2 but the relation
W, Tpeak (V) = dpeak g(v) where g(v) is a function dependent on the modifications we have
done to the pure Blandford & McKee evolution laws that must be calculated numerically. We
find that g(v) ~ 1 within 17% for v varying from 10'° to 10'° Hz, and g (10%6) = 1.
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It is interesting to note that for all light curves in fig.5.3 the same decay slope
observed while the front of the fireball goes through the Blandford & McKee stage
(i.e. between B and C) stays approximately constant until the back of the fireball too
definitely exits such evolutionary stage (vertical line E). Then a steepening occurs that
seems to end just before the whole fireball (back included) has started Sedov expansion.
After that, the decay slope starts again to agree with predictions (see fig.5.5). The
transient steepening between the times E and F should be further investigated because
it might be related to the hydrodynamics of the transition from Blandford & McKee
to Sedov, which has been modeled just to join smoothly the two known self-similar
stages. Since light curve slopes during these stages are reliable, it is not so important
that the detailed behaviour of the light curves on the short time interval between the
lines E and F is transition dependent. In any case, form an observational point of
view, at times as late as the beginning of Sedov stage, the predicted afterglow flux at
frequencies higher than radio is so low that it is unlikely to be detectable.

Before changing the fireball parameters and see what happens, we stop and analyze
all the other properties of the light curves of fig.5.3. First of all the agreement with
the analytic approximation (5.17). In fig.5.6 some light curves of fig.5.3 are compared
to corresponding light curves due to radiation from newly shocked electrons along the
line of sight only, i.e. light curves given by (5.17). Emission from the whole volume
behind the shock and emission from matter just behind the shock along the line of
sight start to disagree during the transition to the Sedov stage, i.e. when the effect of
volume integration starts to be significant. Remember that when the fireball expansion
velocity is highly relativistic, emission is highly beamed, and the observer is actually
reached only by radiation emitted from a small portion of the fireball around the line
of sight. As the fireball slows down, the visible portion of the fireball increases and
observed radiation has significant contributions also from directions different from the
line of sight and/or matter far behind the the shock (see also fig. 5.7).

Another question to be addressed is about the importance of the whole integration
in the resulting afterglow light curve shape. This can be studied calculating sepa-
rately contributions from the radial integration and the angular integration, and from
the different volume regions corresponding to different evolutionary stages in time of

emission.
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Spherical fireball with =303 and E,;=2x10% ergs
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Figure 5.5: Plot of the local slopes of afterglow light curves in fig.5.3 versus the observer

time. The vertical lines A,B,C,D,E and F have the same meaning as in fig.5.3. Same colors

as in fig.5.8 have been used to indicate different frequencies. The horizontal lines oy = 3,

Qg = %, a3 = -%(p —1) and oy = ——1%(5;0 — 7) represent the slopes expected respectively

during the coasting stage, during the Blandford € McKee stage before the peak, during the
Blandford & McKee stage after the peak and during the Sedov stage (see section 5.2.1). It

can be seen each light curve has segments following the right power law decay according to

predictions.
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Afterglow lightcurves from a spherical fireball
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Figure 5.6: In this figure, some of the light curves already plotted in fig.5.3 are compared to
the corresponding approzimated light curves calculated using FEPP(T') given by (5.17). Since
for a time T of the Blandford & McKee stage the volume integrated observed spectrum F,(T')
peaks at a frequency Vpear, ~ 2 vp(T), while FIPP(T) peaks at vy, (T), we have calculated
FSPP(T) using a peak frequency value 2 vy, (T') in order to make peaks coincident and help the

visual comparison.
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In fig.5.7 is it shown how pure radial and pure angular integration contribute in
the calculation of one of the afterglow light curves of fig.5.3. It is apparent that both
radial and angular integration start to give substantial contribution to the light curve
(i.e. whole volume integration becomes important) just before the vertical line C, that
is at the end of the Blandford & McKee stage, when the integration volume has filled
the whole equal-T surface (see section 3.6.4, and fig.3.6 in particular) and expansion
velocity of the fireball front has decreased enough that the beaming cone of lateral fluid
elements intersects the line of sight and radiation from off axis matter can reach the
observer.

In fig.5.8 it can be seen that the effect of emission during the early stages of
evolution becomes negligible on the portion of afterglow light curve corresponding
to the Blandford & McKee stage and following stages. However, taking in account
the early stages of fireball evolution is important when formulating predictions about
afterglow light curves from spherical fireballs having low baryon loading parameter
and/or total energy.

Now we must address how much is relevant for the final afterglow light curve shape
the broken power law approximation we have used for the synchrotron comoving emis-
sivity. In fig.5.9 it can be seen that using the exact synchrotron spectrum for radiation
emitted by a single volume element instead of the broken power law approximation dis-
cussed in appendix D only makes the afterglow light curve more rounded near the peak.

Finally, we check that the peak time dependence of light curves of fig.5.3 on the
fireball total energy and frequency is as expected. In fig.5.10 it can be seen that for
peaks occurring during the Blandford & McKee stage, the peak time T, roughly
scales as Ey/°v~2/3. All the light curves in this figure are due to fireballs having the
same value of 7. Different panels correspond to different observation frequencies v and
different line styles within each panel correspond to different values of Ep. Peak times
are earlier at higher frequency and lower energy. On the other hand, it can be seen in
fig.5.11, that lowering 1 at constant total energy Ep has no effect on the peak time for
peaks occurring during the Blandford & McKee stage (light curves with n 2 90 in this
case). From the same figure it is also apparent that light curves from fireballs with low
n (i.e. light curves that peak before the Blandford & McKee stage beginning according
to the relation (5.25)) have a different peaking behaviour. We start recognizing the

existence of two class of peaks (or light curves). We will discuss it below.
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Afterglow lightcurves from a spherical fireball
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Figure 5.7: The afterglow light curve at 105 Hz already shown in fig.5.3 (solid line) is plotted
together with the corresponding approzimated light curve ESPP(T) given by (5.17) as in fig.5.6
(dotted line). The other two curves represent respectively the result of pure radial (dashed line)
and pure angular integration (dot dashed line) discussed in section 3.6.5. The normalization
constants have been artificially changed in order to make the comparison easier. The dashed
and dot dashed curves follow the solid line better than the dotted line. They simply peak a
slightly different times. It is then apparent that whole volume integration becomes important
by the of the Blandford & McKee stage (vertical line C) and after and that both radial and
angular integration are relevant. On the other hand, the small bump at the end of the transient

deceleration (vertical line B) seems to be entirely an effect of the angular integration.
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Figure 5.8: Solid lines in these four panels are four afterglow light curves extracted from
the set presented in fig.5.3. The dotted lines are the corresponding light curves calculated by
taking in account only fireball fluid elements emitting at a time greater than tg, i.e. neglecting
emission from the fireball portion in the coasting or free expansion stage. The dashed lines
are what we obtain by taking in account only fireball fluid elements emitting at a time greater
than to, i.e. neglecting emission from stages before the Blandford & McKee.

It is clear that the contribution of radiation emitted during the coasting stage, or even before,
is not relevant on the portion of the afterglow light curve corresponding to the Blandford &
McKee stage. Contribution of radiation emitted during the transient early deceleration stage

quickly becomes not relevant too.
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Figure 5.9: The solid line is the 10'® Hz afterglow light curve already plotted in fig.5.3. The
dotted line is the corresponding light curve obtained without approzimating the fluid element
comoving emissivity with the same broken power law used by [Granot, Piran & Sari 1999c].
The true comoving emissivity has been calculated through numerical integration as j' (V') =
ft‘::m dyeN(ve) < Py, (V') > with the single particle spectrum < P, (V') > defined by (D.14)
in appendiz D and the electron distribution N(v.) defined as an infinite power-law with slope
p and low energy cut off Yemin given by (3.195) with the local particle and energy density
evaluated at the time of emission.

It can be seen that the only difference between the solid and the dotted curve is a more rounded
peak surely due to the more rounded peak in the true single particle spectrum as compared to

the broken power-loaw approzimation.







5.3. REPRODUCING RESULTS IN LITERATURE....

AND BEYOND

Normalized fiux F

5 Afterglow lightcurves from a spherical fireball
T T

10

I~ 12
sl n =303 v = 10" Hz
10710 . I I 1 |
100 102 1w0* 108 108 10
Observer time T (s)
5 Afterglow lightcurves from a spherical fireball
10 T T T T
- 53 .
100 2x10> ergs |

-2 .=

=)

Normalized flux F
3
1
ES

-6

=)

1078

2><10: ergs
2x10° ergs
2x10% ergs

10710 1 i " L L
100 102 10t 108 108 10'0
Observer time T (s)
5 Afterglow lightcurves from a spherical fireball
10 T T T T
100 e
1072 —
Lot e ST N T~ 2x10” ergs —-—— - —
M
H _
3 w0 —
]
E _
2
1076 o —]
L 16 SN “\\K _
ol n =303 v = 10" Hz RN -
~ EI
T
L \.\\ R -
~ . o
N L
10710 | L | ; S e
100 102 10* 108 108 10'0

Observer time T (s)

159

Figure 5.10: Afterglow light curves for spherical fireballs at constant baryon loading parameter

= 303 and different total energies. Equipartition parameters and electron power law slope

are as in fig.5.3, €. = 0.1, eg = 0.01 and p = 2.6, and electron cooling is neglected as

in [Granot, Piran & Sari 1999c]. In all these cases the peak time Tpeqr 15 always a time

of the Blandford & McKee stage and moves to lower values at decreasing total energy and

increasing frequency as expected from the discussion in the caption of fig.5.4. The normalized

peak heights are unaffected by baryon loading parameter/total energy and frequency.
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Figure 5.11: Afterglow light curves at 10'® Hz for spherical fireballs with fized energy Er ~
2 x 1053 ergs and different values of the baryon loading parameter . Electron cooling has been
neglected as in [Granot, Piran & Sari 1999c] and equipartition parameters and electron slope
are, as usual, € = 0.1, egp = 0.01 and p = 2.6, in all cases. The baryon loading parameter
sampling is the same as in fig.5.12. The high sampling in baryon loading parameter that makes
the figure crowded is required for the study of the peak properties illustrated in figs.5.18, 5.14
and §5.18. The normalized peak heights are always identical to normalized peak heights of
corresponding light curves in fig.5.12 having the same baryon loading parameter but different
total energy. According to the discussion in the text about the relation (5.25), light curves
with n 2 90 are those peaking during the Blandford & McKee stage, the remaining ones are
those peaking before the Blandford & McKee stage beginning. For light curves peaking during
the Blandford & McKee stage, the peak time is roughly constant, according to the fact that
we expect Tpeqp X Er_lp/ 3 and Er is constant. For the other light curves, the peak time scales

as n8/3.
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In order to study simultaneously the peak properties of the two classes of light curves
Just noticed, we cannot have constant peak times for the light curves of one of the two
classes, as we have in fig.5.11. Thus it is useful to deal with a set of monochromatic
light curves at decreasing 7 but also decreasing energy. Fig.5.12 shows the afterglow
light curves at 10'® Hz from spherical fireballs with varying value of 7 but constant mass
of ejecta My, i.e. total energy Ep varying too, according to the relation Enl = Myc?.
These are the spherical models required to build an anisotropic fireball as described in
chapter 4.

In fig.5.12, as in fig.5.11 two families of light curves can be distinguished: a first
family of light curves having n 2 90 peaking during the Blandford & McKee stage (i.e.
always on the right of the dotted vertical line of the same color of the light curve) whose
peak times Tp.qr roughly scale as E}/ ? n'/% and whose normalized peak heights are
~ 1, and a second family of light curves having 7 < 90 peaking during the transient
deceleration stage (i.e. always in between the dashed and the dotted vertical line of the
same color of the light curve) whose peak times Tpeqr, roughly scale as =8/ in fig.5.11
and as ="/ in fig.5.12 and whose normalized peak heights roughly scale as 21,

Now we analyze the peak time properties of the two families of light curves.

Fig.5.13 gives a study of the peak times for light curves of fig.5.12 peaking during
the Blandford & McKee stage analogous to the one of fig.5.4, confirming that a peak
in the Blandford & McKee stage roughly corresponds to ¢(v,T) = ¢pear = 2.

Fig.5.14, instead, is devoted to the peak times of the second family of light curves
of fig.5.12. We show that the relative position of the peak with respect to the vertical
lines representing the beginning and the end of the transient deceleration stage is fixed
and is just in the middle of the quoted time interval: we find Tpear ~ 2T4(0) ~ 275(0).
Since we know that Ty(0) ~ 2T5(0),% we can easily calculate that Tpeae — Tu(0) ~
To(0) — Tpear ~ %TO(O) and since we know also that T3(0) o (%)1/3 n~2, we can
conclude that this should be the scaling law for Tj,.qx as well. Actually this prediction
agrees with what already observed in figs.5.11 and 5.12.

1/3
$To be precise Tp(0) = ——L2—y, where Ry ~ 2Rq (%’:) , ABM ~ 0.3 and v = %n. Moreover,

16ABmcyg’
it can be easily verified that T4(0) ~ 5%712-, thus we can estimate that Ty(0) ~ 2T5(0) and Tp(0) o

(5) "o
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Figure 5.12: Afterglow light curves at 10'® Hz for spherical fireballs with decreasing baryon
loading parameter 1 and decreasing total energy Er according to the relation Ep/n = Mrpc? =
constant ~ 4 x 107*Mgc?. In calculating all these light curves electron cooling has been
neglected as in [Granot, Piran & Sari 1999c] and equipartition parameters and electron power
law slope have been fized as in fig.5.3: €, = 0.1, eg = 0.01 and p = 2.6. Coloured vertical lines
mark deceleration starting time T4(0) (dashed) and Blandford & McKee starting time Tp(0)
(dotted) for each fireball. For high values of the baryon loading parameter (n 2 86 according
to the relation (5.25)) the afterglow peak occurs during the Blandford & McKee stage and
progressively moves towards the deceleration beginning as 1 decreases, with the peak height
staying roughly constant and equal to 1. For low values of the baryon loading parameter,
the peak always occurs during the early deceleration stage and the peak height decreases with
n. I have calculated that peak heights of peaks occurring during the early deceleration scale
o« 733 ~ n* =1, Remember that all light curves are normalized to the expected total flux
per unit frequency at the beginning of the Blandford & McKee stage Fpqy defined by (3.167),
which is roughly proportional to Er (see equation (3.168) and fig.3.7), or equivalently to 1.
So “true” peak heights in physical units will be < 1 for peaks occurring during the Blandford
& McKee stage and oc n*3 ~ 9P~ for peaks occurring during the early deceleration stage.
See also fig.5.18.
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Figure 5.13: For the light curves of fig.5.12 peaking during the Blandford & McKee stage,
Tpeak 15 plotted versus the fireball total energy (upper panel) or the baryon loading pa-
rameter (central panel). As in fig.5.4 “true” and estimated peak times are shown on the
same plot. In the lower panel we plot versus the baryon loading parameter a quantity

' 3/2
proportional to ¢granot(Vs Tpeak) < V Tpe/aw 12

expected to be constant for peaks occur-
ring during the Blandford & McKee stage if the hydrodynamics were ezactly that used by
[Granot, Piran & Sari 1999c]. It is apparent that at least estimated peak times lie on an hor-
izontal line (i.e. ¢granot and ¢ have more or less the same 7 dependence), while “true” peak
times deviate from it. Recalling the discussion of results of fig.5.4 we conclude that “true”
peak time prediction during our version of the Blandford & McKee stage should be done solv-
ing an equation ¢(V, Tpeak (¥, M) = Ppeak 9(v,n) with an appositely calculated function g which

is approzimately equal to 1 within the 20% such that g (10*%,303) =1, and dpear = 2.
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Figure 5.14: For the light curves of fig.5.12 peaking out of the Blandford & McKee stage,
Tpeak 15 plotted versus the fireball total energy (upper panel). Remember that for the set of
models we are dealing with, baryon loading parameter has been chosen proportional to the total
energy. As we have already noted in the caption of fig.5.12, for low baryon loading parameter
values the afterglow light curve peak always occurs during the transient early deceleration.
From the plots in the central and lower panel we can guess that peak position relative to the
beginning and the end of this stage is roughly constant. We find Tpeqr, ~ ~Z-Td(O) ~ %TO(O).
This might depend on the way we have modeled the transition itself and should be further

investigated.
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Afterglow lightcurves at 10'® Hz for spherical fireballs

local slope
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Figure 5.15: Local slopes of the light curves of fig.5.12 plotted versus the observer time. The
meaning and the values of ai, ag, asz and ag are as in fig.5.5. In this case I do not show

vertical lines marking the starting times of different stages because they are different from

one curve to another.
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For a further investigation, in fig.5.16 we have plotted two sets of light curves
peaking in the transient deceleration stage, corresponding to = 25 and different total
energies. It is shown that peak times in the transient deceleration stage are affected
by total energy variation at constant 7 just as expected but are not affected by the
observation frequency. Another example of this can be found in the set of light curves
of fig.fig.5.17. In that fig. it can be seen that, once the total energy and the baryon
loading parameter of the fireball are fixed, light curves at frequencies greater than the
critical value set by (5.25) actually peak during the transient deceleration stage and
the peak time is constant.

Then, the local slopes plot of Fig.5.15 show that also light curves of fig.5.12 have
slopes in agreement with predictions. Light curves peaking during the transient decel-
eration stage are those that do not show a plateau on the horizontal line as.

The final evidence to discuss is about light curve peak heights.

Figs.5.11 and 5.12 clearly show that the two families of light curve peaks just identi-
fied, differ also in the peak heights behaviour: peaks occurring during the Blandford &
McKee stage have a constant and ~ 1 normalized height, while peaks occurring during
the transient deceleration have not. Actually, from fig.5.12 we can infer that peaks
occurring during the transient deceleration stage have normalized peak heights scaling
o n?P=Y; from fig.5.16 we can infer that normalized peak heights of peaks occurring
during the transient deceleration stage are not affected by E7 and from fig.5.17 we can
see they scale o -

The plot in Fig.5.18, at the end, gives an idea of the expected value in physical
units of the light curve peak flux at 10'® Hz as a function of 5. This plot has been
simply obtained multiplying the normalized peak heights of light curves in fig.5.12 by
the corresponding normalization constants as given by equation (3.168). The change
of slope form 2p —1 to 1 marks the separation between the two families of light curves:
the ones peaking during the transient deceleration stage (lower 1 values) and the ones

peaking during the Blandford & McKee stage (higher 7 values).
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Spherical fireballs with n = 25
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Figure 5.16: Afterglow light curves for spherical fireballs with fized baryon loading parameter
n = 25 and different total energy (1.8 x 10%° ergs for the dashed light curves on the left and
1.8 x 1052 ergs for the solid light curves on the right). Electron cooling has been neglected and
equipartition parameters and electron slope are, as usual, €, = 0.1, eg = 0.01 and p = 2.6, in
all cases. Vertical lines mark the times at which the fireball front starts the deceleration and
the Blandford & McKee evolution respectively in the two cases. The fireball total energy does
not affect the normalized peak height also when the peak occurs during the early deceleration
stage. It only affects the peak time because of the dependence on (%)1/3 772 of To(0) (see
section 3.5.4).
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Afterglow lightcurves from spherical fireballs g =25 =18 x 10°" ergs
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Figure 5.17: In the left panel we plot afterglow light curves from a spherical fireball with
baryon loading parameter n = 25 and total energy Ep ~ 2 x 10°2 ergs, with electron cooling
neglected. Equipartition parameters and electron power law slope are as in fig.5.8, i.e. €, =
0.1, ep = 0.01 and p = 2.6. Higher frequency light curves peak before the Blandford & McKee
stage start (vertical line B), and the peak time is frequency independent.

In the right panel it is shown that the peak height of peaks occurring during the transient de-

. (p—1) .
celeration stage scale as v~ "3 according to the fact that for all of these peaks v > vy (Tpeak)-
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Figure 5.18: Value of the peak fluz in physical units versus the baryon loading parameter for
light curves at 1.e16Hz plotted in in fig.5.12, that have total energy BT ~ 4 x 1074 Mg c*n.
Each point has been obtained multiplying the normalized peok height of the a light curve taken
from fig.5.12 and the normalization constant (3.168) corresponding to the baryon loading
parameter/total energy used for calculating the same light curve. We have always used eg =
0.01 (as in fig.5.12) and D = 10%® ¢cm. An additional factor 1+ z should be added to account
for the redshift. It can be clearly seen the slope changing as explained in the caption of fig.5.12
when we pass from the low baryon loading parameter/total energy values at which the peak
occurs during the early deceleration stage to the high baryon loading parameter/total energy

values at which the peak occurs during the Blandford & McKee stage.
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Discussion

The existence of two families of light curve peaks, with different peak time and peak
height dependence on the fireball parameters and observation frequency can be gener-
ally explained recalling predictions illustrated in section 5.2.1 in the case electron cool-
ing is neglected: during the coasting stage (i.e. before Ty4(0)) the afterglow light curve
slope can only be positive and equal to 3. On the other hand, during the Blandford
& McKee stage (i.e. after Ty(0)) the afterglow light curve might be still growing (with
slope 1/3) or already decreasing (with slope —(p—1)/2), depending on the relative val-
ues of the frequency of observation v and the “critical” frequency Verit = @pear Vm(10(0))
(see below). In the former case the peak will occur during the Blandford & McKee
stage and all considerations about self-similarity of the light curve will apply. In the
latter case, the peak can only occur during the stage in between T5(0) and T5(0), i.e.
the transient early deceleration stage. Thus, all peaks at times before the beginning
of the Blandford & McKee stage will be peaks in the transient deceleration stage.
The roughly constant position of these peaks in the middle of the time interval from
T4(0) to Ty(0), likely related to the way we have modeled the transition, leads to the
observed dependence of the peak time from the fireball parameters we have already
illustrated. Due to the shortness of the transient deceleration stage, a different mod-
eling of the stage itself cannot change the value of Tpeqr more than 20% (we expect
Toeak = (—2- + é) T5(0)). The normalized peak heights too are to be considered “model
dependent”. We can estimate Fpear = Fpear(270(0))(140.18) when the peak time Tpeqr
spans from Ty(0) to Tp(0).

Once we adopt the value Tpeqr ~ gTO(O) for light curves peaking in the transient
deceleration stage, and Tjeqr X E}/ 2,=2/3 for light curves peaking in the Blandford &
McKee stage we can also explain the normalized peak heights scaling. The normalized
peak height Fjeqr/Fmaz of @ monochromatic afterglow light curve at the time Tpeq
is expected to be o< FPP(Tpear)/ Frnaz, with F2PP given by (5.16) and Fin,., given by
(3.167). Since during the Blandford & McKee stage F***(T) is roughly equal to Finep
(see section 3.6.6), and for a peak in the Blandford & McKee stage Tpeqr is such
that (m> is roughly a universal constant (see section 3.6.7 and figure captions
5.3, 5.4 and 5.13) we can conclude that in this case the normalized peak height is
constant. If the peak is in the transient deceleration stage, instead, we can estimate
Rios(Tpear) < Rios(T5(0)) = Ro o< (%‘%1)1/3, (see fig.3.4), Vios(Tpear) o< Yios(To(0)) =
Yo X 1, €hos (Toear) X Voos(Tpear) % 1%, B (Tpear) ~ 1 and consequently Fioy(Tpear) o< Er,
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To summarize the light curve peaks properties in a few analytic expressions we
must recall once more that peaks occurring during the Blandford & McKee stage have
peak times Tpeqr(v) such that T5(0) < Tpear(v) < Teriz(0) and
v

V7Tea -
QB( P k) Vm (Tpeak

7= Ppeak ~ 2 (5.26)

Since we know that the function v,,(T) is decreasing with T (see fig.5.1), it is clear
that if v > Vet = Ppeak Vm(T0(0)) the equation (5.26) cannot be satisfied by any time
of the Blandford & McKee stage, and the light curve peak cannot be in the Blandford
& McKee stage. In this case the afterglow light curve must be decreasing with slope
—(p —1)/2 during all the Blandford & McKee stage because the condition v > v, (T')
always holds, so the peak must have been reached before the Blandford & McKee stage,
i.e. in the transient deceleration stage.

If v < Verit, the afterglow light curve peaks during the Blandford & McKee stage,
unless the frequency of observation is as low as v < Vi = Gpeak Vi (Lerit(0)). In this
last case the peak time is expected after the end of the Blandford & McKee stage. For
the range of fireball parameters we explore, just the lowest observed frequency in the
range 10'°-10'% Hz is slightly below ,:n, and we actually do not have a third class of
peaks to study.

Once we adopt the value T,epp ~ %T 0(0) for light curves peaking in the transient
deceleration stage, and, as a first approximation, Tpeqr o< n'/°v~2/% for light curves peak-
ing in the Blandford & McKee stage, we expect that the peak time of a monochromatic
afterglow light curve Tpeqr scale as follows
(%)1/3 N2 V> Vet

Tpeak(l/a ET; 77) &8
771/37/_.2/3 V < Vepit

(5.27)
Then, summarizing the results illustrated and discussed in the captions of the figures

5.11, 5.12, 5.16 and 5.17 we can say that, as a first approximation, the peak flux per

unit frequency of a monochromatic afterglow light curve Fp,; scales as follows

Ep =Dy~ sy
Fpear (v By < { o (5.28)

ET V < Verst
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Finally, we point out that the critical frequency Verit = ¢peat Vm(T0(0)) can be roughly

approximated as

1/2 2 4
Yoy ~ 3.068 x 1018 (%) (5—1) (%) Hz (5.29)

Now it is important to understand if all the features of afterglow light curves we
have discussed are observable.

First of all remember that the zero reference time we have chosen for the observer
time T is virtually a time preceding the GRB detection, and the afterglow light curves
we calculate are to be considered undetectable in their initial part because of superpo-
sition of brighter emission due to the GRB (at high frequencies) and brighter emission
possibly due to reverse shock burning the ejecta shell (in the visual band) and because
it is simply unconceivable to point a GRB source before its explosion. We could only
hope it happens by chance. Since we have not built a consistent model including in-
ternal shocks, we cannot exactly tell when we expect the GRB to start and end in our
model, but we can estimate the GRB will not start before optical thinning of the ejecta
(i.e. before T;,(0) ~ 107* s) and assume it will not be much longer than the average
duration of observed (long) GRBs ~ 50-100 s. Thus, we should simply look at our
plots assuming the part at 7 < 100 s has a very low probability to be observed.

Then remember that the beginning of fireball deceleration Ty(0) and the starting
time of the Blandford & McKee stage Ty(0), usually represented by the vertical lines
A and B respectively in all our figures, roughly scale with the fireball baryon loading
parameter and total energy o (%)1/3 n~2. For relatively low total energy and baryon
loading parameter values, the coasting stage can last far beyond the first 100 s: we
might expect to see afterglows from fireballs that are still in an early stage of evolution,
and consequently afterglow peaks of the second family. Actually in figs.5.11 and 5.12
it can be seen that for relatively low 7 values, the Blandford & McKee stage beginning
can be quite late and GRB emission is very likely to have ended before it. Moreover, the
critical frequency Verit = Gpeak Vm(T0(0)) can be as low as 10'°-10" Hz, and afterglow
peaking during the transient early deceleration might be observed in the optical and at
higher frequencies if the peak flux were not too dim. To have an idea of the expected
peak height values in physical units look at fig.5.18 and remember the scaling law
(5.28).
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5.3.2 Results including electron cooling

Now we show the results of calculation of afterglows from spherical fireballs including
the detailed treatment of the radiation mechanism described in the previous chapter
(sections 3.7 and 3.8). This case has also been calculated by [Granot & Sari 2002], but,
as usual, restricted to the pure Blandford & McKee evolution.

As far as the light curves are concerned, we will present sets of light curves at
constant fireball parameters, compare them with the corresponding sets of light curves
obtained without taking into account the cooling of the electrons and with approxi-
mated light curves. Then we will discuss effects on the light curve shape of the whole
integration, and after that we will present time resolved afterglow spectra and discuss

them.

Light curves shown in fig.5.19 are an example of results obtained with full ac-
counting of electron cooling (by synchrotron radiation and adiabatic expansion) and
assuming the magnetic field to be in equipartition with the shocked fluid internal en-
ergy just behind the shock and subsequently frozen in (see the second magnetic field
evolution law in (3.221)). If we use the first magnetic field evolution law in (3.221),
corresponding to constant equipartition (as in [Granot & Sari 2002]), we obtain curves
indistinguishable within the thickness of the line from those plotted in fig.5.19. If we
neglect adiabatic expansion contribution to the electron cooling (i.e. calculate the light
curve with the artificial setting G(¢') = 1 for all ¢ in (3.214), (3.215) and (3.216)) we
also obtain light curves indistinguishable from those shown in fig.5.19. Thus, both the
magnetic field strength distribution and the adiabatic cooling contribution do not leave

a clear signature in the light curve shape.

The comparison between light curves of fig.5.19 and the ones obtained with the
simpler radiative model that neglects electron cooling and uses a broken power law
approximation for the fluid comoving emissivity (i.e. the case discussed in the previous

section and calculated in [Granot, Piran & Sari 1999¢]) is presented in fig.5.20.

Note that, looking at v, (1") and v.(T) plots in fig.5.1, which have been build
using the same fireball parameters used for light curves in fig.5.19, we expect to see
a cooling break in the light curve (with the slope passing from —3(p — 1) = —1.2 to
—(—3—1"—4_1) = —1.45) only at 10'® Hz (Threqr ~ 7 x 10* 5). The lower frequency light
curves should have the same decay slope they had neglecting the electron cooling:
~§L(p— 1) = —1.2. The 10'® Hz light curve, roughly corresponding to the case vy, = v,

should have a broad peak after about 600 s and a decay slope ~@p4;2) = —1.45. The



174 CHAPTER 5. RESULTS

10'7 Hz light curve should have a break at ~ 100 s passing form the decay slope
—1/4 = —0.25 to the decay slope —3272 = —1.45. The 10" Hz light curve should
have the decay slope ~(3—i—2)~ = —1.45 during all the Blandford & McKee stage. An
analogous discussion can be done for the rising slopes during the coasting stage: all
the light curves at frequencies < 10'® Hz are expected to grow as T''/3, while the light
curves at 1017 Hz and 10'® Hz should have a flattening of the growing law from T*1/3
to T? before the end of the coasting stage. All these predicted behaviours are quite
difficult to be recognized by eye on the shown curves because they are considerably
smoother than all previously calculated light curves. They cannot be fitted by simple
broken power law models. Anyway there is a general trend of steepening of the decay
at higher frequencies (as compared to corresponding light curves in fig.5.3) that could
fit the predictions, and also the initial rising slopes seem to be slightly steeper than 3.

The last relevant feature of light curves in fig.5.19 is a sharp peak occurring during
the early deceleration stage. The origin of this peak must be further investigated.
The calculation of the effect of pure radial and pure angular integration in this case
shows that the ”secondary” peak in the transient early deceleration stage is probably
due to a radial enhancing in the emissivity in the internal regions of the integration
volume. Nevertheless, the emitting volume contributing to this peak is clearly the
region in which the emitting fluid elements have been shocked at a time ¢; before the
beginning of the deceleration. This can be seen from fig.5.21 where we show the result
of light curve calculation with electron cooling, truncating the integration volume to
regions shocked after the beginning of the deceleration and to regions shocked after the
beginning of Blandford & McKee evolution. In cases at lower baryon loading parameter
values the "secondary” peak in the transient deceleration stage disappears (see fig.5.22),
and this suggests the existence of numerical problems related to approximations in
calculating the time of shock passage and/or the average magnetic field for volume
elements shocked during the coasting stage. In any case, for the light curves in fig.5.19,
any peak in the transient deceleration stage would probably be not visible because
occurring before the end of the GRB, and, as shown in fig.5.23, on the time scale of
observations the agreement of the detailed calculation with the rough approximation

(5.15) is as expected.
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Afterglows from a spherical fireball accounting for cooling
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Figure 5.19: Light curves from a spherical fireball with baryon loading parameter n = 303
and total energy Er = 2 x 10%3 ergs calculated accounting for cooling of shocked electrons via
synchrotron radiation and adiabatic ezpansion as explained in section 3.7. The equipartition
parameters and the electron energy distribution slope have been fized, as usual, to the values
€. = 0.1, eg = 0.01 and p = 2.6. In the present calculation we have used the magnetic field
evolution law (3.206), assuming the magnetic field to be in equipartition with the shocked fluid
internal energy only just behind the shock and subsequently frozen in. The alternative model
of constant magnetic field equipartition gives indistinguishable results. Another alternative
calculation has been done neglecting the adiabatic cooling of electrons (i.e. artificially setting
G =1 in the ezpressions of the cooled electron distribution (3.214), and its range (3.215) and
(8.216)). The resulting light curves are again indistinguishable from those presented here,
meaning that adiabatic cooling is likely a negligible cooling effect on emitting electrons as

compared to synchrotron radiation.
The vertical lines A,B,C,D,E and F have the usual meaning (see fig.5.3).
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Afterglow light curves from a spherical fireball
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Figure 5.20: The same light curves presented in fig.5.19 (solid lines) compared to the cor-
responding light curves extracted from fig.5.8 obtained with same fireball parameters but ne-
glecting electron cooling (dashed lines). Peak times corresponds very well. Peaks of the solid
curves seem broader and lower because in this case no broken power law approzimation of the
comoving emissivity have been used. We have already seen in fig.5.9 that the effect of exact

synchrotron emission calculation on the afterglow light curve is a peak broadening.
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Afterglow light curves from a spherical fireball
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Figure 5.21: The light curve at 10'® Hz already shown in fig.5.19 (solid line) has been
calculated again neglecting radiation emitted by the fireball portion that was shocked before the
beginning of the deceleration (dotted curve) and radiation emitted by the fireball portion that
was shocked before the beginning of the Blandford & McKee stage (dashed curve). As in the
case of neglected electron cooling, radiation emitted during the early evolutionary stages does

not affect significantly the part of the light curve after Blandford & McKee stage beginning,

To(0).
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Afterglows from a spherical fireball accounting for cooling
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Figure 5.22: Another ezample of afterglow light curves obtained taking in account electron
cooling. Now the fireball has a lower baryon loading parameter and total energy and we find
the same behaviour of the peaks we have discussed in the corresponding case of fig.5.17 and
all related figures. The only main difference is that peak times in the early deceleration stage
are now closer to To(0) and slightly frequency dependent. Light curves peaking during the
Blandford & McKee stage do not present a preliminary sharper peak in the early deceleration

stage as happened for higher baryon loading parameter values.
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Figure 5.23: The afterglow light curves already shown in fig.5.19 (solid curves) are now
plotted together with the corresponding approzimated version FZPP(T) defined by (5.15) and
(5.16) that represent the contribution to observed radiation due to matter just behind the shock
along the line of sight (dashed curves). In calculating the light curves approzimations, the
characteristic frequencies vy, (T) and v.(T) have been multiplied by two in order to have the
right peak superposition. As we have already seen in fig.5.6, the approzimation start to fail
significantly when the effect of volume integration becomes important, i.e. at the end of the
Blandford & McKee stage. In this case we also see that “exzact” light curves are generally more
smooth and “rounded” than their approzimations, with the exception of the part covering the

early deceleration stage, that usually presents a sharp peak instead of the predicted flattening.
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Fig.5.22 shows the afterglow light curves with electron cooling properly accounted
for from a spherical fireball with n = 25 and Er = 1.8 x 10°2 ergs. We can recognize the
same peaking behaviour discussed in the previous section: light curves at a frequency
lower than the limiting value derived from (5.25) peak during the Blandford & McKee
stage or after, and all the others peak during the transient early deceleration. This is
not surprising because the same line of reasoning used to justify the results obtained
in that case can be applied also now. Actually, qualitative results about light curve
peaks discussed in section 5.3.1 are still valid, but the estimation of the peak time for
peaks in the early deceleration stage, that appears to be less rigorously constant and
better approximated by T;(0) rather than by the time in the middle of the interval
from T4(0) to Ty(0).

The same general trend to smoothness that does not allow a simple broken power
law approximation in afterglow light curves when electron cooling is taken in account,
appears also in the spectra (see. figs.5.24, 5.25) In fig.5.26 it is apparent that even
if spectral breaks are visible, the “exact” light curves far from the breaks are not very
well approximated by power laws.

Finally I want to point out that the late exponential steepening of spectra always
visible in figs.5.24 and 5.26 is not a physical spectral break, but the effect of numerical
integration of the exact local comoving emissivity (3.230) with N (., t') given by (3.214)
and < P, (v') > given by (D.14), which has an exponential cut off at high frequencies.
A finer sampling of the integration volume moves the exponential steepening of the
spectra at higher frequencies but is very time consuming. Of course light curves are
also affected by this problem. Using spectra of fig.5.24 it can be roughly seen at what
time a monochromatic light curve in fig.5.19 is dominated by “underestimation” of the
emitted radiation due to insufficient integration volume sampling. For example, the
light curve at 10'® Hz would be “unreliable” (because the instantaneous spectrum at
this frequency starts to show the numerical exponential cut off) just after about 10 s,
so we have not shown it in fig.5.19 although its absolute peak flux level is comparable
to the one at other frequencies. The light curve at 10'® Hz starts to be “unreliable” at

about 10° s and so on.
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Figure 5.24: Afterglow spectra from a spherical fireball with baryon loading parameter n = 303

and total energy 2 x 10 ergs at different times of the observer. The calculation takes into

account electron cooling. We have used the same normalization constant used for the light

curves. Spectra appear to be more regular than light curves, but are anyway smoother than

simple broken power laws.
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Spherical fireball n=303 and E,=2x10> ergs
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Figure 5.25: Local spectral slopes for spectra shown in fig.5.24. Horizontal lines correspond
respectively, from the top to the bottom, to the ezpected spectral slopes 1/3, —1/2, —(p—1)/2
and —p/2. Only the rising part of the synchrotron spectrum going as v*/3 seems to be common
to most of the calculated spectra. There seems to be a trend to reach a final slope —p/2, but an
exponential steepening occurs after. This exponential steepening in the local slopes corresponds

to the exponential steepening in the spectra we have discussed in the text.
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Figure 5.26: Some of the spectra shown in fig.5.24 are plotted again together with the corre-

sponding expected broken power laws.
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5.3.3 Conclusions

The spherical fireball afterglow calculation we make neglecting the electron
cooling reproduces well the “standard” afterglows previously calculated by
[Granot, Piran & Sari 1999c] on the time interval corresponding to the Blandford &
McKee evolution stage and extend the model predictions to times after the GRB explo-
sion beyond the transition to non relativistic expansion and to a large range of baryon

loading parameter values (from 1 ~ 3 to n ~ 300) in a consistent way.

Fireballs with low baryon loading parameter/total energy generally produce higher
frequency afterglows with a different peaking behaviour, the peak occurring in an evo-
lutionary stage different from the well known self-similar Blandford & McKee stage.
It can be proved that in this case the peak must always be in the transient early de-
celeration stage. The new family of afterglow light curve peaks is roughly identified
as having a frequency independent peak time and a frequency and baryon loading
parameter dependent normalized peak height. Standard afterglow peaks, on the con-
trary, have frequency dependent peak times and constant normalized peak heights (see
equations (5.27) and (5.28)). Though we have modeled the typical stage during which
the new peaks are expected to show up (the transient stage from the coasting to the
Blandford & McKee stage) just to match smoothly two well known evolutionary stages,
the shortness of this stage itself guarantees an uncertainty of no more than 20% on the

peak time and peak height values we find.

The criterion telling us at which frequency the light curve peak start to be in the
early deceleration stage once the baryon loading parameter and total energy values
are set, is relation (5.25), that can be also used to calculate at which baryon loading
parameter a given monochromatic light curve start to peak in the early deceleration

stage, given the fireball total energy.

For high baryon loading parameter/total energy values (n 2 100, Er 2 1052 ergs)
we do not expect to observe any light curve peak of the newly identified class. They
are going to appear only at very high frequencies (out of the range of usually observed
frequencies we are exploring) and, in any case, when the GRB is likely to have not
ended yet. For moderately low baryon loading parameter values (for instance n ~ 25),
on the contrary, we might have high frequency (v 2 10'® Hz) afterglow peaks occurring
in the early deceleration stage long after the GRB end, i.e. on an observable timescale
depending on the fireball total energy as qu,/ % but, according to absolute peak flux

estimation in physical units presented in fig.5.18 and equation (5.27), dimmer of more
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than a factor 100 than an afterglow peak from a fireball at n ~ 300 with the same
total energy. Note that a dimmer absolute peak corresponds to a globally dimmer
afterglow light curve during the Blandford & McKee stage having anyway the same
slope predicted by [Granot, Piran & Sari 1999¢]. For the same fireball with n ~ 25
producing, for instance, a dim X-ray afterglow, optical and radio afterglows might be
“regular”, i.e. well described by Granot model, and with absolute peak fluxes more
than 100 times greater than in the X—rays.

Thus, spherical fireballs with a standard high value of the total energy of about
10 ergs but moderately low 7 value around 20-25, though able to produce highly
variable, energetic and long GRBs as less loaded fireballs with 1 2 100, might produce
simultaneously “regularly” intense radio and optical afterglows and 100 times dimmer
X-ray afterglows. Actually, a case does exist of optical afterglow detection without
any associated X-ray afterglow detection (GRB 970100, [Frontera et al. 2000]). These
might be explained as due to absorption.

Note that GRB and afterglow observations have not provided any direct measure
of the fireball baryon loading parameter yet. The standard value n 2 100 is suggested
by the lower limits on the bulk Lorentz factor of the flow in internal shocks, but not
rigorously settled on.

We suggest that a low 1 in a spherical model may mimic the effect of X-ray ab-

sorption.

Our results about afterglow peaks from spherical fireballs, though discussed in detail
just for the case of neglected electron cooling, are general and valid also if cooling effects
are included in the model.

However, the main result of the most complete afterglow calculation we have per-
formed, is that realistic treatment of the radiation process together with realistic hy-
drodynamical evolution of the fireball and detailed accounting for relativistic effects,
makes predicted afterglows light curves and spectra very smooth and difficult to be
approximated as broken power laws. Sharp breaks and well defined slopes are almost
completely smoothed away, and fitting observed afterglow light curves and spectra
with broken power laws might lead to unreliable estimation of the intrinsic fireball
parameters. Moreover, deviations of the magnetic field distribution from equipartition
are unlikely to leave any clear and precise signature on the afterglow, and adiabatic

cooling as well as other second order radiation loss mechanisms are likely to affect the
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afterglow less than small deviations in the fireball hydrodynamics.

We can conclude that, since a real fireball will be even more chaotic and disordered
than we have supposed, the rough broken power law fitting of observed afterglow light
curves and spectra currently used to estimate fireball intrinsic properties according to
very simple models is doomed to become more and more difficult and less consistent and
conclusive with increasing number of observations and quality of data. It is possible
that many of the “observed” breaks and slopes are actually less significant than is
currently believed and corresponding estimations of the fireball parameters would be
affected by large errors. A more complete modeling of light curves and spectra might
help in dealing with the forthcoming observational data.



Appendix A

Jump conditions at Relativistic
Shock Waves

A strong ultra relativistic collisionless shock wave that propagates in a cold and uniform
medium produces great heating and compression of the matter it encompasses.

From a macroscopic point of view the net result of complex microscopic phenomena
acting at the boundary layer can be described as follows.

Let us call ny, p1, p1, €1 and 4, the comoving particle density, mass density, pres-
sure, total energy density and adiabatic index of the unshocked matter respectively.
Corresponding quantities with index 2 can be defined for the newly shocked material
* TLet us also call us and u; the velocities of the shocked and the unshocked matter
with respect to the lab frame. The shock velocity in the lab frame will be U and the
shock Lorentz factor will be I

Let us assume that the unshocked matter is cold (e; ~ pic® > p1) and at rest with
respect to the lab frame (u; = 0) and that the shock is strong (;’% > %—) and ultra
relativistic (I' > 1).

It can be proven that under these assumptions the Lorentz factor of the shocked
matter as measured in the lab frame v = 1/4/1 — u3/c? (i.e. the Lorentz factor of the
shocked matter motion relative to the unshocked matter, which is at rest) is quite high
too, and is related to the shock Lorentz factor by the simple expression

v~ —\1;——2- (A1)

*Note that elsewhere in the text (chapter 3) the comoving properties of the shocked material have

been denoted with a prime.
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As a result of the shock transit the fluid acquires a relativistic bulk motion following
the blast wave front, but the shock wave travels slightly faster than the shocked fluid
behind it as the amount of shocked matter is continuously increasing. This is apparent
also from the estimate of the Lorentz factor of the shocked matter motion relative to
the shock itself, that is v, ~ /2 (see below for the proper definition of ;).

As far as the comoving particle density and energy density of the shocked fluid are

concerned, the assumptions we made lead to the following simple expressions:
ne =2v2m I & py=2V2p T (A.2)

€9 = 2F20102 (A3)

Moreover we shall have p, = e5/3, or equivalently 95 = 4/3, the shocked matter being
relativistic (the typical Lorentz factor of random motions of shocked particles in the

comoving frame of the shocked fluid is given by p;’iz xI'>1).

Equations (A.1), (A.2) and (A.3) represent the jump conditions at the shock for
the flow, i.e. the generalization of the Rankine Hugoniot conditions for non relativistic
strong shocks.

The derivation of equations (A.1), (A.2) and (A.3) can be performed as follows.

A.1 Derivation

In the reference system where the shock is at rest let us call v; the speed of the
unshocked matter flowing towards the shock and vy the speed of the shocked matter
flowing out of it. Then we define 8, = =% and f, = 2. The corresponding Lorentz
factors will be v, and 5. As the unshocked matter is at rest in the lab frame, in this
new reference system we shall see it plunging on the shock at the same velocity the
shock had in the lab frame, so we can assume v; = U and v, =T.

In this reference system the shock appears as a discontinuity surface for the fluid
comoving properties. The jump conditions at the shock are determined by imposing
the conservation laws of energy, momentum and particle number through it, i.e. the
continuity of the stress energy tensor components and of the current of particles in the
flow direction (for us the x direction). Then, following [Landau & Lifshitz 1987], we
can write:

[num] =0« n1V17Y1 = NoUs7%9 (;&4)

[T%%] = [(e + p) (w®)* + pc?] = 0 <> (1 + p1)B2AE +p1 = (e2+p2)Biv2 +po  (ALB)
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(7% = [(e + p)u’u®] = 0« (&1 +p1) 617y = (ea + p2) a7z (A.6)

These relations can be simplified by remembering that we had assumed an unshocked
cold medium (e; ~ p1c? and p; ~ 0), an ultra relativistic shocked matter (es = 3p,),
and an ultra relativistic shock (I = «; >> 1) but we shall use these assumptions later
in the calculation.

Note that the velocity of the shocked matter with respect to the unshocked matter

1s
g = ___.;1 i (A7)
~
and the corresponding Lorentz factor is
T2 =N (1= (i) (A.8)

As the unshocked matter is at rest in the lab frame, the relative velocity of the shocked
and unshocked matter is equal to the velocity of the shocked matter relative to the lab
frame end we can write vy = ug and 1o = 7.

;From equations (A.4), (A.5) and (A.6) we get, with simple algebra,

_u _ (p2 — p1)(e2 +p1)

R e s (4
_ vz | (p2—p1)(es +p2)

%= ¢\ (e2—ei)(ea+p1) (4.10)
_ V2 (p2 —p1)(es — e1)

Pra = P J PETAICETS (A.11)

From (A.9) we get

”’1:<l"ﬁ>_1/2:<e< o >)_1/2 (412

1(ea —p2 —e1) +pi(es —p2+ 11

that after substituting p; = 0 and py = 532 becomes

o\ 12 o 1 1/2
= <(62_€f) (eﬁ?)) = ((“ 2139<1+ : )) (A.13)
€1 (562 - 61) (——= — 1)

3 e
As we want v, > 1, the only allowed relations between e, and e, are

S8

€2 3
€2 . 2

e T2
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2.%>>1.

If (1) is valid, then substituting into (A.9) and (A.10) we get

) 1/2
. e _ |1 (&) _[1%}”2_1__5
1= = | = = | — == == s
(ea — e1)(e1 + p2) 3(.2_%_1> <1+%§%) 313 2
that is quite unacceptable.
On the other hand, if (2) is valid we get
1/2
1 (6_2)2 1 en1/2
3 \ep €2
Y1~ 5 es o {“*—} (A.14)
{ g-:-;“ } 2 €1
thus, using e; ~ p1¢?,
ey ~ 2vier ~ 2vip = 207y (A.15)

and equation (A.3) is proven. Moreover,

11+ les 1/2 1 1/2 1
S R |
pe b= [ian |~ [ (A16)
1 -1/2 9 1/2 3
~ 1 —_— == — - ~ 2 Fa'W
72 ( 9> (8> 22 V2 (4.17)
— 113 = 17 (1 = i) 5 (1 1)—71 A 1S
Y=T2 = N2 1P2 ”/12\/§ 35) = /3 (A.18)
Finally, the relations just found imply
2v/2
Ny = nrﬁiﬂ ~ 11713 V2 = 2V/2T'n, (A.19)
P2 va 3

as we wanted to prove.



Appendix B

Blandford & McKee Self—Similar

Solution

The Blandford & McKee self-similar solution which we want to discuss here is the one
describing the self-similar stage of expansion for the spherical ultra relativistic blast
wave produced by a strong explosion in a cold and uniform medium.

The shocked matter flow is the spherically symmetric solution of the relativistic
equations of hydrodynamics satisfying the jump conditions at the shock (A.1), (A.2)
and (A.3) under the assumptions that the surrounding medium is cold and at rest
relative to the lab frame and that the shock wave is strong and ultra relativistic.

Let us assume that the shock radius and Lorentz factor follows the evolution laws
R(t) and T'(¢), where ¢ is the coordinate time of the Minkowski lab frame, whose origin

is the center of the explosion. R(t) and I'(¢) are clearly related by the differential

dR 1\’

Let’s assume I'(t) oc R(t)™™?2 Under this assumption self-similar solutions for the

equation of motion

flow surely exist and they have a simple physical meaning for some special values of
m > —1. The case m = 3 corresponds, for example, to the adiabatic self-similar
expansion while the case m = 6 corresponds to a radiative self similar expansion.
Now I illustrate the main steps required to derive the Blandford & McKee self-
similar solution, and the main properties of the solution itself in the adiabatic m = 3
case.
As we have already done in appendix A let us call ni, py p1 and e; ~ p1c > p; the

ambient medium properties (remind that the ambient medium is supposed to be cold,

191
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uniform and at rest). The shocked fluid comoving properties will be ny(r,t) ps(r, 1)
pa(r,t), ex(r,t) and ~(r,t). As we expect the shocked fluid to be relativistic, the
following relations hold: es(r,t) = pa(r, t)y(r, t)c® and pa(r,t) = ey(r,t)/3. Moreover
no(r,t) o< pa(r, t).

The general relativistic equations of hydrodynamics for the ideal relativistic shocked
fluid in spherical symmetry can be rewritten as follows [Blandford & McKee 1976]:

d Op2
= () =7 (B-2)
d 3 4\ 4 9 /4
Zi_iln (Pfﬂ ) =T 20 (7 5) (B.-3)
d [ pa
where 12
d 0 d 1 B
G=mtim 0= (- 5) 55

The solution we are looking for must satisfy the boundary conditions

(R, 1) = I}? (B.6)
p2 (1), 1) = ST () (B.7)
ny (R(t),t) = 2v/2n, 0(2) (B.8)

which correspond to the Rankine-Hugoniot conditions for a strong ultra relativistic
shock discussed in the appendix A, and must be of the form I'(¢) o< R(t)"™2. The
solution will be valid if the condition I'(¢) > 1 is satisfied.

Following [Granot, Piran & Sari 1999a] we prefer using as similarity variable

X(r,t) =1+ 2(m + 1)T2(t) (1 - th)) (B.9)

As we want to describe the region behind the shock front, we consider x > 1. In order
to satisfy the boundary conditions the solutions of (B.2), (B.3) and (B.4) we want must

have the form

x) = a0, () =1 (B.10)
Pl = PO, S =1 (B.11)
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no(t, x) = 2V2I2(t)nih(x), h(1) =1 (B.12)
Throughout the detailed calculations required to get such solutions all expansions in
1/T(t) can be self-consistently truncated at the order of the first contributing term
because we are working in the limit I'(¢) > 1. Since our similarity variable differs from
the Blandford & McKee similarity variable

Xour(r,1) = [1 + 2(m + D)I2(1)] (1 - ;::) (B.13)

only by terms of order I'(£)™2*, we can safely use the self-similar solutions found by
[Blandford & McKee 1976].
In their original paper Blandford & McKee find, for the case m = 3,

g0)=x""" (B.14)
F)=x (B.15)
h(x)=x"" (B.16)

Remind that, in the ultra relativistic limit, the fluid total energy density is related
to the pressure by the relation ps (t, x) = 3p2 (£, x).

Then note that a more convenient choice of the independent variables in the Bland-
ford & McKee solution is the set I', x instead of the set ¢, x.

After this change of variables we can rewrite the m = 3 solution as

r_ -
70X = 5x 2 (B.17)
2 -
p (T, x) = gFZmPnlczx“l‘/lz (B.18)
Mo (F, X) = 2'\/§P2H1X_5/4 (Blg)
with
T

(r,T) =14+8T% |1~ B.20
D) = 14812 (1- 1) (B.20)

and )
es (I x) = P TP2 (T, x) = 20%myn c?y 1712 (B.21)

Remind that the function R(I") in (B.20) must be consistent with the initial assumption

I'oc R73/2 (B.22)

1

A ) o

*This is because in the limit I'(¢) > 1 we can write as a first approximation R(t) ~ ct —
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and that, once the missing proportionality constant in (B.22) is specified, the function
['(t) can be found as solution of the differential equation (B.1) for any given initial
condition I'(¢y) = Ty.

The proportionality constant in (B.22) can be determined by the adiabaticity condi-
tion, and this is the reason why the m = 3 case has been identified with the self-similar
solution for the adiabatic expansion from the beginning. Actually we can calculate the

total energy E7 and the total mass M; of the flow as follows
Er = / [=p2 (T, x) + (P2 (T, ) + €2 (T, X) + m2 (T, ) mpc®) v (T, %)% 4V (B.23)

M, = [ myna (T, 7 (0, %) dV (B.24)

where the volume element is dV = 4mr?dr.
To calculate the integrals in (B.23) and (B.24) we must change integration variable
from r to x. From (B.20) we get

R(1+ 8T — x)

r= e (B.25)
and thus )
B R1+8I?—x)|" R _
dV = 4n { o 502 dx (B.26)
and

Br= [ (=P (T ) + (p2 (T, %) + € (T, ) + 72 (T, x) myc®) 7 (T, %)

R1+82—)]* R ~
471'[ T2 8F2d\/ (B.27)
L+8T? R(1+8T2—)]° R

Since we are interested in the limit I' > 1, we expand the integrands in powers of 1/T,
take the lowest order terms only and integrate between 1 and +oo. The result of the

integration is then

Er = %ﬂn,impc233r2 (B.29)

4
M = gﬂn,ﬂnpRS (B.30)

The total mass in the flow is exactly the total mass the shock has swept up and the the

total energy in the flow (rest mass included) is proportional to B3I'?. The adiabaticity
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condition Ep = constant reduces to
1/2
17 1 e
I= (“gEm“> B (B.31)

that is consistent with the assumption I" oc R™%/2.
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Appendix C

Sedov Self—Similar Solution

Let us consider the spherical expanding blast wave in Newtonian physics formed in

case of:

e strong explosion, i.e. instantaneous release of a large amount of energy Er in a

small volume;

e polytropic gas with adiabatic index 4 and uniform mass density p; as surrounding

medium;

e pressure behind the shock (pe) much larger than the pressure of the undisturbed

gas (p1) in front of it, or equivalently

(5 —Dp2> F+ ;e (C.1)
P2 Y+1
—_— > — C.2
P1 v—1 ( )

(strong shock condition);

e adiabatic evolution, i.e. negligible radiation losses.

We look for self-similar solutions of the equations of classical hydrodynamics de-
scribing the shocked matter evolution.

We define the self-similarity variable

Er,t)=r (E[:t2> v (C.3)

197
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The position R(t) of the shock at a certain time t must correspond to a constant value
of the self-similarity variable depending on the adiabatic index of the surrounding

medium only:

R () =66 ()

The constant §() must be determined by solving the equations of motion.
Then,

2\ 1/5
R(t) = B(%) <Epr ) (C.5)
and s
v =2 2R 20 (%) (C.6)

For a plane strong shock moving in uniform medium in the frame of the shock we
see the unshocked material at a pressure p; and mass density p; flowing toward the
shock with a velocity v; and the shocked material at a pressure p; and mass density

p2 flowing out from the shock at a velocity vo < v;. The jump conditions across the

shock are:
P11 = P22 (C.7)
p1+ prv} = pa + povi (C.8)
Y TRNE SP S SR
€1+ o + 2?)1 =gy + o + 2U2 (09)

where £1 and €5 are the internal energy per unit mass for the unshocked and the shocked
fluid respectively. If the shock velocity relative to the lab frame is U and the unshocked
fluid is at rest in the lab frame (u; = 0) then v; = U and the shocked fluid velocity
relative to the lab frame us is given by the relation us — u; = v — v;. Using the jump

conditions across the shock we get

2u1 2
uQ:ﬁ/-kl:fAy‘%—lU (C.10)
and then i
P2 =P17j1 (C.11)
2 2
D2 = P 1,01U“ (C.12)

For a spherical strong shock we know U(¢) and we just expect that for the matter
immediately behind the shock the same equations as in the plane case hold, so that
2

ur(R(0)1) = =) (C.13)
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PR, = il (©14
pR(D).1) = =7V (©15)

However, the velocity, mass density and pressure distributions of the shocked fluid
far from the shock will not be uniform, but will be self-similar.

If we use as self-similarity variable

0= 5= (5t) (Fe) 10

we expect the flow behind the spherical blast wave to fit the following distribution laws

wslr1) = 25V (6) (C.17)
pa(r,t) = p1G(§) (C.18)
E(r,t) = pa(rt) _ A TQZ(g) (C.19)

P2 (T7 t) a %22_
where the functions V, G and Z must be determined as solutions of the equations of

hydrodynamics according to the boundary conditions

2
y+1
2 -
20) = g (1) (C.22)

that come from (C.13), (C.14) and (C.15).
The spherically symmetric self-similar solutions for the equations of hydrodynamics

are the ones corresponding to the functions V', G and Z such that

.1, 2 (5+1 o ol (AL
e=[farove] {Es-ei-vvel) |[Esave-n| e
with v = —é—?’:ﬁ%t% and vy = 5;3;1)

Ge) = %_j:_ll_ [%‘J_:%@V(f) - )} v {;Yiri 5 (3 _&)V(g)]}“ B_j__l(l _ L'r(f))]us
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T =D =VE)VEE)
2(9V(€) - 1)

The determination of (%) is the made by assuming the total energy conservation

Z(§) =

(C.25)

for the flow evolution (adiabatic flow condition). As the total initial energy is the
energy of the explosion Ep, while in the following times the energy resides entirely in

the shocked material and is partly kinetic and partly thermal we must impose

R(t) 1

Er = /, p(r,t) {—2—1}2(7”, t) +

c2(r,t)
(7 —-1)
By substituting (C.17), (C.18) and (C.19) we get the following expression for the total

energy of the adiabatic flow at any time after the self-similar expansion regime has
started

Br= ", 0 [ FW(&) + ﬁ] grae =17, B0 sy (cam)

] drridr (C.26)

25 "1 2 2 (3 = 1) 25 "2

where we have named

. 1 1 Z(&)
K(5) = / Gle) |2v? 4 2
iy = [ o0 |70+ 2285 | et CED
;From (C.5) we then get 5
167 L R
Br = —p =2 B(#)°K (%) (C.29)
25 P
that can be inverted to give
25\ (1 \'°
B(Y) = — e !
pE) <167r> (K(&)) (C-30)
We can conclude that the shock radius and velocity follows the evolution laws
1/5 1/5 9\ 1/5
1 25 Ert
R(t) = ( > .
(t) (K(&)) 167 ( 01 ) (C-31)
and s s
2/ 1 T 25N\ B\
U == { — <—~) T 32
)=z (A@)) 167 (,ms (C.32)

On the other hand, if we recall (C.6) we can write

R5(t) 5 25
2

- =R <§§Q>2 = R%(t) <§U(t>)2 = TROU)



201

then finally, solving equation (C.31) for Ep, we get

4

ET:3

Tpr RE(U?(t) x 3K (7) (C.33)

This is the general expression for the total energy of the self-similarly expanding spher-
ical blast wave in terms of the shock radius and velocity in the non relativistic regime.
It is independent of when the self-similar behaviour starts, provided that the possible

preceding expansion stages were adiabatic.

In the case 4 = 2 (monatomic perfect gas), equations (C.23), ((C.24) and (C.25)

become

-2 5 —82/39 10/13
e=[ve] -we]  [1(Gre-1) (C.34)
5 9/13
Ge) =2 -VE) T (3V© -1) (5w (C:35)
5(1-=V(E)V*E)
Z(&) =3 Ve 3 (C.36)
with
V(1) = Z G)=4, and Z(1)= % (C.37)
Moreover [Spitzer 1978,
. 3
K(5/3) = g 75 ~ 0.245 (C.38)
and } s
B(5/3) = (2%153) ~ (2.2029)1/5 (C.39)

For € = 0 equation (C.34) has the solution V' (0) = £ = 2. Then we can verify that
¥ 5

V(1) = 2 is the solution of equation (C.34) for £ = 1. In general we expect only one
solution V(£) for each possible £ in the range [0,1]. This solution can be calculated
numerically. It increases continuously from 3/5 to 3/4 when £ grows from 0 to 1. Once
V(€) has been calculated, G(£) and Z(£) can be obtained from (C.35) and (C.36), then
we can plot the velocity, density and pressure distributions behind the shock at a given

time t.
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For an easy presentation of the results, let us define the adimensional functions
Fu, (), Fp,(§), Fp,(§) and F2(€) such that

w6, ) = 25y ()R(€) (.40
(6. 6) = MG €) (1)
pie ) = 2 220 2060E. @ (0.4
et = =0 z0)rs0 (C43)

According to this definition the matter velocity, the pressure distribution and the
squared sound velocity of shocked matter at a give time ¢ are obtained through mul-
tiplication of Fy,(§), Fp,(§) and Fp2(£) by a t dependent factor which is a decreasing
function of . On the other hand, the density distribution of matter behind the shock
does not depend on time at all.

In the case 4 = 5/3 the definitions (C.40), (C.41), (C.42) and (C.43) correspond to

w6 = SOV & Fuld) = gul6 03 gm —5©  (C4
pEd) =GO - Ful) =220 - CF (©.45)

pae.t) = omie ) ez = o 2 e 0
Fo(6) = $plE)3 2 1 = 3E2(96(0 (.46
ey =280 ABWese o mo-Peze

It is easily seen from equations (C.34) and (C.35) that, as £ — 0, V(§) must tend

to a constant limit and G(&) to zero. Precisely

3
V()= 2 o™ Glg) o™ (C.48)
Then, from equation (C.36) we find that for £ — 0

Z(€) oc €712 5 o0 (C.49)



We can conclude that for & — 0 we expect

FUQ(O x§—0
FP2(§> X 69/2 — 0
Fp, (€) 5259/25“13/2 — constant

In our calculation F,, () tends to about 0.01111 for £ — 0.
On the other hand we expect

F2(§) — +o0

for &€ — 0.

The functions Fy,(£), F,, (€), Fp,(€) and F2(§) we calculated by solving numerically
equation (C.34) for 4 = 5/3 are shown in fig.C.1.
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Figure C.1: Top Left panel: F,,(¢) = %fV(g). Top Right panel: Fp, (&) = gg}_g_)' Bottom Left
panel: Fp, (&) = %SQZ(E)G(Q“). Bottom Right panel: Fp (&) = Be27(9).



Appendix D

Synchrotron Radiation

I briefly summarize the well known results which can be found in any text book on

radiation processes (see for example [Rybicki & Lightman 1979, Tucker 1975]) in a no-

tation suitable for our case.

D.1 Emitted Radiation

D.1.1 .... radiation emitted by a single particle

For an electron moving in a uniform magnetic field B with a Lorentz factor 7, and a

pitch angle « the total emitted power is

2( e \?
Psyn(’)’e,oé) = 3 ( ) 0637232 sin? &

MeC2

and the spectrum of emitted radiation is

3B
P,o(v)=V3 °~ sinaF <————-V——~—>

mecz Vsyn (era a)
where
3 eB . 3 eB .
Vayn (Ter @) = 527rmec% = e s
and

+o0
Pla)=x [ Ky(€)dt
K (€) being the modified Bessel Fuction of order 5/3.
It can be proved that

F(z) ~ -\7_?;%5 (91/3 r<1

205

(D.1)

(D.5)
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1/2
F(z) ~ (g) e %gt/? z>1 (D.6)

Moreover, the Spectrum reaches its maximum at
Vpeak (Ye, @) = 0.29 Vg (e, ) (D.7)

The modified Bessel function F(z) and its asymptotics are shown in fig.D.1.

Figure D.1: The function F(x) (gray solid line) and its asymptotic expressions for x < 1
(red solid line) and z > 1 (blue solid line).

The total emitted power (D.1) and the spectrum (D.2) refer to a finite integration
time At short enough that the radiation loss does not affect the electron Lorentz factor,
which is assumed constant. Thus we can say that (D.1) and (D.2) are instantaneous

total power and spectrum emitted by the electron.

The electron Lorentz factor -, cannot be assumed constant any longer after a time
teool (Ve, @) such that the total energy radiated as synchrotron radiation during this time
interval (~ Pyyn (e, @)teon) is comparable to the total electron energy (7yem.c®). Then

we can define as the cooling time for a relativistic electron, the quantity

ey = 3 (MY et 8 (meet\' e (0.9
cool\ Ve, 9 2 0537332 sinfa 2 e2 Bezf)/eBZ sin? o .
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D.1.2 .... radiation emitted by an ensemble of monoenergetic

particles

Now we assume that all the emitting electrons in a given fluid element have the same
Lorentz factor v, > 1 but randomly distributed directions, i.e random pitch angles
a. Let n, be the number density of emitting electrons in the volume element dV'.
The total numbor of electrons with pitch angle between a and o + do in our volume

V’)ﬂ sin ado. Each of these electrons will emit synchrotron radiation

as described in the previous section. Assuming that emission from different electrons
is not coherent we can calculate the total power and spectrum emitted by the fluid
element as the sum of total power and spectrum emitted by all the electrons (this is
equivalent to an integration over « of the number of electrons with pitch angle between
o and o+ da times Pyyp(7e, @) or Py, o(v) respectively). Then we will divide by dV as
quantities per unit volume are usually preferred when dealing with a fluid. Moreover,
since the emission in the fluid comoving frame is expected to be isotropic, we can
further divide by 47 to have a quantity per unit solid angle. The resulting quantities
will be named emissivities.

The total emissivity of the fluid, i.e. the total power emitted per unit volume of
the fluid and per unit solid angle will be j,, (7.) such that

AT Gl (Ye) = / Pjyn(Ve, )27 sin o dov =

~ 4

! 2
= legp2 ¢ 6)7232/ sin® ada =
AT 3 \mee?
1 B2t , .44 B%* ,
“ne?)cm 04[36%3 n69 m2 045 Te =
4 , B?
=n SUTCB 72— o (D.9)

The average Synchrotron Frequency of all electrons will be

36373 1 3 eBy?
syn( 6) =

—_—= - (D.10)
The monochromatic emissivity of the fluid, i.e. the spectrum of the radiation emit-

2mc97r4 16 MeC

ted per unit volume of the fluid and per unit solid angle will be 5o (') such that:

n, (7
g, (V') = Zl?/o P, ,(V)27sina da =
! e3B 7 !
=leor3- 2 [ F (—————V-————) sin o da =
0 Syn,(rye) )
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‘ 3B P !
=n! Ve / F (——V—_> sin” @ do (D.11)
0

e_-2—-7714302 U;y71(769a)

All the primes mean that we are referring to the frame comoving with the fluid.
Again the integration time At must have been chosen short enough for 7, to be assumed
constant during emission, so that (D.9) and (D.11) represent the instantaneous total
and monocromatic emissivity of the fluid.

Note that if we define the average value of the single particle spectrum
! ! 1 i / / :
<P (V) >= ZE/O 2P, (V)sina do (D.12)

we can say that

drfl (V) =n < P.(/) > (D.13)

The average single particle spectrum can be expressed in the following way

<P (V) >= VaBe! Q [S <B, ”—/)} (D.14)

2mec? 2
with
I drmec V'
S|B,—| = < )
( ’“/S) 3eB ¢ (D-15)
and
Qlx] :/ F( _:C )sin2 ada (D.16)
0 sin o

The function Q[z] can be calculated numerically (see fig.D.2).

The average cooling time for the electrons will be

N, YeMec? _ 3 8mme.c
47‘—-721,171 (P)/E) 4 O-TﬁngBBQ

tcool(ﬁ/e) - (D17)

D.1.3 .... radiation emitted by an ensemble of particles with

a power law energy distribution

If the electron energy distribution is such that the electron population have Lorentz
factors v, varying between Ve min and Ve maz > Ve,min, and the number of electrons per

unit volume with Lorentz factor between v, andy. + d. is

dn, = N(ve)dve = Nev. P dve (D.18)
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Figure D.2: Plot of the function Q[z] given by equation (D.16)

with p > 2, but the electron speed directions are still randomly distributed, then we

can calculate the instantaneous monochromatic emissivity of the fluid as

Ye,maz

1 T
4ri' (V') = :1;/0 da27<‘sina[ dve Py, (V) Nev,” (D.19)

Ye,min

The quantity P! ,(v') is the instantaneous spectrum of radiation emitted by a single
electron of Lorentz factor 7, and pitch angle a. So, j'(¢') is simply the sum of the
instantaneous spectra emitted by every single electron in the volume element. If the
integration time At' is shorter than the cooling time of all electrons in our volume

element, we can use expression (D.2) for P] (') and write:

Ne 3 3B ™ P Ye,maz !
4ri' (V') = _\/_e /o dovsin? a/v dv.F (ﬁ——) voP =
syn

2 mec? e min Yes )
_p=1
— QﬂjNTe%iny {%};—} ’ /OF do sin QE%—_B LZT::::;?) CLLSQF(QZ)CZJL‘ (DQO)
with
Ve = 2§£ec (D-21)
!
Tmin(V', @) = 32;3 Sii - ﬁ}mm (D.22)
20 1 1

/
Loz (V 5 Q’) - . 3
3Up SIN QYL i,
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In order to have a reasonable approximated expression for j'(), note that in the limit
Tomin — 0 (i€ Yemaz — +00) and Tree — +oo (ie. ¥ — +oo). If we use the
asymptotic expression of F'(z) for x — +o0 (eq.(D.6)) the right hand side in equation
(D.20) becomes

p—1
3e? 20 | % _pes 3p+T _ /3p—1 3p+7
27(°Ne~\/—_6—1/}3 {—E,—} 2t Pt F( 4 )F( P+ )/ dasina™® (D.24)

4e 3 3(p+1) 12

This must be the asymptotic behaviour of j'(¢') at very high frequencies, let us say

Vo> ygyn(fye,mm), except for a numerical coefficient.

On the other hand, from the asymptotic expression of F'(z) for z — 0 (eq. (D.5)),
we know that all electrons emit a spectrum o V1% at low frequencies, so also j/ (V') is
expected to be VP at V< Vi (Veymin) -

Then we expect a reasonable approximation for j'(¢/) in the case Yemaz > Yemin
to be

1

. ! 3

) j';nax (m) v < U;yn(VE,min)

Ja(¥) =19 T e (D.25)
jrlnax (;é—ny__—> v > V;yn (Ve,min)

ynl Ve, min )

with

3¢, [ ~B s 3p 4T
47rj;namoc27rNe\/—e ’{“ 2 } 2"’-2-3_?_32_

40 VB ZLJYE min (p 4 1)
3p—1 3Ip+ T
F( L >F< L )/ dasina’™ (D.26)
12
Provided that Ve jmaz => Ve,min, We can also write
Ye,maz j\f
me= [  Neytdye~ i

from which we get
'[VE ~ nfz(p - 1)()/6 min
then we expect

V3B 2% Ap+T7 3p—1 3p+ 7N\ [ i3
A / C (p—1 r ( ) r ( ) / . :
TImaz € e 477’1'362 ’/TB;— (p >3(p + 1) 12 12 0 dosin o

Moreover, we can note that

1 -1

Ye,maxz - p
< 75 >== n_ /e o ’Ye]ve"ye p(l'ye ~ E)——_—Q’ye’min (D28)
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and consequently

47rj;yn(< Ve >) n 4 2 64 2 16mec
= —C . ————— ==
Vi (< Ve >) ‘9 m2c Te,min 3¢ BYZ min
_ V3B (E)Q 3 (D.29)
 4mec® N9/ 3 -
So we can write .
(V3B 4Anjyyn(< 7. >) V3 (3)2 (D.30)
¢ dmgc? Vign(Yeqmin) 3 \16 '
and, after a substitution of (D.30) into (D.29), we get
ATy (< Ye >)
47j! = 2 D.31
e ¢ S(0) e ST (D.21)
with
o M (Bp+7) . (3p—1\ . (3p+7T
() — s 2 WP D — D 4 . pt3
E(p) =9V3 e (p—1) (p+1)F( B >F< D >/0 dasina 2 (D.32)

The numerical factor missing in (D.31) can be determined by fitting the exact function
given by (D.20). It will be the function T(p) defined as

iy i ool (V)
( )_ :‘( )jéyn(<75>) ’
TN (<ye>)

Ve maz = +00 (D.33)

Finally we can conclude that

4(p B 1) 47rj.;yn(< Ve >)

4"'., = C D <
/t]maa: (p) 3p . 1 V;yn(< 76 >) ( 3-1)
where the coefficient 5 .
— P —
ﬂm=T®:@4@_D (D.35)

is such that, for instance, C'(2.5) = 0.86, C(2.6) = 0.88, C'(3) = 1. The final form
of the coefficient in (D.34) has been written this way to match with Granot’s results
[Granot, Piran & Sari 1999c].

The agreement between j'(2') and j,,,(2) is perfect at high frequencies far from
the peak and quite good even at low frequencies. See fig.D.3

The expression (D.20) represents the instantaneous monocromatic emissivity from a

power law of electrons and could actually be observed only with an integration time At/
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Figure D.3: Plot of the true monochromatic emissivity due to an infinite power law of
electrons as calculated through equation (D.20) and its approzimated expression (D.25) with
Imax 9iven by (D.34) in the case p = 2.5. We have used as z coordinate the normalized

frequency V' [V, (Ye,min) and have normalized both functions to fy,-

shorter than the synchrotron cooling time of the highest energy electrons, t.on(Vemaz)-
The approximation (D.25) is expected to be valid only up to frequencies ~ v4,, (Ve,maz)-
The true instantaneous monochromatic emissivity (D.20) shows an exponential cut off
at frequencies v > vy (Yemae) (see fig.D.4).

Anyway, if we wait for a time interval ¢’ > teo0(Vemaz) @nd no fresh electrons are
supplied during this time, the highest energy electrons cool down and stop emitting.
The high energy cut off of the electron power law shifts to a Lorentz factor 7. . < Ve maz
that depends on the time t'. The cut off Lorentz factor after a time ¢’ must be the one
for which the cooling time of the electrons is exactly ¢/, so

3 8mmec 3 8mmec

t’:tcoo ec) — ; ~ = .36
l(7 ’ ) 4 UT/Btzz,cf)/e,ch 4 O-T'Ye,::B2 (D 36)
and consequenly .
TTImMeC
_tl - = € 37
7e,c( ) 4CTTt'B?' (D 3{)

The cooling Lorentz factor v, .(t') can eventually become lower than v, ., at late times,
and this will change the shape of the integrated spectrum, i.e. the spectrum of the
radiation emitted during all the time interval ¢'.

If Yeo(t') > Vemin, the integrated spectrum of radiation emitted during the time

interval ¢ is due to two different sets of electrons, one made of electrons that have
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not substantially changed their Lorentz factors during the time ¢’ because their cooling
time is still longer than ¢’ (i.e. the electrons with a Lorentz factro between 7e mi, and
Yec(t')), and another one made of electrons that have cooled down during the time
interval #' because their cooling time was shorter than ¢ (i.e. the electrons with a
Lorentz factor between 7, (') and 7, max). Recalling the asymptotic behaviour of the
function F'(z) at low and high values of z (see expressions (D.5) and (D.6)), we can see
that the single particle integrated spectrum of an electron that does not substantially
cool over the time interval ¢’ can be approximated as a two segments law, consisting of a

11/3

o v'*/° power law and an exponential cut off at about the synchrotron frequency. It can

be shown that electrons that cool down during the time ¢, instead, show an integrated
spectrum that can be approximated as a three segments law, the first segment o< als
up to the synchrotron frequency, the second segment o< v/ ~1/2 from the synchrotron
frequency to the cooling frequency v, (') = jn.(7ec(t’)), and a final exponential cut
off. The integrated spectrum due to the whole population, i.e. the superposition of all

the single particle spectra, then will be well approximated by the broken power law

1
j;nam<7m>3 Vlgy;n
; : 5
Japs (V') =3 Gas (57) 7 vl <V <Vt (D.38)

where v, = Vo (Vemin)s Ve(t') = Vyne(Vee(t')) and jp,,, is defined as in (D.34).

If Yeo(t) < Yemin, all electrons have cooled down during the time interval ¢ and

the approximated expression for the integrated spectrum will be

. ,\d
Traz (5275 V< V()
__% )
G (V) =3 e (G55) ) <V <, (D39)

Remember that (D.38) and (D.39) are analitic approximations for the monochromatic
power emitted per unit volume and unit solid angle in the comoving frame accumulated
during all the time interval ¢'. Detailed calculations and pictures will be shown in the

following sections.
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D.1.4 .... radiation emitted by an ensemble of particles with

a generic energy distribution law

If the electron energy ditribution law is such that at a given time ¢’ the number density

of electrons with Lorentz factors between v, and v, + dv. and random pitch angles
N (e, t)d7, (D.40)

then the instantaneous monocromatic emissivity of the fluid is j'(¢/,#') such that

Ye,maz (t/) jV s ‘t,
47rj/(l/f7t/) — / dveﬁ_ﬁl

Ye,min (tl) 471—

/o da2rsina P, (V') (D.41)

where, as usual, for P/ (V') we use expression (D.2).
) ) Ye ;X

A clearer espression for j'(/,t') can be obtained substituting in (D.41) the average

single particle spectrum

1
< Pf/e(v’) >= E/o QwP,’Ye’a(z/) sin ado (D.42)

The result is
"/e,mum(t’)

dni' (V1) = / AN (10, t) < P (V) > (D.43)

Ye,min (')

If we know how the electron energy distribution N (7., t') evolves with time we can
in principle calculate how the fluid monocromatic emissivity j'(v',¢') evolves. Note
that the range (Vemin(t'), Ye.max(t')) of the electron energy distribution is also time
dependent.

Note that in expression (D.43), the function < P (v/) > is known (the function
Q defined in (D.16) can be calculated numerically once, and stored for future uses).
Then, the expression (D.43) is the most convenient for a numerical calculation of the
instantaneous comoving emissivity of a fluid element when the emitting electron energy
distribution is known. And the emitting electron energy distribution N(v.,t') can in
principle always be calculated at any time as a solution of the particle diffusion—loss
equation (see section E), thus the problem reduces to a numerical integration of known

functions.

We can give some examples using the results from appendix E.
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In the case of a power law distribution of electrons
dNg = KE™PdE for E > E,;, (D.44)

instantaneously injected in the fluid element at the time ¢ = 0 and subsequently
affected only by pure synchrotron radiation losses due to the presence of a constant
magnetic field B, we expect that, at the time ¢, electrons whose lifetime was greater
than ¢’ have cooled, while the others have simply drifted to slightly lower energies. Thus
we expect a high energy cut—off in the electron distribution. Actually, the electron

energy distribution evolves according to the law

KE™P(1 —-aB*Et)Y? E < E<E
NE(E’ t,) — ( ) min max (D.45)
0 E<E,,o E>E
where a = élﬂ;nﬂe%)—f,
B .
E . = i D.46
™1 4+ aB2E it ( )
and
R (D.47)
mazr a,thl N
Remember that N(v.,t) = Ng(vemec?,t')m.c?. In particular
2 2 2\17P_p -p
N(%e,0) = Np(yemec®, 0)mec® = K (mec®) " 7,7 = Nev;
with
Ne =K (meCQ) P
thus we can write
NeyTP(1 — aB?mec?y P2 <y, <A
N(’)’e,t’) — eVe ( eC™Y, ) P)/e,mzn Y rYe,maw (D48)
Ve < Vé,min or Ye > fyé,maw
with s
! Ye,min min
= 2 = D.49
Ve,min 1+ QB2me02’Ye,mz’nt/’ Ye,min MeC? ( )
and
1
1 _
Temas = aB?mc*t! (D-50)

Note that 7 ., is identical to 7. .(¢') given by (D.37).
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So, in this case the spectrum of the emitted radiation at the time ¢’ is

A ]_ 7é,maz _ ! _
7t = E/ dve Nev,P(1 — aB?yemec®t') P72 < P, (V') > (D.51)

’
rye,min

This integral can be evaluated numerically. The result is shown in fig.D.4. The

function (D.51) is well approximated by a broken power law growing as v/ 1/3 up to
: =p=1)
Uy = Viine(Vemin), decreasing as v/ T from Vpy 10Vl = Vi (Ve maz)> and then drop-

ping exponentially for nu’ > v/. The peak value is still given by (D.34).

jlu/j‘max

10 1 " 1 I 1 1 N )
107% 1072 109
o

Figure D.4: Plot of the instantaneous spectrum j'(V',t') emitted by the electron distribution
(D.48) at a fized t' (solid line) and its analitic approzimation (dashed line). Frequency is in

, , N . ”
units of v],, and emissivity is normalized to J,,,,-

After that we can also integrate the instantaneous spectrum (D.51) over a time
interval and compare the result with the approximated broken power laws (D.38) and
(D.39) presented in the previous section. Results are shown in fig.D.5. We can see that
after a time ¢/, = 1/amec? B2, min the integrated spectrum JE 3"/, s)ds, initially well

approximated by (D.38) changes its shape and needs to be approximated by (D.39).

D.2 Observed Radiation

We have said that a population of monoenergetic electrons moving with a Lorentz

factor v, in a magnetic field B emits a total power per unit volume

4 B?

.Pt’ot(%) = 47Tj;yn(7€) = n;§0T65273§ (D52)
. .
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Figure D.5: Plots of the integrated spectrum of a cooling power law of electrons
%%f(f/ §'(V', s)ds (solid line) and its analitic approzimation j,,, (dashed line), in the two cases
t' <t (upper panel) and t' > t. (lower panel). Frequency is in units of v}, in the upper panel

and in units of V. in the lower panel and emissivity is always normalized to §;,q;-
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This result is valid in the fluid comoving frame.

If the fluid is moving with respect to the lab frame at a Lorentz factor v and in a

direction forming an angle ¥ with the line of sight, it can be proved that the power

observed in the lab frame is

Pt,ot(fye)
v*(1 — Bcosd)?

Ptot (’)’e) -

Moreover, if the typical frequency of emitted radiation is

3 eB?
] _ 2 &P%
Vo () = 16 mec

then the typical frequency of observed radiation is

v ( ) — V;yn(fye)
syn\Te Ye(1 — B, cos )

Finally, the observed electron Lorentz factor in the lab frame is v.7.

(D.53)

(D.54)

(D.55)






Appendix E

The diffusion—loss equation for the

electrons

Consider a fluid element of volume V(t') in which relativistic electrons are injected at
a rate Q(FE,t') such that the total number of electrons with energy between E and
E + dFE injected in the fluid element during the time interval from t' to ¢’ + dt’ is
Q(E,t') dE dt'.

Each electron of energy E = m,c?7, in the fluid element suffers energy losses ac-

cording to the law
dE

—— | =bE,1 E.1
(%) -ue.0 ®1)
where the function b(F,t') is expected to be positive.

A general expression for b(E,t') including all the possible energy loss processes in

a fully ionized plasma is the following:
b(E,t) = [Aprems(t') + Aap(t)] E + [Agync(t') + Arc(t)] E? (E.2)

The linear term in E accounts for Bremsstrahlung radiation and adiabatic losses, while
the quadratic term accounts for Synchrotron and Inverse Compton radiation.

From standard textbooks we know that

Aprems(t) = 40 (t)) 72 ( ngczfasgc (E.3)
Ain(t) = 3(V-9) () (E4)
Aanell) = 57255 Unag(!) (5.5)
Aelt) = iz Unalt) (E6)
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where Z is the atomic number of the ionized matter (made of one chemical specie only),
a; is the fine structure constant and § = In(2v.) — 3 ~ constant for 100 < 7. < 10°.
The vector field v represents the fluid velocity field and n'(¢'), Upnqg(t') and Useq(t') are
the particle number, magnetic and radiation energy densities in the fluid element.

In a very low density plasma such as the one which we are dealing with,
Bremsstrahlung and Inverse Compton radiation losses are supposed to be negligible
as compared to Synchrotron radiation losses and we will neglect them. The adiabatic
losses (i.e. energy losses due to adiabatic expansion of the fluid element) are to be
considered negligible on short timescales, but can affect the emitting electron energy
on long timescales.

Regardless of what term dominates in (E.2), an electron population with an energy
distribution Ng(E, ') such that at the time ¢’ the total number of electrons with energy
between F and E + dE in the volume V(t') is Ng(E,t')dE, evolves according to the

diffusion—loss equation

Ng _ d
dt/  dE

where the last term represents the number of electrons with energy E that leave the

[b(E,t"\Ne(E, )]+ Q(E, ) + DV*Ng(E, t') (BE.7)

fluid element by diffusion. D is the diffusion coefficient.
In the case of acceleration processes at shocks the injection rate can be approximated

as
Q(E,t) = KE8() E > Epin (E.8)

The shock instantaneously provides a power law of electrons at ¢ = 0 and then moves
away leaving the newly shocked electrons free to cool and diffuse. No fresh electrons
are supplied after ¢ = 0.

If we neglect the diffusion loss term in (E.7) we can write

Ny d , , ,
o = == [0(B, )N (B,t)] + Q(B, t) (E.9)

The solution of (E.9) with electron injection rate (E.8) will depend on which term

dominates in (E.2). We have already said we are interested in solutions for synchrotron
dominated radiation losses with adiabatic expansion accounted for. Moreover, we will
deal with a magnetic field decreasing with time.

In our case the use of equation (E.9) instead of (E.7) can be justified if the gyration
radius of the injected electrons is much smaller than the fluid element size, so that

electrons on average do not diffuse away from their injection site. Fig.E.1 shows the
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gyration radius of the average emitting electrons compared to the fireball shock radius
at the time of emission as a function of the position behind the shock along the line
of sight at different observer times. It can be seen that this ratio is always small, so
our assumption about the absence of electron diffusion is probably satisfied by average
electrons, that are the bulk of the population. A small fraction of emitting electrons
having a Lorentz factor significantly higher than the average might anyway diffuse to
adjacent fluid elements, but we expect this effect to be negligible. The fact that in the

FA ) V) B ) B 7 I ) IR ) B I ) B 0

. 7 = 303, E, =2 x 10> ergs ]
llO ' I L f L ' L | L L s ! L . L |

.o 0.2 04 0.6 028 1.0

"/R.

Figure E.1: Plots of the ratio 7 with rp, = mé%')’e,minﬁe,min at the time of emission as a

function of the position behind the shock along the line of sight at different observer times.

shocked plasma we are dealing with inverse Compton radiation can be neglected, could

be easily verified, for instance, calculating the ratio ﬁ;ﬁc = g;‘z((ttl,)) = 153 at the

time of emission as a function of the position behind the shock along the line of sight at
different observer times. We can approximate the electron energy ditribution as a mo-
noenergetic distribution with a lorentz factor equal to the minimum and conclude that,
for negligible inverse compton contribution to the emitted radiation it should always
come (see relation (D.9)): j" ~ i e (Ymin(t') ~ =, (') 307Bmin (') Ymin(t) 2 Unnag (1),

0 that 12 = predfy ~ forn(¥') (Ymin(t')? = 1) < 1
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It can be seen in fig.E.2 that the approximated value for the ratio —fﬁ: we have

just calculated is always small enough to justify our assumption.

-0
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—_
T
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1

E, =2 x 10% er ]

0.4 0.6 038 1.0

"/Rq

Figure E.2: Plots for the quantity $orn), (v4y, —1) ~ A—‘tﬁ: versus the position relative to

the shock radius at different observer times.

In the remaining part of the section we will calculate and interpret the general
solution we need after solving (E.9) with the electron injection rate E.8 under different

simplifying assumptions.
e If we have as dominant cooling mechanism the Synchrotron process we can write
b(E, ) ~ Agne(t')E® = aB*(t')E® (E.10)

Suppose the cooling mechanism acts on the electron population on a timescale
much shorter than the timescale on which the magnetic field strength varies, so
that we can assume

B(t') = constant (E.11)
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In this case the solution of the diffusion—loss equation is simply

KEP(1 -aB?Et)Y 2 E . <E<E
Ne(Et') = ( ) e (B.12)
0 E<E. . o E>E
where a = %rﬂfﬁ?%ﬂ,
E .
i, = o E.1
and .
/ — n
max a B2t (E14)

The result is that after ¢’ seconds the electron power law shows a high energy
cut—off progressively moving towards lower frequencies as time passes. The cut—
off energy is the one corresponding to electrons having a lifetime for synchrotron
losses (Tsyne ~ E/(AE[dt)syne ~ 1/aB?E) as short as the time ' elapsed from
the shock passage. At the same time the minimum electron energy is moving to-
wards lower frequencies too according to the energy loss equation by synchrotron

radiation for a single electron.

If the dominant energy loss mechanism is synchrotron radiation but the magnetic
field is not constant (and, for instance, decreases with time), the solution of
the diffusion loss equation (E.9) with the instantaneously injected power law of
electrons (E.8) is

:fE—p‘ 2-p E;nm < E < Evlnam
Ne(E,t) = [HE Jo BWM] (E.15)
0 E<E . o E>E
where
Epin = Erin (E.16)
1+ aBpin Jy B(x)%dzx

and .

! (E.17)

The general behaviour of the electron energy distribution is not very different
from the constant magnetic field case, except that the parameter that determines
the cut off is now the average squared magnetic field over the time interval ¢
In order to simplify the expressions (E.15), (E.16) and (E.17) we can define the

auxiliary function

HA(Y) = /O " Ble)ds (E.18)
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o If the dominant energy loss mechanism is synchrotron radiation but the volume
element is also expanding and the adiabatic cooling is acting too, things get more

complicated.

Suppose that the magnetic field is constant and the adiabatic cooling rate is
constant too (A4p = g = constant). In this case the solution of (E.9) is

—p_ —qgt'
— ]CE2 f’(elni*gt,) 7=p ;mn < F < E;nax
Ng(E 1) = [ —eBr B ] (E.19)
0 E < 7’nin or B> E;na:c
with py
Eine™?
/. — min ‘)
main 1 + aBQEmin (1_€~gi/) (E_O)
g
and
/ e—gt,

aB2? (1—e-9¥)
g

The diffusion-loss equation solution (E.19) actually reduces to the previous one
(E.12) if g¥’ < 1, since in this case (1 — e~9") ~ gt" and e79* ~ 1.
In solution (E.19) we have a high energy cut off of the injected power law deter-

mined by a sort of weighted magnetic field

— et ¢ t
d=e?) = BQ/ e %ds = / G(s)B*ds (E.22)
g 0 0

and by a second parameter

H2 (t,) — B2

G(t) =e " (E.23)

Note that a constant adiabatic cooling rate coeflicient is obtained in case of

spherical pure radial expansion with a fluid velocity field v(r) oc 7.

e In case of pure synchrotron losses with adiabatic cooling, if both the magnetic field
and the adiabatic cooling rate are time dependent, the solution of the diffusion

loss equation (E.9) for the instantaneously injected power law of electrons given
by (E.8) will be

tl
KE-re o 2%

+ " 2—p Emm < E < E;HCL’C
N ' —f g(z)dz ¢ —~jsg(m)clz R , E
E(E,t) = e JO —-aEfO e JO B2(s)ds
/ N '
0 E < ‘min OT E> Emam

(E.24)



[S]
[N]
[

with
mvne f
14+ aEnm [ e fo @)dz B2 (5)ds
and )
e Jo a(@)ds
Ev"naa: - (EQG)

aff e b 9(®)d= B2 (5)ds
The solution (E.24) clearly reduces to the previous one (E.19) for g and B con-
stant. The the integral fot/ g(z)dx must be calculated quite accurately because
it is the argument of an exponential function that multiplies the whole particle
distribution. On the other hand, the integral [ e~ fosg(“)deQ(s)ds can be calcu-
lated with low precision. A factor ten of uncertainty in its value produces only a
??% error on the particle distribution.

If we define

t,

H*(t) :/ G(s)B%(s)ds (E.27)
0
and )
! — [V g(z)da
G(t) = e Jo 9@ (E.28)
we can rewrite (E.24), (E.25) and (E.26) as
KE-?G(t') ’ /
Ne(E, 1) = [G(t)—aEH?(#')]>"P Einin < B < Binag (E.29)
0 E<E .ot E>E
EpminG(t)
/ ) — man E
and G(t’)
E .= .

We can conclude that the general solution of the diffusion-loss equation (E.29)
has a quite simple structure. It can be verified that it conserves the total number of
electrons, as expected. Actually we have

Emaa:
nl (VW () = Ng(E, t)dE =
/E;m ]CE“pG(t’)
B (G ') aBH(t)])*"
= PAE =
= 1Ep . / KE?dE =

mzn mzn

—~ / N (E,0)dE = n.(0)V(0) (E.32)

m’LTL
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Since V(#') = 1/n'(t") where n/(t') is the proton density, we can say that at any time ¢

) _ne(0) _ nl(#') = en' (¢) (E.33)

and that the electron energy distribution per unit volume at the time ¢* will be

E.t ,
Ng(E,t') = A—[Ji—((—ﬂ‘)— = Ng(E,t")n'(t) (E.34)
or equivalently
K E~PG(') r ’
Ng(B, ') = G)—aBH (P min < E < B (E.35)
0 E<E! . or E>E
with
! I ! p—1 1741 né(o) [ —1
K(#) = Kn'(¢) = w0V (0)(p = DEqn' () = () (o = D =
= en'()(p— 1) By = () (p — 1) Epny (E-36)

and E' . and E! . given by (E.25) and (E.26) respectively. The parameter ¢ < 1
represents the number of non-thermal electrons injected in the volume at the time

# = 0. We will always use ¢ = 1 according to the discussion in section (3.7.1).
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