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Abstract

Observation of neutrino oscillations opened the first door to physics beyond the Standard
Model of particle physics. This motivates us to study any properties of neutrinos that can
shed light on new physics such as absolute values of neutrino masses, possible interaction
with new particles and potential CP-violating properties of the leptonic sector.

In this thesis, we first review the implications of the results of the upcoming KATRIN
experiment which is designed to measure the absolute value of neutrino masses. We then
discuss the possibility of interaction of neutrino with a massless scalar field called Majoron,
J. In particular, we study the role of such interactions in the cooling process of the supernova
core and derive bounds on the relevant couplings. Although such processes had been studied
before, the dominant process, v, + v, — J, had been overlooked.

Similarly to the CKM matrix in the quark sector, the 3x3 neutrino mixing matrix can in
general have a CP-violating phase manifesting itself in the neutrino oscillation pattern. One
of the challenges of neutrino physics is to measure this CP-violating phase. In this regard,
the state-of-art experiments (neutrino factories and superbeams) have been proposed in the
literature. In this work, we suggest an alternative method to determine the CP-violating
phase which is based on constructing the unitary triangle in the leptonic sector.

It is well-known that in the context of supersymmetric seesaw mechanism, which gives
tiny masses to neutrinos and at the same time solves the hierarchy problem, neutrino cou-
plings can induce Lepton Flavor Violation (LFV) as well as Electric Dipole Moments (EDMs)
for charged leptons. In this work we discuss such effects and indicate some contributions
that have not been studied before.
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Chapter 1

Introduction

Observing the deficit of the solar neutrino flux provided the first evidence in favor of physics
beyond the Standard Model (SM) of particle physics. Later atmospheric neutrino data,
results of KamLAND and K2K as well as further study of solar neutrino confirmed the
evidence. On the other hand, neutrinos can play crucial roles in several cosmological and
astrophysical phenomena (in structure formation, the expansion of the Universe, Big Bang
Nucleosynthesis, the ultra high energy cosmic rays and etc.) for some of which, in the context
of the SM and general relativity, we do not have any robust explanation. Considering these
facts, neutrinos appear to be the best messengers of physics beyond the SM and, as a result,
all their properties deserve to be explored. In this work, we study various properties of these
particles that go beyond the SM.

The solar and atmospheric neutrino data as well as the data from the KamLAND and
K2K experiments show that neutrinos of a certain flavor convert to neutrinos of other fla-
vors while propagating. There is a consensus among physicists that such behaviors can be
explained assuming the flavor eigenstate neutrinos (v, v, and v,) are combinations of three
(or more) mass eigenstates (vy, v, and v3) with three different masses (my,m, and ms):

Ve 141
vy | =Upyns | V2 |, (1.1)
Vs Vs

where Uppns (PMNS stands for Pontecorvo-Maki-Nakagawa-Sakata) is a unitary matrix
representing the mixing of neutrinos. There is another experiment— called LSND— that shows
an evidence in favor of oscillation. The results of this experiment are not conclusive and will
be checked by another experiment— called MiniBooNE- in the near future. To explain the
LSND results through oscillation (assuming the CPT-invariance) a fourth neutrino state is
required. Considering the strong bound on the number of active neutrinos from the Z-width
study at LEP I, the fourth neutrino must be sterile; i.e., a SU(2)xU(1) singlet.

The solar neutrino data and KamLAND results can be explained practically by two-
neutrino oscillation with mass splitting Am2,,. = 8.250% x 107° eV? [1]. Atmospheric
neutrino data and the LSND results can also be explained by two-neutrino oscillation with
mass splittings Am2, = (1.5 — 3) x 10~% eV? and Am}gyp ~ 1 eV?, respectively [2].

The neutrino oscillation pattern is sensitive only to the mass squared differences, pro-
viding no information on the absolute mass scale of neutrinos; i.e., the mass of the lightest
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neutrino. On the other hand, from theoretical and model building points of view, the mass
scale of neutrinos is extremely important because it provides some clue on the new energy
scales of theory (remember that in the SM, neutrinos are massless). We have to look for
other ways to extract the mass scale of neutrinos. There are three types of experiments and
observations that can be used to extract the absolute mass scale of neutrinos: i) studies
of the end-point of spectrum of electrons originating from the decay of a Tritium nucleus;
ii) neutrinoless double beta searches; iii) and cosmological observations. So far only upper
bound on the neutrino mass scale has been derived. The best terrestrial bound is given by
the Mainz and Troitsk tritium beta decay experiments. The upper bound from Mainz is [3]

my, < 2.2eV (95% C.L.). (1.2)

The Troitsk experiment observes an anomalous excess rate of events near the endpoint.
Subtracting this effect, the bound from Troitsk is [4]

my, < 2.05 eV (95% C.L.). (1.3)

To improve these bound, another Tritium beta decay experiment— called KATRIN- is
under construction which will be able to set an upper bound of 0.2 eV at 90% C.L. if the
lightest neutrino is much lighter than 0.1 eV [5]. KATRIN will be able to detect m,=0.35
eV at 5 ¢ C.L., while a mass of 0.3 eV can be identified at 3 o C.L.

Neutrinos can play a crucial role in cosmological processes specially in the structure
formation. Ref. [6] has combined the constraints from the recent Ly-« forest analysis of the
Sloan Digital Sky Survey (SDSS) [7] with constraints from SDSS galaxy clustering data [8]
and WMAP data [9] to find upper bounds on the neutrino masses. According to [6], for
the scenario with three massless plus one massive neutrino, the bound on the mass of the

massive neutrino is
: my, < 0.79 eV 95% C.L., (1.4)

and for the three neutrino scenario
> m, <042 eV 95% C.L. (1.5)

Obviously, the bound in Eq. (1.4) strongly disfavors the presence of a fourth neutrino state
with mass above ~1 eV which is suggested to solve the anomaly observed by the LSND. As
far as three neutrino scenarios are concerned, the bound (1.5) leaves no room for KATRIN
to detect any effect. However, one should note that to derive this bound, cosmological data
from a variety of sources have been employed; but, the interpretation of some of these data is
questionable. Especially, the analysis of Ly-a data is controversial [10]. Including the recent
SDSS data [8], but omitting the Ly-a data, the upper bounds on neutrino masses are

> my, <0.75eV (1.1eV) at 20 (30) C.L. for N, =3 [11] (1.6)

and
> m, <1.37eVat 95% C.L. for N, =4 [12]. (1.7)

So it is still premature to refute the LSND results based on the cosmological data. In Ref.
[13], it has been shown that the cosmological bounds on the neutrino mass will not apply if
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neutrinos annihilate at late times. The KATRIN experiment can play a crucial role to test
such a scenario.

The results of KATRIN will be independent of the knowledge of “priors” employed in
cosmological bounds; therefore, the results of KATRIN can be used as an independent input
for cosmology. In particular, if KATRIN detects a nonzero mass, our current understanding
of cosmology may need to be revisited. In chapter 2, we discuss how we can combine
the results of KATRIN with other terrestrial experiments such as neutrinoless double beta
decay searches (0v20) to extract information on the neutrino parameters. This discussion is
basically an update of Refs. [14, 15, 16].

In principle, neutrinos can couple to a massless scalar particle called the Majoron, J. Such
a coupling is inevitable in some class of models that are developed to attribute tiny nonzero
masses to the neutrinos [17]. If this coupling is relatively strong, the neutrinos trapped in
a supernova core can emit Majorons which escape the core, carrying energy outside and
speeding the cooling process of the supernova core. This effect had been discussed in a series
of papers [18, 19, 20, 21]; however, the dominant effect, v, + v, — J, had been overlooked in
the pioneering works. In Ref. [22], bounds on the coupling of the neutrinos to the Majoron
is calculated taking this effect into account. In chapter 3, we will review this work.

The PMNS matrix shown in Eq. (1.1) is a 3x3 unitary matrix and like the CKM matrix
can possess a CP-violating phase. Similarly to the quark sector [23], we can define the
basis-independent Jarlskog parameter, Jop

Im [U%JNSUJQIXJNS(Ugﬁ/[NS)*(UJ%INS)*] = _ capyeiuJop. (1.8)
1

The Jarlskog parameter is proportional to the Dirac phase in the PMNS matrix and is a
measure of CP-violation in the lepton sector: Jep # 0 < P(vy — v5) # P(0y — D).

From the cosmology point of view, CP-violation is very interesting. One of the most
appealing scenarios to explain the baryon asymmetry of universe is leptogenesis [24] which
requires CP-violating phases in the leptonic sector. Although the baryon asymmetry is not
directly given by the Jarlskog parameter, in specific models, there may be some relation
between the baryon asymmetry of the universe and the Jarlskog parameter (see for example
[25]).

So far, the numerical value of the Jarlskog parameter remains unknown. To measure
the value of the Dirac phase, two types of state-of-art experiments (superbeams [26] and
neutrino factory [28]) are proposed which are based on measuring direct CP-violation; i.e.,
[P(ve — vg) — P(0y — 75)]/[P(ve — vg) + P(Dy — Ug)]. In Ref. [29], an alternative method
has been proposed which is based on constructing the unitary triangle. In chapter 4, we
define this triangle and review the prospect of measuring the Jarlskog parameter through
this method.

The large gap between neutrino mass and the masses of other elementary particles
(m,/me < 107% and m,/m; < 107!') has always been a mystery for theorists. One of
the most economic ways to attribute tiny but nonzero mass to neutrinos is the famous see-
saw mechanism [30]. To solve hierarchy problem of the SM (Meectroweat/Mpiance ~ 10717)
and explain the smallness of neutrino masses simultaneously, we can embed the seesaw mech-
anism in the Minimal Supersymmetric Standard Model (MSSM). In such a model, several
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new parameters appear including a neutrino B-term:

MB, - -
By, (1.9)

V:voft =

where N is the right-handed sneutrino. As first we noticed in [31], the phase of B-term can
induce Electric Dipole Moment (EDM) for charged leptons. The phases of neutrino Yukawa
couplings can also induce EDMs.

In the presence of neutrino mixing, lepton flavor symmetry is violated. In the context
of supersymmetric seesaw model, this induces Lepton Flavor Violating (LFV) rare decays
[32]. In Ref. [31], we showed that B, can give the dominant contribution to this effect. In
chapter 5, we review these effects.




Chapter 2

Neutrino Mass Spectrum and Future
Beta Decay Experiments

The reconstruction of the neutrino mass spectrum is one of the fundamental problems of
particle physics. The program includes the determination of the number of mass eigenstates,
and of the values of masses, mixing parameters and CP-violating phases.

At present, the evidence for non-zero neutrino mass follows from oscillation experiments
which allow to measure the mixing parameters |Uy;|, the mass squared differences and,
in principle, the so called Dirac CP-violating phases. However, the absolute values of the
neutrino masses cannot be determined. From the oscillation experiments one can only extract
a lower bound on the absolute values of the heavier neutrino masses . Obviously, for a given
Am?, at least one of the mass eigenvalues should satisfy the inequality

m; > 4/ |Am2|.

Thus, the oscillation interpretation of the atmospheric neutrino data and K2K results [2]

gives the bound:
mg > 1/ Am2,,, ~ (0.03 — 0.06) eV.

Clearly, without knowledge of the absolute values of neutrino masses our picture of Nature
at quark-lepton level will be incomplete. The knowledge of absolute values of neutrino
masses is crucial for understanding the origin of the fermion masses in general, the quark-
lepton symmetry and unification. It is the absolute mass which determines the scale of
new physics. In this chapter, we consider the information that can be derived from the
experiments designed to extract the value of neutrino masses.

Neutrinoless double beta decay (280v) searches are sensitive to the Majorana mass of the
electron neutrino. However, in the presence of mixing the situation can be rather compli-
cated: The effective Majorana mass of v, relevant for the 280v-decay, me,, is & combination
of mass eigenvalues and mixing parameters given by

Mee = l Zszé (21)




From this expression it is easy to find that if the 260v-decay is discovered with the rate
which corresponds to me.., at least one of the mass eigenvalues should satisfy the inequality
[33]

m
m; > ee

(2.2)

where n is.the number of neutrino mass eigenstates that mix in the electron neutrino. This

bound is based on the assumption that exchange of the light Majorana neutrinos is the only

mechanism of the 250v-decay and all other possible contributions are absent or negligible.
The best present bounds on m, are obtained by the Heidelberg-Moscow group [34]:

Mee < 0.34 (0.26) eV,  90% (68%) C.L. (2.3)

This bound, however, does not include the systematic errors related to nuclear matrix el-
ements *. A series of new experiments are planned (and some of them have released their
preliminary results) with increasing sensitivity to me.: CAMEO [35], CUORICINO [36],
NEMO [37] CUORE [38], EXO [39] MOON [40], Majorana [41] and GENIUS [42].

Although the knowledge of me. provides information on the mass spectrum independent
of Am?’s, from m.. one cannot infer the absolute values of neutrino masses without additional
assumptions. Since in general the mixing elements are complex there may be a strong
cancellation in the sum (2.1). Moreover, to induce the 260 decay, v, must be a Majorana
particle.

The information about the absolute values of the masses can be extracted from kinematic
studies of the reactions in which a neutrino or an anti-neutrino is involved (e.g., beta decays
or lepton capture). The most sensitive method for this purpose is the study of the electron
spectrum in the tritium decay:

SH—*He+e + v, . (2.4)
In absence of mixing, the energy spectrum of e in (2.4) is described by

dN 1
—= = ROIE ~ E)* - m})z, (2.5)
(see, e.g., [43]) where E is the energy of the electron, Ej is the total decay energy and R(E)

is a m,-independent function given by

5

;1:3 cos? 6| M2 F(Z, E)pE(E, — E) . (2.6)

R(E) = G%

Here Gp is the Fermi constant, p is the momentum of the electron, s is the Cabibbo
angle and M is the nuclear matrix element. F(Z, E) is a smooth function of energy which
describes the interaction of the produced electron in the final state. Both M and F(Z, E)
are independent of m,, and the dependence of the spectrum shape on m, follows only from

*In what follows we will use the bound (2.3) in our estimations for definiteness. At the same time, one
should keep in mind that due to the uncertainties of nuclear matrix element the values of me. up to ~1.35
eV can not be excluded [34].




the phase volume factor. The bound on the neutrino mass imposed by the shape of the
spectrum is independent. of whether the neutrino is a Majorana or a Dirac particle.

The aim of this chapter is to study the discovery potential of the next generation tritium
beta decay experiments with a sensitivity in the sub-eV range (e.g., KATRIN). We con-
sider the effects of neutrino mass and mixing on the S-decay spectrum expected for specific
neutrino schemes. We describe the three-neutrino schemes which are elaborated to explain
the data on the solar and atmospheric neutrinos as well as the four-neutrino schemes which
accommodate also the LSND result. We study the bounds that the present and forthcoming
200v-decay searches, as well as the oscillation experiments can put on possible tritium decay
results.

In section 2.1 we give a general description of the effect of massive neutrinos on the beta
decay spectrum in the presence of mixing. In section 2.2 the three-neutrino schemes are
explored. In section 2.3, we present a general discussion of predictions for the beta, decay
in the four-neutrino schemes which explain the LSND result. We emphasize the importance
of the bounds on the beta decay parameters imposed by Bugey and CHOOZ experiments.
Finally, in section 2.4 we explore the signature of 3+1 mass scheme.

2.1 Neutrino mixing and beta-decay: Effects of degen-
erate states

In the presence of mixing, the electron neutrino is a combination of mass eigenstates v; with
masses m;: Ve = )_; Ueivy. So that, instead of (2.5), the expression for the spectrum is given
by

dN

5=
where R(E) is defined in (2.6). The step function, ©(E; — E — m;), reflects the fact that a
given neutrino can be produced if the available energy is larger than its mass. According to
eq. (2.7) the presence of mixing leads to a distortion of the spectrum which consists of T

(a) kinks at the electron energy E®) = E ~ Ey—m; whose sizes are determined by |Uesi|%;

(b) a shift of the end point to Ee, = Ey — my, where m; is the lightest mass in the
neutrino mass spectrum. The electron energy spectrum bends at E ~ Eep.

So, in genera] the effect of mixed massive neutrinos on the spectrum cannot be described
by just one parameter. In particular, for the three-neutrino scheme, five independent pa-
rameters are involved: two mixing parameters and three masses.

Substantial simplification, however, occurs in the schemes which explain the solar and
atmospheric neutrino data and have the states with absolute values of masses in the range
of the sensitivity of KATRIN. The simplification appears because the states are quasi-
degenerate. Indeed, in these schemes there should be eigenstates with mass squared dif-
ferences Am2,, ~8.2-107° eV? and Am2, ~2.5.1073 eV If the neutrino masses, m;, are

(B) X |Uail[(Bo = B)* = mi?)30(Eo — E — my), (2.7)

'In what follows we will use the terminology elaborated for the ideal Kurie plot without background.
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larger than 0.2 eV (within the sensitivity limit of KATRIN), the mass differences

Am?
2m

Am ~ (2.8)
turn out to be smaller than 6 x 1073 eV. Moreover, Am/m ~ Am?/2m? < 1, that is,
the states are strongly degenerate. Since the detectors cannot resolve such a small mass
split, different masses will entail just to one visible kink with certain effective mass and
mixing parameter. As a consequence, the number of relevant parameters which describe the
distortion of the beta spectrum is reduced to one or three, depending on the type of the
scheme (see sections 2.2 - 2.4).

In general, the neutrino mass spectrum can have one or more sets of quasi-degenerate
states. Let us consider one such a set which contains n states, v;, 1 =4,i+1,..,i+n—1
with Amj; < m;. We define AE as the smallest energy interval that the spectrometer can
resolve. (Note that AE may be smaller than the width of resolution function, and the latter
is about 1 eV in KATRIN experiment.) We assume that Am;; < AE.

Let us introduce the coupling of this set of the states with the electron neutrino as

Pe E‘Z IUEjI27 (2'9)

J

where 7 runs over the states in the set. We will show that the observable effect of such a
set on the beta spectrum can be described by p. and the effective mass mg which can be
introduced in the following way. Let us consider the interval AE in the region of the highest
sensitivity to the neutrino mass, that is, the interval of the electron energies

(EO - m; — AE) - (Eo - m,—) y (210>

where m; is the mass of the lightest state in the set. The number of events in this interval,
An, is given by the integral

an= [ s AN g (2.11)

" Bo—-mi—AE AE '

We will define the effective mass mg in such a way that the number of events calculated
for the approximate spectrum with single mixing parameter p. and mass mg, An(pe, mg),
reproduces, with high precision, the number of events calculated for exact neutrino mass
and mixing spectrum An(Ue;, m;). That is,

An(pe, mg) — An(Uegj, m;)
An(pea mﬁ) ( )

Expanding An in powers of Am;/AE <« 1, where
Am; =mj; —mg , (2.13)

we obtain:

Am; Am\ 2
Roczwej[z AE? +O(<AEJ> ) (2.14)
J
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It is easy to see that the first term vanishes [14, 15, 16] if

mg = 25 ™M\ Ues|” m;IUejIQ.
e

So, for this value of mg, R is of the order of (Am;/AE)?. Note that if we set mg to be equal
to the value of any mass from the set or the average mass, the difference of the number of
events would be of the order of Am/AE. If AF is relatively small, this correction may be
significant. If Am < AFE, the approximation will work for all energies.

In reality the background should be taken into account. However it is easy to see that if
the change of the background with energy in the interval AFE is negligible, our analysis will
be valid in the presence of the background, too.

If the scheme contains more than one set of quasi-degenerate states with the correspond-
ing effective masses m% and mixing parameters pd, the observable spectrum can be described
by the following expression

W RE) 08 [(Bo— E) — () 0By — E — mi,), (2.16)

(2.15)

dE

where ¢ runs over the sets. Each set of quasi-degenerate states will produce a single kink at
the electron energy E9 ~ Ey — m% with the size of the kink determined by pg. The set with
the lightest masses leads to bending of spectrum and a shift of the end point.

2.2 Three neutrino schemes

Let us consider the three-neutrino schemes which explain the solar and atmospheric neutrino
results. In the case of mass hierarchy, m; €« mo < ma, the largest mass, ms ~ y/Am2,,, =
(3—6) x1072 eV at 99 % C.L., is too small to result in any observable effect in the planned
tritium decay experiments [5].

If ms is in the sensitivity range of KATRIN experiment (mg > 0.2 eV), the mass spectrum
should be quasi-degenerate. Indeed,

Am31 Am2

~ ——gm < (.04,
mg 2mi ~
Moreover, the unitarity condition implies
Pe = Z ’Uej|2 =L (2.17)

§=1,2,3

Therefore the effect of non-zero neutrino masses and mixing on the [-decay spectrum is
characterized by a unique parameter - the effective mass

mpg = Z mj|U€j’2 >~ ms. (218)
7=1,2,3

Correspondingly, the distortion of the S-decay spectrum consists of a bending of the spectrum
and shift of the end point determined by mg (Ey — Eo — mg), similar to the case of v,
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with definite mass and without mixing. Let us consider the bounds on mg imposed by
the 280v-decay searches and the oscillation experiments. (The 280v-decay in schemes with
three degenerate neutrinos has been extensively discussed before [44, 45]). Assuming that
neutrinos are Majorana particles we get from (2.1) and (2.15) the relation between the
effective masses in the beta decay and the double beta decay:

where ¢9 and ¢5 are the relative CP-violating phases of the contributions from the second
and third mass eigenstates.

According to the CHOOZ bound [46] which is confirmed by a slightly weaker bound
obtained in Palo Verde experiment [47], one of the squared mixing elements (let us take |Ues)?
for definiteness) must be smaller than 0.05. The other two elements are basically determined
by the mixing angle §,, responsible for the solution of the solar neutrino problem, so that
the eq. (2.19) can be rewritten as ‘

Mee = mg |(1 = [Uea|?) (008 Oso1 + €27 sin? 1) + €| Uo7 (2.20)

From this equation we find the following bounds on the beta decay mass (see also [33]):

mee
<mp < ,
= = Tcos 2050l (1 — [Ues?) — [Ues?|

Mee (2.21)
where the upper bound corresponds to the maximal cancellation of the different terms in
(2.20). Note that to derive this upper bound, we have implicitly used the fact that |U.s|? <
0.2 < cos(2650).

The following comments are in order:

1. Taking the best fit value of 5, [1] we find from eq. (2.21) the following bounds:
mg < 0.8 —0.95 eV (2.22)

where we have used me, <0.34 eV and the two numbers in each line correspond to
|Ues|?= 0 and 0.05, respectively. Note that the existing data on the 280v-decay give
bounds which are stronger than the present bound from direct measurement. However,
if we take into account the uncertainty of the nuclear matrix elements in deriving the
bound on mee, the bound on mg will be about three times weaker.

For me. < 0.07 eV which can be achieved by the CUORE experiment [38], the bound
on mg from 260v-decay is below the sensitivity of KATRIN experiment. If, despite
(2.21), we find mee < mg||cos20,0|1 — |Ues|?) — |Ues|?|, we should reconsider our as-
sumptions: if no signal of neutrinoless double decay is found, we may conclude that
neutrinos are of Dirac type rather than of Majorana type.

2. A positive signal in the 260v-decay searches will have important implications for the
tritium decay measurements:

a). According to (2.21), it gives a lower bound on mg independent of the solution of
the solar neutrino problem: m.. < mg.
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b). In principle, if the values of me, mg and |Ues|® are measured with sufficient
accuracy, we will be able to determine the CP-violating phase ¢ in (2.20):

o 1 Mee ) Mee\ . ™M
sin? 2 = ——— [1— [ =2) —2|U.|? <) £—=

o
~ .._........!-—— 1 _ mee
~ sin® 26,4, { (m,a) ’

where (&) sign of the last term reflects an uncertainty due to the phase of U% [¢3 in
(2.19]. However, in practice it will be difficult to confirm or refute the existence of the
CP-violation through this method; i. e., the uncertainty in ¢, will be so large that it
will include a CP-conserving point (either ¢o=0 or ¢ = ) [48].

c). If mg turns out to be smaller than me., we will conclude that there are some
additional contributions to the 280v-decay unrelated to the Majorana neutrino mass.

2.3 The 4-v scheme: Bugey, CHOOZ and LSND bounds

Four-neutrino schemes, which explain the LSND result in terms of oscillations, have two sets
of mass eigenstates separated by Am?qyp. Hereafter, we call them the light set of states
and the heavy set of states. Let us consider the heavy set. The masses of states in this set
are equal or larger than 1/Am? ¢y p. The mass differences within the set are equal or smaller
than

Am? Am?

——m__ or/and ———,

2/ Amignp 24/ Amisnp
Both splits will be much smaller than the energy resolution AE. So, the states in the heavy
set are quasi-degenerate and their effect on the beta spectrum can be characterized by m’f’,
and p! given in eqs. (2.9) and (2.15).

The study of oscillation data shows that the only viable 4v scheme is the 341 scheme
which means that one of the sets contains only one state. Considering the strong bounds
from cosmological studies on the sum of neutrino masses [see Eq. (1.7)], the set containing
the three states has to be lighter than Am2¢yp i.e., the heavy set contains only one state
with mass (m? + Am2gyp)Y/2. On the other hand, the upper bound, b, on Y- m, [see Eq.
(1.7)] puts an upper bound on the mass of the lightest neutrino:

my < [3b— /b2 +8AmZgypl/8 . (2.23)

For b = 1.37 €V [as in Eq. (1.7)] and AmZgyp = 0.9 eV?, we find m; < 0.14 eV which is
too small to be resolved by KATRIN.

The v, oscillation disappearance experiments, Bugey [49] and CHOOZ [46], impose a
direct and very strong bound on p?, and therefore on the expected effects in [-decay in
all 4v-schemes. Since Bugey and CHOOZ experiments do not resolve small mass squared
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differences, Am2,,, and Am?2,, their results can be described by 2v-oscillations with a unique
mass squared difference Am? ~ Am?¢,\,, and the effective mixing parameter

Sil’l2 2geff = 42 eriI2(1 - Z ]Ueil2)>

where the sum runs over the heavy (or light) set.
Using the definition of p? in eq. (2.9) we can rewrite the mixing parameter as

sin® 20,15 = 4p2(1 — pl). (2.24)

Thus, the negative results of the oscillation searches in Bugey and CHOOZ experiments give
immediate bound on p} as a function of Am?2gy,, (see Fig. 2.1 ). This bound shows that

Pl < 0.027. (2.25)

That is, the admixture of v, in the heavy state is very small and the electron flavor is
distributed mainly in the light set. Let us recall that in the schemes with normal hierarchy
(order of states) the light set contains the pair of states which are separated by Amy,.
This pair is responsible for the conversion of the solar neutrinos, and for brevity, we will
call it "solar pair”. According to (2.25), in this class of schemes one expects small kink

at B, ~ Ey — mg, where mg > /Am2gyp. Here, the inequality corresponds to the non-
hierarchical case . Also in the case of non-hierarchical scheme one predicts an observable
shift of the end point associated to the masses of the light set. This effect has been discussed
in details in Refs. [14, 16]. The strong bound in Eq. (2.23) does not leave any room for
KATRIN to observe a shift of the endpoint. Therefore in this paper, we will not explore
such a possibility.

Let us consider implications of the LSND result itself for the S-decay searches. Apart
from providing the mass scale in the range of sensitivity of the future S-decay experiment,
it imposes an important bound on the relevant mixing parameters.

In the 4v-schemes under consideration the oscillations in LSND experiment are reduced
to two neutrino oscillations with Am? ~ Am?2 4, and the effective mixing parameter

sin 20p5nvp = 4 Y UyUs)? = 41> U,U%J (2.26)
jER jel

where summations run over the states of the heavy set in the first equality and of the light
set in the second equality. Using Schwartz inequality we get

sin2 2‘9LSND < 4 Z IUezl Z |UI—UI epZ, (2.27)
i€h jeh
where
o= Ul (2.28)
Jjeh

is the coupling of the heavy set with the muon neutrino. The upper bound on ph follows
from CDHS experiment at high Am? [50], and from the atmospheric neutrino studles at low
Am? [51]. From eq. (2.27) we get a lower bound on p!:

i2
A Sin 20LSND
5 S “Ursnp 2.29
pe 4Pﬁ ’ ( )

15




where both sin®26.syp and pft are functions of Am?. These bounds have been shown in
Fig. 2.1.

In summary, the only 4v scheme compatible with oscillation data and the bound (1.7)
is 3+1 scheme with m; < 0.14 eV. The shift of the endpoint in such a scheme cannot be
resolved by KATRIN. On the other hand, the small kink at (m2 + Am? gy p)*/? is unlikely to
be resolved by KATRIN, therefore this scheme would not have any observable at KATRIN.
In the next section, we discuss how combining other information we can learn about this
scheme.

2.4 The 341 neutrino scheme

As discussed in the previous section, KATRIN will not be able to discriminate between the
3+1 neutrino and massless neutrino scheme. However, we can still learn about the neutrino
masses through neutrinoless double beta decay searches. Let us consider implications of the
20v-decay search.

First we concentrate on the hierarchical neutrino scheme; i.e., m? < Am2,.. The con-
tribution to me. from the fourth (isolated) state dominates. It can be estimated as

m = \/AmZgnp|Ueal* ~ (0.005 — 0.05) eV . (2.30)

In the hierarchical case with mg ~ /Am2 ,, the contributions from other mass eigenstates

can be estimated as m® = /Am2,,|Usl? < m@ and m@ ~ /Am2,; sin® b5 < m.
Hence
Mee = M) = mgpl (2.31)
or Mg = Mee/ Pl
A version of the scheme is possible in which the mass hierarchy in the light set is inverted,

so that the states which contain the electron flavor have masses my =~ mz =~ 1/Am2,,, and
my <€ my. In this case we have

Mee =2 |M4|Ue4|2€i6 + 1/ Am2,,, (cos® O,6€™ + sin® 050 | (2.32)

and the contribution from the light set can be comparable to the contribution from the 4th
state. We expect m,. to be substantially below the present bound: We find m,. ~ 0.005 eV,
~ 0.015 eV, ~ 0.015 + 0.03 eV and ~ 0.06 eV for the allowed “islands” of mg and p (from
smallest to largest myg). Clearly, the observation of m.. near its present experimental bound
will exclude the scheme.

A we discussed in the previous section, it is possible to have m; as large as 0.14 eV. So,
in this scheme m,. can reach ~ 0.1 eV (to be detected by NEMO [37] and future double
beta searches) without observing any effect in KATRIN.
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Figure 2.1: The bounds on mg and p” in the (3+1) scheme with normal mass hierarchy. The
dashed curve and solid lines attached to it (from below and above) show the upper bound
on p" from Bugey and CHOOZ experiments, respectively. The LSND lower bound (see eq.
(2.29)) is shown by dot-dashed curves. The allowed regions are shadowed. The triplets of
solid lines show the upper bounds on mg assuming that future 250v-decay searches will give
Mee < 0.01, 0.03 and 0.05 eV. The central line in each triplet corresponds to the contribution
from the heaviest mass eigenstate (eq. (2.31)) and the other two lines show the uncertainty
due to the contribution of light states in the modification of the scheme in which the mass
hierarchy of the three light states is inverted (see eq. (2.32)).
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Chapter 3

Bounds on the coupling of the
Majoron to neutrinos from supernova
cooling

As we discussed in the previous chapters, the masses of the three active neutrinos are very
small, challenging the model builders for decades. Among the plausible and economic models
which are developed to give a tiny mass to neutrinos are Majoron models [17]. In these
models, additional Higgs boson(s) are introduced such that their vacuum expectation values
break the Lepton number conservation of the model. The Goldstone boson associated with
this symmetry breaking is called the Majoron particle, J.

In principle, Majoron particles can interact with matter —electrons, nuclei and photons.
However the cooling of red giant stars provides a strong bound on these interactions [53].
Hereafter, we will assume that Majorons can interact only with neutrinos. In the literature,
two types of Majoron interaction have been studied:

1
Lint = 57 (00625 02D5 + 925Ph02®;) (3.1)
and
Lint = hap®15.(07)@p, (3.2)

where J is the Majoron field, ®4 is a two-component representation of a neutrino of flavor
B, 9ap and hep are 3 X 3 coupling matrices. The matrix hqpg is Hermitian while g is a
symmetric matrix. In the model [17], for a range of parameters, the interactions can be
described by Eq. (3.1) (see the appendix of Ref. [54]). In this chapter, we will use this form
of the interaction however, as we will see later, in most cases our results apply for both forms.
Also, we will not assume any special condition on the diagonal or off-diagonal elements of
Jap- Since we have chosen a general approach, our results apply to any massless scalar field
that has an interaction of the form given by Eq. (3.1), independent of the underlying model
for it.

The strongest bounds on neutrino-Majoron coupling are obtained by studying the role
of these particles in a supernova explosion. In fact, three types of bounds are obtained:
i) Deleptonization: if the coupling, |ge.| is too large, Majoron emission can reduce the lepton
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number of the core of supernova via v, — U.J, preventing the occurrence of a successful
supernova explosion. In [55, 21, 19, 20] this effect has been studied; the result is

|gee| < 2 x 107°.

This bound strongly depends on the details of the supernova explosion model.
ii) Spectrum distortion: the production and absorption of the Majoron particle can affect -
the spectrum of the observed neutrino flux from a supernova explosion. This effect has been
studied in Refs. [20, 21] and the result is

lgu] = | >_ Ut Uprgasl < 107,
o,

This result suffers from the low statistics of the SN1987a data and can be improved by future
supernova observations.

iii) Energy loss: according to [56], the binding energy of a supernova core is Ey = (1.5 —
4.5) x 10% erg, which coincides very well with the energy emitted by SN1987a in 1-10 sec
in the form of neutrinos. Hence the power carried away by any exotic particle such as
Majoron cannot be larger than ~ 105 erg/sec. This imposes strong bounds on the coupling
of Majorons. The effect of energy transfer due to Majoron emission has been studied in a
number of papers [55, 21, 54, 57, 58, 59).

In the presence of matter effects, a number of three-point processes that are kinematically
forbidden in the vacuum become allowed. For example, neutrino decay becomes possible
even in the absence of neutrino masses. Also, neutrino annihilation into a massless Majoron,
vv — J, becomes kinematically allowed. The latter process has not been taken into account
in previous studies. We will see that this is actually the dominant process contributing to
energy loss in a supernova explosion. Previous studies must be reconsidered taking this effect
into account.

In addition, the previous papers either considered only ge. or studied the Majoron cou-
plings collectively without attention to the interplay of diagonal and off-diagonal couplings.
In this paper, we study the effect of Majoron emission in the cooling process of supernova
core considering all the relevant processes. We find that even for very small values of cou-
pling, interplay of different processes may change the neutrino densities inside the supernova,
evading the bounds that would be valid without this effect.

If the couplings are larger than some “lower” bounds, Majorons will be so strongly
trapped inside the supernova that they cannot give rise to significant luminosity. Note that
these “lower” bounds should be much larger than the limits at which Majorons start to
become trapped. For such large values of coupling, Majoron production can completely
change the density profile of the core by transferring energy between different layers and by
changing lepton numbers. In this paper we discuss Majoron decay and all other processes
that prevent energy transfer by Majoron particles and derive the limits on coupling constants
above which the produced Majoron cannot leave the core without undergoing scattering
or decay. We do not attempt to calculate any “lower” bound on the coupling constants,
because for large values of couplings, the density distributions inside the core need to be
recalculated. However we evaluate four-point processes which become important for large
values of coupling constants. In summary, there is an “upper” bound on the coupling
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below which the rate of Majoron production is so low that it cannot affect the evolution of
supernovae. The values of coupling above the “upper” bound up to a “lower” bound are not
allowed. However, the values of coupling above the “lower” bound (which are also higher
than the “upper” bound) are not forbidden by supernova cooling considerations because for
such values of coupling, Majorons cannot escape the core freely. The forbidden range is then
between the “upper” and “lower” bounds. In figure 3.1, we illustrate all the bounds on |gee|
to clarify the meaning of the “upper” and “lower” bounds. The shaded area is excluded by
the supernova cooling process.

This chapter is organized as follows. In section 3.1, we calculate the cross-section of
the relevant processes. In section 3.2, we briefly review the characteristics of the core. In
section 3.3, we derive the bounds on the coupling constants and the values above which the
produced Majoron will scatter before leaving the core.

3.1 Majoron interactions

In this section we first introduce the Lagrangian. Then, in subsection 3.1.1, we derive the
formulae for the neutrino propagator and the dispersion relation in the presence of matter.
The interaction rates for different processes involving a Majoron are derived in subsection
3.1.2.

In the presence of matter, the Lagrangian of neutrinos can be written in the two-
component formalism as

L= B} (i005.0 — Vag)®p — m;ﬂ (8TCd, — BLCDY), (3.3)
where C = 409, @ and [ are flavor indices, & = (1,—&) and mqg is the symmetric Ma-
jorana mass matrix. The term ®1V,s®s represents the matter effect. This term has a

preferred frame, the frame of the supernova. In the flavor basis, V is a diagonal matrix;
V = diag(Ve, V,, V) with

Ve=Vi+1,, Vo=V =V, (3.4)

where

1
Vi = V2Grnp(Y, + Y,,), Vo= \/éGFnB(‘iyn +Y.,.), (3.5)

Y; = (ni—7;)/np and np is the baryon density [60]. * In Eq. (3.5), the Y, -dependent terms
are the result of neutrino-neutrino scattering. Since in the medium of interest (supernova
core) m,, = np, and n,, = ng, ' the corresponding Y parameters vanish and have been
omitted from Eq. (3.5). In Ref. [63] it is shown that due to loop effects the values of V,, and
V, are slightly different, however, the difference is negligible: V,, — V; =~ 5 x 107V, [64]. In
a typical supernova core, V,, and V; are of the order of 10 eV and 1 eV, respectively.

*It is shown in Ref. [61] that, if the neutrinos present in a medium are coherent superpositions of different
flavor states, the off-diagonal elements of Vs can be nonzero. However inside the inner core the densities of
ve and v, are different and the densities of v, and v, are very low and equal to the densities of ¥, and 77,
so the off-diagonal terms vanish.

In section 3, we will see that these equalities are only approximately true [62].

20



Supernova cooling

lab bounds f

(8 o)

Figure 3.1: Bounds on g, from supernova cooling (upper lines) and lab observations (lower
lines). Line (a) shows the “upper” bound on g, from the v.v, — J process in the supernova
core (see Eq. (3.39)) while line (b) represents the “upper” bound from 7, — v.J [55]. Line
(c) shows the “lower” bound which is derived without considering the effect of the four-point
processes [55]. Line (d) gives the “lower” bound according to [21], we have argued that this
is an overestimation. Thus we expect the true “lower” bound (e) to be between lines (c) and
(d). The range of parameters between the “upper” and “lower” bounds (the horizontally
shaded area) is excluded by supernova considerations. Line (f) represents the upper bound
from double beta decay [69] and the whole region to its right (the vertically shaded area)
is excluded. Lines (g) and (h) represent the upper bounds derived from solar neutrinos [70]
and Kaon decay [71], respectively. Note that the bound (f) from solar data applies to gx
rather than g..; we have included this line to compare the orders of magnitudes of different
bounds. We have not resolved whether the “lower” bound (e) lies above or below (f); in the
latter case, there is a small allowed region between the two bounds.
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For the interaction term, we invoke the form of Eq. (3.1). But we note that the derivative
form of the interaction in Eq. (3.2) can be rewritten using the equations of motion as

~ihapMay@LCR% T — thagma @l CPp.J.

Thus, for processes in which all of the involved states are on-shell (in particular, the neutrino
and Majoron decay, vv — J and vJ — v) the two forms of interactions give the same results
with the replacement

9ap = (haymqp + ma'yhgﬂ)' (3.6)

As we will see, the most important processes involve only on-shell particles. Therefore all of
the bounds in this paper, apply for both derivative and pseudo-scalar forms of the interaction.

Majoron is a Goldstone boson associated with the ezact B—L symmetry so in vacuum it
is massless. Inside the supernova core Majoron obtains a tiny effective mass, m.ss, due to
elastic scattering off the background neutrinos. It can be shown that m2;; ~ | g|*N, /q where
q is the typical momentum of the particles involved. For the values of coupling constants of
order of the upper bounds the effective mass of Majoron is negligible (mgf #/a K Ve). The

effective mass can be considerable only if |g| & 5 x 107

3.1.1 The propagators and the dispersion relation
After straightforward calculations, we find

SI(0 P = Valbas = SN @0 ()h(=) = s, (37)
@0)2h(—p) = £ O5 7 (0 )2h(-p) (38)
and 4

(@a(p)®F(~p)) = D mpy(2a(p)2}(-p)) (3.9)

——C,
p-o+Vg

where all of the subscripts «, 3, v and o denote {e, u,7}. As we will see, the diagrams in

which these propagators are involved are important mainly when Ip| ¥ V, so the effect of V,
must be treated non-perturbatively. If the mass scale of neutrinos is high (m, > v Am?2),
the masses are quasi-degenerate; mqp = My 04p. In this case the formulae are simpler:

—ia

<q)a(p)®g(—p)> = m?, —_ (p o+ Va)(p .5 — Va) (p $0+ Va)a (310)
* _ —imuaaﬁ
(@B (-P) = C o =V (3.11)
and s
(@4(p) 2T (—p)) L C. (3.12)

=m,2,—(p'U+Va)(p-5—Va)

22



Now let us find the dispersion relation. The Lagrangian (3.3) yields

©a(p)f("'p 'O = Va) = Z moeﬁq)g(p)c (313)
B
and
(p "0 - Va)q)a(p) = - Zmaﬁcq)z- (3.14)
B
For m?/p < V <« p, one can easily show that
2
0 0o m-
Do =P hVa+(9<2p). (3.15)

The mixing among the flavors is of the order of m?/2p(Vs—V,) < 1 which can be neglected.

3.1.2 The relevant decays and interactions

In this subsection we first discuss the processes that produce Majorons, then we study those
that annihilate or scatter them. For illustrative reasons, in the following discussions, we
ignore mixing (i.e., ofi-diagonal terms in both coupling and mass matrix) and we denote
coupling, mass and effective potential by g, m and V, omitting their flavor indices. In the
cases that generalization is not straightforward, we will discuss the relevant steps. Before
beginning the detailed analysis, we should discuss an important conceptual point. As we
see in Eq. (3.15) the dispersion relation for neutrinos inside supernova is different from that
in vacuum and hence some reactions that are kinematically forbidden in vacuum, can take
place in the supernova core. As we will see the decay 7 — v+ J and the interaction vv — J
(or v — #J and 79 — J depending on the sign of V') are kinematically allowed.

In addition to these three-point interactions, there are other interactions that produce

Majorons:
e vt+v—J+Jandv+7—J+J;
e v+ —J+J.
As we will see the effect of the four-point interactions is negligible.

v—ov+Jorv—v+J

In a medium, if V is negative (positive), the decay 7 — v+ J (v — 7 + J) is possible. Let
us suppose V < 0, then, without loss of generality, we can write

vy = i —V,0,0,p) p,=(ps+V,pssing,0,pscosd)

where we have neglected corrections of order of m?/p; < V. Energy-momentum conservation

implies that,
ps = (pi —ps — 2V, —p;sinb,0,p; — py cosb).
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Recalling that we have neglected the effective mass of the Majoron, the process 7 — v + J

is kinematically allowed if and only if p% = 0 and all the zeroth components of the four-

momenta are positive. p% = 0 implies

4V? — 2V (p; — py)
2pipy

1—cosf = (3.16)

For |V| < py < p;, the above equation can be satisfied with all of the energies positive. This
means that the process is kinematically allowed.
Restoring flavor indices, it can be shown that for Vg +V,, < 0 the rate of 7, — vg + J is

given by
dU  |gasl®pi — ps F m’
L Vi + Vil F, o™X
e Ve + Vol By (ps) + O(7)

(3.17)

where p; and py are the momenta of the initial and final neutrinos and p; extends from
Max(3|Va + Va|, —Vj) to p;. In the equation, we have also included the Fermi factor

1
Fl(ps) = (1 — —r—
ﬂ(f) ( eET +1)

which reflects the fact that inside the supernova some states have already been occupied by
neutrinos.

Similarly, for V,+Vp > 0, the process v, — Ug+J can take place. The decay rate is given
by Eq. (3.17) replacing Ff (ps) with Ff (ps). The range of ps extends from Max(3|Va +
Vﬁl: Vﬂ) to p;.

v+v—Jorv+uv—J

Although, in the vacuum, the processes v +v — J or ¥ + U — J are not kinematically
allowed but, in a medium where V' is negative (positive) the process v+v — J (7+7 — J)
can occur. Let us suppose V < 0 and study the possibility of v + v — J. Without loss of
generality, we can write the four-momenta of the initial neutrinos as

p1=(p1+V,0,0,p1) Py = (pg + V,pesinb, 0, py cos b)),
for which p; +V and p, + V are both positive. Energy-momentum conservation implies
ps = (p1 +pa + 2V, pysinb, 0, py + po cosh).

Recalling that we have neglected the effective mass of Majoron, the process v(p;) + v(ps) —
J(py) will be kinematically allowed if and only if p% = 0 or

2V?2 4+ 2V (p; + p2)
DP1P2

1—cosf=— (3.18)

which can be satisfied for p;,pe > |V].
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Neglecting V?2/p? effects, for V, + Vs < 0, it can be shown that the cross section of
vovg — J is given by

(277)|gaﬁlz

= ——a—(p1 + Vi + Vsld(cos € — cos b, 3.19
it — o 21 T P2 sl 0) (3.19)

where p; and p, are the momenta of the two initial particles, # is the angle between them
and cosfy = 1 — YetValertpa)
p1p
Similarly, it can be shown that for V,, + Vg > 0, instead of v, + vg — J, the process
Vo + Vg — J can take place with the cross section again given by Eq. (3.19).

The process v+7 — J+ J

For reasons that will become clear in a moment, we analyze v and U as wave packets rather
than as plane waves. Let us ignore the neutrino mass for simplicity. Then, calculating
diagram (c) in figure 3.2, we find

2miM = (27)*(ig)(2m)% (ig* (3.20)

11 , 1
)Wm X//f(Pz)U (Pz)UZWX

(T ~ 2 0-a) + )~ TG - (a+ V)

xoov(p1) F(p1)d°p1d®ps + (k1 < ky),

where k; and k; are the momenta of the Majorons and [ f(p2)|p2)d®pz and [ f(p1)|p1)d®p,
represent the states of the neutrino and anti-neutrino, respectively. In Eq. (3.20), ¢ = ky—p»
and we have considered the matter effects in the propagator:

FP(¢°) =1—1/[exp((¢" — u)/T) + 1]

is the Fermi factor. . _ .

For both positive and negative V, in the vicinity of (k; = 53, ky = p5) and (ky = pa, ky =
p1), there are poles which are non-integrable singularities. Without the wave packets, the
total cross section would be divergent. Setting m, non-zero just shifts the pole a little bit
and does not solve this problem. This is due to the fact that for negative (positive) V, the
processes 7 — v+ Jandv+v —J (v — 7+ J and 7 + 7 — J) can take place on shell,
so the singularity is indeed a physical one. Essentially, for V' < 0 the reaction vo — JJ can
proceed in two steps, first, 7 — vJ and later, at a completely distant place vv — J. In other
words, the total cross section has two parts: i) a “connected” part; ii) a “disconnected” part
which can be considered as two successive three-point processes.

Let us now consider in more detail the relation between Eq. (3.20) and its component
three-point processes. For definiteness, we consider the case V' < 0. We have explained that
the reaction v — JJ contains a subprocess that factorizes as

/q (1ol (@) i) (v(q) 1| ).
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More explicitly, the factorized amplitude takes the form

oMM = Z%)—;—g’;\/_?_—];é / / / / /7 7 /_ :f(P2)U(P2)e((ﬁ‘z—Ez).iz—(pS—kg)mg) (3.21)

1 qo —_ ‘/ —_ 5: . q_' F 0 270700 -
ig® (29 —x9) ,ig.(Z2 z1)5 0 d4
02(27T)3/ 27 F(g)e™ e (¢" =V —ld)dq)

oa0(py) F(py) P B3 MDR) o, Pyl defdzy d s,

where FF(¢°) = 1 — 1/(exp((¢° — p)/T) + 1) represents the matter effects. In Eq. (3.21),
T represents the boundaries on time integrations and therefore it must be very large (i.e.,
7 & 5/V). We have written the time boundaries explicitly to emphasize the causality
conditions. Transferring the amplitude for vv — JJ (Eq. (3.20)) from momenta pi, p2
to coordinates z1, zo, it can be shown that for the region |zo — 21| > 27 & 10/V, these
two correspond. Therefore, if the initial neutrino and anti-neutrino are localized at distance
R > 10/V, their interaction rate can be calculated by Eq. (3.21) instead of Eq. (3.20).
Consider v and 7 which are localized at distance R > 10/V far from each other. We
have shown that their interaction cross section is given by |(JyJo|lvvJ1){(vJ1|7)|2. So, this
interaction can be considered as two subsequent processes. First 7 decays into J; and v.
Then, the produced neutrino propagates a distance R and annihilates with the other v into
Jo. In other words, to calculate the interaction probability of two such states, we can consider
7 — vJ as an additional source for v and consequently the process vv — J. This can be
compared to the more familiar sources of neutrinos like electron capture, (J|vv)(vn|e”p™).
Of course the set of states that are localized at distance R > 10/V ~ 107 R far from
one another is not a complete set. We should also consider the states which are closer and/or
have overlap with each other. If we rewrite Eq. (3.20) in the x-coordinates, as we have done
in Eq. (3.21), calculation of the amplitude of two states localized next to each other at
distance R will be easier. For such two states, the integral for |27 — @3] > 10/V vanishes
(because of the specific form of f(p;) and f(p2)), so we can restrict the integration over
|T1 — @3 to the interval (0, 10/V). For |¢° — V —|q}| > |V|/10, the amplitude for two states
localized at R < 10/V far from each other is equal to the amplitude for states with definite
momenta, but for |¢° — V —|g]| < |V|/10, the amplitude for the two localized states is much
smaller. This is because in calculation of amplitude for two states with definite momenta,
we encounter an integration [ g(z)ei’~V-1M2dy which diverges for ¢° — V — |g] — 0
but for two states which are localized next to each other the corresponding integration
is fy orv g(2)e@’ V=12 gz which is finite. The total cross section for neutrinos and anti-
neutrinos localized next to each other is then given by an angular integral over the square of
(3.20) in which the integration is over all angles except those for which |¢° -V —|g]| < |V|/10.
Consider the special case that the sum of the momenta of v and ¥ is zero. Setting the cutoff
equal to \|V|/10, () is an arbitrary number of order of one) for such two particles we obtain

lg|* P1D2 10 14
~ In|+——— _———]. 3.22
7t ™ Srppalor — vl | \OV/102) T X T 4 &2

Since we have a preferred frame (the frame of the supernova), the total cross section is not
Lorentz invariant. Now consider a pair of a neutrino and an anti-neutrino that make a general
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angle. Then Egs. (3.16,3.18) show that in the vicinity of singularity the momentum flowing
in the propagator is of the order of |V| (i.e., |§] = |2 — k| ~ |V]). Therefore for scattering
angles that (¢°—~V —§-7)/[(¢° — V)? — |@]?] ~ 1/V, the phase factor ([ d3k1d®ko6*(p1 + ps—
ky — k1)) is of the order of |V |2/p?. Thus the total cross section has no strong dependence
on |V| and for general initial momenta the cross section can be estimated by Eq. (3.22).

Here, for simplicity we have dropped the flavor indices but for the more general case the
discussion is similar.

The process v+v —J+Jand v+70 — J+J

The discussion of vv — JJ and 7 + 7 — J + J can be carried out in a similar way. For
quasi-degenerate neutrino masses, the amplitude for vv — JJ (see diagram (d) in Fig. 3.2)
is given by,

'(—‘*)—4—'\/—@2//f1(pl)UT(pz)C(Zgav)(w«/ﬁ) (3.23)

im(m? + V2 +¢* — ¢§ + 27 5V,) y
(m —qo+( —))(m? - + (V4 + ¢)?)
fa(p2)u(pa)d®p1d®ps + (k1 < ko) + A,

where [ f1(p1)|p1)d®p: and [ fa(p2)|p2)d®ps represent the initial neutrino states, k1 and ks,
are the momenta of the emitted Majorons and ¢ = ks —ps. The term A summarizes all of the
Fermi effects on the propagator. The amplitude for values of ¢ which (g + V,)* — ¢Z — m? ~
p?,p% > m?, V2 is negligible, and the main contribution to the cross section comes from the

small solid angle (~ V2/pyp,) for which (g + V)? — ¢2 + m? & V2.

First, let us discuss the process vev, — JJ. In general, for v = pu, 7, there are singularities
which correspond to an on-shell v, or v,. Note that, if p1 and p; are parallel or make an
angle smaller than ~ |V,/V,,|, the singularities disappear. As for the case v — JJ, we can
discuss that if the initial states are localized at distance R > 10/V, far from each other,
the process vv — JJ will be equivalent to two successive processes (Vy)J|ve) and then
(J|VeVyu(ry)- This yields a cutoff of V,,/10 for calculating the 4-point total cross-section. Note
that although v, — J +v, is kinematically allowed (V,, < V¢), I'(ve — Jv,,) is suppressed by
(m/py,)* and in practice, will not have any significant effect.

For «v = e, there is no singularity * and therefore no cutoff is needed. The total cross
section can be estimated as

 vulvave — ) = ( ol + P )+blgeel4) (329

vy — 2| (27)p1p2 V,/10

The amplitude (3 23) being proportional to m, we expect that the cross-section to be pro-
portlonal to m?. However, although the term proportional to |g2 Gen + g2 |? is suppressed by
/ , there is not such a suppression factor in the case of the term proportional to |gee|*.

{In the particular case that the initial momenta satisfy the condition 3.18 (that is when the process
Vele — J is kinematically possible) there will be a singularity associated with emission of one soft Majoron
along with a hard one. We expect the corresponding divergence to cancel the infrared divergence of the
one-loop correction to the Majoron coupling.
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This is because in the latter case the dominant part of the integration comes from the region
where (g + V)? — ¢§ ~ m? and the m factor in the numerator of the (3.23) is canceled.
Similarly,

1
Otot (Velp(ry) — JJ) = AT X (3.25)
m m
<allgeuguu(f) + GerGru(r) 12(-17/1)(%) + bllgeegeu(‘r) I2)
and
1
Ot VatryVatr) = T ) = 1 V2] (27 P12 (@"19ucr) + Gy + ¥ lgencn)|*) - (3.26)

with b, ¥/, b", a, a’ and o” of order 1. In Ref. [58], oos(vete — JJ) has been calculated,
ignoring V' and the off-diagonal elements of the coupling matrix. The result agrees with our
estimation in the sense that the term proportional to |ge|* is not suppressed by m.

The total cross section for (Faig — JJ) is equal to 0y(vavs — JJ) replacing V with
(=V).

The processes v+J —dor v+ J — v:

These processes are the inverse of anti-neutrino and neutrino decay and, hence, the kine-

matical conditions are similar. If V; + Vj is negative (positive) the process voJ — 7 (

VoJ — vg) can take place with cross section
dpqlvy — vy

FE\(p+ q)6(cos @ — cosby) (3.27)
B

where p and ¢ are the momenta of the initial neutrino and Majoron, respectively. 6 is the

angle between the two initial states and

(0 +9)[Va + Vs
)

cosby = -1+

FE,(p+ q) is the Fermi factor for the final state.
B

The Majoron decay, J - v+vor J— o+

The decay J — vv (J — p) is the opposite of the interaction vv — J (0 — J) and
therefore the kinematics are similar.

For V, + V3 < 0 (V, + V3 > 0) the Majoron can decay into v, -+ vg (Do + Ug) and up to
a (|V|/p:)? correction, the decay rate is given by

op|* Vo + Vol 7
dr = 'ggfrl | - d | FE ) Ff (0~ )y (3-28)

where p; and p; are the momenta of the Majoron and either of the final neutrinos, respec-
tively. Ff and Ff are the Fermi factors reflecting the fact that in the core of the supernova
some states have been occupied by already present neutrinos.
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The processes v+ J —wv+Jand v+J —v+J

"The amplitude for v, 4+ J — 7, + J has two singularities in the ¢-channel due to v, exchange.
ing a discussion similar to the one in the case of v+v — J+J, it can be shown that these
sularities may be considered as two successive three-point interactions (7e|Jv,) (v, J|ve)
1 (J|vevy) (Devy|J). This yields a cutoff ~ |V,|/10 around the singularity to determine the
r-point interaction. In the case of head-on collision where the initial particles are within a
all solid angle ~ (V/p)? < 4m around cos @ = —1, there will be another singularity in the
hznnel which can be considered as (7 J|7,) (7,|veJ). We recall that any discussion about
applies to v, as well, because these states are completely equivalent for the supernova
svolution. The total cross-section for v.J — 7,J can be evaluated as

1
(27r)|v1 — Vg|p1P2

(el + a2 () +Hal) P7. (329

where a ~ b ~ 1 and FF is the Fermi-blocking factor for the final neutrino. A similar
discussion holds for 7,J — v.J, and the corresponding cross-section is also of the form of
Ha (2.29).

Ihe processes vy +J = Do+ J, ve+J =+ J, 0y +J —ve+Jand e+ J — v, +J
< have singularities in the t-channel due to v,-exchange and can be considered as two

wiecessive three-point processes. Following the same discussion as the case of 1/) v— JJ,
vz use the cutoff ~ V,/10 to evaluate the cross section for the four-point interactions. The
sross-sections of these processes have the form

1 2 _M°_ 2) F
a + Ger + b|geege F , 3.30
(27)[v1 — va|p1pa < |9enGun + GerGunl (Vuz 715) T blgecgend (3.30)

s g~ b~ 1and FF is the Fermi-blocking factor for the final neutrinos. The processes
~+ ¥y and U.J — v, J can also have singularities in the s-channel only if the initial
cles are almost parallel, i.e., if their relative angle resides within a small solid angle
~ (V/p)?* < 47 around 180°. We can safely neglect such states.

For the process v,J — v,,.J, there is no singularity and it is straightforward to show that
the cross section is of the form,

1
(27T) |Ul — Vg |p1p2

(algZ, + g2 + blggel®) - (3.31)

The processes v+J —wv+Jand v+ J — v+ J

=ral, the process v + J — v + J has a singularity in the ¢-channel. With a discussion

to one in the case of vv — JJ, we can show that this singularity can be evaluated
successive three-point interactions (J|vv)(vv|J) resulting in a cutoff of the order of
or evaluation of the four-point interactions. Using this cutoff, the cross section is of

lgl* DP1pP2 F
(277)5]7]1 -’Uzlplpz n V2/100 F, (3.32)
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where FF' is the Fermi-blocking factor for the final neutrino.

If the initial particles undergo a head-on collision (i.e., they are within a small solid
angle ~ (V/p)? around 180°) there will be another singularity in the s-channel which can be
considered as (vJ|7)(7|vJ). The process 7 + J — 7 + J has one singularity which can be
evaluated as (7|Jv)(Jv|P). Again the cross section is of the form of Eq. (3.32).

3.2 Supernova core without Majorons

The dynamics of a supernova explosion is described in a number of articles and books (e.g.,
[60]). Here we only review the aspects of the supernova explosion which are relevant for our
calculations.

Stars with very high mass (M > 8My), at the end of their lifetime, develop a degenerate
core with a mass around 1.5Mg made up of iron-group elements. As the outer layer burns,
it deposits more iron that adds to the mass of the core. Eventually the core reaches its
Chandrasekhar limit, at which the Fermi-pressure of the electron gas inside the core cannot
support the gravitational pressure, and the star collapses. The collapse forces nuclei to absorb
the electrons via e~ +p — n +v,. At the early stages, the produced v, can escape from the
core but, eventually, the core becomes so dense that even neutrinos are trapped. The layer
beyond which neutrinos can escape without scattering is called the “neutrino-sphere”.

As the density of the central core reaches nuclear density (p ~ 3 x 10" g/cm?), a shock
wave builds up which propagates outwards. We will refer to the pre-shock stage as the infall
stage. This stage takes only around 0.1 sec. As the shock wave reaches the neutrino-sphere,
it dissociates the heavy nuclei. The dissociation has three different results:

1. It consumes the energy of the shock, so that the shock eventually stalls;
2. It allows neutrinos to escape more easily;

3. It liberates protons that interact with the electrons present in the star (e”+p — n+ue),
giving rise to the famous “prompt v, burst”. The prompt v, burst deleptonizes the
star but carries only a few percent of the total energy.

The stalled shock should regain its energy. Otherwise, it cannot propagate further and give
rise to the spectacular fireworks. According to the models, this energy is provided by v,
diffusing from the inner core to outside. The density of v, inside the inner core is very
high. The corresponding Fermi energy is ~ 200 MeV while the temperature is only around
10 MeV. At the beginning the temperature of the neutrino-sphere is around 20 MeV. So
the diffused neutrinos leave their energy as they travel outside, warming up the core. This
energy can revive the shock. (In fact, this mechanism is controversial [60], but we will not
use the shock revival mechanism for our calculations. Most of our calculations are related
to the inner core, which is free of these controversies.) The temperature in the outer core
increases to 40 MeV; actually, the outer core and the neutrino-sphere become warmer than
the center. At the outer core, neutrinos of each type (Ve, e, Yy, Dy, v and D;) are present.
These neutrinos escape the star and deplete its binding energy (Ep = (1.5 —4.5) x 10 erg
[56)).
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t(sec) | Ve (eV) | Vu=V. (eV)
0 2.3 -11.7
0.5 1 -12.3
1 -0.3 -12.8
1.5 -1 -13.1

Table 3.1: The values of the effective potentials at different instants after bounce without

the Majoron production. Here we have used the profiles in [66].

Two kinds of “upper” bounds can be imposed on the neutrino-Majoron couplings by
studying supernova evolution:
1) If the coupling constant is too large, the process v, — J + T, during the infall stage,
deleptonizes the core and according to the models a successful explosion cannot occur. This
bound has been correctly studied in [55, 21] and the result is ge. X2 x 1078,
2) If the coupling is non-zero, Majorons can be produced inside the inner core and can
escape freely from the star, depleting the binding energy. The observed neutrino pulse from
SYN1987a coincides with that predicted by current supernova models. This means that the
energy carried away by Majorons (or any other exotic particles) should be smaller than
the binding energy. The Majoron luminosity, £, as large as 10% erg/sec could significantly
affect the neutrino pulse. Here, we will take £; < 3% 103 erg/sec as a conservative maximum
allowed value. This gives an upper bound on the coupling constants.

If the coupling of Majorons is larger than a “lower bound”, the Majorons will be trapped
so strongly that their luminosity will be small. We will discuss this case later.

Let us review the characteristics of the core. The inner core (R < Ripper ~ 10 km) to
a good approximation is homogeneous. The density in the inner core is around 5 x 10
g/cm®. The distributions of all types of neutrinos follow the Fermi-Dirac formula with
Tinmer ~ 10 — 30 MeV and different chemical potentials [66, 67]. As mentioned earlier, the
chemical potential for v, is around 200 MeV. So, inside the inner core, v, is degenerate while

the density of 7, is negligible (tz, = —p, = —200 MeV). The low density of 7, is due to

absorption on electrons. In the first approximation, the chemical potentials for (y_“) and (Z/_T)

are equal to zero. In Ref. [62], it is shown that, because the interactions of v, and v, with
matter are slightly stronger than the interactions of 7, and Py, their chemical potentials
become nonzero: fi,, /T = u, /T ~ 5T /m, < 1. We will neglect ,, and p,, in our analysis.
In fact the large uncertainty in the determination of the temperature affects our results
more dramatically. The presence of x in supernova can break the equivalence of v, and v;.
However, we neglect this effect and treat v, and v; in exactly the same way. In Table 1, we
show the values of V, and V, (= V,) at different instants after the bounce inside the inner
core. The values of Y, and Y, are taken from Ref. [66].

Outside the inner core, Ripner ~ 10 km < R < Ry ~ 15 km, the density of v, is
much lower, w,, /T < 1, but instead the density of 7, is higher than in the inner core. In
fact, in the outer core (Ripner < R < R,u:), thermal equilibrium for neutrinos is only an
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approximation. To evaluate the role of the outer core in the Majoron production, we set
fv, = . = 0. The density in the outer core drops from 5 x 10" g/cm?® to 5 x 101 g/cm®.
The temperature in the outer core drops abruptly [66] such that T(R = Ripner) =~ 35 MeV
while T'(R = Rgy:) ~ 2 MeV.

Different models predict different values for parameters; e.g., the predictions of different
classes of models for Tipner vary from 10 MeV to 30 MeV [67, 68]. Moreover the produc-
tion of Majorons can distort the density distributions. Considering these uncertainties, the
simplified model that we have invoked is justified. With this approach, we will be able to
examine the prediction of all models for the Majoron luminosity.

3.3 Bounds on coupling constants

In this section we explore the role of Majorons in the cooling of the supernova core. In
subsection 3.3.1, we derive an upper bound on |ge| assuming the produced Majorons leave
the core without being trapped. In subsection 3.3.2, we derive upper bounds on guu, grr; Gue
and g., again assuming Majorons leave the core immediately after production. In subsection
3.3.3, we show that for the couplings lower than the bounds we have derived, the four-point
interactions are negligible. In subsection 3.3.4, we derive the limits above which Majorons
become trapped.

3.3.1 Bounds on |ge|

As represented in Table 1, immediately after the bounce, V; is positive, but eventually Ve
decreases and becomes negative, while V), and V; are negative from the beginning. As long
as V. > 0, the interactions v, — 7, + J and v, — v,(r) + J are kinematically allowed but the

latter is suppressed by a factor of (m/p)? <1076, So we will consider only the interaction
Ve — Up + J.
This interaction depletes the energy of the core at a rate

g Vers,

Ly~ 2@y (4/37 RS er)- (3.33)

We should note that this interaction not only carries energy away but also deleptonizes the

core. 5
d) L geeie
— = =921 Yu = — _""'Yu 34
n 2 . 2 ) e (3 3 )

where we have used the fact that ny, < n,,. We know that the core is in S-equilibrium. Since
the rate of the S-interaction is faster than I' (rate of B-interactions/ I' ~ 487 G%ul T?/g2.Ve)
and at equilibrium the density of electrons is one order of magnitude larger than that of
neutrinos, we expect that the densities of the neutrinos are not affected by the Majoron pro-
duction. In other words, the Fermi energy, u,,, and Y,, are still given by Ref. [66]. However,
deleptonization by the Majoron emission can affect V, dramatically because different terms
in V, o (3Y7 + Y, — 1)/2 cancel each other (¥, < ¥z = 0.3). Therefore in the presence of
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the Majoron emission, V, vanishes faster. Let us evaluate the maximum energy that can be
carried away by Majorons through v, — 7, + J in the stage when V, is positive. To have an

estimation, we can approximate
dVe

dt

= —bV, — a, (3.35)

where

b= \/—‘—GF Igeelzy

and a reflects the deleptonization effect Wlthout the Majoron emission. According to Table
1, a =~ 2.6 eV/sec. If we neglect the variation of Y, p and a with time, we conclude that
a a
Vi(t) = (V(0) + e~ 2,
so that, after ¢; = (1/b) xIn(V,(0)b/a+1), V, vanishes. The energy carried away by Majorons
up to ¢; can be approximated as

2,4
gL, GO, VO +o
EVe<O = 12(627_‘_)3 X 4/3 mner X ( b— In———

] (3.36)

For gee 2 1077, By, <o converges to 4 x 10! erg. Increasing ge. increases £, but on the other
hand, V. vanishes in a shorter period. It is easy to show that, for any value of g,

Ey,c0 <4 x10% erg < E.

Therefore the energy loss at this stage does not affect star’s evolution and hence we do not
obtain any bound.

As shown in Table 1, about one second after the core bounce V, turns negative. As we
discussed earlier, in the presence of neutrino decay V, changes its sign even faster. In a
medium with negative V., the decay v, — 7, + J is not kinematically allowed and instead
Ve — Ve+J can take place. However, we know that, in the inner core, the density of electron
antineutrinos is quite low (uz, ~ —200 MeV while T ~ 10 MeV) so this interaction will not
have any role in the cooling of the inner core. In such a medium, energy will be carried away

by process
Ve + Ve — J. (3.37)

In previous literature the possibility of this interaction was not discussed. The interaction
(3.37), diminishes the lepton number by two units. Again we see that ty, and Y, will not
be considerably affected by this process, but that V, will decrease faster. In contrast to the
previous case, a faster decrease of V is a positive feedback for the process and leads to the
energy depletion. The energy carried away from the inner core via the process in Eq. (3.37)
is now 4
/“l'Ue
(2m)?

To evaluate a conservative upper bound on |ge|, we set [V.| equal to 0.3 eV, u,, = 200
MeV and R = 10 km then,

X (_WR'?'ILTLE’I") (3'38)

7
Ly= Elgeemvél

R; Ve Hhy, erg
— 2 1 66 TMNET 3 e 4 =)
L7 = 2|ge|” x 107 x (10 km) (0.3 eV)(ZOO MeV) sec
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Around one second after the core bounce, the total neutrino luminosity, £, is about 5 x 10°?
erg/sec. So, the condition £y < 3 x 103 erg/sec yields the conservative bound,

Rinner 2 Ve _1 Hve -9
0 1) 53 o) G0 Mev) (3.39)

In Ref. [55], a bound on |ge| is obtained by studying the energy loss via e — ve + J
which mainly takes place in the outer core, Ripper =~ 10 km < R < Ry =~ 20 km.
The result is L£(7. — ve + J) = few x 10% |ge|? erg/sec. So the conservative bound
L7y — ve + J) < 3 x 10% erg/sec implies |gee| < 4 X 107%. The bound in Eq. (3.39) is one
order of magnitude stronger because the total number of v, in the inner core is very high.
In Ref. [21], a bound is imposed due to the processes v +v — J+Jand v — v+ J (v
denotes both neutrino and antineutrino). However the energy carried away is overestimated
due to an improper treatment of the three-point subprocesses. We will elaborate on the
v+ v — J+ J process in section 3.3.2.

|gee| < 4 x 1077(

3.3.2 Bounds on |g,,| and |g-q]|

In this subsection we discuss the processes involving (I;T) and/or (1/_“) These processes include
(a) Vyr + Vur =, Vpr + Ve = J

and
(b) Dyr = J + Ve

The process 7, — J + 1, can take place only in the outer core where electron neutrinos are
not degenerate. Both processes (a) and (b) can distort the distribution of matter inside the
star. However, that calculation is beyond the scope of this chapter. But we can argue that
it is a good approximation, for the purpose of computing upper bounds, to use distributions
with vanishing chemical potentials for v, and v, [66]. For simplicity we rotate (v, v-) to a
basis such that g,, = 0. Note that since the chemical potential is diagonal and V,, = V;, it
will be invariant under this rotation. In the new basis, we can write, for the inner core
dny,, dng,

= 2 [Rate(7, — v, + J) — Rate(vuv, — J)] — Rate(y,ve — J), (3.40)

dt dt
where we have neglected vv — J.J interactions. The sum of the chemical potentials for v,
and 7, must be zero, 4 = iy, = —[s,, therefore

4 2d
/ 3 LE while 7z, =/ ﬂ-3 2_?;& . :
(2m) +1 (2m)3 ™ +1

(3.41)

We expect that for small values of |gag|, the chemical potential remains small. Let us suppose
|u/T| < 1 to solve the equation (3.40), then we can determine whether this assumption is
valid or not. For |u/T] < 1,

N 47T3
—(2m)?

(1.8 +1.64u/T),  mp, = (4nT?/(27)*)(1.8 — 1.64p/T)
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and we can rewrite the right hand side of Eq. (3.40) as

|Guus| 2Vl T |Geu* (Vi + Vel 12
=RE B 1012 —3.28u/T — (0.34 + 0.25u/T —=1 3.42
2(2m)3 { / ( / )|gpulz IVl T2 ) (3:42)

where p,, is the chemical potential of the electron-neutrinos. Inside the supernova core,
neutrinos and matter are in thermal equilibrium and since the energy density of matter is
much higher, we expect that the rate of thermal change due to these processes is small:

| dT | !E,,edn,,“ / dtl dn,,
Tdt Ey/volume Ny, dt

So, dn,, /dt — dny, /dt ~ 2?;5)3 x 1.64d(p/T)/dt. On the other hand, for this estimation we

can neglect the variation in V,, ~ v2Grnp(Y, — 1)/2. Also, since the density of v, is much
higher than that of v,, we can neglect the variation of y,,. Therefore, Eq. (3.42) tells us
that p/T converges to

|Gel® Ve + Vil g3,
|9qu2 qul 17

|9enl” |Ve + V| @g)
lguul® VWl T

(0.12 — 0.34 )/(3.28 + 0.25

Now, it is easy to show that for (|ge,|?/|guul?) % (42, /T?) < 37, |/ T remains small regardless
of the values of |ge,| or |gy,|, themselves. For |geu| > 6|9,u|T/ b, |12/T) diverges to values
larger than 1 and the above analysis is no longer correct (remember that we had assumed

|n/T| < 1). In this case, v, will disappear after ~ (%’571/ w2 /T%)~! but on the other
hand, the density of 7, will increase (the chemical potential becomes negative) and this calls
for recalculation of the density distributions. We can make a similar discussion for v,. Let
us suppose |geu| < 6]g,u|T/ 1y, and |ger| < 6|gr-|T/uy, and continue from here.

Now let us evaluate the Majoron luminosity. Using the results found in the previous

sections, it is straightforward to show that

Llvatvs = 0) 2 [ T gual (Valr) + Valr) (3.43)
and
£l = vp) = [ T laaaPValr) + Va(r)rr, (3.44)

where by o and  we denote p or 7. Since the density of v, inside the inner core is much
higher than outer layers, we can practically neglect the process (Vo + Ve — J) outside the

inner core: 5

Re
L(Va+ve— J) = ﬁ;—glgaelz(lVa + Ve[)(0-2423, Tinner)- (3.45)
Note that even if gq. is large, the process ( 7, — v, + J), in the inner core, is suppressed by
a factor of ezp((Tinner — v, )/Tinner) because inside the star, v, is degenerate.
Then, the requirement £ < 3 x 10% erg/sec implies and

0l + TgreP < 5 x 1077 (g ER ) B MN 10Ny (g4
m

N

Rinner Hu, Tinner
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and

J 2 lgasl? %107, (3.47)
aa:BEIJﬂT

where to derive the bound in Eq. (3.47) we have used the profiles presented in Ref. [67].
We emphasize again that the above results are valid only assuming that |geutin, /9uuT|* < 37
and |ger i, /g--T'|> < 37. Otherwise the v,(;) annihilation will stall because v, is depleted.
Meanwhile, the energy carried away due to v,-y-annihilation is of the order of

2
L(Ve + vy — I)( llgéglr V. gf;) ~10% erg < By, ~ 10° erg
So, L(Ve + vy(ry — J) does not impose any bound on |geur)|. On the other hand, since the
density of ;) grows, the process L(Dur) — Vu(r)J) will even become intensified and we
expect that still Eq. (3.47) will be a conservative bound. For (|geu|®/|guul?) x (u2,/T?) > 37,
the upper bound on |ge,| is imposed by 7,-decay in the outer core. Using the distributions
in Ref. [66], we can show that

L(Tyr) = T + ve) = few X |gepr|® x 10% erg/sec (3.48)

which implies
lgep.la Ige-rl < few X 10—6- (349)

In Fig. (3.3.4), all these bounds are schematically depicted for Tipner = 20 MeV. The
shadowed area represents the range of parameters for which £; < 3 x 10% erg/sec. As
shown in Fig. (3.3.4), for T' = 20 MeV, the process v, + v, — J does not impose any bound
on |g,,| because, for any value of |g.,| smaller than v/37|g,,|T/pv, (where |g,,| is below its
upper bound) it cannot give rise to a Majoron luminosity larger than the allowed value.

3.3.3 Four-point interactions

In this subsection we discuss the processes v+v — J+J and v+ 7 — J+J. As discussed in
sections 3.1.2, we consider only the intrinsically connected contributions, the effects of three-
particle sub-processes subtracted. Using the distributions in Ref. [66] and the formulae we
have found in subsection 3.1.2, we obtain

3 2
/'LueT;nner 47T
E(Ue -+ UN —J+ J) (27T)4 fnner)' zgeagu(v-)a| (3'50)
and T5( )
_ T *
LWuery + Oyry = J +J) ~ f (2—7—;)—4(470' Zgu(r)agﬂ(T)al%"sz- (3.51)

In the above equations, a runs over {e,u,7}. Using the distributions in Ref. [66] and the
formulae we found in the previous section, we obtain

1 2
Lve+ v, — J+ J)= (2n)" ( 72/10196” + 93712 + blgeel4> (— mner)/‘L?/Ea (3'52)
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L(ve + Vyir) = J + J) = (3.53)

4m 3 lu’l% T‘%me’r ' 2 77L2
e | a 2 ) 1 Ger ™ 372 /11 b, e T 2
3 ) " \ @ 19endunte) + GerGruio) a0 |GeeGen(r)|

and
LWa+vg—=J+J)~ LD+ — T+ J)= (3.54)

T5(r) ¢ w2 2 2 2\ ,.2
471-./—(27_‘_7' (a‘ Igp,u('r) +gp,u(7')l + b”igeu('r)l )’l‘ dr,

where m is the neutrino mass for quasi-degenerate mass schemes. If |gop| is smaller than
the “upper” bounds in Egs. (3.39, 3.47, 3.49) the above luminosities are negligible. These
luminosities become non-negligible only if the couplings are larger than 10~° so they do not
change the “upper” bounds. Egs. (3.50-3.53) depend on combinations of couplings so in
general it is rather difficult to compare them with the Majoron luminosity due to three-point
processes (i. e., L(Uy — Jvg), L(vavp — J)). Let us suppose that all elements are zero
except for a particular gog. Then, Eqs. (3.43,3.44,3.51) imply that for |g,,| < 5 x 1073 the
three-point processes are dominant. If all couplings, but |ge.| are zero Eqgs. (3.38) and (3.52)
show that as long as |gee| < 107%, veve — J is dominant. Comparing Eq. (3.52) with Eq.
(3.48) reveals that as long as |geu| < 1075(|V,|/m) the process ¥, — v,J dominates. We
note that, for coupling constants of the order of the “lower” bound (for which the produced
Majorons are trapped), the four-point processes can play a significant role.

3.3.4 Majoron decay and scattering

So far we have assumed that Majorons leave the star without undergoing any interaction or
decay. Now we discuss the validity of this assumption. First, let us discuss the possibility
of decay. (Note that although Majorons are massless particles, in a medium such as a

supernova, in principle, they can decay.) For o, 8 € {u, 7},

_ 19a8/*(IVa + V1)
8m

T'(J(q) = Va + vp) (0.8 — 0.27), (3.55)

where 0.8 and 0.27 correspond to ¢/T = 10 and ¢/T = 0.1, respectively. So, the Majorons
decay before leaving the core (I' > 1/R), only if

|9as] < 107°. (3.56)

Because of degeneracy of the inner core, only the energetic Majorons (|E; — w,,|/T & 1)
can decay into electron neutrinos (see Eq. (3.28)). It can be shown that

T[J(g > 2pw,) — Ve + Ve] ~

and )
_ 1geel* Ve + V|

F[J(q > /‘LVe) — Ve + I/a] 871-

37




If
|geu| > 7 x 107 and/or |ge| > 5 x 107°. (3.57)

Majorons that are produced in the center will decay before leaving the core. Note that, even
beyond the neutrinosphere as long as |V| is large enough, Majoron decay can take place.
Now let us examine the interaction effect. For low values of coupling constants, the dominant
interactions are (v + J — ) with the mean free path

-1 -\ |gee|2_l_1'_lie_
T We+J — D) = v [Vel, (3.58)
2 T
- — Ge V; + \% eQ/ -+ 1
l 1(Ve +J — Vﬁ) = } 87[:‘1 ‘ p ﬁ' (.U’Ve - Tln(“"é‘(;/T—‘D, (359)
2 T T
_ _ gsal? 1 Tet'T(q/T +1n2 — In(e¥/T + 1
l l(Vﬂ"["J—-—)IJa) = i—é@;—l—a(lvlg'l'va‘) ( / eQ/T—— 1 ( ) (360)
and
20.7T
P+ 0 = 5 = ZEL g 1w, (361

where g is the energy of J and o and 3 are either y or 7. The requirement [~ > R~ implies

that

200 MeV . 1,03 eV

> -6 q 1 1 1
ee ~ 6 5
00 2 6 1072 L R
> _6 q 1,200 MeV.1,10 eV .1
epls |Yer ~ 2
G ] 22 % 10785} (P ()

and
|guu|7 lg‘rrla \/éigml e 4 % 10~6.

In the last case, the bound is derived for ¢ = 10 MeV, T' = 10 MeV and [V, | = 10 eV. Note
that these bounds are derived for the parameters inside the inner core while the process
D, — ve + J takes place mostly in the outer core. In the outer core y,, is much smaller and
therefore the mean free path is larger, i.e., in the outer core Majorons can escape more easily.
Apparently if the coupling constants are smaller than the bounds in Eqgs. (3.39,3.47,3.46),
Majorons will leave the star core before undergoing any interaction.

For larger values of coupling, Majorons may become trapped or decay before leaving the
star and the energy transfer by Majoron emission will become harder, but this does not mean
that the Majoron production does not affect the supernova evolution. In Ref. [21], a lower
bound has been derived assuming that for the large values of coupling only the Majoron
produced inside a shell [ro—I, o] (where [ is the mean free path) can transfer energy outside
the star. This analysis ignores the effect of the Majorons diffused out from the inner layers.
Considering the high rate of v.v, — J inside the inner core, we expect the effect of the
Majorons diffusing out to be significant. As a result, we expect the lower bound found in
Ref. [21] to be a conservative one; that is taking the diffuse effect properly into account, we
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expect to be able to exclude wider range of parameters (see Fig. 3.1). To calculate the exact
effect and to extract lower bounds on coupling constants, one also needs to revisit the matter
distribution and its time evolution including the effect of energy transfer by Majorons. That
is beyond the scope of this paper. Here, we have discussed only the dominant interaction
modes for larger values of the coupling constants. We recall that for | gl & 5 x 10~ the
effective mass of the Majoron becomes non-negligible.
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0

b)

d)

Figure 3.2: Diagrams (a) and (b) are the dominant three-point processes and are possible
only for V < 0. Diagrams (c) and (d) are the subdominant diagrams and can take place for

any value of V.
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Figure 3.3: The bounds on coupling constants for 7' = 20 MeV and p,, = 200 MeV. The
shaded area is excluded by energy loss considerations. The solid horizontal and vertical lines
represent the upper bounds obtained in Eq. (3.49) and Eq. (3.47), respectively. The dashed
lines show the limits above which Majorons with energy ~ 10 MeV scatter before leaving
the core. The dotted lines represent the same limits for Majorons with energy ~ 200 MeV
(see Eqgs. (3.59,3.60)). The dot-dashed line schematically represents the “lower” bound. We
have not calculated the exact numerical value of the lower bound, but this is an estimate for
gee = 0. Note that the energies of Majorons produced via v,v, — J and vy — Jv, are of
iche order of 10 MeV; that is why the “lower” bound can be to the left of the vertical dotted
ine.
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Chapter 4

Leptonic unitary triangle and
CP-violation

Measurement of CP-violation in leptonic sector is one of the main challenges in particle
physics. In the three-neutrino scheme, there is a unique complex phase in the lepton mixing
matrix, dp, which induces observable CP-violating effects [72]. * The phase dp leads to
the CP-asymmetry [73], P(v, — vg) # P(Uy — Dp), as well as the T-asymmetry [74],
P(vy — vg) # P(vg — v,), of the oscillation probabilities (see also [75] and references
therein).

Measurements of the CP- and T- asymmetries provide a direct method for establishing
the CP-violation. There are a number of studies of experimental possibilities to measure
the asymmetries. It was realized that in the 3v-schemes of neutrino mass and mixing which
explain the atmospheric and solar neutrino data, the CP-violation and T-violation effects
are small and it will be difficult to detect them [76]. The smallness is due to small values
of U, (restricted by CHOOZ result) and Am2;. Still, the effect can be seen in the new
generation of the long baseline (LBL) experiments provided that [Ues| > 0.05 [77, 78, 79].

Two types of LBL experiments sensitive to ép are under consideration [80]: the experi-
ments with superbeams [78, 79] and neutrino beams from muon storage rings (the neutrino
factories) [81]. The analysis of [78, 82] show that for |Us| > 0.05 and Am2, = 5x107° eV?,
neutrino factories can discriminate between dp = 0 and ép = % at the 3o level [83] while
according to [78] superbeams are able to distinguish ép = 0 from dp = §, at the 3o level.
However, neutrino factories and superbeams are very expensive and the interpretation of
their results can be rather complicated and suffer from degeneracies [84]. In view of these
difficulties, we need to explore any alternative way to search for the CP-violation.

Notice that apart from the asymmetries, the phase dp can be determined also from
measurements of CP-conserving quantities, the oscillation probabilities themselves, which
depend on dp [85].

The alternative method to establish CP-violation is to measure the area of a unitarity
triangle. This method is well elaborated in the quark sector. Indeed, the area of the unitarity
triangle, S, is related to the Jarlskog invariant, Jop, which is a parameterization independent

*As we discussed in chapter 1, if neutrinos are Majorana particles, two additional CP-violating phases
exist (the Majorana phases). However, these phases do not appear in the oscillation patterns.
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measure of CP-violation, as
1
S = 5JCP_ (4.1)

So, to establish CP-violation it is sufficient to show that the longest side of the triangle, is
smaller than the sum of the other two.

The problem is to measure lengths of the sides of the triangle. As we will see, the
method of the unitarity triangle differs from measurements of asymmetries and may have
certain advantages from the experimental point of view. '

Previously, some general properties of the unitarity triangles for leptonic sector (geometric
features, test of unitarity) have been discussed in [86, 87, 88].

In this chapter we will consider the possibility to reconstruct the leptonic unitarity trian-
gle. In sect. 4.1, we introduce the leptonic unitarity triangles and study their properties. We
estimate the accuracy with which the sides of the triangle should be measured to establish
the CP-violation. In sect. 4.2, we describe a set of oscillation measurements which would in
principle allow us to reconstruct the triangle. Additional astrophysical measurements which
would allow us to realize the method are suggested in sect. 4.3.

4.1 Leptonic unitarity triangles

In the three-neutrino schemes the flavor neutrino states, vt = (Ve, Uy, Vr), and the mass eigen-
states Vmass = (V1, V2, v3), are related by the unitary PMNS (Pontecorvo-Maki-Nakagawa-
Sakata [89]) matrix T

Uel Ue2 UeS
UPMNS = U/.Ll U,_LQ ng . (42)
U’rl UT2 U‘T3

The unitarity implies

UaUsy + UeaUzy + UssUsy = 0,
UaaUsy + UnpU%y + UnaU, = 0, (4.3)
UniUgy + UpaUsy + UpsUsy = 0.

In the complex plane, each term from the sums in (4.3) determines a vector. So, the Eqgs.
(4.3) correspond to three unitarity triangles. The CP-violating phase, & D, vanishes if and
only if phases of all elements of matrix (4.2) are factorizable: U, = i@t |U,|. In this
case Uy Up; = €'(%=78)|U,;||Ug;|, and therefore the unitarity triangles shrink to segments.

To construct the unitarity triangle, one needs to measure the absolute values of the
elements of two rows (or equivalently two columns) in the mixing matrix. The area of the
triangle is given by the Jarlskog invariant, Jop Eq. (4.1). The area is non-zero only if
sin & D "TA 0.

The mixing of three flavor states (two light neutrinos and heavy neutral lepton from the third generation)
has been discussed in [90].
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4.1.1 e — p triangle; properties

We will consider the triangle formed by the e- and p-rows of the matrix (4.2) (see Eq.
(4.3-a)). (Up to now, there is no direct information about the elements of the third row.

Moreover, even in future, both creation of intense v, beams and detection of v, seem to be
difficult.)

To reconstruct the e — u triangle three quantities should be determined independently:
erlU;tllv iUe2U;2la iUe3U:3|- (4-4)

The form of the triangle depends on the yet unknown value of |Us|.

b). 8=60°

Figure 4.1: The unitarity triangles for different values of the CP-violating phase ép. For
mixing angles, we take tan® 6y, = 0.3, sin® 2653 = 1 and sin®26;3 = 0.12. The arcs show the
10 % uncertainties in determination of y and z.

In Figs. 4.1 and 4.2, we show examples of the unitarity triangles for different values of

U.s and 6p. In these figures we have normalized the sides of the triangles in such a way that
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the length of the first side equals one:

_ UeaUp,| _ |UesUps]

=1 = = —i
O YT oLl Y T ann

(4.5)

We use the standard parameterization of the PMNS mixing matrix [91] in terms of the
rotation angles 012, 613, fo3 and the phase dp. We take values of 615 and 6y from the regions
allowed by the solar and atmospheric neutrino data.

In Fig. 4.1 we present the triangles which correspond to sin® 26,5 = 0.12 (the upper bound
from the CHOOZ experiment for Am2, =3 x 1073 eV?). The arcs show 10% uncertainty
in measurements of the sides y and z. From Fig. 4.1, one can conclude that for maximal
CP-violation, dp = 90°, the existence of CP-violation can be established if the sides of the
triangle are measured with 10% accuracy. For §p = 60°, with 10% uncertainty, CP-violation
can also be established but of course with lower confidence level. No statement can be made
for 6p < 45° unless the accuracy of measurements of the sides will be better. These estimates
should be considered as tentative ones. In order to make precise statements one needs to
perform careful analysis taking into account, in particular, correlations of the errors.

The triangles shrink for smaller values of sin®26;3 (Fig. 4.2). According to Fig. 4.2
which corresponds to sin? 2613 = 0.03, for 6p = 90° CP-violation might be established. No
conclusion can be made for 6p < 70°.

Note that y ~ O(1) and z is the smallest side, although its length may not be much
smaller than others. So, the CP-violation implies that

|U61U:1I < !UegU/BI -+ ]Ue3U23|- (46)

In general, to establish CP-violation, one needs to construct the triangle without using
the unitarity conditions. However, if we assume that only three neutrino species take part in
the mixing and that there are no other sources of CP-violation apart from the PMNS-matrix,
we can use some equalities which follow from the unitarity. In particular, we can use the
independent normalization conditions: 4

Yo lUslP=1, Y |UufP=1 (4.7)
i=1,2,3 i=1,2,3

Thus, to find the sides of the triangle we should determine moduli of four mixing matrix

elements:
\Uel,  |Uual,  |Uesl,  |Usl. (4.8)

They immediately determine the second and third sides. The two other elements, |Ue1| and

|Upu1|, and consequently the first side, can be found from the normalization conditions (4.7).
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Figure 4.2: The same as Fig. 1 for sin? 26,3 = 0.03.

For the first side we have |U;Uu| = \/(1 — |Ue2|? — [Ues)?)(1 = |Upa|? — |Ups|?). Taking
into account this correlation in determination of the sides of the triangle one can estimate
accuracy of measurements of the elements (4.8) needed to establish CP-violation via the

inequality (4.6). Let us introduce

A= |Ual|Uss| + Uesl|Usia] = /(1 = [Ueal? = [Ues2)(A = [Upa2 = [Upal?)  (4:9)

which is a measure of CP violation. CP is conserved if A = 0. For the most optimistic cases,
where Ul is close to the CHOOZ bound and §p = 90°, we find A = 0.10 — 0.13.

Suppose the elements |U,;| are measured with accuracies A|Uy|. Assuming that the
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errors |AUy;| are uncorrelated, we can write the error in the determination of A as

AA=\J > <d|dUii|> (AU, (4.10)

a=e,u,i=2,3
where QA \Uea| U] dA Ues| U,
_ e2 ul — e3 pl
derzl_IU“ZIer!Uell , _—_—dIUe3! |U,ﬁ,[+————iUell , (4.11)
dA |U31“U#21 dA IUf:lHUuS]
— Ue +._..._.._._._7 = Ue —}-—“‘——_. 412
0~ 1%+ o a0~ 1Vl o (4.12)

As an example, let us choose the oscillation parameters used in Fig. 1 and 6p = 90°. Then
from Egs. (4.11, 4.12) we find dA/d|Ue| = 0.82, dA/d|Ues| = 0.77, dA/d|U,z| = 2.0 and
dA/d|U,s| = 1.9. Note that for muonic elements the derivatives are larger by factor of 2.
This is a consequence of the appearance of the relatively small element |U, | in denominators
of (4.12). So, the muonic elements should be measured with the accuracy two times better
than the electronic elements.

For our example we find from Eq. (4.10) that AA < 0.065, which would allow to
establish deviation of A from zero at the 20 level, if A|Ugy| = A|Ues| < 0.03 and A|U,,| =
A|U,s| < 0.02. This, in turn, requires the following upper bounds for relative accuracies
of measurements of the matrix elements: 6% for |Ue|, 17% for |Ues|, and 3% for |U,s| and

|Uys|. Since

AUl _ (WM)M'UM

lUu2| - 'UMZI IUull
and Uy =~ 0.5U,,2, the required 3% accuracy in |Us| corresponds to 12 % uncertainty in U, .
If there are correlations between A|Uy|, the situation may become better. So, the above

estimations can be considered as the conservative ones.

4.1.2 Present status

At present, we cannot reconstruct the triangle: knowledge of the mixing matrix is limited
to the elements of the first row (from the solar neutrino data and CHOOZ/Palo Verde
experiments) and the third column (from the atmospheric neutrino data). To reconstruct the
triangle one needs to know at least one element from the block Ug;, where 8 = pu, 7, i=1,2.
That is, one should measure the distribution of the v, (or/and v,) in the mass eigenstates
with split by the solar Am?. Using the unitarity condition we can estimate only the ranges
for these matrix elements. Clearly, the present data is consistent with any value of the CP-

violating phase and, in particular, with zero value which corresponds to degenerate triangles.
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Let us summarize our present knowledge of the relevant matrix elements.

1). The values of the mixing parameters |U.1| and |Ue| can be obtained from studies of
solar neutrinos. Neglecting the small effect due to U, and using the results of KamLAND
collaboration [1}], we obtain

Ilgez= = ]ta,n esoll = 0.54 — 0.75, (95% CL) (413)
el

and then using the normalization condition:
|Ua| ~ [1 +tan?6,,]+/* = 0.80 — 0.88,  (95% C.L.). (4.14)

2). The absolute value of |U,| is restricted from above by the CHOOZ [92] and Palo
Verde [93] experiments. A global analysis of neutrino oscillation data [2] gives

U.s| < 0.20, (95% C.L.). (4.15)

3). The admixture of the muon neutrino in the third mass eigenstate, |Uys|, is determined

by the atmospheric neutrino data. Again, neglecting effects due to non-zero Ues, we can write
41UM3|2(1 - |Uu3|2) = sin2 2ea.tma (416)

where sin? 20,., can be extracted, e.g., from analysis of the zenith angle distribution of the
p-like events in terms of the v, — v, oscillations. The superKamiokande data combined with
the K2K data shows that

U8 =0.707510,  (95% C.L.). (4.17)

4). At present, there is no direct information about |Uy| and |Uys|. To measure these
elements, one needs to study the oscillations of muon neutrinos driven by Am?2,. The

normalization condition allows us to impose a bound on a combination of these elements:
Ual? + [Up)? = 1 — |Ups|?* = (0.33 — 0.67). (4.18)

So, to determine |U,;| and |U,q| separately we need to measure a combination of these

elements which differs from the normalization condition (4.18).

4.2 Reconstructing the unitarity triangle

Let us consider the possibility to determine the triangle in the forthcoming and future oscil-

lation experiments. We suggest a set of oscillation measurements with certain configurations
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(base-lines, neutrino energies and features of detection) which will allow us to measure the
moduli of the relevant matrix elements (see Eqgs. (4.4, 4.5)).

In general, for a 3v-system the oscillation probabilities depend not only on the moduli of
the mixing matrix elements which we are interested in, but also on other mixing parameters
including the unknown relative phases of the mixing matrix elements, §,. Therefore, the
problem is to select configurations of oscillation measurements for which the dominant effect
is determined by relevant moduli and corrections which depend on unknown elements and
phases are negligible or sufficiently small.

The hierarchy of mass splittings: (Am2,,, > Am?2,,) helps us to solve the problem. We
use A2

€= Kﬂé{;—;— ~ 0.03 (4.19)
as an expansion parameter, where the estimation corresponds to the best fit values of the
mass squared differences. Another small parameter in the problem is |Ugs].

In what follows, we suggest a set of measurements for which the oscillation probabilities

depend mainly on the relevant moduli:
Pa,B: Paﬁ(IUezlalUuzI)+A-Pa,3(6m)7 CZ,,B=€,,LL s (420)

where AP <« P. We estimate corrections, AP,g(dz), due to the unknown mixing elements
and phases.
It is convenient to study the dynamics of oscillations in the basis of states obtained

through rotation by the atmospheric mixing angle: (v, Vys v.), where

)= 1 y 1

= (Uss|vp) — Usalvs)), A pep———— ;LA
MW(I) jvr)) I>\/1_|—Ue3|2(l>

Projections of these states onto the mass eigenstates equal

+ Uk b)), (4.21)

y ! Ue* Ue
(Veln) =Uz, (Vi) = ——2—, (V) = ——==2

J1—|Uasl?’ 1— |Ussl?

(Velvs) = Ugy,  (Wulvs) =0, (Vpfus) = /1= |Uasl*. (4.23)

Note that in the limit U = 0, the state v, coincides with mass eigenstate v3, whereas

(4.22)

and

VL = —gin 9121/1 -+ cos 9127/2.

In matter, the system of three neutrinos (v, Vys v..) has two resonances associated with

the two different Am?. The corresponding resonance energies for the typical density in the
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mantle of the Earth are

Am? 1.5 mole/cm?
EE =4 GeVcos26 gt
= oy cos s (2.5 x 10-3 eVZ) ( e >
260 Am? 1.5 mole/cm?
ER =0.12 €08 Psol sol . 4.24
17 = 0.12 GeV ( 04 ) \8x 1075 eV? e (4.24)

These energies determine the typical energy scales of the problem as well as the energies of
possible experiments. Also there are two length scales in the problem which correspond to

the oscillation lengths:

-5 o2
_ 47r£27 _ 3-1O4km( E )(8><10 eV)}

27 Am2, GeV Am?,,
4nE 3 E \ (25x107% eV?
E —_ . 4-2
b= ppa— = W0k <GeV) ( Amz, ) (4.25)

These numbers have been obtained for the best fit values of the mass squared differences.
Let us consider possibilities to determine the moduli of relevant elements of mixing matrix

(4.8) one by one.

4.2-1 |U:3Uu3|

In principle, this product can be directly measured in studies of the v, — v, oscillations
driven by Am2,... Let us consider a relatively short baseline experiment in the vacuum. The
transition probability can be written as

Am?2, L

'——“'Zl%rﬂ— + APﬂe, (426)

Pye = 4|U3U,|" sin®
where AP, is the correction due to the existence of the Am? splitting : AP,. — 0 when
Am2, — 0. Thus, if the original flux is composed of pure v, (or pure ), detecting the
appearance of v, (or v,), one can measure immediately |UZU,s| provided that AP, is small
enough. Note that AP,. depends not only on the moduli of Uy, Uag, (v = e, ), but
also on their phases which are unknown. So, we cannot predict AP,. and the only way to
proceed is to propose an experiment for which AP, is small. An alternative method would
be independent measurement of |Ugs| and |Uys|.

For neutrino energies, £ > 100 MeV (which are of practical interest) the oscillation
length in the vacuum, I3, is more than several hundred kilometers. This means that the

experiment should be a long-baseline one, and therefore oscillations will occur in the matter
of the Earth.
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In a medium with constant density* the probability can be written as
om Hm 2
P = |(UB)UD (%% — 1) + (Um) UM (%% — ), (4.27)

where UZ; are the mixing matrix elements in matter and @77 is the oscillation phase difference
of i— and j— eigenstates.

In the vacuum limit (one may consider a hypothetical configuration of experiment where
neutrino beam propagates mainly in the atmosphere or in a tunnel), U™ = U,; and @™ = &,.
The first term in (4.27) corresponds to the mode of oscillation we are interested in, and the
second term is due to the Am2,; splitting. The main correction follows from the interference
of these two terms.

For the correction we find
APy ~ =2¢|U5UpnUesUsy| @safsin (6, — @o) — sindy], (4.28)

where 4, is the unknown phase of the product of four mixing matrix elements. In derivation
of (4.28), we have used the smallness of the phase ®1s:

‘1)12 = 6@32, (429)

assuming that ®3; = O(1) (which maximizes the effect of oscillations). Then the relative

correction is of the order of
AP e sin 260 sol

~ € .
P, pe |Ue3f
For Ues = 0.2 we get AF,./P,. ~ 0.1. That is, the product |UU,3|? can be measured with

accuracy not better than 10% for maximal possible U.3. Consequently, the accuracy in the

(4.30)

determination of |U%U,s| cannot be better than ~ 5%.

There are two possibilities to improve the accuracy: 1) The main oscillation term and the
interference term have different dependences on @3, and therefore on E/L. So, in principle
one can disentangle these terms by studying the energy dependence of the effect. 2) The sign
of the interference term can be changed varying E/L while the dominant effect is always
positive. Therefore, the correction can be suppressed by averaging over energy, especially if
0z 1s small.

In the matter the dependence of the oscillation probabilities on mixing matrix elements
becomes more complicated. However, there is a limit in which the dominant term of P
can be approximately written as (4.26): the low energy limit £ < Ef in which matter

corrections are small.

For simplicity we will consider matter with constant density. Density variation effects do not change our
conclusions.

51




Let us consider the low energy case, E ~ (200 — 500) MeV. The relative corrections due
to the matter effect to the main term in (4.26) are of the order of
where ly = v/21/Gpn, is the refraction length. For E ~ 200 MeV, the ratio is of order of
0.02, while for E ~ 1 GeV, the corrections reach 10%. Moreover, the matter effect is of
order 1 for the correction term driven by Am2,.

At low energies the mixing in the heaviest eigenstate is only weakly affected by matter,
so that in the first approximation we can take Ug; =~ Ues, Uz = Uus. For E ~ 200 MeV, the
oscillation length due to 2 — 3 level splitting is ~ 200 km, and therefore the optimal baseline
would be L ~ (100 — 200) km.

The energies E ~ 200 MeV are in the resonance interval for Am?;. This means that the
electron neutrino has comparable admixtures in the two light eigenstates: U ~ U% ~ 1/+/2.
Since the contribution of the matter to neutrino is flavor-diagonal [in the flavor basis, the

effect is v/2Gpnediag(1,0,0)] we can write
UarUpiy @12 + UesUp @3y = Ugy (Uyh)* @75 + Ugg (Uys) " @55
Since for low energies up to O(las/lo, UesU, 3 P32 = U (U,)* @53, we can conclude
(Ua) Up 2% = Ug Ui D1a. (4.32)

As a result ®7% ~ @15 and for the baseline L ~ (100 — 200) km (&3 ~ 1), the oscillation
phase due to the 1-2 level splitting is small: ®7% ~ 2wL/l3 ~ € < 1. These features simplify
the analysis of the correction term. Indeed, using (4.21, 4.22, 4.23)), we find Therefore, the
relative correction AP,./P, which appears due to the interference of the term (4.32) with

(Ug)™Um in (4.27) can be written as

AP, sin 20,
~ € , 4.33
Pue IUe3l ( )

where € is Am?,/Am2, . ~0.03
In summary, for beam energy of 200 MeV and a baseline of 100 — 200 km, the oscillation
probability is given by given by 4.26 up to a correction of O(e/U.s) which is at best ~10%.
Similar considerations hold for the antineutrino channel. We find that not only the main
term but also the orders of magnitude of the corrections coincide with those for the vacuum

case.
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We now discuss the sensitivity of upcoming and planned experiments to the product
|U23Ups|. It was shown [95] that combining the data from the MINOS, OPERA and ICARUS
experiments, one can obtain an upper bound sin® 26;5 < 0.03 at the 90% C. L. This would
correspond to |UZUyus| < (0.06) which is about 2.5 times stronger than the present bound:
|U%U.s| < 0.15. The searches for the v, — v, oscillation will be performed in phase I of
the JHF project. The sensitivity to the product |US5U,s| can reach to 0.02 [78]. Therefore,
if |U%U,s| is at the border of the present upper bound it will be measured with about 15
% accuracy. Neutrino factories will be sensitive to |U}U,s| down to 107°. However, for
|U%U 3] < few x 1073 the correction due to non-zero value of Am?, will be comparable with

the main term (see [96] for related discussion).

4.2.2 Ul

In view of the difficulties associated with the direct measurements of |Uj3U,;3| discussed in
previous section, an independent determination of |Ues| seems to be a better way to extract
the second side of the unitary triangle. Knowledge of |Ues| is also needed for a precise
determination of |U|, |Ues| and other mixing elements.

The survival probability for v.-oscillations in the vacuum can be written as
. . 2
Pye = |[Us]? (¢ = 1) + 1+ [Uaf? (™2 = 1) (4.34)

Note that, in contrast to the conversion case, the probability amplitude depends on the
required moduli of the matrix elements. A similar analysis holds for antineutrinos.

For low (reactor) energy experiments the matter effects are negligible and the probability
equals

®
P =1—4(1 — |Uss|?)|Uss|? sin? % + AP, . (4.35)

Here the correction AP,, due to the Am2, splitting can be evaluated as
2 2 : Lo o2
AP, = 2|Ue1|*|Ues|* P12 sin P39 — 1@12 sin® 20,,;. (4.36)

For ®15 ~ |U.s|?, the relative correction is small: AP,./(1 — P..) <few %, so that in prin-
ciple, |U.s| can be determined with better than 1% accuracy. Experimental errors in the
measurement of P,, will dominate.

Let us comment on the experimental prospects for measuring |Us|. A new reactor exper-
iment, Kr2Det, has been proposed which will be able to set the bound |Ues| < 0.07 at the 90
% C. L. [97]. Ref. [98] proposes a new experiment on the CHOOZ site, Double-CHOOZ, to

53




explore the range of |Ug| from 0.22 to 0.08, within three years of data taking. If |Ug| = 0.2,
it can be determined with 20% at 30 C.L.

It is not clear if future measurements allow us to measure |U.s| precisely enough to
reconstruct the third side of the triangle. But certainly, they will contribute to a more

precise determination of |Ue| and |Us|.

4.2.3 Uyl

The analysis of the atmospheric neutrino data and the K2K results determines the value of
|Uys| (4.17) . To reconstruct the unitarity triangle, we need a more precise measurement for
|U,s|, taking into account the effect of non-zero |Ues].

The element |U,s| can be measured in v,-disappearance due to oscillations driven by

Am?, . The v, -survival probability in a uniform medium equals to:
jom om 2
Py = |[UB (%% — 1) + 1+ [UR 2 (75 —1)| . (4.37)

Again, there is a limit in which the dominant term of this probability reduces to the vacuum
oscillation probability plus small corrections: the low energy limit (E < EE).

Let us consider the low energy experiment with E ~ Ef ~ (200 —500) MeV. In this case
the Amp, -driven oscillations are in the quasi-vacuum regime (U} = U,s, @5 =~ ®32) and
the base-line can be relatively small: L ~ [;3 ~ 100 km. On the other hand, the oscillations
driven by Am2, are in the vacuum mimicking regime: ®75 < 1. It can be shown that
|U73l2

um 2 ~~
| p.l’ 1— ]Ue3l2

sin? 91’5 + O(Uegs?’écﬁ), @'ﬂ ~ Ri9®19 = €R15P13, (438)

where sin® 67, = [1 — (cos 2015 — l12/1y)/Ri12]/2, and Ry, is the resonance factor for the (1 -

2) system:

Rig = \] (cos 2619 — %) : + sin? 2615. (4.39)
Inserting the matrix element (4.38) into (4.37), we can reduce the probability to
Byp=1-(1- lUu3l2)lUu3l2q>§2 + AP, (4.40)
with _
AP, = 2€|U.3|*|U,3|* @32 sin @39 Ry sin® 072 (4.41)

Let us consider last two factors in this expression. In the resonance, Ry sin? 07 = Ryp/2 =
sin 26,,;/2, but above it Ry, sin® 073 — l12/lo and the correction increases with energy too.

Below the resonance Rjssin? 07} — sin® 0,4
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Thus, in the resonance region and below it, the correction is small and of the order of
Am?2,/Am?2, . The corrections due to admixture of v/ in the lowest mass eigenstate (which
we have neglected) are of the order |Ug3|?. As in the high energy limit, the relative corrections
are restricted to AP,,/P,, < 0.04, and moreover, the dominant part of these corrections
can be calculated in terms of |Us|.

In the antineutrino channel, similar consideration gives the following corrections which
can be calculated in terms of the moduli of the matrix elements:

s |UsPIUsl

A-Pp,p, = 6‘(—1—j|—(]—;|-2—)—2q)32 sin @32(}?,12 - \/R%z - Sil’l2 29501). (442)

The relative corrections are of the order of Am?,;/Am2, . The corrections which depend on

unknown phases, are further suppressed (~ |Uesle).

Studying the disappearance of v,, the MINOS experiment will determine Am?,, and
(1 — |Uus|®)|Ups|® with 10 % accuracy at the 99% C.L. after 10 kton-years of data taking
[99, 95]. Much higher precision can be achieved in phase I of JHF: the oscillation parameters
(1 —|Uu31*)|Uus|?® and Am2,,.) will be determined with 1% uncertainty [78]. Thus, there are

good perspectives to determine |U,3| with precision better than 2 - 4 %.

4.2.4 |Uy| and |Ug|

The values of |Ug;| and |U,z| can be obtained from the solar neutrino data. To first approx-

imation, due to the low energies of solar neutrinos the matter effect on |U| is negligible

2

<. Will produce only an averaged oscillation

and the solar neutrino conversion driven by Am

effect. In this case the survival probability equals [102]

P, = (1 = |Uus|?)?Py(tan? 0501, Am?,) + |Uesl?, (4.43)

where IU |2
tan? Oy, = e2 4.44
ol IUellz ( )

and P, is the two neutrino oscillation (survival) probability determined fror the solution of
the two neutrino (v, — v,) evolution equation with the oscillation parameters tan? 65,, Am2,
and the effective potential (1 — |Ug|*)Vs.

Future experiments can reduce the error in |U,;|?|Uez|? to about 1% [103]. Then using the
measured value of |Ue; ||Ugs| and the normalization condition, |Ue;|? + |Uee|? = 1 — |Ues|?, we

can find |U,| and |Ue|, separately. The accuracy can be better than (2 - 3)% .

$For JHF (L = 300 km and E = 1 GeV), AP,,/P,, will be comparable to the systematic error, so to
extract the value of |U,3| we have to take the correction into account. Ref. [100] discusses the problem in
detail.
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4.2.5 |Uy| and |U,

The determination of |Uy;| and |Uye| is the most challenging part of the method. Note
that in contrast to |U};Ue,| (see sect. 3.1), it is not possible to measure the combinations
|Uz1Ua| or |U2,Ups|, directly from the oscillation experiments. Indeed, in vacuum the v, — v,
transition probability is determined by the product Re [U Uerl, ugU;"Q] which depends not
only on the absolute values of the matrix elements but also on their phases. (For example, in
the case that Am?2,L/E is not resolved, the probability P., is determined by the combination
|Uj1Ue1 +U5oUes|.) Therefore we will consider the possibility to measure separately |U,; | and
U, 42|, o that the second side of the triangle can be found using the electron matrix element
|Uez| obtained in other experiments. In fact, it is sufficient to measure some combination
of U] and |Uys| which differs from the normalization condition (4.18). This requires an
experiment sensitive to the splitting between the first and second levels associated with
Am?, which appears usually as a subdominant mode. To suppress the leading effect and the
interference of the leading and sub-leading modes, the oscillations driven by Am2, = should
be averaged out. This condition necessitates the following experimental configuration:

1). The energy of beam should be low: E < 1 GeV.

2). The baseline should be large: L > lo3 (in contrast to configurations considered in the
previous subsections). Moreover, to avoid suppression of the subdominant mode we need L
to be of the order of the oscillation length due to the (1 - 2) splitting.

At E < 0.5 GeV, we have ls3 ~ 500 km, and consequently, to reach averaging the baseline
should be ~ 2000 km. In this case ®7% ~ O(1).

To produce muons, we need E > 100 GeV. For these energies matter effects on (1 - 2)
mixing are non-negligible and moreover, since the baseline is large, no vacuum mimicking
will occur.

The experiment we have arrived at, seems even more difficult than that for direct mea-
surements of the CP-asymmetries [78]. However, our proposed experiment measures quan-
tities different from asymmetries, and moreover, only one beam, neutrino or antineutrino, is
sufficient.

Let us consider the v, — v, oscillation (disappearance) experiment with £ ~ ER ~
(200 — 500) MeV and L > 2000 km. At these energies the influence of the matter effect on
flavor mixing in the third mass eigenstate is small so that we can take U% ~ Ug and also

e

Ul ~ Ups. (The corrections are of order of €.) Therefore, the normalization condition gives
|UZ? + U2 =1— |UR|? = 1 — |Ug/|*. The mixing is reduced to the mixing in 2v-system,

so that matrix elements in matter can be obtained by substituting Ue; — U, Uen — UZ.
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The general form of the probability in a medium with constant density is given by Eq.
(4.40). Let us calculate |U, ZHI First we express the vacuum value of Uy in terms of Ug, Ups
and mixing in the third state, Uss (o = e, ). To do this, we use Uy = (v, |vl) (V. |v)
and the relations (4.21, 4.22, 4.23). Then in the expression for Uy = Uy (|Ua |, |Uea, |Uas))
we substitute U,; — U2 (i = 1,2). A straightforward calculation gives

1 M\ * T T%
= TTo U [[(Ug5) Urs| + Uz UZUps] . (4.45)

Mixing elements in matter can be written as

cos? 075 |Ue1]? Ry + cos 2015 — l1p/1o

m|2 __ 2 —
Uel” = |V cos?61;  Ris 1 + cos 2615 (4.46)
(here cos 201 = 2|Ue |2/ (1 — |Ues)?) — 1),
U1 =1—|UZ? - |Ues|? (4.47)
and .
(Ua)Usz = 'R—I;Uékerz. (4.48)

Using these equations we can express IUL’“{[ in terms of the mixing parameters in vacuum as

m 1
U&I* = ElUMIQ-i_F’ (4.49)
where .
F= T [1U=] fs =+ [Ues|?| U] -] (4.50)
and

_ R12 — 14+ llz/lo

fe= :
2Ry

Note that in the vacuum limit fy — 0, B3 — 1 and F' — 0. At the resonance, R;o — sin 261,

(4.51)

and above the resonance where £ > EL2

[U73|2

Un? - F g —
I ull - 1_’Ue3'2

(4.52)
In this case the dependence of [U]}|?, and consequently of the probability, on |U,; | disappears
in agreement with our result for the high energy version of the experiment in sect. 3.3. The

survival probability can be written as

~ 4 _ 2\2 _ IUMP _ 2 _ o IUMP 2 @Tlré
PMM ~ IUN3’ -+ (1 IUIL3I ) 4 + F 1 !U,u3l F sin . (453)
R12 R12 2
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Let us underline that F' = F(|Ue1|?, |Uas|?) is a known function of |Ue|* and |Uys|? and it can
be determined once these elements are measured. The contribution of the |U,; |-dependent
terms to the probability is about 10%. Therefore to determine |U,;|? precisely enough, the
probability should be measured with better that 1% accuracy.

The correction to the formula (4.53) due to matter effects are of the order e.

For antineutrinos the probability is given by expression (4.53) substituting, li2/lp —
—l13/lo, Ria — Riy, ®% — O (obviously, |Uai| = |Ul). Note that in this case, above the
resonance (E > Ef}) we get

U€3|2|UM3!2

™ |2 Fw' 4.54
IU,U,I‘ - 1__er3‘2 ’ ( 9 )

and again the dependence on |Uy;| disappears.

In general the aforementioned conditions (to measure |U,;|) are fulfilled for the sub-GeV
atmospheric neutrinos reaching the detector through nadir angles between 30° (for which
the baseline is tangent to the core) and 80° (with L ~ 2000 km). Indeed, for such neutrinos
the phase of oscillations driven by Am2; is of order 1: Am2,L/2E ~ VL ~ O(1), while
Am?2, L/2E > 1. However, due to the presence of both electron and muon neutrinos in
the initial flux, the number of observable events, e. g¢. p-like events, depends both on
survival and on the conversion probabilities (P, and P,.). One can easily show that for
conversion probabilities, the effects of interference terms, which depend on unknown phases,

are non-negligible.

4.3 Do alternative methods exist?

A straightforward (and similar to what we do in quark sector) way to determine the elements
of the PMNS matrix (and therefore the sides of the unitarity triangle) is to study the
charged current interactions of neutrino mass eigenstates, v;. Indeed, the cross-section of
the interaction

where [ is a charged lepton, is proportional to |Uj;|%. In particular, measuring the number of
electrons and muons produced by the v;-beam one can immediately find the ratio |Ue|/|Uul-
To perform such a measurement one needs to create a beam of pure neutrino mass eigenstate
energetic enough to produce the charged lepton, I. There are several ways to produce (in
principle) a pure mass eigenstate beam: (i) via adiabatic conversion, (ii) due to spread of the
wave packets and (iii) as a consequence of neutrino deéay. In general, one can also use a beam

of several mass eigenstates provided that they are incoherent. Processes induced by such a
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beam will be determined by the moduli of matrix elements. Effective loss of coherence occurs
due to averaging of oscillation of neutrinos from far objects (for which Am2,L/2E > 1).

We will consider these possibilities in turn.

4.3.1 Adiabatic conversion of neutrinos in matter

In a medium with high density (larger or much larger than the resonance density) mixing
can be suppressed. That is, the flavor state, produced at such a density, coincides with the
eigenstate of the instantaneous Hamiltonian: vy & v4,. If the density decreases slowly to
zero along the path of neutrino, such that the adiabaticity condition is fulfilled, the neutrino
state will always coincide with the same eigenstate: v(t) & vy, (t). As a result, when the
neutrino exits the last layer (at zero density), it will coincide with the mass eigenstate
v(ts) = Vim = Ui

This happens for solar neutrinos with energies 5 - 14 MeV. The electron neutrinos pro-
duced in the center of the Sun are converted to vo-state. So, by studying the interactions of
neutrinos from the Sun we can measure |Ugg|.

Obviously, usual solar neutrinos cannot produce muons. Measurements of |U,1| and/or
|Uy2| will be possible, if high energy neutrinos (£ > m,) appear in the center of the Sun
and propagate adiabatically to the surface. Such a possibility can be realized if massive dark
matter particles, WIMPs, are trapped inside the Sun and annihilate emitting neutrinos.

Suppose that the dark matter is composed of neutralinos, x. The neutralinos can anni-
hilate into the Standard Model particles: xx — W+W~,ZZ, ¢g etc., which in turn decay
producing neutrinos and antineutrinos. The energy spectra and the flavor composition of
neutrino fluxes (as well as the absolute value of the flux) depend on the parameters of the
SUSY model. Generically, one expects an asymmetric flavor composition. Indeed, neutrali-
nos annihilate preferably into bb, 77 (and if they are massive enough also into #, WtW—
and ZZ). Moreover, muons, pions and kaons are absorbed or lose a substantial fraction of
their energy before decay. In contrast, the 7-leptons decay before appreciable energy loss.

As a result, one expects an excess of v, and approximately equal fluxes of v, and %
Fo(v,) = F%7,) > Fo(Vu) =F(p,) ~ F(v,) = F(,). (4.55)

At high energies (£ > 100 GeV) the inelastic interactions inside the Sun are very important
and due to differences in the cross-sections one expects different energy spectra for neutrinos
and antineutrinos. However, for E, < 50 GeV the effect of inelastic interaction is smaller
than 10%.
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Note that in contrast to the case of usual solar neutrinos (for which pure v, flux is
generated), WIMPs produce a neutrino flux with a complez flavor composition. This creates
two problems: (i) one needs to know the flavor composition which is subject to various
uncertainties; (ii) the final flux is a mixture of mass eigenstates (and is not a pure mass
eigenstate).

Another problem is that only for rather low energies, the adiabaticity condition is fulfilled
in the resonance channel. For E > 1 GeV neutrinos cross two resonance regions inside the
sun: the high density (h)-resonance associated with Am2, . at density p < 30 g/cm® and
the low density (I)-resonance associated with Am2; at p < 0.5g/cm®. For definiteness we
will consider the scheme with normal mass hierarchy in which both resonances are in the
neutrino channels.

The jump probability at the resonance which characterizes the adiabaticity violation can

be written as P, ~ exp(—vsin® §), where

Am? 1GeV
v=14 (10“5eV2> ( E ) ! (4.56)

where we have used the density profile of the Sun in [104]. (The above formula is valid

only for weak violation of adiabaticity: P, < 1.) For E = 10 GeV in the l-resonance
associated with Am?2, = 8 - 107° eV? and tan®?6 = 0.4 we obtain F. ~ 0.04. At the h-
resonance violation of adiabaticity is negligible, provided that Uz is not very small. We
have P, ~ 1077, for |Ues|? = 0.03. The adiabaticity violation effects are below 1 % for E < 7
GeV. In the antineutrino (non-resonant) channel the adiabaticity violation occurs at larger
energies. The effects of adiabaticity violation lead to the appearance of interference terms
which depend on unknown complex phases. Therefore one needs to select low energy events.

Using relations (4.55) we can write the vg flux (8 = e, u, 7) at the Earth as
F,g =ZP5QF£=FO+AFOP,@T, (4.57)

where F° = F{ = F is the common flux of the electron and muon neutrinos, AF° = F?—F}
and Pj, is the probability of v, — v on the way from the production region in the center
of the Sun to the detector on the Earth. (Here for simplicity we do not consider the Earth
matter effect.) A similar expression can be written for the antineutrino channels.

Neutrinos from WIMP annihilation can be detected by large underwater and ice detec-
tors via charged current interactions. In these detectors the rates of u-like events will be
measured. The detectors will not be able to identify the charge of the produced lepton and

therefore we need to sum the neutrino and antineutrino fluxes in our analysis. Using Eq.
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(4.57) we can write the expression for the rate of the yu-like events as
N, =N+ / dQAF(P,,0, + Pard,), (4.58)

where
NO = / dQF(0, + 5,,) (4.59)

is the rate without oscillation. In the above equations, o, and &, are the cross-sections of the
charged current interactions of neutrinos and antineutrinos, respectively. Here [ df) includes
the integration over the neutrino energy, the angle between the neutrino and the produced
muon and the energy of muon. One should also include the efficiency of detection and the
energy resolution function.

Let us find the transition probability, Ps., which determines according to (4.57) the
oscillation effects. The general expressions for the probabilities Pg, are given in Ref. [105].
Here for illustrative purposes we will consider the case of pure adiabatic propagation in the
Sun. ‘

For E < 5 GeV and the relevant Am? the oscillatory terms will be averaged out due
to, in particular, finite energy resolution of the detector. Taking into account this averaging

effect we find the v, — v conversion probability in the adiabatic limit:

Psr = > |Ua?|UZPR, (4.60)
=1,2,3
where U]} is the mixing parameter in matter at the production region.

The density in the production region is much higher than the resonance densities, so that
the mixing is strongly suppressed. Considering the level crossing diagram, it is easy to show
that v, = —ve, Vo, = V. and vy, = —VL. From these relations and the definition of VL and
v, (4.21) we obtain

[Uu3| |U73’
/1= |Uel? /1= |Ues?

Inserting (4.61) into (4.60) we find the probability of the v, — v, conversion:

Ul = Ul = m 0. (4.61)

1

Pry=—
. 1-— IU€3I2

(10 P(1 = |Uss?) + (1 = 2UpsP)|Upel?] - (462)

Since the atmospheric mixing is close to maximal: |Uu|?> ~ 1/2, the dependence of the

probability P, on |U,|? is weak.
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In the antineutrino channel, at high densities we have v, = Te, Vom = V;/L and Ty, = 7.

Consequently, the mixing elements are equal to

g . |Uss] . |U-rs|
[0TSR YO /- N T 1 (463)
/1= |[Uesl|? /1 — |Ues|?
Using (4.60) we find the probability of the & — ¥, conversion:
P, = _Ual® [1 = Ul ~ [Ueal? + U] (4.64)
34 1 — IUB3|2 22 2

Here |U,,|* appears with a relatively large coefficient.
In the adiabatic limit, the conversion probabilities do not depend on energy and the

expressions for the rate of events can be written as

0 |Uu3|2(1 - 'Un3|2

R L
U2|? 2
T / AQAF[(1 - 2U,s|%)0, + U,s)%5,). (4.65)

According to (4.65), the relative effect of the term proportional to |Uye|? is suppressed by
smaller value of the antineutrino cross-section &,/0, ~ 1/2.
The relative contribution to number of events from the term which depends on |Uy,|* at

low energies (see (4.65)) is

}Uu2|2lUu3|2 0=
r e [ dOAFYG,. (4.66)
N? / g

For larger energies E > 30 GeV, in the neutrino channel the effects of the adiabaticity
violation are ~ 10%, 7. e. larger than the level of required accuracy in the determination
of the mixing elements. In the antineutrino channel the adiabaticity violation is weaker. So
if detector is able to identify the charge of lepton, and consequently, to select antineutrino
events, one will be able to perform better measurements. In particular, events with higher
energies can be studied.

Let us comment on the possibility to detect neutrinos from WIMP annihilation and to
measure |Uyo|?. The event rates due to these neutrinos in a km®-size detector can be as
large as few 10° events/year [106], however the rate is very model dependent. If AF?/FO ~
0.2 — 0.5, the contribution of the term sensitive to |U,|? is about 10 %. Therefore |Ua|?
can be determined with accuracy 10% at best, provided that all other involved parameters
are known. In particular, one should know the original flux FS, and the difference of fluxes

F? — F} as functions of energy.
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There are several possible ways to deduce information about the ratio of original fluxes
AF°/FO;

1). Theoretical predictions: In principle, future high energy experiments at colliders (e.g.
LHC), as well as results of the direct searches for dark matter particles will help to measure
the mass and the composition (Higgsino-like versus gaugino-like) of neutralinos. This will
allow to predict the relative neutrino fluxes from annihilation.

2). Information on relative neutrino fluxes from WIMP annihilation can be obtained by
detecting neutrinos from WIMP annihilation in the Earth center.

These studies cannot determine the absolute value of the original flux (F°). Once we
obtained by the aforementioned methods the value of AF®/F°, we can try to measure both
|Uu1|? and the original fluxes from studies of solar neutrinos themselves. If the detector is
able to identify the flavor [107], we can compare the rates of u-like with 7-like or e-like events
to find the total flux and the value of |U,;|%. In practice, Icecube (and any detector with
a similar setup) will not be able to identify flavor; however, it will be possible to extract

information on the total flux by measuring shower-like events.

4.3.2 Spread of the wave packets

Bunches of neutrino mass eigenstates can be obtained as a result of difference in the group
velocities. Neutrinos with a mass squared difference Am? but the same energy FE, produced
in a source at the same time, will arrive at the detector with a time difference
L Am? 100 MeV\?
At:—-O.lsec( ) m 5 (00 © ) :
10%% cm/ \3 x 1073 eV E

Here L is the distance from the source. If the time during which neutrinos are produced

(4.67)

at the source, 7,, is considerably smaller than At¢ (7, < At), and if the energy spread is
small enough (or the detector is able to select neutrinos of certain energy), neutrinos will
arrive at the detector in bunches: the heavier neutrinos arrive after the light ones. We
can measure the numbers of charged leptons produced by different bunches via the charged
current interactions. Thus, the ratio of number of muons and 7-leptons produced by the
first bunch gives |U,1/U-4|. Similarly, the second and third bunches give information about
|Ua| and |Uss|, respectively. The number of charged leptons of a given flavor, [, produced by
the first and second bunches is proportional to |Uy|/|U], etc.

According to (4.67), the time difference in arrival of the bunches for Am? = 3 x 1073
eV?, E =100 MeV and L = 10%® cm equals At = 0.1 sec. So, the duration of the neutrino
pulse should be smaller than 0.1 second. Moreover, the number of events induced by a single

pulse should be large enough. It is not clear if the required sources of neutrinos exist.
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4.3.3 The decay of neutrinos

The neutrino decay provides another possibility to get pure beam of mass eigenstates. In
principle, this can be used to extract the CP-violating phase [29, 108]. In the minimal
extension of the Standard Model (in which neutrinos are massive and there are right-handed
neutrinos) neutrinos can decay radiatively: v; — v; +~. However, the life time is extremely
large: 7, > 10% s. In certain extensions of the SM the radiative decay or 3v-decay may
be much faster, however, according to astrophysical bounds, the lifetime of radiative decay
must be much larger than the age of the Universe (see review [109]).
The decay which satisfies all the bounds and is relevant for our analysis is the Majoron
decay [22, 110]:
v, — U+ J, (4.68)

where v; and v; are mass eigenstates, and J is the Majoron.

Let us assume that 7, > 1073 sec, so the neutrinos from the Sun do not decay and the
solar and atmospheric anomalies are explained by oscillations while neutrinos from very far
sources (i.e., the gamma-ray bursters, the Active Galactic Nuclei and supernovae) decay
before reaching the Earth. Then at the detectors the neutrino flux from the far source is
composed only of the lightest neutrinos 4 and 7.

The 4-ray bursts may be accompanied by a flux of energetic neutrinos {112, 113]. Taking
the distance of the y-ray burster from the Earth to be of order 10% cm, one finds that all
heavy neutrinos will decay if the lifetime of neutrino at rest, 7,, satisfies the inequality

7, ~ 10%sec T (4.69)
E
Let us evaluate this bound both for hierarchical and quasi-degenerate neutrino mass spec-
trum setting E ~ 1 TeV. In the hierarchical case m; =~ 0, mz ~ 0.05 eV and my ~ 0.009
eV so from (4.69) we find that in order to let v3 decay 73 should be < 102 sec, while for vy,
the bound is 7, < 10 sec. For quasi-degenerate spectrum with m; ~ me ~ mz = 1 eV, the
bound is weaker: 10% sec.

It was estimated [113] that the flux of neutrinos with the TeV scale energies from an
individual gamma burster at cosmological distance z ~ 1 produces 107! — 10 muons in 1
km?®-size detectors. Since these neutrinos are correlated in time with the y-ray bursts and
aim at the same source, they can be distinguished from neutrinos produced by other sources.
The rate of 4-ray bursts detectable on the Earth is ~ 103/year so the statistics are fairly

high and we can deduce results based on studies of such neutrinos.
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The large scale detectors cannot identify the charge of produced leptons, so in practice
v, and v; signals will be summed up. Unfortunately, with present design for 1 km3>-size
detectors, it is hardly possible to identify the flavor of the detected neutrinos, for the energy
range which we are interested. However, there are methods which open a possibility to build
a large detector with flavor identification [107].

Let us assume that these technical problems will be solved and that future detectors will
be able to discriminate between different flavors. In the presence of the decay only the flux
of the lightest neutrino, 14, will arrive at the Earth. Then the ratio of u-like events to 7-like

events produced by this flux equals to

p—like events U, |?

T—like events |Up|?’ (4.70)

where we have taken into account that for high energies, neutrinos of different flavors have
nearly equal cross-sections: ¢(v,) ~ o(v;) and o(v,) ~ o(v,).

Thus, if the detectors are able to identify 7-like events, we will be able to measure the
ratio [Up1/Ur|. Using this ratio, the unitarity condition |Ue: [*+|Up1 [2+|Ur1|? = 1, and |U,; |2
determined by KamLAND, one can derive the value of |Uy|. Then [Uys|? = 1—|Ups |2 ~|U,s|2.

Similarly, for the ratio of u—like to e—like events we have

p—like events U2
e—like events  |U,|?’

(4.71)

where we have used o(v,) =~ o(v.) and o(7,) ~ (7). This ratio can be used to determine
|U,1|? immediately, once |Ug;|? is known.
In practice, it will be very difficult to identify the flavor of a detected neutrino. For
E > few PeV, v, can be identified by reconstructing the tau track; i.e., double-bang events.
However, we expect at such high energies the statistics to be too low to extract |Up1| with
enough precision. At lower energies v,-events will not be identifiable. At these energies, only
two sort of events are distinguishable: 1) shower-like events; 2) u-like events. There are three
processes that give rise to shower-like events: i) the Neutral Current (NC) interaction of all
neutrinos; ii) the Charged Current (CC) interaction of v,; and iii) the CC interaction of v,
with E' <PeV and the successive decay of 7 to hadronic or electronic (7 — ever, or evev,7v)
modes. The u-like events are the results of (CC) interactions of v, or CC interaction of v,
and the successive decay of the 7 to u [remember that Br(r — pv,v,) = 17%)]. If all the
neutrinos are decay into 14 on their way to the earth, we expect
p—like events  A|Uu[*+ B|Un|?
shower like events 1+ C|Up1|2 + D|Uq|?

(4.72)
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where the NC events are normalized to 1. The coefficient are independent of the neutrino
mixing angles and in principle can be calculated. This way we can extract the value of U l?;
however, in practice the error will be too large [114].

Let us emphasize that the analysis based on (4.70) and (4.71) does not depend on
astrophysical details (neutrino production mechanism, etc.). However, one should make
sure that all heavy neutrinos have decayed on their way to the Earth. A check can be
based on ratio of fluxes (eventually numbers of events). If neutrinos are stable we expect
F(v,) : F(v,) : F(v,) =~ 1:1:1 [115], while in the case of decay F(ve) : Fw): Flv.) =
|Uaa|? : |Uuif? : |[Uni|> = 1: % : 1. The above analysis was based on assumption that neu-
trinos from all y-ray bursters decay before reaching the Earth. However, due to the spatial
distribution of sources, the degree of decay can be different for different sources. From a
single burst only few neutrinos can be detected, so studying neutrinos associated with only
one y-burst event, it is impossible to establish the existence of the decay. This can be done
on the basis of observations of many bursts. The sources can be divided into two groups:
close sources and far sources (the distance of the source can be measured by its redshift).
Studying the flavor composition of neutrino fluxes from these two groups, one can check the
stability of neutrinos. There are other measurements which can shed light on the decay rate
of neutrinos [110, 111].

4.3.4 Loss of coherence; averaged oscillations

Let us consider stable or meta-stable neutrinos produced by cosmological sources. For ex-
ample, consider again the neutrinos with E ~ 1 TeV accompanying the y-ray bursts [113].
For such neutrinos the oscillation length is much smaller than the distance from the source,
L ~ 10% cm. Consequently, all the oscillatory terms in the probabilities will be averaged
out. Furthermore, according to existing models of the bursters, the neutrinos are produced
in the envelope of the star with density p ~ 10~" g cm™ and radius ~ 10'3 cm and therefore
we expect the matter effects inside the source to be negligible [116]. As a consequence, the

oscillation probabilities for neutrinos (v, — ) and antineutrinos (7, — 7g) take the form
Pop = Paﬁ = Z |Uai12|Uﬁi12' (4.73)
(Here we used |Uy| = |Uq|.) In particular,

Pup = 2 |Uuil" = s = 2AUa*Upa | (4.74)
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and
Peu = Z IUm’]ZIUei]z = Keu - }Uu2[2<'Uell2 - |U62]2>: (4-75)

where K, and K, are known functions of |Ue|, |Ues|, |Ues|, |Uy.s| and do not depend on
|U1|? and |Uye|?. The probability P.. does not depend on |U,|? and |U.|?.

The probabilities (4.73), (4.74), (4.75) have the following properties which play a key role
in our calculations:

(1) Pop = Fpa;

(ii) probabilities for neutrinos and antineutrinos are equal;

(iii) the probabilities do not depend on energy.

Let us calculate the number of charged current events produced by neutrinos from ~-ray
bursters in the detectors. We assume that the source produces (differential) fluxes of elec-
tron neutrinos, F?, and antineutrinos, £, as well as muon neutrinos, F?, and antineutrinos,
F‘S, whereas the fluxes of 7-neutrinos and 7-antineutrinos are negligible. Using the proper-
ties of the oscillation probabilities listed above and summing up neutrino and antineutrino

contributions we can write for the number of u-like events
(u—like events) = P, ( | Feodr + [ F,?adE) + Py ( [ Fooar+ [ Ff&dE) . (4.76)

where 0 = o(ve) ~ 0(v,) ~ o(v;) and & = o(7.) ~ o(9,) =~ o(7,) are the cross-sections for
neutrinos and antineutrinos. Similar expressions can be written for the number of e-like and
7-like events. Notice that the oscillation probabilities factorize out of the integrals over the
energy.

For the ratios of event numbers we can write

p—like events P, A+ P,

e—like events P, + P, A (4.77)
and .
T—l?ke events _ P A+ P, | @)
e—like events P + P A
where
_ [ FlodE + [ F5dE
= [F%dE + [ FO5dE

and the probabilities are defined in (4.73). The ratios in (4.77) and (4.78) are functions
of A and |Uys|. Presumably all other mixing parameters will be measured by terrestrial
experiments described in sect. 3.1 - 3.4. The astrophysical information (and uncertainties)
is contained in A and it will be probably difficult (if possible) to predict this quantity.

So basically we should consider A as an unknown parameter. If future detectors are able
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to identify flavor [107], we can determine two ratios (4.77) and (4.78) and A and |Upa|.
Additional cross checks of results can be done if the detector is able to identify the charge
of the produced lepton.

As discussed in the previous section, Icecube will not be able to identify flavor. For
energies lower than PeV, the best it can do is to identify shower-like events (which consists
of NC-events, e-like events and v, — 7 —hadronic modes) and p-like events (which consists
of v, — pand v, — 7 — ). In principle this identification can help us to derive |Uy| but,

in practice the systematic uncertainty will be too high [114].
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Chapter 5

Contribution from neutrino Yukawa
couplings to the lepton EDMs

The discovery of neutrino mass has not only required revision of the Standard Model of
particle physics but also of theories that go beyond the Standard Model. One of the most
compelling ideas for the origin of the observed small neutrino masses is the seesaw mecha-
nism. This requires the introduction of heavy singlet leptons, that is, right-handed neutri-
nos. In the context of supersymmetric theories, these singlet leptons belong to new chiral
supermultiplets IV;, one for each fermion generation. The Yukawa couplings and soft super-
symmetry breaking terms associated with these right-handed neutrino supermultiplets can
play important roles in lepton flavor violating processes [32] and in the production of the
baryon number of the universe through leptogenesis [24].

A vparticularly important aspect of this model is the appearance of new sources of CP
violation. In addition to new CP violating parameters generic to new physics—in super-
symmetry, for example, the phases of u and the A—new phases are possible in the neutrino
Yukawa couplings and in the neutrino B term (BM NN ). Complex Yukawa couplings can
lead to observable CP violation in neutrino oscillations, and all of these parameters can be
the source of the CP violation that generated a fermion-antifermion asymmetry in the early
universe [24, 117].

To test whether the observed matter-antimatter asymmetry indeed arose from leptoge-
nesis, it is necessary to determine the CP violating phases from microscopic measurements.
There has been much analysis of CP violating observables in neutrino mixing. Although, in
principle, it is possible to determine all seesaw parameters studying neutrino and sneutrino
mass matrices but, in practice, it will be quite challenging, if possible at all, to extract all
the parameters in near future [118]. Another possible experimental approach to test CP
violation in the lepton sector is to measure the electric dipole moments (EDMs) of charged

leptons [119]. There are in fact many possible ways that underlying CP violating couplings
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could give rise to lepton EDMs. Thus, it is important to classify these effects and, if possible,
to learn how to separate them from one another.

If CP violation is provided by phases of the u- or A-terms, it is straightforward to
generate a contribution to lepton electric dipole moments in one-loop order. This possibility
has been explored by many authors [120]. However, it is also possible to generate lepton
EDMs in models in which these terms are CP conserving, by making use of phases in the
neutrino Yukawa couplings and/or the neutrino B-term. A particularly simple context to
study this effect is to consider models in which the soft supersymmetry breaking scalar
masses are exactly flavor-universal and the A terms are exactly proportional to the Yukawa
couplings. Such models arise in the simplest paradigms for gravity-mediated supersymmetry
breaking [123]. The idea of ‘gaugino mediation’ provides an attractive way to realize this
scheme in the context of a complete unified or superstring model [124].

Using Renormalization Group Equations (RGEs), the contribution of neutrino Yukawa
couplings to lepton EDMs has been studied in this context by Ellis, Hisano, Raidal, and
Shimizu (EHRS) [125], and by Masina [126]. In Ref. [127], this effect has been studied
through another method. The results are slightly different from the previous calculations.
In this chapter, we review the effect and point out the source of discrepancy.

Another source of CP-violation is the neutrino B-term which can induce a contribution
to EDMs [31]. Moreover, this term can give a significant contribution to LF'V processes [31].

The outline of this chapter is then as follows: In Section 5.1, we specify the model in
which we are working. In Section 5.2, we describe our procedure for integrating out the
N; supermultiplets and identifying CP violating contributions. In Section 5.3, we carry out
this procedure for the leading CP violating contribution proportional to Y}, where Y, is
the neutrino Yukawa coupling. We find a result that is parametrically smaller than that
of EHRS by one power of a large logarithm. In Section 5.4, we reconsider the analysis of
EHRS and show how that logarithm cancels out using their method. In Section 5.5, we give
a formula for the lepton EDMs that arises from this contribution.

In [126], Masina pointed out that, for large values of tan 3, a different contribution can
dominate the evaluation of the lepton EDMs. In Section 5.6, we evaluate this contribution,
which requires a nontrivial two-loop diagram calculation.

In Section 5.7, we make numerical estimates of the electron EDM from our new formulae
and compare these to the results of other models of lepton CP violation.

We work from an initial assumption that the soft supersymmetry breaking terms are

universal and flavor-independent. In a model with renormalizable interactions that violate
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the flavor and CP symmetries, this initial condition is not technically natural. Thus, there
will in general be other CP violating contributions, for example, from the thresholds at the
grand unification scale Mayr, that should be added to the formulae we present here. Because,
in all of our formulae, the leading logarithmic behavior cancels due to a GIM cancellation,
our terms are not parametrically enhanced over those from the GUT threshold. In specific
models, the GUT scale terms can be numerically smaller than the terms from the right-
handed neutrino scale; the authors of [128], for example, argue this for their SU(5) GUT
model. In any event, our formulae are computed precisely for the effective theory of Section
5.1 with minimal subtraction (in the DR scheme) at Mgyr. By noting this prescription, it
should be straightforward to add GUT threshold corrections to our results when these are

computed in a particular GUT model.

5.1 The model

We consider the supersymmetric Standard Model coupled to three chiral supermultiplets N;
which contain the heavy right-handed neutrinos associated with the seesaw mechanism. The

superpotential of the model contains the following terms involving lepton supermultiplets:
y . 1
W = }QJEQﬂHlaEiLjﬂ - Y:JEagHzaNiLjﬁ - NfaﬁHlaHzﬁ + 'Z‘MijNiNj . (5.1)

In this equation, L;g is the supermultiplet containing the left-handed lepton fields (viL, Z]-_L) 8
E; is the superfield whose left-handed fermion is £};, and N is the superfield whose left-
handed fermion is 7;;. The NV; are singlets of SU(2) x U(1). We introduce the right-handed
neutrino masses M;; by hand, and we do not assume any a priorirelation of these parameters
to the other couplings in (5.1).

Without loss of generality, we can choose the basis and phases of L, E, and N such that
M;; and ij are real and diagonal. We will refer to the diagonal elements of these matrices
as M;, Yp. These choices exhaust the freedom to redefine fields, and so the matrix ¥ is in

general off-diagonal and complex. The mass matrix of light neutrinos is given by
Ykiykj

(mw)ij = Zk: Mk" (H3)* . (5.2)

If the neutrino Yukawa couplings Y;#* are of order 1, the requirement of small neutrino masses
(my, ~ 0.1 eV) leads to large values of the M, of the order of 101 GeV.

To the Lagrangian generated by (5.1), we must add appropriate soft supersymmetry
breaking interactions. In this paper, we will assume that slepton masses are universal at the

messenger scale (of the order of Mgyr) and that A terms are strictly proportional to the
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corresponding Yukawa couplings, with a real constant of proportionality. We will assume
that the phases of x and of the gaugino masses are zero. If these conditions are not met, it
is possible to generate EDMs from 1-loop diagrams, a possibility that has been exhaustively
explored in the literature [120].

This restriction to universal, CP invariant, flavor invariant soft supersymmetry breaking
terms is not a natural restriction of the model in the technical sense. It is violated by loop
corrections due to the neutrino Yukawa couplings. In fact, our analysis in this paper is
to calculate the CP violation induced by these corrections. Consequently, the effects we
find can be cut-off dependent. As we have explained in the introduction, we will impose
the universality and flavor symmetry of the soft supersymmetry breaking interactions as an
initial condition, defined by minimal subtraction in the DR scheme at Mgyr.

With this prescription, we will take the soft supersymmetry breaking terms for the lepton

sector to be

Lssg = —mgy. F*F = madada — ao (Y?zﬁangaEiiiﬁ - Y,fjeaﬁHZaNiijﬁ)
f
1 ~ 1
—(-Z-B M (N) + hc) - (EbH,uﬂlHQ + hC) (53)

where f collectively represents sfermions, and we assume that ao, by and B, are real pa-
rameters. The parameters mg, Mg, Go, and by all have the dimensions of mass and are of
order Mgysy ~ 100 GeV — 1 TeV. CP violating phases arise both from the neutrino Yukawa
couplings and from the neutrino A term, but, in this model, they are controlled by the same
parameters. We will assume throughout this paper that ap and by are real parameter.

In analyzing the effects of the IN; supermultiplets, it is convenient to work in components,
keeping the auxiliary fields (the F fields) as independent fields. We use two-component
notation for the fermion fields. With the effects of the Majorana mass term included, the

propagators for the component fields of the IV; take the form

@R = ot (FOPa(0) = b
NN = WD) = q—_%—a
D) - Lt 5.4
where o# = (1,5)* and ¢ = —ic? are 2 x 2 components of the Dirac matrices and the charge

conjugation matrix.
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5.2 Radiative corrections due to Y, and B,

As it is well known, radiative corrections will distort the form of Eq. (5.3) and break the
exact mass degeneracy between the sfermions. In this section, we will focus on those radiative
corrections to the parameters of Eq. (5.3) that can induce CP-violating phase and EDMs,
in particular, the effects of diagrams involving the neutrino Yukawa and A terms. We will
discuss the form of the effective Lagrangian at scales just below the right-handed neutrino
mass scale. When we compute the induced EDMs in Section 5.6, we will need to take into
account some additional effects that come from renormalization group running down to the
electroweak scale. In our analysis, we will always assume that the right-handed neutrino
masses My are much larger than the supersymmetry breaking mass terms, of order Mgygy,
so that any contribution suppressed by Msysy/M; can be neglected. In this limit, the
calculation that integrates out the right-handed neutrino sector divides neatly into a part
that corrects the supersymmetric Lagrangian and a part that corrects the supersymmetry
breaking perturbations.

First, we consider the radiative corrections to the supersymmetric part of the Lagrangian.
We begin by noting that, to a good approximation, we can neglect diagrams that include
vertices from the supersymmetry breaking terms. Except for the u term, all coefficients in
the supersymmetric Lagrangian are dimensionless, while all supersymmetry breaking terms
have coefficients with mass parameters of order 1 TeV or smaller. Therefore, corrections to
the dimensionless coefficients from the supersymmetry breaking terms are at most of order
of Msusy /My, completely negligible. Corrections to the u term are at most of the order of
pboao/ M2, again, a negligible correction.

The radiative corrections within the supersymmetric theory are strongly restricted by the
constraints of supersymmetry. All component fields within supermultiplet receive the same
radiative corrections. By the non-renormalization theorem [129], the superpotential receives
no corrections. The result of this theorem constrains only the leading term in a Taylor series
in external momenta, but, since these diagrams are evaluated at external momenta of order
Msguysy, terms that depend on external momenta are suppressed by powers of Msysy /M
and can be ignored. Then the most general effective Lagrangian obtained by integrating out

the Np multiplets will have the form
Lojs= [dOL(1+620) L+ [0 B(1+6Z5)E; + [#0W + He.  (55)

Since the Lagrangian is real-valued, the matrices (6Z;)¥ and (6Z5)¥ have to be Hermitian

to all orders in perturbation theory. Note that while (6Z;)% receives off-diagonal corrections
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at the 1-loop level, (6Z5)¥ receives off-diagonal elements only at the two-loop level because
E does not have any flavor number violating coupling.

To generate a lepton electric dipole moment, we require a flavor-diagonal matrix element
of an electromagnetic form factor to have an imaginary part [130]. However, the radiative
corrections from the supersymmetric Lagrangian, treated to first order, will be proportional
to the matrices 67, and §Zg. Since the diagonal elements of a Hermitian matrix are real,
none of these corrections, acting alone, can induce a lepton electric dipole moment. This is
an important constraint, which we will continue to follow through our analysis.

The soft supersymmetry breaking part of the Lagrangian receives corrections proportional
to the supersymmetry breaking parameters. However, the form is still quite constrained. The

most general effective Lagrangian has the form

Lssp = —(m2+06m2)LIL; — (md+ omk)i; Bl E;
—(aoYubi; + 6.AY + 6 AY Ve HiaEiLjg + H.c. (5.6)

where 8.A% is the correction due to the neutrino B-term [see Fig. (5.7)] and 6.AY represents
the other corrections due to the neutrino Yukawa couplings. In the next section, we will
explicitly calculate 6.»4? and discuss its effect on the EDMs. For the rest of this section, let
us ignore this term for simplicity and concentrate on the effects of the CP-violating phases of
the Yukawa couplings on the EDMs. Since Lggp is Hermitian, (§m%); and (5m%)ij must be
Hermitian matrices to all orders in perturbation theory. The A term can in general receive
non-Hermitian contribution. However, we will show in Appendix A that, up to order Y2,
5AY) has the form

6AY = agYudZ9 (5.7)

where 674 is Hermitian. Here again, the form of the radiative corrections as Hermitian
matrices limits their ability to contribute to electric dipole moments.

To work with the effective Lagrangian written in (5.5) and (5.6), it is useful to bring the
lepton and slepton fields into a canonical normalization by rescaling by (1462 )~1/2. Then

the superpotential becomes
W = —[(1+ 62Z5) V)" Yy[(1 + 6 Z1) ) ep Hia Er L, (5.8)
and the soft terms become

Lospess = —[(1+0821)7*(mg + om3)(1 +62.) /7 LIL,
—[(1+ 62Zg) V2 (m2 + om%) (1 + 6 Zg) VAU Bl E;
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—ao[(1 +6Zp) V2V (14 6Z4)(1 4+ 621) YV ¥eupHio BiLig + He.  (5.9)

One more step is needed. To identify the mass basis for leptons, we need to “re”-
diagonalize the lepton Yukawa coupling. Decompose the coefficient of (5.8) into a product

of a unitary matrix, a real positive diagonal matrix, and another unitary matrix:
[(1 -+ 5ZE)—1/2Y'3(1 -+ 5ZL)—1/2]1'_7' = [(1 -+ 5V)Tyz(1 + 5U)]” (510)

Then (14 6V)T can be absorbed into the superfields E and (1 + 6U) can be absorbed into

the superfields L. The soft supersymmetry breaking terms now take a form similar to (5.6):

Lssp = —(mg+Am3)y;LIL; — (m) + Am%),; Bl E;
—aoyli(dij + AZE)GaﬂHlaEiijﬁ + H.c. ’ (5.11)
where
(mg+Am2) = [(1+6U)(1+6Zp) Y3 (md +6mi)(1+6Z.) Y2(1 + 6U)}
mi+Am%) = [(L+6V)(1+6Z5)7 2 (md + 6mi)(1+6Zg) V(1 +6V)7Y
a1+ AZs) = a1+ 6U)(1+6ZL) V(1 +624)(1+62L)~ V21 +6U)L.
(5.12)

At this point, the only signs of CP-violation from the neutrino Yukawa couplings occur in
the coeflicient functions listed in (5.12). It is still true that the first two coefficient functions
are Hermitian matrices with real diagonal elements, and that the diagonal elements of the
A term coefficient are real through two-loop order (order Y;*). For the mass matrices, this
result is obvious. For the A term an additional slightly technical argument is needed, which
we give in Appendix B.

This implies that, through order Y;#, we cannot obtain a contribution to the lepton electric
dipole moments from any individual term in (5.11). However, we can obtain a matrix with

an imaginary part by taking the product of two different matrices from (5.11). For example,

Ci =Tm [AZ,Am2] (5.13)

()
can have nonzero diagonal elements. Since both matrices are Hermitian, this quantity can

be written more illustratively as

Ci = -21; (1824, Am}]). . (5.14)

113
Note that to compute C; to order of Y4, it suffices to calculate AZ4 and Am% to the one-loop
level. Through two-loop order, this is the only structure in the theory that can contribute

to a lepton electric dipole moment.
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Figure 5.1: The general form of the diagrams contributing to the EDM of a charged lepton
£. The photon line should be attached at all possible positions in the diagram.

At three-loop order, products of Am% with the other matrices in (5.11) can give additional
contributions of a new structure. A specific CP-violating quantity that will be important to
us is

D; =Im ((Am%)T My Am%)ﬁ (5.15)
This quantity also has a commutator structure. It is smaller than (5.14) by a factor of Y;/4x.
Nevertheless, as we will see in Section 5.6, this term can give the dominant contribution to
lepton electric dipole moments in models with large tan 5. To obtain the contribution from
this structure of order Y,'Y/?, it suffices to calculate Am% to two-loop order and Am? to
one-loop order.

We can be somewhat more concrete about how the structures C; and D; arise from Feyn-
man diagrams. Contributions to the lepton EDM’s come from diagrams of the general form
of Fig. 5.1, in which a right-handed lepton and is converted to a left-handed lepton through
a photon vertex diagram. A lepton line runs through the diagram, and the matrices (5.12)
appear as insertions on this line. By the arguments just given, we need to consider contribu-
tions with two separate insertions. The product (5.14) comes uniquely from diagrams of the
form of Fig. 5.2(a), with the photon inserted in all possible positions on the lepton line. The
product (5.15) comes from diagrams of the form of Fig. 5.2(b). In the latter diagram, the
left-right mixing contributes the factor of m,. We will evaluate these diagrams in Sections
5.5 and 5.6, respectively.

5.3 One-loop corrections

In this section, we first set B, = 0 and study the radiative corrections due to Y,. Then,
we focus on the radiative corrections induced by B,. To estimate the lepton electric dipole

moments at order Y}, we should next compute AZ,4 and Am%. According to the arguments
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Figure 5.2: Diagrams giving the dominant contribution to EDM of charged lepton £ (a) for
small tan 3, (b) for large tan 3.
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Figure 5.3: Diagram giving the field strength renormalization of the supermultiplet L;. In
this and the next few figures, we treat F' components as independent fields; the F' terms of
N}, multiplets have the propagators (5.4).

of the previous section, only the leading-order contributions are needed. To this order
Am? = dm} — mgéZL AZy=106Z4 (5.16)

The factor §Z;, is most easily computed as the one-loop correction to the Ff, field strength.

There is only one diagram, shown in Fig. 5.3; its value is

. . » d4pE 1
ij ki\xykj
627 = Y | Gt

where pg is a Euclidean momentum after Wick rotation.

(5.17)

The factor §Z4 arises from the diagram shown in Fig. 5.4. The vertex marked with a
heavy dot is an A, vertex. The value of the diagram is

d4pE 1
(em)tp%(p% + ME)

The tensor structure is exactly the same as in (5.17). This fact is used in the Appendix B.

Y (824)9 = —aoYy(VH) Y} / (5.18)

The matrix ém? arises from the four diagrams shown in Fig. 5.5. The first diagram has
two A, vertices; the other three have supersymmetry breaking mass insertions. It should be
noted that there is a contribution in which m? in inserted into the F propagator, which

results from the mixing of Fy with N through the Majorana mass term. The final result is

B _ ! 2, .2 2 2172
(6m3)” ="(Yuk1)*Yij/ dpE; [ 2mg+a0 5 T 73 - PRV 72no s |
2m)4 | pa(p% + M) (0% + MP)?  pe(pe + My)

(5.19)

which is quite similar to (5.17) and (5.18), except that some terms appear with two massive
propagators. The small difference in structure between (5.19) and the earlier equations will

be significant.
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Figure 5.4: Diagram giving the one-loop radiative correction to the vertex A,. The heavy
dot is an A, vertex.

Figure 5.5: Diagrams giving the one-loop corrections to the supersymmetry breaking L mass
term. The heavy dot is an A, vertex; the marked insertion is a soft mass term m2.
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Figure 5.6: Diagrams contributing to slepton masses. F¥ represents the auxiliary field
associated with Nj. The A, vertices are marked with black circles.

As we have explained in Section 5.1, we regularize these diagrams by dimensional regu-

larization and minimal subtraction at the scale Mguyr. This gives

L (4m)2> v 7 7Y M?
62§ = Y [1—]\7—- n 1}
y 2m? X ) M2 a? . ) M2
5 2V\if 0 ki *ij GUT | _ 0 }/km *Yk_y 1 GUT (5.2
() = Y iog OB | - (Y [l T 41] L (520)
so that
g 1 . , M? MG
245 . ki\xykj 2 1 GUT 2 GUT ) 21
Am3 g Y)Y, (mo[S og _—_Mif + 1] + agllog __M,f + 1]) (5.21)
and AZA = 5ZA

Now let us discuss the radiative corrections due to B,. Through diagrams shown in Fig.

(5.6), the neutrino B-term induces a correction to m% [31]:

2
(4m)?

dpm3 = (Y¥)*Y* Re[ag BL). (5.22)

The present bound on B, is rather weak [131]: |B,| < 10°Mgysy. Therefore, the new effect
can be dominant.
Also, the neutrino B-term can directly induce a correction to A, [see figure (5.7)]:

B,
(47)?

A= YYY,. (5.23)
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Figure 5.7: Diagram contributing to A,. F¥ and F} represent the auxiliary fields associated
with N* and L;, respectively. represents the auxiliary field associated with V&,

An imaginary B, gives an imaginary correction to A, which as we will see in the next
section can induce EDMs.

If [B,]=0, the phases of Y, will be the only sources of CP-violation. Let us set B,=0
and concentrate on the effects of the phases of ¥, on EDMs. Using Egs. (5.20,5.21), some
significant simplifications appear. First, in evaluating (5.14), we can drop any terms in Am%
that are proportional to the tensor structure of 6Z4. Thus, we can replace

1
(4)?

Am2Y — — YV (—2m2) . (5.24)

Second, after making this simplification, we can drop any terms in §Zf;f that are proportional
to the structure (Y,/’“')*Y;’“j. In particular, we can change Mgyt inside the logarithm to any
other value that is independent of k. We then find

_ mi ([Yo, Y] )i
Gi= (47 i ’

(5.25)

where A2
(Yo" = (V8 (V)7 = () i log 5 (5.26)
As is explained just above, the expression for C; actually does not depend on the parameter

Mpy. Tt is convenient to choose My to be the geometric mean of the M} to minimize the
individual logarithms that appear in (5.26).
Our final result for C; is simple and cutoff-independent. However, we remind the reader

that this result is derived in the simple picture in which we ignore threshold effects at the
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GUT scale and regulate diagrams using the DR scheme. Because of the major cancellations
that occurred in the simplification of C;, these threshold corrections, which depend in a

model-dependent way on GUT-scale physics, can be of the same order of magnitude as
(5.25).

5.4 Comparison to the RGE approach

The observation that lepton EDMs are proportional to the commutator of Yq and Y} is the
most important result of the analysis of EHRS [125]. Once this result has been found, it is
straightforward to obtain the correct order of magnitude for the contribution to lepton EDMs
from the phases of neutrino Yukawa couplings. However, EHRS found an enhancement by a
factor of log(M&yp/M%), which cancels out of our result. In addition, we have shown that
the leading contribution to lepton electric dipole moments comes from the commutator of
one-loop corrections to the A term and the soft supersymmetry breaking mass, while EHRS
claimed that the leading term comes from the renormalization of the A term considered
independently. In this section, we review the analysis of EHRS and point out the origin of
these discrepancies.

The calculation of EHRS is based on solving one-loop renormalization group equations
(RGEs). The RGEs are integrated from Mgyr to the heaviest N mass, M3, then from M;
to M, then from M, to M;. This procedure is valid only if M; < My < Mj. Let us define

HQ) = @1}-)—5 logQ . (5.27)

and
t3 = t(Mgur) — t(Ms) , ty = t(M3) — t(Ms) , ty = t(Mp) — t(My) . (5.28)

For a hierarchical spectrum of masses, we expect this procedure to reproduce the results of
two-loop calculations up to the order Y;*t%.

As emphasized by Masina [126], it is important at each stage of integration to project
out those N,’s that have masses above the scale at which the RGE is being evaluated. To
discuss this, it is useful to introduce projectors Py = 1, P, = diag(1, 1, 0), P, = diag(1, 0,
0), projecting onto the N mass eigenstates that are still active as we integrate through the
various thresholds.

However, there is another subtlety that must be considered. It is best to begin with an
example. Masina writes the RGE for the neutrino Yukawa coupling as

ay,
dt

=3Y,YJRY, + - (5.29)
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Figure 5.8: Diagrams giving the terms proportional to Y;? in the RGE evolution of the
neutrino Yukawa coupling.

The contribution on the right-hand side arises from the diagrams shown in Fig. 5.8. The
projector eliminates contributions from the right-handed neutrinos with mass M, > Q.
Consider, in particular, integrating this equation down to a @ such that My < Q < M;. Let
tg = t(Ms) — t(Q). Then the integration gives

Y,(Q) =Y, (Mgur) + 3V, Y[V, ts + 3V, Y, PY, o . (5.30)

However, direct calculation of the diagrams in Fig. 5.8 with Euclidean external momenta

with |¢?| < M2 gives
Y, (Q) = Y, (Mgur) + 2V, Y] Y, (ts + tg) + Y, Y1V, t5 + V.Y Y,tg , (5.31)

zince in the first diagram the contribution from Nj in the internal line labeled N, is sup-
pressed by Q?/Ms.
The direct calculation is correct. The problem with the renormalization group method,
2% least as used in this simple form, is that it does not take into account the fact that the
neutrino mass matrix also acquires off-diagonal terms from the RGE. For Q > M;
dM
dt
That is, as the Yukawa couplings are modified by ¥, — Z;,l/ ’Y,, the mass matrix is modified
by M — Z;-l/ M (Z;,l/ 2)T. When we integrate out N3, the off-diagonal components induced

in M cancel those in Y,. The Zy factors are the same in the two expressions due to the

=2(Y,YOM + 2M (Y, YHT + ... (5.32)

nenrenormalization theorem; thus, the cancellation is complete and we recover the expression

It is much easier to account these field strength renormalization corrections by accumu-

g them separately in Z factors, integrating out the heavy neutrino states, and then
dividing through by the Z factors that remain. This is essentially the method that we used

in Section 5.2.
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However, with this insight into how to treat self-energy terms in the usual RGEs, we can
integrate RGEs through the three thresholds. We must cancel off-diagonal terms in field
strength renormalization that will be removed when we pass through each threshold and
integrate out the next massive neutrino. Terms with intermediate Fiy lines should also be
removed, since Fyy also decouples as we see from the last line of (5.4).

The renormalization group equations are as given by Masina [126],

ay,

= 3Y,K,+ -
C%t/ Y, K, +
£
—tf - Y, e
LA 4}%&14,, + 5AuKa+ e
4
_C# = 2V (V)T A, + AK, + -
dm?2
_Z_Z_L_ = {m? K.} +2(YJPom}%PRY, + my Ko+ AL P A) + - -
dm?
—E = ompY)Yy +Y{Yemp) + AV miYe + mp Y Yo+ AjA) £+, (533)

where K, = Y P,Y, and K, = Y,Y/P, and the subscript a specifies the energy scale.
Note that m?v is a supersymmetry breaking mass and should not be mistaken for large
supersymmetric masses, M;. Here, we have omitted terms that are not relevant for our
study. However, when we drop off-diagonal terms, we find different results from those found
previously. When we solve for 4, and for ¥; at a scale much smaller than M, we find that

the imaginary parts of Yz and Az/ao are identical and are equal to
Im ng(Kngtg,tz -+ K3K1t3t1 -+ K2K1t2t1)] . (534:)

Now one more step is needed that seems to have been missed in [125]. As in (5.10),
we need to choose a new basis for the leptons in which Y} is real diagonal after taking into
account the radiative corrections due to the N;. This removes the imaginary part of A, in
agreement with our analysis in Section 5.2. The term we found there that gave a nonzero
imaginary part is at a subleading level of logarithms and so would not be picked up by the
analysis of [125].

5.5 Electric dipole moments

We are now ready to obtain the actual expression for the lepton EDMs by evaluating the

class of diagrams shown in Fig. 5.1.
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A general diagram of the form of Fig. 5.1 evaluates to the form

) , 1 _
—iev? (p')co™ g, ui(p) - [_mg~(F2i +ZF251')] ; (5.35)
where F; is the usual magnetic moment form factor and 7 indexes the lepton flavor. The

lepton EDM is then given by

-

d; = —ngm-E- = (1.9 x 107 ¢ cm) - Fos; -
m; My;

Me

8. (5.36)

where S is the spin of the lepton and § = 5/ (R/2).

We would like to find a contribution to the EDM proportional to C; in (5.14). For this, we
should find a vertex diagram that depends on both A; and m? and insert the flavor-violating
corrections found in Section 5.3. The only such diagram is shown in Fig. 5.2(a). The value

of this diagram, as a contribution to Fy + 1Fys, is

Vbla) (Vom n Vo2a
Cy Cy Sw

, a
Fo +iFss = o 2 ( ) (A, — ptan B)ymim,
2(1 - 2)?

/ dz/ dx(zm2 + (1= 2)(zm% + (1 —z)m2))?

(5.37)

In this expression, Vj is the unitary matrix that diagonalizes the neutralino mass matrix:
=3 VoraX) 7= VeaR, (5.38)
a a

m, are the neutralino mass eigenvalues (with signs), ¢, = cosfy, 8, = sin 6,,.
Using Eq. (5.23), we find the contribution of imaginary B, on the EDM of charged lepton

gi is

m2 m2
where the functlon f is defined in appendix 3.

Now let us assume Im[B,] = 0 and study the effect of complex Y, on the EDMs. The
renormalization-group running of the soft supersymmetry breaking masses from the GUT
scale to the electroweak scale corrections gives large but flavor-independent corrections to
the E and L masses proportional to the GUT-scale gaugino masses. These terms do not
contribute to the flavor-violating effects that give the dipole matrix element an imaginary
part, but they should be taken into account in the denominator of (5.37) in evaluating this
imaginary part. Thus, we have written (5.37) as depending on the electroweak-scale values
of these masses mj and m;. The full expression (5.37) can be checked against many papers

on lepton dipole moments, for example, [132, 133, 134].
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Starting from (5.37), we replace A, by aoYz0Z4, and we include one mass insertion in the

L line by acting on the integral with

Am%—a—% (5.40)
L

A schematic version of this analysis for general flavor-violating perturbations is described,
for example, in [135]. In our model, we take the indicated derivative of (5.37), assemble
the structure (AZ,Am?), and replace the imaginary part of this object by (iC;) as given in
(5.14). We thus obtain an expression for the lepton electric dipole moment of the form of
(5.36), where

Vora\ (Vota . Voza\ memZaoma ([Yo, Y1)y mi m
Fosi = s Za:( > ( o + 5y ) [ma]? ; 9(‘7;1{2?, mg) , (5.41)

where g(zr, zg) is given in Appendix C. For comparison with the results of the next section,

we might write this result alternatively as

Vita\ (Vota | Viza) maom, mi mk
Fy = ( )( ) ; " ma
251 471')52 \ ¢y + Sw |ma|6 g(mg mg)

2
Tnl(Y) Y)Y - (~2milog 325) (5.42)

There is a curious consequence of this result that follows from the fact that the trace of

any commutator is zero. If this effect is the only source of the lepton EDM, we expect that
de/me + dy/my +dr/m, = 0. (5.43)

It is unclear to us how this simple formula could be tested to the required accuracy.

5.6 Electric dipole moments for large tan 3

Masina [126] has argued that, for large tan g3, a different contribution to the lepton EDM
can be the dominant one. Looking back at the diagrams of Fig. 5.1 and 5.2 studied in the
previous section, we see that it is advantageous at large tan 8 to drop A, and keep instead
the term ptan . We still need a second loop correction to combine with Am2 but this
can come from inserting Am? % in the right-handed slepton propagator. Since Am? % arises at

order Y?Y;?, the new diagram has a size relative to the prévious one of

Y/ m2 tan® g
~ T 5.44
(4m)2 tan § 8202 sin® B (5.44)



H1

Figure 5.9: The structure of the two-loop contributions to Am% that involve the neutrino

Yukawa couplings. All possible particles from each supermultiplet should be put on each
line of each diagrams: (a) proper two-loop contributions; (b) one-loop diagrams containing
one-loop counterterms for Am3.

where v = 246 GeV, assuming that the 7 lepton dominates the intermediate states in the
matrix product. We will see in a moment that, whereas all large logarithms of Mgyt
cancelled out of the expression for lepton EDM in Section 5.5, the contribution of the large
tan (3 region is enhanced by two powers of this large logarithm. As a result, the terms we will
compute in this section can dominate over those we discussed in Section 5.5 for tan 8 > 10.

To evaluate this contribution, we need to work out the mass insertion Am% in (5.11).
To begin, we must compute 6Zg and (5m% up to the two-loop level. We need only compute
those two-loop diagrams that contain the maximum number of Y, vertices, since only these
diagrams will contain factors of the CP violating phases needed for a contribution to the
EDMs.

Consider first 6Zg. The one- and two-loop diagrams contributing to the field strength
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renormalization give

v (vkivkU R d*pp [ d*kp 1 ‘
¥y ) Y Y”/ ot | o o s 6%

The two-loop contribution of order Y;?Y,? comes from a diagram of the topology of Fig. 5.9(a).

Notice that the indices of 6 Zg are transposed. This is appropriate because, in the figure, the
direction of the arrows is reversed on the E lines. In addition to the two-loop diagram, there
is a one-loop diagram involving the one-loop §Z;, counterterm. This diagram has topology
shown in Fig 5.9(b) and has the value

d%kp 1 11
(2m)d (k%)? (4m)% €

871 = oYy (YH)Y Yy, / (5.46)

where € = (4 — d)/2.
The contributions to 5m% from one-loop diagrams and from two-loop diagrams of the

form of Fig. 5.9(a) are given by

i d%pg 2mf + a}
mg” = by (2m)¢ (23 d | ik 1
+2 ﬂi(YVk’)*YVkJYéJ'_/ (27]:)2 (27r)b;p%2(k23 o) + ML)
<5m3 -I-d4ag - (ke 27;;?41 M2
-21%(12’“)*1@’”%/ (dz:)b; (lcfi)2 (41)2 1(5m0 +4a?) , (5.47)

Again, we only consider corrections involving the Y, that will contribute to the EDMs. The
first line of (5.47) gives the complete 1-loop contribution. The second line gives the 2-loop
contribution proportional to Y2Y2. This contribution comes from diagrams of the topology
of Fig. 5.9(a). To compute dm2 % we put E on the external lines and insert m2 into the
propagators or a2 into the vertices in all possible ways. The final piece comes from diagrams
of the topology of Fig. 5.9(b) with the counterterms associated with the one-loop corrections
to Zz, m , and Z,.

Note the order of the indices on ém%7* in these contributions; this reflects the reversed
direction of arrows on the external lines in Fig. 5.9. Note that the integrals over kg contain
superpartners I:, H; that have masses of the TeV scale rather than the right-handed neutrino
scale. These integrals are potentially infrared divergent, and we will replace (k%) — (k% +

M&;sy) to regulate this divergence.
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To compute the final mass insertion ém%, we must now make the redefinitions in (5.12).

If we expand in the Yukawa couplings, we find
Am% = (dm% — m3éZg) + [ 6V , (6m% — m§éZe)] +-- -, (5.48)

where 6V is introduced in (5.10). To give a nonzero diagonal element in (5.15), we must
expand the quantities in the first term to order Y2Y;2. In the second term, we will obtain a
nonzero contribution to (5.15) by taking the one-loop expressions for 5m2E and 6 Zg together
with the one-loop expression for ¢V that follows from the §Z;, contribution to (5.10). Note,
while the flavor-independent gauge corrections to 5m?E and 6 Zg commute with §V, the first
terms in Eqgs. (5.45) and (5.47), although flavor-conserving, do not commute with V. That
is why we have dropped the gauge correction in Eqgs. (5.45) and (5.47) while we have kept

the Y2 terms. According to the above equation,
VYR = Y26V =Yy(8ZL)*Ye . (5.49)

If we recognize that the one-loop expressions for 5m2E and 6Zg are proportional to Y2, we
can use this expression to evaluate the second term of (5.48). Inserting the value of 67,
given in (5.17) and transposing the matrix, we find a contribution of the same structure
Y,Y'Y, Y, that we have in the other contributions to (AmQE)T.

Our final result for Am% is then

Am3" = 2Yu(Y,)Y, 7Yy

) G e T T e ) O 4~ )
Sy — 5 (2)(6m3 + 4a3)
(or)! 5 4 M o >M o
o GUT o GUT m2 CL2 ) )
(s 8 ) (g lon st + 1)) (3 +a3) | (550)

The two-loop integrals are standard forms that are evaluated, for example, in the appendices
of [136] and [137]. Using these results, we find for the off-diagonal elements of Am?%

., 2 . .
A 241 _ y Ykz *Yk]Y
mE (471_)4% ( v ) v 44j

1 M2 ME M}
4 (6m2 + 4a2) [— log? —CUT 1 Jog —SYT |og
{ 0 T M? M} Myey

— (3m§ +a3) log Mgur (log Myr + 1)} (5.51)
Mé?USY O Mysy M ' ‘
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This formula is the exact result to order Y2Y;? with ultraviolet regularization by minimal
subtraction at Mgyr. It does not assume that the right-handed neutrino masses are hierar-
chical. The dependence on Msysy, with terms of at most one logarithm, is consistent with
renormalization group evolution from the heavy neutrino scale to the weak scale.

The dominant contribution to the EDMs for large tan 8 is now found by inserting both
(Am%)T and Am? into the vertex diagram as shown in Fig. 5.2(b). The imaginary part of
the diagram is proportional to the structure (5.15). The contributions to this formula have
up to three powers of logarithms. Just as in the evaluation of C;, we can take advantage
of the fact that we are computing the imaginary part of the product of Hermitian matrices,
which picks out the antisymmetric product of these matrices. In this case, the result contains
the structure

T (Y)Y m, (V) ) (5.52)

contracted by a function of M}, and M,,. Note that the structure in (5.52) is antisymmetric
in the right-handed neutrino flavor indices k£ and m. When we antisymmetrize the expression
contracted with this structure, the leading term with log®(M&yp/MZ2) cancels out. However,
while for C; the next subleading logarithm also cancels out, here it does not and, unlike the
previous case, the final result will depend on Mgyr. More precisely, we find

4 7\ * mJ\*\ mi
D; = Im{ (47T) - Coszﬂ(Yk) Ykrjrm, (Y Y]
M3 ME M3 o M% 2
4 Gur Gur
. lo 1 9log? =X 1
[mo (910g M2M o8 M,gM %z " M‘;g AR i
GuT
+6 log R log 7 X 4 3log? —]\75+(7 72) log Mz)
2 ME ME o M% 2
+a2m? (9 log A;{frgT log ]\C}gT log i + 9log? 7 N Jog =X M2
Miyr. M ) M2 2 2 po M2
7T— log —=
+141log R log 2 L+ 5log? i N 1 4log 72 N log MSUSY + (7 —37%) log Mg)

My M M2 M2 M3
+a0<2 log M2T log MzT log 72 + 2log? M2 N jog 2

M2 uT M2 s M, 2 ME
+410g M2 10g M2 +210g ']W+(2"“3‘7T )lOg Mg)il .

(5.53)
The parameter My is a mean right-handed neutrino mass. The precise definition of this
mass is unimportant, because, as in (5.25), the various factors of My cancel out of (5.53)

when we use the antisymmetry of the structure Im[Y;}]. It is convenient to choose My as

the geometric mean of the M to minimize the individual logarithms in (5.53).
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dote are Ay vertices, and the marked insertion is a one-loop correction to m%. All of the
momenta flowing through the indicated loops are of order Msysy.

If the right-handed neutrino masses are strongly hierarchical, as was assumed by [126],
(5.53) iz enhanced by three large logarithmic factors. The formula we have given here is
valid for any right-handed neutrino spectrum; for a spectrum without large hierarchies, the
leading term still has two large logarithms. We also confirm the result of [126] that the
logarithmic dependence on Mgygy cancels in the leading order of logarithms, though a small
Jarendence does remain in a subleading term. The coefficient of our leading term is different
from that found by Masina.

From this expression we obtain lepton EDMs of the form of (5.36) with

£ 257

_ 8a (me) (me N Vo2a> pmgm, tan B
(47)7 Cu Sw / |mg|®v? cos?
mi mk

Tm[(Y) Y7 mi; (V) Y™ h(—% 35
Miye Mige. ME . oM M
Gy 2 4 UT Gur
,[(Qmo + 9agm? + 2a3) (log M3 log A2 log 2 Y + log? e Y Jog M2 )] .
(5.54) |

7 7712

where h(zr,zg) is given in Appendix C. In the above formula, we have kept only the leading
‘wgorithmic terms, that is, terms with two large logarithms in the case of a general right-
“:anded neutrino mass spectrum and with three large logarithms in the case of a hierarchical

=2z ppectrum. If we wish to give an expression valid, in the general case, at the level

-+ wne large logarithm, we should include the corrections to D; from the TeV threshold,

cing the Mgysy by the actual masses of L and H;. At the same time, we must include
ditional contribution, shown in Fig. 5.10, involving a two-loop integral with momenta

(TS St

at the TeV scale. An analysis to this accuracy is beyond the scope of this paper.
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5.7 Discussion

In this chapter, we have re-evaluated the contributions from neutrino Yukawa couplings to
the lepton EDMs. In contrast to previous studies, we have shown that, in the mass basis of
charged leptons, up to two-loop level, neutrino Yukawa, couplings do not induce an imaginary
part to the diagonal elements of the A, term. However, complex neutrino Yukawa couplings
can create EDMs for charged leptons through differences in the renormalization of the A,
terms and the slepton masses terms, through the diagrams shown in Figs. 5.1 and 5.2. Our
expressions for the lepton EDMs have the same structure in terms of the neutrino Yukawa
couplings as those previously given in [125] and [126]. However, the form of the integrals
contributing to Fbs; is different because there is an extra mass insertion. Further, the overall
size of the effect is decreased from the previous estimates, especially in the region of low
tan . ,

There is an important test for the origin of lepton EDMs in the neutrino sector. While
complex ag and p induce EDMs both for the charged leptons and for the neutron, effects
from the neutrino sector give zero EDM for the neutron while making nonzero contributions
for the leptons. However, an EDM present only for leptons could in principle arise from
an imaginary part to the A, coefficient or the neutrino B term as well as from loop effects
involving Y,,. It is interesting to compare the magnitudes of the effects from loop level or
tree level CP-violating contributions.

In the low tan 3 region, the effect that we have computed in (5.41) gives a lepton EDM
of the order of magnitude

2
di ~ 1072 Y? Io %2 (-@A%-S-%Y) (Z‘) e cm. (5.55)

The effect from the large tan 8 reglon has a double logarithmic enhancement with respect

to this value. If we estimate log?(M&yr/M3%) ~ 200, the effect that we have computed in
(5.54) gives a lepton EDM of the order of magnitude

2 ,
d; ~ 10°% (3’““1—6) V4 log s (M) (m’h> e cmu. (5.56)

10 M M2\ Msysy Me
These estimates can be compared to the current best limit on the electron EDM, d, <
1.6 x 107?" e cm [138]. To achieve an EDM close to the current bound, we would need to
have Y,*log(M;/M3) ~ 100. However, the experimental limit on the rate of u — ey places
a limit on the Y, matrix elements [32, 139],

M
Y Reyke og ]\C}gT <0.ltanpg, (5.57)
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so it seems unlikely to have such large values of the Y,. On the other hand, the effect of the
neutrino B term leads to a potentially much larger estimate for electron EDM,
Im(B,) v (200 GeV)2 Mg;

Me

d; ~107% e cm. (5.58)

Msusy Msusy
This could easily saturate the present bound. We also expect d, ~ m,/med,, so if d,

is close to its present bound, d, should also be observable in future muon storage ring
experiments [140]. If complex Yukawa couplings are the only source of CP-violation and
Y, ~ 1, the electron EDM should still be observed in the next generation of experiments,
which aim for sensitivity to d. ~ 1072 e cm [141].

Over the longer term, CP-violating effects of complex neutrino Yukawa couplings can also
be probed by lepton flavor oscillation in slepton production at colliders [142], and perhaps
also in sneutrino-antisneutrino oscillation [131]. Better understanding of the systematics of
leptogenesis can also play a role on constraining the neutrino Yukawa couplings. All of this
information will complement the knowledge that we are gaining from neutrino oscillation
experiments to help us build a complete picture of the neutrino flavor interactions.

In this chapter, we have also shown that B, can induce LFV masses for left-handed
sleptons which can be dominant over the effect in Eq. (5.21) that has been extensively
discussed in the literature. It is well-known that the off-diagonal slepton masses (m?2, ﬂfJTLaf, LB
o« # f3) at the one-loop level can give rise to lepton-flavor-violating rare decays such as
(u — ev), (1 — pv), and (7 — ey). In the mass insertion approximation, a simplified
formula can be derived [143]:

_0_43_ m2sl?
Gr My

The upper bounds on the branching ratios of the rare decays [91] can be interpreted as

Br(ly — lg+17) ~ tan? 3. (5.59)

bounds on the off-diagonal elements of |miﬂ|. Assuming that there is not any “mysterious”

cancellation between different contribution to the LEFV masses we can write
0.16 , Mousy o o

ke *qu B* )
I(Y;/ ) v Re[ao 1/]] < tan,B(2OD GeV Mgysys (5 60)
31 m
kr\ =y ku * susy 2,2
l(}'fu ) Y;/ R‘e[a’OBu” < tanﬁ(Z()O GGV) Mgysy
and 80
kr\xy ku B* msusy 2,2
'(Yu ) Yv Re[ao u]l < tanﬁ(QOO GGV) Mgysy: (561)

Considering the upper bound on B, from neutrino mass (|B,| < 10® myys,) [131] the above
bounds are quite restrictive. The next generation of experiments [144] are expected to explore

much lower values of branching which means that the bounds can be significantly improved.
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Figure 5.11: A contribution to the renormalization of A; in two-loop order from two one-loop
diagrams.
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Figure 5.12: Irreducible two-loop diagrams contributing to A,. The shaded boxes represent
the full one-loop propagator corrections from the N, Hs supermultiplets.
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Chapter 6

Summary

In this work, we have explored various properties of neutrinos. In the following, we summarize

our results.

1. If v, is composed of only three mass eigenstates (or only two mass eigenstates for
Ues = 0), there is a window [0.2 eV< mg < 0.36 eV (see Eq. (1.6)] open for KATRIN
to observe a shift of the endpoint. Observing an effect will play a crucial role in

improving our understanding of cosmology.

If the 3+1 normal mass scheme is the scheme chosen by nature, based on the cosmo-
logical data [c¢f. Eq. (1.7)] and Am2gyp > 0.8 eV2, we expect the mass of the lightest
neutrino to be below the sensitivity limit of KATRIN: m; < 0.15 eV [see Eq. (2.23)].
So the only structure expected in the Kurie plot is a small kink at (m2 + AmZ2gnp)Y/?
which probably will be too small to be resolved.

2. We have explored the energy loss from a supernova core due to the emission of Majorons
(or any other massless scalar particle) to derive bounds on the coupling of the scalar

particle to neutrinos. The results are as follows.

1) The strongest bound on g, comes from the process v, + v, — J taking place in the
inner core of a supernova. Requiring that the energy rate transferred to Majorons is
less than ~ 10°® erg/sec, we have found that |ge| < 1077 (¢f Eq. (3.39)). We have
shown that for |gee| < 1077 the effects of four-particle processes (Ve + Ve — J + J and
Ue + ve — J + J) are negligible.

2) We have studied the bounds on the coupling of Majoron to muon (tau) neutrino. In

the basis for which g,, = 0 (since v, and v, are equivalent for supernova processes®,

*In the case of nonzero couplings to the Majoron, this equivalence may not hold. For example, if ge, # ger,
due to the different rates of v + v, — J and v, + v, — J, the concentrations of v, and v, can be different.
However, we will neglect such a possibility to avoid further complicating the problem.
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we can always rotate (vr,v,) to a new basis (v}, v,
the following results. For |geu|?/|guul® x p2,/T? < 37, the processes 7, — v, + J and
v+, — J imply |guul < 1078 [¢f. Eq. (3.47)] while ve+v, — J gives |geu| < 5x 1077
[cf. Eq. (3.46)].

For |geul?/|guul® x (12,)/T? > 37, we have shown that the process v, + v, — J eats

) for which g,;,, = 0) we have found

up v, within a short period (leading to a negative chemical potential for »,) such that
the bound from v, + v, — J no longer applies. In this case, however, the density
of U, increases (uz, = —my, becomes positive) and the bound on |g,,| (Eq. (3.47))
still applies (actually it will be a conservative one). For |geu| > |9uulvV/37T/thy,, the
7,-decay in the outer core (where y,, /T ~ 1) imposes the strongest bound on |g,|
which is |ge,| < few x 1078, These upper bounds are schematically summarized in Fig.
3.3.4.

3) We have also studied the Majoron decay and the interactions that can trap Majorons.
We have found that the processes v +J — Ve, Ve +J — Dy and vy, +J — 7y,
may have significant effect (1! > RZl..), only if |gee] > 6 x 1075(¢/10 MeV)¥/2,
|9eu(ry] > 2 % 1078(g/10 MeV)¥2 and |guryur)| > 4 x 1075, respectively. If the cou-
plings of Majorons to neutrinos are larger than these limits, the Majorons cannot leave
the core immediately. However, the processes involving Majorons still affect the evo-
lution of supernova, transferring energy from the inner core and distorting the density
distribution of the particles. The mean free path of Majorons decreases with decreas-
ing their energy. Therefore, even if the Majoron couplings satisfy the bounds (3.39,
3.46 and 3.47), the low energy Majorons (E; < E,) will be trapped inside the core,
not being able to transfer energy outside. However, the energy transferred to the low

energy Majorons is negligible compared to the total energy transferred to Majorons.

If the couplings of Majoron are larger than some lower bounds, the only Majoron
particles that can leave the core and cool it down are those produced in (or diffused
into) a shell close to the neutrino-sphere where the density decreases rapidly with
increasing radius. In this region the neutrino density is too low to give rise to a
significant Majoron flux (i.e., £L; < L,). We emphasize that to derive the lower
bounds, it is not sufficient to consider the coupling constants collectively. For example,
if |geu| > 5% 1078, the Majorons produced via v, + v, — J can annihilate with another
v, into 7, before escaping the core.

To derive the lower bounds, one must recalculate the density and temperature profiles

of matter, neutrinos and Majoron particles which, in general, are different from those

97



calculated so far without including Majoron processes. Here, we have discussed and
evaluated the four-particle interactions ((;)(;)._) JJ and (;) J —>(1;) J) which for large

values of coupling constants may have significant effect.

. Reconstruction of the unitarity triangle is the way to establish CP-violation alternative

to the one based on the direct measurements of the CP- or T- asymmetries.

Properties of the leptonic unitarity triangles have been studied. Our estimates show
that for maximal allowed value of |Ues| and maximal CP violation (6p = 90°) a pre-
cision better than 10% in measurements of the sides of the triangle will allow us to
establish CP-violation.

We have considered the possibility to reconstruct the triangle in future oscillation ex-
periments. For this purpose, one needs to measure the absolute values of the mixing
matrix elements: |Uea), |Ues|, |Uyz2|, |Uus|- The elements of the first side can be obtained
from normalization. In general, the oscillation probabilities depend both on these abso-
lute values and on the unknown relative phases. We have suggested some configurations
of experiments (channels of neutrino oscillations, neutrino energies, baselines, and av-
eraging conditions), for which corrections to the probabilities that depend on unknown
phases are sufficiently small. We have estimated that for the value of |Us| saturating
the present upper bounds and ép = 90°, the elements |Ues|, |Ues|, |Uual, |Uys| should
be measured with better than 3 - 5 % accuracy to establish CP-violation.

The determination of |Uy;| and |U,s| is the most difficult part of the program. These
quantities could be measured studying the v, disappearance at low energies (E < 500
MeV) in experiments with a base-line L > 2000 km. For such a configuration, the

unknown phase-dependent corrections are relatively small (< e ~ 0.03).

The reconstruction of the unitarity triangle requires a series of measurements which

differ from direct measurements of CP- and T-asymmetries. Indeed,

e information on the absolute values of matrix elements follows mainly from the

studies of the survival probabilities;

e both neutrino and antineutrino beams give similar results, so that one can work

with a neutrino beam or an antineutrino beam or with some combination of them;

e averaging of the oscillatory terms and the loss of coherence help us in the deter-

mination of the relevant parameters.
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These factors inhibit direct observations of CP-violation. In this sense, the method
of the unitarity triangle is complimentary to the direct determination of CP-violation
from measurements of asymmetries. Moreover, extracting the value of § through con-
structing the unitarity triangle along with the direct method can help us to solve the

degeneracy problem [84].

. In the context of the universal MSSM extended to include seesaw mechanism, the
neutrino Yukawa coupling as well as the neutrino B-term can leave their signature in
the low-energy observations: in the LFV rare decays and the EDMs of the charged
leptons. The correction due to B, to the left-handed sleptons is given by

2
(4m)

6pm3 = — (Y¥)*Y ¥ Re[aoBY).

For the values of B, close to its upper bounds [131], dpm? is dominant over the
corrections previously studied in the literature [32]. The bounds on the LFV slepton
masses from the LFV rare decays (u — ey, 7 — ey and 7 — py) can be translated
into upper bounds on the combination (Y*)*Y,*'Re[aoB;] [see Eqs. (5.60,5.61)].

The imaginary part of B, can induce an imaginary correction to A, which in turn

creates EDMs for the charged leptons:

20 V01a> (Vom Vbza> PR [ pe——
b= 2 ( - (CE) Y F(, —)Ya,

Cw Cw Sw m3 2" m2

where the function f is defined in Appendix 3 and Vg, and m, are the mixing and

masses of the neutralinos, respectively.

We have also calculated the contributions from the neutrino Yukawa couplings to the
charged lepton EDMs. We have shown that on the contrary to the previous papers
[126, 125], in the mass basis of charged leptons, up to two-loop level, neutrino Yukawa
couplings do not induce an imaginary part to the diagonal elements of the A, term.
However, complex neutrino Yukawa couplings can create EDMs for charged leptons
through differences in the renormalization of the A, terms and the slepton masses,

through the diagrams shown in Figs. 5.1 and 5.2.
While complex ag and p induce EDMs both for the charged leptons and for the neu-

tron, effects from the neutrino sector give zero EDM for the neutron, making nonzero
contributions for the leptons. This fact can be used as a test to differentiate between

CP-violation induced from neutrino sector (B, and/or Y,) and other sources
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Appendix A

Corrections to the lepton A term

In any given loop order, the contributions of the heavy singlet lepton N will be a polynomial
in the Yukawa coupling coefficients in (5.1). Since in the basis we are using Y} is real and
diagonal, nontrivial flavor effects will come only from polynomials in Y. In particular, for
the problem at hand, we are interested in polynomials that contribute to the A, term and
have a nonzero imaginary part.

A given diagram with only one N line could, in principle, contain structures Y, - Y},
Y, Y, or Y Y The vertex Ay conserves the number of Hy (in fact Hy has no A,
coupling). However, the vertices A, and Y, change the number of H, by one unit. Since we
ignore the masses of L and Hj in diagrams involving NV, the L and H numbers are conserved
by internal propagators. Therefore, any radiative correction to A, has equal numbers of Y,
and Y.

Consider a diagram contributing to A, with only one N line and (n + m) Y, vertices.
From the above result, we see that the most general polynomial that can appear in such
diagrams is

(Y7 ;(Yu’” )Y f (M) (YE)™ (A1)

whose diagonal elements are purely real. Notice that in the case of one-loop diagram shown
in Fig. 54, n =1, m = 0 and the matrix §Z4 [defined in (5.7)] is Hermitian.

Now let us focus on two-loop diagrams with more than one N line. In such diagrams
four A,-vertices are involved. A contribution from a product of two one-loop diagrams, as

shown in Fig. 5.11, has the polynomial structure
DY YRV £ (M) fo(Mn) (A.2)

It is non-trivial but easy to show that the functions f; and f, are of the same form. As a

result, the matrix in (A.2) is Hermitian.
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This brings us to irreducible two-loop diagrams contributing to A terms. The structures

of thes- diagrams fall into three categories: 1) they can be of the form

Z K}miyymk*y:kyynj*gl (Mn; Mm) , (A3)
mn
% they can be of the form
S YY) YR g2 (M, M) (A.4)
mn

N

3) or they can be of the form
S VYRR (V) g3 (Mim, M) (A.5)
m,n,k

whera g1, ga, g5 are real functions of My, and Mp,. The structure shown in (A.4) is manifestly
Hermitian., If the functions g1 (Mm, My) and gs(Mm, My) are symmetric under My, < My,

iructures appearing in (A.3) and (A.5) will be Hermitian also. It is not very obvious
‘hose functions have the required symmetry. But it is not difficult to show this by
it -xamination of the diagrams. All the relevant diagrams are shown in Fig. 5.12.
‘1.« momenta propagating in the loops are of order of My, we can neglect the external
+a, which for our purposes are of order of Mgygy. With this simplification, it can
o that all these diagrams are symmetric under My, < Mn. This completes the proof

that, up to two-loop level, the diagonal elements of A; remain real.
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Appendix B

Expansion of AA, eq. (5.12), to order
Y,

In Section 5.2, we claimed that the diagonal matrix element
(14 8U)(1 +622)2(1 4 624) (1 + 625)"2(1 + 6U) ] (B.1)
is real through order Y;*. To order Y2, this is easy to see: The matrix element is the matrix

element of the sum . . ‘
((5U+ §6ZL+5ZA— §5ZL—5U) =024 (B2)

and 07 4 is Hermitian.

Working to order Y%, we first consider the separate contributions of order Y;* from each
factor of 674, 6Z1, and 6U. The factors of 6U cancel. The contributions from §Z4 and 67,
are diagonal elements of Hermitian matrices and thus manifestly real.

In addition, we must look at contributions in which two of these objects at a time are
expanded to order Yuz. To analyze these terms, we need the expressions for 677 and 674
given in (5.20). We also need an expression for 6U. The definition of (1 + 6U) is that it
diagonalizes the matrix

(L46Z.) Y22 (1 +62,)7Y> . (B.3)

Using first-order quantum-mechanical perturbation theory, we find that (6U)y; = 0 and, for
L # 7,

Y2 +YV2 ) , 2
(60)i; = =4 Ty 1 (V)Y <1°g Meur T 1) ' (B.4)

" YZ- Y2 2y M2
Then, the “i”th diagonal element of a product of any two of 62y, §Z4, dU is of the form of
the quantity
kiN*y/kj A2 i \*1/pi A2
5 (0 ¥ihoe g + 1) (022 log 3+ 1) ®5)
p.k,j k P
multiplied by a real-valued expression. No such term has an imaginary part.
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Appendix C

Mass dependence of dipole matrix
elements

As we have explained in Sections 6 and 7, the dipole matrix elements that contribute to

lepton EDMs contain derivatives of the expression

1 (1 - 2)?
%zf(xz” z8) = / iz / zm2 (1= 2)(zm% + (1 — z)m}))?

a

2(1 - 1 1
dz - . (C.1
./ m% — i zm2 + (1 —2)mi  zm2 + (1 —z)m% (C-1)
where T, = m% /m2, zp =m 5 2 /m2. This expression evaluates to
11 1—z2 + 2z logzr,  1—1%+2zplogzs
To make one insertion of Am%, we need
1 0o 1
;Z—gg(xL,:cE) = %?ng(xbxﬁ;) . (C.3)
This has the value
(21, 25) = 1 (1—x%+2a:Llog:cL_1—x2E+2:rElong>
IFLEE) = oz —zp)? (1—27) (1-25)°
1 <5—4mL—x%+2(1+2mL)logch) (C.4)
2(:EE—CISL) (1-—131;)4 ) .
To make one further insertion of Am%, we need
0 1
—-—g—h(mL,xE) = 37%1’7’1; g(:cL,a:E) (05)

This has the value

1 (1—x%+2xLlog:cL 1—3:?E+2a:Elog:cE>

hzp,zg) = — (@p — 70)° (1 Y — (1 — xE)s
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1 (5—4mL—m%+2(l+2mL)loga:L

" 2(zg — z1)? (1—z)*
5—4zp — 1%+ 2(1 + 2zg) log g
(1—2zg)*
2 .2
For m%, m% > m2, we find
f(or,58) ~ — (25, 78) ~ —=—  h(op,58) ~
I, TE ~2$L$E 9\TL,TE)~ 233%3315 Ly Tg)~

as we might have expected.
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