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Introduction

This thesis deals with variational problems arising from a model for quasistatic crack growth in
linearly elastic bodies proposed by G.A. Francfort and J.-J. Marigo in 1998 [54] and inspired by
the classical Griffith’s criterion. The main feature of the model is that the path of the crack is not
prescribed a priori, but the evolution of the crack is determined through a competition between
volume and surface energies.

In order to make the ideas precise, let 2 C R3.be a linearly elastic, isotropic and homogeneous
body in the reference configuration, Op{) a part of its boundary, and let g : 8pQ) — R2 be the
displacement at the points of &p2. Following [54], the total energy associated to a configuration
(u, K) given by a crack K C ) and a displacement u : @\ K — R? with u = g on 8pQ \ K is
given by

1) E(u, K) = / u|Eu|2+%ltrEu|2d1:+kH2(K).
Q e

Here Eu denotes the symmetric part of the gradient of u, tr denotes the trace of the matrix, and
H? denotes the surface measure (two dimensional Hausdorff measure). The coefficients i, A (Lamé
coefficients) and k depend on the material. The boundary condition is required only on 9pQ \ K
because the displacement in a fractured region is supposed to be not transmitted.

The total energy contains a volume part (bulk energy) given by

/ plBul® + éItrEu[2 dz
0 2

and a surface part (surface energy) given by
kH?(K).

Suppose that the boundary displacement g varies with the time ¢ € [0,T]. The quasistatic
evolution ¢t — (u(t), K(t)) proposed in [54] requires that:

(@) K(t) is increasing in time, i.e., K({;) C K({2) forall 0 <3 <t < T}

(b) E(ult), K(t)) < E(u,H) for all cracks H such that Us<;K(s) C H and all displacements
v:Q\ H — R? with v =g on 8pQ\ H;

(¢) the total energy £(u(t), K(t)) is absolutely continuous in time, and its derivative is equal to
the power of external forces.

Condition (@) stands for the irreversibility of the evolution: the crack can only increase in time,
i.e., no healing processes are admitted.

Condition (b) can be interpreted as a static equilibrium at each time t. It requires that the
configuration (u(t), K (t)) minimizes the total energy £ among all admissible configurations (v, H)
with H containing the cracks K(s) at all previous times s < t. As a consequence of (b), the
displacement u(t) satisfies the usual equilibrium equation in 2\ K (£) and the crack K (¢) is traction
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free, i.e., setting Su(t) := 2uFu(t) + MrEu(t)] (stress of the configuration)

Div(Su(t)) =0 in Q\ K(t),
(2) u(t) = g(t) on OpQ2\ K(t),
Su(t)-n=0  on vQUK(L).

Condition (c¢) stands for the nondissipativity of the process in the following sense: in a regular
context, i.e., if I is a submanifold and u is regular enough, we can perform integration by part
getting

d .
2 g(ute), k(1)) = /a gy SO 908

where n is the normal vector to 8pQ2\ K (t), so that the variation of the total energy is due to the
power introduced in the system by the variation of the boundary displacement g(t).

In view of conditions (b) and (c), this model of quasistatic crack propagation can be interpreted
in the general framework of the theory of rate independent processes proposed by A. Mielke and
coauthors: in this direction, we refer to [70] and references therein.

In the same paper [54], Francfort and Marigo suggest that a quasistatic crack growth relative
to the boundary displacement g(t) can be obtained as limit of a discrete in time evolution obtained
through a step by step minimization process. To be precise, considering a subdivision I5 of the
time interval [0, T'] with step less than 6, i.e.,

L={0=tf<t]< <ty =T}
with max;(t3,, — ) < 8, let (uj, K§) be a solution of the problem

(3) min{£(y, K) : u= g(0) on 6pQ\ K},

and let (uf, K¥) be a solution of the problem

(4) 11511'}1{1{8(11,}{) t KP , CK,u=g(tf) on 8pQ\ K}.

Let us consider the piecewise constant in time interpolation

(5) w(t)=ul  KO(t) =K} foreveryte [td,tS ]
Letting § — O along a suitable sequence (6, )nen, and supposing that

(6) u®n (t) — u(t) and K (t) — K(t),

it is expected that ¢t — (u(t), K(t)) is a quasistatic crack growth relative to the boundary dis-
placement g(t). In fact problems (3) and (4) provides K¢ satisfying irreversibility (K¢ C K}s for
i < j) and static equilibrium at every time tJ. Moreover also a weak form of nondissipativity
holds, namely

&
™ euf, K9 < el K+ [ [ SuBg)dode + e(0),
0o Ja
where e(d) — 0 as § — 0. Assuming g sufficiently regular, in the limit one expects that irreverisbil-
ity, static equilibrium and half of nondissipativity hold. The missing inequality for nondissipativity

could be derived indeed by irreversibility and static equilibrium of the limit K (¢). In fact it is not
hard to prove that (see for example [59])

E(g(t2), K (£8)) > £(g(0), K(0)) + /0 " /n S (8) Eg(t) de dt + (3),
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where @9(2) := u(tl,,) for every t €]tf,},,] and e(6) — 0 for § — 0. If the limit u enjoys some
continuity property, the missing inequality is readily obtained (for a similar problem in the theory
of rate independent processes, see [71]).

From a mathematical point of view, in order to put the variational theory of Francfort and
Marigo into sound bases, one needs to find a functional space for the displacements and a class of
admissible cracks so that problems (3) and (4) admit solutions, the convergences (6) are well de-
fined, and the passage to the limit in (7) is possible. Moreover irreversibility and static equilibrium
should be preserved in the limit.

This program has been carried out basically in the papers by G. Dal Maso and R. Toader [45],
by G.A. Francfort and C.J. Larsen [53], and by G. Dal Maso, G.A. Francfort and R. Toader [44].

In [45] Dal Maso and Toader consider the case of antiplanar shear. Since everything can
be referred to a cross section of the body, the total energy of a configuration (u, K ) becomes
(normalizing all the constants)

(8) £(u, K) = /ﬂ Vul? do + HL(K).

The admissible cracks are given by the family K7, () of compact sets in 2 with finite *-measure
and with m connected components. The class of admissible displacements for a crack K is given
by the Deny-Lions space

LY@\ K) = {u € I2,(2\ K), Vu € @\ K)}.

The space L13(02\ K) contains the Sobolev space H1(Q2\ K), but it could be strictly larger since
Q\ K is a priori not sufficiently regular. ‘A natural convergence for the cracks (under a bound
on the surface energy) is given by Hausdorff convergence of compact sets (see Section 1.3). As
for the displacements, a natural convergence is given by the weak convergence in L2{; R?) of the
~ gradients (with the convention of considering Vu = 0 on K).

Problem (4) becomes in this setting

9  min{ /Q (Vulde +HI(K) : K2, C K,ue LMQ\ K),u = g(t}) on 8pQ\ K}.

The restriction on the number of connected components of the cracks permits to solve the problem
using the direct method of the Caleulus of Variations, i.e., looking for the behavior of a minimizing
sequence (uy, Kp)nen. In fact up to a subsequence we can assume that

K,— K in the Hausdorff metric,

and that
Vu, = Vu  weakly in L2(Q,R?)

with v € LV3(Q \ K). Since

/ IVl do < liminf / Veun|? da,
Q n—-+oo Q

the pair (u, K) is a minimizer of problem (9) provided that the #'-measure is lower semicontinuous
a‘long (Kn)n€N7 ie.,
(10) HYK) < im inf HU(Ky).

The lower semicontinuity (10) is not true in general if we do not impose some restrictions on
(Kn)nen- The celebrated Golgb’s theorem (see for example [50]) asserts that the H!-measure is
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lower semicontinuous if the K;,’s are connected, and an extension to the case in which K, has a
uniformly bounded number of connected components is straightforward, see [45].

The static equilibrium for the pair (u(t), K (¢)) obtained as a limit of the discretized evolution
(u®n(t), K= (t)) is recovered by Dal Maso and Toader through an approximation argument: for
all K € K7,(Q) containing K (t) they construct K, € Kf,(Q) with K% (t) C Ky, K, — K in the
Hausdorff metric and

lim sup H* (K, \ K% (1)) < HY(K \ K(t)).

n—-+o00

Moreover they prove that if K, € K (Q) and K,, — K in the Hausdorff metric, then for all
v € L¥3(Q\ K) there exists v, € L'2(Q\ K,) with v, = g% (t) on 6pQ \ K, and such that
(setting Vv, = 0 and Vv = 0 on K, and K respectively)

(11) Vu, — Vv strongly in L2(Q;R?).

The static equilibrium of the pair (u(t), K(t}) is thus readily implied by static equilibrium of
(uin(t), K (2)).

In Chapter 2, which contains the results of [55], we extend the lower semicontinuity (10) to
the case of surface energies of the form

/ o(, va )y dH (2),
K

where vy is the unit normal vector at « to K and ¢ : § x R? — [0, 00| is a continuous function,
positively 1-homogeneous, even and convex in the second variable. Our proof is based on Reshet-
nyak’s lower semicontinuity theorem for measures [79], and on a blow-up argument. As noticed
by L. Ambrosio, the same result can also be obtained from Golab’s theorem in abstract metric
space (see [9]) considering on R? the Finsler metric induced by .

- This extension of Golab’s theorem is employed in order to obtain an existence result for qua-
sistatic crack growth in-the setting of Dal Maso and Toader for linearly elastic, anisotropic and
inhomogeneous bodies, i.e., for total energies of the form

/A(z)VuVudz+/ oz, vg) dH (),
Q K

where A € L*°(Q; M2*2) with

c1léf? < AEE < ot for all £ € R?, ci,c2 > 0.

In Chapter 3, which contains the results of [56], we try to extend the approximation (11) to
higher dimensions. The context in which the problem is treated is that of stability of Neumann
problems, a topic which has its own interest besides the applications to fracture mechanics (see
for example [65], [67], [35], [74], [82],[83], [48], [34], [24], [39] and [66])

In fact an approximation like (11) under the assumption K, — K in the Hausdorff metric
turns out to be equivalent fo the convergence of solutions of elliptic equations with Neumann
conditions on 8Q U K,,. More precisely if u, € H*(Q2\ Ky) is the solution to the problem

~Atp+u,=f inQ\ K,
(12) {gu_ﬂ =0
= = on 9Q U K,

with f € L?(Q), and v € H*(f2\ K) is the solution of

13
(13) fu . g on QU K,

{—Au—i—u:f in Q\ K
ov



then the approximation result (11) is equivalent to the convergence
Up — U strongly in L?(Q)

and
Vup, — Vu strongly in L?(Q,RY),

where we extend un, Vun, and u, Vu to zero on K, and K respectively (in particular Vu is the
distributional gradient of  only in Q2 \ K). »

In dimension N > 3 the connectedness of K, is no longer sufficient to guarantee stability of
Neumann problems as shown in the counterexample of the Neumann sieve, where a transmission
condition on K (different from % = 0) appears in the limit (see for example [74]). A typical cause
of nonstability is the presence on K, of small holes that induces some homogenization effects in
the limit.

In order to preserve stability of Neumann problems in dimension N > 3, we assume that K,
satisfies a suitable cone condition, which implies that the sets K,’s are locally sufficiently regular
subsets of (N — 1)-dimensional Lipschitz submanifolds of RV in such a way that homogenization
effects due to the possible presence of holes cannot occur.

Let C be a fixed (V — 1)-dimensional cone. The sequence (K, )nen satisfies the C-condition
if there exist constants d,L;,Ls > 0 such that, for all n and for all z € K, there exists @,
Bs(z) — RN with

(a) for all 21,2, € Bs(z):

Lz — 23] < |®g(21) — Bz(22)| £ Lalan — 25

(b) ®4(x) =0 and ,(Bs(z) N K,) C {zx =0};
(c) forall y € Bs (z) N Ky,

@.{y) € Cy C B4 (Bs(z) N Kyp)

for some finite closed cone C, congruent (up to a rototranslation) to C. Conditions {(a), (b)
imply that, near z, K, is a subset of a (IV — 1)-dimensional Lipschitz submanifold My . of RV
and condition (¢) implies that K, is sufficiently regular in M, ., essentially a finite union of
Lipschitz subsets. A particular class of cracks which satisfy the C-condition is given for example
by (¥5,(A))nen, where A is a Lipschitz bounded open subset of {zx = 0} and (¥,,) is a sequence
of bi-Lipschitz maps from RY into itself with constants L; and Ls; another example is given by
(Un(Krn))nen, where (Kp)nen is a sequence of compact subsets of {z = 0} satisfying the cone
condition with respect to a finite close cone C.

The main result of Chapter 3 is that if (K, )nen is & sequence of compact sets in RV satisfying
the C-condition with respect to a (N — 1)-dimensional cone C, and K, converges to K in the
Hausdorff metric, then the Neumann problems (12) are stable.

Francfort and Larsen proposed in [53] a weak approach to the problem of quasistatic crack
evolution in which they got rid of the restriction on the number of connected components of the
cracks. They employed the space SBV of functions of bounded variation which was introduced by
E. De Giorgi and L. Ambrosio [46] to deal with free discontinuity problems, and which has turned
out to be very useful in problems where a competition between volume and surface energies
is involved (image segmentation, fracture mechanics, plasticity, liquid crystals, see [8] for more
details).

Francfort and Larsen treat the case of generalized antiplenar shear, i.e., they consider the
antiplanar setting with a N-dimensional base @ C RY.

The class of admissible eracks is given by the family of rectifiable sets in {2, while the class
of admissible displacements is given by the space SBV({l). The boundary datum is given by
(traces of) functions in the Sobolev space H(f2): for technical reasons, g is assumed to be also in
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L*(9)). In order to treat the boundary condition in a simpler way, they consider (using extension
operators) boundary data g € H*(Q2'), where ' is an open set containing {2, and they extended
the displacement u to Q' setting u = g on '\ 2. The total energy considered in [53] is

(14) E(u,K) = /n (Va2 dz + HN1(K \ 85 ),

where u is an admissible displacement for K and g, i.e., u =g on '\ , and S(u) C K. In this
setting problem (4) takes the form ‘ :

(15) min { /Q [Vu|? dz + HN -1 (S(u) \ (K8, U aNn)) :u e SBV(QY),u=g(t¥) on '\ Q} ,

where K¢ | = U;._—_i S (ug) Problem (15) admits solutions as a consequence of Ambrosio’s lower
semicontinuity theorems (see for example [4]).

The convergence for the displacements is given by weak convergence for SBV functions (see
subsection 1.1.1), and the cracks in the limit are reconstructed looking for the jumps of the
displacements. More precisely they fix a countable and dense subset D of [0, T}, and for all t € D
the displacement u(t) in the limit is given by the weak limit for § — 0 of u®(t) defined in (5),
while K (t) is given by the union of jumps at previous times, i.e., K(t) = ;<; ep S(u(s)). The
missing times are treated in the following way: they set -

(16) Kit)y= |J K@),

s€D,s<t

and they consider u(t) as a minimum energy displacement associated to K (t) and g{t).

The static equilibrium property for (u(t), K(t)) is derived from that of (u®(¢), K%(t)) by means
of a geometric construction which Francfort and Larsen called the Transfer of Jump Sets. In its
basic form, the Transfer of Jump Sets can be formulated in the following way. If g € H1(Q) is
a boundary displacement, (un)nen is a sequence in SBV (') with u, = gon '\ Q and u, — u
weakly in SBV(€Y), then for all v € SBV (') with v = g on £}’ \ Q there exists (v, )nen sequence
in SBV(Q) with v, = g on '\ Q such that

Vv, — Vv strongly in L?(Q";R"N)

and
limsup HV 1 (S(vn) \ (S(un) U aNQ)) < HN-1 (S(U) \ (S(w) U aNQ)).

N-mt4-00

This result readily implies that if (u,)nen enjoys the minimality property
(a7) [1VunP dz < [ V0 da Y1 (S0)\ (S(un) UBND))
Q Q

for all v € SBV(QY) with v = g on '\ £, then the same holds for the weak limit u. The stability
of static equilibrium in the problem of quasistatic crack evolution is treated by a more complex
version of this approximation argument (see Theorem 1.4.3).

In Chapter 4, which contains the result of [61] in collaboration with M. Ponsiglione, we prove
that the stability of static equilibrium has a variational character. In fact, referring for example
to the basic problem (17), we have that u, is a (absolute) minimizer of the functional

Enlw) i= [ V0P o+ 11 (S(0) \ (S(un) UOND)).
Q
The problem of stability is then dealt with the tool of I'-convergence (see Section 1.2).
The I'-convergence of functionals introduced by E. De Giorgi and T. Franzoni [47] turns out to

be very useful in Calculus of Variations basically because of the following property: if a sequence
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of functionals (Fy,)nen defined on a topological space X I'-converges to a functional F, and if =,
is a minimum point for F,, with =, — z, then z is a minimum point for F.

In our case we get that the weak limit u of (up)nen is a minimum for the I'-limit £ of the
functionals £,: it turns out that the qualitative properties of £ permit to recover the minimality
property (17) for « in the limit,

The same approach is used to treat general unilateral minimality properties of the form

(18) » /ﬂfn(z,Vun)d:I:S/nfn(a:,Vv) d:v—l—/s(v)\K gnlz,v),

L)

where v € SBV(R), K, is rectifiable in , and f,, g, are densities of volume and surface energies
satisfying standard structure assumptions. The I'-convergence approach provides effective volume
and surface energy densities f, g and a limit crack K containing S{u) so that the limit « of (up)nen
satisfies the minimality property (18) with respect to f,g, and K.

The problem of stability in the case of fixed energy densities f and g has been treated by Dal
Maso, Francfort and Toader [44] by means of a variational notion of convergence for rectifiable
sets which they called o?-convergence (to recover K in the limit), and of a suitable Transfer of
Jump Sets for the sets K, (to recover minimality). The crack K constructed by our I'-convergence
approach contains the oP-limit of the cracks (K, )nen, S0 that the minimality property in the limit
turns out to be improved. Moreover the I'-convergence approach provides a Transfer of Jump Sets
 adapted to the case of varying energies, which seems difficult to be derived directly.

; The stability result for minimality properties of the form (18) is used to deal with the study

of quasistatic crack evolutions in composite materials. More precisely we study the asymptotic
" behavior of a quasistatic evolution t — (uy,(2), Ky (t)) relative to the bulk energy f,, and the surface
energy gn, and we prove that it converges to a quasistatic evolution ¢ — (u(t), K (t)) relative to the
effective bulk and surface energy densities f and g, with convergence for bulk and surface energies
at all times. This analysis applies to the case of composite materials, i.e., materials obtained
through a fine mixture of different phases. The model case is that of perioedic homogenization,
i.e., materials with total energy given by

Ex(u, K) = /ﬂ f (g,Vu(x)) dz + /K 9 (ig-u) dHN-1(z),

where € is a small parameter giving the size of the inhomogeneities in the mixture, and f, g are
periodic in z. Our result implies that a quasisistatic crack evolution t — (u.(%), K(t)) for
small is very near to a quasistatic evolution for the homogeneous material having bulk and surface
energy densities fhom and gnom, which are obtained from f and g through periodic homogeniza-~
tion formulas available in the literature (see for example [21] and [20]). This result provides a
mathematical justification of considering homogeneous bulk and surface energy densities in the
macroscopic description of materials whose toughness properties depend on z at a microscopic
level.

In Chapter 5, which contains the results of [58], we study size effects in quasistatic crack growth.
More precisely we prove that the model of quasistatic crack evolution proposed by Francfort and
Marigo [54] can take into account the fact that ductility is influenced by the size of the structure,
and in particular that the structure tends to become brittle if its size increases (see for example
[32], and references therein). With this aim, in the framework of generalized antiplanar shear, we
consider surface energies of the form (Barenblatt’s type [13])

(19) | elll@) @),
where [u](z) = u¥(z) — v (z) is the difference of the traces of u on both sides of K, and
@ : [0,+co[— [0,+0co[ (which depends on the material) is such that ¢(0) = 0. Setting o = ¢/,

o(|[u}|(z)) can be interpreted as the surface density of forces in z that act between the two lips
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of the crack K whose displacements are u*(z) and u~(z) respectively. Typically ¢ is decreasing,
and o(s) = 0 for s > §, i.e., the interaction between the two lips of the crack decreases as the
opening increases, and it disappears when the opening is greater than a critical length 5. We
assume that a = ¢’(0) < +o0, and limg_, o0 ¢0(s) = 1. The first hypothesis is given by mechanical
considerations, since ¢'(0) is the maximal tensile strain which the material can sustain before
breaking.

‘We consider a total energy of the form

(20) e, K) = [ [vuP+ [ . Qéa(l[u]l)dHN-l-

Problem (3) takes in this setting the form (we use Q' to treat the boundary condition as explained
before)

@)  mn / IVl do + / o(l[ul) dHN 1, u € SBV(Q),u = g(0) on &'\ Q.
(9] S{u)\onQ

We set K§ := S(uf), and ¢§ := |[uf}|. Supposing to have constructed (ud_,, K} ;,%¢_;), problem
(4) takes the form
(22)

min { [ivat+ [ (lfull v 9_0) MY, u € SBV(Q@),u = g(tf) on 2\ n} ,
Q (S(u)UKS_ \ONE

where |[u]| V9¢_; := max{|[u]],%{_;}. We set Kf := K¢ , US(x?f) and 4¢ := ¢¢_, v |[ul]].

Problem (22) takes into account an irreversibility condition in the growth of the crack. Indeed,
while on S(u) \ K{_; the surface energy which comes in the minimization of (22) is exactly as in
(19), on S(u) N K{_, the surface energy involved takes into account the previous work made on
K?. The surface energy is of the form of (19) only if |[u]| > ¥¢_,, that is only if the opening is
increased. If |[u]| < ¢ no energy is spent, that is displacements of this form along the crack do not
contribute to the surface energy. Notice finally that the irreversibility condition involves only the
modulus of [u]: this is an assumption which is reasonable since we are considering only antiplanar
displacements. Clearly more complex irreversibility conditions can be formulated, involving for
example a partial release of energy when the opening decreases: the one we study is the first
straightforward extension of the irreversibility condition given in [54] adapted to the energy (14).

Since a = ¢/'(0) < -+oo, problems (21) and (22) con not be solved directly in the space
SBV () using the direct method of the Calculus of Variations: we solve them in the space BV ({2)
of functions of bounded variation in the relaxed form

[ rards s [ ol v ar o+ alpeul@)
Q K\onS2

where a = ¢'(0), f is a suitable modification of |£{? determined by a (see (5.9)), and D%u indicates
the Cantorian part of the derivative of u.

The analysis for 6 — 0 with h fixed presents several difficulties, the main one being the stability
of the minimality property of the discrete in time evolutions. The main purpose of the chapter is
to prove that these difficulties disappear as the size of the reference configuration increases, thank
to the fact that the body response tends to become more and more brittle in spite of the presence
of cohesive forces on the cracks.

In order to point out the size effects, we consider discrete in time evolutions in Qj = hQ
with h large under suitable boundary displacements, and we study the asymptotic behavior of
the displacements and of the cracks suitably rescaled to the fixed configuration 2. The boundary
displacements on 8p €l := hOpSl are taken of the form

gn(t,z) == h%g (t, %) )
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where @ > 0. Let us denote by (u®(t), K" (t),4%"(t)) the piecewise constant interpolation of
the discrete in time evolution of the crack in Qj relative to the boundary displacement gy,.

The size effects come out in the asymptotic behavior of (u"*(t), K&"(t),%%"(t)) for § — 0 and
h — +co. It turns out that the behavior depends on a: in the case a = % the discrete in time
evolutions suitably rescaled to {2 converge to a quasistatic evolution for the total energy (14) in
the sense of Francfort and Larsen, so that brittle effects occur as the size of the body increases.
We investigate also the cases @ € (0,%) and @ > 1 which lead to an elastic problem and to a
rupture problem in 2 respectively.

In Chapters 6, 7 and 8 we provide some approximation results for quasistatic crack evolutions
which were suggested by numerics (see Bourdin, Francfort and Marigo [18]). The basic idea is to
replace the total energy £ given in (14) by suitable approximations & in the sense of I'-convergence,
to reformulate problems (3) and (4) in term of &, and to study the asymptotics as § — 0 and
€ — 0 (8 being the time step discretization).

We remark that in order to recover the irreversibility condition in the limit, a suitable notion
of irreversibility at the level of the functionals & has to be imposed (for instance in problem (4)),
and this makes the problem of approximating quasistatic crack evolutions different from a simple
collection of approximations of minimization problems to which I'-convergence can be directly
applied.

In Chapter 6, which contains the results of [57], the total energy of the system is approximated
. by the Ambrosio-Tortorelli functional given by

(23) Fi(u,v) = / (0 +0?)| V2 do + & / Vo|? dz + — / (1—v)2da
Q 2 Ja 2 Jo
where (u,v) € HY(Q) x HY(Q),0<v <1, and 0 < 5. << &. F; contains an elliptic part
e [+ v9)vap da
Q

“ and a surface part

(25) MM, () = /Q Vol de + o /ﬂ (1-v)2de

which is a term of Modica-Mortola type (see [72]).
L. Ambrosio and V.M. Tortorelli [10], [11] proved that the functional (23) provides an approx-
imation in the sense of I-convergence of the total energy

() == /ﬂ IVl do + HY-1(S(w)

defined on SBV ().

The passage from the H' context to the SBV one in the I-limit process can be explained in
the following way. If a sequence (ue,v.) is such that F, (ue, ve) +||¢e||co < C, then v, — 1 strongly
in L2(f)), and it turns out that, up to a subsequence, u. — u in measure for some u € SBV(Q);
some jumps in the limit may appear because the gradient of u. can become larger and larger in
the thin regions in which v, approaches zero.

As for the applications to crack propagation, the function u. has to be considered as a regular-
ization of the displacement u, while the function v, has to be intended as a function which tends
to 0 in the region where the crack S(u) will appear in the limit, and which tends to 1 elsewhere.
Moreover (24) and (25) have to be interpreted as regularizations of the bulk and surface energy
of the system.

In relation with quasistatic crack evolutions, we define through a variational argument the
following notion of guasistatic evolution for the functional F.: for every € > 0 we find a map
t — (ue(t), ve(t)) from [0,7T) to HYQ) x HY(), 0 < v-(t) £ 1, u{t) = g(t), ve(£) = 1 on Hp0
such that:

11



(a) for al 0 € s <t < T w:(2) < we{8);
(b) for all (u,v) € HY(Q) x H(Q) with u = g(t), v=10n8pQ, 0 < v < v(t):

Fe(ue(t), ve(t)) < Fe(u,v);
(c) the energy &(t) := Fe(ue(t), v-(t}) is absolutely contimious and for all t € [0, T

i
£:(t) = £(0) + 2 /0 /ﬂ (7 + v3(r)) Ve (1) V() dz

{d) there exists a constant C depending only on g such that £.(t) < C for all ¢ € [0, T].

Condition (a) permits to recover in this regular context the fact that the crack is increasing in time:
in fact, as v (t) determines the crack in the regions where it is near zero, the condition . (t) < v.(s)
ensures that existing cracks are preserved at subsequent times. Condition (b) reproduces the static
equilibrium condition at each time, while condition (¢) reproduces the nondissipavity condition in
this context. Condition (d) gives the necessary compactness in order to let ¢ — 0. The requirement
ve(t) = 1 on 9pf2 for all t € [0,1] is made in such a way that, letting € — 0, the surface energy of
the crack in the limit is the usual one also for the part touching the boundary 8p%.

The main result of the chapter is that, as e — 0, the quasistatic evolution t — (uc(t),ve(t)) for
the Ambrosio-Tortorelli functional converges to a quasistatic evolution for brittle fracture in the
sense of Francfort and Larsen [53], providing an approximation of the total energy at any time.
More precisely, there exists a quasistatic evolution ¢ — (u(t), K(t)), u(t) € SBV(Q), relative to
the boundary data g and a sequence &, — 0 such that for all ¢ € [0, 1] which are not discontinuity
points of HN (K (-)) we have

Ve, (£) Ve, () — Vau(t)  strongly in L2(Q, RY),

/ (ew + Ve (8)) Vit ()2 dz — / Vu(t)P? de,
9] 1Y)

and
MM, (ve, () — HN"l(K(t)).

We thus obtain an approximation of the total energy at any time, and an approximation of the
strain, of the bulk and the surface energy at all time up to a countable set.

The fact that nothing can be said for the times belonging to the countable set of discontinuity
points of H¥~1(K(-)) is due to possible non uniqueness of quasistatic crack growth relative to the
boundary displacement g. Following Francfort and Larsen we considered evolutions which are left
continuous outside a countable set (see equation (16)), but the Ambrosio-Tortorelli approximation
could as well individuate a suitable crack K(t) contained between the left and right envelope of
K(-). As a consequence approximation of bulk and surface parts of the energy could not hold at
these times.

In Chapter 7, which contains the results of [59] in collaboration with M. Ponsiglione, we provide
a finite element approximation of quasistatic crack evolutions. We employ the I'-convergence
results by M. Negri (see [75], [76]) concerning suitable discontinuous finite element approximations
for the total energy (14).

Restricting our analysis to a two dimensional polygonal reference configuration, the discretiza-
tion of the domain () is carried out considering two parameters £ > 0 and a €]0, 3[ . We consider
a regular triangulation R, of size € of (1, i.e., we assume that there exist two constants ¢; and ¢
so that every triangle T € R, contains a ball of radius c;£ and is contained in a ball of radius cse.
On each edge [z,y] of R, we consider a point z such that z = tz + (1 — t)y with ¢ € [a,1 — a].
These points are called adaptive vertices. Connecting together the adaptive vertices, we divide
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every T € R. into four triangles. We take the new triangulation T obtained after this division as
the discretization of Q. The family of all such triangulations is denoted by 7; »(92).

The class of discretized admissible displacements is the family of functions u which are affine
on the triangles of some triangulation T(u) € T¢ () and are allowed to jump across the edges
‘of T(u). The discretized energy is obtained simply restricting the total energy (14) to admissible
the displacements.

We reformulate problems (15) in this discretized context obtaining a discrete in time evolution
(udi, K5%). Interpolating in time as usual, we obtain a discrete evolution ¢ — (uf ,(t), K2, (1))
depending on €,a and 4.

The main result of the chapter is that as § — 0, € — 0 and & — 0 (along suitable sequences),
the evolution t — (ul , (), K¢ ,(t)) converges to a quasistatic crack growth ¢ — (u(t), K (t)) in the
sense of Francfort and Larsen. More precisely we have convergence of total energies for all times

"t € [0,T], and for all times which are not discontinuity points for H*(X(-)) we have convergence
of the stress

(26) Vug,a (t) — Vuli) strongly in L2(Q;R2),
and convergence of the surface energy
(27 UKL, () = HHK()).

As in the case of the Ambrosio-Tortorelli approximation, the restriction to times which are conti-
nuity points for H*(K(-)) in order to get approximation of both bulk and surface energies is due
to the possible nonuniqueness of quasistatic crack growth relative to a time dependent boundary
displacement.

In Chapter 8, which contains the results of [59] in collaboration with M. Ponsiglione, we
employ the discontinuous finite element approximation used in Chapter 7 in order to approximate
a general model of quasistatic crack growth in nonlinear elasticity proposed by Dal Maso, Francfort
and Toader in [44]. This model takes into account possible body and traction forces, so that the
total energy considered has the form

(28) E(t)(u, K) :=/nW(:z:,V'Lb)d:z:—/sr;.l*"(t,ar:,u)d:z:-—-/‘9 QG(t,m,u)dm-}—/K\a nk:(:z:,IJ)d’h(N"l.

Here W is the hyperelastic potential with p-growth estimates in the gradient (p > 1), F and G
are the time dependent potentials of body and traction forces respectively, 8,2 is the part of the
boundary of £ on which the traction forces are applied, while % is the density of the surface energy
of the crack K. In this model the bulk energy of the deformation u is given by

(29) b (1) (u) == / Wz, Vi) dz — / Ft, z,u) dz — / G(t, 7,u) dz,
o o 8,0
while the surface energy of the crack K is given by
(30) EK) = / k(z,v) dHN 1.
K

The admissible deformations are vector valued functions in the space of generalized functions of
bounded variation GSBV (Q;R™), while the admissible cracks are the rectifiable sets in €.

Considering the case of § C R? polygonal and m = 2, we construct a discrete evolution
t — (u ,(t), K¢ ,(t)) in a similar way to Chapter 7. Then we prove that there exist a quasistatic
evolution ¢ -~ (u(t), K(t)) in the sense of Dal Maso, Francfort and Toader and sequences 6, — 0,
en — 0, ap, — 0, such that setting

un(t) =uln (1), Ka(t) =K, (1),

for all ¢ € [0, 7] the following facts hold:
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(8) (un(t))nen is strongly precompact in L*(Q;R?), and every accumulation point 4i(t) is ad-
missible for g(t) and K(t), and (@(t), K(t)) satisfy the static equilibrium property with
respect to the total energy £(¢)(:,-); moreover there exists a subsequence (n,,Eny, Gny JkeN
of (6n, En, an)nen (depending on £) such that

Un, (t) — u(t)  strongly in L*(Q;R?);
and _
Vun, (t) — Vu(t)  weakly in LP(Q; M2%2),
where M2%2 denotes the space of 2 x 2 matrices;

(b) convergence of the total energy holds, and more precisely elastic and surface energies converge
separately, that is

E (M) (un(t) = E°(O(u(t),  E°(Kn(t)) — E°(K (1))

By point (a), the approximation of the deformation u(¢) is available only up to a subsequence
depending on ¢: this is due to the possible non uniqueness of the minimum energy deformation
associated to K(t). In the case £°(t)(u) is strictly convex, it turns out that the deformation u(t)
is uniquely determined, and we prove that

Vun(t) — Vu(t)  strongly in LP(Q; M2%2)
and :
un(t) — u(t)  strongly in L*(Q2;R?).

By point (b) the approximation of bulk and surface energies is available at every time ¢ € [0, 7],
and this is an improvement with respect to the approximation results of Chapter 6 and Chapter 7.
This improvement is obtained adapting to our context the notion of oP-convergence for rectifiable
sets formulated by Dal Maso, Francfort and Toader in [44] in order to determine the crack K(t)
which is approximated by K¢ ,(t) at all times ¢.
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Chapter 1

Preliminaries

In this chapter we recall some basic notions about functions of bounded variations which will be
used throughout the thesis. Moreover we recall the definition of I'-convergence for functionals
defined on metric spaces, and the definition of Hausdorff convergence of compact sets. Finally we
state the mathematical results obtained by Dal Maso and Toader [45] and Francfort and Larsen
[53] relative to the model of quasistatic crack evolutions of Francfort and Marigo [54].

1.1 Functions of bbimded variation

For a comprehensive treatment of the theory of functions of bounded variation, we refer to [8]. Let
A be an open set in RV, and let m > 1. We say that u € BV(A4,R™) if u € L*(A,R™), and its

#  distributional derivative Dwu is a bounded vector-valued Radon measure on A. In this case it turns

#:. out that the set S{u) of points z € A which are not Lebesgue points of u is rectifiable, that is there
+ exists a sequence of C" manifolds (M;)ien such that S(u) C U; M; up to a set of HY~l-measure

#. gero. As a consequence S(u) admits a normal v, (z) at HV-a.e. z € S(u). Moreover for HV !

a.e. £ € S(u), there exist ut(z),u™ (z) € R™ such that

i s e 1O~ @Iy =0,

where B(z) := {y € B,(z) : (y — ) - vu(z) 2 0}, and B,(z) is the ball with center z and radius
r. It turns out that Du can be represented as

Du(4) = / Vl@)ds+ [ (u(0) u(@)) @ vu(o) 1Y (@) + Dou(A),
A ANS(u)

where Vu denotes the approximate gradient of u and D°uy is the Cantor part of Du. BV (4,R™)
is a Banach space with respect to the norm ||luf| pv(agm) = ||ufl 22(a,rm) + [Dul(A4).

We will often use the following result: if A is bounded and Lipschitz, and if (ug)ren is a
bounded sequence in BV (A, R™), then there exists a subsequence (ug, Jhen and u € BV (4,R™)
such that

1.1 Ug, — U strongly in L'(4,R™),
h

* N
Duyg, = Du weakly™ in the sense of measures.

We say that u; = u weakly* in BV (4,R™) if (1.1) holds.

Finally in the context of fracture problems we will use the following notation: if A is Lipschitz,
and if OpA C 84, then for all u,g € BV(A) we set
(1.2) S9(u) = S(u)U{x € 8pA : u(z) # g(z)},
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where the inequality on 6pA is intended in the sense of traces. Moreover, we set for all z € S(u)
[u)(z) = u*(z) — (),

and for all z € dp A we set [u](z) = u(z) — g(z), where the traces of u and g on 54 are used.

1.1.1 The space SBV of special function of bounded variation

We say that u € SBV(4,R™) if u € BV(A,R™) and D% = 0. The space SBV(A4,R™) is
called the space of special functions of bounded variation with values in R™. Note that if u €
SBV(A,R™), then the singular part of Du is concentrated on S{u).

The space SBV is very useful when dealing with variational problems involving volume and
surface energies because of the following compactness and lower semicontinuity result due to
Ambrosio ([3], [5]).

Theorem 1.1.1. Let A be open and bounded in RN, let m > 1 and let (ur)ren be a sequence in
SBV(A,R™). Assume that there ezists ¢ > 1 and C € [0;+o0| such that

/A [Vug|? dz -+ HY (S (ur)) + furl| Lo (arm) < C

for every k € N. Then there exists a subsequence (ug, )hen and a function u € SBV(A,R™) such
that '
ug, — u strongly in L}(A,R™),
(1.3) Vaug, = Vu  weakly in L*(A;R™N),
HYH(S(w) < lming 1Y (S, ).

Moreover if HN=1L_S(uy) = u weakly" in the sense of measures, then HN-1L_S(u) < p as
measures.

We will often use the following notion of convergence in SBV (A4, R™)

Definition 1.1.2. Let (ug)ren be a sequence in SBV(A,R™). We say that up — u weakly in
SBV(A,R™) if uy and u satisfy (1.3).

1.1.2 The space GSBYV of generalized special function of bounded vari-
ation
The space GSBV (A, R™) is defined as the set of functions u : A — R™ such that o(u) € SBVie.{A)

for every p € C1(R™) such that the support of Vi has compact closure in R™. If p €]1, +o0], we
set

GSBV?(A,R™) :={u € GSBV(A4,R™) : Vu € L?(A4, M™*™), H"}(S(u)) < +o0}.

By [44, Proposition 2.2] the space GSBVP(A4,R™) coincide with (GSBVP(A,R))™, that is u =
(u1,.-.,um) € GSBVP(A,R™) if and only if u; € GSBV?P(A,R) for every i = 1,...,m.

The following compactness and lower semicontinuity result will be used in the following sec-
tions. For a proof, we refer to [4].

Theorem 1.1.3. Let A be an open and bounded subset of RN. Let g(z,u) : A x R™ — [0, 00] be
a Borel function, lower semicontinuous in v and satisfying the condition

lim g(z,u) = +oo for a.e. z € A.

[uj—oa
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Let (ug)ren be a sequence in GSBVP(A;R™) such that
sup/ |Vug(2)P de + HN L (S (u)) +/ 9(z, uk(z)) dz < +o00.
kE JA A

Then there ezists a subsegquence (uk, Jhen and e function u € GSBVP(A;R™) such that
(1.4) Up, — U in measure,
Vug, — Vu  weakly in LP(A; M™*N).

Moreover we have that
HY -1 (S(w)) < lim inf HY (S (ur,)) -

1.2 T'-convergence

Let us recall the definition and some basic properties of De Giorgi’s I'-convergence in metric spaces.
We refer the reader to [43] for an exhaustive treatment of this subject. Let (X,d) be a metric
space. We say that a sequence Fj, : X — [—00,+00] [-converges to F : X — [-0c0,+00] (as
h — +o0) if for all u € X we have

(i) (T-liminf ineguality) for every sequence (up)ren converging to u in X,

lim inf Fy, (up) > F(u);
h—+00

(ii) (T-limsup inequality) there exists a sequence (up)nen converging to u in X, such that

lim sup Fp,(up) < F(u).
h~++0c0

The function F is called the I'-limit of (F},)ren (with respect to d). T'-convergence is a convergence
of variational type as explained in the following proposition.

+: Proposition 1.2.1. Assume that the sequence (Fi)nen I'-converges to F' and that there exists a

compact set K C X such that for allh € N
nf Fh(u)= inf Fu(u).
Then F admits a minimum on X, infx F}, — minx F', and any limit point of any sequence (up)nen
such that
i (Fatn) = fnf Fu(w) =0,
is a minimizer of F.
Moreover the following compactness result holds.

Proposition 1.2.2. If (X,d) is separable, and {Fy)pen is o sequence of functionals on X, then
there exists a subsequence (Fy, )ren and o function F : X — [—o0;+o0] such that (Fp, )ren
T'-converges to F.

1.3 Hausdorff convergence of compact sets

Let Q be an open bounded set in RY. We indicate the set of all compact subsets of { by (),
K(€2) can be endowed by the Hausdorff metric dy defined by

dp (K1, Ks) == max{ sup dist(z, K3), sup dist(y,Kl)}
€K yEK2

with the conventions dist(z,?) = diam(Q2) and sup@ = 0, so that dy(0,K) = 0 if K = @ and
dy (0, K) = diam(Q) if K 5 §. It turns out that K(Q) endowed with the Hausdorff metric is a
compact space (see e.g. [81]).
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1.4 The model by Francfort and Marigo for quasistatic evo-
lution in brittle fracture: the mathematical results

For a brief description of the variational model for quasistatic crack evolution proposed by Franc-
fort and Marigo in [54], we refer to the Introduction.

In the rest of the section we state precisely the mathematical formulations of the problem given
by Dal Maso and Toader in [45], and by Francfort and Larsen in [53).

1.4.1 The result by Dal Maso and Toader

Let © C R? be open and bounded. Dal Maso and Toader treat the case of antiplanar shear, i.e.
they consider an elastic body of the form Q2 X R and assume that the cracks are of the form K x R
with K C §, and that the displacements u : Q x R — R® depend only on z;,z2, and are of the
form u(z;,z2) = (0,0, uz(z1,z2)).

Referring to the cross section (2, they consider as family of admissible cracks the set

KL, (@) == {K € Q, K has at most m connected components, H*(K) < +oc}.
The family of admissible displacement associated to a crack K is given by
LY2(Q\ K) = {ue H..(Q\ K),Vu e L}(Q\ K)}.

In the model case, Dal Maso and Toader consider a total energy of the form
/ IVu(@)[? dz + H(K).
a

Notice that if u € L¥2(Q\ K) .with K € K7,(Q), then Vu is defined almost everywhere in 2, so
that we can see Vu as an element of L?(Q2) and compute its norm. The quantity || Vu||? is referred
to as bulk energy of u. The quantity H*(K) is referred to as surface energy of K.

The admissible boundary displacements on 0p§) C 69 open in the relative topology and with
a finite number of connected components, are given by the traces of the functions in the Sobolev
space H1($2). The displacement u, i of the elastic body relative to g and the crack K is obtained
minimizing ||Vu||? under the condition = g on 8pQ\ K (which is intended in the sense of traces).
It turns out that u is determined up to a constant in the connected components of (! \ K which
do not touch 8pf). The total energy associated to (g, K) is given by

E(g, K) = |Vug,k|* + H'(K).

Let g € AC([0,T]; H(2)), i.e. let g be absolutely continuous from [0,T] to H() (see [22]
for a definition). The main result of [45] is the following theorem.

Theorem 1.4.1. There ezists a map t — K (t) from [0,T] to KI, () such that the following facts
hold

(a) K(t1) CK(tz) for 0<t1 <12 < T
(b) K(0) is such that for every K € KI,(Q)
£(9(0), K(0)) < £(g(0), K),
while for every t €]0, T] we have that for every K € KI, (Q) with K(t) C K
£(g(t), K(t)) < E(g(2), K).
(c) t — E(g(t), K (t)) is absolutely continuous and
SE6OKW) = [ Vu)Ve) de,

where ¢ denotes the time derivative of g.
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1.4.2 The result by Francfort and Larsen

Francfort and Larsen [53] consider the case of generalized antiplanar shear, that is they consider
Q € RY. The family of admissible cracks is given by the rectifiable sets in {2, while the family of
admissible displacements is given by the functions in SBV ().

If 8p8) C 89, the class of admissible prescribed displacements on dp€2 is given by the traces
of functions in H1(f2). Given a boundary displacement g and a crack I, a displacement u is

associated to g and T if _
SuyU{z € 8pQ : u(z) # g(z)} CT,

where A€ B means that A C B up to a set of HN~l-measure zero, and the inequality on 8p is

intended in the sense of fraces.
Let g : [0,1] — H'(Q)) be absolutely continuous. The main result of [53] is the following

theorem.

Theorem 1.4.2. There ezists a crack T'(t) C 0 and a field u(t) € SBV(Q) such that
(a) T'(t) increases with t;
(b) u(0) minimizes

/,, Vo[2de + HN=1(S(v) U {z € 89 : v(z) # 9(0)(x)})

among all v € SBV(Q) (inequalities on OpS) are intended for the traces of v and g);

(c) fort >0, u(t) minimizes
/Q Vol de + MY ([S(@) U {z € 8p9 : v(z) # g(t)(=)}] \ T(2)
among all v € SBV(Q);

(d) S(u(t)) U{z € pQ : u(t)(z) # g(t)(z)} CT(t), up to a set of HN~-measure 0.

Furthermore, the total energy
£(t) = / IVu(t)? dz + HY -1 (D))
o
is absolutely continuous and is given by

i
E(t) = £(0) + 2/ / Vu(r)Vg(r)dz dr.
0 Ja
Finally, for any countable, dense set I C [0,1], the crack T'(t) and the field u(t) can be chosen

such that
rt)= |J (S@(r)u{zedp® : u(r)(z)# g(r)(x)})

rel,r<t
The main tool in the proof of Theorem 1.4.2 is the Transfer of Jump Sets [53, Theorem 2.1}.

Theorem 1.4.3 (Transfer of Jump Sets). Let ) C O, with 8Q Lipschitz, and let for r =
1,...,% (ul) be a sequence in SBV (§Y') such that

(1) Sp) €0
(2) |Vul| weakly converges in L(Q'); and

(8) ul, — u” strongly in L1($Y'),

19



where u” € BV (V) with HV~1(S(u"™)) < co. Then for every ¢ € SBV (V') with HY~1(S(¢)) < oo
and V¢ € LY RN) for some g € [1,+00|, there exists a sequence (¢,) in SBV (V') with ¢, = ¢
on '\ Q such that

(a) ¢n — ¢ strongly in LY (Q);
(b) Ve — YV strongly in LYUQ'); and
(e) =1 ([8(6) \ Uco SR\ [S(8)\ Uiy S@7Y) — 0.

In particular

(1.5) limsup HN = <5(¢n)\ CJ 5(%)) <N <5(¢)\ O S(UT)) :

=1 o1
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Chapter 2

A generalization of Golab’s
theorem and applications to
fracture mechanics

In this chapter * we extend the result of Dal Maso and Toader [45] to anisotropic linearly elastic
inhomogeneous bodies subjected to anti-planar or planar shear. Anisotropy will be considered both
in the bulk and in the surface energy.

The class of admissible cracks is given by compact sets with at most m connected components
and finite length. The surface energy of a crack K is given by

/ o(z, v) dH(2),
K

where v is the unit normal vector at z to K and ¢ : Q x R? — [0, 00[ is a continuous function,
positively 1-homogeneous, even and convex in the second variable. Notice that the integral is well
defined: in fact, even if K is not in general the union of m regular curves, it turns out that it
is possible to define at H!-a.e. point € K an approzimate unit normal vector v, completely
determined up to the sign. In the case K is regular, v, coincides with the usual normal vector.

In order to deal with an anisotropic and inhomogeneous surface energy, the main step is to
prove a lower semicontinuity theorem for the functional

F(K) :=Lw(m,um)dH1

along Hausdorff converging sequences. Notice that for ¢ = 1, the semicontinuity result reduces
to the celebrated Golgb’s theorem on the lower semicontinuity of ' measure under Hausdorff
convergence.

The chapter is organized as follows. After recalling some preliminary results, we prove the
lower semicontinuity theorem in Section 2.3. In Sections 2.4 and 2.5, we deal with the study of
quasi-static growth of brittle cracks in the anti-planar and planar cases. Using shape continuity
results proved in [25] and [33], we can treat inhomogeneous bulk energies.

2.1 Preliminary results

In what follows,  C R? is a bounded open set with Lipschitz boundary, 8p is a subset of 89
open in the relative topology and with a finite number of connected components.

1The results of this chapter are contained in the paper:
Giacomini A.: A generalization of Gglab theorem and applications to fracture mechanics. Math. Models Methods
Appl. Sci. 12 (2002) 1245-1267.
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Sets with finite perimeter. We indicate the perimeter of £ in by P(E,Q). Let F be a set
of finite perimeter in £; the reduced boundary 8*F and the approximate inner normal v at points
of 0*F are defined such that the following identity holds:

Yg € C.(Q,R?) —/ divgdL? =/ g vdH* .
E B
Set ug = VHLLO*E. For all z € 8*F, indicated the map £ — -}\—(E — z) by Dy, the following blow
up property holds: for A — 07
KD, (E)_*\locHl LT,

locally weakly star in the sense of measures, where T}, is the subspace orthogonal to v.

We say that a sequence (Ej) of subset of Q converges in L} _(Q) to E, if the corresponding
characteristic functions x, converge in L] () to xg. If there exists C > 0 such that P(E},Q) <
C for all h and Ep — E in L}, (Q), then E has finite perimeter in Q and ug, — pg in the weak
star topology of Mp(2, R2). For further details on sets of finite perimeter, the reader is referred
to [8].

Structure of compact connected sets with finite H! measure. It can be proved (see e.g.
[50]) that if K is compact and connected in 1 for a.e. £ € K there exists an approximate unit
normal vector v, which is characterized by

(2.1) 1Dy (B)—tocH LTy, for A — 0%

locally weakly star in the sense of measures, where T, is the subspace of R2 orthogonal to vy.
Moreover the map z — v is Borel measurable, so that for every continuous function ¢ : 2 x R? —
[0, 00[ even in the second variable the integral

/K o(z,v)dH?

is well defined. Clearly the functional is well defined also for K € KZ,(Q) with m > 1.

In section 2.3 we will be concerned in the problem of the lower semicontinuity of the function
K — [ w(z,v)dH! under the Hausdorff convergence.

‘We will use the fact that a connected set C with finite H* measure is arcwise connected and
moreover H*(C) = HY(C): see e.g. [45].

Reshetnyak’s theorems on measures. The following theorem gives a lower semicontinuity
result for functionals defined on measures; for a proof, the reader is referred to [8]. If p is a
measure, let |u] be its total variation and let 3%_1 be the Radon-Nicodym derivative of u with

respect to |u|.

Theorem 2.1.1. Let  be an open subset of R™ and p, pr be R™-valued finite Radon measures
in Q; if pp — p weakly star in Mp(Q,R™) then

z, ——(z) | dju|(z) < liminf T, ——(z)}d z
1 (o) sl < tmint [ 7 (22 @) dine)
for every lower semicontinuous function f : Q x R™ — [0,+o00], positively 1-homogeneous and

convez in the second variable.

We say that u, converges strictly to pu in My(2,R™) if p, — p weakly star and |u,|(Q) —
[14](£2). The following theorem gives a continuity result for functional defined on measures: for a
proof see [8].
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Theorem 2.1.2. Let Q be an open subset of R™ and p, pur be R™-valued finite Radon measures
in Q; if pp — p strictly in Mp(Q,R™) then

im [ £ (x dﬂ(m)) dml(@) = [ 1 (x %(w)) ()

h—co " dlual

for every continuous and bounded function f: Q. x S™~1 = R.

Deny-Lions spaces. If A is an open subset of R%, the Deny-Lions space L*2(A) is defined as

(2.2) LY2(4) == {u € Wi2(4) : Vue [3(4,R?)}.

In the case in which A is regular L12(A) coincides with the usual Sobolev space while if it is
irregular, it can be strictly larger. In what follows, given K C {1 compact and u € LY3(Q\ K),
we extend Vu to 0 on K, so that Vu € L?(£2,R?) although Vu is the distributional derivative of
u only on £\ K. The following theorem proved in [25] will be used in Section 2.4.

Theorem 2.1.3. Let m > 1, K, a sequence of compact sets in § with at most m connected
components converging to K in the Hausdorff meitric and such that L2(2\ K,) — L2(Q\ K).
Then for every u € LY2(Q\ K), there ezists u, € L'?(Q\ K,) such that Vu, — Vu strongly in
L%(Q,R?).

Consider now for A open subset of R?

(2.3) LD"2(4) := {u € Wi2(4R?) : B(u) € L2(4, Mz},

where Eu 1= 1(Vu + (Vu)?) is the symmetric part of the gradient of u and MgXT is the space of
2 x 2 symmetric matrices endowed with the standard scalar product B;:Bs := tr(B? B,) and the
corresponding norm |B| := (B:B)*.

In what follows, given K C ) compact and u € LDV2(Q\ K), we extend Eu to 0 on K although
it coincides with the symmetric part of the distributional gradient of u only on 2\ K. The following
result, which can be obtained combining the density result proved in [33] and Theorem 2.1.3, will
be used in Section 2.5.

Theorem 2.1.4. Let m > 1, K, a sequence of compact sets in §} with ot most m connected
components converging to K in the Housdorff metric and such that L2(Q\ K,) — L2(Q\K). Then
for every u € LDV2(Q\ K), there ezists a sequence u, € LDY2(Q\ K,,) such that Fu, — Eu
strongly in L*(Q; MZX0).

2.2 The main theorems

Let © C R? be open, bounded and with Lipschitz boundary. For every m > 1 let Km(Q) be the
family of compact subsets of {2 which have less than m connected components. Let

KL(Q) == {K € Kn(@) : HY(K) < +co}.

Let ¢ : © x R? — [0, +co] a continuous function, positively 1-homogeneous, even and convex
in the second variable such that for ¢i,c0 > 0

(2.4) Y(z,v) €A x R? : ¢1|v| < plz, v) < eafy).
The main result of the chapter is the following lower semicontinuity theorem.
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Theorem 2.2.1. The functional
F:KL(EQ) — [0,00]
K = [polv)dH!
is lower semicontinuous if Kf,(Q0) is endowed with the Hausdorff metric.

The previous theorem will be used to deal with the problem of evolution of brittle cracks in -

linearly elastic bodies.
Let a € L™ (Q,M2%™) such that for a;,as >0

Sym
(2.5) Vz e Q,VE€R? : oqfé]? < a(z)é- € < anlé]?.
Let (-,-)q denote the associated scalar product on L?(£2, R?) defined as
2
(v,w)a =/ Z a(z)v;(z)w; (z) dL3(z)
Si5=1

and let || - ||o be the relative norm.
For every g € H*(Q) and K € K, (02), we set

(2.6) E(g,K) = 11611]‘3(;311{) {/Q\K a(z)Vv - VodC? + /Ktp(a:, v) d'Hl} ,
where
2.7 (g, K):={ue L"*Q\K),u=gondpQ2\ K}.

- The following theorem states the existence of a quasi-static evolution for brittle cracks in
linear elastic bodies under anti-planar displacement: note that both the bulk and the surface
energy depend in a possibly inhomogeneous way on the anisotropy of the body.

Theorem 2.2.2. Let m > 1, g € AC([0,1], HX(Q)), Ko € K{,(0). Then there ezists a function
K :[0,1] — K£,(Q) such that, letting u(t) be a solution of the minimum problem (2.6) which
defines E(g(t), K (t)) for all t € [0,1],

(a) Ko CK(s)CK(t)for0<s<t<L

(t) £(g(0), K(0)) < £(g(0),K) VK € KL(Q), Ko C K;

(c) vt €lo,1] : E(g(t), K(t)) < E(9(t), K) VK € KL (), Us<:K(s) C K;
(d) t— E(g(t), K(t)) is absolutely continuous on [0, 1];

(¢) 9 £(9), K () = 2(Vu(t), Voa for ae.t € [0,1),

) LG, K(leme =0 for ae.t € [0,1]

Let £(MZT) be the space of automorphism of M2X" and let A € L°(, L(MZX™)) such that

Sym
there exist o,z > 0 with

Vz € Q : M < A(z)M:M < o) M|?.
Let us pose (Eu, Ev)a = fn\K A(z)Eu:EvdL? and ||Bul|a := (Eu,Eu)i.

24



For every g € H*(Q;R?) and K € Kf,(Q), set

(2.8) G(g,K)= min A(z)Buw:EudL? + / oz, v)dH b
veV(g,K) | Jonk K

where

(2.9) V(g,K):{uELDl'z(Q\K),u=gon8DQ\K}.

The following theorem states the existence of a quasi-static evolution for brittle cracks in inhomo-
geneous anisotropic linearly elastic bodies under planar displacement.

Theorem 2.2.3. Let m > 1, g € AC([0,1], H*(;R?)), Ko € KL, (). Then there ezists a
function K : [0,1] — KI (Q) such that, letting u(t) be a solution of the minimum problem (2.8)
which defines G(g(t), K (t)) for allt € [0,1],

(o) KoCK(s)CK(t)for0<s<t<

(t) G(9(0), K(0)) < G(g(0), K) VK € K},(), Ko C K;

(c) vt €]0,1] : Gg(1), K1) < G(g(t), K) VK € KL,(Q), Us<: K (s) € K;
(d) t— G(g(t), K(t)) is absolutely continuous on [0, 1];
) 2 9(o(0), K() = 2(Bu), Bt a fora.c.teo,1],

) , disg(g(t),K(S))lgzt =0 fora.e.t€[0,1]

Remark 2.2.4. It turns out that for every function K : [0,1] — K[ (Q) which satisfies (a)-
(d) of Theorem 2.2.2, then conditions (e) and (f) are equivalent. Similarly, for every function
K :[0,1] — K{,(%2) which satisfies (a)-(d) of Theorem 2.2.3, conditions (e) and (f) are equivalent.

We will prove theorem 2.2.1 in section 2.3 using a comparison of measures which involves a
blow-up technique; theorems 2.2.2 and 2.2.3 will be proved in sections 2.4 and 2.5 respectively: a
discretization in time procedure will be employed and, in the particular case in which g(0) = 0,
we prove that this method gives an approximation of the total energy of the solution.

2.3 A generalization of Golab theorem

Throughout this section we employ the notations introduced in Section 2.2. Let C be the subset
of L'(€)) composed by characteristic functions of sets with finite perimeter in .

Theorem 2.3.1. Consider the functional G : C — [0, 00[ defined by
68)= [ _plop)an:
B

where v denotes the inner normal of E. Then G is lower semicontinuous with respect to the L'
topology.

Proof. Let (Ep) be a sequence of sets with finite perimeter in ) with By, — E in L1(Q): it is
sufficient to consider the case P(Ep,2) < C for some C > 0 independent of k. As noted in Section
2.1, ug, — ug in the weak star topology of Mp(€2, R?). Since the inner normal to Ej, (resp. E) is
HE),

T

d
given by (resp. by d—";{%)’ we can use Reshetnyak lower semicontinuity theorem (see Section

2.1) to get the conclusion. O
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Theorem 2.3.2. Let U be an open subset of R2. The functional
F: KL — [0,00
K = [pnpele,v)dH!
is lower semicontinuous if KI,(Q) is endowed with the Hausdorff metric.

Proof. We consider preliminarily the case m = 1.
Let K, K € IC{ (R) with K,, — K in the Hausdorff metric: our aim is to verify that

/ oz, vy dH* < liminf/ o(z,v) dH .
KnU n JK.nU
Without loss of generality we may consider sequences (K,,) such that
sup/ oz, v)dH? < +oo.
n JE.nU
Let us consider the positive measures py,, g in My(U)

) = [ o drt,

n

wB)= [ plapart.

By (2.4), (i) is bounded in Mp(U) and so up to a subsequence it converges in the weak-star
topology of My(U) to a measure yp whose support is contained in X NU. By weak convergence
we have

IJ'O(U) < hminf/—"n(U):
and so it is sufficient to prove that
(2.10) w(U) < po(U).

We prove instead that g < po using a density argument which requires a blow-up technique: we
obtain (2.10) as a consequence.

Firstly consider K, € IC{ (B1(0)), H*(K,) < C for some C > 0 and K,, — K in the Hausdorff
metric where K is the diameter connecting the points e; :== (1,0) and —e;. Note that for every
strip Sy = {z € R? : —p < 22 <} with > 0, K, C S, and K, N 8S, = 0 for n large enough.
Givene > 0,let Ve := {x e R? : —1+& <z < 1— ¢}, 8FV* the connected components of
OV® containing the points (1 — e)e; and —(1 — £)e; respectively. For n large enough, since K, is
connected, there exist points 2 € 8%V* N K, such that ¥ — +(1 —£)e;. Let L, be the union
of the segments connecting z;; to —(1 —¢€)e; and —(1 —e)e; to —eq, 7} to (1 —€)e; and (1 —~¢€)ey
to e;. Note that H, := K, U L, is connected and that

HY(Ly) < 3e
for n large enough.
Let E, be the connected component of By(0) \ H, containing %ez, where es = (0,1). As
+e; € Hy, and H, converges to K in the Hausdorff metric, it is easy to see that E,, converges in

L to Bf (0) := {z € B1(0) : zo > 0}. Ey, has finite perimeter because 8E,, C H, and these sets
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i

have finite H' measure (see Proposition 3.62 of {8]). By Theorem 2.3.1 we have

A

/ga(:z,z/)d'H1=/ o(z,v)dH' < liminf olz,v)dH* <
K 8*Bf (0) " JoEn

< liminf/ plz,v)dH <
n Ha
< liminf/ olz,v) dH! + cplimsup H (L) <
n K, n
< liminf/ w(z,v) dH* + 3cze.
n K,
Letting € — 0, we have
(2.11) / o(z,v)dH! < liminf/ oz, v) dH.
K n K.
To obtain the thesis, we need to prove that for  -almost all points zo of K N U
(2.12) lmsup £Ba(wo)) > o(To, Vay)
p—0+ 2p

where vy, indicates the normal to K at zp: this is sufficient in order to compare ug and p (see
Theorem 2.56 of [8]).
Up to a rotation we may assume that v, = ez. Let pi — 0" and let T}, be the map defined by

Ti(6) = %(E*-’Eo)

which brings the ball By, (zg) to the unit ball of the plane. By our choice of g, H*L Tk (K)
converges locally weakly star in the sense of measures to 'L H where H denotes the horizontal
axis of the plane.

Note that for k — oo

(2.13) T (K)NB1(0) — HnB1(0)

in the Hausdorff metric. In fact, up to a subsequence, T} (K) N B1(0) —*j&" by compactness of the
Hausdorff metric. Clearly HNB;(0) C K because if y € (H N B1(0)) \ K, there exists p > 0 such
that Ty (K) N B,(y) = @ definitively and so

HY(H NB1(0) N B,(y)) < lin}iianl(Tk(K) N By(y)) =0
which is absurd. Conversely, K C HNB;(0) because if y € K \ (H N B1(0)), there exists p > 0
such that H N B1(0) N B,(y) = @ and by the inequality
limsup H' (B, (y) N Tk (X)) < H'(B,(y) N H N B1(0))
k

we deduce
(2.14) limsup H*(B,(y) N Tk(K)) = 0.
k
But we proved that H N B1(0) C K and so the points of H N By (0) are limit of points of T (K):
since every Ty (K) is arcwise connected (they are connected and have finite H' measure), we have

that H*(B,(y) N Tx(K)) > p definitively and this contradicts (2.14).
‘We may suppose that pg’s are chosen in such a way that

(2.15) OBy, (20)) =0  Hmpn (B, (z0)) = p(Bpy (o).
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Since Tx(K,) — Tx(K) in the Hausdorff metric for n — +oco by (2.13) and (2.15) there exists a
subsequence ny such that

(2.16) T (Kn,) N B1(0) = HNB;1(0)
in the Hausdorfl metric for & — +o0 and

#ni (B, (w0)) < (B (@0)) + k.

‘We now want to use the device of the first part of the proof: we employ the notations mtroduced
before. Let e > 0,7 > 0, R} = 5,NV*, aiRE = Ry NA*VE; for k large enough T, (Kn, )NVE C R
and if CF is the connected component of (Tk (Kn) 0_51(0)) U8~ RE U BT RE containing 6+ RE, we
have (Ty(Kn,)NB1(0))U8~ REUS R = Cy; UCY. Infact if ¢ ¢ C; UCY and C,S be the connected
component of (T (Kx, ) N B1(0)) U8~ R3 U™ Ry containing £, by (2.16), C’,‘i NOR; = B for k large
enough and so C’E would be connected against the connectedness of Ty(Kn,) U8~ R5 U 8 Rg.

By (2.16), we deduce easily that it is possible to join a point of C; and a point of Cy through
a line I, C B1(0) such that H*(lx) < ¢ for k large enough.

Considering Hy = (Tx(HKp,) N B1(0)) U Ly U Iy, Hy is connected in B;(0) and converges to
H nB,(0) in the Hausdorff metric. Applying (2.11) with ¢ = ¢(zo,-), and since sup{|p(zo +
p(-),v) — p(zo, )|} — 0 in B1(0) x S* uniformly by the continuity of ¢, we get

2p(zg, e2) < liminf/ w(zg,v) dH* < lim inf (zo + prz, v) dH® + 3cge.
E o Jm, k' J T (K, )NB1(0)

Letting € — 0, we obtain

(2.17) 2p(zp, e2) < iminf V (o + prz,v) dH .
k Jr. (K., )nBi(0)

Now we are ready to conclude: in fact

Jim sup P(Bp(z0)) > limsup 1(Bp, (%0)) >
p—0 2p k 2pk
> lminf Hny (BPI: (930)) -
k 2px
1
= 5 liminf p(zo + prz,v) dH' > @(z0, €2),

k Tr{Kn, )NB1(0)

the last inequality coming from (2.17).

Let’s now turn to the case m > 2. Let (K,) € KI,(Q) converges to K; up to a subsequence, we
may suppose that there exists m' < m such that each K has exactly m’ connected components
K 1 K ™ We may SUppOSe moreover that for all ¢, K i _ K in the Hausdorff metric: it is
readlly seen that K= U:’; Kiso that, using the lower semicontinuity for the case m = 1, we
obtain

IA

Zﬁ oz, v)dH! <
; KinU
hmmfZ/ o(z,v)dH! =

K‘ﬂU

/ olx,v) dH*
KnU

IA

= liminf w(z,v)dH".
hid KnnU
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Theorem 2.2.1 is now proved: it is sufficient to apply Theorem 2.3.2 with U = Bg(0), @ C
Bg(0).

Corollary 2.3.3. Let (H,) be a sequence in ICEE) which converges to H in the Hausdor{f metric.
Let m > 1 and let (K,) be a sequence in K () which converges to K in the Hausdorff metric.
Then

/ o(z,v) dH! < Hminf / o(z,v) dH.
K\H n Kn\Hn

Proof. Let € > 0 and let H® = {z € Q : dist(z,H) < £}. Definitively H, C H® so that
K, \ H¢ C K, \ H,. Applying Theorem 2.3.2 with U = R? \ H*, we have

oz, v)dH! < liminf/ oz, v) dHL.
n Jk

/ w(z,v)dH* < liminf
K\H* n w\Hq

Ko \He

Letting £ go to zero, we obtain the thesis. |

The following result will be useful in sections 2.4 and 2.5.

‘Theorem 2.3.4. Given m > 1, let (Hy) be o sequence in K, (2) which converges to H in the
Hausdorff metric, and let K € Kf, () with H C K. Then there ezists a sequence (K,) in KL (Q)
-which converges to K in the Hausdorff metric and such that H, C K, aend

Co(2a8) f ‘o(z,v) dH! =lim/ w(z,v)dHL.
. K\H n JK.\H,

- Proof. Following Lemma 3.8 of [45], the connected components C; of K\ H are at least countable
and satisfy H'(C;) = H(C;). Since H, — H in the Hausdorff metric and € has Lipschitz
.. boundary, we can find arcs Z% in Q joining H, and C; such that H*(Zi) — 0 as n — oo.

_ Given h, consider K := Ut Zi UUL_,C;; we have K* € Kf(Q), K! — K := UL, C; in the
Hausdorff metric. Note that vH'L K — vH*L K" strictly for n — co. By Theorem 2.1.2, since
H(C;) = H*(C:), we have

lim/ o(z,v)dH = / oz, v)dH! =
n Jkn Kh

= / o(z,v) dH? _<_/ o(x,v)dH.
Ut G K\H

im=1

Choose h,, — +oo such that
limsup/ oz, v)dH* < / o(z,v)dH?,
n Khn K\H

so that

h-n
: epiy
h;nZ’H(Zn)_O.

i=1

If we pose K, == H, U K,’fﬂ, we have K, € ICfn (—ﬁ), K, — K in the Hausdorff metric and

limsup/ oz, v)dH! < limsup/ oz, v)dH! < / oz, v)dH .
n JKu\Hn n o JEgn K\H

The converse inequality comes from Corollary 2.3.3. O
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2.4 The anti-planar anisotropic case

In this section we deal with quasi-static growth of brittle cracks in inhomogeneous anisotropic
linearly elastic bodies under anti-planar displacements. We employ the notations of Section 2.2.
For every A > 0 let
Kn@) = {K € Kn(®Q) : H'(K) < A}.
‘We begin with the following lemma which extends Theorem 2.1.3 considering boundary data.
The idea is due to A. Chambolle.

Lemma 2.4.1. Let m > 1, K, a sequence in K, (ﬁ) which converges to K in the Hausdorff metric
and such that L2(Q\ K,,) — L2(Q\ K). Let g, — g strongly in H(Q) and let T'(gn, Kp) and
T'(g,K) be the sets introduced in (2.7). Then for every u € I'(g, K), there ezists up € T'(gn, Ky)
such that Vuy, — Vu strongly in L?(, R?).

Proof. Consider (¥ a regular open set containing { and pose Oy := 80\ 8pf. Since 89 is
regular, we may extend g, and g to H*(?') and suppose g, — g strongly in H*(Q'). Note that
if Hy = K, UGN and H = K UONQ, Hy, H € K (), Hy, — H in the Hausdorff metric and
L2\ Hy) — L2(8Y'\ H). Consider

_ju mmQ
Y19 ma\Q

Clearly v € LY2(Q)'\ H); we may apply Theorem 2.1.3 and deduce that there exists v, € L22(Q'\
H,) such that Vv, — Vv strongly in L?(©',R?). Note that we may assume (v, — v) has null
average on )\ Q, because we are allowed to add constants to v, ; since 2\ € is regular, by Poincaré

inequality we obtain v, — v strongly in H* (' \ ©). Let Eq be a linear extension operator from
HY(Y'\ Q) to H (). If wy = (vn — v)lgng, We can choose

Up = vp — Equwn + (gn — 9)
restricted to Q. It is readily seen that u, € I'(gn, K») and Vu, — Vu strongly in L3(Q,R?). O

By standard arguments, it can be proved that the minimum of problem (2.6) is attained.
Moreover, it can be shown that, since Q \ K is not guaranteed to be regular, this minimum is
in general not attained in H'(Q2\ K) when the boundary data g is not bounded: the reader is
referred to [68]. The following proposition deals with the behavior of minima when the compact
set K varies.

Proposition 2.4.2. Letm > 1, A > 0, (K,) a sequence in K (Q) which converges to K in the
Hausdorff metric, (gn) o sequence in H*(Q) which converges to g strongly in H*(2). Let uy, be a
solution of the minimum problem

2
(2.19) perin, IVullz

and let u be a solution of the minimum problem

2.20

(2.20) pomin IV ullZ,

where T'(gn, Kp) and I'(g, K) are defined as in (2.7).
Then Vu, — Vu strongly in L%(£2,R?).

Proof. Using g, as test function, we obtain
IVaunlla < IVgnlla € ¢ < +00.

By (2.5), there exists ¢ € L?(2, R?) such that, up to a subsequence, Vu,, — ¥ weakly in L?(Q, R?).
It is not difficult to prove that there exists u € L () such that Vu = ¢ in Q \ XK. Moreover by
means of Poincaré inequality, we deduce that u = g on 8pQ2 \ K. According to Lemma 2.4.1, let
v, € T'(gn, Kp) with Vv, — Vu strongly in L2(Q2, R?); since ||[tn}la < |lvn|la by minimality of u,,

we obtain imsup,, ||un|la < ||ulle. This proves Vu, — Vu strongly in L?(£, R?). ]
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‘We now turn to the proof of Theorem 2.2.2. We use a discretization in time. Given ¢ > 0, let
Nj be the largest integer such that 6N < 1; for ¢ > 0 we pose tf = 4§ and for 0 < 7 < Nj we pose
g} = g(t?). Define K¢ as a solution of the minimum problem

(2.21) min {€(¢{, K) : K € K@), K{_, C K},

where Kfl = Kj.
Lemma 2.4.3. The minimum problem (2.21) admits a solution.

Progf. We proceed by induction. Suppose K¢_, is constructed and that A > £(g¢, K¢ ;). Let (K,)
be a minimizing sequence of problem (2.21) and let u,, be a solution of the minimum problem (2.6)
which defines £(g?, Kn,). Up to a subsequence, K, — K in the Hausdorff metric and K¢, C K.
Since

Vunll2+ [ oty art <

for n large, we have that
/ o(z,v)dH* < A
Kn.

-1 -
We have K, € K A(Q) and applying Proposition 2.4.2, we have ||up||la — |ju||le Where u is a

i solution of problem (2.6) which defines £ (g2, K); moreover by Theorem 2.3.2, we get

/ o(z,v) dH? 5liminf/ oz, v)dH* < A

K UKk,

Thus K € KJ,(Q) and £(¢¢,K) < liminf, £(¢?, K,). We conclude that K is a solution of the
minimum problem (2.21). O

Now, consider the following piecewise constant interpolation: put g°(t) = gf, K(t) = K?,
 wd(t) =uf for tf <t <, where uf is a solution of problem (2.6) which defines £(g?, K?).

Lemma 2.4.4. There ezists a positive function p(d), converging to zero as § — 0, such that for
all s <t in [0,1],

IA

em) IV [ eenat < EEIE [ e+

(s)
4
+2 [ (Vb (1), 99(6))a di + (9)
ti

where t§ < s <t andtf <t <t
Proaf. Inequality (2.22) is precisely
t
v+ [ el art <IVallE+ [ elemart+2 [ (Va0 Vo) dt+ o0)
K? K¢ 1

To obtain this one, it is sufficient to adapt the proof of Lemma 7.3 in [45]. O

Lemma 2.4.5. There exists a constant C, depending only on g and Ky, such that
Mé@lesc [ e@at<c
Ké(t)

for every § > 0 and t € [0,1]. In particular, there exists A > O such that for all i € [0,1],
Ké(t) € KA(D).
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Proof. Put n = max;{||Vg(t)lla,||Vi(£)lla}. Clearly ||Vul(t)la < ||V (t)lla < 7 since ¢°(t) is an
admissible displacement for K%(t). Clearly from inequality (2.22) with s = 0, we obtain

v @E+ [ @nat < [VeOIR+ [ plaan +
K5(t) K4(0)

+2 5 (Vub(t), Va(t))a dt + p(8) <
0

< VI + [ pla)dnt + o+ p(6),
Kq

The last term depends only on g and Kp and so we obtain the first part of the thesis. The second

one comes from (2.4). ]

Lemma 2.4.6. Let C be the constant of Lemma 2.4.5. There ezists an increasing function K :
[0,1] — K[, (Q) (that is K(s) C K(t) for every 0 < s < t < 1), such that, for every t € [0,1],
K4(t) converges to K(t) in the Hausdorff metric as § — 0 along a suitable sequence independent
of t. Moreover if u(t) is a solution of the minimum problem (2.6) which defines £(g(t), K (t)), for
every t € [0,1] we have Vu®(t) — Vu(t) strongly in L*(Q,R?).

Proof. The first part is a variant of Helly’s theorem for monotone function: for a proof see Lemma
7.5 of [45]; the second part comes directly from Lemma 2.4.5 and Proposition 2.4.2. 0

Fix now the sequence (6,) and the increasing mép t — K(t) given by Lemma 2.4.6. We
indicate K% (t) by K, (t) and u’~(t) by u.(z). '
The following property of the pair (g(t), K(t)) is important for subsequent results.

Lemma 2.4.7. For every t € [0,1] we have

(2.23) E(g(t), K () < E(g(t), K) VK € KI,(Q), K(t) C K.
Moreover ‘
(2:24) £(9(0), K(0)) < £(9(0), K) VK € KL(Q), Ko C K.

Proof. Let t € [0,1] and K € KJ,(Q) with K(¢) C K. Since K,(t) — K(t) in the Hausdorff
metric as 6, — 0, by Theorem 2.3.4 there exists a sequence (Ky) in K7, (Q) converging to K in
the Hausdorff metrie, such that K,(t) C K, and

(2.25) / o(z,v)dH! — w(x, v) dH?.
Kn\Kn(t) K\K(t)

By Lemma 2.4.5, there exists A > 0 such that K, () € K, (Q) for all n. By (2.25), we deduce that
there exists M > A with Ky, € K () for all n.

Let vy, and v solutions of problems (2.6) which define £(gy,(2), K,,) and £(g(t), K). By mini-
mality of K,(t) we have £(gn(t), Kn(t)) < E(gn(t), K,) and so

(2.26) IVun (@2 < [Venl2 + / ole)drt

n\Kn

as 6n — 0, Vg (t) — Vu(t) and Vv, — Vo strongly in L2(£2,R?) by Proposition 2.4.2: passing
to the limit in (2.26) and adding to both sides |, K(t) w(z, vydH?, by (2.25) we have the thesis.
A similar proof holds for (2.24). 0

Lemma 2.4.8. The function t — E(g(t), K(t)) is absolutely continuous and
2 £lot), K(1) = 2Vu(t), Vo(®)a for acte[0,1]
where u(t) is a solution of the minimum problem (2.6) which defines E(g(t), K (t)).
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Proof. We rewrite (2.22) in the following form
tén

IVun(®liz+ | pla,) ! < [Vun(@)E+2 [ (Tun(®) Vo®)adt+ p(5:)

Kn(t)\Kn(s) tf

for s <t and tf“ <s< t;-sj,‘_l and tg" <t< tjq_l. Passing to the limit for é, — 0, using Corollary
2.3.3 we obtain

Vu@IE+ [ le,)dt < [Vu@)lE+2 [ (Fu), Vo) dr
K(\K(s) 8
so that
V@R + [ elen)a < 1VeEIE+ [l +
K() K(a)

+2 / (Vu(r), Vo (r))a dr.

Following Lemma 6.5 of [45], we can prove that the function F(g) := £(g, K (t)) is differentiable on
H(2) and its differential is given by dF(g9)h = 2(Vu(t), Vh), where u(t) is a solution of problem
(2.6) which defines £(g, K(t)). By Lemma 2.4.7, we obtain

1
E(g(t), K(t)) — E(g(s), K(s)) = E(g(t), K(2)) — £(g(s), K (2)) = 2/ (Vu(r, 1), Vi(7))adr

where u(7,t) is a solution of the minimum problem (2.6) which defines £(g(7), K(t)). We can
conclude that t — E£(g(t), K(t)) is absolutely continuous since ||Vu(t)||e and ||Vu(r,t)||. are -
bounded by Lemma 2.4.5. Moreover, dividing the previous inequalities by ¢ — s and letting s — ¢,
since Vu(r,t) — Vu(t) strongly in L#(), R?) for 7 — t, we obtain

(—%g(g(t),K(t)) =2(Vu(t),Vi(t))a fora.etel0,1].
O

‘We now turn to the proof of Theorem 2.2.2. Points (a) and (b) are proved in lemmas 2.4.6 and
2.4.7 while points (d) and (e) are proved in Lemma 2.4.8. Point (f) and its equivalence to point
(e) stated in Remark 2.2.4 are proved adapting Lemma 6.4 of [45]. To prove point {(¢), we need
the following lemma.

Lemma 2.4.9. Let K : [0,1] — KI,(Q) be a map which satisfies lemmas 2.4.7 and 2.4.8. Then
for every t €]0,1],

E(g(t), K(t)) < E(9(t),K) VK € KL(@Q) : Uscs K(s) C K.
Proof. Consider ¢ €]0,1] and K € K () such that Us;;K(s) € K. For 0 < s < t we have

K(s) € K and so by Lemma 2.4.7, £(g(s), K (s)) < £(g(s), K). By Lemma 2.4.8, these expressions
continuously depend on s and so passing to the limit for s — ¢, we obtain the thesis. O

Consider now the particular case in which ¢g(0) = 0: there exists a solution K () to the problem
of evolution such that K(0) = Ky because in the time discretization method employed, we can
choose K%(0) = Kp. Under this assumption, we prove that this method gives an approximation
of the energy of the solution.

We pose

Enlt) = |[Vun(®)]2 + /K RCRLE

and
E(t) = £(g(), K (1) = [[Vu(®)|2 + f (e, v) dH.
()

The following convergence result holds.
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Proposition 2.4.10. For all t € [0,1] the following facts hold:
(a) Kn(t) — K(t) in the Hausdorff metric;
(b) Vun(t) — Vult) strongly in L2(Q,R3);
() Jxiylzv) dH! — Jreq ola,v)dHt.

In particular £,(t) — E(L) for all t € [0, 1].

Proof. We have already proved points (a) and (b) in Lemma 2.4.6. Since the functions  —
/; Kn(t) w(z,v)dH! are increasing and bounded, we may suppose that, by Helly’s theorem, they

converge pointwise to a bounded increasing function & : [0,1] — [0, 00[ i.e. for ali ¢ € [0, 1]
hm/ oz, v) dH = h{t).
" JKa()

Moreover by Theorem 2.3.2 we have that || x() 9@ V) dH' < h(t) for all ¢ € [0,1] and by con-
struction A(0) = | (o) P(Z: V) dH*; in particular we have for all ¢ € [0, 1]

E(t) < [[Vu®)llz + h(t)

and £(0} = {|Vu(0}||2 + h(0). Passing to the limit in (2.22), by (b) we obtain
¢
(2.27) VUl + ht) < V(I + he) +2 [ (Vu(t), Vo(e)adt.
. ]
Since by condition (e) of Theorem 2.2.2

Et)~ £(0) =2 /0 (Va(r), Vi(r))a dr,

we have

IVut)l + At) E(t) =

9 / (Vu(r), Vo(r))a dr — 2 /0 (Vu(r), Vg (r))e dr = 0.

IA

1
0
We conclude that k() = [, K1) (T, V) dH? for all £ € [0,1]. This proves point (c) and the thesis is
obtained. O

2.5 The planar anisotropic case

In this section we briefly sketch the modifications of the arguments used in the previous section
in order to deal with the evolution of cracks in inhomogeneous anisotropic linearly elastic bodies
under planar displacements. We employ the notations of Section 2.2. For A > 0 let

KX(@) == {K e Kn(@) : HY(K) < A}.
The following lemma can be obtained with arguments similar to those of Lemma 2.4.1.

Lemma 2.5.1. Letm > 1, K, a sequence in K, (Q) which converges to K in the Hausdorff metric
and such that L2(Q\ Ky,) — L2(Q\ K). Let g, — g strongly in HY(Q,R?) and let V(gn, K,.) and
V(g, K) be the sets introduced in (2.9). Then for every u € V(g, K), there ezists un, € V(gn, Kn)
such that Euyn, — Bu strongly in L*(2, MZ%).
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By standard techniques, it can be proved that the minimum in problem (2.8) is attained. The
following result is similar to Proposition 2.4.2 and deals with the behavior of these minima as K
varies.

Proposition 2.5.2. Let m > 1 and A > 0, let K, be a sequence in K (Q) which converges to
K in the Hausdorff metric, and let g, be a sequence in H*(Q) which converges to g strongly in
HY(Q). Let uy, be a solution of the minimum problem

2.28 in - ||Evl||3
(2.28) uev‘{;ffxn)” |4,

and let u be a solution of the minimum problem

(2.29) Bl

min
'UEV(Q,K)
where V(gn, Kn) and V(g, K) are defined as in (2.9).
Then Euyn, — Eu strongly in L*(, M2X").
Proof. Using gy, as test function we obtain ||Eus||a < ||Egnlla < ¢ < +co. By assumption on A,

there exists o € L*(2, MEsr) such that up to a subsequence Bup, — ¢ weakly in L2(2, M2X™). It
is not difficult to prove that there exists u € L2 (Q,R?) such that Bu = ¢ in Q\ K. Moreover

loc
by means of Korn-Poincaré inequality, we deduce that u = g on 8pQ1\ K. According to Lemma

2.5.1, let vn, € V(gn, K;,) with Ev, — Eu strongly in L*(Q, M2X7); since ||Eunlla < ||Evalla by
minimality of u,, we obtain

limsup ||Bun||a < limsup ||Bvg|ja = || Eul 4.
n oo

This proves Euy, — Eu strongly in L(Q2, MZ®). O

We employ again a time discretization process. As before given § > 0, let Nj be the largest
integer such that 6N; < 1; for i > 0 we pose t{ = i§ and for 0 < i < Nj we pose gf = g(t{). Define
K¢ as a solution of the minimum problem

(2-30) min {G(¢, K) : K € K[,(@), K, C K},

where K%, = Kp.
Lemma 2.5.3. The minimum problem (2.80) admits a solution.

Proof. We proceed by induction. Suppose K_; is constructed and that A > G(gf, K?_,). Let (Kn)
be a minimizing sequence of problem (2.30) and let u, be a solution of the minimum problem (2.8)
which defines G(g¢, K»). Up to a subsequence K, — K in the Hausdorff metric and K¢ , C K.
Since

| Bunf% + / o(z, ) dHE < \

n

for n large enough, we have that
[ e <x
Kp

We have K, € Kfnl_l)‘(ﬁ) and applying Proposition 2.5.2, we have ||Euy||a — ||Eul|4 where u is
a solution of problem (2.8) which defines £(g¢, K); by Theorem 2.3.2, we get

/ w(z,v)dH? < liminf/ o(z,v)dH < A
K n Ji,

Thus K € K (Q) and G(g!,K) < liminf, G(g{, K»n). We conclude that K is a solution of the
minimum problem (2.30). |
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Consider as before the piecewise constant interpolation obtained putting g°(t) = ¢¢, K%(t) =
K$, uf(t) = uf for tf <t < tf,,, where u{ is a solution of problem (2.8) which defines G(g¢, K?).

k3

Lemma 2.5.4. There ezists a positive function p(d), converging to zero as § — 0, such that for
all s <tin[0,1]

I Bu (813 + / p@,v)dH < ||Bu(s)|f + / o(z,v) dH +
K3ty 5

K(s)

+2 [ (B0, Ba®)ads + o)

where tf < s < tf 1 and B<t< t? 41+ In particular there exists C > 0 depending only on g and
Ky such that for all t € [0,1]

IEd(@)|la < C / o(z,v)dH! < C.
Ké(t)

Proof. Tt is sufficient to adapt lemmas 2.4.4 and 2.4.5. |
Using Proposition 2.5.2 and the previous lemma we obtain

Lemma 2.5.5. There ezists an increasing function K : [0,1] — KL (Q) (that is K(s) C K(t) for
every 0 < s <t < 1), such that, for every t € [0,1], K%(t) converges to K(t) in the Hausdorff
metric as 6 — 0 along a suitable sequence independent of t. Moreover if u(t) is a solution of the
minimum problem (2.8) which defines G(g(t), K (t)), for every t € [0,1] we have Eu(t) — Eu(t)
strongly in L*(Q2, MEX™).

The proof of Theorem 2.2.3 can now be obtained using arguments similar to those of lemmas
2.4.7,2.4.8 and 2.4.9 of Section 2.4. ‘

Consider now the particular case in which g(0) = 0: there exists a solution K (£) to the problem
of evolution such that K(0) = Ky because in the time discretization method employed we can
choose K ‘5(0) = K. Under this assumption, as in the anti-planar case, the discretization method
gives an approximation of the energy of the solution.

In fact, if we pose Kn(t) := K% (t) and

0alt) = |IBun(®)lfs + [ pla)art,

n(t

G(t) = G(g(t), K (1)) = || Bu(t)| % +/K(t) o(z,v)dH?,

the following approximation result holds.
Proposition 2.5.6. As d, — 0 for all t € [0,1] the following facts hold:

(o) Kn(t) — K(t) in the Hausdorff metric;

(b) Eun(t) — Bu(t) strongly in L*(Q, MPXT);

(c) Jx i ol v) dH = [rq olz,v) dH.
In particular Gn(t) — G(t) for all t € [0,1].
Proof. 1t is sufficient to adapt Proposition 2.4.10. O
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Chapter 3

A stability result for Neumann
problems in dimension N > 3

In this chapter ! we deal with stability of Neumann problems in N-dimensional domains (N > 3)
containing cracks.
Given ) open and bounded in R¥, (K,) a sequence of compact sets in RY, consider the
i« following Neumann problems

da (3.1) ~Aut+u=Ff inQ\K,
PGS o = on QU (6K, N )

with f € L?%(Q): we intend (3.1) satisfied in the usual weak sense of Sobolev spaces, that is
+ oy € HY(Q\ Kp) and ,

/ VuVso+/ wp=/ fo
— O\ Ky NE, N\Kr,

for all w € HY(Q\ K,,). If (K,) converges to a compact set K in the Hausdorff metric , we look
for conditions on the sequence (K,) such that, considered the problem

(3.2) { —Aut+u=Ff mQ\K

%0 on 8QU (BK NQ),
the solutions u, of (3.1) (extended to 0 on K, N ) converge to the solution u of (3.2) (extended
to 0 on K N Q). If this is the case, we say that the Neumann problems (3.1) are stable.

The problem of stability for elliptic problems under Neumann boundary conditions has been
widely investigated. Usually, since in general the domains \ K, are not regular, it is not possible
to deal with the problem using extension operators (see for example [65], [67]).

In dimension N = 2, Chambolle and Doveri [34] in 1997 proved a stability result under a
uniform limitation of H!(K,,) and of the number of the connected components of K,; Bucur and
Varchon [24] in 2000 proved that if K, has at most m connected components (m € N), the stability
of the problems is equivalent to the condition £2(Q\ K,,) — L2(Q\ K).

In dimension N > 3, the bound on the number of the connected components of K, is not
a relevant feature and a condition similar to that of Bucur and Varchon doesn’t hold: in fact,
problems (3.1) could be not stable even if the sets K, are connected. In 1997, Cortesani [39]
proved that in general, if K is contained in a C* submanifold of RV, the limit of solutions of (3.1)
satisfies a transmission condition on K. Several results on this transmission condition are known
under additional assumptions on (K,). In the case in which K, is contained in a hyperplane M
and is the complement in M of a periodic grid of (N — 1) dimensional balls, the problem is treated

1The results of this chapter are contained in the paper:
Giacomini A.: A stability result for Neumann problems in dimension N > 3 J. Convez Anal 11 (2004) 41-58.
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in [78]. In [29], a continuity result is obtained in the case K,, C M and K, satisfies appropriate
capacity conditions on the boundary. In Murat [74] and Del Vecchio [48] (see also [82],[83]), the
case of a sieve (Neumann sieve) is considered: the transmission conditions that occur in the limit
are determined in relation to capacity properties of the holes of the sieve.

In this chapter, we suppose that the sets K, locally, are sufficiently regular subsets of (N —1)-
dimensional Lipschitz submanifolds of R” in such a way that homogenization effects due to the
possible holes cannot occur.

Let 7 be the hyperplane z)y = 0 in RY and let C be an (N — 1)-dimensional finite closed cone
with nonempty relative interior (for a precise definition see Section 3.2). We say that the sequence
(Ky) satisfies the C-condition if there exist constants 6, Ly, Ly > 0 such that, for all n and for all
z € K, there exists ®, : Bs(z) — RY with

(a) for all 21, z2 € Bs(z):

Li|z1 — 22} < |®g(21) — Ba(22)] < La)z1 — 23]

(b) ®z(x) =0 and &,(Bs(z) N K,) C =;

(c) forally € Bg(:z:) N Ky,
‘I)m(y) € Oy g @m(Bb'(I) N Kn)

for some finite closed cone Cj in m congruent (up to a rototranslation) to C. Conditions (a),

(b) imply that, near z, K, is a subset of an (N — 1)-dimensional Lipschitz submanifold M, . of
RY and condmon (¢ 1mphes that K, is sufficiently regular in M, 5, essentially a finite union of
Lipschitz subsets. A particular class of cracks which satisfy the C-condition is given for example by
(¥5(A)), where A is a Lipschitz bounded open subset of 7 and (¥,,) is a sequence of bi-Lipschitz
maps from RY into itself with constants L; and Ly; another example is given by (¥, (K,,)), where
(Ky) is a sequence of compact subsets of 7 satisfying the cone condltlon with respect to a finite
close cone C (see Definition 3.2.1).

The main result of the chapter is that, if the sequence (K,) satisfies the C-condition and
K, — K in the Hausdorff metric, then the spaces W1?(Q\ K,,) converge in the sense of Mosco
(see Section 3.1) to the space WP(Q\ K) for 1 < p < 2. As a consequence for the case p = 2,
the problems (3.1) are stable, that is transmission conditions in the limit are avoided.

The hypotheses above are not sufficient to cover the case p > 2; moreover, point (b) in C-
condition cannot be omitted: in fact a sort of “curvilinear” cone condition given only by points
(a) and (c) does not provide the Mosco convergence. We will see these facts through explicit
examples.

Finally we mention [35] and [66] in which compactness properties for domains satisfying appro-
priate uniform cone and segment conditions are used to deal with shape optimization problems:
the present work is in spirit close to these papers, the main difference being that the moving
boundary can be inside €2, so that Q can lie on both side of the boundary.

The chapter is organized as follows: in Section 3.1, we introduce the basic notation; after some
preliminaries, we prove the main stability result in Section 3.3. In Section 3.4, we give the above
mentioned examples of non-stability which require some basic techniques of I'-convergence.

3.1 Preliminaries

In this section, we introduce the basic notation and the tools employed in the rest of the chapter.

The Mosco convergence. Let X be a reflexive Banach space, (¥} a sequence of closed subspaces
of X. Let us set

(3.3) Y ={zeX :z=wlimyn,, Y, € Yn,, nx — +o0}
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R

and
(3.4) Y':={zecX :z=slmy,, yn € Yy for nlarge};

Y’ and Y are called, respectively, the weak-limsup and the strong-liminf of the sequence (Y;,) in
the sense of Mosco. We say that the sequence (Y,,) converges in the sense of Moscoif Y/ =YY" =Y
and we call Y the Mosco limit of (¥;,). Clearly Y C Y': as a consequence, in order to prove
that ¥;, — Y in the sense of Mosco, it is sufficient to prove that Y’/ C Y (weak-limsup condition)
and Y C Y" (strong-liminf condition). Since Y" is closed, the strong-liminf condition can be
established proving the inclusion D C Y, D being a dense subset of Y.

Let £ be open and bounded in RV, Q,,$ open subsets of (', p € [1,+00]. We can identify
the Sobolev space W1P((,,) with a closed subspace of LP('; R¥+1) through the map

WiP(Q,) — LP(Q;RV*H)

(3.5) u —  (u, D1y,...,Dyu)

with the convention of extending u and Vu to zero on '\ Q,.

Let Y and Y;, be the closed subspaces of LP{Q'; RV +1) corresponding to WP({2) and W*P(Q,,)
respectively. We say that W?(Q,) converges to W?(Q) in the sense of Mosco if ¥ is the Mosco
limit of the sequence (Yy,) in the space LP(S);RN+1).

Stability of Newmann problems. Let €’ be open and bounded in R¥; consider the Neumann
problems

" —Aty +Up = f
(36) { we H'(Q)
and
(3.7) { “ 21};;(1;2): d

with f € L3(Q"), Q,Q, open subsets of {'; we intend (3.6) and (3.7) in the usual weak sense, that

is
u € HY(Qy,), / Vuana+/ ugo:/ fo Yoe HY(Q,)
Qn Qn Qn
and

1 - 1
ue H(8), /nVthp+/nugo—/§;fga Vi € H* ().

We say that the problems (3.6) converge to the problem (3.7) if (un, Vu,) — (u, Vu) strongly in
L2(QY; RV+1) under the identification (3.5).

3.2 Some auxiliary results

In this section, we prove some results that are used in the proof of the main theorem of the chapter.
‘We begin recalling some properties of sets which satisfy the cone condition.
Consider a closed ball B C RY not containing 0 and & € RY. The set

C=z+{ly:yeB,0<A<1}

is called a finite closed conein RY with vertex at z. We say that two cones C and C' are congruent
if there exists a rototranslation ¥ in RY such that ¥(C) = C'.
A parallelepiped with a vertex at the origin is a set of the form

N
P:={2Ajyj:og,\j51,1§jgN}

J=1
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where y1,...,yn are N linearly independent vectors in RY. As for the case of cones, we say
that two parallelepipeds P, P’ are congruent if there exists a rototranslation ¥ in RV such that
TU(P)=P.

Definition 3.2.1. Let C be a finite closed cone in RN with verter at the origin. We say that a
compact set K C RN satisfies the cone condition with respect to C if for all z € K there ezists a
finite closed cone Cy congruent to C such that z € C, C K.

If K satisfies-the cone condition with respect to a cone C, it turns out that it is the union of
the closure of a finite number of Lipschitz open sets. In fact, the following result holds.

Proposition 3.2.2. Let C be a finite closed cone in RN with verter at the origin and let K C RY
be a compact set with diam(K) < M which satisfies the cone condition with respect to C. Then for
every p > 0, there exist a finite number Ay, A, -+ , Am of compact subsets of K with diam(A4;) < p
and a finite number P1, Py,--- , Py of congruent parallelepipeds with a vertex at the origin such
that:

(a) for all x € K there ezists 1 <i < m with P, C Cy;

(b) K = OK where K; = | ] (z+ P).

=1 TEA;

The number m and the parallelepipeds Py, .. ., Py, depend only on C, M, p, and not on the particular
set K. :

Moreover there exisis p > 0, depending only on C, such that for p < b, the following facts hold
foralli=1,...,m: ' '

(c) for every y € BK;, there exists 7 > 0, aﬁ orthogonal coordinate system (&1,...,6n) and @
Lipschitz function f such that By (y)NK; = By(y)N{€ = (&1,.--,&n) : &n < F(&1y-- - En1)};

(d) int(K;) = | (z+int(P)).

TEA;

Proof. Properties (a), (b) and (c) can be obtained as in the Gagliardo theorem on the decomposi-
tion of open sets with the cone property (see [2], Thm. 4.8). In particular, p can be chosen as the
distance of the center of F; from OF;; with this choice of 7, it turns out that, if a ball B of radius
r < £ is such that BN (z1 + P;) # 0 and BN (z2 + P;) # 0 for some x1,22 € A;, then B cannot
intersect relative opposite faces of z; + P; and x5 + P; respectively.

Let us turn to the proof of point (d). The inclusion

U (z +int(F;)) C int(K;)
TEA;

is immediate. Let y € int(K;) and let 7 < g be such that B,(y) C K;. There exists z € A4;
such that y € z + F;. If y € z + int(P;) for some z, the result is obtained. Let us suppose that
y € z+ OF;. For every z € B, (y), there exists z, € A; with z € z, + B. If y € z, + int(F;), the
proof is concluded; let us assume by contradiction that y € z,+8P; for all z € B,(y). Clearly y—z,
cannot belong to the same face of P; as z varies in B, (y) because this would contradict z € =, + P,
for all z € B,(y). Since B,{y) cannot intersect relative opposite faces of the parallelepipeds = + P,
with € A;, we conclude that there exists a vertex v; of P; such that y — z, belongs to a face
passing through v; for all z € B.(y). Let Q; = {A(z—v;) : £ € P;, A > 0} and let y, — v be such
that y — yn € int(Q;). For n large enough, since y € z, + 8P, we obtain y, & z,, + P; which is
absurd. This concludes the proof of point (d). O

Let now consider a sequence (K,,) of compact subsets of RY satisfying the cone condition with
respect to a given finite closed cone C with vertex at the origin. If K, converges to a compact set
K in the Hausdorff metric, clearly K satisfies the cone condition with respect to C. Let P(K,) be
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the family of all parallelepipeds contained in K, and congruent to the parallelepipeds Fi,..., Pn
which appear in the decomposition (b) of Proposition 3.2.2 and let P(K) be the analogous family
for K. Define P,.(K) as the subset of P(K) consisting of parallelepipeds P such that there exists
ng — oo and P* € P(K,,) with P* — P in the Hausdorff metric. Let us set

(3.8) K,:={zc K : zeint(P"),P € P.(K)},
and
(3.9) K, =K\ K.

We call the elements of K. reqular points of K (relative to the approximation given by (Ky)) and
the elements of K, singular points of K: K, is clearly an open set.

Proposition 3.2.3. Let C be a finite closed cone in RN and let (Ky,) be a sequence of compact
subsets of RN satisfying the cone condition with respect to C and converging to a compact set K
in the Hausdorff metric. Then HN"1(K,) < +oo.

Proof. Let us fix p smaller than the constant p given by Proposition 3.2.2 (which does not depend
on n). By point (b) of the same proposition, we can write

m .
Kn=|JK. with K= |]J (z+P)

- i=1 nEAL

where Al,..., AT are compact subsets of K, with diam(A%) < p and Pi,...,Pn are paral-
lelepipeds with a vertex at the origin. There exists nj, — co such that A}, — A’ in the Hausdorff
metric for i = 1,...,m: clearly K}, converges to K* :=|J ¢ 4:(z + P*) in the Hausdorff metric.
Let us prove that int(K*) C K, for i =1,...,m. Since diam(A*) < p, by point (d) of Proposition
3.2.2, we have iqt(Ki) = Ugea: (@ + int(PY)); given zo € A* and z,, € AL, with z,,, — z0, we
have that zq + P? is the Hausdorff limit of =, + P?. Since int(zo+ Pt) = z¢ +int(P*), we conclude
that int(K*) C K, and so |JI=; int(K?) € K.
By point (c) of Proposition 3.2.2, we have that K* has Lipschitz boundary; we conclude that

HY N K) = HYN YK\ Kr) < ) HVTHOKY) < oo
i=1

The proof is now complete. O

3.3 The main result

We now recall the main regularity assumption on the sequence (K ) of compact subsets of RY in
order to obtain the stability result mentioned at the beginning of the chapter. We assume N > 3.
Let 7 be the hyperplane zx = 0 in RV,

Definition 3.3.1. Let C be a finite closed cone in RVN=! and let (K,) be a sequence of compact
subsets of RY. We say that (K,) satisfies the C-condition if there ezist constants §,L1,L2 > 0
such that, for all n and for all z € K, there exists &, : Bs{z) — RY with:

(a) for all z1,2; € Bs(z):
Lz — 2] < |@3(21) — Bo(22)| < Lof21 — 225
(b) ®(z) =0 and O;(Bs(z) N Ky) C m;
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(c) forally e Bg(.’r) NKnp,
®:(y) € Cy C ©(Bs(z) N Kp)

for some finite closed cone Cy in w congruent to C.

For technical reasons, we assume that Lidiam(C) < £4: this is clearly not restrictive up to
reducing C.
We can now state the main result of the chapter.

Theorem 3.3.2. Let C be a finite closed cone in RY-1, Q a bounded open subset of RV, 1< p<2,
(Kn) a sequence of compact subsets of RN satisfying the C-condition and converging to a compact
set K in the Hausdorff metric. Then the spaces WhP(Q\ K,) converge to WHP(Q\ K) in the
sense of Mosco.

In order to prove the main theorem, we need to analyze the structure of the sets K, and K.
This is done in the following lemmas.

Lemma 3.3.3. Let C be a finite closed cone in RV~1 and let (K,) be a sequence of compact subsets
of RN converging to K in the Hausdorff metric. Suppose that (Ky) satisfies the C-condition. Then
there exist m > 1 such thai, for n large enough,

m
K,=|J K}
i=1
with K compact, Bg(m;) NK,CKiC B (i) for some z}, € K,, such that zi, — x* € K for all
i=1,...,m and K C U, Bg(zi); moreover ®,; (K1) satisfies the cone condition with respect
to C foralli=1,...,m.

‘ Proof. Since K is compact, there exists a finite number of points 2!,...,2™ € K such that
m .
i
(3.10) KC gl By(a").
As K, — K in the Hausdorff metric, there exist z, € K,, such that 2%, — 2’ fori = 1,...,m. For

n large enough, we clearly have

m
(3.11) Kn €| Bg(ah).

i=1
In order to conclude the proof, it is sufficient to take K} as the preimage under ®g; of the union of
all cones C" C  congruent to C such that ¢’ C @, (Bj(z})NK,) and C'N@,e (Bs(zh)NKy) # 0.
In fact, K is compact and the inclusion B (zi) N K, C K} comes directly from the definition
of Ki and the fact that (K,,) satisfies the C-condition; moreover, the inclusion KicCB g (z%)
comes from the assumption L;diam(C) < 36, and by (3.11) we have K, = Uiz, KL. Finally, by
construction, ®: (K7,) satisfies the cone condition with respect to C for all n and i = 1,...,m,
and by (3.10) we have K C | JiZ; Bj (z*) which concludes the proof. O

Lemma 3.3.4. Let C be a finite closed cone in RN~ and let (K,,) be a sequence of compact
subsets of RN converging to K in the Hausdorff metric. Let (Kn) satisfy the C-condition and let
K, =i, K% according to the decomposition given by Lemma 8.8.8. Then, up to a subsequence,
fori=1,...,m, z} -zt e K, K — K* C K in the Hausdorff metric, &4 — B; uniformly on
B%a(mi) with

(a) KC Bg (zi);

s

1
I
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(b) Bg(zi)ﬂKgKi_C_B%J(mi);

(c) K=0Ki;

(d) for all 21,22 € Bas(z?):

L1lz; — 29| € |@;(21) — ®i(22)] < La|21 — 22};

(e) @;(K N Bys(x!)) C .
Moreover, ®;(K*) satisfies the cone condition with respect to C for alli=1,...,m.

Proof. By Lemma 3.3.3, %, —» z' € K foralli=1,...,mand K C J=; Bs (z?); this proves point
(a). Since Ky, — K in the Hausdorff metric, up to a subsequence, K}, — K* C K in the Hausdorff
metric for i = 1,...,m. Fix i € {1,...,m}. Note that, for n large enough, B%a(w’) C Bs(zh).
We deduce that @, are well defined on B%(;(:z:i); since they are equicontinuous and equibounded,
we may assume that @5 — ®; uniformly on Bys(z?) with

Ly|z1 — 22| < |@i(21) — ®i(22)| < La|2z1 — 23|

for all z;,22 € B%é(mi). This proves point (d).
Passing to the limit in the relations

By(a},) NKn C K, C By ()

m
Kn=|J KL
izl

B, (Kn N Byglal)) S,

we obtain points (b), (c) and {e).

Finally, it is easy to see that ®;(K*) satisfies the cone condition with respect to C. In fact, fix
y € K; since K} — K* in the Hausdorff metric, there exists y, € K} with y, — y. As Dy (KE)
satisfies the cone condition with respect to C, there exists C,, finite closed cone in 7 congruent to
C such that @4 (yn) € Cn C @43 (KL). Up to a subsequence, Cp, — C' in the Hausdorff metric
with C’ congruent to C. Then ®;(y) € C' C ®;(K*) since &: (Ki) — ®;(K*) in the Hausdorff
metric. 0

We can now pass to the proof of the main theorem.

Proof of Theorem 3.8.2. Let Y’ and Y be the weak-limsup and the strong-liminf of the sequence
WiP(Q\ K,) respectively. We have to prove that Y’/ = Y" = WHP(Q\ K).
Let us start with the inclusion

(3.12) Y CWHP(Q\ K).

Let (uy) be a sequence in WIP(Q\ Ky,,) (np — +oco), and let v,w;, -+ ,wy € LP() be such
that ugy — v and D;uy — w; weakly in LP(Q) for 1 = 1,..., N with the identification (3.5). Since
Ky, — K in the Hausdorff metric, it is readily seen that for i = 1,...,N, w; = D;v in the
sense of distributions in \ K. Since (K,,) satisfies the C-condition, we have £LV(K) = 0; as a
consequence, we get v = 0 and wy, ..., wy = 0 a.e. on K, and so we conclude that (v,w;,..., wn)
is the element of LP(£2; RV+?) associated to a function of W1P(Q2\ K) according to (3.5).

We can thus pass to the inclusion

(3.13) WYP(Q\K)C Y,
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we have to prove that, given u € WHP(Q \ K), there exists u, € WP(Q \ K,) such that
(un, Vup) ~ (u, Vu) strongly in LP(Q; RN+1). By standard arguments on Mosco Convergence, it
is sufficient to prove that, given any subsequence n;, there exists a further subsequence n;, and a
sequence ux € WP(Q\ Ky, ) such that (ug, Vug) — (u, Vu) strongly in LP(; RV+1). Thus we
deduce that, in order to prove (3.13), we can reason up to subsequences.

Using the decomposition given by Lemma 3.3.3, there exists m > 1 such that

m
K, = U K711
i=1

with K, compact, Bg(z;,) N Kn C K}, C B (g3}, for some z}, € Kn, and ®,; (K}) satisfying the
cone condition with respect to C for all 4 = 1,...,m. By Lemma 3.3.4, up to a subsequence,
gh, »z' e Kforalli=1,...,m, with K C U, Bg(z'), and ®g; — &; uniformly on Bas(z?)
such that, for all z1, 22 € Bas(z*) '

Li|z; — 23| < |®i(z1) — Di(22)] < Lalzy — 2af.

Moreover, K — K* in the Hausdorff metric with

m
K=|]JK,
=1

Bs(z') N K C K* C Bys(z') and ®;(K*) satisfies the cone condition with respect to C for all
i=1,...,m. Finally, we have that
(3.14) B, (K;) — 8:(KY)
in the Hausdorff metric for7 =1,...,m.

We begin proving the strong-liminf condition in the particular case in which u € W3?(Q\ K),
supp(u) CC Bj (z') and

(3.15) supp(uo ;) N C [®;(K )]y,

where, according to (3.8), [®;(X*)], denotes the set of regular points of &;(K’ f) relative to the
approximation (3.14). set w := uo®;}; we have w € Wl'p(@i(Bg (z)N)\ ®;(K?)). As in Section
3.2, let Pr(®;(K*)) denote the family of parallelepipeds contained in ®;(K*) and congruent to the
parallelepipeds Pi,..., Py, given by Proposition 3.2.2, that are limit in the Hausdorff metric of

parallelepipeds P™ congruent to P,..., Py and contained in D (KL). By (3.8) and (3.15) there
exist Dy,...,D; € P.(®:;(K*)) such that

t
supp{w)Nw C U int,(D;)
=1

where int.(-) denotes the interior relative to . Let Q; C int,(D;) be a parallelepiped in 7 such
that supp(w) N7 C Ui_,int,(Q;) and let £ > 0 be such that, posed U; := int,(Q;) x | — &, €],
G=1,...,%),

O U; € ®;(B:(z)nQ).

j=1

Through a partition of unity associated to {Uh,...,Us, Up} with Up := RY \ &;(K*), we may write

t
w=)_ tw,
Jj=0
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with ¢; € C*(Uj), supp(v;) CC Uj, so that

t
Y = Z(¢J o ®;)u.

Jj=0
Note that supp((¥o © @;)u) N K = @ so that
(%00 ®i)u € WHP(Q\ Ky)

for n large enough that is (¢bp 0 ®;)u E Y". In order to conclude, it is thus suﬁiment to deal with
the case supp(w) CC Uj for j =1,.

Let us fix j € {1,...,t}. Set UJ?" = Uj N (RN x10,e]), Uy == U; N (RY~! x| —¢,0[), and
let w¥ = wyy=. We have w* € WHP(UF): let @* be the extension by reflection of w* on Uj.
Note that supp(@*) cc U;. Up to a subsequence, Q; C ®,: (K}) because D; € Pr(®;(K?))
and @; C int.(Dy); we deduce that U; \ @, (K) has exactly two connected components that
we 1nd1cate by Bt and B~ (note that they do not depend on n for n large). As a consequence

mn ~}(U;)\ K, has exactly two connected components given by Lo (B+) and @, (B ) respectively.

Consider
ﬁ+0@i on @ (B+)

Uy =

w~o®; on ®_H(B").
Since @+ has compact support in U;, we deduce that for n large enough
v € WHP(Q\ Ky).

Since K} — K* in the Hausdorff metric and @* o®; does not depend on n, v, — w and Vv, — Vu
a.e. in 2. By the Dominated Convergence Theorem, we deduce that (v, Vv,) — (u,Vu) in
LP(; RV+1) under the identification (3.5). This proves u € Y in the case u satisfies (3.15).

In order to complete the proof of the theorem, we have to see that the assumption (3.15) is not
restrictive. Consider u € WHP(Q\ K). Let {1, - -, ©¥m, o} be a C™ partition of unity associated
to By (z1),... ,Bg(zm),RN \ K. We can write

m
u= E w;u.
i=0

Since supp(pou) N K == @, we have that supp(pou) N K, = @ for n large enough and so pou €
WLP(Q\ K,,). This implies ou € Y. We deduce that it is not restrictive to assume supp(u) CC
Bg(m") for some i =1,...,m.

Let us consider

U@ ([®:(K)]s)

where, according to (3.9), [®;(K*)]s denotes the set of singular points of ®;(K?) under the ap-
proximation (3.14). By Lemma 3.2.2, we obtain

(3.16) HY2(K,) < +oo;
by Theorem 3 in section 4.7.2 of [49)], since 1 < p < 2, we deduce that ¢, (K, ?) = 0, where

cp(Ks, 1) = {/ [VulP : u € WPP(R), u > 1in a neighborhood of K }

By standard properties of capacity, there exists a sequence (1) in C®(RY) with #, — 0 in
WP(RY) and 7, > 1 on a neighborhood of K,. Since

u=Pru -+ (1 —Pp)u,
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we deduce that the set
D= {ve W'P(Q\ K) : supp(v) N K, = 0}

is dense in WhP(Q\ K) N L*(§2\ K) and hence in WYP(Q2\ K). As observed in Section 3.1, in
order to prove (3.13), it is sufficient to check the inclusion D C Y”. If u € D, we have that

supp(u o ;1) N ®;(KY) C [®;(KH)],.
Consider V4, V2 € 7 open in the relative topology of 7 and such that
supp(u o ®71) N &;(K*) cc Vi cC Vo CC [@:(KH)]y;
let € > 0 with Uz := Vo x| —¢,g] C @i(B%(z‘i)) and set Uy := Vi x]—§,5[. Consider ¢ €

C®(®;71(U,)) with0 < w < 1land p = 1 on & 1(U;). Since u € D, we deduce supp((1~p)u)nK =
f that is (1 — ¢)u € WHP(Q\ K,,) for n large enough and so (1 — p)u € Y. Moreover, since

supp((pu) o &) N C [&;(KH))y,

we deduce by the previous step that wu € Y. We conclude u = pu + (1 — p)u € Y" and the
theorem is proved. O

From Theorem 3.3.2 in the case p = 2, we may deduce the stability of the Neumann problems
mentioned at the beginning of the chapter.

Corollary 3.3.5. Let C be a finite. closed cone in RV, (K,.) o sequence of compact subsets of
RN satisfying the C-condition and converging to a compact set K in the Hausdorff metric. Let
2 be an open and bounded subset of RY, f € L*(Q), and let u, and u be the solutions of the
following Neumann problems

—Aup +up = f
(3.17) { u e%l(ﬂu\ Ky),

—Au+u=f
(3.18) { ue HY(Q\ K).

setup, =0, Vur=00n K, NQ, andu=0,Vu=0o0n KNQ.
Then we have u, — u strongly in L*(Q) and Vu, — Vu strongly in L?(Q;RY), so that the
problems (3.17) are stable.

Proof. Let uy, be the solution of (3.17) and u the solution of (3.18). We assume the identification
(3.5). From the equation (3.17), we have that (u,, Vuy,) is bounded in L2(Q; RV +1). There exists
v € L2(Q;RV*1) such that up to a subsequence, (un,Vun) — v weakly in L2(Q;RN+1). By
Theorem 3.3.2, we have that H*(Q \ K,,) converges to H'(Q \ K) in the sense of Mosco. Thus
we deduce v € H'(Q\ K); moreover, taking ¢ € H'(2\ K), there exists ¢, € H*(Q\ K,,) with
(@n, Vion) — (1, Vip) strongly in L2(Q; RV *1). We conclude that

(3.19) VvV<p+/ vp = lim Vun,Vo, +/ UnPn =
I\K O\K T JON\K, O\Kn
= lim fon=
" JO\K,
= f‘p’
K

that is v = . Finally, taking ¢, = u, and using again (3.19), we have that
lenll L2 umar+ry = [fullzzma+1y).

We conclude that (un, Vun) — (u, Vu) strongly in L2(92; RY+1) and so the proof is complete. [
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Remark 3.3.6. Similarly, under the same hypotheses of Theorem 3.3.2, we can prove that the
Neumann problems

(3.20) un € WHP(Q\ Ky)

{ ~Aptin + [un P 2up = f
where 1 < p < 2, Q is open and bounded in RV, f € LP(Q) and Apuy, = div(|Vu,|[P~2Vuy,),
converge to the Neuwmann problem

—A P=2q —
(3.21) { u e%rplgll\fg)’ !

that is (un, Vug) — (u, Vu) strongly in LP(Q; RY+1) under the identification (3.5).

Remark 3.3.7. The Mosco convergence proved in Theorem 3.3.2 is the key point in order to
prove the stability of more general problems. We now briefly sketch an application to fracture
mechanics in linearly elastic bodies.
For every open and bounded set A C R, let us set
LDY2(A) == {u € HL (4RY) : E(u) € L*(4, MM},

Sym

where M2XT denotes the set of symmetric matrices of order N and E(u) denotes the symmetric
part of the gradient of u. Let |M] := [tr(M2)]? denote the standard norm in M2X7

sym °
Let (K,) be a sequence of compact subsets of RV satisfying the C-condition with respect to a
given (N — 1)-dimensional finite closed cone C, and converging to K in the Hausdorff metric. Let
€ be open and bounded in RY and let 8p2 be a Lipschitz part of 8Q. Consider g,,g € H*(Q; RY)

with g, — g strongly and let
T, = {u € LDY2(Q\ K,,) : u= g, on OpQ\ Kn}

and
I={ueLD"Q\K): u=gon8pQ\K}.

Given the Lamé coefficients p, A, let u, € LDY2(2\ K,,) be the minimum of

min / O %}trE(fu)[z dcy

€N, [}

and let u € LD%?(Q1\ K) be the minimum of

min /n . plE@)]? + %]trE(v)lz dci.

Let K C £, and let us suppose that K is locally contained in a Lipshitz graph, that is, K C | J2, U;
with U; open and such that there exists an orthogonal coordinate system (&1,...,En) and a
Lipschitz function f;(&1,...,&n-1) with U; N K C graph(f;). Let wo,©1,.-.,9m be a partition of
unity associated to RN \ K,Uy,...,Un. By means of Korn's inequality (see for example [85]) we
get w;u € HY(Q\ K;RN) fori = 1,...,m. Using the Mosco convergence given by Theorem 3.3.2,
we have that for all ¢ = 1,...,m there exists v} € HY(Q\ Kp;RY) such that E(v}) — E(piu)
strongly in L?(2; M%), with the convention of considering E(v,) = 0 and E(p;u) =0 on QNK,
and QNK respectively. Setting vy, == pou+3 v, V%, we get v, € T'p, for n large and E(v,) — E(u)
strongly in L?(Q; M?). By minimality of up, we thus deduce that E(u,) — E(u) strongly in
L2(Q; M%), with the convention of considering E(u,) = 0 and E(u) =0 on QN K, and QN K
respectively. This can be interpreted as the convergence of the equilibrium deformations for the
elastic body ) with cracks K, and boundary displacements g, to the equilibrium deformation
relative to the crack K and the boundary displacement g.
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3.4 Non-stability examples

In this section, we give two explicit examples of non-stability when the conditions of Theorem
3.3.2 are violated. In Example 1, we see that the C-condition is not sufficient in the case p > 2:
in fact some problems related to capacity can occur which in the case 1 < p < 2 were avoided
thank to (3.16). In Example 2, we see that a sort of uniform “curvilinear” cone condition for the
sequence (K,) given only by points (a) and (¢) in the C-condition does not guarantee the Mosco
convergence of the spaces WHP(§2\ K.} even in the case 1 <p < 2.

EXAMPLE 1. Let Q, @', Q" be the open unit cube in RY, R¥-1, and R¥2 respectively. For
every n > 1, let us set

o {2 e 3

(Kp) is a sequence of compact sets in RY whose limit in the Hausdorff metric is

—Tx L
Let usset L:= {3} x Q" x {1}, S1:=Q' x]0,%[ and S := Q' x]},1[.
Let C be the finite closed cone in RV ™! determined by By (P) with P := (g, 5,- ., ). Clearly
(Kr) satisfies the C-condition.
We claim that, if p > 2, then the spaces WP(}\ K.} do not converge to WP()\ K) in the
sense of Mosco. In fact, assuming the Mosco convergence, by Remark 3.3.6, we deduce that the
Neumann problems ‘

(3.22) { —Apv + [vfP2u = f

v € W' (Q\ Kn)
with f € LP(Q) converge to the problem

—Apv -+ P2y = f
(3:23) { v e WP(Q\ K).

Let f = xs, and let uy, u be the solutions of (3.22) and (3.23) respectively. We readily deduce
that u = xs,; since (un, Vtin) = (u, Vu) in LP(Q; RV 1) under the identification (3.5), we obtain
that up, — u strongly in WUP(S;) for i = 1,2. By strong convergence in Wh?(S;), we get u, — 0
cp-q.e. on L, while from strong convergence in W*?(S;), we deduce u, — 1 c,-q.e. on L. Since
cp(L, Q) # 0 as p > 2, we get a contradiction: we conclude that the Mosco convergence does not
hold.

EXAMPLE 2. Let @, @', Q" be the open unit cube in RV, R¥-!, and R¥~2 respectively. Let
us write @ = @' x]0,1|. For every n > 1 let us set

n—1 .
K, = g E,g] x Q" x {%}

(Kpn) is a sequence of compact sets in RY whose limit in the Hausdorff metric is

K= [1 2] x Q" x [0,1].

T3
Let us set 81 :=]0,3[x Q" x]0,1[ and Sz :=]%,1[ x Q" x]0,1].
Let C be the finite close cone in R¥~! determined by By (P) with P := (3:%:--»5). Clearly
there exists § > 0 such that, for all n and for all z € K,,, posed
Qz(y) =Yy
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@, : Bs(z) — RY satisfies conditions (2) and (c) of Definition 3.3.1 with respect to C. Observe
that condition (b) is not satisfied: in particular, ®,(Bs{z) N K,) € 7.
Let 1 < p < 2 and let us consider the Neumann problems

{ A+ 2= f

(3.24) v e WP (Q\ Ka)

with f € LP(Q). We claim that the problems (3.24) do not converge to the Neumann problem

{ Ay + P2y =f

(3.25) ve W (Q\ K)

in the sense given in Remark 3.3.6, that is (up, Vu,) /4 (u, Vu) strongly in LP(Q; RV*1) where
up, and u are the solutions of problems (3.24) and (3.25) respectively and the identification (3.5)
is assumed. This implies that W1?(Q \ K,,) does not converge to WP(Q \ K) in the sense of
Mosco and so it proves that point (b) in the C-condition cannot be omitted.

‘We employ a I'-convergence technique. Let us consider the following functionals F,, : LP(Q) —
[0, 0] defined by ’ '

, 17 .
(3.26) Fr(z) = { E»/; IValP if z€ WHP(Q\ Kn)
o 400’ otherwise.

We will prove that, up to a subsequence, (F,,) I'-converges with respect to the strong topology of
LP(Q) to a functional F' such that if z € LP(Q) and F(z) < +o0, then

3.27) 25, € WHB(S;) fori=1,2,

(3.28) z(zn) €eWHP(Q) foraeay €]0,1]

" Let us assume for the moment (3.27) and (3.28). Given f € LP(Q), the functional

Gw) =~ /Q fuf? — /Q fu

is a continuous perturbation of F,: as a consequence,
- ]i#l(Fn +G)=F+G.

Note that the solution u, of problem (3.24) is precisely the minimum of F,, + G: from this, we
derive that for all n

(3.29) Fo(tn) + Glun) < 0.

Suppose that the problems (3.24) converge to the problem (3.25): then in particular, u, — u
strongly in LP(Q) where, as usual, v is extended to 0 on K. Note that F(u) < +co because of
(3.29) and the I'-liminf inequality. If we choose

fz) = xs

we conclude that u is equal to 1 on S; and equal to 0 on Sp. With the identification (3.5), we get
w=f. Clearly f(-,zn) € W3P(Q') for zx €]0,1[ and so we get a contradiction. This proves that
the problems (3.24) do not converge to problem (3.25).

In order to perform the previous argument by contradiction, we have to prove (3.27) and (3.28).
This can be done in the following way. Let z, — z strongly in LP(Q) with

(3.30) Fo(zn) < C < +o0.
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Since

> [ 1vmp [ wap <o
bJs, PJs,

we deduce that 2|5, € WhP(8;) for i = 1,2 and so we get (3.27). For a.e. zy €]0,1], we have that
2n(-,zn) — z(-,zN) strongly in LP(Q'); by (3.30) and Fatou’s lemma, we have

1
1/ <liminf/ IVan(y, zn)P dy) dzy < C,
b Jo " Q '
so that for a.e. zy €]0,1], there exists C, > 0 and a subsequence n; such that

N-1
1
_/ > |Dizn, (y,zn)P dy < Cayy.
Plo o

We conclude that for a.e. zy € [0,1), 2(-,znx) € WIP(Q') so that (3.28) is proved and the proof
is complete.
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Chapter 4

A T'-convergence approach to
stability of unilateral minimality
properties in fracture mechanics
and applications

In this cha.pter we deal with the problem of stability of unilateral minimality properties arising
"in fracture mechanics, and we give an application to the study of crack propagation in composite
materials.

Let K be a (N —1)-dimensional set contained in  C R, and let ube a possibly vector valued
function on {2 whose discontinuities are contained in K and which is sufficiently regular outside
K. 'We say that the pair (u, K) is a unilateral minimizer with respect to the energy densities
and g if

N~ —
(4.1) /ﬂ S Vue) de /K g(a,v) dHY L (z) < /ﬂ WEIOLS /H g(z,v) dHN1(z).

for every (N — 1)-dimensional set H containing K, and for every function v whose discontinuities
are contained in H and which is sufficiently regular outside H. Here v stands for the normal vector
to K and H at the point z, while #V~?! stands for the (IV — 1)-dimensional Hausdorff measure.
(u, K) is said to be unilateral minimizer because it is a minimum only among pairs (v, H) with H
larger than K.

The problem of stability for the unilateral minimality property (4.1) can be formulated as
follows: if (un, Ky ) is a sequence of unilateral minimizers for f and g, with u, — u and K, — K,
is (u, K) still a unilateral minimizer?

As explained in the Introduction, the unilateral minimality property (4.1) and the problem of
its stability are key points in the theory of quasistatic crack evolution in elastic bodies proposed
by Francfort and Marigo in [54].

The first mathematical result of stability for unilateral minimality properties was obtained
by Dal Maso and Toader [45] in a two dimensional setting under a topological restriction on
the admissible cracks. They consider compact cracks with a bound on the number of connected
components, and converging with respect to the Hausdorff metric. An extension of this result for
unilateral minimality properties involving the symmetrized gradients of planar elasticity has been
done by Chambolle in {33], while an extension to higher order minimality properties in connection
to quasistatic crack growth in a plate has been proved by Acanfora and Ponsiglione in {1].

1The results of this chapter are contained in the paper:
Giacomini A., Ponsiglione M.: A T'-convergence approach to stability of unilateral minimality properties in fracture
mechanics and applications. Preprint SISSA 2004.
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A second result of stability for unilateral minimality properties was obtained by Francfort and
Larsen in [53], where they give an existence result for quasistatic crack evolutions in the context
of SBV functions. In the framework of generalized antiplanar shear (ie. Q C RN, N > 2),
the authors consider cracks X which are rectifiable sets in £, and associated displacements u in
SBV(Q) with jump set S(u) contained in K (see Section 4.1 for a definition of rectifiable sets
and of SBV(Q)). A key point for their result is the stability for unilateral minimizers of the form
(t4r,, S(un)) with bulk energy given by f(z,£) = |€|? and surface energy given by g(z,v) = 1. More
precisely, writing the minimality property in the equivalent form .

4.2) /n Vun|2 de < /Q Vo2 da +HY-1(S@)\ S(un))  for all v € SBV(Q)

(which corresponds to (4.1) with H = S{u,)US(v)), they prove that if u, — u weakly in SBV(£2)
(see Section 4.1 for a definition), then u satisfies the same minimality property. The main tool
for proving stability is a geometrical construction which they called Transfer of Jump Sets [53,
Theorem 2.1].

The case in which S(u,) is replaced by a rectifiable set K, has been treated by Dal Maso,
Francfort and Toader in [44], where they consider also a Carathéodory bulk energy f(z,£) qua-
siconvex and with p growth assumptions in ¢, and a Borel surface energy g(z,v) bounded and
bounded away from zero. They employ a variational notion of convergence for rectifiable sets
which they called ¢P-convergence to recover a crack K in the limit (see Section 4.1), and they
prove a Transfer of Jump Sets theorem for (K, )nen satisfying HY~1(K,,) < C |44, Theorem 5.1]
in order to prove that minimality is preserved.

In this chapter we provide a different approach to the problem of stability of unilateral mini-
mizer based on I'-convergence which will permit also to treat the case of varying bulk and surface
energies f, and g,. We restrict our analysis to the scalar case. Our approach is based on the
observation that the problem has a variational character. In fact, considering for a while the case
of fixed energies f and g with f convex in £, we have that if (u,, K},) is a unilateral minimizer for
f and g, then u, is a minimum for the functional

(4.3) En(v) = /n f(z, Vo(z)) dz +/S(v)\K g(z,v) ClHN_I(ZL‘).

Then the problem of stability of unilateral minimizers can be treated in the framework of I'-
convergence which ensures the convergence of minimizers. In Section 4.4, using an abstract rep-
resentation result by Bouchitté, Fonseca, Leoni and Mascarenhas {17], we prove that the I-limit
(up to a subsequence) of the functional £, can be represented as

(4.4) £(v) = /Q (o, Vo(@)) do + /S R dHN=1(z),

where ¢~ is a suitable function defined on £ x SV~ determined only by g and (Kp,)nen, and such
that g~ < g. If we assume that u, — u weakly in SBV(£2), then by I'-convergence we get that u
is a minimizer for £. Suppose now that K is a rectifiable set in Q such that S{u) C K and

(4.5) g (z,vg(z)) =0 for HVlae z € K.

Then we have immediately that the pair (u, K) is a unilateral minimizer for f and g because for
all pairs (v, H) with S(v) C H and K C H we have

/ f(z, Vu(z))dz = E(u) < E(v) = / [z, Vou(z))dz + / g~ (z,v)dH" !
[} Q S(v)

=Lf(z‘,Vu(:z:))dz+ g_(m,u)S/Qf(m,Vv(a:))dz+/H\Kg(z,u)‘

S(\K
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The rectifiable set K satisfying (4.5) is provided in Section 4.5, where we define a new variational
notion of convergence for rectifiable sets which we call o-convergence, and which departs from the
notion of gP-convergence given in [44]. The o-limit K of a sequence of rectifiable sets (K, )nen is
constructed looking for the I-limit 7~ in the strong topology of L!(f2) of the functionals

N-1

(45) e ) = {H (S@\ Kn) ue P@),

+00 otherwise,
where P(Q) is the space of piecewise constant function in 9 (see (4.8)). Roughly, the o-limit
K is the maximal rectifiable set on which the density A~ representing H~ vanishes. By the
growth estimate on g it turns out that K is also the maximal rectifiable set on which the density
g~ vanishes, so that K is the natural limit candidate for K, in order to preserve the unilateral
minimality property. The definition of o-convergence involves only the surface energies H,,, and
as a consequence it does not depend on the exponent p and it is stable with respect to infinitesimal
perturbations in length (see Remark 4.5.10). Moreover it turns out that the o-limit K contains
the oP-limit points of (K )nen, so that our I'-convergence approach improves also the minimality
property given by the previous approaches.

Our method naturally extends to the case of varying bulk and surface energies f, and gn,
and this is indeed the main motivation for which we developed our I'-convergence approach. The
key point to recover effective energies f and g for the minimality property in the limit is a T-
convergence result for functionals of the form

@) /ﬂ Ful@, Vun (z)) do + /S gn(z, v) dHN1(z).

n

In Section 4.4, we prove that the I'-limit has the form _
[ @ u@)do+ [ gz,n)ania),
Q ‘ S(u)

where f is determined only by (fn)nen, and g is determined only by (gr)nen, that is no interaction
occurs between the bulk and the surface part of the functionals in the I'-convergence process. A
result of this type has been proved in the case of periodic homogenization (in the vectorial case,
and with dependence on the trace of » in the surface part of the energy) by Braides, Defranceschi
and Vitali [21].

We notice that an approach to stability in the line of Dal Maso, Francfort and Toader in
the case of varying energies would have required a Transfer of Jump Sets for fp,gn and f,g,
which seems difficult to be derived directly. Our I-convergence approach also provides this result
(Proposition 4.6.4).

In section 4.8 we deal with the study of quasistatic crack evolution in composite materials.
More precisely we study the asymptotic behavior of a quasistatic evolution ¢ — (un (), Ky (1))
relative to the bulk energy f, and the surface energy g,. Using our stability result we prove
(Theorem 4.8.1) that ¢ — (un(t), Kn(t)) converges to a quasistatic evolution ¢t — (u(t), K(t))
relative to the effective bulk and surface energies f and g. Moreover convergence for bulk and
surface energies for all times holds. This analysis applies to the case of composite materials, i.e.
materials obtained through a fine mixture of different phases. The model case is that of periodic
homogenization, i.e. materials with total energy given by

E(u, K) = /ﬂ f(g,vu(z)) dz + /K g(g,v) dHN Y (z),

where ¢ is a small parameter giving the size of the mixture, and f, ¢ are periodic in z. Our
result implies that a quasisistatic crack evolution ¢t — (u.(t), K.(t)) for £ small is very near to
a quasistatic evolution for the homogeneous material having bulk and surface energies fhom and
Ghom, Which are obtained from f and g through periodic homogenization formulas available in the
literature (see for example [21]).
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The chapter is organized as follows. In Section 4.1 we recall the basic definitions on SBV
functions and I'-convergence. In Section 4.2 we prove a blow up result for T-limits which will be
employed in the proof of the main results. In Section 4.3 we prove some representation results
which we use in Section 4.4 where we deal with the I'-convergence of free discontinuity problems
like (4.7). The notion of o-convergence for rectifiable sets is contained in Section 4.5, while the
main result on stability for unilateral minimizer is contained in Section 4.6. In Section 4.7 we
prove a stability result for unilateral minimality properties with boundary conditions which will
be employed in Section 4.8 for the study of quasistatic crack evolution in composite materials.

4.1 Preliminaries

Sets with finite perimeter. We indicate by P(Q) the family of sets with finite perimeter in Q,
that is the class of sets E C  such that 1g € BV(f). In view of the applications of Sections
4.3, 4.4 and 4.5, it will be useful to look at P(f2) in term of functions, that is to use the following
equivalent description:

(4.8) P ={ue BV(Q) : ulz) € {0,1} for a.e. z € 0}.

oP-convergence of sets. In [44] Dal Maso, Francfort and Toader defined a variational notion
of convergence for sets in RY which they called o?-convergence, and that they employed for the
study of quasistatic crack growth in nonlinear elasticity. . .

Definition 4.1.1. Let (Kp)nen and K be subsets of Q “We say that Ky, ap-com)erges in 1 to K
if the following hold

(1) if up = u weakly in SBVP(Q) with S(un) C Ky, then S(u) C K;
(2) K = S{u) and there ezists u, — u weakly in SBVP(Q) with S(u,) C K.
In thesame paper the authors proved the following compactness property.

Theorem 4.1.2. If HV-1(K,) < C, then up to a subsequence K, — K in the sense of o?
-convergence.

4.2 Blow-up for I'-limits
Let 1 < p < +oo and let f:Q x RY — [0, +00[ be a Carathéodory function such that
(4.9) a1(z) + b’ < f(z,£) < aa(z) + BlEP,
where a;,a; € L) and a, 8 > 0. Let us assume that
& — f(z,€) is convex for a.e. z € Q.

Let B; be the unit ball in RY with center 0 and radius 1. The following blow up result in the
sense of I'-convergence holds.

Lemma 4.2.1. Let (pr)ren be a sequence converging to zero. Then for a.e. = € ) the functionals

[s, fl@+pry, Vu(y))dy ue WHP(By),
+00 otherwise in L(B;)

(4.10) Fk(u) = {

T-converge in the strong topology of L*(Ba) to the functional

(4.11) F(u) = {_{Bl flz,Vu(y))dy ue Wl.,p(él)’l
oo otherwise in L' (By).
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Proof. By Scorza-Dragoni Theorem there exists a sequence of compact sets (Ky,)nen such that
|2\ K| — 0 and such that f restricted to K, x R" is continuous. Let us define

(4.12) N:=Q\{z € Q: there exists n € N such that z is of density 1 for K,}.

We clearly have |N| = 0, and every z € Q\ NV is a Lebesgue point for f(-,£) for every £ € RV,

Let us fix z € Q\ N with z € K, for some n € N, and let us begin with the proof of the
I-limsup inequality. We can prove it for a dense set in WP (By), for example for the piecewise
affine functions. So let u be piecewise affine, and let Vu(y) € {&1,...,£n} for all y € B;. Since z
is of density 1 for Ky, and f is continuous on K, x RY, we have that for all e > 0

Hy € By : |f(z + pry, &) — f(z,&)| > e} — 0.

Then considering as recovering sequence ug = u, we get
limsup [ f(z+ pry, Du)dy < [ f(z,Du)dy,
k—r+00 Bl B1

so that the inequality is proved.

Let us come to the T-liminf inequality. Let (uz)ren be a sequence in L!(B;) such that uy — u
strongly in L'(B;). We can assume that supyey Fr(ug) < -+o00, so that Vup — Vu weakly in
LP(B1;RY). Let M > 0 be fixed, and let § be such that |{|Vu| > M}| < 4. Let us consider

Vug(y) if [Vug(y)l < M,
M (y) =
kW) -{D : otherwise,

and let us denote by ®M:its weak limit (up to a further subsequence) in LP(B;;RY). Since by
assumption on z we have that for all e > 0

Jm 1y € Br s |f@ o+ oy @Y @) - f(z 8 @) > e} =0,

we obtain

Yim inf / F(z+ pry, Vug(y)) dy > liminf / Fla+ oy, 8 (1)) dy — ()
k"’+00 Bl k—*+00 B1

2 mint [ S0 @) dy—20) 2 [ fa 04 0) dy—200),

where &(6) — 0 as § — 0. Letting M — +oo, we get § — 0 and ®M — Vu weakly in LP(B;,RV).
The result follows by lower semicontinuity since f(z,-) is convex. O

Let us consider now f, : Q x RV — [0,40c0] Carathéodory function satisfying the growth
estimate (4.9) uniformly in n. Let us assume that for all A € A(§)) the localized functionals

Ja fnla, Vu(z)) de  uw e WHP(Q),

. A) =
(413) Fa(u,4) {-}-oo otherwise.

T-converge with respect to the strong topology of L*(£) to

[y f(@, Vu(z))de ue WP(Q),
+o0 otherwise

(4.14) ﬂ%m;{

for some Carathéodory function f which satisfies estimate (4.9). Using a diagonal argument we
may conclude that the following theorem holds.
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Theorem 4.2.2. Let (px)ren be a sequence converging to zero. Then for a.e. x € §) there exists
(ng)ken such that the functionals

f31 fnk (z + PrY, Vu(y)) dy u€ Wl’p(Bl)r

4.15 F(u) =
(4.15) & (u) {+oo otherwise in L*(B;)

T-converge in the strong topology of L*(B1) to the functional

) = {fBI flo,Vu)dy ue Wie(By),

4.16
(4.16) +00 otherwise in L'(By).

Remark 4.2.3. In the case of periodic homogenization, i.e. in the case in which fn(z,&) =
f(nz, &) with f periodic in z, it is sufficient to choose ny in such a way that ngpr — +oo. In fact
for z = 0 we have

_ ) s, F((nepr)y, Vu(y)) dy v e WHP(By),
Fi(w) = {+Boo otherwise in L(B;)

which still I-converges to (see for instance [43])

| F(u) = [5, foom(Vu(y))dy we WhP(By),
: +00 otherwise in L(B;).

In the rest of this section we prove a regularity ’result for the density f defined in (4.14) under
additional hypothesis on f, which will be employed in Section 4.8. Let us assume that for a.e.
z € ' ' '

(1) folz,-) is convex;

(2) fn(z,-) is of class C;

(8) for all M >0 and for all £},€2 such that |€}] < M, [€}| < M, |€L — €2] — 0 we have
(4.17) | Ve Fulz, EL) — Ve fn(z, €2)] — 0.

Notice that for instance fr,(z,£) := an(z)[€|P with @ < a,(z) < B satisfies the assumptions above.
Notice moreover that by semicontinuity of I'-limits £ — f(z,£) is convex for a.e. T € .
‘We need the following lemma which is a straightforward variant of [44, Lemma 4.9].

Lemma 4.2.4. Let (X, A, ) be a finite measure space, p>1, N> 1, and let H, : X xRY =R
be a sequence of Carathéodory functions which satysﬁes’the following properties: there exist a
positive constant a > 0 and a nonnegative function b € LP (X), with p’ = p/(p — 1) such that

(1) |Hn(z,€)| < alé]"~" +b(z) for every z € X, £ € RY;

(2) for all M >0 and for a.e. z € Q, for all £2,&2 such that |€}| < M, |€:| < M, |€L ~€2| =0
we have

|Hn(z,&3) — Hn(z,€2)] — 0.

Assume that (®p)nen 45 bounded in LP(X,RY) and that (Un)nen converges to O strongly in
LP(X,RN). Then

(4.18) /X[Hn(z, @ (z) + Un(z)) — Hn(z, @0 (2))]®(z) du(z) — 0,
for every ® € LP(X,RY).

56



The following regularity result on f holds.
Proposition 4.2.5. For a.e. z € Q the function £ — f(x,£) is of class C*.

Proof. Let z € L\ NV, where N is defined in (4.12). Let pr — 0 and let (nx)rew be a sequence
such that, according to Theorem 4.2.2, (Fi)reny I'-converges with respect to the strong topology
of LY(B;) to F.

Let {@x)ren be a recovering sequence for the affine function y — £ -y with £ € RY. Up to a
further subsequence, we can always assume that there exists 1 € R such that

(4.19) E}T /B Veh(e + iy, Vo)) dy = 9.

Let t; \, 0 and let 7 € RY. By the convexity of f,, in the second variable, we have

420) [ furo+ pi, Vuw) +t51) — i o+ o1, V9(0)) dy
1
7 /B Ve fn (@ + pry, Vée(y) +tymndy.
By I'-convergence we can find k; such that

ferim—f@d 1 1 / Vefm. @+ pisy, Vi, (4) + timm dy,
i |B1] 4 7

L]

so that we have

(421) limeup ZEE+17) = o) 1 timasup [ Vet (o-+ pegws Vo, (0)+ .

j—~+o0 tJ IBI Jeretoo

Notice that by Lemma 4.2.4 and by (4.19) we have that

f Vefu, (2 + pryy, Vbay () + gy

L

/ Ve for, (@ + pr;y, Vér; ())n dy = | Brjym,

J—>+oo
and so for every subgradient ¢ of f(z,) at £ by (4.21) we have

¢n < limsup [z, E+tim) — f(z,€)
T jteo tj

<¢n.
We deduce that ¢ = ¥, so that f(z,-) is Gateaux differentiable at £ with Vf(z,£) = 4: since
f(z,-) is convex, we get that f(z,-) is of class C*. O

Remark 4.2.6. Notice that an hypothesis of equiuniform continuity for (V¢ fn(z, £))nen like (4.17)
is needed in order to preserve C*-regularity in the passage from f,, to f: in fact if £ — f,(£) are
smooth convex functions uniformly converging to a nondifferentiable convex function £ — f(£),
the associated integral functionals I'-converge, and this provides a counterexample.

4.3 Some integral representation lemmas

Let aj,a2 € LY(Q), 1 < p< 400, and let a,f>0. Forallne Nlet f, : @ x RYN — [0,+c0[ be a
Carathéodory function such that for a.e. £ € Q and for all £ € RV

(4.22) ai(z) + all’ < fo(z,8) < ax(z) + BIEP,
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and let g, : Q x SV~! — [0, +c0[ be a Borel function such that for HV~1-a.e. z € { and for all
ve SN 1i={neRN :|p =1}
(4.23) o < gn(z,v) < 6.

In Section 4.4 we will be interested in the functionals on L(Q) x .A(f2)

4 fulz, Vu(z)) dz + fAn(S(u)\K,,) gn(z,v)dHY"1(z) w € SBVP(A),
~+o0 otherwise,

4.24) En(u,A) = {
where A(f2) denotes the family of open subsets of 2, and (K, )nen is 2 sequence of rectifiable sets
in  such that

(4.25) HNHK,) < C.

In particular we will be interested in the I-limit in the strong topology of L1(Q2) of (En(, A))nen
for every A € A(Q2). To this extend we consider the functionals F, : L1(Q2) x A(Q2) — [0, +0c0]

fA fo(z, Vu(z))dz ue€ WhP(A),
+o00 otherwise,

(4.26) Falu, A) = {
and the functionals G : P(Q) x A(Q) — [0, +o0|

(4.27) G (u, A) = / on(,v) dHN 3 (2)
AN(S(u)\Kx)
defined on Sobolev and piecewise constant functions with values in {0,1} (see (4.8)) respectively,

and we will reconstruct the I'-limit of (E,(-, A))nen through the I-limits of (Fp(-, 4))nen and

(g ( A))nEN
For the results of Section 4.6, we will need a.lso the func’clonals Gn 1 P(2) x A(2) — [0, +00[
(4.28) G, A) 1= / gn (@, v) dHY 1 (z)
AnS(u)

In this section we provide some integral representation results for the I'-limits of the functionals
Fn, Gy Gn and &y. In the following, for every functional H defined on X x A(Q) with X = L'(£2)
or X = P(Q) with values to [0, +o0}, for every 4 € A(Q) and + € L*(A) we will use the notation

(4.29) my (A, ) = uelgf{’H(u, A} : w =1 in a neighborhood of 84}.
u
Moreover for all z € RV, a,b € R and v € SV~ let 4z, * Bi(z) — R be defined by

b if (y—zw >0,
a if(y—zv <0,

(4.30) Ug b0 (Y) = {

where Bi(z) is the ball of center z and radius 1.
The following I'-convergence and representation result for the functionals F, holds.

Proposition 4.3.1. There ezists F : L*(Q) x A() — [0, +00] such that up to a subsequence the
Junctionals Fp(-, A) T-converge in the strong topology of L*(Q) to F(-, A) for every A € A(Q).
Moreover for all u € WYP(Q) we have that

(4.31) Flu, A) = / f(z, Vu(z)) dz
A
where
(4.32) £z, 8) = Iiﬂ%‘ip mf(BpL(umjg;jv(z —z)) ,

my is defined in (4.29), and wy is the volume of the unit ball in RY. Finally f is a Carathéodory
Junction satisfying the growth conditions (4.22).
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Proof. Let us consider the restriction F;, of 7y, to LP(Q) x A(Q). Then in view of the growth
estimate (4.22), by [43, Theorem 19.6] we deduce that there exists F : LP(Q) x A() — [0, +o0]
such that up to a subsequence F, (-, A) T-converges in the strong topology of L?(£) to F(-, A) for
every A € A(Q).

For every u € L*(Q2) and A € A(Q) let us set

F(u, A) = limsup F(Thr(u), A)
M—+o0

where T (u) := min{max{u,—M}, M}. Let us‘prove that along the same subéequence Fal, A)
I'-converge in the strong topology of L1(§2) to F(-, A) for every A € A(Q). As for the I-liminf
inequality, let us consider a sequence (up)nen in LY(£2) with u, — u strongly in L!(§2). Then for
every M > 0 we have that Ta(un) — Tar(u) strongly in LP(Q), so that for every 4 € A(Q) we
have

F(Tam(u), A) < Eglilolgﬁn(TM(un), A) < liminf 7y (un, A) + (M),

where e(M) — 0 as M — +oo. Taking the limsup for M — o0, we get that the I'-liminf
inequality holds. '

Let us come to I-limsup inequality. It is sufficient to consider u € L*™(Q), since L>°(Q) is a
subset of L*(£2) dense in energy with respect to F(-, A) for every A € A(Q2). A recovering sequence
for u with respect to Fy,(-, A) and the strong topology of LP() is a good recovering sequence for
Fn(-,A) and the strong topology of L'(f), so that the I'-limsup inequality is proved.

‘We have that the following facts hold:

.- (F1) forallu e Lt (Q), F(u,-) is the restriction to .A(?) of a Radon measure;
(F2) Flu,A)=F(v,A) fu=v on 4;

w. (F3) Flu +‘ C,A)= .’F(u,A) for every constant C;

(F4) F(-, A) is lower semicontinuous with respect to the strong topology of LY();
(F5) we have the growth estimate

/A a1(2) d + Q[ VUl gy < Flu, A) < /A a2(z) do + BI VUl .
Then the theorem follows by the representation result by Buttazzo and Dal Maso [31] (see also
[17, Theorem 2}). O

Let us come to the functionals G, defined in (4.28). The following proposition holds.

Proposition 4.3.2. There ezists G : P(Q) x A(f2) — [0,4+o00[ such that up to a subsequence
Gn(-, A) T-converge in the strong topology of L*(Q) to G(-, A) for all A € A(Q). Moreover for all
u € P(Q) and A € A(Y) we have that

(4.33) G(u, A4) = / ola,v) dz
ANS(u)
with
s mg(Bﬂ(m),ua:Olu)
4.34 V) =1 L2
(4.34) 9(z,v) ;I_lﬁp NPT

where mg is defined in (4.29) and ug0,1,0 i as in (4.30).

Proof. 'The existence of G : P(2) x A(2) — [0, +oo] such that up to a subsequence G, (-, A4) I'-
converge in the strong topology of L({2) to G(-, A) for all A € A(Q) has been proved by Ambrosio
and Braides [6, Theorem 3.2]. By the growth estimate on g, we get that G satisfies the following
properties:
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(1) for all w € P(§2), G(u,-) is the restriction to .4(Q) of a Radon measure;
(G2) G(u,A) =G(v,A) if u=v on 4;
(G3) G(-, A) is lower semicontinuous with respect to the strong topology of L();
(G4) we have the growth estimate
oHNH(S(u) N A) < G(u, A) < BHN1(S(u) N A).

Then the representation formulas (4.33) and (4.34) come from [17, Theorem 3]. ]
Let us come to the functionals G defined in (4.27). The following proposition holds.

Proposition 4.3.3. There ezists G~ : P(2) x A(Q) — [0, +oo] such that up to sdbsequence
Gy (-, A) T-converge in the strong topology of L*(Q) to G~ (-, A) for all A € A(Q). Moreover for
allu € P(Q) and A € A(Q) we have that

(4.35) G (u, A) = / 9 (@, v) dHN 1 (z)
ANS(u)
with
mg- (B,(x), uzg,0,1,v)

4.36 “(z,v) = limsu;
(4.36) g (, ) p_'0+p o

where mg- is defined in (4.29) and ug 01, is as in (4.30).

Proof. By the growth estimate (4.23) on g, and the result of Ambrosio and Braides [6] there exists
G~ : P(Q2) x A(Q) — [0,+cc] such that up to a subsequence (G, {-, A))nen I'-converges in the
strong topology of L1(2) to G~ (-, A) for every A € A(f2), and such that the following properties
hold:

(671) for all u € P(Q), G~ (u, ) is the restriction to .A(f2) of 2 Radon measure;

(G72) G (u,A) =G (v,A) if u=v on 4;

(673) G~(:, A) is lower semicontinuous with respect to the strong convergence in L'(();
(G~4) we have the growth estimate

0< G (u, 4) < BHYL(S(u) N A).

The integral representation formula (4.35) for G—(-, A) is given by the result of Ambrosio and
Braides [6] in view of properties (G~1)-(G™4) (see also Bouchitté, Fonseca, Leoni and Mascarenhas
[17}). For the sequel we need also the explicit formula (4.36) for the density g~ which is not given
directly by the results of [6] and [17] because of a lack of coercivity from below. So in what follows,
we modify the concrete approximation G (-, 4) for G~(-, A) in order to get the coerciveness we
need, and to obtain in the end formula (4.36).

Let us consider the functionals

(437) O, d)i= [ ghla,n)aH i)
ANS(u)
where
c € ifx € Ky,v=vg,(z),
4.38 ,V) = »
(4.38) 9n(2,¥) {gn(m, v) otherwise.
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Let us denote by G¢(-, A) the I'-limit (up to a subsequence) of G5 (-, A) for all A € A(R2). Since G*
is such that for & small

eHN"1(S(u) N A) < G5(u, A) < BHNTH(S(u) N A),
by the representation result of [19] we have that

?mm=/

g (z,v) aHV " (z),
S(u)nA .

where g% :  x SV~1 — [0, +o0] is given by

- nge (Bp(x)a'u'm 0,1 u)
4.39 € = limsu et
(4.39) g (wfV) p_j)+P won—1pN1

We have for all u € P(Q2) and A € A(Q)

On(u, A) < G (u, A) + epin(A),
where pn, := HV LK, so that for n — 400 by I'-convergence we have
(4.40) G (u, A) < G~ (u, A) + eu(A),

where p is the weak™ limit of (4 )nen (up to a subsequence) in the sense of measures. Notice that
(see for instance [8, Theorem 2.56]) up to a set of 7 ~!-measure zero we have

v — p(Bp(z))
(4.41) H(z) := hlxis(;)lip = < +o0.

Let us prove that for HY~1-a.e. £ € { we have
(4.42) 9~ (z,v) = lim g*(z,v),
where g~ (x, v) is defined in (4.36). In fact, notice thét {g}: is monotone decreasing in ¢ and that
g~ < g* for all € > 0, so that for all z and v
o™ (2,v) < lim ¢*(a,»).

Let us set for every p> 0,z € Q and v € SV1

mg: (Bp(z), Uz,0,1,)
wy-1pN -1

Then by (4.40) we have that

mg- (B, (), Us,0,1,v)
wy—1pV-1 '

mg(z,v) = and m, (z,v) =

mi(z,v) < m, (z,v) + 5%.
Taking the limsup for p — 0% we have
9°(z,v) < g~ (z,v) + eH(z),
and so letting & — 0 we obtain for HV"l-ae. z € Q
lim ¢%(z, ) < g7 ()

which gives (4.42). Since for all u € P(Q2) and A € A(Q) we have G%(u, 4) — G~ (u, A) as e — 0,
we conclude that

043) 0~ A)=lm @A) =lim [ Fend @)= [ et e),
e—0 =0 /5u)na S(u)nA
so that the representation formulas (4.35) and (4.36) hold. ]
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Remark 4.3.4. It is immediate to check that if we replace P(Q) in Proposition 4.3.3 by the space
Pop(2) := {u € BV(Q) : u(z} € {a,b} for a.e. z € Q}, with a,b € R, then the I-limit in the
strong topology of L!(Q2) of G;; (-, A) can still be represented by the density g~ defined in (4.36).

Let us finally come to the functionals £, defined in (4.24). Using the growth estimates (4.22)
and (4.23) on f, and g, (see [21]), there exists £ : L*(Q2) x A(2) — [0,+o0[ such that up to 2
subsequence &y (-, A) I-converge in the strong topology of L1(Q) to £(-, A) for all A € A(Q). For
every € > 0 let us set

E.(uy A) = E(u, A) + £ / 1+ |[u) dH .
S(u)nA

For e small, we have that & satisfies the following properties:
(€:1) for all u € SBVP(Q), £-(u,-) is the restriction to A(Q) of a Radon measure;

(Ee2) Ec(u, A) = Ec(v, A) if u=v on 4;
(Ee3) E:(-, A) is lower semicontinuous with respect the strong topology of L' (f);
(E:4) we have the growth estimate

/a1 de +e (/ |Vu|"dz+/ 1+|[u]deN-1) < £.(u, A)
A A S(w)nA

: ! N-1
SAagdz+ﬁ(/AIVulpdz—i—/S(u)nAl-!—l[u][dH )

Then by the representation result of Bouchitté, Fdnseca, Leoni and Mascarenhas [17, Theorem 1]
we get that S '

gs(’Uay A) = / foeo (IL‘, Vu(.’L‘)) dz + / ggo(m’ u (:L‘), U+(.'B), 1/) dHN—l(w)
A ANS(u)
with fZ, and g5, satisfying the following formulas

& T mpg, (BP("E): E(Z - ZE))
(4.44) foo(z, &) = h;n_ﬁp oo™

b

and

mg, (By(z),u.
(4.45) Go(T,0,b,v) = H‘I,E,S(',lip = Eu;i;’]v_zia’b’u)
where mg, is defined in (4.29) and g4, is as in (4.30).
Notice that fZ, and g5, are monotone decreasing in &, and that £.(-, A) converges pointwise
to £(+, A) as € — 0 for all A € A(Q2). We conclude that the representation result for & implies a
representation result for the functional £.
Summarizing we have that the following proposition holds.

Proposition 4.3.5. There ezists £ : L}() x A(Q) — [0,+00] such that up to a subsequence
En(+, A) T'-converges in the strong topology of L* () to £(-, A) for every A € A(Q). Moreover, for
every u € SBVP(Q)) and A € A(Q) we have that

£(u, A) = / Fool@, Vu()) dz + / oo 2,07 (), (@), ) dHN 1 ()
A ANS(u)

1

with
(446) fm(zag) = l{{}}]f;(%f) gw(m,a,b,u) 3=£§59§o(270757”):

where fS, and g5, are defined in (4.44) and (4.45) respectively.
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Remark 4.3.6. In the rest of the chapter we will often make use the following property which
is implied by the fact that £(u,-) is a Radon measure for every u € SBVP(Q). If (up)nen is a
recovering sequence for u with respect to £,(-,2), then (up)nen is optimal for u with respect to
En(:, A) for every A € A(2) such that the measure £(u, -) vanishes on 4A.

4.4 A T-convergence result for free discontinuity problems

The main result of this section is the following I'-convergence theorem concerning the functionals
&y defined in (4.24).

Theorem 4.4.1. Let (Kn)nen be o sequence of rectifiable sets in Q such that HY~YK,) < C for
all n € N. Let us assume that for oll A € A(Q) the functionals Fp(-, A) and G (-, A) defined in
(4.26) and (4.27) T-converge in the strong topology of L*(Q) to F(-, A) and G~ (-, A) respectively.
Then for all A € A(Q) the functionals E,(-, A) defined in (4.24) T-converge in the strong topology
of LY(2) to £(-, A) such that for all u € SBVP(Y) and A € A(R)

(4.47) E(u, A) = /A f(z, Vu(z)) do + /A o TP

where f and g~ are the densities of F and G~ according to Propositions 4.58.1 and 4.3.3.

Proof. We know that up to a subsequence the functionals £,(-, A) I'-converge in the strong topol-
ogy of L*(2) to a functional £(-, A) for every A € A(R), and that by Proposition 4.3.5 for all
u € SBVP(1) and for all A € A(Q) we have

A 9oo (T, ™ (), ut (z),v) dHN-t (z),

‘g(u,’A)=/Afw'(m,w)dz+fS()

where fo and g, satisfy formula (4.46). The theorem will be proved if we show that for all
u € SBVP({2) we have

(a) for a.e. z € Q
(4.48) Jool, Vu(z)) = f(z, Vu(z));

(b) for HNLae. z € S(u)
(4.49) oo (T, u” (2),u™ (%), vs(u) (%)) = 97 (%, Vs(u) (2)),
where gy (z) is the normal to S(u) at z.

The proof will be divided into four steps.

Step 1: fo(x, Vu(x)) < f(x,Vu(x)) for a.e. x€ Q.

This inequality can be derived using the explicit formulas for fo, and f. Let z € Q, £ € RV,
and let us fix € > 0. For every p > 0 let u. , € WP(B,(z)) be such that u. ,(z) = £(z — z) in a
neighborhood of 8B,(z) and

F(tie,p Bo(x)) < mz(By(2),£(z — 2)) + ewnp™.

Then we get
. me, (By(x), (2 — ) : E(ue,p, By(x))
€ =} £ < Him ———A PN S
foo(x,6) ;I_lﬂp wnpV < p_j)ljp wn N
. F(ue,p, Bp(@)) _ . mz(By(z),£(z — z))
< limsup ——2—— 2~ < limsu +e= f(x,€) +e.
< p_’wp o m sup P f(z,€)
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Letting £ — 0, we obtain that fo.(z,£) < f(z,£), so that the step is concluded.

Step 2: foo(x, Vu(x)) > f(x, Vu(x)} for a.e. x € Q.
‘We can consider those z € (1 such that v is approximatively differentiable at z, = is a Lebesgue
point for f(-,€) for all ¢ € RN and such that
E(u,B
wBy@) _

(4.50) | fool, Vu(z)) = lim ==

Let moreover (un)nen be a recovering sequence for £(u, Q): by (4.23) and since HVN~1(K,,) < C,
we have that HV~1(5(u,)) is bounded and so up to a subsequence

n=HV " S(u,) 2 p weakly® in the sense of measures
for some Borel measure y. We can assume that (see for instance [8, Theorem 2.56])
B
(4.51) hmsup ( (:c)) =0.
p—0t p

Let p; \, 0 be such that £(u, 8B, (z)) = 0. In view of Remark 4.3.6, for every i there exists n;
such that for n > n; ' '

Ew.Bp(e) (un,Bp,(z» 1
wNpl 2 wsz e i

fB,, (=) fulz, Vup(z))de ¢ 1 , .
‘ wNPI i E/Bl fn(a"'*‘Piy,V'v,,_L(y))dy_E

(4.52)

where

N un(z + pi'y) — u(.’E)
() = -
Pi
Taking into account the assumptions on z and (4.51), we can choose (n;);en is such a way that

(4.53) vh, — Vu(z)-y  strongly in L*(B;) for ¢ — oo,
(4.54) (Vv},)ien is bounded in LP(B;,RY),
(4.55) lim lim HYH(S(E,)) =0,
and
lim £ Bp,( z))

(4.56) Jeolz, Vu(z)) = > liminf — / Fri(z + piy, V”n, (v)) dy.

1—r+oo wNpl i—tco Wy

Moreover by a truncation argument we can assume that (v, )ien is uniformly bounded in L*(B;),
so that we get -

IVor,.|

:ZP(BI,RN)_F-/.‘S'(’U': )|[vfh,]]d'HN_l <C and 1_1'11_{}1°°HN Y(S(i,)=0.
ny

Following Kristensen [63] we get that there exists w; € W1°°(B;) such that w; — Vu(z) -y
strongly in L!(B;) as i — +oo and such that

@51 tmint [ fuule o+ o, Vob @) dy = lmint [ fou(o -+ p, Vus) .
1 1

i—+00 B
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If n; is chosen such that the blow-up for I-limits given by Theorem 4.2.2 holds, we get that

i—4oco

liminf_/B fni(@ + piy, Vwi(y)) dy > wn f(z, Vu(z)),

so that in view of (4.56) we obtain

foo(m, Vu(z)) = f(z, Vu(z)).

Step 3: goo(x,u™(x),u™ (%), vg(u)(x)) < 8™ (%, ¥g(w) (%)) for HN-1-a.e. x € S(u).
Up to a subsequence, we have that
pn = HY I K, S p

weakly™ in the sense of measures. Since HV~1(K,) < C we have that for HV"1-ae. z € O (see
for instance [8, Theorem 2.56])

. , 1(Bp(z))
4.58 H(z) := limsup ——5—= < .
(4.58) () P
We claim that for all v € P(Q) and A € A(f2) such that A C Q
(4.59) oHN=HS(w)NA) < G~ (v, A) + p(4).
In fact we have that for alln € N
oMY ((8(v) \ Kn) N A) < G (v, 4)
so that , . .
oHN "L (Sw)NA) <G (v, A) + pn(4)
and so passing to the I-limit for n — +o0o we obtain that (4.59) holds.
Let us choose z € S(u) in-such a way that (4.58) holds and such that

fB,,(m) as dx _

limsup =0,
V-1

p—0+
where ay is defined in (4.22). Let us indicate u™ (), u™ (z) and vg(y)(z) simply by u~,u* and v.
Let us moreover set [u] = ut —u~.
Following Remark 4.3.4, let us consider the functionals G, defined in (4.27) acting on the space
Py () :={uec BV(Q) : u(y) € {u",u*} for ae. y € Q}.
Let us fix € > 0. For every p > 0, let vz 5 € Py~ 4+ (By{z)) be such that u. p = Uy y- y+, in a
neighborhood of B,(z) and

g- (us,m Bp(m)) < mg- (Bp(x)v uz,u‘,u'*’,u) + EwN—le_l‘

Then we get in view of (4.59)

me, (B, (z), um,u_ﬂ#,lf)

g5 {z, v, u¥,v) = limsup

0t wy—1pN 1
< imoup £ Bo(e)) + <0+ DMV 1(S(ue,) 0 By(o)
p—0+ WN 10
S 0288+ G (e, Bo(@)) + £(1 + [} (G (tte,p, By()) + 1(By(2)))
< limsup —£ T
p—t0t WN-10
< timeup (0 &+ EI0D (R~ (Bo(a) e wtor) + som-1p" ") + £+ [l u(Bp(o))
p—0+ WN-10

< (14 2+ S (@) + ) + S0+ D H ().
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Letting £ ~— 0 we obtain g, (z,u~,u™,v) < g~ (x,v), so that the step is concluded.

Step 4: geo(x, u™ (x),u™ (x), ¥s(u) (X)) > g8~ (X, vgu)(x)) for HN"1-a.e. x € S(u).
Let us choose z € S(u) which is an approximate jump point for u,

(4.60) Gool 3, 4™ (2), U™ (2), vy (0)) = lim £ Bo@)

+00
pms0t wy_1pN 1 ’

and such that

(4.61) T )

p—0t

where a; is defined in (4.22).
Since HV=1(K,,) < C, up to a subsequence we have

pn i =HN LK, S p weakly” in the sense of measures

for some Borel measure y. We can assume that (see for instance [8, Theorem 2.56])

(4.62) hﬁ,%lip E(Tﬁ,e_—(_ifll < +o0

Let (un)nen be a recovering sequence for £(u,(2), and let p; \, 0 be such that £(u, OB, (z)) =0.
For every i € N there exists n; € N such that for n > n; we have

E(u,Bm(z)) > gn(umBﬂi(z)) _ 1

(4.63) —=L > ~ ad
wn-1p) wy—1pY 1 i
S I, @nisuan . 9n (@ v) dHN 1 (z) N J5, @) 21 (¥) dy 1
- wN-1p7 O wnopl Tt i
1 Jo, ma@dy 1
= / gn(x + piy,v) dHN "1 (y) + _.fil_(f_LW -z
WN-1 JBiN[S(viNK}] WN_1p; q
where
(4.64) vi(y) = un(z+py) end K= {Kn N Bpli ()} -z

pi
We claim that we can find w,’1 piecewise constant in B; such that for n — 4co
wh —w'  strongly in L*(B;),
where w' is piecewise constant and w’ = U0,0,1,v5(u)(z) i @ neighborhood of the boundary, and

such that for n large

(4.65) on(@ + piy, v) AHN () > / on(@ + piy,v) dHV L y) — ¢

-/Bm{S(v}})\K:}] Bin[S(wi\Ki]

with e; — 0 for i — +oc0.
Using the claim, by (4.63), (4.65) and (4.61) we have that for n large

Ie (S N\Kn gn (¢, V) dHN1(Q) G- (zt B,.(x
goo(z; U_(.’E),u+($),lls(u) ($)) > Pi [8(25)\Kn] — _ éi — 'n,( n? ﬁ;_(l )) - éi
WN-10; WN-10;

where é; — 0 and

40 = uh (22) = 20 = w (

(—z
Pi

) strongly in L'(B,, (z)).
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By the T'-convergence assumption on G, using I'-liminf inequality we have that

b g— zi B i\ T - mg_ (B “u 10,105 (u ) ~
goo(:c,u (w))u+(m)7VS(u)(w)) = %‘E‘l‘)l —€; = e N_IIS( (=) — €.
WN-10; WN-10;

Letting ¢ — 400, and recalling the representation formula (4.36) for g~(z,v), we have that the
result is proved.
In order to complete the proof of the step, we have to prove the claim. Since

Vo (y) = piVun(z + piy),
we get by the coercivity assumption (4.22)

d JB, (z) [ Vun(2)P dz
/B Vo)1 dy = o} /B Vun(z + piy)|P dy = pb 222 s
1 1 y

< pf_l (gn(un, Bﬂi (.’Z:)) _ fBﬂi (=) al(y) dy) '

N1 N1
«@ P P;

Since u,, is optimal for u we have that

En(tn, Bp (7)) n—too E(u, By, (2)) im4co _
_”_(;v_—‘l’())n__‘; ““("“;1\%(“‘)‘)‘ —++o W10 (T, u (a:),u+(z),us(u)(w))<+oo.

In view also of (4.61), we conclude that we can choose n; so that for n > n;
(4.66) S / Vol (y)[P dy < Cpf ™
. I

for some constant C > 0. By Coarea formula for BV functions (see [8, Theorem 3.40}) we get

1.L+$ 1

(z) . . . . 1
[ @B\ seh) dr< [ velldy< Cai
u={z) B3

for a suitable constant €, where
(4.67) Ei(t) :=={z € By : z is a Lebesgue point for v} and v (z) > t}
and &8* denotes the reduced boundary. By the Mean Value Theorem there exists
th € u™(z),u* (2)]
such that
Nl f o i ai . c 1-1
(4.68) Y (0B (6)\ () < — o

() —u(z
‘We now employ a construction similar to that employed by Francfort and Larsen in their Transfer
of Jump Sets Theorem [53, Theorem 2.3]. Since z is a jump point for u we have that for i — +oo

u(T + piy) = U u-(z)ut (s)vsy(x)  Strongly in L*(By).

Then we have that for n large o

|Bf A BL ()] < e
where BY :={y € By : y-vgu)(z) >0}, AAB :=(A\ B)U(B\ A), and e; — 0 for i — +oo0.
By Fubini’s Theorem we have

Ve . 00 .
/ HN=1(BF \ Ei () N H*(s)) ds < / HN=1(BF \ EL(6)) N E*(s)) ds < ex,

0 -0
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where H*(s) := {y € B1 : y- Vs(u)(z) = s}, and by the Mean Value Theorem we get that there
exists 0 < sh+ < ,/g; such that setting Hi := H*(s§™) we have

HNT (B \ B () N HiY) < Ve
Similarly we obtain —+/g; < ¢4~ < 0 such that setting H>~ := H*(s5~) we have
MY ((BLE)\ BY)NHET) < Ve

Let us write y = (', yn), where yx is the coordinate along vg(y)(z) and o' the coordinates in the
hyperplane orthogonal to vg(yy(z). Let I; be such that for every y € B;

lynl = 2v6 = | <1 -1,

Let us set
D} = (BL(th)U{y € By : yv 2 s5"P\{y € By : yy < 557},

‘We set

1 [¥|=21-Lyn =0,

: 0 I|>1—1
(4.69) Cwli= ly,l 2 1—liyn <0,
Y WS-,y e D,
0 “otherwise.

Notice that w} is piecewise constant, with w?, = U0,0,1,v5wy(z) 1D & neighborhood of the boundary,
and such that

(4.70) gn(z + piy,v)dHN " (y) > / gnlz + piy,v) dHN " (y) — &
Bin[S(wi)\Ki] Bin[Swi\K3]

with &; — 0 for i — +o0.
In view of (4.68) and of the assumption (4.62) we have that HV~1(S(w})) < C; uniformly in
n for some finite constant C;. By Ambrosio’s Compactness Theorem we get for n — 400

i

b —w

wh strongly in L*(B;),
where w' is piecewise constant and w* = U0,0,1,vs5((z) 10 @ neighborhood of the boundary, so that

the claim is proved. O

Remark 4.4.2. Theorem 4.4.1 states that in the I'-limit process there is no interaction between
bulk and surface energies, since they are constructed looking at I'-convergence problems in Sobolev
space and in the space of piecewise constant functions respectively. As a consequence, considering
bulk and surface energies of the form c; f, and cog, with c3,co > 0, we get in the limit ¢; f and
cog as bulk and surface energy densities. We remark that a key assumption for non interaction
is given by equi-boundness of " ~1(K,,): dropping this assumption, interaction can occur even
in the case of constant densities, for example f(£) := |¢|P and g(z,v) =1 (if we consider in )0, 1|
the set K, = {% :4=1,...,n—1}, we get as I-limit the zero functional). As mentioned in
the Introduction, non interaction between bulk and surface energies was noticed in the case of
periodic homogenization (with K, = @) by Braides, Defranceschi and Vitali in [21].

In the rest of this section we employ Theorem 4.4.1 to obtain a lower semicontinuity result for
SBYV functions in the case of varying bulk and surface energies in the same spirit of Ambrosio’s
lower semicontinuity theorems {4].

From Theorem 4.4.1 we get that the following semicontinuity result holds.
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Proposition 4.4.3. Let (Kp)nen be a sequence of rectifiable sets in  such that HV~1(K,) < C
for alln € N. Let us assume that for oll A € A(Q) the functionals Fr(-, A) and G, (-, A) defined in
(4.26) and (4.27) T-converge in the strong topology of L*(Q) to F(-, A) and G~ (-, A) respectively.
Let (tn)nen be a sequence in SBVP(Q2) such that

Up — U weakly in SBVF(Q).

Then for all A € A(Q2) we have

@1 / f(z, Va(z)) dz < liminf / Fnl@, Vin (z)) d,
A n—+00 f4
and
(4.72) / g~ (z,v)dHN~! < liminf gnlz,v) dHN 2,
S(uw)nA =0 J(S(un)\Kn)NA

where f and g~ are the densities of F and G~ respectively.
Moreover let us assume G (-, A) defined in (4.28) T-converges in the strong topology of L*(£2)
to G(-,A). Then .

(4.73) / g(z,v)dHY ! < lim inf gn(z,v)dHN 1,
CYSna 10 J5(ua)nA

where g is the density of G.
Proof. By Theorem 4.4.1, we have that:for all'"h, k € N and for all 4 € A(Q) the functionals

Elk(y, A) == h/ falz, Vu(z))dz + & gn(z,v)dHN !
A C S (S(u\Kn)nA

T-converge in the strong topology of L*{Q) to
EMk(u, A) = h/ flz, Vu(z)) dz + k/ g (z,v)dHN L.
A S(u)nA

In particular by I'-liminf inequality we have

EMk(u, 4) < lim inf EME (yy,, A).

Then we get
[ 7,98 do < timint [ fulo, Vuna)) do + 1 gala,) MY (2)
A n=te S b J(Sun\Kn)nA

< liminf/ Jn(z, Vug(z)) dz + -]—k;C
A

n—++00
for some constant C independent of h and k. Since h,k are arbitrary we get that (4.71) holds.
The proof of (4.72) is analogous. Finally (4.73) derives from (4.72) in the case K, = 0. O
4.5 A new variational convergence for rectifiable sets

In this section we use the I'-convergence results of Section 4.4 to introduce a variational notion
of convergence for rectifiable sets which will be employed in the study of stability of unilateral
minimality properties.
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Let (Kn)nen be a sequence of rectifiable sets in , and let us assume following Ambrosio and
Braides [6, Theorem 3.2] that the functionals H;; : P(2) x A()) — [0, +00) defined by

(4.74) Hy (u, A) = HY "L ((S(u) \ Kn) N A)

I-converge with respect to the strong topology of L*(Q) for every A € A(Q) to a functional
H~ (-, A), which by the representation result of Bouchitté, Fonseca, Leoni and Mascarenhas [17,
Theorem 3] is of the form

(4.75) H (u, A) == /S i b (z, vy dHN " (z)

for some function A~ : 2 x S¥N~1 — [0, 4+00).

Definition 4.5.1 (o-convergence of rectifiable sets). Let (K, )nen be a sequence of rectifiable
sets in Q). We say that K, o-converges in Q to K if the functionals (H; }nen defined in (4.74)
I'-converge in the strong topology of L*(Q) to the functional H™ defined in (4.75), and K is the
unigue rectifiable set in 0 such that

(4.76) h™(z,vk(z)) = 0 for HN -a.e. z € K,
and such that for every rectifiable set H C ) we have
(4.77) h™(z,vg(z)) =0 for HN " -g.e. 2 ¢ H=— HCK.

The following lemma, which comes directly from Definition 4.5.1, shows that o-convergence of
rectifiable sets is stable under infinitesimal perturbation in surface.

Lemma 4.5.2. Let (Kn)nen be d sequence of rectifiable sets in Q such that K,, o-converges in
to K. Let (Kn)nen be a sequence of rectifiable sets in Q such that HN—1(K, A K,) — 0. Then
K, o-converges in Q to K.

In order to prove the main properties of o-convergence of rectifiable sets, we need the following
covering argument.

Lemma 4.5.3. Let H C § be a rectifiable set with HN"1(H) < +oco0. Then for all e > 0 there
exist an open set U € A(Q) and u € P(Q) such that HN Y (H\U) < & and

HYT(S(w) AHYNU) <&,
where A denotes the symmetric difference of sets.

Proof. Since H is rectifiable, we have that H = Ho U [J;ey K“ where HV"1(Hp) = 0, K; is
compact, and K; C M; for a suitable C* hypersurface M; of RY. For alli € N, let us denofe by
K; the set of point = such that z has (N — 1)-dimensional densﬂ:y 1 with respect to K;. We have
that HN~HH \ U;en Ki) = 0.

Let us fix £ > 0. Then for all z € K, there exists p(z) > 0 such that for all p < p(z) we have

(4.78) wy-1pV"1 < (1 +e)HN1 (i{i n Bp(z))
and
(4.79) HN-1 ((M,. \E)n B,,(a,-)) < ewy_1pN 1.

Since M; is of class C?, we can assume that p(z) is so small that B,(z) \ M; has exactly two
connected components B"“ (z) and B (z) for every p < p(z).
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‘We can apply now the Vitali-Besicovitch Covering Theorem (see {8, Theorem 2.19]), and deduce
that there exists a disjoint family of balls (B,, (z;))jen such that

HN-1 (H\ U B,, (xj)) =0.
jeN

Let us choose n € N such that
. k(3
HYH(H\ | Bu(o)) <,
=0

and let us set U := (Jj_o Bp,(z:). Let us consider u € P(£2) defined setting u = 1 in B, (z;),
j=1,...,n, and u = 0 otherwise. We have that

(HAS@)NU S | My \ By,) 0By, (z5),
jEN

where K;; is the compact set relative to z;, and Mj, is the associated (IV — 1)-dimensional hyper-
surface. In view of (4.78) and (4.79) we conclude that

HY YN (H A Sw) NU) < el +e)HY 1 (H),
so that the theorem is proved. : O

" Let us now-come to the main properties of o-convergence for rectifiable sets. By compactness
of I'-convergence, we deduce the following compactness result for o-convergence.

Proposition 4.5.4 (compactness). Let (Kn)ngN be a sequence of rectifiable sets in Q with
HN-YK,) < C. Then there exists a subsequence (np)ren and a rectifiable set K in Q such that
K., o-converges in §) to K. Moreover

(4.80) L HY (K < liminf BV (Kq).

Proof. By Proposition 4.3.3, up to a subsequence we have that for all A € A(2) the functionals
H; (-, A) defined in (4.74) T-converge in the strong topology of L(Q) to a functional H~(-, 4)
which can be represented through a density h™ according to (4.75).

Let us consider the class

K :={H C Q: H is rectifiable and h~(z,vg(z)) = 0 for H"L-ae. z € H}.
Notice that X contains at least the empty set. Moreover for all H € K we have
(4.81) HNYH)<L:= lim_,i_anN “Ky).
n—+-100
In fact let H € K. Since H = U; H; with H; compact and rectifiable with HY "1(Hi) < 4o, it is

not restrictive to consider H¥~1(H) < +oco. Given € > 0, by Lemma 4.5.3 we can find an open
set U and a piecewise constant function v € P(Q) such that

HN-YH\U)<e and HN((Sw)AH)NU)<E,

where A denctes the symmetric difference of sets. Since h™ < 1 we have

H™ (v, U) = / R (z,v)dHN " (z) = / R (z,v) dHN "Y(z) < e.
S(v)nU (S\H)NU
Let (vn)nen be a recovering sequence for v with respect to H~(-,U). Then we have that

limsup HV =1 ((S(ua) \ Kn) NU) < .

n—+oo
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By Ambrosio’s Theorem we deduce that

HNYH) <HN Y HMU)+HYNHH\U) < HY"YS©)NTU) + 2
< liminf HY~H(S(v,) N U) + 2¢ < liminf HY~Y(K,,) + 3e = L + 3¢.
n—-+00 n—-+oc
Since € is arbitrary we get that (4.81) holds.
Let us now consider _
L = sup{HN~Y(H) : He K} < +o0,
and let (Hj)ren be a maximizing sequence for L. We set

K := |} H;.
k=1
Clearly (4.80) and (4.76) hold. Moreover, since H¥~1(K) = L we have that (4.77) holds, and the
proof is concluded. O

Remark 4.5.5. Let © := (—1,1) x (~1,1) in R?, and let (K,)nen be a sequence of closed sets
with Ky, — K = {(—1,1)} x {0} in the Hausdorff metric and such that
H'LKp, > aH'LK

weakly”* in the sense of measures. If a < 1 by (4.80) we deduce that K, o-converges in £ to the
empty set. We stress that the condition a > 1 is not enough to guarantee that K is the o-limit of
(Kn)nen because the g-limit is also affected by the behavior of the normal vectors to Kp. In fact

considering
S . n n’ n
we have ‘
HILK, 2 oHLK

weakly” in the sense of measures. However also in this case we have that K,, o-converges in £ to

the empty set. In fact let us consider u € P(Q) such that v = 1 in QF := (-1,1) x (0,1) and

u=20in Q" = (-1,1) x (—1,0), and let u,, be a sequence in P(f) such that u, — u strongly

in L}() and with H¥~1(S(u,)) < C. Let (e, €ez2) be the canonical base of R2. By Ambrosio’s

theorem we get that '
viugH* L S(up) = eaH L S(u)

weakly® in the sense of measures. Considering the vector field we; with ¢ € C°(£) we get
/ ey - viug] dH = e - viug) dHE — / wdH?.
S(un)\Kn S{ug) K

Since i is arbitrary, we deduce that liminfy, o Hy (un) = iminfp oo HH(S(up)\ Kz) = 1. By
I-liminf we conclude that H™(u) = 1 that is A~ (z,e2) = 1 for H'-a.e. £ € K. Since the o-limit
of (Kn)nen can be only contained in K, we deduce that the o-limit is the empty set.

The following proposition shows that the o-limit is a natural limit candidate for a sequence of
rectifiable sets in connection with unilateral minimality properties (see the Introduction).

Proposition 4.5.6. Let (Kp)nen be a sequence of rectifiable sets in  with K, o-converging in
to K. Let (gn)nen be a sequence of Borel functions satisfying the growth estimates (4.23), and let
g~ be the energy density of the T-limit in the strong topology of L*() of the functionals (G Jnen
defined in (4.27). Then we have

(4.82) g (=, vr(x)) =0 for HN l-g.e. z € K,
and for every rectifiable set H C Q2
(4.83) g (z,vg(z)) =0 for H¥N l-s.e. ze H=HCK.
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Proof. By growth estimates on g, we have for all u € P(Q2) and A € A(Q)
oH ™ (u, A) < G (u, A) < fH ™ (u, A).

The proof will follow if we prove that for every rectifiable set H C

(4.84) h~(z,vg(x)) = 0 for HN lae. z € H

is equivalent to '

(4.85) g (z,vg(x)) = 0 for HNl.ae. z € H.

Let us show that (4.84) implies (4.85), the reverse implication being similar. It is not restrictive
to assume HYV~1(H) < +oco. Given € > 0, by Lemma 4.5.3 we can find an open set U and a
piecewise constant function v € P() such that

HVN"YH\U)<e and HN1((S@w)AH)NU)<E,
where A denotes the symmetric difference of sets. Then we get
/ .g'(:r, v)dHN(z) = / g (z,v) dHY " (z) + / g (z,v) dHY "1(z)
H HNU H\U
< / g (z,v)dHN " (z) +28e < B h™(z,v) dHN " (z) + 26e < 3fke.
S(v)nU S(v)nU
Since ¢ is arbitrary we get that
) g (z,vg(z) =0for HV lae. zc H
so that the .proof is concluded. ‘ O

The following lower semicontinuity result for surface energies along sequences of rectifiable sets
converging in the sense of o-convergence will be employed in Section 4.8.

Proposition 4.5.7 (lower semicontinuity). Let (K, )nen be a sequence of rectifiable sets in
such that K, o-converges in Q to K. Let (gn)nen be a sequence of Borel functions satisfying the
growth estimates (4.23), and let g be the associated function according to Proposition 4.3.2. Then
we have

/ oz, v) dHY(z) < liminf / on(z,v) AHV 1 (z),
K n—+o00 Kn

Proof. Let H C K with HN~Y(H) < 4+00. Given £ > 0, by Lemma 4.5.3 we can find an open set
U and a piecewise constant function v € P(1) such that

HN-YH\U)<e and HNT(SWw)AH)NU)<E,

where A denotes the symmetric difference of sets. If (v, )nen is a recovering sequence for v with
respect to H™(-,U) defined in (4.75) we have

limsup HY L ((S(vn) \ Kn) NU) < €.

n—+0o0

‘We deduce by T'-convergence that
[ s@nan=i@ = [ gena i@+ [ genant-ie)
H HNU H\U

< / g(z,v) dHN "Y(z) + 28e < liminf gn(z, V) dHN " (z) + 20¢
S(w)NU 00 J g, )nU

n——+oo

< liminf gnlz, vy dHN "1 (z) + 30e.
Kn
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Since £ is arbitrary we deduce
[ @) ar ) < hmiat [ gula,) aHYa),
H n—+o0 Kan

and since H is arbitrary in K the proof is concluded. 0

The following proposition is essential in the study of stability of unilateral minimality proper-
ties. : :

Proposition 4.5.8. Let (K, )nen be a sequence of rectifiable sets in Q) such that K, o-converges
in ) to K. Let1 < p < +oo, and let (un)nen be a sequence in SBVP(Q) with un, — u weakly in
SBV?(2) and HV1(S(uy)\ Kn) — 0. Then S(u)C K.

Proof. Let us consider K, = S(un) N Ky. By compactness, up to a further subsequence we have
that K, o-converges in {2 to a rectifiable set K CK. Let h™ be the density associated to K
according to Definition 4.5.1. By lower semicontinuity given by Proposition 4.4.3 we have

T N-1 PR N-1 7% —
/S @ @) < It (Sum)\ En) = 0.

‘We deduce that _ v L v
b~ (z, Vs (z)) =0 for HVae. z € S(u),

so that by definition of o-limit we deduce S(w)EKCK. ]

The next corollary shows that our o-limit always contains the ¢?-limit introduced by Dal Maso,
Francfort and Toader in [44] to study quasistatic crack growth in nonlinear elasticity (see Section
4.1 for a definition).

Corollary 4.5.9. Let (Kp)nen be a sequence of rectifinble sets in Q such that K,, o-converges in
Qto K. Let1 < p < 400, and let us assume that K, oP-converges in Q to some rectifiable set
K. Then KCK.

Proof. Recall that by definition of oP-convergence we have K = S(z) for some z € SBVP(Q), and
there exists (2, )nen sequence in SBVP(S1) with z, — z weakly in SBV?(Q) and S(z,,) € K. The
result follows applying Proposition 4.5.8 to {zn )nen- O

Remark 4.5.10. Notice that is general we can have that the oP-limit K of (Kp)nen is strictly
contained in K. In fact we can consider O := (~1,1) x (—1,1) in R, and

Ky = {(_171) \ Ln} X {0}

with L, C (—1,1) and |L,| — 0. In this case we get K = (—1,1) x {0}, while if L, is chosen in
such a way that its ¢p-capacity is big enough (see the celebrated example of the Neumann sieve,
we refer to [74]) we get K = 0.

This example is based on the fact that the o?-limit is influenced by infinitesimal perturbations
of the Ky, while the set K is not. To be precise we have that if HY ~}(K,AK!) — 0, and K,, — K
in the sense of o-convergence, then K, still o-converges to K.

In Section 4.7 and Section 4.8, we will need a definition of s-convergence in the closed set €.

Definition 4.5.11 (c-convergence in g) Let (Kp)nen be a sequence of rectifiable sets in 1.
We say that K,, o-converges in () to K CQ if K, o-converges in QY to K for every open bounded
set Q) such that  C V.

Notice that to check the o-convergence in €1 of rectifiable sets, it is enough check o-convergence
in £ for just one Q' with Q C .

74



4.6 Stability of unilateral minimality properties

In this section we apply the results of Section 4.4 and Section 4.5 to obtain the stability result of
unilateral minimality properties under I'-convergence for bulk and surface energies.

Definition 4.6.1 (unilateral minimizers). Let f : @ x RN — [0,+00] be a Carathéodory
function and let g : © x SN=1 — [0,-+oo| ‘be a Borel function satisfying the growth estimates
(4.22) and (4.23). We say that the pair (u, K) with u € SBV?(Q) and K 'rectzﬁable setin Q is a
unilateral minimizer with respect to f and g if S(u) C K, and

/Q f(, Vu(z)) dz < /n f(@, Vo(z)) o+ /H L)

for all pairs (v, H) with v e SBVP(Q), H rectifiable set in Q such that SW)C H and K C H.

As in the previous sections, let fn : © x RN — [0, +00[ be a Carathéodory function and let

: 2 x SN~ — [0, +00[ be a Borel function satisfying the growth estimates (4.22) and (4.23).

Let us assume that the functionals (Fn(-, A))nen and (Gn(:, A))nen defined in (4.26) and (4.28)
I'-converge in the strong topology of L*({2) to F(-, 4) and G(-, A) for every A € A(f) respectively.
Let f be the density of F according to Proposition 4.3.1 and let g be the density of G according
to Proposition 4.3.2.

The main result of the chapter is the following stability result for unilateral minimality prop-
erties under o-convergence of rectifiable sets (see Definition 4.5.1), and I'-convergence of bulk and
surface energies.

Theorem 4.6.2. Let (up)new be a sequence in SBVP(Q) with u, — u weakly in SBVP(Q), and let
(Kn)nen be a sequence of rectifiable sets in Q with HN~Y(K,) < C and such thet K, o-converges
inf)to K.

Let us assume that the pair (un, Kn)nen is ¢ unilateral minimizer for f, and g,. Then (u, K)
is a unilateral minimizer for f and g. Moreover we have

(4.86) = /fn(m Vuy(z)) dz -—/ f(z,Vu(z)) dz.

'n.—r+

Proof. By Theorem 4.4.1 we have that the functionals

_ N J Falz, Vu(@)) dz + [y, 9n(z,v) dHN Y (2) u € SBVP(Q),
Enlu) = (N
™ +o00 otherwise

I-converge with respect to the strong topology of L1({2) to the functional

E(w) = Jo F(z, Vu(z)) dz + fs(u) g (z,v)dHN"(z) u € SBV?(Q),
400 otherwise,
where f and g~ are defined in (4.32) and (4.36) respectively, with g~ < g.
By Proposition 4.5.8 we have S(u) C K, so that u is admissible for K, while by Proposition

4.5.6 we have that
g (z,v(z)) =0 for HYN lae. z € K.

Then the unilateral minimality of the pair (u, K) easily follows. In fact, by I'-convergence we have
that v is a minimizer for £ and &E,(un) — £(u). Then for all pairs (v, H) with S(v)C H and
K &€ H we have

/ f(@, Vu(z)) dz = Eu) < £@v) = / £z, Vo(z)) dz + / o~ (z,v) dHN
0 Q S(v)
- /ﬂ f(z, Vo(z)) dz + /S GCTE /Q f(z, Vo(@)) dz + /H L,

so that the unilateral minimality property holds. The convergence of bulk energies (4.86) is given
by the convergence &, (upn) — E(u). O
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Remark 4.6.3 (stability under o?-convergence). In the case of fixed bulk and surface energies
f and g, Dal Maso, Francfort and Toader [44] proved the stability of the unilateral minimality
property under oP-convergence for the rectifiable sets K, (see Section 4.1 for the definition).
This result readily follows by Theorem 4.6.2. In fact by Corollary 4.5.9 we have that if K, oP-
converges in Q to K, then K is contained in the o-limit of (Ky)nen. Since S(u) € K, we get that
the unilateral minimality of the pair (u, K) is implied by the unilateral minimality of (u, K).

As mentioned in the Introduction, a method for proving stability of unilateral minimality
properties nearer to the approach of [44] would be to prove a generalization of the Transfer -
of Jump Sets by Francfort and Larsen [53, Theorem 2.1] to the case of varying energies. The
following theorem based on the arguments of Section 4.4 provides such a generalization.

Theorem 4.6.4 (Transfer of Jump Sets). Let (Kp,)nen be o sequence of rectifiable sets in
Q with HN"YK,) < C and K, o-converging in Q to K. For every v € SBV?(Q) there emists
{(vn)nen sequence in SBVP(Q) with v, — v weakly in SBVP(Q2) and such that

lim /s;fn(z,an(:z:))dzz/Qf(w,v'u(m))dz

Tt =400

and .
tmeup [ gale, )Y < [ glon)dnt i a).

n—+00 JS(un)\Kn S(v\K

Proof. Let (vn)nen be a recovering sequence for v with respect to (Ep)nen defined in (4.24). By

growth estimates on f, and g, and since HV~1(K,) < C, we get v, — v weakly in SBV?(Q).

. Since no interaction -between bulk and surface energies occurs in view of Theorem 4.4.1, we get

that

lim /n Fn(z, Vom()) do = /ﬂ (=, Vo(x)) da

n—++00
and
Hm gn(z, v)dHN "1 = / g (z, ) dHN 1 < / gz, vydHN 1
R0 S(un )\ K - ‘ S(v) S(U\K v
because g =0 on K, and g~ < g. O

4.7 Stability of unilateral minimality properties with
boundary conditions

In view of the application of Section 4.8, we need a stability result for unilateral minimality
properties with boundary conditions.

In order to set the problem, let us consider pQ C 89, let f, : @ x RY — [0,+00[ be a
Carathéodory function satisfying the growth estimate (4.22), and let g, : O x SV=! — [0, 4+o0|
be a Borel function satisfying the growth estimate (4.23). We consider unilateral minimality
properties of the form

(4.87) /an(:c,Vun)sz/an(z, Vv)dz-;_/H\Kn gn(z,v) dHV "1 (z)

for every v € SBV?() and for every rectifiable set H in ) such that S¥~(v) € H. Here (K,)nen
is a sequence of rectifiable sets in  with HV=1(K,) < C, (un)nen is a sequence in SBVP () with
S¥n (up) € Kn, tn € WHP(Q) with 94, — 1 strongly in WHP(Q), and S¥=(-) is defined in (1.2).

In order to treat S¥=(-) as an internal jump and in order to recover the surface energy on 9p§}
for the minimality property in the limit, let us consider an open bounded set € such that & ¢
and let us consider g/, : ' x S¥—1 — [0, +o0[ such that

(4.88) g\ (z,v) = gn(z,v) ifz€ S'Z,
B+1 otherwise.
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Let us consider the functionals G}, : P(Q') x A(Q') — [0, +c0] defined by

G (v, 4) = / ol (@, v) dHY (z)
S{v)NA

and let G’ : P(Q) x A(§)') — [0, +o0] be their I-limit in the strong topology of L*(£'), which
according to Proposition 4.3.3 is of the form

(4.89) G'(v, A) = /S @) dHN =1 (z)

We clearly have ¢'(z,v) = g(z,v) for z € Q, where g is the surface energy density defined in
(4.34), while it turns out that (see Remark 4.7.2) the surface energy given by the restriction of g’
to 8§ x' SV~ is completely determined by the functions g,.

Let us set

fa(z,§) Hze,
alélP otherwise,

wo) -ﬁma:{

and let ' be the energy density of the I'-limit of the functionals on WLP(Y') associated to f/,
according to Proposition 4.3.1. We easily have that

s (49].) . f’(fl?,E) = {f(m,e) ifze Q,

a|¢lP  otherwise.

-~ Since Q is Lipschitz, we can assume using an extension operator that t¥y,,v € WHP(RV) and
1, — 1 strongly in WHP(RY).
Before stating our stability result, we need the following I'-convergence result.

Lemma 4.7.1. Let (Kn)nen be a sequence of rectifiable sets in Q such that HN~Y(K,) < C. Let
us assume that the functionals

Jor Fi(z, Vo(z)) dz + fS(v)\K,, gh(z,v)dHNY(z) if v e SBVP(Q),
+00 otherwise

(4.92) £l (v) = {

T-converge in the strong topology of L*(Q)') according to Theorem 4.4.1 to

. !z, Vo(z)) dz + g ~(z,v)dHN"1(z) ifve SBVP(QY),
a S(v)
+00 otherwise.

(4.93) E'w) = {
Then we have that the functionals

? . _ I
(4.94) £ (v) = {Sn(v) ifv=1yn on X\T,
+oo  otherwise

T-converge in the strong topology of LY(Y) to

E'v) fv=1 on W\,

+00  otherwise.

(4.95) E'w) = {

Proof. Let v € SBVP(Y) with v = v on Q' \ §, and let (vn)nen be a recovering sequence for v
with respect to the functionals £},. We have that

(4.96) Vu, — Vi strongly in LP(Q'\ O; RY),
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and
(4.97) HYH(S(wa) N (' \ Q) — 0.
In fact we have that for all U € A(Q') such that U € @'\ Q and £'(v,8U) =0

(4.98) Vv, — V¢ strongly in LP(U;R™),
and
(4.99) HYN Y S(w,)NTU) — 0.

Let € > 0 and let us consider an open set V € A(Q) such that 80 C V, £'(v,8V) = 0,
Jynalaildz < e (a; is defined in (4.22)),

(4.100) /Vf’(:z:,Vv(z)) dzr <e and /V f(z, V() dz < e.
Then for n large (no interaction between bulk and surface part occurs) we have
(4.101) /V £.(z, Von(2)) de < e.
Notice that |
/ | Von — VP dz = ' (Von - VU dz / | Von - Vo do
\Q \(Quv) v\l

-1

p—1 9P
< / Von — Voolf do + 2 / (@, Vou (@) + f'w, V(@) dz + o [ 2Jay|da.
U\ (V) a Jv e Jvnn

Since Vu, — V1) strongly in LP(Q' \ (QU V); RY), because of (4.100) and (4.101), and since ¢ is
arbitrary, we get that (4.96) holds.
Let us come to (4.97). Up to a subsequence we have

pn = HV TS (0a) N\ D)) 2 wealdy® in Mp(Q').

In view of (4.99), in order to prove (4.97) it is sufficient to show that p(892) = 0. Let us assume
by contradiction that u(6Q) # 0: then there exists a cube @, of center z € 80 and edge 2p such
that £'(v,0Q,) = 0 and

(4.102)  w{(@p) >e>0.
Up to a translation we may assume that z = 0, and moreover we can assume that
aNQ,={(=",y):a' € (~p,p)ry € (—p, ("))},

where (z,y) is a suitable orthogonal coordinate system and h is a Lipschitz function. Let n > 0
be such that setting

Vo ={(z',y) : 2" € (=p,p), y € (A(z") — m, h(z") + )}
we have V,, C @, and £’'(v,0V;)) = 0. Let us set
V= {@y) € Vo y <h@)} and Vi = {(@3) € Vo 1y > ha)}.
By (4.102) we have that for n large
(4.103) HN=Y(S(va) N V) > 0
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Let 9 be the function defined on V;; obtained reflecting Yy to V, : more precisely let us set
D LICH) if (z',y) € V;},
T |l 2(e) —y) if (2',y) € V.
We clearly have v € W1P(V,). Let 6, be obtained in the same way from (”n)|v,;*- Let us consider
Wy i= Vp + T — T,
We have wy, — v weakly in SBV?(V;) so that by lower semicontinuity given by Proposition 4.4.3
we get
(4.104) / '~ (,v) dH¥1(z) < liminf g (,v) dHN1(z).
S(v)Vy o0 J (S (wa)\Kn)NVy

On the other hand, since £'(v, 8V;) = 0, we have that vy, is a recovering sequence for v in V;,. In
particular we get that

(4.105) / g ~(z,v)dHN"Hz) = lim gh(z,v) dHN "1 ().
5(v)NVy 700 J(S (v \Ka)V,
Formulas (4.104) and (4.105) give a contradiction because for n large by (4.103) and since K, C Q
-and S(w,) CQNQ, (recall that g, (z,v)=f+1forz e ¥\ Q)

/ gz, v) dHY () — /
(SN KTy (S (wn)\En)Ve

‘We conclude that (4.97) holds.

We are now in a position-to prove.the I-limsup inequality for f:',’l and £ (the I-liminf is
immediate from the T-convergence of &£, to £’ and the fact that the constraint is closed under the
strong topology of L*(£2)). Let £ > 0, and let U € A(£') be such that 8Q C U, £'(v,8U) = 0, and

v, (4.106) k/f(m,V'u)dz<e.
” U

gn(z,v)dHY " (z) > 0.

In view of (4.96) and (4.97) we can find ¢, € SBVP(') such that @, = 9, —v, on X\ Q, @, =0
on Q\U and

wn — 0  strongly in L*(Q),
Vien —0  strongly in LP(Q'; RY),
HN-1 (S(n)) — 0.

Let us consider
U, 1= Up + @n.
We have @, = 1, on £ \_Q Moreover
limsup/ gl (z,v)dHV 1 = ].imsup/ gh(x,v)dHV 1,
n—++00 JS(5n )\Kn n—+00 JS(va)\Kn

“and using the growth estimate on f/,

lim sup
n—+00

fh(z, Vig(z))dz ~— [ fi(z,Vop(z))dz
A L

< limsup / Il V(@) + fn(, Vom(z)) do
ung

n—-+4co

gp-1
< limsup | aa(z)dz+ (T + 1> / Tnlz, Von(z)) dz
U

n—++o0 JU
gp—1

+ / |ag| dz + 271 / Vnl? dz.
a Jy U
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By (4.106) we get
limsup/ folz, Vop(z)) dz < €.
U

n-++4o0

Then we conclude

lim sup
n—-+o00

[ #u(a, Vin(@)da - [ £2,Va(a)) da| < efe)
Q Qr

with e(g) — 0 as € — 0. We deduce that

limsup £ (7n) < €' (v) + e(e),

n—-+oo
with e(e) — 0 as ¢ — 0. Since ¢ is arbitrary, using a diagonal argument we have that the I'-limsup
inequality is proved. O

Remark 4.7.2. In view of Lemma 4.7.1 we can prove that the surface energy determined by the
restriction of g’ to 6 is actually independent of the choice of ' and of the constant value ¢’ of
g, on '\ Q provided that ¢/ > 8. In fact ¢’ is the density of the surface energy of the I'-limit in
the strong topology of L(Q2) of the functionals on SBV?(()) defined as

& () = 'z ! (z,v) dHY " (z).
fo)= [ feveeEs [ aEnat e

Following the proof of Lemma 4.7.1 (for the functionals £}, with K, = 0}, if v = ¢ outside Q, we
can find (vn)nen recovering sequence for v with respect to (£;,,€',¢') such that vy, = ¢, outside
§2. Then if Q" is an open set such that Q C 2" we have that (vs)jana- is a recovering sequence

also for (£/,Q" N&Y, "), and we have

/ gz, vydH" "t = lim gn(z,v)dHN 2,
S{v)

n—-+oc S(vn)

We deduce that the surface energy given by the restriction of g' to € x 8V~ is determined only
by the g : Q& x S¥—1 — [0, +0c0].

The stability result for unilateral minimality properties with boundary conditions under o-
convergence in §) for rectifiable sets (see Definition 4.5.11) and I'-convergence of bulk and surface
energies is the following.

Theorem 4.7.3. Let v, € WHP(Q) with v, — 9 strongly in WHP(Q). Let (un)nen be a sequence
in SBVP(Q) with u, — u weakly in SBVP(S), and let (K, )nen be a sequence of rectifiable sets
in Q with HV~Y(K,) < C, such that K, o-converges in ) to K, and S¥»(u,) € Ko,.

Let us assume that the pair (un, Ky,) satisfies the unilateral minimality property (4.87) with
respect 10 fn, gn and ¥,. Then (u, K) satisfies the unilateral minimality property with respect to
I, g and v, where f is defined in (4.32) and g is the restriction of g' defined in (4.89) to Qx SN-L,
Moreover we have

(4.107) lim /Q Ful@, Vun(z)) do = /ﬂ f(z, Vu(z)) da.

Tt 00

Proof. Since the boundary datum 1, is imposed just on 8p€2, we can consider I := 80\ Hpd
as part of the cracks, that is we can replace in the unilateral minimality properties K, with
K,ll = K, UdnQ.

It is easy to prove that K}, o-converges in € to K U 8xQ. Then the proof follows that of
Theorem 4.6.2 employing the functionals (£} )nen defined in Lemma 4.7.1 with K, in place of
K,. ]
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4.8 Quasistatic evolution of cracks in composite materials

The aim of this section is to apply the stability results of Section 4.7 to the study the asymptotic
behavior of crack evolutions relative to varying bulk and surface energies f,, and g,,. As mentioned
in the Introduction, this problem is inspired by the problem of crack propagation in composite
materials. We restrict our analysis to the case of antiplanar shear, where the elastic body is an
infinite cylinder.

Let us recall the result of Dal Maso, Francfort and Toader [44] about quasistatic crack evo-
lution in nonlinear elasticity: it is a very general existence and approximation result concerning
a variational theory crack propagation inspired by the variational model introduced by Francfort
and Marigo in [54]. As already said, we consider the antiplanar case and for simplicity we neglect
body and traction forces, and so we adapt the mathematical tools employed in [44] to this scalar
setting.

As in the previous sections, let € RY (which, for NV = 2 represents a section of the cylindrical
hyperelastic body) be an open bounded set with Lipschitz boundary. The family of admissible
cracks is the class of rectifiable subsets of ), while the class of admissible displacements is given
by the functional space SBVP(Q2), where 1 < p < +oo. Let 9pf2 be a subset of Q. Given
W € WHP(Q), we say that the displacement u is admissible for the fracture K and the boundary
datum 1 and we write v € AD(¢, K) if

Sw)CK and wv=4v on Opfl \ K.

" This can be summarized by the notation 5% (u) € K, where 5Y(-) is defined in (1.2).
- Let f(z,8) : 2 x RN — [0, +00] be a Carathéodory function which is convex and C' in ¢ for
a.e. € §, and satisfies the growth estimate L

(4.108) a1(z) +alél” < f(z,€) < aa(z) + BIEF,

where a1,a; € L*(Q) and a, 3 > 0. Let moreover g : £ x SN¥~1 — [0, 400 be a Borel function
such that

(4109) a < glz,v) < B.
The total energy of a configuration (u, K) is given by

E(u,K) = /Q Flm, Vuu(z)) do + /K oz, v)dHN=1(z).
We will usually refer to the first term as bulk energy of u and we write
(4.110) Eb(u) :=/nf(w, Vu(z))dz,
while we will refer to the second term as surface energy of K and we write
(4.111) £9(K) = /K o(z, v)dHN ().

Let us consider now a time dependent boundary datum ¢ € W1([0,T|; WiP(Q)) (i.e. the
function t — )(t) is absolutely continuous from [0, 7] to the Banach space W1?(f), with summable
time derivative, see for instance [22]), such that for all £ € [0,T]

(4112) Il Loy < C-

In [44] Dal Maso, Francfort and Toader proved the existence of an irreversible quasistatic crack
evolution in ) relative to the boundary displacement %, i.e. the existence of a map ¢t — (u(t), K(z))
where u(t) € AD(3(t), K (1)), lu(t)lzes(2) < 1¥(£)lloo and such that the following three properties
hold:
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(1) irreversibility: K(t1)CK(ty) forall0 <t; <ty < T;
(2) static equilibrium: £(u(0), K(0)) < E(v, K) for all (v, K) such that v € AD{%(0), K), and
E(w(t),K(t)) £ E(, K) for all K(t) C K, v € AD(3(t), K);

(3) nondissipativity: the function ¢t — E(u(t), K (¢)) is absolutely continuous and
d . o
FEW®. K@) = [ Vef(@ Vu) Vi) da,

where ¢ denotes the time derivative of ¢ — (t).

For every n € N let us consider admissible bulk and surface energies f,, : & x RY — R and
gn : 2 x SN¥=1 — [0, +00] for the model of [44] satisfying the growth estimates (4.108) and (4.109)
uniformly in n. Let us moreover assume that f, is such that fora.e. z€ Qand forall M >0

(4.113) |Vefalz, &) = Vefa(z, 63)| — 0
for all £1,£2 such that |£[} < M |£]2 < M and |} ~ €2| — 0. We denote by &,, £2 and £F the

total, bulk and surface energies associated to f, and g,.

Let f and g be the effective energies associated to f, and g, in the sense of Theorem 4.7.3,
i.e. let f be given by Proposition 4.3.1 and let g be the restriction to  x S¥~! of the function
g’ defined in {4.89). Notice that by Theorem 4.2.5 we have that the function f(z,-) is C1: as it
is also convex in £ and satisfies the growth estimate (4.108), we have that f and g are admissible
bulk and surface energies for the model of [44].

Let t — 9, (t) be a sequence of admissible time dependent boundary displacements such that

tp — %  strongly in W1 ([0, 7], Wl”’(Q)).

Let t — (un(t), Kn(f)) be a quasistatic evolution for the boundary datum 1, relative to the
energies f, and g, according to [44}. The main result of this section is the following Theorem
which asserts that the o-limit in €I of K, (¢) (see Definition 4.5.11) still determines a quasistatic
crack growth with respect to the energies f and g.

Theorem 4.8.1. There ezists a quasistatic crack growth t — (u(t), K(t)) relative to the energies
f and g and the boundary datum ¢ such that up to a subseguence (not rebelled) the following hold:

(1) for allt € [0,T) _
Kn(t) o-converges in Q to K(t),

and there exists a further subsequence ny (depending possibly on t) such that
Un, (£) = u(t) weakly in SBV?(Q);

(2) for everyt € [0,1] we have convergence of total energies
En(un(t), Ka(t)) — E(u(t), K (1)),
and in particular separate convergence for bulk and surface energies, i.e.
Enlun(t)) = E°(u(t)) and  E°(Kn(t) — £°(K(1)).

Proof. Notice that by nondissipativity for ¢t — (un(t), K,,(¢)) and by growth estimates on f,, and
gn we have that there exists a constant C such that for all t € [0,7] and for all n € N

(4.114) IVun@IP + HY (K (8)) + lun (@)l < C.
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We divide the proof in several steps.

Step 1: Compactness for the cracks. In view of (4.114), using a variant of Helly’s theorem
(see for instance [45, Theorem 6.3] for the case of Hausdorff converging compact sets), we can
find a subsequence (not rebelled) of (Kr(-))nen and an increasing map ¢ — K (t) such that for all
tel0,T]

(4.115) Kn(t) o-converges in { to K (2).
Step 2: Compactness for the displacements. Notice that the sequence (u,(t))nen is relatively

compact in SBV?(2) by (4.114). We now want to select a particular limit point of this sequence.
With this aim, let us consider

Bn(t) = /ﬂ Ve fo (@, Vaun (£)) Vi (£) do,

and let us set

(4.1186) B(t) = lim sup 9, (¢).

n—++00

Let us see that there exists u(t) € SBVP(Q2) such that

(4.117) 9(t) = /n Vef (@, Vult)) Vi) da
and
(4.118) Un, (t) = u(t)  weakly in SBVP(Q)

for a suitable subsequence n), depending on ¢. In fact let us consider a subsequence ny such that

00 =, Jim_ [ Ve, Vun, () Vibn, () do,

and
Un, (t) =u  weakly in SBVP(Q).
By static equilibrium for (u,(t), K,(¢)) we have that
/ Jr (@, Vg, () dz < / Jor (2, Vo(z)) dz + / gn(z,v) dHN Y (z)
0 0 H

\Kn, ()

for all v € AD(%n, (¢), H) with K,, (t) C H. Then by Theorem 4.7.3 we get that

N-1
(4.119) /S;f(x, Vu)dz < /ﬂf(m, Vu(z)) dz + _/H\K(t) glz,v)dH" " {(z)
for all v € AD(3(t), H) with K(t) € H and
(4.120) /n Fou (2, Vum, (£)) dz — /Q f(z, Vu) da.
We claim that
(4.121) Jim /Q Ve fr (2, Vitm, (£))V® d = /ﬂ Vef (@, V)V do

for all @ € W1?(Q). This has been done in [44, Lemma 4.11] in the case of fixed bulk energy, and
our proof is just a variant based on the I'-convergence results of Section 4.4 and on assumption
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(4.113) which permit to deal with varying energies. Let us consider s; “\, 0 and k; — +4-o0: up to
a further subsequence for k; we can assume that

flo, Vulz) +5;VO(@)) - fla, Vulz) 4 L o / Ve fo, (@ Vi, (£) + 5;V@) VO da
0

S5

where §; € [0,s;]. This comes from lower semicontinuity for bulk energies under I'-convergence
given by Proposition 4.4.3, and by Lagrange’s Theorem. By Lemma 4.2.4 we have

J_H_ / Ve fay, (@ Vin,, (t) +5;VO)VOdz = hmmf/ Ve S, (T, Vin, (£)) VO dz,
so that we get
/ Ve f(z, Vu)V® dz < limin / Vefu. (@, Viin,, (£))VD da.
0 Jj—+oo 0 J )

Changing ® with —®, we get that (4.121) is proved: setting u(t) :== u we deduce that (4.117) and
(4.118) hold.

Step 3: Conclusion. Let us consider ¢ — (u(t), K (¢)) with u(t) and K(t) defined in Step 2
and Step 1 respectively. In order to see that t — (u(t), K(t)) is a quasistatic crack evolution we
have to check the admissibility condition u(t) € AD(¥(t), K(t)) for all ¢, and the properties of
irreversibility, static equilibrium and nondissipativity conditions with respect to f and g.

As for admissibilify, this is guaranteed by (4.115) and (4.118) which ensure that
5% (u(t)) € K(t). Irreversibility is given by construction in Step 1, and static equilibrium comes
from (4.119) for t € (0,T), and by Lemma 4.7.1 (where we take K, = @) for t = 0. As for
nondissipativity, we have that static equilibrium implies that (see [44]) for all £ € [0, T]

E(u(t), K(t)) > £(u(0), K(0)) + /0 /n Ve (2, Vu(r)Vi(r) dedr.

On the other hand by lower semicontinuity given by Proposition 4.4.3 and by Proposition 4.5.7
(applied to ¢’ from which g is obtained by restriction) we have for all ¢ € [0, T}

E(u(t), K (1)) < lminf £ (un(2), Kn(?)),
and by I'-convergence given by Lemma 4.7.1 (where we take K, = 0)

E@(0), K(0) = _lm_En(un(0), Kn(0)).
Hence we get for all £ € [0, T] (applying also Fatou’s Lemma in the limsup version)

E(u(t), K(t)) < EE}_}_{E Eﬂ(un(t)yKn(t)) < hIIlSUP En (un (t), Kn(t))

—-hmsupé'n(un(O) Kn( O))—i—/ In(8) ds < E(u(0), K( 0))+/ ¥(s)ds

= SO KON+ | [ Ver(a, Vulr) Vi) dedr < £u(0), K@),

so that we get

E(u(t), K () = Ew(0), K(0)) + /0 /n Ve (@, Vu(r) Vi (r) dzdr

and

(4.122) lim £ (un(t), Ka(t)) = E(u(t), K{))-

TL—t
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Finally by lower semicontinuity for the bulk and surface energies under weak convergence for the
displacements and o-convergence in  for the cracks, we conclude that

JJm £ (un(®) = E°(u(®)),

and
JJm E3(Ka(t) = £ (K 1),

so that the theorem is proved. ‘ 0O
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Chapter 5

Size effects on quasistatic growth
of cracks

A well known fact in fracture mechanics is that ductility is also influenced by the size of the
structure, and in particular the structure tends to become brittle if its size increases (see for
example [32], and references therein). The aim of this chapter 1. is to capture this fact for the
problem of quasistatic growth of cracks in linearly elastic bodies in the framework of the variationa.l
theory of crack propagation by Francfort and Marigo [54].

In the context of generalized aentiplanar shear, the basic total energy of the conﬁguratlon
displacement-crack (u,I") considered in [54] is given by

(5.1) /Q Vel de 78 )

The first term in (5.1) implies that we assume to apply linearized elasticity in the unbroken part
of 2. The second term can be considered as the work done to create T.

As suggested in [54], more general surface energies can be considered in (5.1), especially those
of Barenblatt’s type [13], and here we consider energies of the form

(5.2) / o([ul) (@) dHY (=),

where [u](z) = u¥(z) — v~ (z) is the difference of the traces of u on both sides of T', and ¢ :
[0, +0c0[— [0,+00] (which depends on the material) is such that ¢(0) = 0. In order to get a
physical interpretation of (5.2}, let us set o := ¢': we interpret o(|[u]|(z)) as density of forces in
that act between the two lips of the crack I whose displacements are ut(z) and u™(z) respectively.
Typically o is decreasing, and o(s) = 0 for s > 5 this means that the interaction between the two
lips of the crack decreases as the opening increases, and disappears when the opening is greater
than a critical length 5. As a consequence, @ is increasing and concave, and (s) is constant
for s > 5. We will then consider ¢ increasing, concave, with ¢(0) = 0, a = ¢'(0) < +oo, and
Hmg 400 0(8) = 1. We can interpret

/F o(1[ull(z)) dHY 1 (z)

as the work made to create I with an opening given by [u]. Assuming linearized elasticity to hold
in @\ T, we consider a total energy of the form

(5.3) IVl + /P () N1,

1The results of this chapter are contained in the paper
A. Giacomini: Size effects on quasistatic growth of cracks. SIAM J. Math. Anal. to appear
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where || - || denotes the L? norm. The problem of irreversible quasistatic growth of cracks in the
cohesive case can be addressed through a time discretization process in analogy to what proposed
in [54] for the energy (5.1).

Let g(t) be a time dependent boundary displacement defined on 8pQ C 8Q with ¢ € [0, T]. Let
6>0andlet I :={0=1§ <t <--- <t = T} be a subdivision of [0, T] with max(t{,, —tf) < ¢,

and let gf = g(t}). At time ¢ = 0 we consider u§ as a minimum of

(5.0 L B (G

Here 590 (u) := S(u) U {z € 8pQ : u(z) # g(0)(z)}, and for all z € ApQ we consider [u](z) :=
9(z) — G(z), where @ is the trace of u on 8. We define the crack I'} at time t = 0 as S9(0 (u)).
We also set 4§ = |[u§]] on I'§. The presence of S9®) (u) in (5.4) indicates that the points at which
the boundary displacement is not attained are considered as a part of the crack.

Supposing to have constructed I'{ and ¢¢ at time t{, we consider a minimum uf,; of the
problem

(5:5) IVl [ el v ant,

87541 (w)urs
where [u]] V 4 = max{[ull #f}, and define ¥, i= I§ U Sebs (uf,) and o, = 9 V [ud,]
onT?, ;.

Ngtice that problem (5.5) takes into account an irreversibility condition in the growth of the
crack. Indeed, while on 59t (u) \ T the surface energy which comes in minimization of (5.5) is
exactly as in (5.2), on S9en (u) NT?¢ the surface energy involved takes into account the previous
work made on T'¢. The surface energy is of the form of (5.2) only if |[u]| > ¥¢, that is only if
the opening is increased. If |[u]] < 9¢ no energy is gained, that is displacements of this form
along the crack are in a sense surface energy free. Notice finally that the irreversibility condition
involves only the modulus of [u): this is-an assumption which is reasonable since we are considering
only antiplanar displacements. Clearly more complex irreversibility conditions can be formulated,
involving for example a partial release of energy: the one we study is the first straightforward
extension of the irreversibility condition given in [54] for the energy (5.1).

The discrete in time evolution of the crack relative to the subdivision I5, and the boundary
datum g(t) is given by {(uf,T¢,%¢) : i=0,...,Ns}.

The drreversible quasistatic evolution of crack relative to the boundary datum g(t) is obtained
as a limit for § — 0 of (u(2),T%(t),4%(t)), where ud(t) := uf, T9(t) := T¥ and ¥°(t) := ¢¢ for
<t<td,.

As mentioned in Section 1.4, this program has been studied in detail in several papers in the case
¢ = 1, that is for energy of the form (5.1). In all these papers ([45],]33],[53],[44]), the analysis of the
limit reveals three basic properties (irreversibility, static equilibrium and nondissipativity) which
are taken as definition of irreversible quasistatic growth in brittle cracks: the time discretization
procedure is considered as a privileged way to get an existence result.

In the case of energy (5.3), several difficulties arise in the analysis of the discrete in time
evolution, and in the analysis as § — 0. In Section 5.1, we prove that the functional space we need
in order to apply the direct method of the Calculus of Variations in the step by step minimizations
(5.4), (5.5) is the space of functions with bounded variation BV : we thus consider a relaxed version
of the problems, namely

[ o+ [ pllullve) an= + alpvul(@),

Q r

where a = ¢/(0), f is defined in (5.9), and D®u indicates the Cantorian part of the derivative
of u. An existence result for discrete in time evolution in this context of BV space is given in

Proposition 5.1.1.
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The analysis for 6 — 0 presents several difficulties, the main one being the stability of the
minimality property of the discrete in time evolutions. The main purpose of this chapter is to
prove that these difficulties disappear as the size of the reference configuration increases, thank to
the fact that the body response tends to become more and more brittle in spite of the presence
of cohesive forces on the cracks. More precisely we prove this fact for the discrete evolutions
in Qp = hQ for h large, and under suitable boundary displacements. The idea is to rescale
displacements and cracks to the fixed configuration {2, and take advantage from the form of the
problem in this new setting. The boundary displacements on 8p&);, := hdp§ will be taken of the
form

z
ato) =k (t,5), g ACEOTHEND), lo®lew<C, te0,T], z€ M,
where & > 0 and C > 0. We indicate by (u®*(t), D% (t), %" (t)) the piecewise constant interpola-
tion of the discrete in time evolution of fracture in £ relative to the boundary displacement gj.
Let us moreover set for every t € [0, T

£0h (1) = / F(VuS(8)) dz + / (@5 (2)) dHN T + a| DU (1) ().
hQ TS (1)

In the case ¢ = %, we make the following rescaling

s 1: : 1.
WO (L) = -—\/—-E—u‘s'h(t,ha:), Koh() = —};I"s'h(t), YR (t) =

L
vh

% wheret € [0,7T] and =z € Q. The main result of the chapter is the following (see Theorem 5.2.1 for
% @ more precise statement).

PO (t, ha),

e

Theorem 5.0.2. If§ — 0 and h — +o0, there ezists a quasistatic evolution {t — (v(t), K (t))}
v of brittle cracks in ) relative to the boundary displacement g in the sense of [58] (see Theorem
=it 1.4.2) such that for all t € [0,T] we have

Vot (t) = Vu(t) weakly in L*(Q;RN).
Moreover for all t € [0, T we have

1
AN—1

EPM(t) = [ Vola)|? + 1= (R (1))
in particular A~V Deudh (1)[(Qy) — 0,
= [ AV 0) da = [V,

and
T gy PO ()

Theorem 5.0.2 proves that as the size of the reference configuration increases, the response of
the body in the problem of quasistatic growth of cracks tends to become brittle, so that energy
(5.1) can be considered. Moreover we have convergence results for the volume and surface energies
involved.

The particular value o = % comes out because a problem of quasistatic evolution has been
considered. In fact if we consider an infinite plane with a crack-segment of length | and subject
to a uniform stress o at infinity, following Griffith’s theory the crack propagates quasistatically if
o= %ﬁ%, where K¢ is the critical stress intensity factor (depending on the material). So if the

crack has length hl, the stress rescale as ﬁ This is precisely what we are prescribing in the case
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o= %: in fact the stress that intuitively we prescribe at the boundary can be reconstructed from
Vuy, and rescales precisely as %{

TFor the proof of Theorem 5.0.2, the first step is to recognize that (v¥?(t), Ko™ (t),v5%(t)) is a
discrete in time evolution relative to the boundary displacement g for a total energy of the form

/ Fu(V) da + / on (] V) dHY ! + av/A| Do) (),
Q r

where wp(s) /1 for all 5 € [0,+o0[, and fr(&) / |£]? for all £ € RY. From the fact that ¢, 71
we recognize that the structure tends to become brittle. Bound on total energy for the discrete in
time evolution is available, so that compactness in the space BV can be applied: it turns out that
the limits of the displacements are of class SBV with gradient in L?(; R"). Limits for the cracks
are counstructed through a I'-convergence procedure (see Lemma 5.3.2). The main point in order
to see that (v(t), K(t)) is a quasistatic crack growth is to recover the static equilibrium condition
(see point (c) of Theorem 1.4.2)

IVo@)[? < [Vo]? + HY"H(SP ) \ K(2)),  ve SBV(R)

from the minimality properties satisfied by (v®"(t), K%"(t),¥%"(t)). This is done by means of a
refined version of the Transfer of Jump of [53] (Proposition 5.3.5): the main difference here is that
we have to deal with BV functions and we have to transfer the jump on the part of K%"(t) where
& (t) is greater than a given small constant.

We also consider the cases a €]0, 5[ and e > 3. It turns out that in the case o €]0, [, the body
is not solicited enough to create a crack, that is €, tends to behave elastically: more precisely we
prove (Theorem 5.2.2) that setting

(5.6) vh(t, z) = hlauf"h(t, ha),

for all ¢ € [0,T] we have that v5*(t) converges to the displacement of the elastic problem in Q
under boundary displacement given by g().

In the case o > % we have that the the body tends brutally toward rupture: in fact in Theorem
5.2.3 we prove that v%"(0) given by (5.6) converges to a piecewise constant function v in £, so that
59(0) () disconnects . This phenomenon is a consequence of the variational approach based on
the search for global minimizers: as the size of 2, increases, cracks carry an energy of order AV -1,
while non rigid displacements carry an energy of greater order: in this way crack is preferred to
deformation.

The chapter is organized as follows. In Section 5.1 we deal with the problem of discrete in
time evolutions for cracks in the cohesive case. The main theorems are listed in Section 5.2, while
in Section 5.3 we prove some results which will be employed in their proofs to which Sections 5.4,
5.5 and 5.6 are devoted. In Section 5.7 we prove a relaxation result which is used in the problem
of the discrete in time evolution of cracks.

5.1 Discrete in time evolution of fractures in the cohesive
case

In this section we are interested in generalized antiplanar shear of an elastic body {2 in the context
of linearized elasticity and in presence of cohesive forces on the cracks.

The notion of discrete in time evolution for cracks relative to time dependent boundary dis-
placement g(f) has been described at the beginning of the chapter. It relies on the minimization
of functionals of the form

(5.7) |Vl + o(|[u]] v ¢) dHV 1,
Tuse) (u)
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with ¢ a positive function defined on I'. We now define rigorously the functional space to which
the displacements belong, and the properties of 2, T, 1 and g(¢) in order to prove an existence
result for the discrete in time evolution of cracks.

Let Q be an open bounded subset of RY with Lipschitz boundary. Let 8p§2 C 8 be open
in the relative topology, and let 5§ := 80 \ 8pS2. Let ¢ : [0, +oo[— [0, +oo[ be increasing and
concave, ¢(0) = 0 and such that lim,—, 1o ©(8) = 1. If a := ¢'(0) < +oc0, we have

p(s) <as  forall s€[0,+o0].

Let T > 0, and let us consider a boundary displacement g € AC([0, T}; H()) such that ||g(2)||ec <
C for all t € [0,T]. We discretize g in the following way. Given § > 0, let I5 be a subdivision of
[0, 7] of the form 0 = t§ < ¢§ < --- < t§_= T such that max;(t{ —t{_;) < 6. For 0 <i < N5 we
set gf == g(]).

As for the space of the displacements, it would be natural following [53] to consider u €
SBV(£). Since a = ¢’(0) < +o0, we have unfortunately that the minimization of (5.7) is not well
posed in SBV(£2). Let us in fact consider (uy, )nex minimizing sequence for (5.7): it turns out that
we may assume (up)nen bounded in BV (). As a consequence (un)nen admits a subsequence
weakly” convergent in BV () to a function u € BV(§2). Then we have that minimizing sequences
of (5.7) converge (up to a subsequence) to a minimizer of the relaxation of (5.7) with respect to
the weak” topology of BV (). By Proposition 5.7.1, the natural domain of this relaxed functional
is BV(Q), and that its form is

) Jrma [ ol v @+ alprul@),
where

135 if gl < §
(5.9) £ =

< +a(lgl-2) iflg>

In view of these remarks, we consider BV (f2) as the space of displacements u of the body €,
and a total energy of the form (5.8). The volume part in the energy (5.8) can be interpreted as
the contribution of the elastic behavior of the body. The second term represents the work done
to create the crack I' U S9¢%)(u) with opening given by |[u]| V ¥. The new term a|D°u| can be
interpreted as the contribute of microcracks in the configuration which are considered as reversible.

Let us define the discrete evolution of the crack in this new setting. For i = 0, let u§ € BV(Q)
be a minimum of

nle

: N=14a|DCuly.
(5.10) min { / F(Vu)da + / oy D A 4 D)
We set I'§ := 59 (ud).
Supposing to have constructed ug and I‘g forall j =0,...,i— 1, let u} be a minimum of

1

Gu)  min { / £ (V) de + /S porg, PRIV AL +amcu1,}

where 9_; = |[ud]| V- V |[[ud_;]|. We set T% :=T¢_, U 59 (uf).
In the following proposition we establish the existence of this discrete evolution.

Proposition 5.1.1. Let Is = {0 = t§ < --- < 1§, = T} be a subdivision of [0,T] such that
max(td —t{_;) < 8. Then for alli=0,...,Ns there exists u{ € BV () such that setting T | := 0,
"/)6-—1 = 07

P= s, vl =kl Ve Vi)
=0
the following holds:
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(a) uflleo < llgfllco < C;

(b) for all v € BV(Q) we have
(5.12) / F(Vud)da + / () AN + o Dol ()
Q

/fV'u)dz-!—/Sg()ur Il v i_y) M + al Dol (),

-1

where a = ¢'(0) and f is defined in (5.9);

(¢) we have that

[ £vudydz+ [ o) an=1 + alpoudi(@)
Q Té

= ) N-1
,,esmm{“ W [ gm0 }

Proof. We have to prove that problems (5.10) and (5.11) admit solutions. Let us consider for
example problem (5.11), the other being similar. Let (up)nen be a Immmlzmg sequence for
problem (5.11). By a truncation a.rgu.ment we may assume that |{un]le < |lgf||. Comparing uy,
with g¢, we get for n large

618) [ fVundo+ [ )l VL) Y Do @)

59 1 (un)Ul'y_;

< [#Vadda+ [ e yanvter20,
Q i,
with C' independent of . Since there exists d > 0 such that a|¢| ~d < f(£) for all £ € RV, we
deduce that (Vug)nen is bounded in L!(Q;RY). Moreover if 3 is such that ¢(8) = 1 and @ is such
that s < @p(s) for all s € {0, 8], we have

61) [l dr = [ ]l Y 4 Y (] > 1)
S(un) {llunll<8}

<a / ({[n]) FHY T+ 2]168 oo / o(|[un]]) MV
Hlua]l<s |[un]|>5

< (a+2/lg]ll0)C"-
Finally for all n

!

1D, < £
a

We conclude that (un)nen is bounded in BV (2). Then there exists u € BV (§2) such that up to a
subsequence u, — u weakly* in BV(Q) and pointwise almost everywhere. Let us set ud :=u. By
Lemma 5.7.2 we deduce that

(5.15) /Q F(Vu)da + / ) ([l V $iy) dHY + 0| Do) ()

£ (w)Uls_,

< liminf/ f(Vuy) dx +/ o(|[un)] V¥E_) dHN ™1 + a|D%uy| ().
n—-+o0o0 Sg‘ ('u,,)u .

Setting ¥ == 9J_; V |[uf]], we have that point (b) holds. Moreover [|uf]lco < [88llcc < C, S0 that
point (a) holds. Finally point (c) is a consequence of Proposition 5.7.1. O
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Let us consider now the following piecewise constant interpolation in time:
(5.16)  W@®):=vf, T@:=Ti, PM=v, O=9 - |#t<tl,

with v(T) := u}sva, I'(T) := I“,’Va, 3 (T) = 'qb}sva, and g%(T) := g(T).
For every v € BV (L) and for every t € [0, T] let us set

(5.17) E5(t,v) == /ﬂ F(Vv)dz + /S o(l[v]] V %8 2)) dHN ! + a| D%|(Q).

93 () () UTS (£)
Then the following estimate holds.

Lemma 5.1.2. There ezists e — 0 for § — 0 and a — ~+oo such that for all t € [0, T] we have

£4(60(0) < £°0,0) + | [ £ epVate) dor

where t{ is the step discretization point such that tf <t <l ;.

Proof. Comparing uf with u¢_; + g — g¢_; by means of (5.12) we obtain

£ (th,uf) < [ F(Vully + 9! = Vol o [ o) ant =t alDul (@),
. Q Ff—1

Notice that by the very definition of f the following hold:
1) if [Vudy + V! = Voi_y| > § and [Vul | > §

F(Vul_y + Vgl —Vgi_;) = f'(Vul_);

2) if |Vul_, + Vgf — Vgi_4| < 2 and IVud_;| > £

F(Vul_; + Vgl — Vgl 1) < F(Vuly);

3) if |Vu{_y + Vgf — Vgi_1| > § and [Vul_,| < §

F(Vul_y + Vgl ~ Vgl 1) < F(Vul_y) +2(Vul_,, Vgl — Vgl_,) +|Vef — Vgl %

4) if [Vul_; + Vgl — Vgl_y| < § and [Vui_4| < §
F(Vul_y + Vgl = Vgi_y) = F(Vui_1) + 2Vuiy, Vel = Vgi_y) +[Ve] - Vol
Then by convexity of f we deduce
£5(th,uf) < 5ty ul)+ [ (Ve 1)Vl - Vi) de+ RIS,

where
R® :=_/ Vgl — Vgl 1P dm+/ IF(Vui_y)| Vg — V)| dz.
Q {Ivul_, 124}
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Then summing up from ¢ to 3, and taking into account (5.16) we get

tf £
) u& S 5 Y] 'LLET . - 4,a
€9(t, ub (1)) < £9(0,u3(0)) + /0 /ﬂ PV () Vg(r) dudr + /0 ROa(r) dr,

where
RO (r) = 0 (8) V()| + /{ | (Ve (1)) V(7)) de

[Vué(r)|2$}

and
ti-’
old) = _max /tg_l IVl dr.
In order to conclude the proof it is sufficient to see that
T
/ Rée(r)ydr — 0
0

as 6 — 0 and @ — +o0. Notice that o(d) — 0 as § — 0 by the absolutely continuity of ||[VJ||. Let
us come to the second term. Notice that |f/(Vué(7))| = a on {|Vui(r)} > £}. Then we have to
see

T
(5.18) /0 /ﬂ AV s ryiz sy dzdr — 0

as § — 0 and @ — ++oo. Setting A3 (7) := {z € Q : |Vu’(7)|(z) > &} we have by Holder inequality

[ a1V Lagery do < ay/1A5(0) ( Ly, IVEOP dz)

F

Notice that

2
(5.19) A <a / IVl (7)) d < 2 /
2 45(r) 45

alr

f(Vu‘S('r)) de < C',
)

where C' depends only on g and is obtained comparing u%(7) with g%(7) by means of (5.12). We
. deduce that

/ GIVQ(T)I]IAﬁ(r)d’w”S\/z_C"( / IVQ(T)IZdw> < VACIVY(r)ll
a2 A3(7)

As § — 0 and @ — +oo, by (5.19) we have that [A3()] — 0. Then by the equicontinuity of
|V4(7)|* and by the Dominated Convergence Theorem, we deduce that (5.18) holds, and the
proof is finished. |

5.2 The main results

Let 2 be an open, connected and bounded subset of RN with Lipschitz boundary. Let 8pQ C 89
be open in the relative topology, and let Oy := 80 \ Hp<l.

In this section we consider discrete in time evolution of cracks in a linearly elastic body whose
reference configuration is given by Qp := hS, where h is positive and large. Let us assume
that the cohesive forces on the cracks of Qj are given in the sense of Section 5.1 by a function
¢ : [0,+o0{— [0,1] which is increasing, concave, ¢(0) = 0, ¢/(0) = a < +o0o and such that
Hmg 400 () = 1. Let us moreover set

€2 if €] <

wie

(5.20) HOESS
R GEDIEIEE

wig
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Let us consider on 8pfYy, := hdp§ boundary displacements of the following particular form
T
— h& —_
(5.21) gn(t,z) = h%g (t, h) ,

with g € AC([0,T]; H'(2)) such that ||g(t)|lec < C for all t € [0,T]. Given 6 > 0, let

L={0=ti<.- - <t§, =T}

be a subdivision of [0, T'] such that max(t{ —t{_;) < 6, and let {t — (u®P(t),IOR(t),wo0(t)) : t €
[0, T} be the piecewise constant interpolation in the sense of (5.16) of a discrete in time evolution
of cracks in €2, relative to the boundary datum gp and the subdivision I; given by Proposition
5.1.1.

Our aim is to study the asymptotic behavior of {t — (u®*(t),I'%"(t),9*(t)) : t € [0,T]} as
0 — 0and h — +oco. Let us consider h € N (we can consider any sequence which diverges to
+00), let us fix 8, — 0, and let us set for all t € [0, T

(5.22) up(t) =wM(E),  Tu() =TMe),  ya(t) == yom(),

and let gfl" (t) :== gn (t?*‘) where £+ € I, is such that t‘is" <t< tf—'{—r Let us moreover set for every
v € BV(Q) and for every t € [0,7]

(523)  Ealt,v) = /ﬂ F(Vo)do + /3 ooy PV ) Y alD(0),

The asymptotic of (un,Th, %) depends on a, and we have to distinguish three cases. The first

case o = % was stated at the beginning of the chapter and reveals the prevalence of brittle effects

as the size of the body increases. We give here the precise statement we will prove.

Theorem 5.2.1. Let g € AC(0,T; H()) be such that ||g(t){lc < C for all t € [0,T). Let
{t = (un(t),Tr(t),¥n(t)) : t € [0,T]} be the piecewise constant interpolation given in (5.22) of a
discrete in time evolution of cracks in Qy, relative to the boundary data

z
gn(a,?) = Vi ($.t) -
Then the following facts hold:

(a) there exists a constant C' dependent only on g such that for all t € [0,T)

1

hN—lgh(t’ up(t)) < C%

(b) for allt € [0,T]

v (t, z) = —\}-ﬁuh(t, hz) is bounded in BV (Q);

(c) there erists a subseguence independent of i and there ezists a quasistatic crack evolution
{t — (w@E),K(@®) : t € [0,T]} in Q relative to boundary displacement g in the sense of
Theorem 1.4.2 such that for all t € [0,T] we have

Vup(t) — Vu(t) weakly in LY(Q;RY),

and every accumulation point v of (v (t))hen in the weak® topology of BV(Q) is such that
v € SBV(), 898 (v) C K (t) and Vv = Vu(t). Moreover for all t € [0,T] we have

1 -
(5.24) ma=rén(t un(t)) — IVo@)I? + =Y "MK ());
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in particular h™ N+ DCuy()|(2r)] — O,

(5.25) T /n F(Vun(®)) da — Vo),
and

1 N-1 N-1
(5.26) ey O L A A GO

Notice that in point (¢} we can not assert that the sequence (vp(¢))nen converges to v(t) in the
weak™ topology of BV ({2): this is due to the fact that K (t) could disconnect 2 (in a weak sense),
so that »(t) is determined up to a constant on the components of  \ K which do not touch 9pQ2.

The case a < % leads to a problem in elasticity in €, in the sense of the following theorem.

Theorem 5.2.2. Let g € AC(0,T; H(S)) be such that |g(t)|leec < C for allt € [0,T). Let

{t — (un(t),Tn(t),¥n(t)) : t € [0,T]} be the piecewise constant interpolation given in (5.22) of a
discrete in time evolution of cracks in Sy, relative to the boundary data

gn(z,t) == h% (t, %)

with o < % Then the following facts hold:

"(a) for allt € [0,T)
vy (t, ) = hl—auh(t, hz) is bounded in BV ();
(b) there exists a subsequence independent of t such that for all t € [0,T] we have vy, (t) = v(t)
weakly® in BV () and
Vup(t) — Vou(t) weakly in L*(Q;RY),
where v(t) is the minimizer of
min{||Vo|? : v € H}(Q),v = g(t) on 0pQ};

moreover for all t € [0,T] we have
1
P / F(Vun(®) dz — Vo).
Qp

Finally for the case a > % the body goes to rupture at time ¢ = 0, in the sense of the following
theorem.

Theorem 5.2.3. Let g € AC(0,T;H'(Q)) be such that ||[g()|lec < C for all t € [0,T). Let
{t — (un(®),Th(2),¥n(t)) : t € [0,T)} be the piecewise constant interpolation given in (5.22) of a
discrete in time evolution of cracks in Sy, relative to the boundary data

gn(z,t) = h%g (-'Z—,t)

with o > 3. Let us set vy (L, ) = m=un(t, hx) for all z € Q and for all t € [0,T).
Then (vp(0))nen is bounded in BV (S2), and every accumulation point v of (vn(0))ren in the
weak”™ topology of BV (SY) is piecewise constant in S}, i.e. v € SBV(R) and Vv = 0. Moreover

(5.27) HN LSO (w(0))) < HNHSO (w))
for all piecewise constant function w € SBV(Q)).

Notice that the minimality property (5.27) can be restated saying that v(0) determines a
minimal partition of Q (in the sense of the perimeter of 59(%) (w)).
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5.3 Some tools for the asymptotic analysis

In this section we prove some technical propositions which will be very useful in the proofs of the
main results of the chapter. More precisely, we will prove compactness results for the displacements
and the cracks, and we will prove a generalization of the Transfer of Jump of [53] which will be
employed in order to study what the minimality property of the discrete in time evolutions imply
in the limit.

For all h € N let fi, : RN — [0, 400 be such that for all £ € RV
(5.28) ) 7 EP, fu(€) 2 min{|€]* — 1,ba)¢]}

with by, — 400 as h — -+oo, and let @, @ [0,+oco[— [0,1] be increasing and such that for all
s € [0, +o0]

(5.29) ¢n(s) = min{css, dn}

with ¢j, = 400 and dp, ' 1 for h — +o0.

5.3.1 Compactness for the displacements

In this subsection we give a compactness and lower semicontinuity result for the displacements
whose proof is inspired by the proof of Ambrosio’s compactness theorem (see [5]).

Proposition 5.3.1. Let us consider the functionals

Fiu(w) :=;/nfh(Vui)dm+/S(u) en(lur]l V... V |[um]) dHN ! + an| Doul(),

wherew = (u1, ..., %) € BV(Q;R™) (with f, and oy, defined in (5.28) and (5.29)). Let a, — +o0
for h — +o0, and let (up)nen be a sequence in BV (Q). Then the following facts hold.

(a) If
Fn(uh) + “Uh”Lw(n;Rm) <C

for some C € [0,+00[, then up to a subsequence u* > u weakly* in BV (Q;R™).

(b) If Fh(uh) < C for some C € [0,+00] and u® > u weakly* in BV(Q;R™), then u €

SBV(;R™),

(5.30) Vul = Vu weakly in L (Q; R™*N),

(5.31) |Vas)f? < liminf / (Ve de,  i=1,...,m,
h—+o0 Q

and

(5.32) HN1(8(w)) < liminf on(Jlut) V... v b)) dHN L

h=too J g(uh)
Proof. As for point (a), let us prove that there exists C’ independent of h such that we have
(5.33) |Du(@®)|() < C'.
In fact, since for h large we have for all £ € RY
€l =1 < fu(8),
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we deduce that foralli=1,...,m
[1vatide < [ ifa(vud) + 1)do < O+ 0
o a

where {{)| denotes the Lebesgue measure of 2. Moreover if h is so large that s < 2¢p(s) for all
s€[0,1], we have foralli=1,...,m

630 [ fublen i [ (et @l ({2 1))
S(ud) Iwbll<1
<2/ el ant =t 20 en(lfu]l) dHN = < 2(1+ C)C.
Jub]l<1 I[uf]i=1
Finally for all h
Dot (@) < <.
Gp

We deduce that (5.33) holds, and so up to a subsequence we may suppose that uy, 2 u weakly® in
BV (Q;R™).

Let us come to point (b). Let us consider u" € BV () such that u® = u weakly* in BV (Q; R™)
and Fy(u") < C. Notice that (VuP)pey is equintegrable. In fact if r, is such that for all |¢] <

€1 — 1 < brjé

weget foralli=1,...,mand forall E CQ

/ IVul|de < / V| de + f Vb do
E {|Vul|<ri}nE {IVul|>rn}NE

1

2
< / |Vul|? dz |E|%+/ IVU?[dz
{IVul|<ra}nE {|Vul|>riInE
C

3 .1
< ( / (fh<w?>+1>dw) BlE + o [ (Vo < OT BT+ £

This proves that Vuy, is equintegrable. Up to a subsequence we may suppose that for all ¢ =

1,...,m we have
Vul —g;  weakly in L}(Q;RY).

Since ap — +00, we get D°u" — 0 strongly in the sense of measures.
Let 4 : R — R be bounded, Lipschitz and C*, and for all i = 1,...,m let us consider the
measures

4t (B) = Dip(ul)(B) — / YVl dz,  N(B) = / on([ul]l) aHN 1,
B S(ubnB

where B is a Borel set in 2. Notice that ¥(u?) € BV(Q), and that by chain rule in BV (see [8,
Theorem 3.96]) we have

Dip(uf) = 9 (u})Vul dL + (p((u])F) — () RN LS (uf) + o' (@) Douf,

where @}(z) is the Lebesgue value of ul at . We deduce that

(5.35) 1Dy (ul) — ¢ (ul )Vl dLV| < flehlp AP + 18] |oo D0l
where ) —1(8)
b(t) —b(s)
[1¥]lps == sup {m Dt s} .
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Up to a subsequence we have
put = D(ug) — ' (wgidCN, AN

weakly”® in the sense of measures, and so from (5.35), by lower semicontinuity for the variations of
measures (see [8, Proposition 1.62]) and since D°u® - 0 strongly in the sense of measures we get

|D(us) = ' (w)gs dLV| < (sup 9 — inf PN

As a consequence of SBV characterization (see [8, Proposition 4.12]), we get that u; € SBV(Q),
Vu; = g; and HV =1L S(u;) < s for all i = 1,...,m. We deduce that (5.30) holds.

In order to prove (5.31), for every M > 0 let gM be the weak limit in L*(Q) (up to a subse-
quence) of |[Vul| A M. Since fi,(€) — |£|? uniformly on [0, M], we have

oI < Ymint [ fu(Val)do.
et oo ul n

Then letting M — -+oo we obtain (5.31).
Let us come to (5.32). If A is the weak limit in the sense of measures of

M= [ Vv )
S(uh)nA

we have that \; < Afor all i = 1,...,m. Since we have HV "1 S(u;) < A, forall i = 1,...,m,
we deduce that HV 1L S(u) < A, so that (5.32) is proved. _ (]

5.3.2 Compactness for the cracks

This subsection is devoted to the proof of a compactness property for the cracks of the discrete in
time evolutions, which is closely related to the notion of oP-convergence of sets defined in [44].

The convergence we propose is related to the energies which appear in the asymptotic study
of the size effects, and so it depends on the cracks, but also on the bulk and surface energies, and
on the rate at which the Cantor parts of the derivative of the displacements are disappearing.

Let (Kr)hen be a sequence of rectifiable sets in Q U 8p, and let f, : RN — [0,4co] and
©n : |0, +o0[— [0,1] be such that (5.28) and (5.29) hold. Let 5, be a positive function on K}, such
that for all A

(5.36) / on(w)dHN 1 < C,

Ky
for some C € [0,+co], and let ap, — +oo. Let gp,g € H(Q) be such that g, — g strongly in
H(Q). Let us set for all u € BV(Q)

&)= [ hvwdst [ ol aH =+ o Du(@).

S%h(
Then the following compactness result holds.

Proposition 5.3.2. Up to a subsequence there exists a rectifiable set K CQU 8p§Y such that the
following facts hold:

(a) for all subsequences (hr)ren and for all (up)ren such that S« (ug)C Kp,, |[uk]] < Yy,
Eny(un,) < C' for some C' € [0, 400, and uy, 5w weakly* in BV (Q), we have u € SBV(Q),
Vu € L*(;RY), and S9(u) C K;
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(b) there exists a countable set D in SBV(QY) such that

(5.37) K= 5u),
ueD

where for every u € D there ezists a sequence (up)nen in BV (Q) with S (uy) € Ky, |Jup)] <
Yhy En(un) < C for some C' € [0,+o0f, and up — u weakly* in BV (Q);

(c) we have

(5.38) HN-1(K) < liminf / on(yn) dHN 1,
h—+oo K

Proof. Our approach is based on I'-convergence. In order to deal with $9(u) as an internal jump,
let us consider ) C RY open and bounded, such that 0, and let us set ¥ == \ On 2.
Let us consider the functionals £}, : BV(Q’ } — [0, +c)

gw = [ v+ [ N en([ull) HY= + an | Doul(@Y),

ifue BV(Q), u=gpon\Q Su)C Ky, |[u}l < v on K, and £, (u) = oo otherwise for
u € BV(§)'). Let us consider on BV () the strong topology of L'(). By Proposition 1.2.2,
up to a subsequence, (£}, )ren T-converges to a functional £’. We denote this subsequence still by
(&} )hen, and we may suppose that the liminf in (5.38) and the liminf along this subsequence are
equal.
Let us consider .
epi(&’) = {(u,s) € BV(Q) xR : &'(u) < s},

and let D C epi(&’(t)) be countable and dense. X 7 : BV(QY) x R — BV({Y') denotes the
projection on the first factor, let D := «(D) and let us set

= |J S).

u€D

Notice that by a truncation argument we may suppose that each u € D is bounded in L*(2), and
moreover that there exists up € BV () such that uj, = u weakly* in BV(€') and &) (up) < C'
with ¢’ € [0, +oo[. By Proposition 5.3.1 and I-liminf inequality we deduce that u € SBV (')
and

(5.39) V)2 + HY 1S (w)) < E'(u).
Then K is precisely of the form (5.37) once we consider the restriction of v to £ and recall that
u=gon ¥\ Q. Thus point (b) is proved.

Let us prove that (5.38) holds. Let ug,...,ux € D, and let u?,...,ul € BV(9') be such that
ult 5 u; weakly* in BV () and

(5.40) lim é'h( b = &' (), i=1,...,k

Rt
Setting u® := (uf,...,ul), by (5.40) we have

k ~
S [, Tetrdet [ (el VIR el D) < 6
i=1 ”
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with C independent of h. By Proposition 5.3.1 we deduce

k
(5.41) HY (| S(w) | < liminf en(fud]l v - v |[uf]l) aH™
i— h—+00 Jg(yh)
< liminf on () dHN 1.
h—+oo Jg,
Taking the sup over all possible u1,...,u; we get
HY1(K) < liminf on(n(t)) dHN 1,

he—+-+o00 Kn(t)

so that (5.38) is proved. In particular by (5.36) we have that HV-1(K) < +oc.

Let us come to point (a). Let us extend uy and u to Q' setting ug = g, and u = g on Q' \ Q.
By Proposition 5.3.1 we get u € SBV(Q') and Vu € L?(Q';RV). Let us see that S(u) C K. Notice
that by I'-liminf inequality we have

E'w) < %ggsgk(uk) < 400

so that (u,&'(v)) € epi(&’). Let (vj,s;) € D be such that v; — u strongly in L*(Q') and
s; — E'(u). By truncation, we may assume that u and v; are uniformly bounded in L*. We know
that v; € SBV() for all j, and that by (5.39)

(6.42) Vg1 + HV (S (05)) < E'(wy)-
By léwer éenﬁcontinuity of & we have -

£/(u) < limjnf £/(uy).
Moreover since £’ (v;) < s;, we deduce

]_i F oy, < 3 e !
jr_r_ligff (vj) < Him s = E'(u),
so that we have £’(v;) — £'(u) < +oo. By (5.42) we conclude that v; — u weakly in SBV('):
since S(v;) € K for all 4, and H¥~1(K) < 4co, by Ambrosio’s Theorem we get S(u) E K. The
proof is now complete. 0

Remark 5.3.3. Notice that in the case fn(&) = |¢|P (p €]1,+o0]) and ¢ = 1, and no Cantor
part is considered (i.e. ap = +00), Proposition 5.3.2 gives an alternative proof of the compactness
and lower semicontinuity properties of oP-convergence of sets formulated in [44].

Notice moreover that the limit set of Proposition 5.3.2 is contained (up to negligible #V~!
set) in QU 8pLl, so that Oy§2 is not involved: this is done in view of the concrete application to
quasistatic crack growth, where convergence for the surface energy holds, and so a crack would
never approach On§) otherwise but transversally. This can be seen also energetically, since the
displacement can choose the more convenient boundary datum on On§) without creating a crack
on this part of the boundary.

5.3.3 A generalization of the Transfer of Jump

In this subsection we prove a generalization of the Transfer of Jump Theorem of Francfort-Larsen
[63] which will be useful in the proof of Theorem 5.2.1.

Let fy : RY — [0, 400 and @y, : [0, +o0o[— [0, 1] be such that (5.28) and (5.29) hold. Then the
following proposition holds.
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Proposition 5.3.4. Let (up)ren be a sequence in BV (2} such that (Vup)pen 5 equintegrable,

(5.43) sup / on(funl) dHNY < C, and  |Dun|(€) — 0.
h JS(up)

Letu € SBV(Q) be such that up, — u weakly” in BV (Q), and let g, g € H*(Q) be such that g, — g
strongly in H*(Q). Then for all v € SBV(Q) with Vv € L*(Q;RY) there exists v, € SBV(Q)
such that Vuy, — Vv strongly in L2(Q;RY) and

lim sup [_/ on(|[vall V [[un]l) dHN 1 —/ on(|[un]l) dHN 1
h—+o00 S9h (vp )US%h (up) 59 (up)

< HVTH(S9(0) \ 59(w)).

Proof. In order - to deal with 59 (u) as an internal jump, let us consider QCRrRY open and bounded,
and such that € C €). Let us set @' = Q\ OyQ. Let v € SBV(Q) with Vv € L2(;RY) and
HN-1(89(v)) < +o0. Let us consider

wi=v-g, Zi=u—4g, Zh = Uh — Gh,

and let us extend w, z, 2, to (' setting w = z = 25 = 0 on Q' \ Q. In this setting, we have to find
wy, € SBV(£Y') such that wy, = 0 on '\ , Vuwy, ~ Vuw strongly in L2(§)'; RY), and such that

Jim sup [ / | on((fwn]l V [[z]]) dHV - = / sah(nzhdeN*]
h—+eo |J8(wp)US(zn) S(zn)

< HYTH(S(w) \ 8(2)).

Then the result follows considering the restriction of wy, to €2, and setting vy, = wy, + gn.
The key point in the proof is the following: for all £ > 0 find § > 0 and wy, € SBV () such
that w, =0 on '\ Q,

(5.44) limsup [[Vwp — Vw|p2(mv) < e,
h—+oo
and
(5.45) limsup HV=(S(wp) \ K8) < HV 1S (w) \ S(2)) +¢,
h—+o0

where Kf := {z € S(zn) : |[zs]] > 6}. In fact if (5.45) holds, noting that by (5.43) we get
HN-Y(K$) < C+1 for h large enough, following the decomposition

S(wn) U S(zn) = (S(wn) \ KR) U (S(wn) N KF) U (KE\ S(wn)) U [S(zn) \ (S(wn) U KP)),
S(zn) = (Kf N S(wn)) U (K \ S(wn)) U (S(zn) \ K2)

we have (dj, is defined in (5.29))

lim sup [/ on(lfwn]l V |[za]]) dHN L — / wr(l[zr]]) d’HN“l]
h—+oo |JS(wn)US(zk) S(zn)

<MY S(w) \ S(2) + ¢
+ limsup [ Jroo e ool ) a2 | soh(nzhn)dHN*]

< HUHS(w) \ S(=)) + e + limsup(1 — da KN (S(wn) N Kf)
00

h—++co S(wp)NKS

<HN-YS(w) \ 8(z)) +¢.
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AN

Letting now € — 0, and using a diagonal argument we obtain the result.

Let € > 0, and let us prove that we can find § > 0 and (wp)nen such that (5.44) and (5.45)
hold. Following the Transfer of Jump [53, Theorem 2.1}, let us fix G C R countable and dense:
we recall that we have up to a set of H" ~!-measure zero

S(z)= |J 08"E(2)N8*Ee,(2),

c1,c26G

where Ec(z) == {x € @ : z is a Lebesgue point for z, z(z) > c} and 8* denotes the essential
boundary (see [8, Definition 3.60]). Let us orient v, in such a way that 2z~ (z) < 2*(z) for all
z € 5(z), and let us consider

Jj = {m € 8(z) : zH(z) — 27 () > :71-},

with j so large that
HYH(S()\ Jp) <o,

where o > 0. Let U be a neighborhood of S(z) such that
g 2
Ul < = [Vw|*dz < o.
J U

Following [53, Theorem 2.1], we can find a finite disjoint collection of closed cubes {Qx}x=1,...n
with edge of length 2ry, with center zx € S(z) and oriented as the normal v(z) to S(z) at z,
such that | J;_, Qx € U and HV~Y(J; \Uj-; Q) < 0. Let Hy denote the intersection of Qj, with
the hyperplane through z; orthogonal to v(zy). Following [53] we can suppose that the following
facts hold: ‘

(a) if zj €  then Q) C Q, and if z € 8pQ, then AN Q C {y+sv(zg) : y € Hy, s €
-9, %L

(b) MY} (S(2) N OQx) = 0;

(c) Tt < 2HN-1(S(2) N Qy);

(d) 2~ (wg) < ¢} < & < 2zt (z1) and 2 — c} > 2%.;

(e) HN-([S(2)\ 0" Ec: (2)] N Q) < ory~tfors=1,2;

(£) HN-'({y € 8* By (2) N Qx : dist(y, Hi) > §ri}) <ory ‘fors=1,2

(8) f Qf ={x € Qrl|(z— k) v(zx) >0} and s = 1,2

N
. ene. — Lol < orl's

(b) HN-1((S(w)\ 5(2)) N Qk) < ory ~* and HN~(S(w) N 8Qy) = 0.
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Since (Vzp,)nen is equintegrable, we may assume that U is chosen so that for h large

(5.46) Z / [Vanlda < 5

Let 7 €]0,1]: we claim that there exists § > O such that forall k=1,...,n

(5.47) lfilmiup |Dzn|({0 < |[zn]] < 8} N Q) < 1|Qkl-

Let M > 0: by (5.29) there exists s, — 0 with ypp(sp) — 1 such that for h large enough
Ms < pp(s) for all s € [0, sp}.

Then we have

D24 ({0 < |[z]] < sn} N Q) = / lfza]| dHN -1

{0<lfznli<sn}NQs
1

<7 on(|lza]l)dHY Y,
{0<|[zn]i<sn}Qx)

so that we conclude for h large

649 Dal({o<liall<dfn@e)s g [ elll)en

é 1 )
P anll) VT < (- + ) ,
wn(sh) J {sn <llznll<E}NQ1) enllzn]l M op{sn)

where C is defined in (5.43). Taking the limsup in k and choosing § small enough and M large
enough, we have that (5.47) holds.
Let 6 be as in (5.47), and let us set

= {z € S(zn) : |[znll(z) = 6}

Then in view of (5.46) and of (5.47), since | D¢2p|(€Y') — 0, by the Coarea formula for BV functions
(see [8, Theorem 3.40]) we have for h large enough

49 3 / Y (0'Blan) 1 @\ ) do < 32 1Dl (@e\ )
k=1

=1

= Z/ |V 2| dz + Z |Dzp|(Qr N {0 < {[21]] < 6}) + |D°2z) (U Qk) <A+ 77)

k=

By the Mean Value Theorem and by property (d) we get that thereexist ¢} < cf < cZ,k=1,...,n
such that

(5.50) Z’HN 1 (a*E w (21) N (Qi \ Kh)) <201+ n)—

k=1

Following [53], by property (g) we have that for h large
lllEc'r:(Zh)an - le' “LI(Q’) < O-ZTIIcV'
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Then by Fubini’s Theorem and by the Mean Value Theorem, we can find 52‘ € [%"-,ark] and
s, € [—org,—%5k] such that setting HY = {z = y+ sfv(zk), vy € Hi} and H = {z =
y+ s; v{z), y € Hy} we have

HN-1 (H,j \ (Bgp (zn) N Qk)) +HN-1 (H,; M (Egp (20) N Qk)) < 20rN-1,
Let Ry be the region between H, and H, f: , ie.
Ry ={z€Qr: z=y+sv(zy), y € Hi, s2 <s< st}

and let us indicate by R;:w the reflection in Qf of WiQi\Ry with respect to H ,': , and by R w the
reflection in Qx of W o=\ Ry with respect to H . We can now consider wy, defined in the following
way

w  on @ \UL, Re

wp = { Ryw on Ry N Egp(2n)

R;'w on Rk \ Ec;: (zh)
wy, is well defined for o small, and wy, = 0 on Q' \ Q. Notice that by construction we have that
for h large

| Vwn — V|| 2 (armmy + Y HY ™! ((S('wh) \ Kﬁ) N Qk) < e(o),
k=1

where e(g) — 0 as 0 — 0: the proof follows analyzing the set S(wy) inside Qx, and it is very
similar to that contained in [53, Theorem 2.1]. Since

Swn) \ K{ € [S@)\ 5()] U [S(zn U Qk] u U ((sen\Ef) nax),
k=1 k=1

we deduce

limsup B~ (S(wn) \ KF) < WV (S(w) \ S(2)) + (o),
—++00

with e(¢) — 0 as 0 — 0. Choosing ¢ small enough and using a diagonal argument, we obtain that
(5.44) and (5.45) hold, and the proof is finished. O

The following proposition extends the Transfer of Jump to the case of cracks converging in the
sense of Proposition 5.3.2.

Proposition 5.3.5. Let (Kp,¥n)nen end K be as in Proposition 5.5.2, and let gn,g € H() be
such that gr, — g strongly in H*(Y). Then for all v € SBV () with Vv € L2(Q;RYN) there exists
vy, € SBV(Q) such that Vvp, — Vv strongly in L2(S;RY) and

limsup [ / on([vn)] V An) dHV 1 - / on (1) dHN-lJ <HNY(SI(w) \ K).
hes+o0 S9h (vp )UK K

Proof. We indicate how to modify the proof of Proposition 5.3.4 in order to get the result for
(Kn, )nen and K.

Notice that properties (5.44) and (5.45) can be extended to the case of a finite number of
converging sequences: more precisely if £ = 1,...,m, (uf)ren is a sequence in BV () such that
uf = u¥ weakly* in BV(Q), (Vul)ren is equintegrable,

[ enmiant <o, 0uE@) —o,
S9n(uk)

then for every € > 0 and v € SBV{(R2) with Vv € L2(Q; RY) there exists v, € SBV(Q) such that

(5.51) limsup ||Vop — Vol r2@pvy < €
h—4oco
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and

(5.52) limsup V! (Sg" (vn) \K,‘i) < HN-1 (Sg(v) \ O Sg(uk)) + &,
h—+oo k=1

where K? := {z € U, §9*(uf) : |[uf]|(z) > & for some k = 1,...,m}. This can be done using
the localization on the squares already employed in [53, Theorem 2.3]: on each squares Q; we have
that Upr, S9(u*) N Q; is essentially given by S9(u")) for some 7(j) € {1,...,m}.

Let us come to the Transfer of Jump for K. We recall that

K= ] 5w

ueD

for some countable set D, and that each u € D is limit in the weak" topology of BV(Q) of a
function up, such that S9 (up) € K, |[un)l < va, Vur, = Vu weakly in L (Q;RV),

sup/ on{llun]]) dHN"1< C, and | DCupl(2) — 0.
h JS(uy)

Let € > 0 be fixed: since HY~!(K) < +-co, we can find m such that

m
(5.53) HN? (K\ U Sg(u’“)> <e
k=1
for some u*¥ € D, k =1,...,m. Let uf be the approximation of u* for all k = 1,...,m, and let

v € SBV(Q) with Vv € L2(; RY). Then by (5.51) and (5.52) we can find (vp)pen such that

limsup |[Vop — Vo2 (arr) <&,
h—+oc0 ) .

limsup HV ! (.5'9" (wn) \ I?g) <HN-? <Sg('v) \ US—"(uk)) +e.
h—+oo &

Setting K§ := {z € K;, : yn(z) > 6}, recalling that K & K since |[uf]| < 7, by (5.53) we
deduce that

lim sup BV =1 (895 (vp) \ Kf) < HV 1 (S9(v) \ K) + 2¢.
h—+oo

The proof now follows exactly as in Proposition 5.3.4. ]

5.4 Proof of Theorem 5.2.1

In this section we will give the proof of Theorem 5.2.1. Let {t — (un (), Tr(t),¥n(t)) : t € 0,7}
be the piecewise constant interpolation of a discrete in time evolution of cracks in (0 relative the
subdivision Ij, = {0 = tg" <-e < t‘,s\’,‘ah = T}, and the boundary displacement /%g(t, £) given in
(5.22). We divide the proof in several steps.

Step 1: Rescaling. For all ¢ € [0,T] let v,(t) € BV(Q) and Ky (t) C QU pQ be defined as

(5.54) va(t,3) = %uh (thz),  Kn(t) = —:;Ph(t).
Let us moreover set
(5.5%) Mt,2) = (e he) = i [ (@(62)l, t€ [0, Tz €.
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We notice that {t — (vp(t), Kr(f),7a(t)) : t € [0,T]} is the piecewise constant interpolation of a
discrete in time evolution of cracks in (2 relative to the subdivision I5, and boundary displacement
g(t) with respect to the basic total energy

[ saowyae+ [ | en(Bll V (8 RV + aVRIDo @),
Y] S°h () (W)UK (2)

where g% (t) := g(t%) for t2+ <t < tf_’,‘_l, a = ¢'(0),

(5.56) on(s) = @(Vhs), s € [0, +o0],
and

€12 if gl < 9—‘2@
(5.57) fu(§) =

£ +avhllel - 2F) i g > <.

Let us recall some properties of the evolution {¢ — (va(t), Kn(t),vu(¢)) : ¢ € [0,T]} which
derive from Proposition 5.1.1 and that will be employed in the sequel:

(a) for allt € [0,T

(5.58) | lon()lleo < 118°* () lloo;

(b) Kn(0) = 59 (v(0)), and sy“h(ﬂ (vn(t)) € Kp(t) for all £ €]0,T);

(c) for all w € BV(Q)) we have

(5.59) /n Ja(Vor(0)) dz + /S en(lfon(0)])) @V + av/hI DA (0)|(Q)

9% ) (u,(0))

< / Fo(Vw)dz + / . on(|[wl]) dHN ! + aVh| Dw|(Q);
o] S9°k (0) ()

(d) for all w € BV () and for all ¢ €]0,T] we have

650 [ fu(Ton®)da+ [ onlne)dr " + avhIDw0l(0)
) Kn(t)
< / Fu(Viw) dz + / 6 on(lw]l v a () dHY ! + eV Dow|().
Q S9°h () (W)UK, (1)
Let us set for all w € BV(Q) and for all t € [0, T
(5.61) Frn(t,w):= / Fn(Vw) dz +/ , on(|[w]] V (&) dHN " + avh|Dow|(S2).
Q 89°h () (w)U K (t)
Notice that for all ¢ € {0,T]
(562) Falt,on(0) = w=sEnlt un(®),
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where &, (t,u) is defined in (5.23).
Recalling Lemma 5.1.2, for all ¢t € [0,7] we have

th
(5.63) Fult, vn(8)) < Fu0,0n(0)) + / / £ (Von(r) Vi (r) ddr + e(R),

0 Ja
where e(h) — 0 as b — -+oo, and tj = tf": is the step discretization point of I5, such that
th<t<tih,,.

Step 2: Uniform bound on the energy. There exists a constant C’ independent of h such
that for all ¢ € [0,T] we have

(5.64) Fu(t, va(®)) + lloa(B)llee < C".

In fact by (5.59) we have
Fn(0,un(0)) < Vg (0)|I?,

and by (5.60) for all 7 € [0,T]
/nfh(Vvh('F))dﬂc < IVgl(ml2.
Moreover for all 7 € [0,T]

/Q L (Von (7)) 2 da < 4 / Fu(Von(r)) da.
Q
Taking into account (5.63) and (5.58) we deduce that (5.64) holds.

Step 3: Compactness. In view of Step 2, by Proposition 5.3.1 and Proposition 5.3.2 we have
that for all ¢ € [0,T] the displacements (v(t))nen are relatively compact with respect to the
weak” topology of BV(§?), while the cracks (Kp(t), Yn(t))nen are compact in a suitable energetic
sense.

Let B C [0,T] be countable and dense, and such that 0 € B. By Proposition 5.3.1, and
by Proposition 5.3.2 (with f and @, defined in (5.57) and (5.56), ap, := avh, 7y, = Yx(t) and
gr = %) up to a subsequence (which we denote by the same symbol) for all ¢ € B there exists
v(t) € SBV(£) and a rectifiable set K (t) £ Q U 8pQ such that the following facts hold:

(a) va(t) = v(t) in the weak* topology of BV (Q), Vuy (£} — Vu(t) weakly in L} (S RY), Vo(t) €

L2(;RY), and
590 (u(t)) € K (8);
(b) K(s)CK(t) for all s,t € B, s < t;
(c) we have
(5.65) HN YK (t)) < liminf on(n(2)) dHN
h—+oo Kn(t)

(d) K(0)= 57O (v(0)).
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Points (a) and (¢) comes directly from Proposition 5.3.1 and Proposition 5.3.2. Let us prove point
(b). Let s,t € B with s < t. By Proposition 5.3.2 we know that there exists a countable set D(s)
in SBV(Q) such that

(5.66) K(s)= | 59 (),
uED

and such that for every u € D(s) there exists a sequence (un)ren in BV(Q) such that uy, Sy
weakly* in BV (Q) with §9 "(3)(uh)CKh (s), lun]l < Yu(s), and Fi(s,un) < C' for some C' €
[0,400[. Let us set v 1= up — g% (s) + g% (t). Since Kx(s) € K1(t) and yi(s) < 7a(t), we have
that 7€) (us) € Ka(t), |[oal] < 7m(2),

/ Fa(Von) do + / on(|[onl]) AN + av/R| Douy () < &'
Q Kn(t)

with ' independent of &, and v; —*\_ u— g(s) + g(t) weakly* in BV (). We deduce that S9®) (u —
g(s) + g(t)) C K (t) that is S9) (u) K (). Then by (5.66) we obtain K (s) C K (¢).
Let us come to point (d). Notice that

(5.67) Vo) +HN 1K (0)) < liminf 74 (0,04(0)) < [Vo(O)I* +HN (5 (w(0))),

the first inequality coming from point (c) and Proposition 5.3.1, the last inequality coming from the
minimality property (5.59). Since S9(0) (v(O)) € K(0), by (5. 67) we get that S99 (v(0)) = K(0),
so that point (d) is proved.

Step 4: Recovering the static equilibrium for K(¢), t € B. Let B be the countable and
dense set defined in Step 3, and let K (t) be the limit crack associated to (Kx(t), v (2))ren for all
t € B. In order to prove that K (t) is part of an evolution in the sense of [53] with respect to the
boundary data g(t), we have to prove that K () satisfies the one-sided minimality property with

% respect to the Griffith’s energy given by point (¢) of Theorem 1.4.2. This is done in this step,

where also some useful convergence results for the gradient of the displacements are obtained.

Let t € B, and let us consider the subsequence of (vp(£), Kn(t), ¥1(t))nen (which we indicate
with the same symbol), the displacement v(t) and the rectifiable set K (t) given by Step 3. Then
for all v € SBV () we have

(5.68) Vo) + HY"H(S7O (9(0)) < |Vol® + HV (59O (v)),
and for all ¢ €]0, T

(5.69) V@I < IVoll? + V(590 (0) \ K (1))
Moreover

(5.70) Vo2 + HY 1K (0)) =, lm _Fa(0,0n(0)),

where F}, is defined in (5.61), and for allt € B

(6.71) Voun(t)lg, s — Vo(t)  strongly in L*(Q; RY),
where
En(t) == {z €0 |Vur(t) < “‘f}
and
(5.72) Vo) = lim_ /n Fn(Von(®) da.
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In fact (5.68) and (5.70) come from point (d) of Step 3, from the minimality property (5.59), and
from Proposition 5.3.1.

Let us come to (5.69). Let ¢ € [0,T]. By Proposition 5.3.5 we have that there exists (vn)nen
sequence in SBV () such that Vv, — Vw strongly in L#(; RY) and

limsup [ [, en(l[onl] V 7a(®) dHV 2
h—+oo | Jge%h () (up )UK (2)

—/ on(Ta(t)) dHN_l} < HN NSO () \ K (2)).
Ky (t)
Then using the minimality property (5.60) we get
(5.73) limsup / Fo(Von(t) dz < || V)2 + HV 1S9 (w) \ K (2)).
Q

hesd-00

By Proposition 5.3.1 we have that
(5.74) IVo)I < limint [ fu(Von(t)) do
h—+oo Jo

and so we obtain that (5.69) holds.

Let us now come to (5.71) and (5.72). (5.72)is a direct consequence of (5.74) and (5.73) with
v = v(t). Finally, notice that (Vuy (1)1, I&)heN is bounded in L2(Q; RN). Since Vuy(t) — Vo(t)
weakly in L*(€;RY) and Vv(t) € LA RY), we get Vo (£)1 g, ) — Vu(t) weakly in L2(Q;RN).
By (5.73) with v = v(t) we have

limeup | Von 1)1, 0| < imsup | fu(Von(t)) do < V(O

so that (5.71) holds.

Step 5: Defining K(t) for all ¢ € [0,T]. Since {t — K(t) : ¢ € B} is increasing by Step 3,
setting

K-@)= J K@), EKft)= [) K(s),

s€B,s<t s€B,s>t

there exists a countable set B’ C [0,7]\ B such that we have K~ (t)=K*(¢) for all £ € [0,T]\ B'.
For all such ¢'s let us set K(t) := K~ (¢)=K™*(¢). Up to a further subsequence relative to the
elements of B’ (which we indicate still with the same symbol), we find K (¢) such that Step 3 and
Step 4 hold for every t € B’. Notice that

{t— K(t) : te0,T]}

is increasing, and for all ¢ € [0, 7] we have HN~1(K (t)) < C’, where C' is given by (5.64).
Let v(t) be a minimum of the following problem

(5.75) mm{ IVo)|? : v e SBV(R), $9P(v) & K(t)} .

Notice that problem (5.75) is well posed since K (t) has finite H~ ~!-measure, and g(t) is bounded
in L°°(£2): moreover by strict convexity we have that Vu(t) is uniquely determined.

Let us prove that (v(t), K(t)) satisfies Step 3 and Step 4 for every t € [0,T]. Moreover let us
see that

(5.76) Vun(t) = Vo(t)  weakly in LT (Q;RY),
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and that every accumulation point v of (v,(t))nen in the weak® topology of BV (£) is such that
v € SBV(Q), S9® (v) € K (t) and Vv = Vu(t).

In fact let ¢ ¢ B U B’ (otherwise the result holds by construction), and let vy, (t) —= v
weakly® in BV () for some subsequence (A, )men. By Proposition 5.3.1 we get that v € SBV(£2)
, Vv € LEH(Q;RY) and Vop,, (t) — Vv weakly in L*(S; RY). )

Applying Step 3 and Step 4 to B U {t}, we can find (up to a further subsequence) K{(t) such
that S9)(v) € K (t), K (t) satisfies static equilibrium, and K (s;) € K (t) € K(s;) for all 5,5, € B
with 81 < t < s2. Then we get K (t) = K(t) up to a set of H¥~!-measure zero.

Finally, in order to prove that (5.76) holds, notice that v is minimum of problem (5.75): by
uniqueness we obtain Vv = Vu(t) so that (5.76) holds along the entire sequence.

Step 6: Recovering the nondissipativity condition. In order to prove that
{t— (), K(2), t € [0,T]}

is a quasistatic crack growth in the sense of [53], that is in the sense of Theorem 1.4.2, we have
just to prove the nondissipativity condition, that is

(5.77) £() = £(0) + 2 /0 (Vo(r), Va(r)ze(asar) dr,

where £(t) == |[Vu()||2+HN YK (t)) for all t € [0,T]. In fact irreversibility and static equilibrium
are consequences of Steps 3,4,5. First of all for all ¢ € [0,T] we have

t N

(5.78) £(8) > £(0)+2 / (Veu(r), Vi) 22y dr-

0
In fact as noticed in [59], using the minimality property (5.69), the map {t — Vv(¢)} is continuous
at all the continuity points of {t — HN~1(K(t))}, in particular 1t is continuous up to a countable
set in [0, 7). Given t € [0,T] and k > 0, let us set
sf = —;;t, vF(s) =w(sk,,) forsf<s S:s{?_,_l, i=0,1,...,k
By (5.69), comparing v(s¥) with v(sF,;) — g(sk,;) + g(sF), it is easy to see that

t
E£(£) > £(0) +2 /0 (Vo*(r), V(r)) s aumry dr + e(k),

where e(k) — 0 as k — +oo. By the continuity property of Vv, passing to the limit for £k — +co
we deduce that (5.78) holds. On the other hand for all ¢ € [0, T] we have that

t
(5.79) () < £(0) + 2 /0 (Va(r), V() z2 am) dr-

In fact by Step 4 we have that for all ¢ € [0, 7]
(5.80) Vun(t)lg, @ — Vo(t)  strongly in L*(Q;RY),

where

Ep(t) :== {z €0 : Vo) < -——\/.}
By (5.63) and by the very definition of f5 we deduce
1
(5.81) Fr(t, vn(t)) <Fn(0,vn(0)) + 2/0 (Vor(T)1E, (), VI(T)) L2 (mn) AT

+avh /0 /ﬂ PR ZCLESED
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where e(h) — 0 as h — +oo. Notice that by (5.64) we have

a

SHONENII<VE [ vmmle<? [ gwmme <o
2 NEw(7) O\Ew(T) a

We deduce that

[T

(5.82) vh [Vg(r)|dz <. (/ ]Vg('r)l2 d:z:> h|Q\ Ep ()]
N\EgR(T) Q\Ex (1)
< W< ( / IVg(r)P dz) oo
a O\En(T)

as h — 400 by equicontinuity of V(). Then passing to the limit for A — +oco in (5.81), in view
of (5.72), (5.65), (5.70), (5.80) and (5.82) we deduce that (5.79) holds. This proves that (5.77)
holds, and so {t — (v(t), K(t)) : t € [0,T]} is a quasistatic crack growth in the sense of [53].

Step 7: Convergence of bulk and surface energies. In order to conclude the proof, let us
see that (5.24), (5.25) and (5.26) hold. By (5.81) we deduce that for all t € [0, T

Fu(t,va(t)) — E(2),
so that by (5.72) and (5.65) we deduce that

MY K@) = m [ @)Y, VD w@)(@) — 0.
- °° Kn(t)

Theorem 5.2.1 is now completely. proved in view of the rescaling (5.54), of (5.55), (5.56) and (5.62).

5.5 Proof of Theorem 5.2.2

In this section we will give the proof of Theorem 5.2.2. Let {t — (up(t), Ta(t), ¥n(®)) : t € [0,T]}
be the piecewise constant interpolation given in (5.22) of a discrete in time evolution of fracture
in Qy, relative the subdivision I, := {0 =ti* < --- < t',s\’;&h = T}, and the boundary displacement

heg(t, £) with a €]0, 3[. We divide the proof in several steps.

Step 1: Rescaling. We rescale uy, and I'y, in the following way: for all ¢ € [0,T] let vn(t) € BV(R)
and K (t) CQ U Op be given by

1
(5.83) up(t, ) = Ela'“h (t,hz), Kp(t) = ﬁrh(t)’ tef0,T],z€ Q.

Let us moreover set
1
Y (t, ) = —i-;;z/)h(t, hz) = 0123%3 |[vn(8)](t, z)] tel0,T),z€ .
It turns that {t — (vp(t), Kn(t),va(t)) : t € [0,7]} is the piecewise constant interpolation of a

discrete in time evolution of cracks in §} relative to the subdivision I5, and boundary displacement
g(t) with respect to the basic total energy

/ Fu(Vo) dz + B2 / 5 on ()] V 74 (8)) dHN 1 4 ah1=2| De)(),
Q 597k () (w)UK), (1)
where g0 () := g(tf*) for tf* <t <t a = ¢/(0),

on(s) = ()D(h’as)! s€ [Oa -l-OO[,
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and i—a
l€]? if |¢] < e

fu(§) =

2 —ax) _ - . 1o
o hﬂil + ah! a(lg] — ah; ) i e > ahz _

We have that the following facts hold:

(a) forall t € [0,T]

(5.84) llon (B)lleo < lg® (#)lloo < C

(b) Kx(0) = 89" (1,(0)), and S9* ) (v, (£)) € Kn(t) for all ¢ €]0, T;

(c) for all w € BV(R) we have
(5.85) / Fu(Von(0)) dz + =2 / 6 on({[o(O)]]) dHN = + ah'~*| D, (0)|()
Q 89°k ) (uy,(0))

< [ fu(Vw)do+ 2o / on(|[w]]) HY = + a2 Dew|();
Q 5%k (0) (1)

(d) for all w € BV(R2) and ¢ €]0, T] we have

(5.86) /n Fu(Von(2)) do + R1-2 /

Kp

) O (Ya () dHN "1 + ah' ™| Dy (£)](2)

t |

< / Fa(Van) do + b2 / on(l[w]] V74 (6) dHY -1 + ah1=| Dew|(Q).
o) 9% () (W)UK, (£)

Let us set for all v € BV(Q) and for all ¢ € [0,T]

Fr(t,w) = / fn(Vw)dz + h2 / en(l[w]] V n(t)) dHN 1 + ah?~%| Dw|(Q).
Q 55°h () (w)UK (1)

Notice that 1
Tty on(t)) = Txma=z €t un (1)),
where E(t, up(t)) is defined in (5.23).
By Lemma 5.1.2 we obtain for all ¢ € [0, T

(5.87) Fn(t, vn(t)) < Fr(0,vr(0)) + /Oth -/n Fn(Vup (7)) Va(r) dz dr + e(h),

where e(h) — 0 as b — +oo, and tp = tfl:' is the step discretization point of I5, such that
5 5
thh <<t

Step 2: Uniform bound on the energy. By (5.85) comparing v,(0) and g(0) we have

/ Fn(Ven(0)) dz + h12 / en(|ln(0)]]) + ah' = D (0)I(2) < | Vg(0)]1%.
o 599 (v (0))
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By (5.86) comparing vy (t) and g% (t) we obtain
RO
and since we have
[ 15(Funr)Pda <4 [ fu(Ton(r)ds,
Q o

by (5.87) we deduce that

[ n(TonteDds+ 1172 [ () dHV + aki=elDe](@) < O
Q Kn(t)

with C’ independent of h and of t. By Proposition 5.3.1 and by (5.84) we deduce that (va(£))nen
is bounded in BV (£2), and this proves point (a).

Step 3: Convergence to the elastic solution. Let v(t) be an accumulation point for (vs(t))nen
in the weak™ topology of BV (), and let us consider ! C RY open and bounded, and such that
0 C Q. Let us set Q' :=Q\ OyQ. Then we can extend vy (t) and v(t) to Q' setting vx(t) = g®»(t)
and v(t) = g(t) on Q' \ Q respectively. We have v, (t) = v(t) weakly* in BV(Q') for a suitable
hj /400, and

688) [ o (Ton @tz 157 [ (o (01 4+ ahI 71D (0)(9) < ©

S'Uh,jt

with € independent of j. In particular we have

| 5ns(Oony @)oo+ [ n, (o, O 2127 + okl D, ()] @) < €
o S(uny (1))
with €’ independent of 7. Then by Proposition 5.3.1 we have that v(t) € SBV (),

Voun, (t) = Vo(t)  weakly in L' (S RM),

and

(5.89) IVo(@)I” < limint / Iy (Von, () da.
J—=T0o0 Jo

Finally, if we consider for all Borel sets B C '

B = [ g o, @) Y
BNS(un, (1)

and if (up to a subsequence) A; — A weakly” in the sense of measures, we deduce following
Proposition 5.3.1 that
HN=TL S(w(t)) < A as measures.

Since by (5.88) we have )\ = 0, then we have S(v(t)) = 0, that is v(t) € H(Q2) and v(t) = g(t) on
Ap.
Let us consider v € H'(Q) with v = g(t) on Opf). Comparing vy (t) with v — g(t) + ¢®*(t) by
minimality property (5.86) we obtain
690 [ fa(Von®)ds+ah =D w@IO) < [ fu(Vu - Vo(e) + VP (1)) do
o 2

< Vo - Vg(t) + Vg @))%

114



In view of (5.89) we deduce that
IVe@)|® < Vol

so that »(t) is a minimizer of
min{||Vv||? : v € HY(Q), v = g(t) on OpQ}.

By strict convexity and since 2 is connected, we have that v(t) is uniquely determined, and so we
deduce that v (t) = v(t) weakly* in BV () and Vup(t) = Vo(t) weakly in LY(Q; RY).
Choosing v = v(t) in (5.90) and taking the limsup in & we have

mMjnwmmmswww,
h—+oo JQ
so that

Jm [ 5u(vun) de = vu)P

The proof of point (b) is now concluded thank to the rescaling (5.83).

5.6 Proof of Theorem 5.2.3

In this section we will give the proof of Theorem 5.2.3. Let {t — (upn(t),Tn(t),¥n(t)) : t € [0,T]}
be the piecewise constant interpolation given in (5.22) of a discrete in time evolution of fracture
in Qy, relative the subdivision I, :== {0=1t* < --- < t}s\',‘ah =T}, and the boundary displacement

heg(t, £) with a > 1.
We rescale uy, and Ty, in the following way: for all ¢t € [0, T] let vp(t) € BV(Q) and K (t) E QU
Op§} be given by

vn(t,3) = -hl—auh t,ha), Kalt) = %—I‘h(t), te[0,T],ze Q.
Let us moreover set

t2) = podnlt ha) = gmax [on(GN(E2),  tE 0Tz e
It turns out that {t — (vn (), Kin(t),vn(¢)) : t € [0,T]} is the piecewise constant interpolation of a

discrete in time evolution of cracks in € relative to the subdivision I, and boundary displacement
g(t) with respect to the basic total energy

pre= / Fu(Vo) dz + / on([o] V u(8)) dHN 1 + ah®| Do|(Q),
Q 55°R () (v)
where gok () = g(td+) for t¥* <t < t‘is_"‘_l, a:= ¢'(0),

‘ph(s) = Qa(has)a s€ [07 +°o[7

l€|? if |¢] < e
fu() =

2. 2(1—a) - l-a . 1o
ERLD 4 ahle(lg) - ST) if g > o
Notice that by Proposition 5.1.1 we have

(5.91) vr(0)llee < lg(0)lee < C,
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and for all w € BV(£2) we have

(5.92) h2e? / Fr(Von(0)) dz + f on([oa(O)]]) &1V~ + ah®| Deu (0)|(Q)
Q 59°1©) (w4 (0))

< 2ot / Fu(Vew) dz + / C au(l) a4 ek Do ().
Q §8°1(0) (ap)

Comparing v, (0) and w = —C by means of {5.92) we have

6.93) 1= [ fu(TonO)do+ [ on(|[on (O)]f) dHY " + ah?|Deu (0)](2)
Q 85871 (9) (v, (0))

< HN"H8pQ).

As a consequence, since |[vp(0)]lce < C by (5.91), following Proposition 5.3.1, we deduce that
(vh(0))nen is bounded in BV (2). Let v be an accumulation point for (v,(0))pen in the weak™
topology of BV (£2). Let us prove that v € SBV () and that Vv = 0: in fact we have that for all

£eRN _
Fr(€) S P27 fu(8)

where “
) &P if ¢ < 47
fu(€) =

2 @ " ah®
B 1 ohe(lg] — 22) if |¢] > 9

We deduce that there exists " independent of hk such that for all A
[ Aoz + [ on(lon(Ol) Y+ ch Do (o)) < O,
Q S(va(0))

By Proposition 5.3.1, we obtain that v € SBV({) and that Vv, {0) — Vv weakly in L(Q;RY).
By (5.93) we obtain that
HYN-YOp0) + 1
IVoR(0)l| Lramny < ——_(Eﬁ%)_’
so that we deduce Vv = 0, that is v is piecewise constant in €). Finally taking the limit in (5.92)
with w piecewise constant, by Proposition 5.3.1 we get exactly (5.27), so that the proof of Theorem
5.2.3 is concluded.

5.7 A relaxation result

In this section, we prove a relaxation result we used in order fo study the discrete in time evolution
of cracks in the cohesive case. It consists of a variant of a result by Braides, Bouchitté and Buttazzo
[15]: the difference here is that we have to take into account the presence of a preexisting crack
with a given opening which enters in the surface part of the energy.

Let f: R — [0,+00] be convex, f(0) = 0 and with superlinear growth, i.e.

lim sup (&) =

=== = +00.

Let ¢ : [0,+00[— [0, +oo] be increasing, concave, and such that (0) = 0. Notice that if a :=
¢’ (0) < 400, we have
(5.94) w(s) < as forall s € [0, +oo[.

Let Q be a Lipschitz bounded open set in RY, and let 8pQ C 65 be open in the relative topology.
Let T be a rectifiable set in QU dp§?, and let ¢ be a positive function defined on I'. Let us extend
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1 to QU 8pA setting ¢ = 0 outside I'. Let g € W11(Q2): we may assume that g is extended to
the whole RY, and we indicate this extension still by g.
We will study the following functional

Jo F(IVul) dz + [go(yur PRI V) AN i o € SBYV(Q)
(5.95)  F(u):=
+00 otherwise in BV({),

where S9(u) is defined in (1.2), a V b := max{a, b} for all a,b € R. The functional (5.95) naturally
appears (see Section 5.1) when dealing with quasistatic growth of cracks in the cohesive case,
where one is required to look for its minima. We are led to compute the relaxation of I with
respect to the strong topology of L1(2). The relaxation in the case I' = (§ (without boundary
conditions but without superlinear growth on f) has been proved in [15]. Let

(5.96) RO = m{fE) Falgl 6+ a=e),
where a := '(0). We have that the following result holds.

Proposition 5.7.1. The relazation of the functional (5.95) with respect to the weak™ topology of
BV(Q) is given by F' : BV(Q) — [0, +c0] defined as

(5.97) Flu) = /ﬂ Fi(IVu]) do + / o(lfull Vv ) AN + a| D¢,

Se(u)ul’
where a = ©'(0) and f; is defined in (5.96).

In order to prove Prqposition 5.7.1, the first step is the following lemma. A
Lermoma 5.7.2. Let F : BV(Q) — [0, +o0] be defined bé

Fw = [ A(va)ds+ [

So{u)J

, o(llu]l v ) dHV ! + a| Dol

with a = ¢'(0) and fi as in (5.96). Then F is lower semicontinuous with respect to the weak®
topology of BV ().

The proof of Lemma 5.7.2 is obtained by a standard slicing argument (see for example [8,
Theorem 5.4]) based on the lower semicontinuity result in dimension one. We establish this last
one.

Let I C R be a finite union of disjoint intervals, and let J C I be a countable set. Let us consider
the functional

(5.98) F(p) ==/If1(|¢ui)dw+ > @lluDn + D e(u{h] v $ () +alucl()

teSu\J teJ

defined for all . € My(I;R¥), i.e. p is a bounded R¥-valued Radon measure on I. Here ¢, is the
density of the absolutely continuous part p® of i1, 5, is the set of atoms of p, p¢ == p—p®*—pl S,
1 is a strictly positive function defined on J, a = ¢/(0) and f; is defined in (5.96).

Lemma 5.7.3. The functional F defined in (5.98) is lower semicontinuous with respect to the
weak™ convergence in the sense of measures.

Proof. Since F can be obtained as the sup of functionals of the form (5.98) with J finite, we may
assume that J = {z1,...,Zm}. Let pun — p weakly” in the sense of measures, and let A be the
weak™ limit (up to a subsequence) of |u, - J|. Let J := J; U Jp, with

J=A{teJ : u{thl 2z v@®)}, Jo = J\ Ji.
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Let € > 0 be such that
U BE(.’Z?,;) Q I

T;€J2
and such that for all n

|ttn] ( U BBE(mi)) = | ( U BBE(zi)> = Q.
Ti€J2

ziE€J2

Let us set

I =1\ U B.(z), Iy = U B.(z;).

TiE€J2 T €z

Let F; and F» denote the restriction of F to My(I1; R¥) and Mp(Iz; R*) respectively. We have
Hm inf F(un) 2 Hminf 73 (pn L 13) + i inf Fo(tn L J2).

‘We notice that
Fi(pnlDi) > G1(un L 1I1)

where

G1(m) ==/I Fillgah) de + Y @(ln{th))) + aln®l(1)

tes,

for all n € My(I1;R*). By [8, Thorem 5.2] we have that

Gi(plI;) < liminf Gy (pn L 17),
n—+00

so that
Fi(pl ) = Gi(pl D) < lminf 7y (un L 1)

On the other hand, we have

FolunlI2) = Ga(un L I\ J2) + 3 o(lun ({E1)] V (1)),
teJ2

where

Ga () ==/I £l dz + Y e(In({tD))+ aln®l(T2)

t€8,
for all n € Myp(I2; R¥). We have
(5.99) liminf (o - T2) 2 Ga(uL T \ Jo) + 3 o (M{E}) V (1)
teda
2 Go(ul L\ J2) + Z w((t)).
t€Jy

‘We deduce
Fa(ulIp) = Ga(pl T2\ Jo) + 3 ¢(#(t)) < lim inf Fa(un L Ia),

t€d2

and so we get
Fp) = F(plh) + Fa(plI2) < liminf F(un).

The proof is now concluded. ]

Let us now come to the proof of Proposition 5.7.1.
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Proof of Proposition 5.7.1. We can assume without loss of generality that
(5.100) / () dHY ! < +o0.
r

Following Lemma 5.7.2, let us consider €} open and bounded in RY such that Q c €, and let us
set ' := Q\ OyQ. Let us consider the functional
(5.101) v .
Jo F(UVul) dz + [0 el v ¥) dHN' ifue SBV(Q),u=gon '\
Flu) =
“+00 otherwise in BV ().

The relaxation result of Proposition 5.7.1 is equivalent to prove that the relaxation of (5.101)
under the weak™ topology of BV () is

(5.102) ) = /Q A (V) da + /S oo PRIV B D)

ifu € BV(Q'),u=gon \Q, and F'(u) = +oo otherwise in BV ({V').
Following [15], it is useful to introduce the localized version of (5.101); namely for all open set
A C Y let us set ' SR

(5103) Plu,d) = [ f(val)dz+ | p(1full v 9) dn
ANQ AN(S(u)Ur)

ifue SBV(QY),u=gon 2'\Q, and F'(u, A) = +oco otherwise in BV (Q'). Let us indicate by
F(u, A) the relaxation of (5.103) under the weak” topology of BV(SY').

Arguing as in [15, Proposition 3.3], we have that for every u € BV ('), F/(u, -) is the restriction
to the family A()') of all open subsets of ' of a regular Borel measure. Since for all u € SBV (')
with u =g on '\ Q and for all A € A(QY') we have

G0t [ f(vahdo+ [ p(l)a¥ Tl < Pl 4)
ANQ ANS(w)

< [ Fvbdes [ el [ pmae,

AnsS( An
by [15, Theorem 3.1] we obtain that for all u € BV (') with u = g on @'\ Q and for all 4 € A(Y)
with ANdpQ =0

G05) [ A(Tuds+ [ el aH + alDeul(4) < F'(u, 4
ANGQ ANS(w)

< [ A(va)ds+ pllull) aHYT + alDul(4) + [ () aHN .
AN Anr

ANS(u)
As a consequence of (5.105), we deduce that
Flu, ) L(Q'\ (S(uw) UT U dpQ)) = f1(|Vul) dLV LQ + a| D).

In order to evaluate F/(u,-)L(S(u) UT U 8pl), we notice that for all A € A(Q') and for all
u€ SBV(QV) withu=gonQ'\Q

/ AVl dz + / (]l v %) dHN " + a| Dul(A) < F'(u, 4),
ANQ AN(S(u)ur)
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and since the left hand side is lower semicontinuous by Lemma 5.7.2, we get that for all u € BV (YY)
with u=gon '\ Q

(5.106) / F1(IVa]) dz + / ([l V $) dHY " + a|D%u|(4) < F(u, A).
ANQ AN(S(u)ur)
By outer regularity of F'(u,-) we conclude that
PwB)2 [ ol ve)an=
E
for all Borel sets £ C S(u) UT'U 8pS). We have to prove the opposite inequality, namely
Fw,B) < [ ol vy)an™
E

for all Borel sets E C S(u) UT'U 8pd. Without loss of generality we may assume that
| el an=? < +os,
5(u)

and by a truncation argument, we can suppose that u;o € L°°(2). Let K be a compact subset of
S(u)UTUBp, £ > 0, and let A, be open with K C A, and

|Duf(4e \ K) < e, /( e PP <

We can find up, € BV () with up = g on '\ Q and such that uy, is piecewise constant in §) (that
is (un)jo € SBV(Q) with Vup = 0 in ), up — u strongly in L°(Q), and [Dup|(4: \ K) < e.
Since up, is piecewise constant in 2 we have for all h

(5.107) Fllun, As) < /A st PN VB YL

‘We conclude

(5.108) F7(u, A.) < liminf F7(up, A;) < kiminf o(|fup]| v ¢) dHV -1
h—++o00 h=+co J 4 n(8(uy)UI)

<

< / o(lull V %) dHY1 + ol Dun|(Ac \ K) + / () dHN
Kn(S(ujur) (A\K)NT

</ @[] V) Y + (0 + 1)
KN(S(u)uT)
so that, letting £ — 0 we obtain

Fi(u, K) < / o([ul] v ) dHN 1,
KN(S(u)ur)

Since K is arbitrary in S(u) UT U 8pQQ, the proof is concluded. [
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Chapter 6

Ambrosio-Tortorelli
approximation of quasistatic
evolution of brittle cracks

Numerical computations concerning the model of quasistatic.crack evolution proposed by Francfort
and Marigo in [54] have been performed by Bourdin, Francfort and Marigo in [18]. They employ
a discretization in time procedure and an approximation of the total energy proposed in 1990 by
Ambrosio and Tortorelli (see [10],[11]).

In this chapter we propose a definition of irreversible quaSJSta.tlc evolution for the Ambrosio-
Tortorelli functional, and prove its convergence to a quasistatic crack growth in sense of Francfort
and Larsen [53]. In this way also a theoretical justification of the employment of Ambrosio-

Tortorelli approximation in problem of crack evolution is given o

6.1 The Ambrosio-Tortorelli functional.

The Ambrosio-Tortorelli functional is given by
1
Fu(u,v) = / (e +v2)|Vu[2d:c+—€-/ Vo2 dz + —/(1 —)2do
Q 2 Ja 2e Jq
where (u,v) € H}(Q) x H}(2),0<v < 1,0 < 7. << e. F. contains an elliptic part

(6.1) /n (ne +?)|Vul? dz

and a surface part
(6.2) MM (v) = —E-/ |Vl dz + 1 / (1—v)*dz
2 1) 2e Q

which is a term of Modica-Mortola type (see [72]).
The I'-convergence result of Ambrosio and Tortorelli [10], [11] can be expressed in the following
way. Let us indicate the space of Borel functions on £ by B(f2) and let us consider on B(£2) x B(£2)

the functionals
F(u) we GSBV(),v=1ae. onll

Flu,v,9) = {

+co  otherwise

1The results of this chapter are contained in the paper
A. Giacomini: Ambrosio-Tortorelli approximation of quasistatic evolution of brittle fractures. Calc. Var. Partial
Differential Equation in press.
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Fe(u,v) {u,v) e HY(Q),0<v <1
Felu,v,Q) :=

+00 otherwise.
Here GSBYV is defined in Subsection 1.1.2.

Theorem 6.1.1. The functionals (F:) on B(2) x B(Q) I'-converge to F with respect to the con-
VETGENCE N MEaSUTe.

In particular, we will use several times the following fact: if ul € H*(Q), i = 1,...,n, and
ve € HY(Q) are such that "1, Fr(ul,ve) + |[uilleo < C, there exist u* € SBV(Q),i=1,...,n
and a sequence £ — 0 such that uf, — v’ a.e., and

(63) [ 1vuf do < migt [ e+ 02)vui ds,
7] &0 Ja

HN-1 (Ln) S(ui)> < liminf (g/{;IVzlslzdz+-2l—E/n(1—vE)2dm).

i=1

6.2 Description of the approximation result

Let us describe how the approximation of Ambrosio and Tortorelli will be used in order to deal
with the problem of quasistatic crack growth. We will define through a variational argument the
following notion of quasistatic evolution for the functional F, (Theorem 6.3.1): for every £ > 0 we
find 2 map ¢ — (ue(t), ve(t)) from [0,1] to H'(2) x HY(Q), 0 < ve(t) < 1, ue(t) = g(t), ve(t) =1
on dpfl such that:

(a) forall 0 < s <t < 1: ve(t) 5 ve(8);
(b) for all (u,v) € HY() x HY(S) with u=g(2), v=10n dpQ, 0 < v < v(t):
(64) Fe(ue(t),ve(t)) < Fe(u,v);

(c) the energy E(t) = F;(uc(t), v:(t)) is absolutely continuous and for all £ € [0,1]

t
E(t) =E.(0) + 2/0 /Q(T]E + 02(T)) Ve (T)V(7) dz dr;

(d) there exists a constant C' depending only on g such that £.(t) < C for all ¢ € [0,1].

Condition (@) permits to recover in this regular context the fact that the crack is increasing in time:
in fact, as v.(t) determines the crack in the regions where it is near zero, the condition v, (t) < v.(s)
ensures that existing cracks are preserved at subsequent times. Condition (b) reproduces the
static equilibrium condition at each time, while condition (c) stands for the nondissipativity of the
evolution. Condition (d) gives the necessary compactness in order to let € — 0. In the particular
case in which {|g(t)||e < Ci for all ¢ € [0,1], it turns out that, using truncation arguments,
||t (t)]loo < Ci for all ¢ so that a uniform L* bound is available at any time. The requirement
ve(t) = 1 on OpQ for all ¢ € [0,1] is made in such a way that, letting ¢ — 0, the surface energy
of the crack in the limit is the usual one also for the part touching the boundary 852. The main
result of the chapter (Theorem 6.3.2) is that, as ¢ — 0, the quasistatic evolution ¢t — (u.(t),v.(t))
for the Ambrosio-Tortorelli functional converges to a quasistatic evolution for brittle fracture in the
sense of [53]. More precisely, there exists a quasistatic evolution ¢t — (u(t),T'()), u(t) € SBV(Q),
relative to the boundary data g and a sequence £, — 0 such that for all ¢ € [0, 1] which are not
discontinuity points of H¥ ~1(I'(-)) we have

Ve, (t) Ve, (t) — Vu(t) strongly in L2(Q, RV),
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[ + 02, 0) Ve, (OF dz = [ 1Vutt)P s,
Q Q

and

MM, (ve, (t)) — HN-1 @@)).

Moreover & (i) — £(¢t) for all ¢t € [0,1]. We thus obtain an approximation of the total energy at
any time, and an approximation of the strain, of the bulk and the surface energy at all time up to
a countable set. The main step in the proof is to derive the static equilibrium property from its
regularized version (6.4). Given z € SBV((), a natural way consists in constructing z, € H(f)
and v, € HY(Q) with 2z, = g(t), v, = 1 on 9p, 0 < v, < ve(t) and such that

i 2V Vznlt dx = 2|? dz,

(6.5) l,rln/n(nsﬁrvn)lv 2 dz /ﬂ|v 2d

and

(6.6) limnsup [M M., (vs) — MM (v, ()] < HN "2 (S(2)\T(2)).

‘We thus need a recovery sequence both for the displacement and the crack: moreover we have to
take into account the boundary conditions and the constraint v, < wv,(t). Density results on z,
such that of considering S(z) polyhedral, cannot be directly applied since the set S(2)\T'(¢) could
increase too much; on the other hand it is not possible to work in  \ T'(f) since no regularity
results are available for T'(t) apart from its rectifiability. It turns out that S(z) NT'(%) is the part
of the crack more difficult to be regularized, and in fact all the problems in the construction of
(2n,vn) are already present in the particular case S(z) C I'(¢). In order to fix ideas, let us suppose
to be in this situation; we solve the problem in two steps. We firstly construct z, € SBV(Q)
with VZ, — Vz strongly in L?(;RY) and such that S(Z;) is related to u,(t) and v, (t) with
precise energy estimates: this is done following the ideas of [63, Theorem 2.1}, that is using local
reflections and gluing along the boundaries of suitable upper levels of u,(t), but we have to choose
the upper levels in a more precise way. In a second time, we regularize S(Z,) using not only vy, (%),
which is quite natural, but also u,, (), so that (6.5) and (6.6) hold.

6.3 The main thebrems

Let © C RY be open, bounded and with Lipschitz boundary, and let 8p2 C 8Q. If g €
Whi(jo,1]; H1(f)), we indicate the gradient of g at time ¢ by Vg(t), and the time derivative
of g at time t by §(¢).

Concerning the Ambrosio-Tortorelli functional, the following theorem holds.

Theorem 6.3.1. Let g € WH([0,1); H*(f2)). Then for all e > 0 there exzists a strongly measurable
map

[0,1] — HYQ)xH(Q)
o (ue(B), (1))
such that 0 < v:(t) <1 in Q, u:(t) = g(t), v=(t) =1 on 8pf for all t € [0,1], and:
(a) for all0 < s <t <1 ue(t) < uels);
(b) for all (u,v) € HY(Q) x HY(Q) with u= g(0), v=1 on dpQ
Fe (ug(0),v:(0)) < Fe(u,v);
(c) for all t €]0,1] and for all (u,v) € HY(Q) x H}(Q) with 0 < v < v(t) on Q, and u = g(t),

v=1 on 8pQ
Fe(ue(t),ve (1)) < Fe(u,v);
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(d) the function t — F_(u.(t),v:(t)) is absolutely continuous and
Fu(ue(®),0e(8) = Fe(we(0),0e() +2 [ [ e+ 02(r) Ve V() do

The convergence result is given by the following theorem.

Theorem 6.3.2. Let g € WH([0,1]; HY()) be such that ||g(t)l|ee < C for all t € [0,1)], and
let g, € WH([0,1]; H*(Q)) be a sequence of absolutely continuous functions with ||gn(t)|ee < C,
gn(t) € C(QQ) for all t € [0,1] and such that gr, — g strongly in W4([0,1]; H*(Q)). For alle > 0,
let t — (uen(t),ve,n(t)) be a quasistatic evolution for the Ambrosio-Tortorelli functional F. with
boundary data gy given by Theorem 6.5.1.

Then there ezists a guasistatic evolution t — (u(t),T'(%)), u{t) € SBV(Q), relative fo the
boundary data g in the sense of Theorem 1.4.2, and two sequences e, — 0 and h, — +oo such

that, setting un = Ue, h, @Nd Up = Vg, h,, the following hold:
(a) for all t € [0,1] we have
Fe, (un(t), vn(2)) — E(t)
(b) if N denotes the point of discontinuity of HN~(L'(-)), for all t € [0,1]\ NV we have
un(t)Vun(t) = Vu(t) strongly in L*((;RY),

1111111/0(77,1 + vﬁ(t)}|vun(t);2 d:l:_—. /{; IVu(t)|2 dz,
and . ‘ 1 ) '
% [ Vo0 dot 5 [~ @) do = 1Y),

Theorem 6.3.1 concerning the quasistatic evolution for the Ambrosio-Tortorelli functional is
proved in Section 6.4. In Section 6.5 we prove the compactness and approximation result given by
Theorem 6.3.2. An important step in the proof is given by Theorem 6.5.6 to which is dedicated
the entire Section 6.6.

6.4 Quasi-static evolution for the Ambrosio-Tortorelli func-
tional

This section is devoted to the proof of Theorem 6.3.1 where a suitable notion of quasistatic
evolution in a regular context is proposed. The evolution will be obtained through a discretization
in time procedure: each step will be performed using a variational argument which will give the
minimality property stated in points (b) and (c).

Let © € RY be open, bounded and with Lipschitz boundary, and let 8,0 C 8. Let g €
whi([o,1}; H*(Q)). Given § > 0, let Nj be the largest integer such that 6N < 1; for i > 0 we set
td = i6 and for 0 < 7 < Nj we set g{ = g({). Define uf and v§ as a minimum for the problem

(6.7) min{F;(u,v) : (u,v) € HH(Q) x H}(Q),0<v» < 1in Q,u=gd,v=10ondp0},
and let (uf,;,v¢,;) be a minimum for the problem
(6.8) min{F. (u,v) : (u,v) € HY(Q) x H}(2),0<v < in Q,u = g;s_,_l,'u = lon8pft}.

Problems (6.7) and (6.8) are well posed: in fact, referring for example to problem (6.8), let
(tn,vn) be a minimizing sequence. Since (gf,,,v$) is an admissible pair, we obtain that there
exists a constant C > 0 such that for all n

Fo(tn,vp) < C.
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Since £, 7: > 0, we deduce that (un,v,) is bounded in H* () x H(L) so that up to a subsequence
Uy — u and v, — v weakly in H*(2). We get immediately that u = gf_l_l and v = 1 on dp{2 since
Un = g§ +1 and vp, = 1 on Jp§? for all n; on the other hand, since v, — v strongly in L3(9), we
obtain that 0 < v < v9. By semicontinuity, we have

Fe(u,v) < liminf F,(ug,vp)
n

so that (u,v) is a minimum point for problem (6.8).
We note that by minimality of the pair (u;-s+1,vf+1), we may write

(6.9) Fe(ugﬂ,’ufﬂ) < Fo(ul + 9?—1-1 —gfvf) =

= Fo(uf,vf) +2 /Q(ns + (W) )\VulV(gl,, — gf) dz + /ﬂ(ns + @)V (gl — 98P dx <

201 1
<Fadod)+2 [ [ e+ 0fPVuivar) dadr +e(@) [ IV ey dr,
£ 2 18
where

0<r<N;—1

e(d) = 1+ x| [ "INz mimmy dr

is infinitesimal as § — 0.
We now make a piecewise constant interpolation defining
(6.10) wt)=u, Wl@)=9, @t)=g] fore]<t<il,.

Note that by construction the map ¢ — v9(t) is decreasing from [0,1] to L?(£2). Moreover, iterating
the estimate (6.9), we obtain

ROI040) < RN +2 [ [+ R0 VrIvaer dodr +

. . 14
(611) +e®) [ IV9(llzs oy dr

where s% := ¢§ and ¢’ := ¢J are the step discretization points such that 7 < s < t{,; and
<t <thy.
Note that by minimality of the pair (u3(t),v2(t)), we have
Fe(ul(),v2(t)) < Fe(d® (2),v2(2))

so that
(6.12) / (e + 02 (6)) V() da < / (1 + v (OD)V ()P de < Cy
9] Q

with C; > 0 independent of § and ¢. In particular by (6.12) we have that

C
IVl ()]F2@mmy < Ej

Since ul(t) = g°(t) on 8p, and g°(t) is uniformly bounded in H(S2) for all t and 4, we get by a
variant of Poincaré inequality that ul(t) is uniformly bounded in H*(Q) for all £ and 4.
Now we come to v¢ in order to obtain some coerciveness in the space H*(f2). Notice that

2 <

[ [ +oteywasinyvar asar
0 Q

18 3
< 2 VAl ( / (ns+v2(t)2)lVUi(t)lzdm) V60| s o,
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and by (6.12), we obtain

(6.13) 2 /0 t /ﬂ (e + ¥ (P2 Vb (r)V g (r) dz dr| < Gy

with Cy > 0 independent of £ and 4.
By (6.11) with s =0, and (6.13), we deduce

/g Vod(@)P da + o /9(1 — ()2 dz <

IA

tnS
Fu(u(0),03(0)) +2 / /n (e + 3(7)?)Vud (1) Vg (r) dudr +

t5
+e(d) /a |[V."J(T)”L2(Q;R”) dr <
&

IA

1
F(uf(0),53(0)) + Cs + €(8) / Nz

‘We conclude that there exists C' > 0 independent of ¢ and § such that for all ¢ € [0, 1]
(6.14) 2@l < C.
We now want to pass to the limit in & as § — 0.

Lemma 6.4.1. There ezists a sequence 8, — 0 and a strongly measurable map v, : [0,1] — H(S2)
such that vir(t) — v.(t) weakly in H*(Q) for all t € [0,1]. Moreover, v, is decreasing from [0,1]
to L2(), and 0 < v:(t) < 1 in Q, v:(t) = 1 on 8pQ for all t € [0,1].

Proof. Since the map t — v2(t) is monotone decreasing from [0,1] to L?(f), and 0 < v3(¢) < 1
for all ¢, we deduce by a variant of Helly’s compactness theorem for sequences of monotone real
functions, that there exists a subsequence 8, — 0 and a decreasing map v : [0,1] — L3?(2)
such that for all ¢t € [0,1] we have vi"(t) — v.(t) strongly in L?(). In particular we deduce
0 < ve(t) < 1in Q. By (6.14), we have that for all ¢ € [0,1], up to a subsequence, v3+(t) — w
weakly in H'(S); since vi(t) — v.(¢) strongly in L?(f2), we deduce that w = v.(t) so that
ve(t) € HY(Q), and vin (t) — v.(t) weakly in H'(Q). As a consequence, v.(t) = 1 on 8p§2 for all
t € [0,1]. Finally, v, is strongly measurable from [0, 1] to H*(€2) because it is weakly measurable
and separably valued (see [86, Chapter V, Section 4]). O

Let us consider the sequence 6y,, and the map v, given by Lemma 6.4.1. We indicate uf", vf»

£
and g% simply by u?, v? and g,.

Lemma 6.4.2. There ezists o strongly measurable map u. : [0,1] — HY(Q) such that ul(t) —
ue(t) strongly in H*(Q) for allt € [0,1]. In particular, uc(t) = g(t) on dpQ for all t € 0,1].

Proof. Let t € [0,1]. We note that u?(¢) is the minimum of the following problem
min {/ (e + v2(E)*)IVzPdz : 2 € HY(Q),z = gn(t)on 61)9} .
Q

Since by Lemma 6.4.1 v7(t) — v.(t) strongly in L2(Q), and g,(t) — g(t) strongly in H'(), we
deduce by standard results on I'-convergence (see [43]), that u?(t) — u.(f) weakly in H*(Q) where
ug(t) is the solution of the problem

min {_/9(775 +2@)|V2?dz : 2z € HY(),z = g(t) onBDQ} .
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Moreover, we have also convergence of energies, that is
(6.15) tim [ (1. +o2OPVUZOP e = [ (e -+ oE0)I Ve
Since v () Vul(t) — ve(t)Vue(t) weakly in L2(Q;RY), we obtain

[ OV do < timiat [ o2 @ Vun(e)

so that by (6.15) we deduce Vul(t) — Vu,(t) strongly in L*(Q; RY). We conclude that u?(t) —
u(t) strongly in H!(Q) for all ¢ € [0,1], and so the map ¢ — w.(t) is strongly measurable from
[0,1] to HY(). Finally u.(t) = g(t) on 8p and the proof is complete. [

The following minimality property for the pair (u.(t), v¢(t)) holds.

Proposition 6.4.3. Ift €]0,1], for every (u,v) € HY(Q) x H*(Q) such that 0 < v < v.(t) in £,
and u = g(t), v=1 on 8pfl, we have

Fe(ue(t), ve(t)) < Fe(u,v).
Moreover, for all (u,v) € H(2) x H'(Q) such that u= g(0), v =1 on 8p$2, we have
Fe(ue(0),v:(0)) < Fe(u,v).

Proof. Let us set
Un = u + ga(t) — g(t),

and _
Up 1= min{vg(t)‘a 'U};

'~ we have u,, — u strongly in H*(Q), and v, — v weakly in H(Q). Since 0<um < v2(t) in £, and

U, = gn(t), vn = 1 on Opf, by the minimality property of the pair (uZ(t), vZ(t)) we get
FE(“?@L”?@)) < Fs(um'vn);
that is

©616) [ e+ 2 @IIVezOF da+ 5 [ V@R do+ o [0 -o2@)Pdo<

5/(ng+vn2)}Vun|2 dz+§-/ |V, |? cl:v—#i/(l—'un)2 dz.
Q 2 Ja 2 Jo

Notice that
€

f/ Von|? dz = / |ng(t)|2dm+5/ Vo2 da
2Ja 2 Jwr ()< 2 J{opy2w)

so that (6.16) becomes

712 (4|2 2
e +ozerivezera+ |

vz (t)2v}

5/(n5+vn2)fVun[2dm+£/ |w[2czm+—1—/(1—vn)2dm.
Q 2 Jiwpyzn} 2 Ja

Va2 (o) do+ - / (1 —oP(t)* de <
€ Ja

For n — oo, the right hand side is less than F(u,v). Let us consider the left hand side. By
semicontinuity we have

liminf & VR @) ds > & / Vo, ()2 da,
n {vr()2v) 2Ja
and so we conclude that Fi(u:(t),ve(t)) < Fe(u,v).
For the case £ = 0, by lower semicontinuity we get immediately the result. O
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In order to obtain the proof of Theorem 6.3.1, we need the following proposition.

Proposition 6.4.4. For all 0 < s <t <1, we have that
Fe(ue(t), ve(t)) — Fe(ue(s),ve(s)) = 2 /ﬂ (7 + v2(£))Vue (£)(Vg(t) — Vg(s)) dz +

—o(t— 5)/s V3 () L2(amny dr

where ¢ is an increasing positive function with o(r) — 0 as r — 0.
Proof. By Proposition 6.4.3, we have

Fe(ue(s), ve(s)) < Fel(ue(t) — g(t) + g(s), ve(t))
so that

Fe(us(s)ave(s)) < Fe(us(t)y 'Us(t)) - 2‘/5;(775 + ’Ug(t))Vus(t)(Vg(t) — Vg(s)) dz +
+ / (1 +v2(1)|Vg(t) — Vg(s)|? dz.
[y)
Then we conclude that

Fe(ue(t), ve(t)) — Fe(ue(s),ve(s)) = 2 /Q (7 + E(£)) Vue (£) (Vg () — Vg(s)) dz +

—olt—3) / IIV3()I= dr

where . :
o(r) o= (4 1) oz [ 1930z
and so the proof is complete. » O
‘We can now prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Let us consider the sequence 6, — 0 given by Lemma 6.4.1, and let us
indicate the discrete evolutions ul" and v¥~ defined in (6.10) simply by 42 and v". Let us denote
also by u.(t) and v, (t) their limits at time ¢ according to Lemma 6.4.1 and Lemma 6.4.2. We have
that the maps ¢ — u.(¢) and ¢ — v.(¢) are strongly measurable from [0,1] to H'(f2); moreover
for all ¢ € [0,1] we have 0 < v.(t) < 1 in £, u(t) = g{t), v=(f) = 1 on Ipf) and t — v.(t) is
decreasing from [0,1] to L*(Q2) so that point (a) is proved. By construction we get point (b) and
by Proposition 6.4.3 we get point (c).

Let us come to condition (d). Let us fix £ € [0,1], and let us divide the interval {0,1] in &
subintervals with endpoints s¥ := % where j = 0,1,-- ,k. Let us define @i(s) := ug(sk,,), and
g (s) = ve(sky,) for s¥ < s < s%,,. Then, applying Proposition 6.4.4, we have

(6.17) Fu(ue®),ve(®)) > Felue(0),u(0))+2 / /Q (e + 5(7)) Vair(r)Vg(r) dodr +

~o (£) [ 19steis .

Since t — v, (t) is monotone decreasing from [0, 1] to L2(Q2), we have that @i5(s) — v.(s) strongly
in L2(Q) for a.e. s € [0,]; consequently, we have that @i;(s) — uc(s) strongly in H*(2) as noted
in Lemma 6.4.2. We conclude by the Dominated Convergence Theorem that

Iilrzn/0 /{;(775 + T (7)) Vi (1)Vi(r) dz dr = /(; /5;(775 + vg(T))VuE('r)Vg('r) dz dr.
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By (6.17) we deduce that

(6.18) Fo(ue(t), ve () > Fo(ue(0), 0e(0)) + 2 /O t /Q (ne -+ 92(r)) Ve () V4 (r) da dr.

On the other hand, from (6.11), and since Fe(u2(0),v2(0)) = Fe(u(0),v:(0)) for all n, we deduce

(619)  limsup Fu(uZ(2), v2(0)) < Falue(0),2e(0) +2 /0 /n (e + ¥2(r)) Ve () V3 (r) da dr.

Since by semicontinuity we have for all ¢t € [0,1]

Fe(ue(t),ve(2)) < linllinf Fe(ug (t), vz (8)s
by (6.18) and (6.19), we conclude that
(6-20) lim F (uz (), v (£)) = Fe (ue (2), ve (2))-

In particular

Fe(ue(t),ve () = Fe(ue(0),v:(0)) +2 /0 /Q (e +v2(r))Vue(1)V§(7) da dr,

and this proves point (d).. O

Remark 6.4.5. The map {t — v:(£), t € [0,1]} is decreasing from [0, 1] to L2(f2), so that v, is
continuous with respect to the strong topology of L%(Q) at all points except a countable set. Since

}\(t) = g/ﬂ]‘v'ua(t)l2 dz + 515 /ﬂ(l}— v (8))? da

is monotone increasing (see Proposition 6.5.8), we conclude that v, : [0,1] — H(Q) is continuous
with respect to the strong topology at all points except a countable set. Then we have v, €
Leo([0,1], HY(£2)). Moreover, we have that u. : [0,1] — H*({) is continuous at the continuity
points of v, as observed in Lemma 6.4.2. We conclude that u. € L*([0, 1], H1(2)).

Remark 6.4.6. The minimality property of point (¢} of Theorem 6.3.1 holds indeed in this
stronger form: if ¢ €]0,1], for all (u,v) € HY(9) x H*(Q) with 0 < v < v.(s) on Q for all s < t,
and u = g(t), v =1 on 8p, we have

Fe(ue(t), ve(t)) < Fe(u,v).
In fact, if 0 < v < v-(s), by the minimality property of (u-(s),v:(s)) we have
Fe(us(s), ve(s)) < Fe(u+g(s) — g(),v),

so that, letting s — ¢ and using the continuity of F:(u.(-),v:(-)) we get the result.
This stronger minimality property is the reformulation in the context of the Ambrosio-Tortorelli
functional of the minimality of the cracks required in [54].

6.5 Quasi-static growth of brittle fracture

In this section, we prove that the evolution for the Ambrosio-Tortorelli functional F, converges as
e — 0 to a quasistatic evolution of brittle cracks in linearly elastic bodies in the sense of [53].

Let © € R" be open, bounded and with Lipschitz boundary. Let OpQ C 91, and let us set
ONQ = O\ OpQ. Let g € WL([0,1]; HX{({2)). In order to treat in a convenient way the boundary
condition as € — 0, let B be an open ball such that I C B, and let us set Q' := B\ 58 and
Qp =\ Q. Let E be an extension operator from H*(2) to H(B): we indicate Fg(t) still by
g(t) for all ¢ € [0,1]. In this enlarged context, the following proposition holds.
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Proposition 6.5.1. Let us consider the evolution t — (u.(t),v:(2)) from [0,1] to H(Q) x H{()
given by Theorem 6.8.1, and let us extend u-(t) and v.(t) to ' seiting u.(t) = g(t) and v-(¢) =1
on Qp respectively. Then the map

[0,1] — HYWY)x HYQ)
1 L (ue(t), ve(t))

is strongly measurable and the following facts hold:
(a) for all 0 < s <t <1 u:(t) < we(s);
(b) for all (u,v) € H} Q) x H*(Y) with u=g(0), v=1 on Op:
(6.21) Fe(ue(0),v2(0)) < Fe(u,v);
(c) for t €]0,1] and for all (u,v) € HYQY) x HY(Y) with 0 < v < v.(t) on O, end u = g(t),
v=1 onSp:

(6.22) Fe(ue(t),ve(t)) < Fe(u,v);
(d) the function t — F.(uc(t),v:(t)) is absolutely continuous and
(6.23) F(uc(t),ve(t)) = Fe(u:(0),v:(0)) + 2/0 ./s;r (me + UE(T))VUE (r)Vg(r)dz dr.

Proof. Recall that for all ¢ € [0,1] we have u.(t) = g(t), ve(f) = 1 on 8p%Q, and 0 < v.(t) <1
in . The extensions to H!() are thus well defined. We obtain a strongly measurable map
t — (ue(t),v:(t)) from [0,1] to HY{(Q') x HY(Y) such that 0 < v.(t) < 1 in ', u.(t) = g(t),
ve(t) = 1 on Qp, and such that '

F,._-('u,;-(t),ve(t)) < FE(”:”)

for all (u,v) € H*() x H}(Y) with 0 < v < v.(t) on &, u = g(t), v = 1 on p; note in fact that
the integrations on 2p which appear in both sides are the same. By the same reason, we get the
minimality property at time t = 0 and deduce that the function t — F.{ue(t),v:(t)) is absolutely
continuous with

Fufue(®),ve(8) = Fewe(0),0e(@) +2 [ [ (me +03(0)Vue(r)Vi(r) dodr
O

From now on, we assume that there exists a constant C > 0 such that for all ¢ € [0,1],
lgit)loo < C, and that there exists g € W1([0,1], H*(?')) such that ||grlle < C, gn € C(V),
and g, — g strongly in Wh([0,1], H*(Y')). For every £ > 0 we indicate by (uen,%,n) the
evolution for the Ambrosio-Tortorelli functional relative to the boundary data gy, given by Propo-
sition 6.5.1. The bound on the sup-norm is made in order to apply Ambrosio’s compactness
theorem in SBV when € — 0. Notice that we may assume by a truncation argument that

[Jue,h @)oo < 1lgn(8)]]oo, that is
(6.24) e (®)lloo < C.

We conclude that u, p(t) is uniformly bounded in L®°(Y’) as €, h and ¢ vary. Moreover we have
that the following holds.

Lemma 6.5.2. There erists a constant Cy > 0 depending only on g such thal for all t € [0,1],
€ h

(6.25) Fe(ue,n(8), ve,n (1)) + lluen(t)lleo < Ch.
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Proof. Notice that Fg(uen(0),v:4(0)) < F:(gn(0),1) so that the term Fi(uer(0),ver(0)) is

bounded as € and h vary. We now derive an estimate for the derivative of the total energy.
Since 0 < v 4(7) < 1 and 7. — 0, by Holder inequality we get

<

I /n (e + e (7)) Ve (1) Vi (7) o

1

2
<2 ([t + vV eI o) 1930l laqoramy
since by the minimality property (6.22)
[ e+ ven DI Veen()P e < [ 0+ ven(r)Vantn) i,

we get the conclusion by (6.23) and (6.24). O

As a consequence of (6.25), we have

/ﬂ (1~ e ()| Voen(d) do < 2 /Q (Voo n ()2 da + % /n (1 —ven(D)2de < Ci,

so that the functions we 4 (2) = (1 — v 1 (¢))? have uniformly bounded variation.
By coarea formula for BV -functions (see (8, Theorem 3.40]), we have that

/1 HY =1 (8*{ve,n(t) > 8}) ds = / (1 — ve,n ()| Ve, (£)] dz
0 A

(0* denotes the essential boundary) so that by the Mean Value theorem, for all j > 1 there exists
b, (8) € [, &) with |

(6.26) M (6 {en(t) > 1,0} < Cu.
Let us set
(6.27) Bep(t) = {bg'h(t) i 1}.

We now let € — 0. Let D be countable and dense in [0,1] with 0 € D.

Lemma 6.5.3. There exists a sequence e, such that for all t € D there exists up(t) € SBV(Y),
up(t) = gu(t) on Qp, with

usﬂ-’h‘(t)]l{’vsn.h(t)>bémh(t)} — ’U.h(t) n SBV(Q')

In particular for allt € D we have
(6-28) /ﬂ |Vun (t)? de + HY = (S(un(1))) + llun(®)lleo < Ci.

Proof. For all t € [0,1] we may apply Ambrosio’s compactness Theorem 1.1.1 to the function
za(t) = uemh(t)]l{ven,h(t)>b§mh(t)}: in fact z,(t) is bounded in L®(Q') and Vz,(t) is bounded
in L3(§') by (6.25), and S(2n(t)) C 8u{ve, n(t) > b} ,(t)} so that HN=1(S(z,(t))) is uniformly
bounded in n by (6.26). Using a diagonal argument, there exists a subsequence such that for all
t € D, z,(t) — up(t) in SBV(Y'); in particular, we have that up (£} = gn(t) on 2p, and by (6.25)
and the [-liminf inequality for the Ambrosio-Tortorelli functional (6.3), we get (6.28). |

The following lemma deals with the possibility of truncating at other levels given by the
elements of Be, x(t).
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Lemma 6.5.4. Lett € D and j > 1. For every bﬁmh(t) € Be, 1(t) we have that
uE"'h(t)n{vsn.h(t)>b‘th(t)} — up(t) in SBV(Q’)

Proof. Note that, up to a subsequence, u. (t)1 en (56 (&)} — 2 in SBV(§) because of

Ambrosio’s Theorem 1.1.1. By (6.24), we have that "

e s 0o, wey>? 0} ~ Yenh O Lue, wiwr>e, 03 lzzeny <
< C|{8, a8) < ver®) < B, 1)

Since ve, 4(t) — 1 strongly in L%()'), we conclude that
|{b w(t) < veLn(t) < B (t)}] -0,
so that
llz — un(®)llz2@) =
=lim|lue, ()1, 56,03 ~ YenhELue, nw>tr, 3llzz@) =0,

that is z = up(t) and the proof is complete. ‘ O

The following lemma deals with the possibility of truncatmg at time s using the function
Ve, n(t) for ¢t > s. . D ,

Lemma 6.5.5. Let s,t € D with s <t, and j > 1. Then for e'uery b’ 1(t) € Be,,n(t) we have
that
usmh(s)ll{vs"'h(t)>b£mh(t)} — up(s) in SBV(Q).

Proof. Up to a subsequence, by Ambrosio’s Theorem, we have that

Uenn () iy, >t 3 — 2 0 SBV(Q).

Since ve, 1(t) < g, n(s), we have that {ve, n(t) > bgmh(t)-} C {ve,,n(s) > b7+ +(5)}. Then we
have

lten ()L, 00} — Yoo ystzn, oy 2200 < C [{venn®) <8}

Since v, »(t) — 1 strongly in L2(Q'), we conclude that t{vsn,h(t) < bgn,h(t)}l — 0. By Lemma
6.5.4 we have
Uer,h(5) L, a(a)>e2t2, (@) — Un(s) 0 SBV(SY),

so that z = up(s) and the proof is complete. O

We now pass to the analysis of up () with ¢ € D. The following minimality property for the
functions up(t) with ¢ € D is crucial for the subsequent results.

Theorem 6.5.6. Lett € D. Then for every z € SBV (') with z = gn(t) on Qp, we have that

/ (Vun()[2 dz < / V22 dz + HV -1 (S(z)\ U S s))

s<t,s€D

The proof is quite technical, and it is postponed to Section 6.6. We now let A — co.
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Proposition 6.5.7. There ezists hy, — oo such that for all t € D there ezists u(t) € SBV (V)
with u(t) = g(t) on Qp such that up, (£) — u(t) in SBV (). Moreover, Vuy,, (t) — Vu(t) strongly
in L2(V;RY) and for all z € SBV(QV) with z = g(t) on Qp we have

/ﬂ , [Vu(t)|? dz < /Q , |Vz[? dz -+ HV-? (S(z) \ SSHED S(u(s))) :

Proof. The compactness is given by Ambrosio’s Theorem in view of (6.28). The strong convergence
of the gradients and the minimality property is a consequence of the minimality property of
Theorem 6.5.6 and of [53, Theorem 2.1]. O

We can now deal with € and h at the same time.

Proposition 6.5.8. There ezists e, — 0 and h, — +o0o such that for all t € D there exists
u(t) € SBV(QY) with u(t) = g(t) on Qp such that for all j > 1

Ue, b (t)l{usnvhn(t)>bz;",hn oy~ ult) in SBV(§Y).
Furthermore for all z € SBV(SY) with z = g(t) on Qp we have
/ (Vu(t)2 dz < / ez + 1V S\ | S(u) |,
@ u v 8<t, €D

and we may suppose that the functions ., p, converge pointwise on [0,1] to an increasing function
A such that for allt € D

(6.29) A(t)zHN‘1< U S(u(s))).
s<t,s€D

Finally, we have that for allt € D
(6.30) [ 1vu)P do+ 1Y (S() + @) < G
QI

Proof. We find e, and h, combining Lemma 6.5.3 and Proposition 6.5.7, and using a diagonal
argument. Passing to the second part of the proposition, notice that the functions A, ., are
monotone increasing. In fact if s < ¢, since v, b, (£} < Ve, 1, (8), and v, 5. (t) = 1 on Qp, by the
minimality property (6.22), we have that

Fe, (Uep,hp (8): Ve 1 (8)) < Fe, (Uep i (5); Ve ha (£)),

so that

Aenitin (B) = Ao ,ha (8) 2
2 [ (e + Ve 0 Vtero ) o = [ (e + Ve () Ve (5) o 20,
(14 [l
Moreover by (6.25) we have 0 < A, n, < Ci. Applying Helly’s theorem, we get that there exists

an increasing function A up to a subsequence A, — A pointwise in [0,1]. In order to prove
(6.29), let us fix s1,...,5m € DNJ0,t]; we want to prove that

(6.31) A(t) = lm e, p, (£) HN-2 (6 S(u(si))> .

i=1
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Then taking the sup over all possible sy, ..., 5m, we can deduce (6.29).
Consider 2z, € SBV(Q)',R™) defined as

z2n(Z) = (U, b, (51), .-+ s Ue, b (Sm))-

Notice that by (6.25), and the fact that t — ve,, b, (t) is decreasing in L*(§)'), we obtain that there
exists C' > 0 such that for alln

[ e+ e 0NV o+ F [ Vo OF ot o [ (1= v, @) da < .
o 2 (94 2577, Q

Then we may apply (6.3) obtaining (6.31). Finally (6.30} is a consequence of (6.25) and the lower
semicontinuity (6.3). The proof is now concluded. O

Let us extend the evolution {t — (u(t),I'(t)) : t € D} of Proposition 6.5.8 to the entire interval
[0,1]. Let us set for every ¢ € [0,1]

(6.32) r)= |J Ss).

seD,s<t

Proposition 6.5.9. For every t € [0,1] there exists u(t) € SBV () with u(t) = g(t) on Qp
such that Vu € L*([0,1], L3(QY; RY)), Vu is left continuous in [0,1]\ D with respect to the strong
topology, and such that, if T is as in (6.32), the following hold:

(a) for all t € [0,1]
(6.33) S(u(t)) CT(t) up to a set of HN =1 — measure 0,
and if A is as in Proposition 6.5.8
(6.34) M) 2 HYTHIE));

(b) for all z € SBV(QY) with z = g(0) on Qp

(6.35) /ﬂ (Vu(0)2da + HY (S(u(0))) < /n |Va2do+HY 1 (S(2))

(c) for all t €]0,1] and for all z € SBV (V) with z = g{(t) on Qp

(6.36) / V() do < / V22 dz + HY 1 (S(2)\ 7).

Qf (94

Finally,
t
(6.37) E(t) > £(0) +2 /0 /Q Vu(r)Vi(r) dadr
where
(6.38) E(t) = / IVu@)? dz + HY -1 (D).
o

Proof. Let t € [0,1]\ D and let ¢, € D with ¢, ' t; by (6.30) we can apply Ambrosio’s Theorem
obtaining u € SBV (') with u = g(t) on Qp such that u(t,) — u in SBV(Q') up to subsequences.
Let us set u(t) := u. By [53, Lemma 3.7}, we have that (6.33) and (6.36) hold, and that the
convergence Vu(t,) — Vu is strong in L2(§)';RY). Notice that Vu(t) is uniquely determined by
(6.33) and (6.36) since the gradient of the solutions of the minimum problem

min{ |Vul?dz : u=g(t) on Qp, S(u) CI'(t) up to a set of H¥ ! — measure O}
QI
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is unique by the strict convexity of the functional. We conclude that Vu(t) is well defined. The
argument above proves that Vu is left continuous at all the points of [0,1] \ D. It turns out that
Vu is continuous in [0,1] up to a countable set. In fact let us consider ¢ € [0,1] \ (D UN) where
N is the set of discontinuities of the function HN~1(I'(:)). Let ¢, \, t. By Ambrosio’s Theorem,
we have that there exists u € SBV () with u = g(f) on Qp such that, up to a subsequence,
u(tn) — u in SBV(Y'). Since t is a continuity point of H*(I'(:)), we deduce that S(u) CT'(t) u
to a set of N ~1-measure 0. Moreover by [53, Lemma 3.7] we have that u satisfies the minimality
property (6.36), and Vu(t,) — Vu strongly in L*(Q;RY). We deduce that Vu = Vu(t), and
so Vu(-) is continuous in [0,1] \ (D UN). We conclude that Vu(-) is continuous in [0,1] up to a
countable set, so that Vu € L>=([0, 1]; L2(QY; RY)).

We have that (6.34) is a direct consequence of (6.29), while (6.35) is a consequence of (6.21)
and the I'-convergence result of Ambrosio and Tortorelli [10] and [11].

Finally, in order to prove (6. 37), we can reason in the following way. Given t € [O 1] and
m >0, let s™:=Lttforalli=0,...,m. Let usset u™(s) := u(sfy,) for s* < s < s7,. By
(6.36) we have :

1
(6.39) £() > £(0) + 2 / / V™)V (r) dr dz + om,

o Jor
where oy, — 0 for m — 400 because ¢ is absolutely continuous. Since Vu is continuous with

respect to the strong topology of L(S¥;R") in [0,1] up to a countable set, passing to the limit
for m — oo we deduce that (6.37) holds, and the proof is concluded. O

‘We are now in a position to Pprove our convergence result. We need the following lemma.

Lemma 6.5.10. Let N be the set of discontinuity points of the function X given by Proposition
6.5.8. Then for everyt € [0,1]\ N, and j > 1 we have that

Vg, b (D)1, h"(t)>bJ () — Vu(t) weakly in L2(Q;RY).

Proof Let t € [0,1]\ V: 'we may suppose that ¢ ¢ D, since otherwise the result has already been
established. Let s € D with s <t. We set

J :=inf {_/Q, (Men + 021, E)IV2]Pdz : 2= gs,(s) on QD} ,

and we indicate by wy(s,t) the minimum point of this problem. Notice that ue, a, (t) — wn(s,1)
is the minimum for

K i=inf { [ e+ 02 IV o 2= g1, (1) = g (5) QD} .
Comparing ue, b, (t) — wn(s,t) with gn (£) — gn,(s), we have
(6:40) [ (e + 02, ()Pt 0 (8) — V(1) <
< [ e 42 (DI V,0) = Vo (9P

Since ue, h, (8) — wn(s,t) is a good test for J, we have

e 2, () V5, )(Pte o (5) = V(5,8 =,

and so the following equality holds
[ e+ 92, () Pt (9 = [V (5,8)7) s =
QI

= [ e + 02 )1V 1 (5) = Vim0
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Since e, p, (t) < e, b, (s) and by minimality of u,_ s, (s) we have

[ e+ 02 () Pt 1 (O 4 e (5) <
< [ Cen + 02 (NP () 5 N () <
Qo
< [ e+ 02 O T (5, d o A8
Q

so that
(641) [ (02, () Vit o (6) = Vi, ) d =

= [ w02, 6DV a6 = [V, s <
< /\sn,hn (t) - Aep b (5)

By (6.40) and (6.41), we conclude that there exists C' > 0 with

(642) [ (e + 02 o (0[Pt 1 () = Ve, () d <
QI

S C/”Vghn (t) - Vgh-n (S)” -+ (Asn,hn (t) - }\En,hn (3)).
Then we conclude that for bﬁm b (1) € Bep b (t)
(643) [|Vtenha()hpy, 056, @3~ Vienhn (3)1{1,:“,,,”(t)>b;'mh"(t)}”L2(n';RN) <

<ot — s)
since A, ,», — A pointwise, and ¢ is a continuity point for A. Recall that by Lemma 6.5.5
Ve, b (), @4 @ = Vu(s) weakly in L2(Q'; RY).

Since

Ve, by, (t)]l{vs,.,h,. @)>bl, . O} T Vu(t) =
= (Ve h, (t)ll{vs,h,," @>b7_, ®} VUEM"n(S)l{uEmhn b, (t)})-i—
+ (qunlhn(S):ﬂ'{vzn,hﬂ(t)>b-:nlh“(t)} = Vu(s)) + (Vu(s) — Vu(t)),

by (6.43) and the left continuity of {7 — Vu(r)} at the points of [0,1] \ D, we have that
Ve, ha Oy, N Vu(t) weakly in L2(Q;RY),

so that the lemma is proved.
‘We are now in a position to prove the main theorem of the chapter.

Proof of Theorem 6.3.2. By Proposition 6.5.1, we may extend (ugn(t),ve,n(t)) to ' setting
uen(t) = gn(t) and vep(t) = 1 on Qp, obtaining a quasistatic evolution in €. In this con-
text, the points of pf) where the boundary condition is violated in the limit simply become
discontinuity points of the extended function. Thus we prove the result in this equivalent setting
involving £V,

Let e, — 0 and h, — +oco be the sequences determined by Proposition 6.5.8. Let us indi-
cate Ue, h, (£), Ven ha (t) @nd Fr, by un(t),vn(t) and F,. Moreover, let us write B, (t) and b (2)

136



for B, p,(t) and bﬁmhn (). Let {t — (u(t),['(t)) € SBV(XY),t € [0,1]} be the evolution rel-

ative to the boundary data g given by Proposition 6.5.9; up to a subsequence, we have that
U, ()1 (o (H>bh ()} u(t) in SBV(§Y) for all j > 1 and for all ¢ in a countable and dense subset

D C [0,1] with 0 € D. Moreover for all ¢ € [0,1] we have that

(6.44) E(t) 2 £(0) +2 /0 t /n Vu(r)Vi(r) dadr,

where £(t) := [q, |Vu(t)|? dz + HN =1 (I(t)) and T'(2) is as in (6.32).
By point (b) of Proposition 6.5.1 and the Ambrosio-Tortorelli Theorem 6.1.1 we have

(6.45) liTILnFn (un(0),vn(0)) = £(0).
For m > 1, notice that
/n (e + V2 (7)) Vtn (T) Vi, (7) do = _/Q (Men + V2 (7)) Vun (T) Ly, (r)>bm (v} Vha (T) do-t
+ /Q (e + V3 (1)) Vatn (T) L o, (r)<om (1)) Vo (7) d.

If 7 € [0,1], we have the estimate '

<

| e+ 20 Vi) L oy Vi ()

1 I
<A/ Ten + 53 (en + V2 () Vun (D) dz ) (|IVih, (Tl La@rmmy <
22m \ fo,
: ; / 1 C
<A/ e, + 22—mC — S

lim /Q ,(nsn + V2 (7)) Vr (7)1 fu (1) >bm (1)} Vb (T) dT = /Q Vu(r)Vi(r) dz,

Moreover, by Lemma 6.5.10 we have that for a.e. 7 € [0,1]

and we deduce that for such 7

limsup / (e, +V2(T))Vun (7)Vin, (1) dz —/ Vu(r)Vg(r)dz| < -2%
n (o2 (vl
Since m is arbitrary, we have that for a.e. 7 € [0,1]
(6.46) liTILn / (e, + V2(T)) Vi (T)Vn, (7) dx = / Vu(r)Vg(r)dz.
9 : o

By (6.23), (6.45), (6.46) and the Dominated Convergence Theorem, we conclude that for all
te(0,1]

t
(6.47) lim Fa(un(8), va(8)) = £(0) +2 / / Vu(r)V§(r) dz dr.
0 Jar
Since by Proposition 6.5.8 we have lim inf,, Fy, (un (2), vn(t)) > £(t) for all £ € D, by (6.44) we have

forallte D
lm Fr, (un (2), vn (£)) = E(2)-

In particular we get for allt € D
¢
(6.48) E(t) = E(0) + 2/ / Vu(r)Vg(r)dz d,
o Jov
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and since by Proposition 6.5.9 Vu(-) and HV~1(T'()) are left continuous at ¢t € D and so £(-) is, we
conclude that the equality holds for all ¢ € [0, T]. Recalling all the properties stated in Proposition
6.5.9, we deduce that {t — (u(t),I'(t)) : t € [0,1]} is a quasistatic evolution relative to the
boundary data g. In order to prove point (a), it is sufficient to see that liminf, F, (u,(t), vn(t)) >
E(t) bolds for all £ € [0,1]. Considering s > t with s € D, we have

t
Falun(5),00(6)) = Fawn(®),00(0)+2 [ [ (e + 120 V() Vi, ()
g J .
so that .
limint Fiy (un (£), va(t)) > £(s) — 2 / / Vu(r)V(r) dz dr.
m s JO

Letting s \ t, since £(-} is continuous and by (6.48), we obtain lim inf, Fy,(un(t),v.(t)) = E(),
and so point (a) is now completely proved.

Let us come to point (b). By Lemma 6.5.10, we know that if N is the set of discontinuity
points of A, for all ¢ € [0,1] \ NV and for all j > 1 we have Vun(t)]l{vn(t»bi(t)} — Vu(t) weakly in

L2(SY,RY). Since
o (8)Vun (t) = vn Q) Vun )1y, ys6h. 3 T Un () Vua ()1 (3 O<HLD}
we get immediately that v, (£)Vun(t) — Vu(t) weakly in LZ(Q’,RN ). For all such ¢, we have that
timint | (1o, + AONVun)P da > [ [Vu() ds,
Qf Q
and by (6.34)
liminf &2 / IVm ()2 d + —— / (1 — vn())2 dz = HN-1(T(2)).
n 2 v 2511 Q

By point (a), we have that the two preceding inequalities are equalities. In particular, A and
HN=}I'()) coincide up to a countable set in [0,1]. We deduce that A and HY~}(I'()) have
the same continuity points, that is N/ = M. We conclude that for all ¢ € [0,1] \ N we have

v (£} Vun (8) — Vau(t) strongly in Z2(Q',RV),

tim [ (e + Ve da = [ Vute)?ds,

tim 22 /Q Von(§)? o + -2%; /n (1= vn(0)? da = MY (T,

so that point (b) is proved, and the proof of the theorem is complete. O

6.6 Proof of Theorem 6.5.6

In this section we give the proof of Theorem 6.5.6 which is an essential step in the analysis of
Section 6.5. For simplicity of notation, for all ¢ € D we write u(t), u,(t) and v, (¢) for up(t),
Ue,,,n(t) and ve, n(t) respectively. Moreover, let us write Bn(t), b,(t) for Be, n(t) and b, (2),

where B, n(t) is defined as in (6.27).
Given z € SBV(QY') with z = g,(t) on §1p, we want to see that

(6.49) / IVu(t)|? do < / V2|2 dz -+ HN =1 (S(2)\ T(%)),
o o
where gn(t) € H (') N C(¥) and T'(t) = U,<; e p S(u(s))-
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The plan is to use the minimality property (6.22) of the approximating evolution, so that the
main point is to construct a sequence (2, v,) € HY{(Y) x H*(Y') such that z, = gn(t), va = 1 on
Qp, 0 < v, < vn(t), and such that

: 2 2 _ 2
hgl/ﬂ,(nmuvn)]wn; dz——/nl V22 da
and
limsup [M Mp(vn) — MMy (vn(8))] < HY 1 (S(2) \T(2)),

where we use the notation
1
MM, (w) = iﬁ/ |Vw|? dz + —/ (1 —w)?dz.
2 aQ 2ey, Q

If a sequence with these properties exists, then by property (6.22) we get the result.

We will need a density result in SBV. Let A C R" be open. We say that K C A is polyhedral
(with respect to A), if it is the intersection of A with the union of a finite number of (N — 1)-
dimensional simplexes of S.

The following density result is proved in [38].

'I;‘heoremv 6.6.1. Assume that OA is locally Lipschitz, and let u € GSBVP(A). For everye > 0,
there ezists a function v € SBVP(A) such that

(a) S(v) is essentially closed, i.e., HN"1(S(v) \ S(v)) = 0;
(b) S(v) is a polyhedral set;

(c) ve Wh=(4 \E@E)‘ for every k € N;

() |lv—ullLea) <&

(e) [IVv = Vul|zr(ammy < &;

(f) IHN=1(S(v)) = HN 1 (S(w))| < e

Theorem 6.6.1 has been generalized to non-isotropic surface energies in [40]. We will use the
following result.

Proposition 6.6.2. Given g € HY(B) and u € SBV(SY) with u = g on Q' \ Q, there exists
up € SBV (V) such that

(a) up = g in '\ Q and in a neighborhood of OpQ;

(b) S(up) is polyhedral and S(up) C Q for all h;

(c) Vup, — Vu strongly in L2(Q';RY);

(d) for all A open subset of ' with HN-1(8AN S(u)) = 0, we have

li’IlnHN"l(A N S(up)) =HY AN S(u)).

Proof. Using a partition of unity, we may prove the result in the case ' := Qx} - 1,1], Q =
{(z,y) € @%] = 1,1[: y > f(2)}, 0pQ == {(z,y) € @x] - 1,1[: y = f(z)}, where @ is unit cube
in R¥-! and f : Q — R is a Lipschitz function with values in | — 3, 2[. Let g € H(Q'), and let
ue SBV(QY) withu=gon Q'\ Q.

Let wy, = u(z — hey) where ey is the versor of the N-axis, and let @y, be a cut off function
with ¢ = 1 on {y < f(z) + &}, on = 0 on {y > F(z) + £}, and ||[Vip|lew < 3. Let us set

139



vh = @ng + (1 — pr)wp. We have that v, = g in Q' \ © and in a neighborhood of 8p§; moreover

we have
Vup = pp Vg + (1 — op)Vwn + Vip(g — wp).

Since Vin(g — ws) — 0 strongly in L2(Q;RV), we have Vv, — Vu strongly in L*(Q;RV).
Finally, for all A open subset of &’ with HY~*(8A N S(u)) = 0, we have

m V(AN S(o)) = HY (AN S(w)).

In order to conclude the proof, let us apply Theorem 6.6.1 obtaining ¥ with polyhedral jumps
such that [|vp, — 'ﬁh”Lu(g/) + |V, ~ V‘l_)h”Lz(Q/;mN) < K2, |HN_1(S(’Uh)) - HN—l(S(’ljh))l <h If
we set up, 1= Yrg + (1 — Yn)¥n, We obtain the thesis. O

The following lemma contains the main ideas in order to prove Theorem 6.5.6.

Lemma 6.6.3. Let t € D; given z € SBV(Y') with z = gn(t) on §p we have that
(6.50) / |Vu(®)|? dz < / [Vzdz +HY 1 (S(2) \ S(u(t))).
% o

In order to prove Lemma 6.6.3, we need several preliminary results. Let 2 € SBV (') be such
that 2z = gx(f) on Qp. Given ¢ > 0, let U be a neighborhood of S(u(t)) such that |U| < o, and
[[Vz||p2@mry < 0. Let-C == {z € pQ : pf isnot differentiable at z}. We recall that there
exists a countable and dense set A C R such that up to a set of " ~1-measure zero

S(u(t))= | 0"E.nd"E
a,beA

where E, = {z € @' : u(t)(z) = a} and 8* denotes the essential boundary. Consider
1
5= {o € SN\ s e 2 3,

with j chosen in such a way that ¥ ~1(S(u(t))\ J;) < 0. For z € J;, let a1(z), aa(z) € A be such
that u=(t)(z) < a1(z) < az(z) < u*(t)(z) and aq(z) — a1(z) = 517 Following [53, Theorem 2.1},
we consider a finite disjoint collection of closed cubes {@;}i=1,....x With center z; € J;, radius
and with normal v(z;) such that Ule Q: CU, HN-Y(J;\ Uf=1 Qi) <o,andforalli=1,...,k,
Jj=12

1. HN-1(8(u(t)) N 8Q;) = 0;
2. TN=1 < 9HN=1(S(u(t)) N Qu);
3. Y1 ([S()) \ 8" Bayan)] N Q) < orf

4. HN=1 ({y € 8" By, () N Qs : dist(y, H;) > %7i}) < orl ~! where H; denotes the intersec-
tion of ¢); with the hyperplane through z; orthogonal to v(z;);

5. HV=1((S(2) \ S(u(t)) N Q:) < or;' ! and HN=Y(S(2)N 8Q;) = 0.

Note that we may suppose that Q; C Q if z; € Q. Moreover we may require that (see |53, Theorem
2.1} and references therein) foralli=1,...,k and j = 1,2

(6.51) 1184, en@: — g llzian < o®rf.

Let us indicate by R; the rectangle given by the intersection of Q; with the strip centered at H;
with width 207r;, and let us set V; := {y+ sv(z;) : y € 8Q;, s € R} NR;. Note that up to changing
the strip, we can suppose HN"1(8R; N (S(u) U S(2))) = 0.
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If z; € Op{}, since z; ¢ C, we may require that
(6.52) MNNQ;: C{z : {(z— =) v(z)| <or}y

moreover, if (QF \ R;) € £, we can assume that gn(t) < ai(z:) on 8Q N @; because gn(t) is
continuous and gp(t)(z;) = v~ (z;) < a1(z;). Similarly we may require that gn(t) > a2(z:) on
O N Q; in the case (Q; \ R;) € Q.

Since we can reason up to subsequences of &,, we may suppose that 3, e < L. Since by (6.25)

we have that ||un(t)lee < C1 and vn(t) — 1 strongly in L?(9'), by Lemma 6.5. 4 we deduce that
U () — u(t) in measure. By (6.51), we deduce that for n large enough

(653) !Q+\E 2{Ti )' < 20 Tz ’

where we use the notation E} := {z € Q' : u,(t)(z) > a}. Let G, C|5ri, §ri be the set of all s
such that e

oT; an

/ (71 + 02 (£))| Van (B)2 dHN 1 > —2L
H;(s)

we get immediately by (6.25) that
|Gn] £ oriER,

so that, setting G := |J,, Gn, We have |G| < &r; and | |57, §7:[\G | > §r;. From (6.53), applying
Fubini’s Theorem we obtain

HN-(H(s d.95202rN,
/1%r.,z NG ( GINE 2(’“ )) . '
so that there exists 5 €]y, ;[ \G such that, setting Hj’ = H;(3), we have
(6.54) HN-1 (H;’ \ Egz(zi)_é) < 160rN 2,

Moreover we have by construction

(6.55) [+ ROV Y < K

where K, is of the order of é In a similar way, there exists H;” := H;(5) with 5 €] — gr;, —$ri[
and

(6.56) HN-1 (H NE} st ) <1607y 1,

and

(6.57) [+ 2O Vuap a7 < K,

where K, is of the order of ﬁ We indicate by R; the intersection of Q; with the strip determined
by H;" and Hj .

A similar argument prove that, up to reducing Q; (preserving the estimates previously stated),
we may suppose that

(6.58) /V (1 + V2 ()| Vun )2 dHN 7! < K,

where K, is of the order of
In order to prove Lemma 6 6.3, we claim that we can suppose z = gn(t) on Qp and in a

neighborhood V of 8pQ \ U1=1 Qi, S(2)\ Uz=1 R; polyhedral with closure contained in 2, and
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HN=((S(2) \ S(u(®))NQ;) < or¥ Y for all i = 1,...,k. In fact, by Proposition 6.6.2, there
exists wn, € SBV(Y') with wy, = gn(t) in €'\ Q and in a neighborhood Vy, of 8p such that
wm — 2 strongly in L#(§Y), Vw,, — Vz strongly in L2(Q';R"Y), S(wm) C Q polyhedral, and such
that for all A open subset of ' with HV~1(9A N S(z)) = 0, we have

Hm MY (4N S(wm)) = HYH(AN 5(2)).

Let us fix ¢’ > 0 and let us consider for all i = 1,...,k a rectangle R} centered in z;, oriented as.
R; and such that R C int(R;), HN~1(8R; N 5(2)) = 0, H¥N=1(S(z) N (int(R:) \ R))) < o'r¥ 71,
where int(R;) denotes the interior part of R;. Let 7); be a smooth function such that 0 < ¢; < 1,
9; =1 on R} and ¢; = 0 outside R;. Setting ¢ := Ei;l 1;, let us consider zpy, = ¥z + (1 — ¥ )wn.
Note that zm — z strongly in L2(€)'), Vzy, — Vz strongly in L2(Q;RY), 2z, = gn(t) in Qp and
in a neighborhood VI, of 8pQ \ UL, R, S(wm) \ UL, R: is polyhedral with closure contained
in Q. Finally, for m — o0, we have HN"1(S(zm) \ U, Qi) — H¥-1(S(2) \ UL, Q:)) and
limsup,, HN~1(S(zm) N (int(R;) \ R})) < 2HN~1(S(2) N (int(R;) \ RL)) < 20'rN 1. So, if (6.50)
holds for z,, we obtain for m — +oo that (6.50) holds also for z since ¢’ is arbitrary, and so the
claim is proved.
‘We begin with the following lemma.

Lemma 6.6.4. Let By(t) be as in (6.27), and let us consider b2 := bJ2(t),b3 := bj3(t) € By(t)
3 .
with jo > j3 > 1. Suppose that k, = %E— > 1 and let k,b be such that 1 < k < ky, b3 < b for all

n. Then setting v s
wag(vn(t) — 3) + 53 in {52 < wa(t) < B3}

wn={ 0 ' in {un(t) < B2}
un(t) in {va(2) 2 b3}
we have that w, € H(Q) with w, =1 on Qp, 0 < wy, < vy(t) in Q' and
. 2C1k C1 Cyb
. — <

where Cy 45 given by (6.25). Moreover there exist b, = bj1(t) € Byn(t) with j1 > j2+1 and a
cut-off function on, € HY(QY) with wn, =0 in {vn(t) <L}, on =1 on {v,(t) > b2} (in particular
on Qp) and such that

(6.60) limn, / |Vion2dz =0
n o

Proof. w, is well defined in H*(S)'), and by construction wy, = 1 on Qp and 0 < w, < v,(t) in
Y. Let us estimate M M, (w,) — MM, (v,). Since

E—"/ |an|2dz=5’l/ |an(t)|2da:+-s—"/ |V, |2 dz,
2 Jor 2 J{un ()23} 2

{03 <va(t)<b}}

and M My (v, (t)) < C; by (6.25), we have that

%"/ |vmn|2dm—%“/ Vo ()| dz <
Q/ QI

En k2 ) 2 En 2
L —r — — 1} |Vv,(t)|*dz —~ — Vo, ()| dz <
2 J (b2 <on(t)<p3} ((kn -1)2 Ve 2 Jiwamr<p2) Venlt)F do <
k2 Ci(2kn—1) _ 2Cik
L < )
@ <(kn —1)2 1) (kn—1)2 ~ (k—1)?

IA

A
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Moreover we have that

1 2 1 2 g
o /,(1 wy)* dz 2En/n'(1 v, (8))* dz =

1
= ) [(1—wn)® — (1 —va(1))?] dz =
1
~ E/S;,(vn(t)—-wn)(z-—vn(t)—wn)d:c% |
_ __1__ _ kn _ 13y _ 33 _ _
= 5 <m0 (vn(t) P 1('un(t) b3) bn> (2 ~ vn(t) —wn)dz +
o vn(8)(2 — va (£)) dz =
2en J{v. )<z}
1

1
= — (B3 — v, (0))(2 — v (t) — wy) dz +
2en Jivs concircos) T 7 (b~ va(£))(2 — va(t) )

e n(®)(2 = va(t)) dz <
2en Jiva(ty<e2}
oA . Cyb2 i L _Gib
(kn—=1)(1-03)%  (1-02)2 " (k—1)(1-0)* (1-0)?

because H”"(:’ZSS} L < (12)2- We conclude that

<

: 2C:k Cy Cib

M - MM, t))) < .
hmnsup( My (wn) — M n('un( )))_ e + RS + (e
Let j1 > j2 + 1: we have that b} := b* and b2 are not in adjacent intervals, and so there exists
I >0with 0 < < b2 —b}.. Let us divide the interval [b,52] in h, intervals of the same size
Ij,j=1,...,hn, with hy such that 22k, — 0. Since

hn
3 / Von(t)2da < 52 / Vom(®) dz < Cs,
2 Jwaten} 2 Jo

i=1

we deduce that there exists I, such that

(6.61) %" Vo () dz < g—
{vn(t)el } n
Let ayp, B, be the extremes of I,,. Let us set
1
(6.62) fni= g0 (v — )t AL
n (1

Then @, € HY(), on =0 in {v,(t) < 8L}, on =1 on {va(t) > b2} (in particular on 2p) and by
(6.61) and the choice of h, we have that

1 Tin 201 h2
Vn|2de = / Vo )Pde< EAT
i /&'Z’ ! (Pn‘ i {an<un(t)<6n} (/Bn - an)2! n( )l En hn 12

so that the proof is complete. O

In the following lemmas, we will use the following notation: for all measurable set B C ' we
set

(6.63) MM, (w,B) = =2 / Vul? dz + —— / (1 - w)?dz.
2 B 2En B
Let b be as in Lemma 6.6.4 and let 6 := §1; sothat foralli=1,...,k%

a,l(zi) < a1(:12i) +6< az(.’Ei) —0< az(.’Ei).
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Lemma 6.6.5. For each i = 1,...,k, there exists w2 € HY(Q:) and [v; — 7i,%% + 73] C
[a1(z:) + 6, a2(m:) — 6] such that 0 < wi' < 1, wl? =0 in {7} — 7% < up(t) <+ 72} NQ;,
w2 =1 on [{un(t) < aa(z:) + 26} U {un(t) > az(z;) — 26}] N Qs, and

k
(6.64) limsup . MMy (w??, {vn(t) > b3}) < o(0).
=

Moreover there ezists o2t € H(Q;) such that 0 < 2% < 1, ¢2' = 0 on {7 — Zﬁ‘l < up(t) €
T+ FINQs 02 =1 on [{un(t) < % — i} U{ua(t) 2 ¥ +73}] N Qi, and

(6.65) lm gy, |Vp2i|2dr = 0.
n Qin{un(t)>b1}

Proof. For each 7 let us consider the strip
S’:Z = Egl(a:")-{'é \ Egg(z;)—é'

Let hy, € N and let us divide [_a1 (i) + 6,a2(z;) — d] in hy, intervals of the same size: there exists
a subinterval with extremes of, and £ such that, setting S := {z € Q' : ¢ < u,(t) < AL},

(6.66) /gi o [G(Un -+ vﬁ(t))]Vun(t)IZ +(1-0)]dz<

</ o, [T+ RO TunF + (1 0)]
Let 7% == 5;1—2"15& and 7} ;= sa(ay _4‘;1“("”‘ =20 We set
Frrrr Un(t) = = )AL in {un(t) > 7 +7E} N Qs
wri={ 0 ' in {7 —7i <wu,() <V +TEINQ;

m(un(t) — VT TAL in {ua(t) <9 - AN Qs
‘We have that

E_”/ Va2 do + =~ (1- w2 ds <
2 Join{wa ()1} 2en JQin{v,(t)>b1}
en [ 4R2 1 &
< &n _2/ Vun(®)? de | + =153 1 (@: N {va(t) > BL})]-
2 \ 0% Jain(@in{uat)>bi}) 2en

Since by (6.66)

[ tm o) Ven@P do < - [ [, tm+ @) vunas + “—“ls;nQi!}
iNQ: n | JSENQ: o

n

and
o

1-0

léznczils;f—[ / <nn+vﬁ<t>)|wn(t>|2dm+lsmit}
n SﬁﬂQi

we have

MM (wh?, {vn(t) > b3}) <

2hnen l:/ (T + V2 (8))| Vun (£)|? dz + 1
Sing

= 0+ (007

NG

— UIS:; nQi|:| +
ag

+ ZEihn [i—j—‘;/s o (M + vfl(t))lv'un(t)]2 do + ]5; I Qi]J )

i
n
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Summing on i = 1,...,k, recalling (6.25) and letting d €]0,1] with 5, + (b1)? > d? for all n, we
obtain

k
ZMMn(szl'i,{'un(t) > b}z}) <
i=1

< oy (G S220UQ] + g [ 150+ Ul

2
6242

‘We choose hy, in such a way that the preceding quantity is less than (recall that |UQ;| < [U| < o)

\/52d2(01+1 )(1f

C’1+U).
g

Then we obtain

k
ZMMn(w {on(t) > 03} < \/52(12 (C1+1-0)) (1 _0_- a.Cl +a> = o(0).

i=1

This prove the first part of the lemma. . .
Let us define 2% as w2 but operatmg with the levels v} — 7% < 4% — 32;'- and v + -T-é‘l <AL+t
Reasoning as above we obta.m

1671
,112 < n’en
Tin ZI/ oot IVey*? dz < g (Ci+1-0)=0
since h, has been chosen of the order of é O

Lemma 6.6.6. Let Q; C ). Then there ezists wt € H*(Q; ) such that 0 < wdi <1, wdt =0 in

a neighborhood of H;t \ E™ oa(w:)— 28 and of H” ﬂE (e +isr Yo't = 1 on Q; \ R; for n large, and
(6.67) limsup Y MMn(wfl’i,{vn(t) > bL}) < ofo).
moQicn

Moreover there ezists a cut-off function <p3 i e HYQ;) such that @3 = 0 in a neighborhood of
Hf\E ()~ and of H NET s, w3t =1 on Q;\ R; for n large, supp(Vyd?) ¢ {wdt = 0},
and
(6.68) limny, Vi dz = 0.

" Qin{un(t)>b1}
Proof. Let wf be the planes which contain Hii, and for z € §, let wiiz be its projection on 7rii.
Let us now consider (un(t)),pr+: we set

.
Ui ) = 5 () ~ w0+ 36) A1

Note that 9%+ is equal to zero on H;' \ (i)~ 35 and so on {z € H : u,(t)(z) = v.} where
7%, is defined as in Lemma 6.6.5. Moreover, ¥4+ =1 on H;" N E™ If d €]0,1] is such that
7n + (BL)? > d2, by (6.55) we have

2(zi)—§"

; 16 16K,
|v¢ﬂ+!2 dHN"t < 5242

< 2/ |Vu,|2dHN 1 <
02 JHF nfua(t)>b1}

(6.69) /
H n{vn(£)>bL}
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Let us define

St

wH(y) = z(un(y) — az(z:) + 6T AL

<=n|»:>

which is null on H;f \ E7, .y 5
In a similar way we construct 1%~ and 1/;}1 on H;” which are null on H; N Ea (2:)+36 and on

H nE? s (30)+6 respectively. Let us set
. . 1
uEH(E) = i) + () — ) A1

with éﬂ» — 0 and {37 — 0. This is possible since 7, << en. Let A}, := (H;' \ E (s _a)X]—
.n . n n 2

En — Ui, &n + 15 [N{vn(t) > b1}. Then we have by definition of %%, by (6.54), (6.69) and the fact

that K, &, is bounded in n

hmsupMMn 3t {un(t) > BL}) =

= limsup { 22 IVw3 B2 dp 4 ! (1—wdi)ldz ) <
2 2 n
n QiN{vn (£)>b1} En JQin{un(t)>b1}

< limsup {-Eﬂ/ (]Vzbn(w;":c)!z + '}i') dz+ .
n 2 Al En

g (P EF\ By g)en 4 1)}

so that we get
limsupMMn(wa'i’+,{vn(t) > b)) =
ki3

e a(en+11) + 22 > 2( en + L)Y T HEF\ By, g)+

az(zi)— 5

-

En + L
4 nE Sn T inyN-1(FF\ B - )_é)} <

<2hmsupHN YHF\E" 5) < dorM L

az(zi)—5

Similar calculations hold for w3%~. Let us set wd? := wi+ Awd i’ Then 0<wdi <1, wd =0
in a neighborhood of H;" \ E" (@)~ 36 and ofH NEZ (@) +250 W ‘{=1on Ql\R, for n large

and we have that )
limsup 3 MMa(w, {oa(t) > 53) < o),
noQicn

which prove the first part of the lemma.
We define

I + .. i
g (w) o= [w:ﬁ(vr 2+ (d;ﬁ(z)——)]A[:r(n;z>+ﬁ:(,,(z)—% }Al.

The previous calculations prove that

limny, |VediPdz =0
" Q:n{vn(t)>b3}

since = — 0. Moreover 3% =1 on Q; \ R; for n large. O

(l )2
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Lemma 6.6.7. Suppose that Q; C Q; then there exists wy® € H'(Q') such that 0 < wit < 1,
whi = 0 in a neighborhood of Vi, wht =1 on Qp for n large and

(6.70) lim sup Z MM, (w?) < o(0).
ToQich

Moreover there ezists a cut-off function & such that &% = 0 in a neighborhood of Vi, pbt =1

on Qp for n large, supp(Veit) C {whi = 0}, and
(6.71) 1im77n/ Vit dz = 0.
n o

Proof. Let us set
. 1 X
whi(@) = = (dw(@) - ) AL,
n

and

o) = - ()= 5) a1
where -é—i’: — 0 and z{’% — 0. We have immediately (since }_q.cq HV"1(V;) < 0(0))

lim sup Z M M, (wi?) < ofo)

ToQicn
while o
s [ oo
n Jor
since 3z — 0. For n large enough, whi=1, p& =1 on Qp and the proof is complete. O

‘We recall that z = gx(t) in a neighborhood V of 80 \ UQ;.

Lemma 6.6.8. Let Q;NOpQ # @ wzthQ"‘\R c Q. ThenE (@) +E NQ; CQ for all n, and
there exists woht € HY(Q) with 0 < whi+ <1, wbit =1 on Qp, wlb* = 0 in a neighborhood
of

Vet = [V NE, 1(z,)+5:| [(Vin@H)\ V],

and such that

(6.72) limsup }: MM, (wli* {v,(t) > b1}) < o(0).
" Qinepa#n

Moreover there ezists a cut-off function qa‘”"' such that @0t = 1 on Qp, Y24+ =0 in a
neighborhood of V;*", supp(Vliit) C {wlt* = 0}, and

(6.73) lim 7y, |v(p£'f-+12 dz =0

n V{un(t)>bL}
Proof. Note that by construction, E&(m-;) +5 NQ; C N since uy(t) is continuous and uy,(t) = g (t)
on Qp. It is now sufficient to operate as in Lemma 6.6.6 and in Lemma 6.6.7. In fact, in view of
(6.58), we may « construct whit+ € H () such that 0 < @25+ < 1, @L%+ = 0 in a neighborhood of
ViNEL ()46 @ bit = 1 on QD and on V;\ E" (@) 87 and such that lim sup,, M M, (@25, {v,(t) >

bL}) < o(o)rN . Referring to (V; N QF) \ V, we can reason as in Lemma 6.6.7 getting wi+,
such that 0 < E’“'*‘ < 1, WoH* = 0 in a neighborhood of (V; N Q) \ V, @»t =1 on QD, and
such that hmsupn MM, (_b t) < ooy 1
Setting wlbT = @bt AWLET, we get the first part of the thesis. Similarly, we may construct
i+t which satisfies (6.73). O
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In a similar way we can prove the following lemma.

Lemma 6.6.9. Let Q; NOp$ # 0 with Q7 \ B; C Q. Then Qi \ E? (z )__ C Q for alln, and
there ezists wlb~ € HY(Q') with 0 < wlb~ <1, wl ™ =1 on Qp, w%~ =0 in a neighborhood
of

V= [Vi\ Bl ey —s) U [N QDA V],

and such that

(6.74) limsup Z MM, (wbb~ {vn(t) > bL}) < o(0)
" Q:iNdpN#ED
Moreover there exists a cut-off function tpb i guch that o5~ = 1 on Qp, Y%~ = 0 in a

neighborhood of V*'~, supp(Vp%h~) C {wh*= = 0}, and

(6.75) limn, |Vl |2dz =0
n ' {un(t)>b1}

‘We can now prove Lemma 6.6.3.

Proof of Lemma 6.6.3. We employ the notation of the preceding lemmas. Following [53, Theorem
2.1}, for each i let us define z on Q+ U R; to be equal to z on Q;F \ R; and to the symmetrization
of z with respect to Hj(o) on R;. Similarly we deﬁne 2.

For each @; C Q, let us set 2z} “to be equal to 25 on (Q+ \ R;)u E“ N R;), and to 2 in the

rest of Q;.
If @;NApQ # 0 with Q@ \ R; C Q, by Lemma 6.6.5 and Lemma 6.6.8 we have E; 'y‘ _r‘ N

Qi C @ for all n, and its closure does not intersect 8. We define z} to be equal to z} on
(Q+\RL) U (EZ ﬂRL), and to gn(t) in the rest of @Q;. If Q7 \ R; € Q, by Lem.maﬁ 6.5 and Lem.ma

6.6.9 we have Qz \ E%, % g C Q, and its closure does not intersect 892. We define 2%, to be equal to
z7 on (@7 \ R:) U (R, \E ), and to gp(t) in the rest of @;.

Let us now define Z, to be equal to z outside U 1 B, and to z inside each R;. We have
Zn = gn(t) on Qp. Note that if @; C Q, H"’\E H nEY, VE, and B*E" N Q; could be

contamed in S(zn) Similarly, if @; N6 # @ and Q+ \Ri cQ (the other case bemg similar), then
HI\E i V% and 8" EZ; N Q; could be contained in 5(Zy).
By assumption on U, we have that

(676) |]2n - Z“L2(QI) + HVEn — VZ“LZ(Q/;RN) < 0(0');

moreover, besides the possible jumps previously individuated, Z, has in R; polyhedral jumps which
are a reflected version of the polyhedral jumps of 2z in Q;. By assumption on z, we conclude that
the union of these polyhedral sets P;(S(z)) has H" ' measure which is of the order of ¢ that is
HN=Y(P(S(2))) < o(0) where P(S(z)) := Ui, Pi(S(2)).

Let 1, be optimal for the Ambrosio-Tortorelli approximation of [S(2) \ (U @:)]U P(S5(2)) (as
we can find for example in [51, Lemma 3.3]), that is @y, is null in a neighborhood of [S(2) \ (J @4)]V
P(S(z)) and

(6.77) lim supMMn(i5n) < HYH(S(2) \ (UQs) U P(S(2))) <
< HYH(S(2) \ S(u(®))) + o(o).
As in [51], let @, be a cut-off function associated to 1, such that

(6.78) limn, / |V@n)? de = 0.
n [vY
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Letusset forall Q; C Q

min{@n,, w2, wt, wh'} in R;
wh = min{wn,, wdi, wh} in R; \ R
min{w,, wit} outside R;,
e min(p, ¢3¢, 63, %) i B,
0y = min{@n, 03", 03} in R; \ B;
min{@n, phi} outside R;.
For all Q; such that Q; N8pQ # 0 with @ \ R; C £, let us set
[ min{@,, ul, vl ul) RN B
minfud, uli ) in (B E7) U QT
wh = { min{@n,udt kY R\ (U Q)
1 in Qp
L min{@n, wy>*} otherwise
a [ min{@n, g2, g3+, Qi) RN EY
min{p%?, i} in (Ri\ E};) U Q7
oh, = { min{@n, o3, hit} in B; \ (B UQp)
1 inQp
L min{@n, i1} otherwise

Sn:mla.rly we reason for the case @] \ B; C Q. By construction, for all i =1,...

, k we have that

Lob e HYQY), 0 < wh, ¢f, <1and'w’,(pi =1 on Qp for n large.
n n n n

Note that by Lemmas 6.6.5, 6.6.6, 6.6.7, 6.6.8 and 6.
that

k
(6.79) limsupZMMn wl,, {vn(t)
T g=1
and
6.80 hm /
(6:580) e Z Qn{vn(£)>bL}

We are now in a position to conclude the proof. We set
K},
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Uy, = min{wp,,w},i=1,...

Pn = Hlin{son7(p;iwi = 17 v

6.9, and by (6.77) and (6.78), we have

> bp}) < HVTH(S(2) \ S(u(®)) + o0),

IV (@) do = 0.



Note that ¢, = 0 in a neighborhood of S(Z,), and ¢, = 1 on Qp for n large. Moreover 0 < v, <
wy, < va(t) in @ and v, = 1 on Qp. Let z, = pnZ,; we have z, € HY(Q) with 2z, = gn(t) on
Qp. By (6.22), we have that

Fry (n(8)900) S P (3, w0,
and so
[ OV d < [ 1+ DI Cnnl? o+ MMo(5) — MM (om0
We may write
[+ 0PV (0 de <

< / (M +1)|V 2, dz + / (1 +V2)N2V0n Vi, + 20| Vion|?) dz+
o Q

k
+ M Mp(wy) — MMn(Un(t)) + Z MMn(wfu {'”'n(t) > bqlm})

i=1

Teking into account (6.76), (6.60), (6.80), (6.59), and (6.79), we have that passing to the limit

/ \Vul2ds < / V22 da + HY=1(S(z) \ S(u®))+
o Q

2Ck C Ch
TEoE T emDa - Ta—ae T

so that, letting ¢ — 0 and then b — 0, £ — co (which is permitted 'choosing appropriately j» and
Ja), we obtain the thesis. . ' O

We can now pass to the proof of Theorem 6.5.6. Given 0 = t; < tp < ... <ty = t, it is
sufficient to prove that '

k
(6.81) | ivutpde < [ 1vaa s <s<z) \ (U S(u(tm)) -

is=1

Passing to the sup on #1,...,1, we deduce in fact the thesis. We obtain (6.81) using the same
arguments of Lemma 6.6.3; defining

Jj = {x € U ( U [6*EE nam{;]) : min k[uz(z}] > ,},

m=1,...,k \ay,az€Ak e

oL e

where E¥ and Ay, are defined as the corresponding sets for u(t), following [53], we cover J; in such
a way that for all z; € J; there exists | with z; € S(u(t;)) and

HN-1 ([ U S(u(tr))\S(U(tz))} ﬂQi) <ort
r=lyk

So in each @; there exists u(¢;) such that Uf=1 S(u(tr)) N Q; is essentially (with respect to the
measure HV 1) S(u(t;)) N Q;. Recalling that v, (t) < v, (t;) for all I =1,...,k, we have

/ (1 + v (8)*) | Vun ()2 dz < / (T1n + vn (1)) Vun (&) P de < C,
Q Q

and so it is readily seen that the arguments of Lemma 6.6.3 can be adapted to prove (6.81).
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6.7 A final remark

The approximation result can be extended to recover the case of non isotropic surface energies,
i.e., energies of the form

(6.82) /Q Vul? dz + /F o(ve) dHY ()

where vy is the normal to T" at z, and ¢ is a norm on RY. In fact all the previous arguments are
based on Theorem 6.1.1 concerning the elliptic approximation and on Theorem 6.6.1 about the
density of piecewise smooth functions with respect to the total energy. An elliptic approximation
of Ambrosio-Tortorelli type of (6.82) has been proved in [51], while a density result of piecewise
smooth functions with respect to non-isotropic surface energies has been proved in [40]. We
conclude that all the previous theorems can be modified in order to treat the more general energy
(6.82).
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Chapter 7

A discontinuous finite element
approximation of quasi-static
growth .of brittle cracks

In this chapter ! we propose a discretization of the model of quasistatic crack evolution using a
suitable finite element method and we give a rigorous proof of its convergence to a quasistatic
evolution in the sense of Francfort and Larsen [53]. We restrict our analysis to a two dimensional
setting considering only a polygonal reference configuration © C R?.

The discretization of the domain 2 is carried out, following [75] (see also [76]), considering
two parameters € > 0 and a €]0, 11,-[ . We consider a regular triangulation R. of size € of ), i.e.
we assume that there exist two constants ¢; and cg s0 that every triangle T' € R. contains a
ball of radius c;& and is contained in a ball of radius coe. In order to treat the boundary data,
we assume also that p§} is composed of edges of R.. On each edge [z,7] of R. we consider a
point z such that z = ¢tz + (1 — t)y with ¢ € [a,1 — a]. These points are called adaptive vertices.
Connecting together the adaptive vertices, we divide every T' € R, into four triangles. We take
the new triangulation T obtained after this division as the discretization of 2. The family of all
such triangulations is denoted by 7; ().

The discretization of the energy functional is obtained restricting the total energy to the
family of functions v which are affine on the triangles of some triangulation T(u) € T¢,.() and
are allowed to jump across the edges of T'(u). We indicate this space by 4., (2). The boundary
data is assumed to belong to the space AF.(2) of continuous functions which are affine on every
triangle T' € R,.

Given the boundary data g € Wh1([0,1], H1(Q)) with g(t) € AF.(Q) for all ¢t € [0,1], we
divide [0, 1] into subintervals [t¢, 2, ;] of size § > 0 for i =0, ..., N5, we set g/ = g(t¢), and for all

'
u € Ac o () we indicate by Sgi (u) the edges of the triangulation T(u) contained in 8p on which
u # g{. Using a variational argument we construct a discrete evolution {ug;fz :i=0,...,N5}
such that ug;fl € A o(Q) for all i=0,..., Ns, and such that considering the discrete crack

. i ']
T2 = | [S@n)u ST (udr)],

r=0

the following unilateral minimality property holds:

(7.1) /Q Vi ? dz < /ﬂ [Vof? dz + 7" ((S(0) U SE @) \ ).

1The results of this chapter are contained in the paper
A. Giacomini, M. Ponsiglione: A discontinuous finite element approximation of quasistatic growth of brittle frac-
tures. Numer. Funct. Anal. Optim. 24 (2003), 813-850.
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Moreover we get suitable estimates for the discrete total energy

2% = IVl Za(apey + H* (T2L)

setting the irreversibilty condition for quasistatic crack evolution. The minimality property (7.1)
is the reformulation in the finite element space of the static equilibrium condition.

In order to perform the asymptotic analysis of the discrete evolution {ungl :1=0,...,Ns},
we make the piecewise constant interpolation in time u ,(¢) = wf% and T¢ (t) = T%% for all
t§ <t < t¢ ;. The main result of the chapter is the following theorem.

Theorem 7.0.1. Let g € WH([0,1], HY(2)) be such that ||g{t)lec < C for all t € [0,1] and let
ge € WH([0,1], HY(SY)) be such that ||g:(t)]lec < C, ge(t) € AF:(Q) for allt € [0,1] and

The definition of the discrete crack ensures that I'% C '8 for all i < j, recovering in this discrete

(7.2) ge — g strongly in WH([0,1], H1(Q)).

Given the discrete evolution {t — uf ,(t)} relative to the boundary data g, let TS , and £Z , be the
associated crack and total energy.

Then there ezist 6, — 0, €n, — 0, an — 0, and a quasi-static evolution {t — (u(t),L(t)), t €
[0,1]} relative to the boundary date g, and such that setting un, = ugglan, Ty = I‘g:,an, En =

Ebn | the following hold:

Eny0n

(a) if N is the set of discontinuities of H*(T'(+)), for all t € [0,1]\ N we have

(7.3) Vun(t) — Vu(t) strongly in L*(Q;R?)
and
(7.4) lim H* (T (£)) = M} (D(2));

(b) for all t € [0,1] we have
(7.5) , lim &, (t) = £(2).

We conclude that we have the convergence of the total energy at each time ¢ € [0,1], and the
separate convergence of bulk and surface energy for all ¢ € [0, 1] except a countable set.

In order to prove Theorem 7.0.1, we proceed in two steps. Firstly, we fix ¢ and let § — 0 and
g — 0. We obtain an evolution { — u.(t) : t € [0,1]} such that Vul ,(t) — Vu,(t) strongly in
L?(Q;R?) for all ¢ up to a countable set and such that the following minimality property holds:
for all v € SBV ()

16 [ [Vua®ds < [ V0P de+ p@ (Sw)U @020 {v £ g) \Lalt)

where 4 :]0, 2[—]0, +o0 is a function independent of & and §, such that p > 1, limg—o p(a) = 1
and To(t) = Uzt sep S(ta(8)) U (002 N {uqa(s) # g(s)}). The minimality property (7.6) takes
into account possible anisotropies that could be generated as § and e — 0: in fact, since a is fixed,
we have that the angles of the triangles in 7 o(f2) are between fixed values (determined by a),
and so cracks with certain directions cannot be approximated in length. In the second step, we let
a — 0 and determine from {t — u,(t) : t € [0,1]} a quasi-static evolution {t — u(t) : ¢ € [0,1]}
in the sense of Francfort and Larsen. Then, using a diagonal argument, we find sequences §,, — 0,
&n — 0, and a,, — 0 satisfying Theorem 7.0.1.

The main difficulties arise in the first part of our analysis, namely when §,6 — 0. The con-
vergence u ,(t) — uo(t) in SBV(Q) for t € D C [0,1] countable and dense is easily obtained
by means of Ambrosio’s Compactness Theorem. The minimality property (7.6) derives from its
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discrete version (7.1) using a variant of Lemma 1.2 of [53]: given v € SBV(Q), we construct
8, € Ac,a(S) such that

(7.7) Vg, — Vv strongly in L*(Q;R?)
and
(18) Hmsuw [(5(£)USEY0L.) \ILa0)] < |
< pla)H! [(S(v) U (B2 N {v # g(t)})) \Ta(?)] ,

where g8(t) := g-(tf) for tf < ¢ < t{,,. The main difference with respect to Lemma 1.2 of [53] is
that we have to find the approximating functions v¢ , in the finite element space A;,q(Q2). This
can be regarded as an interpolation problem, so we try to construct triangulations T, € T; 5(£2)
adapted to v in order to obtain (7.7) and (7.8). In all the geometric operations involved, we need
to avoid degeneration of the triangles of T(ug,a (¢)) which is guaranteed from the fact that a is
constant: this is the principal reason to keep a fixed in the first step. A second difficulty arises
when ug(-) is extended from D to the entire interval [0,1]: indeed it is no longer clear whether
Vud ,(t) = Vue(t) for t & D. Since the space A: 4(£2) is not a vector space, we cannot provide
an estimate on HVug’a(t) - Vug,a (s)|| with s € D and s < t: we thus cannot expect to recover
the convergence at time t from the convergence at time s. We overcome this difficulty observing
that Vul ,(t) — Vi, with 4, satisfying a minimality property similar to (7.6) and then proving
Viig = Vu,e(t) by a uniqueness argument, for the gradients of the solutions.

" The plan of the chapter is the following. In Section 7.1 we give the basic definitions and prove
some auxiliary results. In Section 7.2, we prove the existence of a discrete evolution. In Section
7.3 we prove the convergence of the discrete evolution to a quasi-static evolution of brittle cracks
in the sense of Francfort and Larsen. The proof of minimality property (7.6) requires a careful
analysis to which is dedicated Section 7.4. In Section 7.5 we show that the arguments of Section 7.3
can be used to improve the convergence results for the discrete in time approximation considered
in [53].

7.1 The discontinuous finite element space

Let © C R? be a polygonal set and let us fix two positive constants 0 < ¢; < ¢z. By a regular
triangulation of § of size £ we intend a finite family of (closed) triangles T; such that Q = | J; T3,
T; NTj is either empty or equal to a common edge or to a common vertex, and each T; contains
a ball of diameter ¢;& and is contained in a ball of diameter cpe.

We indicate by R.(€2) the family of all regular triangulations of Q of size . It turns out that
there exist 0 < 91 <2 < « such that for all T belonging to a triangulation T &€ R.((2), the inner
angles of T" are between ¥; and ¥5. Moreover, every edge of T has length greater than c;e and
lower than cge.

Let us fix a triangulation Re € R(R2) for all € > 0 and let a €]0, [. Let us consider a new
triangulation T nested in R, obtained dividing each T € R, into four triangles taking over every
edge [z,y] of T a knot z which satisfies

z=tz+ (1—1t)y, tela,1—al

We will call these new vertices adaptive, the triangles obtained joining these points adaptive
triangles, and their edges adaptive edges (see Fig.1).

We denote by 7¢ () the set of all triangulations T constructed in this way. Note that for all
T € T;o() there exists 0 < ¢§ < c§ < +oo such that every T; € T contains a ball of diameter
c§e and is contained in a ball of diameter c§e. Then there exist 0 < 9§ < 9§ < 7 such that for
all triangles T' belonging to a triangulation T € 7, ,(12), the inner angles of T" are between 9% and
9§. Moreover, every edge of T' has length greater than cfe and lower than cge.
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We will often use the following interpolation estimate (see [36, Theorem 3.1.5}). If u € W22((Q2)

and T' € R,, let ur denote the affine interpolation of w on T. We have that there

depending only on ¢, c2 such that
(7.9)

lur — ullwrery < Kellullwaa ().

Estimate (7.9) holds also for T € T, o(Q): in this case K depends on a.

exists K

In Section 7.4 we will need some elementary constructions that we collect here in some lemmas.

Lemma 7.1.1. Let T € T o(R2), and let 1 C Q be o segment with extremes p, g belonging to edges
of T. There exists a polyhedral curve I' with extremal points p and g (see Fig.2) such that T’ is
contained in the union of the edges of those T € T with TNl # 0, and such that the following

properties hold:
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(1) T' =~ Uy Uy, where v is union of edges of T and yp, v, are segments containing p and q
respectively, and each one is contained in an edge of T;

(2) there exists a constant ¢ independent of € (but depending on a) such that

HUT) < cHY(D).

Proof. Let {T1,...Ty} be the family of triangles in T such that the intersection with / is a segment
with positive length. For every integer 1 < i < k, let I; := T; N 1. If I; is an edge of T}, we set
D; = T;. Otherwise let D; be a connected component of T; \ I; such that |D;] < %|Tzl We claim
that there exists a constant ¢ > 0 independent of € such that

(7.10) HY(OD;) < e H (L)

We have to analyze two possibilities, namely D; is a triangle, or D; is a trapezoid. Suppose that
D; is a triangle and that m; is an edge of D;. Let a be the angle of D; opposite to [;. It is easy
to prove that H(l;) > H*(m;)sin o, and so

HL) > %sin oH(8D;).

Since ¥¢ < a < 9%, sina is uniformly bounded from below, and hence inequality (7.10) follows.

If D; is a trapezoid, since |D;| < %|Ti|, it follows that T; \ D; is a triangle such that its edges

different from [; have length greater than icfe. Let o be the inner angle of T; \ D; opposite to ;.
‘We have that .

H(L) = 1 sinace > lsin oz-c—ll'}'l1 (6D;).

2 cg 4

Since 9§ < a < ¥%, inequality (7.10) follows.

By (7.10), we deduce that C
k
H! (U 6D,-> < cHY();

i=1
moreover, since Uf=1 (8D; \ (I; nint(T3))) is arcwise connected and contains p, g, we conclude that
there exists a curve I' C Uf__.l 0D; which satisfies the thesis. O

Lemma 7.1.2. There erists o constant ¢ > 0 such thet for every segment | C Q) there exists g
with the following property: for every e < &g, setting R(1) :== {T € R, : T NI+ 0}, we have

HYOR(1)) < cH(1).

Proof. Let Ne(l) == {r € Q : dist(z,l) < coe}. We have that [N ()] = H'(I)coe + 7c3e?, and
hence there exists a positive constant g such that, for every € < g¢, we have that

INL(D)] < 2H () cze.

We have that R(l) C N(l), and
: 4 V()
RO < 705 e,

where R (l) denotes the number of triangles of R(l). Then, we have

4 N 4
HY(OR()) < Beae fR(1) < 36250%71_2 :2 < 3c2 o 2H(1),

and so the proof is concluded. [}
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7.2 The discontinuous finite element approximation

In this section we construct a discrete approximation of quasi-static evolution of brittle cracks in
linearly elastic bodies: the discretization is done both in space and time.

From now on we suppose that {2 is a polygonal open bounded subset of R?, and that 8pQ C 89
is open in the relative topology. For all € > 0, we fix a triangulation R, € R.(?), and suppose
that dp{2 is composed of edges of R, for all &; we indicate the family of these edges by S..

We consider the following discontinuous finite element space. We indicate by Ag . () the set
of all u such that there exists a triangulation T(u) € Z¢ 5(S2) nested in R, with  affine on every
T € T(u). For every u € A (), we write ||Vul for the L2-norm of Vu and we indicate by S(u)
the family of edges of T(u) inside ) across which u is discontinuous. Notice that u € SBV(£)
and that the notation is consistent with the usual one employed in the theory of functions with
bounded variation. Let us also denote by AF. () the set of affine functions in Q with respect to
the triangulation R.. Finally, given any g € AF.(Q), for all u € A, o(Q) we set

(7.11) Sh(u) ={(eS; :u#gon(},
that is S% (u) denotes the edges at which the boundary condition is not satisfied. Moreover we set
(7.12) S59(u) == S(u) U S (u)

Let now consider g € WH([0, 1]; HY(Q)) with g(t) € AF.(Q) for all t € [0,1]. Let § > 0 and let
N5 be the largest integer such that §(Ns — 1) < 1; for 0 < i< Ns—1 we set t¢ := 46, t‘s :=1 and
g¢ = g(t?). The following proposition holds.

Proposition 7.2.1. Lete >0, a G] Hands>0 be ﬁzed Then for all i =0,..., N5 there exists
2; € Ac o () such that, setting '

i
2t = J s (ul),
r=0 ’
the following hold:
(a) lugilloo < llgflloo;
(b) for allv € A o(§)) we have

(7.13) Vgl + (5% (wif)) < IVoll? + 2 (5% (v) ,
and
(7.14) IVual? < IVoll® + 7 (5% (@) \ T2

Proof. The proof is carried out through a variational argument. Let ug;g be a minimum of the
following problem

(7.15) min { | Vul|? + H2 (59 (u)-)} .

We set T80 = 593 (u&0). Recursively, supposing to have constructed udi=? and T&E-1, let udl be
a minimum for

(7.16) min {|Vu* + 7" (5% () \T257) |

We set I'%% = 59 (ufl) UTSi~*. We claim that problems (7.15) and (7.16) admit a solution ul,
such that |jud? e < llgf |[°° for all i = 0,...,N5. We prove the claim for problem (7.16), the
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other case being similar. Let (u,) be a minimizing sequence for problem (7.16): since g? is an
admissible test function, we deduce that for » large

IVuall® + 1 (8% (un) \TE) < || Vg2 + 1.

Moreover, we may modify uy, in the following way. If 7 denotes the projection in R over the interval
I :=[—||g%]loe, |88 lloo)s 16t Tn € Ar o () be defined on each T' € T(uy) as the affine interpolation
of the values (7(un(z1)), m(un(z2)), m(un{zs)), where z1, z2 and z3 are the vertices of T. Note
that by construction we have for all n

linfloo < lglleor IVl < [Vuall,  S% (@) € 5% (un),

so that (i) is & minimizing sequence for problem (7.16). We conclude that it is not restrictive to
assume ||un||co < 119 lco-

Since T'(un) € Tz,0(2), we have that the number of elements of T(uy) is uniformly bounded.
Up to a subsequence, we may suppose that there exists an integer k such that T{uy,) has exactly &

elements T, ..., . Using a diagonal argument we may suppose that, up to a further subsequence,
there exists T = {T%,...,T%} € T;4(Q) such that T} — T in the Hausdorff metric for all
i=1,...,k Let us consider T® € T, and let T* be contained in the interior of T%. For n large

enough, 7% is contained in the interior of T and (un)z« is affine with [7, [Vun|*dz < C with
*C independent of n. We deduce that there exists a function u® affine on 7" such that up to a
subsequence uy, — u uniformly on T%. Since 7" is arbitrary, it turns out that «f is actually defined
on T% and

[Vui|? dz < h'minf/ |V, |? dz.
Ti o Jri

Letue A¢ o () such that u = u on T for every i =1, ..., k: we have

[Vul? < liminf | un|.

On the other hand, it is easy to see that 5% (u) is contained in the Hausdorff limit of g9 (Un),
and that . . . .
Hl (5-%- () \rg;:;l) < lim inf H* (sgf (un) \ rg;:;l) .

We conclude that u is a minimum point for the problem (7.16) with ||ullee < |9¢]lec. We have
that point (a) is proved.
Concerning point (b), by construction we get (7.13); for 4 > 1 we have

. 5 . . i—
IVudi | + H* (5% @Si) \TEE) < IVoll? + 12 (5% (0) \ T2
for all v € A (1), so that
IVuSil? < [Vol? + 7! (8% (0) \T257)

and this proves point (b). !

Remark 7.2.2. For technical reasons due to the asymptotic analysis of the discrete evolution ug"fl
when § — 0, e — O and a — 0, we define u% from uéi=? through problem (7.16) without requiring
that the adaptive vertices determining I‘ngl‘l remain fixed. We just penalize their possible changes
if they are used to create new cracks: in fact in this case, the surface energy increases at each
change of a quantity at least of order ae. As a consequence, during the step by step minimization,
it could happen that some triangles T € T; ,({?) contain the crack I‘g;fl in their interior. This is in
contrast with the interpretation of the triangles as elementary blocks for the elasticity problem,
but being this situation penalized in the minimization process, we expect that it occurs rarely.
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The following estimate is essential for the study of asymptotic behavior of the discrete evolution.

Proposition 7.2.3. If (ug Z,I“s L) for i =0,...,N; satisfies condition (b) of Proposition 7.2.1,
setting ESL == || Vudi |2 + H1 (rg,},), we have for 0 < j < i< N

(7.17) é'f”}; < Eg'J +2Z/ / Vuggzvg(r)dzd'r—*—o‘s,
r=j Q
where
s iy, 1
(718) o= | _max / It dr| [ o)l

Proof. For all 0 < j < N; — 1, by construction of u2J*! we have that
VUGS + H* (8% () \ T2 ) < | Vedd + V(g ~ g)I? =
= IVuIP +2 [ VadiViedi, - o) do + V(e ~ gDIP-
Notice that . .
. ' ' ’ t§+1 :
. V(Q_?H - 9}5) = /t; Vi(r)dr,
) 3
so that
(7.19) [[Vubit|2 + 2 (Sga+1 (w® ,,+1) \r“»f)
i,
< IIVugﬂ;llz-!-Q/ / Vul: Vg (1) dz d7 + e( 6)/J No(T)| a2 () dry
where
L
e(d) == gD /t; lg(rHl 22 2y A
From (7.19), we obtain that for all 0 < § < i < Nj
[IVuilP + HH(TEE) < || Vuls | + HH TS+
21 ety £f
+ 22/‘5 / Vug;’;vg('r) dz dr + e(6) /6 Ng(T)| a2y drr,
e Ja 3

and so the proof of point (¢} is complete choosing

1
of = e(5) / 1907 Lz gy -

7.3 The convergence result

This section is devoted to the proof of Theorem 7.0.1. As in Section 7.2, let { be a polygonal
open bounded subset of R?, and let 8p§) C N be open in the relative topology For all £ > 0,
let Re € R.(Q}) bea regular triangulation of €} such that 8p< is composed of edges of R;. As
in the previous section, let AF.(£2) be the family of continuous piecewise affine functions with
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respect to R, and let A, 4 (£2) be the family of functions which are affine on the triangles of some
triangulation T € 7¢ o (£2) nested in R. and can jump across the edges of T.

In the following, it will be useful to treat points at which the boundary condition is violated
(see (7.11)) as internal jumps. Thus we consider {2p polygonal open bounded subset of R? such
that Qp N = 0 and ONNNp = 6pQ up to a finite number of points; we set Q' := QUOP U
Given u € A, () and g € AF.(2), we may extend g to a function of H*({') and u to a function
i € SBV(S)) setting @ = g on Qp. In this way, recalling (7.12), we have

59(u) = 5(a),

s0 that the violation of the boundary condition of % can be read in the set of jumps of 4. Analo-
gously, given v € SBV(Q) and g € H(£2), we set

(7.20) 59(u) = S(u) U{z € 8p9 : 7(w)() # 1g)(2)}

where - denotes the trace operator on Q. We may assume g € H(f)) using an extension
operator. We can then consider i € SBV(Q') such that 4 = « on §, and & = g on {Ip. In this
way we have

S%(u) = S(@) wup to a set of H'-measure 0.

Let us consider g € W11([0,1], HL(R)) such that ||g(t)]lec < C for all ¢t € [0,1] and let g. €

wii(o, 1],H1(Q))‘ be such that g;(t) € AF.() for all't € [0,1],
(7.21) o le®le<C

for all t € [0,1], and for e — 0 v ,

(7.22) ge - g strongly in Wh([0,1], H*(Q)).

We indicate by {ug:fz, i=10,..., N5} the discrete evolution relative to the boundary data g. given
by Proposition 7.2.1, and we denote by Sg;; its total energy as in Proposition 7.2.3.

We assume that g{-) and g.(-) are defined in H*(£)') (we still denote these extensions by g(-)
and gy (+)), in such a way that (7.21) and (7.22) hold in §’. Let us moreover set g (t) := g-(£¢) for
all tf <t <t withi=0,...,N5—1 and gi(1) := g.(1).

Let us make the following piecewise constant interpolation in time:

wl (t) =udl fort! <t<tl, i=0,...,N;—1,

and ¥? (1) := ufs, For all ¢t € [0, 1] we define the discrete crack at time ¢ as
£,a £,a

T8 () = | 8% (ud ,(s)),

3<t

and the discrete total energy at time i as

E20(8) = VUl oI + H* (T20 (1)) -
We have for all £ € [0,1]
(7.23) 4 e oo < g2 (@)oo
Moreover for all v € A, 4(2) we have
(7.24) IVl s O + H* (5O @S 1(0))) < Vo] + H* (52O w)),
and for all ¢ €]0, 1] and for all v € A; ()
(7.25) [V @I < [Vell? + 7 (SEO @)\ TE,(0))
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Finally for all 0 < 5 <t <1 we have
i
(7.26) £2 (1) < E2,(s) +2 / 6 /n Vil o (1) Ve (r) dedr + o,
LH

where 8 <t <t ,, s{ <s< s, and

L 1
(7.27) of = Lma.;& L, -ugemum(mer [ 1l o

For s = 0 we obtain the following estimate from above for the discrete total energy

i
(7.28) £9 () < £3,(0) +2 / /ﬂ Vil (1) Ve (r) dzdr + of,
0

where tf <t< t§+1.

We study the behavior of the evolution {t — uf ,(t), t € [0,1]} varying the parameters in the
following way. We let firstly e — 0 and 6 — 0 obtaining an evolution {t — u,(t), ¢ € [0,1}}
relative to the boundary data g with the minimality property (7.36); then we let a — 0 obtaining
a quasi-static evolution of brittle cracks {t — u(t),t € [0,1]} relative to the boundary data g.
Finally, by a diagonal argument we deal with (8, £,a) at the same time.

In order to develop this program, we need some compactness, and so we derive a bound for
the total energy £2,. By (7.14), we have that for all ¢ € [0,1]

IVug (0]l < IVg2(®)l < ©
with C independent of 8, & and ¢. We deduce for-all ¢ € {0,1]
Eea(t) < E,(0) + 202+ of

Notice that 5;.",1 (0) is uniformly bounded as 8, vary. Moreover, By (7.23} and since [|g:(t)]|eo < C
for all ¢ € {0, 1], we have that ug,a(t) is uniformly bounded in L*°(f2) independently of 6, and a.
Taking into account (7.22), we conclude that there exists C' independent of §,¢,a such that for
allt €[0,1]

(7.29) E2o(t) + lul o)l < C'.

Formula (7.29) gives the desired compactness in order to perform the asymptotic analysis of the

discrete evolution.
Let now consider 6, — 0 and €, — 0: by (7.22) we have

(7.30) ofr -0,

where og: is defined in (7.27). By Helly’s theorem on monotone functions, we may suppose that
there exists an increasing function A, such that (up to a subsequence) for all ¢ € [0,1]

(7.31) Ana(t) =H* (U §9en (@) (ug:’a(s))) — Aa(t).
a<t

Let us fix D C [0,1] countable and dense with 0 € D.

Lemma 7.3.1. For allt € D there exists uo(t) € SBV () such that up to o subsequence inde-

pendent of t
ult (1) = ua(t) in SBV(Q).

Moreover for all t € D we have

(7.32) IVaa(B)I? + 1 (59 (wa(2))) + llua(t)lleo < C'-
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Proof. Let us consider £ € D. By (7.29), we can apply Ambrosio’s Compactness Theorem 1.1.1
obtaining » € SBV(Q) such that, up to a subsequence, ul"  (t) — u in SBV(Q). Let us set
Ug(t) == u. Using a diagonal argument, we deduce that there exists a subsequence of (4y,,&,)
(which we still denote by (6,,)) such that ufr (1) — we(t) in SBV(Q) for all t € D. In
order to obtain inequality (7.32), we extend udr ,(t) and ug(t) to ' setting ulr ,(t) := gi~(¢) and
ua(t) = g(t) on Qp; since g (£) — g(t) on Qp strongly in H*(Qp), we have that uﬁ:,a(t) — ug(t)
in SBV(£Y'), so that we can apply Ambrosio’s Theorem, and derive (7.32) from (7.29). O
" The following result is essential for the sequel: its proof is postponed to Section 7.4.

Proposition 7.3.2. Lett € D. For all v € SBV(}) we have

(7.33) Ve @I < IVoll? + n@H (TP @)\ ) 559 (wa(s))),

a<t,s€D
where p 3]0, 3[—]0, +oo[ is such that limg_o p(a) = 1. Moreover, Vulr ,(t) — Vua(t) strongly in
L?(Q;R2). ‘
“We now extend the evolution {t — us(t) : ¢t € D} to the entire interval [0,1]. Let us set for
all't € [0,1] : : '
Ta) = | 8O uals)).

. . . . 5<t,8€D
Lemma 7.3.3. For every t € [0,1] there ezists u.(t) € SBV(Q) such that the following hold:
(a) for allt €0,1]

(7.34) : Sé ® (uq(tj) CTa(t) uptoa set of H*-measure 0,
and
(7.35) IVua(®)l? + 1 ($% (ua(t)) + llua(®) oo < C';

(b) for allv € SBV(£2)

(7.36) CIV®I? < V0P + e (570 ) \Ta(t)) 5

(c) Vu, is left continuous in {0,1]\ D with respect to the strong topology of L?(S; R?);
(d) for allt € [0,1] \ N, we have that
Vug:,a(t) — Vua(t)  strongly in L*(0,R?),
where N, is the set of discontinuities of the function \, defined in (7.31).

Proof. Let t € [0,1]\ D and let t, € D with ¢, /' t. By (7.32), we can apply Ambrosio’s Theorem
to the sequence (uq(t,)) obtaining u € SBV() such that, up to a subsequence, u,(t,) — u in
SBV (). Let us set uq () := u. Let us extend u,(f,) and ug(t) to Q' setting ug(ts) := g(tn) and
ug(t) := g(t) on Qp: we have ug(tn) — ug(t) in SBV(Q'). Since H L S{ug(tn)) < HLI.(2)
for all n, as a consequence of Ambrosio’s Theorem, we deduce that H*L S(ug(f)) < HLTy(2).
This means H!L S9®) (uy(t)) < HL.T4(t), so that (7.34) holds. Moreover, for all v € SBV(S),
by (7.33) we may write

(7.37) IVua(ta)l? < Vo — Vg(t) + Vg(ta)l® + p(ayH? (S99 (0) \ Taltn)) <
< |[Vo = Vg(#) + Vg(ta)l2 + pa)H* ($79 @) \Ta(®)) + ple)H* (Ta(t) \ Ta(tn)),
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so that, since by definition of T'y(£) we have H1(T'x(t) \ Ts(tn)) - O, we obtain that (7.36) holds;
choosing v = ug(t) and taking the limsup in (7.37), we obtain that

h'mnsup Hvua(tn)nz < ”vua(t)nza

and so the convergence Vu, (tn) — Vu,(t) is strong in L?(, R?). Notice that Vu,(t) is uniquely
determined by (7.34) and (7.36) since the gradient of the solutions of the minimum problem

min {||Vu][2 : §9®) (u) C T, (t) up to a set of H'-measure 0}

is unique by the strict convexity of the functional: we conclude that Vu,(t) is well defined. The
same arguments prove that Vu, is left continuous at all ¢ € [0,1]\ D. Finally (7.35) is a direct
consequence of (7.32) and of Ambrosio’s Theorem, and so points (a), (b), (c) are proved.

Let us come to point {(d). Let us consider uﬁ:,a(t) with ¢t € M,; we may suppose that ¢ g€ D,
since otherwise the result has already been established. By Proposition 7.3.2 with D' := D U {t}
in place of D, we have that, up to a subsequence, udr o{t) = uin SBV(Q) such that

IVul < [ Vol2 + pla)h? (S70 () \ (Talt) U S70 (u)))

for all v € SBV(Q) and Vulr (t) —. Vu strongly in L?((;R?). Let s < ¢ with s € D; by the
minimality of ué» _(s) and by (7.29) we have

Vs o ()17 < VUl o(t) ~ Vol () + Vol (8)[1% + An,a(t) = Anals) <
< IVul s +2VC|[Vgln (t) — Vgl (s)ll+
+ Vel (@) = Va2 ()I* + An,a(t) — Anals)-

Passing to the limit for n — +o0, recalling that gg;: (T) — g(7) strongly in H*($2) for all 7 € [0,1],
we deduce

IVua()I? < 1Vull? +2VC|IVg(2) - Vg(s)l| + [V(t) = V(s)II* + Aa(t) — Aa(s),

so that, since ¢ is a point of continuity for A,, Vu, is left continuous at ¢, and g is absolutely
continuous, we get for s — ¢
IVua@®? < [[Vull®.

We conclude that u,(t) is a solution of
min{||Vo||? : §9® (v) C Ty(t) U S9®)(u) up to a set of H'-measure 0},

so that Vu = Vue(t) by uniqueness of the gradient of the solution. We deduce that Vul~ ,(¢) —
Vi, (t) strongly in L?(Q2; R?), and so the proof is complete. ]

‘We can now let a — 0.

Lemma 7.3.4. There ezists an, — 0 such that, for allt € D, u,, (t) — u(t) in SBV(Q) for some
u(t) € SBV(Q) such that for allv € SBV(Q) we have

(7.38) IVa®|? < Vol + H}(5# O )\ ) 59 (u(s))).

8<t,s€D
Moreover, Vug, (t) — Vu(t) strongly in L*>(Q;R?) and

(7-39) IVu(@|? + H(S7® (u(®)) + u®)e < C".
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Proof. By (7.35), applying Ambrosio’s Theorem to the extensions of u, (t) to £’ by setting uq(t) :=
g(t) on Qp, and using a diagonal argument, we find a sequence a, — 0 such that, for allt € D,
Ug, (t) — u(t) in SBV(Q) for some u(t) € SBV(Q) such that (7.39) holds.

‘We now prove that u(t) satisfies property (7.38). Let v € SBV(Q2). Let us fix t; <. < ... <
t, = t with t; € D. We extend v and u,, (£;) to ' setting v := g(t) and u,, (%) = g(t:;) on Qp
respectively. Sinee u,, (£;) — u(t;) in SBV(QY) for all i = 1,..., k, by Theorem 1.4.3 there exists
v, € SBV(SY) with v, = g(t) on Qp such that Vv, — Vu strongly in L2(Q'; R?) and

' k ' k
(7.40) lim sup H? (S('Un)\ U S(ua, (ti))) <H <S(v) \ U &) (u(ti))) -
By (7.33) we obtain
k
(7.41) [Vtta, B < [ Von|® + plan)H <5 @a) \ | S(tta, (ti))) ,
fe=1

so that passing to the limit for n — 400 and recalling that yu(a) — 1 as a — 0, we obtain

i=1

k
IVu(@)|? < Vo)l + H* (S(U) \U S(U(ti))> :

Thus we get
. k
IVu@I? < Vo) + (sg“><v> ‘U S“*”(u(ti))) :
i=1
Since t1, . . ., t are arbitrary, we obtain (7.38). Choosing v = u(t), taking the limsup in (7.41) and
using (7.40), we obtain Vu,_(f) — Vu(t) strongly in L?(Q;R?). O

In order to deal with 6, and a at the same time, we need the following lemma.

Lemma 7.3.5. Let {u(t) : t € D} be as in Lemma 7.8.4. There exist 6, — 0, e, — 0, and
an — 0 such for all t € D we have

uln . (1) = u(t) in SBV(Q).

En,0n

Moreover, for all n there ezists By, C [0,1] with |B,| < 2= such that for allt € [0,1]\ By,

(7.42) IVuln o, () = Vo, ()] <

S

Finally, we have that for oll v € SBV(Q)

(7.43) IVu(©)| + 7 (S%O(0))) < Vol + 7 (57O (v))
and
(7.44) g8 0., (0) = [Vu(O)|? + H* ($7 (u(0)))

Proof. Let (an) be the sequence determined by Lemma 7.3.4. By Lemma 7.3.1, for all n there
exists (87, eR,) such that for all ¢ € D and m — +co we have

ul o () = ua,(t)  in SBV(S),

and
Vuﬁ;;,% (t) = Vu,, (t) strongly in L*(Q; R?).
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Moreover by Lemma 7.3.3 we have that wﬁii,an — Vi, quasi-uniformly on [0,1] as m — +co.

Let B, C [0, 1] with |Bn| < 27" such that Vulf , — Vi, uniformly on [0,1]\ By as m — +oo.
We now perform the following diagonal argument. Let D = {i,, n > 1}. Choose m; such that

b o
IV o, (1) = Ve, ()l + llue? 6, (1) — vy (1)1 < 1,

and
[Vl () — Via, (8)]] <1 forall t € [0,1]\ By .
Ty 101

Let m,, be such that

forallj=1,...,n

S|

5 O

”vusg‘: \an (tJ) - Vuﬂn (tJ)N + ”ue"m",an (t]) — Ug, (t])“ <

and . i
IVUgE o (£) = Vi, (Ol < = forallt€[0,1]\By .
We may suppose that o, — 0, ef, — 0. Then (67, ,en, ,an) is the sequence which satisfies the
thesis. In fact by construction and taking into account (7.29), for all t € D we have uga" an(t) —
u(t) in SBV(SY); moreover the set B, satisfies (7.42). Notice that ui';:"’% (0) satisfies (7.24) and
50 (7.43) and (7.44) follow by the I'-convergence result of [75]: O
Let (6n,&n,an) be the sequence determined by Lemma 7.3.5. For all £ € [0, 1] let us set

An(t) =H* (T8 , (2)).

By Helly’s theorem, we may suppose that there exist two increasing functions A and % such that
up to a subsequence

An — A pointwise in [0, 1],
and - v
(7.45) Xe, — 7  pointwise in [0,1],
where ), is defined as in (7.31). We now extend the evolution {t — u(t) : t € D} to the entire
interval [0,1]. Let us set for all t € [0, 1]

ry= |J 579(us)),

8<t,s€D

and let A/ be the set of discontinuities of H1(I'(-)). Notice that for all £ € [0,1]

(7.46) HY(T(E)) < A(t).
Infactift € D,let t; <tp < ... <t =t with t; € D, consider w, € SBV(V;R¥) defined as
w‘n(z) = (ug:,an (tl)(m)v ceey ug:,an (tk)(z))a

where we assume that ué" , (t;) = gf~(t;) on Qp. We have w, — w = (u(t1),...,u(ts)) in

SBV(Q;R*), where u(t;) = g(t;) on Qp. Note that for all n we have S(w,) = Uf=1 S(udn . (t:)
so that
HU(S (wn)) < An(t).

Passing to the limit for n — +oco and applying Ambrosio’s Theorem we get
k
M (U swm») = H}(S(w)) < lim inf HA(S(wn)) < A(®);
i=1
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we thus have

k
m! (U Sg“”(u(ti))) — HY(S(w)) < A
i=1

and taking the sup over all ¢1,. .., %, we obtain (7.46) in D. The case t ¢ D follows since H*(T'(:))
is left continuous by definition.

Lemma 7.3.6. For every t € [0,1] there exists u(t) € SBV (L) such that the following hold:
(a) for allt e [0,7] | '
(7.47) S9I®) (u(t)) CT(t) up to a set of H-measure 0,
and for all t € [0,1] and for all v € SBV(Q)

(r48) IVa@)|? < Vol? +#* (SO @) \T()) ;

(b) Vu is continuous in [0,1]\ (D UN) with respect to the strong topology of L*(S}; R2);
(c) if N is the set of discontinuities of the function n defined in (7.45), for allt € [0,1] \ N we

have that
Vg, (t) = Vu(t) strongly in L*(Q,R?).
Finally
(7.49) £) 2 £(0) +2 / / Vu(r)V§(r) da dr,
0 J0
where , '

E(t) = [Vu@®)]* + H'(C())-

Proof. The definition of u(t) is carried out as in Lemma 7.3.3 considering ¢ € [0,1]\ D, t, € D with
tn /" t, and the limit (up to a subsequence) of u(t,) in SBV(S2): (7.47) and (7.48) hold, so that
point (a) is proved. It turns out that Vu(t) is uniquely determined and that it is left continuous
in [0,1]\ D. Let us consider t € [0,1] \ (D UN), and let ¢, \, t. By Ambrosio’s Theorem, we
have that there exists u € SBV (2) with such that, up to a subsequence, u{t,) — u in SBV(1).
Since ¢ is a continuity point of H*(T'(-)), we deduce that 59) (y) C T'(t) up to a set of H!-measure
0. Moreover by the minimality property for u(t,) and the fact T'(t) C T'(¢,), we have that for all
v € SBV(Q) with

IVa(ta)I < 99— Vg(t) + Valtn)lI? +H (S7O(w) \ T(ta) ) <
< Vo= V) + Vg(ta) 2 + 1 (S7O @)\ ()

and so we deduce that (7.48) holds with « in place of u(t), and that Vu(i,) — Vu strongly in
L2(Q;R?). We obtain by uniqueness that Vu = Vu(t), and so Vu(-) is continuous in [0, 1]\ (DUN)
and this proves point (b). Point (c) follows in the same way of point (d) of Lemma 7.3.3.

Let us come to the proof of (7.49). Given t € [0,1] and k > 0, let s¥ := ft for all i =
0,...,k. Let us set u*(s) := u(sk,,) for s¥ < s < sF,,. By (7.48), comparing u(s¥) with
u(sk, 1) — g(sk,q) + g(sF), it is easy to see that

E(t) = £(0) + 2-/0t/nVuk('r)Vg('r) dr dz + og,

where 0 — 0 as k — +o00. Since Vu is continuous with respect to the strong topology of L2(2; R?)
in [0,1] up to a countable set, passing to the limit for k£ — +co we deduce (7.49). O
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We are now ready to prove the main result of the chapter.

PROOF OF THEOREM 7.0.1. Let D be a countable and dense set in [0,1] such that 0 € D,
and let (6n,6n,0,) and {t — u(t) € SBV(Q) : t € [0,1]} be the sequence and the evolution
determined in Lemma 7.3.5 and Lemma 7.3.6. Let us set

bn v £0n
Up 1= ul" L, Ty = I‘E" an En =&, .

Let N be the umon of the sets of discontinuities of 7 and H*(T'(+)), where 7 is defined in (7.45).
Let B = {23 ULy Br, where By, are as in Lemma 7.3.5; since |52, Br| < 2-**1, we have
|B|=0. Forall t € [0,1] \ (BUN) we claim that

(7.50) Vun(t) = Vu(t) strongly in L2(Q;R?).
In fact, since t € | Jpw, Bn for some k, by Lemma 7.3.5 we have
lim [|Vadr 4, (£) = Vaua, (0)]] = 0;

for t ¢ N, by Lemma 7.3.6 we have that Vuan (t) — Vu(t) strongly in L?(£;R?) and so (7.50)
holds.
Since g., — g strongly in W1([0,1]; H(£2)), we deduce that for a.e. T € [0,1]

Ve, (T) — Vg('r‘)‘ ‘strongly in L2(Q;R?).

Since £,(0) — £(0) by (7.44) and 05" — 0, by sechontmulty of the energy and by (7.28) we have
that for allt € D

i
(TBL) () < BminfEq(2) < limsup Eq(t) < £(0) +2 / / Vu(r)Vi(r) dz dr.
n n 0o Jo
In view of (7.49), we conclude that for all £ € D

E(t) = £(0) +2 /O /Q Vu(r)Vi(r) dz dr,

and since Vu(-) and H(I'(-)) are left continuous at ¢t ¢ D and so £(-) is, we conclude that the
equality holds for all ¢ € [0,1]. As a consequence {t — u(t),t € [0,1]} is a quasi-static evolution
of brittle cracks. Let us prove that (7.51) is indeed true for all ¢ € [0,1]. In fact, if t ¢ D, it is
sufficient to prove

(7.52) liminf £n(t) > £(2).

Considering s > t with s € D, by (7.26) we have
Sin
£.(5) < Enlt) + /5 / Vun(T)Ven () dadr + 0B 8 <t <, s <g<in
tj,’_: Q

so that
lim mfé'n(t} >E(s) - / / Vu(r)Vg(r)dz dr.

Letting s \, 2, since £(-) is continuous, we have (7.52) holds. By (7.51) we deduce that &, (t) — £(%)
for all ¢t € {0,1}, so that point (b) is proved.

We now come to point (a). Since A(t) > HY(I'(¢)) for all ¢t € [0,1], by (7.50) and point
(b), we deduce that A = H}(T'(-)) in [0,1] up to a set of measure 0. Since they are increasing
functions, we conclude that A and H*(I'(-)) share the same set of continuity points [0, 1]\ .V, and
that A = ’HI(I‘( )) on [0,1] \ V. In view of (7.50), point (a) is thus established for all ¢ except
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t € (BUN)\WN. In order to treat this case, we use the following argument. Considering the
measures fin, = H1L.Ty(t), we have that, up to a subsequence, u, — u weakly-star in the sense
of measures, and as a consequence of Ambrosio’s Theorem we have H'LT'(¢) < p as measures.
Since t ¢ N we have u,(R2?) — H(T(£)), and so we deduce HLT'(t) = pu. Let us consider
now u,(t); we have up to a subsequence un{t) — u in SBV(Q) for some u € SBV(Q). Setting
un(t) := g2n(t) and u := g(t) on Op, we have uy(t) — v in SBV(Y'), and as a consequence of
Ambrosio’s Theorem, we get that H!1L_S9®)(u) < p = HLT(t), that is §9®)(u) C I‘(t)
Theorem 1.4.3, we deduce that u is a minimum for
min{[|Vv|? : §9¢)(v) C T'(t) up to a set of H'-measure 0 },

and by uniqueness of the gradient we get that Vu = Vu(t), so that the proof is concluded. O

7.4 Piecewise affine transfer of jump and proof of Proposi-
tion 7.3.2

The proof of Proposition 7.3.2 is based on the following proposition, which is a variant of Theorem
1.4.3 in the context of piecewise affine approximation.

Proposition 7.4.1. Given &, — 0, let g5, € H'(Q) be such that g, € AF. () and g}, — g"
strongly in HY(Q) for all 7 = 0,...,1. Iful, € Ac, o(R) is such that ul, — u" in SBV(Q) for

r=0,...,i, then for all v € SBV(Q) with H (sy" (’u)) < +00 and Vo € L2(2; R?), there exists
Un € Ae, o(Q) such that v, — v strongly in L1(Q), Vo, — Vo strongly in L?(; R?) and

(7.53) hmsule <sgn(vn)\ L so( n)) < p(a)yH? <59<t>(v \U 59 (u’"))

r=0 r=D0
where p :]0; 3[— R with lim, o+ p(a) = 1.
In view of Proposifion 7.4.1, we can now prove Pfoposition 7.3.2.
Proof of Proposition 7.3.2. Notice that, in order to prove (7.33), it is sufficient to prove the exis-

tence of p :]0; %[—) R with lim,_,g+ p(a) = 1 such that, givent € D, forevery 0 =t < ... <. <
...<t;=1t, 1. € D, for all v € SBV(Q) we have

(7.54) V@)l < [Vl + ()M (59“’ @)\ U Sg(t')(ua(tr))) :

r=0
In fact, taking the sup over all possible ty,...,%;, We get (7. 33)
We apply Proposition 7.4.1 considering gn = g&n(ty), 9" = g(t,), uf = ulr ,(t;), and u" =
ug(ty) for r = 0,...,i. There exists p :]0;1[— R with hma_,0+ u(a) = 1 such that for v €
SBV(£), there exists vp, € A, o(Q) with an — Vv strongly in L?(€2; R?) and

r=0

limsup H* (Sggz(t) n) \ U Sgg:(t")(usn,a(tr))> <
n

< pla)H! (59“) () \ O Sg(t')(ua(tr))> ;

r=0

Comparing ug;;,a(t) and v, by means of (7.25), we obtain

(7.55) [ Vul o(®)I < [ Von)? + 1 (SO () \TEr 1)) <

< [Voal® +H? (S"’g: © (o) \ | 592 “”(Uﬁ;‘,a(tr))) ;

=0
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so that, passing to the limit for n — +co, we obtain that (7.54) holds. Moreover, we have that
choosing v = u,(t), and taking the limsup in (7.55), we get that Vug:’a (t) — Vuu(t) strongly in
L2 (Q;R?). O

The rest of the section is devoted to the proof of Proposition 7.4.1. It will be convenient, as
in Section 7.3, to consider Q1p polygonal open bounded subset of R? such that Qp N Q = @ and
NN Op = 8pkt up to a finite number of vertices; we set ' := QUQp UIpQ. We suppose that

R, can be extended to a regular triangulation of €)' which we still indicate by R..
We need several preliminary results. First of all we need the following density result.

Proposition 7.4.2. Given u € SBV (V) with u = 0 on '\ 0 and HY~Y(S(u)) < +oo, there
exists up, € SBV (V') such that

(a) up =0 in '\ Q;
(b) S(us) is polyhedral, S(ur) C Q and up € W (U \ S(un)) for all k;
(¢c) up — u strongly in L2(SY') and Vuy, — Vu strongly in L2(Q;R?);
(d) for all A open subset of Q' with H*(8AN S(u)) = 0, we have
li}zlnHl(A N8(un)) = H (AN S(u)).
Proof. Using a partition of unity, we may prove the result in the case Q =] - 1,1[x]0,1], Q' :=
1-1,1[x] - 1,1], and 8pf :=] — 1,1[x{0}. We set wx(z,y) := u(z,y — h), and let @, be a cut off

function with @p =1 on]—1,1[x] — 1, %[, o» =0 on ]~ 1,1[x]2,1], and ||[Ves|e < L. Letus
set vy, i= (1 — p)wy,. We have that vy, = 0 in ' \ {I; moreover we have

Vop = (1 — op)Vwy = Vopws.

Since Vippwy, — 0 strongly in L2(£)'; R?), we have Vuy, - Vu strongly in L2(§';RY). Finally, for
all A open subset of ' with H'(8A N S(u)) = 0, we have

li’JL:n HY AN S(vn)) = H (AN S(w)).

In order to conclude the proof, let us apply the density result by Cortesani [38] (see Theorem 6.6.1)
obtaining %, with polyhedral jumps in € such that o, € W5 (Q'\S(%p)), [lwn—Bn|r2(q)+||Vwn—
Vin||2(amey < k% and [HN=2(S(wy)) — HN~H(S(4))] < h. If we set up = opg+ (1 — ©p)Tn, we
obtain the thesis. O

Let us set 2], := uj, — g7, and let us extend 2, to zero on Qp. Similarly, we set 27 == u" — g",
and we extend 2" to zero on {1p.

Let 0 > 0, and let C be the set of corners of 8pQ. Let us fix G C R countable and dense: we
recall that for all 7 =0, ...,7 we have up to a set of H -measure zero

S(zr)= |J 8"Ee,(r)n8"Ee,(r),
c1,c2€G

where E.(r) := {z € ' : 2"(z) > ¢} and 9* denotes the essential boundary (see [8]). Let us
consider

Ji={z e O SE\C : (Y (z) - () (z) > % for some [ =0,...,1},
=0

with 4 so large that H? (Uf_=0 S(z")\ J;) < 0. Let U be a neighborhood of Ui=0 S5(2") such that
U] < 7. Following [63, Theorem 2.1] (see Fig.3), we can find a finite disjoint collection of closed

cubes {Qr}k=1,...x With center z € J;, edge of length 2r; and oriented as the normal v(zy) to
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8(2"®) at zy, such that X, Qx € U and H'(J; \ U, Qx) < 0. Moreover for all k =1,..., K
there exists r(k) € {0,...,i} and c1(r(k)), cz2(r(k)) > O such that

H? ([O S(ZT)\S(z"(k))] an) < oy,

r=0

and the following hold

Fig. 3

(a) if zr € Q then ng Q, and if 2, € Op) then Qx N Op2 = Hi, where H denotes the
intersection of Qj with the straight line through z; orthogonal to v(zk);

(b) HY(S(z"®)N8Qk) =0;

(c) i < cHY(S(2"®)) N Qy) for some ¢ > 0;

@ ®)=(@) < a(rk) < ca(r(k) < (zM0)*(z) and ca(r(k)) ~ er(r(k)) 2 55
(e) Hl([S(z’(k)) \ 8*E¢, (i) (r(E)] N Qk) < o7y, for s =1,2;

(f) if s =1,2, H*({y € 8" Ee,(rry) (r(k)) N Qs : dist(y, Hyx) = §ri}) < ori;

(8) £ QF ={re€Qrlz v(zx)>0}and s=1,2

(7.56) 115, (o rk)INQ — lQ’,f 22y < o™ri;

(h) HL((S(v)\ S(z®)) N Qx) < ori and H(S(v) N Q) = 0.

Let us indicate by Ry the intersection of @J; with the strip centered in Hy with width 207y,
and let us set V¥ := {zy L rre(zi) +sv(z) : s € R}YN Ry, where e(zy) is such that {e(zy), v(zx)}
is an orthonormal base of R? with the same orientation of the canonical one.

For all B C £, let us set

Ra(B):={T€Re, : TNB#0}, TFB):={TeTE®):TnB#0}.

In the following, we will often indicate with the same symbol a family of triangles and their
support in R?, being clear from the context in which sense has to be intended. We will consider

z,rz(k) defined pointwise in Q' \§z;(k) and so the upper levels of 27" are intended as subsets of
(94 \Fz:;(k) .
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Lemma 7.4.3. For allk=1,...,K there ezists ct € [e1(r(k)), c2(r(k))] such that, setting E¥ :=
{z € Ra(Qx) : 28 (z) > cE}, we have

K
(7.57) limsup Z'Hl ((BR,,(Q,:)ES) \S(z;(k))) = 0g,
" k=1
and
(758) lim sup “1E£§ - 1Q',§'”L1(ﬂ') < 0'27’%.‘,
k]

where 8r, (q,) denotes the boundory operator in Rn(Qk), and 0, — 0 as ¢ — 0.

Proof. Note that for n large we have Ui, R (Qx) C U, so that IU£{=1 Rn(Qk)| < %. By Hélder
inequality and since ||V2T|| < €' for all r = 0,.. ., 1, it follows that

Z/{ CVlde < Y IV < (i+1)0'-‘;—‘7.

4 J 10k Ra(@u)ir (k)= = J

Following [53, Theorem 2.1], we can apply coarea-formula for BV-functions (see [8]) taking into
account that z5(") belongs to SBV(§Y') so that the singular part of the derivative is carried only
by S (zﬁ(k)): since for n large the R, (Q)’s are disjoint, we obtain

K ' ‘ e
(7.59) > / Hl((aEc,n(r(k))hRn(Qk)) \S(z;(k>)) de < (i +1)0" ¥,
k1R . . J

where Eon(r(k)) = {z € '\ S - : =8 (z) > c}, and so

K

ea(r(k)) ' .
/ H ((OBen(r(k)) N Ra(Qi)) \ S(z)) de < (i + 1)0’%; .

k=1 c1(r(k))

Notice that we can use the topological boundary instead of the reduced boundary of B, ,{r(k)) in
(7.59) since ® i piecewise affine, and so OE, n(r(k))\ 8*E;n(r(k)) # 0 just for a finite number
of ¢’s. By the Mean Value Theorem we have that there exist ¢& € [c1(r(k)), ca(r(k))] such that

i H (0B n(r(8)) N Ra(@0)) \ S(z5H)) < 2iC'V5,

k=1
and taking the limsup for n — 00, we get (7.57). Let us come to (7.58). Since

Eea(r (i), n(T(R)} © Eok n(r(k)) C By (r(k)) n((K)),
by (7.56) we have that for n large
ey  rtnnes — 1gpllzren < oy,
and so, since Ry (@) \ Q&) — 0, we conclude that (7.58) holds. O
Fix k € {1,..., K}, and let us consider the family T5(EE). Let us modify this family in the

following way. Let T' € 77 (Ef); we keep it if [T N E¥| > ||, and we erase it otherwise. Let Ef+

be this new family of triangles, and let E%~ be its complement in 7,*(R,(Q%)).
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Lemma 7.4.4. Forallk=1,...,K we have

K

(7.60) limsup Y H' (z,@0 BE T\ S()) = or,
k=1

and

(7.61) limnsup 1 gk — 1Q-k+|{1 < 40%ri,

where 0, — 0 as o — 0.

Proof. Let T € T*(EF). Since 25" is affine on T, it follows that T N EF is either a triangle with
at least two edges contained in the edges of T or a trapezoid with three edges contained in the
edges of T. Let I(T) be the edge inside T where z4") = ck, where ¢k is the value determining E¥
(we consider I[(T) = @ if int(T") C E*). In the case T € E+ as in the case T € Ef~, since the
angles of the triangles of T(zn( )) are uniformly bounded away from 0 and from 7, arguing as in
Lemma 7.1.1, we deduce that keeping or erasing T', we increase Jg,, (Qk)E of a quantity which is
less than c’H1 (I(T)) with ¢ independent of £,. Then we have

Z‘H (aRn(Qk>Ek+\aRn(Qk)E )<Z > eHUT) < CZ'H (Orn (@) EE\ S(25)),
k=1 ‘ k=1TeT}k(Ek) k=1

so that taking the limsup for n — +o00 and in view of (7.57) we deduce that (7 60) holds.

Let us come to (7.61). Note that |Z,¥(8Qf)| — 0 asn — +oo. Then if AE+ .= {T ¢ T(z™)
T C int(Q;)}, for n large we have

1QF \ BNl < |ARY \ Bot| + | TF0QF)] < 2107 \ Bx| + | T (8Q),
where the last inequality follows by construction of E&+. Taking the limsup for n — -+o00, in view
of (7.58) we get
limsup |QF \ EE+| < 20%rF
n
The inequality limsup,, |[EE+ \ Q)| < 20%r follows analogously. m|
Foralk=1,...,K and s € R, let us set
Hy(s) == {x + sv(zy), z € Hi}.

Lemma 7.4.5. There exist s;; €]%rx, §ri| and s, €] — §ri, —$ri| such that, setting HE* =
Hy(st) and HE— .= Hy(s;;) we have for n large enough

H(HET\ EBY) < 200my, HYHET N ERT) < 2007

Proof. By (7.61) we can write for n large
FTk
HY(Hi(s) \ EEF)ds < 50?2,
e
so that we get s} €]97x, e[ with
HY(Hi(s7) \ BE) < 2007

Similarly we can reason for s, . O
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Let SE+ be the straight line containing H%*: up to replacing H%+ by the connected compo-
nent of S’c T NRn(Qk) to which it belongs, we may suppose that H* o+ \ Eft is a finite union of
segments l with extremes A; and B; belonging to the edges of the tnangles of TF(R.(Qx)) such
that for n large

=1

m
HYEHET\ EF ) = H2 (U lj) < 2007y

By Lemma 7.1.1, for all j there exists a curve L;’ inside the edges of the triangles of 7.¥(R,(Q%))
joining A; and B; and such that

17+ 1+
(7.62) HA(LT) < cH (1),
with ¢ independent of &,. Let us set
Yot =L UB1AUL U---UBp 1A ULE.

Sumlarly, let us construct v%~ relative to H¥~NE;l. Note that for n large enough v+ NHy (o) =

8, v5~ N Hi(~0o) = 6, and ¥t N4k~ = 0. Tet us consider the connected component Cj

of Rn(Qr) \ ¥&* containing Hi(c). Similarly, let us consider the connected component Cy of
Rn(Qr) \ 7o~ containing Hy(—o). For n large enough, by (7.62)

m—1
(7.63) H <6Rn(Qk)Ck \UJ B Az+1) < CZHl 1) < 20cory.
. i=1 T =1 .
A similar estimate holds for 8z, 0,)Cr -
Let E5* be the family of triangles obtained adding to EX* those T' € E%~ such that T C C}f,
and subtracting those T' € Ef+ such that T C C;. Let EX~ be the complement of EX+ in

T¥(Ra(Qx))-
We claim that there exists C > 0 independent of n such that for all k = 1,...,K and for n

large
(7.64) H: (6R"(Qk)f~7,’:’+ \ aRn(Qk)Eﬁ’+) < Corg.

In fact, let ¢ be an edge of 8r.,(q,) X \ Or..(0.) EX™, that is ¢ belongs to a triangle T that has
been changed in the operation above described. Let us assume for instance that T € EF~ and
T CCit. If T' is such that TNT' = ¢, then 7' € EF~: in fact if by contradiction T' € Ek +, then
T € E" *+ and so we would have ¢ & Or, (g,)EE which is absurd. Slmllarly we get T' ,@ cy.
This means that { C BRn(Qk)Ck , and since the horizontal edges of v%* intersect by construction
only elements of E¥+, we deduce that ¢ C aRn(Qk)ck \ (U™, A;B;), and by (7.63) we conclude
that (7.64) holds.
‘We can summarize the previous results as follows.

Lemma 7.4.6. For all k = 1,...,K there ezist two families E&+ and E5= of triangles with
TE(Rn(Qr)) = B+ U ER—, Qk \Rk C EE* and Q7 \ Ry C Ek , and such that

(7.65) lim sup Z H (O BE*\ 5(0)) =05,
n -—
where o, — 0 as 0 — 0. Moreover, in the case z) € 8p§), we can modify Ek + or E"c in such a

way that EE+ C Q or BB~ C Q.

Proof. We have that (7.65) follows from (7.60) and (7.64), and the fact that zk_ Ty < ¢, with
c independent of o. Let us consider the case zx € 8pQ with Qf \ Rx C Q (the other case

being similar). From (7.65) we have that for n large Zk:l (6Rﬂ(Qk)E,'§ +tNnQ; ) < 05 because

F) = Re, gr.(r(k)) on Q) and so there are no jumps in Q. We can thus redefine Ef+
subtracting those triangles that are in (J; obtaining again (7.65). 0O
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‘We are now in position to prove Proposition 7.4.1.

Proof of Proposition 7.4.1. We work in the context of Q. For all v € SBV({?') with v = g on
Qp, HY(S(v)) < 400 and Vv € L2(9'; R?), we have to construct v, € SBV (') such that v, = g
on Qp, (vn)n € Ae,,a(), vn — v strongly in L*(Q'), Vv, — Vo strongly in L*(Q'; R?) and

(7.66) hmnsup H? ( U S(ul ) < u( a)'Hl (S(’u) \ U S( T))

=0 r=0

where we suppose that w7, and u" are extended to ' setting uf, := g7, and v" = g" on {Ip
respectively.

We set v = g* + w, where w € SBV({Y) with w = 0 on £2p. By density, it is sufficient to
consider the case w € L*(§). Up to reducing U, we may assume that ||Vg*||z2(yme) < o and

[Vwl|L2(irzy < 0. Let R;, be a rectangle centered in zy, oriented as Ry, and such that ﬁ’— C int Ry
and H(S(w) N (R \ R} )) < ory. We claim that there exists w, € SBV(Q) with w, = w on

Uk=1 R}, and w, = 0 in Qp such that
1) llw—wo| + |Vw — V|| < o3
(2) 'Hl(S(wc,) N (Qk \ R})) < 057k, With 0, — 0 as o — 0;
(3) HM(S(wo) \ Uiy Be) < HH(Sw) \ Upy Re) + 05
4) S(iu,,) \ Usz'l Rk 1s union of disjoint segments with closure contained in £\ Ui;l Ry;
(5) w, is of classﬁ,W%"’:" on. Q\ (U,If___l R, U:ST(_'E;S)

In fact, bjr Propoéition 7.4:2, there exists wn, € SBV (Y ) with Wy, = 0in '\ Q such that wy, — w
strongly in L?(R'), Vs, — Vw strongly in L2(SY; R2), S(wy,) is polyhedral with S(wm) C Q, wn,
is of class W% on '\ (U,ﬁ‘=1 R U S(wm)), and limy, HY (AN S(wm)) = H (AN S(w)) for all A
open subset of ' with H*(8ANS(w)) = 0. It is not restrictive to assume that H'(S(w)NOR) =0
and H(S(wm) NARy) = 0 for all m. Let vr, be a smooth function such that 0 < ¢ < 1, ¢ =1
on R}, and ¢ = 0 outside Ry. Setting ¢ := Ei;l i, let us consider Wy, = Yw+(1—1)wy,. Note
that @y, — w strongly in L3(’), Vi, — Vw strongly in L#(Q; R?), 1, = 0 in p. Moreover,
by capacity arguments, we may assume that S(@m )\ UI}:(-‘-l Ry, is a finite union of disjoint segments
with closure contained in £ \ UI{-{=1 Ry. Finally, for m — 400, we have

H(S (D) \ U Ry) — H (S(w) \ U Ry)),

k=1 k=1

K K
HY(S(im) N | (@ \ Bi)) = H (S(w) N | (@ \ Br))

k=1 k=1
and lim sup,,, H*(S(@m) N(Rr\R})) < 2H(S(w)N(Ri\R},)) < 207%. Then we can take w, := W,
for m large enough

Let S(ws) \ Uk 1 Qr = U 1 4, where, by capacity arguments, we can always assume that

l; are disjoint segments with closure contained in £ \ Uk=1 Qr. We define a triangulation T, €
7., o(§V) specifying its adaptive vertices as follows. Let us consider the families R, (Q%) and
Rn(lj) for k=1,...,K and j =1,...,m. Note that for n large enough, Rn(Q%,) N Rn(Qk,) =
for k1 # ka, (h) NRuly,) = (Z) for 51 # J2, and Ry(Qr) N Rp(l;) = 0 for every k,j. We
consider inside the triangles of R,,(Q) the adaptive vertices of T(zn( )) Passing to Ry (l5), b
density arguments it is not restrictive to assume that l; does not pass through the vertices of
R, and that its extremes belong to the edges of Re,, . Let ¢ = [z,y] be an edge of R,(l;) such
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that I; N ¢ = {P}. Proceeding as in [75}, we take as adaptive vertex of ¢ the projection of P on
{tz+ (1 -ty : t € [a,(1 — a)]}. Connecting these adaptive vertices, we obtain an interpolating
polyhedral curve [; with

(7.67) H(l) < playH (),

where 4 is an increasing function such that im,,q #{a) = 1. Finally, in the remaining edges, we
can consider any admissible adaptive vertex, for example the middle point.

Let us define w, € SBV () in the following way. For all @y, let wn_bé equal to w, on
Rn(Qx) \ Rk, equal to the reflection of Wo ot \a, with respect to Hy{c) on E¥+ N Ry and equal

to the reflection of wo -\ p, With respect to Hi(—0c) on E5= N Ry, where EE* are defined as in
Lemma 7.4.6. On the other elements of T}, let us set w, = w,. Notice that wp, = 0 on Op and
that inside each Ry, (Q%), all the discontinuities of wy, are contained in (Qk)E UV U P,ﬁ )
where Pk is the union of the polyhedral jumps of w, in R,,(Qk) and of their reflected version

with respect to Hi(+o). By Lemma 7.4.6 and since Zk=1 HY(Vx U PE ) < 0, with 0, — 0 as
o — 0, and H? (Ui=0 5"\ Ui, Qk) < 20, we have that

limsup7* (S(wn)\ U s n>)

=0

< (sm, U Qk> +limsup 74’ ((S(w,,)\ U S@Eyn R«(Qk)>

k=1 r=0

H? <5(w,)\ U S(ZT)) + M ( U S\ Qk> +05 <

=0 r=0 k=1

<H: (S(w,) \ O S(z")) + 0g,

r=0
and since ||Vwel|z2(rm2) < 00 We get for n large
2
(7.68) IVwnlza s, macau) < oo

We now want to define an interpolation @y, of w, on Typ. Firstly, we set 10, = 0 on all regular
triangles of {}p. Passing to the triangles in R, (Qk) (see fig.4), by Lemma 7.1.2, we know that for
n large enough, we have

H'(OR(Vi)) < cH Vi), HYORa(PE)) < cHY(PE),

with ¢ independent of n. If ' € R (Vi) URn(PE_), we set 1, = 0 on T; otherwise, we define 1,
on T as the affine interpolation of wy,.

Since Viby, is uniformly bounded on Ry, (Hi(%0)), |[Rn(Hi(£c))] — 0 and since wy, is uniformly
bounded in W2 on the triangles contained in R, Q) \Rn(VrU P'L U Hy(+0)) we have by the
interpolation estimate (7.9) and by (7.68)

(7.69) hmsup HV'LUn”LQ(UK Ru(@s)) S 0o

Moreover we have
K k
(7.70) limsup ) H* ((S(ﬂ)n) \U 5(Z£)> an(Qk)) < 05.
n k=1 r=0

Let us come to the triangles not belonging to Rp(Qx) for k =1,...,K. Forall j = 1,...,m,
we denote by R, (l;) the family of regular triangles that have edges in common with trlangles of
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Rn(l;). For n large we have that R, (l;,) N Ra(lj,) = 0 for j; # j2. On every regular triangle
T¢g Uf=1 Rn(Qr) U U;"=1 Rn(l;), we define 1@, as the affine interpolation of w,. Since w, is of
class W2 on T and T is regular, we obtain by the interpolation estimate (7.9)

(771) ”’L—l’)-n, - wg'”%/‘fl,Z(T) S KEn”’l.Ug”Wz,on.

Let us consider now those triangles that are contained in the elements of U;’;l Rn(l;). Following

[75], we can define 10, on every T in such a way that @, admits discontinuities only on ij, and
Vs || zeo(ry < || Vtoloo- Since [Rn(l3)] — 0 as n — oo, we deduce that

. - 2 _
(772) 11"511 ”vwnan(ﬁn(lj)) =0.

Moreover by (7.67) and since H* (Ui:o S(=™)\ UkK=1 Qk) < 20, we have

m k
(7.73) H? <5(wn‘) nlJ ﬁn(zj)) < u(a)H* (S(w,) U S(z’)) + 0,

Jj=1 i=1

where 0, — 0 as 0 — 0.

Qk

Fig. 4

We are now ready to conclude. Let us consider Wy, € A, o(f2) defined as 1y, = g + @n. We
have 1y, — ¢* + w, strongly in L*(Q). By (7.69), (7.71), (7.72) we get

lim sup || Vb, ||% < ||Vgt + V| + o,
n

while by (7.70) and (7.73) we have

lim sup H* (S('tbn)\ O S(zﬁ)) < playH? (S(wd)\ O S(zr)> + 05

=0 =0

Letting now ¢ — 0, using a diagonal argument, we conclude that Proposition 7.4.1 holds. O
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7.5 Revisiting the approximation by Francfort and Larsen

In this section we show how the arguments of Section 7.3 may be used to deal with the discrete in
time approximation of quasi-static growth of brittle cracks proposed by Francfort and Larsen in
[53]. More precisely, we prove that there is strong convergence of the gradient of the displacement
(in particular convergence of the bulk energy) and convergence of the surface energy at all times
of continuity of the length of the crack; moreover there is convergence of the total energy at any
time.

We briefly recall the notation employed in [53]. Let I, be countable and dense in [0,1], and let
I, :={0 =1} < ... <t? =1} such that (I,) is an increasing sequence of sets whose union is Io..
Let 2 C RY be a Lipschitz bounded domain, and let 6Q = 005 U 08, where 0()} is open in the
relative topology. Let 2/ C R be open and such that @ € €, and let g € WH1([0, 1]; HY()).
At any time ¢}, Francfort and Larsen consider «} minimizer of

/ Vo dz+HY [ S@)\ | | S@puen;

0 0<i<k—1
in {v € SBV(Q) : v = g(t7) in ' \ Q}. Setting u"(t) := u} for ¢t € [t?,t2,,], and T™(t) =
Us<t,ser,, S(u™(s)) U 08y, they prove that

T .
(7.74) £n(E) < E™(0) + 2 /0 * /ﬂ VU ()Va(r) dudr +on,  tE [, 8,

where E™(t) = [, |Vu"(t)]>dz + HN~1 (T™(t)) and 0p — 0-as n — +oco. Using Theorem 1.4.3,
they obtain a subsequence of {u™(-)), still denoted by the same symbol, such that u™(¢) — u(t) in
SBV (') and Vu™(t) — Vu(t) strongly in L%(Q'; RN) for all ¢ € I, with u(t) a minimizer of

[ 190 da + 9% (5 \ T,

5}

where I'(t) == User, o<t S(u(s8)) U 6(2];. The evolution {t — u(t),t € I} is extended to the
whole [0, 1] using the approximation from the left in time. :

We can now use the arguments of Section 7.3. Following Lemma. 7.3.6, it turns out that for all
t e [0,1]

t
(7.75) E(t) > £(0) +2 / / Vu(r)V(r) dz dr.
0 Jo
Moreover, by the Transfer of Jump and the uniqueness argument of Lemma. 7.3.3, we have that
Vun(t) — Vu(t) strongly in LZ(QY';RY) for all ¢t ¢ N, where N is the (at most countable) set of

discontinuities of the pointwise limit A of ¥ ~1(T'(-)) (which exists up to a further subsequence
by Helly’s Theorem). Then we pass to the limit in (7.74) obtaining

£
£(t) < £(0) +2 / / Vu(r)Va(r) da dr;
0 Ja
moreover, following the proof of Theorem 7.0.1, we have that for all ¢ € {0, 1]
t
Elt) < lin}linf En(t) € limsup &£,(¢) = £(0) + 2/ / Vu(r)Vi(r) dz dr,
n 0 JQ

and taking into account (7.75) we get the convergence of the total energy at any time. Since
Vu™(t) — Vu(t) strongly in L*()'; RV) for every t € I, we deduce that A = HV~1(D()) on I,
so that the convergence of the surface energy holds in Io,. The extension to the continuity times
for HN-(T'(-)) follows like in the final part of the proof of Theorem 7.0.1.
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Chapter 8

Discontinuous finite elements
approximation of quasistatic crack
growth in nonlinear elasticity

In this chapter * we provide a discontinuous finite element approximation of a model of quasistatic
growth of brittle cracks in nonlinear elasticity recently proposed in [44] by Dal Maso, Francfort,
and Toader in the framework of the variational theory of crack propagation proposed by Francfort
and Marigo in [54].

The quasistatic crack growth proposed by Dal Maso, Francfort, and Toader in [44)] considers
the case of nonlinear elasticity, and takes into account possible volume and traction forces applied
to the elastic body. In order to describe the result of [44] (a complete description is given in
Section 8.1), let us assume that the elastic body has a reference configuration given by © C RV
open, bounded and with Lipschitz boundary. Let dp} C 80 be open in the relative topology,
and let Oy := 0Q\ OpQ. Let 25 C £, and let 950 C Oy be such that 05 NN = 0. Qp is
the brittle part of 2, and 95 is the part of the boundary where traction forces are supposed to
act. A crack is given by any rectifiable set in {p with finite (N — 1) Hausdorff measure. Given
a boundary deformation g on 8p{) and a crack T, the family of all admissible deformation of £
is’given by the set AD(g,T) of all function u € GSBV(Q;RY) such that S(u) CT and u = g
on 9pQ \T'. Here S(u) denotes the set of jumps of u, and the equality u = g is intended in the
sense of traces. Requiring © = g only on 6pQ \ T means that the deformation is assumed not to
be transmitted through the crack. The bulk energy considered in [44] is of the form

/ W (z, Vu(z)) dz,
o)
where W(z, £) is quasiconvex in £, and satisfies suitable regularity and growth assumptions (see

(8.6) and (8.7)). Moreover the time dependent body and traction forces are supposed to be
conservative with work given by

- / F(t,z,u(z))dz — / G(t,z,u(z)) dHN (),
Q\T Os582

where F and G satisfy suitable regularity and growth conditions (see Section 8.1). Finally the
work made to produce the crack I' is given by

£9(I) = /F k(z, v(z)) dHY Y (z),

1The results of this chapter are contained in the paper
A. Giacomini, M. Ponsiglione: Discontinuous finite element approximation of quasistatic crack growth in nonlinear
elasticity. Preprint Sissa 2004.
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where »(z) is the normal to I’ at =, and k(z,v) satisfies standard hypotheses which guarantee
lower semicontinuity (see Section 8.1). Clearly, W, F, G and k depend on the material. Let us set

= z, Vulz) dz — z,ulx T — z,u{x N-1
EV(t)(u) = /n W (z, Vu(z))d /ﬂ L FlauE)d /asnc(t, u(z)) AN (z),

and
(8.1) E)(u,T) := E°(t) (u) + E5(T).

Given a boundary deformation g(t) with ¢ € [0, T and a preexisting crack I'g, a quasistatic crack
growth relative to g and T is & map {t — (u(t),['()) : t € [0,7]} such that the following
conditions hold:

(1) for all t € [0,T): u(t) € AD(g(t),T(®));
(2) drreversibility: To CT(s) CT(t) foral0< s <t < T
(3) static equilibrium: for all t € [0, T] and for all admissible configurations (u,T') with I'(¢) C T

E()(u(t), T(t)) < £(2)(w, T);

(4) nondissipativity: the time derivative of the total energy £ (t){(u(t), T'(t)) is equal to the power
of external forces (see (8.23)).

In this chapter we discretize the mode] in the line of Chapter 7, that is using adaptive trian-
gulations determined by the parameters.e > 0. and a € (0, %) We restrict our analysis to a two
dimensional setting considering only a polygonal reference configuration £ C R?.

The discretization of the energy functional is obtained restricting the total energy (8.1) to the
family of functions « which are affine on the triangles of some triangulation T'(u) € 7; ,(€2) and are
allowed to jump across the edges of T(u) contained in Q. We indicate this space by AZ, (2; R?).
The boundary data is assumed to belong to the space AF.(2) of continuous functions which are
affine on every triangle T € R,.

Let us consider a boundary datum g. € WH({0,T], WHP(S}; R?) N L4(Q;R?)) with g.(t) €
AF () for all ¢ € [0,T) (p, g are related to the growth assumptions on W, F, G) and an initial crack
I'? , (see Section 8.4). For all u € AZ,(Q;R?) we indicate by S(u) the edges of the triangulation
T(u) across which u jumps, while we denote by S5 ® (u) the edges of the triangulation T(u)
contained in 8pQ on which u # g.(t). Let us divide [0,1] into subintervals [t,t{,,] of size § > 0
for i =0,...,Ns. Using a variational argument (Proposition 8.4.1), we construct a discrete (in
time and space) evolution {(udi, T%%) : i = 0,...,Ns} such that for all i = 0,..., N5 we have
ull, € AZ, (4R,

1
réi = [5@ih) u s ain),

=0

and the following unilateral minimality property holds: for all v € AZ_(Q;R?)
(8.2) ) (udh) < E°()(w) + € ((S() U SE™ () \ T2 ).

Notice that by construction ul'i € AD(g.(tf),T'%%). Moreover the definition of the discrete crack
ensures that I‘g”fz - I‘g;{; for all ¢ < 7, recovering in this discrete setting the irreversibilty of
the crack growth given in (2). The minimality property (8.2) is the reformulation in the finite
element space of the equilibrium condition (3). Finally we obtain an estimate from above for
E(t8) (udt Fg;fl) (see Proposition 8.4.2) which is a discrete version of (4).

£,27
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In order to perform the asymptotic analysis of the discrete evolution {(ug;z,ngi) i =

0,..., N5} we make the piecewise constant interpolation in time ug,a @) = ug',fl and I‘g’a @) = I‘g;;
forall 2 <t <td,,. Let us suppose that

ge —g  strongly in Wh([0, T], WhP(Q; R?) N LY(Q; R?))

(where on WhP(Q;R?) N L(;R?) we take the norm ||ul| = |jullwrrare) + [|[ullzerey), and
that rg,a approximate an initial crack T'C in the sense of Proposition 8.3.1.
The main result of the chapter (Theorem 8.5.1) states that there exist a quasistatic evolution
{t = (u(),I'(#)) : t € [0,T]} in the sense of [44] relative to the boundary deformation g and the
preexisting crack I'° and sequences 6, — 0, &, — 0, a,, — 0, such that setting
un(t) = uln , (2), To(t) =13 (1),

Enyln En,an
for all ¢ € [0, T] the following facts hold:

(a) (un(t))nen is weakly precompact in GSBV;”(Q;]RZ), and every accumulation point 4(t) is
such that @(t) € AD(g(¢),T'(t)), and ((t),['(t)) satisfy the static equilibrium (2); moreover
there exists a subsequence (0n, , Eny s @ny )ken Of (On, En, @n)nen (depending on 1) such that

tn, (t) = u(t) weakly in GSBVP(Q;R?);

(b) convergence of the total energy holds, and more precisely elastic and surface energies converge
separately, that is

E(t)(un(t)) — EXB (),  E°(Ta®)) — £°(T(E)).

By point (a), the approximation of the deformation u(t) is available only up to a subsequence
depending on #: this is due to the possible non uniqueness of the minimum energy deformation
associated to I'(¢). In the case £°(t)(u) is strictly convex, it turns out that the deformation u(t)
is uniquely determined, and we prove that (Theorem 8.6.1)

Vun(t) — Vu(t)  strongly in LP(Q; M2%2),

and
Un () — u(t) strongly in LI(£); R?).

The main difficulty to prove Theorem 8.5.1 consists in passing to the limit in the static equilibrium
(8.2). In order to find the crack I'(¢) in the limit, in Lemma 8.5.2 and Lemma 8.5.4 we adapt
to the context of finite elements the notion of oP- convergence of sets formulated in [44]. This is
the key tool to obtain the convergence of elastic and surface energies at all times ¢ € [0, 7] (while
in [59] this was available only at the continuity points of H(I'(2))). In order to infer the static
equilibrium of I'(¢) from that of I'y(t), we employ a generalization of the piecewise affine transfer
of jumps [59, Proposition 5.1] (see Proposition 8.2.2).

The chapter is organized as follows. In Section 8.1 we describe the quasistatic crack growth of
[44] precising the functional setting and the hypotheses on the elastic and surface energies involved.
In Section 8.2 we introduce the finite element space, and in Section 8.3 we prove an approximation
result for a preexisting crack configuration. In Section 8.4 we prove the existence of a discrete
evolution, and in Section 8.5 we prove the main approximation result (Theorem 8.5.1). In Section
8.6 we treat the case of strictly convex total energy.

8.1 The quasistatic crack growth of Dal Maso-Francfort-
Toader

In this section we describe the quasistatic evolution of brittle cracks proposed in [44]. They
consider the case of n-dimensional nonlinear elasticity, for an arbitrary n > 1, with a quasiconvex
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bulk energy and with prescribed boundary deformations and applied loads, depending on time.
Since we are going to approximate the case n = 2, we prefer to introduce the model in this
particular case. For more details, we refer the reader to [44].

Let Q be a bounded open set of R? with Lipschitz boundary and let Qp be an open subset of
Q. Let 8y C 82 be closed in the relative topology, and let Opf) := 80 \ InQ2. Let 850 C 502
be closed in the relative topology and such that Qg N85 = @. In the model proposed in [44],
Qg represents the brittle part of 2, and dp{} the part of the boundary on which the deformation
is prescribed. Moreover the elastic body 2 is supposed to be subject to surface forces acting on
8s8l.

Admissible cracks and deformations. The set of admissible cracks is given by
R(0p;0n) := {T' : T is rectifiable ,T' € (Qp \ 85Q), H(I") < +o0}.

Here AC B means that A C B up to a set of H!-measure zero, and I" rectifiable means that there
exists a sequence (M;) of C'-manifolds such that I'€ U; M;. I T is rectifiable, we can define
normal vector fields » to I in the following way: if I' = | J,T; with T; C M; and I; N Ty = @ for
i j, given z € T';, we take v(z) = var,(z), where vz, (z) is a normal vector to the C-manifold
M; at z. It turns out that two normal vector fields associated to different decompositions |J; I';
of T coincide up to their sign H* almost everywhere.

Given a crack I, an admissible deformation is given by any function u € GSBV(2;R?) such
that S(u)CT.

The surface energy. The surface energy 6fta crack T is given by
(8.3) £5(T) = / k(z, v(z)) dH (=),
..Jr

where v is a unit normal vector field _c>n‘F. Here k: O xR*— R is continuous, k(z, -) is a norm
in B2 for all z € Qp and for all z € Qg and v € R?

(8.4) Kilv| € k(z,v) < Kaly|,
where K3, Ko > 0. Notice that since k is even in the second variable, we have that the integral

(8.3) is independent of the orientation given to I, that is independent of the particular choice of
the unit normal vector field ».

The bulk energy. Let p > 1 be fixed. Given a deformation u € GSBVP(Q;R?) the associated
bulk energy is given by

(8.5) W(Vu) :=-/QW(:E,Vu(a:))dm,

where W : Q x M2%2 — [0,-+oc) is a Carathéodory function satisfying

(8.6) for every x € O : W(z,-) is quasiconvex and C* on M>*2,
(8.7) for every (z,€) € 2 x M¥*2 : o |€)P — by (z) < W(z,£) < alV ¢ + Y (z).

Here a{’,al’ > 0, and b¥, 0% € L'(Q) are nonnegative functions. Quasiconvexity of W means
that for all £ € M2*2 and for all ¢ € C*(Q;R?)

W) < /Q W (€ + Vo) da.

If we denote by ;W : © x M?*2 — M?2*? the partial derivative of W with respect to £, since
& — W (z,£) is rank one convex on M?%2, under the growth assumption (8.7) it turns out that (see
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for example [41]) there exists a positive constant a}’ > 0 and a nonnegative function bY¥ € L?' (),
with p’ :== p/(p ~ 1), such that for all (z,£) € Q x M?*?

(8.8) |0:W (, €)| < a3’ |EP + b7 ().
By (8.7) and (8.8) the functional W, defined for all ® € L?P(Q; M2%2) by

W) = [ Wia,b() s,
Q
is of class C on LP(Q; M2*2?), and its differential W : LP(; M2%2) — LP'(Q; M2*%2) is given by
OW(®),9) = [ 0W (@, 8E)Va)ds, &, e @M,
_ Q

where (-,-) denotes the duality pairing between the spaces LP (€; M2%2) and LP({%; M 2x2). By
(8.7) and (8.8), there exist six positive constants of¥ > 0, &}V > 0, ¥’ > 0, Y > 0, SV > 0,
BY > 0 such that for every &, U € LP(2; M2%2)

o’ [2lf - A < W(®) < oV || 25 + BY”,

(8.9) | [(oW(2), )| < (az” |25~ + B3")I|Tlp-

The body forces. Let g > 1 be fixed. The density of applied body forces per unit volume in the
reference configuration relative to the deformation u at time ¢ € [0, is given by 8,F(t, z, u(z)).
Here F : [0,T] x Q x R? — R is such that:

for every z € R?: (t,z) — F(t,z,2) is L' x £? measurable on [0,T] x £,
for every (t,z) € [0,T] x Q: z — F(t,z, z) belongs to C*(R?),

and satisfies the following growth conditions

(610) af4l? — 88 (4,5) < ~F(t,,2) < af J2l7 + bF 1,2,
|0 F(t,,2)| < a3 2|7 + b5 (¢, 2)
for every (t,z,2) € [0,T] x @ x R?, with af > 0, af > 0 and af > 0, and where b ,bf €

c([o, T); LX), bF e €O([0, T]; LY ()) are nonnegative functions, with ¢’ := q/(g — 1).
In order to deal with time variations, we assume also that for every (t,z) € [0,T] x R?

t
F(t,z,z) = F(0,z,z2) +/ F(s,z,z)ds for a.e. z € Q,
0
t
8. F(t,z,2z) = 8, F(0,z,2) +/ 0. F(s,z,z)ds for a.e. z € Q,
0

where F": [0,T] x © x R? — R is such that

for all z € R? : (t,z) — F(t,x,2) is £* x £? measurable on [0,7T] x Q,
for all (t,z) € [0,T] x Q : z — F(t,z, 2) is of class C* on R?,

and satisfies the growth conditions

|E(t, 2, 2)] < of ()]2]9 + 05 (¢, 2),
10 (t,,2)| < af ({)|=97" + b (¢, z)
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for all (t,z,2) € [0,T] x 2 x R?. Here 1 < ¢ < ¢, and aa ,af € L([0,T)), b e L*([o, T); LM (SY)),
bf € LY([0,T); LY (R2)) are nonnegative functions with ¢’ = q_q_l
Under the previous assumptions, for every t € [0,7] the functionals

(8.11) F#) () = /ﬂ Flt,ou@)ds, F)u) = /Q B(t,, u(z)) dz

are well defined on L9(); R2) and LY(Q; Rz) respectively. Moreover we have that F(t) is of class
C! on LI(Q;R?), with differential 8F(t) : L9(Q; R?) — L9 (;R?) defined by

(OF (1) / 8, F(t, 2, u(x)w(z)ds,  u,v e LI(QRY),

where (-,-) denotes now the duality pairing between L? (€;R2) and LI(Q;R?). F(t) is C* on
L9(Q; R?) with differential defined by

(BF () (), v) = /Q 8, btz u(@)(z)ds, uve LR,

where (-,-) denotes the duality pairing between L% (Q;R2) and LI(Q;R?). For all u,v € LI(Q; R?)
and for all ¢ € |0, 7] we have

1
F(t)(w) = FO)w) + / F(s)(u) ds,

(8.12) (OF (£)(w), ) = (8F(0) (u), ) + /0 (B (s)(w),v) ds.

Moreover we have that for every t € [0, T] and for every u, v € LI(S; R")
o llullg - 5 < ~F(t)(u) < of llull + A,

(8.13) (OF () (u), V)l < (o Julld™ + BD)lvllq,

(8.14) IFO @) < of @)llullf + 57 (),

(8.15) [(8F (£)(u), v)| < (o @)lull]™ + BT @) llvlas

where of > 0, 0f > 0,¢0f >0, 85 =0, B > 0, B > 0 are positive constants, and
of ,of ,pf,Bf € L([0,T)]) are nonnegative functions.

The surface forces. The deusity of the surface forces on 8¢{1 at time ¢ under the deformation
u is given by 8,G(2,z,u(z)), where G : [0, T] x 85 x R? — R is such that

for every z € R? : (t,z) — G(t,z,z) is L' x H -measurable,

for every (t,z) € [0,T] x 85§ : z — G(t,z, z) belongs to C*(R?),

and satisfies the growth conditions
—a§ (t,2)\2| ~ b§ (£, 3) < ~G(t,3,2) < af|2|" +bE (¢, ),
!3ZG(t7 z, Z)l S a‘glzlr_l + bg;(t7m);

for every (f,z,z) € {0,T] x 850 x R2. Here r is an exponent related to the trace operators on
Sobolev spaces: if p < 2, then we suppose that p < r < —L while if p > 2, we suppose p < 7.

Moreover a§ > 0, a§ > 0 are two nonnegative constants, and a§ € L*([0, T}; L™ (BSQ)) 5§05 €
C%([o,TY; Ll(asﬂ)) and b§ € C°([0,T); L™ (85K2)) are nonnegative functions with r/ := 'r/(r -1
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We assume that for every (t, 2) € [0,7] x R?
. ,
Glt,z,z) = G(0,z, z) +/ G(s,x,z)ds for Hl-ae. x € 959,
0
13
0.G(t,z,z) = 8.G(0,z, 2) +/ 8.G(s,x, z)ds for H'-a.e. z € 951,
0

where G : [0,T] x 8sQ x B2 — R is such that '
for all z € R?: (t,z) — G(t,x,2) is £ x H -measurable,
for all (t,z) € [0,T] x 852 : z — G(t,z, 2) belongs to C*(R?),
and satisfies the the growth conditions
| |Gt 3, 2)| < § Bl + b5 (1),
18,G(t,z, 2)| < aF (t)|z|""1 + b (t, z)

for all (t,z,2) € [0,T] x 0sQ x R?. Here af, a§ € L*([0,T]), b§ € L*([0,T}; L(8s%)) and
b¢ € L([0,T); L™ (8s?)) are nonnegative functions.
By the previous assumptions, the following functionals on L"(858; R?)

(8.16) G(t)(u) == /a  Gltz,u(@) dH @), G(t)(w) == /a QG(t,z,u(m))dHl(x)

are well defined. For every t € [0,7] we have that G(t) is of class C* on L"(9s%;R?) and its
differential is given by

EoOW,0) = [ _0.0¢au@h@)dH @),  uoe @R,

where (-,-) denotes now the duality pairing between L™ (95Q;R?) and L"(8s2;R?). Moreover,
G(t) is of class C* on L"(85;R?), and its differential is given by

(06 (t)(w), v) = /a Q«9.-40'(t,:v,'M(ﬂB))v(ﬂc)d’Hl(ﬂc)

for all u,v € L™(0s};R2). Finally we have

t .
G(t)(u) = GO)(u) + /0 G(s)(u) ds,

t
(80(t) (), v) = (BG(0)(uw),v) + f (06 (5) (1), v) ds,

for every u,v € L™(8s8; R?).

Let Qg C Q\ Clp be open with Lipschitz boundary, and such that 850 C 9fg; the trace
operator from W1P(Qg;R?) into L™(0s;R2?) is then compact, and so there exists a constant
~g > 0 such that

(8.17) lullr,o50 < 75(IVullp.as + llulls.0s)

for every u € W1P(Qg; R?). By the previous assumptions, we have that there exist six nonnegative
constants of , o, of, 85, 87, B9 and four nonnegative functions of, of, pg, BS e LY([0,T)),
such that

— of ullrase — 65 < ~G(E)(w) < of [ullf o5 + BT,
(8.18) (86 (£)(w), )| < (o [ull} 550 + B3)lIvllnssa;
(8.19) 6@ (w)] < of Wlully.o5n + 45 ¢,

[(0G(2) (), v)| < (o (D)llull} 550 + BF D) Ivllrasn
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for every t € [0,T) and u,v € L™(8s; R2).

Configurations with finite energy. The deformations on the boundary p2 are given by (the
traces of) functions g € WP(Q;R?) N L9(Q; R?), where p, ¢ are the exponents in (8.7) and (8.10)
respectively. Given a crack I' € R{{1p; InQ2) and a boundary deformation g, the set of admissible
deformations with finite energy relative to (g,T') is defined by

AD(g,T) := {u € GSBVP({;R?) : S(u) CT,u =g on 0p\ T},

where we recall that
GSBVP(;R?) := GSBV?(;R?) N LI R?),
and the equality u = g on p§2 \ T is intended in the sense of traces (see [44, Section 2]).

Note that if u € GSBVP(;R?), then W(u) < +oo and |F(t)(u)| < +oo for all ¢ € [0,T].
Moreover since I' € R(Qg;n ) and S(uyET, we have that u € W2 (Qg;R2) N LI(Ns; R2) s0
that G(t)(u) is well defined and |G(t)(u)| < +oo for all ¢ € [0,7]. Notice that there exists always
a deformation without crack which satisfies the boundary condition, namely the function g itself.

The total energy. For every t € [0,T], the total energy relative to the configuration (u,T") with
u € AD(g,T) is given by

(8.20)  E@)(u,T) = EP(t) () + £5(T),
where ; ‘
(8.21) EP(t)(u) = W(u) — F()(w) - G(t)(u),

and W, F(t), G(t) and £° are defined in (8.5), (8.11), (8.16) and (8.3) respectively. It turns out
that there exist four constants af >0, of > 0, 8§ > 0, £ > 0 such that

(822) E2(8)(w) 2 af (IVull +1ulg) - 65,
£2(8)(w) < af (17l + flullg + Nl o5 + 5,
for every t € [0,7] and u € GSBVP(Q;R?).

The time dependent boundary deformations. We will consider boundary deformations g(t)
such that
t — g(t) € AC([0, T}, WP (2;R?) n LU(Q; R?)),

so that
t— vg(t) € Ll([O,T]; Wl’p(ﬂ;Rz) N LQ(Q;Rz)),

and
t — Vg(t) € L}([0, T]; LP(Q; M>*3)).

The existence result. Let I'y € R(Qp;0n) be a preexisting crack. The next Theorem proved
in [44] establishes the existence of a quasistatic evolution with preexisting crack T'g.

Theorem 8.1.1. Let I'g € R(Qp;OnN) be a preexzisting crack. Then there exists a quasistatic
evolution with preezisting crack To and boundary deformation g(t), i.e., there ezists o function
t — (u(t),I(t)) from [0,T] to GSBVP (4 R?) x R($1p; OnQY) with the following properties:

(a) (u(0),T'(0)) is such that
£(0)(u(0),T(0)) = min{£(0)(v,T) : v € AD(g(0),T),To CT};
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(b) u(t) € AD(g(t),T\(t)) jor all ¢t € [0, T};
(c) irreversibility: T'o CT(s)CT(t) whenever 0 < s <t < T;

(d) static equilibrium: for allt € [0,T) » ‘
E(t)(u(t), (1)) = min{E(t)(v,T) : v € AD(g(t),T), T(¢) ST}

(e) nondissipativity: the functiont — E(t) = E(t)(u(t),T(t)) is absolutely continuous on [0,T],
and for a.e. t € [0,T]

(8.23) E(t) = (OW(Vu(t)), V4(t)) = (9F(£)(u(®), §(#)) — F(E)(u(2))
—(0G(8)(u(?)), §(2)) — G (&) (u(?))-

The next theorem gives a compactness and lower semicontinuity result with respect to weak
convergence in GSBVP (), R?) which will be often used in the next sections.

Theorem 8.1.2. Let t;, € [0,T] with tx — t, and let (u;) C GSBVP(Q;R?), C €]0;+o00| such
that S(ux) CQp and
‘ E¥(tk) (ux) + €°(S(ur)) < C,

where EY.and.£° are deﬁned as in (8.21) and (8.3). Then there exists a subsequence (uk, )hen
converging to some u weakly in GSBVP(Q;R?) such that S(u) CQp,

- E(t)(w) SLminfE°(ty,)(ur,)  ond  £°(S(w)) < liminf £2(S(ux,))-
~+00 —00
Proof. By (8.22) and (8.4), we have that there exists C' €]0,+o0[ such that
[V ug]|f + gl + (S (we)) < C".

Then we can apply Theorem 1.1.3 with g{z,ur) = |ux|?, obtaining a subsequence (ug, )hen and
u € GSBVP(Q;R?) such that (1.4) holds: in particular we may assume that ug, — u pointwise
a.e.. We have ug, — u strongly in L'(Q2;R?), and by Fatou’s Lemma we have that u € LI(Q2; R?)
so that u € GSBVP(;R?). We conclude uy, — u weakly in GSBVP(Q;R?). By [4, Theorem
3.7] we have that

£4(S(w)) < limint £°(S(ur, ),

and by [63] we have that

/ Wz, Vu)dz < hmhmf/ Wz, Vuy, ) dz.
Q Q

Since by assumption the functions z — F(0,z, z) and z — F(s, z, z) are continuous for all s € [0, 7]
and for a.e. = € £, and

F(tkh7xyukh (2?)) = F(07m7ukh (1:)) + Atkh F(S,JI,’U,kh (CE)) dS,

we have that F(t,,z,u, (z)) — F(,z,u(z)) for a.e. z € Q. By Fatou’s Lemma (in the limsup
version) we deduce

limsup/ F(tkh,z,ukh(w))dmS/F(t,m,u(m))dm.
r o Ja Q
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Since (ur, ) q, i bounded in WP (Qs; R?*)NL(s5;R?), and the trace operator from W1 (g; R?)
into L™(Q5;R?) is compact, we get

lim Gtk ) (uk, ) = G(2)(u),

and so the proof is thus concluded. ]

8.2 The finite element space and the Transfer of Jump Sets

Let £ C R? be a polygonal set. We follow the notation employed in Section 7.1, where the family
of regular triangulations R. () of  depending on the parameter £ > 0, and the family of adaptive
triangulations 7, ({2) depending on the parameters € > 0 and a € (0, 3) are introduced.

From now on for all € > 0 we fix R, € R.(2). We suppose that the brittle part Qp and
the region Qg introduced before for the model of quasistatic growth of cracks are composed of
triangles of R for all e. Moreover we suppose that 8p{2 and 8s) are composed of edges of R,
for all £ up to a finite number of points.

We consider the following discontinuous finite element space. We indicate by A . () the set
of all u: Q — R? such that there exists a triangulation T(u) € 7 o (f2) nested in R, with v affine
on every triangle T' € T{(u). For every u € A, (), we indicate by S(u) the family of edges of
T'(u) inside Q across which u is discontinuous. Notice that u € SBV(Q; R?) and that the notation
is consistent with the usual one employed in the theory of functions of bounded variation. Let us
set

(8.24) AFe () = {u: QI;‘—» R? : u is continuous and affine on each triangle T € R, }.
The discretization ;Jf the problem will be carried out using the space

(8.25) ABL(R?) = {u € A o(Q) : S(u) C D5}

Given any g € AF.(Q), for every u € AZ,(;R?) let -

(5.26) S5 (u) = {z € 850 : u(z) # g(2)},

that is S7(u) denotes the set of edges of OpS2 at which the boundary condition is not satisfied.
For every u € A2, (€; R?), let us also set

(8.27) §9(u) := S(u) U 5L (u).

An essential tool in the approximation result of this chapter is Proposition 8.2.2 which gen-
eralizes the piecewise affine transfer of jump [59, Proposition 5.1] to the case of vector valued
functions with bulk energy £® and surface energy £° of the form (8.21) and (8.3) respectively.

In order to deal with the surface energy £° we will need the following geometric construction.
Let S C {2 be a segment and let us suppose that S intersects the edges of R, at most in one point
for all € > 0. Let a €]0,1[, and let P = SN ¢, where ¢ = [z,7] is an edge of R.: we indicate
with 7, (P) the projection of P on the segment {iz + (1 —t)y : t € [a,1 — a]}. The interpolating
curve Se o of § in R, with parameter o is given connecting all the 7, (P)’s belonging to the same
triangle of R..

Lemma 8.2.1. Under the previous assumptions, there ewists a function n(a) independent of S
with n(a) — 0 as a — 0 such that

limsup |£°(S,q) — £°(5)] < n(a)e*(S),
e—0
where E£° is defined in (8.3).
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Proof. By (8.4), we have that there exist w and K3 > 0 such that for all z;,z2 € Q0 and ] =
Illzl =1

|k(z1,01) = k(z2,v2)| < w(|z1 — z2|) + Kslvy — 14,
where w :]0, +00[—]0, +o0[ is a decreasing function such that w(s) — 0 as s — 0. Let T € R, be
such that TN S # 0, and let us choose zr € TN S and z72* € TN S, . Let cg > 0 denote the
characteristic constant of R. such that every T € R, is contained in a ball of diameter coe. Then
we have

/ k(z,v3®) dH* —-/ k(z,vr) dH*
Ss,anT sNT

<

+ w(coeYH Y (Se,a NT) + wlcae)H (SN T)

/ k(25 v5%) " — / (e, vp) dH?
Se,aNT snT
< k(@5 Ve YH (Se,a N T) — k(zz, vr)H (S N T)| + wlcze) [HH (Sea NT) + HY(SNT)],
where v52:%, vr are the (constant) normal to S, NT and SN T respectively. We have
|k(z3®, 3" YH (Se,a N'T) — k(zr, vr)HY (S NT)|
< k(@5%, v8%) [H (Sea NT) — HH(S N T)| + [k(22®, v5*) — bz, vr)| HH(S NT)
< K2 [HY(Se,a NT) — HY(S N T)| + w(lz® — zr|)H (S N T) + Ks|vg® — vrHH (SN T),

where K> is defined in (8.4). We are now ready to conclude: in fact, following [75, Lemma 5.2.2],
we can choose the orientation of v3* in such a way that

W —vr[HY(SNT) < Daa,  [H!(SeeNT) = H(SNT)| < Diae,

with D;, Do > 0 independent of T, g,a. Then, summing up the preceding inequalities, recalling

that the number of triangles of R, intersecting S is less than ée~*H*(S) for ¢ small enough, with
¢ independent of S and ¢ (see for example [59, Lemma 2.5]), we obtain

limsup [£°(5e,) ~ £°(S)| < p(a)H'(S),

where p(a) = &(K2D; + K3D3)a. In view of (8.4), we conclude that
limsup |£°(S;,a) — £°(S)| < K7 p(a)E°(S),
e—0

and so the proof is concluded choosing n(a) == K; 'p(a). O
For all u € GSBVP(;R?) and for all g € WHP(;R?) N L4(;R?), let us set
(8.28) §9(u) = S(u)U{z € 8pQ : u(z) # g(x)},

where the inequality is intended in the sense of traces. We are now in a position to state the
piecewise affine transfer of jump proposition in our setting.

Proposition 8.2.2. Let a €0, -;—[, ond for alli=1,...,m let
ui € A (4R?), o € GSBVP(4R?)

be such that ) )
up — ut weakly in G’SBV:}’(Q;Rz).

Let moreover gi, he € AF.(Q), g',h € WHP(Q;R?) N LY(Q;R?) be such that
ge—9g, he—h strongly in WP (Q;R?) n LY(Q; R?).
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Then for every v € GSBVP (Q;R?) with S(v) Cp, there exists ve € AZ, (S R?) such that
Ve — Vv strongly in LP(Q; M2%2),

Ve — v strongly in LI(S; R?),
and such thaot

i=1 =1

= (She ONE (”D> = He (S"@) \Us <‘ui)> ,

where p(a) depends only on a, p(a) — 1 as a — 0, and E° is defined in (8.3). In particular for
allt € [0,T] and for all t. — t we have

E(te)(ve) — E°(1)(v),

where E® is defined in (8.21).

The proof of Proposition 8.2.2 can be obtained from that of Proposition 7.4.1, where the same
result is proved in the scalar valued setting of SBV functions with

E(t)(v) = ||Vo|? and £%(T) =HN(T),

taking into account the following modifications. We can consider v scalar valued since vector
valued maps can be easily dealt componentwise. Even if the surface energy is of the form (8.3), by
using the density result of [40] we can still restrict ourselves to the case in which v has piecewise
linear jumps outside a suitable open set U such that o

Ul<o and H! (U Sg‘(u")\U) <o,
izl
where o is an arbitrarily small constant. In order to approximate the piecewise linear jumps, we
use Lemma 8.2.1. Finally, we are not assuming p = 2, and this prevents us from considering the
plecewise jumps as union of disjoint segments: we overcome this difficulty choosing v = 0 in the

regular triangles which contain the intersection points, and then interpolating v outside as in [59,
Proposition 5.1].

8.3 Preexisting cracks and their approximation

In Section 8.5, we will need to approximate the surface energy of a given preexisting crack I'0. We
take the initial crack in the class
(8.29) T(Q) :={rC0p : HYT) < 400, T = §(2)

for some h € WP(Q; R*) N L9(Q;R?) and z € GSBV;}’(Q;]Rz)}.

Notice that it is not restrictive to assume h = 0. We take as discretization of T'(2) the following
class

(8.30) Teo() :={T COp : H}(I') < +00, T = 5°(2) for some z € AZ,(Q;R?)}.

We have the following approximation result.

Proposition 8.3.1. LetT° € I'(Q). Then for everye > 0 and a €0, 5[ there ezists T2 , € T'¢ o(Q)
such that
lim £%(,) = £5(I7),

g,a—0
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where £° is defined in (8.3).
Moreover let g. € AF.(Q), g € WHP(; R?) N LI(Q; R?) be such that ase — 0

ge — g strongly in WHP(Q; R?) N LY(Q; R?),
and let us consider

o) = | S OO +E (S2W\IL) i ve AT, (UR),
e = Lo : otherwise in L*(Q;R2),

and

Flo) = [SOE) +E (SN\T®)  #ve GSBVP (R, S(v) € 0s,
v) = +oo otherwise in L'(}; R?),

where E® is defined in (8.21). Then the family (F.,) I'-converges to F' in the strong topology of
LY R?) ase — 0 and a — 0.

Proof.. Let us consider I'0 € T'(Q2) with T = 5%(z) for some z € G'SBV;JP(Q;RZ). Then by
Proposition 8.2.2 for every £ > 0 and a € (0, %), there exists Z; o € Ag,q(S2) such that fore — 0
and for all a
VZeo — Vz strongly in LP(Q2; szz),
Zeo— 2z . strongly in Lq(Q;]Rz),

and
lim 15Up E5(5%(2,0)) < (a)E5(S°(2))

with p(a) — 1 as a — 0, where 8” is defined in (8.3). Let a; \, 0, and let &; \, 0 be such that for
alle < g
£5(5%(%e,a)) < M(az)gs(so(z)) +as,

and
v IV Ze,0, — vz”Ll’(S‘t;M2><=’) < aj, 2e,a: — z”L"(Q;W) <o
Setting
) Zen eir1 <e<e, aLa;,
Zea Ty , .
Zea;, Ei+1<ESE, gg<afaj1,j<,

we have that
hm V2eo=Vz strongly in LP(; M?%2),

£,a0-+0

lim 2., =2 strongly in L9(Q;R?),

£,a—0

and
hmsupEs(SO(zs a)) < E°(S°(2)).

Ell—‘

Since by Theorem 8.1.2 we have £9(S%(z.,0)) < liminf, 40 £9(5%(2¢,q)), We conclude that
Jim £5(5%(z.)) = £°(°(2)

Let us set for every €,a
Y, = 5%za).
We have that
lim ES(I‘ 2) = E3(T0).

Eﬂ,—!

Let us come to the second part of the proof. Let us consider (gn, a,)nen such that g, — 0 and
an — 0. If we prove that (Fy., 4, )nen I-converges to F' in the strong topology of L*(€;R?), the
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proposition is proved since the sequence is arbitrary. Since we can reason up to subsequences, it

is not restrictive to assume a, ™\, 0. _
Let us start with the I-limsup inequality considering v € GSBVP(;R?), with S(v) C Q5.
For any n fixed, by Proposition 8.2.2 there exists @ o, € Aga,, (€; R?) such that fore — 0

Vie,a, — VU strongly in LP(Q; M2%2),
Ug,g, — ¥ strongly in L9(Q;R2),

and such that

imsup £2(S% (9e,0,) \ T2,.) < p(an)E*(5% (v) \ I?)

e—0

with p(a) — 1 as a — 0. For every m € N let €™ be such that for all e < e™

E2(8% (Be,am) \ T2.0,0) < 1(am)E% (57 (v) \ T°) + am,
and

Ve a, — Vol Lo(mrxzy < am, 19,0, — vllzo(r2) < G-

We can assume €™ \, 0. Setting

v N epnam E™MP<en <™, n2>m,
En,Q - -
e Venan EMTI<ER, <™, n<m,

we have that ‘
Em Ve, o, = Vo strongly in LP(2; M2%2),
W . ! N !

limv,, 4, =v strongly in LI(Q;R?),
n

and '
limsup £°(8% (ve,,a,) \ Tg,0) < £5(87(w) \ T°).

Then we get
Limsup Fe, o, (Veq en) < limsup £2(0)(ve, a,) + Iimsup £°(S%n (vz,0,) \TY, 4,)
n n n
< E(0)(w) +E£°(S7(v) \I°) = F(v),

so that the I-limsup inequality holds.

Let us come to the I-liminf inequality. Let v,,v € L*(€2;R?) be such that v, — v strongly
in L'(Q; R?) and liminf, F;, 4, (va) < +oo. By Theorem 8.1.2, we have v € GSBVP({;R?) with
S(v) CQp and

b 0)(w) < Jim inf EL(0) ().

Let us consider Qp polygonal such that p N Q = @, and 80p NOQ = Hp§ up to a finite number

of points, and let us set
Q =0UpuUdp.

Let us extend g, and g to WHP(Q¥;R2) N LY(SY;R?) in such a way that g., — g strongly in
WLP(QV; R?) N LI(Q'; R?), and let us also extend vn,v to ' setting v, = g, and v = g on Qp.
We indicate these extensions with w, and w respectively. Notice that wn,w € GSBV} (4 R?),
and that §9%-~ (v,) = S(w,) and §% (v) = S(w). Let us also set 2, o, = z = 0 on Qp, where z_ 4,
and z are such that T2 , = 5%z, q,) and I = S°(z). We indicate these extension by (., a,
and ( respectively: we have (c,.0,,{ € GSBVP(;R?) and I? , = 5((, q,) and T = S(¢).
Then for every n > 0 we have by Theorem 8.1.2

£5(S(w + 1)) < limint £2(S(wn + 1Ge, 00).
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Since for a.e. 7 > 0 we have S(w +n¢) = S(w) U S(¢) and S(wn + 1, ,0,.) = S(wn) U S(Ce..a0)s
we deduce that
£°(89(v) UT®) < liminf £(5%n (v) UT, q,)-

Since by assumption £5(T'2 , ) — £°(I'°), we conclude that

£°(5%(v) \ I°) < liminf £2(5% (v,) \ T

onsan):
‘We deduce that
E2(0)(v) + £°(8(v) \T°) < lim inf [£°(0)(vn) + £°(5% (v) \ T2, ,)]

that is
Fv) < lin}linf Fy.. 0. (vn).

The T'-liminf inequality holds, and so the proof is concluded. [

8.4 The discontinuous finite element approximation

In this section we construct a discrete approximation of the quasistatic evolution of brittle cracks
proposed in [44] and described in the Preliminaries: the dlscretlzatlon is done both in space and
time. Let us consider

g: € WHH((0, T WHP( R?) N LULR?),  g:(2) € AF(Q) for all ¢ € [0,T],

where AF.(f) is defined in (8.24). Let & > 0, and let Ns be the largest integer such that
6(Ns—1) < T; weset 8 :=id for 0 < i < N5 — 1, t, := T and g0 := g.(t{). Let I'? € I, 4(Q)
be a preexisting crack in €, where I'; () is defined in (8.30).

Proposition 8.4.1. Lete > 0, a €]0,1[ and 6 > 0 be fized. Then for alli=0,..., N5 there exists
udi € AB (4 R?) such that, setting

I"g:fl =Ty U g% (us )

w0
we have for all v € AB, (2 R?)

(8:31) £2(0)(ud2) + £° (59° (uB9)\ T°) < £2(0)(w) + £° (87" (0) \T?) ,

and for 1< i< N

(8.32) £0(29)(uli) + £° (895" (ubi) \TEi) < () (v) + £° (878" (v) \ T27) .

Proof. Let u&% be a minimum of the following problem

(8.33) £2(0)(u) + £5(59° (u) \ro)} .

min {
u€AB , (4R?)

We set I'%0 :=T0U Sgg'o( '0). Recursively, supposing to have constructed ul%~! and I'éi-1, let
ud? be a minimum for

(8.34) {gb(té () + E5(S5E (u) \ T 1—1)}

ue.AEBa(Q R2)
We set I‘g:fl = I‘g:f;l U Sgg'i(ug:fl). It is clear by construction that (8.31) and (8.32) hold.
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Let us prove that problem (8.34) admits a solution, problem (8.33) being similar. Let (un)nen
be a minimizing sequence for problem (8.34): since g&* is an admissible test function, we deduce
that for n large

EV () (un) + £° (59" (un) \TZE™) < E2(20)(92%) + 1.

By the lower estimate on the elastic energy (8.22), we deduce that for n large
(835)  of (IVunll+ Junlg) + £ (59 (un) \TET) < £5)(08%) + 1+ 5.

Up to a subsequence, we have that the adaptive vertices 2> converge to some adaptive vertices
2%, and also the values of the deformation u, at every vertex are converging. In the end we find
interpolating these values an admissible deformation u € .Afa(ﬂ; R?). Since the functional in the
minimization problem (8.34) is lower semicontinuous with respect to the position of the vertices
and the values of the deformation, we conclude that v is a minimum point for the problem. [

The following estimate on the total energy is essential in order to study the asymptotic behavior
of the discrete evolution as § — 0, £ — 0 and a — 0. Let us set ug, §(t) = u‘s iforalltf <t< tz+1
andi=0,...,N5—1, um(T)-—u‘SNf.

Proposxtlon 8.4.2. For all 0 < j <1i < N;s we have

(8.36) E(t])(ult, Tee) < () (wdd, THL) + / (@W(Vul 4(7), Ve(r)) dr

.7
I3 8

- [ Foaryar - [ @FnaEa ), g ar
t8 ‘tj

it 8
- [ 60damar - [ O6maLarh e dr +eL,

where eg,a — 0 as § — 0 uniformly in € and a.

61—

Proof. By the minimality property (8.32), comparing u% with udit — g&i=1 4+ g8 we get

(8.37) W(Vuldi) — F(td)(uli) — G(tf) (uli) + £5(5% (ubi) \ TL,)
< WO - Vgé“ by VgE) - F) b — g8 4 o)
(té)(uth -1 gb',z‘—l +gg,i).
‘We have

(8:38) W(Vuge™ — Vg2~ + Vglt) = (Vuiszl)
+ (BW( 61.— 1961 l(vgg,i 6 1.-—1)) Vg vg6 ,i—1 )

— (V) + /  (OWTUEa(r) + ), Vi) o

where 9571 €]0, 1] and vf (1) := 931 (Vgdi — Vgdi= 1) for all 7 € [tf_,, %[
Similarly we obtain
t&

(8.39) F()(li™ — g8 + g8 = FD @) + f (OF (1) (u2,a(7) -+ wea (7)), Ge (7)) dr,

i1

and

(8.40) G(t) (it — g8t 4 g8ty = g(¢f)(ubi ) + / (G () (Wl o (7) + 28 (7)), ge(T))dr,
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where wlo(r) = Mi(ght — g8i1), 21,(r) = vBi-1(gh% — g8+1) for all 7 € [t1,, 4], and
ASEL 81 o, 1.

Since by (8.12) we have for 7 € [tJ_;,#{]

i—1r %4

(OF (t2)(ul o(7) + W 4(7)), 8(7)) = (OF (T)(ul o (7) + wd 5 (7)), 4o (7))

= / (OF ()l o) + w8 o (7)), g () ds
we get by (8.15)

(8.41)  [(OF(8)(ul a(T) + wl o (7)), ge (7)) = (OF(T)(ud o (7) + w4 (7)), e (7))

< [T 1OFO @ (r) +ula (), gelr)] ds

iy .
< [ [T @laln) +ufaf™ + 67 ()] 1ga(r)l ds < 220

where

"

o : tf
130 = max (nu'“— FNGE g, o dst [, @f(s)ds).
) Y ti1

1<i<N;

Similarly we obtain
(8.42)

[(BG (1) (ul o(7) + 2L (1)), e (7)) = (BG(T) (Wl o () + 2L o (1)), Ge (T < V&5 Ilge(T)Ir 5025

where

1<i< N

i=1

49
Vo5 = max (Ilu‘;"1+u‘“"1(96’i Jl_l)llr,asnft s)ds+/ b (s )

From (8.37), taking into account (8.38), (8.39), (8.40), (8.41), (8.42), we have

(6.43) EGHETE) < EWE )W TE) 4 [ (OWITH o) +18, (), V() dr
. g
- [, FOtar = [ OFOa) + ) delr)) dr
tﬁ lt6
- [, 9= [ 0o+ e et

s

té i3
985 [ el dr+8® [ 13l psn

ti—l i1

195



Taking now 0 < j < ¢ < N, summing in (8.43) from tg to t¢, we obtain

t6
(8.44) £(t])(uge, Tel) < E(t7)(ued Tel) + / (OW(Vul o(r) + v 4 (7)), Ve (7)) dr
— /ai ﬁ(T)(ug,a(T)) dr — /; (6.7:(7')(712,“(7') —l-wg,a('r)),gs(f)) dr
£ 8
- /t ; G(r)(udo(m)) dr — /t ; (0G(7) (ul o (1) + 28 4(7)), e () dr

]

té 28
3, .
e / [1ge(7)llg dr +~5=° /té 196 () lros0 dr-
3 21

Setting
845) b= [ KOW(VUEL(r) +0ha(r), Vilr)) — (WP (), Vi
4 [ (0PI uhalr) + (), ) — (OF () o)
+ [ OO () + 28007 — (0GeE0 (4, 2 ] b

1
48 [ laetoadr+ 28 [ et lnawadr,

from (8.44) we formally obtain (8.36). Let us prove that eJ , — 0 as 6 — 0 uniformly in € and a.
By (8.32), comparing ug;fl with g%%, and taking into account (8.22), we get for ali i =1,..., N,
”V“ “p + ||u “q <0,

where 1
= p max, (EXE)(6E) + 5)
Since Qg is Lipschitz, there exists Kg > 0 depending only on p, ¢ such that
lullp.es < Ks(Vulpas + llullg,as)
for all u € WiP(Qg;R?) N L(Q5; R2). Taking into account (8.17), we obtain
luZillros0 < C”

for some C” independent of 6. Since g. € WH([0, T}; Wh2(Q; R?) N L(2; R?)), we obtain that
forall7€[0,T]as 6 — 0 R R2)).
'ug,a('r) -+ 0 strongly in LP((; M2x2)7

wg,u.(T) — 0 strongly in L7(;R?),
28 ,(1) — 0 strongly in L7 (85 R?).

Moreover 76 &% — 0 and "y‘s 5% — 0 as § — 0. Finally, by [44, Lemma 4.9], as § — 0 we have that
for all 7 € [0, T

HOW(Vuig o (1) + 02 ,4(7)), Viie(7)) — (BW (Vi 4(7)), Ve (T))] — 0,
HOF (1) (ud (1) + wl 4 (7)), Ge (7)) ~ (BF (T)(wl o (7)), G(T))] — O,
[OG () (g o (7) + 22,4 (7)), Ge (7)) = (BG(T)(ul 4 (7)), Ge(T))| — 0,

uniformly in £,a. By the Dominated Convergence Theorem, we conclude that eg, s—0asd—0
uniformly in € and a, and the proof is finished. O
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8.5 The approximation result

In this section we study the asymptotic behavior of the discrete evolution obtained in Section 8.4.
Let us consider a given initial crack I'® € I'(£2) where I'(f2) is defined as in (8.29), and a boundary
deformation g € Wh([0, T, Wh?(Q; R?) N LY R?)). Let T2, € T o(S2) be an approximation
of I'? in the sense of Proposition 8.3.1, and let us consider

9e € WHH([0, T}, WHP(;R?) N LY(Q; R?)),

such that
g:(t) € AF.(Q) for all t € [0, T,

and such that fore — 0
ge — ¢ strongly in WH([0, T], WhP(Q; R?) N L9(Q; R%)).

Let ) )
{(ug::urg’,:z)a i=0,... ,NE}

be the discrete evolution relative to the initial crack I‘g’a and boundary data g. given by Proposition
8.4.1. We make the following piecewise constant interpolation in time:

(8.46) ug,a(t) = ugjz, Pg,a () = Fg:fu gg(t) = ge(tg) for tg St< t?+17

i=0,...,N5 =1, and ul ,(T) == ul)", T% o(T) = T2, g2(T) := ge(T).
By Proposition 8.4.2, for all v € AZ,(Q; R?) we have

£4(0)(u2,1(0)) +£° (89 (uf 1(0)) \ T2, ) < E2(0)(v) + £° ($%O )\ TL, ) ,
and for all ¢ € [t,{,,[ and for all v € AZ, (2 R?)
(8.47) E D) o) < E D)) +&° (SED W) \TL (1)) -

Here £° and £° are defined in (8.21) and (8.3) respectively. Finally for all 0 < s <t <1 we have
£
(848)  E(t])(ula(t),T24(t)) SE(s])(ul o(5), TEa(s)) + / , (OW(Vul o(7)), V() dr
8¢
3 tZ?
- [ FO ety - [ OFO@E), g dr
Sj Sj

e ¢
= [ S et - [ 06w ar)) ) dr + €

where 335 <s<sland#) <t<tl, e, is defined as in (8.45), and £()(v,T) is as in (8.20).
Recall that eg,a — 0 as 6 — 0 uniformly in ¢, a.

Comparing uf ,(¢) with gé(t) by (8.47), and in view of (8.9), (8.13), (8.14), (8.18), (8.19),
(8.31) and (8.4), by (8.48) with s = 0 we deduce that there exists C’ €]0, +oo[ such that for all ¢,
é,cand a

(8.49) IVl o @)llp + llud o @)l +H (L) < C'.

By the time dependence of £°(-, ), in view of (8.49), by (8.47) and (8.48) we have that there exists
ol , — 0 as 6,6 — 0 uniformly in a such that for all ¢ € [0,T] and for all v € AZ,($;R?)

(8.50) EX(8)(ul o)) < X)) +E° (SO W)\ TE,(8)) + .
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andforall0<s<t<T
851 a0 Thalt) SEOWa(6) Toule) + [ OWTVa o), Vil dr
- [ Fotam - [[ermdamsyar
-/ G (ud o)) - / (00(r) (0 o (7)), 66() dr + o
Inequality (8.49) gives a natural precompactness of (“g,a(t)) in GSBV;;’ (Q;]R2). The main
result of the chapter is the following.

Theorem 8.5.1. Let § > 0, £ > 0, a €]0, 1], and let {t — %ug,a(t),I‘g,a(t)) : 1 €1[0,T]} be the
discrete evolution given by (8.46) relative to the initial crack I'] , and the boundary data g.. Then
there exist a quasistatic evolution {t — (u(t),I'(t))} in the sense of Theorem 8.1.1 and sequences
6n — 0, &n = 0, an — 0, such that setting un(t) == ulr . (t) and Tn(t) := Tér (1), for all
t € [0,T] the following facts hold.

(a) For every t € [0,T], (un(t))nen is weakly precompact in GSBV} (;R?), and every accumu-
lation point @(t) is such that S9® (a(t)) CT'(2),

(8.52) EY(2)(a(t)) < E°(1)(v) +£° (7 (0) \ T(t))
Jor all v € GSBVP(Q;R?) with S(v) 0, and
EX()(un(t)) — E2(E)(a(t))-
Moreover there ezists a subsequence of (0, En,@n)nen (depending on t) such that

un(t) = u(t) weakly in GSBVP(Q;R?).

(b) For everyt € [0,T] we have
(8.53) E(8) (un (), Tn(t)) — £(@)(u(?), T (1));
more precisely elastic and surface energies converge separately, that is

(8.54) E2 () (un(t) — E2()(u(t)),  E°(Ta(t)) — E°(TE)).

For the proof of Theorem 8.5.1 we need two preliminary steps. First of all, we fix a and study
the asymptotic for 6, — 0 {Lemma 8.5.2), and then we let a -+ 0 using a diagonal argument
(Lemma 8.5.4).

Lemma 8.5.2. Let a be fized, t € [0,T), and let 6, — O and e, — 0. There emists To(t) €
R(Qp;OnQ) and a subsequence of (6n,en)nen (which we denote with the same symbol), such that
the following facts hold:

(a) if wn € AZ ,(Q;R?) is such that 59 ) () C Té» ,(t) and
Wy — W weakly in GSBV:IP(Q;RZ),
then we have

590 (w) CTa(t);
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(b) there exists p{a) with p(a) — 1 as a — 0 such that for every accumulation point u,(t) of
(ulr o ())nen for the weak convergence in GSBVF(Q;R?) and for all v € GSBVP(Q;R?)

with S(v) € Qp, we have

(8.55) E2(H)(ua(®)) < E°()(v) + p(@)€® (S99(v) \ Tut)) 5
moreover
(8.56) lim £°(2) (ull o (£)) = £°(8) (ua (£));

(c) we have
£°(Ta(t)) < lim inf £° (T ,(t)).

Proof. We now perform a variant of [44, Theorem 4.7]. Let (pr)ren € L*(Q;R?) be dense in
L*(Q;R?). For every gy, and for every m € N, let vy, (£) be a minimum of the problem

win{||Voll, + [lvllg +mllv — @kl : v € V5'),

where

V= {ve AE (4 R?), §9R () C TS (1))

Since by (8.49) we have Hl(ngya(t)) < (', by Theorem 1.1.3 there exists a subsequence of
(0n,En)nen (which we denote with the same symbol) such that 'u;:ﬁl(t) weakly converges to some
Vi (t) € GSBVP(R?) as n — +oo for all k,m € N. We set

(8.57) To(t) = | S7® (vf m(2)).

k,m
Let us see that I'y(¢) satisfies all the properties of the lemma. Clearly I'x(t) € R(Clp;On ) and
point (c) is a consequence of Theorem 1.1.3. In particular by (8.49) we have that
(8.58) HMTa(t) < C'.

Let us come to point (a). Let w, € AE ,(£2;R?) be such that 590 (wy,) C Ié . (t) and
wn, —=w  weakly in GSBVP(Q;R?).

We claim that there exists k,, — +oo such that
(8.59) vg, m(t) —w  weakly in GSBVP(Q;R?).

Then since SY® (v (1)) C T'o(t) for all m and in view of (8.58), we deduce that S9® (w) ST, (t).
Let us prove (8.59). Fixed m € N, let us choose kp, in such a way that

mlw = @k, [l = 0.
By minimality of v"®, (t) we have for all n
IVUg? s + g m Ollg +mllvg? 0 (8) = i lls < [ Vanlp + llwnllg + mllwn — k-
Passing to the limit in n, by lower semicontinuity we get for some C > 0

VU @lp + 10, Dl + M0, () — Pk [l < C + mljw — o, 1.

We deduce for m — +o0
1Yk i (8) = Pkl — 0,
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which together with ||k, — wil; — O implies that
Vie,,m(t) = W strongly in L'(Q;R?).
Since '
IV o + 1VE, m (B)llg < C+mflw — pr, |h < C+1

for m large, we have that v§_ ., (¢) — w weakly in GSBV;”(Q;RZ), and this proves (8.59).
Finally, let us come to point (b). Let v € GSBVP(Q;R?) with S(v) C QOp, and let us fix
ki,...,ks and my,...,m, in N. By Proposition 8.2.2, there exists v, € Afma(ﬂ;Rz) such that

lim £°(1) (un) = £°() 1)
and

limsup £° (S92 0) (up) \ T ,(8)) < limsup £°(SE D)\ |J  S(p5,))
k13 n

i<s, j<r

< p@E (ST O\ | S ),

i<s, j<r

where p(a) — 1 as @ — 0. Since the k;’s and the m;’s are arbitrary, we obtain that
(8.60) limsup £° (S95©(un) \ iz 4 (1)) < p(@)€* (S9O(v) \Ta(t))

Let us suppose that ufr (1) — u,(t) weakly in GSBVP(; R?) along a suitable subsequence which

we indicate by the same symbol. By the minimality property (8.50), comparing ug:’a (t) with v,
we get

(8.61) EY () (ulr o(1)) < EX()(wn) + £° (RO (0) \ T2 4(1)) + 0,
with o, — 0 as n — 4o00. Then we have
E9(t) (ua(t)) < liminf £°(t) (uln (1))
" < limsup (£°(8)(vn) + £° (S% D (w) \ Tz, (1) )
< £°(0)(v) + limsup £° (959 (u) \ Tz o (1)
< W) +u@)E* (SN Ta(t))

that is (8.55) holds. Choosing v = u,(t), passing to the limsup in (8.61), and taking into account
(8.60) we obtain that
limsup £2(8) (6 o(8)) < E2(t) (ua(t))-
n

Since by (8.55) £2(t)(uq(t)) is independent of the accumulation point u,(t), we conclude that
(8.56) holds. 0

Remark 8.5.3. Using Lemma 8.5.2, it is possible to construct an increasing family {t — T',(¢) :
t € [0,T]} and a subsequence of (&, en)nen such that points (a), (b) and (c) of Lemma 8.5.2 hold
for every t € {0,T]. This evolution {t — T'y(t) : ¢ € [0,T]} can be considered as an approximate
quasistatic evolution, in the sense that it satisfies irreversibility, but it satisfies static equilibrium
and nondissipativity up to a small error due to the fact that a is kept fixed. The presence of
u(a) in the minimality property (8.55) takes into account the anisotropy in the approximation of
the surface energy: in fact, since a is kept fixed, the adaptive edges of the triangulations 7; ,(£2)
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cannot recover all the possible directions. Notice that u{a) = 1+ Ca, where C depends only on
the coercivity constants of the surface energy and on the range of the angles ¥, < 9 < ¥; defining
the regular triangulations R.({?). Using the minimality property (8.55) and following [44, Lemma
7.1] (estimate from below of the total energy) we can obtain the nondissipativity condition up to
a small error, that is

E(t)(ua(t), Ta(?)) — £(0)(ua(0),T'a(0)) — /0 Ba(s) ds

< C sup ||lgt)llwrr(me)nLo@irz)a,
t€[0,T) .

where € is an explicit constant depending on the coercivity constants of the bulk and surface
energies and on the range of the angles of the regular triangulations R.(2), and 9, is defined as
in (8.23).

Using the arguments of Lemma 8.5.4, it can be proved that (uq(t),I'2(t)) approaches along a
suitable a, — 0 a quasistatic crack growth (u(t),I'(£)) providing in particular an approximation
of the bulk and surface energies at any time, i.e. for all ¢ € [0, T

E2(t) (e, (1) — E°(B)(u(t)) and E€°(Ta,(8)) — E°(T(E))-

However it seems difficult to obtain by this approach an explicit estimate for |£(¢)(ua,, (), Ta,, (£))—
E(t)(u(t), T ()| in term of ar,.

The construction of {t — Ty(t) : t € [0,T]} is the following. If D C [0,T] is countable
and dense, by Lemma 8.5.2 and using a diagonalization argument, we can find a subsequence of
(6n,En)nen and an increasing family I'y(t) € R(Q5;0n8), t € D, such that points (a), (b) and (c)
hold for every t € D. Let us set for every ¢ € [0, T]

Ti(t) = [ Tals).

s>t,56€D

Clearly {t — T} (t) : t € [0, T]} is increasing, in the sense that I',(s) CTo(t) for all s < t. Asa
consequence, the set J of discontinuity points of H*(T' (2)) is at most countable. We can extract
a further subsequence of (ép,&x)nen such that I'y(¢) is determined also for all ¢ € J (notice that
To(t) ETH(E)). Forallt € [0, T)\(DUJ) we set T, (£) := T (t). We have that T'x(¢) € R(Qp;0nQ)
and {t — Ty(t) : t € [0,T]} is increasing.

For t € DU J, T'x(t) satisfies by construction points (a), (b) and (¢) of Lemma 8.5.2. Let us
consider the case t € [0,T]\ (DU J).

Concerning point (a), we have that 59 (w) ET'(s) for every s € DN [t, T}, so that passing to
the intersection we get S9®) (ug(t)) E T4 (2).

As for point (b), considering s € D N [0, [, for every v € GSBVP(;R?) with S(v) CQp, we
have that there exists v, € A2 ,(;R?) such that

Him £2(t)(vn) = £°(2) (v),
and
limsup £ (S99 (un) \ I 0(1)) < limsup £* (5929 va) \ i o (5))
< p(@)€® ($79(0) \Ta(s)) .
Then by minimality property (8.50) and passing to the limit in  we have
E()(u(t) < @) + p(@)E* (S7(v) \Ta(s) -

Letting s — ¢ we get that (8.55) holds. Reasoning as in Lemma 8.5.2, we get that also (8.56)
holds.
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Finally, coming to point (c), we have that for all s € DN [0, %]
liminf £5(T¢r 4 (1)) 2 liminf £5(T22 4(s)) = £°(Ta(s)),
so that letting s ' t, and recalling that ¢ is a continuity point for £° (I‘g:’a(-)), we obtain that the
lower semicontinuity holds.
‘We can now let a — 0.

Lemma 8.5.4. There ezist a map {t — I'(t) € R(Qp;0nN),t € [0,T]} and sequences 6, — 0,
en — 0, an, — 0 such that the following facts hold:

(o) TPCT()ET() forall0< s <t < T;
(b) for all t € [0, T, if wn € AZ (%4 R?) with 59 ®) () € Té . (t) is such that
Wy, — W weakly in GSBVE($; R?),

then we have
590 (w) ET(2);

(c) for all t € [0,T] and for every accumulation point u(t) of (ul" , (£))nen for the weak con-
vergence in GSBVP(Q; R?) and for all v € GSBVP(Q;R?) with S(v) C{lp, we have

(8.62) £@)(u(t) < EOm) + £ (S \Ta),
and | ' ‘
(8.63) EX(E)ult)) = lim EX(H) o, (1)

(d) for allt € [0,T] we have
(8.64) £°(D(t)) < liminf £°(TE , (2)).

Proof. Let us consider 6, — 0 and e, — 0. Given a €]0,3[ and t € [0,T}, let T4(t) be the
rectifiable set given by Lemma 8.5.2. Recall that by (8.57) we have

Pa(t) = U Sg(t) (’Ug,m (t))7
km

where vg ., (t) is the weak limit in GSBV (2;R?) along a suitable subsequence depending on a of

a minimum v,’:; (t) of the problem

(8.65) min{[| V|l + llollg + mllv — ¢elly = v € VAB)},

where (g )ren C L*(;R2) is dense in L1(Q2;R?) and
Vi) = v € AZ,(@R?), 54 O (v) C TS ().

Let an — 0, and let D := {t; : § € N} C [0,T) be countable and dense with 0 € D. Using a
diagonal argument, up to a subsequence of (8, £x)ren, We may suppose that for all ¢t € D and for
all

yian (t) = v (B) weakly in GSBVP(SY; R2).

k,m
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Moreover, we may assume that for all £ € D and for all n
Ehaan ) = g, (B) weakly in GSBV;”(Q;RZ)
with
EP(E)(ull o, (£)) — E°(t)(ua, (2))-

By Lemma 8.5.2, we have that u,_(t) satisfies the minimality property (8.55).
Up to a subsequence of (ay)nen, We may suppose that for all k,m and ¢ € D we have

(8.66) vpn, (8) = vem(t)  weakly in GSBVEF(;R?),
and
(8.67) Ug, (t) = u(t)  weakly in GSBVP(Q;R?).

For all t € D, let us set

(8.68) T(t) = | 8D (w,m(2))-

k,m

- By Proposition 8.2.2, in view of the minimality property (8.55) and taking into account that
#(an) — 1, we have that for all v € GSBVP(Q;R?) with S(v) C0p

(8.69) E4()(u(t)) < E2(B)(w) + £°(S* P (w) \T(t)),
and as a consequence, we obtain

E¥(t)(uan (2)) = E°(2) (u(2))-

‘We now perform the fcllowin‘g diagonal argument. Choose 8y, &p, in such a way that

[[v2%0 (t) — 0% (to) 11 + llulr? aq (t0) — aq (t0)ll2
+ |E8 (t0) (wer? o (t0)) — E2(t0)(ua (t0))] < 1.

Supposing to have constructed dy,,,&p,,, we choose 65, ,,En,,,, in such a way that forall k < n+1,
m < n+1 and for all £; with 1 <7< n+1 we have

hﬂ n 7L L3
g™ () — Ve (o)l + Hus;.nﬁ,am () — Uappa (E0)]n

I I s () = E2(8) s ()] € =7

Let us set &, := 0p, and e, = £p,, and let us prove that I'(t) defined in (8.68) satisfies the
properties of the Lemma. We have immediately that T'(t) € R(Qg; on Q).
Concerning point (d), notice that

rén, (1) = | 5% O@ment)),  T) = | $O (v m(t)),

m.k ok
and that for all k,m
Vpntn () = vgm(t)  weakly in GSBVP (% R?);
then (8.64) is a consequence of Theorem 1.1.3. In particular, by (8.49), we get that
(8.70) 'Hl(l"(t)) <c'.
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Let us come to point (b). Let w, € AZ ,(;R?) with 89en®) (w,,) C Té= , () be such that
Wy, = W weakly in GSBV;J”(Q;RZ).
For every m € N, let us choose &, in such a way that
milw — ¢k, L — 0.

By minimality of v;:;‘"““ (t) we have for all n

%0

Ve e @)llp + lvimm @llg + mllvesa ¢) = Gkl < [IVenlp + llwallg + mllws — g, -

km,m km,m

By construction. of hy,, and in view of (8.66), we have

() S vem(®)  weakly in GSBV (R,

km,m
Then passing to the limit in n, by lower semicontinuity we get for some C > 0
IV, m (Bl + [0k, (Bl g + Tel|VR i (8) — Prm [l < C + mlfjw — g ]}

‘We deduce for m — 400
vk ,m (8} = @k ll2 = O,

which together with ||@x,, — w|l1 — 0 implies that
Vpn,m(t) = w  strongly in L'(Q;R?).

Since
1Vk,m (Elp + VEmmBllg < C +mllw — @r, i S C+1

for m large, we have that
Vkgn,m (£) = w weakly in GSB%P(Q;Rz)_

Since S9®) vy, m(t)) € T'(2) for all m, and since H*(I'(t)) < C’, we deduce that S9¢) (w) ET(2).
Coming to point (¢), we have that (8.63) holds by construction. Moreover (8.62) holds in view
of (8.69) and by the fact that ulr , (¢) weakly converges in GSBVP(;R?) to u(t) defined in
(8.67).
In order to prove point (a), notice that if s < ¢ with s,¢ € D, we have for all k,m € N that

SR (wron (5) + g2n (8) — gl (6) C T 0, (6) € Tdn o, (8),
and
Ui ™ (8) + 927 (2) — 62 (s) = vem(s) +9(t) —9(s)  weakly in GSBVF(%R?),
where v;:fn(s) and Vk,m(9) are defined in (8.65) and (8.66). By point (b) we deduce that
590 (vkm (5) + gt} = 9(8)) = 5% (ve,m (5)) ET@).
Then by the definition of I‘(sj we get I'(s) CT'(¢). Finally, by the same argument, we deduce

T ET(s).
In order to deal with all ¢ € [0,T], we proceed as in Remark 8.5.3. For all ¢ € [0,T]\ D let us

set
THE) = [ T(s).

s>t,8€D

Clearly T (t) € R(Qp;0~) and satisfies point (a), so that the set J of discontinuity points of
H(T'*(-)) is at most countable. We can then extract a further subsequence of (6, &n, @n)nen such
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that I'(t) is determined also for all ¢ € J\ D (notice that I'(t) ETF(¢)). For all t € [0, T]\ (DU .J)
we set I'(t) == I'*(t). We have that I'(t) € R(Qp;0n) and that I'(2) satisfies point (a). Let us
see that I'(t) satisfies also points (b), (¢) and (d) also for t € [0, T\ (DU J).

Concerning point (b), for every accumulation point u(t) of (ug:,an (t))nen for the weak con-
vergence in GSBVP(Q;R?), by the first part of the proof, we have that 59® (u(t)) CT(s) for all
s € D with s > t, so that passing to the intersection, we get that S9®) (u(t)) CI'(2).

Let us come to point {c). Let

u;(t) = ug:j,anj (t) = u(t)  weakly in GSBVP(;R?)

along a subsequence n; , +oo. Let us set I'; := I‘i:; an, and g; = gg:j Up to a further
subsequence there exists s; € D with s; ¢, and such that setting u;(s;) := 'u,g:j, G (s5), we have
(8.71) lluj(s7) = u(sg)lls + 1€°(s5) (us (s7)) — E%(s)(uls1)) — 0.
We have that there exists u*(t) € GSBV} (§2; R?) such that up to a subsequence

u(s;) = u*(t)  weakly in GSBVP (% R?).
By the minimality property (8.62) of u(s;), for all v € GSBVP(;R?) with S(v) CQp, we have
that

E%(s5)(uls;)) < E%(s5) (0 — g(t) + g(s;)) + £5(STD () \ T(s;)).
Passing to the limit in j we have that for all v € GSBVP(;R?) with S(v) £ 05
(8.72) EX(t)(u* (1)) < E°(£)(v) + E5(S°P () \ T(2)).
As a consequence of the stability of this unilateral minimality property, it follows that
E%(s7)(uls;)) — E°(B)(w* (1))

By (8.71) we get
uj(s;) = u*(t)  weakly in GSBVP(Q;R?),

and

(8.73) E°(s5) (us(s5)) — E°(B)(w* (2)).

By (8.50), comparing u; () with u;(s;) — g;(s;) + g;(£), taking into account that
591 04) (uj(s;)) € Ty(s5) S T5(2),

we obtain
E°()(us (1)) < E(s7)(us(57)) + 05
where 0; — 0 as j — 4o0. Passing to the limit in § we have by (8.73)

EX()(u()) < lim inf E%(t)(us(t)) < limsup £°(2)(u;(t)) < E°(X)(w*(2))-
J
By (8.72) we deduce that (8.62) holds. Moreover we have that £%(¢)(u(t)) = £°(¢)(u*(t)) and that

EP(t)(u(t)) is independent of the accumulation point u(t). Then we deduce that (8.63) holds.
Finally, concerning point (d), we have that for all s € DN [0,¢]

lim inf £2(T% (1)) > liminf £2(CFr ,, (s) > £2((s)),

so that letting s /' ¢t we obtain (8.64). The proof is now complete. O
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‘We can now prove Theorem 8.5.1.

PROOF OF THEOREM 8.5.1. Let (6n,n,an)nen and {t — I'(t) € R(Qz;08Q),t € [0,T]} be
given by Lemma 8.5.4. For all t € [0, T, let us set

un(t) =uln o (t),  Tnt) =T o ().

Let us see that it is possible to choose an accumulation point u(t) € GSBVP (Q;R?) of (un(t))nen
such that {t — (u(t),T(t)) : t € [0,T]} is a quasistatic growth of brittle cracks in the sense of Dal
Maso-Francfort-Toader. Let us set

Fn(s) = (OW(Vun(s)), Ve, ()
— F(8)(un () — (8F(8)(un(5)), gen (5))
— G()(un(8)) = (8G(5)(wn ()}, de. (5))-

By growth conditions of W, F,G and by (8.49) we have that there exists % € L'(0,T) such that
Pn(s) < 1(s) for all n. Let us consider

9(s) == limsup ¥, (s).

By [44, Theorem 5.5 and Lemma 4.11], for every s € [0,T] there exists u(s) accumulation point
of (tn(8))nen for the weak convergence in'GSBVF(S2;R?) such that

B(s) := (BW(Vu(s)), Vg(s))
= F(s)(w(s)) — (OF(s)(u(s)) §(s))
o — G(s)(u(s)) — (8G(s)(u(s)), 4(s))-

Applying Fatou’s Lemma (in the limsup version) to (8.51) with s = 0, we have that
1
E(N(u(t),T'(¢)) < limsup £(0)(un(0), T2 (0)) + / ¥(s) ds.
n 0

By Proposition 8.3.1, we have that limsup,, £(0)(ur(0),T,(0)) = £(0)(x(0),T(0)), so that we get

E(®)(u(t), T(®)) < £(0)(u(0),T(0)) + / 9(s) ds.

Moreover, again by [44, Theorem 3.13],

EOO,TE) > EO)O.TO) + [ (),
so that
(8.74) E@)(u®),T(®) = cS'(O)(u(O},I‘(O))-i-/0 ¥(s) ds.

We deduce that {¢t — (u(t),I'(t)) : ¢t € [0,T)} is a quasistatic growth of brittle cracks: in fact
by Lemma 8.5.4 we get that I'(-) is increasing, and for t € [0,T] (u(t),['(t)) € AD(g(t)) and the
static equilibrium holds; moreover the nondissipativity condition is given by (8.74).

Let us see that points (a) and (b) of Theorem 8.5.1 holds. By (8.49), (un(t))nen is weakly
precompact in GSBV?(Q;R?) for all ¢ € [0,T]. Moreover by Lemma 8.5.4 every accumulation
point 4(t) of (un(t)}nen for the weak convergence in GSBVP(2; R?) is such that S9 ®(a(t)y C ()
and the minimality property (8.52) holds. Moreover we have

£8(t)(@(t)) = lim £°(2) (un(£)).
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Since £%(t)(@(t)) is independent of the particular accumulation point @(t), we have that point (a)
is proved.
Let us come to point (b). Taking into account (8.63) and (8.64), for all ¢ € [0, T] we have

E(t) < iminf E,(¢) < limsup E,(t) < E(0) + /t'ﬁ(s) ds = E(t),
n n 0

so that (8.53) holds. Moreover we deduce that separate convergence of elastic and surface energies
holds at any time, so that (8.54) is proved. The proof is now concluded. O

8.6 The strictly convex case

In this section we assume that the function Wz, £) is strictly convex in ¢ for a.e. = €  and that
the function F'(¢,z, z) is strictly convex in z for all ¢ € [0,T] and for a.e. z € £: as a consequence,
the elastic energy £°(t,v) is strictly convex in v for all ¢ € [0,T], and a stronger approximation
result is available.

Tllleorem_ 8.6.1. Lgt ge WL ([O,T], wir(Q;R%) N Lq(Q;R2)) and let
| ': g- e Wil ([0, T, WHP(; R%) n L”(Q;Rz)), 9:(t) € AF(QY) for allt € [0,T]
be :;s'uch that fore — 0
ge — g strongly in W2 ([0, T], WHP(Q; R%) N LI(Q; R?)).

LetTO € T'(2) be an initial crack and let Pg,a be its approzimation in the sense of Proposition
8. 3 1. Let us suppose that

(8 75) » W (z,-) 1s strictly conves for a.e. € Q,
F(t,z,-) is strictly convez for a.e. (t,z) € [0,T] x Q.

Given 6 > 0 e >0, a €0, let {t—> (ud (1), T8 . (t)) : t€[0,T]} be the piecewise constant
interpolation of the discrete evolutwn given by Pmposztwn 8.4.1 relative to the initial crack T
and the boundary data g.. Then there exists a quasistatic evolution {t — (u(t),T'(t)) : t€ [0, T]}
relative to the initial crackT? and the boundary data g in the sense of Theorem 8.1.1, and sequences
én — 0, en — 0, ap, — 0, such that setting

( ) = usﬂ,a,,l (t)) Tl(t) = FE,., an( )7
for all t € [0,T] the following facts hold:
(a) Vun(t) — Vu(t) strongly in LP(Q; M2%2) and un(t) — u(t) strongly in LI(Q;R?);

(b) E(t)un(t), Tnlt)) — E@)(u(?),I(t)), and in particular elastic and surface energies converge
separately, that is

E W) un(t) = EB@E),  E(Talt) — E(T)).

Proof. Let us consider the sequence (0n,€n,n)nen and the quasistatic growth of brittle cracks
{t = (u(t),T(t)) : t € [0,T]} given in Theorem 8.5.1. Under assumptions (8.75), we have that
u(t) is uniquely determined, because by (8.52) u(t) minimizes

min{€%(t)(v) : v € GSBVF(Q;R?), $°M(v) CT@)},
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and £°(t)(-) is strictly convex. We conclude by point {a) of Theorem 8.5.1 that un(t) — u(t)
weakly in GSBVP(Q;R?). Point (b) is a direct consequence of Theorem 8.5.1. By the convergence
of the elastic energy, we deduce that

lim / W (e, Vun(£)) de = / W (s, Vu(t)) dz,
n Q Q

lim / Flt,z, un(t)) do = / F(t, 2, u(t)) dz.
noJa . Q .

By the assumption on the strict convexity of W and F we deduce by |23]
Vun(t) = Vu(t)  strongly in LP(Q; M2%2),

and ‘
un(t) = u(t)  strongly in L9(Q;R?).

Point (a) is now proved, and the proof is concluded. ]
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