ISAS - INTERNATIONAL SCHOOL
| FOR ADVANCED STUDIES

Interplay between
surface in-plane ordering

and roughening

Thesis submitted for the degree of

“Doctor Philosophiz”

CANDIDATE SUPERVISORS

Giorgio Mazzeo Prof. Giancarlo Jug

Prof. Erio Tosatti

November 1992

TRIESTE







SISSA (st) ISAS

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI
INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

Interplay between
surface in-plane ordering

and roughening

Thesis submitted for the degree of

“Doctor Philosophiea”

CANDIDATE SUPERVISORS

Giorgio Mazzeo Prof. Giancarlo Jug

Prof. Erio Tosatti

November 1992






Index

Introduction

1. Surface phase transitions and surface scattering

1.1  The Solid on Solid description

1.2 Deconstruction of a (2 x 1) reconstructed surface

1.3 Roughening

1.3.1
1.3.2

The BCSOS model (and the six vertex model)

Step free energy and the equilibrium shape of crystals

1.4 Scattering

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

Scattering nomenclature

Atom and X-rays scattering

Coherent and incoherent scattering intensity
Scattering and order parameters

Scattering and critical exponents

Scattering from a rough surface

Other considerations about scattering

2.  Phenomenology of (110) surfaces

2.1 Reconstructed surfaces

2.1.1

Au(110)

10
13

18
18
21
24
28
30
33
34

37
37
37



11 INDEX

2.2

2.3

2.1.2  Pt(110)

2.1.3 Ir(110)
Uneconstructed surfaces
2.2.2 Ag(110)

2.2.2 Pb(110)

2.2.3 Cu(110)

2.2.4  Ni(110)

2.2.5 Other (110) surfaces

An overview on fcc(110) surfaces

Theoretical models

3.1
3.2

3.3
3.4
3.5
3.6
3.7

The preroughening transition

Scenarios for the reconstructed surfaces:

the Bernasconi analysis

3.2.1 The parity restoring transition

3.9.2 Experiments and scenarios for Au(110)
The model of Levi and Touzani

The models of Kohanoff, Jug and Tosatti

The models of Villain and Vilfan

The four-state clock step model of den Nijs

The strong chirality limit and the global phase diagram

The model and the method

4.1
4.2
4.3

A description of the model
Cround state considerations . . . . .

Energy parameters

43
46
47
47
48
49
51
52
52

57
57

62
64
65
67
69
71
76
79

87
87
88
90



4.4 The Monte Carlo algorithm .
4.5 The relevant quantities

4.6  Order parameters

The BCSOS model

5.1  The sublattice order parameter
5.2  Exacts results verified

5.3  The staggered fields susceptibility

5.4 The exponent w

Gold(110)
6.1 Deconstruction and roughening
6.2 Scattering intensities results

6.3 Discussion

Silver(110)

7.1 Sublattice disordering and roughening

7.2 Scattering intensities results
Conclusions

Appendix

Bibliography

Ringraziamenti

II1

95
96
98

102
104
107
110
111

120
120
123
125

142
142
146

161

166

172






Introduction

Clean single-crystal metal surfaces usually possess a well defined two dimensional
periodicity closely resembling the atomic ordering in the bulk. In some cases, how-
ever, the surface lattice reconstructs into a phase with a new symmetry: this can
occur spontaneously or it can be induced by small coverages of adsorbed atoms or
molecules. In this respect, the fcc (110) surfaces of noble and near-noble metals
belong to two different classes . The first class includes the lighter metals (Cu,
Ag, Ni, Pd), whose (110) surface remains unreconstructed when clean (although
a suitable coverage of alkali adatoms causes their reconstruction), but which are
expected to show a roughening transition. The second class includes the heavier
metals (Au, Pt, Ir). Of these, two reconstruct in the (2 x 1) missing-row phase
at low temperatures while for Ir the situation is more complex and even a (3x1)
reconstruction does not seem to properly represent its ground state and more
complex structures have been proposed. As the temperature is raised, excitations
start to disorder the ideally reconstructed (2 x 1) surface until a continuous de-
construction transition takes place, where (2 x 1) long-range order is lost. At still
higher temperatures a roughening transition is likely to occur, due to proliferation
of steps; hence the interplay between steps and other defects gives rise to a con-
nection between the two transitions which has been the subject of much recent
experimental and theoretical work.

Fcc metal surfaces like (100) and (111) generally show reconstructing features

at low temperatures but no roughening phase transition at high temperature, at

T By near-noble one means nearly filled d-band metals.
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least sufficiently below the melting point. More open surfaces like (113), (115),
(117) lose reconstruction but gain roughening. The rich phenomenology of (110)
surfaces is due to their position “n between” the two quoted examples, le. to
their nature of open surfaces showing reconstruction but also a roughening and,
eventually, a melting transition at higher temperatures. In addition, from the
statistical mechanics point of view, their sublattice structure and the interplay be-
tween different phase transitions open a wide variety of scenarios for the behaviour

of the correlation functions and the drawing of phase diagrams.

This thesis is intended to present a detailed theoretical study of some of the above
mentioned scenarios, both for the unreconstructed and for the reconstructed (110)
surfaces, by means of Monte Carlo simulations performed on a suitably chosen

Hamiltonian. It is organized as follows.

Chapter 1 is roughly divided in two parts. The first leads into the structural
and geometrical aspects of the surfaces examined in the thesis and introduces the
Solid-On-Solid (SOS) description appropriate for them, since the model adopted
for the study of the fcc (110) phenomenology belongs to the SOS class of Hamil-
tonians. A section is dedicated to the deconstruction transition (of the recon-
structed surfaces), with particular regards to its critical behaviour, and another to
the roughening transition. The latter, after some historical review, presents some
important results characterizing the transition, especially from the point of view
of the universal features shared by the various models thus far proposed. Amongst
them, a position of outstanding importance is attached to the BCSOS model, of
which a detailed description is given in connection with the six vertex model. The
section is concluded by some phenomenological argument about the vanishing of
the step free energy (and of the corresponding facet 1n the equilibrium crystal

shape) at the roughening transition.

The second part of the chapter is dedicated to scattering. It is in fact essen-
tial to introduce the main concepts concerning this important experimental tool,
since many investigations on surfaces are performed by means of scattering experi-
ments. An introductory section tries to clarify the sometimes confusing scattering
terminology, then the most relevant physical quantities, such as the scattering in-
tensities, are introduced and discussed both for atom and X-ray scattering (in the

kinematic approximation). Decomposition into coherent and incoherent scatter-



ing is presented in connection with critical behaviour near a second order surface
phase transition. Extraction of information about the physics of the surface un-
der consideration is finally implemented by the study of scattering from a rough
surface, since its features strongly differ both from those of an ordered surface and

from those of a randomly disordered one.

The aim of Chapter 2 is to offer a concise but comprehensive review of the
phenomenology of the (110) surfaces, both reconstructed and unreconstructed,
from the point of view of their low temperature symmetries and their thermal
phase transitions. Each section is devoted to a particular metal and a final section

tries to summarize the general most relevant features in an overview.

In Chapter 3 a review is presented of the most recent and relevant theoretical
models of the phase transitions which can occur on the fcc(110) surfaces: prerough-
ening on the unreconstructed surface, deconstruction for the reconstructed ones,
and roughening. The presence on the “hot” surface of many kinds of defects, from
vacancies and adatoms to bound or free arrays of steps, may lead to an intriguing
interplay between the various transitions which gives rise to the formulation of
different disordering scenarios. The main source is represented by the work by
Marcel den Nijs, starting from the idea of a preroughening transition on a model
for a simple cubic (100) surface, then evolving into the study of the connections
between deconstruction and roughening for (2 x 1) reconstructed fcc(110) surfaces.
On this second line, important contributions have been provided by the works of
Villain and Vilfan (and, very recently, of Balents and Kardar), all of these com-
prehensively reviewed in a “global” paper by Bernasconi, who presents some new
ideas and puts forward new possible scenarios; their detailed description will be

the main subject of Chapter 3.

In Chapter 4 the model from which all the new results of the thesis are drawn
is presented. Two different real systems, the (2 x 1) reconstructed surface of gold
and the (1 x 1) unreconstructed surface of silver, are chosen for investigation of
their low temperature symmetries and their high temperature critical behaviour,
while particular emphasis is given to the physical motivations underlying the struc-
ture of the model itself as well as to the choice of the energy parameters adopted
to describe what will be henceforth called “gold” and “silver” (110). Then, a short
account of the Monte Carlo algorithm set up in order to study the properties of

the chosen Hamiltonian is provided, together with a list of the relevant quanti-
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ties which have been examined for understanding the physics embodied by the
model. Particular stress is given to the definition and significance of surface order
parameters.

Chapter 5 is dedicated to the study of the roughening transition on the BCSOS
model. Tts aim is threefold. First, it can be seen as a check for the techniques
and, in general, for the global simulation procedure against an exactly solvable
model. Secondly, an important concept like that of sublattice order parameter is
introduced and studied in connection with known exact results. Lastly, a deeper
insight into a quantity which has remained hitherto unexplored, the staggered
susceptibility, is provided.

In Chapter 6 the results of the Monte Carlo simulation for Au(110) are pre-
sented. Evidence for a second order Ising-like phase transition and of a distinct
(separated in temperature) roughening transition is given, in accordance with the
most recent experimental results. Scattering calculations are able to reproduce
a temperature dependent shift in the half integer order peaks, a feature which
provides a deep insight into the nature of the flat but disordered phase between
the two transitions. A discussion follows where one of the scenarios proposed in
Chapter 3 for the two transitions is chosen and its nature and occurrence on the
simulated surface justified.

Chapter 7 provides results for the unreconstructed fcc(110) surface which
has been called “silver”. Data analysis runs parallel to that in the preceeding
Chapter, also form the point of view of the scattering calculation. For the first time
in a Monte Carlo simulation, a new transition, apart form roughening, is found
and characterized. It can be ascribed to the class of preroughening transitions
introduced (in Chapter 3) by theoretical analysis, though up to now no direct
experimental evidence has been clearly detected it on a real surface.

An Appendix shows the exact relations between order parameters and scat-
tering intensities, while the final section summarizes the situation of the fcc(110)

surfaces arisen from the present Monte Carlo simulations.



Chapter 1

Surface phase transitions and

surface scattering

The outermost layer of a (110) surface of an fcc crystal has an anisotropic structure
which can be described as made up of atomic rows a distance a apart in the [001]
direction (a being the fcc lattice parameter) and with the atoms separated by
the close-packing distance a/\/§ in the [110] direction of each row. It is useful to
superimpose on the surface a cartesian system of axis: from now on the x direction
will coincide with [001] and the y direction with [110], so that the surface atomic
spacings will result a, = a and a, = a/+/2 (fig. 1.1).

The surface of the heavier metals (Au, Pt) tends to increase its atomic den-
sity by means of formation of (111) microfacets and the resulting structure is a
more closely packed surface with lower surface energy than the (1 x 1), despite
the increase in microscopic surface area. The lowest order possibility of such mi-
crofaceting is the (2 x 1) reconstruction where every second row is missing. The
unit cell is doubled in the [001] direction, and the resulting surface structure is
thus made up by a sequence of local (111) facets which form a 35° angle with the
surface plane (fig. 1.2).

Apart from such reconstruction phenomena, real surfaces show other minor
relaxation effects like small lateral atomic displacements and inward relaxation of
the top layers with respect to an ideal, bulk-truncated structure. Such effects are
both experimentally observed and theoretically predicted. In the case of Au(110)
missing-row phase, for example, results from various diffraction experiments indi-

cate a contraction of the top interlayer spacing, together with distortions of the
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A [001]

[100]

Figure 1.1. The fcc lattice, cut so as to show the (110) surface, with the surface reference
system z—y—z, the atomic spacings and the two sublattices (black and white) which the
surface is made of.

inner layers including lateral displacements of the second layer atoms and a buck-
ling of the third atomic layer (see chapter 2 for details and references). These
relaxation of the atomic position from an ideal (2 x 1) structure are also confirmed
both by the first principles calculations of Ho and Bohnen (1:2] and by more em-
pirical many body approaches, such as the “glue model” of Ercolessi et al. 33,
Nonetheless, the model presented in this thesis is directed towards the understand-
ing of the different phase transitions shown by the fcc (110) surfaces rather than

of their detailed structural aspects; thus, it is chosen to be a Solid On Solid model.
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Figure 1.2. Ground state configuration for: (left) the unreconstructed surface; (right) the
2x1 missing row reconstructed surface.

1.1 The Solid On Solid description

In the microscopic description of a surface, a certain class of models are grouped
together under the Solid On Solid (SOS) designation, from a particular restriction
imposed on their Hamiltonians. First of all, the atoms are constrained to lie on
the sites of a rigid three dimensional lattice, moreover the further requirement is
imposed so that every atom (i.e. lattice occupied site) is directly above another
occupied site (thus excluding “overhangs” in the surface shape, as well as voids in
the solid phase or “bubbles” in the vapor phase). A SOS model can thus be thought
of as an array of interacting columns of variable integer heights. The surface
configuration is represented by the 2D array of integers specifying the number
of atoms in each column perpendicular to the chosen surface or, equivalently,
by the heights of the columns relative to a flat reference surface. Growth or
evaporation of the crystal involves just the “surface atoms” on the top of their
columns. In this way, an SOS Hamiltonian is expressed in terms of a set of integer
height variables {m;} defined at each site i of a two dimensional lattice, and the
surface energy is a function of the number of broken bonds due to the existence

of surface fluctuations. A wide variety of SOS models can be considered, in which
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Figure 1.3. The fcc(110) lattice viewed from above. The numbers refer to the height variables
associated to each site, in units of vertical lattice spacing a., with reference to a perfectly
ordered 2x1 missing row phase.

the interaction energy between neighbouring columns is some increasing function
V of their height difference, which is proportional to the number of broken bonds,

so that the Hamiltonian can be written as follows:

Hsos = }: V(m; —m;) (1.1)
(i<

where (i < j) means ¢ and j are nearest neighbour sites.

Specifying now to the case of interest, i.e. that of a fcc (110) surface, the SOS
description will be given in terms of a set of discrete column heights {h(R)} (see
fig. 1.3) defined on the sites R of a lattice made up of two interpenetrating plane
rectangular sublattices (which from now on will be called “black” and “white” sub-

lattices for convenience’s sake, as they are completely equivalent from the physical
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point of view). The height values A(R) may be written as A(R) = a,m(R), where
a; is the lattice spacing perpendicular to the surface, a, = a/2+/2, and m(R) are
integers, odd on the sites on one sublattice (say, the white one) and even on those
of the other (the black one), as required in addition by the geometry of the surface
itself.

This SOS description will be presented in more details in Chapter 4, but it
will prove immediately useful in Section 1.4, when scattering quantities will be
introduced and the main formulas for scattering intensities derived. It is now time
to talk about some of the surface phase transitions of interest in the present thesis:

deconstruction and roughening.

1.2 Deconstruction of a (2 x 1) reconstructed surface

At low temperature, a surface like Au or Pt (110) is ideally made up of an infinite
array of atoms arranged in the (2 x 1) reconstructed phase with no defects of any
kind. In reality, the long-range order is guaranteed by a succession of terraces of
the right symmetry but of finite extension, separated by finite steps and by closed
islands if not by other defects (dislocations, etc...).

When the temperature of the system is increased, the ordered in-plane struc-
ture starts to develop defects due to the excited states now made thermally avail-
able. Creation of vacancies and adatoms, of new steps, etc..., reduce the terrace
width and the increase in the amount of disorder present on the surface can be
monitored by looking at the thermal behaviour of some suitably defined order pa-
rameter. All these effects may be responsible, at a certain temperature Tp, for
a phase transition from the (2 x 1) symmetry to some other phase, called decon-
struction, the nature of which can be investigated through scattering experiments.
Scattering intensities are in fact directly related to thermodynamical quantities
(see Section 1.4.3), and the corresponding critical exponents which usually be-
come experimentally accessible are:

- B, related to the order parameter vanishing at the critical temperature as

P~ 1P (with t = | T2 );

- 77, related to the divergence of the susceptibility x of that order parameter
at Tp, x ~ t77;
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- v, related to the divergence of the correlation length ¢ of the system at I,
E~tr.

1.3 Roughening

While deconstruction is a phase transition which involves the surface in-plane
degrees of freedom, i.e. those related to the two dimensional symmetries and
ordering, roughening instead takes into account the off-plane degrees of freedom,

those related to the mean surface thickness.

Tn 1949 Burton and Cabreral®! first put forward the idea (further developed
in a now classic article by Burton, Cabrera and Frank (1) that a phase transi-
tion may occur in the equilibrium structure of crystal surfaces. They conjectured
that low index crystal faces in equilibrium with vapor, melt or solution, would
become rough above a certain transition temperature Tr: this can have important
consequences for the speed of growth and the equilibrium shape of the crystal.
The transition is characterized by the interface becoming infinitely “rough” in the
sense of a divergent interfacial width. The argument used by Burton, Cabrera and
Frank for the existence of such transition was partly based on a mapping of the
interface problem onto the 2D Ising model, which had just recently been solved
by Onsager(®] and which could lead to large fluctuations in the surface structure
at the critical temperature T2P. The idea is undoubtedly valid at low tempera-
tures, but breaks down near the transition temperature, when the interface tends
to delocalize before becoming infinite in width and any mapping onto a model
which takes into account only a finite number of atomic layers is no longer valid.
This failure ends up in a wrong prediction about the universality class to which a

correct roughening model should belong, which is not of the 2D Ising type.

Since 1949, a wealth of theoretical work (reviewed in ref. [9,10]) was produced,
especially after a certain class of models was introduced, imposing the SOS restric-
tion on the Hamiltonian. In this regard, one of the most important SOS models is
the Discrete Gaussian model (DG), first studied by Chui and Weeks (11 where the
building blocks lie on a square lattice, and the interaction energy between adjacent

columns is taken to be as the quadratic form (see eq. (1.1))
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Hpg =Y J(m; —m;)? (1.2)
i<j

The partition function of Hamiltonian (1.2) was rewritten, via a duality transfor-
mation, into the partition function of a neutralized 2D Coulomb gas, but with
the ratio J/T inverted. In this way the existence of a transition was established
between a smooth, low-temperature phase, and a rough, high- temperature one
and, which was placed in the Kosterlitz-Thouless universality class 1213, Different
forms of the interaction energy V will not change the universality class because
the roughening transition involves long-wavelength fluctuations in the position of
different parts of the interface, hence changes in the interaction energy between
columns that affect only short-wavelength properties should be irrelevant at the

roughening point [°].

It is now useful to present some of the results of the Renormalization Group
calculations for thermodynamical quantities near T [*9).

The singular part of the free energy is not analytic at TR, its form being

C
Fs ~ Bexp (——ﬁ) (1.3)

for T' in the neighbourhood of T (B and C are non-universal constants). The
singularity is a very weak one as all the derivatives of Fg with respect to T are
smooth functions of T vanishing at Tx. In particular, there is no specific heat
anomaly at Tg, in contrast with the Ising model: the transition is said to be of
infinite order.

The correlation length, which is the characteristic length for correlations be-
tween thermal excitations of the crystal surface, is finite well below Tr, while it

diverges at Tg like

0 A
ex e (), T<Ta (1.4)
00, T>Tg

with ¢ and 4 again non-universal constants.
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But the most striking result concerns the behaviour of the height-height cor-

relation function,
G(R) = ([h(R:) = A(Ro)]*) (1.5)

where R = |R; — Ry|, and the angular brackets denote an ensemble average in the
SOS system. This function gives a measure of the delocalization of the interface
due to fluctuations in height between different regions of the surface. Its full

expression is

G(R) = K(T)a% In {aﬁ <j{1—2- - ggﬂ B (1.6)

where a | and aj, respectively, are the lattice constants in the direction orthogonal
and parallel to the plane of the surface under consideration (where it is implicitly
assumed that a) is the same for different principal directions in this plane). ¢ is
the correlation length introduced in (1.4), hence for T' > Tr one hasé ' =0anda
logarithmic divergence of G(R). The coefficient K(T) is an increasing function of

temperature, whose behaviour is specifically predicted by Renormalization Group

calculations. At the roughening temperature, K (T) assumes the universal value

1

K(Tr) = = (1.7)
T
approached from above in the following way:
1 L
K(T)~ — + C[T —Tg]? LT — Tq (1.8)

T

[10]

where the power  is universal, but the constant C is not The correlation

2
function is clearly related to the fluctuations in height of a point of the interface

about its average value (h(Ro)), being

(8h2) = (h*(Ro)) — (A(R0))* = lim

G L) T 09)

so that
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o [E(T)In(é/ay), T<T
(8h7) ~ {K(T) In (L/a””), T > Ti (1.10)

thus saturating to a constant value for temperatures below Tx (smooth phase),
while logarithmically diverging with the size L of the system for 7' > Tx. This
delocalization of the interface is the concept more closely related to the statistical
mechanics idea of roughening. It should also be remarked that (1.6) and subse-
quent formulee should hold for anisotropic surfaces as well, at least in the limit of

large R.

1.3.1 The BCSOS model (and the six vertex model)

Another type of SOS model presenting a roughening transition and, moreover,
exactly solvable, is the BCSOS (Body Centered Solid-on-Solid) model introduced
by van Beijeren ' in 1977. The system under consideration is the (100) face of
a bcce crystal, in which both the atoms at the corner of the cube and those at
the center are taken into account. At T = 0, nearest neighbour columns differ by
one atom (one interlayer spacing) since half the columns terminate in the layer
directly below the outermost surface layer. The system is constrained such that
at all temperatures these nearest neighbour columns can differ by at most +1
interlayer spacing. Thus the higher-energy multiple jumps between neighbouring
columns are completely suppressed but, as argued before, this should have no
effect on the critical behaviour: the (and actually is) in the same universality class
as the other SOS models.

In practice, the system is composed of two standard SOS models defined on
two interpenetrating square sublattices, where on one of the sublattices the height
variables may assume only odd values (+1,%3,...) and on the other sublattice
only even values (0,42,%4,...). Also, the additional (and very relevant, as it will
be seen later) restriction is imposed that the height jumps between neighbouring
sites (belonging to different sublattices) may be just £1. Van Beijeren showed with
a simple argument that the allowed configurations in the BCSOS model can be
placed in exact correspondence with the vertex configurations of Lieb’s six vertex

model =17 which is the 2D version of the ice model, introduced by Pauling 1]
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Figure 1.4. The six vertices.

and Slater 1% in order to study the residual entropy of ice at 7' = 0, as well as the
ferroelectric phase transition. Hence the two models are isomorphic.

Van Beijeren’s construction proceeds by placing arrows across the bonds of
the dual lattice, fixing their direction in such a way that the higher of the two
neighbouring height variables always lies to the right of an the arrow (the arrow
lattice thus results rotated by 45° with respect to the surface lattice). It is easy
to see that at the sites of the dual lattice, where four arrows meet, just six of
the sixteen possible combinations of four arrows are realised. They are precisely
the vertices allowed by the six vertex model (shown in fig. 1.4), satisfying the so
called “ice rule” (at each node of the dual lattice two arrows point inwards and
two outwards) which is an immediate consequence of the uniqueness of the height
variables of the surface system. This also makes one-to-one the correspondence
between vertex configurations and BCSOS height configurations (up to an overall
vertical shift of the height variables, an arbitrariness which can be removed by

fixing the value of a simple height variable).

The six vertex model, which was exactly solved by Lieb and Wu (16] can be divided
into different classes according to the values of the energies ¢; assigned to each
vertex. If the system is invariant under arrow reversal, the energies satisfy €1 = €3,
€3 = €4 and €5 = €. The exact solution is available for general €1, €3 and €5, and

is given in terms of the quantity

a? + b2 — ¢2

A= a1
2ab (1.11)
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where a, b and ¢ are the Boltzmann factors associated with €1, €3 and €5 respec-
tively. This quantity has a great relevance in the analytic solution, because most
properties of the six vertex model do not depend on a, b and ¢ separately, but on
their combination A.

The BCSOS model corresponds to the six vertex model in its F version, that
is with 1 = €3 = ¢ > 0, e5 = 0. By energetically discouraging vertices 1 to 4
in favour of 5 and 6 one gets an antiferromagnetic long-range order for the low
temperature phase. The transition between this phase (with correlation length ¢
finite) to a high temperature one (with & = co ) is of infinite order, and occurs for
A = -1, that is when a+b = ¢, which means kg7 = e/1n2. In the BCSOS model
€ equals the interaction energy J between atoms in each sublattice (isotropic in the
x and y directions), while, as said before, interaction between the two sublattices
are taken of infinite strength, thus allowing just for a height difference of 1. As
shown by van Beijeren'*!, this model can be thought of as the limit of a lattice
gas model on a bec crystal lattice with strong nearest-neighbour interactions and

much weaker next-nearest- neighbour interactions.

From the physical point of view, the complete low T' antiferroelectric order
of the F model corresponds here to the presence of vertices 5 and 6 only, thus,
according to van Beijeren’s construction, to a flat surface (one sublattice, for ex-
ample, with all sites at height 1, the other all at 0). The rise in temperature is
accompanied by the appearance of excitations of all the other vertices, that is of

steps and adatoms on the surface, leading to the rough phase.

Being exactly solvable, all the properties of this Kosterlitz-Thouless phase
transition are known. All the Renormalization Group predictions discussed in the
preceeding section for the Discrete Gaussian model (which is in the same univer-
sality class as the BOSOS model), are confirmed, in particular the non-analytic
behaviour of the free energy at the transition temperature, and the resulting ab-
sence of a heat capacity peak at Tgr. However, a rounded anomaly is predicted to
occur below Tg, due to a rapid continuous change in the surface disorder. In fact,
roughening corresponds to an inverted XY model transition (i.e. with an inverted
ratio J/T'), where the appearance of defects which break short range order occurs
above the critical point; the specific heat thus shows a maximum not at Tr but
for T ~ 0.817%.

Further developments of van Beijeren’s idea are due to Jayaprakash and
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Saam [29=22 and by Trayanov et al. (23] who specialize to an anisotropic version
of the BOSOS model in order to account for the roughening of the (110) face of fcc
crystals. This model is again exactly solvable when mapped onto the six vertex
model. The details are left to Chapter 4, where the model presented in this thesis
is introduced and studied, since the initial underlying physical considerations are

the same for all these models.

1.3.2 Step free energy and the equilibrium shape of crystals

From the statistical point of view one can characterize the roughening transition
by the divergence of the height-height correlation function. From the phenomeno-
logical point of view one can characterize it through the disappearance of a cusp
in the so-called y-plot, microscopically corresponding to the vanishing of the step
free energy of the roughening surface.

The v-plot is nothing but the polar plot of v(#), i.e. the surface free energy
~ as a function of the surface orientation n. Since the crystal, at a fixed volume,
tends to achieve minimum total energy by suitably distorting its shape, there is a
clear relation between v(f1) and the equilibrium crystal shape, first mathematically
expressed by Wulff(24 in 1901 and completed by Herring (23] 50 years later. Wulff’s
construction permits to draw the equilibrium shape of the crystal starting from
the knowledge of its free energy, or to reconstruct the latter from measurements of
the former 2. In particular, cusps at certain orientations of the v-plot correspond

to facets in the crystal shape, i.e. regions with zero curvature.

In general, the surface of a crystal in equilibrium consists of these facets,
which are macroscopically flat and, at T' # 0, of rounded parts between them. The
facets are crystal faces in a smooth phase, Le. below their roughening temperature
and the rounded parts may be considered as constructed from infinitesimal pieces
of rough faces. So, if the temperature is raised through Tgr(n) (the roughening
temperature of a face of orientation n), the facet size shrinks to zero and the
orientation n becomes part of a rounded area. Therefore, for the relation between
the v-plot and crystal shape, the roughening transition can be characterized by

the disappearance of a cusp from the ~-plot.

If one wants to obtain an expression for the surface free energy v (or f) asa
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function of orientation from a simple model, one is lead to study a vicinal surface,
that is a surface under a tiny angle from a low index one. Adopting an SOS model
on a square lattice to describe the situation, one can build at 7' = 0 the vicinal
surface of orientation (p,0,1), with |p| < 1, by creating p straight steps per unit
length in the x direction on the (001) flat facet(!"]. At non zero temperature
the straight steps will develop kinks, and the terraces between them will develop
thermal excitations in form of small bumps (adatoms) and pits (vacancies). The

surface free energy of the surface per unit area is expressed as

F(p,0,1) = £(0,0,1) + F°(0)|p| + ... (1.12)

where f°(p) is the free energy associated to a step forming an angle @ with the
y direction per unit length and unit step height, and the dots stand for entropic
contributions (ignored because of no interest in what follows), and interaction
terms between steps (neglected in the limit |p| — 0 because of order p? or greater).

If £5(0) > 0, one sees from (1.12) that f(p,0,1) exhibits a cusp as a function
of pat p = 0. According to the preceeding discussion, this implies that the
equilibrium crystal shape exhibits a facet in the (001) direction; furthermore it
can be proved that the diameter of this facet in the y direction is proportional to
£°(0). More generally, f()cosp,Asinp,1) as a function of A exhibits a cusp at
A = 0 under a slope given by

of

5| = 1) (1.13)

But, since the roughening transition macroscopically corresponds to a facet in the
equilibrium crystal shape shrinking to zero at T, that is to the disappearance
of a cusp in the Wulff’s plot, one can conclude from (1.13) that the roughening
transition can be characterized microscopically by the vanishing of the step free
energy for steps on the facet that roughens up. Once this happens, steps of
arbitrary length will form spontaneously on this face, so that the height A(r)
of a chosen point on the interface will fluctuate more and more about its average
value, thus causing the divergence of the height-height correlation function, as
follows from the statistical mechanics definition of roughening of formule (1.5)-

(1.9).
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1.4 Scattering

The present discussion on scattering concepts will be restricted to the kinematic
approximation, where there is little difference amongst the various probes, in par-
ticular atoms and X-rays: each surface atom is considered as an individual scatter-
ing centre, hence LEED (Low Energy Electron Diffraction) and related techniques
will be excluded from this review since large multiple-scattering effects arise in

this case.

1.4.1 Scattering nomenclature

i

In the classical derivation of the diffraction pattern from a crystal lattice, it is
frequently assumed that the crystal is infinite in extent; the diffraction peaks are
then perfect § functions. When finite-size effects are included, the peaks are found
to be broadened by an amount inversely related to the dimension of the diffracting
region of the crystal and, in addition, a significant amount of intensity is always
scattered far away from the Bragg peaks and is spread right across the Brillouin
zone. The order of magnitude of this intensity is the same as that arising from a
single (crystalline) layer of atoms, and so diffraction experiments with monolayer
sensitivity (possible, e.g., by means of X-rays?l) are able to detect it.

A primitive parallelepiped crystal of dimensions N, N, and N, unit cells with
lattice parameters a,, ay and a. diffracts X-rays with an intensity proportional to

the square of the structure factor,

2
Ny

N N, ‘
lF(qx, qy,qz)l2 — Z Z Z el(Q:G:]z:+an.y]y+qza,z]Z) —

je=1jy=1j-=1

sin® (%quzaz) sin® (%Nyqya,y) sin® (
2 2

1
2
sin® (—;—qzax) sin (%qyay) sin (%qzaz)

When N, N, and N, are large, the function is sharply peaked at the Bragg
points where the intensity is (N,N,N)?. The three Laue conditions for this are
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9z0; = 27h, qya, = 2mk, g;a. = 2wl (h, k and [ integers), which define the
reciprocal lattice. If one of these conditions is relaxed, say on gq,, the intensity

tends in the limit of large N, to

2
’F (27\"]7,’ g-ﬂ-—k—:,qz> _ szN; 5111‘2 géinQzaz) .
az  ay sin® (1g.a.)
1
— NZN? as N, — oo for q,a, # 2nl (1.15)

Y 2sin? (%qzaz)

where the rapid oscillations of the numerator are averaged to  in the limit. Similar
results can be readily obtained by relaxing the conditions on g, or g,. Thus the
diffraction intensity of the finite-sized crystal has diffuse streaks connecting all the
Bragg points. The diffuse intensity far from the nodes is of order of magnitude
N* compared with N® at the nodes.

If one considers now a crystal with the fcc structure, bulk Bragg peaks can
always be labeled by means of the set of integers (h k), but keeping in mind that
due to the fcc symmetry, h &k must be of the the same parity. Peaks for which this
condition holds are called bulk permitted, ’they are called bulk forbidden otherwise.
The distinction has to be made with particular respect to scattering probes like
X-rays, which penetrate into the crystal and create a well known bulk diffraction
pattern onto which, eventually, a surface diffraction pattern is superimposed.

Scattering that is sharp in two directions and diffuse in the third must thus
arise from a crystalline object that is localized in one dimension and extended
in the other two, such as the surface of a semi-infinite crystal. The scattering
pattern of a surface differs from that of a bulk crystal in the sense that the Bragg
points transform into elongated rods in the g, direction, called crystal truncation
rods. The distinction between peaks and rods is now clear: a scattering peak is
labeled by means of the usual bulk Miller indices (kh k1), whereas a rod is instead
identified by two “surface” Miller indices (s k;), which form the two-dimensional
reciprocal lattice of the surface structure. The rod includes the whole range of
scattering intensities displayed as g, scans the interval 0 < g,a, < 27. Again, the
symmetry of the fcc (110) surface now plays an important role in the distinction
of the various rods.

Three different kinds of rods are in fact present (see figure 1.5)
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X'O'X'O
Oo)(oo.x

1 4 X.O.X.O

Figure 1.5. The fcc(110) lattice (left) with the usual unit cell (dashed) and the cell doubled
due to reconstruction (solid lines), and the corresponding reciprocal lattice (right). The points
denote intersection of the various rods with the Q- —@Qy phase. Open circles indicate principal
rods, crosses are superlattice and dots reconstruction rods.

(a) principal Tods, i.e. (hs k,) of the same parity, forming the reciprocal lattice of

the surface;

(b) superlattice tods, l.e. (hs k) with different parity, forming the reciprocal

lattice of one of the two sublattices characterizing the surface;

(c) reconstruction (or half-integer) rods, i.e. h, assuming half integer order values

for the doubling of the unit cell in the [001] direction due to reconstruction

(this last kind of course arises only for the reconstructed surfaces, and they

are always bulk-forbidden peaks).

The position of a certain peak along a given rod is identified by the value of

the momentum transfer perpendicular to the surface, ¢z, or p = ¢;a:, SO that

the connection between the bulk Miller indices of a peak and the surface ones is

expressed by the relation

ks+P

—ks+p (1.16)
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valid for an fcc (110) surface . From now on, expressions like “reconstruction
peaks” should be read as a short form for “peaks in a reconstruction rod”; in
addition, unless otherwise specified, every peak labeled by three indices is to be

considered as belonging to bulk notation, i.e. of the form (hEl).

1.4.2 Atom and X-rays scattering

In the corrugated hard wall model for atom-surface interaction and in the kine-
matic (or Kirchoff, or eikonal) approximation [28 the elastic scattering probability
per unit solid angle is proportional to what will be calléd from now on scattering

intensity, (scattering amplitude squared) that is to [2°]

2

IA(Q)QI:) = ZeiQ-Reiqzh(R)a(R> (117)
R

where:
- the subscript 4 stands for “atom scattering ”;
- Q and g¢. are the surface parallel and perpendicular momentum transfers,
respectively, with @, = %fha and Q, = %—;—rks in the rod notation;
- R runs over the surface atom positions in the plane;
- h(R) is the vertical position of the atom at R, measured with respect to an
arbitrary reference plane;
- a(R) is a shadowing factor depending on the heights of the nearest-neighbours
of the atom at R.
Formula (1.17) closely resembles the square of a surface structure factor except for
a(R), which is included because atoms surrounding a lower one make the latter
less visible to the probing atomic beam, whereas atoms surrounding a higher one
leave it very visible, thus a(R) is chosen to be larger or smaller than 1 for a very
exposed or poorly exposed surface atom respectively. A reasonable approximation

is [30]

o(R) =2 — n(R) (1.18)
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where n(R.) is the number of nearest-neighbours of atom R located to a level higher
than the atom itself. Since each (110) surface atom has 4 nearest-neighbours, this
form yields in the extreme situations the maximum value a(R) = 2 for a fully
isolated adatom, and zero for any “buried’ atom, including one below a surface
vacancy. It is clearly not exact, and vastly improvable. However, it does reflect
the main physics in a simple way, and is quite adequate for a qualitative analysis.
Notice that the actual intensity also contains a Debye-Waller factor, an atomic
form factor and other factors not relevant to the present discussion, hence omitted
in (1.17).

For X-rays scattering the situation is similar. It should be recalled, however, that
X-rays also penetrate into the bulk crystal and the overall effect on the surface is
obtained by performing the sums over all the crystal atomic positions including
an attenuation coefficient which mimics the decay in the X-ray intensity far from

the surface into the bulk. The corresponding formula for the intensity is thus

2

®)
Tx(Q,q.) = >, Y el ReitrehlzmhR] (1.19)

R z=—-o¢

where:
- the subscript X stands for “x rays”;
- the additional sum over z is over all the atoms lying below a surface atom at
position R;
- [ is the absorption coefficient which causes the decay of the amplitude as e h=
into the bulk starting form each surface atom at level h(R).
The formula holds for a crystal whose thickness is L., provided L7 < p<all,
so that that the sum over z can be pushed to —oco. The physical reason for the
attenuation is the X-ray absorption due to the excitation of photoelectric processes
with the crystal atoms. The order of magnitude of fiis fia, ~ 107%, a typical value
for a 10 KeV beam on Aul3l. It should be noted, however, that in experiments
performed under grazing conditions (i.e. with the beam at an angle near to 90°
with the surface normal) a different mechanism should be advocated, i.e. total

reflection, since the X-ray refraction index is less than 1 and the wave penetrating
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into the crystal is actually an evanescent wave. In this case the attenuation length
(~ 4~1) is very much shorter than in the previous case.

At this point it is worth noting that eq. (1.19), as (1.17), is a very general
expression valid for a real surface, i.e. including eventual lattice relaxation effects
of the kind mentioned at the beginning of this chapter. Such effects are absent, of
course, in a SOS description of the (110) surface, where the atoms are considered
nothing but geometric building bricks of a structure made up of a juxtaposition
of columns infinite in length in one direction (the bulk) but stopping at various
levels in the other so as to represent different surface configurations. In this case it
is possible to rewrite (1.19) by performing the sum in the vertical direction, since
z = a,n, h(R) = a.m(R), m(R) and n integers, so that taking into account the
parity of the values assumed by the height variables belonging to the two different

sublattices, and using the formula

m ipm

ipn _p(n—m) __ €
Z e e T ] —e—ip—p
one gets
. 2
Ix(Q,q.) = e!QReid: h(R) 1.20
\(Q q ) |1-—e"2(i1’+“)’2 ; ( )

where p = g.a., p = fia,. When p < 1, as it is in general the case, the prefactor

in front of the equation can be rewritten and approximated as
, 2
1- e_z(”’"'“)l = {(1 - e_z“)z + de ™2 sin? p] ~
~ [4(1—/L_r)sin2p+,uﬂ (1.21)
where pr is the intensity attenuation factor, ur = 2p (u in fact represents the
amplitude attenuation factor).

Before concluding this section, it is worth noting that the kinematic theory is

a powerful tool not only for atom but also for X-rays surface scattering: multiple
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scattering effects in fact, which would require the much more detailed treatment
of dynamical theory (32] | play a role only for the bulk-permitted peaks (33} thus can

be disregarded in the surface analysis of the present thesis.

1.4.3 Coherent and incoherent scattering intensity

It is now useful to express the intensity of a peak as a sum of two contributions:
the coherent scattering which is related to the amount of order present on the
surface, and the incoherent scattering, which is a measure of the fluctuations.

In order to carry out this distinction, it is necessary to rewrite (1.17), for

example (but the same would happen for the X-rays formula (1.20)), as follows

I;l(Q,qz) — Z eiQ.(Rl_R'Z)eiQZ[h(Rl)"‘h(RZ)]a(Rl)a*(Rz)‘ (1.22)
RlyRZ

Now three different decompositions are to be made, depending on the nature
(principal, superlattice or reconstruction) of the investigated peaks, by renaming

the position R of the surface atom (see fig. 1.5)
principal: R = X, where X runs over all the atoms;

superlattice: R = X +x, (k = 1,2), where X runs over all the positions of the
left corner atom of each cell, and the x,’s label the coordinates

of the atoms in the cell, i.e x; = 0% + 0y, X2 = X + 2Y;

reconstruction: R =X+x. (k=1,2,3,4), asin the case above, but X runs over
the positions, e.g, of the left corner atoms of each doubled unit
cell, due to reconstruction, while x; = 0x+0y, x2 = X+ %’y,

~ ~ 3 ~ Ay A
X3 = a,%X + 0§, x4 = =X + 5.

It is thus possible to substitute

SFR)— YD f(X %)
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where the summation symbol >y takes on different meanings and N = 0,2,4
respectively in each one of the three above mentioned cases (in this notation,
the sum over x, is absent for the principal peaks). In addition, to simplify the

formules, it is better to define

AX) = Z 'Y glt= MEAx0) (X Xe); (1.23)

I

in this way, eq. (1.22) reads

Ta= ) 44" (X,) =
X1,X2

=) XY A(X) AN (X - X) (1.24)
X X,

where in the second line of (1.24) X = X; — X,. At this point, apart from
normalization factors, a sum over X; can be considered as a spatial average over

sites and denoted by the symbol (--+), that is

Z(...) ). (1.25)

Xy

Il

The coherent intensity is defined as the quantity obtained from (1.24) by decou-
pling this average as |X| = |X; — X3| — oo, that is using the factorization

By replacing these two spatial averages into (1.24) and considering that the second

one is no more dependent on X, one gets

I_EOh _ (5Q,G Z eiQ-(x“—xng) [Z eiq:h(xl;ﬁl)a(Xl,lﬁl)}

K1,K2 X1

{Z itz h(Xa,k2) (Xz,l‘iz)} (1.27)

X2
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since, apart from normalization factors,

iXQ _ g :{1 if G=Gp (s, r) 1.28
ZX:G Q@G 0 otherwise ( )

that is the above Kronecker delta is 1 when Q belongs to the reciprocal lattice
associated with the X’s in the three different cases (P=principal, S=superlattice,
R=reconstruction). The eiQ'(x”l‘xW) phase factors are all 1 for principal peaks,

S0

2

ZCOh, P

A = 6qQ,ar (1.29)

Z eiqzh(X)a(X)

X

while they are +1 or —1 for the superlattice peaks, leading to

Io0S —sqa, 3 [eiqzh(xl,l)a(xl,l) e~ ia: MK (X 1)+
X1,X2

ein h(xlwl)a(Xl , 1) e—in h'(X212)a(X2 , 2)+
einh(X212)a(X2,2) e—iq:h(xl’l)a(X1’1)+

eiqz h(Xz,z)a(XZ’ 2) e"‘i‘]z h(X2,2)a(X2 , 2)} . (1_30)

In the case of reconstruction peaks, they can also assume complex values, i.e. they
will be 1,4, —1, —i. ’

The coherent scattering intensity thus arises from a decoupling of a spatial
average in the limit |X| — co. The incoherent part of the scattering, on the other
hand, arises from the difference between the total average, eq. (1.17), and the
above described asymptotic limit.

The procedure described above is correct on general grounds. A problem
arises when one has to calculate scattering intensities via a Monte Carlo (MC)
simulation procedure, as is done in this thesis. The relation between the spatial

average defined by eq. (1.25) and the MC average (---), which is an average on
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different configurations (taken at different MC “time” steps) of the same surface
(see Section 4.4), must be addressed.

In most cases, the correct choice is to define a thermodynamic quantity as a
function of the surface configuration, then take its MC average as, for example, for
the energy (eq. (4.11)) or the order parameters (eq. (4.18) — (4.20)). Nonetheless
their fluctuations (the specific heat, eq. (4.12), the susceptibility eq. (4.21) are
not MC averages of well defined quantities but are constructed from other MC
averages.

For the total scattering intensity the first choice is the right one (eq. (4.15),
(4.16)), but when one has to decouple averages as in eq. (1.26), two possibilities
arise. The first is to consider the MC average on the same ground as a spatial
average, since the MC procedure is intrinsically not a description of a dynamic
evolution of the system, but a study of its equilibrium properties through a great
number of replicas which should represent different finite samples of an “infinite”
system. The second is to take the MC average at the end of the decorrelation
procedure. The former way leads to substitute eq. ( 1.26) with

(AX) A (X1 = X)) = (AX))(4 (X, - X)) (1.31)

and, for example, eq. (1.29) with
2

Ijoh, P _ (I_jOh’ P> — 6Q,GP (132)

<Zeiqzh(x>a(X)>

X
). as

and similar formule hold for the other peaks. However, formula (1.33) is not

the right one on thermodynamical grounds, since it does not lead to the correct

Alternatively, within the latter, eq. (1.29) reads

Z ells h(X)a(X)

X

coh, P coh, P
IA. = (I.»L > = 5Q)GP <

relation between scattering intensities, order parameters and fluctuations (see the
following Section). Yet, formula (1.32) contains a feature which makes it unsuitable
for the Monte Carlo calculation. Differently from eq. (1.33), the MC average lies
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in fact inside the modulus and this makes it sensitive to the average surface width
h, that is to the k£ = 0 — capillary waves which originate on the surface. The
substitution A(X) — A(X)+ h, h integer, which is nothing but a global shift of the
surface by A and which should not influence the quantities defined on the surface
configuration, does not leave (1.32) invariant. This bad feature cannot be simply
cured by subtracting, for example, h to each h(X) value, since (1.32) would lose
all the periodicities in g, (see Section 1.4.7) which exist on physical grounds and
should be respected.

The choice made in the present thesis is to assign greater importance to the
thermodynamical point of view, and still use formula (1.32) as the correct one.
This implies that one must avoid calculating separately coherent and incoherent
intensities (due to the above mentioned problems), resorting instead to divide the
two contributions by a fitting procedure applied directly to the total intensity.

It is necessary now to show how formula (1.32) includes the right thermody-

namic relations: this is the subject of the next Section.

1.4.4 Scattering and order parameters

In this section it is shown that the coherent part of a scattering peak is proportional
to the square of a suitably defined order parameter. In addition, the incoherent
scattering intensity is proportional to the Fourier transform of the correlation
function of the order parameter. In particular, this relation will be shown for the
reconstruction peaks.

In every (2 x 1) unit cell, one can define a local order parameter P as follows:

4 4

P(X) = Pu(X) =) ¥ a(X,x4) (1.34)

r=1 k=1

where G are reconstruction points in the reciprocal space. The factor a can be
taken as the shadowing factor of eq. (1.18) (in this case a relation will arise between
the atom scattering reconstruction peaks and the Pyx1 order parameter defined
in eq. (4.18), see Appendix), or it can be chosen differently, for example ¢ = 1

for top row atoms, 0 otherwise. It is also possible to eliminate every shadowing
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effect by taking o = 1for all the atoms: different choices of a give rise to different
definitions of the local order parameter (1.34), and of the total scattering intensity
(1.17).

From the expression (1.24) of the scattering intensity and the definition of
the A(X) factors in eq. (1.23), one recognizes that P(X) and A(X) coincide for
g: = 0 and Q = G, and that (1.24), with ¢, = 0 and with the MC average, reads

Z iQX Z i(Q-G)( x“—xxz)@m(xl)p;z(xl — X)) (1.35)

K1,K2

with the convention (1.25), where the spatial average is an average over X;. De-
coupling now the spatial and configurational averages as prescribed in eq. (1.26),

one obtains

Icoh Z QX z H(Q— G) x,cl x,t2 <Pn1>< >
K1,K2 (1.36)
=éq,6|(P)|’

where P is the spatial average of P(X), and the same relation holds between P,
and P (X).
Moreover, one can write the order parameter as its spatial and configurational

average plus its fluctuations,

Pe(X) = (Ps) + §P(X) (1.37)

which can also be seen as a definition of §P.(X). Substituting relation (1.37) into
(1.35) and taking into account that, by definition, (6P.) =0, one gets

(T(Q)) — (T°H(Q)) =
ZeiQ.X Z ei(Q——G)(an“xnz) <57DM(X1)5P:2(X1 - X)> .
X

Ky,K2

(Iincoh ( Q))

Il

(1.38)
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But under the hypothesis of a translationally invariant system, the quantity under

brackets will result to be dependent only on X, thus eq. (1.38) becomes

<Iincoh(Q)> ~ NzeiQ-X Z ei(Q——G)-(Xm——X:u) <5’PNL(X) 5?:2(0)> (139)
X

K1,Kk2

since the spatial average is now trivial, and gives a factor of the order of AV, the

number of system sites. In the limit |Q — G| — 0, one deduces

(Timeon(Q)) ~ N Y RN E (5P(X) 6P7(0)) - (1.40)
, X

The right hand side of eq. (1.40) is the Fourier transform of the correlation function
of the fluctuations of the local order parameter P(X), connected to the suscepti-

bility x through the well-known fluctuation-dissipation theorem, namely
(T7MQ)) ~ N kT x(Q — G). (1.41)

This, together with (1.36), explains how the two contributions into which the
scattering intensity can be factorized, are related to relevant thermodynamical
quantities like the order parameter and its susceptibility. In the Appendix these
general relations are written in two particular cases, in connection with a particular

choice of the order parameters.

1.4.5 Scattering and critical exponents

In the preceeding Section it is shown as the coherent peak intensity is proportional
to the square of an order parameter suitably defined according to the surface
symmetry, while the incoherent part is proportional to its susceptibility. This
relation can be approximately rewritten by making the temperature dependence

of the various quantities explicit, that is

(Z(Q,T)) ~ C'(P(T)?6(Q - G) + C"x(Q - G, T) (1.42)
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Figure 1.6. Diffraction spot profile showing long range order below T and short range order
diffuse scattering above T¢ in terms of the Fourier transform of the sample pair correlation
critical exponents, convoluted with a Gaussian instrument response function IRF. From ref.

[34].

with C' and C" constants, eventually dependent on 7. The first term gives a delta
function which signals the reciprocal lattice vectors of a given surface symmetry,
with intensity dependent on the square of (P), the long range order parameter.
The upper bound imposed on long range order by the finite extension of the
ordered terraces actually broadens this delta function in a surface scattering peak
which can be accurately fitted by a Gaussian function B4 whose height is now
the quantity proportional to (P)2. This term is dominant for T < Tc, Tc being
the phase transition critical temperature, e.g. the deconstruction temperature ,
so that the critical exponent 3 can be determined after correcting for the Debye-
Waller factor temperature-dependence, since Z°" is expected to vanish at Tc
approaching zero as 2%, with ¢ = T_%g_c

As Tc is approached, fluctuations starts to appear and the peak profile can
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no longer be fitted by a gaussian alone. The second term, already present but
usually weak at T' < Tc¢, is the only one present at T' > T¢, and describes the
fuctuations at and near the critical temperature. For relatively small values of ¢
and momentum transfer k = |Q — G|, so that k is of the same order of magnitude
of 1/¢ (£ being the correlation length), this term may be approximated by a

Lorentzian of the form %]

x(q,T) = 1—%?,;5 (1.43)

with half width 1/¢ and height x(T'), where x(T) is the susceptibility associated
with the order parameter P (see fig. 1.6). In this way, a careful fitting of the
peak profile near Tc with a superimposition of a Gaussian and a Lorentzian leads
in principle to the determination of the other two critical exponents v and v.
In practice, however, surface imperfections and experimental resolution must be
taken into account, in order to obtain reliable data.

From the incoherent scattering one can extract other useful information on
the structure of the surface, for example the maximum of the incoherent part of
the reconstruction peak in Au and Pt(110) can be shifted from the Bragg point.
The shift reflects a global change of density of the top rows as that occurring for
example between (2 x 1) domains at the opposite sides of step. From the analysis
of sign and behaviour of the shift with temperature one can obtain information
on the type and concentration of defects, thus gaining insight into the disordering
process.

In order to conclude and clarify this section, it is worth noting that for a
finite system it is not strictly necessary to distinguish between the coherent and
incoherent parts for each value of Q, since, as the delta functions of the preceeding
section clearly indicate, the coherent contribution vanishes for all of the Q-values
compatible with quantization in a finite box, with the exclusion of the Bragg
wavevectors. Above T¢, there will be no coherent peak intensity; at Tc, the

coherent maximum merges into incoherent scattering.
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1.4.6 Scattering from a rough surface

The scattering peaks show a peculiar behaviour around the roughening transitions
temperature Tr. While the coherent part, as just noticed at the end of the previous
Section, merges into the incoherent part, this starts diverging when T' — Ty for
Q — G (the Bragg wavevectors), the divergence assuming a power-law form in
the neighbourhood of G. A detailed theoretical treatment of the scattering peaks
in this temperature region is provided, for example, by Villain et al. %], who
indeed describe a roughening process which refers to disordering of pre-existing
step lines on a vicinal surface, and by Trayanov et al. [2*/, who instead study the
creation of new steps on a (110) surface. They both agree in showing that for small
|K| = |Q — G|, only the long-distance correlations on the surface are important,
and that the logarithmic divergence of the height-height correlation function for
T > Tg leads to the incoherent intensity

(T, qz)

incoh 22 YKy T
g 1nco (K,qz;T) ~ Aasz -+ A (144)

where A is an anisotropy parameter. According to Trayanov et al., eq. (1.44) holds
only in the case of atom scattering for the principal peaks, since at the superlattice
(and, presumably, at the reconstruction) Bragg points the power-law divergence is
suppressed by interference between the shadowing factors of eq. (1.18). Nonethe-
less, this important divergence can be extended to X-rays scattering intensities,
since obviously the physics of the surface is the same, independently form the par-
ticular choice of the scattering probe. The exponent 7 is a function of temperature

and of perpendicular momentum transfer, its exact expression being

r(T,5) = K(T)p? (1.45)

where K(T') is the coeflicient in front of the height-height correlation function in
eq. (1.6) and § = q.a. — 27k, k integer and |p| < 7. For a Kosterlitz-Thouless
roughening transition, from (1.8), 7 turns out to be an increasing function of
~ temperature and assumes the value 1 exactly at the roughening temperature and

for p = 7, that is
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(Tr,m) =1. (1.46)

This result is commonly used by experimentalists to locate Tr from scattering
data, through a fitting of the power-law tails of the peak lineshape (see, e.g., ref.
[37], [38]); at the same time, the success of the fitting confirms the Kosterlitz-

Thouless nature of the roughening transition.

1.4.7 Other considerations about scattering

This subsection is not strictly related to the general considerations about scattering
done in the previous ones but more to some technical details about the calculation
of scattering quantities relevant in the successive chapters; its position is justified
here only for reasons of completeness.

The model which will be adopted for a description of the fce (110) surfaces
phenomenology is a SOS one, thus it is useful to specialize expression like eq. (1.17)
to this case. Assigning the subscripts B and W to the sites of the two equivalent
sublattices “black” and “white” which map out the surface, the positions of their

atoms may be given as follows (see fig. 1.5)

Ry = figaeX + Nyayy
) 1 ) N 1 .
RB = Ty + § ArX + TLy + "2' ayy (1.4:7)

with 7, 71, integers. The sum over R can be split into two sums over 7z and 7,
with i, = 0,1,--- N;—1landn, =0,1,--- N,—1, since for calculation purposes it is
necessary to stick to a finite surface composed of N' = 2N, N, atoms. Quantization
in a finite box also imposes some constraint on the range spanned by the possible

wavevectors Q, which can assume only the following discrete values

Q 2
z = Ty
Nga;
27
Qy = Ty, (1.48)
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Tz, Ny integers. No condition of the above kind is instead present on the values
of the perpendicular momentum transfer g, since periodicity is broken in the z
direction due to the presence of the surface itself. With this in mind, and rewriting
g:h(R) as pm(R), with m(R) integer (p = g:a., B(R) = a.m(R)), eq. (1.17)

becomes

(2 hy 12, n
Z‘A: E elNa:n”n”e Ny Tty My zpm(n:,ny) (nz;ny)+

Ny, Tiy

N S (FE+RE) ePm(natiin,+4), (nz + %,ﬁ,y + %) (1.49)

where m(#;,7,) stands for m(Ray), m(n, + 5,7y + 1) for m(Rp), and the same
holds for a. From (1.49) certain symmetries of the scattering intensity formula
now becomes apparent. First of all, it is periodic in #, and 7, with periodicity
respectively 2NV, and 2N, (or, equivalently, in Q, and Q. with periodicity 2”, z:)
This periodicity is somehow an artifact of the SOS model, i.e. of the fact that the
atoms are supposed to remain in their bulk positions. In this approximation,
the diffraction peaks (in bulk notation) (007) with half integer { should have
identical intensities, whereas the [ = 1 peak should have zero intensity in a (2 x 1)
reconstructed phase. In fact, as for example reported by Keane et al. [39] all of the
(0.060.06 1) peaks are observed in a X- ray scattering experiment, and the variation
in intensity between the [ = ,5 and 3 peaks are of the order of 30. Allowing the
top three layers of atoms to deviate from their bulk positions in the right directions
and by suitable displacements, the resultant structure predicts a set of intensities
which are in good agreement with the measured values of all reconstruction and

surface peaks.

Coming back to SOS scattering, in the z direction, due to the integer values
assumed by the height variables m(fy + %,ﬁy + %), a 2w periodicity in p results
too. In this way a complete scattering pattern should require a calculation of the

intensity in the parallelepiped
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0 <ng <2N,
0<ny <2N,
0<p<2m.

But not all the symmetries have been exploited as yet: in fact nothing changes in

(1.49) if the following transformations are performed:

(nz,my,p) = (=N, =Ny, —D) (1.50)
(nxanyap)“')(nmany+Ny7p+7r)- (151)

By applying transformation (1.51) one gets
(ng,ny,P) — (ng + Ng,ny + Ny, p) (1.52)

and if now the surface sample is square, that is Ny = Ny,

(nzvnyap) - (nyana::p) (1.53)

These symmetries permit to restrict the calculation to a more limited range of
the momentum transfer: for example, in the case n, = 0, instead of the interval
0 <ng < 2N, 0 < p < 2w, one can keep to the two intervals 0 < n, < N,
0<p<Fand0<n; < N, m<p< 3—275 Making use of (1.53) too, the square
0 <mng <2N;, 0 <ny <2N, (for whatever value of p), can shrink to the wedge
0<n; < Nz 0L ny <ng.



Chapter 2

Phenomenology of (110) surfaces

Low temperature structures, thermal disordering, deconstruction and roughening
transitions are presented in the following pages which review the main experimen-

tal aspects of the fcc (110) surfaces.

2.1 Reconstructed surfaces

2.1.1 Au(110)

In spite of the fact that probably Au(110) is so far one of the most studied sur-
faces from the point of view of its critical behaviour (it is in fact the “softest”
among the fcc(110) reconstructing surfaces, thus easily experimentally accessible
for its relatively low transition temperatures), the missing row nature of its (2 x 1)
low temperature reconstruction has been controversial for several years. In ad-
dition, only very recently a roughening transition has been revealed in the high
temperature deconstructed phase.

The (2 x 1) scattering patterns measured in the diffraction experiments of
the '70s - early '80s[*0*1] called in fact for a doubling of the unit cell in the
[001] direction, which could be accounted for by several structural models such
as, for example, the saw-tooth model proposed by Bonzel and Ferrer 4243, This
proved unsuccessful, and the missing-row model was confirmed, among other ex-

periments, by LEED analysis ¥, x ray diffraction [*5*] low 7 and medium en-
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Figure 2.1. Au(110). Plot of the long range order (circles), Onsager’s 8=1/8 theoretical
results (solid curve), fluctuations (triangles) obtained by the Lorentzian fitting. From ref.

[52].

ergy ion backscattering(*®, and its faceted (111) nature unambiguously detected
by high resolution electron microscopy [**! and scanning tunneling microscopy (501,
The majority of these experiments also show relaxation effects within the missing-
row structure (already addressed to in Chapter 1) such as a top layer spacing
contraction, a second layer inward pairing and a third layer atomic buckling, con-
firmed by a recent careful X-ray diffraction experiment (51l

Wolf et al. [ were the first experimental group to report (via LEED mea-
surements) a phase transition from the (2 x 1) structure to some disordered phase
around 700K, even before the missing-row structure had been accepted as the
low temperature phase of Au(110). However, both the transition temperature
and, moreover, the critical exponent 3 were overestimated. The first LEED ex-
periment intended to investigate in detail the critical behaviour of the (2 x 1)
deconstruction transition was performed by Campuzano et al. [52:3%, By fitting
the temperature variations of the half integer order diffraction profile with an ex-

pression of the form (1.42), they were able to derive for the critical exponents the



AU(110) 39

values § = 0.13 + 0.02, v = 1.75 £ 0.10 and v = 0.93 4- 0.09, which are in fairly
good agreement with those of the two dimensional Ising model, ie. 8 = 1/8,
v =1T7/4 and v = 1 (see fig. 2.1). Therefore this experiment would indicate that
at a temperature of about 650K, the (110) surface of Au undergoes a phase tran-
sition from an ordered (2 X 1) phase to a disordered phase, falling into the same
universality class of the two dimensional Ising model as predicted from symmetry
considerations by Bak[®*. The situation is actually more complex than envisaged
by Bak, and his simple symmetry arguments based on the two-fold degeneracy of
the ground state should be reexamined by considering that Au(110) has indeed
four equivalent ground state configurations instead of two. This is due to the fact
that besides the reconstruction order parameter, there is also a separate sublattice
order parameter. Considerations of this kind will be done in Chapter 3, dedi-
cated to a review of the theoretical work on the system, as well as in Chapter 6,
where the results of the model adopted in the thesis will be presented. The Ising
nature of the deconstruction transition, if confirmed, should not be considered a

straightforward consequence of existing symmetry considerations.

This original LEED data did not identify the type of defects involved in
disordering, nor provided evidence about roughening. From 1985 on, a wealth
of other experiments confirmed and complemented Campuzano’s first findings.
Among these, the synchrotron X-ray scattering study of Keane et al. [** reports
of a deconstruction transition at a temperature significantly higher than that of
Campuzano et al., i.e. at Tp = 735K, characterized by proliferation of compact
antiphase defects (in the language of Villain and Vilfan, a compact antiphase
defect, or domain wall, is a pair of two bound surface steps of finite width, see
Chapter 3). This transition is described by critical exponents which are roughly
consistent with those predicted for the two dimensional Ising model, although
there are some quantitative discrepancies perhaps due to finite-size rounding of the
scattering data near Tp, or to sample impurity. In addition, around T = 784K,
a significant increase in the density of both antiphase defects and also of single
surface steps is found, signalled by a significant broadening of the integer order
surface peak widths and by an upward shift in the position of the (% 0.06 0.06) peak
intensity (which has dramatically decreased as it should do far above Tpp). This
may be consistent with a surface roughening transition with onset between 752

and 784K, though no power law lineshape fitting (see Section 1.4.6) is performed,
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Figure 2.2. Au(110). Intensity of the in-phase specular peak (diamonds); width of antiphase
specular peak (circles); width of half order peak under incidence conditions yielding minimum
width (squares). The width is given in reciprocal lattice units 27w /a=1.540 A7, intensity is in

arbitrary units. From ref. [56].

which would settle down the question of the existence of surface roughening.

Such fitting is attempted on a Au(110) surface analyzed by means of He beam
scattering by Cvetko et al. [°°], They observe an exponent T which decreases from a
value close to 2 at room temperature to 1.55+0.1 at 723K, so they cannot conclude
positively in favour of a roughening transition but conclude that if roughening
occurs, this can only be at a higher temperature. Nonetheless, broadening in the
integer order peak width is a clear indication in favour of steps proliferation on
the surface at that temperature. At a definitely lower temperature around 700K
the half integer order peaks disappear and show a sudden broadening: here they
place the deconstruction transition, caused by formation of domain walls (and not
by steps, responsible for roughening) as also found by Keane et al. [39],

An experiment which has apparently been able to locate both the transitions

is the recent He scattering experiment by Sprosser et al. (5], By monitoring
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both half order and integer peaks, they find a simple Debye-Waller exponential
decrease of peak intensity between 100K and 650K. Above 650K the half integer
order peak width increases rapidly but the integer one still remains constant up to
about 690K. It increases dramatically above (fig. 2.2). They claim the former to
be the the deconstruction transition temperature, the latter the roughening one,
supporting this claim by the power law integer order lineshape fitting which clearly
indicates the appearance of a state with logarithmic height-height correlations,

compatible with Kosterlitz-Thouless roughening.

A word must now be spent on the different values of the transition temper-
ature reported in the abovementioned experiments. In general, they agree on the
difference Tr — T to be a value around 40K , but there is no agreement for the
absolute values of Tp and T%. This may be due to sample purity, as suggested
by several facts. It is well known that the Au(110) surface is sensitive to sub-
monolayer impurity coverage, even at levels barely detectable by Augier electron
spectroscopy at low energy ion scattering. In some cases, trace impurities are re-
sponsible for higher order reconstruction of the surface, e.g. (3 x 1), as reported by
Held et al. [57] (they further claim this symmetry to be lost at T = 758 & 15K in
a simultaneous deconstruction/roughening transition). Cesium deposited on the
surface also induces Au (3 x 1) reconstruction via formation of extended (111)
facets, probably due to charge-transfer effects 58], As shown by McRae et al. [59],
a 0.002 monolayer of Sn diffusing from the bulk and segregating at the surface
results in a downward shift of 10-15K in the deconstruction temperature. The
rate of segregation is appreciable around 675K and becomes relatively fast above
775K, too. Some of these effects are reported by Keane et al. (39], while it is worth
noting that they can also cause a rounding in the peak intensity decay affecting
as a consequence the value of the critical exponents. In addition, sample contam-
ination by Ca impurities is the reason why Cvetko et al. 53] could not push their

investigation to higher temperatures.

Finally, there is a number of other experiments which corroborate what has
just been presented. Van de Riet et al. [eo] employing Ne ion scattering, report
an onset of step proliferation on the surface around 650K, the Campuzano et
al. 12 deconstruction temperature, but also vacancy-adatom pair proliferation
with a threshold temperature 120K below. From the analysis of LEED integer

order spot profiles, Romahn et al. (6! find indications for roughening on Au(110):
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a maximum broadening of the peak is observed at a temperature T = 733K,
although no clear-cut temperature value for Tg is provided. They also find a
smoothening of the surface, i.e. a decrease in the high step density some 50K
above roughening, possibly due to surface melting effects. Precursor effects to the
roughening transition are probably the cause of a minimum around 650K in the
otherwise monotonic decrease of the blocking dip width in a ion channeling and
blocking experiment [62], This unexpected feature could in fact be explained by
an enhancement of vibrational amplitudes due to the fact that the edge atoms
participating in a step of a rough surface are assumed to have a larger and more

anisotropic vibrational amplitude compared to the atoms of a smooth surface.

Lastly, Gimzewski et al. (63] presented a detailed STM room temperature
investigation of the nature of atomic disorder on the Au(110) surface. The main
usefulness of STM lies in elucidating the local shape and nature of steps and
antiphase boundary structures and their temporal evolution, since for investigating
the (2 x 1) domains diffraction methods are better suited, as they represent an
average over mm-sized areas of the surface. The surface anisotropic behaviour
is confirmed by the fact that, e.g., steps separating two perfect (2 x 1) terraces
show long range ordering in [110] direction (corresponding to (111) microfacets),
whereas kinks in [001] direction exposing (100) facets are rarely observed to be
longer than several atomic distances. Steps, which are to be expected at the surface
due to local crystal misorientations, tend to coalesce in bands. However in each
band they remain distinctly monoatomic, and separated by small (2 x 1) elongated
cells. No evidence is found for condensation of steps into facets of greater than
monoatomic height, suggesting repulsion between steps which nevertheless exhibits
bunching. This observation may indicate a longer range attractive interaction,
while on the other hand another possible mechanism for the apparent condensation -
may be the pinning of steps which migrate over the surface during annealing
cycles. Steps forming (111) microfacets may locally create (1 x1)or (3 x1)
phases. The former is generally considered energetically unfavoured, and they are
indeed rarely observed, while the latter appear to play a dominant role in surface
structure at room temperature: the loss of evidence of significant atomic motion
is an indication of their greater stability. Nonetheless, but to a much lesser extent,
(331) microfacets (of low surface free energy) are observed too. Contamination,

e.g. by CO adsorption, affects the reconstruction by just increasing the number
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of (3 x 1) steps already interspersed in a more ordered sequence of (2 x 1) rows.
This was seen in the first STM pictures of Au(110) 0" and, more indirectly, in the
combined X-ray — ion backscattering experiment of Robinson et al, [6] Individual
adatoms are not detected on the surface, and surface mobility results in mass
transport along the [110] direction, whereas atomic movements across the rows

are not observed.

2.1.2 Pt(110)

Platinum lies in the same row of the periodic table as Au and could share some of
the properties of gold. However, it is much “harder” and this fact should should
shift all its eventual surface phenomena to higher temperatures, as well as increase

the difficulties of experimental investigation.

Pt(110) is missing-row reconstructed as well. Evidence is provided, e.g., by
low energy atom scattering spectroscopy [%%), field-ion microscope images [°%] and
detailed LEED studies of (2 x 1) atomic relaxations 67681, A first attempt (9] {0
observe a deconstruction transition similar to that observed on gold with LEED
was not successful, due to the difficulties intrinsic in LEED structure determination
at high temperature because of the large vibrational amplitudes of the atoms.
On the other hand, the core-level binding energy separation between surface and
bulk atoms, as well as the intensity ratio of surface-to-bulk contributions in a
photoemission spectrum strongly depend on the structure of a surface(™ So the
surface core-level shift have been used as a probe of structural changes of a surface,
also at high temperatures, by Diickers and Bonzel ™. On the basis of a simple
tight-binding model, the difference in 4 f1/2 binding energies between surface and
bulk atoms can be correlated with surface and bulk coordination numbers, leading
to a prediction of lower values for the disordered (1x1) structure compared to the
ordered (2 x 1) one, as the average coordination number of a disordered surface is
lower. A clear decrease of the shift in the region 500K < T < 750K for Au(110)
indicates a change in the surface structure, which further analysis identifies with
a deconstruction transition at a Tp = 620 £ 50K. The same kind of measures
provides evidence for an analogous transition on Pt(110). Although potassium

contamination could not be totally avoided, the experimental data are explained
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Figure 2.3. Pt(110). Left: peak height at (1.502 0.06 0.06) vs. temperature and its fit by
(T-Tp)??. Right: variation of the fit values of half width and shift (from 1.5 reciprocal lattice
units) of the Lorentzian that was convolved with the T<Tp profile. From ref. [64].

in terms of an order-disorder transition located approximately at 940 = 50K. In
this way the authors find for the first time evidence of such a transition, and it
is noteworthy that the transition temperature of Au(110) and Pt(110) (620K :
940K ) scale with the melting points of these metals (1336K : 2042K).

The deconstruction transition was accurately studied in the X-ray diffrac-

(64,721 of somewhat controver-

sial interpretation (fig. 2.3). Looking at the intensity decrease of the % peak,

tion experiments of Robinson, Vlieg and Kern

they are able to locate the deconstruction transition temperature for Pt(110) at
Tp = 1080 & 50K, finding a similar behaviour to Au(110) but with the impor-
tant difference that above Tp steps are created spontaneously, and their density
diverges with temperature. Because step proliferation is a central component of

the disorder above Tp, the transition is classified as roughening (coinciding with
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deconstruction), and not as simply a two-state two dimensional Ising transition,
although the critical exponents are found to be consistent with those of the two
dimensional Ising model (@ = 0.11 4 0.01, v = 0.95 + 0.09), in good agreement
with the case of Au(110).

The main indication of the presence of steps on Pt(110) is due to the shift
of the half integer order peak. In accordance with Fenter and Lu’s theory [73],
randomly distributed single height steps on the surface should lead to an oscillation
in the peak shift (shift in the maximum of the peak lineshape with respect to the
central A, = % or g position), as a function of the perpendicular momentum
transfer g., which is indeed measured by Robinson et al. (but not by Campuzano
et al. 52, for instance, as their measures were taken under diffraction conditions
that corresponded to a position of zero shift). This shift is, moreover, temperature
dependent and its increase above Tp, together with the dramatic broadening of
the peak width, are clear indications of steps spontaneously appearing above T
and hence that the phase transition is also a roughening one.

The main result of the experiment, the superposition of the deconstruction
and roughening transitions, is considered by Villain and Vilfan (™ who are able to
reconcile the apparent Ising nature of the transition with the presence of steps on
the surface, in a model predicting a shift due to domain walls, i.e. antiphase step
pairs of finite width, which are directly responsible for deconstruction. This could
be a first step in a better understanding of the critical behaviour of Pt(110). A
second step may be “just a question of terminology” ["5]. Robinson et al. 64 did
not fit any peak lineshape in search for a thermal behaviour of the exponent T,
but merely reported a sudden increase in step density. This could be explained as
enhanced roughness of the surface 78], which is nevertheless a very distinct concept
from a statistical mechanics definition of roughening, based on a logarithmically
divergent height-height correlation function. Recent results from new He scatter-
ing experiments (77l suggest instead for Pt(110) two transitions, a deconstruction
around Tp = 1030K and roughening some 60K above, around Ty = 1090K, a
very similar scenario to that of Au(110).

Robinson, Vlieg and Kern’s experiment nonetheless remains as a landmark
for the possibility of the merging of the transitions into one: this possibility and

its consequences will be extensively addressed in the following chapters.
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2.1.3 Ir(110)

Iridium is still harder a metal than platinum, as witnessed by the value of its
bulk melting temperature, Ths = 2682K, and investigations on its structure as
well as eventual phase transitions are still more complex. Nonetheless, Ir(110)
was commonly believed to stand in row with P1(110) and Au(110) and to exhibit
a (2 x 1) missing-row structure at low temperatures [78—80] Recent low energy
ion scattering results 81821 and ion scattering spectrometry (83,84 however, yield
evidence for (3 x 1) and (1 x 1) phases to coexist on the surface. Preliminary
evidence for an order-disorder transition around 1100K is found ®? but with a
strong dependence of Tp upon the surface preparation and annealing procedures.

Results of combined STM and LEED investigations (85] on clean Ir(110) point
to an unexpected new type of surface reconstruction: STM detects a rippled surface
structure consisting of grooves which run parallel to the close-packed rows. The
walls of the grooves are striped, stripes representing rows lying in successively
deeper (110) layers: hence, they are formed by extended (331) facets with a slope
of £13.3° along [110] with respect to the (110) plane, and not by the usual (111)
facets found in Au and Pt (with the much steeper slope of 35.3°. On top of
the grooves, local (1 x 1) regions are detected, and all the observations can be
reconciled with the complex LEED patterns observed also by other authors (81,82]
which, due to geometrical considerations, may appear to be a created by a (3 x 1)
symmetry. ‘

This seems to be a novel path for a fcc (110) metal surface to lower its free
energy. Of course, new theoretical studies are now needed for Ir(110) to account
for its structure and eventual phase transitions: this remains a completely open

field and will not form one of the objects of the present thesis.
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2.2 Unreconstructed surfaces

2.2.1 Ag(110)

An X-ray scattering experiment by Held et al. "] provides a very direct informa-
tion about the thermal dependence of the surface height-height correlation function

G(R), the behaviour of which is closely connected to the existence of a roughening

transition. They look at the surface along the (1 1 [) crystal truncation rod, and
choose a value of [ = 0, corresponding to the position of a bulk-forbidden peak.
This gives exact cancellation of intensity for a smooth surface but not for a dis-
ordered one and, as a consequence, provides a measurement sensitive to surface
steps and to the behaviour of G(R). They show how the peak evolves from a delta
function to a power-law lineshape with an exponent 7 (after a careful fitting which
takes into account broadening due to finite-size effects on the surface as well as
experimental resolution), and give evidence for a roughening transition on Ag(110)
at a temperature T = 723 + 25K.

Preliminary He scattering data!®®! seem to confirm the occurrence of a rough-
ening transition on Ag(110), but at least 110K above the previously quoted value.

On the other hand, a completely new viewpoint is presented by Robinson et al.
(87], who reject a model that involves equilibrium populations of steps within other-
wise flat facets. They favour a phase separation of Ag(110) into a flat and a rough
phase coexisting on the surface and forming different facets at a temperature-
dependent angle . This is the only possible way to explain the two-component
lineshape of X-ray scattering peak which shows up for g, values different from zero
(noticeably enough, at the (h k1) values adopted by Held et al. 37 no asymmetric
lineshape was visible). A decreasing value of o as a function of temperature is
an indication of the gradual replacement of flat regions by rough ones till o stops
decreasing at a value coinciding with the miscut angle of the crystal. No flat faces
are present anymore and the rough phase has spread all over the surface. This
happens at a temperature which is given as the roughening temperature of that
particular sample, Tr = 790 £ 20K, but it is also possible, though with not much
certainty, to indicate in T ~ 992K the temperature at which an improbable

miscut-free surface would roughen.
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2.2.2 Pb(110)

Problems of the kind just discussed for Ag(110) seemed to be absent for Pb(110),
where a LEED experiment 2888 locates at around 415K the roughening transition
temperature. A clear LEED (1 x 1) pattern is shown at low temperatures. The
authors then first look at the behaviour of the full width at half maximum of
the peaks present along the beam as a function of g.. The (00) beam width,
for example, shows no ¢, dependence for T' ~ 303K, while a clear oscillatory
behaviour of period -Z—’—E is found for T ~ 475K. This is a distinct signal of the
presence of thermally generated steps, and the period indicates that only single
atomic steps with a step height of a, (the perpendicular inter-layer spacing) are
contained on the surface. To make sure that a roughening transition has taken
place on Pb(110), and to definitely locate Tr, a power-law lineshape fitting is also
performed, leading to a value of Tr = 415K, at least 100K below the first surface
melting effects, which are revealed by a sudden decrease of the integer order in
phase peak intensity.

The picture seemed to be clear. However, the same authors in a subséquent
paper 9] propose a novel scenario for the Pb(110) surface and its thermal evolu-
tion. They measure oscillations of the width of the (00) beam, as in the previ-
ous papers, but at T = 361K an oscillation in ¢, with period - and not i—’:— is
found. They report this observation as an evidence of an unprediéted appearance
of double-height steps on the surface; a subsequent lineshape analysis rules out
the possibility of a double-step roughening transition thus indicating that Pb(110)
below the true roughening temperature, which is confirmed at 415 + 10K, con-
tains this kind of defects but still remains flat. Based on the sharp decrease of
antiphase /scat near 380K, the authors suggest this to be the first evidence of a
formation of an up-down structure on the surface, i.e. of a Disordered Flat Phase
(DOF) in the words of den Nijs et al. (0] due to the predicted (though never with
double steps), but up-to-now never observed, pre-roughening transition. These
findings, however, remain questionable, due to an obscure anisotropic behaviour
in the decay of the DOF order parameter, which is a scalar, and should vanish
when measured either along the [001] as well as along the [110] directions, if a
true phase transition occurs on the surface, in contrast to what is experimentally

observed.
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2.2.3 Cu(110)

The first experiment aimed at revealing a phase transition on Cu(110) was carried
out by Mochrie[®], Considering the step-sensitive bulk-forbidden (001) X-ray
peak, he just finds a decrease in intensity between 200°C and 650°C with no
appreciable broadening of the width. Yet, he claims to have enough evidence to
locate at 600°C' a roughening transition, from an unusual increase in the root
mean square atomic displacement (u2>';' (which is somehow related to the <5h2)%
of Section 1.3) fitted from the temperature dependence of the peak intensity, which
he ascribes to the presence of thermally generated steps. No power-law lineshape

fitting is performed.

In a subsequent careful helium scattering experiment [°2 no thermal rough-
ening is seen to take place on Cu(110) at least up to 900K. They confirm a
strongly enhanced mean square displacement of surface atoms for temperatures
above 550K, but demonstrate that there is no increase in step density up to 900K,
pointing out that an anomalous thermal behaviour of the coherent intensity is not
a sufficient proof for the occurrence of a roughening transition. Ruling out the
hypothesis of step proliferation, since no out of phase (i.e. near the bulk-forbidden
condition) peak broadening is observed, no indication for roughening is found after
the usual power-law lineshape fitting provides values for the exponent 7 which are
far above the crucial value 1. The sudden decrease of intensity above 550K has
thus to be explained either by resorting to vacancy-adatom proliferation, or to an
enhanced surface anharmonicity, giving rise to an anomalous Debye-Waller effect.
The latter possibility is preferred by the authors. They monitor the diffuse elastic
peak which is a standard measure for the estimation of the density of short-range
scatterers, due to their large cross-section, and find again a decrease instead of an
increase, as it would be the case if single or multi atomic defects were present on

the surface.

Mochrie himself reconsidered his measurement(®3l and found a miscut in his
Cu(110) sample of 0.8°. This probably leads to a faceting of the misaligned surface
into a sequence of sloped and flat regions, as shown by the asymmetry in low
temperature X-ray Fresnel reflectivity peaks. As he points out, the observation
of small copper crystals immediately below their melting point (Tar = 1356K)
demonstrate that the (110) facet is absent from the equilibrium crystal shape at
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this temperature(®¥. This requires that either the (110) facet has a roughening
transition at a temperature T below Tj; or that the (110) is not a stable facet
at any temperature. The latter improbable possibility would occur if the surface
free energy of, say, the (111) facet were so much lower than that of the (110) that
it would be energetically favourable for the surface to increase its area to form
(111) facets rather than a flat (110) surface. A surface melting transition is likely
to explain Stock and Menzel’s data. in Cu(110) has been reported The crystal
miscut can be the cause of the observed high temperature instability which may
be of a kind similar to that found by Robinson et al. ¥7) on Ag(110).

In the debate surface defects vs. enhanced anharmonicity, an old paper by
Lapujoulade et al. [°°] seemed to choose the former as an explanation of the sudden
drop in intensity in the elastic helium scattering peak (with a threshold temper-
ature of 423K). The heuristic explanation was given that thermal excitation of
vacancies, adatoms and kinks is easier on less compact faces with respect to the

close-packed (100) or (111) surfaces, where no such effects are measured.

Other He beam diffraction experiments tend to support the point-like defects
hypothesis°¢! and the anharmonic hypothesis (®7] respectively, each of them not
excluding formation of a small amount of disorder of the other kind. The question
remains open and probably the two effects are intertwined, as a molecular dynamics
study [°8 seem to show. Indeed, in the presence of point defects the force constants
are locally modified and may lead to large mean square displacements which may
in turn facilitate the creation of additional point defects. Nonetheless, the results
of another recent molecular dynamics simulation (99 point to anharmonicity as the
leading effect on Cu(110) and not to thermal disorder (or roughening) between 600

and 850K, since adatoms and vacancies are created but not below 900K.

Though no definitive evidence for the occurrence of a roughening transition
on Cu(110) has yet been provided, a combined Monte Carlo and molecular dy—<
namics computation scheme seems to demonstrate that both a roughening and a
surface melting transition occur on Cu(110) (100] ' The identification of a roughen-
ing phase transition through molecular dynamics is difficult since computer runs
cannot be long enough to produce good statistics for the height-height correla-
tion function (%, Irregular fluctuations in the occupation number of the first
layer just signal that clusters of defects are forming on the surface, while the loga-

rithmic divergence of the height-height correlation function is reproduced only in
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a lattice-gas Monte Carlo version of the simulation (adopting the same realistic
effective medium theory potential), which of course neglects important dynami-
cal effects such as relaxation, atomic vibration and lattice distortion. With this
method, a roughening transition is found around 1000K, while molecular dynamics
simulations point towards a surface melting phase transition around 1200K . These
results are not in contradiction with an ion scattering spectroscopy experiment [102]
which detects structural changes of the Cu(110) surface above 1000K, though it
is not able to discriminate between a roughening transition or the formation of a

quasi-liquid layer. No preroughening transition is reported for this surface.

2.2.4 Ni(110)

A high resolution LEED experiment shows the occurrence of successive different
phenomena, for the (110) surface of nickel 193], First, a large increase in the mean
square atomic displacement suggests anharmonicity (as in Cu(110) (o7 developing
in the surface layers around 700K . This is monitored via the decrease of both the
in-phase (220) and the out of phase (110) peak intensities, and thus rules out step
or point-like defect formation since this would leave the in-phase peaks unchanged,
and no increase in the diffuse background is observed until 1150K. At this tem-
perature, the background-to-peak ratio sharply increases without a corresponding
change in lineshape, suggesting vacancy formation. Finally, above 1350K , & con-
siderable (isotropic) broadening of the out of phase peaks (both the specular (110)
with |Q| = 0 and the off-specular ones, with |Q] # 0) is observed, together with no
appreciable change in the in-phase lineshapes. This is a clear signal that at these
temperatures the step formation probability increases drastically. Although no de-
termination of the logarithmic divergence in the height-height correlation function
has been performed, a natural conclusion would lead towards a roughening phase
transition above 1300K.
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2.2.5 Other (110) surfaces

A joint experimental (via medium energy ion scattering) and computational (via
effective medium theory potentials) effort was carried out on Al(110) (104] t6 mea-
sure and simulate scattering yields from this crystal surface. Both experiment and
theory agree well in showing how the onset of disordering is strongly correlated
with the production of adatom-vacancy pairs, though the main contribution to
scattering yields must be ascribed to disordering of other atoms in the top lay-
ers of the crystal which can be enhanced by defects formation. This mechanism
can also explain why disordering of close-packed surfaces (e..g.Al(111)) below the
melting point is much weaker than on open surfaces, since the energy involved in
taking an atom out of the surface layer and placing it above it is much higher for
the former surface than for the latter. No phase transition , however, apart from

surface melting, has been investigated in this work.

The temperature dependence of the diffraction peak profiles for Pd(110)
has been reported 193, Slightly below room temperature, the authors observe
that the diffraction beam shows a sharp decrease in intensity accompanied by a
significant broadening. These results are interpreted as indicative of an order-
disorder transition in which random displacements parallel to the surface lead
to a breakdown in periodicity with increasing temperature. They are however
not reproduced by other experimental groups (106] gince nothing is observed but a
normal Debye-Waller type of decrease of diffraction intensity with temperature.
Furthermore the beam half widths are insensitive to surface temperature, at least
up to 800K. No explanation for this discrepancy is found, but the later results

are probably more reliable.

2.3 An overview on fcc(110) surfaces

It is now time to summarize the main experimental evidence on fcc(110) surfaces
and to signal the most relevant points of their phenomenology, as well as to present
a general explanation of their behaviour.

Au(110) is the most studied between the reconstructed fcc metal surfaces,

showing a missing-row reconstruction at low temperatures and two distinct phase
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transitions when the temperature is raised, first a deconstruction and, at higher
temperatures a roughening transition (apart from surface melting[®?1°7] which
takes place slightly below bulk melting). The deconstruction transition appear
to belong to the Ising universality class, and has to be ascribed to the thermally
generated proliferation of defects of the domain wall type (bound step pairs).
Above Tp the surface is deconstructed, disordered but still flat on average, though
steps begin to appear. Steps between terraces are prevalently monoatomic and
of the (3 x 1) kind (i.e. one of the sloping walls of a (3 x 1) groove), because
energetically more favoured with respect to (1 x 1) ones, reflecting also in this
aspect the faceting tendency of the surface. In the phase between Tp and T’y short
range attractive forces between steps tend to prevail over entropic disordering, and
roughening occurs approximately 40K above deconstruction. It is characterized
not only by a roughness of the surface on the atomic scale but also by a logarithmic

divergency of the height-height correlation function.

A very similar scenario is most probably present on Pt(110) too, where again
deconstruction is of Ising kind and step proliferation occurs just above Tp, though
the roughening transition temperature has not been clearly localized yet. The
possibility of two distinct transitions or, on the other hand, of superimposed de-
construction/roughening are both theoretically intriguing and will be presented in

detail in the following chapters.

Data on the Ir(110) phase transitions are scanty, since even its low temper-
ature structure is still subject to experimental investigation. Novel routes to the
minimization of surface free energy for fcc(110) metal surfaces may open for this

element, which calls for a detailed theoretical treatment.

The (110) surface can be classified among the open surfaces, particularly ex-
posed to disordering processes. Theoretical models would predict a roughening
transition for all the metals like Ag, Cu, Ni, Pd, Pb and Al[*®], whereas only
in Pb and probably in Ni a clear transition has been detected. On Pb(110)
surface roughening followed by melting of the topmost atomic layers at higher
temperatures 198199 has been found. Pb thus seems the best characterized be-
tween the unreconstructed (110) surfaces, were it not for a very recent and contro-
versial experiment (] claiming for a preroughening phase transition with a singular
feature, i.e. the occurrence of double steps to separate the up and down terraces.

For Cu and Al a strong increase in surface disorder which has to be ascribed either
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to local defect creation or to enhanced surface anharmonicity has been detected,
but this could not be immediately ascribed to roughening. A new scenario opens
up for Ag(110), were there is clear evidence for a roughening transition B con-
nected to a much more complex faceting mechanism [87]. This perhaps can be
found on Cu(110) too(® and resolves the controversy of whether or not there is
a roughening transition on it. ~ Unreconstructed surfaces, in addition, may easily
(2 x 1) reconstruct under adsorption of, e.g., alkali atoms11°=11% and Au and Pt
show (3 x 1) or higher order reconstructions [+:5] if covered by a suitable amount
of Co or H (CO on Pt(110) stabilizes the (1 x 1) phase, while O leads to (3 x 1),
(5 x 1) or even (7 x 1) reconstructions (69]). This is a clear signal of how subtle is
the balance in surface free energy between (1 x 1), (2x 1), (3 x 1) and higher order
reconstructions, and how this may be influenced by the presence of impurities on
the surface. The electronic charge transfer processes which certainly take place in
this reordering have been the subject of many investigations, in particular, for the
clean surfaces, towards the understanding of reconstruction processes [116,2,112]
The physical reason underlying all these phenomena (and which also make
these surfaces good candidates for roughening, though step creation is very expen-
sive energetically on low-Miller-index metal surfaces) can be traced back to the
non-directional nature of cohesive forces in these metals. For a filled or nearly
filled d-shell a large contribution to the cohesive energy can be obtained simply by
a high coordination, irrespective of bond angles. This state of affairs seems well
accounted for by some variant of the spherical many-body force methods (“em-
bedded atom methods” 117 or “glue” models (3-5] recently proposed). In these
formulations, the cohesive energy is given by the sum of a conventional two-body

contribution ¢(r), plus a many-body “glue” term U(n):
% g

V:%Z¢(ri—rj)+ZU(ni)’

ni =y p(ri—rj), (2.1)

i#]

where p(r) is some decreasing function of distance. The two-body potential ¢ has

a hard core preventing particle pairs form overlapping. The glue term U(n) can be
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chosen so as to be minimal at some optimal coordination number ny (for example
ny = 12), so that it will increase for both insufficient and excessive coordination.
For a surface atom, the value of n is always less than the bulk value ny, and the
glue forces become effective.

For a surface, the zero temperature effect of the glue is (a) to cause inward
relaxation; (b) to reduce all surface energies, but more drastically so the energy of
well-packed faces. The latter effect implies an increase in “anisotropy”. By this,
it is meant in particular that the ratio o(111)/0(110) of T = 0 surface energies per
unit area, already less than 1 for a two-body force system, becomes even smaller

for a glue system. The crucial quantity is (23]

3
A= \/;0'(111) ~— 0(110)> (2-2)

the factor in front of 0(111) arising form geometrical considerations, since the (111)
face is tilted by an angle 6 = arccos \/gﬁ >~ 35° with respect to the (110) surface
plane. If A is negative, as is the case for Au and Pt, the (110) surface reconstructs
to the missing-row (2 x 1) structure at low temperature, but roughens at higher
temperature due to the low energetic cost of formation of (111) facets, combined
with the related increase in entropy.

In the lighter noble and near noble metals, instead, A is mildly positive,
the unreconstructed (110) surface exists and it is smooth at T = 0 but again
may roughen at higher temperature gaining entropy by becoming disordered. The
increase of anisotropy is not sufficient to cause reconstruction on clean surfaces,
but the fact that they can be readily reconstructed if not clean is a clear signal
that they come quite close to it.

For “simple” metals such as Pb or Al the situation is not very clear. If A were
positive, roughening would not be favoured for them, and maybe more complex

mechanisms should be advocated for an understanding of their phenomenology.



Chapter 3

Theoretical models

In this Chapter a review is presented of the most recent and relevant theoretical
models of the phase transitions which can occur on the fcc(110) surfaces: pre-
roughening on the unreconstructed surface, deconstruction for the reconstructed
ones, and roughening of both. The presence on the “hot” surface of many kinds
of defects, from vacancies and adatoms to bound or free arrays of steps, may lead
to an intriguing interplay between the various transitions which gives rise to the
formulation of different disordering scenarios.

This rich variety has been reviewed in a comprehensive paper by
Bernasconi 118, which will form the backbone of this Chapterf.

3.1 The preroughening transition

The idea of a DisOrdered Flat (DOF) phase and of a preroughening transition was
introduced for the first time by den Nijs and Rommelse (991 who also studied the
conditions for the stability of such a phase on a simple cubic (100) surface.

DOF is a novel type of phase appearing between the flat and the rough phases
in the presence of short-range interactions between steps. In a few words, starting
form the flat phase and as the temperature is increased, one first meets the transi-

tion from this to the DOF phase, called preroughening, next the surface undergoes

T For placing his work to my disposal prior to publication and for his constant critical advice

I would like to warmly thank Marco Bernasconi.
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a conventional Kosterlitz-Thouless transition from the DOF phase into a rough
disordered phase.

The main ingredients are very simple. From now on, step rows on the surface
will be sketched as wandering lines with an arrow which points upward if the
surface is higher on its right. Two parallel (antiparallel) step rows are therefore
labeled by a couple of up-up or down-down (up-down) lines. Rommelse and den
Nijs consider a restricted solid on solid (RSOS) model (the nearest neighbour
height difference can be just &1 or 0), and the following Hamiltonian

M/ksT = K > §(|h(R) — A(R')| — 1) + L, > 6(Jh(R) ~ h(R')] —2) (3.1)
(RR') (RR')

where (RR') denotes nearest neighbours, (RR') next nearest neighbours on the
square lattice and h(R) are integer-valued column height variables. The nearest
neighbor interaction K contributes to the step energy. Next nearest meighbour
interactions (L) may cross more than one step. In particular, Ly > 0 produces a
short-range repulsion between parallel steps. Considering first the extreme limit
where the repulsion is infinitely strong, L, — oo, steps with parallel arrows are
forbidden to approach each other closer than the interaction range, while steps
with antiparallel arrows are not affected by L,, and may approach each other at
will. Consequently the steps have larger meander entropy in configurations where
they alternate in an up-down array, than in configurations where neighbouring
steps have the same sign. This argument shows that the long range up-down-up
order of steps, producing the DOF phase, is favoured by a combination of meander
entropy and short range interaction between steps. This argument is indeed very
general and not restricted to the particular choice of the model Hamiltonian (3.1)
but it does not tell whether the effect is strong enough to stabilize the disordered
flat phase.

A stronger statistical mechanics argument is obtained by considering a coarse-
grained six vertex model written on the irregular lattice formed by the steps. By
assigning an Ising spin o(R) = e'™(®) to each column height (thus representing
its parity), Den Nijs shows that Hamiltonian (3.1) can be rewritten as an Ising
model coupled with the six vertex model. In this formulation the partition function

reads:
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Figure 3.1. Phase diagram of the RSOS model with nearest neighbour interaction K and
step repulsion L,. From ref. [90].

7 - Z e[-%KZm,nf)(a(a)a(n')ﬂ)]  Zev({o(R)}, L2) (3.2)
{e(R)}

where K governs the Ising-type order, i.e. the structure of the annealed fluctuating
lattice of steps, while L governs the antiferromagnetic order of arrows on the
lattice of steps. The Boltzmann weight is e—L2 for vertices 1-4, and 1 for vertices
5-6.

The phase diagram, obtained numerically by den Nijs who studied the prop-
erties of suitably-defined interfacial free energies, is shown in figure 3.1. For
K — —oo the Ising spin are antiferromagnetically ordered and the model reduces
to the exact solvable BCSOS model on the square lattice. The BCSOS flat sector
in fig. 3.1, obtained for large L2 and negative K, represents the reconstructed
phase of the model, since the Ising spins remain antiferromagnetically ordered for
K < 0. The BCSOS geometry is achieved by rotating the resulting checkerboard
structure by 45°, and it is addressed to in more details in subsequent works by den

Nijs[ng’lz”]. Starting from this state, the system undergoes a Kosterlitz-Thouless
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roughening to a reconstructed rough phase along the line M-B.

By increasing K gradually, the Ising spins disorder along the Ising critical
line S-M-I, corresponding to the deconstruction transition (it is worth noticing
that the point (1,1) on this diagram corresponds to 7' — o0). For K ~ 0 the
Ising spins are disordered, even at low temperature, and Ising-Bloch walls (steps)
form a disordered array. This state contains disconnected finjte terraces, but
always includes an infinitely large connected backbone cluster, necessary to destroy
the long range ferromagnetic order of spins. The backbone is not rigid, but has
annealed fluctuations in its shape and number of bonds. The six vertex model
defined on the backbone is controlled by Lj, and its stiffness for large eX2 is alone
responsible for the long range up-down-up order of steps (antiferromagnetic order

of arrows). This flat phase at large values of L, represents the DOF phase.

On the other hand, the rough phase of the six vertex model at small values
of Ly represents the conventional rough phase of the RSOS. Since in general the
universality class of a phase transition does not depend critically on the shape of
the underlying lattice, one may expect the six vertex model on the backbone to
undergo a conventional KT roughening (line L-M). The density of steps in the
backbone is expected to decrease approaching the line R-L-P from above till the
backbone disintegrates on line R-L-P. Above this line, only finite terraces survive,
restoring the long range ferromagnetic Ising order of the RSOS flat phase. Along
the line R-L-P the single step free energy vanishes, as required for the appearance
of the backbone (for finite step free energy only finite terraces can be present).
Along the preroughening line L-P, where the ratio L,/K is sufficiently large, the
surface is still smooth on average, because the height fluctuations are limited by
the AF order of arrows in the backbone. Conversely if Ly/K is small, i.e. the
energy for the generation of a step is large compared to the vertex energies, the
six vertex model is already in its rough phase when the backbone appears. So
along the line R-L the system undergoes a conventional KT transition from the
RSOS flat to the RSOS rough phase.

The different phases are characterized by different order parameters, and the
critical lines drawn on the global phase diagram correspond to the vanishing of
these order parameters, and are numerically located by a transfer matrix finite-size
scaling calculation of free energies of suitably set up interfaces between the various

phases. The general criterion is that if a phase is void of a certain type of defects
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(e.g. the RSOS phase, which has no infinitely long steps, though it can present
terraces of finite dimensions), the free energy of that defect is finite, whereas its

vanishing causes proliferation of energetically costless domain boundaries.

In particular, the thermal behaviour of the single step free energy, called nt(1)
by den Nijs, is noteworthy, since above the S-M-I line it may be decomposed into
two terms, nf and n%(1). The former is the free energy of one Ising-Bloch wall
(i.e. a step on the sc(100) surface), finite in the RSOS flat phase and zero every-
where else. The latter represents the additional free energy due to the presence
of “wrong” (i.e meither 5 nor 6) vertices on the backbone, induced through the
additional step imposed by the boundary conditions. It is nonzero only when the
backbone exists in its smooth phase (i.e. in the BCSOS flat and DOF phases),
vanishes at the roughening of the six vertex model, but also on the preroughening
line where the backbone disappears. Thus, if one starts at low temperature in the
RSOS flat phase where n7(1) is finite because n¥ is finite, by raising the temper-
ature entropic contributions cause 7§ (and consequently nT(1)) to vanish. The
preroughening line is being crossed. At this point n¥(1) is switched on due to the
creation of the backbone of the DOF phase and 7 (1) assumes again finite values,
until it definitely vanishes at the roughening temperature, where 77?(1) =0.

The non monotonic behaviour of 74(1) implies a maximum in this term as a
function of temperature between Tpr and Tg, which can be explained with the
presence of two competing effects. By increasing the temperature above Tpg, the
average lattice constant of the backbone decreases (the backbone net thickens),
implying an increase in the density of “wrong” vertices induced by an additional
step. On the other hand, by increasing T the free energy n;(l) decreases on
a lattice with fixed average density, due to the usual contribution of the mean-
der entropy. The preroughening line has thus been identified numerically as the
threshold where ¥ vanishes and 7 (1) becomes finite.

In a subsequent work, den Nijs['19  also showed that the inclu-
sion of a hard-core attraction between antiparallel steps of the form
Ly Y mry 6 (|A(R) — h(R')| — 1) modifies the phase diagram of fig 3.1. By taking
for example L = Ly = %, for large L the lines L-P and M-I merge in a line cor-
responding to a first order transition from the RSOS flat phase to reconstructed

flat phase. The resulting phase diagram is shown in fig. 3.2.

Together with Rommelse, den Nijs showed numerically that the critical ex-
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Figure 3.2. Phase diagram of Hamiltonian (3.1) with attraction between antiparallel steps.
The dash-dotted lines represent characteristic experimental paths. From ref. [119].

ponents at point P along the PR line in fig. 3.2 (in the limit L, — o0) do not
belong to the Kosterlitz-Thouless universality class. This result suggests that the
preroughening line has continuously varying critical ezponents, i.e. changing with
the model’s couplings. This prediction is confirmed by a renormalization group
analysis of a continuous model presented in a successive paper (119,

Finally it is noteworthy to mention that den Nijs and Rommelse propose that
the preroughening transition can be detected by means of scattering experiments.
They showed that the coherent part of the specular peak in antiphase (i.e. the
peak (00 m/a.) in the notation of Chapter 1) is expected to vanish in the DOF
phase, while the incoherent part has a Lorentian lineshape and diverges as a power-
law at the roughening transition. As shown in Chapter 2, however, up to now no

conclusive evidence of a preroughening transition has been found.
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3.2 Scenarios for the reconstructed surfaces:

the Bernasconi analysis

In Chapter 2 most experimental results have shown that for Au (and probably
for Pt too) two distinct phase transitions occur on the (110) surface. Yet, not
much attention has been payed till now to the structure of the deconstructed but
flat phase in between. Bernasconi (118] provides a deep insight into this phase
by proposing the study of two different order parameters, already introduced (121]
but not fully understood in all the implications which follow from their different
behaviour. The first is a deconstruction (or reconstruction) order parameter, Pax1,
which vanishes at the deconstruction temperature, while the second might be called
P,y and determines which of the two sublattices of fcc(110), the black (even
height variables) or white (odd height variables) corresponds to the atoms in the
top layer. The exact definitions in terms of lattice size heights will be given at the
end of Chapter 4 (these do not coincide exactly with those provided in ref. [118],
but do embody the same physics and critical behaviour).

The (2 x 1) reconstructed phase shows four equivalent ground states (see also
Section 4.6), which can be labeled by four different values of an angular variable
g, corresponding to the “colour” of the atoms on the top layer and to the parity
of the missing row positions: in short, § = 0 () means black atoms on top with
even (odd) parity of the missing rows, § = & /2 white atoms on top instead.

A step on the surface is a boundary between two (2 x 1) terraces at different
height levels, with different sublattice on top rows and opposite sign of Py
Across a (1 x 1) step the phase 6 changes by /2, while across a (3 x 1) step it
changes by —7/2. A domain wall is instead a defect dividing two regions of the
surface with the same height (same value of Ppg/y, l.e. same sublattice on top
rows) but with Py« of opposite sign (different parity of the missing rows): the
change in 8 is 0 or 7. A domain wall is then represented by a bound pair of steps
of opposite sign (up and down) with zero or finite width.

Step and domain wall free energies can be calculated, in general, by imposing
the required change of § as a boundary condition.

A joint study of Pyx1 and Pp/yw can discriminate between two different pos-
sible structures of the flat phase. Since there are two order parameters, one can

imagine that the vanishing of Pax: and Pp,w independently locates two phase
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transitions at temperature Tp and Ty respectively. These two transitions can

differ or they can coincide, and this possibility opens up the following scenarios:

(i)-(ii) | The deconstruction transition is driven by proliferation of domain walls

with zero or finite width (i.e. a (1x1)(@)or(3x1) (i) compact domain wall, or
an extended (1 x 1) or (3 x 1) domain wall (iii) with a fixed average width l) due
to the vanishing of the corresponding free energy. In particular, in scenario (i)
the mean extension of the wall [,y has non critical behaviour near Tp (while it can
broaden above Tp). This mechanism destroys the reconstruction order parameter
Pyxi at Tp, but Pp/w is still finite above Tp. Tp < T’ /v, because inside the
reconstructed domains only the two ground states with the same sublattice, say
the black (even) one, on the top rows positions are involved. Bernasconi proposes
for this the name of Deconstructed Even Flat (DEF) phase.

(iv) | The free energy of a step vanishes at Tp but the surface is stabilized in a
DOF phase, similar to the one proposed by Rommelse and den Nijs but realized
in this case within a (2x 1) reconstructed environment. Steps are no longer bound
together but have long range up-down-up-down order, and the surface is stil] flat
on average. All the four missing row ground states are involved locally in the
reconstructed domains and with the same probability, implying the vanishing of
the Pg /w order parameter, as well as of Pax1: consequently Tp = Is/w. The
roughening transition at 7Tp > Tp coincides with the vanishing of the long range

up-down-up-down order.

There is only one phase transition where the surface simultaneously roughens
and deconstructs, 7Tp = Tg/w = Tg.

It is worth remarking that, whatever the deconstruction mechanism s, since rough-
ening implies a proliferation of steps and since across two adjacent steps (either
parallel or antiparallel) the reconstruction order parameter changes sign, the rough
surface is in some sense deconstructed, i.e. it has Pax1 = 0. The roughening
transition always implies a deconstruction transition, if the latter does not occur
before, i.e. Tp < Tr. The same holds for Pp/w too, since in the rough phase
atoms at each level have the same probability to be on top of the surface (the
interfacial width diverges), so that there is no predominance of one sublattice and

consequently 75 w < Th.
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Scenarios (i)-(iii) and (iv) for the deconstruction transition differ substantially.
In the first case a couple of steps is bound to form a domain wall with finite size
l,, while the size of the domain between two walls scales as the reconstruction
correlation length €21 (diverging at Tp). In the DOF phase, on the other hand,
between disconnected reconstruction domains an infinite fluctuating backbone of
steps must exist in order to destroy the long range reconstruction order. This
backbone forms a lattice which is not rigid but fluctuates in its shape and number
of bonds. Below Tp the backbone disintegrates and only disconnected terraces

survive, restoring the long range reconstruction order.

The difference between the two possible deconstructed phases may lead to
different critical behaviour for the transitions at Tp and Tg/w- In the DEF phase
of scenarios (i)-(iii) mainly one sublattice occupies top rows positions, thus recon-
structed domains involve just two of the four degenerate missing Tow ground states
while the other two are only assumed locally inside the domain walls. Symmetry
considerations by Bak (34] apply to this case, which considers disordering of only
the outermost layer, since the order parameter Pyx1 averages to zero for T > Ip
by assuming mainly two values at Tp, (i.e. § =0, 7, or §==+%). It can therefore
be considered an Ising variable, and the deconstruction transition is expected to

lie in the the 2D Ising universality class.
On the contrary, the DOF phase of scenario (iv) is formed by reconstructed

domains of all the four missing row ground states, and no a priori argument is

seen to predict the universality class of the deconstruction transition in this case.

3.2.1 The parity restoring transition

An open problem is represented by the behaviour of the Pp,yv order parameter
between Tp and Tg in scenarios (Q)-(v). Hly < £3x1 above Tp and up to Tr,
the domain wall width does not widen significantly and surface roughening is pro-
duced by a proliferation of “individual” steps thought of as independent entities
with respect to the bound steps which form the domain walls. Depending on the
nature of step-step interaction, one can contemplate two further possibilities. One
is the case where the step free energy vanishes only at the roughening transition

and Tp/w = Tr. The second, new possibility, is given by the vanishing of the
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single step free energy vanishing at T's/w < Tr. Above Tp /vy steps form a perco-
lating network on the surface, superimposed to another network of domain walls
with finite width [, which has already caused the vanishing of the (2 x 1) order
parameter. However, long range up-down-up-down order of steps still guarantees
the flatness of the surface on average. Therefore in this case T'g /w locates a new
“parity restoring” transition from a DEF to a DOF phase. Once in the DOF
phase, the roughening transition will occur at higher temperatures, following the
same mechanism discussed in scenario (iv). In summary, three phase transitions
are predicted at temperatures Tp < Tg/w < Tg, corresponding to the sequence
of phases RECONSTRUCTED (2 x 1) — DEF — DOF — ROUGH. This can

happen, of course, only if scenarios (i)-(iv) are verified.

3.2.2 Experiments and scenarios for Au(110)

All that was proposed in the preceeding Sections is not just mere speculation, since
every type of transition leaves a trace in the behaviour of some scattering peak. In
Chapters 1 and 2 it has already been shown how the reconstruction peaks vanish
at Tp and how the shape of the integer peaks, decomposed into a coherent and
an incoherent part, changes at the roughening transition. Bernasconi in addition
proposes that the behaviour of the specular peak in antiphase, (007 /a;) in surface
notation, can be used to discriminate the two different structures of the decon-
structed surface previously discussed. It is been well-known [°*! that the antiphase
peak intensity vanishés at preroughening and inside the DOF phase, when Pjg /W
is zero. This particular peak, often measured in the scattering experiments, cannot
unfortunately be reproduced by the atom scattering formula eq. (1.17), because
with the choice (1.18) of the shadowing factors, it is exactly zero in the (2 x 1)
reconstructed phase. However, with a different choice of the a’s, for example in-
cluding only contributions of the top atoms in the scattering intensity (o = 1 if
the atom has four nearest neighbours at a lower height, 0 otherwise), Bernasconi
shows that the coherent part of the specular peak in antiphase is proportional to
PZ e (see Appendix for an exact derivation of this relation). Thus his analysis
can be used to locate Ty, while a discontinuous increase of its width (related

to {p/w which is approximately the mean extension of the grid of the fluctuating
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step backbone) is expected at Tz /vy

In addition, as previously mentioned, from the analysis of the sign and the
temperature behaviour of the shift of the half integer order peak, one can obtain
information on the type and concentration of defects, which provides insight into
the nature of the disordering process. By assuming a Markovian distribution of
steps on a 2x1 surface, Fenter and Lul™! obtain an oscillation of the shift as
a function of g,, with its maximum at ¢, = 0, where it goes approximately as
the inverse of the (2 x 1) domain width. If this condition might be replaced,
as Bernasconi assumes, by the requisite that the two sublattices have the same
probability of occupying top row positions (as is the case for scenarios (iv) and

(64 do, a linear increase of the

(v)), it is possible to predict, as Robinson et al.
shift with temperature above Tp. In scenarios (1)-(iii) instead, the shift behaves
quadratically with T' — Tp, as shown by Villain and Vilfan ™22, Finally, it is
worth noticing that the shift if zero if (3 x 1) and (1 x 1) steps are present on the

surface with equal abundance (zero chirality).

From the simultaneous analysis of the integer and half integer order peaks it
is therefore possible to discriminate between the different scenarios proposed.

In scenarios (i)-(iii) the half integer Bragg peaks vanishes at Tp and the shift
goes quadratically with T'— Tp. Above Tp the specular peak in antiphase still has
a delta function term since Pp - is finite. If T/ # Tr one expects that above
T ,w this delta function term disappears, while the incoherent part is still finite,
and a large increase of the peak width is expected (due to the presence of steps).
At Tg the incoherent scattering intensity diverges as a power law near the Bragg
peaks. Conversely, if Tg/w = T'r the delta function term in the antiphase specular
peak remains finite until 7' = T where the incoherent peak shape becomes a power

law.

In scenario (iv) the coherent part of both the reconstruction peak and the
antiphase specular peak vanish at Tp = Tp/y. A noticeable broadening of the
specular peak is expected at Tp, but only at Tr the incoherent part of the peak
diverges as a power law. The half integer order peak shift behaves linearly with
temperature above I'p.

Finally, scenario (v) can be distinguished from the preceeding one by the
analysis of the power law of the integer peaks, though none of the theoretical
models studied up to now has predicted the height-height correlation function to
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diverge logarithmically as in a Kosterlitz-Thouless transition even for this unusual
case. Should this not be the case, one could still discriminate between scenario (iv)
and (v) by noticing that at T,y only the coherent peak at g. = 7/a. vanishes,
while at the roughening transition the coherent part of the peaks vanishes for every
value of ¢,.

With this in mind, it is now possible to analyze the different experiments to
assign to Au and Pt(110) a position in one of the proposed scenarios.

The first experiments by Robinson et al. (6% seem to clearly open for Pt(110)
a simultaneous deconstruction and roughening transition (scenario (v)). Nonethe-
less, if the discovery of two different tramsition temperatures is confirmed [77],
or even if ref. [64] is not seen to provide enough evidence for the statement
“I'p = TR”, a scenario of type (iv) may open too, due to the linear increase of the
shift with temperature, the sign of which is however a clear indication of a pro-
liferation of (3 x 1) steps. Unfortunately, experimental analysis on integer peaks,
necessary to discriminate between scenario (iv) and (v), is not available.

On the other hand, the different values of the deconstruction and roughening
temperatures measured on Au(110) definitely rule out scenario (v). Scenario (iv)
is at first not excluded by the absence of a relevant shift in the half integer order
peaks (it could be explained also within the DOF phase invoking small chirality,
ie. a small difference in the energetic cost for (1 x 1) and (3 x 1) steps). But it
is independently ruled out by the absence of broadening of the antiphase specular
peak at Tp as seen by Sprésser et al. [°®l. Though the possibility of a third
phase transition between deconstruction and roughening could still materialize on
Au(110) and available experimental data are not stringent enough to exclude or
to take it into account, most probably scenarios (i)-(iii) are good candidates for
Au(110). A predominance of (3 x 1) steps on the (1 x 1) ones is expected, as
observed for example by the sign of the shift of the reconstruction peak above T
detected by Keane et al. [*9.

3.3 The model of Levi and Touzani

Levi and Touzani*?*! propose a model starting form a simple but interesting idea,
that of an interacting six-vertex model but, due to the difficulty of monitoring the
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deconstruction transition by a transfer matrix finite-size scaling approach, they
just look at the roughening transition. Hence the model may be included with

difficulty in one of the scenarios proposed by Bernasconi.

The starting point of Levi and Touzani is the six vertex model in its anisotropic
version, as already proposed by Jayaprakash and Saam (20,21,22] for the study of
the (110) face of fcc crystals. The antiferroelectric phase (i.e. the unreconstructed
surface) corresponds to the inequality €5 < €1 < €3 for the vertex energies, whereas
the missing-row structure is made of an ordered array of rows of vertices 1, 5, 2
and 6. Vertices 1 form the ascending slopes, 5 the ridges, 2 the descending slopes
and 6 the valleys, so that no two adjacent vertices belong to the same type. Thus,
it would look natural at first to increase the density of vertices 1 and 2 by changing
the order of the inequality to €; < €5 < €3. Unfortunately, this change brings the
six vertex model to the ferroelectric phase, the structure of which is disappointingly
simple: up to the transition all vertices are type 2 (or 1, which is the same). This
situation does not correspond to reconstruction but to a constant descent in the
surface with a slope a = arccos \/§7§ = 35°16/, i.e. to an effective replacement
of the (110) surface by a (111) surface. In order to really obtain a missing row
ground state, the six vertex model has to be modified, and it can be done mainly
in three ways: 1) by introducing, along with the energy inequality e, < ¢e5 < €3, 2
repulsive interaction €17 between adjacent vertices of the same type to discourage
the creation of a (111) facet; 2) by still considering €5 < €1 < €3, which favours
the unreconstructed (110) surface, but encouraging reconstruction by introducing
a repulsive energy €56 between adjacent vertices of type 5 and 6; 3) by introducing

both €17 and €56 (e.g. of the same strength).

However, in order to perform a transfer matrix finite-size scaling, a drastic
simplification must be employed, that is to consider the interactions between ver-
tices in a direction only, and to put them to zero in the other. All the three models
give qualitatively the same results, in terms of the parameter v = (e1 — €5)/¢€int
(where €iny = €11 in model 1, €iny = €56 in models 2 and 3). They find that for
very low values of v the ground state forms a faceted (111)-like phase (a “macro-
scopic sawtooth”), then for increasing v a (2 x 1) reconstructed phase, and finally
a (1 x 1) unreconstructed phase. They are able to locate the roughening transi-
tion temperature of their models by looking at the vanishing of a quantity strictly

connected to the step free energy, drawing in the end a phase diagram where a



THE MODELS OF JUG, TOSATTI AND KOHANOFF 69

smooth phase (of one of the three forms listed above, according to the value of 7)
occurs at low temperature and a rough one at higher temperature.

The results obtained contrast the existence of other phase transitions like an
order-disorder transition occurring at intermediate temperatures from the (2x1)
phase to a modulated one in the presence of higher order reconstructions or directly
to a rough phase. This is probably just due to the fact that such transition has
simply not been looked for, due to the difficulties of defining suitable quantities to
monitor in a transfer matrix formalism. In the model of Levi and Touzani, however,

the roughening transition remains in the Kosterlitz-Thouless universality class.

3.4 The models of Jug, Tosatti and Kohanoff

Jug and Tosatti propose a model %4 successively studied with Kohanoff[125.:126]
based on a SOS description of the surface. The black and white sublattices, how-
ever, are not treated on the same ground: a slight (unphysical) asymmetry is
introduced by considering on them two different sets of integer height variables,

{hi} and {;}, in an Hamiltonian of the form
H/T =) J[(hi = 1)l = higs) + (I — hipa) (it — Lips)]+
+ D1 = 1)l = hary) + (I — By ) (higy — Ly )]+ (3.3)

=B (ki = hagx)? + AH(a)/]

where

AH(a)/J =(1+a) Z[(hi =) + (I = hisy)?]

1

is an ordinary nearest neighbours SOS contribution needed in order to fix J as
the effective step energy cost in the y direction and impose the +1 n. n. height
jumps. Here, as usual, x and y are respectively the soft and hard (missing-row)

directions and % and ¥ their unit vectors. The first two terms in eq. (3.3) induce
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at sufficiently low temperatures (so that the height jumps between two nearest
neighbour sites s; = h; — [; are constrained to be +1), a ferromagnetic ordering
in the “spins” s;, corresponding to the ordered (1 x 1) structure. The parameter
a (0 < a < 1) measures the local anisotropy in the x vs y directions. The next
term corresponds to next-nearest-neighbour interactions, inducing a more stable

missing row profile in the x direction for 8 > 0.

Ground state energy considerations show that in this model E(;, ;) < By
for g < %a. Hence, at zero temperature it behaves like an Anisotropic Next
Nearest Neighbour Ising (ANNNI) model (127,128] ip terms of the spins s;, in that
there is a switch from the ferromagnetic (1 x 1) phase to the (++ ——) (2 x1)
phase as a function of the parameter £ = 4 — 2a. On the other hand, the
true symmetry of the model is that of an SOS model, so it is likely to exhibit a
roughening transition. The model thus has all the needed properties to describe
the noble metal (110) surfaces, together with the presence of higher energy, higher

order reconstructions.

Two possible solutions can be attempted. The first is an analytic low-
temperature investigation[124] of the properties of the model near the multiphase
point at £ = T = 0, where both (2x 1) and (1x 1) phases coexist with all the recon-
structed (n x 1) phases, with n = 3,4,..., which are all degenerate ground states
provided only the first-layer n — 1 rows are missing (these structures are called
“shallow reconstructions”). The different (actually co) domain walls between all

these structures are then considered within a free-fermion approximation, as done

by Villain and Bak (127] for the 2D ANNNI model.

The second possibility is a transfer-matrix finite-size scaling [12%:126]

performed
on Hamiltonian (3.3) with the additional (six vertex) constraint of +1 height jumps

between nearest neighbours heights (restricted Jug-Tosatti model).

Both approaches agree in predicting Tc < Tk, Tc being the deconstruction
temperature, T the roughening one. However, Tc now strictly denotes a pseudo-
transition, characterised by a non-divergent peak in the heat capacity, while Tr
denotes a transition of the Kosterlitz-Thouless type. Between the two transitions
a sequence of disordered incommensurate phases, arising from the presence of
the shallow reconstruction states degenerate at T' = 0, is present as a precursor
to roughening. Physically, the lower transition at T should correspond to a

proliferation of defects in the missing-row structure, while it is only at Tr that
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these defects become unbound to form steps.

The deconstructed flat phase and the overall deconstruction mechanism may
be attributed to a scenario of type (ii), that is of compact domain walls, since no
terraces with long range up-down order are present on the surface. Nevertheless,
the results of the calculation lead to enlarge the type of dephasing defects from (3 x
1) to higher reconstruction order ones, which appear as grooves on the flat surface,

running along the [110] direction (apart form kinks and other local defects).

Noticeably enough, this model is able to predict two transitions, one of order-
disorder character and a roughening transition at a higher temperature, also for fec
(110) surfaces which do not reconstruct. No detailed analysis has been performed
for this disordering transition, but it presumably may lie in some preroughening
class. Then, precisely at the point where reconstruction sets in (x = 0), the
disordering temperature appears to vanish, unlike the roughening one, so that not
only the physics of, say, Au(110) , but also that of Cu(110) may be accounted for
by the Jug-Tosatti model, by employing for the latter a small negative value of &,
which ensures a (1 x 1) phase at low temperature. For x < 0 (unreconstructed

surfaces) T presents variable critical exponents.

3.5 The models of Villain and Vilfan

Scenarios (i) and (ii) have been studied by Villain and Vilfan [129:122] They cal-
culate the free energy of steps and walls, not by solving a bulk problem defined
by suitably chosen boundary conditions, but just by considering the configuration
entropy of the (one dimensional) interface. This procedure was discussed previ-
ously by E.Muller-Hartmann and Zittartz['*°!, who showed that for the 2D Ising
model the interface free energy obtained from the solution of the bulk problem is
equal to the free energy obtained by summing over all the configurations of the
interface, supposed to traverse the lattice without bending backwards (i.e. over-
hangs are forbidden). This may happen due to a fortuitous cancellation of errors.
Nonetheless the method provides a valuable approximation which is assumed by
Villain and Vilfan to produce a correct evaluation of the critical temperature also
for systems different from the 2D Ising model. In this procedure step-step interac-

tion is neglected. The transition temperature can be obtained as the temperature
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above which the free energy of the interface vanishes. The infinitely long defects
in figure 3.3 are ground state configurations of the interface, and at finite temper-
ature are interrupted by kinks. The interface jumps to neighbouring atomic rows
through intermediate excited states. Figure 3.4 describes a possible configuration

with intermediate excited states for the meandering of a 4 x 1 step.

Villain and Vilfan assign energies per unit length for each of the infinitely
extended configurations of fig. 3.3 with respect to the ground state, and another
value to the breaking of a bond along [110]. Since direct transition between ground
state in neighboring rows requires the simultaneous breaking of several bonds along
[110], their contribution to the partition function of the interface is neglected by
Villain and Vilfan. Using a saddle point approximation for the interface partition
function, they obtain expressions for the critical temperatures, as a function of the
defects’ energy of figure 3.3. The vanishing of step free energies provides values for
the roughening temperature, while that of a domain wall yields the deconstruction

temperature. This transition is therefore likely to occur in scenarios (i)-(iii).

It is of great importance to note that Tp can be lower than T even if the
energy of a compact domain wall is equal or higher than twice the energy of a step.
This occurs, provided that the intermediate excited states for the meandering of
a step have energy sufficiently higher than the intermediate excited states of the
domain wall.

After assigning a hierarchy between the energies of the defects (v, €, 1, 6, etc.),
the lowest temperature amongst those obtained by locating the vanishing of defect
free energies is really meaningful. If it corresponds to the vanishing of a domain
wall, either of (1 x 1) or (3 x 1) type, one argues that a deconstruction transition
occurs before roughening, while a roughening inducing deconstruction occurs if a

step free energy vanishes first.

Vilfan and Villain (122! also analysed scenario (iii) for (3x 1) extended domain
walls. They calculate the partition function of a system composed by two (3x1)
steps with opposite sign. Each step is assumed to traverse the surface in the x
direction without bending backwards. The pair is described for each value of x by
the state |m,n), where m and n are the steps coordinates; the “motion” of the pair
in the x direction is described within the transfer matrix formalism. The transfer
matrix is then an operator on the states |m,n), and its elements are expressed as

a function of the energies of defects of figure 3.3. By increasing the temperature
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Figure 3.3. Side view of 2x1 phase and possible elementary excitations. Ideal structure (a).
The arrows show the direction of surface-atoms relaxation. Defects configurations (b)-(p).

Greek letters denote creation energy per atom along [110]. From ref. [118].
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Figure 3.4. Intermediate excited states for the meandering of a 4x1. Greek letters denote
the energy of the defects. From ref. [118].

there are two effects. On the one hand, a bound pair of steps becomes unstable
at a certain temperature where the largest eigenvalue corresponds to a couple of
unbound steps. On the other hand the wall iree energy decreases by increasing
temperature and could vanish before the unbinding of the pair occurs. In the latter
case an Ising deconstruction transition is expected before the roughening transition
identified with the unbinding of the steps. As in the former analysis of compact
domain walls, the free energy of an interface strongly depends on the energies of

the intermediate excited states necessary for the meandering. The condition for
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Figure 3.5. Phase diagrams of the model by Villain and Vilfan for two different /%, ratios.
Solid and dashed lines refer to different choices of the defects energies. Solid: for &'=6=oco;
dashed lines are for e'=2¢,6=3¢'/2. R, I and W are the roughening, Ising, and wetting
(roughening) critical lines, respectively. FR, FD and DR are the Flat Reconstructed, Flat
Disordered and Disordered Rough phases respectively. The arrow indicates the case e=n/2.
The figure is taken from ref. [122].

the occurrence of an Ising deconstruction transition before roughening is thus a
complicate algebraic expression involving most of the defects’ energy parameters.
The binding of the steps is not due to long range interactions, since there are
only short range interactions (7 < 2¢ in figure 3.3). However the larger meander
entropy of the compact (3 x 1) domain wall with respect to the (3 x 1) step, which
favours the crossing of the two steps, gives rise to an effective long-range entropic
attraction. ,

The phase diagram proposed by Villain and Vilfan [122] ig depicted in fig.
3.5 for two possible choices of the energies of intermediate excited states. The
separation between Tp and Tz widens by decreasing the energy of a (3x1) compact
domain wall with respect to the (3 x 1) step, but still 7 can be lower than Tr
even if 7 = 2¢, due to different energies of the intermediate excited states for the
meandering of a wall and a step. In other words antiparallel steps can be bound
even if there is no energetic attraction between them (pure entropic attraction). In
the analysis by Villain and Vilfan the condition Tp < Tgvw = Tg is assumed. The

model is not able to tell what happens when [, increasing monotonically above
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Tp, starts to compete with the reconstruction correlation length. Furthermore the
analysis of the critical behaviour at roughening is beyond the scope of the model
itself. An important message which comes out from the investigation of Villain
and Vilfan is that, by tuning the energy of intermediate excited states, it should
be possible to move from a scenario where two phase transitions are predicted to

a scenario where only the roughening transition survives.

3.6 The four-state clock step model of den Nijs

An alternative model for the deconstruction and roughening described in scenarios
(i)-(iil) has been recently proposed by den Nijs [120] | Tt contemplates also a possible
description of scenario (v), i.e. of a simultaneous deconstruction and roughening,
but still with critical behaviour of the reconstruction order parameter in the 2D
Ising universality class. Instead of considering Hamiltonians, such as an SOS
model, den Nijs prefers a “coarse grained” description of the system. He defines
a rectangular lattice oriented along the grooves of the missing rows. Its lattice
constant is large compared to the missing row unit cell, but small compared to
the reconstruction correlation length. He associates to each unit cell on the lattice
a height and a four-state variable § = 0, +7/2, m which describes the phase of
the (2 x 1) order parameter in the four degenerate ground states. The boundary
between the unit cells can be a wall or a step, depending on the value of df. He
introduces a Hamiltonian with interactions between cells, assigning an energy to
the boundary along [001] which represents steps and wall energies, and energies
to the boundaries along [110] which represent kink energies. Notice that in this
model the wall has zero size on the coarse grained scale, being the boundary

between adjacent cells. He considers the following partition function:

7 - }: eznm[zfm co8(0n,m—0n,m41—2)FQm c08(26n,m ~20n, m41)]

{On,m}
e}:nym[Kn c08(Bn,m—0nt1,m)FQn c08(20n, m—20n11,m)] (3.4)
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This is a four-state clock model, where K,,, Q. and A assign steps and wall
energies. A represents the chirality, i.e. the energy difference between (1x1)and
(3 x 1) steps. K,, and Q,, represent the energies of the kinks. Every configuration
of the § variables is weighted by a six vertex (6V) model which includes the height
degrees of freedom. The six vertex arrows represent the change in height at the
steps. The vertices are defined on the annealed fluctuating lattice, formed by the
df = +3 boundaries of the clock model (similar to the DOF). A couple of parallel
and antiparallel steps divide two surface regions with the same configuration of
the ¢ variables, thus having the same energy in the clock model (Hamiltonian (3.4)
depends only on 8, not on k). Only the step-step hard-core interaction, assigned
by the six vertex model, is sensitive to the additional height degrees of freedom.
L in (3.4) represents the parameter of the six vertex model, favoring up-down-up

step order.

The model is quite complex, and up to now only the simplest case has been
examined via the analysis of interface free energies, in finite-size transfer matrix
framework. If 7(df,dh) represents the free energy of the interface introduced
through the boundary condition df and dh along [001], the vanishing of 7(,0)
(free energy of a compact domain wall) indicates the disappearance of long range
reconstruction order, while the the vanishing of 7(0,2) (free energy of a couple
of parallel steps) indicates surface roughening. One can then simplify the model,
assuming zero chirality, isotropic interactions between cells along [110] and [001],
and neglect step-step interactions (L = 0). Only two parameters survive: the wall
energy Fy, and the step energy E,. The phase diagram as determined by den Nijs
is shown in fig. 3.6.

For £, < 2E, there is an Ising deconstruction transition followed by a
Kosterlitz-Thouless roughening transition, while for E,, > 2E, the deconstruction
and roughening lines merge together. In the first case one finds Ip < Tg/w =Tr.
The wall width cannot widen above Tp, since it has zero dimension. When
Ey > 2E;, the n(m,0) interface is reasonably composed by a couple of independent
steps in the simplified model analysed numerically. Neglecting step-step interac-
tion (as the model does) the free energies of a couple of parallel or antiparallel
steps is expected to vanish simultaneously. This should explain naively why the
critical lines n(m,0) = 0 and 7(0,2) = 0 merge for E, > 2E,. Moreover, den
Nijs provides some evidences that a small, but finite chirality does not change the
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Figure 3.6. Phase diagram of the four-state chiral clock-step model with R=Ew /Es, and
temperature T in units of Es. The figure is taken from ref. [120].

critical properties. Hence, the experimental data of Robinson et al. (64 on Pt(110)
can be consistent with a simultaneous deconstruction and roughening. Information
on height-height correlation function are not available from the numerical results
presented. This information is necessary to predict the behaviour of integer peaks
at roughening.

The phase diagram of den Nijs (fig. 3.6) and of Villain and Vilfan (fig. 3.5)
are indeed very similar. The position of the multicritical point N, occurring at
Eyw = 2Es in fig. 3.6, is actually dependent on the energies of intermediate
excited states for the meandering of walls and steps, as shown in the preceeding
Section. This effect should be recovered in the general model (3.4) of den Nijs, by
introducing the anisotropy of the surface, i.e. Qn # Qm and K, # Kp, in (3.4).

The deconstructed phase in fig 3.6 is actually a DEF phase; den Nijs does
not discuss the role of the Pg/y- order parameter in model (3.4), neither analyses
the role of vertex energies in the phase diagram of the four-state clock-step model.
Following up on the arguments by Rommelse and den Nijs (9] Bernasconi(1®] pre-
dicts that for a sufficiently large value of L in (3.4) the KT line could split into a

preroughening line, where Pp/yy- vanishes, plus a true roughening line correspond-
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ing to the roughening of the six vertex model, suggesting in this way that the model
(3.4) with L # 0 could be used to analyze the properties of a third novel phase
transition between deconstruction and roughening (the parity-restoring transition,
with Tp < TB/W’ < Tr).

3.7 The strong chirality limit and the global phase diagram

In the previous section results for the zero chirality limit of the model Hamil-
tonian (3.4) have been presented. On the opposite limit of infinite chirality the
problem can be mapped onto a system of quantum fermions in one dimension, as
first pointed out by Villain and Vilfan [*31. In this section results obtained from
this mapping by Villain and Vilfan and recently by Balents and Kardar[132] are
presented. Finally the global phase diagram for all values of chirality, as recently
proposed by den Njis'33] is sketched.

In the limit of strong chirality only one type of step is considered. Neglecting
terraces of finite dimensions on the surface, the configurations are composed of
lines oscillating along the [110] direction without overhangs and crossing the whole
surface from the top to bottom. There are two types of lines, corresponding to up
and down steps. Villain and Vilfan assumed that lines of the same sign cannot
cross, while lines of opposite sign can cross with some crossing energy c, which can
be positive, negative or zero. For ¢ < 0 a pair of steps forms a bound state at T =
0. The situation is analogous to the models for commensurate-incommensurate
transitions (CIT), the only essential difference being the number of species allowed
for each line. The statistical mechanics of directed lines in two dimension can be
mapped into the quantum mechanics of fermions in one dimension, and since in
this case there are two types of steps the fermion are spin-1/2 particles. The
Hamiltonian which describes this situation corresponds to the one dimensional
Hubbard model, which has been exactly solved by Lieb and Wu(13¥, For ¢ = 0,
and ¢ = co the solution is straightforward. It has been discussed by Villain and
Vilfan 1311, A Pokrovsky-Talapov (PT) roughening transition is expected at a
temperature Ty assigned by the vanishing of the free energy of a single step. For
T' < Tr the density of steps is zero, but it is finite above, and the surface is rough

but it is a “floating” or “incommensurate” solid with respect to reconstruction
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Figure 3.7. Topology of two allowed (c,d), and two forbidden (a,b) configurations of steps
in the 2x1 phase. Arrows denote the sign of the steps. From ref. [118].

order. This means that Pax1 = 0, but the reconstruction correlation function
decays as a power law, since the transition is maximally anisotropic, being driven
by a proliferation of infinitely long steps in one direction only.

Very recently Balents and Kardar 132] applied the full power of the fermionic
mapping of the problem. They deduced the full phase diagram for all values of
the interaction energy c and they studied the stability of the system with respect
to the proliferation of the closed islands of fig. 3.7(c,d), by including in the model
the possibility of a simultaneous annihilation and creation of four fermions with
total spin zero.

In fact, as previously observed by Villain and Vilfan 3! when walking on the
reconstructed surface along the [001] direction, the order parameter Payx1 changes
sign after crossing two steps. Therefore simple closed terraces (fig. 3.7(b)) are
forbidden and the simplest allowed closed terrace (fig. 3.7(c)) or closed recon-
struction domain (fig. 3.7(d)) are made up by two pairs of simple steps which

merge to a point (where four fermionic lines annihilate).
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Figure 3.8. Phase diagram of the model by Balents and Kardar without finite islands (a)
and in the presence of finite islands (b). From ref. [132).

Balents and Kardar, starting form the continuum version of the Hubbard
Hamiltonian, find out a solution in the limit of weak coupling (n/c > 1, n the mean
step density). In the strong coupling limit instead they applied a renormalization
group analysis, and draw a phase diagram with a flat ordered (FO) phase in
which no steps are present, a flat incommensurate (FI) phase in which up and
down steps are bound to form walls and a rough incommensurate phase (RI). In
the FI and RI phases the surface is deconstructed, but the correlation function
decays as a power law. In the rough phase the height-height correlation function
diverges logarithmically, as in the conventional SOS models. The FI-FO and RI-FO
transitions are both in the PT universality class, while the RI-FI boundary is an
infinite order phase transition, different from the KT universality class. Balents
and Kardar showed that choices for the step-step interaction distinct from the
contact interaction typical of the Hubbard model can assign a KT universality
class to the RI-FI boundary. The PT universality class of the deconstruction and
roughening transitions is due to the extreme anisotropy of the system of travelling
lines.

The introduction of finite islands partly regains the spatial isotropy and can
modify the critical behaviour. In fact, Balents and Kardar showed that for ¢ < 0
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the system is unstable with respect to islands formation, while it is stable for large
positive ¢. The instability for ¢ < 0 is easy to understand: in the regime the
fermion lines are paired up into bound states of up and down steps. As those
bound states act effectively as single lines, the requirement for four fermion lines
meeting at a vertex in fig. 3.7(c) reduces to only two bound pairs intersecting.
This is a much probable event. The stability for large positive ¢ is also easily
understood, as in this case the lines are completely mutually avoiding. The phase
diagram proposed by Balents and Kardar, modified by the presence of islands is
reported in fig. 3.8(b). For the (2x 1) case, the FO-FI transition is now replaced in
fig. 3.8(b) by a conventional deconstruction transition into a flat disordered phase
(FD) where finite islands proliferate and where the recomstruction correlations
decays exponentially. The FD is a DEF phase in the language of the preceed-
ing Sections. The proliferation of finite islands modify the critical behaviour of
the deconstruction transition, which is now Ising-like as expected on a symmetry
ground for a systems of walls. Analogously the FI-RI transition is replaced by a
conventional KT roughening into a rough disordered (RD) phase with reconstruc-
tion correlation decaying still exponentially. For ¢ >> 1 the surface first undergoes
a PT transition into a rough phase with power law reconstruction correlations,
and at higher temperature the proliferation of finite terraces induces a transition
into the RD phase. Fig. 3.8(b) shows a boundary between the RD and the simple
FO phase. The existence of this boundary should imply the instability of the FO
phase with respect to island formation also for small positive c. Unfortunately,
this range of values of ¢ is outside the range of applicability of the renormalization
group approach with the inclusion of finite terraces. So the existence of the FO-
RD transition at infinite chirality is still an open problem. Moreover Balents and
Kardar show that if simple loops (fig. 3.7(b)) were permitted the system would be
unstable with respect to loop formation for all c. Actually, it is the condition of
infinite chirality that has frozen out the possibility for steps to turn backwards. If
one decreases the chirality, a step could turn backwards by changing from a (3 x 1)
step to a (1 x 1) step. Hence for zero chirality the simple closed terraces are fully
allowed and the results by Balents and Kardar imply that the PT roughening is
replaced by a roughening into the RD phase. This is in agreement with the results
of the 4-state clock-step model at zero chirality by den Njis.
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Very recently den Nijs[*3%] deduced a phase diagram for the 4-state clock step
model at infinite chirality which is essentially equal to fig. 3.8(b). In the limit of
infinite chirality the 4-state clock-step model can be mapped into the fermionic
problem previously discussed, including dislocations (i.e. finite islands). den Nijs
decouples the fermionic Hamiltonian into the sum of two terms. The phase diagram
of each single term can be deduced and the phase diagram of the full Hamiltonian
is described as the superposition of the phase diagrams of the single terms. The
result is equivalent to fig. 3.8(b), except for the boundary FO-RD which is absent
in the phase diagram proposed by den Nijs. The superposition of the two phase
diagram is an heuristic procedure and it does not exclude the existence of the
boundary FO-RD at infinite chirality proposed by Balents and Kardar. From the
topology of the phase diagram at infinite chirality, and from the phase diagram at
zero chirality in fig. 3.6, den Nijs sketched a global phase diagram for the 4-state
chiral clock-step model eq. (3.4), which is reported in fig. 3.9: A is the chirality,
R=FE,/E, and T is in unit of E,.

Three paths are distinguished by den Nijs on the phase diagram. Path 3
in fig. 3.9 describes the Ising-like deconstruction transition of scenarios (1)-(111)
and the subsequent KT roughening; the critical properties are not affected by the
chirality. Across the line marked as I the sequence and the nature of the phase
transitions change. Two paths may be distinguished, type 4a path and type 4b;
both describe a simultaneous deconstruction and roughening and correspond to
the FO-RI and FO-RD transitions discussed by Balents. The existence at low
chirality and the precise location of the critical line I are the major uncertainties
in the structure of the phase diagram in fig. 3.9. Path 4a corresponds to the
simultaneous deconstruction and roughening predicted by the 4-state clock-step
model at zero chirality: the correlations of the reconstruction order parameter
decay exponentially above Th = Tx and the shift of the reconstruction peaks is
expected to increase above T as approximately as |7 — Tg|. Along path 4b, at
strong chirality, the surface roughens via a Pokroski-Talapov transition leading to
an incommensurate solid with respect to the reconstruction order; the reconstruc-
tion peaks start to shift at the transition as T — Tgr|z. At higher temperature
the reconstruction degrees of freedom melt via a Kosterlitz-Thouless transition;
the correlation change from power law to exponential and the line shape of recon-

struction peaks consequently changes from power-law to Lorentzian. Scenario (v)
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Figure 3.9. Schematic structure of the full diagram of the 4-state chiral clock-step model of
den Nijs, with R=Ew /Es, A= chirality, and the temperature T measured in unit of the step
energy Eg. The figure is taken from ref. [133].

can be thus split in two scenarios, say (v) and (v’), corresponding to paths 4a and
4b in fig. 3.9.

In the global phase diagram there is still room for the critical line (Pp /W) =0.
This is expected to coincide with the roughening line, if step-step interaction 1s
neglected in Hamiltonian (3.4), but in real system (and in the 4-state clock-step
model by assuming L # 0 in (3.4)), the mechanisms discussed in the previous
Sections could split the (Pp /) = 0 line from the roughening one, and stabilize
the DOF phase of scenario (iv). The experimental results on Pt(110) by Robinson
et al. (¢4 indicating a shift of the reconstruction peaks increasing linearly with
temperature, is compatible with the condition of strong chirality if the deconstruc-

tion transition of scenario (iv) is assumed. Conversely, the previous analysis of fig.
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3.6. indicates that, by excluding scenario (iv), the results by Robinson et al. on
the shift should imply a small chirality limit, since they are compatible only with
path 4a.

Finite terraces have been supposed to play an important role in the stabiliza-
tion of the DOF of scenario (iv), as will be discussed in Section 6.3; moreover they
are the key ingredient for the location of the critical line [ in fig.3.9. The role of fi-
nite terraces has been included only in an approximate way in the works discussed
in this Chapter. Its full characterization could come from Monte Carlo simulations
of Hamiltonians which are sufficiently rich to include all the mechanism discussed.
A first step in this direction has been realized by the model proposed in this thesis
which will be discussed in detail in the following Chapters.



Chapter 4

The model and the method

For a study of the phase transitions on fcc(110) metal surfaces, a SOS model has

been employed and a Monte Carlo simulation procedure adopted.

4.1 A description of the model

The model is defined through a BCSOS Hamiltonian written for the fcc(110) lattice
made up of two interpenetrating sublattices (fig. 1.3). These are called “BLACK”
(B) and “WHITE” (W) sublattices but they are completely equivalent from the
physical point of view. The geometry of the unreconstructed fcc(110) surface arises
by choosing one of them as the topmost layer in the ground state and keeping the
other at a distance a, = a/2\/§ (a = fcc lattice parameter) below in the vertical
direction. The lattice is rectangular in shape, 1.e. anisotropic, hence it is necessary
to distinguish between the “soft” [001] direction (x) and the “hard” [110] direction
(y), along which the close-packed rows of atoms run (soft and hard respectively
referring to the coupling between atoms).

The ordered surface alternates in height by exactly one unit from B to W
sites, and the disordered surface contains only steps of unit height. The additional
constraint is imposed on the m; that height differences between nearest neighbour-
ing sites (i.e. a white and each of the four surrounding black ones) are bound to
be +1. Such restriction is quite physical, since =3 jumps are energetically very
costly and thus highly improbable. This corresponds to an interaction energy Jo

between nearest neighbouring sites which is let to go to infinity, this description
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Figure 4.1. The structure of the couplings between sites. The parameters are expressed in
units of J.

being meaningful only because of inward relaxation of the top layer, a common fea-
ture for both reconstructed and unreconstructed fcc(110) surfaces. Without that
relaxation, the assumption Jy = co would be inappropriate, as in its absence and
for a pairwise potential, Jy equals some in-plane coupling (or is even smaller than
that, if outward relaxation takes place). On the other hand, form the statistical
mechanics point of view this is exactly the “six vertex” constraint imposed by van
Beijeren on the BCSOS model, and enables a mapping of surface configurations
into vertex configurations, which will prove useful in the following chapters.

Given a column height distribution m;, the Hamiltonian taken is

1

H/J = Z(mi —mity) — Ko Z(mi — M)+

1
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Here, J is a measure of the atomic cohesion energy and is set as the scale of
energies (and temperatures) in the model; X and ¥ are the sublattice unit vectors
in the [001] and [110] directions respectively. The structure of the couplings in
(4.1) is drawn in fig. 4.1. Due to the abovementioned anisotropy of the surface,
the relation JK3 = J; < J holds for the nearest neighbour interaction energy in
the x direction. An additional next nearest neighbours interaction JK3 = Js, the

relevance of which will be discussed below, is included in the model.

4.2 Ground state considerations

It is easy to capture the main features which have led to Hamiltonian (4.1) by
examining it at 7' = 0 and determining which different ground state configura-
tions show up by varying the value of the energy parameters. At T = 0, the
first term ) ,(m; — mi+y)® assigns an energy cost to neighbouring sites willing to
be at different heights on each sublattice in the hard y direction, encouraging in
this way the formation of uninterrupted rows in this direction. The second term
—Ky ), (mi —mi;1«)?® has either a similar or opposite effect on the surface config-
urations in the x direction, according to whether Ky < 0 or Ko > 0. A negative
value for K induces the formation of rows also in this direction, thus of an overall
flat (1 x 1) surface. A positive value would encourage the surface to perform a
constant descent (or rise) in the x direction instead, so that the (110) starting
surface is effectively replaced by a (111) system, which can also be described in

terms of a (co x 1) reconstruction.

The model has been devised to fit (110) noble metal surfaces,
both reconstructed and wunreconstructed. But in the former case, a
(2 x 1) stabilizing term is necessarily needed: this is represented by
: K, {Zi(mi - mi+%x+§ly)2 + > .(m; — mi+%x_%y)2}, which, with K3 > 0, acts
to interrupt the descent of the surface induced by a negative K, by raising third
neighbour sites in the x direction to height values as near as possible (hereafter,

unless otherwise stated, it will always be considered K3 > 0).

A ground state phase diagram is easy to draw, provided the energies of all
the possible (n x 1) reconstructions are calculated and compared. The (n x 1)

reconstruction is intended to be a structure showing a periodicity of n sublattice
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sites in the x direction, but no broken bonds in the y direction, so that the y rows
are preserved in their lengths. Its side view along the y direction is of a sawtooth
configuration.

If V= 2N, N, is the total number of sites (where N,, N, are, respectively,
the number of lattice sites in the two in-plane directions, and the factor two arises

due to the presence of the two sublattices), the result is

Elxl/JN: Ka
E2><1/JN: —2K, + K3

n—1 9n 4+ 16

Brxi [JN = 47— Ky + ——— K,

Boox1 /TN = —4K, + 9K,

with Fy constant contribution which can be neglected by suitably fixing the zero
of energies.

It is easy to show that three distinct cases are possible for the ground state,
depending on the value of the parameter K = K5/ K3 (for K3 > 0):

1) K <0 : theground stateis (1 x 1)
2) 0< K <4 :theground stateis (2 x 1)
3) K >4 :the ground state is (co x 1)

and the points K = 0 and K = 4 are points of coexistence of two different phases.
As noted before, the sign of K5 has a primary influence in deciding if the surface
will remain flat (1 x 1) or will be replaced by a sloping (co x 1). A value of Kj
greater than 1K, is sufficient to stabilize the (2 x 1) missing row reconstructed
phase at the expenses of the (co x 1) phase. From now on, the interval 0 < K < 4
(neglecting the faceting region K > 4) will be addressed to as “the right side” of
the phase diagram, the K < 0 as its “left” part.

It is worth noting that, at fixed K, the model assigns higher energies to all
possible “shallow reconstructions”, that is reconstruction with formation of (n x 1)

grooves, n = 3,4, - -+, hence ruling out these phases.
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It 1s also possible to enrich Hamiltonian (3.2) by enlarging the number of
interactions, in order to include the fourth, fifth,. .., neighbours too. For example,

by adding a term of the form

H*/J = K4 Z(mz - mi+2x)2 (4:3)

1

which represents a fourth neighbours interaction, one gets for the ground state
a two-dimensional phase diagram in terms of the variables K5/ K3 and K,/ K3
which, in addition to (1 x 1), (2 x 1) and (oo x 1) phases, also contains a (3 x 1)
region. It is probable, moreover, that by adding a fifth neighbours interaction,
a (4 x 1) region in a three dimensional phase diagram would appear, and so on
(sixth neighbours interaction — (5 x 1) phase, etc ...). The additional terms
have not been considered in what follows, but may turn out to be relevant if the
object of study goes beyond the (2 x 1) deconstruction transition. A more detailed
description of the reconstructed phase would result, as some (3 x 1) facets have
been experimentally observed !’ and the energy of the (3 x 1) phase obtained
in the “glue” model appears to be only slightly higher than that of the (2 x 1)
phase. In addition, a further neighbour term like (4.3) leads to a larger parameter
space, hence it could open wider possibilities also for the reproduction of some of
the scenarios presented in Chapter 3, thus enriching the model and its predictive

power.

4.3 Energy parameters

If one wishes to describe a real physical situation, it is necessary to assign specific
values to the energy parameters of the model. They are chosen so as to match the
T = 0 energies of some fcc facets, as obtained from eq. (4.1), to their “experimen-
tal” values. Real metal data available in the literature, however, refer to the high
temperature surface tension of a generic metal surface [1%%] (i.e. not specifically the
(110)) and, moreover, are surface free energies including entropic contributions not
present in expressions like (4.2). The only solution at one’s disposal is provided

by the choice to match expressions for the ground state surface energies to the
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values obtained by many body theories through molecular dynamics calculations
at T = 0.

The scope of this work is to investigate in detail some of the possible sce-
narios opening for the fcc(110) surfaces, thus two prototype surfaces are chosen,
one form the reconstructed part of the phase diagram and the second from the
unreconstructed part, namely gold and silver (110). These names, assigned to
these two cases, refer to different values of the parameters given to Hamiltonian
4.1 which are extracted form molecular dynamics simulations of gold and silver
respectively. They are nonetheless suited to describe a general situation more than
the exact phenomenology of the corresponding real metal surfaces, especially for
the case of silver. The statistical mechanics nature of the model in fact requires it
to contain the main physical aspects, yet to be simple enough to permit its study
via the Monte Carlo technique. Hence more complex features like, for example,
faceting are necessarily ruled out from the possible resulting surface configurations,
and should be looked at with the aid of more realistic models. These on the other
hand fail in giving a complete picture of the fcc(110) phase transitions, especially
from the point of view of their critical behaviour. This is the main target of the
present work, which loses out in the care for particulars (such as, e.g., the high-
precision determination of transition temperature values) but gains in the general

insight into the rich phase diagram shown by the fcc(110) surfaces.

Au | - For the “right” K > 0 part of the phase diagram, the T = 0 energies
needed are obtained from the calculations of Ercolessi et al. [* for Au, based on
the “glue” model briefly described in Section 2.3. The values which represent
energies per surface area and are calculated for the (100), (111) and both the

reconstructed and unreconstructed (110) surfaces, are as follows:

8100 = 128.5 meV/Az
5110 =122.5 meV/Az

\ (4.4)
5111 = 96.6 meV/A
Eaxy = 107.4 meV /A’
All these energies refer to relaxed 7' = 0 configurations, i.e. starting from a

perfect bulk-truncated arrangement of the atoms and letting them relax into their
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equilibrium surface positions. This is the only possible way (though obviously
not satisfactory) in which relaxations effects are included into an otherwise two
dimensional rigid lattice model.

The corresponding expressions obtained from Hamiltonian (4.1), under the

form of energies per site, are

Eygo/N = Ey +4J + Js
E110/N = Ey + J3
E111/N = Ey —4J3 +9J;
Eywi/N = Ey —2J5 + J3

(4.5)

where the additional energy constant Ey is added, becoming another unknown vari-
able to be fitted together with the others. A geometric conversion factor .4/ cos 8
has to be inserted to multiply each value of (4.4) for a comparison with (4.5). Here
A=1 —\-/Z—_Za-a is the area per atom of the (110) surface (for Au, the lattice parameter
a=407TA - A=585 Az) and cos § arises from the projection of the (111) and
(100) surfaces onto the (110) face. The tilting angles are 611, = arccos 4/2/3 =~ 35°
and 0199 = 45°. The comparison, finally, yields

Ey = 698.4 meV

J = 86.7 meV
K, =0.51 (4.6)

K = Kz/K3 = 23

Two important features are worth noticing. First, the anisotropy expected from
preliminary considerations is actually confirmed by the numerical values (4.6),
since the coupling in the hard direction is twice that in the soft one. In addition, the
next nearest neighbour interaction strength K3 is approximately half the nearest
neighbour one K5, hence K = K,/K; = 2.3, which places the ground state of the
system in the (2 X 1) phase, as it should be for Au(110). A good self-consistency
test for the parameters (4.6) is the calculation of the energy of the T' = 0 (3 x

1) reconstructed phase, and its comparison with the “glue” values. The first
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procedure gives 111.0 meV/AZ, the second 109.8 meV/AZ. The values are very
similar and, what is more, show that the model reproduces the correct behaviour of
the energies of the reconstructed phase, yielding a value for E3x; which is slightly

greater than Fsy1, as previously observed with the “glue” data.

Among the values (4.6), J due to the form of the Hamiltonian (4.1), fixes
the temperature scale. From now on, temperatures will be expressed in reduced

dimensionless units, each unit corresponding to J ~ 1000K.

Ag | - The procedure of fitting the interaction values for the case of an unre-

constructed surface is similar but has to resort to some other effective medium
theory calculations, since no “glue” values are available, for instance, for silver.
At least four surface energies are needed to extract four parameters (J, Ko, K3
and Ey), thus Chen and Voter’s “embedded atom method” data!'3®! are chosen,
which provide values for the (110), (210) and (310) surfaces, each of the last ones
unreconstructed and (2 x 1) reconstructed. The tilting angle with respect to the
(110) surface are 651y = arctan1/3 ~ 20.5°, and 8(310) = arctan1/2 =~ 29.5°.

The energies of the different faces of Ag calculated by Chen and Voter 1 are

£100 = 879.6 mJ/m? E210 = 1014 mJ/m?
E111 = 802.7 mJ/m? E210,r = 1006 mJ/m?
E110 = 967 mJ/m? E310 = 992 mJ/m?

E110,r = 972 mJ /m? E310,r = 999 mJ/m?

(where R means (2 x 1) reconstructed), whereas the corresponding expressions

obtained from (4.1) are

T The values for the (100) and (111) surfaces have been calculated by Furio Ercolessi adopting
the potentials kindly provided by Art Voter himself. I would like to thank them both.
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4
Eyg/N = Ey+4J + Js Ey1o/N :Eo+§J+J3

Ei11/N = Ej—4Jy +9J3 E210R/N’:EO+%J+J3 (4.8)
y 3 .
E = Eq
110//\[ o+ Js Eg]_()/./\/ :EU+2J+J3

E N =Ey—2Jy+J
110,/ 0 2+ J3 Esio,r/N =Ey+2J +J3 — Ja

Taking into account the usual geometric factors (also, the Ag lattice constant is
very close to the Au value, that is ¢ = 4.08‘&), it is straightforward to match
the expressions (4.8) with the energies (4.7). However, the problem of fitting the
needed four parameters of Hamiltonian (4.1) employing the eight energy values
provided above is obviously overdetermined. A meaningful solution is not easy to
find as, for example, the two different structures of the (210) phase are separated
8 mJ/m? in energy but share the same expression of the form (4.8). The most
sensible way to extract J, Ko, K3 and Ejy is the following. By grouping together
the available energies into sets of four and taking care not to include in the same set
both the values of £31¢9 and £310,r which would give rise to an undetermined linear
system, one ends up with 24 different sets, each one providing a unique solution
for the values of the parameters. These solutions are spread in a certain range of
the parameter space. The choice criterion is first to eliminate the solutions giving
rise to positive values of K, or to negative values of K3, then to perform a rough
averaging procedure by picking up the central value of each restricted parameter
interval. Positive values of KJ, are rejected as leading to a (2 x 1) ground state,
whereas Ag has an unreconstructed ground state. Also positive values of K3 are
out, since if K3 is negative the phase diagram of the model changes into a new
one with only two phases, the (co x 1) extending for K’ > —7 and the (1 x 1)
for K' < —3, K' = K3/(—Kj3), so that it is not sufficient anymore that K> be
negative for the stability of the unreconstructed symmetry.

The result of this procedure is
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Ey ~ 356.4 meV
J >~ 25.875 meV ~ 300K
Ky~ —0.1 (4.9)
K3 ~0.025
K =Ky,/Ky ~—4.0

The element which (110) unreconstructed surface has been taken for investigation
in this way has no more right to be called “silver” than “copper” or “lead” or
any other metal. This undoubtedly uneasy procedure however leads to a point
in parameter space which lies on the left side of the phase diagram and can be
considered as a starting value for the study of the critical behaviour of the model on

that side of the diagram, nonetheless keeping some connection with real surfaces.

4.4 The Monte Carlo algorithm

In order to investigate the thermodynamic properties of the model, a standard
Monte Carlo technique**™ is applied to a lattice of A =2 x N, x N, sites, with
N, = N, = 12, 16, 20, 24, 28 and 32, and with periodic boundary conditions.
As is well known, this technique allows for the evaluation of statistical averages
of thermodynamic observables through the sampling of significant configurations
{m;}, after equilibration has been achieved. Employing the standard Metropolis
sampling algorithm [*38], the energy change AE = H({m}}) — H({m;}) is evalu-
ated after the interfacial configuration has been changed by randomly removing
or depositing one atom at a random site — if allowed by the BCSOS constraints
— on a randomly chosen sublattice. This means that each SOS column height is
changed by either 42 or —2, preserving the parity of the sublattice, and, moreover,
that the six vertex constraint is imposed on every new configuration. Hence the
mean surface height is not conserved. This procedure yields a grandcanonical en-
semble where the chemical potential is the same in both the solid and the vapour
phases. The usual Metropolis acceptance criterion (accept the new configuration
if AE <0, otherwise accept it if exp(—~AFE/kpT) > R, R being a random number
in the interval 0 < R < 1; reject it in the other cases) is adopted. Each attempted
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move per site (either accepted or rejected) is referred to as 1 Monte Carlo step,
and A steps are referred to as 1 Monte Carlo configuration. The initial 2 - 10*
configurations are discarded for equilibration, and at least 5 - 10° configurations
used to compute averages. To avoid excessive correlation between quantities eval-
uated in two different steps, averages of relevant thermodynamic quantities are
collected every 5 to 10 Monte Carlo configurations. Nonetheless, some correlation
remains in this procedure, especially for large systems and near the critical points
where the well-known phenomenon of critical slowing down takes place, due to
the large correlation length. No particular technique is employed to circumvent
this problem: longer runs are simply adopted (up to 10° configurations or more).
Error bars are estimated by dividing the simulation into 10 to 20 independent runs
and, for some temperature values, the errors have been checked by calculating the
statistical correlation length of the related quantity (a more accurate, but lengthy,
procedure [139]). Finally, no significant differences in the simulation scheme for
gold or silver are utilized. Mainly, different quantities are evaluated to match the
needs of different physical requests: in this respect more details will be given in

the following section.

4.5 The relevant quantities

In order to closely follow the thermodynamics of the system, about 20 values of
temperature are examined, and for each of them a set of thermodynamic quantities,
which proves to be relevant for the present investigation, are evaluated. All of them
are normalized per site, in order to allow for an easier finite-size scaling analysis;
N is the number of system sites, and in the following formulee the symbol (---)

will mean “Monte Carlo average”, that is

Q=(Q)= K}Z > 0 (4.10)

where Nc is the number of Monte Carlo configurations, Q,, (written in calligraphic
letters) is the generic quantity evaluated in the n-th configuration, whereas Q (in

roman font) is the Monte Carlo average of Q.
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Apart for the order parameters, to which a separate section is devoted, the rel-
evant quantities are the first three cumulants of the energy, the height fluctuations
and the scattering intensities. In detail:

— the total configurational energy per site

1
P == 4,11
¥ (&) (11)
— the specific heat Cy, defined as
1 \ )
Cr = ¥ o [(5 )— (&), (4.12)

where kg = 1 and 7' is measured in units of J;

— the first temperature derivative of the specific heat, always per site

T =y 2 () - @)+ 1 (@) -5 ) +20)]

(4.13)

where the second term is the third cumulant of the energy (the first term is
the second cumulant, proportional to Cy-). This quantity will prove essential

only for silver.

— The height fluctuations (square of the interfacial width), relevant for the

roughening transition

(§h?) = % > ((mi = m)?) (4.14)

where m = ). m;/N (not necessarily an integer number) is the nominal
surface height for a given configuration, and the sum is carried out over the
lattice sites. Eq. (4.14) makes sure that the only statistical height fluctuations
taken into account arise from thermal fluctuations, while & = 0 — capillary

wave (Goldstone mode) wandering, which comes out from the invariance of
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Hamiltonian (4.1) for global vertical translation of the interface, m; — m;+m,

is neglected.

— The total atom scattering intensity (obtained by simple rewriting eq. (1.17))

> (4.15)

where R; is the position of the i-th site on the surface plane, h; = a,m; and

a; = a(R;);

1 1 . .
I4(Q,4:) = W(IA(Qaqz» yYe) <lz el Rigitzhi gy,

~ The total X-ray scattering intensity (eq. (1.20))

)

(4.16)

1 1 1 o
I‘\'(Q,qz) = 7\7—2—<I;\'(Q,qz)> = ./72- <lzezQ-R,ezqzhx

11— e—2(ip+u)|*

For particulars on these formulee, see Chapter 1, the scattering Section.

4.6 Order parameters

In order to monitor a phase transition it is necessary to study the behaviour
of some suitably defined order parameter as a function of temperature. Since,
however, this thesis presents an investigation of both the reconstructed and the
unreconstructed part of the phase diagram of model (4.1), different parameters
have to be defined for different symmetries of the ground state. The first of these
quantities, envisaged to monitor the (2 x 1) deconstruction transition on the right
side of the phase diagram, is defined by making use of the mapping of the surface
height variables into an Ising spin configuration. The restriction, in fact, that
nearest neighbours height differences be £1 enables one to associate to each bond

connecting the two sublattices a spin variable s; by writing s; = (mw —mB)j, J
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Figure 4.2. The spin configuration corresponding to the height configuration of figure 1.3.
The shaded regions indicate on which spin plaquettes the height conservation constraint is
imposed.

running on the lattice of bonds of W U B, myw and mp being the heights of the
sites connected by each bond.

In this way, a N - site height configuration is mapped onto a 2\ - spin
one, and this procedure leads to an Hamiltonian of the ANNNI (Anisotropic Next
Nearest Neighbours Ising) model type 127128, However, the important constraint
is imposed that height conservation be respected on every other square of the
resulting Ising checkerboard lattice (those which do not include the atoms). The
requirement s; — s; + s3 — s4 = 0, where s; is the upper left corner spin of a
4-spin plaquette and the others follow clockwise (this can alternatively be seen
as the ice-rule for the equivalent six-vertex representation of the model), leads
to important new physics with respect to the 2D ANNNI model. For instance,
“spin” excitations in the present model must occur through the flipping of four
neighbouring spins, rather than of a single spin as normal (see fig 4.2).

It is now easy to verify that while the spin configuration corresponding to
the (1 x 1) phase is a simple ferromagnetic arrangement, four degenerate spin

ground states are allowed to correspond to the ordered (2 x 1) phase, namely
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those described by the repeated sequences (+ + ——), (+ — —+), (— — ++) and
(— + +—) (here the symbol (- -) denotes repeated spin units).

By grouping together the vertical columns of spins so as to put in each group
all the columns having the same integer coordinate in the x direction (modulo 4),
it is possible to form four “column magnetizations” defined by summing over the
spins in each group of columns: M, = 4Zis§~a)/N, a=1,2,3,4. Four (2 x 1)

order parameters can be defined in terms of the M,:

Mopo_y = (+My + My — My — My)/4

M 4y = (+My — My — M + My)/4 1)
Moy =(=My — My + My + My)/4=~M o,

Mgy = (=M + My + My — My)/4=—M, ___,

and an overall reconstruction order parameter will be obtained in terms of the

root-mean-square magnetization [1*]

1
Poxa = \/§ My MRy + My + M (4.18)

averaged over all Monte Carlo configurations, Pyx1 = (P2x1). This parameter, as
the one below, is well defined in the sense that its value is 1 in the (2 x 1) low
temperature phase and 0 in the high temperature disordered or (1 x 1) ordered
phase. For a scattering interpretation of Pax; see Appendix A.

Another way to define an order parameter on a fcc(110) surface is to make use
of the fact that the surface lattice is made up of two equivalent sublattices and by
specifying which of them prevails in the topmost layer. This parameter, designed
as Pp/w (or “sublattice” order parameter) where B/W stands for BLACK and
WHITE from the two sublattice colouring, has already been addressed to in Chap-
ter 3 when presenting different deconstruction and roughening scenarios. Since by
definition one of the requirements for Pp /3y is the demand that it assumes a value
1 in an ordered phase and 0 in a disordered one, its expression will necessarily
be dependent on the symmetry of the ground state (i.e. on different sides of the
phase diagram), making sure that different formule do embody the same physics.

Hence, the expressions are
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- (2 x 1) symmetry

1
Ppw = N > 18wl - > 185l (4.19)

i i,B

with S; 1v(5; B) the sum of the four Ising spins defined on the four nearest neigh-
bour bonds relative to a white (black) site, and

- (1 x 1) symmetry

2

5 mp — E myy
B W

the absolute value ensuring a meaningful averaging procedure. Monte Carlo av-

erages are taken as usual by bracketing the quantity under consideration, i.e.

P = (P).
For each of these order parameters P, the related susceptibility
= - 21
x = o (P — (P (421)

is evaluated and its critical behaviour studied too.
In the Appendix it is shown how Pp/w , as well as Pyyq, is related to the

scattering intensities under particular conditions (see also Sections 1.4.4).




Chapter 5

The BCSOS model

This chapter is dedicated to the study of the roughening transition on the BC50S
model. Its aim is threefold. First, it can be seen as a check for the techniques
and, in general, for the global simulation procedure against an exactly solvable
model. Secondly, an important concept like that of a sublattice order parameter is
introduced and studied in connection with known exact results. Lastly, a deeper
insight into a quantity which has remained hitherto unexplored, the staggered
susceptibility, is provided 1+,

Surface roughening phenomena are often studied within Solid on Solid (SOS)
models. The simplest of such models, such as the Discrete Gaussian or the Ab-
solute SOS models, have no sublattice structure and therefore roughening takes
place without any accompanying change of symmetry. Real surfaces, however,
commonly exhibit two, and sometimes three or more, sublattices. For example:
fce (100) and (110), as well as bee (100) and (111), have two sublattices, fec (111)
and bec (110) have three, and so on. Their ground states are accordingly at least
n-fold degenerate, corresponding to the equivalent possibilities of the topmost layer
to belong to one of the n sublattices. At finite temperatures, one can therefore as-
sociate any thermodynamic state of the surface with a well defined sublattice order
parameter P. Moreover, this order parameter is expected to vanish identically in
the rough state (where all sublattices must enter with equal weight). It follows that
a sublattice disordering phase transition is expected to take place, either below
the roughening temperature Tg, or at Tg itself. It should be stressed that, apart
from this constraint, the two phenomena, sublattice disordering and roughening,

are distinct. They will in general occur at different temperatures, and belong to
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different universality classes. den Nijs[®’! as well as the Trieste group [124:125] haye
introduced models which address this type of situation. Sublattice disordering is
indeed analogous to the “pre-roughening” of den Nijs, who calls “disordered flat”
the ensuing phase. Hence, it is highly desirable to understand sublattice disorder-
ing, if present, in simpler models, where a good deal of experience has accumulated
over the years.

The simplest surface model which is of the SOS type, but does embody the
presence of two sublattices, is van Beijeren’s well-known BCSOS model 14, As
shown in Section 1.3.1, it is mapped onto the F version of the six-vertex model,
for which many properties are known exactly. It is therefore of interest to enquire
about sublattice disordering within the BCSOS model.

The Hamiltonian (4.1) is equivalent to the BCSOS one provided its parameters

assume particular values. It is easy to see that the requirements are

Ky = -1

5.1
K; =0. (5:1)

Moreover, one can express the parameter J in terms of the energy e of vertices 1,
2, 3 and 4 of the F model in the following way. The energy per site corresponding
to a (111) surface is, from (4.5) and (5.1) neglecting the background constant E;

E111/N=wa1/N=4J

but a (111) surface is represented by an ordered array of vertices of type 1, so that

the total energy of the surface per vertex is . One obtains the relation

e=4J.

As seen in section 1.3.1, the roughening transition of the BCSOS model occurs at
kpTr = €/In 2, so that in terms of J it will result

47
= -— = . .2
kpTp = 5 = 57717 (5.2)

while the peak of the specific heat will be located at
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kBprk ~ 0.81kBTR =4.67J.

5.1 The sublattice order parameter

A natural definition, within the BCSOS model, for the sublattice order parameter
of (unreconstructed) bece (100) and fcc (110) surfaces is as follows. Denoting, as
usual, the two interpenetrating sublattices which make up the surface as B (black)
and W (white), the ground state appears doubly-degenerate and consists of the
B sites at height +1 with respect to the W sites at height 0 (or viceversa). For
a thermally excited configuration define probabilities of stepping up and stepping
down from a given B site to one of its W nearest neighbours, Pg,' =1—-Pg and

Py, where

+oc
Pi= > Pmbm (5.3)

odd m=—oc0

and the sum extends over all the odd B site heights m. The analogous definition
holds for Py;-, where the sum runs over all even heights. Here p,, is the probability

to find a surface atom at height m (fixing the flat surface reference height at
1
2
For the F model it is necessary to recall, in Lieb’s notation 1], the definition (1.11)

m = 3), while b,, is the probability of stepping down from an atom at level m.

of the parameter A,

A = —coshA = g
with a = b = exp(—¢/kpT) and ¢ = 1 the Boltzmann weights associated with the
vertices of the F model. Then, the above probabilities read [1*2]

Pm = constX exp {——/\(m - 5)2] (5.4)

and [3°]
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b — > (=) "exp[—An(n + 2m — 1)] for m > 0, (5.5)
Tl = b for m < 0. )

The order parameter is then defined through

P; - P

_Ps Py (5.6)
Pg + Py

Py

and takes values +1 (or -1) in the ground state and 0 in the disordered rough
phase. At intermediate temperatures this quantity singles out which of the two
sublattices’ atoms are predominantly present in the surface top layer. The special
feature of this quantity is that it vanishes with all its temperature derivatives at
the roughening temperature Tr. This behaviour characterizes the sublattice order
parameter of the infinite-order roughening transition.

Another definition of order parameter was given by Baxter for the F
model (143144 In the notation of Baxter, after partitioning the (dual) vertex
lattice in two sublattices A and B, an energy —s (+s) is associated to every hori-
zontal (vertical) arrow pointing from an A vertex to a B vertex and +s (—s) if it
points from B to A. In this way s has the character of a staggered external field
and is the equivalent of the magnetic field of the Ising model as is able to lift the
degeneracy of the ground state. Thus the order parameter which corresponds to

this field is simply:

where f is the free energy per vertex. With the introduction of the field, the F

(143] However, the order parameter

[144]

model becomes insolvable, except for T' = 2T

P2 in zero field is known exactly at all temperatures and is given by

Pa(s—0T) = ﬁ tanh(n/\):]
. (5.8)

= [1+2 i(—l)n exp(——-an/\)}
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It can be shown at this point that the series expansions for P; and P are iden-
tical, so that the two order parameters are taken to be one and the same P
which, for uniformity with previous definitions will be called Ps/yy. No informa-
tion is available, however, on the behaviour of the staggered field susceptibility,
y = —(82f/8s)r, except again at T = 2Tg and s—0" where it diverges as Ins.
Nevertheless, Baxter['** has proposed that for s = 0 and in the neighbourhood
of Ty this susceptibility should obey the scaling ansatz:

XNrPé/XV/fsing (59)

where fysing is the singular part of the free energy. If one considers that
fsing~ exp(—m?/A) and that

'PB/WN/\“l exp(—m2/4)) (5.10)

one arrives at
x~A"% exp(7?/2X) ‘ (5.11)

1

which implies an extremely strong divergence at T'r, since, near Tg, A~(Tr — T)z.
In a finite size lattice, the operative definition of the order parameter has to be
modified as follows. Since for the BCSOS model lattice topology implies Pp +
P = 3, one gets form 5.6:

Ppw = 4P5 — 1.

The stepping down probability P5 can be evaluated from the thermal and site
average of the local pz(R;) which, for a given configuration and B site ¢, is given
by:

pp(Ri) = 7 |1+ mp(Ri) — % > mw(R; + D) (5.12)
D

N



EXACT RESULTS VERIFIED 107

where D runs over the four neighbouring W sites. Taking the site average, Pp/1v

reads (the absolute value ensuring a meaningful averaging procedure):
S Y )
B W

where A'/2 is the number of B (or W) sites and the angular brackets denote
thermal (Monte Carlo) averaging. This is exactly the expression of eq. (4.20); the

2
Ppywv = (Ppjw) = <W

related susceptibility is given by an expression like (4.21).

5.2 Exact results verified

Six different lattice sizes, N, = N, = N = 10, 16, 20, 24, 28 and 32 are employed
in the Monte Carlo simulation to permit a meaningful finite-size scaling analysis.

In figure 5.1 the peculiar behaviour of the specific heat is reported: no singu-
larity of any kind is present at the transition temperature T = 5.771 (in units of
J), while a rounded peak appears around Tp, .z ~ 4.67, as theoretically predicted.
Thus, the main feature of the specific heat is the absence of any divergence as
seen in the practically null dependence on the system size. This same character-
istic may be encountered again in figure 5.2 which represents the behaviour of a
quantity which actually has no great interest in itself here but that will prove of
wide utility especially in Chapter 7, the first derivative of the specific heat (from
eq. (4.13)). The roughening transition in the BCSOS model is of infinite order,
that is the free energy shows a non singular behaviour at 7 and no singularity
in any of its derivatives will appear which, in a Monte Carlo calculation on finite
system sizes will result in no appreciable difference from one size to another (for
large enough sizes). From fig. 5.1 and 5.2 one thus can also make sure of the fact
that the infinite system critical behaviour is already reached for N ~ 20, and no
other differences apart from statistical fluctuations are to be found for larger size
values.

A more quantitative confirmation that meaningful information can be drawn
from not exceptionally large systems is the procedure to extract the roughen-

ing transition temperature T from the analysis of the height fluctuations. This
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should cast aside all the legitimate doubts that can arise, for example, after ref.
[145] where it is shown that spurious finite size effects connected with the +1
height difference restriction could mask the asymptotic behaviour in a numerical
simulation. The height fluctuations, defined in eq. (1.9), are shown in figure 5.3
as a function of temperature for different sizes, and in fig. 5.4 as a function of the
logarithm of the size for various temperatures. The first graph shows a marked size
effect in the intermediate and high temperature regions, which is reflected in the
second graph where it is clear that for low temperatures the quantity is indepen-
dent of the size, while the slope of (§h?) vs. In N increases for higher temperatures.
This behaviour is not only consistent with what expected for the BCSOS model,
but provides a method of establishing whether a roughening transition takes place
in the system, allowing for the estimate of Tr. In fact, from equations (1.7) to
(1.10) it is known that the height fluctuations of an infinite system remain finite
for T' < T, diverging instead logarithmically with the size for T' > T'g. In a finite
system, the divergence of the correlation length ¢ (which causes this behaviour)
saturates to the value of the linear size of the system. Nonetheless relevant infor-
mation may be extracted from the universal properties of the quantity K(7T') of
formula (2.6), which for T — T behaves like (see formula (1.8))

K(T) = ;}2— +C/T =Tr - (5.13)

The quantity K(T') is nothing but the slope of (§h?) vs. In N, and is shown in fig.
5.5 At first sight, K(T') behaves as expected, since it increases with temperature
and assumes the critical value 1/7? at the transition temperature T = 5.771. A
more quantitative analysis is performed by plotting the quantity [K (T) - %] ? vs.

T, since, from eq. (5.13)

{K(T) - i} 0T - Th) (5.14)

™

The linear behaviour of the data in fig. 5.6 for T' > T'r is well reproduced, and

extrapolation of this form yields

Tg = 5.66 + 0.11 (5.15)
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which is only above 2% below the exact value. Longer Monte Carlo runs would
certainly provide better accuracy. Possible finite size effects of +1 height restriction
thus should not affect in a relevant way the determination of TR. A somewhat
larger error is found for the coeflicient C of eq. (5.13) which is found to be
(4.340.7) x 1072, against an exact value of 3.2 x 1072: this may in fact be related
to these size effects.

Notice that although K(T') can be derived from the above mentioned finite-
size analysis only for T' > Ty, it is convenient to extend the fitting also to lower
temperatures. In order to produce plots like fig. 5.5 — 5.6, this has indeed been
extended to all temperature values where a more careful analysis should instead
be adopted starting from expressions like (1.6). Nonetheless, since ¢ diverges at
Tr, right below Tr there is a range of temperatures where £ > L, L being the
system size adopted. Within this range (§h?) is already logarithmic in L and the
applied fitting is legitimate.

In figure 5.7 the Monte Carlo results for the temperature dependence of the
order parameter Pg/y is reported. For this quantity, the infinite system critical
behaviour (also reported for convenience) is approached slowly, like L~7 at Tg
as finite-size scaling would suggest, when the size L = Na (a being the lattice
spacing) is increased. Below Ty, however, one may attempt to fit the largest
size data with the infinite-system asymptotic form, eq. (5.10). We select a tem-
perature window 0.70 < T/Tgr < 0.88 in order to avoid finite-size effects in the
immediate neighbourhood of T'g, yet capturing the critical region temperature de-
pendence. Our fitting is consistent with the form (5.10), yielding an exponential
exp(—A/(Tr — T)?) having A = 2.50+0.15, which compares well with the ex-
act value 4 = 5\/—2—112— = 2.517--. . Moreover, the same fitting yields a value of
Tr = 5.73+0.08, to be compared with 5.771 of eq. (5.2).

All these results for the BCSOS model show that the adopted procedure, both
for the simulation program and the successive data analysis seems to work well,

and can thus be pushed towards unexplored regions.
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5.3 The staggered field susceptibility

Having checked the method against exact results, it is now possible to report novel
data for the staggered field susceptibility x, as shown in figure 5.8. In the infinite
system, x diverges at Tr remaining infinite above. For a finite lattice, we find a
divergence with the size of the lattice typical of infinite-order transitions of the

form

x(L, T)~L¥T) (5.16)

with a temperature-dependent unknown exponent w. Exactly at Tr, Baxter’s

ansatz, eq. (5.11), would imply (barring logarithmic corrections)

w(Tg) =1 (5.17)

This follows from the asymptotic form £~ exp(m?/2)) for the correlation length
which becomes of the order of L in a finite system at Tr. The data are compatible
with w(Tg) = 1 (see figure 5.9). Furthermore we observe that the peak in x(L,T)
(which might be taken as a measure of Tg) shifts very slowly towards Tg, like
(InL)~% to be precise, as L is increased. In turn, this whole procedure might
represent a way of determining the sublattice disordering temperature in models
of the BCSOS type where the transition point is unknown. Indeed, x is the only

sensible diverging quantity in an otherwise smooth phase transition.

The exact and finite-size behaviour of the sublattice order parameter and
related staggered susceptibility of the BCSOS model have thus been examined,
together with the verification of the validity of Baxter’s conjecture for the asymp-
totic diverging behaviour of x at Tr. Sublattice disordering and roughening occur
together at T' = T, and with the same Kosterlitz-Thouless behaviour, in this
model. The sublattice disordering in the BCSOS model is driven by the thermal
excitation of steps which are responsible for roughening. However, the definition
of sublattice order parameter and susceptibility, as well as the Monte Carlo finite
size scaling method which allows for a separate study of sublattice disordering and

of roughening, can now be taken over to more realistic surface models. For many
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of these models the two phenomena should become totally distinct. This is the

scenario addressed in the following chapters.

5.4 The exponent w

The temperature dependent exponent w is known at Tx if the Baxter’s conjec-
ture is, as it seems, verified. However, a more careful analysis leads to a simple
prediction for the exact behaviour of this exponent in the whole interval ' > Tg.

Considering the planar six vertex lattice, that is a square two dimensional
lattice with arrows on the bond which satisfy the ice-rule, if the lattice sites are
labeled by the index R = (n,m), the arrow-arrow correlation function G 44(R) is
defined as the thermal average of the product of two arrows separated by a distance
R = |R|. Iis evaluation in full generality is extremely difficult, however when the
parameter A (eq. (1.11)) vanishes (condition known as the “free fermion” case),
which is equivalent in the F model to the condition T = 2T, its exact evaluation
146]

is possible !*®], In this case its asymptotic behaviour for large R reads

mz —nz

Gaa(R) ~ (5.18)

cosm(n —m) + e

2
w2 R?
In particular, for two arrows belonging to the same row (i.e. m = 0: notice,

moreover, that the square arrow lattice is 45° degree rotated with respect to the
BCSOS site lattice), eq. (5.18) simplifies to

0, if m even

Gia(n) ~ { C i ifmodd (5.19)

where it is evident that this arrow-arrow correlation function oscillates from odd
to even sites, and it decays like R™2 at T = 2Tg. As Youngblood, Axe and
McCoy ['*7] noticed, the rapidly oscillating contributions decay more slowly than
R™2 for T < 2Tg till, as T tends towards Tg from above, they will become
increasingly important. Ultimately at T' = T, where the transition to a state of
antiferroelectric long range order takes place, the discreteness of the lattice will be

essential. Unfortunately, for T' # 2T no exact expression is available for G 4.4(n).
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Nonetheless its asymptotic behaviour is known from a calculation employing the

quantum inverse scattering method [1#®] by Bogoliubov, Izergin and Korepin, which

leads to the following generalization of eq. (5.19)

GAA(TZ) ~ KTEZ) + (—1)”’

(5.20)

valid in absence of ferroelectric long range order (when the vertical polarization
is zero, that is for any temperature in the ' model in the absence of a vertical
electric field coupled to the arrows).

It is important to note that the coefficient in front of the non-oscillating term
in eq. (5.20), K(T), is exactly the same coeflicient multiplying the logarithmic
divergence of the height-height correlation function, eq. (1.6) (this correlation
function is readily obtained by a suitable integration of (5.20)), and Bogoliubov

et al. ['*8] main result is the relation between the exponent # and K, that is

9(T) = m*K(T). (5.21)

The predictions of Youngblood et al. are thus confirmed by the behaviour of eq.
(5.20) in the range Th < T < 2T with the use of eq. (5.21).
The staggered susceptibility x is related in a simple way to the arrow-arrow

correlation function through the usual fluctuation dissipation formula which reads

L
x = / AR 5100y (R). (5.22)

Here a is the lattice spacing acting as a small distance cutoff, L is the linear
system size and a factor (—1)", due to the need of a staggered expression, has to
be inserted as follows: Gsiqgq.(n) = (—1)"G.4.4(n). The resulting formula written

in the discrete limit, is (apart from irrelevant numerical constants)

‘ m (1) - 1.
J=1 j=1

n—oo
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where in the asymptotic limit the first series is convergent to a constant, and the
second becomes K'/n%T)=2, The susceptibility becomes, again in the continuum
© limit,

B(T)

with A(T') and B(T') functions of temperature not relevant for the present study.
A comparison with eq. (5.16) yields immediately the relation

w(T)=2-6(T)=2-n*K(T), T>Tg (5.24)

which gives the behaviour of the exponent w as a function of temperature in the
whole interval T' > Tg (for T' < Tg, w is not defined since the susceptibility is not
a divergent quantity).

The Monte Carlo simulation data are in very good agreement with such for-
mula and the resulting exponent w(T') is shown as a function of temperature in fig.
5.9. This is compared with the Monte Carlo data for 2 — 72K (T') and the exact
behaviour of this quantity, which from the exact solution of the BCSOS model

reads

1

K(T) = marccos A(T)

(5.25)

with A given by eq. (1.11). The simulation data compare well with the exact
results, though maybe the errorbars are a little underestimated. Finite-size effects
in fact may show up, as already noticed, in the constants, but not in the square
root behaviour of a quantity like K(T') just above Tg.

Instead of resorting to the quantum inverse scattering method, eq. (5.24)
could probably be obtained through some more phenomenological approach in-

(149] and work is currently in progress in this direc-

cluding scattering quantities
tion. It is nonetheless interesting to further investigate the implications contained
in eq. (5.24). Since the function K(T') increases with temperature, one gets for

the exponent w(T)
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K(T = Tq) = —

7l'2 w(T = TR) —
K(T = 2Tg) = % S w(T =2T) =0 (5.26)
K(T:oo):% w(T =00)=-1

which confirms Baxter’s ansatz for T' = Tr and shows that no divergence, at least
of the power-law type, is to be found for 7' = 27T (in fact for T = 2T formulee
(5.19) and (5.22) give x(L,2TRr) ~ log L, and the Monte Carlo data are compatible
with this kind of behaviour). What is more, (5.26) shows that no further divergence
with size is to be expected in the staggered susceptibility for T' > 2T'r. Hence, this
quantity shows a singular behaviour only in the range T < T < 2Tg, and no other
singularities below Tr or above 2Tr. At first sight, this result may appear strange,
but it may be reconciled with known concepts of the theory of liquids, like that
of a “disorder point” in a P — T phase diagram above the critical point. Though
it is possible to continuously vary the thermodynamical variables and succeed in
passing from the liquid to the gas phase with no phase transition, yet this path still
crosses a line of disorder points (on the prolongation of that connecting the triple
point to the critical point), below which correlations are oscillating, that is more
liquid-like, and above which they show instead a monotonic, gas-like behaviour.
This is exactly what is happening in this case, since the point 2Tz is known as
a disorder point of the F model. A quick inspection of eq. (5.20) together with
(5.24) shows that below 2Tr the dominant correlations are the oscillating ones
(6 < 2), while above 2Ty the monotonic ones prevail (6 > 2).
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Figure 5.1. Specific heat vs. temperature in the BCSOS model for six system sizes. The
arrow indicates the position of the roughening temperature. In this and all subsequent figures,
temperatures are expressed in units of J.
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Figure 5.2. The first derivative of the specific heat vs. temperature in the BCSOS model.
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oh

Figure 5.3. Finite size behaviour of the height fluctuations vs. temperature in the BCSOS
model. In this and all subsequent figures, no errorbar is plotted if smaller than the point size.
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Figure 5.4. Height fluctuations vs. logarithm of the size in the BCSOS model for the
temperatures investigated. The lines plotted should be straight only for T>Tr.
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Figure 5.5. K(T) vs. temperature in the BCSOS model. The line indicates the position of
the universal value 1/#2.
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Figure 5.6. [A’(T)—l/n2]2 vs. témpera.ture in the BCSOS model.
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Figure 5.7. Sublattice order parameter in the BCSOS model. The solid line represents the
infinite system exact behaviour.
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Figure 5.8. Staggered field susceptibility in the BCSOS model.
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Figure 5.9. The exponent w as a function of temperature. The asterisks are extracted
from a fitting of the staggered susceptibility, the triangles are expression of the formula
w(T)=2—n*K(T) (with K(T) of figure 5.5), the dashed line is obtained from the exact be-
haviour of K(T).




Chapter 6

Gold(110)

In this Chapter the Monte Carlo simulation results for our BCSOS model simu-
lating gold(110) are presented, and two separate phase transitions are detected to

take place on the surface 121,

6.1 Deconstruction and roughening

A strong indication for a second order phase transitions taking place on the surface
is provided by the temperature behaviour of the specific heat data, as well as of
the order parameter and the related susceptibility, eq. (4.12), (4.18) and (4.21).
The specific heat data are very different from those obtained for the BCSOS
model, especially for the presence of a sharp peak around T ~ 3.0, in the rapid rise
of the peak height as the system size increases (suggesting a divergent behaviour
for N — o), and in the concomitant narrowing of the peak width (fig. 6.1). The
presence of a critical transition is corroborated by the behaviour of the (2x 1) order
parameter and related susceptibility. The former (fig 6.2), starting from the value
1 of the ordered missing-row phase, shows a sudden decrease in the same critical
temperature region, and vanishes for higher temperatures. Finite-size effects, as
usual, tend to smooth down an otherwise sharp behaviour, as it is apparent from
the fact that the larger the size the steeper is the drop and the lower is the value
approached by the parameter at high temperatures. The susceptibility xa2x1 (fig.
6.3) shows a similar feature as the specific heat around the same temperature, that

is a peak rapidly increasing with size. The evidence presented here is therefore
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suggestive of a second order phase transition. A naive plot of the maximum of
Cyv- and of In x5x1 versus In L reveals the characteristic exponents of the 2D Ising
universality class (figure 6-4 (a,b)). Indeed, from the finite-size scaling theory of

critical phenomenal159 the following behaviour is expected

Cyv(L,Tp) = A,L%/7, non — Ising (6.1)
OX(L,TD) - Az + 44.311’1 L, Ising, a=20 )
and
X2x1(L,Tp) = Ay LV (6.2)

at the infinite system critical point temperature 7T (where D stands for “decon-
struction”), with A;, A,, A3, Ay constants. The position of the y-peak seems to
be practically independent of the size, and thus it is possible to extract the be-
haviour of eq. (6.1) and (6.2) from the Monte Carlo data with an exponent ratio
% consistent with %, and with the logarithmic trend in Cy-. This unmistakably
characterizes a 2D Ising transition. In order to further check the finite-size scaling
analysis, the phenomenological renormalization method introduced by Barber and
Selke %1 is used. For a critical quantity Q(L,T) characterized by an exponent w,
in its size divergence, this method predicts a “crossing of the curves”, each defined

for a pair of sizes L1, Lq:

In 1y 2,
AR R

(6.3)

at the point (Tp, ) for L1, Lo—co, with T the infinite system critical tempera-
ture. As seen in figure 6-5 (a,b), this method leads to the critical temperature

Tp/J = 2.903+0.015 (6.4)

from both Cy and y3x1, the latter with an exponent

T —1.840.2, (6.5)
v



122 Gorp(110)

which is compatible with I and is associated with the 2D Ising deconstruction

= =1

transition in the model proposed for Au(110).

A similar analysis is performed for Ppg/y- and its related susceptibility. At
first sight, these two quantities seem to behave exactly in the same as Pyx1 and
x2x1, and this prediction is confirmed by the usual finite-size scaling analysis
which again provides Ising values for the exponent of the diverging susceptibility
and an estimation of the transition temperature coinciding, within error bars, with
eq. (6.4). This is an important indication of the nature of the transition, where
sublattice disordering, monitored by Pg - occurs together and with the same
critical behaviour of deconstruction, ruling out therefore some of the scenarios
proposed in Chapter 3 and pointing in the direction of a loss of long-range order

by proliferation of steps between (2 x 1) terraces, that is in the direction of scenario

(iv).

The indication for a second phase transition of infinite order at a slightly higher
temperature comes from the analysis of the height fluctuations. The procedure is
the same adopted to determine the occurrence of a roughening transition and to
localize Tk in the BCSOS model, given in Section 5.2 This begins by considering
the plot of (§h2) vs. T for different sizes (fig. 6.8) and vs. InL for different
temperatures (fig 6.9). The data for (§h%) vs. T show a clear size effect, not only
for T sufficiently high (T > 3), but also for lower temperatures, where the size
effect appears to be reversed. This implies a peculiar behaviour of the slope K(T')
of the straight lines (§h?) vs. ln L, as shown in fig. 6.10. Starting from zero slope
(no size effect), negative values are first seen (“reversed” size effect), followed by
positive ones, which slowly increase for higher temperatures. Finally, from figures
6.10 and 6.11 it can be seen that the universal Kosterlitz-Thouless features for a
roughening transition, both the value of K(T') at the transition temperature and
the asymptotic behaviour characterizing the rough phase are attained in the case
of Au(110) too, for T > Tr where

Tr = 3.09 £0.04. (6.6)
Therefore, the roughening transition takes place at a slightly, but definitely higher

temperature than reconstruction (about 6 7% above, in reasonable, although per-

haps fortuitous, agreement with data reported by recent experiments[ss]). This
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temperature difference is well beyond the statistical errors, thus confirming two

separate transitions for our model of Au(110).

6.2 Scattering intensities results

The correlation properties of the system can best be evidenced through the be-
haviour of the scattering intensities. In particular, these can shed light on the

nature of the intermediate phase which exists between 75 and T'g.

Important effects of shift and broadening are expected in the deconstructed
scattering pattern above Tp. Both shift and width depend on ¢, and 7', the shift
being particularly interesting as it is related to the incommensurability. This can
appear due to the mismatch arising from surface areas separated by 1 x 1, 3 x 1,
4 x 1 or higher reconstruction defects, seen as pairs of bound steps (as envisaged
in previous works by Jug and Tosattil*?¥), as well as from individual unbound
steps.

The nomenclature of the peaks is the same introduced in Section 1.4.1. In
particular, the half integer order peaks monitor the deconstruction transition, the
integer order peaks are instead related to roughening. The scattering intensities
are obtained by means of Monte Carlo simulations on the largest system available,
N =32, with a choice of p = g.a, = 0 for atom scattering and p = 7/8 for X-rays
scattering, and a value of the intensity attenuation factor pur = 2.7-107° taken as
typical for a 10 keV beam on Aul*!]. This selection of values for the perpendicular
momentum transfer is due to the fact that for g, = 0 there exist an exact relation
between the atom scattering reconstruction peaks and the (2 x 1) order parameter
(see Appendix), whereas the g, = 0 case lies outside the range of validity of the
X-rays kinematic treatment, therefore the nearest to zero value available for ¢.,
i.e. g;a, = 7/8 has been chosen. In the following analysis, the y component of the
parallel momentum transfer has always been kept equal to zero, that is Qy = 0.
With this choice, and following the notation expressed in eq. (1.48), in the range
0< l%z— < 2, reconstruction peaks are those labeled by (% 0), (g— O), principal peaks
are (00), (20) and the only superlattice one is located at (10).

Figure 6.12-(a) present the X-rays scattering at a temperature just below Tp,

when principal and reconstruction peaks are present (incoherent scattering being
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one order of magnitude weaker, as is the case for the intensity of the superlattice
peak at this value of g.). Figure 6.12-(b) reports the pattern at a temperature
intermediate between Tp and Tr. As can be observed, the (%, 0) peak intensity is
strongly reduced with respect to the value just below Tp and has merged with the
incoherent background, which is at its maximum at Tp. The separation between
coherent and incoherent contributions is carried out in figure 6.12-(b); the coherent
intensity is non-zero owing to finite-size effects in this range of temperature. The
scattering pattern is fitted to the sum of five specular Lorentzians, of adjustable
height, width and, for reconstruction, centre. The position of this scattering peak
centre gives the shift with respect to the commensurate (%,0) spot, hence a mea-
sure of the surface modulation. Figure 6.12-(c) gives the situation above Tg (when

the coherent reconstruction peak has merged into the background).

The patterns are very similar in the case of atom scattering. Figures 6.13-
(a,b,c) present the data for the (%,0) peak height, incoherent width and its shift,
in the case of atom scattering. The coherent (Bragg) peak height is seen to cut off
more sharply near Tp than the total, including incoherent scattering from critical
fluctuations. The practical difficulty in subtracting off the latter may have led in
the past to an overestimate of T, as figure 6.13-(a) clearly demonstrates. As for
the width of figure 6.13-(b), the general order of magnitude and linear tempera-
ture dependence is in agreement with experimental data from atom scattering for
T > Tp as reported by Sprosser et al. for Au(110) at g, ~0[58], The linear depen-
dence upon T' — T'p implies for the correlation length of in-plane fluctuations an
exponent v = 1, which again agrees with the Ising-like nature of the deconstruc-
tion transition. Notice that in the simulation the value of the incoherent width
is bounded from below owing to finite-size effects; for L — co it should vanish
at Tp. The basically negligible shift in the position of the peak centre shown in
figure 6.13-(c), on the other hand, indicates virtually no modulation as seen by

atoms towards lower Q-values, in the temperature range Ip < T' < Tg.

Figure 6.14-(a) reports Monte Carlo predictions for the X-ray scattering inten-
sities. The half-order peak width (figure 6.14-(b)) again shows a linear dependence
on temperature, as for atom scattering, while the shift (figure 6.14-(c)) is a mono-
tonically decreasing function of T' and, while still small, is substantially larger than
for atom scattering. This shift clearly denotes proliferation of defects of higher-

order reconstruction types, however its smallness may explain why it has so far
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not observed in Au(110) [,

6.3 Discussion

The model proposed in Hamiltonian (4.1) has proved capable of describing the
structure of a reconstruction fcc(110) surface and to reproduce both (2x1) missing-
row deconstruction and the roughening phase transitions. With an appropriate
choice of parameters this model appears to be a possible realization of the physics

of Au(110) (and perhaps of Pt(110)).

If the value of J = 1005.2 K is taken at face value, these results would imply
a deconstruction transition occurring at Tp ~ 2900 K, followed by a roughening
transition at T ~ 3100 K, for Au(110). Both values are obvious overestimates
of the reality, a fact that calls for a few words of caution in the use of the 7' = 0
model parameters, as suggested by the glue model. Conclusions of a study by
Bernasconi[''®] indicate that the glue model energy parameter J may be simply
too large. In turn, this may be related to the general overestimate of relaxations
already noted for the (2 x 1) missing-row surfaces. Apart from this, one should
note that a renormalization of the defect energy at temperatures T > 0 takes place
owing to two separate mechanisms which cannot be easily included in the deriva-
tion of the preceeding Sections, which relies on a rigid lattice model. i) Relaxation
effects near defects may cause a lowering of the effective surface energy, and hence
of the value of J. ii) Diffusion of atoms along the missing-row direction, possibly
enhanced by vacancy formation(®?!, also implies a dynamical renormalization of
the effective model parameters at temperatures close to disordering. Both mech-
anisms hint to a lowering of J. Were one to fix J at, say, J = 250 K, this would

provide a value of Tp and Tr in reasonable agreement with the experiments[SS].

This discrepancy on energy scales however does not invalidate the information
obtained from these Monte Carlo results on the interplay between roughening and
deconstruction, and the existence of two distinct phase transitions: an Ising-like
deconstruction transition and a Kosterlitz-Thouless roughening.

(118] and reviewed in

Amongst the different scenarios proposed by Bernasconi
Chapter 3 for the above mentioned interplay, scenario (v) is obviously ruled out,

as it also happens from the experimental point of view for Au(110) and maybe for
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Pt(110). It is interesting now to investigate which of the other previously discussed
cases (1)-(iv) applies to the results reported before, and to try to understand why.

T = 0 calculations of the energetics of the most common defects on the surface
provide for the (3 x 1) wall energy a value around 24% below that of a (1 x 1) wall,
with the choice of parameters of eq. (4.6). This is in accordance with a careful
inspection of some surface configurations as obtained by Monte Carlo snapshots in
the intermediate temperature region between Tp and T'r (see figures 6.15 — 6.17),
as well as with the shift in the half integer order peaks, which clearly indicates a
proliferation of (3 x 1) steps against (1 x 1) steps. This feature signals a small, but
definitely non zero, chirality, in the sense of den Nijs, towards high order facets
formation. This is also in reasonable agreement with experiments, where such
a shift is not observed between Tp and Tg, due maybe to its smallness, but is
actually observed above Tx (like in Keane et al. 1*°! case), and it shows to be
in the right “3 x 1”7 direction. Not to mention, of course, the STM experiments
of Binnig et al. ®"] where (3 x 1) facets are predominant defects on the (2 x 1)
reconstructed surface. Scenario (i), suggesting a proliferation of compact (1 x 1)

domain walls, could thus be safely excluded.

The main point is now to elucidate the following problem: the structure of
Hamiltonian (4.1) assigns the same 7' = 0 energies for a pair of (3 x 1) infinitely
long steps, either parallel or antiparallel, and for a 4 x 1 step. Stabilization of
a flat, but disordered phase, requires instead some effective interaction between
steps, either a repulsion of antiparallel steps or an attraction for parallel steps,
therefore this can be provided in the model proposed only by entropic reasons, due
to the meandering of the steps and to the intermediate excited states encountered
when one of them is displaced to a neighbouring row. A similar mechanism is

(122] where also at the point

present, for example, in the case of Villain and Vilfan
of the phase diagram corresponding to the situation Evw i = 2E54cp, two separate
transitions can still occur (see Section 3.4 for discussions). This mechanism is

(120 fig. 3.6, only because he

absent in the phase diagram proposed by den Nijs
neglects anisotropy and assumes zero chirality, which takes an essential role in the

delicate energetic balance for the intermediate excited states.

However, the physics showed by the model of the present thesis can be better
attributed to scenario (iv), than to scenarios (i)-(iii), mainly for two reasons. First,

if one applies (as Bernasconi does) the analysis of Villain and Vilfan with the choice
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of defect energies assigned by Hamiltonian (4.1) with the parameters (4.6), it turns
out that the step free energy vanishes before that of a compact or extended 3x1
wall. So the model by Villain and Vilfan predicts that steps are unbound at the
point of the parameter space explored. Moreover, the order parameter Py w
behaves as Pax1 , i.e. it vanishes at Tp. Its susceptibility also has a maximum at

Tp, the intensity scaling with size in an Ising fashion.

The first point is maybe not conclusive, since an analysis 4 Ja Villain and
Vilfan is obviously oversimplified. It gives useful indications on the structure of
the phase diagram but it probably cannot accurately locate the positions of the
critical lines. The second point is instead more convincing, and strongly suggests
the presence of the DOF phase, since the deconstructed phase of scenario (iv) is
the only flat phase able to destroy Pp - as well as Pz5x1. The problem of stability
of such a DOF phase is however not been solved yet. The discussion which will

follow is an attempt towards its elucidation (18],

When the backbone typical of the DOF phase appears, because of the vanish-
ing of the step free energy, the six vertex model defined on the backbone must be in
its antiferroelectric phase. This occurs provided the Boltzmann weight as = e~7%s

of vertex 5 is sufficiently larger than those of vertex 1 and 3, a; and as.

The four “arms” of the vertices are made up of (3 x 1) steps. Since, however,
a step running perpendicular to the the “hard” [110] direction is much more costly
than one running parallel to it for the number of energetically expensive broken
bonds (thus very rarely present on a real surface), the vertex arms will never lie
parallel to each one of the two directions but will form an angle with them. In the
DOF phase vertex 1 represent the intersection between two parallel steps, i.e. a
4 x 1 step; vertex b represents the intersection between two antiparallel steps, i.e a
(3 x 1) compact wall; vertex 3 corresponds to exchange of sign of two antiparallel
steps at their crossing, and requires the breaking of three bonds along [110] (fig.
6.18). Because of the large bond-breaking energy, vertex 3 is energetically much
more costly than vertex 5. Hence, it seems possible to have a; < as and stabilize
the DOF phase, just by requiring a larger energy of the 4 x 1 step with respect to
the (3 x 1) wall (the symmetric version of the six vertex model a; = a3, a3 = ay,
as = ag is assumed).

In reality a vertex is presumably a rather complex object, instead of a point

as assumed so far. Schematically, we may think of a region of radius R, large
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compared with the lattice parameter a, but small compared with the correlation
length £p/y-. The steps have no intersections outside R, but they can cross each
other many times and have indirect interactions mediated by finite terraces inside
R. Therefore one can assign a vertex free energy as f = Fiertex — Fperiodic —2Ftep,
where Fyerter, Fperiodic; and Flsiep are respectively the free energy of a sample of
dimension £p/w X {p/w with the boundary conditions imposed by the vertex, the
free energy of a sample with periodic boundary condition and the free energy of a
single step.

Different mechanisms can be envisaged which favour the configuration with
two adjacent antiparallel steps of vertex 5, with respect to the configuration of
vertex 1 with two adjacent parallel steps. For example, in real surfaces there is
an elastic repulsion between parallel steps, which turns out to be an attraction
between antiparallel steps but of course it cannot happen in a rigid SOS model.
Perhaps the most probable mechanism is provided by a larger meander entropy
of a (3 x 1) compact wall, with respect to the a 4 X 1 step, since no energetic
contributions are given by Hamiltonian (4.1). This should occur via a very subtle
interplay between the energy of the intermediate excited states.

No exact proof of the relation f5 < fi is available, but the arguments presented
above should be convincing enough, and are sufficient to stabilize the DOF phase.
In fact, though a3 < as is no more automatically true if the vertices are not points
but extended objects, f3 could be larger than f5 because of an indirect interaction
between the steps of the backbone, mediated by finite terraces. In figure 6.19 are
displayed the configurations of vertices 5 (a), 4 (b) and 1 (c) in the presence of
a finite terrace. One recognizes the presence of subvertices at the intersections
between the steps of the backbone and the finite terrace. It is easy to recognise
that vertex 5 is the only one which does not contain any subvertex of type 1. If one
assumes that indeed f5 < fi, then the absence of subvertices 1 in vertex 5 justifies
a lower free energy of vertex 5 with respect to vertex 4. In other words, if we
assume a stronger repulsion, either energetic or entropic, between parallel steps,
one concludes that the presence of finite terraces hinders the crossing (exchange
of sign) between two antiparallel steps.

A DOF phase, with a predominance of 5 and 6 vertices, the cheapest in free
energy, is thus stabilized.
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Figure 6.1. Specific heat vs. temperature.
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Figure 6.18. The six vertices with the relative corresponding surface heights. From ref. [90].

(a) (b)

(c)

Figure 6.19. Configurations of vertex 5 (a), vertex 4 (b) and vertex 1 (c¢) in presence of a

finite terrace. From ref. [118].




Chapter 7

Silver(110)

In Chapter 4 two choices of energy parameters for Hamiltonian (4.1) have been
selected: the former was meant to describe a (2 x 1) reconstructed fcc(110) surface,
the latter an unreconstructed one. Here results for the unreconstructed one, which
has been called “Ag(110)”, are presented. The most important feature is the
occurrence of a non-Ising sublattice disordering phase transition on the flat (1 x 1)

surface before the roughening one.

7.1 Sublattice disordering and roughening

Before addressing the evidence of a sublattice disordering phase transition, the
occurrence of a roughening transition on this unreconstructed surface is briefly
described. Its detection through the study of the interfacial width behaviour as
a function of temperature and system size, clarified in figures 7.1 to 7.4, follows
exactly the same reliable method adopted for the BCSOS model as well as for
Hamiltonian (4.1) with the Au(110) energy parameters, and provides the value of

Tg = 2.25 £ 0.07 (7.1)

for the roughening transition temperature. The linearity of data for 7' > Tg in
fig. 7.4 is actually impressive, providing a strong indication for the Kosterlitz-
Thouless behaviour of the transition and a self-consistency test of the validity of

the method, since at least for this choice of the energy parameters the square root
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region of eq. (1.8) extends far above Tg.

The plot of the specific heat as a function of temperature (fig. 7.5) opens up a new
scenario for an in-plane surface disordering phase transition. Instead of showing a
sharp divergence around a certain temperature as in the case of Au(110), it exhibits
arounded peak which presents no sign of increasing with increasing size, but rather
saturates. A rapid inspection of the susceptibility xp - for the sublattice order
parameter Pp/yy (fig. 7.7) (the only parameter to be defined on the (1 x 1)
unreconstructed surface) does not help to clarify the situation. Its pronounced
size divergence is not by itself evidence for a critical phase transition, since very
similar behaviour is observed for the x g/ in the BCSOS case (see fig. 5.8).

The size dependence of the order parameter (fig. 7.6) is different from that
exhibited by Pg/yw in the BCSOS case (fig. 5.7). In that case, the finite size values
detached from the exact (infinite size) curve at a temperature which is higher the
larger the size (making thus possible a fitting for an independent extrapolation of
Tr too). Here, on the contrary, all the lines seem to join in a narrow temperature
region, remaining definitely below the infinite system (unknown) behaviour for
lower temperatures, above for higher temperatures. This is much similar to what
happens for Pyx; in the case of Au(110), but it is not sufficient, of course, for
claiming the occurrence of a critical phase transition.

The clear proof that such a transition indeed takes place on the surface comes
from the analysis of the first derivative of the specific heat dCv/dT (from eq.
(4.13)), figure 7.8. Though statistical fluctuations affect higher order energy cu-
mulants more than lower order ones, so that wider spurious oscillations in the
values are to be expected, (cured only by means of longer Monte Carlo runs), this
quantity nonetheless shows a distinct behaviour as a function of temperature. It
presents a node in correspondence of the maximum of Cy and two absolute ex-
tremes below and above, which heights tend to increase with increasing size. The
details about what is happening in this region will be addressed immediately below.
Here it is necessary to stress that, however, a critical phase transition undoubtedly
is taking place on the surface, this being evidenced by the comparison with the
behaviour of the same quantity shown in the BCSOS case (fig. 5.2). In that case,
a practically-absent size dependence was the confirmation of the “singularity-free”
nature of the free energy and of its derivatives. This evidence transforms here

into the prediction of a free energy f singular in some of its derivatives. Most
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probably, however, the critical exponent a is negative otherwise the divergence

would be apparent already in the second derivative (the specific heat itself).

The derivation of a value for a (or, better, for a/v) has to resort to a new
procedure. An interesting quantity to analyze would be the second derivative of
the specific heat since it should again show a peak at the transition temperature,
critical with size. Statistical fluctuations would on the other hand most surely
cover all relevant information contained in this quantity related to the fourth
cumulant of the energy. A straightforward numerical differentiation method is
employed to extract its value from the critical region of dCy-/dT (an enlarged
graph of which is shown in fig. 7.9). For each system size, the slope of dCy-/dT is
obtained and a logarithmic plot as a function of size is drawn from these values,
which represent a quantity proportional to d2Cy-/dT?, in order to extract the ratio
between critical exponents of the form (a + 2)/v (figure 7.10).

This procedure might seem to rest on a shaky ground due to the possible
influence of statistical fluctuations in the extraction of meaningful values. It has
therefore been tested in a simulation on a simple 2D Ising model, where all the
critical exponents are known. Fig. 7.12 shows the results of this calculation
performed on a square lattice of linear dimension N = 16, 24, 32 and 48 spins
(smaller than the size adopted in the simulation of Hamiltonian (4.1) since a
surface square lattice with A sites is equivalent to a lattice of 2A/ spins). The
specific heat is clearly size dependent and the same same appears for dCy/dT
though the peak in Cy shown by the N = 48 is slightly displaced to higher
temperature with respect to the infinite system critical temperature, Tc rsing =
2.2692. The exponents (a +2)/v (fig. 7.13) and /v (the latter obtained by a
finite size scaling analysis of the magnetic susceptibility x, defined as in eq. (4.21)
where the Ising magnetization replaces the order parameter), taken at T¢ rsing,

provide an excellent estimate of the Ising critical exponents. One gets:

=1.92+£0.11

Y —1.71+0.03
v

that is
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o = —0.04 £ 0.06
v =1.02 £ 0.02 (7.3)
v =1.74 + 0.05

all in agreement (within error bars) with the exact values (¢ =0, v =1, v = 1.75).

Having checked the method against exact results, it is now possible to ana-
lyze in a similar way the quantity dCy /dT calculated in the case of silver. The
transition temperature may be located at the point where dCy-/dT is nearer to

zero, which corresponds to the peak value of Cy-, that is at

Te = 1.81 4+ 0.03, (7.4)

Tc being the critical temperature related to the vanishing of Ppg . Sublattice
disordering thus occurs at 4/5 of the roughening temperature with present param-
eters. The ratio between critical exponents obtained from the abovementioned

finite size scaling analysis is

o2
v

=1.58 4 0.19 (7.5)

A similar analysis is performed on the susceptibility, which peak value for the
larger size available coincides with eq. (7.4). Again the plot of Inxp/w as a
function of In L (fig. 7.11) yields a linear behaviour described by the value

Q==

= 1.56 4 0.02. (7.6)

From these values it is possible to obtain all the critical exponents for sublattice
disordering in our model of Ag(110), the most relevant to the present investigations
being

a=-0.23+£0.12

v=112+0.06 (7.7)

v =1.744+0.10
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The value assumed by « lies in the range —1 < a < 0, which is consistent with
the saturation of finite size effects observed in Cy-, where a non critical large back-
ground dominates on a non divergent critical contribution, and with the size effects
present in dCy-/dT. This undoubtedly rules out the possibility of a transition of
the Ising type (this transition is actually “weaker” than Ising, i.e. a is negative),

although the 7 value practically coincides with the Ising value 7/4.

The values (7.7) point towards a critical phase transition at T¢ with non-
universal exponents for different surfaces (energy parameters), as envisaged by den
Nijs [°0:119] for the preroughening transition as well as by Kohanoff et al. [125,126]

in the Jug-Tosatti model.

7.2 Scattering intensities results

As in the case of Au(110), also for this unreconstructed Ag(110) surface intensities
for both atoms and X-ray scattering are calculated.

The exact value of the amplitude absorption coefficient p for X-ray scatter-
ing is not essential since it appears just in a prefactor in front of formula (120)

[31] in correspon-

Nevertheless o = 1.66 - 1073 is chosen, extracted from the tables
dence with the value of 8.05 KeV employed by Held et al. 7] in their diffraction
experiment.

Fig. 7.14 shows the atom scattering pattern (the X-ray one looks similar, thus
it is not shown) calculated for the largest system available (N = 32), for @, =0,
g. = 0 and Q. in the whole range of investigation, 0 < @, < 47/a; (0 < nz/N, <
4), for a temperature T' = 1.875 between T¢ and Tg, together with the Lorentzian
fitting adopted. The central peak is equivalent, via the symmetry relations of
Section 1.4.7, to the specular peak in antiphase (00 7/a,) which directly monitors
the behaviour of the order parameter P,y (see Appendix). The main feature of
the plot is, together with the disappearance of the half integer order reconstruction
peaks with respect to the case of Au(110) (fig. 6.12), the absence of a shift, however

small, of the peak, which is maintained also for T' > Tg.
A fitting of the incoherent part (excluding the central peak where both coher-
ent and incoherent contributions are superimposed) with a Lorentzian function is

performed on the data. It is particularly appropriate in that temperature range
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where the lineshape should actually be Lorentzian, i.e. neither for too low tem-
peratures nor for too high ones, where it changes to a power-law (for T' > Tj).
The coherent contribution is thus obtained by subtracting from the total intensity
an extrapolated value of the incoherent intensity at the peak position, which has
been chosen to be that taken at the maximum of the Lorentzian.

In fig. 7.15-(a) the intensity of the specular peak in antiphase is reported as a
function of temperature, both for the total and the coherent part. The incoherent
one is shown in fig. 7.15-(b). It has a peculiar bell-shaped form, with a maximum
not exactly placed at T¢ but slightly shifted upward in temperature, a feature
which is sometimes observed experimentally [52:33] see for example fig. 2.1.

Finally, the width of the incoherent peak is shown as a function of temperature
in fig. 7.15-(c). It has a feature similar to that of the half integer order peak width
in the Au(110) case, that is a minimum at a certain temperature (more or less
coinciding with that of the maximum in the incoherent intensity), but it increases
above it due to a proliferation of defects on the surface. Its boundedness for lower
temperatures is due only to finite size effects and to the fitting procedure, which
becomes more inappropriate the lower the temperature.

The coherent part of the specular peak in antiphase should behave as the
sublattice order parameter, thus should vanish at 7-. However, this is not clearly
seen in fig. 15-(a) where it shows a sharp decrease, which nonetheless does not
permit to locate the transition temperature with precision. This is mainly due to
finite size effects, evidently more important here than in Au(110).

For X-ray scattering the situation looks exactly in the same way, thus no

additional scattering diagram is reported.

A better understanding of the features arising from the scattering calculations can
be provided by looking at snapshots of surface configurations taken at different
temperatures (fig. 7.16 — 7.18). For T' < T¢ only isolated local defects are found
on an otherwise flat (110) surface. Their density increases as a function of temper-
ature and compact domain walls start to appear. None of them causes sublattice
disordering which is instead driven by steps with a long range up-down order, as
shown in fig. 7.17. Their appearance is also an explanation of the absence of the
shift of the specular peak found in the scattering patterns. Two of them in fact
are sufficient to cause the vanishing of Pp,3- on a finite system, but of course this

is not enough to induce a shift which is instead driven by a global increase of the
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lattice spacing in the x direction. This would arise due to proliferation of (2 x 1)
compact domain walls, for example, but this is clearly not the case. By raising
the temperature, the disordered but flat structure evolves into the usual rough

structure with delocalized interface, and this is apparent too from fig. 7.18.

In conclusion, Ag(110) shows two distinct transitions, the second located through
the divergence of the height-height correlation function, the first through the van-
ishing of the Pp/y order parameter. This can be classified into a class of pre-
roughening transitions envisaged by den Nijs and by Kohanoff, Jug and Tosatti by
introducing a long range interaction in a nearest neighbour Hamiltonian, which is
represented in this case by the K3 coupling in the Hamiltonian. The occurrence of
a DOF phase stabilized by long range antiferromagnetic order of steps is a crucial
structure in the preroughening mechanism. It can be deduced from theoretical
arguments, as well as clearly seen in snapshots of the surface configurations like

fig. 7.17.
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Conclusions

The model proposed in Hamiltonian (4.1) has been shown to be capable of de-
scribing a variety of different phenomena occurring on the noble and near noble
metal fcc(110) metal surfaces. With a suitable choice of parameters it can be used
to characterize both (2 x 1) reconstructed surfaces like Au(110) and Pt(110) and
the (2 x 1) unreconstructed surfaces like Ag(110), Pb(110), etc..., and to repro-
duce the phase transitions which occur on these systems as the temperature is
raised. In the first case, evidence for a (2 x 1) deconstruction transition, followed
6% above in temperature by a roughening one, is extracted by the Monte Carlo
data produced. In the second case, apart form the roughening transition again ob-
served, at lower temperatures a new sublattice disordering critical phase transition
is detected and characterized to lie in the class of non-universal “preroughening”
transitions first envisaged by den Nijs and Rommelse(®"] and by Kohanoff, Jug

and Tosatti[124,125,126]

Coming to discuss the right side of the phase diagram relative to the reconstructed
surface, it is apparent that a (2 x 1) deconstruction transition is found and char-
acterized, which turns out to be, with convincing accuracy, Ising-like in nature. It
is to be noticed that this is in agreement with the elementary discussions based on
the symmetry of the order parameter for the reconstructed structure (%, However,
in these considerations the interference with the off-plane degrees of freedom was
never taken into account. Hence any treatment which includes these must produce
an Ising point in a rather non-trivial fashion. In fact, one should bear in mind that

the degeneracy of the ground state is actually fourfold and naive symmetry consid-
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erations would call for a transition of 4-state Potts universality class, for example.
Yet, the existence of the six-vertex constraint enforced on half of the plaquettes of
the spin checkerboard lattice leads to a spontaneous symmetry breaking inherent
to the topology of the two-sublattice system (see figure 4.2). This corresponds to
an ordered structure with an effectively lower symmetry “dynamically” imposed
by the constraint on the excitations leading to disordering. Thus, the symmetry
group is split into the product Z»,Q Z, and leads to an effective Ising critical point.
This is in agreement with the results obtained by other authors on the basis of
different but related models(122:120:133]  p order to further elucidate this point,
calculations of the sublattice order parameter Pg/yy- show it behaves as Py, as

far as critical properties are concerned.

The defect structures leading to deconstruction into a flat disordered phase
appear to be of the higher-order 3 x 1, 4 x 1, ... as well as 1 x 1 types, with
a predominance of 3 x 1, as seen by examining typical surface configurations.
Indeed, the fact that the (%, 0) peak position does show a small but non-zero shift
towards lower @, values in the scattering calculation, confirms the presence of
such dephasing higher-order defects (see below). In the language of den Nijs (0],
this is a “chirality” effect.

It has also been shown that the surface becomes rough at a temperature
Tgr ~ 1.067p. Amongst the different scenarios proposed by Bernasconi [118] " this
rules out scenario (v), where T = Tp. This is connected to the question of
whether steps consisting of (111) microfacets are not bound in pairs made of step
up and step down or, if so, what is the origin of the step-step attraction. Indeed,
the geometrical constraints are such that the meandering entropy of domain walls
is higher when steps of opposite sign are bound than when steps of the same
sign pair together (see Section 3.2). Geometry and entropy therefore play a most
prominent role in the model, as it is not possible to distinguish between pairs
of up-down and up-up (down-down) steps in terms of their energy. Under such
conditions, pairing of steps of opposite sign is expected, leading to the appearance

of a smooth phase right above deconstruction (Ip strictly lower than Tg).

Though it is not possible to definitely rule out scenarios (i)-(iii) (deconstruc-
tion driven by compact antiphase domains), the evidence of the Pp/y order pa-
rameter vanishing at the same temperature and with the same critical behaviour

of the deconstruction order parameter Psx; is a clear indication of a scenario of
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type (iv) occurring on the simulated surface, i.e. a DOF phase where a backbone
of (3 x 1) steps proliferate in a up-down-up-down long range order, thus ensuring
the average flatness of the disordered surface. This DOF phase is again stabilized
by a subtle entropic mechanism between steps, owing also to the important role
played by anisotropy in surface interactions.

Should a repulsion between steps be included by hand, one might expect it
to cause Tp = TR, as well as no one can exclude that for different values of the
model parameters Tp and Ty may coincide. On the other hand, if an attraction is
added, the gap between Tp and T'r ought to widen even further, as in the Villain
and Vilfan 122! and in the den Nijs[*2%] models. In the model studied in this thesis,
where no proper step-step interaction is present at 7' = 0, the gap between the
two transitions is however a reality, despite its smallness. Indeed, at Tp and, more
importantly, at Tp + ATp (where ATp is the statistical error), the coeflicient
K(T) is well below the value 1/7n? taken up at Tr. Hence the surface is still flat.
K(T) is in fact negative in the region between Tp and Tg, i.e. large systems show
a smaller interface width than small systems; no explanations for this feature has |
yet been found.

An important point in this theoretical study of the Au(110) surface is repre-
sented by the analysis of the scattering intensities for atom as well as for X-ray
diffraction experiments. Results indicate that the position of the incoherent peak
(and also its width and intensity) changes with temperature (and perpendicular
momentum transfer g,) above deconstruction, in broad agreement with experi-
mental data obtained for Au(110) (and also Pt(110)[%%). This represents some
important evidence that the surface generated by the statistical-mechanical model
adopted is modulated (but flat and disordered) above T, as predicted by earlier
theoretical treatments[*?# before roughening at Tgr. However, the half-order peak
shift predicted for Au(110) with the present choice of the model parameters turns
out to be quantitatively small, at least below Tr. This seems to be well borne out
both by X-ray[*®! and by He[®% scattering.

As on the right reconstructed side of the phase diagram, on the left, unrecon-
structed side a crucial role is played by the sublattice order parameter. On the
extreme left (K = —o0) one encounters the BCSOS model, where only a roughen-
ing transition is known to occur. This transition can be signalled by monitoring the

behaviour of Pp /1y of an infinite system and by looking at its vanishing, though
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for finite systems this is carried out with a certain difficulty, due to finite size effect

and also to the peculiar non-critical vanishing of Pg/yy at Tg.

It is presumable, however, that as soon as one moves away from this particular
point of the phase diagram, a new transition will appear on the surface, namely
preroughening or sublattice disordering. This has been tested only for one value of
the energy parameters, but it should be a general feature of Hamiltonian (4.1). In
a way, roughening and sublattice disordering are two distinct transitions which are
found to coincide only in the BCSOS case, but are ready to disentangle from one
another as soon as a next nearest neighbour coupling K3 is added to a BCSOS
- like Hamiltonian. In this way, K3 acts equivalently as the longer range term
introduced by den Nijs in a SOS Hamiltonian , which gives rise to preroughening.
The mechanism which causes this transition and, also, the stabilization of a DOF
" phase before roughening is much simpler than that envisaged in the Au(110) case,
since it involves energetic considerations and not only entropic ones. In fact, the
structure of (4.1) is such that with the choice of parameters 4.9, two parallel (2x 1)
steps are energetically more favoured than a (3 x 1) step, due to the presence of the
positive K3 term. This introduces a hard-core repulsion between parallel (2 x 1)
steps of the same nature of that added by den Nijs in Hamiltonian (3.1), preventing
them to merge into a single (3 x 1) step. Such mechanism leads to a stabilization
of the DOF phase delimited by (2 x 1) steps. Incidentally, if (3 x 1) steps had
been favoured, they would have connected terraces of the same type of atoms on
top rows, and Pp/y would not have vanished. This stability temperature region
survives till at T the step free energy definitely goes to zero and the interface

delocalizes.

Pictures like 7.16 - 7.18 are an example of the realization of a DOF phase
on a fcc(110) surface. Steps connecting flat terraces at different height levels are
predominantly monoatomic, and the presence on the terraces of local thermal
defects, like vacancies and adatoms, helps the disordering process but does not
constitute the main source of relevant excitations which lead to the preroughening

transition, these being composed only by the above mentioned steps.

Scattering experiments on the unreconstructed surfaces show particular fea-
tures in the behaviour of the peaks with temperature which have been attributed
either to local defect proliferation or to enhanced anharmonicity, but never to

preroughening. The scattering calculations presented in Chapter 7 instead show
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a sharp decrease in scattering peaks (a particularly sensitive peak is the specular
peak in antiphase, as shown in the Appendix) which should vanish at the pre-
roughening transition. The results of a statistical mechanics model, built up to
mimic the physics of real systems and carefully reproducing the main features ex-
perimentally found on Au(110), should not, of course, necessarily be true also for
unreconstructed (110) surfaces, especially if much more complex phenomena like
faceting, which cannot be easily introduced in the model, occur. Nonetheless, this
thesis should act as a suggestions to experimentalists to set up new measurements,

sharply focused in the temperature region below the roughening transition.




Appendix

This Appendix is intended to explain the link between order parameters and scat-

tering intensities (already discussion in Section 1.4.4), in two particular cases.

2m

® | The atom scattering intensities (1.17) for the reconstruction point @, = %

Qy = 0, g = 0 is related to the reconstruction order parameter Py (4.18). I

fact, with this choice of momentum transfer values, 74 reads

(509 -

The sum over all the lattice sites can be decomposed in the following manner. R,

2

(A1)

Z el@= Rz o(R)

R

after (1.47) and similarly to Section 1.4.3 is written as X, which runs over the
position of the left corner atoms of each unit cell doubled due to reconstruction,
plus x,, which labels the four columns of black and white atoms within each unit

cell, x, =0, %, az, %az. In this way

Z y — >, = Z k=1,23,4

Rz ,Ry X, 85,7y

where R, labels each of the four sets obtained by grouping together every four
columns, starting from the x-th one. The phase factor e!@=ts | after (1.47), is
¢i™= for white sites, e!("=71/2) for black ones, thus it depends only on & (it can
be written eiz(*~1) k =1,2,3,4), and (A.1) transforms into
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2

T4 (al,o,o> =Y aRy)+i Y a(Ra)— > a(Rs)—i Y o(Ry)

z

R, R, R R,
= (Z a(R1) - Y. a(R:») + i (Z a(Ra) = ) a<R4>)
R, Rs Ro R, (4.2)

On the other hand, the shadowing factor (R) of eq. (1.18) can be rewritten as

1

a(R) = 1 + m(R) %ZmRJrD) (4.3)

with m(R) and m(R + D) respectively the heights of two nearest neighbour sites,
located at R and R + D, and where the sum over D runs over the four nearest

neighbour positions. With this expression, one gets

Sa(®) =Y

R1 R1

R, R,
:—4—+Zm(R1)—§Zm(Rz)“}2‘Zm(R‘*)’ (4.4)
R, R, R,

1+m(Rl)—§}:m(R+D>
D

since every set of columns group together —ﬁ[ sites, and of the four sites nearest

neighbour to one of the set 1, two belong to set 4 and two to set 2. The two sets
respectively preceeding and following the set x are labeled by (k — 1) (mod4) and
(k + 1) (mod4). Therefore
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Ra R, R.
i+ S R Y m(R) - 5 Y m(Rs) +
R, R, Ra
- % - Zm(RQ + % Zm(Rl) + = Zm(R?,)) =

But this is exactly the square of the order parameter P;yx; defined in equation
(4.18). In fact, using (4.17), (4.18) rewrites as

(ST

Posa= My, y+ M<2+——+)]

and

My =[+My+ Mz — My — M) /4

J\/_[<2+___+> = [+]VI1 — M2 _ ]\/[3 + .ZVI.J,] /4,

but remembering the relation spins - height variables, it is straightforward to

rewrite
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R,
M=) m(Rs)~ ) m(Re)  Ms=) m(Ri)-) m(Ra)
Ra R2 Rl R4
so that
Mpy—oy =3 > m(Ra) = 3 m(Ra)
-R1 RS =
My = 5 | 2 m(Ra) - > m(Rz)
L Ry R =
and finally

Poxi = % (Em(Rl) - Zm(m)) + (Zm(Rz) - me))
R, R R,

Ry

[T

Normalizing the intensity such that it takes on the value 1 in the (2 x 1) ground
state, it is apparent that

T, <a1,o,o> — P2 .. (A.6)

® | A relation of the same kind holds also in the unreconstructed case, where it
is possible to show that the specular atom scattering intensity in antiphase (i.e.
for g.a, = ) is proportional to the square of the Pg/yy order parameter given in

eq. (4.20). In fact, with the usual separation of the lattice into B and W sites,
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2

™

T — irm(R)

A (0,0,———&) E e a(R)
- R

2

_ Z eiwm(Rw)a(RW) + Z ei”m(RB)a(RB)

Rw Rp

But, by definition, white (black) sites have odd (even) integer height variables, so

that ei™™®w) — _1 and ei™(R8) = 1.1, and the scattering intensity writes

I, (0,0, 3) =
az

utilizing again relation (A.3), this transforms into

IA <0a 0’ l) -
az

_ Zm(RW)—-% 3 m(RW,D)—Zm(RB)—-;li S m(Rs,D)

Rw Rw ,D Rp Rp,D

2

’

Z a(Rw) — Z a(Rp)

Ry Rp

but
Z m(Ryw,D) = 4Zm(RB)
Rw,D
> m(Rp,D) =4 Z (Ryv)
Ry ,D R
so that
2
T4 ( > Zm (Rywy) Z m(Rp)
R Rp

~ P.ZB/W (A.7)



171

as obtained from relation (4.20).

A last word about scattering intensities and order parameters. All the relations

proven have the form

I="P

where 7 is not the coherent intensity but the total one. Now, by taking the Monte

Carlo average, one straightforwardly gets

(@) = (P*) = (P) = (P)* + (P)? =
= (P —— (A.8)

(this last relation is obtained via eq. (4.21)), which is exactly a formula with
the same structure of those written in Sections 1.4.4 — 1.4.5., thus enforcing the

validity of the choice of decoupling spatial and Monte Carlo averages taken there.
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