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Introduction

odern cosmology begins with Einstein’s 1917 paper where he applies his General
Relativity (GR) Theory to Cosmology.
After that day many discoveries have been performed and many successes in the theo-
retical knowledge have been achieved.

Nowadays, the opinion of many physicists is that the Universe is well-described by
what Fred Hoyle termed a Big Bang Model, according to which the Universe expanded
from a denser hotter stage to its current state, where the present energy budget is dom-
inated for ~ 76% the by dark energy and for ~ 20% by dark matter (neither of which
have never been detected in the laboratory), while the stuff which biological systems,
planets, stars, and all visible matter are made of (the remaining 4% in baryons) repre-
sents a very small tracer on this dark sea, with the electromagnetic radiation being an
even less significant contribution.

Observations indicate that the initial inhomogeneities, which have evolved generat-
ing the observed structures in the Universe, are more or less scale invariant, and that the
simplest best-fitting Big Bang Model has a flat spatial geometry. These facts could be
the consequence of a simple Inflationary Era of the Universe, a very early period of ex-
tremely rapid expansion, which stretched zero-point quantum-mechanical fluctuations
to larger length scales and converted them into the needed classical inhomogeneities in
the mass-energy distribution.

Given these initial inhomogeneities at an earlier time, the expansion of the Universe,
the gravitational instability, the pressure gradients, and the microphysical processes

give rise to the observed anisotropies in the Cosmic Microwave Background (CMB) and
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to the current large-scale distribution of non-relativistic matter, such as galaxies, groups
and clusters, which are locally distributed inhomogeneously in space, although, in a
statistical sense and on large enough scales, their distribution approaches the isotropy.

More specifically, in the early Universe, nuclear physics reactions between protons, neu-
trons, etc., resulted in the nucleosynthesis of the lighter elements (baryons), while the to-
tal temperature was decreasing with the expansion. As the temperature dropped down
below T ~ 3000 K, neutral hydrogen atoms started to form via the “recombination pro-
cess”. The finite time required for the recombination resulted in a time-interval of non-
zero thickness (the Last Scattering (LS) Surface) within which the decoupling of neutral
baryons and photons occurred. The mean-free path grew so much to allow photons to
travel almost freely and to form the today observed CMB. Indeed, just like a snapshot
of the early Universe, the CMB carries the trace of cosmological perturbations at last
scattering, in the form of anisotropies, both in total intensity and linear polarization,

resulting from Thomson scattering of photons into electrons.

However, measurements of the CMB anisotropy indicate that fluctuations in the
baryons at decoupling were too small to have grown alone via gravitational instabil-

ity into the structures seen today in the galaxy distribution.

A solution to this puzzle is provided by the Cold Dark Matter (CDM), of the same
type and quantity needed to explain gravitational interactions on galactic and cluster
scales. Including this non/weakly interacting component with low primeval velocity
dispersion, the Universe becomes matter dominated at a redshift comparable to, or even
larger than, the LS redshift, and the low observed CMB anisotropy is reconciled with
the observed large-scale structure. Consequently, measurements of the CMB anisotropy

probe the CDM distribution and are an independent argument for its existence.

At the present, observations of type la supernovae, probing of the cosmic expansion
history, give strong evidence that the Universe has recently started a period of accel-
erated expansion. In order to explain this phenomenon, the cosmologist community
has introduced the concept of “dark energy” (DE) which was sub-dominant until re-
cently, when it started slowing the rate of structure growth. The simplest interpretation
in terms of a cosmological constant caused revival of the “cosmological constant prob-
lem”, i.e. why the corresponding vacuum energy assumed to be of fundamental origin,
is about 123 orders of magnitude less than the Planck scale. More specifically, the in-
terpretation of the dark energy as a simple cosmological constant gives rise to a “fine—

tuning” and “coincidence problem”. The fine-tuning is required in the early Universe
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to store a tiny fraction of energy in the vacuum, compared to the total one. The coin-
cidence simply asks why that tiny fraction is such to be comparable to the matter one
at the present epoch. The concept of dark energy generalizes the cosmological constant
with a component which is generally dynamic and fluctuating in the attempt to alle-
viate the two problems mentioned above. In this field, progress in cosmology is likely
to come from more and higher-quality observational and simulation data. A number
of ground-based, space-based, and numerical experiments continue to collect data and
new near-future particle physics, cosmology, astronomy, and numerical experiments are

in project.

The several and different observations, concerning the CMB anisotropy and polar-
ization, the large scale structure distribution, the baryon abundance, the late accelerated
expansion, etc., suggest what is today called the “Concordance Cosmological Model”,
in the sense that there is quite a converging view of the numbers that form the Universe
matter-energy content and the distribution of its perturbations. On this side, cosmol-
ogy has now become a precision science, but unfortunately it is often limited by the
sensitivity of the instruments and lacks, in some cases, a theoretical interpretation of
experimental measurements.

For instance, there is not yet any proved explanation of what dark matter and dark en-
ergy are. Moreover, although the inflation era is by now quite commonly accepted by
the scientific community, there is still the necessity of characterize its mechanism in de-
tail.

The most promising method for observationally probing this early inflationary epoch is
through the detection of primordial gravity waves (GW) predicted in a number of infla-
tion models. Indeed, this detection (via, e.g., CMB polarization measurements), would
constrain different inflationary models, but the non-detection would not rule out infla-
tion. On the other hand, there exist several phenomena which could generate effects
similar and comparable to primordial GW ones.

Among these, there are secondary effects in the CMB polarization due to the lensing of
CMB photons by matter structures, which in turn, being characterized by a non-linear
evolution, may generate second order signals in competition with the primordial ones.
However, these phenomena are important by their own, since they yeld information on

the distribution and evolution of cosmic structures.

Indeed, my PhD project has been devoted to a systematic and detailed analysis

of some of the most important secondary contributions focusing on the effects from
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non-linear structure formation.

In the first chapter of this thesis I briefly sketch a picture of our current understand-
ing of the Universe and describe the main features of the Concordance Cosmological
Model.

In Chapter 2, I describe different perturbative approaches adopted for the solution
of the Einstein equations in the case of matter sources only, focusing on what we call a
“hybrid” formalism for the description of their non-linear evolution. Moreover, via the
formulas obtained with the hybrid approximation, I estimate the stochastic GW back-
ground generated by the strongly non-linear evolution of CDM structures (modeled as
collapsing ellipsoids), which has to be distinguished by other cosmological GW back-
grounds.

Chapter 3 is dedicated to the description of the CMB, together with its primary and
secondary anisotropies in temperature and polarization.

In Chapter 4, I describe the physics of the gravitational lensing by large scale struc-
tures, focusing on its effects on the CMB.

Chapter 5 is devoted to the project of carrying on all-sky simulated lensed CMB
maps via the use of N-body simulations in order to include and evaluate the effect on
the non-linear structure evolution on CMB anisotropy and polarization. In particular,
we build up maps of the projected lensing potential and deflection angle, exploiting the
evolving dark-matter distribution of the Millennium Simulation. In this Chapter the
tirst results of this project are presented.

Finally, in the Conclusions, I briefly summarize the main results of my PhD work

and discuss the future directions of my research.



Chapter 1
The Einstein’s Equations and the Concordance

Cosmological Model

‘ ‘ T hen Einstein applied his GR theory to cosmology [1], he assumed that the Uni-
verse was spatially homogeneous and isotropic and this was formulated as the
“Copernican” cosmological principle by Milne in 1933. Knowing that the stars in the
Milky Way move rather slowly, Einstein decided, as everyone had done before him,
that the Universe should not evolve in time. As we know, he came up with a static (un-
stable) solution of his equations by introducing a new form of energy, now called the
cosmological constant.
Unbound by the desire to have a static Universe, in "22-"24 Friedmann found instead
the evolving homogeneous solutions of the Einstein’s equations, while, at the end of
1920’s, Robertson initiated the study of metric tensors of spatially homogeneous and
isotropic space-times, and in the mid 1930’s, together with Walker, obtained the so-
called “Robertson-Walker” form of the metric tensor for homogeneous world models.
In 1929, after a decade of observations, Edwin Hubble and Milton Humason formulated
their law that galaxies move away with a velocity proportional to their distance from the
observer. This was the first observational evidence in support of the expanding space

paradigm and the Big Bang theory.

1.1 The Friedmann-Robertson-Walker metric

At the zero-order of approximation, on large scales and for fundamentals observers
(the so-called comoving observers) defined to be at rest with respect to the expan-

sion/contraction of the spatial geometry, the Universe results to be spatially homogeneous
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and isotropic.

As anticipated, this statement represents the Copernican Cosmological Principle,
philosophically formulated by Milne and pursued by Bondi, Hoyle and Gold.

Although primarily on scales < 100 Mpc matter is systematically distributed in
clumps and voids, this principle is generally accepted since the CMB observations, the
Hubble-law, the counts of Radio Galaxies, and other experimental evidences give it an
empirical validity.

The GR theory describes space-time as a four-dimensional variety whose metric ten-
sor gj is considered as a dynamical field. The dynamics of the metric is governed by the
Einstein’s field equations:

G =T, (1.1)

(where k? = 871G /c*) which relate the Einstein tensor G' j to the stress-energy tensor T! j
of the space-time contents. Here Latin indices run over 0...3 and Greek indices run
over the spatial indices 1...3 only.

The solutions to Eq.(1.1) which admit a sub-space with constant spatial curvature
are called “maximally symmetric solutions”, since they are characterized by a number
n(n +1)/2 of isometries, represented, in our 3D-space (n = 3), by 3 spatial transla-
tions and 3 spatial rotations, i.e. a 3D-space maximally symmetric is homogeneous and
isotropic.

Such kind of solutions therefore can well describe our Universe constrained by the
cosmological principle.

Fixing the comoving spatial network of observers, we have the freedom to associate
a particular time-coordinate to them: in the so-called synchronous gauge, characterized
by goo = 1, all the observers can synchronize their clocks with respect to the cosmic time
since it coincides with the proper time as measured in the locally inertial frame of each
observer.

Under these assumptions, a metric, describing a four-dimensional space-time with

a three-dimensional sub-space of constant curvature, can be written:
ds? = —c? dt*> +a(t) dI?, (1.2)

where dl is the line element of the homogeneous and isotropic 3D-space and a(t) is the
scale factor describing the actual expansion.

The spatial hypersurfaces whose geometry is described by dI? can either be a 3D-sphere,
a 3D-hyperboloid or a 3D-plain.
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Introducing polar coordinates, Eq. (1.2) can be written in the form of the Friedmann-
Robertson-Walker (FRW) metric:

ds? = —c? dt* 4 a(t) dx>
dr?
1 — Kr2

z-w2m2+a%ﬂ[¢f+4%xyﬁﬁ}, (1.3)

= —c?dt* +a*(t) { + 72 ( d9* + sin®9d d(pz)]

where the radial function r(x) is either a trigonometric, hyperbolic or linear function of

X, depending on whether the curvature K is positive, negative, or zero. Specifically:

K~1/2sin(K'/2y) (K >0)
r(x) =4 x (K=0) . (1.4)
(—K)~'/2sinh[(~K)!/2x] (K <0)

Sometime, expecially when the Universe is spatially flat, it is useful to introduce a
different time-coordinate, the so-called conformal-time: n = [3 dt’ /a(t').

In the conformal gauge the FRW metric takes the form:
ds? = a®> () —cdn* + dirz + 72 ( dd? + sin’d d(pz) (1.5)
1—Kr? ’ '

and, if K = 0, it is called conformally flat.

Due to the highly symmetric form of the metric given by Eq. (1.3), the Einstein field
equations imply that T;; has to be the stress-energy tensor of a homogeneous perfect
fluid, i.e. diagonal and characterized by its density p(t) = ¥;p;(t) and its pressure
p(t) = ¥, pi(t), where each i-component is supposed to be non-interacting with the

other species. The field equations then reduce to the two independent equations:

L\ 2 2

a 871G Kc A

— = — _ —_— 1'
(a) 3 P2 tg (1.6)

and i 4 3 A

a p
Z__Z= el _ 1.7
. 37rG<p+C2)+3, (1.7)

which represent the Friedmann and Rayachaudhuri equations, respectively, and the
presence of the cosmological constant A has been made explicit. The scale factor a(t) is
determined once its value at one instant of time is fixed. We choose a = 1 at the present

epoch tg.
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Finally, Egs. (1.6)-(1.7) can be combined to yield the adiabatic equation:

3
% [a3(t)p(t)cz} + p(t) dadft) =0, (1.8)

which has an intuitive interpretation: the change in the ‘internal” energy of a volume

element equals the pressure times the change in proper volume, i.e. it is the first law of

thermodynamics in the cosmological context.

1.2 Properties of the Universe

The quantity a/a is crucial for the determination of the expansion rate of the Universe
and is called the Hubble parameter H(t); its value at the present epoch t = ¢ is the Hub-
ble constant H(ty) = Hp which has the dimension of an inverse time. The uncertainty in

Hy is commonly expressed as Hy = 100 7 km s~! Mpc~1, hence
Hy~32x10"8Bhs !t ~1.0x10%nyr 1. (1.9)

The time scale for the expansion of the Universe is simply the inverse of the Hubble
constant, or HO_1 ~ 101041 years.

If we define the critical density p., = 3H?/(87Gp) ~ 1.9 x 10-?°h?gcm =3 as the
density needed for the Universe to be exactly flat, and the density parameter for each
component of the Universe Q;(t) = p;(t)/pcr, the Friedmann Eq. (1.6) can be rewritten

as: K

where the last term is defined as the curvature density parameter Qg(f) =
—K/(a®*H?) = Qg,/a?. By definition Qs = A/(3H}) and the present total density
parameter of the Universe is therefore Qg = 5, Q; .

The present state of the homogeneous Universe is specified by the present values of
all the density parameters (); o and the present Hubble parameter /.

With these parameters the Eq. (1.10) takes the form:

H%(t) = H3 [(1 +2)%Q,0 + (1 +2)°Quo+ (14 2)2Qxo + QA} , (1.11)

where the subscripts r and m stand for radiation and matter respectively. Another fun-

damental quantity is the so-called deceleration parameter qy defined at t = t( by

do=—"—. (1.12)
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Due to the expansion of space, photons are redshifted while they propagate from the
source to the observer. In fact, let us consider a comoving source emitting a light signal
at t. which reaches a comoving observer at the coordinate origin r = 0 at time #(. Since
ds = 0, a light geodesics propagates according to |c dt| = (adr) /(1 — Kr?)'/2, and after

integration the comoving distance of the source results to be:

r dr’ fo ¢ dt
r) = _— = —— = constant in time , 1.13
X( ) /0 (l_Kr/z)l/z /te ﬂ(t) ( )
from which follows:
dty _ a(to)
e " alte) (1.14)
But, if v and A are respectively the frequency and wavelength of the source light, we
can write:
di’o Ve /\0
T vo o A (1.15)

and finally, introducing the redshift z, defined as the relative change in wavelength or
1+z = Ag/Ae, Egs. (1.14)-(1.15) lead to:

a(t
1+z= aEtZ; . (1.16)
This shows that light is redshifted by the amount by which the Universe has expanded
between emission and observation.

For a complete description of the expansion of the Universe, we need an equation
of state for each non-interacting component of the Universe, p = wc?p, relating the
pressure to the energy density. Ordinary matter, which is frequently called dust, has
p < pc?, while p = pc? /3 for radiation or other forms of relativistic matter, assumed at

thermal equilibrium. Inserting these expressions into Eq. (1.8) gives

p(t) =a " (t) po, (1.17)

with

. { 3 fordust:p =0 (118)

4 for relativistic matter: p = pc?/3

The energy density of relativistic matter (photons and neutrinos being the two obvious

candidates) therefore drops more rapidly with time than that of ordinary matter.
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1.3 The Concordance Cosmological Model

In the last decade rapid advances in observational cosmology have leaded to the estab-
lishment of the first precision cosmological model. According to this model galaxies and
large-scale structures have grown gravitationally from tiny, nearly scale-invariant (as
we specify later) adiabatic! Gaussian? fluctuations in a Universe spatially flat, homoge-
neous and isotropic on large scales, composed of radiation, ordinary matter (electrons,
protons, neutrons and neutrinos), non-baryonic CDM?3, and dark energy, described in
the Introduction.

This model of the Universe includes as well a statistical description of the deviations
from homogeneity, which we formalize in the next chapter, giving here only the most
important and intuitive details.In order to describe these perturbations, it is usually in-
troduced the dimensionless quantity A%(k) = k>P(k)/(27?) where P(k) is the power
spectrum of the density fluctuations and k the Fourier wavenumber; if the perturba-
tions obey the Gaussian statistics, the power spectrum provides a complete description
of their properties: if 5(k) represents the Fourier transform of the density fluctuations
at wavevector k, Gaussianity means that < §(k)é(k’) >= (27)3P(k)8°(k — k’). Of
particular interest is the Harrison—-Zel’dovich or scale-invariant spectrum, which corre-
sponds to a constant spectrum A?, at the time in which a particular scale k crosses the
Hubble horizon: a/k = cH~!. More generally, one can approximate the spectrum by a
power-law, writing A?(k) = A2(k,)(k/k.)"~!, at horizon crossing, where n; is known
as the scalar spectral index, always defined so that n; = 1 for the Harrison-Zel’dovich
spectrum, and k. is an arbitrarily chosen scale. The initial spectrum, defined at some
early epoch of the Universe’s history, is usually taken to have a simple form such as this
power-law, while the subsequent fluctuations evolution modifies it.

As already mentioned, the simplest viable mechanism for generating the observed

perturbations is the inflation, a period of accelerated expansion in the Universe’s early

! Adiabaticity means that all types of material in the Universe share a common perturbation, so that if
the space-time is foliated by constant-density hypersurfaces, then all fluids and fields are homogeneous
on those slices, with the perturbations completely described by the variation of the spatial curvature of

the slices.
2Gaussianity means that the initial perturbations obey Gaussian statistics, with the amplitudes of

waves of different wavenumbers being randomly drawn from a Gaussian distribution of width given

by the power spectrum. On the contrary, gravitational instability generates non-Gaussianity.
3CDM is made by massive particles, constituting the dark haloes around galaxies, and is characterized

by negligible pressure with respect to the mass energy density
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stages (e.g.[2, 3]). Inflation generates perturbations through the amplification of quan-
tum fluctuations, which are stretched to astrophysical scales by the rapid expansion.
The simplest models of inflation generate two types of fluctuations, density pertur-
bations which come from fluctuations in the scalar field and its corresponding scalar
metric perturbations, and gravitational waves (tensors) which are tensor metric fluc-
tuations*. The former experience gravitational instability and lead to structure forma-
tion, while the latter propagate in the space-time and can influence the primary CMB
anisotropies, as we will see in Chapter 3.

The Concordance Cosmological Model (also referred as the ACDM model) is essen-
tially characterized by only six parameters: the matter physical density, Q,, oh?, the
baryon physical density, Q; oh?, the Hubble constant, Hy, the rms of the linear matter
density fluctuations in a sphere 8 Mpc/h by radius, o3, the reionization optical depth,
k, which we define next, and the scalar-perturbation spectrum-slope, ;.

This model assumes a cosmological constant with density p = Ac?/(87G), and pres-
sure p = wc?p, where w = —1, but it is quite common to see w kept as a free parameter,
and even a function of time, to be added to the previous set of parameters in order to
account for several dark energy models.

The reionization optical depth is defined as follows. The Universe is known to be
highly ionized at low redshifts (otherwise radiation from distant quasars would be
heavily absorbed in the ultra-violet), and the ionized electrons can scatter microwave
photons altering the pattern of observed anisotropies. The most convenient parameter
to describe this is the optical depth to scattering « (i.e. the probability that a given pho-
ton scatters once); in the approximation of instantaneous and complete re-ionization,
this could equivalently be described by the redshift of re-ionization zjep.

Finally, a very important quantity is the ratio of the power spectra associated to the

scalar- and tensor-perturbations respectively [4]:

At (k)

r= A2k

(1.19)

where k* is usually the statistical centre of the data range.

4Technically, as we will see in detail in the next chapter, density perturbations are often referred to
as scalar, corresponding to their Lorentz transformation properties under boosts and rotations. Since the
metric has more complicated transformation properties vector and tensor fluctuations are also possible.
Vector perturbations, also called vortex perturbations, decay as the universe expands unless they are
constantly generated. Tensor perturbations persist and can have an important role in several respects, as

we see in the following.
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Several experiments prove that the concordance model succeeds in describing the
evolution of the Universe and the astronomical observations on scales ranging from
a few to thousands of Mpc. It is consistent with both CMB and large-scale structure
measurements, as we explain now.

Indeed, as we will explain in Chapter 3, the physics of the CMB is very sensitive
to the whole set of cosmological parameters: before recombination, the baryons and
photons are tightly coupled, and the perturbations oscillate in the potential wells gen-
erated primarily by the dark matter perturbations. After decoupling, the baryons are
free to collapse into those potential wells and the CMB carries a record of conditions
at the time of decoupling, often called primary anisotropies. In addition, it is affected
by various processes as it propagates towards us, including the effect of time-varying
gravitational potentials, gravitational lensing, and scattering from ionized gas at low
redshift. The result is that the detailed pattern of anisotropies (see Fig. 1.1), quantified,
for instance, by the anisotropy power at different angles 9 ~ 7r/¢ (where ¢ is the Legen-
dre polynomial multipole coefficient), depends on all of the cosmological parameters.
Some features can be closely related to specific parameters (for instance, as we see in
Chapter 3, the location of the first peak in the power spectrum probes the spatial geom-
etry, while the relative heights of the peaks probes the baryon density) but many other
parameters combine to determine the overall shape.

From the three-year results of the Wilkinson Microwave Anisotropy Probe (WMAP-
3) [6], the best fit values for the cited set of cosmological parameters in the case of a flat
ACDM model are:

Quoh? = 0.12770:0059 Q oh? = 0.02229 +0.00073 h = 0.7321003)
ns = 0.958 £0.016 k = 0.089 £ 0.030 o5 = 0.76170 2.

It is important to stress that the baryon abundance is consistent with the one estimated
from the observed Deuterium abundance, predicted in the simplest nucleosynthesis sce-
nario [7, 8, 9].

The photon density parameter (), is accurately measured directly. The radiation den-
sity is dominated by the CMB energy, and the COBE Far Infrared Absolute Spectropho-
tometer (FIRAS) experiment has determined its temperature tobe T = 2.725 + 0.001 K
[10], corresponding to Q,o = 2.47 x 10~°h~2. It typically does not need to be varied
in fitting other data. The neutrino energy density instead is often not taken as an inde-

pendent parameter since it can be related to the photon density using thermal physics
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Figure 1.1: The angular power spectrum of the cosmic microwave background temperature
from WMAP-3. The solid line shows the prediction from the best-fitting ACDM model [6]. The
error bars on the data points (which are tiny for most of them) indicate the observational errors,
while the shaded region indicates the Gaussian statistical uncertainty from being able to observe
only one microwave sky, known as cosmic variance, which is the dominant uncertainty on large

angular scales. The oscillations are a record of the features described in the text. From Ref. [5].

arguments.

As mentioned in the introduction, about a decade ago, two important studies, the
‘Supernova Cosmology Project” and the ‘High-z Supernova Search Team’, have found
evidence for an accelerating Universe [13, 14, 15], interpreted as due to a cosmologi-
cal constant, or to a more general ‘dark energy’ component. Current results from the
Supernova Cosmology Project [16] are shown in Fig. 1.2. The SNe Ia data alone can
only constrain a combination of ),, o and Q5 and, when combined with the CMB data
(which indicates flatness, i.e., Q,, 0 + QA ~ 1), the best-fit values are Q,, 0 ~ 0.3 and
QA =~ 0.7. Future experiments will aim to set constraints on the cosmic equation of state
w(z) [17].

In a flat universe, the combination of WMAP-3 and the Supernova Legacy Survey
(SNLS) data [11] yields best-fits on the equation of state of the dark energy, w = —0.967,
while, when assuming w = —1, the same combination implies Qg o = —0.011; more-
over, the combination of WMAP-3 data plus the Hubble Space Telescope (HST) key
project constraint on Hy [12] implies Qg o = —0.014 and O = 0.716. The errors on

w and Qj are largely consistent with a cosmological constant (w = —1) and flatness
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Figure 1.2: This shows the preferred region in the Q,, »—Q plane from the compilation of su-
pernovae data in [16], and also the complementary results coming from some other observations
[18, 19]. From Ref. [4].

(Qr = 0) at 1o. In addition, without the flatness condition, by combining WMAP-3,
large-scale structure and supernova data, the constraint on the dark energy equation of
state is w = —1.08 £+ 0.12, assumed constant.

WMAP-3 provides also an excellent measurement of the location of the first acoustic
peak of the CMB temperature spectrum, which directly probes the spatial geometry
and yields a total density Qg = Y Q;0+ Qp = 1.003f8:8£, consistent with spatial
flatness and completely excluding significantly curved Universes. This result does
however assume a fixed range on the Hubble parameter from other measurements;
WMAP-3 alone constrains )y only weakly, and allows significantly closed Universes if
h is small. This result also assumes that the dark energy is a cosmological constant [6].

WMAP-3 also gives a precision measurement of the age of the Universe: for a flat
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Universe the position of the first peak is strongly correlated with the age of the Universe
and the WMAP-3 result is therefore 13.74_'8:% Gyr. This is in good agreement with the
ages of the oldest globular clusters [20] and radioactive dating [21].

For what concerns the abundance of cosmological gravitational waves, WMAP-3
data alone puts an upper limit on the tensor to scalar ratio, r < 0.65 (95% CL) and the
combination of WMAP-3 and the Sloan Digital Sky Survey (SDSS) [22, 23] (which maps
the power spectrum of dark matter perturbations through the distribution of galaxies
over hundred oh Mpc) implies r < 0.30 (95% CL).

Finally, on all but the very largest angular scales °, the WMAP-3 data are consistent
with the assumption that the CMB temperature anisotropy is well-described by a spatial
Gaussian random process [26].

In addition to the cited minimal set of parameters, there is a range of other parameters
which might prove important in future as the dataset further improves, but for which
there is so far no direct evidence other than pure consistency with the ACDM model.

In any case, the concordance cosmological model seems now well established, and
there is little room left for any dramatic revision of this paradigm.

Nonetheless, it is important not to lose sight of the motivation for developing such
a model, which is to understand the underlying physical processes which govern the
Universe’s evolution. On that side, progress has been much less dramatic. For instance,
there are many proposals for the nature of the dark matter, but no consensus on which is
correct. The nature of the dark energy remains a mystery. Even the baryon density, now
measured to an accuracy of a few percent, lacks an underlying theory able to predict it
even within orders of magnitude. Precision cosmology may have arrived, but at present
many key questions remain unanswered.

However, over the coming years, there is a wide range of new observations, which
will hopefully address fundamental questions of physics well beyond just testing the
‘concordance” ACDM model and minor variations.

The CMB observations will improve in several directions. The new frontier is the

>The few largest-scale angular modes (I = 2 mostly) exhibit a lack of power compared to what is
expected in a ACDM, [24], resulting in some debate about the assumptions of large-scale Gaussianity
and spatial isotropy. This feature was also seen in the COBE data [25]. The estimated large-angular-scale
CMB temperature anisotropy power depends also on the model used to remove foreground Galactic

emission contamination.
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study of polarization (first detected from the ground by the Degree Angular Scale In-
terferometer (DASI) experiment at the South Pole [27]) whose WMAP-3 observations
represent the current state of the art [28]. The ability of WMAP-3, and other probes, to
measure the so-called “electric” mode of polarization (defined in Sec. 3.2 together with
the “magnetic” mode) allows this experiment to probe the early epochs of non-linear
structure formation, through sensitivity to the reionization optical depth k. Dedicated
ground-based and balloon-borne polarization experiments, such as the Cosmic Back-
ground Imager (CBI), the QUEST (Q and U Extragalactic Sub-mm Telescope) at DASI
(QUaD®), the Clover Project’ and the E and B Experiment (EBEX) [29] promise pow-
erful measures of the polarization spectrum in the next few years, including also the
magnetic mode. Another area of development is achieving accurate power spectrum
measurements to smaller angular scales, typically achieved by interferometry, which
should allow measurements of secondary anisotropy effects (see Sec. 3.4), such as the
Sunyaev—Zel’dovich effect, whose detection has already been tentatively claimed by
CBI.
The Planck satellite’, due to launch in 2008, will make high-precision all-sky maps of
temperature and polarization, utilizing a very wide frequency range for observations to
improve understanding of foreground contaminants, and to compile a large sample of
clusters via the Sunyaev—Zel'dovich effect.

Further information can be extracted by using probes that are sensitive to somewhat
different redshift ranges, for example redshift and weak-lensing lensing surveys.
The 2-degree Field Galaxy Redshift Survey (2dFGRS or simply 2dF) is a major spectro-
scopic survey that has obtained spectra for 220,000 objects, mainly galaxies which cover
an area of approximately 1500 square degrees. It is now complete and publicly avail-
able!. The power-spectrum analysis of the final 2dFGRS data set has been fitted to a
ACDM model [30] and shows evidence for baryon acoustic oscillations (BAO)!!, with
baryon fraction Q,/Q, = 0.185 4 0.046 (1-0 errors). The shape of the power spec-
trum is characterized by ),,h = 0.168 = 0.016, and in combination with WMAP-3 data
gives Q,;; = 0.231 4+ 0.021. The 2dF power spectrum is compared with the Sloan Digital

®http:/ /www.astro.cf.ac.uk/groups/instrumentation /projects/quad/
http:/ /www.astro.cf.ac.uk/groups/instrumentation /projects/clover/
8http:/ /www.astro.caltech.edu
http:/ /www.rssd.esa.int/index.php?project=Planck
Ohttp:/ /www.mso.anu.edu.au/2dFGRS
1The same physics that leads to acoustic peaks in the CMB anisotropy causes oscillations in the galaxy

power spectrum
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Sky Survey (SDSS) 12 power spectrum [31] in Fig. 1.3. Ref. [32] reported the detection
of baryon acoustic peak in the large-scale correlation function of the SDSS sample of
nearly 47,000 Luminous Red Galaxies. By using the baryon acoustic peak as a ‘standard
ruler’ they found, independently on WMAP, that Q,, = 0.273 £ 0.025 for a flat ACDM
model.

k [h/Mpc]
O.QZ ' 0.95 ' | 0.1

« 2dFGRS — Coleet al. (2005): 1
a SDSS — Tegmark et al. (2004)

5.0

4.5

40}

log,q P(K) [P(k) in h™*Mpc?]

4.5

-1.0

-15
log;p k [kinh/Mpc]

Figure 1.3: The galaxy power spectrum from the 2dF galaxy redshift survey compared with
that from SDSS, each corrected for its survey geometry. The 2dFGRS power spectrum is shown
by solid circles with one-sigma errors shown by the shaded area. The triangles and error bars
show the SDSS power spectrum. The solid curve shows a linear-theory ACDM model with
Quh = 0168, Q,/Q, = 0.17, h = 0.72, n; = 1 and normalization matched to the 2dFGRS
power spectrum. The dotted vertical lines indicate the range over which the best-fit model was

evaluated. From Ref. [30].

The SDSS collaboration has very recently presented cosmological results from the
statistics of lensed quasars in the SDSS Quasar Lens Search (QLS) [33]. They de-
rive constraints on the equation of state w as well as the dark energy abundance,
Fig. 1.4. For a flat cosmological constant model (w = -—1) they obtain Q5 =
0.74f8:%(stat.)fgjég(syst.). Allowing w to be a free parameter they find Q, =

0.26 7007 (stat.) 1002 (syst.) and w = —1.1 & 0.6(stat.) )3 (syst.) when combined with

2http:/ /www.sdss.org
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the constraint from the measurement of baryon acoustic oscillations in the SDSS lumi-
nous red galaxy sample. Their results provide additional confirmation of the presence
of dark energy consistent with a cosmological constant, derived independently of Type

Ia supernovae.

O T T T T T T T T T T ]
-1 3 -
=L :
2 f .
-3 L L
0.2 0.4 0.6
0,=1-0,,

Figure 1.4: Contours at 1o and 20 confidence levels are plotted in the Q) ,,-w plane. Solid lines
indicate the constraint from the SQLS DR3, whereas dotted lines are from the BAOs detected in
the SDSS luminous red galaxy power spectrum [32]. The joint constraint from SQLS and BAO
are shown by shaded regions: The best-fit model (Q,,, w)=(0.26, —1.1) is indicated with a cross.
From Ref. [33]

In Chapter 4 we will illustrate the process of weak gravitational lensing, which is
one of the most promising cosmological probes, and the subject of this work. Back-
ground light, coming from distant galaxies or CMB, gets weakly deflected by forming
cosmological structures. Galaxies gain an extra-ellipticity because of this process, which
is function of their redshift and the overall lensing efficiency, i.e. amount and statistics
of cosmological structures. In addition, dividing background galaxies in redshift shells,
the lenses can be probed in a sort of differential way in time, making an effective tomog-
raphy of the structures formation process.

Un to now, lensing has been detected with great consistency by several groups, and
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provide large agreement with the ACDM model [35, 36].

Several projects have been proposed for the future, in particular for constraining the
onset of acceleration, i.e. trying to discriminate between different dark energy models.

Among them, the Dark Universe Explorer satellite (DUNE) [17] from the European
Space Agency (ESA), aiming at a weak lensing survey of galaxies on 20000 squared
degree, with a depth of about 0.5 in redshift.

Similar projects are being scrutinized by the National Aeronautic Space Adminis-
tration'® (NASA) such as the Supernova Acceleration Probe'* (SNAP), focused on su-
pernova but with outstanding lensing sensitivity. Other satellites are being conceived
within the Joint Dark Energy Mission (JDEM). From the ground, the most ambitious is
the Large Scale Synoptic Telescope!.

Bhttp://lambda.gsfc.nasa.gov
“http://snap.lbl.gov
Bhttp:/ /www.Issto.org






Chapter 2

Linear and non-linear cosmological
perturbations

he important results obtained in Cosmology from the observations of CMB
T anisotropy, weak gravitational lensing and large-scale structure from galaxy red-
shift catalogs, the increasing precision that has been, and will be achieved by future
experimental determinations, require comparable accuracy in the theoretical of the sev-
eral contributions to these effects.

The primary driver for the formation of large-scale structure in the Universe is grav-
itational instability. The detailed growth of structure depends on the nature of the ini-
tial fluctuations, the background cosmology, and the constituents of the mass-energy
density, as causal physics influences the rate at which structure may grow on different
scales.

Jeans in 1902 studied the stability of a spherical distribution of gravitating gas parti-
cles in flat spacetime, motivated by possible relevance to the process of star formation.
He discovered that gas pressure prevents gravitational collapse on small spatial scales
and gives rise to acoustic oscillations in the mass density inhomogeneity, as pressure
gradient and gravitational forces compete. On large scales the gravitational force dom-
inates and mass density inhomogeneities grow exponentially with time. The length
scale on which the two forces balance has come to be known as the Jeans length or the
acoustic Hubble length cs/Hy, where cs is the speed of sound related to the pressure of
the fluid under consideration.

On scales smaller than the Jeans length, adiabatic energy density perturbations oscillate
as acoustic waves. On scales well below the Jeans length, dissipative fluid effects (e.g.,

viscosity and radiation diffusion) must be accounted for. These effects remove energy
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from the acoustic waves, thus damping them. In an expanding Universe, damping is
effective when the dissipation time scale is shorter than the expansion time scale, and

the smallest length scale for which this is the case is called the damping length.

The study of gravitational instability in an evolving spacetime, appropriate for the
expanding Universe, began with Lemaitre in the early 1930’s. He pioneered two ap-
proaches, both of which are still in use: a “nonperturbative” approach based on a
spherically symmetric solution of the Einstein equations (further developed by Din-
gle, Tolman, Bondi, and others) and a “perturbative” approach in which one studies
small departures from spatial homogeneity and isotropy evolving in homogeneous and

isotropic background spacetimes.

Lifshitz in 1946 laid the foundations of the general-relativistic perturbative approach
to structure formation. He linearized the Einstein and stress-energy conservation equa-
tions about a spatially homogeneous and isotropic FRW background and decomposed
the departures from homogeneity and isotropy into independently evolving spatial har-
monics, the so-called scalar, vector, and tensor modes.

Unlike the exponentially growing energy density irregularity that Jeans found in flat
spacetime on large scales, Lifshitz found only a much slower power-law temporal
growth, leading him to the incorrect conclusion that “gravitational instability is not the
source of condensation of matter into separate nebulae”. Two decades after, Novikov
corrected this misunderstanding, noting that even with power-law growth there was
more than enough time for inhomogeneities to grow, since they could do so even while
they were on scales larger than the Hubble length ry = ¢/H) at early times.

The approach to the theory of linear perturbations initiated by Lifshitz was performed in
the synchronous gauge but, in 1980, Bardeen [37] recasted this analysis in a coordinate-

independent form.

Different kinds of techniques have been developed in the last decades, depending
on the specific range of scales under consideration.
For instance, on scales well inside the Hubble horizon, but still much larger than the
Schwarzschild radius of collapsing bodies, the study of gravitational instability of colli-
sionless matter is performed using the Newtonian approximation. It consists in inserting
in the line-element of a FRW background Eq. (1.3) the lapse perturbation 2¢y/ c2, where
@n plays the role of the Newtonian potential and is related to the matter density fluctu-
ation 6p via the cosmological Poisson equation V2pN = 47Ga?5p. The dynamics of the

system is then studied in Eulerian coordinates by accounting for the Newtonian mass
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and momentum conservation equations (the so-called continuity and Euler equations),

owing to the fact that the peculiar matter flow v never becomes relativistic [38].

The Newtonian limit, according to which the gravitational field ¢ is always much
less than the square of the light speed, ¢?, can be improved by a post-Newtonian (PN)
approach to account for the moderately strong gravitational fields generated during
collapse. In this case, by considering the expansion of the general relativistic equations
in inverse powers of the speed of light, it is possible to neglect terms of order (v/c)* in
the equations of motions, i.e. to perform a first post-Newtonian (1PN) approximation,
which in Eulerian coordinates accounts for non vanishing shift components and for an
extra perturbation term —2¢y /c? in the spatial part of the line-element. Calculations us-
ing higher and higher orders of 1/c would generally lead to a more accurate description
of the system, e.g. accounting for the generation of gravitational waves, and possibly
allow for an extension of the range of scales to which the formalism can be applied. A
PN approach to cosmological perturbations has been followed in Refs. [39, 40, 41], using

Eulerian coordinates, while Ref. [42] uses Lagrangian coordinates.

On the other hand, the first-order perturbations for non-relativistic matter, obtained
with the Newtonian treatment, coincide with the results of the general relativistic lin-
ear perturbation theory in the longitudinal (or Eulerian Newtonian) gauge [43]. The rel-
ativistic linear perturbative approach is the one applied to the study of the small in-
homogeneities giving rise to large-scale anisotropies of the CMB. However, on small
and intermediate scales, linear theory is no longer accurate and a general fully relativis-
tic second-order perturbative technique is required. In fact, second-order metric pertur-
bations determine new contributions to the CMB temperature anisotropy [44, 45] and
polarization [46, 47]. In particular, second-order scalar, vector and tensor metric per-
turbations produce secondary anisotropies in the temperature and polarization of the
CMB which are in competition with other non-linear effects, such as that due to weak

gravitational lensing produced by matter inhomogeneities.

Moreover, accounting for second-order effects helps to follow the gravitational insta-
bility on a longer time scale and to include new non-linear and non-local phenomena.
The pioneering work in this field is due to Tomita [48] who performed a synchronous-
gauge calculation of the second-order terms produced by the mildly non-linear evo-
lution of scalar perturbations in the Einstein-de Sitter Universe. An equivalent result,
was obtained with a different technique in Ref. [49]. The inclusion of vectors and tensor

modes at the linear level, acting as further seeds for the origin of second-order perturba-
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tions of any kind was first considered in Ref. [50]; in Ref. [51] the evolution of relativistic
perturbations in the Einstein-de Sitter cosmological model was considered and second-
order effects were included in two different settings: the synchronous and the so-called
Poisson gauge [52].

As we have stressed, the evolution of cosmological perturbations away from the lin-
ear level is rich of several effects as, in particular, mode-mixing which not only implies
that different Fourier modes influence each other, but also that density perturbations

act as a source for curl vector modes and gravitational waves.

The aim of this chapter is therefore to present a unified treatment able to follow the
evolution of cosmological perturbations from the linear to the highly non-linear regime.
As we will show hereafter, this goal is indeed possible on scales much larger than the
Schwarzschild radius of collapsing bodies, by means of a hybrid approximation of Ein-
stein’s field equations, which mixes post-Newtonian (PN) and second-order perturba-
tive techniques to deal with the perturbations of matter and geometry. In our study
we adopt the Poisson gauge which, being the closest to the Eulerian Newtonian gauge,

allows a simple physical interpretation of the various perturbation modes.

We derive a set of equations, which was presented for the first time in Ref. [53],
and which holds on all the cosmologically relevant scales and allows to describe matter
inhomogeneities during all the different stages of their evolution. The new approach
gives a more accurate description of the metric perturbations generated by non-linear
structures than the second-order perturbation theory, which can only account for small
deviations from the linear regime. For example, on small scales our set of equations can
be used to provide a PN description of metric perturbations generated by highly non-
linear structures within dark matter haloes, while describing their motion by means of
the standard Newtonian hydrodynamical equations. On large scales our equations con-
verge to the first and second-order perturbative equations as obtained in Ref. [51] (see
also Refs. [54, 55]), which implies that they can be applied to every kind of cosmological

sources.

Among these sources, CDM haloes are noteworthy since the current knowledge of
cosmological structure formation suggests they possess a non-spherical density pro-
file, implying that cosmic structures can be potential sources of gravitational waves
via power transfer from scalar perturbations to tensor metric modes in the non-linear
regime.

Thus, as an application of our formalism, by means of a triaxial collapse model, we
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numerically estimate the stochastic gravitational-wave background generated by CDM
haloes during the fully non-linear stage of their evolution. Our results [56] suggest that
the energy density associated with this background is comparable to that produced by
primordial tensor modes at frequencies v ~ 1071® — 10717Hz if the energy scale of
inflation is V1/4 ~ 1 — 2 x 10'® GeV, and that these gravitational waves could give rise
to several cosmological effects, including secondary CMB anisotropy and polarization.

This Chapter is organized as follows. In Sec. 2.1 we review the scalar, vector and
tensor decomposition of metric perturbations. In Secs. 2.2-2.4 we describe the source
of metric perturbations in the stress-energy tensor and complete the perturbative treat-
ment. In Sec. 2.5 we review the sources of gravitational waves and in Secs. 2.6-2.9 we
compute the spectrum of the gravitational radiation emitted by collapsing dark matter

haloes in the non-linear regime.

2.1 Scalar, vector and tensor metric perturbation modes

Adopting the conformal time 1 and comoving coordinates x%, the perturbed line-
element around a spatially flat FRW background Eq. (1.3) in the Poisson gauge [43, 51]
takes the form

ds? = a2(n) [—(1 4 26)dn? — 2Vadndx® + (1 — 21) S + ) dx“dxﬂ] . @.1)

In Eq. (2.1) the metric includes perturbative terms of any order around the FRW back-
ground. In this gauge, V, are pure vectors, i.e. they have vanishing spatial diver-
gence, 0%V, = 0, while h,g are traceless and transverse, i.e. pure tensor modes,
h*y = 0%hag = 0. As already mentioned, Greek indices denote spatial components
and are raised by the Kronecker symbol 6% . Unless otherwise stated, we use units with
¢ = 1. From the results of the post-Newtonian theory [57, 58, 59, 42], we deduce that
vector and tensor metric modes, to the leading order in powers of 1/c, are respectively
of O(1/c®) and O(1/c*), since to the lowest order it is well known that the line-element
(2.1) assumes the weak-field form ds? = a?[—(1 + 2¢1) dn? + (1 — 211) Sapdx*dxP],
where the scalars ¢; and 1 are both of O(1/c?) and ¢ = 1 = ¢ [38].
Let us now write Einstein’s equations G’ ji= k2T j in the perturbed form
06T + 661 = (1O + 6T ), 2.2)
where k2 = 87G/c* and (OG 2(0)

equations. Hereafter, we assume that the Universe is filled with a cosmological con-

j = K T j reduce to the background Friedmann
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stant A and a pressureless fluid — made of Cold Dark Matter plus baryons — whose
stress energy-tensor reads T! j = puiuj (uiu]- = —1). In this case Egs. (1.6)-(1.7) read
3H? = a? (87Gp+ A) and p’ = —3Hp, where primes indicate differentiation with re-
spect to 17, H = a’ /a, p is the mean matter energy density and 4 is the scale factor of the
Universe which evolves according to the FRW background model.

Since the metric (2.1) can be expressed in an invariant form both in the PN and in
the second-order perturbative approximations, we introduce a hybrid formalism that
consists in evaluating Einstein’s field equations up to the correct order in powers of 1/c,
while including some “hybrid” correction terms, which cannot be completely absorbed
in a “rigid” PN approximation, but are required for consistency with a second-order
general relativistic approximation.

Namely, writing 1 = 11 + 1, and ¢ = ¢1 + ¢ (where Y, and ¢, in principle
contain all powers of 1/c), and replacing the metric (2.1) in Eq. (2.2), the (0-0) and (0-«)
components of the perturbed Einstein equations take the form

1

6G% = =5 | =6H (Hy + ) + 2V + 30 10, pr + 8 V2pr + 81| = 26T, (23)

where 81 = 12H2¢? + 3y + 12Hp1 ¢, — 12HP ¢, and
o _ 2 T 240
6G % = =5 (Hatbs +athy + V2 Va + S2a ) = K2 6T'%, (2.4)

where Soy = —4H 1001 — 2¢1 0aY] — Y104 P1 + 2] 001 + 21010, 1].
The traceless part of the (x-f3) Einstein’s equations 6G%g = k% 5T* g reads

1
2.2 x STV S« — s
202 (8T 35TV5/3> 5
2 2 8 2 4 2 4 2 2 v 4 v v
X §V (¢ —v)— g’tl)lV P — §¢>1V P1 +§1I)1V ¢$1 — 56 $10v¢1 +§avd)la P —20"YP10,Yn
—20%09p(¢ — ) + 8110051 + 60" 1051 — 20%P10p1P1 + 20%P10g¢1 — 20°Y10pP1 + 41001
— 41p10%05¢1 + 0“(2H Vg + V) + 0gQH VX + V') + 1'% + 2HK “5 — V?h%g, (2.5)

while its trace becomes

2V3(p — ) + 6HY + 6(H> +2H )1 + 6 + 12Hp) — 20 10+ ¢h1
— 4 V21 — 30,10 1 — 8Y1 V2P + 4 V23 — 20,4101 = a’k*8TY,, . (2.6)

The components of the perturbed stress-energy tensor 5T* j will be calculated later to
the correct order in powers of 1/c. Note that Egs. (2.3), (2.5) and (2.6) are evaluated
up to O(1/c*), while Eq. (2.4) is evaluated up to O(1/c3). However, the terms S; and
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Soq are at least of O(1/c®) and O(1/c°), respectively, and come out from our hybrid
scheme, which mixes PN and second-order perturbative approaches. Moreover, since
our purpose is to calculate the source of gravitational waves to the leading order in
powers of 1/c, in Eq. (2.5) we do not take into account contributions of order higher
than O(1/c*), though retaining time derivatives of h%g.

Taking the divergence of Eq. (2.4), to solve for the combination H¢1 + ¢/}, and re-
placing it in Eq. (2.3), we obtain

a%k?

VA(Hr + ) = ———0"8T" — 9" Spy, (2.7)

and

a%k?
2

3
-V <§0V¢10v1l)1 + 41P1V2¢1> : (2.8)

VIV = V2V2 (1 + 1) = [v25T00 + 3H(0V5T0V)] —3H¥S,, — %vz&

The pure vector part V, can be isolated by replacing V2(H¢1 + ¢;) in Eq. (2.4), where
we now neglect the term Sy, since it is at least of O(1/c°)

V2V2V, = 2a%K> (a“avsT% - vz(sTO“) . 2.9)
Finally, applying the operator 0%d, to Eq. (2.5), we can solve for the combination ¢ — 1

and write

VIV (p— 1) = —gazK-’—aﬂa“ <5T“ﬁ - %ﬁw“ﬁ)

3
+ Eaaaﬁ (0p10% 1 — 0gp10%1P1 — 0p1p10* 1Py — 0pp10% 1)

9 5
+ Vv? (Eavwlavwl = 20,110" 1 + 50,10" 1 + 4 V211 + 21 Vg — 2¢1v2¢1> :
(2.10)

Replacing the latter expression in Eq. (2.5), together with the expression for the vector
mode V, obtained by taking the divergence of Eq. (2.5), we find

V22 (1% + 2 % — Vh%g ) = 26%% [V (VPR — 0%0, R — 030" R,
+ % (V200 R, 6% + 9°90"0, R, )], (2.11)
where we have defined the traceless tensor
R = 6T — %5Tm5“ﬁ

1 2 2 4 2 1
s <§1P1V2¢1 + gavd)lavd)l - gll)lvzll)l - §¢1V2¢1 - gavd)lavqbl - avll)lavllH) 5%p

1
) (4110%011 + 30%Y1 051 — 0%p10p11 + 0%P105p1 — 0% Y1051 + 2¢p10%0gd1 — 21p10%0s¢p1) .
2.12)
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The form of Eq. (2.9) and Eq. (2.11) allows to directly check that vector sources are
transverse while tensor sources are doubly transverse and traceless.

Actually, there is a very simple way of solving the perturbed Einstein equations
5GY, = k%2a%56TY, and 6G* g = KzazéT“,g with respect to the vectors V,, and the tensors
h* g, respectively. In fact, after retaining only the metric terms which appear linearly on
the LHS of Eq. (24) and Eq. (2.5) ! and defining as R%*p the consequently obtained
RHS, it is possible to apply to both sides the correct combinations of the direction-
independent projection operator [60]

Pip =8 — (VZ)_1 0%0g , (2.13)

and automatically obtain the vectors

2
V2V, = —2a2%2PY,, <5T°v _ WS“) ) (2.14)
and tensors
1
W'+ 2HH g — V20 = 2%’ (P“vp“ﬁ - 57)“/37?%> R (2.15)

After applying twice the Laplacian operator to Eq. (2.15) and neglecting as before the
term Sy, in Eq. (2.14), we recover Eq. (2.9) and Eq. (2.11).

2.2 The stress-energy tensor and the source of metric per-

turbations

For the purpose of calculating the components of the perturbed stress-energy tensor
5T j to the correct order in powers of 1/c, it is convenient to restore the speed of light c
in the time coordinate dx? = cdn. From Eq. (2.1) we obtain the four-velocity ul = dy! /ds

1 1 v? 1
10 ~ ; [1 -3 (24)1 — C—Zﬂ +0 (C—4> , (2.16)
« % 1
u* = 7u0 +0 (C—5> , (2.17)
where v2 = vVv, and v* = dx*/dn is the coordinate three-velocity with respect to the
FRW background.

IIn this context we are using the traceless part of 6G* B = k2a25T™ B but this is not strictly necessary;
it is indeed sufficient to apply the projection operator to the whole equation §G%5 = k?a?5T%g.
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The total energy-momentum tensor for our fluid of dust and cosmological constant

reads
Tik = (O)Tik + 5Tik = {(p/\ + ,0)C2 + Pb} gkjuiuj + pbéik , (2.18)

where (T is the background stress-energy tensor and p = p + 6p is the total mass-
density. The background density p, = p + pa includes the contribution from the cosmo-
logical constant, py = (Ac?)/(87G), while the background pressure p, = py = —pac?
is only due to the latter.

Turning to the components of the perturbed energy-momentum tensor, in terms of

the coefficients ¢p1and 1p; of the metric (2.1) and up to the correct orders in powers of
1/c, we find

1

5T% =T% — 010 = —25p — ?p+ O (C—2> , (2.19)

1
5T % = T — OT0, = vypc (1 — 21 — 24p1) + U—C‘X,ovz +0 (C—3> , (2.20)

o o (0) e o v 2 1

OT*y =T% — Toz—vpc—Tpv + 0 3 (2.21)

(0) '02 1
5T = T% — OT%; = v*p4p <1 —2¢1 — 2y + C—2> +0 <C—4> . (2.22)

In the hybrid equations which we are about to derive we will keep step by step only the
5T jcomponents we need to let our set of equations hold in the first, second perturbative
order and PN regimes.

By substituting 6T in Eq. (2.10), we obtain up to O(1/c?)

VIV (1 — 1) =0, (2.23)

and we can safely assume ¢ = 1 = ¢.
This allows to further simplify Egs. (2.6)-(2.10) and obtain our final set of hybrid
equations for cosmological perturbations, namely

a’k*c?

2

V2 He+¢') = — 3" (pvy) , (2.24)
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2.2
ViV2yp = —HTK [3H6V(pvv(1 —4¢)) — V?(op + pvz)] + B%GV (4%(,0(%@ — %(p’@ﬁp)
3 H? 3
w2 (4 2 "t 5 S
\Y% <20 @0y + 4oV (,0+6cz(p —|—2C2(,0 ) , (2.25)
V2V2V, = 202K> [Oaav(cp o) — V2(cp va)} , (2.26)

V2V2(p — 1) = —%azxza“av <p 0"v, — % pvz(m> + V2 (50v(pav(p + 4<pv2<p> —30,0" (0,00 ¢) ,

(2.27)

a’k?

7
ViV = ——— {37{0" (poy (1 —4¢)) + 3040, (pv"v,) — V(250 + 2p vz)} + EVZ(GV(pa"(p)

2
H H 1 H? 3
o n v Ttay rt P R v/ L2 P12
30,0"(0,9d" @) +3 - 0 (4 - @0, e qu;) V <6 R + 529 ) , (2.28)

1 2H
VAv? <—C2 W'+ = — vzh“ﬁ> = 2?0 [V (VPR¥p — 0%0,R" g — 030" R%,)
1 27u v oo o u v
+35 (v 040, RY 6% + 00040, R u)] ,

(2.29)

where the traceless tensor R%g, Eq. (2.12), now reads

1 2 1., 4 1
R¥% =p (v"‘vﬁ — gvz 5"‘/3> —an <6“(,0 dgp — 50 Q0@ 5“5> —an ((p 0%0gp — 3¢ Ve 5"‘/3> ,

(2.30)

while the trace part of the (x-f3) component of Eq. (2.2) becomes

2 H , H | H? 6 4 v 2 22 2
2V (d)—ll))—l—lSC—z(,o +6 2C—2—|—C—2 (p—f—c—z(p — 70,08 @ —8pV*<p = k“a‘pv-. (2.31)

Using Egs. (2.19)-(2.22), and the expression ¢1 = 11 = ¢, we can write the stress-
energy tensor conservation equations Tl-]’: j=0ina form that will give us the equations
for our pressureless fluid in the first, second-order and PN regimes, respectively.

More specifically, the energy conservation equation reads

3 1 3 6
o'+ 3Hp+0y(p%) = —p @'+ [(p0?) +04(07p0?) + 4HPpV?| = 2p0%0vp — —pUs — —p g’ =0,
(2.32)
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while the momentum conservation equation reads

1
(pva) + 0y (00 0s) + 4Hvap + pc?0qp — 16Hp v + C_zaV (p UZUVZ)(X> —2pc? Py — Hep Vy

4 1 /
+ pcv,0,VY — 40, (pv¥vap) + C—2Hp 020, — 400y — 4p Vi — 6p VK0 + 2 (v“p 02) —2p0,0Y0,@

+ 20200, + pc?0apy = 0 (2.33)

Egs. (2.25), (2.26) and (2.28)-(2.29), together with Egs. (2.24), (2.32) and (2.33), are the
main result of this computation and represent a new set of equations which allow to
describe the evolution of metric perturbation from the linear to the strongly non-linear
stage in terms of the gravitational field ¢, the matter density p and the peculiar velocity

,U(X

2.3 Limiting forms of the hybrid approximation in differ-

ent regimes

We now show how our approach accounts for known approximation schemes in differ-

ent regimes.

2.3.1 The linear perturbative regime

Linearly perturbing Egs. (2.24), (2.25) and (2.28) with respect to the FRW background
we deduce that ¢ and 1 coincide and we obtain the linear scalar potential ¢ in terms of
first-order density and velocity fluctuations,

V2V2¢p = 4anG [v%p —3Hp avvv] , (2.34)

V2(Ho +¢') = —4a*>mGpd” v, . (2.35)

Moreover, linearizing Egs. (2.26), (2.29) and (2.31), using the linearized expressions
for 6T' j we obtain

o' +3He' + 2H' + H)ep =0, (2.36)
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V2V2V, =0 (2.37)

WE* 4+ 2Hh — V?h¥s = 0. (2.38)

Perturbing to first order Egs. (2.32) and (2.33), we recover also the linear continuity and
momentum equations which read respectively:

op +3Hép+po, v’ —3p¢p' =0, (2.39)

v+ Ho* 4+ 0% = 0. (2.40)

In other words, we obtain all the results of linear perturbation theory (see e.g. Ref. [61,

62]), if we interpret ¢ as the linear scalar potential.

2.3.2 The second-order perturbative regime

On the other hand, selecting only the growing-mode solution of Eq. (2.36) and perturb-
ing up to second order Egs. (2.25)-(2.29), in the limit of a pressureless and irrotational
fluid, we recover all the results of second-order perturbation theory [51, 46, 63].

More specifically, the first-order vector metric perturbations vanish, while the linear
tensor metric perturbations are negligible for every kind of cosmological sources, thus
we can safely neglect terms which can be expressed as products of first-order scalar
and tensor metric perturbations. Writing ¢(x, 1) = ¢o(x)g(n), where ¢y is the peculiar
gravitational potential linearly extrapolated to the present time and ¢ = D /a is the so-
called growth-suppression factor, where D (1) is the linear growing-mode of density
fluctuations in the Newtonian limit, and using the results of the previous sub-Section
we obtain

V2V, = —471Ga? [37—( (p 0V sy + 8p0” vy, + 0,07 5p — 4p0* (9vy)) — 3p 0" (@'vy) — V2(8ps + ﬁvz)]

3
—V? (Eanpavcp + 4<pv2<p> , (2.41)

V2V2¢p, = —4nGa? [37—( (P08 Vs + 800" vy + 0,07 8p — 4p 3" (puy,)) — 3p 0" (¢'vy) — V(805 + 20 0°)

+3p a“av(vvvu)] + gv%avq)mq)) —30,0"(0,90%p) , (2.42)
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V2V2V, = 16Gad” (040,60 — V40+0p) , (2.43)

vv? (h"“ﬁ +2HHW %5 — vzhaﬁ) = 167Ga* [V* (V>R — 0%0,R"g — 050" R*Y)
1

+3 (V2040, R, 6% +9050"0, R ", )| , (244)

where R%g has the same analytic form of Eq. (2.30), that is

Lot fod 1 2 s 1 lod 1 v fod
R 5:,0(0 vﬁ—gv o 5> —W<0 (pa/;(p—ga 00,00 /3>
1 @ 0%0 (p—l(pVZ(pé“ (2.45)

27Ga? Y3 P ’
The subscript s indicates quantities evaluated at the second perturbative order, v¢ is the
velocity dx* /dn perturbed at the second-order and is related to the second-order spatial

part U((Xz) /a of the 4-velocity by the relation U‘("Z) = 0% — v¥* 2,

We can also find the equations that describe the evolution of dps and v by perturb-
ing up to second order Egs. (2.32)-(2.33) and taking the divergence of the latter. In this

way we recover also the second-order energy continuity equation

80, + 3HSps + po,vY + 8pdy0" + v¥0,8p + Hpv? + p(v?) — 38p¢p’ — 3pl — 6ppe’ — 2pvHd,e =0,
(2.46)
and the divergence of the second-order momentum conservation equation
HP 0%V + P00,y + p Vs + 0% [AHSpvy — AHP pUx + 50/ Vs + 5pUy — 4D 9V, — 6P @'Va + 50
— 200 + PO (vvs)] = 0. (2.47)

2.3.3 The Newtonian approximation

From Egs. (2.23) and (2.25) up to O(1/c?) we deduce

_ 4nGa?
=

Vi = Vi = Vo 5o, (2.48)

2Tt is worth noting that the traceless tensor R%g in Eq. (2.45) differs from the correspondent tensor
in Eq. (13) of [46]. Besides the global 47rGa? factor, the terms containing the gravitational potential ¢
are not the same in the two cases. Actually, what is important is the transverse and traceless part of the
gravitational wave sources, and they happen to be the same, since, as we will show later, our Eq. (2.45)
can be written in the form of Eq. (13) in [46] plus other terms which do not contribute to the relevant
component of the source (see Eq. (2.67) and (2.68)).
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and writing ¢ = @y /c?, we recover the Poisson equation V2¢y = 471Ga?5p, where the
subscript N stands for Newtonian.

Analogously, to leading order in 1/c, Egs. (2.32) and (2.33) respectively become the
usual continuity and Euler equations of Newtonian cosmology which apply in the limit
of weak fields and non-relativistic velocities [43]

o' +3Hp+d,(pvY) =0, (2.49)

vl + Hog + 0,0 0, = —0q0N - (2.50)

The latter equation was obtained taking Eq. (2.33) up to O(1/c?) and inserting
Eq. (2.49).
In the linear limit Egs. (2.48)-(2.50) become

V2o = 4nGa*sp (2.51)
op' +3Hép + pd, 0¥ =0, (2.52)
vl + Hoy = —0a0N - (2.53)

As we can observe, the equations which characterize the linearized Newtonian theory,
differ from the linearized relativistic ones. In particular, while the momentum conserva-
tion Egs. (2.40) and (2.53) are identical, the linear energy density conservation Eq. (2.39)
differs from the Newtonian one, Eq. (2.52), by the extra term —3p¢’ which does not
vanish, even for the pure growing-mode solution of Eq. (2.36), owing to the presence of
a cosmological constant contribution to the FRW background.

Moreover, Eq. (2.34) represents the linear relativistic generalization of the Poisson
equation, since it includes the contribution of the so-called longitudinal momentum den-
sity @f (Ovpy = —4a?71Gpv,) which acts as a source term for the linear potential ¢.

Thus, the Poisson gauge gives the relativistic cosmological generalization of Newtonian

gravity [43].
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2.3.4 The highly non-linear regime in the PN approximation

Finally, we consider the case of cosmic structures, in the highly non-linear regime,
whose size is much larger than their Schwarzschild radius (in order to avoid non-
Newtonian terms in the expressions of the sources).

Our sources can generate vector and tensor metric perturbations by mode-mixing
in the non-linear regime. In particular, this mechanism applies to dark-matter haloes
around galaxies and galaxy clusters or, more specifically, to the highly condensed sub-
structures by which these haloes are characterized.

We obtain the continuity and momentum equations up to O(1/c?), the equation
describing the evolution of the (0-0) component of the metric (2.1) up to O(1/ c*), and
the equation for the vector modes V, up to O(1/c%), i.e. their 1PN approximation.
Moreover, we describe the scalar mode of the (x-3) component of the metric (2.1) up to
O(1/c*), i.e. we consider its second post-Newtonian (2PN) approximation, while we

obtain the leading-order terms in powers of 1/c for the source of the tensor modes h*g.
Egs. (2.25)-(2.29) in this limit become

47rGa 47Ga? 1 3
ViVAhp = ——V?5p+ = [Vz( 2y — 3H0V(vvp)} — C—4V2 <§0V@N0v<pw +4<pNV2<pN> ,
(2.54)
V2V2p = 4”G” V25p + 4”G” [2V2(p ) — 3HD" (v4p) — 300, (p zﬂvu)} + T;vz(avaava)
3 Vv
- C—40v0“(0u(,01\70 (pN) , (2.55)
veyry, — 10760 (000" (020) — V(0ap)] | (2.56)
1 [24 ZH 24 24 167TGa 24 124 v 4 04
V2V2<C—2h” st s — V2h ﬁ>— I [V2(V2R%s — 070, R 5 — 050" R™,)

+5 (vza“aﬂm 5% +0%050"0,R", )],

(2.57)
where the post-Newtonian limit of the traceless tensor R%g is
a o 1 2 so 1 lo4 1 v lod
R =p | v%vp — 307 6% | = -~ | 0%@N OpoN — 50" PN Oveon 8%
1 4nGa?
B er <<PN 0%0spN — N Op 5“/5) . (2.58)
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Since, in order to compute the metric coefficients up to the PN approximation, we only
need the terms in 5T' j which satisfy the Newtonian equations of motions, in Eq (2.58) we
have inserted the Poisson equation. The 1PN extensions of the Newtonian continuity

and Euler equations respectively read

1
o' +3Hp+0,(p0") + [(p0?) +04(v7p0?) + 4Hpo? — 200" yen | =0, (2.59)

p (fo + Hog + 04,0%04 + 04@N) + 2 |:_4p/voc(PN —4p UCX(PN —6p Ua@& + (vocp 02) — 200,07 0vQN
+ 2070 00N + P 0atdpn — 20 PNO«PN — Hp Vi + 0404 Vy — 16Hpvapn — 40y (00 vapN)

+0, (p vzv“’v“) +4Hp vzv“] =0, (2.60)

where ¢py is given by the 1PN part of Eq. (2.55). It can be worth noting that the sources
of the metric coefficients involve only quantities of Newtonian origin, i.e. they do not
contain terms defined in higher-order approximations.

To conclude this sub-Section, let us stress that all the PN expressions derived here
were presented for the first time in [53], as they are derived in a different gauge than the

usual post-Newtonian [39, 40, 57, 64], or synchronous and comoving one [42].

2.4 Vector and tensor modes
It can be worth to observe that, in the linear limit, Eq. (2.31) becomes
O+ 3HQN + QH + H ) on = 0. (2.61)

This result is extremely important since it implies that the Newtonian potential ¢ and
the linear potential @ evolve in the same way with time. Eq. (2.61) can be also obtained
by mixing together the Newtonian continuity, Euler and Poisson equations perturbed
at first order. This means that, starting from the same initial conditions, i.e. from the
same primordial potential as given e.g. by inflation, the two linear potentials ¢y /c?
and ¢ will assume the same values in each point and at each time. In other words,
Eq. (2.61) implies that, in the case of first-order matter perturbations, it is sufficient to
use Newtonian gravity on all scales, provided that we define a “Newtonian” linear den-
sity perturbation dpy via the Poisson equation applied to the linear relativistic potential
@, even if 6py differs from the relativistic density dp, as given by Eq. (2.34). The previous
considerations allow to conclude that, for pure growing-mode solutions of Eq. (2.61), in
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the case of an irrotational and pressureless fluid, Egs. (2.56)-(2.58) apply to all cosmo-
logically relevant scales, i.e. from super-horizon to the smallest ones, even if the density
p, the velocity v* and the potential ¢ are required to follow the usual Newtonian hydro-
dynamical equations. In the equations that follow, therefore, we will drop the subscript

N on the various quantities and write

Vip = 4nGa®sp, (2.62)
o +3Hp+0,(pv¥) =0, (2.63)
vl + Hog + 0,0"0, = —040 . (2.64)

Thus, for the vector modes we have

1671Ga?
VAV, = =5 (007 (00p) — V2(0up)] (2.65)

and, for the tensor modes,

2
W — vzh“ﬁ> _ 167G g pagey 070, R — 950V R%)

2H

1
272 "
V-V <_C2h g+ ey

1 1 2 1
+3 (V200, R, 6% + 90300, R",. )| = 67;5” V22 (7?%7?“,3 - EP"‘,gP%) R,

(2.66)

1 471Ga?

1 1 1
o T2 g - o - 14 o - o _
Joj <U vg 30 ) ,3) 122 <6 @dgp 36 @0, ,3> G2 <<p6 dgp

fo4 1 2 o 1 o _1 v o . 1 o _1 v (o4
p(v vp — 3V 5 /3> +471Ga2 (0 Pogp 36 ©0,pd /3> e [0 (@dpw) 30 (p0v) b 5} ,

(2.67)

©op 6“,3) =

which represent a very important result, since these equations imply that, in the case
of matter perturbations, the Newtonian description of the sources of vector and tensor
metric fluctuations can take into account all the effects of the relativistic second-order

perturbation theory.
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It is important to stress that the third term on the last line of Eq. (2.67) does not
contribute to the source of gravitational waves since it vanishes after applying the pro-
jection operation in Eq. (2.13); thus we are allowed to drop it and define as effective
source of the gravitational wave h*g the traceless tensor

1 1 1.,
Retep = P <v“vﬁ - 502 5“/3) t oz <0"‘<P 0pp — 300 0ve 5%) : (2.68)

Actually from a post-Newtonian point of view, these equations hold true also for a
pressureless fluid with a vorticity contribution to the peculiar velocity v%, but the reader
should not be surprised if curl terms can be produced even by a pressureless and irro-
tational perfect fluid. In fact, the curl of the quantity pv® is still non-vanishing, even if

v* is derived from a scalar potential.

24.1 Comparison with the quadrupole radiation

We want to show how the gravitational wave source R 5 in Eq. (2.68) includes the con-
tribution by the reduced quadrupole moment [60] of the matter distribution expressed
via comoving coordinates:

1
Q% = /d3x,0 ( - TR, 5“,3> . (2.69)
First of all, let us choose the origin of our coordinates O inside the mass-energy dis-
tribution described by the stress-energy tensor 5T j- Let x be the vector from O to the
observation point P and X the vector from O to the volume element d°%. On scales well

inside the Hubble horizon, the solution of Eq. (2.66), augmented by an outgoing-wave
boundary condition, is

4G <a372vff )ret
1 (1, x) = ocu/d3~ eff 2.7
ﬁ(n X) LZC4PV B X ‘X—i‘ ’ ( O)
where the transverse-traceless operator is P“y“ g = Px,PHg — —P“ﬁP“v, with P%g

given by Eq. (2.13) and R ; by Eq. (2.68). The subscript “ret” means the quantity is to
be evaluated at the retarded space-time point (1 — |x — X| /¢, X).

Our purpose is to evaluate 1% g in the wave-zone, that is far outside the source region:
|x| = r > |X|, thus we expand the retarded integral Eq. (2.70) in powers of X/r and take
only the first term of the multipole expansion

4G 1,
h(n,x) = 4 —P°* [ / deReffu] , 2.71)

o ar
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where for radially travelling waves P%g = 6% — x%xp/r?. Eq. (2.71) expresses the
gravitational waves 1% g in terms of integrals over the “stress distribution” R 5, while
Eq. (2.69) represents an integral over the source “energy distribution”. In order to make
the comparison between these two equations, we need to convert the spatial compo-
nents T%g of the stress-energy tensor in terms of the time components by means of the
conservation equations T] = 0. Since 9% in Eq. (2.69) is the Newtonian quadrupole
and the dynamics of the tensor source is also Newtonian, we only need the continu-
ity and Euler Eq. (2.63)-(2.64), by which, after some mathematical manipulations, we

obtain
/d%?(pv“vﬁ) 2617/d3xp vg + ¥50%) +2H/d3xp g + 250%)
+y [ #3000 + 500) , 2.72)
and
/d3xp X*vg + Xpv”) /d3 +3H/d3 pX*%g), (2.73)

where we have dropped surface terms at infinity.
By substituting Eq. (2.73) into Eq. (2.72), we finally find

2
/d3 pv¥ug) ;6611 /d3 X¥%g +——/d3 32/3)+2H/d35€p(3?“v/3+3?50“)
— §/d3fp(;2“aﬁ<p+f,36“<p) . (2.74)

After substituting Eq. (2.74) into Eq. (2.68) and using again the continuity equation, in
the wave zone the gravitational wave h%g, to leading order in powers of 1/c and X/,
reads

h%g(n,x) = %P"‘V“B{a [a Qs +7HaQ £+ (3H'+12H2) QY

on? on

' 2 1 1
— / Pz p (fvay(p +x%,0"p — 532‘760@ 51/“) + G2 /d3f (6“’(;) 0, — 56‘7@ 0,¢ 5vu> ] }

(2.75)

ret

Let us observe that the first line of Eq. (2.75) recovers the known expression of the
quadrupole radiation in the limit of a flat and static Universe [60, 65], while contri-
butions on the second line derive from the back-reaction of the gravitational potential
@ which can act as a source of gravitational waves. Moreover, on scales much smaller

than the Hubble horizon, the last two terms on the first line in Eq. (2.75) can be neglected
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in comparison to the first one. In fact, the typical free fall-time of a mass distribution

/2

is proportional to p~!/2, while the Hubble time goes as oy /2 where “b” stands for
background; thus, on small scales, where the density contrasts can be very high, the
characteristic rate of the structure collapse is much larger than the expansion rate. This
allows to drop the contributions proportional to H in Eq. (2.75) and recover the results

expected well inside the horizon.

The main results of this Chapter so far are represented by the set of equations (2.25),
(2.26), (2.28)-(2.30) and (2.68) , expressing metric perturbation in terms of the gravita-
tional field ¢, where the matter density p and the peculiar velocity v%, satisfy Egs. (2.24),
(2.32) and (2.33). These equations, when applied in a cosmological setting characterized
by a pressureless and irrotational fluid and a cosmological constant, provide a unified
description of cosmological perturbations during their evolution from the linear to the
highly non-linear regime. On large scales, these equations reduce to the equations of
the first and second-order perturbation theory developed in the Poisson gauge, while,
on very small scales, where the perturbative approach is no longer applicable, they de-
scribe the evolution of cosmological perturbations by a PN approximation. Indeed, we
calculate the (0-0) and (0-&) components of the metric (2.1) up to the 1PN order, the («x-
) scalar-type component up to the 2PN order, while we find for the (a-3) tensor-type

component the leading-order source terms in powers of 1/c.

We also derived the generalization of the standard Euler-Poisson system of equa-
tions of Newtonian hydrodynamics, that consistently accounts for all the effects up to
order 1/c?. The curl term and anisotropic stress, that produce vectors and tensor metric
perturbations, arise already at the second perturbative order and at the strongly non-
linear level they are dominated by the contribution of the high-density contrast and the
high peculiar velocity typical of small-scale structures. It can be worth to stress that the
quantities which source vector and tensor modes are of Newtonian origin on all scales,
in the sense that they involve only terms that satisfy the Newtonian Euler-Poisson sys-
tem. This result is of extreme importance in view of a possible numerical implementa-
tion of our set of equations, as it implies that one can compute directly vector and tensor

modes starting from the outputs of N-body simulations.

Finally, it should be stressed that the set of equations, exposed here and in Ref. [53],
has many possible cosmological applications such as, for example, the evaluation of the
stochastic gravitational-wave backgrounds produced by CDM haloes [66, 67, 68, 56] and

substructures within haloes. As we show in Sec. 2.6 and following, it can be also used
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to improve the estimate of gravitational lensing effects and gravity-induced secondary
CMB temperature/polarization anisotropies generated by small-scale structures [44, 45,
46].

2.5 Sources of gravitational radiation

Sources of gravitational waves (GW) are commonly separated in two types: astrophys-
ical and cosmological.

The first kind can produce a stochastic background which provides interesting in-
formation on the distribution of compact objects at relatively low redshifts, such as star
formation and supernova rates, black-hole growth mechanisms and other important
phenomena. Such a background is generated by neutron stars, black holes and the as-
sociated binary systems, which emit in the frequency range v, ~ 102 — 10*Hz. (e.g
[69, 73]), or by galactic merging of unresolved binary white dwarfs with frequencies in
the range v, ~ 10~* — 10~2Hz [74, 75, 76, 77, 78].

Besides binary systems of super-massive black holes in the galaxy center, which
could emit at v, &~ 10~*Hz, hence detectable by LISA (e.g. Ref. [79]), the principal ex-
ample of gravitational waves of cosmological origin is represented by the relic radiation
which has been generated by quantum fluctuations of the metric tensor during the in-
flationary era. The detection of this relic background would shed light on the physics of
the very early Universe, since its strain amplitude is proportional to the square of the in-
flation energy scale. Primordial backgrounds can be generated by various mechanisms
and are characterized by a large frequency interval which extends from a few 10~!8 Hz
to a few GHz, allowing their detection by markedly different ways of observation [69] (
see Fig 2.1).

One of the best strategies for detecting the relic gravitational radiation is to ex-
ploit the imprints it leaves on the Cosmic Microwave Background (CMB) tempera-
ture anisotropy and polarization [80, 81, 82]. More specifically, the CMB photons are
very sensitive to primordial GWs with frequencies ~ 10~'”Hz, which correspond to
the comoving size of the Hubble radius at last scattering, when tensor metric modes,
being damped by the horizon entering, produce the largest amount of temperature
quadrupole anisotropy and, consequently, by Thomson scattering, the largest amount
of polarization [83]. As will be shown in Chatper 3, the primary B-mode component

in the polarization pattern is excited by vector and tensor cosmological perturbations
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Figure 2.1: Current limits and projected sensitivities to the energy density h*Qqw (see Eq. 2.101)
of a stochastic gravitational-wave background versus the gravitational-wave frequency. The
solid curves all indicate current upper limits, while the various broken curves indicate projected
sensitivities. The “M/R” line comes from CMB constraints to the epoch of matter-radiation
equality [70]. Curves corresponding to scale-invariant gravitational-wave backgrounds are
shown (dotted curves), labeled by the associated inflationary energy scales. The amplitude of
CMB temperature fluctuations currently constrains this value to be below 3.36 x 10'® GeV, but
only at frequencies f < 1071 Hz. Future CMB measurements may be able to reach energy scales
near 10'° GeV at these frequencies. The “QSO Astrom” curve is a limit from quasar astrometry,
and the “z var” is a forecast for future redshift measurements. The S1 and S3 points are up-
per limits from the Laser Interferometric Gravitational Wave Observatory (LIGO) [71] and the
other curves are forecasts for future LIGO sensitivities. The LISA curve shows forecasts for the
future NASA /ESO Laser Interferometric Space Observatory and the BBO and DECIGO curves
show forecasts for sensitivities for two space-based observatories now under study (the “Corr”
designation is for a configuration in which the signals from two detectors or detector arrays are
correlated against one another—e.g., for LIGO, if the signals from the Hanford and Louisiana
sites are correlated). The two “pulsar” curves show current and future (from the Square Kilo-
meter Array; SKA) sensitivities from pulsar timing. The WMAP and “CMB Pol” curves show
the current upper limit from WMAP and the sensitivity forecast for CMBPol, a satellite mission

now under study. From Ref. [72].
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only; therefore, if initial fluctuations are created very early, e.g. during inflation so that
the vector growth is damped, primary B-modes can be produced only by tensor pertur-
bations and, therefore, a possible detection will represent the incontrovertible proof of
their existence [84, 85, 86].

Unfortunately, there are mechanisms that can produce secondary B-modes, the prin-
cipal one being represented by the Cosmic Shear (CS) [181], which distorts the primary
CMB pattern, in particular converting E- into B-modes [87] (see Chapter 4). Luckily,
although comparable, B-modes from primordial GW exhibit their peak at multipoles
I ~ 100, corresponding to the degree scale, while, for lensed B-modes, the peak is
at [ ~ 1000, corresponding to the arcminute scale. Nonetheless, if the energy scale
of inflation is V1/4 < 2 — 4 x 10'5GeV, the CS-induced curl is a foreground for the
I ~ 50 — 100 primordial GW-induced B-polarization. This important contamination

has to be removed in order to detect relic gravitational waves [88, 89].

Actually, besides gravitational lensing, for cosmological models which constantly
seed fluctuations in the geometry, e.g. topological defects, vector metric perturbations
can be huge and can produce non-negligible effects on the CMB photons as, in par-
ticular, B-mode polarization, unlike to what happens in inflationary models [90]. On
the other hand, no relevant contribution from these objects is indicated by the modern

cosmological probes.

In what follows, we will be interested in the cosmological stochastic GW background
produced by CDM haloes via power transfer from scalar and possible vector perturba-
tions to tensor metric modes, during the strongly non-linear stage of their evolution [53].
It differs from other cosmological backgrounds, as that produced during the mildly non-

linear stage [68], since density and velocity fields can be, in this case, highly non-linear.

Since the non-linear evolution of CDM haloes occurs on a cosmological timescale,
the produced gravitational radiation may be relevant at frequencies comparable to those
of the primordial GW which affect the CMB photons and, therefore, can produce sec-
ondary CMB anisotropy and polarization, expecially B-modes, that could represent a

foreground for the detection of the relic radiation.

Moreover, as for the case of black holes and neutron stars, the analysis of the stochas-
tic background produced by highly non-linear cosmic structures, could bring informa-
tion on their distribution, evolution, shape and composition, shedding light on many

open issues.



44 2. Linear and non-linear cosmological perturbations

2.6 CDM Halo-induced Gravitational Radiation: basic

equations

Adopting the mathematical formalism developed in Sec.2.4, in the following part of
this Chapter we estimate the amount and frequency distribution of gravitational waves
from cosmic structures, following their evolution from the linear to the highly non-
linear level. More specifically, the evaluation of this gravitational radiation is possible
on scales much larger than the Schwarzschild radius of collapsing bodies, by means
of the “hybrid approximation” [53] of the Einstein field equations, which mixes post-
Newtonian (PN) and second-order perturbative techniques (e.g. to deal with the per-
turbations of matter and geometry. This approach gives a more accurate description of
gravitational waves generated by non-linear CDM structures than the standard second-
order perturbation theory [68], which can only account for small deviations from the
linear regime, or the Newtonian quadrupole radiation [60, 65]; indeed, it upgrades the
weak-field limit of Einstein equations to account for PN scalar and vector metric pertur-
bations and for leading-order source terms of metric tensor modes. It provides, on small
scales, a PN approximation to the source of gravitational radiation, and, on large scales,
it converges to the first and second-order perturbative equations, but still describing, on
all the cosmologically relevant scales, the dynamics of the involved CDM structures by
means of the standard Newtonian Poisson, Euler and continuity equations (e.g. [38])

V2o = 4nGa*5p (2.76)
p'+3Hp+0,(pv”) =0, (2.77)
vl + Hog +0,0"0, = =040, (2.78)

where ¢ is the gravitational potential associated with the density perturbation, p =
p + dpis the total matter density composed by the background matter density, p, and the
matter density perturbation, dp, and, finally, v is the peculiar velocity field associated to
the CDM haloes.

As the background cosmology, we have adopted a flat ACDM model with present
baryon density given by Qq, = 4.318 x 1072, dark and CDM energy density Qgx =
0.7434, Qpcpm = 0.2134, Hubble constant Hy = 100k km/sec/Mpc where h = 0.7199
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and three massless neutrino species; the primordial perturbation spectrum is made by
scalars only, normalized by og = o(R = 8 k! Mpc) = 0.9, with spectral index 1, = 0.96
[91, 92].

In order to evaluate the stochastic background of gravitational radiation generated
by CDM haloes, we will exploit the Eq. (2.71) expressing the solution of the inhomoge-
neous GW equation on scales well inside the Hubble horizon and in the so-called wave
zone, which is

4G 1,
hg(n,x) = — - PL" [ / d3xReffu:| , (2.79)

where r is the comoving distance between source and observer while the projection
operator is given by P%5 = 6% — x*xg/r%. Eq. (2.79) expresses the GW output h*g in
terms of integrals over the source “stress distribution” R s, given by

1
Res = p <v“v,3 -3 5“,3> +

1 1.,
The subscript “ret” in Eq. (2.79) means that the quantity has to be evaluated at the

retarded space-time point (n —r/c, X), i.e. at the source and at the emission time.

2.7 The ellipsoidal collapse model

Recently, N-body simulations in CDM models have shown departure of the halo density
profile from the spherical symmetry (e.g. [93]) and suggest a triaxial shape which seems
to be confirmed by optical, X-ray and lensing observations of galaxy clusters (e.g. [94,
95]).

Consequently, according to the arguments in the previous Section, CDM haloes are
potential sources of gravitational radiation through power injection from the gravita-
tional potential and peculiar velocity, especially during the highly non-linear stage of
their evolution, when density contrasts and velocity fields can be strongly non-linear.
Since the aim of this Section is to evaluate the stochastic GW background generated
by a distribution of cosmic structures, we will hereafter describe the model adopted to

approximate their dynamics and virialization.
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2.71 The homogeneous ellipsoid dynamics

We will use the gravitational collapse of homogeneous ellipsoids as described in
Ref. [96], which developed a picture of cosmic structure formation that identifies viri-
alized cosmological objects with peak patches in the initial Lagrangian space. These
peaks represent overdensities in the initial Gaussian density field whose evolution is
approximated by a homogeneous ellipsoid dynamics. Each perturbation evolves un-
der the influence of its own gravity and under the external tidal field (generated by the
surrounding matter) which, together with initial conditions, is chosen to reproduce the
Zel’dovich approximation in the linear regime. Virialization is defined as the time when
the third axis collapses and, following Ref. [96], each axis is frozen once it has reached
a freeze-out radius, chosen so that the density contrast at virialization, in the limit of
spherical collapse, is the same as prescribed by the top-hat model.

The peculiar velocity field is conveniently described in the system identified by the
three principal axes, characterized by three different scale factors R, (¢ = 1,2, 3); thus,
inside the homogeneous ellipsoid, peculiar velocities may be written as

R
Vg = (aR—“ — c'z) Xo, (2.81)

04

where we are still adopting comoving coordinates but now time derivatives are with
respect to the proper time dt = adn.

The internal peculiar gravitational potential, still with respect to the principal-axis
system, is given by (see Ref. [96] for details)

o = nGa*p

i by + 20, x ] ) (2.82)

where 6 = 6p/p is the matter density contrast while the factors b, are given by (see e.g.
Refs. [97, 98])

) (2.83)

1o4 1182483
0 (R%c S) \/(R% S) (1'% S) (1% S)

and the coefficients 47Ga®p)/, are the eigenvalues of the traceless external tidal tensor
(proportional to the traceless part of the peak strain) for which a linear approximation
is assumed [96], imposing that it evolves through the same equations satisfied by the

linear growth-factor of density fluctuations in the considered cosmological background.
After imposing the Zel’dovich approximation to fix the initial conditions on the
proper ellipsoid axis lengths and their time derivatives, the evolution of an ellipsoidal
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perturbation is specified through the equations [96]

PRy _ A
a2 3

1 & U
Ry —47GpRy <§ + 3 + 7"‘5 + A;> , (2.84)

d2a 47G _ Ac?
W_< T“T)‘“ (2.85)
PpR1{RyR; = const, (2.86)
pa® = const, (2.87)

where, in Eq. (2.84), b, = by — 2/3.

Egs. (2.84)-(2.87) have been numerically integrated using a fourth-order Runge-
Kutta scheme and the integrals (2.83) have been evaluated by means of the so-called
Carlson’s elliptic function of the third kind.

Fig. 2.2 shows the axis evolution versus time of a homogeneous ellipsoid of mass
M =5 x 10"° M, and initial overdensity &(z; = 40) = 6.4 x 10~2 at comoving distance
D = 100 Mpc from the observer. The shape of the ellipsoid is the most probable in terms
of the distribution of ellipticity and prolateness, to be defined in the next sub-Section.
The evolution follows Egs. (2.84-2.87) and the axis freezing out method suggested in
Ref. [96]. Let us stress that, contrary to other ellipsoidal collapse schemes (e.g. [99]),
this model implies that virialization is reached when the third and not the first axis
collapses, while the freezing out method avoids 6 — oo.

In order to estimate the GW output by CDM cosmic structures, we insert Egs. (2.81)-
(2.82) in Egs. (2.79)-(2.80) during the collapse of each homogeneous ellipsoid which rep-
resents, in our simulation, a CDM halo evolving towards virialization.

In Fig. 2.3 we show two of the three non-vanishing traceless source components gen-
erated by the halo collapse of Fig. 2.2. These components are evaluated with respect to
the eigenframe of the ellipsoid principal axes at rest with respect to the expanding cos-
mological background; by performing a transverse projection, the gravitational waves
in the observer frame are obtained. Actually, Fig. 2.3 represents these two components
divided by 1 4z = 1/a(t), in order to separate the effects of the background expansion,
included in Eq. (2.79), from the halo evolution itself.
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Figure 2.2: Evolution of the principal axis scale factors for the most probable ellipsoid of mass
M = 5 x 10 M, and initial overdensity 5(z; = 40) = 6.4 x 1072, embedded in a flat ACDM

universe, at distance D = 100 Mpc from the observer.

2.7.2 The most probable ellipsoid and the halo mass function

Once the cosmological background model is fixed, the evolution of an ellipsoidal pertur-
bation is determined by three parameters given by the three initial eigenvalues of what,
in the Zel’dovich approximation, is called the deformation tensor, d,g = (1/ aZ)V?;CV/%(p;
the latter are related to the initial ellipticity e, prolateness p and linear density contrast &
of the perturbation; those relations read [100]

AL —A
e 3

, 2.88

M+ A3 —2A;
=— - 2.89
p=tT 259
=AM+ + A3, (2.90)

where the Ay are the eigenvalues of d,g with Ay > Ay > Az, which, if 5 > 0, implies
e>0and —e<p <e.
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Figure 2.3: Two of the three non-vanishing traceless source components generated by the halo

collapse of Fig. 2.2

For a Gaussian random density field, smoothed in real space with a top-hat filter of
size V = 47R3/3 and mass M = 47pR3 /3, on average and for a given & the prolateness
is p = 0; consequently, the most probable ellipticity is e,y = (0//5)/v/5. Here o0 = o(R)
represents the linear rms value of the 6 distribution [100].

From these considerations and from the homogeneous ellipsoid collapse model as
described in Ref. [96], the authors of Ref. [100] have determined the shape of the moving
barrier, i.e. the critical overdensity required for CDM structure virialization at redshift
z; that is

B(0?,z) = \/30sc(2) [1 + Blav)™*] , (2.91)

where v = [8:c(2)/0(M)]?, 8s(2) is the critical overdensity required for spherical col-
lapse at z extrapolated using linear theory to the present time, and o is the linear rms
value of the initial density fluctuation field also extrapolated to the present time. The
parameters 3 ~ 0.485 and a ~ 0.615 come from ellipsoidal dynamics and the value
g ~ 0.75 comes from normalizing the model to simulations [101].

Using Eq. (2.91) in the excursion set approach in order to obtain the distribution of
the first crossings of the barrier by independent random walks, the authors of Refs. [100,
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102] have derived the average comoving number density of haloes of mass M, i.e. the

t (j%fsf()z) ) zp]

9% (2)
exp <_20(M)2> M, (2.92)

where pg is the mean comoving cosmological mass density, while p = 0.3 and A =

so-called unconditional halo mass function

29A% py Os(2)
n M? o(M)

n(M,z)dM =

dino
din M

>< ‘

0.32218. The Press-Schechter mass function is recovered forg =1, p = 0and A = 0.5
[103].

In what follows, o(M) and 8s.(z) are computed according to the formulas [104, 105,
106]

o (1+2.208m" — 0.7668m> + 0.7949m>*) =2/ 4 | (2.93)
where d = 0.0873, m = M(Th)?/(10'2M,) and
I'= Qomhexp [—QOb (1 2k /QOm)] : (2.94)

The quantities related to the density contrast are

Sse(z) = —f , (2.95)

2/3

5. ~ %(1 +0.012310g,) Om) - (2.96)
The linear growth factor of density fluctuations, normalized to unity at present, may be
approximated as [107]

_ 50m [ a7 Om o\

where QO = Qo (1 +2)3/E%(z), O = Qop/E?(z), and

} 2 (2.98)

E(z) = H(z)/Hy = [QOm(l +2)% + Qon

2.8 The stochastic GW background from collapsing dark

matter haloes

In order to evaluate the GW output generated by a spatial distribution of CDM haloes
we will exploit Eq. (2.92) which provides a good fit to the N-body simulations of struc-
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ture clustering in a variety of cosmological models, at least over the redshift range
z =0-—41100, 101, 102, 108, 109].

For theoretical consistency, we have chosen to follow the same strategy adopted by
Ref. [100] as described in the previous section. Therefore, in our numerical computation,
we consider CDM structures over a mass range M = 5 x 10°My, — 5 x 10'° M, which
virialize at redshifts from z = 0 to 4. Each of these structures is approximated by a
homogeneous ellipsoidal perturbation with mass M, linear mass variance o?(M) and
critical linear density contrast (M, z) = B(0?,z); in other words, every perturbation
represents the most probable ellipsoid (p = 0 and e = e;;p) of mass M which collapses
at redshift z.

Given the density contrast, the ellipticity and the prolateness, we then calculate the
eigenvalues of the external tidal tensor, using Egs.(2.88)-(2.90) and the relation A/, =
Ax — 8/3. Next, we linearly rescale all quantities to the initial redshift z; = 40, at which
the ellipsoidal evolution of the density perturbation starts, following Egs. (2.84)-(2.87).
In fact, while the mass function provides the number of haloes virializing at a given
redshift (in our case z = 0 — 4), the evolution of matter density perturbations, giving rise
to these virialized objects, begins much before, i.e. at very high redshifts (in our case z; =
40). The initial conditions on the scale factor are given by the relation a(z;) = 1/(1 + z;)
and by the well-known Friedmann equations, while, as we have already anticipated,
the initial conditions on the axis lengths and their time derivatives are specified by the
Zel’dovich approximation setup

Ra(zi) = a(zi) (1 — Aq) (2.99)
and
Ra(ZZ‘) = H(Zi) [Ra(zi) — ﬂ(ZZ‘)f(ZZ')/\OC] P (2100)

where f(z) ~ QY% + (1/70) [1 — 1/2Qm (1 + Qm)] is the growth rate of density fluc-
tuations (e.g. Ref. [110]).

For each M and z, using Eq. (2.79) and switching to the proper time ¢, we evaluate the
two independent components of the gravitational radiation produced by a CDM halo,
assuming that it is casually oriented and placed at a comoving distance r(z) from the
observer, where z is the collapse redshift. In this way, we observe today the radiation
emitted at the virialization time when, according to our ellipsoidal model, the GW out-
put has the maximum value. Actually, adopting this strategy, we slightly underestimate

the total GW background, since we do not take into account those CDM haloes which
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are still away from virialization. Moreover it is noteworthy here that, in our approach,
we have extrapolated Eq. (2.79) outside its range of validity. In fact, this formula holds
on scales well inside the Hubble horizon and in the wave zone (i.e. at distances larger
than both the characteristic wavelengths and the characteristic size of the source), while,
as we previously noticed, CDM haloes generate gravitational waves whose frequency
is comparable with the inverse of the Hubble time. Nonetheless, as shown in the next
Section, our results agree with several analytic approximations and previous works.

To account for all the directions of observation, we convert the two independent
states g’ (¢) of tensor polarization from the frame associated with the ellipsoid principal
axes to the observer frame, assuming that CDM structures emit in all directions and are
uniformly distributed all around the observer. For this purpose, we use the relation
h*g(t, Q) = RT%,(Q) hY,(t) R*5(Q) where R¥3(Q) is the general form of the rotation
matrix with ¢ = 0 [111]

cos ¢ sin ¢ 0
R*3(Q) = | —cosfsing cosfcos¢p sinf | ,
sinfsing —sinfcos¢g cosH

and the solid angle Q = (0, ¢) is defined following the conventions of Ref. [112].
Since our aim is to estimate the energy density

Qew(v) ~ ﬁ«ﬁpsr)(v) (2.101)

GW ~ 3H§ 7 .
associated with the stochastic GW background at the observer (e.g. Ref. [69]), we need
to know the power spectral density PSD(v), which one can obtain from the Parseval’s

theorem as
(e (DY 5(1)) = / ~ vPSD(v) . (2.102)

That depends on the redshifted proper frequency v = v, /(1 + z), where v, is the proper
frequency at the emission time. In Eq. (2.102) angle brackets denote time averaging at a
given spatial point.

Thus, we first numerically evaluate the PSD(v, z, M, Q) of each individual compo-
nent of h*(t, Q) at each fixed value of M, z and Q, then we average the calculated PSDs
over all directions by integrating over the solid angle and dividing by 47r and, finally, we
sum over the components in order to get a mean power spectral density PSD(v, z, M)
for every z and M.

Since in our model each CDM halo is approximated by a most probable ellip-

soid of mass M which collapses at redshift z, we multiply each PSD(v,z, M) by
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the number dN(z, M) = n(z, M)dMdV of haloes in the comoving volume dV(z) =
4c tr?(z)dz/ (agH(z)) where c is the speed of light and ag = 1 is the present value of
the scale factor. Finally, we insert the resulting quantity in the definition of the GW en-
ergy density Eq. (2.101) and integrate over all redshifts and masses to obtain the total
Qew (V).

All the results are presented in the next section.

2.9 Results

Our result concerning the GW output of each CDM halo, an example of which is given
in Fig. 2.3, is consistent with previous works in this field [113, 114]. Moreover it is
comparable to analytic approximations (e.g. [60, 115]) as

_ 3x1071 GM (1015)*7 .M
™ D/100Mpc 2L 1055 M.’

(2.103)

where h represents the amplitude of a GW signal coming from a non-spherically sym-
metric collapsing object with characteristic size L at distance D from the observer.

It is worth noting that the produced gravitational radiation has a very long charac-
teristic period, approximately given by the inverse of the halo evolution time, which,
according to the ellipsoidal model, corresponds to frequencies of the order of v =~
10~ 18Hz. This excludes, therefore, any direct detection of a complete pulse, but still
allows for the possibility of GW detection via secondary CMB anisotropy and polar-
ization and via the “secular effect” discussed in Refs. [113, 114]. The latter takes place
when a gravitational-wave crosses two testing particles; this induces a variation in their
relative distance which increases in time, since this effect lasts for many years.

Actually, besides what stressed in the previous Section, there are other reasons for
which the ellipsoidal collapse approximation to CDM halo virialization underestimates
amplitude and frequency characterizing the GW background. In fact, using this ap-
proach, the evolution of cosmic structures is regarded as a continuous phenomenon
which neglects merging effects and any possible features of variability that, accord-
ing to Ref. [113], should be characterized by a dynamical frequency of the order of
v~ 10~ Hz.

In Fig. 2.4 the main result of this work is shown, ie. the total energy density
Qgw(v) ~ 1072, associated with the stochastic halo-induced GW background, as a

function of the proper frequency v at the observation. The total spectrum of the sig-
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nal is composed by many single peaks which represent the contribution to the total
background from each most probable halo weighted via the mass function at different
redshifts. On the other hand, as the following discussion shows, these peaks are caused
by the subset of structures leading to a non-negligible GW signal. In fact Eq. (2.79)
shows that the GW amplitude is proportional to the inverse of the comoving distance,
while, from the expression of the efficiency e = GM/(c?L) and the total radiated energy
Egw = eMc?, where L represents the characteristic halo size at virialization, it follows
that more massive objects give rise to higher values of the GW strain. This effect is also
confirmed by numerical estimates of the power spectral density for different objects in
the redshift range 0 < z < 4. In fact, masses of the order of 108 — 109M@, although
weighted via the mass function in Eq. (2.92), contribute to Qgw (V) by only a factor of

0730 — 10728; since the amplitude of the gravitational waves decreases with

orders of 1
distance, the greater is the redshift z, the lower is their contribution. Thus only a few
peaks are visible in Fig. 2.4 since the energy density produced by less massive struc-
tures is completely negligible with respect to the effect (of orders of 10721 — 1072%) of

far more massive objects (104 — 10'° M) at low redshifts, z < 1.

GwW
3x107%0 — —

2x10720 - -

Figure 2.4: The total energy density Qgw/(Vv) associated with the stochastic GW background

induced by CDM haloes as a function of the proper frequency v at observation.
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Figure 2.5: Contribution to the total energy density Qgw/(v) by two most probable CDM haloes
of mass 5 x 10> M, placed at redshifts z = 0.025 and 0.075.

Consequently, the dominant contribution to the stochastic GW background is likely
to be produced by CDM haloes corresponding to nearby galaxies and galaxy clusters
which contribute by several orders of magnitudes more than their substructures, al-
though the latter are far more numerous. Indeed, in Fig. 2.5 we may look at the contribu-
tion to the total Qgw (V) (see Fig. 2.4) by two most probable haloes of mass 5 x 101> M,
placed at redshifts z = 0.025 and 0.075. In its maximum height, the signal reaches about
half of the corresponding value in Fig. 2.4. The remaining part of the signal is caused
by many haloes of comparable mass, as well as by those about one order of magnitude
lighter, for which the mass decrease is compensated by the increase in the number. It
is worth noting that the ellipsoidal collapse model introduces a three-peak pattern due
to the freezing out method used to stop the axis collapse, which as a zero-th order ap-
proximation imposes stability at virialization, ignoring any residual dynamics. In the
case of the specific geometrical configuration of the most probable ellipsoid considered
in Fig. 2.5, this translates in two prominent peaks and a third negligible one. Actu-
ally, the residual dynamics at virialization would most probably imply a broadening of

the spikes, decreasing the frequency splitting, possibly converging to a single peak for
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configurations close to sphericity.

Finally and most importantly, the quantity h2Qgw (v) ~ 102" is comparable to the
energy density associated with the stochastic background induced by primordial GWs.
In fact, if the energy scale of inflation is V1/4 ~ 1 — 2 x 10'°GeV, the energy density
associated with the primordial stochastic GW background, with a tensor spectral index
nr ~ 0,is ~ 1072 — 107! for frequencies of the order of 1071 — 1077 Hz (e.g
Ref. [69]).

Summarizing, we have estimated the GW background from cosmological tensor
modes produced by the highly non-linear collapse of CDM density perturbations, i.e.

generated during the strongly non-linear stage of CDM halo evolution.

We found that the signal is significant at very low frequencies, v ~ 10~ Hz, as a
consequence of the cosmological time scales involved in the collapse of CDM haloes.
This signal appears as a broad peak made by the superposition of many impulses, all
centered around frequencies of the order of 10~ '8 Hz. Most importantly, our results sug-
gest that the signal is likely to be comparable to the primordial tensor power if inflation
occurred at the GUT scale.

We want to stress that the homogeneous ellipsoidal collapse model, adopted to sim-
ulate CDM halo evolution and virialization, underestimates the frequency and ampli-
tude of the emitted gravitational waves, since, at each redshift z, it does not take into
account non-virialized objects and neglects variability features and merging effects that
could enhance the anisotropic stress sourcing tensor modes, which are more sensible
to the velocity field rather than to the peculiar gravitational potential. Consequently,
the total energy density Qgw (V) generated by cosmic structures could even be of one
or two order of magnitudes greater and overcome the stochastic background associ-
ated with primordial gravitational waves at the same frequencies (see also results in
Ref. [114]).

The CDM halo GW background could also produce a non-negligible contribution

when considering the cosmological tensor-to-scalar ratio.

Due to the cosmological scales involved, and to the amplitude of the signal, it
is reasonable to expect that these gravitational waves could affect the primary CMB
anisotropies, contributing to the Integrated Sachs Wolfe (ISW) effect caused by the time
evolution of cosmological perturbations between us and the last scattering surface. The

stochastic GW background from CDM haloes might boost the temperature anisotropies
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on large angular scales, where however the contribution from density fluctuations dom-
inates. On the other hand, the produced temperature quadrupole can be scattered off by
the free electrons of the intra-cluster and intra-galactic media, giving rise to secondary
anisotropies similarly to what happens for the primordial temperature quadrupole as
described in Ref. [116]. These contributions have to be taken into account when per-
forming a precise evaluation of the level of CMB polarization anisotropy expected for
the forthcoming polarization oriented CMB probes.

Most of these issues deserve a careful investigation in future works. Here we con-
clude stressing again our main results, suggesting that the amplitude of the stochastic
GW background generated by CDM haloes in their non-linear evolutionary phase is
comparable or larger than the signal expected from the early universe in the inflation-
ary scenario. We also remark that our findings are consistent with existing analytical
approximations. The forthcoming steps are the improvement of the calculation of the
source of the signal, making use of cosmological N-body simulations, as well as the
computation of the induced CMB anisotropy in total intensity and polarization.

In Chapter 2.6 we will consider another major contribution to CMB anisotropies

from structure formation, represented by gravitational lensing.






Chapter 3

The Cosmic Microwave Background

he CMB radiation contributes of order a percent to the static “snow” seen when
T switching between channels on a television with a conventional VHF antenna; it
has therefore been detected a number of times before its discovery/identification by
Penzias and Wilson in 1965 [117]. For instance, in 1941 McKellar [118] deduced a CMB
temperature of 2.3 K at a wavelength of 2.6 mm by estimating the ratio of populations in
the first excited rotational and ground states of the interstellar cyanogen (CN) molecule.
In addition, it is now known that the discrepancy of 3.3 K found in 1961 by Ohm [119],
between the measured and expected temperature of the Bell Labs horn antenna at a
wavelength of 12.5 cm, is due to the CMB. Unfortunately, McKellar had the misfor-
tune of performing his analyses well before that in 1948 Gamow and his collaborators
[120, 121] laid the nucleosynthesis foundations that would have eventually explained
the CN measurements and allowed the CMB interpretation.
Even Ohm himself properly did not overly stress the 3.3 K discrepancy beyond its weak
statistical significance, and also Doroshkevich and Novikov in 1964, and Zel’dovich in
1965, referred to Ohm measurement but did not notice the 3.3 K discrepancy. On the
contrary Zel’dovich even incorrectly argued that Ohm constrained the temperature to
be less than 1 K (and not 3.3 K) and that, given the observed helium abundance, such
fact should rule out the hot Big Bang Model!
Three years later, working with the same antenna as Ohm, and paying very careful
attention to possible systematic effects, Penzias and Wilson [117] measured the excess
temperature to be 3.5 1 K at 7.35 cm wavelength; Dicke et al. [122] then identified that
as the CMB radiation left over from the hot Big Bang.

To date there is no observational indication of any deviation of the CMB spectrum from
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a Planckian blackbody of primordial origin. A definitive observation of the CMB spec-
trum was made by COBE in 1992 [123] which measured a temperature of 2.725 £ 0.002
K (95 % confidence), and first detected the CMB anisotropies which reveals important

features of the formation and evolution of structures in the Universe Fig. (3.1).

Figure 3.1: Top-left: Penzias&Wilson microwave receiver. Top-right: A view of the sky as would
have been seen by the Penzias&Wilson receiver if it could have surveyed the whole sky. Middle-
left: COBE Spacecraft 1992. Middle-right: COBE’s 4-year sky map. It is a low resolution image,
but CMB temperature anisotropies are apparent as cold and hot spots in the image. The large red
band is the microwave emission from our galaxy. Bottom-left: WMAP spacecraft. Bottom-right:

Simulated WMAP all-sky map of the CMB temperature. From http://map.gsfc.nasa.gov/.

3.1 CMB anisotropies

CMB anisotropies have their origin very back in time, beyond a point when distances
in the universe were only 0.1% of their current size. At that time, the temperature was
high enough to ionize the universe, which was filled with a plasma of protons, elec-

trons, and photons plus a few He nuclei and traces of other species.
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Before the transition from an ionized to a neutral medium the universe could be mod-
eled as a smooth gas of photons, baryons (protons and electrons) and dark matter. Since
the number density of free electrons was very high, the universe was opaque to the mi-
crowave background photons: the mean free path for photons to Thomson scatter off
electrons was extremely short. Consequently, the photons and baryons could be consid-
ered as a single “tightly coupled” fluid in which the baryons provide the weight, while
the photons provide the pressure.

As the universe expanded, the wavelengths of photons were stretched out, lowering
their energy and eventually, when the universe had cooled to T ~ 4, 000K, the photon
energies became too small to ionize hydrogen. At this point the protons and electrons
recombined to form neutral hydrogen and the photon mean free path increased to es-

sentially the size of the observable universe.

These photons, which constitute the cosmic microwave background, continued to
lose energy with the expansion of the universe, and now form a black body with a

temperature of 2.73 K.

The CMB temperature is conventionally expressed as an expansion in spherical har-
monic multipoles on the sky, and for a Gaussian random process the angular power

spectrum completely characterizes the CMB temperature anisotropy.

As a result of the gravitational growth of inhomogeneities in the matter distribu-
tion, when the photons decouple from the baryons at LS at a redshift z ~ 103, the
photon temperature distribution is spatially anisotropic. Moreover, in the presence of a
CMB temperature quadrupole anisotropy, Thomson-Compton scattering of CMB pho-
tons off electrons prior to decoupling generates a linear polarization anisotropy of the
CMB Fig. (3.2).

After decoupling the CMB photons propagate almost freely, influenced only by grav-
itational perturbations and late-time reionization.
The largest anisotropy is a fluctuation of about 1,/1000; it forms a dipole pattern across
the sky. It is due to the fact that the earth is not at rest with respect to the CMB, and
we see a Doppler shift in the CMB temperature owing to our relative motion. Since this
changes as the earth orbits the sun, this dipole is modulated throughout the year.
If we take the mass distribution observed around us and compute from this a gravita-
tional acceleration, then multiply this acceleration by the age of the universe, we obtain
a good match to both the direction and the amplitude of our velocity vector in the CMB

rest frame [124]. However this dipole is clearly of local rather than primordial origin,
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Figure 3.2: WMAP-3 all-sky map of the CMB temperature and polarization. Blue and red spots
represent colder and hotter temperatures with respect to the average. The lines represent the

polarization direction on large scales. From http://map.gsfc.nasa.gov/.

and so it is generally subtracted (plus the mean or “monopole”) before dealing with the
CMB anisotropies; doing that the size of the fluctuations decreases to ~ 1,/100.000.

3.2 Mathematical description of CMB anisotropy and po-

larization

As the ordinary electromagnetic radiation, the CMB radiation field is characterized
by a 2 x 2 intensity tensor [;;. The Stokes parameters Q and U are defined as Q =
(h — Ip)/2 and U = (Lp + I»1)/2, while the temperature anisotropy is given by
T = (I11 + Ip) /2. In principle the fourth Stokes parameter V = (I; + I12)/(2i) that de-
scribes circular polarization would also be needed, but in cosmology it can be ignored
because it cannot be generated through Thomson scattering and consequently is van-
ishing in the damping of primordial vorticity already discussed. While the temperature
is invariant under a right handed rotation in the plane perpendicular to direction 7, Q

and U transform under rotation by an angle v as (e.g. [125])

Q" = Qcos2y+ Usin2y,
U = —Qsin2y+ Ucos2y, @3.1)
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where €1 = cos €1 + sin Pé; and €’ = — sin Pé; + cos ;. This means it is possible
to construct two quantities from the Stokes Q and U parameters that have a definite
value of spin

(Q i) () = eT2V(Q +ill)(h). (3.2)

These quantities can be expanded in the appropriate spin-weighted basis
) = D arimYim(h)
Im
(Q + iu) (ﬁ) = Z az Im ZYlm (ﬁ)
Im
(Q-i)(a) = ;a—Z,lm —2Yim (). (3.3)

m

T(

=

Q and U are defined at a given direction n with respect to the spherical coordi-
nate system (&g, &s). The expansion coefficients for the polarization variables satisfy
a*—Z,lm = ap |y, and for temperature the relation is a}lm =ar|_m-

The Stokes parameters are not invariant under rotations in the plane perpendicular
to 1, but, by means of the so-called spin raising and lowering operators d and 3 [126], it
is possible to obtain spin zero quantities which have the advantage of being rotationally

invariant like the temperature. Acting twice with d, d on Q + iU in Eq. (3.3) leads to

_ 111/2
B0+ = 5[] i)
(11/2
920 = 5| 5] el 64

The expressions for the expansion coefficients are
tn = [AQ Y, (0T (@)

mum = [ 402, (1)(Q+iU)(R)

{ (I+2)!

~1/2
} /dQYlm )82(Q +il)(a)

1o = [ d0 _zm(n)(Q—zuxn)

{E;jz } /dQ Y, ()8 2(Q — ill) (7). (3.5)

Instead of a3 j,,, a_ 1, it is convenient to introduce their linear combinations [127]

agim = —(a2,1m +a_21m)/2

ag,im = i(ag,1m — a_2,1m) /2. (3.6)
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These two combinations behave differently under parity transformation: while the E
electric (or gradient) mode remains unchanged, the B magnetic (or curl) mode changes
the sign, in analogy with electric and magnetic fields [87, 84].

To characterize the statistics of the CMB perturbations only four power spectra are
needed, those for T, E, B and the cross correlation between T and E. The cross correla-
tion between B and E or B and T vanishes because B has the opposite parity of T and

E.

The power spectra are defined as the rotationally invariant quantities

]' *

Cn = m;@mmamw
1

Cp = ﬁ%(ﬂgmﬂalw
1

(@)
=
I
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Ca = 3=

1 (AT 1A, Im) (3.7)
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in terms of which, assuming Gaussianity, one has

(@t 1 0Tim) = Cr10110mim
(aE e m) = CE1O11Omm
(ap jraB,1m) = CB1O11Omm
(@t g im) = Cc10p16mm
(@ pOE m) = (4B AT im) = 0. (3.8)

Introducing the linear temperature perturbation At = AT/T, and the photon den-
sity matrix T = (Ar, Q+il, Q —ill), the Stokes parameters satisfy the linearized Boltz-

mann equation

d = - = —
g T3 m) = CT]+C ] , (3.9)

which describes the evolution of the vector 7 under the Thomson collisional term C[7]
and gravitational redshift in the perturbed metric G [, [129].

The temperature anisotropy at position ¥ in the direction 7 is denoted with A7 (%, ).
In principle it depends both on the direction and on the frequency, but, because spectral
distortions are only introduced at the second order, the frequency dependence can in

the lowest order be integrated out. Anisotropy Ar(X,7) can be expanded in terms of
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Fourier modes Ar(k, i), which in linear perturbation theory evolve independently of
one another. Assuming perturbations are axially-symmetric around k, we may further

Legendre expand the anisotropy in the angle pu = k - 7i /,
Ar(k, i) = Z(Zl +1)(=i) APy (), (3.10)

where P;(u) is the Legendre polynomial of order I and A7, is the associated multi-
pole moment. A similar decomposition also applies to the amplitude of polarization
anisotropy Ap(k, i) where Ap = 1/Q2 + U2 [130].

In what follows the longitudinal gauge will be used, in which the first-order per-
turbations to the metric tensor g;; are specified with two scalar potentials ¢ and 1 and
a gauge-invariant tensor perturbation h (vector perturbations can be neglected at the
linear level). The corresponding temperature and polarization anisotropies are denoted
as A(TS), A%S) for scalar and A(TT), Ag) for tensor components. In linear perturbation
theory the scalar and tensor perturbations evolve independently and the total power is
given by the sum of the two contributions. After the Fourier expansion and making the
Thomson and gravitational scattering terms explicit, the Boltzmann evolution Eq. (3.9)

for scalar perturbations can be written as [131],

. . . 7 1
AP 4 kAP = — ik + k{~ AP + AR + ipoy, + S Pa(u)TT}

2
. . 1
AP +ikuay) = k{(=AR + (1 - Pa(w)TT}
R o

Here the derivatives are taken with respect to the conformal time 1, and v, is the linear
velocity of baryons. Differential optical depth for Thomson scattering is denoted as k =
an.x.or, where a(n) is the expansion factor normalized to unity today, 7, is the electron
density, x, is the ionization fraction and o7 is the Thomson cross section. The total
optical depth at time 1 is obtained by integrating k, k(1) = [;1° k(n)dn. A useful variable
is the visibility function g(n) = kexp(—«). Its peak defines the epoch of recombination,

when the dominant contribution to the CMB anisotropies arises.

Expanding the temperature anisotropy in multipole moments one finds the follow-
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ing hierarchy of coupled differential equations [132, 133, 134]

M = -l 1o,
8 = [l - 2n ] k2 - a8,
AP = g 24 - 34| + {% - A(TSZ)} ,
A = ﬁ 1A — 1A% | kAl 1> 2
Al = ﬁ 1AL~ G+ 1)A5) |+ [—A}fl) + %ﬂ (510 + %)} ,3.12)
where §;; is the Kronecker symbol.
For tensor perturbations the Boltzmann equation is given by [135],
AT ikl = = k(A —wy,
AP Likpall) = —k(al 1wy,
y = 11—0A(T? + 31—5A(TT2) + 21—0#2 - %A%) + % by — 21—04}2 (3.13)

Instead of solving the coupled system of differential Egs. (3.12) one may formally
integrate Egs. (3.11) along the photon past light cone to obtain [136],

() _ ™ 5 iku(n—mg) K [ ¢ p—k ; 1 b
At ; dne e~ (ke [Aro + invp + Z P2 ()] + ¢ — ikup}
n .
AP = —% / " dnefH(n=10) o=k 11— Py ()T (3.14)
0

Expressions above can be manipulated leading to the following expression,

A) = /O " dettu (=) g(5) (1 )

g, T1 3
s'(km) = g (ATO i —4k2)
s . A 31T 34T1
+ e (qb—l—l!))—g<kb +4k2) - 45(2
3 ) e
sk, n) = - (g{k2n+ﬂ}+2gﬂ+grr>. (3.15)

As will be explained in more detail in Sec. (3.3), some of the terms in the source function
S(TS)(n) are manifest evidence of the physics behind the CMB anisotropy and polar-
ization. The first two contributions in the first term are the intrinsic anisotropy and

gravitational potential contributions from the LS surface, while the third contribution
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is part of the velocity term, the other part being the k~!¢v;, term in the second row.
These terms make a dominant contribution to the anisotropy in the standard recombi-
nation models. The first term in the second row, e (¢ + 1), is the so-called integrated
Sachs-Wolfe (ISW) term and is important after recombination. It is especially important
if matter-radiation equality occurs close to the recombination and in ACDM models. In
both cases gravitational potential decays with time, which leads to an enhancement of
anisotropies on large angular scales. Finally we have the terms caused by photon polar-
ization and anisotropic Thomson scattering, which contribute to TT. These terms affect
the anisotropy spectra at the 10% level and are important for accurate model predictions
and they represent the sources for photon polarization.

In order to solve for the angular power spectrum one has to expand the plane wave
ek (1=10) in terms of the Bessel (radial) and Legendre (angular) eigenfunctions, perform
the ensemble average assuming that only the amplitude and not the phase of a given
mode evolves in time (which is correct at first-order level), and integrate over the angu-
lar variable u. This leads to

(s)

(T,P)I — (4”)2 /kzdde, (k)’AE;)p)l(szI = Tlo)|2 / (3.16)

(S)

where the multipole moment at present time A (; Pl (k,n = no) is given by the following

expression [138],

AS kn=m0)= [ Sk n)jilk d 3.17
(T,P)l 1= T10) = 0 T,P(rﬂ)]l[(ﬂo—n)] n, (3.17)

where j;(x) is the spherical Bessel function.

The main advantage of Eq. (3.17) is that it decomposes the anisotropy into a source
term S(T‘?I)D, which does not depend on the multipole moment [ and a geometrical term
j1, which does not depend on the particular cosmological model. The source term is the
same for all multipole moments and only depends on gravitational potentials, baryon
velocity and photon moments up to I = 4 in Eq. (3.15). By specifying the source term as
a function of time one can compute the corresponding spectrum of anisotropies.

The solution for the tensor modes can similarly be written as an integral over the
source term and the tensor spherical eigenfunctions ch' The latter are related to the

spherical Bessel functions [137],

Xi(n) = 2((1 l+_22))! ! ](lk(s;) . (3.18)
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This gives [138]
AD = nod st1 (k L — 3.19
(TP [, n T,p( ,n)xk(no n), (3.19)
where from Eq. 3.13 follows

S\ = —he 4+ gw — (3.20)

For analogous solutions in the synchronous-gauge see Ref. [125].

3.3 The physics of CMB anisotropy and polarization

Given their mathematical description, let us now try to comment the main features of
the CMB anisotropy power spectra and the physics behind them.

This description falls within the current paradigm of cosmological structure forma-
tion (e.g. [139]). When we observe the distribution of galaxies around us, we find that
they are not arranged at random, but rather clustered together in coherent patterns that
can stretch for up to 100Mpc. The distribution is characterized by large voids and a
network of filamentary structures meeting in large overdense regions. This large-scale
structure arose through the action of gravity on initially small amplitude perturbations
in the density field left over from inflation: a region of space that is initially overdense
gives rise to a larger (than the average) gravitational potential and the surrounding
matter falls into this potential, increasing the overdensity. Similarly matter flows out of
regions of underdensity, increasing further the density contrast. In this way gravity can
amplify any already existing density perturbation and eventually the density contrasts
become so large that nuclear fusion are ignited on and form stars, galaxies, etc.

The CMB anisotropies that we see today contain a snapshot of the density field con-

ditions when the universe was 380,000 years old at LS (plus some small processes that
occurred during their travel toward us) and the initial density fluctuations are seen as
CMB temperature anisotropies across the sky.
The key concept is that anisotropy on a given angular scale is related to density per-
turbations on the LS surface of a given wavelength: multipole moment ¢ receives its
dominant contribution from Fourier mode k, where ¢ ~ kr and r is the comoving dis-
tance to LS.

The CMB temperature spectrum in Fig. (1.1) clearly shows three distinct pieces: at
large angular scales (low-/) there is a plateau that rises into a series of bumps and wig-

gles which damp quasi-exponentially on small angular scales. It can be shown that
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these three regimes are separated by two angular scales, the first at about one degree
and the second at a few arcminutes.

To understand the origin of these features let us go back in time to just before re-
combination. At this time the universe contained the tightly coupled photon-baryon
fluid and dark matter, with perturbations in the densities and gravitational potential
on a wide range of scales. While perturbations in the dark matter grow continuously
as the universe evolves, the gravity-driven collapse of a perturbation in the baryon-
photon fluid is resisted by the pressure restoring force of the photons. For example,
as an overdensity falls into a gravitational potential it becomes more and more com-
pressed. Eventually photon pressure halts the collapse and the mode rebounds, becom-
ing increasingly rarefied. The expansion is slowed and halted owing to the weight of
the fluid and the gravitational potential, causing the mode to recollapse once more. In
short, an acoustic wave is set up, with gravity the driving force and pressure the restor-
ing force and at decoupling some of these acoustic modes are at a maximum, giving rise
to the observed acoustic peaks and valleys in the CMB anisotropy angular spectrum of
Fig. (1.1).

Mathematically, the Fourier mode k of the temperature fluctuation is governed by a
harmonic-oscillator-like equation which can be obtained assuming infinite efficiency of

the Thomson scattering in glueing baryons and photons together [140]
2

[megsATo(k, )] + %ATo(krﬂ) = —F (3.21)
where F is the gravitational forcing term owing to the dark-matter potentials, m.¢ de-
scribes the inertia of the fluid, and primes denote derivatives with respect to the confor-
mal time.

The large-angular scale Sachs-Wolfe plateau (¢ < 100) in the angular power spec-
trum arises from perturbations with periods longer than the age of the universe at LS,
i.e. ~ with wavelength larger than the horizon at LS. These waves are essentially frozen
in their initial configuration and provide us with a probe of the physics that created
them (e.g. inflation), unspoiled by cosmological evolution. Since CMB photons lose
energy climbing out of the potential wells associated with these long-wavelength den-
sity perturbations, the temperature differences seen on the sky reflect the gravitational
potential differences on the LS surface [141, 142]. If the density fluctuations are approx-
imately scale-invariant the plateau in the angular power spectrum is flat.

At scales smaller than the horizon at LS, the baryon—photon fluctuations that pro-

duce anisotropy on sub-degree angular scales (10> < ¢ < 10%) have sufficient time to
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undergo oscillations. At maximum compression (rarefaction) the CMB temperature is
higher (lower) than average. Neutral compression corresponds to velocity maxima of
the fluid, which leads to a Doppler-shifted CMB temperature. The Doppler effect is
subdominant because we see only the line-of-sight component of the velocity and the
speed of sound is less than the speed of light. Since LS is nearly instantaneous, the CMB
provides a snapshot of these acoustic oscillations, with different wavelength modes be-
ing caught in different phases of oscillation. Because a given multipole ¢ is dominated
by the effects of a narrow band of Fourier modes, this leads to peaks and valleys in the
angular power spectrum. Since the power spectrum is the squared amplitude, and the
troughs correspond to velocity maxima (which are 71/2 out of phase with the density

maxima), these peaks are modes that were maximally under— or over—-dense at LS.

On even shorter scales (¢ > 10) the finite duration of recombination has an observ-
able effect [143, 144]. During this time the photons can random walk a distance given by
the mean free path (which is increasing during recombination) times the square root of
the number of scatterings with electrons. Thus photons can diffuse out of any overden-
sity on smaller scales than this, which leads to an exponential damping of the spectrum
on small scales known as Silk damping. Approximating LS as an instantaneous event,
the damping is exponential with an e-folding scale given by the geometric mean of the

LS horizon and the photon mean free path.

Of course before/at/after LS, the photons not only respond to the gravitational po-
tentials caused by matter density perturbations, but also to any other perturbations in
the space-time metric i.e. also to vector and tensor metric modes. If not seeded by other
mechanisms, vector perturbations decay and can be neglected, while tensor perturba-
tions (which do not create baryon-photon oscillations) can contribute to the Sachs-Wolfe
plateau (e.g. [141]). In particular tensor metric modes generate a quadrupole signature
as they distort the distribution of passing photons. Gravitational waves redshift away
inside the horizon so that their main effect on anisotropies occurs around horizon cross-
ing: only scales above the horizon at recombination contribute significantly; therefore
the produced anisotropies can constrain properties of the primordial fluctuations, such
as the ratio of tensor to scalar fluctuations, r. The typical signature of gravity waves
is an enhanced quadrupole ¢ = 2 and a cut off at the multipole corresponding to the
projected horizon at last scattering. If the same mechanism generates both the scalar
and tensor fluctuations (e.g. inflation), there may exist a relation between their spectra.

In particular, inflation predicts a consistency relation between the shape of the tensor
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spectrum and the tensor-to-scalar amplitude ratio which may provide a sensitive test of
this paradigm.

As the photons travel through the universe from the surface of LS they interact
gravitationally with the matter. If the gravitational potentials are still evolving, addi-
tional temperature perturbations are generated by the ISW effect [141]: a photon falling
into a gravitational potential gains energy; if the potential evolves during the photons’
traverse, the energy lost climbing back out will be different from that gained falling
in, leading to a net anisotropy. To linear order in the perturbations, the gravitational
potential is constant when matter dominates the energy budget of the universe and
this phase gives no contribution. However, right after recombination photons still con-
tribute enough to the energy density of the universe and the change in time of the poten-
tial is non-zero: this is the so-called “early ISW effect”. That can happen also at very late
times if either curvature or a cosmological constant dominate producing the so-called
“late ISW effect”.

CMB photons are also characterized by some degree of polarization [145, 147, 146].
In fact, the Thomson scattering cross section o, as a function of the solid angle (3, de-

pends on polarization
do
aQ

where ¢; ; are the incident and final polarization directions. The scattered radiation

o |e; - ef|? (322)

intensity peaks normal to, and with polarization parallel to, the incident polarization.
If the incoming radiation field is isotropic, the orthogonal polarization states balance
and the outgoing radiation remains unpolarized. In the presence of a quadrupole
anisotropy, instead, a linear polarization is generated by scattering.

Since we have observational evidence for anisotropies at LS, we expect the CMB
is linearly polarized. The degree of polarization is directly related to the quadrupole
anisotropy at LS. While the exact properties of the polarization depend on the mech-
anism for producing the anisotropy, several general properties arise: the polarization
peaks at angular scales smaller than the horizon at LS (i.e. smaller scales than the first
temperature peak) owing to causality. Since only those photons that scattered in an
optically thin region near LS could have had a quadrupole anisotropy, the polarization
fraction is small and dependent on the duration of LS; for a standard thermal history,
it is a few percent of the temperature anisotropy. An additional change in polarization
can occur during subsequent interaction with ionized matter (e.g. during reionization

[148]). Moreover gravitational interactions do not generate or destroy polarization.
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As discussed in Sec.3.2, the E-mode and B-mode polarization power spectra trans-
form into one another under a 45-degree rotation of the polarization. The additional
cross-power spectrum between T- and E-modes is due to the fact that density (or scalar)
perturbations have no “handedness” and so generate only E mode of polarization. Vec-
tor and tensor perturbations instead create T- and both E- and B- modes. In Fig. (3.3), the
power spectrum of the best-fit ACDM model, the data from WMAP-3 as well as some
indication of the diffuse foregrounds by our own galaxy, are shown. In the top, the large
scale plateau as well as the acoustic oscillations in the TT mode are shown. The TE and
the EE modes are dominated by the scalar-type cosmological perturbations. Also, the
predicted tensors for r = 0.3 determine the BB mode signal. The lensing curve, dashed,

is also shown, and will be the subject of the next Chapter.
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Figure 3.3: Plots of signal for TT (black), TE (red), EE (green) for the best fit model, together
with the WMAP-3 data. The dashed line for TE indicates areas of anticorrelation. The cosmic
variance is shown as a light swath around each model. For BB (blue dots), a model with r = 0.3
is used. It is dotted to indicate that at this time WMAP only limits the signal. The BB lensing
signal is shown as a blue dashed line. The straight dashed lines, with green for EE and blue
for BB, indicate foreground emission from the diffuse gas in our galaxy. Both are evaluated at

v = 65 GHz. From Ref. [28]

Since different sources of anisotropy (scalar, vector, tensor) generate different pat-
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terns of polarization [149, 150, 129], information from polarization is complementary to
information from temperature anisotropies. Moreover the polarization pattern depends
also on the kind of primordial fluctuations: adiabatic and isocurvature! modes generate
different polarization spectra [151, 152, 129]. Finally, polarization depends on some of
the cosmological parameters differently than the temperature anisotropy, allowing de-
generacies in the fitted parameters to be removed and improving parameter constraints
by a large factor [153, 154, 155, 156].

3.4 Secondary CMB anisotropies

We conclude this Chapter with an overview of the mechanisms giving rise to secondary
anisotropies which occur due to intervening effects between recombination and the
present. These divide basically into two categories: gravitational effects from metric
distortions and rescattering effects from reionization. Both leave imprints of the more
recent evolution of the Universe and the structure within it. Compared with the pri-
mary signal, secondary anisotropies provide more details on the evolution of structure
and less robust constraints on the background parameters.

If metric fluctuations evolve as the photons stream close to them, they leave their
mark as gravitational redshifts. Common manifestations include the cited late ISW
effect from rapid expansion and the Rees-Sciama (RS) effect from non-linear structures
[157]: once fluctuations leave the linear regime, their subsequent evolution make the
potentials vary with time owing to both the growth and movement of bound haloes,
leading to anisotropies through the RS effect. Since the smallest scales go non-linear
first, the effect peaks toward small scales and the scale at which fluctuations become
nonlinear is in principle also imprinted on the CMB, even if the effect is very small and
is not the dominant source of anisotropy on any scale.

In addition to the energy gained and lost by photons due to time-varying potentials,
the path a photon takes is altered by gravitational lensing, which we will describe in
detail in the next Chapter.

Observations of the spectra of high redshift Quasars indicate that the universe is
highly ionized out to redshift z ~ 5, thus photons can again scatter off free electrons

at later times after LS. Unlike the z ~ 103 LS surface, however, the electron density

! An isocurvature perturbation is one which leaves the total density unperturbed, while perturbing the

relative amounts of different materials.
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today is quite low so that the baryons and photons do not become tightly coupled and
can have a large relative velocity. This rescattering both erases primary anisotropies
and generates new secondary ones, or better, 1reionization damps power on angular
scales smaller than the horizon subtended by the epoch of reionization and generates
extra power via the Doppler effect due to the large relative velocity of the photons and
baryons fluids. If the underlying primary signal is known, the angular extent of the new
fluctuations measures the horizon size at the rescattering epoch and their amplitude
probes the baryon velocity at that time.

It is unlikely that the reionization of the universe will occur uniformly throughout space,
so anisotropies will be generated owing to the “patchiness” of reionization. Depending
on the redshift of reionization and whether the ionizing sources are quasars or stars,
the angular scale of this anisotropy could be quite different. Current calculations and
numerical simulations [158, 159, 160] suggest the patchy reionization will not dominate
except on extremely small angular scales.

In addition, once structure formation is well underway, the photons can interact
with hot gas in the intergalactic medium [161, 162]. The CMB photons can either be
upscattered in energy when interacting with hot gas via the “thermal” Sunyaev-Zel’dovich
(SZ) effect or have their temperature shifted locally by a Doppler shift from the peculiar
velocity of the scattering medium via the “kinetic” SZ and Ostriker-Vishniac effects [163].
The thermal SZ effect is probably the largest source of anisotropy on angular scales
of a few arcminutes and has been calculated both analytically [164, 165, 166, 167, 168]
and numerically [169, 170, 171, 172, 173]. It is independent on redshift, so it can yield
information on clusters at much higher redshift than does X-ray emission. In the 4.5
channels of Planck, the thermal SZ effect will probably probe cluster abundance at high
redshifts.



Chapter 4
Weak Gravitational Lensing of the CMB

gravitational lens is formed when the light from a very distant, bright source (such
Aas a quasar) is “bent” around a massive object (such as a massive galaxy) between
the source object and the observer. The process is known as gravitational lensing, and is
one of the predictions of Albert Einstein’s GR theory according to which mass warps

the space-time to create gravitational fields and to bend light as a result.

Figure 4.1: Bending light around a massive object from a distant source. The orange arrows
show the apparent position of the background source. The white arrows show the path of the

light from the true position of the source. From http://hubblesite.org.

The official formulation of the gravitational lensing theory is dated 1936 [176], but,
actually, gravitational lensing was found by Einstein even before his GR theory was for-
mulated in 1915. In fact, the reconstruction of some of Einstein’s research notes dating

back to 1912, Fig. 4.2, reveals that he explored the possibility of gravitational lensing,
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deriving its basic features, even three years before completing the GR theory. When 24
years later he finally published the very same results on lensing, it was only in response
to prodding by the amateur scientist R. W. Mandl [177].
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Figure 4.2: Notes about gravitational lensing dated to 1912 on two pages of Einstein’s scratch
notebook. Between these pages a loose sheet containing further notes on the lensing effect was

found. From Ref. [177].

The gravitational lensing theory was confirmed in 1919 during a solar eclipse, when
Arthur Eddington observed that stars passing close to the sun appeared slightly out of
position, confirming that the light from stars was slightly bent by its gravitational field.

In gravitational lensing maximum “bending” occurs closest to, and minimum
“bending” furthest from, the center of the lens. Consequently a gravitational lens
has no single focal point, but a focal line instead. Commonly, the massive lensing
galaxy is off-center, creating a number of images according to the relative positions of
the source, lens, and observer, and the shape of the gravitational well of the lensing
galaxy. In addition, the observer may see sources duplicated about a simple gravita-
tional lens, although the lensed image will always be distorted when compared to the
source (Fig. 4.1). Moreover, gravitational lensing can increase the apparent brightness
of the sources.

Fig. 4.3 shows the actual gravitational lensing effects clearly observed by the Hubble
Space Telescope (HST) in the galaxy cluster Abell 2218.

When the involved fields are strong enough, if the source, the massive lensing ob-

ject, and the observer lie on a straight line, the source will appear as a ring behind the

massive object.
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Galaxy Cluster Abell 2218 HST « WFPC2
NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) » STScl-PRC00-08

Figure 4.3: The cluster Abell 2218 hosts one of the most impressive collections of arcs. This
HST image of the cluster’s central region shows a pattern of strongly distorted galaxy images
tangentially aligned with respect to the cluster centre. The gravitational field of the cluster mag-
nifies the light of more distant galaxies far behind it, providing a deep probe of the very distant
universe. The cluster was imaged in full color in January 2000, providing astronomers with a

spectacular and unique new view of the early universe. From http://hubblesite.org.

This phenomenon was first mentioned in 1924 by the St. Petersburg physicist Orest
Chwolson [178], and quantified by Einstein in 1936 [176]. It is usually referred to in the
literature as the “Einstein ring”, since Chwolson did not concern himself with the flux
or radius of the ring image.

Actually, Einstein always discarded the ring and apparent brightness amplification ef-
fects as a speculative idea only, without any chance of empirical confirmation: indeed
his theory predicted that it was possible for astronomical objects to bend light, and that
under the correct conditions, one would observe multiple images and magnification of
a single source; however, as he only considered gravitational lensing by single stars, he
incorrectly concluded that these phenomena would most likely remain unobserved for
the foreseeable future. In Ref. [176] he verbatim says: “Of course, there is no hope of

observing this phenomenon directly”.
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In 1937 instead, Fritz Zwicky first considered the case where a galaxy could act as
a lens, something that according to his calculations should be well within the reach of
observations, contrary to Einstein hopelessness...
In his paper [179], Zwicky says explicitely: “The gravitational fields of a number of
foreground nebulae may therefore be expected to deflect the light coming to us from
certain background nebulae. The observation of such gravitational lens effects promises
to furnish us with the simplest and most accurate determination of nebular masses. No

thorough search for these effects has yet been undertaken”.

Figure 4.4: QSO 0957+561. This quasar lies at a distance of 7.8 billion years far away from the
Earth (z = 1.414) and is receding away from us at nearly 210,000 km/sec. Due to an intervening
mass lying in the optical path between the Earth and the quasar, the light from the quasar is bent
yielding two images of the source with relative magnitudes of 16.7 (QSO 0957+561A) and 16.5
(QSO 0957+561B) and an apparent separation of only 6 arcseconds.

It was not until 1979 that the first astronomical lensed object would be identified,
Fig. 4.4. It became known as the “Twin Quasar” since it initially looked like two identi-
cal quasars; it is officially named Q09574561 and lies at z = 1.41 in the constellation Ursa
Major. The lensing galaxy, known as YGKOW Gl is a giant elliptical galaxy at z = 0.355.
The Twin—Quasar two images are separated by 6" and were discovered accidentally by
Dennis Walsh, Bob Carswell, and Ray Weymann using the Kitt Peak National Observa-

tory 2.1 meter telescope.



4.1. Gravitational lensing systems 79

4.1 Gravitational lensing systems

The basic idea of gravitational lensing is extremely simple: any mass distribution modi-
fies the structure of the spacetime, and therefore the trajectories of free falling objects. As
a result, if these objects are photons following their null geodesics, the observed light
rays, which encounter a density distribution in their path towards us, suffer a devia-
tion. Gravitational lenses can be used as gravitational telescopes, since they concentrate
the light from objects seen behind them, making very faint objects appear brighter and
therefore more easily studied.

Gravitational lensing system are made up by three essential ingredients:

1. a physical objects that emits light, identifiable with the source; it can be a star, a

galaxy, or a quasar, or the CMB itself for instance;

2. a matter concentration acting as the deflector (or lens), which does not need to
be luminous but only to feel gravitational interactions, and thus can be a star, a

galaxy, but also a dark matter halo or their large scale distribution, or a black hole;

3. an observer, namely someone collecting the emitted light from the source by

means of a telescope or a detector.

In addition to these elements, we need knowledge of the properties of the spacetime,
which may be regarded as the fourth element of the picture, in which the gravitational
lensing system is embedded. The relative position of the set source-lens—observer will
play its role as well: although in principle any mass distribution in the Universe bends
the spacetime acting as lens for any source, a (rough) alignment among the three ele-
ments is needed in order for the effect to be appreciable.

Gravitational lensing is mainly divided in three sub-classes:

Strong lensing, where there are easily visible distortions such as the formation of Ein-
stein rings, arcs, and multiple images, Fig. 4.3. Strong gravitational lenses may be used
to examine objects at distances at which they would not normally be visible, provid-
ing information from further back in time than otherwise possible. Also, not just the
object being lensed but the lens itself can provide useful information. By inverting the
lens equations, information can be gathered on the mass and distribution of the lensing
body. The statistics of strong gravitational lenses can also be used to measure values

of cosmological parameters such as the cosmological constant and the mean density of
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matter in the universe [180].

Another parameter that come out from the study of strong gravitational lenses is the
Hubble’s constant which encodes the age and size of the universe. Theoretically, it can
be determined by measuring two quantities, the angular separation between two im-
ages, and the time delay between these images which has in turn two contributions: the
first is the obvious delay due to the difference in optical path length between the two
rays, and the second is a general relativistic effect, the “Shapiro effect”, that describes
light rays as taking longer to traverse a region of stronger gravitational field, the grav-
itational time dilation effect. Because the two rays travel through different parts of the
potential well created by the deflector, the clocks carrying the source’s signal will differ

by a small amount.

Weak lensing, where the distortions of background objects are much smaller than in
the strong lensing case, and can only be detected by analyzing large numbers of ob-
jects to find distortions of only a few percent. The principal aspect of weak-lensing is
that measurements of its effects are statistical in nature. While a single multiply-imaged
source provides information on the mass distribution of the deflector, weak-lensing ef-
fects show up only across ensembles of sources.

For instance, by measuring the shapes and orientations of large numbers of distant
galaxies, these quantities can be averaged to measure the lensing field in any region.
In particular, magnification and distortion effects due to weak-lensing can be used to
probe the statistical properties of the matter distribution between us and an ensemble of
distant sources, provided some assumptions on the source properties can be made. For
example, if a standard candle! at high redshift is identified, its flux can be used to estimate
the magnification along its line-of-sight. It can be assumed that the orientation of faint
distant galaxies is random. Then, any coherent alignment of images signals the pres-

ence of an intervening tidal gravitational field. Furthermore, the positions on the sky

I The term standard candle is used for any class of astronomical objects whose intrinsic luminosity can be
inferred independently of the observed flux. In the simplest case, all members of the class have the same
luminosity. More typically, the luminosity depends on some other known and observable parameters,
such that the luminosity can be inferred from them. The luminosity distance to any standard candle can
directly be inferred from the square root of the ratio of source luminosity and observed flux. Since the
luminosity distance depends on cosmological parameters, the geometry of the Universe can then directly
be investigated. Probably the best candidates for standard candles are supernovae of Type Ia already
mentioned in the Introduction. They can be observed to quite high redshifts, and thus be utilized to

estimate cosmological parameters.
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of cosmic objects at vastly different distances from us should be mutually independent.
A statistical association of foreground objects with background sources can therefore
indicate the magnification caused by the foreground objects on the background sources
[181].

Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is
small, a very large number of galaxies must be used in weak-lensing surveys, for which
a number of important sources of systematic error must be carefully avoided: the in-
trinsic shape of galaxies, the tendency of a camera’s point spread function to distort
the shape of a galaxy, the tendency of atmospheric seeing to distort images, and non-
uniform photometry, or obscuration effects, must be carefully controlled at a level well
below the expected weak-lensing effects. The results of these surveys are important
for cosmological parameter estimation, for a consistency check on other cosmological
observations, and to provide an important future constraint on dark energy and dark
matter.

Weak lensing effects are being studied for the CMB as well and are the main subject of
this Chapter.

Microlensing, where no distortion in shape can be seen, but the amount of light re-
ceived from a background object changes in time due to the transit of a microlens in
front of the source. By far the easiest effect to detect in a microlensing experiment is the
apparent brightening of the source. The background source and the lens may be stars in
the Milky Way in one typical case, or stars in a remote galaxy and an even more distant
quasar in another case. Gravitational microlensing can provide information on compar-
atively small astronomical objects, such as massive compact halo objects (MACHOs)

within our own galaxy, or extrasolar planets.

In general, every gravitational lensing effect is very small, such that a massive galaxy
will produce multiple images separated by only a few arcseconds. Galaxy clusters can
produce separations of several arcminutes. In the microlensing case, instead the typ-
ical separation scale would be of the order of a few millionths of degree, too small to
be detected by any realistic measurement; these is the reason for exploiting different

observational approaches of detection in this case.

In almost all the astrophysical lensing cases, the light behavior is well described
through the geometrical optics approximation, basically requiring that the wavelength
of the light is much smaller both than its typical travel distance and the Universe’ radius

of curvature, which is proportional to H; L If this is the case:
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- light can be treated as particle-like, forgetting about its wave nature;

- since the radial extension of the involved astrophysical entities is much smaller
than their relative distances, source, lens and observer can be thought of as lying
on planes. In particular, the spatial coordinates can be separated into a radial
coordinate along the line of sight and two angular ones (9, ) lying on a plane
perpendicular to it, and characterizing the angular displacement from the polar

axis. This latter is often referred to as the flat-sky approximation.

The geometry of the problem is depicted in Fig. 4.5 where it is sketched how a source,
whose angular position is (3, is seen by the observer at the origin as arriving from an
apparent angular position 6, i.e. differing from the true one by an amount « called
deflection angle. Here the angular diameter distance D(z) of an object, at comoving distance
r = r(z), is defined as the ratio between the proper physical size of the object and the
subtended angle of observation. It depends on the spatial curvature of the Universe

and, in the flat case, it reduces to D = ay.

4.2 The Born approximation

In what follows we will consider the small-angle scattering limit, i.e. the case where the
change in the comoving separation of source light-rays, owing to the deflection caused
by gravitational lensing from a matter distribution, is small compared to the comoving
separation of the undeflected rays, whose employment is therefore sufficient to calculate
all the relevant integrated quantities. This represents the so-called “first Born approx-
imation” and, in this case, a linearized treatment in the metric perturbations results to
be appropriate.

Furthermore, we will only consider lensing by density perturbations and adopt the
conformal Newtonian gauge, i.e. the Poisson gauge of Sec. 2.1 without vector and tensor
metric perturbation. The line element, in a FRW background of generic spatial curva-

ture, is then
ds® = a*(n)[— (1 +2¢) dn? + (1 — 2Y)y,p dx* dxP), (4.1)
where the unperturbed spatial metric y4g is such that

Yap dx* dxP = dx® + 1% (x)( d9* + sin® 9 dp?) (4.2)
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Figure 4.5: A mass concentration at redshift z4 (or angular diameter distance Dy) deflects the
light rays from a source at redshift zs (or angular diameter distance D;). If there are no other
deflectors close to the line-of-sight, and if the extent of the deflecting mass along the line-of-sight
is very much smaller than both D4 and the angular diameter distance D 45 from the deflector to
the source, the actual light rays which are smoothly curved in the neighborhood of the deflector
can be replaced by two straight rays with a kink near the deflector. The magnitude and direction
of this kink is described by the deflection angle &, which depends on the mass distribution of
the detlector and the impact vector of the light ray. From Ref. [181].

where r(x) is defined from Eq. (1.4).
Since for lensing we are only calculating the path of null geodesics ( ds?> = 0), we
can divide the line element by [—a?(1)(1 — 21)] and use the related conformal metric

at first order in the perturbations ¢ and 1p
d8? = (14+40) dn? — yup dx* dxP , (4.3)

where @ = (¢ + 1)/2 is the so-called “Weyl potential’ [175]. For matter perturbations

in the linear limit with no stress perturbations, the equality 1) = ¢ = ® holds (which is
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also the case for the weak—field limit on small scales), and, therefore, @ is related to the
matter—distribution density via the corresponding expression for the Poisson equation
(see Sec. 2.3) [182].

In order to obtain the incoming—photons trajectories (with focus at the origin of the
conformal time 7p), we have to solve the geodesic equation, expressed in this new con-

formal metric, whose 0-component reads

dn dn)2 A0 _dn dx* 0@
~ T 2 Iy - 2————— = O, 4.4
dA2 < dA) dn T dA dA ox* @4

where the derivative d®/ dn = 8,® + ( dx*/ dn)d,® is along the perturbed ray and A
is the affine parameter in the conformal metric which differs from that in the original
frame. With Eq. (4.4), we can eliminate the affine parameter A in favor of 717, and obtain

the spatial component of the geodesic equation [175]

—0, (4.5)

d?x* ) dx* (d®  dxP oD ap 0P L B)a dxﬁd_xk _
oxP ik dn dn

a2~ “dn \Can T dn oxP

where ) Fj",‘( are the connection coefficients of the unperturbed 3-D geometry y,4 [62].

It is very convenient to consider an observer located at the origin of the spatial co-
ordinates, in which case we are interested in rays that focus at x* = 0. For such rays,
dx/ dn = -1+ 0O(®) and dd/ dn = O(®), with an equivalent result for ¢. Substitut-
ing these results in Eq. (4.5), and evaluating the background connection coefficients, we
find

d%x do
> _dinr(y) dd 2 90
an? 2 ix dn r2(x) 00 v )
2 o
d ?_, dinr(x) do 22 %a_ _— (4.8)
dn dx dn = 1%2(x)sin?9 0@

which determine the perturbed rays up to first order in @ [175].
Eq. (4.6) has dx/ dn+ 2® as a first integral, and this must equal —1 by the null
condition for the perturbed ray. Integrating again, we find

n
x=n—-n-2/[ @dry, (4.9)
o

where the integral is along the ray. Since we are only working to first-order in @, we

can evaluate the integral along the unperturbed path 9 = const, ¢ = const and x =
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1o — 1. Integrating to a fixed n, Eq. (4.9) implies a radial displacement. Alternatively,
integrating to a fixed ;, it implies a variation in the conformal time at emission; this is
a time delay if the potential is negative on-average along the ray, i.e. it passes mostly
through overdense regions.

Egs. (4.7) and (4.8) can be integrated twice back to a conformal time 19 — 17+ = X«
using the zero-order result x = 19 — 1, since it only appears in the argument of a func-
tion multiplying first-order terms. Then, changing integration order, the integral over

[r=2(ng — 1) dn’ can be done using the explicit form in Eq. (1.4). The result is [182]

3o —x+) = o - /OX* dx EX*)_(X;Z 9.0 (xti o — X, (4.10)
otn—x) = oo [“ {02 Dot -x, @

where 9y and @q label the line of sight i, and 1y — x is the conformal time at which the
photon was at position xfi. This is a first-order solution and one could continue this
procedure to generate solutions for the photon trajectories of arbitrary accuracy. From

Egs.(4.10)-(4.11) we get the displacement vector or deflection angle & on the sphere

X —

a(x«, ) = =2 / ; Va®(xfi;mo — x) (4.12)

where [1/r(x)]Va is the 2-D transverse derivative with respect to the line—of-sight [175].
Moreover, if we define the lensing potential as,

Y(xs, A) = -2 / h — g‘D(Xﬁ/ 0 —X) » (4.13)

the deflection angle results to be exactly its derlvatlve on the sphere at it &« = V4 V.
Actually, the lensing potential appears to be formally divergent because of the 1/x
term near xy = 0. However this divergence only affects the monopole potential, which
does not contribute to the deflection angle. Therefore the monopole term can be set to
zero, and the remaining multipoles will be finite and the lensing potential field well
defined [175].
In reality, owing to the statistical features of weak-lensing, we deal with lensing

potential averaged over the source distance distribution n(x)

/ At (X)W (e, B) = —2 / d xg()® (xir, o — x) (4.14)

where

g(x) = % /X h dx’n(x’)u (4.15)
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is a bell-shaped function which peaks at roughly half of the background source dis-
tance, and is normalised so that [ dyn(x) = 1 [182, 36, 183]. Eq.(4.14) can be obviously
extended to the averaged deflection angle as well.

In the case of interest, the weak-lensing of the CMB from cosmological structures,
if we neglect reionization, and approximate recombination as instantaneous so that the
CMB is described by a single source plane at comoving distance x = x.(z ~ 10%), the
source distribution n(x) is the Thomson visibility at last-scattering and can be replaced
by a delta function at y. In this case, the function g in Eq. (4.15) peaks at about z ~ 1,
with a width 6z ~ 0.5.

If the potential @ is Gaussian, the lensing potential is Gaussian as well. On small
scales however, non-linear evolution introduce a degree of non-Gaussianity even for
Gaussian primordial fields; in this case the use of semi-analytical procedures or of N-
body simulation should be exploited to account for the non-linear structure formation
(see Chapter 5).

The derivative of the averaged deflection angle defines the magnification matrix (see
e.g. Ref. [181, 175, 36])

0

Aij = 5l'j—|-—06]‘ = (

l-k—yv1 —-wnm+w
20, '

—V2—w 1—k+m

An infinitesimal source with surface brightness I(fi + &) at position 8¢ about fi be-
fore lensing, becomes, after lensing, I(A’ + A8&). At the lowest order the magnification
of the intensity p = |A|™! = 1/[(1 — k)? + w? — |y|?] &~ 1 + 2k is determined by the
convergence, k = —1V - a. The shear y; + iy, determines the area-preserving distor-
tion, and the antisymmetric term w determines the rotation. Since Eq. (4.12) is purely
a derivative, the antisymmetric rotation w vanishes at the lowest order, i.e. at the first
Born approximation. At the next order, this is no longer true and in general a has a curl
component. However, because it only appears at second order, its power spectrum is
fourth order in the gravitational potential, with most effect on small scales. It is there-
fore likely to be less important than uncertainty in the non-linear potential evolution
that gives a much larger effect on these scales [188, 189].

In Fig.4.6 we explain the effect of magnification and shear on a circular image.

The shearing effect on CMB is real and may be observable through changes of the hot
and cold spot ellipticity distribution [184, 185]. However, in the CMB case, including
shear and convergence effects on perturbation scales is easily described as the remap-

ping of the CMB anisotropy and polarization fields by the deflection angle as a function
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Figure 4.6: Left: The convergence k does not change the shape of the object but only its size.
Right: A positive (negative) shear component y; corresponds to an elongation (compression)
along the x-axis of an initially circular pattern. A positive (negative) value of the shear compo-

nenty, corresponds instead to an elongation (compression) along the x = y axis. From Ref. [36].

of position, and this will be our strategy for carrying out all-sky CMB lensed maps.

In fact, the flat-sky limit, sketched in Fig. 4.5, is a good approximation for observations
covering only a small fraction of the sky, but not appropriate anymore when observ-
ing a significant fraction, also because the lensing deflections are correlated over degree

scales, implying that correction due to the sky curvature is non-negligible (see Fig.4.7)

4.3 Lensing effects on the CMB

Weak lensing of the CMB deflects photons coming from an original direction fi’ on the
last scattering surface to an observed direction fi on the sky today; a lensed CMB field
is given by

X(A) = X(n") (4.16)

where X = T, E, B are the unlensed ones. The vector A’ is obtained from f by moving
its end on the surface of a unit sphere by a distance |V4¥(f1)| along a geodesic in the
direction of Va¥(fA) [183, 190, 191]. This is sometimes written as A’ = A + Va¥(A).
It is often assumed that |V4¥| is constant between fi and fi/, consistent with working
out the lensing potential in the Born approximation. CMB lensing deflections are a few
arcminutes, but are coherent over the degree scale, justifying this approximation.
Since, as a first approximation, the CMB lensing is a linear function of two Gaussian

fields (the unlensed background CMB and the matter distribution), the result is a non-
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Figure 4.7: The lensing potential power spectrum (defined decomposing the lensing potential
in spherical harmonics, in the same way as for the CMB anisotropies, Eq. (3.3) and Eq. (3.7)),
has been calculated, in the case of the linear and non-linear matter evolution, by the flat- and
all-sky approaches: a non-negligible fraction of the power comes from scales where the flat-sky

approximation is inadequate. From Ref. [183].

Gaussian field, i.e. lensing induces a non-Gaussian spatial correlation structure between

the temperature and lensing potential but does not alter the variance at a point [191].

CMB weak-lensing smoothes out features in the temperature power spectrum,
where lensing effects become visible at I 2 500, corresponding to an angular scale
of ¢ < (7/500)rad =~ 20’, corresponding to the scale where coherent gravitational
light deflection sets in. An important effect of lensing is seen at the high-I tail of
the temperature power spectrum, where the lensed power spectrum falls systemat-
ically above the unlensed one by power transfer from large to small scales Fig 4.8
[181, 193, 194, 195, 196, 197, 198, 199].

Concerning the polarization, lensing changes the E-mode polarization C; peaks by
up to 20% on the scales of interests as well. Moreover, gravitational lensing of scalar
E-mode polarization generates the lensed B-modes via the displacement and distortion

of the E-pattern. In Fig. 4.9 the lensing effects on the T-, E-, and B-modes are shown.

This additional source of curl-component must be taken into account if the CMB po-

larization is to be used to detect the inflationary gravitational-wave background (IGW)
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Figure 4.8: The CMB power spectrum coefficients I(I + 1)C; are shown as a function of I. The
solid line displays the intrinsic power spectrum, the dotted line the lensed power spectrum
for an Einstein-de Sitter universe filled with cold dark matter. Evidently, lensing smoothes the
spectrum at small angular scales (large ), while it has no visible effect on larger scales. From

Ref. [181].

since, in some sense, the lensing-induced B-modes act as a foreground from which
IGWs must be distinguished. If the energy scale of inflation is sufficiently large, the
lensed B-modes will be no problem. However, as this scale is reduced, the IGW sig-
nal becomes smaller and will at some point get lost in the cosmic-shear induced noise
[201, 202, 203], Fig. 4.10. Refs. [202, 203] show that if the gravitational-wave background
is large enough to be accessible with the Planck satellite (+ = 0.lormore), then the
cosmic-shear contribution to the curl component is likely not to be relevant. For lower

values of 7, the cosmic-shear distortion to the CMB curl will need to be subtracted.

The CMB-lensing analysis is also relevant for several important reasons.
First of all, CMB distortions due to cosmic-shear are of interest on their own, since they
allow to extract information about the unlensed CMB and probe the distribution of dark
matter throughout the Universe as well as the growth of density perturbations at early

times. These goals are important for determining the matter power spectrum and thus
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Figure 4.9: The effect of lensing on the CMB power spectra. The top plots show the frac-
tional change in the temperature spectrum C/T and the lensing-induced B-polarization spec-

trum CPB. The bottom plots show the lensed (grey/red, less peaked) and unlensed (black) T-E

cross-correlation CI't and E-polarization CEE power spectra. From Ref. [191].

for testing inflation and constraining the inflaton potential.

With the lensing cross—section peaking at roughly the onset of cosmic acceleration,
z ~ lasalreadymentioned, the CMB lensing has been studied for constraining the dark
energy abundance at the corresponding epoch [205, 206]. Cross-correlation of the lens-
ing potential with the temperature can probe curvature and dark energy via the effect
on the large-scale ISW effect [207, 208, 209, 210, 211].

Furthermore, the different lensing behavior with the cosmological parameters can help
to break existing degeneracy between them [212].
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Figure 4.10: Contributions to the CMB polarization power spectra. The upper (blue) solid
“gravitational waves” curve is the curl component due to gravitational waves in the presence
of reionization with an optical depth given by the first year WMAP data and the associated
(blue) dashed curve is that with no reionization. The amplitude of this curve is for the largest
inflaton-potential height (V ~ 3.5 x 10'® GeV) allowed by COBE; note that CIBB'GW x V, so
the amplitude of this curve will be reduced accordingly if V is reduced. The short-dash (green)
“lensing” curve is the curl power spectrum induced by cosmic shear (weak gravitational lens-
ing due to density perturbations between us and the surface of last scattering). The red “scalar”
curve is the EE power spectrum due to density perturbations (with reionization), shown here
for reference. The dotted “lensing” (green) curve is the cosmic-shear contribution to the curl
component that comes from structures out to a redshift z = 1, and the green “lensing” dot-
dash curve is the residual cosmic-shear power spectrum left after subtraction with higher-order

temperature-polarization correlations. From Ref. [204].

Moreover, CMB lensing is of remarkable importance in the cosmological parameter
analyses in order to obtain accurate results from CMB observations. For example, we
know that lensing smooths out of about ~ 2% the third peak in the CMB temperature
power spectrum, but this effect can be also produced by lowering the baryon density
at the LS surface; therefore making a clear distinction of the two effects is strongly re-
quired [191].

Further on, unlensed CMB anisotropy is only weakly sensitive to neutrino masses suf-
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ficiently light that they are relativistic at recombination. However the lensing potential
probes later times, and the small scale damping effect on the lensing potential power
spectrum can be significant. A neutrino with mass 0.1eV only changes the unlensed
spectra at the sub-percent level, but the effect on the potential power spectrum is ~ 5%
[255]. If the lensing potential can be reconstructed to within this accuracy, this extra
information can be used to improve the limits on the neutrino mass from CMB data

alone. Future experiments may ultimately be able to probe neutrino masses with error
of +£0.035eV [256].

Since the hot and cold CMB anisotropy—spot ellipticities have a very specific proba-
bility distribution for Gaussian fields [146], additional ellipticities caused by lensing
shear should show up clearly as an excess of more elliptical shapes [184] and change
their correlation in a characteristic way [186, 187]. The lensing-induced degree of non-
Gaussianity must therefore be accounted for when attempting to access the degree of

primordial non-Gaussianity from the CMB analysis.

Finally, the lensing signature in temperature and polarization of high-redshift clusters

can be also used to constrain their mass [175].



Chapter 5
CMB Weak-Lensing from the Millennium

Simulation

n a ACDM universe, quasi-equilibrium dark matter haloes grow by the collapse and
Ithe hierarchical aggregation of ever more massive systems, a process described sur-
prisingly well by the phenomenological model of Press and Schechter and its extensions
[213, 214]. Galaxies form at the centers of these dark haloes by the cooling and conden-
sation of gas which fragments into stars once it becomes sufficiently dense. Groups and
clusters of galaxies form as haloes aggregate into larger systems. They are arranged
in the “cosmic web”, the larger-scale pattern of filaments and sheets produced by the
nonlinear gravitational evolution of the pattern already present in the Gaussian random
field of initial fluctuations.

The presence of dark matter was first inferred from the dynamics of galaxy clusters
by Zwicky in 1933 [215] and after confirmed by Smith [216] using Virgo cluster mea-
surements. Zwicky found that galaxies in the Coma cluster were moving with surpris-
ingly high speeds, indicative of a Coma cluster mass density at one order of magnitude
greater than what would be expected from spreading the mass associated with the lu-
minous parts of the galaxies over the volume of the cluster. Zwicky’s measurements
were probing larger scales with respect to the previous measurements, meaning that he
was detecting mass that lies outside the luminous parts of the galaxies, i.e., dark matter.
Ordinary baryonic matter, being largely nonrelativistic, is then pulled in by the gravita-
tional field of the cluster.

Babcock work [217] was the next major development in the dark matter story: he mea-
sured the rotation speed of luminous objects in or near the disk of the Andromeda (M31)

galaxy, out to a distance of almost 20 kpc from the center. He found that the rotation
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speed was still rising and not exhibiting the 1/+/r Keplerian fall off with the distance r
from the center expected if the M31 mass distribution followed the distribution of the
light. That is, Babcock found that the outer part of the luminous component of M31 was
dominated by non-luminous matter.

Later, in 1973, Ostriker and Peebles [218] noted that one way of making the disk of a
spiral galaxy stable against a bar-like instability is to embed it in a massive halo, a sug-
gestion that was proved consistent with the observational evidence.

These early results have been confirmed by a number of different techniques, including
measuring the X-ray temperature of hot gas in galaxy clusters (which is a probe of the
gravitational potential felt by the gas), galactic rotation curves, the structure of galaxy
groups and clusters, large-scale cosmic flows and, perhaps most directly, measurements
of gravitational lensing of background sources by galaxy clusters: the distorted images
of background galaxies as their light travels near mass concentrations reveal the pres-
ence of dark matter in the outer haloes of galaxies, in galaxy clusters and in the general

mass field.

CDM has now become a standard assumption which gives an excellent fit to obser-
vations, except possibly on the shortest scales where there remains some controversy
concerning the structure of dwarf galaxies and possible substructure in galaxy haloes.
Dark matter which has a large velocity dispersion, the so-called hot dark matter, has
instead long been excluded as it does not permit galaxies to form. Other suggestions
include a modest velocity dispersion (warm dark matter) and the possibility that the
dark matter comprises two separate components, e.g. a cold one and a hot one, an ex-
ample being if massive neutrinos have a non-negligible effect. If neutrinos had a mass
~ 5 eV, then their density would be comparable to the dark-matter density. However,
neutrino masses are now known, from laboratory experiments as well as large-scale-
structure data to be SeV (e.g. Ref. [219]), and, even if neutrinos did have the right mass,
it is difficult to see, essentially from the Pauli principle [220] how they could be the dark
matter. It appears likely then, that some exotic new candidate is required.

For the past two decades, the two leading candidates from particle theory have been
weakly-interacting massive particles (WIMPs), such as the lightest superpartner (LSP)
in supersymmetric extensions of the standard model [221, 222, 223], and axions [224].

In the minimal supersymmetric extension of the standard model (MSSM), the light-
est supersymmetric particle is stable and represented usually by the neutralino, a lin-

ear combination of the supersymmetric partners of the photon, Z°, and Higgs bosons.
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In the MSSM model, the neutralino has only electroweak interactions and, from de-
tailed calculations in a very broad class of supersymmetric extensions of the standard
model [225], it is expected that its cosmological density is of order the dark-matter den-
sity. These particles are now among the primary targets for the Large Hadron Collider
(LHC), which should begin science operations by the end of 2008. However, one can
also try to detect neutralinos in the Galactic halo.

The other leading dark-matter candidate is the axion whose mass is constrained to be
m, ~ 10~* eV by a variety of astrophysical observations and laboratory experiments
[224]. Smaller masses would lead to an unacceptably large cosmological abundance,
while larger masses are ruled out by a combination of constraints from supernova
1987A, globular clusters, laboratory experiments, and a search for two-photon decays
of relic axions. If the axion mass is in the relatively small viable range, the relic density
is O, ~ 1, and so the axion may account for the halo dark matter. Such axions would
be produced with zero momentum by a misalignment mechanism in the early Universe
and therefore act as cold dark matter [226].

In N-body simulations, the dominant mass component is constituted by CDM, as-
sumed to be made of elementary particles that currently interact only gravitationally, so
the collisionless dark matter fluid can be represented by a set of discrete point particles.
This representation as an N-body system is a coarse approximation whose fidelity im-
proves as the number of particles in the simulation increases.

Cosmological simulations using increasingly sophisticated numerical methods provide
a test bed for models of structure formation which attempt to reduce cosmology to an
initial value problem: given the initial conditions, a background cosmological model
with specified composition, and primordial fluctuations in the matter, radiation, and
spacetime geometry, the goal is to compute the evolution of structure from the Big Bang
to the present day using well-known physics laws.

While the initial, linear growth of density perturbations can be calculated analytically,
the collapse of fluctuations and the subsequent hierarchical build-up of structure is a
highly nonlinear process which is only accessible through direct numerical simulation.
Simulations bridge the gap that often exists between basic theory and observation. They
have found many uses, including testing and calibrating methods used to measure cos-
mological parameters, providing insight into nonlinear gravitational clustering and hy-
drodynamic turbulence, helping to explain the nature of systems such as quasi-stellar

object absorption lines, and highlighting shortcomings in the current physical modeling
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of galaxy formation. However, their main use has been and continues to be testing the
viability of cosmological models of structure formation, such as the CDM model and its

variants.

The current generation of cosmological simulations has antecedents that date back sev-
eral decades. The first gravitational N-body simulation of interacting galaxies was per-
formed using an analog optical computer (Holmberg 1941): gravity was represented by
the flux from 37 lightbulbs, with photocells and galvanometers used to measure and
display the inverse square law force. The first astronomical N-body computations us-
ing digital computers were made in the early 1960s by von Hoerner and Aarseth. These
early simulations were limited to at most about 100 particles. Gas dynamical simula-
tions of galaxy formation began with the pioneering spherically symmetric calculations
of Larson in 1969. Increasingly large simulations of cluster collapse and evolution were
performed throughout the 1970s, e.g. by Peebles and White. The first truly cosmological
simulations of structure formation were the N-body integrations of Press & Schechter
in 1974 in their influential paper on the mass distribution of bound clumps formed by
hierarchical clustering [213, 227].

Computer simulations of structure formation in the Universe began with purely
gravitational codes that directly compute the forces between a finite number of par-
ticles (“Particle-Particle” or PP codes) which sample the matter distribution. Binning
the particles on a grid and computing the forces using the Fast Fourier Transform (the
“Particle-Mesh” or PM method) is computationally more efficient, allowing simulation
of larger volumes of space, but has force resolution of the order of the grid spacing. A
compromise is the PM method, which uses PM for large scale forces supplemented by
direct PP calculations on small scales, as used for the important suite of CDM simula-
tions by Davis et al. [228]. The force resolution of PM codes and the force resolution
and speed of P>M codes is increased by employing multiple grid levels [229] as it hap-
pens in the adaptive mesh refinement (AMR; [230]) which dynamically increases the
force resolution in the PM gravity solver [231, 232]. Another approach to achieving
both speed and good force resolution in gravitational N-body simulation is the use of
the “hierarchical tree algorithm” [233], and large cosmological simulations use a par-
allelized version of this method [234]. Finally, a significant increase in speed has been
obtained with the use of the so-called “Tree Particle-Mesh algorithm” (TreePM) [235]

described below.
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5.1 The Millennium Simulation

The Millennium Simulation [236] is a high-resolution N-body simulation implemented by
the Virgo Consortium, a collaboration of British, German, Canadian, and US astrophysi-
cists. It follows N = 2160° ~ 1.0078 x 10! particles, with a mass of 8.6 x 103 h~1M,
from redshift z = 127 to the present in a cubic region 500 #~!Mpc comoving on a side,
where 1 + z is the expansion factor of the Universe relative to the present and / is Hub-
ble’s constant in units of 100 km s~ !Mpc~!. With ten times as many particles as the pre-
vious largest computations of this kind [238, 239, 240], it offers substantially improved
spatial and time resolution within a large cosmological volume.

The Millennium Simulation was carried out with a specially customized version of
the GADGET2—code [241], using the “TreePM” method [242] for evaluating gravitational
forces. This is a combination of a hierarchical multipole expansion, or “tree” algorithm
[233], used to compute short-range gravitational forces, and a classical, Fourier trans-
form particle-mesh method [244] to determine long-range gravitational forces. This
combination allows for a very large dynamic range and high computational speed even
in situations where the clustering becomes strong . The calculation was performed on
512 processors of an IBM p690 parallel computer at the Computing Centre of the Max-
Planck Society in Garching, Germany. It utilized almost all the 1 TB of physically dis-
tributed memory available and required about 350 000 processor hours of CPU time, or
28 days of wall-clock time.

The cosmological parameters of the Millennium Simulation are: Q,, = Qcpp +
Q, =0.25,Q, =0.045, h = 0.73, Qp = 0.75, ng = 1, and og = 0.9, all evaluated at
the present time (z = 0). The adopted parameter values are consistent with a combined
analysis of the 2dFGRS [245] and first year WMAP data [18].

The simulation volume is large enough to include interesting rare objects. At the
present day, the richest clusters of galaxies contain about 3 million particles. The grav-
itational force law is softened isotropically on a comoving scale of 5~ kpc, which can
be taken as the spatial resolution limit of the calculation. Thus, the simulation achieves
a dynamic range of 10° in 3D, and this resolution is available everywhere in the simu-

lation volume [236].

Initial conditions have been laid down by perturbing a homogeneous, ‘glass-like’!,

1Such a glass is formed when a Poisson particle distribution in a periodic box is evolved with the sign

of gravity reversed until residual forces have dropped to negligible levels
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particle distribution [246] with a realization of a Gaussian random field with the ACDM
linear power spectrum as given by the Boltzmann code CMBFAST[247]. The displace-
ment field in Fourier space was constructed using the Zel’dovich approximation [248],
with the amplitude of each random phase mode drawn from a Rayleigh distribution.
The simulation was evolved from z = 127 to the present using a leap—frog integration
scheme based on a split of the potential energy into a short-range and long-range com-
ponent [249], with individual and adaptive timesteps, with up to 11 000 timesteps for
individual particles.

The evolution of the simulation particles under gravity in an expanding background

is governed by the Hamiltonian

) 1
H=2 ma? T2 2

where H = H(p1,..., PN, X1,..., XN, t). The X; are comoving coordinate vectors, and

mim; ¢(¥; — X))
o (.1)

the corresponding canonical momenta are given by 7; = a?mix;, where m; represents
the particle mass. The explicit time dependence of the Hamiltonian arises from the
evolution a(t) of the scale factor, which is given by the FRW model that describes the
background cosmology. Due to the assumption of periodic boundary conditions for a

cube of size L3, the interaction potential ¢ (X) is the solution of

V2(%) = 471G —% Ty 6E-7L)|, (52)

where the sum over # = (n1, 1, n3) extends over all integer triplets. The density dis-
tribution function 6.(X) of a single particle is spread over the gravitational softening
length € = 5h~'kpc. Note that the mean density is subtracted in equation (5.2), so the
solution of the Poisson equation corresponds to the physical peculiar potential multiplied

by the scale factor a, where the dynamics of the system is governed by
V(%) = 47G[p(X) — 7). (5.3)

The equations of motion corresponding to equation (5.1) are ~ 101° simple differen-
tial equations, coupled tightly by the mutual gravitational forces between the particles
[236].

The particle data has been stored at 64 output times, each of size 300 GB, giving a
raw data volume of nearly 20 TB. This allowed the construction of finely resolved hier-

archical merging trees for tens of millions of haloes and for the sub-haloes that survive
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within them. A galaxy catalogue for the full simulation, typically containing ~ 2 x 10°
galaxies at z = 0 together with their full histories, can then be built for any desired
semi-analytic model? [250, 251].

Fig. 5.1 shows the impressive resemblance between spectroscopic redshift surveys
and mock galaxy catalogs obtained exploiting the dark matter distribution of the Mil-
lennium Simulation.

For our particular purpose of making all-sky lensing—potential and deflection-angle
maps, we have used the 3-D field of the gravitational potential stored at each of the 64
output times in units of (km/ sec)z. The mesh dimensions of each gravitational poten-
tial file are 2560% and cover a comoving cube with (500 Mpc/h)? by volume (that means
the gravitational potential grid has a resolution of ~ 0.195 Mpc/h). Because of issues of
file size and parallelization, each potential field is split up into several files, where each
of the files contains a slab from the cube, and the slicing is done along the x-axes.

In Fig. 5.2, we show the resulting time evolution of the dark matter power spectrum
of the Millennium Simulation. On large scales and at early times, the mode ampli-
tudes grow linearly, roughly in proportion to the cosmological expansion factor. Non-
linear evolution accelerates the growth on small scales when the dimensionless power
A?(k) = k3P(k)/(27*) approaches unity; this regime can only be studied accurately
using numerical simulations. In the Millennium Simulation, it has been possible to de-
termine the nonlinear power spectrum over a larger range of scales than in earlier works
[109], almost five orders of magnitude in wavenumbers [236].

This is a very important point in the CMB lensing analysis. In fact, the non-linear evolu-
tion of the gravitational potential changes on small scales the angular power spectrum

C'Y of the lensing potential ¥ and introduces some degree of non-Gaussianity in its dis-

2A semi-analytic model can be viewed as a simplified simulation of the galaxy formation process,
where the star formation and its regulation by feedback processes is parameterized in terms of simple ana-
lytic physical models. These models take the form of differential equations that describe radiative cooling
of gas, star formation, growth of supermassive black holes, feedback processes by supernovae and active
galactic nuclei (AGN), and effects due to a reionising UV background. In addition, the morphological
transformation of galaxies and the process of metal enrichment are modeled as well. Of substantial im-
portance is the tracking of dark matter substructure. For what concerns the Millennium Simulation, this
has been carried out consistently and with unprecedented resolution throughout the large cosmological
simulation volume, allowing an accurate determination of the orbits of galaxies within larger structures,
as well as robust estimates of the survival time of structures infalling into larger objects. Dark matter
substructure properties, like angular momentum or density profile, have been used as well to directly

determine sizes of galactic disks and their rotation curves.
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120 11h

Figure 5.1: The galaxy distribution obtained from spectroscopic redshift surveys and from
mock catalogues constructed from cosmological simulations. The small slice at the top shows
the CfA2 “Great Wall” [252], with the Coma cluster at the centre. Drawn to the same scale is a
small section of the SDSS, in which an even larger “Sloan Great Wall” has been identitied [253].
This is one of the largest observed structures in the Universe, containing over 10,000 galaxies
and stretching over more than 1.37 billion light years. The wedge on the left shows one-half of
the 2dFGRS, which determined distances to more than 220,000 galaxies in the southern sky out
to a depth of 2 billion light years. The SDSS has a similar depth but a larger solid angle and
currently includes over 650,000 observed redshifts in the northern sky. At the bottom and on the
right, mock galaxy surveys constructed using semi-analytic techniques to simulate the forma-
tion and evolution of galaxies within the evolving dark matter distribution of the Millennium
simulation [236] are shown, selected with matching survey geometries and magnitude limits.
From Ref. [237]
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Figure 5.2: The power spectrum of the dark matter distribution in the Millennium Simulation
at various epochs (blue lines). The gray lines show the power spectrum predicted for linear
growth, while the dashed line denotes the shot-noise limit expected if the simulation particles
are a Poisson sampling from a smooth underlying density field. In practice, the sampling is
significantly sub-Poisson at early times and in low density regions, but approaches the Poisson
limit in nonlinear structures. Shot-noise subtraction allows us to probe the spectrum slightly
beyond the Poisson limit. Fluctuations around the linear input spectrum on the largest scales are
due to the small number of modes sampled at these wavelengths and the Rayleigh distribution
of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error
bars in the z = 0 estimates. On smaller scales, the statistical error bars are negligibly small. From
Ref. [236].

tribution. This non-linear evolution not only alters the lensed temperature power spec-
trum by about ~ 0.2% at £ ~ 2000 and ~ 1% or more on smaller scales, but, much more

notably, introduces ~ 10% corrections to the B-mode polarization power on all the scales
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[191, 175].

5.2 All-sky simulated lensed maps: the state of the art

The increasing sensitivity and resolution of the forthcoming CMB experiments demands
a detailed mapping in total intensity and polarization of the last-scattering photons. We
know that CMB is characterized by primary and secondary anisotropies in the inten-
sity and polarization (Chapter 3), and, among the main phenomena which can generate
secondary effects, the CMB weak-lensing is noteworthy and is caused by the distortion
that the gradients of the gravitational potential from matter structures induce on the
geodesics of the LS photons (Chapter 4). This is one of the most relevant effects which
are detectable by the forthcoming probes and has high relevance for studying the struc-
ture formation and the cosmic acceleration.

On the experimental side, CMB observations are already at the level of precision
such that the lensing effect on the temperature and polarization power spectra will be-
come crucial for an accurate analysis. This will certainly be the case once data from the
future Planck satellite becomes available. CMB experiments, targeting polarization?,
and in particular the B-modes from gravitational waves, require a precise knowledge of
the lensing effects in order to separate them from the cosmological signal. For all such
instruments, lensing reconstruction and delensing will become essential. [175].

On the theoretical side instead, since the lensing signal has the same frequency spec-
trum as the unlensed CMB (and hence cannot easily be distinguished), the understand-
ing and modeling of this effect is essential for the correct interpretation of the CMB
data. The delensing methods for subtracting out the B-mode lensing signal have so far
only been developed in idealized cases: flat sky without boundaries, simple noise and
beam properties, all-sky without non-linear structures, etc. Improved methods may be
required to obtain accurate parameter constraints from future high-resolution measure-
ments of the E and B polarization [175].

For all these reasons, simulated all-sky lensing maps from N-body simulations are
gaining increasing importance, since they should in principle allow to recover a much
more accurate and realistic signal than the simple lensing potential spectrum obtained
in a semi-analytical way, as shown in Chapter 4. On the other hand, if the lensing

potential can be reconstructed accurately, the sky can be delensed simply by mapping

3http://lambda.gsfc.nasa.gov
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points back according to the deflection angle. This would be useful for CMB analyses,
as the unlensed sky has much simpler statistics than the lensed sky. For example, the
smoothing effect of lensing also potentially hides any small scale structure in the CMB
power spectrum [254], and delensing would be very useful to uncover this information.
Lensing potential reconstruction could also provide good non-degenerate constraints
do distinguish the scale-dependent effects of massive neutrinos and dark-energy evo-
lution [255].

In this Chapter we show the results from our first step (the construction of all-
sky lensing—potential and deflection—angle maps) in the realization of simulated all-
sky lensed CMB maps from the dark-matter distribution of the Millennium Simulation.
This work, made in collaboration with my supervisors and Volker Springel, Matthias
Bartelmann and Simon White, allows a significant leap forward in the knowledge of the
weak-lensing distortion of the CMB temperature and polarization maps, since it is com-
puted on the basis of well resolved and fully non-linear dark matter structures which
are supposed to reproduce the ACDM model accurately. In this way, a more realistic
small-scale lensing analyses can be performed and the whole non-Gaussian statistics
injected by lensing onto the background CMB anisotropies, both in intensity and po-
larization, can be characterized properly, significantly extending the existing approach
which is only based on the power spectrum and the Gaussianity assumption of the lens-
ing potential field.

Indeed, all-sky lensed CMB maps have already been carried out [191] using the first-
Born approximation and under the assumption that “both the lensing potential and
unlensed CMB fields are Gaussian and statistically isotropic” [175].

In these previous works, however, the lensing potential map is constructed via a semi—
analytic approach, i.e. the non-linear matter power spectrum, provided by a semi-
analytical formula at different redshifts [257]*, is interpolated and integrated along the
line-of-sight to produce directly the angular power spectrum of the lensing potential
Y. Given the Gaussian distribution of the spherical harmonic coefficients ¥;,, (where
Y(A) = 31 YimYim(R)), its variance C}Y is the used to carry out a synthetic sky map of

Y, neglecting completely all the information which arise from the non-Gaussian features

4 As discussed in Sec. 4.3, on small scales the lensing evolution is not linear and Gaussian anymore, due
to the non-linear structure evolution. The main effect is to change the ® power spectrum on small scales,
which can be estimated from numerical simulations. For simple models, fits to numerical simulation like
the HALOFIT code of Ref. [257] can be used to compute an approximate non-linear, equal-time power

spectrum, given an accurate numerical linear power spectrum at some redshift.
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of the non-linear matter distribution, as, e.g., the output of a N-body simulation results
to be.

Given the two maps, one of the gradient of the lensing potential and one of the back-
ground CMB, a lensed CMB map can then be made by remapping points on the CMB
map according to the deflection vector &« = V4V obtained from the lensing potential
map [258, 184, 259] (see Sec. 4.2).

In the cited works [191], the deflection vector field is constructed exploiting its power
spectrum /(¢ + 1)C}'¥ and the vector spherical harmonic analysis; spherical trigonom-
etry is then used to calculate the pixel remapping from the geodesic in the direction of

the deflection vector.

This strategy of extrapolating the lensing—potential and deflection-angle maps from
their power spectra could be a good approximation on large scales, but on small scales a
modeling of the effects of a realistic non-linear evolution of matter structures is needed,
and requires doing detailed numerical simulations of the matter density field.

For what concerns the line—of-sight integration instead, even if the photon path could
be computed by ray tracing with more accuracy, in most of the cases the first Born—
approximation along the undeflected photon path can be used to good accuracy to ob-
tain results which include the non-linear physics. Even on these small scales, in fact,
this approximation still holds in the small-angle scattering limit, i.e. for typical deflec-
tions being of the order of arcminutes or less [260, 261]. For example, single clusters
(for which the deflection occurs only in a very thin section of the photon path, over
which the deflected and undeflected paths are the same) typically give deflection an-
gles of 1 arcminute, while smaller structures, such as galaxies, give arcsecond deflec-
tions. Only a minuscule fraction of lines of sight come close to black holes or other
dense bodies that violate the small-angle assumption. Finally, it can be shown that the
Born-approximation apply equally well to ‘strong’ lensing cases, provided that deflec-
tion angles are small® [175]. Finally, as already discussed in Sec. 4.2, second order cor-
rections to the first-Born approximation (for instance a non-vanishing curl component
w) are expected to be much less than the non-linear structure evolution effects on small
scales. For this reasons the first Born—-approximation looks accurate enough for carryng

out all-sky weak-lensed CMB maps from N-body simulation.

>This can happen even for tiny deflection angles if the source is small. For example massive clusters
have a CMB Einstein ring at a radius of only ~ 1 arcminute from the centre, corresponding to the radius

at which deflected rays meet at a point on the last scattering surface.
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5.3 Map-making procedure with the Millennium Run

Our approach is completely different from the previous ones. Our computation, in fact,
performs a Born—approximation ray-tracing of the CMB photons in the 3-D field of the
peculiar gravitational potential stored by the Millennium Simulation at each of the time
outputs (see Sec. 5.1).

The method, followed to carry out our mock maps, stacks up around the observer
(fixed at z = 0) the 3-D peculiar-gravitational-potential boxes of the simulation. In this
way we should produce a fair statistical sample for an eventual CMB-lensing analy-
sis. The extension of the all-sky map corresponds to a redshift of z, = 11 (beyond this
redshifts the contribution from matter structures to the lensing potential integral is com-
pletely negligible), i.e. to a comoving distance of approximately r. = 7236 Mpc/h; in
other words, we stack the simulation volume roughly 14.5 times along both the positive
and negative directions of the three Cartesian axes x, y, z with origin on the observer.

The necessity of avoiding the repetition of the same structures along the line—of-

sight requires the randomization of the boxes used to build up the lensing all-sky maps.
Moreover, in order to avoid unphysical ripples in the simulated lensing—potential and
deflection—angle fields, we need everywhere a continuous force transverse to the line—
of-sight, so we divide all the volume up to z, = 11 in spherical shells each of thickness
500 Mpc/h comoving (obviously the innermost shell is actually a sphere 250 Mpc/h by
comoving radius, centered at the observer).
All the simulation boxes falling into the same shell undergo the same randomization
process, i.e. they are all translated and rotated with the same random vectors generat-
ing the random coordinate transformations, the randomization seeds changing instead
from shell to shell. This eliminates any preferred direction in the simulated all-sky
maps. With this method we fill in, up to z, = 11, the 3-D space around the observer
with the gravitational potential field generated by the Millennium-Simulation matter
distribution and, at the same time, by exploiting the appropriately randomized snap-
shots along the line—of-sight integral, we keep into account also the temporal evolution
of the Millennium dark-matter structures. Fig. 5.3 represents a schematic picture of the
developed staking-randomization process.

Furthermore, since the gravitational-potential box is a Cartesian grid with resolu-
tion ~ 0.195 Mpc/h, we apply a spatial three-linear interpolation method to calculate
the correct value of the gravitational potential at each step of the line—of-sight pointing

in the fi-direction and crossing the simulation box.
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Figure 5.3: In this picture the adopted staking-randomization process is shown. CMB photons,
the electromagnetic radiation coming from the LS surface, pass through the dark-matter distri-
bution of the Universe simulated by stacking the gravitational potential boxes of the Millennium
simulation, 500 Mpc comoving by side. Each of the boxes (squares), which fall in the same shell
(circles), are randomized with the same way coordinate transformation (rotation+translation),

which, in turn, differs from shell to shell.

Moreover, since the sampling of the gravitational potential in the direction transverse
to the line—of-sight varies greatly with the distance from the observer, in order to ex-
tract the maximum information, even on the smallest scales of the potential field (which
are of primary importance mainly for the lensed B-mode signal), we integrate up di-
rectly the deflection angle vector along each light-ray. For this purpose, around each
integration point, we implement a fourth-order differentiation scheme to compute the
local 3-D grid of the transverse gradient of the gravitational potential and, by means of
a three-linear interpolation, we calculate its value along the line—of-sight.

In this way, adopting a trapezoidal formula, we compute, in comoving coordinates

and flat geometry, the lensing—potential integral

T
Y(h) = —2/ dr
0

and the corresponding deflection—-angle integral

Y«
a(f) = —2/ dr
0

where O is the solution of Eq. (5.3) divided by the corresponding scale factor a(ng —r),

7’* —r
O(riy;ng —7r), 54
oy (rfi; o — 1) (5.4)

Ll G0y — 1), (5.5)
Tul

the integration path is the undeflected one, and the directions i = (9, ) follow the
HEALPix all-sky pixelization [262].
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54 The simulated lensing potential and deflection angle

In this Section we show our first results obtained with the Millennium Simulation (MS).
The maps shown in Figs. (5.4)-(5.6), corresponding to a resolution of 3.44’ [262],
represent the 2-D fields on the sky of the lensing—potential, the deflection-angle 9/ ¢-
components, and its module ||, respectively, obtained with the previously described
procedure.
The mean value of || is 1.5/, while its standard deviation is 0.8', about a factor 2 lower
than the theoretically expected value of ~ 1.5". The current interpretation is that this
is due to the lack of matter power on scales larger than 500 Mpc/h comoving in the
MS, since it is well known that a relevant contribution to lensing comes from the linear
scales, as we address in more detail in the following. Several interesting features should
be noted in these maps.
The distribution of the lensing potential appears to be dominated by large scale struc-
ture, which are probably the projection of the large scale potential waves projected onto
the observer position in our line of sight integration. This is likely to be related also
to the underlying ACDM model, where the large scale potential dynamics is enhanced
due to the onset of cosmic acceleration. On the other hand, the lensing power cannot
be directly inferred by this map, as for the lensing deflection the gradient of the latter is
what really matters, as we see in the following.
The maps showing the lensing deflection angles do have interesting features as well.
First of all, the signal in the two components of the deflection angle appears to possess
to distinct regimes. A diffuse, sort of background distribution caused probably by the
lines of sight where no dominant structure is encountered, as well as sharp features,
extending over several degrees, caused probably by dominating CDM filaments deter-
mining the largest contribution to the deflection in the line of sight integration itself.
The same features are evident in the modulus of the lensing potential, where in particu-
lar the effect caused by CDM filaments is the most predominant feature in the observed
pattern.
It would be premature here to characterize the statistical distribution of the observed
structure. We expect a strongly non-Gaussian bias, probably dominating on the angular
scales corresponding to the filaments or less, imprinting the corresponding distortion
to the CMB anisotropies, which however needs to be investigated in forthcoming and
dedicated works.

After the map-making process, by means of the routine ANAFAST of the HEALPix
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~1.373E-04

Figure 5.4: The simulated all-sky map of the lensing potential computed with the map-making

procedure described in the text.

package, we have calculated the lensing—potential and deflection-angle power spectra
independently, i.e. without exploiting the relation between the two quantities, which
holds in the spherical harmonic domain.

We have compared the simulated lensing—potential C}'*, with the corresponding power
spectrum obtained as output from the CAMB code®, fixed with the same MS cosmolog-

ical parameters and turned on with the HALOFIT non-linear matter power spectrum.

The top panel of Fig. 5.7 shows this comparison. The difference of ~ 1 order of
magnitude on low multipoles / is evident and due to the lack of power on scales larger
than the simulation box. This difference decreases with ¢, and at very high multipoles,
¢ < 2000, it starts to possess an opposite behavior, due to the MS matter power on small
scales, which results to be greater than the corresponding CAMB output. Our current
interpretation is that this rise at smaller scales is a new feature corresponding to the
better mapping of the non-linear power by the MS, with respect to the ordinary semi-
analytic approaches. We will further investigate this effect on small scales by increasing
the resolution of the map-making procedure.

In the same way, we have computed the power spectrum C{** of the deflection-angle
module obtained with our map-making procedure.

In order to compare this result with the CAMB expectations, we have carried out a syn-

®http://camb.info
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Figure 5.5: Top: simulated all-sky map of the deflection angle component along the ¥ direction,
in radiant units. Bottom: simulated all-sky map of the deflection angle component along the ¢

direction in radiant units.

thetic map of the deflection angle module, using the CAMB power, , as input to the

cr
SYNFAST routine of the HEALPix package. This map is shown in the lower panel of
Fig. 5.6; its mean value and rms are 2.4" and 1.27’, respectively. The lack of large scale
power of the MS result, shown in the upper panel of the same Figure, with respect to the
CAMB simulation is evident. On the other hand, the synthetic map possesses a purely
Gaussian distribution of the deflection angle, while the MS comes from simulated CDM
structures. Once again, the morphological differences, characterizing the deviation from

Gaussianity in the MS result, will be studied in dedicated works. We have then com-
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Figure 5.6: Top: Simulated all-sky map of the deflection-angle module 2D-field (radiants) ob-
tained with the map-making procedure described in the text. Bottom: Synthetic map of the
deflection angle module 2D-field (radiants) obtained as the angular gradient of the synthetic

map of the CAMB non-linear lensing potential power spectrum.

puted, with the same routine operating in the harmonic domain, the angular deriva-
tives, with respect to the directions 9 and ¢, of the obtained lensing—potential synthetic
map. The power spectrum of the module of the resulting deflection—angle vector, com-
puted with ANAFAST as well, is shown in the lower panel of Fig. 5.7, together with our
findings.

On low / the same gap in power as for the lensing potential is clearly visible. As al-

ready mentioned, the current interpretation is that the lack of power of MS with respect
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to the semi-analytically calculated power spectrum is responsible for the lower stan-
dard deviation of the MS deflection angle with respect to the expectation. On larger ¢,
instead, we may observe an increased difference with respect to the lensing—potential
case. This is due to the computation of the CAMB deflection angle as derivative of the
lensing potential in the harmonic domain: as previously introduced, from a numerical
point of view, the integral and derivative operators do not commute in Eq. (5.5), even if
on an analytical side they do. From Fig. 5.7 the information gain on the smallest scales
due to our approach is evident, as a consequence of the more accurate mapping of the
non-linear power in the our simulation.

In the very near future, we will exploit the deflection-angle map to make lensed T-,

E- and B-mode maps, according to the remapping procedure described in Sec. 4.3.
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Figure 5.7: Top: the power spectrum of the lensing potential mapped in Fig. 5.4, compared
with the power spectrum of the lensing potential obtained with the CAMB code, including the
semi-analytic non-linear evolution computed via the HALOFIT routine. Bottom: the power
spectrum (square radiants) of the deflection angle module mapped in the upper panel of Fig. 5.6,
compared with the power spectrum of the deflection angle module mapped in the lower panel

of the same Figure.



Conclusions and look at the future

n this thesis I presented the work done during my PhD. In the framework of lin-
Iear and non-linear structure formation processes in cosmology, I focused on pro-
cesses which are of interest on their own for our understanding of the recent cosmo-
logical evolution, as well as in relation to the forthcoming probes of CMB anisotropies.
Among these processes, I considered the GWs emitted by non-linear forming cosmo-
logical structures, which might compete against the imprint of cosmological GWs in
the curl mode of CMB polarization. Moreover, I started a systematic study of the weak
gravitational lensing effect from large cosmological structures using the N-body sim-
ulations instead of semi-analytic approaches. The latter study is relevant in a number
of contexts, i.e. the comprehension of the structure formation itself, the investigation
of the onset of cosmic acceleration, as well as the measurement of the B (curl) mode in
the CMB polarization from cosmological GWs, which need to be distinguished from the
one induced by lensing. This work is in collaboration with my supervisors as well as
Prof. Matthias Bartelmann from the Institute of Theoretical Astrophysics in Heidelberg,
Dr. Volker Springel and Prof. Simon White from the Max Planck Institute in Garching,
Germany.

Concerning the first issue, I have developed a mathematical formalism to describe
scalar, vector and tensor metric perturbations generated by the strongly non-linear evo-
lution of matter structures treated my means of a pressureless fluid corresponding to
forming CDM structures.

More specifically, I have shown that, in the case of vector and tensor metric modes, their

sources obey the Newtonian dynamics on all the cosmologically relevant scales. These
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sources are intended to be typical CDM haloes obeying the Newtonian continuity, Eu-
ler and Poisson equations during all the stage of their evolution, from the linear to the
highly non-linear level.

Moreover, the amount of the stochastic GW background, produced by these structures,
has been evaluated. To this purpose, the CDM haloes have been schematized as col-
lapsing homogeneous ellipsoids, since the experimental evidence, together with the
numerical N-body simulations, seem to infer that CDM haloes are characterized by a
triaxial structure. Indeed, it is their anisotropic form, together with their peculiar veloc-
ities, which allows this objects to be good candidates for the generation of gravitational
waves of non-primordial origin.

Bounded to be a cosmological process, the halo-induced GW background possesses a
very low frequency, of the order of ~ 107! Hz, due to the cosmological time-scale of
the source evolution, and by an energy density #2Qgw(v) ~ 1072°, comparable to the
energy density associated with the stochastic background induced by primordial GWs
on the same frequency range, if the energy scale of inflation is V1/4 ~ 1 — 2 x 101°GeV.
This last point is very interesting, since, at very low frequencies, the secondary signal
could be in competition with a primordial one, as the future CMB observations will

clarify.

The weak lensing of background light from forming cosmological structures is one
of the most promising cosmological probes. In fact, not only it allows to investigate and
understand the process of cosmological structure formation and the CDM properties,
but it gains even more attention due to the discovery of cosmic acceleration, which may
be investigated optimally by lensing, as the two processes overlap in time. Moreover,
exploiting one of the basic geometric lensing properties saying that the lensing cross
section peaks quite sharply half way between source and observer, the structure forma-
tion may be probed via a tomography, dividing in redshift shells the background light.
This represents a unique feature which might be exploited to perform a tomography of
the structure formation process and the onset of cosmic acceleration. In addition, the
lensing has a number of effect on the CMB. As we discussed extensively in this thesis,
CMB anisotropies consist in T, E and B modes describing anisotropies in the total in-
tensity, gradient and curl modes of the linear polarization. The lensing correlate differ-
ent scales, causing a smearing of the acoustic features impressed at last scattering, and
causes a leakage on small angular scales, few arcminutes or less, where the primordial

power would die otherwise because of diffusion processes at last scattering. Moreover,
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it causes an effective leakage of E modes into B, peaking at the characteristic scale of
a few arcminutes, representing the main known cosmological competitor of the signal
from primordial gravitational waves. So far the weak lensing on CMB has been evalu-
ated semi-analytically, exploiting the two point correlation function. Little is known on
the statistics of this process beyond that order, and consequently, on the non-Gaussian
distortion induced on the CMB anisotropies.

For all these reasons, we constructed a machinery capable of calculating the lensing
deflection angle starting from the Millennium Run N-body simulation, which we are
preparing to exploit for lensing the CMB. We faced and solved the relative computa-
tional issues as well as the map-making consisting in the stacking of the MR box in
order to reproduce a pattern of structures which is large enough to simulate the wanted
deflection angle. As expected, the power spectrum of the lensing potential matches with
good accuracy the existing semi-analytic expectations on the scales where the MR repro-
duces faithfully a portion of the Universe; on larger angular scales, a power decrease is
observed, due to the replication of the MR structures in the stacking processes. On the
other hand an excess of power in the map obtained from the MR is observed, as a result
of a more detailed description on the small scale non-linear power in the N-body with
respect to the semi-analytic approach. These and other more CMB oriented studies are

being carried out and published in forthcoming papers.

Indeed, in the near future we intend to re-map the primordial CMB field by mean of
the simulated all-sky maps of the deflection angle and make a statistical analysis of the
obtained signal. Moreover we will look at the cross-correlation of the lensed CMB maps
with all-sky maps of the ISW /Rees-Sciama effects and of foreground galaxies from the

Millennium Simulation.

Future developments of my research could also include constrained simulations and
reference sky for future CMB probes.
In fact, the construction of lensed CMB maps can be improved via the use of constrained
N-body simulations, i.e. simulations which have initial conditions built up by means of
constrained realizations of random Gaussian fields, and which, therefore, reproduce
density and velocity fields in agreement both with the observed structures and the as-

sumed theoretical model.

This will produce not only lensing maps that mimic direct observations, but it might
make also possible to subtract the lensing signal from the forthcoming CMB total in-

tensity and polarization maps. This will facilitate the analysis of the primordial non-
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Gaussianity as well of the B modes from cosmological gravitational waves.

Most importantly, on the dark energy side, in view of the forthcoming large area
weak-lensing surveys, a future step of my work would be to apply our developed nu-
merical machinery to N-body simulations in dark energy cosmologies. This would re-
sult to be extremely useful to assess the lensing relevance in constraining different dark

energy models.
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