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INTRODUCTION

In the last ten years the attention of a larger and larger number of
physicists has been captured by two-dimensional systems. The main reason
for this is that many new physical phenomena take place only in such
systems. High-Tc superconductivity and the quantum Hall effect are typical
examples of such processes. Although we are in the area of Many-Body
Quantum Mechanics also those people whose interest is more oriented
towards High-Energy Physics have started to look at some two-dimensional
devices and to built up theoretical models for the above phenomena.

Such an interest, in our opinion, follows from the appearance of a new
kind of elementary particles that do not live in the usual three-dimensional
world: the anyons. These particles are characterized by the peculiarity of
having not necessarely integer or half integer values of the spin. Of course
the presence of such particles is strictly related to the two-dimensional
nature of the samples where they are confined. The reason is that, for
instance, in more than two spatial dimensions, locality forces the particles
to be either bosons or fermions. The above result, known as the Spin-
Statistic Theorem, strictly forbids the existence of the anyons in 3+1
dimensions.

The particular system we are interested in is a gas of electrons in a
two-dimensional layer. The electrons are subjected to a strong magnetic
field perpendicular to the plane.

Our interest is two-fold; first, we develop a perturbative Hartee-Fock
calculation of the ground state energy. This with the aim of formalizing
some results already present in the literature that, in our opinion, require
more investigations. In the same perspective we will discuss some possible
improvements of the energetic computation based on a single Slater
determinant. Second, we will discuss some general results, both
perturbative and non-perturbative, on the localization of the single-
electron wave function. Its interplay with the orthogonality requirement of
the translated wave functions is also discussed. The interest on
localizability comes from the following natural picture of the model: due to
the Coulomb interaction the electrons tend to stay far apart. Therefore the
energy of the system is, in principle, lowered if the wave functions of the



electrons are 'strongly' localized around the sites of the lattice. This is the
main reason why the classical result for the ground state energy, the
Wigner energy, is a variational lower bound. The above guess explains why,
in our opinion, it is relevant to study the maximum localization allowed to
the wave function of an electron in our sample. Furthermore, we believe
that orthogonality is a crucial requirement for our model, so that we also
want to maintain this property. We will show that there is a strict
connection between both the requirements: maximum localization and
~orthogonality.

We end this thesis with some notes on a possible spin model that
could reproduce the physics of the two-dimensional electron gas. In
particular we suggest an heuristic procedure to obtain an approximated
Hamiltonian for the electrons expressed in terms of spin variables and we
discuss its validity for small fillings. The spin model proposed is described
by an Ising Hamiltonian with a long range interaction.



CHAPTER 1: THE FRACTIONAL QUANTUM HALL EFFECT

1.1: Experimental Aspects

The Quantum Hall Effect (QHE) has been observed for two dimensional
electron systems at low temperatures and subjected to strong magnetic
fields perpendicular to the surface of the sample, [1]. The electrons are
trapped in a thin layer (about 100 A) at the interface between
semiconductors or between semiconductor and insulator. The mostly used
devices in observing QHE are Si MOSFET (Metal- Oxide- Semiconductor-
Field- Effect- Transistor ) and GaAs-AlGaAs heterojunction.

Typically for the integer QHE (IQHE), the temperature range is T=1-4
°K and the magnetic field is about B = 3-15 Tesla. For the fractional QHE
(FQHE) the temperature is even lower: T=20-100 °mK and the magnetic
field needs to be stronger: B = 15- 30 Tesla.

The data are normally presented as two curves: Pxy versus B and pxx
versus B. Here we suppose that an electric field is applied in the y-direction
and the Hall current is in the x-direction. pxx =Vx/ Ik andv Ppxy =Vy/ Ix are,
respectively, the longitudinal and transverse resistance.

The basic feature of the experimental curves (see fig. 1 below) is the
appearance of the Hall resistance plateaus at filling near all low-lying
integers, v = 1,2,3,..., and near some special fractions such as 1/3, 2/3, 1/5,
2/5,.... . Corresponding to the plateaus in pyy, there are valleys in pxx with
Pxx = 0 or at least sharp dips in pxx . When pxx is zero the inverse of pxy
gives the Hall conductance Oxy.

Another remarkable feature of the QHE is that at the plateaus the Hall
conductance is quantized to take the value

e2
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Depending on Vv being integer or fractional we call the effect IQHE or
FQHE. We observe that the curves have similar features in both cases.
However the FQHE corresponds to partially filled Landau levels, while the
IQHE is related to totally filled levels. The parameter Vv 1is essentially the
density of the two-dimensional electron gas, and it gives the number of
electrons per quantum flux. The number of electrons per unit area is



usually fixed in heterojunctions, and v can be modified by changing the
magnitude of the magnetic field.

The third feature, which makes the QHE practically useful and
scientifically fascinating, is the high accuracy with which the quantization
of oy has been observed: Av ¢10-8 for the IQHE, and Av <10-5 for the FQHE.

5/3 7/5 4/5 5/7 3/5
,Bla | §/3/2 |4 1L
513 7141 3 7 2
LR T T T T T
20 L
1.5
o
L3)
~N
S
B 1.0}
Q. \[\/
05 -
2::__ =~
5 (
gk
Z NJU\J |
0E

0 50 100 150
B(kG)

Fig.1

A crucial r6le in both theoretical and experimental QHE is played by
the impurities in the sample: in a model in which the potential describing
such impurities is strong compared to the Coulomb interaction between
electrons, the effect is destroyed. In the opposite conditions such
impurities, by localizing the charges in the sample, facilitate observation of



the effect. The border between the two regimes is still delicate and
controversial, [2].

All throughout this work we will restrict to a clean sample,
neglecting the effects of any impurities. A general discussion of the effects
of the impurities in the QHE can be found, for instance, in reference [2].

1.2: Ground State: a review

The physical model we have in mind consists in an electron gas with
no impurity in a uniform positive background. This system has been widely
discussed in the past years and even nowadays it is often subject of new
studies and researches. The first 'modern’ approach to this system is due to
Wigner in 1934, [3]. He studied a homogeneous electron gas in a
neutralizing positive charge. He pointed out that the behaviour of such a
gas as a function of the particle density is very different from that of a gas
of classical particles. In a classical gas, one expects that the lower the
particle density is, the less important will be the interparticle interactions
for the properties of the gas. By contrast, in the electron gas the Coulomb
interaction becomes more important the smaller the density is, so that a
high-density electron gas behaves almost like an ideal gas of fermions.
Wigner argued that below a certain critical density the kinetic energy will
be negligible and the behaviour of the gas will be determined by which
electron configuration minimizes the potential energy due to the Coulomb
interaction. Since the potential energy of a random array is higher than
that of an ordered array, he concluded that at densities smaller than some
critical value the electron gas will form a crystal. In three dimensions the
lowest potential energy is obtained for a body-centered cubic crystal. In
1971 R.S. Crandall and R. Williams, [4], applied Wigner's argument to a two-
dimensional electron gas and concluded that such a gas will also crystallize
in the low-density limit.

A further extension of Wigner's argument by Yu. E. Lozovik and V. L
Yudson in 1975, [5], showed that a two-dimensional electron gas (2DEG)
will have a crystalline phase also when the system is subjected to a strong
magnetic field normal to the plane of the gas. They also argued that the
behaviour of such a gas becomes classical in the limit of an infinitely strong
magnetic field.



Additional studies on the Wigner crystal (WC) have been developed
in [6], where it is computed the classical static ground-state energy of the
two-dimensional electron crystal for each of the five two-dimensional
Bravais lattices: the oblique, the square, the hexagonal, the primitive
rectangular and the centered rectangular lattices.

The results in [6] are applied in [7] to build up a quantum approach to
the WC. We believe the results in [6] are so important essentially because,
as we will widely discuss in the following, one expects that all the
physically relevant quantum approaches to the 2DEG have as a limit for low
densities (or, equivalently, for high magnetic field), exactly the classical WC
discussed in [6]. This, of course, agrees with the guess in [5].

The relevance of the WC approach to the system is nowadays out of
doubt: first, everyone agrees with the guess that at low densities the
ground state is certainly a WC of electrons; therefore, due to the electron-
hole symmetry of the Hamiltonian, discussed, for instance, in reference [8],
the ground state for densities near to 1 must be a WC of holes. Second: in
recent papers, [9], new experimental results have been exposed that go in
the direction of the WC. The idea is that a crystal that is pinned to the
substrate cannot move until an applied electric field exceeds a threshold
value, which is a measure of the force responsible of the pinning. The
current-voltage characteristics of an electron gas in the WOC phase are
therefore expected to be nonohmic: the conductivity is expected to be very
small below a certain threshold voltage, and to rise rapidly when the
voltage exceeds the threshold value. Two groups have reported seeing such
behaviour, [9]. The features reported by these two groups occur both at v a
little larger than 1/5 and for v smaller than 1/5. However the value of the
threshold voltage differs in a significant way in the two experiments.

The reason why this feature has been observed only in recent days is
mainly that the electron mobility in the samples used in the recent
experiments is 50-100 times higher than the one of the 'old' samples. Of
course the higher the electron mobility is, the easier it is to unravel new
features (for example in the resistivity data).

Another reason for the WC to be so relevant is that for low densities
the WC of electrons is energetically favourable. This is one of the key point
that will be emphasized in the next Chapter. However, since in the WC
model there is apparently no reason for some V to be preferred, we
suppose that in the WC phase no QHE has to be observed or that some new
mechanism must arise to explain the stability of the related OH. As



Laughlin discussed in ref. [10], it is not impossible for a crystal to carry
current. However, since crystals have, by definition, 'lattice position' near
which the electrons have larger-than-average probability to be found,
transport of electric current cannot occur without motion of the lattice as a
whole, or, more precisely, by a collective excitation associated with the
multiplicity of ground states. Nevertheless one would expect any impurities
to break the ground-state degeneracy, pin the crystal, and prevent the
electrons to carry current. Since this is not the situation of the FQHE ground
state (low impurities accentuate the effect), this is not a crystal or it has
extremely peculiar properties.

Many quantum properties of the WC have been discussed in [8], [11],
and then in [7]. In the first two references a Charge-Density-Wave (CDW)
approach is discussed. In ref. [8] a good variational energy is found but this
energy turns out to be a smooth function of V so that no cusp is obtained.
In [11] the approximation is improved by considering higher harmonics of
the density wave and by estimating the effect of the higher Landau levels.
It turns out that either these perturbations give very small contributions
that, in addition, are both smooth functions of v. Therefore no
commensuration energy is obtained considering the CDW as the ground
state of the 2DEG. In [7] an equivalent approach is discussed in a certain
detail: an ansatz wave function is given for the lowest Landau level. The
authors prove that, neglecting the overlaps between wave functions
localized around different lattice sites, which are in fact almost zero for
very small density, their functions give back the same electron density

-1
P~ (2r 13" z exp( 57 (L= R)?)
1

as the one exactly found in [8] and [11]. This is the reason why we say that
the physical model is essentially equivalent to the one discussed by
Yoshioka and Fukuyama first and by Yoshioka and Lee some years later.
Obviously even Maki and Zotos do not find any commensuration energy.
Nevertheless they claim that a certain commensurability can be obtained in
their approach by considering the next term in the expansion of the
effective potential; the drawback is that this contribution to the total
energy is so small that it cannot be the source of the Hall plateaus. We
believe that their approach can be significantly improved by a better



estimate of the errors and by making explicit the perturbative nature of
their expansion, which is not as evident as it will be in our approach. In
fact, in the expansion they use for the ground state energy, in which the n-
th term contains an n-electrons interaction, it is not evident at all that the
n+1-th contribution is small with respect to the n-th one so that it can be
neglected. On the contrary it seems that each term of their expansion must
be explicitly computed for obtaining a meaningful estimate of its value. In
this way one loses the practical utility of a perturbative approach, which
consists essentially in an a priori estimate of the corrections appearing in
the expansion.

Another approach that strongly relies on the WC is the one developed
in 1983 by Tosatti, Parrinello and Chen in [12]. However many problems
arise with their method: first of all they lose from the very beginning the
Xx-y symmetry that is a symmetry of the Hamiltonian. This is in our opinion
the main reason why the values of the energy are worst than the one
obtained by the CDW approach. Moreover no cusp is obtained in E(V), which
is still a smooth function of its variable. Therefore, as the authors
themselves conclude in [13], their wave function must be a poorer version
of a CDW state, since it is not variationally optimized.

In the references considered above no correlation between electrons
has been introduced. In 1983 Laughlin, [14], first on the basis of exact
results on the few-electrons model, see reference [10] for a general
overview, proposed a Jastrow-type function, ¥i.

1 N
Yi(zy, zo,....... ZN) =LH(zj - zk)]m expy- 4 z 1212
i<k i=1

This function, for intermediate Vv, Vo <v< 1-V,, turns out to be
energetically favourite. Here Vv, is a critical density to be determined.

A first remarkable feature of Wi is that it allows to obtain the cusps
in enmergy since it describes an incompressible fluid. This means that a
certain amount of energy must be furnished to the system to vary a little
the electron density from certain values of the form Vv = n/m, n and m
being integers, so that for these peculiar values of Vv one observe a
particular stability of the system. This stability is reflected for instance in
the plateaus of pyy. It allows also to explain the quantization of the Hall
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conductance and therefore it is a good candidate for a satisfactory
explanation of the FQHE. Nevertheless it has been proven by Tao in 1984,
without any doubt, that W is not the ground state of the two-dimensional
electron gas system. He has shown in reference [15] that the ground state
of the system with 10!! electrons is different from the Laughlin's wave
function and that the projection of ¥ on the true ground state is expected
to be very small. An analogous conclusion is obtained also by Laughlin
himself in [14] for the case of a three electrons system.

It is now believed that a phase transition must occur at a certain
critical value of the density so that the 2DEG crystallizes. What is still to
debate, in our opinion, is the value of the critical density, Vo. We will come
back on this point in the next Chapter.

Recently other approaches to the 2DEG have been proposed by
several authors: Chui, Hakim and Ma, [16], have proposed a wave function
that interpolates between the CDW and the Laughlin states. The energy for
v =1/3 is slightly lower than that of the fluid but, as the same authors point
out, this is not a conclusive result in the direction of their ansatz wave
function. In fact the justification of the Laughlin incompressible fluid wave
function as a model for the v =1/3 FQHE state does not simply rest on its
variational energy: as first pointed out by Haldane, it is also the exact and
unique ground state of a truncated model Hamiltonian representing short-
range components of the interaction.

Another approach that relies on the WC was proposed in [17] by
Kivelson, Kallin, Arovas and Schrieffer. They suggest that large ring
exchanges in the WC can produce the required cusps in the energy at
rational fractional filling factors. More explicitly, they claim that a
cooperative motion of the electrons of a closed ring in the WC can produce a
contribution to the partition function, and therefore to the energy, which
can be orders of magnitude larger than pair exchange contributions. In
addition, these contributions exhibit non-analytic cusplike behaviour for
certain rational values of V.

This proposal, however, is not totally accepted: Halperin, Tesanovic
and Axel in [18], agree that such an effect could occur, but they are
skeptical in believing that this could be the explanation of the FQHE.
Moreover, in reference [19], Thouless and Li have studied a model that, in
their opinion, would suggest that no downward cusp of the ground state
energy can be produced by cooperative ring exchange (CRE) processes.
Actually they found an upward cusp. However in [20] Kivelson et al. show
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that the argument of Thouless and Li does not apply to the strong magnetic
field limit and therefore it is not conclusive.

1.3: More about the Ground State

In our opinion the Wigner approach to the 2DEG, beside having a
crucial relevance by itself, is still very much to debate. The relevance was
pointed out, for instance, in [9] where some experimental aspects of the
2DEG were discussed. These aspects, as the threshold voltage, clearly give
an evidence for the WC, at least at low electron density (or, by the electron-
hole symmetry, at high hole density). Moreover it has been already pointed
out in the literature that a WC is energetically favourite for v< Vo. This point
was extensively discussed in [21] by Levesque et al. where the ground
state energies as functions of v for the CDW and for Laughlin's approaches
are discussed and compared. Moreover results as the ones in [17] give
some chances for WC to be also responsible for the FQHE, via a CRE
mechanism. Finally, a quantum approach to WC tends to the classical WC
more rapidly than the approach proposed by Laughlin. This result is
implicitly contained in [21] and will be slightly modified by our results in
the following Chapter.

We use a Hartee-Fock approach to the WC. Therefore it is essentially a
mean field approximation of a more complex problem and, as a
consequence, some features of the physical problem can be lost in our
strategy. In particular no correlation between the electrons will be
considered. Still, we believe that such an immediate approach can have the
rdle of giving some insight on the 2DEG, and it can give a partial answer to
the request in [9] for a complete quantum mechanical theory of the WC.
Moreover a CRE mechanism can be thought to take place in the Wigner
lattice described by our model so that this 2DEG may also be relevant for
the FQHE.

We start with the one-body free Hamiltonian

H?.
H, = Z—K/I (1.1)

with
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Il=p+- HAL (1.2)

where the magnetic field is supposed to be in the z-direction. We call
e
B=_H

and we indicate by B the norm of 8, B = IBI.

Many strategies for solving the above quantum mechanical problem
has been discussed in the past years. In this thesis we will be concerned
with two of such approaches; the first one is clearly described in [22] and it
provides essentially the x-y solutions of the problem. We get in this way
the eigenfunctions @, p(x,y). Here n and m are the quantum numbers
related to the particular solution. The second approach is the one proposed
by Dana, Zak et al. in a series of papers where the first step is a change of
variables in Hamiltonian (1.1); see, for instance, reference [23] for a first
introduction. We will describe in some details this approach in Appendix 1
and in Chapter 3 since we will use kg-representation to prove one of the
results of this thesis.

In [22] the @, m(x,y) wave functions are derived. They have the
following form

@y m(x,y) = @™ g m! n!) 12 exp[ (x2+y?)/4] -

- (3/9x +13/3y)™ (9/9x -1 9/ay)™ exp[ -(x2+y®)2]  (1.3)

Here and in the following we take H = M = B = 1. These conditions
imply also that the cyclotron frequency ®W¢= B/M and the magnetic length
a, = (h /B )? are both equal to one.

Since we have Ho @ m(x,y) = (n +1/2) @4 n(x,y), all the energetic
levels, known as Landau levels, are degenerate in m. The lowest Landau
level, that is the one with n=0, is spanned by the following set of wave
functions:

On(x,y) = ™ m!) Y2expl (x2+y2)/4]

(0/0x + 1 9/0y)™ expl -(x2+y2)/2] (1.4)
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which are centered around R = (0,0) and differ each-other for the different
m-depending values of < r >. Of course the n=0 level is the relevant one to
consider for discussing the ground state of a 2DEG.

To build up the two-dimensional crystal we also need to introduce a
couple of operators that translate the wave functions along the axis of the
triangular lattice we are considering. These operators have to commute
with the Hamiltonian (1.1) and among themselves. This is necessary to
obtain wave functions that are still eigenfunctions of Ho and univocally
defined. In [24] the construction of such operators has been widely
discussed and the result is given in the form:

T(aj) = exp{ i Il aj} (1.5)
where we have defined the lattice basis a; and ap via the
a1=a(1,0) a = a(1/2, V3/2) (1.6)

a being the lattice spacing, and Il. by the formula
e
Oe=p-_ Hart

In our unities Il and II, become:
Iy =px -y/2 ITy = py +x/2 (1.7)
My = px +y/2 ITey = py - x/2 (1.8)

The only non-zero commutation relations between the II operators
are:

[Hy,nx]z[ncx,ncy]zi (1.9)
from where it follows that

[ Ho , T(ap ] =0 j=1.2 (1.10)
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For what concerns the commutation rules between the T(aj)'s it is
easily seen that the two operators commute if the following rationality
condition, [24], is satisfied:

(a; A a2 ), =21 (1.11)

In this hypothesis given a generic function f(x,y) we can consider an
uniquely defined translated function fy m(x,y) by the

fn,m(xy}’) = Tln sz f(xvy)

where we call Tj = T(a;), while, if condition (1.11) does not hold, an extra
over-all phase appears in the definition above, phase that depends on the
path one follows to define the translated function.

Let us call

¥o.0(xy) = 2m) Y 2expl- (x2+y?)/4] (1.12)

where the indexes (0,0) are related to the lattice site around which the
function is localized. We see from (1.4) that Wo o(x,y) = ®@o(x,y) so that ¥o o
is a particular function of the first Landau level. For B high enough the
various Landau levels are energetically ’deeply separated and therefore
the Coulomb interaction can be considered as a small perturbation. In this
assumption only the lowest Landau level (LLL) can be occupied by the
electrons in the sample, which have not enough energy to occupy the
second Landau level. More explicitly, this LLL approximation is meaningful
if the spacing H®. between Landau levels is much larger than the Coulomb
repulsion between electrons V= e2/ea, € being the dielectric constant. The
validity of such an approximation has been investigated in [11] where it is
proven that for B= 15 T, € =13 the correction of the higher Landau levels to
the ground state energy is less than 0.8%.

We use now the T operators introduced above to built up the
translated wave functions. Of course since T(a;) commutes with the
Hamiltonian it follows that

Yo,mxy) = Ti" To™ ¥o,0(x,y) (1.13)
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are still eigenfunctions of Hy belonging to the first Landau level, V n,m. We
can give the explicit form of the above functions:

¥y m(xy) = (1P e/2(Ynmx - Xom¥) ¥ (r- Rym) (1.14)
where
Rom = (Xa,m» Yam)=-a(n+m/2, V3/2 m) (1.15)

is the lattice site around which the functions ¥, 5, are exponentially
localized. We want to stress that the wave functions in (1.14) are, in our
unities, essentially the same introduced by Maki and Zotos in [7], but for
the factor (-1)"™. We will discuss the utility of such a phase in Chapter 2
and in Appendix 3 were we will show that it allows an easier study of the
perturbative corrections of the ground state energy. Here we only want to
stress that this phase is necessary to maintain the translation invariance of
the model. In fact only due to the (-1)*™ factor we have ( ¥q, ¥m) = (Yo,
Y h-m), equality that does not hold for the single electron functions given in
[71.

To simplify the notation we will use, very often, a single index to
indicate the couple of integers that identifies a lattice site. For instance the
functions in (1.14) will be indicated as

Wnlxy) = (DM e ¥20nx - Xay) g o(r- Ry) (1.16)
where, of course, we must interpret n as the pair (ni,n3).

In order to give to these states a precise physical meaning in view of
future applications we want to orthonormalize the single-electron wave
functions. In fact it is easy to verify that the overlap between two states

centered at different sites is not zero but it is only exponentially
decreasing. We have

Cn = (o, ¥n) = [d% Wo* (WD) (1.17)
By performing some easy gaussian integration we get

Cn = (-1yM102 ¢ Ra?/4 (1.18)
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To discuss the behaviour of this overlap for very high magnetic fields
it is better not to put our constants to one from the very beginning. In this
way we would obtain the following wave function

1

112 [(z-Rn)2-21(x Yn-yXn)1] (1.19)

¥alxy) = (-1)M1"2(2mw1?) Y 2expl-

with 1?=(eB)"! and the overlap would be of the form

Cph = C-B'nz/lz

Therefore we see that for B going to infinity, that is for 1 going to zero,
the overlap between the various eigenstates is one if Ry is zero (so that the
two wave functions are localized both around the origin). On the contrary it
goes to zero if Ry, is different from zero, that is, if the functions we are
considering are localized in different lattice sites. This consideration is a
first indication that, in fact, the infinite magnetic field limit of a 2DEG is a
classical WC. More explicitly, we mean that the wave functions describing
the electrons localized around certain sites shrink to extremely picked
functions whose localization characteristics resemble very much the ones of
the delta functions.

At the same conclusions one can arrive if, instead of the magnetic
field, the v parameter is considered. We want to discuss briefly this point
that will be considered more accurately in the next Chapter. The natural
way to take into account different electron densities is to change the lattice
spacing a, keeping fixed the number of electrons in the sample. This
operation is allowed since the T operators still commute if (1.11) is
replaced by the more general condition

(a1 Aa2), =2 N (1.20)

N being an integer. Since we are considering triangular lattices with la;l =
lasl = a, and since a enters in the exponent of the ¢, above through the

definition of the lattice sites

Rp?= a%(n;? + np% + ny ny) (1.21)
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it is easy to deduce that, the smaller the density is, the greater is the lattice
spacing a so that, from (1.18), for v going to zero, the overlap between
wave functions localized in different lattice sites again tends to zero. This
observation suggests an equivalence between the approach in which B — oo
and the one in which v — 0 and the electron number is keepen fixed.

Another point that it is useful to stress in advance, but that will be
again considered in Chapter 3, is the localization of the wave function in our
problem. We see that the W (x,y) introduced before are exponentially
localized. Moreover we know from (1.17) that they are not orthogonal.
These two points are not unrelated. As it is in fact widely discussed in
reference [24] making use of the kq-representation it is impossible to find
a set of wave functions for a 2DEG at v = 1 that are both orthogonal and
exponentially localized in one direction. This result will be restated in
Chapter 3 using continuity arguments in a very different way from the one
given in [24], which we consider much more satisfying. Since we can think
to built up the WC constructing a lattice with the minimum spacing a
obtained from (1.11), that is with

4T
a= NG (1.22)
and then to occupy each lattice site with an electron described by the
function Wy, then, by a quite abstract argument, the various W, cannot be
orthogonal each other being exponentially localized .

We end this Chapter with the above last consideration. In the next
ones many of the points already sketched will be considered again in all
details and their consequences will be investigated.
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Chapter 2: Two-Dimensional Electrons in a Magnetic Field

In the previous Chapter we gave the form of a wave function that
essentially coincides with the one proposed in [7] and therefore it is also
virtually equivalent to the CDW proposed by Yoshioka et al. Here we will
consider some mathematical refinements that, in our opinion, are
worthwhile to discuss to better understand some points of the 2DEG that
are still unclear or, at least, not well established.

We begin by building up an orthogonalized wave function starting
with the one in (1.14). From this operation will appear clearly the reason
why the situation with filling equal to one does not fit in our approach
(However the electron-hole symmetry solves this problem!). We therefore
fix v to be 1/3 and work in this hypothesis. We use a perturbative
expansion quite different from the one used in reference [7]. In particular
we will show that the two approaches are numerically equivalent in a first
approximation. However we go further computing explicitly the correction
to the ground state energy and showing the perturbative nature of our
expansion in contrast with the one proposed by Maki & Zotos. We conclude
that the extremely small cusps proposed in [7] are, at least, quite
improbable. We will then extend our computation to general v and we
consider in particular the limit for small v. We confront our results with the
ones obtained by Laughlin and by the CDW approach and we show that
these results modify a bit the conclusions obtained in reference [21].

2.1: Orthogonal wave functions (1)

We recall that the wave function obtained by  acting with the
operators T on the m=0 function of the LLL has the form in (1.14)

¥omxy) = (-1 el/20nmx - XomY) Wy (1o Ry m)

where

¥o,0(xy) = (2n) V2exp[- (x>+y%)/4]
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and
Rom = ( Xom, Yom) =-a(n+m/2, V3/2 m)

We also recall that the overlap between  functions centered in
different lattice points is not zero but it is only exponentially decreasing

n = (-1)"172 C'&n2/4

Finally we remind that we are investigating first a v =1/3 2DEG.
A portion of the triangular Wigner lattice is showed in the figure 2
below

Fig. 2

where the lattice basis is also showed together with the numeration of the
lattice sites. We recall that the lattice spacing in our approach is a = la;l =
lasl.

We can use two different approaches. In the first one, that we will
call the "sub-lattice approach”, the lattice spacing a satisfies condition
(1.22). In this way we construct a 'minimal’ lattice. In order to consider a Vv
=1/3 sublattice we essentially use the same idea discussed in reference



[12]: we occupy only the sites of a sublattice defined by the following
vector basis

bi=a;+a2

—a1+2g_2

5
I

It is immediate to understand that if all the sites of our minimal
lattice belonging to the sublattice so defined are occupied then the filling of
the 2DEG is exactly 1/3.

Alternatively we can use condition (1.20) for N=3. In this way we get
a non-minimal lattice with lattice spacing b = aV3 that again corresponds
to the same filling as before. This approach will be called the "non-minimal”
one.

It is useful to stress that these two approaches are not totally
equivalent; one can see, in fact, that in the first one the accessible fillings
are v =1/3, 2/3, 1/4, 3/4, 1/7, 6/7,....., so that v =1/5 appears not to fit
into this strategy. In the second one, on the contrary, all the v =1/n and v
=1-1/n can be obtained. Therefore it appears to be a more flexible
technique to deal with the 2DEG. However the sublattice approach has a
certain relevance since it shows clearly the interplay between the Hilbert
spaces we are considering. We mean that the Hilbert space for v =1/3,
Hy=1/3, appears manifestly to be a subspace of %=1, since it is constructed
considering only a subset of the whole set {T;™,T2™ V n,m} used to built up
the minimal lattice. This consideration has a certain relevance and it will be
used in Chapter 4 to construct a new trial wave function for the ground
state of a 2DEG.

Finally we observe also that, for what concerns computer
implementation, the idea of a variable lattice spacing is much more
manageable than an approach in which we have to extract the correct
sublattice from the minimal one. This is, in fact, a filling dependent
operation not easy to implement.

We can now start discussing the orthogonalization of the wave
function and the range of v for which this operation is allowed. First we
notice that a translationally invariant procedure is required in order not to
break down the original invariance of the system. Therefore a Graham-
Schimdt method cannot be the correct one since it necessarily refers to a
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favourite site, naturally breaking in this way the translation invariance of
the lattice.

We define new functions Qp m(r) starting from the Wy, m using the
following infinite sum

Qu(m =2 fi ¥a+i(D 2.1

where again the single index notation has been used. Here the coefficients
fi must be computed requiring the orthogonality condition (2.2) below and
the sum is extended to all the lattice site if we use the non-minimal
approach described above or only to the sites related to the Hilbert space
Hy=1/3 in the sub-lattice one. Of course these functions € are still in the first

Landau level being linear combinations of functions all belonging to the
LLL.
We require 2, to be orthogonal each other, that is

(€20, Qn) = 8n,0 (2.2)

where the = sign must be interpreted as an approximate identity since, as
we will clarify below, we use a perturbative approach.

The definition in (2.1) still maintains the required translations
invariance of the system in the sense that

T1® TP Qum = T1® ToP Y £ijP 40 jam = 2 £ij [T1%T2PWisn joml =
ij ij '

= 2 fij\Pi+n+oc jrm+p = Qn+on,m+B (2.3)
ij

where we have used definition (2.1) and (1.13). So the T operators are also
the translation operators for the new orthogonal functions 25 ;.

2.2: Computation of the expansion coefficients

Now we want to consider the consequences of the condition (2.2) on
the coefficients fj;. Moreover we are going to explain the meaning of such
condition with particular attention to the approximate identity we have
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used in that formula. To make all the steps more explicit we use again the

double index notation.
Using the unitarity of the operators T, the definition (1.17) of the
coefficients Cp and formulas (2.1) and (2.2) we have

8n,osm,o = 2 fij* f1s (\Pi,j,\P n+l,m+s) =
ijls

=Z fi* f1s (¥o,0,Y n+l1-i m+s-j) =2 fij* fis Cn+1-i m+s-j
ijls ijls

We remind that the above steps are not correct if the wave function
introduced in [7] is used, as we have already discussed in Chapter 1. We
define the discrete Fourier transform by the

F(k,q) = Z fom eikna+iqma (2.4)
nm
21/ a 21/a
a2 -ikna-iqma
fam= {571 Jdk Jdae F(k,q) (2.5)
0 0

with k and q ranging between O and 2n/a. Using these definitions the

above equation can be rewritten, after multiplying both side for the factor

ikna+iqma . .
€ q and summing over n and m, in the form

IF(-k,-)I> Ck,q) = 1

C(k,q) being the Fourier transform of the coefficients Cp. From the explicit
expression (1.18) we can see that Cp = C.p. Therefore one easily obtains that
C(k,q) = C(-k,-q). We conclude that the above equation can be conveniently
put in the form

IF(k,q)I* Ck,q) = 1 (2.6)

which of course is solved by
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ei(I)(k,q)
Flka) = v Ck,q)

where the function @ is any real function of the variables k and q.
Throughout this work we will choose @ to be zero so that the final result is

1
=T 2.
Fk,q) k) 2.7)

In order to obtain the coefficients of the sum (2.1) we therefore need
to first know the function C(k,q) and then to transform back the result of
(2.7). Using the definition (2.4) we define

Clk,q) = Z Co eiknla+iqn2a 2.8)
n

which we write as

Clk,q) =1+ Z cp e Kn1a+ign,a (2.9)

nz 0

where the first term is of course the value that the above sum gets for
n=0. Such a separation of contributions, which is always allowed, turns out
to have a practical utility for the analysis of the convergence of the series
in (2.1) only for v < 1/3. In fact if we compute the overlap coefficients C1 g
between functions centered in adjacent sites of the non-minimal lattice we
see that IC1 0l is equal to 0.1630 for v =1, to 0.0043 already for v =1/3,
and decreases more and more for smaller v. Since each lattice site has six
neighbourhood sites we see that, defining a function g(k,q) via the

gka@)= D cpelkniatians (2.10)

n# 0

this function can in principle be of order one for v =1 while we claim that
it is much less that one for filling v <1/3. We will prove this assertion
below in many details.

In order to discuss the convergence of the series in (2.1) we use an
analyticity argument for the function F(k,q). It is well known that the
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coefficients of the Fourier transform of an analytic function of period 2zn/a
(such function is continuous and periodic together with all its derivatives)
decrease faster than any power of 1/k with increasing k, [25]. Therefore we
want to discuss the analyticity property of F(k,q). First of all it is easy to
estimate that for v <1/3 the function g(k,q) cannot be of order one for k
and q ranging between O and 2n/a. We can sketch this result is the

following way. First of all we have

gk < T legl= D, eRa¥4 -

=0 n# 0

:2 exp { _n\/;(n12+n22+n1n2) }

=0

where we have used the lattice for Vv =1/3 and with lattice spacing b =
av3. This sum can be estimated in a simple way by counting, in figure 2,
the number of lattice sites that contribute to the sum defining g(k,q) for
each 'lattice shell', that is, for each set of lattice points that have the same

V3

distance from the origin of the crystal. Calling A= ¢€ we get
| g,q)l < 6L +122% + 1809 +....= 62, k) k2

which has been numerically estimated to be, up to the fourth significative
digit, equal to 6A. For obtaining an analytical estimate it is possible to add

positive contributions in such a way to dominate | g(k,q)l with the following
expression

7\' —
(1-2)%

| gk, < 61 +1242 + 1833 +..=6 > krAk < 6 0.0258

k=1

This is obviously an overestimate that is, however, sufficient to show
that the result is still much less than 1, proving in this way our original
claim.

An analogous result can also be proven if in (2.10) we consider k and
q as complex quantities, k = kg +1i k; and ¢ = qr + i q. One can conclude that
it exists a strip of the real axis k and ¢, kr € (0, 2n/a), qr € (0, 2n/a), ke (-
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v, v) and qre (-v, v), v being estimated to be of the order 1t/2a\/§, in which
C(k,q) cannot be equal to zero. From (2.7) this implies that F(k,q) does not
have any singularity in this strip so that its Fourier anti-transform has
remarkable decay properties. We will see explicitly that, in fact, the fj;
coefficients of the (2.1) exponentially go to zero. Making use of (2.7), and
(2.9) we can expand F(k,q) in the form

1 i i . . . .
F(k,q) =1- 52 C elkjlaﬂqua +§ Z cjCs elk(_]1+sl)a+1q(12+sz)a 2.11)
70 js= 0

which, once it is inserted in (2.5), gives the following result for the
expansion coefficients:

1 3 (s# n)
fn’*‘sn,O'ECn*'g ch-s Cs (2.12)
s#0
We have used above the =  symbol since we are performing a

perturbation expansion whose validity will be supported by some estimate
about the contributions we are neglecting. The possibility of performing the
perturbative expansion in (2.12) is, of course, strongly related to the values
the coefficients Cg take for the various values of the filling. We have
already showed that for Vv =1/3 we have Icigl= 0.0043 and that ICy ol «
IC1,0l so that an expansion as the one above seems to be reasonable. Of
course things go better if v <1/3 since the coefficients Cg are even smaller.
For v = 1, on the contrary, the overlap is so high that we cannot hope to
perform any perturbative expansion of the kind we have just introduced.
This problem can be solved by the electron-hole symmetry of the
Hamiltonian H, see, for example, reference [13]. This consists in the
invariance, but for some constants, of H under the transformations bj=ci*
and bi*=cj, bj* and cj* being respectively the creator operators for the
electrons and the holes. To be explicit the above transformation leads to
H(ci,v) = H(b;j,1-v) up to a c-number. This property allows us to deal with
an electron filling near to one as if we were dealing with a v = 0 hole lattice
so that our method can be translated in the hole language and it can still be
applied.

2.3: Orthogsonal wave functions (I1)
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We now substitute the form of the coefficients given by (2.12) in the
formula (2.1), obtaining the following expression of the orthogonalized
wave functions

1 3 E : 2
Qiiji'"z—zcn Yi+n ) ch-s Cs¥i+n (2.13)

n=0 s#0
n

The utility of this formula, in this Chapter, is that it gives the
possibility of performing a perturbative expansion of the ground state
energy. We will use as expansion parameter the coefficient Ci0= exp{-
B_1,02/4}, where IRl is the distance between the first (occupied) site and
the origin. We use here the non-minimal lattice notation. Obviously a first
control on the validity of the expansion (2.13) is obtained from the
computation of C; ¢ for each value of the filling. This gives a sort of upper
bound for the value of the filling for which expansion (2.13) is meaningful
since, as we have already noticed, IC1 (V) is an increasing function of V.

It is possible to compute the scalar product between two
orthogonalized functions and therefore to verify the validity of condition
(2.2). We have

( Qo, Qn) =0n,0 + O(C1,03) (2.14)

which shows that the Q; wave functions are orthonormal up to corrections
of the C1,o3 order. Since for filling 1/3 C1,03 ~ 8108, one gets the feeling
that our perturbative expansion is meaningful.

From now on we will use the equal sign instead of the = often used
previously neglecting in this way the O(C1,03) corrections. However their
effect will be estimated at the end of the Chapter to verify the validity of
our approach.

We now use equation (2.13) in order to discuss the localization of the
wave function. We see that, up to the desired order, the function €j
appears to be essentially exponentially localized around the lattice site i =
(i1, ip) with small corrections of the order C; g, also exponentially decaying,
coming from the first shell around this site and very small contributions,
O(cq,02), from the site i itself, and from the two surrounding shells.

Therefore we have an almost exponential localization together with
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orthogonality. We have already anticipated the fact that, for v = 1,
orthogonality requires a very slower electron wave function localization at
least in one space direction: this is reflected in our procedure by the fact
that, as already discussed, a perturbative expansion as the one in (2.13) is
meaningless due to the non sufficiently small value of the coefficients Cp
corresponding to such a filling. In particular, for example, condition (2.14)
does not imply any more orthogonality of the wave functions since the
O(C1,03) corrections can be of order one. This means that in (2.13) we are
not allowed to restrict the summation to the second order in Cp since the
rest we should neglect gives a contribution relevant for the correct
definition of the orthogonalized wave function.

The next step consists in constructing the N-electrons wave function.
We restrict to a single Slater determinant, that is, we do not consider
correlations between electrons, and assume an ansatz 'ground' state given
by the following anti-symmetrized function

Q1(1) Q2(1) .. QnN(1)
1| Q12) Q2(2) .. On2)

N} (2.15)

Ao(ry, 12, IN) = ) o
Q1(N) Qo(N) ... QI

where we have used an obvious notation. A, is normalized up to the 01,03
order due to the (2.14). We have, in fact

<Ao, A0> =1
We recall the original perturbative meaning of the equal sign in the
equality above.

Ao is the wave function whose energy we are now going to compute
in the next Section.

2.4: Ground state energy

First of all we recall that, being A, normalized, the energy of such a
state is

EIN)=<Ag, HAp >
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H being the Coulomb interaction between electrons

1 I
H=3 Zlg-zjl

i#]

and where we still have not considered the subtraction of the positive
background energy.

Here we neglect the kinetic term that is a constant when the electrons
are in the LLL, as it happens for strong magnetic fields.

For a system of N electrons we obtain, in the Hartee-Fock

approximation, the following expression:

1 N
E(N) =5 2, [Ba(i.j)-Es(i,))] (2.16)
i#j

where

1Qi(r1)1? 1Q j(12)1?

Ea(i) = fdzu a2 S @.17)
and
. Qi* (1) Qi*(r2) Qi(r1) Qi(r2)
Es(i,j) = szl'_l g2p, L84 ,(_r_f - 1) 2ile (2.18)

In order to subtract the positive background we use the result of
reference [6]. Here the energy of a classical system of electrons,
represented by delta functions centered in the various lattice sites, is
computed after subtracting the interaction of the electrons with a positive
uniform background. Let us introduce now the interaction energy Ep(N)
among the N electrons and the background and let E(N) be the energy of
the classical WC without eliminating the background. In this way we can
compute the mean (subtracted) energy for particle in the following way:
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E -

: E(N) - Ew(N) Ew(N) - Ep(N)
= lim N_,w{ NW + N (2.19)
Here, of course, the second contribution is the classical Wigner energy
with the background subtraction, see [6]; the first piece is instead the term
we are computing in (2.16) minus the classical contribution coming from
the interaction between the electrons in the WC. We call

Ey = lim g { Ew(N) I'\IE"(N) } (2.20)
and
8E = lim xoo, { EV) ‘NEW(N) } (2.21)

Obviously Ey is known from [6] while the correction 8E is what we
need to compute. We recall again that we are assuming for the time being a
filling equal to 1/3. We will generalize to an arbitrary Vv later on.

We add few words to notice that we need to consider a periodic
positive background in order to simplify the computation. In fact for a
system of electrons and, say, ions, in a complete energetic computation one
must consider three contributions: Eee, Eeij and E;j, which are, respectively,
the electron-electron, the electron-ion and the ion-ion energies. One can
show that if the ions are periodically disposed in the lattice then the sum of
Eei and E;j; is equal to Eej/2. This allows one to consider simply the
interaction between electrons and ions in order to subtract the positive
background.

In order to compute E(N)/N we fix the position of the j-th electron to
be, for instance, j=(0,0). We have:

E; = lim yo., EN)/N = % 2 { Ea(i,0)-Es(1,0) } (2.22)

120
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where the Eg4(i,0) and Eg(i,0) are defined above.

We defer to Appendix 2 and Appendix 3 for all the technical details.
In the first one we compute the generic matrix element of the Coulomb
potential between the wave functions ¥, and we analyze its expansion for
large values of the argument; in the second one we give the explicit form of
OE. Here we only sketch the main steps and the results without giving all
the details.

In computing E; we must substitute (2.13) in the integrals defining Eqg
and Es. Therefore the summation in (2.22) contains many contributions
some of which, the ones of order greater than Cl,oz, will be neglected in the
computation, see Appendix 3. This approximation is justified in Appendix 2,
where we briefly discuss the characteristic of the integrals defining the
matrix elements of modifying the behaviour of the various contributions in
a "safe way". To be more explicit a term, for instance, of the form 01,03V1jk1
cannot give, for some peculiar value of the indexes i,j,k,I, a net contribution
of the order Ci 2. This property is crucial to build up a well- defined
perturbative expansion in which all the contributions can be safely and
easily controlled, characteristic that, in our opinion, is totally absent in the
approach discussed in [7]. We have already pointed out that, in this
reference, no estimate a priori can be easily made on the contributions
coming from the various expansion terms. Therefore we must explicitly
computate these contributions before neglecting in order to explicitate their
effective weight in the expansion.

Our perturbative scheme, as it has already been anticipated, consists
in considering only the contributions coming from terms whose net order is
less or equal to exp{-Ri10%/4}2, neglecting all the successive power of the
above exponent. We define "net order" of a term the power of exp{-j]!_102/4}
obtained both from the exponential dependence of the matrix elements and
from the coefficients Cp. Of course this scheme seems to be justified
already for filling v <1/3, since for such a filling the exponent above is very
small as we have already discussed in Section 2.2.

Once the perturbative approach has been discussed we can start

sketching the explicit computation of the ground state energy. The general
matrix element has the following form
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d2 d2
Vijki = f e @) i) Y () i) (223)

which is exactly computed in Appendix 2 for any values of the indexes.
Here we report only the final result for reader's convenience. We define
the following quantities

1 1
q1=7 Ri+Rj); =7 Re+Ri); Ro=gi-q

A1=Rj-Ri; A=Ri-Rk; 81= A1y, -A1x); ©2= (Azy, - A2x)
(2.24)

1 1 .
AIZE(&'_R.j)Z; A2=5(R-1“.R_k)2; .Y_:QI'QZ; lC:EX'I.R_.O

i
@y = em{g (2101 + Qz-@_z)}
so that the result can be written as

Vi = (-D)itiztiatkikathh @ \/f-e-(AHAZ)/Z eXo’/8 1 (v 2/8) (2.25)

I, being the modified Bessel function of the first order. We notice that our
result reproduces the ones of [7] when specialized to the situations with i=j,
k=1 and i=l, j=k.

Using the asymptotic expansion of I, as it is given in many standard
books, see for example [26], one can obtain the behaviour of the matrix
elements above for large values of v.2/8. This behaviour will be explicitly
obtained in Appendix 2. We report the result below and we see that such
an asymptotic behaviour contains an exponential dependence on the lattice
vectors Ry, n=i,j,k,l. Since in our approach only the terms up to the (exp{-
&102/4})2 order must be considered not all the original C10® contributions
will play some rdle; in fact it may happen that some of the matrix elements
Vijkl give an extra exponential decreasing factor, for instance another exp({-
R10%/4}, so that the net contribution turns out to be negligible in our
scheme.
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What is out of doubt, and it is discussed in some details in Appendix
2, is that for no value of the indexes the matrix element Vijjk] can increase
the net order of a term. This is a crucial feature of our approach since
otherwise all our efforts of getting an a priori control of the various
contributions of the perturbative expansion would be vain.

We report here the results of Appendix 2, where the following
asymptotic behaviour is deduced:

- for Re[y_cz] >0
1 2
Vijki ~ exp )7 7 [2(A1-A2) - Re[vc]]
- for Re[vc?] < 0
1
Vijkl ~ €xp { 5 (A1-A2) }

where A; and A are defined in (2.24). In Appendix 2 it is also discussed an
upper bound for the asymptotic behaviour of Vijjki, useful in order to get
rid of the terms with Re[vc?] that are not simple to be read nor useful in
many relevant estimates.

Before giving the numerical result we recall that lim yo L Ew(N)/N
must be subtracted to Ej that, otherwise, would turn out to be divergent in
the limit of N going to infinity. It is simple to compute this divergent
contribution: we simply observe that a classical WC is one in which all the
electrons are exactly localized in single points so that they are described by
delta functions centered in the various lattice sites. Therefore, we deduce
that the contribution of such a crystal is exactly what one expect from a
classical one:

. Ew(@M) 1 2‘ 1
lim N oo N —2 IRi] (2.26)

i=0

Taking into account all these considerations, we can use a computer
routine to compute the sum over the lattice sites of the various
contributions to 8E. The summation is extended to a lattice big enough to

ensure that the contributions we neglect do not really modify the result of
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the finite summation. This means that we consider lattices so big that the
contribution coming from the extra lattice sites is extremely small. To be
concrete we consider, for a 1/3 filling, a 1200 x 1200 lattice. Of course,
being the summation convergent, we do not need to extend the sum to a
sublattice of the whole Z? that has the same exagonal symmetry of the
original cells. Moreover, due to the exponentially decreasing factors
appearing in the various contributions to 8E, for v < 1/3 we can use smaller

lattices since the convergence is certainly faster.

We now want to give some numbers that we believe are relevant for
understanding the réle of the corrections coming from the essential non-
ortogonality of the wave functions. In this way we control the effects that
are only estimated in [7]. We write 8E in (2.21) in a more extended and
useful form. We put

OE = Eg + 8Eq4 - Eg - 6E; (2.27)

Here Eq and Eg are the direct and the exchange contributions with the
subtraction already considered, 8Eq4 is the correction to the direct term of
the energy due to the overlap between the eigenfunctions ¥ and 8Egs is the
analogous term for the exchange contribution. This is the reason why we
call 3E4 and 3Es "non-orthogonality contributions". The explicit form of
these terms can be deduced from Appendix 3. Here we remind only the
exact form of Eq and of Eg. We have:

B\ 2 2 e B man - LY A 2.2
1¢O !

i=z0

and

Bo=x\(F 2 o0 B8 ppop (2.29)

i20

For v =1/3 we obtain the following numbers:

Eq = 0.0656 Es = 0.0030 0E4 = 0.0001 8Es=0
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We know, for example from reference [22], that the classical Wigner
energy in (2.20) is, for the present value of v, Ew = - 0.4515. Therefore the

ground state energy Egis, see (2.19),
Eo = Ew + 8E = -0.3888 (2.30)

which is essentially identical to the one of [7], [8] and [11]. The minimal
difference is due to the 8E4 contribution that in [7] is not taken into account
and that slightly raises the result.

To end this Section we discuss a further estimate that has been
conducted. We have considered the terms of the order C1,03 and we have
evaluated the corrections arising from such contributions. It is useful to
remind here only the fact that, to take correctly into account these
corrections, we have to modify the form of the wave function €2, in (2.13)
adding one more term:

1 3 (S#l’l)
Qiz\}li'”é’E:Cn \Pi+n+§' ch-s CsVisn+
=0 50
n
5 (m+n# 1)
_1—6- Ecnﬂn-l Cm C1 Wisn
mz 010

since the last term contributes to the relevant order for m, I, n+m-1 all in
the first shell. Moreover, since C1,03 = C3,0, also the term linear in the C,
gives a contribution to this order. Overestimating the integrals with the
worst possible behaviour compatible with the absence of further
divergence at this order, that is with 1/IR;l?, we see that the correction to
the ground state energy Eo coming from these terms is less than 4-10°9, so
that it can securely be neglected.

We conclude noticing that a full control of all the contributions is
allowed by our approach: this is in our opinion the main advantage with
respect to the ideas discussed in [7] where this control does not exist, or, at
least, is not as direct as for our strategy.

2.5: Other fillings
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We now sketch the computation of the ground state energy for fillings
smaller than 1/3. The idea is that different v are related to different lattice
constant a, a being determinated by the condition (1.20)

(a1na)z=2n N

with a = lajl = lasl. Since the i-th lattice site is described by the vector Rj
whose modulus square has the expression

RiZ =a% (12 + %2+ i2)

and since the minimal a® (obtained for N=1) is 41/N3 we can define, for a
generic Vv = 1/N, a new non-minimal lattice for which the vectors Rj satisfy
the condition:

1 4%
2= (12 +ip%2 +1i1 12) (2.31)

B_i—;‘\/‘g‘

We have used (2.31) to compute the various contributions to 3E in
(2.27). From (2.28), (2.29) and (2.31) it appears quite clear the way in
which the filling appears in Eq and Eg: essentially we must substitute the
minimal lattice constant whose square is 4w/\N3 with the lattice constant

related to the particular Vv we are considering: \/475/(\/\/—3_). The same
consideration applies also to 8E4 and 8Es, which, however, are so small that
can be both neglected already for v = 1/5. We have:
-for v = 1/5

Eq = 0.0276 Es = 0.0001 0Eqg =0 3Eg =0

Ew = -0.3497
and therefore

Eo(1/5) = -0.3222 (2.32)

-for v = 1/7
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Eq = 0.0161 Es=0 0Eqg=0 0Es =0
Ew = -0.2956
and therefore
Eo(1/7) =-0.2795 (2.33)
-forv = 1/9
Eq = 0.0107 Es=0 0Eq =0 0Es =0
Ew = "0.2607
and therefore
Eo(1/9) = -0.2500 (2.34)
We observe that the non orthogonality corrections, which as we have
already discussed are the contributions 8Eq and 8Eg, are really very small,
even for a filling 1/3. So, from a numerical point of view, the Maki and
Zotos' approach is justifiable. Furthermore, for v ¢ 1/7, the same exchange
contribution vanishes up to the relevant approximation, so that the classical
nature of the WC begins to appear. Third, the direct contribution becomes
smaller and smaller, so that it seems reasonable to expect that in the limit

of very small electron fillings our model tends to a classical WC. We analyze
the analyticity of the function Eq(V) in the next Section.

2.6: Other approaches: a parallel

We are now going to discuss essentially two points: a comparison of
the above energy values with the ones obtained by other approaches, and
the limit of such approaches for v—0. We indicate with ECDW(V), EL(V) and
ETP(v) respectively the energy obtained using the CDW approach, the
Laughlin's wave function and the scheme proposed by Tosatti and
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Parrinello. Some of the values are obtained using the interpolation formulas
given by Levesque et al. in [21]:

EL(v) = - 0.7821 Vv (1- 0.211 v07* + 0.012 v17) (2.35)
ECPW(y) = -0.7821 Vv (1- 0.372 v - 0.013 v?) (2.36)

where (2.35) is valid for any v between O and 1, while (2.36) holds for v
less than 1/5. This is slightly in contrast with what it is claimed in
[21] where the ECPW(v) is assumed to work already for v<1/3, while an
explicit confront with the values given, for instance, in [22] shows that the
expression in (2.36) gives only an approximation of the 'true' results for v =
1/3 and v = 1/5. From the above formulas, from [13] and from [22] we get
the following values of the energy:

ECPW(1/3) = -0.389 ECPW(1/5) = -0.322
ECPWV(1/7) = -0.2798 ECPW(1/9) = -0.2499
E*(1/3) = -0.410 EX(1/5) = -0.328
EX(1/7) = -0.2810 EL(1/9) = -0.2500
"ETP(13) = -0.364 ETP(1/7) = -0.257

We see immediately that the energetic values of the Magnetic Wigner
commensurate superlattice discussed in [12] by Tosatti and Parrinello are
too high compared to the other approaches. So it is a non variationally
optimized version of the CDW approach. In Chapter 1 we have already
anticipated what in our opinion is the main reason of such a behaviour: the
authors in [12] start with an Hamiltonian symmetric in x and y and define
eigenfunctions in which this symmetry is lost. As a consequence the energy
of this asymmetric system rises.

For what concerns our values and the ones obtained by a CDW state,
we see that they are essentially identical. This result agrees with the final
consideration of the previous Section, where we have stated the numerical
irrelevance of the orthogonality corrections to the wave functions proposed
by Maki & Zotos. Finally, we see that, up to v = 1/7, Laughlin energy is
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smaller than our energy while, for v = 1/9, they coincide. We will analyze
this feature in more details below. In our opinion it seems to be therefore
1/9 the critical value of the electron filling in correspondence of which a
transition from the incompressible liquid to the crystalline phase occurs. Of
course another phase transition between a liquid and a hole crystal is
expected for v = 1-1/9.

To show that 1/9 is the critical filling we now obtain an asymptotic
expansion of our energy as a function of v for small values of the filling,

analogous to the expansions given in (2.35) and (2.36).
We start claiming that, for v—0, the only relevant contributions to Eg

in (2.19), Eo(V) = Ew(V) + 8E(V), are the well known Wigner energy and the
direct contribution Eg4(v) explicitated in (2.28). In order to prove this we
consider first the exchange term in (2.29):

1 /Tc . 2
Es=§' 4 Z € 3Ri%/8 I(Ri2/8)

120

and we use the asymptotic expansion of the modified Bessel function I, see
[26], which holds for positive arguments. We have, for z— +o0:

o {I‘(l/z) 1 I@2) 1 T(5)/2) } (2.37)

@) = e | T(/2) ~ 22 T(-1/2) ¥ 422 21 T(-3/2)

so that, recalling that from formula (2.31) if vV goes to zero then R;2 goes to
infinity, the exchange term can be approximated by the following
expression:

_1 -Ri2/4 1 1
Es =3 .Ze R ' TR

Let us introduce now a filling independent vector Pj, using once again
formula (2.31). We define

4
P2 = TT; (2 + 12+, 1p) (2.38)

so that
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RZ= & p2 (2.39)

< =

We write therefore Eg in the form

1 - P;2/4v Vv v
ES‘zze P P e

i20

which goes to zero exponentially when Vv approaches zero.

An analogous decay property is obtained in SEq4 and SEg since both of
them, see Appendix 3, contains decreasing exponentials like the one in Es.
Actually these other exponentials are even faster in approaching zero since
their arguments are in general greater than P;2/4.

Let us now consider the direct term minus the background
subtraction. If we use expansion (2.37) in such a term, Eg,

‘ / 1 1
— 2 L
Eq = O IO(R /8) IR;!

i
120

we get the following result:

or, expliciting the dependence on V:

3/2
\Y 1 9 v
Ea =73 P;3 {1 * - }

120

Since the Vv dependence in Eg is polynomial while the other
contributions to the energy decays exponentially for small Vv, our original
claim is justified, and therefore Eq and Ey are the only contributions we
need to consider to study the small v-dependence of the ground state
energy Eo(V). Of course v must be less than 1/3 since we know from Section
2.4 that for this value of the filling the exchange contribution is slightly
different from zero.
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We now compute the numerical coefficients

1 1 9 1
k = Ty - —_
1= 2 P13 ke =74 2 IP;l°

120 i 120

that turn out to be k= 0.2814 and k; = 0.1073. Moreover we already know,
see for instance [22], that in our unities the Wigner energy as a function of
the filling has the following expression: Ey (V) = -0.7821 VV. The result is
therefore that the ground state energy can be written as:

Eo(V) = - 0.7821 Vv (1- 03598 v - 0.1372v?) (2.40)

This function looks very much the same as the ECDW(V) of (2.36), as
one could expect since the approaches are very similar, at least for small
values of v. On the contrary it is quite different from the Laughlin energy
EL(v). We will now compare (2.40) with the formulas given in (2.35) and
(2.36).

Let us first observe that formula (2.40) gives the following values of
the energy: Eq(1/3) = -0.3905, Eo(1/5) = -0.3223, Eo(1/7) = -0.2796, Eo(1/9)
= -0.2498. All of these are almost identical to the ones explicitly obtained in
Section 2.4 and 2.5. This is essentially due to the small values of the
exchange term for these values of the filling. We notice that this holds true
even for the only filling, v =1/3, for which the exchange term plays a
relevant rdle. |

We see from this formula that, at least in the approximation we are
working, Ey(V) is analytical in v. This is expected to be true also for v a little
bigger than 1/3 due to the fact that the only dependence on V in the
complete Ey(v), see (2.30), is exponential and polynomial. Therefore it
seems that no cusp can be obtained through this procedure. However an
interesting remark must be done: in obtaining the expansion (2.40) we
have implicitly assumed that continuous variations of the filling are
available in our approach. As a matter of fact this is an extrapolation since
for a value of v different from 1/n and from 1-1/n we know that the
operators Tj do not commute. This implies that the wave functions Wy m are
defined up to a phase path-depending. Of course this feature enriches our
model giving it more freedom. Nevertheless it seems not so natural to
expect that this extra phase, which is of course a function of Vv, can be
responsible of the cusps in Eg(v). We remind that a possible way out is
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however given by CRE processes briefly discussed in Section 1.2, by means
of which cusps in energy are obtained.

In figure 3 we compare AEq(V) = Eo(V) - Ew(V) with AEY(v) = EX(Vv) -
Ew(Vv) for filling values less than 1/5. We recall that the relevant range for
which expansion (2.40) has been obtained is v < 1/3.

AE (W)

AEL(v)

o o o o o o

0.05 0.1 0.15 0.2
Fig.3

From this figure we can observe that there is a full range of values of
v for which Ey turns out to be smaller than the Laughlin energy. It is
therefore reasonable to believe that for v almost equal to 1/9 a phase
transition occurs and the 2DEG passes from a liquid to a crystalline phase.
Moreover we notice that both the functions go to zero for v — 0. This
reflects the fact that the limit for small densities of both our and Laughlin
models is a classical WC.

It is worthwhile to insist on the fact that the Wigner energy is a lower
bound for a 2DEG system. This point has been discussed in [22] and in [13].
Here we only remind the same argument. Let ¥y be the N particle wave
function corresponding to the Wigner crystal constructed with single
particle &-function orbitals centered in the triangular Wigner lattice and
arranged in a single Slater determinant. Roughly speaking Wy is an
eigenstate of any local potential (¥ does not belong to L?(R?® R?
Q.venrene R?). If V is our potential, V = V¢ + Vp, that is the sum of the Coulomb
electron interaction plus the background effect, then we have the following
‘eigenvalue equation: V Wy = EyW¥w, Ew being the energy corresponding to
the triangular Wigner lattice described by Wy. Actually, Wy is the ground
state of V so that the inequality <V, V¥> 2 Ey holds for any normalized

42



function W. So, if P is the operator that projects in the LLL, for any ¢ we
can write

<0l PVPI) >= <POI VIP)>2 Eyw

This implies that Ey is a lower bound for the ground state energy of
PVP.

Going back to figure 3 we want to stress that the critical value we
obtain essentially coincides with the one given by Levesque et al. in [21],
that is with vo =1/9. However there is still a certain difference with the
experimental data reported in [9] where VvV, is obtained to be essentially
1/5. We will return on this point in Chapter 4, where some attempts will be
made to approach this value.

We end this Chapter showing in figure 4 below the differences
between AE(v) and AECPW(v) as obtained from (2.36) for the range of

values of v for which both expansions make sense.

0.1 AEQ(V)
’ AECDW(V)
0.08+¢
0.067
.04+
0.02¢%

0.05 0.1 0.15 0.2 0.25 0.3
Fig. 4

As we see the two functions look very much the same in this range of
v. In particular they are almost identical for v less than 0.15, so that it is
clear why our conclusions about the critical value of the filling coincide
with the results discussed in [21] for a CDW state. The difference for v >
0.15 are due to the fact that the function ECPW(v) gives only an
approximation of the true value for v =1/3 and v =1/5 as we have already
noticed. To be explicit, one can see that ESPW(v=1/3) is slightly minor than
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the value explicitly computed. Moreover, at the same filling, our
approximated energy Eo(V) is slightly higher ( ~ 0.003 in our unities) than
the true value given in (2.30), since we have obtained Eo(V) neglecting the
exchange term that for this value of v has a certain relevance being
different from zero. However, in trying to obtain the same critical value of
the filling given in [9], Vo=1/5, we do not need to add the exchange
contribution in the expression of Eg(v). In fact we have shown that it is of
the order 10°* or less for the relevant range of v. Therefore it does not
modify much the form of Ey(Vv) for v<1/3.
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CHAPTER 3: LOCALIZATION AND ORTHOGONALITY

In this Chapter we will give some relevant results about the
localizability of a wave function for a 2DEG starting from general
considerations. The main tool we will use is the kq-representation,
introduced first by Zak, see for instance reference [23], which is discussed
in some details in Appendix 1. Using this quantum mechanical
representation the orthogonality condition for functions of the first Landau
level describing a v = 1 2DEG is easily expressed and the general form of
the solution is found. The related (x,y) wave function is obtained in [24] for
a particular choice of the above solution, and an asymptotic decay of the
1/x  kind is explicitly obtained. This behaviour is not due to the particular
choice of the solution. We will show that it is a necessary consequence of
the nature of the physical problem. Finally we extend some of the previous
considerations to fillings different from one.

In the first part of this Chapter we restrict to a square two-
dimensional lattice. In this way we maintain a simple notation that would
be lost for different shapes of the crystal. However the triangular lattice
will be briefly discussed at the end of the Chapter and we will show that no
significant difference arises.

3.1: kg-Representation and Magnetic Translations

Here we want to diagonalize simultaneously the two operators T(ai)
and T(ap) introduced in (1.5) in order to define a magnetic kq-
representation. We will refer to Appendix 1 for notations and for the main
ideas.

We recall that in Chapter 1 we have defined for our model two
translation operators T; commuting with the Hamiltonian H, = _H_2/2 by the:

T(aj) = exp{ i aj} j=1,2 3.1)
where II and Il. in our unities are:

Ix = px - y/2 Iy = py +x2 (3.2)
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ITcx = px + /2 ey = py - x/2 3.3)

The only non-zero commutation relations between the operators II
are:

[HY’HX] =[ch’ncy] =1i
from where it follows that
[ HO ’ T(gj) ] = O j=172 (3'4)

Moreover we recall that the operators T(aj) commute if the following
condition is satisfied:

(a1 A a2); =21 (3.5)

In order to make explicit the characteristic of the operators IT to be
conjugate operators we define two couples of such operators:

(QP) = (ITex , Icy) (3.6)

(Q#,P#) = (Iy , I1x) ~ (3.7)
They satisfy canonical commutation relations

[Q.P]=[Q", P¥]=i (3.8)

while all the other commutators are zero.
In these new variables we can rewrite

Ho =5 (P#2 + Q#%) (3.9)

T1= exp(iQap) Tr= exp(iPaz) (3.10)

where the square nature of the lattice we are considering has been
explicitated in the expressions defining the operators Tj.
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Being H, the Hamiltonian of a one-dimensional harmonic oscillator we
know its ground state, which is the one describing the LLL. We choose to
describe the complete wave function of the model in the P-P# coordinate.
Of course every other choice of variables, like, for instance, Q and Q#, would
be equivalent to this one so that no particular physical and practical
difference arises. Due to the independence of Hy from the variables Q# and
P# we can factor out the ground state in the form:

¥ (P,P#) = < PP#| ¥, > = f,(P¥#) g(P) (3.11)
where fo(P#) is the ground state of the Hamiltonian in (3.9)

1 .p#2)p
fo(PH) = —77 &7/

and g(P) can be any function of P, unless one introduces some extra
constraints like, for instance, the orthogonality of the translated wave
functions. This point will be widely discussed in Section 3.2, where we will
show, following Zak, how the orthogonality request can almost fix the
function g(P).

Since we are interested in the asymptotic behaviour of ¥, in the
space of the coordinates we have to introduce the transformation rule
between the P-P#-representation and the r-representation. This formula
has been discussed in references [24] and [27] and it has the following form

i(xy/2+xP*+yP+PPH)

¥oxy) = 21_n fdeP# e ¥ o(P,PH#) (3.12)

It is useful to stress that this explicit form strongly relies in the
geometrical nature of the two-dimensional lattice. This point is reflected
essentially in the definition of the canonical operators Q,P,Q#,P#, see (3.6)
and (3.7). In fact Q and P are, in general, defined by the scalar product Il.-
aj and therefore their definition turns out to be very different for different
shapes of the lattice, that is for different vectors of the basis aj. This
implies that the relation between ¥ o(P,P#) and Wo(x,y) is lattice-dependent.
Such a dependence does not exist for the variables Q# and P# so that the
form of H, is independent on the shape of the lattice. We will turn back on
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this point at the end of the Chapter where the definition of the conjugate
operators Q and P for a triangular lattice is explicitly given and where it is
shown that all the main statements below still hold for the triangular
crystal.

Until now we have essentially made only a change of variables. Now
we turn to kq-representation giving the form of the common set of
eigenfunctions of the translation operators. We have, see Appendix 1,

fiq(P) = < Pl kq> = \/ fg D 5(P-q-na) e-ikna (3.13)

n=-c0

and its Fourier transform

fiq(Q) =< QI kq> = \/ ;— eikd Z 8(k-Q+na) eldn? (3.14)

Nn=-~00

It is useful to recall that for a square lattice the rationality condition
(1.11) reads

a? =21 (3.15)

(from where it follows that the over all constants in fiq(P) and f'xq(Q)
coincide, since a=27/a)

Let us now show the link between the PP# and the kq-representation.
Using the completeness of the states lkq>, see [28], and equations (3.13)
and (3.11) above we can write

a

g(P) = J dk [dq fiq(P) C(k,q)
0

0

where we have defined C(k,q) = < kql Wo>. Expliciting the form of fxq(P) we
finally deduce
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e &

1 .

g(P) = ‘\j 2 jdk C(k,P-na) e’lkna, P-nae [0,a]
0

teps but for the use of (3.14) instead

Following essentially the same S
nsform of g(P) as

) we obtain the Fourier tra

of the (3.13
__1__-3
g(Q = \/ L | dq c(Qna.a) eldQ,  Qmac(0.a]
0

n each of the two formulas above, P — P+na

By changing variables 1
and Q — Q+na, W€ obtain:

—a

g(P+na) = ‘\/'1; jdk C(k,P) g ikna Pe [na,(n+1)al (3.16)
0

(3.17)

—_—a
g'(Q+na) = \/ L j dq Cc(Q,q) eiQQ eiqna, Qe [na,(n+1)a]

a
0

) can be interpreted as the n-th Fourier coefficient
k,p) for any fixed P. Analogously

We see that g(P+na
C(Q,q)equ interpreted

of the function of the k-variable C(
g'(Q+na) is the n-th Fourier coefficient of the function
as a function of the variable q, for any fixed Q.

We want to close this Section with 2 remark: in reference (23] Zak
gives the following quasi-periodical boundary conditions for 2 generic

function C(k,q) = < kq! ¥o> in the kq—representaﬁon:

C(k+21t/a,q) = C(k,q)

C(k,q+a) = explike) Ck,a)
these do mnot hold true in general. The
3.11) must be a function of L%*(R) an

e formula below ant
g th

n our opinion
Pl Wo> in (
e in . This implies, §€
f index is allowed in the formula definin

ing from its r-Tepres

see also Appendix 1. 1
reason is that g(P) = <
therefore it needs not to b
no change O
he state Fo start

Appendix 1, that
entation:

kq-expression of t
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1 S ikna
Clk,q) = N Z‘Fo(q-na) el

n=-oo

Therefore the second condition above is not valid in general and the
boundary conditions assumed by Zak et al. only define a dense set in L2(R).

2: rth nalization

Let C(k,q) be a generic function of the variables k and q. In reference
[29] it has been shown that the operators T that define the representation
become simple multiplication operators when applied to any function of k
and q. Therefore the translated wave function is

Cmn(k,q) = exp{i(agm + akn)} C(k,q) (3.18)
Orthogonality of the wave functions implies that two such functions at

different sites have zero scalar product. Therefore for m and n not both
equal to zero we require that:

[ dkdqCma(k,)C*(k,q) = [dkdgexp{i(agm+akn)} IC(k,q)I2 =0 (3.19)

where the integrations are extended from 0 to 2mw/a=a in both variables.
From (3.19) one deduces, through Fourier transform properties, that
lC(k,q)l2 must be a constant in k and q, so that the function C(k,q) is a
phase:

Clk,q) = A e 7D (3.20)
T being a real function.

With the same Fourier-transform techniques it is easy to prove that
the set J ={Cmn(k,q), V m,n integers} is complete in Lz([O,a]®[O,a]). This

means that any function of this space orthogonal to all the Cpg is
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necessarily equal to zero almost everywhere (a.e.). The proof is
straightforward: if a function w(k,q) is orthogonal to all the Cmn(k,q) for any
n and m, then w*(k,q)C(k,q) must be zero a.e.. Moreover, being C(k,q) a
phase, and therefore always different from zero, then w(k,q) = 0 a.e.. This
proves the completeness of the set.

The orthogonality condition and the completeness of the set will be

briefly analyzed in the case of filling different from 1 in Section 3.4, where
the above results will be slightly modified.

3,3: Localization for v =1

Here we collect all the informations obtained above and we prove a
general theorem on the decay properties of the wave functions of the LLL
of a 2DEG for filling equal to one.

First we compute the gaussian integration in P# in (3.12) using the
explicit form of fo(P#). We get

i(xy/2)
-(x+P)2/2 iyP
Yol(x,y) Z—W fdP e g(P) e (3.21)

Let us now fix the variable y=yo. Forgetting about the inessential
constants and neglecting the over all phases we find the following
behaviour for the function ¥ o(x,y0):

-p2 i P-
Woltye) = | P 6T g(pox) elYo(P X

and, if we fix x=x, and we use some easy properties of the convolutions we
find

-z2/2 ixo(z-y)
Folxoy) = fdz e g'(y-z) e of
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g' being the Fourier transform of the function g.

Since the convolution of a function F with a gaussian does not
modifies the asymptotic behaviour of F we s€€ from the above formulas
that the x behaviour of ¥o is dictated by g while the ¥y behaviour of ¥o is
governed by g Explicitly we have:

Yo(x,¥0) = g(-x ) Yo(x0:y) = gy) (3.22)

These relations, together with formulas (3.16) and (3.17), show the
connection between C(k,q) and g, for large values of x and y.

In order to study the decay of ¥, we will use some properties of the
Fourier transforms. In reference [25] it is proven the following theorem:

- if a function f(x), together with its first n-1 derivatives is continuous and
differentiable between 0 and 27/a inclusive, and the n-th derivative is
differentiable over the same interval except possibly a finite number of
points X=Xn where it may have bounded discontinuities, then the
coefficients of its Fourier expansion approach zero at least as fast as S
as k—oo.

From this theorem and from the study of the Fourier coefficients of a
discontinuous step, Se€ again reference [25], it is straightforward to prove
the following

Theorem

- If f(x) is a function defined in the interval (0,21/a) where it has at least
one discontinuity, then the coefficients of its Fourier expansion approach
zero as fast as k! as k—oo.

proof
The proof is based on the possibility of writing any function with a

single discontinuity as the sum of a number of functions with a certain
regularity plus a step function. In figure 5 we see this feature explicitly in
an easy example where we show that V x € [a,b] it 1S possible to write

f(x) = f1(x) + f2(x) + s(x)
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Here fij(x) and fz(x) have a discontinuity in x=Xo, and s(x) is a step
function with A = y3-yg. Finally we have defined &= -(y3-y2).

£(x) £,(x) s(x) £()
Y3 = + +
A —

: a o

Y, - Y, _/ :
Yol = Yol —

a Xo b a Xs b a X b 8]a b

Fig.5

The asymptotic behaviour of the Fourier coefficients of fj(x) and
fa(x) is governed from the previous theorem, so that they go both at least
as k-1. For what concerns the behaviour of the coefficients of the step
function s(x) this can be shown to be exactly of the k-! form, so that the
theorem is proven.

The next step consists in proving that or C(k,q) or ¥ (k,q) =C(k,q) elkd
must have at least one discontinuity respectively in k and in q in their
respective domains. If this is true then, being g(P+na) and g'(Q+na) the
Fourier coefficients of these functions, see (3.16) and (3.17), then g or g', or
both, must decrease as n°! due to the above theorem. Therefore, from
(3.22) above, we derive that ¥ o(x,yo) or ¥ o(Xo,y) have the predicted
asymptotic behaviour. The theorem can be enunciated as follows:

Theorem

- It is impossible to have simultaneously C(k,q) continuous in ke [0,27/a]
for any q fixed in (0,27/a) and Y (k,q) continuous in qe [0,2m/a] for any k
fixed in (0,2%/a).

roof:

Let us suppose, ab absurdo, that both continuities above are allowed.
Then, since e¥9 is continuous in (0,27 /a)x(0,2w/a) and 7% (k,q) is q-
continuous by hypothesis, it follows that C(k,q) = ¥4 y(k,q) is also
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continuous for any gqe (0,27/a) (beside being continuous for any
ke [0,21/a]). The values of C(k,q) in q=0 and g=a are naturally defined using
the usual limiting procedure

Ck,0) = limg g+ Ck,q)

Ck,a) = limq,a- C(k,q)

which preserves the continuity in q of the function also on the boundary.
We conclude that the function C(k,a) is obtained from C(k,0) via a
continuous deformation of it and therefore both functions belong to the
same homotopy class.
On the other hand, continuity in q of the function % (k,q) implies that

qu,a- X(k,Q) = hmq,o-l- X(kvq)
or, expliciting the form of ¥,
C(k,a) @ = C(k,0)

Due to the fact that IC(k,q)l = 1 for any k and q inside the interval
[0,21/a]x[0,27t/a] (orthogonality condition), the above equality proves that
C(k,0) and C(k,a) have different winding numbers. Therefore they cannot
belong to the same homotopy class.

This ends the proof.

Let us now choose C(k,q) to be discontinuous in k. From the first
theorem we conclude that V P fixed the function g(P+na) is not in [ since it
goes like 1/n.

The same conclusion can be obtained using some easy considerations
on the inverse Fourier transform of formula (3.16):

ChP) = 2, g(P+na) elknd
n

where an irrelevant constant has been neglected. If g(P+na) e {' then the
above series is uniformly convergent so that, V P fixed, C(k,P) is continuous
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in k, which is in contrast with the hypothesis. Therefore the function g

cannot be in 14 )

The proof given here is different from the one proposed in [28]
where, making use of the quasi-periodic boundary conditions, it is proven
that any continuous function C(k,q) must have a zero in the kg-cell. Since
orthogonality for filling one forces C(k,q) to be a phase, so that it is always
non zero, they deduce that it must be necessarely discontinuous. No
rigorous result concerning the asymptotic behaviour of the wave functions
is given in [28].

3.4: Filling different from 1

The content of this section is essentially in the expression of the
orthogonality condition (3.20) for a filling different from 1. We will discuss
first the case of v=1/2 and then we state the condition for the more
relevant filling v=1/3.

In order to discuss a square 2DEG with filling one half we can imagine
to built up a lattice with a free lattice site between any two electrons. In
this way the relevant set of functions, in the kq-representation, it is no
longer the set J introduced before but it is only a subset of this, 7 '=
{exp{i(2inka+imqa)} C(k,q), ¥V m,n integers}. Let us now define two regions
in the kq-unit cell D: D1={ke [0,a/2], qe [0,a]}, D2 = {k e [a/2,a], qe [0,a]}, so
that D = Dy + Dy. For any C(k,q) it is always possible to put

Ctk,q) = CV%k,q) + CA(k,q)
with CW(k,q) such that supp{CP(k,q)} = Dj, i=1,2.

We require that the functions of 7 ' are still mutually orthogonal in

the unit cell, D. We therefore require that

1= fdkdq gtinkatimaa | nq 220 v mpn
D
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This equation does not allow us to deduce that C(k,q) is a phase since
€ inka+imqa is not a Fourier basis of the unit cell, condition that is satisfied

by the set {emka“mqa}. It is convenient to divide the above integral I into

two pieces:

I= _fdkdq e2inka+imad o )12 4 _fdkdq g2inkatimad ok q))2
Dy Dy

In the second term above we change integration variable: k — k'=k -
a/2 so that the integration in k' is extended from 0 to a/2. Therefore we
can rewrite I in the form

I= Jdkdquinka+imanC(k’q)‘z + Jdk.quZink'a+imanZinnIc(k._}_alz’q)lz
Dy Dy

(we remind that a/2 = T/a) or

dkdq CZinka+i 44 lC(k, )Iz + IC(k+a/2, )12 =0
q q
Dy

Since ezmkaﬂmqa is a Fourier basis in D7, we can conclude that C(k,q)

must satisfy the following orthogonality condition:
IC(k,g? + IC(k+a/2,q)1> = 1 (3.23)

(1 has been chosen for simplicity. Actually every constant in k and q can be
used instead of the unity) which, of course, admits also solutions that are
not simple phases.

For what concerns the completeness of the set J'in Hy =1 it is

immediate to understand that this fails. In fact it is very easy to built up
non zero functions that are orthogonal to all the functions of 7'

Analogously to (3.23) for v=1/2 and to (3.20) for v=1 we get the

following orthogonality condition for v=1/3 using the same techniques as
before:

56



IC(k,)I? + IC(k+mt/3a,q)1* + IC(k+27/3a,q)1% = 1

which shows again that solutions different from a simple phase are
allowed, even for such a filling.

We conclude that the orthogonality condition for the kqg-wave
functions is filling dependent. Of course different solutions, which are no
longer a phase, can give different localizations than the one obtained in the
previous Section for a filling one 2DEG. This follows from the fact that the
main theorem of the previous Section in general does not hold anymore.

3.5: Triangular lattice

As already anticipated the main difference among lattices with
different shapes consists in the different definitions of the variables Q,P,Q¥
and P#. In Section 3.1 we have defined, for a square lattice

(QP) = (px + y/2, py - x/2) (Q*,P#) = (py + /2, Px - y/2)

Now we use the definitions of Section 1.3:

(Q%,P#) = (py + x/2, px - y/2) (3.24)
(QP) = (px + /2, p/N3 + 23 + py - x/2) | (3.25)
In [27] it is discussed in which way to construct the analogous of

formula (3.12) for any linear canonical transformation. For such a change of
variables we can write the following transformation rule:

i/2[xy-y2/ 3]

fdP# eixP#-iP#y/\/;-iP#z/Z‘/;_

\PO(X,Y) = 27C
. . P#
. [gp PP ¥ o (P,PH) (3.26)
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Using the explicit form (3.11) of ¥ o(P,P#) we can perform the p#
gaussian integration. As it happens for the square crystal, to obtain the
asymptotic behaviour of ¥ ,(x,y) we get integrals that are essentially
convolutions of g(P) or of its Fourier transform with gaussian functions.
Therefore the conclusions are totally identical to the ones that led to
formula (3.22), namely, we still have:

Yo(x,y0) = g(-x) Yo(xo,y) = g(¥)

even for this lattice shape.

Of course, being all the other results of Section 3.3 lattice
independent, no difference arises in the final conclusions and therefore, for
equal values of the filling, the asymptotic behaviour of the electron wave
function is the same of the one obtained for the square lattice.
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CHAPTER 4: IMPROVED HARTEE-FOCK

In Chapter 2 a complete, rigorous, treatment of the WC through a
perturbative Hartee-Fock procedure has been carried out. The results
however cannot explain fully all the experimental data in [9] where a
critical value of the filling, Vo=1/5, has been obtained. To get this value
from a theoretical point of view it is natural to introduce some
modifications on the trial ground state wave function since this is the main
ingredient to build up the crystal phase of the 2DEG. A first indication of a
critical filling near to 1/5 was already obtained in [30] where the absence
of FQHE in high-mobility GaAs samples was interpreted as a Wigner
crystallization. In [31] a modification of the wave function originally
proposed in [7] was introduced through correlations between the electrons.
This modified wave function allowed the authors to find a Vo = 1/7. Here
we want to use another approach. We still use a single Slater determinant
but we change the single electron wave function. No complete energetic
computation is performed but many ideas are discussed together with
some numerical results that, in our opinion, give an exact idea of the
effective modification in the ground state energy. In a second Section we
will introduce another trial function looking promising for giving a real
improvement of the energy Eo, on which some considerations will be
discussed. Both these proposals are essentially dictated by physical
arguments more than from mathematical reasons.

4.1: Polarization of the wave functions

The wave function ¥, (x,y) which has been used in Chapters 1 and 2
to build up the Slater determinant has a spherical symmetry: it is invariant
under any spatial rotations. When the electrons are considered in a
triangular lattice it is, however, too optimistic to think that no modification
is induced in the form of a single wave function as a consequence of the
presence of the other electrons. On the contrary it is natural to expect that
any electron slightly modifies the wave function of any other particle
breaking in this way the original invariance for generic rotations of Yo.0-
What one could expect is that the true single-particle wave function still
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maintains a certain invariance but only for rotations of multiples of 60°. In
figure 6 below we show, not in the true proportions, how we expect that
the original spherical symmetry can be modified by the mutual electron
interaction.

Fig.6

Of course, in order to describe such wave functions, we need to
modify W0, keeping in mind that we do not want to go out of the LLL. In
Chapter 1, formula (1.4), we have introduced a basis of such a Landau
level, which we rewrite in the more convenient form

Om(z) = 2w m!) V2 2@ exp[-1z/2/4] 4.1)

with z = x + iy, [22].

We define a new wave function £o(z) as a linear combination of all the
functions ®p,. Then we impose to £o(z) to be invariant for rotations of 60°.
In this way we will find some conditions on the coefficients defining Eo. We
define:
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§o(z) = 2, dn®@n(z) (4.2)

n=0

that is normalized if we assume that
> 1dgl2 =1 (4.3)
n=0

Rotations of 60° imply that
1 . =
z = z'=5(1—1\/3)z

so that the difference between the functions ®(z') in the rotated variable
and ®n(z) follows only from the presence of the z™ factor. We have

<I>m<z'>={ 1;(1 i3 ) }mcbm(z)

Using this relation the invariance condition of the function £q(z), &o(z")
= §o(z), is expressed in a very simple way:

defbm(z){l ; {12—(1 -iV3 )}m} =0

m=0

Being the ®(z) linearly independent functions we deduce that all the
coefficients must be equal to zero. Since [(l—i\/—3-)/2]rrl =1 for m =0,6,12,..,
while it is different from 1 for any other m, we conclude that only the
coefficients dgp, n integer, can be different from zero. The generic wave
function &y(z) belonging to the LLL and invariant for rotations of 60° has,

therefore, the following expression:

Eo(z) = 2 den® 6n(z) 4.4)

n=0
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where the coefficients dgn satisfy the normality condition deduced from
(4.3).

All throughout this Section we will restrict the above summation only
to the first two contributions:

Eo(z) = do Po(2) + ds DP6(2) (4.5)
ldol? + Idgl® =1 (4.6)
As for the standard procedure, we use the translation operators Tj to

built up the various wave functions localized in the different lattice points.
We define

&n,m(z) = Ti" T2™ &o(2) 4.7)
which can be written, using the r-coordinate, as

Enm(@) = (D @2 (Yam* - Xnm¥) £o(r- Ra,m) (4.8)

where Rpn,m has been defined in (1.15).

An interesting feature of these wave functions is that their overlap is
absolutely equal to the one of the Wp ;m functions. Explicitly, we have:

' -Rn2/4
C'nm = ( Eoo, &n,m) = (DA% e B4 = ey (4.9)
In finding this formula a series of gaussian integrations have been

performed. We have also used condition (4.6) and the following integral
given in [26]

where I' is the Gamma function.

A set of orthonormal states of the LLL can be constructed in exactly
the same way as in Chapter 2. Due to equation (4.9) we can write
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1 3 (Siﬂ)
Qi=& -5 X Cnitn+tyg E 2 Cnos Cs Eisn (4.10)
0

s#0
n

We now observe the following points:

- ® 1 (z) describes a function that has a mean value of r larger for larger m,
see [22]. This suggests that, if we choose as a trial ground state the function
® 6(z) (or a small perturbation of this), and we perform an energy
computation, the result we get would be, in principle, much bigger than the
one found in Chapter 2, due to a minor distance among the electrons in the
sample. As a matter of fact this computation can be done since it fits in our
general approach. We have done it and we have found a result that
confirms the above guess;

- the previous point suggests therefore that dg must be small compared to
do. Therefore the passage from the function ®y(z) to the combination £q(z)
would give a perturbation of the original result. We will estimate that this
change in energy is of the same order of the non-orthogonality
contributions 8E4+3Es introduced in Chapter 2. Moreover, since the changes
in 8E4g+0Es due to the polarization effects are essentially perturbations of
the second order, we neglect such contributions in the computation of Ejy.

In order to analyze the energetic behaviour of £,(z) and of the related
Slater determinant, we have compared 2 Eq(1,0) with the analogous

contribution X E'q(i,0) obtained by substituting £5(z) to Wo(z) in formula
(2.17). We define:

19i(11)1? 19(r2)I?
lr1- 12l

E'a(i,j) = fdzm d2ry (4.11)

cn=0

so that we have
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1£i(21)1? 180 (x2)I1*
lr1- 2l

E'4(i,0) = szm d?rs (4.12)

The change in energy due to the exchange contribution is some order
of magnitude less that the one given by the direct term. Therefore it will be
neglected in our estimate.

The explicit computation is sketched in Appendix 4. Of course we
must use expressions (4.5) and (4.8) in formula (4.12). In this way we get
nine contributions that can all be conducted to a single integral:

_ szm d’ry -a(n-R2)%2 o-Blu-Ri)*2
~ ) o -l

which has been exactly computed with analogous techniques as the ones
used in Appendix 2.

However in Appendix 4 a further difficulty of this computation will
be explicitated, namely the need of computing high derivatives of the
modified Bessel function I,. This will force us to use an asymptotic
expression for the integral I, analogous to the one obtained for the matrix
element Vijjk1. Of course in order to have meaningful informations about the
energetic improvement we must compare the result we get with the one
obtained in the "standard" approach in the same approximation, that is
using the same expansion for I,. We believe that, in spite of all the
approximations we are forced to introduce, the conclusions we get have a
real interest since they allow to obtain conclusive informations about the
effective improvement given by the approach here proposed.

We compare the following quantities for a v=1/3 lattice:

1
Ep=1 2 [Ed(i,O) : éﬂ (4.13)

=0

with the modified one
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E' =% Z [E'd(i,O) T}%ﬁ] (4.14)

iz 0

which in Appendix 4 is proven to be of the form

1 E 1 1
- 1 2 R *d ______}

=0
111 ) 1 w21 2 1 311 2511
S o (A1IH% (1312 415
* 356 ol ldel (IRiI” TRy } (*+15)

Here we have defined (2n+1)!!= 1-3-5-----(2n-1)-(2n+1) and n1= Xj +iY;
is the complex form of the lattice vector Rj.

From the above formula we see that if dg is zero then E'p reduces to
Ep when expressed in the same approximation, that is

1 1
E'p(dg=0) = = ——
p( 6 ) 2 Z IRiIB
=0

while if do is zero (and therefore, due to condition (4.6), Idgl=1) then

7 1
E' = = -
p(do=0) = 3 2 RiP

i 0

which is 7 times the standard result. This first observation proves our
original claim about the perturbative 1dle of ®g(z) in the definition of the
new function £,(z).

The main point consists now in trying to find the absolute minimum
of E'p as a function of the complex quantities do and dg. We have assumed
for simplicity real values for dg since it is sufficient, see (4.15), to have a
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single complex coefficient. We have found the, hopefully, absolute
minimum of E'p for:

do = 0.9998 exp(im) - dg = Idgl = 1 - Idol? (4.16)
in correspondence of which we found the following value of E'p
E'p =0.0541 (4.17)

which must be compared with the corresponding value of Ep, that is Ep=
0.0542.

We see that the difference between the two is exactly of the same
order as the non-orthogonality contribution 3Egq, that is very small and not
so significant to make one believes that £o(z) is the correct wave function
for the FQHE. Moreover from (4.15) it is easy to verify that the dependence
on Vv is still analytical: no cusp in the energy appears.

Therefore we conclude this Section observing that a polarization
mechanism, although being natural and physically unavoidable, is too weak
to significantly lower the energy of the 2DEG.

4.2: Better localization of the wave function

We consider in this Section a filling one third 2DEG. The main idea for
constructing a new trial function is essentially to go out from the relevant
Hilbert space Hy=153 (but not from the LLL). The reason is the following: in a
system with N electrons and N vectors basis only one antisymmetric wave
function can be constructed; this implies that we do not really change the
complete wave function if we build up A, with the functions ¥y or with
any linear combinations of them. This explains why our results are not
significantly different from the ones given by Maki & Zotos, [7]. Any
numerical difference between our approaches is due not to real
inequivalence between the two methods but only to the different

approximations considered. We therefore need to go out from the Hilbert
space Hy=1/3 generated by the functions ¥ (or Qp) localized around the

various lattice sites, for trying to improve significantly the Hartee-Fock
approximation.
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It is at this level that the sublattice approach introduced in Section
2.1 assumes a certain relevance: in figure 7 the lattice sites occupied for a Vv
= 1/3 2DEG minimal lattice are marked.
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We see that each occupied site is encircled by 6 free sites. We can
think to paste to each of these sites an electron wave function, even if such
function does not belong to #y=1/3. The physical idea is that a new wave
function can be constructed using these extra-functions as a sort of screen
for the electron placed in the centre of the circle:

f.s.
Eo(® =N [\P o(D) + Z Oﬁn\yn(UJ (4.18)
n

where f.s. stands for 'first shell. We mean that the summation must be
extended only to the first shell of the minimal lattice encircling the site
(0,0). N is the normalization constant that is, obviously, a function of the
complex coefficients op.

An easy symmetry consideration shows that lay!l must be independent
of the related site of the first shell. An estimate of the arguments of ap can
be found requiring that the function &,(r) satisfies the following "screening
condition”: we require that in all the sites of the first shell around the
origin the value of &,(r) is almost zero. This suggests that the overlap
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between two "screened" functions of #Hy=1;3 would be minor than the
standard c, due to a better localization of the electron wave functions.
In order to study the possible values of the coefficients an we put

on = o &' ®n (4.19)

o being equal to layl.
From the condition

Eo(r) = 0 V r of the first shell (4.20)

we obtain a system of six equations, which gives an approximate value of
the coefficients op. Solving the system we get

ag = -0.2418 Vo o (4.21)

This rtesult is, of course, only orientative; however it gives a feeling
that not only the modulus but also the phases are independent of the
lattice index n.

Actually, it is easy to prove that the natural guess of a better
localization of the function E,(r) in (4.18) with respect to the one of Yo(n) is
essentially wrong. This is due to a general property of the gaussian
functions that is easily proved ucing the magnetic variables defined in (3.6)
and (3.7). It is easier to use the square lattice to simplify the computation.
If we write 2 in terms of Q, P, Q#, P# and we compute its mean value in a
generic state 1M (r) of the LLL it is easy to prove that the minimum of < 12> is
obtained if M (r) = Wo(r). Since, moreover, the mean value of r is zero for any
function M(r) with the same simmetry of the lattice we conclude that ¥ o(r)
has a better localization than any of the Eo(r).

The above result does not imply that the ground state energy cannot
be lowered; it only says that the quadrupole contribution in the expansion
of the Coulomb potential cannot be improved using the linear combination
in (4.8). A negative contribution to the ground state energy can follow
however from the other multipoles in the expansion. This point must
however still be checked.

From a practical point of view the computation of the ground state
energy is, in principle, immediate. This follows from the fact that all the
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integrals entering the expression of E, are of the well known form Vijkl
given in Appendix 2, so that their exact computations can be performed
with no particular difficulty. Nevertheless the asymptotic behaviours need
much cure since it is often not so easy to compute the signs of the various
Re[y_cz], already for a single matrix element. This is the reason why further
studies are required in order to simplify as much as possible the energy
computation. This is the scope of our further investigations.
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CHAPTER 5; 2DEG AND SPIN MODELS

Here we analyze the link between the 2DEG in the LLL introduced in
Chapter 2 and the Ising model with a long range interaction that has been
discussed in reference [32]. We will first recall some of the results given in
[32] and then we show how a Coulomb interaction Hamiltonian with no
kinetic term can be written, in a first approximation, as the Hamiltonian of
this Ising model.

Before starting with this analysis we want to recall that spin systems
have played a very crucial rdle in recent years for obtaining many
physical results since they often give a simplified form of a much more
complex system. The first model that comes in mind is, obviously, the BCS
model of superconductivity in the Anderson's language, see, for instance,
reference [33]. More, even High Tc-Superconductivity is believed to be
described by spin models like the Hubbard one. This, in the limit of large U
and for half-filling, turns out to be approximated by an Heisemberg anti-
ferromagnetic model with interaction restricted only to the nearest sites.

For what concerns the FQHE some spin models have been proposed,
for instance, by Kivelson et al. in [17], even if no definitive sentence has
been made up to now in our knowledge.

5.1: Long Range Interaction Ising Model

In [32] we have discussed in which sense the infinite volume limit of
an Ising model described by the following finite volume Hamiltonian

Hy =- 2, Jij (631 - 6")(o3i - 6") (5.1)
ije Vv

can be defined. Here o' has the physical meaning of an uniform
background and it is assumed to be lo'l ¢ 1. We stress that ¢' must not be
confused with the positive background we added to the electron system for
obtaining a finite energy. In (5.1) we have assumed that the potential is
symmetric, Jij = Jji, and off diagonal, Jj; = 0.
As long as V is keepen finite, Hy belongs to the C*-algebra of the spin
matrices 4y, and therefore to the norm closure 4 of UyA4y. Since Hy is in Ay,
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the Hamiltonian (5.1) defines a one parameter group of automorphisms of
.ﬂv by:

A — dyi(A) = exp(iHyt) A exp(-iHyt) (5.2)

The automorphism vyt is called the algebraic dynamics of the model.

For lattice models with short range interactions the limit for V — oo of
O vi(A) exists in the norm topology of A4 and defines a group of
automorphisms of 4 (see reference [34]). Norm convergence does not hold,
however, for the dynamic defined by Hamiltonian (5.1), if the potential Jij
does not satisfy special regularity conditions. In particular in [35] the norm
limit of ayt is shown to exist for summable Jij. In [32] we have considered
a potential that does not satisfy this condition so that the norm limit of
Cvt(A) does not exist in general.

The natural way for studying the thermodynamical limit consists in
making reference to a family of 'relevant' states ¥, [34] and [36], defining a
strong topology in which the infinite volume limits exist. Of course the
choice of the family of states is essentially dictated from the form of the
potential: roughly speaking we can say that the more irregular the
potential is the more regular need to be the states, or, better, that a slow
decay of the potential at large distances must be balanced by a high
regularity of the states in the same limit.

In particular if the family ¥ we consider is made up only of product
states that definitively point in the z-direction then strong convergence of
the algebraic dynamics automatically follows. We only need to have the
usual  generic li-jl-m behaviour, with m>0, of the potential Jij. We have
proven in [32] that o' is actually a variable at infinity, that is, roughly
speaking, the strong limit of the ergodic mean of the G3 spin operator, and
that in the GNS-representations defined by the states in ¥ it can assume

only the values #1. In particular we have o' = +1 if the product state
definitively points in the up direction, while o' = -1 if it points in the down
direction.

The situation is under control even for n-pointing product states. Let
(n,0,9) be the spherical coordinates of the vector n. We have proven that, if

Jij is such that

2 Jif < oo
i
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then again the thermodynamical limit of the finite volume dynamics oyt
exists in the ultrastrong topology defined by a family F of product states
n. Again the values of o' are fixed by the

phase we are considering, that is, by the state used for the GNS-
construction. In particular we have o' = cos(9).

We can conclude that for any form of the potential it is possible to
find a family of relevant states defining a topology in which we can define
ot = Tg-limys w Oyt. This turns out to be an automorphisms of the von
Neumann algebra obtained by closing the C*-algebra A in the weak

topology defined by F.

pointing in this generic direction

572: Ising model and 2DEG

We will show here that the Ising model of the previous Section is a
good candidate to describe, at a first order and for small fillings, a 2DEG in
the LLL.

The starting point is the Coulomb interaction between the electrons in
a strong magnetic field B. We assume B strong enough toO force all the
electrons in the LLL, so that the kinetic term, being a constant, can be
neglected. We have, for an N-electrons system,

N

q __1_2___1_._
N =2 Ludlti-Ljl

i#]
that, in the second quantization language, becomes:

1 N
Hy =5 S Wikl ai* aj*alak (5.3)
ikl

where we have defined the following matrix elements

d2x d? «
Wijkl = J")‘(""% Q*(x) Q5 (@) Qk®) Qi (5.4)

Ix- ¥
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which satisfy the condition Wijki = Wijilk.

We stress that the functions {2 we are using are the orthonormalized
ones, the ones we have introduced in Section 2.3, formula (2.13). They
satisfy up to corrections of the 1077 order to the orthogonality condition
(2.14), which now we write simply

( Qo, Qn) = 8n,o (5-5)

This condition implies that the aj operators in (5.3) are canonical, so
that they satisfy

{ ai, aj*} = &y (5.6)

and all the other anticommutators are zero.

This condition, again valid up to negligible corrections, would not be
correct if we had used the not orthogonal functions W in (1.14) since the
corrections, that can be neglected here, would be of the 107! order.

To obtain the terms that give the biggest contributions to the
approximate Hamiltonian H' we want to define, we write in an extended
form the multiple summation in (5.3). Therefore we consider the
contributions of the sum with all the four indexes equal, three equal and
one different, two equal and two different and so on.

Using the nihilpotence of the fermion operators a; and the symmetry
of the ‘Wijkl matrix elements for exchange of indexes given above we can
rewrite the Hamiltonian (5.3) in the form:

N N
1
Hy =5 2'[Wijij ai*aj*ajai + Wijji ai*aj*ajaj] + 2, [Wijik ai*aj*akaj +
ij ijk
1 N
+ Wiiki ai*aj*aiak] t o Z'Wijkl aj*aj*ajag (5.7
ijkl

where the primes in the summations indicate that all the indexes involved
are different.
Let us now introduce the typical single mode number operator nj:

nj = aj*a; (5.8)
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We can rewrite the above Hamiltonian as

Hy = 5 2 [ Wijij - Wijji] ninj + %[ka lekl] nj aj* ag +
ij 1]

N
1

5 2 Wikt ai*aj*ajag (5.9)
ijkl

The hope is that we can split this Hamiltonian in a piece that would
contain almost all the physics of the problem and in a small perturbation of
it. We need, therefore, to estimate the matrix elements appearing in (5.9).
We already know, from the estimates of Chapter 2, that the non
orthogonality contributions are numerically meaningless. Therefore, to
study the behaviour of the matrix elements in (5.9), we can use the
approximation in which all the coefficients Cn are zero. This implies, due to

definition (2.13), that Qj = ¥;. In this approximation we have

d2
Wijkl —J ,XX v) ¥ ¥t e i)

which, together with (2.23), says that Wijk1 = Vikjl.

We use the asymptotic behaviour obtained in Appendix 2 in order to
study the relative weight of the various contributions of (5.9) and the
estimate (A2.8) given in the same Appendix, which shows that, but for an
inessential constant,

1
- —(A1+A
Vijkil < € 4( 1+A2)

where A1 = (Ri - Rj)%/2 and Az = Rg - R))%/2. We have:

- ——L—- 1
1) Wijij = Viijj = IRi-Rjl { b LR_i-Rj‘2 }

o2
i) Wigil = IVijiyl ¢ ¢ RIBDTS
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(Rk-Rj)%/8

1ii) Wijikl = [Vigjil ¢ €

. -I(Ri-RIO*+(Ri-R)?1/8

1v) IWijkil = IVikjil ¢ € = =
[Ri-R)*+RI-R)*V/8

V) Wijkil = Vigjl ¢ e B A

From the above estimates it seems reasonable to define an
unperturbed Hamiltonian Hj

N
N
H, =52Wijij nj nj (5.10)
ij
and a perturbation 3H

N N
1 &, :
SH = - 5 2 'Wigii ninj+ 2 [Wijiic -Wigki] ni a* ax +

ij ijk
1 N
+o _%;Wijkl aj*aj*ajag (5.11)
1]

Of course this approximation is certainly wrong for filling near to 1
for the same reason for which it does not make sense to use the
perturbative approach introduced in Chapter 2 for such a filling: the sum of
the six terms coming from a single shell in 8H can be of the same order of
Ho. On the contrary, the smaller the filling is, the smaller are the
coefficients appearing in &H, so that the separation of H into two terms
seems to be meaningful. Of course we still don't know if Hy contains the
physics of the FQHE. This is absolutely a non trivial question that is still to
be answered.

Let us now make a step forward, introducing spin variables in the
game. Let ®(ny,.....,nN) be the eigenfunction of a 2DEG with N electrons
satisfying the following equation:

nj ®(ny,..,04,...,n5) = ®(ny,.....,nN) ifnj =1
(5.12)
n; ®(ny,..,nj,...,n5) =0 ifnj=0
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From the above equation it is immediate to verify that the operator
defined as -1+2n; behaves like a G3' operator when it acts on the @ wave
functions. In turns these can be interpreted as up or down spinors. We put:

®(njy,..,ni=1,...,nN) = ¢

®(ny,..,ni=0,...,nN) = Bi (5.13)

-14+2n; = G5!

With the above position and with the definition

Uij = Vijij = Ui (5.14)

we can rewrite Hy in the form
1 N . 1 N .
Ho =3 X' Ujjosiosl + 72! Ujoy’ (5.15)
1 1

On the other hand the Ising Hamiltonian (5.1) can be rewritten,
neglecting an irrelevant c-number, as:

Hy =- »,Jij o3l o3 +20' ), Jjj o3l (5.16)
ije Vv ijev

which has the same form of Hg if

U..
¢'=-1 and j=- g (5.17)

Since for such value of o' no condition needs to be imposed on the
potential to ensure the existence of the thermodynamical limit of the
algebraic dynamics, see the previous Section and reference [32], we can
conclude with the following claim:

-the Hamiltonian of a finite volume 2DEG with no kinetic term can be
approximated, for small fillings, with an Ising Hamiltonian with a long
range interaction. The algebraic dynamics given by this Hamiltonian exists
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in any representation defined by product states that are local modification
of a down state.

The next step would consist in trying to extract from this model some
physical information to verify the real link between the Ising model and
the FQHE or, at least, the 2DEG in the WC phase. We stress again that this is
not a trivial step since it is by no means sure that all the relevant physics is
contained in what we have called the "unperturbed Hamiltonian".
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APPENDIX 1; kq-REPRESENTATION

In reference [23] J. Zak introduces two operators T(a) and T(b) that
look very similar to the translations operators Tj we have defined in
Chapter 2. They are

T(a) = exp(ipa) T(b) = exp(ixb) (Al1.1)
satisfying the following condition:

ab =21 (A12)

and where x and p are conjugate operators, [x,pl=i.

These are, due to condition (Al.2), two commuting operators. More, in
reference [37] it is shown that they form a complete set of commuting
operators. This means that any operator that commutes with both of them
is necessarily a function of T(a) and T(b). Moreover for T(a) and T(b) we
can find common eigenstates, Wiq. They satisfy the following eigenvalue
equations:

T(@)¥ rq= €% Piq TP g = 6P Piq (A1.3)

where k and q, called the quasimomentum and the quasicoordinate, vary
respectively between O and 27m/a and O and 2m/b. The explicit form of
such eigenfunctions is given in the x-representation for instance in [37]:

Yigx) =<x | Wyq> = ‘\/% 2 d(x-q-na) gikna (Al.4)

Nn=-00

while the p-representation of the same eigenfunction, that is the Fourier
transform of (Al.4), < p | Wxq>, is

e-ikq b _
V@) =S 2 8(p-k-nb) o710 (AL5)
n=-00
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In finding this result it has been used an interesting property of the
d-function that is worthwhile to remember, that is:

<0

Z exp{i 2“‘?— nx}:c §8(x - nc)

=-00
N=-00 n

Being eigenfunctions of a complete set of commuting operators, the
functions Wyy form a complete system of functions, satisfying the following
orthogonality and closure relations, [28]:

J¥i* )P g dx = 3 8(k-k-mb) T 8(g-q-na) (AL.6)

J¥iq* () q(x") dkdq = 5(x - x) (AL.7)

The labels k and q define the functions W kq(x) completely (up to a
phase factor), meaning that the coordinates k and q define a quantum-
mechanical representation, called the kq-representation.

It is possible, but useless for our needs, to extend all the above
‘formulas to more dimensions. Such a generalization can be found, for
instance, in [23].

The main feature of the kq-representation is in the simultaneous use
of partial information about both the coordinate and the momentum. By
measuring k and q one can tell where in the unit cell of kg-space the
values of the operators are but not in which of the cells they are. This is a
consequence of the meaning of quasicoordinate and quasimomentum: k and
k + 2m/a define the same eigenvalue of the operator T(a) and the same
holds true for q and q + 2n/b for what concerns T(b). (In more dimensions
we can add to the vectors k and g any vector of the reciprocal lattice). The
knowledge of k and q leads only to partial information of the momentum
and the coordinate and there is no violation of the uncertainty principle.
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We give now the link between the 1- and the kq- representations.
Given a state ¢ of the Hilbert space this can be represented, for instance, as
d(x)= < xlp > or as b(kq)= < kql¢ >. We have:

o(kq) = | dx <kqlx><xlp> = :jlf Z(b(q-na) gikna (A1.8)

n=-00

while the inverse transform is
o= | dkdq <xlkq><kql¢> = [ dkdq ¥iq(x)0 (k) (A1.9)

The last point we want to mention here is the following: Boon and Zak
in [28] give for ¢(kq) the following boundary conditions:

o(k+27/a,q) = ¢(ka) (A1.10)
d(k,q+a) = exp(ika) ¢(kq) (A1.11)

which in our opinion are not totally correct. In fact condition (Al.11) is
derived from (Al1.8) by a change of index in the summation, change which
is allowed only for ¢ in £ Since our Hilbert space is of course an L*(R)
space that is not contained in‘[1 . then not all the relevant wave functions

need to satisfy in general the above boundary conditions. What it is true is
that such boundary conditions define a dense set in L%(R), not the whole

space.
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APPENDIX 2: MATRIX ELEMENTS

In this appendix we will describe with a certain accuracy the way in
which the matrix elements Vijjk1 occurring in the computation of the
ground state energy can be exactly computed and their asymptotic
expansions in the limit of small filling Vv.

2,1: Ex m i

The matrix element we want to compute, which is the general one
appearing in Appendix 3 as a contribution to the energy, has the form
already anticipated in Chapter 2, formula (2.23):

d?ry d%r,
Vijk1 = f LS () ¥i(r1) Pk (r2) Yir2) (A2.1)

where the wave functions, not mutually orthogonal, are

-1 jljz 1i/2(Y;x - X'y) —(I‘- R ')2/4
W »Y) = € J J e ‘-
_](X y) o

With the following positions

Vijkl can be written in the form

Vigd = (-Dyitiztiniatkikatl GET e (A1+A2)/4 1
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where
oo (104%T2 | (12-02)%2 -(01-01)%/2 i2(B1yx1-A1xy1+A2yx2-A2xy2)
ijkl = e e e

Iy -I2l

Let us now introduce the Fourier transform of the Coulomb potential

in two dimensions. We have:

1 1 Jc_i_zg o -ik(r1-12)

Ir; -1 21 | Ikl

We define some new constants depending on the indexes:

91= (A1y, - A1x); ©2= (Azy, - A2x) ®, = eXP{'zl‘ (1@ + QLZ'Qz)}

and we change integration variables:
P ___]‘_(r ), P __]‘_(r )
| 2 I1-41) 2= \2 I2- 42

Putting the above form of the Coulomb potential in Ijjx1 and
separating the variables in the integrals we get

- 2
V20 01-0B1 B1”

2 el -
d“k -ik-(g1-g92) fd e

2
ljki = =@ jT_k_Te Pie

-1 2
. s . -P
) fdzE_z V20 8240 By B2

The gaussian integrations can be easily performed since they do not
present any difficulty. It is convenient to define more vectors in order to
obtain a simple form of the remaining two-dimensional integral on k. We

introduce
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1 .
Ro= g1-q2; Y =0;1-9; Ye= v -1 Rpo
so that, reassembling all the results, we get
Vi = (-1)itiztiniz+k kgl % o (A1+A2)/2 Hijg

Hijk1 being

2%
d2k k- k2 k o0 -k2
Hiji1 = “—Ik‘l‘e‘ue‘ = fde fdke Ve €O8Y o
= 0 0

The angular integral gives origin to a Bessel function. In fact the
integral definition of the modified Bessel function I,, see for example

reference [26], is

2n

21 Io(Z) = jde €
0

-Z c0sf

In the same reference is contained an integral that is relevant in

order to compute Hijk1:

-ox? o (B (B
Of dx e Iy(Bx) = \/ 4q SXP (80!) Iv/z(ga) (Re >0, Re v > -1)

Using the above integral it is possible conclude that

2
Vijkl = 91 \/%e‘(AHAz)/Z e¥e/8 1, (ve2/8) (A2.2)
where, we recall:

1 1
a1=75 Ri+Rj); =5 Rk +R1); Ro=gqi-q2
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A1=Rj-Ri; A=Ri-Rk; 1= (B1y,-A1x); Q2= (Azy, - A2x)
(A2.3)

v-iRg

B |

1 1
Ar=5 Ri-Rp)% Az=5 Ri-Ri)% v=@1-82 ¥e=

81 = (-Ditiztidavkika+lly exp{%‘ (91-©; + Qz'ﬂz)}

We observe that the above formula coincides with the results in [7]
for particular choices of indexes.

A2.2: Asvmptotic _expansion

Here we discuss the form of (A2.2) in the limit of electron filling going
to zero. We want to remind first that the filling v appears in the above
formula through the vectors Ry. In fact they contain the lattice constant a,
and a is, as a matter of fact, a v-depending function, see for example
formula (2.31). This implies that the limit of small Vv is equivalent to the
limit of large arguments v.2/8 of the Bessel function. We therefore use the
asymptotic expansion already introduced in Chapter 2. For Re[z] — o we
have:

I e? {1‘(1/2) 1 T'(3/2) 1 I'(5/2) }
o) = 5=\ T(1/2) ~ 2z T(-1/2) " 422 21 T(-3/2) ¥ =~

which becomes, expliciting the values of the Gamma functions, and
considering only the first two terms above,

eZ 1
0(2) = Refr1osm o { 1+ 3 } (A2.4)

This expansion is valid for large positive arguments of the real part of

z. If Re[z] < O then we take into account the parity property of Ip, that is
Io(z) = Io(- z). Therefore we can write
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ez 1
Io(z) = Re[z]_}_w"\/ﬁ { 1 - 3z } (A2.5)

The two formulas above can be used now to expand (A2.2). The result
is easily obtained:

- Re[vc?] >0
1 1
Vigg = 01 e AT A v { ——} (A2.6)
Ve
- Re[vc?]1 <0
1
Vi = 0 e 2(A1+A2)———1——{ 1 - —-—5} (A2.7)
2 Ye

~Ve

We see that there is a difference in the asymptotic behaviour
depending on the sign of Re[vc2]. This implies that, to correctly estimating
the orders of the various contributions coming out in our perturbation
approach we need to compute first Re[vc2] for any such contributions and
then use (A2.6) or (A2.7).

Let us now discuss a crucial point of the above expansion: equation
(A2.6) shows that a divergent behaviour of the matrix elements seems in
principle to be allowed for some value of the indexes. This can actually be
proven not to be the case. In fact studying the modulus of Vijk1 it is very
easy to obtain the following estimate:

1
- ~(A1+A
Vil < ¢ 4 (A1FA2) (A2.8)

Here all the irrelevant constants have been neglected, since they do
not modify the asymptotic behaviour, and Aj and Ay are defined in
(A2.3). This is a crucial result since it ensure that all the matrix
elements present in each term of the perturbative expansion, see the
explicit form (A3.5), can only improve the net order of a single term (that
is the power of its coefficient exp{-Rjo%/4}), or leave it unchanged.
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APPENDIX 3: ENERGY COMPUTATION

Here we will show in many details how to compute the correction 3E

in (2.21), starting with E(N)/N for N going to infinity. In fact we already
know the form of lim y—.. Ew(N)/N that has to be subtracted to lim N> o

E(N)/N to get 3E. We therefore concentrate our attention on the
computation of Ej in (2.22):

: 1 . .
Er= lim yosoo EQ)N =5 D { Ea(i,0)-Es(1,0) ) (A3.1)
i#0
where
d(la )_ 1 I2 lI..l’ I'_2| .
and
) Qi*(r) Qo™ (r2) Qo(r)) Qilr
Es(l,O) = J.dzll dzm 1 ( 1) 0 l(r__f? Ill( l) 1 _2) (A33)
Using the form of the orthonormal state £2j given in (2.13)
1 3
Qiz\Pi'EZCn Yisn ) ch-s Cs¥i+n (A3.4)
20 s# 0 (s# m)

and introducing the definition of the matrix elements Vijjkl, we can expand
Eq(i,0) and Eg(i,0) in terms of the coefficients Cn. We stress that in this
expansion we can neglect all the terms in which appear more than two
coefficients cq. In fact, due to the estimate at the end of Appendix 2, we are
sure that the Vijk1 cannot be of the order cn-k, k being a positive integer.
By their own nature the Vijjk1 terms can only improve or leave unchanged
the decay behaviour of the single terms. This implies that the
contributions we start considering are, in effect, more than the ones we
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should consider in a correct counting of the net orders. This point will be
analyzed in details for some of the contributions below, to clarify this
problem and to insert all these points in a well defined scheme. In
particular we will show how the terms of the net -order bigger than C1o? are
found and eliminated.

The direct and the exchange terms become respectively:

I#n
) 3
Edq(1,0) = Vijoo - E { Cnz 0 - ZZ Cn-1C 1} Re[Viion + Vii+nool +
=0

n

(A3.5)

1 1
+7 2 CnCl Re[Viiin + Vit i+nool + 5 2 €nCl Re[Viislon + Vii+Ino]
I# 0 nz0 l# 0 nz0

#n
) E 3
Es(i,0) = Vipoj - { Cnz 0 - ZZ Cn-1¢€C l} Re[Vioni + Vitnooil +
=0

n

(A3.6)

1 1
+7 2 CnCl Re[Vinli + Visnooist] + > 2. CnCl Re[Vinoisl + Vioni+i]
I# 0 n=0 l# 0 nz0

Some of these contributions are easy to compute. This is the case, for
instance, of Viigo and Viooi. Using (A2.2) and (A2.3) one immediately gets:

T 2
Viioo = '\/4_ C_R /8 IO(R_iZ/S)

T .2
Viooi = \/ 7 e R8I (RiY8)

whose expansion can be obtained using the relevant expansion between
(A2.6) and (A2.7). In order to decide which of the two formulas must be
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used we compute first Re[v.%] for the above matrix elements. For Vijoo we
obtain Re[vg?] = - R;%2 < 0. We use therefore (A2.7) and we find

1 1
Viioo = IR;! { 1 - |R_i|2 }

For what concerns Vjgoi we obtain Re[vc?] = R;% > 0 so that the correct
expansion is the one in (A2.6). We therefore get:

Confronting these two behaviours we see that the exchange term
contains in itself a damping exponential of the order Ci,, see (1.18). This
feature is an explicit example of what we discussed before, that is the
natural improvement of the net perturbative order given by the matrix
elements.

It is useful to consider almost all the details of the computation of a
more involved term, for example in (A3.5). We consider

l#n

3
Er—‘}; Z Cn-1 €1 Rel Viitnoo |
0

From (A2.3) we get:

I
g
I
R
g
1l
B |-
[
+
g
_I?
i
[
g
[\*]
H
o

1
q1= 5 Rn+

ve?=-Ri>-Ri'Rn -i(XiYn-Xa Yi)

from where we see that Re[vc?] has not a definite sign, at least if i belongs
to the first two shells. A deeper analysis is therefore required. From (A2.7)
we see that, if Re[vc?] ¢ 0, then Vijs+noo goes like exp(- R,2/4). Since this
exponential must be multiplied for Cp-1 C1, I#n and 120, we deduce that
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only n=0 contributes in our scheme at the desired order. If, on the contrary,
Re[lczl > 0, then (A2.6) provides the following behaviour: Vjjtnoo = exp{-
(Rp?%+ R+ Ri'Rp)/4}. In order to have a relevant contribution when
multiplied for cj-1 €], we need to have, as before, the éxponential equal to
one, so that R;%2+ R;2+ R;'Ry = 0. This equation must be satisfied together
with the hypothesis Re[vc?] > 0, that is Rj2 + Ri' Ry < 0. It is easy to see that
both conditions cannot be simultaneously solved, and therefore the only
relevant contribution is the one with n=0 and Re[vc?] < 0. We conclude that
in our approximation it results

3
Ei=5 2, ¢ Rel Viioo ]
4 0

and we have already computed Vijoo both in the exact and in the
asymptotic form.

The other terms in (A3.5) and (A3.6) are all computed in analogous
way: first one computes explicitly Re[vc?] for a given matrix element; then
one considers the asymptotic behaviour of the product of such elements
with the relative coefficients Cp. Only the terms of the summation up of the
order exp(- Ri0%/2), for the v = 1/3 lattice, are extracted from the various
contributions, and finally these are computed and the exact or expanded
results are given.

We give the final exact result Ej in (A3.1) without further comments:

T 1 2 3 2
Er=\g 2 {-z-e'-R— BB 1yR28) + 3 2 ca? RIS 1R 28) -
#

n# 0

(i# n) 2 1(# » 2

S catRel cRime 810(&n,02/8)}+z 2. cq e Ri-Ra)/81, (R, RA)8) -
n=0 =0
1 3R;:%/8 2 1 2 R;%/8 2

-5 e I,(Ri°/8) -4 Ci" € L(Ri“/8) (A3.7)

where we have defined the following complex quantity

Rinc? = -Ri*+Ri Ry +i(X{Yu-XnY) (A3.8)
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In view of a computer implementation we need to expand the Bessel
function for large values of the arguments. Therefore (A3.7) will be used
for computing the contributions coming from the first three 'shell’ of the
lattice around the origin while the other contributions must be computed
using formula (A3.9) below.

N ETERP [ S P
3 n 317

= Ril T RPIT4 2 [Ril TR

(i# n) 1 1 1 (i# n) 1 1
- 2 = 2 + -

2 o ['Bin;c* i lB_in;clS] fg e [IR_iz&nl I_R_i'_Rmp:l

1 ri2af L 1] 1L 41 1
S [IRI R, 13} " 4% Rl T RSP (A3.9)

We notice that the third contribution contains a square root of a
complex quantity Ripc. Such root needs to be defined. To do it we start
observing that, after subtracting the classical WC in (2.26), another
divergence can still appear when the summation over i is performed: the
second, the third and the fourth terms above are, in fact, one by one
divergent due to the presence of an 1/IRjl term. However if we consider the
sum of the three contributions it follows that, requiring the finiteness of
the result, we univocally fix the definition of IRjn,c!. To be explicit, the
above condition forces us to define

1
Re[ L Tin /2 cos(8in/2)

l_}lin;c'
where

Iin = Rincl = [Ri*Ri'Rny2+ (XiYn-XnYi)?] 12

{XnYi'XiYn}
Oin = arctgy——F—

Ri*RiRn
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It is useful to notice here the practical relevance of the (-1)®™ used in
the definition of the original wave function. It is possible to see, but it is
even a long and boring job, that, starting with a wave function without this
phase factor, such a cancellation of divergences up to the second order,
throughout being dictated by physical reasons, is not as much evident as it
is with our definition. This is the main reason why we have keepen on
using our definition.

We end this Appendix giving the asymptotic form of the correction SE
to the ground state energy as it is obtained from (A3.9), (2.21), (2.22) and
(2.26).

11 3 1 17 1 @D [ 1 1 }
oE = P 1 ol C + -
g‘; 2 R T4 E;)C“ [IBJI * 1&13} 4 Ea " Ri-Ral 7 IR;-RpP

(= n) ! ' 1
_rg(‘)cnz [\/Ecos(ein/Z)-l- \[1;3 cos(36in/2)] -

24 1 1 1 1 1
e'R.l /4 [— + -—-—-——-j] - Z‘Ciz [@ + ————} } (A3'10)
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APPENDIX 4; POLARIZATION CORRECTIONS

The starting point is the matrix elements in (4.12)

Ei(x1)1? 18o(r2)12
Ir1- 12l

E'4(i,0) = szm d?r, (A4.1)

where we rtecall that the functions Ej(r;) are defined in (4.5) and (4.7):
Eo(z) = do D@o(z) + d6 Pe(2) (Ad.2)
Ei(z) = (-2 e2(Yix - Xi¥) g (r- R)) (A4.3)

Substituting the explicit form of the functions &p in E'd we get 16
terms, some of which are related each other. We need therefore to compute
6 contributions, all containing integrals of gaussian functions multiplied
with a Coulomb factor. Being the original integrations absolutely convergent
we can use some 'trick' to obtain a common expression for all of these. We
write down only some of these integrals:

d%r; d’rp e-azzz/z e-B(Ll—Ri)Z/Z

g -2
I =limg g,y GO)“ap |7 "7,
7 46 2 2 2 2
o L, Ba’ d d11 d°r> -arp®/2 -B(mi-Ri)7/2
L =limyg oy 2R)° "7 6 J -2l © i

p’a’ dS df szg d’ry -ara?/2 o-B(ri-Ri)%/2

1 -2
Iz = hma’ﬁ_‘)l (275) (6')2 da6 dB6 Ir1- I2!

and so on. The general form at which all the integrals can be reconducted is
the following one:
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2 2
= (1140 -a(n-R2)%2 L -Blu-R)Y2 (Ad.2)
lr; -2l

whose computation follows exactly the same steps discussed in Appendix 2
for the 'standard’ matrix elements. The exact result is

5129312 of

_ - IR;-Ro/? B2
I= D) € 4(a+P) Io (4(a+B) IRi-R21) |

(A4.5)

One of the main difficulty that comes out from the above formula is
that we do not know how to compute high order derivatives of the I, Bessel
function, which we have to know since they enter the definitions of Iy, I3,
and so on. Consequently, it is convenient to consider the asymptotic
expansion of the above result, that is

__(em? 1 { 1 (oc+[3)}
I~ of IR;-Rol 1+ lE.i'RZ‘Z 208 (A4.6)

Using this formula it is now straightforward to find the result in
(4.15).
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