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Introduction

Astroparticle physics and cosmology are experiencing an impressive development.
The acquisition of more and more accurate observational data has recalled a great
interest on these subjects, that provide a unique source of hints about the physics
that lies far beyond the Standard Model. Parallely, the theoretical aspects of cos-
mology are also in rapid evolution along two main directions. The first one is related
to the rise of radically new paradigms in model building, that has opened a wide
range of new perspectives. The second is aimed at the achievement of a deeper and
more detailed understanding of the “orthodox” picture that we have of the Early
Universe.

This thesis is divided into two parts. In the first part, cosmological aspects of
brane models are discussed. This class of models, in which gravity can propagate in
a supplementary space while matter is bound to the usual three dimensional space,
has been recently proposed as a solution to the hierarchy problem. However, it has
been soon realized that new scenarios arise for cosmology in this framework. In
particular, possible modifications of the standard baryogenesis schemes and of the
cosmological evolution of the Universe will be discussed.

In the second part, a detailed analysis of fermion preheating will be carried
out. The stage between the inflationary and the radiation dominated epochs of the
early Universe is currently one of the most active areas of research in cosmology.
In particular, nonthermal production of matter has been proven to be a substantial
ingredient in the analysis of this stage. The phenomenologically most relevant effects
related to the production of gravitinos at preheating will be especially highlighted.
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Brane models






A large part of the theoretical activity of the last two decades has been moti-
vated by the attempt to explain the large hierarchy between the gravity and the
electroweak scale.

For a long time, together with technicolor, supersymmetry has been considered
by far the preferred candidate for the solution of the hierarchy problem [1]. However,
in the last few years, the scenario of large extra dimensions has recalled a wider and
wider attention in this respect.

The idea that our world could have more than three spatial dimensions dates
back to the twenties, when Kaluza [2] and Klein [3], trying to unify gravity and
electromagnetism, postulated the existence of one extra compact dimension. Extra
dimensions were revived more recently, when string theory (that has to be formulated
in 10 or 11 dimensions) started to be appreciated as the most serious candidate for
a consistent quantum theory of gravity. Until few years ago, however, the string
scale was supposed to lie close to the observed Planck mass. The solution to the
hierarchy problem was still left to low energy supersymmetry.

Developments in string theory also led, later on, to a qualitative change in the
way extra dimensions were conceived. Indeed, the idea of D(irichlet)-branes played
a key role in the success of models with large extra dimensions, that are also known
as brane models. A D-brane is a dynamical object on which the ends of an open
string have to be attached (for a review, see [4]). The existence of such objects
allows to construct theories in which different fields can be localized on different
manifolds of different dimensionality.’

This possibility has been exploited by Arkani-Hamed, Dimopoulos and Dvali in
ref. [6] to suggest that the Standard Model degrees of freedom are constrained to a
three-dimensional hyperplane (generically called brane), while gravity can propagate
in a higher dimensional compact space (for earlier proposals in this direction, see [7,
5, 8]). This n-dimensional extra space, of volume V,,, is usually called bulk. The
motivation for this setup is that, while the Standard Model interactions have been
probed down to scales of the order of TeV~!, the Newton law has been tested only
for distances larger than 1 mm. Therefore, while in this scenario the thickness of
the brane cannot exceed TeV~!, the compactification radius? ~ (V)" of the extra
dimensions can be as large as 1 mm. This situation allows to look at the hierarchy
problem from a completely different perspective. Indeed, the observed Planck mass
in this scenario will be given by

M2 = M>™V,.

Here M is the so called fundamental Planck mass, that is the one that appears in the
lagrangian of the full (4+n)-dimensional gravity. From the above relation it follows

!Field-theoretical mechanisms for localizing fields on topological defects were discussed in the
earlier literature [5], but they received comparatively much less attention.
2We assume isotropic compactification for simplicity.



that it is possible to observe a very large Planck mass even with a relatively low
value of M, provided V,, is large enough. In particular, the hierarchy problem could
seem to be solved by simply pushing M down to the electroweak scale M., ~TeV.
By setting Mp ~ 10 GeV, M ~ 1 TeV, one gets

(Vn)l/n ~ 10:—17-1-3»0/71, cm .

We see that n = 1 is phenomenologically unacceptable, since the compactification
radius in this case is of the order of the size of the Solar System. For n > 2, instead,
the deviation from four dimensional gravity occurs at distances below the current
experimental bound. The case n = 2 in particular raised considerable interest, since
the compactification radius (V3)*/? =~ 100 um is going to be probed experimentally
in the near future by means of short-distance tests of the Newton law.

However, we cannot say that the scenario described above truly solves the hi-
erarchy problem. Actually, it only allows a rephrasing of the problem in different
terms. The magnitude of the compactification volume V;, should indeed arise from
the dynamics of the system. In units of the only dimensionful scale in the lagrangian
of the model, i.e. in units of M, the compactification radius reads

MP 2/n
(V)™ M =~ (7\7) ~ 10%/7 > 1.

As a consequence, in the context of large extra dimensions the hierarchy problem is
simply restated in geometrical terms: how can the dynamics of the system generate
a compactification radius so large with respect to the fundamental lenght of the
theory?

One year after the proposal of [6], Randall and Sundrum [9] analyzed a model
that could lead to the generation of a large hierarchy starting from only one small
extra dimension. In the Randall-Sundrum model the metric is exponentially warped
as we move along the extra dimension. This configuration is achieved by assuming a
negative cosmological constant in the bulk. The latter turns out to be a slice of Anti-
de Sitter space, bounded by two branes, one with positive and one with negative
tension. The tensions are suitably tuned in order to make the whole system stable.
The zero mode of the graviton turns out to be trapped at the position of the positive
tension brane, while the Standard Model fields are assumed to be localized on the
negative tension brane. Therefore, the zero mode of the graviton has a very small
overlap with our brane, thus leading to the observed weakness of gravity. This model
provides a solution to the hierarchy problem in the sense that, due to the exponential
warp factor, the compactification radius has to be only one order of magnitude larger
than the fundamental lenght in order to generate the hierarchy Mp/M,, =~ 10'°.
Unfortunately, at variance with the scenario of ref. [6], it is difficult to embed the
Randall-Sundrum model in a string-theoretical context.



The Randall-Sundrum setup lent itself to a further development [10]. Moving
the negative tension brane to the infinity, we obtain a system consisting of a positive
tension brane (on which the Standard Models is supposed to be constrained) and of
an extra space of infinite extension. The zero mode of the graviton turns out to be
localized on the brane, while its excited modes decouple at low energies. Although
this system has almost nothing to say about the hierarchy problem, it raised a -
considerable interest. First of all, it shows that we could even live with an infinite
extra dimension without knowing it. Moreover, it provides the background for the
construction of models with several interesting cosmological consequences.

Turning to the phenomenological implications, the distinctive features of these
scenarios are obviously related to gravity. For what concerns acceletor tests, ex-
perimental bounds come from the possible emission of Kaluza-Klein gravitons in
high energy collisions or in virtual graviton exchange (see for instance [11]). A
lower bound on M ranging from several hundreds of GeVs to few TeVs is in general
imposed by experiments.

The best testing grounds for the phenomenology of large extra dimension sce-
narios are however cosmology and astrophysics. Astrophysics provides the most
restrictive bound on the fundamental Planck mass. In the case of n = 2 extra
dimensions, this quantity has to be larger than about 31TeV [12], if we do not
want the emission of bulk gravitons to conflict with the bound on energy loss by
SN1987A.3

Cosmology finds its range of possibilities much restricted as we move to the
context of models with low scale gravity. For instance, phenomena like baryogenesis
or inflation are usually assumed to take place at very high energy scales. In this
new setting, only the range of energies below TeV is available to account for such
phenomena. Moreover, in the scenario a la Arkani—-Hamed-Dimopoulos-Dvali, even
stronger bounds on the reheating temperature have to be imposed not to overproduce
Kaluza-Klein modes of the graviton. As a consequence, in the case of two large
extra dimensions it is difficult even to accommodate nucleosynthesis in the early
cosmology of the model. On the other hand, brane models stimulated an extremely
large activity in the cosmological aspects connected to General Relativity. Indeed,
as first pointed out in [13], the cosmological evolution of brane models requires a
detailed analysis, and in general it is not even expected that the late cosmology
of these models is characterized by the usual Friedmann law H? o p. Later on,
it was shown [14, 15] that, at least in models where the compact extra space is
stabilized by some suitable mechanism, standard late expansion law is expected.
Nevertheless, models with noncompact extra dimensions generally show some stage

3This limit implies that the radius of the extra dimensions, in case of isotropic compactification,
has to be smaller than about 0.7 um. As a by-product, the above bound will make extremely
difficult the observation of any deviation from four-dimensional gravity in future short-distance
tests of the Newton law.



of nonstandard cosmology [16, 17, 18, 19, 20, 21] and might provide some hint about
the cosmological constant problem (see for instance [22, 23, 24, 25, 26, 27]). Finally,
the evolution of cosmological perturbations in such scenarios is a very interesting
matter not still completely settled [28, 29, 30, 31].

In the first chapter we will shortly review the reasons that led to the birth and.
the great success of brane models, focusing in particular on the motivations related
to the hierarchy problem. We will outline the features of the two main scenarios that
have been envisaged in this context, namely the Arkani-Hamed-Dimopoulos-Dvali
proposal with large flat extra dimensions and the warped compactification of the
Randall-Sundrum model. In the subsequent chapter we will be mainly interested
in the cosmological aspects of brane models related to particle physics. In this
chapter we will describe in some detail the problems that arise when dealing with
cosmological issues in models with large extra dimensions, before moving to the
description of an intrinsically higher dimensional scenario of baryogenesis. Finally, in
chapter 3, we will consider how the cosmological aspects of General Relativity have to
be reconsidered in the brane scenario. In particular, we will discuss the cosmological
evolution of the compact Randall-Sundrum model, showing the relevance of the
stabilization of the radius in this context and also showing how the model could
potentially lead to nonstandard early cosmology.



Chapter 1
Brane models

There is a strong hierarchy between the three fundamental mass scales that appear
in the description we currently have of our Universe. The Planck mass Mp that
governs gravitational interactions is about 16 orders of magnitude larger than the
electroweak scale M,,, that sets the scale of the masses of the known particles.
The latter is about 15 orders of magnitude larger than the scale of the cosmological
constant (provided it is actually nonvanishing, as observations seem to indicate),
whose nature is still unknown.

In the last twenty years a relevant part of the theoretical activity has been
devoted to the attempt to explain the first of these hierarchies, that is the smallness
of the ratio M,,/Mp =~ 107*%. The problem can be divided into two parts. The
first question is why in Nature there should be such small numbers. In different
words, the problem is how to get numbers as small as 107¢ starting from numbers
of the order of one, that should be preferred in a unified picture of the world. The
second problem is more technical, the question being how this large hierarchy can
be protected against radiative corrections. Indeed, the Standard Model presents a
physical cut-off Mp. This fact, together with the presence of quadratic divergences
in the one-loop contribution to the Higgs mass, should push the latter to the Planck
scale, thus destabilizing the fine-tuning of M., /Mp. Hence, this fine-tuning should
be re-established after each order of radiative corrections.

Two scenarios have been contemplated for a long time as possible solutions to the
hierarchy problem. In technicolor models (for a recent review, see [32]) the Higgs
scalar is actually an effective degree of freedom describing a fermion condensate.
Fermion condensation is a nonperturbative phenomenon and the scale of conden-
sation is exponentially suppressed with respect to the fundamental scale. This is
supposed to generate the hierarchy, that is kept stable under radiative corrections
by chirality. Supersymmetry (for a review, see for instance [33]), for several reasons,
has been considered the most favoured candidate to the solution of the hierarchy
problem. In this context every particle with integer spin has a superpartner of half-

7



8 Chapter 1. Brane models

integer spin. This leads to cancellations in the radiative corrections, that in this
case do not spoil the fine-tuning of M,,,/Mp. Its origin in the bare lagrangian is
however left to some nonperturbative phenomenon, such as gaugino condensation.

In this chapter we will review the properties of brane models. We will focus
in particular on the Arkani-Hamed-Dimopoulos-Dvali (in section 1.1) and (in sec-
tion 1.2) on the compact Randall-Sundrum scenarios. These are indeed the two
most relevant frameworks for the solution of the hierarchy problem by means of the
extra dimensions. The phenomenological properties of these two scenarios will also
be quickly outlined in this chapter, while their cosmology, that is the main topic
of this part of the present work, will be discussed in more detail in the next two
chapters.

1.1 Large extra dimensions

In ref. [6] Arkani-Hamed, Dimopoulos and Dvali proposed a drastic change in the
attitude towards the hierarchy problem. The smallness of the ratio Mgw /Mp is
an apparent effect of our ignorance about the gravitational interactions at short
distances. In this new framework the value M of the Planck mass that appears in
the fundamental lagrangian is not much larger than the electroweak scale. Hence,
the hierarchy problem is simply solved by nullification. The observed weakness of
gravity arises from the topology of the spacetime. The latter is assumed to be of the
kind R* x M,,, M, being a n-dimensional compact manifold (the bulk) of volume V;,
spanned by the coordinates vy, ..., Y. The internal manifold is usually assumed to
be a n-torus with equal radii, but different alternatives have been discussed in the
literature, see for instance [34, 35]. The Einstein-Hilbert action of the full theory
reads

2-+n
S (4+n) _ M2 /d4m d"y /_g(4+n R&+) (1.1)

In the low energy regime (that is, for distances larger than the compactification
radius ~ (V,)") we obtain the four dimensional effective action after integration
over the y coordinates

2—I—n
S = MV [ g g RO (1.2)

-J

that leads to the identification M2 = M?*™V,,, where Mp is the observed (reduced)
Planck mass. As a consequence, the weakness of gravity is therefore due to the
largeness of the extra space, where the flux lines of the gravitational field are diluted.

While gravity has not been probed at distances smaller than a millimeter (and

therefore (V,,)"/" as large as 1 mm is phenomenologically admissible), the Standard



1.1 Large extra dimensions 9

Model gauge forces have been accurately measured at weak scale distances. Con-
sequently, the Standard Models particles cannot propagate freely in the bulk but
have to be localized on a three-dimensional hypersurface (called brane) whose thick-
ness cannot exceed M_!. Both field-theoretical [5, 36, 6] and string-theoretical [4]
mechanisms for the localization of spin 0, 1/2 and 1 fields on submanifold exist.

This setup implies new dramatic phenomenological consequences. The most
striking is probably that next accelerator experiments would directly probe quantum
gravity (string?) effects. Moreover, in some cases we could even hope to find new
physics at high energies by means of measurements of gravity. Indeed, at distances
of the order of the compactification scale the effective lagrangian (1.2) is no longer a
valid approximation, and one should use the full lagrangian (1.1) for the description
of gravity. In particular, the Newton force should assume its (3 + n)-dimensional
form F o r~2+7) For n = 2 extra dimensions and M = 1TeV, the transition to
5-dimensional gravity occurs at distances of the order of 100 um, that are going to
be probed in the future experiments on the gravitational force at short distances.

Of course, also this scenario presents some drawbacks. Since the cutoff of the
theory is so close to the electroweak scale, new difficulties arise when one wants
to suppress rare processes that are however expected to be mediated by degrees
of freedom close to the fundamental scale of gravity. Therefore, the suppression of
flavor changing neutral currents [11], or of processes mediating fast proton decay [37,
38, 39|, become challenging tasks in this context. Gauge coupling unification is
generically lost as well, although some intrinsically higher dimensional way out from-
this problem has been envisaged [40].

Several bounds to the parameters of this class of models have been set by acceler-
ator experiments. These bounds can arise either from corrections to the electroweak
precision observables or from emission of gravitons in collisions. In fact, the spacing
of the Kaluza-Klein masses of the graviton is given by the inverse of the compacti-
fication radius. Hence, Kaluza-Klein gravitons turn out to be very light, and have
large multiplicity: even if the individual gravitons are weakly coupled to brane
matter, they will be produced in a sizable amount as the energy of the scattering
approaches M. Therefore a lower bound on M of the order of few TeVs is imposed
by accelerator experiments, see for instance [11].

The most stringent bounds, in the case of n = 2 extra dimensions, come from
astrophysics. The requirement that the emission a light Kaluza-Klein modes of the
graviton does not provide a too efficient cooling channel for SN1987A leads to a
conservative lower bound of 31 TeV on the fundamental Planck mass in the case of
n = 2 and of 2.75TeV for n = 3 extra dimensions [12]. Other severe bounds come
from cosmology, as we will discuss in detail in the next chapter.

However, what is probably the least attractive point of models with large extra
dimensions lies precisely in the weakness of their motivation. As we have mentioned
at the beginning of the present section, the main reason for the introduction of



10 Chapter 1. Brane models

models with large extra dimensions was the solution to the hierarchy problem. It
is easy to see, however, that this framework does not lead to a true solution to the
hierarchy problem. Rather, the latter is reproposed in a new guise.

In the class models we are describing, the largeness of the observed Planck mass
is related to the largeness of the compactification volume V;,. When measured in
units of the (only) fundamental lenght scale M ! of the theory, the compactification
radius turns out to be approximately given by

1/n TeV 2/n
(__V’L)_—— ~ 1032/m (—;7) > 1. (1.3)

Naturalness considerations would require the above quantity to be of order of
unity. Indeed, in a full description of the system the volume of the internal space
should arise from the fundamental lagrangian of the theory. In particular, a sector
of the lagrangian should be responsible for the stabilization of the radius. The com-
pactification radius will “naturally” be of the order of magnitude of the parameters
of this sector, and this will reintroduce an hierarchy. Certainly, models with large
extra dimensions allow to reformulate the problem in new (geometrical) terms, and
one can take profit of this change in perspective to find new solutions [40]. Never-
theless, this point represents a good motivation for seeking for a more satisfactory
solution to the hierarchy problem in the brane context.

1.2 The Randall-Sundrum model

An alternative scheme was proposed by Randall and Sundrum [9], and is based on
so-called “warped compactification”. In this model, two branes are embedded into
an anti-De-Sitter five-dimensional space-time, and all the mass parameters of the
five-dimensional action are approximately of the same order of magnitude. How-
ever, for moderately large values of the compactification radius (of the order of the
10 times the fundamental scale), a strong hierarchy appears between the effective
gravitational scale and the mass scale of the degrees of freedom localized on one of
the branes.

The setup of the Randall-Sundrum model is provided by a system with one com-
pact extra dimension parametrized by a coordinate y € [—1/2, 1/2]. The orbifold
symmetry identifies points at coordinate y with points at coordinate —y, thus ef-
fectively leading to a system defined on the segment 0 < y < 1/2. Two branes are
placed at the extrema of the segment y = 0 and y = 1/2. Vacuum energies A, V;
and Vi, are included respectively in the bulk and on the two branes.
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The classical action describing the above system is given by

S = Spuk +So+ 512

1/2
Seutk = “/d4$/ dyv/—g® { (5)+A}

-1/2

S = / d%?\/%?’{z:i—m (i=0,1/2), (1.4)

®) is the induced

where L£; represent the matter lagrangians on the two branes, g;
metric at ¥ = ¢ and V; is the tension of the brane placed at y = 1.

It is possible to find a static solution to the Einstein equations for the above
system in the absence of matter on the branes (£; = 0). Such static solution can be
obtained only provided the following fine-tuning of the vacuum energies in the bulk

and on the branes is imposed
A
Vo= -Vipp=——=06mgM°*,, (1.5)
Mo

where my is a (for the moment) free parameter with the dimensions of a mass. The
solution preserves the four-dimensional Poincaré invariance, but leads to a nonfac-
torizable geometry along the extra dimension. Namely, the metric reads

ds? = e~mobolly  dotdz” — b2 dy? . (1.6)

The parameter by arises as an integration constant and is arbitrary for the mo-
ment. We only have to assume that by is somewhat larger than M !, in order to
have a field-theoretical description of the bulk. Note that the spacetime in between
the two three-branes is simply a slice of an AdSs geometry.

First of all, we have to identify the observed Planck mass of the four-dimensional
effective theory. To this aim, we perturb the static solution (1.6) looking for massless
modes of the graviton

ds? = e~me T(@) vl [N + B (z)] dz*dz” — T?(z) dy®. (1.7)

Here, l—zw represents tensor fluctuations about Minkowski space and is the physical
graviton of the four-dimensional effective theory. The compactification radius by will
be instead the expectation value of the modulus T (z). At the level of the present
description, the modulus T (z) is a massless mode of the system. However, as will
be discussed in chapter 3, it is crucial that the 7" modulus is stabilized at its vacuum
expectation value by with a sufficiently large mass.

The four-dimensional effective theory now follows by substituting Eq. (1.7) into
the original action. The part containing the curvature scalar now reads

/d4 /1/2 dy M® bge 2mobolvl \ /_5R (1.8)
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where R denotes the four-dimensional Ricci scalar made out of g, (%) = 7+ (z).
We can explicitly perform the y integral to obtain a purely four-dimensional action.
From this we derive

1/2 M3
M2 = M3, / P gyemzmoron Z M1y _ga (1.9)
~1/2 Mo
where we have defined
Qo=e™™ bo/2 (1.10)

This result tells us that Mp depends only weakly on by in the large mg by limit.
Without introducing an hierarchy between the parameters of the theory we will
assume M ~ mg ~ Mp. Although the exponential € in eq. (1.9) has very little
effect in determining the Planck scale, we will now see that it plays a crucial role in
the determination of the masses of the particles bounded to one of the two branes.

Let us consider the action of a massive scalar field ¢ of mass u, localized on the
brane placed at y = 1/2. Its action will be of the form

1 . z
51/2 D) d4-’1?\/ —g1/2 {59?/2 8/.L¢ au¢ - % ¢2} . (111)

Substituting Eq. (1.6) into this action yields

1 2
51/2 S /d4$ /_—g—e—Qmobo {_égl—ﬂuemobo au¢ay¢_%¢2} ) (112)

In order to get canonically normalized kinetic terms for the scalar field ¢, the
latter has to be redefined as

¢ — e N, (1.13)

After the above wave function renormalization, we obtain the effective four di-
mensional action of the scalar field as follows

1 2
Sefr D /d4:v V=g {5?“” 0 Oyp — e oo % ¢2} : (1.14)

We thus see that the observed mass of the field ¢ is given by e~™0%/2 ;. This
result is completely general: on the brane placed at y = 1/2, any mass parameter
m in the fundamental higher-dimensional theory will correspond to a physical mass

Mphys = € °° bo/2 (1.15)
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Figure 1.1: Schematic representation of the Randall-Sundrum static configuration.

when measured with the metric g,,, which is the metric that appears in the ef-
fective Einstein action. The origin of this rescaling resides in the fact that the
redefinition (1.13) is actually related to a conformal transformation of the metric at
the coordinate y = 1/2. Hence, all the mass scales, being related to operators that
are not conformally invariant, turn out to be rescaled according to eq. (1.15).

Now, if e=™0b0/2 ig of the order of 1076, this mechanism produces TeV physical
mass scales even if the fundamental mass parameters in the lagrangian are not far
from the Planck scale. Being this geometric factor an exponential, we can generate
the hierarchy M,,/Mp ~ 1071¢ without a large hierarchy in the fundamental mass
parameters mg ~ M ~ u >~ Mp, mgby =~ 70.

Notice that fields located the brane placed at y = 0 are not rescaled, as the
warp factor exp (—myg by |y|) evaluates to unity on the y = 0 brane. Therefore, if the
Randall-Sundrum model has to solve the hierarchy problem, the Standard Model
degrees of freedom have to be localized on the negative tension brane. The mass of
the fields that are localized on the positive tension brane is naturally of the order of
the observed Planck mass also from the point of view of the observer on the y = 1/2
brane, that interacts with them only gravitationally.

Regarding the Kaluza-Klein modes of the graviton, this setting gives rise to a
new phenomenology. Indeed, it can be shown [10] that the scale of the mass of the
first Kaluza-Klein graviton is of the order of 2y my ~TeV. On the other hand, its
coupling to matter on the y = 1/2 brane is suppressed only by the TeV scale. The
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behavior described above is completely different from the scenario of large extra
dimensions described in section 1.1, where the Kaluza-Klein mass splittings are
much smaller than the weak scale and the coupling of each Kaluza-Klein mode is
suppressed by the observed Planck mass.

Therefore, regarding accelerator signatures, the Randall-Sundrum model should
be characterized by the emission of single graviton resonances with weak-scale cou-
pling, whereas the Arkani~Hamed-Dimopoulos-Dvali scenario features the emission
of a large multiplicity of gravitationally coupled Kaluza-Klein gravitons.

Turning to astrophysical and cosmological constraints, the Randall-Sundrum
framework does not suffer from any of the stringent bounds of models with large ex-
tra dimensions (some of which will be discussed in the next chapter), that originate
from the smallness of the mass of the Kaluza-Klein gravitons.

Finally, we shortly notice how the system described in the previous section has a
remarkable behavior as one performs the limit by — co. In this regime the negative
tension brane is removed and we are left with a brane embedded in one noncompact
extra dimension. However, the Planck mass computed in eq. (1.9) is finite in the
limit by — oco. Actually, one can show [10] that the usual four dimensional Newton
law governs the gravitational interaction between two particles on the brane, once
their distance is larger than the AdS curvature radius mg " in the bulk. Indeed, the
potential generated by a particle of mass pg located on the brane is given by the
formula

mo  fo 1

V(T)—SWMF’_?: <1+mgr2) ' (1.16)
This noncompact Randall-Sundrum model (known as Randall-Sundrum /7 model),
having an infinite extra dimension, has a continuum of Kaluza-Klein modes of the
graviton from the four dimensional point of view. However, while the zero mode is
bound to the positive tension brane, the latter on the other hand repels the excited
modes of the graviton. This is due to the AdS geometry of the extra space. As
a consequence, all the modifications to the standard four dimensional gravity are
suppressed by powers of my, that is expected to be of the order of the Planck scale.
This model thus provides an existence proof of how it is possible to recover an
effective four dimensional standard gravity in a brane model with a noncompact
extra dimension. Finally, notice however that this scenario does not shed any light
on the issue of the hierarchy problem, being the Standard Model necessarily localized
on the positive tension brane.



Chapter 2

Fermion localization, proton
stability and baryogenesis

The early cosmology of models with low scale gravity is significantly different from
the standard, four dimensional one. Due to the small scale of the cutoff of the theory,
there is a narrow range of energies where phenomena such as inflation or baryogenesis
should have taken place. Moreover, in models where the extra dimensions are very
large, further strong bounds are imposed from the requirement that the light Kaluza-
Klein modes of the graviton are not overproduced in the early stages of the evolution
of the Universe. Therefore, the achievement of a phenomenologically acceptable
early cosmology is a nontrivial task in this context.

On the other hand, the presence itself of the extra dimensions gives the possibility
of radically new approaches to some aspects of cosmology. For instance, once the
volume of the extra dimension and the positions of the branes are regarded as
dynamical entities, alternative inflationary scenarios [41, 42, 43] can arise. A more
challenging obstacle is constituted by the generation of the observed cosmological
baryon asymmetry [39, 44, 45, 46].

This last problem is intimately related to the issue of proton stability, that is
another problematic aspect of models with low scale cutoff. In fact, in the presence
of a cutoff of the order of only few TeVs, baryon number violating operators up to
very high dimensions have to be forbidden. Some suggestions in this respect were
given in refs. [37, 38, 39]. In this chapter, we will focus on an interesting intrinsically
higher dimensional mechanism proposed by Arkani-Hamed and Schmaltz [47]. In
this work, a dynamical mechanism for the localization of fermions on the wall [5] is
adopted: leptons and quarks are however localized at two slightly displaced positions
in the extra space, and this naturally suppresses the interactions which “convert”
the latter in the former.

However, the observed baryon asymmetry requires baryon number (B) violating
interactions to have been effective in the first stages of the evolution of the Universe.

15
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Therefore, we will discuss how this last requirement can be satisfied in a theory
which adopts the idea of [47], to ensure proton stability now and baryon production
in the past. The idea is that thermal corrections, which are naturally relevant at
early times, may modify the localization of quarks and leptons so to weaken the
mechanism that suppresses the B violating interactions.

In the first section we will revise the cosmological bounds that hold in models
with large extra dimensions. Then in section 2.2 we will discuss the localization of
fermions on the brane and the way it can be relevant for achieving proton stability
without strong fine tuning of the parameters. In section 2.3 we will finally discuss
how thermal corrections could modify this picture affecting baryon number violating
interactions in the early history of the brane, and eventually leading to the generation
of a baryon asymmetry.

2.1 Cosmological bounds

One of the cornerstones of the Hot Big Bang model is Big Bang Nucleosynthesis,
the process of primordial synthesis of the light elements. Theoretical predictions of
the abundances of primordial elements are in good agreement with observation once
the standard picture for cosmology and for the physics of electroweak and strong
interactions is assumed. Big Bang Nucleosynthesis occurred when the temperature
of the Universe was of few MeVs. Therefore, every new scenario of gravity and of
the electroweak and strong interaction has to reproduce a “normal” Universe for
temperatures below this scale. In models with large extra dimensions, the Universe
is “normal” when the extra dimensions are essentially frozen and empty of energy
density (more subtle issues regarding the existence of a normal expansion law in the
late expansion of the Universe will however be discussed in chapter 3).

Following ref. [48], one can define a “normalcy temperature” T such that for
temperatures below T, the Universe is “normal”. The normalcy temperature can be
roughly identified with the reheating temperature after a period of inflation on the
brane, and after the stabilization of the radii.

Since the fundamental short distance scale of the theory is M ™!, we cannot have
a field-theoretical description of the system at temperatures larger than M. As we
will see in this section, however, phenomenological bounds can push 7, to values
much lower than M.

The peculiarity of cosmology with large extra dimensions is mainly related to the
emission of gravitons in the bulk. Since the mass of the Kaluza-Klein modes of the
graviton is set by the inverse of the compactification radius, they will be extremely
light. In the case of isotropic compactification the mass of the lightest Kaluza-Klein
modes ranges from about 1073 eV (for n = 2 extra dimensions) to about 10 MeV (in
the case n = 6). Therefore, they will be emitted with a very large multiplicity.
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The rate of gravitons emitted into the bulk can be estimated as follows. The
coupling of the graviton to matter on the brane is suppressed by an appropriate
power of the fundamental Planck mass 1/M ™+2)/2. Therefore, dimensional analysis
leads to the following estimate of the rate of production of (4 + n)-dimensional
gravitons produced per relativistic species (“photons”) on the wall:

Tn+3
Mn+2 -’

= (N4 OyymrgravV) ~ (2.1)

Hence, the total number density of gravitons produced during a Hubble time starting

at temperature 7, is

+1
Ngray _ T2 Mp
Ty M n+2

(2.2)

Once gravitons escaped into the bulk, they have a very low probability of re-
turning to interact with the SM fields on the wall. The interaction between a bulk
graviton and bulk matter can only take place if the graviton is within its Compton
wavelength ~ E~! from the wall. The probability that this is the case in extra
dimensions of volume V,, is ~ (E™V,)~!. If it is close to the wall, the graviton will
decay into photons with a coupling suppressed by ~ M~("*2/2 and therefore the
width is ~ E"+3/M™*2 The total width I is the product of the two factor estimated
above

E? E3

'~ ~ .
V. i~ M

(2.3)

The above result implies that the gravitons can be very long-lived, since they
cannot decay in the empty bulk . The lifetime of a graviton of energy F is
M 100MeV'\®
T(E) ~ —E—,—? ~ 10T x (———> )

= (2.4)

The gravitons produced at temperatures below ~ 100 MeV have lifetimes larger than
the present age of the Universe. As a consequence, Kaluza-Klein gravitons could
overclose the Universe. Indeed, since the supplementary dimensions do not undergo
cosmological expansion, the components of momentum of the bulk gravitons along
these dimensions do not redshift. As a consequence, the bulk gravitons emitted at a
temperature 7" will redshift as massive matter with mass ~ 7. The energy density
stored in the gravitons produced at temperature T is

Tf+5 MP

M (2:5)

Pgrav ™~ T, x Ngrav ™~
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Figure 2.1: Allowed region for the normalcy temperature in the case of n = 2 extra
dimensions, demanding that the gravitons produced at temperatures lower than Try
do not overclose the Universe. From [50].

which then redshifts as R~3, R being the scale factor of the Universe. For the
gravitons not to overclose the Universe, we require for critical density at the present
age of the Universe. This requires

n—15 M
< 6n 2 ——
T, <10 =7 MeV (TeV> (2.6)

A more detailed analysis leads to the constraint summarized in fig. 2.1. Notice
that, for n = 2, M has to be pushed to about 8 TeV to obtain 7, > 0.7 MeV,
that is the minimum reheating temperature required to obtain successful Big Bang
Nucleosynthesis [49)].

Even stronger bounds come from the late decay of gravitons into photons which
would be detected today as distortions of the diffuse photon spectrum. For T, <
100 MeV, the graviton lifetime is longer than the age of the universe by ~ (100
MeV /T,)3, but a fraction ~ (T,/100 MeV)? of them have already decayed, producing
photons of energy ~ T,. One can compare the predicted flux of these photons with
the observational bound on the diffuse background radiation. A simple estimate

gives [48]

i

nt
N

6n—15 M
T, < 10%5 MeV (--) . 2.7)

3
5

TeV

The results of more detailed computation [51, 50] of this bound give the following
results, where the requirement T, > 0.7 MeV has been imposed. For n = 2 extra
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dimensions M has to be larger than 73 TeV. The bound reduces to 3.9 TeV for n = 3,
while for n > 4 the limits are not significant.

The strongest constraint on the fundamental scale M in models with n = 2
or n = 3 extra dimensions comes however from supernovae. Indeed, some of the
Kaluza-Klein gravitons emitted by all the supernovae during the whole history of
the Universe should have decayed into photons on the brane. The condition that
these photons do not distort the diffuse cosmic gamma-ray background imposes the
bounds M > 84TeV for n = 2 extra dimensions, M > 7TeV for n = 3 [52].

In any case, we can say that cosmology enforces quite strong limits on mod-
els with n = 2 extra dimensions, once the minimal requirement 7T, > 0.7 MeV is
imposed to allow the achievement of a successful nucleosynthesis. This is a really
minimal requirement, since it is extremely difficult to generate the observed baryon
asymmetry at such low temperatures.! In the next sections we will discuss a scenario
that could lead to the generation of the baryon asymmetry. In the discussion of this
scenario we will meet all the typical problems that arise when trying to analyze
baryogenesis in the context of models with large extra dimensions.

2.2 Localization of fermions on a soliton and pro-
ton stability

In this section we will review a mechanism for localizing fermions proposed by
Rubakov and Shaposhnikov [5]. The original analysis of ref. [5] was carried con-
sidering only one extra dimension. For simplicity we will limit ourselves to this
simpler case. Generalizations to higher dimensions can be easily performed.

In subsection 2.2.1, a field theoretical mechanism for the localization of fermions
on a brane will be reviewed. The brane is realized by the solitonic configuration of
a five-dimensional scalar field. In the second subsection we will discuss how it is
possible to achieve proton stability in this scenario, by localizing bosons and leptons
at two slightly different positions.

2.2.1 Fermion localization

Localizing fields in the extra dimension necessitates breaking of higher dimensional
translation invariance. This is accomplished in brane models by the presence of one
or more branes. While at low energies the brane is usually regarded as an idealized

INotice however that the above bounds apply only to models with very light Kaluza-Klein
modes of the graviton. In other brane scenarios [9, 34], where the Kaluza-Klein gravitons are
relatively heavy, the reheating temperature can be safely be of the order of the hundreds of GeV,
and the best bounds on the scale at which gravity becomes strong are provided by accelerator
experiments.
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object of vanishing thickness, in this and in the following section we will consider
it as an object that is extended also in its transverse direction. In particular, we
will consider the thick wall generated by a spatially varying expectation value of a
five-dimensional scalar field ¢ (y) (in order to preserve four-dimensional translational
invariance, the field ¢ will be allowed to depend only on the extra coordinate y). We
assume the expectation value to have the shape of a domain wall transverse to the
extra dimension. The scalar potential responsible for the generation of the domain
wall will be considered only in the next subsection.

Let us consider the five-dimensional action of a fermion ¢ with mass mg coupled
to a scalar field ¢ (y). The five dimensional lagrangian reads®

Loy =5 (1Fs+2(y) ¥,
©(y)5—ﬁ%¢(y)+mo. (2.8)

We will now show that the Dirac equation for a five dimensional fermion in the
background of this scalar field has a zero mode solution which corresponds to a four
dimensional chiral fermion stuck at the zero of ®. A convenient representation for
the gamma matrices in five dimensions is

0 1 : 0 ot . (1 0
0 — T — . = 5:-——
7—<10>, 7_(~Uzo>, 1=1,...,3, v 1(0_]1).

(2.9)

The Dirac operator is separable in a y-dependent part and a z-dependent part
(we denote collectively by z the coordinates in the ordinary four dimensions). As a
consequence, it is convenient to expand the 1 fields as

¥(z,y) =D La () Pripn (€) + D Ra(y) Prtbn (x) (2.10)

where the ), are arbitrary four-dimensional Dirac spinors and Prr = (1 £ i9°)/2
are chiral projection operators.
We can define the “creation” and “annihilation” operators

a= 0Oy+2(y)
at = -0, + ®(y). (2.11)
In terms of these operators, the eigenvalue equation for R, (y) and L, (y) reads
aa' Ry (y) = (02 + ®* (y) + 8,2 (v)) Ru (y) = p2Rn(y)
alal,(y) = (- +2* () =2 ) La(y) = piln(y).  (212)

2Since we are considering a five-dimensional system, Mg and mo have mass dimension 1, while
¢ has dimension 3/2.
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The L, and R, each form an orthonormal set and for non-zero u2 are related
through R, = (1/u,) a L, as can be verified easily from Eq.(2.12).

Notice however that the eigenfunctions with vanishing eigenvalues p, = 0 need
not be paired.

The use of the simple harmonic oscillator notation is not accidental. For the
special choice ®(y) o y the operators-a and al become the usual creation and
annihilation operators up to a normalization factor.

Expanding in R, (y) and L, (y) the action for a five dimensional Dirac fermion
can be rewritten in terms of a four dimensional action for an infinite number of
fermions

S = /d4X I:"/_}L i@y )r + YR iPa YR + Z?,Zn(i&i + Mn)iﬁn} : (2.13)
n=1

The first two terms correspond to four-dimensional component chiral fermions,
they arise from the zero modes of Eq.(2.12). The third term describes an infinite
tower of Dirac fermions corresponding to the modes with non-zero y, in the expan-
sion.

The zero mode wave functions are easily found by integrating afLy = 0 and
aRy = 0. The solutions

Lo (4) ~ exp [- /0 y@(s)ds] and R (y) ~ exp [ /0 y@(s)ds}, (2.14)

are exponentials with support near the zeros of the total mass ®.

If the extra dimension is infinite in extension, these modes cannot both be nor-
malizable. The left-handed mode will be localized on the brane if, as in figure 2.2.2,
one has ¢ (y > 0) > 0 and ¢ (y < 0) < 0. The right handed part remains instead
delocalized in the whole space and decouples from the four-dimensional effective
theory, in agreement with the index theorem on a solitonic background [53, 54].
The disappearance of the right handed fermions from the low energy regime of the
theory is particularly appealing, since the Standard Model fermion content has to
be limited only to left handed fields.> The right handed fields can also be localized if
a kink-antikink solution is assumed for the scalar ¢. As a result, the left fields con-
tinue to be localized on the kink, while the right ones are confined to the antikink.
If the kink and the antikink are sufficiently far apart, the left handed and right
handed fermions however do not interact and again the model reproducing our four
dimensional world is built by fermions of a defined chirality. The fermionic content
of the full dimensional theory is in this case doubled with respect to the usual one,
and observers on one of the two walls will refer to the other as to a “mirror world”.

3Concerning the cancellation of anomalies on the wall and recovering the Standard Model
running of the coupling constants, see [55].
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2.2.2 Proton stability on the brane

As we said, the localization position of the fermions depends on the vacuum config-
uration of the field ¢. We consider the simplest potential for ¢*

V($) = 8+ do ", (215)
that has a solution the kink configuration
Ko
= tanh .
0] (y) \/270 an (.U'O y) ) (2 16)

that we approximate it with a straight line interpolating between the two vacua (see
figure 2.2.2)

s =y <L 217

y) = ooy W< (2.17)
2 1

¢(y)2i\/’%—o, Iy!>p;, (2.18)
¢

Ko

Figure 2.2: Profile of the approximation (2.17) of the kink solution (2.16).

We then see that the localization can occur only if

mo < —me— (2.19)
\/2 20 My

since otherwise the total fermion mass

1
@ (y) = g ¢ () + mo (2.20)

4Notice that in this five-dimensional potential, Ao has mass dimension —1.
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never vanishes.

If one chooses different values of the five dimensional bare mass mg for the
different fermionic fields, the latter will be localized at different positions in the
fifth direction. As a consequence, the wave functions of different fermions do only
partially overlap, and increasing the difference between the five dimensional bare
masses of two fermions results in suppressing their mutual interactions.

This idea can be adopted to guarantee proton stability. Let us give, respectively,
leptons and baryons the “masses”

(mo); =0, (mo), =m0,

which correspond to the localizations °

=0, yp=

mg /2 A M, 1
- (2.21)

T tho

The shape of the fermion wave functions along the fifth dimension can be cast in an
explicit and simple form if we consider the limit y, < 1/po, in which the effect of
the plateau for y > 1/pg can be neglected:

2 He 2,2
fily) = —‘“H‘O':‘ exp{ — —L [3_?{__:
\/2)\0M07T 2 2)\0M0
1/4
2 2 _ 2
foly) = || exp{-% v —w) (2.22)

A/ 2 N\ Mo 21/2 X Mo

We assume the completely general scenario in which the Standard Model is
embedded in some theory which contains some (relatively heavy) additional bosons
X whose interactions violate baryon number conservation. If it is the case, the
X bosons can be integrated out and the four fermion interaction gg +— ¢l will
effectively described by

/ dzdy 3 qqq , (2.23)

where mx is the mass of the intermediate boson X and A is a parameter of mass
dimension one related to the five-dimensional coupling of the X-particle to quarks
and leptons.

5The last inequality in the next expression comes from (2.19). We assume quarks of different
generations to be located in the same y position in order to avoid dangerous FCNC mediated by
the Kaluza-Klein modes of the gluons [56].
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This scattering is thus suppressed by

- fdy B oxp S C [V +3 (y—w)’] p =
2 —— —
Ame S J2 00 My VerM,

N\ 1/2
3 2/\0 MQ 2
= Fo — 77 P~ ( 3 ) ﬂg— . (2.24)
Ami 2 (QAOMO) Ho

Current proton stability requires I < (10*6 GeV)™? | that is

o \/50 — 6Logy, (-A—;:-‘j / GeVz)
Ho (2 o JTIO) !

The numerator in the last equation is quite insensitive to the mass scales of the
model, and — due to the logarithmic mild dependence — can be safely assumed to be
of order 10. For definiteness, we will thus fix it at the value of 10 in the rest of our
work.

Conditions (2.19) and (2.25) give altogether

(2.25)

10 po Ho
—~\ 1/4 5 Mo 5 —\1/2 (226)
(2 o Mo> (2 Ao Mo)
that we can rewrite
2 Ao My < 1074 (2.27)
0 > 102 . (2.28)
Mo

We conclude that in this scenario baryon number violating interactions can be
safely suppressed by assuming a mild fine-tuning (of the order of 107*) among the
fundamental parameters of the model.

2.3 Baryon number violation in the early Uni-
verse

In this section we will analyze the effects of temperature on the configuration out-
lined above. In the first subsection the thermal effects on the system are analyzed
in generality. In the second subsection we discuss the consequences of such effects
for the purposes of baryogenesis.
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2.3.1 Thermal correction to the coefficients

Once the localization mechanism is incorporated in a low energy effective theory — as
the system of egs. (2.8) and (2.15) may be considered —, one can legitimately ask if
thermal effects could play any significant role. In the present section we are mainly
interested in any possible change in the argument of the exponential in eq. (2.24),
that will be the most relevant for the purpose of baryogenesis. For this reason, we
introduce the dimensionless quantity

_ m(T)? i |
(T =~ V2 NDMT) (2.29)

From egs.(2.25) and (2.27), we can set a(0) 2 100 at zero temperature. Thermal
effects will modify this value. There are however some obstacles that one meets
in evaluating the finite temperature result. Apart from the technical difficulties
arising from the fact that the scalar background is not constant, one problem is
that nonperturbative effects may play a very relevant role at high temperature. As
it is customary in theories with extra dimensions, the model we are examining is
nonrenormalizable and one expects that there is a cut-off (generally related to the
fundamental scale of gravity) above which it stops holding. Our considerations will
thus be valid only for low temperature effects, and may only be assumed as a rough
indication for what can happen at higher temperature.

Being aware of these problems, by looking at the dominant finite-temperature
one-loop effects, we estimate the first corrections to the relevant parameters to be

T
M(T) = My+cgT (2.31)
2
m(T) = mo+ cm (2.32)
My
2 2 T3
T) = +c, =, 2.33
p*(T) Ho /-LMO ( )

where the ¢’s are dimensionless coeflicients whose values are related to the exact
particle content of the theory.

In writing the above equations, the first of conditions (2.27) has also been taken
into account. For example, both a scalar and a fermionic loop contribute to the
thermal correction to the parameter Ag. While the contribution from the former is
of order A2 T, the one of the latter is of order 7'/M¢ and thus dominates.

Substituting egs. (2.30) into eq. (2.29), we get, in the limit of low temperature,

T =  2¢, T 2
a(T):-’_a(O) [1"":— < C)\N +C_M+ c ~C#z ):l . (234)
Mo 2 )\O ]\/[0 2 myo 2%
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From the smallness of the quantity Ao My [see cond. (2.27)] we can safely assume
(apart from high hierarchy between the c’s coefficients that we do not expect to
hold) that the dominant contribution in the above expression comes from the term
proportional to c .

We thus simply have

a(T) ~a(0) (1 +ca TN ) . (2.35)
2 Mo M

We notice that the parameter c,, being related to the thermal corrections to the

¢* coefficient due to a fermion loop, is expected to be negative [57]: the first thermal

effect is to decrease the value of the parameter a(7"), making hence the baryon

number violating reactions more efficient at finite rather than at zero temperature.

2.3.2 Baryogenesis

We saw in the previous subsection that thermal effects may increase the. rate of
baryon number violating interactions of our system. This is very welcome, since a
theory which never violates baryon number cannot lead to baryogenesis and thus
cannot reproduce the observed Universe. Anyhow baryon number violation is only
one of the ingredients for baryogenesis, and the aim of this subsection is to investigate
how the above mechanism can be embedded in a more general context.

A particular scheme which may be adopted is baryogenesis through the decay of
massive bosons X. ® This scheme closely resembles GUT baryogenesis, but there are
some important peculiarities due to the different scales of energy involved. In GUT
baryogenesis the massive boson X , coupled to matter by the interaction g X 11,
has the decay rate

g2

Tar
An important condition is that the X boson decays when the temperature of

the Universe is below its mass (out of equilibrium decay), in order to avoid thermal

regeneration. From the standard equation for the expansion of the Universe,

F'~amg; , «@ (2.36)

2
H ~ g}/? i (2.37)
M,

(where g, is the number of relativistic degrees of freedom at the temperature T),
this condition rewrites

mx Z 9;1/2 aMp . (2.38)

6We may think of these bosons as the intermediate particles which mediate the four fermion
interaction described by the term (2.23).
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“If X belongs to a Higgs sector, o can be as low as 107°%. Even in this case
however the X boson must be very massive. In principle this may be problematic
in the theories with extra dimensions we are interested in, which have the main goal
of having a very low fundamental scale.

There are some possibilities to overcome this problem. One is related to a possible
deviation of the expausion of the Universe from the standard behavior. As we will
discuss in detail in the next chapter, the issue of the expansion law of the brane
Universe is far from being trivial. For instance, in the noncompact Randall-Sundrum
model, a faster expansion rate H o p rather than the standard H « ,/p is expected
at high energies.

However, for definiteness we will consider from now on the case of a standard
Friedmann law, and discuss alternative solutions for the out of equilibrium problem.
One very natural possibility is to create the X particles non thermally and to require
the temperature of the Universe to be always smaller than their mass mx . In this
way, one kinematically forbids thermal regeneration of the X particles after their
decay. In addition, although interactions among these bosons can bring them to
thermal equilibrium, chemical equilibrium cannot be achieved.

As we will discuss in the second part of the present work, nonthermal creation of
matter can be very efficient during the stage of coherent oscillations of the inflaton
field after inflation [58]. Since this process is extremely model dependent, we will
simply assume that, after inflation, their number density is nx . To simplify our
computations, we will also suppose that their energy density dominates over the
thermal bath produced by the perturbative decay of the inflaton field.

Just for definiteness, let us consider a very simple model where two species of X
boson can decay into quarks and leptons, according to the four dimensional effective
interactions

9Xq7 , ge*Xlg, (2.39)

where (remember the suppression given by the different localization of quarks and
leptons) the quantity a is defined in eq. (2.29). Again for definiteness we will
consider the minimal model where no extra fermionic degrees of freedom are added
to the ones present in the Standard Model. Moreover we will assume B ~ L to
be conserved, even though the extension to a more general scheme can be easily
performed.

The decay of the X bosons will reheat the Universe to a temperature that can
be evaluated to be

1/4
Ty <§9 mx ”X) . (2.40)

T2 g,

Since we do not want the X particles to be thermally regenerated after their
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decay, we require Ty, < my, that can be rewritten as an upper bound on nx

nx < 30 (196‘0) ml . (2.41)

Another limit comes from the necessity to forbid the B violating four fermion
interaction (2.23) to erase the B asymmetry that has been just created by the decay
of the X bosons. We thus require the interaction (2.23) to be out equilibrium at
temperatures lower than T,,. From eq. (2.24) we see that we can parametrize the
four fermion interaction with a coupling g2 e~3%/8 /m% . Hence, the out of equilibrium
condition reads

3
dgsa/t g X (X 2.42
g € ~ g* Mp <T1-h ( ° )

One more upper bound on the reheating temperature comes from the out of
equilibrium condition for the sphalerons. This requirement is necessary only if one
chooses the theory to be B — L invariant, while it does not hold for B — L violating
schemes. We can approximately consider the sphalerons to be in thermal equilibrium
at temperatures above the electroweak scale. Thus, if B — L is a conserved quantity,
we will require the reheat temperature to be smaller than about 100 GeV.

If one neglects the presence of the thermal bath prior to the decay of the X
bosons, the very first decays will be only into couples of quarks, since the channel
into one quark and one lepton is strongly suppressed by the e=*T=0 factor due
to the fact that the kink is not modified by any thermal correction. However, the
decay process is not an instantaneous event. As it is discussed in ref. [59], if the
particles produced in the very first decays thermalize very rapidly, they will create
a thermal bath even when most of the energy density is still stored in the decaying
particles. The temperature of this bath can even be considerably higher than the
final reheating temperature. The presence of the heat bath modifies in turn the
shape of the kink, as shown in the previous section, and we can naturally expect
that this modification enhances the B violating interaction.

If the energy density of the Universe is dominated by the X bosons before they
decay, one has

np =~ 0.1 (NX Ti-h/mx) <’I‘-7=> y (243)

where Ny is the number of degrees of freedom associated to the X particles and
(r — 7) is the difference between the rates of the decays X — ¢l and X — gl.

We denote with X; and X, the two species of bosons whose interactions (2.39)
lead to baryon number violation, and parametrize by € the strength of CP-violation
in these interactions. Considering that e=2¢ is always much smaller than one, we
get [60]
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(r—7) ~3g%e % e Imlgs (Mx, /Mx,) , (2.44)

where the function ImIgs(p) = [p? Log(1+1/p*) — 1]/ (16 7) can be estimated to
be of order 1072 — 1072, It is also reasonable tc assume € ~ 1072 — 1.
Collecting all the above estimates, and assuming Nx to be of order 10, we get

T
ne =~ (1075 — 1072) gQE—ze““(T’h)ﬁ : (2.45)

From the requirement Ty, < mx we get an upper limit on the baryon asymmetry
ng < (107° — 107%) g?e™/% (2.46)

where the factor a (T) has to be calculated for a value of T' of the order of the
reheating temperature.

We get a different limit on 7p from the bound (2.42): assuming mx ~ TeV and
g« ~ 100 indeed one obtains

ng S (1078 — 10710) g3 e/t (2.47)

Since the observed amount of baryon asymmetry is of order 107!, even in the
case of maximum efficiency of the process (that is, assuming maximal C'P violation
and g ~ 1), we have that both bounds (2.46) and (2.47) imply that a (Ti4) has to
be smaller than about 40.

Unfortunately, the temperature at which the condition a (T") < 40 occurs cannot
be evaluated by means of the expansion of eq. (2.35), that have been obtained under
the assumption |a (T') — a (0)] < a(0). On the other hand, it is remarkable that
our mechanism might work with a ratio a (7y) /a (0) of order one. We thus expect
that a successful baryogenesis may be realized for a range of the parameters of our
theory which — although not evaluable through a perturbative analysis — should be
quite wide and reasonable.

As we have seen in section 2.1, in scenarios with large extra dimensions and low
scale gravity, the maximal temperature reached by the Universe after inflation is
strongly bounded from above in order to avoid overproducing Kaluza-Klein graviton
modes. Values of T}, of the order of few MeVs (that are the maximal reheating
temperatures allowed in the case of a 2 or 3 extra dimensions) would be too low
for our scenario since np is proportional to the ratio 7y, /myx. Hence, the observed
amount of baryons would be reproduced at the price of an unnaturally small value
of a(T). However, other schemes with extra dimensions exist where the bounds
on Ty, are less severe. For example, in the scenarios [9, 34] the mass of the first
graviton KK mode is expected to be of order TeV. The reheating temperature can
thus safely be taken to be of order 10 — 100 GeV.
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An alternative way to overcome the bound (2.38) relies on the fact that, as
observed in the work [59], the maximal temperature reached by the thermal bath
during reheating can indeed be much higher than the final reheating temperature.
This fact can be exploited for the purposes of baryogenesis in standard four di-
mensional cosmology [61]. In this case, even if T is considerably lower than myx,
X particles can be produced in a significant amount, and the out of equilibrium
condition is easily achieved. However, the treatment of this mechanism is in our
case somewhat different from the one given in ref. [61]: due to the slowness of the
expansion of the Universe, the X bosons will decay before the freeze out of their
production. Thus, the final baryon asymmetry cannot be estimated with the use of
the formulae of [61], which are valid only if the decay of the X particles occurs well
after their freeze out.



Chapter 3

Cosmological evolution of
stabilized brane models

The last three years have witnessed an impressive amount of work devoted to the
analysis of the cosmological expansion of brane models. This activity flourished after
the work [13] has shown that the presence of extra dimensions where only gravity
can propagate can have a deep impact onto the expansion law of the Universe.
Later on, models with compact extra dimensions were shown [14, 15, 62] to lead to
standard late cosmology if a proper mechanism for stabilizing the size of the internal
space is introduced. On the other hand, in models where the extra dimension is not
compact the presence of a stabilizing mechanism is clearly meaningless. Indeed,
these models (of which the noncompact one proposed by Randall and Sundrum is
the prototypical example) can show nonstandard cosmology at some (typically early)
stage [16, 17, 18]. These models thus allow to look from a different perspective to
phenomena occurred in the early Universe such as inflation [63]. On the other hand,
also the details of the early cosmology of models with stabilized extra dimensions
are not completely clear. Some issues, such as the behavior of the system at higher
energies, are still open [64].

In the first section we will review the formalism introduced in ref. [13], outlining
the results that arise if a potential that stabilizes the extra space is not introduced.
These results are generally in contradiction with phenomenology, and can be sum-
marized in the expression H o p of the expansion rate of the brane, while phe-
nomenology requires H oc 4/p. In the subsequent section we show how this picture
is modified by the presence of a stabilizing potential. In fact, the latter introduces
in the bulk of extra dimensions of the amount of energy that is exactly necessary
to recover the standard expansion rate. Then, in section 3.3, we will move to the
specific case of the compact Randall-Sundrum model. After solving the Einstein
equations, we will discuss both the low energy and the high energy regime behavior
of the model. Particular attention will be paid to the interpretation of the quantities
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that characterize the system.

3.1 Exact solutions in presence of matter

In this section we revise the (by now) standard techniques for the derivation of the
expansion law of the Universe in brane scenarios, as they were derived in ref. [13].

To begin with, we consider a system of one tensionless brane in an empty (4+41)-
dimensional bulk. We will denote by y € [~1/2, 1/2] the coordinate along the extra
dimension. The orbifold symmetry that identifies points at coordinate y with points
at coordinate —y is imposed. For the moment we will consider only one brane
placed at the orbifold fixed point y = 0. At variance with the case considered in the
previous chapter, the brane is assumed to be infinitely thin (this idealized situation
is a good approximation as long as the energies considered are much smaller that
the inverse of the thickness of the brane).

We will denote by M the fundamental Planck mass. This means that the five-
dimensional Einstein-Hilbert action reads

3 .
s=-M /dtdg’wdy\/——g(f’)R(s). (3.1)

T2

Since we are looking for cosmological solutions, the ansatz for the metric will be
a natural extension to the present system of the Friedmann-Robertson-Walker (flat)
metric

ds? = gif])g dz? dz®, (A,B) € {0,1,2,3,5}
n?(t, y) dt* — a® (¢, y) dZ* — b* (¢, y) dy® . (3.2)

The energy-momentum tensor of the system will be assumed to be the one of an
ideal fluid on the brane, while it will be vanishing in the bulk

: 5 (y)
B _ e —pe . —
Ti = diag(po, —po, —Po, =Po, 0) 3 o) (3.3)
The five-dimensional Einstein equations read
1
Gap = e Tas, (3.4)

where, in terms of the metric (3.2), the nonvanishing components of the Einstein
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tensor read

afla b n? (a" a [(d UV
G = 3{5(;%)“5@‘(;*;(;“3))}’ (35)
a2 al a/ nl \ bl ,nl al aII nll
~ — 5. _ i 2,_»,1 —— —— _ — P
Cii 6261]{a<a+ n ) b<n+2a>+2a+n}
a? o & _n i b o n
20 {a (‘a”;) —2 7t (‘%ﬁ‘) - 5}’ (3.6)

/o ri) %
Gos = 3 (39+3— = 3) : (3.7)

/ ’ ' b2 . . . .
a a n n a \a n a

where dot denotes derivative with respect to time, while prime denotes derivative
with respect to y.

In the solving the Einstein equations we will first of all assume that the radius
is static, B(t, y) = 0. This is required by phenomenology: a time dependence of
b induces a time dependence of the compactification volume and therefore of the
observed Newton constant. If b = 0, one can always redefine the coordinate y such
that also o’ = 0. As a consequence, we will assume b (¢, y) = b = constant.

From the Bianchi identity V4G4 = 0 the usual energy conservation law on the
brane is derived

. a
Po+3a% (po+po) =0, (3.9)

where the suffix 0 is used to denote quantities evaluated at the brane at y = 0.

The solution of the Einstein equations is simplified by the fact that the source
term T% is 6-valued in y. As a consequence, the first y-derivatives a’ and n’ have to
experience a finite jump as y crosses the brane at y = 0. This generates quantities
proportional to 6 (y) in a” and n”, and hence in G4, that have to be matched with
the d-valued part of the stress energy tensor. For the purposes of this analysis it is
useful to define the jump of the y-derivative of a (an analogous definition holds for
the function n) across the point y = 0 as

[a'], = lim [a' (+€) —a'(—€)], (3.10)

e—0Tt

such that one has for example

a’ (y) =a" (y) +[a']y 0 (v) , (3.11)
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where a" represents the nondistributional part of a”.
Matching the distributional parts for the Einstein tensor with the one of the
energy-momentum tensor one gets the following Israel [65] junction conditions

@]y _ 1

awb 33"

n' 1

[n_o]—o = == (370 +2p0) . (3.12)

The (0, 5) Einstein equation does not have a distributional component, and is
solved (remember b = 0) by

n(ty)=A(t)alt y) . (3.13)

This relation introduces an unknown function of time only, and considerably sim-
plifies the remaining equations. Note that we have a complete freedom in the choice
of A, since different \’s correspond to different definitions of the time variable. In
particular, we will take advantage of this freedom to impose that the lapse function
n evaluates to 1 on the brane. Therefore we will have A (t) = 1/ao (¢)

One can then derive the expansion law of the brane. By considering the (5, 5)
Einstein equation averaged across the brane

lim [G55 (+6) + Gss (—-—6)] =0, (3.14)
e—~07+
and remembering that a' (+€¢) = —a' (—e¢) follows from the orbifold y — —y, one
obtains
1 [al]g 1aly [@y 2 <dg Gg
z - S ) S 3.1
4 ag +4 agp do ag +a,0 ( 5)

From the above equations, using the junction conditions (3.12) and the energy
conservation law (3.9), we derive the equation

ag  do

1
2 3 36

(po +3po) - (3.16)

Since the right hand side of eq. (3.16) in quadratic in pg, the expansion rate of the
brane turns out to be linear in the energy density, whereas in standard cosmology
it should be proportional to square root of the energy. In fact, eq. (3.16) can be
derived from the nonstandard Friedmann law

52 2
G Mo

a2 36 M6’

(3.17)
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It is worth noticing that the observed Planck mass Mp does not appear in the
above equation (3.17), and the expansion rate depends on the value of the funda-
mental Planck mass M. This is related to the fact that the whole derivation above
was performed by simply considering the Einstein equations in a very small neigh-
borhood of the brane, and depends therefore only on the local properties of the
system. The value of the observed Planck mass, on the other hand, depends on the
compactification volume, that is a global property of the system.

The behavior (3.17) is phenomenologically excluded [13]. As we will now see,
other unappealing results will emerge as we consider the global properties of the
solutions to the Einstein equations for this system.

The expression of the scale factor in the bulk can be obtained by solving the
(0, 0) Einstein equation, using the relations (3.13), (3.12) and (3.17)

a(t, y) = ao (t) (1— 6’]’&3 b[yl) . (3.18)

This solution should be globally extended to the whole bulk, —1/2 < y < 1/2.
However, one can immediately see that the scale factor is not regular at the point
y = 1/2, where the y-derivative of a (¢, y) (as well as the y-derivative of n (¢, y)) is
discontinuous. The only way to explain such a discontinuity is to place at y = 1/2
a second brane, whose energy p;/» gives conditions analogous to the Israel condi-
tions (3.12). However, this implies that the energy on the new brane has to be a
function of the energy on the first one. Indeed one finds

Polo = —pP1/201/2,
(2p0+3p0) o = — (2p12+ 3p1j2) N2 - (3.19)

These requirements are related to a version of the Gauss’ law for this system:
the total charge on a compact manifold has to vanish, since there must be as many
sinks as sources for the flux lines.

Such a situation in which the energy of the two branes is acausally correlated
is certainly unsatisfactory, as it is unsatisfactory that a negative energy density is
required on one of the two branes.

The above discussion would lead to conclude that brane models cannot generi-
cally reproduce standard cosmology. The only possibility to avoid such conclusion is
to investigate the origin of egs. (3.17) and (3.19) and see how they can be modified.
Before doing so (in the next section) we show how to apply the above formalism to
the Randall-Sundrum compact and noncompact models.

In the case of the Randall-Sundrum model the derivation that led to eq. (3.17)
is substantially unchanged. One has only to add a (negative) cosmological constant
A in the bulk and a positive tension V; to the brane located at y = 0. That is, we
have to add a term —2b* A/M? to the right hand side of eq. (3.14) and to replace
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po with po + Vo, po with po — V5. The result is the following expansion law for the
brane located at y =0

) 2
a3 _ (Vo + po) A
ai 36 M° Tear (3-20)

The above equation shows that the Randall-Sundrum fine tuning A = —V§/ (6 M?)
amounts to a cancellation of the effective four dimensional cosmological constant.
After this cancellation, the Friedmann law reads

@_ Vo . Po
a2 18MS"™° T 36 M8

(3.21)

In the low energy regime py < 2V, the standard expansion law H? « p is
therefore recovered. The identification
M6
2
Mp =26 7 (3.22)
is the same one that is derived by evaluating the strength of the Newton force in
the static Randall-Sundrum noncompact model. The system thus shows no con-
tradiction with phenomenology. Moreover, since in this model the extra dimension
is infinite in extension, there are no problems in defining a smooth solution of the
Einstein equation in the whole extra space.

The Randall-Sundrum scenario with a compact extra dimension, on the other
hand, suffers from some of the problems that we have outlined above in the simpler
case of tensionless branes in a empty bulk. First of all, the expansion rate of the
system is governed by a Planck mass (3.22) that is slightly different (by a factor
(1 — Q2)) from the one associated to the Newton force. Due to the extreme smallness
of the difference between the two Planck masses, this fact is phenomenologically
irrelevant. However, it is theoretically unappealing. What is more relevant is that
the energy density on the visible brane should be correlated with the energy density
on the Planck brane

Pij2 — *Qgpo,
P12 = —Qgpl/z, (3.23)

where p; and p; are, respectively, the matter' density and the pressure on the i-th
brane (i =0, 1/2), while Qy = "™ %2 was already defined in eq. (1.10).

Since V; > 0, from eq. (3.21) we see that py > 0 is required. This implies that
p1/2, 1.e. the energy density of the cosmological fluid on our brane should be negative.

1With matter we generically indicate any possible component which adds to the vacuum energies
Vo, V19 of the original static configuration.
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Of course, if these results were unavoidable, the Randall-Sundrum compact
model (as well as all the brane models with a compact extra space) would be in
extreme trouble. We will see in the next section how this conclusion can be actually
evaded.

3.2 The role of radion stabilization

In the previous section we have seen two problems that emerge in brane models with
compact extra dimensions without matter in the bulk. The first problem is that for
tensionless branes and without a cosmological constant in the bulk the expansion
rate of the brane is proportional to the energy rather than to its square root. The
second one is that a second brane is needed to serve as a sink for the flux lines of the
gravitational field generated from the first brane. The energy density on the second
brane is a function of the energy density on the first brane.

To see how to solve these problems, let us first consider the case of a tensionless
brane in a bulk with vanishing cosmological constant, in a scenario & la Arkani—
Hamed-Dimopoulos-Dvali. One can get a solution to both the problems outlined
above by assuming some smooth distribution of energy and pressure in the bulk. In
particular, in the presence of a nonvanishing value of the (5, 5) component of the
stress-energy tensor 79 (y), equation (3.17) acquires the form

22 2 5

9 _ Po T3 (y = 0)

AT I + = E (3.24)
If

6M3  3MZ 36MS’

then the standard expansion law will be obviously recovered on the brane. In the
same way, if T# (y) assumes an appropriate form that depends on py and py, it will
be possible to get a global solution to the Einstein equations that can be smoothly
joint at y = 1/2 without requiring the presence of a second brane.

This form of the stress-energy tensor in the bulk seems to be really ad hoc.
However, as realized in [14, 62], this is exactly the kind of modification of the
energy-momentum tensor that is provided by a mechanism responsible for the sta-
bilization of the extra dimension. This mechanism can be be efficiently described
by the introduction of a potential V (b) for the radius b of the extra dimension.
The potential will be minimized when b = by, where by is the radius of the extra
dimension in vacuum. .V (b) can emerge after some fields with specific coupling to
the branes have been integrated out. The most popular example in this respect is
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the Goldberger-Wise [66] mechanism for the stabilization of the extra dimension in
the Randall-Sundrum model.

The presence of a stabilizing potential is also necessary to fulfil other phenomeno-
logical requirements. In fact, the excitations of the radius of the extra dimension
describe from the four-dimensional point of view a scalar modulus. In absence of
a stabilizing potential, this modulus will be a massless scalar mediating long range
forces, that are phenomenologically excluded. As a consequence, the potential V' (b)
has to provide a mass of at least 1072 eV to the modulus to be compatible with the
experiments.

The introduction of the stabilizing potential for b is described by the addition to
the action of a term

5= - / it & dy/—g® V (5) = — / dt &z dyba®n 'V (b) . (3.26)

Also a kinetic term for b should be needed, but we can disregard it as phenomenology
requires it to be negligible. The presence of & entails the presence of new terms in
the stress-energy tensor

1

TI?O = ——§na3bV(b) ,
Tbii = gnCLBbV(b) ,
T8, = — %na:”b V() +V' ()] . (3.27)

The radion potential close to the minimum point by can be approximated without
loss of generality by a quadratic potential

V (b) = MP (Q—%O—b—”>2+o ((b'b'ob“)?)) . (3.28)

Throughout this chapter we will assume that the radion is very heavy, that is, that
the mass scale M, is extremely large.

In absence of any matter on the branes, the radion is at its minimum b,. If an
arbitrary amount of energy is placed on the branes, the value of b will generically
change, and it would start rolling away if the stabilizing potential did not keep it
close to by. We denote by

Ab=b(p) — by (3.29)

the displacement of the radion (associated to the energy p on the branes) from its
equilibrium value.
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Being V (b) = V' (bo) = 0, egs. (3.27) imply that, while 75 is of the first order
in Ab, T?, and T}; are of the second order in Ab. The assumption of a very large
M, implies that Ab is very small. As a consequence, the presence of the radion
potential will be felt by the (5, 5) Einstein equation before than by the other ones.

This observation shows how one can proceed technically in solving the equations
in presence of a nonvanishing V' (b). Being Ab extremely small, all the system of
Einstein equations will be solved as described in the previous section. Only, we will
not be allowed to use the (5, 5) equation, that is necessary to determine Ab. As a
consequence, since the number of equations that have to be solved is reduced by one,
also the number of constraints to the system will decrease by one. In particular, this
will remove the relation between the energies on the two branes? (actually, a second
brane is not at all necessary any more). The value of Ab computed this way from
the (5, 5) Einstein equation gives to T°5 exactly the correction (3.25) that allows to
recover the standard Friedmann law.

3.3 Cosmological evolution of the Randall—Sundrum
model

In this section we will account in detail for the procedure outlined above for the
case of the Randall-Sundrum model with a compact extra dimension. This com-
putation was first performed in ref. [15] in the specific case of small and constant
energy on the two branes, showing that the standard Friedmann law is recovered in
this regime. In [67] the full analysis was performed for arbitrary large energies of
arbitrary equation of state on the two branes. In subsection 3.3.1 we solve exactly
the Einstein equations for an arbitrary amount of energy with arbitrary equation of
state on the two branes. In subsection 3.3.2 the effective four dimensional action of
the system is analyzed, while in the following subsection the low energy behavior
is shown to be analogous to the standard four dimensional one. Finally in subsec-
tion 3.3.4 the high energy behavior of the system is analyzed, concluding that it
could show potential deviations from the standard cosmology. These deviations are
however unlikely to have been actually occurred in the early Universe.

3.3.1 Solution of the Einstein equations

In the following derivation we will assume M, — oo, that implies that Ab is neg-
ligibly small. Therefore b will be kept fixed at its equilibrium value b;. The only
components of the Einstein tensor we are interested in are (3.5), (3.6) and (3.7).

2This observation explains the origin of the second fine tuning in the static Randall-Sundrum
model. Actually the two fine-tunings (1.5) are required to find a solution that is static both in the
direction parallel and in the one transverse to the branes.
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For the notation we refer to the one used in chapter 1 for the description of the -
Randall-Sundrum model.

The energy-momentum tensor of the two branes is of the form

Y o ' v '
(Tf)bra.ne = b(y) dla’g (% +p0a % — Do, % — Do, % — Do, O) -+ (330)
0
o(ly—1/2) .
+ (y ; / ) diag (Vl/z + P12, V1/2 —Pi/2, V1/2 —Di/2, V1/2 — DP1/2, 0) ,
0

where V{12 are the brane tensions, while p; and p; are, respectively, the density and
pressure of matter on the two branes with equation of state p; = w; p; (1 =0, 1/2).

First of all, we integrate the (0, 5) Einstein equation (remember b = 0 is as-
sumed). This is solved either by ¢ = 0 (in this case one recovers the Randall-
Sundrum solution (1.6)), or by the relation (3.13) found above.

By inserting eq. (3.13) into the (0, 0) Einstein equation, we can eliminate the
time-derivatives, and we obtain a simple second-order differential equation for a?:

(3(t,y)) — 4m3 B3 a*(t,y) = AZ(?;%Q- (3.31)
This equation has solution
 (013) = a0 )+ o (o () + Bl
where
G (6) = cosh @mobolyl) = S sink (2moboly) |
Wiy (y) = sinh (2mobo 9)) (3.33)

S

with Cy = cosh (mgby) and Sy = sinh (mgby). Eq. (3.32) relates the value of
a(t,y) in the whole space to the values on the two branes aq (t) = a (¢, 0) and
a2 (t) =a(t, 1/2), that can be determined by solving the (0, 0) Einstein equation
across the two branes. This is made by using the techniques described above in
the derivation of eq. (3.12). From the symmetry y <+ —y, we can write the jump
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conditions in the form:

%,(%'gj) = _6;4360 (Vo + po)

fog)) = 6;43 bo [2 (Vo + po) + 3 (=Vo +po)]

C;/((f%%)) = gate (Vat o)

777;,,((;: ;)) - —6;/[3 bo (2 (Vij2 + pryj2) +3 (=Vape +p12)] - (3.34)

These equations lead to the following system for ag, a/s:

2
p_ Gl 5 %y Cp—1
[1+6m0M3 So} % So 2m2N2S,
2
Gy P12 C'() 9 Co-—l
sﬁ[ T o M3 SJ “r T gmeg, (3:35)

As expected, the system admits no solution in absence of matter on the two branes,
po = pi2 = 0 . Indeed, for this choice one recovers the static Randall-Sundrum
solution, which is not accounted for by the relation (3.13). When matter is instead
included, the system (3.35) gives the solutions:

(1_2)\_2 — my po + Q%ﬂl/? - 1277';3 M3 (1 - Qg) Pop1/2 (336)
0 3M3 (1—03) 1—(1-02 12;/}{9’27”0 ;

a~2)"? — ™Mo _}_ po + Qﬁm/z - ‘12"—1\}s o (1 — Q‘é) Popl/z 3 37)
1/2 3M3 (1-Q3) 932 1= (% — 1)l

Since A = ng/ag = nyj2/a1/2 , We can interpret these equations as the expansion laws
of the two branes. As we will see below, egs. (3.9), (3.36), and (3.37) give standard
FRW evolution on both branes at low energy.

3.3.2 The effective four dimensional action

We can gain some insight on the cosmology of the Randall-Sundrum model by
integrating the whole action over the extra dimension y. In doing so, we make use
of the result (3.32). Our goal is to get an effective four dimensional action which
describes the evolution of the scale factors ag (t) , ai/2 (t) on the two branes.

We first focus on the “purely gravitational” five dimensional action, that is we
integrate the Randall-Sundrum action in the absence of matter on-the two branes.



42 Chapter 3. Cosmological evolution of stabilized brane models

The latter will be considered eventually when we deal with the equations of motion.
Our starting point is thus: '

5RO s §(y—1/2
S = —/dtdsxdy\/“9(5) [Mf +A+ éy)vo—l— (ybl/ )Vm} (3.38)
0 0
3 2 o
_ ——Ag—/dtde’xdy«/-—g(@ [R@ —12m? +12mg <5l§y) _0W ; 1/2))} ,
0 0

with the full (five dimensional) curvature scalar given by:

. . . .\ 2 " 1ot " N 2
n n'a a
R®) = 62 [ﬁﬁ _2 (9> } 265 {——— +3-= 43— +3 (“—) } . (3.39)
nae a a n na a a
Since we are interested in the evolution of the two four dimensional branes, we
rewrite n (¢, y) and a (¢, y) by making use of the results of the previous sections,

egs. (3.13) and (3.32). Tt is then convenient to write 1/—g(®) R® and /—¢® in
terms of a and A:

) 2 4\ v/
—9(5)R<5) = %(éag_l.‘_j_&)_}_ A [d(a) __3((12)’61(0')] ’

X A\XT T 2dt ) 2| dt dt
A bo d a4
g5 = 220z .40
V-9 T (3.40)
With all these considerations®, the integral over y of the action (3.38) gives:
M? 1-02 1 |6 (A , _
S = ———2—/d4${ o 0 i_—}‘—ﬁg [—)\— (X (CL% +(1%/2) — (CZO aop +a1/2 a1/2)>:‘ -+
24 my

A Q8 (a0t alyy + a2 auye ag) — (g a0+ aljpdip)] } - (341

-0t
By substituting A = ng/ao = 112 /612 in the last expression* we get:
M3 6 |nodo do (a0’
S= - ——Lt— [d fs | —m— — —— — 42
2(1+Q2) /d x{noao ng |moas  ao o " (3.42)

6 |y d a1z )
+ n1/2 a?/z 2 - 27z A2 ( 1/2> -+
1/2 1/2 @12 G172 a1/2

24 m3
(1—-0)°
3The calculation can be further simplified by noticing that, from the periodicity imposed in the
extra space, the integral of a derivative of any function of y vanishes.
4In this way, we substitute A (t) with the two degrees of freedom ng (t) and ny/ (t). The
equations of motion of the effective four dimensional theory have thus to be supported by the

constraint ng/ao = n1/2/@1/2 - This relation cannot be obtained from the action (3.42), since it is
linked to the equation Ggs = 0 that has no counterpart in the four dimensional effective theory.

[Q2 (aomoaljy +arjpamap a5) — (2 agno + ad ;s naj2)] } ,
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where we used the relation (1.9) M3 = M3 (1 — Q2) /ms.

As we will discuss in more detail in the next section, in the low energy limit
the equality ai/2(t) = o ao(t) and the related one my/5(t) = Qong(t) hold. As
a consequence, the expansion rates of the two branes are identical and the above
action rewrites in the standard FRW form:

v 9 .'.:.‘ i L\ 2 | |
s:_%/dwsg[@ﬁ-i-(sﬂ , (5.49
2 n‘lna a a

where a3 =ag = Qg taiz , B=mnp = Ny .

From the effective action (3.42) we notice that the entire five dimensional system
can be expressed in terms of the physics that takes place on the boundaries at y = 0
and y = 1/2 of the extra space. Notice also that the last term in the action (3.42)
couples the metrics of the two walls.

Going back to the four-dimensional action (3.42), and including also matter on
the two walls, we obtain the equations of motion:

22 2 2 2
ag 1+ Q5 4mg 2 [ %12 2
= Q| = —-Q
ngad 3Mp T -ag @
:2
ay/9 14+Qf 4mj o [ a3 L
=0 et Q5 -5z ] > (3.44)
n§/2 a?/2 3 M (1- 93)2 a%/z 03

in addition to the relations which give energy conservation on the two branes, egs.
(3.9). We notice that, in the limit pg — 0, p1/2 — 0, the only solution of the above
equations is the static Randall-Sundrum solution a;/, = {Jyay. Moreover, one can
verify that eqs. (3.44) are equivalent to the equations (3.36) and (3.37) obtained
from the five dimensional theory.

3.3.3 FRW evolution at low energy

Before interpreting the four-dimensional effective theory shown above, we come back
to the static Randall-Sundrum case. We recall that in [9] the four-dimensional metric
Guw on both branes is defined as:

g/u/ - n(y)*zguu . (345)

The goal of this redefinition is to achieve Minkowski metric on both branes, in order
to gain a simple physical interpretation of the system. An analogous procedure has
to be applied also in the general case with matter on the two branes.

Generally speaking, multiplying the metric by an overall function f is not equiv-
alent to a change of the coordinate system. Thus, to have canonical normalization
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of the fields, the function f has to be absorbed by a redefinition of the fields them-
selves. In order to preserve the equations of motion of the fields, we see that we
cannot choose f to depend on the coordinates ¢ and z, but it can be at most a
function of y.

In analogy with what was done in the static case, we now wonder whether it is
possible to rewrite the first four components of the five-dimensional metric in the
form:

Guv (t: y) = f (y) Juv (t) ) (3.46)

with g, of the standard FRW form diag(1, —a*, —a*,—a?). This requires the ratio
n/a to be independent on y, that is a'/a = n'/n for every value of y. From the
“jump conditions” (3.34) we see that this implies p+p = 0 and, consequently, p = 0
on the two branes. In other words, the above factorization is possible only if the
two branes contain exclusively cosmological constants (in particular this is the case
for the static Randall-Sundrum solution).

Anyhow, it is natural to expect that condition (3.46) is approximately recovered
when the matter on the two branes has a sufficiently low energy density. This can
be understood from the results of the previous sections. From egs. (3.36) and (3.37)
we have:

1%
%p _ Q2 12mo M2 Qg i (3.47)
a? 0 1-— Q2 '

L Tomg a3 P12

If py and pi, are sufficiently small, the scale factors of the two branes are (approx-
imately) proportional® by the constant factor Q. Since n(y,t) = A(t)a(y, t),
we have also nyi/; (t) = Qono (t). In particular, the ratio n/a is (approximately)
independent on y .

In this low-energy limit, we can thus define the four-dimensional effective theory
just as in the static Randall-Sundrum model. First, we can choose the time coordi-
nate so that ng and 7,y are simultaneously time-independent. This is equivalent to
setting A(t) = Ao/a1/2(t), where Ag is an arbitrary factor. Then, we recover eq.(3.46)
with:

FO) =X Q7% F(1/2)=2X5,  a=X7"Qa0 = Aglays . (3.48)

We can now use the freedom to fix the time coordinate, and choose a particular
value of Ag. Choosing A\g = )y we recover, in the limit pg, p1/2 — 0, the static

5Notice that this relation holds exactly in the static Randall-Sundrum regime.
8From eqs. (3.32), (3.36), and (3.37), it is indeed possible to show that, in the low energy limit,
the quantity n'/n — a’/a is of the same order as a2/ (Q0a0) — 1.
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Randall-Sundrum solutions as presented in [9]. With this choice, the scale factor of
the effective metrics reads @ = ap = Q5" a/e.

We can identify the five-dimensional quantities with those measured at low en-
ergy in our brane:

o the fields must be redefined by a factor {2. So, for instance, the observed
density is pyjp = Q5 p s2- On the other brane the canonically normalized
density reads: pp = po -

e the total four dimensional effective action (3.42) acquires the form of the stan-
dard FRW action in terms of the scale factor @, see eq. (3.43).

e The Hubble parameter of the low energy theory is given by a/@. From both
eq. (3.36) and eq. (3.37) we get the standard evolution law:

2
H? = (9> ~ - jp (o + Prjz) (3.49)
while from egs. (3.9) we recover
jo+ 3= (p+5) =0,
= pot+pi, P=Do+Dhye - (3.50)

ey

Some considerations are in order. First, we notice that at low energy, from
the point of view of observers on both branes, the effective theory leads exactly to
a standard four-dimensional FRW Universe. This follows from the fact that the
standard Friedmann law is recovered, and that the energy densities on both branes
scale with the same Hubble parameter. In particular, for what concerns observers
on our brane, the matter on the positive tension brane is regarded as dark matter
[15] that would completely escape any direct experimental detection (apart of course
from its gravitational interactions). The gravitational effect of the matter on the
brane placed at y = 0 is not suppressed by powers of (), as it is the case for py/, .
Since the only natural mass scale of the model is the Planck scale, pg must hence
be fine-tuned to small values not to conflict with observations.

Then, in order to put quantitative limits on the validity of the low energy theory,
we rewrite eq. (3.47) in terms of the observed matter densities:”

1 — _ P
Aty Q2 10 M3 TeV? (3.51)
a0 e '
10 TeV*

"We use mg ~ M ~ Mp and Mp Qo ~ TeV, in the spirit of the original Randall-Sundrum
paper.
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We see that the low energy approximation is valid as long as the observed matter
densities satisfy the bounds:

po < 10M2TeV® , pyjp < 10 TeV*. (3.52)

Finally, we notice that the Planck mass that governs the expansion law of the Uni-
verse in the low energy regime is exactly the same (1.9) one that appears in low
energy effective theory, and therefore in the expression of the Newton law at dis-

tances that are large with respect to AdS radius mg*.

3.3.4 Corrections to Standard Cosmology at high energy

We now focus on the equations of motion when the low-energy conditions (3.52)
are not fulfilled anymore. From what we said in the previous sections, it is clear
that in this regime it is not possible any longer to have a simple interpretation of
the effective four dimensional action in terms of observable quantities. However,
this is not important, because we make measurements only today, in the low-energy
limit. So, it is legitimate to study the evolution of the system at high energy (egs.
(3.9), (3.36), and (3.37)), and then make contact with the quantities that we observe
today.®

We keep the previous definitions of p;, §;, Mp, and the choice A = Q/a1/2, s0
that egs.(3.37) and (3.9) read:

(9-1@)2 _ 1 Pet P~ maear (%~ %) oy (3.53)
/2 3 M3 1= (" — Dty ’

. G

Pip + 3 ﬁ (12 +Prij2) =0 . (3.54)

With our ansatz for A(t), the warp factor on our brane is constant. So, all the Euler-
Lagrange equations on our brane are the same at high and low energy (i.e., they
remain exactly identical to the standard equations of physics in four dimensions).
In order to close the differential system, we need an equation of evolution for py. It
is obtained from egs. (3.9), (3.36), and (3.37):

L ) e L 1At B
a2 2(12mo M3 245 — o) 2(12mo M? 25 = 1)
(3.55)

8This remark should be important, for instance, when looking at cosmological perturbations
in the early Universe. In this section, we derive only the evolution equations of the homogeneous
background. When studying the perturbations, one should keep in mind that a full five-dimensional
description is required at high energy.
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The differences between the evolution equations for py and pi/2 (i-e., the terms in
the parentheses) show explicitly that, at high energy, py is not equivalent to dark
matter in our brane. This difference is due to the fact that in the high energy regime
the cosmic time on our brane is not any more proportional to the time on the other
brane. 7

Since it is assumed that mg ~ M ~ Mp and that Q¢ Mp ~ TeV , the above
equations can be cast in the more transparent form:

. 2 — _ _ _ -1
ai/2 P1/2 Po Po Po
= 1+ - - , 3.56
<a1/2> 3M5 ( P1/2 10 Mg TeV2) ( 10 Mg TeVz) ( )

3(po + Do) ) (1 32 +Dup2) ) -
10M3 TeV? — py) 2(10 TeV* — p1j2)

- 6.7'.1/2 — _
=322 1-
Po a2 (Po + Bo) ( 2

Before analyzing the possible cosmological implications of the nonstandard evo-
lution equations (3.56), we notice that that the above equations are singular for
Go = 12Q%me M3/ (1 — Q2). The origin of this singularity can be traced back in
equation (3.51), where we can see that, if pp gets the above value, the scale factor
a2 on our brane vanishes, as a consequence of the presence of a horizon in this
coordinate system.

We finally discuss the implications of the equations derived in this subsection for
the cosmological evolution in the early Universe.

In the regime of validity of the low-energy effective theory, gy behaves as ordinary
dark matter in our brane. So, the constraints that we usually have for dark matter
apply to it. Although in principle we cannot say much about the physics on the 0-
brane (in particular “non-standard” equations of state may be expected), we assume
for simplicity that p, can be decomposed into a constant term gy (wp = —1), plus
matter p* and radiation pj components (with wo =0,1/3).

For what concerns the constant component, the sum of the cosmological terms -
py and ,5’1\/2 is bounded by the current value of the critical density, which is of order
10712 M%. So, the amount of fine-tuning required here is the same as in usual
4-dimensional theories:

P+ Blys = Py + Qg plyp <1075 M. (3.57)

The matter and radiation components also have to be fine-tuned to small values.
The best current constraint on the radiation density pj comes from nucleosynthesis:
since the observed abundances of light elements are only compatible with an effective
number of neutrinos Ngsr = 3 & 1, we see that pj is bounded by the density of one
family of relativistic neutrinos. The matter density g7* is obviously bounded by the
value of the critical density today. So, in the five-dimensional theory, both pj and
P have to be fine-tuned to ~ Qf of , and ~ Qg pf},, while one may naively expect
po ~ p1/2 in the early Universe.
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Without the knowledge of the behavior of the Randall-Sundrum model at high
energy, one may have hoped that corrections to the standard Friedmann law could
have solved this problem. For example, starting from py ~ pi/2 at high energy,
the equations of motion of the system could have naturally led to py < p1/p at
temperatures of the order of the one at which primordial nucleosynthesis occurred.
This analysis shows that this is not the case. Indeed, let us assume p;/5 ~ pg at the
nucleosynthesis scale (p; ~ MeV?) and let us consider the behavior of the system
when it was close to the natural cut-off py/a ~ TeV*. Significant deviations from
the standard evolution are expected if at that epoch the energy g, was almost of
order M2 TeV? [see eq. (3.56)]. Going backwards in time, gy can increase relatively
to p12 if wg > wy/2. However, assuming radiation domination on our brane above
the nucleosynthesis scale, the above requirement can be met only for wy > 2, which
does not seem to be a realistic possibility.
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Fermion preheating
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The inflationary paradigm is nowadays widely accepted as one of the fundamen-
tal ingredients for our understanding of the early Universe. Inflation is a period
of accelerated (usually quasi exponential) expansion of the physical lenghts in the
Universe, that provides an elegant solution to the horizon, the flatness and the
monopole problems. In the original proposal by Guth [68], such accelerated expan-
sion was achieved by assuming that a scalar field was sitting in a false vacuum state
in the primordial Universe. The potential energy of the scalar field was responsible
for the quasi exponential (de Sitter) expansion of our Universe. Inflation ended via
a first order phase transition, with the inflaton tunneling to its true vacuum. It was
soon realized that such scenario was not viable, because the bubbles of true vacuum
did not coalesce [69, 70]. The new inflationary scenario proposed by Linde [71] and
by Albrecht and Steinhardt [72] does overcome these difficulties. In this scenario,
the scalar field condensate is not trapped in a local minimum of its potential, but
slowly rolls along its potential, before reaching its minimum and starting oscillating
about it. During the slow roll period, the potential energy of the scalar is responsible
for the de Sitter expansion of the Universe. Provided the potential is flat enough, in-
flation leads to the solution of the horizon, the flatness and the monopole problems.
In the subsequent 20 years, several models have been proposed in the context of
the slow roll scenario (for a review, see [73]), either with phenomenological or with
theoretical motivations. In many cases supersymmetry is a relevant feature of these
models. One reason is that, in order to solve the electroweak hierarchy problem,
low energy supersymmetry is often invoked, and this implies high energy supersym-
metry. Moreover, supersymmetric potentials have usually several flat directions,
whose flatness is not spoiled by radiative corrections, these properties being very
welcome in inflationary models. Since in the analysis of such models gravity plays
a crucial role, global supersymmetry is not a good approximation, and supergravity
(or superstring) embeddings are often considered in inflationary model building.

The inflationary stage leaves the Universe in an extremely cold and homogeneous
state, very different from the standard Hot Big Bang conditions. Therefore, a large
amount of work has been devoted to the analysis of the origin of the inhomogeneities
and of the matter and radiation we observe today. For what concerns the former,
it was realized soon after the proposal of ref. [68] that the de Sitter expansion can
provide the seeds of the structures we observe today by amplification of the quantum
fluctuation of the inflaton field [74, 75, 76, 77]. In this respect, these predictions
show a very good agreement with the recent observation [78] of the acoustic peaks
in the fluctuations of the cosmic microwave background radiation, that represents
the most relevant observational success of the inflationary paradigm. The process
by which the matter and the radiation we observe today is created after the end of
inflation is known as reheating. During reheating, the inflaton condensate (that is
the only form of energy present in the Universe after all quanta of matter have been
inflated away) decays into light particles, that form the primordial radiation bath.
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One important quantity in the analysis of reheating is the reheating temperature,
that is the temperature of the radiation bath when it starts dominating the energy
density of the Universe. In the context of supergravity models with gravity medi-
ated supersymmetry breaking, the parameters of the inflationary sector have to be
constrained in order to avoid an excessive reheating temperature. In fact, this would
lead to an overproduction of gravitinos in the primordial thermal bath. Gravitinos
can easily overclose the Universe (if they are stable) or (if they decay) spoil the suc-
cessful predictions of primordial nucleosynthesis through photodissociation of the
light elements, thus giving rise to the so called gravitino problem [79, 80, 81, 82]
(notice however that gravitinos could also have beneficial effects on cosmology, see
for instance [83, 84, 85]). To avoid these effects, the reheating temperature after
inflation cannot be larger than ~ 10° GeV.

Such a low reheating temperature, however, leads to further cosmological prob-
lems, the most striking being probably the impossibility of obtaining a successful
GUT baryogenesis [60]. This simple mechanism of baryogenesis relies on the pres-
ence in the radiation bath of some particles with baryon number violating interac-
tions. The mass of such particles is of the order of the GUT scale ~ 10 GeV.
Therefore, due to Boltzmann suppression, a thermal bath whose highest temper-
ature is of the order of ~ 10° GeV will not generate them, thus rendering GUT
baryogenesis unviable.

For several years reheating was thought to proceed exclusively via perturbative
decay of the single quanta of inflaton during the stage of oscillations of the scalar
condensate [71, 86, 87]. Later on it was realized that the coherent oscillation of the
inflaton about the minimum of its potential can lead to a resonant amplification of
the quantum fluctuations of other fields, thus strongly modifying the dynamics of
reheating. This nonperturbative phenomenon has been called preheating [88], since
it is usually followed by a stage of perturbative decay of the inflaton that completes
the reheating (there is however some exception, see [89]).

The first analyses of this phenomenon were performed in [90, 91}, but its full rel-
evance was appreciated only a few years later in the case of production of scalars [88,
92, 58]. In these works it was realized that preheating of bosons is characterized by a
very efficient and explosive creation, even when single particle decay is kinematically
forbidden. This is due to the coherent oscillations of the inflaton condensate, which
allow stimulated particle production into energy bands with very large occupation
numbers.

Less attention was initially paid to non-perturbative production of fermions,
because the efficiency of this process seemed to be strongly limited by Pauli blocking,
which does not allow for occupation numbers larger than one. However, also this
phenomenon turned out to be very relevant. Indeed, if one only considers the most
natural couplings ¢ and ¢%x? of the inflaton ¢ to fermions v or to bosons
x, fermionic production occurs in a mass range much broader than the one for
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heavy bosons. This can “compensate” the limit imposed by Pauli blocking, as
the first complete numerical calculation [93] of the inflaton decay into heavy (spin
1/2) fermions during preheating showed. The analysis of the same system was also
performed analytically in refs. [94, 95].°

The features of particle production at preheating were soon applied to several
phenomenological issues. In particular, the possibility to produce extremely massive
particles even with a relatively low reheating temperature was exploited to revive
GUT baryogenesis [105, 106], to produce superheavy dark matter [107] (possibly
responsible for the observed flux of ultra high energy cosmic rays [108, 109]), to
look at leptogenesis from a different perspective [93, 110], or to consider the pos-
sible impact of fermions produced during inflation on the microwave background
anisotropies and on the large scale structure [111].

On the other hand, nonperturbative production of matter after inflation has
also originated new difficulties for models embedded in supergravity or superstring
scenarios. In particular, the results of fermion production at preheating were soon
applied to non-thermal gravitino production, since the equations for the different
components of the gravitino field can be reduced to the one of a spin 1/2 particle.
As had also been realized in [112, 113], the transverse gravitino component is al-
ways very weakly coupled to the background, so that the production of its quanta
is negligible. However, the works [114, 115] studied also nonthermal creation of the
longitudinal component, arguing that it easily exceeds the limits imposed by pri-
mordial nucleosynthesis. The analyses of [114, 115] were extended in [116, 117] and
followed by several related works [118, 119, 120, 121, 122, 123].

Later on, it was noticed that explicit calculations of the amount of gravitinos pro-
duced at preheating were performed only in models without supersymmetry break-
ing in the vacuum. Therefore, the conclusions about the production of longitudinal
gravitinos in these models could be somehow misleading, since there is no longitudi-
nal gravitino in the vacuum of the theory, but only the superpartner of the inflaton,
the inflatino. Thus, one might wonder whether preheating could have actually led to
a production of harmless inflatinos rather than of dangerous gravitinos. In order to
discriminate between inflatino and gravitino production it was necessary to consider
more realistic schemes. The simplest possibility was to consider two separate sec-
tors, one of which drives inflation, while the second is responsible for supersymmetry
breaking today. This analysis was performed in refs. [124, 125], and has actually
shown that gravitino production is significantly reduced if the sector responsible for
supersymmetry breaking today is coupled only gravitationally to the one responsible
for inflation.

From the above discussion it is clear that the effects of preheating have deeply
modified our understanding of the history of the very early Universe. More generi-

9 Among other interesting studies on production of fermions (not all of them related to preheat-
ing) we mention [96, 97, 98, 99, 100, 101, 94, 102, 89, 103, 104].
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cally, the dynamics of quantum systems in a classical background plays a key role
in the study of the origin of the Universe as we observe it now, since also the
inhomogeneities observed today were originated by the amplification of quantum
fluctuations. In the following chapters we will describe some of the properties of
such dynamics, referring in particular to refs. {95, 124, 125]. In chapter 4 we will
analyze the general formalism for particle production in quantum systems of coupled
bosonic and fermionic fields in a time—dependent background. Then we will move to
the more specific case of preheating of fermion fields. In chapter 5 we will present an
analytical study of fermion preheating after chaotic inflation. In chapter 6, finally,
we will apply the formulae for a system of coupled fermions in a classical background
to the case of gravitino production in a two-fields model where supersymmetry is
broken gravitationally in the vacuum.



Chapter 4

Coupled fields in external
background

The analysis of quantized systems in a classical background can be very useful for the
study of various phenomena that arise in quantum theories, as for example particle
production. The study of matter in external electromagnetic fields [126] dates back
to the first years of quantum field theory [127, 128]. For what concerns gravity [129],
the semiclassical approximation is often compulsory, due to the lack of a consistent
quantum theory. Despite of this, it has been very successful in describing phenomena
as particle creation from black holes [130] or the generation of the perturbations in
the inflationary Universe [131].

In this chapter, we provide a formalism for the quantization of coupled fields in a
classical background. This will allow us to analyze the production of quanta of mat-
ter induced by the time variation of the background, with a clear definition of the
occupation numbers for the physical eigenstates. In the one field case, the procedure
is well established [132, 96]. One first quantizes the system and expands the canoni-
cal hamiltonian in the creation and annihilation operators of the field. The evolution
of the background creates a mixing between the positive and negative energy solu-
tions of the field equation, which has the consequence of driving the hamiltonian
non diagonal, even if one takes it to be diagonal at initial time. A diagonal form is
achieved through a (time dependent) redefinition of the creation/annihilation oper-
ators of the fields. The two coefficients of this diagonalization are called Bogolyubov
coefficients and can be easily related to the occupation number for the quantized
field. In this chapter we will generalize this procedure to systems of more than
one field, both in the bosonic and in the fermionic case. By choosing a suitable
expansion of the fields we can repeat each step of the above analysis replacing the
Bogolyubov coefficients with two matrices & and . We can obtain a system of first
order differential equations for these matrices. The expression for the occupation
numbers is an easy generalization of the one valid in the one field case.

55
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The chapter is divided into two sections, the first of which is devoted to bosons,
while the second one to fermions. This second section is further divided into two
parts. In the first one we consider the case in which the fermionic fields are coupled
only through the “mass matrix”, while in the second one we consider a more general
system which will be necessary for the applications described in chapter 6.

4.1 System of coupled bosonic fields

In this section we consider the coupled system of N real bosonic fields {¢;} in a
FRW background described by the action

S = % / d*z\/—g [guu Bui O — M3 ;i bj + £R¢i¢,~] : (4.1)

We use conformal time 7, such that the metric and the Ricci scalar are g,, =
a?(n) diag(l, —1, —1, —1) and R = — 6 a"/a?, where a is the scale factor of the Uni-
verse and prime denotes derivative with respect to the conformal time 7 (summation
over repeated indices is understood). The last term describes a possible non-minimal
coupling (¢ # 0) of the scalar fields to gravity.

The (symmetric) mass matrix m;; is assumed to be a function of some external
(background) fields. The only assumption that we do on these external fields is
that they are constant (or better, adiabatically evolving) at the very beginning'
and at the very end of the evolution of the system. In these regimes, the matrix
mfj becomes also constant and the fields which diagonalize it become free fields,
whose masses are precisely given by the eigenvalues of mfj. However, during the
evolution the different entries of mfj are allowed to vary, and the (time dependent)
eigenstates of m?j are fields whose masses change in time. These masses can change
nonadiabatically and this will in general lead to particle production. The aim of
this section is to give a precise definition of the occupation number and to provide
the formalism to calculate it.

It is most convenient to consider the “comoving” fields ¢; = a¢;. For these
fields, the above action (4.1) can be rewritten as®

1
S = -2—/d4a: [0 0 — i Q3 04] 5

QL = d¥mi+ (—A + % 6¢— 1)) Sij » (4.2)

'We require an initial stage of adiabatic evolution to consistently define vanishing occupation
numbers for the bosons at initial time.

2We do not necessarily need a cosmological motivation for the analysis that we perform in the
rest of this section. The action (4.2) could indeed also arise in flat space, with a non-diagonal Q,
coming from some general interactions between the bosons ¢; and some other background fields.
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where A is the laplacian operator. We can also write the hamiltonian of the system,
which, in terms of the fields ¢; and their conjugate momenta

0L

I, = B , = ¢}, (4.3)

reads
1
H= /d?’x?-[ = -2—/ x (I T + o3 Q05) - (4.4)

The frequency matrix Q%j which enters in the above expressions is in general
time dependent and non-diagonal. At any given time, it can be diagonalized by an
orthogonal matrix C

CT ()@ (n)C(n) =w’(n)  diagonal. (4.5)

We denote by ¢ = CT ¢ the bosonic fields in the basis in which the frequency matrix
is diagonal. We also denote by w? the (i, i)-th entry of the diagonal matrix w?. The
set of w; represents the energies of the (time dependent) physical eigenstates of the
system ;.

We now show that the occupation numbers of these fields can be defined and
computed by generalizing the usual techniques based on Bogolyubov coefficients
valid in the one field case. The first step to do in this direction is to consider a basis
for annihilation/creation operators {a;} and {a!} and to perform the decompositions

o) = Co [ S [ hn o) o 09+ 15 ) of )]

I (z) = Ch/kééﬁﬁ[&kx%kmﬁ%00+wf“*ﬁ%(maz&ﬂ. (4.6)

The reason why we explicitly factorized the matrix C in these decompositions will
be soon clear. Due to the fact that the fields are coupled together, the matrices h
and h are generically expected to be non diagonal.

To quantize the system, we impose the equal time commutation relations

[ (m, %), TL; (1, ¥)] = 16° (x — ¥) 85 (4.7)
for the conjugate fields, and 4
[ai (k) ’a;r_ (P)] =6 (k - p) & (4.8)

for the annihilation/creation operators. We can satisfy both these relations requiring

[h Bt — e BT] =6y, (4.9)

ij
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as it can be easily checked from the decomposition (4.6).
From the action (4.2), one deduces the second order equations of motion

o + ng 0;=0. (4.10)

However, one can achieve a system of only first order equations by setting some
additional relations between the conjugate fields ¢; and Il;. We want these relations
to generalize the one which is usually taken in the one field case, see i.e. [132]. Also
we want them to allow a rewriting of the hamiltonian (4.4) in a simple form. The
sets of fields where this generalization is most evident is given by {¢;, II; = (CT IT),}.
These fields are decomposed as in egs. (4.6), only without the C' matrix before the
integrals. In terms of these fields, the hamiltonian (4.4) reads

1/~ & s
H= /d3x 3 (Hi I + w? @; goi) , (4.11)
since the frequency w is diagonal. One is thus led to impose the conditions®
et ST wdn ot [Twdn’
h = ————a+——90,
V3w V2w P
B 2 —i [Mwdn i [Twdny!
o= —1° ot 28 B (4.13)

V2w V2w

which are indeed a natural generalization of the one which is usually taken in the one
field case [132]. For one field, o and [ are numbers, called Bogolyubov coefficients.
In our case they are N x N matrices. The analysis of the system is in our case
simplified if we consider, rather then the matrices oo and f, the combinations

A
B = é/l'wing, (4.14)

N 7
eszd'r]a,

The above condition (4.9) is satisfied if the matrices A and B obey the relations

AAt—-B*BT = 1,
AB' - B*AT = 0. (4.15)

These relations can be imposed at the initial time, and are preserved by the evolu-

tion, as we shortly discuss. In the one field case, they reduce to the usual condition
lof? = 181> = [AP - [BI = 1.

3Equations (4.13) are written in matrix notation. In general, for any function f(w;) and any
matrix M, we use the notation

(Flw)M)y; = Flw) Mg, (M f(w)); = Mi; f(wg). (4.12)
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As we have said, the evolution of the system can be described by two sets of first
order differential equations. The first set is obtained by inserting egs. (4.6) into the
definition of the conjugate momenta, eq. (4.3)

W=h-Th, (4.16)
where we have defined the matrix | | |
r=ctc’, T1f=-r. (4.17)
The second set of equations is obtained by rewriting egs. (4.10) in terms of ¢; and II;
W=-Th-wh. (4.18)

We can now use relations (4.13) and decouple the terms proportional to A" and
B', so to arrive to the final result

!
A = —iwA+—B-TA-JB,
2w
!
B = 2 A+iwB-JA-1IB, (4.19)
2w
where we have defined the matrices

L

J = (fr\/_ 7 f) JT=17. (4.20)

In the one field case, I = J = I' = 0, and the above system reduces to the
equations for the two Bogolyubov coefficients

I w' a2t 7w dn I__"_")I_ —2i [Twdny
of = —e [Twdn' g B=5—e Jlwdr o (4.21)
already discussed in the previous literature (see i.e. [132]). In the one field case the
only source of nonadiabaticity is related to a rapid change of the only frequency
w(n), so that the system is said to evolve adiabatically as long as the condition
w' < w? is fulfilled. In the present case, there are more sources of nonadiabaticity,
related to the fact that now the frequency 2;; is a N x N matrix. This is associated
with the presence of nonvanishing matrices I and J in the equations of motion for
the matrices A and B.
It is straightforward to show that the above equations (4.19) preserve the nor-
malization conditions (4.15), due to the properties I” = —I and J* = J.
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In the one field case, the number of particles is given by the square of the modulus
of the second Bogolyubov coefficient, |3|2. We now show that also in the multi-field
case it is generally related to the matrix B. To see this, we decompose also the
energy density operator H (see eq. (4.4)) in the basis of annihilation and creation

operaters
Ea T a
H = (a;f, a]-) ( = 55;; ) ( a}in ) (4.22)

From eqs. (4.6), one sees that the N x N matrices £ and F which enter in this
decomposition are given by

£ = %(ﬁ*ﬁ+h”w2h),

F o= 5 (Ah+rTwh). (4.23)

1
2

We can now generalize the procedure adopted in the one field case. The matrix
that appears in eq. (4.22) can be put in diagonal form in a basis of new (time
dependent) annihilation /creation operators. Only when the hamiltonian is diagonal,
each pair of (redefined) operators can be associated to a physical particle, and used
to compute the corresponding occupation number. The explicit computation gives

£ = - (A'wA+B'wB),
(

F =

NI RN Nl

ATwB+BTwA), (4.24)
so that expression (4.22) evaluates to

tea(B B DER)(E) w

In terms of the redefined annihilation/creation operators*

(2)-G0GE) e

“The relation (4.28) is inverted through the matrix
At —-Bt
( __BT AT ) ’ (426)

as can be easily checked from conditions (4.15). We thus see that also the relations

Q0
prl

AtA-B'B=1, A'B*-B'A*=0 ‘ (4.27)

hold for the whole evolution.
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the hamiltonian is thus diagonal (remember that in eq. (4.5) w was defined to
be diagonal), and, after normal ordering®, it simply reads

H= / d®k w; a a;. (4.29)

We choose at initial time A(n) = 1, B(no) = 0, so that conditions (4.15)
are fulfilled. We also choose the initial state of the theory to be annihilated by
the operators a;. At any generic time, the occupation number of the i-th bosonic
eigenstate is given by (notice that in this expression we do not sum over 1)

N; (n) = (&} &) = (B*B"),,. (4.30)

In the one field case the above relation reduces to the usual N = |3]2. We see
that our choices correspond to an initial vanishing occupation number for all the
bosonic fields.

4.2 System of coupled fermionic fields

We now consider a system of coupled fermions. We divide this analysis into two
subsections. The first of them extends to the fermionic case the results obtained for
bosons in the previous section. Because of the repeated analogies, the discussion is
here shorter than the above one, where more details can be found. In the second
subsection we study a more general system of equations, which can be also relevant
when the background is not constant. In particular, these can be important for
cosmology, where the expansion of the Universe provides a preferred direction in
time.

4.2.1 The simpler case

Let us consider the coupled system of N Dirac fields {1;} in a FRW background
described by the action

The gamma matrices 7# in FRW geometry are related to those (7*) in flat space by
At = g~ #, where a (n) is the scale factor of the Universe. As before, conformal
time 7 is used, and the matrix M;; is considered to be a function of some external
background fields. The requirement that the action is hermitean forces M to be

5Notice that the normal ordering prescription depends on time through the time-dependence of
the operators &, a' [96].
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hermitean as well. For simplicity we will also take it to be real. We also require M;;
to be constant (better, adiabatically evolving) at very early and late times, but we
do not make any other assumption on its evolution.

After the redefinitions X; = ¢; a®/2, m = a M, the action (4.31) reads

S = / d*z Xz [’L 5z'j ’)’u 8M — mij] Xj , : (432)
leading to the equations of motion (in matrix notation)

(79, —m)X =0. (4.33)

The on shell canonical hamiltonian is instead
H= /d3x?{ - /d3xX [—iv'8;+m] X . (4.34)

In analogy with the bosonic case, we expand the fermionic eigenstates into a
basis of creation/annihilation operators

X; (2) = Cyj / @’k glkx UJ’“(k n) af (k) + V7% (k, n)b;“k(—k)], (4.35)

3/2
where the matrix C' is employed into the diagonalization of the mass matrix m
p=CTmC, u diagonal, C orthogonal. (4.36)
We also define the matrix
r=ctc’, 17=-T, (4.37)
and the “generalized spinors”

Uy U” v VY
7 £ oab, 7 \/, /5 Y, T 7 Vr

with ¢, = ( : ) and ¥_ = ( ’ ) eigenvectors of the helicity operator o - v/|v| (we
assume the momentum to be directed along the third axis).

Let us consider a set of fields X; which satisfy the above equations (4.33). Due
to the fact that the matrix m;; is real and symmetric, then also the fields X¢ =

C XT (where C is the charge conjugation matrix®) are solutions of (4.33).7 As a

Ud = (4.38)

bl

8In our computations, we take

0 _ 1 0 i_ 0 g; N 0.2 0 iO'Q
Y _< 0 -1 ’ Y= —0; 0 I C—Z’)’ v = 'iUz 0 ? (439)
where o are the Pauli matrices.
"This may allow one to consistently define the Majorana condition X = X;.
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consequence, one can impose the relation Uy (k) = C VT (=k), or, using egs. (4.38),
Ve=UX, Vo=-Uj. (4.40)

Therefore, we have only to deal with the U, matrices. Remembering that the
momentum k is along the third axis, their equations of motion read

UL =—ikUs FipUs—TUs. (4.41)

The quantization of the system requires

(Xt %), X[ (0, 3)} = 6 (x—y) 8y,
{ari (k) ) alj (p)} = 5(3) (k - p) 51"5 5123' ’
{bri0), 0l (P)} = 6® (k= p) 6. (1.42)

We can simultaneously satisfy these conditions by setting®

U Ul +UrUT = 21,
v Ul —vrul o= . (4.43)

These conditions can be imposed at initial time, and are preserved by the evolution
of the system (as it is easily checked from egs. (4.41)).
We define the diagonal matrix®

= k% + p2, (4.44)

and we further expand

U+ _ (1.*..’[{)1/2 —zf"wd'q ( _ﬁ)1/2eif"wdﬂ'5
w w
- <1+g>1/2 (1_5)1/23’
U, = (1=8)" i oo (14 BY P irraar g
(-8 e )
= (1- ZJ) A+( ) B, (4.45)

8Notice that all this analysis generalizes the one made in the one field case. For the latter, we
follow [96].

9This definition is meaningful, since both w and p are diagonal matrices. More simply, it can
be understood as a relation between their eigenvalues. See also the footnote containing eq. (4.12)
for some clarification about our notation.
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so that the above conditions (4.43) are satisfied if the matrices A and B obey the
relations

AA'+B*BT = 1,
AB'—B*AT = 0.  (446)

In the one field case, o and B are numbers, called Bogolyubov coefficients. In our
case they are NV x N matrices. The matrices A and B are introduced since their
equations of motion assume a simpler form than the corresponding ones for o and
B. In the one field case, the above relations (4.46) reduce to the usual condition
o + 18] = 1.

For fermions, the evolution equations for the matrices A and B can be obtained
in a more straightforward way with respect to the bosonic case. This is because
eqgs. (4.41) are already two sets of first order differential equations. Using the above
decomposition (4.45), after some algebra we arrive to the final expressions

e i — _hE
A = [—iw I]A+{ 2w2+J}B,
ik .

where we have defined the matrices

= (108 () (-8 ()"

20J = (1+g)1/2r(1-ﬁ)1/2—(1—3)1/2r(1+ﬁ)1/2, JT = J.(4.48)

w W w

One can easily verify that these equations preserve the above conditions (4.46).
In the case of only one field, I = J = 0 holds, and egs. (4.47) simplify to

' pk 24 [Mwdny / pk —2i [Twdny
a«——z—-(;iezf B, ,3~2—a)26 Ta. (4.49)

To properly define and compute the occupation number for the fermionic eigen-
states, as before we expand the energy density operator # (eq. (4.34)) in the basis
of annihilation and creation operators

gi .7:1. a
H = (a}, bj) ( P “g} ) (le ) (4.50)
7 m m

Using egs. (4.35) and (4.38), we find

£l = %[Ujum-Uqu_+U:kU_+U;rkU+],
F) = %[—UEMU_—UZMU++UIkU+—UTkU_}, (4.51)
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while egs. (4.45) lead to

£ = AlwA-B'wB,
F = —-ATwB-BTwA. (4.52)

We have thus

%z(af,b)<_/§T f;)(‘g _Ow>(g ‘A‘B**)(;). (4.53)

In terms of the redefined annihilation/creation operators®

(=G

the hamiltonian is thus diagonal, and, after normal ordering, it simply reads
H= /d3kwi (afa:+515:). (4.57)

We choose at initial time A(n) = 1, B(m) = 0, so that conditions (4.46) are
fulfilled. We also choose the vacuum state of the theory to be annihilated by the
initial annihilation operators a; and b;. At any given time, the occupation number
of the i-th fermionic eigenstate is given by (notice that in this expression we do not
sum over 1)

Ni (n) = (a] ;) = (b b:) = (B*B") (4.58)

27

In the one field case the above relation reduces to the usual N = |3[2. We see
that our choices correspond to an initial vanishing occupation number for all the
fermionic fields. Notice that particles and antiparticles have the same energy and are
produced in the same amount, due to the reality conditions that we have imposed
on the system. Finally, we observe that the first of conditions (4.46) guarantees that
Pauli blocking is always satisfied.

10The matrix in eq. (4.56) is unitary, so its inverse one is precisely given by
At Bt .
( _BT AT ) ’ (454)
as can be easily checked from conditions (4.46). We thus see that also the relations

AtA+B'B=1, A'B*-BtA*=0 (4.55)

hold for the whole evolution.
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4.2.2 A more general case

We now consider a more general action for the coupled system of NV fermionic fields.
For future convenience, here we switch to the signature —, +, +, + for the Minkowski
metric, and we then work with the gamma matrices

_ i1 0 L 0 —ig;
7°=< 0 il)’ 7:(2'03- 0 ) (4.59)
in flat space.

By a suitable conformal rescaling of the fermionic fields and of their masses as
we did before eq. (4.32), we can again remove the scale factor of the Universe from
the kinetic term for the fermions. However, we are now interested in a more generic
system, so that we consider, instead of (4.32), the action

S = / d'z Xm [0+ NOi+ M| X,, (4.60)

where N and M are two N x N matrices of the form
N=N+7"N,, M=M+3M,. (4.61)

The matrices N and M are assumed to be functions of some external fields.
We consider a situation in which these fields evolve in time. This time dependence
justifies the general form for the action that we want to discuss. As we will see in
chapter 6, this analysis can have relevance for cosmology, where the expansion of
the Universe provides a natural direction for time. However, the system (4.60) could
also arise in flat space from some general interactions between the fermions X; and
other background fields. As in the previous analyses, our main goal is to discuss the
definition of the occupation number of the physical eigenstates of the system, and
to provide the formalism to calculate it.

We list here our assumptions on the matrices M and NN. First, we require them to
change adiabatically at initial times, so to consistently define the initial occupation
numbers. Then, we assume M; — constant, My — 0, N — 1 at late times, so
to recover a system of “standard” decoupled particles at the end (indeed, one can
choose the basis of fields X; such that the matrix M is diagonal at the end). The
requirement of an hermitean action translates into the conditions

Ni]\ = N,;, M1 - MI y MQ = —MZT . (462)

For simplicity, we will only consider real matrices, so that Ny, INs and M; are required
to be symmetric, while M, antisymmetric. Finally, we impose an additional condi-
tion, which is that the kinetic term for the fermions “squares” to the D’Alambertian
operator 0. If we take the equations of motion following from (4.60),

[7°0 +¥ N&;+ M| X =0, (4.63)
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and we multiply them on the left by [7°8y + 7 N 9; — M], we get

{6 = NTN &+ M'M +7° 7 (N) & +
-7 (BoM)+ (¥ NM—-M#%N) 8} X=0. (4.64)

We thus require NT N = 1, that is
N2+ N}=1, [N, Ng]=0. (4.65)

Our strategy is to reduce this problem to the one we have already discussed.
That is, we perform some redefinitions of the fields to put the action (4.60) into the
form (4.32), where we perform the canonical quantization of the system in the way
described in the previous subsection. The first of these redefinitions strongly relies
on the above conditions (4.65). If N is a unitary matrix, we can find a hermitean
matrix ® such that

N =exp(22%°), T =0. (4.66)
Due to the properties of the 4° matrix, this amounts to

cos (2®) = Ny, sin (2®) = N,. (4.67)

After the redefinition X = exp(—#%° ®)X, the equations of motions (4.63) acquire
the form

(Woaoﬂf‘y"kﬁM)X:o, (4.68)

where we have expanded the fermions into plane waves X;(n, k) = ¢*** X;(n) and
introduced the new “mass matrix”

~

M = exp(7°®) [M +7°0] exp (—7° @)
= M, +75°M,. (4.69)

Notice that the two matrices M; and M, are symmetric and antisymmetric, respec-
tively. This means that, in the one field case, one recovers the standard equation

(7° 80 +i7 ki +m) X =0 (4.70)

for spin 1/2 fermions.
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We have to perform a further redefinition of the fields.!! Setting X = L=, we
have

7 [L (3° 8o + 17 ki) + My L+7° (60+M2) L]E:o. (4.72)

The matrix L can be chosen such that (8 + M3)L = 0. In particular, since M,
is antisymmetric and real, L can be taken orthogonal. The equations of motion for
the fields = can be thus cast in the form

(7°ao+miki+LTM1L):~:=o, (4.73)

that is with the identity matrix multiplying the term which depends on the momen-
tum and without any 4° dependence in the “mass” matrix.

These equations (and the respective action for the fields =;) are exactly of the
form considered in the previous subsection, so that we can apply the quantization
procedure discussed there. As before, the procedure is to canonically define the
hamiltonian starting from the set of fields = and to expand it in a basis of cre-
ation/annihilation operators. The occupation numbers are then calculated after the
diagonalization of the hamiltonian. It is possible to show that this procedure can
be carried out starting from any of the basis for the fermionic fields, once the hamil-
tonian has been canonically defined in the basis =. One can indeed explicitly verify
that these calculations lead to the same results for the occupation numbers of the

physical eigenstates.
We thus have

H

= [if?iki—}—LTMlL] ==X [zﬁiki—}—]\%] b's

= X [z ke e T2 M T ‘I’] X, (4.74)
depending on which basis we work. In particular, when working with the X; or
the X; fields, the explicit knowledge of the matrix L is not needed. We present
here the computation in the initial basis X;, which we found more convenient in the

numerical calculations for the application that will presented in chapter 6. In this
basis, the hamiltonian (4.74) has the form

H:X[W@N+M1+fy°z\2r2}x, (4.75)

1 Contrarily to naive expectations, the combination
cos ® Gy cos ® +sin ® Gy sin @ C M, (4.71)

can be non vanishing at late times, even if the matrix IV is approaching 1. This occurs for
example in the application that we discuss in chapter 6. If in that case we canonically defined the
hamiltonian H starting with the fields X, the term (4.71) would give H a contribution proportional
to 4° which does not vanish at late times. The procedure described in the text removes this problem.
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where the matrices M; and Ms can be obtained from eqs. (4.74) and (4.69). At the
end of the evolution, we simply have M. +7° M, = M, diagonal, so that one recovers
the “standard” hamiltonian for a system of N decoupled fermions whose masses
coincide with the ones of the equations of motion (which also become “standard”).

To analyze the system during the evolution, we instead decompose the spinors
X; as in eqs. (4.35) and (4.38).'* Taking the third ceordinate along the momentum
k, the equations of motion (4.63) read:

U,=Fi(My F iM)Us —ik (N1 £ i No) Uz . (4.77)
It is straightforward to check that they preserve the conditions
v, Ul +urvt=2-1, ULUL=UUT, (4.78)

which ensure the consistency of the canonical quantization.
We then expand the hamiltonian formally as in eq. (4.50), where now the £ and
F matrices read

E = ULE[N +iNoJU_ + UL [Ny — i N, U, +
"|‘U_1;_ [Ml - ZMQ] U+ + U_T_ {*Ml - ZMQ] U_,
F = ULk[-No —iNJUp +UTk[-Ny + i N, U- +
+UT [0+ M| U+ UT [Nty + 88| U (4.79)
We notice the properties

=€, F'=F. (4.80)

The matrix entering in eq. (4.50) is hermitian, and can be diagonalized by a
unitary matrix C

C H (k,n)C" = Hy(k,n) diagonal (4.81)

such that the energy density is

%:(aﬂb)'ﬁ(;)z(a+,B)Hd<;). (4.82)

12The charge conjugation matrix now reads C' = —3° 42, so that conditions (4.40) are replaced by
V-

Vi =—-iU*, =iU”. (4.76)
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A first step in this diagonalization can be made by noticing that the matrix H
can be rewritten as

H=U"HyU, (4.83)
with .
— _( =My +iM; EN;+ikN,
HOZ(kNl—z'kNg M, + i M, ) (4.84)
hermitean and
1 U, —iU*
U= 7 ( U itz ) (4.85)

unitary, as it follows from egs. (4.78).

We are not able to provide general analytical formulae for the diagonalization of
the remaining matrix Hy. This diagonalization can however be performed numer-
ically. In addition, some important conclusions can be drawn from the properties
of the matrix . Due to the relations (4.80), one can show (i.e. by counting the
number of independent equations that must be satisfied) that the matrix C entering
in eq. (4.81) can be of the form

(T T
c:(i e F) (4.86)

(where I and J are N x N matrices). Unitarity of C' requires
It+JgJt=1, 1nJj=Jrr. (4.87)

By explicitly performing the product (4.81) one realizes that the eigenvalues of
the hamiltonian occur in pairs, and that Hy is of the form
diag(wi, wy, ..., Wy, —w1, —Wa, ..., —wn). The eigenstates corresponding to each
couple + w; are interpreted as particle and antiparticle states with the same energy.
Finally, it is possible to show that particles and antiparticles are produced in the
same amount. Defining the vacuum state to be annihilated by the initial annihilation
operators a; and b;, we have indeed (we remind that in this expression we do not
sum over i)
N; () = (8} &) = (bl bi) = (J.J1),,.

? 2%

(4.88)

We assume that no fermionic particles are present at initial time 7. In our for-
malism, this is equivalent to requiring J(77) = 0. Notice also that the unitarity
condition (4.87) ensures that the Pauli principle is always fulfilled.



Chapter 5

Fermion preheating after chaotic
inflation

As a first application of the formulae we have shown in the previous chapter, we
present here an analytical study of the preheating of massive fermions after chaotic
inflation.

We will consider the case of a single fermion field, therefore the formalism we
will use is the well known one for the analysis of systems with one single quantum
field in a classical background. In particular, we will refer to the system considered
in ref. [93], where the first full numerical analysis of preheating of massive fermions
after chaotic inflation in an expanding Universe was performed. This will allow us
to give an analytical confirmation to the results of production of massive fermions
in the expanding Universe.

In the next section we will describe the system we are going to analyze. We
consider creation of very massive particles right after chaotic inflation. The coupling
of the fermions to the oscillating inflaton gives them a time-dependent mass, that will
lead to a nonadiabatical change of the frequency of the fermions and their consequent
creation. In case of very massive fermions, the nonadiabaticity condition can be
satisfied only at the moments when their total mass vanishes, and the production
occurs at discrete intervals, until the amplitude of the inflaton oscillations become
too small for the total fermionic mass to vanish.

In section 5.2 we derive analytical formulae for the spectra of the fermions after a
generic production. This derivation (made in close analogy with the one of ref. [58]
for the bosonic case) exploits the fact that the production occurs in very short
intervals around the zeros of the total fermionic mass: the calculation is made
possible by the fact that the occupation number can be considered as constant
outside these short periods, and that the expansion of the Universe can be neglected
inside them. As a result, the only physical quantities relevant for the creation are
the time derivative ¢’ of the inflaton field and the value of the scale factor a of the

71



72 Chapter 5. Fermion preheating after chaotic inflation

Universe at each production.

In section 5.3 we consider the production in a non-expanding Universe. In this
case the analytical formulae simplify considerably. In particular, they show the
presence of resonance bands which are anyhow limited by Pauli blocking.

In section 5.4, the more interesting case of production in an expanding Universe
is described. The creation is now very different with respect to the previous case.
The expansion removes the resonance bands and the production (almost) saturates
a Fermi sphere up to a maximal momentum. In section 5.4 the total energy density
px of produced fermions is also calculated. To this aim, a proper average of the
analytical formulae has to be done, exploiting the fact that the expansion of the
Universe gives the production a stochastic character. In this way one can get a
“mean” function that interpolates very well between the maxima and the minima
of the spectra of produced particles. The results agree extremely well with the ones
of ref. [93] and extend their range of validity, showing that px actually decreases for
relatively small values of the mass mx of the fermions.

All this analysis neglects the backreaction of the produced fermions on the evo-
lution of the inflaton field and of the scale factor. Despite the difficulty of a more
complete treatment, backreaction effects can be understood at least in the Hartree
approximation. This was also done numerically in ref. [93]. In section 5.5 we see that
the analytical formulae here provided allow to understand the effects of backreaction
observed in the numerical simulations.

5.1 Production of fermions at preheating

The system we analyze is the one considered in section 4.2.1 in the simpler case of
only one fermion field. The equation of motion for the canonically normalized field
X thus reads

(i7" G —m(n) X =0. (5.1)

Fermion production is possible if the effective mass m (1) varies nonadiabatically
in function of the conformal time 1. This may happen during the coherent oscilla-
tions of the inflaton ¢ at reheating in presence of a Yukawa interaction $X X, such
that the total effective mass is given by

m(n) = a(n) (mx + g¢(n)) - (5.2)

From eqgs. (4.49) and (4.58) it is immediate to see that in the single field case
nonadiabaticity (and therefore variation in time of the occupation number) occurs
whenever m’ > m?. If the “bare” mass myx is very high, non-adiabaticity can be
achieved if the Yukawa interaction is sufficiently strong to make the total mass (5.2)
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vanish. Fermions are then created whenever the inflaton field crosses the value
¢« = —mx/g.

We will study the production after chaotic inflation, that is while the inflaton
field coherently oscillates about the minimum of the potential

1 4 N

Vo= §m§ ¢*, mg =108 GeV. , (5.3)

If one neglects the backreaction of the created particles (this effect will be considered

in the last part of this chapter), then, after few oscillations, the inflaton evolves
according to the formula

~ Mpl COs (m¢t)

s = T2

where t is the physical time. The presence of the ¢ at the denominator of eq. (5.4)
shows the damping of the oscillations due to the expansion of the Universe. Thus,
it follows that there exists a final time after which |¢| < mx /g and the total mass
no longer vanishes, so that the production ends.

To proceed with our analysis, we decompose the fermion field X as in eq. (4.35).
In the single field case, the equations of motion (4.41) for the Us functions read

(5.4)

UL(n) = =ik Ug(n) Fim Ux(n), (5.5)

which can be decoupled into
Ul + [wp£im/| U =0, W) =k*+m”. (5.6)

For the present analysis it will be more useful to solve the equations of motion
(5.5) and (5.6) for U.. rather than the ones for o and 5. Then, once Us.. (n) are given,
it will be straightforward to compute the Bogolyubov coeflicients using eq. (4.45).

5.2 Analytical evaluation of the occupation num-
ber

In this section we calculate analytically the evolution of the Bogolyubov coefficients
during the oscillations of the inflaton field after chaotic inflation.

In this derivation, we exploit the fact that, in the regime of very massive fermions
we are interested in, the creation occurs only for very short intervals about the points
é. = —mx /g where the total fermionic mass (cfr. eq. (5.2)) vanishes. As the perfect
agreement with the numerical results will confirm, this consideration allows one to
treat the fermionic production with the same formalism adopted in the bosonic
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case [58]. While far from the zeros of the total mass m the Bogolyubov coefficients
are essentially constant, whenever ¢ crosses ¢, a sudden variation occurs. Since
the interval of production is very narrow, one can safely neglect the expansion of
the Universe during the production and also linearize the function ¢(n) ~ ¢, +
¢'(n:) (n — m). As a consequence, the frequency w defined in eq. (5.6) acquires
the form -

w2 k4 a? (n) ¢ (n) (n—m.)?, (5.7)

and the whole calculation strongly resembles the one for scattering through a qua-
dratic potential.

The use of this formalism is very well established in case of production of
bosons [58]. For what concerns fermions, it has been recently adopted in ref. [111]
for the study of the production during inflation. Fermionic production during in-
flation is possible only if the coefficient g of the Yukawa interaction has opposite
sign with respect to the inflaton field during inflation, or the total mass (5.2) would
never vanish.! If this is the case, it is possible to choose the value of g such that the
production occurs only once during inflation, while during reheating |¢| is always
too small for having creation. The present derivation is strongly inspired by this
work. However, we are interested in couplings for which the production occurs sev-
eral times during reheating, and it is not at all guaranteed a priori that an analytical
approximation may work also in this case. The following analysis not only positively
answers to this question, but also provides very simple formulae valid for arbitrary
number of productions.

We decompose the functions U (1) as in eq. (4.45)

U, = a1+ ) e g (1-2) o,
. m\ /2 i [" wy dn ( m\1/2 —i [Twg dn
U. = 5(1+Z) e +a(1 w) e . (5.8)

When ¢ is not very close to ¢., the adiabaticity condition w’ < w? holds and
eqs. (5.8) are a solution to the equations of motion (5.6) and (5.5), with o and S
constant. In general o and S will be functions of 1, but in most of the evolution
(whenever the adiabaticity condition holds) it is a very good approximation to treat
the coefficients o and 8 as constant.

As we have said, these coefficients undergo a sudden change whenever ¢ crosses ¢,
and then they stabilize to new (almost) constant values. Our aim is to find the values
at the end of the variation in terms of the ones prior to it.

LOf course this constraint does not apply to our case, since the inflaton field changes sign after
each half oscillation.
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We have not specified the lower limit of the integrals appearing in egs. (5.8). For
present convenience we choose it to be the time 7,; of the first production (that is
when ¢ = ¢, for the first time).

Let us consider the evolution equation (5.6) near the point 7,;. Since for high
mass mx the fermionic production is limited to a very short interval, one can neglect
the expansion of the Universe during it and write the equation for ¢(n) in a linearized
form. We can thus write

do

mn) = eagdy (M=),  aa=a), ga=—- . (59
AL

Following the notation of [111], we define

k
— = /g|d . |a (0 — 71) - 5.10
p T T 9| Pl (1 — me) (5.10)

In terms of these new quantities, egs. (5.6) can be rewritten as (in this chapter
dot will denote derivative with respect to 7)?

il

Us+ (PP Fi+72)Us=0. (5.12)

The point 7,; is thus mapped into the origin of 7 and the region of asymptotic
adiabaticity is at large |7].
In the asymptotic solutions (5.8) we can see the behaviors
(1 + m) v — £
w Vor’
1/2
(1-2)" — V2,

w
. P 27 iip2/2 P2 in2
ot [Twkdn (___) et 2w (5.13)
p
for 7 — +o0, and
1/2
(1+2)"7 — V2,
w
(-2)" —
w —\/57 ’
+ip?/2
e:{:z’f”wkdﬂ —_ (_2_7) e:FiTz/Ze:Fipz/z;’ (5.14)

2For the production at the moment 7,,,, when the total mass vanishes for the n-th time, eq. (5.12)
must be replaced by

Us + (p* £ isign (¢),) +72) Ux = 0. (5.11)

The effect of this replacement on the final results is reported below.
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for 7 = —oo0.
Equations (5.12) are solved [111] by parabolic cylinder functions Dj(z) [133].
More precisely, the combination that matches the asymptotic solution (5.8) at 7 —
.3
—o0 is

=i /2 in2 2

1+ip?/2 2
~B7V2 (—p—) G e BD | o (= (1+14)7) . (5.15)
V2

In the above expression, a~ and S~ denote the values of the Bogolyubov co-
efficients before ¢ crosses ¢,, while the functions which multiply them are ezact
solutions of the linearized equation (5.12). The analytical approximation consists in
considering them as solutions of the true evolution equation (5.6). For 7 — o0 it is
convenient to rewrite the solution (5.15) in terms of two different parabolic cylinder
functions

—mp?/4 2 2 2
- —p?)2 _ /mpe™ ™ TE S SR Ny A\
Uy(r) = [,8 e +a Wf(l—ip2/2)e 1Tz T

D 1+ip?/2 e P 5
S (2) " e i ) +

_ {5"__-—-——‘/7?1’ e s

oY,

€

In P;—) _ a—e—ﬂ-pz/Q %
I (1+ 1p?/2)

—ip?/2
P eip2/4e_7rp2/8 e — 7). ;
x {ﬁ ( ﬁ) Digejal(1 — ) >} (5.16)

In this new expression, the functions within curly brackets correspond to the
asymptotic forms at 7 = oo of the two terms of the solution (5.8). The coefficients
in front of them give thus the new Bogolyubov coeflicients in terms of the old ones.

All this derivation can be easily generalized when productions at successive zeros
of the total mass m are considered. The only important points are

(i) different values of the scale factor a and of the derivative ¢’ at different n.;’s,

(i) a change of sign in the transfer matrix (the one which gives the new coefficients
in terms of the old ones) whenever ¢ crosses ¢, from below to above (cfr. the
footnote just before eq. (5.12)), and

3We deal only with the function u., since the study of u_ leads to the same results.
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(iii) the phase e**/“s% which accumulates between 7,; and the 7,; considered.

Putting all this together, one has

Cp, . Fn Hn Opn—
(2) - (% %)(5) e
H, +— -—-H, . fornm even, (5.17)

where o, 5, are the values of the Bogolyubov coeflicients after the n-th production,
and where

B, = /1= e elCi+ereTind /-5 In (/2)483/2)
H, = 6—-7rp,21/2 e2if,;7:ln Wy dn’ an|2 + IHn|2 =1, (5.18)

We remind that p, = k/+1/9|d.,|Cxn.

If one starts with no fermions at the beginning, one may choose g = 1, 8y = 0.
Then, applying successive times the “transfer” matrix (5.17), one can get the spec-
trum of fermions produced after every 7.,.

Of course our calculation reproduces the result

Ny = |Bi? = e ™ (5.19)

reported in ref. [111].

We numerically integrated the evolution equations for U., ¢, and the scale
factor a.* The results obtained with the analytical expression (5.17) are always
in very good agreement with the numerical ones. Just to give a couple of examples,
we present here two cases at different regimes (we show them only with illustrative
purpose, and the values of the parameters chosen have no particular significance).
In figure 5.1 we present the spectrum of the fermions after two productions, that
is after one complete oscillation of the inflaton field. In analogy with the bosonic
case, we measure the strength of the coupling inflaton-fermions with the quantity
q = g° ¢35/ (4m3), where ¢g == 0.28Mp; is the value of the inflaton at the beginning
of reheating. In figure 5.1 we choose ¢ = 10%, while we fix the bare fermion mass to
be mx = 100m,. In figure 5.2 we show instead the resulting spectrum after seven
productions in the case ¢ = 104, mx = 4my.

5.3 Production in a non-expanding Universe

In the bosonic case, the study of the non-perturbative production in a non-expanding
Universe has proven very useful in understanding the effects of the production. It

4QOur starting point is at ¢(0) = 0.28Mpy, short after inflation, ¢'(0) = —0.15Mpym,, (as follows
from a numerical evaluation of the inflaton alone during inflation), and a(0) = 1.
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Figure 5.1: Spectrum of the fermions after two productions for ¢ = 108 and mx =
100 mg. The expansion of the Universe is taken into account.
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Figure 5.2: Spectrum of the fermions after seven productions for ¢ = 10* and
mx = 4my. The expansion of the Universe is taken into account.
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is shown in ref. [58] that the bosonic wave function satisfies the Mathieu equations,
whose solutions are characterized by resonance bands (in momentum space) of very
“explosive” and efficient production. It is then shown that, due to the expansion of
the Universe, modes of a given comoving momentum & cross several resonance bands
during the evolution. This gives the creation the stochastic character described in
the work [58]. In ref. [100] it is stated that an analogous behavior occurs also for -
fermions. The expansion is expected also in this case to spoil the clear picture of
distinct resonance bands. This fact may help the transfer of energy to fermions,
since the resonance bands in the fermionic case are anyhow limited by the Pauli
principle. The expansion allows thus new modes to be occupied, and the produc-
tion is no longer limited to the regions of resonance. In ref. [100] it is stated that
the production should then almost completely fill the whole Fermi sphere up to a
maximal momentum k... This behavior is confirmed by the numerical results of
the work [93]. In this section we will see that the analytical formulae derived in the
previous section can reproduce the resonance bands, while in the next one we will
discuss the effects of the expansion of the Universe.

Let us consider the matrices (we drop the index n in the matrix elements since
all the p,’s have now the same value p)

F G e~ e~
M = ( -G F* ) ; T1 = ( 0 eiﬁ‘f ) ) TQ = ( 0 67;193 ,(520)

with G = e~™"/2 and ¥/ = fn’?:' wgdn (F was defined in the previous section).
Without the expansion of the Universe, the inflaton field has the periodic
evolution

$( = 1) = o cos (mgn), (5.21)

and all the 9%/ (5.17) are hence sums of 97 and 93 (remember the 7,; are the moments
at which the total fermionic mass vanishes).
After the generic n-th complete oscillation one thus has

a e—io3" 0 k 1
( ﬁi” ) = ( 0 G2t ) ToMTT M - 'T2MTT1M< 0 ) (5.22)
2n 1

with the combination O = TyMTT, M repeated n times. ) )
One has thus simply to study the eigenvalue problem for O (notice det O = 1).
This operator has the form

A A B

O = ( __B* A* ) )

A = eri(ﬁfwg) + G2e—i(19§—7.9§) ’

B = FGe(PH9%) _ prgei(9-9) (5.23)

~and its eigenvalues are \;, = e*** with cos A = Re A.
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Rewriting the initial condition ( | ) in terms of the eigenvectors of O and sub-

stituting in formula (5.22), one gets the number of produced fermions
|BI” |BI”

N, = |Bul* = m sin? (nA) = A sin? (nA) (5.24)

after the complete n-th oscillation.
We notice the presence of the envelope function
B> _ _1-]AP

o 1— (Red)? 1-(Red)’

il

(5.25)

which modulates the oscillating function sin®*(nA).

With increasing n this last function oscillates very rapidly and can be at all
effects averaged to 1/2. One is thus left with the envelope function which shows the
presence of resonance bands. The resonance bands occur where A isreal and £ — 1.
It is easy to understand that their width exponentially decreases with increasing
momenta k. To see this, let us consider the behavior of £ at high momenta. In this
regime, the function A is given by

k

Vgl

where the phase ¢ 4 can be read from eq. (5.23). Near to the points where cos ¢4 = 1
the envelope function behaves like®

A~ (1—eT)e%4, p= (5.26)

1—(1—e ™) 1

E~ ~ :
1—(1—e) cos?ps €7 (1—cosga)+1

(5.27)

The width of the band can be defined as the distance between the two successive
points at which £ = 1/2. From the last expression it follows that the difference
between the phases of A in these two points is given by Aa = 2+/2e" ™", Since the
most rapidly varying term which contributes to the phase of A is (p?/ 2) log (p?/2),
the width of the band can be thus estimated to be ‘

02
Ap =~ pToz (07/2) e ™. (5.28)

We show in figure 5.3 the envelope of the produced fermions in a static Universe
for the parameters ¢ = 10° and mx = 100my. The peaks occur where A is real
and it is confirmed that their width decreases very rapidly at increasing momenta.
Due to the fact that the last peaks plotted are indeed very sharp, the resolution of
figure 5.3 does not allow to see their top at n; = 1.

5 A completely analogous behavior occurs where cos ¢4 =-1
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Figure 5.3: Envelope of the spectrum of the produced fermions in a static Universe.
The physical parameters are ¢ = 10° and my = 100 m.

5.4 Expansion taken into account

As stated in the previous section, the resonance bands disappear when the expansion
of the Universe is taken into account. In this section we will show how the occupation
number varies when a nonvanishing Hubble parameter is considered. As we have
seen in section 5.1, egs. (5.17) and (5.18) give a very good agreement with the
numerical results. On the other hand, the presence of phases in eq. (5.18) makes
the exact analytical treatment of the occupation number impossible. Now, the same
observation made in the bosonic case [58] turns very useful also to us: the phases
in eq. (5.18), when the expansion of the Universe is taken into account, are not
correlated among themselves. As a result, the final spectra present several high
frequency oscillations about some average function. The positions of the peaks of
these oscillations depend on the details of the phases. However, the “mean” function
can be easily understood. Our problem can be treated as one customary does when
dealing with the “random walk”. Imagine one has to calculate the quantity

S=|A+As+ Az + -+ A7, (5.29)

where the A; are complex numbers with random phases. The “random walk recipe”
indicates that the best estimation of the above quantity is achieved by summing the
squares of the terms A;, since the mixed products average to zero. The chaoticity
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of the final spectra for nj suggests that this may also be true in our case, and this
is confirmed by comparison with the numerical results.
With this method, egs. (5.17) and (5.18) turn into the much simpler relations

ol \ [ |F,? |Hn{2) (|Oln_112 \
( |Bnl? ) B ( |H,|?  |F)? By 2 ) ) (5.30)

where we remember
\Fnl2 —1— e P 7 IHniz — TP , IFn|2 + ‘HnIQ -1, (5.31)

Assuming no fermions in the initial state, and applying n times this formula, it
is easy to see that the occupation number after the n-th production is given by

Na(k) = -;— - %f[ (1 - 2e—"P?) . (5.32)

A similar result holds for preheating of bosons, cfr. [68] where the idea of av-
eraging on almost random phases was first introduced. In the bosonic case, one
can exploit the fact that, due to the high efficiency of the production, the occupa-
tion number after the (n -+ 1)-th creation is (almost) proportional to the occupation
number after the n-th one:

Ny (k) = (1 + 26“3) N, (), (5.33)

where the quantity &, is analogous to our parameter p,. This simplification is not
possible in our case, since the Pauli principle forbids IV, to be sufficiently high.
However our final result, eq. (5.32), is also cast in a very simple and immediate
form.

The validity of eq. (5.32) is confirmed by our numerical investigations, as we
show here in one particular case. In figure 5.4 we compare the behavior of the
“mean” function for the spectra with respect to the numerical one. We choose the
physical parameters to be ¢ = 10*, mx = 4my, and we look at the results after
the seventh production (this corresponds to the choices made in figure 5.2). We
see that the “mean” function interpolates very well between the maxima and the
minima of the numerical spectrum, and that it can indeed be considered as a very
good approximation of the actual result.

This is confirmed by figure 5.5, where we plot (for the same values adopted
in figure 5.4) the quantity nj k? rather than the occupation number alone. This
quantity is of more physical relevance when one is interested in the total energy
transferred to the fermions, since the total number density of produced fermions is
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Figure 5.4: Comparison between the numerical spectrum and the “mean” function
after seven productions for ¢ = 10* and myx = 4 m.

(apart from the dilution due to the expansion of the Universe, that will be considered
only in the final result)

2
Ny = P/dk k% ny . : (5.34)

As shown in the plot, the result for Nx in the numerical and in the approximated
case are in very good agreement.

After checking the validity of the approximation given by the “mean” function,
we adopt it to understand how the production scales when different values of the
parameters ¢ and my are considered.

Equation (5.32) allows us to give an analytical estimate of the total amount of
energy stored in the fermions after the n-th production, and in particular after that
the whole process of non-perturbative production has been completed. Notice that
all the dependence on the physical parameters is in the coefficients

kK
2 =
P np;)
where k is the comoving momentum, and the only part we have to determine are
the numbers

(5.35)

LA Y2y (5.36)

_2va 18 ()
‘zzz - _ﬂ__a’ (77*’5) ¢0
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Figure 5.5: As in figure 5.4, but with the quantity £*n; plotted.

Here, and in the following of this section, we express the dimensionful quantities in
units of my, the inflaton mass, apart from the inflaton field ¢ that is given in units
of M Pl-

We also introduce the ratio R = 2¢'/?/mx. This quantity is the most relevant,
since it determines the zeros of the total fermionic mass and thus the values of the
z’s. Indeed, from eq. (5.2) we see that the total mass vanishes for ¢. = —¢o/R. It
is convenient to study the production in terms of the two independent parameters
g and R (rather than ¢ and my) since, at fixed R, all the spectra are the same
provided we rescale k o< ¢'/* (cfr. eq. (5.36)).

One can now proceed in two different ways, and we devote the next two sub-
sections to each of them. First, one can evolve the equations for the inflaton field
alone and find numerically the values z; for given ¢ and R. Inserting these values in
eq. (5.32) one can get final values for the production which, as we have reported, are
very close to the numerical ones. This method allows to get results which average
the actual ones, and it has the advantage of being much more rapid than a full
numerical evolution.

Alternatively, one can proceed with a full analytical study in order to understand
the results given by the first semi-analytical method.
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Figure 5.6: Growth of Nx with the number of productions for ¢ = 10° and R = 30.

5.4.1 Semi-analytical results

In this subsection we evaluate the analytical formula (5.32), taking the coefficients
z; from a numerical evolution of the inflaton field. As we have said, this method
gives results which are very close to the numerical ones, due to the fact that the
“mean” function represents a very accurate averaging of the actual spectra of the
produced fermions.

The first thing worth noticing is that, for each choice of ¢ and R, the maximum z;
occurs at about half of the whole process of non-perturbative creation. It thus
follows that fermions of maximal comoving momenta will be mainly produced at
the half of the process. Our semi-analytical evaluations support this idea: the total
energy stored in the created fermions increases slowly during the second part of the
preheating. To see this, we show in figure 5.6 the numerical results for the quantity
Nx =2 [ dk k*ng/n? as function of the number of production. We fix the physical
parameters to be ¢ = 10° and R = 30, that is mx = 67m,. With this choice,
the total mass vanishes 10 times, and figure 5.5 shows the results after each step of
this production. We see indeed that the final productions are less efficient than the
previous ones.

From eq. (5.32) it is also possible to show the evolution of the averaged spectra
with the number of productions. We do this in figure 5.7. We choose the same
parameters as in figure 5.6, and we show the results after each complete oscillation
of the inflaton field (that is after each two productions). We observe that the
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Figure 5.7: Evolution of the spectrum of produced fermions with the number of
productions for ¢ = 10 and R = 30.

production rapidly approaches a step function in the momentum space, i.e. there
exists a maximum momentum below which Pauli blocking is saturated (notice that
the value 1/2 follows from the average understood in the “mean” function), and
above which n; ~ 0. The fact that the last productions do not contribute much to
the total energy is also confirmed.’

We now turn our attention to the total energy transferred to fermions after the
whole preheating process is completed. We fix the parameter g to the value 10°
and we investigate how the total integral Nx changes with different values for the
parameter R.” The results are shown in figure 5.8, for R ranging from 5 to 10000.
For the last value the total fermionic mass changes sign more than 3700 times and
a full numerical evaluation would appear very problematic. This can be done in our
case, thanks to the analytical expression (5.32) found, and our results extend the
validity region of the previous full numerical study [93].

In figure 5.8, the results of our semi-analytical method are also compared to the
full analytical ones of the next subsection. This comparison will be discussed below.

From the scaling of Nx with R just reported, it is now easy to estimate the
total energy transferred to fermions for generic values of ¢ and R. We are interested
in comparing our results to the numerical ones of the work [93]. To do so, we

8The behavior at small k is inessential, since, due to phase space suppression, this region does
not significantly contribute to the total energy.
7 As reported, the scaling of the final result with ¢ at fixed R is simply understood from eq. (5.36).
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consider the ratio between the energy density given to fermions and the one in the
inflaton field®

px  2mx / 5 2
= dk k*ng - ———— . 5.37
P 2 k mi P2 ( )

We present our results in figure 5.9. For comparison the numerical results of [93]
are reported in figure 5.10. Notice that to compare appropriately the two results,
the occupation numbers shown in fig. 5.9 should be divided by four, since in ref. [93]
the number of fermions per spin degree of freedom is computed.

In figure 5.9, for any fixed ¢, the greatest plotted value for mx corresponds to
the choice R = 5. We are not interested in extending this limit since we know
that for greater my (actually for values greater than the bound mx ~ ,/7/2) the
production suddenly stops. The smallest value plotted for mx (at any fixed value q)
corresponds instead to R = 10000, that is to considering more than 3700 productions
in the numerical evaluation of eq. (5.32).

8This ratio should be calculated at a time tenq at the end of preheating, when the total fermionic
mass stops vanishing. Thus in the denominator of eq. (5.37) the comoving momentum k should be
replaced by the physical one p = k/a, with a scale factor of the Universe at teng. Analogously, the
value ¢o of the beginning of reheating should be replaced by the one at tenq. However, both the
replacements cancel out in the ratio, since both p, and py redshift as energy densities of matter.
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Figure 5.9: Total final energy density produced (normalized to the inflaton one) for
different values of ¢ and mx. Analytical result.
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Figure 5.10: Total final energy density produced (normalized to the inflaton one)
for different values of ¢ and mx. Numerical result. From ref. [93].
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Our final values are in good agreement with the ones of figure 5.10 in the regime of
validity of the latter. The numerical results reported in that figure exhibit small fluc-
tuations about an average function px (m X) Our results give this average function.
This was expected, since the expression that we integrated, eq. (5.32), interpolates
between the maxima and the minima of the numerical spectra.

The numerical results of figure 5.10 have a smaller range of validity than the
ones of figure 5.9. This occurs because the numerical evolution of that work is
limited to the first 20 oscillations of the inflaton field, and so fermionic production
has not come to its end for small values of myx. We confirm that at high values
of mx (actually at small values of R for any given ¢) the production depends very
weakly on mx. In addition, our results show a decrease of the energy transferred to
fermions for smaller values of myx. This behavior will be explained in details in the
next subsection.

5.4.2 Analytical results

We want now to show that all the results presented in the previous section can be
also achieved with a full analytical study of eq. (5.32).

First of all, we have to estimate the quantities z; given in eq. (5.36). To do
this, it is more convenient to work in terms of the physical time ¢: after the first
few oscillations, the inflaton evolution is very well approximated by the expression
(remember ¢ is expressed in units of m;l, while ¢ in units of Mp;)

1 cos(t

p(t) ~ Tt

The scale factor of the Universe follows the “matter-domination” law, and it is well
approximated by a(t) = t¥/3.

The values t,; are determined by the condition of vanishing of the total mass of
the fermions, that is, by making use of eq. (5.38),

N’

(5.38)

Fui

RA’

where we remind R = (2,/g)/mx. The parameter A = (v/3m ¢g)~" is of order one
and will not play any special role in what follows. Notice that the last production
occurs at t ~ RA.

Hence, keeping only the dominant contribution to the derivative of ¢ with respect
to the physical time, we get the expression

2\/6 ( t*i 13 t* ?
2 v 1/3 44/3 _ ?
A R'7°A T ) 1 A (5.40)

cos (ty) = — (5.39)

AN
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where we can assume t,; >~ 7.

Equation (5.40) exhibits a very good agreement with the numerical evaluation
of the same quantity. It also shows that the maximal value for z; is reached at
t. = AR/2, that is, at half of the whole process of non-perturbative creation. This
was anticipated in the previous section, where we showed that the most of the
fermionic production occurs in the first part of preheating. '

Starting from eq. (5.40) we can also calculate the number density of produced
particles

Ny(q, ) = 7% / Ak k2N (k) | (5.41)

where N (k) is obtained from eq. (5.32) with n = np. = (RA)/T.
For R large enough, the product in eq. (5.32) can be written as the exponential
of an integral. Thus, we obtain

4/3 3/2
Ny = X (-2-‘-4-—-) ¢*/*RY? x (5.42)
,{2
1100 ()

4\
o RA 1
x/ drkk?{1—exp -~——/ dylog ,
0 ™ Jo
with the substitution kK =k - \/7r/ (244/3¢\/2R1/3).
The integral in dy which appears in eq. (5.42) cannot be calculated analytically.
Anyhow, we can approximate it by

1 2
dylog |1 —2 ———
/0 ylog exp BT

where g(x) is a function of order one that, for our purposes, can be approximated
by a constant c in the range 0.5 S¢S 1.
Hence, the integrand within curly brackets in eq. (5.42) rewrites

~ g (k) log ‘1 — 2e7 15| (5.43)

RA
e

1-— Il _ 26—-1.5112

(5.44)

In the large-R limit this function approximates a step function, which evaluates to

one for
[mlog2 2RAc
<k <4/l .
9RAc ~ °8 <7rlog 2 (5.45)

and to zero for the remaining values of «.
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Since the quantity (5.44) is proportional to the occupation number 7y, our an-
alytical calculation confirms the usual assumption that, after few oscillations, the
fermionic production saturates the Fermi sphere up to a given maximum momentum
kmax. This was also shown in the previous figure 5.7. However, the present deriva-
tion gives a different scaling for kmayx with respect to the previous literature [100, 93].
Indeed, from eq. (5.45) it follows (apart from proportionality factors)

q1/3 gl/2
kmax X 75 log | — |, (5.46)
my mx

which is however quite close to the result given in [93].

The origin of the above scaling can also be understood after some very simple
considerations. Indeed, from the analytical formula (5.30), we notice that at high
momenta k the occupation number is well approximated by

n

Na(k) = > e ¥/, (5.47)

i=1

where we remember z; oc ¢*/%at/?(n.)|¢' (n.) V2.

In this last equation, we replace all the parameters z; with a mean value z, so
that N, ~ nexp(—k?/ z%). The scaling of Z with the physical parameters ¢ and mx
follows from the scaling of all the z;. The maximal momentum kmax is thus expected
to scale as the quantity z;(logn)'/2. Considering now the evolution of the inflaton
field in physical time ¢, we notice that both the number n of productions and the
times t,; at which they occur are proportional to the parameter R = ¢'/2/(2mx).
Moreover, we see that the z;’s scale as :

g 112 s 1
1/4 1/4,2/3 1/4 p1/6
ziocq/a*i{al*z} ocq/t*izl—ﬁocq/R/. (5.48)
We thus get kmax o ¢'/*RS[log R]*/2, from which the scaling (5.46) simply
follows.
From egs. (5.42) and (5.45), we obtain the final expression for the number density
of the fermions created during the whole process

1 2A4/3 3/2 s 4Ac q1/2 3/2
S /ARY? |1 ). 4
Nx (o B) 32 ( 1.57 ) R [og (Wlog2 mxﬂ (5.49)

We can now go back to figure 5.8, where this last equation (called “analytical”
in the figure) is compared to the result with the semi-analytical method of the
previous subsection. In plotting eq. {5.49) we chose ¢ = 0.78 for the numerical
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factor involved. As we can see, the final results achieved with the two methods
are in very good agreement with each other, thus confirming the validity of the
formula (5.49).°

Rewriting eq. (5.49) in terms of ¢ and mx we can draw some conclusions. First,
apart from a logarithmic correction, the scaling of the total energy

44c ¢'/? 3/2
7 log 2 E;)]

px X mxNx qm}X/2 [log (

(5.50)

is linear in ¢, as expected [93]. The dependence of px on myx requires some more
care: the threshold value for mx is given by the condition R ~ 4, that is,*°
V4

(mx)m ~ 75 - (5.51)
For values of mx not much smaller than (mx)w, the total energy depends very
weakly on my, this result being in agreement with the numerical evaluation given
in [93]. On the other hand, for values of my much smaller than (mx ), the factor
m}Y/Q starts to dominate, and we expect it to determine the scaling of the total energy
when mx — 0.

5.5 Backreaction

The results presented so far have been achieved neglecting the backreaction of the
produced fermions on the evolution of the inflaton field and on the scale factor.
This is a common approximation, since a more complete treatment (especially an
analytical one) of the whole phenomenon is a very difficult task. However, the effects
of the backreaction can be understood to a good degree of accuracy in the Hartree
approximation.

For what concerns preheating of fermions, the Hartree approximation consists in
taking into account the term

g(XX) (5.52)

into the evolution equations for the inflaton and the scale factor. The equation for
the field ¢ thus reads (in physical time)

$+3Hp+mip+ g(XX)=0. (5.53)

®The small discrepancy between the two curves can be attributed to the fact that ¢ is not
exactly constant.

10The number 4 comes from the fact that the value of the inflaton at its first minimum is
¢ ~ —0.07 Mp;, while at beginning ¢o = 0.28 Mpy.
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Figure 5.11: Evolution of the inflaton condensate with backreaction effect in Hartree
approximation included (solid line) and neglected (dotted line). ¢ = 10'°. Numerical
result from ref. [93].

The study of this effect has been performed numerically in ref. [93], where it is
shown that backreaction starts to be important for ¢ > g, ~ 108 —10°. Figure 5.11
shows how the evolution of the inflaton field ¢ is modified when backreaction is
considered and ¢ is sufficiently high (¢ = 10% is used in figure 5.11). First, one
observes that the amplitude of the oscillations of the inflaton is very damped already
after the first production. This effect is the most obvious one, since the term (5.52)
takes into account the decay of the inflaton into fermion-antifermion pairs, while
in its absence the equation for ¢ considers only the damping due to the expansion
of the Universe. The second feature that emerges from the evolution performed in
ref. [93] is that at the beginning the field ¢ does not oscillate about the minimum of
the potential V = m3 ¢?/2, but about the point ¢. where the total fermionic mass
vanishes. Moreover, the frequency of these oscillations is higher than my.

These last two effects are due to the change in the effective potential for ¢
induced by the term (5.52), and disappear when the quantity (XX) is decreased by
the expansion of the Universe. Their net effect is to render the whole mechanism
of preheating more efficient, since the rise in the frequency of the oscillations of
¢ increases the number of productions of fermions. In ref. [93] it is indeed shown
that for ¢ = 108 the total production is about 5% larger than the one without
backreaction, while for ¢ = 10%° the increase is about 50%.

We now briefly study the evolution of the inflaton ¢ under eq. (5.53) by means
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of the analytical results presented above. We show that even a very approximate
analysis confirms the numerical result that indicates in g ~ 10® — 10° the threshold
above which backreaction should be considered.

To begin with, the term (5.52) needs to be normal ordered. Doing so, one
gets [93]

_ 2 ma ' k
XX:————/d3k 1+ ——|U_?). 5.54
(XX) = o | (14 T2 - I0-F) (554
In terms of the Bogolyubov coeflicients, this quantity evaluates to
= 4 am k .
XX)=—— [ &k [ 2—— +Re (a ~e21fwd">] . 5.55
(5X) = g [ 1P e (5:59

We see that (X X) vanishes for 8 = 0. This is obvious, since backreaction starts
only after fermions are produced. Some approximations can render eq. (5.55) more
manageable. First, we notice that the oscillating term in the exponential averages
to very small values the integral of the second term in square brackets. Second, we
see that k < |am| where B is significantly different from zero. From both these
considerations, the integrand in eq. (5.55) can be approximated (up to the sign
of m) by the occupation number |3|?, so that the whole effect is (approximatively)
proportional to the number of produced fermions.

The numerical results of ref. [93] show that, for the values of ¢ for which the
backreaction is to be considered, its effects can be seen already in the first oscillation
of the inflaton field. Since we are only interested in estimating the order of magnitude
of g, we thus concentrate on the first oscillation of ¢, neglecting the expansion of
the Universe in this short interval.

With all these approximations, eq. (5.53) rewrites

' +y+ 10725t — 0, (5.56)
Im|
where we have rescaled y = ¢/¢o and we remind that the time is given in units
of myt.

This equation is very similar to the one obtained in the bosonic case [58]. The last
term changes sign each time m = 0 and, when sufficiently high, forces the inflaton
field to oscillate about the point ¢, at which the total fermionic mass vanishes. It
is also responsible for the increase of the frequency of the oscillations. To see this,
we assume that this term dominates over the second one of eq. (5.56) and we solve
it right after the first fermionic production at the time ¢,;. In the absence of the
second term, eq. (5.56) is obviously solved by a segment of parabola until the time
t = ta + 2|y (a)/(¢*/#107*%) at which m vanishes again and the last term of
eq. (5.56) changes sign. As long as the second term of eq. (5.56) can be neglected,
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the inflaton evolution proceeds along segments of parabola among successive zeros
of the mass m. The “time” duration of these segments is expected to be of the
same order of the first one, since the successive fermionic productions balance the
decrease of (X X) due to the expansion of the Universe.!!

The period of these oscillations can thus be roughly estimated to be T ~
2(t*2 - t*l). We see that, for ¢ 2 10° this period is smaller than the one that
the inflaton oscillations would have neglecting backreaction. Since this increase of
the frequency is the main responsible for the higher fermionic production, the result
gy ~ 10° can be considered our estimate for the value of ¢ above which backreaction
should be taken into account.

This result, although obtained with several approximations, is in agreement with
the numerical one of ref. [93].

'However, after the first part of the process, the production looses its efficiency and the expan-
sion of the Universe dominates. As we have said, the term (X X) can then be neglected and the
inflaton starts oscillating about the minimum of the tree level potential.






Chapter 6

Non-thermal production of
gravitinos

In this chapter the full formalism described in chapter 4 is applied to non-thermal
production of gravitinos in a system with two chiral superfields.

As discussed in the introduction to this part of the present work, the parameters
of the inflationary sector of supergravity theories have to be restricted in order to
avoid the thermal overproduction of gravitinos at reheating. These constraints, in
the case of models with gravity—mediated supersymmetry breaking, can be sum-
marized as an upper limit on the reheating temperature of the order of 10° GeV
(for a review, see [134]). More recently, it was shown that, during the stage of
coherent oscillations of the inflaton condensate right after inflation, preheating can
lead to an efficient nonthermal production of fermions [93]. In particular, it was ar-
gued [114, 115, 116, 117] that the nonthermal production of 1 /2-helicity component
of gravitinos can in some cases be much more efficient than the thermal one, thus
worsening the gravitino problem. However, the abundance of nonthermal gravitinos
was computed only in models with unbroken supersymmetry in the vacuum. As
a consequence, the results about the production of longitudinal gravitinos in these
models cannot be fully conclusive, since the spectrum of the theory in the vacuum
does not contain the longitudinal gravitino.

In order to have some more reliable estimate of the amount of gravitinos produced
at preheating, it is necessary to consider more realistic scenarios. The simplest
model one can assume consists of two separate sectors, with the first mimicking the
inflaton oscillations while the second breaks supersymmetry in the vacuum. In this
chapter we will we discuss the situation in which the two sectors communicate only
gravitationally.

This chapter is divided into six sections. In the first one we introduce all the
quantities relevant for the calculation. In section 6.2 we review the results about the
nonthermal production of gravitinos in models in which only one relevant superfield

97
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is considered, and we describe the motivations that led to carry out an analogous
analysis in a system with two superfields. In section 6.3 we then describe the model
that we are considering. We also discuss there the evolution of the scalar fields, which
constitute the external background for the fermionic fields. In section 6.4 we show
how to apply the formalism of chapter 4 to the calculation of the abundances of the
fermions of the theory. The results are presented in the two remaining subsections.
In section 6.5 we present analytical results in the case in which supersymmetry is
actually unbroken in the vacuum of the theory. We show that in this case, gravitinos
are only gravitationally (hence negligibly) produced. This consideration suggests
that in the class of models we are considering (i.e. with the two sectors coupled
only gravitationally) non-thermal gravitino production might be very inefficient in
the realistic situation in which the observable supersymmetry breaking (TeV scale)
is much smaller than the scale of inflation (103GeV). This is confirmed by the
numerical results presented in section 6.6, which show that gravitino production
indeed decreases as the size of supersymmetry breakdown becomes smaller.

6.1 Definitions

We write here the relevant equations of motion for the gravitino field and the
fermionic particles to which it is coupled. We follow the conventions of subsec-
tion 4.2.2, that are the same ones that are used in ref. [117]. The starting action is
the one of D = 4, N = 1 supergravity, with four fermion interactions omitted. For
simplicity, we do not consider any gauge multiplet. The lagrangian reads

_ 1 o
'L = ——2-M§R—g,-” (8, ¢) (0"d;) =V —
1 - 1 - 1 _
- §Mg¢ﬂR# + §m1/)uR’YW@/’uR+ §m*¢yL'YW¢uL -
_ g [ DX+ XD xg) — Y Xaxs — i X+
+ (2 i Bur 7" X Oui + YR UL+ h.c.) . (6.1)

The first line of eq. (6.1) concerns the boson fields. The first term is the standard
one of Einstein gravity, with Mp denoting the reduced! Planck mass (Mp = 2.4 -
108 GeV) and R the Ricci scalar. Conformal time 7 is used and the Minkowski
metric is taken with signature — 4+ ++. More explicitly, the metric and the vierbein
are given by guw = a(1) M eb, = a(n) 8b, where a is the scale factor of the Universe.
The matter content of the theory is given by some chiral complex multiplets formed
by (i, x;) and their conjugate (¢%, x). xi is a left handed field, while x* a right

INotice that in the present chapter we will make use of the reduced Planck mass Mp =
(CEge N)‘l, while in the previous one the Planck mass Mp; = G]'Vl/ % was used.
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handed one. The left and right projections are P, = (1 + 5)/2, Pr = (1 — 75)/2.
The gamma matrices in curved space vy are related to the ones in flat space 4 by the
relation v* = a~! ##, and the realization of the latter that we are using is given in
eq. (4.59). The Kéhler metric is the second derivative of the Kéhler potential

i 0 9
ST T
while the scalar potential V' is defined below.

The second line of eq. (6.1) contains the kinetic and the mass term for the
gravitino field. The first one is defined to be

R¥ = et eirPo Y5 Yv -Dp Yo (63)

(6.2)

where the covariant derivative
1
Dy, = ((a + ngm»ymn> 5 — ng) ¥y, (6.4)
contains the spin connection wj™ and the connection I'}, (Ymn = [Fm,¥n)/2)- The

mass parameter m is instead given by

K
2 M2

m=e*M W, (6.5)
and is related to the gravitino mass mg by
mg = |m| Mp2. (6.6)
We then find the kinetic and mass term for the chiral fermions. The first is
given by
1 1 ;
D;LXiE a‘l'—w Ymn 4M2{8K8¢J 8K8¢]}Xz+]-—‘ X u¢k
(6.7)

where TY* = ¢g=1.1 87 g/* is the Kihler connection. For what concerns the part of the
lagrangian (6.1) containing the fermion masses, we have defined

mt = D'm=3dm+ OKm,

2M2
D' Dim = (ai 52 87K> ~T¥m (6.8)

il

m¥
In compact notation, the scalar potential reads

= -3 Mg*Im|* +m; g~ m’ . (6.9)
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The last line of eq. (6.1) describes the interactions of the gravitino with the chiral
fields (i.e. with matter). The field vy, is defined to be

vEmxit@e) e’ - (610)

As discussed in refs. [116, 117], this combination of matter fields is the goldstino (ac-
tually its left-handed component) in a cosmological context, where supersymmetry
is broken both by the kinetic and the potential energies of the scalar fields. We work
in the unitary gauge, where the goldstino is gauged away to zero. We also Fourier
transform the fermion fields in the spatial direction, i.e. x(n, Z) = x(n)e!® *i.

The gravitino field has transversal and longitudinal components. To appreciate
their different behavior, one can introduce the projectors [117]

P = 3 (7 5k 7)),
(Pr); = 5%5 (3ki— % (k%)) (6.11)

where k; are the spatial components of the comoving momentum of the gravitino
(i.e. Opk; = 0) and k* = k; k;. These projectors are employed in the decomposition

?/}i = ’d}zT + (P’)’)i 0+ (Pk)z ki 1/% ) (6-12)

where 6 = ¥ 4,2 As it is discussed in detail in ref. [117], from the lagrangian (6.1)
one recovers four independent equations for the gravitino components. Two of them
are algebraic constraints which involve vy, k; 1;, and . We use them to eliminate the
first two combinations in favor of the last one. The other two are instead dynamical,
and can be written in the form

. =0
_ - a’y am _
[’Yoao-l-’l,")/ ki+~‘2——+@:| 3’ = 0, (6.14)
~ . o 4
(80—|—B+7Jf‘y’km°A>9————k2T ~ 0, (6.15)
aa
2Notice that
ki(Py), = 0, ¥ (Py), =1,
ki(Pk)i = 1, ﬁz(Pk)i_:O:
kil = 7'9f =0. (6.13)



6.2 Gravitino production in the case of one superfield 101

where

T = g/ (xi0d’ +x 0odi),

m = Pgm-+Pym*, |mPP=m'm,

A = é—(almﬁ“yoozg), Bz—%dﬁﬁﬂ%amﬁo(l+3ﬁ>,

o = 3M§(H2+|—j—\-n;—l—£>,

a = —M2 (3H2+2H)——M§g|m[2, @ =2a"1 8ym' . (6.16)

We use the “dot” notation f = a0 f. H = a/a is the Hubble expansion rate.

We notice that the transverse component of the gravitino, 17, is decoupled from
the longitudinal component and from matter, apart from gravitational effects due to
the expanding background. In particular, transverse gravitinos are produced only
gravitationally [114, 115, 116, 117, 112, 113], and for this reason we will not consider
this component any longer in the rest of this chapter.

We are thus left with the gravitino longitudinal component, rewritten in terms of
#, and the matter fields. In case of only one chiral supermultiplet the combination
T defined above is proportional to the goldstino, and thus vanishes in the unitary
gauge. This case will be discussed in the next subsection. In the more general case
of N chiral superfields, we have (always in the unitary gauge) N — 1 non vanishing
independent fermionic chiral fields, and one should go into a basis orthogonal to the
goldstino. The equations of motion for all these fields can be of course deduced from
the initial lagrangian (6.1). If only two superfields are present, one is just left with
the matter field Y defined above.

6.2 Gravitino production in the case of one su-
perfield

The case of systems where the only one chiral superfield plays a relevant role was
discussed in detail in refs. [114, 115, 116]. In this case, the equation of motion for
the longitudinal component of the gravitino reads

A o e
[7080—1—703—%17% (——1-~—7°~—2-)] =0. (6.17)
o o
The presence in the equation of motion of some terms proportional to #° (be-

sides the time derivative 4° ;) shows that the field 6 is not canonically normal-
ized. Canonical normalization can be achieved by means of the redefinition (see also
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eq. (6.43) below)

217 k; ~
L Sy (6.18)
(O{ C1'3)1/2
n the case of systems containing only one chiral superfield, the relation o +a =
o2 holds. Therefore we can find a function ¢ such that ‘
o o .
Y5092 270 (6.19)
o o
The equation of motion for the canonically normalized longitudinal gravitino thus
reads

("yoao-kif“yikie”o“’-kaM(;) 0 = 0,

M; = [527’]\/[—}%+-‘;—’ (%%ﬂtff%ﬂ . (6.20)

To get fully canonical kinetic term, we have to further redefine the field 4 as
f=eT%4. (6.21)
Hence, the equation of motion for the longitudinal gravitino gets the standard form

(’7080+’L;)/zk1+0,m9) 920,

4
me = Mj + —‘;f- . (6.22)

The effective mass my is time-dependent. As discussed in chapter 4, a time
dependence of the effective mass leads to the production of quanta of longitudinal
gravitinos. Notice that in this case the situation is slightly different from the one
described in the previous chapter, since the effective mass of 6 generically never
happens to vanish. Nevertheless the Fermi sphere is expected to be almost saturated
up to some maximum value of the comoving momentum Ky, From the discussion
carried out in the previous chapter we can estimate kmez ~ /0o (amg). These
estimates are confirmed by the numerical analysis performed in [116].

From egs. (6.16), (6.19) and (6.20) it is apparent that, whereas M; vanishes in the
limit Mp — o0, 8 ¢ does not. This means that the effective, time-dependent mass of
the longitudinal component of the gravitino will be nonvanishing also in the globally
supersymmetric limit. In this limit, due to the equivalence theorem [135, 114, 116,
118], the longitudinal component of the gravitino is identified with the goldstino of
the globally supersymmetric theory, that is spontaneously broken by the inflaton
potential and kinetic energy. If the theory contains only one chiral supermultiplet,
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the goldstino will be necessarily the inflatino, that is the superpartner of the inflaton
field. As discussed in ref. [116], gravitino production should thus be rather regarded
as inflatino production in the globally supersymmetric theory.

It is interesting to consider simple models such as the ones described by the
superpotentials W = M, ®?/2 (that leads to a quadratic potential in the limit of
global supersymmetry) or W = +/A /3 (quartic potential)® . In the first case it is
possible to show that my varies of an amount ~ My in a time ~ M ! during the
first inflaton oscillation (besides Mp, My is the only relevant dimensionful scale in
the system), thus leading to a number density of gravitinos that can be estimated
as nz;p ~ M 5; Notice that, since the quantity Oy does not vanish in the limit
Mp — oo also the total number of gravitinos produced at preheating is not Planck-
mass suppressed. Later on, during the stage of coherent oscillations of the inflaton,
the gravitinos are diluted as ng/; ~ Mg /a® (we set the scale factor of the Universe
a = 1 at the end of inflation). The energy density of the massive inflaton condensate
redshifts as matter py (a) ~ M M3 /a® until reheating completes (when the scale
factor of the Universe is agg) and the inflaton energy is converted into radiation,
with temperature

M2 A
Tra ~ py (arm)* ~ —¢§,7z“li‘~ - (6.23)
QR

We can therefore compute the ratio of the number of gravitinos to entropy density
at reheating

N3/2 N Mg 1 -~ M¢, TRH

6.24
R I T (629
In order not to spoil the successful Big Bang Nucleosynthesis results,
D32 < 9912 (6.25)
s

is required [82]. Using eq. (6.24), and remembering that Try has to be in any
case smaller than 10° GeV, because of the thermal gravitino problem, one gets
ngja/s < 10715, Therefore, in the case of a quadratic superpotential, nonthermal
production is not competitive with thermal production.

3As it is known, the contributions from the Kahler potential to the scalar potential are very
relevant for ¢ ~ Mp. This is a common problem for supersymmetric theories of inflation, where
the F' terms generically spoil the flatness of the potential during the inflationary regime (for a
review, see [73]; see also [136] for a recent discussion). As a consequence, the theories that we are
here describing should be modified during inflation; however, we will not consider this issue here
and we will still assume that the values of M, and of A are not too different from the ones imposed
in “usual” chaotic inflation.
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An analogous estimate in the case of cubic superpotential gives a different result

ﬁf‘;ﬁ% ~ N4 1079 (6.26)

This value exceeds the gravitino bound by about 3 orders of magnitude. There-
fore the supergravity inflationary model with cubic superpctential appears to be
strongly disfavoured. Notice that the result (6.26) does not depend on the reheating
temperature. The reason is that, while the energy density of the massive inflaton
condensate redshifts as matter during inflaton oscillation, in the case of quartic po-
tential the energy redshifts as radiation. In this case, gravitinos are not diluted
during reheating, while in the former case they could be diluted as much as needed
by suitably delaying reheating, i.e. by lowering the reheating temperature.

The fact that preheating of longitudinal gravitinos can be adequately described
in the globally supersymmetric limit has been exploited in ref. [116] to simplify
considerably the computations needed for the analysis of this phenomenon. This
allowed to estimate the amount of gravitinos produced in more realistic supersym-
metric inflationary models, in particular in hybrid inflation [137, 138]. Since in this
model the energy density of the inflaton redshifts as matter during reheating, the
ratio ngjs/s turns out to be proportional to Tra. However, an extremely low reheat-
ing temperature (of the order of 10° GeV) is needed to obey the gravitino bound.
This would worsen drastically the gravitino problem.

As stated above, the results we have just described rely on the identification of
the longitudinal component of the gravitino with the inflatino. However, in general
we expect the inflaton field not to be responsible for the breaking of supersymmetry
in the vacuum. Therefore, it is not guaranteed that what was the gravitino during
inflation and reheating (that is, when supersymmetry is broken by the inflaton), is
the gravitino today. It is possible to rephrase this observation by saying that all the
models in which the abundance of nonthermal gravitinos was computed up to this
point have unbroken supersymmetry in the vacuum. Therefore, the true gravitino
is massless and the longitudinal gravitino is indeed the inflatino. Now, the gravitino
problem originates by the fact that gravitinos are very long-lived, since they have
only gravitational interactions, and, if they are lighter than about 20 TeV they
usually decay after nucleosynthesis. Their decay products then photodissociate the
nucleosynthesis products to an unacceptable level if the number density of gravitinos
exceeds the bound (6.25). On the other hand, inflatinos do not necessarily interact
only gravitationally, and are not dangerous relics, since they can safely decay before
nucleosynthesis [139, 140]. Therefore, it is crucial to discriminate whether gravitinos
or inflatinos are produced at preheating.

To get a confirmation of the results described in the present section, one needs
to analyze more complicate models, where supersymmetry is broken in the vacuum.
Moreover, since we require supersymmetry breaking in vacuum with vanishing cos-
mological constant, we will need to work in the full supergravity context, keeping
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a finite value for the Planck mass Mp. We will analyze a model consisting of two
sectors: the first will mimic inflaton oscillations as early times, while the second
will break supersymmetry at late times. The two sectors are coupled only gravi-
tationally, and it is expected that any direct coupling between them will increase
the final amount of nonthermal gravitinos. To compute the actual number of non-
thermal gravitinos it will be necessary to use the formalism described in chapter 4,
resorting to numerical techniques. Indeed, while it is possible to give an analytical
description of the behavior of the system at early and at late times, a full numerical
computation is needed at intermediate times, when both sectors equally contribute
to the breaking of supersymmetry. In fact, there could be the possibility that, at
intermediate times, the fermions efficiently produced at the initial stages oscillate
into the gravitinos of our vacuum. Moreover, the behavior of the background in this
regime could show further nonadiabaticity, thus inducing additional gravitino pro-
duction. In the following sections we will show how the first possibility is actually
not realized, while the second source of production is not very efficient.

6.3 Description of the model and evolution of the
scalar fields

The matter content of the model we are considering is of two superfields ® and S,
with superpotential

W = -”-;ﬁ‘i ®% + p? (B+S) (6.27)
and minimal Kéahler potential
K=3"®+5"8. (6.28)

The potential for the scalar components ¢ and s of the superfields ® and S can
be computed using eq. (6.9). We then assume that the scalar fields are real, that is
(after V' is computed) we perform the substitutions

¢

* * S
) ¢—>\/§, s s—-é\/i. (6.29)
In this way the real scalar fields have canonical kinetic terms.

During inflation, the field ¢ acts as the inflaton, while the v.e.v. of s is quickly
driven to (s) ~ 0. The potential is then practically the one of chaotic inflation,
and my ~ 10" GeV must be set to match the COBE results for the size of the
CMBR fluctuations.*

4As discussed in the footnote before eq. 6.23, in the supergravity context the superpotential

6.27 does not lead to a true inflationary potential. Nevertheless we assume the value of my to be
the not too far from the one that is obtained in the nonsupersymmetric inflationary scenario
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At the end of inflation, the field ¢ oscillates about the minimum ¢ = 0. The
amplitude of these oscillations is damped by the expansion of the Universe (and,
later on, also by the decay of the inflaton that every realistic model must include).
If only ¢ was present, we eventually would have unbroken supersymmetry in the
minimum ¢ = 0. The role of the s field is to provide the supersymmetry breaking in
the minimum. The second term in eq. (6.27) is known as the Polonyi superpoten-
tial [141], and provides a simple example on how supersymmetry can be broken in
a hidden sector and transmitted to the visible one by gravity. What is remarkable
of this potential is that, for particular values of the parameter g, supersymmetry
is broken with a vanishing value for the cosmological constant. If indeed we take
B = (2—+/3) Mp (for a more detailed discussion, see for example [134]), the potential
V(¢ =0, s) vanishes in its minimum at

so=vV2(V3-1)Ms. (6.30)

For this value, the gravitino mass mg = eX/2M |W|/ Mg evaluates to

2

2
mg = V3 A—’;; ~1.31 ]—V‘f[; (6.31)

which is a typical result for this breaking of supersymmetry. We see that the “in-
termediate” scale p must be taken of order 10'°GeV to reproduce the expected
gravitino mass mg ~ 100 GeV of gravity mediated breaking models.

In the following, we discuss in more details the evolution of the two scalar fields.
To do this, we use physical time ¢ and work with the adimensional quantities

~ (]5 ._ 8 A :6
¢ - ]VIP, s = P7 IB_MP’
2
. . L ~ H N V
t = 2= H=z — = .32
tm¢, M Mpm¢’ m¢) |4 Mgmi7 (63 )

where we remind that H and V are, respectively, the Hubble constant and the scalar
potential. In terms of these redefined quantities, the equations of motion for the
two scalars read

d*é; o dp; dV A
P ag®i 8 g gi= s 6.33
P d " dd =08 (6.33)

We start our numerical calculations at q3 ~ 1.4, short after inflation, and with
the scale factor a normalized to one.
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Figure 6.1: Evolution of the two scalar fields ¢ and s for 42 = 1072,

We show in figure 6.1 the evolution for the two scalar fields after inflation, in the
case 2 = 1072, As we said, initially the model reproduces the scalar potential of
chaotic inflation, and thus we have

. 8 cos t
~ 4= —, §~0. 6.34
U o

The initial dynamics of the Polonyi field s is determined by ¢. More precisely, we
can write an effective potential V' (s) for it by substituting eq. (6.34) into V' (¢, s)
and then averaging over the inflaton oscillations. Expanding V for both ¢ and 3
smaller than one, we find that the potential is minimized by

. YV2RP6BER — ()] | 3V2B (1)’
T -1epm T 1-3p2(00)

To be precise, the Polonyi field is always smaller than §;,, due to the fact that the
expansion of the Universe slows its motion towards the minimum of V'(s). However,
eq. (6.35) gives a good estimate for the order of magnitude of s in this initial stage.

What is most important to emphasize, is that egs. (6.34) and (6.35) explicitly
show the presence of two very different (physical) time-scales in the model we are
considering. The first of them is set by the inverse inflaton mass m;l which is
the time-scale of the oscillations of the inflaton field. The second one is given by

(6.35)
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2 m;l, Equation (6.35) shows that this is the relevant time-scale for the Polonyi
field in the initial stage. However, this is true also for the complete evolution of
s. To see this, let us consider the latest times shown in figure 6.1. In this stage
the amplitude of the oscillations of ¢ are negligible. The evolution of s is not any
longer influenced by the inflaton field, but it starts oscillating about the minimum
of its own potential given in eq. (6.30).° The amplitude of these oscillations is also k
damped by the expansion of the Universe, while their period is related to the inverse
Polonyi mass, which is now (i.e. at ¢ = 0) given by [134]

ms = \/2V3mg ~ 2.4 my. (6.36)

The quantity /2 defines the ratio between the two scales. In figure 6.1 we have
chosen, for illustrative purposes, 4? = 1072. However, this value is unphysical,
since it would correspond to a too high supersymmetry breaking scale. Indeed, as
eq. (6.31) shows, we must require (12 ~ 10711, if supersymmetry is supposed to solve
the hierarchy problem. «

While the size of ji> controls the supersymmetry breaking in the vacuum of the
theory, both scalar fields contribute to break supersymmetry during their evolution.
In particular, both their kinetic and potential energies contribute to the breaking,
as emphasized in ref. [116]. This can be seen by considering the transformation law
of the chiral fermions *; under an infinitesimal supersymmetry transformation with
parameter €. In our case they read

5Xz““_§PL [mz \/5'7 dt:l g, (637)
where ¢, = ¢, ¢ = 5.
We define the quantities
1 (de:\>
2=m2 -2

which give a “measure” of the size of the supersymmetry breaking provided by the
F term associated with the i-th scalar field. More precisely, we will be interested in
the normalized quantities

i f3

=1l = : 6.39
RN fF+ 72 (6:39)

which indicate the relative contribution of the two scalar fields ¢ and s.

5There is of course a possible moduli problem associated with these oscillations. However, we
do not consider this issue here.
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Figure 6.2: Relative contribution of the two scalar fields ¢ and s to the supersym-
metry breaking during their evolution. As in figure 6.1, 42 = 10~2.

In figure 6.2 we have shown the evolution of ry and r, for the specific case
f2 = 1072. As expected, in the initial stages only the inflaton contributes to the
supersymmetry breaking, while only the Polonyi contributes at later times. The
regime of equal contribution is around # = /i~2, when ¢ and s are of the same size
(cf. figure 6.1). As it should be clear from the above discussion, r4 and 75 share the
identical behavior for all the choices of i?, once # is given in units of j~2.

6.4 Effective fermionic lagrangian and hamilto-
nian

The fermionic content of the model we are considering is of the gravitino 1, and
the two chiral fermions ¢ and 3. In the unitary gauge, one combination of ¢ and
5, the goldstino v, is set to zero, while the transverse component of the gravitino,

ZT , is only gravitationally coupled to the other fields. The other two fermions 6
(the longitudinal gravitino component) and T (the combination of chiral fermions
orthogonal to v) are coupled together, as we described in section 6.1.

With some algebra, we can rewrite the initial lagrangian (6.1) in three terms

L= »Cbackground + £¢»:—” + Lo . (640)
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The first term governs the dynamics of the scalar fields and of the scale factor of
the Universe. The second describes the (decoupled) transverse gravitino component,
while the third one reads

Lor = —Z%aﬁ"é{f-y"a@ew—yiki,&eﬂL
- (—‘;fafy% 2§4§am> Ae—%e— %WOT} +
_ a‘l;‘f{w(’aor—mikifir— gaaoATJr 2;’41% Aam™ +
+2a?y°T—2ﬂM%T+%aaA27°0} (6.41)

We have expanded the fermions into plane waves X;i(n, k) =€ kiz' X(n), where k;
is the comoving momentum (i.e. Op k; = 0), and we have introduced

9. . ~ 1/2
A = a[¢i¢jmkml (9 1klgij“6ik51j)]
2/ -
= 3 (m1¢2 - m2¢1) ; (6.42)

where the second equality holds in the case of a minimal Kahler potential, g = 6.
The quantity A has no counterpart in the one chiral superfield case, and indeed it
is negligible unless both the scalar fields give a sizeable contribution to the breaking
of supersymmetry.

One can explicitly verify that the lagrangian (6.41) reproduces the equation of
motion (6.15) for the longitudinal gravitino component, as well as the one for T
that one obtains from the initial lagrangian (6.1). However, we notice that the
two fields @ and Y are not canonically normalized. Canonical normalization has to
be imposed, if we want our fields to give invariant quantities (as for example the
occupation number) in comoving units in the adiabatic regime. Among the possible
redefinitions, we choose

207 ki ~
0 = — 59,
(aa3)1/2
A raN\/? -
T = -2—(5) T, (6.43)

since the equations of motion look quite symmetric in terms of the new fields. In
matrix form, they are exactly of the form (4.63), i.e.

(7°6o+i7ikiN+M)X=0, (6.44)
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where X is the vector (é, :I)T. In our specific case, the “mass” matrix M is given by

3
M = diag(—@&-{- (n]&[?%"*'a%);

ma 3 (ma
_5‘]“\4.';%‘+2 M2 C¥1+a012 +a(m11+m22) (645)

and the N matrix by

_ - 0 of —@ —A
N—EN1+’YON2:< 01 _&1)+7°(_A2 G ) (6.46)

In the above equations, we have defined &; = «;/ca. The relation &% + &% =1
which holds in the one chiral field case [114, 115] is now replaced by®

E+ar+A*=1. , (6.47)

We thus see that the matrices Ny and NN, satisfy both conditions (4.65).

The equations of motion (6.44) have a clear behavior in the low energy limit,
when the two scalars of the theory settle to their minima. In this final stage one has
a1 = —1,a9 = A =0, as it can be easily checked from the definitions listed above.
As a consequence, eqgs. (6.44) decouple, and each of them acquires the standard form
for spin 1/2 fermions

(70 +i¥ ki +am;z) 0 = 0,
(78 +i¥ ki+amyz) T = 0, (6.48)

where the two masses are constant. In particular, notice that m; = m/M2, which is
exactly the expression that one encounters in supergravity for the gravitino mass.

We thus see that the system has all the properties assumed in section (4.2.2),
so that we can apply the procedure derived there to quantize it and to define the
occupation numbers of the fermionic eigenstates. Among the possible choices for
the transformation matrix ® which enters into eq. (4.66), we take

P = % (arccos 6) ( OK//C‘;’ _‘Z ‘7w ) , (6.49)

with

11l

w

1—a2=4/a2+ A2, (6.50)

®When only one scalar field gives a substantial contribution to supersymmetry breaking, the
quantity A almost vanishes, and the relation &% + & ~ 1 holds approximatively.
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Following eq. (4.74), the hamiltonian of the system is instead given by’

H=X [z 3 kN + My +7° Mz] X, (6.52)
with
~ w2 80 511 w o
M, = M+—(@MQ-M)+ Q- —d100,
2 2w 2
~ 2
~ w w
M, = —291 (M, QI+ — @, 0 Q] - (6.53)
We have denoted
_ 512/0) A/w
Q—( A _&g/w). (6.54)
As we have already remarked, at late times &; = —1, while &, = A =0 In

this regime the above hamiltonian becomes the standard one of two decoupled spin
1/2 fermions

H=X[i¥k+MX, (6.55)

with the standard gravitino mass for the field 0 (cf. eq. (6.48)).

We conclude this subsection discussing the explicit diagonalization of the hamil-
tonian, i.e. of the matrices H and Hy entering in egs. (4.82) and (4.83). One can
now explicitly verify that the eigenvalues of the H, matrix occur in pairs, that is
they are of the form £w;,+ws. One can also verify that if (v, va, vs, v4) is an
eigenvector of Hy belonging to the eigenvalue w, then (—v%, —vji, v, v3) is also an
eigenvector of Hy belonging to the eigenvalue —w. We then find

— R, —R*
R'H,R=H,, R= ( R; R’{2 ) 7 (6.56)

where H, = diag(wi, wp, —w1, —w2) is the matrix that we formally introduced in
eq. (4.81).

TNotice that the matrix M» that appears in the equations of motion (4.68) reads

1—ay
5 .

~ w .
M, =[Q, M] 5t Qe (6.51)
At late times M ~ Q Q does not vanish. Indeed &; and A decrease at late times in a way such
that the elements of Q keep on oscillating with amplitude equal to unity. Therefore, as discussed
in the footnote containing eq. (4.71), the fields X are not a suitable basis for the definition of
the hamiltonian.
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The 2 x 2 matrices defined by eq. (4.86) are thus given by
1
1= [R{U++R§U_] ,
U t 77 T 77
] = [~RlUZ + RS v;]. (6.57)

We remind that the matrices R, and R, are obtained through the diagonalization
of Hy see eq. (6.56). The matrices Uy and U_ are instead determined by their
evolution equation (4.77). The only point left is to give more explicitly their values
at the initial time 7. This can be done by setting J = 0 in eq. (6.57), which, as we
remarked, corresponds to requiring no fermions in the initial state (see eq. (4.88)).
Moreover, conditions (4.78) have to be imposed. From these requirements, we see
that U, (7) has to fulfil

UL@ 1+ B R ) R M BY@)| UL @) =21, (6.58)

In this last expression, the matrix in square brackets is hermitean and can be
diagonalized with a unitary transformation. More precisely, we can set it to be equal
to VI AV with A diagonal and real, and V unitary. The initial condition for U, can
thus be written

Uy () =ViIvVaA-L. (6.59)

Finally, U_(7) is obtained by setting J(7) = 0 in eq. (6.57).

6.5 Analytical results with unbroken supersym-
metry in the vacuum

The case 4? = 0 is particularly interesting since some results can be worked out
analytically, and since it provides some hints between the final gravitino abundance
and the size of supersymmetry breaking. For /i = 0 supersymmetry is unbroken in
the minimum of the theory, at ¢ = s = 0.8 Because of this, in the vacuum of the
theory the gravitino has only the transverse component.

The computation of the formulae of section 6.4 is in this case particularly simpli-
fied. The quantity A vanishes identically, so that the two fields T (which is always
the Polonyi fermion) and 6 (which is always the inflatino) are decoupled. Going
back to the formalism of section (4.2.2), we find that we have to perform only the

®Indeed for 42 strictly zero the potential for the Polonyi field becomes flat for ¢ = 0, and s = 0
for the whole evolution.
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first redefinition of the fermions, X = exp(—7° ®) X, where now ® = diag(p, —¢),
with :

cos (2¢p) = a4, sin (2¢) = a@y. (6.60)
The two redefined fields have the “standard” equations of motion and hamiltonian k

(7° 8 +i7 ki +mg) 6 =0,
(7° 8 +i7 ki +mg) T=0,
H = dek[5(z‘r’yiki+mé)é+5r(z‘r‘y"kﬁmf)T],
m; = mg+ e, my = my — Gop, (6.61)

with mg and my given in eq. (6.45).

In practice, “removing” the time dependent matrix which multiplies the momen-
tum in the original equations for # and T gives an additional contribution to the
mass of the fields § and T. When A = 0, an explicit computation of ¢ gives [117]

my

s, (6:62)
2 9% +mi

oy = —a =a (my;+m)+3a (H—¢—~m1m)

V2

where the various quantities have been introduced in section 6.1. Using the equation
of motion for the inflaton field ¢, one can show that it is precisely Jop = My, so that
the field T is effectively massless. The mass for 0 is instead of the order the inflaton
mass. More precisely, it has a variation of the order my within the first oscillation
of the inflaton (i.e. in the time my') and then it stabilizes at my [114, 115]. Since
the fields are decoupled, the formulae for the occupation numbers (4.49) are quite
simple. They show that the Polonyi fermion is not produced, while the production
of the inflatino field has a cut-off at k ~ mg, and decreases as k™* at big momenta.’

The main point of this section is that the Polonyi fermion is not produced at
preheating for 42 strictly zero. When j> # 0 the Polonyi fermion provides the
longitudinal component for the gravitino, so its abundance turns out crucial to
understand whether gravitinos are or are not overproduced. If one believes that the
limit 42 — 0 is continuous, the present analysis suggests indeed that the production
of gravitinos should become smaller as (2 decreases. Although we do not have a
rigorous proof of this continuous behavior,'® the numerical results that we show in
the next subsection strongly support this assumption.

0Olg
20y

9This can be explicitly seen by integrating eq. (4.49) for £’ in the limit of large & and with
a~l1.

0The problem is that the dynamics of the Polonyi field is governed by the timescale i~ m;l,
which becomes infinite in the limit 4% — 0 [117].



6.6 Numerical results with broken supersymmetry in the vacuum 115

6.6 Numerical results with broken supersymme-
try in the vacuum

We now analyze the situation 4? # 0. As we have said, in this case the quantity
A is generally non vanishing in the most interesting part of the evolution. As a
consequence, the dynamics of the fermionic fields # and T is coupled, i.e. we have
mixed terms in their equations of motion (6.44) and in their hamiltonian (6.52). For
the following discussion it is useful to explicitly write T in terms of the chiral fields
x1 and x2. Combining the definitions (6.16), (6.42), and (6.49) we have, for minimal
Kahler potential and real scalar fields,

a®[m3 +m3 + L §2 + L 42112

T = . '
m1¢%—m2¢%

(61 +d2xe) (6.63)

where we remind that the two scalars ¢; and ¢, are the inflaton and the Polonyi
field, while x; and x» the corresponding fermions. Moreover, the definition (6.10)
of the goldstino now reads

v = (mz - %’70 agbz) Xi - (664)

Let us first consider the initial and final stages of the evolution, where only one of
the two scalar fields significantly contribute to the supersymmetry breaking and the
quantity A is essentially vanishing. During inflation, one has ms, él, éz ~ (, and
the supersymmetry breaking is provided almost completely by m;. Moreover, the
goldstino is practically the field x;. We remind that we are working in the unitary
gauge, so that y; ~ v = 0. Equation (6.63) thus rewrites

a3/2 lmll

T~ X1 qbg =a% 2y1, t<p2. (6.65)

my ¢2

Notice the factor a®/? appearing in the last expression, which is a consequence of the
fact that the field T is canonically normalized in comoving units (cf. the discussion
after the lagrangian (6.41)).!! In the late stages of the evolution, supersymmetry
is instead broken by the Polonyi field, and the only non-vanishing contribution is
provided by my. With the same arguments used to get eq. (6.65), one can show that!?

vocxe=0, T=-d"x, {i>p? (6.66)

110ne may also worry about dividing by ¢2 =~ 0 in eq. (6.65). However, this is due to the fact
that the quantity Y is ill-defined in the static ¢; — 0 limit, while T is not.
120ne can also show that, in the late stages of the evolution, |¢1| = |p2].
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Figure 6.3: Evolution of the masses of the two fermionic eigenstates. Asin figure 6.1,

~

{2 = 10~2. Notice the different normalizations for the two masses.

In order to compute the evolution of the occupation number of the fermions we
adopt the procedure described in section 4.2.2: during the evolution of the system,
the states are mixed in such a way that the hamiltonian is kept in a diagonal form.
The two eigenstates obtained through this diagonalization coincide with the fields
0 and Y only for A = 0. In particular, this is true at very early and late times.
The safest way to make the proper identifications in these regimes is to consider the
evolution of the mass eigenvalues, which always behave like in the example shown
in figure 6.3. The two masses present (for 4~2 < 1) a strong hierarchy. We denote
with 1 the eigenstate with bigger mass, and with 1), the other one. The mass of ¥,
converges to the inflatino mass (=~ 1.31 my) at late times, and it is always of the order
mg. On the contrary, the mass of 1), converges to the gravitino mass (=~ 1.31 p2mg)
in the vacuum. As it will be clear below, we can “qualitatively” identify 1; with the
inflatino and 1, with the Polonyi fermion for the whole evolution. Although rigorous
only at late times, this identification can be useful for a qualitative understanding
of the system.

What is most important to us is the relation between the eigenstates (1, 1b2) and
the gravitino 6 and the matter field T. As we have said, the last fields coincide with
the physical eigenstates only at the very beginning and at the end of the evolution.
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More precisely, from the behavior of the two masses we have

0=y and T = (6.67)
at late times. On the contrary, it must be

6=v¢, and T=qd (6.68)

at early times, since the longitudinal gravitino component @ is provided by the
goldstino and supersymmetry is initially broken only by the inflaton field.

At intermediate times, the hamiltonian cannot be diagonalized with a simple
rotation in “flavor” space, and @ cannot be just a simple (i.e. with only numbers
as coefficients) linear combination of ¢, and 1,. However, we can gain an intuitive
description of the system through the identifications

0 ~ T+ /s,
T ~ =Tt +/Teths. (6.69)

The coefficients r4 and r; give a “measure” of the relative contribution to su-
persymmetry breaking provided by the two scalar fields (see eq. (6.39)). These
relations can thus be justified as a “generalization” of the equivalence theorem, as
it was also suggested in [116, 117]. We remark that they are rigorous at early and
late times (when they coincide with the identifications (6.67) and (6.68)). At inter-
mediate times they interpolate between these two regimes and can be thus used as
a qualitative description of the system.

From eqgs. (6.69) we deduce the following estimates for the occupation numbers

Ny = ’I”¢N1+7‘5N2,
NT = T3N1+T¢N2. (670)

The evolution of these quantities is shown in figure 6.4 for modes of comoving
momentum k = my and for 4* = 1072, Notice that (by construction) Ny = N; at
early times, while Ny = N, at late ones. In these regimes these identifications are
rigorous.

In figures 6.5 and 6.6 we plot instead the spectra of the states 1; and /5 in the
case 12 = 1072 and at the times ¢ = 10 m;l (that is, after a couple of oscillations of
the inflaton), ¢ = 4~2m;', and ¢ = 10 4~2 m".

It is apparent that most quanta of the state i, are produced at the very first
oscillations of the inflaton field, while quanta of 95 are mainly produced at the times
when the Polonyi scalar starts oscillating. This supports the qualitative identifica-
tion of ¢; with the inflatino and of 1, with the Polonyi fermion. It is worth noticing
that, for comoving momenta smaller than mg, the increase of N, is not related to a
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“conversion” of quanta of 4 to ;. Indeed, the increase in Ny(k) is not accompanied
by a decrease in N;(k) for & < my. ,

We can now show the most important result of the present chapter, that is the
spectra of T and 6 at the end of the process. We present them in figures 6.7 and 6.8,
respectively. They are computed at the time'® ¢ = 10 i~m;*. The time required
for the numerical computation increases linearly with 42, and the realistic case
fi? = 107! is far from our available resources. We thus kept /i? as a free parameter
and we performed the explicit numerical computation only up to 42 = 1076. In
particular, in figures 6.7 and 6.8 the spectra of the fermions produced at preheating
are shown for 42 = 1072, 1073, 1074, 1075, 107°. The case 2? = 10~!! can be clearly
extrapolated from the ones shown in these figures.

In figure 6.7, the spectra for the state 1; are shown. This state corresponds to
the matter fermion T in the true vacuum. It is apparent that the main features
of the spectrum are independent of the value of 2. The reason for this is that ;
is associated to the inflatino, that is produced by the coherent oscillations of the
inflaton. As we discussed above, the dynamics responsible for the production of
this state is independent on the value of ji*>. Therefore the only relevant scale for

13Tn the cases i = 1072 — 10~* we have continued the evolution further, until the spectra stop
evolving. We have found that the spectra shown in figure 6.7 coincide with the final ones, while
Ny very slightly decreases for ¢t > 10 ﬂ‘zmgl. Thus, we believe the results shown in figure 6.8 to
provide an accurate upper bound on the final gravitino abundance.
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Ny is my, and indeed the spectrum of 1); exhibits a cut-off at comoving momentum
k~ m¢.

The spectra shown in figure 6.8 are related to the abundance of gravitinos after
the fields have stabilized in their minima. We see that in this case the occupation
number decreases as ji* becomes smaller. Indeed, the occupation number Ny (k) is of
order unity for comoving momenta &k smaller than some cut-off k,. From figure 6.8
we can deduce the dependence k, oc (i?)'/3 of this cut-off on the parameter /i2. This
behavior suggests that gravitinos are not produced in the limit 4% — 0, confirming
what we have argued in the section 6.5.

We can conclude that in the model we are considering both inflatinos and grav-
itinos are produced nonthermally. However, the mechanism responsible for the pro-
duction of gravitinos is much less efficient that the one acting on inflatinos. Indeed,
the latter is related to the dynamics of the inflaton, while the former is related to
the dynamics of the Polonyi field. As a consequence, and as it is clearly confirmed
by the comparison of figures 6.7 and 6.8, the number of non-thermal gravitinos is
much smaller than the number of inflatinos.
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