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Chapt;er 1
Introduction

String theory is so far one of the most successful attempts to unify gen-
eral relativity and quantum mechanics [1, 2]. There are various arguments
why string theory should be the ultimate theory describing completely our
universe. Unfortunately, any direct experimental evidence in favor of string
theory is still lacking.

One of the main motors which stimulates the ongoing research in string
theory is its internal beauty. It goes hand in hand with modern mathemat-
ics, sometimes even anticipating it. Mathematics is the language in which
God wrote the world, as one can deduce from its unexpected effectiveness
in describing the real world. Perhaps even more surprising is the fact that
string theory is unexpectedly effective in describing various branches of mod-
ern mathematics. From time to time string theorists learn some new part
of mathematics and they often discover that it nicely fits into string theory.
They are able to establish a dictionary between mathematical and physical
terms which provides us with a simple and intuitive understanding of deep
mathematical theorems.

Among notable examples, which have been brought down from the heaven
of mathematics to the earth of string theory in recent years are: noncommu-
tative geometry, K-theory and derived categories. The main theme of this
thesis is the first one in this list — noncommutative geometry.

The idea of replacing the ordinary coordinates by noncommutative ones

[zH, 2¥] = 16", (1.1)

where ## is real antisymmetric matrix is of course not new. It has been
proposed already in 1947 by Snyder [3] in analogy with what does quantum
mechanics when replaces the coordinate and the canonical momentum by
noncommuting operators.
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The major mathematical developments in the noncommutative geometry
came in the 1980’s in the work of Alain Connes and his collaborators [4].
The basic idea is quite simple. According to a classical theorem of Gelfand
and Najmark all topological properties of a manifold are encoded in a com-
mutative C* algebra of complex functions on this manifold. The idea of
noncommutative geometry is to translate first all the geometric notions to
the algebraic ones, and then try to abandon the assumption of commutativity
of the basic algebra.

First time the noncommutative geometry entered string theory, was in
1986, when Edward Witten used it as a guiding principle in constructing a
covariant string field theory [5]. String field theory can be viewed either as
an interacting field theory for infinitely many excitations of a string or as a
way of calculation of string amplitudes using string propagators and vertices.
As opposed to conventional methods of calculation on-shell string diagrams,
string field theory necessarily goes off-shell. It is precisely this aspect which
enables the study of nonperturbative physics like tachyon condensation.

Noncommutative geometry started to become popular among string theo-
rists only after 1997 when Connes, Douglas and Schwarz [6] shown in the ma-
trix model that the inclusion of constant Neveu-Schwarz B-field background
effectively makes the spacetime noncommutative. After the subsequent re-
search it was clearly established that one gets a noncommutative field theory
as a low energy effective world-volume theory on a D-brane with nonzero
parallel B-field. Much of the early developments have been summarized and
many original material added in a seminal paper by Seiberg and Witten in
1999 [7]. There is also a recent review by Douglas and Nekrasov [8].

The organization of this thesis follows to some extent the evolution of
the authors interests. Apart of explaining our work we tried to provide some
introductory material to make the whole thesis more readable and self con-
tained. For obvious reasons we could not have been very detailed neither
in the review part, nor in the presentation of our work. We refer the inter-
ested reader to several good review articles. Concerning our original work,
we tried to clearly explain the main ideas postponing sometimes possible
generalizations, technical details and various speculations to the published
articles.

The thesis is organized as follows: In chapter 2 we explain basic ideas of
noncommutative field theory, its stringy origin and various interesting prop-
erties. We explain two of our papers, one with Bonora and Tomasiello [28]
on anomalies, and another one with Bonora, Sheikh-Jabbari and Tomasiello
[36] on the possibility of having SO(N) and Sp(/N) gauge groups. Chapter 3
is devoted to the cubic string field theory. As there are not as many reviews
as on the other subjects, we shall be slightly more detailed. We will discuss



various formulations and approaches, and relations between them. We also
explain the Sen’s conjectures which triggered much of the recent develop-
ments. In chapter 4 we explain some properties of the string field algebra,
the star product, the wedge states and in particular the identity state. Re-
sults here are mostly original. Chapter 5 discusses scme approaches to the
problem of finding the exact solution for the tachyon condensate, which we
consider to be an interesting and important problem. One section of that
chapter is based on our paper [86], the other parts are new results. Chapter
6 sort of merges the two noncommutativities encountered above, it adds the
B field into the string field theory. It is based on our paper [91] with some
updates, especially regarding the K-theory. Finally chapter 7 deals with the
most mathematical aspects of noncommutative geometry and applies much
of the fancy techniques to the problem of tachyon condensation on the torus.
It is a simplified version of our paper with Krajewski [123].



Chapter 2

Noncommutative field theory

Noncommutative field theory as a nonlocal modification of an ordinary field
theory has been already studied for some time. It has become much more
popular stibject, when people realized that it arises as a certain low energy
effective theory on D-brane in the presence of a constant Neveu-Schwarz two
form B-field. Subsequently, there was an explosion of literature on various
stringy and field theoretic properties. Let us look first on its stringy origin.

2.1 Stringy origin
Let us consider an open string ending on a Dp-brane in flat space with con-

stant flat metric g, and constant B,, Neveu-Schwarz background. The
worldsheet action of the string is

3_1

4o

/da dr (g#yaaX“@“X” - QWia'BuVE“baaX”ﬁbX”) , (2.1)

where p,v = 0,1,...,d — 1 are target space indices (d = 10 or d = 26
depending on whether we are studying superstring or bosonic string theory).
Indices a,b = 1,2 are worldsheet indices.

The second term in the action is a total derivative, it does not affect
the equations of motion, only the boundary conditions. For p along the
Dp-brane, i.e. 0 < u < p — 1, the boundary conditions are

GunBr X¥ + 2mic! B8, X" | o5, = 0, (2.2)

along the remaining directions we have the Dirichlet condition 0, X gz = 0.
Here 0% denotes the boundary of the worldsheet ¢ = 0, 7. Note that in the
limit By, — 0 we have p Neumann and d — p Dirichlet boundary conditions.

4
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One can calculate the propagator with these boundary conditions, for
our purposes we quote only the result for the points on the boundary of the
worldsheet

(TXH(T)XY(r")) = —o/G* log{T — 7')* + %9“%-('&— ), (2.3)
where £(7) = 1 for 7 > 0 and &(r) = —1 for 7 < 0. The coefficients G*”

and 6 are the effective metric and noncommutativity seen by open strings.
They are given in terms of closed string metric and the B-field by

G = guw— (27d)(Bg ' B)w, (2.4)
o = —(2ra’)? L _p " : (2.5)
g+2na'B g —2ma'B

The Heisenberg operators associated to the string coordinate on the bound-
ary of the worldsheet satisfy simple commutation relation

[(XH(r), X" ()] = ii_r}%(X“(T)X”(/* —¢) — XV(r)XH*(7 —¢)) =", (2.6)
This noncommutativity is at the heart of noncommutative field theory, for
many purposes however, it is more convenient to derive low energy effective
theory without the recourse to Heisenberg operators of the string.

Let us now look at the string amplitudes at the tree level. The three
gluon amplitude is proportional to the conformal field correlator

1

(et OX e X(m)g2 . X" X(m)gs aXeips-X(rs)> ~
(11— 72) (T2 — 73) (73 — T1)
51 . €2p2 . 63 -+ gl . §3p1 . §2 + 52 . €3p3 . 51 + 2alp3 X Slpl N E‘ZpQ . 53)

__%(p,}ﬁijp;%s(Tl-"1'2)+p?9ijp?e(72—T3)+p?9ijp;:e(7'3~7'1)). (

o
-~
o —

€

Fixing the SL(2, R) invariance, or alternatively including correctly the world-
sheet ghosts, leads to the elimination of the denominator (73 —73) (T2 —73) (T3~
71). Using the momentum conservation p' + p? + p* = 0 to simplify a bit the
expression, leads finally to the amplitude

M ~ (51_€2p2_€3+€1_£3p1_§2+52_£3p3'§1+2alp3'élpl.£2p2‘§3>e-%P%6ﬁP§' (28)
This amplitude is clearly reproduced by the field theoretic action

1 A .
Ie] / Tr B, + (2.9)
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where G, is the effective coupling constant

1
det @ > (2.10)

o = 9o (det(g + 27/ B)

determined by the comparison with the Dirac-Born-Infeld action for slowly
varying fields. The noncommutative field strength is defined by

Fo,=08,A -0,A,+A,xA, —A,+ A, (2.11)

The star product f * g of any two functions on the spacetime is defined by
f@)*g@) = " HE @t oz + Q)|
S: ==

= J(@)el™ 3P g(a)
= fo+ 2070, f0,9+ O(6%). (2.12)

This star product is called Moyal-Weyl product or Moyal product for short.
As an illustrative example we can readily calculate

zhx ¥ — ¥kt = 0",

kT o ipr o= 50#kupy ilk+p)T (2.13)

One could repeat the above reasoning for arbitrary tree amplitude with ar-
bitrary external states and to all orders in /. We always arrive to the con-
clusion, that the only effect of the noncommutativity is to replace ordinary
products by the noncommutative % product. For the loop amplitudes it is
more complicated, it turns out that a single star product is not enough and
we need to introduce additional products [9, 10].

2.2 Gauge symmetry

We have just seen that the action for pure noncommutative Yang-Mills is

(omitting the hats)
1

Zé—g /TTF”U * FMU) (214)
where

Fo=0,A —0,A4,+A,xA, —A, x A, (2.15)
This action is invariant under the gauge transformations

0A, = ON+A,xA—-AxA,
0F,, FuxXA=XxFy,. (2.16)
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The fields A,, F,,, and the gauge parameter A can be complex valued func-
tions or matrix valued functions. The invariance of the action follows from
the basic identity

/Trf*g:/vTrg'*f.._v | (2.17)

When the noncommutative gauge field is an antihermitian matrix N x N
it is clearly a noncommutative generalization of U(N) field. Let us look
how is this condition preserved under gauge transformation. More generally
suppose that A, = AST? is an element of some Lie algebra with basis 7.
Then under a noncommutative gauge transformation

0A, = O+ AL N TT" — )0« AL T (2.18)
1 a a 1 a 23 a
= 9N+ 5(,4;; w0+ AP ALY [T, T + é(A# « AP — Mow AT, T,

the transformed field will belong to the same Lie algebra, only if does the
anticommutator {7, 7%}. This fact is true only for u(NN) algebra. It seems
that there is no way to construct noncommutative theory with other gauge
groups. There is however a somewhat more exotic possibility proposed in our
work with Bonora, Sheikh-Jabbari and Tomasiello [36], and independently
by Jurco, Schraml and Wess [37]. To explain it, we need first to present some
basics of the Seiberg-Witten map.

Seiberg and Witten in their celebrated paper [7] discussed an apparent
paradox that open strings in the low energy regime can lead both to the or-
dinary and noncommutative gauge theory. Indeed, there are various ways of
regularizing the worldsheet theory in the presence of background gauge field.
Point splitting regularization leads to noncommutative gauge invariance as
described above, Pauli-Villars regularization leads to an ordinary gauge in-
variance. As the resulting theory should not depend on how we treat the
infinities, they deduced, there should be a map which maps noncommutative
theory and its gauge invariance to the ordinary and vice versa. Such a map

has to satisfy X o i
A(A) + 05 A(A) = A(A +6,A). (2.19)

We have restored here the hats to indicate the noncommutative quantities.
This can be solved perturbatively in * with the result
AHA) = AF— -fiew’{A,,, B,A + F} + O(6?),

A~

ANA) = A+ iew{w, A} +0(6%). (2.20)

Obviously the gauge groups of ordinary and noncommutative gauge theories
are different. However, the equivalence between these two theories requires
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only, that physical configuration spaces — the sets of gauge orbits — match.
From another point of view, we can expand all the star products in the
noncommutative Yang-Mills theory and we get an ordinary Yang-Mills theory
with an infinite series of higher order terms:

Syoym = Syum + higher order terms. l (2.21)

The noncommutative gauge theory can thus be viewed as an efficient and
elegant way of dealing with such ordinary theories with higher order terms.

The solution for the Seiberg-Witten map has been found recently to all
orders by Liu and Michelson [11, 12] and by Okawa and Ooguri [13].

2.3 Perturbative properties

Since the times of Feynman the perturbation theory has become one of the
most popular tools in theoretical physics. It is therefore not surprising, that
with the advent of noncommutative field theory people tried to repeat old
text-book calculations in this new setting. Pioneering calculations have been
performed by Filk in 1996 [14], who obtained the Feynman rules and un-
derstood the role of planarity of the Feynman diagrams. Interesting UV/IR,
mixing phenomena in non-planar diagrams have been discovered by Min-
walla, Van Raamsdonk and Seiberg [15]. Thorough discussion of one loop
renormalization of noncommutative Yang-Mills theories [18] can be found in
the papers by Bonora and Salizzoni [19], by Martin and Sanchez-Ruiz [20]
and references therein. Unitarity has been studied recently in [22]. More
references on unitarity, Wilsonian renormalizability and thermal aspects can
be found in the review [8].

2.3.1 Feynman rules

For simplicity let us turn our attention to the noncommutative scalar field
theory only. The results can be straightforwardly extended to the case of
fermions and gauge fields. Noncommutative analog of ordinary ¢* theory
has the action

1 1 1
S:/d”x {§8¢*8¢+§m2¢*¢+§g¢*¢*¢ ) (2.22)
From the definition of the star product follows

/dpw*a; - /dpx¢¢,

/ Pz dpxdp = / dPz 80, (2.23)
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the propagator is thus the same as in the commutative theory. The vertex is
easily obtained from the identity

/dpx Okpxp = ///dpkl P ko dP ks (Qﬁ)pcg(kl+k2+k3)$(kl)Qg(kQ)(‘g(kg)e-;éklxkg.

I S o (224)
Here we have introduced a convenient notation k; x ky = Ekf'0**k¥. The
resulting vertex is

1 i . i . k k
V = g; (e~§k1xk2 -+ e?lek2> = g CoS ( ! f; 2) . (2.25)

F4]

Note that the vertex exhibits Bose symmetry under the interchange of the
external lines due to the momentum conservation and antisymmetry of the
x product.

For more complicated diagrams there is an elegant way of organizing
the calculation. It is the ’t Hooft’s double line notation [16, 17], which was
originally developed to study the large IV, limit of gauge theories. All lines are
replaced by double lines or alternatively by thin strips which are connected
by the vertices so that the two lines never join or cross each other. It means,
that the strips are glued together to produce smooth surface with boundaries
which resembles somewhat string worldsheet diagrams. All vertices carry a

factor of )
Vi, ko, ...y k) = €73 2ici Fixki (2.26)

Note that this is not symmetric under an interchange of external lines, it
only becomes symmetric after summing over different orders of n — 1 lines.

To give an example of how does it work, let us look on the noncommu-
tativity factor in the one loop bubble diagram. The equivalence of the two
methods of Feynman diagram calculation is best exemplified by the identity

kxl 1 1
2 _ - ~
cos ( 5 ) =5+ Qcos(k‘ x 1). (2.27)

The left hand side is the noncommutativity contribution in the straightfor-
ward calculation. On the right hand side the first and second terms cor-
respond to the planar and nonplanar diagrams in the double line notation
respectively. In general one can prove, that for any planar diagram the phase
factor depends only on the external momenta.

2.3.2 One loop renormalization

To demonstrate how does the noncommutativity affects the one loop renor-
malization, we will repeat the calculation [15] of the quadratic part of the
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effective action in the Euclidean noncommutative ¢* theory in d = 4. On the

tree level we have
¥ = p? +m?. (2.28)

The one-loop corrections are

F(z) _ 92 / d4k
1planar 3(271_)4 k2 + m2’

2 4
ng)onplanar = 6(57!‘)4 / k2i€712 eikxp' (229)
Introducing the Schwinger parameters to regularize the divergences we get
2
P(li)lanar = 4g7_(,2 Z{_C;‘e_aﬂn??
9
T lanar = ggﬁz / %%e“amz"%z, (2.30)
where we denote pog = —puﬁquy. The ultraviolet divergence ¢ — 0 is

regularized by introducing the cutoff factor ¢ #=. The divergent parts of
the diagrams are thus

2 2
2 g 9 ) A
ng)lanar = 4872 <A9 - m2 10% W + 0(1)7
2 AQ
(@) _ 9 2 2 eff
Flnonplanar - 9672 < eff — m IOg m2 ) + 0(1)7 (231)
where 1

A, = 2.32
1= T pop (2.32)

The planar diagram is the same as its commutative counterpart (for higher
point functions there would be simple phase factors given by the external
momenta). The nonplanar part shows however rather peculiar behavior. It
is finite in the limit A — co, provided p # 0. Clearly the ultraviolet limit
A — co and the infrared limit p — 0 do not commute. This is the famous
UV-IR mixing.

The one-loop effective action to the quadratic order takes the form

92

9672 (pop+ ﬁ)

sBh= [ v |+

—92M2 lo ! +
o i pepts) |’

(2.33)
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where M is the renormalized mass

2/\2 2,52 AZ
g I tog = +---. (2.34)
m

4872 4872

M?* =m? +

There are two limiting cases. First let us take the limitp — 0, i.e. pop << Xls,
then

s = [ a9 50)(-)" + M) (2.5

In the second case, when we take first the limit A — oo, i.e. pop >> #, we
get

2072
S\ = /d4p ¢(p)d(—p) {p M g ggM !
(2.36)
We see that after removing the cutoff the amplitude has a pole at p = 0.
It is not clear, at least to the author, whether this infrared divergence can
cause some problems with the standard renormalization procedure. At the
one-loop level there should be no problems. If we recall the way noncommu-
tative field theory is derived from the string theory we get a natural physical
interpretation of the divergence. It corresponds to the propagation of some
massless degrees of freedom of the closed string. However unlike the naive
expectations, they do not correspond neither to graviton, NS-NS B-field,
nor the dilaton. They are sort of collective excitations. Further discussion
can be found in [21, 23]. The problem deserves further investigation since it
can help us to understand the outstanding question, how the closed strings
emerge from the open strings. Noncommutative field theory resembles in
many respects open string field theory and it knows indeed about the closed
strings. '

2.4 Anomalies

We have seen in the section 2.2 that the principle of gauge symmetry can
be very naturally embedded into noncommutative field theory. On the other
hand we know from the ordinary field theory, that on the quantum level there
are certain problems with chiral fermions [24, 25]. Generically they lead to
anomalies and unless their quantum numbers cause the anomalies to cancel,
the theory looses its gauge invariance and hence consistency.

The noncommutative field theories arising in the string theory naturally
contains fermions and thus make the study of possible anomalies relevant
[26, 27, 28, 29, 30]. To anticipate, for the U(/N) noncommutative gauge
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theory the result is as one might have expected. For other gauge groups like
SO(n) and Sp(n) it probably does not have much meaning, it is not even
clear how to formulate the dynamics. An interesting paper by Intriligator and
Kumar [29] appeared recently, where they discuss the product group U (V) x
U(Ns) x «:- x U(Ng), which admits chiral fermions in the bifundamental
representation.

To start, we need to discuss the possible couplings of fermions to the
gauge field. We shall follow to some extent [27]. The gauge transformation
law (2.16), as one can easily check, satisfies the closure condition

Ox 0 — Ony0n, = 5[,\1,,\.3]- (2.37)

When we couple fermions, this condition uniquely determines the gauge trans-
formation of a fermion to have one of the three forms

a) oY = —Ax1p, (2.38)
b) 6 = 1= (2.39)
o) o = —[\ .. (2.40)

Associated covariant derivatives take the form
a) Dy = O+ A,x, (2.4
b) Dy = 0 —vxA, (2.42)
c) Do = d+ ALY, . (2.4

We will consider here only the possibility (a), since the results for (b) follow
simply from the observation that

P kg A = A x_g )% (2.44)

Concerning the case (c), we know that in the commutative case there is no
anomaly for the fermions in the adjoint representation. One can argue that
neither in the noncommutative case there is an anomaly.

The singlet anomaly takes the form

5 5 1N .
(Tr [(9“.]# + [4,, J#]J ) = 2ZE <E> ghtton T B ok Flapa®e o F o
(2.45)

The trace is taken only over the U(NV) indices. In some sense it resembles
both the singlet and multiplet covariant anomaly in the commutative case.

Now let us turn our attention to the consistent anomaly. The effective
action coming from integrating over fermions in the background gauge field
is given by

o WIAl — /D@ZDz/) o= JP(-m)y (2.46)
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Under the gauge transformation of the form (2.16) the effective action changes

" SWIA] = X, WA, (2.47)

where . 5

XA:/(@)\—I—AH*/\—A*AM).—— ‘ (2.48)
0A,

Note that one is free to put ordinary or star product between the bracket

and the variational derivative, due to the presence of the integral sign. By

simple calculation, analogous to the commutative case, one can verify that

these operators do satisfy simple commutation relations
X}\X/\/ - ﬁ)\/X,\ = }{[)\,)\/]*. (249)

The integrated anomaly
AN = WA = / M) A(2) (2.50)

should therefore sétisfy the Wess-Zumino consistency condition [31]
XA = X AN = AJ[A, Na) (2.51)
This condition can be elegantly expressed [32] in the BRS formalism as
sAlc] =0, (2.52)

~ where s is the BRST operator which acts on the gauge field A and the ghost
c as

SA = de+Axc—cxA,
sc = —cx*c. (2.53)

From here on, we shall use the formalism of differential forms, we can deal
with them as usual, but we never use the relation wiwy; = (—)"*2wyw;, for
any k;—forms w;.

The strategy is to solve the noncommutative Wess-Zumino consistency
condition (2.52) using appropriate generalization of the descent equations
[32, 33, 34, 35].

If one tries to derive for noncommutative YM theories descent equations
similar to those of the commutative case, at first sight this seems to be
impossible. In fact the standard expression one starts with, Tr(F...F), in
the commutative case should be replaced by Tr(F ... F'). However one
notices that it would be both closed and invariant if we were allowed to
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permute cyclically the terms under the trace symbol. In fact, terms differing
by a cyclic permutation differ by a total derivative of the form 670, . ... Such
terms could of course be discarded upon integration. However, the spirit of
the descent equations requires precisely to work with unintegrated objects.

The way out is then to define a bi~complex which does the rigit job. It is
defined as follows. Consider the space of traces of * products of such objects
as A, dA, c,dc. The space of cochains is now this space, modulo the circular
relation

Tr(Ey % By % ... % By) & Te(Ep * By % ...% Ep_y)(—1)fnlhrtothn=1) (9 54)

where F; is any of A,dA, ¢, dc, and k; is the form order of E;.

This is naturally a bicomplex (let us call it C), since we have two differ-
ential operators which preserve the circular relation (2.54). These are the
exterior derivative d and the BRST cohomology operator s. Note that in our
conventions d and s commute.

We can now start the usual machinery of consistent anomalies, reduc-
ing the problem to a cohomological one. In a noncommutative even D-
dimensional space we start with Tr(F* Fx...x F) with n entries, n = D/2+1.
In the complex C this expression is closed and BRST-invariant. Then it is
easy to prove the descent equations:

Te(F+Fx..xF) = dQ, .4
SQén = dﬂgn—l

and so on. Here the Chern—Simons term can be represented in C by
1
anﬂ = n/ dt Tr(A « Fy x Fy % ... % Fy), (2.56)
0

where we have introduced a parameter t, 0 < ¢t < 1, and the traditional
notation F; = tdA +t?A « A. The anomaly can instead be represented by

1
Q3 = n/ dt(t—1) Tr(dex Ax Fyk...x Fytdes Fyxe As. s Fyt- - dexFyx Pk x A),
0
(2.57)
where the sum under the trace symbol includes n — 1 terms. Finally

1 t__12
Q= n/ dt(——2~—)—~ Tr(de* dc* A* Fy* ...x Fy+...), (2.58)
0

where the dots represent (n—1)(n—2) —1 terms obtained from the first one
by permuting in all distinct ways dc, A and F}, keeping track of the grading
and keeping dc fixed in the first position.
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The only trick to be used in proving the above formulas is to assemble
terms in such a way as to form the combination dA + 2tA x A = d—(%, and
then integrate by parts.

In four dimensions the anomaly takes the form
1 ’ )
Q}l:—§Tr(dc*A>kdA—}—dc*dA*A—i—dc*A*A*A). (2.59)

This anomaly, once it is integrated over, coincides in the form with the result
of explicit path-integral calculations [27]. The approach based on the descent
equations determines, of course, the anomaly only up to some arbitrary co-
efficient, which has to be fixed by other means.

2.5 Noncommutative SO(n) and Sp(n) gauge
theories

As we have already anticipated in section 2.2, to construct noncommutative
versions of SO(n) and Sp(n) gauge theories we need something more elabo-
rated than in the U(n) case. To get some idea of one could expect, consider
the finite noncommutative U(n) gauge transformation

A =U" % (d+ AU, (2.60)

where U~'+UJ = 1. To preserve the antihermicity of the gauge field one needs
also Ut = U~!. Due to the presence of the star product, the noncommutative
gauge group element U is not a function on R? valued in ordinary Lie group
U(n). To construct noncommutative SO(n) and Sp(n) gauge theories, we
will go one step further. We will have to abandon the requirement, that the
infinitesimal gauge transformation and the gauge field itself are Lie algebra
valued.

To start with, we will work in a setting in which # has to be thought of
as a parameter. Accordingly, we will consider 4, as an algebra of (possibly
formal) power series in §. This algebra has an anti-automorphism r defined
by

()" flz,0) — f(z,0) = f(z,-0). (2.61)

This map reduces to the identity on the generators z* and reverses the order
in the product: (24 *...*22)" = (&) % ... * ().

First of all, we consider our groups as subgroups of U(n). In other words
we keep the usual antihermiticity condition on the u(n)-valued connections
A and gauge transformations A. To fix our conventions we will use Greek
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letters for space-time indices and 4 and j for matrix (group) indices. Here,
for later use, we write down explicitly the hermiticity condition:

A:j(xag) = —Aji(%@),
Our defining condition for the NCSO(n) connections and gauge trans-

formations is to take the gauge connections and transformations satisfying
the following constraints:

A:](:U?g) = -Aji(xlg)v
Ni(2,0) = —Au(z,0). (2.63)

Let us comment on these constraints. First of all, it is easy to see that
they are preserved by gauge transformations. One can see it componentwise.
Alternatively, rewrite (2.63) in the concise form 4 = —(A")" and A = —(\*)",
i.e. tis the matrix transposition. Define ((.)")” = (.)"%; one can show that
the rt map, in close analogy to the hermitian conjugation (.)T, enjoys the
property

(f*g)t=g"*f" (2.64)
The proof is now formally similar to the usual one for U(n): (AxA—Ax\)™" =
ATt AT AT AT = —(Ax A — Ax ).

The second comment we wish to make is that the constraints we intro-
duced are natural if one recalls that in noncommutative gauge theories the
map —(-)™ is nothing but complex conjugation; our theory is the charge-
conjugation invariant version of the usual one. More explicitly, as discussed
in [39], indeed the charge conjugation operator is

AC=_ A" (2.65)

One can write an explicit solution of (2.63) as:
1 Tt 1 / AC
Ay = §(AM - Au) - ‘2‘(AM + Au)' (2.66)

This notation may be ambiguous and we hasten to specify that when (2.66)
is used we understand that A, transforms with gauge parameter A = %(A —
A1, More precisely, our 4, enjoys the noncommutative gauge transforma-
tions generated by A: ‘

Ay — Al = U7 A) * Ay * Un(A) — UZHA) * 0,U(A), (2.67)

Tn the ordinary commutative case, this is the way to ‘reduce’ a unitary connection to
an orthogonal one, [40], Prop.6.4.
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where

U.(8) = 1+z’A~%A*A+---,
UMW) = U, Uk Ue=1 (2.68)

As we see it is immediate that our NCSO(n) gauge fields are charge
conjugation invariant.

Thirdly, we anticipated above that under the (2.63), connections and
gauge parameters do not turn out to be so(n)-valued. Nevertheless (2.63)
introduces restrictions on the matrix functions A;;. To see what they are, let
us write (2.63) more explicitly

Inserting a power expansion in 6 for A
Az, 0) = Af(z) +10,,A77(z) + ..., (2.70)

we see that (2.63) implies that Ag, Ao, ... are antisymmetric and A;, 4s. ..
symmetric. The hermiticity condition (2.62) imposes that all the coefficients
Ap, A1, ... be real. The same conclusions hold for the power expansion of A.

Up to now, Ag, A1, ... are unrestricted, except for the just mentioned
constraint. However, if we want to make connection with string theory,
Ay, A, ... are expected not to introduce new degrees of freedom, but to be
functionally dependent on Ag. The simplest proposal is to regard them as
given by the Seiberg-Witten map [7]:

A#(Ao) = Af — 26"{ Aus, 0,45 + Fyl'} + O(6%); (2.71)

(the presence of 7 is due the fact that Seiberg and Witten use hermitean con-
nections rather than anti-hermitean ones, as we do). This is indeed consis-
tent: the term linear in @ is symmetric if the constant part is antisymmetric.
In fact, one can also see that the next term is antisymmetric, and so on; so
we have complete accord with (2.70).

This is related to the further subtle issue of fixing # to a particular value.
In this case, of course the approach we have taken so far — considering ¢
as a formal parameter — loses its validity, and the very definition of r is in
jeopardy. However, thanks to the fact that A;, Ay, ... depend on Ay, even
when one puts @ to a particular value, A is not the most general U(n) field;
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our constraint becomes more involved but is still there. If we invert the map
to obtain Ag(A4), the constraint can be formulated simply as

Ag(4) = —Ay(4). (2.72)

So we could say that our theory is thé image of the Seiberg-Witten map
restricted to the SO(n) case.

It is now easy to introduce similar definitions for noncommutative Sp(n).
One imposes in this case the condition JA™ = —A*J, where J = ¢ ® Id,,
where € = i0y. This constraint is preserved by gauge transformations that
satisfy the same condition.

One could think that the group SU(n) could be tackled in a similar way:
by defining a constraint like Tr(A + A™) = Tr(A + A") = 0. However, this
would not be gauge invariant. So, even by using the r map, it is not possible
to define a NC'SU(n) gauge theory.

To define a Yang-Mills NCSO(n) theory, let A = A(x,0) satisfy the
constraint (2.63). The action we propose is the usual one

§=—2 [ diarp, 2.7
— 4/ zF Flipw (2.73)
The action (2.73) is naturally gauge invariant under NCSO(n) and positive.
It reduces to the usual one for SO(n) in the § = 0 case.

It is not clear to us, how to impose the condition (2.71) in a consistent
way. If one tries not to impose it, one faces a lot of additional degrees of
freedom which are not present in the commutative case and again it is not
clear what happens to them. Some ideas have been presented in [38].

It is rather straightforward to introduce matter fields in this context in a
coherent way. First one has to found a generalization of the Seiberg-Witten
map to such fields. Then it is easy to see that our constraint ¢ = —1 is
consistent with this map. Detailed form of the map can be found in [36].

Finally we would like to discuss a subtle issue whether the proposed non-
commutative gauge theories can be obtained as a low energy limit of string
theory. Normally SO(n) and Sp(n) theories are obtained from U(n) theory
by an orientifold projection. The noncommutativity comes from the back-
ground B-field. One is tempted to say that the noncommutative SO(n) and
Sp(n) theories can be obtained by combining orientifold and the B-field.
But alas, to proceed along these lines one needs D-branes parallel to the
orientifold and the B-field along them. But these are just the components
of the B-field which are projected out. Therefore in our paper [36] we tried
to suggest other possibilities. One is that according to [41, 42, 43, 44], cer-
tain quantized constant B-field is allowed. What is projected out are only
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the fluctuations. Second possibility is to consider a step-like B-field across
the orientifold. Here it is not obvious that it is a consistent string theory
background. Perhaps both cases are two different descriptions of the same
phenomenon. Details can be found in [36]. Slightly different approach to the
construction of noncommutative SO(n) and Sp(n) theories is presented ia-
[45].

2.6 Noncommutative solitons

One of the remarkable aspects of noncommutative theories, is that they allow
for particularly nice solitons. Let us consider first the case of a single scalar
field in two dimensions with an action

S = /dgaz (%awmvw)). (2.74)

Rescale the coordinates satisfying [z1, 2] = 10 to get [Z1,Z2] = 7. In terms
of the new variables the action becomes

1
S = /d% (§a¢a¢>+ 9V(q§)> : (2.75)
In the limit of large 6 we can neglect the kinetic term and we can look for

stationary solutions. Suppose that the potential V(¢) takes the form

1 1
V(9)=5m'bxd+2gbxdrg+---. (2.76)

The equation of motion V'(¢) = 0 reads
m2¢ + go ¢+ --- = 0. (2.77)

In the commutative theory the only solution would be a constant. The
noncommutativity allows however for more interesting possibilities. If we
can find a ¢q such that

Po = ¢o * o, (2.78)

then we can look for the stationary point in the form ¢ = c¢y. The constant
c is determined as a solution of the algebraic equation

mic+gc® + -+ =0. (2.79)

The simplest example of a solution to the projector equation (2.78) is

Go(z1,T2) =277 . (2.80)
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Elegant and simple construction of all solutions has been found by Gopaku-
mar, Minwalla and Strominger [46]. It is based on a simple observation that
[z1, T3] = 16 is formally identical to the basic commutation relation [g, p] = if
of quantum mechanics.

When quantizing & classical system, we want to associate to a given func-
tion on the classical phase space an operator in a Hilbert space. There is a
well known ambiguity in this procedure, to the function p"¢™ we can asso-
ciate many operators, distinguished by the ordering of the operators ¢ and
p. One particularly convenient prescription is so called Weyl or symmetric
quantization. To a given function f(g,p) on R? it associates an operator
O(g,p) in the Hilbert space H by the formula

1
e

where the tilde denotes a Fourier transform. Its important property is, that
it defines an isomorphism between the algebra of functions on the plane with
the Moyal product (2.12), and an algebra of operators on H

070, = Osy. (2.82)

Of(ﬁ: f)) = /ko f‘(kq, kp)e'i(kq@‘l‘kpﬁ), (281)

Second important property is

o [ dvdaf(a,p) = Ten Oy, (283
i

In this correspondence the problem of finding all solutions to the equation
do * g = ¢y is equivalent to finding all projectors in the Hilbert space. This
problem is easily solved by the Fock construction, introducing the annihila-
tion and creation operators:

. = q+ip
_ 1t
d = 22 (2.84)

The basis of all linear operators is given by

tm n
a _ata @

et l=1.
vm! vn!
With a little effort the normal ordered operators can be rewritten in the Weyl

ordered form and one can read of the corresponding function. The simplest
projector and its Moyal plane function equivalent is

m)(n| =:

2

10)(0] =~ 2™ 7. (2.86)
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More general rank one projectors corresponding to the spherical functions

are
2r

ol = 217 () 7. (2.87)

where L, (r) are Laguerre polynomials. Finally the most general solution is’
of the form

5
“”‘ (]

U (Z an|n>(n|) Ut an € {0,1}, (2.88)

where U is an arbitrary unitary operator.

Let us anticipate that these kinds of noncommutative solitons will be later
understood in the context of string theory as D-branes of lower dimension
[109, 89, 92]. One could ask the question what happens to these noncommu-
tative solitons under the Seiberg—Witten map, i.e. when one wants to express
them in the commutative coordinates. This has been studied by Hashimoto
and Ooguri [47], who have shown that the soliton gets squeezed to the delta-
function support. This fits nicely with the stringy picture of D-branes as
infinitely thin objects.



Chapter 3
Cubic string field theory

The standard perturbative definition of string theory tells us only how to cal-
culate the on-shell S-matrix elements. In particle physics the on-shell matrix
elements are the only thing that is measured. One can develop a system-
atic perturbative method to calculate all processes using purely the on-shell
data. In practice, nowadays, almost everybody uses the quantum field the-
ory which is a very powerful off-shell extension. Its advantages are obvious:
it gives simpler and more systematic prescription for perturbative compu-
tation of amplitudes and more importantly it allows us to use semiclassical
methods.

In the same spirit the field theory of strings is a certain off-shell extension
and can be used in principle to calculate in a systematic fashion all string
amplitudes. For quite a long time people thought that the string field theory
is a rather complicated tool to obtain results already known. However in
recent years this general attitude has changed. The string field theory came
to play very important role, since it can tell us what happens to the tachyon
in the open bosonic string theory, and to the tachyon on non-BPS branes
and in the brane-antibrane systems in superstring theory.

This can be easily understood. The tachyon (just as the Higgs field in the
standard model) signals a instability of the vacuum. It develops a constant
vacuum expectation value (VEV). To calculate this VEV and the form of
the theory around the correct vacuum, one needs to know amplitudes at zero
momentum, which is for the tachyon an off-shell momentum.

First versions of string field theory have been constructed in the light cone
gauge. These theories will not be reviewed here, since they are not suitable for
the study of the tachyon condensation due to the lack of Lorentz invariance
and have been superseded by better theories. Here we will concentrate on
manifestly Lorentz invariant and gauge invariant Witten’s open cubic string
field theory [5]. Another, so called background independent or boundary

22
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string field theory was also developed by Witten and refined by Shatashvili
[52, 53]. It has led to some remarkable exact results about the tachyon
condensation but for the lack of space we refer the interested reader to the
literature [68, 69, 70].

Witten has succeeded in formulating the covariant string field theory in
an attractive language of noncommutative differential geometry. His theory
has several very nice features: it is manifestly covariant, gauge invariant
and cubic. Subsequent works by Gross and Jevicki [48, 49] put the theory
on a firmer footing, when they expressed everything in terms of Fock space
oscillators of the first quantized string theory. Later LeClair, Peskin and
Preitschopf [50, 51] have given another rigorous definition of the Witten’s
theory by expressing all terms in the SF'T action as correlators in the two
dimensional CFT.

The string field theory has become very popular recently mainly due to
the conjectures of Ashoke Sen [54, 55]. Roughly speaking, according to his
conjectures, the D-branes arise as solitons in open string field theory. The
perturbative vacuum of the string field theory is a space-filling D25-brane,
which is unstable and decays into some new nonperturbative vacuum which
is called closed string vacuum, since it is believed to have only the closed
string excitations. Some aspects of the conjecture have been tested, most
importantly in the papers [56, 57, 68, 69, 70].

Finally we would like to mention two reviews on the subject, an older one
by Thorn [58] and a quite recent one by Ohmori [59], which also discusses a
lot about the tachyon condensation.

3.1 Witten’s original formulation

In this section we introduce the Witten’s covariant cubic string field theory
[5] for the open bosonic string. The basic dynamical variable is the string
field which in the Schrodinger representation is given by

U [X(0), ¢(0)] = (X (0), c(0)[¥). (3.1)

It is a straightforward generalization of the quantum mechanical wave func-
tion of a particle to the string case. Later we will find convenient to work
directly with the state |¥) of the Hilbert space of the first quantized string
theory.

The string field action has an attractive form of noncommutative Chern-
Simons action

S:—%/(E\P*Q\I’—S——I—\I’*\P*@), (3.2)
g 2 3
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where ¢ is the open string coupling constant and @ is the BRST operator.
The integration and the associative star product will be defined later. The
beauty of the formulation lies in the noncommutative geometric interpreta-
tion of these objects.

The ghost number of the stiing field corresponds forimally to the form
degree, the associative star multiplication * to the wedge product A, and the
BRST operator @ to the exterior differential d. This means that the star
product acts additively on the ghost number and the operator @) has the
properties

Q" =0, (3.3)
/Qm::o, (3.4)
Q(A*B) = QAxB+(-)"AxQB. (3.5)

Clearly also @ increases the ghost number by one, just as the exterior differen-
tial d increases the form degree. Let us anticipate that these formal relations
could be also satisfied by other choices for @) for example the combination of
ghost modes ¢y + $(c2 + c—2). According to recent conjectures [95, 96] such
actions could correspond to string field theories around the nonperturbative
vacua without open strings.

Very nice feature of the action is its manifest gauge invariance

S =QU+TxA—AxT, (3.6)

where A is a string field of ghost number zero, which plays a role of a gauge
parameter. The ordinary space-time gauge symmetry is a consequence of this
stringy gauge invariance, for interacting theory the relationship is however
not so straightforward.

The star product of two string fields is defined as gluing of the right part
of the first string with the left part of the second string. Explicitly it is given
by the formula

() % Ty) (Xo(0)) = / DX, (6)DXa(0) U (X1 (0))Ua(Xa (o)) (3.7)
[I 6(X1(0) — Xo(0))6(X2(0) — Xi(7 — 0))6(Xo(m — &) = X(w — 0)).

In this formula and for the rest of this subsection we are ignoring the ghost
degrees of freedom. We will come back to them later.
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One may readily check that the star product is associative. The integra-
tion is defined for a ghost number 3 string field by

/ /DX ) [ 6(X(0) = X(r — 0))¥(X(0)). | (3.8)

O<o‘<"

The 3-string interaction term can be written easily as

<\Illa\li27\1,3> :/@1*@2*‘1/3

:/DX1(0'>DXQ(O’)DX3(O') U, (X1 (0))Wa(Xa(0)) Vs (X35(0)) (3.9)
H §(X3(0) — X1(m — 0))8(X3(0) — Xo(m — 0))6(X1(0) — Xz(m — 0)).

We can further simplify the formula (3.7) by integrating over the delta
functions

(T % Tq) (2 /DYL \Ifl ———a) Xo(o )+9(U—§> YL(T——O')>

@9(@(_2-—0) Yi(o )+9(a——) Xo(o )), (3.10)

where the functional integration DY (o) is over half of the string 0 < o < 7/2
only.

It is empirically established fact that string field theory works well when
expanded into Fourier modes. Let us therefore expand the string coordinate
X (o)

X(o) :xo—%—ﬂz:xn COS 10 (3.11)
n=1
The star product then takes the form
1
A (-2—(1 —iXCO) T+ -;—(1 + z’XC’):E’) . (3.12)

where the matrices X and C were introduced by Gross and Jevicki [48] and
have the following form

X = L= (1o (,UW)( 1 +<*1>m>7

n+m n—m

Xom = ——(=1)"7 1-(-1)7),
Com = (=1)" 6. (3.13)
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They satisfy the relations
X=X"=-XT X?’=1 XC=-CX. (3.14)

These relations imply that $(1 + iXC) are projectors which is crucial for
proving associativity in this setting. What remains, is to specity the inte-
gration measure in (3.12). The choice is to certain extent arbitrary. We will

take - -
DY:gdyné(Y (%) e (g)) (3.15)

which is compatible with associativity. Let us see what happens when we
take first two modes only

(U Wo)(wo, 71) :/dyodyl (%o — o) s
. (1 Vo1 V21 V1 2 )

—To + =T+ Yo + —Y1, =T + —Tg — =Y1 — — Yo
T 2 T T 2 T

2 2
1 V2 1 V2 o1 V2 1 V2
Vol %o+ —y1+ 5Zg— —T1, 51+ —Yo+ %1 — —Tg
2 T 2 T 2 T 2 T
V2 1 1
= /dyl N4 (330 + —(z1 +v1), 5%~ oW
/" < L
NG 1 1
WUy | 29 + —(y1 - 371), =Y + =23 | . (316)
' 2 2

As a result of the truncation this star product is not associative. If we
however restrict ourselves to zy or z; modes separately, we get meaningful
results. First ignoring x; mode we have the most trivial commutative star
product

(11 o) (z0) = 1 (z0)2(20)- (3.17)
From here on, we shall denote the string field truncated to a single mode by
lower case 1. For functionals v » independent of zy we get another product

(1 * 92) (21) = /dy1 wl("”;yl) %(yl ;””) L (318

Both of these products are commutative and associative. The second one has
the same form (up to a normalization factor) as the first one after Fourier
transformation. Indeed

(1 % o) (k1) = 2v/2m 1y (o )2 (Kn). (3.19)
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3.2 Fock representation

Our conventions for the Fourier transformation are those standard used in
quantum mechanics

bo) = o= [utheteae,
1 —ikz
(k) = \/_Z?/w(:c)e dz. (3.20)

3.2 Fock representation

Although the Schrédinger representation is very convenient for defining the
star multiplication of string fields, it is not always good for practical calcu-
lations and for making things rigorous. Therefore already in 1986 Samuel
[60], Cremmer, Schwimmer and Thorn [61] and Gross and Jevicki [48, 49]
tried successfully to re-formulate the Witten’s string field theory in terms of
oscillators on a Fock space of the first quantized string theory.

In analogy with the quantum mechanics of a particle, the Schrodinger
functional is a z-representation of some vector in Hilbert space H

¥ [X(0)] = (X (o)), (3.21)

where again we are ignoring ghosts. The string field integration is a linear
map to real numbers and can thus be represented by some bra-vector (I| € H*

[ =caw) (3.22)

Inserting in the RHS the resolution of identity
1= [ DX@IX (@)X ()] (323)

we see that from (3.8) follows immediately the Schrodinger representation of
the state |I)

(X)) = ]] 8(X(0) - X(r~0)). (3.24)

0<o<%

The 3-string interaction, just as the integration, can be represented by a
bra-vector (V| € H* @ H* @ H*

/\Ifl Uy = Uy = (V][ 03[ W) [ T). (3.25)
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It is a machine that given three string fields produces a real number. We will
need a further property

(bp2(T,) [Ty % Uy ) = (V][0 [0)[ ¥s), (3.26)
where the BPZ conjugation is defined by
(bpa(W)] X (0)) = [X (m — o). (3.27)
Recalling the mode expansion (3.11)

z(0) = 2o + V2 Z Tp, COS O, (3.28)
n=1

we can construct the Hilbert space using the creation and annihilation oper-
ators al , a, defined by the relations

T, = an — al),
Zn( )
0 n
- S t 2
P = i = [plen b al) (3.9
and
7
Ty = 5(%"@3),
Do = -7§——a—-:(ao—l—aT). (3.30)
8:60 0

The original construction [48, 49] of the 3-string vertex (V| is quite com-
plicated, we will follow later different route using the CFT techniques. How-
ever it is pedagogical and interesting to look how far one can get along the
most obvious path. We shall derive the Fock space representation for the
two truncated commutative star products (3.17) and (3.18).

3.2.1 Truncated star product I.
As a first example we consider the star product (3.17)

(%1 * 1ha)(2) = Y1 (2)¥2(2). (3.31)

Let us start with the 3-string interaction
(Vi) v ls) = (bpz(vr)|the * ¥s3)
= [ sl 3.32)

= f%%/dpldpzdps §(p1 + P2 + p3) Y1(p1)Y2(p2) Y3 (p3),
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from which we will determine the star product. We shall evaluate (3.32) on
the overcomplete basis of coherent states of the form

) = €'10). (3.33)
As the above star product can be studied on its own, we adopt micre sym-
metric definition of the creation and annihilation operators
1
T _ .
a = —=(p+1z),
\/-2-(29 )
1
a = —(p—1x). 3.34
25— i) (334

The momentum and coordinate representations are easily found to be

2 2
1 —E+v2pl-L

/ e :

/Irj(p) 4 7Te ?
1 _z? 1T 2

’([)(l’) = —4\/——7.;6 2 2 l+2. (335)

The result of the gaussian integrations is simply
1 2 LS 2 2(llp+alz+Hslh) .
Ao (2 (e)s (o) = =y 5 e THEbian) (3.36)

s

Now we would like to express (V] as a state in the tensor product H*@H*QH"
of three Fock spaces. Let us try an ansatz

(V] = k(0] 3 =Moo (3.37)
for some real 3 x 3 matrix IV and normalization factor x. Imposing cyclic-

ity of the vertex and symmetry of the matrix N we are left with only two
parameters A, . The matrix /N takes the form

2N p
wo2x opo | (3.38)
boop 22

Evaluating the LHS of (3.32) for states (3.33) using the above vertex gives

<O|€%2Nijaiaj621ia3 0> — 6)\Zl%+u(lll2+l2l3—l—lgl1)' (339)
Matching (3.36) and (3.39) we get
VoL
6
2
b= —=. (3.40)



30 Chapter 3: Cubic string field theory

The normalization factor is clearly

! \/5 3.41
k= 7=V | (3.41)
Note that this matrix N has eigenvalues 1,1, —1 and satisfies N? = 1. This
is a generic feature of the full string field theory vertex.

Now we would like to derive an oscillator formula for the star product.
We start with a trivial identity

() = (0]e”[16)s @ [0)q, (3.42)

where a! and b are creation operators generating two Fock spaces H,, H,
respectively. The identity can be easily checked for coherent states. Then

o) * [s) = 4(0]€™™ |ty # 13 )4 ® |O)
o —atal
= 234(V]eT" %) ® |1h3) ® |0)4 ® |O): (3.43)
= K23 <0leA(a”'f'a%"'a%)—lmT(az+a3)+uaza3|O>1 ® ‘w2> ®Q ‘¢3>

In writing the second line we have used the crucial fact following from the
definition (3.32) that

(VIlen) [dh2)[¥s) = (bilwz * ), (3.44)

where the upper script ¢ denotes conjugation defined as the ordinary complex
conjugation in the z-representation.

One might be also interested in the identity of the star algebra. In the
z-representation it is the function ¥(z) = 1 which when translated into the
Fock space takes the following form

1T) = V2 mie 29 |0). (3.45)

Note also that it is related to the integration on the algebra since
(110) = [ do(o). (3.46)

3.2.2 Truncated star product II.

As the second example we consider the star product (3.18)

(1 * ¥2) (21) =/dywl(“"”‘2‘y) w(”“;y) (3.47)
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which has been studied extensively in [87, 88]. It takes particularly simple
form in the momentum representation

(%) (k) = 2v/2 1 (k) (). - (3.48)

Slnce this star product arises in the odd sector of the string we have
{bpz(¥)|z) = ¥(-x) (3.49)
and therefore

(Vi) ) Ibs) = (bpz(¥n)|he = ¢¥s)

= /dwzm(—a:)/dng(x;y) %(x_;y)

= 2/d331df[]2d373 5(1171“‘1’2 —f—ng) 7!)1(331)"(][’2(1‘2)'77/13(1?3),

N / dpp (D) (D)s(p). (3.50)

Again evaluating the 3-string interaction on the coherent states we get

[ o) = g R R s

From this we can read of the matrix N appearing in (3.37). It is just the
opposite to what we found before

1
A = —=
6’ 4
2
no= +§. (3.52)

The star product looks finally as
o) * |1bs) = & - 2’3(0[e*(012+a§+a§)+uaf(a2+a3)+#azaa|0>1 ® [12) ® |¥3), (3.53)

where x is the same constant as before The identity, which in the p-
representation is the function ¥ (p) = 5 \/—, takes the following form

1 1L 1giat
|y = (2\/2_7?) V2rieta? e |o). (3.54)
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3.2.3 The full three vertex

Let us now present without a derivation the results for the three vertex, in
the full string field theory specified by the star product (3.7). The product
itself is defined through the vertex by the formula .

Uy % Uy = bpz ((V|¥; @ Uy), (3.55)

where bpz denotes the BPZ conjugation in conformal field theory, which

looks as
bpz ¢ = (—1)" e _, (3.56)

for a primary field ¢ of dimension h. To calculate the BPZ conjugation of
some operator, one has to reverse the order, replace the modes according to
the above rule, and for total number n of Grassman fields b and ¢ put the

sign (“1){%] This accounts for the sign change when one wants to put the
Grassman fields in their original order. The three vertex is given here

V| = (-?-’—?> § (P + p? + p®) (0] ® (0] ® (0] x (3.57)

<
1
X exp ( Z 9 (T)HNTS m Guv —+ Z Y;:n ni)

Z

m,n=0 m=0,n=1

The vacuum (0| is related to the standard SL(2,R) invariant vacuum (0]
through (0] = (O}c(_)lc() where 1 = 1,2, 3 label one of the three Fock spaces
in the tensor product. As usual of = v2a/p*. The Neumann coeflicients

Nrs X7 are defined in terms of the 6-string Neumann functions NZ$,, 1 <
r,s < 6 through
1, - _ _ _
N = 5 (g + W) 4 NS 4 N ee0)
KXo = n(=1)77FH (N7 = NpG+9) (3.58)

All coefficients have a cyclic symmetry under 7 — (r mod 3)+1, s — (smod 3)+
1. The 6-string Neumann functions are given by

oo L n(r—1)m(s—1) [ £( ) (=1 m(-1)°
N = o 74 e T (D [P [
TS __ n(r—1)+(s—1) n(—-1)" fl(w)
Moo = }{ 271 [, 27T’L z— w( 1) o £(2)] f(w) (3-59)
with A2 3)
f2) = —5—= (3.60)
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and . .
2 =443, —, 0, ——=, —V/3, oo}. 3.61
{ V3 V3 (564
For a table of these coefficients we refer the interested reader to [102]. This
integral representation is good enough for standard computation with a sym-
bolic manipulator like Mathematica or Maple. For calculations by hand or to
very high levels (big n or m) with computer, it is much more eflicient to use
the recursive formulas from [48, 49]. Their coeflicients are related to ours by

XS =nNTS (3.62)

The large level behaviour of these coefficients has been studied by Romans
in [104].

3.3 CFT approach

We are now going to describe a beautiful approach to string field theory
developed by LeClair, Peskin and Preitschopf in [50, 51]. The basic idea
is to express all the terms in the field theory action as correlators in the
two dimensional conformal field theory (CFT) on the string worldsheet. The
highlights of the approach is its conceptual simplicity, manifest symmetry of
the string field theory vertex and an elegant proof of gauge invariance. The
latter requires 'Generalized gluing and resmoothing theorem’, which justifies
the use of geometric intuition in string field theory. The approach can be also
used to derive the oscillator form of the vertex, discussed in the preceding
subsection, in a simpler and more straightforward manner.

The string field |U) is an element of the first quantized string theory
Hilbert space 7, which is a state space in the combined worldsheet mat-
ter and ghost CFT. In the two dimensional CFT there is a state—operator
correspondence between states and operators given by the relation

|T) = T(0)]0). (3.63)
The n-point vertex is given by for any n > 1
(U1, g, ) = (fV 0 W1 (0) £§7 0 Wa(0) .. fi 0 Wa(0)),  (3.64)
which we are going to write also as

<@1,\P2,...,\Ln> = /\1‘1*‘112*"'*@”
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The f,i”)’s are complex maps given below. The symbol f o U denotes the
conformal transform of ¥(0) by f. For a primary field of dimension d it has
the explicit form f o ¥ = f/(0)4¥(f(0)), for non-primary fields it has more
comphcated form involving adchtlonal terms with higher derivatives of f.

- The construction of maps" f,C proceeds as follows. We represent the
string worldsheet as the complex upper half plane. The radial coordinate
|z| represents the time evolution, and therefore the part of the world-sheet
before the moment of the interaction at |z| = 1 is the unit upper half disk.
The past infinity is represented by a point in the origin. By a mapping

1+1z
1 -1z

h(z) =

(3.66)

we map it to the unit right-half-disk {|w| < 1,Rew > 0}. Then by power
mapping ()nl we shrink! it to a wedge of % and rotate it by this angle k&
times in the clockwise direction. Finally we map it back to the upper half
plane. Putting everything together we arrive to

£ = h7 (e (=) ) (3.67)

3.3.1 Relation to Witten’s formulation

Now we would like to argue that the above prescription for the string field ver-
tices is indeed equivalent to the original Witten’s one in terms of Schrodinger
representation. First let us consider a two vertex

(U1, Wy) = (L0W(0)P(0))

= (bpz(¥)|¥sy)
/ DX () (bpa(0,) X (0) ) X (o) T2) (3.68)
_ /mq DX(0) [ 6(Xa(0) — X (r — 0)) U (X3 (0)) B Xo(0)),
0<o<lm
where I(z) = —-zl- is the inversion map, which is actually equal to fl(z). Let us

give an interpretation to this result. Suppose, that we are representing world-
sheets of two strings as upper half disks with insertion of a local operator
at the origin. Performing a path integral over each half disk with Neumann
boundary conditions on the real axis produces a functional of the boundary
conditions on the unit semi-circle. Now mapping the whole upper half plane

'Tt is actually shrinking for n > 2. For n = 2 it leaves it invariant and for n = 1 it
expands the half-disk to the full disk.
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to the unit disk using h(z), the upper half disk is mapped to the right half
disk with insertion at point 1. Gluing two such right half disks along the
imaginary axis [—1,1] is tantamount to performing the above integral with
delta functions. One could argue that, in more generality, gluing two half
disks so that [0,4] of one disk gets glued with [—i,0} of the other disk car-
responds again to the functional integral over the boundary conditions Wlth
the delta function overlap (3.7).

Let us be more explicit. Take for instance the three vertex, which is given
by a path integral over the trisected region. One can factorize the integrand
into three parts which depend only on the fields in the three regions. The
whole path integral can be therefore written as a path integral over the
boundary conditions on the three inner boundaries and over the three inner
regions. The bulk path integrals give just the Schrodinger functionals of the
boundary conditions X;;(c) between the regions ¢ and j, where 7,7 = 1,2, 3.
Since these boundaries are half-strings it is natural to parameterize them by
o € [0, %]. The remaining integral over the boundary conditions

(T, Ty, Ty) = / DX y(0)D Xas (0D X1 (0) (3.69)
U1 [Xa1(0), X12(0)]W2[X1a(0), Xaz(0) W3 [Xa3(0), X51(0)]

can be easily recast in the original Witten’s form

/ DX, (0)DXa(0)DXa(0) W1 [X1 (0) Lo X (0) | T [Xs (0)]

[ 6(X2(0) = Xi(m = 0))6(X3(0) — Xa(r — 0))8(Xa(0) — Xs(m — 9)),

0<o< %

where now the variable o € [0, 7] parameterizes the whole string.

3.3.2 Fock representation from the CFT approach

We have seen in the section 3.2 that the direct construction of the Fock space
representation of the string field theory vertex is quite complicated. Actually
Gross and Jevicki [48, 49] also used some sort of CF'T approach to solve their
overlap equations for the vertex. The arguments given in [50] leads rather
quickly to the right answer.

Calculating the vertex (3.64) for N arbitrary states one needs to evaluate
expectation values of products of operators like

foam = 2 FEOX(I(E)), (370
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and similarly for ghosts. The expectation value in (3.64) is calculated in a
standard way using the Wick theorem. All one needs are the contractions

frol.azn] fool.m..] = f Qd,; 2 fi(2) f sui v T —1fs( e

(3.71)
Now it is clear that using these contractions is effectively equivalent to having
a N-vertex (3.65) with

(Viz.m| = (0] ® (0] @ - - ® (0] e™7 Lo Lmnz1 G Viimam (3.72)
where
1 dz dw —1
NTs — —n rf — T . 3.7
" mm o 1) o fiw )(fr(z) fs(w))? (3.73)

For an extension to non-zero momentum we refer the reader to [50]. One can
check that this result agrees with that obtained by Gross and Jevicki.

3.4 Sen’s conjectures

The open bosonic string field theory living in 26 dimensions has been thought
for a long time to be internally inconsistent due to the presence of a tachyon
of mass m? = —5 in its spectrum. In some of the early works it has been
proposed, that the negative mass squared of the tachyon indicates an insta-
bility of the vacuum against the decay into some nonperturbative vacuum
(62, 63, 64]. In a sense, the fate of the tachyon should be the same as of the
Higgs field in the standard model. Later on, the vacuum has been explic-
itly constructed in a level truncation approximation [65, 66] but its physical
meaning remained unclear.

A major breakthrough in the whole string theory came in 1995 with the
discovery of D-branes by Polchinski [67]. They are extended objects on which
the open strings can end and which carry conserved Ramond-Ramond (R-
R) charges. In the bosonic theory there are no R-R charges, nevertheless
one can still imagine having D-branes, extended objects with open strings
attached on. Since they do not carry any conserved charge, they are in
general unstable, which is revealed by the presence of the tachyon on their
world-volume.

Ashoke Sen’s major insight was, that the perturbative vacuum of the
open bosonic string theory is the unstable D25 brane. The instability causes
it to decay into some other vacuum, called a closed string vacuum, which is
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from the perspective of the open string field theory a nonperturbative state.?
Based on this picture, Sen made three particular conjectures:

e The difference between the energy of the unstable and the perturba-
tively stable vacuum state AF should be equal to the rest mass Tos5Vas
of the unstable D25-brane, where Va5 and Tys are its volume and the
tension respectively. This difference can be calculated from the string
field theory as minus the string field action per unit time (which is the
potential), at the critical point.

e There are translationally noninvariant vacua which correspond to the
lower-dimensional branes. They are lump configurations in the tachyon
and other string fields with exactly the right energies to be interpreted
as D-branes.

e The perturbatively stable vacuum is the closed string vacuum only and
hence there should be no open string excitations around.

The first conjecture has been tested to a rather good accuracy by the level
truncation method in [56, 57] and we shall briefly sketch the calculation. It
has been proved exactly in the framework of background independent string
field theory (BSFT) in [68, 69, 70].

The second conjecture has been also tested numerically in [74, 76] and
again exactly in the BSFT in the references mentioned above. Further ref-
erences can be found in the review [59]. A different and particularly nice
approach to test this conjecture is via background B-field [89, 90, 91, 92] to
be discussed in chapter 6.

The third conjecture remains least understood, though enough evidence
has been already gathered [93, 94].

The biggest puzzle at the moment seems to be, whether there are closed
strings in this vacuum and how should they emerge. Whether they should
arise only at the quantum level [71], as some sort of classical configurations
[89] or by somehow enlarging the state space of open string fields to some
singular configurations [72, 73].

Let us now briefly sketch for the pedagogical reasons how the numerical
proof of the first conjecture in the Witten’s cubic string field theory goes.
It is based on the level truncation approximation, a technique devised by
Kostelecky and Samuel [65, 66] in 1988. The idea is quite simple, the string
field is expanded into a basis of Ly eigenstates and only first few levels are

2 Actually the closed string vacuum is again unstable due to the presence of the closed
string tachyon, but it is probably out of reach of the open string field theory.
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kept nonzero. The level of Ly eigenvector is defined as its Ly eigenvalue plus
one.

The zeroth level truncation of the string field leaves behind just one term
| W) = tc;|0). Here ¢; is a mode of the ghost field ¢(z) and ¢ is the tachyon
wave funiction. In full generality, we could have SRR :

7) = / pt(p)e|0, p). (3.74)

Due to the fact, that the star product of two zero momentum states is again
a zero momentum state, we can consistently restrict our attention to zero
momentum, that is £ constant. Now we are going to evaluate the string field
action

1 /1 1 -
The kinetic term is
(U, Q) =+*(0]c_1Qc1|0) = —t*(0jc_1c0c1|0) = —#* (3.76)

due to the standard normalization (c_jcoc;) = 1. To calculate the cubic
term, one may proceed by several ways. One way is to use the explicit form
of the vertex (3.57) and get

(U, U*¥) = 753(‘/3’0(11)10)®c§2)|0)®c§3)]0>
3
= (i?) s (3.77)

Another way is to use the CF'T prescription
(0,0« T) =3 f1¥ oc(0) ££7 0 c(0) £ 0 c(0)), (3.78)

and to calculate

O
—~
|
>
~

fPoc(0) =

£Poc0) =

O
—~

B
S

oc0) = Z¢(V0). (3.79)

Then we need the correlator

(elz)e(y)e(z)) = —(& - y)(y — 2)(z — 2) (3.80)
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to get

(c(=V/3) e(v/3) e(xv/0)) =2-3-V/3. (3.81)
Again we arrive at the same result (3.77). Apart of the terms we have just
calculated, there is an overall volume factor Vag from the zero modes. Putting
everything together we get o ‘ ' '

3
fl=—= | —=t¢ - — ] t ) 3.82
St = -2 | —5#+3 ( - (3.82)
Local minimum of this action is at
4 \3
t=t,=|—=) ~0.456. 3.83
(3\/5 ) (3.83)
The tension of the D25-brane is known to be [2]
Tys = — (3.84)
25 — 27_(_2927 .

which has been also ingeniously derived from string field theory by Sen [55].
Plugging the critical value of ¢ into the action we get

St — S[0]
T55Vos

which is not too far from one. The conjecture is thus confirmed in zeroth
level approximation to nearly 70%.

Let us also sketch how it works at level two. We will need the explicit
results later. One can easily show, that all odd level components of the string
field can be consistently set to zero due to the twist symmetry. Another
simplification comes from the fact, that due to the gauge symmetry of string
field action, we may (perhaps we should) fix the gauge. Simple choice is the
Siegel gauge by|¥) = 0, which can always be reached perturbatively. The
tachyon field then has the form

~ 0.684, (3.85)

1
v = [tcl +uc_1 + U**\/-_—]T*S*L._gcl {O> (386)
With a bit of effort one can calculate the string field action by one of above
methods

_ 1 2 1 2 1 2

3
11 5v/1 1 7-83 110v/13
+—;- (-3—[%) [te’ + =ty — _%——gt% + 12 4 L8y

Tuv

U
81 243 243
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Here we keep only interaction terms whose total level is at most 4, hence the
name (2,4) approximation. One could do also (2,6) approximation, which
is slightly better, but that improvement is not worth the effort. One may
prefer then to go directly to level (4,8).

Let us look for the stationary points. There is just one good, which
somehow survives from one level to another, as the level is increased, and
which also satisfies some sort of additional BRST condition discussed by

Hata and Shinohara [103]. The results from numerical calculation are
t, o 0.542, u, =~ 0.173, v, =~ 0.187. (3.88)

Evaluating the string field action for this solution we get

~ 0.949, (3.89)

which is indeed very close to one, confirming the Sen’s conjecture to 95%.
This calculation has been performed originally [56] also at level (4,8) with
the result 98.6% of the expected answer and later by Moeller and Taylor [57]
in the Fock basis up to level (10,20) confirming it to 99.91%.

There have been also checks done for the lump solution [74, 75, 76]. The
level truncation has to be a bit modified, however, to incorporate correctly
the momenta. The best results have been obtained for compactified space,
where one can define the level truncation procedure quite naturally.

Similar analysis for the case of the tachyon on non-BPS branes and in the
brane-antibrane pairs in the Berkovits’ and Witten’s superstring field theory
has been done in [77, 78, 79, 80, 81].



Chapter 4

Properties of the string field
algebra

In the preceding chapter we have introduced various formulations or descrip-
tions of cubic string field theory, each of them had its own advantages and
drawbacks. We have also explained the famous Sen’s conjectures, which up
to date has been confirmed within the standard cubic string field theory only
numerically. To go beyond these numerical calculations, perhaps one needs
to understand better the nature of the string field algebra and to develop
some new techniques. '

The goal of the present chapter is to understand better an important
commutative subalgebra formed by the so called wedge states introduced
by Rastelli and Zwiebach [82]. This family incorporates for instance the
SL(2,R) invariant vacuum |0), the identity element |Z) of the algebra and a
state denoted as |oo), which is a projector in the algebra. The latter state
plays a key role in the description of the lumps around the tachyon vacuum
[96].

We shall describe in detail the construction of wedge states and their
star multiplication properties. We also introduce so called wedge states with
insertions, which also can be multiplied exactly, they will turn out to be
useful in the study of the identity wedge state and anomalies associated with
it. Then we turn our attention to the problem of behaviour of the coefficients
entering the definition of the wedge states. The results are quite remarkable,
although for our main goal they are not very useful. Finally we study how
is the level expansion good for star multiplication of wedge states.

41
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4.1 Wedge states

4.1.1 Finite conformal transformation

Iet us recall first some facts about finite conformal transformaticns. A pri-
mary field of conformal weight d transforms under finite conformal transfor-
mation f as

foW =[f(2)"W(f(2)). (4.1)
We would like to rewrite this transformation rule using the Virasoro genera-
tors L, of the conformal group in the form

P (f(2) = Urd(2)UT Y, (4.2)

where
Up = e2nln, (4.3)

To determine the coeflicients v,, we note that
Ur¥(z)U;" = e*TeninU(z), (4.4)
where as usually adx Y = [X,Y]. We may prove an important identity
(adsv,z, )" U(2) = (v(2)0, + dv'(2))* ¥ (2), (4.5)
for any k € N, where we set
v(z) = Z v 2" (4.6)

The proof for £ = 1 can be easily performed for example by expanding
¥ = 3" 2= and using the commutation relations

(L, U] = ((d = 1)m — n) Wy (4.7)
Then for £ > 1 it follows trivially. We thus see that in general
UrU(2)U; " = e?EoA 0 Gy (7). (4.8)

Our task is therefore for a given f(z) to find a solution v(z), such that for
any U(z) and any d

OO (2) = [f(2) U(f(2)). (4.9)

A priori it is not even clear that such v(z) exists. Let us insert into the left
hand side the identity e *%¢*?. One may easily check that

"2 () = [(e"2)% 2), (4.10)
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Since e¥(2)0:+dv'(2)o~v(z)0: ig just an ordinary function we have to take such
v(z) that

% 5 = f(2). (4.11)
From that follows another important relation }
v(2)8.£(2) = v(£(2)). (4.12)
The proof is simple:
v(2)0,f(2) = e P%y(2)0,2 = "%y (z) = v(f(2)). (4.13)

For consistency we should be able to show also

g/ ()g=v(D%: = /()] (4.14)
for any d. In order to prove it let us define for ¢ € [0, 1]
filz) = e
Xt(z) — etv(z)@;+dtv/(z)e~t-u(z)63 (415)
Let us derive a differential equation for X;:
8 Xi(2) = dV'(fi(2))Xi(2)
0,0 [(z)
d—————-X(2). 4.16
0.0z ) 0
Integrating this equation from 0 to ¢ we obtain
Xu(2) = [f(2) (4.17)

which for ¢ = 1 completes our proof.

For a given f(z) we can formally determine v(z) from (4.11). Plugging
the Laurent expansion of f we get all the coefficients v, recursively. If f
vanishes in the origin f(0) = 0 and is holomorphic nearby, then only v, with
n > 0 are nonzero.

For some purposes it is convenient to separate out the global scaling
component vy. This is easily achieved by writing

) |
(2) = 70 s (418

and using the composition rule

Utog = UyU,. (4.19)
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It follows that

Uf — evoLoezn21“nLn, (420)
where
e = f(0)
> >1Unzn+1az — f(Z) 4.2
e n2 = . '-’1
£'(0) -

4.1.2 The definition of wedge states

The wedge states form a subset of more general surface states. The former
are characterized by a specific choice of conformal mapping

T

fr(z) = h7t (h(zﬁ) = tan <g arctan(z)> , (4.22)

which maps half-disk in the upper half plane into a half-disk in the right
half-plane, then shrinks or expands it into a wedge of angle -3—’6—:)1 Finally it
maps the wedge back into the upper half-plane.

The wedge states themselves are defined by the requirement

(fl6) = (fro0), Vo (4.23)
From this follows a simple formula for the wedge states
(f-| = (0|Uy,. (4.24)

We will denote the kets for these states in the sequel mostly as |r) and some-
times as [22). The one point function (4.23) on the disk can be alternatively
calculated on the disk via

( fr © @ Inati—plane = { Fr © @ )disks (4.25)

where F,(z) = h(z)*.

From the results of [50] we know that we can apply any conformal trans-
formation, not necessarily SL(2,C), to any correlator. Since only SL(2,C)
transformations map the complex plane into itself in a single valued manner,
a general mapping f(z) will carry the plane into a Riemann surface with
branch points. Evaluation of conformal field theory correlators on a general
Riemann surface has to be defined, the most natural choice is to evaluate the
propagators ( X X ) and (bc) by mapping them back to the plane. It would
seem that we have not gained anything, the bonus comes later when we glue
together various pieces of Riemann surfaces.
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By simple mapping z — 2% the disk correlator can be viewed as ordinary
one point function on the Riemann surface with total neighborhood angle
T

BPZ contraction in (4.23) can in general be viewed as two point function
on the disk, where at point 1 we insert the vertex operator creating the state
¢ and in —1 the vertex operator for the wedge state. The functional integral
over the left and right half-disk separately with fixed boundary condition
on the line segment separating them, produces two Schrédinger functionals
for these two states. The functional integral over the boundary between the
half-disks represents the BPZ contraction itself.

From all of this discussion it should be clear that gluing in half-disk
with insertion of the vertex operator for the wedge state (which we do not
know explicitly) is equivalent to gluing a piece of Riemann surface of total
neighborhood angle 7(r — 1). '

The star multiplication of two wedge states readily follows. The three
vertex contracted with two wedge states |r),|s) and one auxiliary state |¢)

Vi els) elé) (4.26)

can be represented first as Riemann surface of total neighborhood angle 3w
with three insertions. By the above mentioned equivalence we can replace the
half-disks with vertex operators for the wedge states by parts of the Riemann
surfaces of angles 7(r — 1) and w(s — 1). Gluing them together produces a
surface with total angle 7(r + s — 2). Equating r +s — 2 =t — 1 gives
t =7+ 5 — 1 and thus the desired composition rule

Ir) * |s) = |r+s—1). (4.27)
Let us give some concrete examples of the wedge states
g

1) = eL-g—%L_4+§L_6—%L-S%L_m_%.ghlﬁ...lo)

2) = 10)

13> = e"%L—E'!"Zl's%L——tL—3géZGL~e+237611596L_3—14131882%7 L”lo+m|0>

l4> = e—%L‘z'l'al_zL—‘l_ﬁL—G+ﬁL—8*ﬁlﬁL—1o+"~io>
loo) = e"%L-2+§16L~4‘T%EL*GJrﬁle’aL—s-l'm%ﬁL—mﬂ----]0>_ (4.28)

To avoid the confusion, the vacuum |0) is a wedge state |2). Wedge state
with 7 = 0 simply does not exist. For general » we have

r?—4 rt— 16 (r2 — 4) (176 + 12872 + 1174)
= exp | — I_ L, — L
Ty = exp ( 3,2 2 g e 189076 5"
(r?2 —4) (4+72) (16 +327% + 7%
oo ) ]0). 4.9
+ 1260 78 Los + 10) (4.29)
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4.1.3 Wedge states with insertions

Let us take a primary field P(z) of dimension d and a point = inside the unit
circle.! The wedge states with insertion are defined by

(frpal = (O 0 P(z) Uy, (4.30)

where Iz = —1/z. More generally we can add any number of insertions. We
shall need the following simple property

(frpal®) = (holoP(z)hr o@(0))ak
= <h§ olo ’P(CB) ho (15(0) >RiemannAsurface (4-31)

We thus see that the effect of the vertex operator for the wedge state with
insertion is again to replace this half-disk with a piece of Riemann surface of
total angle 7(r — 1) and inserting an operator P at point

B% o I(z) = oty (4.32)

This equality is actually valid for the standard definition of the function
arctan x in the complex plane. However to appreciate the geometric picture,
it is better to temporarily think of z as sitting in the line segment (—1,1) of
the real axis. Let us now calculate the star product

UIPL()[0) * UIPs(y)]0). (4.33)

Again we consider the Witten vertex as Riemann surface obtained by gluing
three half-disks, corresponding to the states UiP;(z)]0), UIP2(y)|0) and |)
in clockwise order. We can replace two of them according to the above rule.
Finally we wish to interpret this three vertex as a BPZ contraction of ¢ and
a wedge state with (two) insertions. To find the insertion points we have to
match simply

. Y1
e 6zt arctan y' 415 ,

. STT _ - !y ,mt =
irarctan x4 5 Him(s—1) _ ezt arctan 7’ +175 (434)

isarctan y+i%5t
e
where t = r + s — 1. The solution is
, T
z = cot n arccotz |,

y = —cot (—'Z— arccot(—y)) : (4.35)

1One may try to go outside of the unit circle by an analytic continuation, but it is
quite problematic. Our formulas show clearly that for  — =1 the level truncation breaks
down, the star product itself is singular. There are two branch cuts starting at +i and
going to infinity. Across these branch cuts the star product would vary discontinuously
and therefore it would fail to be a good product.
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where we define arccot z = § — arctan z, so that z’ is continuous as we vary
z across zero. For general complex z and y in the unit circle it is more
convenient to use the formula

t = Toh™lo()?
y = Toh™o()

O

’J

o I(z),
ohol(y), (4.36)

e s

where one must be careful about the proper definition of the rational powers.
The mapping h o I takes the unit disk into left half plane. The power then,
in the case of 2, maps e~""/2 — =¥/t and in the case of 3/ it sends €™/ —
eivrs/t_

Having found out the insertion points it is quite simple to work out also
the normalization factors coming from the transformation law of the primary
fields P; and P,. Altogether, we arrive at

1 2\ d1 12}
U:7>1<x>fo>w;7>2<y>|o>:(f ”) ( ht’

t 1+9°

14 z2

) UL, () Paly)[0).
(4.37)

4.1.4 Sliver states with insertions

The sliver state plays a particular role in the vacuum string field theory,
originally proposed by Rastelli, Sen and Zwiebach [95]. The sliver itself
corresponds to the D25-brane, and its various modifications to lower dimen-
sional branes. These lower dimensional solutions has been constructed by
these people via oscillator methods [95, 96] based on the ideas of Kostelecky
and Potting [83], in the formalism of split string field theory in [97, 100, 101]
and in [98] by boundary CFT methods.

Our original idea was to construct these solutions using deformation of
the sliver by the operator e**(® ie. to consider some (infinite) linear com-
bination of the states of the form

Us'T[0, k), (4.38)

where in general U’ stands for U, with the global scaling component (%)LO

thrown away. Therefore Us''|0, k) is a well defined finite state in the level
expansion.
From the formula (4.37) follows for r — oo

N 2 20’ kl
U0, k) U0, 1) = 2% ®+1) (-7:) U, t0, k+1). (4.39)
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We see that although the two factors on the left hand side approach finite
unambiguous limit, the result is zero or infinite depending on the sign of
kl. Therefore our initial guess of representing the lump solutions using these
states was not correct. It would be interesting if the construction in [98]
could be interpreted somehow along these lines. :

Ghost insertions are also interesting. One can again calculate

8

—~-7;U5,_1*c1c010>. (4.40)

Upter0) = U er0) =
At first sight it looks great since
QU ¢1]0) = —UTeges |0) (4.41)

and it seems that ¢ = LU!T¢;|0) = 1Uf¢;|0) solves the string field equation of
motion Qv + 1 *1 = 0. Unfortunately the presence of 1/7 on the right hand
side of (4.40) spoils this formal argument. Similar studies of ghost number
one excitations around the sliver were performed by David [84].

4.2 Identity string field

In this section we would like to turn our attention to the identity element of
the string field algebra. In general, identity element of any algebra is quite an
important object. It may or may not exist. For the string field star algebra
we shall give an explicit construction bellow. However, since we are lacking
a mathematically satisfactory definition of the algebra itself we cannot say
whether the identity actually belongs to the space or not. To give a good
definition of the algebra one can require finite norm for example, but then
the problem is shifted to finding a good norm. Obviously for the closure of
the algebra we need the product of two vacuum states |0) to have again a
finite norm. Even for the case of the canonical norm ||| = \/(¥|¢) it is
not clear to us.

Let us now forget about the problems whether the identity should belong
to the algebra or not and let us describe its various forms. In the Witten’s
formulation it was clearly the functional (3.24)

(X(o))= ][] 8(x(0) - X(r—0)). (4.42)

It is a one line computation to verify that it is the identity for the star product
(3.7). To write it in the Fock space, first we need to use the mode expansion
(3.11) to get

(X(@)I)= ][ 6(zn). (4.43)

n=1,3,...
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Then after expressing the coherent states |z,) using the creation operators
we get by a simple calculation

N = [PXEXENXEID) |
= 6-%2?20(“”“0':‘&“0) | ;(4;44)

Clearly it is a natural generalization we found in section 3.1.2 for the trun-
cated star product identity. Treating carefully the ghosts one gets in the
oscillator approach [49]

1) = %b(z)b(—z)eZil<-1>"<*%aia%+c—nb—n>clco|o>. (4.45)

From the geometrical representation of the star product discussed in preced-
ing section 4.1 it is clear that the identity is the wedge state |360°). This
can be seen somehow indirectly also from the formalism presented in section
3.1.3. Since the identity is also integration, it should satisfy

(110) = ([ 0 T) = (0T, ¥) (4.46)

and therefore indeed
1) = Ulgo |0). (4.47)

It looks explicitly as
II> — eL—2—%L—4+%L_6—%L—s+§L—1o~%%L—12+"'|O>_ (448)

We have calculated the higher level terms in the exponent exactly up to
L_1pp term, the results are plotted in the graph Fig. A. It is quite surprising
that up to the level 20 the coefficients are less or around one, but then start
to diverge faster than any exponential. This divergence should be however
viewed as some combinatorial divergence related to unfortunate ordering of
the Virasoro generators. Indeed, a nice alternative form of the identity has
been found by Ellwood et. al. [105]

Iy = (H e*%L-:’”) e"-2|0), (4.49)

in which higher level terms have manifestly well behaved coeflicients.

Finally let us note, that one can easily perform an explicit calculation in
level truncation to show, that various forms of the identity (4.45), (4.48) and
(4.49) are indeed in mutual agreement.
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4.2.1 Conservation laws for the identity
Virasoro conservation laws

Let us recall the derivation of the conservation laws due to Rastelli and
Zwiebach [82]. We start with a global coordinate Z on the 1-punctured disk,
associated to the identity (I|. For any holomorphic vector field 7(Z) we have
the basic identity

(I %dzv =0, (4.50)

where C is a contour encircling the puncture. Passing to the local coordinate
z around the puncture we get

(a jém 2) = S5 (2),9)) =0, (4.51)

where
S(f(2),2) =6(1+27) 2 =63 m(—1)" 1"V (4.52)

is the Schwarzian derivative reflecting the non-tensor character of the energy
momentum tensor when the central charge c is nonzero. For a particular
choice of the vector field v(z) = 2"+t — (—1)"z""*! which is holomorphic
everywhere in the global coordinate z except the puncture, we get

c

Fll) = —Sn(-1)1),
K2n+1.-[> = 07 (453)
where we define
K,=L,-(=1)"L_,. (4.54)

The same identities can be derived for the b ghost, in that case, there is no
anomaly however.

Let us further comment on some applications of the formulas we have
obtained. First one can rewrite the state 7'(z)|I) in a form which is manifestly
well defined in the level expansion and perform the geometric sums provided
|z| > 1.

T(z)|f>:-2?a—f—~)~|f>+ Loll) + ZZ (2" + (=1)"2™) Ly |I). (4.55)
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From these identities, and those for the b ghost, one can easily check the
overlap equations

(7 - Zr-12) I = o,

(b(z)—%b(—-l/z)) N = o (4.56)

Conservation of the c-ghost

We start from the identity
(] 7§ dz $(2)e(z) =0, (4.57)
C

where ¢(z) is a quadratic differential holomorphic everywhere except at the
puncture located at the origin, and C is a contour encircling the puncture.
The ¢(z) transforms as follows '

- dz\ 2
5= (%) oo (4.58)
We shall pass from the local coordinate z around the puncture to the global

coordinate on the 1-punctured disk

2z
1— 22

(4.59)

zZ =

For the particular choice of the quadratic differentials

Pon(z) = % (Zn - <_§>“>27
Pont1(z) = Z% (z2”+1 — (—-i—)mm —(=1)" (Z — %)) ., (4.60)

where n > 1, the transformed differentials are

3 < . ) (1+z2)7>2, | (4.61)

k=1,3,5,...

- _ 2 1 o 2n+1 N
Pmal®) = “mmTIR (“H)nz e ( k )(”2) )

- 4
$on(2) = 52n+2(
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All the sums here are finite due to the combinatorial factors which are defined
to be zero whenever the lower entry is bigger than the upper entry.

The quadratic differentials expressed in the global coordinate system z
are holomorphic in the whole complex plane except zero, in particular they
do 1ot have any singularity at #+i. Therefore one may derive from (4.57) the
conservation laws

Conll) = (=1)"Cyl0),
Conaall) = (=1)°Cy|0). (4.62)

where in general we define
Cr = cx + (=1)Fc_p. (4.63)

Let us remark that a naive conservation law based on the quadratic differ-

ential o . N
p(z) = = <z - (——;) ) (4.64)

fails, since ¢(Z) does have have poles in +i. This is actually a simple mani-
festation of the midpoint anomalies.

Again, as we have done for the energy momentum tensor, we can rewrite
the state c(z)|I) in a form which is manifestly well defined in the level ex-
pansion provided |z| > 1,

2

(D)) =~ ol I+

1+ 22

1 fzg G ILEED <z” - (~§>n> cnll).

n>1
(4.65)
The single poles for z — +1 were first found by other means by [107, 108].
From this formula, it is a simple exercise to verify the overlap equation

(c(z) = 22c(—=1/2)) |I) = 0. (4.66)

Another observation we can make is about ¢r|I), where

e = e +li (-1 (capr + ¢ ) (4.67)
PR p Aagp gy T T ‘

We can easily calculate that
2 e (—1)F 1 —
CLU>——COII> 22k+1c @k ;r-;::

which is divergent due to the last term. This fact rules out the possibility
of relating solutions to the vacuum and Witten’s cubic string field theories
through some type of (c; — Qr)|) shift.

G, (4.68)
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Current conservation laws

For completeness let us also consider conservation laws for currents. Let us
take in general a holomorphic current J(z) having the following OPE with

the stress tensor , 5 J©)  9I(0) :
I q ©) v :
= — 4 —= 4+ — 4.
T(z)J(0) g + o + > (4.69)

Under finite conformal transformations it transforms as

dw - d*w [ dw -1 —
E—Z—J(w) =J(z) — 47 (;{;) : (4.70)

The anomalous constant ¢ is zero for the BRST current and 0.X currents, for
the ghost number current it is —%. Following the same procedure as above,
one may derive conservation laws

HolI) = 0,
H21c+lII> = O>
Hoy|I) = (=1)"2¢|T), (4.71)
where
Hy = Jp + (=1)*J . (4.72)

4.2.2 Anomalous properties of the identity

One particularly puzzling aspect [82] of the identity is the following: We
know that ¢y acts as a derivation on the string field algebra. Therefore we
can write formally

colW) = co (|1) * |¥)) = colI) * |[U) + |I) % co|¥) = co| ) x |T) + co|F),

from which follows that
coll) * |¥U) =0 (4.73)

for any string field |¥). Naively one would conclude (taking |¥) = |I)) that
co|I) = 0, but that is manifestly not true. One could possibly imagine several
ways out:

e |]) is not a true identity on all states,
® ¢y is not a true derivation on the whole algebra

e even though ¢o|]) 5 0, still we have ¢g|I)*|¥) = 0 for any "well behaved’
state |¥)
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e simply cg|I) * |¥) is not well defined in the level expansion

We will argue for the last possibility, but in some limited sense all the expla-
nations are true.

The derivations of the fact that |I) is the identity and that co is a deriva-
tion on the algebra are quite firm when one restricts on well behaved states.
Again it is difficult to say what is a well defined state, but those which con-
tain finitely many levels certainly are. We have checked numerically that the
identity is an identity on many states, it seems that it is an identity even on
itself and other wedge states, which might be somehow problematic.

To check the third possibility it is best to look first at some example. Let
us calculate

colI) * 10).

In general there are many ways to do the calculation. The most naive way
would be to truncate the identity to some maximal level, legally use the ¢
conservation to arrive at co(|I) * |0)) — |I) * ¢o|0) which is indeed very close
to zero, since the identity |I) works well for the states |0), col0). A sort of
‘canonical’ way of calculation suggested in [82] is to re-order co|/) to have
only the ghost ¢; acting on the vacuum and Virasoro generators acting on
it from the left. Then one can use the recursive relations of [49, 60, 82] for
the Virasoro generators, to reduce the expression to the linear combination
of terms

Lol y... (ca]0) * |0)).

Actually we can perform this calculation exactly even with some sort of
regularization. As a first step let us commute the c-ghost to the vacuum.
In more generality, we will do it for an arbitrary wedge state instead of the
identity and for convenience work with the bra vectors

(rlco = (0|Urco = (0] (UrcoUr“l) U.. (4.74)
The factor in the bracket is readily
dz 1
-1 _ A1
UcoU b = 573 Urc(2)U;

2\r—2
= —47"22071%@ ! (1+w) ; 2
2mi WL [(1 4+ dw)" — (1 — dw)"]

24 1024 24 1078 — 168r* + 9451 — 1732

.
= GF gt 15 4 945

For general r it looks difficult to find a closed expression, for the identity
state which corresponds to r = 1 the sum can be easily performed

UscoU! = —-;- (c(3) — e(=i)) . (4.76)

(4.75)

Co
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Therefore ,
ol D) = 5 Uf (eli) = (1)) [0). (4.77)

This is already in the form for which we know how to calculate the star
products exactly. Recall however that the insertion points £7 are singular..
A natural regularization from the point of view of level expansion is to replace

c(i) —e(—=1) —  clai) — c(—ai), (4.78)

where @ < 1 is approaching unity from bellow.? Let us calculate in more
generality

' , , is 1—a? . _
, Ul (c(ia) — c(—ia)) |0) * UJ|0) = gmwc@ (1a))[0)  (4.79)

is 1—a?
2 1+ 2/*(—ia)

O | =

3

Ule(a'(—ia))|0),

where

2

—1)7 1)t

2(ia) = _la )f +(a+ )2 _
(a—Df —(a+ 1)}

This has well defined limit for @ — =1, it is either ¢ or —i respectively. The

prefactors require little bit more care, since they are limits of 0/0 type.
For s > 2, the whole expression is well defined and we get

(4.80)

Jim %U{' (c(ia) — c(—ia)) 0  UT[0) = 0. (4.81)

a—+1—

For s = 2 we get

lim U] (clia) - e(~ia)) [0)  0) = i(c(i) = c(=0))[0).  (4.82)
For s < 2 at least one of the two prefactors in (4.79) is divergent. The
conclusion of the above calculation is that the result of the calculation co|I) *
|0) is highly sensitive to the method used. From the mathematical point
of view, ¢y|/) does not belong to the star algebra. If we want to have the
derivation ¢y defined on all of the algebra, we should conclude, that neither
the identity |I) belong to the algebra. Alternatively we can think of the

2 Another interesting regularization would be to keep r # 1, but that is technically
rather cumbersome, due to the presence of nontrivial contour integral in (4.75). Yet
another possibility is to replace Uy with U, for » # 1 in (4.79), that is almost trivial
modifications of our calculations.
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identity belonging to the algebra, but then the derivative ¢y maps some
elements of the algebra out of it.

One could imagine other ways how to study the object ¢y|I). We would
like to warn the reader of the following problem

Vgggbﬂ=cwx
%dz {C(Z)m} = ~all) (4.83)

oms | 22

where the brackets in the second case mean, that we are evaluating the ex-
pression, i.e. calculating it in the level expansion through formula (4.65).
Both integrals are along small contours around the origin. To get identical
results, we would need to include the points +7 inside the contour of inte-
gration. The problem can be traced back to the fact, that to make sense of
c(z)|I) without analytic continuation, we need to remain outside of the unit
circle.

Finally we would like to address the issue of the ’integrated’ anomaly.
Let us consider

(Viss| (e + 87 + NI @ [8) ® [T3), (4.84)

where for simplicity |W,3) are two ghost number one ghost fields. This is
equal to

(bos Ws| (col )+ [¥2) + |1) # col o) — o (11) * |¥)))
= (bpz W] (col1) * |2}, (4.85)

which we call ’integrated’” anomaly. In level truncation we can safely use the
cyclicity to get further

—{Ileo (1@12) x [@3>) — (bpz Wa|co|Us ) — (bpzeoWs|Ty) = 0. (4.86)

This is as it should be, since our starting expression (4.84) is also manifestly
zero in the level expansion. The moral is that while c|l) * |¥5) itself is ill
defined, its bpz inner products with well behaved states can be consistently
set to zero.

4.2.3 Application to the tachyon condensate

There is one remarkably simple application of the above results to the study
of tachyon condensation. Under a general variation, the string field action
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should be invariant at the critical point
1
53 = —-9—2-[<5th@>+<5\111@*@>] = 0. (4.87)

Let us take a particular variation §¥ = Cj|I). The last term in (4.87)
vanishes for the same reason as above, since ¢y and C; are both derivations
and have the same property under the BPZ conjugation. Therefore we are
led to the conclusion that the tachyon condensate should satisfy

(I|C,Q|Y ) = 0. (4.88)

Since () annihilates the identity, we may take the anticommutator {C1, @}.
By a somewhat lengthy calculation we can calculate

{Q,CiHI) = =4 (—1)F [2ke_okCy = (2k + 1)egarn Co] IT)
k=1
+ (Te_1c0 — cocr) |1). (4.89)

Evaluating the left hand side of (4.88) for the tachyon string field truncated
at level 2

1
VU = |tc; +ucoy +v—=~L_5c1]| |0), 4.90
[ 1 1 \/f))‘ 201 l > ( )
we find that (4.88) is equivalent to
t—Tu+13v = 0. (4.91)

Plugging in the values for the tachyon condensate at level two [56] (¢ =~
0.542,u ~ 0.173,v ~ 0.187) we get that it is satisfied to a very high accuracy

t— Tu++/13
i : VI3 _ ) onor. (4.92)

Comparison with other quantities calculated at this level shows that such a
high precision is likely to be coincidence, nevertheless as an explicit check of
our computation it is welcome.

4.3 Behaviour of the wedge state coefficients

For the purposes of this section it is convenient to define the wedge states as

(r| = (0|U%,, (4.93)
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where now with slight abuse of notation we change the normalization of
functions f,(z)

fi(z) = f;-h—l (h(z)%) - tan(g arctan(z)) (4.94)

r

o=

to achieve f/(0) = 1. Unitary operator Uy is given by
Uj = eXmzr¥nbn (4.95)

and differs from Uy defined above by the absence of the factor exp(vyLy)
which is in the definition of the wedge state immaterial. The v,’s are defined
by the Laurent expansion of a vector field (4.11) generating the conformal

transformation
v(z) = Zvnzn+1. (4.96)

As shown above, the vector field v(z) satisfies important equation

v(2)0:f(2) = v(f(2)) (4.97)

known in the mathematical literature under the name of Julia’s equation.
Given a function f holomorphic in the neighborhood of the origin one can
always look for analytic solutions v(z) in terms of formal power series (FPS).
The solution is unique up to an overall constant which can be fixed for f of
the form

fle) =2+ ba2", b #0,m>2 (4.98)
by requiring
v(2) = bn2™ + Z Cn2™. (4.99)
n=m-+1

Note that precisely with this normalization the function v(z) satisfies also the
(4.11). Such a unique solution is called the iterative logarithm and denoted
either as f, or logit f. Interesting problem is when this FPS has finite radius
of convergence.

It has been proved that if f is a meromorphic function, regular at the
origin and having the expansion (4.98) then the formal power series f, has a
positive radius of convergence only if

z

f(z):m,

This theorem is implied by the results of I.N. Baker and P. Erdds and
E. Jabotinsky, see [106].

beC (4.100)
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Let us see how this result applies to our wedge states. All of the functions
f» are holomorphic near the origin, but only those with r = %, k € Z are
meromorphic in the whole complex plane. Apart from the vacuum state
|180°) all the other |360°),]540°),... thus correspond to divergent FPS with
zerc radius of convergence. : e

What about the other wedge states? One can establish following general
properties of the iterative logarithm:

logit f = —logit 71, (4.101)
ogit(¢7 0 fod) = = ((ogitf) 0 0), (4.102)

where ¢(z) is an analytic function with ¢(0) = 0 and ¢'(0) # 0. From these
two relations follows (by taking ¢(z) = 52)

(4.103)

o3

2
logit fa = —— o (logit f.) o
k 7"

We thus obtain for the Laurent coefficients of v(") = logit f, important rela-

tion .
4 2
U,ST> =— (—) v,(cr), (4.104)
T

which can be readily checked for the explicit expression (4.29). We see that
the FPS logit f, and logit f4+ have both either zero or finite radius convergence

simultaneously. Summarizing, the FPS corresponding to the vector field v(z)
has zero radius of convergence for all r = % and r =2k for k € Z,k > 1. By
a limiting procedure this applies in particular to the interesting sliver state

The absence of any finite radius of convergence means that starting from
a certain level, some of the coefficients v, start to grow faster than any expo-
nential. This rather surprising result is confirmed by the actual calculation
of the coefficients up to v190 which we have plotted for several wedge states
in the appendix A. All the coefficients were calculated exactly using the
recursive formula following from (4.11).

To summarize we have shown that the Laurent expansion of v(z) has
zero radius of convergence and therefore the function v(z) has an essential
singularity at zero. The series itself can be trusted as asymptotic only. The
success of level truncation for the star products of wedge states appears to be
analogous to the situation in QED, where at first few orders the perturbation
theory works perfectly well, but at higher orders it breaks down. From the
graphs in the appendix one can see that for the coefficients up to about vy
the coefficients decrease exponentially, this is the basic reason why the low
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order calculations works well. To carry out higher order calculations it is
therefore necessary to use the oscillator representation.

Finally let us comment on one technical aspect of the calculation. To
calculate e.g. the 100-th derivative at zero of the function f, for generic r
directly, is beyond the capacity of any computer. We can derive however the
following useful formula for n odd

d 2 B
a;;tan ;arctana: lz=0 = Z

k=1,3,5,...,n

2\ * 2k+L(2k+1 _ 1)
— Br F(n, k
(7’) ([C‘Jrl)‘ k+1 (n7 )7

(4.105)
where

1
F(n,k) = -|zz—"-k Gy (4.106)

can be easily calculated recursively. B,’s are the Bernoulli numbers. For n
even the derivative is obviously zero.

4.4 Miscellaneous

From the definition of the star product one can easily obtain formulas for
star product, of vacuum state with any other state from the Fock space

Lo 1
o)1) = U (3] e Hu),
Lo
) * [0) = Ugev%L-l (%) e?l‘eTLlUg}v,b). (4.107)

These formulas make perfectly sense in the level expansion, since if |1) con-
tains finitely many levels, the whole expression can be calculated to any given
level exactly, in finitely many steps. We have also checked it independently
on several examples.

It is however difficult to understand from them the multiplication rule
|0) + Uf|0) = U, ,]0). One would need a formula for

UsUT|0). (4.108)
Note, that a dagger makes much difference. It is almost trivial, that

uiul|o) = Uk o), (4.109)
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which follows from simple composition of maps. To understand what (4.108)
is®, one may calculate analogous quantities for simpler finite conformal trans-
formation operators

Uy = €52 (4.110)
By brute force series expansion one may derive
etl2esl-2|0) = e L2|0). (4.111)

Alternative proof is to write

etb2psb-210) = etlegsl-2e=th2)0) = [/, —~ . |0) =
I > | > mm/; +250m| >
Lo
1+4st) 2 s g
= U ~—=x 0) = et ""2|0 4.112
VAT <1—~4St> ] )=¢ | ) ( )

The weak and a bit unclear point in this derivation is the seeming arbitrari-
ness in inserting the factor e *£2. Would we get the same answer by inserting
other factors 7

Let us also mention that there is yet another formula which one can easily
derive and which reads

etLg esL_zl()) — ES(L_2+4tLO+4t2L2)lO>. (4113)

It is derived by viewing the first factor as a finite conformal transformation
acting on the Virasoro generator in the second factor. It does not seem
however relevant too much for our purposes.

4.5 Star products in level expansion

In this section we would like to collect some numerical results showing, how
well the level expansion works for star products. We have performed some
explicit checks at level 20, where one of the states was particularly simple,
and some other checks at level 16 which confirmed the composition law (4.27)
obtained by the gluing ideas described in section 4.1. We have written for
that purpose a computer program in Mathematica which is based on the
Virasoro conservation laws for the three vertex [60, 49, 82].

3 Ashoke Sen has suggested, that it should be possible to get the answer by using the
gluing theorem of [51].
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4.5.1 Some level 20 calculations

First let us present the results, how good is the identity state |I) = |360°)
acting on some basic states

110) % [360°) = |0) + 0.00008L_5|0) — 0.00007L_35[0) — 0.00068L_,]0) +
+0.00039L _5L_|0) +
L_5|0) % |360°) = 0.9987L_|0) — 0.0001L_3|0) — 0.0001L_4]0) +
+0.0007L_5L_5|0) +
L_3L_5|0) %|360°) = 0.0054L_5|0) — 0.0001L_5|0) + 0.0002L_4]0) +
+0.9967L_yL_5|0) +
L_4]0) % |360°) = . 0.0035L_5|0) — 0.0005L_5]0) + 0.9967L_4|0) +
+0.0002L_5L_5|0) + - - - (4.114)

Now let us present the results for the products of the vacuum |0) and
other wedge states to verify the composition rule |r) * |s) = |r + s — 1).

1180°) % |120°) = |0) — 0.25006L_2|0) + 0.00197L_3|0) + 0.03132L_4|0) +
+0.03126L 5L _5|0) +
|180°) % Joo) = [0) —0.32085L_5|0) + 0.00563L_5/0) + 0.03294L_4|0) +
+0.05137L oL _5|0) +
|180°)  |720°) = |0) — 38723.7L_5|0) — 22117.4L _3|0) — 12233.8L_4]0) +
+34414.4L_oL_5|0) + -
(4.115)
The first two products should be compared with the wedge states
190°) = ]0) —0.25L_5|0) + 0.03125L_4]0) + 0.03125L_5L_5|0) +
loo) = ]0) —0.33333L_5|0) + 0.03333L_4]0) -+ 0.05556 L_oL_5|0) (#.116)

We see that the agreement is quite good (within 0.23%) for the state |90°) but
is considerably worse (within 7.5%) for the |oo). The last product indicates
that the state |720°) does not have much sense in the level expansion.

The state |oco) is rather special, so we have performed further check.
Particularly nice one, is testing also the identity (4.37). One could use the
formula to find

2\ (2
Lof0)#feo) = (=) ULT(=)10) (4.117)
| ~ 0.164L_5[0) + 0.105L_3|0) + 0.067L_4]0) — 0.055L_,L_|0)
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and compare it with result of the level truncation calculation

L_5]0) % |00) = 0.180L_5|0) + 0.110L_3|0) -+ 0.067L_4|0) — 0.058L_5L_5]0).

(4.118)
4.5.2 Level 16 calculations
1360°) % [360°) = |0) + 1.00386L_5|0) — 0.50098L_4|0) + 0.49723L_2L_5[0) +
o) % o) = |0) — 0.36150L_5|0) -+ 0.03338L_4]0) + 0.06549L_5L_[0) +
o) # |360°) = |0) — 0.32656L_5|0) + 0.00267L_5|0) + 0.03148L_4]0) +
+0.05365L_5L_5|0) +
1360°) x |oo) = |0) — 0.32656L_5]0) — 0.00267L_5|0) -+ 0.03148L_4|0) +
+0.05365L_oL_5|0) + -
o) % [120°) = |0) — 0.33434L _,|0) — 0.00564L_5]0) + 0.03394L_4]0) +
+0.05587L_sL_5|0) + -
1720°) # |120°) = [0) — 2147.14L_,|0) -+ 1327.72L_3|0) — 553.046L_4]0) +
+2074.33L_5L_5|0) +
1120°) % |120°) = [0) — 0.28708L_5|0) + 0.03348L_4|0) + 0.04122L_,L_5|0) +
1180°) * [120°) = [0) — 0.25008L_5|0) + 0.00246L_3|0) + 0.03135L_4]0) +
+0.03127L_yL_5|0) +
180°)  360°) = |0) + 0.00010L_5]0) — 0.00008L_3|0) — 0.00109L_4]0) +
+0.00066L_L_5]0) + -
180°)  |oo) = |0) — 0.31966L_5|0) -+ 0.00668L_5|0) + 0.03293L_4|0) +
+0.05096 L_sL_5|0) + -
1180°) * [720°) = |0) — 1876.75L_5|0) — 1163.92L_3|0) — 567.608L_4]0) +
+1851.82L_5L_5|0) + -
(4.119)

One can compare this results obtained in level expansion with the exact
answer. The errors for products with |co) state is smallest for [120°) state:
0.3% at level 2 and 1.8% at level 4. The biggest error is with another |co)
state. It is 8.4% at level 2 and 18% at level 4.

The errors for the product of |360°) are again biggest for the |oo) state
with 2.1% at level 2 and 5.6% at level 4. The errors in the product of the
identity with itself are 0.39% or 0.55% respectively.

The errors for |0) % |120°) are the lowest of all of the examples: 0.03% and
0.33% respectively.
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The moral is that the wedge composition rule works better for states
closer to the vacuum. It works worse for the identity and the worst for the
|oo) state.



Chapter 5

Towards the exact tachyon
condensate

Since the original formulation of the Sen’s conjectures [54] there has been sig-
nificant progress in understanding the nonperturbative aspects of the string
field theory. Initially the existence of translationally invariant vacuum with
conjectured energy density was established numerically [56, 57] to a rather
high accuracy by the level expansion method [65, 66] in the Witten’s cubic
string field theory [5, 48, 49, 60]. More recently the Sen’s conjecture has been
proved rigorously in the framework of background independent string field
theory [68, 69, 70]. Nevertheless it seems worth continuing to look for the
exact tachyon condensate in the original cubic string field theory since it can
teach us many things [85].

Various insights into the nature of the tachyon condensate has already
been obtained in [55, 56, 82, 83, 103, 85, 86, 87, 88]. Sen observed that only
the components of the string field associated with the ghosts b,c and the
matter Virasoro generators L,, acquire expectations value [55]. Then Sen and
Zwiebach [56] found that only the even levels components play role, the odd
levels can be set consistently to zero. Rastelli and Zwiebach [82] discussed
the necessity of choosing a gauge. Perhaps one could avoid choosing it,
but then the numerical computation works much worse, since some spurious
fields get large values. They also introduced the wedge states, from which
the sliver in particular, seems to be quite important. Kostelecky and Potting
[83] devised a recursive procedure how to find the analytic solution. Their
method has been later fruitfully applied in the vacuum string field theory
[96]. Hata and Shinohara [103] noted, that the correct tachyon condensate
is not only a stationary point of the action, but that it has to satisfy the full
equation of motion QU + WU+ ¥ = 0. Indeed, the numerical solution found by
Sen and Zwiebach does obey these conditions. An interesting Z, symmetry
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transforming the ghosts into antighosts
1
bop — —nC_p, Cop— —b_y (5.1)
n

has been found by Zwiebach [85]. It also leads to nontrivial predictions for
the coefficients of the condensate.

We have found [86] another infinite set of quadratic constraints coming
from the anomalous symmetries of the string field vertex. At level n there
are in total n such constraints on the coefficients of the string field which
are in reasonable agreement with the explicit results from level truncation
scheme. We shall describe them later in detail. It would be very interesting
if one could find along this line even further symmetries which would then
fix all the coefficients completely. In section 4.2.3 we have described linear
constraint on the condensate following from the anomalous property of the
identity string field (to be published).

Toy model for the tachyon condensation has been studied by De Smet
and Raeymaekers [87, 88], which leads to rather nontrivial nonlinear second
order differential equations. It is quite remarkable, since it shows, that in
the true string field theory, there should be some mechanism (perhaps gauge
invariance?) that makes the tension to have the right value and not some
random transcendental number. '

The most concrete suggestion, however, which could lead possibly to the
exact form of the condensate was made in [91, 92]. It is based on some simple
ideas from noncommutative geometry, and is described in detail in section
6.3. Roughly speaking, the idea is to look for the condensate in the form of
pure-gauge-like ansatz. Later in this chapter we shall discuss the possibilities
of verifying the conjecture.

5.1 Constraints from the anomalous
symmetries

From [48, 49, 104, 82] we know that the 3-vertex (V| satisfies certain iden-
tities, which are in fact conservation laws. They can be derived for general
n-vertex most effectively using the method developed in [82]. We have illus-
trated the method on the 1-vertex, which is the identity, in section 4.2.1. For
us will be important in particular the following identities for n even

(VY (LY - 1) = 3E2(V],
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3
(VI UG+ ) = 3 +36,0)(V], (5.2)
=1
where L, and .J, denote matter Virasoro and ghost current generators re-
spectively. The constants k& and hd" take for n even the following values

13-5 n

ki = — —1)z,

RP = —(=1)%. (5.3)

|3

For n odd there would be extra signs between the generators in (5.2) and
the right hand side would vanish. We are not interested in this case since it
will not lead to any information about the tachyon condensate. Note that
the additional term on the right hand side of the second equation in (5.2)
accounts for the nontensor character of the ghost number current.
Let us study now the variation of the string field action
S[¥] = -

L (Jmen s yvimemem) 64

1
a'g? \ 2 3
under the infinitesimal variations of the string field

0V = (L_p,—L,—Fk)¥,

U = (Jop+ Jy—he" —36,0)¥ (5.5)
respectively. Under these variations the cubic term in the action is obviously
invariant due to the invariance of the vertex (5.2). On the other hand we
know that the total action should also be invariant as long as ¥ satisfies

equations of motion. Combining these two facts we get from the kinetic
term!

(V[Q, Ju]|T) = hNTIQ|T). (5.6)

Let us note that both commutators on the left hand side are modes of con-
formal primary fields, the latter being minus the BRST current J B,

Explicit checks

To compare the above formulas with the results obtained in level expansion
scheme in [56, 57] one should first of all impose the Siegel gauge condition

1With some abuse of notation, in this section only, we use (¥| as a shorthand for
(bpz ¥|.
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bo|¥) = 0 on the string field and simplify the commutators. For the first
equation of (5.6) one has simply

@, L) = —ncoLy, + -+ (5.7)

where the dots stand for terms which do not contribute. For the second
equation one can use a little trick. Write the left hand side as

(U@, Jull¥) = — (T {7, bo}co| T) (5:8)

where we used the facts that [Q, J,] = —JZ and by|¥) = 0. The anticommu-
tator can be easily evaluated using the operator product expansion (see e.g.
[2]). Both formulas (5.6) thus simplify in the Siegel gauge to

1
(WleoLol¥) = k(U LE D),
(Tlco(ndy + LYW = —hI"(U|co L), (5.9)

where L denotes the total Virasoro generator. These identities can be easily
checked for the numerical values obtained in [56, 57]. Let us define 727 to
be the ratio of the left and right hand sides of the first or second equation of
(5.9) respectively. Then inserting for simplicity the values for the string field
coefficients from [56] obtained at the level (4,8) we get the following results

rko= 1.069, rf=1.044,
ry = 1.004,  r]=0.939.

We see that the above identities are preserved within 7%. This can be
compared with the value of the potential which is for the same values about
1.4% away from the expected value. This discrepancy in the errors by a
factor of five does not necessarily mean that there are mistakes neither in
the derivation nor in the numerical evaluation. In fact we know that the
convergence properties of the level truncation approximation depends rather
strongly on what kind of calculation we are doing. In an unpublished work
we have studied the properties of the string field algebra unity |I) in the level
truncation using the universal recursive methods of [82]. Keeping only terms
up to level 8 in the unity |I) and during the whole calculation we got for
example

L_5|0) % |I) = 0.990L_5|0) + 0.108L%|0) — 0.196 L% L5 |0) + - - -,
L¥10) * [I) = 0.990L%%|0) + 0.009L" 5L 5|0) + - - -, (5.10)

where the dots stand for terms which are relatively smaller or of higher
levels where one can understand bigger errors. Looking at these values one
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might wonder whether after all the string algebra unity is unity also for
the state L_5|0). The experience from calculations at lower levels where
the errors are much bigger suggests that it really converges, hopefully to the
correct state. The fact that calculations involving matter Virasoro generators
converge much more slewly can be easily traced back to the presence of the
Virasoro anomaly.

5.2 Partial integration identities

Now let us turn our attention to one particular type of identities, which
might be potentially helpful to find the exact condensate. There is a half-
string formalism in the string field theory, which for the lack of space and
time is omitted from this thesis. Essentially it is careful implementation of
the original Witten’s ideas on the geometric nature of the star product. The
right part of the first string gets glued with the left half of the second string
and the distinction between the degrees of freedom associated with the left
and right parts of the string is kept manifestly. This formalism turned out to
be quite useful in constructing exact solutions in the matter sector of vacuum
string field theory [97, 100, 101].

In this section we would like to present some consequences of these ideas,
when translated into the CFT approach and look how it works with the level
truncation. Suppose we are given any local current J(o), constructed out of
the world sheet fields X, b and ¢, and integrate it over the left and right parts
of the string respectively

1 [%
J, = —/ J(o)do,
T Jo
Jn = %/ J(0)do. (5.11)

One can also put inside the integral arbitrary measure f(o), if one wish so.
From the Witten’s definition of the star product it is clear that

JL(\I’l * \Ilg) = (JL'\Ifl) * qu,

Jr(UyxTy) = (=1)7%10 « (JpTy), (5.12)
since the operator acts only on one part of the string. The sign factor (—1)7

is equal to —1 if both J and ¥ are Grassman odd, otherwise it is one. We
see also that in general

Jo(Wy % Uy) = (Jp0) # Uy + (=1)7710, % (Jp¥s). (5.13)
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If Jy happens to be a derivation on the algebra, i.e. it satisfies the Leibnitz
rule with respect to the star product

Jo(Uy % Uy) = (JoUy) * Uy + (—1)7 720, (JpWy), (5.14)
then we get by subtracting these to equations ' ‘
(JrWy) % WUy + (=1)7Y1 0, % (J¥,) = 0. (5.15)

This equation is usually referred to as the partial integration identity.
In the sequel we will be interested in the holomorphic currents of confor-
mal dimension A with the expansion

Im .
J(z) =) i (5.16)
which in the (o, 7) coordinates looks as
J(0) = Jmcos(mo) (5.17)
We can easily rewrite the definition of J; and Jg using the modes
1 1= (—1)F
Jp = =Jo+— Jog (2K
L 20+W;2k+1[2k+1+'](2k+1)}7
1 1o (—=1)*
= —Jp—— v+ Jo . 1
Jr 5707 = 2 %1 [JZk—rl + (2k+1)] (5.18)

Explicit checks

For our explicit check we have chosen the identity
Lg([0) * |0)) = |0) * Lr|0), (5.19)

which, using the definition of Ly, g and the derivation property of Ko, 1, can
be seen to be equivalent to

SLo(0)+[0) = Lsf0)+ )
1

— L_ 0). 2
22 grrrl-wa 0. (620
This can be further rewritten as
1 1 (‘Uk 2,1
Z1|120°) = = E Xz L_,|120°%). 2
2 Ol > T Zk—!"]. 2k+1,n 1 > (5 1)
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Let us look first at the L_5|0) component. We should test whether

1 S 2 1 27 2,1
T Z 2k.+1 ( Xokr1,0 T X2k+1,2) (5.22)
k=0

In the Fig. 5.1 we have plotted the corresponding partial sums. The upper
value of the sum k£ = N in fact plays role of the level, at which we truncate
the input. Looking at graph, we see that it converges extremely slowly. At

50 100 150 200

0.55¢,

Figure 5.1: Coefficient of L_5|0) in the product L|0) * |0), normalized to
unity, calculated at level V.

level 200 we get that the partial sum is equal to 0.859872, and that is actually
not very high precision. We can, however, understand the rate of convergence
and even to prove that it converges to 1 with much better precision. What
we need, is the large k behaviour of the Neumann coefficients studied by
Romans [104]

1
Xglitl,ﬂ = "ﬁ(_l)kb%ﬂ
k+1 2% 1
~ (=1) (2k+1)73 (5.23)

=
=

2
3)
2,1 o :

and for Xy, , we get similar behaviour.

2

r2,1 ~ 2,1
Xoj12 ™ “§X2k+1,o (5.24)
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The large k contribution to the sum looks as

(iR}

162
5v3rT(3) (1+2n)F

(5.25)

This sum is related to the Riemann zeta function and numerically can be
calculated easily with arbitrary precision. If we sum all the terms from
k = 201 to co we get an estimate of the error 0.140115, which when summed
with our previous result gives 0.999987, which is indeed very close to the
expected one. Qualitatively, without knowing anything about the Riemann
function, one can find by replacing the sum by integral, that the error goes
with the truncation level as N~1/3,

We can also study the L_3|0) component. At level N it is given by the
expression

1 < (_l)k 5 ~2.1 2,1
. Z 1 <“"§§Azi’c+1,o + Xokt1 (5.26)
k=0

and for IV = 200 it takes value —0.00999, which is not very big, nevertheless
it is only about four times less, compared to what we get at level 2. We

~0.01F e
~0.015

~-0.02¢

-0.025¢

50 100 150 200

Figure 5.2: Coefficient of L_3|0) in the product Lp|0) * |0), calculated at
truncation level V.

have again plotted the graph of partial sums in Fig. 5.2. The analysis of
the error can be done as in the preceding case yielding hopefully the right
answer. Again in this case the the error goes as N™Y/3. Tt means, that in
order to increase the precision by a factor of 10, we need to increase the
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truncation level by a factor of 1000. To conclude, in practice these are kind
of calculations, that are impossible to do numerically, unless one knows how
to calculate the error.

5.3 Pure gauge like ansatz 7

Now we shall discuss one particular approach which could lead to the solution
of the equation of motion for the string field

QU+ T+ T =0. (5.27)
We may try to look for solutions in the form

In section 6.3 we present some arguments which lead quite naturally to this
ansatz. They are based on some analogies with noncommutative field theory
and on how does it describe lower dimensional branes. So we postpone
the motivation there, as is more logical, and now we shall concentrate on
possible solutions with this ansatz. Plugging the ansatz into the equation we
get obviously

0 = QUQV +U*QV +U =QV (5.29)
QU QV +QU V)« UxQV — QU xV x U xQV.

Experience with the star products, wedge states and the identity indicates,
that it is unlikely to find some nontrivial solution to the equations U * V' =
V % U = 1 that would be analogs of pure large-gauge fields of Chern-Simons
theory with nonvanishing action. In fact, there seem to be other possibilities.
One particular way of solving the above equation is to solve the following
system of equations

QU=V) = 0,
VU = p,
Usp = U, (5.30)

where p is some projector which satisfies
p*Ep=Dp, Qp = 0. (5.31)

Finally we have to require QU # 0 and QV # 0. Actually, one can find many
solutions, for which the action vanishes. The most natural candidate for p is
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the wedge state |oo). Note, that all U’s, which solve the above equation, can
always be written as U = U * p. Therefore our system of equations to solve
got reduced to

Q(ﬁ*|oo>w) = 0,
VsUsxloo) = |oo). (5.32)

As far as the naive counting of degrees of freedom is concerned, we can have
plenty of solutions. Suppose, that our truncated Hilbert space has n basis
elements. Then we have 2n unknowns, and certainly less then 2n equations,
since () automatically annihilates some states, and likewise the |oo) state in
the second equation reduces the number of independent equations. The real
worry is, whether for some reason all these solutions are not trivial. One
can try to solve these equations numerically, it may a bit problematic, how-
ever, since the star products involving Virasoro generators do not converge
perfectly and neither the convergence properties of the sliver are excellent.
Instead, it would be better to develop some kind of geometric intuition, which
could tell us, what U and V are.



Chapter 6

String field theory with
nonzero B-field

In the second chapter we have seen how turning on a nonzero NS-NS back-
ground B-field makes the low energy effective field theory noncommutative.
We have seen, that even if we start with a U(1) gauge theory living on a
single brane, or scalar sector thereof, we can have nontrivial soliton solutions
in any number of dimensions. The noncommutativity complicates things a
bit, but on the other hand, it allows for completely new phenomena, which
can be given rather elegant description.

In the last three chapters we have discussed the open cubic string field
theory and its relation to the physics of tachyon condensation. It is a powerful
tool for the study of nonperturbative physics which is still not understood
in all its details. It does not happen so often in science, that one devises a
numerical algorithm, make a conjecture about its output and still is not able
to understand why does it give the conjectured results.

What we would like to do in the present chapter, is to put the two things
together. We will study the open string field theory in the presence of nonzero
B-field. At first, it might look as a silly idea, to merge two complicated
things, one of them being purely understood. Nevertheless, Harvey, Kraus,
Larsen and Martinec [89] found, that the combined theory allows for a new
and dramatically simpler description of D-branes, than the ordinary string
field theory.

The plan for this chapter is the following. First we will work in the limit of
large B-field, as was originally done first. We will give our derivation of the
Witten’s factorization [90], which clearly establishes the link between the
traditional string field theory approach and the effective approach of [89].
Then we review the construction of D-branes in this setting and explain
how do the right tensions of D-branes come out. We sketch a relation to
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algebraic K-theory. In the next chapter we add two complications at once,
we shall discuss how to construct exact and approximate solitons when the
background manifold is a torus and when the B-field stays finite.

6.1 Witten’s factorization
6.1.1 String field algebra at nonzero B-field

The basic elements of the cubic string field theory developed mainly in [5,
48, 49, 50, 51] has been presented in chapter 3. The modification required
by turning on a nonzero B-field is quite simple and straightforward. It has
been discussed in [110, 111].

All the degrees of freedom of string field theory are contained in the string
field

v = /d26 (tp)er + Au(D)o 11 + -+ )]0, p), (6.1)

which is an element of the Fock space of the first quantized string theory. It
is governed by the Chern-Simons type of an action

S[0] = —— (<qu\1/> ém,mm). (6.2)

o' G2
The noncommutative star multiplication formulated in the operator language
in [48, 49, 60] has been written explicitly for the case of B-field background
by Sugino and by Kawano and Takahashi in [110, 111]. The modification
enters the three vertex (3.57) as follows

Vi = (3\4[) 8™ +p? +p*)(0] & (0] ® (0] % (6.3)

[ee] .

X exp ( Z ; (T)ﬂNrs a(s VG;LU + Z Y;fn m _ %guyp(l)#p@)u> ‘
m,n=0 m=0,n=1

As usual we denote of = +/2a/p*. The Neumann coefficients NI, X78

and the vacua (0] do not get modified. As in chapter 2, the B-field enters

through the effective open string coupling constant, open string metric and

the noncommutativity parameter [7]

1

det G 4
Go = go(det(g+27ra'B)) ’ (6:4)
G/J,V = gul/—(Qﬂ—a/)2(Bg_lB)/w7 (65)

o —(27ra')2< L p )MU, (6.6)

g+2ra’/B g —2na'B
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which we repeat here for the readers convenience. These effective parameters
also appear in the formula for Virasoro generators (and therefore in the BRST
charge @) and in the commutation relations for the Fock space generators

[OJ#J O‘TVL] = m§M+ﬂ,0GﬂU7
[z¢,2"] = 6,
T (67)

6.1.2 Large B-field limit

Now take the limit B — co keeping fixed all closed string parameters (in-
cluding the open string coupling constant g, but not the effective one G,).
To make things more transparent set B = tBy and take ¢ — oo as in [90].
The effective parameters clearly depend on ¢ as

Go ~ GoOtr/2a
G™ o~ GEE?,
o~ gt (6.8)

where r denotes the rank of the B-field and for the brevity let us assume
that it is maximal. Altogether the ¢ dependence enters at two places: First
in the commutation relations (6.7) for the Hilbert space operators and then
also explicitly in the definition (6.3) of the star product.

To see the change in the structure of the string field algebra we have
to rescale all Fock space operators in such a way that their commutation
relations don’t depend on ¢. (We are then sure that we are studying different
star products on the same space). The rescaling which does that is

m = an=tay  (m#0),
Pt =t =13p
ot - gt =gk (6.9)

ot

After this rescaling the exponent in the vertex (6.3) takes the simple form

S 1" TS 3 V T T s\=(s)v

Z 2 (T)uN”m Om GO“V Z V Oé( )M n(s) + Ngn)p(S) GOIJ«U +
m,n=1
+ tap 5 Qo + Z el xS ple) —90 LOEEY  (6.10)

m=0,n=1

We see that in the large ¢ limit the terms which couple « oscillators with
momenta p vanish but the whole star product nevertheless remains nontrivial.
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Now the generic string field is the sum of terms
a e T O 0) = g k"3 Gouy |0), (6.11)

where a € Ap is in the zero momentum subalgebra. It is then obvious that
the star product respects the tensor product structure. ’

ay eFE Gour |0) x5 3 Gour |0) = (al*az)e“%kﬁgg"““ei(h%?)wgo“u10>- (6.12)

Recalling the structure of the BRST operator it is also obvious that after this
rescaling in the limit ¢ — oo all the terms with momentum operators vanish
and therefore it acts only on the Ay component. In conclusion the full string
field algebra looks as

A:A()@Al, (613)

where Ay is the complicated stringy subalgebra of the string states of zero
momentum in the noncommutative directions and nonzero momentum in
the commutative ones. The second factor A; is the algebra generated by the
functions e*** using the Moyal product. Its precise content, K-theory and
physical applications in the important cases of (compactified) Moyal plane
and noncommutative torus will be our primary concern in the next section
and then in the chapter 7.

6.2 D-branes as noncommutative solitons

6.2.1 HKLM construction and D-brane tensions

In this section we shall consider mainly the case of a flat noncommutative
Minkowski space with metric g,, = 7,,. Some preliminary remarks on the
torus will be given later in this section, a thorough treatment is postponed to
the following chapter 7. Let us further assume, for simplicity, that the rank
of the B-field is two. For the algebra A; of functions on the noncommutative
plane we take the Schwarz space S(R?). The associated algebra of Weyl
ordered operators generates the algebra of the trace-class operators whose
norm closure is the algebra IC(#H) of compact operators on a separable Hilbert
space H [119, 124]. This algebra does not contain the identity, we may wish to
add it by hand. This formally corresponds to the one point compactification
of the Moyal plane. Thus we have up to an isomorphism

A =K CI. (6.14)
The K, group of this algebra which will play some role later is

Ko(A) =ZaZ. (6.15)
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For a general algebra it is defined as the additive group of formal differences
of certain equivalence classes of projectors. For a detailed exposition see
[112].

Let us discuss now some solutions to the string field equation of motion
in the background of large B-field. From the action (6,2) it takes the form

QU+ T+ T = 0. (6.16)

The basic solution is ¥ = Ay ®Z. It is the famous solution found by Sen and
Zwiebach [56, 57], which was described in detail in section 3.4. The solution
was supposed to be translationally invariant and so the trivial A; part of the
solution has been suppressed. This solution corresponds to a D25-brane, or
alternatively can be viewed as describing the decay of the D25-brane into the
closed string vacuum. The value of the string field action per unit time? is
(using the Sen’s conjecture for B = 0)

S[Ay ® I] = 27/ BM, (6.17)

in accord with the Sen’s conjecture (see section 3.4) applied to the case of
large B-field background . Here M stands for the D25-brane mass in the
absence of any B-field

M

11
= ot g / Vgdoz. (6.18)

The factor 2ra/ B comes from the effective open string coupling constant and
from the normalization of the inner product

(0,0|c_1c0¢1]0,0) = /\/Z;‘d%g;, (6.19)

and accounts precisely for the change in the mass of the D25-brane due to
the background B-field. Note that there are some subtleties since the mass
M diverges. To make it finite, we should introduce some finite volume cutoff,
which however spoils the structure of the algebra. Nevertheless the simplicity
of the GMS construction [46], as we have seen in section 2.6, partially justifies
this slightly heuristic treatment. Somewhat more careful treatment of the
noncommutative torus will be given later.

As was noticed in [109, 89] on the level of the low energy action and
by Witten [90] from the string field theory point of view one can get whole
family of new solutions of the form Ay ® p where p € A, is any projector.

!Throughout this section we are interested in time independent configurations and
hence the word action will mean the action per unit time.
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Suppose now for a while that p is a projector onto a finite n dimensional
subspace of H. For all of these solutions one can easily calculate the value of
the string field action using the Sen’s conjecture for the D25 brane without
any B-field. Let us list some of them in the suggestive form

Solution Value of the action | Interpretation

Ag®T 2ra'BM | D25 — vac
A®(Z—p)| (2rd/B—n%) M | D25 — nD23
Ag®p n%M nD23 — vac

In order to get finite results we had to regularize the area of the Moyal
plane (in closed string metric) to be (27rR)?>. We also used the formula
[ &z p(z) = 270n from [46]. The values of the action for the above solutions
exactly correspond to the decay energies between various D-brane systems.
This leads to the interpretation listed in the last column.

6.2.2 K-theory interpretation

Sum of any two solutions (or two projectors) is a solution (or a projector)
only if the two projectors are orthogonal. Algebraic K-theory introduces an
additive group Ky of projectors by tensoring the algebra with an infinite
matrix M. (C). This in physical terms corresponds to adding Chan-Paton
factors, which is the same as having more branes on top of each other.

Any stack of branes can be characterized by a projector. For example n
D25-branes and m D23-branes corresponds to a projector in M (A;) of the

form '
T

T

, 6.20
pm1 ( )

Prms

where there is n times the identity Z of the algebra .4; on the diagonal, and
some number of projectors p.,, of rank m,, such that

Zmi =m. (6.21)

K-theory tells us how to sum projectors of the form (6.20). If the projectors
are not orthogonal, then it creates a block diagonal matrix, where in the first
block sits the first projector and in the second is the second one. This block
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diagonal matrix is again of the form (6.20).? The next step in the K-theory
is to construct a Grothendick group Ky from this additive semigroup. It is
just a set of equivalence classes of pairs (A, B) where the equivalence relation
is (A, B) ~ (A® C,B & C). Thus for instance T — p is well defined and is
a short cut for (Z, p). The element (A, B) is most naturally, described as a
stack of D-branes A decaying into another stack of D-branes B. All these K
elements look good when inserted into the string field action. It gives just
the energy released in the decay.

The situation in IIB theory is different, in that case the K, classes cor-
respond to conserved charges of the brane configurations. In the bosonic
theory there are no conserved charges for the branes. The K-theory classes
characterize merely various stationary points of the string field action. For
related discussion see [127].

Various other aspects of K-theory and string theory can be found in
[113, 114, 115, 116, 117, 118] and in the Komaba lectures [124].

6.2.3 Noncommutative torus

It may seem that the K-theory we were talking about, is just an artefact
of the ’hand-made’ algebra (6.14). By looking at the example of the 'more
realistic’ noncommutative torus® we shall try to convince the reader that
there is something deeper going on.

The relevant algebra A; for the noncommutative torus is the well known
rotational algebra A,. Its Ky group is the same as for the compactified Moyal
plane above. Unfortunately in this case the beautiful construction [46] of all
the projectors breaks down even though one still has a homomorphism from
the algebra .A; to the space of bounded operators by an analog of the Weyl
quantization formula. Some representatives of all the equivalence classes
of projectors were nevertheless constructed by Rieffel [120]. The Powers-
Rieffel projector on the torus [0, 27]? takes the form (in the representation
by ordinary functions)

p(xl,xQ) = 2cos(z1)g (e"(m*g)) + f (e2), (6.22)

where f and g are two functions satisfying certain relations. These can be
chosen to be sufficiently smooth if one wishes. The trace on the noncommu-
tative algebra A, in the representation by ordinary functions with the Moyal

2 Actually, the theory works only with equivalence classes of the projectors, and so the
order of Z’s and p’s does not matter.

3This part should be regarded as a preliminary discussion only, it is based on our early
work [91]. Thorough treatment will be presented in chapter 7.
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product is just an ordinary integral over the torus (normalized by the total
area) which gives precisely -2 5-. From our point of view the only problematic
feature of these solutions is that they are not well localized in one direc-
tion (in this case z;). This prevents us from looking at those solutions as
codimension two lunip representing lower dimensicnai brane. Nevertheless
the experience with the Moyal plane indicates, that there should exist also
well localized solutions with straightforward physical interpretation. Indeed,
we will find them in section 7.4. More discussion about the Powers-Rieffel
projector can be found in [125].

General theorem due to Pimsner and Voiculescu when combined with
the Rieffel’s construction [112, 120] states that the range of the trace on
projections in A; is exactly (Z + £2Z) N [0,1]. The unusual normalization
factor ;= comes from requiring the standard form (6.12) of the star product.
Calculatmg the string field action for the solution Ay ® p one gets

0
S[4 ®p] = 27/ BM Trp = 27’ BM (m - é——n> : (6.23)
T
where m,n € Z are such that
0
m— —n € [0,1]. (6.24)
27

We see that for m = 1 and n € N not too large (such that the projector
exists) we get precisely the same values as those for the Moyal plane above.
It is perhaps curious to note that the theorem also asserts that even without
introducing the Chan-Paton factors one can describe the decay of m > 1 D25
branes into an appropriate number of D23 branes. This is not true for the
Moyal plane case.

As we said above one may have doubts about the role of K-theory on the
Moyal plane. But here on the noncommutative torus in order to find a single
example of a projector we had to use the K-theoretical sources. Strikingly
these projectors lead to the correct masses of D-branes, exactly as the GMS
projectors. The projectors in noncommutative geometry are primarily used
to define projective modules — a noncommutative generalization of vector
bundles — which are naturally classified by K-theory.

To end up this discussion we would like to make the following interesting
remark. The string field action is the (secondary) Chern-Simons class of the
noncommutative bundle defined by the connection which is the string field.
In the large B-field limit when the algebra factorizes the action becomes equal
up to a factor to the Chern class of a completely different noncommutative
bundle over the torus specified by the choice of the projector p. We be-
lieve that further investigations may reveal beautiful interplay between these
objects in noncommutative geometry.
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6.3 Proposal for the exact solution of the tachyon
potential

The proposal is based on the following simple observation: All the decays of
D25 brane that are described in the large B-field limit by takirng a nonzero
projector p € A; are related to each other by a nonunitary isometry*. Of
course it doesn’t mean that they are in the same K-theory class since this
isometry doesn’t belong to A;. To give an example consider the solutions
describing the decays D25 — vac and D25 — (n)D23 with projectors 7 and
7 — p respectively.
The isometry U which relates them as follows

I—p = UUT,
Iz = U, (6.25)

can be found in some cases explicitly. If we take for instance p = |0) + |1) +
<o~ |n —1), then U and Ut are the ordinary shift operators

o

U = > |m+n)ml

m=0

Ut = > m)(m+al.
" (6.26)

The operator U is clearly noncompact (and it is neither unity) so it does not
belong to A;. Thus the projectors Z and Z — p do not have to belong to
the same K-theory class. They would, however, if we were working with the
algebra of all bounded operators.

Note that string field solutions representing the above decays are related
by a formula which formally looks like a string field gauge transformation

A @ (T —p) =U(Q+ Ay @ T)UT. (6.27)

The first term on the right hand side gives of course zero contribution since
@ doesn’t act on A4;. More useful relation is obtained by multiplying with
Ut and U on the left and right respectively

AT =UNQ+ 4, ® (T - p))U. (6.28)

4An operator U for which UTU is projector is called a partial isometry. Then automat-
ically UUT is a projector. If UTU = Z then U is called an isometry.
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Our conjecture is as follows: Since the decays D25 — wac, D25 — nD23
and so on are related by gauge-like isometry transformation, it is natural
to expect that in the full string theory also the trivial process D25 — D25
described by the zero string field is related to the others in a similar way.
Thus we expect ' o :

Ay =V« QV (6.29)
for some V, which acts on Ay and satisfies
VisV = T,
QV VY = 0, (6.30)

where the star is now the stringy product (not the Moyal one) and the dagger
means the usual star involution of the string field algebra. The last equation
(which is of course also satisfied by U) was added in order to fulfill the equa-
tion of motion. Note that both conditions (6.30) could be replaced simply
by V % VT = T but this is not favored by our analogy. It is straightforward
to check the string field equations of motion (6.16) provided one can use the
associativity of the algebra. This is however not a priori clear since V' (in
analogy with U) doesn’t appear to be an element of the algebra. Indeed,
it is well known that when one tries to add some elements to the so far
not properly defined string algebra one runs into problems with associativity
anomalies [121, 122] and identity related anomalies [82] discussed at length
in chapter 4.



Chapter 7

Exact solitons on
noncommutative tori

Noncommutative field theory turns out to be a very useful tool in describing
various features of string theory. It shares a lot of its characteristic features.
One notable example is the ultraviolet — infrared mixing discussed in section
2.3. As we have seen in previous chapters the construction of D-branes as
solitons in string field theory is quite complicated. It has been discovered
by Harvey, Kraus, Larsen and Martinec [89] that this construction can be
drastically simplified by turning on spatial noncommutativity. Originally it
has been performed in the limit of large B-field. Later on it was realized in
[92] that one can actually relax the assumption of large B-field by turning on
appropriate gauge field which kills all the covariant derivatives in the effective
action.

Originally all these studies has been performed on the so called noncom-
mutative or Moyal plane. They were based on a simple observation, described
in section 2.6., that the algebra of functions on the plane vanishing at in-
finity with Moyal product is isomorphic to the algebra of compact operators
on a separable Hilbert space. This allowed to use elementary methods of
quantum mechanics for constructing the noncommutative solitons. For the
introduction to these topics the reader is referred to lectures [124].

An obvious task is to extend the previous analysis to the case of the
noncommutative torus. There are several reasons why this might be use-
ful. There are stringent experimental bounds on the presence of the B-field
in the physical uncompactified directions. So if any B-field background is
physically relevant to string theory it should appear in the compactified di-
rections. The torus is of course the simplest possibility. On the other hand
from mathematical point of view it is already quite nontrivial and nicely il-
lustrates many new mathematical concepts. Other examples of understood
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noncommutative spaces include the fuzzy sphere which is more complicated
since it is a curved space. The solitons on the noncommutative torus has
been studied in [91, 125, 126, 127, 142, 123, 143, 144, 145].

In this chapter we will present the construction of exact noncommutative
solitoris on noncommttative two torus in the effective description of string
field theory. Although the precise form of the effective action is unknown
we have enough information (from gauge invariance and some following from
Sen’s conjectures) that enables us to construct the exact solitons and confirm
their interpretation as D-branes. The word ’exact’ means that they are true
solutions of equation of motion at finite noncommutativity, i.e. not only in
the limit of infinite noncommutativity. In the course of the presentation we
will see that problem reduces to well studied problems in the mathematics
and we will give brief exposition of the notions and methods used in noncom-
mutative geometry. This chapter is based on our work [123] with Thomas
Krajewski.

The plan of this chapter is as follows. After setting the conventions we
will recall the properties of the effective action obtained by integrating out
(on the classical level) all the fields except the tachyon and the gauge field.
We outline the general strategy for solving the equations of motion. The
main problem will turn out to be related to problem of finding constant
curvature connection on a projective module. We will see how one can nicely
solve all the problems using the bimodule technique. Finally we will look at
the problem what can be done without gauge fields, i.e. when one does not
want to turn them up. One can find approximate solitons which as we will
see are related in the large torus limit to those found on the noncommutative
plane.

7.1 Effective description of string field theory

We start by considering the open bosonic string theory propagating in the
closed string background of the form M x T¢ where M is arbitrary 26-d
dimensional manifold. As discussed in section 2.1, the effect of turning on
a constant B-field along a flat submanifold, in this case the torus T¢, is
neatly described by replacing ordinary products by the noncommutative star
products defined as

Lo - =
oy ..
fxg=fermoadig (7.1)
7,] . . . .
where 0y, ., is an antisymmetric real matrix.

One also has to replace the ordinary closed string metric g;; and coupling
constant g, by effective open string parameters G;; and G. All these effective
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parameters are related to the closed ones through

1 _ _HJV[oyal 1
G+ 21/ ® 2ra’ g+ 27a'B’
1
: - [det!G +27d/®)\? 1 . - o
Gs = s ; K 7.2
g (det(g—l—era’B)) (7.2)

where we allow in more generality for a nonzero Seiberg-Witten two form
® [7, 133], which always appears in the combination with the gauge field
strength® i7"+ ®. Its appearance is related to a freedom in the regularization
of the worldsheet theory.

All the fields are regarded as functions of the commutative coordinates z*
and are valued in the noncommutative algebra Ay. In more concrete terms,

this algebra is generated by functions U; = ei% having the commutation
relations i

U % U; = e 72 %oyt U, x Uy, (7.3)

For simplicity we take all radii of the torus equal to R, but all what follows
is easily adapted to any constant metric.

To make contact with the standard conventions for the noncommutative

torus we shall omit the stars and set
O royat
g ova ,
270" = — R;’ . (7.4)

The algebra is spanned by Uy = [[%, U™ where 7 € Z°.

The standard partial derivatives with respect to the coordinates z' are
derivations of the algebra Ay, i.e. they also satisfy the Leibniz rule for the
star product.

The ordinary integral over the torus yields a trace on the algebra, i.e.
two elements of 4y commute under the integral. In accordance with the
standard trace that can be found in the mathematical literature, we choose
to normalize it as follows,

1
) /w > azUs = a5. (7.5)

AeZd

Accordingly, this trace will be referred to as the “normalized integral”. We
refrain from calling it the trace, since one also considers matrices with entries
in Ay. On the algebra My (Ay), one introduces the ordinary linear form Tr

IWe are using geometric conventions where A and F' are antihermitian. The relation
with [7] is ASW = jAhere,
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from My (Ag) to Ay as the sum of the diagonal elements. It is not a trace since
the property Tr(AB) = Tr(BA) is lost when the algebra is not commutative.
However, this property is true after integration.

The effective action is obtained by integrating out all the fields from open
- string field theory except the tachyon 7" and the gauge fieid A,. It takes the
general form

S = .é‘i / 454 / Vet G Tr E F(T? = 1)G*' D, TD,T — V(I* — 1)
s JM Td

—%(ZWQ’)Qh(TQ — 1)(iF,, + ®,,)(iF* + &) + -+, (7.6)

where p,v = 1,2,...,26 and ¢ = g,75 is a B independent constant. The
tachyon field T is a Ag-valued function on M and transforms in the adjoint
representation. The gauge field A, is an antihermitian matrix of functions
with values in Ay and its curvature is defined as usual. This action is invariant
under the standard noncommutative gauge transformations.

The explicit form of the effective action is not completely known. It may
contain higher order terms that are represented in (7.6) by dots. The latter
are constructed using products of higher order covariant derivatives of the
tachyon field and of the curvature tensor. Fortunately their explicit form is
not necessary in order to apply the method we shall describe below.

Furthermore, the functions f, h, V are only required to satisfy certain con-
jectured properties. The following ones are not intended to be the complete
list but merely those we shall need in what follows,

V) = 0, A0) = 0, f(0)=0,
V(1) = 1, h(=1)
Vi) = 0, K(0)

|
Ql——'
~~
~1
=~1
N

The tachyon potential is normalized in such a way that at the closed string
vacuum 7' = 1 it has a minimum equal to zero and at 7" = 0 it has a
local maximum equal to 1. The conditions for 4(0) and f(0) reflect Sen’s
conjecture that at the closed string vacuum all kinetic terms of physical
excitations do vanish. This conjecture has been recently tested numerically
(93, 94] and was also a starting point for the vacuum string field theory
(95, 96]. The condition on h(—1) is just a normalization. What is less
clear is the physical meaning of A'(0) = 0. It follows nevertheless from
the Dirac-Born-Infeld extension [134, 135] (see also [136, 137]) which implies
h = V. Among the higher derivative terms, those constructed solely from the
curvature F and the tachyon T' (without derivatives) will be quite important
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later. Because of the Dirac-Born-Infeld extension, their coefficients A, also
satisfy h(n)(0) = 0 and A, (0) = 0.

The action (7.6) leads to two equations of motion obtained by variation
with respect to tachyon and gauge fields. They are obtained by expanding
the functions f, ¢ and V in power series and collecting the coefficients of
6T and §A, after repeated integrations by parts and cyclic permutations of
the fields. For the sake of brevity, we do not give their explicit form here.
Indeed, they are quite cumbersome due to the noncommutativity between
the fields and their variations. Instead, we list a few conditions on the fields
that are sufficient in order to solve the equations of motion

VI(T? — )T
D,T =
D.F,, =

/ [5’1(7”2 — 1)(iF + @) (iF™ + )] =
Td |

(e o O O

/W [6he(T? = 1)(iF + ®)*"] = 0,
(7.8)

These conditions imply the equations of motion whatever the higher order
terms are. Indeed, the first one ensures that the contribution to 67" arising
from the tachyonic potential is identically zero. After integration by parts,
the second and the third one imply that any contribution containing covari-
ant derivatives of the fields vanish. Finally the last ones are the remaining
contributions from the monomials in the curvature and the tachyon field
without any covariant derivative.

Thanks to the condition V’'(0) = 0 the first equation is solved by taking
T to be any projector which we write as 7' = 1 — P. Therefore the second

equation becomes
dP + AP — PA=0. (7.9)

We are using the coordinate free notation of differential geometry, which is
defined by the same formulas as in the commutative case for Lie algebra
valued forms (see the comments in section 2.4).

Most general solution is easily obtained by decomposing A into its “matrix

elements”
A=PAP+(1- P)A(1—-P)+ PA(1-P)+ (1 - P)AP (7.10)
and plugging it in the equation (7.9). Result is simply
A=A+ AL +PdP+ (1 - P)d(1- P), (7.11)
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where Aj and A, are arbitrary elements of PAyP and (1 — P)Ag(1 — P)
algebras respectively. It means that they are subject to the constrains

~] =~

A2
13

-

R

We have solved the equation DT = 0 and we are left with the last equations
involving the curvature F' = dA + A?. After an easy computation we get

F = P(dA)+ A} +dPdP)P + (7.14)
+(1 — P)(dA, + A% +dPdP)(1— P). (7.15)

It turns out to be diagonal. This fact is quite crucial since it allows us to
satisfy identically the last set of equations in (7.8) for the tachyon. To see
that, let us expand h in power series, bearing in mind that A(0) = A'(0) = 0,

WI?—1)=> %M“)(O) (1% -1)", (7.16)

n>2

so that its variation is easily computed by varying all monomials. The vari-
ation of a monomial of degree n gives rise to 2n terms

n—1-k

s(T2—1)"= Y (17— 1)"(T6T +6TT) (1% - 1) (7.17)

0<k<n—1

Although 6T is completely arbitrary, when 7" = 1 — P is a projector, this
formula simplifies into

§ (1% —1)" = (=1)" (T6T (T* = 1) + (T* — 1) 6TT) (7.18)
and therefore, using (7.7)
Sh(T? —1) = — ((1 = P)§TP + P§T(1 - P)), (7.19)

so that it vanishes identically when multiplied with a diagonal quantity and
integrated. The same analysis remains true for the higher order terms in-
volving h,) so that we can conclude that the last set of equations in (7.8) is
satisfied.

We are thus left with the only remaining equation Do F),, = 0. A further
simplification occurs because of D,P = 0. This allows to solve the last
equation as follows. Suppose we can find gauge fields A, A (with the above
properties) such that

P(dA” + Aﬁ +dPdP)P = /\“P, (7.20)
(1—P)(dAL + A% +dPdP)(1-P) = X (1—-P) (7.21)
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with A, AL being numbers. Then the compatibility condition (7.9) clearly
implies
D F = /\”DaP + /\_J_Da(]. - P) =0, (7.22)

which ensures that the full set of equations of motion is satisfied, whatever
the higher order terms are. The existence of such gauge fields as well as some
explicit constructions will be given in the next section.

7.2 (Constant curvature connections

To solve (7.20) and (7.21) we have to make contact with some available results
in the mathematical literature. In fact, they are equivalent to the existence
of a constant curvature connections on the projective modules determined by
P and 1 — P. On the noncommutative tori this has been extensively studied,
yet formulated in a rather different way, using functional analytic methods.
This way of presenting projective modules over noncommutative tori and the
associated constant curvature connections have been proposed by A. Connes
more than twenty years ago [128].

To proceed, let us first recall that a projector P in My (Ag) determines
a finitely generated projective module & = PAY. Alternatively, one can
consider & as the subspace of elements & of AL that fulfill P¢ = ¢. This is
naturally a right Ay module since it is stable by multiplication by elements
of Ay on the right.

Projective modules are fundamental objects in noncommutative geome-
try since they provide a generalization of vector bundles. Moreover, one can
define the analogue of a covariant derivative and its curvature for these mod-
ules. In fact, a covariant derivative V,, associated to the partial derivative
9, is just a linear map from £ to itself satisfying the Leibniz rule

Vu(PEf) = Vu(PE) f + PEOLT (7.23)

for any P¢ € £ and f € Ap. It is not difficult to construct a covariant
derivative just by taking the ordinary partial derivative and projecting the
result onto £ using P. This defines the covariant derivative Vﬁ by

V(&) = POu(PE) (7.24)

for any P¢ € &.

To the module £ we also associate its algebra of endomorphisms End(£)
which is the algebra of linear maps from & to itself that commute with the
right action of Ag. It is isomorphic to the algebra of matrices of the form
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PAP € My(Ay), or equivalently, that satisfy PAP = A, the sum and prod-
uct being the ordinary operations on matrices but the unit is the projector
P instead of 1.

It can be easily shown that all connections are of the form

V=V, + A4, (7.25)

where A, is a matrix satisfying PA,P = A,. In a language more familiar to
physicists A, may be identified with the gauge field.* The gauge transforma-
tions are the unitary elements of End(Ay), that is those g €End(&) that fulfill
99" = ¢g*g = P. Note that one usually imposes that A, be antihermitian and
it transforms in the ordinary way under gauge transformations.
The curvature tensor is defined as the commutator of the covariant deriva-
tives,
Fo.=[V.V.] (7.26)

Unlike the covariant derivatives, it commutes with the right action of Ay, so
that it may be identified with an element of End(Ay).
If we compute the curvature of the connection defined in (7.25), we get

F = P(dA + A* + dPdP)P, (7.27)

which is just the left hand side of (7.20) and which we would like to be
proportional to P. Since P is the identity of End(&), gauge fields whose
curvature is proportional to P are known in the mathematical literature as
“constant curvature connections”.

Shifting back to the notations we have been using in the previous section,
let us consider our projector P corresponding to the tachyon field. This
projector determines a projective module, but it has no reason, a priors, to
admit a constant curvature connection. However, it is known that in the two
dimensional case, for € irrational, [130, 132], any projective module is either
free or is isomorphic to the Heisenberg modules which admit a constant
curvature connection. For higher dimensional tori the situation is slightly
complicated, interested reader is referred to our paper [123].

In the two dimensional case, this isomorphism can be described quite
explicitly using the techniques developed in [128]. Let us fix an irrational
number 6 €]0, 1] so that the algebra 4, is generated by two unitary elements
U; and U, such that

U1U2 = GQiWGUgUl. (728)

*The reader should note, that what we call 4, in this section was actually A, in the
section preceding.
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0 is the dimensionless parameter related to the ordinary Moyal deformation
parameter through Oprop0 = —270R?, R being the radius of the torus.

It is known [120] that gauge equivalence classes of projectors in Ay, in
the two dimensional case and when @ is irrational, are parameterized by the
values of the normalized integral. More precisely, if P is a projector, then
there are two integers p and ¢ such that

1
Obviously, if two projectors are gauge equivalent, they yield the same inte-
gral, thus the same numbers p and g. Conversely, given any two integers p
and g such that p + ¢f € [0,1], then there is a projector in A4 such that
(7.29) holds and any two such projectors are equivalent. In more physical
terms, this means that p and ¢ parameterize our vacua.

Let us now focus, for simplicity, on the case p = 0 and ¢ = 1. Thus we are
working within the gauge equivalence class of the Powers-Rieffel projector,
which is the simplest possible example of a non trivial projector in .45. We
denote by P a projector within this class, P4, is then a right 4s-module
(A acting by multiplication) which can be equivalently described as follows
[128].

Let S(R) be the space of complex valued function on R which decrease
fast at infinity. We define a right action of 4y by

(WU = ¥(t+0),
WU2)(t) = e "™y(t), (7.30)

for any function . Accordingly, this turns S(R) into a right module which
is in fact finitely generated and projective.
Covariant derivatives V1 and V, are defined by

Vi) = —pmtlt),
Vi) = 5o uld) (7.31)

which satisfy the Leibniz rule with respect to the right action of Ay. The
curvature of this connection is constant,

7

Fip =V, Vo] = (7.32)

- ’
9M oyal

and we shall comment on the physical meaning of this value in the next
section.
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To describe explicitly the isomorphism between the projective module
determined by the projector P and S(R), as well as the pull back of the
connection, it is convenient to use the so-called ”bimodule construction”.

In general terms, suppose that we are given two algebras A and B and a
(B, A)-bimcdule M. This means that M is a vector space equipped with a
left action of B and a right action of A and that these two actions commute,
ie.

(bih)a = b(tpa) (7.33)

for any ¢ € M, a € A and b € B. Besides, let us assume that M comes
equipped with two scalar products, (-, )4 and (-,-)g. The first one takes its
values in A and is A-linear whereas the second one takes its values in B and
is B-linear.

We finally assume that they are compatible,

(1, €)5¢ = ¥(§,¢)a (7.34)
for any elements 1, £ and ¢ of M. Then one easily shows that if
(b, ¥)s =1, (7.35)
then
P=(¢,%)a (7.36)
is a projector in A. Indeed,
P2 (1/’, Z/J)A(%Z’» ¢)A
= (w: w(wy ¢>A)A
- (wy (’lp) )B’Q/) A

The use of Morita equivalence to construct projectors has been first proposed
in [120] and in fact it lead Rieffel to the discovery of his projector. It gen-
eralizes the partial isometry introduced in [46] which cannot be applied to
the noncommutative torus. Indeed, the normalized trace of any projector
obtained by a partial isometry should be one, but then the projector is the
identity.

Let us now fix A = Ay, B = A_1jp and M = S(R). The left action of
A~1 /0 is

,if(t) — eZz‘wt/ﬂf(t),
Vof(t) = f(t+1) (7.38)
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and the two scalar products are defined as

()4 = 0 > /RdtzD(t—l—mlﬂ)x(t)eQi”m?tU{’”Ug”?, (7.39)

m1,mo€Z?

. . ‘n»‘ B N Y DY n ns _
Wxs = > | dwlt-mx@e v VI (7.40)

n1,n2€Z2

The compatibility condition follows from Poisson resummation. Note that
these formulas can be extended to a much broader context [127] and [130].

Besides, it is known that there exists an element 1o in S(R) such that
(1o,%0)s = 1 [120]. The construction of such a 1y is actually a non trivial
task and it is this condition that is at the origin of the strange choice of
functions involved in the Powers-Rieffel projector. Thanks to the bimodule
technique, we end up with a projector Py = (1)g, %) 4 whose trace is 0.

We know that all projectors of trace € in Ay are gauge equivalent. Thus
the projector P we started with is related to F by

P = uPyu*, (7.41)
where u € A is unitary, i.e. uv* = uw*u = 1. This also implies that
P = (ubo, uho) a- (7.42)
Writing 1) = ut)y, this allows us to define a map S from P.Ay to S(R) by
S(Pa) = ¢ Pa (7.43)

for any Pa € Ay. It is a right Ap-module homomorphism which turns out to
be invertible. Indeed, its inverse is given by

STHE) = (¥, &) (7.44)

Therefore, it establishes a right Ap-module homomorphism between P.4, and
S(R).

Using the covariant derivatives on S(R) defined in (7.31) we define a
covariant derivative S7'V,S on the algebra A. In terms of gauge fields, we
have

S_lvuS(Pa) = (¢, Vﬂ(wpa’)>.4
= (Q:D) vlﬂvb)APa + (%D,%/J)Aa(P“)
= A,Pa+ Pd,(Pa), (7.45)
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with
‘4,LL - (,Z,ZJ) Vp¢)A(¢; 77/j)A (746>
It can be checked by direct computation, using the Leibniz rule to derive
the scalar products, that the curvature associated to A, is proportional to
P, ‘
1
-, P (7.47)
gM’oya.l

F,, = P[0,P,0,P|P+P8,A,P—Pd,A,P+[A,, A, =

Obviously this construction can be generalized to projectors with other traces
and in higher dimensions. One can thus construct, with a high level of
explicitness, gauge fields compatible with given projectors that extremize
the effective action (7.6). Note that the above formula (7.46) has already
appeared in the physical literature in [138] in the study of noncommutative
instantons.

Let us end this section by a comment on the gauge theoretical aspect of
the procedure we followed. First we have found a non trivial extremum of
the potential which is just the projector Tp = 1 — P. The latter induces
spontaneous symmetry breaking since it is not invariant under the full gauge
group G. The subgroup Hp of all unitary elements u such that v7Tpu* =Tp
is the unbroken subgroup and the compatibility condition (7.9) just means
that we are only considering a gauge theory with the little group Hp as gauge
group. From this interpretation, it follows that all projectors are equally
good. Indeed, trading P for uPu* is just a gauge transformation and it
leaves the physics invariant. Our truly independent solutions are in fact
equivalence classes of projectors. On the noncommutative tori, the latter are
known to form a discrete set.

7.3 D-brane interpretation

To verify that the soliton solutions we have found correspond to D-branes,
we can calculate their tension as in [89, 92, 124]. We shall specialize to the
solitons on the noncommutative two torus for which we were able to make
everything rather explicit. As they are localized in two directions they should
represent codimension two branes, i.e. D23-branes.

Let us take first for the Seiberg-Witten parameter ® the simplest choice
¢ =-8B= L which sets to zero all the terms in the action containing

—eMoyal
iF + ®. The only contribution to the tension then comes only from the

potential term. Using
VdetG  2md
Gs gs’9|1\/[oyal

(7.48)
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we get for the action evaluated on our solution

2
S=- male / / d*=z/det g, (7.49)
Td

gsigtM'oyal

V(T? —1) =V (-P)=V(0)+ (V(-1) = V(0))P = P. (7.50)

As we have discussed above the projectors on the algebra Ay are classified
according to their trace which belongs to (Z + 0Z) N [0, 1]. For a projector
P of normalized trace fm we get the tension

2 ,/
T=_—"2C (97R)%0m = (27)*a'mTas = mTs, (7.51)

95'9|M0yal

which identifies our soliton to be describing m D23-branes. Curiously the
mathematical theorem tells us that the soliton number cannot exceed %.
Physically it is welcome since the total energy of the D23-branes should be
smaller than the energy of the original unstable D25-brane.

We may ask what would happen if we had chosen different value for
the parameter ®. Would we end up with the right tension? The value we
took before was special in the sense that all terms containing the curvature
vanished. If we take different value for ® we have to know all terms in the
action which do not contain derivatives. Fortunately these are precisely those
terms provided by the Dirac-Born-Infeld action [134, 135]

- / 424y / [—V(T2 —1)/det(G + 27 (iF + @) +
GS M ‘]['d

Clearly the 1 — P part of F' will not contribute. We can use formula

v/det(a+bP) = Vdeta(l — P)++/det(a+b) P. (7.53)

It is then simple exercise to check using (7.2) that

\J4et(G + 270 (07 + ®)) /1 det O3
G, ’ N gs

(7.54)

is actually ® independent and when we evaluate the action we get the same
tensions as before.

The reader may wonder what is the physical interpretation of the gauge
fields Aj and A,. Actually with an action of the form (7.52), where V(T°~1)
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multiplies also all the higher order terms, all equations of motion will be
satisfied for any A, and also the action will not depend on it. On the other
hand A is fixed by the formula (7.46) up to a gauge transformation. Further
insight might be obtained in the small § limit when the solitons are more and
more sharply peaked. Then Aj is a gauge field localized on the D23-brane - -
and A, lives in the whole bulk. Since the action does not depend at all on
A, we conclude that it is an unphysical degree of freedom, which is in accord
with the fact that there are no open string degrees of freedom in the closed
string vacuum surrounding the D23-brane.

7.4 Approximate solutions without gauge fields
and selfdual projectors

In the previous sections we were solving exactly the equations of motion by
turning on an appropriate gauge field. Obviously one may ask whether it is
possible to satisfy the equations without turning on the gauge field at all.
This should indeed be possible as suggest the results in CSFT [74, 75, 76] and
BSFT [68, 69]. In the effective field theory approach we are pursuing here we
are then limited only to approximate solutions neglecting higher derivatives.

Natural procedure is to first exclude all the derivative terms and search
for the minima of the potential. As is known [46] nontrivial solutions of
V'(¢) = 0 can be constructed using projectors. The next step is to take into
account the kinetic term, which reduces to

Skinl P = 35 / PO,PA,P, (7.55)

when evaluated on a projector P. Note that we have summarized all relevant
information on the function f and the effective couplings into the “coupling
constant” A. Whereas all projectors are ground states of the potential, only
a few of them will minimize the correction given by the kinetic term. Let us
thus try to find the extrema of (7.55) on the space of all projectors.

This problem has been studied in [139]. Let us first derive the equation
of motion. If P is a projector, then P+ 0P is a projector (at the first order)
iff §P = [§a, P] with da € A. Accordingly, the equation of motion are

PAP - APP =0, (7.56)

where A is the standard laplacian. It is worthwhile to notice that this equa-
tion takes a particular form because we search for the extrema of (7.55) on
the space of projectors. If we were instead working on the space of all scalar
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fields, the equations of motion would be completely different and would in-
clude also a nontrivial dependence on the function f appearing in the effective
action (7.6). To our knowledge it is not clear that the extrema of the full
action (in the absence of gauge field and neglecting the higher order deriva-
“tives of the tachyon) car be obtained by first searching for the zeros of the
potential and then minimizing the kinetic term on these zeros.

However, the problem of minimizing the kinetic term on the space of
projectors is an interesting question since it involves some topologically stable
solutions in two dimension. In fact this action admits a topological bound

1 1
= / POPOLP > 55 ic / Paﬂpaupl. (7.57)

This is easily derived from the relation
/((‘3PP)*8PP = /P@uPBuP — 1€y, /PBMP&,P, (7.58)

where 8 = 8, — 19, and from the corresponding equality involving &.

This inequality (7.57) is similar to the inequality arising in four dimen-
sional Yang-Mills theory and is interpreted as follows. The space of projectors
is not connected and on each of its connected components the action is bound
by the LHS. '

It is an easy exercise to show that the LHS is invariant under a small
deformation of the projector. In fact, when @ is irrational, two projectors
lie in the same connected component iff they have the same trace [120].
Furthermore, if the normalized trace of P is p+ ¢f, then :

(2;“];)2 / P8, Pd,P = 2inq, (7.59)
so that ¢ is an analogue of a two dimensional instanton number. Indeed,
it has been obtained in [139] as a topological bound in the study of a non-
commutative generalization of a non-linear o-model. It is part of a general
theory that encompasses both this model and the ordinary non-linear field
theory with values in S2. Because S? is homeomorphic to the space of rank
one projectors in M(C), it is easy to write the kinetic term of the stan-
dard non-linear ¢ model and (7.59) is nothing but the winding number of
the corresponding map from S? into itself. This means that it measures the
homotopy class of this map, i.e. it is an element of m,(S5?).

In the context of noncommutative geometry, the réle of the homotopy
groups is played by the K-theory of the algebra, (i.e. classes of projectors
and unitary elements of matrix algebra over the algebra of coordinates).
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They provide, when suitably differentiated and integrated, quantities that
are stable under small deformations. In a more abstract language, this is
formulated through the pairing of the cyclic cohomology of the algebra (i.e.
all the possible ways to differentiate and integrate in a “suitable way” ele-
ments of the algebra) with its K-theory {i.e. noncommutative analogues of
homotopy classes of vector bundles and gauge transformation). This theory
is fully developed in the treatise [4] and the recent review [141].

Turning back to the problem of minimizing (7.55), it follows from (7.58)
that the bound will be saturated iff 9P P = 0 (antiself-duality equation) or
OP P = 0 (self-duality equation). Because of the nonlinear constraint arising
form the fact that P must be a projector, these equations are not easy to
solve.

If P is a self-dual projector, then 1 — P is an antiself-dual and vice-versa,
so that it is sufficient to look only for the former. Fortunately, this non-linear
problem can be turned into a linear one using the bimodule technique.

Using the notation of section 3, we recall that it allows to construct a
projector in A provided we have an element 1 € M such that (1, ¢)s = 1.
For simplicity, we restrict our discussion to the homotopy class of the Powers-
Rieffel projector, so that we know that all projectors in this class are obtained
through unit vector in the bimodule ' = S(R). It follows that the resulting
projector will satisfy

1 €
— [ P=40 d e PJ,PO,P = 2ir. 7.
(27|'R)2/ ) an (QWR)Q/ 0,Po T (7.60)

Note that the map from from unit vectors to projectors is not one to one; two
unit vectors yield the same projector iff they differ by a gauge transformation.
Indeed, if ¢ and ) are unit vectors such that

P=(,Y)a= (x4 (7.61)

then
770 = (d)a X)B 71b and X = (Xa Q/))B X (762)

and the gauge transformation is v = (x,%)s which belongs to the gauge
group (i.e. the group of unitary elements of B).

A natural way to construct a unit vector v is to start with an arbitrary
element y € £ whose norm (), )5 is invertible. Then standard mathematical
techniques (holomorphic functional calculus, for instance) allow us to define
the square root of (x, x)s so that

b= ((6x)s) " x (7.63)
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is a unit vector.

The main difficulty of this approach is to determine whether the norm
(x, x) is invertible or not. For instance, if 6 > 1, we know that (x, x)5 is not
invertible, otherwise we would have constructed a projector of trace ¢ > 1 in
Ag, which is impossible. On the other hand, for § = 1/n, B is commutative
and (x, x)z is invertible iff this function does not vanish.

In trading the projectors for the vectors x € £, we have introduced spu-
rious gauge degrees of freedom. In fact, two such vectors yield the same
projector iff they differ by a complex (not necessarily unitary) gauge trans-
formation. By definition such an element belongs to the group of invertible
elements of B. Therefore, we have to identify the vectors that yield self-dual
projectors but differ only by a complex gauge transformation.

Let us introduce the complex covariant derivatives

V=V;—iV, (7.64)

associated to the covariant derivatives V; and Vs, introduced in section 3.
Now we have all the tools to solve the self-duality equation. In fact the
projector P associated to a vector x of invertible norm satisfies the equation

OPP =0 (7.65)
if and only if there is p € B such that

Vx = px. (7.66)

The proof follows from an explicit computation of 9P P in terms of x. This
equation is a first order linear equation in y and allows thus all the powerful
methods of linear functional analysis to be applied.

The complex gauge group acts on p as

p — gpg~t+gdg7h, (7.67)

so that p is nothing but a complex gauge field. Moreover, if A € B can be
deduced from p by a complex gauge transformation

A =g pg+ g "9y, (7.68)

then x satisfies the linear problem associated to p iff g satisfies the linear
problem associated to A. This means that we have to solve the linear problem
only on the orbit of the action of the complex gauge group on the complex
connection. In other words, if we find a subset of B that intersects each orbit
at least once, it is sufficient to solve linear problem for those values of p.
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The general problem of the study of these orbit spaces is a rather difficult
problem which is tantamount to the study of the moduli spaces of complex
vector bundles over the noncommutative torus. In the special case we are
considering here, one can show that constants intersect each orbit at least
once, thus we have to solve the equation®

Vf=-_f (7.69)

with A € C. This is very easy because (7.69) is just the differential equation

' 2mt . —
f () +—5f(t) = 2f(t) =0, (7.70)
whose solution is the gaussian
Fult) = Ae™ T (7.71)

A being an arbitrary constant, which is absolutely inessential since it cancels
in the expression for the projector. Projector based on this function has been
for the first time constructed by Boca [140]. The self-duality property was
recognized in [139].* It has been also studied in [127].

Besides, one can show that two values of A differ by a gauge transforma-
tion iff they belong to the same class in C/(Z + 7Z), where 7 is the modular
parameter of our initial torus [139]. Here we have set 7 = 1, but it is an easy
exercise to work with a general value of 7 and observe the covariance under
transformation in SLo(7). Therefore, the torus parameterizes all instantons
in the homotopy class of the Powers-Rieffel projector.

7.5 Moyal plane limit of Boca’s projector

The Powers-Rieffel projector [120] discussed in the context of tachyon con-
densation in [91, 125, 126, 127] is fully legitimate one in the sense that one
can find exact solitons based on this projector. Nonetheless one may wish
to have projector which does reduce to the nice GMS solitons [46] in the
large torus limit keeping Opoya fixed. The Powers-Rieffel projector is also
not suitable for orbifolding [127].

3We are now using the symbol f instead of x to indicate that the constant p is now
complex number and to be in accord with references [127, 123].

“Note that the Boca’s projector shares this self-duality property with its Moyal plane
counterpart, the simplest GMS soliton. Indeed, in the operator correspondence PP ~
[a,10)(01] |0)(0] = O.
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A projector which overcomes these difficulties was constructed by Boca
[140] using the bimodule technique starting from the gaussian function f =

e~ " . He has proved for certain range of @ that b = (f, f)5 is invertible.
Then one can easily check that

Pp=(b"5f,b75f)a (7.72)

is a projector. For special values of 8 = 1/q,q € Z the projector can be
expressed explicitly in terms of Jacobi’s theta functions. For example for ¢
even one has

- Silye 19<£q’>%(U2,§1)19(g,)%(U1,%) -
L = — = ) 7.7
‘ ¢9(Us, §)9(UY, 3)
where
19(_(1\;{%(0—7 7_) — z:em‘r(m—k1%)2—I-27ri(m+%)bUNm-l—a7
ou) = S e (774

Note that the above formula (7.73) makes sense as it stands since the de-
nominator turns out to be central element in the algebra. One can translate
back this expression in the language of ordinary functions and the Moyal star
product. With some effort one can check that in the large torus limit keeping
Orroyar fixed (which is equivalent to ¢ — 00), the above projector goes to the
basic GMS soliton

2
m%+:c;

P = {0)(0| ~ 2¢ Paopall (7.75)

In this limit the theta functions in the denominator do not contribute. In
the numerator the sums over r and s factorize, after some rearrangement one
can replace them again by ‘Jacobi’s theta function, use its duality property
and obtain the result with all the factors right.

An alternative way is to start with the formula for 5~ /2f obtained in
[127]. For small 6 it simply reduces to

b2 f \/g 1. (7.76)

From the formula (7.39) we first calculate

@W, fla = 6y e Flmi-amminlgmg , oing
m,m

_ x 10 y 10
B M(%R’ 2)19(2712’ 2)' (7.77)
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Note that in the second line the product between the theta functions is the
ordinary commutative one. The theta function is the basic one defined by

Iy, 1) = Z gmiTm’ +2mimy (7.78)
m
with the familiar modular transformation property

9 (K, —l> = (—z‘/’)%e””%ﬁ(y, 7). (7.79)

T T

From that simply follows the asymptotic behavior

2, .2
T]+TH

<b“%f, b_%f>A ~ Qe Pioyall , (7.80)

which is just as for the GMS soliton.



Appendix A

Behaviour of the wedge state
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Appendix B
Commutators

In this appendix we list some useful commutators and anticommutators which
we have honestly calculated using the standard operator product expansion
techniques. Here L’s stand for Virasoro generators with a central charge c.
J stands for the ghost number current and J? is the BRST current. The
equation (B.4) is correct only for total or ghost Virasoro, otherwise it would
be zero.

[Lm,L} = (m—n)Lm+n+f§(m3—m)5m+n,o (B.1)
[Limsen] = —(2m+n)cmin (B.2)
Loy ba] = (m = 1)bimyn (B.3)
[Lm,u = —nin = 2+ Db (B.A4)
o] = Cmin (B.5)
[T bn] —bmin (B.6)
[Jms Jn] MO0 (B.7)
(JE b} = me+n+Lm+n+—g-vn(m+1)5m+ﬂ,o (B.8)
[JE,J.] = 2mncmsn — Jh s (B.9)
{JB.c,} = — i le1Cmanyi (B.10)
[=—c0
{JB, JBY = —2mn Z le_ (Cm+n+i (B.11)
[=—0c
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