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1 Introduction
Preamble (Motivation)

The dynamics of various systems in presence of external fields is an old subject.
It literally gave rise to electromagnetic and gravitational theories, thus to modern
physics. Later it was used to describe quantum mechanical systems interacting with
classical radiation fields, preparing the way for field quantization. Even when a quan-
tum theory of fields and a systematic prescription for calculating quantum effects
order by order became available, the dynamics in classical backgrounds remained an
useful tool. It sometimes provided nonperturbative insights [1], or manifestly gauge
invariant methods of calculation.

Backgrounds were also used to manifestly break a symmetry and see how the
theory behaves under the new conditions. Alternatively, they were put to work in
order to test the stability of a theory, as we will later see. Another aspect which
will be discussed here is the use of a given background to test a duality.

By definition, the behaviour of a given object placed in an external field can
provide information both on the nature of the field and on the properties of the
probe (with respect to that field). In the first instance we will use an open string as
a probe, to be tested by an electromagnetic field. We will study the properties of the
string, especially the interplay between its tail of (free) oscillators and its charged
end, which couples to the electromagnetic field. Next we will move to gravitational
backgrounds, for which the test particles will be closed strings and DO-branes. Here
we will try to see whether the duality between the standard description of closed
strings and the matrix model one stands the addition of a nontrivial gravitational
background. In some sense, the leitmotif will be the interplay between dynamics
in spaces with different dimensionalities: the bulk/boundary relationship for open
strings, and the agreement between a ten-dimensional string theory and the matrix
(0 + 1)-dimensional quantum mechanics of D-particles. In what follows we detail
the context in which each of these investigations will be performed.

Contexts

1) Tt has long been known that charged particle-antiparticle pairs should emerge
from the vacuum once an electric field disturbs it [1]. We will be concerned with the
similar effect in open string theory, whose dynamics in various backgrounds became
of interest more recently. Open strings coupled through their end-points to external
electromagnetic fields have been studied by various authors [3, 4, 5, 6, 7]. In partic-
ular, the induced Born-Infeld [2] effective action for the external field was obtained
in [3, 4], whereas [5, 7] discussed the possibility of string pair creation through
the Schwinger mechanism. In reference [5] bosonic strings in weak electric fields
were considered, whereas reference [7] studied both bosonic and fermionic strings,



for electric field strengths up to the value (in natural units) of the string tension.
The above quantum effects were studied by calculating a one-loop effective action
(whose imaginary part is relevant for the pair creation process) in a background
electric field. The calculation of [7] relied on canonical methods. Although powerful
and elegant, they needed as an input previous results concerning the eigenmodes
and spectrum of the string in electromagnetic backgrounds [4]. Our contribution
will be to make the calculation through a more direct, path integral, method. We
will not need to rely on the results of [4], but rather derive the shift in the spectrum
as a by-product of our calculations. We will also include magnetic fields in this type
of analysis, observing that they affect the pair creation rate in a nontrivial way, due
to the presence of the Born-Infeld (BI) term.

Also, we demonstrate the emergence of the BI term for charged strings (reference
[7] showed it only in the case of globally neutral strings). The derivation of the
BI term presented here shows transparently its stringy origin, complementing the
original work of [3, 4].

2) Our next subject is still concerned with open strings in electromagnetic back-
grounds. The difference is that we now generalize the string action, allowing the
string tension to depend both on the space-time and on the world-sheet direction.
This will allow us, using two different limits in the ’tension configuration space’,
both to recover standard relativistic string theory results and to use open strings
with one charged end-point to simulate dissipative dynamics of the above end-point.
In the later case, in which excitations in the space-like directions propagate slowly
(nonrelativistically) along the string, the pair creation of such open strings has the
same form as the one for point particles put in a Caldeira-Leggett [9] oscillator bath.
This extends previous work [10, 11] in which it was argued that a string can be used
to replace the various ways [8, 9] previously used to describe quantum dissipative
dynamics. Namely, the Caldeira-Leggett [9] approach, in which the dissipation is in-
troduced through the coupling to an infinite set of oscillators whose frequencies and
masses satisfy a definite relation (a kind of spectral condition) is well reproduced in
our framework. '

3) Our third and last topic moves the stage into more string theoretical topics.
We will be concerned with the interaction of D-particles (DO-branes). Their dynam-
ics [30, 31] can be described through the exchange of closed strings, or alternatively
through loops of open strings (and inserting various vertex operators on the world
sheet to account for further interactions). This description is ten-dimensional, in-
volving ten-dimensional supergravity in the long distance limit (in fact eleven dimen-
sional). Another description, the matrix model (which might be called holographic
since it relates a higher dimensional field theory to a supersymmetric quantum me-
chanical model), was proposed in reference [32], based on earlier suggestions [33].
Those two radically different paradigms were found in agreement in many nontrivial
circumstances, involving either two-body [34] or three-body [35, 36] dynamics (for a



temporary doubt eventually fixed see [37]). Nevertheless, all the tests the conjecture
passed took place in flat space-time. Gravitational perturbations were not included
(however, see [38, 39]), although, in addition to making the tests more difficult,
they also rise a conceptual issue. Namely, closed string theory includes gravity ex-
plicitely, whereas the matrix model does not. Now, one problem of string theory
is its background-dependent formulation: few things are known outside flat space-
time. One may then ask the following: If one introduces a gravitational background
in closed string theory, what kind of modification (’gravitational’ or not) of the ma-
trix model would hopefully account for this gravitational deformation. It turns out,
and this is our final topic, that a similar gravitational background introduced in the
matrix model formulation makes it reproduce string theory results. Thus, matrix
models do not need gravity to account for closed strings in flat backgrounds, but
apparently (and maybe unfortunately) they need it explicitely in order to reproduce
curved backgrounds dynamics.

Structure of the thesis

Section 2 presents a review of point particles and open strings in electromagnetic
backgrounds (hopefully from an unitary point of view). Nothing is new in this
section, except maybe some interpretations of known results.

Section 3 is concerned with the effective action for an open string placed in a
constant electromagnetic field background. The imaginary part of this action is
calculated, thus allowing the evaluation of the rate at which string pair production
takes place. Several comments are made about the role of the BI action, both in
principle (it is a natural consequence of the coupling of pointlike charges to neutral
extended objects, and as such lies at the heart of the calculations, also) and in
practice (its effect on the pair production rate). This section is based on reference
[12].

Section 4 extends the calculations of the previous one in the more general setting
of strings with anisotropic tension. Several limits for the tensions of those strings are
studied. The connection between one of them and dissipative dynamics is explained;
the pair production rate (PPR) is calculated in such a limit, and some speculations
are made about its relevance for thin superconductor physics. The main reference
for this section is [13].

In Section 5 we go to gravitational backgrounds, more precidely to the field
generated by a gravitational (shock) wave [40, 41, 42, 43, 44, 45]. After a brief
introduction to various aspects related to the analysis to be presented, we present the
string computation, which encompasses the interaction of two D-particles in presence
of a gravitational wave. It is followed by the formulation of the corresponding SU(2)
Yang-Mills matrix model in the gravitational wave background. The amplitude
calculated in this framework is shown to agree with the closed string theory one.
The material presented in this section is taken from [14].

3



The Appendices are organised as follows: Appendix A presents some old and new
facts about the diagonalization of the electromagnetic field strength in dimensions
higher than four. Appendix B reviews the boundary state formalism, which can be
used to make independent checks for some of the calculations in sections 2 and 3;
a formula useful in this context is proved in Appendix C. Appendix D lists some
string propagators and useful identities, needed in section 5, whereas Appendix E
briefly reviews the gravitational wave metric and presents the trajectory of a point
particle evolving in such a background.



2 Point particles and open strings in electromag-
netic backgrounds

In this section, we present a brief overview of various aspects of the dynamics of
point particles and open strings under the influence of external electric and magnetic
fields. Although this review is by no means complete, it will prepare the stage for
the next sections. In addition, it is hoped it can offer a glance at this fascinating
topic.

2.1 Particles
2.1.1 Propagators

We first discuss the nonrelativistic case. The action is S = [ dtL(z;,t, A,), with the
Lagrangian

dt

The propagator can be computed either as the Green function for the corre-
sponding Schrodinger equation

2
L= % (dxl) — GA,L"U-L’ - €A0. (1)

Z'_a___ A +ﬁ_2_ 9 A; 2 G(q’t’lft)-'-d(f’—f)é(t’—t) (2)
ot~ ) T om "oz = !
or from the path integral

G(&, 1|7, 1) = / Dz el (3)

E(t)=3,E(t')=q"

For a constant magnetic field B the propagator reads, in p spatial dimensions,

- m p/2 w(t' —t)/2 S (Y
T YZ ) = 1Se (2! Bt —t)_ 4
Gla', t17,2) (z’h(t’ - t)) snw( —1)/2 © (4)

The first prefactor is a free particle one, whereas the second is of an harmonic
oscillator type, with frequency w = %. We do not exhibit S (f’ , Tt —1); it can
be easily found, either by plugging the solutions of the equations of motion in the
expression for the action, or by solving the appropriate Hamilton-Jacobi equation.

The propagator in constant electric fields, due to the linear potential involved, is
trivially the same as the one for a free particle, with the exception of the e*>t part.
It will not interest us in what follows.



The propagator for a relativistic spinless particle can be obtained from the non-
relativistic one through the use of an additional invariant parameter A (used by Fock
[16] and Feynman [15], and in a different set-up also by Schwinger [1]), as follows.

The Klein-Gordon equation

(z—a}—; —eA,)* VU (z) = m*¥(x) (5)
can be thought of as a Schrédinger-like equation for the function ¢(z, \):
.0 1.0 9
z—a—/\gﬁ(a:, A) = 5( 7, eA,(z))*d(z, N), (6)

which has solutions of the form ¢(z,\) = e »2W(z), with ¥(z) satisfying (5).
We can now represent the propagator for (6) as a path integral over trajectories
z,(A\) (parametrized by A) in a (d + 1)-dimensional space-time, with Lagrangian
L' = (%) 4 e%u 4, Thus we are allowed to use (4) to evaluate this (d + 1)-
dimensional propagator.

Then, we can obtain the d-dimensional, on-shell, relativistic propagator by Fourier

transforming the (d + 1)-dimensional one:
G(z",z';m) :/0 d)\eimz}‘/z/D:vuefd’\L/. (7)

One remark is in order for closed d-dimensional particle trajectories (corresponding
to loop computations in field theory). If after a 'proper time’ A the particle ends
at the starting point, an additional factor % should be included in the integrand
of equation (7), because the particle can now start its journey at any point of the
loop (we consequently divide by the translational symmetry along the circle). We
will see in equation (9) that this factor can be obtained directly using a more 'field
theoretical” approach.

For relativistic particles with spin, the same construction as above is possible,
relating the relativistic propagator to the nonrelativistic one. Here, still, the con-
struction is hampered by the dificulties encountered in constructing a path integral
for nonrelativistic particles with spin. We will not be concerned with that, since
the Schwinger-like procedure we will present later avoids these difficulties (in loop

calculations).

2.1.2 Spectrum

We will discuss separately the cases of magnetic and electric fields, for nonrelativistic
particles and then for relativistic fields.

A nonrelativistic particle put into a magnetic fields exhibits the well-known Lan-
dau levels spectrum, which means a (2n+1)£ term in the energy, in addition to the

6



squares of the momenta laying outside the magnetic field plane. If the particle has
spin, an additional term —3s- B appears; § is the spin ’vector’. This coupling lowers
the energy, and is in fact responsible for the apparition of tachyonic excitations for
relativistic particles with spin higher than one, as we will see.

The spectrum of a nonrelativistic particle in an electric field is continuous, since
the electric field just acts with a constant force on the particle.

For relativistic particles in magnetic fields the discussion is similar, at least at
the heuristic level. In fact the analysis proceeds along the same lines as for the
nonrelativistic particle in magnetic fields. Namely, one first separates the directions
along which the particle behaves as a free one, and in the end remains with an
harmonic oscillator type problem. The resulting spectrum is

E2=p% +m?+ (2n+1)eB — g,eB - S. (8)

In (8), py is the momentum transverse to the magnetic field plane, g,, e, and m
are, respectively, the gyromagnetic ratio, the charge, and the mass of the particle.
One can thus see that (for zero transverse momentum and in the first Landau level
n = 0) the value of the energy becomes negative for spin s > 1 if g, > % In fact,
as it was argued in [24], g; = 2 is the natural value. Thus, the spectrum includes
excitations with negative energy, which can destabilize the theory.

A particular case in which such a tachyonic mode appears is provided by Yang-
Mills theories [23]. There too, the instability can be traced back to the nonminimal
coupling (gs > %) of the electromagnetic field to excitations with spin greater than
or equal to one [24].

For relativistic particles in electric fields, the discussion is more involved. One
can repeat the previous steps to end up with an harmonic oscillator with imaginary
frequency (due to the Minkowski signature of the time direction). This inverted har-
monic oscillator potential (somehow reminescent of instanton methods) suggests an
instability, which in fact really appears. This is discussed in the following paragraph.

2.1.3 Pair creation

We now present a brief description of the Schwinger effect, namely the tunneling
of charged particle-antiparticle pairs out of the vacuum in presence of an external
electric field. The rate at which those pairs are created can be read out from the
imaginary part of the vacuum free energy, imaginary part which appears due to the
presence of the electric field.

The vacuum free energy in an external generic electromagnetic field F),, is the log-
arithm of the vacuum-to-vacuum transition amplitude e~ (Fur)wee) =< (g7t x(time) | >,
For a static field, Wyae(Flw) = Evac(Fuw) X (time), where (time) is the total time
interval. Reexpressing the vacuum free energy either through equation (7), or d



la Schwinger (which means starting from the fleld theory effective action, tak-
ing t = A\/2 to be the so-called Schwinger proper time and using log(a/b) =

5° %(e — 7)), one obtains

Wae = OOEiETre“tﬁ. (9)
o t

The trace is evaluated by means of the path integral

2= TretH = / DXoDX e SXoX ), (10)

If the vacuum energy Eyue(Fl) = Re€yac(Fl) — i5 gets a nonvanishing imaginary

part g—, this induces the vacuum decay with rate per unit volume v = 5:

o dt ! - o
y = —2Im/0 fit—/ DXoDX e S(X0X:Fuv), (11)

The prime means that we have factored out the zero mode part of the action which,
upon integration, gives precisely the space-time volume.
The partition function (10) is evaluated with the help of the (Wick rotated)
equation (4): ‘
1 el
“= 4r isin(eET)

Evaluating also the imaginary part of the ¢ integral, which appears due to the poles
exhibited by (12) we get the Schwinger pair creation (vacuum decay) rate

(12)

B &, ol
V=5 > (=1) +1;15 e e (13)

n=1

The n =1 term was obtained before Schwinger [1], at least by Sauter [17].

We stress that the factor ;—Z—T—L%%:,T corresponds to the partition function of an
harmonic oscillator with imaginary frequency 7E. In presence of a magnetic field,
(10) would include a harmonic oscillator partition function ;,ﬁ;ﬂ, now with real
frequency B. This would not produce any instability, since it does not have poles,
thus it does not induce an imaginary part of the vacuum free energy. On the other
end, since 5% < 1,Vz > 0, one can easily show that a non-zero magnetic field
would always reduce the pair creation rate.

We are going to explore all these issues in detail, in the context of string theory,
in the next two sections.

In order to study fermionic pair creation, one takes advantage of the relation

Trlog(p —m)=Trlog(— P —m) = %TT log (— P* — m?) (14)



and squares the Dirac operator [P = 7, (10, — eA,):
P*=D?+ -;—FWEW (15)

(£, are the commutators of y-matrices). This shows that the spin = result differs
with respect to the spin 0 case only by the trace (over Dirac indices) of the last term
on the right hand side of equation (15). This gives an additional cos(eEt) factor
(ch(eBt) for the magnetic field). Due to that factor the addition of a magnetic field
B can now increase the pair production rate. A similar effect will be observed for
superstrings in section 3.

2.1.4 Induced non-commutativity

It can be shown [18] that in the limit £ — oo. the coordinates coupled by the
magnetic field do no commute anymore, but now obey the algebra

[X;, X;] =1 B (16)

2.2 Strings
2.2.1 Action, boundary conditions, mode expansion

The main reference for this subsection is [4]. For a bosonic open string living on a
Euclidean world-sheet, coupled to a U(1) gauge field, the action reads:

2 [ ar [faotEy 4 By (17

aX oX,
wquF,w/dfr[ s ] —zqu,w/ dr [X < }

M 2 denotes the string tension, which will also be sometimes denoted by the standard
a,, ¢. and ¢, are the magnitudes of the charges situated at the end-points of the
string. This action being invariant under a rescaling of both ¢ and 7 by a factor of
[, weset [=1.

The equations of motion in the bulk are the free ones

azxo 32X0

= 1
o2 do? 0 (18)
whereas the external field modifies the boundary conditions at the string’s ends
0X, 1 FuoX, .
DR G L T T - ]., 2 19
eSS voRr e (19)

9



We now present a set of solutions of (18) satisfying the boundary conditions (19) in
the case in which the external field is block diagonal, say applied in the plane 1 — 2.
For a magnetic field F15 = B the following combinations

1 1
X :—'—X ‘{"X y X__::——
+ \/§( 110 2) \/—2'

are useful (for electric fields no 4 should appear in (20)). These new coordinates
satisfy decoupled boundary conditions

OX. _ (yinsy B 2K
or ‘M2 Ot

(X1 — iXo) (20)

i=1,2 (21)

and the opposite sign for X_. The modes obeying (18) and (21) have the form

1
Uy = cos[(n — fo + file ™7 (22)
n—f
where 7f = fi+ fa, fi = arctan(q; B). The properties of the above modes, and their
usefulness in studying strings in constant magnetic backgrounds, are detailed in [4].

2.2.2 Propagators

We now find the propagator on the disc, satisfying (18) and (19). Conformally
mapping the disc to the half-plane, the boundary conditions (19) take the form
(we have introduced the derivatives @ and 9, with respect to the complex linear
combinations of 7 and o):

gij(B - 5)X] + 271’0/Fij (8 -+ é)X] =0 (23)

=X

The propagator satisfying (18) and (23) reads [4, 3] (see also [28], from which the
form presented here is taken)

) . . . . 1 .. z -7z .

i ) = 7 2 % )

(z'(2)2’ (")) = —a’ [g I log |z—2'|—g" log |z—Z'|+G" log |z—Z'| +——27ra’9 I log - —(z' —{)—D J
24

i 1 i B 1 1 ij
GY = (9‘1‘27\’&/3)5’ - (g+27ra’ng—-27ra’B) ’
Gij = g5 — (2ma)*(Bg™'B);;,
i — 1\ _ 2 ( 1 1\
0¥ = 2o’ (g+2m,B)A = —(27a) (g+27ra’BBg—27ra’B) ’ (25)

where ( )s and ( )4 denote the symmetric and antisymmetric part of the matrix.
B is the matrix with components Fj;. The constants D% in (24) can depend on

10



B but are independent of z and z’; they play no essential role and can be set to a
convenient value.

Open string vertex operators are inserted on the boundary of the half-plane 3.
So to get the relevant propagator, one restricts equation (24) to real z and 2’, which
are denoted by 7 and 7'. Evaluated at these boundary points, the propagator is

(2 ()2 () = —a/GP log(r — /)2 + %91‘3‘6(7 _ ), (26)

where D% were set to a convenient value. €(7) is the function that is 1 or —1 for

positive or negative 7.
In equation (26) Gy; is interpreted as [28] the effective metric seen by the open
strings.

2.2.3 Noncommutativity of the string end-points coordinates

The coefficient #% in the propagator also has a simple intuitive interpretation [27, 28].
In conformal field theory, one can compute commutators of operators from the short
distance behavior of operator products by interpreting time ordering as operator
ordering. Interpreting 7 as time, we see that

[&(7),27 ()] = T (2'(7)? (r70) — &'(7)a? (770)) = i6". (27)

That is, z° are coordinates on a noncommutative space with noncommutativity
parameter 8. We see that noncommutativity of the string end-point coordinates
emerges for any value of the magnetic field to string tension ratio (contrary to the
point particle case, were % had to go to infinity).

2.2.4 Spectrum

One can now find the expression of the Virasoro generators L,,. Ly will provide the
mass spectrum. Using the notation

f = arctg(B/M?) (28)

we get the spectrum (Lo also gets shifted by a term $f(1— f) in order to reduce the
Virasoro algebra to the free open string one; this term adds to the usual —1 shift):

1 oo
B = 2 f (L= f) + f0§bo = f Y- (afan = B7ba) + L™ (29)
n=1

Above, a and b are the harmonic oscillator annihilation operators associated with
the directions coupled by Fip, whereas L{;ree is the usual free bosonic spectrum

L{ = -1+ n(afa, +bb,) + Ly (30)

n=1

11



L7 represents the contribution to the spectrum of the coordinates transverse to the
magnetic field plane. One can easily see that the vacuum and the states resulting
from the use of the af oscillator can become tachyonic in strong enough magnetic
fields. Those states forming the first Regge trajectory have the spectrum [22] (n =
afal)

E2:—1+—;—f(1—f)+(1—f)n- (31)

Thus, tachyonic states appear for

B et Tl ) (32)

1-17)

The previous result can be extended to supersymmetric open strings; this is a
more interesting situation, since in this case there is no tachyon in zero external
field. Now the fermionic oscillators d and d associated with the coupled coordinates
also enter into play. In the Ramond sector the spectrum reads [22]

B} = f(65bo + dfdo) = f 3 (afan = bjbu + dfdn — did) + Lfi...  (33)
n=1
In the equation above
LFee =S n(afan + bibn + dfdy + didn) + L. (34)
n=1

One can easily see that there are no tachyons in the Ramond sector.
For the Neveu-Schwarz sector [22]

(did, —dfdy) + LY (35)

M8

Exs = fbgbo— f Y (anan —b3ba) = f

n=1 n

Il
W

LI7é being the usual free spectrum. Again, we find tachyonic states on the first
Regge trajectory. It is worth stressing that now the presence of tachyons is due
exclusively to the magnetic field; the superstring had no tachyon to start with.
This tachyonic part of the spectrum, which indicates an instability, made people
speculate about possible phase transitions in high magnetic fields, for both particles
and strings.

Thus, the open string spectrum in presence of a magnetic field contains tachyonic
excitations [22], which destabilize the theory. These instabilities, like the similar
tachyonic mode appearing in Yang-Mills theories [23], can be traced back to the
nonminimal coupling of the electromagnetic field to excitations with spin greater
than or equal to one [24], in a way similar to the one we used in subsection 2.1.2.

12



Our expedient (and provisional) remedy to these instabilities will be to "Higgs’
the theory by stretching the string between some different, parallel, D-branes. The
Dirichlet boundary conditions along the coordinates orthogonal to the branes then
produce an additional mass term, which can overcome the destabilizing contribution
of the magnetic field.

The spectrum in electric fields can be obtained by analytically continuing the
results found in pure magnetic fields. The shift will now become complex, not just
negative. We will have more to say about this at the end of Section 3.

13
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3 Pair production rate and Born-Infeld action

Our aim in this section is to study a nonperturbative aspect of the dynamics of
open strings, namely the tunneling of string-antistring pairs out of the vacuum, in
presence of an external (fixed) electromagnetic field coupled to the string end-points.
The role of the induced Born-Infeld term will also be explored in this context.

We will evaluate the string pair production rate by calculating a 1-loop effective
action, using the Schwinger proper time representation. The trace involved in our
considerations will be evaluated via a path integral (this represents the novelty, as
well as the advantage, of our approach).

3.1 Generalities

To calculate the rate at which the vacuum decays in presence of an external field
we will use the same method we employed in the first section for point particles.
Here we briefly review it restricting our attention to the case in which the relevant
degreees of freedom are open strings.

The vacuum free energy in an external field F),, is again the logarithm of the
vacuum-to-vacuum transition amplitude e~ Frlwee) =< 0le~#H*tme) |0 > For a
static field, Wyae(Flu) = Evac(Fluw) X (time), where (time) is the total time interval.
Reexpressing the vacuum free energy ¢ la Schwinger, and taking the Hamiltonian
to be the one for open strings, one obtains

(o] dt N
Wiae = /O Srethur, (36)

We notice that from Schwinger’s field theoretical stand-point, we have rather to
postulate equation (36) for strings, since we lack a second-quantized description for
them. On the other hand, the first-quantized approach of Feynman-Fock works as
well here as it worked for point particles in (7). The trace in (36) will be evaluated
by means of a (suitably normalised) path integral

T,re—tﬁstr’ing — /DXO.DX—:G—S(XO’X’F‘LV)- (37)

The action S(Xo, X, F,,) (discussed below) includes the external electromagnetic
field, which couples to the end-points of the string. Due to that coupling, the vacuum
energy Eyac(Fw) gets an imaginary part, g, which induces the vacuum decay. The
decay rate per unit volume, v = %}, reads

oo dt ! - =
v =—2Im /0 = / DXyDX e S0 X Fus) (38)

The prime means that we have factored out the zero mode part of the action which,
upon integration, gives precisely the space-time volume.
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For a bosonic open string living on a Euclidean world-sheet, coupled to a U(1)
gauge field, the action to be used in equations (37,38) reads:

]WQ

¢
S = dT

(39)

ao [ By 4 Gy

0X, 0X,
~zq1FW/ dT[ [ } —zquW/ dr [X# 87} ,
o=0 o=l

where M? denotes the string tension, whereas ¢; and ¢o are the magnitudes of the
charges situated at the end-points of the string. This action being invariant under
a rescaling of both ¢ and 7 by a factor of [, we set [ = 1.

We remark that, in order to avoid confusion with Schwinger’s proper time, we
have not used 7T to indicate the tension, but M?. This shows explicitely that the
string tension has the dimension of a mass to the square, M being the string scale
mass. Later, we will also use —; to denote the string tension.

Thus, our main task is to evaluate the following path integral

Z = / DX e SXuFin) (40)

with S(X,, F,,) given by equation (39).

3.2 Path integral evaluation
3.2.1 Free path integral

We start with the zero electromagnetic field case [13]. This is useful in order to
obtain the correct normalization for our general path integral (40), and in order to
get a general understanding of the effects of the string extension.

i) Result
If F,, = 0, eq.(37) factorizes into products of free path integrals along each
space-time direction. For a generic uncoupled coordinate X we have to evaluate

[ DXe S, with ,
M 8X 0X
/ / dg[ ) (55 ] (41)

Taking the boundary conditions to be periodic along 7 and Neumann along o ,

X(t+7,0)=X(r,0), (42)
9X =0, (43)
9o o=0,1
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which means expanding X (7, o) as follows

X(r,o)=> > Xnkcos(kﬂa)exp(Zmnz), (44)
nezZ keN ¢

one gets [13] the result

egi 11 ——““::;:- (45)

n>11'—e

Liree = /DXe'S =

Through a modular transformation one can reexpress (45) as follows:

M?2 1
Zfree = _—eﬂt H i (46)
V dr ¢ ion L— e
i1) Evaluation

The explicit proof of equation (45) follows.
Inserting the mode expansion (44), the action becomes

tl v 472 2 472
S:MQ;( Z |- nkl [———n + —= + Z |Xn0| [2————n + Z XOk ;)——l?kz]>

2 [2
n>0,k>0 n>0,k=0 n=0,k>0

&

We dropped the zero-mode (n = 0,k = 0) in the path integral, since it just gives
the space-time volume. Then
1

Zf'ree = H W H 47rln2M2 ICI>I()T£I() MQ it (4772712 + w-kz)

k>0 n>0 ¢

(47)

Using - only for the index n, corresponding to the Fourier transform along 7 -
the free particle normalization

1 t 1 m

aop dmm 2 Vore

and, subsequently, the Euler factorization of 2222

ﬁ 2 smh T
ot T
we obtain
M?]
2 tree = A —— ~T3 Y koK 48
f 27__ > ]];[0 1 _ e—27rk 9[ ( )
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Now we make use of the transformation properties of the Dedekind eta function
— eiﬂ'l% 1— 2mney _ o 49
n(z) Ill( e’™") \/:H"( =) (49)

and get in the end:

x i

The factor e~ 37 2k>0Fe~7(3) becomes one if we use the Riemann (-function
regularization Y282, = lim,1{(—s) = —15, as in string theory. The remaining
exponential term is important. We will see that it amounts to normal order the
Hamiltonian in the boundary state formalism, and it gives a contribution which we

will interpret in a thermodynamical context in the next section.

ii) 'Higgsing’ the theory.

Instead of the Neumann boundary conditions previously encountered for the
generic uncoupled coordinate X, one could use Dirichlet boundary conditions for
the ends of the string, imagining they stay on two parallel D-branes situated at a
relative distance d. That means asking

X(o=10)=0, X(o=1)=4d. (50)
The corresponding mode expansion is

X(ryo)=do+ >, > X sin(kwa)e:vp(Zmnz), (51)
neZ k>0 ¢

and it modifies the final result of the path integration in only one way: an additional
exponential factor e~ #M°¢* appears in (45). This is equivalent to a mass term $M2d2,
whose role will be to stabilize the theory in presence of a magnetic field. This term

can be inserted at any step of the calculation; we will come back to it later.

3.2.2 Path integral in presence of constant external electromagnetic
fields

We wish to study an electromagnetic field F), as general as possible. Nevertheless,
by rotations and boosts, one can block-diagonalize the matrix representing it. This is
the subject of Appendix A. Once F),, is diagonalized, we are left with path integrals
along pairs of coupled coordinates.

Choosing the 0 — 1 plane, we evaluate
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Ty = / DX, DXye=SCoXuFor), (52)

the action S(Xg, X1, Fo1) being eq. (39) now restricted to p =0, 1:

M Lar [ aot &y + ) (53)
) 0X ) ¢ 0X
—zq1E1/O dr [Xo—a;_l} —zQ2E2/O dr [XO 67’1} .
o=0 o=1

We remark that one can treat in this way the more general case in which different
field strengths E 5 are applied to the two string end-points. Subsequently the two
charges q; and ¢y will be included into the field strength value, through the more
compact notation ¢ 2 E1 2 — Eia.

Developing in the same interaction-independent Fourier basis as in the free case
(44), the action (53) becomes

§=5(0)+ 3 S(n),
n=1
with w2 M
= -3 Z X k)z mk? — (XOk) mk?
k>0 2
and

S(n > 0) = XTAX.
The term X'AX encodes the modes which couple due to the electric field:

Xt = (X2, 0, X 0 X X X, X ),
@ 0 0 - - C Cy O
0 a 0 - - Cy G G
A= Dy Dy Dy - - b 0 0 - - ’ (54

Dy Dy Dy - - 0 b O

where C; = —D; = —27m(E1 + By), Cy = —Dy = —27n(Ey — E3), whereas ag =
-—1\/12754”;”2, Qo = —M? t( 4-n?+712k?), and by = —a, Yk > 0. The appearance of
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nonzero a; terms for k > 1 is due to the finite spatial extension of the string. One
can prove that

' Det(A) = ﬁaibix [1-011)1( > _16)—02172( 2 1b>
( (

1=1 i—j)even ai%; i—j)odd a:9;

+(012—C’§)(D5—D§)( > 1 )} (55)

(i )odi.(b—1)odd %030kl

The infinite product [[32, a;b; corresponds to the case in which the external field is
zero; it is thus given by the square of equation (45). The term in square brackets
represents the correction due to the presence of the electric field. Evaluating it with
the help of the identities (valid for some complex )

1 1 T
— = — coth{— 56
222 " k:;ﬁ... z? + k? 4x coth( 2 ) (56)
1 T
= ——t h{— 57
2 we s ) (57)

which are needed in order to perform the sums in equation (55), and remembering
that the path integral is given by the inverse of the determinant, we obtain the
following partition function:

M o - B - B
ZOl == = est H 1— (A+E1)(1+Es) —47rnt][ _ (1=E1)(-FEs) _47”1&] (58)
nzl [ (1-B1)(1-B2) (7B (+E) €

The string tension M? was absorbed into E: E/M? — E, in order to express the
electric field in terms of the natural units available.

Using the convenient notation € = € + €2, with ¢; = arcthE;, j = 1,2, as well as
¢-function regularizing the divergent product [T,>1[(1 — E)(1 — E3)] via Yy 1 =
lims—o((s) = —%, we finally obtain -

Mze’ef%\ﬁ—l# Eﬂ)ﬁ ! (59)

2 ot [1 . 625—4#71%][1 _ e~26—47m%} ’
* Under the (-function regularization, the divergent infinite product, to which all the
string oscillation modes along o do contribute, has metamorphosed into the Born-
Infeld term \/ (1— E?)(1 — E2). We see that this happens not only in the case of
globally neutral strings [7] but rather, as usual from T-duality/D-branes arguments,
each string end-point has associated with it a separate BI action, no matter what
its charge is.




It is sometimes useful to recast (59) in a different form (switching from the closed
string channel to the open string one). Using the transformation properties of the
Dedekind eta function

o T 1 1
e (L= ) = (=),
and of the first ©-function
01(vlr) = 24t sinmv [ (1-g") (L—e"g")(1—e7q") = —e~F =0, (2] ),
e —ir T T
equation (59) becomes
2 e
Zor = (El + EQ)ZZr %tsemz %) H [ e(ie—ﬂn)t][ll _ e—(ie-Hrn)t]' (60)

A linear (F, + Es) factor appears in front instead of the BI term.
Both (59) and (60) display poles, which signal the string pair production. They
are .
(k) = k=0,1,2,... (61)
€
A more detailed discussion of the role of the poles will be presented in the next
section, in a more general context.

The path integrals along the other coupled directions are obtained from (59)
r (60). The Z,3 path integral, for the 2 and 3 directions coupled by a magnetic
eigenvalue B, for instance, is obtained by replacing €;5 — if12 (1 =+/—1 ) in (59)
[1, 7]. Now fi5 = arctgBi o and f = f1 + f (like in section 2).
Z93 does not exhibit poles, as expected:

M2 Tl 1
Zy3 = ——esty/(1+ B?)(1+ B} _ :
23 i est \/( + B?)(1 + B3) };[1 [1- 621f—477n%][1 _ 6—21f—47rn%]
M T 62""f2 ].
= —e2"(B; + B ) 62
7T 12 ( 1+ Q)Sh(fQ)};Il [1_e(f 'rrn)][l_e—(f-{—wn)t] ( )

One has to take into account also the uncoupled directions and the ghosts. The
contribution of one free coordinate, denoted Zjee, has been displayed in (45, 46);
the ghosts cancel the stringy part of two free coordinates and give

M2

2 _ -2
Zg = (Zf'ree) X ‘2'7“‘_‘5 (63)
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(Of course, if there are no free coordinates the ghosts do not cancel anything; one
must just put d = 0 in equation (64) below.) Using equations (45) or (46), (63),
(59) or (60), and (62), one can write down the whole partition function,

Z =22 % (Zfree)® X Zo1 X Zag X Zas % .. ., (64)
in D dimensions out of which d are left uncoupled by the electromagnetic field.

We quote now the result of a longer calculation, performed in D dimensions
without previous diagonalization of F),. It says that the partition function is just
the one without electromagnetic field present, times a product of Bl-like factors:

[ee]
Z(ry = Zir=oy % [[[Det(nu — cth(2mn/t)F,)] ™ (65)
n=1
This shows the importance of the BI action for the whole problem treated here: (65)
encodes all the effects of the external field, in particular the way it distorts the open
string spectrum. Eq. (65) arises from the determinant of a matrix analogous to (54)
(now containing D x D infinite blocks) upon summing over the o-oscillators of the
string. Remarkably enough, after extensive use of (56,57), each infinite off-diagonal
block gets replaced by a simple term F),,cth(2mn/t), whereas on the principal diag-
onal one gets the metric tensor 7, thus giving equation (65).

It is interesting to relate equation (65) to equation (59), in the case of a block-
diagonal F),,. This is done by expressing the hyperbolic cotangent function in terms
of exponential functions, and noticing that a part of the factors obtained in this
way cancel the similar ones from Zp—g). The above intermediate steps can be easily
read out from the form of equation (102). This shows the way in which the Born-
Infeld-like factors in (65) generate (after the mentioned cancellations with the free
partition function factors) the true BI action, displayed in (59). For non-diagonal
F,’s the same procedure can be applied. The result is the general BI determinant
Det(n,, — F,,) under the square root of equation (59).

One can now go back into the calculation and notice that the true origin of
the BI action is the existence of the constant off-diagonal factors Cio and D,
in (54). The form of those factors is due to the string being charged only at the
end-points. Thus, the physical origin of the BI action for the electromagnetic field
is the interplay between the dynamics of charged point-particles (the string end-
points) and the dynamics of a neutral object having spatial extension in one more
dimension (the string tail, with its uncoupled oscillators).

3.3 Pair production rate

We can now estimate the rate at which open strings would be produced out of the
vacuum in a given background. Let us consider first the case of a pure electric
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field. Thus now the D-dimensional partition function Z (64) reads Z(t) = z
(Ztree) P72 x Zg;. Using the formula

X

Q@ N

1 1
= pP(= Vieo) 6
—— = P(_) +imd(2) (66)
in order to evaluate gt

as well as equations (45,60,63), one obtains the pair production rate in presence of
an electric field in D dimensions [7, 13]

_ EJ\/fz -
Z’Yk = ﬂ'z k+1 E1 -+ Ez) k - [Zfree]D 2, (68)

In the previous formula, Z e is given by eq. (46), in which ¢ is replaced now by
27 je. its value at the k—th pole (cf. equation (61)). The term 7 dominates the
sum and we will later concentrate on it. (One can easily see that the pair creation
rate is zero for neutral strings, when E; + Fs = 0).

The result (68) gets corrected in two ways in presence of a magnetic field. First,
the electric-like eigenvalue £ may change in presence of other components of F,,, as
discussed in Appendix A. Thus we assume F},, to be in block-diagonal form, with
£ = E. Second, the presence of non-zero magnetic-like eigenvalues (which thus do
not interfere anymore with the electric field) changes the form of the production
rate. T his happens because the function Z(t) in (67) changes, being now equal to
7 =zx(Z ree)D 4 X Zogr X Za, cf. equation (64). We turn our attention to that
point. We consider only one non-zero magnetic eigenvalue B (the analysis proceeds
identically and independently for several B’s). Then each term ; in the production
rate (68) gets corrected, v, (E, B) = 1 (E) x 0k, with the following correction factor

B (1—zm)? (1 —zm)?
M4 e2zf:cn)( e~%fgn) cosf H (1 — 2z cos2f + %)’
(69)
z is evaluated at the pole of order k: z = e~*"/%»(*). We now discuss the behaviour

of §; = § as a function of the magnetic field.

In the absence of the BI term, § < 1; the magnetic field (even if it lays along
two directions orthogonal to the electric field one, thus not affecting the value of the
electric-like eigenvalue) would always decrease the PPR, as is the case for bosonic

(Klein-Gordon) point-particles. Nevertheless, this /1 + ( MZ)“, stringy, contribution
triggers a qualitative change; the pair production can be enhanced by the magnetic
field, although by a small factor, v/2 at most per string end-point, if we do not allow
the fields to be greater than the string tension. However, if we allow B to take any
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value (and we are allowed to do so, since in principle only the electric field should
stay smaller than the string tension) the PPR increases indefinitely as B — oo. This
enhancement of the PPR is somehow unexpected in a bosonic theory, and further
understanding of it would be required. One path towards a better understanding
of this phenomenon might pass through the Seiberg-Witten rescaling of the open
string coupling constant [28], since their rescaling factor is just the BI term.

0 b'e 1

/4

0.1335
fig.1 Modification of the pair creation rate due to a magnetic field

In the figure above, the coordinate axes are z = e ™/ f = arctg(B), with t, =
27 /e. The part of the figure at the left of the curve connecting (0,0) and (z ~
0.1335, f = m/4) corresponds to an increase of the PPR, with a maximum at (z =
0, f = m/4), where an enhancement by a factor of v/2 is obtained. On the above
mentioned curve (and for f = 0) the PPR equals the pure electric field one, whereas
on its right it is smaller. We included in the figure above only magnetic fields smaller
or equal to the string tension. It is easy to see what happens if they overcome this
value (which represents a barrier only for electric fields). We just note that, as
f— %, ie as B — oo, the PPR diverges! This is the reason for which we have not
tried to extend the vertical axis of the above figure to values of f near /2.

As detailed in the next section, a dissipative, non-relativistic, limit of string
theory can be obtained [11, 13], by taking the velocity v of propagation of excitations
along space-like coordinates to be much smaller than the velocity of light ¢ = 1 along
the time coordinate. In this case, the enhancement due to the BI term may become

dramatic: it is of the form /1 + (-25)?, with v < 1.

Supersymmetric strings

In the case of supersymmetric strings the tachyon disappears from the free spec-
trum, hence also the exponential increase it would produce in equations (46, 68).
For zero magnetic field the fermionic contribution was evaluated in [7] and contains
the sum over the even spin structures of powers of ©- and n-functions; in particular,
it cancels the e~*¢ factor in (68). An additional magnetic field further corrects the
contribution of each of the spin structures s by a factor

0 - A

24

s =2,3,4, (70)



with n integer for s = 2 and half-integer for s = 3,4; z is evaluated at the k-th
pole, as in (69). These corrections can increase the PPR, now independently of the
BI term. This effect is just the fermionic string counterpart of what happens in the
case of pointlike Dirac fermions. The BI factor remains unchanged and no further
poles appear in the path integral. The PPR reads

f)/superstring(ea f) = S‘E r)/kdk(f) X Z [Z(i)ee]D—z X 61(:) ('Lﬁ) X 5]2:5)(][)1 (71)
k=1

5=2,3,4

where 7, 0k, and 5,(65) are the ones from eqs.(68), (69), and (70), respectively. Z (i)ee =

O4(t)/n(t) is the contribution per uncoupled fermionic direction.

A temporary fiz for the magnetic field induced instabilities

We have now to remember that if we stretch the string along one direction -
in order to stabilize the theory - an additional factor e FM — o~ EME apnears.
It corresponds to a mass term $M?d?, whose role is to compensate the possibly
negative contribution [22, 4] of (cf. Eq. (31), written in string tension units):

am? =—-2——->(n—-1/2)+ (n—1) > —1, (72)

n = ala;, being the number operator for the string modes lying on the first Regge
trajectory. Thus, it is enough to take $M?d? = 1; this provides a damping factor for
the PPR of the form e~¢. Nevertheless, for big electric fields (£ — 1, or € = 00)
this does not influence much the PPR, and the previous conclusions hold.

(Of course, our way to 'cure’ the instability is provisional, as far as the stability
of the system composed of two parallel branes is not discussed.)

Starting to uncover the spectrum from the path integral
One final remark is in order. Using egs. (62) and (46) one sees that in the
critical dimension D = 26 and in the limit ¢ — co the leading term in the partition

2 _f
function is of the form ™32 "2 " modulo a prefactor. The coefficient of (—¢) in

the exponent gives precisely the lower tachyonic mass (n = 0) in equation (72), as
it should. This check confirms that the path integral encodes - at least in principle
- all the information about the spectrum.

One could continue and obtain the mass of the next state, and so on, and one
could even hope to get the whole spectrum of the string in external electromagnetic
fields from the path integral, in the same way in which one obtains the harmonic
oscillator spectrum from its partition function. This would also provide information
on the string wave functional. We have not pursued this issue any further.

The spectrum in electric fields is obtained by replacing f by ie. This makes m?
not only become negative, but also aquire an imaginary part. We notice that the
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transition from magnetic to electric fields is again mediated by a simple imaginary
factor, which however affects now the inverse tangent of the field strength value (for
open strings this seems to be the relevant quantity, not the field strength itself).

We end with two speculative remarks: first, one might imagine those stretched
strings to lie between two brane universes, maybe playing a cosmological role -
perhaps being a kind of dark matter. Second, the calculations presented here could
have some relevance for QCD mesons, or for vortices in superconductors.
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4 Dissipative limit

In this section we will investigate another possible use of open strings, namely in the
description of quantum dissipative dynamics. This will be implemented by slightly
generalizing the standard string theory action, allowing the string tension to depend
on the space-time and world-sheet direction. We will consider strings with only one
end carrying electric charge. Then, once the tail of oscillators is integrated out,
the charged end-point will exhibit a kind of dissipative dynamics. We explain in
detail the meaning of the above in the first subsection. Next, we calculate the pair
production rate for such strings, and see it is similar to the one calculated for point
particles endowed with dissipative dynamics.

4.1 Nonrelativistic limit and quantum dissipation

We wish now to explain in more detail which situations we are going to adress, and
to see how both relativistic and dissipative nonrelativistic dynamics arise from our
formalism. We take all the space directions to be on equal footing and the electric
field along X,. The action, now restricted to the 0-1 plane, is:

0 12
e () 2 [ar [aol( (CSTRRCAIE

—iE / dr [XO%} R (73)

For v = 1 and M? = M", eq (73) is the standard way of writing the worldsheet
action in string theory. But we have in mind possible applications to dissipative
quantum dynamics in nonrelativistic situations, thus we consider also v < 1 and, for
generality, M? # M’ (although the precise relation between M? and M"™ will not be
needed in the following). The dimensionless, velocity-like, parameter v is the main
new element of our approach. It will unable us to recover standard, relativistic,
string theory results for v = 1, as well as a nonrelativistic, dissipative, type of
dynamics for v < 1.

We stress that not the difference between M? and M is essential in our approach
(this could have been done also for point-particles, taking an anisotropic mass - a
mass depending on the space direction; by rescaling appropriately the 'fields” X;
one could then restore isotropy). Instead, the important feature is the possibility to
have a parameter v # 1, which is specific to a string theory: we use the additional
space-like extension o of the string world-sheet to introduce this new element into
play.

Once we have introduced the action in the form (73), we make some changes
of variables which will help us either to understand better the situation or to write
more explicit formulae.

M? gt l
S=—-—— [ dr
2 Jo 0
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We rescale the world-sheet coordinates by 7 — M?2IT, 0 — ol, so that the limits

of integration become:
t
T=— Ao = 1. 74
Vel o (74)
T gets the dimension of a length to the square, and allows the explicit connection
with Schwinger’s 'proper time’ formalism. The case of quantum dissipation for

nonrelativistic situations corresponds to the limit:
M?T >>1>> M*uT. (75)

We see what that means: the oscillations of Xj along o are much suppresed compared
to those along 7. For X the reverse happens. So time (Xp) is "rigid”, but space
(X ) not at all. We will compute the decay rate in these limits, while keeping M"v
fixed. M? will set the scale.

We now specialize to the (2+41)-dimensional case, that is X = (X1, X2, X3),
where X, describe the physical transverse oscillations of the string, whereas we
take X3 = ob, with b the intermembrane distance. Thus, X3 contributes to the
action with the term:

T 1 1
/ dT/ dcr-l—MQJV[’QUQ(
0 0 2

0bo

——)? = —TM*M"*»*p". 76
do ) 2 v (76)
The partition function will contain as a factor the exponential of minus this term,

and (76) will play a role similar to the square rest mass of a string. Thus, we identify

o = ,/%M?M%%Z (77)

as being the rest energy of a string.

The physics of the situation is quite transparent, and shows clearly why this limit
has to be called 'nonrelativistic’. We have already seen that in the free action for
X, the oscillations along 7 (the ’kinetic term’) dominate over those along . Along
the spatial directions the opposite happens. This is due just to M? >> 1 ~ &£ and
is similar to what happens in string theory when 317 ~ é >> £2) where £ is the
available energy. Then, the stringy massive modes are frozen, in the same way in
which the oscillations of X along o are frozen in our problem. Now, since 7 has the
dimensionality of time to the square, and the energy scale of our problem is &, the
natural time scale will be time = 7. In consequence, we have

d(time) = Edr  d(X3) = bdo. (78)
Using the previous equation in the free action, we obtain the velocities with which

X and X; 5 signals propagate, respectively:

M? 1
vgrop(XO) = W;E U;'rop()(l) =

M?

U (79)
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To prove equation (79) we notice that after the rescaling (74), and using (77) and
(78), the integrand of the first term in equation (73) becomes

o1 0X%, ., 0X0 ] &2 ox°® ., M?1, 9X°
S0 = 2 {(—5;—) + M 0o V|~ 2 (B(tz’me)) + M’Qq—ﬁ(ﬁ(space

Similarly, the second term in (73) reads now

)

10X oxX

M2M" 2, .2 2
= G (g,

Sy 5

2 2 v v
N [&g(ﬂ,)z . vz(ﬁ_X__)z}
2 | M2 0(time) d(space)
(81)

From the above two equations we can read the velocity of propagation in real space
and time of the excitations along Xy and X7, and see that they are given by (79).

Furthermore, for our system the length scale is given by b, whereas a typical
time scale is given by £ . Thus a typical speed is of the order of

Vtypical = bgO (82)

It is now easy to see that the relation between these three velocities, thanks to the
limit (75), is the following:

'Uprop(XO) >> Utypical >> Uprop(Xl,Q)‘ (83)

The first inequality means that the propagation of time excitations is practically
instantaneous (the time is Galilean) - a nonrelativistic situation. The second one says
that the propagation of excitations of space-like coordinates is very slow compared
to the typical velocity - or that strings are seen as very long. This corresponds to
pure dissipative dynamics, since in this limit one obtains the Caldeira-Leggett action
([10, 11]), as we now explain.

We wish first to see qualitatively why this nonrelativistic limit is related to the
Caldeira-Leggett type quantum dissipative dynamics. In [9], dissipative dynamics
was obtained by integrating out a thermal bath made of oscillators, on which a
spectral condition has been imposed. The way we can reobtain a 'termal bath’ is
very simple: we just rewrite X (o, 7) as X,(7). Then, we see that only X, depend
on o, so the integration over a thermal bath is replaced here by path integrating
over o. The finite spatial extension of the strings amounts to an infinity of harmonic
oscillators which can form a suitable bath. On the other hand, X is independent (in
the nonrelativistic limit!) of o, so the time is singled out as a good coordinate for a
pointlike object from the beginning. This is what we need, since we want to have the
same time coordinate along the string to obtain nonrelativistic quantum mechanics,
whereas integrating along the spatial extension will provide us with a dissipative
dynamics for the point particle which remains after [10, 11]. In CL language, time is
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already a macroscopical cordinate, whereas the space-like coordinates of the string’s
charged end are not; they can be made so only if accompanied by a dissipative term.
What is remarkable is the fact that the CL ’spectral condition’ is not needed. The
string seems to automatically provide such a constraint. Of course, some constraint
is to be expected because all the dynamics is encoded in a continuum Lagrangian
with fewer parameters than the 'many-body’ CL one (for various approaches, see
[10, 11, 9)).

For completeness, we now present a calculation [11] which shows explicitely the
way the Caldeira-Legget description of dissipative dynamics can be simulated by
open strings.

We begin by writing, quite generally, the (Euclidean) action for a free open string

ot 1 p 8_X_2 v (90X
SE—/()dT/()da(2<aT> +§<aa) . (84)

X = X,(r,0) are the space-time coordinates of the string, whereas 7 plays again
the role of the Schwinger (Euclidean) proper time parameter and o parametrizes
the extension of the string. The boundary conditions are again periodic in 7 and
Neumann in 0: 8,X|,—0 = 8,X|,=1 = 0. The manifold spanned by the string during
its motion in 7 is thus an annulus. p plays the role of the mass density and v that
of an elastic constant.

We now derive the dynamics of the end point of this string, say at o = 0, denoting
q(t)=X (7,0 = 0), by deriving the end point’s effective action, S(g) (which is going
to be of Caldeira-Leggett type [9]). We begin by Fourier analysing in o

X(r,0) = IiXk (1) cos(kmo), (85)

2rn

and further Fourier analyse in 7: Xi(7) = 3252 Xjne' "¢ . The Euclidean action
is now , ) )

“ T 2n

Se=" Y kXL + Tt (o (-) F ) Xl (86)

4 k=0 2 k=0n=1 t
and the effective end-point action is obtained by tracing out all string degrees of
freedom, except those for the end point. We thus compute the constrained functional
integral

e—S(Q) :N/ H {kaO I;I dZle}e—SE 5(2_: cho - qo) ];[ 5(2 _an - Qn)v (87)

=1 k=0

having introduced q(¢) = S5 gne' 7. Now for each n we evaluate the con-

strained functional integral, by replacing Xo, = gn — > k=1 Xsn- We have
T 2
€_S(q”) = 6~'}.7pt('2—t—) ‘%12_/\/'/ H ngkn exp{—X;anlen - X}:nV}c - V}:an}, (88)
k=1
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where we have introduced the matrix (k,l =1,2,...,00)
By = a(k)ékl -+ CL(O) (89)
and the vector V;, = a(0)g,, which is actually independent of k. Here
1 27\ 2
a(k) = 5t <,0 (‘;ﬂ‘) + r2k2y> : (90)

Completing the square, we find

o~ Sam) — e‘apt(%) lgn | exp{V;Bg'Vi}. (91)
One can check that the inverse matrix is
_ 1 a(0)
Bl = —6py — ——— 92
ST aRa) %)
where we have set Q = Yy 25y- We get, therefore
1
S(an) = =—7=laml”. (93
) = S ) ™ )

Going now to the continuum limit in o, which corresponds to the case where the
inner circular border of the annulus shrinks to zero and mathematically to the limit
v—0 (but keeping pv finite), we replace the sum over & with an integral, to get
(regardless of the sign of n)

_ vt/2
S(gn) [ da) (ﬁ (2?_)2 N 562> |gn

v

| = n2nin||g|*. (94)

(The general result, for arbitrary p and v, is S(g,) = n27rth(\/_§27m/t)|qn[2, but we
will not need it here). n = ,/pv is now to be identified with the friction coefficient
of the CL formulation of quantum dissipation [9]. Interestingly, we obtain pure
dissipative dynamics for the end-point. By Fourier transformation of this expression
we get the standard form for the periodic case

4t°/ dT/ dr’ (sm; q7(:r)l)/t]> ' (95)
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4.2 Path integral evaluation

4.2.1 Free case (F =0)

The evaluation of the path integral for one decoupled coordinate X, whose action

reads
¢ M?AX .,  M%® 09X,
5= [, ar [ dolg G+ (550 (96)

follows along the same lines as the one for the usual relativistic string. The result is

_ / l 1
/DX - g k>ok]£101_:.e—_5;k—%-, (97)

Now we make use of the transformation properties of the Dedekind eta function

o
l‘ . ‘77rzn.'r —
1

NIH

n(z) = —1(——) (98)

and get at the end:

DXe % = 99
/ S (%9)

n>1

The exponential term e is important. It amounts to the normal ordering of
the Hamiltonian in the boundary state formalism, and it gives a contribution which
we can interpret in a thermodynamical context.

This is so because, if we make the identification 1/t = g7, were 87! means
temperature now (7 has been already taken to be Euclidean), we can interpret the
path integral as a partition function of a system in thermal equilibrium:

/DXe"S = Zy= Z e PBn = gPF = =W,

In the limit ¢ — 0, the specific heat of this system [26] is then given by (U = Q%i)
ou Tl 4
©= <aﬁ~l>V=cst - :‘D;,U’B ’
which is positive (in our case W = —%%—é) and raises linearly with the temperature
(B~1. This indicates that o
7l
= =3 100
¢ 85-1 3v ( )
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is a temperature independent physical parameter, which could in principle be mea-
sured. It will appear in our result for string pair production in the nonrelativistic
case, when the string could be identified with a vortex line.

We may say that a system with an infinity of degrees of freedom, like a string, can
be characterized by a peculiar specific heat in a thermodynamical context. Thus,
our final result is

/DXe_S T _ent H m— (101)

4.2.2 Interacting case (£ # 0)

We now evaluate the path integral for the interacting case, for the case of a string
charged only at one end (such that integrating out the tail one could get dissipative
dynamics for the end-point).

The interaction term is quadratic, so that we could hope to eliminate it by a
suitable linear transformation of Xy and X;. This does not work directly, since our
interaction is a boundary term, not a bulk term.

Our strategy will be to decompose in Fourier modes, and evaluate the determi-
nant in momentum space. All these steps are identical to the ones taken in order to
evaluate the path integral in the previous section, although they are slightly more
coplicated algebraically. We thus reproduce here only the result, and will provide
subsequently another derivation via the boundary state formalism. The path inte-
gral

7 - /DYO Xye f deo dof— MZ(BXO 2 M~(ax°) +M'2(6X1)2_|_M u°(ax ~if;dT[EX°%X71]g=z]
can be thus evaluated with the result

2 -1
Z = (Zgree) [In>1 (1 - M—%Tvcth(Zﬂn%)cth(QﬁnfE))

_ B2 13 [MPM7%y %4
= [L = s3]V "Gy ) (102)

1

X [In>1
[1+ _4.,‘-.,1{(1_}. ) M M/2! (e—4wn-f_|_e—41rn—-€)]
e n
We have (-function regularised the divergent sum Y zso1 = limy_0((s) = —3.
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4.3 Boundary state formalism evaluation

We are going to repeat the former computation, this time through the boundary
state formalism (BSF), that is, implementing in an operatorial way the boundary
conditions at the string’s end-points in presence of the electric field. A review is
presented in Appendix B. The result eq.(225) can be written as:

/ DX%0,t)DX"(0,t)e™" = N(E) < Bg(l)|By >= N(E) < Bgle™#|By >, (103)
where N(E) is a normalization factor to be obtained later by comparing with the

path integral result (102). The boundary state |Bg > is obtained in eq.(224) of
Appendix B. Using the notation

E l
]—Vf?_' = A 27TE = l()
E
== 2 _— =
M2y B ot L

to simplify the writing, we have:

< Bg(1)|Bo(0) >=< Olezp anﬂﬁgﬂ (X1 XLe=2nh — X0 X0e=2nb0)
+p (AXOX] — BX1XD)e oo™ ]erp Tps [X2, X2, — X1, X0, 110 >
| (104)
where [ plays now the role of ’time’. The former expression is thus given by an
infinite product of terms of the form

b a b G tat tpt
< Ole/{bbe/\aae#abeubaepa‘a eab b }O >,

the operators a,a! and b,b' satisfying the usual harmonic oscillator commutation
relations. Using the formula (proved in Appendix C)

©vor uok ubi oata 7 1
<0 kbb _Xad _pab vba_patal obtbt 0>= 105
e > = ) — e )
and substituting back , we get
Z = N(E) < Bg(l)|By >= N(E)efr t ezt
1

< I1 — : (106)

n>01 4 6—47771%(14—%) YY) 5%123 (6—47rn-é- + 6_47mﬁ)

=5y
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In order to reproduce the path integral result (102) we have to take N(E) =

NoyJ1— 5B, No = YL The term /1~ ypps; is going to be just the
Born-Infeld action, specialized to our case.

It is interesting to point out the origin of the various factors. If we have a closer

look at the free string computation , we can see that Mj——i{r“l‘— comes from the
zero modes along o, i.e. it is related to the pointlike component of our object, not
to its stringy excitations. Also, it is the part of the free string partition function
not cancelled by the ghosts. The exponential term has already been interpreted
as a specific heat contribution, characterizing the way energy is distributed among
the string modes (degrees of freedom). Finally, 1/1 — Mffw,, is a boundary term
(the electric field acts on the world sheet boundary, not on the bulk), and it has
a long story. Its form gives rise - for the relativistic string - to the Born-Infeld
action. That factor has already been obtained in a variety of ways, for instance
doing the path integral (after integrating out the bulk) in configuration space [3],
or through operatorial methods, developing in a Fourier basis adapted to the form
of the interaction [4].

At this point we can, as in the previous section, take into account additional
magnetic fields by using (102), with the appropriate substitutions. As remarked in
the previous section, the BI factor corresponding to a magnetic eigenvalue B would
then be /1 + ;}%‘2‘, which leads (in the limit (75)) to a dramatic increase of the pair
creation rate.

4.4 Poles

4.4.1 General pole equation and particular limits

From now on, we switch to the notation of the rescaling (74). That simply amounts
to set [ = 1 and replace t = M?T. First, let us consider M?, M", v arbitrary. In
general, we see (102) that we have poles in T" whenever
E? 1 1
TNy th2mn T th27TnUM2T (107)

This is the general case from which, taking various limits, we obtain different physical
situations.

1) We can look at the case of the relativistic string M? = M", v = 1. Poles are
located, for a given n, at:

E 1
— = 1
Ve chwanT (108)
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as in equation (61). This is the situation studied in [7], and in the previous section.

For either small £ or small 5557 we get

2mn
T = . 1
7 (109)

2) A second possibility is s >> 1, 7 >> 1, either for the relativistic
invariant case or in general. In that case the pole is independent of 7', and is located

at the ’critical’ value of E:

E2
M?2M"?y
That means that in this limit pair creation can not take place, unless the string

breaks already at the classical level.

3) If we take the limit —L— >> 1 and either 345 << 1 or E small, we get

2rnM"y

E2
We will see that this case corresponds to a nonrelativistic string, from which dis-
sipative point particle quantum mechanics can be obtained by integrating out the
string degrees of freedom [11]. We notice that the position of the pole goes now like
E~2 not like E~!. We will have more to say about this situation later.

=1. | (110)

T = (111)

4.4.2 Another method

We note that it is possible to obtain the expression for the poles also by solving
the Euclidean equations of motion, subject to the boundary conditions established
in Appendix B. Our expression for the poles (107) is just the consistency condition
needed in order for the boundary conditions at o = 0,1 to be satisfied by both Xj
and X, as we show below:

Using the bulk equations of motion

0’ Xy _ W2 X0 Xy }_szl
g2 M do2 2 V"
we obtain (w, = 25%) the general form of the solution:

X%(0) = Apchwno + Byshwno X (o) = Alch%ﬁo + Blsh—u;—"a.

ax}

Using 8a)§3|g=0 = 2 ;0= 0 we get By = B; = 0. Finally, the boundary
conditions at o = [ = 1 (see Appendix A) impose the restriction:
wp B W,
Agwrsh(wy) = VE Alch(—;-)
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Wn, wp B

Al?Sh(—’(—)_) = M2y AOCh(UJn)
For consistency then:
E? 1 1
—— = th(2 2
Wy = T e )

which is our former pole condition. In fact, the possibility of having a classical
solution for a particular T for which the boundary conditions at both ends can be
satisfied implies that the (Euclidean) action of the corresponding modes is zero.
Thus the gaussian integration over those modes produces a singularity.

4.5 Comparison with previous results

We wish now to compare the result we have obtained with previous ones. First we
remark that we can rewrite our partition function Z in the form:

ﬁ 1
7~
E? 1
n=1 M2MZy tham oM?2T
1 E ~1
-1 detl th(2m 1 3727) —
n=1 M2y _th(2ﬂ'nvM2T)

1 F. \"
= Hdet(“”th27rn ) — f‘“) ,
JM2T M2u,

where M7, v, are the string tension and velocity parameter for the coordinate X,.
This is 81m1lar to the discussion at the end of subsection 3.2.2, and to equation
(102). There we saw that the BI action emerges from expressmns like the above
one, through the interplay with free oscillator modes. However, the equation above
shows another way in which the Born-Infeld action appears directly: namely when
the hyperbolic tangent above goes to one (which is the second limit in section 4.5).
Of course, we have proved the equality in the last line only for one electric field
Fy; along the X; direction. Nevertheless, the formula can be extended to a general
constant F,,, the generalization requiring to put an antisymmetric matrix into its
block diagonal form. This way of presentation is appropriate for studying various
particular cases.

We made our calculations on a cylinder, of circumference t and length [. Through
a conformal mapping, it can be transformed into an annulus, on which some of the
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previous calculations have been done. We remark that the limit [ — co (the present
M*T — 0) corresponds to the shrinking of the interior circle of the annulus to zero
radius, thus obtaining a disk (with a puncture).

4.5.1 Relativistic string

If we take a relativistic string, M? = M and v = 1 , and keep M*T finite, our
results should be the same as the ones of [7]. To check this, we rewrite our partition
function Z (along the directions Xy and X7) in terms of 7 and © functions:

i B 77(7‘ = 2igm7)

Z = S— (112)
9 1+-5;
" 0u(u =~ n() )
B
To prove that, put €™ = ¢¥ = —¥Z and ¢ = ™" ¥°7 W7 = e2™". Remembering that
M2

o0
O (ulr) = 2q% sinmu [[(1—¢")(1— e (1 — 72 g™)

n=1

we can rewrite our two-dimensional partition function as:

E? M? T = 2igp
Z=14/1- T —2sinmu nir ZMH)
M ey = — (I
Using the relationship between u and £ e > and the fact that sinmu = —3 sinh & we

obtain (112).

The free one-dimensional partition function (along a space-like direction, X5 say)
becomes .

M2y 21
o "G
T

Now, if we take into account the other 24 free dimension and the ghosts, and also
use the way 1 and © functions behave under modular transformations, we obtain
the full 26-dimensional bosonic partition function

Z2:

i M® 2 24

T =5 Baomn (G T

This is exactly the Bachas and Porrati amplitude for the case of an open bosonic

string with a non-zero charge only at one end. Although a calculation involving

superstrings would give rise to additional factors in the amplitude, it does not change

the pole structure [7], which is in fact given by eq.(112). For this reason we restrict

ourselves to the bosonic case. As discussed in ref [7], this amplitude has polesin T,

due to the zeroes of the f-function ©;. These poles induce the imaginary part in
the r.h.s. of eq.(3) and thus the vacuum decay rate.

)01 (ul (113)
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4.5.2 Born-Infeld action

Let us take the relativistic string case again, but now supplement it with the limit
M?T — 0 (I — oo) - as we said, the annulus is shrinking to a disk. Then, since
th(co) = 1, we see that our expression for Z reduces to the Born-Infeld action. In
this way we reobtain the result of [3]. In this case there is no pair production, at
least for E < M?. We remark that in our case the string has a charge only at one
end, whereas in [3] it had equal and opposite charges at the two ends, both coupled
to the electric field.

We notice that it has been also observed in ref [11] that the Born-Infeld action
can be obtained by tracing out the string degrees of freedom in the relativistic case
and the limit [ — co.

In this limit, we have already seen that there are no poles (except for £ —
Eriticar), hence no pair production. Indeed, in the limit M 2T — 0 the 26-dimensional
partition function (26) reduces to

]\/[26 el E2
(471-)13(8 M

which is (modulo a constant) a Born-Infeld action.

4.6 Vacuum Decay Amplitude in a Dissipative Context

We proceed now with the nonrelativistic case, where instead v << 1 will be a crucial
condition. We put everything together to evaluate the decay rate , which is given
by

% dT
v =—2Im / %T / DXoDX,DXse=5,
0

multiplied by the rest mass factor (cf. section 4.1) coming from the fact that our
strings are stretched along X;. We will work with the rescaled variable T' = 7\;—2 We
obtain the vacuum transition amplitude (over unit space and time, since we have
already substracted the zero mode - cf. eq.

dT M2 [’2 1 124,252 €2E2
—_ (1+ M M b*T
= —2Im / T\ (47)3 66 g V 1= M2M2y

>0 [1 _ 6~4nnm][1 +e 47rnM2T(l+ ) 1+—72]\g/ .(6_47”7'31—%? + 6_471-”%1\/1%T)]

- (114)

D o
M2M'2y
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In order to get the rate of pair production we will focus on the imaginary part - due
to the presence of poles - of the former expression.

Taking first the limits M>T >> 1 and M?vT << 1 while keeping M? and M"v
fixed we remain with :

_ _21 / dT ZV[Q ]V[I2 IzT(1+ ) —'1']\/]2]\/['2'1} B2T 1— €2E2
47r M2M"72y

x [T . (115)

n>0[] — iMzng%(e )]
vy v

One should stress the crucial role of the limit (75): in the infinite product, it formally
makes the two coupled coordinates collapse into a single, peculiar, infinite product
(with the dependence on the electric field built in); it thus makes the two sets
of harmonic oscillators behave like a single, peculiar one. One might think about
this new set as a single 'coordinate’, with the electric field accounting somehow for a
nonzero chemical potential. In brief, in presence of an electric field, (75) inextricably
mixes the directions coupled by the field, giving rise to a new type of dynamics. This
is what makes the above equation have the pole structure of (111). Also, the above
limit is to be contrasted with the zero electric field limit, in which the two coupled
coordinates separate into two independent infinite products.

We take into account only the first, dominant pole (n = 1) and evaluate the
residue at this pole using the expansion:

—M2M'%y
1 1 T
282 1 252 - M2y
1— 6M2]V1’2u_47rM2T T M2M'%y + 47r]V12T T — 2175

Thus we have a pole for T' = Tp = 2"%"2’ Y. Using now the identity —— P(%) +
imd(x) in order to obtain the imaginary part of the T-integral in equation (115), we

get the vacuum decay rate:

2 12,.\ 2 2 2 2 pr20002 2
1 M (M )2 1— E QWEMWG%M# ”ewwMz(M'g)zvg‘—gT.
8T B M2M"72y

We remark that we have used the transformation properties of the Dedekind 7-
function, equation (49).

We reinterpret the exponents in terms of physical quantities. The quantum
dissipation coefficient is n = M"?v (see [9, 11]). The rest energy of the nucleated

object is & = /1 M2M"2v2b2 (see eq.(77)), thus 7M*(M"?)*v* &y = £F - Tp. Further,
we write
7% M2M"™y
12 E?

V= (116)

=-AE*-Tp
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(with AE? = —%), reabsorbing it into a redefinition of the rest energy: &% =
£ + AE?. Concerning the first term, we rewrite it in terms of the temperature

derivative of the specific heat, ¢ = 375, (see eq.(100)):

E? B
6M2M2v2  Cdmp

In physical applications, both £2 and ¢ will be taken as physical parameters to be
determined experimentally.

We note one further point : in order to fix the normalization of the electric field
E we have to remember that in the Schwinger method the space-time trajectory of a
particle is described by a path integral action S which includes a term i fOT dr(%ﬂ)Q.
Thus in eq.(116) we have to rescale Xy, which ultimately implies rescaling £ — EV2.

Finally we get the decay rate :

1 M) 2. .5

We note that our result has the same form as equation (13) of the second reference in
[25]. Tt is remarkable that while there a cut-off on the frequency for which dissipation
occurs has been introduced by hand, here the way we calculate the path-integral
starting with an underlying string theory takes care of everything.

It is also interesting to compare the last term of the result (117) to the exponential
term in equation (13). The exponent of this suppresion term, in the dissipative case
(117), includes the inverse square of the electric field %32—, and not its inverse %2-, as
in the non-dissipative regime (13).

We now discuss the conditions in which a production rate should be observable.
For that, we would need TE? ~ 1. Due to our assumption M?*T >> 1 (with

T =Tp ~ #5) we get the condition

EQ
£ v — << M2 (118)
n
Now, using the fact that YVE[—% << 1< '1\%5 - which follows from the pole equaﬁon

and the nonrelativistic limit - we end up with:

2

&
v << g << 1. (119)

Other relationships are possible among our parameters. For instance the relation
M*T << 1 << M?T could make us infer that M?T\/v ~ 1 which is a reason-
able assumption. These constraints can be further refined if we assume a definite
relationship between M? and M (M? ~ M", or M?\/v ~ M", for instance). How-
ever, we prefer not to add any further assumption for the time being. We just stress
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again that in order for the pair creation of vortices in a thin superconductor to be
observable we need (118) to be satisfied. We postpone further elaborations for the
time when experimental results will be in sight.
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5 DO-branes in gravitational wave background

5.1 Overview

We now switch to gravitational backgrounds, instead of the electromagnetic ones
we investigated up to now. Namely, we will study the interaction of two DO0-branes
(D-particles) in the space-time of a gravitational (shock) wave. We first do the calcu-
lation in string theory and find that, at large distances from the shock-wave source,
the O(v*) term in the amplitude (v is the relative velocity of the two D-particles) is
an o/-independent function of the interbrane separation b. The amplitude is there-
fore that of supergravity - for large b, only closed-string massless modes contribute.
We then show how the same result is obtained in the matrix model (at small b) by
setting up the formulation of the dimensionally reduced super Yang-Mills theory in
the curved background of the shock wave. This will also provide a nontrivial check
of the matrix model conjecture [32], in a curved background. In the rest of this
introduction we discuss in more detail the two approaches. '

Within the closed-string theory analysis, we take the graviton to be the source
for the gravitational wave metric, since it is the simplest massless particle of this
theory. We then write the amplitude for the scattering of two D-particles and two
gravitons describing the incoming and outgoing massless source. The process in
which we are interested emerges as a pinching limit of the full amplitude, in which
the two graviton vertex operators collide in the world-sheet, representing particles
with parallel momenta. The full amplitude in this pinching limit describes the
interaction of two D-branes with themselves and with the shock-wave.

In this computational framework, the D-particles are special boundary states
at the ends of a cylindrical world-sheet, and the string amplitude is obtained by
computing the correlator of the two graviton vertices on the cylinder (in ten di-
mensional uncompactified space-time). The D-particles are treated in the eikonal
approximation. However the computation of the amplitude is not quite conventional
because of the peculiarities of the three-body kinematics. After summing over the
spin-structures we look at the expansion in the relative velocity v of the D-particles.

The first result is that, up to the fourth order in v, the leading singularities in
the momentum transfer from the source-gravitons are a function of the interbrane
distance b that is the same for arbitrary b and therefore independent from o/, see
eq. (155). This result generalizes well-known properties of brane interaction to the
case of a non-trivial background. The leading singularities in the momentum transfer
correspond to the leading powers of the transverse distance r from the shock-wave
source. In particular, the fourth order term in v gets contribution from the leading
behavior of the shock-wave gravitational field, that is O(r+~°), whereas the second
order term is sub-leading and O(r+~8). We will focus on the fourth order term.

Of course, the long interbrane-distance regime is dominated by the massless
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modes of the closed string and is therefore the supergravity (and M theory) result.
On the other hand, we can consider the same process in the short interbrane-
distance regime where we expect the theory to be described by the dimensionally
reduced d = 10 super Yang-Mills theory corresponding to the exchange of massless
open-string states. The gauge group is SU(2) because we want to describe the
interaction of two D-particles. The novelty is here that the super Yang-Mills theory
must be written in a gravitational background. This frames the problem in the
language of the matrix model, for which the D-particles are the fundamental degrees
of freedom, in the rather unconventional case of a curved background. The final
amplitude describes the motion of two D-particles in the space-time of the shock
wave. ,
By performing the small v and large r+ expansion of the matrix-model result,
the amplitude of the closed-string computation will be reproduced, see eq. (206).

5.2 String calculation

Consider two D-particles located at Y- and ¥;* and moving with velocities 7, and 7,
respectively, where Yzf)-ﬁ(i) = 0. We consider the frame where 71 +7, = Y- +Y;- = 0.
We call # = %, — 7, and b = Y- — V-, where by definition -7 = 0. Their interaction
with an external gravitational field - generated by the source graviton moving along
the direction z at a transverse distance 7+ (by definition 7t is orthogonal to z) from
the center of mass of the two D-particles - is dominated by a term proportional to
1/q¢?, where q is the momentum transfer by the gravitational field to the system of
the two D-particles. The momentum ¢ can be separated into a part g, along the
direction of motion of the external graviton (i.e., the shock-wave direction), and the
remaining orthogonal directions, ¢r. In the eikonal approximation, gy = ¢,, which
implies ¢* = ¢2.
We illustrate the above set-up with the following figure:

Z

ﬁ
il
o

U2

figure 2: Set-up for string calculation

In the above figure, 'O’ represents the origin of the system of coordinates, b
is orthogonal to the (parallel) velocities of the two D-particles and measures their
separation in that hyperplane, whereas 7t is orthogonal to the shock-wave (z) axis.
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In the frame chosen, the motion of the center of mass of the particles is fac-
torized out. The effect of the external source graviton on it is taken into account
by disconnected diagrams—which we do not consider—in which the source couples
independently first to one of the two D-particles and then to the other. Here we
focus instead on the relative motion of the two D-particles as they interact with the
gravitational field.

We write the amplitude in d = 10 as

dg, d**gr

a(rr,b,v) = (27r)d -

e [ de [ Pw d®z A(z,w; ), (120)
faf

where (up to an overall constant)

(z,w; £) Z ()5 (vg, Yale ™ Vi(z, 2) Vo (w, @) vy, Y1) s (121)

contains the interaction of the two D-particles with the two gravitons, the vertices
of which are given by

Vo(z,2) = eD[0X4(2) + ip - ¥ (2)9*(2)] [0X* (2) + ip - P(2)8" (2)] P, (122)

and similarly for the other one at w and carrying momentum k. The index S stands
for the three even spin structures of the fermionic propagators. The amplitude (121),
in the case of 7 = 0, has been considered in [46].

For later use, we define the two vectors ¢ and P to be

- — —

@o=Fk+p, ¢=k+7 and Ry=ko—po, P=k-p. (123)

The D-particle kets or bras are given by a tensor product of center-of-mass
and string-oscillator states. The D-particle center-of-mass state in space-time is
described by a Fourier transform in terms of the eigenstates of the energy-momentum
transfer Q).

One has further to integrate over the world-line of the D-particle, which in the
eikonal approximation is the straight line Y*(t) parameterized by Y (t) = (¢, E(t))

with B = 7t + Y,. We thus get

d d-1.53
(124)
@ is here the momentum transferred to the brane, (Jy being thus the energy transfer.
Notice that in the eikonal approximation we have the constraint Qo; = 7;- Q, = v;,Q" L.
This is similar to what holds for the momentum transfer from the source graviton
(whose velocity is equal to 1 along the z-direction) namely gp = g..
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In eq. (121) the Hamiltonian H transports the D-particle at }7} and is given by
1
H:HCM+HOS: '2‘Q§+H03a (125)

where Hys contains the string oscillators.
Let us also define the normalized correlators

(va, Yale=® Vi(2,2) Vy(w, ®)vr, Yi)s

(Vi(z,2) Vp(w, @))s = (om Yale 05 |uy, V1) : (126)
where '
(09, Yale=tH05 vy, Vi) s Us (Zg{f()oi)f’q (Q) , (127)
and therefore
Ao 1) = 3" () (Va(z, 2) Vy(w, m))s 0I5 O g9

5 91t (0)

Since we are not interested in spin effects, we can consider only the term pro-
portional to ) - (). The two-graviton correlation function is then

(Vi(2,2) Vy(w,@))s = eHel) [(9X#0X*)(0X"DX?) (129)
(W) s PP)s(p-Yp- k- k-d)s

+ (OXHOXMN (W P)s(p- Dk - b)s

+ (OXPIX VW P)s(p - k- d)s (4K P X))

We look for the singularities as we take the limit z — w:

@) . gk)
(a2 hlwas — S { g (1+06)
TTEw {Uf Yk-P)sp-Pp-v)s (130)

b Bt p-d)s + 01| (450 930,

As we shall see, we can neglect in (130) O(g?) terms in the quartic pole and O(g*)
terms in the quadratic pole.

While the second term, which comes from the fermionic correlators, is already
a quadratic pole, the first one, which comes from the bosonic correlators, is quartic
and, in order to contribute, it must be multiplied by terms containing a factor
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|z — w|?. In fact, it is the quadratic pole times a factor |z — w|?"/(™, contained in
(e X e XY that gives rise to the singularity 1/¢* for which we are looking:
8?2
Faa

We split the center-of-mass modes X, from the string-oscillator modes in the
correlator:

/d?(z — )|z — w| 2 = (131)

<6ik~X(z) eip-X(w)> — <€ik-Xo(z) eip-Xg(w)><eik-X(z) e'ip-X(w)>OS’ (132)
and analyze their contributions separately.

5.2.1 String center-of-mass modes
Let us first consider the string center-of-mass modes. They are given by
X¥(z) = X§ —i1Q*Im z, (133)

where Im z plays the role of proper time of closed string propagating from one D-
particle to the other one.
Because

(@27 Qg;eﬁv‘X(O) - <Q)2 - E7 Qg - kOl
€ip'X(0)|Q1> QY) = Q1+, Q7 + o), (134)

we have two conservation laws given by the sandwiching of the external states:
(G2~ k, @~ kolGr +5,Q +p0) = 64 (0~ k-1 -p)
x5 (Q)—ko— Q) —po) . (135)

Notice that the energy conservation gives Qg - U — él U1 = Q-
According to (126), for

ZCM = (eik-Xo(z) ip- Xo('w)> <’U2,}/2i6 —{Hom ezk Xo(z)ezp Xo( w)|,U1 Y’1> (136)

we have

d-1 d-1
Zow = /;gl d Q ZQl Yi - in'Yﬂ
Xexp{—§[Q§—-(172Qg)}+Imz(EQQ—k062@2)
+Imw (5 G1 — poh - Q)} Q= Qi—k—p). (137)
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We replace by means of the d-functions Gy = Ql + ¢, we set, by neglecting ¢-U/v,
QL = —¢./v and @; = Q. Finally, we integrate over the components ¢}, orthogonal
to ¥ and find

1 e dd—QQ
— I~ —iqb/2 / 1
Dens e e (138)

X exp {—g@i—!-(lmzlz%—lmwﬁ—l—ig) Ql}

dg,
27

Uz

X exp [—g [1 + (Im z + Im w) —Z] <Q~_)2 ;

v
which, after integration in @ 1 and g, for small v, and g+ — 0, gives

- L2
Ty = £~ (@2 p(Im zE+1m wikib) /26 {1 _ g_; (Im 2 + Imw)| , (139)

where we have dropped overall factors of 27.
We retain a term proportional to |z —w|* from the expansion of the exponential
in (139), and finally obtain

Tow = —L~@D2 e b/ {1~§%(Imz+1mw)
4|z — w]? k_ 1 P b)? (140)
N PRS2 '

5.2.2 Oscillator modes

The oscillator part is given by the expectation value of the exponential factors

(e X(2) e Xy o = o~ (kX (2)+p- X (w))*os /2
_ 191(2 B ’U)) @*f4 7.9%(2 - ﬁ) k%/‘l"r (141)
91(z — ) 91 (z — 2) V1 (w — w) ’
which in the z — w limit gives
. K e —w
(e k-X(z) oip X(w))()s — [1 + lz _ wlZé—% Bi In % (w — w)} 19152 — w§ , (142)

where we have kept terms up to |z — w|* as required.
The fermionic correlator can be written (up to O(¢?)) as

(k-pk-d)sp-vp-d)s + (k-vp-P)slk-Yp-¥)s=
2 o2
(L) {kg(qT (@3 - B - PE + @R [QsPs + P]

4 v2
) (P-0)?
492

—

Py

[P§ — QSPS] + ko g RSPS} , (143)

v
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where the spin-structure dependent functions Qg, Rs and Pg are given in the ap-
pendix.
We perform now the integration

/sz/de: /dQ(z—w)/dRew/dImw. | (144)

Every term in (143) is O(¢?). Unless we find an additional singularity coming from
the integration over Imw, the ¢ in front of all terms will cancel the 1/ ¢? coming
from the integration over (z — w) and we would be left without the 1/¢* pole in
which we are interested. We therefore look for terms behaving like (w — @) ~1=9"/47,
After summing over the spin structures, a factor of this form could arise from terms
in (143) proportional to Q%, R%, QsPs and RsPs. The function P§ does not contain
the required term. The contributions coming from the terms proportional to Q% and
R% are equal and therefore cancel. Therefore, there are only two terms in (143) that
can give rise to the required power of v and 1/¢%:

(k-vk-Pyslp-vp-d)s + (k-vp-P)stk-9pp-b)s (145)

12 P P 5)?
— (-) {koq2 —U"RSPS+Q2 (4v2) QSPS}-

k2
47 ot

The sum over the spin structures yields, for v — 0,

s (—iv/m) 9% (0) 1 s (w — w) 9% (0)
2.(&)s Fs Ps =g, = 5 2B e

S 1 S 1
X [e” Vg (w—w —1w/m) —e " g (w—w +z'fv/7r)]

i 0¥ 9 (w—w)

7 (2m)2 0 (w—w)’ (146)
and
—iv/m) V3 De (w — 1) 92
D@ ps BEREEE = 5 2ws s DD

X [e” Is (w—w —w/m) +e " Vg (w—w +iv/7r)]
iv>4 9! (w — )

~—+2(

after dropping a total derivative, which does not contribute because the contribu-
tions at the integration limits cancel against each other.
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5.2.3 The final amplitude

We can now collect all the relevant terms by putting in evidence the integral over
z around the quadratic pole and writing everything else for 2 = w. The integrand
does not depend on Rew and its integration gives a factor 1. We thus obtain

d-2
a(rr,b,v) =~ —/gw)‘cf eI b /2 /dﬁf =1/ (148)

X /dz(z —w) |z — w|_2+’;‘2/(47‘)/0 dImw [FQ(’LU,’II)) + F4(w,7IJ)] .

In eq. (148), Fy(w,w) comes from the bosonic correlator, the term proportional
to |z — w|™* in (130), times the terms proportional to |z — w|? in (140) and (142)
which compensate for the quartic pole, and is given by

_ iv\* k21 b-P
F4(w,w):(2—7r> |:2 82111791( )+Zl—é—i‘é 7

where the factor in front comes from the expansion in v of the ¥ (iv/27) obtained
after summing over the spin structures (see formulas in the appendix).

The term Fy(w,w) in eq. (148) originates from the fermionic correlators, the
term proportional to |z — w|™% in (129), and it has two terms, one that originates
from (147) and one from the product of the fermionic correlator (146) and the term
proportional to v, in (139):

; (149)

o kag? v2\ [ 419’1’(w—iv)
B(w,w) = -2 (4‘;)2 [(1+;U——2-> (%> 5w =) (150)
% (i5) 628 ()],
We use
/ _ —g?/am)—1 _ 20w 0 =%/ (4
O =) [fr(w — @) T = = i w - ), 81

after which, the integrals over Imw give (at the leading order in ¢* — 0)

¢
f 02 n 0, (w — @) dImw = —7, (152)
0
/e Imw 0 [91(w — w)]‘q2/(4”> dimw = —¢ (153)
0 OImw
and , o B o2
/ v —ff)? ay dImw = ———g— (154)
[91(w — )] T/ q
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respectively. In eq. (154), only the upper limit of integration contributes and we
have used the relation 9, (2if — y) = e*™T2"W Y, (—y).

At this point, the integration over d*(z — w) in (148) gives the desired quadratic
pole and we are left with the final result

A%t 1 s
a(rr,bv) =~ kg/wﬁe a
o0 11 5 5 o ¥t —(d—1)/2 —b2/2¢
x/ ded ot o2 — 2 by e12 (155)
0 4 4/

where we have dropped overall factors, the knowledge of which would require fixing
the absolute normalization of the string amplitude. As discussed in the introduction,
the first non-vanishing term is of order O(v*) and its functional behavior in b is
independent from /.

Notice that, because of the three-body kinematics, the amplitude (155) is O(v?),
whereas the interaction of two D-particles without shock wave is O(v?) [20].

A final comment. The first term on the right-hand side of eq. (143) would
also give an o'-independent behavior in b, when summed over spin structure and
expanded at the order O(v?). However, since this term is proportional to (¢r-7)*/¢%,
it is sub-leading for 7+ — oo, and we do not keep it into account in this paper.

5.3 Matrix model calculation

The action in the matrix model is given by the dimensionally reduced d = 10 and
N =1 super Yang-Mills action. We are going to compute the one-loop contribution
to the effective action in a suitable background.

The gauge-fixed bosonic action is

1
Sn = [ a b Tr F,, F* + Tr (DPA¥)?| | (156)
where
ng = 8,5X1 and Ej =1 [XZ,XJ] y (157)
since
Al=X" and A"=0. (158)

The action (156) is expanded around the classical background field B, by separating
A, into B, and the fluctuation X, which is integrated out in the path integral. The
background covariant derivative is defined by

DZA, = 08,A, +i[Bu, AJ. (159)
The ghost action is
Se = / dt Tr C(DB)2C (160)
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where the covariant derivative D can be taken equal to DP because we are only
interested in the quadratic part of the ghost action.
Similarly, the fermionic action is given by

Sp = / dt Tr IT*DPW | (161)
For the case of two D-particles, the fields
3 3 7—(1 TG T(L
ioxt L = — =), — 2
X=X 5 C=0C, 5 and U =1, 5 (162)

take value in the space of the gauge group SU(2) (and 7% are Pauli’s matrices).
In the eikonal approximation, and before introducing the shock wave, the back-
ground field B is taken to be

Bo Uit O ~> and By =0, (163)
0 U2t+b2

where v; and l_); are the velocities and positions of the two D-particles. In the frame
of reference where 7, + 75 = 0 and by + by = 0, we can then take

B’:(@*HE)%, (164)

where now o) = —0y = 7/2, 51 = —52 = 5/2; v and b are the relative velocity and
distance in the motion of the two D-particles. As we did for the string case, we have
thus factorized out the motion of the center of mass. Notice that the action of the
matrix-valued background field on the matrix valued quantum field ¢ (where ¢ can
be A*, C or ¢) is Bo ¢ = [B, ¢].

5.3.1 Kinematics

The space-time of the shock wave moving along z from right to left is described by
the metric element

ds? =2dUdV + hdU? + dz2 (165)
where the light-cone variables (U, V') are defined to be
U=(z+1)/vV2 and V=(z-1)/V2. (166)

The coefficient h is given by

h = f(rr)o(U), (167)
where 77 is the distance from the center of mass of the two D-particles to the shock
wave. For a source graviton in d = 10 and with an energy ko

32 Gy

6 Y

168
w3 rs (168)

flrr) =
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where G is Newton’s constant.
i From now on, we take U as the evolution variable.
The metric components must be thought as a matrix of SU(2) depending on the

positions Y; of the two D-particles. However,

(sz)a(U) f@[))a<v>):<m<))5w) f(FTg)5<U>N”O(f_—Zr>]’ 169

and, for b, < r+, we can neglect the higher order terms and take the metric to be
proportional to the identity matrix.

Because of the non-flat external metric, care must be taken in lowering and rising
indices. In particular, in going from the background gauge fields with lower indices
to the background coordinates with upper indices, we must use

By =hBY+BY and By =BY (170)

while B+ = BT
We now fix BY, BY and BT, by taking into account the trajectories of the

D-particles.
The trajectory of a particle moving in the shock-wave background is (see the

appendix)

{ V = Uw+wy—3f0(U) (171)

fr = TyU+by.

By substituting U = (z+t)/v/2 in (171), we reproduce the D-particle trajectories
(for i = 1, 2) before the shock 2@ = vt + 5D and 2 = 794 + 59 by the

assignment
, (B _1 ; 2 p(®)
Vz +1 v’ +1
and Y "
) g VY2 e g0 _ s bY
Uy’ =1 : , by = U . . 173
w T ’ng)—}-l T T Ugl)—i-l ( )
The matrix-valued Bt = (:EQ) - 559) 73/2 is thus found to be
= \/ﬁ'ﬁT Iy 'UT bz Vg T3
Br=|——+U+b — ] =. 174
T (1-@/4 Tt ) 2 (174)

The part of the background proportional to the identity is irrelevant for our com-
putation concerning the relative motion of the D-particles.
Next, we have _
U 1%
By * 5o _, U+
V2 R V2

53
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and, since By = 0 implying By = By, we impose
U VvV _ pU
By solving these constraints at the leading order in h, we get the matrix-valued

b, /2 h\ T
BU:szﬂz—i-j-j—@%(HE)g. (177)

Notice the absence of the shift in the trajectory, that is present in the one particle
problem: it cancels out in the two-body relative motion. Also, we will see that we
only need the leading first-order terms in the velocity in (174) and (177).

Derivatives in the curved background are often complicated. However, an im-
portant property of the shock-wave metric is that, since dyvg"* = 8y 6(U) = 0, we
have that

DFg** = gD} (178)

with great simplifications in the computation. Moreover, \/g = 1 and the covariant
derivative is the usual one. The derivative

8y = —0y (179)

because the fields do not depend on z.
Similarly, for the fermions we can pass the covariant derivative Df through the
I'-matrices, and use

1 1
Tr, In(T, D) = % Te,In(T,D¥)? = 5 Tryln [D* 4 ST, F*|  (180)

even in the shock-wave space-time (the spin connection is zero). Eq. (180) simplifies
the evaluation of the fermionic path integral.
5.3.2 The quadratic action

Because we are interested in a one-loop computation, we need only the part of the
action that is quadratic in the fields. The bosonic action is then

Sy = [dU Tx x* [-6,D" - 2F;] X, (181)

In eq. (181), the background field strength F} is independent from U. As we
shall see, because the result is already proportional to F'*, we only need the part of
F that is leading order in v and which is given by (u,v=U,V,T) |

2v, 0 NS v, —2vu, 0
F=| 0 —2v, —2ur |[+h[ 0 —v. O |. (182)
Vour —v2uT 0 0 —/2ur 0
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Notice that in writing (182), we used dyh = 0 as well as Oyh ~ 0 (consistently with
(179)) since terms proportional to ¢§'(U) would eventually multiply functions of U?
in the final amplitude and would not contribute.

In order to compute the amplitude for the scattering of the two D particles in
the external field of the shock wave, we need

_ . 1

a(rr,b,v) = In / [dX][dC][dC][dP][dT]e~Se—5¢~5F = —5Trln (—5;1)2 - QiF;)
1

+Tr In (—D?) + %Tr In (-DQ - 52“,,]3’“”) : (183)

The operator traces can be written in terms of the Schwinger representation by
introducing a parameter s. The amplitude (183) thus becomes

a(rr,b,v) =ag +ar, (184)

where

__/dU/O ds lim W, (s, Uy, Us) (Tl",u/ e?sFi — 2) (185)

s Ui2—=U

for the bosonic part, and

1 * ds v
aF = +Z/dU /O —;— Ulllg% V4% (S U]_,UQ) (Tr,y eSSuv FH /2) (186)
for the fermionic one.
In (185) and (186) we have separated between parenthesis the part that does
depend on U and defined

W,y(s, Ur, Uz) = (Un] €7 |U5) (187)

the kernel of the scalar propagator in the shock wave space-time, where, to leading
order in h, D? is given by

D* = 20y8y — 2ByBy — Bt - Br + h ByBy — h 2
b2

= ~28,2]—2v2U2~b2+h{ aU—E} : (188)
In writing (188), we have used (174), (177) and (179) after replacing for V" and
T the values on the trajectory. In the the term proportional to i, we have neglected
contributions proportional to v because this part is going to be multiply by v*. The
operator D? acts on the components @, of the matrix-valued field ¢ = ¢*7,/2 and
By, By and Bt in eq. (188) are the coefficients in front of 73/2 in eq. (177) that
remain after performing the trace over the gauge group. Terms linear in B, do not

contribute to the trace since B « 73.
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The kernel (187) can be expanded around the flat space-time (h = 0) part:

Wyls,U) = Tim  Wy(s,Us,Us) = Wy(s,U) +h(s,U) + O(h?), (189)
. 1,U2
where S
Wyls,U) = Jlim (e 22050 0) (190)

is just the kernel for the harmonic oscillator, that is

— v —sb? _wU?(cos4vs—1)/sindvs 191
Wals,U) Vorsindvs®  © ' (191)

For the flat space-time case, (183) reproduces the known result [20, 31, 34] for
the phase shift of two interacting D-particles. In fact, traces of odd powers of F}
vanish and we have that

Tr, e®F — 2 = (10 — 2) + 2 (cos4vs — 1) (192)

and
Tr, e /2 = 16 cos 2 vs, ‘ (193)

since Tr,, F? = 8v* and
Tr, (S F*)? = —(16 x 2) Tr,, F?, (194)

where the faCtor 16 comes from the Dirac trace.
By taking the traces in (185) and (186) we thus find

o d
a (b,v) ~ /0 ;S— /dU W,(s,U) [4(:032'05 —cosdvs — 3] , (195)
where .

In the light-cone formalism, we reproduce the formulas of refs. [20, 31, 34] with
2 v in the place of v there. The different factor in front of v is absorbed in the overall
normalization since the use of these formulas for string theory makes sense only up
to O(v?) (actually, in the flat case, O(v?®), due to eq. (196)).

As we shall see, contrary to the flat space-time case, the amplitude in the shock-
wave background is proportional to h = f(r1)6(U), and therefore the integration
over U yields [ dU hW ~ f(r+)e™*"" instead of (196). In agreement with the string
amplitude (155), the amplitude in the curved background is thus O(v*) rather than
O(v?), as in the flat case.
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5.3.3 The scattering amplitude

In order to compute (183) in the non-flat metric, we must expand the exponential

functions in (185) and (186) in powers of h. To the leading order in h, we have that
Tr, F? =8 (v2+hv?), Tr,F* =32 (vt +2hvh?) . (197)

As in the flat-space case above, (194) holds together with

Tr, (ZF*)* = —(16 x 16) Tr,, F* (198)

and it is true in general that (Tr F2)* = 2Tr F*.
We can thus expand to fourth order the exponential functions and write that

1 (Tr e Fi 2) —l—l (Tr eSE”VFW/Q) = -—i Tr F* (199)
2\ 4\ 4 ’

where the constant terms as well as those quadratic in the velocity have cancelled
as it happens in the flat-metric case.
By means of (199), we can now write (183) as

a (rr,b,v) ~ / du / % [Wa(s,U) + hQ(s,U)] (—f;Tr F“) , (200)

where Q(s,U) is given by
b2
Q(S, U) = — lim s {8[211 + “;{! Wn(S, Ul, UQ)

Uy o—U 2

_ L% s o) 201
= S Z;_*—-?T 77(87 )7 ( )

and W, by (191).
Collecting all terms linear in h yields, apart for an overall factor:

4

2 |7
a(rr,b,v) ~4 /dU f(7)s(U) /ds §5/2e s {Z vt — 20?02 — sb? %} , (202)
where we have now taken (191) at v = 0.

5.3.4 Comparison with the string result

Going back to the string computation, the amplitude (155) is what we want to
compare with the matrix theory result in (202). After changing £ — 1/2s, setting
d = 10, and normalizing the incoming and outgoing source-graviton states each by
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the usual factor 1/+/kg, we obtain that the string amplitude is (up to an overall
constant)

2 [11 4
a(rr,b,v) = f(fr) /ds s5/2e7%0 {—4— vt — 202 0% — sbﬁ%—} . (203)

since o
d°¢r 1
) < k / PRV
fr) oo | Gy g2
After integrating (202) over U, we see that the matrix model result (up to an
overall constant) becomes equal to that of string theory except for the numerical
factor 7/4 instead of 11/4 in front of the v* term. This missing term comes from the
inclusion of the Jacobian arising from the d-function constraining the D-particles to
lie on their respective trajectories, which in our formalism amounts to implement-
ing (175) and (176) for both. In order to enforce this constraint, we replace the

integration over U by

eirraT, (204)

[av — [av TT [dBGast e (Bl + Bl - v2=0)s (B (1 - h) - BY)

7=1,2

~ % /dU (1+A) (205)

1 R\ 1 R\
X dBY.dBY\ 6 | BYy — —= 1+ = <Z>)5 BV.———<1—-) @)
gz / (OXend ) ( () \/§< 5 )7 ® = /5 5

The extra (leading in h) factor 1+ h in front, after multiplication by —s* Tr F*/4,
provides the missing term 4s*v*h that adds a term v* to (203) and makes the matrix-
model result agree with that of string theory, since 7/4 4+ 1 = 11/4, and we finally
obtain that )

L P 1 7 b2
a(rr,b,v) =~ f(7r) 7 [Z v? — 203 — 1 6—2’02} . (206)
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A Diagonalization of F),

A non-zero background field F), can be block-diagonalized in any dimension D:
F()1 = —*Fm = 5, F23 = —Fgg = Bl, F45 = —-F54 = Bz, etc., and F’ij = 0 for
i # j+1. &€ represents the electric-like eigenvalue of F),, whereas the B’s are the
magnetic-like ones. The PPR rate being a relativistic invariant, one can calculate
it either by first diagonalizing F},, and path integrating subsequently, or by path
integrating directly. The second approach will be mentioned later (eq. 65). We will
use a block-diagonalized F, and we will obtain the PPR rate as a function of its
eigenvalues. It is thus of interest to study their dependence on the initial, in general
non-diagonal, field strength.

The most important effect of non-diagonal Fj;’s is to change £ - which enters the
exponential factor of the PPR. Inserting an imaginary factor in front of the electric
components Fy;, in order to use the Euclidean metric in the eigenvalue equation
det(Fy, — nuwA) =0, F,, reads, in D =4,

0 iE 0 0

iE 0 b 0
F=1"9 % o B (207)

0 0 -B 0

B and b are the components of the magnetic field parallel, respectively orthogonal,
to the electric field E; £, the real eigenvalue of F, is

2(E%)1 = /(B2 + b2 — E2)2 + 4E2B2 — (B> + b — E7). (208)

For b = FE, £ decreases with respect to the case b = 0; it vanishes if B = 0. In five
dimensions, for a field strength tensor with non-zero components

FOl = ZE, F12 = b, F34 = B, (209)

and if b = F, the electric-like eigenvalue is zero for any B. This happens because,
inside the matrix given by (209), the block containing £ and b does not have lines
or columns in common with the block containing the B’s.

In general, for an electric field parallel to the z-axis and a purely magnetic block
partially diagonalized (with the F};’s left in their original form)

0 =« O 0 0 0

0 .

F - 0 —bg "Bl 0 O 0 * 5 (210)
0 .
0
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the magnetic components fall into two classes: 1) The Fi;’s, called here b’s; they
decrease the electric eigenvalue £ and might even cancel it (as in eq.209), unless
they sit above a 2 X 2 block containing a non-zero B (as in eq.207). 2) The other
components, the B’s; they do not influence £ in absence of the b’s; for non-zero 0’s,
they temper the reduction of £ those produce. At fixed F;’s, £ grows when the
B’s are increased. This is easily seen up to D = 5 space-time dimensions and, in
principle, also up to D = 9, by finding analytic expressions for the eigenvalues. In
ten dimensions the characteristic equation of the matrix F' becomes of degree five
and is not any more solvable by radicals. We have tested numerically various cases
for D from 6 to 10, and the conclusions above held. The Fy;’s reduce £ and the
production rate, whereas the other magnetic components temper their decreasing
effect if their corresponding planes intersect. This is probably true in any space-
time dimension. Moreover, in higher dimensions the effect of a given variation of
one single F}; is less important than a similar change in lower dimensions. The other
numerous components provide a kind of inertia.

One can also fill the empty off-diagonal magnetic part of F' (e.g. the 4 x 4 matrix
containing B; and B, in (210)). Increasing those components might decrease or
increase &, but their influence is small, being supressed by at least one order of
magnitude with respect to their initial variation.

For completeness we also prove that , given an antisymmetric matrix

0 For Foo Fozs Foa Fos
Fio 0 Fip Fi3 Fuy Fis
Fyy Fu 0 Fys Fyy Fos -+
F = F30 Fgl F32 O F34 F35 (211)
Fy Fun Fip Fi 0 Fi -

Fso Fsi Fso Fs3 Fse O

Fij = —FYy;, (212)
we have 9
1
Det(F)2nx2n = {.O_n 250102...a2nFa1a2Fa3a4 . .Fazn-«mzn} ) (213)
AL
This allows us to write
Det(F _ /\I) — ];1 (/\2(n—k) [é_’; z 5a1a2...a2kaa2F03a4 o Fa2k—1!12k} ) , (214)
= al...02k
Det(F)(2n+1)x(2n+1) = 0. (215)

Proof of equation (213):
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note We take here n to be even, and the matrix to be n X n.

important Better to do it first on an explicit example (8 x 8, say).

Each term of the determinant (213) contains a product of n Fj;’s, with a total of
2n indices, which can be split into two subsets, each containing once and only once
each of the n indices.

(The splitting is made in the follwing way,

1—n5

2 — ig if 7, # 2, otherwise take next index,

3 — 13 if 71, 19 # 2,3 otherwise take next index,

4 — 1y if ’1:1’2,3 # 2, 3, 4, etc.,

and it is not unique.)

Now, for each splitting, we get two separate products of n/2 F’s., which we take
as our basic units, denoted by F™? and F™?. Form with them F2, FZ and 2F} Fy.
Each one of these is present in the determinant: the first two by construction are just
a choice of elements symmetric with respect to the principal diagonal, whereas the
last has not anymore that symmetry, and hence appears twice (since the ’mirror’
partner is also a term of the determinant). Thus, our determinant has the form

(213).
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B Boundary state formalism

We review here the boundary state formalism [21], applying it to our case. The
strategy is the following: We first establish the boundary conditions along o, in the
open string channel. We then switch to the closed string channel and obtain the
operatorial boundary conditions there. Our amplitude will be the scalar product
between the state satisfying them at ¢ = 0 and at o = [. Since the uncoupled case

(X,) is easily obtainable from the coupled one, we restrict to the action along Xo
and Xi:

M2 8XO M? 0Xx°., M"™ 0X! M?y? 5X* [t ox!t
5= / dT./ dol- ) —5 do V't 2 " Or + 2 ( do )2]—1/0 dr{EX° or Jo=
The boundary conditions at o = [ are:

0X? ox}
(M2 ao_ 6 )a’:l =0 (216)
ox} 0x?
(M"?? e iE—= 7 %) g=1 = 0. (217)

At ¢ = 0 we just put £ = 0. Assuming now periodic boundary conditions along T,
- X(r,0) = X(t + 1,0), we Fourier expand X with respect to 7 :
. 2m
X(r,0)=> "’ X,(0) where wp,=-—n.
nZ t
The boundary conditions for the X,,’s are given by the Fourier transform of egs.(32-
33):

0X? 0x?

agn|" 0o=0 M o ey —wn BEX) |om= 0 (218)
%‘;;’1‘ lo=o=0 M 25‘;{4} o=t —wn EXY |pmi= 0. (219)
The free equations of motion (there is no electric field in the bulk) are:
S fy = MR M =0
-——-—6;?2)) M2w2X] — M 28;;1 =0.

Until now, we spoke about the periodic propagation of an open string and con-
sequently developed X on open-string modes. Now we reverse the picture (i.e. the
roles of Euclidean 7 and o) and look at a closed string parametrised by 7, propa-
gating in the ’time’ o, for o from 0 to I. Hence let us develop X in closed-string
modes:
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. - |
X(t,0) = Xy + — Zﬁ(ewww%xn—e—wnf+wn0%x_n+ (220)

+‘g‘ e—iwn'r—wng% _ X~ eiwnr—!—wno%)
X n .
Using that we obtain the boundary conditions for the closed string modes:

E

— (XG0 - XL0) ¥ (221)

XD +X° ()=

XM+ X ()= (X0 - X° (1))  Vn (222)

M7y
At o = 0 the right-hand-side vanishes. For £ = 0 we get the boundary condition
for an uncoupled coordinate X:

Xoo=0,)+X_n(c=00)=0 Vn. (223)

Next we find for the boundary state |Br > satisfying (37,38) the expression (up to
a normalization constant Nz (E) ):

1 E? - -
1B 3= cap{ —gr— T+ 777 (KoK = X0 X0

s~ L aso

+25( (224)

Mz M
the state and the operators X being taken at o =[. At o = 0 this becomes

X0 Xt X X0
o>

1By >=ezp Y (X°,X°, — X1, XL )0>.

n>1

Now, the quantity of interest is, up to a normalization factor N(E):
< Bg(1)|By >=< Bgle™#|By >= N"}(E) / DX%,t)DXY(o,t)e™®  (225)

which we are going to calculate in the main body of the paper, obtaining thus the
required path integral.
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C One useful formula

We prove here the equality - eq.(105) in the text:

1
(1 = ko)(1 = Ap) — prpo

where a,a,b,b are independent annihilation operators, while aT,ELT,bT,Bf are the corre-
sponding creation operators.

We expand the exponentials in power series in the left-hand-side of (42) and
keep only the non-zero terms. Then, by using the harmonic oscillator normalization
< 0]a™(ah)?|0 >= nl, as well as a trick - differentiating and then resuming - we
obtain what follows:

< Olembge}\adeuaaeub&epal‘&f erbefl-ﬂL [O >= (226)

b a b _vba tat fpt
< menbbe)\a,a.e,uabeubaepa a eab b IO >=

(kbb)® (Aad)™ (uab)™ (vba)™ (patah)™* (oblbl)m™+s
s! 7! m! m!  (m+r)  (m-+s)!

- i ii’i‘j——‘——‘ _ 1+ m)l(s +m)] =

1 m " 1 amn 1
m) dlﬁm(l - ma)d)\m(l — /\p) B

|0 >=

I
™8
3

e e e T

1
(1= k0)(L = Ap) — pvpo’

For i = v = 0 we also obtain as a particular case:

1
(1= ro)(1—Ap)

b @ tat Tt
< Olenbbe)\aaepa a eab b IO >=
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D String propagators

The bosonic propagator is given by (see, for instance, [47])

(XH(2) XY (w)) = —n"CG(z,w) - S¥CG(z,0), (227)
where the metric signature is given by n* = (-1, %),
1, |0h(z—w)| Im?(z-—w)
= - 22
Glz,w) 4 In 91(0) 2ImT (228)
5% = —1 and S¥ = —6Y. Everywhere, we write

where 7 = 2i/.
The fermionic propagator at velocity v = 0 is

n

()" (w))s = =~ Fs (230)

where

_ Ys(z —w)¥1(0)

Y1(z — w)9s(0)
At v # 0 we have that (here the direction 1 is parallel and the directions 7,j are
orthogonal to v) [48]

W s = WP w)s = - Qs

WP s = WA w)s = o R

W () (w))s = %PS, (232)

where the spin-structure-dependent functions are defined as

Ps

1 s in/mH(0) | O+ iv/m) 940

A et B A | e
1 o s (w — v /7) 9¥(0) e s (w + /7)) 91(0)

Rs = 2[ 5 (—iv /) 0 (w) ﬁs(mw/w)ﬁl(w)} (234)

In performing the sum over the spin structure, it is useful to use Riemann’s identity:
1
5 Z(i)s Is(u)Is(v)9s(w)ds(s) = O (u1)V1(v1)P1(wi)d1(s1), (235)
“s

where

up = (u+v-+w+s)/2 n=@u+v—w-—s)/2
wy=uw—v+w-—s)/2 si=@u—v—w+s)/2. (236)
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E Shock-wave metric

The space-time of the shock wave is defined by the metric element (165) which gives

a metric tensor (its signature is such that 79y = —1) with components:
guu=h, gov=1, gvv=0, giy=70; (237)
and .. ..
gUU — 0, gUV =1 , gVV — —h, gz] — §U 7 (238)

where h = f(rr)d(U).

Similarly, the einbein, necessary in writing the fermionic action, is given by
h . ‘
el =e=1, eV =0, ef=7, e =7 (239)
where e”nabe = g,,- The spin connection is zero: wepy = 0.

The action for the motion of one particle in the shock-wave metric is found by
varying the metric line element (165) and it is given by

S = / ds [2 gf_f_d_‘{ + £8(U) (%): (%)2} . (240)

The trajectory is therefore

V = Uw+w— 1f0(U)
U = s (241)
Fr o= F,U+Dby,

where the coefficients are given in section 5 by eqgs. (172) and (173).
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