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Anything that happens, happens.

Anything that, in happening, causes something else to happen,

causes something else to happen.

Anything that, in happening, causes itself to happen again, happens again.

It doesn’t necessarily do it in Chronological order, though.

Douglas Adams
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Chapter 1
Introduction

In Dark Matter (DM) dominated cosmological models, structure grows through
the gravitational amplification and collapse of small primordial perturbations, im-
printed at very early times by some mechanism such as inflation. In particular,
in the case of Cold Dark Matter (CDM), the formation of structures follows a hi-
erarchical pattern, with more massive halos forming from accretion of mass and
mergers of smaller objects (see e.g. Padmanabhan 1993 for a general introduc-
tion). The properties of the halo population are of fundamental importance to
understand galaxy formation and evolution. Indeed, galaxies are thought to form
when baryons fall into such dark matter haloes and are shocked to sufficiently high
temperatures and densities that the gas can cool radiatively to form stars (Rees &
Ostriker 1977; White & Rees 1978; White 1996 ).

The formation of DM haloes involves highly non-linear dynamical processes
which cannot be followed analytically. To tackle this problem it is necessary to
relay on numerical N-body simulations. A numerical simulation evolves a set of
equal mass particles representing the dark matter, in a simulation box (see e.g. Ef-
stathiou et al. 1985). A popular way of identifying ‘haloes’ in such calculations is
via the friends-of-friends (FOF) algorithm, which links particles within a fraction
b of the mean inter-particle spacing to a halo, at a density contrast > 1/b3 (other
halo identification algorithms generally give similar results). Despite their suc-
cessful and accurate description of the hierarchical evolution of structures, the use
of N-body codes have some drawbacks, mainly related to their expensive use of

computer power. For example, it is difficult to use simulations to explore a wide
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range of cosmological models or halo masses.

Besides this time-consuming method, one can also use analytical approxima-
tions that are able to predict with fair accuracy some relevant quantities related to
the assembly of DM haloes. Moreover, the analytic methods help to shed light on
the complex gravitational problem of hierarchical clustering. The pioneers of the
analytical approach were Press & Schechter (1974), who derived an expression
for the mass function of DM haloes. This was found to give a fair approximation
of the N-body results (Efstathiou et al. 1988; see for a review Monaco 1998).
The Press & Schechter approach was then extended by Bond et al. (1991) to give
the so called Extended Press & Schechter formalism (hereafter EPS; see also Pea-
cock & Heavens 1990; Bower 1991; Lacey & Cole 1993). The EPS model can be
also used to predict some properties of DM haloes, such as their formation time,
survival time and merger rate. These predictions were successfully tested against

numerical simulations, by Lacey & Cole (1994).

Semi-analytical methods based on the EPS formalism

The EPS formalism has recently become a standard tool to construct synthetic
catalogues of DM haloes for galaxy formation programs (see, e.g., Kauffmann,
White & Guiderdoni 1993; Somerville & Primack 1999; Cole et al. 2000).

In the framework of the EPS formalism I have developed a semi-analytical
code to Monte-Carlo-generate merging histories of haloes. This Merger Tree code
presents many advantages when compared to the numerical approach: it is simple
to implement, computationally efficient and can be used for different cosmolog-
ical models. Unfortunately any EPS—based semi—analytical approach presents
some systematic differences when compared with simulations, already noticed by
several authors (Lacey & Cole 1993; Somerville & Kolatt 1999; Sheth & Lemson
1999). The clustering of halos of given mass in the Press & Schechter approach
can be obtained analytically (Mo & White 1996; Catelan et al. 1998; Porciani,
Catelan & Lacey 1999; Sheth & Tormen 1999; Sheth et al. 2001; Colberg et al.
2001), but the EPS approach is not able to produce both spatial information and
merger histories at the same time. This is an important limit that also affects any

EPS—-based semi—analytical code.



The use of Lagrangian perturbation theory

A number of analytic or semi-analytic techniques based on Lagrangian pertur-
bation theory (Bouchet 1997; Buchert 1997) were devised to approximate some
aspects of the gravitational evolution. Those techniques have the advantage of
giving insight of the dynamics of the gravitational collapse. In particular, the
Lagrangian Perturbation Theory (LPT; Moutarde et al. 1992; Buchert & Ehlers
1993; Catelan 1995) and more specifically its linear term, the Zel’dovich (1970)
approximation, have been used to compute many properties of the density and
velocity fields in the ‘mildly non-linear regime’ , when the density contrast is not
very high and particle trajectories still retain some memory of the initial condi-

tions.

PINOCCHIO code

Recently, we have proposed a new approach to simultaneously obtain the spatial
information and the merger history of several DM haloes (Monaco et al. 2002). In
the PINOCCHIO (PINpointing Orbit-Crossing Collapsed Hlerarchical Objects)
formalism, following Monaco (1995; 1997a,b) and Monaco & Murante (1999),
we use LPT in the context of the EPS approach to provide predictions for the col-
lapse of fluid elements in a given numerical realization of a linear density field.
The PINOCCHIO code consists of a two-step procedure. First, mass elements are
assumed to collapsed after undergoing orbit crossing. The orbit crossing corre-
sponds to the time at which the Lagrangian approximations break down and the
density diverges locally. It is then reasonable to assume this time as the “collapse
time” of a mass element. Secondly, collapsed points are grouped into halos using
an algorithm that mimics the hierarchical growth of structures through accretion
and mergers. The Zel’dovich approximation is then used to compute the Eulerian
positions of halos at a given time. Some points that have undergone orbit crossing
are assigned to the network of filaments and sheets that connect the halos.

The PINOCCHIO results have been compared with simulations (Monaco,
Theuns & Taffoni 2002; Taffoni, Monaco & Theuns 2002): our code can ac-
curately reproduce many properties of DM haloes from large N-body simulations
that started from the same initial density field. The good agreement is not only for
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statistical quantities such as the mass or the correlation function, but extends to
the object-by-object comparison. The mass function of haloes is recovered within
a ~5 per cent accuracy and the correlation function in a ~20 per cent (~10 per
cent error in 7). At the object-by-object level, the ~70 per cent of the simulated
halos are identified by PINOCCHIO with an error of 10 per cent on position and
10-20 per cent on velocity. Moreover the distribution of the angular momentum
of halos is also recovered. These results show that PINOCCHIO is a proper (but
approximated) way to describe the gravitational problem, and not simply a phe-
nomenological model able to reproduce some particular aspects of gravitational
collapse.

Furthermore, I demonstrate that PINOCCHIO can be used to reconstruct merg-
ing history of haloes which agrees both from a statistical point of view and at
the object-by-object level with that measured in N-body simulations (Taffoni,
Monaco & Theuns 2002). The conditional mass function and the distribution
of progenitors number are recovered with error ~20 per cent error. The merging
history of haloes is also reproduced with an error lower than 15 per cent. PINOC-
CHIO thus provides a significant improvement over the EPS approach, which is
known to be approximately valid only in a statistical sense (Bond et al. 1991;
White 1996).

Substructure of dark matter haloes

Halo clustering leads to merging of their embedded galaxies. At each merging
event various processes occur, such as morphological transformation of the stellar
and gaseous components. Understanding the dynamical evolution of DM haloes
is a fundamental step in any theory of galaxy formation.

N-body simulations are widely used to study the dynamical evolution of cos-
mic structures. A detailed study of the merging between haloes and or harassment
and tidal stirring among substructures requires extremely high resolution simula-
tions (e.g. Huang & Carlberg 1997; Naab, Burkert & Hernquist 1999; Moore et
al. 1999; Lewis et al. 2000; Jing & Suto 2000; Fukushige & Makino 2001).

A different approach can be found on the semi-analytical codes for halo forma-
tion, such as the PINOCCHIO code or EPS Monte Carlo merger trees. The evo-



lution of substructures in semi-analytical models is followed in a rather schematic
way: merging events between unequal mass haloes take place when the lighter
halo reaches the center of the more massive one. The time scale for this to happen
is obtained from the local application of the Chandrasekhar’s formula (1943) for
dynamical friction.

However, as the magnitude of the frictional drag depends on the mass of the
satellite and this is a time-dependent quantity, we expect stripping to ultimately
affect the orbital decay rate. Somerville & Primack (1999) include a simple recipe
which accounts for mass stripping, and gradually reduces the mass of the satellite
by re-calculating its tidal radius while it spirals towards the center along a circular
orbit.

Colpi, Mayer & Governato (1999; hereafter CMG) quantify the interplay be-
tween dynamical friction and tidal stripping for a selected sample of orbits and
satellite masses. Using fairly high-resolution N-body simulations, they show that
small satellites (with initial masses 50 times smaller than that of the primary halo)
undergo tidal mass loss and that their orbit decays as if they had an “effective
mass” ~ 60 per cent lower than the initial one. On typical cosmological orbits
they never sink into the center of the primary halo because the magnitude of the
drag is drastically reduced for such small effective masses. The fraction of mass
lost by the satellite is strictly related to the particular orbital parameters and halo
density profile assigned to the haloes. In order to improve this recipe and make it
more physically motivated, it is necessary to recognize that mass loss is the con-
sequence not only of the initial tidal truncation but also of the repeated gravita-
tional shocks occurring at each pericenter passage (Weinberg 1994a,b,c; Gnedin,
Hernquist & Ostriker 1999; Taylor & Babul 2000). This regime of disruption is
completely neglected by semi-analytical models of galaxy formation.

The full dynamical evolution of the satellites must be studied using haloes that
have cuspy density profiles similar to those forming in cosmological simulations.
In this thesis, I consider haloes with Navarro, Frenk & White (1996; 1997) profiles
while in previous works the analysis was restricted to isothermal spheres with
cores (CMG). However, more recent higher resolution simulations (Moore et al.
1999; Ghigna et al. 2000; Bullock et al. 2000; Jing & Suto 1999) find the inner
slope of the density profile to be even steeper than the Navarro, Frenk & White
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one.

Following the same philosophy as in CMG, I use semi-analytical methods to
describe the orbital evolution and mass loss of satellites, and compare the results
with high resolution N-body simulations. In particular, I use the theory of linear
response to model dynamical friction and study orbital decay (Colpi 1998; Colpi
& Pallavicini 1998) and apply the theory of gravitational shocks developed by
Gnedin, Hernquist & Ostriker (1999) to model both the tidal mass loss and the
disruption of satellites (Taylor & Babul 2001; Hayashi et al. 2002).

Initial satellite sizes, masses, orbital energies, and eccentricities are selected
as predicted by hierarchical models of structure formation. The interplay between
dynamical friction and tidal mass loss/evaporation in determining the final fate
of the satellite is then explored. Finally, I provide a quick, user—friendly, expres-
sion for the dynamical friction timescale of a live (i.e. mass loosing) satellite
and for the disruption time—scale. These expressions can then be coupled with
semi—analytical codes for structure formation to follow in detail the evolution of

substructures.

The structure of the thesis

The layout of this thesis is the following. In Chapter 2, I introduce some basic el-
ements of modern cosmology and devote special attention to recent observational
constraints on cosmological parameters. I also review the theory of gravitational
instability, paying particular attention to the theory of collapse of the initial density
perturbations. Chapter 3 deals with the issue of hierarchical clustering. I present
a Monte Carlo code to generate catalogues of haloes based on the EPS formal-
ism, and then compare its results with numerical simulations. In Chapters 4, 5,
and 6 PINOCCHIO code is presented and tested. First, I describe the analytical
backbones of this algorithm and then test the code against numerical simulations
in order to verify its ability of estimating the statistical properties of the hierar-
chical clustering of haloes. I will show that PINOCCHIO can also reproduce the
numerical experiments to an object-by-object level. In the last two Chapters, I
study the evolution of satellites in DM haloes. Chapter 7 derives a simple formula
for the decaying time of rigid satellites orbiting in Navarro Frank & White haloes,



while Chapter 8 studies the fate of mass loosing satellites which sink in the main
DM halo. Conclusions are presented in the last sections of the chapters containing

original results (namely, Chapter 3.,4,5,6,7,8) and summarized in Chapter 9.
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Chapter 2

Hierarchical Cosmology

If the doors of perception were cleansed
everything would appear as it is,

infinite

W. Blake

The cosmology of the last century was driven by an extraordinary increase of
theoretical and observational results which contributed to the formalization of the
standard description of the cosmic evolution: the “hot Big Bang” model. The
main kinematic and dynamical properties of the model are based on the Einstein’s
theory of General Relativity and on the assumption that the “cosmological fluid”
is homogeneous and isotropic on large scales (cosmological principle). These
hypothesis, even if confuted by the strong inhomogeneity on galaxy scales, are
supported by various observational constraints on much larger scales, for instance
the isotropy of the temperature of the cosmic microwave background radiation.

The isotropic and homogeneous Universe can be described by an appropriate
choice of the space-time metric: the Robertson-Walker metric.

In this framework, small amplitude perturbations in the initial density field are
thought to be the seeds of the cosmic structures observed today. They grow by

gravitation instability and evolve through a series of complex highly non-linear
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dynamical processes.

This Chapter is devoted to illustrate the cosmological models and the process
of structure formation according to these models. The treated arguments are stan-
dard in cosmology and they are described in details in various books like Weinberg
(1972), Peebles (1980), Peebles (1993) Lucchin & Coles (1995), Peacock (1999).

2.1 The theoretical model

The cosmological principle allows to construct a proper theoretical model based

on the Robertson-Walker space-time metric

dr?

2_ 232 2
ds® = c*dt* — a*(t) 5

+ r%(d0? + sin® 0 dp?)| . (2.1)

Here k gives the sign of the curvature of the spatial hypersurface and it assumes
values k = +1,0, —1. The scale factor a(t) is a multiplicative term that trans-
forms the dimensionless distances computed using coordinates on homogeneity
hypersurface into physical ones; R™? = ¢*k/a? is the curvature parameter of the
spatial section.

Assuming that the Universe can be described as a perfect fluid, it is possible
to resort to the General Relativity to describe the dynamics of the scale factor a(z)

in terms of the Friedmann equations:

i

drG 3 Ac?
-3+ @2)
a\? ke 8nG Ac?

2.3
2 3p+3, (2.3)

a

where A is the cosmological constant, historically introduced as a constant of
nature.

To determine the evolution of a(t), it is necessary to give an equation of state
for the matter or radiation present in the Universe. For example for non-relativistic
pressureless matter p = 0 and p(¢) o< a~3. In most cases the equation of state can

be written as p = wp and the energy density evolves as

p(t) oc g 30+w) (2.4)
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Expansion and contraction of the universe are expected to give strong obser-
vational signatures. For example as a consequence of Hubble expansion the light
sources in the Universe are redshifted, and the cosmological redshift is related to

the expansion factor a by:

(2.5)

1+ 2(t) =

where t is the present time and the redshift z is measured for an object at the
cosmological epoch 7.

The normalization of the scale factor is arbitrary; it is usually normalized as
a(ty) = 1. The Hubble parameter is defined as:

H@:g; (2.6)

the Hubble constant is then H(ty) = Hy. If A = R = 0, the Universe is flat
(Einstein-de Sitter model), the background density in this case is called critical

density:
3H?

purlt) = 5= - @.7)

It is then convenient to define, for any Friedman-Robertson-Walker (FRW) cos-

mology, the following density parameter:
Q(t) = p/per - 2.8)

Q) = 1 denotes the Einstein-de Sitter cosmology; in this case it remains constant
in time. If Q < 1, and the cosmological constant is null or not large enough, then
the Universe is open; if & > 1 (and there is no negative cosmological constant),

the Universe is closed. The cosmological density parameter € is:
Qo = Q(to) - 2.9)

The three constants Hy, 2y and A, together with the normalization of the scale
factor, define uniquely the FRW background model. The Hubble constant is usu-

ally parameterised as:

Hy=h-100km s™! Mpc™!, (2.10)
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where A contains our ignorance on the real value of Hy. Recent measures of the
Hubble parameter done by the HST Key Project give h = 0.72 £ 0.8 (Freedman e
al. 2001).

In the following, only three families of FRW cosmological models will be

considered (the others are not of physical interest):

1) flat models with no cosmological constant: 2 = 1, A = 0;
2) open models with no cosmological constant: ) < 1, A = 0;

3) flat models with positive cosmological constant: Q < 1, A # 0, Q4+, =1,
where Q) = A/3HZ.

In model (1), the FRW equation becomes:

N
(2) =25, .11
a 3
whose solution is:
t 2/3
at) = (-—-) . 2.12)
to
In model (2):
a\’> 8rG 1
-] =—p]|1 — —1 .
(&) =Tl @y @1
and the a(t) evolution can be expressed through the following parametric repre-
sentation:
0
= ———(coshn—1 2.14
o
= inhn —n) .
t(n) 2H0(1_QO)3/2(SIH n—mn)
In model (3):
a\? 8nG 1
—) =—>p|1+(= —1 3] 2.1
(a> 3"[+<Qo >a ’ 215

- ~1/3 . 3 [A
a(t) = (Qol - 1) 2 Ginh?/3 (5\/;—;15) . (2.16)
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2.2 A brief history of the early Universe: theory and

observations

In the hot “Big Bang” model the Universe evolves from a hot and dense early
stage to the present state. In the following we will describe the main stages that
characterise this evolution, with a special attention on some precise epochs, that
will be important for the discussion of structure formation and evolution. We will
not enter into details of the physical processes that characterise the first moments
after the “Big Bang” which can be described using the Grand Unified Theory
developed in quantum field Physics. We just notice that a large variety of particles
is produced by symmetry braking phase transitions, most of them disappears with
the progressive cooling of the Universe caused to Hubble expansion (see for ex.
Weinberg 1972 or Peacock 1999).

2.2.1 Epochs in the Universe

When the reaction rate of a given particle interaction becomes smaller than the
Hubble expansion rate, the interaction is no longer occurring and the number den-
sity of the involved species is “frozen”. The knowledge of the time scale for
particle interaction allows to identify important moments in the thermal evolution
of the Universe.

The Radiative era

The radiative era begins when the typical energy per particle becomes lower than
0.5 MeV: the electron-positron pairs annihilate and the content of the Universe
consists of a radiative component (photons and non interactive mass-less neutri-
nos) and of a non-relativistic matter mixture (neutrons, protons, electrons). In
the radiative era, which accounts for the first ~100 seconds of the Universe, the
photonic component dominates and the first simple nuclei form. The outcome of
the nucleosynthesis can be computed with very small uncertainties (see Weinberg
1972, Peacock 1999) and compared with the observational measures. About 24%
of the baryonic mass goes into “He, and protons constitutes the remaining frac-
tion. A tiny fraction of the total baryons converts into light isotopes (D, *He or

"Li) whose abundances are strongly related to the baryon density {2y, and to the



14

Hierarchical Cosmology

Hubble parameter h. A determination of these abundances would then constrain
the value of QA%
Qph? = 0.019 £ 0.0095 , (2.17)

(Kaplinghat & Turner 2001). This result is compatible with the estimates of €2y,

based on recent observations of the CMB power spectrum:
Quh? = 0.022 4 0.004 , (2.18)

(de Bernardis et al. 2001).

The Matter-Radiation equality

When the energy content of the Universe comes to be dominated by the non-
relativistic matter which is still coupled with the radiation counterpart by bound-
free and free-free interaction, we enter the epoch of Matter-Radiation equality.
The time scale for this event is zeq ~ 2.3 - 10*/(Q,h?%)2.

The Re-Combination

When z¢q ~ 1300 matter reduces its coupling with photons and starts to become
neutral.

Decoupling and the CMB

Decoupling of radiation with matter inhibits the gravitational collapse of the den-
sity perturbations which freeze until the “decoupling time”. At zge. ~ 1100 the
photons decouple completely from the baryons and subsequently cool following
the Hubble expansion. They set the perturbation free to collapse and the gravita-
tional instability forms the first bound structures in the Universe: the large scale
structures (LSS).

The mean free path of the radiation rapidly increases so that photons are no
longer scattered and they “reach” the present Universe as a low temperature black-
body radiation. This background radiation was discovered by Penzias & Wilson
(1965).

The COsmic Background Explorer (COBE) satellite confirmed and improved
the results pointed out by Penzias & Wilson (1965), measuring the thermal distri-

bution of photons at temperature
T'=2725+0.002K,

95 per cent confidence (Mather et al. 1999).
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The brightness temperature of the CMB is very uniform across the sky but
it reveals some important anisotropies. Some of them are related to the proper
motion of the Earth or of the Galaxy (the so called dipole anisotropy of one part
in 10%; Lineweaver et al. 1996), but others on large, intermediate or small scales
are due to physical effects that took place at recombination. Gravitational (Sachs-
Wolfe) or intrinsic (adiabatic) perturbations of the CMB temperature are the sig-
nature on large and intermediate angular scales, of the presence of fluctuations in
the initial density field.

The large scale Sachs-Wolfe perturbations were measured by COBE which
revealed a temperature anisotropy of about one part in 10°. Recent, successful,
balloon experiments, BOOMERanG and MAXIMA, mapped the the CMB on ~1
degree scale verifying the presence of small scale anisotropy providing a strong
evidence for primeval density inhomogeneities of amplitude ~10~° (de Bernardis
et al. 2000; Hanany et al. 2000).

2.2.2 The inflationary paradigm

How did primordial density fluctuations generate?
A plausible explanation is given by the so called inflationary scenario (Linde
1990). The main idea is that at a certain time in the early Universe, after the Plank
epoch, a causally connected part of the Universe underwent an accelerated expan-
sion (the inflation) caused by a homogeneous scalar field whose vacuum energy
happened to dominate, giving rise to negative pressure. Quantum fluctuations of
this scalar field generated the seeds of the observed density perturbations. The
statistical properties of the fluctuations are related to the properties of the inflation
itself. In general, the density perturbations form a Gaussian random field with a
nearly scale invariant power spectrum.

The inflationary paradigm has been invoked as a possible mechanism to solve

a number of other important questions:
e The flatness problem: why the Universe is so flat?

e The horizon problem: how is it possible that even though the particle hori-

zon on the last scatter surface sub-tends about one degree on the sky the
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CMB is homogeneous all over the sky?

e The relic problem: why are we not detecting any observational signature
of the presence of topological defects which should be created during the

cosmological phase transition in the early Universe?

There are several inflationary models: all of them answer the previous ques-
tions. During inflation the cosmological density is driven toward 1 and the Uni-
verse flattens, moreover the density of the unwanted relics is extremely diluted by
the enormous amount of expansion. Finally the horizon problem is solved because
all the observable Universe is part of a larger region which was causally connected

in the past.

2.3 Statistics of the primordial fluctuations

The outcome of the inflationary scenario is a flat Universe where randomly dis-
tributed density fluctuations do not affect the space-time metric on large scales.
The statistical properties of the primordial density perturbations depend on the
matter content of the Universe and on the inflation itself.

We define the density contrast in the point x as:

s(x)= 2L (x)ﬁ" L (2.19)

this dimensionless quantity is bound to be larger than —1, while it can grow up to

infinite (very large) positive values. Its Fourier transform is:

1 —ik-x
509 = oy / dxd(x)e= % (2.20)
We can define the power spectrum of the field to be the autocovariance of 5 (k):
P(k) = (5(k)o(K"))dp(k + k), 2.21)

where 0p is a Dirac delta function which accounts for the symmetry and reality of
P(k).
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In the case of a Gaussian random field the power spectrum provides a complete
statistical characterisation of the density field. With Gaussian statistics, phases are
randomly distributed.

Many physically-interesting functions are related to the power spectrum. For
example the two-point correlation function, (), which is simply the Fourier

transform of the power spectrum:
1 ik-x
€@) = Gy / kP (k)e™ > | 2.22)
or the moments of the power spectrum:
o? / P(k) K" &k . (2.23)

It is in the common use to resort to a more physical quantity: the mean square

fluctuation smoothed on scale R, the mass variance:
o*(R) = / dkP (k)W (k; R) , (2.24)

where all the perturbations on scales smaller than R are filtered out by the Fourier
transform of the filter function W (z).

To complete our review of the statistical properties of the primordial density
field we need to specify the shape of the initial power spectrum. The inflationary

scenario produces a power law form:
P(k) = Ak™, (2.25)

where the primordial spectral index n is predicted to be equal to 1 by different

inflationary models.

Comment: Even if the inflation scenario was not responsible for the
formation of density perturbations a power law is a useful phenomeno-

logical parametrization for the power spectrum.

The normalization of the power spectrum is usually empirically assigned. Be-
fore the observations of the CMB by the COBE satellite, the spectrum was nor-
malised by requiring that the mass variance on the scale of 827'Mpc, s = 1 as
suggested by the analysis of the galaxy catalogues. After COBE flight the spec-

trum is normalised using the measures of the CMB fluctuations.
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2.4 The growth of perturbations: linear theory

After recombination, the density perturbations grow and evolve passing through a
number of different states. During the first epoch of their evolution the fluctuations
are still small compared to the background (§ < 1) and their evolution can be
successfully described using the linearised equation of motion for the gravitational
instability.

Linear theory is presented in full detail in Peacock (1999), here we briefly

present its main features.

2.4.1 Perturbation

The evolution of perturbations is followed by approximating cosmological matter
as a perfect pressureless fluid. It is convenient to subtract the effect of Hubble
expansion from the evolution of perturbations. If r is the physical coordinate, the

comoving coordinates x is defined as:
r=ax. (2.26)

In this way, a point comoving with the background has fixed comoving coordi-

nates x. The peculiar velocity is defined as:
v=r— Hr=ax. (2.27)

It is possible to construct a Newtonian peculiar potential for matter fluctua-

tions:
Vid = 4nG(p — p)a® . (2.28)

This Poisson equation, which connects the peculiar potential to the matter dis-
tribution, is one of the equations for the evolution of matter perturbations. The
subscript x in the V operator indicates that the differentiation is performed with
respect to the comoving coordinate.

The gradient of the peculiar potential gives the gravitational force acting on

fluid elements. The Euler equation of motion for a generic fluid element is:

ov 1 a VP
E—ka(v-vx)v—f-a\f—— pl (2.29)
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The last evolution equation is the continuity one:

85 1
9 1y . ~0. 2.
5tV (1+0)v =0 (2.30)

2.4.2 [Eulerian perturbation theory

When the density contrast 6 < 1 and peculiar velocities are small enough to
satisfy (vt/d)? < ¢, where ¢ is the cosmological time and d is the coherence
length of the matter field, the system of equations (2.28 — 2.30) can be linearised,

leading to the equation:
— 4+ 2—— =47 Gpo . (2.31)

This second-order equation has two solutions, representing a growing and a de-
caying mode. The growing mode, denoted by b(t), is the one of cosmological
interest, responsible for the growth of small perturbations. It is always assumed
that the decaying mode has already faded away. For this reason, the relation be-

tween the velocity field and the density contrast can be simplified as follows:

Vgv = —a@

ot
Vexv = 0. (2.32)

An interesting consequence is that any primordial vorticity is damped out by linear
evolution.

In the following, the solutions of Eq. (2.31) for the growing modes relative to
the three background models of §2.2.1, are reported:

Q=1

b(t) = a(t) . (2.33)

Q) < 1, A = 0: it is useful to use the time variable

(2.34)

- e G

Then:

b(r) o [1+3(T2—1) <1+—g-1n (:Iim (2.35)
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Q <1, A # 0, flat: it is useful to use the time variable

h = coth(3t\/A/3/2) . (2.36)
Then,
b(r) = h/h (z2(z? — 1)V/*)"Yda . (2.37)

Growing modes are normalised to give b(¢) ~ a(t) at early times, and a(to) = 1.

It is convenient to define the quantity:

This is the initial density contrast linearly extrapolated to the time at which b(¢)=1,
which, in an Einstein-de Sitter background, is the present time; it will be used in
next chapters.

Using the growing mode b(t) as a time variable, it is possible to write the
equations of motion (2.28 — 2.30) in a more compact way. Defining the peculiar

velocity u as
_dx v

= = = 2.39
u= T o (2.39)
the Lagrangian (convective) derivative d/db as
d 0
%—%4-11"7)(, (240)
and the rescaled peculiar gravitational potential as
© = 2a®/3bHES) , (2.41)
the following system of equations is obtained:
du 3 Q 3 Q
do
85+(1+5)Vx-u = 0 (2.43)
1)
Vip = R (2.44)

The function f(Q) = b/Hb ~ Q%% is defined in Peebles (1980); note that
Q/F2(Q) =~ Q72 is weakly time-dependent.
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2.5 Choosing a cosmological model

A given cosmological model is specified by a set of cosmological parameters. A
choice of those parameters constrains not only the geometry and the matter-energy
content of the Universe, but also for example the initial condition which seeded
the formation of structures. In this Section, we propose recent observational and
theoretical results which constrain some of the cosmological constants and allow
us to make a choice of the cosmological framework where structure forms and

evolves.

2.5.1 The presence of dark matter

It is usually accepted that the matter content of the Universe is in the form of two
non-interacting fluids: one of them is made up of baryons, the other is assumed to
be composed by dissipationless and non baryonic particles.

The need to assume the presence of a non-baryonic matter arises because of
the necessity to generate large enough perturbations to account for the presence
of galactic haloes, from sufficiently small initial values of the density contrast J.

In pure baryonic models a perturbation grows linearly just after the recombi-
nation epoch, with the expansion factor a(t). The maximum permitted growth for
perturbations is therefore ¢ /6, =~ 1100 (for 2 < 1). Consequently, the neces-
sary but not sufficient condition for the formation of gravitationally bound systems
(such as galaxies), that § > 1 today, leads to the primordial amplitude: § ~ 10~ at
recombination. That kind of perturbations should induce an anisotropy of ~ 1072
on the temperature of the CMB radiation on arc minutes scale which has not been
observed. On the other hand, perturbations in a non—-baryonic component, can
start growing soon after matter—radiation equality (i.e. by z ~ 10* in the case of
an ) = 1 Universe) with the result that large final perturbations can develop from
small initial values without violating the CMB constraints on small scales.

The existence of non—baryonic matter is also strongly supported by other ob-
servational results, which suggest that the most of the matter in the Universe is
not detectable by present instrumentation and reveals its presence just through

gravitational interaction.
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We briefly review the main observational evidences for the presence of the
dark matter (DM).

e Combining the most recent nucleosynthesis constrain on the baryonic con-
tribution to the density parameter (§2.2.1) and the uncertainties on H we
obtain 0.026 < 2, <0.08. However, there is a ample evidence that the total
(2is at least 0.2 (§2.5.2).

e The flatness of the rotational curves of spiral galaxies up to scales much
larger than the typical length of their luminosity distribution (Persic & Salucci
1995).

e X-ray observation of extended haloes of hot gas around elliptical galaxies
presumably retained by a large DM halo around the luminous matter (Fabian
1986).

e Gravitational lensing effects, recent results (e.g. Grogin & Narayan 1996;
Sheldon, et al. 2002) suggest that lens galaxies required dark haloes.

To conclude this Section, we notice that several attempts have been made to
measure the amount of mass (baryonic and DM) present in the Universe. Even if
it is not possible to fix a value for €2,,,, many observations (e.g. Myers et al. 1997;
Mohr et al 1999; Borgani et al. 2001) allow to place it in the range bounded by:

0.15 <, <0.5. (2.45)

Large scale data on galaxy clustering consistently assign Q,,A ~ 0.20 & 0.03
(Percival et al. 2001).

These results and the determination of the baryonic matter strongly suggest
that the dominant component for the mass in the Universe has to be some sort
of DM. Particle Physics provides some viable candidates for the DM particles:
a light massive neutrino (with mass ~ 10 eV), a very light axion (with mass ~
107° eV), and the SUSY particle (possibly the neutralino with mass in the range
of 10 — 500 GeV). The nature of the DM particles strongly affects the evolution
of the cosmic fluid and consequently the structure formation process: the large
velocity dispersion of a hot DM component (like the massive neutrino) smear out
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Table 2.1: Current constraints (68% c.l.) from CMB data plus prior information from

high redshift type Ia supernovae

Dataset Qa Qm
BOOMERanG + COBE + SNe Ia 0.725:08  0.373:97
MAXIMA + COBE + SNe Ia 0.609-57  0.375:97

MAXIMA + BOOMERanG + COBE + SNe Ia  0.75006  (.35007

all small scale perturbations which can form by subsequent fragmentation of large
scale structures (top-down scenario). On the other hand the presence of a cold DM
(CDM) particle (like the neutralino) preserves small perturbations and allows the
formation of structures with ~ 10°M, soon after recombination which merge to

form bigger structures as time passes (bottom-up scenario).

2.5.2 Evidence for a cosmological constant

SUPERNOVAE are individual objects that can be resolved inside distant galaxies;
SNe Ia are almost homogeneous in their properties, and can be used as “standard
candles” in distance measures. The key assumption is that the maximum luminos-
ity of these supernovae does not change as a function of cosmic age. The measure
of distances using this kind of indicators evidences an accelerated expansion for
the Universe which is consistent with the existence of a non zero cosmological
constant. For example, Perlmutter et al. (1999) find that {2, # 0 with a confi-

dence level of 99%), their results can be synthesised as:
0.82, —0.62y ~ —-0.24+0.1. (2.46)

A fundamental test to constrain the value of {2, comes from the study of the
CMB radiation. In particular the position of the first acoustic peak in the CMB

power spectrum is sensitive to the value of €2,,, + {24.
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Figure 2.1: Degeneracy lines in the §,,—), plane, assuming h = 0.7 and QA% = 0.03
(Balbi 2001). The lines correspond to models having approximately the same angular
scale of sound horizon at decoupling, and are labelled by the approximate position of
the first peak in the CMB angular power spectrum. The ticker lines give a reference
interval corresponding to 180 < £y, < 220. Flat models lie on the diagonal dotted line
(€2 = 1). The shaded curve represents the 95 % confidence levels from high redshift type

Ia supernovae.

BOOMERanG (de Bernardis et al. 2000) and MAXIMA (Hanany et al. 2000)
balloon missions dataset were used independently to set constrains on the value
of a cosmological constant (e.g. Balbi 2001). The intersection of CMB detection
results with the observational constraint from SNe Ia are summarised in Tab (2.1).
Those results strongly suggest the presence of a non-zero cosmological constant
(2, even with some degeneracy (see e.g. Fig. [2.1]) in the choice of the preferred
value.
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Comment: The values proposed are in agreement with a post inflation-
ary Universe, nearly flat, with initial density perturbations characterised
by a scale-invariant power spectrum. The main matter component is a
CDM fluid.

We conclude this Section noting that in this thesis we will assume that formation
and evolution of structures takes place in a standard CDM (SCDM) and ACDM

scenario.

2.6 The growth of perturbations: non-linear regime

As time proceeds the density fluctuations continue to grow sustained by gravita-
tional instability until they turn non-linear: this is the moment when a collapsed
structure forms. Structure formation is a complicated process which involves
highly non-linear gravitational dynamics; moreover the non-locality of gravity
makes the problem very difficult to solve.

Different methods have been developed to follow the evolution of the per-
turbations through the complicated transient configurations that characterise the
non-linear regime. A complete review of those methods is beyond the scope of
this thesis, here we will discuss the simplest class of non-linear approximations

which involves extrapolations of the linear properties.

2.6.1 The spherical collapse

To identify collapsed, virialized structures we need to follow the evolution of the
initial density perturbations. The simplest approach is to assign to each perturba-
tion a simple geometrical shape, for example a sphere. In spherical symmetry the
gravitational collapse can be solved exactly (Coles & Lucchin 1995). In fact, as
a consequence of Birkhoff’s theorem, a spherical perturbation evolves as a FRW
Universe with density equal to the mean density inside the perturbation.

Let us consider a spherical density perturbation growing in an Homogeneous
and Isotropic background Universe. This fluctuation is characterised by a den-

sity parameter {2, which differs from the density parameter of the background
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Universe 2. For ) > 1, the fluctuation expands to a maximum radius then turns
around at a time ¢, and collapses to a point at ¢, = 2t,,. The spherical overdensity
has a radius R and initial overdensity d;, let its mass be M = 47 R*p(1 + 6;)/3
where p is the density of the background Universe; M is conserved during the
collapse. Under the hypothesis that spherical shells of radius R(¢) do not cross

during the evolution, we can write the equation of motion

R = A[1 — cos(6)] (2.47)
t = B[f — sin(8))], (2.48)

with A, and B function of 6;.

Comment : The time evolution of a spherical perturbation is identical
to that of spatially close FRW universe: the radius R evolves with time

according to the cycloid equations.

We now want to compute the overdensity in each mass shell: using the mass

conservation a1 .,

/
= = 2.4
ArR3 4w A3(1 — cosf)?’ 249)

while for a flat matter-dominated Universe the background density scales as

p

N 1
P = 6rGE2 ~ 67GB*(@sinf)? (2.50)
so that 9 (Bsinf)’
S1n.
5(0) = 220 .
(6) 2 (1 —cosf)? ! @D

From the previous equations we find that at the maximum expansion d(7) ~ 4.6
while at recollapse § — oo.

Eq.(2.51) allows us to recover the linear limit for small § and consequently for
small ¢:

2 2/3
5(0) ~ 20 gcz (t> o (0 — sin §)%/3 (2.52)

20 t
From this equation we obtain that §,(7) ~ 1.063 at the turnaround and & (27) ~
1.689 at recollapse.
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Warning: The exact spherical collapse is only an approximation, in
reality the radius cannot reduce to a point: dynamical relaxation and
shocks ensure that the system reaches virial equilibrium with finite den-
sity. At the equilibrium we can apply the virial theorem and we get

2R = Ry , Ry is the radius of the equilibrium configuration, and

Pvir = 8pm

While the internal density increases the density of the background Universe
decreases, so — for an Einstein-de Sitter Universe — the ratio internal to external
density at the equilibrium reaches a value of about 180. On the contrary from the

linear theory, we got a contrast § ~ 1.686.

2.6.2 The Press & Schechter approach and the mass function

If primordial fluctuations survive on small scales, the first structures to be formed
after recombination come from the gravitational collapse of sub-galactic mass
units. Those units cluster together in a hierarchy, forming successively more mas-
sive systems as time progresses. The evolution of those structures is roughly au-
tosimilar in time. Sub-units are erased after they merge to form a new structure,
but the total mass at each time is conserved. This picture is called Hierachichal
Clustering Scenario (HCS).

The picture described in the HCS is too complicated to be dealt with any vari-
ant of the linear theory. However there is a method which attempts to explain
some aspects of the Hierachichal Clustering in terms of properties of the linear
density field. This method was developed by Press & Schechter (PS). It is based
on the critical assumption that even if the field is non linear the amplitude of large-
wave modes in the final density field is close to that predicted from linear theory.
This means that large-scale power must exceed that generated from non-linear
coupling of small-scale modes. PS produced a “numerical recipe” to obtain the so
called cosmological mass function, i.e. the number density of collapsed structures
at different redshift. We will discuss this method in some detail.

A massive clump is going to collapse if it is overdense with respect to the

background; in other word the average overdensity in a volume containing that
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mass should exceed a fixed threshold .. The spherical collapse model gives us a
value for this threshold: §. = 1.686.

The density contrast grows in time proportionally to the linear growing factor
b(t); it is more convenient to switch the time dependency to the threshold §. which
evolves proportional to 1/b(¢).

We consider the density field at some initial early time, and we smooth the

field on a scale Ry using a filter function Wy, (z):
3(r, Ry) = / We,(r — )6 (x')dr’ . 2.53)

If the filter is a top-hat function, Ry is the typical size of the filtered fluctuation,
and it is reasonable to identify the mass associated to each fluctuation as:

4
M = gwag . (2.54)

We remind that the mass variance of the field o2 is connected to the Fourier trans-
form of the filter function so it can be used as a resolution variable instead of ;.
Note that o2 decreases when R increases.

If the density contrast is Gaussianly distributed, the probability that the lin-

early evolved density is larger then ¢, is:

Q(0) :/Z)OP(d)dézé[l—erf(\/%)] . (2.55)

(< o) is the fraction of collapsed mass while eq.(2.54) determines the mass

associated with the scale 0. However, there is a problem here: as o2 diverges
(the perturbation vanishes) €25, — 0.5. This is in contrast with what we expect
in an hierarchical scenario where as 0 — oo all the mass should be collapsed in
objects of some scale. PS arbitrarily solved the problem by multiplying the mass
fraction by a factor of 2.

The so called “golden rule” connects the mass function N (/) to the fraction

of collapsed mass:

do?

a0 ,

N(M)MAM = po| -

aM , (2.56)

in the previous equation we can isolate two terms: one, n(c?) = d}/do?, con-
nected with the statistic of the initial density field and with the dynamic of the
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Figure 2.2: An example of mass function for a power-law type spectrum: n = —2. The

solid lines are the PS mass function given by eq. (2.57) and the dashed lines are the Sheth
& Tormen (1999) mass function (eq. [2.64]). We plot the mass function at two different
redshifts.

collapse (through d.) and another, do?/dM, with the spectrum of the perturba-

tion.
From eq.(2.56) we have:
2 62 \ |dlogo?
M*N (M) = 6¢po\| —0? - : 2.57
(M) = Gepoy| —0 eXp< 202) dlog 17 (2.57)
which is the famous Press & Shechter formula.
For example if we have a power-law type spectrum:
M —a
=|— 2.58
o=(55) (2.58)

with a = (n+3)/6 (n is the spectral index), the PS formula gets a simple analytical

form

_ o P G <_ﬂ£)“ _<_.M__)2“§g
N(M)dM = 2a ENGTANTA exp i) 3 dM . (2.59)

The PS derivation is based on some sensible hypothesis, which are difficult to

be theoretically justified. The great success of this “numerical recipe” is mainly
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due to its simple formulation, moreover for a long time it was thought to fit accu-
rately N-body data (Efstathiou et al. 1988).

It is important to identify the main weakness of the PS derivation:

e Dynamical approximations (Zel’dovich or Adhesion for example) show that
the matter distributes on a three dimensional framework made of sheets,
filaments and nodes. It is evident that the distribution of the overdensities

does not remain homogeneous at each epoch as PS theory states.

e The relation between o and M is a crucial point. The simple eq. (2.54) is
just a zero-order approximation. The collapsing clumps have an irregular

geometry so a more sophisticated mass assignment has to be developed.

e Last but not least, the so called “cloud-in-cloud” (Bardeen et al. 1986)
problem. As noticed before, the PS formula predicts that only half of the
Universe is part of a lump of any mass. PS speculated that non-collapsed
(underdense) regions have a finite probability of being included in larger
collapsed ones, then the missing mass would accrete onto the collapsed
lumps. They found that the net effect is to double the mass of every halo

without altering the shape of the mass distribution.

2.6.3 The peak theory

If we assume that structures form in the high-density regions of the initial density
field (Doroshkevich 1970) we can study the clustering properties of the non-linear
objects looking at the clustering of the peaks of the linear field.

We define a peak as a region of the field 6 (x) which reaches some critical value
d. (tipically 6. = 1.689), it is common to call this region “excursion region”. An
ensemble of those regions is identified as an “excursion set”. We need to select
peaks that originate the non-linear structures. A first problem that arises is that the
field 6 has an infinite number of small scale peaks, but we do not want to take into
account of the of very high frequency modes which correspond to scales much
smaller that the galactic ones. If we assume that the large scale modes are not

influenced by the small scale ones but they evolve linearly anyway, we can erase
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the unwanted frequencies smoothing the density field with some kind of low-pass
filter.
Starting from a Gaussian field we can evaluate the correlation function of two

excursion regions:

Q, = / /5 Py (61, 8,)d61dd. (2.60)
with /
C 1/2 - .
Pn(01,.-0n) = %@— exp (—%VTCV) , (2.61)

where C is the correlation matrix and V' is the column vector with §; components.

We will not enter into details of the peak theory (see e.g. Kaiser 1984, Katz,
Quinn & Gelb 1997) anyway we notice that it does not seem a good approach
to study the LSS formation. The first problem is that two close peaks of the
density field that collapse at different time should generate two different galaxies.
This process is not confirmed by the observations, so we need to introduce some
mechanism to avoid the formations of those kind of structures: we select only the
isolated peaks as seeds of the collapsed structures.

In spite of thié, the peak theory is still an approximated approach to structure
formation. It does not account neither for the dynamical processes that move the
objects from their initial positions, nor for the tidal perturbations which could
destroy the peaks. Moreover, the mass associated to a peak is not unique but it is
strongly related to the theoretical approach we use (see e.g. Peacock & Heavens,
1985; Colafrancesco, Lucchin & Matarrese, 1989).

A possible extension of the peak formalism which account for dynamical pro-
cesses is the peak patch formalism developed by Bond & Myers (1996a,b). They
identified structures by considering peaks of an initial field, filtered on a hierarchy
of scales. They defined the patch which is going to collapse with the peak, as the
matter contained by a homogeneous ellipsoid which can collapse along its three
axes. The peaks were then moved according to Zel’dovich approximation. This
formalism correctly takes into account a number of important dynamical events,
such as the effect of the shear on collapse dynamics (through the ellipsoidal model,
see also §2.7.3); moreover, it has been found (Bond & Myers 1996b) to reproduce
correctly the structures present in N-body simulations, but this time not only from
a statistical point of view. This method is then able to generate Monte Carlo object
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catalogs in a faster way than N-body simulations, unfortunately it is too complex

for an analytical or semi-analytical treatment.

2.6.4 The excursion set derivation

An alternative derivation of the PS formula is due to Bond et al. (1991). The so-
called “excursion set” approach (see also Peacock & Heavens 1990; Cole 1991)
overcomes the cloud-in-cloud problem and sets the mass function derivation on a
more robust theoretical framework.

We want to study the statistical properties of the density fluctuation field at
some resolution scale R. The statistical properties of the smoothed field J(R)
clearly depend on the choice of the window function. For a generic window no
analytical calculation is possible, that because §(R) contains correlation between
different scales. But if we apply a filtering function which is a top hat in the
Fourier space (sharp k-filter) the correlation simplifies: varying R corresponds to
add k-space shells which are independent of each other if the fluctuation field is

Gaussian.

Comment: A first problem now is how to associate a mass to the
smoothed volume. In the real space the sharp k-filter is a diffuse func-
tion, so we cannot use eq. (2.54). A possible solution is to multiply the
average density by the volume enclosed by the filter M = 672 pokf’
(Lacey & Cole 1993) where k; is the width of the top-hat. Of course
there is some arbitrariness in this choice, so we propose another pro-
cedure which guarantee good agreement with numerical simulations of
clustering growth (Lacey & Cole 1994). If o2 is the mass variance for
a top-hat filter in the real space, we define Ry, as 0?(R) = o2 (R) and
the mass associated to the filter is given by eq. (2.54) with R = Ryy,.
Warning: Any top-hat-kind mass assignment to the sharp k-filter is

arbitrary and actually inconsistent.

Let us consider for each point x of the space the trajectory §(R) as a function
of R. The largest R at which §(R) upcrosses the threshold d.(z.) correspond to
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Figure 2.3: Random walk with absorbing barrier.

the largest mass collapsed at that point at redshift z, all substructures been erased.
So the computation of the mass function is related to the calculation of the fraction

of trajectories that first upcrosses the threshold d.(z) as the scale A/ decreases.

Once again, it is convenient to use the mass variance as resolution variable
instead of M. Because of the properties of the sharp k-filter, §(c?) executes a
Brownian trajectory as o? increases (M decreases). In such case, we have to
solve the Fokker-Plank equation for the probability density P, (6, 0%)dd that the
stochastic process at o2 assume a value in the interval 6, § + dd, with an absorbing
boundary condition Pj, (é,0?) = 0. We can write the probability that a random

walk is absorbed by the barrier &, in the interval 02, 02 + do? as:

9 0 de 2 5(: 5?
1(6%,0) = =5 LO Pu(oh)di = e -5 ) Q6

f(c?,6.) also correspond to the probability that a fluid element is a part of a
collapsed halo with mass M (02 + do?), M(c?). Then we can easily recover the

PS mass function, including the factor of 2 which is now naturally justified.
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2.6.5 The Excursion Set and the Ellipsoidal Collapse

The great success of the PS formula was mainly due to to its accuracy in repro-
ducing the N-Body data (Efstathiou et al. 1988). However, recent high resolution
simulations revealed a discrepancy between the analytical formula and the numer-
ical experiments (Gelb & Bertschinger 1994; Governato et al. 1999; Jenkins et al.
2001; Bode et al. 2001; see also §3).

This discrepancy is the result of the various oversimplifications of the Ex-
cursion Set model, in particular, the spherical collapse approximation. Sheth &
Tormen (1999; Sheth, Mo & Tormen 2002) suggest that incorporating the effect of
a non-spherical collapse in the excursion set formalism improves the agreement
between the predicted mass function and that measured from the simulations.

The mass function is connected to the dynamic of the collapse through the col-
lapse time d.. In the Excursion Set derivation the collapse time is just a function
of redshift, so the absorbing boundary condition is constant in o2. Then, to incor-
porate the effects of the non—spherical collapse we need to determine the shape of
the barrier associated to the dynamics of a non—spherical perturbation.

To describe the collapse of overdense regions we can use the ellipsoidal col-
lapse model (Peebles 1980; Lee & Shandarin ; Bond & Myers 1996a). Following
Bond & Myers (1996a), it is possible to derive an expression of the collapse time

of a primordial elliptical perturbation of mass M:

2 v
Sec(02, 2) o 8 (2) {1 + 5 [‘753((]![)) } } , (2.63)
where f = 0.47 and v = 0.615 (Sheth, Mo & Tormen 2002)

The random walk of the excursion set model is now absorbed by a “'moving’
barrier dec(0?, z). We need to evaluate the probability that a random walk is ab-
sorbed by the barrier 8. in the interval 02, 0 + do?. Fitting the results of Monte
Carlo independent and unconstrained realizations of random walks we can esti-
mate the absorption probability. We can then rewrite eq. (2.62) in the case of the
ellipsoidal collapse:

fec(o?,2) =2 A [1 o (5(?:;))(1} ,1(2) exp (- 632;(:)> , (2.64)
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where ¢ = 0.3, A ~ 0.3222 and §.1(z) = 0.8408 d.(2), are fitted to reproduce
N-body numerical data.

This simple modification to the PS formula provides a good fit to the mass
function measured in the numerical simulation (Sheth & Tormen 1999; Sheth, Mo
& Tormen 2002) curing the discrepancy of the original PS formula (see Fig. [2.2]).

2.7 Lagrangian approach

The local extensions of the linear theory provide a qualitative first step in de-
scribing the non linear regime of the evolution. Although a deeper insight into
the gravitational clustering is provided by the dynamical approximations. The
Lagrangian approach provides us with a qualitative understanding of the gravita-
tional dynamics until the formation of the first collapsed structures. In this Section

we will review the main features of this dynamical approach.

271 The Lagrangian Framework

Let us consider a fluidodynamic approach to follow the motion of a fluid element'
of a set of collisionless self-gravitating particles in an expanding Universe. If
we describe the system by means of observers comoving with the matter (the
Lagrangian formulation of fluid dynamics, e.g. Shandarin & Zel’dovich 1989)
we can label a given patch of the fluid with its Lagrangian comoving position q.
The Lagrangian coordinate g = x(t;) represent the actual (Eulerian) comoving
position at some initial time %;.

The trajectory x(q, t) of a fluid element identified by the “Lagrangian label”
q can be expressed in terms of a displacement vector field S(q, ¢) as:

x(q,t) = q+ S(q,1) . (2.65)

This equation recasts the problem of the evolution of a matter field in terms of
a mapping procedure between the Lagrangian and the Eulerian space. When the
time is small one expects the map g — x to be one-to-one, but as time passes

the probability that two fluid elements get to the same point increases. This event

'Here we use “particle” and “fluid element” interchangeably.
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is called orbit crossing (hereafter OC). When this happens the mapping becomes
singular and a region with infinite density forms at x: the caustic. The situation
after OC is called multi-streaming and the regions where OC happens are called
multi-stream regions. From a mathematical point of view, OC corresponds to the
instant when the Jacobian determinant J = det(0x/dq) vanishes.

Now the key quantity is the displacement vector field. The Eulerian-Poisson
system of equations can be recast into an equivalent set of equations for S(q, t)
(see e.g. Catelan 1995), which becomes the only dynamical variable. For exam-
ple, as the fluid element contains by construction a fixed but vanishingly small

mass, the continuity equation becomes:
1
J(a,t)

The effects of perturbations and the evolution of the kinematic and dynamical

1+ 68(q,t) = (2.66)

quantities relative to the fluid element can be singled out by defining the deforma-
tion tensor A = 0S/0q; J = det(] + A) where [ is the identity matrix. If the

displacement field is irrotational then the deformation tensor is symmetric.

Comment: The main advantage of the Lagrangian formulation is that
any Eulerian framework, which is intrinsically based on § < 1 (see
§2.4.2), breaks down well before the OC, on the contrary the Lagrangian
formulation allows to accurately follow the evolution of the matter field

for a longer period of time.

The Lagrangian approach can be applied to smoothed versions of the initial field,
in the hypothesis that small scale multi-streaming does not affect the evolution of
larger scales. This turns crucial if we want to apply the Lagrangian theory to fol-
low the evolution of the cosmic fluid; in fact, if the initial field is perturbed at small
scales, than multi-stream regions dominates on small scales after recombination.

2.7.2 Lagrangian perturbation theory

In the Lagrangian framework the evolution of the cosmic fluid is followed us-

ing the standard equations of fluid dynamics: the continuity, energy and Poisson
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equation. The Lagrangian perturbative approach looks for solution of fluid equa-
tions for small displacement (i.e. the weak non-linear regime). Expanding S, and

consequently J, in series:

S(q,t) = SW(a,t) +5%(q,) + 5% (q,t) + ... (2.67)
J(at) = 1+JD(q, 1) +JP(q,t) + TP (q,t) + ... (2.68)

we express them as the sum of a finite number of terms. In a spatially flat matter
dominated Universe S(® are separable at every order: S®(q,t) = §@(t) - S®(q).

The first order solution is the well-known Zel’dovich approximation (Zel’dovich

1970; Buchert 1992):
S(at) = —b(t)u(q) , (2.69)

here u the peculiar velocity field of the fluid element, eq. (2.39), and ¢(q) is the

rescaled peculiar gravitational potential, which obeys the Poisson equation:

V2p(q) = 6(a, t;)/b(t;) = 6i(a), (2.70)

where t; is an initial time at which linear theory holds (see §2.4.1).

A peculiarity of the Zel’dovich Approximation is that, using b(t) as a time
variable, eq. (2.69) looks just like the inertial motion of particles moving with
constant velocities?, as a result, particles intersect their trajectories leading the
formation of singularities in the density field.

The deformation tensor of the first order solution is symmetric, and A1, A2 and

A3 are its three eigenvalues, ordered according to:
AL > A > A3 (2.71)

(note that, because of Poisson equation, A;+Ao+A3=09;). The Jacobian determinant
J and the density contrast § can be written in terms of the three eigenvalues, and

evolve with time according to:

J(a,t) = (1=b()A)(L = b(E)A)(1 = b(E)As) (2.72)

1
Sat) = Tma AN L &)

2We notice that particles do accelerate in physical coordinates.
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When the Jacobian determinant vanishes, the density formally goes to infinity.
This corresponds to the formation of a caustic, a process discussed in detail by
Shandarin & Zel’dovich (1989). After OC the approximation fails, particles main-
tain their velocity and the collapsed structures are smeared out.

The second order in the Lagrangian perturbation is the so called post-Zel’dovich

approximation, where

3
ﬁz>2(7:)s<2’(<:1) , (2.74)

and the third order (post-post-Zel’dovich approximation, here after PPZ)can be

S(q,t) = —b(t)SW(q) —

written as

S(a,1) = b(t)SV(q) + 2 ()SP (q) + 158 (£)569) ((p.75)

14 9
_ 5 a0 () L 3aqEe)

The Lagrangian approximations break down after OC; to extend the approxi-
mation also to later epochs it is possible to filter the scales which are going non-
linear by means of a cutoff in the original power spectrum. The results are the so
called truncated approximations: the truncated Zel’dovich approximation and the
truncated post—Zel’dovich approximations (eg. Melott,Pellman, Shandarin, 1994;
Buchert, Melott & Weiss 1994; Melott, Buchert & Weib 1995; Sahni & Coles
1995)

2.7.3 The definition of collapse

The OC corresponds to the instant when the Lagrangian approximations break
down: the caustics form and the density “locally” diverges. It is reasonable, from
the point of view of the mass element, to define such instant as its collapse time
(Monaco 1995; 1997a). In this way collapse is well defined and easy to compute
using the LPT which remains valid up to that point.

In the Zel’dovich approximation the mass element g collapses when b(t.) =
1/A1 (see eq. [2.73]). The first-order LPT overestimates the growing mode at
collapse time by nearly a factor of two?; this discrepancy is easy to understand:

3In the spherical case, the growing mode at collapse time is 3 /61, instead of the exact 1.69/4;
value.
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the Zel’dovich approximation is exact (up to OC) in the case of planar symmetry
and then it is able to describe the collapse of pancake-like structures (Shandarin &
Zel’dovich 1989) but in the spherical limit, relevant for the collapse of high peaks,
it underestimates the collapse rate (Monaco 1997a).

The post-Zel’dovich approximation is ill-behaved in under—densities, it can
give false solutions which can make even a spherical void collapse (Sahni &
Shandarin 1996). In conclusion, it is necessary to require the third-order LPT

to calculate the collapse time of generic mass elements.

The ellipsoidal collapse

A homogeneous triaxial ellipsoid is characterised by its mean overdensity and
its axial ratios; it can experience a global expansion, a deformation or a global
rotation. It can be recognised that its properties are analogous to that of a mass
element. The Lagrangian perturbative series can be truncated so as to resemble
formally the collapse of an ellipsoid in an external shear field (Bond & Myers
1996a; Monaco 1995; Monaco 1997a):

Following Bond & Myers (1996a), to extract an ellipsoid from a perturbed
potential field in a point qp, it suffices to expand the pétential around that point in
a Taylor series:

2
p(a) = ¢(ao) + %(%)Qz‘ + '2'5@5%((10)%% +... (2.76)
The first term is an unimportant constant; the second term produces a bulk motion
of the mass element, but does not influence the internal properties of the ellipsoid.
The third, quadratic term is the first one which is relevant for internal dynamics;
it is then possible to approximate the potential as a quadratic form. The next step

is to split the potential into an internal and an external term:

© = Qint + Pext (277)

(this corresponds to the “extraction” of the ellipsoid). The second term, diver-
genceless, is supposed to give external tides. It can be held constant in the evolu-
tion of the ellipsoid: it is accurately constant in the linear and quasi-linear regime,

while it becomes negligible, with respect to the internal potential, in the collapse
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phase (see Bond & Myers 1996a). In the principal frame of 9%y (qp)/9¢;0q; ¢iqj,

the first term (the internal ellipsoidal potential), can be written as:

1
o(q) = —é(Aqu + Xogs + A3q3) (2.78)

where \; are the three eigenvalues of 0¢/dg;dg;.

Warning: The homogeneous ellipsoidal collapse has already been used
in the cosmological context. White & Silk (1979) first proposed the
ellipsoidal collapse model to describe the evolution of extended col-
lapsing regions (see also Barrow & Silk 1981; Bartlemann, Ehlers &
Shneider 1993; Eisenstein & Loeb 1995).

The initial conditions for the ellipsoid semi axes a; at the initial time ¢; are:

where a(?) is the scale factor. Note that at the initial time the ellipsoid is an in-
finitesimally perturbed sphere. With these initial conditions, the exact equations
of ellipsoidal collapse can be integrated numerically (Monaco 1995; Bond & My-
ers 1996a). However, it is easier to solve exactly the third-order LPT equations
in the ellipsoidal case of eq. (2.78), as only first and second derivatives of the pe-
culiar potential are retained. This LPT solution gives a very good approximation
to the numerical integration in all cases with the exception of the spherical limit.
A small numerical correction is sufficient to recover properly this limit; this is
described in Appendix B of Monaco (1997a). Apart from describing accurately
the collapse of an ellipsoid, this solution gives a general approximation for the
LPT evolution of a mass element under the action of gravity. This approximation,
which will be denoted by ELL in the following, is easy to implement as it re-
quires only the computation of the deformation tensor, while full third-order LPT
requires the solution of many Poisson equations, thereby introducing numerical
noise. Moreover, 3rd-order LPT still under predicts the quasi-spherical collapse
of the highest peaks (a simple correction, as in the ELL case, is not feasible in this
case), and consequently also the high-mass tail of the mass function. In general,
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ELL is an adequate approximation to compute the OC collapse time of generic
mass elements.

In conclusion, it is worth stressing that in this context ELL is purely a conve-
nient truncation of LPT; no constraint is put on the shape of the collapsing objects,

nor on the ‘shape’ of the mass elements (which is simply a meaningless concept).

First-axis versus third-axis collapse

Recently there has been extensive discussion in the literature about whether the
collapse of the first axis is enough to characterise gravitational collapse, or whether
all three axes should reach vanishing size (Bond & Myers 1996a; Audit et al.
1997; Lee & Shandarin 1999; Sheth , Mo & Tormen 2002). Here we try to clar-
ify this issue, showing that apparently contradictory claims result from different
interpretations of ellipsoidal collapse, and from the choice of smoothing window.

As described previously, ellipsoidal collapse can be considered as a truncation
of LPT, a convenient description of the dynamical evolution of a mass element. In
other words, ELL does not attempt to describe the collapse of an extended ellip-
soidal peak, rather, it operates on the infinitesimal level. Given this, OC appears as
the most sensible choice for the collapse condition. OC corresponds to collapse
along the first axis, which means that the ellipsoid has undergone pancake col-
lapse. However, this does not imply that the extended region is flattened as well.
Indeed, as the example in Monaco (1998) illustrates, in the collapse of a spheri-
cal peak with decreasing density profile, all mass elements (except for the one in
the centre) collapse as needles pointing to the centre. This is because the spheri-
cal symmetry guarantees that the first and second axis collapse together. Yet the
collapse of the peak is not that of a filament but of a sphere. This shows how mis-
leading the local geometry of collapse is for understanding the global geometrical
properties of the collapsing matter.

Alternatively, ellipsoidal collapse can be used to model extended regions as-
sociated to a particular set of points, such as density peaks (Bond & Myers 1996;
Sheth, Mo & Tormen 2001). In this case, first-axis collapse truly corresponds to
the formation of a flattened structure, while third-axis collapse corresponds to the

formation of a spheroidal object. For instance, in the case of the spherical peak
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mentioned above, the peak point is collapsing in a spherical way both locally and
globally. It is clear that in such cases a satisfactory definition of collapse must be
related to third-axis collapse. Sheth et al. (2001) showed that indeed this collapse
condition improves the agreement with simulations when the centres of mass of
FOF objects are considered (a particular set of points analogous to the peaks), but

does not help much when general unconstrained points are considered.

The two definitions of collapse are very different from many points of view.
First-axis collapse is on average faster than the spherical one (Bertschinger & Jain
1994), while third-axis collapse is correspondingly slower. Moreover, while 50
per cent of mass is predicted to collapse at very late times by linear theory (start-
ing from a density field with finite variance and not taking into account the cloud-
in-cloud problem), 23/25 ~ 92 per cent of mass is predicted to undergo first-axis
collapse, but only 8 per cent third-axis collapse. This is very important when com-
puting the mass function with a PS-like approach: while first-axis collapse more
or less reproduces the correct normalisation (Monaco 1997b), third-axis collapse
requires a large ‘fudge factor’ ~12 (Lee & Shandarin 1998), as only 8 per cent of

mass is available for collapse.

Within the framework of the excursion set approach, it is interesting to un-
derstand whether the introduction of ellipsoidal collapse is going to improve the
statistical agreement between simulations and PS. Monaco (1997b) and Sheth et
al. (2001) showed that ellipsoidal collapse can be introduced through a ‘moving’
barrier which depends on the variance o of the smoothed field. Third-axis col-
lapse gives longer collapse times than spherical collapse, and this corresponds to a
barrier which rises with o2, while the opposite is true for first-axis collapse. In the
case of sharp k-space smoothing, the fixed barrier reproduces the PS mass func-
tion and hence overestimates the number of low mass objects. Sheth et al. (2001)
showed that using the moving barrier appropriate for third-axis collapse leads to
the formation of fewer low mass objects, and hence improves the mass function.
However, when Gaussian smoothing is used, the fixed-barrier solution is different
from PS, and the number of small mass haloes is now severely underestimated.
Monaco (1997b, 1998b) showed that in this case first-axis collapse (with no free
parameter to tune) produces a reasonable fit to the simulations, with some im-

provement with respect to PS.
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From these considerations, it is clear that a successful definition of collapse
depends on many technical details, such as the kind of dynamics considered (mass
elements versus extended regions) and the type of smoothing used (sharp k-space

versus Gaussian smoothing).
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Chapter 3

Structure formation: a statistical

approach

1 never wanted to write this words down for you

With the pages of phrases of things we’ll never do.

C. Cornell

A detailed understanding of the formation processes of DM haloes is a crucial
point in the study of galaxies and galaxy clusters: the way haloes merge and
accrete mass determines many properties of the visible matter. Unfortunately,
those processes represent the highly non-linear regime of the dynamical evolution
and no exact analytic calculation is possible. It is then necessary to resort to
numerical N-body simulations. Besides this time-consuming method, one can
also use analytical approximations that are able to predict with fair accuracy some
relevant quantities related to the assembly of DM haloes.

We have discussed the PS model (§ 2.6.2) and its extended derivation (§2.6.4,
EPS), the EPS formalism can be also used to predict some average statistical prop-
erties of DM haloes such as the progenitor mass function, the formation times,

survival times and merger rate (Lacey & Cole 1993). These predictions were first
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tested against numerical simulations, with success, by Lacey & Cole (1994, see
also Sheth & Lemson 1999; Somerville et al. 2000)

However, those statistical quantities are not enough if our final goal is to model
how structures form and evolve: we need to trace the history of individual objects.
The knowledge of the merging history of DM haloes goes (fortunately not so far)
beyond a simple analytic derivation. Once again the versatile EPS formalism help
us to provide the theoretical backbone for semi-analytic Monte Carlo realizations
of the merging history of a DM halo. The EPS formalism then becomes a standard
tool to construct synthetic catalogs of DM haloes for galaxy formation programs
(see, e.g., Kauffmann, White & Guiderdoni 1993; Somerville & Primack 1999;
Cole et al. 2000).

As other authors before us, we venture upon the realization of a EPS based
semi-analytic code to generate merging histories of haloes. This Chapter is de-
voted to the description of the theoretical framework and to the practical difficul-
ties we tackled to create the code. First we briefly review the EPS formalism (§3.1)
and provide the expression of the conditional mass function. Then we present the
Monte Carlo methods to generate synthetic catalogs of haloes (§3.3). In §3.3.3 we
introduce our recipe for the EPS based random realization of the merging histories
(or merger trees) of DM haloes. §3.4 shows the tests of our semi—analytical code
against /V-body simulations.

3.1 Extended PS formalism

The EPS formalism recasts the structure formation problem in terms of trajecto-
ries, this allows to evaluate directly the conditional mass function, i.e. the number
density of haloes at redshift z with mass M, bound to flow into a halo of given

mass My > M at a subsequent time zy.

Notation: In the following, the ‘final’ haloes at zy will be called parent,
while the higher-redshift haloes that flow into the parent will be called

progenitors.
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Together with the progenitor distribution the same formalism can be manipulated

to obtain other statistical average quantities (Lacey & Cole 1993):
e the merger rate;
e the distribution of formation times of haloes at different redshifts, defined
as the time when the largest of its progenitors first has mass Mp/2;
e the distribution of survival times.

The analytical derivation of all these quantities goes beyond the aim of this thesis.
We will just concentrate on the progenitor mass function which is the keystone of
the EPS based Merger Trees.

3.1.1 The progenitor mass function

Using the excursion set approach (§2.6.4) we evaluate the fraction of trajectories
in progenitor haloes of mass M at z that are in a parent halo of mass M, at later
time zg. The derivation of the conditional mass function is similar to that of the

cumulative distribution.

Notation: Using the same notation of Lacey & Cole (1993) we intro-
duce the variable S(M) = o*(M).

In this case the trajectory does originate from the point [S(My), 6(zp)] and

with a simple variable substitution eq. (2.62) becomes:

1 (0 — do)
F(M, 8| My, bo)dM = 7= TS — SO
X ex — (6 — 50)2
p{ 2[S(M)—5(MO)]}dSv (3.1)

where dg = 0(z9) (Lacey & Cole 1993). With some algebra it is possible to
evaluate the conditional mass function, i.e. the number density of haloes bound to

flow into a parent halo of given mass at a subsequent time:

dN My
o (M 2| Mo, 2)dM = (ﬁ) F(M, 6| Mo, 8) dM (3.2)

here the fraction M /M, converts the counting from mass weighting to number

weighting.
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3.1.2 Merging histories

The knowledge of the progenitor mass function is the first step in the determina-
tion of a semi-analytic procedure to generate merging histories of haloes. Then,
we have to decide which kind of “history procedure” we want to follow. In fact,
we could work backwards in time starting from the parent and braking it into pro-
genitors (disintegration procedure) or we could assembly the halo starting from its
progenitors. Both methods are equally applicable, but the standard choice is to use
the “disintegration” approach, which does not require any particular modification
of the EPS formalism.

In the semi-analytic code we pick up progenitors from the number weighted
probability function numerically. Form eq. (3.2) we notice that the number of
haloes diverges as mass goes to zero, so it is necessary to introduce a threshold
mass My, which acts as a resolution variable.

Before giving any interpretation to M, we notice that, when we introduce
a threshold mass, the total number of progenitors at some redshift z is a finite
number which strongly depends on the mass resolution. For a parent M identified
at 2o the number of progenitors at redshift z is:

- Mo My AN

N(Z, Mth) = My —M“m(j\f,Z[Mo,Zo)dM . (33)

Let us simplify the complex dynamics that affect the life of a halo in accretion
and merging events. Any mass smaller than the mass resolution is treated as
diffuse mass which accretes on a halo. As a consequence the progenitors must

be more massive than M;,.

Comment: The life of a halo is followed backward in time, so it is more
appropriate to identify a de-accretion and a splitting event. This is the
origin of the concept of Merger Tree: a splitting event corresponds to
the identification of two trajectories one for each halo. It is in the com-
mon use to identify the trajectory that corresponds to the more massive
halo as “main branch”. The disintegration of a halo generates a tree of

trajectories
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An important quantity is the fraction of accreted mass onto the parent. If we

define the average mass fraction of the parent contained in the progenitors at z

_ oodN
ﬁp"'/aahaﬁj(ﬂf’zuwb,aﬁdﬂd, (3.4)

the fraction of accreted mass is
fac=1—f,. (3.5)

Unfortunately, a crucial missing quantity is the accretion probability, which
models the amount of mass accreted by a halo in an interval of time. In this
case the EPS formalism is not able to provide any valid expression. Even if some
reasonable guesses for its functional form were proposed by Somerville and Kolatt
(1999) and Sheth & Lemson (1999), they are all based on strong hypotheses on

the definition of the accretion process.

3.2 The Cosmological Model

In the EPS model the progenitor mass function is determined by the shape of the
absorbing barrier and by the relation between S and M. Different choices of the
cosmological model influence both the rate the barrier moves and the function
S(M).

The Cosmological model we have chosen is a ACDM with 2 = 0.3, Q24 = 0.7
and Hy=50 km/s/Mpc. The primordial spectral index is n = 1 and og = 1. The
power spectrum is calculated with the Bardeen et al. (1986) formula. We also

tested our results with other models and they are equally valid in all cases.

3.3 The Monte Carlo procedure

We can now introduce in detail the semi-analytic procedure to generate merger
histories of haloes. The first attempt to use a Monte Carlo approach is due to
Lacey & Cole (1993). They developed a simple but efficient numerical recipe,
easy to implement, which is the “progenitor” of any other more refined procedure.
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Figure 3.1: Conditional mass function for a parent of mass My = 500 My, calculated
with 1000 realizations of the original LC recipe. The dashed lines are the EPS predictions
while the histograms are the Monte Carlo results. Each plot is labelled with the final
redshift. The mass function calculated in this way develops an excess of haloes starting
from redshift 0.5 when compared with the EPS prediction. This excess increases with z

and becomes larger that an order of magnitude at z = 7.
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3.3.1 The Lacey & Cole original recipe

Let us consider the distribution function f(M, z| M, z) given by eq.(3.1). It rep-
resents the probability that a new branch of mass S (/) starts at redshift §(z) from
an initial trunk S(Mj).

Warning: This conditional probability is a single trajectory probability
and cannot be used to simultaneously extract the whole family of pro-
genitors. To do this we need the joint probability function for a set of
progenitors which cannot be analytically evaluated (Somerville & Ko-
latt 1999). We can use eq.(3.1) to extract only one progenitor.

Eq. (3.1) can be rewritten to evaluate the probability for a mass step AS in a

“small” interval of time Ad:

AS (A5)?
K (A6, AS) Aé_,\/m exp [— 2AS} Ab . (3.6)

If the time step is “sufficiently” small the previous equation represents the proba-
bility that the halo M (S) splits in a halo M (S + AS) and one of mass M (S) —
M(S + AS).

Comment: We do not allow any process that involve more than a bi-
nary splitting in the time interval Ad: the two progenitors limit. This
condition can be assured modeling the time step. Somerville & Kolatt
(1999) suggest that a good choice for A¢ is:

ds

Ad ~
g aM

AM, 3.7

with AMG <K M().

Starting from the main trunk S (M) at zp we pick up a new mass M (S + AS)
at a time 6(zp) — AJ (consequently we find a second progenitor M2 = M (S) —
M(S + AS)). The time increment is fixed while the the mass (de-)increment
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is extracted from Gaussian distribution with zero mean and unit variance as sug-
gested by €q.(3.6) applying the change of variable z = AdJ/(2/AS) . We fix
a mass threshold A/, which is the minimum mass of the progenitor at redshift
Zmaz- 1f both the progenitors have mass greater than M, a new branch is created
with mass M?P. On the contrary if the mass of one of the two progenitors is be-
low the threshold, the parent halo (de-)accreted mass in the time interval A¢d. We
then work backward in time following all the branches created, until z,,,, and we
identify all the progenitors of the primary halo at that time.

With this simple procedure we reconstruct the mass function of the progenitors
which should be in perfect agreement with the EPS expression. Unfortunately, as
other authors have already noticed (Somerville & Kolatt 1999, Sheth & Lemson
1999), the method we have just explained over-predicts the number of haloes and
gives results which are not at all comparable with the EPS prediction. In Fig. (3.1)
we show the conditional mass function for a halo of mass My = 500M,;, at dif-
ferent redshifts, the lack of agreement with the analytical prediction is evident

especially at high redshift.

3.3.2 The second progenitor problem

The reason way the LC original recipe does not reproduce the EPS analytical pre-
dictions is connected with the way LC identify the two progenitors. One progen-
itor 1s chosen according to the distribution function, while the second is assumed
to be the residual mass M?. This procedure is obviously violating a fundamental
rule: both progenitors must be chosen from the same distribution function. The
second progenitor cannot be M? but it would be contained inside the residual
mass.

There are different ways to overcome this problem. Somerville & Kolatt
(1999) and Sheth & Lemson (1999) propose two similar algorithms to account
for the accretion on the residual mass. They assume that M? is a reservoir of
mass fragments which could contain or not other progenitors. The two methods
differs in the way they re-extract the new haloes according to the proper distribu-
tion probability. LC propose a more refined approach (Cole et al. 2000) based on
amodified EPS Monte Carlo algorithm, which explicitly accounts for the accreted
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mass and does not quantise the progenitor halo mass: they Monte Carlo generate
the probability of splitting and evaluate the fraction of mass in fragments smaller
then M, which contributes to the accretion. The authors test their models with
numerical N-body simulations in order to check the ability of their Merger Tree
recipe to reproduce the numerical experiments (Somerville et al. 2000, Sheth &

Lemson 1999, Lacey & Cole in prep).

3.3.3 The MCMT recipe

We present now a different EPS based procedure to generate merger trees. The
main rules of this Monte Carlo recipe are similar to that of the LC one: binary
splitting, progenitors extracted from the mass-weighted distribution and if we ex-
tract a progenitor smaller than the threshold mass we count it as accreted mass.
The main difference between this Monte Carlo merger tree (hereafter MCMT)
and the LC one is that we randomly extract the time interval instead of the mass
increment.

Let us then consider a fixed mass increment AS. We can use eq. (3.6) to pick
up a time variation AJd. If the time step is positive then we have a first upcrossing
event, or better a binary splitting event. As for the LC procedure, we have two
progenitors M and M?P. We notice that also in this case only one of them is
extracted from the distribution. If both the progenitors are greater then the mass
threshold we have a merging event, otherwise we have an accretion event. The
code works backward in time as described in the previous Section and it identifies
all the progenitors at 2pax.

A small mass increment assures the two progenitor limit. Our choice is to use
AS equal to a small fraction of the mass threshold. We tested the code varying the
mass increment and we noticed that if we reduce too much AS the code becomes
extremely slow, but its accuracy does not sensibly increase. We believe that a
good compromise between the code speed and its accuracy is to assume AS =
S(Min/10).

The first and obvious test is to compare the conditional mass function obtained
from the MCMT with the EPS analytical predictions. In Fig. (3.2) we present the
result of this comparison. As for the LC recipe, the MCMT develops an excess of
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Figure 3.2: Conditional mass function for a parent of mass My = 500 My, calculated
with 1000 realizations of the MCMT without accretion. The dashed lines are the EPS
predictions while the histograms are the Monte Carlo results. Each plot is labelled with
the final redshift. The mass function calculated in this way developed an excess of haloes

starting from redshift 0.5 when compared with the EPS prediction.
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Figure 3.3: Conditional mass function for a parent of mass My = 500 My, calculated
with 1000 realizations of the MCMT with accretion. The dashed lines are the EPS predic-
tions while the histograms are the Monte Carlo results. Each plot is labelled with the final
redshifts. The accretion parameter is set to & = 0.18. We notice that up to high redshift
MCMT reproduces with great accuracy the EPS prediction.
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Figure 3.4: Conditional mass function for a parent of mass M = 5000 My, calculated
with 1000 realizations of the MCMT with accretion (accretion parameter & = 0.18). The
dashed lines are the EPS predictions while the histograms are the Monte Carlo results.
Each plot is labelled with the final redshift.
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haloes compared to the EPS prediction, but in this case the discrepancy is smaller
and more constant in redshift. We believe that this behaviour is due to the way
we extract the progenitors. Choosing the mass increment is a more certain way to
assure the binary limit, partially curing the discrepancy present in the LC method.
But we still miss a fundamental ingredient: the accreted mass on the second pro-
genitor. In fact, M2 is the residual mass that could or not contain the second

progenitor.

We start from the hypothesis that the non-extracted progenitor is a fraction of
the residual mass. Then we introduce an accretion parameter which reduces M
of a fixed fraction &,. We select then two progenitors M and M = M?(1 —¢&,)
and some diffuse mass &, M?P which accretes on the halo in the time interval AJ.

To find the proper value of £, we must compare the MCMT conditional mass
function with the EPS prediction. In principle we cannot be sure that the same ac-
cretion parameter works for different parent masses and different redshifts. Then
we perform different runs of MCMT with different value of §, and we find that
our best choice for the accretion parameter &, = 0.18 is valid for all the tested

configurations.

To give a taste of the ability of MCMT, we present the comparison of our
merger tree with fixed accretion with the EPS predictions for a parent halo of
My = 500 M, and My = 5000 M,y,. The results are shown in Fig. (3.3) and
Fig. (3.4). The discrepancy between the two curves is below the 10 per cent.

We also check the average fraction of mass of the primary halo contained in
the progenitors. This quantity is a direct measure of the ability of MCMT in
describing the accretion events, and it is a more robust test of the fixed accretion
approximation. We compare the analytical prediction with the MCMT results
averaged over 1000 realizations, the results are shown in Fig. (3.5). MCMT seems

to reproduce accurately also this quantity.

Finally we test the code for different cosmological models, always with similar

results.
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Figure 3.5: The average mass fraction of the primary halo contained in progenitors with
mass M > My, as a function of redshift. The solid lines are the EPS predictions while
the points with error bars are the MCMT results.

3.4 Testing the MCMT

Since a merger tree code should be used as a valid alternative to the N-body sim-
ulations, it is useful to investigate whether the distributions predicted by MCMT

are in agreement with that measured in the numerical experiments.

Here, we present a comparison between N-body simulations and MCMT: we
study the ability of our code in predicting the statistics of the merging histories,
with a special attention on the distribution of the progenitors mass and number.
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Figure 3.6: Conditional mass functions for parent haloes identified at z = 0. The mass
threshold is fixed at My, = 7.6 x 101 Mg, the redshift increases from left to right and
covers the values: z = 1, 2, 4. The mass of the parent halo increases from top to bottom,
the adopted values are: My = 5. x 1012 M, 3. x 1013 M, and 2.0 x 10** M. The points
represent the simulation data while the solid lines are the prediction of MCMT; the dashed

lines are the analytical predictions of the EPS formalism.
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3.4.1 The N-body simulations

We use a ACDM simulation run with the Hydra code (Couchman, Thomas &
Pearce 1993) on a box of 100 A~ Mpc with 2562 particles. The simulation was
done by Tom Theuns in cooperation with Silicon Graphics/Cray Research util-
ising the Origin 2000 super computer at DAMTP, Cambridge. The cosmologi-
cal parameters are {)y = 0.3, 24 = 0.7 h = 0.65 and gz = 0.9 and we set
My, = 7.6 x 101° M, that corresponds to 30 particles.

The haloes are identified using a standard friend-of-friend (FOF) algorithm
with linking length 0.2 times the inter-particle distance. Note that, following the
suggestion by Jenkins et al. (2001), we do not change linking length with the
cosmology. We adopt 30 particles as the minimum mass of the haloes when we

analyse the conditional mass function.

The merger trees for the FOF haloes at final time z, are constructed as fol-
lows. Progenitors are defined as those haloes that at the higher redshift z contain
some of the particles of the parent halo at zy. As noted by some authors (see e.g.
Somerville et al. 2000), some particles that are located in a progenitor are not
included later into the parent. This reflects the actual dynamics of the haloes that
suffer stripping and evaporation events, and makes the progenitor identification

process more ambiguous. We then adopt two simple rules:

1. if a parent halo contains less than 90 per cent of the mass of all its progeni-
tors at redshift z, then it is excluded from the analysis (this happens in a few

percent of cases);

2. we assign to the progenitor the mass of all its particles that will flow into

the parent at zj.

In this way we force mass conservation in the merger tree and reject some extreme
cases when the progenitor is strongly affected by these ‘evaporation’ effects.

Due to the limited number of available outputs, the merger trees obtained from

our simulations are very coarse-grained in time.
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3.4.2 The comparison
The conditional mass function

In Fig. (3.6) we compare the conditional mass functions obtained from the MCMT
and the simulation, we also plot the analytical prediction from the EPS formalism,
eq. (3.2). The bottom panels of Fig. (3.6) show the results for a cluster-sized
parent of My = 2 x 10'* M, the case of haloes corresponding to small groups
(M, = 3 x 10'® M) and galaxies (My = 5 x 10'? My,) are presented in the mid
and upper panels. The dotted lines show the EPS analytical prediction and the
points show the expected value computed from the simulations.

The conditional mass function predicted using MCMT (the solid lines in the
plots) shows a very good agreement when compared with the EPS analytical re-
sult. On the other hand, the figure shows a discrepancy between the /N-body
results and the EPS predictions already pointed out by other authors for the mass
function of haloes (Gelb & Bertschinger 1994; Governato et al. 1999; Somerville
et al. 2000, Jenkins et al. 2001; Bode et al. 2001 ): the EPS predictions overesti-
mates the number of low mass progenitors and underestimates the number of high
mass progenitors. This discrepancy is less evident at high redshift and it ranges

from 30 per cent to a factor of 2 or more depending on the mass of the parent halo.

The distribution of the largest progenitor

We evaluate the distribution of the mass of the largest progenitor A/, (i.e. the most
massive halo that flows into the parent) for each of the parent haloes analysed
before. The histograms on Fig. (3.7) show the distribution of the mass of the
larger progenitor normalised to the parent mass, M; /My, predicted by MCMT.
The symbols connected with lines denote the corresponding simulation results.
For this particular statistic the agreement between the numerical experiment and
MCMT is very good. Both the mean value and the width of the distribution are
reproduced with good accuracy at all redshifts.

The distribution of M; /M, also provides a hint on the formation time of the
parent. In fact, one possible definition of formation time for a halo of mass M,

is the epoch at which the size of its largest progenitor first becomes greater than
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Figure 3.7: The distribution of the mass of the largest progenitor M; for the ACDM case
with mass threshold My, = 2.3 x 10* Mg, (30 particles). The histograms are the MCMT
predictions and the points connected with solid lines are the simulations. The quantity
plotted on the upper part of each box is the mean of the distribution of the mass ratio of
the second largest progenitor M to the first largest progenitor M; versus the mass ratio
of the largest progenitor to the parent halo. The solid line is the PINOCCHIO result and

the dashed lines show its 1o variance. The points with error bar are the simulation data.
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My /2. So we assume as the average formation redshift for a parent halo of mass
M, the time at which the peak of the distribution A;/Mj is at one half. Then
MCMT seems to reproduce with good accuracy also the halo formation times.
Note that a more detailed analysis of formation times is hampered by the small
number of simulation outputs available.

In the upper part of the plots of Fig. (3.7), we show the distribution of My /M,
(the ratio of the second largest progenitor and largest ones) vs M7 /M,. The points
are the mean value of the distribution and the error bars are the the corresponding
1o variance, both measured in the simulations. The solid lines and the dashed

lines are the same quantities predicted by MCMT. The agreement is good.

Progenitors in numbers

Finally we analyse the statistical properties of the distribution of the number of
progenitors of a halo of mass M.

In Fig. (3.8) we show the probability P(N, M) that a halo of mass M has
N progenitors. The average of these distribution gives (with suitable normalisa-
tion) the integral of the conditional mass function to the threshold mass, and is
dominated by the more numerous small-mass objects.

The histograms show the distribution of the number of progenitors evaluated
from MCMT for different parent masses and redshifts. The filled symbols con-
nected with lines are the distribution extracted from the simulations. We note that
MCMT overestimates the distributions for all redshifts and masses.

The ability of MCMT in predicting the distribution of the number of progen-
itors can be quantified by comparing the first and second moments, 1 and o,
measured in the simulations with their values predicted by MCMT. In Fig. (3.9)
we show the average i, and the rescaled variance ji5/f11 as a function of the par-
ent halo mass for different redshifts. The lines are the MCMT prediction and the
symbols are the same quantities measured from the simulations. The dashed lines

are the EPS analytical prediction for y; computed by integrating eq. (3.2).

Warning: For arbitrary initial conditions the EPS formalism cannot

analytically evaluate the higher moments of the distribution.
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3.5 Conclusions

We have presented a semi—analytical procedure to generate merger histories of
virialized haloes. This procedure, based on the EPS formalism, can be used to
build up a complete description of the formation path of a given halo and, in
principle, it can represent a valid alternative to the use of /NV-body simulations.

We can summarise the main features of the MCMT algorithm as follows:
1. A parent forms from a cascade of binary merging events;

2. We introduce a resolution mass M;,: a mass fragment smaller that M, is

treated as accreted mass.

3. During a time step Ad we extract one progenitor from the mass-weighted
distribution function and we evaluate the residual mass. A fixed fraction of

the residual mass is treated as diffuse mass that accretes onto the halo.

Warning The accreted mass is not necessarily smaller then the thresh-
old one. During a merging event an arbitrary number of mass fragments
with mass M < M, can accrete onto the halo.

This algorithm represents an improvement with respect to the LC original
recipe which presents a discrepancy with respect to the analytical EPS predic-
tions. On the contrary, the MCMT code reproduces with good accuracy the EPS
conditional mass function at all redshifts.

We have also tested the statistical predictions of the MCMT against a set of
large high-resolution /N-body simulations for a ACDM cosmology. The compari-
son reveals an evident discrepancy between the semi-analytical and the numerical
results. The MCMT develops an excess of low mass progenitors and a defect of
high mass ones, which affects not only the conditional mass function, but also the
other statistics like the distribution of the number of progenitors.

This behaviour is the crucial weakness of any EPS-based merger tree (see also
Somerville et al. 2000), it is, in fact, intrinsic in the EPS formalism itself. We
could cure this weakness by introducing the ellipsoidal collapse as suggested by
Sheth & Tormen (2002).
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The corrected EPS formalism reproduces with good accuracy the N-body
data, but still lacks the information regarding the position, the spin and the inter-
nal structure of haloes. We develop a different approach to follow the formation
and evolution of DM haloes in hierarchical cosmological models which combines
the advantages of the EPS semi-analytical procedure with a refined description of

the halo dynamics. The next Chapters will be devoted to the description of this

procedure.
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Chapter 4

PINOCCHIO: the algorithm

Once upon a time there was a piece of wood.

It was not an expensive piece of wood. Far from it.
Just a common block of firewood, one of those thick, solid logs
that are put on the fire in winter to make

cold rooms cozy and warm.

C. Collodi

We present a new algorithm to compute the formation and evolution of DM haloes
in a given linear density field. Since this method describes the hierarchical build-
up of objects that have undergone OC, we refer to it as PINOCCHIO: PINpointing
Orbit-Crossed Collapsed Hlerachical Objects (Monaco et al. 2002; Monaco,
Theuns & Taffoni 2002).

PINOCCHIO consists of a two step procedure. In the first step we use LPT in
the context of the extended PS approach, to provide predictions for the collapse of
fluid elements in a given numerical realization of a linear density field. Mass ele-
ments are assumed as collapsed at orbit crossing. In the second step the collapsed
points are grouped into haloes using a “fragmentation” algorithm that mimics the
hierarchical growth of structures through accretion and mergers.

This Chapter is organized as follow. In §4.1 we present the algorithm to evalu-
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Npart  Lbox (Mpc/h)y Qo Qa h r o5(z=0) Mpar Mg)
SCDM 3603 500 1O 00 05 0.5 1.0 1.49 x 10*?
ACDM 2565 100 03 07 065 0.195 09 7.64 x 10°
ACDMI128 | 128° 100 03 07 065 0.195 0.9 6.11 x 1010

Table 4.1: Simulations used for the analysis.

ate the collapse time of fluid elements, while §4.2 deals with the “fragmentation”
algorithm. The performance of the PINOCCHIO code is analysed in §4.3.

4.1 The collapse algorithm

In the PINOCCHIO formalism, LPT is used to predict the collapse time (in the
orbit crossing-sense ! ) of fluid elements, starting from a numerical realization of
a linear density field.

Then, before using OC as collapse prediction, it is necessary to decide whether
LPT (and ELL in particular) is accurate enough to reproduce the OC-collapsed
regions, and how these are related to the relaxed haloes. This can be done by ap-
plying LPT to the initial conditions of a large /N-body simulation, and comparing
the LPT OC regions to those computed by the simulation.

4.1.1 The simulations

For this and further comparisons we use two collisionless simulations. The first,
a standard CDM model (SCDM), has been performed with the PKDGRAV code,
and consists of 360% (~46x 10°%) DM particles (Governato et al. 1999). This sim-
ulation was provided by Fabio Governato, Tom Quinn and Joachim Stadel. The
second simulation has been performed with the Hydra code (Couchman, Thomas
& Pearce 1995), and consists of 2562 DM particles in a flat Universe with cosmo-
logical constant (ACDM) (see also §3.4.1). Tom Theuns provided this simulation
in cooperation with Silicon Graphics/Cray Research utilising the Origin 2000 su-
per computer at DAMTP, Cambridge.

Mass elements are assumed to have collapsed after undergoing orbit crossing.



Mass

4.1 The collapse algorithm

71

Fmax

Figure 4.1: Upper panels: collapse radius fields R, for a section of the Lagrangian space
of the ACDM simulation at redshift z = 0. In the left panel we show the ELL prediction,
and in the right panel the results from the simulation. Lower left panel: mass field for the
same section; the mass field gives for each particle the mass of the halo it belongs to at

z = 0. Un—grouped particles are assigned 0 mass. Lower right panel: inverse collapse
time Fi,ax for the same section.
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In order to test for resolution effects, the latter simulation has been run with
128? particles, resampling the initial displacements on the coarser grid (we will
refer to it as ACDM128). The main characteristics of the simulations are sum-
marised in Table 4.1. These simulations allow us to test PINOCCHIO for dif-
ferent cosmologies, different resolutions, and different N-body codes, reaching a
range of at least 5 orders of magnitude in mass with good statistics in terms of
both numbers of haloes and numbers of particles per halo. The PKDGRAV sim-
ulation samples a very large volume, making it suitable for testing the high mass
tail of the mass function. The Hydra simulation samples a much smaller volume
but at higher resolution, so we can test the power-law part of the mass function
at small masses. Note that in all the simulations the particles are initially placed
on a regular cubic grid. We have compared our results with another ACDM sim-
ulation performed with PKDGRAY, with the same box (in Mpc/h) and number of
particles as the SCDM one. The comparison confirms all the results given in this
Chapter, but is not presented here.

4.1.2 Testing OC as definition of collapse

With the help of the N-body simulations we want to test if OC can be used as a
proper definition of collapse for a mass element. The predictions of collapse are
performed as follows. The linear contrast ¢; is obtained from the initial displace-
ments of the simulation using the relation (see eq. [2.69] and eq. [2.70]):

Saa(a, ti) = —01(q)b(t:). 4.1)

For the SCDM simulation the displacements are first resampled on a 2562 grid for

computational ease.

Comment: In this case, as well as in the whole collapse algorithm, dif-
ferentiations are performed with Fast Fourier Transforms (FFTs). This
procedure allows one to recover the linear contrast with minimum noise

and no bias.
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The linear contrast ¢§; is then FFT-transformed and smoothed on many scales I2

with a Gaussian window function in Fourier space:
W(kR) = exp (—k*R?/2) . 4.2)

The smoothing radii are equally spaced in log R, except for the smallest smooth-
ing radius which is set to 0 in order to recover all the variance at the grid scale.
The largest smoothing radius is set such that the variance of the linear density
contrast o(Ryax) = 1.686/6, making the collapse of a halo at this smoothing
scale approximately a 6 o event. The smallest non-zero smoothing radius is set
to a third of R.x. Because of the stability of Gaussian smoothing, 25 smoothing
radii in addition to R = 0 give adequate sampling for a 256° realisation (we use
1541 smoothing radii for 1283 grids). For each smoothing radius R the deforma-
tion tensor, ¢, (g, R), is obtained in the Fourier space from the FFT-transformed,
smoothed linear density contrast Sl(k; R) as @up(k; R) = —koks/ k2 6, (k; R), and
then transformed back to real space, again with FFT. The ELL collapse times are
computed for each grid point from the value of the deformation tensor as described
in §2.7.3 and Appendix B of Monaco (1997a).

As in the EPS formalism, it is convenient to use the growing mode b(t) as
time variable, and in place of the collapse time ¢, to record the growing mode
at collapse, b, = b(t.). With the procedure outlined above, a collapse time is
computed for each grid vertex q and for each smoothing radius R, i.e. b, =

b.(q; R). We define the inverse collapse time field /" as:
F(q; R) = 1/bc(q; R). 4.3)

In the case of linear theory F' = §;/0.. The values of the F'-field at a single
point g correspond to the trajectories in the F' — R plane (or equivalently the
F —0?(R) plane) used in the excursion set approach to compute the mass function
(see §2.6.4). In fact, as shown by Monaco (1997b), this quantity is obtained from
the absorption rate of the F'(R) trajectories by a barrier put at a level F-.

Warning: As the smoothing filter is Gaussian, these trajectories are not

random walks as in the EPS formalism, and they are strongly correlated.
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In general, the computation of the absorption rate requires no free parameter as
long as the collapse condition does not. To solve the cloud-in-cloud problem, we
record for each grid point the largest radius R, at which the inverse collapse time
overtakes F¢; the grid point is assumed to be collapsed at all smaller scales. We
call R.(q), the collapse radius field (Monaco & Murante 1999). R, depends on

the height of the barrier as well as on time.

The R, field for the simulations is obtained as follows. The displacement field
S (i.e. the displacement of N-body particles from their initial position on the
grid) is smoothed in the Lagrangian space q with the same set of smoothing radii.
(Also here, we resample the large 360° simulation to a 256° grid using nearest grid
point interpolation.) Each smoothed field is differentiated using FFTs along the
three spatial directions and the Jacobian determinant, det (6% + SS'%), is computed
for each grid vertex. For each grid point, we again record the largest smoothing
radius RS™(q) at which the Jacobian determinant first becomes negative (hence

passing through 0).

The R, field computed using LPT and obtained from the simulations at red-
shift z = 0 are compared in Fig. (4.1). The two fields are remarkably similar,
exhibiting the same structure of broad peaks, with the difference that the peaks of
the simulation are lower, as anticipated by Monaco (1999). In Fig. (4.2) we show
a more quantitative point-by-point comparison between the two fields 2. There is a
reasonably tight correlation between the predicted and numerical collapse-radius
fields, which confirms the power of LPT to predict the mildly non-linear evolu-
tion of perturbations; it is noteworthy that this comparison does not involve free

parameters.

*For display purposes, some random noise has been added to the discrete values of R .; in this

way the values lie in squares instead of points
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Figure 4.2: Comparison of the collapse radius fields R, as predicted by ELL, with the
values found in the simulations, for a random sample of ~20000 points for the SCDM
model (left panel), and the ACDM model (right panel). For clarity some random noise

has been added to the discrete R, values, so that they lie on squares instead of points.

Comment: The correlation is quantified by the Spearman rank correla-
tion coefficient rg and Pearson’s linear correlation coefficient rp, both
reported in the panels of Fig. (4.2): a high value of rg indicates the ex-
istence of a relation with moderate scatter, a high value of rp indicates
the existence of a good linear relation. The coefficients take the value

~ 0.8, confirming the correlation.

However, as also noted in Fig. (4.1), the relation between the two R, fields is
not unbiased: the simulated R, field is lower than the ELL one, especially at large
R-values. The cause of this behaviour can be understood as follows. LPT predicts
that after OC particles do not remain bound to the caustic region but move away
from it, in contrast to what happens in the simulations. Therefore, as in this analy-
sis particles are not explicitly restricted to the pre-OC (single stream) regime, the
displacements in the simulation are always smaller than those predicted by LPT.

As a consequence, the collapse radius obtained by the smoothed displacements of
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the simulation is lower than that predicted by LPT. This bias disappears at small

radii, which are however dominated by numerical noise.

The difference between the LPT and the simulation R, fields can be also quan-
tified by the cumulative distribution of the R, fields as a function of R, or equiva-
lently of the variance o (R). We will denote this function by Q(< ¢?), since it is
also the fraction of mass collapsed on a scale > R where the rms is smaller than o.
This quantity is used in the PS approach to obtain the mass function (eq. [2.55]).
The functions Q(< ¢?) from ELL and the simulations are compared in Fig. (4.3).
The LPT curves are by construction independent of time and cosmology, so that
only the z = 0 LPT prediction is shown. In contrast, the € curves obtained from
the simulations change with time. At late times, particles have crossed the struc-
ture they belong to many times and the numerical displacements differ more and
more from the LPT ones. This is confirmed by the fact that the point of intersec-
tion between the (< o?) obtained from LPT and simulation roughly scales as
b(t)®. Most notably, the difference between predictions and simulations tends to
vanish for the highest redshifts; in this case the particles have not had time to cross
the structures, and their trajectories are very similar to the LPT ones. In all cases
we notice that the numerical (< ¢2) functions become larger than the LPT ones
at the smallest, unsmoothed scales, especially in the SCDM case and at higher
redshift. This is most likely due to numerical noise present in the simulation, that
enhances the level of non-linearity of the displacements, and in the SCDM case to
the resampling from 3602 to 256° grids.

For comparison, we show in Fig. (4.3) also Q(< ¢2) from linear theory with
d. = 1.686, which falls short of both the ELL prediction and the simulations. We
have verified that linear theory (with Gaussian smoothing!) misses the collapse of
many mass points that belong to filaments or to low mass haloes. Decreasing ¢,
to 1.5 improves the agreement only at the largest masses, but does not solve the
problem at small masses. The Zel’dovich approximation severely under predicts
Q(< 0?) at large masses, but approaches the ELL curve for lower mass (Monaco
1997a). Consequently, using either linear theory or the Zel’dovich approxima-
tion instead of ellipsoidal collapse, would significantly decrease the accuracy of
PINOCCHIO

We have also computed the R, field using full 3rd-order LPT. With respect
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Figure 4.3: Cumulative distributions Q(< 02) of the R, fields for the SCDM and ACDM

simulations.

to ELL, the fraction of collapsed points increases at small scales R, but decrease
at large radii, because of the already mentioned inability of 3rd-order LPT to
reproduce the spherical limit correctly (Monaco 1997a). We have verified that the
correlation with the numerical R, field is noisier, and that the additional small-
scale contribution of collapsed matter consists mainly of particles in filaments.
Moreover, the computation is much more demanding than the ELL case. We

conclude that there is no advantage in using the full 3rd-order LPT solution.

4.1.3 R, and the simulated haloes

Having demonstrated the ability of LPT in predicting collapse in the OC sense
(without free parameters), we need to decide whether OC may be of any use to
predict which mass elements are going to end up in relaxed haloes. In order to
do so, we compute the ‘mass field” from the simulation, which assigns to each
grid vertex in the initial conditions, the mass of the halo that the corresponding
particle ends-up in. Haloes have been identified in the simulation using a standard

friends-of-friends (FOF) algorithm, with a linking length 0.2 times the mean inter
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particle distance.

Warning: The simulation haloes were identified using a standard FOF
algorithm with linking length 0.2, irrespective of cosmology. In this
way, haloes are defined above a fixed fraction of the mean density — as
opposed to a fixed fraction of the critical density. Jenkins et al. (2001)
showed that this makes the mass function almost universal with cosmol-
ogy, and in addition it is similar to the definition used in PINOCCHIO.

The mass field is shown in Fig. (4.1) for the same slice of the ACDM simulation
as the other panels. A FOF halo looks like a plateau, with the plateau’s height
giving the halo’s mass. There is a broad agreement between the peaks in the R,
and mass fields, because massive (low mass) objects are generally associated with
large (small) smoothing radii. Consequently, there certainly is some connection
between orbit crossed regions and relaxed haloes. However, there are some im-

portant differences as well.

Not all the FOF points fall within the boundaries of the . contours. This fact
was already addressed by Monaco & Murante (1999), and is expected because the
OC criterion tends to miss those infalling particles that have not made their first
crossing of the structure. For SCDM, the fraction of FOF particles not predicted
to be OC-collapsed ranges from ~10 per cent at large masses to ~20 per cent
at smaller masses; smaller values are obtained for ACDM, where the fraction of
collapsed mass is higher. This has a modest impact on the results, and is hardly

noticeable in Fig. (4.1).

More importantly, the reverse is true as well: many particles assigned non-
vanishing or even high R, values do not belong to a halo. These particles are in
the moderately over dense filaments and sheets that connect the relaxed haloes.
These structures, although indeed in the multi-stream regime, are in a relaxation
state very different from that of the haloes. It is apparent that the removal of such
sheets and filaments (hereafter referred to as filaments) is an important issue that

needs to be addressed.
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4.1.4 Computing the collapse time

Another feature apparent when comparing the mass and R, fields (Fig. [4.1]) is
that many FOF haloes may correspond to a single broad peak of .. This makes
the time-dependent R, field unsuitable for addressing the fragmentation of matter
into haloes and filaments. It is more convenient to follow a procedure similar to
the merging cell model (Rodrigues & Thomas 1996; Lanzoni et al. 2000), i.e.
recording for each mass point the largest F'-value it reaches, or, in other words,
the highest redshift at which the point is predicted to collapses in the OC sense (for
SCDM it is simply F' = (1+z.), where z, is the collapse redshift). This is another
way to solve the so-called cloud-in-cloud problem (Bond et al. 1991): a point that
collapses at some redshift is assumed to be collapsed at all lower redshifts. We

therefore record the following quantity:

Frax(q) = maxg[F(q; R)]. (4.4)

Together with Fy,.y, we also store for each point the smoothing radius Roax at
which F' = F,y, and the corresponding Zel’dovich velocity vmax computed at

the time b(t) = 1/ Fynax appropriate for the smoothing radius Rax.

In contrast to R,, the inverse collapse time Fi,,x evidently does not depend
on time, while it does depend on the smoothing radius. The excursion set of
those points where Fy,,, is greater than some level F, gives the mass that has
collapsed before the time ¢, that corresponds to F, at the highest resolution on
the grid (i.e. without smoothing, R = 0). The lower right panel of Fig. (4.1) plots
the Flnax field for the same section as the other panels. Within each large object
identified in the mass field, F, has many small peaks that correspond to objects
forming at higher redshifts. These peaks are modulated by modes on a larger
scale that follow the excursions of the R, field. Those large scale modulations are
ultimately responsible for the later merging of these small peaks into the massive
object identified at late times. In this way, PINOCCHIO combines the information
on the progenitors to reconstruct the merger history of objects, as described in

detail in the next Section.
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4.2 The Fragmentation algorithm: identification and

evolution of haloes.

In the PS and excursion set approaches the mass of the objects that form at a scale

R is simply estimated as

M~ R, 4.5)

A more detailed treatment of the complex processes that determine the shape of
the Lagrangian region which collapses into a single halo is required to get an
improved description of the formation of the objects, and thus an improved agree-
ment with simulations at the object-by-object level. In PINOCCHIO, this is done
by generating realisations of the density field on a regular grid, computing the

Fhax field as explained in the previous Section, and then ‘fragmenting’ the col-

lapsed medium into haloes and filaments by considering the fate of each particle

separately.

The fragmentation code mimics the two main processes of hierarchical clus-
tering: the accretion of mass onto haloes and the merging of haloes. The particles
of the realisation are considered in order of descending F,,.-value, i.e. in chrono-
logical order of collapse. At a given time the particles that have already collapsed
will be either assigned to a specific halo, or associated with filaments. Because of
the continuity of the transformation between Lagrangian and Eulerian coordinates
(eq.[ 2.65]) a particle must touch a halo in the Lagrangian space if it will accrete

on it.

Warning: Here it is assumed that a particle that accretes onto a halo
never escapes back into the field. Such stripping does rarely happen in

simulations, so we neglect it.

Thus a collapsing particle can accrete only onto those haloes that are ‘touched’
by it, i.e. that already contain one of its 6 nearest neighbours in the Lagrangian
space of initial conditions (we call these particles Lagrangian neighbours). To
decide whether the particle does accrete onto a touching halo, we displace it to the

Eulerian space according to its v,y velocity. The halo is displaced to its Eulerian
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position at the time of accretion, using the average velocity of all its constituent

particles.

Comment: The velocity of a halo is an average over velocities calcu-
lated at different smoothing radii. A better estimate (but expensive in
terms of computer memory) would be to average the unsmoothed ve-
locities over the particles of the halo. Fortunately,the stability of the
velocity to smoothing makes the two estimates very similar, once the

average is performed over many particles.

In the following we express sizes and distances in terms of the grid spacing. The

size Ry of a halo of N particles is taken to be:

Ry = N3, (4.6)

The collapsing particle is assumed to accrete onto the halo, if the Eulerian (co-
moving) distance d between particle and halo is smaller than a fraction of the
halo’s size Ry,

d < fa X Ry. 4.7)

The free parameter f,, which is smaller than one, controls the over density that the
halo reaches in the Eulerian space, 1 + Opalo ~ 3/4m f2. Therefore, this criterion
selects haloes at a given over density, making it similar to the usual FOF or similar
selection criteria.

When a collapsing particle touches two (or more) haloes in the Lagrangian
space, then we use the following criterion to decide whether the two haloes should
merge. We compute the Eulerian distance d between the two haloes at the sus-
pected merger time using the halo velocities described above. The haloes are
deemed to merge when d is smaller than a fraction of the Lagrangian radius of the
larger halo:

d < fm X max(Ry1, Bx2)- 4.8)

This condition amounts to requiring that the centre of mass of the smaller halo,

say halo 2, is within a distance f.,, Rx; of the centre of mass of the larger halo 1.
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We note that PINOCCHIO is not restricted to binary mergers. In principle,

a particle has 6 Lagrangian neighbours so up to 6 haloes may merge at the same

time.

In practice binary mergers are the most frequent, but ternary mergers also

occur, while mergers of four haloes or more are rare.

In more detail, the fragmentation code works as follows. We keep track of

halo (or filament) assignment for all particles. For each collapsing particle we

consider the halo assignment of all Lagrangian neighbours; touching haloes are

those to which a Lagrangian neighbour has been assigned. The following cases

are considered:

ey

Seed haloes: If none of the neighbours have collapsed, then the particle is a
local maximum of Fi,,,. This particle is a seed for a new halo of unit mass,

created at the particle’s position.

(2) Accretion: If the particle touches only one halo, then the accretion condition

3)

4)

is checked. If it is satisfied, then the particle is added to the halo, otherwise it
is marked as belonging to a filament. The particles that only touch filaments

are marked as filaments as well.

Merging: If the particle touches more than one halo, then the merging con-
dition is checked for all the touching halo pairs, and the pairs that satisfy
the conditions are merged together. The accretion condition for the par-
ticle is checked for all the touching haloes both before and after merging
(when necessary). If the particle can accrete to both haloes, but the haloes
do not merge, then we assign it to that halo for which d /Ry is the smaller.
Occasionally, particles fail to accrete even though the haloes merge.

Filaments: With these rules for accretion and merging, some collapsing
particles do not accrete onto a halo at their collapse time. Since these par-
ticles tend to occur in the mildly overdense regions that connect the haloes
(visible as a filamentary network between haloes in simulations), we assign
them to a ‘filaments’ group. When a particle is accreted onto a halo, all
filament particles that neighbour it are accreted as well. This is done in or-
der to mimic the accretion of filaments onto the haloes. Notice that up to 5
filament particles can flow into a halo at each accretion event.
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This fragmentation code runs extremely quickly, in a time almost linearly pro-
portional to the number of particles. At late times, slightly more time is spent in
updating the halo assignment lists in case of mergers, but this does not slow down
the code much.

In high density regions where most of the matter has collapsed, it can happen
that pairs of haloes that are able to merge are not touched by newly collapsing par-
ticles for a long time. This problem can be solved by keeping track of all the pairs
of touching haloes that have not merged yet, and checking the merging condition
explicitly at some time intervals. Such a check slows the code down significantly,
and has only a moderate impact on the results when the fraction of collapsed mass
at the grid scale is large. Similarly, the accretion of filament particles onto haloes
can be checked at some given time intervals, but again, the impact on the results

is modest but the increase in computer time may be substantial.

4.2.1 The fragmentation parameters

While the dynamical estimate of collapse time does not introduce any free param-

eter, the fragmentation process does.

Comment: The same happens in the simulation, where any halo-
finding algorithm has at least one free parameter, such as the linking
length for FOF haloes. This is because the definition of what consti-
tutes a DM halo is somewhat arbitrary, and hence also the correspond-
ing mass function is not unique (Monaco 1999). Fortunately, different
clump-finding algorithms usually give similar results, so that this ambi-

guity is in general not a real problem.

The accretion and merging conditions given in eq.( 4.7) and eq. (4.8) intro-
duce the first two parameters. Unfortunately those conditions work well when
the haloes contain sufficiently many particles, while for smaller haloes, the limit-
ing distance f, Ry or f,, Ry may be comparable to the grid spacing. In this case,
the Zel’dovich velocity vi,x needs to be very accurate in order that accretion or
merging take place, and this may lead PINOCCHIO to underestimate the num-
ber of very low mass objects. The simplest solution to this problem is to add a
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Figure 4.4: Comparison of mass function Mn(M) in a SCDM model (£, = 1). Top
panel: simulated mass function for FOF selected haloes (Full lines with Poissonian error
bars), PINOCCHIO mass function (filled circles), the fit by Sheth and Tormen (short-
dashed lines) (eq. [2.64]) and PS function (long-dashed lines) (eq. [2.62]) , at redshifts
z = 0, 0.43, 1.13 and 1.86 (higher redshift curves are off-set by 0.1 dex both vertically
and horizontally for improved clarity). Vertical lines show limits corresponding to simu-
lation haloes with 10, 50, 100, 500 and 1000 particles (256 re-sampling). Bottom panel:
Difference between simulated mass function and PINOCCHIO (filled dots), Sheth and
Tormen fit (short-dashed line) and PS (long-dashed line) at z = 0.
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constant f, to the right hand side of eq. (4.7) and eq. (4.8), of order of the grid
spacing. This brings the number of parameters to three: f,, fi and f;.

The best fit parameters for PINOCCHIO will be chosen so as to reproduce
the mass function of the FOF haloes of the simulations (see Table [4.1]), with
linking length equal to 0.2 times the inter-particle distance, at many redshifts *
(see Fig. [4.6] and Fig. [4.4]).

If we use the SCDM simulation to calibrate the fragmentation parameters we
find that the optimal values are f, = 0.18, f, = 0.35 and f, = 0.70. As shown in
Fig. (4.4), with this particular choice, PINOCCHIO reproduces the mass function
Mn(M) to better than & 10 per cent at all redshifts, in the mass range in which
haloes have at least ~30 particles and Poisson error bars are small. In the bottom
panel of Fig. (4.4), we plot the residuals with respect to the z = 0 FOF mass
function. The PS mass function, which over (under) predicts the number of low
(high) mass objects, is shown for comparison as well.

However, when applied to the ACDM simulation, this choice produces a sys-
tematic excess of low mass objects at high redshift, of order £ 20 per cent at z = 4
for objects of 30 particles. This excess is barely noticeable in the SCDM simu-
lation at z = 1.13 (Fig. [4.4]). This systematic effect is due to the fact that the
accuracy of LPT in estimating the velocities is not constant in time: it depends on
the degree of non-linearity reached, worsening at later times. It can be measured
by comparing the Zel’dovich displacements with those from the simulation, for
particles that are just experiencing OC collapse, according to the [, field.

In Fig. (4.5) we show that the error in the displacement increases as the field
becomes more non-linear. The rate of increase is very similar for the two cosmo-
logical models plotted. The errors in the displacements are much smaller than the
displacements themselves, demonstrating the power of the Zel’dovich approxima-
tion. While the average displacement grows as b(t), its error grows as b(¢)'7.

The fact that displacements are computed more accurately at earlier times has
two important consequences. First, the accuracy of the reconstruction of particle
position will degrade with time, as we illustrate in §4.1.2. Second, for a given

3We have checked with one SCDM output that the differences in the haloes as defined by the
HOP (Eisenstein & Hut 1998) and SO (Lacey & Cole 1994) algorithms are much smaller than the
accuracy with which we are able to recover the FOF haloes.
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Figure 4.5: Error in the estimate of the Zel’dovich displacements for particles that have
just undergone orbit crossing, as function of the growing mode b. Continuous lines are the
average displacement of the collapsing particles, dashed lines are the error in the estimate
of these displacements, as computed by comparing with the simulation results. Thick
lines are obtained from the ACDM simulation, thin lines from the ACDM128 simulation.

set of parameters f,, fn, and f;, objects will tend to accrete mass more easily at
higher redshifts than at later times. The reason is that, in order to accrete a particle
onto a halo at late times, we should make these parameters sufficiently generous
so that the particle falls within d of the halo according to eq. (4.7), even though
its position is not accurately determined. This may lead to too much accretion at

earlier times, when the positions are more accurate.

It is possible to improve PINOCCHIO to correct for this numerical problem.
What is relevant in the fragmentation code is not the absolute displacement of a
particle, but the displacement relative to that of the halo. The distance between a
collapsing particle and the centre of mass of a groupis d ~ .S, 3 X Ry. Considering
that S, oc b, its variance scales as the variance o of the linear density and the
relative error on S, , grows oc b(£)%7. We can estimate the uncertainty on d, given

the errors in reconstructing positions as:

5d = fso(Ry) Rub(t)[o(Ru)b()]*". 4.9)
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Here, f; is another free parameter. We only introduce this extra parameter in the
accretion condition, since the results do not improve when we apply a similar
correction to the merger condition. The accretion and merging conditions are then
respectively:

d< faX BN+ fra+0d, (4.10)

d < fm X max(RNl, RNQ) + frm- (411)

We note that the resolution parameter f, is now different for accretion and for

merging.

4.2.2 Fixing the parameter values

Our algorithm contains now five parameters. Their values have been determined
by generating many realisations of Gaussian fields for different cosmological
models, box sizes and resolutions (including the initial conditions of the SCDM,
’ ACDM and ACDM128 simulations used here), and reproducing for each reali-
sation the corresponding mass function. In the cases where we do not have the
N-Body simulation results, we fit the PINOCCHIO mass function to the analyti-
cal mass function of Sheth & Tormen (1999).

The best fit is easily achieved, as the effects of small variations of only one
parameter are rather simple. In particular, f,, determines the overall slope of the
mass function, f,, the slope at low masses, f, the normalisation, f;, the abun-
dance of low mass haloes and f the abundance of low mass haloes at low red-
shifts.

The best fit values are f,, = 0.35 and fi,, = 0.7. The parameters for accretion

are found to be correlated,
fra = 0.40 — 3.5 (f, — 0.22). (4.12)

In addition, f,, correlates with the degree of non-linearity, as quantified by X =
(R = 0)/lgiq. Here, o(R = 0) is the variance at the level of the grid and lgiq
the grid spacing. X is sensitive to both the degree of non-linearity reached and the
level of accuracy of the Zel’dovich displacements. The best fit for f, is

fa=022+ (log S — 0.36) % 0.11 . (4.13)
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Figure 4.6: Mass functions for the ACDM model at different redshifts indicated in the
panel. Error bars denote Poissonian errors for the simulated mass function, continuous
lines are the PINOCCHIO predictions, dotted and dashed lines are the PS and ST predic-

tions, respectively.
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We also demand that 0.22 < f, < 0.26. The best fit f; = 0.06. (In all cases a
change in the last significant digit gives differences in the mass function apprecia-
ble at the 5 per cent level).

Unfortunately, these parameters are sensitive to the algorithm used to generate
initial conditions, in particular they depend on how the small scale power close to
the Nyquist frequency is quenched. For the ACDM models, we used the initial
conditions generator distributed with HYDRA (Couchman et al. 1995), where
power below the Nyquist frequency (on a grid with unit grid spacing, taken to be
k. = 0.8), is quenched exponentially o< exp|—(k/k.)'®]. The previous set of
parameters apply for this type of initial condition generator. In contrast, the initial
conditions for the 360> SCDM simulation were generated on a 1803 grid, with-
out an additional cut-off of small scale power. The corresponding PINOCCHIO
parameters are f, = 0.19, f,, = 0.60 and fs = 0.04.

Other degeneracies are possible among these parameters. We have verified
through extensive analysis that the object-by-object agreement is rather insensi-
tive to the precise values, once the mass function fits well, the object-by-object

agreement is good too.

4.3 Performance

We have applied PINOCCHIO to the initial conditions of the simulations pre-
sented in Table (4.1). Those simulations allow us to test the code for different

cosmologies, different resolutions and different N-body codes.

The speed

First, we notice that PINOCCHIO is fast. Resampling the initial conditions onto
a 2563 grid, the first stage of computing orbit-crossing requires ~ 6 hours of CPU
time, the second step of identifying the haloes takes just a few minutes. (Timings
refer to a Pentium III 450MHz personal computer. Memory requirement in this
case amounts to ~ 512Mbytes of RAM.) These timings should be contrasted with
the several hundreds of hours on supercomputers required to perform the original

simulations.
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Figure 4.7: Final positions of particles at z = 0 from a slice of the initial conditions for
the SCDM model (plot a) and the ACDM model (plot b). In each plot, the left panels
show those particles that are in filaments (i.e. that have undergone OC but are not as-
signed to a halo), the right panels show particles that are assigned to haloes. Upper panels
are obtained from the simulations, lower panels refer to PINOCCHIO.The large visual

difference between the two cosmologies is mostly due to the very different box size used.
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One way to understand the large speed-up between an N-body simulation and
PINOCCHIO is that most of the CPU time used in the /N-body simulation is spent
integrating the orbits for particles already inside a halo. These particles undergo
large accelerations as they orbit inside the halo, and hence may require thousands
of time-steps in order for their orbits to be integrated accurately. PINOCCHIO,
on the other hand, computes the particle’s orbit before it enters any high density

region and completely ignores particles once they are inside a halo.

Comment: A N-body simulation could have been run at a coarser
resolution, e.g. with a larger softening (the one used was 20 kpc) or
timestep, resulting in a lower running time for an accuracy still com-
parable to or better than that of PINOCCHIO. However, the softening
cannot be increased much without starting to lose the small haloes and
consequently changing the mergers. On the other hand, to avoid parti-
cles flying out of the objects, we must take care of not increasing the
timestep too much. In this way it is difficult to gain more than a fac-
tor of a few in the running time, which remains much larger than the
PINOCCHIO one.

Obviously, all information on the internal structure of the halo is lost in the
process, but it is well known that several millions of particles are required to get
the internal structure correctly. (See the controversy about the slope of halo pro-
files as determined using high-resolution collisionless simulations, e.g. Ghingha
et al. 2000 and §7.3).

The mass function

The comparisons of PINOCCHIO and FOF mass function for the SCDM simula-
tion presented in Fig. (4.4), is obtained using the limited set of three free parame-
ters. The results with the full five-parameter set are very similar and are not shown
here. In Fig. (4.6), we compare the mass function computed using PINOCCHIO
and the ACDM N-body simulation. The FOF haloes were identified as explained
above. For reference, we also plotted the PS and Sheth & Tormen (1999; here-

after ST) mass functions. The choice of parameters reported before produces a
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PINOCCHIO mass function which falls to within &5 per cent of the simulated
one from z = 5 to z = 0, for all mass bins with more than 30-50 particles per
halo and for which the Poisson error bars are small. The only residual systematic
is a modest, ~10-20 per cent underestimate at the highest-mass bins and highest
redshift. An accuracy of better than 10 per cent on the mass function for a given
realisation is perfectly adequate for most applications, as it is usually smaller than
the typical sample variance and of the intrinsic accuracy of ~ 20 — 30 per cent
with which the mass function of /N-body simulations is defined. Because PINOC-
CHIO is calculated for the same initial conditions as the simulation, Poisson error
bars are not the correct errors to use for this comparison (notice that the Poisson
error bars of the PINOCCHIO mass function are obviously very similar to those
of the numerical one). We show them both for comparison with PS and ST and
to understand which mass bins are affected by small number statistics. Taking
the ST mass function (or the analytic fit of Jenkins et al. 2001) as a bona fide
estimate, we have checked the validity of PINOCCHIO in reproducing the mass
function of haloes in a wide variety of cosmologies and box sizes. The fit of the
mass function is found to be still good even for halo masses as small as 105 M
(ACDM cosmology), at a redshift high enough to avoid that the whole box goes
non-linear.

Strictly speaking the agreement between the mass functions of PINOCCHIO
and that measured in the numerical experiment is not a real prediction on the
N-body results, as the fit is achieved by tuning the free parameters discussed in
§4.2.1. However, the very existence of a limited set of parameters that allows to
achieve such a good agreement in different cases (SCDM and ACDM, PKDGRAV
and Hydra, small and large boxes) is a very important result. As shown also in
Fig. (4.6), PINOCCHIO improves the fit with respect to PS, giving an accuracy
very similar to the ST fit. Jenkins et al. (2001) showed that the ST fit underesti-
mates the knee of the FOF mass function by ~10-20 per cent*; we have verified
that when this difference is evident the best fit PINOCCHIO mass function is
more similar to the numerical one and to the Jenkins et al. (2001) fit than to the
ST mass function. This is evident in Fig. (4.4) (where the residuals of the z = 0

4Sheth & Tormen (2001) show that a modest tuning of their parameters can remove this dis-

agreement.
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mass functions are shown), but is hardly noticeable in Fig. (4.6), where Poisson
errorbars are larger. The comparison with the ACDM simulation shows that the fit
is very good also down to the low mass tail M ~ 10" Mg, or M /M, ~ 1072 (M,
denotes the characteristic mass of the PS mass function, such that (M, ) = ¢7;
see, e.g., Monaco 1998).

In the PS and excursion set approaches, the mass function is ‘universal’ when
expressed in terms of the variable Q(< o?) (eq. [2.55]), which in this case gives
the fraction of mass collapsed into objects larger than M (c%) (with the mass given
by eq. [4.5]). The mass functions obtained from a large set of numerical simula-
tions is indeed found to be universal to within &30 per cent (Jenkins et al. 2001).
The PINOCCHIO mass function is not universal by construction, yet we find it to
be nearly universal once the resolution effects described in the previous Section
are taken into account.

However, the mass function of the Governato et al. (1999) SCDM simulation
used here shows an excess of massive haloes at high redshift. This was already
noticed by Governato et al. (1999), and quantified as a drift of the J. parameter
from ~1.5 at high redshift to ~1.6 at z = 0. This trend is not confirmed by other
simulations (Jenkins et al. 2001), nor by our ACDM simulation presented here.
We find that PINOCCHIO reproduces the weak trend of Governato et al. (1999)
in the SCDM simulation, but also the lack of such a trend in the ACDM one. We
conclude therefore that this effect is likely to be linked to the initial conditions
generator, which is different for the two realisations. Recall that the PINOCCHIO
mass functions refer to the same initial conditions as were use to perform the

simulations.

Haloes and filaments

The ability of PINOCCHIO to distinguish OC particles that collapse into haloes
versus those that remain in filaments, is shown in Fig. (4.7). In this figure we
plot the final position of the particles, at redshift z = 0, for a section of the
initial conditions of the SCDM and ACDM simulations. Left panels show only
the filament particles, defined as those which are in OC according to 2. but do
not belong to any halo. Right panels show only those particles that are in haloes.
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Upper panels show the result from the simulation, lower panels the PINOCCHIO
predictions. Clearly, PINOCCHIO is able to distinguish accurately haloes from
filaments, even though some filament particles are interpreted as halo particles
and vice versa. When compared with Fig. (6) and Fig. (7) of Bond et al. (1991),
Fig. (4.7) shows the marked improvement of PINOCCHIO with respect to the
extended PS approach. We want to stress that filaments are important in their own
right. For example, most of the Lyman-a absorption lines seen in the spectra of
distant quasars are produced in filaments (e.g. Theuns et al. 1998), so it will be
useful to be able to generate catalogues of haloes and filaments.

In the next Chapters we will focus on a detailed comparison with simulations
in order to test the ability of PINOCCHIO in reproducing the numerical experi-
ments. We will show that the match between our code and the N-body data is
very good both for statistical quantities and at the object-by-object level.



Chapter 5

PINOCCHIO: the predictions

“I think I'll call him PINOCCHIO. This name will make his fortune.
I knew a whole family of Pinocchi once, Pinocchio the father,
Pinocchia the mother, and Pinocchi the children,

and they were all lucky”.

C. Collodi

In the previous Chapter we presented a detailed description of PINOCCHIO, a
fast and perturbative approach to generate catalogues of DM haloes in hierar-
chical cosmologies. We also showed a preliminary comparison to simulations,
demonstrating that PINOCCHIO can accurately reproduce the mass function of
DM haloes measured in large /N-body simulations.

However, the excellent performance of PINOCCHIO is not only confined
to the determination of the mass function, it extends successfully to the object-
by-object comparison. In fact, PINOCCHIO mimics the hierarchical growth of
structures through accretion and mergers, and produces catalogues of haloes with
known mass, position, and velocity. It provides a significant improvement over
the EPS approach and its recent revisions (Sheth, Mo & Tormen 2001), which are
known to be valid only in a statistical sense (Bond et al. 1991; White 1996).

In this Chapter we compared the results of PINOCCHIO with that of two V-
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Figure 5.1: Eulerian correlation function (upper panels) and Lagrangian correlation func-
tion (lower panels) for the ACDM models at three redshifts indicated in the panel, and for
two mass ranges. Symbols refer to simulation results, lines to PINOCCHIO predictions.
Filled squares and continuous lines: correlation function for low mass haloes (mass M
from 6.3 x 10 to 3 x 10'? M), open squares and dashed lines: correlation function for
massive haloes (M > 3 x 10'2 Mp).

body simulations to test the ability of the code to reproduce the correlation func-
tion (§5.1.1) and also the mass, position and velocity of the DM haloes (§5.1.2).
In §5.2 we show that PINOCCHIO can also predict the angular momentum of the

haloes.

5.1 Detailed comparison to simulations.

The main characteristic of the simulations we adopt are summarized in Table 4.1.
To perform a detailed comparison we have to apply PINOCCHIO to the same
realization of the initial density field used by the N-body code. In this way, we

can compare the properties of individual haloes, not just the statistical quantities.
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Figure 5.2: Eulerian correlation functions for SCDM models for the two redshifts indi-
cated in the panels and for two mass ranges. Symbols refer simulation results, lines to
PINOCCHIO predictions. Mass ranges are 10* < log M/Mg < 10 (filled squares
and full lines), and log M /Mg > 10'*® (open squares and dashed lines respectively).

Lower mass curves have been off-set vertically by 1 dex for clarity.

5.1.1 Statistical comparison

In Fig. (5.1) we show the correlation function of haloes as a function of mass, both
in Eulerian and in Lagrangian space for the ACDM simulation. The correlation
function has been computed using a standard pair counting algorithm. The agree-
ment between PINOCCHIO and simulations is very good down to scales of a few
grid cells, i.e. ~1-2 comoving Mpc/h (larger for rarer objects), below which the
PINOCCHIO correlation functions become negative. This is in agreement with
what found in Fig. (5.1.1) for the SCDM simulation where we show the results in
the Eulerian space for two different redshifts.

The differences between PINOCCHIO and the N-body data are of order ~10-
20 per cent in amplitude and <10 per cent in terms of scale at which a fixed
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amplitude is reached. This means that both the correlation length rg, at which
&(ro) = 1, and the length at which € = 0 are reproduced with an accuracy of better
than 10 per cent. This is an improvement with respect to the ST formalism, where
the accuracy is of order ~20 per cent (Colberg et al. 2001). More importantly,
the trends of increased correlation for the more massive haloes, or for haloes of a

given mass with increasing redshift, are both well reproduced.

Warning: The correlation functions in the Lagrangian space are noisier,
and are reproduced with somewhat larger error, especially at z = 0
where they are slightly overestimated; however this error does not seem

to propagate to the Eulerian correlation functions.

The two-point correlation function gives only a low-order statistics of the spa-
tial distribution of a set of objects. To probe the accuracy of the PINOCCHIO
results at higher orders, we have performed a count-in-cell analysis of the halo
distribution, which, at variance with the correlation function, also depends on
the phases of the space distribution of the haloes. This is shown in Fig. (5.3)
for galactic-sized (10?My < M < 10'¥My) and group-sized (M > 103 M)
haloes of the ACDM realisation, and cell sizes of 2, 5 and 10 Mpc (corresponding
to 1.3, 3.25 and 6.5 Mpc/h). The count-in-cells curves are well reproduced by
PINOCCHIO, although their skewness is slightly underestimated, especially for
larger cells and smaller masses. In particular, the void probability P, of finding
no haloes in the cell is reproduced with a minimal accuracy of a few percent when

it takes values in excess of 0.6.

5.1.2 Point-by-point and object-by-object comparison

The PINOCCHIO approach is also able to predict halo properties that correspond
in detail to those obtained from simulations.

Agreement at the ‘point-by-point level’ requires that each particle is predicted
to reside in the correct halo with the correct mass. Whether this agreement holds
can be checked by comparing the mass fields already defined in §4 (an example
of which is shown in Fig. [4.1c]).
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Figure 5.4: Comparison of the mass fields for FOF haloes identified in the ACDM simu-
lation with that obtained from the R, field using the PS mass-radius relation. For clarity
some random noise has been added to the mass field values, especially to that obtained
from the discrete R, field.

In the PS approach, the mass of the halo to which a particle belongs is esti-
mated as in eq. (4.5), with the 47/3 valid for top-hat smoothing (or sometimes
left as a free parameter). In this case the mass field is simply related to the R,
field. A comparison between the mass fields obtained from the same R, field of
Fig. (4.2) (with arbitrary normalisation) and that of the simulation, Mpop, reveals
only a poor correlation, as shown in Fig. (5.4) for a random sample of ~20000
particles extracted from the ACDM simulation. The tightness of the correlation is
quantified by the rg and rp coefficients (see §4.1.2).

The point-by-point agreement is much better with PINOCCHIO (Fig. [5.5]),
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where the linear correlation coefficients rp jumps from 0.42 to 0.69. The im-
provement of PINOCCHIO in the point-by-point comparison is not primarily due
to the more accurate dynamical description of collapse. Rather it is due to the
much more accurate description of the shape of the collapsing region, which is
not restricted to the simple PS relation of eq. (4.5).

While the linear correlation coefficients improves significantly going from R,
to the PINOCCHIO mass field, the Spearman correlation coefficient rg does not
change much, since both panels contain a large number of outliers. However the
presence of such outliers is not very important when the catalogue of objects is

considered.

Comment: The “outliers” are particles that lie at the border of haloes,
and are assigned to a halo by the simulation but not by PINOCCHIO,
or vice versa. Such outliers are expected whenever the boundaries of

haloes in the Lagrangian space are not perfectly recovered.

We next investigate the agreement of PINOCCHIO with the simulations at the
object-by-object level, a coarser level of agreement but more relevant in practice.
The degree of matching between halo catalogues is quantified as follows: for each
halo of one catalogue, the haloes of the other catalogue that overlap for at least 30
per cent of the Lagrangian volume are considered. Among those, two haloes from
different catalogues are ‘cleanly assigned’ to each other, when each overlaps the
other more than any other halo . The fraction of haloes cleanly assigned is f,
while the fraction of haloes that are split is fqp;. The remainder 1-fo—fopii 18 the
fraction of haloes of one catalogue that does not overlap with anyone in the other
catalogue. These fractions quantify the level to which two catalogues describe
the same set of haloes. Another useful quantity is f,y, the average fraction that
haloes overlap when they are cleanly assigned. All these estimators depend on
whether PINOCCHIO is compared with simulations or vice-versa, but in general
that difference is small as long as the comparison is good.

In Fig. (5.6) we show the values of these three indicators of the agreement
between the two halo catalogues as a function of halo mass, for ACDM and the
SCDM model. The agreement is very good at higher redshift with ~80-90 per cent
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of objects cleanly assigned when the haloes have at least 50 particles. The degree
of splitting is 5 per cent, while the average overlap of cleanly-assigned objects
fov ranges from 60 to 70 per cent nearly independent of mass and encouragingly
larger than the 30 per cent lower limit. In the ACDM case, the agreement is
slightly worse at lower redshift, with f,; >70 per cent for haloes with at least
100 particles, and a fqyi4~5—10 per cent. Within perturbative approaches there
is obviously no advantage in going to higher resolution, as the accuracy of LPT
worsens with the degree of non-linearity (see Fig. [4.5]). Anyway, the agreement
is still very significant for the low redshift outputs, with a high fraction of cleanly
assigned objects and a modest degree of splitting. In any case the results always
improve with increasing number of particles. Monaco (1997a) estimated that LPT
would break down when ~50 per cent of the mass has undergone OC. Therefore,
the agreement shown in Fig. (5.6) (and also in Fig. [4.7]) is better than expected.

In Fig. (5.7) we show the accuracy with which PINOCCHIO is able to es-
timate mass, Eulerian position and velocity of the cleanly assigned objects. In
particular, we show both for SCDM and ACDM the scatter plots of the masses,
and of velocity and position along one coordinate axis. For comparison, the scat-
ter plot of the displacements of FOF haloes from the initial to the final positions
are shown as well. Masses are recovered with an accuracy of ~30 per cent for
SCDM and ~40 per cent for ACDM, nearly independent of mass. The average
value is slightly biased, which results from our constraint in reproducing the mass
function. Positions are recovered with a 1D accuracy of ~1 Mpc, slightly de-
pending on the box size and much smaller than the typical displacements, while
velocities are recovered with a 1D accuracy of ~150 or 100 km/s for SCDM or
ACDM. In general, the velocities of the fastest moving haloes are underestimated.
This could be fixed by extending the calculation of velocities to third order LPT,
although a straightforward extension has been found not to work.

We stress that these comparisons are pure predictions of PINOCCHIO, in the
sense that the free parameters of the method are constrained by the z = 0 mass
function alone. The good agreement with the numerical simulations confirms that
PINOCCHIO is a successful approximation to the gravitational collapse problem

in a cosmological and hierarchical context.
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5.1.3 Resolution effects

As discussed above, PINOCCHIO haloes resemble the FOF ones closely if they
possess a minimum number of particles of around 30-100. Statistical quantities
are well reproduced for haloes with at least 30-50 particles. These limits are
comfortably similar to the minimum number of particles needed by a simulation
to produce reliable haloes. To show this we plot in Fig. (5.8), for a random set
of particles, the mass fields (i.e. the mass of the halo the particle belongs to) as
determined by the 1283 or 256> ACDM runs, both for the simulations and for
PINOCCHIO. The result is shown at z = 0. There is considerable scatter between
the masses of the haloes determined from simulations with different resolutions.
This scatter is less than between PINOCCHIO and simulations, but not by much.
This result is similar at higher redshifts. More details are given in §5.2.1, where
it is shown that the match of the ACDM and ACDM128 halo catalogues shows
a drop in the number of clean assignments for haloes smaller than ~30 particles
(Fig. [5.9a]), very similar to that shown in Fig. (5.6).

This result suggests that resolution affects PINOCCHIO in a similar way as
it does numerical simulations. Better resolution leads to increased scatter in the
identification of haloes, since the structures become more non-linear. For instance,
we have verified that more massive haloes are reconstructed slightly berter by the
1282 PINOCCHIO run than by the 256 one. This is because at higher resolution,
PINOCCHIO may decide to break-up a more massive halo in two. The degrading
of the quality is modest and amounts to increased random noise which does not

bias significantly the statistics of the haloes.

5.2 Angular momentum of the DM haloes

Haloes are thought to acquire their angular momentum from tidal torques exerted
by the large-scale shear field while they are still in the mildly non-linear regime
(Hoyle 1949; Peebles 1969; White 1984; Barnes & Efstathiou 1987; Heavens &
Peacock 1988). In this hypothesis it is possible to estimate the angular momentum
of haloes using the Zel’dovich (1970) approximation (Peacock & Heavens 1985;
Catelan & Theuns 1996a) or higher-order LPT (Catelan & Theuns 1996b). The
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biggest difficulty in this calculation is to identify the Lagrangian patch that is
going to become a halo.

However, it was recently shown by Porciani, Hoffmann & Dekel (2001a,b) that
the Zel’dovich approximation is unable to give very accurate predictions of the
spin of haloes, as the highly non-linear interactions of neighbouring haloes tend
to randomize their spins. Assuming to know exactly which particles are going
to flow into a halo at z = 0 and using the Zeld’ovich approximation to compute
the large-scale shear field, Porciani et al. (2001a) were able to recover the final
angular momentum of the DM haloes with an average alignment angle (defined as
the angle between true and reconstructed spins) of >40°. Their analysis highlights
the difficulty in predicting a higher-order quantity such as the spin of DM haloes.

5.2.1 Reliable estimate of the angular momentum of a DM halo

The calculation of the angular momentum from /N-body simulations is also a sub-
ject of debate. Before entering into details of how to use PINOCCHIO to evaluate
the spin, we give some details of the analysis we have performed on our reference
simulations.

The main problem is to decide which is the minimum number of particles we
have to use to reliably estimate the spin. This matter can be addressed by using
our ACDM and ACDM128 simulations ! . We consider the z = 0 outputs of
the two simulations and match the halo catalogues in the same way it was done
in the object-by-object comparison of PINOCCHIO and N-body catalogues. In
practice, the 256° linking list is resampled to 128° by nearest grid assignment, i.e.
simply by considering 1 particle over 8 and skipping the others.

Comment: This resampling is used only to match halo pairs, the halo
properties are computed from the complete lists of particles. In the
following we will assume the properties of the 2563 groups as bona fide
estimate, and will interpret the difference between 1283 and 2562 as the

error on the lower-resolution groups.

ACDM128 is run on the same initial conditions as ACDM, resampled on the coarser grid
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Fig. (5.9) shows the fractions f., fspit and fo, for the matching of the two cat-
alogues, as a function of the mass of the halo according to the ACDM128 sim-
ulation. In this and subsequent panels the vertical line marks the groups of 100
particles (1282). The matching of the two catalogues is excellent for groups larger
than 100 particles, and still reasonable for groups as small as ~30 particles. Mass
estimates are pretty stable (Fig. [5.9b]), with an error of 30-40 per cent for the
smallest groups, decreasing to the high-mass end.

Conversely, the error on the spin estimate turns out to be much larger. Fig. (5.9¢)
shows the fractional difference between halo spins as a function of mass (the rms
difference is also shown), while Fig. (5.9d) shows the alignment angles of the
spins (the rms of the mean is shown in this case, as in Fig. (5.12). The rms dif-
ference is still in excess of a a factor of two for haloes of 100 particles, and even
larger for smaller haloes. Moreover, the spin directions of small haloes are very
poorly correlated for haloes with less than 100 particles. We conclude that the
lower limit for a correct order-of-magnitude estimate of the angular momentum
of a halo is 100 particles, while a more precise estimate will require at least ten
times more particles. We notice that this is at variance with other quantities, such
as halo mass and velocity, that converge more rapidly. In the following we will

restrict our analysis to groups larger than 100 particles.

5.2.2 The prediction of the angular momentum

With respect to the analysis of Porciani et al (2001a), the PINOCCHIO code
presents the advantage of predicting with good accuracy the instant at which par-
ticles get into the halo, while the actual shape of the halo in the Lagrangian space
is recovered with some noise, especially in the external borders that in fact con-
tribute most to the angular momentum. We have verified that the direction of the
largest axis of the inertia tensor of the haloes in the Lagrangian space is recovered
within an alignment angle of ~20°, while ellipticity and prolateness are correctly
reproduced, although with much scatter.

The estimate of the angular momentum of haloes is easily performed within
the fragmentation code, with negligible impact on its speed. When two haloes

with angular momenta L; and L merge, the spin Ly, of the merger is estimated
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Figure 5.9: In all the panels the vertical line marks groups of 100 particles in the
ACDM128 simulation. (a) Matching of the ACDM and ACDM128 halo catalogues. Con-
tinuous line: fq; dashed line: fgp1i¢; dotted line: fo,. (b) Correlation of masses for the
cleanly assigned objects.(c) Fractional difference of angular momenta for the cleanly as-
signed objects, as a function of mass. Error bars give the rms difference in bins of mass.
(d) Alignment angle between the angular momenta of cleanly assigned objects. Error bars

give the rms of the mean of the alignment angles in bins of mass.
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Lmerg =L+ Ly + Lorba (51)

where L, is the orbital angular momentum of the two haloes:
Lo = M1(Aqy X Avy) + My(Aga X Avy). (5.2)

Here Aq; = q; — Qem, AV = V; — Ve, With i = 1, 2, g and vy, the position
and velocity of the centre of mass. It is worth noticing that the use of Lagrangian
coordinates q is justified by the parallelism of displacements and velocities. Fol-
lowing Catelan & Theuns (1997a), we stop the linear growth of velocities not at

the time of merger ferge but at the time #4,,,, defined as:

tgrow = 0-5tmer e (53)
g g

where ¢ is physical time. This is a suitable generalisation of the concept of ‘de-
taching’ of the perturbation from the Hubble flow. The case of accretion is treated
as a merger with a 1-particle halo which carries zero spin.

The so-obtained angular momenta obey a mass—spin relation which is roughly
consistent with that of the FOF groups. This is shown in the left panels of Fig. (5.10)
for the ACDM simulation. Although qualitatively similar, the PINOCCHIO re-
lation overestimates the FOF one by some factor which is larger for the smaller
haloes. If the lower value of the spin is due to the higher degree of non-linear shuf-
fling suffered by haloes because of tidal interaction with neighbours, this trend of
having lower-mass haloes more randomized than higher-mass ones is in agree-
ment with what suggested by Porciani et al. (2001a).

It is useful to improve this prediction, so as to obtain angular momenta for the
haloes with accurate statistical properties. To this aim we decrease each compo-

nent of the spin at random, following the simple rule:
L?ew - Lz X [(1 —' fspin) + fspin X frand]) (54)

where fopin = fo + fi(M/M.(z)) (forced to 0 < fopin < 1) and frang is a random
number (0 < franga < 1). The two parameters fy and f; are fixed so as to reproduce
at best the mass—spin relation of Fig. (5.10). Optimal values are f; = 0.8 and
fi1 = 0.15. The right panels of Fig. (5.10) show the resulting mass—spin relations,
which agrees fairly well with the FOF ones.
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Figure 5.10: Mass—spin relation for dark-matter haloes. Contour lines trace the levels
of 0.2, 1, 2 and 4 haloes per decade in log M (M) and log L/M (km/s Mpc, physical
units). Continuous and dotted lines show the contours for FOF and PINOCCHIO haloes
respectively. Dashed lines give the scaling L o« M%/3 (Catelan & Theuns 1996a). Upper
panels: z = 0; lower panels: z = 3. Left panels: no correction; right panels: spin

corrected as in eq. (5.4).
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Apart from the mass—spin correlation shown in Fig. (5.10), the angular mo-
mentum is known to be nearly independent of other halo properties (Ueda et al.
1994; Cole & Lacey 1996; Nagashima & Gouda 1998; Lemson & Kauffman
1999; Bullock et al. 2001; Gardner 2001; Antonuccio-Delogu et al. 2001), with
the exception of a weak dependence with the merger history of the haloes. The de-
pendence of spin on the environment is still debated (Lemson & Kauffman 1999;
Antonuccio-Delogu et al. 2001). Gardner (2001) has shown that haloes that have
suffered a major merger tend to have higher spin. In Fig. (5.11) we show that this
trend is successfully reproduced by PINOCCHIO haloes. Merged haloes at z = 0
have been selected by requiring that the second largest progenitor halo at z = 0.25
is larger than 0.3 times the final halo mass. To extract the mass—spin relation, we
define the quantity A = LogL — 1.5(LogM /M.,). As apparent in Fig. (5.11), the
A-distribution of the merged haloes is biased toward larger A-values both for the
simulation and for the PINOCCHIO haloes, although the trend may be slightly
underestimated by PINOCCHIO.

The agreement at the object-by-object level is in line with the intrinsic lim-
its of perturbative theories found by Porciani et al. (2001a). Fig. (5.12) shows
the alignment angle 6 for the spins of cleanly matched FOF and PINOCCHIO
haloes, and their average values computed in bins of mass (error flags indicate the
rms around the mean). While the left panel shows all haloes, the right panel is
restricted to those pairs of haloes that overlap by more than 70 per cent. The aver-
age angle is significantly smaller than 90°, highlighting a significant correlation of
PINOCCHIO and FOF spins. However, the alignment is at best as high as ~60°.
This is mostly due to errors in the definition of the halo, as shown by the right
panel, where the best reconstructed haloes with more than 1000 particles show an
average alignment angle of ~30-40°, consistent with the intrinsic limit quoted by
Porciani et al. (2001a).

To conclude, the prediction of angular momentum of haloes is severely ham-
pered by the intrinsic limits of linear theory described by Porciani et al. (2001a)
and further worsened by the error made by PINOCCHIO in assigning particles to
haloes. The correct statistics is reproduced only by introducing two more ‘fudge’
free parameters, while the object-by-object agreement is poor although signifi-

cant. However, even N-body simulations do not converge rapidly in estimating
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this quantity (see 5.2.1). Moreover, the important spin—merger correlation is re-
covered naturally. Although we do not claim this result as a big success, we notice
that PINOCCHIO is, to our knowledge, the only perturbative algorithm able to
predict the spin of haloes at the object-by-object level. Moreover, the prediction
of spins comes at almost no additional computational cost, and the whole acquisi-
tion history of angular momentum can be followed for each halo. Thus, we regard
the use of the angular momenta provided by PINOCCHIO as a viable alternative
to drawing them at random from some distribution that fits N-body simulations
(Cole et at. 2000; Vitvitsaka et al. 2001; Maller, Dekel & Somerville 2001).

5.3 Discussion and conclusions

PINOCCHIO is an approximation to the full non-linear gravitational problem of
hierarchical structure formation in a cosmological setting, in contrast to the mostly
statistical approaches such as the PS prescription. The good agreement in detail
between PINOCCHIO and FOF haloes identified in simulations, explains the abil-
ity of the method to generate reliable halo catalogues. It also demonstrates that
the underlying dynamical approximations work well. With respect to the results
of Monaco (1995; 1997a,b), PINOCCHIO addresses successfully the geometrical
problem of the fragmentation of the collapsed medium into objects and filaments.

While a direct analytical rendering of the fragmentation prescription as used
in PINOCCHIO seems very complex, because it requires knowledge of spatial
correlations to high order, analytical progress might nevertheless be possible. For
instance, Monaco & Murante (1998) proposed to generalise the mass-radius re-
lation of PS, to allow a more general distribution of masses to form at a given
smoothing radius. This was formulated in terms of a ‘growing’ curve for the
objects, that gives the fraction of mass acquired by the object at a given smooth-
ing radius. The mass function is then obtained by a deconvolution of the Q(< ¢2)
function (as obtained from ELL collapse, like in Fig. [4.3]) with the growing curve
of the objects. This growing curve could be estimated from the results of PINOC-
CHIO, giving an improved analytical expression for the mass function. But in
the case of Gaussian smoothing merging histories cannot be computed from the

excursion set formalism, because the trajectories are strongly correlated (Peacock
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& Heavens 1990; Bond et al. 1991), so that the random walk formalism cannot be
used. Moreover, it is impossible from such an approach to have full information
on the spatial distribution of objects. So, such analytic extensions of PINOCCHIO
would not be as powerful as the full analysis. Besides, analytic formalisms based
on peaks (Manrique & Salvador Sole 1995; Hanami 1999) are manageable only
when linear theory is used. We therefore regard methods like PINOCCHIO which
are based on an actual realisation of the linear density field, as a good compromise
between performing a simulation, and getting only statistical information from a
EPS-like approximation.

Similar methods have been proposed in the literature, such as the peak-patch
method of Bond & Myers (1996a), the block model of Cole & Kaiser (1988),
and the merging cell model of Rodrigues & Thomas (1996) and Lanzoni et al.
(2000). A qualitative comparison with peak-patch reveals a similar accuracy in
reproducing the masses of the objects. From Fig. (10) of Bond & Myers (1996b)
it is apparent that, in a context analogous to our SCDM simulation, masses are
recovered with an accuracy of ~0.2 dex, comparable or slightly worse than the one
givenin Fig. (5.7) for SCDM. Unfortunately, it is not clear from the Bond & Myers
papers in which range of halo masses their method can be successfully applied.
As linear theory under predicts the fraction of collapsed mass when the variance is
large, a deficit of peaks corresponding to smaller masses is possible. The objects
selected by peak-patch are constrained to be spherical in the Lagrangian space
(they collapse like ellipsoids but start-off as spheres perturbed by the tidal field),
while PINOCCHIO is not restricted in this sense and is able to reproduce the
orientation of the objects in the Lagrangian space. Moreover, PINOCCHIO is not
affected by the problem of peaks overlapping in the Lagrangian space. Finally,
peak-patch has never been extended, to the best of our knowledge, to predict the

merger histories of objects.

The merging cell model of Lanzoni et al. (2000) shares some properties with
PINOCCHIO, in particular the fact that both codes build-up haloes through merg-
ers and accretion. However, the non-linear ellipsoidal collapse of PINOCCHIO
is an important improvement, as is the use of Gaussian filters instead of box car
smoothing. The size of the merging objects tend to be quite large in the merging
cell model, whereas PINOCCHIO allows accretion of single particles. We have
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of mass. The errorbars denote averages in mass bins, errorbars give the rms of the mean.
(a) all haloes, (b) haloes with fo, > 0.7.

been able to compare our results directly with those of Lanzoni et al. (2000). The
haloes identified in the merging cell model do not accurately reproduce those from
the simulations. This poorer level of agreement is partly due to the cubic shape of
the cells and to the coarse resolution of the box car smoothing. As a consequence
of these choices, massive haloes appear as big square boxes, and the mass function
shows fluctuations of a factor of two which reflects the smoothing.



Chapter 6

PINOCCHIO: the hierarchical
build-up of dark matter haloes

At this third lie, his nose became longer than ever,

so long that he could not even turn around.

C. Collodi

The final goal of a numerical or semi-analytical code developed to study the struc-
ture formation process, is to trace the history of individual haloes. In §3, we pre-
sented a “history procedure” based on the EPS formalism which can be used to
Monte Carlo generate synthetic catalogues of haloes. This semi-analytical ap-
proach is commonly applied to study in details merging histories, however, it
suffers of various limitations, for example it does not directly provide spatial in-
formation for the haloes. A more complete description of the halo evolution is
given by PINOCCHIO. In the previous Chapters we showed that this code pro-
duces catalogues of objects with known mass, position, and velocity. We need
then to investigate if it is possible to use PINOCCHIO to trace the merger tree of

individual haloes.

In this Chapter we describe how to evaluate the merging histories from PINOC-
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CHIO (§6.1) and we compare its results both with N-body simulations and the
MCMT presented in §3. In §6.2 we examine the ability of PINOCCHIO to recon-
struct the main statistical properties of the merger trees, and in §6.3 we extend the

analysis to the prediction of the correlation function.

6.1 Merger trees from PINOCCHIO

The merger histories of haloes are directly evaluated by PINOCCHIO. At each
merger the largest halo retains its identification number (ID) which will become
the ID of the merger, while the other haloes are labelled as “expired”. The mass
of each halo involved in the merging event is recorded together with the redshift
at which the merger takes place. For each expired progenitor we keep track at
all times of the parent which incorporate it. Even though accretion is rigorously
defined as the entrance of a single particle into the object, the merger of a halo
with another one with less than 10 particles is always considered as an accretion

event.

Comment: When using PINOCCHIO to evaluate the merging history
of haloes we do not only follow the time evolution of the mass and num-
ber distribution of the progenitors, but (in contrast with the EPS—based
merger tree codes) also of their distribution in space, their velocities and

angular momenta.

6.2 Statistics of the progenitors

6.2.1 The simulations

In order to test the ability of PINOCCHIO in predicting the statistics of the merger
trees, we compared the results of two N-body simulations with those of PINOC-
CHIO, applied to the same initial density field. The simulations were already
presented in §4, for all the details we refer to Table (4.1).



6.2 Statistics of the progenitors

121

Comment: The ACDM simulation is more suitable to reconstruct the
merger tree to higher redshifts and lower masses thanks to the higher
mass resolution, while the SCDM allows to test the merger trees for the

more massive haloes.

To test the ability of PINOCCHIO in reproducing the conditional mass func-
tion, we adopt 10 particles as the minimum mass for the progenitor haloes. This
is to check the agreement of the low mass tail of the distribution which is not re-
produced by the EPS based codes (see §3.4.2). In general, at least 30 particles are
necessary to identify reliably a halo both in the simulations and in PINOCCHIO,
so we consider a threshold mass of 30 particles for the other statistical analysis.

The merger trees for the FOF haloes at final time z, are constructed as de-
scribed in §3.4.1.

One of the main features of PINOCCHIO is that we can follow the merging
of haloes in real time, and then we can link each progenitor to its parent after
each merging event, while in the simulations (where haloes are identified after
the run) it is necessary to analyse and cross-correlate a large number of outputs
to follow the merger histories. In other words, the generation of the merger trees
is by far less expensive (in term of CPU time, disk space and human labour) in
PINOCCHIO than in a simulation.

6.2.2 Progenitor mass function

The progenitor mass function dN (M, z| My, zp)/dM (see §3.1.1), is the number
density of progenitors of mass M at redshift z that merge to form the parent M
at redshift z5. An estimate of this quantity based on the EPS formalism is given
by eq. (3.2).

To identify the parent mass for both PINOCCHIO conditional mass function
and that obtained from the simulations we consider a mass interval around the
parent mass log M, of 0.01 dex. We are actually evaluating the conditional mass
function not for a single parent but for all haloes of approximately that mass,

taking care of using a mass interval small enough not to distort the distribution.
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Figure 6.1: Conditional mass functions in the ACDM case for parent haloes identified
at z = 0. The mass threshold is fixed at My, = 7.6 x 10'® Mg, (10 particles), the
redshift increases from left to right and covers the values: z = 1, 2, 4. The mass of the
parent halo increases from top to bottom, the adopted values are: My = 5. x 102 M,
3. x 10'3 M and 2.0 x 10'* M,. The points represent the simulation data while the solid
lines are the prediction of PINOCCHIO; the dashed lines are the analytical predictions of
the EPS formalism.
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Figure 6.2: Same as in Fig. (6.1) but for the SCDM case. The mass threshold is M, =
1.49 x 10%3 My, (10 particles).

In Fig. (6.1) and Fig. (6.2) we compare the conditional mass functions ob-
tained from PINOCCHIO and the simulations for the ACDM and the SCDM case,
respectively. The bottom panels of Fig. (6.1) show the results for a cluster-sized
parent of My = 2 x 10* Mg, the case of haloes corresponding to small groups
(My = 3 x 10'® M) and galaxies (M, = 5 x 10'2 My,) are presented in the mid
and upper panels. In Fig. (6.2) we show the results for parents with mass compa-
rable to massive clusters (M, = 1 x 10* Mg and My = 5 x 10'®> Mg). The dotted
lines show the EPS analytical prediction and the points show the expected value

computed from the simulations.

The conditional mass function predicted using PINOCCHIO (the solid lines in
the plots) presents a very good agreement when compared with the simulations. In
Fig. (6.1) and Fig. (6.2) we show that the PINOCCHIO prediction fits the simula-
tion data with similar accuracy for all the considered parent masses and redshifts

and we identify a discrepancy between the two distribution which in general is
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< 20 per cent.

A similar analysis was performed for the MCMT code (§3). In Fig. (3.6) we
show the results obtained with MCMT for the same ACDM simulation, the same
halo masses and redshifts.

Comparing the results of Fig. (6.1) and Fig. (3.6) we notice that PINOCCHIO
reproduces the /V-body data better than MCMT.

6.2.3 Higher-order analysis of the progenitor distribution

We evaluate the distribution of the mass of the largest progenitor M, (i.e. the
most massive halo that flows into the parent) for each of the parent haloes anal-
ysed before. The histograms on Fig. (6.3) and Fig. (6.4) show the distribution
of the mass of the larger progenitor normalised to the parent mass, M; /M, pre-
dicted by PINOCCHIO for the ACDM and SCDM case (in the following the mass
threshold is always set to 30 particles). The symbols connected with lines denote
the corresponding simulation results. The agreement between the numerical ex-
periment and PINOCCHIO is very good. Both the mean value and the width of
the distribution are reproduced with good accuracy at all redshifts.

As already noticed in §3.4.2, the distribution of M; /M, also provides a hint on
the formation time of the parent. The good agreement of PINOCCHIO with the
simulations can thus be also extended to the halo formation times. For instance
Fig. (6.4) suggests that, in this SCDM cosmology, a halo of 1 x 10'® M, forms at
z ~ 0.43 or later.

In the upper part of the plots of Fig. (6.3) and Fig. (6.4) the distribution
of My/M; (the ratio of the second largest progenitor to the largest ones) given
My /My is shown. The points are the mean value of the distribution and the error
bars are the the corresponding 1o variance, both measured in the simulations. The
solid lines and the dashed lines are the same quantities predicted by PINOCCHIO.
Again the agreement is very good.

These figures can be compared with Fig. (3.7), where we test the behaviour
of the MCMT code. In this case PINOCCHIO does not improve with respect to
our EPS-based merger tree code. In fact, the EPS formalism (and consequently

the EPS-based semi-analytical codes) reproduces with good accuracy the more
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Figure 6.3: Distribution of the mass of the largest progenitor M for the ACDM case with
mass threshold My, = 2.3 x 10 M, (30 particles). The histograms are the PINOCCHIO
predictions and the points connected with solid lines are the simulations’. The quantity
plotted on the upper part of each box is the mean of the distribution of the mass ratio of
the second largest progenitor M to the first largest progenitor M; versus the mass ratio
of the largest progenitor to the parent halo. The solid line is the PINOCCHIO result and

the dashed lines show its 1o variance. The points with error bar are the simulation data.
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Figure 6.4: As Fig. (6.3) but for the SCDM case. The mass threshold is M, = 1.3 x
1014 My, (30 particles).

massive progenitors, but fails in the low mass tail of the distribution (Lacey &
Coles 1994, Somerville & Kolatt 1999, Sheth & Lemson 1999, Coles et al. 2000).

6.2.4 The progenitors in number

In this Section we analyse the statistical properties of the distribution of the num-
ber of progenitors of a halo of mass M.

In Fig. (6.5) and Fig. (6.6) we show the probability P(N, M) that a halo of
mass My has IV progenitors. The average of these distribution gives (with suitable
normalisation) the integral of the conditional mass function to the threshold mass,
and is dominated by the more numerous small-mass objects.

The histograms show the distribution of the number of progenitors evaluated
from PINOCCHIO for different parent masses and redshifts. The filled symbols
connected with lines are the distribution extracted from the simulation. We note
that PINOCCHIO reproduces fairly well the distributions also for the more mas-
sive haloes and at all redshifts.

In Fig. (6.7) we show the average 111 and the rescaled variance po/ 1 as a func-
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Figure 6.6: Same as in Fig. (6.5) for the SCDM case. The threshold mass is M, =
1.3 x 10™ My, (30 particles).

tion of the parent halo mass for different redshifts. The lines are the PINOCCHIO
prediction and the symbols are the same quantities measured from the simulations.
The dashed lines are the EPS analytical prediction for p; computed by integrating
eq. (3.2). The agreement between PINOCCHIO and the simulations varies from
the 5 per cent of the ACDM to the 10 per cent of the SCDM case but it does not
depend on the redshift.

Again PINOCCHIO is found to improve with respect to the EPS analytical
prediction. In particular, at low redshift the EPS predictions underestimate the
mean value by a factor that ranges from 20 to 30 per cent.

On the other hand, the MCMT is not able to reproduce the statistics of the
number of progenitors: as shown in Fig. (3.8) and in Fig. (3.9) it always over
predict the average number of haloes.

Our results can be also compared to those shown by Sheth & Lemson (1999b)
and Somerville et al. (2000) for EPS-based merger trees and with Sheth & Tor-

men (2001) who elaborate an excursion set model based on ellipsoidal collapse.
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Figure 6.7: First two moments of the distribution of the number of progenitors P(N, M)
as a function of the parent mass M. Lines are the PINOCCHIO results and symbols are
the simulation data. The left plots show the ACDM case at redshift z = 1 and 2. The
threshold mass is My, = 2.3 x 10 My (30 particles) and we plot the mean (squares
and solid line) and the rescaled variance (circles and dotted line) up to My = 1000 M.
The dashed line is the EPS analytical prediction for the mean. The right plots show the
SCDM case at redshift z=0.43 and z=1.13. The threshold mass is M, = 1.3 x 10" Mg
(30 particles), and we plot the mean and the rescaled variance up to My = 50 M.
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In general, PINOCCHIO reproduces the statistical properties of progenitor dis-
tributions with better accuracy then the other methods. It is remarkable that the
tests based on parent haloes with different mass ranges give very similar results,

reproducing the simulations with a comparable accuracy.

6.2.5 Object-by-object comparison

We finally test the degree of agreement between PINOCCHIO and the simulations
at the object-by-object level for the number of progenitors that are cleanly recon-
structed. In §5.1.2 a pair of haloes coming from the two catalogues (PINOCCHIO
and FOF) were defined as cleanly assigned to each other if they overlapped in
the Lagrangian space for at least 30 per cent of their volume and no other object
overlapped with either of them to a higher degree. We now quantify the number
of PINOCCHIO progenitors that are cleanly assigned to FOF progenitors for each
cleanly assigned parent halo. For this analysis we restrict ourselves to the ACDM

case, which gives a wider mass range but a higher level of non-linearity.

In Fig. (6.8) we show, for the parents that are cleanly identified, the fraction
in number f;, of the progenitors that are cleanly identified as well. This quantity
is shown both as a function of the parent mass M, and as a function of the pro-
genitor mass M /My in units of the parent mass. The number of cleanly identified
progenitors ranges from 60 to 100 per cent, with an average value between 80
and 90 per cent. The fraction f;, is in general higher at higher redshift, when the
object-by-object agreement between PINOCCHIO and the simulation is better.
Haloes with larger mass tend to be reconstructed with worse accuracy, especially
at z = 1. This is mainly due to the progenitors which carry a mass smaller then
~20 per cent of M, (see right panels of Fig. [6.8]). The progenitors which carry
a mass of less that ~20 per cent are those that are worst reconstructed. We con-
clude that PINOCCHIO is able to reconstruct correctly the main branches of the
merger trees, while secondary branches, especially present in the larger haloes,

are reconstructed in a noisier way.
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Figure 6.8: Fraction f, of cleanly assigned progenitors for redshift z = 1, 2 and 4. The
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6.3 The spatial properties of merging haloes

One notable limitation of EPS is the lack of spatial information for the haloes.
Several authors (Mo & White 1996; Mo, Jing & White 1997, Catelan et al. 1998;
Porciani et al. 1998) found approximate analytical expressions for the bias of
haloes of fixed mass, i.e. for the ratio between the two-point correlation function
of haloes and that of the underlying matter field. Such analytical estimates have
been found to agree with the results of simulations to within 240 per cent (Mo &
White 1996; Jing 1998; Porciani, Catelan & Lacey 1999; Sheth, Mo & Tormen
2000; Colberg et al. 2001). In this approach it is not possible to know how the
bias changes for haloes with different merger histories. This piece of information
is precious to produce predictions on the bias of galaxies of different types, that

typically have different merger histories.

As shown in the previous Chapter, PINOCCHIO haloes have the same corre-
lation length ry as FOF haloes to within 10 per cent error. Having knowledge of
both merger histories and halo positions, PINOCCHIO can provide information
on the relation between clustering and merging. To show this, we select PINOC-
CHIO and FOF haloes in the ACDM cosmology at z = 0 with masses greater than
10" M. We check their merging histories at z = 1, 2 and 4, and we evaluate
the the two-point correlation functions for their progenitors. In Fig. (6.9) the solid
lines represent the two-point correlation function of progenitors, £,(r), evaluated
in PINOCCHIO compared with the same quantity measured in the simulation.
The plots show that PINOCCHIO reproduces such correlation functions to within

~20 per cent error.

We also compare this function with the average correlation function, &, (r), at
the same redshifts. It is apparent that PINOCCHIO reproduces correctly the larger
clustering amplitude of haloes that flow into cluster sized one. The bias between
the two halo populations is defined as: b%(r,z) = &,(r)/&.(r). We compare in
the bottom row of plots in Fig. (6.9) the bias measured in the simulation with
PINOCCHIO results. The bias is recovered to within ~20 per cent and the scale

dependence is correctly reproduced.
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Figure 6.9: Top panels: correlation function for the progenitors of haloes with a mass
greater than 10'* My, at z=0, &, (circles and solid lines), and for all haloes larger than
the threshold mass My = 2.310™ Mg, &, (triangles and dashed lines), at various red-
shift indicated in the panels. Symbols refer to FOF selected haloes obtained from the
ACDM simulation, lines to the corresponding PINOCCHIO prediction. Bottom panels:
bias &p/&n for simulations (symbols) and PINOCCHIO (lines). PINOCCHIO is able to
predict accurately the clustering of the selected halo types.
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6.4 Conclusions

We have presented a novel procedure to study the merging history of haloes using
the PINOCCHIO code and we have compared the results of PINOCCHIO with
those of two large /N-body simulations (ACDM and SCDM cosmologies) and
with the MCMT code presented in §3.

The merger histories of the PINOCCHIO haloes resemble closely those found
applying the FOF algorithm to the /N-body simulations. The agreement is valid
at the statistical level for groups of at least 30 particles (good results are obtained
even for haloes of 10 particles). In particular statistical quantities like the con-
ditional mass function, the distribution of the largest progenitor, the ratio of the
second largest to largest progenitors, and the higher moments of the progenitor
distributions are recovered with ~20 per cent typical error.

Those results should be compared with the EPS analytical predictions and the
results of the EPS—based semi—analytical codes (Lacey & Cole 1993; Somerville
& Kolatt 1999; Sheth & Lemson 1999a), in particular with MCMT presented in
§3. The fit of the statistical quantities achieved by PINOCCHIO is much better
than the estimates of MCMT, which show discrepancies up to a factor of 2 (see
§3; Governato et al. 2000; Jenkins et al. 2001; Bode et al. 2001; Somerville et al.
1999; Sheth & Lemson 1999b, Cohn, Bagla & White, 2001).

In contrast to EPS formalism (Bond et al. 1991; White 1996) and consequently
to MCMT, PINOCCHIO provides much more useful information on the haloes,
such as positions, velocities, angular momenta. For example we can evaluate the
correlation function of haloes that are progenitors of lower-redshift massive ones.
This function is correctly reproduced to within an accuracy of ~10 per cent in 7.
The scale dependent bias of these with respect to the total halo population is also
reproduced to within an accuracy of 20 per cent or better.

Finally we noticed that the validity of PINOCCHIO extends to the object-by-
object level: PINOCCHIO cleanly reproduces <70 per cent of the progenitors
when parent haloes are cleanly recognised themselves and this agreement slowly

degrades with time.



Chapter 7

Dynamical evolution of DM satellites

The more I know, the less I understand.

G. Stewart

In the hierarchical clustering scenario a merging event between two or more haloes
corresponds to the loss of identity of the single primitive units to form a new one.
Moreover, after the encounter the haloes may retain their identity, and become
substructures of the new system. This picture is confirmed by high-resolution /V-
body simulations (Moore, Katz & Lake 1996; Tormen 1997; Ghigna et al. 1998;
Tormen, Diaferio & Syer 1998). Indeed, this is in line with the evidence of the
presence of galaxies within galaxy groups or clusters.

The study of the various issues arising from hierarchical clustering scenarios,
including the distribution of satellites around galactic systems, the impact of these
satellites on the bulge of the main halo, the disk heating and the merging events
between the halo and the satellites, is a crucial and still poorly understood step
in the study of galaxy formation and evolution (see eg. Téth & Ostriker 1992,
Huang & Carlberg 1997; Velazquez & White 1999; Moore et al. 1999; Bullock,
Kravtsov & Weinberg 2000)

High-resolution simulations are necessary to describe the evolution of satel-
lites, at the cost of simulating one cluster at a time (Tormen 1997; Ghigna et al.
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1998). It is then useful to relay again on the analytic modeling, which can be
easily coupled with semi-analytical codes for structures formation as MCMT or
PINOCCHIO. In this and next Chapter we introduce a semi-analytical procedure
to study the dynamical evolution of satellites which synthesizes and generalizes
the results of existing numerical studies.

This Chapter is organized as follow. In the first two Sections we discuss the
theoretical scheme underlying our model for following the orbital decay. In §7.1
we review the Chandrasekhar (1943) theory of dynamical friction and in §7.2 we
introduce an alternative approach developed by Colpi (1998; see also Colpi &
Pallavicini 1998). As the dynamical friction force depends on the density profile
of the main halo, §7.3 discusses the satellites evolution for two different density
profiles: the singular isothermal sphere and the Navarro, Frank & White (1996)
profile. In §7.4, we provide a useful fitting formula to estimate the decay time
of rigid satellites orbiting in a Navarro, Frank & White (1996) profile. As the
decay time of a satellite strongely depend on the initial obital energy and angular
momentum (or better the initial orbital parameters), an important aspect is how
to predict their value in a Cosmological environment. The last Section deals with

this topic.

7.1 The orbit of satellites

In our study of the orbital evolution of satellites, we assume that the main halo
is spherically symmetric. The gravitational force is then centrally directed. As a
consequence the orbit can be determined using the planar polar coordinates r(t)
and 6(t), solving for the equation of motion (see e.g. Binney & Tremain 1987).
The motion of a satellite is specified by the initial angular momentum J and orbital
energy F per unit mass, or equivalently by the radius 7.(E) of the circular orbit
having the same energy F, and by the circularity ¢ = J/J., where J. is the angular
momentum of the circular obit J. = V(r¢) - rc(E) (Ve[re] is the circular velocity
at radius 7[F]).

We define a generalised orbital eccentricity:

- Tapo - Tper (71)

- 7

Tapo + Tper



7.1 The orbit of satellites

137

here 7,50 and rpe, are the roots of the orbit equation:

;1_2_+ 2[¢(T}2_ 19 ~0, (7.2)
and they are respectively the apocenter and the pericenter radii of the orbit. The
function ¢(r) is the gravitational potential the satellite is orbiting in.

Using the previous equation it is possible to evaluate a well defined rela-
tion between e and the orbital parameters, so that to each value of r.(E) and ¢
it corresponds a different apoastron and periastron radius. Hereafter we define
2.(E) = r.(F)/ Ry, where Ry, is the virial radius of the halo.

Eq. (7.2) identifies the stable orbit of a satellite subject to the force field —V¢.
However, satellites are moving inside the diffuse background of DM particles of
the main halo. For this reason, they decay toward the centre of the halo as the
dynamical friction (hereafter DF) causes the loss of orbital energy and angular
momentum. The DF braking force is a force of back-reaction resulting from the
global distortion of the particle density field induced by the satellite.

To determine the satellite orbit, we calculate the trajectory of a point particle
with the same total mass of the satellite Mg, moving in the gravitational potential

of the main halo identified by the density profile p(r):

f=—Vé+Fg . (7.3)

Warning: The point particle approximation is sufficient as long as the

scale of the satellite orbit is much larger than the satellite itself.

As a first order approximation, we can evaluate the drag force using the Chan-
drasekhar (1943) formalism. Under the hypothesis that a massive point particle
is moving through an infinite, homogeneous background of much lighter particles
with an isotropic Maxwellian velocity distribution of zero mean, the expression
for the DF drag force is:

In A G?p(r) M

v3 — ge—xz

VT

where X = V/(v/20), V is the velocity of M and o is the velocity dispersion
of the halo. In A is the so called Coulomb logarithm: we assume as a “standard”

Fy = —dn erf(X) v, (7.4)
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choice of A

InA=1In (1 + Ajh) )

M
(e.g White 1978; Binney & Tremain 1987; Lacey & Cole 1993)

(7.5)

Comment: There is some arbitrariness in the choice of A. In the origi-
nal Chandrasekhar formulation, the Coulomb logarithm is the ratio be-
tween the maximum and minimum impact parameter of the background
particles contributing to the wake. However, various authors discussed
the possibility of modifying this “normalisation factor” in order to better
describe the interaction of the satellite with the wake and to extend the
formalism to a non-homogeneous distribution of background particles
(see e.g. White 1976; Carr & Lacey 1987; Maoz 1993; Dominguez-
Tenreiro & Gomez-Flechoso 1998). Some others used A as a free pa-
rameter to be fitted using numerical simulations (Taylor & Babul 2001;
hereafter TB).

This simple formalism evidences the two main characteristic of the DF:

e As the friction is the consequence of the particle overdensity behind the
satellite, which is proportional to its mass, the DF force itself is proportional
to M.

e The drag force is a function of the local density p(r) of the halo.

Numerous detailed studies of satellite dynamics (Duncan, Farouki & Shapiro
1983; Tremain & Weinberg, 1984; Weinberg 1986; Bontekoe & van Albada 1987,
Cora, Muzzio & Vergne 1997; van den Bosch et al. 1999; Colpi & Pallavicini
1998; Colpi, Mayer & Governato 1999) have shown that the Chandrasekhar for-
mulation is a good local approximation to the drag force on an extended satellite
in a finite halo system, provided that the Coulomb logarithm is adjusted properly.

Apart form the arbitrariness in the choice of the normalisation, we identify
other important weaknesses in this formalism that become crucial as the satellite

mass increases. The Chandrasekhar formulation totally neglects the self-gravity
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of the particle wake behind Ms. Thus, the force is always directed along V and

eq. (7.4) neglects the attraction of the background particles among each other.

The great success of the Chandrasekhar formulation lies in the simple form
of eq. (7.4), that allows easy and fast semi-analytical calculation of the orbital
evolution. Moreover, it can be integrated to estimate the dynamical friction time—
scale 74, i.e. the time the satellite needs to sink to the center of the main halo. For

a rigid satellite 74 545 represents the typical life-time.

7.2 The theory of Linear Response

In the previous Section we presented the Chandrasekhar’s local approximation to
the DF force. However, the global nature of the distortion suggests that a more
refined approach must be considered. Here, we review the Theory of Linear Re-
sponse (TLR), a relatively new approach to study DF in the non-uniform particle
background of a spherical self-gravitating halo.

In TLR, the response of the main system to the satellite perturbation depends
only on the properties of the underlying matter field in its unperturbed state: the
(self)-correlations existing among the particles ultimately leads to energy dissipa-
tion.

Under the hypothesis that the N dark matter particles of mass m are in virial
spherical equilibrium, the drag force F 4 on a satellite described as a point of mass
M reads:

Fal) = GMm3 [ ds [ a0 [V""@f"'i:((;)): 2"((5))|3
. Nor(t) — Ry(t)
) { - zj:|r(t)—Rj(t)’3} | 7.6)

where dI is the elementary volume in the 6V dimensional phase space (I") of the
particles in the halo, and f, the N-point equilibrium distribution function (here-

after we denote the total halo mass M, as Nm).
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Comment: The drag on Mj is a consequence of a memory effect that
develops with time. It requires the knowledge of the dynamics of the V
particles [R;(s), p;:(s)], as determined by the unperturbed Hamiltonian,
over the whole interaction time from ¢, ( when the perturbation is turned
on) to the current time ¢. The distribution function f; incorporates the

properties of the system in virial equilibrium.

Dark matter haloes in virial equilibrium can be regarded as an assembly of
collisionless particles subject to a mean field potential ¢, that can be computed
solving simultaneously the Poisson and the Boltzmann equation. The distribu-
tion function can thus be written in terms of the one-particle phase space density
f*(R,p). Under this hypothesis, and due to the statistical independence of the
particles, all cross correlation terms in the previous equation cancel identically
in the limit of N > 1. Only the self-correlation properties of the collisionless

background survive to yield:

Fa(t) =  (GM,)? Nm? ttds / PR d°p
w [ =RE) [ geor o x(s) R
g {V‘“”f 'lxr<s>—R<s>|~°’ / dR”‘)(”fr(s)—R'P”
r(t) - R()
r(t) ~R@)P -7

The new term appearing in brackets (involving the equilibrium background
density ng[r]) represents, at a given time s, the mean force acting on Mj resulting
from the system as a whole. The recoil of the halo (due to linear momentum con-
servation) is a coherent shift of all the orbits of the background particles, giving

origin to a global correlation among them.

Comment: TLR, as is formulated, can account naturally for the shift
of the center of mass of the halo and allows the use of the one-particle
distribution function f'® for the system in virial equilibrium (see Colpi
& Pallavicini 1998 and Colpi 1998). Thus, F 4 in the form of eq. (7.7)
is the force as measured in the non-inertial reference frame comoving

with the halo’s center of mass.
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In the context of the fluctuation-dissipation theorem, the braking force can be
seen as an integral over time of the correlation function of a fluctuating component

of the microscopic force:
F, (1) / ds K°(t — s) = / ds / FRAPYE, [P T (7.8)

where the self-correlation tensor reads:

b( ) — b
Th = (GM,)>Nm’ [if( |3 - [ @R'ng 8()) R
R“( ) —r(2)

The correlation function K(t — s) introduces a time scale 7 characterising the
rise time of the force F%(¢); it is the scale over which the particles redistribute the
satellite’s orbital energy into the internal degrees of freedom of the system.

Within TLR it is also possible to interpret F g in terms of a global time—
dependent density deformation, noting that eq. (7.7) can be written formally as:

r(t) —R

r(t) R
where the function An(R,t) maps the response, i.e., the time dependent changes
in the density field no(r) + An(R, t) resulting from the superposition (memory)
of disturbances created by the satellite over the entire evolution; the function
An(R,t) can be derived comparing eq. (7.10) with eq. (7.7) (see also Colpi &
Pallavicini 1998 for details).

Eq. (7.7) applies when the interaction potential between M and the particles

Far = —GM,Nm / PR An(R, 1) (7.10)

is weak relative to the mean field potential ¢ of the equilibrium system (when iso-
lated). This is the reason way only the properties of the halo in virial equilibrium
are requested to evaluate Fye. As a consequence, Fyy is accurate to second order
in the coupling constant G. Higher orders terms would describe the self-gravity
of the response, i.e., the modification in the self interaction potential due to the
external perturbation driven by M. Eq. (7.7) can describe the sinking of satel-
lites moving on arbitrary orbits, even outside the primary halo. Previous semi—
analytical studies focused on purely circular orbits (Weinberg 1986) to explore
the role of resonances and on almost radial orbits to explore the transient nature

of the interaction (Séguin & Dupraz 1994).
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Figure 7.1: Collection of orbits in the plane (z,y) computed within TLR, for z, = 0.5.
The main halo has an isothermal profile. From top left to bottom right the initial circularity
is € = 0.31,0.63,0.91, 1. respectively. Length is in units of R,. Each plot is labelled with

the corresponding dynamical friction time.
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7.2.1 TLR: the Force of Back-reaction in a Spherically Sym-

metric Halo

In a nonuniform collisionless background the back-reaction force on M results
from the combined action of a global tidal response related to the density gradients
(absent in an infinite uniform medium) and from the development of an extended
wake forming behind the satellite path that contributes mostly to its deceleration.
The force acquires a component along r as the symmetry around V is lost, the
underlying system being non homogeneous.

To estimate the drag in the domain where the satellite’s velocity V (determined
primarily by the mean field potential ¢, of the unperturbed background) is compa-
rable to the background velocity dispersion, the tidal and frictional contributions
are separated, in fact they are two different aspects of the same process. Exploiting
the time independence of the distribution function f ' and of the phase-space vol-
ume d*R d3v (hereafter f'P will be considered as a function of R and v = p/m
and normalized accordingly), the drag force (eq. [7.7]) can be equivalently written

as:

t
Fo= (GM)?Nm [ ds / PRV V, fP(R, V)
to

X |Veblie() ~ R — [ &R no(r) Ve (x(s) — R)
X Veo@(r) - R(t - ) (.11

where 1) is proportional to the Newtonian gravitational potential

1
r—R[

In eq. (7.11), r denotes the satellite position vector relative to the halo’s center

¥(lr = RJ)

(7.12)

of mass, and is computed self-consistently following the actual dynamics of the
satellite (that now acquires the reduced mass ).

Finally we identify two important weaknesses of the TLR formalism:

1. Because of the difficulty of including particle dynamics as determined by
the unperturbed Hamiltonian, Colpi (1998) approximated their motion as
linear giving:

R(t—s) =R+ (t—s)v. (7.13)
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Figure 7.3: Collection of orbits in the plane (z,y) computed within TLR, for 2 = 0.5.
The main halo has a NFW profile with ¢, = 10. From top left to bottom right the initial
circularity is € = 0.34,0.67,0.92, 1. respectively. Length is in units of j,. Each plot is

labelled with the corresponding dynamical friction time.
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Figure 7.4: As Fig. (7.3) but the orbital evolution is calculated using the Chandrasekhar
local approximation. The evolution is stopped at the same orbital angular momentum of

the corresponding TLR orbit.
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2. TLR does not describe short distance encounters as it is derived from a lin-
ear analysis expanded to first order in the perturbation. For a point like
satellite moving in an infinite uniform medium, these encounters lead to
a minimum impact parameter which is determined uniquely by V' and the
background velocity dispersion o. Then, since the satellite has a finite size,
in analogy with N-Body simulations, the short-distance two-body interac-
tion 7 is smoothed introducing in the microscopic gravitational potential a
softening length e. Colpi, Mayer & Governato (1999; hereafter CMG) com-
pared the model with N-Body simulations to test indirectly the validity of

such an approximation finding an extremely good agreement.

Warning: The TLR neglects the acceleration of the particles, i.e., their
“curvature”, during the interaction of the satellite. CMG noticed that

this simplification does not affect the accuracy of the method.

Finally, we notice that the drag force depends on the response of the particles
and, in turn, on the characteristics of their equilibrium state which is related to the

unperturbed density profile of the main halo.

7.3 The halo profile

As noticed in the previous Sections, an important role in the study of the orbital
evolution of a satellite is played by the unperturbed background density profile.

N-body simulations have been extensively used to study the internal structure
of DM haloes (Quinn et al. 1986; Frenk et al. 1988; Dubinsky & Carlberg 1991,
Carlberg 1994; Navarro, Frenk & White 1996; 1997; Cole & Lacey 1996, Tor-
men, Bouchet & White 1997; Fukushige & Makino 1997; Brainerd et al. 1998;
Ghigna et al. 1998; Tormen, Diaferio & Syer 1998; Huss, Jain & Steinmetz 1999;
Okamoto & Habe 1999; Moore et al. 1999; Eke, Navarro & Steinmetz 2001); the
shape of the inner slope of density profiles is hotly debated.

A systematic analysis performed on haloes of different mass identified at var-

ious redshifts, showed that haloes have a density profile characterised by a scale
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parameter . The so called NFW profile has the form p(r) oc 1/[r/rs(1+7/rs)?]
(Navarro, Frenk & White 1996; 1997).

More recently, Moore et al. (1999) suggested that a different profile, steeper in
the internal regions, is more appropriate to fit simulated DM haloes. The authors
proposed p(r) o 1/[(r/rs)**(1 + (r/rs)"5)] as the best fit to the N-body data.
This result is confirmed by Ghigna et al. (2000). They used ultra-high resolu-
tion /N-body simulations to study the internal properties of haloes. The authors
suggested that, increasing the resolution in the /N-body simulations, the profiles
become closer to the Moore et al. (1999) fit.

A detailed discussion on the halo profile is beyond the aim of this thesis for an
overview on this topic see Navarro, Frenk & White 1996, 1997, Moore et al. 1999,
Ghigna et al. 2000 and Eke, Navarro & Steinmetz 2001. In the following we will
use the singular isothermal profile, which allow simple analytical calculations and
compare the results with those obtained with the NFW profile. All the calculations
presented in this Chapter can be easily extended to the Moore et al. (1999) profile.

7.3.1 The singular isothermal sphere

If the halo profile is a singular isothermal sphere, then
‘/hZ
plr) = A7 Gr?
where Vj, is the circular velocity which is constant with radius.

(7.14)

The mass profile of a spherically symmetric halo (i.e. the mass contained
inside a sphere of radius r) can be obtained integrating eq. (7.14) over the spherical
volume

M(r) = A—[—hw ) (7.15)
Ry
here Ry, is the virial radius and M), is the mass of the halo inside R},.
Using the Poisson equation it is possible to derive the gravitational potential
6(r) = V2 1In (i) . (7.16)
Ry

To evaluate the decay time T}z of a satellite moving on a circular orbit it is

possible to analytically integrate eq. (7.3) to get

2y,
Thg = 117 =2

Y (7.17)
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(Binney & Tremain 1987).
Lacey & Cole (1993) extended this formula incorporating the dependence of

the sinking time on the initial circularity:
Tdf,rig — Trig€a~ (718)

They found o = 0.78 with an accuracy better than the 3 per cent. More recently,
van den Bosch et al. (1999) noticed that the decay time Tq4¢,i; depends more

weakly on the initial eccentricity and for the case 2. = 0.5 they proposed a=0.53.

CMG used TLR to study the decay of a satellite on a singular isothermal
sphere. Their results are consistent with that of van den Bosch et al. (1999). They
noticed that o depends on the energy of the orbit and that for the cosmologically
relevant orbits, the TLR approach (supported by a set of N-Body simulations),
gIVes Tag rig o €074

In Fig. (7.1) and Fig. (7.2) we compare the TLR and the local approximation
for a collection of orbits and a satellite of M = 0.02M,,. Both the shape of the or-
bit and the DF time—scale slightly differs. We notice that the 74¢ i evaluated using

the local approximation is in agreement with the Lacey & Cole (1993) estimate.

7.3.2 The NFW profile

Navarro, Frenk & White (1996) proposed a density profile characterized by a scale
parameter 7g:

O S—
P = R (ena) (1 + )

(7.19)

where x = r/R), is the dimensionless radius in units of the virial radius, ¢, =
rs/ Ry, is the concentration parameter, and 6, = ¢ /[In(1 + cp) — cn/(1 + cn)]-
A family of haloes of given mass and size does not have a unique NFW profile;

the concentration c;, plays the role of a free parameter that basically tells how

much of the total mass is contained within a given inner radius.
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Comment: The value of the concentration is not arbitrary. Eke, Navarro
& Steinmetz (2001) (see also Navarro, Frenk & White 1996; 1997)
noticed that the concentration reflects the mean density of the Uni-
verse at the (suitably defined) collapse time of the DM halo. For this
reason small haloes, that form at earlier time, are more concentrated
than more massive ones. If z, is the collapse redshift of a DM halo
cn < (1 + z.)/(1 + zp) (see Eke, Navarro & Steinmetz 2001 for the
details).

The mass profile can be written as:

In(14+cyz) —enz/(1+4cyx)
In(1+cp) —en/(1+cp)

and used to calculate the circular velocity profile, V2(r) = GM (r)/r, and the

M(r) = M : (7.20)

one-dimensional velocity dispersion o (r)

o?(r) = 75.53 V2(2.15Rp /cp) (cnz)(1 + en)? I(cnr) (7.21)
coe(Inl+y) 1
He) = /z [y3(1 T pargp) Y

(Kolatt et al. 2000).
The gravitational potential of a NFW halo can be written as:

v gy @/t a) a1+ o)
o(r) ==V (r)+V; In(1+cn) —en/(1+cn)

here V4, is the value of the circular velocity at the virial radius

, (7.22)

7.4 The Sinking of a Rigid Satellite in a NFW Profile

In this Section we explore the evolution of a rigid satellite of mass M; orbiting
inside a halo with NFW density profile. The halo is scaled to the Milky Way mass
My, = 10" M, has a tidal radius R}, = 200 kpc and concentration ¢, = 7 or 14,
within the spread of cosmological values (Eke, Navarro & Steinmetz 2001).

We carry out a detailed study of dynamical friction using TLR and N-body
simulations to gain insight into the physical mechanisms that cause the satellite

orbital decay.



7.4 The Sinking of a Rigid Satellite in a NFW Profile

151

Figure 7.5: Dynamical evolution of M;/My = 0.02 for ¢ = 7. The initial orbital
parameters are z.(F) = 0.3 and ¢ = 0.64 (top panel), ¢ = 0.34 (bottom panel). Solid
lines are the TLR results, points are the N-body data. We also plot the orbital angular
momentum normalized to the initial one as a function of time. TLR reproduces with good

accuracy both the path of the satellite and the loss of orbital angular momentum.
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7.4.1 The simulations

To test the ability of TLR to describe the orbital decay of a rigid satellite, we com-
pare TLR predictions with a set of /N-body simulations. We use numerical sim-
ulations performed with PKDGRAV, a high-performance parallel binary treecode
developed by the HPCC group in Seattle (Dikaiakos & Stadel 1996; Stadel, Wad-
sley & Quinn, in preparation). PKDGRAYV has multistepping capabilities which
makes it ideal for following accurately and efficiently a rapidly varying density
field like that typical of simulations with tidal interactions (see Mayer et al. 2001).
In the N-Body simulations the primary halo has 10° particles: it was first evolved
in isolation for 10 Gyr and the stability of the density profile was verified.

The simulations have been carried out by Lucio Mayer at the CINECA Super-
computing Center (Bologna) and on a dual-processor ALPHA workstation at the
University of Washington.

In Fig. (7.5) we plot the orbital path of a satellite M;/M,, = 0.02 for different
initial orbital parameters. The agreement between the numerical experiments and
the TLR prediction is very accurate: TLR reproduces the orbital evolution of the
satellite with an error lower that 5 per cent. This agreement also extends to the

loss of orbital angular momentum.

Comment: The N-body simulations and TLR agree in a number of
details on the evolution, the most remarkable being the temporary rise
of the angular momentum observed during the final stages of the de-
cay when M;/My = 0.02. This is a manifestation of the fact that in
the background medium, no longer uniform, the satellite moves inside
or close to its distorted wake that, near pericenter, induces a positive

torque.

7.4.2 The decay time in NFW profile

As TLR reproduces with excellent accuracy the /N-body simulations, we use this

semi—analytical approach to study the orbital decay of a rigid satellite.
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Figure 7.6: Dynamical friction time—scale Ty;z versus Ms/M,, for a satellite in a Milky
Way like halo with z.(E) = 0.5 and € = 1; filled symbols are from TLR, while open sym-

bols are from the local approximation of dynamical friction as given by solving eq. (7.24).

Dots refer to ¢, = 7 while squares for ¢, = 14; the solid line corresponds to the fit given
by eq. (7.23).

The first problem is to quantify the dependence of the DF time—scale on the
satellite mass M. In Fig. (7.6) we plot the dynamical friction time for circular
orbits Ty, for different M (expressed in units of My). We also explore the de-
pendence of 1}, with the main halo concentration, and we notice no significant

changes of the dacay time—scale for different values of cy.

Using TLR data, we provide a useful fitting formula:

AL

Trig ~ 13m‘3§c .

(7.23)
This fit tries to single out the dependences of T34z not only on M but also on the
satellite initial orbit in a simple way and ties to the familiar expression of Chan-
drasekhar (1943) derived in the local approximation for the drag force (eq. [7.17]).

As done for the isothermal profile, we can apply the Chandrasekhar formalism

to derive an analytical formula for T, in the case of NFW profiles. Treating the

background density and dispersion velocity as local quantities the orbital equation
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Figure 7.7: Dynamical friction time Taf,rig Versus circularity e for for M;/M, =
0.02,0.05 and 0.1. The orbital energy is z.(F) = 0.5 and ¢, = 10. The solid lines

are the model results (eq. [7.4] and eq. [7.30]) and the open squares are TLR data.

(eq. [7.3]) of a satellite spiraling down by DF along a circular orbit is:

1dlrVe(r)] _ 2y PTscn)
;T = —4rIn AG .ZV[S ‘/(:2 (7‘)
x [erf(Y) - 2%6-"2} (7.24)

where Y = V,(r)/+/20(r). This equation can be integrated grouping all quantities
depending on r, on the right hand side of eq. (7.24) to give

GMgIn A

Tri - -
B R}%‘/h

/0 O(z,ch) da . (7.25)

The function ©(z, ¢;,) has an analytical expression that can be fitted, with an av-

erage error of one part over 1000, as
O(z,cn) =~ f(eu) 2%, (7.26)

leading to a dynamical friction time—scale

2 1.97
Rth H

T ~ 067(@) Ghp Tk -

(7.27)
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where f(cy) is:

Flen) = 1.6765 + 0.0446 ¢y, . (7.28)

This simple analysis explains why a fit similar to that for a singular isothermal

sphere, as reported in eq. (7.23), is acceptable even in a NFW profile.

Comment: The concentration of the main halo plays an important role
in eq. (7.27) while it does not sensibly affect the decay time in the TLR.
This behaviour is shown in Fig. (7.6), where we plot the decay time for
cp, = 7 and ¢, = 14. We believe that, due to its local nature, the Chan-
drasekhar formalism is more sensitive to any variation of the density
profile. On the contrary, TLR (where the drag force is determined by
the reaction of the whole system) is less affected by the concentration

parameter.

The decay time on eccentric orbits

As accretion of satellite haloes occurs preferentially along rather eccentric orbits
we explored the dependence of T4 ri; On the orbital eccentricity. In agreement
with the results derived for the isothermal profile (Lacey & Cole 1993) we found
that:

Tdf rig = Trig e (7.29)

Using TLR, we found that o depends on z.(E), and on M;/My, and that
whereby relatively heavy satellites decay on a time almost independent of &,
lighter satellites decay on a much shorter time when € — 0. This is shown in
Fig. (7.7). A useful fit to « as a function of circularity and mass ratio is

a(ze, Ms/My) ~
0.475 {1 — tanh

10.3 (Me0)™ 7.5936} } . (7.30)

s,0
My
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7.5 The determination of the initial orbital parame-

ters

In the previous Sections we showed that the orbital evolution is determined by
the value of the initial orbital energy and angular momentum. Then, an important
aspect in the study of the evolution of satellites is to provide a reliable prediction
of the value of z.(F) and € in a Cosmological environment.

Cosmological simulations aimed at studying the building up of cosmic struc-
tures (Tormen 1997; Ghigna et al. 1998; Tormen, Diaferio & Seyer 1998; Kravtsov
& Klypin 1998) showed that the majority of satellite’s orbits have rather large ec-
centricities. In particular Tormen (1997) found that the distribution of the circu-
larity is symmetric and has an average value of 0.534-0.23 (1o of the distribution).
Cole et. al (2000) re-analysed Tormen simulations and they found that a particular
combination of the orbital parameters

78 | Te(E) ’

Oorp = €™ h%—] : (7.31)
is distributed according to a lognormal function. In details, the distribution of
Oob has mean value (log;((Oo)) = —0.14 and dispersion ((log;(Ocrp) —
(log19(©arb)))?)"® = 0.26.

In the semi-analytical, EPS-based codes for galaxy formation, the orbital pa-
rameters are in general Monte Carlo piked-up from suitable distributions: for ex-
ample Cole et. al (2000) use the log normal distribution, while Somerville & Pri-
mack (1999) extracts the eccentricity using the distribution proposed by Tormen
(1997) and assign each satellite the same initial energy: 7.(E) = Ry.

On the contrary, within the PINOCCHIO code, it is possible to predict the im-
pact parameters of the merging satellites, as the infall velocities and the relative
distances are known. Note that this calculation is analogous to that of angular mo-
mentum of haloes presented in §5.2. Given the impact (Zel’dovich) velocity Av
and the relative distance Ar the angular momentum and the energy are computed

as:

J = ArxAv (7.32)

E = %(Av)Z—Fqﬁ(!Arl). (7.33)
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Figure 7.8: The distribution of O, for the satellites that merge with a halo of mass
M = 2 x 10" Mg at z=0. The solid line is the Cole et al. (2000) analyitical fit, the
histogram is the PINOCCHIO result.

#(|Ar|) can be evaluated as the gravitational potential of a point mass which
touches the external layer of a spherical halo of mass M: ¢(|r]) = GM/|r|.
The linear growth of the relative velocity is stopped at a physical time equal to

one half of the merging time.

To study the ability of PINOCCHIO in predicting the orbital parameters of
DM substructures we compute the distribution of the orbital parameters of the
satellites that merge with a halo of mass M = 2 x 10'* Mg. The result of our
analysis are presented in Fig. (7.8), we compare the distribution of the ©, factor
measured in PINOCCHIO (histogram) with the theoretical fit derived by Cole et.
al (2000) (solid line). We note that the distribution measured from PINOCCHIO
reproduce with good accuracy the log normal function. The average value derived

by our analysis is (log,o(©om)) = —0.18 and the dispersion is ((log;y(Oorb) —
(10810 (Oorb))) )" = 0.23.
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7.6 Conclusions

In this Chapter we discussed the orbital evolution of rigid DM satellites moving
inside more massive haloes. We identified the dynamical friction as the main
responsible of the “death” of such satellites as the drag force drives them towards
the centre of mass of the system where they can merge with the central object.

We compared the TLR prediction with the results of high-resolution N-body
simulations and we find that this semi-analytical procedure reproduces the numer-
ical experiments with an accuracy better than 5 per cent.

Using the TLR predictions we provide a fitting formula for the decay time of
a rigid satellite in a NFW profile:

R121 Vh 2 o

GM.InA AT € o (7.34)

Tdf,rig ~ 1.3

where « is a function of the satellite mass and of the orbital energy (eq. [7.30]).
This fomula allow us to determin the time-scale for the death of rigid satellites

with an average error lower than 10 per cent.



Chapter 8

Dynamical Evolution of a live
Satellite

There is a connection here...

I just know it.

B. Watterson

The evolution of a rigid object is determined by the frictional drag force and its
survival time corresponds to the dynamical friction time. However, a real satellite
is not a rigid point mass but an extended distribution of particles moving on bound
orbits inside a halo. Its life is then dramatically influenced by the tidal perturba-
tions induced by the gravitational field of the primary halo. The global effect of
the tidal perturbation is the progressive evaporation of the satellite. This process
takes place during the orbital evolution and it is generally sensitive to the internal

properties of the satellite and of the surrounding halo.

Our aim is to model in a realistic way the tidal effects in order to evaluate the

mass that remains bound to the satellite, M;(t), at each time along the orbit.

This Chapter is organized as follow. In the first two Sections we describe the
tidal effects that induce the satellite mass loss. We distinguish two tidal effects:
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a tidal truncation (tidal cut), originated by the average tidal force exerted by the
main halo at the distance of the satellite (§8.1), and an evaporation effect induced
by the rapidly varying tidal force near pericenters for satellites moving on an ec-
centric orbit (§8.2). In the latter case we speak of tidal shocks — short impulses
are imparted to the bound particles within the satellite, heating the system and
causing its dissolution. In §8.2.2 we present a model to study the combined effect
of the orbital decay and of tidal stripping. Finally in §8.4 we discuss the fate of
a live satellite of initial mass M and we provide a simple analytical expression

for its decay time and disruption time.

8.1 The tidal truncation

A satellite is truncated at its tidal radius R4 that is the distance between the
center of mass of the satellite and the saddle point of the gravitational potential
of the total system. Loosely speaking R;q corresponds to the radius (relative to
the satellite center) at which the mean density of the satellite is of the order of the
mean density of the hosting halo, at the satellite position 7:

Ps(Riia) = pn(r) . (8.1)
The evaluation of the tidal radius requires a relation between Ry;q and r which

is customarily derived from the equivalence between the internal gravity and ex-
ternal tides leading to the implicit equation for Ryq:
R M;(Ryia) e
tid =7 {(2 —9lnM,/d1nr) Mh(r)}
(Tormen, Diaferio & Syer 1998). The mass tidally lost, A Mg, is computed sub-

(8.2)

tracting spherical shells with R > Ryq, using eq. (7.20) .

Warning: While strictly valid for a satellite moving on a circular orbit
(where the combined potential over the system is static in the satellite’s
frame) g gives, in the case of non circular motion, an approximate
expression for the instantaneous tidal radius (Binney & Tremain 1987).
This implies that, on stable orbits, AM};4 is maximum at the first peri-
center passage; the mass of the satellite would then remain constant.
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Figure 8.1: The residual mass of a satellite at the first pericenter as function of the orbital
parameters, when ¢s/cy, = 2. Each line is labeled with the corresponding M per/Ms,0,
where M per is the satellite mass at first periastron evaluated according eq. (8.2). We
assume that the “tidal cut” instantaneously reduces the satellite mass. The vertical dotted
line is the most probable value of the eccentricity in a cosmological environment (Tormen

1997), the dashed vertical lines are the 1o variance.

In Fig. (8.1) we give the residual mass after instantaneous tidal cut, as a function
of circularity, as computed using eq. (8.2).

Tidal stripping however does not occur instantaneously, and, following TB
suggestion, we model mass loss, over a few orbital periods, adopting the expres-

sion:
dM _ AMya(t)

dt — 2m/w(t)

where w(t) is the instantaneous orbital angular velocity. This is compared with re-

(8.3)

sults from numerical simulations !. Fig. (8.5) gives the satellite mass as a function
of time for a two different run. We find that mass loss by tidal cut, as described by
eq. (8.3), reproduces the result of our N-body simulation only in the early phase:
the satellite loses mass at a peace larger than predicted by eq. (8.3) (we refer to the
dashed line of Fig. [8.5]). We believe that this is due to the action of tidal shocks

and not a numerical artifact.

IThe N-Body simulations were presented in §7.4.1. In this case we employ 100.000 particles
for the primary halo and 50.000 particles for the satellites.
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In fact, the number of particles in the simulations is chosen in order to avoid, as
much as possible, numerical effects of two-body relaxation which could increase,
artificially, the overall evaporation rate (Moore, Katz & Lake 1996; Gnedin &
Ostriker 1999) . Numerical relaxation disperses satellite particles over a timescale

related to the number of particles NV

MY RES
G%®mIn(0.4N)

tn = 0.138 8.4)
where Ry, is the half mass radius and m is the particle mass.

As shown in Tab. (8.1) the initial relaxation time is ~ 100 Gyr and remains
longer than 10 Gyr as mass loss continues. This is an indication that numerical
two-body relaxation is unimportant. Thus, we proceed on modeling mass loss
with the inclusion of tidal shocks.

8.2 Heating & evaporation

The description of the dynamical evolution of a satellite must also include heating
due to compressive tidal shocks.

The theory of shock heating was developed by Ostriker et al. (1972) and
Spitzer (1987) to model the evolution of globular clusters. Recent works by
Gnedin & Ostriker (1997) and Gnedin, Hernquist & Ostriker (1999; GHO) also
extend this theory to tidal perturbations on satellites moving on eccentric orbits

inside an extended mass distribution.

8.2.1 Calculation of the tidal energy for a NFW profile

At each pericenter passage the satellite crosses very rapidly the central and more
concentrated region of the primary halo. The duration of those encounters is fast
compared with the dynamical time of the object. These interactions are called
tidal shocks (Spitzer 1987). We will use the results derived by GHO to describe
the amount of heating due to tidal shocks on a satellite moving inside an extended

mass distribution.
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During an orbital period P,y the tidal force fi;q per unit mass produces a global

variation on the velocity of the internal fluid:
Porb
Av = / fug dt | (8.5)
0

where we have applied the impulse approximation in the hypothesis that the time
scale of interaction is short compared with the dynamical time of the satellite
(t = 0 refers to the initial satellite’s position at apocenter).

In a spherically symmetric system of mass My, the tidal force per unit mass

exerted by the background on a dark matter particle of the satellite is:

G M, . N
fia =~ (3 — w)(F - Ro)f — pRd] (8.6)
h
where © = r/ Ry, is the direction to the center of mass of the satellite (CMS), Ry
is the position of the particle respect to CMS. Note that Ry, is the virial radius of

the main system. Here:

M(r)
r) = —— 8.7
is the adimensional mass profile, and:
dp(r)
") —
H (T) - dlnT . (88)

For a NFW profile 1 and 1 are functions of the normalized radius z = r /Ry, and

of the concentration ¢y, of the primary halo:

In(1 + cyz) — ez /(1 + cpz)

Hee) = e —a/ita) ®9)
and . )
’ B ChT
o, en) = In(1+cy) —en/(1+cn) (1 + ch:c) ' (8.10)

In the case of stable orbits the angular momentum J is conserved and we can

use the identity:
dt = (r*/J)do (8.11)

to re-write eq.(8.5) into components (GHO):

_ GM,

A
v rJ

{(By1 — Bs)z, (By — B3)y, —Bsz} , (8.12)



164 Dynamical Evolution of a live Satellite

[
9]

0.5

lftid(t)l/iftid.per]
(L A I I

0 2 4 6
t [Gyr]

Figure 8.2: The intensity of the tidal force |£;q(¢)| normalised to its value at the first
periastron |fiiq per|- We plot the module of the tidal force (eq. [8.6]) as a function of time
for a satellite of mass Mg = 0.01M}, and € = 0.7 z.(E) = 0.5. The solid line refers
to a stable orbit, the dashed line to an unstable one. When the drag force is active, the

intensity of the tidal force, and consequently of the shock energy, grows with time.

where:
0O,
Bi(ch) = / , Fi(z,cy) cos®6db , (8.13)
b
By(cn) = / " Fi(s,a) sin’0do, (8.14)
. —Om ,LL(:L’, Ch)
Bs(en) = /_em g, 8.15)
with:
— _ 2
Fl(x,ch):3[ln(1+chw) cnz/ (1 + epz)] [chx/(l%—chx)]. (8.16)

zln(1+en) — en/(1 + cn)]

Here 6,, is the maximum value of the position angle.

This velocity change causes a reduction of the binding energy of the system:
1
(AE) = <§]Av\2> . 8.17)

Averaging over an ensemble of dark matter particles in a spherically symmet-
ric satellite we have that (z?) = (y?) = (%) = R? / 2, and using eq.(8.12), the
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tidal energy gained by the satellite becomes:

R? . (8.18)

S

(AE) = ((jf}‘{) [<Bl “B (B By +B§}

We notice that in the previous expression the contribution due to the halo and the

orbital parameters (¢ and z2[F]) is confined in the function:

GMh)2 [(Bl — B3)?+ (By — B;)? + B?

Elen, we(E), €] = (Rﬁvh 622(0) & ] . (8.19)

where V4 is the circular velocity of the main halo at virial radius.

It is then useful to write the shock energy as:
(AE) = Z[cy, 2. (E), ] R2. (8.20)

When the frictional drag force is active, it is not possible to change the inte-

gration variable according to eq. (8.11). The energy change becomes:

2r _ 2 _ 2 2
(AE) = (G]Z[h> (A= Af + (A m A T4 e (g
Ry §
Here:
Porp
Ai(e,z[E]) = / Fy(z, cy) cos 0 dt, (8.22)
0
Porb
As(e,z[E]) = / Fy(x, ) sin® 0 dt, (8.23)
0
Porb /_,L([L‘,Ch)
Al alE) = [ EZE e (8.24)
with:
[In(1+ epz) — enz/ (1 + enz)] — [enz/ (1 + cnz)]?
Fy(z,cp) =3 . 8.25
(7, ) (L + o) — en/(1+ )] (8.25)
Once again we separate the contribution due to the environment:
M \? [(Ar — A3)% + (A — Ay)? + A2
Flen, ze(E), €] = (GR3{1> {(Al )"+ (6 2 = Ao+ 4 (8.26)
h

For an unstable orbit:

(AE) = Flen, 7.(E), €] RZ. (8.27)
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Figure 8.3: The amount of shock heating as function of the circular radius z.(E). (AE)
is normalized to the value of (AE) when z.(E) = 0.5 and e = 0.6. We consider three
different values of the circularity: € = 0.4 (solid line), € = 0.6 (dotted line) and € = 0.8

(dashed line). The satellite and halo concentration are chosen such as ¢/c, = 2.

The shock energy in this case must be evaluated along the perturbed orbit. As the
drag force drives the satellite in the internal region of the halo the (A E) increases
(see Fig. [8.2]).

This model is based on the impulse approximation, it is valid to describe tidal
shocks on particles whose motion is slower than the shock time. To account the
conservation of adiabatic invariants of the particles which orbital period is com-
parable with the duration of the shock we introduce the adiabatic parameter. We
define an adiabatic parameter, z, = w7 (Winberg 1995; Gnedin, Lee & Ostriker
1999; GLO), where 7 is the duration of the shock, and w = o,(R)/R, here o, is
the velocity dispersion of the satellite. The value of 7 is related to the periastron
crossing time: 7 = 0.5/w, where wy, is the orbital angular velocity at periastron.

The actual energy change is then:
(AE) = Fon, we(E), ] Alzr) RS, (8.28)

where A(z;) = (1 + 22)” and v = —5/2 as suggested by GHO, and F is given
by eq. (8.26).
We introduce a characteristic shock timescale computed, after each pericenter
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Table 8.1: Characteristic timescales
Model Cs / Ch tsh [GYT] P, orb [Gyl] 7frh [Gyr]

Low concentration

e=07 z.,=0.5 0.5 12.6 4.7 176.4
e=05 z2,=0.3 0.5 0.7 2.6 173.6
Intermediate concentration

e=0.7 2x2.=05 1 93.6 4.7 119.2
e=05 2.=03 1 2.00 2.6 112.6
High concentration

e=07 z.=0.5 2 130 4.7 80.7
e=05 z,=03 2 6.6 2.6 73.8

passage, as
Lo = P;rb ¥ Agi@ : (8.29)

where Fy = 0.25GM; per/Rsnm 18 the binding energy of the tidally truncated
satellite of mass Mj e, evaluated according to eq. (8.3) at the time of pericentric
passage. Both Fy and (AEyy,) are evaluated at the half mass radius Rgy, which
is a function of the satellite concentration. A second order energy variation due
to shock heating is responsible of the increase of the internal velocity dispersion
and allows additional particles to leave the satellite. To account for this second
order perturbation we assume that ty, = 0.43tgy (GLO). Table (8.1) shows the
shock time for the satellite modeled at first pericenter. The number of pericenter
passages roughly necessary to unbind the satellite is teh / Porb-

Lastly, we notice that (AFE) increases linearly with the halo concentration cy,
because in highly concentrated haloes the gradient of the gravitational force is
steeper.

The amount of heating is also a function of the orbital parameters; in Fig. (8.3)
we study the energy gain as a function of z.(E) for different values of the circu-
larity. The fast growth of (AE) for small values of z.(E) confirms that shocks on

radial orbits are more intense: a satellite moving on a circular orbit is not subject
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Figure 8.4: The escape probability as function of time. This cartoon qualitatively shows
the function &, (¢) if the satellite undergoes only one shock event (see GLO for a detailed
discussion). The origin of the time axis correspond to the moment of the tidal shock.
The orizontal lines show the analytical estimate of the & by Ambartsumian (1938), & =
0.0074, and Hénon (1961), & = 0.045. The thick solid line is the escape probability of a

pure relaxation case (GLO).

to any heating.

8.2.2 Modeling the mass loss

Tidal shocks are events leading to the escape of particles. To describe globular
cluster evaporation by two-body relaxation processes a so called “escape proba-
bility function” &, has been introduced (Spitzer 1987; GLO). Mass loss can be

predicted using the dimensionless rate of escape

oty dM
Similarly here we define:
tw dM
Esn ~ M) dt (8.31)

For the case of escape by two-body relaxation processes &g, is a constant known
to vary from 7.4 - 1073 for an isolated halo to 0.045 for a tidally truncated halo
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(Spitzer 1987). On the contrary, when tidal shocks are present and dominate, the
escape probability becomes a function of time; g, peaks just after each pericenter
passage (GLO), rapidly decreasing until the next shock event. We find that (using
both simulations and results by GLH) the escape probality can be fitted as:

t—1 or —0.5 t—1t or 0.5
En(t) o (~—~L> exp — ( P > , (8.32)
ttr ttr

where ty, ~ 131g, and tpe, is the pericenter time. The shock escape probability
is normalized to unity at ¢ = tper + tayn Where tqyy is the dynamical time of the

satellite.

Warning: The shock time must be evaluated at each pericenter as it
varies according to the actual orbit of the satellite and its mass or equiv-

alently its half mass radius.

The orbital timescale is often shorter that the shock timescale so that the satel-
lite suffers a number of repeated shocks that may lead eventually to its evapora-
tion. If it becomes unbound, further dispersal of the last particles occurs on the

crossing time of the damaged system.

8.3 Testing the model

The dynamical evolution of a satellite is described using a semi-analytical code
which accounts for both dynamical friction and mass loss. In this context, we use
the expression of the drag force as given in eq. (7.4), since it is much faster, and
in close match with TLR (see §7). At each time step we upgrade the satellite mass
according to eq. (8.3) and eq. (8.31). To test the ability of our code to follow the
evolution of an NFW satellite, we compare the results with those derived from a

set of NV-body simulations.

Tidal perturbations on stable orbits

To isolate and study the effect of a pure tidal perturbation we explore the dynami-

cal evolution of a low concentration satellite on an unperturbed orbit. In this case,
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the heating by tidal shocks varies solely as a consequence of the progressive re-
duction of the satellite’s half-mass radius. For this reason we expect a progressive

reduction of the shock destructive power as time passes.

In Fig. (8.5) we show the evolution of a satellite with mass Mo = 0.01M,;
the orbital parameters are chosen to reflect a typical cosmological orbit: € = 0.65
and z.(E) = 0.5. The bottom panel shows a low ¢/ cy, satellite, disrupted after the
second pericenter passage. The top panel shows the evolution of a higher ¢ /cy,
satellite surviving for more than 12 Gyr, despite having lost more than the 99 per
cent of its mass. Up to the first pericenter passage only tidal cut accounts for the
mass loss. The good agreement between the simulation and the code before the
first pericenter suggests that the TB recipes is accurate enough to reproduce the

mass loss before (or in absence of) the shock heating.

The combined effect of dynamical friction and tidal stripping

The dynamical evolution of a satellite is driven by the combined effect of dynam-
ical friction that drives the satellite to the center of the main halo and the tidal
perturbation which reduces its mass. The two processes are intimately connected
as the drag force is strongly related to the mass and size of the satellite.

In Fig. (8.6) we compare the semi-analytical model with the the results of N-
body simulations for satellites with ¢g/cy, = 2. The initial orbital parameters are
¢ = 0.7, and 2. (F) = 0.5. We study two different cases: a light satellite of mass
M; o = 0.02 M}, and a massive one with Mg = 0.1 M;,. The mass loss rate and the

orbital evolution are well reproduced in both cases.

The massive satellite loses mass during the orbital evolution, yet a core of
bound particles survives having 5 per cent of its initial mass but sinks to the center
merging with the main halo in 3 orbital periods. On the contrary, the light satellite
loses 99 per cent of its mass but a bound core remains which moves on an inner

orbit stable against dynamical friction, following mass loss.
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Figure 8.5: The mass loss rate of a satellite moving on a stable orbit. The orbital parame-
ters are chosen as € = 0.65 and z.(E) = 0.5. The halo concentration is ¢/cy, = 0.7 (top
panel) and ¢s/c, = 0.4 (bottom panel). The symbols are the N-body data and the contin-
uous line the semi-analytical model. We show the bound mass of the satellite normalized
to the initial one as a function of time. Stars identify each pericenter passage. The dashed

line is the asymptotic mass loss if we apply only the tidal cut using eq. (8.2).
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Figure 8.6: The orbit of a live satellite with /¢, = 2, the orbital parameters are € = 0.7
and z.(F) = 0.5. The points are the N-body data and the line the semi-analytical model.
We plot the time evolution of the mass normalized to the initial one (left panels) and the
orbital angular momentum scaled to the initial one (right panels). The initial mass of
the satellite increase from bottom to top, the adopted values are: Mo = 0.1 M} and
Mo = 0.02 My,.
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8.4 The satellite fate

Now, we use our semi-analytical model to investigate the fate of a live satellite.
An individual satellite is labeled by four parameters, x.[F] and € identify the orbit,
while initial mass M and concentration ¢ identify the internal properties. Each
combination of the four parameters leads to a different final state for the satellite:
rapid merging toward the center of the main halo (M), disruption (D), or survival
(S) (when a residual mass M, remains bound and maintains its identity, orbiting
in the main halo for a time longer than the Hubble time).

How much does mass loss affect the orbital decay? In Fig. (8.7) we give as a
function of the initial satellite mass, My /My, the ratio of the dynamical friction

time of a rigid satellite 74¢ 4, to the same time for a homologous live satellite

Tdf live-

Warning: We use highly concentrated satellites (¢s/c, = 2) that are not
rapidly disrupted by tidal interactions.

The figure shows that massive satellites (M; /M), > 0.1) sink to the center of the
main halo and the value of 74,4, for a satellite unaffected by the mass loss, gives
the correct timescale over which merging occurs. On the contrary, light satellites
with Mg o < 0.01 My, survive. Their 74¢ jive is longer than the Hubble time and we
assume that the ratio 74 rig /Tat live Vanishes.

In the mass range Mo = 0.01 — 0.1M), the satellites sink toward the center of
the main halo but lose mass so efficiently that the dynamical friction time becomes
two or tree times longer than 74 145, While still remaining shorter than the Hubble
time. Thus dynamical friction still decides their final fate (merging for the present
choice of the concentration ratio). In §8.4.1 we will give a simple expression for
the disruption time t4;5 that can be used for a comparison with the other timescales.

In the following, we estimate the analytical expression for Tat live 1N the three
regimes.

For massive satellites, Mo > 0.1 My, the dynamical friction time is not affected
by the mass loss so
RiVi

G—MS— Arig [Ms,o/Mh> mC(E), Ch} ) (8.33)

Tdf live ~ Tdf,rig = 0.5
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Figure 8.7: The life time of a satellite with ¢;/cp = 2.. We plot the ratio of the dynamical
friction time of a rigid and a live satellite of equal initial mass, as function of M o/My,.

z.(E) = 0.5 and we vary the circularity labeled with different symbols.

where
M, s,0

. 33:‘:97(E)
M, "¢

In (1 + Mh/MS’Q) ’

Asig (8.34)

(E),cn| = flen)

where f(cy) is given by eq. (7.28). In this case, Tqs live is NOt a function of the
orbital eccentricity.
For 0.01 My, < Mo < 0.1 My, we provide a useful fit:

Rﬁ Vh [MSO Cs ]
ive ™~ S Alive | 57— E s y 8.35
Tdt,1 e Ms,oAl M o z.(E), € (8.35)
where
Mo cs ) 0.25 Cs
ive —,—7—7 ’ =1]= — —0.07— 1.123
Al (Mh Ch e € (CS/Ch)G Cp +
M. oy 012 M. o 2
X [B(:cc) (Tff) + C(x) ( M:) } . (8.36)
Here
B(z.) = —0.050415 + 0.33554 z + 0.32807 azf , (8.37)

Cl(z,) = 2.1516 — 14.176 7, + 27.383 7 . (8.38)
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This fitting formula reproduces the semi-analytic estimate of the decay time of
a live satellite on circular orbits with an error of £ 10 per cent, for 0.2< z.(FE) <1.

For eccentric orbits we find that:

M, M,
Alive (_‘“iqa”c's":l'c"f) = Alive ( S’O;‘C‘iammgz 1)
Mh Ch Cp

——~—33> x (6—0.2)} , (8.39)

where

A43,0 - 8 2
Q ( T ,xc> = 0.9+ 10° (12.84 + 3.04 3 — 23.422)

(MS,O 0.0077

6
- — 0.0362 8.40
M, 1-1.08z 0.0 ) (8.40)

This formula reproduces the semi-analytical data with an average error lower than
15 per cent, when 0.9 < z. < 0.3 and 0.8 < ¢ < 0.3.

Comment: As a consequence of the shock heating that enhances the
mass loss, the decay time on eccentric orbits can be longer than the

corresponding circular one.

Light satellites, M, < 0.01 My, evolve on slightly perturbed orbits; the dynam-
ical friction timescale in this case is two times that of the rigid satellite (CMG
found a factor e longer for Mo = 0.02My).

An important role is played by the concentration ratio as shown by the life
diagrams in Fig. (8.8). These predict the final fate of a satellite with My =
0.01 My, as function of the ¢s/c, and of the orbital parameters. The fractional
area in this parameter space leading to disruption, survival or decay is an estimate
of the relative importance of these processes in determining the satellite’s fate.
Disruption due to the tidal perturbation is the fate of those satellites that initially
move on close orbits despite ¢,/c,. Satellites moving along typical (plunging)
cosmological orbits survive over a Hubble time only if they had a concentration
higher than that of the main halo at the time of their infall.

In Fig. (8.9) we have drawn the probability distribution relative to the three
final states: direct merging (by dynamical friction), which dominates at large
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Figure 8.8: The life diagram of a satellite with Mo = 0.01 M;,. Each plot is labeled
with the value of z.(E). We identify the region of the parameters space where the satellite

sinks to the center of the main halo (M), evaporates in the background (D) or survives (S).
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Figure 8.9: Probability distribution for the three final endpoints: merging (M), disruption
(D) or survival (S) as function of the initial satellite mass. The dotted line refers to the

case of a rigid satellite.
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Figure 8.10: The mass of a satellite with initial Mo = 0.01 My, as a function of the
orbital parameters after 15 Gyr. Dots identify the regions where the satellite is disrupted.

The contour line on the xy plane identify the loci where M;/Ms o = 0.1.

masses, survival and/or disruption which is the most likely end for satellite with
Mo < 0.01 M.

Comment: To produce the probability distribution relative to the three
final states we have generated evolutionary paths (ending after a time
equal to the Hubble time) for satellites starting from a uniform distribu-

tion of orbital parameters and concentrations.

Our study suggests that those satellites that survive have lost memory of their
initial state: dynamical friction perturbs the orbit and tidal stripping reduces the
satellite mass. In Fig. (8.10) we compute the mass of the satellites that remains
after a Hubble time. The figure refers to a high concentration case, but we also
extend our analysis to low concentrated satellites as shown in Fig. (8.11), where
we compute the mass distribution for all the initial orbital parameters. On average,
much less then 10% of the initial mass remains bound. Of course, in general
circular orbits do not cause serious damages to the satellite as shock heating is less

intense (an exception is represented by satellites on very tightly bound orbits). In
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Figure 8.11: The distribution of the final mass of a satellite M = 0.01M), after 15 Gyrs.
Histograms show the mass distribution for a uniform distribution of orbital parameters,

for two values of the concentration ratio: ¢/cy, = 2 (filled area) and ¢ /cp, = 1.

Fig. (8.10), dots show the final mass just prior evaporation. As expected, radial

orbits can more easily dissolve a satellite.

The strength of the orbital decay can be estimated measuring the reduction of
the apocenter. In Fig. (8.12) we plot the distribution of apocenters for a satellite
with Mo = 0.01M,, after 15 Gyr of orbital evolution. The strength of the drag
force reduces the apocenter by a factor of two for cosmological orbits and it is not

significantly affected by the concentration.

8.4.1 An rough estimate of the disruption time-scale

Because the lifetime of light satellites is mostly set by tidal disruption we estimate
the disruption time. If the main halo density profile is isothermal (ISO) then GHO
showed that the shock energy change is:

Vh)2 2sin? 0, + 462

<AE>ISO=(}—%~}1~ ey A (8.41)
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Figure 8.12: The apocenters in units of its initial value for a satellite Mo = 0.01My
evaluated after 15 Gyr. The two plots refer to ¢/c;, = 2 (bottom) and cs/c, = 1 (top).
Dots identify satellites that evaporate before 15 Gyrs. The contour lines on the xy plane
select the regions where the relative reduction of 7,5, is 0.1 (dotted lines) and 0.5 (dashed

lines).
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where 6y, is the maximum value of the position angle which varies from 7/2 to 7.

Using the orbit equation (eq. [7.2]) we can evaluate 0y,

Tapo d
0. =2ex. / ’ (8.42)
e 22y/In(ro/z)2 — (ro/w)2€ — 1
and the orbital period
d
Py = i (8.43)

2&,{ /'f‘apo
Vo Jroe \fIn(re/a)? — (re/z)2e =1

The shock in the ISO profile equals the shock of an NFW case when ¢y, = 30.
We have than:

At each pericenter passage the satellite is shock heated and its radius r is
reduced of a factor Ar. As a first order approximation Ar ~ r/N where NN is the
number of pericenter passages necessary to destroy the satellite. Then, we have

an implicit equation for NV

N+—1-Nfz'2~ Fo (8.45)
N = (AE)new '
where Ey = 0.5G M/ R; 0. The disruption time can be written as:
tais ~ Forb - N. (846)

This formula provides a simple estimate of the disruption time valid on cosmo-

logical relevant orbits with a precision of the 20 per cent.

8.4.2 Cosmological examples

Now, we apply our analysis to some cosmologically relevant examples. For all
cases, the initial orbital parameters are chosen as € = 0.6 and z.(£) = 0.5.

We discuss in detail the evolution of different satellites which orbit in cluster-
like and galaxy-like haloes. The cluster halo is a Coma-like cluster with mass

My, =5 - 10 M and concentration ¢, = 3.44.
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Group in Coma

We consider a group-like satellite of mass My = 3 - 10*3 M, and ¢; = 7.5 which
enters the Coma-like halo at z = 0.5. In a ACDM Cosmology it evolves for
~4.8 Gyr inside the halo until z = 0.

As suggested by the high value of ¢g/c;, the satellite is not disrupted. Since
Mo = 0.006M,, the orbit is stable and, with this choice of the initial orbital
parameters, the satellite evolves for ~ 1.5 Po,,. The final apocenter is Tapo =2
0.857apo,0 and its final mass is My = 7.2 - 102 M.

Milky Way in Coma

A Milky Way-like satellite has mass Mo = 10?M, and ¢, = 10.44. If it en-
ters the Coma-like halo at z = 0.5 it evolves for ~ 1.5 P.,;,. The orbit remains
almost unperturbed (rap, = 0.997,,, ) as strength of the drag force is extremely
weak since Mo = 0.0002M/,. Due to the extremely high relative concentra-
tion, ¢;/c, ~ 3 the satellite does not evaporate and its final mass ad z = 0 is
My =2.5- 10" M,

Large Magellanic Cloud in Milky Way

A Large Magellanic Cloud halo has M, = 10" Mg and ¢; = 11.9. As expected
due to its relative high mass, the satellite merges with the Milky Way in ~ 4 Gyr.
Before merging, the satellite loses 97% of its mass that is dispersed in the Milky
Way Halo.

Dwarf in Milky Way

We consider a Dwarf-like satellite of mass Mz = 5 - 10° M, and concentration
¢s = 13.6. If it enters the Milky Way halo at z = 0.5 it evolves on an almost
unperturbed orbit for ~ 2 P, and its final mass is M, = 2 - 108 M.

Dwarf in Milky Way at high redshift A Dwarf-like satellite enters a Milky Way
halo at z = 2, when the Milky Way has mass M}, = 10" M, and concentration
cn = 6.3. The satellite has Mgy = 5 - 10°My and ¢ = 13.6. The dwarf evolves
for ~11 Gyr. Due to its low relative concentration it loses 99% of its initial mass
during the first orbital period,; its orbit then becomes stable (Tapo = 0.3674p0,0)-

Note that we are not accounting for the evolution of the main halo which
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accretes mass during the 11 Gyr.

8.5 Summary and discussion

The fate of substructures is a complicated process to model. Our simple analysis
shed light on the fate of satellites, whether they merge, evaporate or survive under
the simultaneous action of dynamical friction and tidal mass loss.

In particular we provide a simple analytical recipe for the decay time of a
satellite on the basis of its mass, at the time of infall into the main halo (here we

refer to typical cosmological orbits):

e High mass satellites (Mo > 0.1My) sink rapidly toward the center of
the main halo without significant mass dispersal: the dynamical friction
timescale for a rigid satellite (eq. [8.33]) gives the correct timescale of merg-

ing.

e For satellites of mass 0.01My, < Mo < 0.1M; dynamical friction is still
strong and drives the satellite toward the center where tidal mass loss be-
comes severe. Low concentration satellites are disrupted, while high con-
centration satellites, severely pruned by the tidal field, survive with masses
0.01Mj, and settle into inner orbits with a typical reduction of the apoc-
enters of a factor ~ 0.1 relative to the initial value. The dynamical friction
timescale for these satellites is longer than for the rigid counterpart, and is

given by eq. (8.35).

o Light satellites with mass Mo < 0.01Mj are almost unaffected by dy-
namical friction which is operating on a rather long timescale. Mass loss
by the tidal field, which is not severe on these cosmological orbits, further

stabilizes the orbit.

e Low concentration satellites below 0.1M3, can be disrupted by tides be-
fore their orbital decay is complete. Comparison of the dynamical friction
timescale and the disruption timescale as provided by eq. (8.46), allows to
describe the actual lifetime of satellite haloes.
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Our results have several implications:

1- Because of the combined action of stripping and dynamical friction, a primary
halo at z = 0 will host preferentially satellites with mass M;/M; < 0.01 as
the heavier ones would have been accreted or/and dispersed in the background,
leaving a “depression” in the mass function of substructure above 0.01 M; /My, (of
course we are neglecting effects due to the evolution of the main halo itself). This
feature should be more evident in Milky Way-size halos than in cluster halos as in

the former bound satellites had more time to evolve.

2- Since the destructive power of the tidal field (and in particular of tidal shocks)
depends sensitively on the degree of circularity of the satellite’s orbit, a large
galaxy halo like that of the Milky Way (> 10'2/;,) should host satellites moving
preferentially on circular orbits as a consequence of the selective action of the tidal
field. Also, because dynamical friction seems unable to render th(; satellites’ orbit
circular, the low eccentricities should have been already present as initial condi-
tions. This “selection effect” will be extremely weak for smaller satellites (below
0.01 — 0.001 M) because their orbit barely decays and thus will have in general
long survival times (only low concentration satellites could disappear quickly but
they are not common in CDM models; see e.g. Eke, Navarro & Steinmetz 2001;
Bullock et al.2001). This mass regime corresponds to that of the dwarf spheroidal
satellites of the Milky Way. On the other end, the Magellanic Clouds, the dwarf
elliptical satellites of M31 and perhaps the dwarf spheroidal Fornax are all mas-
sive enough to fit in the intermediate regime where destruction is still possible;
thus these galaxies could have survived because their host haloes had nearly cir-
cular orbits. In the case of the Magellanic Clouds a nearly circular orbit is indeed
measured (Kroupa & Bastian 1999). There is, however, at least one caveat to this
interpretation, namely that both the dwarf ellipticals of M31 and the Magellanic
Clouds could be dense enough to survive shocks on even very eccentric orbits
(Mayer et al. 2001b). Only when all the orbits of the satellites will be accurately
determined we will know whether eccentricity or internal structure was more im-

portant in determining their survival.

3- A key result of our analysis, and one that is in agreement with the high
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resolution cosmological simulations from which the initial orbits were drawn, is
that the inner, most bound part of small satellites as concentrated as expected in
CDM models (Eke, Navarro & Steinmetz 2001; Bullock et al. 2001) survive for
timescales comparable to or longer than the age of the Universe. This residual
has a size corresponding to a few percents of the initial virial radius; this is com-
parable to the scale of the baryonic component in galaxies, so we can argue that
galaxies will mostly survive within the main halo. This result is also confirmed
by high-resolution SPH simulations of the formation of Milky Way-like galaxy
(Governato et al. 2002). Indeed, dissipation could make the inner part of the
haloes even more robust against tides (Navarro & Steinmetz 2001). On the other
end, additional tidal shocks occurring during encounters between substructures,
i.e. galaxy harassment (Moore et al. 1996, 1998), might have a counteracting
effect and could actually increase mass loss. However, detailed simulations of
this mechanism have shown that only very fragile, LSB-type galaxies would be
severely damaged by harassment (Moore et al. 1999); halo profiles of these galax-
ies likely correspond to the low concentration satellites studied in this Chapter
(Van den Bosch & Swaters 2001) which we have shown are easily disrupted even
by the tides of the primary halo alone. Thus, adding harassment would only ac-
celerate the disruption of a few satellites while not affecting the survival of the
majority of them which, in CDM models, have high concentrations. Hence the
picture emerging from the life diagrams of the satellites shown in this Chapter
is robust. Satellites close to disruption at the present time, like Sagittarius in the
Milky Way subgroup, must have been much bigger in the past in order for dy-
namical friction to drag them to an inner orbit where dissolution can easily take
place; alternatively they could have entered the halo at fairly high redshift, which
would place them naturally on an inner, tightly bound orbit (Mayer et al. 2001b).
In clusters, dwarf galaxies cannibalized by giant CD galaxies might also trace an

early population.

4-  Satellites infalling at redshift one or lower in the main haloes will com-
plete several orbits and eventually undergo morphological changes by tidal stir-
ring (Mayer et al. 2001a,b) and harassment (Moore et al. 1996, 1998). These will
produce diffuse streams of stars while they are orbiting (Helmi & White 1999;
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Johnston, Sigurdsson & Hernquist 1999), contributing to the build up of an ex-
tended stellar halo population. Such population should be present out to more
than 200 kpc in the Milky Way halo, as the plunging orbits of satellites seen in
cosmological simulations go this far out. On the contrary, a less extended stel-
lar halo should be expected if dynamical friction were more efficient in dragging
satellites to the center. The amount of stellar halo substructure out to large dis-
tances could thus reveal the original mass function of observed dwarf spheroidal
galaxies in the Local Group. Components decoupled in their kinematics as well
as in the metallicity and age of their stars should be present, but tracking such
properties might be a daunting task observationally if enough phase mixing oc-
curs (Ibata et al. 2001a,b); however, while in the inner halo fast orbital precession
and heating by other clumps might blur the streams, the phase space distribution
of the outer halo material should still carry the memory of the initial orbits of the
satellites (Mayer et al. 2002).
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Chapter 9

Conclusions

So far, so good... so what?

D. Mustaine

In this thesis I have tackled the problem of structure formation and evolution in a
hierarchical cosmological scenario from a semi—analytical point of view.

Since dark matter traces the visible matter and forms the potential wells where
galaxies arise and evolve, we have focused on the problem of the formation and
evolution of dark matter haloes, which only involve pure gravitational processes.

In doing this, we have considered two alternative ways of proceeding.

1- As a first attempt, I have developed a semi-analytical code able to gener-
ate merging histories of haloes based on the extended Press & Schechter
formalism. Such Monte Carlo procedure is a standard tool to construct syn-
thetic catalogs of haloes (Somerville & Primack 2000; Cole et al. 2000),
and provides a full description of the formation path of a given halo. How-
ever, this semi—analytical approach shows discrepancies at a level of a fac-
tor of 2 or more when its outputs (e.g. mass function and conditional mass
function) are compared with quantities measured from N-body simulations.

This can lead to errors both in the number of progenitor haloes and in the
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halo conditional mass function. Moreover, this procedure does not produce
the information regarding the position, the spin, and the internal structure
of the haloes. For this reason, we were not completely satisfied and tried a

different approach.

To overcome the limitations of the extended Press & Schechter procedure,
we have developed the PINOCCHIO code (Monaco et al. 2002; Monaco,
Theuns & Taffoni 2002). We have followed a two step approach which
mimics the hierarchical build-up of haloes through accretion and merging.
The first step identifies orbit-crossing as the instant when a mass element
undergoes collapse. Orbit-crossing is computed numerically by applying
the local ellipsoidal collapse approximation of the full Lagrangian pertur-
bative expansion. In the second step, the collapsed particles are grouped
into disjoint haloes, using an algorithm similar to the one used to identify
haloes in /N-body simulations. Loosely speaking, a particle accretes onto a
halo if it is sufficiently close to it at the moment of collapse. We have used
the Zel’dovich (1972) approximation to compute the positions of haloes and
particles. This second step automatically determines the full merger history
of haloes and requires negligible computer time. Compared to simulations,
the first step determines when a simulation particle enters a high-density

region, whereas the second one identifies the haloes.

The PINOCCHIO code generates catalogues of dark matter haloes with
known mass, position, velocity, merging history and angular momentum.
I have demonstrated that predictions from our code are very accurate when
compared with the results of large N-body simulations covering a range of
cosmological models, box sizes and numerical resolutions (Taffoni,Monaco
& Theuns 2002).

Both PINOCCHIO and the Merger Tree code based on the extended Press &

Schechter formalism are only aimed at identifying the haloes, while do not attempt
to compute their internal properties or their substructure. A post-run analysis
is required to assign a density profile to each halo and to follow the dynamical

evolution of its satellites.

The evolution of substructures of dark matter haloes has increasingly become
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an extremely hot topic since, increasing computer power and code performances
have recently allowed to carry out extremely high-resolution simulations that can
resolve the evolution of substructures (Ghigna et al. 1998, 2000; Mayer et al.
in preparation). These represent the new ground where CDM models have been
tested and their predictions compared to observations. These simulations how-
ever remain computationally expensive and usually only one system at the time
can be simulated down to very small scales. On the other hand, resolving the
mass function of substructures in depth is an important issue, given the problem
of overabundance of satellites (Moore et al. 1999; Klypin et al. 1999). Such
mass function can be viewed as the convolution of the mass function of satellites
before their entrance in to the main halo, with an evolutionary filter function that
depends on the dynamical mechanisms that govern the evolution of substructures.
Under the assumption that haloes are well described by a Navarro, Frank & White
(1996) density profile, I have analysed these dynamical mechanisms and devel-
oped a semi—analytical code which is able to predict if a satellite of given mass,
orbital eccentricity and infall redshift, will merge, evaporate or survive under the
simultaneous action of dynamical friction and tidal mass loss (Taffoni et al. 2002).

The code combines a model to compute the dynamical friction based on the
Chandrasekhar formalism with a novel recipe which accounts for the satellite mass
loss due to tidal stripping. The ability of this code to follow the orbital decay and
the satellite mass evolution has been successfully tested by comparing its results
with those derived from a set of N-body simulations.

I'have also provided useful analytical prescriptions for the decay and disrup-
tion rates of satellites within haloes which considerably improve the predictive
power of PINOCCHIO and the semi—analytical codes based on the extended Press
& Schechter formalism.

As a final remark about the future prospects of this research I would like to

stress a number of crucial points.

- Due to its ability to describe the evolution of clustering of haloes as a func-



190

Conclusions

tion of mass, PINOCCHIO is perfect to be combined with semi-analytical
models for galaxy formation (White & Frenk 1991, Kauffmann, White &
Guiderdoni 1993, Cole et al 1994, Somerville & Primack 1999). PINOC-
CHIO can be used to reliably generate mock galaxy catalogs, with the cor-
rect evolution of galaxy clustering built-in, while requiring orders of mag-

nitude less computational time than numerical simulations.

PINOCCHIO easy and accurate production of large halo catalogues can be
extremely useful when interpreting data and estimating errors from galaxy
or galaxy cluster surveys, as it is for instance the case of galaxy bias (Di-
aferio et al. 1999; Benson et al. 2000), power-spectra (e.g. Efstathiou &
Moody 2001), determination of the shear from weak lensing measurements
(van Waerbeke et al. 2000, Wittman et al. 2000, Bacon, Refregier & Ellis
2000, Kaiser, Wilson & Luppino 2000) or the study of the intrinsic galaxy
alignments (Crittenden et al. 2001, Brown et al. 2000).

By using our analytical prescriptions for the decay and disruption rates, we
can approach the substructure problem in a statistical way which is orders of
magnitude faster than with N-body simulations; as an example we are cur-
rently working on the possibility of exploring a large number of dynamical
histories of satellite haloes by randomly varying their orbital and structural
parameters in the range which is typical of cold dark matter cosmogonies
(Taffoni et al. in prep). In this thesis I have presented a first attempt which
considers uniform distributions for the above parameters. Clearly, the time
dependent potential of the growing primary halo, whether it is a galaxy or a
cluster, is an additional ingredient that only simulations can incorporate and
which could in principle affect the orbital dynamics of the satellites. The
latter limitation however can be partially overcome by using the merger tree
extracted from PINOCCHIO.

In conclusion, while a lot of work as been done, much more still has to come.
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