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INTRODUCTION

In this thesis we deal with some questions related to the asymptotic behaviour of
a sequence of minimum problems with convex obstacles for functionals of the calculus of

variations in the setting of vector valued Sobolev functions.

A classical problem consists in minimizing the Dirichlet integral [ |Du|?dz when
u takes prescribed values on the boundary of the domain  and is constrained to lie
above a fixed function 1 (compatible with the boundary conditions).

More precisely, given an open subset Q of R™ (n > 1) and a function #:{} —

[~00, +00], we consider the problem

I.1 i Dul?dx

(1.1) 13}32/9! ulda,

where

(1.2) K={ueH;(Q):u > ae on )}

(HX(R) denotes the usual space of (real) Sobolev functions with zero boundary condi-

tions). A more general class of constraints corresponds to sets K of the form
(I.3) K={ueH(Q):¢ <u < pae on},

where ¢: Q — [—00, +00] and ¢ < ¢ on . In both cases, if K # @ the existence of a
solution can be easily obtained by the direct method of the calculus of variations.

Let us point out the particular case when ¢ = ¢ = 0 on a closed subset E of 1,
and 1 = —00, w = 400 on O\ E. Then v € K means that v =0 a.e. on E, and the
variational inequality corresponding to (I.1) is actually an equation on 2\ E with zero

boundary conditions:

(1.4) {——Au:O on )\ E,

uwe HI(Q\E).
In order to be able to treat also constraints given on “thin” sets, such as lines in
R? or surfaces in R?, the condition ¢ < u < ¢ will be actually taken in the sense

“quasi everywhere” (q.e.) with respect to the usual H}(Q)-capacity.
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Introduction

A quite natural question which arises in several situations is the study of the
asymptotic behaviour of a sequence of problems (I.1) corresponding to a sequence (Ky)
of sets, as far as the convergence of both the minimum values and the minimizers is
concerned. For instance, given closed subsets Ej, of Q (h € IN), the corresponding
problems (1.4) constitute a sequence of Dirichlet problems in a perforated domain.

In such cases it happens to be convenient to deal with problems on a fixed vector

space of functions (the whole H}(Q)), replacing [, [Du|*dz by

/ |Dul?dz 4+ G, (u),
Q

where

0. if v e Ky,

+o0, otherwise.

(1.5) G, (1) = {

This simple trick leads to the study of a sequence of functionals on H}(Q). A suitable
setting to frame this analysis is the context of I'-convergence, introduced in the 70’s
by De Giorgi (see [20] for a thorough introduction). Indeed, it is a natural notion of
variational convergence for functionals which guarantees, under mild assumptions, the
convergence of the minimum points and of the minimum values. Another important
aspect is that it provides a general compactness theorem which allows, in the applications,

to start with an abstract limit functional.

A natural extension to vector valued Sobolev functions, though in the setting of

convex problems, can be obtained by considering sets of the form
(1.6) K={ueHj(QR™): u(x) € L(x) for qe. 2 € N},

where I is a multifunction from € to R" (m > 1) with non-empty closed convex
values. With a view to applications, fQ |Dul*dz in (1.1) is now replaced by a general
energy F(u) = fQ Wz, Du)dz, where W{xz, ) is a quadratic form satisfying suitable
boundedness and coerciveness conditions. For instance, if n = m = 3 and W(z,n) =
%Itr—é—(nT + )2+ pl3(T + )P (A, p > 0; 7 3 x 3 matrix), then F(u) is the usual
energy of linearized elasticity, while, if F is a closed subset of €, a functional Gk (see
(1.5)), for K = {u € H}(Q,R®) : u = 0 q.e. on E'}, may represent the effect of rigid
inclusions in the elastic body.

As in the scalar case (see Chapter I1I for detailed references) our aim is to deter-

mine the general form of the limit of a sequence (F + Gg, ), with Kj, as in (1.6) and
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Gk, definedin (1.5). Actually, we shall be interested in sequences of the form (£ + Gh),

where (G1,) lives in a more general class G closed under I'-convergence.

According to the foregoing outline, the thesis is divided into three chapters.

In the first one we take into account the sets K of the form (I.6). The main
result of this chapter (Theorem 4.1) is their characterization as the closed subsets of
H}(Q,R™) which are stable under convex combinations with C'-coefficients. We point
out that the usual methods applied for the scalar case, i.e., m =1 (see [6]), do not work
if m > 1, since they are based on the order structure of R (think, e.g., of truncation and
monotonicity methods). A straightforward application (Theorem 5.3) is that the limit of
minimum problems with obstacles corresponding to sets K, {2 € IN), is still an obstacle
problem of the same type, corresponding to a set A, if the sequence (K}) converges in

the sense of Mosco (see [36]) to K.

In the second chapter we give an integral representation theorem for the class
G mentioned above and hence, in particular, to the limits of minimum problems with
obstacles. More precisely, we shall consider an explicit dependence of the functional on
the domain, so that an element G of G is a functional from H'(2,R™) x A(Q) to
[0, 4+00], where § is a fixed open subset of R™ and A(Q2) denotes the family of all its
open subsets. G is required to satisfy the following properties:
(i) (lower semicontinuity) for every 4 € A(Q) the function G(-, A) is lower semicon-
tinuous on H(Q,R™);
(ii) (measure property) for every u € H'(Q,R™) the set function G(u,-) is the trace
of a Borel measure on Q;
(iii) (locality property) G(u, 4) = G(v,4) whenever v, v € H'(Q,R™), 4 € A(Q),
and uls = v|a;
(iv) (Cl-convexity) for every 4 € A(Q) the function G(-, 4) is convex on H'(Q,R™)
and, in addition, G(pu + (1 —¢)v,4) < G(u,A) + G(v,A) for every u, v €
HY(Q,R™) and for every ¢ € CH(Q) N Wh=(Q), with 0 <¢ <1 on Q.

If G € G, then (Theorem 6.5), for every v € H'(Q,R™) and A € A(Q)
Glu,A) = / glz,u(a))du + v(A),
A

where 1 and v are suitable positive Borel measures on 2 and ¢:Q x R™ — [0, +00] is

a Borel function, convex and lower semicontinuous in the second variable.
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Finally, in Chapter 3 we study the class G from the point of view of its convergence
properties, proving in particular, its closure (Theorem 4.1). Moreover, we single out a
special subclass which is relevant for the applications to Dirichlet problems in perforated
domains in linearized elasticity and which enjoys a nice closure property.

In the first two chapters we shall work, more generally, in the space W1 (Q,R™),

with 1 <p < +co.



Chapter I
A CHARACTERIZATION OF C*-CONVEX SETS IN SOBOLEYV SPACES

Introduction

A closed valued multifunction F: 2 — R™ on an open subset 2 of R™ is a map
F from § into the set of all closed subsets of R™. The set

(0.1) F={uecILP(QR™): u(z) € F(z) for a.e. z € Q}

of all LP selections of a closed valued multifunction F is closed and decomposable, i.e.,
if u, v are two functions in F and y is the characteristic function of some measurable
subset of Q, then yu + (1 — x)v belongs to F. |

F. Hiai and H. Umegaki proved in [32] that all closed decomposable subsets F
of LP(Q,R™), 1 < p < +o0, can be written as in (0.1) for a suitable closed valued
multifunction F. If, in addition, F is convex in LP(Q,R™), then F(z) is convex in R™
for a.e. z € Q2.

This result can not be extended directly to the case of Sobolev spaces, because the
only decomposable subsets of a Sobolev space are those composed of just one function.

In this chapter we show that, in the case of the Sobolev space Wy P(Q,R™), the
notion of decomposability may be replaced by the notion of C 1_convezity, introduced in
a more general context by G. Bouchitté and M. Valadier [10] (under the slightly different
name of C'l-stability) in order to study the commutativity properties of the operations
of integration and infimum.

A subset K of Wy ?(€,R™) is said to be C-convex if for every pair of functions
w, v € K the convex combination au + (1 — a)v belongs to K, whenever a € C*(Q2) N
Whe(Q) and 0 <a <1.

The main result of this chapter (Theorem 4.1) is that a closed subset K of
VVO1 P(Q,R™), 1 < p < 400, is C'-convex if and only if there exists a multifunction

K:Q — R™, with closed convex values, such that

(0.2) K ={ue Wy?(Q,R™):u(z) € K(z) for p-qe. z € Q},
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where p-¢g.e. means quasi everywhere (with respect to the intrinsic Wol’p(Q)—capacity)
and the pointwise value u(z) of u is defined, for p-q.e. = € Q, as the limit, as r — 0T,
of the average of u (with respect to Lebesgue measure) on the ball B(z,r) with center
¢ and radius r (see [43]).

In the case m =1 this result can be obtained by using the methods of [6], which
are based on the order structure of R. To treat the case m > 1 we have to use different
techniques.

The multifunction K which appears in (0.2) is not uniquely determined by X.
Our proof, however, provides a quasi lower semicontinuous multifunction K that, in

addition, can be written in the form
(0.3) K(z) = cl{uk(z) : k € N},

where (uj) is a suitable sequence in W, '?(Q,R™) and cl denotes the closure in R™.
We then prove (Corollary 3.4) that the value K(z) of a multifunction K satisfying (0.2)
and (0.3) are uniquely determined by K for quasi every z € Q.

Since all sets K of the form (0.2) are closed and C!-convex, to prove our main result
we have only to show that for every closed and C'-convex subset K of W, ?(Q, R™) there
exists a convex valued multifunction K:Q — R™ satisfying (0.2). It is not restrictive to
assume that 0 € K.

The construction of K is quite easy. Since £ N L*°(Q, R™) is dense in X (Propo-
sition 3.7), we can choose a sequence (ux) in XN L>®(,R™) dense in X for the strong
topology of W, P(2, R™) and we just define K(z) as in (0.3). The inclusion

K C{ueW,?(Q,R™):u(z) € K(z) for p-qe. z € Q}

is then obvious. To prove the opposite inclusion, we approximate the convex set K(z)
from the interior by means of the polyhedral sets Ci(z) defined as the convex hull in

R™ of the finite sets {ui(z),...,ur(z)}. First we prove the inclusion
(0.4) {u € Wy P(Q,R™) : u(z) € Cx(z) for p-qe.z€Q}CK,

and then we show that every function u € W,?(Q,R™), with u(z) € K(z) for p-q.e.
z € (), can be approximated, in the strong topology of T/Vol P(Q,R™), by a sequence
of functions vi such that vi(z) € Cg(z) for p-qe. z € @ . As K is closed, this fact
together with (0.4) shows that

{u e WyP(Q,R™) s u(z) € K(z) for p-qe. z € Q} CK
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and concludes the proof of (0.2).
The most difficult step is the proof of (0.4), which is obtained by showing that
the set of all convex combinations v = Zi goiu,- of the functions ui,...,u; with C?

coefficients !, ..., " is dense in the set
{fu e WyP(Q,R™) : u(z) € Cy(z) for p-qe. z € Q}

for the strong topology of W ?(,R™). This density result would be trivial if the
vectors u1(z),...,ur(z) were uniformly linearly independent in R™ (i.e., if the norm of
the exterior product ui(z) A --- A ug(z) had a positive lower bound).

Unfortunately, it is not easy to reduce the problem to this simple case. There-
fore, we prefer to use a different approach. First we prove an analogous result in the
space WH®((R™)*¥+1 R™) of Lipschitz functions. More precisely, denoting by M} the
set of vectors (£,61,...,6k) € (R™)*! such that ¢ € co{éy,..., &}, we prove (The-
orem 2.8) that the function w(§;€;,...,6) = € can be approximated in the weak®
topology of W1°(M;,R™) by convex combinations v = Y ,¢'u; of the functions
ui(€; &1, ..., &) = & with Lipschitz coefficients @0 (&;€1, ..., & ). Finally, we obtain the
desired result on Wy ?(€, R™) by a standard superposition argument (Theorem 2.9).

The proof of the density theorem in the Lipschitz case relies on some results
on Lipschitz parametrizations of convex sets recently obtained by A. Ornelas [37] and
S. Lojasiewicz, Jr. [33].

In the last section we apply our main result to prove a stability result for the class
of convex sets of the form (0.2). More precisely, in Theorem 5.3 we prove that, if (Kp)

is a sequence of closed convex subsets of W 'P(2, R™) of the form
Kn={ueWy?(Q,R™):u(z) € Kp(z) for p-qe. z € Q},

which converges to a set K in the sense of U. Mosco (see [36]), then the limit set K can
be written in the form (0.2) for a suitable multifunction K:{) — R™ with closed convex
values. This allows us to prove that, in this case, the limit of the minimum problems

with obstacles
min{®(v) : v € Wy P(Q,R™),u(z) € Ki(z) for p-qe. z € Q}

is an obstacle problem of the same type, under the usual convexity and coerciveness
assumptions on the functional @.
Another application of our result concerns the problem of the integral represen-

tation of C’-convex local functionals on W'?(Q,R™) and will be given in the next
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chapter. This will be the crucial step in the proof of a general integral representation
theorem for the “relaxed obstacle problems” (i.e., variational limits of obstacle problems,
see [22], [18], [8], [23]) in the vector-valued case.

1. Notation and preliminaries

Throughout this chapter p is a fixed real number, 1 < p < 400, and m, n are
two fixed positive integers. If B C R" is a Borel set we denote its Lebesgue measure
by |B|. The notation a.e. stands for almost everywhere with respect to the Lebesgue
measure.

If d is a positive integer, the (d — 1)-dimensional simplex ¥4 is defined by
Sa={AeR:N 4. 42 =1, A >0},
where A = (A,...,\?%). For every z € R? and r > 0 we set
B(z,r) = {y e R*: |ly—z| <r}.

If B C R is a Borel set, we denote its Lebesgue measure by |B|.
For any open subset  of R™ the space LP(Q2, R™) is endowed with the norm

[P /Q fulPdz)t/? |

Let W1?(2,R™) be the Banach space of all functions u € LP(Q2,R™) with first order

distributional derivative Du in LP(2,R™"), endowed with the norm

[ullwes@rmy = (lelzs@mm + 1Dullgs g rmn)) 7

The closure of C3(Q,R™) in W?(Q,R™) will be denoted by W"?(Q,R™). R™ will
be omitted, in the notation, if m =1. If u € Wol’p(Q,Rm), then u can be considered
naturally as an element of W1?(R™ R™) by setting u = 0 outside 0.
For every compact set K C Q we define the p-capacity of K with respect to Q2
by
cap,(K,Q) = inf{“cp“gvl_p(Q’R) o €C5°(R),p>1on K}.
The definition is extended to all subsets of Q as external capacity in the usual way (see,

for example, [15] and [43]). Let us note that the family of the sets of p-capacity zero does
not depend on 2, i.e., if £ C () then cap,(E,Q) = 0 if and only if cap,(E,R") = 0.
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Let E be a subset of R™. If a statement depending on = € R™ holds for every
¢ € E\ N, where N is a set with p-capacity zero, then we say that it holds p-quasi
everywhere {p-q.e.) on E.

A function f:Q — R™ is said to be cap,(:,2)-quasi continuous in ) if for every
e > 0 there exists a set E C Q with cap,(E,Q) < ¢ such that the restriction of f to
Q\ E is continuous. One can verify that f is cap,(-,{2)-quasi continuous if and only if
f is cap,(-, R™)-quasi continuous (hence, we shall drop the prefix cap,(-,2)).

It is well known (see, for instance, [27]) that for every u € W'?(Q,R™) there
exists a quasi continuous representative of u, which is uniquely defined quasi everywhere
in 2, and which is given by

lim 1 u(y)dy

r—ot |B(z,7)| Jp(a,n)
for p-q.e. z € . Throughout this work we shall use such a quasi continuous represen-
tative to individuate the pointwise values of an element of W1?(2,R™). Moreover, we
may also assume that the quasi continuous representative we are going to choose is Borel
measurable.

It turns out that for every subset E of {2
cap,(E,Q) = inf{[lullfrrq v € W{P(Q),u > 1 qe. on E}.

Actually this infimum is attained by a unique function which is called the capacitary
potential of E. It turns out that this function takes its values in [0,1].

If F is a multivalued function from a subset E of R™ to R™ and z; is a point of
1, we say that F' is lower semicontinuous in zo if for every open subset G of R™ with
G N F(zo) # © there exists a neighbourhood U of ¢ such that for every y € UN E
we have G N F(y) # @. It is clear how the notion of quasi lower semicontinuous
multifunction can be defined.

Finally, let us recall the notion of Hausdorff distance. For £ € R™ and E C R™
we set d(§,E) = inf{|¢ —n|:n € E}. If X and Y are any subsets of R™, let us define

p(X,Y) = max(sup d(y, X), sup d(z, Y)).
yeY zeX

The restriction of p to the family of all non-empty compact subsets of R™ is the Haus-

dorff distance.
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2. Lipschitz projections onto convex sets and a density result

In this section we derive some useful results from the theory of Lipschitz parame-
trization of convex sets by means of projections (see [37] and [33]). A first application is
in the proof of the basic density result expressed in Theorem 2.9.

We first recall two results we shall use in the sequel. Let us indicate the convex

hull of a subset A of R™ by co A.
Lemma 2.1. For every A, B CR™ we have p(co A,coB) < p(A, B).

Proof. Given € € coA we can write £ = aléy 4 --- + aF€, where a € &p and & € A
for every :. It is easy to see that d(¢,coB) < max d(éi,co B). Therefore

sup d({,coB) < supd(é,coB) < supd(,B).
£€co A EcA EEA

The analogous inequality with the roles of A and B reversed concludes the proof. [

Lemma 2.2. Let  be an open subset of R™, let u € WHP(Q,R™), and let f:R™ - R
be a Lipschitz function with Lipschitz constant L. If fou € LP(Q,R), then fou €
WbhP(Q,R) and

(2.1) |Di(fou)| < L|Dju| a.e. on §)
fori=1,...,n.

Proof. The result is classical if f isa C! function (see, for instance, [35] Theorem 3.1.9).
In the general case it follows by approximating f with a sequence of C'! functions with
Lipschitz constants bounded by L. U

Throughout this section let k£ be a fixed positive integer. Let C be the family of
all non-empty compact convex subsets of R™ and consider the map from R™ xC to R™
taking (£, C) into the orthogonal projection of ¢ onto C'. It turns out that this map is
non-expansive as a function of £ € R™, but as a function of C € C it is not lipschitzian
with respect to the Hausdorff distance. .

Indeed, given (£,61,...,&) € (R™)F ) let TI(;¢1,...,€k) be the orthogonal
projection of ¢ onto co{¢y,...,£r}. The following example shows that II(£,-): (R™)* —

R™ is not locally lipschitzian.
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Let m =2 and k = 2. Let us consider the set S of the points (z,y) € R? with
z>0and (z—1)24+y2>1. If &£ = (2,0), & = (0,0), {2 = (z,y) it turns out that
(& 61,62) = (;3_”*’_—22, ;—f—_’%%f) for every &2 € S. As 5%(;%—_%—2—) is unbounded near (0,0),
the map II(£;¢1,-) is not lipschitzian on S in any neighbourhood of the origin.

Nevertheless, making use of a selection of a suitable Lipschitz multivalued projec-
tion, it is possible to find a Lipschitz function on (Rm)k"’l with properties analogous to
those of the projection II.

This result is based on the following theorem (see [37] and [33]).

Theorem 2.3. Let C be the family of all non-empty compact convez subsets of R™.
Then there ezists a map P:R™ x C — R™ satisfying the following properties:
(i) there ezists a constant L >0 such that

|P(6,C) = P(£',C")] < L(l§ = ¢'| +p(C,CT)

for every £, & € R™ and C, C' €C;
(i1) P(£,C) € C for every E€R™, C €C, and P(£,C)=¢,1f £ € C;
(i) d(€,C) < |€ = P(¢,C)] <V/3d(€,C) for every £ € R™ and C €C.

Proof. Let us consider the multivalued map P from R™ x C to R™ defined as

P, C)=CnBEr),
where B(£,r) is the closed ball of center { and radius r = V/3d(¢,C). By Lemma 1 in
[37] (see also [33], Theorem 1), for every (¢,C) and (¢',C"),

p(P(£,C), P(£',C")) < (1+VB3)|E—¢€'|+3p(C,C").

Hence, P is lipschitzian. Let S:C — R™ be the Steiner point selection, which is Lipschitz
continuous on all of C with Lipschitz constant bounded by m (see, e.g., [40]). Then the
function P = § o P satisfies (i), (ii), and (iii). Ul

Corollary 2.4. There ezists a Lipschitz function Pp:(R™)*1 — R™ satisfying the
following properties:
(i) Pp(€;61,...,6) € coféy,... &k} forevery £,61,...,6k € R™, and Pr(&; 61, .., &)
= ¢, if €€ cofbr,en, ba);
(i) d(E,colérs. . E)) < 1€ = Pu(€iErr. 60| < VEA(E ol Ex}) for every
E,61,..., 6k eR™.
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Proof. If P is the function given in Theorem 2.3, we define

Pr(§56,- .-, &) = P(§,co{8, 58k} -

Properties (i) and (ii) follow immediately, while Lemma 2.1 ensures that P is lip-
schitzian. L

The next result follows immediately from Lemma 2.2.
Corollary 2.5. Let Q be an open subset of R™, and let u,uq,...,ur be functions in

Wy P(Q,R™). Then, Pe(u;us,...,ux) € Wy (Q,R™).

Remark 2.6. We underline that in this corollary we cannot replace P with the or-
thogonal projection II introduced above. Indeed, if m = 2 and k£ = 2, let us consider

the functions
u(t) = (2,0),  w(t) = (0,0),  ux(t) = (§sin®1,%)

for t € @ =]0,1[. It turns out that us(t) € S for every t € 2, where S is the set

introduced in the example preceeding Theorem 2.3. Hence

o~

2¢2gsint 1 4t sin? —1— )
b

tzsin4%+4’t2sin4%+4

I(u(t)us(8) wa(t) =
which does not belong to H*(]0,1[, R?).

Remark 2.7. Let u,uy,...,ur € WQP(Q,R™) N L®°(Q,R™) and let Ci(z) =
co{ui(z),...,ur(z)}. If u(z) € Ci(z) for a.e. z € Q, then u(z) € Ci(z) for p-q.e.
z € . Indeed, since Py is lipschitzian, the function Pg(u;uy,...,ux) is quasi-continuous
and by assumption Px(u;uy,...,ux) = u a.e.on 2. By well known properties of Sobolev
functions (see [27]) this implies Pi(u;uy,...,ux) = u p-q.e. on §, hence u(z) € Ci(x)
for p-q.e. z € Q.

The projection Py obtained in Corollary 2.4 will now be used for the proof of the
following theorem, on which the density result stated in Theorem 2.9 is based.
Let My be the set in (R™)**! defined by

A/Ik - {(67617"' "gk) E (R‘m)k+1 : f € Co{élw"aék}},
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and A be the multivalued map from M} into ¥ given by
A&, &) = {A et E= X1 +- AT

We point out that A does not admit a lipschitzian selection, nor even a continuous one.

In fact, let m =1, k =2, and consider, for any ¢ € ]0,1[, the sets
Tt = {(6761762) S R3 . 61 = 07 52 € R\\ {0}7 6 = th} (_'_: M2 -

It is clear that A(&;61,&2) = {(1 —t,t)} for every (§;61,62) € Ty. As (0,0,0) is an
accumulation point of Ty, every continuous selection of A should assume in (0,0,0) the
value (1—t,¢). But, clearly, it is impossible to satisfy this requirement for every ¢ € ]0, 1[.
Hence there are no continuous selections of A.

However, we can find a suitable approximation f.(¢;&:1,...,&k) of € such that
(6,1, &k) — A(fe(& &, .., Ek);ér, ..., &) has a lipschitzian selection. More pre-
cisely, the following result holds.

Theorem 2.8. For every ¢ > 0 there ezists a function fo:(R™)¥1 — R™ such that
(Z) 'fE(sa 617 v 7510) - gl <eg fOT EVETY (53 613 ‘e 7&/6) € (Rm)k-}-l ;

(11) fe is lipschitzian on (R™)*+1 with Lipschitz constant depending on k and m,

but not on €;

(153) fe(&;&1,...,&k) € co{lu,..., €k} for every (€,&1,...,&k) € My; moreover, there
ezists a locally Lipschitz function Ao My — X (with Lipschitz constant depend-

ing also on ¢) such that fo(&61,...,6k) = Zle AL(&; €,y - .-, Ex)Ei for every
(6761)"'7616) € Mk~

Proof. The proof will be by induction on k. The case k = 1 is trivial. Fixed k& > 1, let
us assume that the theorem is true for £ — 1 and let us prove it for k. Let us fix € > 0.
For every ¢ = 1,...,k and (£,£1,...,&;) € (R™)F! we define

Pir(&€r, . 6k) = Paca(660,. 6y 60,

where Pr_;1:(R™)* — R™ is the projection given by Corollary 2.4, and the notation .’3
means that the variable ¢; is omitted. Let us consider the function h;.: (R™)*1 — R™
defined by

hi,s(é;él,”'agk) - gE(Pi,k(égé.la'"agk);éla”- 75\1','" 7516)7
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where g.: (R™)* — R™ denotes the function f. corresponding to the integer £—1, given
by the inductive assumption. As P; x(&; &1, - ., &k) belongs to co{1,. .., a—, ...y &x}, from
the properties of g. we obtain that h;.(&;¢1,...,6k) € co{éy,... ,&iv. .. k) and that
|hie — Pik| < . In particular h;(&;&1,...,¢k) is a 2¢-approximation of { whenever
|P; k(&5 61, .., &) —€&| < e (or, by Corollary 2.4(ii), whenever d(¢, co{(, ... ,E,-, ooy €k })
<e/V3).

To obtain a global approximation satisfying the requirements of the theorem, we
shall modify the projection Ji:(£,€&1,...,&k) — ¢ by using the functions h;. for ¢ =
1,...,k, through a suitable partition of unity. To this purpose let us introduce the
following level sets in (R™)**1:

Ui = {|Pix— Jil <2¢} (i =1,...,k),
Up = ﬂf:;l{lpi,k — Ji| > e/4}.
These sets form an open covering of (R™)**!. Moreover, we consider the level sets
Vi= {|Pg—Jil<e} CU: (G =1,...,k),
Vo = ﬂf=1{lPi,k — Jk| > 5/2} CU,
which still constitute an open covering of (R™)*¥+1. Let 7.:[0,+00) — [0,1] be defined
by
1, if 0<t<e,
ne(t) = {2—§, if € <t<2e,
0, if t2> 2e.

We set now ‘
vie =neo|Pixk—Jkl (G =1,...,k),
k

Po,e = H (1 —Ne/a © Isz - Jkl) .

1=1

It is clear that
~_J1 omn Vi,
Pie = 0 on (Rm)k+l\Ui,
for ; = 0,...,k. As n. and P, are lipschitzian, it turns out that ;. is lipschitzian
on (R™)**!  Moreover, the Lipschitz constant satisfies the estimate
. & .
Llp(goi,e)gg i =0,...,k.

Here and in the rest of the theorem ¢ stands for a constant depending only on k& and m,
which can change from a line to another. Now we are in a position to define the desired
partition of unity. Since ¢ = z\:f:o @ie > 1 on (R™)*1, we can set

Pie .
Yie = —>— 1 =0,...,k).
» ( )
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It is easy to see that (3;.); is a partition of unity in (R™)**! and that ;. =0 on the
complement of U;. Moreover,

Lip(?,/),‘,e) <

™o

Let us define
k k
fe = o, Jk + Z VYichie = Jr + Z Vie(hie — Jk).
i=1 i=1

Let us now verify properties (i) through (iii), taking into account the analogous properties

of g. guaranteed by the inductive assumption. As to (i), note that on U;,for: = 1,...,k%
we have
(2.2) |hie = Jk|] < |hie = Pig|+ |Pix — Ji| < 3e.

This implies that (i) is satisfied with 3¢ instead of e (hence, actually, what we have
defined above is f3.). As ;. = 0 on the complement of U;, by (2.2) we get

Lip(¥i,e(hie — Jk)) < Lip(¢i,a)SLUlp |hie — Jk| + Sup Yi . Lip(hie — Ji)

< E-3a+c=4c
€

for every 1 = 1,...,k, so (ii) is proved, too. Let us come to (iii); it is clear that,
if (€,&1,...,ék) € My, then fe(&;&1,...,6k) € co{&1,...,€k}. Consider now the term
Yo,eJx. On Uy we have |P; — Ji| > £ forevery i = 1,...,k. Hence, if ({,£1,...,&x) €
M N Uy, (ii) in Corollary 2.4 implies

-~ E .
(2.3) d(é,co{y, ..., &y Ek}) > vk i=1,...,k.

As € € co{&y,...,&k}, the previous inequality shows that

k
(24) co{‘flv'-wgk} ?é Uco{éla"'vé\ir--aﬁk}'
=1

Let H be the affine subspace generated by £i,...,&r. By the Carathéodory Theorem,
(2.4) implies that H has dimension k — 1, hence &1,...,&: are affinely independent.
€

Moreover, by (2.3) the open ball in H with center ¢ and radius el is contained in
co{é1,...,¢&x}. Therefore,

(62— &) A (&2 = &) N+ A (Epmy — &) = a7,
where A denotes the exterior product. Thus, ¢ = Zle pi(€; €y, ... Ep)E;, where

#i(g;gl’ R )é'k) is given by
|61 = Ex) A A (& = ER)AN(E—Er) A (Eigr — Ex) N - A (Ek—1 — &k
(61 = &) Ave - A (€k—1 — &) .

It follows that ,ui is locally lipschitzian on My N Up.
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By the inductive assumption there exists a locally lipschitzian function v.: My_1 —
k-1 such that g.(&&1,...,8k—1) = Zf;ll Vg(ﬁfl, -y €k=1)&;; hence
h‘i,E(g; 61’" . aﬁk) = gE(Pi,k(E;élﬁ”-afk);flw" aéiv'-- 35/0)
k
- Z VZ{E(E; 617 cee aék)gj 3

i=1
i

where

i (e N S PG G )6 Gy, TS <,
pelfidn &) {ug—l(P,-,k(é;sl,...,&c);fl,...,a,...,fk>, ifi<j<k.

Finally, for every (€,£&1,...,&k) € My we have

k k k k
FelEi€aye ) = thoe D WE+ Y Wie Y vl =D Mg,
i=1 =1 = i=1
J#Ei
k .
where M = 1 .uf + Z 1/),-,51/,{5 are the desired lipschitzian coefficients. ]
i=1
i)

The foregoing theorem is the main tool in the proof of the following basic density

result.

Theorem 2.9. Let  be a bounded open subset of R™. Let uy,...,u) be functions of
Wy P(Q,R™) N L®(Q,R™) and let u € WIP(Q,R™) with u(z) € co{ui(x),...,ur(z)}
for a.e. © € Q. Then u € Wy P(Q,R™) N L=(Q,R™), and there exists a sequence of
functions @ R™ — Tp of class C°(R™, R*) such that

k
S gl v
=1

in the strong topology of Wy P(€, R™).

Proof. The boundedness of u follows from the boundedness of uj,...,ux. For every
h € N define vy, = gn(u;u1,...,ur), where g, is the function f. given by Theorem 2.8
for € = 1/h. Hence, by properties (i) and (ii) of g, and by Lemma 2.2, we have that
vy € WHP(Q,R™), v —u| < 1/h ae. in Q, and || Dvs||1s(q,rmn) is bounded uniformly
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with respect to k. This implies that (vy) converges to u weakly in W1P(Q,R™). By

(iii) of Theorem 2.8, for every h € N the function v, can be written in the form
k .
vp = Z/\z(u;ul, C L UR)UG
=1

where \i are locally lipschitzian. Thus, since u,u,...,ur are bounded and belong to
WhP(Q,R™), the composite functions A} (u;us,...,ux) belong to WP(Q, R™). There-
fore, vy € WiP(Q,R™) and u, being the weak limit of (v), belongs to W, '?(Q, R™),
too. Defining u,uy,...,ur as the zero function on R™\ {2, the extended functions belong
to WLP(R™, R™) N L®°(R™ R™), thus Ai(u;ug,...,ur) € Wib?(R™). This shows that
vy, belongs to the set H of all the convex combinations of uy,...,u; with coefficients in

WLP(R™®) N L=®(R™). This is a subset of W,?(Q,R™) by the boundedness of { and of

loc
ui,...,ur. Therefore, u is in the weak closure of H, and, since H is convex, u belongs

to the strong closure of H, too. Thus, we can find a sequence (wy) in H converging to
u strongly in Wy ?(Q,R™). Let

k
wp = E VUG
=1

with v4:R™ — ¥} and vy € I/Vé’f(R”,Rk).
Denote by (p;) a sequence of non-negative mollifiers, and let 5 ; = vi * pj.

Then,

Yn,; € Cw(Rn,Rk), Yh,j(z) € g for ae. z € R™,
Yh; — Vh strongly in W“’(Q,Rk).
J

If wy; = Zle zb};,jui, then for every h € N
Wh,j — Wh strongly in Wol’p(Q,Rm).
j

By a diagonalization argument we can assert the existence of a sequence (¢p) which

satisfies all the requirements of the theorem. il

3. Some properties of closed and Cl-convex subsets of W, ?(Q, R™)

In this section 2 is an arbitrary open subset of R".
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Definition 3.1. A subset H of WH?(Q, R™) is said to be C'-convez if au+ (1 —a)v €
H whenever u, v € H and a € CHQ)N Wh=(Q), with 0 < o < 1.

Remark 3.2. A closed subset H of W1 P(Q R™) is C''-convex if and only if for every
finite family (u;)ie; of elements of H and for every family (a');e; of non-negative func-
tions in C1(Q) N WH=(Q), such that o' > 0 and Y ,a' = 1, the convex combination
Ziaiui belongs to H. Indeed, assume that H is C'-convex. Let uq,...,us € H and
al,...,a® € CHQ)NWL®(Q), with o' >0 and };_; &' = 1. It would be clear by
induction that > ;_, a'u; € H if we had a' > ¢ for every ¢ € I and for a suitable ¢ > 0.
Since H is closed, we can reduce our problem to this case by considering the coefficients
ol = (o' +€)/(1 + s¢), and then by taking the limit as & goes to 0.

Proposition 3.3. Let K be a convez subset of I/Vol’p(Q,Rm). Then there ezists a closed
valued multifunction K from Q to R™, unique up to sets of p-capacity zero, such that

(1) for every u € K we have u(z) € K(z) for p-q.e. z € Q;

(11) if H i3 a closed valued multifunction from Q to R™ such that for every u € K

we have u(z) € H(z) for p-q.e. = € Q, then K(z) C H(z) for p-g.e. € ().

Moreover, K satisfies the following properties:

(111) K is quasi lower semicontinuous and K(z) is convez for p-g.e. z € ;

(iv) if (ur) @s a countable dense subset of K, then

(3.1) K(z) = cl{uk(z): ke N} = CI(U Ci(z)) for p-qe. 2 €Q,

k=1

where Ci(z) = co{ui(z),...,ur(z)}.

Proof. The uniqueness of K follows immediately from properties (i) and (ii). Let (ux) be
a countable dense subset of K. For every k € N we fix a quasi continuous representative

of ug, and for every z € {) we define
K(z) = cl{ug(z) : k € N}.

Let us prove (i). Given u € K, there exists a subsequence (v;) of (ux) which
converges to u in Wy '?(Q,R™); hence, a further subsequence converges to u pointwise
p-q.e. on . Therefore, u(z) € K(z) for p-q.e. = € (1.

To prove (ii) we observe that ux(z) € H(z) for p-q.e. z €  and for every k € N.
As H is closed valued, this clearly implies K(z) C H(z) for p-qe. z € {1.
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Let us now turn to (iii). Fix ¢ > 0 and let A. € Q with cap,(4.,{2) < ¢ such
that ug|o\ a4, is continuous for every k € N. For any zq € { \ A. and for any open set
G such that G N K(z¢) # O there exists kg € N with ug,(z¢) € G N K(z9). By the
continuity of ug, |\ 4, there exists a neighbourhood U of z¢ such that ug,(z) € GNEK(z)
for every =z € U\ A.. Therefore, K|g\4, is lower semicontinuous in zo. Let us verify
the convexity of K(z) for p-q.e. z € Q. By the convexity of K and property (i) there
exists a set N C Q with cap,(V,Q2) = 0 such that for every z € Q\ N, for every
A€ 1[0,1]N Q, and for every h, k € N, Aup(z) + (1 — Nug(z) € K(z). It is now
enough to note that {Aup(z) + (1 — Muk(z) : hk € N, A € [0,1] N Q} is dense in
A+ (1= NE 16,6 € K(z),) €[0,1]}. This concludes the proof of (iii).

Finally, (iv) now follows by noticing that for every k£ € N and for p-qe. z € Q,
Cr(z) C K(z) by the convexity of K(z) given in (iii). U

Corollary 3.4. Let K be a closed and convezr subset of Wg’p(Q,Rm). Then, up to sets
of p-capacity zero, there ezists at most one multifunction K from Q to R™ such that
(i) K(z) = cl{un(z): h € N} for a suitable sequence (up) in Wy P(Q,R™),
(i) K = {ue WiP(Q,R™):u(z) € K(z) for p-ge. € Q}.

We conclude this section by proving that if K is a closed and C!-convex subset of
W, ?(Q,R™), in Proposition 3.3 the sequence (uj) can be chosen in K N L®°(Q,R™).

To this aim we need the following two lemmas.

Lemma 3.5. Let Tx: R™ — R™ be the orthogonal projection onto the ball B(0,k), i.e.,

Lk _[& sk
TlEvVES T Vkg, Fldzk
where aVb = max{a,b}. If u € WHP(Q,R™), then Trou € WHP(Q,R™)NL>®(Q,R™)

and the sequence (T ou) converges to u in the strong topology of WHP(Q,R™).

Tk(€)

Proof. Let us fix u € WHP(Q,R™). As T} is lipschitzian, the function T} ou belongs to
W1P(Q,R™) by Lemma 2.2. Clearly, the sequence (Tou) converges to u in LP(Q2, R™);

moreover, since Tj has Lipschitz constant 1, again by Lemma 2.2 we get

/ D(Ty 0 ) — DulPds < 27~ / (ID(Ti 0 w)P + | Dul?)dz
o (ul2#)

< 2?/ (|Dul?)dz .
{lu|>k}

As k goes to +co we obtain that (D(T) ou)) converges to Du in LP(Q2,R™"). 1
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Lemma 3.6. Let u € W'Ol’p(Q,Rm) and let 1 be a measurable function from Q to
[0,1] such that Yu € Wy P(Q,R™). Then there exists a sequence (1n) of functions in
C>(R"), with 0 < ¢, <1, such that (Yru) converges to pu weakly in Wé’p(Q,Rm).

Proof. Let p € C§°(B(0,1)) with fB(D’l)p(m)dm =1and p > 0. For every h € N
set prn(z) = h"p(hz) for z € R™. Define v and % equal to 0 outside {2. Clearly,
Yu € WHP(R™,R™). For every h € N define ¢p(z) = (¢ * px)(z). It is well known
that ¢, € C°(R"™) and 0 < 9 < 1. Since (5) converges to 1 a.e. on R"™, we have
that (ipu) converges to Yu strongly in LP(R"™,R™). Therefore, in order to prove that
the sequence (Ynu) converges to u weakly in Wy P(Q,R™) it is enough to show that
the sequence (D(ypu)) is bounded in LP(2,R™"). This will be obtained by proving
that (v ® Dvy) is bounded in LP(2, R™"). For z € {2 it turns out that

(u® Dyn)(a) = / $(z — y)u(=) ® Dpuly)dy
Rn
= | %z —y)u(z) ® Dpuly)dy - / (z)u(z) ® Dpn(y)dy,
R" Rn
as . Dpa(y)dy = 0. It follows that

lu(z) ® Dn(z)| < / |u(z) — u(z —y)||Dpn(y)ldy

Rn

(3.2)
+ / ] [U(z — y)u(z — y) — ¥(z)u(z)||Dpn(y)|dy

for every z € 2. Set
I = [([ @)= ule -~ )lIDp(w)Idy) de.

By the Hélder inequality and the inequality [g. |[Dpa(y)ldy < ch, with ¢ independent
of h, we get

1< [([ 1) = utz - 0PIl | 1Dor(wldyyds
< (ehy™ [ (] 1u@) - stz = )P IDoa(u)ldy) e
= e [ ([ 1u(e) = u(e = y)Pds) Dpu(y)ldy.

The LP-estimate for the difference quotients (see, for example, [29] Lemma 7.23) yields
I < (erp™ [ ([ 1Dut)Pde) il Doty
Rn

< (ch}p—lh—p/ IDu(:L')Ipda:/ |Dpn(y)ldy < P / |Du(z)|Pdz .
Q R" Q
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In view of the fact that yu € WHP(R™,R™), the same argument gives

[ 1w =itz =) - s@nu@Dmldan) s < o [ 1DG0Pde.

By (3.2) the sequence ([, |u® Dty |Pdz) is bounded in LP(2, R™"), and the proof is so
accomplished. 1

Proposition 3.7. Let Q be bounded. Let K be a closed and Cl-convezr subset of
WEP(Q,R™). If KNL®(Q,R™) # @, then KN L®(Q,R™) is dense in K.

Proof. Since KN L®(Q,R™) # @, it is not restrictive to assume that 0 € K. Given
u € K, consider the truncated functions Tj o u of Lemma 3.5. Since the sequence
(Tr ou) converges to u in Wol’p(ﬂ, R™), to prove the corollary it is enough to show that
Trou € K for every k € N. By Lemma 3.6 for any fixed ¥ € N there exists a sequence
(Yp) in C°(R™), with 0 < ¢, < 1, such that the sequence (ipu) converges to Tk o u
weakly in W, P(Q,R™). Since Q is bounded, 0 € K, and K is C’-convex, we have that
Ypu € K for every h. It follows that Tp ou € K, as K is weakly closed. O

4, The main result
The following theorem is the main result of the paper.

Theorem 4.1. Let 0 be a bounded open subset of R™ and let K be a closed subset
of Wy P(Q,R™) with 1 < p < +oo. Then, K is C'-convez if and only if there ezisis a

multifunction K:Q — R™ with closed convez values such that
(4.1) K = {ueW,P(Q,R™) :u(z) € K(z) for p-ge. € Q}.

Moreover, K can be chosen as in Corollary 3.4(i).

To simplify the exposition of the proof, we consider previously the following results.

Lemma 4.2. Let (wy) be a sequence of functions in WHP(Q,R™) N L=(,R™) con-
verging in L®(Q,R™) to a function w € WHP(Q,R™)NL®(Q,R™). Then there ezists
a sequence (vg) in WHP(Q,R™) N L2(Q,R™) such that vi(z) € co{wi(z),...,we(z)}
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for a.e. x € Q and (vy) converges to w strongly in WHP(Q,R™). If, in addition, the se-
quence wy 18 contained in W'Ol’P(Q,Rm), then the functions vg belong to VVOI”’(Q,R"’“),

too.

Proof. Let us argue by induction on the dimension m. We will use the notation a Ab =
min{a, b} and a V b = max{a,b}.

Let m = 1. It is not restrictive to assume w = 0. It is easy to see that the
sequence

ve(z) = [wi(z) A ess sup wi) V essﬂinf Wi

satisfies our requirements.

Let us now prove the lemma for the dimension m > 1 assuming that it holds true
for m — 1. Again it is not restrictive to assume w = 0.

Let 0 < t <1/2. Clearly, since tw; — 0 as t tends to 0T, it is enough to prove

the existence of a sequence (vg) such that

(4.2) vi(z) € co{wi(z),...,wr(z)} for a.e. z € Q,
(4.3) vp — twy strongly in WhP(Q,R™).

As the proof is very technical, we work first under the additional assumption that there

exists § > 0 such that
(4.4) lwi|>6  onQ.

Consider the covering of R™ \ {0} consisting of the cones Ay,..., Ay defined by

Ay ={6eR™: > E/m} (i=1,...,m),
Ampi = {E€eR™: & < —|¢|/m}  (G=1,...,m),

where ¢ denotes the i-th coordinate of ¢. In view of the L°°(§2)-convergence we can

suppose that for every k£ > 2

té
4.5 T e
(45) ] < oo
Under these assumptions, for every i € {1,...,2m} and for every z € Q with wi(z) €

A;, the hyperplane
Hi(z) = {{ € R™: & = twi(z)}
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intersects the line segment between wi(z) and wi(z) in a point z; ;(z). The idea is to
reduce the problem to the dimension m — 1 by considering the sequence (z; ), which
converges to tw; on the moving hyperplane H;.

To this aim let us first find for every fixed i, with 1 <7 < m, a suitable extension
ik of zik to the whole Q (the case m < i < 2m will be treated analogously). It turns

out that
(1- t)wl

1
wy — wk

Zik = w1+ (wg —w1)

on the set {z € :wy(z) € A;}. Let
= {6 R™: ¢ > |€]/2m} DD A;N38B(0,1),

and let ¢; € C$°(B;) with 0< ¢; <1lon B;, ¢; = 1 on A;N0B(0,1), and ¢; = 0 on
B; N B(0, ) (this latter property will be used later). Since, by (4.4) and (4.5),

wi—wi>(1-t) 2 onf{reQigi(y) £0}C{zeQ: By e B},

fwi]

we can define on the whole  the function

) (1 - t)w1 (1—t)wy (1
ToE T (i —wl) (lel) (wi —wi) v (6/4m) #il iw1l) '

We note that 7; x is a function in W1?(Q). Moreover, it takes its values in [0, 1]; indeed,
by (4.4) and (4.5) we have

; ] 6
0< e LWL P10
= i,k = ; : -
(wi—wi) ~ wi- 2

on {ref: %(ﬁ-ﬁ(fﬂ)) #0} C{ze: gz € B;}. Thus the function

Gk = w1+ vik(we —wi)

is an extension of z; i, belongs to W1P(Q,R™), and satisfies the following properties:

(4.6) Cik(z) € co{wi(z),...,wi(z)}  forae z€Q,
(4.7) Cik — i in L*(Q,R™),
where

Go=[1—(1—t)pi()]wr .

|w1]
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We note that for a.e. z € Q all vectors (; x(z) of the sequence lie on the same hyperplane
{£ € R™: ¢ = ({(2)} (¢i(z) denotes the i-th component of (i(z)). Let Cix and G
be the functions with values in R™™! obtained from (; x and (; by dropping the :-th
component. By (4.6) and (4.7) we are able to apply the inductive hypothesis to (Ei,k)k
and (;. Therefore, there exists a sequence (;)r in WHP(Q,R™™1)n Lo(Q,R™1)
such that

vik(z) € co{g‘, 1(z), - 72: k(z)} for a.e. z € Q,
Ok = G strongly in WP(Q,R™TY).

Denote by v; x € WHP(Q,R™)NL>®(2,R™) the functions obtained by adding ¢! to Uig

as 1-th component. It is clear that

vi,k(z) € co{Cii(z),...,Cik(z)} C cofwi(z)...,wi(z)} for a.e. z € Q2
vik —= ¢;  strongly in WHP(Q,R™).

For every 1 € {1,...,2m} let ¢; € C§(4;) with 0 < ¢; < 1 and } ;% = 1 on
0B(0,1). Finally, for every k € N define

vp = szlﬁi(—w—l—)vi,k.
" w

It turns out that vg(z) € co{wi(z),...,wr(z)} for ae. z € Q and that (vk) converges
to tw; strongly in W1P(Q, R™); indeed the limit is

Zlbi(l%i—!) - t)goz Zw, “’1 S t)]wy = twy .
=1

Thus, the sequence (vg) satisfies (4.2) and (4.3) under the additional assumption that
|wi] > 6 on 2 for a suitable § > 0.
In the general case, to obtain such a sequence (vg) it is enough to find, for every

e > 0, a sequence (v{), such that
kK

vi(z) € cof{wi(z),...,wr(z)} for a.e. z € Q,
vE, — 2¢ strongly in W1P(Q,R™),

where ||z — twy||wir(o,rm) tends to 0 as ¢ — 0.
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Fix € > 0 and let § = §(e) > 0 such that
/ (Jwil? + [Dw1P)dz < e,
As

where A5 = {z € Q:|w(z)| < 26}. Consider now only those indices & which satisfy

(4.5), and replace in the preceeding argument +; x with the function

R (1 — tywi L wr (1-tw] .  w
Tik = (wi —-wi) vV (§/4m) %(lwll \Y 26) o (wi — w}c) il lwi| V 26)

(recall that ; = 0 on B;NB(0,3)). Thus, as one can easily check, we obtain a sequence
(vi k)r such that

vi k() € co{wi(z),...,w(z)} for a.e. z € 2,
vik —= Gi strongly in W1P(Q,R™),

where now

G=[1-(- t)eoi(ﬁ%)]wl .

Finally, for every k € N define

2m
w
vi = (1 —xs(w1)) ;W(T@Tlv?)”"”“ + xs(w1)wi ,

where (1;) is the same partition of unity employed above and xs is a function in CP(R™)
satisfying the following conditions: 0 < xs < 1, xs = 1 on B(0,8), xs = 0 on the
complement of B(0,26), and |Dys| < 2/6 on B(0,26). Thus, by the properties of xs,
it is clear that

vi(z) € co{wi(z),...,wr(z)} for a.e. z € Q.
Furthermore, (v§) converges in the strong topology of Wir(Q,R™) to the function

2m
2 = (1-Xs) Z T;s(1—(1 —t)®;5)wy + Xswi,

=1

where X5 = xs(w1), ¥is = wi(mll"—l’-\—/—g), and ®;5 = go,-(l—lgf“ﬁ/—é—g). Note that we have
2¢ = tw; on Q\ As = {z € Q: |wi(z)| > 26}. Take now into account that on As we
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have |w;| < 26 and, by Lemma 2.2, iD(TJlffW)] < 3 |Dw1|. Therefore we obtain

/ |z%Pdz < c/ lwy |Pdz
As As

/ |wy ® DXsPdz = / lwy @ [(Dxs)(wy) - Dwi]Pdz < c/ |Dw; [Pdz
As As As

/ |lwy ® DT, 5|Pdz < / (]wlllDwi(Tlﬁ—"ﬁ)]l—Qg—“—‘)pdz < c/ |Dw, |Pdz
As As As

/ w1 ® D®; s/Pdz < c/ |Dwq |Pdz
R As

As

where ¢ denotes a constant, independent of ¢ and §, which can change from line to line.

Hence

[ (= +1D=" e < ¢ [ (url? + |Dwap)de.
As

As
Therefore

I2° = twrllfin@mmy = [ 127 —twif’dz+ | [D(z° —twi)[Pdz
(2,R™) As

As

< c/ (Jw1]? + |Dwy|P)dz < ce.
As

This concludes the proof of the lemma in the case W1?(Q, R™). The case W, ?(Q,R™)
can be obtained from the case W1?(Q, R™) by applying Theorem 2.9. 1

To apply Lemma 4.2 we shall need the following Dini-type lemma.

Lemma 4.3. Let E be a compact subset of R™ and let (Hi) be a sequence of lower
semicontinuous multifunctions from E to R™ with closed values. Assume that (Hy)
is increasing with respect to inclusion, i.e., Hy(z) C Hrq1(z) for every k and z. Let
ue C°E,R™) such that

u(z) € cl([j Hi(z)) for every z € E.
k=1

Then, for every r > 0 there exists h € N such that B(u(z),r) N Hy(z) # O for every
k> h and for every xz € E.

Proof. It is not restrictive to assume u(z) = 0 for every z € E. Fix r > 0. For any
z € E there exists k = k(z) such that B(0,r)NHi(z) # ©. By the lower semicontinuity
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of H}, there exists a neighbourhood U(z) of z such that B(0,r) N Hy(y) # @ for every
y € U(z)N E. Since E is compact there exists a finite number of points z1,...,2, € E
such that

EC OU(ri).

Defining h = Toax k(z;), we have that B(0,7) N Hi(z) # O for every z € E and for

every k > h, since—Hj(a:) C Hj4q(z) for every j € N. L]

Proof of Theorem 4.1. Suppose K # @, otherwise there is nothing to prove. It is not
difficult to verify that it is not restrictive to assume 0 € K. Clearly, if there exists a
closed and convex valued multifunction K from  to R™ such that (4.1) holds, then

is C'-convex.

Assume now that K C W, P(Q,R™) is closed and C'-convex. Let K be the
closed and convex valued multifunction given by Proposition 3.3 (i.e., the least closed
valued multifunction containing the functions of X among its selections). By (3.1) and

by Proposition 3.7 we have

(e o]

K(z) = cl{ur(z): k e N} = ¢|( U Ci(z)) for p-qe. z €0,

k=1

where (ug) is a sequence in KNL>®(2,R™) densein K and Ck(z) = co{ui(z),...,ur(z)}.
By the definition of K(z) we have

(4.8) K C{uecW,P(Q,R™):u(z) € K(z) for p-qe. z€Q}.
Let us prove now the opposite inclusion. First we prove that for every k¥ € N
(4.9) {u e Wy P(Q,R™) : u(z) € Cr(z) for p-qe. 2€Q} C K.

Let u € Wg’p(Q,Rm) such that u(z) € Ci(z) for p-q.e. z € Q. Then, by the Density
Theorem 2.9 there exists a sequence () in C®(R™ RF), with ¢x(z) € Ty for every
z € {2, such that

k
Z ©hug —u strongly in Wy 'P(,R™).
=1

As K is C'-convex and closed, u € K. Thus, (4.9) holds.
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Fix now u € Wy ?(Q,R™)N L®(Q, R™) such that u(z) € K(z) for p-q.e. z € (.
Clearly, v and all the functions u; can be considered as defined with value 0 outside 2.
Let € > 0 be fixed. Then, there exists an open set A, C R", with cap,(A.,R") < ¢ such
that all the functions ug|g=\ 4, , 4|r~\4, are continuous. In particular, the multifunction
C¥ is continuous on R™\ A. with respect to the Hausdorff metric (recall Lemma 2.1).

By applying Lemma 4.3, for every h € IN there exists k; € N such that
B(u(z),1/V3h)NCr(z) # @ Vz€Q\ A..

Define
zh = Py, (usus,...,up,) € Wy P(Q,R™)N L=(Q,R™),

where Py, is the projection defined in Corollary 2.4. From the same corollary it follows
that

(4.10) zp(z) € B(u(z),1/h) N Ck,(z) Vz e Q\ Ae.

Let (. be the capacitary potential of the set A., i.e., the solution of the minimum

problem
min{[[¢fy1pgny s ¢ €WHP(R"), (=1 p-qe.on A.}.

It is easy to prove, by a truncation argument, that 0 < (. <1 p-q.e. in R™. Let us

define
wi = (.uy + (1 - Ce)zh on {2,

w® = (eur + (1 —()u on .
Thus, w§ and w® belong to Wy ?(Q,R™) N L*(Q,R™), and by (4.10) the sequence

(w$), converges to w® in L°(, R™). By Lemma 4.2 there exists a sequence (v;) in

Wy P(Q,R™) N L®(Q,R™) such that

vp(z) € co{wi(z),...,wi(z)}  forae. z €,
(4.11) vp — w®  strongly in Wy P(Q,R™).
Since co{w$(z),...,wi(z)} C co{ui(z),...,ux,(z)} for a.e. z € 2, by (4.9) the function
v belongs to K for every h € N. As K is closed, (4.11) implies that w® € K. Finally,

u € K, since (w®) converges to u strongly in W, "?(Q,R™) for ¢ — 0.

Thus, we have proved that

(4.12)  {ue Wy P(Q,R™)NL¥(Q,R™): u(z) € K(z) for p-qe. €} CK.
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To conclude the proof of the theorem, let us consider u € W, ?(Q, R™) with u(z) € K(z)
for p-q.e. z € Q. Since 0 € K, by (4.8) we have 0 € K(z) for p-q.e. = € 2. Hence,
Tr(u(z)) = W u(z) € K(z) for p-q.e. z € Q and for every k € N. By Lemma 3.5

Ty ou € Wy P(Q,R™)N L=(Q,R™),
Tiou — u  strongly in Wy?(Q,R™).

By (4.12) we have that T ou € K for every k € N; therefore u € K. ‘ L]

5. Extension of the main result and an application to variational problems

First we consider the extension of Theorem 4.1 to the case of arbitrary open subsets
of R™.

Theorem 5.1. Let Q be an open subset of R™ (not necessarily bounded). Let K be a
closed subset of Wy P(Q,R™) with 1 < p < +oo. Then, K is Cl-convez if and only if

there ezists a multifunction K from Q to R™ with closed convez values such that
(5.1) K = {ue WyP(Q,R™) :u(z) € K(z) for p-ge. z€Q}.
Moreover, K can be chosen as in Corollary 8.4(3).

Proof. Clearly the sets K of the form (5.1) are C'-convex. Conversely, let K be C'-con-
vex. To prove that (5.1) holds for a suitable multifunction K, it is enough to consider
the case & = R™. Indeed, for any given open subset @ of R", K can be naturally

considered as a subset of W1 P(R™ R™); therefore, once the case 2 = R" is proven,

K = {ueW"P(R"R™):u(z) € K(z) for p-qe. z € R"}
= {ue WyP(Q,R™) :u(z) € K(z) for p-ge. z € R"},
where in the last equality we have taken into account that K C W P(Q,R™). Now,
(5.1) follows by noticing that 0 € K(z) for p-q.e. z € R™\ Q.

Assume now Q = R™ and K # @; we can suppose that 0 € K. For every h € N
define By = B(0,h) and

Ky ={ueW;?(Bps1,R™):JvEK v=u ae on By}.
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We can apply Theorem 4.1 to K} obtaining
(5.2) Kn = {u€ WyP(Bpy1,R™) s u(z) € Kp(z) for p-qee. © € Bry1 },

where Kj(z) is closed and convex, and satisfies condition (i) of Corollary 3.4. We claim
that for every h € N

(5.3) Kp(z) = Kpy1(2) for p-q.e. € By, .

Let ¢4 be a function of C§°(Bpy1), with op =1 on B, 0 < ¢p <1, and |Dep| < 2.
Let us prove that Ki(z) C Kp41(z) for p-q.e. z € By. Fix u € Ky and let v € K such
that v =u on By; then wp11v € Kp41, so that

u(z) = prt1(z)v(z) € Kpt1(2) for p-q.e. = € By, .
Since u is arbitrary in Kp, by applying Proposition 3.3 (ii) with K(z) = Kx(z) and

_ I(h+1(:c), if z € By,
H(z) = {Rm, if £ € Bhy1 \ Bn,

we get Kp(z) C Kpq1(z) for p-q.e. € By.

To prove the opposite inclusion, we argue analogously applying again Proposi-
tion 3.3 (ii), now with K(z) = Khy1(z) and

[ Kp(z), ifz € By,
H(z) = {Rm, if 2 € Bpys \ Br.

Let us define K(z) for every ¢ € R" by setting K(z) = Ki(z) if = belongs to

By \ Bp—1. By (5.3), for every h € N we have

K(z) = Ki(z) for p-q.e. © € By.

Let us prove now that (5.1) holds. Given u € K, for every h € N we have that
onu € Ky, hence u(z) € Ki(z) = K(z) for p-qe. ¢ € By. It follows that u(z) € K(zx)
for p-q.e. z € R™.

On the other hand, consider v € W1P(R™ R™) with u(z) € K(z) for p-q.e.
z € R™. Since 0 € K, we have 0 € Kj(z) for p-q.e. * € Br4+1 and for every h € N.
Moreover, K(z) = Kj42(z) for p-q.e. z € Bpyo. Then, gpi1(z)u(z) € Kpya(z) for
p-q.e. T € Bpys; by (5.2) it turns out that @pt1u € Kpyo. Let v € K be such that
v = @p41u on Bpyo. Thus, ppu = ppv € K, being v a convex combination of v and
0. Finally, the convergence of the sequence (ppu) to u in WHP(R™ R™) yields that
u € K. U
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In the following theorem we drop the Dirichlet boundary condition imposed to the
functions of the set K ; correspondingly we have to require suitable regularity assumptions
to the boundary 9Q of Q. We recall that, if u € WHP(Q,R™), then

1
(5.4) lim ——— u(z) —u(y)ldy = 0
r—0+ lB(l},T’)I B(;r:,r)l ( ) )

for p-q.e. z € Q (see, e.g., [27]). If v,w € WHP(R",R™) are two extensions of u, and
z is a point of 9 where v and w satisfy (5.4), then the condition

.. Bz, )N Q2
lim inf !———(———2———| >0

3 T [B(e, )]

guarantees that v(z) = w(z). Hence, if, for instance, 0§ is bounded and lipschitzian,
then the poinwise values of u on 99 are uniquely determined, up to sets of p-capacity

zero, as the values of the quasi continuous representative of any Wh? extension of u.

Theorem 5.2. Let Q be an open subset of R™ whose boundary is bounded and lip-
schitzian. Let K be a closed subset of WUP(Q,R™). Then K is C'-convez if and only

if there ezists a closed and convez valued multifunction K from Q to R™ such that
(5.5) K = {ue WY (Q,R™):u(z) € K(z) for p-ge. z€Q}.

Moreover, K can be chosen of the form K(z) = cl{up(z) : h € N}, where (up) is a
sequence 1n WHP(Q,R™).

Proof. Clearly, it is enough to prove that every closed and C'-convex subset K of
WhP(2,R™) is of the form (5.5). Define

K={ue W (R"R™ :ulpgek}.

By Theorem 5.1 there exists a closed and convex valued multifunction K on R™ such
that
K={ue WPP(R™ R™):u(z) € K(z) for p-qe. z € R"}.

It is easy to see that K(z) = R™ for p-q.e. = € R™\ Q. Let us verify that (5.5) holds
for this K. Let u € K, and let v € WL?(R™,R™) be an extension of u. Then, v € l%,
so that v(z) € K(z) for p-qe. z € R", hence u(z) € K(z) for p-qe. 7 € Q.

Conversely, let v € WHP(Q,R™) such that u(z) € K(z) for p-qe. z € Q.
Consider an extension v € W'P(R" R™) of u. Since K(z) = R™ for p-q.e. z € R*\(,
we have v(z) € K(z) for p-q.e. z € R™. Therefore, v € K and we can conclude that
u=uv|g € K. C
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We conclude this section by applying our representation result (Theorem 3.1) to
prove the closedness, under the convergence in the sense of Mosco, of the class of the
subsets of Wy '?(Q,R™) of the form (5.1).

We recall that, if 2 is an open subset of R™ and Kj is a sequence of subsets of
W'Ol’p(Q,Rm), the strong lower limit s-liminfy ..o Kp of the sequence (Kjp) is the set
of all u € W'Ol P(Q,R™) with the following property: there exist £ € N and a sequence
(un) converging to u strongly in W, ?(Q,R™) such that u, € K for every h > k.
Moreover, the weak upper limit w-lim supp—oo Ki of the sequence (Kj) is the set of all
u € WyP(Q,R™) with the following property: there exist a sequence (uy) converging
to u weakly in Wy ?(Q,R™) and a subsequence (Ks,) of (Kz) such that uy € Ky, for
every k € N. '

If s-liminfy_. KXy = w-limsupp—o Kp = K we say that the sequence Kj

converges to K in the sense of Mosco (see [36]).
Theorem 5.3. Let K, be a sequence of subsets of Wo'P(Q,R™) such that
Kn = {ueWP(Q,R™) :u(z) € Kp(z) for p-ge. z€Q},

where K, are closed and convez valued multifunctions from §2 to R™. Then there ezists

a closed and convezr valued multifunction K from Q to R™ such that
s-li;ninflCh = {u e WyP(Q,R™):u(z) € K(z) for p-ge. z€Q}.

In particular, iof Ky converges to K in the sense of Mosco, then K can be written in the

form (5.1).

Proof. By Theorem 5.1, it is enough to prove that s-liminfp_.oo K is a closed and
Cl-convex subset of W'Ol P(Q,R™). Whereas the closedness is a general property of the

strong lower limit, the C'l-convexity comes from the fact that the same property holds

for the sets K. ]

The following corollary is an immediate consequence of the previous theorem and

of Theorem B in Section 2 of [36].

Corollary 5.4. Let Ky and Ky be as in Theorem 5.9 and let ®: W, P(Q,R™) — R be

a continuous convez functional satisfying the inequality

@(u) 2 a“u”gvl,p(Q’Rm) -b Yu € Wol’p(Q,Rm)
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for suitable constants a > 0 and b > 0. Assume that K converges to a set K in the

sense of Mosco. Then there ezists a closed and conver valued multifunction K from
to R™ (independent of ® ) such that the minimum values

min{®(u) : u € Wy P(Q,R™),u(z) € Kp(z) for p-ge. z € Q}

converge, as h — oo, to the minimum value

min{®(v) : u € Wy ?(Q,R™),u(z) € K(z) for p-ge. z€Q}.

For other applications of the convergence in the sense of Mosco we refer to [36]

and [5].




Chapter I1

INTEGRAL REPRESENTATION FOR A CLASS OF C'-CONVEX FUNC-
TIONALS

Introduction

This chapter contains an integral representation theorem for a class of convex
local functionals which arise in the study of the asymptotic behaviour of a sequence of
minimum problems with obstacles for vector valued Sobolev functions.

Given an open subset Q of R® and 1 < p < +co, let WHP(Q,R™) be the
usual space of Sobolev functions with values in R™, and let A(§2) be the family of all
open subsets of . The functionals G: W?(Q,R™) x A(Q) — [0, +00] we are going to
consider are assumed to satisfy the following properties:

(i) (lower semicontinuity) for every 4 € A(Q) the function G(-, A) is lower semicon-
tinuous on W1 P(Q2, R™);

(ii) (measure property) for every u € WHP(Q,R™) the set function G(u,-) is (the
trace of) a Borel measure on {2;

(iii) (locality property) G(u, A) = G(v, 4) whenever u, v € WHP(Q,R™), 4 € A(Q),
and u|q4 = v|a;

(iv) (C'-convexity) for every 4 € A() the function G(-, A) is convex on WHP(Q. R™)
and, in addition, G(pu + (1 — ¢)v,4) < G(u,4)+ G(v,A) for every u, v €
WLP(Q,R™) and for every ¢ € CH{Q)NWH>(Q) with 0 < <1 on Q.

This set of conditions is motivated by the study of the limit behaviour, as h — oo,

of a sequence of convex obstacle problems of the form

(0.1) min{/ W(z, Du(z))dz :u € Hy(Q,R™), u(z) € K(z) for p-qe. z € A},
Q
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where W(z,£) is quadratic with respect to ¢, 4 1s an open subset of 2 with 4 CC 2,
and Kj(z) is a closed convex subset of R™ for every h € N and for every z € Q2. By
using I'-convergence techniques it is possible to prove (see Chapter III) that the limit

problem can always be written in the form
min{/ W(z,Du(z))dz + G(u,4):u € Hi(Q,R™)},
Q

with G satisfying the conditions considered above.
In this chapter we are concerned only with the properties of G that can be deduced
from (i)=(iv). The main result (Theorem 6.5) is that every functional G satisfying (1)—(iv)

can be written in the form
(0.2) Glu,4) = [ Sl dn + wA),
A

where i and v are positive Borel measures and f: Q@ xR™ — [0, +c0] is a Borel function,
convex and lower semicontinuous in the second variable.

This result will be used in the next chapter to provide a detailed description of the
structure of the limits of sequences of obstacle problems of the form (0.1) under various
assumptions on W(z,§{) and K(z).

Conditions (i)-(iii) are not enough to obtain an integral representation of the
form (0.2). Indeed, even convex functionals depending on the gradient, like G(u, A) =
[ 4 |DulPdz, satisfy (i)-(iii). Condition (iv) is the most important one, and is responsible
for an integral representation of the form (0.2), i.e., without terms depending on the
gradient. This notion of convexity, also used, e.g., in [38] and [24], is strictly related to
the notion of Cl-stability introduced by G. Bouchitté and M. Valadier in [10], whose
results are frequently used here.

For a general survey on integral representation theorems in LP, WbY?, and BV
we refer to [12]. See also [1], [2], [9], [4], [28], [3] for more recent results.

In the scalar case (i.e., m = 1), integral representations on WhP(Q) of the form
(0.2), connected with limits of obstacle problems, can be found in [25], [22], [8], (18], [24]
under suitable convexity conditions, and in [19] under monotonicity assumptions.

Although the final statement in the vector case is exactly the same as in the scalar
case, the proof is completely different, since all arguments used in the papers mentioned
above rely on the order structure of R, involving truncations and monotonicity methods.

The main tools for the proof in the vector case are some technical results obtained

in the previous chapter, based on the theory of Lipschitz parametrization of convex sets



36 Chapter II

developed in [33] and [37]. In particular we shall use the following result (Theorem 2.9 in
Chapter I): given a finite number of functions uy,...,uy in WHP(Q,R™)NL>(Q,R™),
their convex combinations with smooth coefficients form a dense subset in the set of all
WP selections of the polyhedral multivalued function a + co{u;(x),...,ur(z)}, where
co denotes the convex hull.

The first step (Theorem 3.7) of our result deals with the integral representation
of the functional G on the set of all W1?-selections of such polyhedral multifunctions.

In Theorem 5.4 we extend the integral representation of G to all the functions
of WLP(Q R™) N L®°(Q,R™) which satisfy, up to sets of p-capacity zero, a suitable
“obstacle condition” of the form wu(z) € LK(z), which is necessary (but not sufficient)
for the finiteness of the functional. We note, incidentally, that the main difficulty in
the proof of our result lies in the fact that the functional G is not assumed to be finite
everywhere, in view of the applications to obstacle problems.

The restriction to L=(Q, R™), originated by the need of taking products of 11:7-
functions, is dropped in Section 6. Moreover, the “obstacle condition”, given up to
sets of p-capacity zero, is shown to be equivalent to the condition u(z) € K(z) almost
everywhere with respect to a suitable measure (Proposition 6.3). This allows us to obtain
the integral representation (0.2) for every u € W1 ?(Q,R™) and for every A € A(Q).

In the last section (Theorem 7.3) we prove that, if G is quadratic or positively

p-homogeneous, then sois f.
1. Notation and preliminaries

Throughout this chapter m, n are two fixed positive integers, p is a fixed real
number, 1 < p < +o0, and  is an open subset of R", possibly unbounded. We shall
denote by A(Q) the family of the open subsets of Q and by B(2) the family of its Borel
subsets.

If d is a positive integer, for every @ € R% and » > 0 we set B,(z) = {y € R¢:
ly — 2| < r}, while B,(z) denotes the closure of B,(x). We recall that the (d — 1)-

dimensional simplex ¥, is defined by
Se= {AeRUAN 4+ 40 = 10 > 0],

where A = (A!,...,\%). If C is a convex subset of R¢, we denote by riC' its relative
interior and by 9C its relative boundary. In particular, ri¥y = {A € R4 : M+ 4\ =
L,A" >0} and 054 = 54\ ri By,
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A subset A of O is said to be p-quasi open (vesp. p-quasi closed) if for every
¢ > 0 there exists an open set A, with cap,(4:,§2) < ¢ such that AUA. (resp. A\ 4.)

is an open set (resp. closed set).

A positive Borel measure p on  is said to be absolutely continuous with respect

to the p-capacity if u(B) = 0 whenever B € B(Q) and cap,(B,{) =0.

If E is a subset of Q and F: E — R™ is a multivalued function, i.e., F' maps
E into the set of all subsets of R™, then we say that F' is lower semicontinuous at a
point xy of E if for every open subset G of R™ with G N F(zg) # @ there exists a
neighborhood U of zy such that for every y € U we have G N F(y) # ©. We say that
F is upper semicontinuous in xo if for every neighborhood G of F(xg) there exists a
neighborhood U of xy such that F(y) C G whenever y € U. We say that F is quas:
lower semicontinuous (resp. quasi upper semicontinuous) on (2 if for every ¢ >0 there
exists a set £ C Q with cap,(£,§) < ¢ such that the restriction of ' to Q\ E is lower

semicontinuous (resp. upper semicontinuous).

Measurability. Let (X, M) be a measurable space. If p is a positive measure on (X, M)
we denote by M, the standard p-completion of M and we still denote by p the com-
pleted measure. If 4 is o-finite the M ,-measurability is equivalent to the p-measurability
in the Carathéodory sense. Moreover, M will denote the universal completion of M, i.e.,
the intersection N, M, for all positive finite measures x; equivalently, the intersection
can be extended to all positive o-finite measures p (see [14] Ch.III, parag. 4).

It is easy to verify that every quasi continuous function u: — R is p-measurable
(i.e., B,-measurable) for every positive Borel measure p which is absolutely continuous

with respect to the p-capacity.

For convenience, we state here two results which will play an important role to
prove the measurability of certain functions. They can be deduced from [14], Theo-

rem II1.23 and Theorem II1.22, respectively.

Theorem 1.1. (Projection Theorem) Let (X, M) be a measurable space. If G 1is
an element of M @ B(RY), then the projection pry(G) belongs to M.

Theorem 1.2. (Aumann-von Neumann Selection Theorem) Let X be a topolo-
gical space and let F' be a multivalued function from X to R%. If the graph of F belongs
to B(X)® B(RY), then there exists a B(X)-measurable function which is a selection of
F on the set {z € X : F(z) # O}.
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2. A class of Cl-convex functionals: preliminary properties

Let us first introduce our class G, of C'l-convex local functionals.

Definition 2.1. Let G, be the class of all functionals G: W »(Q, R™)x A(Q) — [0, + 0]
satisfying the following properties:
(1) (lower semicontinuity) for every 4 € A() the function G(-, 4) is lower semicon-
tinuous on W1P(Q, R™);
(ii) (measure property) for every u € WHh?(Q,R™) the set function G(u,-) is the
trace of a Borel measure on ;
(iii) (locality property) G(u,4) = G(v, 4) whenever u, v € WHP(Q,R™), 4 € A(Q),
and u]A = U’A;
(iv) (C*'-convexity) for every A € A(Q) the function G(-, A) is convex on W1 P(Q. R™)
and, in addition, G(eou + (1 — p)v,4) < G(u,4) + G(v, 4) for every u, v €
Wh?(Q,R™) and for every ¢ € CHQ)NIWH>=(Q), with 0 < © <1 on Q.

Example 2.2. Let I:Q — R™ be any multifunction with closed convex values and let

G:WhP(Q,R™) x A()) — [0, +c0] be the “obstacle functional” defined by

0, if u(z) € K(z) for p-qe. v € A,
G(u,A) =

+oo, otherwise.

Then G satisfies all conditions of Definition 2.1, hence G € Gp. As mentioned in the
introduction, it will be proved in the next chapter that all functionals which arise in the
study of limits of obstacle problems of the form (0.1) still belong to the class Gp.

Let 4 and v be two positive Borel measures on Q andlet f: QxR™ — [0, 4+c0] be
a Borel function such that f(z,-) is convex and lower semicontinuous on R™ for u-a.e.

z € Q. If pu is absolutely continuous with respect to the p-capacity, then the functional
Glu,A) = / fle,u(a))dp + v(A)
A

belongs to the class G,. In both examples the lower semicontinuity follows easily from

well known properties of the quasi continuous representatives of Sobolev functions (see,

for instance, [43], Lemma 2.6.4).
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Remark 2.3. Given a functional G of the class G,, let us consider the following

extension to WH?(Q,R™) x B(Q):
(2.1) G(u, B) = inf{G(u,A): A€ A(Q),B C 4}.

It turns out (see [26], Theorem 5.6) that condition (ii) of Definition 2.1 is equivalent to
the assumption that, for every u € W1?(Q, R™), the extension (2.1) of G(u,-) is a Borel
measure on 2.

In the sequel, when dealing with Borel sets, we shall always consider the extension
of G given by (2.1).

From property (iii) in Definition 2.1 and from (2.1) it follows that G(u,B) =
G(v, B) for every B € B(Q) and for every u, v in WHP(Q,R™) which coincide in a
neighborhood of B.

Note that, if G is the obstacle functional of Example 2.2, then, in general, its
extension given by (2.1) does not satisfy

0, if u(z) € K(2) for p-q.e. ¢ € B,
G(u, B) =
+o0, otherwise,
for every B € B(Q). For instance, if n = m =1 and @ =] —2,2[, let us consider the
obstacle functional G:W?P(, R™) x A(Q) — [0, 400] defined by
0, if u(z) > 2? for p-qe. z € A,
G(u,A) =
+oo, otherwise.

Then the extension (2.1) gives G(1,[0,1]) = +o0, although 1 > 22 for every z € [0,1].

Remark 2.4. If G is a functional of G, and A € A(Q), then for every finite fam-
ily (u;)iesr of elements of WH?(Q,R™) and for every family (¢')ier of non-negative
functions in C*(Q) N W1°(Q) such that > ,¢' = 1 in Q, we have G(Y p'ui, 4) <
S, Glug, A). Indeed, let wy,...,ur, € WHP(QR™), ot .., 0" € CHQ)nwWh=(Q),
with ¢! >0 and >;_, ¢' = 1. It would be clear, by induction, that GO plui, 4) <
Sy Gug, A) if we had @' > ¢ for every i = 1,...,r and for a suitable ¢ > 0. Since
G is lower semicontinuous, we can reduce our problem to this case by considering the
coefficients ¢ = (¢! +¢)/(1 +re).

We also notice that, by using the definition (2.1) of G' on Borel sets, property (iv)
holds for A € B(£2), too.
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Given G € §,, we now generalize to Borel sets the locality property (iii) for G
(Proposition 2.6). As a consequence we can single out that part of the functional G
which is absolutely continuous with respect to the p-capacity (Proposition 2.8).

For the proof of the locality property on Borel sets we need the following remark,
which, for future convenience, we state in a slightly more general form than actually

needed here.

Lemma 2.5. Let s >0 and Ts: R™ — R™ be the orthogonal projection onto the ball
ES(O), i€,

57 ’Lf Igl S 3,

ol—g—] . if €] > s,
If ue WhP(Q,R™), then Tyou € WHP(Q,R™)NL>(Q,R™) and the sequence (T, ou)
converges, in the strong topology of WhP(Q,R™), to 0 as s goes to 07 and to u as s

goes to +o0.

Proof. Since T, is lipschitzian, for every fixed u € W1P(Q, R™) we have Ty ou €
WhP(Q,R™) by Lemma 2.2 of Chapter I. We prove only the convergence as s tends to
0%, the other part being analogous. Since (7, ou) converges to 0 strongly in LP(Q,R™),
there is only to verify the same kind of convergence for (D(Ts o u)). Let o > s: since
orthogonal projections have Lipschitz constant 1, the pointwise estimate in Lemma 2.2

of Chapter I yields

/ |D(Ts ou)Pdz = / |D(Ts o u)|Pdzx + / ID(E—(_TU ou))|Pdz
Q {lu] <o}

(lul>0) @

5/ |Du;1’dx+(iy)/ |Dul?dz .
{Jul <o) o’ Ja

The conclusion now follows taking first the limit as s tends to 07 and then the limit as
o tends to 07 . U

Proposition 2.6. (Locality Property on Borel Sets) Let u,v € Wir(Q,R™) N
L*=(Q,R™) and B € B(Q). If u=v p-qe. on B and G(u,B), G(v,B) < +oc. then
G(u,B) = G(v, B).

Proof. Step 1. Assume B is quasi open. For every h € N, let 4, be an open set

with capp(Ah,Q) < 1/h and such that B, = BU 4, is open. Let w, be the capacitary
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potential of A, and uj, = u + wp(v — w). It turns out that uw, = v p-q.e. on By
Moreover, (uy) converges to u in W1H?(Q, R™) since (wy) converges to 0 in TV17(Q)
and 0 <wj, <1 forevery h € N.

Since by assumption G(u, B) < +cc and G(v, B) < +o0, it follows that for every
given £ > 0 there exist an open set A and a compact set [ with ' € B C 4 such that
Gu, A\ K) < € and G(v, A\ ) < ¢.

By the lower semicontinuity of G on open sets we get

(2.2) G(u,B) < G(u,4) < lilmkinf G(up,4) < 1iminf[G(uh,AﬂB/l)+G(u;l,A\K)].

h—oo

From the locality property of G on open sets it follows that
(2.3) Glup, ANBy) = Glv,ANBy) < G(v,4A) < G(v,B) +¢.

By approximating wy, in W1P(Q) with a sequence of equibounded functions of Ci(),

the semicontinuity and Cl-convexity of G' (properties (i) and (iv)) imply that
(2.4) Glup, A\K) < Glu, A\ )+ G(v, A\ L)

Hence, G(up, A\ K) < 2z, and, by (2.2) and (2.3), G(u, B) < G(v, B) + 3<. Since ¢ is
arbitrary, we can conclude that G(u, B) < G(v, B). Interchanging the roles of v and v,

we obtain the opposite inequality. This proves the theorem when B is quasi open.
Step 2. Let now B be a Borel subset of 2. For every h € N let us define By, =
{z € Q: |Ju(z) —v(z)] < 1/h} and

1/h
LTV )

up = (v—u) =u+Typo(v—u).

Clearly, up, = v p-q.e. on Bj. By Lemma 2.5 we have the convergence of u; to u in
WhP(Q,R™). At this point we can introduce the sets 4 and K as in Step 1 and proceed
in the same way replacing the locality property of G on the open sets with the locality
property on the quasi open sets proved in Step 1. We have only to remark about the
estimate (2.4). Let us notice that it is enough to consider B CC (2, hence we can choose
A CC Q; for every Q' CC ) the coefficient in the convex combination between u and v
defining uj can be approximated in WH?(Q') by an equibounded sequence of functions

of CY(V). As G is C'-convex and local on open sets, this suffices to get (2.4) as above.

U
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Let us consider the function vg: B(€2) — [0, +o0] defined by
(2.5) vo(B) = inf{G(v,B):v € W'P(Q,R™)N L>(Q,R™)}
for every B € B(Q)). Moreover, for every 4 € A(§) we define
domG(-, A) = {u € WIP(Q,R™) : G(u, 4) < +co}.
Then the following proposition holds.

Proposition 2.7. For every Q' € A(Q) with domG(-, Q)N L=(Q,R™) # O, the

restriction of vo to B(Q') is a positive finite Borel measure.

Proof. It is clear that vy is an increasing function, 1o(@) = 0 and, in view of the
definition of G(u,-) on B(Q), that vo(B) = inf{vy(4): A € A(Q'),4 D B}. Hence, by
Proposition 5.5 and Theorem 5.6 in [26], we have only to prove that vg is superadditive,
subadditive, and inner regular on A(Q'). The superadditivity comes immediately from
the definition of vy and from the additivity of G in the second variable. Let us now

prove that for every A;, As, A5 € A(Q') with A, CC A, we have

We can assume that vo(A1) + vo(42) < +oo. Then, for every ¢ > 0 there exist two
functions wuy, us in WHP(Q,R™)N L=(2,R™) such that

> G(uy, A1) vo(A2) + = > Gluz, 42).

oM

1/0(;-'11) +

[V

Let ¢ € Cg(42), with ¢ = 1 on a neighborhood of 4 and 0 < ¢ < 1. We set
u = (1—¢)u; + pus. By Remark 2.3 it follows that

o)

I/o(Al U Afz) T’(ll,.’4] U .‘1:’2)

(w1, 41\ A2) + Gluz, A5) + G((1 = @)y + pus, (4z \ 45) N Ar).

IA A
o

Furthermore, the C'-convexity of G permits to estimate the last term in the above
inequality by G(uq, (4 \I’;) N Ap) + Glua, (A2 \t&—’;) N A;). Hence,

Vo(g‘ll Ufy?) S G(’le,Al)-!—G(‘U.g,Ag) < I/Q(.‘ll)—i-l/o(“}.g)—i*é'.
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Thus we obtain (2.6). This inequality will give the subadditivity of 1y once inner regu-
larity will be proved.

Since domG(-, Q2 )NL>®(Q,R™) # O, we can find u € WH?(Q,R™)NL>(Q.R™)
such that G(u,Q') < +co. Therefore, given 4 € A(Q') and ¢ > 0 there exists A" €
AQ) with A" cC A and G(u, 4\ A7) < ¢; it follows that (A \ A7) < ¢. Let
Al e A(Q") such that A” cC A" CC A. By (2.6) we have

vo(A4) < wo(A") + (A \ A7) < vp(4') +¢.
We conclude that vy(4) = sup{rp(4') : 4’ € A(Q'), 4" CC A}, i.e., the inner regularity

Of vy . D

Proposition 2.8. For every A € A(Q) and u € domG(-, A)NL>(Q,R™), the function
G(u,-)—wo(+) is a positive Borel measure on A which is absolutely continuous with respect

to the p-capacity.

Proof. Let u € Wh?(Q,R™) N L>®(Q,R™) such that G(u,4) < +oo. As g 1s a
finite Borel measure on A (Proposition 2.7) and wp(-) < G(u,-) by (2.5), we conclude
that G(u,-) — vo(+) is a positive Borel measure on 4. Let us fix B € B(4) with
cap,(B,2) = 0. For every v € WHP(Q,R™) N L>=(Q,R™) with G(v,B) < +co, we
have v = u p-q.e. on B; hence, by Proposition 2.6 we conclude that G(v,B) = G(u, B).
Since

w(B) = inf{G(v, B) : v € W'P(QR™)N L¥(Q,R™), G(v,B) < +c0}

it follows that vo(B) = G(u, B), i.e., G(u,B) —vg(B) = 0. [

We now conclude this section by giving a basic estimate for G on the convex hull

of a finite number of functions in WHP(Q,R™)NL=(Q,R™).

Proposition 2.9. Let w,uy,...,up € WH(Q,R™)NL¥(Q,R™). Assume that u(z) €
co{ui(z),...,ur(z)} for a.e. x € Q. Then

k
G(u,B) < ZG(U.;,B)
=1
for every Borel set B in Q.

Proof. In view of the definition of G' on Borel sets, it is enough to prove the inequality

for every open set B with B CC Q. Hence, let B be such a set. By means of the Density
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Theorem 2.9 in Chapter I, we can easily find a sequence of functions 5,: R™ — T such

that ¢, € C*°(R", R*) and
k .
Zgoflui — u
1=1 ‘

strongly in W1P?(4 R™), where A is a neighborhood of B. Then, from the lower

semicontinuity of G and the locality property on open sets we obtain

k
- < liminf G g, B).
G(u,B) < 11’111;ng(Zq,Lu )

=1

The conclusion follows now from the C'!-convexity of G and from Remark 2.4. Cl

3. Integral representation on moving polytopes

The aim of this section is the integral representation of the functionals in G, when
restricted to the pointwise convex hull of a finite number of functions in W?(Q,R™)N
L>(2,R™) (see Theorem 3.7).

Let G € Gy, k € N, and uy,...,upy € WHP(Q,R™) N L>°(Q,R™) be fixed.
Throughout this section we assume that G(u;,) < +co for every ¢ = 1,...,k. We
point out that our proof first produces a kind of integral representation of G on the
functions of the form u = Zle Yiu;, where ¥:Q — T, with the integrand depending
on the coefficient 1 rather than on the function u itself (Theorem 3.3). For a constant

%, this result is contained in the following lemma.

Let vg be the set function introduced in (2.5). Under the present assumptions,
Proposition 2.7 tells us that vy is a finite Borel measure on §2. Let px be a positive finite
Borel measure on Q with supp p = Q such that u is absolutely continuous with respect
to the p-capacity and pu(-) > ZL] (G(ui,+)—vo(+)) (in view of Proposition 2.8, such a p
can be obtained, for example, by adding to Zikzl (G(ui,-) — 1/0(-)) the positive measure

fdL™, where f € L'(Q), f >0 on Q, and L™ is the n-dimensional Lebesgue measure).
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Lemma 3.1. For every x € 2 and N\ € S we define up(xv) = Zle Nug(z) and

' e G(ux,Br(z)) — vo(Br(2))
(3.1) glz,\) = ll.llvlij)gp R :

Then

(1) for every x € Q the function g(z,-) 1s convez and continuous in Iy ;
(i) for every A\ € Oy the function g(-,\) 1s Borel measurable on §1;
(i) G(ux,B) = [gg(z,\)du +vo(B) for every A € 1i¥y and B € B(Q).

Proof. From the definition of p and vy and from the convexity of G, it follows imme-
diately that 0 < g <1 on Q x1i¥y, and that g(z,-) is convex on ri¥ for every z € 2.
Then, by Theorem 10.3 in [39], for every a €  the function g(x,-) can be extended in
one and only one way to a continuous convex function, still denoted by ¢, on the whole
of Tx. Hence, 0 < g <1 on Q x &; and (1) holds.

Let us proof (ii). If « is a positive Borel measure on 2, the function r — a(B-(z))
is left continuous for every a € Q. This implies that the upper limit which appears in (3.1)
can equivalently be taken as r — 0% with » € Q. Moreover, the function = — a(B(x))
is lower semicontinuous for every = > 0 and hence Borel measurable, too. It follows
that the function g(-,\) is Borel measurable for every A € rifg. For A € 9%, g(-A)
is the pointwise limit of a sequence g(-, A,) with A, € riXy; therefore, g(:, A) is Borel
measurable on §) for every A € Y.

By the Besicovitch differentiation theorem (see, e.g., [43], Section 1.3), we have
Gluy,B) = / glz, \)dp + vo(B)
B

for every B € B(Q2) and for every A € riZ;. ]

Before extending the previous result to non constant A’s, we observe that the

following selection lemma holds.

Lemma 3.2. Let u € WEP(Q R™)NL®(Q,R™) such that u(x) € co{ui(z), ..., ur(z)}
for a.e. x € Q. Then, there exists a g(Q)-vneasunra,ble function ¥: Q — Iy such that
k

(3.2) u(z) = Z (2 )uiz) for p-q.e. 2 € Q.

1=1
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Proof. Let us fix some quasi continuous Borel measurable representatives of w, uy, ..., ug
(see Section 1). Let A(z) = {\ € Ty 1 u(z) = ZLI Mug(x)} for every z € Q. N isa
multivalued function from Q to £, with non-empty closed values for p-q.e. € 2 (see
Remark 2.7 of Chapter I). It is clear that graph A € B(Q) ® B(RF).

By the Aumann-von Neumann Selection Theorem 1.2 there exists a B (2)-measur-
able selection 1 of the multivalued function A and, by the definition of A(x), the function

Y satisfies (3.2). U

Theorem 3.3. Let u € WLP(Q,R™)N L®°(Q,R™) with u(z) € co{ui(z).... ur(z)}
for a.e. @ € Q. If g is the function given by Lemma 8.1 and ¢:Q — i s a g(Q)-

measurable function such that (3.2) holds, then g(-,¥(-)) is p-measurable and
(3.3) G(u,4) = / glz,(x))dp + vo(A)
A

for every A € A(Q).

Let us explicitly notice that if w is as above, then G(u,{2) < 400 by Proposi-
tion 2.9. The proof of Theorem 3.3 heavily relies on the following approximation lemma,

which essentially reduces the problem to the case of a constant 2.

Lemma 3.4. Let u and ¢ be as in Theorem 3.5. Let A € ri¥y with d(X,05;) =n >0,
let 0 <e<n and B € B(Q) such that [(z) — | < < for p-ge. 2 € B. Then,

<

k
|G(u, B) — G(ux, B)| < ; g G(ui, B).

Proof. Let us define v = u + t(uy —w) on 2, with ¢t = 1+ n/e. It turns out that
v(z) € co{ui(z),...,ux(z)} for p-q.e. 2 € B and

1 1
Uy = ;v-}—(l—z)u on (1.

In order to get from v a function which belongs to co{u;,...,ux} a.e. on Q, we consider
the projection w = Py(v;uy,...,u;) as defined in Corollary 2.4 of Chapter I. Set

1 1
¢ =W +(1- ;_)u on (.
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By Lemma 2.2 of Chapter I, the function w, and hence z, belongs to W LP(Q.R™) N
L*(,R™). Moreover, since w = Py(v;u1,...,ur) =v p-q.e on B (see Corollary 1.4),

we have z = uy p-q.e. on B. By the convexity of ¢ and Proposition 2.9

G(z,B) < lG(w B)+(1-— l)G(u B)

S o

< ZG’ ui, B)+ G(u,B).
i=1
In view of the locality property of G on Borel sets (Proposition 2.6) we have G(z, B) =

G(ux,B); thus

1 @

G(ux,B) < G(u,B) +

k
E l'llﬂ

The inequality

G(u,B) < G(ux,B) + — : ZG u;, B
can be obtained analogously defining now v = uy + t(u — uy) with ¢ = n/e > 1. N

Proof of Theorem §.3. Let us fix 4 € A(Q).

Step 1. Assume that (z) € 11X for every 2z € (2.

Given n > 0, let us define i, = {A € Ty 1 d(N,05;) > 77} and A, =¥~ 1(Zg,) NA.
For every ¢ €]0,n[ we can fix a finite partition (Bj)jes of I, by means of Borel sets
having diameter less than ¢, and a family (\j)jes of elements of X , such that Aj € B;
for every j € J. Let us define E; = ¢ ~1(B;j)N A for every j € J. Since ¢ is BA(Q)-
measurable, the sets 4, and E; are in E(Q) According to the convention made in
Section 1, for every z € Wh?(Q, R™) the completion of the measures u, vy and G(z,-)

will be still denoted by pu, vy and G(z,-) . By Lemma 3.4, for every j € J
|G (u, Ej) — Gluy;, Ej)| < ~ZG Ui,

This and Lemma 3.1 imply

Glu, 4y) = vo(4y) = D [Glu, Ej) — vl Ej)]

JjEJ
ok
< > [Glusy, By) = volEj) + =5 G(ui, Ej)]
jeJ i

k
1=1

jes YEi
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Since g(z,-) is convex and bounded by 1 in I, it is Lipschitz continuous in T, with

constant 1/7; thus

k
; : | R g : :
G(u, Ay) —vo(4,) < Z[/ glz,¥(x))du + —/ [h(2) — Ajldp + = Z G(u;, E5)]
jes YE; N JE; "
k

< /A gl (@) die+ [ A) + 3 Glai, A7)

n 1=1

(Note that g¢(-,%(-)) is p-measurable since g is Borel measurable and ¢ is g(Q)—

measurable). Since ¢ is arbitrary, we get

Glu,4y) —wm(4y) < / gz, () dp.

Ay

Now, taking into account that w(z) € riS; for every @ € Q and letting n — 07, we
obtain

Gu, A) —vo(4) < / gla,w(x)) du.

A

The reverse inequality can be obtained in a completely analogous way.

Step 2. We consider now the general case 1: 0 — .

Let by = %(el + .-+ + ex) be the barycenter of Xy (ey,...,ex are the elements of
the standard basis of R¥). For every 0 < ¢ < 1 define ¥y = by "+ o(¢p — by) and
Uy = Zle Yiu; = ug + o(u — ug), where ug = (ur + - +ug). If 0 <o <1 then
Yy(z) €118 for every @ € 2 (see [39], Theorem 6.1); therefore, by Step 1 we have

Gug, A) = / gla, Yo () du + vo(A).
A
Observe now that the lower semicontinuity and the convexity of G imply that

lim G(ugs,4) = Gu,4).

o—1-

Moreover, the continuity of g(z,-) and the dominated convergence theorem yield

lim /g(;t,'zﬁa(a:))d;a = / gla, () du.
A A

og—1"

This concludes the proof. ]
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We point out that the values u(z) of the function u enter the integral representa,—
tion of Theorem 3.3 through the parameters ¢ () for which u(z) = Zl RN EHESR
When looking for an integrand depending directly on the values of u, the main dlfﬁculty
we meet is that the expression of u(z) as a convex combination of ui(z),...,ur(z) 1s

not necessarily unique. This problem is essentially overcome by the following lemma.

Lemma 3.5. Let u € Wh?(Q,R™)NL2(Q,R™) and u(z) € cof{ui(z),...,us(2)}
for a.e. © € Q. Let g be the function defined in Lemma 5.1 and

{:L eQ:INN e u(z) = uale) = un(z) and gz, \) # g(z,\')}
(N is defined up to sets of zero p-capacity). Then. N € B(Q) and u(N)=0.

Proof. As in the proof of Lemma 3.2 we can fix quasi continuous, Borel measurable
representatives of u, uy,...,ux; the set N is now well defined all over Q2. Consider the

multivalued map I' from 2 into Tj x Ij defined by
I'(z) = {(\,\) € Tk x Tf ru(x) = ua(ez) = wn(z) and g(z,A) # g(2, A
Arguing as in the proof of Lemma 3.2 and taking into account that g is Borel measurable
on §) x 3, we obtain that graphl’ € B(2) @ B(R*)® B(RF). By the Projection The-
orem (Theorem 1.1) we get N € B (Q). The Aumann-von Neumann Selection Theorem
V\

(Theorem 1.2) implies the existence of two B({2)-measurable functions o1, 02: Q0 — Lj

such that (o1|y,02|n) is a selection of T' on V. Define for j = 1,2

¥ = {d), on Q\ N,

oj, onN,

where 1:Q — Iy is the B(Q)-measurable function given in Lemma 3.2. Then ¢y and

1y are g(Q)—measurable functions such that

k
(3.4) Z z,bi (x) = Zdﬂé(&')ui(.‘t) for p-q.e. 2 € Q,
1=1 i=1
(3.5) glz,¥1(2)) # gla,v2(2)) foreveryz € N.

By Theorem 3.3, (3.4) implies that
/Ag(m,wl(x‘))du - /4 g, o 2)) di
for every A € A(Q). Hencé, 4
glz,1(x)) = gz, 2(v))  for p-ae 2 €l

Together with (3.5) this yields that p(N) = 0. U
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For future convenience we single out a technical remark about measurability of

functions.

Remark 3.6. (i) Let T be a Borel subset of R™. Given ¢: Q2 x R™ x T — [0. +c<],
let us define f:Q x R™ — [0, +co] by setting f(a,&) = inf,cpg(e,§t). I gz, 1)
is continuous for every (z,t) € Q x T, uniformly with respect to t € T, then f(z,-)
is continuous for every z € . Assume, in addition, that ¢(-,¢,-) is B\(Q) ® B(R™)-
measurable for every £ € R™. Then f(-, &) is g(Q)—measurable for every £ € R™, hence
f is B(Q) ® B(R™)-measurable.

Indeed, given £ € R™ and s € R, the set

E,={2ecQ: f(z,8)<s}={aeQ:3teT g(a,{1t) <s}

is the projection on Q of theset {(x,t) € OxT : g(x,€,t) < s}. Since (z,t) — g(z.&, 1) is
(Q)@B(Rm)-mea‘sura.ble, by the Projection Theorem (Theorem 1.1) we get E; € B(Q).

(i) Let f:QxR™ — [0,40c0] be a B(Q) @ B(R™)-measurable function. Then for every
positive finite Borel measure p on § there exists a set N € B(Q) with y(N) = 0 such
that f|o\n)xr= is a Borel function.

Indeed, for every E € B,(Q) @ B(R™) there exists N € B(Q) with u(N) =0
such that £\ (N x R™) € B(Q) ® B(R™).

Finally, we are able to prove the main result of this section, i.e., the integral

representation on the pointwise convex combinations of a finite number of fixed functions.

Theorem 3.7. Let G € G,, k € N, uy,...,ur € Whr(Q,R™) N L®(Q,R™), and
assume G(u;, Q) < +oo forevery i =1,..., k. Let vy be the positive finite Borel measure
introduced in Proposition 2.7. Then, there exist a positive finite Borel measure p on §2,
absolutely continuous with respect to the p-capucity. and a function f:QxR™ — [0, +00]
with the following properties:
(1) for every x € Q the function f(z,-) s conver and lower semicontinuous on R™;
(1) f s B(©) @ B(R™) -measurable;
(i) for every u € WHLP(Q,R™) N L>®(Q,R™) such that u(z) € cofui(x),... ur(z)}
for a.e. x € Q, the function f(-,u(-)) is w-measurable on Q and G(u,:l) =
fA flz,u(z)) du + 1/0( ) for every 4 € A(Q). Moreover, the restriction of f(z,-)

to co{u,l(. )y uk(®)} 18 continwous for p-a.e. v € Q.
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Proof. Let us fix quasi continuous Borel measurable representatives of uy, ..., uy. For ev-
ery A\ € I and x € Q we set up(z) = Zikzl Nug(z) and Cr(a) = cof{ui(z),. .., ur(z)}.
Let us define the function f: 2 x R™ — [0, +o0] as
inf  g(z, A if €€ Cia),
‘ NET, J( )7 é 1»(, )
fla,6) = { mlo=s

+o0, otherwise,

where ¢ is the function introduced in Lemma 3.1.

Let us prove (i). Fix z € Q; the multivalued function from Ci(2) to ¥ defined by
£ {N € Tk tun(z) = €} has closed graph and compact range; hence it is upper semi-
continuous. Moreover, by the continuity of ¢(x,-), the function S+ inf{g(z,A): A € S},
defined on the compact subsets of Ty, is continuous with respect to the Hausdorff metric
and decreasing with respect to inclusion. Therefore, we can deduce the lower semiconti-
nuity of f(z,-) on Ci(z). This immediately implies the lower semicontinuity of f(z,-)
on R™, while the convexity of f(z, ) can be easily verified directly. Hence, (i) holds
true.

Let us prove (ii). For every z € Q let us consider the Moreau-Yosida transforms

of f(z,-), defined by

folw,§) = inf [f(z,n) +sl€—nl] (seN)

n€C(z)
for every £ € R™. Since f(z,-) is lower semicontinuous on R™, for every z € {1 and

£ € R™ we have

(3.6) f(z,€) = sup fs(=,§).

sEN

~

Let us prove that for every £ € R™, fi(-,€) is B(Q)-measurable. Note that

Sz, &)= inf  inf [g(e,\)+sl€ —
folw, )= inf | “1??“,[9(1 ) + 31§ = nl]
U,\.’L‘:'l

= inf [g(e, ) +sl€ = ua(o)]].
Remark 3.6 shows that f, 1s g(Q) @ B(R™)-measurable; by (3.6) the same is true for f.
Let us now turn to the proof of (iii). Fix v € W1 ?(Q, R™)NL>*(Q, R™) such that

u(z) € cof{ui(z),...,ur(z)} for a.e. z € Q and choose a quasi continuous representative
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of u. Since such a representative is B,({2)-measurable (recall that p is absolutely con-
tinuous with respect to the p-capacity), f(-,u(:)) is pg-measurable on 2. By Lemma 3.2

and Theorem 3.3, for every 4 € A(2) we have
Gu,4) = / gl () dp + vo(4),
A

where ¢:{) — X isa Z’;(Q)—measurable function such that (3.2) holds. By the definition
of f we have
flz,u(z)) = \ié)f gz, \) for p-q.e. 2 € Q2.
AETy
u_\(a:)=u(a:)

Let N be the set given in Lemma 3.5. Then
fla,u(z)) = glz,(z)) for p-q.e. v € Q\N.

This proves (iil) since u(N) = 0. ]

The following proposition shows that, given the measures p and v, the function

f obtained in the integral representation theorem is essentially unique.

Proposition 3.8. Let G, u1,...,uy be as in Theorem §.7. Let u and v be two positive
fintte Borel measures on 2, with p absolutely continuous with respect to the p-capacity.
Assume that two functions fi, f2:Q x R™ — [0,+0cc] satisfy conditions (i)-(i11) of
Theorem 8.7 with vy replaced by v. Then fi(z,&) = fa(x,€) for p-a.e. x € 0 and for
every € € co{ui(xz),...,ur(x)}.

Proof. From the finiteness of G(u;, Q) for : = 1,...,%k and from property (111), we deduce
that fi(-,ui(+)) < +o0, fa(-,ui()) < 400 w-a.e. on . The convexity of fi(z,-) and
f2(z,-) then guarantees that fi(x,-) and fa(w,-) are finite on co{ui(z),...,ur(z)} for
p-a.e. ¢ € Q. By Theorem 10.1 in [39], it follows that fi(z,-) and f2(z,-) restricted to
rico{ui(z),...,ur(z)} are continuous for p-a.e. x € Q. By (iii), for every A € T, N Q*
we have

/fl(q:,u,\(:c))d,u:/ Fala,un(z))du
A A

for every A € A(Q); hence, there exists a set N € B(), pw(N) = 0 such that
fi(z,ur(2)) = fa(z,ur(z)) for every @ € Q\ N and A € S N Q*. Since the func-
tions fi(z, ) and fa(x,-) restricted to ri co{uj(x),...,ux(z)} are continuous, we have
fi(z, &) = fa(z,€) for every 2 € Q\ N and £ € ri co{ui(z),...,ur(x)}. By the con-
tinuity along line segments ([39], Corollary 7.5.1) fi(x,€) = fa(2,€) for every £ €

co{ui(@),...,up(x)}. U
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4. Auxiliary lemmas

We collect here some results we shall use in the next section.

Lemma 4.1. Let X be a separable metric space and let F: X — R be lower semicon-
tinwous. Then there exists a countable subset D of X with the following property: for
every z € X there exists a sequence (x3) in D converging to @ and such that (F(xp))

converges to F(x).

Proof. Tt is enough to take a countable dense subset E of the epigraph of F' and consider

as D the projection of F onto X . U

Lemma 4.2. Let d € N and X be o subset of RY. Let H be a Lipschitz multivalued
function from X to R™ with non-empty, compact and convez values. Then, there ezists

o sequence (h;) of Lipschitz functions from X to R™ such that
H(z) = cl{hj(z):j € N}
for every x € X, where cl denotes the closure in R™.

Proof. Let (£;) be a dense sequence in R™; for every v € X, define hi(z) = P(&, H(x))
€ H(z), where P is the projection map given in Theorem 2.3 of Chapter I. Since P and
H are both lipschitzian, so is h;.

Given € € H(x) and ¢ > 0 there exists {; € R™ such that [ —§;| <<c. If L

denotes a Lipschitz constant for P, then
€ — hi(2)] = |P(, H(z)) = P(j, Hx))| < LIE— €] < Le;
we conclude that £ € cl{hj(z):j € N}. U

We shall now state a result due to G. Bouchitté and M. Valadier concerning the
commutativity property for the operations of integration and infimum. To this aim we
need the following notion of C!-convexity which is essentially the notion of Cl-stability

introduced in [10].
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Definition 4.3. Given a positive Radon measure A on { and a set H of \-measurable
functions from € into R™, we say that H is C-conwves if for every finite family (u;)ier of
elements of H and for every family (a;)ier of non-negative functions of CHUNTL>(Q)

such that >, a; =1 in §, we have that >, aju; belongs to H.

Let A be a positive Radon measure on & and H be a family of A-measurable
functions from € to R™. Then, there exists a closed valued \-measurable multifunction
T:Q — R™ (i.e., such that I71(C) = {2 € Q: I(@)NC # @} is A\-measurable for every
closed subset C' of R™) with the following properties (see [41], Proposition 14):

(i) for every w € H we have w(x) € ['(x) for A-ae. v € Q;

(i) if @:Q — R™ is a closed valued A -measurable multifunction such that for every

weH, wz) € dx) for A-ae x€ Q. then I'(x) & $(z) for N-a.e v € Q.

This multifunction T' is unique up to A-equivalence and will be denoted by

A-esssup {w(-)}.
weH

The next theorem is taken from [10], Theorem 1.

Theorem 4.4. Let \ be a positive Radon measure on Q and let H be a Cl-convez
family of A\-measurable functions from § into R™. Let f:Q x R™ — | — oo, +oc] be ¢
BA(Q)@B(R™) -measurable function such that f(z,-) is convez on R™ for N-a.e. z € §1.
Suppose that f(-,u(-)) € L'(Q, ) for cvery u € H and let I'(x) = A-ess 3}1{1p{u(:v)}. Then

ue

inf/f(.t,u(;v))d/\ :/ inf fla,z)dX.
Q Q

weH el (z)

We point out that in the next section it will be crucial the use of the following

technical result, proven in Chapter I, Lemma 4.2:

Lemma 4.5. Let (wg) be a sequence of functions in Wwhr(Q,R™)N L>=(Q,R™) con-
verging in L°(Q,R™) to a function w € WL (Q,R™)N L= (Q,R™). Then there ezists
o sequence (vg) in WUP(Q,R™)N Le(Q,R™) such that ve(z) € co{wy(z),... . wr(z)}

for a.e. x € Q and (vy) converges to w strongly in Whe(Q,R™).



Intecral representation for a class of Cl-convex functionals 59
5 P

Lemma 4.6. Let \ be a positive Borel measure on Q. Let (y5) and vy be non-negative

functions in L1(Q,\) satisfying

(4.1) y(z) < lilmvinfﬁ/h(;v) for la.e. 2 €Q,
(4.2) /'yd/\ Zlimsup/ v dA.
Q h—co Q

Then, (1) converges to v strongly in L'(Q, A).

Proof. Let us note that, by the Fatou Lemma, (4.2) ensures that

(4.3) /fycl/\ = lim / Yh dA .
Q h—oo Jq

In view of (4.1) we have

v < li;ninf(ﬂ/h ANy) < 1i]m sup(va AY) < on 2.
— 0

(Sande o)

Thus, the dominated convergence theorem guarantees that (v, A<y) converges to v in

LY(Q,A), and, in particular

(4.4) /*,fh/\ﬂ/cl/\ s /')fd/\.
Q Q

By noticing that v4 +7 = (yo A7) + (72 V), (4.3) and (4.4) permit to conclude that

/’YIL\/’yd/\ — /'yd/\;
Q Q

hence (v, V ) converges to vy in L'(Q,\), being v, Vv = 7. Now, the conclusion can

be obtained by using again the relation v, = (ya Ay) + (72 Vy) —7 on Q. Ll

5. Integral representation on WHP(Q,R™)NL>(Q2,R™)

The main result of this section is the integral representation of the functionals of
the class G, on the bounded functions of W!?(Q,R™) (Theorem 5.4).
Given G € G,, let us introduce the least closed valued multifunction having the

elements of domG(-,{2) among its selections.
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Proposition 5.1. Let G € G, and let A be an open subset of Q with domG(-, A) # O.
Then there exists a closed valued multifunction IV 4 from A to R™, unique up to sets of
p-capacity zero, such that

(i) for every u € domG(-, 4) we have u(x) € K (x) for p-qe. v € A;

(ii) if H is a closed valued multifunction from A to R™ such that for every u €
domG(-, A) we have u(z) € H(z) for p-ge. ¥ € 4, then Ka(z) C H(z) for
p-qg.e. z € A.

Moreover, K4 satisfies the following properties:

(113) K4 is quasi lower semicontinuous and K i(x) 1s convex for p-q.e. r € A;

(i) if (ug) is @ countable dense subset of domG(-, A), then

Ka(z) = cl{ug(a): ke N} = cl U Cr(z)) for p-q.e. x € 4,
k=1
where Ci(z) = cof{ui(a),... ur(z)}.

Proof. The same argument applied in Proposition 3.3 in Chapter I works now for the

subset {ulA U € doan(-’A)} of ﬂ/’l,P(A’Rm)_ 0

Remark 5.2. Let 4 and 4’ be open subsets of ., with domG(-, 4) # © and
domG(-, A') # @. If K4 and K4 are the multifunctions given by the previous propo-
sition, then K4 = 4 p-qe.on AN A"

It is enough to give the proof in the case 4" C 4. Since domG(-, A) C domG(-, 4"),
the inclusion K4(z) C K. (z) for p-q.e. @ € A’ follows immediately from property (1)
satisfied by K4 and property (ii) applied to 4 and

Ka(a), ifaed
H T — £ AR i ]
() {Rm, ifred\d.

To get the opposite inclusion let us choose uy € domG(-. 4). Fix now u € domG(-, A")
and A" € A(Q) with 4” cC 4'. If ¢ is a function in Cl(A"), with o =1 on A" and

0 < <1, by the C'-convexity and the locality property of G on open sets, we have

Glou + (1 — g, 4) < Glpu + (1 —p)uo, AN+ Glou + (1 — ¢)ug, 4 \ suppy)
< G(u, A" + Glug, A') + G(ug, 4 \ suppyp) < +o0.

Therefore, wu + (1 — p)ug € domG(-, 4) so that u(z) € L () for p-qee. z € A", By
the arbitrariness of 47 we deduce that u(z) € K 4(2) for p-qe. @ € A'. By applying

property (ii) we conclude that () € Na(2) for p-g.e. v € A
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Lemma 5.3. Let s > 0 and let T, be the orthogonal projection onto the ball B,(0)
defined in Lemma 2.5. Then for every u, v € Whe(Q,R™) and A € A(R)

Glu+Tso(v—u)Ad) < Glu,4)+G(v, 4).

Proof. 1t is enough to consider the case 4 CC Q. Let ¢ € Cg(R), ¢ = 1 on A,
0 < o < 1. By Lemma 3.6 in Chapter I there exists a sequence (i) of functions in
C>=(R") such that 0 < ¥, <1 and (Ypp(v —u)) converges to Ts o [p(v — u)] weakly
in WHP(Q,R™) as h goes to co. Since G(-,A4) is weakly lower semicontinuous on
WLP(Q,R™) (recall that G(-, A) is convex) we get

Glu+Tso0 [ (v —u)], A) < liminf Glu + Yrep(v —u), 4)

h—oo

< Gu, 4) + G(v, 4),

where in the last estimate we have used the C''-convexity of G. Now the conclusion can

be obtained by applying the locality property of G on open sets. L]

Theorem 5.4. Let G € G, with domG(-,Q)NL>(Q,R™) # O. Let vo be the positive
finite Borel measure introduced in Proposition 2.7 and let K = g be the closed valued
multifunction from @ to R™ given by Proposition 5.1 for A = Q. Then, there exist a
positive finite Borel measure p on 0, absolutely continuous with respect to the p-capacity,
and a Borel function f:Q x R™ — [0, +oo] with the following properties:

(i) for every x € Q, the function f(x,-) is convex and lower semicontinuous on R™;

(ii) for every u € WIP(Q R™)N L(Q,R™) and for every A € A(Q)

f Ffla,u(z))dp +vo(A), i uw(x) € K(x) forp-ge x€ 4,
G(u, A) =

+0o0, otherwise .

Proof. Step 1. Let (u;) be a sequence of functions in domG(-,2) N L*=(2, R™) which
will be specified in Step 2. We construct now the measure p and the integrand f (see

(5.3)) satisfying (i) and we prove that for every A € A(Q) and for every k € N we have

(5.1) Glu, 4A) = / flasu(a)) dp + vo(4)
A
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whenever u € WIP(Q R™) N L*®(Q,R™) and u(a) € co{ui(a),...,ux(a)} for ae.
z € A.

Fix quasi continuous Borel measurable representatives of (u;). For every = € Q
define Ci(z) = co{ui(z),...,ur(z)}. By Theorem 3.7, for every Ak € N there exist
a positive finite Borel measure pp on 2, absolutely continuous with respect to the p-

capacity, and a function fi:Q x R™ — [0, +oc] such that

(a) for every z € 2 the function fi(z,-) is convex and lower semicontinuous on R™;

moreover, the restriction of fi(z,-) to Cg(x) is continuous for pi-a.e. @ € Q;
(b) fiis f)’\(Q) @ B(R™)-measurable;
(c) for every w € WHP(Q,R™) N L>®(. R™) such that u(z) € Cy(z) for ae. z € Q2

the function fi(-,u(-)) is p-measurable on Q and for every 4 € A(Q)

(5.2) Glu,4) = / Felz,u(a))dur + vo(A4).
A

By a standard cut-off argument we obtain that (5.2) still holds if u(a) € Cy(zx) for a.e.
zEA.

Let p be a positive finite Borel measure on ) absolutely continuous with respect
to the p-capacity and such that up < p for every k € N (for instance, take p(B) =

PRy Z‘k%%((—%) for every B € B(1)). Define

e
0e(2,6) = fulx, )L

T du (@),

where duy /dp is a fixed ( p-measurable) representative of the Radon-Nikodym derivative
of uy with respect to p. By Proposition 3.8. there exists a set N € B(§2) with p(N) =0
such that gi(z,€) = gp1(z,€) for every L € N, v € Q\ N and € € Ci(z). Hence, we
can define g: 2 x R™ — [0, +oc] as

o(z,€) = {gk(}v,@? if € Q\Nand ¢ € Cy(a) for some k € N,

+o0o, otherwise.

Since Ci(z) = {Zle Mug(z) : N € S}, by Theorem I11.9 and Proposition I11.13 in [14],
the graph of C belongs to B(Q) @ B(R™). Recalling the definition of g 1t follows that
g is g(Q) ® B(R™)-measurable. An easy check gives the convexity of g(z,-) on R™ for

every z € 2.
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Now, for every z € Q let us set h(x,-) =sc g(x,-), where sc”g(2,-) denotes the
lower semicontinuous envelope of g(x,-). It turns out that

h(z,€) = sup gs(2,§),
sEN

where g¢,(z,€) = inf [g(z,n)+ s|¢ —n|]. By Remark 3.6, for every s € N there exists
.,’ERm.
a set Z, € B(Q), with p(Z,) = 0, such that gs/(\z,)xrm is a Borel function. Set

Z = Usen Zs; then u(Z) = 0 and h@g\z)xr= 18 Borel measurable. Now we are in a

position to define the function f as

: o — h(x,-) = sc”gla,-) if 2€eQ\Z
(5:3) IS {o if ze27.

Then, f is a Borel function on © x R™ and satisfies (i) (see [39], Theorem 7.4),

Let us prove that for p-a.e. @ € Q
(5.4) flz,) = grla,-) on Cila).

Let usfix 2 € Q\(NUZ) and & € N. Let H(x) be the affine hull of Ure; Cr(z). As
the sequence (Ci(z)) is increasing, there exists & > & such that the interior of Ch(2)
relative to H(x) is non-empty. Since g(z,-) = gu(x,-) on Ci(x), and the restriction
of gn(z,-) to Ci(z) is continuous, we have f(z,-) = gn(z,-) on the interior of Ch(z)
relative to H(z). As Cy(z) is a polytope, the restriction of f(z,-) to Cx(x) is continuous
(see [39], Theorem 10.2), hence f(z,-) = gu(x,-) on Ci(x). Since Ci(a) € Cal z) and
gr(z,") = gn(z,") on Ci(2), we conclude that (5.4) is satisfied.

Let us now prove (5.1). Fix k € N, 4 € A(Q2) and v € WhP(Q,R™)NL>®(Q,R™)
with u(2) € Ci(z) for a.e. 2 € A. Forevery 0 <o <1 let us define uy = cu+(l—0o)uop,
with uo = ¢ EL Lui. Then ug(z) € riCy(x) for p-qe. z € A. Therefore, by (5.4) and

the integral representation formula (5.2) satisfied by fi, we get

G(ug, 4) / flz,ug(z))dp +vo(A).

Since every lower semicontinuous proper convex function is continuous along line seg-
ments (see [39], Corollary 7.5.1) it turns out that

lim G(ug,4) = Glu,4)

o1~

lim / fleyug(a))dp = / Fla,u(x)) du for every z € Q2.
A A

o1~
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We thus obtain (5.1).

Step 2. We choose now a suitable sequence (u;), dense in domG(-, Q)N L>(Q.R™), to
which Step 1 will be applied.

Let D be a countable base for the open subsets of 2, closed under finite unions. For
every A € D we can apply Lemma 4.1 to G(-, 4) on domG(:, Q)N L= (Q,R™) (with the
WLP(Q,R™) topology); this yields the existence of a set G4 C domG(-,2)NL>=(Q.R™)
such that for every u € domG(-,Q) N L*=(Q,R™) there exists a sequence (up) in Ga

satisfying

u, — U strongly Whe(Q, R™),

Glup, A) — G(u,4) mR.

Let (u;) be an enumeration of | J ,cp G ; starting from (u;) we then construct by means

of Step 1 a Borel function f:Q x R™ — [0, +oo] satisfying (i) and (5.1).

Step 9. Let us prove that for every u € domG(-, QNL>~(Q,R™) and for every A € A()
(5.5) Glu,4) > / fla,u(z))dp + vo(4).
A

Fix u € domG(-, Q)N L=(Q,R™) and 4 € D. By Step 21t 1s possible to extract

a sequence (u;, ) from {u; : 1 € N} such that

ui, — U p-q.e. in €2 (hence p-a.e.),

G(ug,,4) — G(u,4) in R.

Therefore, by (5.1)

h—co

Glu,4) = hm/ fla,ug, (@) dp + vo(d);

by the Fatou Lemma and the lower semicontinuity of f(x,-) we get (5.5) for every
A € D. The result for an arbitrary A € A(Q) can be obtained by approximation. since
each A € A() is the union of an increasing sequence of elements of D (recall that D is

closed under finite unions).

Step 4. It is now easy to prove that for every u € Whr(Q,R™) N L>=(Q,R™) and
A e A(Q) the inequality (5.5) holds.
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Given A € A(Q) and u € domG(-, 4)NL>(Q,R™), let U CC 4 and v € cled)
with o =1 on U and 0 < ¢ < 1. Set u, = pu + (1 — p)w, where w belongs to
domG(-, Q)N L>=(Q, R™), which is non-empty by assumption. By the convexity and the

locality property of G we have G(u.,,§2) < 4oo. Therefore, Step 3 applied to wu., yields

Gu,,U) > / fla,us(x))du + vo(U);
U

since ¢ =1 on U we get

G(u,U) > fla,ula))du + vo(U).
Ju

As U CC A is arbitrary, the conclusion is easily achieved.

Step 5. Let ' = Kq be the closed valued multifunction from 0 to R™ given by
Proposition 5.1 for A = Q. The aim is now to prove that for every A € A(Q2) and

uw e WhP(Q,R™)N L®(Q,R™) such that u(x) € K(x) for p-q.e. v € A, we have
(5.6) G(u,4) < / fla,u(z))dp +vol(4).
A

Recall that for every & € N and z € Q we have Ci(z) = cof{ui(a),....ux(z)},
where (u;) is the sequence given in Step 2. By Lemmas 2.5 and 5.3, domG(-,2) N
L®(Q, R™), which is non-empty by assumption, is dense in domG(-,§2). Hence, (u;) is
dense in domG(-,Q) and, by Proposition 5.1, K(2) = cl(Uiz; Ci(z)) for p-qe. z € Q.

Fix v € WL?(Q,R™)N L>®(Q,R™) and 4 € A(Q) such that u(x) € K(z) for p-
q.e. z € A. Clearly, we can assume that the right-hand side in (5.6) is finite. Moreover,
we can consider open sets A CC Q with smooth boundary, so that there exists an

extension operator W1P(4) — WHP(Q).

In a first moment we work with the additional assumption that u(z) is in the
closure of |J;=, Ck(z) “uniformly” for x € 4; more precisely, given a sequence (rp) of
positive numbers decreasing to 0, we require that for every h € N there exists n, € N
such that

(5.7) B, p(u(z))NCi(z) # O for p-qe. €4

for every k& > ny.
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To achieve (5.6) we look for a sequence (v,) of functions in W'?(4. R™) N
L*=(A,R™) and a strictly increasing sequence (k) of positive integers such that v, €
Cr,(z) for p-q.e. @ € 4, (vp) converges to u in WHP(4, R™) and
(5.8) limsup/ fla o () dp < / fle,u(a)) dp.

h—oo JA A
Indeed, as A is smooth, we can assume that (v,) is a sequence in WI?(Q, R™) N
L*(Q,R™) converging in W1?(Q, R™) to a function v such that v = u a.e. on A.
By the lower semicontinuity of G(-, A) and the integral representation (5.1) obtained in

Step 1, we can then conclude

G(u,4) = G(v,A) < liminf G(vy, 4)

h—co

IA

hmsup/ flayvp(a))dp + vo(A4 / fla,u(z))du + vo(A).

h—no

Let us first construct a sequence (w;) of functions in Wh?(4 R™)N L>=(4,R™)

and a strictly increasing sequence (k) of positive integers, with the following properties:

wy(2) € C, () for p-qee. v € 4

(5.9) Wy — U uniformly on A
hmsup/ Fla,wp(2))dp < / fla,u(a)) du.
el A . A
To this aim let us prove that for every h € N there exists k, € N such that
(5.10) inf /j (z,w(z))dp < / flz,u(z))du +ry
wEH"

for every & > k,, where
Hi = {we WHP(4,R™)NL®(4,R™) : w(x) € By, (u(2)) N Cilz) for p-qe. z € A}.

Let us fix h € N and let nj, be as in (5.7). For every fixed & > nj, we want to apply

Theorem 4.4 to the set H!. For this purpose let us verify that

(5.11) p-esssup{w(z)} = B, (u(z)) N Cy(x) for p-qe. v € 4.
weHE

Let = = {(£,&,...,6) € (R™M1 2 d(&,colér, .. &}) < i /2) and let H be the

multivalued function from = to R™ defined by

H(é,gl,...,é )"B,h( ﬂCO{fl,...,fk}.
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By Theorem 1 in [33], H is lipschitzian. Hence, we can apply Lemma 4.2 to H obtaining

a sequence (h;) of Lipschitz functions from = to R™ such that

H(gvél"" 761:) = C]‘(U {hj(€7€17a€/\)}) :
Jj=1
Since B, ;2(u(2))NCi(z) # @ for p-q.e. z € A, we can define z; = hj(u,ug, -, uk) p-
q.e.on A for every j € N. By Lemma 2.2 of Chapter I, z; € Whr(4, R™)NL>®(A,R™).
Thus z; € H}, and

By, (u(2)) N Crla) = Hlu(z),wi(a),... uelz)) = cl U {zj(2)})
. 7=1

for p-q.e. € A. Hence, (5.11) holds.

Moreover, since every w &€ Hﬁ is a convex combination of uy,...,u;, we have

.k
/ flzyw(z))dp < / Z flayui(x))dp < +co.
A A
We can now apply Theorem 4.4; by (5.11), for every k > n;, we have

(5.12) inf /f(::z:,w(m;))dp, :/ inf  f(z,€)du,
weH! JA A geCl(z)
where Cl(z) = By, (u(2)) N Ci(z). Since u(z) € K(z) for p-qe. 2 € A, in view of
the continuity property along line segments for a proper, lower semicontinuous convex
function, for p-q.e. @ € A we can approximate u(z) by a sequence ({i(z)) in ril(2)
such that
feu(@) = Jim f(z,&(2)).

As riK(z) € U2, Cilz) (see [39], Theorem 6.3), we can suppose that i(z) € Cr(2)
for every k € N. Thus, for every h € N we have
(5.13) inf inf  f(2,&) < fla,u(z)) for p-qe. @ € A.
keEN ¢eCl(z)
Moreover, for every k > nj the set C’L"(x) is non-empty for p-qe. v € A. T heréfore,

the convexity of f ensures that

.k
/A inf  f(x,€)dp < /XZf(;L','u..i(m))du < +400;

EeCH(x) A=
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by (5.13) and by the monotone convergence theorem it follows that

inf/ mf fla, &) dp < / fla,u(a)) dp .
4 A

keN J A ceCh(x)

This inequality, together with (5.12), proves (5.10).

Let (kp) be the sequence given in (5.10) which we can assume to be strictly
increasing. For every h € N, by (5.10) there exists a function wj, € W1 P(4, R™) N
L>=(A,R™) such that

wp(2) € By, (u(2))N Cy, (2 for p-q.e. v € A,
/ fle,wp(a))du < / fla,ule))dw +ry .
It is easy to verify that (wy) satisfies the properties in (5.9).
Let us set now v, = f(-,wi(+)) and v = f(-,u(-)). We claim that
(5.14) Fho— strongly in L(4, ).

Indeed, as (wj) converges to u p-q.e. on A, by the lower semicontinuity of flz,:) we

get y(z) < lilminf yr(2). By (5.9) and Lemma 4.6, it follows that (v,) converges to ~
OO

in the strong topology of L*( A4, u).

In view of (5.14) it is not restrictive to assume that for every h € N

(5.15) / lvn — | du < )—/;

At this point let us apply Lemma 4.5 to the sequence (w;);»; for every h € N. We

obtain a sequence (vn,j)j>n of functions in WP(4 R™)N L>(A4, R™) such that

vp,j(z) € cofwp(a), wpti(z), ..., wj(x)} for p-q.e. v € 4,

Vpj U strongly n T‘T-"l*”(:’l, R™)as) — .

By astandard argument we can find a strictly increasing sequence (j5,) of positive integers
such that (vp,j, ) converges to u in W'?(4, R™). Define v), = vy, for every h € N.
Then v, € WHP(A, R™) N L>®°(4,R™) and

vn(z) € cof{wp(a),...,wj, (¢)} for p-qe. v € A,

V), — U strongly in W17 (4, R™).



t
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In particular, a suitable sequence (kj) exists such that v,(z) € C,(2) for p-qe. x € A.
Now we only need to verify that (5.8) holds for the sequence (vj) just obtained. By
Lemma 3.2 we can write v,(2) = Zf"h Y (2)wi(a) for p-qe. @ € A, where vp:d —
Sk, _hy1 are g-measurable. Let us now make use of the convexity of f, together with

(5.15):

I"h

/A flz,vn(2))dp < Z/ UACIHEIRS l)|du+/l y(z)dp
1=h
' 1
< Z)L IR IRELEES

1=h

This implies

hmsup/ fla,vp(a))dp < /j x,ulx))du.

h—o0

Finally, let us remove the additional assumption (5.7). Fix U CC 4 and a se-
quence (rp) of positive real numbers decreasing to 0. For every ¢ > 0 there exists an
open set A. C Q, with ca.pl,(A:_,Q) < £, such that u;]g\4, and tlgy 4, are continuous
for every 1 € N. In particular, the multifunction Cjy is continuous on £\ A. with re-
spect to the Hausdorff metric. By Lemma 4.3 in Chapter I for every h € N there exists
n§ € N such that B,, j»(u(z))NCr(z) # O forevery k > nj and for every z € U\ A..
Let z. be the capacitary potential of 4. and u. = (1 — z.)u + z.u1, where u; is the
first term of the sequence (u;). Then one can easily check that (u.) converges to u in
WP(Q,R™), that u. € I(z) for p-qe. o € U, and that for every h € N there exists
nj € N such that B, ja(uc(z ( N N Crlz) # O for p-qe. € U and for every b > nj,.

Therefore we can apply the previous 1‘esult for u. and U in place of u and A; this gives

Clua,U) < | Flasuele))du + volU).
u

Since

/ flz,us(z))dp < /[(1—55(1)”(1 w(z)) + z=(2) f2, ()] du

U A
and [, f(z,u(z))dy < +oo by assumption, the lower semicontinuity of G and the

dominated convergence theorem imply

Gu,U) < hmmi Gu:,U) < / fle,u(a))du + vo(A4).
A

e—0t
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Taking the supremum for U CC 4 we get (5.6).
Step 6. In view of Step 4 and Step 5 we get
G(u,4) = / fla u(a)) du + vo(A)
A

for every u € WHLP(Q,R™)N L>(Q, R™) with u(x) € I'(z) for p-qe. x € 4. Property
(ii) now follows by taking into account that if « € domG(-, 4) then u(x) € I'(z) for

p-q.e. * € A by Remark 5.2. a

6. Integral representation on WHP(Q2, R™)

We now eliminate (Theorem 6.1) the restrictive condition u € L>=(Q2,R™) con-
sidered in the previous section. Furthermore, Proposition 6.3 will allow us to treat in
a unified way both cases of the representation formula established in Theorem 35.4(ii).
Thus, we achieve (Theorem 6.5) the conclusive integral representation theorem, which is

the main result of the chapter.
Given G € G, let us define
(6.1) 7(B) = inf{G(u,B):ue W (QR™)}.

for every B € B(). It is easily seen that the proof of Proposition 2.7 still works for the
set function 7 on every Q' € A(Q) with domG(-, Q') # @. Therefore, on such sets, 7 1s

a positive finite Borel measure.

Theorem 6.1. Let G € G, and assume domG(-,Q) # O. Then the conclusions
of Theorem 5.4 still hold with w (in item (ii)) ranging all over WHP(Q,R™) and vo
replaced by the measure ¥ defined in (6.1).

Proof. For every v € WHP(Q, R™) and for every B € B(Q) let us define

X, = {ue WHP(Q,R™) :u—ve WH(QR™)NL=(Q,R")},
ve(B) = inf{G(u.B):u € X,}.
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By a suitable application of Theorem 5.4, it turns out that for every v € domG(-,§2)
there exist a positive finite Borel measure u, on (2, absolutely continuous with respect
to the p-capacity, and a Borel function f,: & x R™ — [0, +0o0] such that

(i) for every o € Q the function f,(x,-) 1s convex and lower semicontinuous on R™;

(i) for every u € X, and for every 4 € AQ)

fA folz,u(z)) duy + vo(4), if ul(a) € K(z) forp-qe 2z €4,
(6.2) G(u,A4) =
400, otherwise,
where I = Iq is the closed valued multifunction from € to R™ given by Propo-
sition 5.1 for 4 = Q.
Step 1. Let us show first that for every v € domG(-, 1), v € Whr(Q,R™),and A € A(Q)
we have
u(z) € K(z) for p-qe z €4,
(6.3) G(u, A) < +oo if and only if
fA folz,u(z)) dpy + vo(A) < Foo.

By the definition of K and Remark 5.2, if G(u,4) < +c0 then u(z) € I'(z) for p-
q.e. © € A. Hence, let us assume that u(xv) € () for p-q.e. @ € A and prove that
G(u, A) < oo if and only if f& folz,u(a)) dpy + vo(A) < +oo.

For every k € N, let Ti: R™ — R™ be the orthogonal projection onto the ball
B(0); by Lemma 2.5, for every w € Whr(Q,R™) the function Tj o w belongs to
WLP(Q,R™) N L®(Q,R™), and the sequence (T o w) converges to w in the strong
topology of WHP(§,R™) as k tends to oo.

For every k € N let us set up = v + Ty o (v —v). By (6.2) we have

(6.4) Glug, 4) = / Folz,up(a)) dpy + volA).
A
Assume now G(u,A) < +oo. By (6.4) and Lemma 5.3 we have
/ Folz,up(a)) duy + vo(4) < Glu, A) + G(u, 4).
A .

Since, up to a subsequence, (uy) converges to u p-g¢.e. on {2, the Fatou Lemma and the

lower semicontinuity of f,(z,-) ensure that

/ Folz,w(z)) dpy + vo(A) < Glo, 4) + Glu, 4) < +00.
A
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Conversely, assume j4 fola,u(a)) diy, +vy(A) < +oo. Forevery k€ N, by (6.2),
(6.4), and by the convexity of f,(z, ) we get

(6.5) G(ug,4) < / ol u(w)) duy +/ folz,v(2)) dpy + vy(A4) =
A A
= / fola,u(z)) dpy + G(v, 4).
A

Hence, by the lower semicontinuity of G(-, 4) we conclude that G(u,4) < +o0.

Step 2. Let us fix 4 € A(Q) and u, v € domG(-, ). We claim that
(6.6) Glu,4) = / folz,ula)) dpy + vo(Ad).
A

Let us show first that for every w € X, with w(z) € co{u(z),v(z)} for p-q.e.

z € ), we have
(6.7) G(w,4) < / folw w(e)) dpy + vo(A4).
A

Let us fix w € X, with w(a) € co{u(x),v(x)} for p-qee. @ € Q, and let up = v + Tk 0
(w—w) for k € N. By the lower sem]contmuity of G(-,4) and by (6.2)

(6.8) G(w,4) < hmmfG (ug, A) = hmmf/ Fola,up(a)) dpy + vy(A4).

Note that (ux) convergesto w p-q.e.on 2. Since ug(z) is on the segment with endpoints
u(z) and v(z), by the convexity of f, it turns out that fv(z up(z)) < fola,v(z)) +
folz,u(z)) for p-qe. 2 € Q. From (6.3) we have [, fu(z,v(2))dp, < +oc and
fA fo(z,u(z)) duy < +co. Hence, by the continuity property of f,(x,-) along line seg-

ments ([39], Corollary 7.5.1) and the dominated convergence theorem

(6.9) hm / fola,up(a))du, = / fola,w(a)) dp, .

In view of (6.8), this implies (6.7).

From (6.7) with w = u we obtain

Gu,4) < / fola,u(a)) dpy + 17,(A4).
A

Let us now prove the opposite inequality.
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If in (6.7) we apply (6.2) to represent G(w, A) we obtain

/ fu l U»’ )) dﬂu + Vu / fLr (z, w( ))d,uv +7/v( )

By exchanging now the roles of u and v we obtain that for every w € X, with w(z) €

co{u(z),v(z)} for p-qe. v €
/ folz,w(z)) dpy + vl / Fulz,w(@)) dpy + va(4).

Now, if we take w = v+ Ty o (u —v) and argue as for (6.9), by the Fatou Lemma we get
/ fv($7u(1)) dpry + VU(A) < lim 1nf/ fulz,v(z) + Ti(u(z) —v(a ))d#u + v ( 4)
A & 24

= / fu(l ll dﬂu'i"l/u( ) G(U 4)

Step 8. For every v € domG(-, ), 4 € A(Q), and u € domG(+, 4) it turns out that
(6.10) Gu, A4) / fola,u(a)) diw + vo(A).

This follows by applying the same argument used in Step 4 of Theorem 5.4.

Step 4. Since domG(-, Q) # @, there exists a function v for which (6.10) holds for every
A€ AQ) and u € domG(-, A). Finally, we obtain that for every v € W Lr(Q,R™) and
Ae AQ)

fA Ffolz,u(a)) duy + vo(A4), i u(z)€ IN(x) for p-qe x €4,
(6.11) G(u,A4) =

+o0, otherwise.
Indeed, if u(z) € K(z) for p-qe. € 4 and u ¢ domG(-, 4), then by (6.3) we have
fA folz,u(z)) dpy + vo(4) = +00.

So far we have proved the integral representation by means of any of the measures

v, with v € domG(-, Q). We claim that for every v € domG(-,Q) and B € B(Q)
(6.12) vo(B) = inf{G(u,B) :u € WP (Q,R™)}.

Let B € B(Q) and u € WH?(Q,R™) with G(u,B) < +oc. In view of the definition of

G on Borel sets, by (6.11) we have
G(u,B) = / fola,u()) duy + vo(B) 2 vo(B);
B

hence, inf{G(u,B) : u € WI?(Q,R™),G(u,B) < 400} > v,(B). By the definition of
vy(B), this implies (6.12). ]
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The following proposition shows that, given the measures p and v, the function

f obtained in the integral representation theorem is essentially unique.

Proposition 6.2. Let G € G, with domG(-,Q) # O and let ' = Kq be the closed
valued multifunction from Q to R™ given by Proposition 5.1 for 4 = Q. Let p and
v be two positive finite Borel measures on (1, with p absolutely continuous with respect
to the p-capacity, and let fi, f2:Q@ X R™ — [0, +c0] be two Borel functions such that
fi(z,-) and fao(z,-) are convez and lower semicontinuous on R™ for p-a.e. v € SL.
Assume that for every A € A(Q) and for cvery u € domG(-, 4) we have Glu,A) =
[ filz,u(z)) dp + v(4) for v =1,2. Then fi(x, &) = falx,€) for p-a.e. @ € Q and for
every £ € I(z).

Proof. By a translation we can easily reduce the problem to the case G(0,§2) < +0.

Let (u;) and Cy(z) be as in the proof of Theorem 5.4. By Proposition 2.9 we have
G(u,A) = / filz,u(a))dp +v(d) = / ol u(x))dp + v(4)
A A

for every 4 € A(Q) and for every v € TWHP(Q, R™) with u(r) € Ci(z) for p-q.e. v € Q.
By Proposition 3.8 it turns out that fi(x,§) = fa(a, ) for pra.e. @ € Q0 and for every
€ € Ci(z). Hence the equality holds for every £ € ril¥(z) & Ure; Ckl(z), and, therefore,

for every ¢ € I{(2) by the continuity along line segments (see (39], Corollary 7.5.1). [

Proposition 6.3. Let K (x) be a closed and convez valued multifunction from 2 to R™
for which there exists a sequence (i) of functions in Whe(Q R™) such that K(z) =
c{up(z) : k € N} for p-ge. a € Q. Then, there ezists a positive finite Borel measure p
on Q, absolutely continuous with respect to the p-capacity. such that for every 4 € A(Q)

and for every u € WHP(Q,R™) the following conditions are equivalent:
(1) u(z) € K(z) for p-q.e. € 4,
(11) u(z) € K(z) for p-a.e. v € A.

Proof. It is not restrictive to assume that 0 € K(x) for p-qe. v € Q. Moreover,
we can suppose that wy € WIP(Q,R™)N L*(Q,R™) for every k € N. Indeed, if
Tj 0 up, with h € N, denotes the truncation introduced in Lemma 2.5, it turns out that
K(z) = cl{(T) o ug)(z) : h,k € N}, since I(a) 1s closed and convex and (7% o ug)n

converges to uy strongly in WLr(Q,R"), as h tends to oc.
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Let us note that, by a standard cut-off argument, it is enough to consider the case
A4 = Q. Moreover, (i) clearly implies (ii) as p is absolutely continuous with respect to
the p-capacity.
Step 1. Here we prove that (ii) implies (1) for u € W, P(Q,R™) under the additional
assumption that 9 is smooth.

Let us define the convex sets

K={ueW,”(QR™):ulx)€ K(x) for p-qe. x € Q},
Ki = {ueWyP(Q,R™):u(2) € K(a)+ +B1(0) for p-q.e. z € Q},

for every £ € N. Since T'V"Ol’p(Q,R"”‘) is separable, the set Ap is the intersection of a
countable family of closed half-spaces of Y’Tfol PTQ,R™). Hence, there exists a sequence

p N 1 n! iy . ., . .
e p)p in WLP(Q,R™), with p = 22— and a sequence (ag,x)n in R such that
/‘ ) 7 bl ] 1)__1 ki 1 IRl

Kp = ﬂ {ue Wy P(QLR™) 0 (jensu) = akn ),
heN
where (-,-) denotes the duality pairing between W1 (Q,R™) and W, P(Q,R™).
Denote by M(,R™) the space of all R™-valued Radon measures on & with
bounded total variation. We say that an element 7' € W1 (Q,R™) belongs to
M(Q,R™) if there exists p € M(Q,R™) such that
(T,p) = / @ dy

Q

for every ¢ € C§2(Q,R™). In this case T and g will be identified.
Let us prove that up, € M(Q,R™) for every h,k € N. Fix ¢ € C&P(Q,R™)

with |l¢lls < 1. Since uy + ¢ and uy — ¢y belong to Ky, we have

—k({pkpswr) = arn) < (prnse) < R((pen, 1) = agn) -

Therefore, there exists Cjp, > 0 such that [(gen, )] < Crunll@llee for every » €

CsP(Q,R™). Hence pupplces my can be uniquely extended to a continuous linear
0 Hkhice(Q,R™) (uely

functional on the space of continuous functions on  vanishing on 9§1. We conclude by

the Riesz representation theorem.

Since K = mkeN K, we can assert that there exists a sequence (u,) 1in
P ’ “ R .
WLP(Q,R™)N M(Q,R™) and a sequence (a;) in R such that

(6.13) K= () {ueWg"(QR™): (un,u) 2 an}.
heN
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Moreover, as p;, € W17 (0, R™)NM(Q,R™), by [30] and [11], Lemma 2 we have that

|n| is absolutely continuous with respect to the p-capacity. For every B € B(S2) define

oy L e al(B)
/)(_ ) ; !,“/LI(Q)

(clearly, we can assume that [u,](2) > 0 for every h € N ). Then p is a positive finite
Borel measure on § absolutely continuous with respect to the p-capacity. Let gn be the
Radon-Nikodym derivative of w; with respect to p. Then g, € L'(Q, p). By Corollary 6
in [11], for every u € T/Vol‘p(Q,Rm) NL=(Q,R™), we have u - g, € L'(, p) and

(6.14) (pp,u) = / w-gndp.
Q

Let us now prove that (ii) implies (1). Fix u € W, P(Q,R™) with u(x) € K(z) for p-a.e.
z € Q. Assume first that u belongs to L=({2, R™).
For every h € N and v € K N L=(Q,R™), by (6.14) we have

an < (pn,v) = / v gndp,
Q
hence

(6.15) ap < inf / vegndp.
veknL> Jq

In view of the fact that the functions uy are in L>=(Q,R™), it turns out that A (z) =

p-esssup {v(z)} for p-a.e. v € 2; then Theorem 4.4 yields
vEKNL>

(6.16) inf / vogpdp = / inf £ gp(z)dp.
Q Q

veEKNL EEL(x)
By the assumption u(z) € K(2) for p-a.e. v € , by (6.15) and (6.16), it follows that
ap < / w(@) - gn(a)dp = (pn,u)
Q

for every h € N. By (6.13) this proves that u € K, l.e., u(z) € K'(z) for p-qe. z € £,
Consider now a general u € TfVOl’p(Q, R™); let us note that, since K (z) is convex

and 0 € K(z) for p-q.e. @ € Q, the condition u(a) € N(x) for p-a.e. @ € { implies
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that (Th o u)(2) € K(2) for p-a.e. 2 € Q and for every h € N. The previous step and
the p-q.e. convergence of (T}, o u) to u allow us to conclude as IN(z) is closed.
Step 2. Let us now prove that (ii) implies (i) for every u € W1P(Q,R™) without
assuming the smoothness of the boundary of Q.

Let () be a sequence of open subsets of Q with Q4 CC Quq1, U, Q0 = Q, and
0, smooth. Let ¢, be a CH(Qy) function with ¢, =1 on Q- and 0 < ) < 1.
Define

LKp(2) = c{en(v)up(e) - k € N}

for p-q.e. @ € Q. By Step 1 there exists a positive finite Borel measure p;, on £,
absolutely continuous with respect to the p-capacity, and such that for every u €
W’J’p(ﬂ R™) the condition u(x) € Ly(x) for p-qe. @ € {, is equivalent to the con-
dition u(z) € Kp(2) for pp-ae. © € Q). We can consider p, as a measure on Q by

setting pu(B) = pr(B N Q) for B € B(Q). Let us define

ok
- S omeld

P /1

for every B € B(2). for every B € B(2). Then p is a positive finite Borel measure on
0 which is absolutely continuous with respect to the p-capacity.

Let us fix v € WYP(Q,R™) with u(z) € K(x) for p-ae. @ € Q. Then,
or(z)u(z) € Kp(z) for pr-ae. a2 € Q. so that ¢p(a)u(z) € I(x) for p-ge. z € Q.
Since ¢ = 1 on Qj,_1, we obtain that u(z) € K(a) for p-qee. @ € Q1. As h is
arbitrary, we conclude that u(z) € I'(x) for p-qe. 2 € Q. Ol

Lemma 6.4. Let G € G, and define Qy to be the union of all A € A(Q2) such that
domG(-, A) # O. Then domG(-, A) # O for cvery A € A(Q) with A CC Q.

Proof. By induction we can reduce ourselves to prove that, whenever 4;, A, are open
subsets of Q with domG(-, 4;) # @ and domG(+, 43) # @, then domG(-,4) # O for
every open set 4 CC 4; U 4,.

Let A;, A, and A be as above, and let 4’ CC A; with A CC A" U Ay. We shall
show that domG(-, A’ U 43) # @, which clearly implies domG(-, 4) # ©@. Consider a
function ¢ € C3(4;) with ¢ = 1 on 4’ and 0 < ¢ < 1. By assumption we can find
u € domG(-, 41) and v € domG(-, 43); define w = pu + (1 — ¢ )v. Then, by the usual
properties of the class G, it is easy to see that G(w, 4" U 4y) < 4o0. ]
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Theorem 6.5. Let Q be an open subsct of R" (not necessarily bounded) and let G e
G,. Then, there exist a positive finite Borel measure p on Q. absolutely continuous
with respect to the p-capacity, a positive Dorel measure v on Q, and a Borel function
f: Q2 x R™ — [0, +0c0] with the following properties:

(1) for every x € Q the function f(x,-) is convez and lower semicontinuous on R™;

(11) for every u € WHP(Q,R™) and for every A € A(Q)

(6.17) G(u,4) = / fla,u(a)) dp +(A).
A

Proof. Let 7 be the function on B({2) defined in (6.1). Let us set
v(4) = sup{m(4) 4" € AQ), 4" cC 4}

for every 4 € A(Q). Clearly v is increasing with respect to the inclusion, and v(0) = 0.

Moreover, for every 4 € A(Q)
(6.18) v(d) < oo = A C Q.

Clearly v is inner regular on A(Q); therefore, by Proposition 5.5 and Theorem 5.6 in [26],
to prove that v can be extended to a Borel measure on ! it suffices to show that v is
subadditive and superadditive on A(£2).

Let A;, 42 € A(£2), and note that

(6.19) v(A; U Ay) = sup{p(A, udl): 4l e AQ), A;cc 4 (i=1,2)}.

If v(A;) and v(Ay) are finite, then A, 4y C Qy by (6.18). Since, by Lemma 6.4, ¥ 1s
a measure on every I’ CC Qq, from (6.19) it follows that v(4; U 4d2) < v(A) +v(ds).
In a similar way we get superadditivity.

This allows us to conclude that the set function v:B(Q) — [0, +oc] defined by
v(B) = inf{r(4d): 4 € AQ), BC 4}
is a Borel measure on § and that v(B) = 7(B) for every B € B(Q) with B CC (.

Let us construct now g and f. Let () be a sequence of open subsets of
Qo with a smooth boundary such that €, CC Qp41 and Qo = U, In particu-

lar, domG(-,Q,) # © by Lemma 6.4. Since there exists an extension operator from
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WLP(Qy, R™) to WHP(Q,R™), it is possible to apply Theorem 6.1 to each €, us-
ing WHP(Q,R™) instead of W'?(Q,,R™). Let Iq, be the multifunction defined
in Proposition 5.1 for 4 = Qj; then there exist a positive finite Borel measure f
on U, absolutely continuous with respect to the p-capacity, and a Borel function

fr:Qp x R™ — [0, +00] such that
(a) for every z € Q, the function fj,(z,-) is convex and lower semicontinuous on R™;

(b) for every u € W P(Q,R™) and 4 € A(Q,)

fA fole,u(@))dpp +0(4), if u(z) € Ko, (z) forp-qe z€ A,
G(u,4) =

400, otherwise.
Moreover, we have a uniqueness property for the integrand as stated in Proposition
) | Proj ) 3

By Proposition 6.3, for every h € IN there exists a positive finite Borel measure
pr on £y, absolutely continuous with respect to the p-capacity, such that for every
u € WHP(Q,R™) the condition u(z) € g, (x) for p-q.e. @ € Q4 is equivalent to the
condition u(z) € Kq, (z) for pj-a.e. v € Q. Let us consider p;, and p, as measures on

Q by setting pp(B) = up(BNQy) and pp(B) = pr(BNQ,) for every B € B(Q). Define

Z a=h \Fh T PN T Nh + /)h)(B)
(e =+ pa)(R2) ’

h=1

fala, ) dnipy, ifzeQy and € € Ko, (z),

dp
gn(2. &) =
+0o0, otherwise,
where duyp/du is a fixed Borel representative of the Radon-Nikodym derivative. Then
i 1s a positive finite Borel measure on (2, absolutely continuous with respect to the
p-capacity. Since for every h € N there is a sequence (v;) in W1H?(Q,R™) such that
Kq,(z) = cl{vi(z) : i € N}, by Theorem II1.9 and Proposition III.13 in [14], the graph of
Kq, belongs to B(Q,) x B(R™). Therefore gj,: 2 x R™ — [0, +o0] is a Borel function,
and for every z € Qy, the function g,(z,-) is convex and lower semicontinuous on R™.
By recalling that Ko, = Kq,,, p-q.e. on 2, (see Remark 5.2), and by using the
uniqueness property of the integrand mentioned above, we easily obtain that g,(x,-) =

ght1(z,-) for prae. x € Q.
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Therefore, there exists a Borel function f: {1 x R"™ — [0, +cc] satifying (i) and
such that for every h € N
flz,) = gunlz,) on R™ for pae v €8y.
Let us now prove (ii). Fix u € WIP(Q R™) and 4 € A({). If 4\ Qo # O. then
v(A) = 400 by (6.18). On the other hand, by the definition of Qy we have G(u, A) = +o0
for every u € WHP(Q,R™). Therefore

Glu4) = [ Flaule)) di+o(4),
A
Let now 4 C Qo and A’ CC A. Then 4' € Qy, for a suitable h € N. In view of
the properties of the measure pj, from the definition of g, and [ we easily obtain

G(u,A") = / gu(z,u(z))dp +7(4") = Fla,u(z)) de +7(A").
A JA!

Therefore (ii) follows from the definition of v taking the supremun for 4'cc 4. U

Remark 6.6. Let G € G, and Qp be as n Lemma 6.4. By Proposition 5.1 and
Remark 5.2, there exists a closed valued multifunction Iy from Qp to R™, unique up to

sets of the p-capacity zero, such that
(6.20) K(z) = Ka(z) for p-qe. v € 4

whenever 4 € A(Q) and domG(-, 4) # ©. NMoreover, I(z) is non-empty and convex
for p-q.e. z € §1p.

It is clear that the function f constructed in the proof of Theorem 6.5 satisfies
the additional condition f(z,€) = +oo for p-a.e. = € and for every £ ¢ L(z).
This is not necessarily true for every function f which satisfies conditions (1) and (i1) of

Theorem 6.5. Let us consider, for instance, the functional

G(u, A) = {

in the case n = m = 1 and Q = R. Then, clearly, Il(z) = {0} for p-q.e. 2 € R and

0, if u=0a.e. on 4,
+oo, otherwise,

(6.21) Gu, 4) = / fla,u(a))de,
JA

with

L fo.  ifg=o0,
But (6.21) holds also with f(z,¢) = a(2)|€2, where a: R — [0, +oo] is any finite valued
Borel function such that [, a(2)dr = +oo for every open subset 4 of R (see [31],

Section 43, Exercise 7).
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Remark 6.7. If domG(-,Q) = @ and v is not necessarily finite, the uniqueness result
of Proposition 6.2 still holds, with an obvious localization of the proof, in the weaker
form:

fi(z, &) = fa(x,€) for p-ae. v € Qp and for every £ € K(z),

where € is defined in Lemma 6.4 and [(2) is now defined by (6.20).

7. Quadratic functionals

In this section we show how certain algebraic properties of the functional G are
inherited by the integrand which appears in the representation of G according to Theo-
rem 6.5. We recall that a cone in a vector space X (with vertex at 0)1s a set J\ such

that ta € I for every t > 0 and for every w € I\,

Definition 7.1. Let X be a real vector space and let p € R. We say that a function
I ! )
f: X — [0, +0c0] is:
(i) positively homogeneous of degree p on a cone I if G(tz) =t'G(x) for every ¢ >0
and for every = € I{';
(ii) a (non-negative) quadratic form (with extended real values) on X if there exist a

linear subspace ¥ of X and a symmetric bilinear form B:Y x Y — R such that

vy _ | Blzx), ifaed,
Gla) = { +o0, ifeeX\Y.

We shall refer to ¥ as the domain of G.

Remark 7.2. In the previous definition it is not restrictive to assume that B is defined
over all of X x X. Indeed, let Z be an algebraic complement of 1" in X and denote
by P:X — Y the canonical projection on ¥ associated to the pair (¥, Z). Then, it is
enough to consider the extension (x,y) — B(Px, Py) defined for every (z,y) € X x X.
As a consequence, if X is finite dimensional and dimX = m, then there exists an
m X m symmetric matrix (a;;) such that G(z) = 2;'7,1]‘:1 czi]-:vi 2) for every x € ¥, where
zl, ..., 2™ denote the components of z with respect to a fixed basis of X .
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Theorem 7.3. Let G € G, and p € R. Let f, p, v be as in Theoremn 6.5 and let
Qo and K be as in Remark 6.6. Assume that f(x,€) = +o0 for p-a.e. x € Qo and for
every £ ¢ K(x). Then the following properties hold:
(i) if G(-,A) is positively homogeneous of degree p on W1IP(Q, R™) for every A €
A(Q2), then IK(x) 18 a closed convex cone for p-q.e. v € Qy, and f(x,-) is posi-
twely homogeneous of degree p on L () for p-a.e. x € Qo 1f, in addition. p # 0,
then v(B) =0 for every B € B(y);
(i) of G(-,4) 1s a quadratic form on WHP(Q,R™) for every 4 € A(Q), then v =10,
K(z) s a linear subspace of R™ for p-qe. v € Q, and for p-a.e. x € S the

function f(x,) ws a quadratic form on R™ with domain I(z).

Proof. Proof of (i). For every 4 € A(Q) the positive homogeneity of degree p implies
that tu € domG(-, 4) whenever ¢t > 0 and u € domG(-, A). Recalling the definition and
properties of {4 given in Proposition 5.1, it is easy to see that, if domG(-, 4) # @,
then there exists a set N C 2 with cap,(V) = 0 and such that for every € A\ N, ¢ €
Q* \ {0} and € € K 4(x) we have g€ € I 4(z). Since I 4(x) is closed, it follows that
K 4(2) is a cone for every o € A\ N. The convexity of Ii 4(2) is proved in Proposition
5.1(iii). By the definition (6.20) of K(x) and by the definition of Q¢ we conclude that
K(z) is a closed convex cone for p-q.e. € Qq. ,

Let us now prove that f(z,-) is positively homogeneous of degree p on K(z)
for p-ae. @ € Q. Let us first consider the case p = 0. If 4 € A(Q) and u €
domG(-, A), then the function ¢ + G(tu,4) from [0,1] into [0,+o0] is convex and
lower semicontinuous; moreover, G(tu,4) = G(u, 4) < +oc for every t > 0. Therefore,
G(0,4) = tlilgl+ G(tu,4) = G(u, 4) for every 4 € A(Q) and v € domG(-,4). This
shows that 0 € L (x) for p-q.e. @ € Q. By the uniqueness of the integrand stated
in Remark 6.7, we conclude that f(x,€) = f(2,0) for p-ae. 2 € Qy and for every
€ € K(a).

Assume now p # 0. Let 4 € A(Q) and w € domG(-,4) . Since v(4d) <
G(tw, 4) = t?G(w, 4) for every ¢ > 0, taking the limit as t — 07 or t — +co according
to whether p > 0 or p < 0, we get v(4) = 0. In view of the positive homogeneity of
G(-,4) and (6.17) we have

G(u,4) = / ;ﬁf(lt,tu(;v))dp
At

for every A € A(Q), v € WI?(Q, R™) and t > 0. Now, by the uniqueness of the
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integrand (Remark 6.7), we have f(x,&) = (1/t)f(w,t§) for p-ae. @ € Qo and for

every £ € I{(z).

Proof of (ii). Assume that G(-,4) is a quadratic form for every 4 € A(Q). Then
G(0,4) = 0 for every 4 € A(Q), hence Qy = Q, v(B) = 0 for every B € B({2). and
f(z,0) = 0 for p-ae. 2 € Q. Directly from Definition 7.1 it follows that domG(-, A)
is a linear space; in particular, v + v and —u belong to domG/(-, 4) whenever u.v €
domG(-, A). As in the first part of (i), it can be shown that for p-q.e. z € 2, £ + 7 and
—¢€ belong to K'(z) if £, € I{(x). Since I(2) is a cone (part (1)), this guarantees that
K(z) is a linear subspace of R™ for p-q.e. @ € §2.

If X is a (real) vector space, it is well known (Fréchet-Von Neumann-Jordan
Theorem, see, for instance, [42]) that a function G: X — [0, +o0] is a quadratic form if
and only if G(0) = 0, G is positively homogeneous of degree 2, and satisfies the following

“parallelogram identity”:
G(E+n)+ G(E—n) = 2G(£) +2G(n)

for every £, € X. Since f(2,0) =0 for pra.e. v € Q and f(x,1§) = t? f(z,€) for pra.e.
¢ € Q and for every t > 0, £ € I(2) (see part (1)), to complete the proof of (ii) it
remains only to show that f(z,-) satisfies the parallelogram identity on K(z) for u-a.e.
z € Q. Define the functional H:[WW5?(Q, R™))* x A(Q2) — [0, +o0] as

H(u,v,A) = Glu +v, A) + G(u —v, 4) =2G(u, A) + 2G(v, 4).

Since v = 0, from (6.17) we obtain

(7.1) H(u,v,4) = / 2f(x, u(2)) + fla,v(a)]dp =
A
/ [fla,u(e) + o) + fla,w(e) —v(x))] du
A

for every A € A(Q). Since [W1P(Q,R™)]* can be identified with WLP(Q,R*™), we
can apply Remark 6.7 to the functional H, with the set L'(x) x I'(x) playing the role

of K(z) for p-q.e. @ € Q. Therefore, (7.1) gives that
20f(x, &) + fla,n) = fla, & +n)+ fla, & —n)

for p-a.e. x € Qp and for every (£,7) € IN(a) x I{(x). U
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Corollary 7.4. Let G € G,. Assume that G(-, A) is a quadratic form on WheQ,R™)
for every A € A(Q). Then there erist:
(i) a positive finite Borel measure p on Q, absolutely continuous with respect to the
p-capacity,
(ii) a symmetric m x m matriz (a;;) of Borel functions from € into R such that
Zgnj_l a,-j(:v)f‘fj >0 for p-q.e. @ € Q and for every £ € R™,
(1i3) for every € Q a linear subspace V(x) of R™.
with the following properties: for every w € WHP(Q,R™) and A € A(Q)
(a) if G(u,4) < +oo, then u(x) € V() for p-ge. v € A;
(b) if u(z) € V(x) for p-qe. x € A, then G(u,A) =/, Zinj Lai()u (z)ul(z)dpu.

Proof. The conclusion follows from Theorems 6.5 and 7.3(ii), and from Remark 7.2. U
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LIMITS OF MINIMUM PROBLEMS WITH CONVEX OBSTACLES FOR
VECTOR VALUED FUNCTIONS

Introduction

It is well known that a relaxation phenomenon may asymptotically occur for a
sequence of minimum problems of the calculus of variations with varying obstacles. In
this chapter a similar analysis is carried out for functionals defined on vector valued
Sobolev functions, drawing general properties of the limit behaviour.

Given an open subset {0 of R", let us consider the following problem:
(0.1) min{/ W(z,Du(z))dz :w € Hy(Q,R™), u(z) € K(z) for qe. z € A},
Q

where: m > 1, W(z,7) is quadratic in 1 and non-negative, I{' is a multifunction from
Q) to the closed convex subsets of R™, A € A(Q) (the family of the open subsets of 1),
and q.e. means quasi everywhere with respect to the usual capacity. Our aim is to discuss
some general properties of the asymptotic behaviour of a sequence of problems of the
form (0.1) relative to an arbitrary sequence of multifunctions (X’y) and under suitable
assumptions on W. Hence, we shall first be interested in establishing a convergence
result (compactness), and secondly in analysing the general features of the limit. This
study will be developed in the context of I'-convergence.

Some remarks are now in order. Let us notice that the multifunction K in (0.1)
will be subject to no regularity condition other than the closedness and convexity. With
a view to considering also constraints on “thin” sets (such as lines in R? or surfaces in
R3?), the condition u(z) € K(z) is required to hold up to sets of null capacity. In the

scalar case (i.e., m = 1) problem (0.1) takes the form
min{/ Wz, Du(z))dz : u € HYH(Q,R™), p(z) < u(z) < ¢(z) for qe. € A4},
Q

where ¢ and 1 are arbitrary functions from 2 to [—co,+oo]. Thus, the asymptotic

analysis of a sequence of minimum problems with unilateral (¢ = —oo or ¥ = +00) or
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bilateral obstacles falls within this framework. Accordingly, we shall recover, as particular
cases, some of the previous well-known results on the subject: see [13], [25], [22]. [18],
[17], [7], [8], [5] and [23].

As usual in this setting, problem (0.1) is identified by means of the functional

Jo W(z, Du)dz + G(u, 4), with

0, if w(z) € I(z) for qe. @ € 4,
(0.2) G(u,4) =

+oo, otherwise,

(ue HY(Q,R™), 4 € A(Q)). Actually, we shall consider sequences in an abstract class
G2 which contains in particular the obstacle constraint functionals. G:H'(Q.R™) x
A(2) — [0 + oo belongs to Gy if: (i) for every 4 € A(Q) the function G(-. 4) is
lower semicontinuous on H'(Q,R™); (ii) for every u € H'(Q,R™) the set function
G(u,-) is (the trace of) a Borel measure on ; (iii) G(u,4) = G(v,4) whenever u,
v e HY(Q,R™), 4 € AQ), and u|s = v|a; (iv) for every 4 € A(Q) the function
G(+,4) is convex on H'(Q,R™) and, if u,v € H(Q,R™) then G(w,4) < G(u, 4) +

G(v, A) whenever w is a convex combination of u and v with smooth coefficients. These

conditions are singled out since they are stable under I'-convergence and strong enough
to allow a suitable representation for the functionals of the class. Indeed, in Section
2 we recall the fundamental integral representation results for G, based on Chapter
II. In Theorem 4.1 (compactness) we prove that every sequence in G, admits, up to
a subsequence, a limit functional which still belongs to Go. Both the results are then

applied to a sequence of obstacle problems, yielding as a limit a functional G of the form
(0.3) G(u,4) = / g(z,u(x))du + v(A) (v € HYQ,R™), 4 € AQ)),
A

where 1 and v are positive Borel measures on 2 and ¢: Q x R™ — [0, +o0] is a Borel
function, convex and lower semicontinuous in the second variable.

Section 5 is devoted to Dirichlet problems in perforated domains, which corre-
spond to multifunctions I, taking only the values {0} and R™. Consequently, the

representation (0.3) becomes
Glu,A) = / w? Muadp (v € HY(Q,R™), A€ AQ)),
A

where M is a symmetric m x m matrix of real Borel functions on § with €7 M€ > 0 for

every £ € R™, a: Q) — [0, +oc] is a Borel function and p is a positive Radon measure with
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p € H71(Q). Bounds for the ratio between the maximum and the minimum eigenvalue
of M are then obtained.

Examples of concrete situations which lead to problems of the class considered
above may be found, for instance, in linearized elasticity. Let us denote by e(u) the

linearized strain tensor £((Du)” + Du) and set
W(Du A 9 .
V(Du) = gldwu| + ule(w)|”, (A, >0)

(u is the displacement with respect to a reference configuration Q). [, W(Du)dz repre-
sents the strain energy obtained by linearization of the constitutive equation of a homo-
geneous, isotropic, elastic material whose reference configuration is a natural state (i.e.,
with null residual stress). (If one prefers, W can be seen as the approximation up to
the second order with respect to e(u) of the stored energy function of a homogeneous,
isotropic, hyperelastic material whose reference configuration is a natural state; see, e.g.,
[16] for further details).

A kind of application which well fits the framework of obstacle problems outlined
above, is the inclusion of a very rigid material into an elastic body (think, e.g., of a body
fixed by “nails” at a rigid support). We can model this situation by adding to the energy
functional [, W(Du)dz a term of the form (0.2), with I{(x) taking only the values {0}
and R?. As the inclusions increase in number and decrease in thickness, an asymptotic

analysis is needed.
1. Notation and preliminaries

Throughout this chapter p is a fixed real number, 1 < p < +co, m, n are two
fixed positive integers, and ) is an open subset of R™, possibly unbounded. We recall
that we denote by A(Q)) the family of the open subsets of € and by B(2) the family of
its Borel subsets. The elements of R™ will be usually considered as column vectors.

Asusual, we shall set H'(Q,R™) = W12, R™) and H}(Q,R™) = Y'T/()l’z(Q,Rm)
(R™ will be dropped if m =1).

We recall that a subset 4 of Q is said to be p-quasi open (resp. p-quast closed)
if for every € > 0 there exists an open set A. with cap,(4.,Q) < ¢ such that AU A,
(resp. A\ A.) is an open set (resp. closed set).

Dealing with p-capacities, we shall drop the prefix p in the case p = 2.
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For simplicity, we indicate by M ,(Q) the class of all positive Borel measures x
on Q such that u(B) = 0 whenever B € B(Q2) and cap,(B,Q) = 0 (absolute continuity
with respect to capacity).

We say that a Radon measure p on § (that is, a Borel measure on Q, finite on
compact sets) belongs to WP (Q), % + ~p1— =1, if there exists a constant ¢ > 0 such
that [, odu < cllollwur(q) for every © € Cg°(f). It is well known that if 4 is a

positive Radon measure on 2 which belongs to T/V"LP'(Q), then u belongs to M,(£2).

I'-convergence. (For more details on this subject see [20]) Let (X, d) be an arbitrary
metric space. Let (F}),) be a sequence of functions from X to R, and let F be a function
from X to R. We set

F'(z) =T- li}fn inf F(2) = inf{li;n inf Fi,(21) : (z5) converging to z in (X, d)},
—_—0 —_—0
F'(z) =T- 1iiﬂ§L1p Fi(z) = inf{li}ln sup Fy(zy) : (zg) converging to @ in (X, d)}.

It turns out that these infima are actually minima.

Definition 1.1. We say that (Fy) -converges to F if F=F' =F" on X.

It turns out that (Fj) T'-converges to F if and only if the following conditions
are satisfied:
(a) for every € X and for every sequence () converging to z in (X, d), F(z) <
liminf Fj,(zr);
h—oo ,
(b) for every x € X there exists a sequence (z;) converging to z in (X, d) such that
F(z) = lim Fup(zs).
h—oo )

A functional F: X x A(Q) — R is said to be lower semicontinuous (on X ) if
F(-, A) is lower semicontinuous on X for every A € A(Q). F is said to be ncreasing
(on A(Q)) if the set function F(z,-) is increasing on A(Q) for every o € X'. The inner

reqular envelope of F' is the functional F_: X x A(Q) — R defined by
F_(z,A) =sup{F(2,B): Be€ A(Q),B CC A}.
F is said to be inner regular on A(Q) if F_ = F.

Let now (F}) be a sequence of increasing functionals on X x A(2), and let F”,
F'": X x A(Q) — R be the functionals defined by

F'(-,A) = T-liminf Fy(-, 4), F(-, 4) = T-limsup Fi(, 4).

h—o0 h—o00
The functionals F' and F' are lower semicontinuous and increasing, but in general not

inner regular.
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Definition 1.2. We say that (F},) T-converges to F in (X,d) if F = (F')- = (F")-
on X x A(Q).

Remark 1.3. The T-limit F turns out to be lower semicontinuous, increasing and
inner regular.

We say that a subset R of A(Q) is rich in A(Q) if, for every family (4¢)ier In
A(Q), with A, CC A; whenever s, t € R, s <t, theset {t € R: 4, ¢ R} is at most

countable.

Proposition 1.4. Let (F),) be as above and let F: X x A(Q) — R be a lower semicon-
tinuous, increasing and inner regular functional. If the topology of X has a countable
base, then the following conditions are equivalent:
(a) (Fy) T-converges to F;
(b) there ezists a rich set R in A(Q) such that (Fu(-, A)) I'-converges to F(-,4)
X for every A €R.
If 4 is an open subset of R™, we shall use the symbol I'y to denote the I'-
convergence in the metric space WHP(A, R™) endowed with the metric of LP(4,R™).

A similar notation will be adopted for the T'-convergence.
2. Further results about the class g,

In this section we consider a subclass of Gy which is relevant for the study of
Dirichlet problems on perforated domains. We recall that the most general form of the

functionals of G, is given in Theorem 6.5 of Chapter II, 1.e.

Theorem 2.1. Let G € G,. Then, there ezist o finite measure p € Mp(Q2), a positive
Borel measure v on Q, and a Borel function g: {1 x R™ — [0, +co], with the following
properties:

(i) for every z € Q the function g(x,-) is convez and lower semicontinuous on R™;

(11) for every u € WHP(Q,R™) and for every A € A(Q)

Glu,4) = / gla,u(z))de +v(A4).
A
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Remark 2.2. Let us notice that Theorem 2.2 in [19] guarantees that given a positive
Radon measure p € M,(§2), there exist a positive Radon measure p € T/'V"LPI(Q) and
a non-negative Borel function b:{ — [0, +-o0[ such that w(B) = [gbdp for every Borel
subset B of €. Therefore, in Theorem 2.1 and in the following one we are allowed to

replace the finite measure ¢ with the product bp.

We recall that if X is a real vector space, we say that a function F: X — [0, +o0]
is a (non-negative) quadratic form (with extended real values) on X if there exist a linear

subspace ¥ of X and a symmetric blinear form B:1" x ¥ — R such that

) — B(;l?,;];) L ifr e 5_,-?
Fley= { oo, ifre X\Y.

A functional G € G, will be said to be guadratic if G(-,4) is a quadratic form on
Whe(Q,R™) for every A € A(Q). In particular domG(-, Q) # O since G(0,Q2) = 0.
By Theorem 7.3 and Proposition 5.1 in Chapter II we can associate to G a multifunction
Ve from Q to R™, unique up to sets of p-capacity zero, such that
(i) Ve(a) is a linear subspace of R™:
(i) for every u € domG(-,§2) we have u(z) € Ve(a) for p-qe. z €
(iii) if H is a closed valued multifunction from Q to R™ such that for every u €
domG(-, Q) we have u(z) € H(z) for p-q.e. = € 1, then Vg(z) & H(z) for p-q.e.
z € §.
Moreover, Vg enjoys the following property:
(iv) if (ug) is a countable dense subset of domG(-, ) then Vg(z) = cl{u(z) : k € N}
for p-q.e. v € Q).

From Corollary 7.4 in Chapter II we obtain:

Theorem 2.3. Let G be a quadratic functional of G,. Then there eaist a finite measure
p € Mp(Q) and o symmetric m x m matriz M of Borel functions from 0 to R with
¢TM(z)e > 0 for p-g.e. 2 € Q and for every £ € R™, with the following properties:
for every u € T/VLP(Q,RM) and A € A(RQ)

(i) if G(u,A) < +oo, then u(z) € Vg(z) for p-ge. v € 4;

(1) if u(z) € Vg(a) for p-ge. v € A, then

Glu,4) = /uTﬂJu dp .
A
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The next proposition contains a significant case in which we can recover, for a
quadratic functional, an integral representation valid on the whole WP(Q, R™), though
maintaining a quadratic form in the integrand function and a Radon measure with finite

energy. In particular it applies to the scalar case (m =1).

Proposition 2.4. Let G be a quadratic functional of G,. Assume that Vg may take
only the values {0} and R™. Then there exist
(i) a positive Radon measure v € W1 (Q);
(ii) a Borel function a:Q — [0, +00];
(i1) a symmetric mxm matriz M of Borel functions from Q to R with ETM(z)E> 0
for p-q.e. x € 0 and for every £ € R™,

with the property that
G(u,4) = / w! Mua dv
A

for every u € WHP(Q,R™) and 4 € A(Q).
Moreover, denoting by E the set {x € Q: Vg(z) = {0}} (which is defined up to
sets of p-capacity zero), we can find M and a such that M equals the identity mairiz

p-g.e. on E and a is finite valued p-q.e. on Q\ E.

Proof. Let p and P be the measure and the matrix in the representation of G according
to Theorem 2.3.

Let E be a representative of {2 € Q : Vg(2) = {0}}. From property (iv) above
satisfied by Vg, it follows that E is p-quasi closed. Moreover, we may assume that E
is a Borel subset of . Denote by oog the Borel measure on R" defined as follows:
cop(B) =0 if cap,(BNE) =0 and cog(B) = +oco otherwise. Let us show that there

exist a Radon measure p € W~1?' (R") and a Borel function b: R" — [0, +o0] such that

(2.1) / UQCZOOE::/ 020 dp
A A

for every A € A(R™) and v € W1?(4). By Theorem 5.7 in [19] there exist a positive
Radon measure p € W12 (R™) and a Borel function f:R" xR — [0, +o0], with f(z,-)

increasing and lower semicontinuous on R for every « € R™, such that

/ (v*(2))*doop = / fla,v(z)) dp
A A




38 Chapter III

for every 4 € A(R™) and v € Wh?(4). We can now apply the argument of Lemma 2.4

n [21], thus obtaining the existence of a Borel function b: R® — [0, +oc] such that
/ fla,v(z))dp = / (v (2))?b(z)dp
A A

for every A € A(R") and v € W' P(4). This easily yields (2.1).

Let us notice that, since E is p-quasi closed, by Lemma 1.5 in [19] there exists an
increasing sequence (vp,) in W1HP(R™) converging p-q.e. to the characteristic function of
0\ E. We can apply (2.1) to the sequence (v;,). By the monotone convergence theorem

we conclude that

Famn
®
®

p—

/ bdp = 0.
O\E

Let us now define on 2 a matrix-valued Borel function A by setting M = I (identity

matrix) on E, and A = P on Q\ E. Moreover, let us set ¢ = p + bp. We claim that
(2.3) G(u,4) = / u? Mu do
A

for every v € WHP(Q,R™) and 4 € A(Q).
Assume first that u =0 p-q.e. on EN 4. We have

/uT./\/fuda::/uTPu, d,u—i—/ wl Mubdp .
A A A

In view of the definition of 1 and P, the first term on the right-hand side equals G(u, A4).
The second one is zero by (2.2). Hence we get (2.3) in the case v =0 p-q.e. on EN A.

Assume now that capp({:v € Q:ulz) # 0JNENA) > 0. By Theorem 2.3,
G(u,A) = 4co. On the other hand

/uT.Muda 2/ lul*bdp = / lul*bdp = / lu|* doop = 40,
A ANE A A

Up to now we have proved (2.3). According to Remark 2.2 we can replace u by
. d . . . - !
b'p', where V': Q0 — [0, +oc[ is a Borel function and p' is a Radon measurein W17 (Q).

Let v = p' + p; then v is a Radon measure on Q which belongs to W~=1?(Q). Define

dp

7> In view of (2.2) we

a:§) — [0,4oc0] as a Borel representative of the function b’ % +0b

can assume that « is finite on Q\ E. Then (2.3) yields the desired representation of G.

O
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3. Some convergence results in the class G,

Let W:0Q x R™" — R be a function such that

(a) W{(-,n) is Borel measurable on {2 for every n € R™" and W (z,-) is convex on

R™" for a.e. z € {;

(b) there exists a function a € L'(Q) and a constant b > 0 such that
0 < W(z,n) < a(z) + bn|” for a.e. 2 € {2 and for every n € R™";

(c) for every A € A(Q) there exists a constant ¢(A4) > 0 such that
/ | Du|Pda < C(A)(/ Wiz, Du)dz +/ |u|Pda)
A A A

for every u € WH?(Q,R™).

Let us define

(3.1) F(u,B) = / Wz, Du(z))dz

B
for every A € A(Q), for every u € W1 P(4, R™) and B € B(A4). By the Carathéodory
Continuity Theorem, F(-, A) is continuous on W'?(4,R™) for every A € A(Q). Since

F(-, A) is convex, it is also lower semicontinuous in the weak topology of W P(4,R™).

Proposition 3.1. Let (G)) be a sequence of functionals of G,. Assume that there
exists a functional G:WHP(Q,R™) x A(Q) — [0, +o0] such that the sequence (F 4+ Gy)
Tq-converges to F + G. Then G satisfics properties (i), (1) and (111) of Definttion 2.1
of Chapter IL.

We need the following lemma.

Lemma 3.2. Let A, A" and B be open subsets of Q, with A" CC A; let u,v €
WLP(Q,R™) and ¢ € CHA) with o =1 on A" and 0 < ¢ < 1. Then for every
0<e<1/2 we have

Flou+(1—p)v, A'UB) < F(u,A)+F('U,B)+C'(;‘—{—el_pHDQHPN(A)Hu—v||7[ip(UmB’Rm)),
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where U = {z € Q : Dy(z) ;é 0} and C is a positive constant depending only on
the function a and the constant b in the foregoing condition (b) and momnotonically on

max(”u”pvl,p(AyRm), H‘UHLVl,p(B’an)).

Proof. Define w = wu + (1 — p)v. By the convexity of W (x,-) we have

: D
Du 1= oW, 2
1—c¢ 1—c¢

F(w,A'"UB) < (1—6)/4/ B{QI’V(JJ, )] dz+

1 .
+ s/ W(z, =(u—v)© Dp(z))d.
A'UB <

In view of the boundedness condition (b), it follows that

F(w,A'UB) < F(—

(3.2) l—e¢
1= p )

+ellall rarusy + 2 TP D ] 4yl — UHIL"(UnB,R"‘)'

JA) + F(——. B)+

Let us apply the well-known Lipschitz estimate for finite valued convex functions to the
functions ¢ — F(tu, 4) and t — F(tv,B) on R. Again by the boundedness condition
(b), it follows that for every 0 <& < 1/2

u ‘ v

-, 4) < Fu,4) + C's, F(1 -,B) < F(v,B)+C's,

— & c

F(1

where C'is a constant with the same properties stated for C'. Together with (3.2) this

concludes the proof. ]

Proof of Proposition §.1.
(i) By Remark 1.3, for every 4 € A(Q) the functional (F + G)(-,4) is lower semicon-
tinuous in LP(£2, R™); moreover, F(-, A) is continuous in W1 ?(Q,R™). It follows that
G(-,A) is lower semicontinuous on W1 ?(Q,R™).
(i) Let us show that (F + G)(u, ), and hence G(u,-), is the trace of a Borel measure on
Q for every u € W1 P(Q,R™).

For every A € A(Q2) define

H'(-,A) = Tq-liminf[F(-, 4) + Gi(-, 4)],

h—c

H"(-,A) = Tq-limsup[F(-,4) + Gu(-, 4)].

h—o0
By following the proof of Theorem 18.5 and Proposition 18.4 in [20], it can be easily seen
that it is enough to show that for every v € W' P(Q,R™) the set function H"(u.-) is

weakly subadditive, i.e.,

(3.3) H"(u,A'UB) < H"(u,4) + H"(u,B)
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whenever A', A, B € A(Q2) with A" CC 4.
Let usfix A', 4, Be A(Q), A’ cC A and u € WH?(Q,R™) such that H"(u, 4),
H'"(u,B) < 400. Let (u) and (v,) be two sequences in WHP(Q, R™) converging to u

in LP(Q2,R™) and such that

H'(u,4) = lilm sup[F(un, 4) + Gulun, 4)],

3.4
(38.4) H"(u,B) :1i]msup[F(vh,B)—}—Gh(vh,B)}.

Let ¢ € C(A) with ¢ = 1 on a neighbourhood of 4’ and 0 < ¢ < 1. Define wy =
oup + (1 — @)v,. Then (wy) converges to u n Lr(Q,R™). Thus H"(u,4A"U B) <
lim sup[F(wn, A' U B) + Gu(wy, A" U B)]. Let us estimate the right hand side. For every

h—oc0

h € N we have

Gr(wp, A"U B) < Gulup, A+ Gp(vn, B\ A) + Gulpun + (1 = @)vn, (AND) \ A7)
< Gh(uh,;p) + Gp(vn, B\ A) + Gu(un, (AN B) \;17) + Gpr(vn, (AN B) \:l_'),

hence
(35) Gh,('w/u AU B) < G/L(uha -’U + G[,Y(Uh,B.) .

Let us fix 0 < ¢ < 1/2. Notice that the finiteness of H"(u,4) and H"(u,B), and the
coerciveness condition (c¢) guarantee that (||up|lwir(a,rm)) and (Jlvallwie(srm)) are

bounded. By Lemma 3.2
(36) F(whaA-IUB) < F(Uh.a~4,)+F('U/zv,B)+C(E+51—1)HD¥JHPm(_;;’)“uh_U/l“iP(Q,Rm))v

where C can be chosen independently of h. From (3.5) and (3.6) we get

H'"(u, A" U B) < limsup[F(up, 4) + Gulun, 4)]+

h—c0 i

lim sup[F (v, B) + Gu(va, B)] +2¢C.

h—co

By (3.4) and the arbitrariness of ¢ we obtain (3.3).
(iii) Let 4 € A(Q) and w,v € WIP(Q,R™) with u =v a.e. on A. We shall show that
for every A, A; € A(Q) with 4; CC Ay CC A we have

H'(u,4)) < H'(v, 42).
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Indeed, since F' + G is the inner regular envelope of H', from this inequality it follows
that (F+G)(u, 4) < (F+G)(v, A), and we conclude by exchanging the roles of v and v.
Let (uy) be a sequence converging in LP(€2,R"™) to u, and such that

H'(v, Ay) = iminf[F(vy, 42) + Gr(vn, 42)].

h—oo
Let ¢ € C(4s) with o =1 on 4; and 0 < ¢ < 1. Define w, = @vp + (1 — p)u for
every h € N. Then (wy) converges to u in LP(Q2, R™). Hence, by the local property of
F and Gy

H'(u, 41) < Uminf[F(wp, 41) + Grlwp, A1)] <

h—co

li/illillf[F('Lzl,,,.élg) + Gu(vp, A2)] = H'(v, 42).

Let © € WIP(Q, R™). For every 4 € A(Q) and v e WHP(A,R™) we set

F(‘L(,, "{) ifu— &) e ]',;'[,,7()1»[)(.4’ rR™ ) ,
+00 otherwise in W1?(4,R™).

Folurd) = {

Proposition 3.3. Let (G;) and G be as in Proposition 3.1. Then
(i) F(-,Q)+ G, Tq-converges to F(-,Q)+ G;
(i) for every o € WHP(Q,R™)

Fo(-, Q)+ Gy Tq-converges to  Fu(-,) + G5

more precisely, if A € A(Q) with 4 CC Q 1s such that (F(-,Q) + Gn(-,4))
T -converges to F(-,Q) + G(-, 4), then (F.(-,Q) 4+ Gu(-,A)) Tq-converges to
Fo(-,Q)+ G(-, 4).

Proof. (i) LetG' and G" be defined as follows

F(w)+ G'(w, 4) = To-minf[F(-,w) + Ga(-, 4)],

h—oc

F(,w)+ G"(,w,4) = To-limsup[F(-,w) + Gu(-, 4)],

h—oc

for every u € WIP(Q, R™) and w, 4 € A(Q) with 4 Cw. Let us first prove that for
every u € WHP?(Q,R™)

(3.7) G'(u,w,4) < G'(u,Q,4) ifw,4e AQ) with A C w;
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(3.8) A, Q,4) < G (u,w, A) if w, A e AQ) with 4 CCw.

Let us fix u, w and A as in (3.7). By definition of G’ there exists a sequence
(up) converging to v in LP(2, R™) such that

Fu, Q)+ G'(u,Q, A) = liminf[F(up, Q) + Gulug, 4)] .

—oc

We can assume that G'(u,, 4) < +oo and that the lower limit is a limit. It follows,
by the coerciveness of F that (uy) is bounded in W LP(Q, R™), hence converging to u
weakly in W1P(Q, R™). Since the functional F(-,Q\ w) is lower semicontinuous in the

weak topology of W1P(Q,R™), we have

Flu, Q)+ G'(v,w, 4) = Fluw)+ G'(u,w, 4) + Fu,Q \ w)
< liminf[F(up,w) + Gulun, A)] + 1ilmian(uh, Q\w)

h—o0

< li}m nf[F(up, Q)+ Gulun, 1) = Flu, Q) + G'(u,Q,4).

This yields (3.7).
Let now w and A be as in (3.8) and assume G"(u,w, A) < 4+co. By definition of

G" there exists a sequence (up) converging to u in LP(Q, R™) such that

Flu,w)+ G"(u,w, 4) = lillln sup[F(up,w) + Grlun, A)].

Let 0 < ¢ < 1/2 and K be a compact set with 4 C K C w and F(u,w \ K) < ¢.
Consider a function ¢ € C}(w) with ¢ = 1 in a neighbourhood of I and 0 < ¢ < 1.
Let wp = up + (1 — p)u; since, because of the coerciveness of F', (up) is bounded
in WiP(w,R™), by Lemma 3.2 there exists a constant C' > 0 depending only on the

function @ and the constant b in condition (b), such that
Flwy, Q) < Flup,w) + Flu, O\ 1) + C(c + ' 77| Dy [Zm(w)““" - uH’iP(Q,Rm)) .
Therefore

Fu,Q) + G"(u,Q,4) < li}n sup[F(up,w) + Gplun, A)) + Fu,Q\ K) + Ce

< Flu,w)+ G (u,w, 4)+ F(u,Q\w)+ e+ Ce
= F(u, Q)+ G (u,w, 4) +=+ Cc.

Since ¢ is arbitrary we obtain (3.8).
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We are now in a position to conclude the proof of (1). By assumption and Proposi-
tion 1.4 there exists arich set Ry in A(Q) such that G'(u, 4, 4) = G"(u, A, 4) = G(u, 4)
for every u € WHP(Q,R™) and 4 € R;. Therefore, by (3.7) and (3.8), for every 4 € Ry

we have

sup G(u,4") < sup G'(v,,4") < sup G"(u,Q,4")
A'CCA A'CCA ArccA

< sup G'(u, 4, 4") < G'(u,4,4) = Gu, 4).
A'CCA

Since G(u,-) is a measure, it follows that for every v € WH?(,R™) and 4 € R,

Gu,4) = sup G'(v,2,4") = sup G'(u.0,4").
A'CCA A'CCA
On the other hand, since G'(u, 2, 4) and G"(u, 2, 4) are increasing with respect
to A and lower semicontinuous with respect to « on W1 ?(Q,R™), by Proposition 15.15

in [20], there exists a rich subset Ry of A({2) such that

G'(u,Q,A) = sup G'(u,Q,4") w2, 4) = sup GM(w,Q,4"),
ArCCA A'CCA
for every u € WHP(Q,R™) and 4 € Ro. We conclude that G'(u, 2, A) = G"(u, 2, 4) -
G(u, A) for every u € WH?(Q,R™) and for every A in the rich subset R; MRy of A(Q).

Taking Proposition 1.4 into account, this concludes the proof of (i).

(i) The proof of (ii) can be easily obtained from the proof of Theorem 4.3 in [21], making

use of Lemma 3.2, as above, in place of the “J-property”. H

Remark 3.4. Let G:W'?(Q,R™) x A(Q) — [0, +o0] be an increasing local functional.
We extend the definition of G by setting, for every A € A(Q) and u € WHP(4,R™),

é(u,A) = sup G(ppu,B).
OEA(Q)
BCCaA
where ¢p denotes a C}(4) function with v =1 on B. It is easy to see that G is
increasing, local and inner regular. Moreover, if v € W1?(4,R™) admits an extension
u to WHP(Q,R™) (in particular if 4 has smooth boundary), then a(u, A)y=G_(u,4).
If G €¢,, the extension G is nothing but the natural extension allowed by the

integral representation of Theorem 2.3. In such cases we shall use the same symbol G.
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Let now (G1,) and G be as in Proposition 3.1 and w € A({2). If 4 is an open
subset of Q such that 4 CC w and (F(-, A)+Gp(-, 4)) Tq-converges to F(-, A)+G(-, 4),
then (F(-,4)+ Gp(-,A)) ', -converges to F(-, A) + G(-, A). In particular

F 4+ Gy I’ -converges to F+ G.

Indeed, if 1 denotes a function in C}(w), with ¥» = 1 on A, then for every u €
Whe(w, R™) é(u,A) = G(yu, A) and the Tg-lower (resp. upper) limit on (Yu, A)

coincides with the T',-lower (resp. upper) limit on (u, A).

The relevance of the next proposition lies in the fact that it provides a convergence

result for all the open subsets of ().

Proposition 3.5. Let (Gy) and G be as in Proposition 3.1 and assume that G € Gp.
Let p € WHP(Q,R™) and assume that Gu(p,2) =0 for every h € N. Then

(3.9) F(,A) + Gil(,4) Ta-converges to F (-, 4) + G(-, 4)
for every A € A(Q?).
Proof. For every A € A(Q) and uw € W1P(4, R™) let us define

H((,A) = Ta-liminf[F, (-, 4) + Ga(, A)],

oo

Hg(, _4) = FA- h}}lsc}ép[Fv(“’ A) + Gh(', .4)] )
To prove (3.9) we have to show that
H;(U,fl) —<—— FQ(VU‘a '_l) + G(U, _4_) _<_ H,:;('LL,.;!.)

for every A € A(Q) and for every u € WHP(4, R™).
(i) Let us prove that
(3.10) Fo(u,A) 4+ Gu,4) < H (u, A).

Let us fix A € AQ) and v € WHP(A,R™). Let (u;) be a sequence in WHP(4,R™)

converging to u in LP(4, R™). Let us show that

(3.11) Fu(u,A) + G(u, 4) < liminf[F,(us, 4) + Grlus, 4)].

h—oc
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It is not restricitve to suppose that the right hand side of this inequality is finite and
the lower limit is a limit. Hence, we can assume that w, — @ € T/VOI’”(,AL R™). By the
coerciveness of F', we obtain that (u;) converges to u weakly in Whr(4, R™). Thus
u—@ €Wy (4, R™).
Let R be a rich subset of A(Q) such that (F(-,B) 4+ Gn(-, B)) I'q-converges to
F(-,B) + G(-,B) for every B € R. Therefore, for every B € R with B C 4 we have
F(u,B) + G(u, B) < liminf[F(uy, B) + Gp(un, B)] <

h—cc

< li}m‘inf[F(uh, A) + Gulun, A)].

By taking the supremum over all such B, we get (3.11); hence, (3.10).

(ii) Let us now prove that for every 4 € A(Q) and v e WHP(4,R™)
(3.12) H;/(_u, A) < Fo(u,A)+ G(u, 4).

Fix A € A(Q) and v € WPP(4,R™) such that the right hand side of (3.12) is finite.
Hence, u — ¢ € Wy P(A,R™) and F,(u,4) = F(u,4).
Let us first consider the additional assumption:
(A) there exists a function ug € PVJ’P(A, R™), with ug = 0 outside a compact subset
of A, such that u = uy + ;
Let R be a rich subset of A(4) such that

(3.13) F(-,B) + Gu(-,B) T -convergesto F(:,B)+ G(-,B)

for every B € R.

Let ¢ > 0 and I be a compact subset of 4 with wp =0 on 4\ I\ and F(u, 4\
K)<e. Letus fix Be R with £ € B CC A. In view of (3.13) there exists a sequence
(vy) in WHP(4, R™) converging to w in LP(4, R™) and such that

F(u,B) + G(u, B) > limsup[F(vi, B) + Gr(vs, B)].

h—oc

By the coerciveness of F' we can assume that (v ) is bounded on WbtP(B,R™).
Let v € C3(B) with ¥ = 1 on a neighbourhood U of I and 0 < ¢ < 1. Define
wp = Yop + (1 —p)u. Then (up) converges to w in LP(4,R™). By Lemma 3.2 there

exists a constant C' > 0 such that for every ¢ > 0 and h € N

F(up,A) < F(vy,B) + F(u, A\ K) + C(s + ' || Dy| ]Z’N(B)”UI" -~ ’LL“IIJJP(A‘R,“)),
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Since up = v, p-q.e. on U, and G (u, B\ IV) = Gu(e,B\ ') =0, we have

Gh(uh = Gh(uh, ) = Glz(»“h,-[\‘—) + Gh(“/uB \ I{) <
< Gh(uh’ I{) + G/L(vll7 B \ I\r) + Gh(uv B \I() = G/L('Uln B) .

It follows that

limsup[F(up, A) + Grlun, 4)] < Flu,4)+ Glu, A) +(C +1)c.

h—oo
Thus, by the arbitrariness of ¢, we get (3.12) under the assumption (A).
Let us now drop condition (A), first in the case u — o € L=(A,R™). It is easy to
see that there exists a sequence (z;,) of non-negative functions in TfVOl‘P(A) with compact
support in A converging to |u — ¢| in W1?(4) and such that z, T |u —¢| p-q.e. on A

. Therefore, for every ¢ > 0 the sequence

lu — o]

3.14) (————)(u—¢) convergesto u. = —————(u—)in WIP(4 R™).
(3:14) (=) —p) L) i WL R
as h — co. Let us show that

(3.15) Ue —u—@ in W4 R™)as e —0.

Equivalently, we prove that (m(u—q)) converges to 0 in W1 ?(4, R™). Clearly, we
have the convergence in L?( 4, R™). Define S. = mﬁr—gf for every £ € R™. It turns out
that for every o > 0, S. is lipschitzian on {£ € R™ : || > ¢} with Lipschitz constant
bounded by (/n+1)=5; in particular, 5. is lipschitzian on R™ with Lipschitz constant

bounded by /n + 1. Thelefme for every ¢ > 0 and ¢ > 0 with o > ¢, we have

/ | Du.|Pda :/ ID(SSO('11~¢))["CZ;17+/ |D(S.0(u—p))|Pde <
A ANn{Ju—v|<o} An{ju—y {>c}

< (\/ﬁ+1)7’/ |D(u — @)[Pde + (Vi + 1)%( /lD u —p)|Pda.
A

An{lu—g|<a}

We conclude by taking first the limit as ¢ — 0 and then the limit for o — 0.

From (3.14) and (3.15), by a diagonalization argument it follows that there exists
a sequence (¢) in W, P(4,R™) with compact support in 4 and 0 < ¥, < 1, such
that (¢, (u —¢)) converges to (u — ) strongly in WHP(4, R™).

By applying (3.12) for the functions uj, = ¢ + ¥p(u — @) = Ypu + (1 =y )p, we
get

Fo(un, A) + Glup, A) 2 Hg(uh,‘—i).
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The lower semicontinuity of H(-,4) yields
(3.16) Hj(u,4) < lilm inf[Fo(un, 4) + Gluy, 4))].
[l o
Clearly, hlir‘folo F.(un,A) = F,(u, A). By Theorem 2.4 there exists a measure u € M,(Q2),
a positive Borel measure v on 0 and a Borel function ¢g: Q x R™ — [0, +00], convex

and lower semicontinuous in the second variable, such that
G(w,4) = / gz, w(@))dp +v(4)
A

for every w € W1P(Q,R™). The condition G,(¢,2) = 0 for every h € N implies
that G(p,§2) = 0; hence g(z,¢(x)) = 0 for p-a.e. @ € . By the continuity along line
segments for lower semicontinuous proper convex functions (see [39], Corollary 7.5.1),
from G(up,4) = [, g(x,un(e))dp + v(4) it follows that hl_l_l_l;G Glup,4)=G(u,4). In
view of (3.16) we obtain (3.12) in the case u —p € L=(4,R™).

Let us now deal with the general case. By Lemma 2.5 in Chapter II there exists a
sequence ((;,) of functions such that 0 < ¢, < 1, (u(u—p) € IfVol’p(A,Rm)ﬂL(’o('A,Rm)
and ((h(u — )) converges to (u — ) strongly in WP(4, R™). Finally, it is enough
to repeat the previous argument with u, replaced by ¢ + Cp(u — @), since (p(u — @) €

L>®(A,R™). ]
4. A compactness theorem

Let us now consider the particular case when W (x,-) is a quadratic form. More
I )

precisely, we assume that W:Q x R™ — R is a Borvel function such that for a.e. 2 € Q

and for every n € R™"

n m

(4.1) Wi(z,n) = Z Z (‘gﬁ(‘v)77?77fs

Li=1a,B=1

where agﬁ € L=(Q), afjﬂ = affa, and the coerciveness condition (c) of Section 3 holds.

Let us notice that condition (c¢) easily implies that W(a,7) > 0 for a.e. z €
and for every n € R™". Therefore, denoting by A a bound for the L®-norm of a;]ﬂ ,

we have

(4.2) 0 < W(z,n) < Alnl? for a.e. o € Q and for every n € R™" .
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As W is non-negative, W (z,-) is convex. It follows that also conditions (a) and (b) of

Section 3 are satisfied.

As already mentioned in the introduction, the usual energy density of linearized
elasticity, i.e., W(a,n) = %]tr%(nT + )2+ pls(T +0)?, is of type (4.1) on every
bounded open subset Q of R*. Indeed (see for instance [34], Theorem 3.4), the following

Korn’s inequality holds: for every u € H*(Q,R?)

2 3 1. 2 2 )
[ullz1(,ms) < C(Q)(/Q [5((Du)T -i—Du,)I‘d:L‘—F/Q|u|‘d;r).

Theorem 4.1 (compactness). Let (Gp) be a sequence of functionals in Go. Then
there ezists a subsequence (G, ) of (Gr) and a functional G in Gy such that (F+Gp, )k
T'q -converges to F + G

Proof. By Theorem 16.9 in [20] there exists a subsequence (G, )r of (Gp) such that
(F + Gp,) is Tq -convergent. The limit functional can be written as F' + G, where
G:HY(Q,R™)x A(Q) — [0, +oc]. Proposition 3.1 guarantees that G satisfies properties
(i), (i) and (iii) in the definition of the class G,. Therefore, only (iv) remains to be
proved.

Take 4, u, v and ¢ as in (iv) of Definition 2.1 in Chapter IT and assume G(u, 4)+
G(v,4) < +co. Let (ug) and (vg) be sequences in H'(Q,R™) converging to u and v,

respectively, in L?(Q, R™) and such that

Fu, 4) 4+ G(u, A) = limsup[F(ug, 4) + G, (ug, 4)]

k—cc

F(v, 4) + G(v, 4) = limsup[F(vg, A) + Gp, (v, A)].

k—oc

By the coerciveness of F' it is not restrictive to suppose that (uy) and (vy) the converge
PI &
weakly in H'(2,R™) to u and v, respectively. Then, denoting by (o) an infinitesimal

sequence, which can change from line to line. we have

Flous + (1= @)og, 4) — Flou+ (1 —)v, ) € Flo(up —u) + (1= 9)(vg = v), 4) + o5
< / W(z,oD(ug —u)+ (1 —@)D(vy —v))de + o < Flupg—u, 4)+ Flop —v, )+ oy
A

< Flup, A) — F(u, 4)+ Flog, 4) = F(v, A) + o
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Therefore, using the C!-convexity of Gy,

Glou + (1 — v, A) < limsup[Fug, 4) + G, (w, A) — Fu, 4)]

k—o0

+ lim sup[F(vg, 4) + Gu, (ve, 4) — F(v, A

k—o0

This implies that G(pu + (1 — ¢)v, A) < G(u, 4) + G(v,A). The convexity of G(-, 4)

can be proved analogously. ]

Remark 4.2. By applying Theorem 11.10 in [20] it is easy to see that if each Gy 1is

quadratic, then so is the limit functional G.

We can now combine Theorems 4.1 and 2.4, Proposition 3.5 and the properties of
T'-convergence to obtain convergence results for minimum problems with obstacles. As

an example we have:

Corollary 4.3. Let ¢ € HY(Q,R™). Let (IV)) be a sequence of multifunctions from
QO to R™ with closed conves values and such that o(2) € Ky(z) for every h € N and
for q.e. x € Q. Then there exist a subsequence (I, )k of (Kn), a finite measure (€
Ma(Q), a positive Borel measure v on 2, and a Borel function ¢:§ x R™ — [0, +00],
convez and lower semicontinuous in the second variable, such that for every 4 € A(Q),

the values

(Pr) min{/ W(z,Du(z))dz :u—p € HYAR™), ulz) € Ky, () for ge. z € 4}
A

converge, as k — co, to

(P) min{/ Wz, Du(z)) da + / gla,u(2))dp +v(A)tu—p € Hi(A,R™)}.
A A

Moreover, if M) and M denote the set of minimum points of problems Py and P
respectively, then for every neighbourhood U of M in ¢ + Hj(A R™) with respect to
the topology of L*(A,R™) there czists | € N such that M, C U for every k> 1.
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5. Dirichlet problems in perforated domains

As in the previous section we shall assume that the energy functional F' introduced
in (3.1) is quadratic, i.e., the integrand function W is of the form (4.1).

Given a quadratic functional G € Gy, recall that Vg, defined in Section 1, is a
linear-space-valued map on  which gives pointwisely the “greatest” set of admissible
directions allowed to the functions by the finiteness of GG. Hence, the condition G < +co
cannot select some particular directions when Vg takes only the values {0} and R™.
Here we shall take into account such a special class of Ga, which enjoys, as we shall see,
nice properties of “closure” with respect to I'-convergence under suitable assumptions
on the energy functional F. In particular, this class contains the functionals which arise

)

dealing with Dirichlet problems on perforated domains, i.e.,

Gelu,4) = {O, fu=0qge on ANE,

+oo, otherwise,

when E is a subset of 2.

If G is a quadratic functional of Go, we shall say that a pair (M, p) represents G
if M is a symmetric m x m matrix of Borel functions from  to R with ETM(z)E > 0

for q.e. z € Q and for every £ € R™, p is a measure in M ({2) and
Glu, 4) = / w? Mudp
A

for every u € HY(Q,R™) and A € A(Q).

Definition 5.1. For every v > 0 let Gy(v) be the class of all the functional G € G2
such that
(i) G is quadratic;
(i1) Vg(z) € {{0},R™} for qe. z € Q;
(i) there exists a pair (M, u) which represents G and such that the ratio between
the maximum and the minimum eigenvalue of A (2) is bounded by 7 for p-a.e.

T € Q.
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Theorem 5.2. Let v > 0 and (G)) be a sequence in Go(7y). Assume that theres
ezists G € Gy such that (F + Gj) Tq-converges to F + G. Then G 1is quadratic and
Va(z) € {{0},R™} for ge. 2 €Q.

Proof. G is quadratic by Remark 4.2.

For every h € N let (M, 1) be a pair which represents G, and let ay(2) and
Br(z) the maximum and the minimum eigenvalue of M, (z). Let R be a rich subset of
A(Q) such that (F(-,4)+ Gu(-,4)) Dg-converges to F(-, 4)+ G(-, A) for every 4 € R.
Let us show that for every 4 € R

(5.1) Ru € domG(-, 4) for every u € domG(-, 4) and R € OT ,

where O% denotes the set of positive definite orthogonal m X m matrices. Indeed, if
4 € R and u € domG(-, 4), then there exists a sequence (u,) converging to u in

L*(Q,R™) such that

(5.2) F(u, A) + G(u,4) > limsup[F(un, 4) + Gulup, 4)].

h—cc

In view of (4.2) we have

F(Ru,A)+ G(Ru,4) < hmmf{F(Ruh,.{) + Gu(Rup, A)

h—oc h—oc

< Alim qup/ | Du /,| de + limsup G (Rup, 4).

By (5.2) and the coerciveness of F, the sequence (||Duyl| 2.4 mm ny) 1s bounded. Hence,

to prove (5.1) we have only to show the boundedness of (G (Ruy, 4)). It turns out that

G;I_(Ru/,,,fl):/ uhR My Rug, dpg, < / a'/,|uh,|2 dpp < 7/ /3/L|uh|2d,uh
A A

A

< ”// wl Myuwp dpy = vGy(un, 4);
A
therefore, by (5.2).

limsup G (Rup, 4) < v[Flu, 4)+ G(u, 4)] < +co.

h—oc

Thus (5.1) is proved.
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Let us fix 4 € R and let (uy) be a dense sequence in domG(-,A) (which is

non-empty since G(0,Q) =0). By Proposition 3.1 and Remark 6.6 in Chapter II
(5.3) Ve(z) = cl{ug(z) : k € N} for qe. z € 4.

In view of (5.1) we obtain that G(Ruy,4) < +oo for every £ € N and R € O™ . By the
definition of Vg, it follows that Rui(z) € Vg(a) for qee. @ € A, for every k € N and R
in a fixed basis of OT. By linearity

(5.4) Rui(z) € Vg(o), for q.e. ¢ € A, for every k € N and R e Ot .

Let E = {z € 4 : ur(z) = 0 forevery k € N}; E is defined up to sets of capacity
zero. By (5.3), Vg(a) = {0} for qe. v € E. Moreover, by taking (5.4) into account,
Ve(z) =R™ for qe. x € Q\ E. O

Remark 5.3. The previous theorem fails if we drop condition (iii) in Definition 5.1. For
instance, consider the sequence (F + G) with F(u,4) = f.»x |Dul*dx and Gplu, 4) =
Lot )de + [, h(w?)de (A€ AQ), u= (ul,u?) € HY(Q,R?)).

Together with Proposition 2.4 the previous theorem yields a result about the limit

of Dirichlet problems in perforated domains:

Corollary 5.4. Let (E,) be a sequence of subsets of Q. Assume that there exists a
functional G € Gy such that the sequence (F + Gg,) Dq-converges to F + G. Then G
is quadratic, Vg s the null space {0} or the whole R™ for q.e. x € Q and, for every
we HYQ,R™) and A € A(Q), the functional G can be written in the form

(5.5) Glu,A) = / ul Muady
J A

where v is a positive Radon measure on Q with v € H™H(Q), a:Q — [0, 4+o0] 15 o Borel
function and M is a symmetric m x m matriz of Borel functions from Q to R with

ETM(2)E >0 for q.e. @ € Q and for every £ € R™.

Before giving the compactness result for the class G»(7). let us consider the special
case when the functional F(-, A) is invariant with respect to rotations of R™; more

precisely, we require that

(5.6) F(Ru,A) = F(u,A4) for every v € HY(Q,R™), A€ A(Q) and Re O
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It is not difficult to verify that condition (5.6) is equivalent to each of the following ones:
(5.7) for every 7,7 = 1,...,n, the matrix ((L;jﬂ(.?:))o.g is a multiple of the identity for
a.e. ¢z € {2

(5.8) for every x € Q there exists a symmetric n X n matrix A(z) such that

m

/ . — 9 v gy @ t e areT = (¥ a1 .m mn
W(z,n) Z w(z,n®) for every n = (n¥) =1m € rR™",

,,,,,

a=1

where w(z,() = (TA(z)¢ (¢ € R").

In the case these conditions are satisfied, we shall set, for every 4 € A(Q) and
ve H(A),
ﬁ’(v,fk) = / w(ax, Dv(a)) da

A

where w is given in (5.8).

As (5.8) shows, we are essentially in a scalar case. Indeed, we have the following

result.

Lemma 5.5. Assume that F satisfies condition (5.6). Let (np) be a sequence in My(Q)

and

@/L(‘U,A) = / ’U?(l/l./,, Guplu,A) = / ]'u.igdp./,'
A

A
for every A € A(Q), v € HY(A4) and v € H' (A, R™). Suppose that there ezists a
functional G: HY(Q) x A(Q) — [0, +00] such that

~ ~

F -+ @'h Tq -converges to F+G.

Then
(i) there exist a Borel function a:Q — [0.+o0] and a Radon messure v € H™1(Q)
such that G(v, 4) = f_.\ v2ady for every v € HY(Q) and A € A(Q);
() F+ Gy T -converges to F+ G,
where G(u, A) = [, [ul*adv for cvery w € H'(Q,R™) and A € A(Q).

Proof. Item (i) follows immediately from Theorem 4.1 and Proposition 2.4 applied for

m = 1, while (ii) is a simple check. [

By Theorem 5.2, a sequence (G, ) in Go(v) gives rise to a limit functional which
still satisfies properties (i) and (ii) in Definition 5.1. To obtain also a bound on the ratio

of the eigenvalues, we have to strengthen the coerciveness of F.
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Theorem 5.6. Assume that there exists ¢ constant a > 0 such that
(5.9) Flu,4) > a/ |Du(a)|*da
A

for every w € HI(A,R™) and 4 € A(Q). Let v > 0 and let (G) be a sequence in
Go(v). Assume that there exists a functional G € Gy such that (F + Gj) Tq -converges
to '+ G. Then G € Ga(v'), with v' = ma‘x(%,ﬂ,f).

Proof. For every h € N let (My, py,) be a pair which represents G, , and let ax(z) and
Br(z) be the maximum and the minimum eigenvalue of Af;,(2).

Since G is quadratic, by Proposition 2.4 there exists a pair (M, av) representing
G, with a:Q — [0, +o0] Borel function and » Radon measure in H~Y(Q). Moreover,
denoting by E a representative of the set {v € Q : Vg(a) = {0}}, we can assume
that M is the identity matrix on E on Q\ E. We claim that the ratio between the
maximum and the minimum eigenvalue of 1/(x) is bounded by v for av-a.e. v € Q,
where v' = max(%,’y).

Let w be a fixed bounded open subset of 2. Clearly, it is enough to show that

the estimate holds ar-a.e. on w.

By (5.9) and (4.2) we have
a/ |D'LL|2c1$+/ Bulul? duy, < Flu,w) + Gplu, 4) < 1\/ [Dulzdw—}-/ aplul? duy,
w A w A

for every A € A(w) and for every u € H'(w, R™) with constant value on the boundary

of w; therefore, for the same u and A,
(5.10) a/ |Dul*de 4+ G (u, A) < Flu,w)+ Gpu,4) < “,/'(a/ |Dul*dz + G (u, 1))
where v/ = max(_%,*y), and
By Remark 3.4 and (ii) of Proposition 3.3, we have
(5.11) Fo(,w)+ Gy I'.,- converges to F (w)+ G

for every ¢ € H'(w,R™).
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Define D(u,A) = a [, |Dul*de ( A € A(Q), v € H'(4,R™)). By Theorem 4.1
and Lemma 5.5, there exist a subsequence (G}T(/l)) of (G}), a Borel function b: Q —
[0, +co] and a Radon measure p € H™(Q), such that (D + G ,,) I'a-converges to
D + G, where

Gu, A) = / lul*bdp, (ue H'(Q,R™), A€ AQ)).
A
In view of Remark 3.4 and (ii) of Proposition 3.3, we have
(5.12) Do(-,w) + Cg(h T.- converges to Do(-,w) + G,

where Dy(,w) = D(,,w) on ¢ + Hi(w,R"™) and Dy(-,w) = +oo otherwise on
HY(w,R™).
Let us now fix £ € R™ with [£] = 1. In view of (5.10), (5.11) and (3.12) with

w = €, we easily get that

/|D1/ (/L+/ lul*bdp < Flu,w)+ / T Muady

< Y /]Dul clz+/ lu|*bdp)

for every u € H'(w,R™) with u — £ € H}(w,R™) and for every 4 € A(w).

We claim that

(5.14) /l)d/) < / XN Eady < ’yl/ bdp
v v v

for every quasi open subset V" of w.

(5.13)

Let us fix V Cw, V' quasi open. For every I € N there exists a set Z;, C w such
that VU Z,, is open and cap(Z,,w) < 1/h. Denote by w, the capacitary potential of
Zp with respect to w; then w, € Hy(w). wy, = 1 q.e. on Z;, and (w)) converges to
zero strongly in H'(w).

Let us now show the first inequality in (5.14). Take v = (1 —wp)€ and A =1 UZ),
in (5.13). Since

lim /ID((l —wp))Pde = 0. lim F((1—w,)é,w) =0

h—oo h—oc

we have

liminf/ (1 —wp)?bdp < liminf/ (1= wy)*¢Meady < TMEady .
Vv VuZy Vv

h—coco h—o0
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Therefore, by the Fatou Lemma,

/ bdp < / T MEady.
1% %

The second inequality in (5.14) can be proved analogously.
Let u be a fixed function of domG*!(-,w) and £ > 0. Set V' = {a € w : [u(z)] > £}.

Since V is quasi open, from (5.14) it follows that for every A € A(w)

/ bdp < / efMeady < 7'/ bdp.
VNnA VA VA

Let us now notice that [, bdp < 400, since

+oo > GHu,w) =/ lu)?bdp > 52/ bdp .
w Vv

Hence, there exists a subset N = N (£, u,¢) of w such that (v + p)(N) =0 and

dp T dv , dp
— < T MEa——— < A b
dlv +p) — ¢ é‘ad(u +p) = " d(v+p)

(5.15)
on V\ N, where dp/d(v + p) and dv/d(v + p) are fixed Borel representatives of the
Radon-Nykodim derivatives.

Let E; be a representative of the set {z € w: Vg, () = {0}}. Letting £, v and
¢ above vary in countable dense subsets of {£ € R™ : |§} =1}, domG!(-,w) and R*
respectively, we obtain that (5.15) holds (v + p)-a.e. on w\ E; for every £ € R™ with
¢l =1.

Let us notice that Fy = E up to sets of capacity zero. Indeed, by a standard cut-
off argument, from (5.13) it follows that domG(-, 4) = domG'(-, A) for every A € A(w)
with 4 CC w. In view of the definition of V¢ (see Section 2) and Remark 5.2 in Chapter
II, Vg = Vg, qe. on A for every 4 CC w. It twrns out that £, coincides with F up
to sets of capacity zero.

Therefore, (5.15) holds (v + p)-a.e. on w\ E. Since 0 < 5 U_'_p < 400 v-a.e. on
2, and « is finite on Q\ E, (5.15) implies that

dp dv _ dp dv _

b S(a——)7" < ETME < D !
d(u-}-/))(ad(z/—{—/))') S &M= d(r/—i—/))(a(l(u-%—/))

av-a.e. on w \ E for every £ € R™ with || = 1. This proves the stated bound on

the eigenvalues of M on w \ E. Since M is the identity matrix on E, the proof of the

theorem 1s accomplished. t
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As an application of the previous theorem we have:

Corollary 5.7.  Let E and G be as in Corollary §.4.
(i) If there exists A > 0 such that

Wi(z,n) > Anl? for a.e. v € Q and for every n € R™",

then G € Ga(A/N).

(v) If n =m =3 and there exists £ > 0 such that
, 1. - : .
Wi(z,n) > ﬁ|3(77f + 7)) for ae. x € Q and for every n € R3,
then G € G2(2A/R).

Proof. (1) follows immediately from Theorem 5.6. As to (ii), it is enough to notice that,

by Korn’s inequality (see, for instance, [34] Theorem 3.1)
1 9 " 1 T 2
5 |Du|"de < ];((Du) + Du)|*dx
2 J4 A 2

for every u € Hy(4,R™). 1
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