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Introduction

The role of Lie algebras in determining the properties of the Toda field theories
in two dimensions has been known for a long time. This is made visible
by the classification of the Toda field equations in terms of the generalized
Cartan matrices and by those analysis relating symmetries of such models with
corresponding symmetries of the associated Dynkin diagrams [24]. Moreover,
it has been shown that the problem of comstructing solutions of the Toda
field theories can be posed as a factorization problem in the underlying Lie
algebra. Particularly, the Gauss decomposition of the associated simple Lie
group constitutes the clue in order to produce explicit solutions of the Toda
equations [23]. Subsequently, the possibility to regard Toda field theories as
hamiltonian reductions of Wess-Zumino-Novikov-Witten (WZNW) models -
this being in itself a vast field of research — emphasizes the importance of such
algebraic and geometrical structures [18].

However, as a consequence of the recent results in Conformal Field
Theory and in the study of Quantum Groups, and, on the other hand, with
the appearance of new promising directions of research, such as Matrix Models
and two-dimensional Topological Gravity, the situation seems to be somehow
upset. Due to their rich structure, which connects them with all these fields,
Toda field theories in two dimensions have become a favorite research topic in
theoretical physics.

Going into more details, Toda field theories based on finite dimensional
Lie algebras underlie many remarkable conformal field theory models — notably
all sort of minimal models —; indeed they possess both the necessary conformal
structure, which manifests itself for example in the chiral splitting, and the
integrable structure, which is connected with their hidden quantum group
symmetry. This last represent the peculiar feature of the “quantized” version of
all that algebraic machinery whose importance we are here mentioning. Both
structures are simultaneously expressed in an elegant form by the exchange
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algebra.

Another reason of interest is the connection between the sl, Toda field
theory, i.e. the Liouville theory, and string theory and 2-dimensional gravity,
together with the evoked possibility that si, Toda field theory might bear a
relation to 2-dimensional gravity coupled to conformal matter, in much the
same way as the latter combination appears in matrix models. The present
state of affairs does not even allow us to exclude that there might be a direct
connection between matrix models and Liouville or Toda theories formulated
on the lattice.

Still linked to their algebraic and geometric structure is the W-algebra
symmetry, which characterizes the Toda field theories. In fact such theories are
at the origin of the present interest in W-algebras. The geometrical meaning of
W-algebras is still rather,obscure. However, if we remember that the Liouville
equation is well-known to be the basis of the uniformization theory of Riemann
surfaces, it is reasonable to expect geometry to play a deep role in Toda field
theories and, viceversa, that the latter might lead to significant geometrical
developments.

All this sounds pretty appealing to all those who have followed the most
recent developments in theoretical physics. On the other hand, even though
the research in this field has been intensive, many questions in Toda field
theories are still unanswered. Among the latter we quote in particular the
problem of constructing conformal blocks in W-algebra minimal models and
the geometrical meaning of W-algebras.

To this aim, the following brief summary of the principal features which
characterize those general structures, underlying Toda field theories, could be
of some utility, also in consideration of the developments to be analyzed in
the next Chapters. Obviously an exhaustive treatment of the subject is a task
that we shall not pursue in the present Introduction and, for every further
deepening, we refer to the concerning literature (see refs.[4, 14, 13, 26, 6]).

After the present Introduction, the content of this Thesis is organized
in three Chapters.

In Chapter 1, we recall the main features which characterize the classical
Toda field theories associated to finite dimensional Lie algebras g. Particular
emphasis is devoted to the conformal properties of the model and to the past
attempts for separating the chiralities in the Toda phase space. In this context,
we first consider the Leznov-Saveliev analysis, based on the Gauss decomposi-
tion of the Lie group corresponding to g, and, then, the reconstructive approach
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proposed in ref.[7].

The unanswered question concerning the splitting the chiralities, which
concludes Chapter 1, constitutes the matter of study of Chapter 2, where
the Liouville model is addressed. Here, the problem is faced starting from
a more thorough analysis of the transformation undergone by the symplectic
structure, when we try to single out the chiral and antichiral content of the
theory. On these grounds, we furnish the solution to the problem, so to com-
pletely implement the splitting program, by a more general interpretation of
the Leznov-Saveliev decomposition. This allows us to determine the explicit
realization of the Drinfel’d-Sokolov linear systems introduced in ref.[7] and,
therefore, a global parametrization of the phase space of the Liouville model
in terms of free bosonic oscillator modes.

The scheme of the Drinfel’d-Sokolov linear systems, proposed in ref.[7]
and realized in Chapter 2 for the sl, case, is exploited in Chapter 3 to formulate
a lattice version of Toda field theories, following ref.[8]. By referring to this
prescription, we study, on one hand, the classical conformal properties of the
theory at the lattice level and, on the other hand, the quantization of sl, Toda
field theories. As for the first topic, we find the discretize counterpart of the
W algebra. Moreover, our quantization program leads to the exchange algebra
of the sl,, Bloch wave basis. The related exchange matrix has been already
achieved in a completely different context, which, however, does not provide a
correct interpretation in a Quantum Group framework.

Geometrical structure of integrable systems
in two dimensions: the zero-curvature repre-
sentation

As it is well known, a necessary and sufficient condition to establish the integra-
bility of a dynamical system with an infinite number of degrees of freedom does
not exist. However, in (1+1) dimensions, many interesting evolution equations
which admit exact solutions, such as the Korteweg de Vries (KdV) equation,
the non-linear Schrodinger equation, the sine-Gordon equation, exhibit a so-
called zero-curvature representation. This means that they can be regarded as
the compatibility conditions of a linear system or, in a more geometrical lan-
guage, as the zero-curvature condition of a suitable flat connection on the (1+1)
dimensional space-time. Therefore, one can inquire whether such a structure,
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with such peculiar features, might constitute the criterion for characterizing at
least a class of integrable systems. We will return to this question in the fol-
lowing, when we will face the problem from a more general point of view. Let
us now briefly recall the main properties of the zero-curvature representation,
referring to its simple geometrical interpretation, as the name suggests.

To fix the notation, consider a non-relativistic evolution equation

Uy = f[u]7 (Il)

where with u; we denote the time derivative of the wave function v = u(z,t)
and f[u] is a non-linear function of u and its space derivatives. In a similar
fashion, we will indicate with u, the derivative with respect to the spatial
variable. We say that the eq.(I.1) admits a zero-curvature representation if it
can be recast in the form

F=dA+AANA =0, (1.2)

or, in components,

Here F and D are the curvature and the covariant derivative, respectively,
relative to the connection A = Afu]. The condition (I.2) is equivalent to state
that the parallel transport along a curve joining %y = (zo,%) to x = (z,t)
depends in fact only on the initial and final points xy and x. Therefore, let v
denotes an element of a vector bundle associated with the principal fibre bundle
on which A is defined and let p be the representation(!) of the structural group
on the fibre of such a vector bundle. Then the condition (I.2) corresponds to
the relation

o -LA
v(x) = p(T(x;%0)) v(x0) U(xixy) =P e b, (1.4)
where v in an arbitrary path from x; to X, or to its differential counterpart
D,v = (0:+Az)v =0

(L5)
Dt'l) = (at +'At)’U =0

The expression of ¥ in eq.(I.4), where P denotes the path-ordering (P will
indicate the reverse path-ordering), is to remember the relation

A= —dUyt, -~ (L6)

!Hereafter the indication of the representation will be understood unless this will cause
any ambiguity



§1. Zero-curvature representation 7

a further equivalent way to formulate the zero-curvature condition.

Eq.(I1.5) is the lLnear system associated with the integrable equation
(I.1) and the eq.(I.2) can be viewed as compatibility condition of such an
overdetermined system.

Clearly a similar construction is by no means unique. Indeed we can
always perform a gauge transformation

A - 9A =g lAg+gldg (1.7)

without affecting the zero-curvature condition (1.2). Therefore, with the above
geometrical interpretation, we have mapped the phase space of the integrable
dynamical system into an orbit of gauge equivalent connections. We will show
later that this identification constitutes the crucial starting point of a different
algebraic approach:

To give a concrete content to the above definitions, consider a classical
example, the already recalled KdV equation

U = Uprgp + BuUg . (1.8)

The associated flat connection is
- 0 -1 . u, 4N —2u
Kdv _° Kdv x
A = (A2+u 0 ) A= (P[U} —Ug )

plu] = 2u? + ugy — 227w — 40,

with

Here A is an arbitrary constant, usually called the spectral parameter of the
theory, which caused a degeneracy of the zero curvature representation, com-
mon feature of many integrable systems which exhibit a similar structure.

We can compute

KdV A KdV] __ —Uzy 2Uy

“Fu)uy Upr

Kdv _ Uaz ~ 2,

Kdv o __ 0 O
atAw - <'U;t 0

which clearly shows how imposing FX'¥ = 0 yields back eq.(1.8).
g xt
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When the base space (that is the space-time of the evolution equation)
is the zt-plane, the principal fibre bundle supporting the flat connection A is
trivial and, therefore, the above geometrical description could seem superfiuous
and it reduces to a nice exercise. Nevertheless interesting features arise when
periodic space boundary condition are chosen. This is to say that the phase
space of the evolution equation is the space of smooth functions on the cylinder
Cyl = {0 <z < 2m,—0co < t < +oo}. In this case the conserved quantities
acquire a simple geometrical interpretation. Indeed, since the space-time is no
longer simply connected, it is possible to construct a non trivial holonomy of
the flat connection A,

Ty, =P e & (1.9)
associated to the loop(?) C at x, around the cylinder, once the base point
xy = (o, to) is fixed.

If we consider T, as a function of the time component of the base point,
T, (t), it easy to verify that

Tuo(t) = S(t) Tep(to) S7H(2) - (1.10)

Indeed, it is sufficient to notice as, in order to go from (zy,ty) to (zo,t), we can
either draw firstly a loop at fixed time ¢y and then evolve to (zy,t), keeping
constant the space component z,, or the contrary, drawing this time a loop at
the time t. Due to the flatness of the connection, the two path are equivalent
and therefore we have

T, () (E e o A‘) _ (E e J A‘) T, (t0) (L.11)
With the identification
Si) =P et 5Ty =P e A
the evolution law (1.10) is recovered.
The relevant consequence is that the trace of the holonomy (1.10) is con-
served in time. If we take into account the dependence on a spectral parameter,

then

5(0) = T ()
can be viewed as the gemerating function of the conserved quantities of the
dynamical system. Hereafter we refer to the holonomy (1.9) as the monodromy

matriz, it determining the monodromy behaviour of the solutions of the linear
system (1.5).

*More precisely, being A a flat connection, the holonomy is associated to the correspond-
ing homotopy class of C
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Algebraic structure of integrable systems
in two dimensions: the Lax pair realization

The integrability of the KdV equation is better known as an application of the
classical Inverse Scattering Method. From this point of view, the crucial step
is to determine a Laz pair of linear differential operators, such that the flow of
the dynamical system can be written as

8L = [L,M). (1.12)

Then, the conserved quantities are characterized as those functions of L which
are invariant under the adjoint action of M. In particular, the spectrum of
L is left unchanged by the flow (I.12). This seems to suggest that the zero-
curvature representation could be interpreted in a similar way. Actually, this
immediately follows once we set

Af[ = At,

which leads immediately to recast the zero-curvature condition (I.2) in the

form (I1.12).

Moreover, to assimilate the two different formalisms, we could apply
a usual procedure in the framework of ordinary differential equations which
replaces the n-order linear differential operators L with a first order n X n
differential operator L = d+A. The operator L is equivalent to the original L in
the sense that their Kernels are in one-to-one correspondence: if 7 € Ker L, its
last component belongs to Ker L and conversely, from an element in Ker L we
can construct one in Ker L. Then the matrix A may be regarded as belonging
to the Lie algebra sl(n). :

A deeper analysis shows that flows as those produced by Lax pairs nat-
urally arise in two different general frameworks, that of the pseudo-differential
operators and that of the Baxter-Lie algebras.

In the former case we can associate to every linear m-order ordinary
differential operator,
n
— gn An—3
L =d + Z a;d"7,
J=1

an infinite hierarchy of flows defined by means of a commutation relation

§:L = [M,, L], (1.13)
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where 0, is the corresponding infinitesimal variation. Actually, requiring that
eq.(I.13) is a well-posed definition, which is equivalent to impose that the
commutator in eq.(I.13) closes in the space generated by L (¢.e. that it is
of order less or equal to n — 1), one determines the form of the differential

operators My. It turns out to bel®
k

M, = (%),
where (L'rk? )+ is the ordinary differential part of the pseudo-differential operator
L = DF, obtained by defining D as such unique pseudo-differential operator
that satisfies the identity D" = L.

The relevant upshots of the previous comstruction, in consideration
of which this appears as a generalization of the classical Inverse Scattering
Method, can be summarized in the following points:

i) as immediate consequences of the commutator form of the flow equations,
these flows are isospectral and commute, moreover

%) the traces I, = tr(L*%) = [ res L~ form an infinite set of conserved quan-
tities in involution;

iit) this hierarchy of integrable flows has also an interesting hamiltonian in-
terpretation: indeed there exist two Hamiltonian structures reproducing

the flows 6L as’
6L = {Ir, L}V = {50, 1} (1.14)
and

w) the second hamiltonian structure provides a realization of the classical
(Poisson) version of the Virasoro algebra and of its extentions, the W-
algebras. Indeed, this is the upshot when we compute the Poisson re-
lations among the coefficients of the differential operator L, referring to

the bracket {-,-}(%).

Baxter-Lie algebras represent a completely different context. In techni-
cal language, these are the Lie bialgebras corresponding to coboundary Poisson-
Lie group. This means that we are considering on the Lie algebra g the struc-
ture induced by defining on the related Lie group G the Poisson bracket

{989} = ~[rg®y4l, (1.15)

3More precisely one should take into account also the flow generated by functions, but,
since it causes only a shift in the function on which L acts, this is used to bring L in the
canonical form with no d"~! term.
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which is referred to as the Sklyanin bracket. The element g € G is here
identified with the coordinate functions and

{99 g}ijm = {Gik, g5t} -

Moreover r € g®aq is a solution of the modified classical Yang-Baxter equation,
which were also antisymmetric with respect to the invariant scalar product.
Denoting C the Casimir element in g ® g, this is equivalent to say that r =
r + C are solutions of the better known classical Yang-Bazter equation

[r12,723) + [r12,718] + [713,723] = 0. (1.16)

Here the indices 1,2, 3 label the three copies of g in the tensor product ¢g®g®g
on which this equation has to be considered. It is well-known that the condition
(I.16) can be achieved as the “classical” limit of the Yang-Baxter equation

R12R13R23 - R23R13R127

when R is identified with the exponentiation of the classical r-matrix, R =
e”* and the limit # — 0 is taken. Differently, in the context we are here
considering, the requirement (I1.16) for the classical r-matrix follows impos-
ing the Jacobi identity(*) for the Sklyanin bracket (I.15). Furthermore, we
can verify that the group G equipped with (1.15) acquires the structure of a
(coboundary) Poisson-Lie group, the definition of the Sklyanin bracket being
compatible with the group multiplication of G.

The induced structure on the Lie algebra level is obtained by differenti-
ating the Sklyanin bracket at the identity of G, and interpreting the result as
a Lie bracket in the dual space g*. The pair (g, ¢*) is the tangent Lie bialgebra
of G. If there is in g an invariant scalar product (-,-), a coboundary Poisson-
Lie group structure in G corresponds to the definition in the Lie algebra of a
further Lie bracket

[X,Y]r := [R(X),Y] +[X,R(Y)], X,Y €q. (1.17)

Here R : g — gis the endomorphism associated to r = ), r**X,, ® X, through
the invariant scalar product, R(X) = ¥ r*(X,,X)X,. Again the Jacobi
identity for the Lie bracket (I.17) is guaranteed by the properties of the r-
matrix. This is equivalent to say that the Lie algebra of a coboundary Poisson-
Lie group G is a Lie bialgebra (g,ar), where g* has been identified with g

1 Actually the condition (I.16) can be relaxed, requiring only the Ad-invariance of the lhs.
However, every coboundary Poisson-Lie group can be always brought again to the particular
case in which r* satisfy the classical Yang-Baxter equation.
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equipped with the Lie bracket (1.17). This particular structure is known as
Bazter-Lie algebra and, reversing the above derivation, one can show that given
(a,8r) the corresponding Lie group G is a coboundary Poisson-Lie group.

A further important result is that the two Lie brackets in g allow us to
define in the Lie algebra an interesting double Poisson structure by introducing
the corresponding Kirillov brackets

{0, 9}(L) = L([de(L),dp(L)]) (L.18)
{0 ¥}r(L) = L([dp(L), dy(L)]r)- (L.19)
Here L € ¢" and ¢,% € C*(g~), while the differentials dp(L),dy(L) € q.

In the above notation we have emphasized the distinction between g and its
dual space g* just for clarity; however, here as in the following, it should be
remembered that g and g* can be identified by the invariant scalar product.

The connection with the previous general consideration on flows refer-
able to a Lax form, which is the main motivation of the above definitions,
turns out to be a fairly immediate consequence. Indeed, from the analysis
of hamiltonian flows on the symplectic leaves of such Poisson structures, we
can establish the following two results, in which we find the prescription to
construct integrable systems:

i) the Ad*-invariant function on g* are in involution with respect to the
Poisson bracket (I.19);

#) the equation of motion on g* defined by the Ad*-invariant Hamiltonian &
with respect to the bracket (1.19) has the generalized Lax form

dL
= = ad"M - L = [L,M], (1.20)
where M = R(dh), L € g* and the last equality is allowed by the identi-

fication of the Lie algebra with its dual space.

The geometrical meaning of such statements is fairly simple. Indeed, in the
present case we have two systems of orbits in g~, generated by the adjoint
actions of G, that is Ad* and Adj. The point 4) says that hamiltonian equa-
tions of motion, with Hamiltonian being an Ad*-invariant function A respect
both. Therefore, eq.(I.20) means that the velocity vector is always tangent to
the intersection of Ad*-orbit and Adj-orbit of L € g*. If these intersections
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coincide with the higher dimensional torus of the action-angle variables for our
hamiltonian systems (which is always the case when finite dimensional simple
Lie algebras are considered), then this implies complete integrability.

An interesting example is that involving infinite dimensional Lie alge-
bras. This allows us to include in the previous formalism the case of the
integrable systems in two dimensions, reproducing the zero-curvature repre-
sentation in the form (1.20). Let us consider a Lie algebra g (which could be
also an infinite dimensional algebra, as a loop algebra or a Kac-Moody alge-
bra) with an invariant scalar product (-,-). Then denote g = C=(S',q) and
G = C>(S', G) the corresponding group. Moreover suppose that gis a Baxter-
Lie algebra and, therefore, that there exists R € End(a) with the properties
already recalled. We can consider in g the pointwise bracket

[X,Y]u(2) = [X(2),Y(2)]

and, in a similar fashion, we can extend the definition of the operator R to g
by setting
R(X)(z) = R(X(z)).

The Lie algebra § turns out to be so provided with the structure of a Baxter-Lie
algebra. Since our aim is to reproduce the scheme of the zero-curvature repre-
sentation in terms of Ad* orbit, it is necessary to consider a central extension
of 3. Hence, let § be the central extension of g defined by the Maurer-Cartan
2-cocycle

w(X,¥) = (dX,¥) / dz (8, X (z), ¥ (z)), (1.21)

with an obvious meaning of the notation. We can consider as well the corre-
sponding central extension of gr when the 2-cocycle (1.21) is deformed in the
usual way

wi(X,Y) = w(R(X),Y) +w(X,R(Y)).

Nevertheless, since R, and then R, are, by definition, antisymmetric with
respect to the invariant scalar product, it is easy to verify that wp = 003,
Therefore, after the usual identification g~ ~ § @ , made possible by the
definition of the invariant scalar product {(L,e),(X,A).) := (L, X) + ep, we
can consider the coadjoint actions of g and g on §~, which are given by the

5As we will see later, this is the origin of an important property of the related Poisson
structure, the so-called ultralocality property, which will become prerequisite for a lot of
further developments.
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expressions
ad;X - (L,e) := ([L,X]. + €8,X,0) (1.22)
ad: X - (L,e) := ([L,X]3,0), (1.23)
respectively. Here the endomorphism R is extended by setting
R(X)= R(X,)\) = R(X).

The conclusions of points i) and i) can be now immediately generalized to
such an infinite dimensional case, when the coadjoint actions Ad* and Adj,
are replaced by the integrated versions of eqs.(I.22,1.23), respectively. The
equation of motion (I.20) on a* acquires the form

oL = 8,M + L, M], (1.24)

which is that of a zero-curvature condition. Here M = R(dh), h being an
Ad’-invariant function on §.

Remark 1 Eq.(1.22) integrates into the coadjoint action of G
Ad’g- (i,te) = (¢g7'Lg + eg™'8.g, e), ge @ (1.25)

which is nothing else that the gauge transformation (I.7).

Remark 2 The Ad}-invariant functions on g~ have the form I — o(T(L)),
where T(Z}) is the monodromy matrix of the linear system with connection L
and p € C*°((@) is any Ad"-invariant function on G. Indeed we can show that
(Z, e) and (f)l, e') are in the same coadjoint orbit of G in §* if and onlyife=c¢e

and the monodromy matrices T(L) and T(L') are conjugate in G.

Remark 3 The derivation of the Poisson properties of the monodromy matrix
leads to a fairly relevant upshot. Indeed, one finds

{T(L)s T(L)} = ~[nT(L)® T(L)],

which coincides with the definition (I.15). Moreover one can show that the
monodromy function L T(E) is a Poisson map between g}, and G equipped
with the Sklyanin bracket, that is it establishes an exact correspondence be-
tween the two Poisson structures.
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Toda field theories occupy a very peculiar place in both the geomet-
rical framework underlying the zero-curvature approach and in the two, ap-
parently disconnected, algebraic contexts described above, that of the pseudo-
differential operator algebra and that of Baxter-Lie algebras. A more detailed
discussion of the properties of the zero-curvature representation of Toda field
theories will be given in the next Chapter. Let us now spend few words about
the second aspect.

The starting observation is that such theories realize the two algebraic
structures in a complementary way. As we will see more explicitely in the
next Chapter, Toda field theories produce the natural symplectic structure
induced on an orbit of g}, when they are considered in their zero-curvature
representation. This is equivalent to state that the space component of the
flat connection fulfills the Poisson bracket relation

{8.(9) 9 A(y)} = (M A (V) © L+ 10 A6y~ y). (1.26)

-®

By adopting thé identification and the convention already specified for eq.(1.15),
the above relation coincides with the Kirillov bracket corresponding to the
definition (I.23). Notice that the vanishing of the R-deformed 2-cocycle wy
(already recalled the ultralocality property) guarantees here that terms pro-
portional to any derivative of the §-function do not appear in the Poisson
bracket (1.26). Moreover, due to the ultralocality property, it is easy to achieve
from eq.(1.26) the Poisson bracket of the monodromy matrix which is related
to the flat connection A. The result is again the Sklyanin bracket relation,
which confirms what stated in the remark 3 and, on the other hand, consti-
tutes an alternative way to show that Toda field theories realize the scheme of
Baxter-Lie algebras.

The peculiar feature, that establishes the link between Toda field theo-
ries and the results pointed out in discussing the pseudo-differential operator
algebra approach, is their conformal invariance. Indeed, this makes possible to
construct two completely decoupled sectors of the theory, corresponding to the
the opposite chiralities; one sector depending only on the right moving light
cone variable z, = z + t, while the other depending on the the left moving
one, z_ = = —t. In a general fashion, in each of these sectors one can associate



16 INTRODUCTION

to the (anti)chiral connection a differential operator

( 671 +Z IE+ an 7

=2

A( _) —s arz+zal an z‘

1=2

A direct computation shows that the Poisson relations among the coefficients
a;, and, in a parallel way, @;, constitute a realization of the classical W-algebras,
in the same way as the Poisson bracket of the second hamiltonian structure
in eq.(I.14), reproducing the flows &;L of eq.(1.13), does. In other words, the
coefficients a; (@;) turn out to be the chiral (antichiral) components of the
generators of the extended conformal invariance underlying the theory. In
particular, a; and @, coincide with the chiral and antichiral components of the
improved energy-momentum tensor.



Chapter 1

An outlook of classical

conformal invariant
Toda field theories

This Chapter contains a summary of the main properties characterizing the
Toda field theories associated to finite dimensional Lie algebras. We will de-
vote particular care to outline those feature, which will constitute the basis of
the arguments analyzed in Chapter 2, as their conformal invariance and the
splitting of the chiralities. Moreover, we will recall the approach related to the
Drinfel’d-Sokolov linear systems, as it is implemented in ref.[7], which allow us
to reconstruct a real periodic local solution of the Toda equations in terms of
free modes of definite chirality. Also in this case, we refer to Chapter 2 for a
discussion about the extent of these results and their interpretation.

1.1 The model

Two-dimensional Toda field theories describe an interaction of exponential
form among 7 massless scalar fields ¢; (z = 1,...,7) on a (1+1) dimensional
space-time. Their Lagrangian is often given in the form (see §3.3)

L= 2 8,4:0%h; — V(9), (1.1)

]2

17
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where the repeated indices are understood to be summed over and the potential

18
r

V(g) = }:: mfe(“'(b)", with (a-¢), = Z a;;jp; - (1.2)

=1

Here a;; is the Cartan matrix(!), ai; = ZQ;"—’X_(IX._;]'—), and a; (¢ = 1,...,7) is the
simple root system of a certain finite dimensional Lie algebra. These character-
ization of the coeflicients in the Lagrangian (1.1) determines the integrability

of the models. The corresponding equations of motion read
0,0 + mi'aklz ele®)i — ¢, (1.3)

Such equations exhibit an important symmetry. Let us consider the light-cone
preserving reparametrizations of the space-time,

{ z, = f(zl)

z. = g(z_)

where f and g are regular functions. As it is well-known, this means that we
are performing a conformal transformation of a 2-dimensional minkowskian
space-time. Moreover, let the transformation laws for the fields ¢, be

¢r(zl, 2 ) = de(f(2}), 9(zL)) + pe In[f' (2 )g' (2L )], (1.5)

with py such that aupr = 1, Vi (the existence of such a vector is guaranteed by
the properties of Cartan matrices). Accordingly, since the metric changes by a
factor f'g’, the ¢}’s constitute still a solution of the equations of motion (1.3).
This is to say that the model is invariant under the conformal transformation
(1.4) and (1.5).

For mere reasons of convenience in view of algebraic manipulations,
we prefer to consider the Lagrangians of Toda field theories in the “mass-
eigenvector” fields ¢; (¢ = 1,...,r). In this way, they become

L= 10,p-0% — > mle™?. (1.6)

a simple

, (1.4)

In this basis, the equations of motion in the light-cone variables z. = z + ¢
read

1
8,.0_pp = 1 Z m2ay e ¥ (1.7)

o simple

!Although this case will not be consider in the present Thesis, we would remember
that conformal invariant Toda field theories can be construct also with generalized Cartan
matrices, which turn out to be associated to Kac-Moody algebras [5].



§1.1. The model 19

where ay, are the component of the root vector [remember that d. = 1/2(0, £

0;) and therefore 46,.0_ = —0O].

We want to remark once again that, in the case of Toda field theories,
integrability and conformal invariance of the model arise at the same time,
when the coefficients of the Lagrangian acquire a meaning in a Lie algebra
context and, thus, the link between such an algebraic framework and Toda
field theories is established. This relation, together with the role played by
coboundary Poisson-Lie group and Baxter-Lie algebras, is made evident by
the zero-curvature formulation of the theory.

Assigned the Cartan matrix a;;, or, equivalently, the simple root system
{a}, we can identify the associated simple Lie algebra g of rank r. Let g be
equipped with an invariant scalar product (-,-). Once a Cartan subalgebra
(CSA) is chosen,,we can fix in it an orthonormal basis {H;}i=,.,. Then,
consider the corresponding Cartan-Weyl basis, whose Lie brackets are

[Hi, Eia] = ia(Hi)E’ia y
[Eaa E—a] = hq )
with h, the element in the CSA dual to the root «,

ho = (EayB_o) Y axHy.
k

In the above equation, it is ay = a(Hy).

The equations of motion of the Toda field theory, associated to the Lie
algebra g, can now be introduced as the zero-curvature condition of the flat
connection

A, = 0,.® 28, A= —0_8 +e¥og_, (1.8)

the field @ taking values in the CSA, & : M? — H, with M? the two-

dimensional space-time, and

Ei - Z E:{:a; . (19)

o stmple

By imposing the zero curvature condition for A, we achieve the equation

1 2
0,0-8 = = > =(®p,. (1.10)

«; simple
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Notice that, in order to recover the equation of motion of the Toda field theory,
it is sufficient to substitute ® = L, H;. This yields eq.(1.7) with m, = 2, Va.

As for the hamiltonian formalism, this is deduced in the usual way
by the lagrangian one, with the introduction the canonical Poisson brackets
between the scalar fields ¢; and their conjugate momenta, m;. Such relations
can be cast in the compact form(?)

{H§($,t) @ @(yat)} = 6(33 - y) -ty ’ (1'11)
with
tg = Z H; ® H; (112)
a.nd H§ = 5t§

From the zero-curvature formulation standpoint, the equal time canon-
ical symplectic structure, given in the above equation, translates into a fun-
damental relation for the space component of the flat connection in eq.(1.8),
Ay = A, + A_. Indeed, by a direct computation, we find

{A:(y) § As(¥)} = [ A(¥) @1+ 1® A(y)]6(y — 3'), (1.13)

where 7 € g ® g is defined up to a term proportional to the Casimir element

Ceag®g,

(Ea ® E-——a - E——a ® Ea)
(Eo, B_o)

+AC,

>

o positive

C =ty + Z

a positive

(BEa ®E_o+E_4QE,)
(Bo, E_o)

When A = &1, then 7(A = £1) = r* are solutions of the classical Yang-
Baxter equation recalled in eq.(I.16). The extent of this result has been already
discussed in the Introduction.

1.2 Conformal properties

The importance of the conformal invariance, pointed out in the previous Sec-
tion, has been already suggested in the Introduction, where we hinted at the

?Often in the following the time dependence will be dropped: then, it shall be understood
that the time is set to ¢t = 0.
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related structure. Here we will go into some details. To this end, an indis-
pensable premise is to construct a chiral split recasting of the phase space. We
can identify this, éither with the space of connection gauge equivalent to (1.8),
in agreement with the general framework of the zero-curvature representation,
or, following the approach related to Baxter-Lie algebras, with the coadjoint
orbit G in §*.

The analysis by Leznov and Saveliev [23] represents the first attempt to
face the problem. Only in order to fix the notation, let us consider the case of
g = sl(n, ) Toda field theories: the following result can be easily generalized
to any simple Lie algebra. Denote with g = N_ & H & N, its root eigenspace
decomposition, where we have chosen the Cartan subalgebra (CSA) H and
N, (N_) is the direct sum of positive (negative) root eigenspaces. In the case
g = sl(n,k) we can identify the CSA as the subalgebra of n x n traceless
diagonal matrices; while Ay coincide with n x n upper and lower triangular
matrices with zero diagonal entries, respectively.

On the other hand, the transport matrix ¥, which corresponds to the
connection A through the relation (I.6),
Ay = 0,001 (1.14)

can be formally represented by the path-ordered exponential

T(x) =P exp [— /m(A+ + A“)] ,

where we refer to an unspecified base-point.

As an element of the group G = SL(n,E) of n X n unimodular matrices
with real entries, ¥ can be represented by the Gauss decomposition(®) in two
different ways. Indeed, we can factorize ¥ in the two products

[ exp(H)n_m,
T = { o H (1.15)

where H®) take values in the CSA and my, ne in exp Ny, respectively, and,
therefore, are upper (the + ones) and lower (the - ones) triangular matrix with
one on the diagonal. The comparison with eq.(1.14) shows that m, and m_
depend only on z, and z_, respectively, and that H®) (H)) equals —@

3To make this statement rigorous, we should restrict the argument only to elements n
the big cell of G, the open subset obtained by exponentiating the Lie algebra. Actually this
difficulty can be easily overcome.
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(®), modulo chiral (antichiral) terms. Such considerations lead to reorder the
decompositions (1.15) in the form

_ [ exp(@)V
¥ = { exp(_2)7 (1.16)

where V and V are very close to the chiral objects we are seeking, their first and
last row being, respectively, chiral and antichiral. This follows from the above
analysis, but, on the other hand, it turns out to be immediately evident, once
the linear systems fulfilled by V and V are determined. Indeed, by a direct
computation, we obtain

o, with (1.17)
(0-+AY)V =10 AY = e lda g
and, parallelly, for the V'
((9+ + A.}—*_)V e 0 A.j_ = e?ad§g+
o ) with ) (1.18)
(0-+ AW =0 AY = -20.®+E_.

Remark 4 Denote p(*) a matrix representation of sl(n,®) with highest weight
Alr) and lowest weight /\E,an. The conclusion of the Leznov-Saveliev analysis

can be reformulated by referring to this particular representation. This means
that we can define for each p(") the two chiral vectors

e = (AL v, 0_¢0 =0, (1.19)
&) = (ALLv, 8:€7 = 0. (1.20)

Such non-local fields summarize the entire dynamical content of the theory. In
particular, since, by definition, the identity

e 2% — Y-l

holds, we can reconstruct the solution of the Toda equations from the knowl-
edge of the vector ¢ in the fundamental representations. Indeed, the above
equation allows us to determine the relations

eTN®) = (AJVTI) = e 0 (L.21)
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Here, A; (i = 1,...,n) are the fundamental highest weight of si(n,E), ¢0)
and € the corresponding chiral and antichiral vector, respectively (in the
following, we will drop every label concerning the representation, when the
defining one is considered, or, otherwise, when it is not essential in the context).
The suffix 7 denotes

Té':w——l_tg w:((j-(')].),

where “t” represents the transpose operation. As a by-product, eq.(1.21) tells
us that the ¢’s and the £’s are conformal primary fields of weight A; =
(A;,p). This follows from the conformal transformation laws of the fields ;
[see eq.(1.5)].

Remark 5 Notice that AY and A" can be derived by gauge transforming
the flat connection (1.8) with g = % and g = e~ %, respectively. However,
this analysis is not sufficient for the phase space to be considered completely
split into a right-moving and a left-moving sector. Indeed, neither the (-)
component of A" nor the (+) component of A" are vanishing and, on the other
hand, V and V do not come out to be decoupled from the point of view of the
symplectic structure [see egs.(2.20), (2.21) and (2.22)], even if we are restricted
to their entries of definite chirality. In this connection, from eq.(1.13), or, more
precisely, from its integrate version concerning the transport matrix ¥, one
achieves the Poisson brackets

{£(=) 5 &)t = =) ®

{é(2) 9 &)} = (=)@ E(y) - [Pz —y)r™ + 9y — z)r7],
{é) 9 €@} = ~E(=)®€(y) -7,

{{(=) 3¢} = —E(=)®Ey) ", (1.22)

which we will refer to as the exchange algebra in the £ basis (see, for example,
ref.[2] to find an explicit derivation).

As will be clarified in the next Chapter, the limit of the above analysis
lies in how one faces the group factorization problem. Eq.(1.16) represents the
simplest, albeit incomplete, answer to the question: we have not taken any
care of the transformation which the symplectic structure undergoes and this
causes inconsistencies in what follows.
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Nevertheless, also such a partial result leads to some remarkable conse-
quences.

If we limit ourself to the right-moving sector, the vector () turns out to
be a basis of solutions of the ordinary differential equation of order dim(p(")),
associated to the + component in the linear system (1.17) (the — component
reduces to the condition on () to be chiral). In this regard, since higher
dimensional representations do not give us any further information, let us
consider the defining representation, in which ¢ fulfills the n order ordinary
differential equation
(63: D aj_“‘> ¢ =0. (1.23)
i=2
By a direct derivation based on the expression of the connection as quoted in
eq.(1.8), we obtain the coeflicients u; as functions of the field ;. In particular,
uy comes out to coincide with the chiral component of the traceless energy-
momentum tensor. On the other hand, knowing the £’s, we can reconstruct
the differential equation itself in the wronskian form

£ & o b
I (124
g g e

where ¢ = (€1,...,£,). This means that it is possible to compute the Poisson
algebra of the coefficients u;, starting from the exchange algebra of the ¢’s. The
upshot is that the u;’s are the generators of the extended conformal algebra
(the W-algebra) underlying the theory. Therefore, the canonical simplectic
structure (1.11) translates here into the second hamiltonian structure of the
generalized KdV equation. This confirms, already at this stage of our analysis,
what the final considerations of the Introduction has announced in advance.

1.3 Drinfel’d-Sokolov linear systems: a re-
constructive approach

Although the conformal fields ¢ and ¢ do not completely fulfill our chiral split-
ting program, two points of the above discussion seem to suggest the solution.
Firstly, the realization of the W-algebra generators in terms of the £’s (as for
the chiral sector) gives a fundamental meaning to the exchange algebra of this
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chiral vector, while a specular argument holds for . Furthermore, and this is
the second aspect, eq.(1.21) contains the recipe to work out a solution of the
Toda equation of motion, once we are able to solve the linear systems (1.17)
and (1.18). When presented in this form, all the matter sounds a bit tauto-
logical, since { and ¢ contain explicitly the Toda fields @ in their expressions.
Therefore, we need to know in advance the solutions of the Toda field equa-
tions in order for the above reconstruction scheme to work. It is evident that,
confining ourselves to eq.(1.21), we do not get any explicit representation of
the space of classical solutions.

Nevertheless, these considerations clearly show how to proceed: the
idea is to produce a realization of both the identity (1.21) and the exchange
algebra (1.22), as long as its two chiral halves are taken into account separately,
in terms of the modes of right-moving and left-moving (and, therefore, free)
fields. This has b&en developed in ref.[7]. The basic observation, from which
we move, is that the higher order differential equations [as, for instance, that
shows in eq.(1.23)], fulfilled by ¢ and ¢, respectively, can be associated to the
linear system

0:Q+ —(P—&4)Q+ =0
, (1.25)
0-Q4+ =0
for the chiral sector, and to its antichiral parallel
Q- =0
(1.26)
0-Q-+Q-(p—-¢&-) =0

Here p and p are chiral and antichiral fields, respectively, which take values
in the CSA. Since our aim is to reproduce the original symplectic structure in
each chiral sector, we impose that the connection in eqs.(1.25) and (1.26) have
the same Poisson brackets exhibited by AV and A". This means that

{p(z) § p(y)} = —(8: — §,)é(z — y)to, (1.27)
{p(z) 9 p(y)} = 0, (1.28)
{B(=) §B(¥)} = (8- = 6,)8(z —y)to- (1.29)

The fields p and p are completely decoupled, also in respect with their Pois-
son relations. Therefore, they are good candidates for parametrizing the phase
space of the Toda field theory, once the splitting of the chiralities were imple-
mented.
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In order to recover a solution of the Toda field equation as formally
given by eq.(1.21), but which now involves the new variables introduced by
this reconstruction procedure, we define the basis o and a,

o"(z) = (A[Q4(a),
50(z) = Q_(a)]A1). (1.30)

Obviously, this basis fulfills (up to a r-transposition in the antichiral half) the
exchange algebra (1.22), except that ¢ and & Poisson commute. Thus, we can
reconstruct a solution of the equation (1.10) through the identification

e M(®aa-) = (g, \ME (2 ), (1.31)

where M is a constant matrix to be determined. Some words have to be spent
on the meaning of this factor. In order to solve the Toda field equation, observe
that, if the solution Q1 (z) and Q_(z) of the linear systems (1.25) and (1.26)
are normalized by the conditions

Q+(0) = 1 Q-(0) = 1, (1.32)

then, the projection of M on the fundamental highest weight vectors plays the
role of initial condition for the Toda fields ®. On the other hand, the recon-
struction procedure implemented by eq.(1.31) fulfills the canonical symplectic
structure (1.11) only if we endow M with a dynamical meaning. In particular,
this is necessary for the locality property

{@(mat) § 2(y,t)} =0 (1.33)

to hold.

In agreement with ref.[7], we will refer to the eqs.(1.25) and (1.26) as
the Drinfel’d-Sokolov linear system and to the above reconstruction scheme as
the Drinfel’d-Sokolov prescription.

More interesting features arise if we consider boundary conditions which
are periodic in the space variable, that is if we solve the Toda field equations
on a cylindrical space-time, M* = {z,t: 0 < z < 2x}. In this case p(z) and
P(z) are periodic and, therefore, can be expanded in the Fourier series

p(ﬂ)) — Z pneinz‘, f)((l!) — Z pnein:c.
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The modes p, and p, realize the algebra of free bosonic oscillators,

in
{pn @ pm} - —'7_{__5n+m Ze(), (134)

_ _ mn
{Pr 9 Pm} = —bnimto. (1.35)

On a cylindrical space-time, we have to take into account a further feature,
which characterizes the field content of the theory, that is, the monodromy
behaviour. In the case of the fields ¢ and &, this is ruled by the left and right

monodromy matrices

S = Q+(27), S = Q_(2n),

so that they are shifted by S and §, respectively, after each cycle. Therefore,
in order to make the solution (1.31) periodic in z, we should impose

S-M-§5=M. (1.36)

The solution of this equation is subordinate to the possibility for the mon-
odromy matrices to be diagonalized. Since S and S are both triangular ma-
trices (upper and lower triangular, respectively), they are always conjugate to
diagonal matrices(!). Therefore, let us set

S = gkg™!, Kk = e’™Po
(1.37)

S = g kg, Rk = e ?™Po

Accordingly, the condition in eq.(1.36) will be satisfied if
M = gDg

Kk =1,

where D € exp(H), H being the CSA. The second condition simply means
that py = Py, which is a natural identification from a physical point of view.
Nevertheless, as we will see in the following, the possibility to keep py and
Py distinguished often simplify the treatment. Finally, the locality condition
(1.33) determines the expression of D in terms of the field variables of the
reconstructed phase space, so that

—_ eq—k

D = 00,  with { g ; LAk (1.38)

4This is strictly true when a discrete set of unacceptable values of the zero modes is ruled
out, so to exclude the case of parabolic monodromy matrices.
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where

1Pn - 1DPn
k=3 k=Y P
n#0 n , n#0 n
In eq.(1.38) we have introduced q and g, the conjugate variables of the zero
modes py and Py,

{a% po} = Lo,
{@9 o} = £to, (1.39)

respectively. Notice that, only adding the above relations, the Poisson algebra
(1.35) turns out to be non-degenerate.

From another point of view, the above procedure leads to the explicit
form of the Bloch wave basis of solutions of the Drinfel’d-Sokolov linear system.
Indeed, let us consider the new fields

¢(r)($) — a(')(m)gG,
P(z) = Oga"(z). (1.40)

It is easy to verify that the fields v and ¢ have diagonal monodromy & and &,
respectively. This good monodromy behaviour has its counterpart in a fairly
complicate Poisson relations. Indeed, the (¥,%) basis obeys the exchange
algebra

{$(=)99®)} = —b(2) ®9(y) - [e(z — y)(r* —r)+

—coth(mad; p,) - (r* — ty) — coth(radap,) - (r~ + to)]
(1.41)

{#(2) 99(¥)} = [e(z — y)(r* —77) + coth(mady p, ) - (r~ + to)+

+coth(radyp, ) - (1T — to)] Y(z) ® ¥(y)
(1.42)

while, only as long as the py and py are considered as independent modes,
chiral and antichiral fields are decoupled. In the above equations, the labels
1,2 indicate which group element in the tensor product the adjoint action
applies to.

The solution of the Toda field equation (1.10), associated to the above
Drinfel’d-Sokolov prescription, turns out to be expressed in terms of the Bloch
wave basis as

e PNEEre) = gl ) Pz, (1.43)
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It can be immediately shown that the above relation produces both periodic
and local solutions, provided we reduce the phase space by imposing py = Py.

This approach constitutes certainly a powerful tool in the analysis of
further developments, as could be periodic lattice discretization and quantiza-
tion of the model, and the just remembered expression of the Bloch wave basis
of the theory could be quoted among the interesting results produced through
the Drinfel’d-Sokolov prescription. On the other hand a problem is left still
open: the realization of such construction in terms of the original field content
of Toda field theories and, consequently, the completion of the program dating
back to Leznov and Saveliev works. The answer to these questions is matter
of the next Chapter.
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Chapter 2
Splitting the chiralities

Chapter 1 has left open a number of fundamental questions. Firstly, the sep-
aration of the phase space into two sectors of definite chirality is still an in-
complete program (the Drinfel’d-Sokolov prescription is only a reconstructive
procedure). As already pointed out, the conformal fields ¢ and £, right- and
left-moving, respectively, are coupled by their exchange algebra and, more-
over, it can be shown that AY can not be brought into a chiral connection by
a well-defined gauge transformation, and similarly for AV (see §2.1, below).
This means that the Drinfel’d-Sokolov linear systems can not be immediately
recovered.

From a different standpoint, we have proposed through the Drinfel’d-
Sokolov linear systems a representation of the solutions of the Toda equations
in terms of the independent free fields p and p. We can still wonder to what
extent can we represent Toda field theories by means of free bosonic oscillators.
In this sense the analysis which we will implement in this Chapter represents
the completion of ref.[7]. The unanswered questions concern the character-
ization of the subset in the space of solutions, which can be reconstructed
by the recipe synthesized in §1.3, and, eventually, whether it is possible to
parametrize the whole space in a similar fashion. A further problem to be
faced is represented by the relation between the interacting fields of each Toda
Lagrangian and the free modes, and, in particular, whether and how this map-
ping transforms the symplectic structure. The aim we want to achieve is the
proof of an exact correspondence between, on one hand, the canonical Poisson
brackets in the Toda field theory, which we can translate in the Kirillov brack-
ets for the space component of the flat connection A in eq.(1.8), and, on the
other hand, the Poisson brackets for the bosonic oscillators, which practically

31
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represent the chiral and antichiral connections in the Drinfel’d-Sokolov linear
system framework.

Although the questions which we are wondering are fundamental by
themselves, in order to clarify the structure underlying Toda field theories,
they could seem somehow redundant, since they are certainly just two different
sides of the same problem. Nevertheless, taking into account both these points
of view leads to a better comprehension of their possible solutions, as we will
verify soon.

In this Chapter we address the above two problems for the sl, Toda
field theory, the Liouville model. We will consider the theory defined in a
cylindrical space-time, where space is represented by a circle and time by a
straight line. Therefore, periodic space boundary conditions are assumed. We
want to emphasize that the main remarks, which will allow us to achieve our
aim, are not peculiar features of the simple Toda field theory under considera-
tion, but could be seen in the more general context of sl,, Toda field theories.
The Liouville model represents a meaningful example which greatly helps in
avoiding those technical difficulties which instead could masquerade the real
nature of the problem.

The following treatment is organized in four Sections. The first two
Sections represent an introductory discussion which, however, constitute an
essential premise to focalize the problem. Most of the features, which are
there analyzed, are crucial to realize our aim and their comprehension was
quite sketchy up to now. Our upshot is the construction of a one-to-one
correspondence between solutions of Liouville equation and the appropriate free
bosonic oscillator fields which allow for the chiral splitting of the physical phase
space and, at the same time, preserve the canonical symplectic structure of
the Liouville field theory. This just represents the realization of the Drinfel’d-
Sokolov linear systems. A detailed presentation and discussion of our results
is contained in §2.3, while their peculiar features are summarized and clarified
in §2.4, in view of further developments (see ref.[1]).

2.1 The (&,¢) basis

Our first task is to identify the origin of the coupling problem between ¢ and
€. In order to avoid unessential technical difficulties, we restrict by now to
consider the simplest example of 2-dimensional Toda field theory, the Liouville
model. Most part of the peculiar features, which are related to the chiral
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splitting program, arises already in this particular context. In the general
treatment summarized in §1.1, the Liouville field theory is described by the
Lagrangians (1.1) and (1.6), when only one scalar field is involved. Referring
to its zero-curvature representation, the Liouville field equation is associated
to the flat connection (1.8), where the related Lie algebra is si(2,R).

Therefore, let us introduce some notation relevant to this case. We
choose in sl(2,F) the Chevalley basis of generators, which is constituted by
the 2 x 2 traceless matrices

-(30). m-(21). m-(22) w

whose Lie brackets are
(H,Es] = +2E, [E.,BE_] = H.

The associated flat connection reads

_ [ 50t € [ =10 0
Ay = ( 0 -—'58_;.(,0) ’ A_ = ( e¥ [a_w ) (2'2)

and corresponds to the Liouville equation
0,0_p = e, (2.3)

The general solution of this equation is well-known from the original works of
Poincaré and is expressed by the classical formula

Y u'v’
L= 2.4
€ (1 _ 'U;'U)z ? ( )
where
v = u(zy), v = v(z_).

As in the general case, if we denote with = the conjugate momentum of ¢, i.e.
T = O, the canonical symplectic structure

{W(m)7¢(m/)}e.t. = 45(3} — 33,)
leads to the already mentioned Kirillov bracket

{As(y), Ac(¥)}er. = (1 Ax(y) ® 1+ 1@ AL(y)6(y ~—3).  (2.5)
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According to the general treatment, r € g ® g can be identified with either of
the classical r-matrices

1
r o= +5(H @ H +4E: ® Bx).

In this particular case, let us quote, once again, the integrated version of

eq.(2.5),
{¥(z),¥(z)}er. = —[r, T ® V], (2.6)

which summarizes the symplectic structure on the group of regular maps with
values in SL(2,I),in the same way as eq.(2.5) does for the corresponding Lie
algebra. The subscript e.t. in the above Poisson relations is to remember that
they are equal time equations. Hereafter it will be understood and we choose
to set the time to zero. Running again through the Leznov-Saveliev analysis,
we find the { = (£11,&10), € = (€21, &s;) basis in the Liouville case as matrix

elements of
V:(fu 512)’ 17:(.* _*).
* * 521 22

Furthermore, the flat connection A quoted in eq.(2.2) is brought into the gauge
transformed connections

v (B 1 . {0 0
A+_< 0 “5+90>’ A-—(eg¢0>, (27)

v o OBZLP ¥ —‘6_30 0
A+_.(0 0), A___< ] 5_90). (2.8)

Because of the particular choice of boundary conditions, we can classify the
field bases in the phase space of the theory according to their monodromy
behaviour. In the case of the (¢,€) basis, this is ruled by the monodromy
matrix
_ _.[a P
T = ¥(2r) =: ( v 8 ) , (2.9)

so that, after a cycle, this basis transforms as

§in — a4 v
¢t o {512*'*5511-#(5512 ’

_ B B (2.10)
2 F or o1 — alor + 76
It { €22 — Bar + 6622
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Here and hereafter, we identify the base point of the holonomy T as the origin
of our frame. Notice that the relations (2.10) do not combine the elements of
the (¢, €) basis with those entries of V and V which have not definite chirality.
This means that, at least as far as the behaviour described in eq.(2.10) is
concerned, the monodromy shift respects the chirality structure of the phase
space. This is not a completely expected result, since the identification of
¢ and € as field of definite chirality occurs on account of the solution of a
group factorization problem, which has no apparent link with the geometrical
structure of the zero-curvature representation.

Finally, we have to take into account the monodromy matrix T in the
description of the involved symplectic structure. Therefore, the collection of
Poisson brackets has to be completed by adding the relations

{{(z)3T} = {z)®T 77,
{£(2)3T} = E(z)®T -+, (2.11)
to the (¢,£) exchange algebra quoted in eq.(1.22).

Let us now turn to consider the chirality problem for the (¢,€) basis,
as already formulated in the introduction of this Chapter. We synthesize it
with the following question: can we gauge transform AV (AY) into a chiral
(antichiral) conpection Al*) = Agf) dzy (AC) = AL de_)?

If we limit ourself to the right-moving sector, the solution of this problem
lies in the possibility to determine a group element g € C*°(S?, Sl;), which
induces the gauge transformation(!)

V - g7V,
A} — g'AYlg+ g 09, (2.12)

such that YAY vanishes. It is sufficient to consider g in the lower unipotent

subgroup
1 0
o= (i 1)

Imposing the condition we aim for, we find

IAY =0 = O_ay+e*¥ =0

iThe following considerations have to be contextualized in the Baxter-Lie algebra frame-
work. In this sense we shall regard the gauge transformation, we are going to construct, as
an infinitesimal translation, tangent to a coadjoint orbit in §*. Further geometrical analyses
are not, by now, among our purposes.
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and, in order for a to solve the above equation, we have to require
a; = —04¢ + (chiral terms). (2.13)

In consequence of this gauge transformation, the (+) component of the connec-
tion AV is mapped into

(+) ._gav _ —p 1
Avt = Ay = ( Oray —2(0rp)ay — CL2+ p ) ’ (2.14)

which, compared with eq.(2.13) and substituting a,, becomes

(+) —-p 1
Al = , . 2.15
* ([T~5+p—p“] p) (2.15)

Here p denotes the chiral terms in the expression (2.13) and 7 is the chiral
component of the energy-momentum tensor of ¢,

T(=Tiy) = =010+ (8:9)°.

This could seem the answer to the initial question, which, in spite of our
premise, would turn out to be affirmative. Nevertheless, the above result
is still unsatisfactory, and this for two reasons. The connection AE:) is still
acting on 9V, which has no definite chirality. Moreover, looking further from a
physical point of view, if our aim is to identify the chiral variable p in eq.(2.15),
with the free field of the Drinfel’d-Sokolov linear system, we expect that the
chiral component of the energy-momentum tensor can be expressed in terms
of p. The effect of this condition is to equate the lower-diagonal entry of AS_’L )
to zero. Concerning the first argument, consider the explicit form of 9V,

I — 3t 3P
V= ( —aylin & —ayin + €a ) '

It is evident that, if we require 9V to be upper triangular, a chiral object is
singled out. This represents a further condition on a,, which determines its
chiral part to be

p=—0yp—Enéy. (2.16)
It is easy to verify by a direct computation that &_p = 0. Now, the remark
which rules out the just comstructed gauge transformation, follows from the
monodromy behaviour shown in eq.(2.10). Actually, we shall consider its com-
pletion in the monodromy relation ‘

V5 V-T. (2.17)
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In account of this equation, the element of the group, which induces such
a gauge transformation, is not univalent, s.e. g ¢ C™(S',Sl,). The above
prescription turns out to be hindered even more seriously when we observe
that, even before g, the bosonic field p is not periodic, in disagreement with
the expectation based on the Drinfel’d-Sokolov approach.

By allowing for a parallel treatment of the antichiral sector, we would
bring A" in the form

AL =AY = ( - 0 ) : (2.18)

where
P = 0_p+ 51252_2] . (2.19)

Thus, as it is expzzcted, we find again the same difficulties met in the chiral
case [the monodromy shift for V is implemented exactly as in eq.(2.17)].

2.2 The symplectic structure

Before coming to a general interpretation of what arose in the previous Sec-
tion for the particular example represented by the Liouville model, we would
point out a further aspect of the problem. We have already noticed that the
exchange algebra in the (¢, &) basis, as quoted in eq.(1.22), presents still cou-
pling terms between the right- and left-moving sectors. We can wonder how
far the problem goes back and, in particular, which are the relations with the
hill-definiteness of the gauge transformation that we have just discussed. To
answer this questions, we should analyze the transformation which the sym-
plectic structure undergoes when the connections A" and A" in eqs.(2.7) and
(2.8) are brought into a form of definite chirality by the above prescription.
Therefore, the upshot of this Section will be the computation of the Pois-
son relations involving the momentum p, introduced in egs.(2.13) and (2.15),
and its antichiral counterpart, p. Before coming to this result, some general
considerations, which concern the symplectic structure, are in order.

For the particular geometry of the space-time to be properly taken into
account, the notation introduced in eq.(1.22) needs to be more carefully de-
fined. The (¢, £) exchange algebra, there quoted, is explicitly derived in ref.[2],
where he computation is described in detail. The crucial feature is repre-
sented by the circumstances which makes the fundamental Poisson bracket
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(2.5) independent on the derivatives of the §-function. This is the often re-
called ultralocality property. This allows us to obtain the exchange algebra
of the complete V and V matrices, which consists in the collection of Poisson
relations

V()8 V(y)} = dz-y)V(z)®@V(y)-
=2V y) @ V(W) B @ B- V() ® V()] +

+ Hy —=2)V(z)®@V(y)-
(rm 42V (@)@ V7 (2) - @ By - V(2) ® V(=)

(2.20)
V()3 V(y)} = 3=z —y)V(z) ® V(y)
2V ()@ V(y) B By - Vy) @ V()] +
+ Hy—2)V(z) @ V(y)
2V (e) 8V (2) B Q@ By V(z) @ V(z)]
(2.21)
{V@)3V(y)} = 3=z ~y)V(z) ® V(y)
2V e V(y) E-® By - Vi (y) @ V()] +
+ Iy —2)V(z) ® V(y)
[t =2V (2)® V(2) By @ B - V"'(z) @ V(2)] .
(2.22)

In the above relations, the ambiguous feature concerns the meaning of the
function ¥. The fact that V and V are defined on the covering space E can
deceive us. Indeed, the function ¥ has to be regarded as a form-factor on S,
rather than as a Heavyside f-function(?). More precisely, if we consider an
equal time slice S of our cylindrical space-time and we fix on it an origin and
an orientation, then ¥(z — y) distinguishes between the two ordering, = > y
(W =1)and z <y (¢ = 0). In this sense we say that such a function
keeps trace of the geometrical structure of the problem and of the nature of V
and V, related by definition to the parallel transport. From a more technical
standpoint, we can easily figure out the reason why we should interpret the
function 4 as a form-factor by remembering the representation of the transport
matrix in terms of path-ordered exponential. If we perform the calculation of
the Poisson brackets just expanding ¥ in terms Chen integrals, the meaning
of the notation in egs.(2.20), (2.21) and (2.22) follows immediately.

?Since here we are considering a circle at equal time, ¥ cannot be regarded as the primitive
of the -function, which cannot be integrate on S!.
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The (¢, €) exchange algebra can be easily derived from the above equa-
tions by properly projecting them on the highest and lowest weight vectors.
To complete the description of the symplectic structure, we should consider
those Poisson relations which involves the monodromy matrix T, as we no-
ticed in §2.1 [see eq.(2.11)]. However, no different features arise in this further
computation.

The second remark concerns a meaningful expression to which p, and
analogously 7, can be reduced. Through the z-dependence of ¢ and ¢, which
is encoded in the linear systems fulfilled by V and V, eq.(2.16) can be recast
in the form

p = O;log & (2.23)
and, in a similar fashion, eq.(2.19) becomes
p = —0O;logty. (2.24)

These formulas can be interpreted as the “bosonization” rules for the —1/2
spin flelds € and €. A similar result for the Liouville model is already known
in the literature (see ref.[19]), but limited to the case of open string boundary
conditions, which imply a (crucial) reality requirement.

In order to realize our purpose, we reverse the sense of these bosonization
prescriptions and exploit them to derive the Poisson brackets of p and p from
the (£,&) exchange algebra. The result is

{p(z),p(y)} = —28'(z—1v),
{8(2),5(y)} = 28'(z —y), (2.25)
{p(z), p(y)} = —4&u(z) &5 (y) -

Remark 1 In the computation of the Poisson brackets (2.25) we have to pay
care to the derivative with respect to z, which appears in the bosonization for-
mulas (2.23) and (2.24). This operation could cause the ultralocality property
to partially fails. Therefore, a naive calculation could bring to an incorrect
result and the explicit development of path-ordered expressions could become
necessary.

The above equations clearly show where the coupling problem between
the fields of definite chirality, ¢ and ¢ arises, and its close connection with
the difficulties met in the previous Section, about the univaluedness of the
“would-be” bosonic fields p and p.
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2.3 From the factorization problem
to the free field representation

Reconsidering what we have done up to now, the relevance of the monodromy
behaviour (2.10) becomes apparent with great evidence. In particular, the only
possibility to obtain a well-defined gauge transformation from the treatment
of §2.1 lies in the solution of the diagonalization problem for T'. Indeed, only
in the case of diagonal monodromy, p and 5, once expressed as in eqs.(2.16)
and (2.19), turn out to be univalent. This should not be surprising as we
come back to consider eq.(2.14): there, it clearly appears that the problem of
recovering the Drinfel’d-Sokolov linear system from the connection AY reduces
to the study of the solution of the ordinary differential equation which arises
when we equate to zero the lower-diagonal entries in A(++> . This is an equation
of Riccati type and its monodromy matrix coincides with 7.

By referring to §2.3.1 for a detailed discussion about the diagonalization
of the monodromy matrix, here we intend to show how the Leznov-Saveliev
analysis can be more carefully interpreted, in the light of what already ob-
served. This leads to the desired solution of the chirality problem and, hence,
to the free field parametrization of the physical phase space. Therefore, rather
than on the properties of the connection A, we direct our attention on the def-
inition of V and V. The first remark is that these objects are not univocally
defined. Indeed, if we require the chirality behaviour of the first row of V and
the last one of V to be preserved, a great arbitrariness is still left and the class
of equivalent choices is determined by the invariance

{ Viesn_Vg

~ ~ (2.26)
Visn,Vgy

Here ny : S' — exp N and gy belongs to the group G, which coincides with
SL(2,) in the case here analyzed. Notice that, while the left multiplication
by n. can be interpreted as a gauge transformation (see §2.1), the right action
of G shifts only the initial condition, without affecting the dynamics. On the
other hand, the right multiplication by g, implies a change by conjugation of
the monodromy matrix, t.e. T+ 97T = g;'Tg,. A further remarkable feature
of the symmetry (2.26) is that it does not act on the solution of the Toda field
equation, which can be reconstructed according to the formula

e = (A|(n-Vgo)(n Vo) '|A) =
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= (A|[VT7IA).

[see eq.(1.21) and remember that ¢ = 2A(®)). Finally, notice that this
symmetry is a general feature of the Leznov-Saveliev analysis and concerns
not only the simple case of the Liouville model, but every Toda field theory
associated to any simple Lie algebra.

In consideration of the induced transformation undergone by the mon-
odromy matrix, we exploit such an invariance property to impose the condition
of diagonal monodromy. Running through the prescription of §2.1, now we ob-
tain

1 N ;
Vi =g 'Vgy = : = ay = = 2.27
and, for the antichiral sector,
e 1/68 0 it
V. = g 1Vgo — ( /—gggll Tdo ) = a. = —30% (228)
22 22

These equations clearly show that a, is univalent when the monodromy matrix
is upper triangular [y = 0 in eq.(2.9)], while for the univaluedness of a_ we
have to require T to be lower triangular (3 = 0). Therefore, imposing that
D = g;'Tgy is a diagonal matrix represent a necessary and sufficient condition
for both the gauge transformations g and g to be well-defined (where this has
the meaning emphasized in §2.1).

2.3.1 Diagonalization of the monodromy matrix

In order to implement the above prescription, we have to prove that the con-
dition of diagonal monodromy can be required. The possibility to conjugate
the monodromy matrix T to a diagonal matrix obviously lies in the properties
of the flat connection (2.2). As already observed, the monodromy matrix can
be represented as the path ordered exponential

T =Pe f# (2.29)

where C is a closed path emanating from a given base point (the origin of our
frame) and homotopic to an equal time loop. The fundamental remark consists
in the simple observation that different choices of the path C correspond to
different factorizations of T' in the group SL(2,®). This turns out to be a
crucial point in order to make the “algebraic” properties of the connection



42 Chapter 2. SPLITTING THE CHIRALITIES

readable at the group level of the monodromy matrix. For instance, let us
identify C with an equal time path. Then the expression (2.29) becomes

T ::ID_ e‘foﬁ‘“AI ,

with
AI = A+ +A_ = 8,@-}—6"’(]34_ +E_).

Although H and (E, + E_) span the vector space of symmetric matrices in
sl(2,®), they do not constitute a closed subalgebra. Therefore, the properties
of A, do not survive the path-ordered exponentiation. Actually, the particular
form of A seems to suggest the choice of a loop moving along the light-cone
variable directions, on which the parallel transport is ruled by the connection
components A, and A_, given in eq.(2.2). Indeed, they take values in the
Borel subalgebras of si(2,E) and, therefore, the corresponding monodromy
factors belong to the associated Borel subgroup. The simplest possibility to
realize this kind of path is represented by the curve

(r,7) for 7 €[0,7]
C: (z,t) = , (2.30)
(r,2m — 1) for T € [, 27] '
which, in light-cone coordinates(®) is parametrized as
( (2r,0) for T € [0,7]
C: (zy,2-) = . (2.31)
(27,21 — 2m) for 7 € [m,2n]

Remark 2 A reason which could make necessary a more elaborated choice
of the path is represented by the possibility that a singular behaviour of the
flat connection arises. Indeed, when we assume the equivalence of integration
paths which are homotopic, at the same time we understand some regularity
hypothesis, concerning the connection A and, therefore, the solution of the
Liouville equation: this ensure us that any singularity could hinder the path
deformation.

On the path (2.31), the monodromy matrix factorizes in two terms
corresponding to the right- and left-moving components,

T = U_(2r)T,(2r),

Due to our definition of the light-cone variables, there is a scale mismatch between the
(z4,z-) frame and the (z,%) one.
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with

U, (z) = P exp {—— /UI dey Ay (zy,z_ = 0)} )

U_(z) = P exp (— /Ox de_ A_(zy = 271',:13_)} .

In order to obtain the explicit expression of the monodromy matrix, we have
to solve the linear systems fulfilled by ¥, and ¥_. This amounts to find the
independent solutions of the chiral and antichiral halves of the linear system
which is associated to the the Liouville model,

(04 + AT, =0
(0-+A_)¥_ =0

with the boundary conditions ¥, (0) = 1 and ¥_(0) = ¥, (27). Actually, we
do not need the complete form of the solution, which is a rather complicate
non-local function of ¢. A well-known classification of the element of SL(2,E)
guarantees that if tr7 > 2, then the monodromy matrix is of hyperbolic
type, that is, its eigenvalues are real and positive. This statement can be
easily verified for a 2 x 2 unimodular matrix. However, this classification has a
meaningful interpretation in terms of the Iwasawa decomposition of the group,
which allows us to make a generalization to higher order unimodular matrices.

If we reduce the aim of our computation to the proof of the above
requirement, we can work out two crucial results.

If we introduce the notation

T, (21) = (ual 1y ) | ¥_(2n) = <v;21 0 ) |

-1
Uy Va1 Va2
then, for a general, regular periodic solution of the Liouville equation, we have:
s

i) ¥, (27) and U_(27) are hyperbolic matrices and,

i5) due to the positivity of the off-diagonal elements of A, and A_ [see
eq.(2.2)], the corresponding off-diagonal entries of ¥ (27) and ¥_(27),
t.e. u1; and vqq, are negative.

Therefore, it is now matter of matrix multiplication to prove that

trd = ’U;;’U/“ -+ 'Ugg’uil -+ Vo1 > 2COSh(’U;21’lL11) > 2,
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g.e.d.

Finally, let us formulate an apparently trivial observation about the the
matrix gy € SL(2,E) which conjugates the monodromy matrix into a diagonal
form. Indeed, it is a well-known algebraic result that gy cannot be univocally
determined. If we consider the canonical form

g =R-5

10 1 b
R:<a 1)’ 5”(0 1)’

we are still left with two possibilities, corresponding to the two orderings of
the eigenvalues on the diagonal of the matrix D = g;'T'gy. By imposing that,
at a first step, R brings 7 into an upper triangular form, we obtain

[ a+pBa 0
D_( 0 5—,Ha>’

where a fulfills the equation
Ba*+(a—8la—y = 0. (2.32)

with

In the above equation. a, 3,7, 8 are the entries of the monodromy matrix, as
given by eq.(2.9). The two choices for D and, therefore, for gy, are related to
the two solutions a; , of the quadratic equation. Obviously we have a+Ba; =
8 — Bas;. This simple observation is the reason for a degeneracy in the free
field parametrization of the Liouville phase space.

2.3.2 The Drinfel’d-Sokolov linear systems

After the solution of the diagonalization problem, our analysis has reached the
result to bring the connections AY and A" in the Drinfel’d-Sokolov type form

(+) -p 1 (+) _ - 0
Aﬁ(“?)’ A“<1:5>’

respectively, where p and p are free periodic fields. They can be represented
through the bosonization formulas

p = O logél} =
= leog (511 + (1512) 3 (2.33)
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= —0,log ggg =
= —0log ((1 + ab) &x + béx ) . (2.34)

This means that we formally recover a realization of the Drinfel’d-Sokolov lin-
ear systems in terms of the interacting field ¢. In order to give a complete
meaning to this statement, we need to verify that the original canonical sym-
plectic structure for ¢ and its conjugate field is transformed in the symplectic
structure which characterizes the Drinfel’d-Sokolov construction. In particu-
lar, the field p and p must fulfill the bosonic Poisson relations (1.27) and (1.29),
and must also decouple as in eq.(1.28). This can be verified by following the
same steps as outlined in §2.2. Indeed, we can as well exploit the bosonization
formulas (2.33) and (2.34), taking into account the new Poisson algebra which
is fulfilled by £ and £%. Notice that, in the diagonalization procedure, the
(¢,€) basis undergoes an SL(2,I) transformation, whose coefficients have a
dynamics value, i.e. they do not Poisson commute, as they are functions of
the monodromy matrix elements. This observation makes the Poisson brackets
involving £9 and €% not very appealing. If we look at the counterpart of this
Bloch wave basis in the Drinfel’d-Sokolov prescription, we can figure out that
the unreadable form of this Poisson algebra originates from the zero modes
problem. Indeed, while the Drinfel’d-Sokolov construction keeps distinct the
chiral zero modes from the antichiral ones and identifies them only when the
solution of the Toda field is recovered, we have never enlarged the original
phase space of the theory with our approach and, in consequence of this, py
and py naturally coincides (see the next Subsection). In spite of the appear-
ance of this rather obscure region, the Poisson structure realized by p and pin
eqs.(2.33) and (2.34) turns out to be the correct one,

{p(z) § p(v)} = —28'(z —y),
{p(z) 9 B(y)} = 0,
{8(z) % p(y)} = 28'(z —y).

"3y

Remark 3 We can observe that the role played up to now by each component
of the (¢,€) basis is rather unequal. This is outlined by the bosonization
formulas (2.23) and (2.24), as well as (2.33) and (2.34), where only the (1,1)
component (respectively, the (2,2) one) appears. Actually, it is possible to
construct a completely parallel mapping of the zero-curvature representation
into the Drinfel’d-Sokolov scheme whose upshot are the momenta

p = O:logly,
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ﬁ = ~6rlogf§"{ .

This exactly represents the degeneracy to which we hinted at the end of our
monodromy diagonalization program. Indeed, let D and D be the two diagonal
forms to which the monodromy matrix is conjugated through g, = gulaza1 and
go = gula:az, respectively. They are related by the equation

D=w-D -w',

oo [0 -1

L1 0
implements the Weyl transformation in the group SL(2,E). Therefore, the
existence of two equivalent possibilities for the diagonalization prescription

where the matrix w,

reflects into the invariance

e = (A|(Vau)(Vgo) ') =

= (A|(Vao)(Vgo) ' |A),

vsz:<§12 ‘“.511)’

with

* *

oz * *
Vsz:(f—zl —’;722>'

The two copies of free fields which parametrize the Liouville phase space appear
completely equivalent, at this level of the discussion. However, we can make a

distinction if the regularity of the momenta p (5) and 5 () is involved.

Remark 4 The bosonization formulas (2.33) and (2.34) allows us to recog-
nize the existing connection between the zero modes of p and of 7 and the
monodromy matrix eigenvalues. Indeed

27
po= [ do(0.logelf) =

— log(a:+ fa),
po = [ du(-dulogdlt) =
= —log(6 — fBa).

According to our expectation, these equations show that the chiral zero mode
coincides with the antichiral one.
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2.3.3 Zero modes and conjugate variables

Let us recall the main aspects of the problem we are treating in the present
Chapter. Our aim is to represent the phase space of the Liouville model by
a global free mode parametrization. Since the model under consideration ex-
hibits a conformal symmetry, we know that this free field representation allows
for the separation of the chiralities. Furthermore our guess is that such a pro-
gram can be realized by a one-to-ome correspondence between the space of
solutions of the Liouville equation and the related Drinfel’d-Sokolov recon-
structive scheme. In §2.3.2 we have shown how, starting from a solution of
the Liouville equation, it is possible to single out the expressions of Drinfel’d-
Sokolov type momenta, p and #. This permits to define @4 and - as in
§1.3, but do not guarantee that the solution recovered by the by the Drinfel’d-
Sokolov prescriptipn is neither the original one nor univocally defined. Facing
this problem amounts to fixing a suitable conditions, which allows us to iden-
tify any element of the phase space which is chosen as initial data and the
reconstructed one. Its solution implies the realization of the variable g, con-
jugate variable of the zero mode, in the Liouville phase space. The natural
requirement that we are led to impose 1s

(AMVVTHA) = (A|Q195p3sQ-|A) - (2.35)

Indeed, the first term of the above equation is just a tautological rewriting of
the given solution ¢, while the second one represent the main ingredient in
the Drinfel’d-Sokolov recipe. If we come back to the definition of V) and V_
in eqs.(2.27) and (2.28), which are the products of the gauge transformation
g, the condition (2.35) turns out to be equivalent to the identification

ViVl = Q1g5pgs@Q- -

If we evaluate this equation at the origin (z4 = 0,z_ = 0), the result is
V+(O)V—_1(0) = gspPgs -

If we remember the meaning of the notation, explained in §1.3 (there g and
gs are g and g, respectively, while p coincides with D), clearly the rhs of the
above equation is nothing but the Gauss decomposition of the matrix at the
left. Solving this factorization problem, we obtain

( (14 ab) e 0 ) ,

p= 0 (1 + ab)~! e
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where ¢y = p(z4 = 0,z_ = 0) and a,b are the function of the monodromy
matrix elements which parametrize the entries of the diagonalizing gy. As
in the Drinfel’d-Sokolov construction p contains g, the conjugate variable of
po = log(a + B a), we should verify that

{po;p} = p.

The calculation is long but uneventful, when some subtleties are properly taken
into account. Indeed, the result follows from direct computation, when the
problems announced in Remark 1 are carefully considered.

2.4 Conclusions

In summary, the upshot‘of the previous Section consists in the realization of
the Drinfel’d-Sokolov linear systems

04Q+ —(P—&4)Q+ = 0

0.Q-+Q-(p—£) =0

where p = pH and p = pH are a chiral and an antichiral momentum, respec-
tively. This is made possible by the identifications

p = O;log &1, (2.36)

b = —0;log €3, (2.37)
or, equivalently,

p = O:logély, (2-38)

p = —0:log &3, (2.39)

where gy € G is determined by imposing that gy sets by conjugation the
monodromy matrix into a diagonal form. The meaning of this result can be
understood in the framework of the conformal invariance, which characterizes
the model. Indeed, in consideration of such a symmetry, we are led to search
a representation of the Poisson algebra of observables as the direct sum of
two sectors, which correspond to the opposite chiralities. This program is
implemented by p and p in eq.(2.37) [or, equivalently, by 5 and p in eq.(2.39)).
According to a slightly different point of view, we can interpret the momenta
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p and P [or, equivalently, § and p] as the generators of the free bosonic modes,
which realize the Poisson algebra

in
{pn Q;) pm} = ‘"';r_ ntm

B B in
{pn @ pm} = '7?5n+m .

Their definition allows us to globally parametrize the space of solution of the
Liouville equation.

A still open problem concerns the formulation a definitive recipe to
properly take into account the symplectic structure transformation under the
affine action of g, in order to give a meaningful interpretation of the (%, £90)
exchange algebra., This could represents the starting point for a generalization,
which is not yet a crude extension of the previous results, to Toda field theories.
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Chapter 3

Quantum Toda field theories

This Chapter maihly deals with the quantization of Toda field theories based
on a finite dimensional Lie algebra in a periodic space lattice [10].

The reason for the interest in Toda field theories is twofold: on the
one hand these theories, which we recall are characterized by a W-algebra
symmetry, underlie a vast set of conformal field theories, in particular the
W-Minimal Models [17] [20]; on the other hand they define the so-called W-
Gravities, which are generalizations of the Liouville theory that might relate
to the most recent results from Matrix Models and Topological Gravity.

While the quantum s, Toda theory, i.e. the Liouville theory, has been
properly analyzed in the literature, the attempts to do the same for a general
Toda field theory are fewer and much less complete.

Motivated by the renewed interest in Toda theories, in this Chapter
we want to analyze in detail the quantization of the sl,, and in particular
the sl3, Toda field theory. As it is common feature of most quantum the-
ory , sl, Toda field theories require to be renormalized. The use of a lattice
cutoff (as suggested in refs.[15]) reveals to be a natural choice. It essentially
preserves the continuum symmetries of the theory and, in particular, we can
point out a lattice conformal symmetry, as it is done in ref.[16] in the case of
the WZNW model. Another possibility to regularize the theory would be the
normal ordering of vertex operators, employed in refs.[19, 11, 21]. However,
the scheme of the Drinfel’d-Sokolov construction, on which we base our recipe
for the discretization, does not naturally match with this operation. One can
easily figure out the reasons of such an incongruence when we remember the
role there played by non-local fields, representable as path-ordered exponential

51
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(trace of the holonomy problem in the original zero-curvature approach — see
Chapter 1 and the references there quoted ). The problem lies in the incom-
patibility of the normal ordering prescription and the path-ordered structures.
The lattice regularization overcomes also this problem.

On the other hand, the lattice approach should not be regarded only
as a mere, albeit powerful, tool to properly quantize the theory. We have
already emphasized the manifestation of a discretize version of the Conformal
symmetry, which comes into play as an invariance under a block spin type
renormalization group. On this regard, in §3.1.1 we will proposed an interesting
quadratic algebra, which plays the role of the lattice W3 algebra. The study of
a possible relation between discretized Toda field theories and Matrix Models,
suggested by the most recent literature, could be a further reason of interest
in this analysis. Therefore, we will start this Chapter with illustrating and
pointing out the main features of the Toda field theories on the lattice.

‘Once the discretized version of Toda field theories is formulated, the
scheme of ref.[7], relative to the continuum case, will be implemented in this
context, til to the computation, on the lattice, of the exchange algebra in the
Bloch wave basis. This allows us to recover the result found in ref.[20], from
a completely independent point of view. Moreover, the problem to link the
exchange matrix in the Bloch wave basis (to be compared with the exchange
matrix of the vertex operators, dressed in a Coulomb gas fashion, in refs.[20,
11, 21]) to the quantum R-matrix in a Quantum Group framework, turns out
to be completely overcome.

3.1 Classical theory on the lattice

The formulation of Toda field theories on a (periodic) space lattice with N
sites runs parallel to the construction of Chapter 1. We recall in the following
the recipe found in ref.[8]. This treatment is addressed to Toda field theories
associated to every simple Lie algebra. Moreover we will understand the rep-
resentation labels where they are not explicitly required by the context. They
can be supplied in an obvious way. We limit ourselves to one chirality, since
the other chirality has completely parallel formulas. Moreover we set ¢ = 0.

The discretized version of eq.(1.25) should consist in the parallel trans-
port on a lattice spacing A

Qn = LnQn_1, (3.1)
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where one is led to identify

L, = exp{—/\n A} =
Tn—1

= exp {—AA,, + O(AQ)} =
= exp {A(p. — &)+ 0(A)} .

However, in order to give a precise meaning to L, and consequently to ¢, we
have to fix a criterion to solve the usual ambiguity inherent in the arbitrariness
of the O(A?) terms, typical of any discretization procedure. Since the exchange
algebra relations were the peculiar feature of the theory in the continuum, we
assume it as a requirement to fix the lattice deformation. Therefore, @, still
satisfies the Poisson bracket

{@n § Qu} =
Qn®Qm[—r+Q Q. (r—t)Qm®Qm], i n>m
=1 [MHQn®Qx, if no=0
Qn®Qm[-r+Q @Q 7 (r+1)@n®Qn], i n<m.
(3.2)

Here, as in the continuum counterpart, r is defined up to Casimir terms and,
therefore, can be replaced by the classical r-matrices of si,,

E,®@E_
’ apg;tive (EOHE"CY>
‘ E_o ®E,
P = —ty—2 Za®la
’ @ p§itive <E“°" EQ)

Thus, through the relation L, = Q,Q;},, we find the Poisson bracket algebra
of the discrete transport matrix L, :

{Ln 6,9 Lm} = 6n,m[ra Ln & Lm] +
— b1 ln ®1-4-1® Ly + (3.3)
+ 5n,m—11®Lm 'tO'Ln®1-
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In order to recover the original equation in the continuum, it is sufficient to
assume that

L, = 14+ A(pn — &)+ 0(AY).

Indeed, taking the limit A — 0 we obtain eq.(1.27).

Remark 1 Eq.(3.3) is a non-ultralocal generalization of the usual ultralocal
formula

{Ly @ Ln} = bnm(r, Ln ® L],

which are at the basis of the Hamiltonian approach of the Inverse Scattering

Method.

Remark 2 Jocobi ident-ity is satisfied due to the Yang-Baxter equation on r
and the fact that

[r2, H®1+1® H] = 0, VH e CSA.

Till now we have not imposed any boundary condition. The periodicity
of the lattice leads to the identification

Loy = L, (3.4)
and, hence, to define the monodromy matrix S by means of
QNtn = @nS.
Here § = Hf\;1 L; and, therefore, it satisfies the Poisson brackets

(@95} = Qu®S (-7 +Q7'®Q7" - (r+t) Qn®Qn
~1@5 1 -t-1®8), (3.5)

{595} =885 (-r+57'®5"-r-S®S5+
4571 @1 tp-S®1-1@5 7 t-5®1) . (3.6)
In the computation of the above relations, we have to remember that, due to

the periodic boundary condition (3.4) and the non-ultralocality of the Poisson
brackets (3.3), it is {L1 @ Ly} # 0.
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Since eqs.(3.2),(3.5),(3.6) coincide exactly with the exchange algebra of
ref.[7] in a discretize version, as we intend to obtain with our comstruction,
all the consequent steps to the definition of the Bloch wave basis can now
be reproduced. In particular, we need to introduce the lattice analog of the
matrix p, which must satisfy the Poisson brackets

{Qn@?p} = —aQn®p't07 (37)
{S9p} = —aS@p-ty—Pto-S®p, (3.8)
{p%p} = 0. (3.9)

In the above expression, a and [ are two arbitrary constants such that a+8 =
1. Since the final results expressed in the Bloch basis do not depend on the
value of these constants, hereafter we will choose

a=90.

Finally, given any highest weight vector |Al").), we can construct the
discrete o basis

O-Y(lr) = (AgLZz:L'|Q"
and, then, the ¢ basis
Y = o{Vgp
so to verify both periodicity and locality of P hr),

3.1.1 Conformal algebra and its extensions on the lat-
tice

As an interesting application of the above formalism, we study how the con-
formal properties of the theory are deformed on the lattice. A fundamental
remark concerns the Poisson bracket in eq.(3.3). As can be easily verified by
a direct computation, it is still satisfied if we substitute L, with

L; = LnLn+1 . (310)

This feature presents a general meaningful interpretation. Let us consider the
increasing map D : Z — Z, such that D(n+ N') = D(n)+ N (N' < N). The
map

Qn — Qn = @) (3.11)
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@! being defined on a periodic lattice which identifies the sites 0 and N’,
leaves the Poisson structure invariant (i.e., it is a Poisson map). Therefore,
although the discretization procedure violates the conformal invariance, we
can regard this Kadanoff type transformation as the lattice version of the
conformal one (see ref.[16]). Furthermore, as shown in refs.[15], we can define
the lattice equivalent of the generators of the (extended) conformal algebra,
having conserved on the lattice the structure of the exchange algebra of the
o basis. If we consider, in order to fix the notation, the Lie algebra sl,, such
a definition can be given by means of the discretize version of the p order
ordinary differential

o ot oP
o-l 0-1I L. U.p/
der| 7S T,
Yo (p) (eH®) ... (7))

t.e. the finite difference equation

on a-]- e gP
0’ 0'1 PEEERY Up
det | "t Tndt ntol = . (3.12)
Ontp Urll+p ce 0'£+p
Here o' (i = 1,...,p) are the elements of the o basis in the defining represen-

tation.

Thus, the generators of the (extended) conformal algebra, that in the
continuum are given in terms of o; by a wronskian type expression, can be
naturally identified on the lattice with the coeflicients of eq.(3.12).

The case of sl, has been treated in refs.[15]. In these references, the
cubic algebra

{Snysm} - —“Snsm[(4 - Sn - Sm) (6n,m—1 - 6n,m+1) +

"r' Sn—15n,m—2 - Sm——lan,m——-2} (3-13)
has been found. In the above equation, we introduced the quantity
1) (D)
Sp = 4&(}@%1 (3.14)
WT‘ Wn—l
where W) = glg? ip = aiol +p- The Virasoro algebra is recovered from

eq.(3.13) in the limit S, — 1 + A’u(z). Some difference can be outlined
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in the higher rank cases. This becomes evident already for sl;, computing the
Poisson brackets of the lattice generators?
Wi = Mgl ol ol i,7.k,1 =0,1,2,3, (3.15)

where € is-the completely antisymmetric symbol. In the 3 representation we
obtain the quadratic algebra
{W(1)7 W(l)} - ““é‘W,El)I/V,g)(anm—d - 5nm—1 + 5nm+1 - 5nm+3)+

n m

A WOWD,8 0y — W W 6

{Wrgl) ’ VVr(nQ)} = _%I/Vrgl)pvrglz)(gnrn—S + 6nm——2 - 25nm—-l+
+5nm - 5nm-|-1 + 5nm+2 - nm+3)+

AWOW s bamer — WA W60
{W(l) ) Wr(ns)} - _%VVrgl)er(rls)(énm—B + 5nm-—2 - é‘nm—l - 5nm+2)

{I/Vr(xl)7 I/Vr(nz)} - “%vVTEZ)WTSlQ)(&nm—?; - 5nm—-1 + 5nm+1 - 5nm+3)+

—W,SB)Wﬁu)l brm-1 + WU A
(9, W) = A b o = s — o)

{W(3)7 Wr(nB)} = _%Wrgg)vvr(rls)(5nm—2 + 5nm—-1 - 6nm+1 - 6nm+2)
(3.16)

As revealed by its Poisson algebra and in analogy to what seen in the sl;
Toda field theory, W% represents the opposite chirality. However, differently
from what found in that case, here it does not seem to be possible to construct
rational combinations of the W ("), which play the role of discrete generators of
the extended Virasoro (W;) algebra and which are completely decoupled from

!We remark that if we construct analogous Wp’s in the v, basis, the above algebra
does not change. Indeed, as it happens in the continuum case, this is an intrinsic result,
concerning the coeflicients of the finite difference equation (3.12) by themselves, that is, it
does not depend on the particular basis of solutions, which have been chosen to represent
them.
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the antichiral modes, like the S, of refs.[15]. This feature indicates that the
fundamental algebra is the quadratic one, as that quoted in eq.(3.16).

3.2 Quantum theory on the lattice

The next step is the choice of a quantization map which suitably deforms the
classical Poisson relations. In the Introduction we have pointed out the deep
link between the algebraic structure underlying the Toda models and their
integrability properties; we have also hinted at the corresponding “quantized”
structure, the quasitriangular Hopf algebras whose quantum K-matrix gives
back, in the “classical” limit (¢ = e™* — 1, g being the deformation parameter
of the quantum algebra), the original classical 7-matrix. Therefore, we are
naturally led to a quantization prescription which follows such an algebraic
path. This is the basic idea which is implemented in [8], whose results will be
summarized in the subsection below.

3.2.1 General formulas

We introduce the notation
X1 =XQI1, Xo=1IQ®X,
for any matrix X. Moreover we will use for the quantum operators the same

notation as for their classical counterparts.

According to the above considerations, the quantized version of eq.(3.3
is

R12L171L2n - L?nLlnRIQa (317)
LinLontr = Lopp1Aiolyy, (3.18)
where
Alv — e’iﬁto

R12 =1- iﬁ'f'12 + O(ﬁ-Z) .

Ry, must satisfy the quantum Yang-Baxter equation. Hereafter we denote
with RE, the two solutions of the Yang-Baxter equation, whose classical limits
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are ri,, respectively. Since we have R}, = (Rf,)™!, we can use indifferently
one of these exchange matrices in eq.(3.17).

The crucial property of the commutation relations (3.17) and (3.18) is
represented by their integrability. However, one needs previously to define the
quantum operator (),,, whose expression is not just a trivial generalization of
its classical analogue. Indeed, we have to slightly modify its expression in
terms of L, with the introduction of the matrix

B = el'ThZiH?_

so that
@Qn = L,BL, B...BLy, (3.19)

Then, the quantum @, satisfies the closed algebra
Rl?anQZn - QQannR12 ’ (320)

Ql”Q—l—riAﬂRlQleQQm = Q?.lenR127 n > m, (321)

with n,m < N.

In a periodic lattice with IV sites we introduce the quantum monodromy
matrix via

Qn—}—N - QnBS

Therefore, the quantum monodromy matrix S fulfills the commutation rela-
tions

R1251A41252 = S241251Rya, (3.22)

AR 19Q17Qon = Q1nST @2, A1251 Rys . (3.23)

Finally, the quantum matrix operator p € exp(H) has the following
properties:

pip2 = P2pi (3.24)
A1251p2412 = p251, (3-25)

Qinpz = p2Qin, (3.26)



60 Chapter 3. QUANTUM TODA FIELD THEORIES

where we adopt the same choice as in eqs.(3.7), (3.8 and (3.9).

Let us define now the quantum o basis

ol = (AL 1Qn. (3.27)

From eq.(3.21) we obtain the exchange algebra

oNal) = of ) (RE), n >m
ool = of et (R, n<m. (3.28)

From eq.(3.20) we can also obtain the exchange algebra for n = m

(r) (" r ! r r,r
g Ade (NG ) o)t Y’ (3.29)

3.2.2 Quantum sl; Toda field theory on the lattice

The quantum exchange algebra

The purpose of this subsection is to use the general formulas of the previous
subsection to define the Block wave basis ¥ and find the relevant exchange
algebra in the sl; case.

i We start with the quantum R-matrix to be inserted in the above for-
mulas. From the universal R-matrix for U,(sl3) as given in refs.[22, 25] (see
Appendix A), we obtain

1
+ _ + (3*,3*) - q 3 i:k;ﬁj:l
(R12)1]kl - (R12)ij,kl - .y . . (330)
q 3z i=l<j=k
0 otherwise
and
i
g i=j, k=l, i+j#3
2
g3 i=k, j=l, i+j=3
3,3 (3*,3 2
(RS = (RLGY = { ¢ bz i=l=1, j=3, k=2 and i=j=2, k=3, l=1
—q sz i=l=1, j=k=3
0 otherwise

(3.31)
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where ¢ = e~*" while, here and hereafter, we denote z = ¢ — ¢~'. Using these
equations we can easily derive the exchange algebra in the o basis, which will
not be written down explicitly here.

As a first step in the direction of the 1) basis, we have to diagonalize
the upper-triangular monodromy matrices S and S* in the two fundamental
representations

A D F A* D F
S=|0 B E|, S*=| 0 B E
00 C 0 0 C-

Egs.(3.22) and (3.23) allow us to compute the commutation relations of the
entries of S and S* among themselves and with the component of the oy,’s.
One finds that the diagonal elements A B ¢ and A® B* C* commute with
everything (except p, see below) while, for example,

DF = ¢\ FD, EF = qFE, ED = ¢"'DE + 2 BF (3.32)
and

Dol = qlolD+zc2A Do? = qo2D

Eo), = o}, Eo? = qg'o?E +z02B

Fol = glolF+z03A Fo?! = ¢2F +zo2D
Do? = oD
Ed? = qolE
Fol = qo’F. (3.33)

We will not write down here the remaining relations, except for
AC” = AC = BB~". (3.34)

This relation explains why we can express the exchange algebras in terms of
zero modes A, B, C only (see Appendix B).
Next we diagonalize S and S* with upper triangular matrices g and g7,

respectively, which have unity entries on the main diagonals. That means that

S = grg, S5* = g*x*(g")"",
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x and x* being diagonal matrices, whose main diagonals coincide with the
main diagonal of S and S*, i.e. A,B,C and A%, B*,C*, respectively. It is
immediate to compute the commutators of the entries of g and g* with all the
operators introduced so far.

Next we introduce the matrix p and the analogous p~.

In a similar way, for the conjugate variables to the zero modes

p = P2 : p= p3 - (3.35)

P3 P3

Due to egs.(3.24) and (3.26) and (3.25), p; and p; (1 = 1,2,3) commute
among themselves and with all the operators we introduced so far, except for
the elements of S and S*. For these we have

66; 1 —2 2—6di 1k

Sijpk = peSijq SiiPy = PrSiia” (3.36)

and two more equations which can be obtained by “starring” these two (with
the understanding that this formal ~ operation is involutive).

After introducing the complete set of operators of the theory, we can
draw some immediate useful conclusions. First, ABC and A*B*C* belong
to the center of the theory. Second, pop;, p1p; and pzp; also commute with
everything else. Therefore, we can and will henceforth impose

ABC =1 = A*B*C~ (3.37)
and

p2pz = pip3 = P3pi- (3.38)

This will allow us to simplify many formulas. In particular, eq.(3.37) allows
us to parametrize the zero modes as follows:

— P S TR S N—1 =« 2 2

A= qNalezw(\/ﬁ_p°+\/6p°), A = q\ulez’f(\/;Po),
N— JRE TS ST - S S

B = q"‘s’“le%( \/§p°+\/§p°), B* = qNalezw(ﬁpo \/Epo), (3.39)
Nol . 7 9 — L1132

C =g el 5Po) c* = qA;TLeZW( vzbo \/s'po),

in agreement with the conventions chosen for the Cartan subalgebra (CSA)
basis and with our quantization procedure.
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What remains to be done is to define the quantum Block wave basis
Yn = ongp, Y, = 0.9 P (340)

and compute its exchange algebra. The calculation is long but uneventful and
the result has the form

+ n>m
Vinom = ¢2m7/)1n(R1iz(Pu))(3’3), { C m<m (3.41)
x . * + n>m
¢1n¢2m = ¢2m¢1r1(R1i2(P0))(3.3 )’ { —n < m , (342)

where the argument py is to remember the dependence on the zero modes.
The entries of the (zero mode dependent) quantum R-matrix® in the Bloch
wave basis are written down explicitly in Appendix B.

This completes our proof about the relation between the quantum R-
matrix of Jimbo and Rosso [22, 25] and the quantum R-matrix in the Bloch
wave basis. Such a relation cannot be envisaged as an (operator-valued) sim-
ilarity transformation since, for example in eq.(3.41), g;p1 does not commute
with 1,,,. We can only say that the relation is specified by the operator-valued
change of basis (3.40).

In order to discuss periodicity and locality, one has to repeat everything
for the discretization of the antichiral half, in order to calculate the exchange

algebra of . )
Yn = PGTn, Y, = pgo,. (3.43)

The result of this calculation can also be found in Appendix B.

Periodicity and locality.

In analogy with the continuum case, we define
e = 'Sbnlzna e v = ’()Z]:L“)Z: .
We find

e~ = gt (AAylgl + BBYZP: + COWSE)

ehan = gF (A AP+ BB+ OO |

“Here we enlarge the notion of R-matrix. Indeed the exchange matrices of eqs.(3.41) and
(3.42) are not solutions of the YBE’s, but of a modified version of them.
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Since A4, BB,CC,A*A*, B*B*,C*C* commute with all the operators of the
theory, we can project out of the full Hilbert space H the subspace H;, where

4
p)

AA = BB =CC = A"A" = B"B" = C*C" = q¢5. (3.44)

In H, both e~¥" and e~*~ are periodic.

To prove locality, we compute

—Fn o=em] BB — AA 102 72710 g1 4272 71
7o) = 2 gy (Wbt — vnabidn) +
CC’“AA 1.3 .73.71 1,373 .71
+ T (C‘, _ /_—1) Cy . A) (¢n¢m¢n¢m - “)bm’(lbn’l)byn’lpn) +
GC’ - B B 2 T3 72 2 73 7.2

Therefore, the commutator vanishes in the subspace Hy. The same conclusion
holds if we consider [e™%r, e ¥m]. Next let us consider [e™¥~,e"¥m]. This
commutator is more complicated than the previous ones. However it can be
proven to be a combination of terms, each of which factorizes out either B B-

AA or CC — AA or CC — BB. Therefore, we can conclude again that, in Hy,

[e—‘t’n’e"‘r’:n] =0

This completes the derivation of our result as far as the sl; Toda field
theory is concerned. It is perhaps useful spending a few words to give the reader
the coordinates of this result in the prospect of evaluating correlation functions.
The lattice analogues of the conformal blocks are given by expressions like

(Goolthmy tons -+~ P |b0)

and

<9~00"$n1¢n2 ot &nk|90>

(we consider here only the 3 representation) where the 6 states tend to the
corresponding conformal vacua in the continuum limit. Putting together the
two halves, we compute

<e—¢(x1)e—%’(l‘2) . e“r’(‘”k)) , (345)

where e~#(#) is the continuum limit of e~#*. Single-valuedness and locality of
eq.(3.45) is then guaranteed by the condition (3.44).
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3.3 Comparison with previous results.

In the previous Section we computed the exchange algebra for the sl3 Toda
field theory in a periodic lattice. Since this algebra does not depend on the
lattice spacing, we can immediately translate it into a continuous language by
the simple replacements

Tpiz - ¢l($) ) ¢;l - ¢*z(m) ) etc., O(n —m) — 0(z —y).
In this way we can compare our results with those of ref.[20] (see also ref.[11]
and, for the specific case of sl3, ref.[21]). There, following a different approach,
the sl;41 exchange algebra in the Bloch wave basis for the defining representa-
tion was calculated to be

$3(0)8i(0") = e 4o )5(0)

$i(0) (o) = e/ g (o), (o) + (3.46)

sin(hw ;)

te ihe/l+1 sin —ine;

““‘I‘m_%( o )r(o),

where € = sign(c — ¢') and

wir = (Ae—Aj) @ A; = weights of the defining representation
. 1 2w I
W= —zy—hA , A= Z Apy
2 h i=1

A; = fundamental weights .

Here, the zero modes 5}, (i = 1,...,1) correspond to the weight space basis,
which consists of the simple root system {c;}i=1,..; (that is to say, to the basis
{Rh;}i=1,.1 of the CSA, h; = e;; — €;41:+1). Considering as an example the case
of sl3, the py” are related to the zero modes introduced in eqs.(3.39) by the
linear transformation

. 4 = 47 1 3
Py = '\/—h—(\/ﬁpé), by = 7;( \[pu pu) (3.47)

Taking into account such a rotation, together with the usual identification
g = e™*", we obtain the relations

_oamyd o o sin(h) ik - N_B sin(h) —ihtoy
(g—a)g=3 = sin(hwi2) ] (-9 )5=3 = sin(hwar) © J

_ g B - __sin(h) —ihway 1€ _sin(h) ik
(q q )C—-B - sin(ﬁwgg)e ’ (q q )C—B - sin(hww)e !

41 A —_ Sin!ﬁ! —thto) 3 _ =1 c _— sin(h,) —ihwsy
(q g )C—A - sin{hwig) € ’ (q q )C—A ~ sin(hwyy) € .
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This allows us to identify the off-diagonal coeflicients of the operator algebra
(3.46) with the corresponding elements of the zero mode dependent R-matrices
of eq.(3.41) (see Appendix B, §B.1.). As for the diagonal entries, it is important
to remark that they coincide only up to a change in the normalization of the
Bloch wave basis. Indeed, in order to reproduce the operator algebra of §B.1,
the vertex fields ¢;, 1 = 1,2, 3, should be multiplied by the factors

—a

ci(po) = [stn(howy3)]” [sin(hwm)]l ,
c2(po) = [sin(a{wyz + 1))]* [sin(hewe)] ™, (3.48)

cs(Po) = [sin(i{was + 1)]° [sin(i(w13 + 1))]1_

respectively, where a is an arbitrary parameter. Since the ¢;’s depend only on
the zero modes, this operation does not modify the monodromy behaviour of
the fields, which still constitute a Bloch wave basis. After this transformation,
while the off-diagonal elements remain unchanged, the diagonal ones take the
expressions®

R (o) — _iiﬂ"_WL:i_Rm(ﬁo) = /3 — g%

sin[h(w2+1)] 712

R33(po) — —M@LR ine/3 _ -

inlh (w23+1 og(PD) = e

R3i(po) — MRM(]SO) — gihe/3 _ q_%

sin[ﬁ(wla—}-l)] 13

R3i(po) — et R (5o) =

sin(hwg)

gific/3 [Cosz(h) — sim (,1)52_(&"1_22] = g3 [1 —(q— q—1)2(7-§%,_1] ,

sin® (fiwy2)

R33(fo) — *miientll p2() =

eife/3 [cosg(ﬁ) — sing(h)———i—cé‘q? hw”)] = g3 [1 —(q- q-1)2__l_3_§'__2] ’

sin? (hooay)

R (po) — et pL3(5) =

sin(hwwyg)

gihe/3 [co.sQ(ﬁ) _Sz-nz(ﬁ_)cr?wg/zwla)} _ q—§ [1 —(q- q—1)2 AC ] :

3171.2 (ﬁww) (C ‘-l)

while the entries R do not transform.

SFollowing ref.[21], we use the notation ¢;p; = >, R“qﬁ»kq&, for the R-matrix elements.
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The same can be repeated when, instead of the representations 3 and
3, we have 3 and 3* or 3 and 3~.

In conclusion, we have shown that the R-matrices in the Bloch wave
basis of [20, 11, 21] are the same as the ones we exhibit in Appendix B, except
for the renormalization pointed out above. We should however bear in mind
that only by virtue of such a change of normalization can the locality property
of the previous subsection be fulfilled. Furthermore, we remark again that our
derivation answers the question opened in such references, about the relation
between the R-matrix of Drinfel’d, Jimbo and Rosso and the R-matrix, that
appears in the exchange algebra of the Bloch wave basis.

3.4 The S‘Z.p case

It is easy to generalize the above results to the sl, case, at least as far as the
defining representation is concerned.

The quantum R-matrix in the defining representation of sl, is

p—t

L . . . .
Riju =< 17 Z:.ka]:‘l,Z#J
q rzx 'L:l<]:k
0 otherwise,

where z = g — ¢!, as above (see Appendix A). Let us denote by 4; and A;
(z = 1,...,p) the diagonal elements S;; and S;; of the monodromy matrices S

and 5, respectively. The exchange algebra in the Bloch wave basis is:

forn>m

oyt e
bt = ¢ Yntn,

Vivh = ¢7F [Bil + et gl ] i<
Vit = a7 [(1— 2 iy ) v + e gl i>]
(3.49)

forn<m
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oy ==l i
,l’b:l’llbll'n =q r ¢m¢n )
I i P A i ; . .
’(/an‘r]n - qn [ in’(rbn + m.;_JAIEbm’(pij[ ’ ? < .7
7 1
R 1 2 Aidy I A i : . .
’lpn"prjn = gn [(1 - T (__[l__qu—)-f) ,ltz);{n’(ﬁn + m—[l—___ﬁ;’l/}nl’lp;ll] 3 1>7-

(3.50)

_ Likewise we can write down the exchange algebra for v, and construct
Ynty,. Periodicity of these objects is guaranteed in the subspace Hy of the
total Hilbert space H, where the conditions

AiAi = qE:—L (3.51)
are satisfied. As for locasiity, we find
n a1 AjAj—AiAi P17 T3 i3 Td T
[¢n¢m7¢n¢m] =z ; (A] - A,)(A] N /:‘1[) (¢r1¢m1/}n¢1n ¢m¢n m’lpn) *

(3.52)
Hence, also in this general case, the condition (3.51) guarantees locality as
well.



App»endix A

The Uy(sln) R-matrix in the
fundamental representations

A.1 Generalities

The quantum group(!) U,(sl,) (the quantum universal enveloping algebra of
sl,) is the algebra on C generated by e;, fi, ki, k7', with 1 = 1,...,n — 1,
modulo the relations

kiki' = k'R = 1, kik; = kjk;,
kiejkit = ¢ e;, kifikit = ¢ g, (A.1)
k} — k72
e, fi] = &i; PR

and the Chevalley relations. Here q; = ¢{®#*1)/2 (. .) being the invariant inner
product on the root system @ Ca;, with (o4, a;) € Z, ¢ is a free parameter and
a;j = 2(a;,a;)/(ai,a;) is the Cartan matrix of si,.

Remark. These relations are satisfied by the defining representation
of sl,, when one identifies

k:t = qihi/z, e, = éi,i+17 fi = éi+1,i- (A2)

Here we have denoted (éij)lm = 5i15jm and h,‘ = [éii+1,éi+1i] = é,’,’ — éi+1 i+1-
Indeed the Chevalley relations, which are homogeneous cubic equations in e;

! About notations and definitions, we refers to [25]

69
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or f;, are immediately satisfied, while”
kP — k7 = (qéii+q " éiviv) — (97 6 + qéirr i)
= (¢g—q¢ ")k
= (¢ —gq ) hi.

Similarly we can show that the fundamental representations of U,(sl,) coincide

with those of U(sl,) through the identification (A.2).

Therefore, from the expression of the Universal R-matrix of U,(sl,), we
can derive those corresponding to the fundamental representations

Ruw = ¢" [P 4+q7(g—q) D (=)™ 2, @ ya - (A.3)
a>0

Here we have introduced the following notations:

ty = Z H; ® H;, {H;};=1,..n-1 = orthonormal basis of the CSA ;

() = level of the root a;

T,y :
Ta; = g1 2, Yo = &ipa M2, (o simple),

a=¢—¢€ 1<j—1

To = adg, (2,), Ya = a‘-dUOf(ya’)’ {

1
o = €41 — €5,

being {€}i=1,. n-1 the dual basis of {A;}i=1,.,n-1, While ad and ad are the
adjoint representations

ad = (L® R)(id® S)A

ad = (L® R)(id® 5)A,

whit A, A = 70 A (rf(z®y = y @ z) the two coproducts and S, § the

corresponding antipodes.

2As concern the last identification, remember that, if we consider the bilinear form
(y)run i 8®n — B 0 (X,Y) = (X, V) = t2(XY), then (a;,a;) =2, (@, a;) = —1.
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A.2 Examples

The R-matrix in the defining representation

As for the orthonormal basis of the Cartan subalgebra, introduced to define
to, we have

H; = Zkhk, i=1,..,n—1. (A.4)

\/k(k—}-l k=1

Moreover, in the defining representation of sl,, we find

Lo

R —1/2 a 1/2 » 1/2 4
;= €41 (q / ei,i+q/ €i+1,i+1> = q/ €ii+1 5

' A 1/2 » —1/2 » 1/2 a
Yo; = Cig1,i (q/ €i,i +4¢ / 6i+1,i+1) = q/ €it+1,i

with a;,7 = 1,...,n—1, simple. Then the action of the adjoint representations
give us

—h; h; .
Toitaiy — (L ® R)(mai ®—q "®¢q ‘Eai)(mai-x-l) =
—h; hi _
= ToTaiy — 9§ oy d Loy =
= Q& it1€i41,i42 — G €it1,i+26i,i+1 = G Ei it2,

3/2 A
/eil

Lo taitoip; = adl‘alpha;—L(:Eai‘}‘af—H) =49 =1,i4+2
so that generally we obtain
Ty = 1/2[()6 k> o = € — € (k<l),

where the level [(a) is defined as the difference I — k. Analogously, we achieve
the result

Yo = q3/21(°‘)—1 él,k, a = € — € (k < l) .

Therefore, in terms of the “classical” generators & x, the R-matrix of the quan-
tum group U,(sl,) in the defining representation has the expression

Riw =q° |1+ (g—q7") D & ®éri| - (A.5)
k<l
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The U,(sl3) R-matrix in the fundamental representations

The Lie algebra sl3 has two fundamental representations, which we will denote
as 3, the defining representation, and 3%, its conjugate representation.

3. The generators are represented by

1 1
H® = — by, H? = —(hy + 2h,),
1 \/5 1 2 \,/6( 1 )
Egl = é127 Egz = é23, Eri-}-ag = é13. (A6)
3”. The generators are represented by
7Y = g, HY = —1—(2h1+h,)
1 9 <9 2 \/6 ’
Ei: = é23, Eg; = élg, ‘ Eg:+a2 = —é13_ (A7)
Therefore,
g 00 000 0 00
010 =z 00 0 00
0 01 000 =z 00
0 00 100 0 00
R =g 31 000 0gqg0 000 (A.8)
000 001 0 =z 0
000 00O 100
000 0©O00O 0 10
000 000 0 0 ¢
g 006 000 0 00
0 g 0 00O 0 00
0 01 0z 0 -4 00
0 0 0 g 00 0 0 0
RO¥ =g 000 010 z 0 0 (A.9)
000 00 g 0 00
0 00 0 00 100
0 00 000 0 g O
000 0©O0°0 0 0 g
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where © = (¢ — ¢~'), while the subscript ;» is to remember that we have used
the matrix tensor product (A ® B);jxu = Ai;Br. The R-matrix in the 3”@ 3~
representation coincides with that of eq.(A.8). This is a general feature: the
R-matrices corresponding to two conjugate representations coincide.
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Appendix B

The exchange algebra in the sij
case

B.1 The ¢ 9 exchange algebra

In the defining representation we find (z = ¢ — ¢™!):

i) casen >m

2
Yy, = g8 Y,

L ~i
¢r11¢;2n =4q3 ¢r2n¢711 —4q 3373‘:4 ¢}n¢r21

—L L
T,D}L’Qb?n =4q?3 wgnwrlz -9 33:014 zp}n’llb?l

Pl = ¢ F 1 - 225 0| YhYl + g Te By v
2 2
Yol = gv Ll

L L
Yo = 473 Yt — 4 S wgly Yavn

P3P = ¢ [ - o? 25| vhvd + ¢ ey Y

75
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Yk = ¢ [1 - o2y | vAYd + g ey vl
Pips = q§ 353

i) casen=m

¢rll¢i = qB q—L \¢ ":bl

P22 = LB yly?
ikl = et Y
wi) casen <m !
Pyl = ¢S PLal
Pip2 = g3 YRl — gsegBr PL?
PIY3, = ¢ Y3y} — giz s YL a?
Yot = 08 |1 - 2525 ] 0nvl + ety vhvs
A R
Y23 = gt Y37 — giz Sy P2l

. 1 1 |
YL = gt [1 - 22 i% | vl + gie gty gyl

Y2 = gt [1— o225 | 9293 + gia gty vyl
Yol = ¢ 5 PR3

The exchange algebra ¢~ 1 can be obtained from this by simply starring it,
i.e. by replacing everywhere ¢, A, B,C by ¢*, A*, B*, C*, respectively.
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The antichiral algebra 1 % can be obtained from the above following
the recipe: in order to get the exchange relation of ¥ 7 , take the exchange
relation of 17, 1! and bar everything including A, B and C. For example, for

n > m, we get

B.2 The ¢ 9" exchange algebra

This algebra is gix;én by:

i) casen >m

Pirl = g5 Pl
YL? = g5 iyl

Ui = T YRYl — g ey Yl

-2 4 qC q‘lB %1 13
+q 3TFE3 '511

Lo
Yirl = geyprly?

%2 2 « <2
V22 = g heglr Pyl 4 gF 1 -2t 2 | g+
_2 LB ! =
—q amch B-qquq 4¢1¢3

Vit = O i

*31

% -2 C

"/}g"pml = —q 3Te3
2 ¢ gB Ly LC A 1%

+g 3mC—Bqu4 g q ¢2,¢2

+q75 [1 - o525 [1 -2’ (2G| Vil
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badbns = 45 YN
¢n¢m = q.1T w;? 3

i) casem <m

¢l¢x1 — —— ¢x1¢1
Vbt = YY)

e 2 2 Y
¢;11’¢'n;3 = g3 "/}mg"wbrll - 9“50354 ¢mz¢rzl+

—‘B ¢*1 3

* i *
Yatm = ¢ YR

V32 = ghogt vl + ¢f [1— 2P| Ui+

C q'B—gd gC—q~ A ;1.3
c—BB4qqq¢¢

Y2 = g Yyl

2 p 1C B«
T/J,%Wnl = _qawcjl — q ¢ 3¢1

2 B gB—q 'd q'C—qd ;%2 12
+@TeTE Thoa e Umtnt

+0 [L - 2?25 [1 - 22 il

P32 = g7 Pl
e R

The exchange algebra for n = m is the same as for n > m, with the rhs
multiplied by ¢~

L
3.

By “starring” this algebra we obtain the algebra 9™ 1.

The corresponding antichiral algebra 1 ¥ can be obtained according
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to the recipe: to get ¥} ¥, take 7/ ' and bar everything including A4, B
and C.

From this, one can write down the algebra = 1.
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