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Preface

Within the multi-folded research context of beyond the Standard Model physics,
the author of this Ph. D. Thesis works on several different research lines: the study
of low-energy Supersymmetry effects and of its underlying flavor and CP-violating
structures at the B factories, the exploration of extra-dimension scenarios through
gravitational effects on ordinary matter and bulk fields, the development of anomaly
canéellation mechanisms for gauge theories in D dimensions, with the study of their
phenomenological implications, the discussion about new experimentél facilities for
testing the structure of the neutrino mass matrix.

Not all of the material produced during the Ph. D. activity could be collected
here, but the results in two of these fields have been selected: topics related to the
cancellation of gauge anomalies and to the phenomenology of neutrino oscillations
from artificial sources.

As a result, this Thesis has a quite unusual structure: it is divided into two
separate parts, which share the effort of Particle Physics to go beyond the Stan-
dard Model, but differ by the use of drastically different research techniques and
strategies.

Each of the two parts contains a brief introduction, which anticipates the main
Jines of the research program developed and the results obtained, is divided in Chap-

ters and has a specific Bibliography.
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Introduction

The classical description of the fundamental forces of nature is based on sym-
metry assumptions. According to vNoether theorem, these symmetries imply the
existence of corresponding conservation laws. It can happen that the process of
quantization of a theory is not compatible with some of these symmetries, so that
the corresponding conservation laws are violated in the quantized theory: this is
called an anomaly.

In this First Part we discuss a particular, but very important, class of anomalies:
the chiral (gauge) anomalies, which arise in presence of chiral fermion representations
of some symmetry group. We call local those anomalies the arise from infinitesimal
variations and that can be treated perturbatively.

Even though anomalies can be expressed as local operators, functionals of the
gauge bosons and linear in the gauge parameters, they come from the variation of
non-local operators and cannot be removed by the addition of any local counter-term
functional of the gauge bosons only. In this sense, they are long-distance effects, and
they cannot be affected by the behavior of the underlying short-distance theory.

Local anomalies can be compute in various manners. From the impossibility,
in some 1-loop amplitude in the perturbative expansion, to find a regularization
prescription which is compatible at the same time with the conservation laws of
axial and vectorial currents. In the path integral formulation, they originate from
the impossibility of defining an invariant fermionic measure. The most efficient way
to compute anomalies makes use of differential geometry techniques, and relates
their existence to the index theorems describing the topological structure of the

fiber bundle of a gauge symmetry based on the anomalous symmetry group.
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While global symmetries with anomalous conservation laws are known to de-
scribe phenomenologically relevant processes, such as the decay of the 7 meson
into photons, an anomalous local symmetry implies the inconsistency of the theory:
the presence of anomalies in gauge symmetries spoils the unitarity of the theory, in

the sense that there is no way of defining consistently the space of physical states.

In gauge theories, there is also a non-perturbative class of anomalies: the global
anomalies that occur when the gauge group has a non trivial homotopy group and
that may lead to an inconsistent path integral formulation of the theory.

The main motivation for the study of chiral anomalies and of anomaly cancel-
lation mechanisms is that we know that some of the fundamental forces of nature
are chiral gauge theories. Model-building requires then severe constraints in order

to cancel these anomalies.

Anomalies can be canceled either by appropriate choices of the chiral represen-
tations for fermions, as it happens in the Standard Model (SM), or by the addition
to the action of higher order couplings between gauge bosons and other fields. Even
though this second possibility is not compatible with renormalizability in D = 4
space-time dimensions, it is interesting to study non-renormalizable theories, such
as the low-energy effective actions of electro-weak and strong interactions. Moreover,
in D > 4 gauge theories are themselves non-renormalizable.

Two significant examples of non-trivial anomaly cancellation mechanisms, based
on the presence of higher order (local) operators in theories with anomalous chiral
spectrum, are the Green-Schwarz (GS) mechanism and the addition of a Wess-
Zumino (WZ) coupling.

The GS mechanism cancel all the possible reducible (local) gauge anomalies
thanks to the presence in the spectrum of even rank tensors with non-trivial prop-
erties under gauge transformations. Phenomenology is affected because some light
components of these fields remain in the spectrum as pseudo-scalar fields with axion-
like couplings.

The second example is based on effective field theory techniques. An anomalous

theory with gauge group G can be made gauge invariant by adding the WZ term
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to the action and coupling G-valued scalar fields that transform non-linearly under
the corresponding gauge symmetry.

Usually the WZ term is used in effective field theories in order to reproduce
the anomalies of an underlying theory. It results to be very useful also in the
computation of global anomalies. This interpretation can be reversed and instead of
reproducing the anomalies of an underlying theory, we can use the WZ term to cancel
the anomalies of a theory with chiral fermions. What is most interesting is that some,
or even all, of the G-valued fields entering the WZ term can be identified with the
would-be Goldstone bosons of the spontaneous breaking of the gauge symmetry, so
that no new degrees of freedom are needed in order to cancel chiral anomalies of
spontaneously broken gauge symmetries.

While the GS mechanism has some intrinsic limitations, since it can be applied

only to (local) reducible anomalies, the WZ term can always be added and any kind

of gauge anomaly canceled.

A detailed discussion of the case when both local and global anomalies are present
in D-dimensional effective theories of a gauge group G spontaneously broken to a
subgroup H requires to generalize the techniques for the construction of the WZ
terms in order to avoid algebraic and topological obstructions. Thisleads to establish

a set of conditions under which this cancellation is possible.

In order to illustrate the phenomenological consequences of the requirement of
anomaly cancellation in chiral gauge theories, we discuss a D = 6 dimensional
extension of the SM. The main assumption is that the gauge and matter fields
propagate in D = 6 dimensions: matter fields are assigned to chiral representations
Q,U,D,Land Eof G = SU(3).xSU(2),xU(1)y, with the same quantum numbers
of one family of SM fermions. A chiral field in D = 6 reduces to a Dirac spinor
in D = 4: the 4-dimensional chirality is recovered after compactification on non-
trivial background manifolds (an orbifold, for instance). The chirality assignents (in
D = 6) are free parameters, to be choosen according to the requirement of anomaly

cancellation

While the D = 4 effective theory is free from triangular and global anomalies



in D = 6 quadrangular diagrams give rise to anomalies. Global anomalies are
present as well. We therefore must cancel global and local gauge and gravitational
anomalies. Since we cannot do this just by an appropriate choice of the chiral fields,

we are forced to use one of the mechanisms descibed above.

If the GS mechanism is applied, we need first to ensure that global and irreducible
anomalies are absent. Cancellation of irreducible anomalies is achieved within each
family by choosing strong and gravitational couplings to be vector-like: we need to
add a fermion singlet IV to the spectrum, and assign opposite chirality to doublets
and singlets with the same SU(3). quantum numbers. Reducible anomalies can
be compensated by the addition of two GS fields (2-forms). Cancellation of global
anomalies is obtained by replicating the field content of each family: this is possible
with a number of generations IV, = Omod3 with identical quantum numbers and
chirality assignements. On the other hand, axions remain in the D = 4 effective
theory, besides the SM fields, due to the GS mechanism. These could provide a
solution to the strong-CP problem, but impose a severe bound on the fundamental
scale of the theory, which must be in the range of usual GUT models. This model

cannot be a TeV-scale extra-dimension model.

Were the symmetry G unbroken, this would be the end of the story: cancellation
of anomalies requires the introduction of new degrees of freedom, which modigy in a
significant manner the low-energy phenomenology. However, the group G is broken
by the Higgs mechanism to the subgroup H = SU(3), X U(1)em., and the theory
contains a set of pseudo-scalars transforming according to non linear realizations of
the broken symmetry. These are the would-be Goldstone bosons, which in the uni-
tary gauge constitute the longitudinal components of massive gauge bosons. They
can be coupled to gauge bosons, through the W7 gauge non-invariant interactions,

and cancel the anomalous variations, according to the second mechanism discussed.

The cancellation of all the local and global anomalies is possible as long as
the vanishing of gravitational anomalies and gauge anomalies depending only on
the generators of the unbroken group H are absent. This requirement forces the

fermionic spectrum to be the same as before: SU(3), and gravity must have vector-
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like couplings to matter. But now, no GS fields are present, and there are no axions,
so that the scale of the theory can be lowered down to the TeV scale. The W7
couplings can be defined in such a way as to cancel also the global anomalies, so

that there is no restriction on the number of families.







Chapter 1

Local and global gauge anomalies

In this Chapter we will discuss the chiral anomalies, which arise in presence of
chiral fermion representations of some symmetry group. Since their discovery [1],
chiral anomalies have played and continue to play an important role in high energy
physics, for a two-fold reason: anomalies of global symmetries can explain the exis-
tence of symmetry-violating physical processes, such as the mq decay, while anomalies
in local (gauge) symmetries lead to violation of unitarity and to the inconsistency
of a given model.

In this chapter we review some of the classical techniques to compute perturba-
tive anomalies of chiral symmetries, which will be called local (gauge) anomalies in
the following. We will repeat the computation of chiral anomalies in three different
(but equivalent) ways: with Feynman diagrams, with the Feynman path integral
and using differential geometry.

Historically, the diagrammatic approach [2] first lead to the discovery of the chiral
anomaly [1], and in this formulation it can be seen from the impossibility of defining a
symmetry-preserving regulator. Fujikawa then discovered a procedure [3] which gave
an elegant mathematical interpretation of the anomaly in terms of the non-invariance
of the measure in the Feynman path integral. The origin of the chiral anomalies
from the topology and geometry of the underlying theory can be seen introducing
differential geometry techniques: the Stora-Zumino descent equations [4], based on

the Wess-Zumino consistency conditions [5]. This is also the easiest procedure to

9
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compute anomalies in any gauge theories.

We explicitly discuss the main consequence of the presence of anomalies in gauge
symmetries: the lack of unitarity of the theory, due to the fact that it is not possi-
ble to define a conserved nilpotent Becchi-Rouet-Stora-Tyutin (BRST) charge and

define consistently the space of physical states.

We also discuss a non-perturbative class of anomalies, called global gauge anoma-
lies (non to be confused With the anomalies of a global symmetry), that occur when
the gauge group has a non trivial homotopy group. In this case, even if local anoma-
lies are absent, when performing gauge transformations that cannot be deformed to
the identity one can still cause a phase shift of the effective action, leading to an
inconsistent path integral formulation of the theory. We review the basic ideas of

the proof of the existence of such anomalies, and of their computation [7].

This is by no means an exhaustive review of all the mathematical and physical
aspects of the study of anomalies. We use the differential geometry language only
in order to show a technical way of computing non Abelian anomalies, but we do
not enter in details about the relation of anomalies with topological aspects (as
the index theorems), and about the close correlation between Abelian, parity and
non-Abelian anomalies in different dimensions. Moreover, we deal here only with
anomalies of internal symmetries, and not discuss gravitational or Supersymmetry
anomalies. Rather, we want to emphasize that each of the different techniques
discussed allows to clarify some peculiar aspects of the anomaly, which must be kept
in mind in defining consistent procedures for anomaly cancellation. This cancellation

mechanisms will be the subject of the subsequent chapters.

Most of the content of this Chapter, besides on the original papers, can be
found in several textbooks. We refer the interested reader to [8, 9] for a large
overview on the subject, to [10] for the more mathematical aspects, such as the index
theorems and the connection between Abelian, parity and non-Abelian anomalies in

the descent equation procedure, and to [11] for a discussion on BRST formulation.
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1.1 Adler-Bell-Jackiw anomaly

Let us consider first the computation that lead to the discovery of the Adler-
Bell-Jackiw (ABJ) anomaly. We write the theory of one spinor field ¢ with charge
@ coupled to the a U(1) gauge field A, with coupling g:

o 1
L = PG —m)y “zFquW7 (1.1)
where the Dirac operator, containing the covariant derivative, id defined as:
D = A+ (0, +1gQAL) (1.2)

We define the vector, axial and pseudo-scalar currents:

Ju = Yy, (1.3)
Jp = by, (1.4)
J° = i, (1.5)

They satisfy the following conservation laws:

o, =0, (1.6)

o*J) = 2im J°. (1.7)
In the m — 0 limit the spinor Lagrangian possesses two U(1) global symmetries:

Ul)y : ¢ — €99, (1.8)
Ua @ o — 997y, (1.9)

so that J, and J become the classical Noether currents of U(1)y and U(1).4, re-
spectively.

On the other hand, these two conservation laws cannot be both preserved af-
ter quantum corrections has been included. The simplest way to see this is the
computation of the amplitude of the Feynman diagrams in Fig. 1.1,

The explicit computation, performed using a gauge invariant regulator (with

a Pauli-Villars regulator or with the t’Hooft-Veltman dimensional regularization)
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— (k1 + k)" —(ky + ko)¥

Y

e

ki ky kY ks

Figure 1.1: Diagrams contributing to the axial anomaly

gives a violation of the axial current conservation. Explicitly, one finds that the

depicted amputated graphs sum up to give [1}: !

—(k1 + ko) Rypp = —N (A1 — Ao) kTkY €rgpp » » (1.10)
where the following definitions are used:

Ay = (kik) As + k2 Ay,
AQ = (kl kg) A(j + k%A5,

AB('Z{"l)kZ) = ”AG(A/"Q, kl) = —167T2 ]11(k17 k?))
A4(k1,]€2) = "As kiz,/ﬁ = —167* (I2o(k1,k2)“110(/€1,/€2)) )
1—2 .’ZIS yt
Tulkn, ka) = / d’”/ TR+ 2(L = )k + 2oy (k)
_—igtQ?
il 750k

!The amplitude R,,, of the amputated graphs contains actually other contributions propor-
tional to antisymmetrized products of k1 and kz, which vanish when multiplied by the external

momenta.
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When one considers on-shell massless photons, the complicated non-analytic ex-

pression coming from the integral in eq. (1.10) reduces to a local function:
— (k1 + ko) Ropp = N 8T ki kY €rapu - o (1.11)

We can rewrite eq. (1.11) as the non-vanishing of the divergence of the axial current:

o“J) = GlA] (1.12)
212
9 ro
= WéTJPNF P (113)

If gauge non-preserving regulators are introduced, as an explicit cut-off in the
momentum integration, then part of the anomaly appears in the divergence of the
vector-like current. It is even possible to define the regulator in such a way to
preserve the axial current conservation law, at the price of loosing the conservation of
the vector-like current. The anomaly consists indeed in the absence of any symmetry
preserving regulator: in general there is some regularization dependence of the form
of the anomaly itself, but it cannot be removed from the theory, the final result
being physical (regularization independent).

The fact that the anomaly is a physical effect, and not just an artifact of the
renormalization, is clear if one uses the effective vertex R,,, to define an effective
operator I'[4, B], where B, is an external field coupling to the axial current. This
operator is a complicated non-local functional. The anomaly is the (local) variation
of this non-invariant operator, but it is not possible to write any counter-term, in the
form of a local functional of the fields 4, and B, in order to cancel this non-local
operator and restore gauge invariance.

Although anomalies are identified through the ultraviolet behavior of the theory
(the absence of any symmetry-preserving regulator in the renormalization proce-
dure), they are intrinsically an infrared property, since it is not possible to remove
them with the addition of any local counter-term, and therefore they cannot depend
on the unknown modifications of the short distance physics. This crucial observation
is the starting point of Chapter 3.

When a non-Abelian symmetry group G is present in the Lagrangian instead of
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U(1), the expressions eq. (1.12) and eq. (1.13) can be generalized to:

o*Jy, = G4 (1.14)
2

g“ la TT L b [

= —1‘6*71_—2'670,0# Ir [F FW}, (110)

where F77 are the field strength tensors of G.

This is the so called Abelian anomaly. In the literature one often finds also the
expression singlet anomaly. Notice that Abelian refers to the fact that the anomalous
current does not carry an internal symmetry index, while in the r. h. s. of eq. (1.15)
the field strength fields of any gauge group G may appear.

It must be noticed that also quadrangular and pentagonal diagrams contribute to
this expression. On the other hand, all of these contributions are strongly related,
and computing the triangle is enough to fix the complete one-loop form of the
anomaly. The requirement of covariance is in fact enough to determine the other
contributions. As we will see later in discussing the non-Abelian anomaly (the
computation of which is postponed to Section 1.3) other conditions can be imposed,
obtaining different results. All of those different expressions are indeed equivalent
up to the addition of polynomial functionals to the definition of the currents.

An even stronger statement is true: the Adler-Bardeen theorem [12] states that
the full structure of the chiral anomaly is given by the triangle loop. This means
that higher order loop corrections can only renormalize the fields and the charges
involved.

The ABJ anomaly solved an important problem related to the decay of the 7°
meson onto two photons. According to the Partial Conservation of Axial Current
(PCAC) hypothesis, the conservation laws of the axial SU(2) isospin currents have

to be modified accordingly as:
; o vpo
o758 = frm2e®a, + o & Py Fog (1.16)

in order for the pion to decay with the expected rate. The first term on the r. h. s.
takes into account that the chiral symmetry is not exact, its violations being propor-

tional to the mass of the Goldstone bosons ¢, while the second term is produced
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by the anomalous coupling of neutral component of the axial current ¢B) ~ 70 to
the electromagnetic fields. The estimate of the 70 life-time performed with an effec-
tive Lagrangian taking into account only the first term would be several orders of
magnitude longer than the experimental result. The fact that the anomaly couples
axial currents to the electromagnetic fields, allows for the existence of a new decay
channel with a stronger coupling, and the lifetime can be estimated to be in the
correct experimental range.

The diagrammatic computation of anomalies can be easily extended to higher
(even) space-time dimensions. In odd dimensions chirality is not defined, so that
this kind of anomalies is absent. |

In D = 2n dimensions it is possible to define the matrix I'p41, to play the role of
the v® in D = 4. The equivalent of the triangle diagram is a one-loop diagram with
fermions on the internal lines and M vertexes, one of which contains an axial-like
coupling I'py1 T, while in the others one has vector-like couplings trough the I'y
matrices to the vector bosons. The amplitude is proportional to the trace of the
product of I'pyy with all the I'y matrices coming from the vertexes and the fermion
propagators.

The lowest order non-vanishing trace gives a D dimensional Levi-Civita tensor ¢
with all the D indexes saturated on independent external polarization and momen-

tum vectors: only M — 1 out of the momenta are independent, so that:

D < (M—-1)+M=2M-1,

D
M > 1+“2—,:—“1+?’L. (1.17)

In D dimensions the first contribution to the anomaly comes from a loop with
14 D/2 vertexes (see Fig. 1.2).
It is of interest also the case when chiral currents carry some internal symmetry

index:
Joe = Pyt Ty, (1.18)

where T are the (hermitian) generators of some Lie group GG. The explicit expression

of the anomaly in this case is slightly different from the Abelian case, and, although
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Figure 1.2: Diagrams contributing to the anomaly in D = 2n even dimensions.

it can be computed from 1-loop amplitudes too, we will write its explicit form only
in section 1.3. As far as the group structure of the anomaly is concerned, if one

defines:
5 5a a
Jo = ‘]u e, (1.19)

one understands that the anomaly must be written as a G-invariant quantity built
out of the product of 1 + D/2 generators T% of G. In D = 4, this leads to the

definition of the D®° symbols as traces on symmetrized products:
D = Tr [{T°T°}71°] . (1.20)

The non-vanishing of some of these symbols signals the presence of (non-Abelian)
anomalies. This definition generalizes to any even dimension, where the anomaly is
controlled by similar objects with 1 + D/2 indexes.

For a simple compact Lie group G, the singlets which can be built as products of
the generators are the Casimir invariants of the group and all the possible products
of these. The number of such Casimir operators coincides with the rank of the
group, and their order (number of generators the combination of which composes

the Casimir invariant) has been classified according to Table 1.1 [13]
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Group Order
SU(n 4+ 1) 2, ,n+1
SO(2n + 1) 2.4,
Sp(2n) 2,4, ,2n
SO(2n) 2,4,--,2n—2,n
Gy 2,6
Fy 2,6,8,12
Es 2,5,6,8,9,12
B, 2.6,8,10,12, 14, 18
Ly 2,8,12,14,18, 20, 24, 30

Table 1.1: Order of the Casimir invariants of the classical compact simple Lie groups.

We call, in the context of non-Abelian anomalies, non-factorizable anomalies
those which are proportional to one of the Casimir invariants of the group. In D
dimensions, this requires the existence of a Casimir invariant of order 1 4+ D /2. All
the other (local) anomalies, i.e. the Abelian anomalies and the anomalies written as
the product of n Casimir invariants of order m; (i =1,---,n), with >, m; = 1+D/2,

are called factorizable anomalies.

1.2 Anomalies in the Feynman path integral for-

mulation

In spite of the simplicity of the diagrammatic computation of the (Abelian)
anomaly performed in the previous section, such a procedure is not very enlightening
about the origin of the anomaly itself: it may seem quite obscure that, after deriving
Feynman rules from a Lagrangian enjoying a certain symmetry, the application of
these rules to a one-loop computation yields an amplitude which is not compatible
with the symmetry itself.

The correct interpretation of this result has been given by Fujikawa [3], and can
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be seen explicitly in the Feynman path integral formulation In this formulation it
is apparent that equations of motion and transition probabilities are not derived
directly from the classical action &, but rather the Feynman path integral, which
not necessarily enjoys all the symmetries of S. Consider the effective action WW[A]

defined by the functional integration over the fermionic degrees of freedom:
el = /DzﬁDd: e (1.21)
where
S = / d*z L. (1.22)

Because the fermionic measure DDy is not invariant under chiral transformations,
after quantization we find a violation of the symmetries of the classical theory.
In the Buclidean space formulation of the functional integral (analytic continu-

ation iz® = z4):
Wil = /’D@Dw e~ (1.23)
where
S, = / d*z. Lo, (1.24)
consider the massless Lagrangian:
L = Yilpyp. (1.25)

In this simple case the path integral reduces to the computation of the fermionic

determinant of the hermitian Dirac operator I:
eV = det (i) . (1.26)

In order to compute this determinant one needs to regularize properly the fermionic

measure. This is done by decomposing the spinors into eigenfunctions
v o= Z an Pn (1.27)
n

Y = ng;rngm, (1.28)
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relative to the real eigenvalues A, of the Dirac operator

‘wgon - An(Pnn (129)

and then regularizing the infinite product with a smooth functional, for instance a

Gaussian cut-off [3]. The normalizations are chooses according to:

S = / 042 g0 (2) om(a) (1.30)
fz—y) = > enl)eh), (1.31)
The functional integration measure is defined in terms of Grassmann variables b,
and a, as:
- N —
DYDY = lim H db, da, (1.32)
so that
e = det (i) = [] idn. (1.33)

n

Performing now a change of integration variables corresponding to an infinitesi-

mal chiral transformation in the form of eq. (1.9), but with (local) parameter £(z):

o = gQBvsv, (1.34)
§¢ = $igQBys, (1.35)

the measure transforms into:
DYDY — DYDY J[B, A, (1.36)

where
JIB, A = Bxp {~—2ng2 / d*z. B(z) ph(z) s ea(z)| . (1.37)

The computation of the Jacobian can be performed introducing a Gaussian reg-
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ulator: 2
z (fon n/o (t/n ) -
)\2
- ]\%l—rfl z @l (x) 5 Exp [A[Q] on(x) (1.38)

. ~p
= ]\}1—1}100 Z f,On ’75 Exp Ii e 9071(“73)

: d4k€ —ikx _w2 —ikz
“A}ﬁ“oo/WTr{ 7s Exp [M? ¢

_ d*ke | 4 e %k, D"  D,D*  gQy"y"F,,
= / Gap e {%Exp {" M ME . oM?

.1 M d4ke
_]\{lfl—r}nooé_yél]\/_[‘l (gQ) /( 71—) Tl" {757’777 }Fuqug
212
—9°Q" pe
VY € FuFio

In the computation we used the following relations: 3

(z) = /—@ieikx“ (k) (1.39)

Qpn - (27_(_)2 (Pn 3 '

Z (T @n(k) = TeT8(l—k), (140
P? = D,D* + ng 7, 7] Fo, (1.41)
+o0

/ ke = o, (1.42)

Tr vy Py = —4etP7. (1.43)

And finally the Jacobian becomes:

2@2

1672
9*Q° e

= EXP I:—‘QQ/ d4.'17 16 QEL ’ F/J,VFpa] )

20ne could also see that only the zero modes of the Dirac operator do contribute to the Jacobian:

J[8,4,] = Exp {—z @) / dz, B EWMFM,,FPU} , (1.44)

the anomaly is related to the Atiyah-Singer index theorem (see for instance [10] and references
therein) which counts the difference between the number of Left and Right Handed chiral zero-
modes of the Dirac operator. This index is a topological invariant of the theory: this is another

way of seen that the anomaly is intrinsically a long-distance effect.
3In Euclidean space, with v* = i7°.
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= Exp {—g@/ d‘*:g,@gm]} : (1.45)

The meaning of this non-trivial Jacobian can be understood going back to the
partition function eq. (1.21), with the Lagrangian in eq. (1.25), and computing the
variation under a chiral transformation. To do this we get back to the change of

variables we started from:

L L = L—gQdBJ, (1.46)
WAl oAl — / DDy e 2L Bxps / d's [—9Q 6"8.75 — 9Q BIIA]]
(1.47)

_ /mmpewd“wﬁ [1+ij/d4ngﬂ(3“J3 — glA]) + -

The gauge field being invariant under the action of these chiral transformations, it

must be W[A] = W'[A]. Then for consistency one finds:
(8“J2) = G[A4], (1.48)
where we define, for a generic operator {2:
_ d4
Q) = /Dwm e~ fdeml () (1.49)

This result agrees with the previous section. We have thereby again showed that
after quantization the axial current is not conserved.

Let us stress that we used here the invariance of the effective action because the
symmetry we are dealing with is a global symmetry. On the other hand, it can be
interesting to see what happens if one takes the U(1)4 symmetry to be local, by
introducing a gauge field B, and modifying the covariant derivative in such a way

as to have a gauge invariant classical Lagrangian.

D, = +igQ A, + igQ B,y , (1.50)

aﬂ

A, —» A, — 0«

Ul)y g LR (1.51)
B, — B,

A, — A

Ul)a - ’ g (1.52)
B, —
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In this case it is convenient to work in terms of Left- and Right-Handed fields:

PLE = 1i975; (1.53)
Yrr = PRy, (1.54)
APE = A, + B,, (1.55)
ot = a+ B, (1.56)
Then, if one defines the partition function as:
QWAL AR / DIDY &, (1.57)
S = / d*z (8, + igQ ALE PRy, (1.58)

the final result is that, in spite of & being invariant under local transformations of

both U(1) g, the effective action is not, its variation being:

SWIAL, ARl = —4Q / d*z o B (z) G[ARH] (1.59)
212
gla] = ~—-—§£2 Erapu FTOFH. (1.60)

Notice the factor of 2 in G[A], due to the projector operators.

Finally, a comment is in order: the computation of chiral anomalies by means
of functional integration techniques is quite elegant, and allows one to understand
their origin, but some subtleties are not apparent in this approach, and require some
caution. In particular, we have seen in the previous section that the diagrams giving
rise to the anomaly has a very complicated non-analytic structure in the off-shell
part of the amplitude: the anomzﬂy is a local functional resulting from the variation
of a non-local functional. This structure is very difficult to identify in the path
integral formulation. When we will discuss the renormalizability of a chiral theory,
in the presence of anomalies canceled by effective operators, the existence of these

non-analytic amplitudes will prove of crucial importance.

1.3 Anomalies and differential geometry.

Even though chiral anomalies have been discovered computing one loop dia-

grams, and their origin from the fermionic functional measure results quite clear in
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the path integral formulation, still some aspects are not very easy to deal with in
neither of the two languages. The explicit computations involved are quite compli-
cated and not very easy to extend to higher dimensions, non-Abelian groups and
to the case where other fields give contribution to the anomalies besides the chiral
fermions. Further, some ambiguities in the correct definition of the anomaly, and its
relation to the underlying geometry and topology of the theory, such as the relation
to the Atiyah-Singer index theorem, or to the homotopy classification of the gauge
symmetry groups, are very difficult to extract.

A very powerful tool has been designed [4] in order to discuss all of these as-
pects: a differential geometry formulation of the gauge and space-time structure of
the theory, which is written in terms of elements of OP(G) and Q7 (M), which are,
respectively, the space of smooth p-forms on G and of r-forms on the base manifold
M = MP. Tt allows also to identify the relation to the non-perturbative aspects
of the theory itself, as like the existence of solitonic solutions. In this language the
anomaly takes a very compact and simple form, and is rather easy to compute. Fur-
thermore, this formulation makes quite clear the interplay between gauge anomalies
and unitarity in the BRST quantization procedure. |

Let us consider a generic compact semi-simple (non-Abelian) group G, with

hermitian generators 7'* such that

TeTeTe = Loe,

(1.61)
[Ta,Tb] — ’ifabCTC.

Let us couple the gauge fields of G to a chiral fermion 1, with the Lagrangian
L = Yrilir, (1.62)
where the covariant derivative is
D = 0+ {T*A". (1.63)
The action of gauge transformations with parameter a = «*7*

U = 1", (1.64)
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is given by

vy, = Uty (1.65)

A=A = UAU Y +40U0U ", (1.66)
or, in infinitesimal form,

S, = ia*T* ey, (1.67)
FA® = —,a% — fPab AC (1.68)

These transformations lead to the classical conservation law of the chiral current:

L
D“JM = O,} (1.69)
where:
L Lya ra
J# = (Ju) e, (1.70)
(D) = thriy, T s (1.71)
(1.72)

These formulae hold also in the case of anomalies related to a global symmetry
group G, if one formulates the theory in terms of external fields A7,. We work in
generic D = 2n even dimensional Minkoski space-time. Notice that we re-scale
out, in this section, the gauge coupling, by setting ¢ = 1, in order to simplify the
expressions.

The action of gauge transformations on a generic functional F'[A] of the fields
A, in particular on the effective action W[A] defined in eq. (1.21) is represented by

the functional differential operator:

) e b O
X = —-0,— ave A 1.7
Y aﬂéAz + f A“CSAZ ) ( 3)
so that
SF[A] = — /d% o X F[A], (1.74)

SWIA] = — / P2 of XAl (1.75)
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With these definitions, generalizing eq. (1.59), the anomaly is given by:
gla]® = X°*WI[A] : (1.76)
One can verify that
[—iXxe, —iXx?] = if* (-iX°), (1.77)
from which one deduces the so called Wess-Zumino cohsistency conditions [5]:
Xogh — XPGe = —fabege (1.78)

The anomaly, defined as the variation of the effective action under a gauge trans-

formation, can be written in terms of the chiral current defined by

(U5 =~ WA, (1.79)

D, (Jy) = g[4]", (1.80)

and is a solution of eq. (1.78).

in order to solve eq. (1.78), let us first rewrite the gauge theory in terms of
anti-commuting objects, introducing the BRST formalism and rewriting eq. (1.78)
in this language in terms of BRST transformations.

We introduce scalar anti-commuting fields (Faddeev-Popov ghosts) along the

group generators v*, and define:

A

il

—i AL T® do*, (1.81)

v

H

—® T, (1.82)

where also dz* are anti-commuting. A is a 1-form on M, and a 0-form on &, while
v is a O-form on M and a 1-form on G.

Define the quantity:

Glv, A] = ~/va [A]dPz. (1.83)
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The exterior derivative is the operator:

0
d = da* 1.84
dz o ( )
The anti-commuting BRST operator s is defined by:
sA = dv — {4,v}, (1.85)
sv = -7, (1.86)
which in components reduces to
sAL = —0,v* — febeq? AL, (1.87)
1
st = — 5 febe byl (1.88)
In this way the gauge transformation of A, can be written as:
0o Ay = (0sA), (1.89)
a = fv, (1.90)
where we introduced the anti-commuting parameter 6.
By definition, s satisfies
sd +ds = 0. (1.91)

. The action of s on v is such that the consistency conditions on G are equivalent to:
sGlv,A] = 0. (1.92)

In the language of differential forms, the anomaly is a solution of the consistency

conditions. Trivial solutions can be constructed starting from any local functional

FlA]:
Glv, A] = sF[A]. (1.93)

On the other hand, these solutions are not the anomalies we are looking for: one
could add these local functionals to the original action and cancel the anomaly. The

anomaly, being a physical property of the action, is the variation of a non-local
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operator, which cannot be removed from the action, as we already discussed. This
observation makes clear that, once a non-trivial solution G|v, A] of eq. (1.92) has
been found, one can add to the action a generic local functional F[4], and modify
accordingly the anomaly to Glv, A] + s F[A].

A non-trivial solution of eq. (1.92) can be computed using the Stora-Zumino
descent equations. We start adding two dimensions to the D = 2n dimensional
space-time and defining the field strength 2-form and a the Abelian anomaly in
D + 2 dimensions as the (2n+2)-form (the normalization is suppressed here, we will

put it back only at the end of the computation):

F= d4 + A%, (1.94)
Tr F7Ht (1.95)

and observing that Tr F™*1 is closed:

dF = [AF], (1.96)
dTr F™* = 0. (1.97)

So, assuming that the space-time is simply-connected, there exists a (2n+1)-form

wgn , such that:
r FPH = dw? 1.98
2n-+1

The Chern-Simons forms denoted by w? are p-forms on G (ghost number p) and
r-forms on the base space M. The BRST operator we defined acts as a derivative
in Q(G), the space of all the forms on G.

Being Tr ™! a gauge invariant functional of the gauge fields, it is also BRST

invariant, so that, using eq. (1.91):

0 = sTrF™H! (1.99)

= sdwy, (1.100)

= —dswl.,, (1.101)

swh ., = —dw,. (1.102)




28 CHAPTER 1. LOCAL AND GLOBAL GAUGE ANOMALIES

Iterating this procedure one finds the descent equations:

0 . 1
SWoyppr = d Wap s
2 .
swi o= —dwl_,, (1.103)
S wg”H = 0.

One sees that, w, ; depending only on gauge fields, wy, is linear in v, and satisfies

eq. (1.92), so that it can be identified with the anomaly. A solution is given by:

wy, = n(n+1) /1 dt (1 —1¢t)Tr [vd(AF! - 1)], (1.104)
F, = tF + (t—t%) A%, (1.105)
Glv, Al = ——/ Wy, - (1.106)

In particular, in D = 4 this reduces (up to the normalization) to:
1
wi = Trod (AdA + —2—A3> . (1.107)
We call BRST transformation with anti-commuting (global) parameter 6:

op F

fsF. (1.108)

A gauge transformation can be written as a BRST transformation with the identi-

fications:

Sad = 0pA, (1.109)
a = fuv. (1.110)

Accordingly, in D = 4 one finds that the anomaly, properly normalized starting from
the direct diagrammatic computations of the Abelian anomaly [4, 14] and making

now explicit the dependence on the gauge parameter g, is:

o W[A] = —g/d4xaaga[A], (1.111)

2

| 1
golA] = ﬂ%e"””“Tr [T“BM(A,,('?,,AUwLiAVAPAU) . (1.112)
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Notice that this expression is slightly different from the one we found in the
Abelian case in the previous sections: it is expressed in terms of non-covariant
objects. This expression is known as the consistent non-Abelian anomaly. This
form, by going back to its components, with the gauge parameter replacing the
ghost field v, gives correctly the anomaly in terms of the variation of the functional
WA], and of the consistent current defined as its variation in respect to the gauge
bosons.

On the other hand, we have already discussed the fact that the anomaly is only
defined up to the variation of local functionals of the gauge fields only. One can make
use of this property to define the covariant current J . by the addition to the currernt
of a local (polynomial) functional of the gauge fields and their field strength [16], in
such a way that this new current can be written in terms of covariant objects only.

In the D = 4 case, one gets:

(D“JM)Q — GlA], (1.113)
Gl = é—%—z—eﬂ”””Tr 7% F Foo] (1.114)

This expression is known as the covariant anomaly. This latter expression is closer

to the Abelian anomaly in eq. (1.59)

1.4 Local anomalies in gauge theories

We have seen that anomalies of a global symmetry do not cause any problem
for the formulation of the quantum theory, because the modification of the related
conservation laws does not affect the invariance of the action. They have useful
phenomenological consequences, explaining for instance the decay rate of the 70
meson.

But when a gauge theory is based on an anomalous symmetry, it is not possi-
ble to give a consistent probabilistic interpretation of the corresponding quantum
theory, which becomes meaningless. In order to understand how this happens, we

briefly review the basic features of the BRST quantization procedure. A complete
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treatment of this subject can be found in several textbooks, besides the original
papers, and goes beyond the aims of this thesis. For simplicity, we work here in
D = 4 dimensions.

If no anomalies are present, z.e. sW = 0, the BRST transformation defined
previously is a (global) symmetry not only of the gauge invariant classical action,
but (with appropriate definitions of the action of s on the other fields involved)
also of the whole action after the introduction of the gauge-fixing terms and of the

Fadeev-Popov determinant in the path integral formulation; that is, for

Stot, = Sgauge inv. + Sgauge fixing + ‘SFaLdeev—Popov7 (1.115)

we have that
0pStot = 0 (1.116)

This invariance allows for the definition of a Noether conserved current Ji, and

in particular of a conserved charge:

Qp(t) = /d%: Jh(z, 1), (1.117)
d .
g @st) = — @s(t), H] , (1.118)

where H is the Hamiltonian, that determines the evolution of states according to

W(t)) = e " |4(0)) - (1.119)

From the nil-potency of s one deduces that @% = 0. The physical states of the
theory are then defined starting from the Fock space, and selecting those state which

are annihilated by @ p:
@ prhys> = 0, (1120>
Then we identify all the states which differ by the action of Q)5 on a generic state:
Wohys) © [Wonys) + Q). (1.121)

With eq. (1.121) we define a physical state as an equivalence class of states satisfying

eq. (1.120): this is the so-called BRST-cohomology.
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The theory possesses also an additive symmetry, with a conserved charge @,

(ghost number). One imposes also

Qe ldphys) = 0. (1.122)

This construction is enough to ensure that all the unphysical states of the theory
(ghosts and unphysical polarizations) are absent in the (Hilbert) space of asymptotic
states. The fact that both @) and (). are conserved ensures that this unphysical
states cannot be produced in the causal evolution of the system.

In presence of anomalies, eq. (1.118) does not hold, so that even if the initial
Hilbert space has been constructed in such a way as not to contain unphysical states,
transitions from physical to unphysical states are allowed. As a consequence, one
produces, for instance, negative norm states. The probabilistic interpretation of
the theory is lost, and the scattering matrix S is no more unitary, violating the
postulates of quantum field theory. The theory is then meaningless.

There are a number of possible ways to write down consistent gauge theories

which are free from local anomalies:

e (G can be an anomaly safe group, for which it is not possible to write an
invariant out of 1 4+ D/2 generators (this is the case of a chiral SU(2) in
D = 4),

e all of the representations of G are vector-like, so that the contribution to the
anomaly due to Left Handed fields cancels with that of their Right Handed

partners (as for the SU(3). theory of strong interactions),

e the matter field content is chiral, but chosen in such a way as to set to zero
the anomaly after summing over all the chiral fields (this is the case of the
SM in D = 4, where the anomaly due to the leptons cancels exactly with the

anomaly due to the quarks),

e one can introduce non-invariant higher order local operators coupling the gauge

bosons to new fields, transforming non-linearly under the action of the gauge
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transformation, in such a way as to compensate the anomalous variation of

the fermionic determinant.

In this thesis we will focus on the phenomenological consequences of the appli-
cation of some mechanisms belonging to this last class.

An example of such a mechanism was already discussed in [6], in order to explain
the connection between anomalies of gauge symmetries, causality and renormaliz-
ability.

Consider an Higgs model with symmetry group G = U(1), a chiral field ¢; and
a scalar field ¢ transforming under a gauge transformation according to

© — €%y, (1.123)

v = eWy. (1.124)
Suppose that the scalar potential has a minimum for

(p) = v#0, (1.125)
and, accordingly, rewrite the Higgs field as

o =pe ™. (1.126)
The transformation properties of @ are inherited by ¢:

0 — 0—ga. (1.127)

It is well known that, after gauge fixing in the unitary gauge, 6 provides the longi-
tudinal components of the (massive) gauge bosons A,.

On the other hand, the theory is anomalous, according to eq. (1.59):

sWIA]l = —g/d%a(a:)Q[A], (1.128)
7
GlA] = 5o Cronu FTTE (1.129)

This anomaly can be canceled adding to the classical action the following (one-loop)

term:

2

S = —3297r2 / A3% 0 €rpp FTOFP (1.130)




1.5. GLOBAL GAUGE ANOMALIES 33

in such a way that
SWIA] = =08y, (1.131)

thus ensuring that the effective action generated by S + &1 in gauge invariant, and
unitarity is restore.

On the other hand, the operator defined in eq. (1.130) has dimension 5, and
this theory can be seen to be non-renormalizable. We will discuss more in details
the non-renormalizability in chapter 3, where we will generalize recalling the results
of [47], this idea to the case of non-Abelian symmetries. Here, it is enough to
recall that the local counter-term we added removes only the (local) variation of the
amplitude we called R,,, in section 1.1. This amplitude has a non-local part which
cannot be removed without the addition of a non-local operator.

In effective field theories, as well as in gauge theories in D > 4 space-time
dimensions, renormalizability is not important, and then these class of mechanism

can be of interest, as we will see.

1.5 Global gauge anomalies

When a D dimensional theory with gauge group G has a chiral matter field
content, the local (chiral) gauge anomaly discussed in the previous sections is not
the only possible anomaly causing the inconsistency of the theory. In general, we
work on a D-dimensional Minkoski space-time MP, but one can always reformulate
the theory in Buclidean space-time via a Wick rotation, in such a way that the base

manifold of the theory is R”:
MP — RP. (1.132)

The boundary conditions are usually chosen is such a way that one can add consis-
tently the point {co}, compactifying the space-time on a sphere (of infinite radius,

but clearly this is topologically equivalent to a finite sphere of large radius), so that:

RP U {co} ~ 8P, (1.133)
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In other words, the topological properties of the base manifold, after including
boundary conditions, are those of the sphere. In particular, the maps (gauge trans-

formations) U(z)
U: mM? - G, (1.134)
are classified by the D-dimensional homotopy group:
7p (G) . (1.135)

In Table 1.2 we collect some of the relevant homotopy groups of the simple classical

Lie groups.
Group M T g Ty s T
SO(3) Zy 0 Z Zs Z, VAL
SO(4) Zo 0 Z4+7Z Zo+Zy Zo+7Zy Zyp+Zyp

SO(5) Zy O Z Zog Z 0
SO(6) Zy 0 Z 0 Z 0
SO(n),n>6|%Zy 0 Z 0 0
U(1) Z 0 0 0 0 0
SU(2) 0 0 Z Zy Zy Zio
SU(3) 0 0 Z 0 Z Zg
SUMm),n>3| 0 0 Z 0 Z 0
Gy 0 0 Z 0 0 Zs

Fy 0 0 Z 0 0 0

Eg 0 O Z 0 0 0

E; 0 0 Z 0 0 0

Eg 0 0 Z 0 0 0

Table 1.2: Homotopy groups of some classical compact Lie groups up to D = 6 [10].

When discussing the local anomalies in the previous sections, we always com-

puted the gauge variation under infinitesimal transformations, i.e. transformations
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which differ from the identity transformation by an infinitesimal amount. By com-
bining these transformations one can reach only the possible gauge configurations U
that can be continuously deformed to the identity. This means that we know what
are the variations of the effective action and what are the anomalous conservation
laws restricted just to the trivial homotopy class of G. If wp (G) # 0, the absence,
or the cancellation, of these anomalies is not enough to ensure that the theory is
invariant under gauge transformations U which are in non-trivial homotopy classes.

It was first discovered by Witten [7] studying the D = 4 chiral realization of
SU(2), that the effective action may receive a shift by the action of U, even if no
local anomaly of SU(2) is present *.

Before showing how to compute this anomaly, let us discuss why its presence
is dangerous for the formulation of the theory. Just for concreteness, we restrict
ourselves to the case discussed by Witten in the original paper.

Starting from the definition of W[A] in eq. (1.21), where now 1 is a chiral (left-

handed) field, and from the observation that
s (SU(2)) = Zs, (1.138)

one can identify a gauge transformation U in the non-trivial homotopy class as
the generator of the homotopy group. Applying U, in general the variation of the

effective action is:

W[A] — W'[A] = A(U) W[A]. (1.139)

~

Due to the absence of local anomalies, A(U) depends only on the homotopy class

of UU: this means we are effectively studying in which representations of the discrete

4No SU(2) anomaly is present in four dimensions, the triangle diagram being proportional to

the (vanishing) Da,asas:.

Dasasas = Tr [{Tor,Tas}Tasl (1.136)
TC = % (1.137)

where 7% are the hermitian 2 x 2 Pauli matrices. This is due to the fact that SU(2) admits Casimir

operators only of order 2 (see Table 1.1), so that no order 3 singlets can be built.
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group 4 (SU(2)) the fields of the theory are. From the observation that the double

iteration of [J must belong to the trivial homotopy class, we have:

AD? = 1, (1.140)
AU) = €?, (1.141)

with ¢ = 0 or ¢ = m. In the first case, no anomaly is present, and the theory is

consistent. In the second case, for gauge invariance to be preserved, one needs:
W[A] = WAl = -W[4] = 0. (1.142)

This means that the partition function, the generator functional of all the connected
correlation functions of the theory, must vanish, with all the correlation functions
themselves, and the theory becomes trivial.

The source of the problem is the fact that, even after the introduction of the
ghost fields for the gauge fixing procedure, there is a multiple counting in the path
integral when integrating over the gauge fields A,, because for every configuration
A, there are equivalent configurations A}, obtained by applying the representative
elements of each homotopy class. The multiple counting cannot be avoided, because
one can deform continuously these A7 configurations to reach A,.

In the canonical quantization, this can be understood from the fact that the
representation of the Lie ‘algebra of G does not provide a representation of the whole
Lie group G, but there is a non-trivial center. Under the action of the non-trivial
operators of the center the fields are not invariant, so that the space of physical
states of the theory is empty.

We briefly get back to the proof given by Witten in [7] of the fact that for SU(2)
in D = 4 with one chiral spinor on the fundamental representation one has ¢ = .
The proof is based on the use of a particular version of the Atiyah-Singer index
theorem.

For a Dirac spinor representation of SU(2) one defines the determinant of the

Dirac operator according to:

detil) = / (DYDY) Diac P (1.143)
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Then, for Weyl fermions, one gets exactly the square root of this result, up to an

This is consistent with the fact that the eigenvalues of the Dirac operator, defined

now on a large (finite radius) sphere S¥, come always in (real) pairs (A;, —X;):

Dy = N

(1.145)
Db = Nt

If we choose to fix the field A,, and define the Weyl determinant as the product
of all the positive eigenvalues of il)(A,), after applying a gauge transformation U

homotopically non trivial, one finds that
. 1/2 A o142
et = — |det? . :
[detilB(A,)] [d £ ZZ(AM)} (1.146)

This can be seen building a I-parameter family of gauge configurations Ai, with
t € [0,1], continuously transforming A), = A, onto A, = Ag, and applying the mod
two Atiyah-Singer theorem to the five dimensional cylinder, which implies that along
the path from A, to Azj an odd number of eigenvalues (\;, —A;) are interchanged
(see Fig. 1.3), thus changing the sign of the square root [17]. This means there is
no consistent way to define this sign, i.e. ¢ = .

In chapter 3 we will discuss a simpler and more general technique for the com-
putation of these anomalies, suggested by an observation of Witten in [17] in dis- -
cussing the WZ action, and elaborated by Elitzur and Nair in [18]. This technique
is based on the observation that global anomalies can be computed starting from
local anomalies of a (larger) homotopically trivial group in which the group G is

embedded.
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Ai (0) A (1)
@ &
? \{t—o __________ ® ‘
[ YT — ' ®
M ®

Figure 1.3: Diagrammatic representation of the flow of the eigenvalues of the Dirac
operator as a function of A®. The square root of the determinant cannot have
a definite sign: after defining it as the product of eigenvalues on solid lines, the
application of a topologically non-trivial gauge transformation U which transforms
A% to A is equivalent to following a continuous deformation from A° to A', which

passes through tq, where the square root vanishes and changes sign.



Chapter 2

The Green-Schwarz mechanism

The first mechanism for anomaly cancellation we wish to discuss is the GS mech-
anism. It has been discovered in the context of Superstring theories [19], showing
that the Type I (open) Superstring based on the gauge group SO(32) has an anomaly
free low-energy effective action in D = 10 dimensions.

We show how this mechanism works in general in canceling all the possible
reducible (local) gauge anomalies in the context of low energy effective field theo-
ries [20]. On the other hand, the mechanism requires the presence in the spectrum of
bosonic fields with non-trivial properties under gauge (and gravitational) transfor-
mations. Some light components of these fields remain, in general, in the spectrum:
these (pseudo-scalar) fields have axion-like couplings that can be relevant for phe-
nomenology. For this reason we briefly review the physics of the axion, and recall
the main features of the strong-CP problem, the Peccei-Quinn (PQ) solution [21]
and the experimental status of the searches for the PQ) axion.

We then discuss the phenomenology of a concrete proposal [22] for the (non-
Supersymmetric) extension to D = 6 dimensions of the SM, in which the requirement
of the cancellation of global and irreducible local gauge (and gravitational) anomalies
is enough to fix the matter field content, giving a prediction for the existence of
N, = 3 matter families. The application of the GS mechanism in order to cancel
reducible local gauge anomalies produces a set of axion-like fields in the D = 4

effective theory. We identify one of the combinations of this fields with the PQ

39
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axion (the other components are shown to decouple from gauge fields), so that in
this model we find a natural solution to the strong-CP problem. Further, we find
an upper bound on the volume of the two compact extra-dimensions, deduced from

the experimental bounds on the mass and coupling of the axion [23].

2.1 The Green-Schwarz mechanism

Non-Abelian anomalies in D = 2n dimensions (we consider here a simple Lie
group G and neglect for the moment gravity) can always be computed, using the
descent equations, from the (2n+2)-form representing the Abelian anomaly in D42
dimensions. If the gauge bosons of the theory transform accordingly to the adjoint
representation of the group G, in general one finds that the starting point of the

computation is given by the terms in Table 2.1

n | Non-factorizable Factorizable

1 as Tr F2 —

2 as Tr F3 -

3 aq Tr F* byy Tr F2 Ty [?

4 as Tr F° by Tr F? Ty [?

. 45 Tt bos Tr F? Tr F*
bogo Tr F2 Tr F2 Tr F?

Table 2.1: (2n+ 2)-forms, starting point for the computation of non-abelian anoma-
lies in D = 2n dimensions, for a simple Lie group G. The coefficients a; and b;
depend on the group and on the fermionic representations, I are the field strength

forms, and A products are understood.

For non-factorizable anomalies, as discussed at length in the previous chapter,

one deduces the form of eq. (1.106):

Gofv, A] = — / . 2.1)
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In the factorizable case, the descent equations have to be applied to each of the
factors, so that the (consistent) non-abelian anomaly reads as the sum of all the
possible terms obtained from the third column of Table 2.1 replacing a Tr F™+!

with the Chern-Simons form ws,,:
Gelv,A] = — f > Do s Wiy, Tr FL o Tr FF (2.2)
n=m-l+-+k

We add to the spectrum of the theory, besides the gauge bosons and the fermions
responsible for the anomaly, (2m)-forms B®m) which do not carry indexes of a
representation of G (and with ghost number 0), but are not invariant under the

action of BRST transformations, transforming according to:
sBP = —wy,. (2.3)

If one adds to the classical action the couplings:

SO = — / ST bamrs BC™ Ty ft ... Ty F* (2.4)
n=m-+l+-+k
using the invariance property sTrF' = 0, one sees that these coupling cancel

exactly the factorizable anomalies of eq. (2.2). There is actually a restriction on this
procedure, due to the massless representations of the Lorentz group allowed: a GS

field exists only if
2m < n—1. (2.5)

The GS mechanism cannot be applied to the case of non-factorizable anomalies.
In the case when G is not simple, but contains some abelian factor, the GS mecha-
nism generalizes with the introduction of neutral scalars (0-forms) C' transforming

according to:
sC = —v. (2.6)

We call reducible anomalies all those anomalies which can be cancelled with the

GS mechanism. Non-factorizable anomalies, and factorizable ones for which one of
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the factors corresponds to a (2m)-form with 2m > n (so that no GS field exists such
as to cancel them) are called irreducible anomalies. |

When also gravity is included, all of this generalizes easily: mixed (gauge-
gravitational) anomalies can be compensated by generalizing eq. (2.3) and eq. (2.4)
with the introduction of properly defined gravitational Chern-Simons forms (the
technology of descent equations, with the definition of the Chern-Simons forms, can
be generalized to gravitational anomalies, with some subtleties that are not crucial
in our context, replacing in the first step the field strength 2-forms F' with the form
representing the Ricci tensor R).

The result of this procedure is that, given a chiral (gauge) theory in D = 2n
dimensions, absence of local (gauge) anomalies can be obtained by first choosing
appropriately the group GG and the chiral fields in such a way that no irreducible
anomalies are present (the a,4; symbols must vanish, for instance), and then by
introducing a cértain number of GS fields with the transformation properties of
eq. (2.3), and couplings in the form of eq. (2.4), in such a way as to cancel all the
remaining reducible anomalies.

Finally, one needs to write down appropriate gauge invariant kinetic terms for

the GS filds B®™. This can be achieved defining the k-forms (k = 2m + 1):
H = 4B —u ... (2.7)

In such a way s H = 0 (recall that sw), ., = dws,,), and the kinetic term for

these k-forms is (up to normalization factors):
Skin o~ / Hyy ooy, HPY PR (2.8)

The invariant term S*” gives rise to a coupling of the B®™ field to 2m gauge
bosons, while in the gauge non-invariant action S, B™ couples to (n -+ 1 — 2m)
gauge bosons, so that the combination of these couplings in a diagram with the‘
exchange of B®™ in the internal lines cancels exactly the anomalous diagrams, as
illustrated in Fig. 2.1

In the case of Superstring theories, Green and Schwarz observed [20] that the N =

1 Supergravity theory in D = 10 with gauge group SO(32) is free from gravitational
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n-+1 2m n-+1-—2m

Figure 2.1: Cancellation of the diagram on the left giving rise to the anomaly in
D = 2n (even) dimensions (n + 1 external gauuge bosons) with the GS mechanism
represented by the diagram on the right, containing the two couplings coming from
the kinetic term of the GS field (2m external gauge bosons) and from S (n+1—2m

external gauge bosons).

as well as non-factorizable anomalies, and the only factorizable anomaly is that in

the form
boy Tr F2Tr F*. (2.9)
Since
Tr F?Tr F* = d(w) Tr FY) = d(ws Tr F?), (2.10)

this anomaly is reducible, and can be cancelled by the order-2 antisymmetric tensor
By of the Supergravity multiplet, according to eq. (2.4) and eq. (2.3). This lead
to the discovery of the Type I SO(32) Superstring Theory.

All the GS fields in what follows are 2-forms Bysw, so that we from now on will
refer to 2-forms as GS fields.

An important point, which will prove crucial in phenomenology, concerns com-
pactification: what are the fields that appear in the low energy D = 4 effectivé
action if in the original D > 4 theory the GS mechanism is at work, and what

are their couplings? We are especially interested in the zero-modes of what will
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become the Kaluza-Klein decomposition of the fields. Considering the space-time to
be M* x IC, with IC some D — 4 dimensional compact manifold, the number of zero
modes of a p-form is controlled by the Betti numbers b, () *. In particular, for what
massless modes are concerned, a 2-form in D dimensions decomposes always in a
2-form in D = 4 (by restricting the indexes to 0- - - 3) which is equivalent to a scalar.
It can be seen [25] (see also [24]) that such a scalar inherits from eq. (2.7) an axionic
coupling to gauge bosons, so that it is usually referred to as the model-independent
azion. Out of the other D = 4 remnants of B, the number of (massless) scalars is
equal to by(IC): these are called model-dependent azions, their existence depending
specifically on the topology of the compactification manifold .

Of particular interest is the application of the GS mechanism in the D = 4
case [26]: the only GS fields allowed are O-forms (pseudoscalar fields) @, so that the
mechanism applies only to abelian (U(1)) symmetries. Then eq. (2.3), eq. (2.4),
eq. (2.7) and eq. (2.8) become respeétively (we drop the explicit indication of the

correct normalizations, in order to simplify the notation):

Skin

Lo
—_
o

s = —wv, (2.11)
S99« ~/0TrF2,k (2.12)
H = d6 +A, (2.13)
: (2.14)

[
|
—
M
=
S
=

5.0 = —a, (2.15)

so that it is always possible to choose the gauge fixing conditions in such a way as
to set @ = 0. In this case H, = A,, the gauge boson of the underlying symmetry,
so that S*" provides a mass term for the gauge boson, and the symmetry is non-
linearly realized: the GS field provides the longitudinal component of the gauge

boson of U(1), which becomes heavy, so that the original gauge symmetry is not

!The pth Betti number of a manifold M is defined as the dimension of the pth cohomology

group on M with real coeflicients, see for instance [10].
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manifest in the low energy spetrum. On the other hand the symmetry survives as
an unbroken global symmetry of the theory.

In Superstring models, several U(1) factors survive as gauge symmetries of the
D = 4 effective theory, and most of them have anomalous chiral field content. In
all these cases, some pseudo-scalar must be present for the GS mechanism to be
at work, and the result is the decoupling of the (massive) gauge bosons of these
abelian factors from the low-energy spectrum. On the other hand, some of the
U(1) symmetries may be identified with phenomenologically relevant symmetries
(the barion number, for instance), and might explain the suppressed rate of some

rare processes.

2.2 The strong-CP problem and the axion

Consider a non-Abelian gauge theory of group G with Yang-Mills D = 4 action:

1
L=~y TP P (2.16)

As can be deduced from Table 1.2, or applying the Bott’s theorem, for which
all the maps from 83 to G can be continously deformed onto maps to an SU(2)

subgroup of G, the homotopy group for non-Abelian G 2 SU(2) is:

m (G) =m (SUQR)) =Z. (2.17)

Therefore, there exist istantonic (classical) solutions of the theory. Let us denote

with |n), (n € Z), the istantonic solution with Pontryagin index @ = n, where:

1
16 72

and with G, (n € Z) the (unitary) gauge transformations representative for the

0 = /d%; Tr F* F,,, (2.18)

homotopy class vn, such that:
Gnlm) = |m+n). ' (2.19)

The vacuum |0) can be defined as a superposition of instantons |n), (n € Z), with

all possible values of the Pontryagin index Q:

) = > "0 n), (2.20)
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where the parameter 4 is defined by:
G110y = €?10). (2.21)

It can be shown that the transition amplitude between all the possible vacua

labelled by 6 can be written as:

O ouitl0 i) = 6(0-0) / DA, exp {— / ds(C + ,ce)} L (292)
where
Qg -
L = 0L TR, (2.23)

so that 0 is a physical parameter of the theory, i.e. the choice of the vacuum has
a physical meaning. The fact that L4 is CP-odd leads to the so calles strong-CP
problem: instanton effects induce flavour blind CP-violating couplings in a non-
abelian gauge theory, controlled by the real parameter §. CP is restored as a good
symmetry of the theory only in the limit § — 0.

This means that the complete QCD Lagrangian, the theory of strong interactions

based on the gauge group SU(3),, also contains the CP-odd coupling:
R S (2.24)
8 e :

where 0 includes also the effect of a CP-odd phase coming from the quark masses.
These coupling is responsible for the appearance of a non-vanishing electric dipole
moment (EDM) of nucleons and nuclei. This are known to be small, so that from

the neutron EDM one can deduce the experimental bound:
g <107, (2.25)

Tlﬁs severe fine-tuning problem received a number of possible solutions. For
instance if one of the quark fields is massles, then the determinant of the product
of the mass matrices of up and down quarks in @ would vanish, and its phase would
become a completly arbitrary, unphysical parameter, which could then be choosen
in such a way to set § = 0. Unfortunately, extimates of the masses of the lightest

quarks, based on chiral theories, seem to exclude this possibility [27].
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V(a)

G+a/F,

Figure 2.2: The effective potential of the axion field V(a).

A more interesting dynamical solution has been proposed by Peccei and Quinn,
and requires the existence of the so called axion field [21, 28, 29]. Let us introduce
a pseudo-scalar, neutral field a, the Lagrangian of which is invariant under a trans-
lation a — a + k (this means there is no allowed tree level potential for a). This

invariance is however violated by the axionic coupling to the SU(3). field strength:

Fi E%T- T F™ R, | (2.26)

The effective potential, after functional integration over A, and fermions, is the

periodic (non-flat) function in Fig. 2.2, with a minimum at [30, 31]:

@) +8 = Omod 27 . (2.27)

a

In this way the effective CP-violating phase is dinamically set to zero.
In spite of the elegance of this solution, some problems arise because the axion
field is a true physical degree of freedom, which has not been observed at the moment
“neither in direct searches (from accelerator physics) nor from indirect signals (from
the study of supernovae explosion, red giant cooling and cosmology).
To discuss the bounds which can be derived on the axion couplings, one needs

to build the low energy effective theory of electromagnetic and strong interactions,
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containing photons, nucleons, pions and axions only. The main couplings which are

bounded from these studies are those to the electromagnetic field strength:
Loy, = & Jaoya F¥E,,, (2.28)
and to the nucleons:
Lony = —iganvaNysN . (2.29)
These couplings have the bounds [32, 33]
Joy < 10710 GeVTh, (2.30)
which is deduced by the study of the cooling of red-giants, and
Gy < 3x 1071, (2.31)

computed by studying the explosion of the supernova SN1987A .

2.3 A D =6 Standard Model

As an axample of the constraints deduced from the cancellation of irreducible
and global anomalies, and of the phenomenological consequences of the application
of the GS mechanism to reducible anomalies, we introduce the D = € extension
of the SM proposed by Dobrescu and Poppitz in [22]. We will further discuss this
example in the next Chapter, in order to show the difference between two of the

most studied anomaly cancellation mechanisms in effective field theories.

2.3.1 Field content: anomaly cancellation

Let us write a non-supersymmetric ? six-dimensional theory, based on the SM gauge
group SU(3). x SU(2)1, x U(1)y; matter fields are assigned to chiral fermions (pro-
jected by (14T7)/2) in the usual representations of the gauge group @, L, U, D and

2The procedure outlined below leads to the impossibility of cancelling simultaneously all the
local and global anomalies in presence of Supersymmetry [22]: this is due to the fact that (1,0)
Supersymmetry forces to choose the same chirality for all matter fields, opposite to the one of
gauginos, ifnposing quite severe restrictions on the allowed number of representations of the gauge

group.
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E, as shown in Tab. 2.2. Quantum numbers are fixed by the SM phenomenology,
the only freedom is in the (six dimensional) chirality assignements. A scalar doublet
h must be present for the Higgs mechanism to take place.

As explained in [22], cancellation of purely gravitational and irreducible gauge
anomalies forces quark singlets to have opposite chirality with respect to doublets,
and to introduce a SM singlet NV in order to have the same number of fermions of
both chiralities.

In fact if we consider the factorizable anomaly:
ULy [SU(3)] (2.32)

the SU(3) anomaly deduced is proportional to the 4-form wj, while we are allowed
to introduce only 2—forms as GS fields. This anomaly can be cancelled only if
the matter field content is such to form a vector-like representation of SU(3), i.e.
choosing quark singlets to have opposite chirality with resbect to dbublets.

All the other gauge anomalies are reducible, we apply the GS mechanism to
cancel them, and so no other constraints on the matter field content arise.

In D = 6 dimensions (and in general in 2n + 2 dimensions) chiral fermions
cause the presence of (pure) gravitational anomalies besibdes the mixed anomalies
present also in D = 4. The only way to cancel gravitation anomalies in a non-
supersymmetric theory is to have an equal number of fermions of the two chiralities *
While quarks do not contribute (because we are forced to choose an equal number
of chirality + and chirality — quarks), we need also to require that the field L and F
have opposite chiralities, and also we need to add to the spectrum another (gauge)
singlet N with the same chirality of E.

We are left with four possible combinations of the allowed chiralities. Our (con-
ventional) choice is to assign positive chirality to doublets and negative to singlets.
An alternative choice would be to assign opposite chiralities to leptons and hadrons:

in what follows this would turn in a change of @(1) in the couplings introduced to

3In D = 6 the requirement of gravitational anomaly cancellation is quite restrictive: it requires

21 chiral fermions, 1 gravitino field and 8 self-adjoint antisymmetric tensor fields [15].
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cancel anomalies, with minor modifications in the phenomenological consequences

of the model.

Table 2.2: Fermionic field content for each family. The six-dimensional chirality is

the eigenvalue of I'7.

Chirality U(l)y SU(2)r SU(3).
Q + 1/6 2 3
U . 2/3 1 3
D - ~1/3 1 3
L + ~1/2 2 1
E — -1 1 1
N - 0 1 1

Now, let as consider global anomalies. Dealing with only vector-like representa-
tions, the possible global anomalies of the SU(3). and Lorentz group are automati-

cally absent. For SU(2), one has (see Table 1.2):
e (SU(2)) = le, (233)

so that global anomalies are possible. The computation of the contribution to these
anomalies of chiral fields (even in presence of GS fields) can be found in [34], and

leads to the requirement that:
N(2,) = N(2_) = Omod§6, (2.34)

where N is the number of doublets with positive (negative) chir@lity.

This requirement is not fulfilled by the matter field content of Table 2.2, but can
be obtained with n, = 0 mod 3 copies of this matter content. In particular n, = 3
is in agreement with our experimental knowledge [35]. This could be a theoretical
explanation of the existence of three families of matter fields with the same quantum
numbers.

We are thus left with Abelian and non-Abelian reducible gauge anomalies, that

would spoil unitarity unless canceled by the GS mechanism. Accordingly, to recover
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non-Abelian gauge symmetries we must introduce two real antisymmetric tensors

B and BS,, whose couplings are tuned to exactly cancel the anomalous terms in
. L .

the gauge transformations. The By}, fields transform in a non-standard way under

gauge transformation:

6LBL = _..A_lgw%’ — —‘zs—l}:z-Tr {/BdVV},

(2.35)
6.B° = —5uw§ = - Tr {ydG}.

In eq. (2.35), B and ~y are the local parameters of SU(2), and SU(3), gauge trans-
formations, while A7 and A, are free mass parameters.

The six-dimensional anomaly free Lagrangian can be written as:
L8P = 88 L8 (2.36)
where

_ 1 :
L3y = Z biy™ Dot — ZFMNFMA

1 . 1
—§Tl" LM'NLA/[N - ETI" V']\/[NV]V[N

+H(Dyh)IDME +V(9'9) (2.37)
+(Yl RIWE +Y;ROWD
Y, ROW +Y, RLAN + h.c.)

and

6D g°R’ MNRSP
E’G'S = 167T3 O‘FMNFRSFPQE Q

g*R* % L MNRSP
+ 67]"3 ‘“B]\/[NTT {LRSLPQ}E Q
2 12 PA A2
9°9'“R AL L MNRSPQ
144y Bunlrstrae

2 IRB
975277T3 o FynTr {Dps chg} JMNRSPQ
2 /RS
+ng 0Py Tr {VisVeg} e 57 (2.38)

2 124 A 2
gsg' *RYA?
_Js 967[_3 ¢ B;/[NFRSFPQGA/[NRSFQ

2. 2104 A2
R*A
.95948 ; LBL NFFI{K/RS‘/PQ}ENINRSPQ
v .
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2.2 P4 2
959" R°AL

1 L,c
) LeMNS
g HidvsH .

Tr {LRSLPQ}éMNRSPQ

In eq. (2.37), ¢ is a generic fermionic chiral fields, Dy, the covariant derivative on
the associated gauge representation, Visy, Layny and Fyy are the field strength
tensors of the gauge bosons Gy, War and Ay of SU(3)e, SU(2), and U(1)y respec-
tively. £85 is the usual SM Lagrangian, with Lorentz indexes in six dimensions, to
which we are allowed to add a Yukawa interaction also for neutrinos (h = io5h%).
The scalar potential V' is a power series in d'¢. The coefficients of the GS terms
in eq. (2.38) match the one-loop anomalous terms, computed for six space-time
dimensions in [36].

The Lagrangian in eq. (2.38) contains the (gauge non-invariant) terms required
for the cancellation of all reducible gauge anomalies, and the kinetic terms for the

. Ly ST
2-forms By}, with:

. 1
HYe = 4B — Kz—-w:fﬁ (2.39)
L,c
and
¢ = Tr{GAV -1l RGANGAG},
Wy 1”{ 39 A } (2.40)

wh = Tr{WAL-1gRWAWAW}.

The Chern-Simons forms w$” are needed to make HZ]\;,I’}:\,S invariant, and satisfy the
relations ¢ L,ng’c = —dwé “.

The presence of the scalar field i can be used to cancel the U(1) anomalies. The
Higgs field has been decomposed in a doublet ¢ with vanishing hypercharge and a
SU(2), singlet o writing:

h=¢e”. (2.41)

Under a U(1)y gauge transformation do = 3¢'Ra, being o the parameter of the
transformation. As already discussed, in the unitary gauge o = 0, the gauge bosons
acquire mass in the standard way and terms proportional to o in eq. (2.38) vanish.

We have not written explicitly the terms that are needed to cancel mixed (gauge-

gravitational) anomalies, because they are not relevant for the phenomenological
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discussion we are interested in. To achieve the cancellation it is enough to add for

each gauge group couplings of the form
w33+ BTrRAR, (2.42)

with appropriate coefficients, where B are the antisymmetric tensors BY, B¢ and
o F', Q3 is the gravitational Chern-Simon form defined by dQ23 = Tr R AR. R is the
Ricci tensor. For details see [37].

We denote by R? the volume of the compact extra-dimensions, so that the New-

ton constant is related to the fundamental scale M, of the theory by
Mp, = RM} . (2.43)

By writing the dimensionful couplings as g R yields, after dimensional reduction, the
(four dimensional) gauge couplings g5, ¢ and ¢'. The only remaining parameters in
the Lagrangian are the mass parameters My, A”, A€ and the couplings of the scalar

potential.

2.3.2 From the GS mechanism to the axion

The two extra dimensions are assumed to be compact, and the underlying ge-
ometry flat. Chiral fermions in six dimensions correspond to Dirac fermions in four
dimensions, but chirality is recovered by orbifold projection. We assume space-time *

to be

1 1
My x iz%i (2.44)

the product of four-dimensional Minkowski and a torus with orbifold Z5 which im-

pose a symmetry under the parity transformation
ZQ : (y,Z) - (_y7 _‘Z) ) (245)

where (y, z) are the coordinates on the torus S* x S*.

4Every smooth 2-dimensional manifold K has b2(K) = 1, so that the main discussion of this

Section is not affected by the choice of toroidal compactification.
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In what follows, we assume that we are allowed to work in the limit of dimensional
reduction, in which the low-energy Lagrangian contains only the zero modes of the
fields—while higher modes decouple because of their large masses, proportional to
2m/R. The effects of this simplifying assumption should be checked at the end
for consistency to make sure that the large number of these heavier states do not
enhance potentially dangerous operators.

A consistent assignment of Z,-parities makes it possible to have a single massless
chiral field out of each v¥; the projection gives a factor 1/2 in the GS gauge non-
invariant terms in eq. (2.38). The reduced Lagrangian also contains the zero modes
of h and of the gauge bosons, together with two anti-symmetric tensors Buv , and
two pseudo-scalars b, coming, respectively, from the {0123} and {56} sectors, of
the decomposed tensors

BLS, — b = /36 B NN =5,6. (2.46)

The b5 are the model-dependent axions, whose existence is ensured by the second
Betti number by(S' x §') = 1. There is no zero mode for the {56} part of the
field strength tensors. In four dimensions an antisymmetric tensor is equivalent to

a pseudo-scalar (what we called the model-independent axion), and we redefine:

1
Oyt = 266 ”p"HVLpz. (2.47)

We use Greek indexes for 4-dimensional quantities.
The spectrum, after integrating out the compact dimensions, is the same as
in SM, with four additional pseudo-scalar fields ¢, ¢¢, b* and b° [25], and the

Lagrangian becomes:

L = LMy (YI,BNHm)

4 / 3
GRS by BOEA rr
6\/—7r \/——7'(’"

2R3N 2 ~ /ZRSZ_\Z 5
+Qg R LbLFF_ s cchF
144\/—71'3 96+/373
2R3A
Zsd _— Lyl vy (2.48)

+
48f 3
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(&2
(@

1 : 1 c c
+§8ubL oMb + 58,,13 o"b

1 1 .
+50uC" e+ S0
L c

C mrpi- S

e TrVV.
3AZR 3AZR

The Lagrangian £5M in eq. (2.48) is the SM Lagrangian ( in the unitary gauge).

The last terms have been obtained using the (six dimensional) Bianchi identity

. 1
dHYe = _ZQ—dw@C : (2.49)
L,c

that in D = 4 gives the equation of motion for the fields cP and ¢

1

I = - TrLL .
Oe YNT r LL, (2.50)
1 ~
Oc¢ = ———=TrVV.
c SACH rVV

Only three linear combinations ¢1, @2 and (3 of the four pseudo-scalars are cou-
pled to gauge fields by means of axion-like terms, while the orthogonal combination

gives rise to a massless free field with no phenomenological consequence.

2.3.3 Axions

After removing the decoupled scalar from the Lagrangian in eq. (2.48), we obtain

£ = 5™ 4 (V,LHAN +h.c.) (2.51)

1 1 . 1
+-2~3p,<,01 Oty + ’2‘5u992 Oy + 5@@3 M3
1 1

. 1 .
—_ FF 4+ —Tr LL+—Tr VV
+@1 liFlF -+ FlL T -+ Flv T :l

1 I 1 7 1 /'A.:r
‘l"(,Dg ]}FE—TFF'F?;;TI‘ VFX/] +<103 ET?TI V'V ,

where the constant FiF VL are functions of the coefficients in front of the scalar-gauge
fields coupling terms in eq. (2.48). The fields ; have the same couplings of the PQ
axion: they are invariant under translations but for the coupling to the gauge fields.

As we have seen, there are experimental constraints on the axion couplings com-

ing from the combination of cosmological, astrophysical and accelerator searches 138].
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In order to perform the comparison with the experimental constraints, it is necessary
to write down the low-energy effective theory in terms of photons, pions, nucleons

and axions only.

The most stringent bounds on the axion come from astrophysical observations,
i.e. from phenomena involving very low energies: we can safely neglect interactions

with Z and W bosons, and extract only the electromagnetic couplings

TI‘LI/ = %Singgﬂ/’FemFem”*"“

e = COSZQVV Fenzﬁem+"’ )

after the rotation of neutral bosons by the weak angle fy,. Accordingly, only two
combinations out of the three ¢; fields couple to the massless gauge fields: one to
photons and gluons, the other to photons only. The former has the correct couplings
and transformation properties to be identified with the PQ axion. Its presence is
a consequence of the anomaly cancellation, and therefore of the choice of writing a

six-dimensional gauge theory.

Now we turn the coupling to gluons into a coupling to quarks. This can be
achieved by a chiral transformation. Then, using the methods of current algebra,
we rewrite the theory in terms of pions, and eliminate quarks and gluons (for more
details, see for instance [11]).

Adding the coupling of pions to photons, responsible for the decay 70

— 27,
yields the interaction terms needed to compute all the contributions to the mass

matrix of pions and axions. After all of these manipulations we can write
LT = 18 05t 0 16 o+ 18 ‘OFa
= 5 T T+ 5 uG 0" a -+ 5 wadva

(Wo - ) M2, (2.53)

N @
+ (f_ ot }“) gt em Fem. e
b a a
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where
‘mio/A"ni fvr/fa k+fw/fa’
MQ:Am'IQT fw/fa (le‘/fCL)Q f?/(fafa’)
k+fﬂ/.fa’ frz/(fafa’) m72‘—+/Am72r(f7r/2m)2+(fﬁ/fa’)Q
(2.54)
The parameter m = Fy (o, /47) and
p= Tar Ma =y fr (2.55)

Am2 mg + my 2m

The masses m,, and m, are those of up and down quarks, f; ~ 93 MeV is the pion
decay constant, mo and m+ are the masses of the pions, while Am2 = m2, —m2,.
The decay constants are normalized in such a way that the partial decay rate of

neutral pions into photons is

a®m?

D(r® — 29) = Y ]7;2 ~7.6eV. (2.56)

The partial diagonalization of this matrix, performed assuming f, o > f,, makes
it possible to identify the physical pion field and the couplings of the two remaining
light pseudo-scalars a and a’. The coupling of the axions to the photon comes both
from eq. (2.52) and pion-axion mixing. A stringent experimental bound to consider
comes from helium burning lifetimes of red giants, and imposes an upper limit to

the coupling axion-photon [32]
Gary < 10710 GeV! (2.57)

with

1 ~
L= —nga'F“”FW. (2.58)

The limit of vanishing masses for axions can be used. In our case, we have that

1 Amz\ 1’ 1 Am2 for Am2\1?
\/{ﬁ <1+ mfro >} i [fa’ <1+ m,zTo +Afvr mio )} . (2.59)

The coupling g,, depends both on positive and negative powers of A, and A;—

il
AR

Gay

through the parameters m, f, and fu in eq. (2.59), which, in turns, come from the

couplings in eq. (2.48). For a fixed value of the radius R, there exists a minimum of
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o as a function of these free parameters. Taking this minimum and comparing it
with the bound in eq. (2.57), yields a constraint on the possible values of J.

A similar bound is obtained by considering the coupling of axions to nucleons
L= _igal\f N’)/E,N a, (260)
where, in our case

gamy 1 Am2]° 1 /Am?2 for Am? 2
aN = A z — | ="+ k= £ , 2.61
Jay 2 ﬂ fa M2 } * far \ M2, * fr M (2.61)

and g4 is the axial nucleon coupling, whereas my is the nucleon mass. Equation

(2.61) is obtained by including only the mixing between the neutral pion and the
axion.

Limits coming from supernova SN1987a [33] impose
Gay < 3 x 10710, (2.62)
The two bounds eq. (2.57) and eq. (2.62) give
1 6
— > 10" TeV, (2.63)
R
which, applying eq. (2.43), corresponds to
M; > 10" TeV. (2.64)

We have thus obtained an explicit lower limit on the fundamental scale from the

experimental bounds on axion couplings.

2.3.4 Higher-order operators

The model under consideration is non-renormalizable; it must be understood as
the low-energy limit of a more fundamental theory which gives additional interac-
tions above the cut-off scale M. These interactions give rise to operators suppressed
by powers of 1/M that violate the global symmetries of the low-energy theory. How-
ever, because of the limit we obtained for My, these effects are less worrisome than

in models with large extra-dimensions in which the typical scale of such operators
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Ut
Nej

is in the TeV range. Nevertheless, some potentially dangerous operators must be
checked. In particular, operators like
L~ _12—QQQL, (2.65)
Mz
could lead to too fast a proton decay unless Mp is taken of the order of 10'® GeV.
They are, however, excluded by the residual discrete symmetries that remain after
compactification from the SO(5,1) Lorentz symmetry in six dimensions [39].
Operators compatible with these discrete symmetries could, for an arbitrary
phase in the coupling, lead to potentially dangerous electric dipole moments

M 7
L—=ie M-’dgqu# YE,, . (2.66)

Comparing d = emy /M2 with the experimental bound [40]
d, <2x10%ecm, (2.67)
we find
M? > 10" TeV? | (2.68)

which is satisfied by several orders of magnitude for A, ~ My imposing the bounds

of eq. (2.63) and eq. (2.64). The similar flavor violating operator

m
L=ie—tea"” uk,,, (2.69)
"

would induce the decay p — ey with the partial rate

am?®

— [l :
I(p—ey) = A (2.70)

where m,, is the muon mass. Comparing this with the experimental constraint [27],
(= ey) <4x 107 TeV (2.71)
yields

M} > 10° TeV? . (2.72)
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Another class of potentially dangerous corrections comes from Kaluza-Klein
states. The bounds we obtain for the extra-dimensional volume justifies the ap-
proach of working with only the zero modes of the theory: the first Kaluza-Klein
excitations are at a scale much larger than that experimentally relevant and they
can be safely neglected in the computation of observable quantities. Those processes
that take place in the SM only at the one-loop level could be an exception to this
conclusion. However, no relevant effect is expected for our value of the compactifi-

cation radius (see, for instance, [41]).

2.3.5 Summary

We have discussed in details the phenomenological consequences of a six-dimensional
realization of the SM, in which global and irreducible local anomalies to be absent
due to the choice of the fermionic field content, while reducible local anomalies are
cancelled by the GS mechanism.

The cancellation of global anomalies imposes the presence of three generations [22].
Local anomaly cancellation requires that the four-dimensional spectrum contains,
besides the usual fields of the SM, right-handed neutrinos and axion fields. The
axion fields solve the strong CP problem.

The fundamental scale of the theory is related to the decay constant of the ax-
ion; therefore, its value must be large enough to evade experimental bounds. The
fundamental scale is thus bounded. A problem of naturalness remains because of
the large scale My of the theory: the Higgs sector requires fine-tuning in order to
protect the weak scale. A dynamical explanation of the large difference between
the electroweak symmetry breaking scale and the fundamental scale is required be-
cause a Supersymmetric version of the model has been shown to contain irreducible
anomalies [22].

The large scale of the theory protects the phenomenology from the effect of
higher order operators and loop dominated amplitudes, which could otherwise give
potentially large contributions to electroweak precision observables, flavor changing

processes [41] and CP violating quantities as electric dipole moments (see eq. (2.68)).
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We will see in next chapter that a different approach, derived from effective field
theory techniques, allows to achieve anomaly cancellation without the introduction

of any new degrees of freedom.







Chapter 3

From anomaly matching to

anomaly cancellation

When constructing a low-energy action by integrating out some heavy degrees of
freedom, the effective theory must reproduce correctly all the Infra-red phenomena of
the underlying fundamental theory. This is not automatically guaranteed, as shown,
for instance, by the fact that the Appelquist-Carazzone decoupling theorem [42] does
not apply to gauge theories with chiral representations, in which fermions acquire a
mass, after symmetry breaking, throngh Yakawa interactions.

As seen in Chapter 1, anomalies are intrinsically low-energy effects. In particular,
the contribution to the anomalies of heavy chiral fermions cannot disappear when
they have been integrated out. This is the so-called 't Hooft anomaly matching
argument [43]: the anomalies of the fundamental theory, being long-distance effects,
must be equal to those of its low-energy effective action. Indeed, it can be seen that,
after integrating out some heavy degrees of freedom, the effective theory acquires
these gauge non-invariant couplings [44].

When the phenomenon of spontaneous symmetry breaking takes place, so that
some fermions acquire a mass and can be decoupled from the low-energy effective
theory, the Goldstone bosons of the theory acquire gauge non-invariant higher order
couplings such as to reproduce the anomaly given by the integrated out fermions.

These couplings are contained in the WZ effective action [5]: its addition to the

63



64CHAPTER 3. FROM ANOMALY MATCHING TO ANOMALY CANCELLATION

effective action is required by the 't Hooft anomaly matching argument.

We describe how to compute the WZ action, for a chiral theory containing local
anomalies of a group G broken down to a generic subgroup H, clarifying what are
the conditions under which this is possible, and explicitly showing its expression in

the simplest cases.

The use of the WZ action makes possible a better understanding of global anoma-
lies [17, 45], and leads to the development of a powerful algebraic technique for com-
puting these anomalies [18], in generic dimension D, and for generic representations
of a gauge group G.

The WZ term can also be viewed from a different perspective: an anomalous
theory with gauge group G can be rendered gauge invariant by coupling it to G-
valued scalar fields that transform non-linearly under the corresponding gauge sym-
metry, and adding the WZ term to the action [46]. Thus, instead of reproducing
the anomalies of an underlying theory, one can use the WZ term to cancel them.
These G-valued fields can either be introduced as additional degrees of freedom (as
it happens in the effective quantum field theory approach to the GS mechanism) or
be the would-be Goldstone bosons of the spontaneous breaking of the gauge sym-
metry [47]. The GS mechanism has some intrinsic limitations, for instance it applies
only to (local) reducible anomalies, while the WZ term can always be added and

every kind of gauge anomalies canceled.

We discuss in some details the case when both local and global anomalies are
present [48] in D-dimensional effective theories of a gauge group G spontaneously
broken to H. We show how to construct local operators that cancel both local and
global anomalies using the would-be Goldstone bosons of the spontaneously broken
theory without introducing additional degrees of freedom. We establish the set of

conditions under which this cancellation works.

We then apply this technique to the D = 6 dimensional model already introduced
in the previous Chapter, substituting the GS mechanism with the use of the WZ
action. We show that it is possible to cancel all the local anomalies of the theory

without introducing any new degree of freedom. The WZ action cancels also the
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global anomalies, so that the prediction on the number of matter families is lost.

3.1 WZ term and anomaly matching

If W[A] is the effective action for the gauge field A obtained by integrating out

fermions, the WZ term is defined in general by *
Twz (Ag) = WA -WIA], (3.1)

where A9 = g~ Ag+g1dg is the gauge transformed connection. From the definition,

it satisfies the following (cocycle) condition
Tz (A9, U9) —Twz (A U) = —Twz (4,9), (3.2)

where U are the G-valued scalar fields and U9 = ¢g7'U.

Although the fermionic effective action is nonlocal, the WZ action is local, as
discussed in Chapter 1. The standard way of deriving an explicit expression for the
W7 action is through the dimensional descent. Assume that the boundary conditions
on the fields are such that space-time can be compactified to a D-dimensional sphere.
We can think of this sphere as the boundary of a D + 1-dimensional ball B. Assume
for simplicity that the gauge fields are topologically trivial (no instantons) and that
the scalar fields are homotopically trivial. (This will automatically be the case if
the homotopy group 7p(G) = 0, but we need not assume this). Then the fields can
be extended to a gauge field A and a scalar field {7 defined on all of B. Let Q(A)
be the Chern-Simons functional, the integral of the (D + 1)-form w9, +1(/:1) on B. Its

gauge variation under a gauge transformation g is the WZ action:
Twz (A, 9) = QA% - Q(A), (3.3)

where § is a gauge transformation in B which coincides with g at the boundaries.

Even though the right-hand side of eq. (3.3) is written in terms of the fields on B,

n order to avoid confusion between gauge transformations and scalar fields with values in
the group G, here and in the following we slightly modify the notation in respect to the previous
Chapters. We refer to gauge transformations as g(z), while the U(z) are G-valued scalars. We

also drop everywhere the explicit indication of the gauge coupling.
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it is the integral of an exact form (to see this, see eq. (1.103)) and therefore can be
rewritten as an integral on the D-dimensional space-time, depending only on the
boundary values of the fields A and U. This gives an explicit, local formula for the
W7 term.

Since there is usually a nontrivial unbroken group H, one has to generalize
the W7 term to the case of G/H-valued, rather than G-valued, scalars ¢. Let us
review more explicitly how this construction works, following closely the analysis
in [49, 50]. Consider a given D-dimensional action with a local gauge symmetry G
spontaneously broken to a subgroup H. We denote by T4 the whole set of generators
of the Lie algebra of G, whereas 7" and T* are, respectively, the generators of the Lie
algebra of H and of the coset G/H. We assume that G'/H is a reductive space, i.e.
that [T%, T = i fiasT?. Assume also that the fermion content of the corresponding

action gives rise to the following anomaly:

W) = — [ PogelAE),
SWIA] = 0, (3:4)

where G® denotes the usual one-loop gauge anomaly. In other words, eq. (3.4)
implies that any potentially anomalous fermionic one-loop amplitude vanishes as
soon as one of the external gauge fields belongs to H.

To write a WZ term, we now assume that there exists a unitary gauge, i.e. that
there is a globally defined gauge transformation U (z) that transforms the G/H-
valued field ¢(z) to a constant. 2 This is a purely topological restriction on ¢; it is
less restrictive than the assumption of being homotopic to a constant.

This gauge transformation U is not unique: two G-valued maps U and U’
correspond to the same ¢ if and only if they differ by a right-H transformation:
U'(z) = U(z)h(z). Thus we can use U as a dynamical variable instead of ¢, but
in doing so, we introduce an additional H gauge freedom. Having reformulated the

theory in terms of U, we can add to the action a WZ term I'wz(A,U). Because of

2This is always true whenever the gauge field A and its components in H are topologically

trivial. More general cases can be however similarly analyzed.
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eq. (3.4), Twz(4,Uh) =Twz(A,U), so it depends only on the coset ¢(z) = U(z)H

3

i.e. on the would-be Goldstone boson fields. In this case we will therefore write
vaz(A7 (,9) = FWZ (A, U) . (35)

We can give a concrete expression for the WZ term, if it is possible to write
U(z) = " ®T% This amounts to choosing a specific coordinate system on the coset
space and can generally be valid only locally. The fields £*(z) can be identified with

the Goldstone bosons. In this notation
Iwz(A €)= z'/oldt /dDa: £%(x) G [Ay], | (3.6)
where
Ay = e AL 1 jem i ge (3.7)

In particular, in the simple case of G = U(1) and H = {1} one can easily check that

this reduces to the form

Tywz(A ) ~ / EFF, (3.8)

We already met two times this coupling: in Chapter 1, when we reviewed the ar-
gument of Gross and Jackiw to discuss the correlation between anomalies and non-
renormalizability [6], and in Chapter 2 in the context of the GS mechanism in
D =4 [26].

This procedure can be used also when the second condition in eq. (3.4) is replaced

by the weaker condition
6WIAg] =0, (3.9)

where Ay denotes the component of the gauge field in the sub-algebra of H, i.e.
when the fermion representations, restricted to the subgroup H, are free of local
anomalies.

The two requirements can be expressed in terms of the D-symbols D% 4

defined generalizing eq. (1.20). Respectively, eq. (3.4) is equivalent to the vanishing
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of Deren whenever at least one of the indexes labels an element of H, while
eq. (3.9) requires that the D-symbol is zero when all of the indexes label generators
of H.

We already stressed that the anomaly is defined up to the addition of polynomial
(local) terms: as shown in [49, 50], if eq. (3.9) holds, one can add to the action a
local functional Bp(Ag, A) such that the second relation in eq. (3.4) is satisfied
(see [50] and eq. (3.30) below for an explicit expression of Bp(Ag, A)). Thus, in
this more general setting, all local anomalies are reproduced by the presence in the

low energy action of the modified W7 term
W (A U) = WAY] - W'4], (3.10)
where

W'[A] = W[A] + Bp(Au, A). (3.11)

3.2 Computing global anomalies

Besides the construction of the low energy effective field theory of chiral fermions,
the WZ action enters also a very important technical issue: the computation of
global anomalies. We saw in Chapter 1 how Witten discovered the SU(2) global
anomaly, by making use of the index theorems. We want here to illustrate a different
algebraic technique, which allows a more systematic exploration of the possible
global anomalies arising from a generic chiral representation of a group G, in any
even dimensions.

In [17], Witten considered the following question. Let us build the effective
action of the chiral model based on the group K = SU(3); x SU(3)gr, which is
broken down to the vectorial H = SU(3). The effective action containes gauge
bosons and Golstone bosons only. Certainly there are local anomalies of K, but it
is perfectly meaningful to think of the chiral symmetry as a global symmetry of the
action, whose anomalies enter the low-energy phenomenology. The subgroup H is

anomaly free, and my(K) = 0, so that one can build the WZ term: there are no
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global anomalies nor topological obstructions to the construction developed in the
previous Section.

But what are the conditions under which it is possible to quantize a subgroup G
of K7 These conditions amount essentially to the requirement of G' being anomaly
free.

If one tries to gauge G = SU(2), there are no local anomalies, because, in
D = 4, SU(2) admits only real representations. But in D = 4 there are global
SU(2) anomalies. Let us consider a topologically non-trivial map W in G: it can
be written as a map W in K, which now can be continuously deformed (in K) to
the identity 1 (of K). This deformation requires to act with gauge transformations
that cannot belong to GG, and therefore are, in general, anomalous, because K has
local anomalies. Witten showed explicitly [45, 17] that the total phase shift of the

W7 action, along the deformation from W to 1 is:
Dy, (WaAW 1 W) — Twz(0,1) = 7. (3.12)

This is precisely what we found in Chapter 1, when we computed the global anomaly
of SU(2) by making use of the index theorem.

So, we discover that the WZ term reproduces also global anomalies. This is
quite a general result, and we will discuss in more detail the construction of such
WZ terms in Section 3.3, although with a different aim.

Here we want to stress another important consequence of this observation. There
is in fact another (technical) application of the WZ action, to the computation of
global anomalies. The global anomaly of the subgroup &, which is free from local
anomalies, can be computed as the total phase shift of the WZ action due to the
local anomalies of the larger (homotopically trivial) group K.

Exploiting this idea, Elitzur and Nair in [18] constructed a general procedure,
based on the algebraic structure given by the existence of the exact sequence of

homotopy groups: 3

TD+1 (I{) — Tp+1 (K/G) *-)WD(G) —r D (K) = 0. (314)

3 A sequence is a set of groups G, and of homomorphisms f : G = Gny1. It is said to be




TOCHAPTER 3. FROM ANOMALY MATCHING TO ANOMALY CANCELLATION

Assume we have chiral representations r of the homotopically non-trivial group
G such as not to have perturbative anomalies. Suppose there exists a group £ D G
such that 7p (K) = 0. We embed r in a representation R of K such that R =r+1’s
upon reduction to G.

One can compute the variation (global anomaly) of the WZ action obtained
integrating a certain chiral representation 7 of G, deducing from eq. (3.14) exact
relations between the generators of the various homotopy groups, and then using
the known results about the local anomalies of K due to R.

For instance, consider the exact sequence:

SU(n+1)

Tons1 (SU(n + 1)) = Topi1 < S0

) — o (SU(N)) — 7oy, (SU(R+ 1)),

Z — Z — Zin — 0.

One uses this exact sequence in order to see that the generator k of o1 (SU(n + 1))
gets mapped onto ™, where f is the generator of mon4y (SU(n +1)/SU(n)). Then
one sees that the image of f is the generator § of 7y, (SU(n)) (written as a SU(n+1)
transformation extended to S?"*1).

In this way, knowing that the generator of mo, 11 (SU(n + 1)) causes a 27 shift of
WZ action [51] defined integrating out a fermion on the fundamental representation
of SU(n + 1), one obtains simple algebraic expressions for the phase shift ¢ of the
WZ action due to the global anomaly of SU(n):

5 = Az (3.16)

n!

The factor Ap takes into account that the normalization of the anomaly depends

on the choice of R, and in terms of the trace over the fundamental one defines:

Trp F™ = ApTr P 4 oo (3.17)

exact if for each n one has

Im fu_y = Ker f,. (3.13)
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where we omitted factorized terms which correspond to lower dimensional traces,
that can be seen to define exact forms on SP*!, and then give no contribution to
the phase shift we are discussing.

This technique also shows that the global anomaly of G is connected to irre-
ducible (local) anomalies of the group K. This property is relevant in extending the
construction to the case in which the fermion field content produces local anomalies
which can be canceled by the GS mechanism [34]: any GS terms, having to do with
factorized anomalies, cannot contribute to global anomalies.

In the case discussed by Witten, SU(2) in D = 4, this procedure works: after
building the embedding onto the homotopically trivial group SU(3)—considering
the fundamental representation of SU(3) decomposed into the fundamental of SU(2)

and a singlet—from eq. (3.16) one gets again the known result ¢ = .

3.3 Canceling local and global anomalies

We have seen that the WZ term reproduces in the low-energy effective theory
the effects of both local and global anomalies. We also have seen that one can make
use of the WZ action as a technical tool in order to compute the global anomalies
of a group G, provided an exact sequence of homotopy groups can be built relating
the global anomaly of G to known results on local anomalies of a larger group K in
which to embed G.

In this Section we show that the WZ action can have also a completely different
interpretation: it is possible to cancel both local and global anomalies of a gauge
theory of the group G spontaneously broken to a subgroup H, by the addition of

generalized WZ terms to the action. This can be done provided that: *
1. the coset space G/H is reductive;

2. the fermion representations are free of local anomalies when restricted to the

group H;

4 A possible limitation of this procedure arises whenever we wish to preserve further symmetries

of the original action that are explicitly broken by the introduction of these operators.
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3. the fermion representations are free of global anomalies when restricted to the

group H;

4. (G can be embedded in a group K such that its homotopy group mp(K) =0
and the fermion representations can be extended to K without generating

further anomalies of G.

Conditions 1 and 2 have been derived for local gauge anomalies [49, 50], as discussed
already in Section 3.1, while conditions 3 and 4 are closely related to the results
of [17, 45, 18], as discussed in Section 3.2. We need to generalize the idea of Elitzur
and Nair of computing global anomalies as local anomalies of a larger group K [18]:
we argue that the operators constructed in [49, 50] can be used to cancel local
anomalies of G, but can also be properly defined globally and used to cancel global
anomalies of G, provided the above four conditions are satisfied.

This result is of interest in model building in so far as the fermion content of
an effective theory is only restricted by the cancellation of the anomalies of the
unbroken group H.

If 7p(G) = 0 = np(G/H), so that no global anomalies can arise, and the low-
energy theory contains both fermions and scalars, if we add to the scalar action
the WZ term, then the effective action ['(A, U) = W[A] + 'y, (A, U) is seen to be
gauge invariant by means of eq. (3.1) and eq. (3.2).°

Once gauge invariance is restored, it is possible to shift the fields in such a way
as to decouple the Goldstone bosons ¢, and give mass to the gauge bosons of G/H
(unitary gauge). The presence of the term defined as in eq. (3.10) in the generic
gauge signals however the non-renormalizability of the theory. An explicit proof of
non-renormalizability in the 't Hooft-Landau gauge is given in [47]. This can also
be understood, as anticipated in Chapter 1, by looking at the diagram giving rise
to the anomaly: it contains off-shell non-analytic contributions [1] that cannot be

canceled by any local counter-term.

5Tt can be shown that the addition of the WZ term cures also the problems arising in the
canonical formulation of the theory [53], so that the quantum theory, aside from renormalizability

issues, is well defined.
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As long as local gauge anomalies are concerned, effective theories, for which
renormalizability is not a requirement, can be made anomaly free by the addition
of an appropriate WZ term. No restriction on the fermion content of the theory is

needed, provided that the first two conditions listed above are satisfied.

So far, our analysis has been purely local without considering possible topolog-
ical obstructions or possible global gauge anomalies. In fact, a potential problem
may arise in the above construction whenever mp(G/H) # 0 [50], because all the
construction of the WZ term outlined in Section 3.1 requires the extension of all
the G-valued maps to the D + 1-dimensional ball B. On the other hand, the same
condition of having a non-trivial homotopy group can give rise to global anomalies.
Let us see how to generalize the above procedure in order to take into account these

global issues and remove the above topological condition.

To begin with, we assume that no local anomalies are present. As we have seen,
even a theory which is free of local anomalies—i.e. invariant under infinitesimal
gauge transformations—can still be anomalous under gauge transformations that

are not homotopic to the identity. This can occur whenever 7p(G) # 0. °

Extending the results of [46], it is always possible to cancel any global anomaly
by coupling the theory to a G-valued scalar field U(z) and adding a suitable WZ
term «y to the action [54]. The absence of local anomalies means that -, defined as
in eq. (3.1), is zero, independently of A, when g is homotopic to a constant. Every g
in a certain homotopy class can be written as gig’ where g¢; is a fixed (representative)
map in that same homotopy class and ¢’ is homotopically trivial. Then from the

cocycle condition (3.2) one sees that

fY(A7 ng) - 7(A7 .gl) ) (318)

s0 7 is invariant under continuous deformations of g. In conclusion, v depends only

on the homotopy class [g] and therefore can be seen as a topological term. From

6When space-time is not flat, or instantons are present, the conditions can become more com-

plicated. We do not consider these cases.
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eq. (3.2) we also see that it must define a representation of mp(G):

(g1 - g2) = v(91) +v(g2) - (3.19)

We are especially interested in the case where the scalar fields do not have to be
introduced ad hoc, but are already present in the theory. We are thus led to ask:
if the G gauge symmetry is spontaneously broken to I due to a Higgs mechanism,
can one cancel the global anomalies of the low-energy effective theory by means of a
WZ term written as a functional of the would-be Goldstone bosons? The answer is
that this is possible if the fermion representations, restricted to H, are free of global
anomalies.

To show this, we start again by replacing the coset-valued field ¢ by the G-valued
field U. Having reformulated the theory in terms of U, we can write WZ terms (U)
cancelling any global anomaly, using the method described above. Of course, as in
Section 3.1, we want these terms to depend only on the physical scalar fields ¢. This
will automatically be the case if the unbroken group H is free of global anomalies.

Indeed, in this case it follows from (3.19) that

(U - h) =~U) +~(h) =~(U), (3.20)

and therefore v really only depends on the (homotopy class of the) coset-valued
field (z). Global H anomalies will certainly be absent if mp(H) = 0, but even
if 7p(H) is nontrivial the theory may be free of global H anomalies provided the
fermion representations are chosen appropriately. In this case, global anomalies can
be present only when mp(G/H) # 0.

One may be interested in a general method for calculating the topological term
- 7: following the discussion in [45] and [18], as we discussed in the previous Section,
it can be written as a WZ term, albeit for a larger group. Let us get back to this
construction, and discuss it in our context of anomaly cancellation. The construction
of the WZ term given in eq. (3.3) demands that the map U be homotopic to a
constant. If U is not homotopic to a constant one can still proceed by embedding G

in a larger group K such that 7p(K) = 0. One then defines a map U by composing
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0B = 8§P - G/H

Figure 3.1: Diagrammatic representation of the algebraic construction described
in the text. The coset valued scalar fields ¢ are lifted through 7=! to the fields
U, and the homotopically non-trivial group ¢ is embedded in K by ¢. The maps
U = 1o U are homotopically trivial in D dimensions, so that they can be extended
to U, defined in the D+ 1-dimensional ball B, whose boundary is the D-dimensional
space-time OB = &P ( compactification to a sphere is assumed). In the simpler case

when 7p (G) = 0, then K = G, ¢ is the identity in G, and U = U.

U with this embedding 1, and a gauge field A by the corresponding embedding of
the Lie algebras. One can for instance write:
U= vo and A= 40 . (3.21)
0 1 00
The fermion content of K is so chosen that upon reduction to G it gives rise to the
required ¢ representations and a number of G singlets (or anomaly-free representa-
tions of ). The diagram of this construction in depicted in Fig. 3.1.
The field U is homotopic to a constant (in &) and one can explicitly write the WZ
term ', (A, T) asin eq. (3.3), by defining the extension U to the D+1 dimensional

ball B. As described above, if the theory is free of perturbative anomalies we can



76 CHAPTER 3. FROM ANOMALY MATCHING TO ANOMALY CANCELLATION

take simply
1(9) = Tivz (4,9), (3.22)

where § = 10 ¢g. Thus, the WZ term canceling the non-perturbative G-anomaly can
be calculated as a perturbative WZ term for the larger group K, along the lines
of [18].

Finally, we are ready to consider the generic case when the theory has pertur-
bative anomalies, with only & W[Ag] = 0, and at the same time mp(G/H) # 0. In
Section 3.1 we have seen, following [49, 50], that it is always possible to add to the
action a local operator Bp(Ag, A) such as to construct a WZ term as in eq. (3.10),
that cancels the perturbative anomalies. This WZ term is well defined when the
map U is homotopic to a constant. We have also described a way of writing a WZ
term for a larger group K that, when restricted to the subgroup G, makes sense for
all maps U, irrespective of their homotopy class. If there are local anomalies, this
WZ term, now denoted I, (A, U), is no longer topological. In fact, one can see by
means of eq. (3.21) that when U is homotopically trivial, it agrees with I'y, 7 (A, U)
defined in eq. (3.10). There follows that, defining

%/VZ (A7 U) = Fggz (Aa 0)7 (323)

the resulting effective action, obtained with the addition of this local term, is defined
for all maps U, whether trivial or not, and free of both local and global gauge
anomalies for the group G spontaneously broken to H. 4

A physical interpretation of the group K can be given (although not necessary),
along the lines of [44]. One can imagine a microscopic theory with a gauge group K
and a completely anomaly free (local and global) fermion spectrum. The fermions
are in representations of K such that, upon the spontaneous breaking of K to
G, they give rise to the required fermions in representations of G. The massive
fermions that are integrated out produce the WZ term I, (A4, U) above. There are

other effects due to the heavy fermions, for instance they may enter the radiative

TEven in the absence of global anomalies, this construction generalizes that of [50], which is

limited by the condition wp (G/H) = 0.
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—~I
~1

corrections to the masses of the scalar fields, but, for what anomalies are concerned,

'K satisfying the 't Hooft argument, reproduces all the physics of the fundamental
theory. On the other hand, it is not necessary to invoke the existence of these heavy
fermionic fields: in general gauge non-invariant effective couplings could have other
origins. For instance, we have seen that in the simplest case of an Abelian Higgs
model, the same coupling I'i%, can be deduced from the compactification to four

dimensions of Superstring theories [26].

3.4 The Standard Model in Six Dimensions

Let us go back to the six-dimensional version of the Standard Model [22] we
discussed in Chapter 2, and try to apply the mechanism discussed here. We keep the
same field content for each single family as in Table 2.2, which was restricted by the
requirement of having a vector-like theory of strong and gravitational interactions

As we saw, the application of the GS mechanism to the reducible gauge anoma-
lies, with the introduction of two GS (2-form) fields, leaves some pseudo-scalar rem-
nants in the low-energy D = 4 effective theory (after compactification of the two
extra dimensions). These fields behave as axions: they solve the strong-CP prob-
lem, but impose severe constraints on the volume of the compact extra-dimensions,
requiring a very heavy fundamental scale in the theory, in the range of GUT theo-
ries. This fact produces a naturalness problem in the scalar sector: the Higgs mass
must be many orders of magnitude lower than the fundamental scale, in order to
reproduce correctly the mass of the electroweak gauge bosons.

As we discussed in this chapter, there is also another way, besides the GS mech-
anism, to cancel gauge anomalies: instead of introducing new degrees of freedom
transforming non-linearly under the action of the gauge symmetry, one can use the
non-linear realization provided by the Goldstone bosons already present in the spec-
trum, by the addition of a WZ term to the action. In this way no axionic remnants
are left in the D = 4 effective theory.

Let us verify that this idea works correctly, and what are its main effects. The
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choice of fermion content guarantees that the model has no pure gravitational
anomaly. The addition of a local Chern-Simons term shifts mixed gravitational
anomalies into gauge anomalies.

We can thus identify the groups of the previous sections with those in [22]

K = SUM@).xSUMA4)L,xU)y
G = SU(3).x SU2), x (1)y , (3.24)
H = SU(B)C X U(l)e.m_.

Since
e (G/H) = Tg (SU(Q)) :Zlg, (325)

we have enlarged G to K for which 7g (K) = 0.

Each SU(2) doublet in Table 2.2 goes into the fundamental representation of
SU(4) (to be decomposed into a SU(2) doublet plus singlets). In addition to the
already-present singlets, more singlets are necessary in order to preserve the U(1)}
anomaly. Notice that the choice of vector-like representations of the group SU(3).
makes the theory free from global and irreducible SU(3), anomalies, but does not

prevent from the presence of anomalies in the form
[SU@)L)” [SUB)], (3.26)

and similar, so that the subgroup H is not anomaly free, but it is simple (using the
definition of electric charge @ = Y + 1) to verify that, with the field content in
Table 2.2, fermions form representations of group H such that the weaker condition
leading to the Bg term is satisfied: there are no anomalies in the form H*, which has
only vector-like representations. One rearranges the generators Y and 7" of U(1)y

and SU(2);, respectively, in the following way:
Q = Y+713
7 = Y -TF . (3.27)
T = T!' &+ 77
the set {Q, A%}, where \* are the generators of SU(3), (Gell-Mann matrices), form
a complete set of generators of H, while T® = {Z,T*} generate the coset G/H.



3.4. THE STANDARD MODEL IN SIX DIMENSIONS 79

All the A* commutes with the T generators, while:

[Z,Q] - 0

Tt Q) - w7 (3.28)

which demonstrate that G/H is reductive. So all the conditions required in order
to write the WZ term hold, and therefore the WZ term can be used to cancel all
anomalies, as explained in the previous Section. This term can be explicitly written

as
1
v, = - [ g, (3.29)
0

where G'*(A4;) = G*(A4;) + 6aBs(Ag, A), with
Bs(Ao,Al) =12 / dud/\Str[AO,Al,Fi,/\], (330)
A

and A; is defined in eq. (3.7). Following the notation of [50], we defined:

—1\fr
Str[Cy,---,Cn] = Z( N)l Tr[Cp, - --Cpy ],
e !
Fup = dd+ A2, (3.31)

A/i,/\ = MAQ + )\Al .

In eq. (3.29), the fields £* are the longitudinal components of the massive gauge
bosons W and Z. G® is the (one-loop) anomaly. All fields must be thought as
K-valued, as in eq. (3.21). The integration region A is a triangle in the (u, A) plane
with vertices (0,1), (1,0) and the origin; fp is the number of times the permutation
P permutes two odd objects.

The term Bg in eq. (3.29) remains, even in the unitary gauge, as a Chern-
Simons coupling between gauge bosons, and gives rise to dimension-six operators
after compactification to D = 4. These operators are suppressed by a coefficient
proportional to the compact volume R?. Even though they modify, for instance,
the photon couplings, we expect their effects to be negligible because R ~ few
TeV~1 [41].

Thanks to this construction, no GS fields are needed; since there are no axions

in the low energy D = 4 theory, their experimental bounds do not apply. However,
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all global anomalies are canceled as well, and therefore the interesting prediction on
the number of families is lost. A similar procedure might be relevant also for other

six-dimensional extensions discussed in [55].
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Introduction

In recent years the experiments with solar and atmospheric neutrinos have pro-
vided strong evidences in favor of the existence of oscillations between the flavor
neutrinos, v, v, and v,. Further progress in our understanding of the neutrino mix-
ing and oscillations requires precise measurements of the parameters entering the
oscillation probabilities: the neutrino mass-squared differences and mixing angles,
and the reconstruction of the neutrino mass spectrum.

Reactor experiments give the possibility to test the Large Mixing Angle (LMA)
Mikheev-Smirnov-Wolfenstein (MSW) solution of the solar neutrino problem. While
the KamLAND experiment should be able to test this solution, a new experiment
with a shorter baseline might be required to determine the mass difference Amé en-
tering solar neutrino oscillations with high precision if the results of the KamLAND
experiment show that Am2 > 107* eV?. Performing a three-neutrino oscillation
analysis of both the total event rate suppression and the e*-energy spectrum dis-
tortion caused by the 7,—oscillations in vacuum, we show that a value of Amé
from the interval 107* eV? < Am2 < 8.0 x 107* eV? could be determined with a
high precision in experiments with L 22 (20 — 25) km if the e*-energy spectrum is
measured with a sufficiently good accuracy.

Furthermore, if Am2 2 (1.0 — 5.0) x 107 eV?, such an experiment with [ =
(20 — 25) km might also be able to distinguish between the cases of neutrino mass
spectrum with normal and inverted hierarchy; for larger values of Am2 not exceeding
8.0 x 107* eV?, a shorter baseline, L = 10 km, should be used for the purpose.

The indicated possibility poses remarkable challenges and might be realized for

a limited range of values of the relevant parameters. The corresponding detec-
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tor must have a good energy resolution (allowing a binning in the positron energy
with AF, £ 0.40 MeV) and the observed event rate due to the reactor v, must
be sufficiently high to permit a high precision measurement of the et-spectrum.
Furthermore, the mixing angle constrained by the CHOOZ and Palo Verde data 6
must be sufficiently large (sin?# ~ 0.03 — 0.05), and the “solar” mixing angle
should not be maximal (sin® 20, < 0.9). In addition, the value of Am2,, which is
responsible for the dominant v, — v, and 7, — ¥, oscillations of the atmospheric

neutrinos, should be known to high precision.



Chapter 4

Neutrino Problem and

The atmospheric neutrino data can be explained by dominant v, — v, and
v, — U, oscillations, characterized by large, possibly maximal, mixing, and a mass

squared difference, Am?2, , having a value in the range [1] (99% C.L.):
1.3 x 107%V? < |Am2,,| £ 5 x 107%eV?, (4.1)

The first results from the Sudbury Neutrino Observatory (SNO) [2], combined with
the mean event rate data from the Super-Kamiokande (SK) experiment [3], provide
a very strong evidence for oscillations of the solar neutrinos [4] - [10]. Global anal-
yses of the solar neutrino data, including the SNO results and the SK data on the
e~ —spectrum and day-night asymmetry, show that the data favor the LMA MSW
solution of the solar neutrino problem, with the corresponding neutrino mixing pa-
rameter sin® 20y and mass-squared difference Am2 lying in the regions (99.73%

C.L.):

2 x 107%V? £ Am? < 8 x 107%eV? (4.2)

0.6 <sin?20, < 1. (4.3)
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The best fit value of Am2 found in the independent analyses [5, 6, 7, 9] is spread
in the interval (4.3 —6.3) x 107° eV2. The results obtained in [5, 6, 7, 9] show that
values of Am2 > 107* eV*? are allowed already at 90% C.L. Values of cos20, < 0
(for Amd > 0) are disfavored by the data.

Important constraints on the oscillations of electron (anti-)neutrinos, which play
a significant role in our current understanding of the possible patterns of oscillations
of the three flavor neutrinos and anti-neutrinos, were obtained in the CHOOZ and
Palo Verde disappearance experiments with reactor 7, [11, 12]. The CHOOZ and
Palo Verde experiments were sensitive to values of neutrino mass squared difference
Am? > 1073 eV?, which includes the corresponding atmospheric neutrino region, eq.
(1). No disappearance of the reactor 7, was observed. Performing a two-neutrino
oscillation analysis, the following rather stringent upper bound on the value of the
corresponding mixing angle, 6, was obtained by the CHOOZ collaboration * [11] at
95% C.L. for Am? > 1.5 x 107%eV*:

sin? 6 < 0.09. (4.4)

The precise upper limit in eq. (4.4) is Am?*-dependent: it is a decreasing function of
Am? as Am? increases up to Am? ~ 6-107° eV? with a minimum value sin® § ~ 1072,
The upper limit becomes an increasing function of Am? when the latter increases
further up to Am? ~ 8 -107 eV? where sin’f < 21072 Somewhat weaker
constraints on sin? @ have been obtained by the Palo Verde collaboration [12]. In
the future, sin® # might be further constrained or determined, e.g., in long baseline
neutrino oscillation experiments [13].

The long baseline experiment with reactor 7, KamLAND [14] has been designed
to test the LMA MSW solution of the solar neutrino problem. This experiment is
planned to provide a rather precise measurement of Amg and sin? 205. Due to the
long baseline of the experiment, L ~ 180 km, however, Am2 can be determined

with a relatively good precision only if Am2 < 107* V2.

1The possibility of large sin® # > 0.9 which is admitted by the CHOOZ data alone is incompatible

with the neutrino oscillation interpretation of the solar neutrino deficit (see, e.g., [15, 16])
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The explanation of both the atmospheric and solar neutrino data in terms of
neutrino oscillations requires, as is well-known, the existence of 3-neutrino mixing

in the weak charged lepton current:

3
Vi, = Z Uljl/ﬂ” (45)
j=1

where vz, | = e, pu, 7, are the three left-handed flavor neutrino fields, v;1, is the
left-handed field of the neutrino v; having a mass m; > 0 and U is a 3 X 3 unitary
mixing matrix - the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing
matrix [17, 18]. The three neutrino masses myp;s can obey the so-called normal
hierarchy (NH) relation m; < my < ma, or that of the inverted hierarchy (IH) type,
mz < my < my. Thus, in order to reconstruct the neutrino mass spectrum in the
case of 3-neutrino mixing, it is necessary to establish, in particular, which of the two
possible types of neutrino mass spectrum 1is actually realized. This information is
particularly important for the studies of a number of fundamental issues related to
lepton mixing, as like the possible Majorana nature of massive neutrinos, which can
manifest itself in the existence of neutrino-less double S-decay (see, e.g., [19, 20]). It
would also constitute a critical test for theoretical models of fermionic mass matrices
and flavor physics in general.

Tt would be possible to determine whether the neutrino mass spectrum 1is with
normal or inverted hierarchy in terrestrial neutrino oscillation experiments with a
sufficiently long baseline, so that the neutrino oscillations take place in the Earth
and the Earth matter effects in the oscillations are non-negligible [21, 22, 23]. The
ambiguity regarding the type of the neutrino mass spectrum might be resolved
by the MINOS experiment [13], although on the bascline of this experiment the
matter effects are relatively small [21]. This might be done in an experiment with
atmospheric neutrinos, utilizing a detector with a sufficiently good muon charge
discrimination [24]. The experiments at neutrino factories would be particularly
suitable for the indicated purpose [22, 23].

In the context of three-neutrino oscillations, we study [25] the possibility of using

anti-neutrinos from nuclear reactors to explore the AmZ > 107 eV? region of the
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LMA MSW solution. Such an experiment might be of considerable interest if, in
particular, the results of the KamLAND experiment will confirm the validity of the
LMA-MSW solution of the solar neutrino problem, but will allow to obtain only
a lower bound on AmZ due to the fact that Am2 > 107* eV? [26, 27, 28]. We
determine the optimal baseline of the possible experiment with reactor 7., which
would provide a precise measurement of Amé in the region 1074 eV? < Amé <8 X
107* eV2. Furthermore, the same experiment might be used to try to distinguish
between the two types of neutrino mass spectrum - with normal or with inverted
hierarchy. This might be done by exploring the effect of interference between the
amplitudes of neutrino oscillations, driven by the solar and atmospheric Am?, i.e.,
by Amg and Am2, . For the optimal baseline found earlier, L & (20 — 25) km, the
indicated effect could be relevant for 107 eV? < Amg £ 5 x 107 eV2. For larger
values of Am2 within the interval (4.2), the effect could be relevant at L 22 10 km.
Distinguishing between the two possible types of neutrino mass spectrum requires
a relatively high precision measurement of the positron spectrum in the reaction
Ve +p — et +n (ie, a high statistics experiment with sufficiently good energy
with very high precision, sin® 20, # 1.0, e.g.,

resolution), a measurement of Am?, -

sin® 20, < 0.9, and a sufficiently large value of the angle 6, which for Am?2 < Am2,
controls, e.g., the oscillations of the atmospheric v, and 7, and is constrained by the
CHOOZ and Palo Verde data.

In this context, we will focus on theoretical and phenomenological considerations.
For what concerns the actual feasibility of the proposed experiment, the search for
an appropriate reactor site, the study of the backgrounds, and the discussion of the

detector characteristics, the interested reader can find a detailed preparatory study

in [29].

4.1 The 7, survival probability

We shall assume in what follows that the 3-neutrino mixing described by eq. (4.5)

takes place. We shall number (without loss of generality) the neutrinos with definite
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mass in vacuum vy, j = 1,2, 3, in such a way that their masses obey m; < msy < ms.
Then the cases of NH and IH neutrino mass spectrum differ, in particular, by the
relation between the mixing matrix elements |Ug;|, j = 1,2,3, and the mixing an-
gles g and 0 (see further). With the indicated choice one has AmZ, > 0 for j > k.
Let us emphasize that we do not assume any of the relations m; < my < mg, or
my & Mo <K mg, or my K my & mg, to be valid in what follows.

Under the conditions of the experiment we are going to discuss, which must have
a baseline L considerably shorter than the baseline ~ 180 km of the KamLAND ex-
periment, the reactor 7, oscillations will not be affected by Earth matter effects when
the 7, travel between the source (reactor) and the detector. If 3-neutrino mixing
takes place, eq. (4.5), the 7, would take part in 3-neutrino oscillations in vacuum on
the way to the detector.

‘We shall obtain next the expressions for the reactor 7, survival probability of in-
terest in terms of measurable quantities for the two types of neutrino mass spectrum.

In the case of normal hierarchy between the neutrino masses we have:

AmZ = Amj,, (4.6)
and
Uet| = cos0\/1 — [Ues|?,  |Uso| = sinfp/1 — [Uss?, (4.7)
where

Op = b19, |Ues)® = sin® 0 = sin® b33, (4.8)
015 and 013 being two of the three mixing angles in the standard parameterization
of the PMNS matrix (see, e.g., [16]). Note that |Ues)? is constrained by the CHOOZ
and Palo Verde results. It is not difficult to derive the expression for the 7, survival

probability in the case under discussion:

PNH(De — De)
AmZ L
= 1-—2sin’*fAcos?d 1 —cos —2—
sin” 6 cos ( Cos 2B,
Ami L
25,

1
~ 3 cos* 8 sin® 20, <1 — €08

2 2 2
+ 2sin? 0 cos? 0 sin? b, <cos <Am31 L_ Am®L> o Amg, L) ’

2F, 2K, 2L,
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where E, is the neutrino energy and we have made use of egs. (4.6), (4.7) and (4.8).
If the neutrino mass spectrum is with inverted hierarchy one has (see, e.g.,

(30, 20, 16]):
AmZ = Am3,, (4.10)

and
ergl = COS 9@\/ 1- 1U61!2, IUegl = sin@@w 1- $U61|2< (411)
The mixing matrix element constrained by the CHOOZ and Palo Verde data is now

erlig .
| U1 |> = sin® 0. (4.12)

The expression for the 7, survival probability can be written in the form [31]:

P[H(ﬂe — De)

Am2 L
= 1-—2sin*6 cos®d (1 — oS —5%)
1 . Am2 L
- 3 cos* § sin® 20 (1 — €08 QEOV ) (4.13)
- Am3 L Amg L Am2, L
+ 2sin%8 cos?f cos? b, (cos ( 25, - QEO,,, > — 0S8 _2];1” ) _

Several comments concerning the expressions for the 7, survival probability, egs.
(4.9) and (4.13), follow. In the first lines in the right-hand side of eqgs. (4.9) and
(4.13), the oscillations of the electron (anti-)neutrino driven by the “atmospheric”
Am2, are accounted for. The CHOOZ and Palo Verde experiments are primarily
sensitive to this term and their results limit sin? . The second lines in the expres-
sions in eqs. (4.9) and (4.13) contain the solar neutrino oscillation parameters. This
is the term KamLAND should be most sensitive to. For Am? <« Am3; = Am2, .,
Am2 < 107% eV?, only one of the indicated two terms leads to an oscillatory de-
pendence of the 7, survival probability for the ranges of L/F, characterizing the
CHOOZ and Palo Verde, and the KamLAND experiments: on the source-detector
distance L of the CHOOZ and Palo Verde experiments the oscillations due to /_\mé

cannot develop, while on the distance(s) traveled by the 7, in the KamLAND ex-
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2

2 causes fast oscillations which average out and are not predicted to

periment Am

lead, e.g., to specific spectrum distortions of the KamLAND event rate.

The terms in the third lines in eqs. (4.9) and (4.13) are not present in any
two-neutrino oscillation analysis. They represent interference terms between the .
amplitudes of neutrino oscillations, driven by the solar and atmospheric neutrino
mass squared differences. The term in eq. (4.9) is proportional to sin’ fg, while the
corresponding term in eq. (4.13) is proportional to cos® g [31]. This is the only
difference between Py (7. — 7.) and Pry (7. — 7.), that can be used to distinguish
between the two cases of neutrino mass spectrum in an experiment with reactor 7,.
Obviously, if cos 20, = 0, we have Pyg (7. — Ue) = Prg(v. — 7.) and the two types
of spectrum would be indistinguishable in the experiments under discussion. For
vanishing sin® 0, only the terms in the second line of egs. (4.9) and (4.13) survive,
and the two-neutrino mixing formula for solar neutrino oscillations in vacuum is
exactly reproduced. |

Let us discuss next the ranges of values the different oscillation parameters,
which enter into the expressions for the probabilities of interest Pyy (Ve — 7¢) and
Py (7. — ©.), can take. The allowed region of values of Am3,, Am2, sin®fg
and @ should be determined in a global 3-neutrino oscillation analysis of the solar,
atmospheric and reactor neutrino oscillation data, in which, in particular, AmZ
should be allowed to take values in the LMA solution region, including the interval
Am? ~ (1.0—6.0)x107* eV*. Such an analysis is lacking in the literature. However,
as was shown in [32], a global analysis of the indicated type would not change essen-
tially the results for the LMA MSW solution we have quoted 2in egs. (4.2) and (4.3)
as long as Am2, 2 1.5 x 1073 V2. The reason is that for Am3; 2 1.5 x 107 eV?
and Am2 < 6.0 x 107* eV?, the solar v, survival probability, which determines
the level of suppression of the solar neutrino flux and plays a major role in the
analyses of the solar neutrino data, depends very weakly on (i.e., is practically in-

dependent of) Am3,. Thus, Am% and g are uniquely determined by the solar

27 ot us note that the LMA MSW solution values of Am2 and 6o we quote in eqs. (4.2) and
(4.3) were obtained by taking into account the CHOOZ and Palo Verde limits as well.
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neutrino and CHOOZ and Palo Verde data, independently of the atmospheric neu-
trino data and of the type of the neutrino mass spectrum. The CHOOZ and Palo
Verde data lead to an upper limit on Am2 in the LMA MSW solution region (see,
e.g., [6,33]): AmZ £ 7.5 x 107* eV For Am? £ 1.0 x 107* eV?, the CHOOZ
and solar neutrino data imply the upper limit on sin®@ given in eq. (4.4). For
Am? ~ (2.0 — 6.0) x 107* eV? of interest, the upper limit on sin®§ as a function of
Amj; 2 107 eV? for given Am2 and sin® 20 is somewhat more stringent [31].

Would a global 3-neutrino oscillation analysis of the solar, atmospheric and re-
actor neutrino oscillation data lead to drastically different results for AmZ, in the
two cases of normal and inverted neutrino mass hierarchy? Our preliminary analysis
shows that given the existing atmospheric neutrino data from the Super-Kamiokande
experiment, such an analysis i) would not be able to discriminate between the two
cases of neutrino mass spectrum, and ii) would give essentially the same allowed
region for Am2, in the two cases of neutrino mass spectrum. We expect the regions
of allowed values of the mixing angle 84, which controls the dominant atmospheric
v, — vy and ¥, — U, oscillations, to differ somewhat in the two cases. Note,
however, that this mixing angle does not enter the expression for the 7, survival
probability we are interested in.

For Am2 < 1.0x 107 eV? and sufficiently small values of sin”§, Am3, coincides

2
atm

effectively with Amg,, . of the two-neutrino v, and 7, oscillation analyses of the SK
atmospheric neutrino data. If sin?# > 0.01, a three-neutrino oscillation analysis

of the atmospheric neutrino and CHOOZ data, performed under the assumption of

2
atm

AmZ £ 1.0x107* eV? [33], gives regions of allowed values of AmZ,, = Am?,, which
are correlated with the value of sin? . The latter must satisfy the CHOOZ and Palo
Verde constraints.

At present, as we have already indicated, a complete three-neutrino oscillation
analysis of the atmospheric neutrino and CHOOZ data with Am2 allowed to take
values up to ~ (6.0 — 7.0) x 107* eV2, i.e., in the region where deviations from
the two-neutrino approximation could be non-negligible, is lacking in the literature.

Therefore in what follows we will use representative values of Am2, which lie in the
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region given by eq. (4.1).

4.1.1 The Difference between Pyy (7. — 7,) and Prg(De — Te)

Let us discuss next in greater detail the difference between the v, surviving
probabilities in the two cases of neutrino mass spectrum of interest, Pyg(Pe — 7e)
and Py (7 — 7e). While the terms in the first two lines in egs. (4.9) and (4.13)
describe oscillations in L/E, with frequencies Am3, /4w and Amg, /4m, respectively,
the third term has the shape of beats, being produced by the interference of two

waves, with the same amplitude but slightly different frequencies:
Am3, L Am? L Am2, L
cos ( o5, 2B, ) U T2E
Am2 L g Ami L  AmiL
in —
4F, 2E, 4F,

Am2 L | (Amd L
~ 2sin Zlng sm< ;ng ) (4.14)

This is a modulated oscillation with approximately the same frequency of the first

= 2 sin

term in eqs. (4.9) and (4.13) (Am3, /4m) and amplitude oscillating between 0 and
2sin? A of the amplitude of the first term itself. The beat frequency is equal to
the frequency of the dominant oscillation (Am? /4m). The modulation is exactly in
phase with the AmZ —driven dominant oscillation of interest, so that the maximum
of the oscillation amplitude of the interference term (third lines in the expressions
for Py (9. — ve) and Prg(Ve = 7.)) is reached in coincidence with the points of
maximal decreasing of the 7, survival probability, where Aml L/AE = /2, and
vice versa - this amplitude vanishes at the local maxima of the survival probability.
At the minima of the 7, survival probability, for instance at Am? L/4E, = 7/2,

PNHIH) (7, — i) takes the value:

pNEUE) (5, — 1,) amdl T 1 — 2 sin® @ cos® § — cos® @ sin® 26
Trhy T
A 2
) cos 20 2 sin? @ cos® 0 cos Aﬂnf% . (4.15)

From eqs. (4.9), (4.13) and (4.15) one deduces that:
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e for maximal mixing, cos 20, = 0, the last term cancels, and PV# = pIH.

e for very small mixing angles, cos 20, ~ 1, the terms describing the oscillations
driven by Amj3, in the NH and IH cases have opposite signs: the two waves

are exactly out of phase.

e forintermediate values of cos 20, from the LMA MSW solution region, cos 200 =
(0.3—-0.6), the AmZ, —driven contributions in the cases of normal and inverted
hierarchy have still opposite signs and the magnitude of the effect is propor-

tional to 2 cos 20 sin? 4.

The net result of these properties is that in the region of the minima of the 7,
survival probability due to Amg, where Am2 L /(2F) = 7(2k+1), k = 0,1,..., the
difference between Pyp (7, — 7,) and Prgy (D, — 7.)) is maximal. In contrast, at the
maxima of Py (Pe — 7e) and Pry(Pe — 7.)) determined by Am2 L /(2F) = 2rk,
we have, for any sin® 0, Pyg (7, — Ue) = Prg(De = D).

The two-neutrino oscillation approximation used in the analysis of the CHOOZ
and Palo Verde data is rather accurate as long as Amg, is sufficiently small [31]:
for Amg < 107* eV?, the L/E, values characterizing these experiments, chosen to
ensure maximal sensitivity to Amj; 2 1073 eV?, are much smaller than the value
at which the first minimum of Pyg(rg)(Ze — Ze) due to the AmZ-dependent oscil-
lating term occurs. Correspondingly, the effect of the interference term is strongly
suppressed by the beats. For Am2 = 2 x 107 eV? this is no longer valid and the
interference term under discussion has to be taken into account in the analyses of

the CHOOZ and Palo Verde data [31].

4.2  Measuring Am?% at Reactor Facilities

As is well-known, nuclear reactors are intense sources of low energy 7, (B, <8
MeV), emitted isotropically in the S-decays of fission products with high neutron
density [34]. Anti-neutrinos can then be detected through the positrons produced

by inverse f-decay on nucleons. The reactor 7, energy spectrum has been accurately
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measured and is theoretically well understood * [35]: it essentially consists of a

bell-shaped distribution in energy centered around B, ~ 4 MeV, having a width
of approximately 3 MeV. CHOOZ, Palo Verde and KamLAND are examples of
experiments with reactor 7., the main difference being the distance between the
source and the detector explored (L ~ 1 km for CHOOZ and Palo Verde, and
I ~ 180 km for KamLAND).

The best sensitivity to a given value of Am? of the experiment of interest is at
I, at which the maximum reduction of the survival probability is realized. As can
be seen from egs. (4.9) - (4.13), this happens for L around L* = 27 E,/AmZ. This
implies that for E, = 4 MeV, the optimal length to test neutrino oscillations with

reactor experiments is:

5x 1078
e ] 4.16
(Amé/e\/?) o ( )

The best sensitivity of KamLAND, for instance, is in the range of 2+3 x107% eV2,
We will discuss next in greater detail the distances L which could be used to probe
the LMA MSW solution region at Am2 > 107* eV?, in order to extract Amg, from

these oscillation experiments.

4.2.1 Total Event Rate Analysis

One of the signatures of the 7.—oscillations would be a substantial reduction of
the measured total event rate due to the reactor 7, in comparison with the predicted
one in the absence of oscillations. In order to compute the expected total event rate
one has to integrate the 7, survival probability multiplied by the 7, energy spectrum

over E,. In Fig. 4.1 we show this averaged survival probability for different values

3By reactor 7, energy spectrum we mean here and in what follows the product of the 7.
production spectrum and the inverse f-decay cross-section, which gives the “detected” neutrino
spectrum in the no oscillation case. The 7, production spectrum is known with larger uncertainties
at v, energies B, < 2 MeV, but this range is not of interest due to the threshold energy Ei* = 1.8
MeV of the inverse B-decay reaction [36]. Certain known time dependence at the level of a few
percent is also present up to 3.5 MeV [37] and should possibly be taken into account in the analysis

of the experimental data.
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of L as a function of Amf, using the “best fit” values [1, 5, 6, 7] for Am2, and
sin® 20,

When averaging over the 7, energy spectrum, oscillatory effects with too short a
period are washed out, and the experiment is sensitive only to the average amplitude.
This happens when the width 0 E,, of the energy spectrum is such that the integration
runs over more than one period, i.e., approximately for:

2 4,3
5B, > dr B - 4 x 10 eY .
Am2 L — Am?(L/Km)

(4.17)

Since 0E, ~ 3 MeV, at KamLAND this happens approximately for Ami 2 7x107°
eV2 The corresponding curve in Fig. 4.1 indicates that the actual Sénsitivity extends
to somewhat larger values of Amg, than what is expected on the basis on the above
estimate, but the total event rate becomes flat for Amg 2 107* eV2. This means
that KamLAND will be able, through the measurement of the total even rate, to
test all the region of the LMA MSW solution and determine whether the latter
is the correct solution of the solar neutrino problem, but will provide a precise
measurement of Amg only if Am? < 1074 eV2,

If Am2 2 2 x 107* V2, it would be possible to obtain only a lower bound on
Am? and a new experiment might be required to determine AmZ. This observation
have been confirmed also by a detailed numerical analysis simulating the KamLAND

results performed in [38], in the two neutrino approximation, illustrated by Fig. 4.2.

Fig. 4.1 shows that as L decreases, the sensitivity region moves to larger Am?.
These results imply that a reactor 7, experiment with L 2 (20 — 25) km can probe
the range 0.8 x 107" eV? < Am2 < 6x 107 eV?. One finds that for Am2 = 2x 10~
eV? and Am?, 22 2.5 x 107° eV?, the best sensitivity is at L 22 20 km. Moreover,
with L & (20 — 25) km, the predicted total event rate deviates from being flat (in
Am?) actually for Am2 as large as ~ (5 — 6) x 107¢ eV2. In order to have a
precise determination of Am2 with L =2 (20 — 25) km for the largest values given
in eq. (4.2), AmZ == (7 + 8) x 107* eV?, one should use the information about the

e’ —spectrum distortion due to the 7,—oscillations. By measuring the et —spectrum
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Figure 4.1: The reactor Ve survival probability, averaged over the 7, energy spectrum,
for Am32, = 2.5 % 1072 eV?, sin® 205 = 0.8, sin? @ = 0.05, as a function of Am2. The
curves correspond to L = 180 km (long dashed), L = 50 km (dashed), L = 20 km
(thick) and L = 10 km (dotted), respectively.

with a sufficient precision it would be possible to cover the whole interval

1.0 x 107%eV2 < Am? < 8.0 x 107*eV? (4.18)

i.e., to determine Am if it lies in this interval, by performing an experiment at

L = (20 — 25) km from the reactor(s) 4 (see the next sub-section).

Applying eq. (17) with Am? = Am2,, one sees that for the ranges of L which
allow to probe Am? from the LMA MSW solution region, the total event rate is not
sensitive to the oscillations driven by Am2, 2 1.5x 1072 eV?. Thus, the total event
rate analysis would determine AmZ which would be the same for both the normal

and inverted hierarchy neutrino mass spectrum.

4The fact that if Am2 = 3.2 X 104 eV2, a reactor 7, experiment with L = 20 km would allow

to measure Am2 with a high precision was also noticed recently in [28].
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Figure 4.2: Simulation of KamLAND results from the analysis in [38]. Reconstructed
range of ém* at £20, as a function of the true value of §m? in abscissa. The true

value of sin® 5 is fixed at 0.3. The curves refer to detector exposures of 0.5 and 3
years.
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4.2.2 FEnergy Spectrum Distortions

An unambiguous evidence of neutrino oscillations would be the characteristic
distortion of the 7, energy spectrum. This is caused by the fact that, at fixed L,
neutrinos with different energies reach the detector in a different oscillation phase,
so that some parts of the spectrum would be suppressed more strongly by the os-
cillations than other parts. The search for distortions of the 7, energy spectrum is
essentially a direct test of the 7, oscillations. Tt is more effective than the total rate
analysis since it is not affected, e.g., by the overall normalization of the reactor 7
flux. However, such a test requires a sufficiently high statistics and sufficiently good

energy resolution of the detector used.

Energy spectrum distortions can be studied, in principle, in an experiment with
L 2 (20 — 25) km. In Fig. 4.3 we show the comparison between the 7, spectrum
expected for Am? =2x107* eV? and Am2 = 6x107* eV? and the spectrum in the
absence of 7, oscillations. No averaging has been performed and the possible detector
resolution is not taken into account. The curves show the product of the probabilities

given by egs. (4.9) and (4.13) and the predicted reactor 7, spectrum [39].

As Fig. 4.3 illustrates, the 7, spectrum in the case of oscillation is well distin-
guishable from that in the absence of oscillations. Moreover, for Am? lying in the
interval 1074 eV? < Am2 < 8.0 x 107* eV2, the shape of the spectrum exhibits
a very strong dependence on the value of Am2. A likelihood analysis of the data
would be able to determine the value of Am from the indicated interval with a
rather good precision. This would require a precision in the measurement of the
et —spectrum, which should be just not worse than the precision achieved in the
CHOOZ experiment and that planned to be reached in the KamLAND experiment.
If the energy bins used in the measurement of the spectrum are sufficiently large,
the value of Am2 thus determined should coincide with value obtained from the

analysis of the total event rate and should be independent of Amj;.
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Figure 4.3: The reactor 7, energy spectrum at distance L = 20 km from the source, in
the absence of 7, oscillations (double-thick solid line) and in the case of 7, oscillations
characterized by Am3, = 2.5 x 1072 eV?, sin® 20, = 0.8 and sin? @ = 0.05. The thick
lines are obtained for Am2 = 2x107* eV? and correspond to NH (light grey) and IH
(dark grey) neutrino mass spectrum. Shown is also the spectrum for Am2 = 6x 104

eV? in the NH (dotted) and IH (dashed) cases.
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4.3 Normal vs. Inverted Hierarchy

In Fig. 4.3 we show the deformation of the reactor re spectrum both for the
normal and inverted hierarchy neutrino mass spectrum: as long as no integration
over the energy is performed, the deformations in the two cases of neutrino mass
spectrum can be considerable, and the sub-leading oscillatory effects driven by the
atmospheric mass squared difference (see the first and the third line of egs. (4.9) -
(4.13)) can, in principle, be observed. They could be used to distinguish between
the two hierarchical patterns, provided the solar mixing is not maximal °, sin® @ is
not too small and Am?2, is known with high precision. It should be clear that the
possibility we will be discussing next poses remarkable challenges.

The experiment under discussion could be in principle an alternative to the
measurement of the sign of Am2, in long (very long) baseline neutrino oscillation
experiments [21, 22, 23] or in the experiments with atmospheric neutrinos (see, e.g.,
[24]).

The magnitude of the effect of interest depends, in particular, on three factors,

as we have already pointed out:

e the value of the solar mixing angle 0q: the different behavior of the two sur-
vival probabilities is due to the difference between sin? 0, and cos? f; corre-
spondingly, the effect vanishes for maximal mixing; thus, the more the mixing

deviates from the maximal the larger the effect;

e the value of sin? 0, which controls the magnitude of the sub-leading effects due
to Am?2, on the AmZ—driven oscillations: the effect of interest vanishes in the

decoupling limit of sin® 6 — 0;

5Tt would be impossible to distinguish between the normal and inverted hierarchy neutrino mass
spectrum if for given Am% > 107* eV? and sin? 20 # 1, the LMA solution region is symmetric
with respect to the change 0 — 7/2 — 0 (cos26g — —cos 205). While the value of sin® 20 is
expected to be measured with a relatively high precision by the KamLAND experiment, the sign
of cos 20 will not be fixed by this experiment. However, the 0o — (/2 — 8p) ambiguity can be
resolved by the solar neutrino data. Note also that the current solar neutrino data disfavor values

of cos 20 < 0 in the LMA solution region (see, e.g., [5, 6, 10]).
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e the value of Am2 (see Fig. 4.1): for given L and AmZ the difference between
the spectrum in the cases of normal and inverted hierarchy is maximal at the

minima of the survival probability, and vanishes at the maxima.

A rough estimate of the possible difference between the predictions of the event
rate spectrum for the two hierarchical patterns, is provided by the ratio between the
difference and the sum of the two corresponding probabilities at Am2 L = 27 E,:

Pyg — Prg 2 cos 20, sin® 6 cos® 0 Ami,
Pyg +Prg 1 —2sin?6 cos? § — cost ) sin® 204

(4.19)

The ratio could be rather large: the factor in front of the cos 7 Am3, /Am2 is about
25% for sin® 20 = 0.8 and sin®# = 0.05.

The actual feasibility of the study under discussion depends crucially on the
integration over (i.e., the binning in) the energy: for the effect not to be strongly
suppressed, the energy resolution of the detector AFE, must satisfy:

Ar B} 2+6x10%eV’

Al % h Am%l (L/km)

ANy
Amsg, L

(4.20)

For L ~ 1 km this condition could be satisfied for 6, ~ AE,, but at L = (15 — 20)
Km, for Am2 = 2.5 x 1073 eV? and E, in the interval (3 — 5) MeV, one should
have AF, < 0.5 MeV.

Our discussion so far was performed for simplicity in terms of the reactor 7,
energy spectrum, while in the experiments of interest one measures the energy of the
positron emitted in the inverse f-decay, F.. The relation between F, and F, is well
known (see for instance [39]), and, up to corrections of at most few per cent, consists
just in a shift due to the threshold energy of the process: E, = E,+ (E" —m,). The
maximal AFE, allowed in order to make the effect observable can be then directly
compared to the experimental positron energy resolution AE, S.

For Am% < 107* eV?, the first (most significant) minimum of the survival prob-

ability can be explored if L ~ 180 km. In this case, due to the bigger distance L,

%In the CHOOZ experiment, for instance, the binning in E, was AE, ~ 0.40 MeV [11]. Kam-
LAND is expected to have a resolution better than AE, /E. = 10%/+/E,, where E, is in MeV [40]
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Figure 4.4: Comparison between the predicted event rate spectrum at L = 20 km,
measured in energy bins having a width of AE, = 0.3 MeV in the cases of normal
(light grey) and inverted (dark grey) neutrino mass hierarchy. The two upper and
the lower left figures are for Am2 = 2 x 107 eV?, sin” 205 = 0.8, sin?# = 0.05, and
Am2, = 1.3; 2.5; 3.5 x 1072 eV?, respectively. The lower right figure was obtained
for Am2 =6 x 107* eV? and Am3; = 2.5 X 1078 eV2.

the energy resolution required would be by a factor of ten smaller. This means that
for Am2 < Am},, it is practically impossible to realize the condition of maximiza-
tion of the difference between the survival probabilities in the two cases of neutrino
mass spectrum without strongly suppressing the magnitude of the difference by the

binning of the energy spectrum.

In order to illustrate what are the concrete possibilities in the case of the exper-
iment under discussion, we have divided the energy interval 2.7 MeV < B, <72
MeV into 15 bins, with AE, = 0.3 MeV, and calculated the value of the product
of the survival probability and the energy spectrum in each of the bins. The results

are shown in Fig. 4.4.
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As our results show and Fig. 4.4 indicates, for Am2, = (1.5 — 3.0) x 1073 eV?,
AmZ = (2.0 — 5.0) x 1074 eV?, (4.21)

sin? 205 = 0.8 and sin® § & (0.02 - 0.05), it might be possible to distinguish the two
cases of neutrino mass spectrum by a high precision measurement of the positron
energy spectrum in an experiment with reactor 7, with a baseline of I =2 (20 —
25) km. This should be a high statistics experiment (not less than about 2000
ve—induced events per year) with a sufficiently good energy resolution 7. For larger
values of Amg not exceeding 8.0 x 107* eV?, and Am3, & (1.5 — 3.0) x 103 eV?,
the experiment should be done with a smaller baseline, . 2 10 km. If, however,
sin®f < 0.01, and/or sin® 20, = 0.9, and/or sin? 20, < 0.9 but the LMA solution
admits equally positive and negative values of cos 26y, the difference between the
spectra in the two cases becomes hardly observable. Further, in obtaining Fig. 4.4 we
have implicitly assumed that Am2, is known with negligible uncertainty. Actually,
for the difference between the spectra under discussion to be observable, Am2,
has to be determined, according to our estimates, with a precision of ~ 10% or
better & given the values of Am%, sin® 20, and sin” 6, a spectrum in the NH case
corresponding to a given Amj; can be rather close in shape to the spectrum in the

IH case for a different value of Am2,. There is no similar effect when varying Aml.

"Preliminary estimates show that a detector of the type of KamLAND and a system of nuclear
reactors with a total power of approximately 5 - 6 GW might produce the required statistics and

precision in the measurement of the positron spectrum.
The analysis, e.g, of the MINOS potential for a high precision determination of AmZ, in the

case of AmZ < 107 eV? yields very encouraging results (see, e.g., [41]). For Am = (2.0—8.0) x

107* V2, such analysis is lacking in the literature.
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