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PART |.

INTRODUCTION.

Since the first attempts of giving a mathematical
description to the Physics of the Elementary Particles,
the physicists had to face the problem of quantizing a
classical field, as a Consequence of the indetermination
principle and of the locality dictated by the theory of the
Relativity.

The first quantization scheme devised ( the Canonical
Quantization [1]) is based on a generalization of the
ordinary Quantum Mechanics to systems with infinite
degrees of freedom, and the fields are represented by
operators satisfying Canonical Commutation Relations
[2].

The second scheme of quantization proposed, relies on
the Feynman's integral over the paths [3]. In this
approach one deals only with classical fields and the
transition amplitudes are obtained computing a sum over
all the field configurations, each one weighed by the
exponential of i times the Classical Action. The Path
Integral ( P.l) formalism is a very useful tool for both

the perturbative and non-perturbative insights of the



Quantum Field Theory [4][5]. Moreover, after a Wick
rotation, a remarkable link between Euclidean Quantum
Field Theory and Statistical Physics is apparent: the
former can be considered as described by the partition
function of a statistical system at the equilibrium, H©
being the temperature while the Action represents the
energy. |

In this perspective, a third method of quantization
has been proposed: the Stochastic Quantization [6]. Here
the field has to be considered as a stochastic process
satisfying a stochastic differential equation [7]. The
random system described by this field evolves in a new,
fictitious time direction, and, prepared at the initial
time in some configuration, it reaches an equilibrium
situation in the infinite time limit. For a large class of
diffusion equations, it is possible to show the
equivalence of this procedure with the P.l. approach [8],
provided that a suitable choice of the drift force has
been done.

The existence of a new quantization scheme is not
only interesting by itself, but can help for a deeper
understanding of the properties of the Quantum Systems
and it can provide new computational tools. There are
some advantages in the Stochastic Quantization Scheme
(5.Q.S.) with respect to the P.l. formalism. For example

it partially avoids the intriguing definition of the sum



over the configurations, needed in the P.l.. It provides
new, probably non-perturbative, regularization schemes
[9][10][11]. It is very easy the derivation of the rules for
perturbative expansions [12]. There is a very interesting
relation between the S.Q. and supersymmetric models
[13] and the Nicolai mapping [14]. Gauge fields can be
quantized without the need of a gauge fixing [6]. New
numerical computations can be based on this method [15]
in alternative with respect to the usual Monte Carlo
simulations.

On the other hand there are , of course, some
disadvantages with respect to the P.l.. For instance, the
stochastic graphs arising in the perturbative expansions
are more numerous and much more difficult to evaluate.
There are some ambiguities in the mathematical
formalism of the stochastic processes ( Ito's calculus
versus Stratonovitch one [7] ), strictly related to the
ambiguities in the definition of the measure for the P.l.
[16]. Some features of the P.l. having relevant physical
interpretations like the vacuum-vacuum transition
amplitude and the effective potential are not here easy
to be identified. This list could be much longer, but |

trust in the fact that a lot of unclear features of the
Stochastic Quantization will be clarified in a future. In

this class of open problems falls the problem of the



anomalies, of the gauge invariance of the
renormalized stochastic theory, of the relevance of
topological non trivial configurations like solitons and
instantons, of the possibility that the stochastic
regularization preserves supersymmetry.

In this thesis, | will focus my attention on the
problem of the renormalization in the stochastic
quantization scheme.

in Part Il. | give a mathematical introduction to the
stochastic processes (1l.1) and to the diffusion equations
(11.2). The main purpouse of this introduction is to make
clear and natural the idea underlying the stochastic
quantization. The stochastic quantizatioﬁ is described in
detail in the Sect.lll.3 for both the perturbative and the
non perturbative aspects. In Sect.lll.4 a formal
discussion of the emergence of the Ward identities in the
stochastic quantization scheme is reported.

In Part Ill. the problem of the renormalization is
analyzed. In particular | discuss the consistence of the
stochastic regularization (lll.1) and the possibility of
renormalizing the stochastic theory also in presence of
some peculiar features of the stochastic regularization
(111.2). To this end we make a non trivial use of a hidden
BRS symmerty. In Sect.lll.3 a first example of

renormalization procedure is given. Moreover the



background field method for the stochastic
quantization scheme is introduced. In Sect. Ill.4 a
detailed analysis of the renormalization group equations
and the interplay between stochastic quantization and
the theory of ( dynamical ) critical phenomena is
reported.

In Part IV. | show the possibility of using the new
methods produced by the stochastic quantization to get
new numerical values for the critical exponents of x¢4 in
d=3. In Sect.lV.1 | remind the main features of the
g-expansion and set the problem. In Sect.IV.2 | explain
the idea on which the computations are based, while in

Sect.|V.3 the computations and the results are reported.



PART 1l

Il 1. BRIEF REVIEW OF THE STOCHASTIC
PROCESSES.

| am going here to give some informations concerning
the theory of the random processes needed for a
comlpete understanding of the ideas reiated to the
Stochastic Quantization. For this reason, | will not
follow a sophisticated mathematical approach, but
rather the approach of refs. [7]{17], that is to extract
from the mathematical theory only the relevant points
for the physical purpouses and to use a rather simplified
language.

A random variable X is defined as a function from the
set of the results of some experiment to some set | on
the real axis, characterized by a probability distribution

P(x), such that:

a) P(x)=0 vV xel

b) fl P(x) dx = 1 (111.1)

The probability of finding the random variable X in the

interval ( x, x+dx ) is given by



p( X, x+dx ) = P(x) dx (11.1.2)

The knowledge of P(x) allows the computation of the

moments, i.e. the expectation values of xk :

my = E6K) = || K P(x) dx (11.1.3)

This gives the set of previsions we are able to do

about the random variable.
It is straightforward to generalize this to the case of
a n-dimensional random variable X = ( X1, X2, e, Xn ): we

introduce the joint probability distribution P( x4, Xo,... ,

X ), non-negative and normalized on the volume

v=Ili .y o

SN
A stochastic process is an o - dimensional random
variable: X=X(t) and t is a continuous real index, often
called the time. Let X;the random variables at time t=t;
and x; the corresponding values. A complete description
of the stochastic process is given if we know the joint
probability distribution P(n)(x1t1; Xoto ;... 5 Xpty) for any

n and, for semplicity, we consider t42 to2 .2t .



P(n)(x1t1 » Xoto i Xty ) dxq...dxy, (11.1.4)

gives the probability that X(i) takes the value in the.

interval (x4 ; xq+dx4 ) at time ty, (Xo ; Xo+dxo ) at time

t, and so on. Of course P(N) must satisfy:

P(N)(1..n)>0 positivity
P(N)(1...n) symmetric
Jax,, 1 o dx o POFRELn 5 net ek )=PM(A )

compatibility (11.1.5)

We can define the conditional probability densities:

ROIM 1 njnet..nem)=P(M+M 1 nem)/PMne1..nem)

(11.1.6)
giving the probability of having X(t) in (x;; x;+dx; ) at
t for 1<isn if X(t) was in the interval written above for

every n+1<i<n+m . It immediately follows from the

definition that:

de1...dxn R(M 4 __nin+1...nem)=1

(11.1.7)



| dxg ROIM (1 k..njn+1...n+m)=RO-TM 1k nj..nsm)

(11.1.8)

dek RMM 1 njn+1. knem)ROIM-Dkinet . k..nem)

“R(n|m-1)(1...n|n+1..k...n+m) (1.1.9)

where we have indicated with k the lack of the k-th
variable.

It is also possible to define a measure for the

process:

dufx(t)]=px(®)] dix(1)] (11.1.10)

giving the probability of having a trajectory in a
"tube" around x(t). If C is the set of the trajectories

passing through (x;;t) i=1..n, we have:

J & dutx(ty=1

| duix()]=PM (1 ...n) (1.1.11)

We will be mainly interested in the so called Markov
processes and in understanding what happens when the

Markov property does not hold any more. This property
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can be expressed by the fact that:

ROIM 1 __njn+1..nem)=RO A njn+1) (11.1.12)

for ty>to>...>t >t 1> >ty - As a consequence of

this property, we get
R . njn+1)=R(1]2)R(2]3)...R(n|n+1) (11.1.13)
where we have written R(””, the transition
probability, dropping the indices. A Markov process is
completely specified once we know the probability
density P(x; t) and the transition probability R(xt{x't" ),
since any joint probability can be obtained:

PN (1...n)=R(1]2)R(2[3)...R(n-1|n)P(n) (1.1.14)

and we can compute the probability distribution when

we know it at an earlier time:

P(xt)=) dy Rextly9P(y ©)  for t>t (11.1.15)

If the stochastic process is continuous,
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lim ;_,. Rxtlyt)= 3(x-y) (1.1.16)

Applying the Markov property on eq.(ll.1.9) for n=1,
m=2, we get the so called Chapman -Kolmogorov

Equation:

Rixtly)=] dz R(xt|zt)R(zt|y<) (11.1.17)

This is the fundamental equation at which the
transition probability of a Markov process must obey. A
Markov process with R depending only from the
difference of the times is a time homogeneous process,
if moreover P(x, t+t)=P(x,t), the process is stationary.

As a useful example to our purpouses we remind the

"random walk" : a discrete random variable X;=n moving

in a discretized time variable t= st with neZ and se Z*.If
the probability of increasing n is p for one time step and
the probability of decreasing is g, the Markov process is

specified by

P(n;0)=8,-¢

R(n, s+1[ m, s )=pdy m41 T m-1 (11.1.18)
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with p+g=1. The process is time homogeneous but not

stationary, and:

P(n,s)=s!{ [(n+s)/2]l [(s-n)/2]! }'1 g(8-N)/2 p(n+s)/2
(11.1.19)

The continuous limit of this process is known as
Wiener process. With the initial condition P(x;0)=3(x), the
process is specified by:

P(x:t)=(2rnot) 12 exp{ -x2/(251)}

R(XZtZlX‘{ t1 )=

=(2nc[t2-t1])'“2exp.{-(x2-x1)2/,(2c[t2-t1])} (11.1.20)
The joint probability is simply:

])-1/2

P(n)(x1t1_..xntn)=n 2no[ti-t;_4

i=1...n(
exp{-(x;-xi_1)2/ (20 [ti-t;_¢ 1))
(1.1.21)

with t,=x,=0. The process is time homogeneous and

Gaussian with covariance matrix
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(11.1.22)
The Wiener process is of central importance in the
theory of the stochastic processes since we can define a

measure for the continuous ftrajectories: writing

t-t._4=1, and keeping T=Nrt fixed when N—e, we have

du[x(D)]=lim N-seo P(xqt1...xptpn)=
1IN [dx(1)] exp{-fOT dv2s %12 } (11.1.23)
It is easy to obtain the expectation values:

E{x(1)}=0

E{x()x(t')}=c min (tt) (11.1.24)

[t is interesting to notice that the measure for the

process
n(t)=dx(t)/dt (11.1.25)

is a Gaussian measure with a &-function for kernel.

n(t) is a Gaussian, &-correlated (or white) stochastic
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Markovian process:

E{n(t)}=0

E{n{t)n(t')}=c 3(t-t) (11.1.26)

The Gaussian white noise m(t) and the corresponding
measure will be the building blocks of the stochastic
quantization. However, from this summary‘ about
stochastic processes, it is clear that the Gaussian noise
is not a mathematically well defined object. In fact it is,
formally, the derivative of a Wiener process, regardless
to the fact that actually a Wiener process is a
continuous, but nowhere differentiable mapping. In this
sense we must keep in mind that, although we will
always deal with 7, if we meet some troubles or want to
give rigorous proofs, we must go to the well defined

Wiener process.
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l.2. FOKKER-PLANCK AND LANGEVIN
EQUATIONS.

For a Markov process, because of the
Chapman-Kolmogorov equation (eq.(l1.1.17)), we can
relate the probabilities at different times, once we give

the initial conditions:

im (1o POGY= P(xt,)

im 4 1o RXE Xg,tg)= 8(x-x (11.2.1)

o)

The transition probability can be written in a short

notation:

R(1| y,t )=<x|R (t|7)]y> (11.2.2)

and eq.(ll.1.17), for t=t'+dt' becomes:

R (t+dt' |t) = R (tf+dt' [t) R (t' |t) (1.2.3)

Defining:
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R (t+dt' |t) = 1 + T (t)dt (1.2.4)

we get the Master Equation:
d__ R (tlr)=T({)AR (i) (11.2.5)
dt

The function I'(x,y; t )= <x| '(t)]y>, describes the short

time properties of the Markov process. From eq.(l1.1.7)

we see that:

de I (x,y; 1)=0 (11.2.6)

From eq.(ll.2.4), we see that for xzy I' is nothing but
the transition probability per unit time of going from y

to x: w(x,y;t). Imposing eq.(ll.2.6), we get

r(x,y;t)= w(x,y;t) - J dx" w(x',y;t) d(x-y) (11.2.7)

Using now eq.(ll.1.15), we can write the Master

equation in the Gain-Loss form:

POt =] dy [ wixyDP.) - wiy.x)P(.b]
Jt (11.2.8)
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From the definition of homogeneous process, it is
easy to get that, in that case, ' and w are independent

from {. Note that if the process is stationary, i.e. d;P=0,

from eq.(l1.2.8), we get the detailed balance relation:
w(x,y)P(y)=w(y,x)P(x) (11.2.9)

If the stochastic process is such that only the first

ftwo moments

aTKx)=J dx' (x-x)" w(x',x) (11.2.10)

are different from zero, the process is called a
diffusion process and the Master equation reduces to the

Fokker-Planck (F.P.) equation:

AP(x.t) =-3_[a;(XPXB] + 132 [ay(x)P(x,1)]

ot Ix Ix2

no

(11.2.11)

or, alternatively, on the transition probabilities, we

have the forward Fokker-Planck:

3 R(xtxgtg)=l -3y ay(x) + 3,2 ax(x)/2 ] R(x,tIxo,to)

(11.2.12)
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and the backward F.P. :

dio R(x,tlxg to) =[ + a4 (X) 3y +ap(x)/2 9,2 1 R(x,tixg,t,)

(11.2.13)

Another way of studying the time evolution of a
stochastic process is through an equation directly
written for the stochastic process itself. The most
important of these stochastic equations is the Langevin
equation [18], introduced to describe the Brownian

motion [19]:

ax(t) = K[ x(t)] + n(t)
dt (11.2.14)

where K[x] is the drift force and n a Gaussian noise.

This equation is equivalent to a F.P. equation. In fact, the

average of an arbitrary function of x can be written as:

<Ax(t)]>= | dn exp{ -/ n2/25 } f[x(t)] =

=J dx f[x] P(x,1) (11.2.15)

Taking the t derivative, we get:
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[lax 0 8, Pty = [ an expl - n2/26 } o, (Kixlen)

(11.2.16)

Performing an integration by parts, we obtain:

J an exp{-n%/20 } din =
dx

=c]dn exp{-fn2/2cr } gé dx(t) =
dx? dn(t)

-c_ [ dn exp{-ln%/2c} d2f
2 dx? (11.2.17)

Eq.(ll.2.16) becomes:

[ dx 111 3, P(x,t) = < 8,F KIx] + 6/2 9, 2f »=

= Jax fix] (- 3, KIX] + 0/2 3,2 ] P(x.t) (11.2.18)
giving a F.P. equation for P(x,t) with:
a1 (x)= K[x] ao(x)=0/2 (11.2.19)

It has to be noted that, when the process becomes
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stationary, the F.P. equation reduces to:

9, { KIx] - 0/2 3, } P(x)=0 (11.2.20)

A solution of this equation is:

Poq () = expl 210 [* Kix] ox' } (11.2.21)

if this Peq is normalizable. More in general, the F.P.

equation can be set in a Schrodinger like equation by the

following definition for -

P(x,t)= exp{ J K/o } w(x;t) (1.2.22)

The equation for vy is:

oty =-[-Vo/2 3, - KW2o J[- Vo/2 9, + KIN2o 1w

(11.2.23)

Expanding in eigenfunctions of the " Hamiltonian ", we
see that y(t) converges ( if in the spectrum a mass gap

exists ) to the eigenfunction with lowest eigenvalue,
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given by:

v=exp{ ) Kic) (11.2.24)

In any case we can avoid the language of the F.P.
equation and work directly on the solutions of the
Langevin equation (11.2.14), or better, on its differential,

mathematically meaningful, version :
dx(t) = K[x(t)] dt + dW(t) (11.2.25)

where dW(t) is a Wiener process. If one tries to write

the solution of this equation in the form:

X(t)=x(t,) + Jto’f KIx(t)] dt + Ito‘f dW (11.2.26)

has to face with a fundamental problem concerning
stochastic  differential equations: the usual
Riemann-Stieljtes integral is not well defined on

stochastic processes. In fact, for an integral of the kind

Jtot G(W) dW, the partial sums

S, =2, 4 Gm) W()-W(ti_q)] (11.2.27)
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with tost1s...£tn=t and t; € (ti_1 ; ), are not defined

and depend on the choice of the intermediate points t; as

a consequence of the unbound variation of the Wiener

process. To give a meaning to S we must give a

prescription for the choice of 1

T = "[‘_-1 (1-8.) + ati (||228>

The choice a=0 defines the "lto calculus": the sums
are evaluated using the value of the Wiener process at
the beginning of the time intervals. This is a natural
choice, intuitive from the physical point of view, and
advantagous from the mathematical point of view
(rigorous theorems can be proved in this framework).
Neverthless in this calculus the rules of the usual
calculus don't hold any more. A useful rule to remember
is that , when expanding at first order, we must take on
the same footing dt and (dW)2=dt, giving some
unexpected terms in changing the variables.

The choice a=1/2 on the contrary, allows the use of
the standard rules ( Stratonovich calculus). The white
noise is considered here as the limit of some smoother,

symmetric distribution. Moreover, when we write the
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corresponding Fokker-Planck, we meet the usual
midpoint prescription for the path integral.

It is interesting to see how some ambiguities of the
path integral emerge in the stochastic scheme. In any
case, we will never meet any explicit difficulty related

to these ambiguities, and we'll be allowed to use the

rules of the standard calculus directly on n.
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.3 PARISI AND WU QUANTIZATION OF A
SCALAR FIELD.

The Green functions of a quantum theory:
G (Mxg,0xp) = <TOMX1)---0(x)> (11.3.1)

can be obtained in the path integral approach by
taking functional derivatives, with respect to an

external source J(x), of the generating functional:

Z(J)= ] [do] exp{ it S[6] +] d¥x J()6(X) } (11.3.2)

where S[¢] is the action and [d¢] the measure of the
functional integration. After a Wick rotation, Z(J) looks
like the partition function of a statistical system at the

equilibrium with probability distribution:
Poq(0) = exp{ -SgolAt } (1.3.3)

where Sg[¢] is the Euclidean action. To be defined we
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choose:

Selol- | i { 112 M 0+1/2m%02V(0) ) (11.3.4)

The basic idea of the stochastic quantization is to

find the stochastic process having Peq(q)) of eq.(11.3.3) as

equilibrium distribution. Comparing eq.(l1.3.3) with
eq.(ll.2.21), we see that, if

216 ¥ K(x)dx' = -S[6] (11.3.5)

(we drop the subscript E and put-fi=1), the stochastic

process satisfying the Langevin equation:

do(x:t) =-¢o 8S[el . + m(x;t)
ot 2 80(x;t) (11.3.6)

has Peq(q)) as equilibrium distribution. Here ¢(x;t) is a

field in d Euclidean dimensions and evolves in a

fictitious ( or stochastic ) time t . n(x;t) is a Gaussian

white noise:

an(x>=0  <n(xtm(y;t)>=289(x-y)5(t-t)
<n(Xy ;t1)...n(x2n;t2n)>=§3possible pairsnpairs<1’1(Xi;ti)n(xj;tj)>

(11.3.7)



26

where we have set =2 and the last equation gives a

Wick decomposition for the Gaussian noise. If q)n is a

solution of eq.(ll.3.6), we have that the Green functions

are obtained in the t infinite limit of the average of n

fields q>n computed at the same time:

G (M(x, X =limy_ <0 (4300 (X 0)> (11.3.8)

Here the averages have to be understood in the sense

of the probability distribution of n:

P(n) = exp{ -1/4 ] d% dt n(x:tm ) 3 (11.3.9)

It has to be remarked that eq.(l1.3.6) is not the only

choice, and some kernel can be introduced:

30 = - | Kx-y) 8S[6]l  dy + n(x:t)
ot 3o (y;t)

1/4]d9% dy dt nect) K (x-y) n(y:t)
P'(n)=e
(11.3.10)
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since ¢ has the same equilibrium distribution

Pgq(0)=exp{-S[ol}-

In the following we will consider
V(o) = M4l ot (11.3.11)

and give a perturbative solution as a power series in

L. First, we define a stochastic propagator by:

(at-auau+m2)G(x—y;t-t')=6d(x—y)S(t-t') (11.3.12)

Explicitly:

G(X'Y:'i-t')=jddp/(2n)de(t-t')exp{ip(x-y)-(p2+m2)(t-t')}
(11.3.13)

where we have taken only the forward propagation
since we will be interested in the t infinite limit. The

formal solution of eq.(l1.3.6) with initial condition

0(x:0)=05 (x) is:
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o(x:t)=JddydtG(x-yit-t) [n(y;7) - A3 3 (ys0) T +

+ [a(xyinog(v)ady (11.3.14)

We can choose ¢,(x)=0 since, in the perturbative

framework at least [8], the equilibrium situation is

independent from the choice of the initial configuration.
Eq.(11.3.14) is suitable for an expansion in i: going to the

Fourier trasform:

o(k:t)=)d9x o(x:t) expf-ikx } (11.3.15)

we have, at first order:

s(kity=Jdt Gy (to)n(kit) - m31atTl . ddaqy(en)

Gy (t-) Ggi(t-tpm(agtdt; s9(k-2;_13q)(2m9 +

+ 0O(2)
(11.3.16)

A useful graphical representation can be given using
the following rules:

a line t k T=G(t-t) is a stochastic

propagator,
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a cross X =mn(qg;t) is a noise. When a line ends on a
cross, an integration over dt is understood.

Eq.(11.3.16) can be represented graphically by:

o(kit)= —X  + —%( + 3

+ 00d)

(11.3.17)

where every vertex carries a factor
-X/S!Sd(k-ziqi)(Zﬂ:)d and an integration over
Hiddqi/(Zﬂ:)d dt is understood.

A finite time Green function is now obtained taking

averages of products of ¢'s. The average is:
<n(ky,hn(ko,t)>=2(2m) 98 (k { +kp)5(t-t) (11.3.18)

now represented by a cross in the middle of a line. For

example:

<o(kq,D)o(ko,t)>= —X%— + ﬁ‘ +
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The combinatorial factor can be directly computed
counting the multiplicity of the tree diagrams and the
number of contractions coming from the Wick
decomposition, but a useful rule can be given: each vertex
carries a -A ( without 1/3! ), then one has to multiply for
the times of independent choices for the external legs,
and divide for the number of topologically equivalent
internal lines.

The first graph of eq.(11.3.19) (the tree level) gives:

<¢(k1 ,t)¢(k2,t)>=<Gk1 (t-t1 )sz(t-tz)'ﬂ(k-i ,t1 )T](kz,t2)>=

Jdt expl-(kq 2+ m2)(t-0)- (ko 2+ m2) (t-0)} B(t-1)

2(2m) 989 (k¢ +k o) =

- (2m)989(ky+ko) [1-exp{-2t(k{2+m2)] /(kqZ+m?)

(11.3.20)

It is now easy to see that for t—ee this reduces to the
usual Euclidean propagator. In the same way it is
possible to show that the sum of the graphs of the same
shape in the loop expansion (eq.(l.3.19)), converges 1o
the corresponding graph of the usual Q.F.T. [8](20].

The perturbative expansion of the n-point average
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<¢(x4,T)...0(x,T)> produces connected as well as

disconnected pieces; moreover, the connected pieces can
be classified according to the 1Pl graphs, in the same

way we usually do in the path integral. A n-point 1P|
graph has the form F(n)(x1,T1 e X T X ke 1tk 15X o ty)
where the Ti are uncostrained time variables, while the

tj are constrained to be smaller with respect to some Ti
becouse of the 6-functions in the stochastic propagator.
To avoid this distinction, bothering the computations, it

is convenient to define a Laplace transformed 1Pl

function [21]:

n .o . ..
F( )(X1’T1'”"Xk’Tk’Xk+1’Sk+1""’Xn’sn)=

n .. ) .
=Jdest“( )(x1,T1,...,xk,Tk,ka,tk+1,...,xn,tn)exp{-sjtj}

(11.3.21)

These 1Pl stochastic graphs are the building blocks of
the perturbative expansion and we will use them to
compute the renormalization constants.

It is interesting to remind that we can also give a
path integral formulation of the stochastic theory, which

means that we go from the Langevin approach to the
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Fokker-Planck one [22]. In this way we obtain a local
action Scp[¢] which allows us to calculate the stochastic

averages by conventional path integral methods and the
perturbative expansion can be obtained in the standard
path integral framework. To this end, we can write the

generating average:

Z(J)=<exp{¢J}>=J{dn] exp{-1/4[( n2+q>nJ) } (11.3.22)

Here J is an external source, and all the Green

functions can be obtained taking functional derivatives

of Z(J) with respect to J, and setting J to zero. Q)n is the

solution of the Langevin equation (11.3.6). Eq.(ll.3.22) can

be rewritten as:

2(9)= [an]do1P(6:0)5(6-0,) expl-1/4] nP+0J )

(11.3.23)

P(¢:;0) is the initial probability distribution. For

instance, in the case of eq.(l1.3.14), we have:

P(9:0)=11 8{ 6(x;0)-04() } (11.3.24)
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Writing the argument of the &-function explicitly, we

get:

Z(J)=J[dn][d¢]P(¢;O) det| sn/5¢ | exp{-1/4mZ+¢J }
5(049+8S/8¢ -1 )
(11.3.25)

The integration over m is trivial and we are left with

the computation of the determinant:

det|dn/5¢| = exp{ Tr In [ 3y + 82S/80(1)30(t) 1 d(t-t) }

(11.3.26)

For a system with a discrete set of degrees of
freedom ( d=0 or a lattice regularized system ),
eq.(11.3.26) is not only formal, but we can compute it,

using the fact that , apart for a constant:

det|sn/86|= exp{ Tr In [ 8(t-) + O(t-t) 52S/86(1)80(t) 1}
(11.3.27)

The o-function appearing here is the inverse of the

operator dy, in the forward propagation as required by

the causality of the stochastic process. Expanding the
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logarythm, all the terms vanish because of the trace,

but the first one. Since we follow the midpoint

prescription, 6(0)=1/2, and we get:

det|sn/s0| = exp{1/2]dt tr, 525/50% ) (11.3.28)

Eq.(11.3.25) becomes:

2(J)=1d0]P(6,0) exp{ fddxdt [ -1/4 (202 + (5S/56)2 +

+ 20,0 8S/86 ) +1/2 89(0) 8257802 ] }

(11.3.29)

The term d¢ 8S/8¢ is actually a total derivative and

contributes only for boundary terms. In a lattice
regularization the last term in the bracket acts like a
counterterm to cancel some divergences of the
perturbation theory, while in a dimensional
regularization it can be disregarded. Rescaling t—2t, we
can easyly identify the expression in the bracket with

the forward Fokker-Planck action:

Sep=J[ 1/2 302 + U(0)]
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U(6) = 1/8 (6S/50)2 - 1/4 52S/5¢2 (11.3.30)

If we had chosen the backward Green function for at,

we would get now the backward Fokker-Planck.

This formulation of the stochastic quantization ha
been useful in discussing some supersymmetric
properties [23] and to provide a dynamics to study

statistical systems in a finite geometry [24].
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1.4. SYMMETRIES AND WARD IDENTITIES.

Before the discussion of the problem of the
regularization and renormalization, we want to show
how some properties of the system, relevant from a
physical point of view, can be described in the stochastic
quantization approach as well as in the path integral
[25].

In particular we know that if a system has some
symmetry at the classical level, this symmetry is very
relevant for the structure of the quantized system and
will manifest itself at the quantum level through a set
of identities among the Green functions (the Ward
identities). In the path integral approach the Ward
identities come from the invariance of the generating
functional Z(J); we want now to show how these
identities appear in the stochastic quantization scheme.
To this end we must discuss more in general than ref[9]
how the stochastic quantization procedure has to be used
in presence of internal ( global or local ) symmetries and
how these symmetries will manifest themselves.

Let the action S(U) be invariant under the

transformations of a group G, where U, is the set of

fields defining S. To be general enough we can think that
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U, represents different fields transforming linearly

with some representation of the group G ( for example

U =(05 ;" Vi Y Aua))' The transformation of U, under

geG is:
Ug—Uy2 = (exp{ ie?®) o Us (11.4.1)

where 12 are the generators of G in some ( in general

a

reducible ) representation and &* are the infinitesimal

parameters. If for some value of o U, is a gauge field, we

should add to the right hand side of eq.(ll.4.1) in the
gauge sector also a piece proportional to auea, but if

does not depend on t ( the fictitious time of the
stochastic evolution), this piece will not affect the

following discussion, since d4A only transforms

pLa
linearly with the adjoint representation of G and no

inhomogeneous term appears. In any case:
auag/auﬁ = (exp{ ieala)aB (11.4.2)

is the representative of the group element. Let us
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write the G-invariant quadratic form as :

Q=U, o Ug (11.4.3)
where o is such that

Q9 =U 8 o™ Ug®=U,9( o™ Ug LEYe! (11.4.4)

so the characterizing property of ®, in matrix form,

ol +ITw =0 (11.4.5)

In general o connects different representations in

order to get the singlets Q. Some explicit examples will

be given later.

We are now ready to introduce the Langevin equation

for U, in a covariant form [26]:

Uy = “0o BS[U]/SUB + Ty (11.4.6)

with maﬁz(“)aﬁ)—l and the noise-noise correlation is
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given by:

< na(x1 ; t1) ﬂB(Xz, tz) > = 2(1)043 5(X1-X2) 5(1:1 "t2)

(11.4.7)
The probability density for n is

P(n)= exp{ -1/4 namaBﬂB } (11.4.8)
manifestly invariant under G-transformations

Pm)=Pn%) (11.4.9)

Since the quantum Green functions are obtained in the

equal time t—e limit of averages over n:

GMory o0t (X o Xp) =himy_ o, <U g 1 (X451 Ug (X, 0>

(11.4.10)

we must in general study the behaviour under
G-transformations of functionals F[U(n)] where U(n) is

the solution of eq.(11.4.6)

<FlUMm)]>y = JianIPmFIUEm)] = <FlUM9)]>ya = <FIUMI)]>y,

(11.4.11)
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the last equality being a consequence of the
invariance of P(n), (assuming naively the invariance of

the measure in 1 (i.e. presence of no anomaly)); Um9) is

the solution of the following equation:
0{U (9) = -0,388[UY8Ug + n,9 (11.4.12)
Since S is G-invariant, we have:

sS[UYsU=8S[U9 Tysu9-1 sUg-1/5U= (5S[UI-T/5U9 Tye-1
(11.4.13)

where eq.(l1.4.2) has been used; because of the
properties of o (i.e. the covariance of the Langevin
equation ) we get:

g 3SIUIBUG = (4 sS[ugTysus )y (11.4.14)

We now insert this identity in eq.(l1.4.12) and apply on

the left the element g'1eG:

04U m9) = o 58[u9'1]/5u[39'1 +1, (11.4.15)
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By inspection we see that this is nothing else that the
starting Langevin equation (l1.4.6); so, if the solution is

unique, we get
U,m9)=U,9m) (11.4.16)

l.e. the solution with the G-rotated source is the
G-transformed of the original solution. Let us now write
the average over n of eq.(ll.4.11) as a functional integral
over the U fields using the Fokker-Planck action for the

stochastic quantization , introduced by Gozzi [22]:

<FIUM)]>y, = J[au exp{-Sgp(U)} F(U) (11.4.17)

obtained once the m have been integrated away taking
into account the form of the Langevin equation. From

eq.(11.4.11) and using eq.(ll.4.16) we get:

<F[Ug(n)]>n=<F[U(n)]> (11.4.18)

n

so that:

[aujeSFPIVIRU] = Jaugte-SFPIUGIFUY]-
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Jdu9eSFPUalFU] = JiaugeSFPluglFL]

(11.4.19)

using the invariance of the measure; we get
SeplUY] = SplU] (11.4.20)

(as can also be checked directly knowing the explicit
form of Sgp: it is built using the matrix o ). So, if the

action S[U] defining the path integral quantization is
G-invariant, the action Spp defining the stochastic

quantization is invariant too. This has an immediate
consequence on the Ward identities; let us consider the

following generating functional of the Green functions:

Z(J g (x,:1) =

=f[du1exp{-J[LFP(t)x+(1 W)B(1)S+U g d o (A+(1-1)8(1)]dlt}
(11.4.21)

where J, is a source transforming with g'1. As

discussed in ref.[27] we can prepare the system at t=--

so that at t=0 it is already at the equilibrium ; for A=0

we have the usual path integral generating functional,
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while for A=1 we generate the stochastic Green
functions at the equilibrium. However we have proved
that the whole interpolating action is G-invariant for

every value of A and then the Ward identities:

5Z(J; M8y, 8, = 0 (11.4.22)

hold for every A; of course the same equations are
valid for W=InZ and its legendre transform I'. This is

useful since I' is much more difficult to compute in the
stochastic case than in the usual Quantum Field Theory.
Moreover it is clear that for A=0 ( the purely stochastic
case ) the Fokker Planck action is still invariant ( if a
suitable choice of the initial conditions has been done),
even if the system had been prepared at t=0 so that it
reaches the equilibrium only in the t— e limit. This
means that, althcugh the structure of the Green functions
is different in the two quantization schemes ( being
equal only in the t— e limit),the relations among the
Green functions are fixed only by the symmerty structure
of the system and don't depend on the quantization
procedure (path integral or stochastic equations ). Gauge
models should be excluded in this case since they do have

a dependance on the initial conditions [28] and a further
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investigation is required. To make this formal

discussion more explicit we breafly give two examples.

Suppose G to be SU(N) and U, the reducible

representation (v, w); in this case eq.(ll.4.4) gives w to be
a 2nx2n matrix with vanishing diagonal blocks. Moreover,
if we require chiral invariance and impose the fictitious
time to have dimensions p'2 ( in order to ensure the
convergence of the factors exp{-pzt} in the stochastic

propagators), we get

o 1 JE;
o b o

(11.4.23)

which is the usual choice for the fermion case [9].

Let now G be O(N) and U, a N dimensional real vector
¢;; since the generators of O(N) are antisymmstric,

eq.(l1.4.5) gives correctly ‘“ij=5ij' We can take

S=ﬁ/2[8“¢iau¢i+m2q>2]+V(q)2) and verify explicitly

eq.(l1.4.16); the formal solution of the Langevin equation

for the rotated source is:

o:mP) = i) +e48,0im) = G-mR-8V (62 R))s6% 20n™))

(11.4.24)
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R

where n'"" = n+ 1%, ; G is the usual stochastic

propagator. We expand the right hand side in terms of &

and solve for the unknown d,0;(n) ; the solution is easiliy

found to be Sa¢i=ilaij¢j(n) as dictated by eq.(ll.4.16). It is

now ftrivial to check that the usual Ward identities [29]:
<¢;>=0 <¢i(P)¢;(q)>=3;;P(p,q)

<000 >=0 <0i0jo 9 1>=(8{;8y+ B dj+ 8 8;)
(11.4.25)

are satisfied at any time t because of the correlation

functions of the noise, the Gaussian properties of the

noises, and the form of the solution (eq.(11.4.24)); P(p,q)

is of course different from the usual propagator:

P(p,a)=(1-exp{-2p1})(2m)*5{*)(p+q)/p®+O(g)

(11.4.26)
being equal only in the t—eo limit.

In conclusion, we have shown, in a very general
framework, some consequences of the symmetries in the
stochastic quantization scheme once one stresses on the
covariance properties of the Langevin equation, and in
particular we have proved that the old (i.e. derived in the

path integral approach) Ward identities still hold.
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PART Ill. RENORMALIZATION

Itl.1. REGULARIZATION SCHEMES.

As a trivial consequence of the fact that in the T—e
limit the stochastic perturbative expansion reproduces
the usual perturbative expansion, we must face with the
problem of the divergences of the stochastic graphs. As a
simple example, we show how a divergence arises in the

loop obtained gluing togheter the end points of a free

propagator:

1) X =lay sey)<om Moty T)>-

exp{-(p+m?)(2T-t4-t5) }  (lIL.1.1)

The integration over p is Gaussian and can be easily

performed, provided (2T-t4-t5)=0. The divergence arises
when the integration over p is no more damped by
Gaussian factors,i.e. for t1=t2-—>T. Of course we could

regularize the theory by dimensional regularization, but

we also discover different possibilities. Since a loop, by
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construction, must contain at least one cross,i.e. a
contraction of two noises, we can modify either the
space or the fictitious time part of the correlation
function for mn, introducing suitable kernels in place of

the &-functions appearing in eq.(l11.3.7).For example we

could take:

<n(pHm(a,t)>=2(2r)9(A2/(A2+q?)) "8%(p+q)5(t-t')
(111.1.2)

In this way any crossed propagator will have
additional momenta in the denominator and , for
sufficiently high n, all the ultraviolet divergences will
be regularized. Letting A—< we recover the unregularized
theory. This choice however does not respect the gauge
invariance if we are dealing with gauge fields instead
then scalar fields. On the other hand, we can introduce a

kernel for the fictitious time correlation:
<n GOy, t)>= 289 (x-y) a(t-t) (111.1.3)

If a(t-t') has a zero of sufficiently high order when

t—t', the ultraviolet divergences are regularized. It is
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easy to see how this works by inspection of the
simple example given in eq.(lll.1.1.) for a(t{-tp) in place
of 8(t4-tn). An apparent advantage of this choice, is that

now the symmetries of the physical space are untouched.

A first proposal for o is the family of kernels [9]:
a(®)= 1/2n1 A2 (A2[)" exp{-A°|t]} (111.1.4)

A more convenient, from a practical point of view, is
[10]:

o (tt) = o/2 [tt]0] (111.1.5)
in which the regulator is the real parameter ¢, and

lims o ag(t-t') = 8(t-t) (111.1.6)
The non locality in the fictitious time means that the
stochastic process is no more Markovian. A Markovian
process can be obtained in the limit of eq.(lll.1.6). The
main motivation for this choice rely on the

renormalization of the theory and in fact we can consider
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two related perspectives. First, one can introduce

as(t-t) as a device for regularizing the theory. By the

choice of eq.(lll.1.5) one obtains that the divergences
appear as poles in ¢ and one can devise a minimal
subtraction scheme in which the poles are reabsorbed
into the renormalization constants, while keeping the
dimensionality d fixed, for instance d=4 in the M)4 theory.
The advantage of keeping the dimensionality fixed should
be relevant for instance in the case of supersymmetric
theories [30]. Second, one can consider a theory defined

through the Langevin equation for o=0. This should give a

non-Markovian theory where the average <q>...<1>>Tl is not

equal to the corresponding physical Green functions of a
Euclidean field theory. One can nevertheless imagine to
renormalize that theoi’y, which would be renormalizable
for values of the dimensionality d related to o, and also
introduce the corresponding renormalization group
equations, and study the critical phenomena. This appears
to be convenient because of the observation that for d
fixed , say d=3 for the typical critical phenomena one is
interested in, there exists a particular value oc*=c for
which the non-Markovian theory is renormalizable and

asimptotically free in the infrared, providing a
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systematic method for a subsequent extrapolation to
the physical point ¢=0, in the same spirit of the
ge-expansion algorithm for computing critical exponents,

here (c—c¢*) playing the role of the expansion parameter
[31].

Numerous questions arise when considering the
renormalization pattern of the non-Markovian theory. We
will report here an analysis of the features of the theory
based on the Langevin equation and on eq.(lll.1.5),
including the Markovian and non-Markovian cases [32].

We discuss a proper definition of the non-Markovian
case and, by means of perturbation theory, the
convergence of the T-—e Ilimit for the general
non-Markovian case, for which the Fokker-Planck

equation cannot be derived.
In order to define the measure [dp(n)] for the Gaussian
process, we look for the "momentum representation”, i.e.

we describe n(t) by means of its Fourier transform

1 (V=127 Jdt n(t) expi-ivt } (1.1.7)

1

In this representation the kernel o™ of the bilinear

form which defines the Gaussian distribution is diagonal
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and we get

[dp(m]=N exp{-1/4]dv |1 \)[Pa ) } [dn ] (11.1.8)

The requirement is that the kernel « '1(\/) is positive

G

definite. As we want to use it for regularizing the

theory, we consider a family of kernels o , labelled by

the real variable o, such that, for 6—0, we get back
3(t-t") and that the ultraviolet divergences are expressed

as poles in ¢. A useful form is the following:
o 5(v)= cos (on/2) C(c+1)]v]™° (111.1.9)

which is positive for ce Ins where In is the interval

I =(-1+4n; 1+4n) for n=0.
By Fourier transforming back to the variable t we get

o, as given in eq.(l11.1.5), which was verified [10] to

provide the desired analyticity properties, i.e. it shares
common features with the analytic [34] and dimensional
regularizations. Notice that an analytic continuation in o,
if needed, is implicit in the above formula for the Fourier

transformation. Analytic continuation is also required [9]
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to provide the desired regularization of ultraviolet

divergences, because one must reach the region where

a(t-t') has zeros of sufficiently large order for t—t' and

so we must take cel, with n sufficiently large. After the
divergences have been cancelled, an analytic continuation
from I, to the interval of interest (usually I5 ) through

unphysical regions will be needed.

We still want to prove the convergence for infinite
fictitious time of the regularized graphs of the
perturbative expansion. The proof of the convergence of
the perturbative expansion of the usual ( Markovian)
stochastic quantization [8] is based on the Fokker-Planck
equation, but in the non-Markovian case we cannot use it.
The main reason is that [7] , as discussed in Section [l.1,
the Fokker-Planck equation is a consequence of the
characterizing property of the Markovian systems for
the conditional probabilities (eq.(11.2.12)). In order to
discuss the non-Markovian case, let us consider the
graphs of the perturbation theory. According to the
discussion of Sect. 1.3, each graph appearing in the
perturbative evaluation of eq.(l1.3.8), is obtained by
contracting togheter some tree diagrams according to
eq.(lll.1.3). Hence, any graph can be decomposed into the

tree diagrams which have generated it. Each vertex and
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each cross in the tree diagrams involves an
integration over the corresponding time

variables.Therefore, a tree diagram with V vertices

gives, for a A¢" theory, V time variables t. and (n-2)V+1
variables To from the vertices and the crosses

respectively. The variables t, and t,' appear in a(t,-t.",
and also in the propagators. All these time variables have
T, the external time at which the Green functions are
computed, as an upper bound.

A line starting at t and ending at t' (our convention is

t>t' ) in the tree diagram is a stochastic propagator G,

eq.(l11.3.13). The presence of the 6-functions induces an

orientation and chronological ordering in the sets of the

1 1
tis and Ty, S-

Moreover, every oriented line G ends either on a
vertex or on a cross, and not more than one G can end at
the same point, because of the topological properties of
the tree diagrams. We have a one to one correspondence
between the integration variables and the set of G's by
associating to each time variable the stochastic
propagator having that time variable as smaller time. In
this way we have associated to each time variable a

difference of times ( the argument of the associated G,
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see eq.(11.3.13)). Let's perform the change of

integration variables from the t's and t,'s to the

associated differences z's and y,'s. These are suitable

integration variables since they are positive definite
because of the 6-functions and the exponentials in
eq.(11.3.13) are always damping factors. So the

integration is performed over damping exponentials

times the functions o which have as arguments sums

and differences of z's and y's. The integration interval

for each variable runs from 0 to a time value tsup bounded
by T,i.e. tsup =[T-(asum of z's )] and this is the only

place where T appears. When we take the T—eo limit, the
upper integration value goes to infinity and the
integration is convergent due to the exponential

damping,at least for m=0 (since we consider the case

when, like in eq.(lll.1.5), a;(z-y) behaves as a power of
(z-y)). In the case m=0, which is interesting for the
theory of critical phenomena, the problem of the limit
T« is the same as the problem of the infrared
divergences [35]. Indeed, T provides an infrared regulator
and we can always put m=0 before T—e ( this could be

useful for discussing the renormalization of non-linear
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o models for which a symmetric infrared
regularization is desirable). On this point we will come
again later (see Sect. lll.4).

In conclusion we remark that the stochastic
quantization allows new regularization schemes by
means of non-local kernals in the space [36] or in the
time part of the noise correlations. It is important to
note that the symmetric structure of the theory is
preserved ( apparently also for chiral and
supersymmetric theories ) and the regularization scheme
is probably non-perturbative [37]. We have shown that
not only the Markovian case is consistent, but it is also
possible to define a meaningful non-Markovian theory
and obtain, in this way, new informations about the

related physical system.
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1.2, RENORMALIZATION PROPERTIES.

Once the theory has been regularized, we must
discuss the renormalizability of the perturbative
expansion. In the following we will use the

regularization produced by eq.(lll.1.3) with the choice for

o given in eq.(lll.1.5). Moreover we will let d, the

dimensionality of the Euclidean space, unspecified, in
order to discuss at the same time the renormalization in
the dimensional and in the stochastic regularization [31].

The first, naive, consideration is that a theory is
renormalizable if the coupling constant is dimensionless.
From the Langevin equation and the noise correlation we

can read the canonical dimensions ( in length ):
[6]= XG+1-d/2 []= x2

x~20-4+d (11.2.1)

where a 7»(1)4 coupling has been considered. The
requirement of a dimensionless coupling constant

furnishes the following fundamental relation between o
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and d:

26 = d-4 (111.2.2)

This naive argument can be implemented by a power

counting analysis of the perturbative expansion. In fact,

a generic graph with L loops, E, uncrossed external legs

and EC crossed ones, has a superficial degree of

divergence:

D/2= L d/2 -M(c-1)-N (11.2.3)

where M is the number of crossed internal lines and N
the number of internal time variables over which we

integrate. Using the topological properties of the graphs

for the M)4 theory:

2M=2V+E-E,
V=L-1+(Ej+E)/2

N=2M+V-1 (111.2.4)

we can rewrite the superficial degree of divergence
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as.

D/2=L(d/2-2-6)+3+0-(3/2+0)E-E/2 (111.2.5)

We see that, if eq.(lll.2.2) holds, D is independent of
the order of the perturbative expansion and only a finite

number of divergent graphs occours.

In particular, when EO=1 EC=1 we find a quadratic

divergence and when E =1 E,=3 a logarythmic one. For

Eo =2 E,=0 a logarythmic divergence occours only if ¢=0,

d=4, according to the fact that only in this case such a
graph ( and the related counterterm ) becomes local in
the fictitious time. In this way we have not only verified
the naive argument given at the beginning, but also
identified the graphs to be computed in order to
renormalize the theory.

A much more complete proof of the renormalizability
can be based upon a hidden BRS invariance typical of the
stochastic quantization [23][32]. It is in fact possible to
give a different functional formulation to the stochastic
quantization with respect to what we did in Sect.ll.3.

The Langevin equation can be considered as a

constraint linking ¢ ton :
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310 + 8S/80 = L(¢) = (111.2.6)

and m can have some, not specified, probability
distribution [dp(n)]. The generating functional can be

written as:
Z(9)=J1dp 0] (601 86—t o =

~J1d6] [dp] B(L()-n) detisLig)isol e (111.2.7)

Now we write the determinant using anticommuting

(ghost) variables, and introduce an auxiliary field for

the &-function:

Z(J):f[dq;] [dc] [dc] [dw] e'A+J¢ (111.2.8)
with
A=-W(ow) + L(¢p)w - c 8L/3¢ C (111.2.9)

Here W(w) is the generating functional of the noise



60

correlations:

eW(©) _[[dpmy] e@n (111.2.10)

The action A is very similar to the gauge fixing part
and the Fadeev-Popov part of the effective action of a

gauge theory [4]. In particular we observe the following

BRS invariance:
dh=7C d¢c=0 dC=y® dw=0 (l.2.11)
In fact:
SA=8L/8¢ ycow - xw dL/8¢ ¢ - c 32L/8¢2 cc =0 (l11.2.12)

The last term vanishes in virtue of the Grassmanian

character of ¢ and, if we have more scalar fields PN in

virtue of the symmetry of the second derivative of L. It
is interesting to write A in the superspace, by

introducing a superfield:
D (x,1;0,8)=0(x,1)+8c+cO+00w (111.2.13)

The BRS invariance is nothing but a translation

0—0+y
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in the superspace. In the case of the Langevin equation
there exists also an additional symmetry corresponding

to the translation:

t—1t-0x 0—0+y (111.2.14)

The covariant derivatives corresponding to these two

transformations are

D=-idq D=i(69; -0g) (111.2.15)

giving a simple realization of supersymmetry:
{D; D }=04 {D ;D }={D ;D}=0 (111.2.186)

The action can be written as:

A=| dtdode { DOD® - S(®) } (111.2.17)

This supersymmetry is tightly related to the time
reversal properties of the system [22].
Since our regularization, based on eq.(lll.1.5), defines

a particular measure, it does not break the symmetry in

eq.(l11.2.11), and then the renormalized action Ap
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satisfies the Ward identity induced by eq.(ll1.2.11):

SAR/8¢ C + w dAR/dc =0 (111.2.18)

If one is able to prove, by power counting and fermion

number conservation, that Ag is at most guadratic in the

ghost fields, i.e. AR has the form:

Ap=-cM(0; ®)c +Z(¢; ») (111.2.19)

then the Ward identity eq.(lll.2.18) implies:

M(¢; @) = 8L(¢; @)/d¢

2(0; ) = oLg(¢; ) - Wg(w) (111.2.20)

Comparing egs.(l11.2.20) and (l11.2.19) with eq.(l11.2.9),

we see that the theory is renormalizable if the

dimensional analysis, applied to Lr(¢; ), does not allow a

dependance on ® ,ie. Lp is a function of ¢ only, and

moreover it is polynomial in ¢ and its derivatives of the

same form as it appears in the Langevin equation. The
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renormalization scheme can be based on a

renormalized Langevin equation:

ztatq):-zq)(aua-%m2+5m2>¢+z\,5wsq> sz (11.2.21)

when the dimensional analysis fixes Wg(w») to be at

most quadratic in ®.

We will consider mainly the theory M;"' for d>2, since

it is relevant for the application to the critical
phenomena , both in the Markovian and non-Markovian
case. As an additional example we also discuss the
theory go-. In this latter case [g]:x'6+d/2'3. We will be
interested in the case for which the coupling constant is

dimensionless, and therefore we require eq.(l11.2.2) for

the case M>4, and

20+6=d (111.2.22)

for the case gq>3. Following the discussion of

Sect.lll.1, we also require celj and therefore restrict

2<d<6 (11.2.23)
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for the case x¢4, and
4<d<8 (111.2.24)

for the case g¢3.

Since a four ghost term has dimensions:

(Jcceedtddx = xd+2 (111.2.25)

it is not ultraviolet divergent for d>2, and therefore
eq.(111.2.19) holds. Let us discuss the form of Ly: it has
c-d/2-1

critical dimensions X The non-interacting part

of it, i.e. the part containing only ¢ and only linearly, will

have the form:
ztat¢+z¢(-auau)¢+(m2+am2)¢ (111.2.26)

For the case of the M)A‘ theory, the interaction part of
Lg will be of the form : ZyAge>/3! . Notice that terms of
the form ¢2 or w¢ are forbidden by the symmetry ¢—-¢,

ow——w . If there is an additional gq)3 interaction, besides

x¢4, still keeping eq.(ll1.2.2), one sees that a term 0o
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would appear multiplied by one power of A at least,

making it not divergent.

For the case of the g¢3 theory, the interaction part of
LR will be of the form: ZVgRq>2/2, except for the
particular case d=4, corresponding to a non-Markovian

situation with o=-1, due to eq.(lll.2.22), where a term w¢

can appear.

Let's repeat the same dimensional analysis on Wp (o).
In a minimal subtraction scheme, a potentially divergent
term of the form Jcok dtd9x appearing in Wr(w) can give a

logarythmic divergence (i.e. the relevant one) only if its
dimensionality is a positive even integer. It turns out
that, in the case of the M)A’ and gq>3 theories, a
logarythmically divergent term, quadratic in ®, occours
for d=4 and d=6 respectively, i.e. in the Markovian case
(6=0). The function W(w) generating the noise-noise

correlations remains quadratic under renormalization

and the renormalization constant Zﬂ’ appearing in:

W(m)=zn2f dtdtddx o(ctog(tt) o(xt)  (11.2.27)

is actually required only in the Markovian case, being
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equal to one in the non-Markovian cases. We conclude
that M)4 is renormalizable in general when egs.(l11.2.2)
and (l11.2.23) hold and g¢3 is renormalizable when
egs.(111.2.22) and (l11.2.24) hold.

In both the cases Lr(¢) can be set in the form:

LR(6)= Zdy + SSR/S0 (111.2.28)

where SR is the renormalized version of the action S.

Notice that at o=-1 ( the lower extreme value of I, ),

corresponding to d=2 for M)"' and d=4 for gq>3, the
non-Markovian case is not renormalizable. In fact, for
M>4, four ghost terms and terms containing higher powers
of  and ¢ can appear, while, for g¢3, non quadratic and ¢
dependent noise-noise correlations would be required.
Let's remind an important feature of the Markovian

case. The supersymmetry of eq.(lll.2.14), implies an

additional Ward identity [23]:

zt=zn2 (111.2.29)
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On the contrary, if the process is non-Markovian, it is

not possible to write A in the supersymmetric form
because now W(w) is no more local in time, while only

local terms can appear in the supersymmetric action. In

this case, eq.(lli.2.29) does not work any more: a non

trivial Zt will be , in general, required, while, as

previously seen, Z"ﬂ=1'
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l11.3. THE BACKGROUND FIELD METHOD.

Let us rewrite the Langevin equation in the presence

of an external deterministic source J(x;t):

910(x;t)= -Foloat] + Ve n(xit) - J(xit) (11.3.1)
where
Folo(x;t)]=8S[0)/36(x;t) (111.3.2)

and e is a small parameter playing the role of fi . As an
example we will consider the action S of a gq>3 theory

where, for generality, a linear term in ¢ has been added:

s=[adx(1r2 o(-a,em2)o + i3l o>+ ko) (111:8.3)

We want to compute directly the "effective force” for
the stochastic process in analogy with the definition of
effective action in the usual Quantum Field Theory.

In the path integral approach, one defines the

effective action T'[¢] by means of a Legendre
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transform of the functional generating the connected
Green functions. The argument of T ,?5(x), is the
expectation value ( in the sense of the path integral ) of
the quantum field ¢(x) in the presence of an external
source J(x). The effective action generalizes the classic
action, in the sense that the equation of motion for ES is

equal to the "quantum equation of motion™:
< 3S[0)/8¢ >= SL[$1/8¢ = -J (111.3.4)

We define the effective force for the stochastic

system extending the validity of eq.(l11.3.4) to finite

time:
<Folo(xit>y = (ki)

b(xt) = <0 (x;t)>q (111.3.5)

where now the averages must be understood over the
noise measure eq.(l11.1.8). Taking the average of

eq.(11.3.1) we get an equation for Feif.

96= -Fe5]- (111.3.6)
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During the calculation of Feffig] we will meet
divergences and hence, as we have seen in Sectlll.2,

counterterms must be introduced:
Z310= -Fp®Mo]-J (111.3.7)

where Fgeff means the renormalized effactive force,

i.e. in F5¢ the renormalization constants Z, sm2, Zy, 8k

appear. The computation of eq.(ll1.3.7) can be done using a

background field method [46]. We define a background

field @(x;t) as the solution of eq.(l1l.3.1) when & has been

set equal to zero:
0@ (x:t)= —FO[CD(x;t)]-J (111.3.8)

This deterministic equation ( a heat equation)
corresponds to the tree level approximation

of.eq.(l11.3.7). Let's shift
o(x;1) =@ (X;1)+E(x;t) (111.3.9)

and
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h(g(x;t)=®(x;t)+rg(x;t) (111.3.10)

wherezis the mean value of the stochastic field
£. The crucial observation in the background field method
is that [46] the effective action I, expressed as a
functional of ®, can be computed summing only vacuum
graphs (i.e. graphs with no external & leg) in the
background @. Here we will see that the same feature
occours for the effective force Fg8ff(@). Of course, since

the force is the derivative of the action, now we will

have vacuum diagrams with one external amputated leg,

at the point (x;t) corresponding to 5/8®(x;t), represented

by a dot in fig.1

Fq (D (x;t))=A/2

Fo(@(xi)=23{ 1/4 @ " C}} }

Fig.1.Diagrams for the effective force.
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Let's compute directly F8(®@). From egs.(1l1.3.1) and

(l11.3.9) we get:
9 = { Fo(@) &+ 12 F"y E2 4.} + Ve (111.3.11)

This equation can be formally solved defining a

stochastic propagator in the backgroud ®(x;t) by:
[3i+F' o (@(x;1))] Glx-y;tt; @) = 89(x-y)8(t-1) (111.3.12)

Eq.(l11.3.11) is solved by:

e0at) = Jddyde Glxyitn @) { -1/2F" o (@)2(y:v)+

ABIFT 834 L+ Ve (i) ) (111.3.13)

By taking the average we get:

Ee < £> = 2 7eME, = Ge{-1/2F" < E2> - 13IF" < E3> +..)

(111.3.14)

Remembering the usual perturbative expansion in the
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stochastic quantization scheme, we note that the
expansion in ¢ is nothing but a loop expansion. Defining

£,-®, we can solve, order by order, the equation for Fge':

3; Ty~ eNey = -2 eNF @] - J (111.3.15)

We produce in this way a set of algebraic equations

defining F in terms of the preceding Fi's; the general

form is:
N i< k
JSN;O + Zk=0 Emt__mkﬂmeN 1/kt F( )N-(m1+...+mk) gm1"'E-‘mk
RN (111.3.16)

where F;(K) is the k-th derivative with respect to £y

~ . .
computed at ¢=@ and convolutions in (x;; tj) are

understood. For the reader's convenience, we show here

the first equations:

il

N=0 J+F o [@]=-3,0

1
N=1 Fi+F e =-0:8,
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N=2 FotrFy (e +F (e, +1/2F [ P(6)%=-3%,

(11.3.17)

We consider the example of eq.(l11.3.18). In this case,

F,®=g while higher derivatives vanish, and we can, as

usual, represent eq.(lll.3.13) as an expansion in tree
diagrams.

Eq.(l11.3.14) is represented by the sum of stochastic

graphs of Fig.2 . The terms in brackets of fig.2 are &; and

&, respectively.

<t(x:t)>=¢[ (-0/2) ]+
82“9’”3[2@ OO
8 + ]+O(e3)

Fig.2 Graphical representation of the average.
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Eq.(111.3.17) for N=1 gives the first correction to the

force (see Fig.1a):

Fql@(x;t)]=0/2 fddydtldrz G(x-y; tty; @) Glx-y; t-19; Q)

2 as5(T1=19) (111.3.18)

Notice that the external stochastic propagator of &,
has been removed because of eq.(l11.3.12).
We then expand Fq(@(x)) in the background field and

compute the divergent part of the graphs with zero, one
and two background fields as external legs. These

divergences will be absorbed by the renormalization

constants 8k for zero external leg, Z¢,Zt, 8m2 for one and
Z, for two.

The second order correction can be obtained from

eq.(111.3.17) for N=2. It is easy to see that the various

terms, appearing in the equation for Fo, arrange

themselves in such a way that Fo is expressed only by

means of 1Pl graphs with no external leg, as shown in

fig.1b.

A final remark: following the discussion of Sect.lll.2,
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one should also care about the renormalization of the

noise correlations. But, it must be noticed that the only

place where the renormalization constant Zn appears is

the crossed line ( for zero background):

f —— t = Zn2/2t2¢[p2+m2+6m2]
{exp[-Zy(P2+mZ+3m2)[t-t1/Z ]+

-exp[—Z¢(p2+m2+8m2)(t+t')/2t]}

(111.3.20)
In the Markovian case, the Ward identity discussed in

Sect.lil.2 (eq.(lll.2.29)) holds and we have not to care

about Zﬂ‘ On the other hand, for the non-Markovian case,

we have seen in Sect. lll.2 that Z,n=1. We then conclude

that the renormalization scheme based on the effective

force, as previously discussed, is sufficient, and the

explicit introduction of a renormalization constant ZTl is

not required. Further, by using eq.(ll1.3.20) and applying
the topological arguments about the structure of the

stochastic graphs (Sect.lll.1) to the graphs defining the

correction F.. to the effective force, it is possible to

n

show that:
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Fo(tiZ) = (zg’—lznZ)n FL(t/Zs1) (11.3.21)

where we have indicated only the dependance of F,
from the external time t and from Z;.

In the Markovian case o=0 eq.(lll.3.21) shows that the
equilibrium ( t—e ) does not depend on Z; because of

eq.(l11.2.29) so that the only wave function

renormalization is given by Z the wusual
¢

renormalization constant Z of the Quantum Field Theory ).

On the contrary, in the non-Markovian case Zﬂ=1 and the
equilibrium wave function renormalization needs both Z,

and Zq).
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OIL4.RENORMALIZATION GROUP EQUATIONS.

In the prevoius chapters it has been shown how a renormalization procedure can be based

directly on the Langevin equadon and that this procedure is consistent not only when the stochastic

noise is Markovian, but also in the more general case of non Markovian noises.

To absorb the divergences of the perturbative expansion, some renormalization constants
have to be inroduced in the Langevin equadon. For all of them but two, it is easy the
identificadon with the renormalizaton constants of the usual quanmm field theory. The reman-
ing two constants, called Z and Z, in the following, are tightly connected with the stochastic
character of the process. It is our aim to clarify their role. In particular, while Z, tuns out
to be irrelevant as will be shown, the constant Z is related to the evoluton in the stochastc
tume and is relevant in discussing how the system converges towards the equilibrium.

This is not only interesung from the point of view of the Quantum Field Theory, bur
also in the framework of the theory of the cridcal phenomena. In fact , the Langevin equa-
ton has been extensively used to provide a dynamics to the critical systems[ 38)] in order to
compute the relaxadon time towards the equilibrium [39] and the scaling properties of the
Green functons out of the equilibrium. In some sense we have an extension to the dynamics
of the well known connecton berween the path integral formuladon of Euclidean Quantum
Field Theory and equilibrium Stadsdcal Physics. Recendy, in this perspective, making use of
some results obtained studying the stochasdc quandzation, the critical dynamics of statistical

systems in a finite geomewy has been discussed and the relaxation dme in a finite volume has
been compured: [24]

Moreover, another relaton berween the stochastc quantzadon in the massless case and
the theory of the critical phenomena should be considered: in the former we are interested in

the infinite ficitious tme behaviour and this turns out to be similar to the approach to the
criucal temperature for a stadsucal system. In fact, the fictitous dme provides an infrared

regulator: if, on the Langevin equanon:

drox:]) = -i%ﬂﬁ + T (IIL.4.1)

(where S is the classical Euclidean acton and 5 the random noise) we perform a Laplace
ansform with respect to T, the left hand side will act as an extra mass term, vanishing as

T—m™
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Alternatively, taking for instance the action:

Stel = | a’x F“%‘P‘a"‘f’ + _}’_(szz + 7;\,-304 (IL4.2)

we can compute the stochastic, equal time, 2-point Green function and from this we can

get the correlation lenght [29] as a function of m* and T. At the tree level this reads:

2Te ~2Tm?

. (IIL.4.3)

BmiT) = =5 -
m l—e

In the T—w limit, we recover the usual divergence £~(m? ™ of the quantum theory near the

critical temperature m=0, with the tree level value for the critical exponent y=%. On the

other hand, the stochastic quantization of the massless theory exhibits, at finite time, ¢~7'7.
Thus, the theory is infrared regulated and it becomes critical only in the T infinite limit, when
the correlatdon lenght diverges with the critical exponent »;, whose tree level value is rr=122.
The value of v; is changed by the renormalization procedure, as happens for ». We will see
that this change is controlled by the renormalization constant Z,.

In the following we will extensively use the standard techniques of the Renormalization
Group (R.G.) equations and of the Callan-Symanzik method (see ref.[29][40]).

As already happened in the connection between path integral Quantum Field Theory and
Statistical Physics, it is worthwhile to be noticed that, the study of the Stochastic Quantization
can renew the interest in dynamical critical phenomena. On the other hand, techniques
developed in the framework of the dynamical statistical systems can be used in the Stochastic

Quantization scheme.
The renormalized Langevin equation:

ZRp (5 T) = -[Z(-THm2+8m2)og +Z, A 3P T4, (IIT.4.4)
with
Nr&D=Zn ngx; T) (01.4.5)

Equations (I11.4.1) , (I11.4.2) and the 2-noise correlation

<n(x; Tindy; TH>=28(x-y)o(T-THx o(-T) (I11.4.6)

(OLO. as given in eq.(I11.1.5)) have to be thought of as the bare version of the theory.

The coupling constant of the regularized theory has dimensions 1%, | being a mass scale
and

w=2c+4-d (I1.4.7)

while the renormalized coupling constant 7‘R is dimensionless. The renormalization point
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occours for ¢*=2¢"+4—d"=0. If the renormalization is done keeping ¢“=4 and ¢ =0 , we are

studying what we call in the following the Markovian case. Otherwise, we are dealing with a

non-Markovian case.

Up to now the renormalization constants have been, in principle, arbitrary, dimensionless

functions of the cut-off A, of the coupling constant \;, and of the other dimensional parame-

ters T, u, m*. Their form is fixed by the normalization conditions. For example, in a normali-

zation at zero momentum (used in the framework of the Callan-Symanzik equation), they will

depend on A, and A*T.

For our purposes, it is better to choose a minimal subtraction scheme where, by dimen-

sional analysis, we see that:

Z = ZOwi)
I

(I11.4.8)

and the renormalization constants don’t depend on the fictitious time since all the finite parts in

the counterterms have been set to zero.

We now define:

Z
T=TR=—Z—TB
¢

and observe that, using eq, (II1.4.6) , we have:
Z o—1
(nr(eTr)ne i Te)) = Z2 [—Z—} (as®:Ta)na i Ts))
¢
Eq.(IIL.4.4) becomes:
ZZ; Z

z Y (-2
=-Z.Z! {—'— (—O+m*+6mpg(x;:Tg)+

)\R "Z (1-2
~Zy—twZ | S R (x:Tp)+15 (5 T)
3 LZ.

This equation goes into the bare one, if we define:

Z[/l = Zq—lz;l+a)/lzr(l—a)fl

and

Z"pp(xiTg) = pp(xitg)

-(1+a)2
} Or pr:Tg) =

(IL.4.9)

(II1.4.10)

(II1.4.11)

(1.4.12)

(II1.4.13)
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As seen before, in the non-Markovian case ( " =0 ) Z,=1, and so it 1s not

necessary to introduce it. Moreover, in the Markovian case ( ¢"=0 ), eq.(111.2.29 holds

so that z'2 = z!?, z  disappears from ([11.4.11), and Z, enters only through the definition of
T,. We then conclude that Z, never plays any role. On the contrary, Z, is relevant in the
approach to the equilibrium for the Markovian case, but disappears once the equilibrium has
been reached (the usual Quantum Field Theory does not know anything about Z, ). In the
non-Markovian case instead, the effect of Z has to be taken into account also at the equili-
brium.
We define the connected, finite time, N point Green functions as the connected part of

the average { ¢(;D)...e(y;T)? . The relation between bare and renormalized Green functions
is:

GP@i N Ta:8) = ZV2GE (P e Trin) (111.4.14)
By dimensional analysis, we also get:

G (opingie  Triom) = @P GEV@i g Trin) (I1.4.15)
with

D = d(l—N)-%—N(%-—l—o) = d(1-N)+N (II1.4.16)

the last equality being valid at the renormalization point »*=0. On equations (4.14) and (4.15)
we can use the renormalization group techniques - to understand the role played by Z,

and, more in general, the behaviour during the approach to the equilibrium.
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As we have seen, since in the massless case T acts as an infrared cut-off, the stochastic

massless theory at finite time is well defined. To write the renormalization group equations, we
take the derivative y{— of (1I1.4.14) keeping the bare quantities fixed and using the renormali-
n .

zation constants in the minimal subtraction scheme as given in (II1.4.8).

{uaiﬂ +a<xg>-é{:+w, —v¢>rgg§; +_M G™(p; e Tri) =0 @i
where, as usual:

B(XR)=#££- |5 7=#~d£;1nz |5

%=,¢.5‘3;mz, | 7¢=,13";mz¢|3 (1IL.4.17)

Using the dimensional properties given by (IIL4.15), we obtain the final form of the R.G.
equation:

- g ) d - - d N N) N T e =
{ SE""B()\R)‘a_}:;'[’Yr 7¢+2]TR33-:+[D+'3:'Y]}G (spi s\ Tg3w)=0

(111.4.18)
The solution is:
—'}}-‘é’,—'vmm)
G™(sp;hg:Tosw)= sPe ! G™(p; NS T(s)im) (II1.4.19)
with the running parameters A\(s) and T(s) defined by:
28 = o)
Ns=D=Xg (11.4.20)
and
T = (3,000 =7, N+ 2JT)

Ts=1) = Ty (IL4.21)
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We know that for «>0 (i.e. below the critical dimensicn d.=4 , while keeping ¢"=0) the
theory is superrenormalizable from the ultraviolet point of view: if A is of order « and
suﬁicienﬂy close to the origin, M) is driven towards the 'ultraviolet fixed point X", =0, so that
v, and vy, are small corrections to the factor 2 in the bracket of (II1.4.21), This means that T(s)
goes to infinity as s—e. From ([I1.4.19)%, we see that the high momentum behaviour of the
finite T Green function ( the l.h.s.) furnishes an approximation of the behaviour of the quan-
tum Green function, i.e. of the Green function of the critical theory. It has to be remarked
that this approximation works outside of the critical region, i.e. when the theory behaves like
a free one. On the contrary, if w=0 , this approximation does not work for \¢* since r=0 sud-
denly becomes an infrared fixed point. However, it can become a useful approximation in dis-
cussing the gauge theories and their numerical simulations since, in that case, the origin is an
ultraviolet fixed point.

On the other hand, since we are dealing with a massless theory, we are actually
interested in studying the critical region, i.e. small momenta and large T, where, as shown in
(II1.4.3), the correlaton length diverges. Moreover, we will see that is this the region In
which the T, infinite limit has to be discussed.

To this end, we write (IIL.4.16)at \z=X" , an infrared fixed point of the g-function:

a ® » a N = L] ‘
1:#3;+(v, e ety le(N)R(pi A Triw)=0 (Il1.4.22)

where a star quantity means that it has been computed at the fixed point. We want to stress
that we are authorized in doing so since, as discussed in ref.[40], the behaviour in the critical
region has to be studied by the renormalized theory in which A\;=X\". The solution is:

- X
Y

GMe(piTou) = ¢ 2 @@ " " Ty) (I1.4.23)

with ¢ some function of the momenta and of T(x) only. Now we use the canonical dimension
of G:

GV Triw) = G e ' piie*Trie ™ w) (I1.4.24)
and get
_ﬂ.y‘ £7.+D )
GP@iTem) =1 2 2 ¥ lpite™w 0 R) (I11.4.25)

Since ¢ is arbitrary, we can choose:

(Q"lu)_ Tz = 1 (IH.4.26)

whose solution is

!

0 = WTe) " WL4.27)
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Eq.(4.25) becomes:

_ D+Ny" 12 1

G Toiw) = W2 (Tpd) 07 @{u‘mﬁ)“*' "‘:pf} (IIL.4.28)

The Green function depends on the momenta only through the combination £.p,, with

!

2=,

b7 = p N Trp®

(IIL.4.29)

This gives the time dependent correlation length diverging with 7. In analogy with the critical
exponent » defined for the theory above the critical temperature, we can define

vit=24y =y, (II1.4.30)

giving the scaling of {; when Tz— .
Eq.(4.28) can be rewritten as:

N

G, Trin) = E700Er) 2 @(Erp:) (I1.4.31)

In this way, we see that the problem of the 7 infinite limit, for the massless theory, reduces
to the problem of studying the system in the critical region, i.e. when p;¢£;—e. The critical
theory ( the quantum, T infinite, massless theory ) exists at the renormalization point w=0 ( in
the dimensional regularization this means that it exists at the critical dimension d.=4). For
>0 ( below the critical dimension ) the critical theory acquires a meaning only through the
w-expansion ( the e-expansion in the Markovian case ) around the critical value w"=0 (
€ =d"—4=0).

In particular, the Green functions of the critical theory ( denoted with GV ) satisfy R.G.
equations similar to eq.(II1.4.22);

{p—;i- +—,,A£7'J GMpiwy =0 (I11.4.32)
w2
For N=2, using the dimensional analysis, we have the well known behaviour:

GP@pw) = p™ ptv -oC (1IL.4.33)
where C is some constant. The analogous equation for the T, finite theory, can be obtained
from (II1.4.25) for N=2 and o = p:

G Tei) = #—7.p (7’—2)@(2)@ £r) (111.4.34)

As the T, infinite limit is taken, £, diverges and (I11.4.33) implies that:

lim ®P(y) = C (111.4.35)

ym=
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so that the stochastic theory converges to the critcal one.

Since the difference berween (I11.4.22)and ([11.4.32) is given by a term proportional to the
time derivative of the Green function, it is interesting to see how the time derivatives go to

zero. To this end, we write a R.G. equation for G',$M=aTRG,§”’ and study how it behaves as a

function of 7, ( as in the Callan-Symanzik approach ). The scaling property of G’/ now is:

N
) Zr '
G NaiTiA) = 27 =G0 e Triw) (LIL.4.36)
¢

The R.G. equation has the form:

d 0 d N ,
[#a—# +B()\R)‘5');‘+('Yr —7“’)TRE"R— R AN "Y{] G0 Mg Trsw) = 0 (I11.4.37)

At the fixed point A", following step by step the discussion done for G ( from (I1.4.22) to
(111.4.28)), we arrive to the conclusion that:

N a « =«
D+2+—5-y R Pl

G @i T = 2% T 7T F®pE) (I11.4.38)

For semplicity we take N=2 and discuss the Markovian case only. Since D= -2 and , in the
Markovian case, v =v,, wWe get

¥

G'P@:Trim) = (Trid) T T FOpgr) (I11.4.39)

Alternatively, this equation can be written in the same form of eq.(II1.4.34);

Gv}gz)(p;TR ;#) — #-7I-PYI.H(2)(p ET) (HI.4.40)

It is interesting to observ that the anomalous scaling is completely determinated by the
anomalous dimension of Z,. Moreover, since we know that the convergence of the sto-
chastic theory is controlled, in general, by exponential factors of the kind exp(—T(p?+m?), here
we see that G'§2 goes to zero, as a consequence of (II1.4.35), in virtue of the fact that the
exponental damping factors contained in the function #® can have only the form exp(-p?t?),

as dictated by (II1.4.40). When T goes to infinity, & diverges and the exponential goes to
zero, since in the critical region pér>>1.
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Once the massless theory has been solved, there exists a general procedure to extend the
theory to the massive case [29][40]. The Green functions of the massive theory can be
expanded in terms of the Green functions of the massless theory with zero momentum mass
insertions. In doing so, the R.G. equations for the massive theory have, as ingredients, the
renormalization constants of the critical theory. With this techinque it is strightforward to
extend([J1.4.16) to the massive case:

d d )
— + B(hp ) —— + —y YT p—— +
[u P B(Ag) g (e =Y T T

+72 ’"’%35{,3' +—2’—7} G heiTrimisu) = 0 (TL4.41)
where
ta = = hginZal s (IL4.42)

is the anomalous dimension related to the mass insertion for the massless theory. It is possible
to write the solution:

(Ew+dn
Gspiihg:Trimgip) = e G(p; ;NS); T(s)sm(s); )

with the running mass defined by:

(dm(s)

T = (ra= 2m)

mis=1) = m}

However , it is more convenient to chahge our perspective to the Callan-Symanzik point
of view again, in order to understand what happens when we now vary mg;. Following the dis-
cussion form=0 , we fix Az = \" in eq.(IIL.4.41):

9 e e 3 e 28 Nl
{“a_ﬂ +(r =, )TR—aTR 7 2 mR——am‘% 5 }Gév’(ﬂ;.TR angiw) = 0 (111.4.43)

The solution of this equation can be written in the form:

) -y -v), 2 T

@ Temiw) = & 2 xpiiTek cmin ) (UL.4.44)
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Using the dimensional property

G(p; :Teimps) = e®Gle™'pie* Trie "maie ™ w) (I1.4.45)

we get the result:
-3 a -10) -v
G Teimgzw) = e2@@7'w 7 x [Q_lPHQZTR(Q_ll") T e 0 mg(e T ) “"J

(I11.4.46)

We now set
(2"7. 1)-‘i v
0 =4 [_’.";} - (1.4.47)

so that the last argument in the function x is equal to 1 . This gives the usual form to the
correlation length above the critical temperature: e

4
b ol = e {m_” (IIL4.48)

with

v (ITL.4.49)

Eq.@.46)now becomes:

- D e .
mp 42—y 7 Ur=a )
x{&pi ;F"2TR(_’L y -

@ - Ny -y 7!
I

Mg
G @i trimiip) = P {—-——

(01.4.50)

From this equation we see that, the exponential damping exp-— Tpmg, controlling the conver-
gence towards the equilibrium, now reads exp— Tg/7,, With T, the relaxation time [38], given
by:

- -1 Yl‘-‘Y\:
]—4(2—-1 27—

m
To = #—2 {_—_R;

p (LIL4.51)

The tree level result T, ~mg? , predicted by the Landau- Khalamikov theory {39], now 1s
changed and 7, scales with the critical exponent z:

T,~(m%)™" ~¢ (I1.4.52)
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From (I11.4.51) and (111.4.49), we can identify z:
I = 24}-'}1‘_‘—7‘: (HI.4‘.53)

This result was first obtained in the framework of the R.G. equations by De Dominicis,

Brezin and Zinn-Justin [41].

We will use the numerical values of next Section, obtained in the renormalization of the

stochastic theory, to compute z at least at the first order and we will compare our results with the

g-expansion values [41][42]. ,
In conclusion, we have shown that the T infinite limit of the stochastic quantization in the
massless case can be studied with a method similar to that used for a quantum theory near the

critical temperature. In particular, the exponent V. has been computed .

On the other hand, when the theory is massive, we have been able to compute the relaxation
time and the related critical exponent.

In this way we achived various results: we clarified the role of the extra renormalization
constants, proved the convergence of the stochastic theory even in the massless case, obtained the
possibility of giving new numerical values to a dynamical critical exponent ( for which, up to now,

‘the available information is rather poor and contradictory).
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IV. COMPUTATION OF THE CRITICAL EXPONENTS.

IV.1. THE &-EXPANSION.

In the following we want to give a brief review of the
problem of producing theoretical previsions on the
behaviour of a statistical system near the critical
temperature [29][40]. From the point of view of the field
theory, this implies the study of the scaling behaviour of
a system described by a scalar field ( or a set of scalar
fields if an additional rotational symmetry s
concerned), with a 4-point self interaction. The mass
term is related to the deviation from the critical
temperature, since, as seen in Sect.lll.4, when m—0 the
correlation length diverges, and we are in presence of a
phase transition. Since it is well known that the mean
field approximation works well only at dimensionality
d>4 ( d=4 being the critical dimension ), one is forced to
look for some perturbative expansion in the coupling
constant A of the interaction term k¢4, in order to get
some information about the behaviour at the physical

dimension d=3. However, this is not a straightforward
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application of the standard tecniques of the
perturbation theory. In fact, although from the
ultraviolet point of view k¢4in d=3 is a
super-renormalizable theory, when m—0 severe infrared
divergences occour -and the theory is no longer
renormalizable in the infrared region. But we are
interested in this region in statistical physics, since we
want to compute the long scale properties. The non

renormalizability of the theory is simply expressed by
the fact that A acquires dimensions p%, with @ a mass

scale and e=4-d :

A= HE (IV.1.1)

Ao is a dimensionless coupling constant. The first

consequence is that we haven't any more a small

parameter to expand the Green functions: a loop
expansion is actually an expansion in A ,and A is small
provided p/A<<1, where A is a typical mass scale. But
since we are interested in the long distances, A is

typically sent to zero and A cannot be considered any
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more a small perturbative parameter. Moreover, we
are unable to fix the renormalization conditions: for

example, consider the 2-point Green function at the tree
level F(z)(p2)=p2—->0 for p2—> 0. After a naive loop
expansion has been performed, it is not still possible to
require that F(2)(p2; A)— 0 for p2—> 0, since
r@(p2:)=x pet 2 L p2 et C and, for positive e there wil
always exist a L such that 2-eL<0. The way out to this
situation consists in a double expansion in loops and in e,
considering € as a small parameter , i.e. the

dimensionality of the system to be close to 4. With this

technique the previous loop expansion becomes:

r@)(p2;2)=2, 2, €L K 2,5 (npp?)* p? ¢ | _g

(IV.1.2)

and no logarythmic term will overwhelm the p2

factor. Of course now every quantity has to be computed
at e=0 where the theory is renormalizable and we can use
the standard methods. Moreover, ¢ is now the small
parameter we were looking for: after the B-function has

been obtained and its zeros computed in terms of g, any
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quantity computed at the fixed point will be
expressed as a power series in terms of the small
parameter . Among the fixed points of the B3-function we
must verify that an infrared attractive fixed point exists
and that this fixed point is indeed of order e: the long
scale behaviour of the system will be described by the
critical exponents computed at this fixed point, the
perturbative expansion being justified by the smallness
of e. After we have obtained the relevant quantities in
terms of powers of g, an extrapolation to the point e=1 is
needed in order to reach again the physical situation.

The first informatioh we would like to get, is about
the range of the correlations. In fact, the correlation

between points separated by the distance r, goes as:
G(r) = exp{ -m2r} rd+2+N (1V.1.3)

When m=0 (critical temperature) the behaviour of the
correlations is dictated by a power law in which the 2-d

is the classical (tree or mean field approximation)
exponent, while n is the quantum correction. It is clear

that in the field theory language, n is the anomalous
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dimension of the 2-point Green function, and can be
computed from the wave function renormalization

constant Z (eq.(l11.4.12)):

n=p 9nZ |8 (IV.1.4)
ap

Another interesting quantity is related to the

susceptibility in the critical region:
Y = ]T-TCi‘Y (IV.1.5)

The critical exponent ycan be computed in terms of 7

and yq)z, the anomalous dimension of the mass insertion:

v ={1+7p2 1e-m¥! (IV.1.6)

As we have seen in Sectlll.4, another interesting
critical exponent to be computed is z, given in

eq.(11.4.53).

In the following table we report the values for these
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exponents for the first orders in & [29][41] and from

the high temperature expansion [43].

|y | 1167 | 124 | 125040003 |
| w | 0019 | 0.037 | 0.041x0.01 |
| z2 | 0.013 | 0.006 | - 1
| |

| Ok | OF% | HTE |

Table 1. The values of the critical exponents in the

g-expansion and in the High Temperature Expansion.
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IV.2.THE STOCHASTIC QUANTIZATION APPROACH

In this chapter we will put togheter everything we've
learn about the stochastic quantization, the stochastic
regularization, and the renormalization to devise a new
method for computing the critical exponents.

First, in Sect. lll.1, we have seen that with the
stochastic quantization it is possible to introduce a new

regularization scheme, that this scheme is consistent if

the parameter o of the kernel o is contained in the

interval I,=(-1;1) and that the theory converges for large
stochastic times.

Second, in Sect. lll.2, we have proved that M>4 is also
renormalizable provided the fundamental relation

between o and the dimension d of the space is satisfied:
20+4-d=0 (IvV.2.1)

Moreover we have proved that the renormalization can

be done directly at the level of the Langevin equation by
introducing the renormalization constants Zt' Z¢’ ZV, ZT]

(see eq.(l11.2.2)).
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Third, in Sect. lll.4, we have seen that it is possible
to set m=0 before taking the T-—se limit and that the
theory converges to the critical one in this limit. At the
same time, in a minimal subtraction scheme, the
renormalization constants do not depend on T and so we

can get all the relevant information about the critical

theory.

Using all these facts, we can propose the following
program to compute the critical exponents. We can set
d=3, the physical dimension, from the very beginning,
and, according to eq.(IV.2.1), ¢*=-1/2. The relevant 1Pl
Green functions have been found in Sect.lll.2: the 2-point

Green function r(2) and the 4-point r(4), and the mass

insertion r{A2) we can compute the divergent parts of

these 1Pl Green functions as poles in
o-0"= /2 (1V.2.2)

where o is a new parameter (it plays the same role as

¢ in the e-expansion). The divergences of r(2) will be

absorbed by Z; and Zq) , while the divergences of r4) by
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Zy. If, to define the mass insertion we add to the

Langevin equation the term 2Z,AR¢R, the mass insertion

renormalization constant , taking into account also the

wave function renormalization, is:
1-6- ©
Z¢2= ZAZt Zq) (1v.2.3)

and the anomalous dimension:

Vp2=H aumzq)z f=} (IvV.2.4)

Once we know the renormalization constants, we can ,

first of all, compute the B-function:

B(k):uauxR]B

rg= 10 Zy 201 2, (02 g (IV.2.5)

The knowledge of the B-function allows us to identify

its zeros and compute the value A*=A*(w) of the infrared
attractive fixed point. From Zq) and Z; we can compute the

wave function renormalization (see eq.(lll.4.12)). lts
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anomalous dimension at the fixed point gives the

critical exponent 1. From Vo2 computed at the fixed point

and using eq.(IV.1.6) we can get y. As an additional resulf

we can get the critical exponent z using eq.(111.4.53).
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IV.3.COMPUTATIONS AND RESULTS.

At the first order we have to compute the divergent
part of the graphs of fig.3a and 3b for r(2) and "), The

graph 3b) can be computed analytically and we obtain:

Z =1+ 3R/w (IV.3.1)

since Zt and Zq) have at least contributions of order Xz.

Here Rz(2\f§f)'3. In a similar way we get the mass

insertion renormalization constant:

Z¢2:1+kR/co (IV.3.2)

N,
o X

a) b)

Fig.3a) graph for the wave function renormalization

Fig.3b) graph for the vertex renormalization.
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From the graph of fig.3a, we can get Z, and Z¢. To this

end we have to perform some integral numerically. We

get:
z=1-2%12 RR%/o
Z=1-122 R R/ (1V.3.3)

with R¢=O.196i0.003 and R=0.264£0.004.

The B-function is:

B=-wA+223R (IV.3.4)
The fixed point occours at

A*=w/3R (IV.3.5)

As aspected, it is infrared attractive and of order .

The numerical values for vy, n and z are:
v=1.167

n=0.055%0.001
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z-2=0.0075+0.0008 (Iv.3.6)

The value of y is the same as for the first order in the
g-expansion. The value of m is higher with respect to that
obtained with the e-expansion, while z-2 is lower. It is

now interesting to go to the second order approximation

and look if we can get closer to the high temperature

expansion values.

The second order graphs contributing to the

f-function can be constructed starting from the expansion

Type O Type I
Type 11 Type V

;Twﬂﬂ Type IV

Fig.4 The two loops graphs contributing to (4



in tree diagrams of the field ¢ , and then contracting
pairs of random sources. We need essentially to compute
the divergent part of r(4)

By using the notation explained earlier, we get at
order A3 , the graphs of fig. 4 (where the combinatorial
factors have been explicitly shown). The IV and V
types have a subloop with a cross on each line of the loop;
we know that this kind of subloop is not divergent and so
these graphs have just a divergence coming from the
larger loop : a simple pole divergence. On the other hand
, the other graphs have also divergent subloops and so we
aspect them to show a double pole plus a simple pole
structure. For example the type O is essentially
contributing just with a double pole: its diverging part is
the square of that of the simple loop we studied for the

B - function at order 1 loop (fig.3b), as can be easily seen:
Divergent part of type 0 = ( R/ o) (IV.3.7)

This gives rise to the problem of the cancellation of
the double poles: in fact in the B- function the double
pole can be , at best, multiplied by ® and so there must
be a cancellation , in order to get a finite - function.

Let us compute the 3 - function at order A3 . We

write:
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Ap = h® Zv Zshy Zs = 719717, -(0+2)
(IV.3.8)

and

Zv =1+23R/0 +A2822Zv  Zs =1+ 21262 Zs

with

82Zs =(o-1)822Zt - (o+2) 5270 (IV.3.9)

where 8§1Zv = 3R/ ® ,82Zt and 82Z¢  are given by
eq.(IV.3.1), (IV.3.2), (IV.3.3).

B=pa (u™® Zv ! Zsap) =

= - ok +3RAZ + 2230 82Zs -22309R?/ 02 + 2003852Zy

+0(2) (1V.3.10)
Since &2Zs has only single poles, in order to get a

finite B- function , 2 Zv must exibit a double pole part

with the form:
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$2Zv = 9 R%/ w? + single pole part (IV.3.11)

This is not only important from a theoretical point of
view, but it provides also a check of the combinatorial
factors we have computed. The result of our computation
is that for each graph of fig.4, the double pole is equal to
(R/oo)2 times the combinatorial factors indicated for each
graph, times 1/n for n loops, i.e. 1/2 for this case, times
the number of diverging subloops of the graph. In the
same way we have obtained the cancellation of the
double poles for the mass insertion and for the wave

function renormalization. Indeed we get

Y2 =R - 2002 82 + WX R/ @) +322 R¥o +00.)

(IV.3.12)
and the result is finite since
82122 =2 ( R/)2 + single pole part (IV.3.13)
For the wave function we write
Z=1+ 321/o+ 2382 r=-R2(3Rt + Ro )/4

(1V.3.14)
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and then

n= 2o 1/ o +6R A3 t/o -3 or38Z + 0%
(IV.3.15)

The result is finite since
032 =2 Rr/o? + single pole part (IV.3.16)

To evaluate the single pole part of the various
diagrams of fig.4, we have to extract the pole in 1/w and

compute numerically the residue, once the one loop

counterterm has been taken into account.
We computed the residues S; of ! by using the

program VEGAS (a Monte Carlo adaptive
multidimensional integration rtoutine [44]) on a GOULD
32/97 Computer. We got the following results,

corresponding to the various graphs of fig.4:

Type I S; = R? (0.00 £ 0.08 )/4
Type I Sy = R? (0.00 + 0.04 )/4
Type I Sy = R% (207 + 0.03 )/4
Type IV Syy = RZ(7.38 £0.1)/4

Type V Sy = R® (103 + 0.01)/4 (IV.3.17)
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Taking into account all the combinatorial factors the

sum of the two loops contributions is:

-31 k3U/4m = -3! l3/4m(81 +1/2Su +1/2Su1 + 1/4S1v +
+1/4Sv )

U=32+0.1 (IV.3.18)
Defining
AR=k (IV.3.19)
we find, from eq.(IV.3.10), that the B - function 1is:
Bk =-0+3k- ak? +0(K)

where a=-32(R+Ro -2U0)=90=% 04
(Iv.3.20)

The fixed point now is
K= o3 + 227 02 +0 (o) (IV.3.21)

For the mass insertion we find that the two loops
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contributions involve the previously studied graphs of

type 0,11, III, V of fig.4. The second order term in ZA 1is:
- 2 2
52 Za =2(R/w)” - Ua R7/4o

with U, = S+ S+ 1/2 Sy = 2.62 £ 007 (IV.3.22)

Expanding in powers of A eq.(IV.2.3), we get SQZ¢2

from 027A

82Z,2= 2R/ ©)2 -RZ(Ua + 3Rt - Re /4o

(1V.3.23)
Finally we get :
= R\ 2p2 _ _ 2
Vo2 = + A*R#/2 (UA +3Rt-Ro)= -k +k“ ¢
(IV.3.24)
where c= 1.61 £0.04 and k is defined in

eq.(IV.3.19).

We then compute yq)z* at the fixed point :

Y,2% = - 0f3 + w2(3c- a)2l +0@@ ) (IV.3.25)



108

The critical exponent y is now obtained expanding

eq.(IV.1.6) in powers of ®:
vy=1+w/6+ w2/4 (2a-6¢c+3)27+ O(a)3) (IV.3.26)
Extrapolating to o=1, this gives
v= 1.27 £ 0.01 (IV.3.27)

This is our result; it is really a good one, because we

remember that from the &— expansion we get Ye= 1.24

and the value of the high temperature expansion 1S Y=
1.250 + 0.003. [43].

Let us now compute the second order correction to the
n critical exponent. There are three graphs contributing at

this order (see fig.5) to the wave function

renormalization.

NN
N4

3 3 .
-2 L Al _ VI,

Fig.5 The three loops graphs contributing to the wave

function renormalization.
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The inverse of the complete propagator is

Q= gl a2 W+23 {3 +1/2 12 +1/2 I +

- counterterms} (1v.3.28)

where W is the first graph of fig.3a ( the two loops
graph ).

From this we can compute the renormalization

constants:
7 =1+222 Guo+ M3{ RGyw? - T/o } +00%

Zo =1+3212 Golo +23{ RGe/w? - ¢/o } + oot

(1V.3.29)

where, we have written Gt= —RtR2 and G¢ = —R¢R2; R,
R;,Rg have been defined previously , and T and ¢ are

the single pole residues of the graphs of Fig. 5. We can

now compute 7 in terms of these quantities:

n=poyln Z for Z= Z{3-0)2 Z,(1+0)2 (1V.3.30)

The result, at the fixed point k* is:
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n= -(3/2 Gt + 1/2G¢ )0)2/(9R2) + { -3Gt+ Go) a/(81R2)+

+(Gi-Go Y(18R2) + (3T + ¢ H(18R>)) w3  (IV.3.31)

where the quantity 'a' has been defined 1in
eq.(1V.3.20).

3

At order c02 we get the old result; at order - of course

we need the numerical values of T and ¢ :

= 0.055w2 + [ 0.106 + ( 3T + ¢ )/(18R3)] (1V.3.32)

Calling Sitand Sie the residues of the single poles of
the s and p2 derivatives of the graphs Ii( see fig. 5), we

have:

T= S3t + 1/2 S2t + 1/2 St1t

o= S3o+ 1/2 S2¢+ 1/2 S1¢ (Iv.3.33)

Sit and Sie have been computed numerically using the
program VEGAS, like previously. All these numbers are
given as a result of 7 dimensional integrals; the
integrands are rather singular functions , due to the

presence of a very delicate mechanism of cancellation of
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logarythmic singularities inside them; this has not
allowed a very accurate determination of these numbers
due to the limits in CPU time and in the precision of the
Computer. Moreover, an inspection of the equation
defining 1 (eq.(IV.3.32)), shows that , in order to get a
result compatible with the experimental value, an almost
complete cancellation should occur between the number
0.106 coming from the two loops corrections to the value
of k* and from the exponents in eq.(IV.3.30), and the
term (3T+¢). One of our main results is that this indeed
happens. However this cancellation makes also the
statistical error on the final result rather large ( since
errors must be added in absolute values ). Our estimates

are, for the quantities defined previously:

S1s = (-0.4120.03 )R> S = (0.87+0.12)R3
S20 = ( 0.25£0.04 )R3 Sar =(-0.37+0.07 )R3
S36= (-0.27+0.05 )R3 S3i= (-0.85+0.12)R3

(1V.3.34)

and therefore
T = (-0.6+0.2)R3 6= (-0.35£0.08)R3
(IV.3.35)



112

We get from that:
n = 0.055 02 + o ( -0.013+0.03) (IV.3.36)
Extrapolating to =1 we get the result

n= 0.042 (IV.3.37)

with a large statistical error (£ 0.03 ).

To get a small error we have to increase the accuracy
in the numerical integration at least of a factor 10, which
is, for now, out of the computer possibilities. However it

is already a good result to obtain T in the range of values

estimated by means of the ( resummed ) e-expansion and
of the high temperature expansion [401(43]. We can
notice that the critical exponent m seems , in every
method, to be much more difficult to compute, giving a
large error, with respect to the exponent y. The

experimental value for m is also rather uncertain: Texp =

0.045+ 0.015 [45].
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